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Abstract (Italiano)

L’utilizzo di modelli matematici in grado di descrivere e predire
sia la farmacocinetica (pharmacokinetics, PK), ossia cosa il corpo fa
al farmaco, sia la farmacodinamica (pharmacodynamics, PD), ossia
cosa il farmaco fa al corpo, e fondamentale durante tutte le fasi di
sviluppo di un farmaco. Tra le altre cose, questi modelli permettono
di identificare i candidati pit promettenti durante lo sviluppo precli-
nico, guidano la scelta del dosaggio da somministrare durante le prime
sperimentazioni cliniche, permettono di valutare 'efficacia clinica del
trattamento e di simulare in silico gli effetti che si potrebbero ottenere
con protocolli di somministrazione differenti.

Esistono diversi strumenti di modellizzazione con caratteristiche
diverse e specifici campi di applicazione. Da un lato si sono modelli
con una forte componente meccanicistica, come i modelli di farma-
cocinetica basati sulla fisiologia, detti modelli Physiologically Based
Pharmacokinetic (PBPK). Questi modelli integrano le informazioni
sull’anatomia e la fisiologia dell’organismo con le proprieta fisico-chimiche
della molecola in questione. Dall’altro ci sono modelli caratterizzati
da una scarsa componente meccanicistica come i modelli classici di
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farmacocinetica/ farmacodinamica (PK/PD). Infine esisitono modelli
in cui la componente di farmacocinetica non e esplicitamente model-
lizzata (K/PD).

Il quesito scientifico alla base di questo lavoro di tesi ¢ se esiste un
approccio modellistico “ottimo” per affrontare un dato problema. In
quest’ottica infatti deve essere sempre tenuta in considerazione la frase
di George Box: “Tutti i modelli sono sbagliati, ma alcuni sono utili”.
Lo scopo di questo lavoro di tesi ¢ stato investigare in alcuni casi di
studio: i) 'adeguatezza di un particolare approccio modellistico allo
specifico problema in termini di struttura del modello, dati necessari
e/o disponibili, ipotesi di lavoro e robustezza dei risultati alle ipotesi
fatte; ii) la dipendenza delle conclusioni dall’approccio adottato.

Nel Capitolo 1 dopo una breve introduzione sul processo di sviluppo
di un nuovo farmaco e sul ruolo ricoperto dalla modellizzazione mate-
matica, sono state illustrate nel dettaglio le caratteristiche delle tipolo-
gie di modelli qui considerati per descrivere la farmacocinetica e la far-
macodinamica. Successivamente e stato formulato il quesito scientifico
alla base di questo lavoro di tesi ed e stata illustrata la metodologia
seguita per fornire una risposta.

Nel Capitolo 2 sono state valuate le capacita predittive dei mod-
elli Whole-Body (WB) PBPK. Per questo scopo sono stati simulati
sei scenari caratterizzati da un livello crescente di informazione e dati
disponibili per lo sviluppo del modello, partendo dai dati dei soli es-
perimenti in vitro, fino ad arrivare ai dati di sperimentazioni cliniche.
Questi scenari sono poi stati utilizzati per vedere 'accuratezza delle
predizioni dell’esposizione sistemica in funzione dai dati disponibili.
L’Etambutolo (EMB), uno degli antibiotici usati per il trattamento di
prima linea della tubercolosi polmonare, & stato usato come caso di
studio.
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Quando la caratterizzazione fisiologica del soggetto malato non e
disponibile, come nel caso di malattie oncologiche, & necessario ricor-
rere ad approcci meno meccanicistici, come i modelli PK/PD e K/PD,
per trarre importanti conclusioni sull’efficacia dei candidati farmaci.

Nel Capitolo 3 sono stati analizzati e discussi i modelli matem-
atici attualmente utilizzati in campo oncologico nella fase preclinica e
traslazio-nale.

Nel Capitolo 4 e stata analizzata la dipendenza dei risultati dalla
particolare strategia modellistica utilizzata, prendendo come caso di
studio la predizione dell’effetto della somministrazione combinata di
due farmaci oncologici (Sunitinib e Irinotecan) in topi xenograft.

Nel Capitolo 5, nel tentativo di aggiungere una componente mec-
canicistica ai modelli PK/PD, & stata misurata la concentrazione di
farmaco nel tessuto tumorale di ratti xenograft. La crescita del tumore
e effetto del farmaco citotossico Etoposide sono stati modellizzati con
opportuno modello di PK/PD. La potenza del farmaco ¢ stata quindi
valutata considerando sia la sua concentrazione nel plasma -come negli
approcci tradizionali- sia la concentrazione nel tumore, per discutere
la bonta dell'uso della concentrazione plasmatica come surrogato di
quella nei sito di azione.

Nel Capitolo 6 sono riportate le conclusioni generali.



Abstract (English)

The use of mathematical models to describe and predict the phar-
macokinetics (PK), i.e., what the body does to the drug, and the phar-
macodynamics (PD), i.e., what the drug does to the body, is funda-
mental across all the phases of the drug development process. Among
the other things, these models allow to identify the most promising
candidates during the preclinical studies, lead the dose selection for
the First-In-Human (FIH) clinical trials, and enable to evaluate the
effectiveness of a treatment and to simulate in silico different admin-
istration protocols.

Nowadays, there are several modeling tools, each of which char-
acterized by different features and specific applicability fields. There
are models with a strong mechanistic base, such as the Physiologically
Based Pharmacokinetic (PBPK) models, which integrate the informa-
tion on organism anatomy and physiology with the physicochemical
drug properties. There are also models with a poor mechanistic base,
such as the standard pharmacokinetics/pharmacodynamics (PK/PD)
models. Finally, there are models in which the pharmacokinetics is
not explicitely modeled (K/PD).
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The scientific question of this thesis is whether an “optimal” mod-
eling strategy exists for a given problem. In this perspective, the sen-
tence of George Box: “All models are wrong, some are useful” should
be kept in mind. Via some case studies, this thesis aimed to investigate
two aspects: i) the suitability of a certain modeling strategy for a given
problem in terms of model structure, available /required data, working
hypotheses and the robustness of the results with respect to the as-
sumptions made; ii) the dependency of conclusions from the adopted
modeling approach.

In Chapter 1, to set the scene, a brief introduction on both the
drug discovery and development process and the importance of math-
ematical modeling throughout all the phases of this process was given.
The features of the modeling strategies considered in this work to de-
scribe the pharmacokinetics and the pharmacodynamics were outlined
in details. Subsequently, the scientific question underlying this work of
thesis was discussed together with the methodology used to address it.

In Chapter 2, the predictive performance of the Whole-Body (WB)
PBPK models were investigated. To this aim, six what-if scenarios, in
which data were added progressively into model development, start-
ing from in vitro and animal experiments, up to human clinical trials,
were created. Via these scenarios, the accuracy of the exposure predic-
tions in dependence of the available data was evaluated. Ethambutol
(EMB), one of the first-line antibiotics used for the treatment of pul-
monary tuberculosis, was used as paradigm drug.

When the physiological characterization of the subject with the
disease is not sufficient or not available, as in the oncology fields, less
mechanistic approaches, i.e., the PK/PD and the K/PD models, were
used to draw conclusions on the effectiveness of candidates.

vil



In Chapter 3 the most important models currently used for cancer
drug discovery were surveyed.

In Chapter 4 the dependency on the results from the specific mod-
eling strategy was investigated using as a case study the predicted
effect of two anticancer drug combination (Sunitinib and Irinotecan)
in xenograft mice.

In Chapter 5 in the attempt to be more mechanistic, additional de-
tails on drug behavior were added by considering drug concentration

profiles not only in plasma but also into tumor tissue.

In Chapter 6 overall conclusions were reported.
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Chapter

Introduction

Drug discovery and development is a long, complex, expensive and
full of risk process. Drugs typically take 12 years from the initial dis-
covery stage to reach the market, with an estimated cost of £1.15bn
per drug [1]. A lot of techniques have been adopted to improve the
efficiency of this process and to reduce the attrition rate, i.e., the per-
centage of candidates which have been discarded throughout the entire
process. Mathematical modeling, aiming to characterize the safety and
efficacy of a new drug, has been recognized as an essential instrument
during all the stages of the discovery and development process, and
the so-called Model Informed Drug Development (MIDD) has
become a fundamental process in pharmaceutical companies [2].

However, an accurate and adequate choice of modeling strategy is
of paramount importance: the modeling approach to be adopted is
directly related not only to the scientific question to address, but also
to i) the available data, ii) the particular stages of drug discovery and
development process, iii) the level of knowledge at the beginning of
the modeling exercise. In this chapter, the entire phase of the drug



1.1. Drug discovery and development

discovery and development will be illustrated. Then, the MIDD will
be introduced and some modeling techniques will be presented. Pro
and cons of each modeling strategy, as well as their field of application,
will be discussed. Finally, the scientific questions underlying the work
presented in this thesis were discussed together with methodological
approaches used to address them.

1.1 Drug discovery and development

The drug discovery process can be divided into four sequential
steps: “target identification”; “hit identification”, “hit to lead” and “lead
optimization”. In the target identification, an easy-to-reach molecular
target (protein, enzyme, receptor or hormone) associated with a po-
tential therapeutic response is selected. Subsequently, in the hit iden-
tification phase, the molecules interacting with the target are identified
(“hits”). Hits are required to be easy-to-edited to act both on toxicity
and formulations. In the next stage (hit to lead), lead compounds are
identified starting from the selected hits and optimized during the lead
optimization step generating candidates. If one or more candidates are
considered promising, i.e, effective and safe, new investigations will be
performed. The drug discovery process has therefore terminated, and
the drug development process has just started.

In the preclinical phase in vitro and in vivo assays are performed
to assess if the candidates have the required properties. In vitro exper-
iments are usually used to assess physicochemical drug properties, such
as molecular weight, solubility, permeability, plasma protein bindings,
acid /basic nature, pKa, etc. In some cases, also the pharmacodynam-
ics (PD), i.e., the effect of the candidates under study on a certain
population of cells/bacteria can be evaluated. When in vivo experi-
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Figure 1.1: Drug development process. Figure taken from [3].

ments are performed, candidates are administered to a small number
of animals, usually mice, rats or monkeys, to investigate their toxicity,
pharmacokinetic (PK') and pharmacodynamics (PD). Different doses,
reflecting in different drug exposures, are usually tested to understand
which is the compromise in terms of safety and efficacy. The infor-
mation collected in this phase are integrated and used to predict the
behavior of the drug in men and to select the dose(s) to be adminis-
tered in First-In-Human (FIH) studies.

Phase I studies involves 20 to 100 people (healthy volunteers or
patient for anticancer drugs) and lasts several months. The purpose
of these studies is to assess drug safety, i.e., starting and maximum
tolerated doses (MTD), and candidates PK to allow the definition of

Lusually indicated with the acronym ADME: Absorption, Distribution, Metab-
olization, Elimination.



1.1. Drug discovery and development

the safe dose range in human. Approximately 70% of the candidates
move to the next phase [4].

In phase II studies up to several hundred of patients are enrolled. In
this phase, lasting at least 3 years, both efficacy and short to medium
term side effects are evaluated. The optimal doses and schedules at
which drug elicits its action are identified. Approximately 33% of the
candidates examined in this phase move to the next phase [4].

Phase III studies aim to confirm drug efficacy and to monitor ad-
verse reactions on a larger scale. Thanks to the large number of pa-
tients enrolled (from 300 to 3000), results are more likely to show
the equivalence, non-inferiority or superiority of the new therapy with
respect to a comparator (standard-of-care or, more rarely, placebo).
The long duration of this phase (1-4 years) allow to detect long-term
or rare side effects undetected in Phase II. It has been estimated that
the 25-30% of the candidates examined in this phase move to the next
phase [4].

If evidences have shown that the drug is safe and effective for the
intended use, regulatory agencies -the The Food and Drug Adminis-
tration (FDA) in the USA and the European Medicine Agency (EMA)
in the Europe- make a decision to approve the drug. Even following
the launch of the new drug on the market, phase IV (pharmacovigi-
lance) studies are conducted to monitor drug safety and efficacy. A
general overview of the entire drug discovery and development process
was reported in Figure 1.1.

As just discussed, the bottleneck is not in the discovery but in the
development phase. Rising costs, mainly due to the required clinical
trials and the complexity to interpret key findings, are not counter-
balanced by the number of the drugs achieving the market. Among

4



1.2. Model informed drug development

the other measures proposed to improve the efficiency of the process,
a smarter use of the modeling approach has been advocated.

1.2 Model informed drug development

In Lalonde et al., MIDD was defined as the “development and ap-

plication of pharmaco-statistical models of drug efficacy and safety
from preclinical and clinical data to improve drug development knowl-
edge management and decision-making” [5].
The rationale underlining this strategy is the integration of six key
components (PK/PD and disease models, competitor information and
meta-analysis, design and trial execution models, data analysis mod-
els, quantitative decision criteria, and trial performance metrics) in a
quantitative framework to be used throughout the drug discovery and
development process.

MIDD was adopted by pharma companies to reduce the failure
probability in drug development. Five highly interdependent features
(for selected pathway, target, molecule, dose regimen, and patients)
which determines the overall likelihood that a compound will be com-
mercialized were identified (Figure 1.2). For each feature a specific
tool is suggested: system biology helps in identifying the right path-
way to act on, system pharmacology allows to identify the appropriate
modality to engage the target, etc.

Nowadays it is believed that the MIDD helps in preventing and
overcoming the most common causes of failure in drug development [6]:
i) the insufficient characterization of the exposure-response relation-
ship before the implementation of confirmatory studies in late-stage
clinical development; ii) the poor knowledge of the treatment effect
in the target population (difference from placebo or active compara-
tor and/or variance); iii) an inadequate knowledge of the drug and of
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Figure 1.2: The evolution of MIDD. i this figure five inter-independent
rationales leading the drug development and the preferred tools to achieve the goals (bottom of

the figure) were illustrated. Figure taken from [6].

mechanistically related drugs because relevant data were not system-
atically collated, stored, and utilized; iv) the lack of team experience
with the primary end point (often due to “enhancements” of the his-
torically established end point). This assumption is corroborated by
an estimation of a reduced the overall cost of drug development by as
much as 50% [7] thanks to an extensive use of in silico technologies.
There is hope that greater predictive power both in term of toxicity
and efficacy can be achieved by using mathematical modeling. As a
confirmation, the use of this tool to improve the drug development
process was encouraged also by EMA [8] and FDA [9, 10, 11].
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Pharmacokinetics Pharmacodynamics
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Figure 1.3: PK/PD modeling relationship. Schematics of the relationship
between the PK and the PD.

1.3 Different modeling tools and differ-
ent application fields

As mentioned in Chapter 1.2, a specific scientific question should be
addressed with a specific modeling strategy (Figure 1.2). In this the-
sis three different modeling strategy, i.e., PK/PD, K/PD and PBPK
models, have been examined. In the next paragraphs, the main fea-
tures and appropriate fields of application will be discussed for each of
them. In the next chapters, a case study for each modeling strategy
will be presented.

1.3.1 PK/PD models

PK/PD models are one of the most widespread and used tool in
drug development. PK describes the concentration of a drug in a body
fluid, usually blood and/or plasma, over time [12]. PD describes the
intensity of the drug effect in dependence of the drug concentration in

7



1.3. Different modeling tools and different application fields

the body fluid. Through the combination of the PK and the PD part,
PK/PD modeling tries to describe directly the time course of effect
(Figure 1.3).

The process of drug disposition consists of drug absorption, distri-
bution, metabolization and elimination (ADME) and determines the
concentration-time curve. Briefly, the drug was absorbed from the
site of administration (gut, muscle, epidermis), transferred to the sys-
temic circulation (or administered directly there in case of intravenous
IV administration) and distributed to the various tissues reaching in
the biophase, where the drug elicits its therapeutical effect. Kidney
and liver metabolize the drug by biotransforming it into other sub-
stances, usually to facilitate its elimination.

Classic PK models uses compartments, virtual space(s) in which
the drug distributes homogeneously and instantaneously. These mod-
els consist of an interconnected compartments where the connections
representing the material flows based on the ADME characteristics of
the compound. A system of differential equations following the mass
conservation law describes the variations of the quantity in the com-
partments over time.

PK/PD quantifies the concentration-effect relationship describing
it for examples, in the form of as simple hyperbolic or sigmoidal rela-
tion.

Ideally, drug concentration(s) should be measured at the site of
action where the interaction with the target occurs, but in most cases
it is not possible. Thus, under the assumption that drug concentration
in easy-to-access body fluids (blood or plasma) is a valid surrogate
for the pharmacologically active unbound concentration at the site of
action, drug blood or plasma concentrations are used to establish the
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relationship.

1.3.2 K/PD models

When PK data or models are not available, a different strategy
should be adopted. To establish the drug concentration-effect rela-
tionship, K/PD are used. As the lack of “P” in the name suggests,
in these models PK data are missing. As it is explained in the work
of Jacquim et al [13], who first approached these “concentration-free”
models, the PD response is driven by a dose rate, as a function over
time, rather than the standard drug concentration profile. In practice,
the kinetics of the substance under study is inferred from the dynam-
ics of the observed response [14]. However, uncertainty still exists in
the assessed drug concentration-effect relationship estimated by this
approach.

1.3.3 PBPK models

Physiologically-based pharmacokinetics (PBPK) models describe
the PK of a substance by using both the substance-specific information
and the prior knowledge of the body anatomy and physiology. The
general idea of this modelization arose in 1942 [15]: the body is divided
into physiologically relevant compartment, usually organs or tissues
Figure 1.4. The fate of the substance within each compartment is
described by a mass balance equation. By combining all the differential
equations in a unique system, simulating the drug disposition in the
entire body is possible and a Whole-Body (WB) PBPK model is built.

As can be seen in Figure 1.4, in PBPK models drug disposition
was characterized by accounting for physicochemical drug properties
as well as the vasculature interconnections of tissues and organs, the
tissue composition, volume and blood perfusion, and its intrinsic clear-
ance.
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Figure 1.4: PBPK models schematics. The structure of a generic WB-
PBPK model, together with the input necessary to predict drug disposition and the standar

mass balance equation were reported.

1.4 The scientific question of the thesis

This thesis aimed to investigate two aspects: i) the suitability of a
certain modeling strategy for a given problem in terms of model struc-
ture, available/required data, working hypotheses and the robustness
of the results to the assumptions made; ii) the dependency of con-
clusions from the adopted modeling approach. Thus, it was evalu-
ated in which cases findings were model-dependent, and if different
(and, maybe opposite) conclusions would be drawn with different ap-
proaches. In other words, it was investigated whether an “optimal”
modeling strategy exists to address a specific problem. Via some case
studies dealing with different therapeutical areas, such as the oncology
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and the infectious diseases, the modeling approach commonly thought
to be the best to cope with the specific ultimate goal was tested.

Here, a general overview of this thesis was reported.

One of the most critical points in early drug development, is the
prediction of the exposure in early clinical development. In fact, at this
stage no clinical data were available, and the dose-exposure relation-
ship is unknown. Thanks to the ability to integrate the a prior: infor-
mation on organism anatomy and physiology with the physicochem-
ical drug properties, PBPK framework is one of the most promising
tools to lead the dose selection in First In Human (FIH) studies. The
contribution in terms of exposure prediction given by the WB-PBPK
model was investigated in Chapter 2. The predictive performance of
the PBPK models were assessed by six what-if scenarios, in which
data were added progressively into model development, starting from
in vitro and animal experiments, up to human clinical trials. Via these
scenarios, the accuracy of the exposure predictions in dependence of
the available data was evaluated. Ethambutol (EMB), one of the first
line antibiotics used for the treatment of pulmonary tuberculosis, was
used as paradigm drug.

In different contexts, as in the case of cancer patients, the PBPK
modeling strategy could not be adopted, because of the insufficient
physiological characterization of the patients. Thus, different and less
mechanistic modeling strategies, such as PK/PD and K/PD models,
are used to reach important conclusion on drugs effect. A survey of
the available strategies in oncology have been deeply analyzed and
presented in Chapter 3.

The dependence of results on the specific model used was investi-
gated in Chapter 4, where a case study regarding the predicted effect

11
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of the combination of two anticancer drugs was illustrated.

Finally, in an attempt to provide additional details on drug behav-
ior, drug concentration into tumor tissue was measured in a xenograft
rats study. In Chapter 5, drug potency was estimated considering both
the drug concentration in plasma and active free drug concentration
in tumor tissue.

12



Chapter

Evaluation of PBPK models
predictive performances in
early drug development: a
case study using

Ethambutol!

Whole-Body Physiologically-Based Pharmacokinetic (WB-PBPK)
models enable to characterize the exposure profiles in the different or-
gans through combining a prior: information on both organism anatomy
and physiology with physicochemical drug specific properties. How-
ever, it is unclear which data are needed for accurate predictions.
In this work we investigated the predictive performances of the WB-

!The contents of this chapter are confidential. This is a work by L. Carrara,
P. Magni, D. Teutonico,O. Della Pasqua & F. Kloprogge, and will be submitted
on cpt:psp
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2.1. Background

PBPK models both for prospective evaluation of the molecules (prior
to human clinical trials) as well as from a retrospective point of view
(when human data were partially or totally available). Six what-if
scenarios, in which data were added progressively for model develop-
ment, were simulated. Ethambutol (EMB), one of the first line antibi-
otics used for pulmonary tuberculosis treatment, was used as paradigm
drug. Key data and parameters were identified. A PBPK model, able
to describe drug plasma concentration following EMB administration
and to predict drug levels in the lung, was built.

2.1 Background

Physiologically Based Pharmacokinetic (PBPK) models are a class

of mathematical models used to describe and predict the absorption,
distribution, metabolism and excretion (ADME) of chemical substances,
including small and large molecules. In contrast with the compartmen-
tal (PK) models, which provide a rather phenomenological description
of the drug concentration profiles in plasma by means of relatively sim-
ple model structure, PBPK models yield a more detailed and mecha-
nistic representation of the ADME processes.
In whole-body PBPK (WB-PBPK) models, the body is divided into
physiologically-relevant compartments, usually tissue and organs [16].
For each organ a mass balance equation is written. These equations
form an unique differential equation system that describes the fate of
the substance in every compartment of the body [17].

One of the main features of the PBPK models is the possibility
to integrate the information on the organism’s anatomy and physiol-
ogy with the physico-chemical drug properties derived from in wvitro
experiments. This feature is of primary interest in early drug devel-
opment, during which one aims to predict drug disposition in human

14
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before progressing with a candidate compound into the clinic, when
the model is used prospectively as a screening tool. Another important
aspect worth mentioning is the possibility of using WB-PBPK models
to predict drug levels not only in plasma, but also in the biophase,
which provides a stronger rationale for dose selection, enhancing the
probability of positive results and success of the treatment [18; 19].
This is expecially relevant when considering target organs for which
sampling in clinical trials requires invasive procedures or in cases where
sampling is simply not possible [20].

However, which data are necessary to achieve accurate predictions
is still unclear.

To explore the predictive performances of the WB-PBPK mod-
elling, we chose a high impact and relevant cases, pulmonary tuber-
culosis (TB). Tuberculosis is one of the most widespread infection
diseases in the world. Data from the Global Tuberculosis report show
that in 2015 Tuberculosis killed 1.4 million of people, and 10.4 million
of new cases were estimated in the same year [21]. Tuberculosis is
an infection caused by Mycobacterium tuberculosis, which mainly af-
fects the lung [22]. EMB, one of the first line antibiotics administered
for pulmonary tuberculosis treatment [23], was used as paradigm drug.

Here, we investigated the predictive performances of the WB-PBPK
modelling both for prospective evaluation of the molecules, prior to hu-
man clinical trials, and from a retrospective perspective, when human
clinical data were available. To this aim, 6 what-if scenarios, which
mimicked different degrees of prior information or data availability
were simulated. Scenarios range from the poorest to the richest data
situation. In the latter one, a PBPK model for EMB was fully pa-
rameterized, and plasma EMB concentration profiles in a population
of TB patients, as well as drug concentration level in the lung, were
predicted.

15



2.2. Materials and methods

2.2 Materials and methods

The contents of this section are confidential.

2.3 Results

In scenario 1 the predicted AUC following IV EMB administra-
tion varied from 0.5 to 3.5 fold the nominal value because of the un-
certainty on microsomal activity. The AUC predicted following oral
administration varied 0.1-4.3 fold the nominal value when a default
value of IPT computed via the empirical formula (Eq. 7?7) was used
(IPT=2.55 x 107® [dm/min] when LogP=-0.4 and IPT=8.45 x 1078
[dm/min] when LogP=0.12), whilst it varied 0.2-3.75 fold when the
“true” IPT (6.67 x 1078 [dm/min]) estimated in scenario 5 was used.

Despite the uncertainty on hepatic clearance was not solved in
scenario 2, animal clearance data improved the predictive performance
of the PBPK model, and a predicted AUC of 0.5-2 fold was obtained
following IV administration (Figure 2.1 B). For oral drug adminis-
tration, when IPT was automatically calculated (Eq. ??) AUC pre-
dictions of 0.1-1 fold the nominal value were obtained, compared to
0.25-2.2 fold when the “true” value was used. These results applied
for both the lipophilicity values considered (predictions made using
LogP=0.12 and following oral administrations were not shown).

Human plasma IV data (scenario 3) enabled to estimate some of
the model parameters, such as clearance and lipophilicity. In scenario 3.C
an identifiability problem in estimating two clearance processes by
only plasma data arose. In the other sub-scenarios, IV plasma data
were well described regardless of the specific EMB clearance hypothe-
ses, which did however affect the prediction of the amount excreted
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in the urine: this amount was underestimated in scenarios 3.A and
3.D, and overestimated in 3.B. AUC prediction following oral EMB
administration varied from 0.2 to 0.96 fold (depending on clearance
hypotheses) when automatically calculated IPT was used (Eq. 77). A
more narrow AUC variation was obtained (0.732-1.14 fold) when the
estimated value was considered. For scenario 3.D IV plasma data fit-
ting and urinary excretion predictions were shown in Figure 2.1 C,
oral plasma predictions were reported in Figure 2.2 A. Results not
shown for scenarios 3.A and 3.B

When also urinary data were used for model building (scenario 4),
clearance processes were correctly identified and a PBPK model with
hepatic clearance and both passive and active renal elimination was
built. Rowland and Rodgers distribution model resulted to be the
most adequate partition coefficient calculation method. Mean plasma
concentration profile up to 12 hours (Figure 2.4 A) and the fraction
of the drug excreted unchanged in the urine up to 72 hours (Figure
Figure 2.4 B) after an hour infusion of 15 mg/kg of EMB to healthy
volunteers were successfully described.

Testing different lipophilicity values (from -0.64 to 0.12), resulting in
different IPT values, the predicted plasma EMB concentration follow-
ing the first oral dose varies 0.3-1.2 fold the nominal value, while when
the “true” IPT was used very accurate prediction (fold change 1) was
obtained independently from the LogP considered.

Predicted plasma EMB concentration following the first oral dose and
at steady state were reported in Figure 2.2 A and Figure 2.3 B, re-
spectively.

In scenario 5 Weibull distribution parameters and IPT were esti-
mated. Besides describing IV plasma and urinary data (Figure 2.4 A
and B), the model successfully described mean plasma concentration
profiles up to 15 hours after the first oral administration of 800, 1000
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and 1200 mg of EMB to a simulated population of TB patients (Figure
2.4 C). Model parameters were reported in Table 2.1.

Furthermore, the model well predicted mean EMB plasma concen-
tration profiles following the administration of different EMB formu-
lations at different doses (Figure 2.6).

Good prediction of the inter-individual variability (IIV) of the
plasma concentration profiles of the population under study follow-
ing oral drug administrations were obtained by using the developed
WB-PBPK model. The comparison between empirical and theoret-
ical percentiles showed good agreement between 800 mg oral EMB
data and population plasma concentrations profiles simulated via the
PBPK model following the first dose (Figure 2.5 A). Good agreement
between the percentiles was also observed at steady state (Figure 2.5
B), even if the 95" percentile is under predicted by the PBPK model.
Prediction for 1000 and 1200 mg of EMB were reported in App. A. A
mismatch between the model predicted percentiles and the percentiles
computed from the observed data [27] of the pharmacokinetic studies
was noticed (App. A).

Steady state drug levels in plasma and AC of an independent

dataset [31] were well predicted by the identified model both for male
(Figure 2.5 C) and female patients (not shown).
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Figure 2.1: Model predictions following IV administration.
Plasma concentration profiles (Figure A and C) and fraction of drug excreted unchanged in
urine (Figure B and D) predicted following IV infusion (15mg/kg) in scenario 1 and in scenario
2, respectively. Each model-predicted curve corresponds to a different hepatic clearance value.
Fits of plasma IV data (Figure E) and the prediction of the fraction excreted in the urine (Figure
F) in scenario 3.D. Each curve corresponds to a different lipophilicity value. Data (black dots)

were reported together with their standard deviation (black vertical bars).
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Figure 2.3: Model prediction at steady state following oral
administration. Model predicted curves at steady state following 800 mg orally admin-

istered in scenario 4. A) Model predicted plasma concentration. 4. B) Model predicted lung
concentration. Left: model-predicted curves using the IPT value computed on the basis of the
molecular weight and the lipophilicity of the molecule (Eq. ??). Right: model predicted curves

when the “true” IPT but different LogP, corresponding to different colors of the curves, were

used. Data (black dots) together with their standard deviation (black vertical bars).
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Figure 2.4: Model-building results in rich data scenario. A) and
B): simultaneous model fit of plasma and urinary data following IV EMB infusion (scenario
4 and 5). C): simultaneous plasma data fit following oral EMB administration (scenario 5).

Model-fitted curves were represented by continuous colored lines and data by dots.
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Figure 2.5: WB-PBPK model plasma and lung predictions. a)
and B): predictions of population plasma EMB concentration profiles (scenario 6) following the
first oral dose (800 mg) and at steady state, respectively. In both panels A) and B) the red
shaded area represents the 5" — 95" percentiles of the PK-Sim population predicted plasma
concentration profiles, the red dashed line and the red dotted lines represent the 50t 25" and
the 75t percentiles. The blue continuous lines represent the 5" — 95t% percentiles of the data,
the blue dashed line and the blue dotted lines represent the 50t 25t" and the 75!" percentiles.
C) model evaluation using data of an independent dataset [31]: prediction of mean male plasma

(red line) and AC (blue line) drug levels at steady state.
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Figure 2.6: Different EMB formulation predictions. Model predicted
plasma curve (black lines) compared with observed mean data (red dots) of studies in which
different EMB formulations were administered: A) 800 mg of ETB-91-400A [28], in B) 1000
mg of EMB obtained from Hong Qi Pharmaceutical CO, Ltd, China [29] and in C) 1100 mg of
Myrin-P Forte (Pfizer)[30] were administered.
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Figure 2.7: WB-PBPK model predictive performances: ex-
posure predictions for the scenarios under investigation ws-
PBPK model predictive performances expressed in terms of AUC fold change between the model-
predicted and the observed exposure. Left: AUC prediction range following IV administrations
(scenario 1 and 2). Right: AUC prediction range following oral EMB administration. In orange
the AUC range of variation when IPT computed in the basis on molecular weight and lipophilicity
was used (Eq. ?77?), in yellow the AUC range of variation when predictions were made using the
“true” IPT. The red dashed lines represent the 2 fold change of variations within which predic-
tions are considered reasonably accurate; the blue dash-dotted lines indicate a AUC fold change
of 1 in predicting drug exposure. A logarithmic scale on y axes was adopted to prevent visual

representation bias.
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2.4 Discussion

In this work the predictive performances of PBPK models were in-
vestigated using an high impact case, such as pulmonary tuberculosis.
EMB was used as paradigm drug. We evaluated three different cases:
i) when the WB-PBPK framework is used for prospective evaluation
of molecules in absence of clinical data; ii) in poor data scenarios in
human; iii) in a rich data context, when the model building phase can
be competed.

Our step-by-step investigation proved that the accuracy in drug

exposure predictions is directly related to the amount of the avail-
able data that, in turn, depends on the stage of the drug development
process (Figure 2.7). Thus, the prediction accuracy is expected to
increase throughout the process, as occurred in our case. It should be
also noticed that the required level of accuracy varies among the dif-
ferent stages of drug development. For example, when extrapolating
to humans making very precise prediction is really hard since a lot of
information is still missing; while when human data are available the
extrapolation to children is easier, because more information on the
drug under study and more precise models are given.
Our case study could be used to assess more quantitatively the com-
promise between the data given and the level of accuracy in drug
exposure prediction. Moreover, our results confirmed the importance
of the model building phase, which provided important information on
drug disposition not only in rich data situations, but also in poor data
contexts. In addition, our analysis highlighted the crucial parameters
and data for developing a WB-PBPK model for a renally cleared drug
such as EMB.

For EMB, one of the main problem resulted to be the lack of infor-
mation on clearance processes. The uncertainty on pre-clinical hepatic
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clearance and the lack of active tubular secretion data prevented us
from achieving accurate prediction of the drug exposure when in vitro
experiments were the sole data source. The misprediction in AUC
following IV administration reflected on a greater variation in AUC
prediction following oral administration.

The introduction animal experiment data allowed not only to ob-
tain relatively accurate exposure prediction following IV administra-
tion, but also indicated that, since the 20-60% of the drug was pre-
dicted to be excreted via the kidneys (except when the drug was sup-
posed to be totally renally cleared (Figure 2.1 B, pink line), urinary
samples should be collected in a EMB first-in-human study.

In the absence of clinical data, due to the huge clearance uncer-
tainty it was not possible to distinguish the impact of lipophilicity on
drug disposition predictions and the results listed above did not de-
pend on the lipophilicity value used (LogP=0.12 [32] and LogP=-0.4
[37], results not shown).

In poor data scenarios, which mimicked the early development
stages, a partial model building procedure was possible. The PBPK
model described plasma IV data well, fact of the utmost importance
at this stage of drug development with respect to the properly iden-
tification of the clearance processes (in our case renal elimination was
not well predicted).

When also human urinary data are available, drug distribution and
elimination can be adequately estimated.

For both scenarios 3 and 4, drug exposure following oral admin-

istration was poorly predicted when IPT value computed via an em-
pirical formula is used (Eq. ??). More accurate predictions were ob-
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tained when the “true” IPT value was used, as displayed in Figure
2.7. This finding confirmed the authors’ opinion that IPT is one of the
most sensitive parameter of the WB-PBPK model, and the accuracy
of exposure prediction dramatically depends on its value. Moreover,
our results also demonstrated that in predicting plasma concentra-
tion, lipophilicity does not play a role “per se” but only for computing
IPT (Figure 2.3 A), whilst it strongly impacts when tissue drug con-
centration should be predicted (Figure 2.3 B): when the “true” IPT
value was used, AC drug concentration variations are bigger than the
ones observed when IPT depends on lipophilicity itself (Figure 2.3 B).

In rich data scenario, mimicking the late development stages, the
presence of both IV and oral data enabled to fully parameterized the
PBPK model following the standard 2-step procedure, according to
Kuepfer et al. [54]. Firstly, drug distribution and elimination were
estimated using IV data (as in scenario 4). Subsequently, drug absorp-
tion was evaluated from oral plasma profiles. The model adequately
described experimental data. Estimates are in agreement with litera-
ture and were reported in Table 2.1.

The estimated lipophilicity of -0.64 is consistent with the values
reported in literature (LogP=-0.4 [37] and LogP=0.12 [32]).

In agreement with the physico-chemical properties of the drug,
which is a strong base, Rowland and Rodgers distribution model [40,
41] explicitly accounting for the electrostatic interactions between ion-
ized compounds, resulted to be the best partition coefficient calcula-
tion method.

Kidney passive excretion did not suffice to describe the amount

of EMB excreted via the kidneys alone, as demonstrated in scenar-
ios 1-3. In agreement with Lee and coworkers [24] who noticed that
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EMB was actively eliminated wvia the kidneys, a first order tubular
secretion was modeled and tubular secretion rate T'Sgpe. of 1.46 min~!
was estimated. We found that, 72 hours after the IV infusion, the
43% of the total amount excreted via the kidneys was excreted ac-
tively, proving that tubular secretion is crucial in drug elimination.
In accordance with the fact that EMB is a renally cleared drug, a
low liver plasma clearance rate (0.07 min~!) was estimated, below the
maximum clearance value of 1.64 min~! measured in vitro [32]. Fol-
lowing IV infusion a total plasma clearance of 0.45 L/h/kg was found,
conforming to what stated in [24], where a value of 0.51 L/h/kg was
reported. Following oral drug administration a total plasma clearance
of 0.74 L /h/kg (mean) was found, in agreement with [27] where a value
of 0.80 L/h/kg was reported.

The estimated IPT value of 6.67 x 107® dm/min is greater than
the default value of 1.46 x 10™® dm/min calculated using Eq. ?? and
the estimated LogP=-0.64. Despite the difference between these two
parameters was small, IPT needs to be estimated to well describe
the data, confirming our hypothesis on the sensitivity of this param-
eter. Sensitivity analysis results were reported in App. A. A Weibull
dissolution time of 16.41 min, similar to the value of 10.3 min esti-
mated from in vitro dissolution curve [35], and a Weibull dissolution
shape of 0.53, lower than the corresponding value of 1.42 from the
i vitro experiment, were estimated. A fixed small intestine transit
time of 260.5 min [48] is consistent with the value of 4 hours adopted
in [54]. Formulation solubility in the GIT is a cutoff value for the
intestinal absorption. According with biopharmaceutics classification
system (BCS) EMB is a class III (high solubility and low permeability)
compound or borderline class III/I (high solubility and high perme-
ability) [55], [56], [29]. Thus an high drug formulation solubility value
not limiting the absorption was chosen (formulation solubility=7.58
mg/mL). A constant bioavailability of 60-61% was obtained for the
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three dose levels, indicating EMB linear pharmacokinetic. The drug
fraction absorbed in the GIT is 65-66%, in agreement with previous
findings reporting values of 75% to 80% [50].

When the WB-PBPK model is fully developed, good predictive
performances are achieved. Although model parameters were identi-
fied on mean data, the variability of the biometrics of the populations
included in the PK-Sim internal database well captures observed IV
of the plasma concentration profiles of the population under study af-
ter oral drug administrations. The variability in organ volumes, blood
flow rates, etc., resulting in a different PBPK model parameterization,
reflects the observed differences in plasma levels within the popula-
tion in a similar manner to the IIV in nonlinear mixed effect models.
No additional variability was necessary to capture the population PK
profiles. By comparing the empirical and the theoretical percentiles,
a good agreement between the data and the population plasma con-
centrations profiles simulated via the PBPK model was achieved both
when the first EMB oral doses (Fig. Figure 2.5 A and App. A) and
steady state were simulated ( Figure 2.5 B and App. A).

Due to the difference in body weight distribution between the ob-
served TB patients [27] and the PK-Sim simulated population (see the
histogram in Figure ?7), it was impossible to use the PBPK model
to simulate the EMB plasma concentration profiles of the observed
population of patients. The PBPK model can be used to predict the
variability in plasma concentration level in standard populations, but
at the moment limitations still exist in simulating some “special” pop-
ulations, whose biometric distributions are not the standard ones. In
our case, severely underweight population such as the TB patients,
could not be simulated.

Testing our PBPK model on data of other studies [31], [28], [29]
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and [30], adequate predictive performance were showed. Mean EMB
plasma concentration profiles following the administration of different
formulations can be adequaletly predicted, proving that formulation
do play a role in drug dissolution and absorption. Mean EMB level
in plasma and in the lung at steady state are well predicted. The
latter result, i.e, adequate EMB lung concentration predictions, has
been achieved by means of the default WB-PBPK model, without
customization by adding further compartments or creating a multi-
compartment lung model as did by Gaohua et al. [49], who built a
28-compartment lung model.

In conclusion, in this work the predictive performance of the WB-
PBPK modeling framework were investigated using EMB as paradigm
drug. Despite emphasis is given to the mechanistic nature of WB-
PBPK models, challenges still exist for prospective use of the approach
with novel molecules, i.e., when full details of drug disposition proper-
ties are unknown or differ between species. Our case study illustrates
the bias in WB-PBPK model predictions when supporting data on
drug disposition are missing, a very common situation during lead op-
timization and candidate selection. However, when the WB-PBPK
framework is used retrospectively, adequate descriptions of drug dis-
position were obtained and good predictions of the drug distribution
in tissues were made. This confirms that an adequate model building
phase is fundamental: WB-PBPK models provide a generic structure
comprehending only passive processes; and active processes, related
to the specific drug under study, must be included. It should be also
stressed that thanks to the model building phase it is possible to better
understand the drug behaviour and test hypotheses on drug distribu-
tion, metabolization and elimination. It should be clear, however, that
the complexity level of these models is not a limitation: since the infor-
mation on organism anatomy and physiology were already embedded,
data can be accomodated by estimating few, but crucial, parameters.
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Chapter

Current mathematical
models for cancer drug
discovery!

In some cases, PBPK modeling strategy cannot be applied. In
oncology the insufficient physiological characterization of the patients
and tumor tissues is the major obstacle for a properly (and success-
fully) use of the PBPK approach. Consequently, even at the early
phases of oncology drug discovery, different and less mechanistic mod-
eling strategies are used. Empirical methodologies may be enough
for screening and ranking candidate drugs, but modeling approaches
are needed for optimizing and making economically viable the learn-
confirm cycles within an oncology research program and anticipating
the dose regimens to be investigated in the subsequent clinical devel-

I'The contents of this chapter are published in L. Carrara, S.M. Lavezzi, E.
Borella, G. De Nicolao, P. Magni & I. Poggesi . Expert Opinion on Drug Discov-
ery 2017, 12(8):785-799
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opment. The number of modeling approaches used in the discovery
of anticancer drugs is consistently increasing and new models are de-
veloped based on the current directions of research of new candidate
drugs. These approaches have contributed to a better understand-
ing of new oncological targets and have allowed for the exploitation of
the relatively sparse information generated by preclinical experiments.
In addition, they are used in translational approaches for guiding and
supporting the choice of dosing regimens in early clinical development.

In this Chapter, papers appearing in the literature of approxi-
mately the last decade reporting modeling approaches applicable to
anticancer drug discovery have been listed and commented. Papers
were selected based on the interest in the proposed methodology or in
its application.

3.1 Introduction

Drug discovery and development in the oncology therapeutic area
is a complex, expensive, and long process. Only approximately 5%
of the new molecular entities evaluated in oncology first-in-human
(FIH) studies are able to enter the market [57]. Whilst in the past the
chemotherapeutic agents were chosen based on their generic cytotoxic
activity, nowadays, with the advent of targeted therapies, preclinical
experiments aim to test the hypothesis that the candidate drug is ab-
sorbed and distributed to the biophase, to assess its interaction with
a predefined molecular target (activating, inhibiting, or modulating
it), and to establish if this interaction leads to a significant antitumor
effect without eliciting severe toxicity.

These aspects (adequate systemic and relevant drug biophase ex-
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posure, target interaction and modulation, dowstream effects, tumor
inhibition and toxicity) represent the building blocks of the so-called
pharmacological audit trail [58, 59]. In an audit trail, in vitro and
in vivo experiments are performed to (1) select promising compounds
based on the availability of an adequate administration route and dos-
ing regimen, a suitable antitumor activity and a manageable tolerabil-
ity profile; and (2) determine a safe and efficacious starting dose for
the FIH studies.

When in vitro experiments are performed, tumor cell cultures are
exposed to drug candidates, usually at constant concentrations for a
predefined time. The aim is to screen and rank a large number of
test compounds, assessing if there is an inhibition of cell proliferation,
which is typically assessed via the measurement of viable cell count
over time. Other endpoints, such as target engagement and down-
stream effects, can also be assessed as part of these studies to provide
information on the potency of the candidates and on the relevant mode
of action. These experiments are high throughput, relatively simple,
and do not include the complexity of the whole organism.

In in vivo experiments, the selected compounds are administered
to animal models to investigate the antitumor efficacy [60, 61]. Ec-
topic xenografts are the most widely used animal models [62]. They
consist in immunosuppressed animals, usually mice or rats, where hu-
man cancer cells are inoculated subcutaneously in the flank. The time
course of tumor dimension is measured following the application of
different dosing protocols. In order to overcome some limitations of
ectopic xenograft models (e.g. in these conditions tumors never metas-
tasize [60]), alternative experimental models have been proposed. For
instance, orthotopic xenografts, in which human cancer cells are im-
planted in the same tissue where the tumor originally develops are used
[63]. In the perspective of personalized medicine, the use of patient-

36



3.1. Introduction

derived xenografts (PDX) has also been recently introduced [64]. In
the same experiments, pharmacokinetic (PK) and pharmacodynamic
(PD) data (e.g. marker of target engagement and modulation) data
may be collected; safety and tolerability are also assessed to establish
if the antitumor activity is obtained without eliciting overt or intoler-
able toxicity.

Mathematical models represent the most comprehensive tools for
synthesizing and integrating the results of in vitro and in vivo experi-
ments. They are able to accommodate the relative sparsity of the data
and lack of design optimality, to facilitate the comparisons across dif-
ferent candidates, and, most importantly, to allow the translation of
preclinical results into the clinical setting.

This chapter reviews some of the mathematical approaches pub-
lished in the recent literature. Due to the increasing number of origi-
nal contributions dealing with modeling in oncology (see Figure 3.1),
this work is not intended to be a comprehensive review: the ap-
proaches mentioned here are of particular interest either for the pro-
posed methodologies or for their application. They are summarized
in Table 3.1 and Table 3.2 for the in vitro and in vivo experiments,
respectively. The reader should note that not all the models reported
in Table 3.1 and Table 3.2 will be described in details in the next
sections of this review. Other reviews can be consulted for a more
comprehensive picture on this topic [65, 66, 67, 68].
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Figure 3.1: The trend in papers on modeling in oncology. The
overall trend, based on a Google Scholar search meeting the terms “Pharmacometrics” OR “model-
based drug development” OR “PK-PD models” AND “oncology”, is represented as solid line and
filled circles. Adding to the research terms previously listed AND “preclinical”, the pattern
represented by the dashed line and filled triangles is obtained. Despite the research bias, due to
the presence of true/false negatives and to the fact that the overall trend of scientific production
is not discounted for, a strongly exponential growth can be observed. Only in the last year, 230

papers on preclinical modeling were published.
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3.2. Modeling the results of in vitro experiments

3.2 Modeling the results of in vitro ex-
periments

In vitro data are typically modeled using empirical Hill model [69]
(Eq. 3.1):

Emaa: : C'y
ECY, + C7

where F,,,, is the maximal effect (e.g. the inhibition of either
the activity of the molecular target or of cell growth in culture), C is
the candidate drug concentration, EC is the concentration eliciting
50% of the maximal effect, and v is the shape factor, representing the
steepness of the Hill curve.

Effect = (3.1)

The Hill model is convenient to describe a global endpoint, such
as the number of surviving cells at fixed time points following drug
exposure. However, it was observed that this static representation
may be too simplistic, especially when different protocols of drug ex-
posure are applied to cells in culture, as the parameters of empirical
models are dependent on the experimental protocols. In this case,
other empirical approaches have been proposed including the depen-
dency of the antiproliferative effect on both concentration and time of
exposure [70, 71, 72]. These approaches were further refined incorpo-
rating mechanistic elements, such as cell cycle time, cell cycle phase
specificity, and the potential of drug resistance [73]. More recently,
other longitudinal approaches describing the system behavior (i.e. cell
count) over time were proposed. Different dynamic semi-mechanistic
and mechanistic models are summarized in Table 3.1.

Del Bene et al. [74] developed a semi-mechanistic model consisting
of a system of differential equations in which the unperturbed growth
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3.2. Modeling the results of in vitro experiments

of proliferating cells in culture, the perturbed growth due to drug ac-
tion, and a cell mortality chain are described. The unperturbed growth
of proliferating cells is represented by a first-order process (Eq. 3.2):

AN (1)
dt

where N,(t) is the number of proliferating cells at time t, A is
the time constant of the exponential growth, and N, is the initial
number of cells in culture. The candidate drug makes some of the
cells nonproliferating: the perturbed growth is dependent on both
the number of proliferating cells and the drug concentration via a
proportionality constant ks, representing the antitumor potency of the
compound, as in Eq. 3.3:

—A-N,(t)  N,(t=0)=N, (3.2)

AN, (1)
dt

= A Ny(t) — ko - C - Ny(t) N,(t=0) =N (3.3)

where C is the concentration of the candidate drug, considered
constant. The nonproliferating cells enter a mortality chain described
by a three-compartmental system N, Ny, N3 (Eq. 3.4):

d]\;lt(t> =ky - O+ Ny(t) = k1 - Ni(2) Nt =0)=0
dNy(t) =Y =

@ —heNO kNG NE=0=0
d]\st<t) = k1 - No(t) = kr - Ny(?) Na(t=0)=0

Niotat(t) = Np(t) + Ni(t) + Nao(t) + N3(t)

and eventually undergo cell death. This approach was successfully
used to model simultaneously data from experiments where A2780
ovarian tumor cells were exposed to numerous antitumor agents (both
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chemotherapeutic agents and target-mediated compounds) at different
exposure times and concentrations. In addition, using this mathemat-
ical model, it was possible to derive a closed form expression of EC5g
as a function of the exposure times. Based on the similarity with the
structure of the Simeoni model (described in the next section) [75],
Del Bene and coworkers suggested that the parameters obtained from
in vitro studies may be used in a translational approach to predict the
in vivo effects in xenograft models and, thus, in human subjects.

In another model, proposed by Moreno and coworkers [76], a Gom-
pertz function was used to describe the unperturbed cell proliferation.
For camptothecin and topotecan, the drug action was incorporated
in the model as inhibition of the proliferation while for cisplatin cell
death induction was considered. In the latter case, a delay, introduced
as a signal transduction process, significantly improved the fitting of
the time course of cell count following drug administration. Cisplatin
is reported to induce apoptosis, which was found to be correlated with
the activation of caspase-3 [77]. Interestingly, Moreno et al. reported
that their model was consistent with the observed levels of activated
caspase-3 [76], suggesting that their model has mechanistic grounds.

Lin and coworkers [78], after setting up a perfusion cell culture sys-
tem to assess the effect of anticancer compounds, developed a math-
ematical model to describe the experimental observations. The ap-
proach was inspired by a model characterizing the antimicrobial effect
of ceftazidime [79]. In [78], the cells consisted of two subpopulations,
the nonreplicating cells (whose number is described by Nyen—rep) and
the replicating ones (N,,). Nonreplicating cells become replicating
via a first-order process governed by the rate constant kyon—rep—srep
(transition process). Replicating cells revert to nonreplicating cells via
the rate constant k,cp—non—rep (replication process). When the total
number of cells (N = N,¢p + Nyon—rep) is far from the carrying capac-
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ity (N < Nmax), replicating cells generate two nonreplicating cells.
When the system approaches the carrying capacity (N ~ N,,4.), only
one non-replicating cell is generated. This phenomenon is called repli-
cation efficiency (Rep) and can be expressed by the following equation:

Rep =2 (1 - #ﬂ]\[(ﬂ) (3.5)

Overall, the anticancer drug activity was implemented via generic
inhibitory functions on the transition (Inhansition) and/or the repli-
cation (Inhyepiication) Processes (Eq. 3.6):

Inh=1— Linas - C

IC5+C

where 1,4, is the maximal effect, C'is the (constant) concentration,
and ICjg is the concentration leading to 50% of the maximal effect.
In some cases, tolerance had to be included as a decreasing exponen-
tial with time on the I,,,, parameter. The overall model is therefore
represented by the following system of differential equations (Eq. 3.7):

(3.6)

dNnon—rep (t)

dt = Rep : Inhreplication : krepﬁnonfrep : Nrep@)

- Inhtransition : knonfrepﬁrep : Nnonfrep (t)

AN, (1)
d—tp = Inh'transition : kjnon—rep—)rep : Nnon—rep (t) (37)

- krep—)non—rep : Nrep(t)

N(t) = Nupon—rep(t) + Nrep(t)
N(t = 0) = No(t)

This model accurately described the time course of cancer cells
count following the treatment with different formulations of tetraiodothy-
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roacetic acid, resveratrol, and cetuximab given as single agents or in
combination. The outcome of the modeling of the combination exper-
iments suggested a nearly additive effect of these agents. The authors
stated that this approach was useful for translating the in vitro effects
into the in vivo setting in both animals and human subjects.
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3.3. Modeling the results of in vivo experiments

3.3 Modeling the results of in vivo exper-
iments

After the assessment of the antitumor effect of drug candidates
in in wvitro systems, in vivo experiments are typically performed in
xenografted rodents. Although in preclinical species chemically or
physically induced experimental tumor models are also often used,
no mathematical modeling efforts have been reported in the recent
literature for modeling the tumor size changes in this kind of exper-
iments. Some of the available mathematical approaches describing
in vivo preclinical antitumor effect directly relate the candidate drug
plasma concentrations to the stasis or reduction of tumor size [75, 83].
Other models describe the catenary of events from target engagement
and activation to the downstream changes (e.g. the phosphorylation
of specific substrates) leading to tumor stasis or shrinkage [84]. The
use of mechanistic elements facilitates the translation from preclini-
cal to clinical situation. In the literature of the last few years, many
examples of preclinical and translational modeling are reported and
some of them are summarized in Table 3.2.

3.3.1 PK-PD models directly describing tumor growth
inhibition
Single-agent therapy

The more recent models in this area are indebted with the sem-
inal works of Anne Laird [85, 86] and William Jusko [87, 88|, who
proposed mathematical models to describe tumor growth and the an-
ticancer drug candidate effect in animals. One of the currently most
popular PK-PD models of tumor growth inhibition (TGI) is the model
proposed by Simeoni et al. (Figure 3.2 a), also called cell distribution
model [75, 89]. The unperturbed growth in the control group is de-
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scribed by an exponential phase followed by a linear one (Figure 3.2
b). In the perturbed growth model (treated animals), it is assumed
that following drug administration only a fraction of cancer cells keeps
proliferating. The cells damaged by the drug stop proliferating and
enter a transit compartmental system that leads to cell death (Figure
3.2 ¢). The rate of tumor growth is reduced by a factor proportional
to both drug concentration and weight of proliferating cells, via a pro-
portionality constant that represents the drug antitumor potency. The
separation between tumor and drug-related parameters is a key factor
for translational purposes, and it is one of the likely reasons of the pop-
ularity of this model. The translatability of the parameter describing
the antitumor potency was further demonstrated by an outstanding
correlation with the drug systemic exposure obtained at the dose(s)
at which 10 drugs (5-fluorouracil, cisplatin, docetaxel, doxorubicin,
etoposide, gemcitabine, irinotecan, paclitaxel, vinblastine, vincristine)
are administered in the clinical practice [90].

Bonate, in a review paper [91], suggested that a more traditional
Gompertzian growth may be more suited for describing the unper-
turbed growth as it includes also the plateau that is sometimes ob-
served in xenograft models. Whilst Gompertzian growth has been
extensively used [85], in case the plateau is not observed, this growth
is definitely less flexible with respect to the growth function proposed
by Simeoni et al. [75].

Another popular model is the signal distribution model proposed
by Lobo and Bathasar [83]. Here, the delayed time course of the drug
induced cell kill is modeled using four transit compartments. The
last compartment induces cell death on a population of cells that is
proliferating following a first-order growth. In a more recent work
[89], it has been shown that both cell distribution and signal distri-
bution models could describe accurately the antitumor effect observed
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Drug plasma A. Simeoni TGI model schematics

concentration

[Xl}—>‘xz}—>‘xa}—-—>‘x4|—>
kyec(t) ky ky ky

B. Unperturbed growth model

Figure 3.2: Schematics of Simeoni TGI model.
Simeoni TGI model. B) The equations of the unperturbed growth model. C) The equations of
perturbed growth model. Ag and A\; are the tumor growth rates in exponential and linear phase,
respectively, wo is the tumor weight at inoculation time, k; is the first order rate of transit in the
three- compartmental mortality chain, k2 is the drug potency, and ¢(t) is the drug concentration

over time. W (t) is the total tumor weight, measured during the experiments. Reproduced from

C. Perturbed growth model
) Al ya)

dt [I +(;10.w(;))¢}w

dxt;il(t)=k| 'Xz(t)_k‘ 'Xl(t)

96l () ()

5(0)=w, x,,,(0)=0

w(t)=x, (1) +x, (1) +x, (1) +x,(1)

[65] with permission of the American Association for Cancer Research.
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3.3. Modeling the results of in vivo experiments

following administration of liposomal paclitaxel to mice xenografted
with Colon-26 tumors, despite these models were demonstrated to be
mathematically distinct.

Additional complexities were added to the basic cell or signal dis-
tribution models on an ad hoc basis. Stuyckens et al. [92] proposed
a modification of the Simeoni model to account for the development
of resistance to antitumor therapy using an exponential decline func-
tion to modulate the potency parameter ky. Another modification was
proposed by Pigatto et al. [93] to account for the schedule-dependent
effect of etoposide on TGI in rats. The saturable killing effect at higher
drug candidate concentration was modeled via an FE,,,, function, re-
sulting in a variable potency parameter (Eq. 3.8):

c(t)
k variable = k mazx 1— — 3.8
srite = b+ (1= 7520 (5.5)

where kopq, is the maximal cytotoxic drug potency and ICy is the
concentration providing half of ko,... It is interesting to notice that
this model was applied in a nonlinear mixed effect (NLME) context
considering interindividual variability on tumor-related parameters.

Another popular model was developed by Hahnfeldt and coworkers
for antiangiogenic compounds [94]: the authors formulated a mathe-
matical model to describe the effect of endostatin, angiostatin, and
TNP-470 on Lewis lung xenografts, using a bidirectional control of
the tumor on its vasculature. The authors modeled the tumor growth
via a Gompertz function (Eq. 3.9),

in which a variable called carrying capacity K(t) is the limit for
tumor growth (here K () is defined as the maximal sustainable tumor

49



3.3. Modeling the results of in vivo experiments

size due to the input of oxygen and nutrients), V(¢) is the tumor vol-
ume, and A is a constant related to tumor growth. K (t) was assumed
to be related to the balance of four different processes: (1) the natural
exponential growth of the tumor in absence of limitations, (2) the in-
hibitory and (3) the inducing processes contributing to tumor growth
due to the availability of energy and nutrient input via the vascula-
ture, and (4) the inhibitory action of the antiangiogenic agent. Thus,
the effect of these factors on K (t) was expressed using four distinct
terms in the following differential equation:

dK (t)
dt

2

= —MK(t)+bV(t) —dK(t)V(t)s —eK(t)g(t) (3.10)

where g, b, d, and e are coefficients (to be estimated) and g(t) is a
function describing the exposure to the antiangiogenic agent. The au-
thors claimed that this modeling approach was also applicable to the
clinics: simulations suggested that the investigated compounds should
be given using continuous dosing. The concept of carrying capacity
was adopted and modified in many recent papers [95, 96, 97].

Ribba et al. [97], for instance, studied the unperturbed tumor
growth in mice xenografted with HT29 and HCT116 colorectal can-
cer cell lines. The authors considered the simultaneous presence in
the tumor of proliferating nonhypoxic tissue (P) and hypoxic tissue
(Q), and nonproliferating necrotic tissue (/N), and described the dy-
namics of these cell subpopulations. Nonhypoxic and hypoxic tissues
proliferate following similar dynamics (generalized-logistic equations),
in which the maximal tumor size is given by the carrying capacity
(K). Whilst the tumor grows, the carrying capacity also increases.
At the same time, a fraction of the proliferating nonhypoxic cells is
transformed into hypoxic cells, and, in turn, a portion of the hypoxic
cells is converted into necrotic cells. Both the growth of P and ) and
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the transition between them are ruled by the hypoxic stress s, defined
as the ratio between P* and K, where P* = P+ + N. The equations

are as follows:

gé%ﬁ::Ap'fmﬂ'(1“S@Yﬁ-—kp%Q-f%ﬂ-s@y*
%it) = kpaq - P(8) - s(0)" + A - Q1) - (1 = s()%) = koun - Q1)
éggzzk@»N'Q@)

P(t=0)=F Qt=0)=0 N(t=0)=0 K(t=0)=K,
P*=P(t)+Q(t) + N(t)
P*

(3.11)

where Ap and A are the proliferation rates of the nonhypoxic and
hypoxic tissues, respectively, kp_,g and kg_,n are the rate constants
for the transitions from nonhypoxic to hypoxic cells and from hypoxic
to necrotic cells, respectively, and « is a parameter to be estimated.
One of the main features of this model is that it allowed the incorpo-
ration of biomarker data related to tumor tissue hypoxia status with
good accuracy, indicating its strong mechanistic base. The model was
parameterized based on the linear dimension of the tumor as in the
field of clinical oncology tumor dimensions are often described by the
sum of the major dimensions of the measurable lesions.

The effect of vaccines on tumor growth was also modeled. Parra-

Guillen et al. [14], for instance, developed a semi- mechanistic K-
PD model to describe the TGI caused by a vaccine administration in
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C57BL/6 mice developing tumors following the inoculation of human
papillomavirus E7 protein. The model is schematically summarized in
Figure 3.3.

Combination therapy

Combination therapy, which involves the administration of two or
more drugs, is very common in anticancer treatments. Investigating
the effect of multiple drug administration is therefore necessary.

Koch et al. [81] described the antitumor effect of anticancer com-
pounds given alone or in combination in in vivo xenograft models. The
starting point was the Simeoni TGI model [75] with minor modifica-
tions. The combined administration of two anticancer compounds was
described through the interaction term 7'I(t) (Eq. 3.12):

TI(t) = kic*(t) + kPP () (3.12)

where k3!, kP, cA(t) and cB(t) are the potency parameters and the
plasma concentrations of the compounds A and B, respectively. The
empirical parameter ¢ indicates the nature of the drug—drug interac-
tion: values of ¢ less than, equal to, or greater than 1 correspond
to antagonistic, additive, or synergistic effects, respectively. This ap-
proach was also used by Li et al. [80] to model the schedule-dependent
effect of the combined administration of erlotinib and gemcitabine.

Terranova et al. [98] described the effect of the combined adminis-
tration of anticancer drugs starting from a previous approach proposed
by Rocchetti et al. [99]. When drugs A and B are given in combi-
nation, it is assumed that cells hit by one agent can also be hit by
the other one as well. As a consequence, 16 possible states of tumor
cells are represented by a 4 x 4 mortality matrix, modeling the chance
that the potency of a compound can change because of the interaction
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Figure 3.3: Model for vaccine action on tumor growth. The
pharmacokinetics of the vaccine (VAC) is described by an exponential decline (K-PD model).
After a delay, described by a transit compartment model (TRAN), the vaccine produces a signal
(SVAC) responsible for decreasing the size of the tumor via a second order process (Ts). A push-
and-pull model is included to describe a feedback resistance mechanism (REG) to the action of

the vaccine. Reproduced from [14] with permission of Springer.
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with the other drug. Drugs interplay was modeled as proportional
both to the weight of proliferating cells and drugs concentrations via
an interaction term . When ~ is equal to, less than, or greater than
1, an additive, antagonistic, or synergistic interaction is modeled, re-
spectively. The remaining model parameters are in agreement with
the Simeoni model [75]. Differently from [81], in which only k4 and
kB are estimated from single agent experiments and Ao, A\, wo, k1 and
1 are estimated from the combination data, in this approach all the
model parameters are estimated from single agent data, and only the
interaction parameter 7 is estimated from combination experiments.

When dealing with antiangiogenic therapies, the Simeoni TGI model
[75] can be used to accommodate their tumoristatic effect. Neverthe-
less, the effect of these compounds could be better described by the
Hahnfeldt model [94]. Another potential alternative is to include an
inhibitory function on the unperturbed growth, rather than using the
cell kill mortality chain adopted in the Simeoni model. This approach
was used by Rocchetti and coworkers [100] for tumor inhibition data
in which bevacizumab was administered as single agent. Data from
combination experiments in which bevacizumab was given with a Polo-
like kinase 1 (PLK1) inhibitor were also analyzed. In this case, the
cytotoxic effect of the PLK1 inhibitor was described using the Simeoni
model. The observed weak antagonistic effect between the two com-
pounds was modeled via an inhibitory function, parameterized with
bevacizumab concentration (cy(t)), applied on the potency parameter
ko pri1 of the PLK1 inhibitor, as reported in Eq. 3.13:

e(t)
105071, + Cb(t) ’
The model was used to propose sequencing and timing of the two
components of the combination to be explored in the next phases of
development. Wilson and coworkers [96] used a model based on the

(3.13)

ko pLi1,inh = k2 PLK1
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carrying capacity [94] to describe tumor diameters data following the
combined administration of the cytotoxic agent irinotecan and the
antiangiogenic compound sunitinib. The authors concluded that a
weak synergism was present between the two drugs.

3.3.2 PK-PD tumor growth models incorporat-
ing the interaction with the target

PK-PD tumor growth models incorporating the interaction
with the target

In the approaches described in the previous section, tumor dimen-
sions alone were modeled, and only incidentally biomarker data were
included for increasing the mechanistic base of the model. In the mod-
els presented in this section, events leading to the antitumor response
(target engagement and downstream events, such as the inhibition of
the phosphorylation of certain proteins) are instead explicitly consid-
ered. These events are integrated as root cause of the eventual in-
hibitory effect on the tumor growth, in agreement with the biomarker
definition of Danhof and coworkers [101]. This integration can facili-
tate the translation from animals to humans [102] (see Section 3.3.2).
In many published papers, biomarker dynamics are therefore linked
to tumor growth by combining PK-PD models (see Table 3.2). For
instance, standard indirect effect models [103] may be used to describe
markers of target engagement, considered in turn as drivers of the ef-
fect on tumor growth.

Bueno and coworkers [84] proposed a model to link the plasma
concentrations of a receptor TGF — 3 kinase antagonist to the per-
centage of phosphorylated Smad2 and Smad3 (pSmad) in tumors. It
was reported that pSmad interacts with Smad4 and forms a complex
that, after entering the nucleus, regulates the transcription of several
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genes responsible for tumor proliferation [104]. The authors there-
fore assumed a standard indirect response model (type I, inhibition of
the production of the response, Eq. 3.14) [105] to describe the rate of
change of pSmad concentration in tumors:

dpSmad(t) g (1 Dnaz -+ Cinhivitor (1)

- - pSmad(t), (3.14
dt I 050+Cinhibitor(t)> -pSmad(t), (3.14)

where k;,, is the zero-order rate of pSmad production, I,,,, is the
maximal inhibitory activity, IC5g is the concentration of inhibitor lead-
ing to half of the maximum effect, ¢;upnipitor (t) is the plasma concentra-
tion of the inhibitor, and kout is the first-order rate describing the dis-
appearance of pSmad. Tumor data in Calu-6 non-small cell lung cancer
and MX1 breast cancer xenografts were modeled using two alternative
approaches, including a Simeoni-like model. It was assumed that the
extent of pSmad inhibition (expressed by 2 Smagg%;d*;a_f iznad(t)]) reverts
tumor proliferation via a two-compartment transit system [106]. The
model was able to accommodate both pSmad concentrations and tu-
mor volumes data with good accuracy. Alternative dosing regimens
(one day on/one day off and one week on/one week off ) were compared
and resulted in similar tumor growth profiles. The authors concluded
that this model was also able to provide information on the TGF — 3
kinase transduction processes.

Salphati and coworkers [107] developed a PK-PD model for the
effects of a phosphatidylinositol 3-kinase (PI3K) inhibitor in MCF-7
breast cancer xenografts. PI3K catalyzes the phosphorylation of sub-
strates that leads to the activation of the protein kinase Akt and other
downstream effectors, such as PRAS40 [108]. The authors firstly pro-
posed two separate indirect response models: the first one links PI3K
plasma concentration to TGI, and the second one relates drug plasma
concentration to the inhibition of Akt and PRAS40 phosphorylation.

56



3.3. Modeling the results of in vivo experiments

An integrated drug-to-biomarker and biomarker-to-tumor model was
finally proposed, and comparable results in terms of IC5y were ob-
tained between the two approaches.

Sardu et al. [109] derived the conditions under which the antitu-
mor effect is equivalent when the drug-induced tumor growth mod-
ulation is expressed directly, considering drug plasma concentration,
and indirectly, by means of biomarker inhibition. For instance, when
an integrated model consisting of a type I indirect response model
(inhibition of production) linked to the Simeoni TGI model [75] was
considered, it was demonstrated that, in steady state conditions, the
following does hold (Eq. 3.15):

1

Cc = 1050 [max — 7 (315)
where ¢ is the concentration at steady state providing the inhibition
1, and I,,,,,, and IC5, are the maximal inhibition and the concentra-
tion leading to 50% of the maximal effect on the biomarker. In these
conditions, for a marker causally related to the antitumor activity,
the antitumor potency (k) and the ICjy, for two candidates A and B
with the same mode of action are linked via a direct proportionality

relationship, as in Eq. 3.16:

kS I ca
ky  ICEH
As a consequence, antitumor potency of new candidates can be

characterized via biomarker experiments, without the more resource-
demanding experiments in xenografted animals.

(3.16)

Additional complexities were included in some recent papers deal-
ing with tumor growth models incorporating the interaction with the
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target. Ji et al. [110] described the effect of an epidermal growth
factor receptor (EGFR) tyrosine kinase inhibitor on the phosphoryla-
tion of EGFR (pEGFR), and the subsequent TGI in MCF-7 breast
cancer xenografts. The authors adopted an indirect response model
for pEGFR inhibition; a time-dependent term was included for the
development of tolerance. Tumor growth was modeled with a logis-
tic equation and modulated by an inhibition index computed from
the biomarker model. Delays in candidate drug effects were accom-
modated using a transit compartment system. In the opinion of the
authors [110] , this model provided a deeper understanding of the
potential relationships between the tolerance of the pharmacological
action on pEGFR and the development of tumor resistance. Titze et
al. [111], besides using an integrated biomarker-TGI model, consid-
ered also an in-target biomarker of toxicity (hyperglycemia) following
the administration of an insulin growth factor receptor inhibitor.

Combination therapy

Systems pharmacology-type models were also reported in the liter-
ature; they included more complex networks of events leading to the
tumor response. Harrold et al. [112], for instance, developed a mul-
tiscale model based on a target-mediated drug disposition (TMDD
[113]) model for rituximab given in combination. The interaction with
the target CD20 was considered, and several downstream additional
events were quantified (modulation of RKIP and downstream changes
of NFkB, Bel-xL, and Fas expression). Dependent on the CD20 inter-
action, rituximab was assumed to both inhibit the tumor growth and
induce a cell kill process. The model was used to establish the effects
of rituximab alone and in combination with cytotoxic agents (fenre-
tinide or rhApo2L) in Ramos lymphoma xenografts, and a synergistic
interaction was demonstrated. The authors claimed that this model
could provide a mechanistic framework for optimizing the antitumor
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effect of CD20 antagonists given in combination.
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Figure 3.4: Schematics depicting the conceptual translational
approaches.

Translational capabilities of PK-PD models

In some cases, impressive correlations have been found between
model-based parameters obtained from PK-PD models directly de-
scribing TGI data in xenograft models and the doses used in clinical
settings [90]. The use of these parameters, especially when they are
obtained from models with some mechanistic grounds, allows a much
more efficient translation between preclinical and clinical settings com-
pared to experiment-dependent metrics of antitumor efficacy [114].
Examples of translational modeling in agreement with this concept
appeared in the recent literature and some of them are reported in
Table 3.2. It has to be noticed that the various audit trail steps [58]
that lead from target interaction to clinical response represent a trans-
lational process in itself (translation between endpoints, see Figure
3.4) that strengthen the mechanistic base of the modeling approach.
Therefore, approaches incorporating the various levels of biomarkers
should be considered as having the highest value in terms of their
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translational capabilities across different systems. Some examples are
detailed here below.

A group particularly active in this field is the one of Yamazaki and
coworkers; in a series of papers [115, 116, 117, 118, 119, 120] the link
between PK, PD markers, and TGI was explored for different agents
with translational purposes. In [115], data of PF02341066 (crizotinib),
a cMet inhibitor, were evaluated. Crizotinib PK, marker of target en-
gagement (phosphorylated cMet, pcMet) and tumor size data were
modeled following administration of the compound in GTL16 gastric
carcinoma or US87TMG glioblastoma xenografts. An indirect response
model [102] for pcMet was linked to a one-compartment PK model
via an effect compartment [121, 122], which was interpreted as a dis-
tributive delay from the systemic circulation to the tumor biophase.
An exponential growth, saturable at higher tumor sizes, described tu-
mor size dynamics, while an inhibitory function was adopted for com-
pound effect. The authors concluded that, in order to have more
than 50% TGI, a strong (>90%) ¢cMet phosphorylation inhibition was
needed. Additional considerations were done in subsequent papers
[116, 119], where phosphorylation of the anaplastic lymphoma kinase
(ALK) was used as an additional marker of target engagement. In this
case, PK-PD-TGI models suggested that 50% ALK phosphorylation
inhibition was sufficient to obtain a 50% TGI. Overall, this led to in-
dications that a 75% pALK and a 95% pcMet inhibition are needed
to achieve a positive outcome in the clinics. Analogous approaches
were applied to other ALK inhibitors [117], in which, similarly to pre-
vious papers [116, 119], a 50% ALK phosphorylation inhibition led to
a 50% inhibition of tumor growth. The fact that this was observed
with compounds with significantly different PK profiles demonstrates
that the relationships between PD target modulation and antitumor
efficacy were similar between compounds with the same mechanism of
action. This confirms that the events downstream to target inhibition
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are essentially system-related. This can provide a third dimension in
the translational processes: quantitative knowledge can be translated
from a candidate compound to the following back-up compounds. It
is important to underline that this can cover for the relative sparsity
of the information generated in the early discovery phases.

A model similar to [117] was developed by Wang and coworkers
[123] to evaluate the effect of gefitinib on LN229 wild- type or mutant-
bearing mice. PK, phosphorylated-extracellular signal-regulated ki-
nase 12 (pERK) and tumor size were assessed. A standard compart-
mental model, a precursor pool indirect response model [106], and a
signal distribution TGI model [83] were used. This approach was ap-
plied to both wild-type and mutant tumors to establish the condition
to obtain the same pERK profile (PK/PD equivalence condition): this
was achieved when a 1.83 higher dose was given to the xenografts bear-
ing the wild-type tumor with respect to the ones bearing the mutant
tumor. Human PK data, brain tumor to blood ratio from literature
and the preclinical pERK model were used as the basis of a simu-
lation exercise, which revealed that a double dose should be used in
patients with the wild- type tumor. Also Tanaka et al. [124] com-
bined data obtained in rats bearing CA20948 pancreatic tumors (PK
in plasma, S6K1 inhibition in tumor and peripheral blood mononuclear
cells (PBMCs) and tumor inhibition) and in human subjects (PK in
plasma, and S6K1 inhibition in PBMC). A model was developed in
rats linking S6K1 inhibition in tumors or PBMC and antitumor ef-
fect. The PD model was then applied to the data available in humans,
only correcting for the PK differences between species. Simulations
indicated that to obtain similar PD profiles providing antitumor effect
in the animal model, weekly doses of 20-30 mg or daily doses of 5 mg
should be used in humans.
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3.4 Discussion

An increasing number of modeling approaches is continuously pro-
posed in the literature to support the drug discovery in the oncology
therapeutic area. The examples examined in this review provide a rel-
atively comprehensive range of applications, from the high through-
put in wvitro screen to the more laborious assessment of antitumor
efficacy in in vivo models with all the satellite PK and PD evalu-
ations. Diverse types of anticancer drugs were considered in the re-
viewed modeling exercises: “classic” cytotoxic agents, antiangiogenic
compounds, vaccines, and targeted therapies. As far as in vitro ex-
periments are concerned, the modeling approaches transitioned from
simple Hill equations to models able to deal with the time course of
cell growth, both in control and treated cells. This allowed exploiting
the possibility to translate in vitro results to the in vivo context. In
all cases, the candidate drugs with new modes of action boosted the
development of new modeling approaches. For instance, the carry-
ing capacity concept was used for antiangiogenic compounds and the
quantitative modeling of the pharmacological audit trail was started
when there was the need of supporting the new targeted therapies.
Furthermore, some of the modeling approaches also allowed the explo-
ration of the effect of combination therapies, a situation that is very
common in cancer treatment. Complex models, aiming to provide a
more detailed explanation of the tumor growth and TGI processes,
should be adopted with caution due to potential a posteriori iden-
tifiability problems. Large uncertainty of the estimates may lead to
unreliable results; this could be particularly critical when these models
are used for simulating untested conditions.

Optimizing the experimental design is of paramount importance.

Recent papers indicated in a rigorous manner the importance of mea-
suring the tumor volumes in xenografted animals also in the regrowth
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phase, and not only in the tumor inhibition phase [134]. This approach
provides more stable parameter estimates and thus may lead to a lower
number of experiments and the minimization of the use of experimen-
tal animals. The adoption of appropriate statistical analysis tools is
equally important: for instance, the selected methods should allow
to properly handle the missing or censored data of the experiments
[135, 136]. In addition, also the modeling strategy should be carefully
evaluated and adapted to the experimental design. Although simple
nonlinear regression can provide important conclusions for the devel-
opment of oncology candidates, the use of NLME should be preferred,
especially in case of large interindividual variability or experimental
designs that imply additional intergroup variabilities. Indeed, NLME
allows estimating appropriate random effects (for instance, intergroup,
interindividual, interoccasion, intercompound), reducing the bias and
decreasing the parameter uncertainties. A further improvement in
drug discovery may be given by the use of more mechanistic models,
such as system pharmacology or physiologically based (PB) PK-PD
models [137]. In particular, due to the advent of commercial tools,
enabling an easier model building procedure, and the translational
capabilities of the PBPK models, this approach is increasingly used.
However, the expensive model validation and the incomplete physio-
logically characterization of the subjects with tumors [138] represent
the major obstacles to the more general and effective use of these ap-
proaches.

In many instances, drug plasma concentration is used as a surro-
gate for drug concentration in tumor. When complexities do exist in
the link between plasma and tumor time courses, plasma concentra-
tion—time data may not be a good surrogate for the tumor exposure,
hence preventing a full understanding both of PK in tumor tissue and,
therefore, of the overall drug effect. A potential solution is the direct
measurement of drug concentration in tumors [93].
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3.4. Discussion

PK information is of great importance to set up the target values
of systemic exposure to be explored in the clinical investigations. Be-
sides drug plasma concentrations, biomarkers are also widely used as
drivers of anticancer treatment effect. Predefined levels of biomarker
modulation can be used as target to guide the choice of the dosing
regimen to be explored in the first clinical trials.

Sometimes, the extrapolation from preclinical to human subjects
may be unsuccessful; in particular, this may be due to the use of
models (animal species, cell lines, etc.) that are not fully represen-
tative of the disease in human patients and/ or of the actual patient
situation. It should be stressed, however that, with some level of
mathematical sophistication, it may be possible to disentangle and
integrate all the factors that lead to tumor stasis or shrinkage in ex-
perimental models and human patients. Simple metrics of activity
(e.g. in vivo percentage of TGI) are too much linked to the specific
experimental conditions to be extended and translated directly to the
clinics. Only experiment-invariant parameters, derived from models
characterized by some mechanistic grounds (that allow the definition
of drug-related and system-related parameters) and able to describe
in quantitative manner uncertainty and intersubject variability, have
the best chances to be applicable in a translational exercise. A smart
use of mathematical and statistical modeling not only is essential for
summarizing and integrating data (that in many instances are sparse
and obtained in different experiments), but represents the only effi-
cient way to extract the information from the studies performed in
the drug discovery phase.

78



Chapter

Combination therapy in
oncology: does the
assessment depend on model
choice?!

The simultaneous administration of several anticancer drugs is very
common in cancer treatment. Especially when drugs are characterized
by different ways of action, these protocols allow to hit cancer cells
from multiple sides, and thus, to increase the probability to achieve
a therapeutical result. Several models were proposed to describe the
effect the combination therapies and to quantify whether drugs inter-
act in a synergistic or antagonist way. However, different models drew
opposite conclusions on the nature of the interaction between antian-
giogenic and cytotoxic drugs (see Sec. 3.3.1).

The scientific question addressed in this chapter is whether the inferred

IThe contents of this chapter are confidential
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4.1. Background

nature of the anticancer drug combination depends on the specific
modeling strategy or not. To this aim, the combination of Sunitinib
and Irinotecan in xenograft mice was used as case study. The impact
of the three factors supposed to play a role in determining the nature
of the interaction between the two drug, the pharmacokinetics model,
the preprocessing of data (mean vs median) and the pharmacodynamic
model, were studies.

4.1 Background

As discussed in Chapter 3, combination therapy is very common

in anticancer treatment. The rationale underpinning the simultaneous
administration of two (or more that two) drugs is to attack tumor cells
from different sides, in order to increase the potency of the treatment
and to achieve a faster and long-lasting tumor eradication.To this pur-
pose, different class of drugs, with different ways of action, are given.
One of the most commonly given combination therapy is the com-
bined administration of cytotoxic and antiangiogenic agents. Antian-
giogenic agents act by inhibiting the Vascular Endothelial Growth Fac-
tor (VEGF) signal generated by cancer cells to build new blood vessels
[139]. Via these vessels, oxygen and nutrients needed for tumor growth
are delivered. Consequently, by turning off the VEGF' signal, tumor
is deprived of the essential elements for growth. Instead, standard cy-
totoxic drugs act exerting a toxic action on tumor cells. They damage
tumor cells DNA, and consequently trigger apoptosis processes leading
to a tumor reduction [140].
However, the results of this combination therapy are currently under
investigation, since the nature of the interaction of these anticancer
drug is not completely clear. In some works, a synergistic interactions
between antiangiogenic and cytotoxic agents was reported [96], whilst
in some others a negative interaction was found [100].
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The aim of this chapter was to investigate if different modeling
strategies lead to different results in terms of effectiveness of combina-
tion therapy, and consequently, to determine whether the conclusions
on the drug-drug-interaction are model-dependent or not.

An adapted version of Rocchetti TGI model (PK/PD model) and
an adapted version of Ouerdani model (K/PD model) were applied to
the same dataset comprehending both single agent (vehicle, antian-
giogenic agent and cytotoxic agent) and combination treatment arms
(antiangiogenic + cytotoxic drugs). Three factors were supposed to
play a role in determining the nature of the interaction between the
two drugs: the pharmacokinetics model, the data analyzed (mean vs
median of measurements in different animals) and the pharmacody-
namic model, as can be seen in Figure 4.1. As better explained in
the Sec. 4.2.5, a combination of all these three factors was created.To
distinguish the impact of each factor on the conclusions, results were
summarized based on the factor under investigation (Figure 4.1).

4.2 Materials and methods

4.2.1 Animal data

Athymic nu/nu mice were xenografted with HT-29 colorectal can-
cer cells. The three orthogonal tumor dimensions (length, width and
height) were collected using a caliper. When tumor volume reached
200-300 mm? treatment(s) started. A placebo arm, 2 single agent arms
and 2 combination treatment arms were considered. Each arm was
formed by 15 rodents. Placebo group animals received only placebo.
One single agent arm was administered with 40 mg/kg of Sunitinib,
an antiangiogenic drug, via oral gavage. The other was administered
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Factors under Schematics of the analysis
investigation

K g =2 ) (PIk )P0 4

model

Data
type

Q) 02t > (Pl )P0 g
) IRDINPETD

Figure 4.1: Schematics of the analysis. On the left: the three factors under
investigation were reported: The PD model (adapted Rocchetti model vs adapted Ouerdani TGI
model); the data analyzed (mean vs median) and the models describing the time course of the
drugs in plasma (PK vs K model). On the right: the way in which the results of this analysis
were summarized. Each factor was examined separately to better distinguish and indentify its

impact.

with 90 mg/kg of Irinotecan, a cytotoxic compound, via 5-minutes
IV infusion. The combination treatment arms were administered both
with Sunitinib and Irinotecan, given at the same doses than the single
agent arms.

Sunitinib was always administered once a day for 12 days starting
from day 33. Irinotecan was always given only once: in the single agent
arm it was administered at day 33; in one combination therapy arm
(combination therapy protocol 1) at day 35 and in the second com-
bination therapy arm at day 48 after injection (combination therapy
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Tumor volumes: comparison between mean and median measurements
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Figure 4.2: Mean and median tumor volumes data time course.
Mean and median tumor volumes xenograft data. All the different treated arms analyzed in this
work were reported. The group G1 is the control group, G2 is the single agent Sunitinib-treated
group, G3 is the single agent Irinotecan-treated group, G5 is the “combination therapy protocol

1” arm, G6 is the “combination therapy protocol 2” arm.

protocol 2).

4.2.2 An adapted version of Rocchetti TGI model

The adapted version of the Rocchetti TGI model used to perform
the analyses reported in this chapter was presented here. As in the
original work of Rocchetti and coworkers [100], the tumor growth in
vehicle-treated animals was modeled as an exponential growth followed
by a linear one by using the Simeoni model [75] (Figure 3.2 b). The
TGI observed in single agent cytotoxic-treated animals was described
by using the Simeoni TGI model [75] (Figure 3.2 ¢). The effect of the
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antiagiogenic compound was described starting from [100], where an
inhibitory F,,., function to model the Sunitinib tumoristatic effect was
used. An effect compartment was added to accomodate the Sunitinib

delayed effect [141]. The final model describing the TGI caused by the
antiangiogenic drug is the following one (Eq. 4.1)

w%g(t) = kegy - cat) = kerg - Ceps(t)

{1 + (3w (t))w] ’ p e (4.1)
Cess(t =0) =0
W (t =0) = wo

ca(t) is the Sunitinib plasma concentration over time and the state
Ceys(t) is the time course of the “effective” drug concentration, i.e., the
one driving the therapeutical effect. The delay observed between the
Sunitinib administration and its effect was expressed via the time con-
stant k.sy [day']. From now on, this model was indicated as adapted
Rocchetti TGI model.

In combination therapy, the null-interaction hypothesis between
the antiangiogenic and the cytotoxic drugs was tested. This hypothesis
consists in postulating an additive behaviour of the two drugs, each
of which acts as the other drug was not been administered. From a
mathematical perspective, it is described by a join model (Eq. 4.2)
which integrates the tumoristatic effect of Sunitinib (Eq. 4.1) and the
TGI action of Irinotecan (Figure 3.2). The subscript A and B are
referred to Sunitinib and Irinotecan, respectively.
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dCor¢(t
%() = kep - cat) —kepr - Cepp(t)

X, (1) Mo X1 (8) ( Epas - Cops(8) )
= 11— — ko -cp(t) - Zy(t
dt 1Cesp50 + Ceps(t) - ealt) AalE)

d)ilzt(t) = ko cp(t) - Xi(t) — ki - Xo(2)
d)i;t(t) = ky - Xo(t) — Ky - Xs(t)
dXy(t)

S =k Xa() = k- Xa (1)

W(t) = Xu(t) + Xao(t) + X5(t) + Xa(?)

Ceff(t:()) =0 Xl(t:(]) = Wop X2’3’4<t20) =0
(4.2)

4.2.3 An adapted version of Ouerdani model

An adapted version of the model proposed by Ouerdani and cowork-
ers [95] was adopted. The tumor growth was described following the
spirit of the Hahnfeldt model [94]. In vehicle-treated animals, the
tumor growth over time was modeled via the following ODE system
Eq. 4.3:

d‘;—?:)v‘/(t)-(—%), V(it=0)=W
(4.3)
_df;ft) =b-V(t)?3, K(t=0)= K

where P is the tumor volumes cm?®, )\ its growth rate constant
[day~!], K the carrying capacity and b the capacity rate constant
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[day~—!], which regulates how quickly the carrying capacity growth.
Similarly to what proposed by Wilson and coworkers [96], here it was
assumed that the antiangiogenic drug acts only on tumor vasculature
variable K, which, in turns, controls the tumor growth Eq. 4.4.

AV (t) V(t)
7:A-\/(z&)-(1—m), V(it=0)=V, ",
dK (t '

B v — s S0 K0, Ke=0)=K

The state variable S represents the total amount of Sunitinib in
the system, and the K-parameter pg is the Sunitinib elimination con-
stant (further details on this model parameterization were given in
Sec. 4.2.4). Sunitinib effect is proportional to its dosing rate pg - .S;
whilst drug effectiveness is represented by the term Sy (Eq. 4.4).

A Simeoni-like mortality chain [75] was used to model the Irinote-
can effect, resulting in the following model Eq. 4.5

T v (1= ) = oo ClO- ), Talt=0) -
dVi(t

o) _ fepo- €1Vl —he-Valt),  Valt =0) =0

d\f;t(t) = ke - Va(t) — k. - Va(2), Va(t = 0) = 0
dxgt(t) — ko - Va(t) — ke - Va(t), Vit = 0) = 0
d[;(t) —b. ‘/1(15)2/37 Kt =0) = K,

V(1) = Va(t) + Va(t) + Va(t) + Va(t)
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where, similarly to the Sunitinib effect model parameterization: i)
C is the amount of Irinotecan in the system (details in Sec. 4.2.4); ii)
drug effect is proportional to its dosing rate ¢ - po, and iil) S¢ and
pc represent the Irinotecan effectiveness and elimination rate, respec-
tively.

To analyze combination therapy data the null-interaction between
the antiangiogenic and the cytotoxic drugs was described by a join
model (Eq. 4.6) integrating the Sunitinib effect of vasculature (Eq. 4.4)
and the TGI action of Irinotecan (Eq. 4.5). The letters S and C are
referred to Sunitinib and Irinotecan, respectively. From now on, this
model was indicated as adapted Querdant TGI model.

dgf):A.P.(1—%%%>_%%.my(Xﬂ.%@% Vilt = 0) = Vi
d%(t)zﬁc pe-Cl)-Vi(t) — k.- Va(t),  Valt=0)=0
mgﬂ_h;%W—kc%@% Valt = 0) = 0

d‘?t(t) = ke - Va(t) — ke - Va, (1) Vit = 0) = 0

%ft) =b-Vi(t)** = Bs - ps - S(t) - K(t), K(t=0) = K,

V(t) = Vi(t) + Va(t) + Va(t) + Va(t)
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Parameter  Value Unit
Vi 7.6 [L/Kg]
F 60% -
k, 5.3663 [day™!]
k1o 12.8842 [day™!]
MW 398 [g/mol]

Table 4.1: Sunitinib PK model parameters. v, is the volume of distri-
bution; F is the bioavailability; k, is the absorption and constant of the one-compartment model

with absorption; MW is the molecular weight.

4.2.4 PK and K models and parameters

In the adapted Rocchetti model (Sec. 4.2.2), a standard compart-
mental approach for modeling the time course of the drugs under
investigation was used. A one-compartment model with absorption
described the time course of Sunitinib in plasma following oral admin-
istration [142]. Model parameters were reported in Table 4.1.

The time course of Irinotecan in plasma following IV administration
was described by a two-compartment model [75], and the correspond-
ing model parameters were reported in Table 4.2.

In the adapted Ouerdani TGI model (Sec. 4.2.3), the drug kinetics
modelization typically used in the K/PD modeling [13] was adopted.
In agreement with Wilson and coworkers [96], an exponential decay
following each dose of Sunitinib and Irinotecan was supposed, as re-
ported in Eq. 4.7. Ts and T¢ stand for the Sunitinib and Irinotecan
administration time. The K-parameters pg and pe were fixed to 2.12
and 0.085 day~!, respectively [96].
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Parameter Value Unit

Vi 485  [L/Kg]
ki 0.276 [day~']
kyy 14784 [day ]
ko 13272 [day ]
MW 587  [g/mol]

Table 4.2: Irinotecan PK model parameters. Vv, is the volume of the
central compartment; kis, ko1 and are the first order rate constant between compartments of

the two-compartment model; kig is the elimination constant; MW is the molecular weight.

%(1;):—])5'5(0 S(t:Ts):l
dot(t) (4.7)
Tz—pc'C(t) C(t:Tc):l

4.2.5 Analysis

To investigate how the conclusions of negative, null, or positive
interaction between the antiangiogenic and the cytotoxic drug might
change based on the i) data; ii) K or PK model; the PD model used;
the following model combinations were examined.

e adapted Rocchetti TGI model with PK
e adapted Rocchetti TGI model with K (see App. B)
e adapted Ouerdani TGI model with K

e adapted Ouerdani TGI model with PK (see App. B)
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All these modeling approaches were applied to perform pool analysis
on both i) mean and ii) median data, resulting in 8 different models
combinations.

Analyses were conducted using Monolix (version 4.4.0, Lixoft).
Model parameters were estimated wvia a simultaneous fitting of the
placebo and the two single agent arms. A proportional error model
was adopted. Estimates were used to simulate the TGI effect exerted
by the combination therapies under the hypothesis of null-interaction
between compounds. To better distinguish the role of each factor, re-
sults were summarized based on the factor under investigation (Figure
4.1).

4.3 Results

4.3.1 PD models comparison

Data were described well by both PD models (adapted Rocchetti
TGI model and adapted Ouerdani TGI model), as can be seen in
Figure 4.3a. The adapted Ouerdani TGI model captured the “wave-
shape” of the Sunitinib single agent arm data better than the adapted
Rocchetti TGI model, which conversely better modeled the effect of
the cytotoxic agent. When used to simulate the effect of the combi-
nation therapy under the null interaction hypothesis, both PD models
showed that the bigger TGI effect was obtained by administering the
combination therapy protocol 1 (Figure 4.3b in green), in agreement
with observed data. In Figure 4.3 results obtained using median data
were reported. Similar findings were obtained using mean data (not
reported).
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(b) PD models prediction comparison.

Figure 4.3: PD models comparison. The adapted Rocchetti TGI model
and adapted Ouerdani TGI model were compared. The contribution of the PK part was reset.
In Figure 4.3a the simultaneous fittings of the control and the two single agent arms. In
black the control arm, in blue the antiangiogenic arm and in red the cytotoxic arm fits. The
corresponding observed data were reported in cyan, pink and green. In Figure 4.3b predictions
of the combination therapy protocol 1 (green) and 2 (yellow). Squares with solids line indicated
experimental data. On the left of Figure 4.3a and Figure 4.3b the PD models with PK, on the
right the PD models with K.
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4.3.2 Mean/median data comparison

In describing tumor growth in vehicle-treated animals, a small dif-
ference in modeling the final phase of tumor growth was observed
when the adapted Ouerdani TGI model (both with K and PK) was
used to describe mean rather than median data (Figure 4.4); whilst
the same fits were obtained when the adapted Rocchetti TGI model
was used to accommodate mean and median data. A bigger differ-
ence between the use of mean and median data was observed when
tumor growth profiles following single-agent Sunitinib treatment were
considered, expecially for the adapted Rocchetti TGI model with PK
and the adapted Ouerdani TGI model with K (Figure 4.5). The use
of mean or median tumor growth measurement was irrelevant when
modeling the Irinotecan TGI effect (Figure 4.6).

When predicting the combination therapy protocols, the compari-
son between experimental data and the mean and median TGI curves
simulated under the null-interaction hypothesis showed a weak syner-
gism between Sunitinib and Irinotecan. However, when uncertainty on
the estimates was considered and propagated, observed data are in the
predictions bandwidths, and the null-interaction hypothesis between
the antiangiogenic and the cytotoxic agent was difficult to be rejected
(Figure 4.7). The adapted Ouerdani TGI model resulted to be more
sensitive to the difference between mean and median data than the
adapted Rocchetti TGI model (Figure 4.7).
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Figure 4.4: Mean/median data control arm fits comparison
Unperturbed tumor growth fits using the adapted Rocchetti TGI and the adapted Ouerdani
TGI model (both with PK and K). The blue and the red lines are the curve-fitting obtained by
using mean and median data, respectively. Blue and red dots represent the mean and the median

data, respectively.
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Figure 4.5: Mean/median data antiangiogenic arm fits com-
parison Tumor growth fits using the adapted Rocchetti TGI and the adapted Ouerdani TGI
model (both with PK and K) following the Sunitinib administration. The blue and the red lines
are the curve-fitting obtained by using mean and median data, respectively. Blue and red dots

represent the mean and the median data, respectively.
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Figure 4.6: Mean/median data cytotoxic arm fits comparison
Tumor growth fits using the adapted Rocchetti TGI and the adapted Ouerdani TGI model (both
with PK and K) following the Irinotecan administration. The blue and the red lines are the
curve-fitting obtained by using mean and median data, respectively. Blue and red dots represent

the mean and the median data, respectively.
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Figure 4.7: Mean/median data combination therapy prediction
comparison. TGI prediction comparison when combination therapy is given under the

null-interaction hypothesis. On the top: simulation of the combination therapy protocol 1. On

the bottom:

prediction obtained by using mean and median data, respectively. The corresponding shaded

areas are the prediction bandwidth when uncertainty on the estimates was considered. Blue and
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4.3.3 PK/K model comparison

No big difference between the use of PK or K models was found in
modeling the unperturbed tumor growth, whilst a small difference be-
tween the adapted Rocchetti TGI with PK and the same model with
K for the cytotoxic treatment was observed in the final part of the tu-
mor growth curves. The adapted Ouerdani TGI model maintained its
characteristic “wave-shape” describing the TGI effect of Sunitinib both
when PK and K were used (Figure 4.8). When simulating combina-
tion treatments, the tumor growth curves predicted by the adapted
Rocchetti TGI model with PK were lower than the ones obtained by
using the same PD model with K; whilst the same pattern could not
be seen when the adapted Ouerdani TGI model was used.

4.4 Discussion

In this chapter, the impact of different modeling strategies on the
predicted effect of the combination of two anticancer drugs was in-
vestigated. Three factors were supposed to play a role: the (phar-
maco)kinetic model, the pharmacodynamic model and the data used
for the analysis. To better distinguish the impact of each factor, re-
sults were summarized as shown in the schematics of Figure 4.1. The
K vs the PK model, the different PD models (adapted Rocchetti TGI
model and adapted Ouerdani TGI model) and the implication of the
use of mean or median data when a pool approach was adopted were
examined via a case study in which an antiangiogenic and a cytotoxic
agent were administered to xenograft mice.

The different mathematical structure of the two PD models de-

termined a different modelization of the effect of the antiangiogenic
agent. The adapted Rocchetti TGI model (Eq. 4.1) does not allow a
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(b) PD models prediction comparison.

Figure 4.8: PK/K models comparison. The PK and the K models were
compared by applying them to the same PD model. In Figure 4.8a the simultaneous fittings of
the control and the two single agent arms. In black the control arm, in blue the antiangiogenic
arm and in red the cytotoxic arm fits. The corresponding observed data were reported in cyan,
pink and green. In Figure 4.8b the predictions of the combination therapy protocol 1 and 2. In
green the combination therapy protocol 1, in yellow the combination therapy protocol 2. Squares
with solids line indicated experimentals data. On the left the adapted Rocchetti TGI model, on
the right the adapted Ouerdani TGI model.
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decrease in tumor volume, since the inhibitory E,,,, function cannot
be less than zero. Consequently, the time derivative cannot be nega-
tive, as in the original version without the effect compartment [100].
Only a tumoristatic effect can be modelled. Conversely, in the adapted
Ouerdani TGI model the time derivative of the tumor volume can be
negative and in doing so, the decrease of tumor dimensions following
the antiangiogenic agent administration can be better accommodate,
independently from (pharmaco)kinetic model used. However, it should
be noticed that both the PK and the K strategy modeled a very fast
kinetics of this drug, whose plasma concentration is close to zero one
day after the administration.

The adapted Rocchetti TGI model better describes the (small) TGI
effect exerted by the cytotoxic agent. This result is independent from
the adoption of PK or the K model, even if the two approaches model
a very different plasma concentration curves: a fast Irinotecan plasma
elimination (around 2 days following the administration) is modeled
by the PK model [75], whilst a very long elimination (more than one
month following the administration) is described by the K model be-
cause of the very long elimination constant (pc=0.085).

The adapted Ouerdani TGI model resulted to be more sensitive
to the difference between mean and median data than the adapted
Rocchetti TGI model which resulted to be more robust.

No differences in simulating the combination treatments were no-
ticed due to the use of different PD and different K or PK models,
as well as when different central tendency measurement were adopted.
When predicted curves were compared with mean or median data, a
weak synergism between the two drugs could be assumed, but when
uncertainty was propagated, the null-interaction hypothesis could not
be rejected.
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As could be seen in Figure 4.2, the difference between mean and
median data of the same experimental arm seems to be bigger than
the difference among the experimental arms themselves. As already
discussed in Chapter 3 (section 3.4), to face large inter-individual or
intergroup variability a population approach might be a solution. Un-
fortunately, in our case, this strategy could not be used: two sub-
populations seemed to be present both in the control and in the
Sunitinib-treated arm, as can be seen in Figure 4.9a and Figure 4.9b.
Our supposition was confirmed by the estimation of a a significant
mixture on the model parameter \; (A\;=0.0105 [g - day~'] and \,=
0.0431 [g - day~']; p-value < 1 x 107'%), but only one population was
indentified in the Irinotecan-treated arm Figure 4.9c. As a conse-
quence, the “slow” linear tumor growth rate for the cytotoxic agent
could not be simulated under the null-interaction hypothesis. Even
eliminating from the dataset used to identified model parameters mice
characterized by a small linear tumor growth rate, it would not be
possible to draw conclusions on the nature of the interaction between
the two compounds with a population strategy. In fact, it was not
possible to correctly classify the subject belonging to each group, re-
sulting in an inability to disentangle the differences in tumor growth
per-se from the ones due to the combined therapy.

In conclusion, the case study examined here seems to prove that
results do not depend on the specific model used. However, general
conclusions cannot be drawn, especially in a case like this, where a
very noisy dataset (see Figure 4.10 ) and a non-optimal administration
protocol with only one dose of cytotoxic agent were accounted.
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Group: G2. itinib Q1dx12 (starting at day 33)

Group: G1 (control)
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(a) Tumor growth in the control arm. (b)  Tumor  growth in  the
antiangiogenic-treated arm.

Group: G3. Irinotecan Q1dx1 (day 33)
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(¢) Tumor growth in the cytotoxic-
treated arm.

Figure 4.9: Individual tumor growth profiles over time individual
tumor growth profiles over time of mice belonging to the control arm (Figure 4.9a), Sunitinib
(Figure 4.9b) and Irinotecan (Figure 4.9c) single agent treated arms. In red the tumor growth
profiles of the mice characterized by a “slow” linear tumor growth rate, in black the ones with
a“fast” linear tumor growth rate. This classification was made by means of a model mixture on
model parameter A;. As can be noticed, in the control and in the Sunitinib-treated arms, two
sub-populations of animals were present, whilst in the cytotoxic-treated arm only mice with a

“fast” linear tumor growth rate were observed.
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Figure 4.10: Individual tumor volume probability distribution.
The tumor volumes probability distribution for each group were reported. Tumor dimensions
were collected at day 46 after inoculum. In black the tumor volumes distribution for the control
group; in blue for the single agent Sunitinib arm; in red for the single agent Irinotecan arm;
in green and in yellow for the “combination therapy 1” and the “combination therapy 2” group,
respectively. Red and blue vertical lines represent the mean and the median of the tumor volumes
in each group. The tumor volumes measured in the Irinotecan arm were entirely in the range of
variation of the tumor volumes of the control animals; and a similar trend was observed also for
the Sunitinb treated animals. On the contrary, tumor volumes collected in both the combination

therapy arms were better separated from the ones belonging to the vehicle-treated animals.
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Chapter 5

Pharmacokinetic/
pharmacodynamic modeling
of etoposide tumor growth
inhibitory effect in
Walker-256 tumor-bearing
rat model using free
intratumoral drug
concentrations!

!The contents of this chapter are published in M.C. Pigatto, R.M. Roman, L.
Carrara, P. Magni € T. Dalla Costa. European journal of pharmaceutical science
2017, 97:70-78
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5.1. Background

The purpose of this study was to establish a population PK/PD
model linking etoposide free tumor and total plasma concentrations to
the inhibition of solid tumor growth in rats. Walker-256 tumor cells
were inoculated subcutaneously in the right flank of Wistar rats, which
were randomly divided in control and two treated groups that received
etoposide 5 or 10 mg/kg IV bolus every day for 8 and 4 days, respec-
tively, and tumor volume was monitored daily for 30 days. The plasma
and intratumoral concentrations-time profiles were obtained from a
previous study and were modeled by a four-compartment population
pharmacokinetic (popPK) model. PK/PD analysis was conducted us-
ing MONOLIX v.4.3.3 on average data and by mean of a nonlinear
mixed-effect model. PK/PD data were analyzed using a modifica-
tion of Simeoni TGI model by introduction of an F,,,, function to
take into account the concentration dependency of koyeriepe param-
eter (variable potency). The Simeoni TGI-E,,,, model was capable
to fit schedule-dependent antitumor effects using the tumor growth
curves from the control and two different administered schedules. The
PK/PD model was capable of describing the tumor growth inhibition
using total plasma or free tumor concentrations, resulting in higher
kamaz (maximal potency) for free concentrations (25.8 mL- pug~t-day—i-
intratumoral vs. 12.6 mL-ug~!-day~! total plasma). These findings
indicate that the plasma concentration may not be a good surrogate
for pharmacologically active free tumor concentrations, emphasizing
the importance of knowing drug tumor penetration to choose the best
antitumor therapy.

5.1 Background

In the past decades, the application of PK/PD modeling in the
drug development process has increased substantially and has received
more attention from the industry and regulatory agencies [143, 144,
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145]. The PK/PD modeling using preclinical and clinical data has
become a useful alternative for rational development of new drugs
through early understanding of dose-response relationship and has en-
abled the optimization of dosing regimens for existing approved drugs,
respectively [146, 147, 148].

Because anticancer agents usually have a narrow therapeutic win-
dow, PK/PD models can be extremely useful in oncology guiding the
selection of adequate doses that improve treatment efficacy and re-
duce toxicity [149]. PK/PD models developed in oncology have been
applied to describe the relation between drug plasma concentration
and tumor growth [150, 75], biomarker response [151, 115], as well as
adverse effects [152, 153], using data from animals or humans.

The most usual PD marker in oncology is the tumor growth, where
the measurements of the tumor volume are used to construct the
time course of growth after administration of anticancer agents [75,
107, 150, 154]. The most popular preclinical PK/PD model of tumor
growth was developed by Simeoni et al [75]. This model was primarily
developed for ranking competing preclinical candidates and was ex-
panded to describe the tumor growth dynamics after administration
of drug combinations [98] as well as to predict suitable doses in hu-
mans from animal studies [90].

The PK data most used to build the PK/PD model in preclinical
and clinical oncology studies are the plasma concentrations assuming
that these are a good surrogate for the drug concentrations reached
in the tumor. Nevertheless, linking the effect to drug plasma concen-
trations can be misleading, since drug delivery into solid tumors is
limited due to the heterogeneous microenvironment, with abnormal
vascularization, hypoxic areas and high interstitial pressure character-
istic of the tumor [155, 156, 157, 158]. Drug plasma concentrations
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are commonly higher than those determined in the tumor as observed
previously with epirubicin [159], methotrexate [160] an reviewed by
Fuso Nerini et al. [161].

In this scenario, PK models that describe the concentrations in the
tumor compartment can provide a better understanding of the drug
distribution and drug efficacy helping to optimize dosing schedules.
Up to date only a few PK/PD models have related anticancer tumor
concentrations and effect, such as the model reported for temozolo-
mide [158], gefitinib [123, 162, 123] and paclitaxel [163]. Furthermore,
these studies only investigated drug penetration into brain tumors,
demonstrating the need for studies that consider the anticancer distri-
bution to other types of solid tumors.

The anticancer agent etoposide is a topoisomerase II inhibitor used
for treating hematopoietic malignancies and different solid tumors,
such as small cell lung cancer, breast cancer and Kaposi’s sarcoma.
Although the systemic PK and PD of etoposide are extensively stud-
ied [164, 165], little is known about its distribution in solid tumors and
PK/PD modeling linking its intratumoral concentrations with antitu-
mor effect has not been reported.

In this context, the present study aims to comparatively model the
PK/PD relationship between total plasma and free interstitial tumor
etoposide concentrations to the tumor growth kinetics observed in a
Walker-256 (W256) tumor-bearing Wistar rat model.
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5.2 Materials and Methods

5.2.1 Chemicals and reagents

Etoposide (purity > 98%) and Trypan Blue solution 0.4% were
purchased from Sigma-Aldrich (St. Louis, USA). Ethyl alcohol (anhy-
drous) and formic acid were purchased from Tedia (Fairfield, USA).
Ultra- pure water was obtained in a Millipore Milli-Q system (Bed-
ford, USA). Polyethylene glycol (PEG) 300, polysorbate 80 and citric
acid were acquired from Labsynth (Sao Paulo, Brazil). Glucose sterile
solution was purchased from Basa (Caxias do Sul, Brazil). All other
chemicals and reagents used in this study were of pharmaceutical or
analytical grade. Etoposide solution (5 mg/mL) was prepared for IV
administration containing 3% citric acid 10%, 25% polyethylene gly-
col, 7.5% polysorbate 80, 10% ethanol (v/v) and the final volume was
obtained with 5% glucose solution. This formulation is similar to the
commercial injectable formulation used in humans [166, 165].

5.2.2 Animals and tumor model

Male Wistar rats (150-200 g) were supplied by the Center for Re-
production and Experimentation of Laboratory Animals (CREAL/
UFRGS - Porto Alegre, Brazil) and received food and water ad libi-
tum. Animal procedures were approved by UFRGS Ethical Commit-
tee on Animal Use (CEUA /UFRGS, protocol number 22302) and were
conducted under standard conditions according Brazilian law and the
guideline on experimental animal care and use.

To obtain the tumor model, W256 carcinosarcoma cells were im-
planted intraperitoneally (IP) into Wistar rats (1 x 107 viable cells
per animal). After 5-7 days of implantation, the ascitic tumor was
harvested from the peritoneal cavity and the cell viability was evalu-
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ated by Trypan blue exclusion test (Phillips, 1973) using a Neubauer’s
chamber (Brand, Wertheim, Germany). To produce a solid tumor,
2 x 107 viable cells in 1 mL of phosphate-buffered solution were inoc-
ulated subcutaneously into the right flank of the animal. During har-
vesting and inoculation procedures the animals were anesthetized with
a ketamine-xylazine (100-10 mg/kg). After inoculation, the animals
were kept on separated in cages (4 rats/cage) in standard conditions
of temperature, humidity and 12-h light—dark cycle during the period
of treatment.

5.2.3 Pharmacokinetic study

The pharmacokinetics of etoposide in W256 tumor-bearing Wistar
rats was previously investigated in plasma and tumor [167]. A pop-
ulation PK model (popPK) was developed using MONOLIX v. 4.3.3
(Lixoft, Orsay, France). The popPK model simultaneously described
total etoposide concentrations in plasma and free concentrations in
two regions of the tumor — center and periphery consisting of four-
compartments with a saturable distribution into the tumor compart-
ments and first-order elimination. The system of differential equations
for the popPK model is given in Eq. 5.1:
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(5.1)

A covariate model, in which the volume of plasma compartment
V1 is a function of the body weight, was used (Eq. 5.2):

B i 0.581

0.290

where Vj; is the volume of the central compartment for the i** in-
dividual; 0.171 is the (population) volume of the central compartment
estimated by the popPK model; 0.581 is the exponential scaling factor;
BW is animal’s individual body weight (kg); and 0.290 is the mean
body weight (kg) in the PK group.
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For the present PK/PD modeling, two sets of concentrations were
used: total plasma concentration and free tissue concentration in the
peripheral region of the tumor, because this region has a higher den-
sity of viable cancer cells that can be killed by the drug. Etoposide has
a relatively short elimination half-life in tumor periphery (~2.39 h=1)
and in plasma (~ 1.83 h™'), thus no accumulation was observed with
the dose interval applied in the PD study. Total plasma and free pe-
ripheral tumor concentration-time profiles for the different treatments
investigated in the PD experiments were simulated by fixing the fol-
lowing mean estimates values from the PK model previously described
[167]: elimination rate micro-constant from the central compartment
(kip) was 1.27 h™'; the distribution rate micro-constants between com-
partments kis, ko1, ks and ky; were 2.86 h=1, 2.88 h=!, 3.99 h—!, and
0.216 h™!, respectively; the volume of the tumor periphery compart-
ment (Vs3) was 0.112 L; volume of the tumor center compartment V,
was 2.99 L; maximum transporter velocity from the plasma to tumor
(Vinaz) was 0.907 pg-h™!'; Michaelis-Menten constant (k,,) was 5.15
pg/mL and the drug fraction (F,) was 0.155. In the model it was as-
sumed that the concentrations measured by microdialysis in the center
of the tumor represent a mixed concentration of the real central con-
centration (1-F,) and the periphery concentration (F,).

5.2.4 Pharmacodynamic study

Five days after the tumor inoculation of the W256 carcinosarcoma
cells into the animal right flank, when tumors had reached a palpable
volume of 1 cm? in average, rats were selected and randomized into
control and two treated groups and treatments started. IV bolus doses
of etoposide were administrated to the two treated groups as follow-
ing: 10 mg/kg once daily for 4 days (n=10) or 5 mg/kg once daily for
8 days (n=11). In order to maintain ceteris paribus condition, vehicle
was administrated to the control group (n = 10).
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Rats were clinically evaluated and weighted daily until 30 days
after the inoculation time. Dimensions of the tumors were measured
daily using a caliper and tumor mass was calculated as defined by
Eq. 5.3 [84, 75]:

it B2 2
Tumor weight [g]:p'length [em)] 2wzdth [em?] (5.3)

assuming density p= 1 g/cm3. Rats with a tumor diameter higher
than 4 cm, 20% weight loss and/or inability to eat and/or drink wa-
ter were sacrificed before the end of the experiment according to the
international guidelines for animal care and euthanasia [168].

5.2.5 Population Pharmacokinetic/Pharmacodynamic
Model

To describe the tumor growth in response to etoposide dosing, the
Simeoni TGI model [75] was used. Please refer to Chapter 3 section
3.3.1 for a detailed description of this model.

5.2.6 Data analysis

Total plasma and free peripheral tumor concentration-time profiles
of etoposide were obtained using the PK model previously developed
[167] as described in subsection 5.2.3. PD parameters were estimated
performing a simultaneous fitting of the tumor growth curves observed
both in control and treated animals.

PK/PD model was implemented using MONOLIX version 4.3.3.
PD parameters were estimated using the stochastic approximation ex-
pectation maximization (SAEM) algorithm with log-likelihoods esti-
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mated by linearization and standard errors estimated by stochastic
approximation.

A limit of quantification of 3 mm diameter corresponding to a 0.01
g was the minimum value that can be appreciate with the caliper. For
the analysis, tumor measurements below the limit of quantification
were coded as left censored data.

In this work, two different approaches were adopted: a pool ap-
proach using a Naive Average Data (NAD) and a population approach.
NAD is a very simple method that focuses the attention only on the
typical population response. Average value of the data was computed
for each sample time. Model was fitted against mean data. Con-
trariwise, with the population technique data from all the individuals
involved in the study were taken into account. In this way, through
a suitable mathematical model, it is possible to describe both typical
subject data and variability among subjects.

Individual parameters P; were supposed to be log-normally dis-
tributed. Random effects n; were used to model inter-individual vari-
ability. They represent the random variation of the individual param-
eters around the population value © (Eq. 5.4):

P, =0 -exp (m) (5.4)

Random effects were normally distributed with zero mean and vari-
ance €, as it can be seen in the formula 7, ~ N(0,2). Different error
models were tested for the residual unknown variability.

Fitting of predicted tumor growth curves against experimental data

and precision estimates were the first criteria used to evaluate the
adequacy of the model. Furthermore, it is important to underline
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that the first analysis was made using a NAD approach. Therefore,
model was selected through the pool approach, and then implemented
in a population context. The model evaluation was performed using
goodness-of- fit plots (GOF) and visual predictive check (VPC), which
is a common diagnostic tool that makes a comparison between statis-
tics obtained from the simulated data using the estimated population
parameters and the true observed data.

5.3 Results

The tumor growth inhibition and regrowth data from animals that
received IV bolus administration of vehicle, etoposide 10 mg/kg-4 days
and 5 mg/kg-8 days are shown in Figure 5.1, Figure 5.2 and Figure
5.3. The tumor growth curves showed a great difference between con-
trol and treated groups. Following international guidelines [168], the
animals from the control group were sacrificed after 13.5 4 2.5 days of
tumor inoculation due to the size of the tumor. It was not possible to
evaluate any animal until the end of experiment (30 days). The treated
group that received etoposide 10 mg/kg-4 days presented higher vari-
ability in the tumor regrowth; in average the animals were sacrificed
after 27.2 + 2.0 days of tumor inoculation, however 3 animals (Figure
5.3 numbers 4, 5 and 9) showed a slower tumor regrowth followed by
regression in the last days of the experiment (data not shown). On
the other hand, only 3 out of 11 animals were sacrificed 29 days af-
ter inoculation in the 5 mg/kg-8 days group. The other animals were
evaluated until the end of experiment.

The first modeling attempt employed the Simeoni TGI model de-
scribed in 5.2.5 using a pool approach, as illustrated in Figure 5.3.
One can observe that the model was not adequate to simultaneously
describe the tumor growth in the control group and in the two treated
groups, either considering etoposide plasma or tumor concentrations.

113



5.3. Results

2

Control 10 mg/kg - 4 days 5 mg/kg - 8 days
.30 5 1
? 251 e 25 25 R
.
5 20f ° 20 20
g 151 . 15 15 .
‘6 104 10 10 . *
E 51 5 5 L4
c . o .
F ool 0o %eaee - _ge0® ol tae, Joe®
4 5 6 7 8 9 10 11 12 13 5 10 15 5 10 15 20 25 30
Time (days)
(B) Control 10 mg/kg - 4 days 5 mg/kg - 8 days
30 N
25 /'//
20 P
<

S o
°

Tumor weight (g)

s

0
4 5 6 7 8 9 10 11 12 13 5 10 15 20 25 3
Time (days)

Figure 5.1: Model fits using the Simeoni TGI model. Plots with
average observed (black dots), left censored data (grey dots) and model-fitted (line) tumor growth
curves in rats given either the vehicle (control) or etoposide IV (10 mg/kg for 4 days or 5 mg/kg
for 8 days). Model fits using the Simeoni TGI model considering total plasma (A—upper panels)

and free tumor (B-lower panels) concentration.

The experimental regrowth curves showed that the 8-days treatment
with 5 mg/kg/day presented greater tumor growth inhibition (re-
growth observed after 21.4 £+ 1.1 days) compared with 4-days treat-
ment with 10 mg/kg/day (regrowth observed after 16.8 + 0.8 days).
These results indicate that etoposide has a schedule-dependent anti-
tumor effect because the total drug dose used in each treatment (40
mg/kg) and the respective area under the curve (AUC) are the same
for both regimens. When the PK/PD model uses tumor concentrations
as the PK input (Figure 5.3B), a slightly better fit can be observed
because etoposide free concentrations at the site of action correlates
better with effect than total plasma concentrations.
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Figure 5.2: Model fits using the Simeoni TGI-E,,,, model. Piots
with average observed (black dots), left censored data (grey dots) and model-fitted (line) tumor
growth curves in rats given either the vehicle (control) or etoposide IV (10 mg/kg for 4 days or
5 mg/kg for 8 days). Model fits using the Simeoni TGI-E,,qz model considering total plasma

(A-upper panels) or free tumor (B-lower panels) concentration

In fact, separate fitting of control and each treatment group (fit-
ting not shown) estimated different values for the parameter ky using
plasma concentrations (4.98 and 6.74 mL-ug~*-day~! for 10 mg/kg-4
days and 5 mg/kg-8 days, respectively) or tumor concentrations (17.7
and 20.9 mL-ug~!-day~! for 10 mg/ke-4 days and 5 mg/ke-8 days,
respectively). These results indicate that etoposide potency differs
between the two schedules, according to the terms definition of the
model employed to fit the data. Either way, Simeoni TGI model was
not adequate to simultaneously describe the effect of etoposide differ-
ent schedules on the W256-tumor bearing rats.

Additionally, a total reduction of tumor volume (no measurable
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Figure 5.3: Individual fits using the Simeoni TGI-E,,,, model.
Plots with observed (black dots), left censored data (grey dots), individual predicted (solid lines)
and population predicted (dashed lines) tumor growth curves obtained in rats given either the
vehicle (control) or etoposide IV (10 mg/kg-4 days or 5 mg/kg-8 days). In left panels total plasma

concentrations were used, while in right panels free tumor concentrations were considered.
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tumor) was observed between 11.6 £+ 0.5 day and 16.8 + 0.8 day for
the 10 mg/kg-4 days treatment and between 12.1 + 0.7 day and 21.4
+ 1.1 day for the 5 mg/kg-8 day treatment.

In the attempo to improve data fitting it was assumed that ko
in the Simeoni TGI model was variable and could be described by a
inhibitory E, ., function to takes into account its dependence on drug
concentration (Eq. 5.5):

c(t)
kvariae:kmaa:' l— ———
2 vl 2 ( IC50 + C(t) )

d)illt(t) _ Ao X1 (1) T - Kavariapte - ¢(t) - Z1(t)
1 ()]
= Kavariante - () - Xa(£) = k1 - X(t) (5.5)
dXs(t)
o = R Xa(t) = ko Xs(2)
dX,(t)
T = R Xa(t) =k Xa(t)

W(t) = Xu(t) + Xao(t) + X5(t) + Xa(?)
Xl(t == 0) = Wy X2’3’4(t = 0) =0

This function was parameterized (/,,q., assumed equal to 1) with
IC5 that is the concentration that represents 50% of kgpq, (the max-
imum drug potency). The new parameter kgyuriape Was inserted into
the Simeoni TGI model in place of ky. According to the equations
above, when drug concentration is close to zero (smaller than IC5g):
kovariapie Similar to konq.. Instead, when concentration increases, the
kovarianie decreases. Note that, this modellization is equivalent to con-
sider a saturable killing cell effect of the drug with the increases of its
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concentration, but it focuses the attention on the drug potency, one of
the most import parameter of the Simeoni model. The mathematical
relationship adopted in this paper is closed to that used in [100] to de-
scribe the interaction between an antiangiogenic and a cytotoxic drug.
Through this equation, it is possible to explain the lower anticancer
effect obtained when 10 mg/kg-4 days was administered to the animals
in comparison with 5 mg/kg-8 days. As observed in Figure 5.2 (av-
erage data) and Figure 5.3 (individual data), the Simeoni TGI-E, .,
model was able to simultaneously fit all control and the two treated
groups. The model was able to provide a good description of the data
both using total plasma (Figure 5.2A and Figure 5.3-left panels) and
free tumor concentrations (Figure 5.2B and Figure 5.3-right panels).

The population parameter estimates are presented in Table 5.1,
together with inter-individual and residual variability. Population pa-
rameters were identified with good precision (RSE < 12%) and they
were independent of the concentration used (plasma or tumor), except
Komaz, Which was of 12.6 mL-ug~!-day~! when total plasma concen-
trations were used and 25.8 mL-ug~!-day~! when free tumor concen-
trations were assumed. This difference is due to 82% lower tumor
exposure to free etoposide than to total plasma concentrations. If
free plasma concentrations were taken into account they would have
been higher than the free concentrations determined in the tumor
considering that etoposide plasma unbound fraction is about 30%
and the tumor penetration factor in the periphery (AUC_;(tumor,
free) /AUC_;(plasma,free) is about 60%. Furthermore, etoposide tu-
mor penetration was shown to be saturable, with AUC,ymor, free does
not increasing proportionally with the dose increase [167]. Then, it
makes no difference if free or total plasma concentrations are used,
because both of them do not adequately reflect concentrations in tar-
get tissue. Accordingly to what previously was said, since the decrease
in tumor cells growth rate is proportional to drug concentration via
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the proportional constant koyeriane, the greater the concentration, the
lower the potency of the compound.

Inter-individual variability was considered only for parameters re-
lated to the tumor growth wg, Ao and A\; . The inter-individual variabil-
ity was moderate, ranging from 7.3 to 60.5% and it can be attributed
to the differences in the tumor progression among the animals. More-
over, the variability estimated for tumor-related parameters could also
be caused by the loss of some cells during the inoculation, determin-
ing differences in the growth curve between the animals. The inter-
individual variability for the drug-related parameters (k1, komq,: and
IC5y) was not considered because it did not improve the fitting. The
error model chosen was a proportional plus power error model as fol-
lows (Eq. 5.6):

y=f+b-f-¢ (5.6)

where y is the data and f the model prediction. The coefficient of
variation is expressed by b; ¢ is fixed to 0.5; € is the random variable
to express the residual unknown variability, normally distributed with
mean zero and variance 1. Residual variability was a bit high of 40%
for both free tumor and total plasma concentrations.

GOF plots presented in Figure 5.4 illustrate that the proposal
PK/PD model adequately characterized etoposide antitumor effect.
The individual and population predicted values are in good agreement
with the observed tumor weights, using total plasma (Figure 5.4A)
or free tumor concentrations (Figure 5.4B) as PK input in the model.
Overestimation in the population predictions at higher tumor weights
is caused by animals that presented a tumor growth slower than the
others. For these animals it was possible to measure the dimension of
the tumor until 19 days post-inoculation. For the others animals, espe-
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Figure 5.4: Goodness-of-fit plots for the tumor weight. Goodness-
of-fit plots for the tumor weight using total plasma (A-four panels on the left side) or free tumor
(B-four panels on the right side) concentrations. In the observed versus model predicted tumor
weight plots (upper panels) the solid and dashed lines indicate the linear regression fit and identity
line, respectively. In the panel below the residual plots are shown. The grey dots are the data,

while the light grey dots represent the left censored data.

cially for those belonging to the control group, measures were possible
only until 13 days post-inoculation, because the tumor grew faster and
these animals had to be sacrificed. Still in Figure 5.4 it is possible to
observe that the weighted residuals are randomly distributed around
zero indicating the absence of model bias.

VPCs (Figure 5.5) indicate that the final model effectively explained
the observed tumor weights.
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Figure 5.5: VPC of the final PK/PD model. VPC of the final PK/PD

model stratified by group using total plasma (left panels) and free tumor (right panels) concen-
tration based on 1000 simulated replicates of the original data. The solid and dashed lines show
the 10t", 50t" and 90" percentiles of observed and simulated data, respectively; the grey shaded
areas represent the 90% confidence interval for the corresponding model predicted percentile.

The left censored data are indicated by the light grey dots.
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Estimate (RSE%)

Parameter Plasma® Tumor?

Population median

Ao [day™!] 0.732 (2) 0.699 (2)
A [g-day™!] 3.91 (11) 4.00 (11)
wo [g] 0.037 (12) 0.043 (11)
ky [day™!] 1.63 (3) 1.62 (3)

komaz [mL-pg™t-day =] 12.6 (1) 25.8 (1)

ICsq [ug -mL™1] 1.07 (1) 1.08 (1)

v

Qo) 0.087 (20) 0.073 (20)
QA1) 0.605 (15) 0.595 (14)
Q(wo) 0.554 (15) 0.555 (15)
Residual variability

b 0.404 (4) 0.403 (3)
C 0.5 fixed 0.5 fixed
AIC 1223.93 1188.17

Table 5.1: Parameter estimates of the final PK/PD model.

@ Total plasma concentrations from the PK model; ® free peripheral tumor concentrations from
the PK model. Relative standard error = RSE% = (estimate/standard error) x 100; : standard

deviation of inter-individual variability (IIV) estimates; AIC: Akaike information criterion NA:

not applicable. Model parameters are defined in the text.
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5.4 Discussion

In this study, we used the PK/PD modeling for describing tumor
growth and the anti-tumor effect of etoposide in tumor-bearing rats.
PK model was obtained from a previous work and linked to the PD
model using total plasma or free peripheral tumor concentration-time
profiles.

Modeling started using Simeoni TGI model already published, with
the difference that besides plasma concentrations also the tumor con-
centrations of etoposide were employed to explain the cytotoxic effect
of the drug. However, despite the flexibility of the Simeoni TGI model,
it was not able to describe experimental data when all the groups were
considered (control, 5 mg/kg/day-8 days, 10 mg/kg/day-4 days) either
using plasma or tumor concentration as PK input.

As previously referred, in the Simeoni model the decreasing of the
tumor growth rate caused by the drug is directly proportional to the
number of proliferating tumor cells (X;) and the drug concentration
via a proportionality constant ks, which describes the potency of the
drug. In the present study, however, this relation was not valid be-
cause it was observed that etoposide showed a schedule-dependent
effect that resulted in a variable potency (k2 variabie)-

The dependence on schedule observed in this work corroborates
previously studies that demonstrated that the etoposide response has
been evidently schedule dependent [169, 170, 171] in clinical studies.
Slevin et al. [171] showed that patients with small-cell lung cancer re-
ceiving a 24-h infusion or the same dose divided over 5 days have
positive response rates of 10% or 89%, respectively. Additionally,
the schedule- dependent response of the epipodophyllotoxins such as
etoposide (topoisomerase II inhibitor) has been related to the activity
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of topo- isomerase II that it is variable during the cell cycle and also
to the fast elimination of these drugs from the cell after the exposure,
allowing cancer cells DNA repair. Accordingly, it is recommended in
the literature the prolongation of the schedules of administration for
these anticancer agents, using smaller daily doses, to improve the re-
sponse [172, 173].

To model this schedule-dependent effect an inhibitory function was
introduced in the Simeoni TGI model. Two new parameters were
added - I1C5y and kg,q. - in order to describe the nonlinear relationship
between concentration and effect. The rest of the model assumptions
were similar to those originally presented for the Simeoni TGI model
[75]. The Simeoni TGI-E,,,, model successfully described etoposide
effect on tumor growth using different dosing schedules. The popula-
tion approach allowed to correctly describing the drug effect for the
individual animals, estimating at the same time a typical value and
the interindividual variability.

The same PK/PD model was used to describe the relationship
between etoposide concentration and tumor growth inhibition using
different PK input - free intratumoral interstitial concentrations or to-
tal plasma concentrations-. The estimated kg, Was higher when free
tumor concentrations were used, in accordance with the 82% lower
drug exposure in tumor. This difference in kg4, (potency) depend-
ing on the PK input shows that total plasma concentration might not
be a good surrogate for the pharmacologically active free tumor con-
centrations. When comparing antitumoral candidates using plasma
concentrations as PK input, the PK/PD model can predict erroneous
potency if the drugs have relevant differences in tumor penetration
leading to inadequate selection of promising candidates.

The present study showed the development of a PK/PD model to
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correlate etoposide effect using either total plasma or free intratumoral
concentrations allowing the investigation of the importance of PK in-
put data on PK/PD modeling. Considering that PK/PD modeling
is currently used in drug development, this study points out the im-
portance of knowing free intratumoral drug behavior when building
PK/PD models for antitumor drugs.

5.5 Conclusion

In this study, the population PK/PD Simeoni TGI-E,,,, model de-
veloped adequately described the schedule-dependent effect of etopo-
side using total plasma and free interstitial tumor etoposide concen-
trations obtained in a W256-tumor bearing Wistar rat model. The
results suggested that the use of free intratumoral concentrations as
PK input for PK/PD modeling could provide a better understanding
of the pharmaco-kinetics and pharmacodymamics relationship shading
light into the reasons for drug inefficacy that the traditional PK/PD
models based on plasma concentrations are unable to supply.
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Chapter

Overall conclusions

The aim of this thesis was to investigate the suitability of a cer-
tain modeling strategy to address pharmacometric questions. The
concept that no “one size fits all” approach can be applied to every
pre-clinical and clinical program, irrespective of the characteristics of
the individual drug, was defended thorough examples. This is particu-
larly challenging towards organizations like pharmaceutical companies
which are often entrenched in a low risk-low reward paradigm (it has
worked once, it will work again), based on individual experience rather
than thorough screening of the different available methods.

The predictive performances of the WB-PBPK models, one of the
most-promising tools in terms of predictive capabilities, were analyzed
in Chapter 2. These models integrate physicochemical drug proper-
ties with information on organism anatomy an physiology, and are
suitable for translational purposes by integrating information derived
from animal experiments. For the case study investigated in this the-
sis, findings indicated that challenges still exist for prospective use
of the approach with novel molecules, when full details of drug dis-

126



position is missing or differs between species. Conversely, when the
WB-PBPK framework is used retrospectively, an accurate description
of drug disposition was achieved. The model successfully described
experimental data, well captured the observed IIV in the population
under study and well predicted steady state drug level in the lung.

In some cases the PBPK model framework cannot be used, as in
the oncology field. The incomplete physiologically characterization
of the subjects with tumors is the major obstacle to the use of this
approach. Consequently, even at the early phases of oncology drug dis-
covery, different and less mechanistic modeling strategies are adopted.
In Chapter 3 the modeling approaches applicable to anticancer drug
discovery of approximately the last decade were illustrated. Nowa-
days, besides the standard PK/PD models directly describing tumor
growth inhibitions, PK/PD models incorporating the interactions with
the target were used to model the TGI. New concepts are spreding as,
for examples, the carrying capacity for antiangiogenic compounds and
the quantitative modeling of the pharmacological audit trials to sup-
port new targeted therapies.

In Chapter 4 it was examined if different modeling techniques lead
to different results. A case study regarding the effect of the combi-
nation therapy between a standard cytotoxic and an antiangiogenic
compound was investigated. The factors supposed to be responsible
for a different result in terms of combination (negative, null or posi-
tive ), i.e. the PD models, the preprocessing of data and the PK-or
K-model were analyzed. No difference in the predicted effects of com-
bination therapy were found.

In Chapter 5, the use of drug plasma concentration as a surrogate

for drug concentrations in the biophase, i.e., the tumor, was investi-
gated. Findings demonstrated that plasma concentration may not be
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a good surrogate for pharmacologically active free tumor concentra-
tion. The maximal drug potency (ks mqs) is higher when free tumor
concentrations were used, in accordance with the 82% lower drug expo-
sure in tumor. Thus, comparing antitumoral candidates using plasma
concentrations as PK input can form a problem when drugs have rel-
evant differences in tumor penetration. Consequently, the erroneous
predictions of candidate potency may lead to inadequate selection of
promising candidates.
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Appendix A.

Supplementary information
for Chapter 2!

A.1 Supplementary information for data
simulation

The contents of this section are confidential

IThe contents of this chapter are confidential
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A.2 Supplementary results

A.2.1 Population predictions following the 1°’ dose
and at steady state

Population prediction following the first oral dose and at steady

state were reported. Plasma concentration over time following the

administration of 1000 mg (Figure A.la) and 1200 mg of EMB (Figure
A.1b)were reported.
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Figure A.1: Scenario 6: population predictions of plasma EMB
concentrations. The red shaded areas represent the 5t — 95t percentiles of the PK-
Sim population predicted plasma concentration profiles, the red dashed line and the red dotted
lines represent the 50t 25" and the 75! precentiles, respectively. The blue continuous lines
represent the 5" — 95t" observed percentiles, the blue dashed line and the blue dotted lines
represent the 50t", 25t% and the 75! precentiles, respectively. In Figure A.la: prediction
following the first EMB oral dose (1000 mg, left) and at steady state (right). In Figure A.lb:
prediction following the first EMB oral dose (1200 mg, left) and at steady state (right).
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A.2.2 Sensitivity analysis

Sensitivity analysis was performed in PK-Sim in the following way:

sensitivity of LogP, TSspec and specific clearance was computed
considering IV administration. Plasma AUC and Cmax were
considered exposure metrics;

sensitivity of Weibull dissolution time, Weibull dissolution shape
and IPT was computed considering oral administration. Plasma
AUC and Cmax were considered exposure metrics;

sensitivity of LogP, TSspec and specific clearance, Weibull dis-
solution time, Weibull dissolution shape and IPT and lung effec-
tive permeability was computed considering oral administration.
Lung exposure (lung AUC) and lung Cmax were considered ex-
posure metrics.

Sensitivity analysis regarding drug plasma AUC and Cmax were re-
ported only for 800 mg, since results were consistent for all the three
doses (800, 1000 and 1200 mg) considered in this work.
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Figure A.2: Sensitivity analysis following IV administration.
Figure A.2a: sensitivity analysis considering AUC. Figure A.2b: sensitivity analysis considering

Cmax.
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Figure A.3: Sensitivity analysis following oral administration.
Figure A.2a: sensitivity analysis considering AUC. Figure A.3b: sensitivity analysis considering

Cmax.
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Figure A.4: Sensitivity analysis on lung AUC and Cmax. Figure
A .4a: sensitivity analysis considering lung AUC. Figure A.4b: sensitivity analysis considering

Cmax. The administered dose is 15 mg/kg.
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Supplementary Information
for Chapter 4

B.1 Materials and Methods

B.1.1 Adapted Rocchetti TGI model with K

The modified Rocchetti model with K was reported here below
Eq. B.1. Please note that for sake of brevity, only the model for the
null-interaction hypothesis was reported. The models used to describe
the action of Sunitinib and Irinotecan as single agents could be derived
by superimposing C(t) and S(t) equal to zero, respectively.
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dCeg W g+ SO = kg - Cops ()
dXi(t) Ao X1 (t) Bmaz - Cegs(t)
dt S (1  ICesss0+ Ceff(t)> A
{1 (W) }
dX;t(t) ky - C(t) - X1(t) — ky - Xo(t)
d)‘;t(t) ey X () — by - Xa(0)
dX4(t)
a kv Xa(t) = k- Xu(t)

Oeff(t:()) =0 Xl(tZO) = Wy X273,4(t:()) =0
%it):—pg-S(t) S(t:TS):l
%Pz—pc'C@) C(t:Tc):l

(B.1)

B.1.2 Adapted Ouerdani TGI model with PK

The modified Ouerdani model with PK was reported here below
Eq. B.2. Please note that for sake of brevity, only the model for the
null-interaction hypothesis was reported. The models used to describe
the action of Sunitinib and Irinotecan as single agents could be derived
by superimposing cg(t) and c4(t) equal to zero, respectively.
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dvl(t):)\.p.(1_%>—60-63(t)-v1(t)7 Vi(t=0)=1

d%f)=6c«@@)wquy_@.%@% Va(t = 0) = 0
miﬂ:h,%@_%f%@x Valt = 0) = 0
d3f>:h“%@W—%'W@% Vi(t =0) =0
d[c(g—zft):b"ﬁ(t)Q/g—BS'CA(t)-K(t), K(t=0) = K,

V(t) = Vi(t) + Va(t) + V() + Va(t)
(B.2)

where cp(t) and c4(t) are the plasma concentrations profiles over

time of Irinotecan and Sunitinib modeled with a two-compartmental
model and a one-compartmental model with absorption, respectively.
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