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1 I N T R O D U C T I O N

The concept of information is tightly related to that of knowledge in the
sense that it quantifies how many questions one should ask in order to un-
derstand a concept or otherwise to become “informed” of something. For
example, suppose that there are two parties and the first one has to send
a message to the other one. This message contains some information that
the other party should know. So, in order to convey this message one has
to find a suitable representation for it, the simplest one being a binary en-
coding of the message. More generally, it is certainly possible to employ
any alphabet. The aim of Information Theory (IT) is then the study of how
such information can be stored and communicated efficiently, preserving
the message from possible errors. The seminal work of Shannon [1] led to
the development of the broad field of IT encompassing many applications
from mathematics, physics and computer science to neurobiology and elec-
trical engineering.

The many applications and the success of IT led to a profound reconsid-
eration of the role that information could play in physics. Many aspects
of the physical world can be formulated in terms of information. For in-
stance, if we consider information as a quantification of the different con-
figurations in which a system can be, we can interpret the entropy of the
system as a quantification of our ignorance of the microscopic description
of the system itself. So, in the words of Lewis [2], we can say that “a gain
in entropy always means loss of information, and nothing more”. The no-
tion of information comes into play also in other fields than physics: for
example in biology, where a living system can be characterized by its abil-
ity of gathering and processing information. Such a broad appearance of
the concept of information in various fields of human knowledge led to the
development of the informational paradigm in physics.

For this reason, the informational paradigm is based on the idea that
information plays, at a fundamental level, a crucial role in the description
of natural phenomena. The hypothesis that the universe is in fact a huge
computer has been originally proposed by Zuse [3], suggesting the idea
that physics could actually be the result of the computation performed by
a Cellular Automaton (CA). Along this view comes the motto of Wheeler
it from bit [4], encompassing the idea that “every it—every particle, every
field of force, even the space-time continuum itself—derives its function, its
meaning, its very existence entirely—even if in some contexts indirectly—
from the apparatus-elicited answers to yes-or-no questions, binary choices,
bits”. According to Wheeler’s view information lies at the core of the phys-
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1. introduction

ical phenomena which become just an emergent expression of “the regis-
tering of equipment-evoked responses”.

What kind of information? is the question that arises following the line of
thoughts of Wheeler. Being Quantum Field Theory (QFT) our best—to our
knowledge—theoretical description of the elementary physical processes,
it is natural to consider Quantum Information (QI) as the fundamental con-
text in which we should develop the informational paradigm. Therefore,
as Feynman pointed out [5], not a classical CA, rather a Quantum Cellular
Automaton (QCA) should be considered as the theoretical tool underlying
the informational approach to physics. According to this approach, hence,
physics is the result of the processing of information, while Quantum The-
ory (QT) is the theoretical framework asserting which information-theoretic
tasks can or can not be performed.

Analogously to classical IT, Quantum Information Theory (QIT) studies
the properties of information in the quantum world. The research in the
field of QIT has been successful in providing deep insights on the basic
concepts and features of QT. The results in the framework of QIT led to
important applications from quantum computation to quantum cryptogra-
phy drawing a path that eventually could lead to the exploitation of the
bizarre features of the quantum world in every-day life. In the past years,
thus, QIT has played a major role in the comprehension of the basic notions
and features of the quantum world, such as entanglement and non-locality.
Therefore it has been considered also as a guide in the investigation of
the foundations of Quantum Mechanics (QM), believing that information
could play a significant role in the study of a physical theory. Under this
view, thus, we start our investigation from basic notions of informational
nature characterizing the physical theory.

The foundational investigation of physics should start from fundamental
postulates regarding the mathematical structure of the theory. In the litera-
ture there are various attempt to give QT an operational axiomatization. In
the field of Quantum Logic, initiated by von Neumann and Birkhoff [6], we
can mention the axiom system of Mackey [7] and the attempts of Piron [8]
and Ludwig [9]. These axiomatization programs, however, were not fully
successful in deriving all the features of QT from purely operational axioms.
In the following years, the prominent results of QIT suggested that QT, at
its core, could be regarded as a theory of information, providing a fertile
ground to study the foundational problems of QT in this scenario [10, 11].
In this perspective the work of D’Ariano, Perinotti, and Chiribella provided
a complete axiomatization of finite dimensional QT based on principles of
informational nature [12].

QT is a theory of systems and does not provide any mechanical notion.
From this point of view, QFT is also a theory of systems, but provides
also the mechanical part such as the quantization rules and the equations
governing the evolution of the physical systems. So we need to find an
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1. introduction

extension of the theory that includes dynamics from an informational per-
spective. To this end, on the one hand the quantum algorithm that de-
scribes the physical evolution—the universal physical law that we aim to
describe—should be of finite computational complexity and, hence, the
quantum systems in this theory should have minimal Hilbert-space dimen-
sion. Furthermore, there should be finitely many systems that interact
with a given one. On the other hand, the universality of the physical law
entails that the quantum algorithm should perform in the same way for
each system. This means that the interaction network should be topolog-
ically homogeneous. Therefore, the investigation starts from a collection of
finite dimensional quantum systems in mutual interaction. We then pose
the basic principles that this interaction network should satisfy: unitarity,
linearity, locality, homogeneity, and isotropy. Unitarity endows the conserva-
tion of the probabilities. The linearity requirement means that the one-step
update of the cell state is given by a linear combination of the states of the
neighbouring cells. The locality assumption entails that the cell evolution
is affected only by a finite number of neighbours. Homogeneity means that
each cell is treated in the same way and that there should not exist any dis-
crimination procedure that allows one to distinguish one cell from another.
Finally, the isotropy assumption encompasses the idea that every direction
is equivalent. The structure emerging from such assumptions is actually a
QCA defined on the Cayley graph of a group, describing precisely the uni-
tary evolution of a denumerable collection of finite dimensional quantum
systems interacting with a finite number of neighbours.

The automaton theory, hence, draws a different path with respect to
other discrete descriptions of relativistic fields where usually one is in-
terested in a discrete approximation of continuous dynamics that can be
implemented numerically. In a Lattice Gauge Theory context [13], for in-
stance, one has a relativistic action of a gauge theory from which a finite
difference version of it is derived that can then be used to study numerically
the non-perturbative regime of the theory, as in e.g. Quantum Chromody-
namics. In this respect, the discrete theory focuses not on foundational
questions, but rather on the development of effective tools that can be used
to make predictions for the continuum theory. On the contrary, from the
foundational perspective, we are interested in assuming the discrete the-
ory as fundamental and in recovering the continuum theory as an effective
theory.

A linear QCA can be regarded as the second quantization of a Quantum
Walk (QW) [14], which is another model of discrete evolution describing
the motion of a particle hopping through the sites of a lattice. A QW is
the quantum version of a classical Random Walk (RW). In the seminal
work of Ref. [15] Aharonov presented the first notion of a QW where the
motion of a spin-1/2 particle is determined by the measurement of the
z-component of its spin. Subsequently, the concept of a QW was general-
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1. introduction

ized to encompass arbitrary unitary operators acting on the so-called coin
space, representing the internal degree of freedom, leading to the notion of
a coined QW [16, 17]. The generalization to arbitrary graphs was formalized
in the works of Refs. [16–18].

In recent years, the increasing interest in the QW theory is twofold. On
the one hand, it gained attention in computer science for the computational
speedup that it provides with respect to the classical counterpart in solv-
ing certain classes of problems. We can mention amongst the successful
applications oracular problems, element distinctness problem, the triangle
finding problem, and also Grover’s search algorithm [19–25]. On the other
hand, the idea that relativistic dynamics can emerge from a discrete funda-
mental mechanism has been thoroughly investigated in the literature [26–
42]. The relation between the walk dynamics and the relativistic one given
by the Dirac equation has been studied also in presence of external fields,
providing a tool to simulate discrete gauge theories [43, 44]. Furthermore,
introducing a dependence on time and space, one can show that in the
continuum limit the evolution of a discrete-time QW describes the propa-
gation of the massless Dirac field in presence of an arbitrary gravitational
field [45].

Aside from the theoretical interest, physical realizations of QWs have
been considered as quantum simulators of physical systems with the aim to
harness the computational speedup provided by quantum algorithms [46,
47]. Experimental implementations of discrete-time QWs have been real-
ized for the one-dimensional case in a number of physical systems: e.g.
neutral atoms in spin-dependent optical lattices [48–51], ions in a linear
ion trap [52], photons in waveguide lattices [53, 54], and optical fibre net-
work loops [55, 56]. The major obstacle to the implementation of multi-
dimensional QWs is due to the decoherence effects, requiring huge tech-
nological efforts. Nevertheless, there are recent realizations of multidimen-
sional QWs with an optical fibre network [57]. Furthermore, the effects of
homogeneous electric fields have been also studied both from a theoretical
point of view [58] and in an experimental realization employing optical
lattices [59], showing how the evolution of the walk strongly depends on
whether the electric field is rational or irrational.

Assuming the Planck scale as the hypothetical scale at which the QCA
operates, the usual particle physics should be recovered, in some way, as
a continuum-limit approximation of the discrete evolution [40, 42, 60, 61].
The discreteness of the interaction graph has also the consequence of break-
ing the continuum symmetries, in particular the Lorentz covariance. Space-
time itself is an emergent concept in this scenario. We need, thus, to intro-
duce a corresponding notion of reference frame, without resorting to physi-
cal space or time. An effective way to do so is by resorting to the mathemati-
cal notion of representation of the dynamics applied on the one-step update
rule of the automaton. We can reformulate the relativity principle by saying
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1. introduction

that the inertial representation is the representation that preserves the math-
ematical form of the one-step update rule [62, 63]. In this way we obtain
new transformations—which are deformed Lorentz transformations—that
recover the usual Lorentz ones on a scale much larger than a fundamental
reference scale, say the Planck scale [64, 65].

The informational paradigm, thus, provides an alternative, consistent
framework where we can address the open problems that we face in con-
temporary physics, especially the physics beyond the Standard Model of
particle physics. Although QFT has been proven to be one of the most
successful physical theories in the description of natural phenomena, there
is still a tension between General Relativity and QFT. In this regard, QFT
should be an effective theory of a more fundamental one, encompassing
also a quantum theory of gravity.

The present thesis focuses in the first part on the solution of the Dirac
QW in one spatial dimension and of the Weyl QWs in two and three spatial
dimensions via a discrete path-integral approach (a path-sum). The first
example of application of this approach to discrete physics models is the
Feynman checkerboard problem [66]. The idea behind the Feynman checker-
board is to describe the evolution of a Dirac particle in 1+ 1 dimensions
on a lattice, providing an effective way to solve a finite-difference equation.
The probability amplitude to go from one lattice point to another—as for
the path-integral formulation of QM—can be expressed as a sum over all
the paths joining the two points. The problem is thus translated into a
combinatorial problem for the lattice paths. Early attempts to this prob-
lem [67, 68] were improved by the work of Kauffman and Noyes [69]. The
same Jacobson and Foster provided also a generalization to 3+ 1 dimen-
sions [70]. Although such approaches provide an effective way to solve the
finite-difference Dirac equation, there is not an equivalent description, in
our context, in terms of a QW. This is due, in general, to the failure of
unitarity in the evolution provided by finite-difference equations. This fact
motivates to consider the path-sum approach in the context of QWs.

In general, a QW is described by some transition matrices representing
the transition amplitudes between two neighbouring sites of the lattice. The
matrices of the Weyl and Dirac QWs manifest peculiar algebraic properties
that can be exploited to aid the calculation of the propagator: specifically,
they generate a finite semigroup (up to phases and rescaling). Another key
ingredient that considerably simplifies the derivation of the solution is the
binary encoding of lattice paths. In this way one can translate the topologi-
cal properties of the paths into algebraic properties of binary strings. Once
we obtained a classification of all the binary strings that correspond to the
set of paths contributing with the same transition matrix, the computation
of the propagator amounts to solve a simplified combinatorial problem in-
volving these binary strings.
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1. introduction

In the second part of the thesis we present a non-linear QCA representing
the local interaction of particles. The particles on lattice feel the interaction
only when they are in the same lattice site. We give a briefly review of
the analytical solution for the problem restricted to the two-particle sector.
Furthermore, we present the results of the numerical evaluation of the walk
in the case of perfectly localized states, that can give us an insight on the
diffusion properties showing the appearance of bound states. We also pro-
vide the graphical representation of a peculiar kind of bound states that are
spatially localized on few sites. Then we present the basics of the perturba-
tive approach to this interacting theory, computing the tree-level Feynman
diagrams. We also provide a numerical evaluation of the free Dirac QW for
the classes of perfectly localized states and of gaussian states, featuring the
Zitterbewegung effect.

1.1 outline of the thesis
In Chapter 2 we are going to present the framework and the background
of the QCA theory [14, 27, 28, 71]. The general setting is that of QCAs
on Cayley graphs, the graph links representing the interactions between a
denumerable collection of finite dimensional quantum systems. We show
how, from some basic assumptions characterizing the propagation of in-
formation through the causal network of quantum systems, the emergent
structure of the net is that of a Cayley graph. In the same chapter we
introduce the concept of a QW, which can be regarded as a special kind
of QCA [14], providing the evolution of a single particle on a graph. Re-
stricting to the case of Cayley graphs of Abelian groups that are embed-
dable in the Euclidean space, we present the unique QCAs satisfying the
assumptions of unitarity, linearity, homogeneity, locality, and isotropy, derived
in Ref. [40]. The QCAs derived under these assumptions can be shown to
reproduce the usual evolution provided by the Dirac equation in the rela-
tivistic limit of small wave-vectors and of small masses. We can say that
if we take the Planck scale as reference scale for the automaton, then at
the scale of particle physics the description in terms of QCA is indistin-
guishable from the usual one given by the Dirac equation: the two theories
coincide where the discreteness can not be probed.

In Chapter 3 we provide an insight into the properties of the Dirac QW in
dimension d = 1 and d = 3 by the numerical evaluation of the walk for two
classes of states. On the one hand we discuss the evolution of smooth wave
packets, say Gaussian states, for which the evolution resembles the one
given by the Dirac equation. On the other hand, in the QW scenario, one
can have highly localized states whose evolution will be very different from
the usual relativistic one, since the effects of the discreteness are prominent.
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1.1. outline of the thesis

In Chapter 4 we review the solution in position space in terms of sum
over paths derived in Ref. [72] for the Dirac QW in dimension d = 1. A QW
can be described either in terms of a unitary operator acting on the Hilbert
space associated to the graph or in terms of a set of so-called transition
matrices constituting the one-step update of the walk. Remarkably, the
transition matrices of the Dirac walk generate a (finite) semigroup structure
allowing for the exploitation of the path-sum method. Moreover, the overall
matrix associated to a path depends only on the first and last step of the
path.

In Chapter 5 we review the analytical derivation of the propagator for
the Weyl QW in dimension d = 2 based in the exploitation of the semi-
group properties of the transition matrices and the binary encoding of lat-
tice paths. The solution is based on the derivation provided in Ref. [73].
In this case the binary encoding of paths provides a considerable aid in
the solution of the combinatorial problem that one has to solve in order to
count the number of paths contributing with the same resulting matrix.

In Chapter 6 we provide the analytic solution of the Weyl QW in dimen-
sion d = 3 derived in Ref. [74] as an extension of the solution given in
Chapter 5. This extension is possible since the transition matrices have a
similar composition rule.

In Chapter 7 we present the Thirring QCA for which the linearity as-
sumption is dropped allowing for an interaction between particles to be
present. We review the analytical solution of Ref. [75] for two particles.
The restriction to a fixed number of particles allows one to describe the au-
tomaton in terms of a QW. This is possible since the interaction employed
preserves the number of particles. We also show the results of the numeri-
cal evaluation of the walk for perfectly localized states. In the same chapter
we give a sketch of the perturbation theory of this walk by computing the
vertex diagrams at first order in the perturbation expansion.

In Chapter 8 we draw our conclusions giving some future perspectives
on the possible continuation of the study of the QCA framework as a fun-
damental mechanism underlying QFT.
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2 Q U A N T U M C E L L U L A R A U TO M ATA

A CA is a discrete model characterized by simple rules governing its evo-
lution, and yet it shows a complex emergent dynamics. This feature makes
CAs very promising since they can be adopted to describe physical systems,
as Wheeler suggested with its motto “it form bit” [4, 76]. Originally, CAs
were introduced by Ulam and von Neumann when they were colleagues at
the Los Alamos National Laboratory in the 1940s. A CA consists in a collec-
tion of cells—for example arranged in a two-dimensional grid—which can
assume a finite number of states. The evolution of the whole grid is then
specified by providing a local update rule, which involves, for any given
cell, only a finite number of neighbouring cells. There are many ways to
specify a neighbourhood scheme. For instance, in Fig. 1 are represented two
well-known schemes: the Moore neighbourhood and the von Neumann
neighbourhood. In principle, one can provide a different update rule for
each cell and for each time-step. However, we are interested in a descrip-
tion that is the same everywhere: in other words, all the sites should be
treated in the same way and it should not be possible to distinguish one
cell from another thanks to the dynamical evolution. Therefore, the ba-
sic requirement is that the local update rule should be the same for each
site. A thorough formalization and classification of classical CAs ha been
provided by Wolfram in Ref. [77].

2.1 john conway’s game of life
One of the most known instances of CA is Conway’s Game of Life. It is
characterized by an infinite two-dimensional grid of cells each of which
can assume only the two values black and white (a black cell is said to be
dead and a white cell is said to be alive). The neighbourhood of this CA is
usually the Moore neighbourhood and the update rule goes as follows:

Figure 1.: On the left is represented the Moore neighbourhood and on the right
the von Neumann neighbourhood.
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2. quantum cellular automata

Figure 2.: Glider: the simplest moving object of Game of Life.

1. a dead cell becomes alive if it has exactly three live neighbours;

2. any live cell with fewer than two or more than three live neighbours
dies;

3. the state remains unchanged in the other cases.

It is remarkable that from such simple rules arise complex patterns show-
ing non-trivial global behaviours: e.g. steady configurations, periodic pat-
terns or even systems of live cells moving coherently on the lattice. Amongts
the simplest moving objects there is the so called glider, depicted in Fig. 2.
From the elementary building blocks one can construct also other “ships”
and generators (“guns”) producing such objects: e.g. in Fig. 3 it is shown
Gosper’s glider gun which continuously emits new gliders in a period of
30 steps.

The Game of Life is an example of a classical CA for which the states are
classical states. In 1982, Feynman suggested the idea that physics, being
inherently quantum, should be simulated by a quantum computer [5], the
appropriate model of computation being a quantum version of a CA. After
the seminal paper of Feynman, the concept of a QCA has been developed
and studied in the literature of Computer Science and QI, receiving increas-
ing attention during the years [71, 78]. The general framework we adopt in
the present work has been provided by Werner and Schumacher with the
definition of a reversible QCA [14].

Figure 3.: Gosper’s glider gun.
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2.2. quantum cellular automata background

2.2 quantum cellular automata background
The interest in the community of QI on QCAs is motivated by the connec-
tion between QI and foundations of QM, as the study of quantum protocols,
such as teleportation and tomography, provided a fertile ground to deepen
the understanding of entanglement and nonlocality. The fundamental idea is
that QT can be regarded as a theory of information, stating the properties
of the basic tasks of information-processing. The reformulation of QT as a
theory of information inspired numerous works regarding the operational
axiomatization [8–11, 79–83]. A complete derivation of finite dimensional
QT was achieved by Chiribella, D’Ariano and Perinotti [12] starting from
six principles of informational nature. However, in this scenario, QT is a
theory of systems without any reference to mechanical notions, such as
particles and quantization rules. The mechanical part is provided by QFT,
which is nowadays the best description of the elementary processes in parti-
cle physics. The aim of the informational approach is, therefore, to provide
a theoretical framework based on informational principles from which we
can derive also the dynamical features encompassed by QFT.

The idea that at a fundamental level there should be an upper bound
on the amount of information that can be stored in a finite region of
space [84–86] requires our fundamental description to involve a countable
set of finite dimensional quantum systems. The theoretical framework in
which we should develop such a description of natural phenomena is thus
that of QCAs [5], since they represents precisely the unitary evolution of
countably-many quantum systems in local interaction.

The QCA framework encompasses also another model of discrete evo-
lution of a particle hopping through the sites of a lattice. Classically this
model is known as a RW: at each time-step, a particle moves from one
lattice site to the neighbouring lattice sites according to some probabil-
ity. RWs have been studied extensively in several fields from mathematics
and physics to economics [87–89]. A first attempt to obtain a quantiza-
tion of a classical RW—which would be called then QW—was provided
by Aharonov [15]. In this seminal work, the motion of a spin-1/2 parti-
cle on the line is determined by measuring the z-component of its spin,
whose outcome decides whether the particle moves to the right or to the
left. The concept of a QW was generalized replacing the measurement with
a unitary operator acting on the internal degree of freedom, know as coin
space, leading to the notion of coined QW [16, 17]. In the computer science
literature the study of coined QWs was motivated by the computational
speedup over classical RWs in solving a number of problems: e.g. oracular
problems and search algorithms, such as Grover’s search algorithm, as well
as the element distinctness problem and the triangle finding problem [19–
25]. The rigorous formalization of the concept of a QW was provided in
Refs. [16–18] both for a QW on the line and for QWs on general graphs.

11



2. quantum cellular automata

Analogously to the classical case, a QCA describes the dynamics of many
particles systems in interaction, whereas a QW can be seen as the restric-
tion to the one-particle sector of a given QCA. Conversely, a QCA can
be considered the second-quantization of a QW [14]. Assuming the QW de-
scription, we explore the possible emergent dynamics, namely we study
the free evolution of a particle on a lattice. Such a program has been suc-
cessful in proving that QCAs (and QWs) can actually be employed as dis-
crete quantum simulators of free relativistic particle physics [26–33, 35–42].
As one can expect the discreteness of the interaction network necessarily
breaks the continuum symmetries: in particular, the Lorentz symmetry is
distorted at the Planck scale. If we insist on the QCA microscopic descrip-
tion, the usual relativistic dynamics can be recovered in the limit of small
wave vectors (small with respect to the Planck scale), where the effects of
discreteness can not be probed [40, 42, 61]. Since the QCA description does
not have any reference to space-time, we need to formulate the concept
of inertial frame in this context. We identify the notion of a reference frame
with that of representation of the dynamics: the relativity principle is then
expressed by defining the inertial representation as the representation for
which the physical law is invariant, i.e. it has the same mathematical form.
As a consequence we end up with modified Lorentz transformations and
the usual ones are recovered on a scale much larger than the underlying
microscopic scale [64, 65].

2.3 quantum cellular automata on cayley
graphs

The path we draw in the present work follows from the necessity of giv-
ing to QFT a foundational basis that resorts to principles of informational
nature [62, 63]. As we already mentioned, the general setting is that of
a denumerable set G of quantum systems in mutual interaction. Let us
see now how the QCA structure emerges from basic assumptions on the
interaction network. Since we are interested in a possible description of
QFT emerging from this framework, we assume each cell of G to be asso-
ciated to a quantum field. The discreteness assumption follows from the
idea—as already expressed by Feynman [5]—that the amount of informa-
tion that can be stored in finite volume of space can not be infinite: as such,
the quantum fields should obey the Fermi statistics. Such a requirement
is not restrictive since systems obeying the Bose–Einstein statistics can be
retrieved from many Fermionic modes [61]. From a computational per-
spective it has been proven that a theory based on Fermionic systems is
computationally equivalent to one based on qubits [90–92].
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2.3. quantum cellular automata on cayley graphs

The investigation of the QCA framework proceeds by adding a specific
structure on the interaction network, in order to obtain the one-step update
rule of the automaton. This structure is based on the following assump-
tions: unitarity, linearity, homogeneity, locality and isotropy. Let us see what
are the consequences of these principles on the interaction network. So
starting from unitarity—a reasonable requirement since we want probabili-
ties to be conserved during evolution—the one-step update rule is provided
by a unitary map applied in discrete identical steps to a countable set G of
quantum systems. Each quantum system, labeled by g ∈ G, is described by
a C*-algebra generated by sg <∞ Fermionic modes ψg,l, with l = 1, . . . , sg,
obeying the canonical anti-commutation relations:

{ψg,l,ψg ′,l ′} = 0, {ψg,l,ψ
†
g ′,l ′} = δg,g ′δl,l ′ .

Unitarity of the evolution implies that the field ψg(t) is updated via a uni-
tary operator U as

ψg(t+ 1) = Uψg(t)U
†.

The linearity assumption entails that the previous equation can be expressed
in terms of linear combinations of field operators:

ψg(t+ 1) =
∑
g ′∈G

Ag,g ′ψg ′(t), (1)

where Ag,g ′ is an sg × sg ′ complex matrix called transition matrix. In this
way, the QCA is described by a unitary evolution on the Hilbert space
H =

⊕
g∈GHg, with Hg = Span {ψg,l}

sg
l=1. In this case the QCA is called

QW and the system corresponds to the single-particle sector of the corre-
sponding Fock space. The description in terms of QWs is also possible for
any fixed number of particles by enlarging, essentially, the coin space and
by considering a lattice in higher dimensions.

From Eq. (1), it is apparent that the set of transition matrices endows
the set G with a directed graph structure Γ(G,E), with vertex set G and
edge set is E = { (g,g ′) ∈ G×G | Ag,g ′ 6= 0 }. We will denote by Ng :=

{g ′ ∈ G | Ag,g ′ 6= 0 } the neighbourhood of g. The locality assumption amounts
to the requirement that Ng is finite for every g ∈ G and uniformly bounded:
i.e. there exists M > 0 such that |Ng| < M for all g ∈ G. The homogene-
ity requirement amounts to consider the cells to be indistinguishable from
each other. So, on the one hand, each system should interact with the same
number of neighbours, so that sg = sg ′ = s for every g,g ′ ∈ G. On the other
hand, the set of transition matrices should be the same for each and every
cell: in practice, this means that there should exist a reference set S ⊆ G

and a set of s× s complex matrices {Ah}h∈S such that, for each g,g ′ ∈ G,
Ag,g ′ = Ah for some h ∈ S. As such, each edge (g,g ′) is labeled with an
element h ∈ S, and so the graph Γ(G,E) becomes a coloured directed graph.
Select now an element g ∈ G. Starting from it, each neighbour g ′ ∈ Ng can
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2. quantum cellular automata

be identified with a colour h ∈ S. Selecting subsequent neighbours, we
can trace a path on the graph, determined by the sequence of colours of
each step. One can also view the set S as an alphabet and, thus, each path
corresponds to a word (or string) over this alphabet [93]. The set S? of all
the words over the alphabet S carries a natural composition operation: two
words w = h1 . . . hn and w ′ = h ′

1 . . . h
′
n ′ can be concatenated to form a new

word ww ′ := h1 . . . hnh
′
1 . . . h

′
n ′ . This operation makes S? a monoid with

identity the empty string (denoted here as ε).
Consider now a path r = h1 · · ·hn such that the starting and final points

coincide, namely a closed path: we denote the set of all closed paths as R.
The homogeneity principle further requires that, if a path r is closed start-
ing from the vertex g, it is closed also starting from every other vertex of the
graph. If gh = g ′ ∈ G then we assume that there exist an element denoted
h−1 so that we can formally write g ′h−1 = g and the colour set can be split
as S = S+ ∪ S− with S− := S−1+ . Therefore, the set S? results to be enriched
with a group structure, called the free group F with generators S+. The set
of closed paths R generates a normal subgroup NR of F and hence the quo-
tient F/NR is also a group, with elements corresponding to those of G. The
homogeneity constraint thus implies that the set G is a group that can be
finitely presented as G = 〈S+|R〉 and the graph Γ(G,E) ≡ Γ(G, S+) is called
the Cayley graph of the group G corresponding to that presentation [40, 63].
In the language of geometric group theory, the elements of S+ are called
generators and the elements of R are called relators. For convenience of the
reader we recall the definition of Cayley graph.

Definition 2.3.1 (Cayley Graph). Let G be a group and let 〈S+|R〉 be a pre-
sentation ofG. Then the Cayley graph ofG corresponding to the presentation
〈S+|R〉, denoted Γ(G, S+), is the coloured directed graph (G,E, S), such that
the vertex set is G, the edge set is E = { (g,gh) | g ∈ G, h ∈ S } and each
h ∈ S has a colour assigned to it. If a generator h ∈ S+ is of order 2, namely
h−1 = h, then the corresponding arc on the graph is conventionally drawn
without the arrowhead.

In Fig. 4 we report some examples of Cayley graphs. The first image in
Fig. 4a, shows the Cayley graph of the free group (i.e. it does not have any
relator) with two generators 〈a, b〉; the second graph in Fig. 4b represents
the group Z2, i.e. the free Abelian group with two generators presented as
〈a, b | a−1b−1ab〉; the one in Fig. 4c is the Cayley graph of the Fuchsian
group 〈a, b | a4, b4, (ab)3〉; and, finally, in Fig. 4d is represented the graph
of the dihedral group D4 = 〈a, b | a2, b4, (ab)2〉.

We have seen so far how the assumptions that we made impose a special
structure on the interaction network that turns out to be associated to a
group structure. The automaton is actually represented by a unitary oper-
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2.3. quantum cellular automata on cayley graphs

(a) 〈a, b〉 (b) 〈a, b | a−1b−1ab〉

(c) 〈a, b | a4, b4, (ab)3〉

a

be

ba b2a

b3a

b2b3

(d) 〈a, b | a2, b4, (ab)2〉

Figure 4.: Cayley graphs of some groups: in Fig. 4a is depicted the Cayley graph
of the free group on two generators presented as 〈a, b〉; in Fig. 4b is
depicted the Cayley graph of the free Abelian group on two generators
(i.e. Z2) presented as 〈a, b | a−1b−1ab〉; in Fig. 4c is depicted the Cayley
graph of the Fuchsian group 〈a, b | a4, b4, (ab)3〉; finally, in Fig. 4d is
depicted the Cayley graph of the dihedral groupD4 whose presentation
is 〈a, b | a2, b4, (ab)2〉, where e denotes the identity element of the
group, a is represented by a dashed blue line, and b is represented by
a red arrow.

ator W acting on the Hilbert space H =
⊕
g∈GHg

∼= `2(G)⊗ Cs and, in
terms of the transition matrices, it can be written as:

W =
∑
g,g ′∈G

|g〉〈g ′|⊗Ag,g ′

=
∑
h∈S

∑
g∈G

|gh−1〉〈g|⊗Ah

=
∑
h∈S

Th ⊗Ah,

where T is the right-regular representation of G on H acting as Tg |g ′〉 =

|g ′g−1〉, that is Tg represents a translation on the graph Γ(G, S+).
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2. quantum cellular automata

We still have to implement the isotropy requirement. The notion of
isotropy encompasses the idea that all directions are equivalent to one another.
This notion is applied to a QCA or QW by saying that there should exist a
group L of automorphisms of Γ(G, S+) such that the evolution operator W
is L-covariant [94]. Roughly speaking, this means that a permutation of the
vertices of the graph that leaves the link structure unaffected acts unitarily
on the set of transition matrices by a permutation of the colour set S+:

Aλ(h) = UlAhU
†
l , ∀l ∈ L, ∀h ∈ S+,

where λ is a permutation of S+ and Ul is a unitary matrix on Cs.

2.3.1 Quantum Walks on free Abelian groups

The main focus of the present dissertation is on QWs defined on Cayley
graphs Γ(G,S+) of the Abelian group Zd, for d = 1, 2, 3. The more general
scenario of non-Abelian groups, in particular virtually-Abelian groups, is
also investigated in the literature [62, 63, 94–96]. The study of QWs on non-
Abelian groups is motivated by the fact that coin-less QWs (so-called scalar
QWs) are trivial for Cayley graphs of infinite Abelian groups, whereas in
the non-Abelian case it is possible to construct non-trivial scalar QWs [28,
95, 97]. Nevertheless, for finite Abelian groups one can show that scalar
QWs actually exist [97].

In the Abelian case, since we study the group Zd, we will employ the
vector notation x ∈ Zd to denote its elements; furthermore, we also adopt
the additive notation for the group composition operation. The right-regular
representation of Zd on `2(Zd) is thus expressed as

Th |x〉 = |x−h〉

and, being the group Abelian, it is diagonal in the Fourier representation:

Th |k〉 = eik·h |k〉 , |k〉 := 1√
|B|

∑
x∈Zd

eik·x |x〉 , k ∈ B,

where B denotes the first Brillouin zone of the lattice. In this way, the walk
unitary operator W can be block-diagonalized in the Fourier basis:

W =

∫
B
dk |k〉〈k|⊗Wk, Wk :=

∑
h∈S

eik·hAh, (2)

where Wk is a unitary matrix for every k ∈ B. The matrix Wk can be
diagonalized as

Wk |ui(k)〉 = e−iωi(k) |ui(k)〉 , (3)
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2.4. the dirac quantum walk

where |ui(k)〉 are the eigenvectors and {e−iωi(k)} denotes the spectrum of
the walk. In particular, the functions ωi(k) are called dispersion relations
and provide a fundamental tool to study the walk dynamics.

2.3.2 Coined Quantum Walks

A coined QW is a particular case of the QW model considered in this
manuscript [16]. Such a walk is described by an operator W = TC on
C2 ⊗ `2(Z)1, consisting in a coin-flip operator C and a translation opera-
tor T . As an example, let us consider the well-known Hadamard walk
described by the operator WH = TC, where

T =

(
S 0

0 S†

)
,

S being the right shift S |x〉 := |x+ 1〉, and

C = H⊗ I, H :=
1√
2

(
1 1

1 −1

)
.

In terms of the transition matrices the Hadamard walk can be written as

WH = AR ⊗ S+AL ⊗ S†,

with

AR =
1√
2

(
1 1

0 0

)
, AL =

1√
2

(
0 0

1 −1

)
.

The momentum representation of the Hadamard walk is thus

WH,k =
1√
2

(
eik eik

e−ik −e−ik

)
,

with the off-diagonal matrix elements depending on the momentum k.

2.4 the dirac quantum walk

In this section, we present and review the Dirac QW on Zd for d = 1, 2, 3;
the complete derivation can be found in Ref. [40]. From the assumptions
of Section 2.3 one derives a QW that in the limit of small wave vectors
simulates the Weyl equation, so we say that it is a massless walk. As we
shall see in the following, the local coupling of two Weyl QWs can be

1 For a generalization of coined Quantum Walks on general graphs see Ref. [16].
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2. quantum cellular automata

Figure 5.: First Brillouin zone B of the BCC lattice, which is a rhombic dodecahe-
dron.

shown to simulate the Dirac equation, interpreting a posteriori the coupling
parameter as the mass of the Dirac field. The correspondence is obtained
for small values of the wave vector and of the mass parameter.

2.4.1 The massless case

The Weyl QW of Ref. [40] in dimension d = 3 is the only unitary quantum
walk satisfying the principles introduced in Section 2.3 of locality, homo-
geneity, and isotropy, with minimal computational complexity, that can be
embedded in the three-dimensional Euclidean space [40, 65, 94]. The uni-
tarity condition selects a specific Cayley graph of the group Z3; in fact, the
solution exists only for the Body-Centred Cubic (BCC) lattice Γ(G, S+), with
vertex setG = 2Z3∪ (2Z3+(1, 1, 1)) and generating set S+ := {h1,h2,h3,h4}
where

h1 =

11
1

 , h2 =

 1

−1

−1

 , h3 =

−1

1

−1

 , h4 =

−1

−1

1

 .

The first Brillouin zone B of the BCC lattice, depicted in Fig. 5, is the set
of inequivalent wave vectors k defined in cartesian coordinates as

B :=
{
(kx,ky,kz) ∈ R3

∣∣∣ −π 6 ki ± kj 6 π, i 6= j, i, j ∈ {x,y, z}
}

.

In the Fourier representation, the unique solutions existing on the BCC are
denoted V±

k and have the form:

V±
k = I cosω±

k − iσ ·n±
k ,
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2.4. the dirac quantum walk

where σ = (σx,σy,σz) is the vector of Pauli matrices and

ω±
k = arccos(cxcycz ∓ sxsysz) (4)

with ci := coski and si := sinki, and the vector n±
k given by

n±
k :=

−sxcycz ∓ cxsysz
−cxsycz ± sxcysz
−cxcysz ∓ sxsycz

 .

The two admissible solutions existing on the BCC are related to one another
by a CPT symmetry. The spectrum of V±

k is {e−iω
±
k , eiω

±
k } with dispersion

relation ω±
k and group velocity given by v±k := ∇kω

±
k that represents the

speed of a wave packet centred around the wave vector k. For later conve-
nience, we write the matrix V±

k as follows:

V±
k =

(
zk −w∗

k

wk z∗k

)
,

so that n±
k = (− Imwk, Rewk, − Im zk) and ω±

k = arccos(Re zk).
In dimension d = 2 the assumptions of Section 2.3 impose that the only

lattice admitting a non-trivial evolution is the square lattice, which is the
Cayley graph of Z2 on two generators h1 = (1, 0) and h2 = (0, 1). Upon
defining ki := k · hi, for i ∈ {1, 2}, and kx := k1+k2

2 , ky := k1−k2
2 , the first

Brillouin zone B in this case is given by

B :=
{
k ∈ R2

∣∣∣ −π 6 kl 6 π, l ∈ {x,y}
}

.

The walk unitary matrix in the Fourier representation can be written in a
similar form as in the d = 3 case as

Vk = I cosωk − iσ ·nk =

(
zk −w∗

k

wk z∗k

)
, (5)

where zk = cxcy − isxsy and wk = −sxcy − icxsy with cl := coskl, sl :=
sinkl for l ∈ {x,y}.

Finally, we consider the case d = 1. Our requirements impose the choice
of the one-dimensional lattice Z, namely the free Abelian group on one
generator with S+ = {h}. The unique solution can be written in the Fourier
representation as

Vk = I cosk− iσ ·nk =
(
eik 0

0 e−ik

)
, nk :=

 0

0

− sink

 , (6)

whose dispersion relation is simply ωk = k.
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2. quantum cellular automata

In order to conclude the presentation of the Weyl QW, we summarize
the solutions for d = 1, 2, 3. As we have seen, the general form of the
(massless) walk can be written as

Vk = λkI− iσ ·nk, (7)

once the functions λk and nk has been specified; the corresponding disper-
sion relation can be written in general as

ωk := arccos λk.

In each case, in the limit of small wave vectors the walk evolution is indis-
tinguishable from the one given by the Weyl equation. In order to see this,
one can extend the evolution to continuous times, introducing the interpo-
lating Hamiltonian HW(k) such that Vk = e−iH

W(k). In each dimension the
interpolating Hamiltonian has the following form:

HW(k) = sinc−1(ωk)σ ·nk. (8)

In order to see that we effectively can approximate the usual relativistic
evolution, we consider the power expansion at the first order in k, obtaining

HW(k) = σ · k+O(|k|2).

Interpreting k as the momentum of the relativistic particle, the first order
term σ · k can be interpreted as the usual Weyl Hamiltonian, showing that
the walk evolution and the relativistic evolution are indistinguishable for
sufficiently small values of the wave vector.

We remark that the structure of the walk matrix in momentum space
is independent of the dimension, allowing to express in general form the
eigenvectors. The matrix Vk has the general form

Vk =

(
zk −w∗

k

wk z∗k

)
,

where zk and wk are functions of the wave vector defined by

Re(zk) = λk,
and

nk = (− Im(wk), Re(wk), − Im(zk)).

With this convention, the general solution of the eigenvalue problem for Vk

Vk |u
W
s (k)〉 = e−isωk |uWs (k)〉 , s = ±, (9)
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2.4. the dirac quantum walk

can be written in the following way:

|uWs (k)〉 = 1√
2

 √
1− svWk

−seiϕ
√
1+ svWk

 , vWk :=
Im(zk)√
1− λ2k

, (10)

where ϕ = Argwk −
π
2 .

2.4.2 The massive case

We have seen how the assumptions of Section 2.3 restrict the kind of dy-
namics that emerge in our discrete scenario. The premisses that we have
made entail that the emergent dynamics corresponds to massless particles
in the relativistic limit. In order to add a mass to the walk evolution we
can ask ourselves which is the minimal extension that allows us to do so.
One can show that, starting from the local coupling of two Weyl QWs sat-
isfying the principles of Section 2.3, there is only one way to locally couple
two Weyl QWs and the resulting evolution approximates that of the Dirac
equation. If Vk denotes the Weyl QW in dimension d, the unique coupling
(modulo unitary conjugation) has the form2

Dk =

(
nVk −im

−im nV
†
k

)
, n,m > 0, n2 +m2 = 1.

Such a construction holds in any spatial dimension d = 1, 2, 3; in dimen-
sion d = 1, however, the walk decouples into two massive QWs with
smaller coin dimension s = 2 [40, 42], providing the same physics. With a
simple change of basis the resulting walk can be written in block-diagonal
form as 

neik −im 0 0

−im ne−ik 0 0

0 0 ne−ik −im

0 0 −im neik

 .

Accordingly, we consider only the walk on the smaller coin space:

Dk =

(
neik −im

−im ne−ik

)
, (11)

with dispersion relation

ωk = arccos(n cosk).

2 We remark that, in contrast with the coined Quantum Walk shown in Section 2.3.2, as a
result of this coupling the off-diagonal matrix elements do not depend on the momentum.
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2. quantum cellular automata

This is in agreement with the fact that the Dirac equation in dimension
d = 1 is described by a two-component field.

The unitary matrix Dk of the Dirac QW in dimension d can be written in
a convenient form in terms of the gamma matrices in the chiral representa-
tion:

Dk = nλkI− inγ0γ ·nk − imγ0, (12)

where λk and nk are the functions characterizing the Weyl QWs of Sec-
tion 2.4.1. The dispersion relation for the Dirac walks described by Eq. (12)
is simply given by

ωk = arccos(nλk). (13)

Also in this case the relativistic limit of small wave vectors is obtained by
power-expanding the interpolating Hamiltonian HD(k)

HD(k) =
ωk

sinωk
(nγ0γ ·nk −mγ0), (14)

which at the first order in k and m recovers the expression of the Dirac
Hamiltonian

HD(k) = γ0γ · k+mγ0 +O(m2) +O(|k|2). (15)

In order to conclude the presentation of the massive case, let us write the
general expression for the eigenvectors of Dk. The eigenvalue equation

Dk |u
D
s,r(k)〉 = e−isωk |uDs,r(k)〉 , s, r = ±, (16)

has four solutions given by the vectors |uDs,r(k)〉 ∈ C4:

|uDs,r(k)〉 =
1

2



√
(1− rvWk )(1+ srvDk )

−reiϕ
√

(1+ rvWk )(1+ srvDk )

−s
√

(1− rvWk )(1− srvDk )

sreiϕ
√

(1+ rvWk )(1− srvDk )

 , vDk =
n
√
1− λ2k√

1−n2λ2k

, (17)

where the functions λk and vWk along with the phaseϕ are the same as those
of the corresponding massless QWs of Eqs. (9) and (10). In the special case
of d = 1, Dk is a 2× 2 matrix (see Eq. (11)) and its eigenvectors are actually
C2-vectors:

Dk |s,k〉 = e−isωk |s,k〉 , |s,k〉 = 1√
2

(√
1− svk

s
√
1+ svk

)
, s = ±,
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2.5. path-sum for quantum walks

vk being the group velocity, namely

vk :=
dωk
dk

=
n sink
Ek

, Ek := sinωk =
√
n2 sin2 k+m2.

2.5 path-sum for quantum walks
The Abelian property of the lattice on which the Weyl and Dirac QWs
are defined allow one to easily obtain the solutions of the walks in the
Fourier representation. In this way one can analyse many properties of the
dynamics of these walks. On the other hand, one may need to know the
evolution directly in position space. To this end, we provide and review the
solutions in position space for the QWs in dimension d = 1, 2, 3 of [72–74].

In the general setting of QWs on a Cayley graph Γ(G, S+) of some group
G, the goal is to find a solution of a walk described by the unitary operator
W acting on the Hilbert space H = `2(G)⊗ Cs. The state at time t located
at the cell labeled x ∈ G is denoted as |ψx(t)〉 ∈ Cs. Thus, |ψx(t)〉 is a
solution of the walk W if it satisfies the one-step update equation

|ψx(t+ 1)〉 =
∑
h∈S

Ah |ψxh(t)〉 , (18)

where {Ah}h∈S denotes the set of transition matrices associated to the walk
W. Notice that, according to our conventions, the matrix Ah is associated
to the step h−1. The set S in the massless case is defined as S := S+ ∪ S−,
whereas for a walk with mass one has S := S+ ∪ S− ∪ {ε}, ε being the iden-
tity element of the group G. We remark that a transition associated to the
identity ε—namely, the walk does not move on the lattice—only affects the
internal degree of freedom, for example by swapping the internal compo-
nents, as for the Dirac walk. Accordingly, the off-diagonal matrix elements
are independent of the momentum.

The iterated application of the update rule of Eq. (18) naturally leads to a
representation of the evolution in terms of paths on the graph. In this way
we are just employing a discrete version of Feynman’s path-integral [66,
98] to express the evolution of a state |ψ(0)〉 ∈ H driven by the walk W.
In practice, as we will see, we need to compute the propagator of the walk
heavily relying on the algebraic properties of the transition matrices.

Given, thus, an initial configuration of the walk |ψ(0)〉 ∈ H , we ob-
tain the solution at time t by computing the sum of the contribution of
each step for all the paths that join two given points on the graph. We
denote by σ a path of length t with fixed endpoints x ′ and x, i.e. σ =

x ′h1h2 · · ·htx, and we denote by Λt(x ′, x) the set of all such paths. The
collection of all the paths ending in a given point x is denoted as Ct(x) :=

{ x ′ ∈ G | Λt(x
′, x) 6= ∅ }, namely it is the slice at time t of the past causal cone
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2. quantum cellular automata

of x. In this way the solution at time t is obtained by summing over all
the points x ′ in the past causal cone of x for which there exist a path σ of
length t joining x ′ to x:

|ψx(t)〉 =
∑

x ′∈Ct(x)

∑
h1,...,ht∈S

δ(x−1x ′h1 · · ·ht)A(h1, . . . ,ht) |ψx ′(0)〉 , (19)

where the function

A(h1,h2, . . . ,ht) = Ah−1
t

· · ·A
h−1
2
A
h−1
1

gives the overall matrix associated to a sequence of steps h1,h2, . . . ,ht. The
delta function is needed to determine if a sequence h1,h2, . . . ,ht actually
forms a path from x ′ to x, namely determines if a given word w is the
empty string ε:

δ(w) =

{
1, if w = ε,
0, otherwise.

From Eq. (19) we see that the task at hand to obtain the explicit solution
amounts to the evaluation of the propagator of the walk which gives the
overall transition amplitude to go from a site x to a site x ′ in t time-steps:

K(x, x ′; t) := 〈x ′|Wt|x〉 =
∑

h1,...,ht∈S
δ(x ′

−1
xh1 · · ·ht)A(h−11 , . . . ,h−1t ).

We will see in Chapters 4 to 6 how we can exploit the algebraic properties
of the transition matrices and the binary encoding of paths to obtain an
analytical expression of the propagator for the Dirac QW in dimension
d = 1 and for the Weyl QW in dimension d = 2 and d = 3.
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3 N U M E R I C A L E VA L U AT I O N O F T H E
D I R A C Q U A N T U M W A L K

Particles that evolve according to the Dirac equation can show a typical
quivering motion known as Zitterbewegung due to the interference of par-
ticle and antiparticle components [99]. This phenomenon was first discov-
ered by Schrödinger [100] who noticed that for free relativistic electrons
the velocity operator does not commute with the Dirac Hamiltonian. As
a consequence, this leads to an extra term in the evolution of the posi-
tion operator, besides the classical motion [101], which is responsible for
the fast oscillatory behaviour. It can be shown that this quivering motion
happens with frequency 2mc2

h and its amplitude is given by the Compton
wavelength  h

mc , where m is the mass of the relativistic particle. Moreover,
this jittering motion is shown to fade for a wave-packet particle state [102].
Although the Zitterbewegung effect has never been observed, there are how-
ever example of simulations of this phenomenon by means of trapped ion
systems [103, 104] and Bose–Einstein condensates [105].

In this chapter we are going to study the position operator of the Dirac
QW (see Section 2.4). We observe, both analytically and numerically, that
Zitterbewegung arises also for the walk evolution of wave-packets contain-
ing both positive and negative frequency eigenstates of the walk, which
thus correspond to particle and antiparticle states in the Dirac theory. We
focus on the interference effect due to the superposition of positive and
negative energy states, although this is not strictly necessary to exhibit the
quivering behaviour [106]. We analyse the evolution of wave-packets par-
ticle states peaked around a given value of the momentum such that they
satisfy a dispersive differential equation. The walk evolution approximates
for these states the one given by the Dirac equation.

In addition, we are going to present here also the evolution of perfectly
localized states, that—since they involve very large momenta—exhibit an
evolution that is very far from the one given by the Dirac equation. Indeed,
for perfectly localized states one can appreciate the the finiteness of the
speed of information propagation.

The numerical simulations of the Dirac QW in dimension d = 1 and
d = 3 were performed employing the direct space update rule to obtain the
time evolution. Regarding the preparation of the initial state, we need to
compute the components of the state in the eigenbasis of the walk, which
means that we have to employ the Fourier representation. For the details
on the numerical implementation of the Fourier Transform (FT) on Zd and
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3. numerical evaluation of the dirac quantum walk

on the BCC lattice, we refer the reader to Appendix C. In the following we
are going to present the analysis of the Dirac walk dynamics in dimension
d = 1 and d = 3, showing also the results of the numerical evaluation of
the walk for perfectly localized states and Gaussian wave-packets.

3.1 smooth states
We consider the general case of states peaked around a given momentum
that are also localized in position space. In order to exhibit a particle-like
behaviour the walk dynamics should also preserve the localization of such
states, at least for a sufficient long time before the diffusion takes over.

So we conveniently consider states |ψ〉 in dimension d 6 3 that are wave-
packets given by a smooth function gk ′ ∈ C∞

0 [B] peaked around some wave
vector k ′ such that ∫

B ′
σ

dk |gk ′(k)|2 > 1− ε/2, ε,σ > 0, (20)

where B ′
σ is defined as

B ′
σ :=

{
k ∈ B

∣∣ |ki − k ′i| 6 σ } .

In order to study the evolution of such states, we conveniently extend the
FT to continuous x and t; therefore, introducing the interpolating Hamilto-
nian H(k) we can write the state as

|ψ(t, x)〉 := ei(ωk ′t−k ′·x)

(2π)d/2

∫
B
dk gk ′(k)e−i(H(k)t−k·x) |u(k)〉

=
ei(ωk ′t−k ′·x)

(2π)d/2

∫
B
dk gk ′(k)e−i(ωkt−k·x) |u(k)〉 (21)

where |u(k)〉 denotes any eigenvector of the walk. Let us consider now the
Taylor expansion of the dispersion relationωk associated to the eigenvector
|u(k)〉 around some wave vector k ′:

ωk −ωk ′ =
∑
|α|>1

ω
(α)

k ′

α!
(k− k ′)α,

where α = (α1,α2,α3) is a multi-index and ω(α)

k ′ is defined by

ω
(α)

k ′ := ∂αkωk

∣∣
k=k ′ , ∂αkωk :=

∂|α|ωk

∂k
α1
x ∂k

α2
y ∂k

α3
z

.
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3.1. smooth states

Accordingly, from Eq. (21) on can derive the corresponding differential
equation satisfied by |ψ(t, x)〉:

i∂t |ψ(t, x)〉 =
∑
|α|>1

(−i)αω
(α)

k ′

α!
∂αx |ψ(t, x)〉 , (22)

where, by the dominated derivative theorem, we exchanged the integral
sign with the spatial derivatives.

Since the states we are considering here are smooth states peaked around
k ′, we can consider the approximate differential equation by truncating up
to order n the expression in Eq. (22). Denoting by |ϕn(t, x)〉 the approxi-
mate solution up to order n, we derive a bound for the overlap between
the exact and approximate solution:

|〈ϕn(t)|ψ(t)〉| =

∣∣∣∣∣
∫
B
dk e−it

∑
|α|>n+1

ω
(α)

k ′
α! (k−k ′)α

|gk ′(k)|2

∣∣∣∣∣
>

∣∣∣∣∣
∫
B ′
σ

dk e−it
∑

|α|>n+1

ω
(α)

k ′
α! (k−k ′)α |gk ′(k)|2

∣∣∣∣∣
−

∣∣∣∣∣
∫
B\B ′

σ

dk e−it
∑

|α|>n+1

ω
(α)

k ′
α! (k−k ′)α |gk ′(k)|2

∣∣∣∣∣
>

∣∣∣∣∣
∫
B ′
σ

dk e−it
∑

|α|>n+1

ω
(α)

k ′
α! (k−k ′)α |gk ′(k)|2

∣∣∣∣∣− ε2
> 1− ε−

∣∣∣∣∣∣
∫
B ′
σ

dk (−it)
∑

|α|>n+1

ω
(α)

k ′

α!
(k− k ′)α|gk ′(k)|2

∣∣∣∣∣∣
> 1− ε−

∑
|α|>n+1

t|ω
(α)

k ′ |

α!

∣∣∣∣∣
∫
B ′
σ

dk |gk ′(k)|2(k− k ′)α

∣∣∣∣∣.
Noticing that for k ∈ B ′

σ one has |(k− k ′)α| 6 σ|α|, then we can write

|〈ϕn(t)|ψ(t)〉| > 1− ε−
∑

|α|>n+1

tσ|α||ωα
k ′ |

α!

∫
B ′
σ

dk |gk ′(k)|2.

In particular, we are interested in the expression of the overlap at the sec-
ond order in the power expansion and we can finally write the following
expression for the bound:

|〈ϕn(t)|ψ(t)〉| > 1− ε− γσ3t−O(σ5)t,
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3. numerical evaluation of the dirac quantum walk

where γ is defined as

γ :=
∑
|α|=3

|ω(α)|

α!

∫
B ′
σ

dk |gk ′(k)|2.

We remark that, if we want an error less than some δ > 0, so that the
overlap is sufficiently close to 1, namely

|〈ϕn(t)|ψ(t)〉| > 1− δ,

this means that the approximate solution can deviate significantly from the
walk evolution after a time t > δ−ε

γσ3
.

As a final remark of the present discussion, we can interpret the terms
appearing in Eq. (22) truncating the sum at the second order. The resulting
approximate equation for the state evolution can be written in the following
form:

i∂t |ϕ(t, x)〉 =
[
−ivk ′ · ∇−

1

2
∇T ·Dk ′ · ∇

]
|ϕ(t, x)〉 . (23)

The vector vk = ∇kωk denotes the drift vector that determines the group
velocity of the wave-packet. The spreading of its distribution in direct
space is described by the diffusion tensor Dk = ∇k∇kωk. The evolution of
a Gaussian state in dimension d = 3, satisfying the condition of Eq. (20), is
depicted in Fig. 6.

3.2 perfectly localized states
In a QW scenario, besides smooth wave-packets whose evolution can be ap-
proximated by the differential equation (23), one can also consider perfectly
localized states. For such a class of states we can expect the QW evolution
to be very different from the usual evolution of a Dirac particle. In this
regard, we remark that the usual relativistic dynamics of the Dirac equa-
tion can be recovered in the limit of wave vectors that are much smaller
with respect to a given reference scale [61, 64]. Nevertheless, the study of
such states is essential for the analysis of the diffusion properties in an QW
scenario [16–18, 107].

Let us consider perfectly localized states for the Dirac QW in dimension
d = 3, having the form

|ψ〉 = |x〉 |ζ〉 , |ζ〉 ∈ C4.

In Fig. 7, we show the time evolution of the state |0〉 |ζ〉 with |ζ〉 = (1, 0, 0, 0)
with mass parameter m = 0.03. The probability distribution is represented
for t = 0, 8, 16 from left to right. Furthermore, in Fig. 8, the probability
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3.3. zitterbewegung of the dirac quantum walk

Figure 6.: Evolution of a wave-packet with only positive-frequency eigenstates for
the Dirac QW in dimension d = 3. In the image it is represented the
marginal distribution along the z-axis. The total number of time-steps is
t = 150, whereas the probability distribution in position space is shown
for t = 0, 50, 100, 150 with a colour gradient from light to dark (left to
right). The initial state is a Gaussian wave-packet (see Eq. (20)) with
mass m = 0.02, mean wave vector k ′ = (0, 0.01, 0) and width σ = 32−1.

distribution is represented for the same state at time t = 28, showing also
the projections on the three planes.

3.3 zitterbewegung of the dirac quantum
walk

In this section we briefly discuss the phenomenon known as Zitterbewegung
in the context of QWs. We consider smooth states similar to those described
in Eqs. (20) and (21) containing both positive- and negative-energy compo-
nents:

|ψ〉 =
∑
x∈G

s∑
r=1

gr(x) |x〉 |r〉 ,

where we have introduced s smooth functions gr (20) with r = 1, . . . , s; and
G denotes the vertex set of the lattice. In particular, for d = 1 we have G =

Z and for d = 3 we can represent the BCC lattice with G = 2Z3 ∪ (2Z3+ t),
t = (1, 1, 1).

We study the behaviour of the position operator

X =
∑
x∈G

x (|x〉〈x|⊗ I)

on the aforementioned states that are superpositions of positive and nega-
tive frequencies components. In order to study the kinematics of the walk
we need to define also the corresponding momentum operator. Although
the definition of the momentum would require an interacting theory to be
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3. numerical evaluation of the dirac quantum walk

(a) (b) (c)

Figure 7.: Diffusion of a perfectly localized state in dimension d = 3 for the Dirac
QW. The three different figures show the time evolution at three differ-
ent steps, namely t = 0, 8, 16, from left to right. The value of the mass
parameter is m = 0.03 and the internal state is |ζ〉 = (1, 0, 0, 0).

defined, however, we can interpret the wave vector k a posteriori (see Sec-
tion 2.4.2) as the momentum of the Dirac particle once we take limit for
small wave vectors and masses. Therefore, we can take the operator

P =

∫
B
dk k (|k〉〈k|⊗ I)

as the momentum operator. The commutator between the position operator
Xi and the momentum operator Pj, i, j = 1, 2, 3, reads

〈ψ| [Xi,Pj] |ψ〉 = iδij

(
1−

1

2

∑
r

(
|ĝr(π)|

2 + |ĝr(−π)|
2
))

, (24)

where ĝ(k) denotes the Discrete-Time Fourier Transform (DTFT) of g(x),
for any function g on the lattice. The extra term that appears in the com-
mutator (24) is a boundary term that arises as a consequence of the discrete-
ness of the lattice; moreover, for perfectly localized states the commutator
vanishes. Nevertheless, in the following we will consider states for which
the boundary term in Eq. (24) is negligible.

In order to appreciate the Zitterbewegung in the QW theory, we can study
the behaviour of X(t) = U−tXUt. We report here the results of Ref. [108].
The operator X(t) can be analytically computed once we know the expres-
sion for the velocity and the acceleration operators:

V(t) = i[HD,X(t)] =
∫
B
dk |k〉〈k|⊗V(k),

A(t) = i[HD,V(t)] =

∫
B
dk |k〉〈k|⊗A(k),

30



3.3. zitterbewegung of the dirac quantum walk

(a) (b) (c)

(d)

Figure 8.: Probability distribution for the same state as in Fig. 7 after t = 28

time-steps. Top-left: marginal distribution along the y-axis; top-right:
marginal distribution along the x-axis; bottom: marginal distribution
along the z-axis.

where HD is the interpolating Hamiltonian of the Dirac walk given by
Eq. (14):

HD(k) =
ωk

sinωk
(nγ0γ ·nk −mγ0).

By simple calculations, the velocity operator results to be

Vj(k) =
sinωk −ωk cosωk

ωk sinωk
HD(k)(vk)j +

ωk

sinωk
nγ0γ · ∂kjnk,

and the acceleration operator reads

Aj(k) = 2n
ω2k

sin2ωk

(
n
∑
µ<ν

γµγνf
(j)
µν −mγ · ∂kjnk

)
,

where f(j)µν is defined as

f
(j)
µν :=

(
(nk)ν∂kj(nk)µ − (nk)µ∂kj(nk)ν

)
.
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3. numerical evaluation of the dirac quantum walk

At this point we are able to compute the expression for X(t). First notice
that the operator A(k, t) = eiH

D(k)tA(k)e−iH
D(k)t actually evolves as

A(k, t) = e2iH
D(k)tA(k).

This is due to the fact that {HD(k),A(k)} = 0 because of the relation n3f
(j)
12 −

n2f
(j)
13 +n1f

(j)
23 = 0. As such, by integrating the acceleration we have

V(k, t) = V̂(k) +ZV(k, t),

V̂(k) = V(k) −ZV(k, 0),

ZV(k, t) =
1

2i
HD,−1(k)A(k, t),

with HD,−1(k) = ω−2
k HD(k). The integration of the velocity gives

X(t) = X(0) + V̂t+ZX(t) −ZX(0), (25)

ZX(k, t) = −
1

4
HD,−2(k)A(k, t),

where the operator ZXj (k, t) is given by

ZXj (k, t) = −
ω3k

2 sinω3k
e2iH

D(k)t
(
n2γ0γ ·w(j) +nmn · ∂kjn+m2γ0γ · ∂kjn

)
,

with

w(j) :=

 n3f
(j)
13 +n2f

(j)
12

−n1f
(j)
12 +n3f

(j)
23

−n1f
(j)
13 +n2f

(j)
23

 .

From Eq. (25), we can see that the position operator presents an addi-
tional contribution besides the classical term given by V̂t, where V̂ denotes
the classical component of the velocity which in the diagonal basis of the
Hamiltonian is proportional to the group velocity: V̂(k) ∝ (σz ⊗ I)vk. This
additional contribution consists in a time-dependent term denoted ZX(t)

and a constant shift denoted ZX(0). Noticing that

〈u∓(k)|V̂j(k)|u±(k)〉 = 0, 〈u±(k)|ZXj (k)|u±(k)〉 = 0,

the expectation value of X(t) over a generic state |ψ〉 = |ψ+〉+ |ψ−〉 with
both positive- and negative-frequency components can be expressed in the
following form:

〈ψ|X(t)|ψ〉 = x+ψ(t) + x−ψ(t) + xint
ψ (t),
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3.3. zitterbewegung of the dirac quantum walk

where x±ψ(t) is defined as

x±ψ(t) := 〈ψ±|X(0) + V̂t|ψ±〉 ,

and xint
ψ (t) is given by

xint
ψ (t) := 2Re

[
〈ψ+|X(0) −ZX(0) +ZX(t)|ψ−〉

]
. (26)

The two contributions given by x±ψ(t) represent the classical evolution of the
particle and antiparticle components according to the classical velocity V̂,
while the term xint

ψ (t) in Eq. (26) is responsible for the oscillatory behaviour
of the state evolution which, hence, can be considered the analogue in the
QW framework of the Zitterbewegung present in the Dirac theory. The os-
cillatory behaviour is clearly not present if the state has only positive or
negative components. However, this oscillatory behaviour can be shown to
vanish as t → ∞ for smooth wave-packets generalizing Eq. (20) to super-
positions of positive- and negative-frequency components:

|ψ〉 = c+ |ψ+〉+ c− |ψ−〉 , |c+|
2 + |c−|

2 = 1,

where |ψ±〉 is defined by

|ψ±〉 =
∫
B
dk gk ′(k) |k〉 |u±,r(k)〉

with |u±,r(k)〉 denoting the walk eigenvectors of Eq. (17). The dumping
of the oscillation is due to the fact that the wave-packets related to the
positive and negative components separate in position space after many
time-steps, suppressing in this way the interference between them. One
can show that this dumping effect goes to 0 as 1/

√
t for t→ ∞ and that the

amplitude of oscillations is bounded by the Compton wavelength  h/(mc)

in usual dimensional units (a proof in one spatial dimension is provided in
Ref. [35]).

For the Dirac walk in one space dimension we show here also the nu-
merical evaluation of a Gaussian state peaked around some value k ′ of the
wave vector. In the specific case we chose k ′ = 0.01π and the mass parame-
ter m = 0.15. The width of the Gaussian wave-packet in momentum space
is σ = 40−1. The state is chosen with an equal superposition of particle and
antiparticle eigenstates, namely c+ = c− = 1/

√
2. In Fig. 9 we show the

evolution of this state for t = 150 time-steps, where one can appreciate the
oscillating behaviour.

For the Dirac walk in dimension d = 3 we show the in Fig. 10 the evo-
lution of the mean position for a Gaussian wave-packet peaked around
k ′ = (0, 0.01π, 0) with width σ = 32−1. The mass parameter of the walk is
m = 0.3.
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3. numerical evaluation of the dirac quantum walk

20 40 60 80 100 120 140
t
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Figure 9.: The plots shows the evolution according to the Dirac QW in dimension
d = 1 for t = 150 time-steps of a Gaussian state with both particle and
an antiparticle eigenstates. The parameters are as follows: mass m =
0.15, width σ = 40−1, mean wave vector k ′ = 0.01π, c+ = c− = 1/

√
2.

Top: probability distribution of the position. Bottom: behaviour of the
mean position.

We have seen that the position operator X mixes the positive- and negative-
frequency components, as in QFT. However one can define, as in QFT, the
operator XNW, called Newton–Wigner position operator, that does not mix
the particle and antiparticle components. We can see this by introducing
the Foldy–Wouthuysen operator WFW that provides the representation of
the walk in which HD(k) is diagonal:

WFW =

∫
B
dk |k〉〈k|⊗WFW(k),

W−1
FW(k)HD(k)WFW(k) = diag(ωk,ωk,−ωk,−ωk).

Accordingly, we can define the Newton–Wigner position operator, defined
as

XNW :=W−1
FWXWFW.
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3.3. zitterbewegung of the dirac quantum walk

Figure 10.: The plot shows the mean-position evolution for the Dirac QW in di-
mension d = 3 for t = 200 time-steps. The state has both particle and
antiparticle eigen. Here the states are Gaussian with parameters: mass
m = 0.3, mean wave vector k ′ = (0, 0.01π, 0), width σ = 32−1; the in-
ternal state is a superposition of |u+,+(k)〉 and |u−,+(k)〉, where these
vectors are defined in Eq. (17). The time evolution is from left to right.

We can easily verify that the Newton–Wigner position operator does not
present Zitterbewegung, as in the usual QFT; indeed, the velocity operator
corresponds to the classical velocity operator:

VNW(t) = i[HD,XNW(t)], VNW(k) = V̂(k).

Consequently, since the acceleration vanish in this case, the evolution of
XNW is given by

XNW(t) = XNW(0) + V̂t,

showing in this way that the quivering behaviour disappears in the Foldy–
Wouthuysen representation.

We have seen in this chapter the numerical evolution of gaussian states
which show a particle-like behaviour satisfying a dispersive differential
equation. For states which are superposition of particle and antiparticle
components we provided the analysis of the behaviour of the position op-
erator which exhibits the oscillating behaviour typical of the Zitterbewegung
effect present in the Dirac theory. We also presented the evolution of a per-
fectly localized state in three spatial dimension showing the shape of the
causal cone of the Dirac walk.
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4 D I R A C Q W I N O N E S PAT I A L D I M E N -
S I O N

We introduced the concept of QCA and the related one of QW in Chapter 2,
showing how these structures emerge from simple assumptions. We review
here the solution of the Dirac QW in 1+ 1 dimensions, for the Cayley graph
Γ(Z, S), S = {±1, 0}. The general discussion about the Dirac QW has been
given in Section 2.4. We provide the solution in position space via a path-
sum, exploiting the algebraic properties of the walk transition matrices.

The Dirac QW of Refs. [40, 42] describes the one-step evolution of a two-
component quantum field on the line

|ψx(t)〉 =
(
ψL
x(t)

ψR
x (t)

)
, x, t ∈ Z,

ψL
x and ψR

x denoting the left and the right mode of the field, respectively.
The Hilbert space of the walk is H = C2 ⊗ `2(Z) and we will employ the
factorized basis |a〉 |x〉, with a = L,R. The evolution of the walk is provided
by the unitary operator W of the form

W =
∑
h∈S

Ah ⊗ Th = AL ⊗ S+AR ⊗ S† +AF ⊗ I,

where the transition matrices are given by

AL =

(
n 0

0 0

)
, AR =

(
0 0

0 n

)
, AF =

(
0 −im

−im 0

)
, (27)

with n2 +m2 = 1, n,m > 0, and the shift operator S defined by

S =
∑
x∈Z

|x− 1〉〈x| .

Here we conveniently identify R ≡ −1, L ≡ 1 and F ≡ 0. The operator
Th denotes the right-regular representation of Z on `2(Z), namely Th |x〉 =
|x− h〉. The matrices in Eq. (27) have been derived in Refs. [40, 42] from the
assumptions of unitarity, locality, homogeneity and isotropy. The resulting
walk is not a coined QW as discussed in Section 2.3.2, since it can not be
factorized as W = TC, where T is the translation operator and C is the
coin-flip operator.
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4. dirac qw in one spatial dimension

4.1 path-sum solution
In this section we provide a brief review of the solution obtained in Ref. [72].
Given an initial configuration |ψ(0)〉 ∈ H , the evolution of the state is
given by the repeated application of the walk unitary: |ψ(t)〉 = Wt |ψ(0)〉.
In terms of the transition matrices the update rule is given by

|ψx(t+ 1)〉 =
∑
h∈S

Ah |ψx+h(t)〉 , (28)

where |ψx(t)〉 ∈ C2 denotes the state at site x ∈ Z, namely

|ψ(t)〉 =
∑
x∈Z

|x〉 |ψx(t)〉 .

By iterating Eq. (28), as shown in Section 2.5, we can express the state at
time t in terms of the sum over the paths that join the sites in the past
causal cone Ct(x) of a given site x:

|ψx(t)〉 =
∑

y∈Ct(x)

∑
σ∈Λt(y,x)

A(σ) |ψy(0)〉 ,

where σ is a path on Z joining a site y to the site x in t time-steps. Repre-
senting the path σ with the sequence of successive steps h1h2 . . . ht, where
each hi is a transition in S, the function A(σ) is given by the product of the
transition matrices corresponding to the steps hi:

A(h1,h2, . . . ,ht) := A−ht · · ·A−h2A−h1 .

We remark that, following our convention, the matrix Ah is associated to
the step −h.

Our aim is now to evaluate the sum over σ in order to compute the
propagator defined by

K(x,y; t) := 〈y|Wt|x〉

=
∑

σ∈Λ(x,y)

A(σ) (29)

and representing the probability amplitude to go from x to y in t time-
steps.

Each path σ is formed by arranging successive R, L, F steps. We denote
by r̂(σ), l̂(σ), f̂(σ) their respective occurrence number, which satisfy the
conditions {

r̂(σ) + l̂(σ) + f̂(σ) = t,
r̂(σ) − l̂(σ) = x− y;
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4.1. path-sum solution

then, we can express r̂ and l̂ in terms of the coordinates on the lattice and
the parameter f̂ as

r̂(σ) =
t− f̂(σ) + x− y

2
, l̂(σ) =

t− f̂(σ) − x+ y

2
.

We now evaluate the sum over σ in Eq. (29) as a function of the vari-
ables x,y, t. By direct inspection, one can recognize that the products of
the transition matrices are easily expressed by adopting a suitable binary
encoding:

AR = nA11, AL = nA00, AF = −im(A01 +A10), (30)

A00 =

(
1 0

0 0

)
, A11 =

(
0 0

0 1

)
,

A01 =

(
0 1

0 0

)
, A10 =

(
0 0

1 0

)
.

With this convention, the matrices satisfy the following composition rule:

AabAcd =
1+ (−1)b⊕c

2
Aad, (31)

the symbol ⊕ denoting the sum modulo 2. The mass term AF plays a
special role in the computation of the path-sum, since it determines which
paths connecting two given points are admissible. From Eq. (31) we see that
the resulting matrix A(σ) depends only on the first and the last bit of the
path. As a consequence we can parameterize the sum over σ ∈ Λt(y, x) by
considering the paths with f̂(σ) = f and with resulting matrix Aab denoted
as Ft,ab(f). Thus, the sum over paths becomes:

|ψx(t)〉 =
∑

y∈Ct(x)

∑
a,b∈{0,1}

t−|x−y|∑
f=0

α(f)cab(f)Aab |ψy(0)〉 , (32)

where α(f) := (−im)fnt−f and cab(f) := |Ft,ab(f)| counts how many paths σ
with f̂(σ) = f contribute to give the matrix Aab.

The problem is now to obtain an explicit expression for the coefficients
cab. Again, the product rule of Eq. (31) gives us a hint on how to proceed:
an R (L) transition can be followed only by other transitions of the same
kind or an F transition. An F transition flips the components of the internal
state and after it the walker can only proceed to the left (to the right) with
an L transition (R transition). In other words, a generic path with f < t

transitions of the F kind has the general form

τ1 F τ2 F τ3 F . . . F τf−1 F τf F τf+1.
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4. dirac qw in one spatial dimension

The F transitions identify f+ 1 slots τi and, as we remarked, there are two
classes of paths: the ones having any one of the odd slots τ2i+1 filled with
R transitions and the ones having any one of the odd slots filled with L

transitions. We denote the first class as ΩR(f) and the second one as ΩL(f),
which are clearly disjoint if f < t. In order to compute the coefficients
cab, it is convenient to separate the case of f even from then case of f odd.
As one can readily check, we have that caa(2f+ 1) = c01(2f) = c10(2f) =

0. Moreover, only paths coming from ΩR(2f) contribute to c00(2f), and,
analogously, only paths in ΩL(2f) contribute to c11(2f); the same goes in
the odd case: c01(2f+1) counts paths inΩR(2f+1), while c10(2f+1) counts
paths in ΩL(2f+ 1). For f = t, the resulting matrix is A00 +A11 when t is
even and it is A01 +A10 in the odd case.

At this point we are able to write the general expression for the coeffi-
cients cab(f) (for any f):

cab(f) =

(
∆+ − νab
f−1
2 − νab

)(
∆− + νab
f−1
2 + νab

)
, (33)

∆± =
t± (x− y) − 1

2
, νab =

ab− ab

2
,

where a := 1−a, and the binomials vanish for non integer arguments. Such
an expression for the coefficients is justified by studying the combinatorial
properties of the paths.

Let us start from the even case with f̂(σ) = 2f, r := r̂(σ) and l := l̂(σ). If
σ ∈ ΩR(2f), we can extract two substrings of the form

ρ = R . . .R F R . . .R F R . . .R,
λ = L . . . L F L . . . L,

with r̂(ρ) = r, f̂(ρ) = f, l̂(λ) = l, and f̂(λ) = f− 1. The coefficient c00(2f)
is now easily computed since it is given by the product of the number of ρ
and λ strings. The number of ρ strings can be computed with the method
of stars and bars [109]: the number of strings is given by the number of
permutations of r+ f and l+ f− 1 symbols, respectively for ρ and λ strings.
Analogously, we obtain the result for c11, and therefore we have:

c00(2f) =

(
r+ f

f

)(
l+ f− 1

f− 1

)
=

( t+x−y
2

f

)( t−x+y
2 − 1

f− 1

)
,

c11(2f) =

(
l+ f

f

)(
r+ f− 1

f− 1

)
=

( t−x+y
2

f

)( t+x−y
2 − 1

f− 1

)
.

The number of occurrences of the matrices A01 and A10 is counted in
the same way. These matrices can only appear if f̂(σ) = 2f + 1. In this
case, the two substrings ρ and λ have the same number of F symbols given
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4.1. path-sum solution

by f. Considering separately the permutations of the symbols in the two
substrings, we obtain the counting

c01(2f+ 1) = c10(2f+ 1) =

(
r+ f

f

)(
l+ f

f

)
=

( t+x−y−1
2

f

)( t−x+y−1
2

f

)
.

The analytical solution of the Dirac QW can be expressed in a compact
form in terms of Jacobi polynomials P(ζ,ρ)

k (z) computing the sum over f in
Eq. (32):

|ψx(t)〉 =
∑

y∈Ct(x)

∑
a,b∈{0,1}

γabP
(a⊕b,−t)
k

(
1+ 2

(m
n

)2)
Aab |ψy(0)〉 ,

where k := ∆− − (ab+ ab)/2, and

γab := −ia⊕bnt
(m
n

)2−a⊕b(∆+ + 1
2

∆− + 1
2

)1−ab
,

assuming that γaa = 0 for t+ x− y odd and γ01 = γ10 = 0 for t+ x− y
even.

We remark that for x = t the only non-zero coefficient is c00 with f = 0.
Substituting the expression of Eq. (33) we have c00(0) = 1 and, choosing as
initial state |ψy(0)〉 = δy,0 |ϕ〉 with |ϕ〉 ∈ C2, the state after t time-steps is
given by

|ψt(t)〉 = nt
(
1 0

0 0

)
|ϕ〉 .

Analogously, for x = −t the only non-zero coefficient is c11 and thus we
have

|ψ−t(t)〉 = nt
(
0 0

0 1

)
|ϕ〉 .

In this chapter we reviewed the solution of the Dirac QW in position
space of Ref. [72]. The solution is obtained exploiting the path-sum method
and the algebraic properties of the transition matrices, solving the combi-
natorial problem of counting the number of paths contributing with the
same matrix. The result obtained here fits into the literature of solved QWs
on the line: the coined QW [17] and the disordered coined QW [110]. We
should also mention the solution of Kauffman and Noyes [69] to the Feyn-
man checkerboard problem [66] obtaining a solution of the finite-difference
Dirac equation for a fixed value of the mass. The approach of Kauffman
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4. dirac qw in one spatial dimension

and Noyes simplifies previous attempts [67, 68]. We remark that the Feyn-
man checkerboard problem is a different discretization approach from the
one provided by the QW framework. Indeed, this is due to the fact that
finite-difference equations—lacking, in general, strict unitary evolution—
do not have a corresponding description in terms of QWs. As a future per-
spective, it would be interesting to study in position space the behaviour of
the causal cone providing a better understanding of the dynamical proper-
ties of the walk.
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5 W E Y L Q W I N T W O S PAT I A L D I M E N -
S I O N S

We continue the discussion on the path-sum solution for quantum walks
by presenting in this chapter a review of the solution for the Weyl QW in
2+ 1 dimensions derived in Ref. [73].

The Weyl QW of Ref. [40] is the only unitary quantum walk satisfying
the principles of locality, homogeneity and isotropy, with minimal computa-
tional complexity, that can be embedded in the two-dimensional Euclidean
space [40, 65, 94]. The Weyl QW is defined on the Cayley graph of the
group Z2, considered as the free Abelian group with two generators, say
R ≡ h1 := (1, 0) and U ≡ h2 := (0, 1). The unitary operator W governing its
dynamics acts on the Hilbert space H = `2(Z2)⊗ C2 and the generic state
of the walk is denoted as |ψ〉 =

∑
x∈Z2 |x〉 |ψx〉, with |ψx〉 ∈ C2 being the

state at the site x ∈ Z2.
The walk unitary can be expressed in terms of the transition matrices as

W =
1

2

∑
h∈S

Th ⊗Ah, (34)

where S = {R, L,U,D}, with L = −R and D = −U, and the transition matrices
are given by

AR =

(
1 0

−ν 0

)
, AU =

(
1 0

ν 0

)
,

AL =

(
0 ν∗

0 1

)
, AD =

(
0 −ν∗

0 1

)
,

(35)

with |ν| = 1. Without loss of generality we assume ν = 1. As before, Th
denotes the right-regular representation of Z2 on `2(Z2).

5.1 path-sum solution
As for the one dimensional case of Chapter 4 we seek now an expression
for the propagator K(x ′, x; t) of the Weyl QW in d = 2, which determines
the probability amplitude to go from a site x ′ to a site x in t time-steps. The
state is expressed in terms of the propagator by the following equation:

|ψx(t)〉 =
∑

x ′∈Ct(x)
K(x ′, x; t) |ψx ′(0)〉 ,
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5. weyl qw in two spatial dimensions

where |ψ(0)〉 is the initial state. In terms of the transition matrices the
propagator can be written as a path-sum:

K(x ′, x; t) := 〈x|Wt|x ′〉

=
1

2t

∑
σ∈Λt(x ′,x)

A(σ), (36)

with A(σ) the generic product of the transition matrices associated to the
path σ:

A(h1,h2, . . . ,ht) := A−ht
· · ·A−h2

A−h1
.

As in Section 2.5, the set Λt(x ′, x) is the set of paths of length t starting
from the site x ′ ∈ Z2 and ending in the site x ∈ Z2.

In order to solve the path-sum of Eq. (36), we need to exploit the algebraic
properties of the transition matrices, as we did in dimension d = 1 (see
Section 4.1). The composition rule of the matrices can be expressed in a
very simple way by introducing a 2-bit encoding: R → 00, L → 11, U → 10,
and D → 01. In this way, the product of the matrices is given by

AabAcd = (−1)(c⊕a)(d⊕b)Acb, (37)

where the symbol ⊕ denotes the sum modulo 2. Throughout the manuscript,
all the bit operations are also extended element-wise to binary strings. We
remark that the composition rule of Eq. (37) entails that the set of transition
matrices generate a semigroup. The binary encoding of the single steps in-
duces a binary representation of the paths: a path σ of length t is encoded
in a pair (w(1),w(2)) of binary strings, w(j) being the string made of the j-th
bits of the encoding. We denote the set of all the binary strings of length t
as Bt := {0, 1}t and the set of the strings with a fixed number of 1-bits as

St(K) := {w ∈ Bt | ι(w) = K } , (38)

where, denoting with |w| the length of the string w, ι(w) :=
∑|w|
k=1wk repre-

sents the Hamming weight of the string w and wk denotes the k-th bit of
w. In terms of ST (K), n-tuples of binary strings are defined by

Snt (K1, . . . ,Kn) := St(K1)× · · · ×St(Kn). (39)

From Eq. (37) it is easy to extend the composition rule to the product of
an arbitrary number of matrices. For a path σ = (w(1),w(2)) the resulting
matrix is given by

A
(
w(1),w(2)

)
= (−1)(w

(1)⊕Sw(1))w(2)
A
w

(1)
1 w

(2)
t

, (40)
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5.1. path-sum solution

where zw := zι(w) and we introduced the left circular shift S defined by
(Sw)i = w(i mod t)+1, for all i ∈ {1, . . . , t}. Notice that in Eq. (40) the strings
are negated since the matrix associated to the step h is exactly A−h, and, in
terms of strings, this corresponds to negate the bits of the binary encoding.

Denoting as r̂(σ), l̂(σ), û(σ), d̂(σ) the number of occurrences of R, L, U,
D steps in the path σ ∈ Λt((x ′1, x ′2), (x1, x2)), it is straightforward to prove
that the following conditions are satisfied (for t− |x1 − x

′
1|− |x2 − x

′
2| even)

r̂(σ) − l̂(σ) = x1 − x
′
1,

û(σ) − d̂(σ) = x2 − x
′
2,

r̂(σ) + l̂(σ) + û(σ) + d̂(σ) = t.

(41)

Furthermore, the Hamming weight of the path σ is related to the parame-
ters r, l, u and d via the equations{

ι(w(1)) = l̂(σ) + û(σ),
ι(w(2)) = l̂(σ) + d̂(σ).

By using the relations of Eq. (41), we see that

ι(w(1)) − ι(w(2)) = û(σ) − d̂(σ) = x2 − x
′
2,

ι(w(1)) + ι(w(2)) = t− (r̂(σ) − l̂(σ)) = t− (x1 − x
′
1),

which finally gives{
ι(w(1)) = 1

2(t− (x1 − x
′
1) + (x2 − x

′
2)),

ι(w(2)) = 1
2(t− (x1 − x

′
1) − (x2 − x

′
2)).

(42)

As a consequence of this result, the admissible paths σ connecting x ′ =
(x ′1, x

′
2) to x = (x1, x2) are precisely those having a fixed number of 1-bits,

according to Eq. (42), and are obtained by independent permutations of the
bits of the encoding-strings w(1) and w(2).

In terms of the binary strings, the propagator K can be rewritten as

K(x ′, x; t) =
1

2t

∑
σ∈Λt(x ′,x)

A(σ)

=
1

2t

∑
w∈S2

t (K1,K2)

(−1)(w
(1)⊕Sw(1))w(2)

A
w

(1)
1 w

(2)
t

=
1

2t

∑
w∈S2

t (t−K1,t−K2)

(−1)(w
(1)⊕Sw(1))w(2)

A
w

(1)
1 w

(2)
t

, (43)

where w = (w(1),w(2)), K1 = (t− (x1 − x
′
1) + (x2 − x

′
2))/2, and K2 = (t−

(x1 − x
′
1) − (x2 − x

′
2))/2. Therefore, since the resulting matrix depends only
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5. weyl qw in two spatial dimensions

on the first bit of w(1) and the last bit of w(2), we can collect together all the
paths giving the same matrix:

K(x ′, x; t) =
1

2t

∑
a,b∈{0,1}

cab(t−K1, t−K2)Aab,

where the coefficients cab are defined by

cab(K1,K2) :=
∑

w∈S2
t,ab(K1,K2)

(−1)(w
(1)⊕Sw(1))w(2)

, (44)

and S2t,ab(K1,K2) ⊂ S2t(K1,K2) is the subset of pairs (w(1),w(2)) with w(1)
1 =

a and w(2)
t = b.

The computation of the coefficients cab can be done by exploiting the
combinatorial properties of the binary strings. To this end, it is convenient
to define a canonical form for strings.

Definition 5.1.1. We say that a binary string w is in canonical form if the
following condition holds:

wi > wi+1 ∀i ∈ {1, 2, . . . , |w|− 1}.

The main result of this chapter relies on a number of general results
which we present in the following. The complete proofs of the results of
this chapter are given in Appendix A. We denote with v_w the concatena-
tion of binary strings, which is extended naturally for A and B subsets of
Bt:

A_B := { v_w ∈ Bt | v ∈ A, w ∈ B } .

Lemma 5.1.1. Take t,K,H ∈ N, with K,H 6 t, and let v ∈ St(K) be in canonical
form. Then the string v induces a partition on St(H):

v⊕St(H) =
⋃
n∈I

W(K,H,n),

W(K,H,n) :=

{
SK(K−H+n)_St−K(n), if K > H,
SK(n)

_St−K(H−K+n), otherwise,

with I = {0, 1, . . . , min{K,H, t−K, t−H}}. Defining r = ϑ(K−H) and r = 1− r,
the size of each subset is given by

|W(K,H,n)| = D(t, rt+ (−1)rH, rt+ (−1)rK,n),

D(t,p,m,n) :=

{(
m
n

)(
t−m
p−n

)
, if 0 6 n 6 m 6 t and n 6 p,

0, otherwise,

and for allw ∈ W(K,H,n) the Hamming weight is given by ι(w) = |K−H|+ 2n.
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5.1. path-sum solution

Corollary 5.1.1. Given K,H as in Lemma 5.1.1, for all v ∈ St(K) and for any
πv bitwise permutation of Bt such that πv(v) is in canonical form, the following
decomposition holds:

v⊕St(H) =
⋃
n∈I
π−1v (W(K,H,n))

with I = {0, 1, . . . , min{K,H, t−K, t−H}} and moreover

|π−1v (W(K,H,n))| = |W(K,H,n)|,

ι(π−1v (W(K,H,n))) = ι(W(K,H,n)).

From Eq. (44) it is apparent that we need to find a classification of binary
strings v and w according to the sign (−1)(v⊕Sv)w, which depends only
on the parity of the Hamming weight of (v ⊕ Sv)w. In order to aid the
discussion, it is convenient to consider separately the classification induced
by the functions v⊕ Sv and v ′w. So, let us start from the function v⊕ Sv.
The following Lemma specialize the result of Corollary 5.1.1 to this case.

Lemma 5.1.2. Let v ∈ St(K). Then v⊕ Sv ∈ π−1v (SK(n)
_St−K(n)), for some

n ∈ {0, 1, . . . , min{K, t−K}}.

The result of Lemma 5.1.2 is not accurate to encompass the complete
classification of the function v ⊕ Sv since in the summation of Eq. (44)
the strings w(1) and w(2) must have, respectively, the first and the last bit
fixed. Therefore, let us consider strings v ∈ St(K) such that v ⊕ Sv ∈
π−1v (SK(n)

_St−K(n)) with both the first and the last bit fixed, say v1 = a

and vt = a ′. The set of all such strings is denoted as Taa ′(t,K,n). The re-
fined counting of Lemma 5.1.2 is then given by the following result (whose
proof is given in Appendix A).

Lemma 5.1.3. Taking n such that

nmin(K) 6 n 6 nmax(K),

with nmin(K) := min{1,K, t−K} and

nmax(K) :=


min{K− aa ′, t−K− 1+ aa ′}, if 1 < K < t− 1,
1, if K = 1 or K = t− 1,
0, otherwise,

the number uaa ′(n) of binary strings v ∈ Taa ′(t,K,n) is given by

uaa ′(n) = CK,n+aa ′Ct−K,n+aa ′ ,
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5. weyl qw in two spatial dimensions

where CK,n is defined as

CK,n :=


(
K−1
n−1

)
, if K > n > 0,

1, if K = n = 0,
0, otherwise.

So far we have considered only the sum modulo 2 in (v ⊕ Sv)w; the
final counting is then obtained by considering that the Hamming weight of
(v⊕ Sv)w is given by the 1-bits of v⊕ Sv selected via the string w. Since v ∈
Taa ′(t,K1,n) has fixed endpoints, we write formally v = aṽa ′. Notice that
we can write in a formal way S(aṽa ′) = ṽa ′a and |ṽ| = t− 2. Analogously,
w = w̃b, with |w̃| = t− 1 and ι(w̃) = ι(w) − b. In this way we obtain

ι[(v⊕ Sv)w] = ι[(aṽa ′ ⊕ ṽa ′a)(w̃b)]

= ι[(aṽ⊕ ṽa ′)w̃] + (a⊕ a ′)b,

and hence the expression for the coefficients cab is given by

cab(K1,K2) =
∑
a ′=0,1

nmax(K1)∑
n=nmin(K1)

∑
ṽ,w̃

(−1)(a⊕a
′)b(−1)(aṽ⊕ṽa

′)w̃. (45)

The sign in the above expression is independent of permutation of the
binary strings. Indeed, consider a bitwise permutation πn of Bt−1 such
that πn(aṽ⊕ ṽa ′) = cn ∈ St−1(2n) with cn canonical. Then we can write

(−1)π
−1
n (cn)w̃ = (−1)π

−1
n (cnπn(w̃)) = (−1)cnπn(w̃)

and therefore the sum over ṽ in Eq. (45) gives precisely

uaa ′(n) = |Taa ′(t,K1,n)|,

so that we obtain

cab(K1,K2) =
∑

a ′∈{0,1}

nmax(K1)∑
n=nmin(K1)

(−1)(a⊕a
′)buaa ′(n)

∑
w̃

(−1)cnw̃. (46)

The last sum can be performed by considering in how many ways one can
select k bits, 0 6 k 6 µ, µ := 2n−a⊕a ′, from the string cn, for fixed n. This
is tantamount to consider the following partition of the set St−1(K2 − b)

St−1(K2 − b) =

µ⋃
k=0

Sµ(k)St−µ−1(K2 − k− b),
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5.1. path-sum solution

and the size of each subset is denoted as waa ′b(n,k):

waa ′b(n,k) := |Sµ(k)| · |St−µ−1(K2 − k− b)|

=

(
µ

k

)(
t− µ− 1

K2 − k− b

)
.

The expression for the coefficients cab finally becomes:

cab(K1,K2) =
∑

a ′∈{0,1}

nmax(K1)∑
n=nmin(K1)

µ∑
k=0

(−1)k+(a⊕a ′)buaa ′(n)waa ′b(n,k). (47)

As a final remark on this result, the sum over k in Eq. (47) can be evaluated
in terms of the hypergeometric function 2F1(a,b, c, z) as follows:

∞∑
k=0

(−1)kwaa ′b(n,k) =
(
t− µ− 1

K2 − b

)
2F1(−K2 + b,−µ, t−K2 − µ+ b,−1).

So, letting

Faa ′b(n) := 2F1(−K2 + b,−µ, t−K2 − µ+ b,−1),

the coefficients cab can be written in the equivalent form:

cab(K1,K2) =
∑

a ′∈{0,1}

nmax(K1)∑
n=nmin(K1)

(−1)(a⊕a
′)b

(
t− µ− 1

K2 − b

)
uaa ′(n)Faa ′b(n).

This concludes the computation of the propagator K(x ′, x; t) of the Weyl
QW in 2 + 1 dimensions. The analytical solution that we have obtained
provides the first example of path-sum solution of a QW in two spatial
dimensions, opening also the possibility of studying other walk in 2 + 1
dimensions. Furthermore, a deeper analysis of the results is necessary,
such as the scaling behaviour and the study of the causal cone evolution,
and will be matter of future work.

In this chapter we have seen how the solution of the Weyl QW in dimen-
sion d = 2 can be obtained in position space. The solution relies on the
semigroup property of the transition matrices and the topological proper-
ties of the lattice paths that can be encoded in binary strings. This approach
allowed us to simplify the combinatorial problem of counting the number
of paths contributing with the same transition matrix.

As a future perspective, it would be interesting to study also the massive
case. The matrices for the Dirac walk in two spatial dimensions gener-
ate a closed algebra as well, meaning that it is likely that the path-sum
can be successfully solved. The added complexity in this case is due to
the presence of the mass term which makes the classification of the paths
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5. weyl qw in two spatial dimensions

contributing with the same matrix more involved. Nevertheless, one can
expect that the results for the massless case prove to be relevant also in the
massive case, simplifying in this way the computation of the propagator.
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6 W E Y L Q W I N T H R E E S PAT I A L D I -
M E N S I O N S

We reviewed in Chapters 4 and 5 the path-sum solutions of Refs. [72, 73]
for the Dirac QW in 1 + 1 dimensions and for the Weyl QW in 2 + 1 di-
mensions. Now we present the continuation of these previous works by
providing an analytical solution in position space of the Weyl QW in 3+ 1
dimensions [74]. The solution deeply relies on the results of Chapter 5 since
the structure of the transition matrices is similar; in fact, the product rule
is modified by a phase factor that depends only on the Hamming weight
of the binary strings involved.

The Weyl QW of Ref. [40] in 3+ 1 dimensions is the only unitary quan-
tum walk satisfying the principles of locality, homogeneity and isotropy,
with minimal computational complexity, that can be embedded in the two-
dimensional Euclidean space [40, 65, 94]. The walk is defined on a Cayley
graph of the group Z3; in particular, the solution exists only for the BCC
lattice Γ(G, S+), where a convenient choice for the vertex set is G = 2Z3 ∪
(2Z3 + t), t = (1, 1, 1); moreover, the generating set is S+ := {h1,h2,h3,h4}
with

h1 =

11
1

 , h2 =

 1

−1

−1

 , h3 =

−1

1

−1

 , h4 =

−1

−1

1

 .

The evolution is provided by the unitary operator W =
∑

h∈S Th ⊗Ah (S :=

S+ ∪ S− and S− := S−1+ ), acting on H = `2(G) ⊗ C2, and the transition
matrices are

Ah1
= ζ∗

(
1 0

1 0

)
, Ah−1

= ζ

(
0 −1

0 1

)
,

Ah2
= ζ∗

(
0 1

0 1

)
, Ah−2

= ζ

(
1 0

−1 0

)
,

Ah3
= ζ∗

(
0 −1

0 1

)
, Ah−3

= ζ

(
1 0

1 0

)
,

Ah4
= ζ∗

(
1 0

−1 0

)
, Ah−4

= ζ

(
0 1

0 1

)
,

with ζ = 1±i
4 and h−l = −hl. The two possible choices for the coefficient

ζ correspond to the two inequivalent QW solutions existing on the BCC
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6. weyl qw in three spatial dimensions

lattice [40]. The state of the walk is written as |ψ〉 =
∑

x∈G |x〉 |ψx〉, where
we denote with |ψx〉 ∈ C2 the state at site x ∈ G.

6.1 composition rule of the transition ma-
trices

The path-sum in the case of the Weyl QW in d = 3 can be studied in a very
similar way as we did for the Weyl QW in d = 2. This is due to the algebraic
properties of the transition matrices which are essentially the same. We
employ also in this case a binary encoding for the generators h ∈ S so
as the composition rule of the matrices takes a very simple form. Being
the |S| = 8, it is sufficient to find a three-bit encoding b1b2b3: the binary
functions involved in the evaluation of the path-sum take a convenient
form with the identifications

h1 → 011, h2 → 110, h3 → 101, h4 → 000,
h−1 → 100, h−2 → 001, h−3 → 010, h−4 → 111.

(48)

Accordingly, the transition matrices are encoded as

Ãb1b2b3 = (±i)b1⊕b2⊕b3Bb1b2 , Ãb1b2b3 := (ζ∗)−1Ab1b2b3 ,

where the matrices Bb1b2 are precisely the matrices of Chapter 5, with also
the same encoding:

B00 =

(
1 0

−1 0

)
, B10 =

(
0 −1

0 1

)
,

B01 =

(
1 0

1 0

)
, B11 =

(
0 1

0 1

)
.

Hence, the product rule for Bb1b2 is (as in Chapter 5):

BabBcd = (−1)(c⊕a)(d⊕b)Bcb.

Consequently, the transition matrices of the Weyl QW in d = 3 generate,
up to phases, a finite semigroup, allowing for an effective solution of the
path-sum. A path σ of length t on Γ(G, S+) is represented by a triad of
binary strings (w(1),w(2),w(3)), with w(j) ∈ Bt the string made of the j-th
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6.2. path-sum solution

bits of the encoding (48). The product of the transition matrices associated
to each step of a path σ = (w(1),w(2),w(3)) can be written as

Ã
(
w(1),w(2),w(3)

)
:= Ã

w
(1)
t w

(2)
t w

(3)
t

· · · Ã
w

(1)
1 w

(2)
1 w

(3)
1

= (−1)(w
(1)⊕Sw(1))·w(2)

(±i)w
(1)⊕w(2)⊕w(3)

B
w

(1)
1 w

(2)
t

, (49)

where it is understood that zw ≡ zι(w) and ι(w) is the Hamming weight of
w defined as ι(w) :=

∑|w|
k=1wk, wk being the k-th bit of the string w. Recall

that S denotes the left circular shift

(Sw)k := w(k mod |w|)+1, ∀k ∈ {1, 2, . . . , |w|}.

6.2 path-sum solution
In this section we present the derivation of the solution in position repre-
sentation of the walk. Our aim is to obtain an expression for the evolution
of a given initial configuration |ψ(0)〉—that is, we seek an expression for the
propagator K(x ′, x; t) representing the probability amplitude to go from x ′

to x in t time-steps—exploiting the geometric and algebraic properties of
the underlying graph as well as the semigroup property of the transition
matrices. The state at time t can be written in terms of the propagator as

|ψx(t)〉 =
∑

x ′∈Ct(x)
K(x ′, x; t) |ψ ′

x(0)〉 ,

K being the propagator of the Weyl QW for d = 3, defined as

K(x ′, x; t) := 〈x|Wt|x ′〉

=
∑

σ∈Λt(x ′,x)

A(σ), (50)

where A(σ) represents the product of the transition matrices associated to
the steps of the path σ:

A(h1,h2, . . . ,ht) := Ah−1
t

· · ·A
h−1
2
A

h−1
1

.

Again, following our convention, the matrix associated to a step h is Ah−1 .

6.2.1 Characterization of the past causal cone

First of all we need to give a characterization of the points lying in the past
causal cone Ct(x) of x. To this end, we need to introduce the concept of
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6. weyl qw in three spatial dimensions

distance on the graph Γ(G, S+), counting the minimum number of steps
required to go from x ′ to x. More formally this is given by

d(x ′, x) := inf
λ∈Λ(x ′,x)

l(λ),

where the infimum is taken over the set Λ(x ′, x) of paths starting at x ′ and
ending in x, and l(λ) is the length of the path. The computation of the
propagator (50), however, requires to consider paths of a given length t. A
necessary condition, then, for a point x ′ ∈ G to lie in the past causal cone
of x ∈ G is

∆t(x
′, x) := t− d(x ′, x) > 0.

SinceG is Abelian, we can freely permute the steps of a path λ = h1h2 . . .ht
without changing its endpoints. This meas that λ is characterized by a
quadruple (n±1,n±2,n±3,n±4), n±l counting the number of steps in direc-
tion h±l, such that {∑

l(nl −n−l)hl,i = xi − x
′
i,∑

l(nl +n−l) = t.
(51)

Furthermore, introducing the number of steps in the positive- and negative-
coordinate direction

x+i :=
∑
l

[ϑ(hl,i)nl + ϑ(h−l,i)n−l],

x−i :=
∑
l

[ϑ(−hl,i)nl + ϑ(−h−l,i)n−l],

ϑ being the Heaviside step function, for each i = 1, 2, 3 it holds that{
x+i + x−i = t,
x+i − x−i = xi − x

′
i.

(52)

Consequently, from Eq. (52), any closed path (i.e. a cycle), for which x = x ′,
should have an even number of steps. Suppose now that the distance of x
from the origin is d and consider a permuted path

λ ′ = h ′
1 . . .h

′
dh

′
d+1 . . .h

′
t

such that the first d steps realize the distance. Hence, the other t− d steps
constitute a cycle joining x to itself, and the quantity t− d must be even.
Since this holds in general, we have that x ′ ∈ Ct(x) if and only if ∆t(x ′, x)
is even and non-negative.

For the BCC lattice the distance is given by

d(x, x ′) = max
i

|xi − x
′
i|. (53)
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6.2. path-sum solution

Let us see why this is the case. Without loss of generality, let us compute
the distance d(0, x), for some x ∈ G. Notice that for each path λ ∈ Λ(0, x)
it holds true that for each i = 1, 2, 3

|xi| 6
∣∣∣∑
l

(nl −n−l)
∣∣∣ 6 ∑

l

(nl +n−l) = l(λ),

namely every path satisfies l(λ) > maxi|xi|, making maxi|xi| a good can-
didate to be the distance. Now, it only remains to prove that there exists
a path with precisely that number of steps. From Eq. (51) it is apparent
that if λ satisfies the system (51) with (n±1,n±2,n±3,n±4), then the path
λ ′ ∈ Λ(0, x) such that n ′

l = nl −n−l satisfies:∑
l

n ′
lhl,i = xi, l(λ ′) =

∑
l

|n ′
l| 6 l(λ). (54)

Therefore we can restrict ourselves to look for paths λ ′ having only steps
either in the positive or in the negative direction for each l = 1, . . . , 4. From
Eq. (54) we obtain the following expressions for n ′

2, n
′
3 and n ′

4:
n ′
2 = n

′
1 −

x2+x3
2 ,

n ′
3 = n

′
1 −

x1+x3
2 ,

n ′
4 = n

′
1 −

x1+x2
2 .

(55)

Suppose now that x1 is maximal and non-negative. If we choose n ′
1 = a1,

n ′
2 = a2, n

′
3 = −a3, n ′

4 = −a4, with ai > 0, then l(λ ′) = a1 + a2 + a3 + a4 =
x1. Imposing the conditions of positivity of the ai according to Eq. (55), we
see that, for instance, a1 has to satisfy the conditions

a1 >
x2+x3
2 ,

a1 6
x1+x3
2 ,

a1 6
x1+x2
2 .

The last two inequalities entail that a1 6 x1+min{x2,x3}
2 and since a1 is arbi-

trary we can choose it to fulfil the bound, namely a1 =
x1+min{x2,x3}

2 . For
the other cases we can follow a similar reasoning, proving in this way the
result.

6.2.2 Binary string solution

So far we have studied the past causal cone Ct(x), yet we still do not know
which paths, specifically, are in Λt(x ′, x). The characterization we seek is
best studied by considering the binary description of paths. The binary en-
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6. weyl qw in three spatial dimensions

coding and the quadruple (n±1,n±2,n±3,n±4) are related by the following
equations: 

ι(w(1)) = n−1 +n2 +n3 +n−4,
ι(w(2)) = n1 +n2 +n−3 +n−4,
ι(w(3)) = n1 +n3 +n−2 +n−4.

Remarkably, the expressions for the Hamming weights of w(1), w(2) and
w(3) are given precisely by the expressions defining the number of steps in
the positive- and negative-coordinate direction:

ι(w(1)) = x−3 =
t−(x3−x

′
3)

2 ,

ι(w(2)) = x+1 =
t+(x1−x

′
1)

2 ,

ι(w(3)) = x+2 =
t+(x2−x

′
2)

2 .

(56)

Hence, as for the case d = 2, the number of 1-bits in each encoding string is
fixed by the coordinates. It is then convenient to introduce the set of string
tuples

Snt (K1, . . . ,Kn) := St(K1)× · · · ×St(Kn), (57)

where
St(K) := {w ∈ Bt | ι(w) = K }

is the set of strings with fixed Hamming weight K.
Therefore, in terms of binary strings, the path-sum of Eq. (50) can be

rewritten as

K(x ′, x; t) = (ζ∗)t
∑

w∈S3
t (K1,K2,K3)

Ã(w)

= (ζ∗)t
∑

w∈S3
t (t−K1,t−K2,t−K3)

α(12)β(123)B
w

(1)
1 w

(2)
t

, (58)

where the parameters K1, K2 and K3 are given by

K1 =
t− (x3 − x

′
3)

2
, K2 =

t+ (x1 − x
′
1)

2
, K3 =

t+ (x2 − x
′
2)

2
.

Moreover, the symbols α(12) and β(123) denote the phase factors:

α(12) := (−1)(w
(1)⊕Sw(1))·w(2)

, (59)

β(123) := (±i)w
(1)⊕w(2)⊕w(3)

. (60)

56



6.2. path-sum solution

Since the resulting matrix depends only on the first bit of w(1) and the last
bit of w(2), we can define some coefficients cab representing the contribu-
tion to the probability amplitude associated to the matrix Bab:

cab(K1,K2,K3) :=
∑

w∈S3
t,ab(K1,K2,K3)

α(12)β(123), (61)

where we defined S3t,ab(K1,K2,K3) ⊂ S3t(K1,K2,K3) as the subset of string

triads (w(1),w(2),w(3)) with w(1)
1 = a and w(2)

t = b. In this way the propa-
gator can be computed as

K(x ′, x; t) = (ζ∗)t
∑

a,b∈{0,1}
cab(t−K1, t−K2, t−K3)Bab. (62)

We have now to evaluate the sums in Eq. (61). Since α(12) does not
depend on w(3), we can first compute the sum∑

w

(±i)v⊕w

alone with ι(w) = H for a given H and for some fixed v ∈ St(K). Let us
recall that

∑
w z

v⊕w, z ∈ C, is independent of bitwise permutations of the
string v; indeed, suppose c = πv(v) is canonical (see Definition 5.1.1), then∑

w

zπ
−1
v (c)⊕w =

∑
w

zπ
−1
v (c⊕πv(w))

=
∑
w

zc⊕πv(w)

=
∑
w

zc⊕w.

Therefore, we only need to classify the stringsw according to the Hamming
weight of c ⊕w. All the results regarding this classification are already
given in Chapter 5. In particular, from Lemma 5.1.1, taking K > H, the
partition

St(H) =
⋃
n

SK(H−n)_St−K(n)

gives the correct counting for c ∈ St(K) since the size of each subset is
preserved:

c⊕St(H) = W(K,H,n) :=
⋃
n

SK(K−H+n)_St−K(n),

with

|W(K,H,n)| =
(

K

H−n

)(
t−K

n

)
.
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6. weyl qw in three spatial dimensions

Moreover, all the elements of W(K,H,n) share the same Hamming weight:

ι(w) = |K−H|+ 2n, ∀w ∈ W(K,H,n).

Therefore, summing zc⊕w over w, we have∑
w∈St(H)

zc⊕w =
∑
n

∑
w∈W(K,H,n)

zw

=
∑
n

∑
w∈W(K,H,n)

z|K−H|+2n

= z|K−H|
∑
n

(
K

H−n

)(
t−K

n

)
z2n.

The general result is summarized in the following proposition, whose proof
in given in Appendix B.

Proposition 6.2.1. Given t,K,H ∈ N, with K,H 6 t, and z ∈ C, for all v ∈
St(K) we have that ∑

w∈St(H)

zv⊕w = ξ(K,H; z), (63)

where
ξ(K,H; z) := z|K−H|

∑
n∈I

D(t, rt+ (−1)rH, rt+ (−1)rK,n) z2n,

with I = {0, 1, . . . , min{K,H, t−K, t−H}}.

So far we have obtained the expression for the sum of β(123) (60) over
w(3): ∑

w(3)∈St(K3)

(±i)w
(1)⊕w(2)⊕w(3)

= ξ
(
ι
(
w(1) ⊕w(2)

)
,K3;±i

)
.

We still have to evaluate the sum of α(12) (59) over w(1) and w(2), together
with ξ(ι(w(1) ⊕w(2)),K3;±i), in order to obtain the final expression for the
coefficients cab:

cab(K1,K2,K3) =
∑

w∈S2
t,ab(K1,K2)

α(12)ξ
(
ι
(
w(1) ⊕w(2)

)
,K3;±i

)
. (64)

The classification of strings according to the values of

α(12) = (−1)(w
(1)⊕Sw(1))w(2)

has already been given in Chapter 5. We recall that w(1) and w(2) have
fixed endpoints, say w(1)

1 = a, w(1)
t = a ′ and w(2)

t = b. The classification for
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6.2. path-sum solution

the function w(1) ⊕ Sw(1) is provided by Lemma 5.1.3, where the number
of strings w(1) such that

ι(w(1) ⊕ Sw(1)) = 2n,

for some n and with w(1)
1 = a and w(1)

t = a ′, is given by

uaa ′(n) = CK1,n+aa ′Ct−K1,n+aa ′ ,

CK,n being the number of n-compositions of K:

CK,n :=


(
K−1
n−1

)
if K > n > 0,

1, if K = n = 0,
0, otherwise.

The last step of our discussion is the analysis of the classification of
the strings w(2) according to the values of both ι((w(1) ⊕ Sw(1))w(2)) and
ι(w(1) ⊕w(2)). Suppose for definiteness that K1 > K2 and a = a ′ = 0. The
other cases are treated with a similar discussion. To emphasize the fact
that the strings have fixed endopoints, we write 0vn0 to denote a string
belonging to T00(t,K1,n). Notice that the action of the circular shift S can
be viewed as S(0vn0) = vn00. Similarly, wb denotes a string in St(K2) such
that w ∈ St−1(K2 − b). On the one hand, as we know from Corollary 5.1.1,
we can parametrize the sum modulo 2 of 0vn0 and wb as

ι(0vn0⊕wb) = |K1 −K2|+ 2J,

for some parameter J. On the other hand, we also need to find all the
strings w for which

ι((0vn ⊕ vn0)w)

has the same value varying w, for each fixed vn. In order to have a better
understanding of what is going on, we introduce a particular notation for
labeled strings. A labeled string is a string made of pairs of bits (p,q) and
we will identify the pairs of kind (p, 1) as p and the pairs of kind (p, 0) as
ṗ. In particular, for a given binary string v ∈ Taa ′(t,K1,n), we consider the
labeled string v such that vi = (vi, (v⊕ Sv)i) = (vi, vi ⊕ v(i mod t)+1). Let us
see a concrete example: take 0v0 = 001100110010 and wb = 11000010010b,
then we have

0̇v0̇ = 0̇01̇10̇01̇10̇010̇

and
v0̇0̇ 111 1̇1̇ 000 0̇0̇0̇ 0̇

wb 110 00 010 010 b

where we have arranged the bits of v by writing first the barred 1-bits and
the dotted ones, then the barred and dotted 0-bits, i.e. we used a modified
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6. weyl qw in three spatial dimensions

canonical arrangement. In the general case, we can view the structure of
the binary strings as follows:

n K1 −n n t−K1 −n− 1

v0̇0̇ 1 . . . 1 1̇ . . . 1̇ 0 . . . 0 0̇ . . . 0̇ 0̇

wb k K2 − J− k k ′ J− k ′ − b b

(0v0)⊕wb n− k K1 −K2 + J−n+ k k ′ J− k ′ − b b

where the first row shows the length of each section and for wb we have
indicated the number of 1-bits present in each section, i.e. the bits used to
select the bars of the labeled string 0̇v0̇. The last row contains the number
of 1-bits in each part for the string (0v0)⊕wb. This structure suggets to
choose a partition of the set St−1(K2 − b) as follows:

St−1(K2 − b) =

min{K2,t−K1−1}⋃
J=b

n⋃
k=0

n⋃
k ′=0

Z
(1)
b (J,k)Z(0)

b (J,k ′),

Z
(1)
b (J,k) = Sn(k)SK1−n(K2 − J− k),

Z
(0)
b (J,k ′) = Sn(k

′)St−K1−n−1(J− k
′ − b).

For strings w in each subset of the partition we get

α(12) = (−1)[(0v0)⊕(v00)](wb) = (−1)k+k
′
,

and also that

ι[(0v0)⊕ (wb)] = K1 −K2 + 2J.

Therefore, the coefficients cab can be written as

cab(K1,K2,K3) =
∑
a ′

∑
n,J

uaa ′(n)ϕaa ′b(n, J;−1)ξ(τJ,K3;±i),

where τJ = K1 −K2 + 2J and

ϕaa ′b(n, J; z) =
∑
k,k ′

zk+k
′+(a⊕a ′)b

∣∣∣Z(1)
b (J,k)

∣∣∣ ∣∣∣Z(0)
b (J,k ′)

∣∣∣.
This concludes the discussion for the derivation of the solution in position
space of the Weyl QW in d = 3. The general result is summarized by the
following proposition, whose proof is given in Appendix B.
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6.2. path-sum solution

Proposition 6.2.2. For t > 2 the coefficients of Eq. (64) take the form

cab(K1,K2,K3) =
∑
a ′=0,1

nmax(K1)∑
n=nmin(K1)

K2∑
J=b

uaa ′(n)ϕaa ′b(n, J;−1)ξ(τJ,K3;±i),

(65)

where, letting r := ϑ(K1 −K2), we have that τJ := |K1 −K2|+ 2J, and

ϕaa ′b(n, J; z) := w(1)
aa ′b(n, J; z)w(0)

aa ′b(n, J; z),

w
(s)
aa ′b(n, J; z) :=

n−γ
(s)

aa ′∑
k=0

zk+γ
(s)

aa ′bD(η
(s)
a ′ , κ(s)a ′b(J),n− γ

(s)
aa ′ ,k), (66)

κ
(s)
a ′b(J) := (r⊕ s)K2 + (−1)s(rK1 − J) − (s⊕ a ′)b,

η
(s)
a ′ := s(t− 1) + (−1)s(K1 − a

′), γ
(s)
aa ′ := (s⊕ a)(s⊕ a ′).

We have seen in this chapter a technique suitable to solve the walk evolu-
tion in position space employing the algebraic properties of the transition
matrices and the combinatorics of the binary strings. We suggest the pos-
sible use of the same technique also in other cases, even for Cayley graphs
of non-Abelian groups. The main obstacle in the non-Abelian case is rep-
resented by the solution of the word problem of the group (see [111, 112])
which, in general, is not an easy task.
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7 T H E T H I R R I N G Q C A

In the previous chapters we presented models of discrete dynamics suitable
for the description of physical systems in a discrete scenario. The usual dy-
namics is recovered at a scale where the discreteness can not be probed. So,
for example, if we take the Planck scale as the fundamental scale—at which
the QCA operates—the usual relativistic dynamics described by the Dirac
equation is recovered in the limit of small wave-vectors and small masses.
Therefore, the wave-vector in the automaton theory can be interpreted, a
posteriori, as the momentum of the particle, and the mass parameter as its
mass. The system described, however, can be regarded as a gas of free par-
ticles. In the QCA framework one can accommodate, as well, interactions
between particles introducing a non-linear step in the automaton evolution
operator.

In this section we are going to study a particular interacting QCA hav-
ing as free term (see Appendix D) the Dirac QCA. For the interaction we
assume a local interaction resembling the Hubbard model of solid state
physics (for a comprehensive treatment of the Hubbard in one spatial di-
mension see Ref. [113]). The Hubbard model has been solved in d = 1 by
Lieb and Wu using the Bethe Ansatz.

We review in this chapter the results regarding the Thirring QCA in
dimension d = 1 presented in Ref. [75] and we show a brief sketch of the
basic construction of the perturbation theory for this automaton.

7.1 review of the dirac qw in one spatial
dimension

In Chapter 4 we introduced the Dirac QW in dimension d = 1. We want
to give here an equivalent formulation employing relativistic notation. The
Dirac QW describes the linear local evolution of a two-component quantum
field

ψ =

(
ψL

ψR

)
,
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7. the thirring qca

where ψL and ψR denote the left- and right-mode of the field respectively.
We assume the statistics to be Fermionic, with the field operators satisfying
the canonical anticommutation relations:

{ψA(x),ψB(x ′)} = 0,

{ψA(x),ψ
†
B(x

′)} = δA,Bδx,x ′ .

In position space, the walk operator, seen as a unitary operator over H =

C2 ⊗ `2(Z), can be written as:

W =

(
nS −im

−im nS†

)
, n2 +m2 = 1, (67)

where S denotes the left shift S |x〉 = |x− 1〉. From this expression of the
walk, we can derive a finite difference equation governing the evolution of
|ψ(t)〉 ∈ H written compactly as:

(i /D−m) |ψ(t)〉 = 0, (68)

where /D = γµDµ with metric signature (1,−1) and D = (D0,D1) is defined
as

D0 :=W −n
S+ S†

2
,

D1 := −n
S− S†

2
,

with the trivial identification of S and I2 ⊗ S, where I2 represents the iden-
tity matrix on C2. We will also identify a matrix M on C2 with its extension
M⊗ I to H , I being the identity operator on `2(Z). The gamma matrices
are taken in the chiral representation, i.e.

γ0 := σx =

(
0 1

1 0

)
, γ1 := iσy =

(
0 1

−1 0

)
.

As usual, the chiral projections are obtained in terms of the γ5 matrix

γ5 := γ0γ1 = −σz =

(
−1 0

0 1

)
via the equations

|ψL〉 =
1− γ5

2
|ψ〉 , |ψR〉 =

1+ γ5

2
|ψ〉 .
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7.1. review of the dirac qw in one spatial dimension

7.1.1 Solutions of the Dirac QW in one space dimension

The solutions of the walk are obtained in the Fourier representation as
follows. By taking |k〉 =

∑
x∈Z e

ikx |x〉, with k ∈ B := [−π,π], the shift
operator is diagonal in this basis: S |k〉 = eik |k〉. The operator W can thus
be written as

W =

∫
B
dk Wk ⊗ |k〉〈k| , Wk =

(
neik −im

−im ne−ik

)
.

We can solve now the eigenvalue problem for Wk:

Wk |s,k〉 = e−isωk |s,k〉 , s = ±. (69)

The spectrum of the walk is then given by {e−iωk , eiωk}, where

ωk := arccos(n cosk) (70)

is its dispersion relation. The eigenvenctors |s,k〉 can be written as

|s,k〉 = 1√
2

(√
1− svk

s
√
1+ svk

)
,

vk being the group velocity, namely

vk :=
dωk
dk

=
n sink
Ek

, Ek := sinωk =
√
n2 sin2 k+m2.

If we define the map

(ω,k) 7→ p(κ) := (sinω,n sink)

the eigenvalue equation (69) can be stated in the following equivalent form:

(/p− sm)us(k) = 0, pµp
µ = m2. (71)

The solutions us are chosen so that

us(k)us(k) = /p+ sm,

where, as usual,u is defined as

u := u†γ0.
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7. the thirring qca

Notice, however, that our choice for u− implies that it is an eigenvector
for −k. Moreover, we can readily compute the orthogonality relations as
follows. Firstly, we need to compute the quantity (/p+ sm)γ0(/p+ sm):

(/p+ sm)γ0(/p+ sm) = /pγ
0
/p+ sm(γ0/p+ /pγ

0) +m2γ0

= /p(2p
0 − /pγ

0) + 2smp0 +m2γ0

= 2p0/p− pµp
µγ0 + 2smp0 +m2γ0

= 2Ek(/p+ sm).

Knowing this relation, we can compute ‖us(k)‖. To this end we compute
the quantity usu

†
susu

†
sγ
0:

usu
†
susu

†
sγ
0 = ‖us‖2(/p+ sm).

Explicitly we have that

usu
†
susu

†
sγ
0 = ususγ

0usus

= (/p+ sm)γ0(/p+ sm)

= 2Ek(/p+ sm),

which therefore entails that ‖us‖2 = 2Ek. As for the orthogonality relation
we can compute the following expression:

u+(k)u
†
+(k)u−(−k)u

†
−(−k) = u+(k)u+(k)γ

0u−(−k)u−(−k)γ
0

= u+(k)u+(k)u−(k)u−(k)

= (/p+m)(/p−m)

= pµp
µ −m2 = 0.

In this calculation, we made use of the conjugation relation

γ0us(k)us(k)γ
0 = us(−k)us(−k),

which can be straightforwardly verified:

γ0us(k)us(k)γ
0 = γ0(/p+ sm)γ0

= (p0γ0 − p1γ0γ1γ0 + sm)

= (p0γ0 + p1γ1 + sm)

= (Ekγ
0 −n sin(−k)γ1 + sm)

= us(−k)us(−k).

The evolution governed by the Dirac QW approximates in a suitable
regime that of the Dirac equation. Indeed, this fact can be checked by
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7.1. review of the dirac qw in one spatial dimension

considering the eigenvalue equation of Eq. (71) for m � 1 and k � 1.
Considering for simplicity the equation for u+, let us write it as

H(k)u+(k) = Eku+(k),

where the operator H(k) is given by

H(k) := n sinkγ0γ1 +mγ0.

At first order in the power expansion n = 1+O(m2), so that in the end we
get

H(k) = kγ0γ1 +mγ0 +O(m2) +O(k2),

which, interpreting m as the mass of the particle and k as its momentum,
gives at first order precisely the Dirac Hamiltonian in the momentum rep-
resentation.

7.1.2 Fermion doubling and deformed Lorentz transformations

The dynamics of the QW is governed by a dispersion relation which is
not the usual relativistic one and so we may certainly expect that it is not
invariant under Lorentz transformations. For d = 1 the Lorentz group
consists only in the boost transformations, which in the energy-momentum
sector are represented by the linear map

Lβ : (ω,k) 7→ (ω ′,k ′) = Γ(ω−βk,k−βω),

with Γ := (1−β2)−1/2. In our case the quantity that should be left invariant
by a change of reference QW is

pµp
µ = sin2ω−n2 sin2 k = m2, (72)

for a generic p = (sinω,n sink), which is clearly not invariant under
Lorentz transformations, when applied to (ω,k). This means that if we
insist on the QW evolution we need to find another transformation repre-
senting a change of reference. This is done by considering a non-linear rep-
resentation of the Lorentz group [64] (see [61] for the discussion in d = 3),
i.e. instead of Lβ we consider the map

LDβ := D−1 ◦ Lβ ◦D,

where D : R2 → R2 is the non-linear map

D : (ω,k) 7−→ D(ω,k) :=
(

sinω
cosk

, tan k
)

.
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7. the thirring qca

The deformed Lorentz transformations obtained in this way are then given
by 

sinω ′ = Γ

(
sinω
cosk

−β tank
)

cos arctan
(
Γ

(
tank−β

sinω
cosk

))
,

tank ′ = Γ
(

tank−β
sinω
cosk

)
.

By direct inspection, one can check that these transformation preserve the
invariant for the Dirac QW (72).

As the authors show in Ref. [64] the map D has two invariant mo-
menta k = ±π/2 corresponding to the invariant “energy” ωinv = π/2.
These fixed points induce a splitting of the Brillouin zone B = [−π,π]
into two separate regions B1, B2, B = B1 ∪ B2, with B1 := [−π/2,π/2] and
B2 = [−π,−π/2] ∪ [π/2,π], invariant under any boost. Since the two in-
variant regions exhibit the same kinematics, they can be considered as two
distinct Fermion species, as opposed to the single Fermion in the stan-
dard relativistic scenario. This is due essentially to the discreteness char-
acterizing the QW description, for which this doubling of the particles is
expected [114]. Therefore we introduce two quantum fields ψ0(t, x) and
ψ1(t, x) representing the two Fermion species described by the Dirac QW.
We can expand in modes the two fields as follows:

ψj(t, x) =

∫
B½

dk
2π

∑
s=±

uj,s(k)√
2Ek

aj,s(k)e
−si(ωkt−kx), (73)

where B½ := B1 = [−π/2,π/2] and aj,s are fermionic operators satisfying
the canonical anticommutation relations:

{aj,s(k),aj ′,s ′(k ′)} = 0,

{aj,s(k),a
†
j ′,s ′(k

′)} = 2πδs,s ′δj,j ′δ2π(k− k
′).

The vacuum state of the walk |0〉 is defined by aj,s(k) |0〉 = 0, for all k ∈ B½
and j = 0, 1; this means we adopt here a local vacuum instead of the usual
definition in QFT. The spinors uj,s are related to the solutions us by

uj,s(k) = u(1−2j)s(k),

giving the completeness relation

uj,suj,s = /p+ (−1)jsm.

The total field, obtained by combining the two fields ψ0 and ψ1 is finally
given by

ψ(t, x) = ψ0(t, x) + (−1)t+xψ1(t, x).
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7.2. the thirring qca

7.2 the thirring qca
In this section we present the Thirring QCA and review the solutions in
the two particle sector derived in Ref. [75]. We then provide the results
of the numerical evaluation of the case of two particles to demonstrate the
properties of the model [115]. In order to have an interacting automaton
we need to add a position-dependent extra step to the free evolution. In the
general case, one could have a unitary operator of the formU = UfV , where
Uf is a translation invariant unitary describing the free evolution and V is
position-dependent coin operator. We consider here an interaction term
that acts non-identically only when the particles occupy the same lattice
cell and in this case it acts via a fixed operator Γ . In the simplest case V
simply multiplies the state with extra phase factor, namely Γ = eiχI for
some real coupling constant χ.

We consider here an interaction commuting with the total particle num-
ber operator

∑
x(nR(x) + nL(x)) and thus preserving the number of par-

ticles. As a consequence, we can restrict our analysis to a fixed number
of particles. The sector of N particles of the automaton can be described
equivalently as a QW of N (interacting) particles. Accordingly we take a
walk unitary of the form:

UN =WNV , WN =W⊗N,

where W denotes the unitary operator describing the Dirac QW of Eq. (67).
In particular, we consider the interaction term

V = eiχ
∑

x∈Z nL(x)nR(x)

= eiχ
∑

x∈Zψ
†
L(x)ψL(x)ψ

†
R(x)ψR(x), (74)

where χ is a real coupling constant and nA(x) the number of particles at site
x for the mode A = R, L. The Hilbert space of N particles is HN = H ⊗N,
with H the single particle Hilbert space in one spatial dimension, namely
H = C2 ⊗ `2(Z). As we said we can study separately the solutions for
each fixed number of particles. We focus here on the case of two Fermions,
which can be analytically solved by means of the Bethe Ansatz [75]. In this
case we write

U2 =W2V = (W ⊗W)V

where the interaction term can be written as

V = I−M+ ΓM.
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7. the thirring qca

In the equation above, M denotes the projector on the collision subspace,
namely

M =
∑
x∈Z

I⊗ |x〉〈x|⊗ |x〉〈x| ,

and Γ is an operator that acts on the coin space by multiplying the state
with a phase factor when the spins of the Fermions are different:

Γ =


I 0 0

0 eiχI 0 0

0 0 eiχI 0

0 0 0 I

 .

The walk U2 is conveniently expressed in the centre of mass basis

|A1,A2〉 |y〉 |w〉

for the two-particle Hilbert space H2 = C4 ⊗ `2(Z), with A1,A2 ∈ {L,R},
y = x1 − x2 denoting the relative coordinate, and w = x1 + x2 the centre of
mass coordinate. The free walk unitaryW2 can be expressed in momentum
space denoting by k = 1

2(p1 − p2) the (half) relative momentum and by
p = 1

2(p1 + p2) the (half) total momentum. In this way we have

W2 =

∫
dkdp W2(−p,−k)⊗ |k〉〈k|⊗ |p〉〈p| ,

where W2(p,k) :=W(p+ k)⊗W(p− k). The eigenvectors of the free evolu-
tion are easily computed in terms of the eigenvectors of the single particle
walk:

W2(p,k)usrp,k = e
−iωsr(p,k)usrp,k, usrp,k := v

s
p+k ⊗ vrp−k, (75)

where the dispersion relation ωsr(p,k) is given by

ωsr(p,k) := sω(p+ k) + rω(p− k),

and ω(p) := Arccos(n cosp) is the one-particle dispersion relation. In this
section, we take the eigenvectors vsp in the form:

vsp =
1

|αs(p)|

(
−im

gs(p)

)
,

gs(p) = −i(s sinω(p) +n sinp),

with |αs(p)|
2 = |gs(p)|

2 +m2. Since U2 commutes with the translations
in the centre of mass coordinate w the total momentum p is a conserved
quantity and therefore we can study the walk solutions for fixed p. It
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7.2. the thirring qca

is convenient to represent the walk in the hybrid basis |A1,A2〉 |y〉 |p〉; for
fixed value of p the walk reduces to a one-dimensional QW with a four
dimensional coin:

U2 =

∫
dp U2(−p)⊗ |p〉〈p| ,

where U2(p) =W2(p)V and

U2(p) = mn


n
me

i2p −ieipTy −ieipT †y −m
n

−ieipTy
n
mT

2
y −m

n −ie−ipTy

−ieipT †y −m
n

n
mT

†
y
2

−ie−ipT †y
−m
n −ie−ipTy −ie−ipT †y

n
me

−i2p

 ,

where Ty represents the translation operator in the relative coordinate y.
The interaction term now reads

V = I−M+ ΓM,

where M is now defined only on the relative coordinate:

M = |0〉〈0|⊗ I,

which means that in the relative coordinate the interaction acts only at the
origin y = 0.

From now on we omit the explicit dependence on the total momentum
p. Since we are interested in Fermionic particles, we consider here only
the antisymmetric solutions of the interacting walk, i.e. we seek only the
eigenvectors of U2(p) in the antisymmetric subspace. Following Ref. [75] it
is useful to define the following sets, allowing the relative momentum k to
have non-vanishing imaginary part, i.e. k = kR + ikI:

Γf := { k ∈ S | kI = 0 } ,

Γz :=
{
k ∈ S

∣∣∣ kR = z
π

2

}
,

(76)

Ωsrf :=
{
e−iωsr(p,k)

∣∣∣ k ∈ Γf
}

,

Ωsrz :=
{
e−iωsr(p,k)

∣∣∣ k ∈ Γz
}

,
(77)

where z = 0,±1, 2 and the set S is defined as

S := {k ∈ C | kR ∈ (−π,π]∧ kI ∈ R } .

Let us now summarize the solutions to the equation

U2(p)f = e
iωf, f : Z → C4, ω ∈ C. (78)
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7. the thirring qca

We are interested in the antisymmetric solutions, namely f is antisymmetric
under exchange of the two particles:

f(y) = −Ef(−y),

where E is the exchange matrix:

E =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 .

As proven in Ref. [75], the solutions can be written as

f±k (y) = c1f
±,f
k (y) + c2f

±,i
k (y), (79)

f±,f
k (y) = [u+±

k + (−1)yu−∓
k−π]e

−iyk − [u±+
−k + (−1)yu∓−

π−k]e
iyk,

f±,i
k (y) =


e−iδy,0χ

{
[u+±
k − (−1)yu−∓

k−π]e
−iyk+

−T±[u
±+
−k − (−1)yu∓−

π−k]e
iyk

} y > 0,

antisymmetrized y < 0,

T± :=
g+(p+ k) + e

−iχg±(p− k)

g±(p− k) + e−iχg+(p+ k)
,

where c1, c2 ∈ C. We remark that the continuous spectrum of the inter-
acting walk is the same of the free one1. From Eq. (79), one obtains the
generalized eigenvector of U2(p) for k ∈ Γf which correspond to the con-
tinuous spectrum given by Ω++

f ∪Ω−−
f . The functions f±,f

k are solutions of
the free walk that are also solutions in the interacting case; indeed we have
that f±,f

k (0) = 0 and thus these solutions are not affected by the interaction
which is localized at the origin. The solutions f±,i

k , instead, can be inter-
preted as scattering solutions and T± can be considered as the transmission
coefficient of the plane waves.

Besides the scattering solutions, the Thirring QW exhibits also molecule
states, i.e. bound states, for which the probability distribution decades
exponentially with the relative coordinate y. As proven in Ref. [75], such
solutions are obtained for c1 = 0, c2 6= 0 and k 6∈ Γf with kI = Im(k) < 0,
so that T± = 0. If p 6= zπ/2 and if eiχ 6∈ {e±i2p, 1,−1}, then the solution is
unique, i.e. there exists a unique k ∈ Γ0 ∪ Γ−1 ∪ Γ1 ∪ Γ2 with kI < 0 for which
either T+ = 0 or T− = 0. In other words, for each value of the coupling
constant χ and a given value of the momentum p the walk U2(p) has one
eigenvector corresponding to an eigenvalue in the discrete spectrum. On
the contrary, in the case of the Hadamard walk [117]—which also features
molecule states—the spectrum of the bound states is discontinuous as a

1 As it is well known from scattering theory since the interaction term is a compact pertur-
bation of the free evolution (see Theorem IV 5.35 of Ref. [116]).
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Figure 11.: Spectrum in the two-particle sector for the interacting walk as a func-
tion of the total momentum p. The mass parameter is m = 0.6. The
blue and red regions constitute the continuous spectrum of the walk
which is the same as the one of the free walk. The solid lines in the
gaps represent the discrete spectrum for different values of the cou-
pling constant: from top to bottom, χ = 4π/7, π/4, −π/4, −4π/7.

function of p; furthermore, there are two bound states, if any, for fixed
coupling constant and total momentum.

In Fig. 11 we show the spectrum of the interacting case for two particles
with mass parameter m = 0.6 (provided in Ref. [115] which is in progress).
The plot represent the spectrum for different values of the total momen-
tum p. The continuous bands in blue and red represent the continuous
spectrum which is the same as in the free case. The solid curves in the
gaps between the continuous bands, instead, represent the discrete spec-
trum for different values of the coupling constant. The discrete spectrum
has been computed for the values χ = −4π/7, −π/4, π/4, 4π/7. Such dis-
crete spectrum represents the bound states of the two particles.

In Fig. 12 we show for comparison the evolution in the free case and
in the interacting case (the numerical analysis is provided in Ref. [115]).
The plots show the joint probability distribution after t = 32 time-steps
of evolution of the singlet state localized at the origin. In the left panel
is depicted the probability distribution for the state evolved with the free
walk. In the right panel the same state is evolved with the interacting walk
for χ = π/2, which is the same image as the image on the cover of this
manuscript. One can see that in the latter case there is a concentration of
probability along the diagonal, showing the appearance of the bound state
component. The shape of this distribution shows the typical behaviour of
a one-dimensional QW as for the Hadamard walk [117].

There also other solutions not encompassed by the previous analysis,
namely solutions for which eiχ = e±i2p with eigenvalues e±i2p. We remark
that these eigenvalues belong to the discrete spectrum which is continuous
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7. the thirring qca

Figure 12.: Probability distribution in position space of two particles. The number
of time steps is t = 32 and the mass parameter is m = 0.6. The initial
state is a singlet located at the orgin. In the left panel is depicted the
evolution in the free case (χ = 0). In the right panel the same initial
state is evolved according to the interacting walk for χ = π/2. Besided
the diffusive components that are present as in the free case, one can
see also the appearance of a molecule component.
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Figure 13.: Probability ditribution in position space for the eigenstate u+−
k (see

Eq. (75)) of the free walk of two Fermions with total momentum p = 0
and mass m = 0.6. On the left it shown the plot with linear scale,
while on the right the same plot with logarithmic scale.

as a function of p. The corresponding eigenvectors are non-zero only on
three sites and are given by

f±∞(y) =


ie±ip

(
−1±1

2 , 0, 0, −1∓1
2

)ᵀ
, y = 1,(

0, mn , −m
n , 0

)ᵀ, y = 0,
ie±ip

(
1±1
2 , 0, 0, 1∓12

)ᵀ
, y = −1,

0, otherwise.

(80)

The final analysis of Ref. [75] regards the cases p = zπ2 that were missing
in the previous results. Since the analysis for z 6= 0 is similar to the case
z = 0, we consider only p = 0. In this case we have ω±±(0,k) = 2ω(k)

and ω(k) ∈ R if and only if k ∈ Γf ∪ Γ0 ∪ Γ2. We have instead ω±∓(0,k) =
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7.3. perturbation theory for the thirring qca

0 for all k ∈ C. One can prove2 that 1 belongs to the point spectrum
of U2(0) and the corresponding eigenstates are stationary bound states.
This feature is present also for χ = 0, showing an essential difference with
respect to similar Hamiltonian models. For instance, we show in Fig. 13

the probability distribution in position space for the (normalized) state (see
Eq. (75))

|ψ〉 =
∫π
−π

dk |u+−
−k 〉 |k〉 ,

corresponding to the case p = 0 and χ = 0. As expected all the states
u+−
k with k ∈ (−π,π] correspond to the eigenvalue 1, meaning that they

form a subspace on which the walk acts identically. This feature relies on
the fact that the dispersion relation of the one-dimensional Dirac QW is an
even function of k. The same is not true, for instance, in dimension d = 3

(see Eqs. (4) and (13)) where one should perform a different analysis of the
spectral properties of the walk operator. The numerical analysis for the
case d = 1 is provided in Ref. [115].

7.3 perturbation theory for the thirring
qca

We introduced in Section 7.2 the Thirring QCA and we discussed the an-
alytical solutions derived in Ref. [75] for the two particle sector. In this
section we introduce the basic concepts regarding the perturbation theory
of the Thirring automaton.

Recall the expression for interaction term of the Thirring automaton (74):

Vint = e
iχ

∑
x∈Z nL(x)nR(x)

= eiχ
∑

x∈Zψ
†
L(x)ψL(x)ψ

†
R(x)ψR(x), (81)

where χ is a real coupling constant and nL,R is the number operator of the
left and right mode respectively. Since we are interested here in the case
where the coupling constant is small, we can regard the interaction term as
a perturbation of the free evolution of the Dirac walk. It is convenient to
study the perturbation theory in the interaction picture (see Appendix D).
In this representation the states evolve according to the interaction term,
whereas the observables evolve according to the free term. From Eq. (81),
we can write the interaction Hamiltonian:

HI =
1

4
(ψγµψ)(ψγµψ) (82)

= ψ†
LψLψ

†
RψR. (83)

2 The technical details are presented in Ref. [75].
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7. the thirring qca

Usually one is interested in the computation of the scattering amplitude
for some particular process. We assume that, before the particles inter-
act, they are well describe by eigenstates of the free theory. Analogously,
waiting enough time after the interaction has happened, the particles are
assumed to be free and thus again we are allowed to describe them in
terms of eigenstates of the free theory. Therefore, we consider the matrix
elements of the S matrix (100) between free states of the theory. The goal is
then to compute the amplitude representing a physical process to a given
order in the perturbation expansion (we are considering here small values
of the coupling constant χ). Explicitly, one computes the matrix elements
of the S matrix at a given order in the power expansion in the coupling
constant:

〈f|S− I|i〉 =
+∞∑
n=1

〈f|S(n)N |i〉 ,

S(n) :=
(−iχ)n

n!

∑
t1,x1

· · ·
∑
tn,xn

T
n∏
i=1

HI(ti, xi),

for N-particle states |i〉 and |f〉. In the following analysis we consider the
single-particle states with fixed momentum k given by

|k, j, s〉 :=
√
2Eka

†
j,s(k) |0〉 , (84)

or equivalently

|k, s〉 :=
√
2Eka

†
s(k) |0〉 , (85)

where in the latter one should choose k in B1 or B2 explicitly (recall Sec-
tion 7.1.2 for the discussion about Fermion doubling).

7.3.1 Feynman rules for the Thirring QCA

We will give in this section the basic elements to compute scattering ampli-
tudes from Feynman diagrams. We can represent a given process at order
n in the perturbation expansion by a diagram with n vertices joined by
lines representing the propagation of particles. The simplest process that
we can consider in the present theory is the scattering of two particles. Let
us focus on the following amplitude:

S
(1)
2 ≡ 〈f|S(1)|i〉 = −

iχ

4

∑
t,x

〈0|a ′
1a

′
2(ψγ

µψ)(ψγµψ)a
†
1a

†
2|0〉 , (86)
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7.3. perturbation theory for the thirring qca

where in short it is understood that ai ≡ asi(ki), a
′
i ≡ as ′i

(k ′i). Since the
interaction term commutes with the translations on the lattice, the total
momentum is a conserved quantity, meaning that we can write S(1)2 as

S
(1)
2 = −iχ(2π)2δ22π(k̃

′
1 + k̃

′
2 − k̃1 − k̃2)iM,

where k̃i = si(ωi,ki) and iM is the amplitude of the process given by
the sum of all the possible contractions (by Wick’s theorem [118]) in the
expression

〈0|a ′
1a

′
2ψ

†
LψLψ

†
RψRa

†
1a

†
2|0〉 . (87)

The computation of iM involves the computation of the external leg con-
tractions:

〈0|ψ(t, x)|k, s〉 = us(k)e−si(ωkt−kx),

〈k, s|ψ(t, x)|0〉 =us(k)esi(ωkt−kx).

So for each external leg we write us for an incoming particle and us for an
outgoing particle.

We also need to compute the propagator of the walk. By direct computa-
tion, since the field ψ contains only annihilation operators, we have

〈0|T[ψA(t, x)ψB(t ′, x ′)]|0〉 = ϑ(t− t ′) 〈0|ψA(t, x)ψB(t ′, x ′)|0〉
= KAB(t− t

′, x− x ′),

that is K vanish for t < t ′. Explicitly, K is given by

K(t, x) = ϑ(t)

∫
B

dk
2π

1

2Ek

[
(/p+m)e−i[ωkt−kx] + (/p−m)ei[ωkt−kx]

]

=

∫
B

dµ(ω,k)
(2π)2

K̃(ω,k)e−i(ωt−kx), (88)

with B = R×B and dµ(ω,k) = dω cosωdk. We introduced in Eq. (88) the
propagator in momentum space:

K̃(ω,k) := i
/p+m

p2 −m2
.

In order to obtain the retarded Green function the prescription to compute
the integral is to translate the poles at z = ±Ek to ±Ek − iε, as depicted in
Fig. 14; the contour, then, should be closed below the x-axis for t > 0 and
above it for t < 0.
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7. the thirring qca

−Ek

−iε

Ek

−iε

Figure 14.: Contour used to compute the propagator.

Contractions between internal fields in Eq. (87) give no contributions
as one can readily verify. Such contractions correspond to evaluate the
propagator for t = x = 0:

K(0) =

∫
B

dk
2π

(
γ0 −

n sink
Ek

γ1
)

= γ0.

Therefore, we have that

γµ 〈0|ψψ|0〉γµ = γµK(0)γ
µ

= γµγ
0γµ

= γ0γ0γ0 − γ1γ0γ1

= γ0 − γ0 = 0,

implying that at first order there are no loops in the Feynman diagrams.
By the considerations made so far, only four terms contribute to the

amplitude of Eq. (87):

iM =

1

2

1′

2′

+

1

2

1′

2′

+

1

2

1′

2′

+

1

2

1′

2′

The arrows on the legs of the diagrams correspond to the left and right
modes of the field. In order to compute these diagrams, we have to follow
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7.3. perturbation theory for the thirring qca

the arrows starting from the right and going backwards. The computation
of the four possible diagrams contributing to the amplitude of Eq. (87) gives

1

2

1′

2′

= (u†1 ′)R(u1)R(u
†
2 ′)L(u2)L = (u1u1 ′γ

0)RR(u2u2 ′γ
0)LL,

1

2

1′

2′

= (u†1 ′)L(u1)L(u
†
2 ′)R(u2)R = (u1u1 ′γ

0)LL(u2u2 ′γ
0)RR,

1

2

1′

2′

= (u†1 ′)L(u1)R(u
†
2 ′)R(u2)L = (u1u1 ′γ

0)RL(u2u2 ′γ
0)LR,

1

2

1′

2′

= (u†1 ′)R(u1)L(u
†
2 ′)L(u2)R = (u1u1 ′γ

0)LR(u2u2 ′γ
0)RL,

where in short ui ≡ usi(ki) and ui ′ ≡ us ′i(k
′
i).

Let us consider the case where we have particles (positive energy) both
in input and in output. As proved in Ref. [75], the conservation of two-
momentum entails that the two particles either retain the same momenta
as the initial ones, or exchange their momenta. Hence, in the first case we
have that

(uiuiγ
0)AA =

[
(/pi +m)γ0

]
AA

= (p0i − p
1
iγ
1γ0)AA

= p0i − p
1
i (δA,l − δA,r)

and for A 6= B

(uiuiγ
0)AB =

[
(/pi +m)γ0

]
AB

= m.

Putting all together we obtain the total amplitude:

iM = (p01 + p
1
1)(p

0
2 − p

1
2) + (p01 − p

1
1)(p

0
2 + p

1
2) − 2m

2

= 2(p1 · p2 −m2). (89)

As a remark on this result, it is worth noticing that if the momenta of the
two particles are equal, then the amplitude iM vanishes, as can be expected
since the two particles occupy the same state.
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7. the thirring qca

On the other hand, the case where the two particles exchange their mo-
menta amounts to swap 1↔ 2 in Eq. (89) and therefore we get the same re-
sult. The same goes for the scattering of two antiparticles. However, when
the scattering process happens between a particle and an antiparticle, the
amplitude results to be

iM = 2(p1 · p2 +m2).

In this case we see that the amplitude vanishes if the momenta are oppo-
site, which agrees with the result of Eq. (89). Finally, since the two particles
are identical, one can not in practice distinguish the case where the par-
ticles exchanged their momenta from the case where the momenta were
not exchanged. So in the end one should add up the probability ampli-
tude for the two situations. This concludes this brief introduction on the
perturbation theory of the Thirring automaton.

In this chapter we presented an interacting QCA, the Thirring automa-
ton. We reviewed the analytical solutions of the model in the sector of two
particles. In the last section we presented a preliminary study on the per-
turbation theory of the Thirring automaton providing the computation of
the tree-level diagrams for two particles.
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8 C O N C L U S I O N S

The present dissertation focused on the derivation of the solutions in posi-
tion space of the Dirac Quantum Walk in one spatial dimension and of the
Weyl Quantum Walk in two and three spatial dimensions. Furthermore,
we addressed the study of the basic aspects of the perturbation theory of
the Thirring Quantum Cellular Automaton. The present thesis integrates
in the recent line of research regarding the foundational aspects of Quan-
tum Field Theory in a quantum-informational background. This line of
research dates back to the informational paradigm advocated by Wheeler
and synthesised in his dictum “it from bit”. The problem undertaken by
the informational paradigm connects various aspects regarding the foun-
dational questions arising in the study of the basic features of Quantum
Theory. In such regard, Quantum Information Theory plays a prominent
role since it has been proven to lead to a deeper understanding of entan-
glement and non-locality which are distinctive features of Quantum Theory.
Following the informational paradigm of Wheeler, we consider the possible
fundamental mechanism underlying the physical world to be the process-
ing of quantum information from which the usual dynamics of particles
physics should emerge as an effective dynamics at large scales. One can
show that the usual relativistic dynamics described by the Dirac equation
can be recovered as a good approximation of a discrete evolution happen-
ing at the hypothetical Planck scale.

The next step in this scenario is, thus, the reconsideration in terms of
the informational background also of the mechanical part of the physi-
cal world—particles or quantum fields, along with the dynamical equa-
tions governing their evolution in time—which lies under the framework
of Quantum Field Theory, nowadays the best theory available to us de-
scribing the elementary constituents of our reality. So, the task at hand, is
to give a formulation of Quantum Field Theory in terms of basic princi-
ples regarding the properties of the interaction network existing between
the elementary objects constituting this “quantum computer” underlying
our reality. Considering Quantum Theory the fundamental theory of sys-
tems, we assume that the basic objects constituting the primitive notions
are quantum systems obeying the Fermi statistics. The idea that there can
not be an infinite amount of information in any finite region of space [84–
86] requires our fundamental description to involve a denumerable set of
finite dimensional quantum systems. The theoretical framework in which
we should develop such a description of natural phenomena is therefore
that of Quantum Cellular Automata [5], since they represents precisely the
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8. conclusions

unitary evolution of countably-many quantum systems in local interaction.
The premisses underlying our investigation of the Quantum Cellular Au-
tomaton theory consist in the principles of unitarity, linearity, locality, ho-
mogeneity, and isotropy. One can show that the emergent structure of the
interaction network satisfying these assumptions indeed corresponds to a
Quantum Cellular Automaton. The bridge between the automaton theory
and the usual relativistic physics is given by a suitable approximation of
the automaton theory that recovers the Dirac equation in the limit of small
momenta with respect to a given reference scale [27, 28, 40, 42].

The program then regards, as we said, the idea of considering Quantum
Cellular Automata as a fundamental description—in the sense that it oper-
ates at a scale much smaller than the scale of particle physics, as could
be the Planck scale—underlying Quantum Field Theory, which should
emerge in the end as an effective theory. Previous works have confirmed
the present goal of the program which, at this stage, encompasses in the
Quantum Cellular Automaton description systems of free particles, while
an interacting theory has just recently began to be developed and the path
towards a reconstruction of Electrodynamics is still missing, as well as the
description in the setting of Quantum Cellular Automata of more general
gauge theories.

Being a theory that is “quantum” ab initio, the Quantum Cellular Au-
tomaton theory can be also a fertile ground to explore the possible formu-
lation of a quantum theory of gravity. In this respect, space-time itself is
considered an emergent notion since the quantum systems constituting the
causal network of the automaton are not “placed” in any background and
time is just the “clock” that takes from one computational step to the other:
this means that time is an inherent discrete notion and that the continuum
of space-time is recovered as a large scale limit where the effects of the
discreteness can not be detected. Information can play an even more fun-
damental role in theoretical physics as the relation with the holographic prin-
ciple confirms [119–121]. The holographic principle, supposedly a feature of
quantum gravity, has been proposed by ’t Hooft [119, 121] and originates
in the context of string theories. It states that the information needed to
describe a volume of space can be encoded on a lower-dimensional bound-
ary region and its most successful and rigorous realization of the principle
comes from the AdS/CFT correspondence [122]. The interest in the holo-
graphic principle was inspired by black-hole thermodynamics [84, 85] and
recently it was considered as a possible mechanism for the origin of grav-
ity [123, 124].

The present dissertation started by exposing and presenting in Chapter 2

the theoretical framework at the core of the informational paradigm [4]
that we considered in this work. We provided a brief review of the gen-
eral construction of the notion of Quantum Cellular Automata on Cayley
graphs following Refs. [40, 62, 63]. We then provided a review of the Dirac
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Quantum Walk of Refs. [40, 42] obtained as the unique coupling of two
Weyl walks satisfying the principles of unitarity, locality, homogeneity, and
isotropy. We showed how in the relativistic limit of small momenta and
masses the Dirac walk recovers the Dirac equation. Since this thesis is
mainly devoted to the solution of these walks in position space by exploit-
ing the path-sum formulation, we presented in the same chapter also the
general formulation of the path-sum approach to calculate the propagator
of a Quantum Walk on the Cayley graph of an arbitrary group.

In Chapter 3 we presented a numerical evaluation of the Dirac walk
in one and three spatial dimensions exploiting the Fourier representation,
which is suitable to implement fast algorithms, such as the Fast Fourier
Transform of Ref. [125]. Furthermore, we show that the Dirac walk man-
ifests Zitterbewegung, as the Dirac field, by analysing the evolution of the
position operator on the lattice.

In Chapter 4 we showed the derivation of the analytical expression of the
propagator for the Dirac walk in one spatial dimension given in Ref. [72].
The solution relies on the algebraic properties of the transition matrices
of the walk. Remarkably, one can show that the matrix corresponding to
an arbitrary sequence of steps depends only on the first and last bit of a
suitable encoding of paths. This feature inspired and made possible the
subsequent work in higher dimensions.

In Chapter 5 we presented a reformulation of the derivation of the position-
space solution of Ref. [73] for the Weyl Quantum Walk in two spatial dimen-
sions taking under consideration the results in dimension three of Ref. [74].
This reformulation is due to the similarity between the transition matrices
of the Weyl walks in two and three spatial dimensions that allows us to
exploit similar combinatorial properties of the binary encoding of paths.

In Chapter 6 we finally specialized the results of Chapter 5 to the case
of the Weyl Quantum Walk in three spatial dimensions. The computation
of the propagator relies then on similar features such as the dependence of
the transition matrix associated to a path only on the first and last bits of
the binary encoding of the path. As a consequence one can translate the
algebraic properties of the transition matrices and geometric ones of the
lattice paths to the algebraic properties of binary strings, which are easy to
manipulate.

In Chapter 7 we discussed the Thirring Quantum Cellular Automaton on
the line. This model is characterized by a local on-site interaction—namely,
two particles interact only if they collide on the same lattice cell—and it
has the Thirring model [126], representing the self-interactions of the Dirac
field, as the relativistic limit of large scales. The Thirring automaton shares
this type of interactions with the Hubbard model [113, 127], representing
the simplest model in solid-state physics describing the on-site interaction
of particles. As the Hubbard model, the Thirring automaton can be simi-
larly solved exploiting the Bethe Ansatz [128]. We review in this chapter
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the solution provided by Ref. [75] for the two-particle sector, in which case
the automaton can be described by a Quantum Walk (Thirring walk). The
Thirring walk shows distinctive features with respect to other interacting
walks known in the literature such as the one based on the Hadamard
Quantum Walk [117]. In particular, there exists a unique bound state for
every choice of the coupling constant and of the total momentum. Further-
more, the Thirring walk is also characterized by stationary bound states
even for vanishing coupling constant, due to the spectral properties of the
free evolution operator. In the same chapter, we also provide a reformula-
tion of the Thirring walk suitable for exploiting the perturbative approach.
The full derivation of the Feynman rules and the Feynman diagrams for
the Thirring automaton is still in an unpolished and unripe form, and it
still needs a thorough investigation.

The thesis addressed different aspects of the automaton theory, in order
to gain a deeper insight on the features of some instances of Quantum
Cellular Automata. The Quantum Cellular Automaton framework poses a
solid theoretical background for a reconstruction of Quantum Field Theory
based on informational principles; however, we still need a consistent way
to formulate a gauge theory, since we lack a formal way that selects the
kind of interactions that can be defined on an automaton.

As a future perspective, an automaton theory could be also an effective
way to explore the physics beyond the Standard Model. Another aspect
that the informational paradigm could address is a formulation of a theory
of gravity in a scenario that is quantum ab initio and the study of the connec-
tion with the holographic principle. Another possible continuation of the
present work could be the application of the path-sum approach, exploit-
ing the algebraic structure of the transition matrices, to the interacting case
of the Thirring automaton. Furthermore, the path-sum approach could be
applied also in more general situations to Quantum Walks defined on non-
Abelian groups—for which the Fourier analysis can be difficult since their
representations are generally unknown—providing an alternative strategy
to study the diffusion properties of these walks. For instance, it could be
interesting to study quantum walks defined on hyperbolic groups, such
as Fuchsian groups. The main obstacle in this case is represented by the
fact that the word problem [129] is not straightforwardly solvable and this
affects the issue of finding a classification of the paths on the graph.
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A P R O O F S F O R T H E W E Y L Q W I N
T W O S PAT I A L D I M E N S I O N S

Proof of Lemma 5.1.1. Suppose for definiteness that K > H (the case K < H
is very similar). Take v ∈ St(K) canonical and w ∈ St(H). Then we can
arrange the strings in the following way:

K t−K

v 1 . . . 1 0 . . . 0

w H−n n

This corresponds to consider a splitting of w into two subtrings LKw =

w1 . . . wK and RKw = wK+1 . . . wt, so that ι(RKw) = n for some n and
ι(LKw) = H − n. Since SK(n) ∩SK(m) = ∅ for n 6= m, we have then a
partition of St(H):

St(H) =
⋃
n∈I

SK(H−n)_St−K(n), (90)

with n ∈ I = {0, 1, . . . , min{H, t−K}}. The ⊕ operation preserves the size of
the subsets and therefore one obtains

v⊕St(H) =
⋃
n∈I
v⊕ [SK(H−n)_St−K(n)]

=
⋃
n∈I

[LKv⊕SK(H−n)]_ [RKv⊕St−K(n)]

=
⋃
n∈I

SK(K−H+n)_St−K(n)

=
⋃
n∈I

W(K,H,n).

The Hamming weight of a string w ∈ W(K,H,n) is given by

ι(w) = ι(LKw) + ι(RKw) = K−H+ 2n,

and, finally, the size of each factor W(K,H,n) is given by

|W(K,H,n)| =
(

K

H−n

)(
t−K

n

)
.
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Proof of Corollary 5.1.1. Let v ∈ St(K) and let πv be a bitwise permutation
such that πv(v) is canonical, then we have that

πv(v⊕St(H)) = πv(v)⊕ πv(St(H))
= πv(v)⊕St(H).

Therefore, using the decomposition of Lemma 5.1.1, we can write

v⊕St(H) = π
−1
v

(⋃
n∈I

W(K,H,n)

)
=
⋃
n∈I
π−1v (W(K,H,n)).

Proof of Lemma 5.1.2. Let v ∈ St(K). From Lemma 5.1.1 and Corollary 5.1.1
we know that ι(v⊕ Sv) = 2n, for some n. Then letting c := πv(v), we have
that

ι(v⊕ Sv) = ι(πv(v⊕ Sv))
= ι(c⊕ πvSv)
= ι(LKc⊕ LKπvSv) + ι(RKπvSv)
= ι(LKπvSv) + ι(RKπvSv)

= K− ι(LKπvSv) + ι(RKπvSv).

On the other hand, it holds true that

ι(LKπvSv) + ι(RKπvSv) = ι(πvSv) = ι(Sv) = ι(v) = K.

Therefore, the Hamming weight of v⊕ Sv reads

ι(v⊕ Sv) = 2K− 2ι(LKπvSv)

and we have the result:

ι(LKπvSv) = ι(RKπvSv) = n.

Proof of Lemma 5.1.3. Consider a string v ∈ St(K) such that ι(v⊕ Sv) = 2n

and v1 = vt = 0, i.e. a string v ∈ S00(t)Kn. This string can be viewed as
follows:

0 . . . 0 1 . . . 1 · · · 0 . . . 0 · · · 1 . . . 1 0 . . . 0

where there are exactly 2n interfaces separating 0-boxes from 1-boxes. The
number of boxes is n for both 0-boxes 0 . . . 0 and 1-boxes 1 . . . 1 (in the
general case one would have n+ aa ′ and n+ aa ′ respectively). We then
need to count how many strings can be constructed for a fixed number of
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interfaces. Let us start from the 1-boxes: we have K elements to distribute
in n boxes, but we have to leave at least one bit in a box in order to identify
it. So we have only K−n bits that can be arranged freely. In order to count
in how many ways we can do this, we can think to arrange the K−n 1-bits
represented by the symbol ? together with some bars | to denote the slots:

? ? | ? | ? ? | ? ? ?

Given n slots, n− 1 bars are sufficient to indentify the slots, hence we have
to permute K− n+ n− 1 = K− 1 objects of which n− 1 are equal: this is
given by the number of permutations with repetitions

(K− 1)!
(n− 1)!(K−n)!

=

(
K− 1

n− 1

)
.

The problem can be interpreted in another way. An integer number K
can be written in several ways as the sum of a sequence of other (strictly)
positive integers. For instance, the number 5 has 16 compositions:

5,
4+ 1,
3+ 2,
3+ 1+ 1,
2+ 3,
2+ 2+ 1,
2+ 1+ 2,
2+ 1+ 1+ 1,
1+ 4,
1+ 3+ 1,
1+ 2+ 2,
1+ 2+ 1+ 1,
1+ 1+ 3,
1+ 1+ 2+ 1,
1+ 1+ 1+ 2,
1+ 1+ 1+ 1,
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of which we need only those with a fixed number of parts, say 3:

3+ 1+ 1,
2+ 2+ 1,
2+ 1+ 2,
1+ 3+ 1,
1+ 2+ 2,
1+ 1+ 3.

Two sequences that differ in the order of their terms define different compo-
sitions of K, whereas if we disregard the order, the two sequences define the
same partition. The case we are looking for is the first one, since sequences
differing in the order of their terms generate different binary strings and
thus different paths on the lattice. So we have to count the number of
composition of K into n parts which is given precisely by

(
K−1
n−1

)
[109].

We denote here as CK,n the number of n-compositions of an integer K:

CK,n =


(
K−1
n−1

)
, if K > n > 0,

1, if K = n = 0,
0, otherwise.

For the 0-bits the same argument applies, so the counting results to be
Ct−K,n+1, since there are n+ 1 boxes where one can arrange the t−K 0-bits.
So the total number of binary strings is given by

u00(n) =

(
K− 1

n− 1

)(
t−K− 1

n

)
= CK,nCt−K,n+1.

In the end, for generic a and a ′ the cardinality of Taa ′(t,K,n) turns out to
be

uaa ′(n) := |Taa ′(t,K,n)| = CK,n+aa ′Ct−K,n+aa ′ .
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T H R E E S PAT I A L D I M E N S I O N S

Proof of Proposition 6.2.1. Suppose that K > H and let v ∈ St(K), w ∈ St(H).
Naming c the canonical string in St(K), we then have∑

w∈St(H)

zv⊕w =
∑

w∈St(H)

zc⊕w

=

min{H,t−K}∑
n=0

∑
w∈W(K,H,n)

zw.

In the first step we used the bitwise-permutation independence: for any π
bitwise permutation it holds that∑

w

zv⊕w =
∑
w

zπ(v⊕w)

=
∑
w

zπ(v)⊕π(w)

=
∑
w

zπ(v)⊕w.

In the second step we employed the result of Lemma 5.1.1:

St(H) =
⋃
n

SK(H−n)_St−K(n)

=
⋃
n

W(K,H,n).

Moreover, one has

ι(w) = K−H+ 2n ∀w ∈ W(K,H,n).

Therefore we can write∑
w∈W(K,H,n)

zw = |W(K,H,n)| zK−H+2n

=

(
K

H−n

)(
t−K

n

)
zK−H+2n,
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b. proofs for the weyl qw in three spatial dimensions

so that ∑
w

zv⊕w = ξ(K,H; z)

= z|K−H|
min{H,t−K}∑

n=0

(
K

H−n

)(
t−K

n

)
z2n.

Proof of Proposition 6.2.2. Let us consider the case K1 > K2 as the other one
is a simple variation of the following construction. First of all, let us imple-
ment the result of Lemma 5.1.3 in the expression for the coefficients (64):

cab =
∑
v,w

(−1)(v⊕Sv)wξ(ι(v⊕w),K3;±i)

=
∑
a ′=0,1

(−1)(a⊕a
′)b

∑
n

c ′aa ′b(n),

where

c ′aa ′b(n) :=
∑
v ′,w ′

(−1)(av
′⊕v ′a ′)w ′

ξ(ι(av ′ ⊕w ′) + a ′ ⊕ b,K3;±i),

and av ′a ′ ∈ Taa ′(t,K1,n) and w ′ ∈ St−1(K2 − b). Consider for now the
case a = a ′ = 0 (the others are pretty much similar). We can define a
particular “canonical” labeled string v ′ = (λ ′(1), λ

′
(2)) such that λ ′(1), LK1(λ

′
(2))

and RK1(λ
′
(2)) are all canonical; moreover we require λ ′(1) and λ ′(2) to have

Hamming weight n. In this way we have:

c ′00b(n) =
∑
v ′,w ′

(−1)
λ ′(2)w

′
ξ
[
ι
(
λ ′(1) ⊕w

′
)

,K3;±i
]

= uaa ′(n)
∑
w ′

(−1)
λ ′(2)w

′
ξ
[
ι
(
λ ′(1) ⊕w

′
)

,K3;±i
]
.

Such form of the sum for c00b(n) suggests to split the set St−1(K2−b) as
follows:

St−1(K2 − b) =

min{K2,t−K1−1}⋃
J=b

n⋃
k=0

n⋃
k ′=0

Z
(1)
b (J,k)Z(0)

b (J,k ′),

Z
(1)
b (J,k) = Sn(k)SK1−n(K2 − J− k), (91)

Z
(0)
b (J,k ′) = Sn(k

′)St−K1−n−1(J− k
′ − b). (92)

With this splitting, the coefficients c ′00b can then be written as

c ′00b(n) = u00(n)
∑
J,k,k ′

∑
w̃(1),w̃(0)

(−1)k+k
′
ξ(K1 −K2 + 2J,K3;±i),
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b. proofs for the weyl qw in three spatial dimensions

where w̃(1) ∈ Z
(1)
b (J,k) and w̃(0) ∈ Z

(2)
b (J,k ′). So finally we have

c ′00b(n) = u00(n)
∑
J,k,k ′

(−1)k+k
′
ξ(K1 −K2 + 2J,K3;±i) ·

·
(
n

k

)(
K1 −n

K2 − J− k

)(
n

k ′

)(
t−K1 −n− 1

J− k ′ − b

)
= u00(n)

∑
J

ϕ00b(n, J;−1) ξ(K1 −K2 + 2J,K3;±i),

where the function ϕ00b(n, J; z) is given by

ϕ00b(n, J; z) =
∑
k,k ′

zk+k
′
∣∣∣Z(1)
b (J,k)

∣∣∣ ∣∣∣Z(0)
b (J,k ′)

∣∣∣
= w

(1)
00b(n, J; z)w(0)

00b(n, J; z).
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C D I S C R E T E F O U R I E R T R A N S F O R M

The simulations performed to generate the plots of Chapter 3 employed
the Fourier representation to generate the initial configuration. We provide
here a brief review of the Discrete Fourier Transform (DFT) employed to
implement the QW algorithm in a computer program.

The evolution a QW can certainly be implemented exploiting the local
update rule in position space (see Eq. (18)). Although this approach is
generally straightforward to implement numerically, it requires, however,
the repeated application of the one-step update rule at each time-step. For
large lattices, especially in dimensions higher than one, or many-particle
systems this can be a resource-intensive task. On the contrary, the evolu-
tion in the Fourier representation changes only a phase, since we are just
employing the eigenbasis of the walk, and the complexity of the compu-
tation is hidden in the computation of the FT. Nevertheless, there exist
efficient algorithms that implement the DFT, such as the Cooley–Tukey
Fast Fourier Transform (FFT) algorithm [125].

In the general case, we consider the Abelian group Zd and its Cayley
graphs. Having the numerical implementation in mind, we consider the
restriction of the infinite lattice to a finite number of sites, or, equivalently,
we take all the functions on the lattice to be periodic also in the direct space.
In particular, we are going to discuss the DFT on a rectangular lattice in
dimension d and then we will specialize to the case of the DFT on the BCC
lattice.

Our goal is the implementation of the update rule of a given QW. The
Hilbert space associated to the QW is H := `2(Zd)⊗ Cs. The evolution of
an initial state |ψ(0)〉 ∈ H is given by the repeated application of the walk
unitary W:

|ψ(t)〉 =Wt |ψ(0)〉 .

Expressing the initial state |ψ(0)〉 in the Fourier representation as

|ψ(0)〉 =
∫
B
dk |k〉 |ψ̂(0,k)〉 , |ψ̂(0,k)〉 ∈ Cs,

and recalling the general expressions in Eqs. (2) and (3) providing the diag-
onal representation of the walk, the state at time t can be written as

|ψ(t, x)〉 = 1

(2π)d/2

∫
B
dk e−ik·xe−iH(k)t |ψ̂(0,k)〉 ,
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c. discrete fourier transform

where
|ψ̂(0,k)〉 =

∑
x∈Zd

eik·x |ψ(0, x)〉

is the FT of |ψ(0, x)〉.
From a practical point of view, we actually employ a finite data-set

to represent the state of the walk. Suppose we have Ni samples in di-
mension i, for i = 1, 2, . . . ,d. The dual space representation is given
by a discrete sampling of the continuous FT at frequencies 2π

Ni
ki, with

ki ∈ {−bNi/2c, . . . , dNi/2e− 1}. This is equivalent to employ the periodic
boundary conditions in position space on the infinite lattice.

c.1 rectangular dft

For a given sequence ϕ ∈ `2(Zd) we consider a restriction f : Zd → C

on a finite region N = {m ∈ Zd | 0 6 mi < Ni, i = 1, . . . ,d }, where Ni is
the number of samples in dimension i = 1, . . . ,d, such that f|N = ϕ|N.
Assuming periodic boundary conditions, the function f is extended to the
whole lattice with periodicity matrix N = diag(N1, . . . ,Nd):

fn+Nr = fn, ∀n, r ∈ Zd.

The representation in the dual space of the function f corresponding to
the dual representation of ϕ coincides with the DFT, namely we have

f̂k = F(f)(k) :=
1√
|N|

∑
n∈N

fne
−2πipᵀN−1ne2πik

ᵀN−1n, k ∈ N, (93)

where N = |N| = det(N) and pi =
⌊
Ni
2

⌋
. The reason of the extra phase

factor is that the frequencies actually computed should lie in the range
[−π,π], while the indices of the sequence are conveniently chosen in the
range {0, . . . ,Ni− 1} for each dimension. The inversion formula is given by
the following expression:

fn = F−1(f̂)(n) = e2πip
ᵀN−1n 1√

|N|

∑
k∈N

f̂ke
−2πikᵀN−1n. (94)

The two relations given in Eqs. (93) and (94) are all we need to imple-
ment numerically the walk evolution in the Fourier representation. At each
time-step, though, we need to perform the inverse DFT to obtain the prob-
ability distribution in position space. The effectiveness and efficiency of
algorithms based on the FFT are better exploited of we need only the state
at some specific time t, rather than the case where we are interested in the
complete time evolution of the state. In the latter case, it may be more con-
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c.2. dft on the bcc lattice

venient to employ directly the one-step update rule of the walk since it is
usually straightforward to implement numerically.

In the following section, we specialize the discussion to the BCC lattice
which is the lattice where the Dirac QW in dimension d = 3 is defined.

c.2 dft on the bcc lattice
In dimension d = 3 the only lattice that admits a QW satisfying the as-
sumptions of Section 2.3 is the BCC lattice [40]. In this case, the DFT is
slightly different since the first Brillouin zone of the BCC lattice is not a
cube, but instead is a rhombic dodecahedron, as depicted in Fig. 5. Neverthe-
less, the problem of computing the DFT on the BCC lattice can be reduced
to the computation of two rectangular DFTs [130]. In this way, one can rely
on fast algorithms to compute the FT such as the usual rectangular FFT
algorithm [125].

In order to compute the DFT we have to choose a suitable finite region of
the lattice; a convenient choice is obtained considering that the BCC lattice
can be described by the vertex set G = 2Z3 ∪ (2Z3 + t), with t = (1, 1, 1).
In this way, we can choose as fundamental region the set B := 2N ∪ (2N+

t). A sequence fn defined on the fundamental region B can be split into
two subsequences f0n and f1n each one having as fundamental region the
rectangular region N. The two new sequences are defined, respectively, on
the even and odd indices of the original sequence, namely

f0n = f2n, f1n = f2n+t, ∀n ∈ N,

and are periodic with periodicity matrix N = diag(N1,N2,N3):

f
j
n+Nr = f

j
n, ∀n, r ∈ Z3, j = 0, 1.

In the Fourier representation the periodicity matrix is given by 2N, so
that the total number of frequencies is det(2N) = 8N1N2N3 = 8|N|. There-
fore, the correct definition for the FT of fn is given by

f̂k = F(f)(k) :=
1

2
√

|B|

∑
n∈B

fne
2πikᵀ(2N)−1n, ∀k ∈ K, (95)

K being the set of Fourier indices that can be chosen as

K =
{
k ∈ Z3

∣∣∣ −Ni 6 ki < Ni, i = 1, 2, 3} .

In order to compute the DFT in Eq. (95), we do not need to compute the
function for the whole set K since, of the 8 replica of the fundamental
region N that are included in K, only two are inequivalent, say N and N−
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c. discrete fourier transform

t. As proved in details in [130], this means that, exploiting the geometry
of the BCC lattice, we can restrict the sequence f̂k, with k ∈ K, to two
subsequences f̂0k and f̂1k with k in N. In this way, we reduce the problem of
the computation of the DFT on the BCC lattice in terms of two rectangular
DFTs:

f̂0k =
1√
2

[
F(f0)(k) − akF(f

1)(k)
]
,

f̂1k =
1√
2

[
F(f0)(k) + akF(f

1)(k)
]
,

with k ∈ N and ak := eiπk
ᵀN−1t. Finally, we can compute the inversion

formulae to get back to the direct space representation:

f0n =
1√
2
F−1(f̂0 + f̂1)(n),

f1n =
1√
2
F−1(a∗(f̂1 − f̂0))(n).
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The interaction picture is an intermediate representation between the Schrö-
dinger picture and the Heisenberg picture. It is a useful viewpoint in QM
to describe the dynamics of a quantum system in presence of interactions
that can be regarded as small perturbations to a well-understood dynamics,
as a free QFT. If we are given a QCA described by a unitary operator A,
the states and the operators evolve in the Schrödinger picture as

|ψ(t+ 1)〉S = A |ψ(t)〉S ,
OS := OS(t) = OS(0).

In the present case, for an interacting QCA, the unitary operator provid-
ing the time evolution consists actually in two steps. At each step of the
automaton we are actually doing two distinct steps

A = AintAf,

where Af denotes a free evolution, describing a linear nearest-neighbours
QCA such as the free Dirac QW, and Aint represents an interaction term
that is non-linear in the fields.

In order to obtain the interaction picture description, we consider Aint as
a perturbation of the analytically solved free evolution given by Af. In the
interaction picture both states and operators are time-dependent; the evolu-
tion of the states is governed by interacting term, whereas the observables
evolve via the free operator Af:

|ψ(t)〉I := (A†
f)
t |ψ(t)〉S ,

OI(t) := (A†
f)
tOSA

t
f.

Consequently, letting
AI(t) := (A†

f)
tAintA

t
f

to denote the time evolution operator in the interaction picture, we then
obtain

|ψ(t+ 1)〉I = (A†
f)
t+1 |ψ(t+ 1)〉S

= (A†
f)
t+1AintAf |ψ(t)〉S

= (A†
f)
t+1AintAfA

t
f |ψ(t)〉I

= AI(t+ 1) |ψ(t)〉I . (96)
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d. interaction picture

The solution of Eq. (96) for an arbitrary time is easily obtained:

|ψ(t+n)〉I = U(t+n, t) |ψ(t)〉I , (97)

U(t+n, t) :=
n−1∏
j=0

AI(t+n− j).

We assume here that the interaction term has the following expression:

Aint = e
−iλHint

where Hint is the interaction Hamiltonian and λ is a real coupling constant.
The operator AI(t) can thus be written as

AI(t) = (A†
f)
te−iλHintAtf

= e−iλHI(t)

=
∑
n

(−iλ)n
(HI(t))

n

n!
. (98)

By inserting the power expansion (98) into Eq. (97) we obtain the Dyson
formula for the QCA:

U(t+, t−) = T

exp

−iλ

t+∑
t=t−+1

HI(t)

 . (99)

where T is the time ordering operator, i.e.

T[A(t1)B(t2)] =

{
A(t1)B(t2), if t1 > t2,
B(t2)A(t1), if t2 > t1.

In a typical scenario we are interested in computing amplitudes and cross
sections of scattering processes. This quantities are computed by means of
the matrix elements of the so-called S-matrix, i.e.

〈f|S|i〉 := lim
t±→±∞ 〈f|U(t+, t−)|i〉 , (100)

where |i〉 and |f〉 are eigenstates of the free theory. The Dyson formula (99)
allows us to compute the amplitudes of Eq. (100) as a power series in the
coupling contant λ.

We now focus our analysis on local interactions, which are described by
an Hamiltonian operator of the following kind:

Hint :=
∑
x∈Z

Hint(x). (101)
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d. interaction picture

By inserting Eq. (101) and Eq. (99) into Eq. (100) we obtain the power series

〈f|S|i〉 =
+∞∑
n=0

(−iλ)n

n!

∑
X1,...,Xn

〈f|T[HI(X1) · · ·HI(Xn)]|i〉 , (102)

where we introduced the notation

Xi := (ti, xi),
∑
Xi

OI(Xi) :=

+∞∑
ti=−∞

∑
xi∈Z

OI(ti, xi).

Usually, HI(Xi) is a polynomial in the field operators ψA(x), ψ
†
A(x). There-

fore, from Eq. (102), we need to compute time order product of field oper-
ators that can be reduced to products of the contractions of all the possible
pairs of field operators, according to Wick’s theorem [118].

99





B I B L I O G R A P H Y

[1] C. E. Shannon. “A Mathematical Theory of Communication”. In:
Bell System Technical Journal 27.3 (1948), pp. 379–423 (cit. on p. 1).

[2] G. N. Lewis. “THE SYMMETRY OF TIME IN PHYSICS”. In: Science
71.1849 (1930), pp. 569–577 (cit. on p. 1).

[3] K. Zuse. Calculating space. Massachusetts Institute of Technology,
Project MAC Cambridge, MA, 1970 (cit. on p. 1).

[4] J. A. Wheeler. “Information, physics, quantum: The search for links.
In (W. Zurek, ed.) Complexity, Entropy, and the Physics of Informa-
tion. Redwood City”. In: CA: Addison-Wesley. Cited in DJ Chalmers,(1995)
Facing up to the Hard Problem of Consciousness, Journal of Consciousness
Studies 2.3 (1990), pp. 200–19 (cit. on pp. 1, 9, 82).

[5] R. P. Feynman. “Simulating physics with computers”. In: Interna-
tional Journal of Theoretical Physics 21.6-7 (June 1982), pp. 467–488 (cit.
on pp. 2, 10–12, 81).

[6] G. Birkhoff and J. V. Neumann. “The Logic of Quantum Mechanics”.
In: Annals of Mathematics 37.4 (1936), pp. 823–843 (cit. on p. 2).

[7] J. Feldman. “Book Review: G. W. Mackey and W. A. Benjamin, Math-
ematical foundations of quantum mechanics”. In: Bull. Amer. Math.
Soc. 73.4 (July 1967), pp. 499–500 (cit. on p. 2).

[8] C. Piron. “Axiomatique quantique.” French. In: Helv. Phys. Acta 37

(1964), pp. 439–468 (cit. on pp. 2, 11).

[9] G. Ludwig and C. A. Hein. Foundations of quantum mechanics II. New
York, NY (United States); Springer-Verlag, 1985 (cit. on pp. 2, 11).

[10] L. Hardy. “Quantum theory from five reasonable axioms”. In: ArXiv
preprint (Jan. 2001), p. 34. arXiv: 0101012 [quant-ph] (cit. on pp. 2,
11).

[11] L. Masanes and M. P. Müller. “A derivation of quantum theory
from physical requirements”. In: New Journal of Physics 13.6 (2011),
p. 63001 (cit. on pp. 2, 11).

[12] G. Chiribella, G. M. D’Ariano, and P. Perinotti. “Informational deriva-
tion of quantum theory”. In: Physical Review A 84.1 (July 2011), p. 012311

(cit. on pp. 2, 11).

[13] I. Montvay and G. Münster. Quantum Fields on a Lattice. Cambridge
University Press, Mar. 1997 (cit. on p. 3).

101

http://arxiv.org/abs/0101012


bibliography

[14] B. Schumacher and R. F. Werner. “Reversible quantum cellular au-
tomata”. In: ArXiv preprint (May 2004), p. 20. arXiv: 0405174 [quant-ph]
(cit. on pp. 3, 6, 10, 12).

[15] Y. Aharonov, L. Davidovich, and N. Zagury. “Quantum random
walks”. In: Physical Review A 48.2 (Aug. 1993), pp. 1687–1690 (cit.
on pp. 3, 11).

[16] D. Aharonov, A. Ambainis, J. Kempe, and U. Vazirani. “Quantum
walks on graphs”. In: Proceedings of the thirty-third annual ACM sym-
posium on Theory of computing - STOC ’01. New York, New York, USA:
ACM Press, Dec. 2001, pp. 50–59 (cit. on pp. 4, 11, 17, 28).

[17] A. Ambainis, E. Bach, A. Nayak, A. Vishwanath, and J. Watrous.
“One-dimensional quantum walks”. In: Proceedings of the thirty-third
annual ACM symposium on Theory of computing - STOC ’01. New York,
New York, USA: ACM Press, 2001, pp. 37–49 (cit. on pp. 4, 11, 28,
41).

[18] A. Nayak and A. Vishwanath. “Quantum Walk on the Line”. In:
ArXiv preprint (Oct. 2000). arXiv: 0010117 [quant-ph] (cit. on pp. 4,
11, 28).

[19] A. M. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann, and D. A.
Spielman. “Exponential algorithmic speedup by a quantum walk”.
In: Proceedings of the thirty-fifth ACM symposium on Theory of comput-
ing - STOC ’03. New York, New York, USA: ACM Press, Sept. 2003,
p. 59 (cit. on pp. 4, 11).

[20] A. Ambainis. “Quantum walk algorithm for element distinctness”.
In: SIAM Journal on Computing 37.1 (2007), pp. 210–239 (cit. on pp. 4,
11).

[21] F. Magniez, M. Santha, and M. Szegedy. “Quantum algorithms for
the triangle problem”. In: SIAM Journal on Computing 37.2 (2007),
pp. 413–424 (cit. on pp. 4, 11).

[22] E. Farhi, J. Goldstone, and S. Gutmann. “A Quantum Algorithm for
the Hamiltonian NAND Tree”. In: Theory of Computing 4.8 (2008),
pp. 169–190 (cit. on pp. 4, 11).

[23] M. Santha. “Quantum walk based search algorithms”. In: Theory
and Applications of Models of Computation: 5th International Conference,
TAMC 2008, Xi’an, China, April 25-29, 2008. Proceedings. Ed. by M.
Agrawal, D. Du, Z. Duan, and A. Li. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2008. Chap. Quantum Walk Based Search Algo-
rithms, pp. 31–46 (cit. on pp. 4, 11).

[24] R. A. M. Santos, R. Portugal, and S. Boettcher. “Moments of coinless
quantum walks on lattices”. In: Quantum Information Processing 14.9
(Sept. 2015), pp. 3179–3191 (cit. on pp. 4, 11).

102

http://arxiv.org/abs/0405174
http://arxiv.org/abs/0010117


bibliography

[25] T. G. Wong. “Grover search with lackadaisical quantum walks”. In:
Journal of Physics A: Mathematical and Theoretical 48.43 (2015), p. 435304

(cit. on pp. 4, 11).

[26] S. Succi and R. Benzi. “Lattice Boltzmann equation for quantum
mechanics”. In: Physica D: Nonlinear Phenomena 69.3 (1993), pp. 327–
332 (cit. on pp. 4, 12).

[27] I. Bialynicki-Birula. “Weyl, Dirac, and Maxwell equations on a lattice
as unitary cellular automata”. In: Physical Review D 49.12 (June 1994),
pp. 6920–6927 (cit. on pp. 4, 6, 12, 82).

[28] D. A. Meyer. “From quantum cellular automata to quantum lattice
gases”. English. In: Journal of Statistical Physics 85.5-6 (Mar. 1996),
pp. 551–574 (cit. on pp. 4, 6, 12, 16, 82).

[29] J. Yepez. “Quantum lattice-gas model for computational fluid dy-
namics”. In: Physical Review E 63.4 (Mar. 2001), p. 046702 (cit. on
pp. 4, 12).

[30] M. Katori, S. Fujino, and N. Konno. “Quantum walks and orbital
states of a Weyl particle”. In: Phys. Rev. A 72 (1 July 2005), p. 012316

(cit. on pp. 4, 12).

[31] F. Strauch. “Relativistic quantum walks”. In: Physical Review A 73.5
(May 2006), p. 054302 (cit. on pp. 4, 12).

[32] A. J. Bracken, D. Ellinas, and I. Smyrnakis. “Free-Dirac-particle evo-
lution as a quantum random walk”. In: Physical Review A 75.2 (2007),
p. 22322 (cit. on pp. 4, 12).

[33] G. M. D’Ariano. “The quantum field as a quantum computer”. In:
Physics Letters A 376.5 (2012), pp. 697–702 (cit. on pp. 4, 12).

[34] F. Debbasch, G. D. Molfetta, D. Espaze, and V. Foulonneau. “Prop-
agation in quantum walks and relativistic diffusions”. In: Physica
Scripta 2012.T151 (2012), p. 014044 (cit. on p. 4).

[35] A. Bisio, G. M. D’Ariano, and A. Tosini. “Dirac quantum cellular
automaton in one dimension: Zitterbewegung and scattering from
potential”. In: Physical Review A 88.3 (Sept. 2013), p. 032301 (cit. on
pp. 4, 12, 33).

[36] P. Arrighi and S. Facchini. “Decoupled quantum walks, models of
the Klein-Gordon and wave equations”. In: EPL (Europhysics Letters)
104.6 (2013), p. 60004 (cit. on pp. 4, 12).

[37] A. Bisio, G. D’Ariano, P. Perinotti, and A. Tosini. “Weyl, Dirac and
Maxwell Quantum Cellular Automata”. English. In: Foundations of
Physics (2015), pp. 1–19 (cit. on pp. 4, 12).

103



bibliography

[38] P. Arrighi, V. Nesme, and M. Forets. “The Dirac equation as a quan-
tum walk: higher dimensions, observational convergence”. In: Jour-
nal of Physics A: Mathematical and Theoretical 47.46 (2014), p. 465302

(cit. on pp. 4, 12).

[39] T. C. Farrelly and A. J. Short. “Discrete spacetime and relativistic
quantum particles”. In: Phys. Rev. A 89 (6 June 2014), p. 062109 (cit.
on pp. 4, 12).

[40] G. M. D’Ariano and P. Perinotti. “Derivation of the Dirac equation
from principles of information processing”. In: Physical Review A
90.6 (2014), p. 062106 (cit. on pp. 4, 6, 12, 14, 17, 18, 21, 37, 43, 51, 52,
82, 83, 95).

[41] T. C. Farrelly and A. J. Short. “Causal fermions in discrete space-
time”. In: Phys. Rev. A 89 (1 Jan. 2014), p. 012302 (cit. on pp. 4, 12).

[42] A. Bisio, G. M. D’Ariano, and A. Tosini. “Quantum field as a quan-
tum cellular automaton: The Dirac free evolution in one dimension”.
In: Annals of Physics 354.0 (2015), pp. 244–264 (cit. on pp. 4, 12, 21,
37, 82, 83).

[43] P. Arnault and F. Debbasch. “Quantum walks and discrete gauge
theories”. In: Phys. Rev. A 93 (5 May 2016), p. 052301 (cit. on p. 4).

[44] P. Arnault, G. Di Molfetta, M. Brachet, and F. Debbasch. “Quantum
walks and non-Abelian discrete gauge theory”. In: Phys. Rev. A 94

(1 July 2016), p. 012335 (cit. on p. 4).

[45] G. Di Molfetta, M. Brachet, and F. Debbasch. “Quantum walks as
massless Dirac fermions in curved space-time”. In: Phys. Rev. A 88

(4 Oct. 2013), p. 042301 (cit. on p. 4).

[46] V. Kendon. “Where to quantum walk”. In: ArXiv preprint (July 2011).
arXiv: 1107.3795 [quant-ph] (cit. on p. 4).

[47] A. Alberti, W. Alt, R. Werner, and D. Meschede. “Decoherence mod-
els for discrete-time quantum walks and their application to neutral
atom experiments”. In: New Journal of Physics 16.12 (2014), p. 123052

(cit. on p. 4).

[48] W. Dür, R. Raussendorf, V. Kendon, and H.-J. Briegel. “Quantum
walks in optical lattices”. In: Physical Review A 66.5 (Nov. 2002),
p. 052319 (cit. on p. 4).

[49] M. Karski, L. Förster, J.-M. Choi, A. Steffen, W. Alt, D. Meschede,
and A. Widera. “Quantum Walk in Position Space with Single Op-
tically Trapped Atoms”. In: Science 325.5937 (2009), pp. 174–177 (cit.
on p. 4).

104

http://arxiv.org/abs/1107.3795


bibliography

[50] C. Robens, W. Alt, D. Meschede, C. Emary, and A. Alberti. “Ideal
Negative Measurements in Quantum Walks Disprove Theories Based
on Classical Trajectories”. In: Phys. Rev. X 5 (1 Jan. 2015), p. 011003

(cit. on p. 4).

[51] A. Alberti and S. Wimberger. “Quantum walk of a Bose-Einstein
condensate in the Brillouin zone”. In: Phys. Rev. A 96 (2 Aug. 2017),
p. 023620 (cit. on p. 4).

[52] H. Schmitz, R. Matjeschk, C. Schneider, J. Glueckert, M. Enderlein,
T. Huber, and T. Schaetz. “Quantum Walk of a Trapped Ion in Phase
Space”. In: Phys. Rev. Lett. 103 (9 Aug. 2009), p. 090504 (cit. on p. 4).

[53] H. B. Perets, Y. Lahini, F. Pozzi, M. Sorel, R. Morandotti, and Y. Sil-
berberg. “Realization of Quantum Walks with Negligible Decoher-
ence in Waveguide Lattices”. In: Phys. Rev. Lett. 100 (17 May 2008),
p. 170506 (cit. on p. 4).

[54] L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ram-
poni, and R. Osellame. “Two-Particle Bosonic-Fermionic Quantum
Walk via Integrated Photonics”. In: Phys. Rev. Lett. 108 (1 Jan. 2012),
p. 010502 (cit. on p. 4).

[55] A. Schreiber, K. N. Cassemiro, V. Poto ek, A. Gábris, P. J. Mosley,
E. Andersson, I. Jex, and C. Silberhorn. “Photons Walking the Line:
A Quantum Walk with Adjustable Coin Operations”. In: Phys. Rev.
Lett. 104 (5 Feb. 2010), p. 050502 (cit. on p. 4).

[56] Y.-C. Jeong, C. Di Franco, H.-T. Lim, M. S. Kim, and Y.-H. Kim. “Ex-
perimental realization of a delayed-choice quantum walk”. In: Na-
ture Communications 4 (Sept. 2013), 2471 EP - (cit. on p. 4).

[57] A. Schreiber, A. Gábris, P. P. Rohde, K. Laiho, M. tefaák, V. Potoek,
C. Hamilton, I. Jex, and C. Silberhorn. “A 2D Quantum Walk Simu-
lation of Two-Particle Dynamics”. In: Science 336.6077 (2012), pp. 55–
58 (cit. on p. 4).

[58] C. Cedzich, T. Rybár, A. H. Werner, A. Alberti, M. Genske, and R. F.
Werner. “Propagation of Quantum Walks in Electric Fields”. In: Phys.
Rev. Lett. 111 (16 Oct. 2013), p. 160601 (cit. on p. 4).

[59] M. Genske, W. Alt, A. Steffen, A. H. Werner, R. F. Werner, D. Meschede,
and A. Alberti. “Electric Quantum Walks with Individual Atoms”.
In: Phys. Rev. Lett. 110 (19 May 2013), p. 190601 (cit. on p. 4).

[60] G. Di Molfetta and F. Debbasch. “Discrete-time quantum walks:
Continuous limit and symmetries”. In: Journal of Mathematical Physics
53.12 (2012), p. 123302 (cit. on p. 4).

[61] A. Bisio, G. M. D’Ariano, and P. Perinotti. “Quantum cellular au-
tomaton theory of light”. In: Annals of Physics 368 (2016), pp. 177–
190 (cit. on pp. 4, 12, 28, 67).

105



bibliography

[62] A. Bisio, G. M. D’Ariano, P. Perinotti, and A. Tosini. “Free Quantum
Field Theory from Quantum Cellular Automata”. In: Foundations of
Physics 45.10 (Oct. 2015), pp. 1137–1152 (cit. on pp. 5, 12, 16, 82).

[63] G. M. D’Ariano and P. Perinotti. “Quantum cellular automata and
free quantum field theory”. In: Frontiers of Physics 12.1 (Sept. 2016),
p. 120301 (cit. on pp. 5, 12, 14, 16, 82).

[64] A. Bibeau-Delisle, A. Bisio, G. M. D’Ariano, P. Perinotti, and A.
Tosini. “Doubly special relativity from quantum cellular automata”.
In: EPL (Europhysics Letters) 109.5 (2015), p. 50003 (cit. on pp. 5, 12,
28, 67, 68).

[65] A. Bisio, G. M. D’Ariano, and P. Perinotti. “Special relativity in a dis-
crete quantum universe”. In: Phys. Rev. A 94 (4 Oct. 2016), p. 042120

(cit. on pp. 5, 12, 18, 43, 51).

[66] R. P. Feynman, A. R. Hibbs, and D. F. Styer. Quantum mechanics and
path integrals. Vol. 2. International series in pure and applied physics.
McGraw-Hill New York, 1965 (cit. on pp. 5, 23, 41).

[67] T. Jacobson and L. L. S. Schulman. “Quantum stochastics: the pas-
sage from a relativistic to a non-relativistic path integral”. In: Journal
of Physics A: Mathematical . . . 17.2 (1984), p. 375 (cit. on pp. 5, 42).

[68] V. A. Karmanov. “On the derivation of the electron propagator from
a random walk”. In: Physics Letters A 174.5 (1993), pp. 371–376 (cit.
on pp. 5, 42).

[69] L. H. Kauffman and H. Pierre Noyes. “Discrete physics and the
Dirac equation”. In: Physics Letters A 218.3-6 (Aug. 1996), pp. 139–
146. arXiv: 9603202 [hep-th] (cit. on pp. 5, 41).

[70] B. Z. Foster and T. Jacobson. “Spin on a 4D Feynman Checkerboard”.
In: International Journal of Theoretical Physics 56.1 (Jan. 2017), pp. 129–
144 (cit. on p. 5).

[71] G. Grossing and A. Zeilinger. “Quantum cellular automata”. In:
Complex Systems 2.2 (1988), pp. 197–208 (cit. on pp. 6, 10).

[72] G. M. D’Ariano, N. Mosco, P. Perinotti, and A. Tosini. “Path-integral
solution of the one-dimensional Dirac quantum cellular automaton”.
In: Physics Letters A 378.43 (Sept. 2014), pp. 3165–3168 (cit. on pp. 7,
23, 38, 41, 51, 83).

[73] G. M. D’Ariano, N. Mosco, P. Perinotti, and A. Tosini. “Discrete
Feynman propagator for the Weyl quantum walk in 2 + 1 dimen-
sions”. In: EPL 109.4 (2015), p. 40012 (cit. on pp. 7, 23, 43, 51, 83).

[74] G. M. D’Ariano, N. Mosco, P. Perinotti, and A. Tosini. “Path-sum so-
lution of the Weyl quantum walk in 3 + 1 dimensions”. In: Philosoph-
ical Transactions of the Royal Society of London A: Mathematical, Physical
and Engineering Sciences 375.2106 (2017) (cit. on pp. 7, 23, 51, 83).

106

http://arxiv.org/abs/9603202


bibliography

[75] A. Bisio, G. M. D’Ariano, P. Perinotti, and A. Tosini. “The Thirring
Quantum Cellular Automaton”. In preparation. Oct. 2017 (cit. on
pp. 7, 63, 69, 71, 72, 74, 75, 79, 84).

[76] J. A. Wheeler. “The computer and the universe”. In: International
Journal of Theoretical Physics 21.6 (June 1982), pp. 557–572 (cit. on
p. 9).

[77] S. Wolfram. A new kind of science. Vol. 5. Wolfram media Champaign,
2002 (cit. on p. 9).

[78] D. Deutsch. “Quantum theory, the Church-Turing principle and the
universal quantum computer”. In: Proceedings of the Royal Society of
London. A. Mathematical and Physical Sciences 400.1818 (1985), pp. 97–
117 (cit. on p. 10).

[79] C. A. Fuchs. “Quantum Mechanics as Quantum Information (and
only a little more)”. In: ArXiv preprint (May 2002). arXiv: 0205039
[quant-ph] (cit. on p. 11).

[80] G. M. D’Ariano. “On the missing axiom of Quantum Mechanicss”.
In: AIP Conference Proceedings 810.1 (2006), pp. 114–130 (cit. on p. 11).

[81] G. Chiribella, G. M. D’Ariano, and P. Perinotti. “Probabilistic theo-
ries with purification”. In: Physical Review A 81.6 (June 2010), p. 062348

(cit. on p. 11).

[82] G. M. D’Ariano. “Probabilistic theories: What is special about Quan-
tum Mechanics?” In: Philosophy of Quantum Information and Entangle-
ment 85 (2010). Ed. by A. Bokulich and G. Jaeger (cit. on p. 11).

[83] B. Dakic and C. Brukner. “Quantum theory and beyond: is entan-
glement special?” In: Deep Beauty: Understanding the Quantum World
through Mathematical Innovation. Ed. by H. Halvorson. Cambridge
University Press, Nov. 2011, pp. 365–392 (cit. on p. 11).

[84] J. D. Bekenstein. “Black holes and entropy”. In: Physical Review D 7.8
(1973), p. 2333 (cit. on pp. 11, 81, 82).

[85] S. W. Hawking. “Particle creation by black holes”. In: Communica-
tions in mathematical physics 43.3 (1975), pp. 199–220 (cit. on pp. 11,
81, 82).

[86] R. Bousso. “Light Sheets and Bekenstein’s Entropy Bound”. In: Phys.
Rev. Lett. 90 (12 Mar. 2003), p. 121302 (cit. on pp. 11, 81).

[87] N. G. Van Kampen. Stochastic processes in physics and chemistry. Vol. 1.
Elsevier, 1992 (cit. on p. 11).

[88] G. Weiss. Aspects and Applications of the Random Walk (Random Mate-
rials & Processes S.) North-Holland, 2005 (cit. on p. 11).

[89] D. R. Cox. Renewal theory. Vol. 1. Methuen London, 1962 (cit. on
p. 11).

107

http://arxiv.org/abs/0205039
http://arxiv.org/abs/0205039


bibliography

[90] S. B. Bravyi and A. Y. Kitaev. “Fermionic Quantum Computation”.
In: Annals of Physics 298.1 (2002), pp. 210–226 (cit. on p. 12).

[91] G. M. D’Ariano, F. Manessi, P. Perinotti, and A. Tosini. “Fermionic
computation is non-local tomographic and violates monogamy of
entanglement”. In: EPL (Europhysics Letters) 107.2 (2014), p. 20009

(cit. on p. 12).

[92] G. M. D’Ariano, F. Manessi, P. Perinotti, and A. Tosini. “The Feyn-
man problem and fermionic entanglement: Fermionic theory ver-
sus qubit theory”. In: International Journal of Modern Physics A 29.17

(2014), p. 1430025 (cit. on p. 12).

[93] D. B. A. Epstein, M. S. Paterson, J. W. Cannon, D. F. Holt, S. V. Levy,
and W. P. Thurston. Word Processing in Groups. Natick, MA, USA: A.
K. Peters, Ltd., 1992 (cit. on p. 14).

[94] G. M. D’Ariano, M. Erba, P. Perinotti, and A. Tosini. “Virtually
Abelian quantum walks”. In: Journal of Physics A: Mathematical and
Theoretical 50.3 (2017), p. 035301 (cit. on pp. 16, 18, 43, 51).

[95] A. Bisio, G. M. D’Ariano, M. Erba, P. Perinotti, and A. Tosini. “Quan-
tum walks with a one-dimensional coin”. In: Phys. Rev. A 93 (6 June
2016), p. 062334 (cit. on p. 16).

[96] G. M. D’Ariano, M. Erba, and P. Perinotti. “Isotropic quantum walks
on lattices and the Weyl equation”. In: ArXiv preprint (2017). arXiv:
1708.00826 [quant-ph] (cit. on p. 16).

[97] O. L. Acevedo, J. Roland, and N. J. Cerf. “Exploring scalar quantum
walks on Cayley graphs”. In: Quantum Information & Computation
(2006) (cit. on p. 16).

[98] R. Feynman. “Space-Time Approach to Non-Relativistic Quantum
Mechanics”. In: Reviews of Modern Physics 20.2 (Apr. 1948), pp. 367–
387 (cit. on p. 23).

[99] K. Huang. “On the zitterbewegung of the Dirac electron”. In: Amer-
ican Journal of Physics 20 (1952), p. 479 (cit. on p. 25).

[100] E. Schrödinger. Über die kräftefreie Bewegung in der relativistischen
Quantenmechanik. Akademie der wissenschaften in kommission bei
W. de Gruyter u. Company, 1930 (cit. on p. 25).

[101] B. Thaller. The Dirac Equation. Springer, Aug. 1992 (cit. on p. 25).

[102] J. A. Lock. “The Zitterbewegung of a free localized Dirac particle”.
In: Am. J. Phys 47.797 (1979), p. I979 (cit. on p. 25).

[103] C. Wunderlich. “Quantum physics: Trapped ion set to quiver”. In:
Nature 463.7277 (Jan. 2010), pp. 37–39 (cit. on p. 25).

[104] R. Gerritsma, G. Kirchmair, F. Zähringer, E. Solano, R. Blatt, and
C. F. Roos. “Quantum simulation of the Dirac equation”. In: Nature
463.7277 (2010), pp. 68–71 (cit. on p. 25).

108

http://arxiv.org/abs/1708.00826


bibliography

[105] L. J. LeBlanc, M. C. Beeler, K. Jiménez-Garca, A. R. Perry, S. Sugawa,
R. A. Williams, and I. B. Spielman. “Direct observation of zitterbe-
wegung in a Bose–Einstein condensate”. In: New Journal of Physics
15.7 (2013), p. 073011 (cit. on p. 25).

[106] D. Hestenes. “The zitterbewegung interpretation of quantum me-
chanics”. In: Foundations of Physics 20.10 (Oct. 1990), pp. 1213–1232

(cit. on p. 25).

[107] J. Kempe. “Quantum random walks: An introductory overview”. In:
Contemporary Physics 44.4 (July 2003), pp. 307–327 (cit. on p. 28).

[108] G. M. D’Ariano, N. Mosco, P. Perinotti, and A. Tosini. “Discrete
Time Dirac Quantum Walk in 3+1 Dimensions”. In: Entropy 18.6
(2016), p. 228 (cit. on p. 30).

[109] W. Feller. An introduction to probability theory and its applications: vol-
ume I. Vol. 3. John Wiley & Sons New York, 1968 (cit. on pp. 40,
88).

[110] N. Konno. “A path integral approach for disordered quantum walks
in one dimension”. In: Fluctuation and Noise Letters 5.04 (2005), pp. L529–
L537 (cit. on p. 41).

[111] P. S. Novikov. “On the algorithmic unsolvability of the word prob-
lem in group theory”. In: Trudy Matematicheskogo Instituta imeni VA
Steklova 44 (1955), pp. 3–143 (cit. on p. 61).

[112] R. C. Lyndon and P. E. Schupp. Combinatorial group theory. Springer,
2015 (cit. on p. 61).

[113] F. H. L. Essler, H. Frahm, F. Göhmann, A. Klümper, and V. E. Ko-
repin. The One-Dimensional Hubbard Model. Cambridge University
Press, 2005 (cit. on pp. 63, 83).

[114] H. Nielsen and M. Ninomiya. “A no-go theorem for regularizing
chiral fermions”. In: Physics Letters B 105.2-3 (Oct. 1981), pp. 219–
223 (cit. on p. 68).

[115] A. Bisio, G. M. D’Ariano, N. Mosco, P. Perinotti, and A. Tosini. In
progress. 2017 (cit. on pp. 69, 73, 75).

[116] T. Kato. Perturbation theory for linear operators. Vol. 132. Springer Sci-
ence & Business Media, 2013 (cit. on p. 72).

[117] A. Ahlbrecht, A. Alberti, D. Meschede, V. B. Scholz, A. H. Werner,
and R. F. Werner. “Bound Molecules in an Interacting Quantum
Walk”. In: ArXiv preprint (May 2011). arXiv: 1105.1051 [quant-ph]

(cit. on pp. 72, 73, 84).

[118] M. E. Peskin and D. V. Schroeder. An Introduction to Quantum Field
Theory. Westview Press, Oct. 1995 (cit. on pp. 77, 99).

109

http://arxiv.org/abs/1105.1051


bibliography

[119] G. ’t Hooft. “Dimensional reduction in quantum gravity”. In: arXiv
preprint gr-qc/9310026 (1993) (cit. on p. 82).

[120] L. Susskind. “The world as a hologram”. In: Journal of Mathematical
Physics 36.11 (Sept. 1995), p. 6377 (cit. on p. 82).

[121] G. ’t Hooft. “The Holographic Principle”. In: Basics and Highlights in
Fundamental Physics. WORLD SCIENTIFIC, 2012, pp. 72–100 (cit. on
p. 82).

[122] J. Maldacena. “The large-N limit of superconformal field theories
and supergravity”. In: International journal of theoretical physics 38.4
(1999), pp. 1113–1133 (cit. on p. 82).

[123] T. Jacobson. “Thermodynamics of Spacetime: The Einstein Equation
of State”. In: Physical Review Letters 75.7 (Aug. 1995), pp. 1260–1263

(cit. on p. 82).

[124] E. Verlinde. “On the origin of gravity and the laws of Newton”. In:
Journal of High Energy Physics 2011.4 (Apr. 2011), p. 29 (cit. on p. 82).

[125] J. W. Cooley and J. W. Tukey. “An algorithm for the machine calcula-
tion of complex Fourier series”. In: Mathematics of computation 19.90

(1965), pp. 297–301 (cit. on pp. 83, 93, 95).

[126] W. E. Thirring. “A soluble relativistic field theory”. In: Annals of
Physics 3.1 (1958), pp. 91–112 (cit. on p. 83).

[127] J. Hubbard. “Electron correlations in narrow energy bands”. In: Pro-
ceedings of the Royal Society of London A: Mathematical, Physical and
Engineering Sciences 276.1365 (1963), pp. 238–257 (cit. on p. 83).

[128] H. Bethe. “Zur Theorie der Metalle”. In: Zeitschrift für Physik 71.3
(Mar. 1931), pp. 205–226 (cit. on p. 83).

[129] W. W. Boone. “The Word Problem”. In: Annals of Mathematics 70.2
(1959), pp. 207–265 (cit. on p. 84).

[130] U. Alim and T. Möller. “A Fast Fourier Transform with Rectangular
Output on the BCC and FCC Lattices”. In: International Conference on
Sampling Theory and Applications (SampTA). 2009 (cit. on pp. 95, 96).

110



L I S T O F P U B L I C AT I O N S

published
[1] G. M. D’Ariano, N. Mosco, P. Perinotti, and A. Tosini. “Discrete

Feynman propagator for the Weyl quantum walk in 2 + 1 dimen-
sions”. In: EPL 109.4 (2015), p. 40012.

[2] G. M. D’Ariano, N. Mosco, P. Perinotti, and A. Tosini. “Discrete
Time Dirac Quantum Walk in 3+1 Dimensions”. In: Entropy 18.6
(2016), p. 228.

[3] G. M. D’Ariano, N. Mosco, P. Perinotti, and A. Tosini. “Path-integral
solution of the one-dimensional Dirac quantum cellular automaton”.
In: Physics Letters A 378.43 (Sept. 2014), pp. 3165–3168.

[4] G. M. D’Ariano, N. Mosco, P. Perinotti, and A. Tosini. “Path-sum so-
lution of the Weyl quantum walk in 3 + 1 dimensions”. In: Philosoph-
ical Transactions of the Royal Society of London A: Mathematical, Physical
and Engineering Sciences 375.2106 (2017).

submitted
[1] B. De Palma, M. Erba, L. Mantovani, and N. Mosco. “A Python pro-

gram for the implementation of the Γ -method for Monte Carlo simu-
lations”. In: ArXiv preprint (Mar. 2017). arXiv: 1703.02766 [hep-lat].

in progress
[1] A. Bisio, G. M. D’Ariano, N. Mosco, P. Perinotti, and A. Tosini. In

progress. 2017.

111

http://arxiv.org/abs/1703.02766

	Contents
	List of Figures
	List of Figures
	Acronyms

	1 Introduction
	1.1 Outline of the thesis

	2 Quantum Cellular Automata
	2.1 John Conway's Game of Life
	2.2 Quantum Cellular Automata background
	2.3 Quantum Cellular Automata on Cayley graphs
	2.3.1 Quantum Walks on free Abelian groups
	2.3.2 Coined Quantum Walks

	2.4 The Dirac Quantum Walk
	2.4.1 The massless case
	2.4.2 The massive case

	2.5 Path-sum for Quantum Walks

	3 Numerical evaluation of the Dirac Quantum Walk
	3.1 Smooth states
	3.2 Perfectly localized states
	3.3 Zitterbewegung of the Dirac Quantum Walk

	4 Dirac QW in one spatial dimension
	4.1 Path-sum solution

	5 Weyl QW in two spatial dimensions
	5.1 Path-sum solution

	6 Weyl QW in three spatial dimensions
	6.1 Composition rule of the transition matrices
	6.2 Path-sum solution
	6.2.1 Characterization of the past causal cone
	6.2.2 Binary string solution


	7 The Thirring QCA
	7.1 Review of the Dirac QW in one spatial dimension
	7.1.1 Solutions of the Dirac QW in one space dimension
	7.1.2 Fermion doubling and deformed Lorentz transformations

	7.2 The Thirring QCA
	7.3 Perturbation theory for the Thirring QCA
	7.3.1 Feynman rules for the Thirring QCA


	8 Conclusions
	A Proofs for the Weyl QW in two spatial dimensions
	B Proofs for the Weyl QW in three spatial dimensions
	C Discrete Fourier Transform
	C.1 Rectangular DFT
	C.2 DFT on the BCC lattice

	D Interaction picture
	Bibliography
	List of publications

