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Preface

This document embodies the final relation of the three-years-long PhD course
the author has endured in the Physics Department of the University of Pavia
under the supervision of Prof. Marco Liscidini, in collaboration both with the
nanophotonics group and with various research groups in external institutions.
The author’s effort is to produce a document that is as nimble and synthetic
as possible, directly conveying the crucial take-home messages but also leaving
some space for discussing the physical arguments and the numerical derivations
that lead to those results.

Although the present work is intended for readers who possess a basic back-
ground in integrated quantum photonics and quantum information theory, we
nonetheless provide some introductory sections. On the one hand this strategy
is timely for recalling the fundamental concepts and ideas which are then im-
plicitly assumed throughout the rest of the document, and on the other hand it
clarifies the mathematical vest and provides some fundamental formulas, which
reveal as convenient starting points for subsequent derivations. In the author’s
intent, some of the essential and most of the ancillary mathematical calculations
are left to the Appendices, whenever the main body discussions allows for.

The results presented in this work are mostly theoretical and have been
recently published in peer-reviewed journals. In our modus operandi, one of the
primary requirement we constantly keep in mind is the practical feasibility of our
theoretical proposals, for a rapid and accessible implementation and consequent
experimental verification. Indeed, wherever this goal has not been accomplished
yet, we set ongoing collaborations for the future to come.
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Introduction

Starting in 2018 the European Commission will initiate a e1-billion flagship-
scale initiative in the framework of the European Horizon 2020 research program,
focused on Quantum Technologies. This is one of the major research initiatives
endured by the EU, on the same scale as the previous ones on Graphene and
the Human Brain Project. The goal of this agenda is “to place Europe at the
forefront of the second1 quantum revolution now unfolding worldwide, bringing
transformative advances to science, industry and society [1]”.

Quantum Technologies can be regarded as the field of physics and engineer-
ing that creates a bridge between theoretical research on quantum mechanics
and the implementation of its unique features, such as quantum entanglement
and quantum superposition, into practical applications and commercial devices
[2]. With the upcoming flagship, the EU is investing in research on Quantum
Technologies aiming at the lead of this “second quantum revolution”, profit-
ing from the consequent long-term industrial, scientific, and societal benefits.
The expected impact on current technologies would be vast, bringing consider-
able benefits and advances to several areas, but particularly in the fields of (i)
Communications, allowing for the unconditionally secure transmission of cryp-
tographic keys [3, 4, 5, 6]; (ii) Computation, with quantum computers providing
unprecedented resources for some specific and demanding tasks [7, 8, 9]; (iii)
Simulations of quantum mechanical systems, as remarkably conveyed by the fa-
mous quote by Richard Feynman “Nature isn’t classical, dammit, and if you want
to make a simulation of nature, you’d better make it quantum mechanical ”; (iv)
Sensing/Metrology, where the use of quantum states is boosting the accuracy of
time and length measurements [10, 11].

Luckily, many physical platforms are today rivaling to be the choice for the
implementation of Quantum Technologies, stimulating competitive research on
the one hand, and providing complementary solutions on the other. Among

1The expression “first quantum revolution” is typically associated with the scientific and
technological breakthroughs occurred in the last decades of the 20th century, originated from
the very first quantum theories on the blackbody radiation or the wave-particle duality. In this
framework, we can include the invention and development of devices such as the laser systems,
semiconductor and transistors, and MRI imagers.
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INTRODUCTION

the most promising physical implementations we recall superconducting circuits
[12, 13] and trapped ions [14, 15], which have proved particularly fit for quan-
tum computation and simulations, and quantum states of light [16], which are
extensively used for quantum communications [17, 6, 18, 19] and quantum sens-
ing/metrology [10, 20, 21], but they have also demonstrated an increasing po-
tential for quantum computations as well [7, 19, 22, 9].

In the present work, we are particularly concerned with the use of photons
for applications in Quantum Technologies, mostly for devising quantum com-
munication protocols. The advantage of photons in this field is indisputable,
given their exceptionally long coherence length and the possibility to propagate
in existing optical networks with minimal losses [23].

The expression “quantum states of light” broadly refers to the electromagnetic
radiation that cannot be adequately described by Maxwell’s equations [24, 19].
Under this umbrella we could list a large variety of quantum states, yet in the
present work we are only concerned with Fock states (particularly, single pho-
tons and entangled photon pairs), squeezed vacuum states, and multipartite
entangled states. The generation and manipulation of these states of light is
today extremely challenging, owing to the weakness of the processes commonly
employed for their production, the unavoidable presence of losses with the con-
sequent degradation of the quantum state purity, and the fragile nature of their
quantum correlations. Nonetheless, in the last decades a plethora of solutions
for their production and manipulation has been proposed, driven both by the
scientific curiosity and by the promise of potential implementations in commer-
cial devices. This interest is today ever-growing, as testified by the abundant
scientific production and the private and public funding schemes, such as the
EU flagship on Quantum Technologies.

Multiple platforms for the generation of nonclassical states of the radiation
have been considered, including (i) quantum dots [25, 26, 27], nanometer-sized
semiconductor particles which can be pictured as “artificial atoms” emitting
single photons upon an exciton recombination, (ii) point defects in diamond
[28, 29, 30] (N-V centers and Si-V centers), electronic spin systems with ground
and excited states located in the diamond bandgap, and (iii) parametric flu-
orescence [24, 31], which takes advantage of the nonlinear optical response of
media. This thesis deals with integrated sources based on this last approach for
the generation of nonclassical states of light, focusing on entangled photon pairs
and multipartite entangled states.

The integrated design and the use of resonant structures allows one for the
tight confinement of the electromagnetic field in a microscopic interaction vol-
ume for relatively long time-scales, enhancing the light-matter interaction and
ultimately increasing the source generation rate. Even more importantly, in-
tegrated solutions grant a precise control over the flow of light and enable the
tailoring the quantum state properties [32, 33, 34]. Moreover, in the view of
industrial-scale production, integrated devices have a vast margin for improve-
ment in cost reduction, scalability and energy efficiency, following an historical
evolution similar to that of semiconductor microelectronics.

Compared to the other above-mentioned platforms, the use of parametric
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INTRODUCTION

phenomena allows for a simpler design and fabrication of the device, often prof-
iting from the existing fabrication techniques and infrastructure developed for
microelectronics. Moreover, cryogenic temperature operation is not required,
as frequently occurs with other devices such as quantum dots and supercon-
ducting circuits, yielding looser experimental constraints. Yet, one of the most
detrimental drawbacks of sources based on parametric fluorescence is probably
represented by their stochastic nature. Such intrinsic characteristic is highly
inconvenient in the development of an on-demand source of quantum states
of light, as it is typically the case. However, this limitation can be mitigated
with strategies such as heralding [35, 36] and space/time source multiplexing
[37]. The first approach, typically implemented for the design of single photon
sources, consists of the production of a photon pair by parametric fluorescence,
followed by the spatial separation of the two particles; the detection of one pho-
ton in the first spatial mode “heralds” the presence of the other photon in the
second spatial mode. For the heralded photon to be in a pure quantum state,
the generated photon pair must be completely unentangled [38, 39, 40]. Then,
multiplexing aims at reducing the temporal delay between heralded photons by
paralleling multiple sources, with the help of delay lines and controllable optical
switches.

In this work, we present and characterize four integrated sources based on
parametric fluorescence in nonlinear materials, for the generation of nonclassical
states of light. One of the key premises we have kept in mind from the very
beginning is the practical feasibility of our design, for a prompt fabrication in
photonic integrated circuits. Indeed, where these sources have not been already
experimentally verified, we set ongoing collaborations for their fabrication in the
near future.

In the first chapter we introduce most of the fundamental background needed,
and the mathematical tools we will employ recurrently throughout the rest of
the document. This common ground includes a brief discussion of the concept of
qubit, essential for dealing with quantum protocols. Since the quantum informa-
tion can be encoded into different photonic degrees of freedom — a virtue from
which we profit especially in Chapters 5 and 6 — we also recall the most com-
mon encoding schemes for qubits. In the same chapter we provide some elements
of nonlinear optics and discuss the enhancement of the light-matter interaction
granted by light confinement in integrated resonant structures, specifically fo-
cusing on microring resonators. The mathematical formalism used ubiquitously
throughout this work is the asymptotic fields approach [41, 42]: we briefly sum-
marize its main results, since they constitute both the starting point and the
language of all the subsequent calculations.

In Chapter 2 we discuss the most common silicon-based material choices
for the fabrication of integrated quantum optics. We place particular emphasis
on the case of porous silicon, presenting the first observation of stimulated four-
wave mixing in porous silicon microring resonators. This platform is particularly
appealing for the relatively simple and cost-efficient fabrication technique of the
source, which nonetheless maintains a quality factor high enough to observe
appreciable third-order nonlinear phenomena. Moreover, the porous nature of
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INTRODUCTION

the material allows for the infiltration of highly-nonlinear media with minor
effects on the light confinement, or a more efficient sensing of molecules and
bacteria [43], which can penetrate deeply inside the waveguide where the field is
more intense, ultimately boosting the sensing accuracy.

In Chapters 3 and 4 we present and analyze two sources of photon pairs based
on spontaneous four-wave mixing in integrated microring resonators. This plat-
form has been theoretically investigated for its potential to tailor the quantum
correlation of the photon pairs, ranging from highly entangled to nearly unentan-
gled, by tuning the pump pulse duration [44, 34, 40, 45]. The observation of such
response and the source characterization have been achieved with the help of the
Stimulated Emission Tomography [46], which exploits the classical counterpart
of spontaneous four wave mixing to reconstruct the pair Joint Spectral Density
with an accuracy unparalleled by standard approaches. Yet, the production of
truly unentangled photon pairs, particularly relevant for the design of heralded
single photon sources, cannot be achieved with a simple side-coupled microring
resonator without filtering [38, 39], as we discuss later on. To address this issue,
in Chapter 4 we propose a microring-based source which takes advantage of an
interferometric coupling scheme [47, 48] to generate truly unentangled photon
pairs.

As we saw, entangled states composed of two subsystems (bipartite states),
such as photon pairs, are fundamental for Quantum Technologies and are today
well-understood theoretically and experimentally. However, when entanglement
is shared among more than two parties (multipartite states), the description the
system becomes considerably more intricate. In Chapters 5 and 6 we discuss the
phenomenology displayed by the simplest photonic multipartite states, namely
the case of tripartite entanglement, pointing out the most successful strategies
for their production, and some major applications to quantum communication
protocols. Two inequivalent classes of tripartite entangled states were identified
[49]: W states [50, 51, 52] and GHZ states [53, 18, 54]. Their generation using
entangled photons relies on polarization-encoding schemes in bulk optical setups
[50, 51, 52, 18, 55, 56], which does not easily fit in the paradigm of integrated
quantum optics. Hence, in Chapters 5 and 6 we propose two novel integrated
source designs for the production of tripartite W and GHZ states using alterna-
tive degrees of freedom: energy-encoding and path-encoding, respectively. Aside
from allowing the source miniaturization, our design is expected to significantly
increase the generation rate with respect to the previous demonstrations, thanks
to the enhancement of the light-matter interaction proper of integrated devices.
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Chapter 1
Elements of quantum photonics

1.1 The Qubit and the Qubit encoding

In classical communications and computation the standard unit of information
is the bit, a logic variable which can only assume the values 0 and 1. In compu-
tation, for instance, it is physically represented by a voltage: when its value is
below or above a given threshold — typically less than 1 V — the bit assumes
the value 0 or 1, respectively. In quantum communications and quantum com-
putation we can define a comparable fundamental unit of quantum information:
the qubit. The states |0i and |1i are still reasonable values for a qubit, but now
they just represent two instances out of an infinite number of possible values.
Indeed, thanks to the principle of superposition proper of quantum mechanical
systems, the generic state of a qubit is expressed as the linear combination

| i = ↵ |0i + � |1i , (1.1)

where ↵ and � are complex numbers whose squared modulus represents the
probability of revealing the system in state |0i or |1i, respectively, upon a mea-
surement. The normalization condition on the quantum states (1.1) entails
|↵|2 + |�|2 = 1. The orthonormal states |0i and |1i constitute the so-called com-
putational basis: in this regard, the qubit can be envisioned as a unit vector in
a two-dimensional complex plane. Yet, a more eloquent pictorial representation
of the qubit (1.1) is provided by the Bloch sphere. Thanks to the normalization
condition, we can recast Eq. (1.1) as

| i = cos(
✓

2
) |0i + ei�

sin(
✓

2
) |1i , (1.2)

where now ✓ 2 [0;⇡] and � 2 [0; 2⇡] can be interpreted as the colatitude and
longitude angles defining a point on the surface of a unit-radius three-dimensional
sphere. Such sphere, represented in Fig. 1.1, is referred to as the Bloch sphere.
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CHAPTER 1. ELEMENTS OF QUANTUM PHOTONICS

Figure 1.1: Representation of the Bloch sphere. The generic pure qubit state | i
is univocally identified by the angles (✓,�), and the computational basis states
are reported at the antipodes of the sphere.

The simple introduction of the qubit we recalled so far is not complete, for
it applies only to pure quantum states. Indeed, from fundamental quantum
mechanics we know that a state or a superposition of states can be either pure
or mixed, and the most comprehensive characterization is through its density
operator, or density matrix, ⇢. This description is required whenever we don’t
possess the complete knowledge of the state, and we forced to consider it as a
statistical mixture of all its possible outcomes, weighted by their correspondent
probability pi. Naturally, when we have a single possible outcome with unit
probability, we go back to the degenerate case of a pure state. The density
matrix is defined as

⇢ =

X

i

pi | ii h i| , (1.3)

where pi 2 [0, 1] is the probability associated with the state | ii. The defining
properties of the density matrix are the unitarity of its trace, and its positiveness.
The evolution of a system subject to the unitary transformation U is simply
described in terms of the density matrix as ⇢ = U⇢U †, and the probability
of obtaining the value m upon a measurement described by the measurement
operator Mm is

p(m) = Tr[M†
mMm⇢] (1.4)

so that, right after the measurement, the mixed state ⇢ takes the form

⇢m =
Mm⇢M†

m

Tr[M†
mMm⇢]

. (1.5)

With respect to the pictorial representation of Fig. 1.1, a mixed state is given
by a point inside the sphere. This becomes evident when we recast the arbitrary
density matrix (1.3) as
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1.1. THE QUBIT AND THE QUBIT ENCODING

⇢ =
I + ~r · ~�

2
, (1.6)

where I is the identity matrix, ~r is a real three-dimensional vector such that
|r|  1, and ~� is the vector of Pauli matrices ~� = (�1,�2,�3) with

�1 ⌘ �x =

✓
0 1

1 0

◆
(1.7)

�2 ⌘ �y =

✓
0 �i
i 0

◆
(1.8)

�3 ⌘ �z =

✓
1 0

0 �1

◆
. (1.9)

Naturally, when the mixed state degenerates into a pure state, |r| = 1 and we
return to our original description of the qubit.

In most communication or computation protocols we are concerned with
the generation and evolution of complex quantum states composed of multiple
qubits. The generalization of the previous introduction to the multi-qubit case
is straightforward, and we assign an independent Hilbert space for each qubit.
The most general pure two-qubit state is thus represented by

| i = ↵ |0i ✏ |0i + � |0i ✏ |1i (1.10)
+ � |1i ✏ |0i + � |1i ✏ |1i
⌘ ↵ |00i + � |01i + � |10i + � |11i ,

which is formally analogous to Eq. (1.1). Unfortunately, in this case there is no
convenient pictorial representation of the two-qubit state, although there have
been some attempts in this sense [57]. Among all the possible states encompassed
by (1.10), some of the most relevant and meaningful are the Bell states

|�+i =
1p
2
(|00i + |11i) (1.11)

|��i =
1p
2
(|00i � |11i) (1.12)

| +i =
1p
2
(|01i + |10i) (1.13)

| �i =
1p
2
(|01i � |10i). (1.14)

This set of two-photon states constitutes a basis for the H✏2 space and are
of fundamental practical and theoretical importance. In the former instance,
the generation of Bell states using photons is the starting point for countless
protocols in quantum communications — consider, for example, the famous E91
protocol for QKD [4] or the protocols for superdense coding [58] — and for
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CHAPTER 1. ELEMENTS OF QUANTUM PHOTONICS

quantum metrology — in this context the states | ±i are usually referred to
as NOON states with N = 2, and grant a N-fold measurement accuracy over
classical counterparts [10]. In the latter instance, using Bell states it is possible
to demonstrate some fundamental features of quantum mechanics, such as the
principle of nonlocality, through the violation of the so-called Bell inequalities
[59].

Commonly, it becomes necessary to measure just a subsection of a multi-
partite system, to access information on a particle and, for instance, perform a
unitary operation on the unmeasured subsystem. This operation can be math-
ematically described in the framework of the density operators thanks to the
reduced density matrix formalism. Let us consider, as before, a bipartite com-
posed of a physical system A living in the Hilbert space HA and a physical
system B living in the Hilbert space HB . If we label the density matrix of
the whole system ⇢AB , the reduced density matrices corresponding to the two
subsystems A and B, respectively, are given by

⇢A = TrB [⇢AB ] (1.15)
⇢B = TrA[⇢AB ],

where TrA,B [⇢AB ] indicated the partial trace on one of the Hilbert subspaces.
Strictly speaking, the reduced density matrix on the subsystem B does not pro-
vide the the correct description of the state of the system A: this operation will
just grant the correct measurement statistics on that subsystem. For instance,
the reduced density matrix of the the Bell state |�+i on the second qubit pro-
duces the reduced density matrix ⇢A = I/2, which is a mixed state. The absolute
knowledge of a bipartite state (pure) does not grant the complete knowledge on
its subsystems individually (mixed). Nonetheless, the formalism of the reduced
density matrices is a fundamental tool for the description of quantum entangled
multipartite states, particularly for performing the Quantum State Tomography
[60, 61, 62] on a multipartite system. This operation consists in the reconstruc-
tion of every element of the density matrix associated with a given quantum
state, yielding its most complete description attainable. The protocol for Quan-
tum State Tomography depends on the specific physical implementation of the
qubit, and it might require vast number of measurements and nonlinear op-
erations. For this reason, the reconstruction can be imprecise and maximum
likelihood techniques should be adopted [60, 63].

The concept of qubit we introduced in the opening of this chapter is purely
mathematical, but quantum protocols are crafted to operate in very real ex-
perimental setups and commercial devices. So, how can a qubit by physically
realized? The basic requirement, common to every implementations, is having
a system with two accessible orthonormal states, such as an atom in the ground
or excited states, or simply the vacuum/occupation of an energy level. Here
we restrict our discussion to the case of photonic systems, and in the following
we describe the most common choices for the qubit encoding, pointing out the
benefits and drawbacks of each solution.

8



1.1. THE QUBIT AND THE QUBIT ENCODING

1.1.1 Polarization encoding

Polarization is perhaps the most recurrent choice for a photonic qubit encoding.
This variable is indeed naturally dihcotomic so that we can, for instance, assign
the states |0i and |1i to the vertical and horizontal polarization of the photon,
respectively (See Fig. 1.1.1).

Figure 1.2: Polarization-encoding
scheme for a photonic qubit.

Moreover, the generation of polarization-
encoded photons is today routinely
performed in laboratories through
parametric processes in nonlinear
crystals such as beta-Barium Borate
(BBO) and Potassium Dihydrogen-
Phosphate (KDP). While we leave
a more comprehensive description of
the physical principles behind para-
metric fluorescence to Section 1.2, we
want to recall a common and explica-
tive strategy adopted for the gener-
ation of polarization-encoded photon
pairs. The scheme is that originally
proposed in 1999 by P. Kwiat et al. [64], and it is schematically represented in
Fig. 1.3.

planes; i.e., the first !second" crystal’s optic axis and the
pump beam define the vertical !horizontal" plane. With a
vertically polarized pump beam, due to the type-I coupling,
down-conversion will only occur in crystal 1, where the
pump is extraordinary polarized—the resulting down-
conversion light cones will be horizontally polarized. Simi-
larly, with a horizontally polarized pump, down-conversion
will only occur in the second crystal, producing otherwise
identical cones of vertically polarized photon pairs. A 45°-
polarized pump photon will be equally likely to down-
convert in either crystal !neglecting losses from passing
through the first", and these two possible down-conversion
processes are coherent with one another, as long as the emit-
ted spatial modes for a given pair of photons are indistin-
guishable for the two crystals #19$. Consequently, the pho-
tons will automatically be created in the state HH!ei%VV .
% is determined by the details of the phase matching and the
crystal thickness, but can be adjusted by tilting the BBO
crystals themselves !but this changes the cones’ opening
angles", by imposing a birefringent phase shift on one of the
output beams, or by controlling the relative phase between
the horizontal and vertical components of the pump light.
Figure 1!b" shows the experimental setup used to produce

and characterize the correlated photons. The & 2-mm-diam
pump beam at 351.1 nm was produced by an Ar! laser, and
directed to the two crystals after passing through: a disper-
sion prism to remove unwanted background laser fluores-
cence; a polarizing beam splitter !PBS" to give a pure polar-
ization state; a rotatable half-wave plate !HWP" to adjust the
angle of the linear polarization; and a second, tiltable wave
plate for adjusting %. The nonlinear crystals themselves were
BBO (8.0"8.0"0.59mm), optic axis cut at 'pm#33.9°.
For this cut the degenerate-frequency photons at 702 nm are
emitted into a cone of half-opening angle 3.0°. For most of
the data presented here, interference filters !IFs" centered at
702 nm #full width at half maximum !FWHM" ( 5 nm$ were
used to reduce background and select only these !nearly"
degenerate photons; the maximum transmission of these fil-
ters was & 65%.
The polarization correlations were measured using adjust-

able polarization analyzers, each consisting of a PBS pre-
ceded by an adjustable HWP !for 702 nm". After passing
through adjustable irises, the light was collected using 35-
mm-focal-length doublet lenses, and directed onto single-

photon detectors—silicon avalanche photodiodes !EG&G
No. SPCM’s", with efficiencies of & 65% and dark count
rates of order 100 s$1. The outputs of the detectors were
recorded directly !‘‘singles’’" and in coincidence, using a
time-to-amplitude converter and single-channel analyzer. A
time window of 7 ns was found sufficient to capture the true
coincidences. Typical ‘‘accidental’’ coincidence rates were
negligible !%1 s$1".
Figure 2!a" shows data demonstrating the extremely high

degree of polarization entanglement achievable with our
source. The state was set to HH$VV; the polarization ana-
lyzer in path 1 was set to $45°, and the other was varied by
rotating the HWP in path 2. As expected, the coincidence
rate displayed sinusoidal fringes with nearly perfect visibility
(V#99.6&0.3% with ‘‘accidental’’ coincidences subtracted;
98.8&0.2% with them included", while the singles rate was
much flatter (V%3.4%) #20$. We believe this to be the high-
est purity entangled state ever reported. The collection irises
for these data were both only 1.76 mm in diameter—the
resulting collection efficiency !the probability of collecting
one photon conditioned on collecting the other" is then
& 10%.
To experimentally verify that we could set % by changing

the ellipticity of the pump light, the quarter-wave plate !zero
order, at 351 nm" before the crystals was tilted about its optic
axis !oriented vertically", thereby varying the relative phase
between horizontal and vertical polarization components
#21$. Figure 2!b" shows the coincidence rate with both ana-
lyzers at 45°. For %#0, ) the states HH&VV are produced.
Just as with the previous type-II source #12$, the other two

FIG. 1. !a" Method to produce polarization-entangled photons
from two identical down-conversion crystals, oriented at 90° with
respect to each other; i.e., the optic axis of the first !second" lies in
the vertical !horizontal" plane. !b" Experimental setup to pump and
characterize the source.

FIG. 2. !a" Measurements of the polarization entanglement. The
polarization analysis of photon 2 was varied, while that of photon 1
was at $45°. The rate at detector 2 !squares, right axis" is essen-
tially constant; i.e., the photons are individually nearly unpolarized,
while the coincidence rate !circles, left axis" displays the expected
quantum-mechanical correlations. The solid curve is a best fit, with
visibility V#99.6&0.3%. !b" Coincidences as the relative phase %
was varied by tilting the wave plate just before the crystal; both
photons were analyzed at 45°. The solid curve is the calculated
phase shift for our 2-mm-thick zero-order quartz quarter-wave
plate, adjusted for the residual phase shift from the BBO crystals
themselves.

RAPID COMMUNICATIONS

R774 PRA 60KWIAT, WAKS, WHITE, APPELBAUM, AND EBERHARD

Figure 1.3: Sketch of the “sandwich source” presented in [64] for the generation
of polarization-encoded photon pairs through Type I SPDC.

The source is composed of two identical, orthogonally oriented nonlinear
crystals, an arrangement sometimes referred to as a “sandwich source”. The
photons coming from a strong pump laser pulse shined on the crystal can undergo
type I Spontaneous Parametric Down-Conversion (SPDC), a process in which
a pump photon is scattered into two daughter photons with equal polarization
state, opposite to that of the original photon, obeying energy and momentum
conservation. The generation of the photon pair occurs simultaneously and, if
one assumes to polarize the laser pump at a 45

� with respect to the optical axis
of the crystals, the pump state is

| pumpi =
1p
2
(|Hi + ei� |V i), (1.16)

9
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and gives rise to the down-converted photon pair

| pairi =
1p
2
(|V V i + ei�

0

|HHi), (1.17)

where the phase �
0

depends on the pump and crystal parameters. The pair
state (1.17) is a |�+i Bell state in polarization-encoding, and it can now be used
for implementing quantum protocols. In this simplified scheme the quantum
correlation comes from the uncertainty around the nonlinear crystal responsible
for the pair generation, a circumstance that holds as long as the pump photon
coherence length is much wider than the nonlinear crystal itself: otherwise,
depending on the photon arrival time, one could access the information of which
crystal actually generated the pair. It is worth to stress that the source of Fig.
1.3 should be complemented with additional elements to erase the small walks-
off originated in the crystals, and the time difference between the two output
channels, but this discussion is not relevant to the present introduction.

Other approaches for the generation of polarization-entangled photon pairs
have been proposed and demonstrated, for instance using atomic cascade, i.e.
the emission of entangled photon pairs upon the decay process of an atom with
initial zero angular momentum [65], or using type II SPDC [66, 19] in which the
daughter photons are created with orthogonal polarizations. Yet, in both these
instances more stringent experimental constraints are required, and the source
efficiency is considerably reduced.

After the polarization-encoded state is generated and possibly manipulated
in an optical circuit, it is paramount to reconstruct the output state of such
circuit through quantum state tomography. In polarization-encoding schemes it
is possible to devise a simple protocol for the exact reconstruction of the density
matrix of a qubit via a sequence of three linearly independent measurements
[61, 67]. The standard scheme to perform such operations, reported in Fig.
1.4(a), is composed of a Quarter Wave Plate (QWP), followed by a Half Wave
Plate (HWP) and a Polarizing Beam Splitter (PBS).
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A half-waveplate at
1
4✓0

will rotate this state to |Hi.7 The PBS will then

transmit the projected state and reflect its orthogonal compliment.

Of course, these calculations assume that waveplates with retardances

equal to exactly ⇡ or
⇡
2 are used (or Rabi pulses producing perfect phase dif-

ferences). Imperfect yet well characterized waveplates will lead to measure-

ments in slightly di�erent yet known bases. This will still yield an accurate to-

mography, but first these results must be transformed from a non-orthogonal

basis into the canonical Stokes parameters using equation 21. Later, the max-

imum likelihood technique (see section 3) will provide a di�erent but equally

e�ective way to accomodate for imperfect measurements.
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Fig. 3. A quarter-waveplate (QWP), half-waveplate (HWP), and polarizing beam
splitter (PBS) are used to make an arbitrary polarization measurement. Both a
diagram of the experimental apparatus (a) and the step-by-step evolution of the
state on the Poincaré sphere are shown. (b) The quarter-waveplate rotates the
projection state (the state we are projecting into, not the incoming unknown state)
into the linear polarization plane (the equator). (c) The half-waveplate rotates this
linear state to horizontal. The PBS transmits the projection state (now |Hi) and
reflects its orthogonal compliment (now |V i), which can then both be measured.

Exact Tomography of Multiple Qubits Using 2n Detectors

Tomography of multiple qubits, though an extension of the single-qubit tech-

nique, becomes more complicated and depends on the experimental appara-

tus used. The simplest, fastest, and most intuitive version of this tomography

uses an array of 2n detectors, which project every incoming n-qubit state into

one of 2
n

basis states. This is the generalization of simultaneously measur-

ing both outputs in the single qubit case. These detectors must measure in

n-fold coincidence, and for the purposes of exact tomography it is assumed

they have no errors and operate on an infinite ensemble of states. It should

be emphasized that these additional detectors are not some ‘trick’, e�ectively

7 �� = acos {sin(�)tan(�)} � acos {cot(�)cot(�)}. In practice, care must be taken
that consistent conventions are used (e.g., right vs. left circular polarization),
and it may be easier to calculate this angle directly from waveplate operators
and the initial state.

(a)
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Fig. 2. A sequence of three linearly independent measurements isolates a single
quantum state in Hilbert space (shown here as an open circle in the Poincaré sphere
representation). The first measurement isolates the unknown state to a plane per-
pendicular to the measurement basis. Further measurements isolate the state to the
intersections of non-parallel planes, which for the second and third measurements
correspond to a line and finally a point. The black dots shown correspond to the
projection of the unknown state onto the measurement axes, which determines the
position of the aforementioned planes. (a) A sequence of measurements along the
right-circular, diagonal, and horizontal axes. (b) A sequence of measurements on
the same state taken using non-orthogonal projections: elliptical light rotated 30�

from H towards R, 22.5� linear, and horizontal.

A Mathematical Look at Single Qubit Tomography

Using the tools developed in the first section of this chapter, single-qubit to-

mography is relatively straightforward. Recall equation 9, ⇢̂ =
1
2

P3
i=0 Si�̂i.

Considering that S1, S2, and S3 completely determine the state, we need

only measure them to complete the tomography. As Sj>0 = 2P| � � 1

(equation 13), three measurements respectively in the |0i, 1p
2

(|0i + |1i) , and

1p
2

(|0i + i|1i) bases will completely specify the unknown state. If instead

measurements are made in another basis, even a non-orthogonal one, they

can be easily related back to the Si parameters, and therefore the density

matrix, by means of equation 21.

While this procedure is straightforward, there is one subtlety which will

become important in the multiple-qubit case. Projective measurements gen-

erally refer to the measurement of a single basis state and return a single

(b)

Figure 1.4: Schematic representation of (a) the basic setup for performing a
complete quantum state tomography on a polarization-encoded qubit, and (b)
the effect of the three projections in pin-pointing the coordinates of a qubit state
on the Bloch sphere (adapted from [61]).

As it is schematically represented in Fig 1.4(b), each measurement with a
suitable choice for the rotation angles of each wave-plate pins down one of the
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1.1. THE QUBIT AND THE QUBIT ENCODING

free parameters of the state, pictured as the cartesian coordinates of the point
representing the qubit state inside the Bloch sphere. When the quantum state
is composed of multiple polarization-encoded qubits, the setup of Fig. 1.4(a) is
applied at the output of each qubit, counting coincidences.

Polarization-entangled photons are typically involved in free-space experi-
ments, where the polarization state is easily preserved upon propagation thanks
to the uniformity and homogeneity of the air/vacuum, and it is manipulated
using standard optical elements. Unfortunately, this is not the case for photonic
integrated circuits where waveguides are typically asymmetric, and thus the
vertical and horizontal polarizations — the TM- and TE-like modes, in this con-
text — experience dissimilar propagation losses. Moreover, although feasible in
principle [68, 69], the rotation of polarization-encoded states in integrated optics
can be very challenging. The propagation of polarization-encoded states in exist-
ing optical networks poses constraints too, since polarization-maintaining fibers
(such as Panda fibers of Bow-tie fibers) are not traditionally employed for long-
distance communications, Dense Wavelength Division Multiplexing (DWDM)
systems being preferred today.

1.1.2 Time-bin encoding

A photonic qubit can also encode information in the relative time of arrival, or
time-bin, on a detector. Time-bin encoding is particularly useful for quantum
communications, for it is a robust scheme against decoherence, yet it has also
been proposed for the realization of universal quantum computation with fiber
loops and switches [70]. The emission of a photon pair by parametric fluoresce
in a nonlinear crystal is approximately instantaneous, so the photons are gen-
erated in a precise moment. Let us focus on one of the photons: its time of
arrival depends on the route which separates it from the detector, and whenever
multiple paths are present, the photon can be thought as passing through all of
them with a correspondent probability. The simplest setup to create a time-bin
encoded photon is an unbalanced Mach-Zehnder Interferometer (MZI), like the
one reported in Fig. 1.5.

Source
L1

L2

BS BS

Figure 1.5: Representation of an unbalanced Mach-Zehnder Interferometer for
the creation of time-bin encoded photonic qubits.

The incoming photon can equivalently take the lower or the upper arm of
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CHAPTER 1. ELEMENTS OF QUANTUM PHOTONICS

the MZI. Provided that the difference in the arm length L2 � L1 is much larger
then the coherence length of the photon, so that the branch taken can be unam-
biguously distinguished, the photon state at the output can be written

| i =
1p
2
(|0i + ei� |1i), (1.18)

where we assign the state |0i to the photon if it took the lower (shorter) arm of
the MZI, and the state |1i if it took the upper (longer) arm, and � is the extra
phase accumulated by the photon in the upper arm.

Early
t

Late |1i|0i

Figure 1.6: Time-bin encoding scheme
for a photonic qubit.

Finally, the measurement in per-
formed in the time domain. Naturally,
if the photon took the longer path it
will have accumulated a delay with
respect to a photon traveling in the
shorter path. Thus, at the detector,
the state (1.18) can be expressed as

| i =
1p
2
(|Ei + ei� |Li), (1.19)

where |Ei is an “early” photon, and |Li is a “late” photon. The conceptual
scheme of time-bin encoding is reported in Fig. 1.1.2.

1.1.3 Color encoding

When we consider the generation of photon pairs by parametric fluorescence
in a nonlinear crystal pumped with a CW laser, the energy conservation con-
straint imposes a strong correlation on the energies of the converted photons.
Naturally, the absolute value of their energy is undetermined, but the sum must
equal the incident energy. We can exploit this constraint to devise a different
scheme for qubit encoding, referred to as frequency-bin encoding, or color encod-
ing [71], which uses discrete orthogonal modes in the frequency domain rather
than spatial modes or the photon polarization.

ww0

0 1

Figure 1.7: Energy-encoding scheme for
a photonic qubit.

Quantum information can bene-
fit from multi-frequency encoding in
much the same way as classical com-
munication has from the introduc-
tion of frequency multiplexing. The
simplest case of color encoding of a
qubit is represented in Fig. 1.1.3,
where only two frequency-bin are con-
sidered. The |0i state correspond
to a photon whose frequency is red-
detuned with respect to a central
value !0 (the central frequency of the

pump), while the state |1i is physically represented by a photon whose frequency
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is blue-detuned with respect to the central frequency. We will adopt this encod-
ing scheme for the generation of energy-entangled W states in Chapter 5. Mul-
tiple sources of frequency-encoded photon pairs have been proposed at present,
including birefringent optical fibers [40], integrated silicon microdisks [72] and
integrated silicon microrings [44]. The quantum state tomography of a system of
color-encoded photons in general requires nonlinear processes, for creating the
superposition of |0i and |1i states would otherwise violate energy conservation.
Nonetheless, as we discuss in Chapter 5, in particular circumstances one can
take advantage of other degrees of freedom, such as the photon polarization [71]
or path, to avoid the need for nonlinear processes and obtain a full tomography
of the color-encoded qubits.

1.1.4 Path-encoding

Path encoding is another very natural encoding scheme for photonic qubits.
Here, regardless the photon polarization or energy, we are mostly concerned with
the spatial distribution of the field associated with the photon.

|1i

|0i

Figure 1.8: Path-encoding scheme for a
photonic qubit.

Since the qubit lives in a two-
dimensional Hilbert space, let us con-
sider an encoding scheme with two
independent waveguides, as schemat-
ically represented in Fig. 1.1.4: the
photon can propagate either in the
upper or the lower waveguide, and we
assign the qubit state |1i and |0i to
each state, respectively.

Path-encoding is particularly suited
for integrated quantum photonics, for
photon pairs are often generated di-
rectly inside the waveguide by means
of parametric processes, and remain
thereon confined thanks to the refrac-
tive index contrast — in simple waveguides — or the Photonic Band Gap mech-
anism — in photonic crystal waveguides. Moreover, it is relatively easy to
implement any unitary operation on the path-encoded qubit, simply by spa-
tially rearranging or moving the waveguides closer to each other, and exploiting
the evanescent coupling between the two modes in directional couplers. We
will show how a variety of unitary transformations can be implemented with
path-encoding in the opening of Chapter 6. On-chip solutions for the gener-
ation of path-encoded photon pairs have been proposed in multiple platforms
[73], including silica-on-silicon [74], silicon on insulator [75], and lithium nio-
bate [76]. Moreover, it has also been demonstrated the possibility to translate
path-entanglement to polarization-entanglement by using specifically designed
grating couplers [77].

Quantum state tomography on a path-encoded qubit is fundamental for a
full reconstruction of the quantum state, and it has been demonstrated on-chip
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with reconfigurable phase delays [75, 73], and with a static chip configuration
exploiting on-chip “quantum walks” [78]. In the former instance, the standard
configuration of an analyzing integrated circuit for a path-encoded qubit is re-
ported in Fig. 1.9.

j1 j2

DC1 DC2

Figure 1.9: Sketch of a standard photonic integrated circuit for performing quan-
tum state tomography on a path-encoded qubit.

The integrated circuit is composed of a MZI with two tunable phases, im-
plemented through directional couplers and heaters. By adjusting the phases in
three measurements it is possible to pin-point the state in the Bloch sphere, fol-
lowing the same strategy we discussed above for the tomographic reconstruction
of a polarization-encoded qubit.

1.2 Nonlinear optics
In the Introduction we have recalled some of the widespread physical platforms
for the generation of nonclassical states of light, including quantum dots, color
centers in diamond, and parametric fluorescence. Here, we restrict our discus-
sion to the latter solution and, in particular, we focus on the material third-order
nonlinear response to generate photon pairs. Such photons can be subsequently
manipulated in specifically designed optical circuits to yield a variety of nonclas-
sical states of the radiation, as we do in the following Chapters. Parametric flu-
orescence is one of the most recurrent processes, and several materials have been
considered and characterized for their intense nonlinear response. Throughout
this Chapter we want to briefly recall the properties of nonlinear media, par-
ticularly focusing on the third-order nonlinear response and the phenomenon of
four-wave mixing. Although this effect is rather feeble, the appropriate use of
light confinement can overcome this limitation and vastly enhance the nonlinear
response of materials.

1.2.1 Material nonlinearity

Regardless its atomic composition, structural arrangement, or external stimuli
applied, every medium displays a nonlinear response when excited by an elec-
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tromagnetic field. This effect roots back to the nonlinear functional relation
between the incident electric field E(r, t) and the induced polarization P(r, t) in
the medium, which can be Taylor-expanded as

P i
(r, t) = ✏0�

ij
(r)Ej

(r, t) + �ijk
2 (r)Ej

(r, t)Ek
(r, t) (1.20)

+ ✏0�
ijkl
3 (r)Ej

(r, t)Ek
(r, t)El

(r, t) + . . . ,

where �ijk
2 (r) and �ijkl

3 (r) are the second- and third-order nonlinear optical
susceptibility tensors and the Einstein’s rule for summation over repeated indices
applies. These quantities are typically small, of the order of �2 ⇡ 10

�12
m/V

and �3 ⇡ 10
�24

m
2/V

2.
The second-order susceptibility is responsible for numerous nonlinear phe-

nomena, including

• Optical Rectification (OR), the occurrence of a static polarization caused
by the passage of an intense optical beam in the material.

• Second-Harmonic Generation (SHG) and, more generally, Sum-Frequency
Generation (SFG), which consist in the inelastic scattering of two incident
photons into a single photon whose frequency is the sum or the of that
of the original photons. In the former case the impinging photons are
identical, while in the latter they can have an arbitrary frequency.

• Difference-Frequency Generation (DFG), the generation of photons with a
frequency that is the difference between that of two photons impinging on
the nonlinear region.

• Spontaneous Parametric Down-Conversion (SPDC), which consists in the
spontaneous “fission” of a photon in two daughter photons, respecting en-
ergy and momentum conservation.

Thanks to these processes it is possible to realize Optical Parametric Amplifiers
(OPA) and Optical Parametric Oscillators (OPO, essentially an OPA in an opti-
cal cavity), which can produce down-converted photons in squeezed states with
high efficiencies [79, 80]. Among the most common materials used for second-
order nonlinear quantum optics we must consider Lithium Niobate (LiNbO3)
[81, 82, 83], KTP [84, 83] and BBO [85, 83] crystals, and III-V semiconductors,
such as Indium Gallium Arsenide (InGaAs) [86, 87], Indium Phosphide (InP)
[88], and Gallium Nitride (GaN) [89].

Unfortunately, not all of the optical media possess a second-order nonlinear
response, and thus cannot give rise to the above-mentioned effects. This is indeed
the case of bulk centrosymmetric crystalline structures, whose �2 = 0 (and any
other even-order nonlinear susceptibility) due to the particular crystal symmetry.
One of the centrosymmetric materials that is most relevant to our discussion is
silicon: as we will discuss further in details in Chapter 2.1, it is typically used for
its high third-order nonlinear response and the well-established fabrication and
lithography processes. Other notable platforms for the third-order nonlinear op-
tics include Silicon Nitride (SiN) [71, 90, 91], Silicon Carbide (SiC) [92, 93], and
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porous silicon [94, 95, 96]. The third-order nonlinear susceptibility is responsible
for several nonlinear effects, including

• Optical Kerr Effect and Self-Focusing, the former being the field intensity-
dependent variation of the refractive index by a quantity �n = n2I, where
n2 is the so-called nonlinear refractive index and I is the incident field
intensity; the latter is related to the Kerr effect and consists of the sponta-
neous focusing of a nonuniform wavefront to the highest intensity regions,
led by the increased refractive index.

• Third Harmonic Generation (THG, or frequency tripling), which can be
pictured as the fission of a photon into three down-converted photons.

• Stimulated Raman Scattering (SRS), the inelastic scattering of photons
with the optical rotational, vibrational, and roto-vibrational modes of
molecules.

• Stimulate Brillouin Scattering (SBS), the inelastic scattering of photons
with the optical vibrational quasi-excitations of a crystal (phonons).

• Four-Wave Mixing (FWM), which consists in the inelastic scattering of
two photons into a newly generated frequency-converted photon pair. This
process can be stimulated by the presence of another incident photon, or
otherwise spontaneous.

Throughout the rest of this work, we will always consider FWM processes for the
generation of nonclassical states of light; for this reason, in the following sections
we discuss more in details this particular third-order nonlinear phenomenon.

1.2.2 Stimulated and Spontaneous Four-Wave Mixing

As the name suggests, the FWM process involves the presence of four electromag-
netic fields whose interaction is mediated by the third-order nonlinear suscepti-
bility. We can distinguish between a “classical” and “quantum” FWM processes,
typically referred to as stimulated FWM and Spontaneous FWM (SFWM), re-
spectively.

In stimulated FWM, two pump photons impinge on a nonlinear region, as
sketched in Fig. 1.10, and originate a new photon pair composed of signal and
an idler photon. The generation of photon pairs with the particular signal-idler
energy (and wave-vector) combination is stimulated by the presence of another
signal photon simultaneously fed into the nonlinear region. Ultimately, in this
process the signal photon is not directly involved in the transition, and it is
found in the output.
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Figure 1.10: Pictorial representation of a FWM process in a third-order nonlinear
material.

Naturally, the energy and momentum conservation must be enforces, so that

!4 = !1 ± !2 ± !3 (1.21)
k4 = k1 ± k2 ± k3, (1.22)

where !1, !2, and !3 are the frequency of the incoming waves and !4 is the
frequency of the newly generated optical wave. Similar labelling is adopted for
the wave vectors. It is worth to note that the condition (1.21) is easily satisfied
and does not imply condition (1.22) (usually referred to as the phase-matching
condition), for the material is dispersive. Hence, care must be taken to ensure
that both Eq. (1.21) and (1.22) are satisfied; there are many strategies to fulfill
such requirements, including the use of birefringent materials, the engineering of
the material dispersion, the adoption of quasi phase-matching. For the moment
we will consider these conditions to be both satisfied. Expressing the electric
field for each mode involved in the nonlinear process as

E(r, t) =
1

2
A(r)ei(!t�k·r)

+ c.c. (1.23)

where A(r) is the field amplitude, and using Eq. (1.20) we obtain, among the
other terms,

P i
(r, t) = 3�ijkl

3 Aj
1(r)A

k
2(r)[Al

3(r)]
⇤ei[(!1+!2�!3)t+(k1+k2�k3)·r]

+ c.c. (1.24)

⌘ 3�ijkl
3 Aj

1(r)A
k
2(r)[Al

3(r)]
⇤ei(!4t+k4·r)

+ c.c.

where one of the conditions (1.21) and (1.22) emerges naturally. For simplicity,
we can consider the degenerate case in which !1 = !2 ⌘ !p are the pump
photons, while the photon at !3 is the signal, and the resulting photon at !4 is
the idler.

The SFWM process is the quantum counterpart of FWM, and it can be
pictured as the inelastic scattering of two pump photons into a signal and an
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idler photon, conserving energy and momentum in the frequency conversion.
Such process is schematically depicted in Fig. (1.11).

χ(3)
Pump

E (eV)

S

IP

PPump

Signal

Idler

Figure 1.11: Sketch of a SFWM phenomenon occurring in a �3 material, with
the corresponding process in the energy diagram.

The difference with respect to stimulated FWM is clearly the absence of input
signal photons. From a quantum mechanical point of view, we can envision the
frequency conversion as stimulated by vacuum fluctuations. It should be noticed
that all these processes are parametric, meaning that there is no exchange of
energy or momentum between the incoming fields and the nonlinear medium:
the transition can be viewed as occurring between virtual energy levels, it is
considered to be instantaneous, and the quantum state of the material is not
modified by the interaction [97].

1.2.3 Enhancement of the nonlinear light-matter interac-

tion

The generation rate of photon pairs by SFWM in a bulk nonlinear medium is
affected by the weakness of the third-order response of most materials, yet the
response of a nonlinear device can be dramatically enhanced by tailoring the
confinement of light inside the nonlinear region. Indeed, looking back at Eq.
(1.20), the medium polarization depends both on the nonlinear susceptibility
and on the electric field amplitude. While the former is essentially set by the
material with little space for improvement under external influences, there is a
large margin for improvement on the latter factor.

The simplest way to increase the light-matter interaction and thus the third-
order nonlinear response, is by confining the electromagnetic field in the transver-
sal plane with respect to its propagation direction. This is typically implemented
through integrated waveguides. We can identify two basic physical mechanisms
for attaining light confinement: Total Internal Reflection (TIR) and the Photonic
Band Gap (PBG) [98, 99].
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Figure 1.12: Schematic examples of waveguide structures, where the high-
refractive index material is orange and the low refractive index material is yellow.
(a) simple ridge waveguide, where light confinement is obtained by TIR; (b) PhC
waveguide, where light confinement is obtained by a combination of TIR and the
PBG mechanism.

The former simply refers to the existence of a critical angle above which light
is totally reflected at the interface from the high-index medium to the low-index
medium. Based on this approach we have multiple design for integrated opti-
cal waveguides, including ridge waveguides, rib waveguides, and buried-channel
waveguides (see Fig. 1.12(a)) [99]. The second approach can be interpreted as
a destructive interference effect, arising from the semi-infinite periodicity of the
confining structure, a Photonic Crystal (PhC). In this framework, the Bloch-
Floquet theorem applies and from the calculation of the band structure of the
systems we note the presence of photonic band gaps, similarly to what occurs to
electrons in a crystalline structure. Notably, this is the same basic principle of
operation for a Distributed Bragg Reflector (DBR), so that a PhC waveguide can
be pictured as a high-index region surrounded by DBR mirrors for light confine-
ment (see Fig 1.12(b)). We can introduce an effective area Aeff that represents
the effective interaction cross section, weighted on the nonlinear region alone,
for the process occurring in the waveguide. Integrated optical waveguides can
enhance the nonlinear response of optical media significantly thanks to the 2D
confinement of light, but the interaction time ⌧ is limited by the finite propaga-
tion length Lprop (limited by losses) or the physical length L of the waveguide
to ⌧ = L(prop)/vg.

To further improve the light confinement, the simplest solution consists in
the use of optical resonators, structures in which light is — ideally — confined
in three dimensions. This can be achieved by means of metallic or dielectric
mirrors, by producing a defect in a 3D photonic crystal, or simply by bending
a waveguide onto itself in a circular shape. Once more, we can identify multi-
ple instances of photonic resonators based on a combination of TIR and PBG,
including micropillar resonators, microdisks resonators based on the so-called
whispering gallery modes [99, 66], PhC resonators [98], and simple microring
resonators [99]. In the following we will focus on the latter resonant structure
alone, for this is the fundamental block at the basis of all the sources of nonclas-
sical states of light we discuss in this work.

A microring resonator can be straightforwardly pictured as ridge waveguide
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bent in a closed circular shape with radius R, as we schematically represent in
Fig. 1.13.

R

s , k

Figure 1.13: Schematic representation of a side-coupled microring resonator.

The optical excitation of the microresonator can be achieved by evanescent
side-coupling to an external waveguide, referred to as the bus waveguide. The
coupling strength depends on the distance d between the ring and the bus waveg-
uide, and it can be selected upon design or tuned to a given extent in a finished
structure with heaters, by thermal expansion effect. For most purposes, the
bus-ring coupling is represented in terms of a real-valued self-coupling constant
� and a real-valued cross-coupling constant  such that, referring to Fig. 1.13,
we have

E1 = �E2 + iEin (1.25)
Eout = iE2 + �Ein,

and assuming the coupling to be reciprocal, we have �2
+ 2

= 1. Light propa-
gating in the microring is subject to various sorts of losses, including absorption,
scattering and bending losses; their effect can be conveyed in a unique loss coef-
ficient ↵ 2 [0, 1], so that

E2 = ↵E1e
ik(!)L, (1.26)

where ↵ = 1 corresponds to the lossless scenario and L = 2⇡R is the round trip
distance. It should be noticed that the coefficient ↵ includes all of the possible
sources of loss in the system, wether represented by scattering and absorption,
or by other output channels, regarded as a means of energy depletion from the
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Figure 1.14: (a) Transmission spectrum of a side-coupled microring resonator
(R = 20 µm, � = ↵ = 0.95) at the critical coupling condition. (b) Field
Enhancement in the same ring resonator as a function of the energy, showing
the nearly periodical lorentzian resonances.

resonator. The material dispersion comes here into play remembering that in
general

k(!) =
!0

c
n +

1

vg
(! � !0) +

1

2
GV D(! � !0)

2
+ . . . , (1.27)

where !0 is a central frequency around which k(!) is Taylor expanded, n is the
refractive index at !0, vg is the group velocity at !0, and GV D is the group
velocity dispersion at !0. Using Eq. (1.26) in Eq. (1.25) we can express the
transmitted field amplitude as

Eout

Ein
=

� � ↵eik(!)L

1 � �↵eik(!)L
, (1.28)

and thus the intensity transmission is (see Fig. 1.14(a))

T (!) ⌘
���
Eout

Ein

���
2

=
�2

+ ↵2 � 2�↵ cos(k(!)L)

1 + �2↵2 � 2�↵ cos(k(!)L)
. (1.29)

The condition for constructive interference for an electromagnetic wave prop-
agating in the ring is given by k(!)L = 2⇡m with m 2 Z. This condition is
evident both from Eq. (1.26) , when we impose the in-phase sum of the fields,
but also from Eq. (1.29), where the transmission minima correspond to reso-
nant frequencies. The distance between adjacent resonances is the so-called Free
Spectral Range (FSR), which in frequency is given by

FSR⌫ =
c

2⇡Rng
, (1.30)

and in wavelength is approximately given by

FSR� ⇡ �2
0

ngL
(1.31)
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where �0 is the central wavelength between the adjacent resonances, and ng =

c/vg is the group index which can be conveniently measured from the transmis-
sion spectrum of the resonator. When the microring is excited precisely at one
of its resonances !res , the transmitted light intensity is

T (!res) =
(� � ↵)

2

(1 � �↵)2
, (1.32)

a quantity that vanishes whenever � = ↵. This condition is known as critical
coupling, and it is the desired working point in most experiments, although it
was recently demonstrated this is not the optimal coupling condition for heralded
single photon sources [100].

Again using Eq. (1.26) in Eq. (1.25), we can express the field amplitude in
the ring resonator, refereed to as the Field Enhancement (FE) as

F(!) =
E1

Ein
=

i

1 � �↵eik(!)L
. (1.33)

When calculated in the proximity of a resonant frequency !res and in the limit
 ⌧ � ⇡ 1, the FE becomes

F(!) / �/2

(! � !res) + i(�/2)
, (1.34)

which is a Lorentzian function (see Fig 1.14(b)) centered around !res and with
FWHM

� =
2(1 � �↵)vg

L�↵
. (1.35)

We can finally point out some of the most relevant figures of merit for mi-
crorings resonators, starting from the Quality factor Q. This is a measure of
the time-averaged energy stored in the ring divided by the power dissipated per
optical cycle, so that

Q = !res <
energy stored

power loss
>, (1.36)

but more intuitively it can be pictured as the number of oscillations of the field
before the field intensity drops to 1/e of the original value. Thus, the quality
factor conveys the effectiveness of the resonator in 3D-confining an electromag-
netic wave. The coupling to the bus waveguide represents a “loss” channel, and
thus we can first express the so-called intrinsic or bare quality factor Qint, which
is essentially determined by intrinsic absorption, scattering, and bending losses
as

Qint =
2⇡ng

�resa
, (1.37)

where �res is the resonance wavelength, and a is the loss coefficient expressed as
the inverse of a length. When the ring is coupled to the bus waveguide, we can
decompose the ring quality factor as
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1

Q
=

1

Qcoupling
+

1

Qint
, (1.38)

where Qcoupling is the ring quality factor accounting for the coupling losses alone.
The quality factor Q can be obtained directly from the transmission spectrum
of the microring, as

Q =
!res

�
, (1.39)

and using Eq. (1.35) we have

Q =
!resL�↵

2(1 � �↵)vg
. (1.40)

Using the previous expressions, the FE for a given resonance can also be ex-
pressed as

F(!res) =

s
4vg

L!res

Q2

Qcoupling
, (1.41)

which, at the critical coupling becomes

F(!res) =

r
2vgQ

L!res
. (1.42)

Another recurrent figure of merit for resonators is the Finesse F , defined as

F =
FSR

�
=
�res

ngL
Q, (1.43)

which is directly linked to the quality factor, and measures the width of the
resonances with respect to their separation.

Microring resonators are today widely used in photonic integrated circuits,
both in the simple configuration of Fig. 1.13 and in more sophisticated arrange-
ments, such as Add-Drop filters, double ring resonators, microring Coupled Res-
onator Optical Waveguides (CROWs) [99, 66], and more complex geometries.

1.3 Quantization of the electromagnetic field in
an integrated device

The goal of this Chapter is to introduce the basic formalism we will adopt
throughout the thesis. This discussion will provide the key to interpret how
we tackle an electromagnetic problem in an integrated device, and introduce the
mathematical garment. It will be the common starting point and the vocabulary
of most of the following chapters and sections, so we believe it is convenient to
discuss the basic strategy here, and simply recall it later.

We adopt the quantization of the electromagnetic field presented by Liscidini
et al. in [41, 42], referred to as the asymptotic fields approach, which was inspired
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Interaction 
Region

x y
z

Figure 1.15: Sketch of the typical structure considered in the framework of the
asymptotic states approach. An interaction region (e.g. a nonlinear medium)
is directly connected or evanescently coupled to different in/out channels; each
of the channels is associated with an independent reference frame with the z
axis directed toward the interaction region so that incoming fields are related to
positive wave vectors, while outgoing fields have negative wave vectors.

by the theory of scattering in quantum mechanics [101]. In this approach the
electromagnetic field in an integrated structure can be expanded on the basis of
asymptotic-in and asymptotic-out modes, solutions of the linear Maxwell equa-
tions inside the device. Since these modes constitute an orthogonal basis, they
can be adopted for treating both the linear and the nonlinear propagation of
light in the structure, when the nonlinearity is regarded as an effective “scatter-
ing center”. Asymptotic-in states can be envisioned as fields, existing everywhere
is space, whose superposition for t ! �1 results in a wave packet incident on
the integrated structure; similarly, the superposition of asymptotic-out states
results in a wave packet exiting the structure for t ! +1. To better visualize
these concept one can refer to Fig. 1.15, where we schematically represented an
integrated device as an “interaction region” surrounded by all the possible input
and output channels to access or leave the structure. Please note that even ab-
sorption losses can be modeled as a “phantom channel” within this model [102].
Following this interpretation, the electric displacement and the magnetic field
operators in any point of the structure are given by

D(r) =

X

n,I

Z 1

0
dk

r
~!nIk

2
anIkD

asy�in
nIk (r) + H.c. (1.44)

B(r) =

X

n,I

Z 1

0
dk

r
~!nIk

2
anIkB

asy�in
nIk (r) + H.c.

where n labels the channel, I labels the particular propagating mode supported
by channel n, k is the wave vector of such mode, anIk is the destruction operator
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for asymptotic-in states characterized by

[anIk, an0I0k0 ] = 0 (1.45)

[anIk, a†
n0I0k0 ] = �nn0�II0�(k � k0

),

and Dasy�in
nIk (r) and Basy�in

nIk (r) are the asymptotic-in states are, whose definition
is

Dasy�in
nIk (r) ⇡ DnIk(rn) +

X

n0I0

Z 1

0
dk0 T out

nI,n0I0(k, k0
)Dn0I0(�k0)(rn0) (1.46)

Basy�in
nIk (r) ⇡ BnIk(rn) +

X

n0I0

Z 1

0
dk0 T out

nI,n0I0(k, k0
)Bn0I0(�k0)(rn0).

Eq. (1.46) clearly translates the verbal definition of asymptotic-in state we
provided earlier. Here, DnIk(rn) represents the electric displacement vector in
the isolated input channel n, propagating in mode I with wave vector k, and
T out

nI,n0I0(k, k0
) is the matrix that connects the fields in channel n, mode I, to

the fields in all the other channels n0, modes I 0. If we consider Eq. (1.44) in
the limit t ! �1 it can be demonstrated that, from Eq. (1.46), the outgoing
contributions cancel out and the resulting field operators become

D(r) !t!�1
X

n,I

Z 1

0
dk

r
~!nIk

2
anIkDnIk(r) + H.c. (1.47)

B(r) !t!�1
X

n,I

Z 1

0
dk

r
~!nIk

2
anIkBnIk(r) + H.c.,

which are the superposition of incoming fields from the isolated input channels,
as expected.

Parallel to the introduction of asymptotic-in states, we can now briefly re-
call the concept of asymptotic-out states. This is an alternative basis for the
expansion of field operators, and thus, similarly to Eq. (1.44) we have

D(r) =

X

n,I

Z 1

0
dk

r
~!nIk

2
bnIkD

asy�out
nIk (r) + H.c. (1.48)

B(r) =

X

n,I

Z 1

0
dk

r
~!nIk

2
bnIkB

asy�out
nIk (r) + H.c.,

where the destruction operator for asymptotic-out states is now labelled bnIk

just for clarity, and the asymptotic-out states are defined as

Dasy�out
nIk (r) ⇡ DnI(�k)(rn) +

X

n0I0

Z 1

0
dk0 T in

nI,n0I0(k, k0
)Dn0I0k0(rn0) (1.49)

Basy�out
nIk (r) ⇡ BnI(�k)(rn) +

X

n0I0

Z 1

0
dk0 T in

nI,n0I0(k, k0
)Bn0I0k0(rn0)
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the matrix T in
nI,n0I0(k, k0

) now relating the output fields to the input ones. Once
more, Eq. (1.49) truly reflects mathematically the definition of asymptotic-out
states: indeed, if we let t ! +1 and look at the field operator as superposition
of asymptotic-out states in Eq. (1.48), we obtain

D(r) !t!+1
X

n,I

Z 1

0
dk

r
~!nIk

2
bnI(�k)DnI(�k)(r) + H.c. (1.50)

B(r) !t!+1
X

n,I

Z 1

0
dk

r
~!nIk

2
bnI(�k)BnI(�k)(r) + H.c.,

which are the superposition of outgoing fields in the isolated output channels,
as expected.

The two asymptotic states bases are clearly not independent, and can be
linked by noting that

Dasy�out
nIk (r) = [Dasy�in

nIk (r)]⇤ (1.51)

Basy�out
nIk (r) = [Basy�in

nIk (r)]⇤,

and, from the completeness of the basis, that

Dasy�out
nIk (r) =

X

n0I0

Z 1

0
dk0 T in

nI,n0I0(k, k0
)Dasy�in

n0I0k0 (r) (1.52)

Dasy�in
nIk (r) =

X

n0I0

Z 1

0
dk0 T out

nI,n0I0(k, k0
)Dasy�out

n0I0k0 (r),

and similarly for the magnetic field asymptotic state. It is now evident the
physical interpretation of T in

nI,n0I0(k, k0
) as the scattering matrix SnI,n0I0(k, k0

)

of the integrated structure. The interpretation of the other matrix we introduced
for the asymptotic-in states, T out

nI,n0I0(k, k0
), follows directly from recognizing its

connection to T in
nI,n0I0(k, k0

) thanks to Eq. (1.51) and (1.52)

T out
nI,n0I0(k, k0

) = [T in
nI,n0I0(k, k0

)]
⇤

= S⇤
nI,n0I0(k, k0

). (1.53)

From these relations it is finally possible to express the connection between the
destruction operators for asymptotic-in and -out states

anIk =

X

n0I0

Z 1

0
dk0 T in

nI,n0I0(k, k0
)bn0I0k0 (1.54)

bnIk =

X

n0I0

Z 1

0
dk0 T out

nI,n0I0(k, k0
)an0I0k0 .

With these relations it will be possible to connect the creation operators in the
input channels to the correspondent operators in the output channels, and gather
immediately the output state for any integrated circuit.
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Let us now show how the use of the asymptotic fields can facilitate the
solution of a linear or nonlinear problem in integrated quantum optics. This brief
discussion is based on the backward Heisenberg picture approach, presented in
details in [41] for the case of SPDC, and in [103] for SFWM. Since the exhaustive
derivation of all the formulas involved is not instrumental to the rest of the
present thesis, we redirect the interested reader to those publications.

We envision a situation very close to that represented in Fig. 1.15, where
we have linear channels entering and exiting from a restricted region, where the
nonlinear interaction takes place. Our goal is to express the relation between a
state impinging on the structure from the input channels at t = t0 ⌧ 0, labelled
| (t0i, to an output state exiting the structure from the output channels at
t = t1 � 0, labelled | (t1)i. The evolution is governed by both the linear and
the nonlinear Hamiltonians

HL =

X

n

Z 1

0
dk ~!n,ka†

n,kan,k (1.55)

HNL = � 1

4✏0

Z
dr �ijkl

3 Di
(r)Dj

(r)Dk
(r)Dl

(r),

where we have neglected the zero-point energy, and considered only the third-
order nonlinear response, which will be the our only focus in the following chap-
ters. Now, if we let t0 ! �1, the energy of the incoming electromagnetic field
can be regarded as completely localized in the isolated input channels. This
condition can be envisioned as the limit for t ! �1 of an asymptotic-in state,
as we described in (1.47). Therefore, we can regard the input state as evolving
into the asymptotic-in state at t = 0, through the linear Hamiltonian HL

| ini = e�iHL(0�t0)/~ | (t0)i = eiHLt0/~ | (t0)i , (1.56)

where | ini is the asymptotic-in state. Similarly, we consider the output state
| (t1)i, in the limit t1 ! +1, as that evolving from an asymptotic-out state
| outi at t = 0 (see (1.50)), subject to the linear Hamiltonian HL

| (t1)i = e�iHL(t1�0)/~ | outi = e�iHLt1/~ | outi . (1.57)

This situation can be better understood from the sketch in Fig. 1.16.
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“BACKWARD”

HL HLHL+HNL

Figure 1.16: Schematic representation of the idea behind the backward Heisen-
berg picture approach used for calculating the asymptotic states of an arbitrary
nonlinear structure.

The underlying intent of the previous discussion is to carry out a shift in the
point of view: now we are no longer interested in finding directly the relation
between generic input and output states, but we look for the connection between
the asymptotic-in and -out states. Indeed, we moved from searching the solution
of the problem

| (t1)i = e�i(HL+HNL)(t1�t0)/~ | (t0)i (1.58)

to solving

| outi = eiHLt1/~e�i(HL+HNL)(t1�t0)/~e�iHLt0/~ | ini (1.59)
⌘U(t1, t0) | ini .

Let us consider, for a moment, the particular case of a completely linear evolution
of the fields, namely HNL = 0. Hence, Eq. (1.59) leads us to

| outi = eiHL(t1�t0)/~ | ini , (1.60)

and considering that the asymptotic-in and -out states are just functions of the
creation and destruction operators F{a†

nIk, anIk} and G{b†
nIk, bnIk} respectively,

then Eq. (1.60) reduces to a simple change in the basis from asymptotic-in to
asymptotic-out modes, governed by Eq. (1.54)

G{b†
nIk, bnIk} |vaci = eiHL(t1�t0)/~F{a†

nIk, anIk} |vaci . (1.61)

Going back to the more interesting case of a non-vanishing nonlinear interaction,
let us assume that the asymptotic-in state is in the form

| ini = eO |vaci , (1.62)

and thus also the asymptotic-out state can be expressed as

| outi = U(t1, t0) | ini = U(t1, t0)e
O |vaci (1.63)

=U(t1, t0)e
OU †

(t1, t0) |vaci ⌘ eŌ |vaci ,
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since U †
(t1, t0) |vaci = |vaci. Note that from the comparison between Eq. (1.62)

and Eq. (1.63) it is clear that we are currently working in the Heisenberg picture
representation. The operator Ō satisfies the time-evolution differential equation

i~dŌ(t)

dt
= [Ō(t), V̂ (t)] (1.64)

subject to the condition Ō(t1) = O (this also clarifies the definition “backward”),
and where

V̂ (t) = U(t1, t)e
iHLt/~HNLe�iHLt/~U †

(t1, t). (1.65)

Once we have specified the explicit form of the nonlinear Hamiltonian and we
have integrated Eq. (1.64) we can find the relation between the operators Ō
and O, which embodies the relation between the input and output asymptotic
states. First, recalling Eq. (1.44) and keeping solely the energy-conserving terms
associated with SFWM, the nonlinear Hamiltonian becomes

HNL = �
X

n1,n2,n3,n4

X

I1,I2,I3,I4

Z

⌦SI

dk1dk2

Z

⌦P

dk3dk4 Sn1,n2,n3,n4(k1, k2, k3, k4)

(1.66)

⇥b†
n1I1k1

b†
n2I2k2

an3I3k3an4I4k4 + H.c.,

where the integrals are carried out over the pump and signal/idler wave vector
intervals ⌦P and ⌦SI , respectively, and

Sn1,n2,n3,n4(k1, k2, k3, k4) = (1.67)

=
3

2✏0

r
~!n1I1k1~!n2I2k2~!n3I3k3~!n4I4k4

16

⇥
Z

dr�ijkl
3 (r)[Di,asy�out

n1I1k1
(r)]⇤[Dj,asy�out

n2I2k2
(r)]⇤Dk,asy�in

n3I3k3
(r)Dl,asy�in

n4I4k4
(r).

With such nonlinear Hamiltonian, the operator V̂ (t) becomes

V̂ (t) =

X

n1,n2,n3,n4

X

I1,I2,I3,I4

Z

⌦SI

dk1dk2

Z

⌦P

dk3dk4 Sn1,n2,n3,n4(k1, k2, k3, k4; t)

(1.68)

⇥b̄†
n1I1k1

(t)b̄†
n2I2k2

(t)ān3I3k3(t)ān4I4k4(t) + H.c.,

with

Sn1,n2,n3,n4(k1, k2, k3, k4; t) = (1.69)

Sn1,n2,n3,n4(k1, k2, k3, k4)e
i(!n1I1k1+!n2I2k2�!n3I3k3�!n4I4k4 )t,

and
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i
db̄†

k(t)

dt
=

Z
dk1dk2 S(k1, k2, k; t)c̄†

k1
(t)c̄†

k2
(t), (1.70)

and a similar definition holds for the barred operators ā†
k. Assuming that the

input field, referred to as the pump, is a coherent state, namely

O = ↵A† � H.c. (1.71)

with |↵|2 the expected number of photons in the pump pulse,

A†
=

Z
dk �P (k)a†

k (1.72)

and �P (k) the normalized pump spectrum, then from integrating Eq. (1.64)
subject to the undepleted pump approximation, and limiting ourselves to only
the first order corrections in the Taylor expansion of the solution (see [41, 103]
for further details), we obtain the squeezed vacuum state

| outi = eŌ |vaci = e↵A†+�C†
II�H.c. |vaci , (1.73)

where

C†
II =

1p
2

X

n1,n2

X

I1,I2

Z
dk1dk2 �n1,n2(k1, k2)b

†
n1,I1,k1

b†
n2,I2,k2

(1.74)

is the creation operator for a photon pair, and

�n1,n2(k1, k2) =
3
p

2i⇡↵2~
4�✏0

Z
dk3 �P (k3)�P (k1 + k2 � k3) (1.75)

⇥p
!n1I1k1!n2I2k2!n3I3k3!n4I4(k1+k2�k3)

⇥
Z

dr �ijkl
3 (r)Di,asy�in

n1I1k1
(r)Dj,asy�in

n2I2k2
(r)Dk,asy�in

n3I3k3
(r)Dl,asy�in

n4I4(k1+k2�k3)
(r)

is the so-called Biphoton Wave Function (BWF). In Eq. (1.73) and (1.75) the
coefficient � represents the average number of photon pairs generated by SFWM
in the limit of low generation probability, and it can be obtained simply by
imposing the normalization on the BWF. Under the same conditions, Eq. (1.73)
can be written as [104]

| outi =
�
1 + O(|�|2)

�
|vaci + �C†

II |vaci +
1

2

h
�C†

II

i2
|vaci + . . . , (1.76)

where now it should be noticed that the state (1.76) is not normalized. Since
in the next chapters of this thesis we will be interested in the generation of
single photon pairs and double photon pairs, it is more convenient to normalize
the single states appearing in (1.76). In particular, given the definition of C†

II
in (1.74), we can identify the state associated with a converted photon pair as
|IIi ⌘ C†

II |vaci; similarly, the state representing two photon pairs generated
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by the nonlinear interaction is given by |IV i ⌘ (C†
II)

2 |vaci. The state |IIi is
already normalized, no matter which is the source geometry. The same property
does not hold for the state |IV i, whose normalization depends on the particular
source design (we further discuss these properties in Appendices A.1 and B.2).
From these considerations, the output state (1.76) can be written as

| outi =
�
1 + O(|�|2)

�
|vaci + � |IIi +

�2

p
N

|IV i + . . . , (1.77)

where N is the appropriate normalization constant.
Finally, we now possess all the theoretical support needed to deal with the

topics presented in the following chapters. As the reader will notice, we will
adopt the asymptotic-in and -out fields formalism recurrently for both linear and
nonlinear propagation of electromagnetic fields in an integrated structure, and
whenever we will rely on parametric fluorescence for the generation of photon
pairs, the backward Heisenberg picture approach recalled in this section will
provide us the quantum state produced by the source.
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Chapter 2
Nonlinear response in silicon-based

integrated devices

2.1 Silicon-based materials for nonlinear optics

A wide range of materials are today under investigation for their relatively high
nonlinear response, exploiting both second- and third-oder processes. As we
recalled before, III-V semiconductors, LiNbO3, BBO or KTP crystals are com-
monly employed for second-order parametric processes but, since here we focus
our attention of SFWM as the reference phenomenon for the generation of non-
classical light, we need to move our discussion to the most common solution,
which is represented by silicon-based (Si-based) materials. Before proceeding
with a general introduction on these platforms, we want to emphasize that,
despite their prevalence, Si-based materials do not represent the sole material
choice for integrated quantum optics: for instance, a remarkable example is given
by silica-on-silicon waveguides [74]. In this case, an optical waveguide is fabri-
cated inside a silica slab by controlling the refractive index through a low level
of doping; such structure is grown with a bottom-up approach, starting from
a Si substrate. The resulting waveguide is characterized by low propagation
losses, in the order of 10

�1
dB/cm or less depending on the geometry [105, 106],

mostly ascribed to residual hydrogen bondings and tunneling of light into the
Si substrate. However, the material third-order nonlinearity is low (in the order
of 10

�22
m

2/V
2 [107]) and the small index mismatch between the core and the

cladding region, typically around 0.5%, asks for very large silica substrates and
bending radii. Other examples of non-Si-based materials can be considered, but
in the context of this work we will be mostly concerned with Si-based materials.

Silicon-On-Insulator (SOI) is today one of the preferred platforms for in-
tegrated quantum photonics, owing to the large benefits it brings in terms of
nonlinearity and fabrication technology; yet, a number of alternatives emerged
recently in order to overcome some of the drawbacks associated with crystalline
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silicon waveguides, and to ease the fabrication processes. Among these, we we
are interested in discussing the properties of Silicon Nitride and Porous Silicon.

The SOI platform

Silicon is the dominant crystalline material for exploiting third-order nonlinear
phenomena. Such prevalence is granted by the many benefits it bring in all
areas, from the physical properties to the fabrication infrastructure. Indeed,
silicon is probably not the absolute best-performing material in most of those
areas, but considering the overall balance it emerges as the preferable choice.
The crystalline structure of silicon, sketched in Fig. 2.1, is centrosymmetric and
thus an ideal bulk silicon crystal has null second-order nonlinear response (al-
though it is still possible to obtain an “effective” non-vanishing �2, by straining
silicon mechanically or electrically [108, 109], a strategy also used for silicon
nitride waveguides [91]). Yet, the third-order nonlinear susceptibility is particu-
larly high, more than 100 times that of silica [110]. The silicon band structure
is characterized by an energy gap of 1.12 eV and low intrinsic carrier concen-
tration, allowing the material to be transparent to wavelengths above 1.1 µm

including, most notably, the bandwidths commonly used for optical telecommu-
nications, around 1.55 µm and 1.3 µm: this feature is particularly convenient
for the integration of SOI platforms into the current optical network without
the need for frequency-conversions. Another fundamental characteristic of sil-
icon for integrated quantum optics is represented by its high refractive index,
around nSi ⇡ 3.48 at � = 1.55 µm. Indeed, the refractive index mismatch be-
tween the core of the waveguide and its cladding determines how tightly the
electromagnetic field can be confined, and thus the field enhancement. In SOI
platforms, the substrate beneath the waveguide is made of silica (nSiO2 ⇡ 1.45

at � = 1.55 µm), which is typically the same material as the top and lateral
cladding (simply air is another possibility), and thus a very strong index con-
trast can be achieved, reducing the bending radius by a factor of 10

3 compared
to silica-on-silicon waveguides, and boosting the nonlinear response of the waveg-
uide. In summary, the combination of strong third-order nonlinear response and
high field enhancement due to the large refractive index makes silicon one of the
most natural choices for integrated quantum optics.

Unfortunately, the propagation losses experienced by light in a SOI device
can be relatively high in the framework of quantum optics, depending on the
waveguide geometry and the fabrication technique. Considering a standard SOI
ridge waveguide with 500 nm ⇥ 220 nm cross section, typical losses can be mea-
sured around 2�3 dB/cm, and they are mainly ascribed to the scattering of light
induced by the roughness of the waveguide sidewall. This technological issue can
limit the convenience of SOI platforms whenever very high quality factor res-
onators are required, or large multipartite quantum states should be generated
and propagated on a chip. Another detrimental feature of the SOI platform, and
nonetheless common to all the silicon-based materials, is the lack of a bright inte-
grated laser source. Indeed, crystalline silicon has an indirect bandgap (i.e. the
maximum of the valence band has a different lattice wave vector then the mini-
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mum of the conduction band), which makes it a poor light-emitting material: an
electronic transition should always be mediated by a phonon to provide the miss-
ing momentum. Several strategies have been tested to create a silicon laser for
integrated optics, yet today the source pumping is still commonly implemented
with strong external lasers. A notable exception to this solution is represented
by the hybrid integration of non-Si-based laser sources by wafer bonding on a
silicon substrate [111]. Finally, we need to emphasize that whenever a relatively
high optical power is propagated in a SOI waveguide (in the order of a few
mW) one can observe the rise of other nonlinear phenomena which, to our goal,
constitute a source of noise. For instance, we can recall Self- and Cross-Phase
Modulation (SPM and XPM), which originate from the real part of the non-
linear susceptibility; Stimulated Brillouin Scattering (SBS), Stimulated Raman
Scattering (SRS), and Two-Photon-Absorption (TPA), which originate from the
imaginary part of the nonlinear susceptibility. This latter effect is particularly
relevant for SOI platforms working at wavelengths approximately below 2 µm,
and it consists of the simultaneous absorption of two incident photons allowing
an electron to transition from the valence to the conduction band of silicon.
Hence, it affects the light propagation twice, both by the direct absorption of
photons to promote electrons, and by increasing the free electron concentration,
leading to higher Free Carrier Absorption (FCA) of photons. From a practical
point of view, the pump intensity coupled to a SOI for the generation of photons
by SFWM should me maintained below a certain threshold.

Figure 2.1: Representation of the crystalline
structure of silicon.

Despite the possible dis-
advantages we listed above,
the SOI platform is today
the widespread platform for
integrated quantum photon-
ics. This is mostly due
to the technological advances
and the industrial environ-
ment associated with the pro-
duction of CMOS (Comple-
mentary Metal-Oxide Semi-
conductor) devices. Indeed,
for other physical reasons, sil-
icon is the dominant mate-
rial of microelectronic indus-
try, and therefore the litho-
graphic processes are well-established, the purity of the material is extremely
high, and the overall chip production is much cheaper with respect to all the
competing alternatives. Moreover, since the control of the dynamic response of a
photonic integrated circuit is usually achieved by heaters and electro-optic mod-
ulators, the SOI platforms permits a straightforward integration and interoper-
ability of these components, ultimately delivering a complete electronic-optical
circuit.
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Silicon Nitride

The linear and nonlinear (TPA-related) losses experienced by photons travel-
ing in silicon waveguides can be relatively high, as we recalled above, and this
can lead to poor generation rates and reduced quantum state purity for sources
of nonclassical states of light. These effects are particularly significant in the
telecommunication bands, where many devices are intended to operate and
where the infrastructure for quantum communications is already being devel-
oped. Therefore, a variety of materials have been investigated for their nonlinear
response and their performances in light confinement. Recently, Silicon Nitride
(Si3N4) was demonstrated as a promising candidate for integrated nonlinear
optics [112, 90, 113, 114]. Similarly to SOI structures, silicon nitride is CMOS
compatible and it can benefit from the fabrication technologies and infrastruc-
ture we already discussed.

Figure 2.2: Representation of the crystalline
structure of silicon nitride (Si3N4, adapted from
[115]).

Different techniques are
today adopted to produce sili-
con nitride, such as Low Pres-
sure Chemical Vapour Depo-
sition (LPCVD) at high tem-
perature or Plasma Enhanced
Chemical Vapour Deposition
(PECVD) at low tempera-
ture. The former method
guarantees results closer to
the correct stoichiometric ra-
tio, and the resulting sili-
con nitride is highly strained
characterized by high homo-
geneity of material index and
thickness. Nonetheless, given
the strained nature of sili-
con nitride, historically it has
been technologically challeng-

ing to realize layers with thickness above a few hundreds of microns, yet recent
advances in the fabrication techniques have produced silicon nitride layers more
than 500 nm thick [112, 116]. Through PECVD, silicon nitride composition can
be strongly tailored by tuning the deposition conditions, obtaining a range of
results from silicon-rich (with a higher refractive index) to nitrogen-rich (with
a lower refractive index). The crystalline structure of stoichiometric Si3N4 is
depicted in Fig. 2.2, and it shares most of the properties of crystalline silicon,
including the the centrosymmetry (averaged, in the case of non-stoichiometric
silicon nitride), and the indirect bandgap, which separates the valence and con-
duction bands by ⇡ 5 eV. The resulting refractive index is nSi3N4 = 2 at
� = 1.55 µm, a much lower value compared to the SOI platform. However, it
should be noticed that a higher refractive index contrast (with a silica cladding,
for instance) can be both beneficial and detrimental, for it enhances every form
of light matter interaction, including scattering. On the one hand, the nonlinear

36



2.1. SILICON-BASED MATERIALS FOR NONLINEAR OPTICS

third-order response of silicon is stronger than silicon nitride (typically by a fac-
tor 10

�2 for an identical waveguide geometry), but on the other hand the prop-
agation losses are extremely reduced [117, 118, 90], even down to ⇠ 0.13 dB/m

[119]. The reduced refractive index contrast asks for the design of larger footprint
integrated circuits, with a minimal bending radius attainable around 40 µm, but
the low-loss propagation allows for the realization of record-high quality factor
ring resonators, very recently achieving Q = 67 · 10

6 [119]. In addition to those
impressive features, it is fundamental to emphasize that, given the high bandgap
of silicon nitride, TPA is a negligible effect at telecom wavelengths.

In synthesis, silicon nitride waveguides are characterized by drastically re-
duced linear and nonlinear losses with respect to SOI waveguides, at the expense
of a weaker third-order nonlinear response and a poorer field confinement.

Porous Silicon

Although the optical properties of porous silicon (pSi) have not been thoroughly
explored, this material shows some interesting features which can make it a
potential alternative, for some specific applications, to the well-established Si-
based platforms such as silicon or silicon nitride we introduced above. Thanks to
its peculiar structural features and the fabrication processes, pSi is today being
investigated for its linear and nonlinear response, and the realization of optical
elements such as waveguides and resonators has already been demonstrated [120,
121, 122, 123].

Porous silicon is fabricated by electrochemical etching of crystalline silicon,
resulting in a nanoporous skeleton comprised of silicon and air (see an example
in Fig. 2.3).

pre-patterning technique and subsequent alkaline etching process. The dissolution was conducted,
after removal of a SiO2 resist film, in a solution 47 wt% HF/H2O/2-propanol at current density
13 mA cm!2 for 60 min. For medium-sized pores (Ogata et al. 2007), 6 wt% HF + 8 mMKMnO4 +
3,000 ppm NCW-1001(surfactant) was used as anodizing solution with n -type Si(100),
0.0100–0.0180 O cm at 25 mA cm!2 for 125 s. For mesopores (Harraz 2006), a p -type Si(100),
0.01-0.02 O cm, was anodized in 28 wt% HF/H2O/ethanol solution at 50 mA cm!2 for 30 s.

Filling Porous Silicon Templates with Various Materials

Porous silicon has been employed as a template for infiltrating various materials. The variety of
materials includes but is not limited to metals, oxides, magnetic alloys, and conducing polymers.
Table 1 lists the main studies on polymer impregnation into various PSi templates together with the
deposition methods and work objectives. The template nanostructures with specific physical
properties are expected to demonstrate a broad range of utility in spintronics, magnetic and
magneto-optic devices, and biochemical, acoustic, drug delivery, photovoltaic, and sensing appli-
cations. Table 2 collects various materials that have been infiltrated into PSi templates. It is worthy to
note that a common drawback for most studies listed in Table 2 is related to the observation of pore
mouth blockage due to pore plugging effect. In case of polymer deposition and under optimized
conditions, such plugging effect could be avoided to a large extent. The use of PSi as a template-
directing synthesis of polymeric nanostructures is explored in this section.
Conducting polymers are usually synthesized from the appropriate monomers by either chemical

or electrochemical oxidative polymerization. Electrochemical polymerization is preferred for better
penetration inside the nanopores. Polypyrrole (PPy) is one of the most important and extensively
studied conducting polymers (Moreno et al. 1999; Vrkoslav et al. 2006; Lewis et al. 1997; Akundy
and Iroh 2001). The deposition of PPy into PSi templates could be achieved by the electrochemical
oxidation of pyrrole monomers at constant current or potential in the acetonitrile solution containing
tetrabutylammonium perchlorate as supporting electrolyte. Typical potential (E–t) and current
transients (i–t) recorded during the deposition of PPy into mesoporous silicon templates are
shown in Fig. 3. The mechanism of polymer infiltration into the pores is of major importance in
order to obtain the desired structures and control the final morphology.

Fig. 2 SEM top views (-1) and cross-sectional views (-2) of porous silicon templates with different pore diameters.
(a) Ordered macropores: 5 mm. (b) Medium-sized pores: 120 nm. (c) Mesopores: 20 nm (Fukami et al. 2008)
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# Springer International Publishing Switzerland 2014
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(a2) (b2)

Figure 2.3: Examples of pSi structures, from the top and cross-section per-
spectives (adapted from [120]): (a) medium-scale pores (⇠ 120 nm) and (b)
meso-scale pores (⇠ 20 nm).

Thanks to its porous nature, this material has been considered primarily for
the fabrication of optical sensors for biochemical analysis. The average diameter
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of the pores typically ranges from 5 nm to more than 100 nm, depending on the
fabrication process the electrochemical current density applied [124], and since
the pores are much smaller than the wavelength of light used for sensing, the
material is well approximated by a Bruggeman effective index model [125]. The
sponge-like architecture of pSi, when properly functionalized, can host analytes
deep into the optical waveguide, where the field intensity is highest, yielding
sensitivities as low as 10

�6/RIU (Refractive Index Units) [126].
The propagation losses in standard pSi waveguides are much higher compared

to those of silicon — and silicon nitride — waveguides, as it is expected from the
inhomogeneous and rough interfaces of pSi, and they typically range between
10 and 20 dB/cm. Multiple studies have been performed examining the nature
of those losses and determined that their most significant origins are scattering
due to interface roughness and porosity fluctuations and material absorption
[127, 128, 129]. Yet, through oxidization of the pSi waveguide, it is still possible
to achieve very low losses, down to 0.5 dB/cm near � = 1.55 µm [126], albeit
giving away the possibility to infiltrate the material for sensing purposes.

Despite the relatively high losses of the pSi, numerous linear optical devices
have been demonstrated, including optical filters [130], microcavities [131, 123],
and sensors [132]. Yet, the nonlinear optical response of pSi has been poorly
investigated, even though pSi displays some interesting and unique characteris-
tics in this respect. For instance, the large internal surface area of pSi increases
the surface recombination rate, which dramatically reduces the free-carrier life-
time [94]. A few studies on the third-order nonlinear response of pSi have been
performed in the wavelengths below 1064 nm [95, 133], thus far from the tele-
com wavelengths, and a more recent characterization of the nonlinear effects at
� = 1.55 µm was performed by Apiratikul et al. [94], finding that the instanta-
neous nonlinearities (TPA and SPM) in pSi are comparable to crystalline silicon.
And while the increased surface-to-volume ratio of pSi has not proved to yield
any enhancement of the surface �2 nonlinearity, it is still a conceivable and in-
teresting idea to leverage the porous nature of pSi to infiltrate the material with
high-nonlinearity media. This solution would increase the effective third-order
response while impacting minimally on the linear properties of the device.

2.2 FWM and SFWM in porous silicon ring res-
onators

In this section we investigate more deeply the performance of porous silicon as a
possible low-cost material for integrated nonlinear optics. Originally, the long-
term goal of this research was to demonstrate SFWM in a pSi-based source, but
this proved to be an exceedingly hard task, mainly due to the high propagation
losses observed experimentally. Nonetheless, this material revealed a remarkably
high nonlinear parameter � that, together with the distinctive properties of pSi
such as the large internal surface area and the possibility to infiltrate with other
materials, boosts the interest for applications in low-power integrated nonlin-
ear optics. We have investigated theoretically the nonlinear response of a pSi
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integrated device, predicting a strong nonlinearity such that it was possible to
observe photon pairs generated by stimulated FWM even with a continuous wave
(CW) low-power pump. Our analysis was complemented by the sample fabri-
cation and experimental characterization, provided by the nanophotonics group
in Pavia in a collaboration with the Vanderbilt University. From the results of
the classical experiment we could finally compute the expected production rate
of photon pairs by SFWM.

We investigated the response of a pSi microring resonator in a CW low-power
stimulated FWM experiment [96]. The choice of the source is motivated by the
recent demonstration of pSi microrings with quality factors up to 10

4, which
could enable the observation of classical an quantum nonlinear phenomena, such
as stimulated and spontaneous FWM [123]. Moreover, as we recalled in the
introduction, microrings are some of the most appealing platforms for nonlinear
optics, for they guarantee large field enhancement and a relatively small mode
volume.

(QI¼ 5800, QP¼ 5900, and QS¼ 4200): such values are
associated with the field enhancement necessary to observe
FWM.13 The quality factor is intrinsically limited by losses,
whose main contribution in our ring is given by the propaga-
tion losses a in the ridge waveguide. The intrinsic quality
factor Qint of an isolated ring is given by

Qint ¼
2pn

k0a
; (1)

where k0 is the wavelength in vacuum and we consider the
mode effective index n¼ 1.51 (calculated with the effective
index method), with the assumption that dispersion is negli-
gible in the interested wavelength range. Assuming that the
microring is at critical coupling and taking a¼ 6.33 cm"1

(i.e., 2.75 dB/mm), the quality factor is expected to be
Q¼Qint/2# 4800. The higher values that were found from
the linear characterization indicate a slight undercoupling.

In the stimulated FWM experiment, the pump and signal
inputs are provided by means of two cw infrared lasers,
tuned, respectively, at 1578.6 nm and 1585.6 nm, with a PM
booster optical amplifier (BOA) to increase the available
pump power. The two lasers are then spectrally filtered to
clean out the amplified spontaneous emission and then sent
to the input ports of a 90:10 fiber beam splitter (BS). In par-
ticular, in order to optimize the available pump power, the
output port transmitting 90% of the pump and 10% of the
signal is injected in the sample through a tapered fiber. The
other output of the BS is then sent to a power meter for mon-
itoring the total power. The light coming out of the sample is

then sent to a second filtering stage to remove the pump and
signal lasers, with a rejection of more than 100 dB. This was
achieved using a band pass filter with a side-band attenuation
on the order of#120 dB. Finally, the filtered idler is sent to a
spectrometer with a liquid-nitrogen cooled CCD camera,
used for collecting the spectra, which are measured in counts
per second. The CCD response was calibrated with a high-
sensitivity power meter to directly assess the generated
power. The FWM spectrum obtained with a pump power of
650 lW and a signal power of 60 lW is shown in Fig. 2.

All the powers quoted in the text are estimated inside
the bus waveguide, accounting for the insertion losses of the
sample that were measured to be 30 dB. Assuming that the
sample is symmetric with respect to the position of the ring,
we could estimate the input and output coupling efficiencies
from the square root of the out-of-resonance transmission,
resulting in an efficiency of 3.1%. However, an uncertainty
in the input (output) power coupled in the region of the
waveguide right before (after) the ring must be taken into
account. In fact, since the sample was manually cleaved, it is
not perfectly symmetric, so the lengths of the coupling tapers
are not the same. From the uncertainty on the propagation
losses, we assume an error of 5% in the powers estimated
right before and after the ring.

The main peak in the spectrum shown in Fig. 2 corre-
sponds to the idler field generated by FWM, which is located
at the idler resonance as expected from energy conservation.
The weaker peaks on the right are the residual pump and
signal inputs after the filter. The peak power is about 0.6
pW, which is quite remarkable given the high fraction
(around 60%) of air in the ridge. The result is mainly due to
the use of the microring architecture. This has a two-fold
advantage: the increase of the effective nonlinearity thanks
to light confinement in a channel waveguide and the pump
field enhancement determined by the resonant structure. In
particular, despite the fact that PSi is characterized by an
intrinsic roughness, the quality factor of our ring is suffi-
ciently high to observe FWM at low power.

FIG. 2. Spectrum resulting from a typical FWM measurement (acquisition
time of 30 s). The main peak located at the idler wavelength is the generated
FWM power, while the weaker peaks on the right are the residual pump and
signal that are almost fully suppressed by the filters. The pump power
coupled inside the microring is 650 lW at 1578.6 nm and the signal power is
60 lW at 1585.6 nm.

FIG. 1. (a) SEM image of the sample cross-section underlining its vertical
structure and the full etching of the waveguide on top of the cladding. (b)
SEM image of the PSi microring resonator coupled to the waveguide. (c)
Transmission spectrum of the sample showing the resonances used as idler,
pump, and signal in the FWM experiment. The solid black line is the meas-
ured transmission, while the dashed red line represents the result of a
Lorentzian fit of the resonances from which we were able to estimate their
quality factors to be Q# 5000.

021106-2 Simbula et al. Appl. Phys. Lett. 109, 021106 (2016)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Download to IP:  192.167.82.73 On: Wed, 26 Oct 2016
14:16:32

Figure 2.4: SEM image of the pSi waveguide cross section (a) and top view of
the pSi microring resonator (b) [96].

Our pSi source was fabricated at Vanderbilt University, in a collaboration
with the group led by Prof. Sharon Weiss. It is made of a single-channel micror-
ing resonator fabricated in a pSi slab waveguide on top of a crystalline silicon
substrate, as shown in Fig. 2.4(a). The slab waveguide consists of a higher index
guiding layer (n = 1.79) and a lower index cladding (n = 1.24), with thicknesses
of 0.6 µm and 1.4 µm, respectively, on a silicon substrate, where the refractive
index is controlled by engineering the silicon fraction in the porous material.
The pSi layers are realized by means of electrochemical etching in a HF-based
electrolyte, followed by soaking in KOH for pore widening and annealing in air
at 500

�
C for surface passivation. Finally, the ridge waveguide and microring

are fabricated by means of standard Electron Beam Lithography (EBL) and
Reactive Ion Etching (RIE) on top of the guiding layer. A Scanning Electron
Microscopy (SEM) image of the top view of the sample is shown in Fig. 2.4(b).
The bus waveguide is 1.2 µm wide and critically coupled to a 25 µm radius
microring with a gap distance of 200 nm. The cross section of the bus and the
ring waveguides are identical.
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The field profile of the fundamental TE mode supported by the waveguide,
as computed by a Finite Difference Eigenmode (FDE) solver and by an effective
index method (EIM, see Ref. [134]), is reported in Fig. 2.5(a) and 2.5(b). As
it clearly appears from Fig. 2.5, the agreement between the calculations with
the two independent models is very good, and it confirms that the EIMs are
valid tools for a rapid and reliable estimate of the field characteristics in a ridge
waveguide (see also [135]).While propagation losses associated with the material
roughness have a typical value of ↵ = 2.75 dB/mm, the overall losses were
measured in the order of 30 dB around the central wavelength �0 = 1.55 µm.
These are mainly due to the poor in-out coupling efficiency. In Fig. 2.6 we show
the transmission spectra of the microring around the resonances involved in the
FWM experiment.
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Figure 2.5: Comparison between the field profile of the TE mode supported
by the pSi waveguide, as computed numerically using (a) a FDE solver and
(b) an EIM [96]. In the first instance, the waveguide is found to be mono-
modal at �0 = 1.55 µm and the computed TE mode effective refractive index
is nFDE = 1.39495; in the second calculation, more approximate but faster, the
Vertical EIM was adopted (See Ref. [134]), which led to a TE mode effective
refractive index nV EIM = 1.4189. The index nV EIM is found 1.72% higher
than the index nFDE , a slight difference that can be attributed to the intrinsic
approximations defining the EIM methods and the mesh discretization in the
FDE simulation.

Assuming the theoretical Lorentzian shape of the transmission dip (see Sec.
1.2), the resonances have quality factors Q of several thousands (QI = 5800

and �I = 1571.6 nm, QP = 5900 and �P = 1578.58 nm, and QS = 4200 and
�S = 1585.57 nm). It should be noticed that the experimental estimate of the
quality factors agrees with with the theoretical prediction, under the assumption
of a nearly-critically coupled microring and negligible dispersion. Indeed, the
intrinsic quality factor Qint of an isolated ring is given by

Qint =
2⇡ng

�0↵
, (2.1)
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(QI¼ 5800, QP¼ 5900, and QS¼ 4200): such values are
associated with the field enhancement necessary to observe
FWM.13 The quality factor is intrinsically limited by losses,
whose main contribution in our ring is given by the propaga-
tion losses a in the ridge waveguide. The intrinsic quality
factor Qint of an isolated ring is given by

Qint ¼
2pn

k0a
; (1)

where k0 is the wavelength in vacuum and we consider the
mode effective index n¼ 1.51 (calculated with the effective
index method), with the assumption that dispersion is negli-
gible in the interested wavelength range. Assuming that the
microring is at critical coupling and taking a¼ 6.33 cm"1

(i.e., 2.75 dB/mm), the quality factor is expected to be
Q¼Qint/2# 4800. The higher values that were found from
the linear characterization indicate a slight undercoupling.

In the stimulated FWM experiment, the pump and signal
inputs are provided by means of two cw infrared lasers,
tuned, respectively, at 1578.6 nm and 1585.6 nm, with a PM
booster optical amplifier (BOA) to increase the available
pump power. The two lasers are then spectrally filtered to
clean out the amplified spontaneous emission and then sent
to the input ports of a 90:10 fiber beam splitter (BS). In par-
ticular, in order to optimize the available pump power, the
output port transmitting 90% of the pump and 10% of the
signal is injected in the sample through a tapered fiber. The
other output of the BS is then sent to a power meter for mon-
itoring the total power. The light coming out of the sample is

then sent to a second filtering stage to remove the pump and
signal lasers, with a rejection of more than 100 dB. This was
achieved using a band pass filter with a side-band attenuation
on the order of#120 dB. Finally, the filtered idler is sent to a
spectrometer with a liquid-nitrogen cooled CCD camera,
used for collecting the spectra, which are measured in counts
per second. The CCD response was calibrated with a high-
sensitivity power meter to directly assess the generated
power. The FWM spectrum obtained with a pump power of
650 lW and a signal power of 60 lW is shown in Fig. 2.

All the powers quoted in the text are estimated inside
the bus waveguide, accounting for the insertion losses of the
sample that were measured to be 30 dB. Assuming that the
sample is symmetric with respect to the position of the ring,
we could estimate the input and output coupling efficiencies
from the square root of the out-of-resonance transmission,
resulting in an efficiency of 3.1%. However, an uncertainty
in the input (output) power coupled in the region of the
waveguide right before (after) the ring must be taken into
account. In fact, since the sample was manually cleaved, it is
not perfectly symmetric, so the lengths of the coupling tapers
are not the same. From the uncertainty on the propagation
losses, we assume an error of 5% in the powers estimated
right before and after the ring.

The main peak in the spectrum shown in Fig. 2 corre-
sponds to the idler field generated by FWM, which is located
at the idler resonance as expected from energy conservation.
The weaker peaks on the right are the residual pump and
signal inputs after the filter. The peak power is about 0.6
pW, which is quite remarkable given the high fraction
(around 60%) of air in the ridge. The result is mainly due to
the use of the microring architecture. This has a two-fold
advantage: the increase of the effective nonlinearity thanks
to light confinement in a channel waveguide and the pump
field enhancement determined by the resonant structure. In
particular, despite the fact that PSi is characterized by an
intrinsic roughness, the quality factor of our ring is suffi-
ciently high to observe FWM at low power.

FIG. 2. Spectrum resulting from a typical FWM measurement (acquisition
time of 30 s). The main peak located at the idler wavelength is the generated
FWM power, while the weaker peaks on the right are the residual pump and
signal that are almost fully suppressed by the filters. The pump power
coupled inside the microring is 650 lW at 1578.6 nm and the signal power is
60 lW at 1585.6 nm.

FIG. 1. (a) SEM image of the sample cross-section underlining its vertical
structure and the full etching of the waveguide on top of the cladding. (b)
SEM image of the PSi microring resonator coupled to the waveguide. (c)
Transmission spectrum of the sample showing the resonances used as idler,
pump, and signal in the FWM experiment. The solid black line is the meas-
ured transmission, while the dashed red line represents the result of a
Lorentzian fit of the resonances from which we were able to estimate their
quality factors to be Q# 5000.

021106-2 Simbula et al. Appl. Phys. Lett. 109, 021106 (2016)

Figure 2.6: Transmission spectrum obtained by exciting the pSi microring with
a CW tunable infrared laser. The spectra show the idler, pump, and signal reso-
nances we use for the FWM experiment. The solid lines represent the measured
transmission, while the dashed red lines correspond to the best Lorentzian fit
for each resonance, which reveal quality factors Q ⇡ 5000 [96].

where �0 is the wavelength in vacuum and ng is the mode group index. When we
take ↵ = 6.33 cm

�1 (i.e., 2.75 dB/mm) and n = 1.51 (simulated numerically with
the effective index method), the quality factor is expected to be Q = Qint/2 ⇡
4800. The higher values that were found from the linear characterization indicate
a slight undercoupling.

The FWM spectrum obtained with a pump power of 650 µW and a signal
power of 60 µW is reported in Fig. 2.7. Note that all these powers are estimated
already inside the bus waveguide. The main peak in the spectrum shown in Fig.
2.7 corresponds to the idler field generated by FWM, which is located at the idler
resonance as expected from energy conservation. The weaker peaks on the right
are the residual pump and signal inputs, which have been highly suppressed by
the filtering stage. The peak power is about 0.6 pW, which is quite remarkable
given the high fraction (around 60%) of air in the ridge. In particular, despite
the fact that pSi is characterized by an intrinsic roughness, the quality factor of
our ring is sufficiently high to observe FWM at low power.
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(QI¼ 5800, QP¼ 5900, and QS¼ 4200): such values are
associated with the field enhancement necessary to observe
FWM.13 The quality factor is intrinsically limited by losses,
whose main contribution in our ring is given by the propaga-
tion losses a in the ridge waveguide. The intrinsic quality
factor Qint of an isolated ring is given by

Qint ¼
2pn

k0a
; (1)

where k0 is the wavelength in vacuum and we consider the
mode effective index n¼ 1.51 (calculated with the effective
index method), with the assumption that dispersion is negli-
gible in the interested wavelength range. Assuming that the
microring is at critical coupling and taking a¼ 6.33 cm"1

(i.e., 2.75 dB/mm), the quality factor is expected to be
Q¼Qint/2# 4800. The higher values that were found from
the linear characterization indicate a slight undercoupling.

In the stimulated FWM experiment, the pump and signal
inputs are provided by means of two cw infrared lasers,
tuned, respectively, at 1578.6 nm and 1585.6 nm, with a PM
booster optical amplifier (BOA) to increase the available
pump power. The two lasers are then spectrally filtered to
clean out the amplified spontaneous emission and then sent
to the input ports of a 90:10 fiber beam splitter (BS). In par-
ticular, in order to optimize the available pump power, the
output port transmitting 90% of the pump and 10% of the
signal is injected in the sample through a tapered fiber. The
other output of the BS is then sent to a power meter for mon-
itoring the total power. The light coming out of the sample is

then sent to a second filtering stage to remove the pump and
signal lasers, with a rejection of more than 100 dB. This was
achieved using a band pass filter with a side-band attenuation
on the order of#120 dB. Finally, the filtered idler is sent to a
spectrometer with a liquid-nitrogen cooled CCD camera,
used for collecting the spectra, which are measured in counts
per second. The CCD response was calibrated with a high-
sensitivity power meter to directly assess the generated
power. The FWM spectrum obtained with a pump power of
650 lW and a signal power of 60 lW is shown in Fig. 2.

All the powers quoted in the text are estimated inside
the bus waveguide, accounting for the insertion losses of the
sample that were measured to be 30 dB. Assuming that the
sample is symmetric with respect to the position of the ring,
we could estimate the input and output coupling efficiencies
from the square root of the out-of-resonance transmission,
resulting in an efficiency of 3.1%. However, an uncertainty
in the input (output) power coupled in the region of the
waveguide right before (after) the ring must be taken into
account. In fact, since the sample was manually cleaved, it is
not perfectly symmetric, so the lengths of the coupling tapers
are not the same. From the uncertainty on the propagation
losses, we assume an error of 5% in the powers estimated
right before and after the ring.

The main peak in the spectrum shown in Fig. 2 corre-
sponds to the idler field generated by FWM, which is located
at the idler resonance as expected from energy conservation.
The weaker peaks on the right are the residual pump and
signal inputs after the filter. The peak power is about 0.6
pW, which is quite remarkable given the high fraction
(around 60%) of air in the ridge. The result is mainly due to
the use of the microring architecture. This has a two-fold
advantage: the increase of the effective nonlinearity thanks
to light confinement in a channel waveguide and the pump
field enhancement determined by the resonant structure. In
particular, despite the fact that PSi is characterized by an
intrinsic roughness, the quality factor of our ring is suffi-
ciently high to observe FWM at low power.

FIG. 2. Spectrum resulting from a typical FWM measurement (acquisition
time of 30 s). The main peak located at the idler wavelength is the generated
FWM power, while the weaker peaks on the right are the residual pump and
signal that are almost fully suppressed by the filters. The pump power
coupled inside the microring is 650 lW at 1578.6 nm and the signal power is
60 lW at 1585.6 nm.

FIG. 1. (a) SEM image of the sample cross-section underlining its vertical
structure and the full etching of the waveguide on top of the cladding. (b)
SEM image of the PSi microring resonator coupled to the waveguide. (c)
Transmission spectrum of the sample showing the resonances used as idler,
pump, and signal in the FWM experiment. The solid black line is the meas-
ured transmission, while the dashed red line represents the result of a
Lorentzian fit of the resonances from which we were able to estimate their
quality factors to be Q# 5000.
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Figure 2.7: Transmission spectrum obtained in a FWM experiment where the
pump power is 650 µW and the signal power is 60 µW , highlighting the presence
of a FWM peak at the idler resonance. The peaks corresponding to the pump
and the signal resonances are highly suppressed by off-chip filtering [96].

From the theory of stimulated FWM and in the limit of an undepleted pump,
the expected idler power generated in the bus waveguide is [103]

PI = (�2⇡R)
2
⇣ Qvg

!P⇡R

⌘4
PSP 2

P , (2.2)

where R is the radius of the ring, Q is the quality factor of the resonances, vg is
the group velocity, !P is the pump frequency, and � is the nonlinear waveguide
parameter, defined as � =

!P n2
cAeff

. Here, n2 is the nonlinear refractive index, Aeff

is the effective area of the waveguide, and c is the speed of light. From Eq. (2.2)
we see that PI scales quadratically with PP and linearly with PS ; this trend was
experimentally verified (see Fig. 2.8), for this is a direct proof that the peak
observed in the output spectrum in Fig. 2.7 is due to FWM taking place in the
ring resonator.

Now, from the experimental data on the transmitted power as a function of
the input pump power, it is possible to estimate the nonlinear parameter of the
waveguide �. Inverting Eq. (2.2), we have

� =

⇣
2⇡Rc

�P vg

⌘2 ⇡

2RQP PP
p

QIQS

r
PI

PS
, (2.3)

where the group velocity vg is given by vg = FSR · 2⇡R, assuming that group
velocity dispersion is negligible in the wavelength range considered here. The ex-
perimental estimate of our waveguide nonlinear parameter is � = (20±2) m

�1
W

�1.
This value is intermediate between that of semiconductors (e.g. for silicon
nanowires �Si ⇠ 200 m

�1
W

�1) and that oxides (e.g. for Hydex nanowires
�Hy ⇠ 0.2 m

�1
W

�1)[136, 137].
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In the limit of the undepleted pump, as verified in our
experiment, the idler power generated (inside the bus wave-
guide) by stimulated FWM is given by14

PI ¼ c2pRð Þ2
Qvg

xPpR

! "4

PSP2
P; (2)

where R is the radius of the ring, Q is the quality factor of
the resonances, vg is the group velocity, xP is the pump fre-
quency, and c is the nonlinear waveguide parameter, defined
as c ¼ xp n 2=cAef f . Here, n 2 is the nonlinear refractive index,
Aeff is the effective area of the waveguide, and c is the speed
of light. As expected, in Eq. (2), PI scales quadratically with
PP and linearly with PS; this trend can be considered as a
fingerprint of FWM.

In Fig. 3, we show the generated power at the idler reso-
nance as a function of the (a) pump and of the (b) signal
power. In Fig. 3(a), black triangles are the experimental data
measured at constant signal power PS¼ 60 lW, as a function
of PP, while the solid red line is a quadratic trend. In Fig.
3(b), blue squares are the experimental data measured with

constant pump power PP¼ 500 lW as a function of PS, and
the solid red line is a linear trend. Both quadratic and linear
dependence are verified within the experimental error. This
indicates that FWM is taking place in the PSi microring.

We can use the measure of the generated power to
estimate the nonlinear parameter of the waveguides. From
Eq. (2), the value of the nonlinear parameter c can be written
as a function of PP, PS, and PI, as described by the following
equation:

c ¼ 2pRc

kPvg

! "2 p
2RQPPP

ffiffiffiffiffiffiffiffiffiffiffi
QIQS
p

ffiffiffiffiffi
PI

PS

r
; (3)

where the group velocity vg is derived from the relation
vg¼FSR $ 2pR, assuming that group velocity dispersion is
negligible in the wavelength range considered here. FSR is
the free spectral range, whose value in the range of interest
was calculated as the mean difference in frequency between
adjacent resonances.

By using Eq. (3), we determined the value of c for each
data point. The results are reported in Fig. 4, where the black
triangles are the values calculated from data in Fig. 3(a), and
the blue squares are from data in Fig. 3(b). Error bars are
obtained from standard propagation of errors, adopting a con-
servative approach to keep into account possible systematic
errors and are mainly due to the uncertainty in the power that
is effectively coupled in the waveguide region close to the
microring, as discussed previously. The mean value obtained
for the nonlinear parameter is c ¼ ð2062ÞW% 1 m% 1, which
corresponds to the red dashed line in Fig. 4. This value can be
compared with those found in other nanowires; for silicon
ridges, we have a typical value of cSi & 200 W% 1 m% 1, while
for chalcogenide and Hydex nanowires one usually has
cch & 93 W% 1 m% 1, and chy & 0:2 W% 1 m% 1, respectively.13,15

From the measured c, it is possible to calculate an upper
bound for the n 2 coefficient of PSi in the assumption that
the nonlinearity is restricted to the ridge region and in the
hypothesis of weak confinement. Under these assumptions,
the electric field is completely transversal and the effective
mode area is16

FIG. 3. (a) Generated FWM versus pump power, with constant signal power
PS¼ 60 lW: black triangles are experimental data, while the solid red line is
a quadratic trend. (b) Generated FWM as a function of the signal power,
with fixed pump power PP¼ 500 lW: blue squares are experimental data,
while the solid red line is a linear trend. The quadratic dependence of PI

with pump power and linear dependence with signal power are a clear signa-
ture of stimulated FWM.

FIG. 4. The nonlinear parameter c calculated with Eq. (2) is reported. Black
triangles and blue squares are from experimental data in Figs. 3(a) and 3(b),
respectively. The dashed red line represents the mean value, which is
c ¼ ð2062ÞW% 1 m% 1.
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In the limit of the undepleted pump, as verified in our
experiment, the idler power generated (inside the bus wave-
guide) by stimulated FWM is given by14

PI ¼ c2pRð Þ2
Qvg

xPpR

! "4

PSP2
P; (2)

where R is the radius of the ring, Q is the quality factor of
the resonances, vg is the group velocity, xP is the pump fre-
quency, and c is the nonlinear waveguide parameter, defined
as c ¼ xp n 2=cAef f . Here, n 2 is the nonlinear refractive index,
Aeff is the effective area of the waveguide, and c is the speed
of light. As expected, in Eq. (2), PI scales quadratically with
PP and linearly with PS; this trend can be considered as a
fingerprint of FWM.

In Fig. 3, we show the generated power at the idler reso-
nance as a function of the (a) pump and of the (b) signal
power. In Fig. 3(a), black triangles are the experimental data
measured at constant signal power PS¼ 60 lW, as a function
of PP, while the solid red line is a quadratic trend. In Fig.
3(b), blue squares are the experimental data measured with

constant pump power PP¼ 500 lW as a function of PS, and
the solid red line is a linear trend. Both quadratic and linear
dependence are verified within the experimental error. This
indicates that FWM is taking place in the PSi microring.

We can use the measure of the generated power to
estimate the nonlinear parameter of the waveguides. From
Eq. (2), the value of the nonlinear parameter c can be written
as a function of PP, PS, and PI, as described by the following
equation:
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where the group velocity vg is derived from the relation
vg¼FSR $ 2pR, assuming that group velocity dispersion is
negligible in the wavelength range considered here. FSR is
the free spectral range, whose value in the range of interest
was calculated as the mean difference in frequency between
adjacent resonances.

By using Eq. (3), we determined the value of c for each
data point. The results are reported in Fig. 4, where the black
triangles are the values calculated from data in Fig. 3(a), and
the blue squares are from data in Fig. 3(b). Error bars are
obtained from standard propagation of errors, adopting a con-
servative approach to keep into account possible systematic
errors and are mainly due to the uncertainty in the power that
is effectively coupled in the waveguide region close to the
microring, as discussed previously. The mean value obtained
for the nonlinear parameter is c ¼ ð2062ÞW% 1 m% 1, which
corresponds to the red dashed line in Fig. 4. This value can be
compared with those found in other nanowires; for silicon
ridges, we have a typical value of cSi & 200 W% 1 m% 1, while
for chalcogenide and Hydex nanowires one usually has
cch & 93 W% 1 m% 1, and chy & 0:2 W% 1 m% 1, respectively.13,15

From the measured c, it is possible to calculate an upper
bound for the n 2 coefficient of PSi in the assumption that
the nonlinearity is restricted to the ridge region and in the
hypothesis of weak confinement. Under these assumptions,
the electric field is completely transversal and the effective
mode area is16

FIG. 3. (a) Generated FWM versus pump power, with constant signal power
PS¼ 60 lW: black triangles are experimental data, while the solid red line is
a quadratic trend. (b) Generated FWM as a function of the signal power,
with fixed pump power PP¼ 500 lW: blue squares are experimental data,
while the solid red line is a linear trend. The quadratic dependence of PI

with pump power and linear dependence with signal power are a clear signa-
ture of stimulated FWM.

FIG. 4. The nonlinear parameter c calculated with Eq. (2) is reported. Black
triangles and blue squares are from experimental data in Figs. 3(a) and 3(b),
respectively. The dashed red line represents the mean value, which is
c ¼ ð2062ÞW% 1 m% 1.
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Figure 2.8: Power generated by FWM at the idler frequency as a function of the
input pump and signal powers. In (a) we verify the quadratic dependance of the
output with respect to the pump intensity. The signal power is fixed at 60 µW,
while the pump power is increased. The experimental data (black triangles)
is well interpolated by a quadratic trend. Similarly, in (b) the pump is fixed
at 500 µW, while the signal power is increased. In this case, the experimental
data (blue squares) are well fit by a linear trend, as expected. These behavior
indicate, within the experimental error, that FWM is taking place in the pSi
microring [96].

We can go a bit further with the characterization of pSi and estimate an
upper bound for the n2 coefficient of pSi in the assumption that the nonlinearity
is restricted to the ridge region and in the hypothesis of weak confinement. This
calculation, although affected by more assumptions and uncertainties, is very
interesting since the n2 index is solely related to the bulk material properties
of pSi, independently on the guiding geometry (as it is for of the waveguide
nonlinear parameter �). The effective area is given by

A�1
eff =

R
dr? �

ijkl
3 (r?)Di

!1
(r?)Dj

!2
(r?)Dk

!3
(r?)Dl

!4
(r?)

qR
dr? D!1(r?)

R
dr? D!2(r?)

R
dr? D!3(r?)

R
dr? D!4(r?)

, (2.4)

where �ijkl
3 (r?) is the nonlinear susceptibility tensor, and D!(r?) is the normal-

ized displacement vector at the frequency !. We have calculated numerically the
effective area by using a commercial FDE solver, obtaining Aeff = 0.86 µm

2.
From the standard definition of � and using our previous estimate, we obtain the
nonlinear refractive index of porous silicon n2 = 4.26 · 10

�18
m

2/W. This result
is in good agreement with previous works [94] and is comparable with that of
crystalline silicon.

Finally we want to stress that, as discussed in details in [103], the idler power
generated in a spontaneous nonlinear phenomenon is directly related to that
generated by the stimulated counterpart. Based on this result and restricting
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Figure 2.9: Comparison between the experimental generation rate for the stim-
ulated FWM process and the predicted SFWM generation rate, based on Eq.
(2.6).

our focus on the case of a third-order resonant process, we have

PI,Sp

PI,St
=

1

4Q

~!2
P

PS
, (2.5)

and thus we can estimate the generation rate of photon pairs by SFWM in our
microring resonator, obtaining

RSFWM =
PI

PS

⇡c�I

2QS�2
P

. (2.6)

In Fig. 2.9 we report the comparison between the stimulated FWM experimental
data, and our predicted SFWM generation rate, based on Eq. (2.6).

From Fig. 2.9 we can conclude that increasing the pump power it will be
possible to observe photons produced by SFWM with kHz generation rates. This
is indeed an attractive proposal, since it has never been reported in literature of
a source of entangled photon pairs fabricated in porous silicon. Moreover, this
would pave the way for exploiting the unique features of pSi: for example, it
would be possible to study the response of this device when the pSi waveguide
is infiltrated with a variety of highly nonlinear materials. These would improve
the generation rate with a slight impact on the lateral confinement of light, thus
boosting the waveguide nonlinear parameter. Once more, we stress that such
results are in reach thanks to the relatively high quality factor of the pSi ring res-
onator, which enhances the electromagnetic field to the limit where spontaneous
nonlinear effects became appreciable.
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In conclusion, in this Chapter we have discussed the performance of pSi as
a low-cost material for nonlinear integrated optics, and possibly for parametric
fluorescence. The results we have presented were possible only thanks to the use
of integrated resonators for the amplification of the light-matter interaction. In
the following chapters we will develop with this strategy further, focusing on a
well-established platform for integrated optics: Silicon-On-Insultaor (SOI) Pho-
tonic Integrated Circuits (PICs). Specifically, we will discuss the generation of
spectrally correlated to truly uncorrelated photon pairs by SFWM in integrated
microring resonators, two opposite regimes which can be accessed by carefully
engineering the source dynamical response and its geometrical design. As we
recalled in the opening of this introductory part of the present work, the ability
to produce these nonclassical states of light is paramount for the development
of photonic quantum technologies.
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Spectral correlations of photon

pairs generated by ring resonators

As we discussed in the previous Chapters 1 and 2, spontaneous nonlinear phe-
nomena such as SFWM are very weak processes, due to the small nonlinear
susceptibility displayed by most materials. For this reason, the realization of ef-
ficient sources of nonclassical states of light apparently cannot rely on parametric
fluorescence. Yet, this impression has proven wrong, particularly in the devel-
opment of integrated sources. We can identify the intuitive reason by looking at
Eq. (1.75): the average number of generated photons � is determined both by
the magnitude of the nonlinear susceptibility �ijkl

3 (r), and by how intensely the
field is confined in the nonlinear region, as represented by the overlap integral.
As a matter of fact, the generation of entangled photon pairs by parametric pro-
cesses can be obtained efficiently once a strong enhancement of the light-matter
interaction is guaranteed by a properly designed optical device.

Across the literature there are multiple instances of confinement strategies, as
we recalled in Sec. 1.2 : Simple waveguides — usually referred to as nanowires
— where the light is confined in the plane perpendicular to the propagation
direction by TIR; PhC waveguides, which are waveguides relying on both TIR
and the PBG mechanism, engineered to take advantage of the so-called Slow
Light effect which increases the interaction time; Optical cavities and optical
resonators, where light is confined in three dimensions by a combination of TIR
and PBG, depending on the device design. This is not by far an exhaustive list of
the strategies adopted for confining light and increasing the nonlinear response
of a device (spirals, mixed PhC waveguides and resonators, ...), but certainly it
groups some of the most common solutions.

In the following we will limit our attention to optical resonators, and specifi-
cally to the generation of photon pairs by SFWM in integrated microrings. The
goal of the next Chapters is analyzing the spectral correlations of the produced
photon pairs, examining the possible outcomes, and discussing a few strategies to
engineer such sources to produce the desired quantum correlations. Specifically,
in Sec. 3 we will study the simplest case of a side-coupled microring resonator,
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while in Sec. 4 we will present a novel approach for the generation of completely
unentangled photon pairs using microring resonators.
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Chapter 3
Energy-entangled photon pairs

generated in a side-coupled

microring resonator

Let us consider the simple case of a side-coupled microring resonator, as sketched
in Fig. 3.1. We imagine to couple the pump from the In channel, and collect
the photon pairs generated by SFWM in the Out channel. Given the constraints
on energy and momentum conservation implied in SFWM, when we pump in
correspondence of one of the ring resonances we expect to observe photon pairs
generated in equally spaced nearby resonances. For the sake of simplicity, we
assume to collect photons only from the resonances closer to the one we choose
for pumping. We label the red-shifted and blue-shifted photons as signal and
idler, respectively.

Taking advantage of the asymptotic field formalism we recalled in Sec. 1.3 it
is possible to predict the spectral properties of the photons generated by SFWM,
as well as the source generation rate. All these informations are embedded in
the BWF. Recalling Eq. (1.75), for a generic two ports system we have

�Out,Out(k1, k2) =
3
p

2i⇡↵2~
4�✏0

Z
dk3 �P (k3)�P (k1 + k2 � k3) (3.1)

⇥p
!Out,k1!Out,k2!In,k3!In,(k1+k2�k3)

⇥
Z

dr �ijkl
3 (r)Di,asy�in

Out,k1
(r)Dj,asy�in

Out,k2
(r)

⇥Dk,asy�in
In,k3

(r)Dl,asy�in
In,k1+k2�k3

(r),

where we suppressed the mode index I since we suppose, for simplicity, to deal
with a mono-modal waveguide. Under the further assumption of having a single-
valued dispersion relation, we can recast the BWF in the frequency domain as
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R

s , kIn Out

Figure 3.1: Schematic representation of a side-coupled ring resonator for the
generation of entangled photon pairs by SFWM. The pump is injected in the In
channel, coupled to the ring resonator where the spontaneous fluorescence takes
place. The residual pump together with the newly generated signal and idler
photons finally exit the source from the Out channel.

�Out,Out(!1,!2) =
3
p

2i⇡↵2~
4�✏0

Z
d!3 �P (!3)�P (!1 + !2 � !3) (3.2)

⇥

s
!1!2!3(!1 + !2 � !3)

vg(!1)vg(!2)vg(!3)vg(!1 + !2 � !3)

⇥
Z

dr �ijkl
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Out,k(!2)
(r)
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In,k(!3)

(r)Dl,asy�in
In,k(!1+!2�!3)

(r),

where we labelled !1,2 ⌘ !Out,k(!1,2) and !3,4 ⌘ !In,k(!3,4), and vg(!) is the
group velocity. The field overlap integral in Eq. (3.2) is depending on the non-
linear parameter �ijkl

3 (r), but we can recast it in a more familiar form, using the
third order nonlinear susceptibility �ijkl

3 (r). Assuming a simple linear response,
so that Di

(r, t) = ✏0✏Ei
(r, t) = ✏0n2

(r;!)Ei
(r, t), we can apply the substitution

�
ijkl
3 (r) ! �ijkl

3 (r)

✏20n
2(r?;!1)n2(r?;!2)n2(r?;!3)n2(r?;!1 + !2 � !3)

, (3.3)

where we have also included the material dispersion. Hence, Eq. (3.2) becomes
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Now we can work out the explicit form of the asymptotic states, and plug
them into Eq. (3.4) to obtain the final expression of the BWF. The field inside
our mono-modal waveguide is given by

Dnk(!)(r) =
dnk(!)(r)p

2⇡
eik(!)z, (3.5)

where, again, n labels the channel. Then the asymptotic-in field from the In
channel is

Di,asy�in
In,k(!) (r) =

8
>><

>>:

di
k(!)(r?)

p
2⇡

eik(!)z z < 0

T (k(!))
di

k(!)(r?)
p

2⇡
eik(!)z z > 0

Di,ring
In,k(!)(r) in the ring

, (3.6)

where T (k(!)) is the transmission coefficient of the ring (see Eq. (1.29)), and

Di,ring
In,k(!)(r) =

i(!)

1 � �(!)eik(!)l

di
k(!)(r?, ⇣/R)

p
2⇡

eik(!)⇣ , (3.7)

where ⇣ is the coordinate in the counterclockwise direction in the ring, �(!)

and (!) are the self- and cross-coupling coefficients, and l = 2⇡R where R is
the ring radius. A similar expression for the asymptotic-in field from the Out
channel can be easily obtained.

The only term that is relevant in the calculation of the nonlinear response
of the structure is that involving the ring itself, where the field is enhanced at
the resonances. For this reason, the leading contribution to the overlap integral
comes from the field in the ring, and we can neglect the generation of photon
pairs in the waveguide. Hence, Eq. 3.4 becomes
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Under some very minor assumption, we can now provide a simple interpretation
of Eq. (3.8). If we suppose that the field profile in the ring is independent on the
radial component, apart from the phase delay, we have d↵k (r?, ⇣/R) ⌘ d↵k (r?)

with ↵ = x, y, z. Moreover, grouping out of the integral an average nonlinear
susceptibility �̄3, the BWF becomes
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is the FE in the ring resonator (see Eq. (1.33)), the quantity

ei�(!1,!2,!3,!1+!2�!3)

p
A(!1,!2,!3,!1 + !2 � !3)

=

(3.11)
Z

dr?
�ijkl

3 (r)

�̄3

1

✏20n
2(r?;!1)n2(r?;!2)n2(r?;!3)n2(r?;!1 + !2 � !3)

⇥

di
�k(!1)

(r?, ⇣/R)dj
�k(!2)

(r?, ⇣/R)dk
k(!3)

(r?, ⇣/R)dl
k(!1+!2�!3)

(r?, ⇣/R)

52



CHAPTER 3. ENERGY-ENTANGLED PHOTON PAIRS GENERATED IN
A SIDE-COUPLED MICRORING RESONATOR

is proportional to the inverse of the square root of an area, which can be inter-
preted as an effective transverse coupling area between the modes involved, and
�k ⌘ k(!3)+k(!1 +!2 �!3)�k(!1)�k(!2). The average number of generated
photons � is obtained imposing the normalization condition

Z
d!1d!2 |�Out,Out(!1,!2)|2 = 1. (3.12)

This is related to the nonlinear susceptibility, but also — and critically — to
the FE in the ring resonator as well as the lateral confinement A(!1,!2,!3,!1 +

!2 �!3), as it is now clear from Eq. (3.9). It is paramount to highlight that the
spectral profile of the pump �P (!) is another key parameter that contributes
to determine the shape of the BWF. The field confinement and the nonlinear
susceptibility are essentially bound to geometrical and material characteristics,
which can be chosen and engineered solely in the design stage; the pump pro-
file, on the contrary, is a dynamical parameter which it can be adjusted during
operation, by tuning the pump pulse duration. As a consequence, the quan-
tum correlations exhibited by photon pairs produced by SFWM in an integrated
ring resonator can be tailored “on-the-fly” by adjusting the pump temporal pro-
file. In the following, we will discuss two opposite pumping regimes, namely the
short and the long pump pulse regime, analyzing how each scenario impacts the
quantum correlations of the photon pairs.

Although the generation of entangled photon pairs by SFWM in integrated
microrings can be quite efficient, reaching 10

7
pairs/s with a coupled pump power

of 1 mW [44], the frequency range over which photons can be generated spans
the complete idler and signal resonances. Therefore, to capture every fine detail
of the Joint Spectral Density (JSD) — the square modulus of the BWF, and
the easiest accessible experimentally — very long integration times would be
required. Unfortunately, a compromise on the JSD resolution impacts severely
on the quality of the reconstruction of the JSD, leading to large uncertainties in
the measurement of the quantum correlations. Yet, it was recently proposed by
Liscidini et al. [46] that the characterization of a source based on SFWM can
be achieved much more efficiently by exploiting the corresponding stimulated
nonlinear process, which is FWM. This technique is referred to as Stimulated
Emission Tomography (SET). Since the stimulated process is intrinsically much
more intense and yields very high signal-to-noise ratios, taking advantage of the
SET it is possible to reconstruct every detail of the JSD.

We consider a silicon microring resonator with radius R = 15 µm, side cou-
pled to a 500 nm wide ⇥ 220 nm high silicon bus waveguide; the entire structure
is embedded in silica. In Fig. 3.2(a) we report the measured transmission spec-
trum of the structure along with that of a reference waveguide. It should be
noticed that the bell shape of the transmission is due to the spectral response of
the grating coupler [138].

In Fig. 3.2(b–d) we plot the transmission spectra of the signal, pump and
idler resonances, respectively, used in the SFWM and FWM experiments. From
Fig. 3.2(b-d) we can conclude that the ring resonator is essentially critically
coupled, and that the three Lorentzian resonances have similar full width at half
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In Fig. 3(b) we show the average number of generated photons versus the pulse energy. The same experiment 
has been repeated by pumping the sample with a continuous wave (cw) (Santec TSL 510) laser, and photon gen-
eration rates are shown in Fig. 3(c) as a function of the pump power. For both the pulsed and cw experiments the 
quadratic scaling of the generation rate with the pump power confirms that in this case linear parasitic processes, 
like spontaneous Raman scattering and photoluminescence, are negligible. The curve saturation at high pump 
powers is caused by the onset of the ring bistability due to two photon absorption11. Pump powers are estimated 
by measuring the power at the sample input and correcting for the coupling losses from the grating coupler 
(5 dB)25. The total length of the waveguide is less than a mm, thus propagation losses (of about 3 dB/cm) are 
negligible. We estimate the internal generation rate by measuring the signal and idler intensity at the chip output 
and taking into account for the coupling losses14. The generation rate inside the ring is comparable to what was 
reported in similar structures14,25.

Joint Spectral Density Measurements. To characterise the spectral correlations of the generated pho-
tons, we reconstruct the joint spectral density (JSD), which is the square modulus of the biphoton wavefunction. 
In practice, the JSD gives the wavelength of the signal (idler), as a function of the wavelength of the idler (signal). 
In order to reconstruct the JSD in a coincidence measurement on spontaneously generated photons, for each 
signal wavelength inside the signal resonance all the idler wavelengths inside the idler resonance have to be 
recorded. However, the JSD can be obtained also by exploiting the far more efficient stimulated process (FWM)20. 
In this case, the spectral resolution on the signal resonance is given by that of the cw seed, while idler photons 
have to be filtered with a tunable band pass filter (BPF) narrow enough to resolve the idler resonance, as in the 
set-up schematized in Fig. 1.

Here, the sample is pumped either with a pulsed or cw laser as in SFWM but, in addition, a second tunable 
cw laser (Santec TSL 510), whose wavelength can be controlled with an accuracy of about 2 pm, is employed 
to stimulate the generation of pairs. Band Pass Filters (BPFs) are used after each laser to reject the broadband 
background arising from amplified spontaneous emission. The signal and the pump lasers are combined using 
a polarization maintaining beam splitter, with one of the beam splitter’s outputs being coupled to the sample. 
Light is collected at the sample output through a lensed fiber, and a home-made Fabry-Pérot filter is used to 
analyze the generated idler beam. This filter is actively stabilized and has a spectral resolution of about 5 pm (see 

Figure 2. Transmission spectrum from the sample. (a) Broad, low resolution (5 pm) spectrum of the ring 
resonator and the grating coupler. (b–d) Full resolution transmission spectra of the idler, pump and signal 
resonances respectively.
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Figure 2. Transmission spectrum from the sample. (a) Broad, low resolution (5 pm) spectrum of the ring 
resonator and the grating coupler. (b–d) Full resolution transmission spectra of the idler, pump and signal 
resonances respectively.

Figure 3.2: Measured transmission spectra from our sample microring resonator.
(a) A lower resolution transmission spectrum covering multiple resonances and
including the spectral response of the grating coupler; (b-d) High resolution
characterization of the pump, signal, and idler resonances we consider for the
SFWM and the FWM experiments.
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maxima (��i) corresponding to a Q factor of about 40000. We are particularly
interested in the pump resonance quality factor, QP = 40800 ± 2000, which
corresponds to a coherence time ⌧p = 1/�! 33 ± 2 ps. This value represents
the minimum pump pulse duration we are keen to consider in our discussion.
Indeed, the pump laser coupled to the In channel is spectrally filtered by the
ring resonator. Even if we imagine to reduce the pump pulse duration, the larger
pump spectrum coupled to the bus waveguide will be filtered by the ring, and
the resulting pump spectrum will correspond to the pump resonance itself: every
effort to shorten the pump duration would be fruitless.

When the microring is pumped with a laser centered on the pump resonance
we can observe, as expected, the emission of signal and idler photons due to
SFWM, as reported in Fig. 3.3; note that here the pump photons have been
filtered.

www.nature.com/scientificreports/
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Supplementary information). The output of the Fabry-Pérot is then detected via a spectrometer coupled to a 
liquid nitrogen cooled CCD camera.

First we consider the pulsed laser case, in which the pump BPF sets the pump line width to 90 pm, corre-
sponding to a pulse duration of 14 ps while the pulse energy is 0.8 pJ. The pulse linewidth is larger than the line-
width of the ring resonator mode around 1552 nm, and thus it is filtered by the resonance (as accounted for in the 
theory). In Fig. 4(a,b) we show the measured JSD along with the theoretical result obtained by considering in our 
theory15 the experimental sample parameters (ring radius R =  15 μm, neff =  2.54, vg =  116 μm/ps, group velocity 
dispersion GVD =  1.84 μm2/ps). The theoretical simulation does not include a slight (~10%) broadening of the 
resonances due to two photon absorption under pulsed pumping.

Assuming a pure state, the determination of the full biphoton wavefunction allows one to calculate the 
Schmidt number K, where a separable state corresponds to K =  1, while an entangled state is characterised by 
K >  1. From our theoretical model we found K =  1.09, which indicates nearly uncorrelated photons, as it is 
expected in this system when the pump pulse duration is equal or shorter than the dwelling time of the photons in 
the ring15. The weak energy correlation is also visible from the JSD, which allows one to determine a lower bound 

Figure 3. (a) An example of spontaneous four wave mixing spectrum obtained with pulsed pumping (0.8 pJ 
per pulse), showing the generated signal and idler peaks and the full rejection of the pump. (b) Dependence of 
the number of generated photons per pulse on the pump’s energy per pulse. (c) Dependence of the generation 
rates on the pump power for the cw case. Dashed lines are guides to the eye proportional to the square of the 
pump energy per pulse (in panel (b)) and pump power (in panel (c)).

Figure 4. (a) Joint spectral density measured under pulsed pumping, to be compared with the calculated Joint 
Spectral Density in (b). (c) Joint spectral density measured under cw pumping.

Figure 3.3: Example SFWM spectrum obtained with a pulsed pump, proving
the generation of signal and idler photons. The pump photons have been filtered
outside the chip.

The reconstruction of the JSD is performed using the above-mentioned SET
technique. To this end, a CW tunable signal laser is coupled into the structure
together with the pulsed pump laser, and the idler photons exiting the structure
pass through a filter narrow enough to resolve the idler resonance. For each signal
frequency, the idler resonance is completely scanned. With this double sweep it
is possible to reconstruct the full JSD within the experimental resolution, which
in this case is 2 pm.

Now we can finally investigate the response of our source as a function of the
pump pulse duration, from a minimum threshold of ⇡ 33 ps when the pulse is
filtered by the pump resonance, up to the CW limit. In order to quantify the
energy-entanglement of the generated pairs, we rely on the Schmidt number K.
This quantity represents the “effective” number of superpositions of factorizable
states needed to reconstruct the original quantum state [139, 140]. To grasp
the reason why an “effective” number of states should be considered, and the
consequent explicit expression of the Schmidt number, one needs to consider a
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pure state | i and its Schmidt decomposition as in J. H. Eberly [139]

| i =

X

n

X

⌫

C(n, ⌫) |ni ✏ |⌫i (3.13)

=

X

s

p
�s |F si ✏ |�si ,

where C(n, ⌫) is the so-called entanglement amplitude, |ni and |⌫i are arbitrary
basis states and, essentially through the singular value decomposition theorem,
one obtains the same state expressed as a superposition of Schmidt modes |F si
and |�si, orthogonal bases in the respective Hilbert spaces H1 and H2 of the
two photons. Notably, in the final expression we have a single summation.
The coefficients �s are the eigenvalues of the reduced density matrices ⇢1 ⌘P

µ hµ|(| i h |)|µi and ⇢2 ⌘
P
� h�|(| i h |)|�i, with certain orthonormal bases

{|µi} and {|�i}.
Naturally, since the Schmidt modes constitute orthogonal bases, a state

whose reconstruction requires more than one Schmidt mode cannot necessary
be factored, and thus it is entangled. On the contrary, if the reconstruction of
a state is achieved through only one Schmidt mode, the state is factorable and
therefore not entangled. From this simple discussion, it appears that the simple
count of the number of Schmidt modes required to reconstruct an original quan-
tum states is a good indicator of its degree of entanglement, and some authors
actually accept this as the definition of Schmidt number. However, the simple
count of the Schmidt modes completely neglects the relative weight of each term
into the sum (3.13). For instance, if a single Schmidt mode accounts for the
vast majority of the state decomposition leaving just vanishing corrections to
other few modes, one would expect to identify a nearly-factorable state, with
a Schmidt number close to unity, but this is not the case. Hence, a preferable
definition of the Schmidt number invokes a weighted average of the number of
Schmidt modes, the weights being represented by the eigenvalues �s. As in J.
H. Eberly [139], the Schmidt number is defined as

K ⌘ 1P
�2

n

, (3.14)

which is also the inverse of the state purity of either one of the reduces states,
since 1P

�2
n

=
1

Tr[(⇢1)2]
=

1
Tr[(⇢2)2]

. Following Eq. (3.14), a pure separable state
has K = 1, while any entangled state is characterized by a real-valued Schmidt
number K > 1. It should be noticed that the Schmidt number is not the only
quantity for the measuring entanglement: other indicators, such as the Von
Neumann entropy or the Concurrence could be adopted equivalently [141].

Let us now consider and discuss two limiting pumping regimes, namely the
short and the long pump pulse regime.
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3.1. SHORT PUMP PULSE REGIME

3.1 Short pump pulse regime
When the microring resonator is pumped with a short pulse laser, we can express
the pump spectrum in the Gaussian approximation as

�P (!) =
1p

2⇡�P

e
� 1

2
(!�!P )2

�2
P , (3.15)

where

�P =
1

2⌧P
p

2 ln(2)
, (3.16)

⌧P is the pump pulse duration and !p is the pump resonance central frequency.
Using the pump spectrum (3.15) in the theoretical result (3.9) and assuming
that the variation of the transversal mode profile with frequency is negligible,
we can numerically compute the expected JSD. In our calculation we model the
coupling coefficient �(!) so that the resulting resonator quality factors match
those experimentally observed; this allows us to effectively include in our quan-
tum model the losses experienced by the light in the resonator. In Fig. 3.4(a)
we report the theoretical JSD considering a pump pulse duration ⌧P = 33 ps,
and waveguide effective index neff = 2.54, group velocity vg = 116 µm/ps,
and Group Velocity Dispersion GVD = 1.84 µm

2/ps. These are obtained by
means of a numerical calculation of the BWF and the normalized JSD starting
from Eq. (3.9). No a priori assumption on the resonances’ spectral profile has
been implied and, in the estimation of the Schmidt number, the computation is
progressively refined in the frequency discretization till convergence of the out-
put. Clearly, since the BWF is symmetric under the exchange of the idler/signal
wavelengths, Fig. 3.4 only shows half of the complete BWF, the remaining part
being symmetrically positioned with respect to the �1 = �2 line.

This result can be compared to the experimental outcome, reported in Fig.
3.4(b). From the JSDs we can then estimate the correspondent Schmidt Numbers
K, under the assumption to deal with pure states. We obtain Ktheory = 1.09 for
the theoretical calculation, and Kbound = 1.03 ± 0.1 for the experimental result.
The theoretical Schmidt Number is in good agreement with the experimental
one, yet a few significant remarks should be pointed out:

1. The experimental Schmidt Number represents an upper bound on the
“true” Schmidt Number: indeed, our setup is capable of reconstructing
only the real part of the BWF. A more complex experimental setup is
required for a phase-sensitive reconstruction of the BWF [142].

2. Our theoretical model does not take into account other nonlinear phenom-
ena, such as TPA, which broaden the pump resonance;

3. The experimental JSD resolution affects the calculation of Kbound, result-
ing in a Schmidt Number smaller than the theoretical one. This effect is
clearly related to the finite experimental resolution, for Ktheory is the min-
imum value realizable with a side-coupled ring resonator (we will discuss
other approaches for lowering this value in Chapter (4)).
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Supplementary information). The output of the Fabry-Pérot is then detected via a spectrometer coupled to a 
liquid nitrogen cooled CCD camera.

First we consider the pulsed laser case, in which the pump BPF sets the pump line width to 90 pm, corre-
sponding to a pulse duration of 14 ps while the pulse energy is 0.8 pJ. The pulse linewidth is larger than the line-
width of the ring resonator mode around 1552 nm, and thus it is filtered by the resonance (as accounted for in the 
theory). In Fig. 4(a,b) we show the measured JSD along with the theoretical result obtained by considering in our 
theory15 the experimental sample parameters (ring radius R =  15 μm, neff =  2.54, vg =  116 μm/ps, group velocity 
dispersion GVD =  1.84 μm2/ps). The theoretical simulation does not include a slight (~10%) broadening of the 
resonances due to two photon absorption under pulsed pumping.

Assuming a pure state, the determination of the full biphoton wavefunction allows one to calculate the 
Schmidt number K, where a separable state corresponds to K =  1, while an entangled state is characterised by 
K >  1. From our theoretical model we found K =  1.09, which indicates nearly uncorrelated photons, as it is 
expected in this system when the pump pulse duration is equal or shorter than the dwelling time of the photons in 
the ring15. The weak energy correlation is also visible from the JSD, which allows one to determine a lower bound 

Figure 3. (a) An example of spontaneous four wave mixing spectrum obtained with pulsed pumping (0.8 pJ 
per pulse), showing the generated signal and idler peaks and the full rejection of the pump. (b) Dependence of 
the number of generated photons per pulse on the pump’s energy per pulse. (c) Dependence of the generation 
rates on the pump power for the cw case. Dashed lines are guides to the eye proportional to the square of the 
pump energy per pulse (in panel (b)) and pump power (in panel (c)).

Figure 4. (a) Joint spectral density measured under pulsed pumping, to be compared with the calculated Joint 
Spectral Density in (b). (c) Joint spectral density measured under cw pumping.
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Figure 3.4: Theoretical calculation (a) and experimental measurement (b) of the
JSD of the nearly uncorrelated photon pairs produced by SFWM in the short
pump pulsing regime (⌧P = 33 ps). The slight asymmetry in (a) is introduced
by taking explicitly into account the waveguide group velocity dispersion.

In conclusion, the photons generated by SFWM in our microring resonator in the
short pump pulse scheme are nearly uncorrelated, as it is expected in this system
when the pump pulse duration is equal or shorter than the dwelling time of the
photons in the ring [44]. Actually, it is not possible to further reduce the Schmidt
Number by shortening the temporal duration of the pump pulse: although this
would correspond to a wider pump frequency spectrum, it will inevitably be
filtered by the fixed microring resonance linewidth. Therefore, in a side-coupled
microring resonator the minimal correlation between the photons can already be
obtained when the pump temporal duration is equal to the photon dwelling time
in the ring, and the integrand in Eq. (3.9) will encompass the product of four
identical — as the pump, signal, and idler resonances are — lorentzian-shaped
function, which leads to K = 1.09.

3.2 Long pump pulse regime
We now consider the pump pulse duration ⌧P is much longer that the dwelling
time of the photons in the ring, close to the limit of CW pumping. Under these
conditions, the generation of entangled photon pairs is expected, and has been
recently demonstrated [44].

Once more, the theoretical and the experimental JSD are reported next to
each other in Fig. 3.5, assuming a pump pulse duration ⌧P = 1 µs, and per-
forming the numerical evaluation following the same prescriptions discussed in
the previous section. The elongated shape of both the JSDs indicates spectral
correlations, and the lower bound of the Schmidt number calculated from the
data is indeed Kbound = 3.93. This value is very far from the theoretical result,
Ktheory = 37038, but it is clear from Fig. 3.5 that in order to grasp the fine de-
tails of the theoretical JSD, an extremely high experimental resolution would be
required. Nonetheless, we are still able to discriminate between the generation of
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Figure 3.5: Sketch (a) and experimental measurement (b) of the JSD of the
highly energy-entangled photon pairs produced by SFWM in the long pump
pulsing regime (⌧P = 1 µs).

correlated and nearly uncorrelated photons. In the present case this would not
be possible with state-of-the-art techniques based on coincidence measurements,
which have a resolution of hundreds of pm, (i.e. the typical pixel is larger than
the whole Fig. 3.4(b) or 3.5).

From the discussion of these antithetical cases, it is clear that a microring
resonator integrated on a silicon chip can be driven to emit nearly uncorrelated
or time-energy entangled photon pairs depending on the pump pulse duration.
These theoretical predictions are well confirmed by the experimental outcomes,
obtained taking advantage of the SET technique for reducing the measurement
time and dramatically increasing the JSD resolution. Thanks to this dynamical
behavior of microrings it is possible to design sources of nonclassical states of
light with tunable quantum correlations, which is a powerful enabling tool for
quantum information technologies.

Yet, as we recalled above, the use of standard side-coupled microring res-
onators cannot produce truly uncorrelated photons without resorting to optical
filters (the maximum Schmidt number being K = 1.09). This can be a quite
severe limitation, for instance in the case of single photon sources based on
heralding, where a completely pure and separable state is mandatory. We will
address this issue in the following Chapter, discussing a novel scheme for coupling
microring resonators which is capable of breaking these constraints.
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Chapter 4
Truly unentangled photon pairs

without spectral filtering

In the previous chapters we discussed the generation of energy-entangled photon
pairs by SFWM in a side-coupled microring resonator showing that, by adjusting
the pump pulse duration, it is possible to tailor the quantum correlations of
the photon pairs, from strongly correlated to nearly uncorrelated. But as we
pointed out, the minimum Schmidt number one can obtain from such a device is
K = 1.09, where a truly separable state corresponds to Schmidt number K = 1.

Since, as we demonstrated in the previous chapters, the properties of a BWF
can be engineered by changing the pump pulse and/or the geometrical outlook
of the device, it is natural to wonder if it is possible to come up with a source
design which yields photon pairs with unitary Schmidt number. This will be the
main goal of this chapter. To find an answer to this question, we can investigate
more in details the expression of the BWF generated by the side-coupled micror-
ing resonator, to highlight the factors limiting the state separability. Omitting
proportionality factors not essential in our discussion, we can recast the BWF
of Eq. (3.9) in the minimal form

�Out,Out(!1,!2) / F(!1)F(!2)L(!1 + !2), (4.1)

where
L(!) =

Z
d!3 �P (!3)�P (! � !3)F(!3)F(! � !3), (4.2)

F(!) is the FE in the ring resonator, and �P (!) is the pump spectrum. We
have already demonstrated in Chapter 3 that in the long pump pulse regime
L(!) is narrowly peaked about ! = 0 leading to a function |L(!1 + !2)|2 which
has support only along the line !2 = �!1. The corresponding JSD is associated
with highly energy anti-correlated photons (see Fig. 3.5). This extreme lack of
separability of the BWF can be mitigated by broadening L(!) by an amount
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sufficient to make |L(!1 + !2)|2 nearly uniform over the domain defined by the
Lorentzian factors in (4.1). Indeed, if the factor L(!1 + !2) is nearly constant,
the BWF (4.1) becomes clearly separable. This is actually the strategy we
followed in the previous Chapter while discussing the short pump pulse regime,
which corresponds to a broader pump spectrum. As clearly visible in Fig. 3.4,
under these conditions the correlation of the generated photon energies to the
central frequency of the pump pulse is relaxed. However, the filtering of the
pump light as it enters the resonator, represented by the Lorentzian factors
F(!3)F(!�!3) in the integrand of (4.2), means that the spectrum of the pump
photons available for conversion cannot be arbitrarily increased by broadening
the injected pump, and rather is fundamentally limited by the linewidth of the
pump resonance. This is the ultimate reason for the unachievable complete
separability of the photon pairs produced by SFWM in side-coupled microring
resonators. Yet, this insight provided by Eq. (4.1) and (4.2) is also the key
for devising a different approach to the generation of truly unentangled photon
pairs: the pump resonance linewidth must be significantly broader than those
of the signal and idler or, equivalently, the pump resonance quality factor must
be much smaller than those of the signal and idler resonances.

Most examples in the literature of microring-based SFWM have used devices
with nearly equal resonance linewidths for the pump, signal and idler, yielding
BWFs that display residual correlations even when pumped by a pulse with an
arbitrarily broad spectrum [75, 33, 45]. In those instances, the generation of
unentangled photon pairs is achieved by spectrally filtering the resulting BWF
[38, 143], a simpler approach which nonetheless sacrifices the source lumines-
cence, or, as very recently proposed, by an appropriate spectral engineering of the
pump pulse [144]. Both this approaches have been theoretically demonstrated
as viable routes to the generation of completely unentangled photon pairs. How-
ever, in the first instance the introduction of filters inevitably lowers the number
of usable photon pairs, either because the frequency of one — or both — of the
generated photons is found outside of the filter transparency window, or because
of the loss introduced by the filter itself. Moreover, as pointed out in [38], spec-
tral filtering of the photon pairs can significantly affect the heralding efficiency,
a key feature for quantum technologies. Finally, in view of the integration of
the complete setup on-chip, this approach would require integrated hard-edge
filters with strong rejection, a feature that is presently out of reach. Even in a
bulk approach, it has been shown that the purity of the heralded quantum state
rapidly degrades with the decreasing sharpness of the filter transparency win-
dow. In the second instance, which considers the use of a properly engineered
pump spectrum, a more complex pumping scheme is required and the tempo-
ral distance between the pump pulses (in a double-pulse configuration) increases
with the resonator quality factor, which makes the experiment more challenging.
Moreover, since the resonances posses a nearly-identical quality factor, the same
issue with heralding efficiency pointed out in [100] is encountered.

In the following, we present an interferometric coupling scheme for a ring
resonator in the configuration of an add-drop filter, and we demonstrate how
this geometry can yield truly unentangled photon pairs. This design is inspired

62



R

s1 , k1In Through

Drop Add

s2 , k2

s3 , k3s4 , k4

Dfdown

Dfup

Figure 4.1: Sketch of an integrated microring resonator, with two MZI couplings
to bus waveguides. Each physical coupling point is characterized by a self- and
a cross-coupling coefficient (�i and i). The pump pulse is injected through
the In channel, and with a proper choice of the MZI geometry, it will leave the
structure mostly from the Through channel, while the Signal and Idler photons
generated by SFWM will leave the structure from the Drop channel.

by the work of Gentry et al. [47] and of Chen et al. [48], where the authors
show that two coupling points between the bus waveguide and the ring provide
a precise control over the individual quality factors of the ring resonances, and
therefore also over the quantum properties of the generated light. The presence
of two coupling points establishes a MZI that can be used to gain control on
the interference between the light in the ring and that in the bus waveguide
by using microheaters mounted on the device. Such interferometric coupling
overcomes the limitation, typical in microresonator systems, represented by the
lack of independent control over different resonances.

The integrated circuit we propose is sketched in Fig. 4.1 and it is composed
of a microring add-drop filter with two identical and tunable dual MZI couplers.

By appropriately tuning the MZIs, the system can be configured such that
the bottom channel only couples to the pump mode in the resonator, while the
top channel only couples to the signal and idler modes. Increasing the coupling
strength of the bottom channel then decreases the quality factor of the pump
resonance without significantly affecting the properties of the signal and idler
resonances, allowing pump light with a much larger bandwidth to couple into
the ring.
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4.1 A quick estimate of the heralded state purity
Let us reconsider the approximate expressions (4.1) and (4.2). For convenience,
we can recast the FE F(!) of any given resonance as a function of its central
frequency !j and quality factor Qj

F(!) ⇡ 1

�i(! � !j) +
!j

2Qj

. (4.3)

It is paramount to emphasize that Eq. (4.3) is an approximation which comes
from assuming simple frequency-independent point-couplings for each resonance.
The complete expression of the FE in the ring is reported in the next section.
Nonetheless, the quantity F(!j) is still a good Lorentzian approximation of the
FE in the ring, and Eq. (4.3) has the merit of explicitly introducing the the
loaded quality factor Qj in the expression of the BWF. Finally, it should be
noticed that Eq. (4.3) will also differ from Eq. (3.10), for here we are dealing
with an add-drop filter.

At this point, we can imagine to adjust the phase delays in the MZIs to
tune the coupling strength of each resonance, almost independently. As we will
demonstrate in the following with the full numerical calculation, this is indeed
a feasible operation. Since we aim at a pump resonance much broader than the
that of the signal and idler, the relevant figure of merit we should define is the
ratio QSI/QP , where QSI = min(QS , QI). In each configuration, we can then
compute the Schmidt number or, equivalently, the purity of the heralded state,
defined as � = 1/K.

To estimate the Schmidt number, and hence the purity of the heralded state,
first we need to construct the BWF following Eq. (4.1) and (4.3) for a given
choice of the resonances quality factors. Then, by projecting the state onto the
Hilbert spaces associated with each photon in the pair, we can reconstruct the
reduced density operators

⇢1(!2) =

Z
d!k �(!k,!2)�

⇤
(!k,!2) (4.4)

and

⇢2(!1) =

Z
d!k �(!1,!k)�⇤

(!1,!k). (4.5)

Finally, when the BWF is computed with a sufficiently fine frequency dis-
cretization, Eq.s (4.4) and (4.5) reduce to correspondent finite sums, and it
is possible to calculate the eigenvalues of ⇢1(!2) and ⇢2(!1). From these esti-
mates we can finally obtain the Schmidt number K as discussed previously, as
[139, 145, 140, 146]

K =
1

Tr[(⇢1)
2]

=
1

Tr[(⇢2)
2]

⌘ 1P
n �

2
n

. (4.6)

Following this approach, we have considered a range of QSI/QP ratios, and
computed the expected purity of the generated photon pairs. The result is
reported in Fig. 4.2.
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Fig. 3. Maximum heralded state purity as a function of ratio
QSI/QP, with QSI = min(QS, SI). The solid line is calculated
using an effective model for the BWF, in good agreement with
full numerical simulations (green markers). Each point as-
sumes a pump pulse sufficiently broad to excite the full pump
resonance. The dashed line represents the upper bound of 93%
purity for a system with equal quality factor, which is clearly
exceeded with the proposed strategy.

4. CONCLUSION

We have shown that photon pairs with fully separable bipho-
ton wavefunctions can be generated efficiently in an integrated
device using a microring resonator in an interferometrically-
coupled dual channel configuration. This permits heralded sin-
gle photon states with purity arbitrarily close to 100% to be
generated, overcoming the upper bound of 93% in conventional
microresonator systems without the use of spectral filtering or
sophisticated phase matching techniques. We expect this to have
an impact on the design and implementation of integrated quan-
tum photonic technologies that require reliable on-chip sources
of indistinguishable single photons.
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Figure 4.2: Maximum heralded state purity � as a function of the QSI/QP ratio,
as predicted by the theoretical effective point-coupling model. The dashed line
represents the upper bound of 91.7% purity for a system with equal quality
factors, which is clearly exceeded with the proposed strategy.

As expected, when the ratio QSI/QP is unitary (i.e. in the simple side-
coupled ring scenario), we obtain a purity � around 91.7%, which is consistent
with our previous conclusions. With lower QSI/QP ratios, the purity diminishes,
indicating stronger quantum correlations between the generated photons. More
interestingly, when the ratio QSI/QP exceeds unity, the purity asymptotically
approaches 100%, and the photon pairs generated can be safely considered as
truly unentangled.

Once more, we stress that such result is crucial for the development of sources
of heralded single photons, for it produces true separable photon pairs efficiently
without resorting to any spectral filtering. Yet, the conclusions we reached in
this Section are based on the premise that we can engineer the dual MZI couplers
to resemble a simple frequency-dependent point coupler, and that the resulting
FE in the ring would sill be Lorentzian. In the following Section, we will provide
a more detailed insight into the structure of Fig. 4.1, demonstrating that our
assumptions are indeed correct.

4.2 Numerical calculation of the heralded state
purity

In this Section we apply the Asymptotic field formalism presented in Sec. 1.3 to
calculate the BFW and thus the spectral purity of the photon pairs generated
by the source depicted in Fig. 4.1. As customary, we start from the complete
BWF (3.4), which we report here for convenience
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�Drop,Drop(!1,!2) =
3
p

2i⇡↵2~
4�✏0

Z
d!3 �P (!3)�P (!1 + !2 � !3) (4.7)

⇥

s
!1!2!3(!1 + !2 � !3)

vg(!1)vg(!2)vg(!3)vg(!1 + !2 � !3)

⇥
Z

dr
�ijkl

3 (r)

✏20n
2(r?;!1)n2(r?;!2)n2(r?;!3)n2(r?;!1 + !2 � !3)

⇥Di,asy�in
Drop,k(!1)

(r)Dj,asy�in
Drop,k(!2)

(r)Dk,asy�in
In,k(!3)

(r)Dl,asy�in
In,k(!1+!2�!3)

(r),

remembering that, for the present structure, we look for the BWF of the Signal
and Idler photons exiting from the Drop channel, while the pump incomes from
the In channel (see Fig. 4.1). Similarly to what we did in Sec. 3, we now move
on to compute the expression of the asymptotic-in fields from channels In and
Drop.

Asymptotic-in fields from channels In and Add

Let us consider a schematic representation of the source, as depicted in Fig.
4.3(a-b).

We consider the general case in which the pump field comes from the In and
Add channels, traveling counter-clockwise in the ring resonator. Using the labels
indicated in the sketch we can express the field amplitude in each point of the
structure as

8
>>>>>>>>>><

>>>>>>>>>>:

A = i1In + �1H

B = eik(!)L1A

C = i2L + �2B

D = eik(!)L2C

E = i3Add + �3D

F = eik(!)L1E

G = i4N + �4F

8
>>>>>>>>>><

>>>>>>>>>>:

H = eik(!)L2G

I = i1H + �1In

L = eik(!)L3I

M = i3D + �3Add

N = eik(!)L4M

Through = i2B + �2L

Drop = i4F + �4N

. (4.8)

Solving the set of coupled equations we eventually obtain

Through = (4.9)

(�1�2e
ik(!)L3 � 12e

ik(!)L1) � eik(!)(L1+2L2+L3)(�3�4e
ik(!)L1 � 34e

ik(!)L4)

1 � e2ik(!)L2(�1�2eik(!)L1 � 12eik(!)L3)(�3�4eik(!)L1 � 34eik(!)L4)
In

� eik(!)L2(�12e
ik(!)L1 + 1�2e

ik(!)L3)(�34e
ik(!)L4 + 3�4e

ik(!)L1)

1 � e2ik(!)L2(�1�2eik(!)L1 � 12eik(!)L3)(�3�4eik(!)L1 � 34eik(!)L4)
Add

and
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Figure 4.3: Schematic representation of the dual MZI ring resonator, with (a)
all the relevant labels and (b) the explicit reference frames for light propagation
in any part of the structure.
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Drop = (4.10)

� eik(!)L2(�12e
ik(!)L3 + 1�2e

ik(!)L1)(�34e
ik(!)L1 + 3�4e

ik(!)L4)

1 � e2ik(!)L2(�1�2eik(!)L1 � 12eik(!)L3)(�3�4eik(!)L1 � 34eik(!)L4)
In

+
(�3�4e

ik(!)L4 � 34e
ik(!)L1) � eik(!)(L1+2L2+L4)(�1�2e

ik(!)L1 � 12e
ik(!)L3)

1 � e2ik(!)L2(�1�2eik(!)L1 � 12eik(!)L3)(�3�4eik(!)L1 � 34eik(!)L4)
Add

which are fundamental for the calculation of the transmission spectra. Yet, here
we are most concerned about expressing the fields inside the ring and the MZI
arms, for there the FE is boosting the generation of pairs by SFWM. The field
amplitude in the lateral sections of the ring is

C = (4.11)
i(�12eik(!)L3 + 1�2eik(!)L1)

1 � e2ik(!)L2(�1�2eik(!)L1 � 12eik(!)L3)(�3�4eik(!)L1 � 34eik(!)L4)
In

+
ieik(!)L2(�1�2eik(!)L1 � 12eik(!)L3)(�34eik(!)L4 + 3�4eik(!)L1)

1 � e2ik(!)L2(�1�2eik(!)L1 � 12eik(!)L3)(�3�4eik(!)L1 � 34eik(!)L4)
Add

and

G = (4.12)
ieik(!)L2(�12eik(!)L3 + 1�2eik(!)L1)(�3�4eik(!)L1 � 34eik(!)L4)

1 � e2ik(!)L2(�1�2eik(!)L1 � 12eik(!)L3)(�3�4eik(!)L1 � 34eik(!)L4)
In

+
i(�34eik(!)L4 + 3�4eik(!)L1)

1 � e2ik(!)L2(�1�2eik(!)L1 � 12eik(!)L3)(�3�4eik(!)L1 � 34eik(!)L4)
Add,

while the field amplitude in the bottom and top sections of the ring is

A = (4.13)
i1 + i2eik(!)(2L2+L3)(�3�4eik(!)L1 � 34eik(!)L4)

1 � e2ik(!)L2(�1�2eik(!)L1 � 12eik(!)L3)(�3�4eik(!)L1 � 34eik(!)L4)
In

+
i�1eik(!)L2(�34eik(!)L4 + 3�4eik(!)L1)

1 � e2ik(!)L2(�1�2eik(!)L1 � 12eik(!)L3)(�3�4eik(!)L1 � 34eik(!)L4)
Add

and

E = (4.14)
i�3eik(!)L2(�12eik(!)L3 + 1�2eik(!)L1)

1 � e2ik(!)L2(�1�2eik(!)L1 � 12eik(!)L3)(�3�4eik(!)L1 � 34eik(!)L4)
In

+
i3 + i4eik(!)(2L2+L4)(�1�2eik(!)L1 � 12eik(!)L3)

1 � e2ik(!)L2(�1�2eik(!)L1 � 12eik(!)L3)(�3�4eik(!)L1 � 34eik(!)L4)
Add.
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Finally, we can express the field amplitude in the bottom and top arm of the
MZI couplers, as

I = (4.15)
�1 � �2eik(!)(L1+2L2)(�3�4eik(!)L1 � 34eik(!)L4)

1 � e2ik(!)L2(�1�2eik(!)L1 � 12eik(!)L3)(�3�4eik(!)L1 � 34eik(!)L4)
In

� 1eik(!)L2(�34eik(!)L4 + 3�4eik(!)L1)

1 � e2ik(!)L2(�1�2eik(!)L1 � 12eik(!)L3)(�3�4eik(!)L1 � 34eik(!)L4)
Add

N = (4.16)

� 3eik(!)(L2+L4)(�12eik(!)L3 + 1�2eik(!)L1)

1 � e2ik(!)L2(�1�2eik(!)L1 � 12eik(!)L3)(�3�4eik(!)L1 � 34eik(!)L4)
In

+
�3eik(!)L4 � �4eik(!)(L1+2L2+L4)(�1�2eik(!)L1 � 12eik(!)L3)

1 � e2ik(!)L2(�1�2eik(!)L1 � 12eik(!)L3)(�3�4eik(!)L1 � 34eik(!)L4)
Add.

We can now express the asymptotic-in fields Dasy�in
In,k(!)(r) of Eq. (4.7) as

Di,asy�in
In,k(!) (r) =

8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

di
k(r?)p

2⇡
eik(!)z1 z1 2 [�1, 0]

Through · di
k(r?)p

2⇡
eik(!)z1 z1 2 [L3, 1]

Drop · di
k(r?)p

2⇡
e�ik(!)z2 z2 2 [�1, 0]

AIn · di
k(r?,⇣/R)p

2⇡
eik⇣ ⇣ 2 [0, L1]

CIn · di
k(r?,⇣/R)p

2⇡
eik(⇣�L1) ⇣ 2 [L1,⇡R]

EIn · di
k(r?,⇣/R)p

2⇡
eik(⇣�⇡R) ⇣ 2 [⇡R,⇡R + L1]

GIn · di
k(r?,⇣/R)p

2⇡
eik(⇣�⇡R�L1) ⇣ 2 [⇡R + L1, 2⇡R]

IIn · di
k(r?)p

2⇡
eik(!)z1 z1 2 [0, L3]

NIn · di
k(r?)p

2⇡
e�ik(!)z2 z2 2 [0, L4]

. (4.17)

One can pursue a similar strategy to compute the asymptotic-in fields Dasy�in
Drop,k(!)(r),

as we briefly recall in the next section.

Asymptotic-in fields from channels Drop and Through

Let us refer to the same labelling and reference frames we adopted in the previous
section and reported in Fig. (4.1). The field amplitude in each section of the
circuit is given by

69



CHAPTER 4. TRULY UNENTANGLED PHOTON PAIRS WITHOUT
SPECTRAL FILTERING

8
>>>>>>>>>><

>>>>>>>>>>:

F = i4Drop + �4G

E = eik(!)L1F

D = i3M + �3E

C = eik(!)L2D

B = i2Through + �2C

A = eik(!)L1B

H = i1I + �1A

8
>>>>>>>>>><

>>>>>>>>>>:

G = eik(!)L2H

N = i4G + �4Drop

M = eik(!)L4N

L = i2C + �2Through

I = ek(!)L3L

Add = i3E + �3M

In = i1A + �1I

. (4.18)

We can proceed with the same calculation as in the previous case but, comparing
Eq. (4.18) and Eq. (4.8), one can notice they are equivalent, provided labels are
properly interchanged. Such property is guaranteed by the symmetry enjoyed
by our source geometry. Hence, when the substitutions

A $ F

B $ E

C $ D

G $ H

I $ N

L $ M

In $ Drop (4.19)
Add $ Through

L3 ! L4

�1 ! �4

�2 ! �3.

are implemented in (4.8), we directly obtain the transmission amplitudes

Add = (4.20)

(�3�4e
ik(!)L4 � 34e

ik(!)L1) � eik(!)(L1+2L2+L4)(�1�2e
ik(!)L1 � 12e

ik(!)L3)

1 � e2ik(!)L2(�1�2eik(!)L1 � 12eik(!)L3)(�3�4eik(!)L1 � 34eik(!)L4)
Drop

� eik(!)L2(3�4e
ik(!)L1 + �34e

ik(!)L4)(�12e
ik(!)L1 + 1�2e

ik(!)L3)

1 � e2ik(!)L2(�1�2eik(!)L1 � 12eik(!)L3)(�3�4eik(!)L1 � 34eik(!)L4)
Through

In = (4.21)

� eik(!)L2(3�4e
ik(!)L4 + �34e

ik(!)L1)(1�2e
ik(!)L1 + �12e

ik(!)L3)

1 � e2ik(!)L2(�1�2eik(!)L1 � 12eik(!)L3)(�3�4eik(!)L1 � 34eik(!)L4)
Drop

+
(�1�2e

ik(!)L3 � 12e
ik(!)L1) � eik(!)(L1+2L2+L3)(�3�4e

ik(!)L1 � 34e
ik(!)L4)

1 � e2ik(!)L2(�1�2eik(!)L1 � 12eik(!)L3)(�3�4eik(!)L1 � 34eik(!)L4)
Through,

and, with the help of (4.18), the field amplitudes in the each part of the ring
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C = (4.22)
ieik(!)L2(�34eik(!)L1 + 3�4eik(!)L4)

1 � e2ik(!)L2(�3�4eik(!)L1 � 34eik(!)L4)(�1�2eik(!)L1 � 12eik(!)L3)
Drop

+
ie2ik(!)L2(�3�4eik(!)L1 � 34eik(!)L4)(1�2eik(!)L3 + �12eik(!)L1)

1 � e2ik(!)L2(�3�4eik(!)L1 � 34eik(!)L4)(�1�2eik(!)L1 � 12eik(!)L3)
Through

G = (4.23)
ie2ik(!)L2(�1�2eik(!)L1 � 12eik(!)L3)(�34eik(!)L1 + 3�4eik(!)L4)

1 � e2ik(!)L2(�1�2eik(!)L1 � 12eik(!)L3)(�3�4eik(!)L1 � 34eik(!)L4)
Drop

+
ieik(!)L2(�12eik(!)L1 + 1�2eik(!)L3)

1 � e2ik(!)L2(�1�2eik(!)L1 � 12eik(!)L3)(�3�4eik(!)L1 � 34eik(!)L4)
Through

A = (4.24)
i�2eik(!)(L1+L2)(3�4eik(!)L4 + �34eik(!)L1)

1 � e2ik(!)L2(�1�2eik(!)L1 � 12eik(!)L3)(�3�4eik(!)L1 � 34eik(!)L4)
Drop

+
i2eik(!)L1 + i1eik(!)(L1+2L2+L3)(�3�4eik(!)L1 � 34eik(!)L4)

1 � e2ik(!)L2(�1�2eik(!)L1 � 12eik(!)L3)(�3�4eik(!)L1 � 34eik(!)L4)
Through

E = (4.25)
i4eik(!)L1 + i3eik(!)(L1+2L2+L4)(�1�2eik(!)L1 � 12eik(!)L3)

1 � e2ik(!)L2(�1�2eik(!)L1 � 12eik(!)L3)(�3�4eik(!)L1 � 34eik(!)L4)
Drop

+
i�4eik(!)(L1+L2)(�12eik(!)L1 + 1�2eik(!)L3)

1 � e2ik(!)L2(�1�2eik(!)L1 � 12eik(!)L3)(�3�4eik(!)L1 � 34eik(!)L4)
Through,

and in the arms of the MZI couplers

I = (4.26)

� 2eik(!)(L2+L3)(�34eik(!)L1 + 3�4eik(!)L4)

1 � e2ik(!)L2(�1�2eik(!)L1 � 12eik(!)L3)(�3�4eik(!)L1 � 34eik(!)L4)
Drop

+
�2eik(!)L3 � �1eik(!)(L1+2L2+L3)(�3�4eik(!)L1 � 34eik(!)L4)

1 � e2ik(!)L2(�1�2eik(!)L1 � 12eik(!)L3)(�3�4eik(!)L1 � 34eik(!)L4)
Through

N = (4.27)
�4 � �3eik(!)(L1+2L2)(�1�2eik(!)L1 � 12eik(!)L3)

1 � e2ik(!)L2(�1�2eik(!)L1 � 12eik(!)L3)(�3�4eik(!)L1 � 34eik(!)L4)
Drop

� 4eik(!)L2(1�2eik(!)L3 + �12eik(!)L1)

1 � e2ik(!)L2(�1�2eik(!)L1 � 12eik(!)L3)(�3�4eik(!)L1 � 34eik(!)L4)
Through.
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Finally, we can express the asymptotic-in fields Di,asy�in
Drop,k(!)(r) of Eq. (4.7) as

Di,asy�in
Drop,k(!)(r) =

8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

di
k(r?)p

2⇡
eik(!)z2 z2 2 [�1, 0]

Add · di
k(r?)p

2⇡
eik(!)z2 z2 2 [L4, 1]

In · di
k(r?)p

2⇡
e�ik(!)z1 z1 2 [�1, 0]

ADrop · di
k(r?,⇣/R)p

2⇡
e�ik⇣ ⇣ 2 [0, L1]

CDrop · di
k(r?,⇣/R)p

2⇡
e�ik(⇣�L1) ⇣ 2 [L1,⇡R]

EDrop · di
k(r?,⇣/R)p

2⇡
e�ik(⇣�⇡R) ⇣ 2 [⇡R,⇡R + L1]

GDrop · di
k(r?,⇣/R)p

2⇡
e�ik(⇣�⇡R�L1) ⇣ 2 [⇡R + L1, 2⇡R]

IDrop · di
k(r?)p

2⇡
e�ik(!)z1 z1 2 [0, L3]

NDrop · di
k(r?)p

2⇡
eik(!)z2 z2 2 [0, L4]

.

(4.28)

Calculation of the BWF and the state purity

In the scenario discussed in the opening of this Section, we imagine to inject the
pump through the In channel and look for frequency-converted photons in the
Drop channel. Plugging the asymptotic-in fields we derived in Eq. (4.17) and
(4.28)in the BWF expression (4.7), after a few manipulations we obtain

�Drop,Drop(!1,!2) =
3
p

2i↵2�̄3~
16⇡✏0�

r
!1!2

vg(!1)vg(!2)
(4.29)

⇥
Z

d!3

h
�P (!1 + !2 � !3)�P (!3)

s
!3(!1 + !2 � !3)

vg(!3)vg(!1 + !2 � !3)

⇥
n

IDrop,k(!1)IDrop,k(!2)IIn,k(!3)IIn,k(!1+!2�!3)L3e
i�k

L3
2 sinc(

�kL3

2
)

+NDrop,k(!1)NDrop,k(!2)NIn,k(!3)NIn,k(!1+!2�!3)L4e
�i�k

L4
2 sinc(

�kL4

2
)

+

h
ADrop,k(!1)ADrop,k(!2)AIn,k(!3)AIn,k(!1+!2�!3)

+EDrop,k(!1)EDrop,k(!2)EIn,k(!3)EIn,k(!1+!2�!3)

i
L1e

i�k
L1
2 sinc(

�kL1

2
)

+

h
CDrop,k(!1)CDrop,k(!2)CIn,k(!3)CIn,k(!1+!2�!3)

+GDrop,k(!1)GDrop,k(!2)GIn,k(!3)GIn,k(!1+!2�!3)

i

⇥(⇡R � L1)e
i�k

⇡R�L1
2 sinc(

�k(⇡R � L1)

2
)

i
.

As one would expect, each segment of the structure intervenes in the final ex-
pression of the BWF, and the relative weight of each contribution is determined
by the FE in the correspondent section of the circuit. We can immediately
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point out a significant deviation from the approximated model we adopted in
the opening of this chapter: photon pairs are not generated in the ring alone,
but in the external arms of the MZI couplers as well. In general, this will affect
the properties of the BWF, and the correspondent Schmidt number; yet, as we
will discuss in the following, this contribution will be negligible for high QSI/QP

ratios.
We now turn our attention to the development of a practical strategy for the

control of the QSI/QP ratio. Let us simplify the problem by considering the
four point couplings as identical, thus simply described by the coefficients � and
 =

p
1 � �2. We can regard the MZI coupler as an “effective” point coupler, as

originally proposed by Chen et al. [48]. Referring to the usual labels reported
in Fig. 4.4, we can write

s , k
In A B

C

I L

Through
s , k

L3

L1

§

In Through
s1,eff , k1,eff

Figure 4.4: Analogy between the complete MZI coupling scheme, and the effec-
tive point-coupling approximation.

C = 1,eff (!)In = 2� cos

⇣k(!)�L31

2

⌘
In, (4.30)

where 1,eff (!) is the effective frequency-dependent cross-coupling coefficient
between the ring and the bottom bus waveguide, and �L31 ⌘ L3 �L1 . In order
to maximize the heralding efficiency [100] we would like to overcouple the pump
resonance to the bottom bus waveguide and, at the same time, significantly
undercouple the signal and idler modes to the same waveguide, redirecting the
converted photons to the Drop port. Thus, we impose

2
1,eff (!SI) = 0 (4.31)
2

1,eff (!P ) = 42�2,

where we assume that the first condition in (4.31) should be satisfied for, at
least, one of the two modes, and we notice that the second coefficient is the
maximum achievable, given the explicit form of 1,eff (!). Eq. (4.31) leads us
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to

�L31kSI

2
=
⇡

2
+ lSI⇡ (4.32)

�L31kP

2
= lP⇡

with lSI,P 2 Z. This conditions can easily be met whenever the pump resonance
number mP is even and the signal and idler resonance numbers mSI are odd.
Thus, for instance we have �L31 =

2lP⇡
kP

=
2lp⇡R
mP

, and choosing lP = mP /2 we
have �L31 = ⇡R.

Recalling that the quality factor of a ring resonance can be expressed as

Q =
!resL

2vg

1

1 � �↵
, (4.33)

where ↵ represents any form of loss in the ring resonator (as we stressed in
Section 1.2) and L = 2⇡R, we can leverage the effective coupling model to
express the Q factor as

Q =
!resL

2vg

1

1 �
q

1 � 2
1,eff (!res)

q
1 � 2

2,eff (!res)

(4.34)

=
!resL

2vg

1

1 �
r

1 � 4�22 cos2
⇣

k(!res)�L31

2

⌘r
1 � 4�22 cos2

⇣
k(!res)�L41

2

⌘ ,

where �L41 ⌘ L4 � L1. With the proper choice of �L31 , the ratio QSI/QP as
a function of �L41 is given by

QSI

QP
(�L41) =

!SI

!P

1 �
p

1 � 4�22

r
1 � 4�22 cos2

⇣
k(!P )�L41

2

⌘

1 �
r

1 � 4�22 cos2
⇣

k(!SI)�L41

2

⌘ (4.35)

and its trend is reported in Fig. 4.5 for R = 20 µm, � = 0.95 mP = 206, and
mSI = mP ± 1.
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Figure 4.5: Expected QSI/QP ratio as a function of the path difference �L41

in the upper MZI coupler.

Once the desired QSI/QP ratio is chosen, all of the geometrical properties
of the structure of Fig. 4.1 are set, and one can refer to Eq. (4.29) for the
numerical calculation of the BWF, and to the strategy reported in (4.4)-(4.6)
for the computation of the state purity. In Fig. 4.6 we report the same plot of
Fig. 4.2, complemented with several points corresponding to the state purity
computed numerically, starting from arbitrary ratios QSI/Qp chosen from Fig.
4.5.

FIG. 3. Maximum heralded state purity as a function of ratio
QSI/QP , with QSI = min(QS , QI). The solid line is calcu-
lated using an e�ective point-coupling model for the BWF;
green markers indicate the results of full numerical simula-
tions for the complete device, with the circular marker cor-
responding to the BWF of Fig. 2b. Each point assumes a
pump pulse su�ciently broad to excite the full pump reso-
nance. The dashed line represents the upper bound of 93%
purity for a system with equal quality factor, which is clearly
exceeded with the proposed strategy.

fied model (3) which assumes point-coupling (Fig. 1b),

with the green markers indicating the results of full nu-

merical simulations of the device in Fig. 1a.

It is important to ensure that the proposed strategy

to eliminate time-energy entanglement does not seriously

compromise any features of an ideal heralded single pho-

ton source (see Sec. 1). This can be addressed by

comparing a conventional, single-channel microring sys-

tem with equal quality factors for the three modes, all

strongly over-coupled to ensure high heralding e�ciency,

to the new device with independently tunable quality fac-

tors. It is clear that simultaneous generation of multiple

photon pairs is still suppressible in the new device by us-

ing su�ciently low pump powers, and that collection of

both pair photons can still be achieved by over-coupling

the signal/idler channel with respect to scattering losses.

However, one might initially suspect that the generation

e�ciency of the new device would be significantly worse

than the conventional device due to the lowering of the

pump quality factor to ensure high purity of the heralded

photon.

In fact the degradation of the generation e�ciency

is not expected to be especially serious. A full deriva-

tion [9, 10] shows that the rate of generated photon

pairs available in the signal/idler channel for the ide-

alized device shown in Fig. 1b can be expressed as

Jheralds = 4�
2qSqIq2

P fP E2
P⌧2I/(⇡3

(h̄!P )
2
), where � is

a constant related to the nonlinear response of the mi-

croring [22], qJ = QJ/Qext
J is the ratio for resonance J

between the loaded quality factor QJ , which takes into

account both scattering losses and the resonator-channel

coupling, and the extrinsic quality factor Qext
J related

only to the ring-channel coupling, fP is the repetition

rate of the pump laser, EP the pump pulse energy, and ⌧
the pump pulse duration. The dimensionless factor I is

related to the overlap between the intra-resonator pump

amplitudes and the Lorentzian functions describing the

signal and idler resonances. This overlap improves as

QS,I/QP increases; for a Gaussian pump pulse with du-

ration ⌧ having temporal intensity profile proportional to

e�t2/�2

, we have

I = (5)

Z
dusdui

����
R

dup
e�(TP up)2/2e�(TSus+TI ui�TP up)2/2

(�iup+1)(�i(rSus+rIui�up)+1)

����
2

(u2
s + 1)(u2

i + i)
,

where TJ = ⌧/⌧dwell
J is the pulse duration in units of

the photon dwelling time ⌧dwell
J = 2QJ/!J for resonance

J , and rJ = QP /QJ . To fully excite the pump res-

onance we must choose a pulse with su�ciently short

duration that TP = 1, so that Jheralds / q2
P Q2

P E2
P I;

or, in terms of the peak pump power Ppeak / EP /⌧ ,

Jheralds / q2
P Q4

P P 2
peakI. As the channel-ring coupling

for the pump is increased (so that QP is decreased) and

the pulse duration is lowered to fully excite the pump

resonance and keep TP = 1: (i) qP increases toward

unity; (ii) QP decreases; (iii) I increases asymptotically

to Iasy ⇡ 14.3 (from I ⇡ 5.0 when all quality factors

are equal). A system with initially equal quality factors,

strongly over-coupled for all resonances, with QP subse-

quently altered to obtain QS,I/QP = 10 requires a peak

power about 61 times larger to maintain the original pair

generation rate. Yet this corresponds to merely a 6.1x in-

crease in pulse energy, since the pulse duration has been

compressed by a factor of 10. Though this discussion of

generation e�ciency strictly applies only to an idealized

model of the full device, and neglects the possibility of

photon pair generation in the outer arms of the inter-

ferometric couplers, it serves to demonstrate that only

modest increases in energy requirements are anticipated;

these are not expected to present a challenge in exper-

iments. A study of the generation e�ciency in the full

device shown in Fig. 1a is left for future communications.

IV. CONCLUSION

We have shown that photon pairs with fully separable

biphoton wavefunctions can be generated e�ciently in

an integrated device using a microring resonator in an

interferometrically-coupled dual channel configuration.

This permits the generation of heralded single photon

states with purity arbitrarily close to 100%, overcoming

the upper bound of 93% for a Gaussian pump pulse in

conventional microresonator systems without the use of

spectral filtering or sophisticated phase matching tech-

niques [23]. The strategy presented does not seriously

compromise the heralding e�ciency and generation ef-

ficiency. We expect this to have an impact on the de-

sign and implementation of integrated quantum photonic

technologies that require reliable on-chip sources of indis-

tinguishable single photons.

4

Figure 4.6: Maximum heralded state purity � as a function of the QSI/QP ratio,
as previously reported in Fig. 4.2. The green dots represent the result of the full
numerical calculation, while the last circular marker corresponding to the JSD
depicted in Fig. 4.9(b).

There is clearly a good agreement between the approximate model and the
full numerical calculation, particularly for high purity photon pairs. When
smaller QSI/QP ratios are considered, the theoretical model and the numerical
calculations show a slightly poorer agreement. This issue could have multiple
origins, but among the other we should point out that
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Figure 4.7: (a) Field intensity spectrum calculated in segment C of the dual
MZI microring (see Fig. 4.1), when light is coupled from the In or the Drop
channel. The pump resonance — around 0.8 eV — is well coupled to the bottom
MZI (blue line), and poorly coupled to the upper waveguide (red line). At the
same time, the signal and idler resonances are strongly coupled to the upper
MZI (red line), while vanishingly coupled to the bottom MZI (blue line). (b)
Transmission spectrum as observed from channel Through when light is coupled
to the In channel, showing the poor coupling of signal/idler modes to the bottom
bus waveguide.

1. The generation of photon pairs occurs in the arms of the MZI couplers
as well as in the ring resonator. Hence, since the FE in the MZI arms is
typically much smaller than that in the ring, we expect a “waveguide-like”
contribution to the BWF, impacting the state purity. This effect naturally
decreases when the ratio QSI/QP increases, for the “ring-like” contribution
takes the lead.

2. The spectral profile of the ring resonances is not, in general, Lorentzian:
this feature can be appreciated, for instance, by inspecting Eq. (4.11)-
(4.14).

3. The position of the structure resonances is slightly offset with respect to
those of a simple side-coupled microring. This deviation depends on �L31

and �L41, and it can be ascribed to the interaction of multiple resonant
“subsections” of the structure.

Finally, we can focus on the last point reported in Fig. 4.5 to analyze the
transmission spectra and compare the shape of the resulting BWF with that of
the previous Chapter. The ring we considered in the simulation has a radius
R = 20 µm, identical coupling points with � = 0.95, and L1 = 1 µm, L3 =

⇡R � L1 and L4 = 1.228 µm. The resulting FE in the ring (segment C) and the
transmission spectrum are reported in Fig. 4.7(a-b).

The linewidth of the pump resonance, when light is coupled from the In
channel, is much broader than that of the signal and idler resonances, light being
coupled from the Drop channel. At the same time, the pump is poorly coupled
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Figure 4.8: (a) Field intensity calculated in segment I of the dual MZI microring
(see Fig. 4.1), when light is coupled from the In or the Drop channel. By
comparison to Fig. 4.7 we notice the considerably smaller FE at the signal/idler
resonances, and the nearly absent pump resonance. (b) Field intensity calculated
in segment N of the dual MZI microring (see Fig. 4.1), when light is coupled from
the In or the Drop channel. Here, the pump FE is an order of magnitude smaller
than inside the ring (see Fig. 4.7), and both the signal and idler resonances
display a sharp response which vanishes at the center.

to the upper bus waveguide, and we observe a vanishing coupling of the signal
and idler resonances to the bottom bus waveguide. In Fig. 4.8 we also report the
field intensity in the upper (a) and lower (b) external arms of the MZI microring
resonator, corresponding to sections I and N of Fig. 4.1, respectively. Here,
either the pump or the signal/idler resonances vanish at their central position,
leading to a negligible contribution to the BWF (4.29).
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Figure 4.9: JSD of photon pairs generated in (a) a standard side-couple microring
resonator, and (b) the dual MZI microring resonator of Fig. 4.1.

When a temporally short pump pulse (spectrally wider than the pump mode
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resonance) is injected in the In channel, signal and idler photons generated
by SFWM can be observed in the Drop channel. Their JSD is reported in Fig
4.9(b), together with that of the nearly uncorrelated photon pairs, in Fig. 4.9(a),
obtained when the ring is side-coupled to a single bus waveguide (similarly to
what we have already discussed in Section 3). Once more, we stress that these
results are obtained by a numerical computation starting from the BWF (4.29),
with no a priori assumption on the shape of the resonances involved and a
progressively refined frequency discretization till the simulation convergence.

As it is clear from Fig. 4.9(b), there is are no residual quantum correla-
tions between the generated photons, and the pair can be considered as truly
unentangled.
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Beyond photon pair generation

In the previous chapters we have been focusing our attention on the generation
of two particles, specifically photons, which can be spectrally entangled or com-
pletely unentangled. As we recalled , the quantum correlations displayed by a
system composed of two parties, or bipartite entangled state, are well known and
understood both theoretically [19, 141, 147] and experimentally [148, 149]. More
recently, entangled states of composite systems involving more than two subsys-
tems, or multipartite entangled states, were investigated [150, 151, 141, 152].

In general, the correlations they exhibit cannot be considered a trivial gen-
eralization of bipartite entanglement. It should be noticed that in this context
it is customary to refer to generic “parties” rather than specifying the physical
implementation: any subsystem can qualify as a party and, in any case, all the
analysis and the conclusions do not hinge on a specific realization. Multipartite
entangled states have been realized using a multitude of different physical sys-
tems such as photons [52, 150, 51, 50, 153], trapped ions [154], superconducting
circuits [155, 156], and electronic spins [157].

BS
W

GHZ

Figure 4.10: Schematic classification of
tripartite entangled states.

Let us consider the simplest case of
multipartite entanglement, namely a
quantum state composed of three sub-
systems, or tripartite entangled state.
It was demonstrated by Dür et al.
[49] that pure tripartite states can be
grouped into four inequivalent classes,
as schematically represented in Fig.
(4.10):

1. S: Separable states, which are
expressed as a convex sum of
projectors on product vectors,
e.g. | i = |0i ✏ |1i ✏ |0i;

2. B: Biseparable states, which are
expressed as a convex sum of projectors on product and bipartite entangled
states, e.g. | i = |0i ✏ 1p

2
(|01i + |10i);
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3. GHZ: Greenberger-Horne-Zeilinger
states;

4. W states.

While the fully separable and biseparable states involve at least one tensor prod-
uct of Hilbert spaces, the GHZ and W states are true tripartite entangled states,
with entanglement shared between all the parties simultaneously. Moreover,
GHZ and W states constitute inequivalent classes, which cannot be converted
into each other using stochastic local operations and classical communication
[49, 53, 150, 141, 152]. Both types of states display interesting features from the
point of view of fundamental research and potential applications in quantum
tasks.

In the following Chapters we will elaborate more on the properties of W and
GHZ states, briefly recalling the state-of-the-art techniques and performances
in their production. Most notably, in each section we will propose a novel ap-
proach for the generation of the correspondent tripartite state, based on the use
of unconventional degrees of freedom [158, 54]. Please note that the schemes we
provide can be fit either into a bulk optics experiment or in an integrated solu-
tion. However, considering the scope of this thesis, we will present the generation
of W and GHZ states in integrated platforms.
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Chapter 5
Generation of energy-entangled W

states

The W states are a relatively recent research subject, at least compared to
the well-established research area on GHZ states. Yet, they have proven as
promising candidates for a large number of tasks, particularly in the field of
quantum communications. The paradigmatic form of a W state is [49]

|W i =
1p
3

�
|001i + |010i + |100i

�
, (5.1)

where |0i and |1i indicate orthogonal states of a qubit. Typically they refer to
either “vacuum” and “occupation”, or “ground state” and “excited state”. In the
former instance, (5.1) would involve only one particle. However, many protocols
involving W states require the presence of three actual particles, such as ions or
photons. This is a necessary condition, for instance, in tests of non-locality and
to exploit the robustness of W states in quantum communications. The density
matrix associated with the state is reported in Fig. (5.1).

One of the recurrent techniques for the generation of W states involves cooled
atoms in a Paul trap [154]. Here, the qubit is represented by the excitation
state of an atom. The main benefit of this platform is arguably the possibil-
ity to control each atom individually and with great accuracy by using focused
narrow-band laser pulses, even allowing for the realization of controlled gates.
On the other hand, these systems typically require delicate experimental condi-
tions, working in high vacuum and very low temperatures. The other common
technique for the generation of W states is using photon pairs obtained by para-
metric fluorescence in nonlinear media [52, 50, 51, 153]. Having in mind the use
of W states for quantum communication protocols, the advantage of photons in
this respect is evident. Since in this Chapter we are concerned with the gen-
eration of W states using photons, in the following paragraphs we will always
assume to deal with such systems.

81



CHAPTER 5. GENERATION OF ENERGY-ENTANGLED W STATES

W states have attracted particular interest in the field of quantum communi-
cations, and they have shown to be promising candidates for the implementation
of a range of protocols for multipartite Quantum Key Distribution (QKD), with
secret keys shared safely among three parties [159]; dense coding, where the ca-
pacity of a transmission channel is increased by using quantum states of light
[160]; teleportation [161]. One of the main reasons why W states are appealing
for quantum communications is that they are more robust with respect to losses
than GHZ states [52]. Indeed, when one of the photon is lost (for example, due
to absorption or scattering in the communication link), the remaining photon
pair still retains entanglement. This is evident when we partial trace the density
matrix of a W state over one of the qubits (A)

TrA[⇢W ] = h0| ⇢W |0i + h1| ⇢W |1i (5.2)

=
1

3
(|00i h00| + |01i h01| + |01i h10| + |10i h01| + |10i h10|),

which is an entangled state.

Figure 5.1: Real part of the density matrix as-
sociated with the standard form (5.1) of the W
state.

When the physical carrier
of a qubit is a photon, the
quantum information can be
encoded in different degrees of
freedom, such as the photon
polarization, the frequency,
or the spatial mode distribu-
tion. At present, W states
of photons have been gen-
erated solely exploiting the
photon polarization [50, 51,
52]. This is probably due
to the fact that (i) the po-
larization is a very natu-
ral choice for qubit encoding,
(ii) bulk sources of polariza-
tion entangled photons, such
as �-Barium-Borate (BBO)
crystals are widely available
in laboratories, and (iii) the
management of polarization

in free space is simple and reliable, and one can easily perform an arbitrary
rotation of the qubit on the Bloch sphere. When polarization-encoding is con-
sidered, the W state might take the form

|W i =
1p
3

�
|HHV i + |HV Hi + |V HHi

�
, (5.3)

where H and V indicate horizontal and vertical polarization, respectively.
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0 1

Figure 5.2: Schematic representation of the
frequency-encoding adopted in Eq. (5.4) and
(5.5).

The experimental prepa-
ration of such states usu-
ally requires the simultane-
ous generation of two pho-
ton pairs by means of type-
II spontaneous parametric
down-conversion (SPDC) in
a bulk nonlinear crystal [50,
51]. The photons then prop-
agate in free space or in op-
tical fibers, and one can per-
form operations on them by
using optical elements such
as beam splitters, polariza-
tion beam splitters, and wave-plates. A typical implementation, from Eibl et
al. [50, 51], of a scheme for the generation of polarization-entangled W states is
reported in Fig. (5.3).
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spontaneous parametric down-conversion. This state is inequivalent to the Greenberger-Horne-
Zeilinger state under stochastic local operations and classical communications and thus is the
representative of the second class of genuine tripartite entanglement. We study the characteristic
features of entanglement and demonstrate the high degree of two-photon entanglement in the W state.
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Entanglement plays a central role in the field of
quantum information, leading to ongoing efforts for its
quantitative and qualitative characterizations. While en-
tanglement of bipartite systems is well understood [1], the
characterization of entanglement for multipartite systems
is still under intense research. Recently, the equivalence
under stochastic local operations and classical communi-
cations (SLOCC) was introduced in order to classify
multiparty entangled states. This classification is particu-
larly relevant for evaluating their use for multiparty
quantum communication. For tripartite systems there
are only two different classes of genuine tripartite entan-
glement, the Greenberger-Horne-Zeilinger (GHZ) class
and the W class [2,3].

The first class, the GHZ class, is represented by the
state jGHZi ! 1=

!!!

2
p

"j000i # j111i$ [4]. This state is usu-
ally referred to as ‘‘maximally entangled’’ in several
senses, e.g., it violates Bell inequalities maximally. It is
also maximally fragile, i.e., if one or more particles are
lost or projected onto the computational basis f0; 1g, then
all the entanglement is destroyed. Experimentally, GHZ
states of three photons [5] and three Rydberg atoms [6]
were observed.

The representative of the second class is the W state
[2,7],

jWi ! 1
!!!

3
p "j001i # j010i # j100i$: (1)

This state, on one hand, shows perfect correlations and
violates a three-particle Mermin inequality, but the vio-
lation is weaker than for the GHZ state; in this sense, it is
less entangled. On the other hand, for the W state, two-
partite entanglement can be observed after a measure-
ment on one of the particles, contrary to the GHZ state.
From this point of view the W state is more entangled.

In this Letter we present the experimental observation
of the three-photon polarization-entangled W state. We
demonstrate that polarization measurements on three
photons show the characteristic threefold quantum corre-
lations violating a three-particle Mermin inequality. The
entanglement between the two photons of the W state is

analyzed after projection of the third particle onto the
computational basis.

Spontaneous parametric down-conversion (SPDC) has
been used to create polarization-entangled multiphoton
states [5,8]. From the second order emission process of
type-II SPDC [9] one obtains four photons emitted into
two spatial modes a0 and b0. We distribute these photons
into four modes a, b, c, and t (Fig. 1). Conditioned on the
detection of one photon in each of these, we observe the
three-photon W state in modes a, b, and c

jWi ! 1
!!!

3
p "jHHViabc# jHVHiabc# jVHHiabc$: (2)

In this notation, jHHViabc describes the state of one
photon in mode a and one in mode b with horizontal
polarization, and one in mode cwith vertical polariza-
tion. In this setup the state forms as follows: if a vertically
polarized photon in mode b0 is reflected at the polarizing
beam splitter (PBS) and triggers the detector in mode t,
then two of the other three photons from this emission
process have horizontal polarization with the third being
vertically polarized, as required for the three photons of
the W state. Also, for each of the three output modes
carrying the W state, the probability of observing vertical
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FIG. 1 (color online). Experimental setup for the demonstra-
tion of the three-photon polarization-entangled W state. For
details, see text.
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Figure 5.3: Example of an optical scheme for the generation of polarization-
encoded W states [51]. Double photon pairs are generated by SPDC in the
BBO crystal, and propagate in a bulk linear optical circuit composed of Polar-
ization Beam Splitters (PBS), Polarization Dependent Beam Splitters (PDBS),
and Beam Splitters (BS). When a target photon is detected by a Single Photon
Avalanche Detector (SPAD) in channel t, one can observe the generation of a W
state exiting from the other three channels a, b, and c. Finally, a proper quan-
tum state tomography can be achieved by placing Half-Wave Plates (HWP) and
Quarter-Wave Plates (QWP) after each output channel.
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CHAPTER 5. GENERATION OF ENERGY-ENTANGLED W STATES

Yet the use of polarization can be problematic for long distance communica-
tion using optical fibers, where polarization can drift during propagation, and for
the development of integrated quantum devices, where sophisticated solutions
are required to control light polarization on a chip [68]. Thus, it is worth inves-
tigating the use of other degrees of freedom for the photonic implementations of
W states.

We propose a strategy to generate W states that relies on energy-entanglement
rather than polarization entanglement [158]. Our scheme can be implemented
in an integrated optics platform, and thus has the advantages of scalability and
efficiency [162, 163]. The source we propose is capable of preparing a W state
either of the form

1p
3
(|BBRi + |BRBi + |RBBi) (5.4)

or

1p
3
(|RRBi + |RBRi + |BRRi), (5.5)

where |Bi and |Ri are photons that are blue and red detuned with respect to
the pump (see Fig. 5.2).

Before presenting the specific structure we have in mind, it is worth to com-
pare the bulk optical elements used to manipulate polarization-entangled states
with the integrated optical elements used to manipulate energy-entangled states.
This allows us to establish a correspondence, when possible, which is particularly
useful in translating a polarization- to an energy-entanglement scheme for the
generation of W states. This correspondence is shown in Fig. 5.4.

The sources commonly considered for the preparation of polarization-entangled
photon pairs in bulk devices are nonlinear crystals such as BBO, in which type-II
SPDC is used to generate the photons; instead a source for the preparation of
energy-entangled photon pairs in an integrated structure is a silicon micro-ring
resonator, in which spontaneous four-wave mixing (SFWM) is used to generate
the photons [163]. Depending on their polarization, photons generated in a bulk
crystal can be spatially separated using a polarization beam splitter (PBS); in-
stead, photons generated in a micro-ring resonator can be spatially separated
depending on their energy using a tunable add-drop filter [164]. Finally, the
beam splitters commonly employed for photons generated in bulk optics can be
replaced by directional couplers for photons generated in integrated structures
[164].
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Figure 5.4: Analogies between optical elements employed in bulk optics for
schemes involving polarization-entangled states (on the left) and the correspond-
ing integrated optical elements for the scheme introduced here involving energy-
entangled states (on the right). Note the absence of an analogue for the �/2

waveplate.

However, not all of the elements in polarization-entanglement optics find a
straightforward analog in energy-entanglement integrated optics. For example,
in the work by Bouwmeester et al. [150] on the preparation of polarization-
entangled GHZ states, a �/2 plate is used to rotate the polarization. This
element cannot be replaced with a linear component in an integrated optical
scheme such as that proposed here, for it would require a change in the photon
energy. Although this feature seems detrimental to the design of a source of
energy-entangled photons, performing such operations is not strictly required
to produce a W state. Moreover, we show in the following that this is not a
necessary condition even to obtain a full reconstruction of the density matrix of
the state.

5.1 Theoretical Proposal

Let us consider the scheme sketched in Fig. 5.5. It is composed of a silicon
micro-ring resonator acting as the source (S) for the generation of photon pairs,
two add-drop filters (AD1 and AD2) for the extraction of specific spectral com-
ponents, and three cascaded directional couplers (referred to as DC1, DC2, and
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L1’ L2’
L2

L3,	L4L1

Figure 5.5: Scheme for generating energy-entangled W states. S) Micro-ring
resonator for the production of photons pairs by SFWM. AD1) Add-drop filter
extracting only the red and blue photons. AD2) Add-drop filter routing the
red and blue photons to different target detectors. The DCis are directional
couplers, characterized by real-valued transmission and reflection coefficients ti
and ri, respectively.

DC3).
An intense pump pulse is injected into the silicon micro-ring resonator S, with

the center frequency of the pulse chosen to equal that of one of the resonances
of the micro-ring. As we discussed in details in Chapter 3, the small volume of
the cavity and the build-up of the field due to constructive interference in the
ring dramatically enhance the nonlinear response of the resonator [103]. We can
safely assume that the pair generation takes place in the ring resonator alone, for
it is the only resonant structure the pump photons will enter. As ubiquitous in
this thesis, we assume that the generation rate is low and the undepleted pump
approximation is assumed, so that the state produced by SFWM is in the usual
form

| i =

⇣
1 � O(|�|2)

⌘
|vaci + �C†

II |vaci +
1

2
[�C†

II ]
2 |vaci + . . . (5.6)

Here have truncated the expansion (5.6) at the second order, which corresponds
to the creation of two photon pairs, and we have assumed negligible time-ordering
corrections [165]. We can recast the state (5.6) as

| i =

⇣
1 � O(|�|2)

⌘
|vaci + � |IIi +

p
6

2
�2 |IVi + . . . (5.7)

where the state | i, the photon pair state
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|IIi = C†
II |vaci =

1p
2

Z
dk1dk2 �(k1, k2)b

†
k1

b†
k2

|vaci , (5.8)

and the four-photon state

|IV i =
1p
6
(C†

II)
2 |vaci (5.9)

=
1

2
p

6

Z
dk1dk2dk3dk4 �(k1, k2)�(k3, k4)b

†
k1

b†
k2

b†
k3

b†
k4

|vaci

are all normalized (see Appendix A.1).
In order to generate a W state we consider only the creation of two photon

pairs; the probability of this event is |
p

6
2 �

2|2 . In particular, here we consider
SFWM in a ring resonator when one of the generated photons in each pair is
centered at a resonant frequency below that of the pump, and one at a resonant
frequency above. While pairs of photons can be generated at many different
resonant frequencies, as long as the energy is conserved and the phase matching
condition is satisfied, we focus on energy-entangled W states in which photons
are generated via two particular resonances, that we will assume as our |Ri and
|Bi photons. Therefore, here we are adopting the energy-encoding for qubits we
have previously discussed in Section 1.1. We also imagine discarding every other
photon that could enter the rest of the circuit.

To do this, one could simply place notch filters in front of each detector,
but in the spirit of integration we consider using another ring resonator in the
configuration of an add-drop filter (AD2). The radius of this ring is chosen to
guarantee the resonant condition only for red and blue photons; we can obtain
this result by choosing a radius that is incommensurable with that of the ring
S. Ideally, this solution should also remove the pump photons, but in practice
an additional filtering stage may be necessary [166].

The photon pairs produced by SFWM in the microring resonator are gener-
ally correlated in energy, as we discussed in details in Chapter 3, and the Schmidt
Number depends on the ring geometry, the coupling between the ring and the
waveguide, the pump pulse shape and duration. These parameters can be tai-
lored to generate a variety of states, ranging from strongly correlated to nearly
uncorrelated photon pairs. For the generation of W states, we are not interested
in the energy correlations within a single photon pair, but on the entanglement
resulting from the manipulation of two identical photon pairs. To this goal, we
can imagine to pump the ring S with very short pulses, or to adopt the coupling
scheme we presented in Chapter 4. Under this conditions, the expression for the
state produced by the nonlinear interaction in the microring becomes

| i =

p
6

2
�2

(b†
B,0b

†
R,0)

2 |vaci , (5.10)

where a†
R,0 and a†

B,0 are the creation operators for the red and blue photons,
respectively, in channel 0.
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Once this state is identified, we can calculate the output state following the
linear propagation of the fields inside the structure by exploiting the asymptotic
field approach discussed in Section 1.3. When the path between the ring and
the detector is stabilized with the appropriate relative phase factors, we find the
output state is (see Appendix A.2)

| i = ⌘ |�i + 6

p
2ir1t

3
1r2t

2
2r3t3�

2e2iL0(kR+kB) (5.11)
⇥ [ei�1b†

R,1 |WT1i + ei�2b†
B,1 |WT2i]

where

|WT1i = (5.12)

=
1p
3
(b†

B,2b
†
B,3b

†
R,4 + e�i�k�L34b†

B,2b
†
R,3b

†
B,4 + e�i�k�L2204b†

R,2b
†
B,3b

†
B,4) |vaci

⌘ 1p
3
(|BBRi + e�i�k�L34 |BRBi + e�i�k�L2204 |RBBi)

and

|WT2i = (5.13)

=
1p
3
(b†

R,2b
†
R,3b

†
B,4 + ei�k�L34b†

R,2b
†
B,3b

†
R,4 + ei�k�L2204b†

B,2b
†
R,3b

†
R,4) |vaci

⌘ 1p
3
(|RRBi + ei�k�L34 |RBRi + ei�k�L2204 |BRRi)

are two normalized W states. In (5.11), the state vector |�i, occurring with
probability |⌘|2, includes all the terms that do not involve a single photon in
each of the four output channels, ri and ti are real reflection and transmission
coefficients of the directional coupler DCi, satisfying r2

i + t2i = 1, b†
R,i and b†

B,i
are the photon creation operators in the output channel i, and

�k = kB � kR (5.14)
�L34 = L3 � L4

�L2204 = L2 � L20 � L4

�1 = kR(L1 + L10 + L20 + L4) + kB(2L10 + L2 + L20 + L3),

�2 = kR(2L10 + L2 + L20 + L3) + kB(L1 + L10 + L20 + L4),

Li being the length of the i-th channel (see Fig. 5.5). The state obtained in
(2,3,4) can be |WT1i or |WT2i, depending on the energy of the photon in channel
1.

To discriminate between |WT1i and |WT2i, we introduce an add-drop filter
(AD2) that routes red and blue photons to different target detectors T1 and
T2. The radius of the micro-ring resonator in the add-drop filter configuration
is chosen to guarantee a resonance for the blue photons, and high transmission
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probability for the red photons. In the present scheme we set the AD2 microring
radius to be 1/4 that of the radius of the S microring, so that the energy of a
red photon is found in the middle of the free spectral range of the AD2 ring.
Both detection events occur with identical probability |2

p
3�2r1t31r2t22r3t3|2. The

maximum is found for r1 =
1
2 , r2 =

1p
3
, and r3 =

1p
2
, corresponding to a W

state generation probability of | 3
p

2
8 �2|2.

It is worth to stress that the detection of a photon either in T1 or in T2 may
arise from the generation of a single pair, and even when two photon pairs are
generated, only a fraction of the detection events (those in which four detectors
click) will correspond to a W state. Thus in our scheme the generation of W
states relies on a post-selection, and there is no heralding. It should be noticed
that this is not a limitation in a number of applications, for instance multipartite
quantum key distribution, in which heralding is not requested.

Comparing the output state (5.12) to the expected state (5.4), one can notice
the presence of two additional phases associated with the terms |BRBi and
|RBBi. For a reliable generation of energy-entangled W states it is crucial that
these phases do not fluctuate significantly over time, and thus we must guarantee
that

�k�L34 ⌧ 2⇡, (5.15)
�k�L2204 ⌧ 2⇡.

To grasp the physical meaning and understand the experimental constraints
entailed by (5.15), we can split �k in its contributions

�k = k̄B � k̄R + �kB � �kR (5.16)
⌘ �k̄ + ✏,

where k̄B and k̄R are the central wave vectors or the blue and red photons (center
of the corresponding resonances in the ring S), and ✏ is the “fluctuation” of the
wave vector around its mean value, as dictated by the BWF. At this point, we
can determine two main constraints on the generation of pure W states:

1. a Coherence constraint

�L34 ⌧ 2⇡

✏
, (5.17)

�L2204 ⌧ 2⇡

✏
,

which is a common requirement for any MZI operating at a fixed frequency,

2. a Stability constraint

n�L34 ⌧ 2⇡

�k̄
, (5.18)

n�L2204 ⌧ 2⇡

�k̄
,
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Figure 5.6: Schematic representation of the detection setup. Here, as an exam-
ple, we sketch a threefold coincidence measurement revealing the |BBRi state
in the output channels. All these measurements are subject to the simultaneous
detection of a red photon by T1 (see Fig. 5.5). Note that not all of the detectors
represented are actually required: the density matrix of the state can be fully
reconstructed using four detectors.

which is related to the phase delay between blue and red photons propa-
gating with different phase velocities in the waveguides.

It should be noted that the stability constraint is much more stringent than
the coherence constraint. Indeed, ✏ is naturally smaller than �k̄ and it can be
furthermore reduced, for example by filtering the generated photon pairs, albeit
reducing the luminosity of the source. On the contrary, �k̄ is determined by
the FSR of the ring which it is typically much larger than the resonance FWHM
(consider, for instance, high finesse resonators) and it is fixed with the source
geometry. Nonetheless, with current bulk and integrated sources of entangled
photon pairs the stability of the length difference should be limited to a few
hundreds of nanometers, which is experimentally viable.

To demonstrate the generation of a W state, we can perform a series of
measurements in the output channels 2, 3, and 4. Let us focus, for instance, on
the demonstration of the WT1 state in (5.12). We consider the post-selection of
the event characterized by the simultaneous detection of a red photon in channel
1, and one photon in each channel 2, 3, and 4.

Since we need to evaluate the energy of the photons in the output channels,
we can employ three add-drop filters identical to AD2, one for each channel,
as sketched in Fig. 5.6. Their role is to route the incoming photons on the
basis of their energy to different frequency-independent detectors. Generally, the
strategy to prove the generation of a particular quantum state is dual: either
by means of a witness operator, or performing a full tomography of the state.
The first solution only guarantees the creation of a quantum state belonging
to the desired class without accessing all the details of its associated density
matrix, a deeper insight provided by the second approach. While it is always
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possible to construct a witness operator for the W state [167], here we want to
propose a strategy for performing the full tomography of an energy-entangled
tripartite state. We choose this approach because, to the best of our knowledge,
it was never reported in literature and, most notably, because the strategy we
propose does not require any nonlinear element. This can in fact be somewhat
counterintuitive, for the ability to perform a full tomography hinges on the
possibility to rotate a qubit on the Bloch sphere, and in our case this would
imply a series of frequency conversions at the single photon level, which are
in principle possible, are extremely demanding. Yet, the strategy we propose
(discussed in details in Appendix A.3) takes advantage of the path degree of
freedom to avoid the need for any nonlinear operation.

Very recently, Xin et al. [168] showed that it is possible to reconstruct the full
density matrix of almost any tripartite state (including W states) by measuring
its reduced density matrices. The first step toward proving the preparation of
the W state (5.12) is to ensure that the states |BBRi, |BRBi , and |RBBi occur
with the same 1

3 probability. This can be proved by counting the coincidences
in the three detectors in 2, 3, and 4. In the following we will assume that this
condition has been verified. As pointed out by Acín et al. [169] and more recently
by Eibl et al. [51], this is not enough to confirm the generation of a W state.
Indeed, a variety of mixed states lead to the same statistics in the coincidence
count, such as the incoherent mixture ⇢S =

1
3{|BBRi hBBR|+ |BRBi hBRB|+

|RBBi hRBB|} and a mixture of biseparable states ⇢B =
1
3{⇢2 ⌦⇢34 +⇢3 ⌦⇢24 +

⇢4 ⌦ ⇢23} where, for example, ⇢2 corresponds to a blue photon in channel 2, and
⇢34 represents a Bell state in channels 3 and 4.

Whenever |RRBi, |RBRi, and |BRRi occur with equal probability, the den-
sity matrix describing a system composed of two blue photons and one red photon
distributed in channels 2, 3, and 4 is

⇢234 =

0

@

hBBR| hBRB| hRBB|
|BBRi 1

3 a b
|BRBi a⇤ 1

3 c
|RBBi b⇤ c⇤ 1

3

1

A (5.19)

where we have specified the diagonal elements, and a, b, and c are complex
numbers to be determined. To this end, we can evaluate the state of the photon
pair in channels 3 and 4, subject to the detection of a blue photon in channel 2.
Given the detection of a blue photon in channel 2, the density matrix associated
with the photon pair in channels 3 and 4 is

⇢34 =

✓ hBR| hRB|
|BRi 1

2
3
2a

|RBi 3
2a⇤ 1

2

◆
. (5.20)

Of course, the general density matrix for two photons, each either red or
blue, and one in each of two channels, is a 4 ⇥ 4 matrix. In our particular case,
since the process creating the photons satisfies energy conservation, we expect
only one blue and one red photon. Hence that larger 4 ⇥ 4 matrix must be of
the form
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⇢pair =

0

BB@

hBB| hBR| hRB| hRR|
|BBi 0 0 0 0

|BRi 0
1
2

3
2a 0

|RBi 0
3
2a⇤ 1

2 0

|RRi 0 0 0 0

1

CCA. (5.21)

The energy correlation of the two photons responsible for the simple form of
⇢pair allows for the determination of a by performing tomography on the photon
pairs in channels 3 and 4, as we report in details in the next Section. A similar
approach was previously adopted by Ramelow et al. [71]. It should be noted
that these schemes entail just simple interferometric measurements between the
two modes, and no frequency conversion.

We can apply the same reasoning to the tomography on channels 2 and 4

subject to the detection of a blue photon in channel 3, which would lead to the
determination of the complex coefficient b; and to the tomography on channels
2 and 3 subject to the detection of a blue photon in channel 4, which would lead
to the determination of the complex coefficient c. This procedure allows us to
reconstruct the density matrix (5.19) of the three-photon state, and prove the
generation of a WT1 state. The protocol to prove the generation of a WT2 state
is analogous.

In conclusion, we have proposed a design for a device capable of generating
energy-entangled W states, relying on SFWM in a microring resonator and the
linear propagation of light in an integrated optical circuit. All of the elements
involved in the integrated structure we propose are feasible with current technol-
ogy and have already been characterized individually. We have compared them
with the elements used for the generation of polarization-entangled states using
bulk optics, for establishing a simple scheme to translate polarization-encoded
qubits to energy-encoded qubits. Finally, we have presented a feasible protocol
to confirm that a W state is indeed generated when the two pairs of photons are
initially produced.

In the following, we will discuss in further details the strategy we embrace
for obtaining the full tomography of the quantum state generated by our optical
circuit. To do so, we propose a simple bulk optics experimental setup we devel-
oped in a collaboration with the University of Illonois at Urbana-Champaign,
where the experimental demonstration of out theoretical proposal is ongoing.

5.2 Towards a practical implementation
In the previous Section we have proposed a feasible protocol to obtain a full
tomography of the energy-entangled W states generated by the circuit of Fig.
5.5. This is based on the reduced density matrix approach [168], which helps
in reducing the dimension of the density matrix to be reconstructed. Yet, it
is still required to work out a strategy for deriving the 2 ⇥ 2 reduced density
matrix of an energy-encoded photon pair (Eq. (5.20), for instance). To this
end, in the following we present a bulk optics setup equivalent to the integrated
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circuit introduced above for the generation of energy-entangled W states; on that
platform we propose a feasible strategy for the reconstruction of the 2⇥2 reduced
density matrices, and the corresponding experimental setup and procedures for
its completion.

It is worth to point out that, in this context, the implementation of our circuit
in a bulk optics setup can bring a strategic advantage concerning the output state
characterization. As we will discuss in the following, the tomographic procedure
involves a large number of measurements in different experimental configura-
tions; the reconfiguration of an integrated circuit from one setup to the other
would involve a large number of heaters and tunable AD filters, likely resulting
in a complex and unreliable procedure. The same tasks are typically less de-
manding in a bulk optics experiment, where optical elements can be included,
removed and tuned manually. Nonetheless, when the W state source alone is
required, the integrated approach would still be preferable, for less tuning will
be necessary, and it can benefit from higher efficiency and stability.

Let us focus on the reconstruction of the reduced density matrix ⇢34, for
which we introduce the experimental setup sketched in Fig. 5.7. We imagine
to inject a short an intense pump pulse in a birefringent optical fiber, where
energy-entangled photon pairs are generated by SFWM [40]. The residual pump
and the converted photons propagate in free space to a series of three cascaded
achromatic beam splitters, characterized by 25 : 75, 33 : 66, and 50 : 50 split
ratio, respectively. The photons exiting from channel 1 of Fig. 5.7 reach a filter
letting only blue photons to arrive at a frequency-independent detector. As for
our integrated circuit, when such event occurs and we post-select on four-fold
coincidences, we expect an energy-entangled W state to exit the source from
channels 2, 3, and 4.

Following the reduced density matrix approach, the reconstruction of ⇢34

requires post-selecting on a red photon detection in channel 2, too; thus, a red
filter and another detector will be involved (see Fig. 5.8). Now we can finally
analyze the properties of the photons exiting from channels 3 and 4. As already
pointed out in Eq. (5.21), the generic density matrix for a system of two bi-
colored photons is 4 ⇥ 4. Although we will be interested only in the central
submatrix thanks to post-selection, we nonetheless need to begin our discussion
from the generic reduced density matrix

⇢34 =

2

664

a11 a12 a13 a14

a⇤
12 a22 a23 a24

a⇤
13 a⇤

23 a33 a34

a⇤
14 a⇤

24 a⇤
34 a44

3

775 , (5.22)

which should be Hermitian. To obtain a full tomography one has to determine
15 free parameters, since the unit trace condition must be observed.

The tomography procedure on ⇢34 we propose involves a series of unitary
operations on the photon pair, followed by detection and coincidence counts.
We imagine that the structure responsible for the manipulation of the state is
described, for the moment, by a generic frequency-dependent scattering matrix,
as in Fig. 5.8, with
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Figure 5.7: Sketch of a bulk optics experimental setup equivalent to the inte-
grated circuit presented in Fig. 5.5.

S(!) =


S11(!) S12(!)

S21(!) S22(!)

�
(5.23)

so that


|R5i
|R6i

�
= S(R) ·


|R3i
|R4i

�
(5.24)

or 
|B5i
|B6i

�
= S(B) ·


|B3i
|B4i

�
(5.25)

where the two channels exiting from the manipulation stage are labelled 5 and
6.

Given the properties of a scattering matrix and the asymptotic-in/out fields
formalism we recalled in Sec. 1.3, we can express the photon creation operators
in the output channels as

b†
!,5 = S11(!)b†

!,3 + S12(!)b†
!,4 (5.26)

b†
!,6 = � S⇤

12(!)

det[S(!)]⇤
b†
!,3 +

S⇤
11(!)

det[S(!)]⇤
b†
!,4 = S21b

†
!,3 + S22b

†
!,4.

Then, the single photon states at the structure output will be
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Figure 5.8: Sketch of the generic unitary operation on the photons exiting from
channels 3 and 4, required for the characterization of the quantum state gener-
ated by the source. Suitable choices of the scattering matrix S(R, B) lead to the
reconstruction of all the different elements of the reduced density matrix ⇢34.

|R5i = S11(R) |R3i + S12(R) |R4i (5.27)

|R6i = � S⇤
12(R)

(det[S(R)])⇤ |R3i +
S⇤

11(R)

(det[S(R)])⇤ |R4i

|B5i = S11(B) |B3i + S12(B) |B4i

|B6i = � S⇤
12(B)

(det[S(B)])⇤ |B3i +
S⇤

11(B)

(det[S(B)])⇤ |B4i ,

and the two-photon states in the output ports
{|wii} ⌘ {|R5B5i , |R5B6i , |R6B5i , |R6B6i} are given by

|R5B5i = (S11(R) |R3i + S12(R) |R4i) (5.28)
⇥ (S11(B) |B3i + S12(B) |B4i)
= S11(R)S11(B) |R3B3i + S11(R)S12(B) |R3B4i
+ S12(R)S11(B) |R4B3i + S12(R)S12(B) |R4B4i ,
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|R5B6i = (S11(R) |R3i + S12(R) |R4i) (5.29)

⇥ (� S⇤
12(B)

(det[S(B)])⇤ |B3i +
S⇤

11(B)

(det[S(B)])⇤ |B4i)

= �S11(R)S⇤
12(B)

(det[S(B)])⇤ |R3B3i +
S11(R)S⇤

11(B)

(det[S(B)])⇤ |R3B4i ,

|R6B5i = (� S⇤
12(R)

(det[S(R)])⇤ |R3i +
S⇤

11(R)

(det[S(R)])⇤ |R4i) (5.30)

⇥ (S11(B) |B3i + S12(B) |B4i)

= �S⇤
12(R)S11(B)

(det[S(R)])⇤ |R3B3i � S⇤
12(R)S12(B)

(det[S(R)])⇤ |R3B4i

+
S⇤

11(R)S11(B)

(det[S(R)])⇤ |R4B3i +
S⇤

11(R)S12(B)

(det[S(R)])⇤ |R4B4i ,

and

|R6B6i = (� S⇤
12(R)

(det[S(R)])⇤ |R3i +
S⇤

11(R)
(det[S(R)])⇤ |R4i) (5.31)

⇥ (� S⇤
12(B)

(det[S(B)])⇤ |B3i +
S⇤

11(B)
(det[S(B)])⇤ |B4i)

=
S⇤

12(R)S⇤
12(B)

(det[S(R)])⇤(det[S(B)])⇤ |R3B3i � S⇤
12(R)S⇤

11(B)
(det[S(R)])⇤(det[S(B)])⇤ |R3B4i

� S⇤
11(R)S⇤

12(B)
(det[S(R)])⇤(det[S(B)])⇤ |R4B3i +

S⇤
11(R)S⇤

11(B)
(det[S(R)])⇤(det[S(B)])⇤ |R4B4i .

This allows us to express, in principle, every element of the density matrix in
the asymptotic-in basis in terms of the asymptotic-out basis. We shall call the
output density matrix

⇢56 =

X

i,j

⌧ij |wii hwj | . (5.32)

We can access the diagonal elements of ⇢56 by placing detectors in channels 5 and
6. At a first glance this seems to necessitate the use of two frequency-dependent
detectors in the same channel. Yet, such inconvenient can be overcome using
a dichroic mirror in each output channel. In this configuration, the blue an
red photons are routed to different output ports, and the experiments can be
performed just using frequency-independent detectors.

As we state explicitly in Appendix A.3, from Eq. (5.28)-(5.31) and (5.32)
one can express the diagonal elements of ⇢56 as a function of the elements of
⇢34. For convenience, each type of coincidence measurement in channels 5 and 6

is referred to either as an X measurement, when both a red and a blue photon
are detected in channel 5, a Y measurement, when the red photon is detected
in channel 5 and the blue photon is detected in channel 6, or a Z measurement,
when the blue photon is detected in channel 5 and the red photon is detected
in channel 6. Conversely, each element of the reduced density matrix ⇢34 can be
reconstructed by performing a series of coincidence measurements X, Y , and Z,
subject to selected scattering matrices.
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We are particularly interested in the measuring the elements of the central
submatrix of ⇢34, so we will focus on those alone. The same strategy we adopt
in the following can be used for the calculation of all the other elements of the
reduced density matrix. The reconstruction of the diagonal elements of ⇢34 is
straightforward and we report in Fig. 5.9 the optical setups for the measurement
of a22 and a33.

The reconstruction of the element a23 is considerably more demanding, and
for this task we can refer to the optical setup represented in Fig. 5.10, where a
Z measurement is shown, for example.

The scattering matrices S(R, B) for the red and blue photons are

S(R) =
1p
2


eikRL5 ieikR(L6+L7)+i�R

ieikRL5 eikR(L6+L7)+i�R

�
(5.33)

S(B) =
1p
2


eikBL5 ieikB(L6+L8)+i�B

ieikBL5 eikB(L6+L8)+i�B

�

The coincidence count in a Y measurement gives

Y (�R,�B) =
1

4
� aR

12 + aR
34

2
sin[kB(L5 � L6 � L8) � �B ] (5.34)

� aI
12 + aI

34

2
cos[kB(L5 � L6 � L8) � �B ]

+
aR
13 + aR

24

2
sin[kR(L5 � L6 � L7) � �R]

+
aI
13 + aI

24

2
cos[kR(L5 � L6 � L7) � �R]

+
1

2
cos[(kR + kB)(L5 � L6) � (kRL7 + kBL8) � (�R + �B)]aR

14

� 1

2
cos[(kR � kB)(L5 � L6) � (kRL7 � kBL8) � (�R � �B)]aR

23

� 1

2
sin[(kR + kB)(L5 � L6) � (kRL7 + kBL8) � (�R + �B)]aI

14

+
1

2
sin[(kR � kB)(L5 � L6) � (kRL7 � kBL8) � (�R � �B)]aI

23.

The same estimate for a Z measurement gives
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Figure 5.9: Experimental setup we envision for measuring the diagonal elements
of the reduced density matrix ⇢34. In (a) we show the simultaneous detection of
a red photon in channel 5 and a blue photon in channel 6; from the normalized
count of the coincidences the element a22 can be accessed. The same setup is
used in (b) for the simultaneous detection of a blue photon in channel 5 and a
red photon in channel 6, whose normalized coincidence count reveals the element
a33.
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Z(�R,�B) =
1

4
+

aR
12 + aR

34

2
sin[kB(L5 � L6 � L8) � �B ] (5.35)

+
aI
12 + aI

34

2
cos[kB(L5 � L6 � L8) � �B ]

� aR
13 + aR

24

2
sin[kR(L5 � L6 � L7) � �R]

� aI
13 + aI

24

2
cos[kR(L5 � L6 � L7) � �R]

+
1

2
cos[(kR + kB)(L5 � L6) � (kRL7 + kBL8) � (�R + �B)]aR

14

� 1

2
sin[(kR + kB)(L5 � L6) � (kRL7 + kBL8) � (�R + �B)]aI

14

� 1

2
cos[(kR � kB)(L5 � L6) � (kRL7 � kBL8) � (�R � �B)]aR

23

+
1

2
sin[(kR � kB)(L5 � L6) � (kRL7 � kBL8) � (�R � �B)]aI

23.
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Figure 5.10: Scheme of the experimental setup we propose for the reconstruction
of the diagonal element a23 of the reduced density matrix ⇢34.

The sum of the coincidence counts in the Y and Z measurement is
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Y (�R,�B) + Z(�R,�B) =
1

2
+ cos(⇠+ � �+)aR

14 � cos(⇠� � ��)aR
23 (5.36)

� sin(⇠+ � �+)aI
14 + sin(⇠� � ��)aI

23

=
1

2
+ cos(⇠+) cos(�+)aR

14 + sin(⇠+) sin(�+)aR
14

� cos(⇠�) cos(��)aR
23 � sin(⇠�) sin(��)aR

23

� sin(⇠+) cos(�+)aI
14 + cos(⇠+) sin(�+)aI

14

+ sin(⇠�) cos(��)aI
23 � cos(⇠�) sin(��)aI

23,

where

⇠+ ⌘ (kR + kB)(L5 � L6) � (kRL7 + kBL8) (5.37)
⇠� ⌘ (kR � kB)(L5 � L6) � (kRL7 � kBL8)

�+ ⌘ (�R + �B)

�� ⌘ (�R � �B).

We can consider some particular configurations, such as

Y (0, 0) + Z(0, 0) =
1

2
+ cos(⇠+)aR

14 � cos(⇠�)aR
23 (5.38)

� sin(⇠+)aI
14 + sin(⇠�)aI

23

Y (
⇡

2
,
⇡

2
) + Z(

⇡

2
,
⇡

2
) =

1

2
� cos(⇠+)aR

14 � cos(⇠�)aR
23

+ sin(⇠+)aI
14 + sin(⇠�)aI

23

Y (0,
⇡

2
) + Z(0,

⇡

2
) =

1

2
+ sin(⇠+)aR

14 + sin(⇠�)aR
23

+ cos(⇠+)aI
14 + cos(⇠�)aI

23

Y (
⇡

2
, 0) + Z(

⇡

2
, 0) =

1

2
+ sin(⇠+)aR

14 � sin(⇠�)aR
23

+ cos(⇠+)aI
14 � cos(⇠�)aI

23

that, combining the results, provide us

Y (0, 0) + Z(0, 0) + Y (
⇡

2
,
⇡

2
) + Z(

⇡

2
,
⇡

2
) = (5.39)

= 1 � 2 cos(⇠�)aR
23 + 2 sin(⇠�)aI

23

Y (0,
⇡

2
) + Z(0,

⇡

2
) � Y (

⇡

2
, 0) � Z(

⇡

2
, 0) =

= 2 sin(⇠�)aR
23 + 2 cos(⇠�)aI

23,
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and finally

aR
23 =

1

2
cos(⇠�)[1 � Y (0, 0) � Z(0, 0) � Y (

⇡

2
,
⇡

2
) � Z(

⇡

2
,
⇡

2
)] (5.40)

+
1

2
sin(⇠�)[Y (0,

⇡

2
) + Z(0,

⇡

2
) � Y (

⇡

2
, 0) � Z(

⇡

2
, 0)]

aI
23 =

1

2
sin(⇠�)[Y (0, 0) + Z(0, 0) + Y (

⇡

2
,
⇡

2
) + Z(

⇡

2
,
⇡

2
) � 1]

+
1

2
cos(⇠�)[Y (0,

⇡

2
) + Z(0,

⇡

2
) � Y (

⇡

2
, 0) � Z(

⇡

2
, 0)].

Once the value of ⇠� is obtained, by classical measurements, one can reconstruct
the complex diagonal element a23.

In conclusion, by performing 6 coincidence measurements in different con-
figurations and combining the results, it is possible to reconstruct the internal
submatrix of the reduced density matrix ⇢34. Such approach can then be iter-
ated for the characterization of the density matrices ⇢23 and ⇢24, yielding the
three reduced density matrices required for the full reconstruction of tripartite
quantum state produced by our structure, and experimentally demonstrate the
generation of energy-entangled W states.

We now move on to discuss the case of another tripartite entangled state,
namely the GHZ state, which is particularly interesting for its possible appli-
cations in a multitude of quantum information processes. In analogy with the
present Chapter, we will provide a novel approach for the generation of such
quantum state, which is particularly helpful in the view of enhancing the source
efficiency and for a simpler integration on a PIC.
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Chapter 6
Generation of path-encoded GHZ

states

First introduced in 1989 by D. M. Greenberger, M. A. Horne and A. Zeilinger
[53], GHZ states have since attracted an ever-growing interest, thanks to their
effectiveness in testing fundamental aspects of quantum mechanics and their use
in quantum protocols for communication and metrology. The simplest form of
a GHZ states is

|GHZi =
1p
3
(|000i + |111i), (6.1)

where |0i and |1i represent the orthogonal states of a qubit which, as we dis-
cussed above, can be implemented using different degrees of freedom, such as
polarization, energy, or mode spatial distribution. The density matrix of the
GHZ state (6.1) state is reported in Fig. 6.1.

GHZ states have been applied in tests of local realism [55], where the use
of tripartite states allows for a demonstration of its conflict with quantum me-
chanics even in a definite measurement, as opposed to such tests using bipartite
states which rely on the statistics of a large number of measurements. They have
also been used to devise quantum communication protocols, such as multipartite
QKD [56], dense coding [170], and entanglement swapping [171].

The first experimental evidence of GHZ states was provided by Bouwmeester
et al. [150] using polarization-entangled photon pairs produced by SPDC in a
nonlinear crystal. The scheme adopted by the authors is reported in Fig. ??.

As we already argued in the previous Chapter on W states, when photons are
used to produce a multipartite state, the choice of polarization as the entangled
degree of freedom is typical and, at present, the sole reported in literature. Yet
the use of polarization poses several constraints, especially aiming for an inte-
grated source, and for long distance communications. In the former instance, the
manipulation of a photon polarization on-chip is complicated by any asymmetry
in the waveguide geometry, and by the fabrication complexity, the footprint,
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and the bandwidth requirements of integrated polarization rotators [172, 69]; in
the latter instance, we must recall that the current optical network is composed
of polarization-insensitive fibers, and therefore any fluctuation in the birefrin-
gence would have a damaging impact on the GHZ state. Once more, the use of
other degrees of freedom in photonic implementations of GHZ states is worth
investigating.

Figure 6.1: Real part of the density matrix asso-
ciated with the standard form (6.1) of the GHZ
state.

In the following we demon-
strate the possibility to pre-
pare GHZ states with the gen-
erated photons entangled in
the path degree of freedom
[54]; the states |0i and |1i here
refer to the photon being in
different spatial modes [173],
regardless any other degree of
freedom. Given the scope of
this thesis, we envision the
generation of GHZ states in
a photonic integrated circuit
(PIC) in which two pho-

ton pairs are generated by
SFWM in a �(3) material,
but we stress that a simi-
lar approach would be device-
independent. The scheme we
propose allows us to take ad-
vantage of the enhancement

of the generation rate provided by integrated microresonators, and to drasti-
cally reduce the footprint of the source [136]. Note that, in principle, it would
be possible to design optical schemes that manipulate path-encoded states and
subsequently translate and output them in the polarization representation. This
has been proposed recently to achieve chip-to-chip quantum communication [77].
However, here we are mainly interested in both the manipulation and output of
path-encoded states on optical chips.

We envision the situation depicted in Fig. 6.3: four photons are generated
in an integrated device, of which one is used as a target and three are used as
qubits. For each qubit there are two paths, each path associated with a basis
state. The three photons are routed to three independent parties (Alice, Bob,
and Charlie), which can manipulate them, where the rotation of the qubit on
the Bloch sphere is performed by means of a MZI and two phase shifts [75].

As a first step, similarly to what we did in the previous Chapter, we can devise
a correspondence between bulk optical elements used to manipulate polarization
states and integrated optical elements necessary to manipulate path-encoded
states. Such correspondence is shown in Fig. 6.4. As customary in the path-
encoding scheme (see Section 1.1) we imagine to employ two waveguides, or
paths, for each photon route in the optical circuit. We assign the state |1i or |0i
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FIG. 1. Schematic drawing of the experimental setup for the
demomstration of the Greenberger-Horne-Zeilinger entangle-
ment for spatially separated photons. Conditioned on the regis-
tration of one photon at the trigger detector T, the three
photons registered at D1, D2, and D3 exhibit the desired GHZ
correlations.

generated by a short pulse of ultraviolet (UV) light
(¯200 fs, l ≠ 394 nm from a frequency-doubled, mode-
locked Ti-sapphire laser), which passes through a nonlin-
ear crystal (here, b-barium-borate, BBO). The probability
per pulse to create a single pair in the desired modes, se-
lected by irises, about 1.5 mm wide and 25 cm behind the
crystal, is low and of the order of a few 1024. The pair
creation is such that the following polarization entangled
state is obtained [3]:

1p
2

sjHlajV lb 2 jV lajHlbd . (1)

This state indicates a superposition of the possibility that
the photon in arm a is horizontally polarized and the
one in arm b is vertically polarized sjHlajV lbd, and the
opposite possibility sjV lajHlbd. The minus sign indicates
that there is a fixed phase difference of p between the two
possibilities. For our GHZ experiment this phase factor is
actually allowed to have any value, as long as it is fixed
for all pair creations.
The setup is such that arm a continues towards a

polarizing beam splitter, where V photons are reflected
and H photons are transmitted towards detector T (behind
an interference filter dl ≠ 4.6 nm at 788 nm). Arm b

continues towards a 50y50 polarization-independent beam
splitter. From each beam splitter, one output is directed
to a final polarizing beam splitter. In between the two
polarizing beam splitters, vertical polarization is rotated to
45± polarization using a ly2 plate. The remaining three
output arms continue through interference filters sdl ≠
3.6 nmd and single-mode fibers towards the single-photon
detectors D1, D2, and D3. Including filter losses, coupling

into single-mode fibers, and the Si-avalanche detector
efficiency, the total collection and detection probability of
a photon is about 10%.
Consider now the case that two pairs are generated by a

single UV pulse, and that the four photons are all detected,
one by each detector T, D1, D2, and D3. Our claim is
that, by the coincident detection of the four photons and
because of the brief duration of the UV pulse and the
narrowness of the filters, one can conclude that a three-
photon GHZ state has been recorded by detectors D1, D2,
and D3. The reasoning is as follows. When a fourfold
coincidence recording is obtained, one photon in path a

must have been horizontally polarized and detected by the
trigger detector T. Its companion photon in path b must
then be vertically polarized, and it has a 50% chance to
be transmitted by the beam splitter (see Fig. 1) towards
detector D3 and a 50% chance to be reflected by the beam
splitter towards the final polarizing beam splitter, where
it will be reflected to D2. Consider the first possibility,
i.e., the companion of the photon detected at T is detected
by D3 and necessarily carried polarization V . Then the
counts at detectors D1 and D2 were due to a second pair,
one photon traveling via path a and the other one via path
b. The photon traveling via path a must necessarily be V

polarized in order to be reflected by the polarizing beam
splitter in path a; thus its companion, taking path b, must
be H polarized and, after reflection at the beam spliter in
path b, it will be transmitted by the final polarizing beam
splitter and arrive at detector D1. The photon detected by
D2 therefore must be H polarized since it came via path a

and had to transit the last polarizing beam splitter. Note
that this latter photon was V polarized but after passing
the ly2 plate it became polarized at 45± which gave it a
50% chance to arrive as an H polarized photon at detector
D2. Thus we conclude that, if the photon detected by
D3 is the companion of the T photon, the coincidence
detection by D1, D2, and D3 then corresponds to the
detection of the state

jHl1jHl2jV l3 . (2)

By a similar argument one can show that, if the photon
detected by D2 is the companion of the T photon, the
coincidence detection by D1, D2, and D3 corresponds to
the detection of the state

jV l1jV l2jHl3 . (3)

In general, the two possible states (2) and (3), cor-
responding to a fourfold coincidence recording, will not
form a coherent superposition, i.e., a GHZ state, because
they could, in principle, be distinguishable. Besides the
possible lack of mode overlap at the detectors, the ex-
act detection time of each photon can reveal which state
is present. For example, state (2) is identified by not-
ing that T and D3, or D1 and D2, fire nearly simultane-
ously. To erase this information it is necessary that the
coherence time of the photons is substantially longer than

1346

Figure 6.2: Optical scheme used by Bouwmeester et al. [150] for the first gener-
ation of polarization-entangled GHZ states .

to a photon when it travels in one waveguide or the other, which we graphically
depict as dotted and dashed, respectively, in Fig. 6.4.

Figure 6.3: Sketch of the general scheme for the preparation and distribution of
path-encoded GHZ states.

This convention is kept consistent throughout the whole circuit.
The rotation of polarization states is performed in bulk optics by using a

�/2 plate, while the corresponding evolution of path states is effected with a
50:50 DC connecting the two waveguides associated with the |1i and |0i states.
Photons in a bulk optical circuit can be routed depending on their polarization
using a PBS; the same can be done for the path-encoded states by properly
connecting the waveguides of the input ports to the waveguides of the output
ports (see Fig. 6.4). Finally, photons in a bulk optical circuit can be spatially
separated regardless their polarization state using a BS, and the corresponding
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Figure 6.4: Analogies between optical elements employed in bulk optics for
schemes involving polarization-entangled states (on the left) and the correspond-
ing integrated optical elements for the scheme introduced here involving path-
encoded states (on the right). Dotted and dashed lines indicate waveguides
associated with |1i and |0i, respectively. The shaded boxes mark the coupling
points between waveguides.
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operation on path-encoded states is performed in integrated optics using two
50:50 DCs.

Two remarks regarding path states and their manipulation are necessary:
First, we note that the generation of a meaningful path-encoded state for a
photon pair requires a source more complicated than a single-bus-waveguide
ring resonator [174, 175, 176]. Second, some of the integrated optical elements
used to manipulate path states (see Fig. 6.4) display a waveguide crossing that
seems problematic in a planar geometry, which is usually the choice for PICs.
However, we will see that proper sources can be designed, and a waveguide
rearrangement can avoid the problematic waveguide crossing.

Considering a generic parametric source, in the approximation of undepleted
pump pulses described classically, the state of the generated photons is of the
usual form [104]

| i = e�C†
II�H.c. |vaci

=
�
1 + O(|�|2)

�
|vaci + �C†

II |vaci +
1

2

h
�C†

II

i2
|vaci + . . .

⌘
�
1 + O(|�|2)

�
|vaci + � |IIi +

1

2

h
�C†

II

i2
|vaci + . . . , (6.2)

where |IIi is the normalized two-photon state. In the limit of interest where
|�|2 ⌧ 1, we can truncate the expansion (6.2) at the quadratic term in � ,
which corresponds to the generation of two pairs. The properties of the four-
photon state contribution to (6.2), resulting from the generation of two photon
pairs, are directly related to the those of the creation operator C†

II . Hence, once
this has been calculated, the output state of two or more pairs can be obtained
immediately. For this reason, we begin with a discussion of the generation of a
single photon pair.

The structure we propose can be divided in two parts: a nonlinear integrated
source, which generates a path-encoded initial state, and a linear optical circuit
to manipulate it. The full calculation of the output state is reported in Appendix
B.1.
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Figure 6.5: Sketch of the nonlinear integrated source of path-entangled states
(6.3). Waveguides associated with single qubits are grouped together, phase
shifters and relevant lengths are also shown.

The nonlinear integrated source (see Fig. 6.5) consists of four identical ring
resonators arranged in two blocks, each of which is a MZI unbalanced by a phase
�i, with one ring resonator per arm. The two blocks are coherently pumped using
a 50:50 directional coupler, which splits the pump amplitude into two waveg-
uides, with � being the pump phase difference between the two blocks. Although
this is not strictly necessary, here we consider degenerate SFWM [32], for which
we require a dual-pump scheme, where the 50:50 split ratio can be guaranteed
by choosing an appropriate length of the directional coupler [177]. Since the
field enhancement inside the rings is much larger than that in the waveguides,
we assume that the generation of photons occurs only in the resonators.

It should be noticed that although the use of four identical microring res-
onators might pose some constraints, the fabrication technique for multiple inte-
grated elements on SOI platforms has constantly improved in recent years, up to
the realization of several hundred coupled microrings [178]. Moreover, it is pos-
sible to tune each resonator almost independently via heaters: this enables the
control of the position of its resonances with great precision [179]. If one consid-
ers silicon ring resonators, the large nonlinearity (� ⇡ 200 W�1m�1) guarantees
high generation efficiencies with mW pump powers and Q ⇡ 10000 [136], which
relaxes the constraints on the ring tunability. Finally, the two blocks in Fig.
6.5 have already been used for the generation of deterministically split photons
by the reverse HOM effect, yielding high-visibility quantum interference [75].
Indeed, when �i = ⇡/2[2⇡] one observes deterministic splitting of the photon
pair exiting the MZI [175]. But when the two blocks are pumped with a rela-
tive phase shift � = ⇡ (or odd multiple), the two-photon state generated by the
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source is the Bell state (see Appendix B.1)

| �i =
1p
2

(|1i |0i � |0i |1i) , (6.3)

where we use the first and fourth waveguide for the first path-encoded qubit
and we use the second and the third waveguide for the second path-encoded
qubit as depicted in Fig. 6.5. This situation is analogous to that considered by
Bouwmeester et al. [150], where the nonlinear crystal generates photon pairs in
the corresponding polarization-encoded entangled state.

We now consider the simultaneous generation of two pairs of photons, de-
scribed by the effect of (C†

II)
2 on the vacuum state. This leads to the four-photon

state

|IVi = � 1

2
p

3

Z
dk0

1dk0
2dk1dk2�ring(k1, k2)�ring(k

0
1, k

0
2)

⇥ ei( (k1,k2)+ 
0(k1,k2))(b†

k1,1b
†
k2,2 � b†

k1,3b
†
k2,4)

⇥ (b†
k0
1,1b

†
k0
2,2 � b†

k0
1,3b

†
k0
2,4) |vaci , (6.4)

where �ring(k1, k2) is the BWF of a pair generated in a single ring,  (k1, k2) and
 0

(k1, k2) are phase factors associated with propagation in the channel (which
can be assumed constant) defined in (B.23), and b†

ki,j
is the operator associated

with the creation of a photon having wave vector ki and exiting the structure in
Fig. 6.5 from the channel j. The state |IVi is normalized under the assumption
that the BWF �ring(k1, k2) is separable (see below).

We now turn to the manipulation of the state |IVi, which is done follow-
ing a strategy similar to the one proposed by Bouwmeester et al. [150] for
polarization-encoded entangled states, but implemented for path-encoded en-
tangled states using the correspondence between polarization bulk elements and
the path integrated components illustrated in Fig. 6.4. Note that we have
avoided the waveguide overlapping in the integrated analogue of a beam splitter
(see Fig. 6.4) by a rearrangement of the circuit waveguides as shown in Fig. 6.6.
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Figure 6.6: Sketch of the complete integrated circuit for the generation of path-
encoded GHZ states. We can identify a schematic representation of the source of
path-encoded entangled states in the form (6.3), and a realistic implementation
of the full circuit obtained by rearranging some of the channels and the detectors.
Waveguides associated with single qubits are grouped together.

In analogy with Bouwmeester et al. [150], post-selecting on a three-fold
coincidence in detectors D1, D2, and D3 in Fig. 6.6, conditioned on the detection
of a photon in the target detector T , identifies that a GHZ state was generated.
Care must be taken to ensure that the generated GHZ state is pure. As in the
generation of pairs of photons for heralded photon applications, this requires
the function �ring(k1, k2) to be separable. Indeed, whenever this is not the case,
the partial trace over the herald photon Hilbert space reveals a mixed heralded
photon state. We have proposed two schemes for obtaining nearly uncorrelated
or truly uncorrelated photon pairs in Chapter 3 and 4, respectively, by adjusting
the pump pulse duration and the coupling geometry.

Following the asymptotic fields approach (see Section (1.3)and Appendix
(B.1)) we can rewrite the complete output state as:

| i =
�
1 + O(|�|2)

�
|vaci + � |IIi +

p
3

2
�2


|�i � 1

2
p

3
| GHZi

�
, (6.5)

where |�i includes other contributions that are second order in � but would not
lead to a four-fold coincidence event, while

| GHZi =

Z
dk1dk2dk0

1dk0
2�ring(k1, k2)�ring(k

0
1, k

0
2) ⇥ ei� |Ti |GHZi , (6.6)
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with � a phase factor and

|GHZi =
1p
2

h
b†
k1,D1,1

b†
k2,D2,1

b†
k0
2,D3,0

(6.7)

+ ei⇥(k2,k0
1,k0

2)b†
k2,D1,0

b†
k0
2,D2,0

b†
k1,D3,1

i
|vaci

=
1p
2

⇥
|110i + ei⇥ |001i

⇤
,

|T i = b†
k0
1,T |vaci .

Here ⇥(k2, k0
1, k

0
2) is a relative phase between the two GHZ state components

and depends on the relative positions of the detectors (see (B.28)), which cannot
be longer than the coherence length of the photons. Such a coherence length can
always be increased by filtering, although for typical resonance widths achievable
at telecom wavelengths in silicon and silicon nitride resonators it already ranges
from centimeters to meters [90, 44, 176].

As expected, any four-fold coincidence event results in a GHZ state, where
the probability of such an event is

���2/4
��2, when propagation losses are ne-

glected. The magnitude of � depends on the pump power, the ring radius and
the quality factor of the resonators, and it can vary depending on the device un-
der consideration. Yet values of |�|2 ⇡ 0.1 have been demonstrated in PICs [75],
and assuming MHz pump repetition rates, this would allow for the preparation
of path-encoded GHZ states with kHz generation rates with mW pump powers
and quality factors of the order of 10

4. Although our theoretical estimate does
not account for any loss, device imperfection, and detector efficiencies, we still
expect a large improvement on the generation rate with respect to the present
results reported in the literature.

In conclusion, we can identify a one-to-one correspondence between compo-
nents operating in a path encoding scheme and bulk optical elements operating
in a polarization encoding scheme. On this premise, we investigated the possibil-
ity to generate of path-encoded tripartite GHZ states. It should be noticed that,
although the generation of the desired state is revealed only in post-selection —
destroying the quantum state — many protocols involving GHZ states are based
on this condition [56, 170, 171]. Our approach is suitable for the generation of
multipartite states in quantum photonic integrated devices, as it overcomes the
difficulties related to the use of the polarization degree of freedom. To demon-
strate this, we designed and studied an integrated structure relying on the gen-
eration of photon pairs by SFWM in ring resonators, showing the potential of
this approach in terms of source footprint and brightness.
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Chapter 7
Conclusions and Perspectives

In this work, we presented and analyzed different solutions for the generation of
nonclassical states of light in integrated structures, specifically conceived for the
production of entangled or completely unentangled photon pairs and tripartite
entangled states. The study of similar sources is of central importance for the
development of quantum integrated photonics, which is one of the most promis-
ing platforms for the implementation of quantum protocols for communications,
sensing/metrology, simulation, and computation.

While Chapter 1 was devoted to a brief introduction of the basic concepts
of quantum photonics and integrated nonlinear optics, the first innovative con-
tribution comes with Chapter 2, where we investigated the possibility to use
porous silicon as a low-cost �3 material for integrated nonlinear optics, with
the long-term goal of demonstrating parametric fluorescence. Even though this
last objective has proved to be experimentally out of our reach owing to the
exceedingly high propagation and coupling losses displayed by our samples, pSi
has nonetheless revealed a remarkably intense nonlinear response, such that
it was possible to observe photon pairs generated by stimulated FWM even
with a CW low-power pump, and estimate a waveguide nonlinear parameter
� = (20 ± 2) m�1W�1.

The source was analyzed both theoretically and experimentally and it was
composed of a side-coupled microring resonator, whose cross section was a ridge
waveguide obtained by controlling the silicon fraction in the porous material.
The samples were fabricated at the Vanderbilt University, in a collaboration
with the group led by Prof. Sharon Weiss. From the measured transmission
spectra it was then possible to estimate the pSi microring quality factor which,
for the resonances involved in the experiment, was found close to Q ⇡ 5·10

3. This
information, together with the geometrical and pumping parameters allowed us
to determine the parameter �, showing that pSi has a nonlinear response in-
termediate between that of semiconductors and oxides. Moreover, thanks to
the estimate of the refractive index of pSi in the ridge and substrate region,
we could numerically compute the mode effective area Aeff , both with a FDE
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solver and an effective index approach. From such estimate we eventually de-
termined the nonlinear refractive index of pSi, finding n2 = 4.26 · 10

�18 m2/W ,
in a good agreement with previous works in the literature. Finally, leveraging
the correspondence between stimulated and spontaneous nonlinear phenomena,
we could predict the generation rate of photon pairs by SFWM in our source,
and determine the coupled pump power required for observing kHz generation
rates. Despite the intrinsic roughness responsible for high propagation losses
(estimated, in our case, in 2.75 dB/mm), the quality factor of our ring was
sufficiently high to observe stimulated FWM at low CW pump power. Such a
remarkable nonlinearity, together with the distinctive properties of pSi such as
the large internal surface area and the possibility to infiltrate with other ma-
terials, boosts the interest for applications in low-power integrated nonlinear
optics.

In Chapters 3 and 4 we moved from the pSi to the SOI platform, which is
today well-established and guarantees lower losses and a higher nonlinear param-
eter. In these Chapters we focused on the spectral correlations of the photon
pairs generated by SFWM in integrated microring resonators. In particular, in
Chapter 3 we examined theoretically and experimentally the case of a standard
side-coupled crystalline silicon microring, and discussed the possibility to tailor
the quantum correlations between the frequency-converted photons by adjusting
the pump pulse duration. To this end, by taking advantage of the asymptotic
field approach, we could compute the JSD and the Schmidt Number in the so-
called short and long pump pulse regime. The comparison between the numerical
simulations and the experimental measurements in the short pump pulse regime
showed a good agreement, with a predicted Schmidt Number of KTheory = 1.09

and the experimental bound at Kbound = 1.03±0.1. The same comparison could
not be performed in the case of the long pump pulse regime, for the experimen-
tal value is strongly limited by the measurement resolution. Yet, it should be
noticed that the reconstruction of the JSD was achieved with unprecedented
accuracy in literature, thanks to the use of the stimulated emission tomogra-
phy technique. As expected from the theoretical description, the photon pairs
generated by SFWM in the long pump pulse regime showed high quantum cor-
relations with an estimated Schmidt Number K = 37038, while the photon pairs
generated by SFWM in the short pump pulse regime displayed vanishing corre-
lations. As we recalled in the present work, this last condition is crucial for the
design of an heralded single photon source, and in this regard integrated micror-
ing resonators are often considered valid implementations. However, even with
the shortest pump pulse, the the separability of the BWF of a photon pair gen-
erated in a side-coupled microring cannot be complete, and the the presence of
residual quantum correlations is responsible for the heralding of partially mixed
quantum states.

We addressed this problem in Chapter 4, where we discussed the impact
of an interferometric coupling scheme on the spectral properties of the photon
pairs generated by parametric fluorescence in a ring resonator. Devising a sim-
plified expression for the BWF we showed that the lack of separability of photon
pairs generated in a conventional ring is due to the absence of a frequency-

114



CHAPTER 7. CONCLUSIONS AND PERSPECTIVES

dependent coupling scheme; indeed, when the ratio between the quality factors
max(QS , QI)/QP can be tuned, the purity of the resulting heralded output state
varies between 0 and 1 (totally mixed to pure) accordingly. The quality factors
can in turn be adjusted by designing a frequency-dependent coupling between
the bus waveguide and the microring resonator. In this work, we adopted a dou-
ble interferometric coupling scheme based on a MZI, whose frequency response
can be tuned by unbalancing one of the interferometer arms using microheaters,
to couple light in an add-drop microring resonator. To theoretically character-
ize this source, we produced a insightful, yet approximate, theoretical estimate
of its performance, together with a comprehensive numerical calculation of the
output state and the single photon purity. We showed that, as expected, for low
QSI/QP ratios the purity of the output state is scarce, while upon increasing the
Q ratio till unity we could reproduce the behavior of a side-coupled microring,
where all the resonances have approximately the same quality factor, yielding
a purity � = 91.7%. More interestingly, increasing the QSI/QP ratio above
unity we could predict the generation of high-purity heralded single photons,
with � ⇠ 99.9%. Although for lower QSI/QP ratios the agreement between the
quick theoretical model and the full numerical calculation is slightly decreases,
it is nonetheless remarkably high for the larger ratios, the regime in which the
source is meant to operate.

The works presented in Chapters 5 and 6 deal with the generation of tripar-
tite entangled states of light, specifically W states and GHZ states. Multipartite
entangled states have been extensively investigated in the last decades and have
attracted the researcher’s interest for their possible use in protocols for quantum
teleportation, QKD and dense coding. These states are typically produced in
bulk optics setups, exploiting nonlinear crystals to generate polarization-encoded
photon pairs. Here, we presented their implementation on-chip, taking advan-
tage of alternative degrees of freedom for the qubit encoding which better suited
the integrated design.

In Chapter 5 we focused on the generation of W states exploiting the energy
correlations of photon pairs generated by SFWM in microring resonators. To
this end, we first devised a direct correspondence between the optical elements
used for the manipulation on polarization-entangled states and their integrated
counterparts in energy-encoding, emphasizing the absence of an equivalent im-
plementation of the HWP in integrated linear optics. Despite this lack, we could
design an integrated source of W states and even devise a general strategy for
achieving the full tomography of the energy-entangled tripartite state, in a fully
passive integrated circuit. The photons required for the construction of the W
state are generated in a side-coupled microring resonator by short pump pulses,
similarly to what we did in Chapter 3 and 4, yet here we necessarily considered
the less frequent events in which two photon pairs per pulse are produced, allow-
ing us to access much higher pump intensities. The device we proposed in our
work is based on post-selection of the events: the generation of a W state is an-
nounced by a four-fold coincidence in the target and the three output channels,
and occurs with probability (

3
p

2
8 |�|2)2.

The second part of Chapter 5 is devoted to the description of the tomographic
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procedure necessary for the reconstruction of the output state, and can be used
for confirming the actual generation of a W state. We took advantage of the
reduced density matrix tomography approach to limit our analysis to a bicolored
photon pair at each time, and finally devised a feasible optical circuit for per-
forming a complete tomography on the photon pair using only linear elements.
Although we presented the tomographic scheme in a bulk optical setup, a similar
approach can be straightforwardly implemented in an integrated optical circuit.

In the last Chapter of this work we moved our attention to a different class
of tripartite entangled states, namely the GHZ state. In this case the energy-
encoding does not apply, and we proposed the use of path-encoding of photons
for the implementation of an integrated source. Similarly to the previous Chap-
ter, we devised an analogy between the optical elements used to manipulate
polarization-encoded states and those required in the path-encoding scheme,
finding that a perfect correspondence can be outlined. When photon pairs are
generated by type-II SPDC in a bulk nonlinear crystal, their emission is not
collinear, a crucial condition for the implementation of path-encoding, where
the information is carried by the photon spatial mode. However, this scheme
cannot be emulated using a single side-coupled microring resonator. To address
this issue, we proposed a novel design for an integrated source of path-encoded
| �i states comprised of four identical side-coupled microrings in two paral-
leled MZI configurations. Taking advantage of the quantum interference of the
generation probability amplitudes in each microring, and adjusting three phase
shifters to exploit the reverse Hong-Ou-Mandel effect, we could demonstrate the
effectiveness of our design in producing the desired output states. When two pho-
ton pair are simultaneously generated by our source upon a sufficiently intense
pump pulse, they are manipulated in a linear integrated circuit we engineered
for the production of path-encoded GHZ states upon post-selection of four-fold
coincidences. Even though the correspondence between optical elements we out-
lined in the opening of the Chapter generally entails a few waveguide crossings,
our scheme managed to avoid this lossy elements by conveniently rearranging
the output detectors. Considering typical performances of SOI microrings and
pumping schemes, we predicted a generation rate for path-encoded GHZ states
of the order of kHz, several orders of magnitude higher that those achieved in
bulk solutions.

In conclusion, this thesis convenes the author’s efforts in contributing to the
field of quantum technologies through the proposal and the theoretical study of
different sources of nonclassical states of light, ranging from heralded single pho-
tons to entangled photon pairs, and from tripartite W states to tripartite GHZ
states. We hope that the ideas we discussed and the source design we proposed
in this document can be further developed for the realization of more elaborate
quantum experiments, as a benchmark for future quantum technologies to come.
These results confirm that nonlinear integrated optics is a valuable approach for
the realization of sources of quantum states of light based on parametric fluores-
cence, and for their implementation in full lab-on-a-chip quantum experiments.
We finally want to recall that part of the work has been done in a collaboration
with the J. E. Sipe group at the University of Toronto, where the author carried
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on six months of his PhD program. The results we presented here have been
published both in peer-reviewed journals and as contributions to conferences, as
referenced in the conclusion of the present work.
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Appendix A
Generation of energy-entangled W

states

A.1 Normalization of the output states |IIi and
|IV i

In this Appendix we deal with the normalization of the output states defined
in Eq. (5.7). We adopt a very general approach, starting from the definition of
the creation operator for a photon pair C†

II , in Eq. (1.74) assuming single-mode
waveguides,

C†
II =

1p
2

X

I1,I2

Z
dk1dk2 �n1,n2(k1, k2)b

†
n1,I1,k1

b†
n2,I2,k2

, (A.1)

where p and q run over all the output channels, �p,q is the amplitude of the
BWF that is associated with the photon pair exiting from channels p and q and

X

p,q

Z
dk1dk2 |�p,q(k1, k2)|2 = 1. (A.2)

Normalization of the photon pair state |IIi

Let us consider the unnormalized two-photon state

|IIi =
1p
N

C†
II |vaci =

1p
2N

X

p,q

Z
dk1dk2 �p,q(k1, k2)b

†
k1,pb

†
k2,q |vaci (A.3)

where N is a normalization constant, and we assume that the photons can exit
the system from channels p and q with wave vectors k1 and k2, respectively.
Imposing the normalization condition on Eq. (A.3)
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hII|IIi = 1, (A.4)

we obtain

hII|IIi =
1
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and, given the symmetric nature of �p,q(k1, k2), we have

1

N

X

p,q

Z
dk1dk2 |�p,q(k1, k2)|2 = 1, (A.6)

which, in conjunction with (A.2), implies N = 1. Therefore the normalized
photon pair state is

|IIi = C†
II |vaci =

1p
2

X

p,q

Z
dk1dk2 �p,q(k1, k2)b

†
k1,pb

†
k2,q |vaci (A.7)

and this result holds for any source geometry.

Normalization of the four-photon state |IV i — General case

Let us define the unnormalized state |IV i as

|IVi =
1p
N

(C†
II)

2 |vaci (A.8)

=
1

2
p

N
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p,q
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r,s
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†
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†
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†
k4,s |vaci ,

N being a normalization constant. Imposing the normalization condition

hIV|IVi = 1, (A.9)

we have
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hIV|IVi =
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which, after a few manipulations, gives

1

4N
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p,q

X

r,s

Z
dk1dk2dk3dk4 �p,q(k1, k2)�r,s(k3, k4) (A.11)

⇥�ijkl[�
⇤
i,j(k1, k2)�

⇤
k,l(k3, k4)] = 1,

where �ijkl[. . . ] accounts for all the possible permutations of p, q, r, and s, which
are 24 (the wave vectors follow accordingly).

At this point, the state normalization depends on

1. The number of non-vanishing terms in �ijkl[. . . ];

2. The separability of �p,q(k1, k2).

Both the previous points depend at least on the source geometry. So, without
going into details on the source characteristics, we can state

N =

P
p,q

P
r,s

R
dk1dk2dk3dk4 �p,q(k1, k2)�r,s(k3, k4)�ijkl[�⇤

i,j(k1, k2)�⇤
k,l(k3, k4)]

4
(A.12)

In the following we will provide some examples to clarify the dependence on
the source geometry; moreover, they are instrumental in deriving other results
throughout this thesis.

Normalization of the four-photon state |IV i — Side-coupled ring res-

onators

When we consider a single side-couple microring resonator and we assume the
full separability of the BWF, a simple expression for the normalization constant
N can be achieved. Indeed, now p = q = 1 and the permutations in (A.12) lead
to 24 identical elements. This is actually the case encountered in Chapter 5, for
the generation of energy-entangled W states.

Under these conditions, Eq. (A.12) can be recast in the form

N =
24

R
dk1dk2|�(k1, k2)|2

R
dk3dk4|�(k3, k4)|2

4
, (A.13)

which, together with the normalization condition on the BWF (A.2), gives N =

6. In conclusion, the normalized four-photon state |IV i is expressed as
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†
k1

b†
k2

b†
k3

b†
k4

|vaci (A.14)

=
1p
6
(C†

II)
2 |vaci .
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A.2 Calculation of the output state
In this Appendix we derive equation (5.11) starting from the expression of the
input state in (5.10). To this end, we apply the asymptotic field formalism of
Section 1.3, and we recall that for each directional coupler the scattering matrix
is given by

SDC =


ir t
t ir

�
(A.15)

where r and t are the real reflection and transmission coefficients with r2
+t2 = 1,

while the linear propagation in a waveguide with length L simply introduces for a
phase factor eikL. For instance, the input state after the first directional coupler
DC1 can be written as (see Fig. (5.5))

| i =
1

2
�2e2iL0(kR+kB)

[(t1b
†
R,10 � ir1b

†
R,1)(t1b

†
B,10 � ir1b

†
B,1)]

2 |vaci(A.16)

=
1

2
�2e2iL0(kR+kB)

[(�ir1e
ikRL1b†

R,1 + t1e
ikRL10 b†

R,10)

⇥ (�ir1e
ikBL1b†

B,1 + t1e
ikBL10 b†

B,10)]
2 |vaci ,

and then throughout the rest of the circuit, we have

| i =
1

2
�2e2iL0(kR+kB)

[(�ir1e
ikRL1b†

R,1 + t1e
ikRL10 b†

R,10) (A.17)

⇥ (�ir1e
ikBL1b†

B,1 + t1e
ikBL10 b†

B,10)]
2 |vaci

=
1

2
�2e2iL0(kR+kB)

[(�ir1e
ikRL1b†

R,1 � it1r2e
ikR(L10+L2)b†

R,2

� it1t2r3e
ikR(L10+L20+L3)b†

R,3 + t1t2t3e
ikR(L10+L20+L4)b†

R,4)

⇥ (�ir1e
ikBL1b†

B,1 � it1r2e
ikB(L10+L2)b†

B,2 � it1t2r3e
ikB(L10+L20+L3)b†

B,3

+ t1t2t3e
ikB(L10+L20+L4)b†

B,4)]
2 |vaci .

where r2 and r3 are real reflection coefficients of DC2 and DC3, t2 and t3 being
their correspondent transmission coefficients. Grouping in |�i all the terms that
are not leading to a single photon per channel we have

| i =
1

2
�2e2iL0(kR+kB) |�i (A.18)

+ 2ir1t
3
1r2t

2
2r3t3�

2e2iL0(kR+kB)
[eikR(L1+L10 )eikB(2L10+L20 )b†

R,1

⇥
⇣
eikR(L20+L4)eikB(L2+L3)b†

B,2b
†
B,3b

†
R,4 + eikR(L20+L3)eikB(L2+L4)b†

B,2b
†
R,3b

†
B,4

+ eikRL2eikB(L20+L3+L4)b†
R,2b

†
B,3b

†
B,4

⌘
+ eikR(2L10+L20 )eikB(L1+L10 )b†

B,1

⇥
⇣
eikR(L2+L3)eikB(L20+L4)b†

R,2b
†
R,3b

†
B,4 + eikR(L2+L4)eikB(L20+L3)b†

R,2b
†
B,3b

†
R,4

+ eikR(L20+L3+L4)eikBL2b†
B,2b

†
R,3b

†
R,4

⌘
] |vaci .
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We can express the output state as

| i = ⌘ |�i + 2

p
3ir1t

3
1r2t

2
2r3t3�

2e2iL0(kR+kB) (A.19)
⇥ [eikR(L1+L10+L20+L4)eikB(2L10+L2+L20+L3)b†

R,1

⇥ 1p
3
(b†

B,2b
†
B,3b

†
R,4 + e�i�k�L34b†

B,2b
†
R,3b

†
B,4 + e�i�k�L2204b†

R,2b
†
B,3b

†
B,4)

+ eikR(2L10+L2+L20+L3)eikB(L1+L10+L20+L4)b†
B,1

⇥ 1p
3
(b†

R,2b
†
R,3b

†
B,4 + ei�k�L34b†

R,2b
†
B,3b

†
R,4 + ei�k�L2204b†

B,2b
†
R,3b

†
R,4)] |vaci ,

where ⌘ =
1
2↵�

2e2iL0(kR+kB) is the probability amplitude of obtaining a different
output than a W state, and

�k = kB � kR (A.20)
�L34 = L3 � L4

�L2204 = L2 � L20 � L4.

In short, the output state is finally given by

| i = ⌘ |�i + 2

p
3ir1t

3
1r2t

2
2r3t3�

2e2iL0(kR+kB) (A.21)
⇥ [ei�1b†

R,1 |WT1i + ei�2b†
B,1 |WT2i]

where

|WT1i = (A.22)
1p
3
(b†

B,2b
†
B,3b

†
R,4 + e�i�k�L34b†

B,2b
†
R,3b

†
B,4 + e�i�k�L2204b†

R,2b
†
B,3b

†
B,4) |vaci

⌘ 1p
3
(|BBRi + e�i�k�L34 |BRBi + e�i�k�L2204 |RBBi),

|WT2i = (A.23)
1p
3
(b†

R,2b
†
R,3b

†
B,4 + ei�k�L34b†

R,2b
†
B,3b

†
R,4 + ei�k�L2204b†

B,2b
†
R,3b

†
R,4) |vaci

⌘ 1p
3
(|RRBi + ei�k�L34 |RBRi + ei�k�L2204 |BRRi),

are normalized energy-entangled W states and

�1 = kR(L1 + L10 + L20 + L4) + kB(2L10 + L2 + L20 + L3), (A.24)
�2 = kR(2L10 + L2 + L20 + L3) + kB(L1 + L10 + L20 + L4).
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A.3 X, Y , and Z measurements for the tomog-
raphy of ⇢34

Here we are interested in expressing the diagonal elements of ⇢56 as a function
of the elements of the reduced density matrix ⇢34. Recalling Eq. (5.32), we can
look at the first diagonal term

⌧11 |R5B5i hR5B5| = (A.25)
���S11(R)

���
2���S11(B)

���
2
|R3B3i hR3B3| +

���S11(R)

���
2
S11(B)S⇤

12(B) |R3B3i hR3B4|

+S11(R)S⇤
12(R)

���S11(B)

���
2
|R3B3i hR4B3| + S11(R)S⇤

12(R)S11(B)S⇤
12(B) |R3B3i hR4B4|

+

���S11(R)

���
2
S12(B)S⇤

11(B) |R3B4i hR3B3| +

���S11(R)

���
2���S12(B)

���
2
|R3B4i hR3B4|

+S11(R)S⇤
12(R)S12(B)S⇤

11(B) |R3B4i hR4B3| + S11(R)S⇤
12(R)

���S12(B)

���
2
|R3B4i hR4B4|

+S12(R)S⇤
11(R)

���S11(B)

���
2
|R4B3i hR3B3| + S12(R)S⇤

11(R)S11(B)S⇤
12(B) |R4B3i hR3B4|

+

���S12(R)

���
2���S11(B)

���
2
|R4B3i hR4B3| +

���S12(R)

���
2
S11(B)S⇤

12(B) |R4B3i hR4B4|

+S12(R)S⇤
11(R)S12(B)S⇤

11(B) |R4B4i hR3B3| + S12(R)S⇤
11(R)

���S12(B)

���
2
|R4B4i hR3B4|

+

���S12(R)

���
2
S12(B)S⇤

11(B) |R4B4i hR4B3| +

���S12(R)

���
2���S12(B)

���
2
|R4B4i hR4B4|

which, in terms of the ⇢34 matrix coefficients, becomes

⌧11 |R5B5i hR5B5| = (A.26)
���S11(R)

���
2���S11(B)

���
2
⇢11 +

���S11(R)

���
2
S11(B)S⇤

12(B)⇢12 + S11(R)S⇤
12(R)

���S11(B)

���
2
⇢13

+S11(R)S⇤
12(R)S11(B)S⇤

12(B)⇢14 +

���S11(R)

���
2
S12(B)S⇤

11(B)⇢⇤
12

+

���S11(R)

���
2���S12(B)

���
2
⇢22 + S11(R)S⇤

12(R)S12(B)S⇤
11(B)⇢23

+S11(R)S⇤
12(R)

���S12(B)

���
2
⇢24 + S12(R)S⇤

11(R)

���S11(B)

���
2
⇢⇤
13

+S12(R)S⇤
11(R)S11(B)S⇤

12(B)⇢⇤
23 +

���S12(R)

���
2���S11(B)

���
2
⇢33

+

���S12(R)

���
2
S11(B)S⇤

12(B)⇢34 + S12(R)S⇤
11(R)S12(B)S⇤

11(B)⇢⇤
14

+S12(R)S⇤
11(R)

���S12(B)

���
2
⇢⇤
24 +

���S12(R)

���
2
S12(B)S⇤

11(B)⇢⇤
34

+

���S12(R)

���
2���S12(B)

���
2
(1 � ⇢11 � ⇢22 � ⇢33).
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The coefficient ⌧11 corresponds to the probability of detecting both the red
and the blue photon in channel 5; we shall refer to this measurement as an
X[S(R), S(B)] measurement. Rearranging the terms it easier to see the depen-
dence on the 15 elements of the original density matrix,

X[S(R), S(B)] = (A.27)
���S11(R)

���
2���S11(B)

���
2
a11 +

���S11(R)

���
2���S12(B)

���
2
a22 +

���S12(R)

���
2���S11(B)

���
2
a33

+

���S12(R)

���
2���S12(B)

���
2
(1 � a11 � a22 � a33)

+2

���S11(R)

���
2
Re[S11(B)S⇤

12(B)]aR
12 � 2

���S11(R)

���
2
Im[S11(B)S⇤

12(B)]aI
12

+2Re[S11(R)S⇤
12(R)]

���S11(B)

���
2
aR
13 � 2Im[S11(R)S⇤

12(R)]

���S11(B)

���
2
aI
13

+2Re[S11(R)S⇤
12(R)S11(B)S⇤

12(B)]aR
14 � 2Im[S11(R)S⇤

12(R)S11(B)S⇤
12(B)]aI

14

+2Re[S11(R)S⇤
12(R)S12(B)S⇤

11(B)]aR
23 � 2Im[S11(R)S⇤

12(R)S12(B)S⇤
11(B)]aI

23

+2Re[S11(R)S⇤
12(R)]

���S12(B)

���
2
aR
24 � 2Im[S11(R)S⇤

12(R)]

���S12(B)

���
2
aI
24

+2

���S12(R)

���
2
Re[S11(B)S⇤

12(B)]aR
34 � 2

���S12(R)

���
2
Im[S11(B)S⇤

12(B)]aI
34

A similar reasoning applies to the other terms in the diagonal of ⇢56. We can
define the a Y [S(R), S(B)] measurement as that corresponding to the probability
⌧22 of finding a red photon in channel 5 and a blue photon in channel 6. Such
measurement is related to the elements of ⇢34 by

Y [S(R), S(B)] = (A.28)
���S11(R)

���
2���S12(B)

���
2
a11 +

���S11(R)

���
2���S11(B)

���
2
a22 +

���S12(R)

���
2���S12(B)

���
2
a33

+

���S12(R)

���
2���S⇤

11(B)

���
2
(1 � a11 � a22 � a33)

�2

���S11(R)

���
2
Re[S11(B)S⇤

12(B)]aR
12 + 2

���S11(R)

���
2
Im[S11(B)S⇤

12(B)]aI
12

+2Re[S11(R)S⇤
12(R)]

���S12(B)

���
2
aR
13 � 2Im[S11(R)S⇤

12(R)]

���S12(B)

���
2
aI
13

�2Re[S11(R)S⇤
12(R)S11(B)S⇤

12(B)]aR
14 + 2Im[S11(R)S⇤

12(R)S11(B)S⇤
12(B)]aI

14

�2Re[S11(R)S⇤
12(R)S⇤

11(B)S12(B)]aR
23 + 2Im[S11(R)S⇤

12(R)S⇤
11(B)S12(B)]aI

23

+2Re[S11(R)S⇤
12(R)]

���S11(B)

���
2
aR
24 � 2Im[S11(R)S⇤

12(R)]

���S11(B)

���
2
aI
24

�2

���S12(R)

���
2
Re[S11(B)S⇤

12(B)]aR
34 + 2

���S12(R)

���
2
Im[S11(B)S⇤

12(B)]aI
34,

Finally, we define a Z[S(R), S(B)] measurement as that corresponding to the
probability ⌧33 of finding a red photon in channel 6 and a blue photon in channel
5. Once more, this measurement is related to the elements of ⇢34 by
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Z[S(R), S(B)] = (A.29)
���S12(R)

���
2���S11(B)

���
2
a11 +

���S12(R)

���
2���S12(B)

���
2
a22 +

���S11(R)

���
2���S11(B)

���
2
a33

+

���S11(R)

���
2���S12(B)

���
2
(1 � a11 � a22 � a33)

+2

���S12(R)

���
2
Re[S11(B)S⇤

12(B)]aR
12 � 2

���S12(R)

���
2
Im[S11(B)S⇤

12(B)]aI
12

�2Re[S11(R)S⇤
12(R)]

���S11(B)

���
2
aR
13 + 2Im[S11(R)S⇤

12(R)]

���S11(B)

���
2
aI
13

�2Re[S11(R)S⇤
12(R)S11(B)S⇤

12(B)]aR
14 + 2Im[S11(R)S⇤

12(R)S11(B)S⇤
12(B)]aI

14

�2Re[S11(R)S⇤
12(R)S⇤

11(B)S12(B)]aR
23 + 2Im[S11(R)S⇤

12(R)S⇤
11(B)S12(B)]aI

23

�2Re[S11(R)S⇤
12(R)]

���S12(B)

���
2
aR
24 + 2Im[S11(R)S⇤

12(R)]

���S12(B)

���
2
aI
24

+2

���S11(R)

���
2
Re[S11(B)S⇤

12(B)]aR
34 � 2

���S11(R)

���
2
Im[S11(B)S⇤

12(B)]aI
34.

The last term ⌧44 can be ignored, since from the unit trace condition it follows
that ⌧44 = 1 � ⌧11 � ⌧22 � ⌧33.

The real coefficients X, Y , and Z depend on the initial density matrix pa-
rameters, as well as on the elements of the scattering matrices S(R) and S(B).
The basic strategy we devise in Chapter 5 for the complete reconstruction of
⇢34 is to perform the coincidence measurements X, Y , and Z, subject to a few
selected scattering matrices.
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Appendix B
Generation of path-encoded GHZ

states

B.1 Calculation of the output state
Referring to the schematic representation in Fig. 6.5, the photon pair creation
operator C†

II can be expressed very generally as

C†
II =

1p
2

X

p,q

Z
dk1dk2�p,q (k1, k2) b†

k1,pb
†
k2,q, (B.1)

where p and q run over all the output channels, �p,q is the amplitude of the
BWF that is associated with the photon pair exiting from channels p and q,

�p,q(k1, k2) =
3
p

2i⇡↵2~
4�✏0

Z
dk3 �P (k3)�P (k1 + k2 � k3) (B.2)

⇥
p
!(k1)!(k2)!(k3)!(k1 + k2 � k3)

⇥
X

n

An(k3)An(k1 + k2 � k3)Bn,p(k1)Bn,q(k2)

⇥
Z

dr �3D
asy�in
n,k1

(r)Dasy�in
n,k2

(r)Dasy�in
n,k3

(r)Dasy�in
n,k1+k2�k3

(r)

where An(k) are the complex coefficients linking the field propagating linearly
from the input channel to the field immediately before the coupling point of the
n-th ring, while Bn,p(q)(k) are the complex coefficients relating the field right
after the coupling point of the n-th ring to the field in the output channel p(q).
The BWF if Eq. (B.2) is normalized according to

X

p,q

Z
dk1dk2 |�p,q(k1, k2)|2 = 1. (B.3)
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We are now interested in comparing the efficiency of our source with that of
a single microring resonator. To this end, we introduce the average number of
generated photons for a side-coupled microring, �ring, pumped with the same
average number of photons ↵2 as our source, and Eq. (B.2) becomes

�p,q(k1, k2) =

X

n

Bn,p(k1)Bn,q(k2)
�ring

�
(B.4)

⇥3
p

2i⇡↵2~
4�ring✏0

Z
dk3 �P (k3)�P (k1 + k2 � k3)

⇥
p
!(k1)!(k2)!(k3)!(k1 + k2 � k3)An(k3)An(k1 + k2 � k3)

⇥
Z

dr �3D̃
asy�in
n,k1

(r)D̃asy�in
n,k2

(r)D̃asy�in
n,k3

(r)D̃asy�in
n,k1+k2�k3

(r)

The normalization condition (B.3) requires that

X

p,q

Z
dk1dk2|�p,q(k1, k2)|2 (B.5)

= �
���
�ring

�

���
2 X

p,q

Z
dk1dk2

X

nn0

Bn,p(k1)Bn,q(k2)B
⇤
n0,p(k1)B

⇤
n0,q(k2)

⇥3
p

2i⇡↵2~
4�ring✏0

Z
dk3 �P (k3)�P (k1 + k2 � k3)

⇥
p
!(k1)!(k2)!(k3)!(k1 + k2 � k3)An(k3)An(k1 + k2 � k3)

⇥
Z

dr �3D̃
asy�in
n,k1

(r)D̃asy�in
n,k2

(r)D̃asy�in
n,k3

(r)D̃asy�in
n,k1+k2�k3

(r)

⇥3
p

2i⇡↵2~
4�⇤

ring✏0

Z
dk0

3 �
⇤
P (k0

3)�
⇤
P (k1 + k2 � k0

3)

⇥
q
!(k1)!(k2)!(k0

3)!(k1 + k2 � k0
3)A

⇤
n0(k0

3)A
⇤
n0(k1 + k2 � k0

3)

⇥
Z

dr �3[D̃
asy�in
n0,k1

(r)]⇤[D̃asy�in
n0,k2

(r)]⇤[D̃asy�in
n0,k0

3
(r)]⇤[D̃asy�in

n0,k1+k2�k0
3
(r)]⇤

=1

and we shall compare this expression to the normalization condition of the BWF
for photon pairs generated in the side-coupled microring resonator. To this end,
we note that the field amplitudes should satisfy two conditions:

• Condition 1: An(k)An(k1 + k2 � k) ⌘ A2
n(k1, k2), i.e. the product of the

input coefficients does not depend on k. When this condition is met, we
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can extract such contribution from the integral in Eq. (B.5) and obtain

X

p,q

Z
dk1dk2|�p,q(k1, k2)|2 (B.6)

= �
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⇤
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⇤
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• Condition 2:
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n0,q(k2) ⌘ B2
n,p,q(k1, k2)B2

n0,p,q(k1, k2) ⌘ B4
n,n0,p,q
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2 ⌘ A4

n,n0 . Thus, both the product of the in-
put coefficients and the product of the output coefficients is a constant.
Therefore, Eq. (B.5) becomes
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given the normalization condition on �ring(k1, k2). This allows us to recover
the relation between � and �ring once the coefficients An(k) and Bn,p(q)(k) are
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calculated. Hence,
���
�ring

�

���
2

=
1P

p,q

P
nn0 A4

n,n0B4
n,n0,p,q

(B.8)

Let us now focus on our particular source geometry, as in Fig. 6.6. The
An(k) and Bn,p(q)(k) coefficients are given by

A1(k) = �t1t2Uei�1eik(L1+L2) (B.9)

A2(k) = it1r2Ueik(L1+L2)

A3(k) = r1r2Dei�eik(L1+L2)

A4(k) = ir1t2Dei(�+�2)eik(L1+L2)

and

B1,1(k) = r3Ue�ikL3

B1,2(k) = it3Ue�ikL3

B2,1(k) = it3Ue�ikL3

B2,2(k) = r3Ue�ikL3

B3,3(k) = r3De�ikL3

B3,4(k) = it3De�ikL3

B4,3(k) = it3De�ikL3

B4,4(k) = r3De�ikL3

B1,3(k) = B1,4(k) = B2,3(k) = B2,4 = 0

B3,1(k) = B3,2(k) = B4,1(k) = B4,2 = 0

(B.10)

where r1 and t1 are the real reflection and transmission coefficients of the first
DC, and r2U(D) and r3U(D) are the real reflection coefficients of the upper
and lower directional couplers before and after the ring resonators, respectively,
t2U(D) and t3U(D) being their corresponding transmission coefficients.

Hence, the first condition, namely An(k)An(k1 + k2 � k) ⌘ A2
n(k1, k2), is

easily verified since

A1(k3)A1(k1 + k2 � k3) = (B.11)
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and the second condition, namely
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and all the coefficients Bn,p(q)(k1(2)) are of the form

Bn,p(k1) = bn,pe
�ik1L3 (B.16)

Bn,q(k2) = bn,qe
�ik2L3

leading to

Bn,p(k1)Bn,q(k2) = bn,pbn,qe
�i(k1+k2)L3 ⌘ B2

n,p,q(k1, k2) (B.17)
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In conclusion, using Eqs. (B.9) and(B.10) in Eq. (B.8), we have

���
�ring
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���
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=
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p,q

P
nn0 A4

n,n0B4
n,n0,p,q

= 4, (B.18)

thus, our structure is capable of generating the photon pair state with 1/4 of
the average number of generated photons of a single side-coupled ring resonator
under the same pumping rate.

We can now move on to reconstruct the two-photon state at the output of
our source of the Bell state from (6.3). Once more, from the coefficients An(k)

and Bn,p(q)(k), we observe that

�1,1(k1, k2) = �2,2(k1, k2) = �3,3(k1, k2) = �4,4(k1, k2) = 0 (B.19)
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due to the reverse Hong Ou Mandel effect,

�1,3(k1, k2) = �1,4(k1, k2) = �2,3(k1, k2) = �2,4(k1, k2) = 0 (B.20)
�3,1(k1, k2) = �3,2(k1, k2) = �4,1(k1, k2) = �4,2(k1, k2) = 0

due to the geometry of the waveguides. Then,
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where

 (k1, k2) = (k1 + k2)(2L1 + 2L2 � L3) (B.23)
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and with � = ⇡, �2 = ⇡/2 , r = t = 1/
p

2 , and �ring/� = 2 we have
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Note also that �2,1(k1, k2) = �1,2(k1, k2) and �4,3(k1, k2) = �3,4(k1, k2).
The state |IIi is finally given by
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For the generation of GHZ states we are interested in the simultaneous generation
of two photon pairs (B.26), and thus we focus on the next term in the expansion
(6.2), which involves the four-photon state |IVi; with the help of Eq. (B.26),
we obtain Eq. (6.4). Referring to Fig. 6.6 and following the notation [180] for
directional couplers, we can express the photon creation operators in (6.4) in
terms of the photon creation operators in each detector channel Dn,m as

b†
k1,1 = e�ik1LT b†

k1,T (B.27)

b†
k2,2 = �it1e

�ik2L3,0b†
k2,D3,0

+ r1e
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k2,D2,0

b†
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b†
k2,4 = �it3e

�ik2L2,1b†
k2,D2,1

+ r3e
ik2L1,0b†

k2,D1,0

where Ln,m is the distance between the appropriate output directional coupler
in the source and the detector Dn,m, and LT is the length between the upper
directional coupler in the source and the target detector T . Using Eq. (B.27) in
(B.26), and referring to the output state expansion (6.2) we find that the state
at the detectors is (6.5)-(6.7), with the relative phase between the terms in the
GHZ given by

⇥ = k1(L1,1 � L3,1) + k2(L2,1 � L1,0) (B.28)

+ k0
2(L3,0 � L2,0) +

⇡

2
.

B.2 Normalization of the output states |IIi and
|IV i

Similarly to what we have discussed in Appendix A.1, here we provide the correct
normalization of the states appearing in Eq. (6.2).
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There is no need to discuss the normalization of the photon pair state |IIi,
for we have already demonstrated that it is geometry-independent, and thus Eq.
(A.7) holds identical in this context. On the contrary, the normalization of the
state |IV i depends on the specific geometry of the source. Similarly to what we
did in Appendix A.1, we begin from the unnormalized four-photon state

|IV i =
1p
N

(C†
II)

2 |vaci , (B.29)

where we have introduced the usual normalization constant N . Since we have
already calculated the photon pair state in Eq. (B.26), we can use it in the
previous expression to obtain
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From the normalization condition hIV |IV i = 1 we get
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and since the BWF is already properly normalized, we conclude N = 3. Finally,
the normalized four-photon state |IV i becomes

|IV i =
1p
3
(C†

II)
2 |vaci (B.32)

or, in the specific case of our source of path-entangled GHZ states,
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