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Introduction

The purpose of this thesis is to investigate the existence of totally geodesic

submanifolds of Ag lying in the Jacobian locus. Totally geodesic submani-

folds constitute a class of subvarieties of Ag containing the so called special

or Shimura subvarieties. The motivation for our study comes from Coleman-

Oort’s conjecture, that predicts that no special subvarieties should exist in

the Jacobian locus if the genus is big enough.

More precisely, denote by Ag the moduli space of principally polarized

abelian varieties of dimension g over C, by Mg the moduli space of smooth

complex algebraic curves of genus g and by j : Mg → Ag the period map or

Torelli map. Set T0
g := j(Mg) and call it the open Torelli locus. The closure

of T0
g in Ag is called the Torelli locus (see e.g.[61]) and is denoted by Tg.

The expectation formulated by Oort ([68]) is that for large enough genus g

there should not exist any positive-dimensional special subvariety Z of Ag,
such that Z ⊂ Tg and Z ∩ T0

g 6= ∅.

One reason for this expectation coming from differential geometry is that

a special (or Shimura) subvariety of Ag is totally geodesic with respect to

the (orbifold) metric of Ag induced by the symmetric metric on the Siegel

space Hg, of which Ag is a quotient by the group action of Sp(2g,Z). One

expects the Torelli locus to be very curved and a way of stating this is to say

that it should not contain totally geodesic submanifolds. Important results

in this direction were achieved in [50], [34], [82], [54], [55], [21], [49]. In [30],

a study of the second fundamental form of the period map was used to give

an upper bound for the possible dimension of a totally geodesic submanifold

of Ag contained in the Torelli locus. This study was based on previous

works on the second fundamental form of the period map done in [32], [27],

[29]. Moreover, an important theorem of Mumford [64] (see [59] for a more

general result) says that an algebraic totally geodesic subvariety of Ag is

I
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special if and only if it contains a CM point, so the expectation formulated

by Oort is both of geometric and arithmetic nature. See [61, §4] for more

details.

On the other hand, as we mentioned above, for low genus (g ≤ 7) there

are examples of special subvarieties in Tg, and they are all constructed as

families of Jacobians of Galois covers of the line (see [80, 63, 33, 77, 60],

[61, §5] for the abelian Galois covers, [44] for the non abelian case and for a

complete list).

All the examples of families of Galois covers constructed so far satisfy a

sufficient condition to yield a Shimura subvariety that we briefly explain.

Consider a Galois cover f : C → C ′ = C/G, where G ⊂ Aut(C) is the

Galois group and C ′ is a curve of genus g′. Set g = g(C), then one has

a monomorphism of G in the mapping class group Mapg := π0(Diff+(C)).

The fixed point locus T Gg of the action of G on the Teichmüller space Tg is

a complex submanifold of dimension 3g′ − 3 + r. We consider its image M

in Mg and then the closure Z of the image of M in Ag via the Torelli map.

Set N := dim(S2H0(C,KC))G, then the condition that we will denote by

(∗) is that N must be equal to the dimension of Z, that is:

(∗) N = 3g′ − 3 + r.

In [30], it is proven that this condition implies that the subvariety Z is totally

geodesic and in [44] it is proven that, in fact, it gives a Shimura subvariety

in case g′ = 0, and the same proof also works if g′ > 0. Moonen proved

using arithmetic methods that condition (∗) is also necessary in the case of

cyclic Galois covers of P1. Results in this direction can also be found in [58].

In [44] the authors gave the complete list of all the families of Galois covers

of P1 of genus g ≤ 9 satisfying condition (∗) and hence yielding Shimura

subvarieties of Ag contained in the Torelli locus.

Totally geodesic submanifolds of Ag are related to the second Gaussian

map. In particular in [32] it is proven that the second fundamental form

of the orbifold immersion j : Mg → Ag (the immersion holds outside the

hyperelliptic locus, see [70] for details) lifts the second Gaussian map of the

canonical bundle, as stated in an unpublished paper of Green and Griffiths

(see [48]). In [32], an explicit expression for the second fundamental form

when evaluated on Schiffer variations is provided (see also [30, Theorem

2.6]). More precisely, ρ(ξp� ξp) reduces, up to a constant, to the evaluation

of the second Gaussian map at the point p. However, it is much more difficult
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to use the expression given in [32] to compute the second fundamental form

on ξp � ξq, when p 6= q.

Colombo and Frediani in [29] used the explicit expression of the second

fundamental form to compute the curvature of the restriction to Mg of

the Siegel metric: in particular, the authors give an explicit formula for

the holomorphic sectional curvature of Mg in the direction ξp in terms of

the holomorphic sectional curvature of Ag and the second Gaussian map.

The same expression is also used by Colombo, Frediani and Ghigi in [30] to

obtain an upper bound for the dimension of totally geodesic germs passing

through [C] ∈Mg, depending on the gonality of C.

The relation of the second Gaussian map with curvature properties of

Mg in Ag suggests that its rank could give informations on the geometry

of Mg. Driven by this geometrical motivation in [27] the authors compute

the rank of this map on both the hyperelliptic and trigonal locus. Moreover

Calabri, Ciberto and Miranda in [17] proved that the second Gaussian map

has maximal rank for the general curve of any genus, and Colombo, Frediani

and Pareschi in [31] proved that it can never be surjective for a curve lying

on an abelian surface. Not much more is known about the rank of the second

Gaussian map.

Overview of the results

In order to present our results, we introduce the general setting in a

slightly more detailed way. Denote, as before, by Mg the moduli space of

smooth complex algebraic curves of genus g, and by Ag the moduli space of

principally polarized abelian varieties of dimension g. Consider the Torelli

map, or period map,

j :Mg → Ag, (0.0.1)

associating to a smooth projective curve [C] ∈ Mg its Jacobian variety, as

a principally polarized abelian variety: j([C]) = ([JC],ΘC). Recall that the

image of the Torelli map is called open Torelli locus or open Jacobian locus.

We will denote it by T0
g and we will simply denote by Tg its closure, called

Torelli locus or Jacobian locus. BothMg and Ag are complex orbifolds, and

Ag is endowed with a locally symmetric metric, the so-called Siegel metric.

We denote the corresponding metric connection by ∇. It is well known that

the Torelli map is an orbifold immersion outside the hyperelliptic locus (see
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e.g. [70]). Since for g ≥ 4 the dimension of Mg is strictly smaller than

the dimension of Ag, it makes sense to study the metric properties of Mg

with respect to the Siegel metric. More precisely, fix a non hyperelliptic

curve [C] ∈ Mg. Outside the hyperelliptic locus consider the short exact

sequence of tangent bundles associated to the (orbifold) immersion Mg →
Ag, evaluated in [C]:

0→ T[C]Mg
dj−→ T([JC],Θ)Ag

π−→ NAg\Mg ,([JC],Θ) → 0. (0.0.2)

For simplicity, we will denote as N[JC],Θ the normal bundle of the short

exact sequence when evaluated in ([JC],Θ). The following definition comes

from Riemannian geometry.

Definition 0.0.1. The second fundamental form relative to the Torelli map

is the following:

II : S2T[C]Mg −→ N([JC],Θ),

v � w 7−→ π(∇v(w)).
(0.0.3)

Notice that the map is well defined, since the Siegel connection ∇ is sym-

metric. Using the second fundamental form, we define the totally geodesic

submanifolds contained in Tg. With a little abuse of notation, we will iden-

tify a submanifold of Mg with its image in Ag via the Torelli map.

Definition 0.0.2. A submanifold X ⊂ Mg is totally geodesic with respect

to the Siegel metric if for all [C] ∈Mg and for all u, v ∈ T[C]Mg

IIX(u, v) = 0,

where IIX is the second fundamental form of the inclusion j : X ⊂ Mg →
Ag.

Since dj∨ : S2H0(C,KC) → H0(C, 2KC) is the multiplication map of

sections, the dual of the second fundamental form is ρ := II∨ : I2(K) →
S2H0(C, 2KC) ∼= S2H0(C, TC)∨. Notice that II ≡ 0 if and only if ρ ≡ 0.

When there is no risk of ambiguity, we will refer to ρ as second fundamental

form as well.

The second fundamental form gives information about the curvature of the

embedded submanifold with respect to the metric properties of the greater

one. We expect the Torelli locus to be very curved in Ag, i.e. that very few

totally geodesic submanifolds should exist. More precisely, the conjecture is

the following:
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Conjecture 0.0.1. For large genus there does not exist any totally geodesic

submanifold contained in the Jacobian locus, such that its intersection with

the open Jacobian locus is nonempty.

We point out that this conjecture is a bit stronger than Coleman-Oort’s

conjecture on the non-existence of special subavarieties in the Torelli locus

for high genus. In fact, it is possible to characterize special subvarieties

as totally geodesic subvarieties plus a condition of arithmetic nature (see

Theorem 1.6.2).

As mentioned above, many partial results about this conjecture have been

obtained. For low genus g ≤ 7, there are examples of totally geodesic

submanifolds in Tg, all of them constructed from families of Galois covers of

the projective line. Every known example satisfies condition (∗) and in [44]

is proven that condition (∗) is also sufficient for a subvariety to be totally

geodesic (indeed, special). The condition is the following: consider a family

of Galois covers of P1 with fixed Galois group and monodromy. Denote by

r the number of ramification values and call N := dim(S2H0(C,KC))G.

Assume that

N = r − 3. (∗)

Then the family is a special subvariety of Ag that is contained in the Torelli

locus, and intersect the open Torelli locus.

——————–

The results contained in the first three chapters of this thesis can be

grouped in three strongly connected areas: examples of totally geodesic sub-

manifolds (in low genus), non-totally geodesic loci and computation of the

rank of the first and second Gaussian map. Since the last chapter of this

work is somehow split from the rest, we will overview it separately at the

end of this section.

In Chapter 1 we construct new examples of totally geodesic submanifolds

contained in the Jacobian locus, which are obtained as Jacobians of families

of Galois covers of curves of genus g′ = 1. All these examples satisfy a

condition that extends condition (∗) for covers of curves of higher genus

g′ > 0, and that we still denote by (∗). We also prove that if g′ ≥ 1, and the

family satisfies (∗), then g ≤ 6g′+1. This immediately implies that if g′ = 1

there are no examples satisfying condition (∗) for g ≥ 8. More precisely, we

have the following:
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Theorem 0.0.3. For all g ≥ 2 and g′ = 1 there exist exactly 6 positive

dimensional families of Galois covers satisfying condition (∗), hence yield-

ing Shimura subvarieties of Ag contained in the Torelli locus. Two of the

6 families yield new Shimura subvarieties, while the others yield Shimura

subvarieties which have already been obtained as families of Galois covers of

P1 in [44]. Moreover:

• For all g > 3 and g′ = 2, there do not exist positive dimensional fam-

ilies of Galois covers satisfying condition (∗).

• For g ≤ 9 and g′ > 2 there do not exist positive dimensional families

of Galois covers satisfying condition (∗).

• If g′ ≥ 1 and we have a positive dimensional family of Galois covers

f : C → C ′ with g′ = g(C ′) and g = g(C) which satisfies condition

(∗), then g ≤ 6g′ + 1.

The 6 families with g′ = 1 satisfying (∗), that is N = r, are the following:

(1) g = 2, G = Z/2Z, N = r = 2.

(2) g = 3, G = Z/2Z, N = r = 4.

(3) g = 3, G = Z/3Z, N = r = 2.

(4) g = 3, G = Z/4Z, N = r = 2.

(5) g = 3, G = Q8, N = r = 1.

(6) g = 4, G = Z/3Z, N = r = 3.

Family (2) and family (6) give two new Shimura subvarieties, while the

others yield Shimura subvarieties which have already been obtained as fam-

ilies of Galois covers of P1 in [44].

More precisely:

(1) gives the same subvariety as family (26) of Table 2 in [44] (this family

was already found in [61]).

(3) gives the same subvariety as family (31) of Table 2 in [44].

(4) gives the same subvariety as family (32) of Table 2 in [44].

(5) gives the same subvariety as family (34) of Table 2 in [44].

All the above families with g ≥ 3 are not contained in the hyperelliptic

locus. A complete description of the families is given in Section 1.7. All
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original results in Chapter 1 have been published in [45].

In Chapter 2 we investigate on condition (∗), wondering if it is necessary,

in general, for a submanifold X ⊂ Ag defined as a family of Galois cover

to be special (until now, no examples of totally geodesic submanifolds not

satisfying the condition are known). We prove the following:

Theorem 0.0.4. The bielliptic locus is not totally geodesic if g ≥ 4. The

bi-hyperelliptic locus, i.e. the locus of curves covering a hyperelliptic curve

of genus g′ with a 2 : 1 map, is not totally geodesic if g ≥ 3g′.

In [32] it is proven that the second fundamental form lifts the second

Gaussian map µ2 : I2(KC) → H0(C, 4KC). This relation between the two

maps is our motivation to compute the rank of the second Gaussian map on

some loci. For what concerns the bielliptic locus, we will show that every

quadric in the I2(K) is actually invariant, providing an upper bound for the

rank of the second Gauss-Wahl map. Moreover, we will find a lower bound

for it. The result is the following:

Theorem 0.0.5. The rank of the second Gauss-Wahl map on the gen-

eral curve of the bielliptic locus satisfies the following bounds, depending

on genus:

(1) If g is odd then: 2g − 10 ≤ rankµ2 ≤ 5g − 5.

(2) If g is even then: 2g − 9 ≤ rankµ2 ≤ 5g − 5.

In Chapter 3, we continue the investigation on the rank of the Gaussian

maps with the support of the MAPLE computer software. We write a script

allowing us to compute a lower bound for the rank of both the first and

the second Gaussian map of curves that are cyclic Galois covers of P1 (see

Appendix A for details on the code). We produce a list of results in low

genus (g ≤ 30) on the general point of the bielliptic locus, tetragonal locus,

and bi-hyperelliptic locus:

Theorem 0.0.6. The second Gauss-Wahl map on the bielliptic locus is

generically injective if 5 ≤ g ≤ 8, moreover it cannot be surjective for genus

g ≥ 14. For 8 ≤ g ≤ 30, it satisfies rankµ2 ≥ 2g − 1 for the general curve.

The general tetragonal curve of genus 8 ≤ g ≤ 30 has rank µ1 = 5g − 14.

The general tetragonal curve has injective second Gauss-Wahl map for

genus 5 ≤ g ≤ 9. For 12 ≤ g ≤ 30 it satisfies: rankµ2 ≥ 6g − 31.



VIII INTRODUCTION

The general curve C covering a hyperelliptic curve C ′ of genus g′ = 2 has

injective first Gauss-Wahl map in genus g = 6 and injective second Gauss-

Wahl map in genus 6 ≤ g ≤ 9. Moreover rankµ1 ≥ 4g − 5 for 9 ≤ g ≤ 30

and rankµ2 ≥ 3g for 12 ≤ g ≤ 30.

In particular, the general lower bound for the rank of both the first and

the second Gauss-Wahl map on the tetragonal locus, is attained for the

maximum possible value of g′, that is g′ =
⌊
g/3
⌋
. To better explain what

g′ is, notice that every non-hyperelliptic curve C which is a cyclic 4 : 1

cover of P1 also covers with a 2 : 1 map either an elliptic (g′ = 1) or a

hyperelliptic curve C ′ of genus g′ ≥ 2. By varying the monodromy of the

4 : 1 cover we proved that all integer values of g′ ≤ 1/3 g can be obtained

(see Remark 2.5.4).

From MAPLE computations, the following expectations arise:

Expectation. The rank of the second Gauss-Wahl map for a bielliptic curve

of genus g ≥ 8 is 2g − 1.

Expectation. The rank of the first Gauss-Wahl map on the generic tetrag-

onal curve of genus g ≥ 8 is equal to 5g − 14. For every genus g this bound

is attained for for g(C ′) =
⌊
g/3
⌋
.

Expectation. The rank of the second Gauss-Wahl map on the generic

tetragonal curve of genus g ≥ 12 is equal to 6g − 31. For every genus g

this bound is attained for g(C ′) =
⌊
g/3
⌋
.

Expectation. Let C be a tetragonal curve covering 2 : 1 a curve of genus

2. Then rankµ1 = 4g − 5 for g ≥ 9 and rankµ2 = 3g for g ≥ 12.

Finally, as mentioned before, Chapter 4 is a bit detached from the other

parts of the thesis. It relies on the study of the geometry of the moduli

space A(1,1,2,2)
4 , parametrizing isomorphism classes of 4-dimensional abelian

varieties with polarization of type (1, 1, 2, 2). More precisely, we present the

construction of two divisors in the moduli space A(1,1,2,2)
4 , and check their

invariance under the natural involution ι : A(1,1,2,2)
4 → A(1,1,2,2)

4 (for details

on the involution see [10]).

Our geometrical motivation comes from birational geometry. In fact the

Kodaira dimension of A(1,1,2,2)
4 is still unknown, and the study of its Picard

group could be useful to understand it. In general, while the rationality
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properties of the principally polarized case are fairly well understood (see [26,

38, 62, 83, 65, 81]) less is known in the non-principally polarized setting.

The only result about unirationality of such moduli spaces is due to Bardelli,

Ciliberto and Verra [7], who proved that A(1,2,2,2)
4 is unirational (so is its dual

A(1,1,1,2)
4 ). Nevertheless, nothing is known about neither the unirationality

of A(1,1,2,2)
4 nor its Kodaira dimension.

In order to state our result more neatly, we introduce here the basic

objects that are part of our main statement. Let C be an irreducible smooth

complex projective curve of genus g and let π : D → C a smooth double

cover ramified in r > 0 points. These covers are parametrized by the moduli

space Rg,r := {π : D
2:1−−→ C | g(C) = g, π has r ramification values}. The

Prym variety associated to some cover π ∈ Rg,r is defined as P (D,C) =

ker{Nm(π) : JD → JC}. It is an abelian variety of dimension g − 1 + r/2

with polarization Ξ of type δ = (1, . . . , 1︸ ︷︷ ︸
r/2−1

, 2, . . . , 2︸ ︷︷ ︸
g

). The main result in this

chapter is the following:

Theorem 0.0.7. The image of the Prym map P : R2,6 → A(1,1,2,2)
4 which

sends a cover π : D → C to its Prym variety P (D,C) = ker{Nm(π) : JD →
JC}, defines a divisor in A(1,1,2,2)

4 .

Let Ã4 parametrize triples (X,LX , H) such that (X,LX) is a principally

polarized abelian variety of dimension 4 and H ⊂ X2 is a 2-torsion totally

isotropic subgroup of four elements. Consider (X,LX , H) ∈ Ã4 and take the

quotient map f : X → A := X/H. Choose over A a polarization LA such

that its pullback by f is L2
X . Then (A,LA) defines a divisor in A(1,1,2,2)

4 .

Moreover the first divisor is invariant via the natural involution defined

over A(1,1,2,2)
4 , while the second divisor is not.

The last Chapter is part of a work which was started in PRAGMATIC,

research school in algebraic geometry and commutative algebra at the Uni-

versity of Catania. This work has been accepted from Le Matematiche [76].

Structure of the thesis

This thesis consists of four chapters and two appendices. The reader can

find a specific introduction at the beginning of each chapter. While the first

three chapters are interconnected, Chapter 4 is independent and can be read
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separately. In the following we briefly describe the contents of each chapter.

In Chapter 1, after providing a survey on several well known results on

Galois covers of Riemann surfaces, most of all without proofs, we explain

how Riemann’s existence theorem can be extended to families of Galois

covers, following [44]. We recall very briefly the definitions and results on

special subvarieties of Ag, and we explain the condition (∗) as presented

in [44], sufficient for a variety to be special. In Section 1.7, using condition

(∗), we construct 6 examples of special subvarietes contained in the Torelli

locus from families of Galois covers of elliptic curves. For all of them we

explicitly check that condition (∗) is satisfied and we control whether the

corresponding special subvarieties have already been found from families of

Galois covers of the projective line. In Section 1.8, we study families of

covers of higher genus curves.

In Chapter 2, after recalling some results on cyclic Galois covers of P1

needed in our analysis, we give a brief overview on Gaussian maps, illus-

trating the classical results on the first and second Gauss-Wahl maps. We

mention the remarkable connection between the second Gauss-Wahl map

and the second fundamental form and we recall an expression useful for the

computation of the second fundamental form in term of the Gaussian map

(see Theorem 2.3.2). The main result in this chapter is the proof that both

the bielliptic (g ≥ 4) and bi-hyperelliptic (g ≥ 3g′) locus do not yield totally

geodesic subvarieties of Ag (see Theorem 2.4.5, Theorem 2.4.7, Theorem

2.5.6 and Theorem 2.5.7). Lastly, in Section 2.4.2, we managed to find a

bound for the rank of the second Gauss-Wahl map for the general curve of

the bielliptic locus.

Chapter 3 consists in a series of results found via the computer software

MAPLE on the rank of Gaussian maps on the bielliptic, the tetragonal, and the

bi-hyperelliptic loci. The script is presented in Appendix A, and provides

a lower bound for those ranks. In this chapter we present several tables

listing a lower bound for the rank of the first and second Gauss-Wahl maps

for some fixed curves which are cyclic Galois covers of P1. For convenience,

we report some of the obtained tables in Appendix B.

Chapter 4 is a bit more detached from the other chapters. After a short

overview on some classical results about Prym varieties, in Section 4.2 we

present the construction of two divisors in A(1,1,2,2)
4 and in Section 4.3 we

check their invariance under the natural involution.



Chapter 1

Shimura varieties via Galois

covers of elliptic curves

In this chapter we exhibit new examples of Shimura subvarieties contained

in the Torelli locus, arising from curves that are Galois cover of an elliptic

curve.

We explain here the general setting. Denote by Ag the moduli space

of principally polarized abelian varieties of dimension g over C, by Mg

the moduli space of smooth complex algebraic curves of genus g and by

j : Mg → Ag the period map or Torelli map. Set T0
g := j(Mg) and call it

the open Torelli locus. The closure of T0
g in Ag is called the Torelli locus

(see e.g.[61]) and is denoted by Tg.

As we mentioned in the introduction, the expectation formulated by Oort

([69]) is that for large enough genus g there should not exist a positive-

dimensional special subvariety Z of Ag, such that Z ⊂ Tg and Z ∩ T0
g 6= ∅

(see Conjecture 0.0.1). On the other hand for low genus g ≤ 7 there are

examples of such Z and they are all constructed as families of Jacobians of

Galois covers of the line (see [80, 63, 33, 77, 60], [61, §5] for the abelian

Galois covers, [44] for the non abelian case and for a complete list).

All the examples of families of Galois covers constructed so far satisfy a

sufficient condition to yield a Shimura subvariety that we briefly explain.

Consider a Galois cover f : C → C ′ = C/G, where G ⊂ Aut(C) is the

Galois group, C ′ is a curve of genus g′. Set g = g(C), then one has a

1
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monomorphism of G in the mapping class group Mapg := π0(Diff+(C)).

The fixed point locus T Gg of the action of G on the Teichmüller space Tg is a

complex submanifold of dimension 3g′−3+r (see Section 1.6). We consider

its image M in Mg and then the closure Z of the image of M in Ag via the

Torelli morphism.

Set N := dim(S2H0(C,KC))G, then the condition that we will denote by

(∗) is that N must be equal to the dimension of Z, that is:

N = 3g′ − 3 + r. (∗)

In [30] it is proven that condition (∗) implies that the subvariety Z is totally

geodesic and in [44] it is proven that in fact it gives a Shimura subvariety

in the case g′ = 0 and the same proof also works if g′ > 0 as we remark

in Section 1.6. Moonen proved using arithmetic methods that condition (∗)
is also necessary in the case of cyclic Galois covers of P1. Results in this

direction can also be found in [58].

In [44] the authors gave the complete list of all the families of Galois

covers of P1 of genus g ≤ 9 satisfying condition (∗) and hence yielding

Shimura subvarieties of Ag contained in the Torelli locus. Here we do the

same for Galois covers of curves of higher genus g′ and we find new examples

when g′ = 1 (a complete description of the families is given in Section 1.7).

We also prove that if g′ ≥ 1, and the family satisfies (∗), then g ≤ 6g′ + 1.

This immediately implies that if g′ = 1 there are no examples satisfying

condition (∗) for g ≥ 8 (see Section 1.8).

This chapter is organized as follows.

In Section 1.1 we recall some basic facts on Galois covers of Riemann

surfaces which will be used through the whole dissertation.

In Section 1.2 we explain the classical correpondence between classes of

Galois covers and the numerical datum (m, G, θ) (mi ∈ Z, mi ≥ 2, G

finite group θ : Γg′,r → G epimorphism) via Riemann’s existence theorem,

focusing on Galois cover of P1 before, and studying the general situation

C → C ′ ∼= C/G later.

In Section 1.3 we show that Riemann’s existence theorem also holds with

families of Galois covers, namely that to any datum (m, G, θ) is associated

a family of Galois covers of a compact Riemann surface. Here we give some

necessary formalism on Teichmüller spaces, and we introduce the mapping
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class group acting on it.

In Section 1.4 we show how the mapping class group acts on Teichmüller

space, and we write explicitely Hurwitz moves, considering separately the

case of Galois covers of P1 and the case of Galois covers of a curve of genus

g′.

In Section 1.5 we recall some basic facts on representation theory, focusing

on the action of some finite group G over the space of holomorphic 1-forms.

We will give a simple expression useful to compute the number of invariant

elements in S2H0(C,KC).

In Section 1.6 we recall very briefly the definitions and results (mostly

without proofs) on special subvarieties of Ag, focusing on PEL special sub-

varieties, and we show how the condition (∗) implies that a family of Galois

covers yields a special subvariety following [44].

In Section 1.7 we give the explicit description of the new examples of spe-

cial subvarieties obtained as Galois covers of a genus 1 curve. In particular

we will give the complete list of Galois covers of elliptic curves satisfying

condition (∗) up to genus 7. We will show that two of them provide new

examples of Shimura subvariaties in the Torelli locus.

In Section 1.8, we deal with the natural question of Shimura varieties

obtained from families covering higher genus curves. We will show that if

g′ ≥ 1 and the family satisfies (∗), then g ≤ 6g′+1. This immediately implies

that if g′ = 1 there are no examples satisfying condition (∗) for g′ ≥ 8 (see

Theorem 1.8.1), hence our list is complete. Finally we briefly describe the

MAGMA script used to find the families and and we give the link to the script.

1.1 covers of Riemann surfaces

This section gathers several known results on Galois covers of Riemann

surfaces, which will be used through the whole thesis. We start with some

preliminary notions and definitions on group actions on Riemann surfaces.

We mainly follow the definitions and notations of Miranda [57].

Definition 1.1.1. Let G be a group and X a Riemann surface. An action

of G on X is a map Φ : G × X → X sending the pair (g, p) to g · p, such
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that (1) if h ∈ G, g · (h · p) = (gh) · p, and (2) if e is the neutral element of

G, then e · p = p.

We will suppose that the group G is finite and that the map Φ is holo-

morphic. Moreover we assume that the action of G on X is effective, i.e.

there is no non-trivial element in G fixing the whole curve X. Notice that

without loss of generality we can restrict ourselves to the effective case by

taking the quotient of X with respect to the kernel of Φ.

Definition 1.1.2. The set orb(p) = {p′ ∈ X such that ∃ g ∈ G | g · p = p′}
is called orbit of the point p; the group stab(p) = {g ∈ G such that g ·p = p}
is called stabilizer of the point p.

In our hypothesis, every stabilizer subgroup is cyclic and points with non-

trivial stabilizer are finite. Also, recall that there is a unique structure of

Riemann surface on the quotient X/G such that the quotient map π : X →
X/G is holomorphic. Moreover deg(π) = |G| and multp(π) = | stab(p)|.

Remark 1.1.3. In the above discussion we have focused on case G finite

since it is our case of interest. Actually it is possible to put a complex struc-

ture on X/G also when G is an infinite group. In that case it is necessary to

require that the action of the group G on X is properly discontinuous, i.e.

that for all p, q in X there exist some neighbourhoods, respectively Up and

Uq, such that the set {g ∈ G such that g · Up ∩ Uq 6= ∅} is finite. With this

extra hypothesis, the quotient X/G is an Hausdorff space, the set of points

with non-trivial stabilizer is discrete and all stabilizers are cyclic groups.

We have the following interesting result, describing how the group G acts

on the Riemann surface X, locally.

Theorem 1.1.4 (Linearization of the action). Let G be a finite group acting

holomorphically and effectively on the Riemann surface X, and consider a

point p ∈ X with non-trivial stabilizer. Let g ∈ stab(p) be a generator of the

stabilizer group. Then there is a local coordinate z on p such that, locally

g · z = ξmz, where ξm = e
2πi
m is a primitive m-th root of unity.

A map π : X → X/G as above is called Galois cover with Galois group

G. If the group G is cyclic, we will call π : X → X/G cyclic cover.

Consider a branch point y ∈ X/G for the cover π : X → X/G. Con-

sider than the set of ramification points on its fiber, that is π−1(y) =
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{x1, x2, . . . , xr}. Notice that ramification points are exactly points with

non-trivial stabilizer. Moreover since ramification points lying in the same

fiber have conjugate stabilizer subgroups, we have that | stab(xi)| is the same

for i = 1 . . . , r. Then:

r =
|G|

| stabxi|
, ∀i = 1, . . . , r.

In this special case Riemann-Hurwitz formula can be written as follows:

Theorem 1.1.5. Let G be a finite group acting holomorphically and effec-

tively on a Riemann surface X with quotient map π : X → X/G. Suppose

that there are k branch points y1, . . . , yk ∈ X/G, with π having multiplicity

ri at the |G|/ri points over yi. Then

2g(X)− 2 = |G|
(

2g(X/G)− 2 +
k∑
i=1

1

ri
(ri − 1)

)
. (1.1.1)

For a compact Riemann surface of genus 2 or more, the previous formula

allows to compute a bound on the cardinality of |G|, that is |G| ≤ 84(g−1).

Up to prove the finiteness of Aut(X) (see [57, Sec VII, Theorem 4.18]), this

implies that for every compact Riemann surface with g ≥ 2,

|Aut(X)| ≤ 84(g − 1).

1.2 Riemann’s existence theorem

In the following, we will explain the classical correspondence between

classes of branched ramified covers and a purely algebraic data, stating the

well-known Riemann’s existence theorem. In order to do that, we have to

recall some basic facts about covers and monodromies. We mainly refer to

Miranda [57].

Take a topological cover f : X → Y . Fix a point y ∈ Y and take the

fiber over y: f−1(y) = {x1, . . . , xd}. Every loop γ based in y can be lifted

to d path γ̃1, . . . , γ̃d, where γ̃i is the only lifting such that γ̃i(0) = xi. Notice

that endpoints of γ̃i should also stay on the fiber over y, so for every i there

exists one j such that γ̃i(1) = xj = xσ(i).
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The function σ is a permutation of the indices {1, 2 . . . , d}, and it is easy to

see that depends only on the class of the loop [γ] ∈ π1(Y, y). This motivates

the following.

Definition 1.2.1. The monodromy representation of a topological cover f :

X → Y of finite degree d is the group homomorphism

ρ : π1(Y, y)→ Sd, (1.2.1)

associating to every class of closed paths based on y ∈ Y the induced permu-

tation of points over y. The map ρ is called monodromy map.

Notice that, since the domain X is connected, it is straightforward to

prove that the image of the map ρ is transitive in Sd, i.e. for every pair

on indices i, j in {1, . . . , d} there exists a permutation σ ∈ ρ(π1(Y, y)) such

that σ(i) = j.

Since our case of interest are not topological covers but branched ones, we

should extend this definition to the ramified case. So consider a holomorphic

map between compact Riemann surfaces f : X → Y of degree d, call B ⊆ Y
the set of branches of f and R = f−1(B) its preimage (which is finite by the

previous discussion). Observe that removing branches and ramifications we

obtain a topological cover f |X−R : X −R→ Y −B.

Definition 1.2.2. The monodromy representation of a ramified cover f :

X → Y of a finite degree d is the monodromy representation of the induced

topological cover, obtained removing branches and ramifications:

ρ : π1(Y −B, y)→ Sd, (1.2.2)

where B ⊆ Y is the set of branches of f .

Using the monodromy map we have associated a purely algebraic data to

a topological one. Riemann proved that the converse holds as well. More

precisely we have the following.

Theorem 1.2.3 (Riemann’s existence theorem). There is a 1 : 1 correspon-

dence between these two sets:


isomorphism classes of

connected ramified covers

f : X → Y of degree d

whose branch points lie in B

←→


group isomorphisms

ρ : π1(Y −B, q)→ Sd

with transitive image

(up to conjugacy in Sd)

 .
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Proof. For the proof see for example [57, Sec. III, Proposition 4.9].

Moreover at a point b ∈ B, if γ is a small loop in Y − B around b

based at q, and if ρ([γ]) has cycle structure (m1, . . . ,mk), then there are k

preimages u1, . . . , uk of b in the corresponding cover Fρ : Xρ → Y , with

multuj (Fρ) = mj for each j.

1.2.1 Riemann’s existence theorem for Galois covers of P1

We specialize the previous proposition in case f : X → P1 ramified cover

of the Riemann sphere. Call t = {t1, . . . , tr} ⊂ P1 the branch locus of f .

The fundamental group of Ut = P1 − t, with basepoint in some t0 ∈ Ut, by

elementary topology, is isomorphic to the abstract group with r generators

and a single relation between them:

π1(Ut, t0) ∼= Γ0,r = 〈[γ1], [γ2], . . . , [γr] : [γ1][γ2] . . . [γr] = 1〉, (1.2.3)

where the element [γi] corresponds to a simple closed loop winding around

the point ti counter-clockwise.

Therefore it is clear that to give a homomorphism ρ : π1(Ut, q) → Sd
is equivalent (up to isomorphisms) to choose r permutations σ1, σ2, . . . , σr
such that σ1σ2 · · ·σr = 1. Since the image of ρ is generated by the σi’s, the

vector (σ1, . . . , σr) is often called generating vector.

Consider the special case f : C −→ P1 Galois cover with branch locus t,

call Ut = P1 − t and set V := f−1(Ut). Then f |V : V → Ut is a Galois

cover. Let G denote the group of deck transformations of f |V . Then there

is a surjective homomorphism π1(Ut, t0) � G, which is well-defined up to

composition by an inner automorphism of G. Since Γ0,r
∼= π1(Ut, t0) we get

an epimorphism θ : Γ0,r � G. If mi is the local monodromy around ti, set

m = (m1, . . . ,mr). We give the following definition:

Definition 1.2.4. A datum is a triple (m, G, θ), where m := (m1, . . . ,mr)

is an r-tuple of integers mi ≥ 2, G is a finite group and θ : Γ0,r � G is an

epimorphism such that θ(γi) has order mi for each i.

Thus a Galois cover of P1 branched over t gives rise – up to some choices –

to a datum. The Riemann’s existence theorem ensures that the process can
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be reversed: a branch locus t and a datum determine a cover of P1 up to

isomorphism. The genus g of the Riemann surface X is given by Riemann-

Hurwitz formula (1.1.1).

1.2.2 Riemann’s existence theorem for Galois covers

We can generalize the previous construction in case f : X → Y , where Y

is a compact Riemann surface of genus g′ ≥ 0. As before, let t := (t1, . . . , tr)

be an r-tuple of distinct points in Y , set Ut := Y − {t1, . . . , tr} and choose

a base point t0 ∈ Ut. There exists an isomorphism

π1(Ut, t0) ∼= Γg′,r := 〈α1, β1, . . . , αg′ , βg′ , γ1, . . . , γr |
r∏
1

γi

g′∏
1

[αj , βj ] = 1〉

(1.2.4)

given by the choice of a geometric basis of π1(Ut, t0) as follows:

α1, β1, ..., αg′ , βg′ are simple loops in Y −{t1, . . . , tr} which only intersect

in t0, whose homology classes in H1(Y,Z) form a symplectic basis.

Let γ̃i be an arc connecting t0 with ti contained in (Y−{α1, β1, ..., αg′ , βg′})∪
t0 and such that for i 6= j, γ̃i and γ̃j only intersect in t0. We also assume that

γ̃1, ...γ̃r stem out of t0 with distinct tangents following each other in counter-

clockwise order. The loops γ1, ..., γr are defined as follows: γi starts at t0,

goes along γ̃i to a point near ti, makes a small simple loop counter-clockwise

around ti and goes back to t0 following γ̃i.

Set V := f−1(Ut). Then f |V : V → Ut is an unramified Galois cover with

Galois group G. Since Γg′,r ∼= π1(Ut, t0), we get an epimorphism θ : Γg′,r →
G. If mi is the local monodromy around ti, set m = (m1, . . . ,mr). We can

define a datum identically as before:

Definition 1.2.5. A datum is a triple (m, G, θ), where m := (m1, . . . ,mr)

is an r-tuple of integers mi ≥ 2, G is a finite group and θ : Γg′,r → G is an

epimorphism such that θ(γi) has order mi for each i.

Also in this case a Galois cover of Y branched over t gives rise to a

datum and the Riemann’s existence theorem ensures that the process can

be reversed.

Remark 1.2.6. From the previous discussion, once chosen x0 fixed point
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in f−1(t0), we have the following short exact sequence:

1→ π1(V, x0)→ π1(Ut, t0)→ G→ 1, (1.2.5)

where each [γi] ∈ π1(Ut, t0) maps to an element gi whose order is mi.

From isomorphism (1.2.4) one can identify the fundamental group π1(Ut, t0)

with the abstract group Γg′,r, getting:

1→ π1(V, x0)→ Γg′,r → G→ 1.

We have the following theorem (see [19]):

Theorem 1.2.7. In the same setting as before, there exists a subgroup

Γg′,r,m < Γg′,r, depending on the monodromy data m = (m1, . . . ,mr), such

that the following short exact sequence holds:

1→ π1(X,x0)→ Γg′,r,m → G→ 1. (1.2.6)

Moreover the subgroup Γg′,r,m is given by the quotient of Γg′,r by the minimal

normal subgroup containing the elements (γi)
mi:

Γg′,r,m = 〈α1, β1, . . . , αg′ , βg′ , γ1, . . . , γr |
r∏
1

γi

g′∏
1

[αj , βj ] = 1,

γm1
1 = · · · = γmrr = 1〉.

(1.2.7)

The group Γg,r,m is usually called orbifold fundamental group (see [19], [20]).

Notice that if r = 0, the corresponding group Γg is isomorphic to the

fundamental group of a compact Riemann surface of genus g. Using the

isomorphism π1(X,x0) ∼= Γg we can write again short exact sequence (1.2.6)

as:

1→ Γg → Γg′,r,m → G→ 1. (1.2.8)

The following is another riformulation of Riemann’s existence theorem

involving the orbifold fundamental group Γg′,r,m (see [75]):

Proposition 1.2.8. A finite group G acts as a group of automorphisms

of some compact Riemann surface X of genus g ≥ 2 if and only if there

exist a group of type Γg′,r,m and an epimorphism θ : Γg′,r,m � G such that

ker θ ∼= Γg.
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We will call an epimorphism θ : Γg′,r,m � G as in the proposition ad-

missible epimorphism. Notice that, since Γg is torsion-free, every admissible

epimorphism should preserve the order of generators: to give an admissible

epimorphism θ : Γg′,r,m � G is actually equivalent to give an epimorphism

θ̃ : Γg′,r � G such that θ̃(γi) has order mi for all i.

1.3 Families of Galois covers

We will show that the process can be reversed also in families, namely that

to any datum is associated a family of Galois covers of a compact Riemann

surface Y of genus g′.

We start with some necessary formalism on Teichmüller theory, mainly

following [40], [47]. In the following, let S be a real closed oriented surface

of genus g ≥ 2.

Definition 1.3.1. A marked surface is a pair (X,ϕ) where X is a real closed

oriented surface of genus g ≥ 2 and ϕ : S → X is an orientation preserving

diffeomorphism (marking).

Definition 1.3.2. Two marked surfaces (X,ϕ), (X ′, ϕ′) are equivalent if

there exists a diffeomorphism g : X → X ′ such that ϕ is isotopic to g ◦ ϕ.

The space of equivalence classes is called the Teichmüller space Tg of a

surface of genus g.

In the previous notation, let t = (t1, . . . , tr) be a finite subset of S, and

Ut = S − t be the surface punctured at t. Call pi = ϕ(ti) and qi = ϕ′(ti) for

i = 1, . . . , r. We have the following definition.

Definition 1.3.3. Two marked surfaces (X,ϕ) and (X ′, ϕ′) are equivalent

with respect to t if there exists a diffeomorphism g : X → X ′ such that ϕ is

isotopic to g ◦ ϕ and qi = g(pi) for i = 1, . . . , r. The space of equivalence

classes is called the Teichmüller space Tg,r of a surface of genus g with r ≥ 1

marked points.

We are going to briefly define an important group acting on the Te-

ichmüller space, that is the mapping class group Mapg (we will meet again

this group in the next section). The mapping class group is the group of
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isotopy classes of orientation preserving diffeomorphisms of S:

Mapg =
Diff+(S)

Diff0(S)
. (1.3.1)

Remark 1.3.4. The Dehn–Nielsen–Baer theorem states that the mapping

class group of S is isomorphic to the outer automorphisms group of the

fundamental group of S (see, e.g., [41, Theorem 8.1]):

Mapg
∼= Out+(π1(S, x0)),

where x0 is a point in S.

The mapping class group Mapg acts on Teichmüller space Tg by precom-

position of marking. If ζ is a diffeomorphism of S then ζ(X,ϕ) is the point

in Tg which is given by the same surface X, but where the diffeomorphism

ϕ has been replaced by ϕ ◦ ζ−1. If η is isotopic to ζ then the marked struc-

tures η(X,ϕ) and ζ(X,ϕ) are equivalent and hence this definition indeed

defines an action of the mapping class group on Tg (see [78] for a complete

description).

This shows that the mapping class group acts on the Teichmüller space.

It is well known that the action of Mapg on Tg is properly discontinuous

(so all stabilizers are finite) but, in general, is not free. One can consider

the projection Tg → Tg
/

Mapg, which corresponds to the forgetful map

(X,ϕ) 7→ X. We have the following (see e.g. [20], [47]).

Theorem 1.3.5. The quotient of the Teichmüller space with respect to the

mapping class group is isomorphic to the moduli space of curves:

Tg
/

Mapg
∼=Mg.

Since the Teichmüller space is topologically a ball, and the mapping class

group is a discrete group acting on it via a properly discontinuous action,

moduli spaces of curves inherit the structure of topological orbifold.

We apply basics of Teichmüller theory to prove that Riemann’s existence

theorem applies also in families. In fact let (m, G, θ) be a datum. Choose

a point [Y, t = (t1, ..., tr), ψ] in the Teichmüller space Tg′,r. This means that

Y is a compact Riemann surface of genus g′, t = (t1, ..., tr) is an r-tuple

of points in Y such that ti 6= tj for i 6= j and ψ : π1(Ut, t0) ∼= Γg′,r is an

isomorphism, where t0 is a base point in Ut. Using θ ◦ ψ, by the above, we
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get a G-cover Ct → Y branched at the points ti with local monodromies

m1, . . . , ,mr.

Observe that we have a monomorphism of G into the mapping class group

Mapg, in fact G < Aut(Ct) ⊆ Diff+(Ct), and every elements of G corre-

sponding to a complex automorphism acting as the identity on the first

homology group has to be the identity1.

There is a correspondence between the fixed point locus of G on the

Teichmüller space Tg and the Teichmüller space Tg′,r, being g and g′ related

by Riemann-Hurwitz formula (1.1.1). For a proof of the next theorem see

for example [20].

Theorem 1.3.6. T Gg is a complex submanifold of dimension 3g′ − 3 + r,

isomorphic to the Teichmüller space Tg′,r.

This isomorphism can be described as follows: if (C,ϕ) is a curve with

a marking such that [(C,ϕ)] ∈ T Gg , the corresponding point in Tg′,r is

[(C/G,ψ, b1, . . . , br)], where ψ is the induced marking (see [47]) and b1, . . . , br
are the critical values of the projection C → C/G.

We remark that on T Gg there is a universal family C → T Gg of curves with

a G–action, that is simply the restriction of the universal family on Tg.

Denote by M(m, G, θ) the image of T Gg in Mg. It is an irreducible al-

gebraic subvariety of the same dimension as T Gg ∼= Tg′,r, i.e. 3g′ − 3 + r.

Applying the Torelli map to M(m, G, θ) one gets a subset of Ag. We let

Z(m, G, θ) denote the closure of this subset in Ag. By the above it is an

algebraic subvariety of dimension 3g′ − 3 + r.

1.4 Mapping class group and Hurwitz moves

Different data (m, G, θ) and (m, G, θ′) may give rise to the same subvari-

ety ofMg. This is related to the choice of the isomorphism π1(Ut, t0) ∼= Γg′,r.

1One can see the injection also considering the exact sequence (1.2.8): it gives a ho-

momorphism ρ : G → Out+(π1(Ct, t0)), associating to every element g of G the action

on Γg ∼= π1(Ct, t0) obtained by conjugation with a lifting of g. This action is well defined

then only up to inner automorphisms. Again, ρ has to be injective because acts as the

identity on the first homology group. Finally one can conclude using Remark 1.3.4.
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The change from one choice to another can be described using an action of

the mapping class group. It is possible to define it in a purely algebraic

way as well as with a geometrical approach, as we have done in the previous

section. We start with the algebraic setting and definition.

1.4.1 Algebraic approach

According to Proposition 1.2.8, if θ is an admissible epimorphism, there

exists a short exact sequence

1→ Γg
iθ−→ Γg′,r,m

θ−→ G→ 1. (1.4.1)

It is clear that the Riemann surface C, uniquely determined by the group

Γg′,r,m and the epimorphism θ, is defined (up to automorphisms) not by

the specific θ, but rather by its kernel iθ(Γg); this motivates the following

definition.

Definition 1.4.1. We set

Epi(Γg′,r,m, G) =

{
Admissible epimorphism θ : Γg′,r,m � G

such that ker θ ∼= Γg

}/
∼

where θ1 ∼ θ2 if and only if ker θ1 = ker θ2.

We are going to write this equivalence relation in a more concrete way.

To do this, we define a discrete group of symmetry of Γg′,r,m, that is, the

(algebraic) mapping class group.

Recall that an automorphism η ∈ Aut(Γg′,r,m) is said to be orientation-

preserving if, for all i ∈ {1, . . . , r}, there exists j such that η(γi) in conju-

gated to γj . This of course implies that o(γi) = o(γj).

Definition 1.4.2. The subgroup of orientation-preserving automorphisms of

Γg′,r,m is denoted by Aut+(Γg′,r,m), and the group of inner automorphisms

of Γg′,r,m is denoted by Inn(Γg′,r,m). The quotient

Mapg′,r,m = Aut+(Γg′,r,m)
/

Inn(Γg′,r,m)

is called the (algebraic) mapping class group of Γg′,r,m.

There is a natural action of Aut(G)×Mapg′,r,m on Epi(Γg′,r,m, G), namely

(λ, η) · θ = λ ◦ θ ◦ η.

We have the following correspondence (see [75, Proposition 1.6]).
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Theorem 1.4.3. Two admissible epimorphisms θ1, θ2 ∈ Epi(Γg′,r,m, G)

define the same equivalence class of G-actions if and only if they lie in the

same Aut(G)×Mapg′,r,m-orbit.

1.4.2 Geometric approach

Using Riemann’s existence theorem is it possible to see the mapping class

group also with a differentiable, more geometric, approach, as in Definition

(1.3.1) of the previous section. More in general one can define the mapping

class group marked in r points looking at the differentiable structure of the

curve. Let S be a differentiable model of a compact Riemann surface of

genus g′ and p1, . . . , pr ∈ S, we have the following:

Definition 1.4.4. The (geometric) mapping class group is the quotient

between orientation-preserving diffeomorphisms of S − {p1, . . . , pr} and the

ones isotopic to the identity:

Mapg′,[r] = π0 Diff+(S − {p1, . . . , pr}) :=
Diff+(S − {p1, . . . , pr})
Diff0(S − {p1, . . . , pr})

.

We have the following correspondence:

Theorem 1.4.5. The algebraic mapping class group and the geometric map-

ping class group are isomorphic:

Mapg′,r,m =
Aut+(Γg′,r,m)

Inn(Γg′,r,m)
∼=

Diff+(S − {p1, . . . , pr})
Diff0(S − {p1, . . . , pr})

= Mapg′,[r] .

Proof. See Maclachlan [56, Chap. 4].

Notice that orientation-preserving automorphisms correspond to orientation-

preserving diffeomorphisms of the underlying differentiable manifold.

Remark 1.4.6. Following the same ideas behind Theorem 1.3.5, one can

find the obvious correspondence between the Teichmüller space with r marked

points and the moduli space of curves with r marked points.

Both algebraic and geometric approaches motivate the following:

Definition 1.4.7. The orbits of the group 〈Aut(G),Mapg′,r,m〉–action ( Hurwitz’s

moves) are called Hurwitz equivalence classes.
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In the following we will describe Hurwitz moves first in case g′ = 0, then

for any g′ ≥ 0.

1.4.3 Hurwitz moves in case g′ = 0

By the result mentioned before, the algebraic mapping class group Map0,r,m =

Aut+(Γ0,r,m)
/

Inn(Γ0,r,m) is isomorphic to the geometric one Map0,[r] =

π0 Diff+(P1 − {p1, . . . , pr}). The last one is in turn isomorphic to the Braid

group Br via the following theorem (see [13, Theorem 1.1]).

Theorem 1.4.8. The mapping class group Map0,[r] = π0 Diff+(P1−{p1, . . . , pr})
is isomorphic to the Braid group Br on r strands, which can be presented as

Br = 〈σ1, . . . , σr−1

∣∣σiσi+1σi = σi+1σiσi+1, σiσj = σjσi if |i− j| ≥ 2〉.

We can describe Hurwitz moves in this case.

Theorem 1.4.9. Up to inner automorphism, the action of Map0,[r] on the

group Γ0,r,m is given by

σi :


γi 7→ γi+1,

γi+1 7→ γ−1
i+1γiγi+1,

γj 7→ γj , if j 6= i, i+ 1.

(1.4.2)

Remark that, when the group G is abelian, the mapping class group

Map0,[r] acts as a permutation:

Corollary 1.4.10. Let G be a finite abelian group and let V = (g1, . . . , gr)

be a generating vector of G with respect to Γ0,r,m. Then the Hurwitz moves

coincide with the group of permutations of gi’s.

In this way Artin’s standard generators σi’s of Br can be represented by

the so-called half-twists. We give the following geometric description for

half-twists [18].

Definition 1.4.11. The half-twist σj is a diffeomorphism of P1−{p1, . . . , pr}
isotopic to the homeomorphism given by:

• A rotation of 180 degrees on the disk with center j+1/2 and radius 1/2;
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• on a circle with the same center and radius (2+ t)/4 the map σj is the

identity if t ≥ 1 and a rotation of 180(1− t) degrees, if t ≤ 1.

j + 1 j

tσj (γj)

Figure 1.1: Half twist. For the original figure, see [73].

1.4.4 Hurwitz moves in case g′ ≥ 1

In case g′ ≥ 1 and no marked points the mapping class group Mapg′

acts on Tg′ via Dehn twists. A Dehn twist corresponds geometrically to

the diffeomorphism of a truncated cylinder which is the identity on the

boundary, a rotation by 180 degrees on the equator, and on each parallel at

height t is a rotation by t · 360 degrees (where t ∈ [0, 1]).

D

T (D)

Figure 1.2: Dehn twist. On the right, the action of a Dehn twist T on the

segment D (see [18],[73]).

One can define in the same way a Dehn twist with respect to any closed

curve in C:
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Definition 1.4.12. Let C be an oriented Riemann surface. Then a positive

Dehn twist tα with respect to a simple closed curve α on C is an isotopy

class of a diffeomorphism h of C which is equal to the identity outside a

neighbourhood of α orientedly homeomorphic to to an annulus in the plan,

while inside the annulus h rotates the inner boundary of the annulus by

360◦ to the right and damps the rotation down to the identity at the outer

boundary.

The following classical result is due to Dehn [36].

Theorem 1.4.13. The mapping class group Mapg′ is generated by Dehn

twists.

More precisely, Dehn twists generating the mapping class group are Dehn

twists with respect to the curves represented in Figure 1.3.

δ1

δ̄1

τ1

δ2

δ̄2

τ2

δ3

δ̄3

1 2 3

Figure 1.3

To study the more general situation, in which we consider the mapping

class group with marked points, Mapg′,[r], r > 0, we have to introduce a third

type of twist, the ξ-twists, which link the holes with the marked points.

Let us describe a ξ-twist. Consider the annulus A := {z = ρeiθ ∈ C
∣∣1 ≤

ρ ≤ 2, and define h : A→ A as follows:

h(ρ, θ) =

{
(ρ, θ − 4π(ρ− 1)), 1 ≤ ρ ≤ 3/2;

(ρ, θ − 4π(2− ρ)), 3/2 ≤ ρ ≤ 2.
(1.4.3)

Definition 1.4.14. Let C be a Riemann surface, and α a simple closed

curve on C. Let ι be a diffeomorphism between A and a tubular neighbour-
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hood of α. Then the ξ-twist tα with respect to α is defined as ι ◦ h ◦ ι−1
∣∣∣
ι(A)

extended to the whole C as the identity on C − ι(A).

Figure 1.4: ξ twist. For the original figure, see [73].

We have the following result, due to Birman [12]:

Theorem 1.4.15. Let g(C ′) 6= 0 and either g(C ′) > 0 or r > 1. Then the

group Mapg′,[r] is generated by the 3g′ − 1 Dehn twists with respect to the

curves δj, δ̃j and τjm by the 2rg′ ξ-twists with respect to the curves ξlj,d and

the r − 1 half twists about the points p1, . . . , pr in Figure 1.5.

δ1

δ̄1
τ1

ξ1
1,1

ξ2
1,1

1 2 . . . g′

p1 p2 p3 . . . pr

Figure 1.5

We have the following complete description of the action of the mapping

class group Mapg′,[r] on the group Γg′,r,m (see [73] for the proof).
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Theorem 1.4.16. Let C ′ be a curve of genus g′, B = {p1, . . . , pr}, and

with g′ 6= 0 and g′ > 1 or r > 1. Up to inner automorphisms, the action of

Mapg′,[r] on Γg′,r,m is induced by the following action on a geometric basis

of π1(C ′ −B, p0):

tδj :


αj 7→ αjβ

−1
j ,

αi 7→ αi, for all i 6= j,

βi 7→ βi, for all i,

γi 7→ γi, for all i.

tδ̄j :


αi 7→ αi, for all i

βj 7→ βjαj ,

βi 7→ βi, for all i 6= j,

γi 7→ γi, for all i.

tσh :


αi 7→ αi, for all i

βi 7→ βi for all i,

γh+1 7→ γ−1
h+1γhγh+1,

γi 7→ γi for all i 6= h, h+ 1

tτk :



αk 7→ αkη
−1
k ,

βk 7→ βηkk ,

αk+1 7→ ηkαk

αi 7→ αi, for all i 6= k, k + 1,

βi 7→ βi for all i 6= k,

γi 7→ γi for all i.

tξ1
j,d

:



αj 7→ χj,dαj ,

αi 7→ αi, for all i 6= j,

βi 7→ βi for all i,

γd 7→ γ
εj,d
d ,

γi 7→ γi for all j 6= d.

tξ2
j,d

:



αi 7→ αi, for all i,

βj 7→ α−1
j χj,dαjβj ,

βi 7→ βi, for all i 6= j,

γd 7→ γ
ε′j,d
d ,

γi 7→ γi for all j 6= d.

for i ≤ j ≤ g′, 1 ≤ k ≤ (g′ − 1), 1 ≤ h ≤ (r − 1), and 1 ≤ d ≤ r. Where
ηk = β−1

k αk+1βk+1α
−1
k+1,

χj,d = (
∏j−1
k=1[αk, βk])

−1γd
∏j−1
k=1[αk, βk],

εj,d = γd(
∏j
k=1[αk, βk])αjβjα

−1
j (
∏j
k=1[αk, βk)

−1,

ε′j,d = γd(
∏j
k=1[αk, βk])α

−1
j (
∏j
k=1[αk, βk])

−1.

Since the notation of the previous theorem is a bit hard, we try to explain

better how Hurwitz moves work with a simple example.

Example 1. Consider the family of Galois cover of an elliptic curve E via

the Galois group Z/2Z branched over two points. To determine whether
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such a cover is realizable and define it properly, we have to check if there

exists any admissible epimorphism

θ : Γ1,2,m = 〈γ1, γ2, α, β
∣∣γ2

1 = γ2
2 = γ1 · γ2 · [α, β] = 1〉� Z/2Z.

Since Z/2Z ∼= 〈z〉 has only one element of order 2, this forces θ(γi) to be

equal to z for i = 1, 2. Since G is abelian, every possible choice for θ(α)

and θ(β) satisfies the relation θ(γ1) · θ(γ2) · [θ(α), θ(β)] = 1. There are four

possible generating vectors:

〈θ(α), θ(β); θ(γ1), θ(γ2)〉 =


〈z, z; z, z〉 or

〈z, 1; z, z〉 or

〈1, z; z, z〉 or

〈1, 1; z, z〉.

We claim that all of them lie in the same Hurwitz equivalence class. In fact,

since the action of the mapping class group Map1,[2] on Γ1,2,m is generated

(up to inner automorphism) by the seven moves described in Theorem 1.4.16

and Z/2Z is abelian, the move induced by tξ1
1,1

is given by θ(α) 7→ θ(γ1α)

and the identity on the other generators, while the move induced by tξ2
1,1

is

given by θ(β) 7→ θ(γ1β) and the identity on the other generators. This moves

yield at once that systems of generators 〈z, z; z, z〉, 〈1, z; z, z〉, 〈z, 1; z, z〉,
〈1, 1; z, z〉 are Hurwitz equivalent.

1.5 Representation of G on H0(C,KC)

In this section we will study the action of the group G on the space of

holomorphic 1-forms H0(C,KC). We will use some basic tools from repre-

sentation theory in order to count the dimension of the G-invariant part of

S2H0(C,KC), which will be denoted by (S2H0(C,KC))G. As we will see in

Section 1.6, the dimension h0(S2(Ct,KCt))
G of the space of invariant forms

over the family {Ct} gives informations about the variety in Ag associated to

the family. We start with some preliminary definitions and results, mainly

following Serre [79].

Let V be a finite vector space over C and fix a basis of it. Consider the

space GL(V ) of automorphisms of V , corresponding to the space of matrices

n× n with non-vanishing determinant. We have the following:
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Definition 1.5.1. Let G be a finite group. A representation of G over V

is a homomorphism

ρ : G→ GL(V ). (1.5.1)

When ρ is given, we call V representation space relative to the group G and

we call the dimension of V degree of the representation.

Consider now two vector spaces V1 and V2, and call ρ1 : G→ GL(V1) and

ρ2 : G → GL(V2) two representations over V1 and V2 respectively. These

representations are said to be isomorphic if there exists an isomorphism

τ : V → V ′ which “transforms” ρ1 into ρ2. More precisely:

Definition 1.5.2. Two representations ρ1 : G → GL(V1) and ρ2 : G →
GL(V2) are isomorphic if there exists an isomorphism of vector spaces τ :

V → V ′ such that

τ ◦ ρ1(g) = ρ2(g) ◦ τ, (1.5.2)

for all g ∈ G.

Notice that thinking of GL(Vi) as a space of matrices (i = 1, 2), relation

(1.5.2) is equivalent to say that the matrices involved are simultaneously

similar.

Consider a subspace W < V . We call W stable under the action of G if

ρ(g)(w) ∈ W for every w ∈ W . In this case ρW (g) := ρ(g)
∣∣
W
∈ GL(W ) for

every g ∈ G, meaning that ρW : G → GL(W ) is a subrepresentation of ρ.

We have the following:

Definition 1.5.3. A representation ρ : G → GL(V ) is irreducible if there

does not exist any subspace W < V which is stable under the action of G

(i.e. if ρ does not admit any proper subrepresentation).

We remark that every representation of degree 1 is irreducible. Moreover

one can prove that every representation can always be decomposed as a (non

unique) direct sum of irreducible representations.

Definition 1.5.4. We call character of a representation ρ the map

χρ : G→ C,
g 7→ Tr(ρ(g)).

(1.5.3)

A character χρ is said to be irreducible if ρ is irreducible.
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Notice that characters are function on G constant over conjugacy classes.

The following property holds:

Lemma 1.5.5. Let ρ1 : G → GL(V1) and ρ2 : G → GL(V2) be two rep-

resentations of the group G, whose characters are χρ1 and χρ2 respectively.

Then:

ρ1 ⊕ ρ2 : G→ GL(V1 ⊕ V2) has character χρ1 + χρ2 ,

ρ1 ⊗ ρ2 : G→ GL(V1 ⊗ V2) has character χρ1 · χρ2 .
(1.5.4)

Since it will be useful in the following, we give a formula for the compu-

tation of the character χS2ρ of the symmetric square S2V induced by the

representation on V .

Consider a representation ρ : G → GL(V ). One can define the action

induced by ρ on the tensor product V ⊗ V as

ρ⊗ ρ : G→ GL(V ⊗ V ),

g 7→ ρ(g)⊗ ρ(g).
(1.5.5)

It is easy to check that the subspace S2V < V ⊗V (as well as its complemen-

tary
∧2 V < V ⊗V ) is stable under the action of ρ⊗ ρ. Since ρS

2V is a well

defined subrepresentation of ρ, we can consider its character χS2ρ := χ
ρS2V .

We have the following:

Corollary 1.5.6. Let ρ : G→ GL(V ). Then

χS2ρ(g) =
1

2

(
χρ(g)2 + χρ(g

2)
)
. (1.5.6)

It is possible to define an Hermitian scalar product on the space of

class functions over G (i.e. functions constant over conjugacy classes of

G, see [43]). In particular this scalar product is well defined over characters.

Theorem 1.5.7. Consider ρ1 : G → GL(V1) and ρ2 : G → GL(V2) repre-

sentations of the group G of order n, and call χ1 and χ2, respectively, their

characters. Then (
χ1

∣∣χ2

)
:=

1

n

∑
g∈G

χ1(g)χ2(g) (1.5.7)

is a well defined Hermitian scalar product on the space of characters.
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The importance of this scalar product is that irreducible characters form

an orthonormal basis for the space of all characters. This is straightforward

from the next theorem (see [79, Theorem 2.3.3] for the proof).

Theorem 1.5.8. Keep notations as above. Then:

1. if χ1 is the character of an irreducible representation, then
(
χ1

∣∣χ1

)
= 1

(i.e. χ1 has norm 1);

2. if χ1 and χ2 are characters of two non-isomorphic irreducible repre-

sentations than
(
χ1

∣∣χ2

)
= 0 (i.e. χ1 and χ2 are orthogonal).

Remark 1.5.9. In a more general setting, it is possible to prove that the

set of irreducible characters of a finite group G is an orthonormal basis of

the vector space of class functions CF (G) with respect to the Hermitian

product (1.5.7) (see [79]).

Theorem 1.5.10. Let ρ : G→ GL(V ) be a linear representation of G with

character χ, and suppose that V decomposes as a direct sum of irreducible

representations as:

V = W1 ⊕W2 ⊕ · · · ⊕Wr.

Take an irreducible representation ρ′ : G→ GL(W ), and consider the associ-

ated character χ′. Then the scalar
(
χ
∣∣χ′) gives the number of Wi isomorphic

to W .

Keep the notation of the previous theorem and call χi the character of

Wi (i = 1, . . . , r). From Lemma 1.5.5 it follows that χ = χ1 +χ2 + · · ·+χr.

Then
(
χi
∣∣χ′) is 1 if ρ′ is isomorphic to ρWi and 0 otherwise. The result

follows:

Corollary 1.5.11. The number of Wi isomorphic to W does not depend on

the chosen decomposition.

Although the decomposition of a representation in irreducible compo-

nents is not unique, its factors are determined up to isomorphisms. The-

orems above show that every representation is uniquely determined by its

character:

Corollary 1.5.12. Two representations with the same character are iso-

morphic.
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Summarizing, every character χϕ admits a decomposition

χϕ =
∑

χ∈Irr(G)

(
χϕ
∣∣χ) · χ. (1.5.8)

We apply now representation theory to our case of interest. Let C be

a compact Riemann surface of genus g ≥ 2 and Aut(C) be the group of

automorphisms of C. We want to study the representation of a group G <

Aut(C) on the space of holormorphic 1-forms H0(C,KC).

Consider a Galois cover π : C → C ′ = C/G with Galois group G and

call ϕ : G → Aut(C) the corresponding group action. Let ψ be the repre-

sentation of G associated to ϕ via pullback of holomorphic 1-forms in the

following way:

ψ : G→ H0(C,KC),

g 7→ [ω 7→ ϕ(g−1)∗ω].
(1.5.9)

Notice that it is necessary to put g−1 instead of g in the definition to make

ψ a homomorphism.

The character χψ, according to formula (1.5.8), decomposes as a linear

combination of irreducible characters. In this setting, the Chevalley-Weil

formula provides a way to compute the integral coefficients
(
χψ
∣∣χ). The

result is a consequence of the following theorem (see e.g. [42, Thm. V.2.9,

p. 264] for the proof.)

Theorem 1.5.13 (Eichler Trace Formula). Consider a compact Riemann

surface C of genus g ≥ 2. Take G < Aut(C), and consider g ∈ G of order

m > 1. Call Fix(g) the set of points fixed by g. Then:

χρ(g) = Tr(ρ(g)) = 1 +
∑

P∈Fix(g)

ζP (g)

1− ζP (g)
, (1.5.10)

We need a technical lemma which allows us to prove a different version of

Eichler trace formula, that will be the content of Corollary 1.5.15. In order

to state it we need some preliminary discussion.

Recall that near the points fixed by G there is a local coordinate such

that generators of the stabilizer group act as a multiplication by a primitive

root of unity. More precisely if P is critical and g is a generator of stab(P )
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of order m, then the differential of the action of g in P acts on TPC by

multiplication by an m-th root of unity ζP (g) (see Theorem 1.1.4).

Set ζm := e2πi/m, I(m) := {ν ∈ Z : 1 ≤ ν < m, gcd(ν,m) = 1}, and for

ν ∈ I(m) consider Fixν(g) := {P ∈ C : g · P = P, ζP (g) = ζ−νm }.

We have the following lemma (the result is a consequence of [51, Theorem

7], see also [16, Lemma 11.5]).

Lemma 1.5.14. If G ⊆ Aut(C) and g ∈ G has order m, then:

|Fixν(g)| = |CG(g)| ·
∑

1≤i≤r,
m|mi,

g∼Gx
miν/m
i

1

mi
, (1.5.11)

where CG(g) denotes the centralizer of g in G and ∼G denotes the equivalence

relation given by conjugation in G.

Using Lemma 1.5.14 we obtain a second version of Eichler trace formula:

Corollary 1.5.15. Keep notations as above. Then:

χρ(g) = 1 + |CG(g)|
∑

ν∈I(m)

{ ∑
1≤i≤r,
m|mi,

g∼Gx
miν/m
i

1

mi

}
ζνm

1− ζνm
. (1.5.12)

The Chevalley-Weil formula is an important consequence of Eichler trace

formula. It gives the multiplicity of a given irreducible representation of G in

H0(C,KC), i.e. the integral coefficients in expression (1.5.8). More precisely,

for χ ∈ Irr(G), let σ := σχ be the corresponding irreducible representation

and call dχ its degree. Moreover, let xi be an element of order mi in G that

represents the local monodromy of the cover C → C ′ at the branch point

ti, and call Ei,α the number of eigenvalues of σ(xi) that are equal to ζαmi ,

where ζmi = e2πi/mi as usual.

Theorem 1.5.16 (Chevalley-Weil formula [22]). Consider a Galois cover

π : C → C ′ with Galois group G and r branches, and call ρ the representation

induced on the H0(C,KC). Let m = (m1, . . . ,mr) be the monodromy and

take Ei,α and dχ as above. Then the following holds:

(
χρ|χ) = dχ(g(C ′)− 1) +

r∑
i=1

mi−1∑
α=1

α · Ei,α
mi

+
(
χ
∣∣χtriv

)
, (1.5.13)

where χtriv is the character of the trivial representation ρtriv(g) = 1, ∀ g ∈ G.
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Proof. A proof of this result can be found in [42]. Se also [43], [66].

To conclude this section, we state a formula to compute the multiplicity

N of the trivial representation inside S2ρ, that is the number of invariant

elements in S2H0(C,KC).

Corollary 1.5.17. Keep the same notation as before. Then:

N = (χS2ρ, 1) =
1

|G|
∑
x∈G

χS2ρ(x) =
1

2|G|
∑
x∈G

(
χρ(x

2) + χρ(x)2
)
. (1.5.14)

Proof. The result follows from Theorem 1.5.8 and Corollary 1.5.6.

Remark that the representation ρ only depends on the datum (m, G, θ):

the theory applies identically for a family of curves with the same datum.

This implies that also N depends on the datum only.

1.6 Special subvarieties

In this section we discuss the notion of special subvarieties or Shimura

subvarieties of Ag. Since the abstract formalism of Shimura subvarieties is

rather cumbersome, we will give a brief introduction functional to our pur-

poses. In particular, despite their original definition involves Hodge classes,

we will define Shimura subvarieties via the characterization relating them to

totally geodesic submanifolds of Ag. Moreover we will focus on a concrete

class of Shimura subvarieties, PEL Shimura subvarieties, which is the only

class of Shimura we will actually use.

To hint, special subvarieties are the Hodge loci of certain natural vari-

ations of Hodge structures. They are defined by the existence of certain

Hodge classes; in particular they are the maximal closed irreducible sub-

varieties of Ag on which certain given classes are Hodge classes. In the

following we will give some sketch about this approach, mainly referring to

the survey of Moonen and Oort for details on the involved Hodge theory as

well as for a deeper discussion on Shimura varieties [61].

Fix a rank 2g lattice Λ and an alternating form Q : Λ × Λ → Z of type

(1, . . . , 1). For F a field with Q ⊆ F ⊆ C, set ΛF := Λ ⊗Z F . The Siegel
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upper half-space is defined as follows [52, Thm. 7.4]:

Hg := {J ∈ GL(ΛR) : J2 = −I, J∗Q = Q,Q(x, Jx) > 0, ∀x 6= 0}. (1.6.1)

The group Sp(Λ, Q) acts on Hg by conjugation and Ag = Sp(Λ, Q)\Hg.
This space has the structure of a smooth algebraic stack and also of a com-

plex analytic orbifold. Denote by AJ the quotient ΛR/Λ endowed with

the complex structure J and the polarization Q. On Hg there is a natu-

ral variation of rational Hodge structure, that descends to a variation of

Hodge structure on Ag over Q (in the orbifold sense), whose fiber over A is

H1(A,Q). The Hodge loci for this variation of Hodge structure are called

special subvarieties or Shimura subvarieties.

The zero dimensional special subvarieties are precisely the CM (Complex

Multiplication) points, corresponding to abelian varieties where End(A)Q :=

End(A)⊗Q contains a commutative, semi-simple subfield F such that [F :

Q] = 2 dim(A) = 2g. In case A simple abelian variety, this is the same to ask

that End(A)Q is a quadratic extension of a totally real field. For example,

in case g = 1, abelian varieties whose lattices are Z[i] and Z[ω], where ω

is the 3-th root of unity, have complex multiplication (actually, there are

more, see e.g. [37, Lecture 3]). The arithmetical properties of CM points

are fairy well known. Since they are behond our purposes, we only mention

the following useful result (see e.g. [61]):

Proposition 1.6.1. Special subvarieties of Ag contain a subset of CM points

which is dense for the Zariski topology.

CM points play a key role in our study: they allows us to give a charac-

terization of special subvarieties of Ag not involving the Shimura machinery.

In particular Moonen found a correspondence between Shimura subvarieties

of Ag and totally geodesic submanifolds of Ag admitting a CM point [64]

(see [59] for a more general result). The result is the following:

Theorem 1.6.2. An algebraic totally geodesic subvariety of Ag is special if

and only if it is totally geodesic and contains a CM point.

As stated in the very beginning of this section, in the following we will use

this characterization as a definition of Shimura subvarieties of Ag. In par-

ticular, the reader should think about Shimura subvarieties of Ag as totally

geodesic submanifolds with an extra arithmetic condition. This makes the
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connection between totally geodesic submanifolds of Ag and Shimura sub-

varieties of Ag clear. In this setting, Conjecture 0.0.1, which motivates the

study done in this dissertation, is a stronger version of the next conjecture,

originally stated by Oort.

Conjecture 1.6.1 (Oort [68]). For large g, there does not exist a special

subvariety Z ⊂ Ag with dim(Z) ≥ 1 such that Z ⊆ Tg and Z ∩ T 0
g is

nonempty.

As pointed out in the introduction, one reason for this expectation com-

ing from differential geometry is that a special (or Shimura) subvariety of

Ag is totally geodesic with respect to the (orbifold) metric of Ag induced

by the symmetric metric on the Siegel space Hg of which Ag is a quotient

by Sp(2g,Z). One expects the Torelli locus to be very curved and a way

of expressing this is to say that it should not contain totally geodesic sub-

varieties. Moreover in view of Theorem 1.6.2, the expectation formulated

by Oort is both of geometric and arithmetic nature. See [61, §4] for more

details.

In this thesis we will deal with a single class of special subvarieties of Ag,
that are the special subvarieties of PEL type. The name comes from the

fact that PEL special subvarieties have a modular interpretation in terms

of abelian varieties with a polarization, given endomorphisms and a level

structure. Given J ∈ Hg, set

EndQ(AJ) := {f ∈ EndQ(ΛQ) : Jf = fJ}.

We define PEL Shimura subvarieties as follows (see [61, §3.9] for details).

Definition 1.6.3. Fix a point J0 ∈ Hg and set D := EndQ(AJ0). The PEL

type special subvariety Z(D) is defined as the image in Ag of the connected

component of the set {J ∈ Hg : D ⊆ EndQ(AJ)} that contains J0.

We conclude this section giving a sufficient condition for a family of Galois

covers to yield a Shimura subvariety of Ag of PEL type. We recall some

preliminary result proven in [44, Section 3], useful to discuss Theorem 1.6.8.

Proposition 1.6.4. Let G ⊆ Sp(Λ, E) be a finite subgroup. Denote by HGg
the set of points of Hg that are fixed by G. Then HGg is a connected complex

submanifold of Hg.

Set DG := {f ∈ EndQ(ΛQ) : Jf = fJ, ∀J ∈ HGg }. Then:
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Lemma 1.6.5. If J ∈ HGg , then DG ⊆ EndQ(AJ) and the equality holds for

J in a dense subset of HGg .

Proposition 1.6.6. The image of HGg in Ag coincides with the PEL subva-

riety Z(DG).

Lemma 1.6.7. If J ∈ HGg , then dimHGg = dimZ(DG) = dim(S2ΛR)G where

ΛR is endowed with the complex structure J .

Recall that N = dim
(
S2H0(C,KC)

)G
and that Z(m, G, θ) is defined in

Section 1.3.

Theorem 1.6.8 (see Theorem 3.9 in [44]). Fix a datum (m, G, θ) and as-

sume that

N = 3g′ − 3 + r. (∗)

Then Z(m, G, θ) is a special subvariety of PEL type of Ag that is contained

in Tg and such that Z(m, G, θ) ∩ T0
g 6= ∅.

Proof. Let C → T Gg be the universal family as in Section 1.3. For any t ∈ T Gg ,

G acts holomorphically on Ct, so it maps injectively into Sp(Λ, Q), where

Λ = H1(Ct,Z) and Q is the intersection form. Denote by G′ the image of G

in Sp(Λ, Q). It does not depend on t since it is purely topological. Recall

that the Siegel upper half-space Hg parametrizes complex structures on the

real torus ΛR/Λ = H1(Ct,R)/H1(Ct,Z) which are compatible with the po-

larization Q. The period map associates to the curve Ct the complex struc-

ture Jt on ΛR obtained from the splitting H1(Ct,C) = H1,0(Ct)⊕H0,1(Ct)

and the isomorphism H1(Ct,R)∗C = H1(Ct,C). The complex structure Jt
is invariant by G′, since the group G acts holomorphically on Ct. This

shows that Jt ∈ HG
′

g , so the Jacobian j(Ct) lies in Z(DG′). This shows

that Z(m, G, θ) ⊆ Z(DG′). Since Z(DG′) is irreducible (see e.g. Proposi-

tion 1.6.4), to conclude the proof it is enough to check that they have the

same dimension. The dimension of Z(m, G, θ) is 3g′− 3 + r, see Section 1.3.

By Lemma 1.6.7, if J ∈ HG
′

g , then dimZ(DG′) = dimHG
′

g = dim(S2ΛR)G
′
,

where ΛR is endowed with the complex structure J . If J corresponds to the

Jacobian of a curve C in the family, then (S2ΛR)G
′

is isomorphic to the dual

of (S2H0(C,KC))G. Thus dimZ(DG′) = N and (∗) yields the result.

Condition (∗) has been originally stated by Colombo, Frediani and Ghigi

in [30, Proposition 5.4] as a sufficient condition that makes the variety
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Z(m, G, θ) totally geodesic. We remark that condition (∗) is an equality

condition on the dimensions of S2H0(KCt)
G and H0(2KCt)

G, implying that

the kernel N∗G is empty. Moreover, since the multiplication map m is G-

equivariant, any G-invariant element in N∗ lies in I2(KCt): condition (∗) is

equivalent to ask

I2(KCt)
G = ∅. (1.6.2)

Frediani, Ghigi and Penegini used condition (∗) for a systematic search of

special subvarieties of the form Z(m, G, θ), obtained as Galois cover of the

projective line (see [44]). Using the computer algebra program MAGMA [1],

they determined all the families Z(m, G, θ) with genus g ≤ 9, and computed

the number N checking which families satisfies the condition (∗). The result

they obtained is the following:

Theorem 1.6.9. For genus g ≤ 9 there are exactly 40 data (m, G, θ) such

that N = r − 3 > 0. For these 40 data the image Z(m, G, θ) is a special

subvariety of Ag of positive dimension, which is contained in Tg and inter-

sects T 0
g . Among these data there are 20 cyclic ones and 7 abelian non-cyclic

ones. The remaining 13 have non-abelian Galois group. All these data occur

in genus g ≤ 7.

In the following section we will generalize this result, studying Galois

covers of curves of higher genus g′. We will find new examples when g′ = 1,

and we will also prove that if g′ ≥ 1, and the family satisfies (∗), then

g ≤ 6g′ + 1. The last condition immediately implies that if g′ = 1 there are

no examples satisfying condition (∗) for g ≥ 8.

1.7 Examples of special subvarieties in the Torelli

locus

This is the very central part of this chapter: here we explicitly construct

examples of Shimura subvarieties contained in the Torelli locus from families

of Galois covers of elliptic curves.

More precisely, we constructed all families of curves (up to genus 7) cov-

ering an elliptic curve E, using systematically Riemann’s existence theorem

(see Section 1.2), i.e. we found all suitable data giving rise to Galois covers

of E. Then, with Eichler trace formula (1.5.10) and Corollary (1.5.17), we
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checked whether some of these families satisfy the sufficient condition (∗),
hence give rise to special subvarieties of Ag. Finally we controlled if the ob-

tained Shimura subvarieties are actually new with considerations on groups

involved, dimensions of the families and monodromies: we will show that

two of them yield new Shimura subvarieties of Ag (namely, family (2) and

family (6)), while the other examples arise from certain Shimura subvarieties

of Ag already obtained as families of Galois covers of P1 in [44].

For all families (g ≤ 7) of Galois covers of E satisfying (∗) we now give

a presentation of the Galois group G and an explicit description of a repre-

sentative of an epimorphism

θ : Γ1,r = 〈α, β, γ1, ..., γr | γ1...γrαβα
−1β−1 = 1〉� G.

Genus 2

(1) G = Z/2Z = 〈z | z2 = 1〉.
m = (2, 2) θ : Γ1,2 → Z/2Z,

θ(γ1) = θ(γ2) = z, θ(α) = θ(β) = 1.

Genus 3

(2) G = Z/2Z = 〈z | z2 = 1〉.
m = (2, 2, 2, 2) θ : Γ1,4 → Z/2Z,

θ(γi) = z, ∀i = 1, ..., 4, θ(α) = θ(β) = 1.

(3) G = Z/3Z = 〈z | z3 = 1〉.
m = (3, 3) θ : Γ1,2 → Z/3Z,

θ(γ1) = z, θ(γ2) = z2, θ(α) = θ(β) = 1.

(4) G = Z/4Z = 〈z | z4 = 1〉.
m = (2, 2) θ : Γ1,2 → Z/4Z,

θ(γ1) = θ(γ2) = z2, θ(α) = θ(β) = 1.
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(5) G = Q8 = 〈g1, g2, g3 : g2
1 = g2

2 = g3, g
2
3 = 1, g−1

1 g2g1 = g2g3〉
m = (2) θ : Γ1,1 → Q8,

θ(γ1) = g3, θ(α) = g2, θ(β) = g1.

Genus 4

(6) G = Z/3Z = 〈z | z3 = 1〉.
m = (3, 3, 3) θ : Γ1,3 → Z/3Z,

θ(γi) = z, ∀i = 1, 2, 3, θ(α) = θ(β) = 1.

1.7.1 Independence from the epimorphism θ

First of all we will show that in each of the above cases, once we fix the

group G and the ramification m, all the possible data (m, G, θ) belong to the

same Hurwitz equivalence class and hence give rise to the same subvariety

of Ag. Let us prove this for all the cases, giving the details only for some

cases, being the others very similar.

Case (1)

This case is exactly the cover studied in Example 1, Section 1.4. For

convenience of the reader we report here all computations. The group

Z/2Z ∼= 〈z〉 has only one element of order 2. This forces θ(γi) to be equal to

z for i = 1, 2. Recall that the action of the mapping class group Map1,[2] on

Γ1,2 is generated (up to inner automorphism) by the seven moves described

in Theorem 1.4.16. In particular, since Z/2Z is abelian, the move induced

by tξ1
1,1

is given by θ(α) 7→ θ(γ1α) and the identity on the other generators,

while the move induced by tξ2
1,1

is given by θ(β) 7→ θ(γ1β) and the iden-

tity on the other generators. These moves yields at once that systems of

generators 〈θ(α), θ(β); θ(γ1), θ(γ2)〉 = 〈z, z; z, z〉, 〈1, 1; z, z〉, 〈1, z; z, z〉 and

〈z, 1; z, z〉 are Hurwitz equivalent.

Case (2)

The proof is the same as the one for case (1) with obvious changes.
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Case (3)

Since Z/3Z is abelian its commutator subgroup is trivial, thus up to

automorphisms one can choose θ(γ1) = z and θ(γ2) = z2. Then we proceed

as in case (1) with obvious changes.

Case (4)

The proof is the same as the one for case (1) with obvious changes.

Case (5)

Since there is only one element of order 2 in Q8, θ(γ1) = g3. Up to

simultaneous conjugation, the image of the pair (α, β) by θ is one of the

following (g1, g2), (g2, g1), (g1, g1g2), (g1g2, g1), (g1g2, g2) and (g2, g1g2).

Using only the moves tδ1 and tδ̃1 , described above, and the automorphisms

of Q8 we see that all the pairs are equivalent to (g2, g1). Therefore all the

systems of generators are Hurwitz equivalent to 〈g2, g1; g3〉. Notice that this

proof can be found also in [72, Proposition 5.9]. Indeed, in that article this

very cover is used to construct a new surface of general type with pg = q = 2.

Case (6)

This case is similar to case (3). In fact θ(γi) can be either z or z3. The

only possibility to get θ(γ1)θ(γ2)θ(γ3) = 1 are either θ(γi) = z for all i, or

θ(γi) = z2 for all i. These choices are equivalent via automorphisms of G.

Moreover, with the same idea behind case (1), we can conclude that every

choice of θ(α) and θ(β) is equivalent.

1.7.2 Sufficient condition (∗) is satisfied

We will now show that the families listed above do in fact verify condition

(∗) and hence yield special subvarieties of Ag.
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Case (1)

Clearly θ is an epimorphism. By Eichler trace formula (1.5.10) we find

χρ(z) = 0, and using Corollary 1.5.17 we obtain N = 2, which coincides

with the number of critical values, and so with the dimension of the family,

therefore our family is special.

Case (2)

Clearly θ is an epimorphism. Now we want to show that the sufficient

condition (∗) is satisfied, so we compute the number N using Corollary

1.5.17. Eichler trace formula (1.5.10) immediately yields χρ(z) = −1, and

since χρ(1) = g = 3 we have N = 4, which coincides with the number of

critical values, and so with the dimension of the family. This proves that

our family of Galois covers is special.

Case (3)

It is clear that θ is an epimorphism. Using Eichler trace formula (1.5.10)

we immediately obtain χρ(z) = χρ(z
2) = 0 and by Corollary 1.5.17 we

obtain N = 2, which coincides with the number of critical values, and so

with the dimension of the family, therefore the family is special.

Case (4)

It is clear that θ is an epimorphism. Using Eichler trace formula (1.5.10)

we obtain χρ(z) = χρ(z
3) = 1, χρ(z

2) = −1 and by Corollary 1.5.17 we

obtain N = 2, which coincides with the number of critical values, and so

with the dimension of the family. The family is special.

Case (5)

One easily checks that θ is an epimorphism. Using Eichler trace formula

(1.5.10) we find that the trace of every non zero element different from g3

is equal to 1, and that χρ(g3) = −1. By Corollary 1.5.17 we obtain N = 1,
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which coincides with the number of critical values, and so with the dimension

of the family, therefore the family is special.

Case (6)

Clearly θ is an epimorphism. Eichler trace formula (1.5.10) immediately

yields χρ(z) = ζ3, χρ(z
2) = ζ̄3 and since χρ(1) = g = 4, by Corollary 1.5.17

we have N = 3, which coincides with the number of critical values, and so

with the dimension of the family. This proves that our family is special.

1.7.3 New examples and already known ones

In this section we will show that only two of the examples listed in Section

1.7, namely family (2) and (6), give rise to new special subvarieties of Ag,
while the others have already been obtained as families of Galois covers

of P1.

Let us explain this. Assume that a family of Galois covers of genus 1

curves with Galois group G satisfying (∗) yields the same Shimura subvariety

of Ag of dimension s as one of those obtained via a family of Galois covers

of P1 satisfying condition (∗). Then each cover ϕ : X → X/G of the family

of covers of genus one curves has the property that the curve X also admits

an action of a group K ⊂ Aut(X) such that X/K ∼= P1 and we have:

dim(S2H0(KX)G) = dim(S2H0(KX)K) = s. So each curve X of the family

admits an action of a group G̃ ⊂ Aut(X) containing both G and K such

that X/G̃ ∼= P1 and since S2H0(KX)G̃ ⊂ S2H0(KX)K , also the family of

covers ψ : X → X/G̃ ∼= P1 satisfies condition (∗) and we have the following

commutative diagram:

X
ϕ //

ψ $$

X/G

σ
��

X/G̃ ∼= P1

(1.7.1)

So we can assume that G ⊂ K.

Since all the families of Galois covers of P1 satisfying (∗) in genus less

than 10 have already been found in [44] Table 2, it will suffice to compare
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our families with the ones listed there.

Case (1)

We show that this family yields the same subvariety in Ag as family (26)

in Table 2 of [44] (this family was already found in [61]). Let us recall the

description of this family. It is a family of Galois covers of P1 with Galois

group G̃ = Z/2Z × Z/2Z = 〈x, y|x2 = y2 = 1, xy = yx〉, with ramification

data (2, 2, 2, 2, 2) and with epimorphism θ̃ : Γ0,5 = 〈δ1, ..., δ5 |
∏
i=1,...,5 δi =

1〉 → G̃ given by

θ̃(δ1) = x, θ̃(δ2) = x, θ̃(δ3) = x, θ̃(δ4) = y, θ̃(δ5) = xy.

We want to prove that for any cover of this family ψ : X → X/G̃ ∼= P1, X

also admits an action by a subgroup G ∼= Z/2Z of G̃ such that the quotient

map ϕ : X → E ∼= X/G, belongs our family (1) and we have a diagram as

in (1.7.1).

Consider the cyclic subgroup G ∼= 〈y| y2 = 1〉 < G̃. Looking at ram-

ification data, we see that all stabilizer subgroups of G̃ have order 2 and

looking at the epimorphism θ̃ we see that the stabilizer subgroup associ-

ated to the fourth branch point q4 is 〈y〉 = G. This implies that points in

ψ−1(q4) = {p1, p2} are critical points for the action of G as well. Moreover

they cannot belong to the same fiber with respect to the action of G since

every element of G stabilizes both p1 and p2. To conclude note that every

other stabilizer subgroup for the critical points of ψ does not contain any

non trivial element of G, so q4 is the only branch point of ϕ. This proves

that the map ϕ has exactly 2 critical values which are the images of p1 and

p2 by ϕ and the ramification is m = (2, 2). So we have a family with the

same group and the same ramification as in family (1) and hence by the

unicity argument given in Section 1.7, we conclude that it gives the same

special subvariety in Ag as the one given by family (1).

Concluding, the special subvariety given by family (1) gives the same

special subvariety obtained as a family of Galois covers of P1 via Z/2Z×Z/2Z
corresponding to family (26) of Table 2 of [44] and already studied in [61].
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Case (2)

Since the family has dimension 4, it has bigger dimension than any pos-

sibile family given as Galois cover of P1 satisfying (∗). In fact looking at

the table of all possible special varieties presented as Galois covers of P1

satisfying (∗) of genus g ≤ 9 we see that none of these has dimension greater

than 3 (see Table 2 of [44]). This proves that the family gives a new special

subvariety contained in the Torelli locus. It also follows that the family is

not contained in the hyperelliptic locus. In fact, if every curve C of the

family were hyperelliptic, one could consider the group H generated by G

and the hyperelliptic involution σ. The quotient C/H ∼= P1, so we would

obtain a family of Galois covers of P1 which clearly still verifies condition

(∗), and this does not exist, as we just pointed out.

Case (3)

We claim that this family yields the same Shimura subvariety of Ag as

family (31) in Table 2 of [44]. Let us describe this family of Galois covers

of P1 as in 4.1 of [44]. The Galois group G̃ is isomorphic to the symmetric

group S3, G̃ = 〈x, y| y2 = x3 = 1, y−1xy = x2〉, m = (2, 2, 2, 2, 3) and the

epimorphism θ̃ : Γ0,5 = 〈δ1, ..., δ5 |
∏
i=1,...,5 δi = 1〉 → G̃ is given by

θ̃(δ1) = xy, θ̃(δ2) = x2y, θ̃(δ3) = y, θ̃(δ4) = xy, θ̃(δ5) = x2.

We will show that every cover ψ : X → X/G̃ ∼= P1 of this family also admits

a G = Z/3Z-action such that X/G has genus 1, the map ϕ : X → X/G is

one of the covers of our family (3) and we have a factorisation as in (1.7.1).

In fact, set G = 〈x|x3 = 1〉 < G̃ that is the only cyclic subgroup of order

3 on G̃. Looking at the stabilisers of the action of G̃, we see that the two

critical points of ψ in the fibre over the critical value q5 have both G as

stabiliser, hence they are critical points also for the action of ϕ and they are

mapped by ϕ in two different critical values. All the other critical points

of ψ have stabilisers of order 2, hence they are not critical values for the

map ϕ. So the map ϕ has ramification (3, 3) and by the unicity argument

of Section 1.7 we can assume that ϕ : X → X/G belongs to our family (3).

Concluding, the special subvariety given by family (3) is the same special

subvariety obtained from the family (31) of Galois covers of P1 via S3 found

in [44]. This family is not contained in the hyperelliptic locus (see the proof

of Theorem 5.3 of [44]).
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Case (4)

We show that this family yields the same Shimura subvariety of Ag as

family (32) in Table 2 of [44]. Let us describe this family of Galois covers

of P1 as in 4.1 of [44]. The Galois group G̃ is isomorphic to the dihedral

group D4, G̃ = 〈x, y| y2 = x4 = 1, y−1xy = x3〉, m = (2, 2, 2, 2, 2) and the

epimorphism θ̃ : Γ0,5 = 〈δ1, ..., δ5 |
∏
i=1,...,5 δi = 1〉 → G̃ is given by

θ̃(δ1) = xy, θ̃(δ2) = x2y, θ̃(δ3) = x2, θ̃(δ4) = x2y, θ̃(δ5) = x3y.

As above we want to show that every cover ψ : X → X/G̃ ∼= P1 of this

family also admits a G = Z/4Z-action such that X/G has genus 1, the

map ϕ : X → X/G is one of the covers of our family (4) and we have a

factorisation as in (1.7.1).

We can identify G ∼= 〈x|x4 = 1〉 < G̃. The stabilizer subgroups for the

action of G̃ of the critical points over the third branch point q3 are all given

by the center H = 〈x2〉 of G̃ which is contained in G. This implies that

points in ψ−1(q3) = {p1, p2, p3, p4} are critical points for the action of G as

well.

Moreover the four points p1, .., p4 are partitioned in exactly two orbits

for the action of G, hence they give rise to two critical values of the map

ϕ. Finally, observing that the other 4 conjugacy classes of stabilizers for

D4 do not contain nontrivial elements belonging to G, we conclude that the

action of G < D4 has ramification data (2, 2) and by the unicity argument

in Section 1.7 we can assume that it gives a cover belonging to our family

(4). Concluding, the special variety given by family (4) is the same special

variety obtained as the family (32) of Galois covers of P1 via D4 found in

[44]. This family is not contained in the hyperelliptic locus (see the proof of

Theorem 5.3 of [44]).

Case (5)

We show that this family yields the same Shimura subvariety of Ag as

family (34) in Table 2 of [44]. Let us describe this family of Galois covers of

P1 as in 4.1 of [44]: the Galois group is

G̃ = (Z/4Z× Z/2Z) o (Z/2Z) ∼=
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〈y1, y2, y3| y2
1 = y2

2 = y4
3 = 1, y2y3 = y3y2, y

−1
1 y2y1 = y2y

2
3, y

−1
1 y3y1 = y3〉,

m = (2, 2, 2, 4) and the epimorphism

θ̃ : Γ0,4 = 〈δ1, ..., δ4 |
∏

i=1,...,4

δi = 1〉 → G̃

is given by

θ̃(δ1) = y1, θ̃(δ2) = y1y2y
3
3, θ̃(δ3) = y2y

2
3, θ̃(δ4) = y3

3.

Observe that the conjugacy classes of the non-trivial elements of G̃ are:

order 2 : {y1, y
2
3y1}, {y2, y

2
3y2}, {y2

3}, {y2y3y1, y2y
3
3y1},

order 4 : {y3}, {y3
3} {y2y3, y2y

3
3} {y2y1, y2y

2
3y1} {y3y1, y

3
3y1},

As above we want to show that every cover ψ : X → X/G̃ ∼= P1 of

this family also admits a G = Q8-action such that X/G has genus 1, the

map ϕ : X → X/G is one of the covers of our family (5) and we have a

factorisation as in (1.7.1). In order to prove that the factorization holds,

first of all we have to check that G is isomorphic to a subgroup of G̃. One

easily checks that the following map

i : Q8 → (Z/4Z× Z/2Z) o (Z/2Z)

g1 7→ y2y3, g2 7→ y2y1, g3 7→ y2
3.

yields an injective homomorphism that identifies G = Q8 with a proper

subgroup of (Z/4Z× Z/2Z) o (Z/2Z).

As before, to conclude that the two families are in fact the same one,

we have to study their stabilizer subgroups. Looking at the epimorphism

θ̃ : Γ0,4 → G̃ we see that the stabilizer subgroup associated to the fourth

branch point q4 is the normal subgroup K := 〈y3
3〉 = {1, y3, y

2
3, y

3
3}. The

subgroup H = {1, y2
3} of G is clearly contained in K = 〈y3

3〉. This implies

that points in ψ−1(q4) = {p1, p2, p3, p4} are critical points for the action of

G as well. Up to a permutations of the pi’s, we see that G̃ acts this way on

the fiber:

p2 = y1(p1) = y1y3(p1) = y1y
2
3(p1) = y1y

3
3(p1),

p3 = y2(p1) = y2y3(p1) = y2y
2
3(p1) = y2y

3
3(p1),

p4 = y2y1(p1) = y2y1y3(p1) = y2y1y
2
3(p1) = y2y1y

3
3(p1).
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If we consider the action of G we get:

p2 = y1y3(p1) = i(g−1
2 g1)(p1) = y1y

3
3(p1) = i(g−1

1 g2)(p1),

p3 = y2y3(p1) = i(g1)(p1) = y2y
3
3(p1) = i(g−1

1 )(p1),

p4 = y2y1(p1) = i(g2)(p1) = y2y1y
2
3(p1) = i(g2g3)(p1).

So p1, p2, p3, p4 are 4 ramification points that map to the same critical value

for the map ϕ and they have multiplicity 2. To conclude we have to prove

that these are all the critical points of ϕ. But this is actually true, because

none of the stabilizer subgroups of the critical points of ψ that are mapped

to the first three critical values includes any subgroup of G. Concluding, by

the unicity argument in Section 1.7, the special variety given by the family

(5) is the same special variety obtained as the family (34) of Galois covers of

P1 via (Z/4Z× Z/2Z) o (Z/2Z) found in [44]. This family is not contained

in the hyperelliptic locus (see the proof of Theorem 5.3 of [44]).

Case (6)

We want to check that the family does not yield the same Shimura subva-

riety of Ag as one obtained via a family of Galois covers of P1 already known

to be special. Nonetheless, looking at Table 2 in [44] one checks there are

no families of Galois covers of P1 satisfying condition (∗) with dimension

greater or equal than 3 admitting Z/3Z as a proper subgroup of the Galois

group. This proves that the family gives a new special subvariety contained

in the Torelli locus. It also follows by the same argument as in the previous

example that it is not contained in the hyperelliptic locus.

Remark 1.7.1. We observe that family (6) is interesting also for another

reason, in fact it is the same family used by Pirola in [74] to construct

a counterexample to a conjecture of Xiao on the relative irregularity of a

fibration of a surface on a curve.

Remark 1.7.2. Notice that in [53] a classification of all the representations

of the actions of the possible groups G on the space of holomorphic one

forms of a curve of genus g = 3, 4 is given and also using their description

one can verify that in genus 3, 4 our families are the only ones satisfying

condition (∗) if g′ = 1.



1.8. CONSTRAINTS IN HIGHER GENUS 41

1.8 Constraints in higher genus

In this section we deal with the natural question of Shimura varieties

obtained from families covering higher genus curves. Consider a family of

Galois covers f : C → C ′. The following result shows that there is a bound

for g(C) depending on g(C ′), which is necessary to make condition (∗) pos-

sible.

Theorem 1.8.1. If g′ ≥ 1 and we have a positive dimensional family of

Galois covers f : C → C ′ with g′ = g(C ′) and g = g(C) which satisfies

condition (∗), then g ≤ 6g′ + 1. In particular, for g ≥ 8 (resp. 14) there do

not exist positive dimensional families of Galois covers with g′ = 1 (resp. 2)

and which satisfy condition (∗).

Proof. The idea of the proof is the following: if such a family exists, with the

same method used by Pirola in Section 2 of [74] one constructs a fibration

S → B of a surface S on a curve B, whose general fibre has genus g and

whose relative irregularity is at least g − g′. Then we apply Corollary 3

of [89].

In fact, assume that M := M(m, G, θ) is as usual the variety parametrising

elements of such a family for a given datum (m, G, θ). Every point p ∈ M

corresponds to an isomorphism class of a curve C of genus g admitting G as a

subgroup of Aut(C), whose quotient C ′ := C/G has genus g′ ≥ 1 and whose

monodromy is given by θ. Denoting by f : C → C ′ the Galois cover, to such

a point one can associate the abelian variety W = J(C)/f∗(J(C ′)), which

is isogenous to the Prym variety of the cover. The abelian variety W has

a polarisation Θ and we denote by Ag−g′(Θ) the moduli space of polarised

abelian varieties of dimension g − g′ with the given type of polarisation.

Denote by Ψ : M→ Ag−g′(Θ) the map associating to p the polarised variety

[W,Θ]. The variety W inherits from C the automorphism group G. The

differential of the map Ψ at the point p ∈ M is a map

dΨp : H1(C, TC)G → S2H0,1(W )

and its image is contained in (S2H0,1(W ))G, since this is the space of in-

finitesimal deformations of (W,Θ) that preserve the action of G. So if we

denote by P ⊂ Ag−g′(Θ) the image of Ψ , the tangent space T[W,Θ]P of P

at [W, θ] is contained in (S2H0,1(W ))G. The dual of the differential gives a

map:

dΨ∗p : (S2H1,0(W ))G → H0(C, 2KC)G.
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Observe that H0(KC) = H0(KC)G ⊕ H0(KC)−, where the space of in-

variants H0(KC)G ∼= H0(C ′,KC′) has dimension g′, and the complement

H0(KC)− ∼= H1,0(W ). Therefore we have

(S2H0(KC))G ∼= S2H0(KC′)⊕ (S2H0(KC)−)G ∼=
∼= S2H0(KC′)⊕ (S2H1,0(W ))G (1.8.1)

The dual of the differential dΨ∗p : (S2H0(KC)−)G → H0(C, 2KC)G is

given by the multiplication map and since (S2H0(KC)−)G ⊂ (S2H0(KC))G

and by our assumption (∗) the multiplication map

(S2H0(KC))G → H0(C, 2KC)G

is an isomorphism, we conclude that dΨ∗p is injective. Hence dΨp is sur-

jective and T[W,Θ]P = (S2H0,1(W ))G. By (1.8.1) its dimension is equal to

N− g′(g′+1)
2 , where N = dim(S2H0(KC))G is the dimension of M, by our con-

dition (∗). So for a general point [W,Θ] ∈ P, dim Ψ−1(W,Θ) = g′(g′+1)
2 ≥ 1,

thus we can find a curve Y ⊂ Ψ−1(W,Θ) contained in Mg. Denote by Y

its closure in Mg. So we get a family of curves of genus g, h′ : S′ → B′

such that Y is the image of the modular map B′ → Mg, b
′ 7→ [h′−1(b′)].

By resolving singularities and taking pullbacks we get a smooth surface S,

a smooth curve B and a map h : S → B. Up to a base change we can

assume that h has a section η. So if we take the Zariski open subset U of

B of points having non-singular fibres, we can use the section η to take the

Abel-Jacobi maps Aη(t) : Ct → J(Ct), t ∈ U , compose them with the pro-

jections J(Ct)→W and obtain mappings: ϕt : Ct →W , ∀t ∈ U . Using the

pull-backs ϕ∗t : H1(W,Q) → H1(Ct,Q) we get an injection of H1(W,Q) in

H0(B,R1h∗Q). By the Leray spectral sequence we identify H0(B,R1h∗Q)

with the cokernel of the map h∗ : H1(B,Q)→ H1(S,Q), thus we have

dimH1(S,Q)− dimH1(B,Q) ≥ dimH1(W,Q) = 2(g − g′).

So if we denote by q = h0(S,Ω1
S) and by b the genus of the curve B we

have q − b ≥ g − g′. Since by construction the family is not isotrivial, we

can apply Corollary 3 of [89], which says that q − b ≤ 5g+1
6 and so we get

g − g′ ≤ q − b ≤ 5g+1
6 , hence g ≤ 6g′ + 1.

Clearly if g′ = 1 this implies g ≤ 7.



1.8. CONSTRAINTS IN HIGHER GENUS 43

Using the above theorem, we can summarize the results obtained in this

chapter as follows:

Theorem 1.8.2. For all g ≥ 2 and g′ = 1 there exist exactly 6 positive

dimensional families of Galois covers satisfying condition (∗), hence yielding

Shimura subvarieties of Ag contained in the Torelli locus.

Two of the 6 families yield new Shimura subvarieties (i.e. case (2) and

case (6) of the list in Section 1.7), while the others yield Shimura subvarieties

which have already been obtained as families of Galois covers of P1 in [44].

For all g > 3 and g′ = 2 there do not exist positive dimensional families

of Galois covers satisfying condition (∗).

For g ≤ 9 and g′ > 2 there do not exist positive dimensional families of

Galois covers satisfying condition (∗).

Proof. It only remains to show that if g ≤ 7 (resp. 13) and g′ = 1 (resp. 2)

there does not exist any other family satisfying (∗) except for the 6 families

described above and if g ≤ 9 and g′ > 1 there do not exist families satisfying

property (∗). To do this we used the computer software MAGMA.

A slightly modified version of the MAGMA script used in [44] enables us

to check that the families given is Section 1.7 are the only ones under the

following conditions. The covering curve has genus g ≤ 9 and the quotient

is a curve of genus g′ ≥ 1, moreover for the case g′ = 2 we extended the

calculation up to g = 13. By Proposition (1.8.1) we know that if g′ = 1 these

are all the families satisfying (∗). It is not bold to conjecture that these are

all also in the case g′ > 1. The MAGMA script that we used is available at:

users.mat.unimi.it/users/penegini/

publications/PossGruppigFix_Elliptic_v2.m

This script differs from the one in [44] essentially for the fact that it does

not return a representative up to Hurwitz equivalence of a datum. But it

gives all possible ramification data. This is because the Hurwitz’s moves for

the data we have found could be easily handled by hand as we have seen

in Section 1.7. In addition, this helped to speed up the finding-example

process as well. The other changes in the script are the obvious ones related

to the fact that the genus of the base is not 0 anymore. It is important



44 CHAPTER 1. NEW EXAMPLES OF SHIMURA VARIETIES

to notice that the MAGMA script works perfectly fine for covering curves of

genera g > 9, we simply did not include other results for time reasons.



Chapter 2

Bielliptic and bi-hyperelliptic

loci

In this chapter we study some particular loci inside the moduli spaceMg,

namely the bielliptic locus (i.e. the locus of curves admitting a 2 : 1 cover

over an elliptic curve E) and the bi-hyperelliptic locus (i.e. the locus of

curves admitting a 2 : 1 cover over a hyperelliptic curve C ′, g(C ′) ≥ 2). We

will show that these loci do not provide totally geodesic submanifolds of Ag.
We will also find a bound for the rank of the second Gauss-Wahl map when

computed over the bielliptic locus.

Our purpose is to investigate the condition (∗): as far as we know condi-

tion (∗) is sufficient but not necessary, in general, for Z(m, G, θ) to be special.

Even if there is no evidence for condition (∗) to be necessary, no examples

of totally geodesic submanifolds not satisfying the condition are known. An

important result in this direction has been obtained by Moonen [60]: using

deep techniques in arithmetic geometry he proved that condition (∗) is both

sufficient and necessary in case of cyclic covers of P1. For the general case,

the problem is still unsolved.

Totally geodesic submanifolds of Ag are related to the second Gauss-

Wahl map via the diagram originally given in [32, Theorem 3.1]. In that

paper, it is given an explicit expression for the second fundamental form

of the orbifold immersion j : Mg → Ag (the immersion holds outside the

hyperelliptic locus, see [70]), and it is proven that the second fundamental

form lifts the second Gaussian map µ2 : I2(KC) → H0(C, 4KC), as stated

45
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in an unpublished paper of Green and Griffiths (see [48]).

More precisely an explicit expression for the second fundamental form

when evaluated on Schiffer variations is provided (see Theorem (2.3.2)). In

particular, ρ(ξp � ξp) reduces to the evaluation of the second Gauss-Wahl

map at the point p. It is much more difficult to use the expression given

in [32] to compute the second fundamental form on ξp � ξq, when p 6= q. In

this case, in fact, the formula contains the evaluation at q of a meromorphic

1-form on the curve, called ηp, which has a double pole at p and is defined

by Hodge theory. Since the form ηp is implicitly defined, it seems to be hard

to compute it in general.

Nevertheless, Colombo and Frediani in [29] used Theorem (2.3.2) to com-

pute the curvature of the restriction toMg of the Siegel metric: in particular

the authors give an explicit formula for the holomorphic sectional curvature

ofMg in direction ξp in terms of the holomorphic sectional curvature of Ag
and the second Gauss-Wahl map.

Moreover, Colombo, Frediani and Ghigi in [30] used the same formula

to get some constraints on the existence of totally geodesic submanifolds

in Ag contained in the Jacobian locus. In particular they found an upper

bound for the dimension of totally geodesic germs passing through [C] ∈
Mg depending on the gonality of C. As a straightforward consequence,

they found a bound depending on the genus only: every totally geodesic

submanifold Y ⊂ Ag contained in the Jacobian locus should satisfy dimY ≤
5/2(g − 1). The proof is based on the fact that, for a quadric Q of rank at

most equal to 4, the second Gauss-Wahl map can be written as a product of

the first Gauss maps relative to the two adjoint line bundles that define the

quadric (see Theorem 2.2.10). This simplifies the computations considerably.

Here we use the same trick to prove that both the bielliptic (g ≥ 4) and

bi-hyperelliptic (g ≥ 3g′) loci are not totally geodesic. In both cases we use

some induced k : 1 map over P1, and its adjoint map as well, to construct a

suitable invariant quadric Q. We avoid the problem of computing the form

η by choosing a setting such that Q(u, v) vanishes (see expression (2.3.8)).

In the spirit of checking whether condition (∗) is necessary for Z(m, G, θ)

to be special, here we find some examples of non-special subvarieties not

satisfying condition (∗) (see Theorem 1.8.2).

On top, we include another application of Theorem 2.2.10 at the end of

Section 2.4: we transform the computation of the second Gaussian map on
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the bielliptic locus to the easier computation of the first Gaussian map on

a line bundle over C, and compute its rank. Remark that this is possible if

the quadric Q is constructed using two adjoint line bundles. Since quadrics

of this type do not cover the whole I2(K), we will find just a lower bound.

This chapter is organized as follows.

In Section 2.1 we will analyse deeply cyclic covers of P1 reporting some

classical results. In particular, using the decomposition in eigenspacesH0(C,KC) =⊕m−1
n=0 Vn we will recall a very explicit expression for holormorphic 1-forms

in H0(C,KC) (see expression (2.1.3)).

In Section 2.2 we will introduce Gauss-Wahl maps. After giving their

general definition, we will focus on the Gauss-Wahl map of first and second

order, recalling rank properties of these maps on some particular loci.

In Section 2.3 we will explain the link between the second fundamental

form of j(Mg) ⊂ Ag and the second Gauss-Wahl map. In particular we

will show that the second fundamental form ρ : I2(K) → S2H0(C, 2K) is

the lifting of the second Gauss-Wahl map, as proved in [32]. Moreover, in

Theorem 2.3.2, we recall the explicit expression of the second fundamental

form when evaluated on the product of two Schiffer variations, and we use

it to find constraints on the dimension of totally geodesic submanifold of Ag
contained in the Jacobian locus, following [30].

In Section 2.4 we study the locus of bielliptic curves of genus g. First

we will make some general considerations on the bielliptic locus, then we

will prove that it is not totally geodesic if g ≥ 4 (while it is for g = 3,

see example (2) in Section 1.7). We will conclude this section performing

a computation for the second Gauss-Wahl map on this locus, and giving a

bound for it.

In Section 2.5, finally, we study the locus of bi-hyperelliptic curves, i.e.

curves C admitting a 2 : 1 cover over a hyperelliptic curve C ′, g(C ′) ≥ 2. As

in the bielliptic case, we use Theorem 2.3.2 to write the second fundamental

form explicitly and then to prove that the locus is not totally geodesic if

g(C) ≥ 3g(C ′).
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2.1 Galois cyclic covers of the projective line

In this section we analyse cyclic covers of P1, giving for the datum (m, G, θ)

an equivalent expression, which will be useful to explicitly write down a basis

for the space of holomorphic 1-forms.

Here we give the general set-up. Recall that by Riemann’s existence the-

orem (see Section 1.2) there is a correspondence between a datum (m, G, θ)

and Galois covers with Galois groupG, monodromy defined by m = (m1, . . . ,mr)

and by the epimorphism θ : Γg′,r � C/G. Notice that in case C/G ∼= P1

with G cyclic, to give a datum is equivalent to give a triple (m, r,a) as

follows:

Corollary 2.1.1. Let m, r ∈ N, m ≥ 2, r ≥ 4. Let a = (a1, . . . , ar) be a

vector of integers ai ∈ N such that:

(1) ai 6≡ 0 mod m for all i = 1, . . . , r;

(2) gdc(m, a1, . . . , ar) = 1;

(3)
∑

i=1,...,r ai ≡ 0 mod m.

Then there is a 1 : 1 correspondence between the datum (m, G, θ) associated

to a family of Galois cover of P1 with cyclic group G and a triple (m, r,a)

as above.

The correspondence is given as follows:

• m ≥ 2 is the integer representing the order of the cyclic group G;

• r ≥ 4 represents the number of critical values of the cover;

• a = (a1, . . . , ar) encodes all informations about the monodromy. In

particular [ai] (defined as the class of ai modulo m) corresponds to

θ(γi). Since ord([ai]) = mi, vector a allows to reconstruct m, and

gives all informations about θ. When there is no risk of confusion, we

will simply refer to the vector a = ([a1], . . . , [ar]) as the monodromy

of the cover.

Notice that condition (1) corresponds to the condition mi ≥ 2 for all i =

1, . . . , r; conditions (2) and (3) correspond, respectively, to the surjectivity
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of θ, and to the condition
∏
i=1,...,r θ(γi) ≡ 0 mod m. Also, observe that

using Riemann-Hurwitz formula, we can determine the genus of the covering

curve.

Consider now a triple (m, r,a), and identify the group G = Z/mZ with

the group of m-th roots of unity. From the previous discussion, once r points

t1, . . . , tr ∈ P1 are fixed, there is a well defined curve Ct covering P1 with

Galois group G and monodromy mi = ord(ai) over the point ti. Varying

the branch points t = (t1, . . . , tr) we obtain a (r − 3)-dimensional family

of curves C → B, as discussed in Section 1.3, where B parametrizes all

admissible vectors of branch points, i.e. all r-uples of distinct points in P1.

The fiber over a fixed point t ∈ B is the normalization of the affine curve

(see [60]):

ym =
∏

i=1,...,r

(x− ti)ai . (2.1.1)

There is an action of G on C given by the rule ζ ·(x, y, t) = (x, ζ ·y, t), ζ ∈ G.

This motivates the following:

Definition 2.1.2. Two triples (m, r,a) and (m′, r′,a′) are equivalent if m =

m′, r = r′ and if the class of a and a′ in
(
Z/mZ

)r
are in the same orbit

under (Z/mZ)∗×Sr, where (Z/mZ)∗ acts diagonally by multiplication, and

the symmetric group Sr acts by permutations of indices.

Now, once a triple (m, r,a) is fixed, we want to give an explicit expression

for a basis of the space of holormorphic one forms H0(Ct,KCt). First of

all, notice that since the group G acts on Ct, there is a decomposition

H0(Ct,KCt) =
⊕m−1

n=0 Vn, where Vn’s are the subspaces of 1-forms ω such

that ζ ·ω = ζ−nω, being ζ the primitive m-th root of unity. Take n ∈ Z/mZ,

i ∈ {1, . . . , r} and consider the following data:

dn = −1 +

N∑
i=1

〈
−nai
m

〉
, l(i, n) =

⌊
−nai
m

⌋
, (2.1.2)

where 〈x〉 and bxc denote, respectively, the fractional and integral part of x.

The integer dn is exactly the dimension of the n-th eigenspace Vn, while

the combinatorial data l(i, n) is useful to define the following differential

forms (expressed in model (2.1.1)):

ωn,ν = yn(x− t1)ν
N∏
i=1

(x− ti)l(i,n)dx. (2.1.3)
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Note that these only depend on the pair (nmodm, ν). We have the following

result (see [60], [30]).

Theorem 2.1.3. Let n ∈ Z/mZ, with n 6= 0. The forms ωn,ν for 0 ≤ ν ≤
dn − 1 are regular 1-forms on Ct, and they are a basis of

Vn = {ω ∈ H0(Ct,KCt) such that ζ · ω = ζ−nω}.

Notice that if two forms lies in the same eigenspace, then they differ from

a factor (x− t1)k. More precisely ωn,ν = (x− t1)νωn,0.

In the following, we want to write down forms ωn,ν in a different way,

using the relation between x and y given in expression (2.1.1). We show

that, under some weak hypothesis, y is a local coordinate, so using equation

(2.1.1) it is possible to cut out the dependence from the variable x. We start

differentiating expression (2.1.1): if ym = g(x) :=
∏r
i=1(x − ti)ai describes

the affine curve, then

mym−1dy = g′(x)dx. (2.1.4)

We claim that if there exists at least one ai = 1 (assume a1 = 1 and

t1 = 0), then y is local coordinate around zero. In fact in that case:

g(x) =

r∏
i=1

(x− ti)ai = x

r∏
i=2

(x− ti)ai = xh(x).

Since h(0) 6= 0 (because ti’s are all distinct) and g′(x) = h(x) + xh′(x),

necessarily g′(0) 6= 0.

In this case, since y is a local coordinate around 0, one can write, locally,

x = ϕ(y) = g−1(ym). Substituting in expression (2.1.3) and using equation

(2.1.4), locally around 0 we get:

ωn,ν = ynxν
N∏
i=1

(x− ti)l(i,n) dx =

= ynϕ(y)ν
N∏
i=1

(ϕ(y)− ti)l(i,n)

(
mym−1

g′(ϕ(y))

)
dy =

=
m

g′(ϕ(y))
yn−1ϕ(y)ν

N∏
i=1

(ϕ(y)− ti)l(i,n)+ai dy.

(2.1.5)

From now on, we will always assume t1 = 0 without loss of generality.
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2.2 Gauss-Wahl maps

The first Gaussian map was introduced in [85] to study deformations of

the cone over the canonical curves. The name Gaussian derives from the

correspondence between the first Gaussian map of a non-hyperelliptic curve

relative to the canonical bundle and the classical Gauss map, as we will see

in Remark 2.2.4. The first Gaussian map lies in a hierarchy of maps, called

(generalized) Gaussians. Although there are several results about the first

Gaussian map, very little is known about Gaussian maps of higher order. We

start this section giving the general definitions, mainly following Wahl [88].

Let C be a smooth projective curve, and let ∆ := {(x, x) ∈ C × C : x ∈
C} ⊂ S := C ×C be the diagonal. Consider I∆ to be the ideal sheaf of the

diagonal and take its powers Ik. It is possible to prove that Ik sits in the

short exact sequence

0→ Ii+1
∆ → Ii∆ → SiΩ1

C → 0, (2.2.1)

where SiΩ1
C is identified to its image via the diagonal map.

Consider p1 : S → C and p2 : S → C the projections on the first and the

second component respectively, take L and M line bundles on C and define

L�M := p∗1L⊗ p∗2M : it is a well defined line bundle on S. Tensoring short

exact sequence (2.2.1) with L�M and taking global sections we obtain:

0→ H0(S, Ii+1
∆ ⊗L�M)→ H0(S, Ii∆ ⊗L�M)→ H0(S, SiΩ1

C ⊗L⊗M).

The Künneth formula gives H0(S,L �M) ∼= H0(C,L) ⊗H0(C,M). Set

Ri(L,M) := H0(S, Ii∆ ⊗ L�M). We have:

0→ Ri+1(L,M)→ Ri(L,M)
µi,L,M−−−−→ H0(C, SiKC ⊗ L⊗M). (2.2.2)

Definition 2.2.1. The map µi,L,M is called i-th generalised Gaussian map.

From exact sequence (2.2.2) it is clear that the domain of the i-th Gaussian

map is the kernel of the previous one:

µi,L,M : kerµi−1,L,M → H0(SiKC ⊗ L⊗M). (2.2.3)

Moreover Gaussian maps of even, respectively odd, order vanish identically

on skew-symmetric, respectively symmetric, tensors (see e.g. [88]). We will
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exclusively deal with Gaussian maps of order one and two, assuming also

that line bundles L and M coincide. Denote µi,L := µi,L,L. We give the

following definition.

Definition 2.2.2. The map µi,K is called i-th Gauss-Wahl map.

Notice that the Gaussian map µ0,L,M is the classical multiplication map:

µ0,L,M : H0(C,L)⊗H0(C,M)→ H0(C,L⊗M),

s⊗ t 7→ st.
(2.2.4)

Many surjectivity results about this map are known, relating the rank of

this particular Gaussian map to the geometry of the curve C. These include

(see e.g. [5, Section 3.2]):

1. (Noether) If C is non-hyperelliptic, then µ0,K is surjective;

2. (Petri) If L is very ample (g > 0) then µ0,K,L is surjective;

3. (Castelnuovo) If degL ≥ 2g and degM ≥ 2g + 1, then µ0,L,M is

surjective.

In the following we focus on the first Gauss-Wahl map and the second

Gauss-Wahl map respectively.

2.2.1 The first Gauss-Wahl map

As previously said, the domain of the first Gauss-Wahl map coincides with

the kernel of the multiplication map of sections of the canonical bundle.

Since µ0,K identically vanishes on skew-symmetric tensors, the following

decomposition holds:

R1(K) = Λ2H0(C,K)⊕ I2(K),

where I2(K) is the kernel of S2H0(C,K) → H0(C,K2). Since the first

Gauss-Wahl map vanishes on symmetric tensors, one can write:

µ1 := µ1,K : Λ2H0(C,K)→ H0(C,K3), (2.2.5)



2.2. GAUSS-WAHL MAPS 53

that is essentially the map associating f ⊗ g 7→ f dg − g df . More precisely,

fix a basis {ωi} of H0(C,K). In local coordinates assume that ωi = fi(z)dz.

Then the local expression of µ1(ωi ∧ ωj) is the following:

µ1(ωi ∧ ωj) = (f ′i(z)fj(z)− fi(z) f ′j(z)) dz3. (2.2.6)

Consequently the zero divisor of µ1(ωi ∧ ωj) is twice the base locus of the

pencil 〈ωi, ωj〉 plus the ramification divisor of the associated morphism (see

for example [24], [88]). One can prove that this definition agrees with the

general one given in line (2.2.2). It is easy to check that the first Gauss-Wahl

map is independent of the choice of local generators, and that if ωi ∧ωj = 0

then µ1(ωi ∧ ωj) = 0 (see e.g. Wahl [86]).

From the definition follows that the first Gauss-Wahl map is injective on

decomposable vectors, since f dg − g df = f2d(g/f) = 0 implies f ∧ g = 0.

Moreover we point out that it is G-equivariant:

Theorem 2.2.3. Let g : C → C be an automorphism of the curve C. Then

the following diagram commutes:

Λ2H0(C,K)
µ1 //

g∗

��

H0(C, 3K)

g∗

��
Λ2H0(C,K)

µ1 // H0(C, 3K)

(2.2.7)

Proof. Consider g forms ωi ∈ H0(C,K), i = 1, . . . g, and their local expres-

sions ωi = fi(z)dz. Take an automorphism g : C → C and call z = g(w)

the transformed coordinate. We will check directly that µ1 ◦ g∗ = g∗ ◦ µ1.

We start computing µ1 ◦ g∗. Observe that g∗ acts on forms ωi as g∗ωi =

fi(g(w))g′(w)dw. We compute:

µ1

(∑
i,j

aij g
∗ωi ∧ g∗ωj

)
=
∑
i,j

aij

[
(fi(g(w))g′(w))′fj(g(w))g′(w)−

− (fi(g(w))g′(w))(fj(g(w))g′(w))′
]
(dz)3 =

=
∑
i,j

aij

[(
f ′i(g(w))(g′(w))2 + fi(g(w))g′′(w)

)
fj(g(w))g′(w)−

− fi(g(w))g′(w)
(
f ′j(g(w))(g′(w))2 + fj(g(w))g′′(w)

)]
(dw)3 =

=
∑
i,j

aij(g
′(w))3

(
f ′i(g(w))fj(g(w))− fi(g(w))f ′j(g(w)

)
(dz)3.
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We claim that one obtains the same expression considering g∗ ◦ µ1. In fact

if µ1(
∑

ij aij ωi ∧ ωj) = α(z)(dz)3, then:

g∗ : α(z)(dz)3 7→ α(g(w))(g′(w))3(dw)3, (2.2.8)

which is the same as expression (2.2.1). This concludes the proof.

Remark 2.2.4. Observe that, in the non-hyperelliptic case, the first Gauss-

Wahl map corresponds to the Gauss map in the usual sense1 (see Wahl [88]).

To see this, consider a non-hyperelliptic curve C embedded in Pg−1 via the

canonical bundle K. The (classical) Gauss map sends C to the Grassman-

nian G(1, g − 1) of lines in Pg−1, associating to each point its tangent line

followed by the Plücker embedding into PN , where N = g(g − 1)/2 − 1.

Locally, take P ∈ C, with local coordinate t. If H0(K) = 〈ω0, . . . ωg−1〉, and

ωi = fi(t)dt, where fi(t) are regular functions vanishing at P and f0 ≡ 1, the

Plücker embedding of the point of G(1, g − 1) corresponding to the tangent

line in P is found considering the 2× 2 minors of the matrix:(
1 f1(t) f2(t) . . . fg−1(t)

0 f ′1(t) f ′2(t) . . . f ′g−1(t)

)
,

which is the same as the first Gauss-Wahl map defined in (2.2.6).

To introduce the techniques used in the following, we deal here with the

special problem of computing the rank of the first Gauss-Wahl map on the

hyperelliptic locus (g ≥ 2), see [24], [88].

Theorem 2.2.5. If C is a hyperelliptic curve of genus g ≥ 2, the rank of

the first Gauss-Wahl map is 2g − 3.

Proof. Let C be a hyperelliptic curve of genus g, whose affine equation is

y2 = f(x), where f is a polynomial of degree 2g + 1 with simple roots.

Observe that differentiating the affine equation one gets 2y dy = f ′(x) dx,

that implies:
dx

y
=

2dy

f ′(x)
. (2.2.9)

Since y and f ′(x) have disjoint vanishing loci, this shows that dx/y is a

holomorphic 1-form on C. In particular, since forms xidx/y and xjdx/y are

1Actually, this is true for every first Gaussian map µ1,|L| with L very ample.
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independent for every i 6= j, one can find a basis for the space of holomorphic

1-forms as follows:

H0(C,K) =
〈
ωi := xi

dx

y

∣∣∣ 0 ≤ i ≤ g − 1
〉
. (2.2.10)

Applying the first Gauss-Wahl map to ωi ∧ ωj one gets:

µ1(ωi ∧ ωj) = (ixi+j−1 − jxi+j−1)

(
dx

y

)3

=

= (i− j)xi+j−1

(
dx

y

)3

.

(2.2.11)

We want to compute the dimension of the span of {µ1(ωi ∧ωj)
∣∣ 0 ≤ i < j ≤

g− 1}. Notice that k = i+ j− 1 takes all values between 0 and g− 4: there

are exactly 2g − 3 distinct powers of x. Hence our claim.

Actually it is possible to prove that 2g−3 is a lower bound for the rank of

µ1, which is reached if and only if the curve is hyperelliptic (see [46], [87]).

Theorem 2.2.6. If g ≥ 4, then rankµ1 ≥ 2g − 3, with equality if and only

if C is hyperelliptic.

For high genus the rank of µ1 is bounded above by the dimension of the

target space, which is 5g−5, and by the previous theorem is bounded below

by 2g − 3. As remarked in [24], there are precisely 3g − 3 values in this

interval, number which coincides with the dimension of the moduli space

Mg. Therefore one can wonder if all values are reached.

Another remarkable result is due to Wahl [85]. It concerns Gauss-Wahl

maps of curves over K3-surfaces:

Theorem 2.2.7. If C is a smooth curve which lies on a K3-surface, then

its Gauss-Wahl map is not surjective.

There are many other results on the first Gauss-Wahl map: Ciliberto and

Miranda found that it is generically injective for g ≤ 8 (see [25]). Later

Ciliberto, Harris and Miranda proved that it is surjective for the general

curve of genus g = 10 and g ≥ 12 ([23], see also Voisin’s proof in [84]).

Recalling that the general curve of genus g = 11 lies on a K3-surface, this

result is the best possible.
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Table 2.1: Generic behaviour of µ1 : Λ2H0(C,K)→ H0(K3)

3 ≤ g ≤ 8 g = 9 g = 10 g = 11 g ≥ 12

µ1 injective 1-dim kernel isomorphism corank 1 surjective

In the following we give a list of results concerning the rank of the first

Gauss-Wahl map on some specific loci: in 1992 Ciliberto and Miranda com-

puted the rank of the first Gauss-Wahl map on the generic curve in the

trigonal locus (rankµ1 = 4g − 10), bielliptic locus (rankµ1 = 3g − 3) and

over smooth plane quintics (rankµ1 = 4g−9) [23]. The general result on the

trigonal locus has been generalized to every trigonal curve by Brawner [15].

In its Ph.D. thesis [14] Brawner also computed a bound for the rank of the

first Gauss-Wahl map on the tetragonal locus (rankµ1 ≤ 5g− 14). More re-

cently, Ballico and Fontanari proved the surjectivity of the first Gauss-Wahl

map on curves that are complete intersections [6].

2.2.2 The second Gauss-Wahl map

Recalling exact sequence (2.2.2), the second Gauss-Wahl map is:

µ2 := µ2,K : R2(K)→ H0(C,K4), (2.2.12)

where R2(K) = ker(µ1 : Λ2H0(C,K)⊕ I2(K)→ H0(K3)). Since µ1 identi-

cally vanishes on I2(K) and since µ2 identically vanishes on skew-symmetric

tensors, we can consider:

µ2 : I2(K)→ H0(C,K4). (2.2.13)

Let us describe it in local coordinates: fix a basis {ωi} of H0(C,K), and

assume that, locally, ωi = fi(z)dz. Take a linear combination
∑

i,j aijωi⊗ωj
lying in the I2(K), so that

∑
i,j aijωi ωj = 0. Then the local expression of

µ2(ωi � ωj) is the following:

µ2(
∑
i,j

aij ωi ⊗ ωj) =
∑
i,j

aijf
′
i(z)f

′
j(z)(dz)

4. (2.2.14)

Remark 2.2.8. By the very definition of the I2(K) the sum
∑

i,j aijfi(z)fj(z)

is equal to zero. By symmetry, this implies that the sum
∑

i,j aijf
′
i(z)fj(z)

vanishes as well. Hence differentiating
∑

i,j aijf
′
i(z)fj(z) ≡ 0 one gets∑

i,j

aijf
′′
i (z)fj(z) +

∑
i,j

aijf
′
i(z)f

′
j(z) ≡ 0.
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This shows that the local definition given in expression (2.2.14) is equivalent

to µ2(
∑

i,j aij ωi ⊗ ωj) := −
∑

i,j aijf
′′
i (z)fj(z)(dz)

4.

As in the case of the first Gauss-Wahl map, one can easily prove that

this definition agrees with Definition 2.2.2, and that is independent from

the choice of local generators. Moreover, it is G-equivariant as well:

Theorem 2.2.9. Let g : C → C be an automorphism of the curve C. Then

the following diagram commutes:

I2(K)
µ2 //

g∗

��

H0(C, 4K)

g∗

��
I2(K)

µ2 // H0(C, 4K)

(2.2.15)

Proof. Consider forms ωi ∈ H0(C,K), i = 1, . . . , g, and their local expres-

sions ωi = fi(z)dz. Take an automorphism g : C → C and call z = g(w) the

transformed coordinate. As in Theorem 2.2.3, we will check directly that

µ2 ◦g∗ = g∗ ◦µ2. We start computing µ2 ◦g∗. Observe that g∗ acts on forms

ωi as g∗ωi = fi(g(w))g′(w)dw. We compute:

µ2

(∑
i,j

aijg
∗ωi ⊗ g∗ωj

)
= µ2

(∑
i,j

aijfi(g(w))g′(w)dw ⊗ fj(g(w))g′(w)dw
)

=

=
∑
i,j

aij

(
(f ′i(g(w))(g′(w))2 + fi(g(w))g′′(w)

)
·

·
(
f ′j(g(w))(g′(w))2 + fj(g(w))g′′(w)

)
(dw)4 =

=
∑
i,j

aijf
′
i(g(w))f ′j(g(w))(g′(w))4(dw)4+

+
∑
i,j

aijf
′
i(g(w)fj(g(w))(g′(w))2g′′(w)(dw)4+

+
∑
i,j

aijfi(g(w))f ′j(g(w))(g′(w))2g′′(w)(dw)4+

+
∑
i,j

aijfi(g(w))fj(g(w))(g′′(w))2(dw)4 =

=
∑
i,j

aijf
′
i(g(w))f ′j(g(w))(g′(w))4(dw)4.
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We claim that one obtains the same expression considering g∗ ◦ µ2. In

fact if µ2(ω1 ∧ ω2) = α(z)(dz)4, then:

g∗ : α(z)(dz)4 7→ α(g(w))(g′(w))4(dw)4, (2.2.16)

which is the same as expression (2.2.2). This concludes the proof.

Since elements in the domain have a more complicated structure and

higher order derivatives appear, dealing with Gauss-Wahl maps of greater

order is much more difficult then dealing with the first Gauss-Wahl map.

In the following we will show a trick allowing, in some cases, to translate

the problem of studying the second Gauss-Wahl map on a problem on first

Gauss-Wahl maps. We borrow ideas and notations from [27]. We start

recalling the following useful bijection (see e.g. [5, p. 261]):

{[Q] ∈ P(I2(K)) | rank(Q) ≤ 4}

l

{{L,K − L, V,W} |V ⊂ H0(L),dimV = 2, W ⊂ H0(K − L),dimW = 2}.

One can construct a quadric in the I2(K) from two adjoint line bundles L,

K−L, with at least two global sections as follows: let V = 〈x1, x2〉 ⊂ H0(L)

andW = 〈t1, t2〉 ⊂ H0(K−L). Then the quadricQ = x1t1�x2t2−x1t2�x2t1
lies in S2H0(K) by construction. Moreover it is immediate to see that it

lies in the I2(K), in fact m(Q) = x1t1x2t2 − x1t2x2t1 = 0.

This correspondence has the following application:

Theorem 2.2.10. If a quadric Q of rank at most 4 corresponds to {L,K −
L, V,W} and V = 〈s0, s1〉, W = 〈t0, t1〉, then

µ2(Q) = µ1,L(s0 ∧ s1)µ1,K−L(t0 ∧ t1). (2.2.17)

In particular µ2(Q) 6= 0.

Proof. By construction, Q = (s0t0)⊗(s1t1)−(s0t1)⊗(s1t0) ∈ I2(K). Locally

si = gil, where l is a local section of L, ti = hil
−1dz, so

µ2(Q) = ((g0h0)′(g1h1)′ − (g0h1)′(h0g1)′)(dz)4 =

= (g1g
′
0−g0g

′
1)(h1h

′
0−h0h

′
1)(l2dz)((l−1dz)2dz) = µ1,L(s0∧s1)µ1,K−L(t0∧t1).
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This theorem is used in [27] to compute the rank of the first Gauss-Wahl

map for hyperelliptic and trigonal curves. More precisely, the following

holds:

Theorem 2.2.11. Let C be a hyperelliptic curve of genus g ≥ 3. Then

rankµ2 = 2g − 5,

and its image has the Weierstrass points as base points.

Theorem 2.2.12. Let C be a trigonal non-hyperelliptic curve of genus g ≥
8. Then

rankµ2 = 4g − 18,

and its image has the ramification points of the g1
3 as base points.

Here, p ∈ C is a basepoint for Im(µ2) if µ2(Q)(p) = 0 for every Q ∈ I2(K).

In the same paper, the authors proved that for any non-hyperelliptic, non-

trigonal curve of genus g ≥ 5 the image of µ2 has no base points.

Differently from the case of the first Gauss-Wahl map, there is not any

obstruction to the surjectivity of the second Gauss-Wahl map for a curve on

a K3-surface2. Nevertheless it is possible to prove that every curve lying on

an abelian surface has non-surjective second Gauss-Wahl map [31].

Theorem 2.2.13. Let C be a curve contained in an abelian surface. Then

the corank of µ2 is at least 2.

As in case of µ1, we expect that the general curve has maximal rank in

most of the cases. Notice that, for dimensional reasons, surjectivity can be

expected for curves of genus g ≥ 18. Calabri, Ciliberto and Miranda proved

that the second Gauss-Wahl map has maximal rank for general curves of

every genus [17]:

Theorem 2.2.14. The second Gauss-Wahl map for a general curve of every

genus g has maximal rank, namely it is injective for g ≤ 17 and surjective

for g ≥ 18.

We conclude this section stating a very general result, that gives a lower

bound for the second Gauss-Wahl map of every curve of genus g.

Theorem 2.2.15 (Proposition 2.5, [27]). For any curve of genus g ≥ 4,

rankµ2 ≥ g − 3. (2.2.18)
2It is possible to prove that the general curve on a polarized K3-surface of degree 2g−2

has surjective µ2, if the genus is sufficiently high (g > 280) [28].
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2.3 Second fundamental form and second Gaus-

sian maps

There is a remarkable link between the second fundamental form of j(Mg) ⊂
Ag and the second Gauss-Wahl map: as we will see in this section, the second

Gaussian map lifts to the second fundamental form. This property allows

one to study the curvature of the moduli space Mg and totally geodesic

submanifolds, using results on the more tractable Gaussian maps.

Let C be a curve. We start considering the map dual to the second

fundamental form, which we have already seen in Section 1.6:

ρ : I2(K)→ S2H0(C, 2K). (2.3.1)

The following result has been stated in an unpublished paper of Green and

Griffiths [48], and later proved3 by Colombo, Pirola and Tortora [32]:

Theorem 2.3.1. Let m : S2H0(C, 2K)→ H0(C, 4K) be the multiplication

map. Then the following diagram

I2(K)
ρ //

µ2

��

S2H0(C, 2K)

m
��

H0(C, 4K) H0(C, 4K)

(2.3.2)

is commutative up to a constant.

The theorem shows that the map ρ is the lifting of the second Gauss-

Wahl map, and suggests the possibility of making explicit computations, at

least in case of curves. This seemed, from the beginning, a step towards

understanding the curvature of the moduli space.

The strategy of the proof of Theorem 2.3.1 relies in comparing the values

of µ2(Q) and values of (m ◦ ρ)(Q) over all points p in some open subset

U ⊂ C. While µ2(Q)(p) can be easily computed using explicit expression

(2.2.14), to evaluate (m ◦ ρ)(Q)(p) it is convenient to define the dual map

m∗ in term of particular elements in H1(C, TC), called Schiffer variations.

We briefly recall their definition.

3Actually the result in [32] holds in a more general setting: it concerns not only the

canonical bundle, but any line bundle on a curve.



2.3. SECOND FUNDAMENTAL FORMAND SECONDGAUSSIANMAPS61

Schiffer variations Fix a point p over the curve C and consider the short

exact sequence of tangent bundle: 0 → TC → TC(p) → TC(p)
∣∣
p
→ 0. The

coboundary gives an injection H0(TC(p)
∣∣
p
) ∼= C ↪→ H1(C, TC). Elements

in the image are called Schiffer variations at p. More precisely, fix a chart

(U, z) centered in p and take a bump function b ∈ C∞0 (U) which is equal to

1 in a neighbourhood of p. Define

θ :=
∂̄b

z
· ∂
∂z
. (2.3.3)

θ is a Dolbeault representative of a Schiffer variation at p. The map

ξ : TC → H1(C, TC), u = λ
∂

∂z
(p) 7→ ξu := λ2[θ] (2.3.4)

does not depend on the choice of the coordinates. It is well known that

Schiffer variations generate H1(C, TC) (see [4, p.175]). Sometimes we will

write ξp instead of ξu.

Coming back to the idea behind Theorem 2.3.1, if νp is the evaluation map

at p, then, up to a constant, m∗(νp) = ξp � ξp. Thus (m ◦ ρ)(Q)(p) = (ξp �
ξp)(ρ(Q)), and the right term is computed using the explicit representation

(2.3.3) of the Schiffer variation at p.

In particular it is possible to give an explicit expression for the second

fundamental form when evaluated on the product of two Schiffer variations.

While the computation of ρ(Q)(ξp � ξp) goes through a computation of the

second Gaussian map, it is much harder to compute the second fundamental

form on ξp � ξq when p 6= q. The formula contains, in fact, the evaluation

at q of a meromorphic 1-form on the curve, called ηp, which has a double

pole at p and is defined by Hodge theory. We explain how this form arises

in the following paragraph.

The form ηp Consider a curve C of genus g ≥ 4, and take a point p ∈ C.

Consider the space H0(C,KC(2p)) of meromorphic 1-forms on C with a

double pole on p, and notice that it goes injectively into H1(C − p,C). By

the Mayer-Vietoris sequence, the isomorphism H1(C,C) ∼= H1(C − p,C)

holds, thus there is an injection:

jp : H0(C,KC(2p)) ↪→ H1(C,C). (2.3.5)

Remark that the holomorphic part H1,0(C) is inside the image of jp. More-

over, since h0(C,KC(2p)) = g+1, the preimage of the anti-holomorphic part,
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j−1
p (H0,1(C)), has dimension 1. Now, fix a local chart (U, z) centered in p.

Then there exists a unique element ϕ on this line such that its expression

on U − p is

ϕ :=

(
1

z2
+ h(z)

)
dz, (2.3.6)

where h is a holomorphic function. One can finally define the map ηp as

follows:

ηp : TpC −→ H0(C,KC(2p)),

u = λ
∂

∂z
(p) 7−→ ηp(u) = λϕ.

(2.3.7)

An easy computation shows that ηp does not depend on the choice of the

local coordinate.

The following is the key theorem for the whole chapter, due to Colombo,

Pirola and Tortora [32]. See also [30].

Theorem 2.3.2. Let C be a non-hyperelliptic curve of genus g ≥ 4. Let

p, q ∈ C and u ∈ TpC, v ∈ TqC. Then we have

ρ(Q)(ξu � ξv) = −4πiηp(u, v)Q(u, v),

ρ(Q)(ξu ⊗ ξu) = −2πiµ2(Q)(u⊗4).
(2.3.8)

Using this theorem, the computation of the second fundamental form on

the product of Schiffer variations reduces to the evaluation of the second

Gaussian map and to the study of the form ηp. Although this important

result holds, in general it seems rather hard to control the behaviour of ηp in a

way to get constraints on the second fundamental form. Moreover Theorem

2.3.2 concerns the second fundamental form of the period map j :Mg → Ag.
To study whether a submanifold X ⊂ Mg is totally geodesic, one needs to

study the second fundamental form ρX of the inclusion X → Ag. The

following diagram clarifies the connection between the two maps, ρ and ρX ,

when X is the variety described by a family {Ct}t of curves covering P1 with

Galois group G.

0 // I2(KCt) //
� _

��

S2H0(KCt)
m //

=

��

H0(2KCt) //

����

0

0 // N∗ // S2H0(KCt) // H0(2KCt)
G // 0

(2.3.9)
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Here 0 → I2(KCt) → S2H0(KCt) → H0(2KCt) → 0 is the cotangent

exact sequence of the period map j : Mg → Ag at the point [Ct], whereas

0 → N∗ → S2H0(KCt) → H0(2KCt)
G → 0 is cotangent exact sequence

relative to the immersion i : X → Ag. Since the second fundamental form

is G-equivariant (see [30, Theorem 5.3]), diagram (2.3.9) implies that:

ρ(Q)(v1 � v2) = ρX(Q)(v1 � v2), ∀ v1, v2 ∈ H1(TC)G,

∀Q ∈ I2(K)G.
(2.3.10)

Theorem 2.3.2 has been used in [29] to compute the curvature of the

restriction to Mg of the Siegel metric. The authors also gave an explicit

formula for the holomorphic sectional curvature ofMg in the direction ξp in

terms of the holomorphic sectional curvature of Ag and the second Gaussian

map.

We conclude this section observing that it is possible to give a more

intrinsic description of the form ηp: Colombo, Frediani and Ghigi proved

that as p varies on the curve C the form ηp glues to give a holomorphic

section η̂ of the line bundle KS(2∆), being S = C × C and ∆ ⊂ S the

diagonal [30]. The authors also proved that the second fundamental form

coincides with the multiplication by η̂. The result is the following (notice

that, by Künneth formula H0(S, 2KS) ∼= H0(C, 2KC) ⊗ H0(C, 2KC); in

particular I2(KC) ⊂ H0(S,KS(−2∆))):

Theorem 2.3.3. The following diagram commutes:

I2(K)
ρ //

� _

��

S2H0(C, 2K)

m
��

H0(S,KS(−2∆))
Q 7→Q·η̂ // H0(S, 2KS)

(2.3.11)

In [30] the theorem just stated is used to find constraints on the dimension

of totally geodesic submanifold of Ag contained in the Jacobian locus. We

mention the following results:

Theorem 2.3.4. Assume that C is a k-gonal curve of genus g, with g ≥ 4

and k ≥ 3. Let Y be a germ of a totally geodesic submanifold of Ag which is

contained in the Jacobian locus and passes through J([C]) = [J(C)]. Then

dimY ≤ 2g + k − 4. (2.3.12)
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Since the gonality always satisfies k ≤
⌊g+3

2

⌋
, this immediately yields a

bound depending only on the genus g:

Corollary 2.3.5. If g ≥ 4 and Y is a germ of a totally geodesic submanifold

of Ag contained in the Jacobian locus, then

dimY ≤ 5

2

(
g − 1

)
. (2.3.13)

The last results allow to conclude that the k-gonal locus is not totally

geodesic in Ag, if g ≥ 4, k ≥ 3. In fact the dimension of the k-gonal locus

in this case is 2g + 2k − 5 > 2g + k − 4: the statement immediately follows

from Theorem 2.3.4 [30].

2.4 Bielliptic locus

A curve C is called bielliptic if it is double cover of an elliptic curve E:

C
2:1−−→ E

2:1−−→ P1. (2.4.1)

In this section we will study the locus of bielliptic curves of genus g, which

we will denote by Bg. We will first make some general considerations on Bg,
then we will prove that the locus is not totally geodesic if g ≥ 4 (while it is

for g = 3, see example (2) in the list of Section 1.7). We will conclude this

section performing a computation for the rank of the second Gauss-Wahl

map on this loci, and giving a bound for it.

We start recalling some elementary results on Bg, which will be useful to

clarify the set-up and basic properties of this locus. First of all we point

out that from Castelnuovo-Severi inequality (see for instance [3]) it follows

immediately that every bielliptic curve with genus g ≥ 4 can not be hyper-

elliptic (see [8]). We compute the dimension of the bielliptic locus.

Lemma 2.4.1. The bielliptic locus has dimension 2g − 2.

Proof. Using Riemann Hurwitz formula (1.1.1) we get that the cover C → E

has 2g− 2 ramification points. Since the moduli space of elliptic curves has

dimension 1 and we can fix, using automorphisms of E, a point on E, the

dimension of the family is exactly 2g − 2.
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It is known that the bielliptic locus Bg is irreducible (see e.g. [8]). In the

following, we give a different proof.

Lemma 2.4.2. The bielliptic locus is irreducible.

Proof. The action of the mapping class group Map1,[2g−2] on Γ1,2g−2 is com-

pletely described in Theorem 1.4.16. Notice that the ξ-twist tξ1
1,d

maps

α 7→ αγd, and let other generators invariant. So it induces the action given

by θ(α) 7→ θ(γdα), and the identity on the other generators. In the same

way, the ξ-twist tξ2
1,d

induces the action given by θ(β) 7→ θ(γdβ), and the

identity on the other generators. This gives that the system of genera-

tors 〈θ(γ1), . . . , θ(γr); θ(α), θ(β)〉 = 〈z, . . . , z; 1, 1〉 and systems of generators

〈z, . . . , z; z, z〉 = 〈z, . . . , z; 1, z〉 = 〈z, . . . , z; z, 1〉 are Hurwitz equivalent. So

all possible choices for the epimorphism Γ1,2g−2 � Z/2Z are equivalent.

This implies that the locus is irreducible.

Now we prove, with a simple dimension count, that every quadric in the

bielliptic locus is invariant via the bielliptic involution.

Lemma 2.4.3. Call σ the bielliptic involution. Then in the bielliptic locus

every quadric is invariant, that is:

I2(K) = I2(K)σ. (2.4.2)

Proof. If C is a bielliptic curve, H0(C,KC) splits in the invariant part, which

satisfies H0(C,KC)σ ∼= H0(E,KE), and the anti-invariant one:

H0(C,KC) ∼= H0(E,KE)⊕H0(C,KC)−. (2.4.3)

We decompose also the symmetric product S2H0(C,KC) as the sum of its

invariant and anti-invariant parts. More precisely:

S2H0(C,KC) =
(
S2H0(C,KC)

)σ ⊕ (S2H0(C,KC)
)−
, where:(

S2H0(C,KC)
)σ ∼= S2H0(E,KE)⊕ S2H0(C,KC)−;(

S2H0(C,KC)
)− ∼= H0(E,KE)⊗H0(C,KC)−.

(2.4.4)

We can directly compute: dim
(
S2H0(C,KC)

)−
= h0(C,KC)− = g − 1.

Since h0(C, 2KC)σ is the dimension of the bielliptic locus, we have h0(C, 2KC)− =
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h0(C, 2KC) − h0(C, 2KC)σ = 3g − 3 − (2g − 2) = g − 1. From short exact

sequence

0→ I2(KC)− → S2H0(C,KC)− → H0(C, 2KC)− → 0,

we get I2(KC)− = (0), so I2(KC) = I2(KC)σ. Hence the claim.

The previous lemma allows us to find an upper bound for the rank of the

second Gauss-Wahl map when evaluated on the bielliptic locus. This is the

content of the following lemma.

Lemma 2.4.4. On the bielliptic locus the second Gauss-Wahl map has rank

at most 5g − 5.

Proof. Recall from diagram (2.2.15) that the second Gauss-Wahl map is G-

equivariant. This implies that on the bielliptic locus, the second Gauss-Wahl

map takes values on the invariant part of H0(C, 4KC):

µ2 : I2(KC)σ → H0(C, 4KC)σ. (2.4.5)

Therefore, in order to bound the corank of µ2, we try to compute h0(C, 4KC)−.

First of all, notice that we can consider elements of H0(C, 4KC)− obtained

via the multiplication of an invariant 1-form with a section of H0(C, 3KC)−,

that is:

H0(KC)σ ⊗H0(3KC)− ↪→ H0(4KC)−. (2.4.6)

Since H0(C,KC)σ = 1, this map is injective. This shows that the dimension

of H0(C, 4KC)− is bounded below by the dimension of H0(C, 3KC)−. We

try to compute the last one.

Analogously as before, consider elements in H0(3KC)− obtained as a

product between an anti-invariant 1-form with a section of H0(C, 2KC)σ,

that is, consider the map H0(KC)−⊗H0(2KC)σ → H0(3KC)−. If we fix an

element η ∈ H0(KC)− and we consider the restriction of the multiplication

map to

〈η〉 ⊗H0(2KC)σ ↪→ H0(3KC)−, (2.4.7)

we get an injective map, since one of the two vector spaces in the tensor

product has dimension 1. Moreover h0(2KC)σ = 2g−2, that is the dimension

of the bielliptic locus: we obtain

h0(4KC)− ≥ h0(3KC)− ≥ 2g − 2.

This implies corankµ2 ≥ 2g − 2, so rankµ2 ≤ 5g − 5 as required.
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In the next part we will prove that the moduli space of bielliptic curves

is not totally geodesic in Ag if the genus g(C) ≥ 4.

2.4.1 The bielliptic locus is not totally geodesic

In this section we will prove that the bielliptic locus is not totally geodesic.

We will consider separately case g = 4 and case g ≥ 5. Notice that in case

g = 3 we already know that the bielliptic locus is totally geodesic, since it

is one of the examples arising in Section 1.7.

We start studying case g ≥ 5. The trick for the proof is analogous to the

one used by Colombo, Frediani and Ghigi in [30] to bound the dimension of

germs of totally geodesic submanifolds contained in the Jacobian locus (see

Corollary 2.3.5): maps k : 1 over P1 are used to construct two adjoint line

bundles on the curve C and consequently a quadric Q ∈ I2(K). Theorem

2.3.2 translates the computation of the second fundamental form in Q in

the product of two first Gauss maps relative to the adjoint line bundles

(see Theorem 2.2.10). The problem of computing η in expression (2.3.2) is

avoided choosing a setting in which Q(u, v) vanishes.

Theorem 2.4.5. The bielliptic locus is not totally geodesic if g ≥ 5.

Proof. Consider a bielliptic curve C of genus g ≥ 5. It admits a g1
4 which we

call |F |. Fix a basis for H0(F ) = 〈x1, x2〉 and consider the adjoint g1
4 given

by |K −F |. If we compute, using Riemann-Hurwitz formula, the dimension

of its space of global sections we obtain:

h0(K − F ) = h0(F ) + deg(K)− deg(F )− g + 1 = g − 3.

Here the importance of the hypothesis g ≥ 5: in this case we can find

a pencil 〈t1, t2〉 ⊆ H0(K − F ). Using both the g1
4’s, we can construct a

quadric containing the canonical curve in the following way:

Q := x1t1 � x2t2 − x1t2 � x2t1 ∈ I2(KC). (2.4.8)

Notice that Q ∈ I2(KC) by construction. Also, since by Lemma 2.4.3 every

quadric in the bielliptic locus is invariant, Q ∈ I2(KC)σ.

Looking at equality (2.3.10), to prove that the subvariety ofMg made of

bielliptic curves is not totally geodesic it is enough to find a pair of tangent
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vectors v, w ∈ H1(C, TC)σ such that ρ(Q)(v�w) 6= 0. We will use Theorem

2.3.2 to evaluate ρ(Q) over Schiffer variations.

Consider two points p1, p2 ∈ C lying on the same fiber over a point p ∈ E
sufficiently general, that is non critical for |F |, |K −F | neither fixed for the

involution σ. We notice that since the bielliptic involution switches ξp1 and

ξp2 , the element ξp1 + ξp2 ∈ H1(C, TC)σ. Compute:

ρ(Q)((ξp1 + ξp2)� (ξp1 + ξp2)) = ρ(Q)(ξp1 � ξp1) + ρ(Q)(ξp2 � ξp2) + 2ρ(Q)(ξp1 � ξp2).

Since the map ρ is σ-equivariant, and the quadric Q also is, one has:

ρ(Q)(ξp2�ξp2) = ρ(Q)(ξσ(p1)�ξσ(p1)) = ρ(σ∗Q)(ξp1�ξp1) = ρ(Q)(ξp1�ξp1).

Putting together the previous equations one gets:

ρ(Q)((ξp1 + ξp2)� (ξp1 + ξp2)) = 2ρ(Q)(ξp1 � ξp1) + 2ρ(Q)(ξp1 � ξp2).

Consider term ρ(Q)(ξp1 � ξp2): from Theorem 2.3.2, ρ(Q)(ξp1 � ξp2) =

−4πi ηp1(p2)Q(p1, p2). Notice that, by construction, the quadric Q vanishes

when evaluated over point lying over the same fiber. In fact since p1 and p2

are in the same fiber for |F |, then [x1(p1) : x2(p1)] = [x1(p2) : x2(p2)]. So

there exists λ ∈ C∗ such that xi(p2) = λxi(p1) for i = 1, 2:

Q(p1, p2) =x1(p1)t1(p1)x2(p2)t2(p2) + x1(p2)t1(p2)x2(p1)t2(p1)−
− x1(p1)t2(p1)x2(p2)t1(p2)− x1(p2)t2(p2)x2(p1)t1(p1) =

= λx1(p1)t1(p1)x2(p1)t2(p2) + λx1(p1)t1(p2)x2(p1)t2(p1)−
− λx1(p1)t2(p1)x2(p1)t1(p2)− λx1(p1)t2(p2)x2(p1)t1(p1) =

= λx1(p1)x2(p1)
(
t1(p1)t2(p2) + t1(p2)t2(p1)−

− t1(p2)t2(p1)− t1(p1)t2(p2)
)

= 0.

(2.4.9)

This immediately implies that the mixed term ρ(Q)(ξp1 � ξp2) is equal to

0. Consider now ρ(Q)(ξp1�ξp1). It corresponds, up to scalar multiplication,

to the second Gauss-Wahl map µ2(Q). From Theorem 2.2.10 we know that

the second Gauss-Wahl map in our case decomposes as:

µ2(Q) = µ1,F (x1 ∧ x2)µ1,K−F (t1 ∧ t2).
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Furthermore µ1,F (x1∧x2) and µ1,K−F (t1∧t2) vanish, respectively, only over

critical points of |F | and |K − F |: since point p1 is non-critical for the two

maps we can conclude that

ρ(Q)(ξp1 � ξp1) = −2πiµ2(Q)(p1) 6= 0.

We found a tangent vector ξp1 + ξp2 ∈ H1(C, TC)σ such that ρ(Q)((ξp1 +

ξp2) � (ξp1 + ξp2)) 6= 0 where Q is an invariant quadric. So the bielliptic

locus is not totally geodesic if g ≥ 5.

Summarizing, we used the g1
4’s |F | and |K − F | of the bielliptic curve

to construct an invariant quadric in the I2(K). Then we found a pair of

elements in H1(C, TC)σ on which we are able to compute the second funda-

mental form. Since we have an explicit expression for the second fundamen-

tal form when evaluated on the product of two Schiffer variations, we find a

suitable combination of them that is invariant and annihilates the quadric Q.

Finally, the computation reduces to a product of two first Gaussian maps,

that we know to be different from 0. This prevents the possibility of being

totally geodesic.

Notice that we have considered separately cases g ≥ 5 and g = 4 because

in the latter case h0(K −F ) = 1, so one cannot construct a quadric of rank

4 using |F | and |K − F |. In case g = 4 we will fix the problem by using the

two g1
3’s of C: from Brill-Noether theory a linear serie |M | of degree 3 with

two global sections exists. First of all we prove that we obtain a second g1
3

by the adjoint linear system. It is different from |M |, and is switched with

|M | via the bielliptic involution.

Theorem 2.4.6. Let C be a smooth bielliptic curve of genus g = 4. Then

C admits two different g1
3’s switched by the bielliptic involution.

Proof. We start recalling that a bielliptic curve of genus g = 4 is non-

hyperelliptic. Its canonical model is a smooth complete intersection between

a quadric and a cubic in P3. From Brill-Noether theory follows that there

are exactly two g1
3’s over C, cut out by the lines of a ruling of the quadric

containing the canonical model of C (see e.g. [5, page 206]). We need to

prove that the two g1
3’s are switched by the bielliptic involution.

Call |F | a g1
3, and call ϕ the corresponding map ϕ : C → P1. Consider

the adjoint linear serie |K − F | and the induced map ψ : C → P1. Let σ be
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the bielliptic involution. We want to prove that ϕ ◦ σ = ψ. Since ϕ ◦ σ is a

g1
3 as well, it is enough to prove that ϕ ◦ σ 6= ϕ. Assume by contradiction

that ϕ ◦ σ = ϕ, so that the following diagram holds:

C C

P1

ϕ

σ

ϕ
(2.4.10)

If ϕ ◦ σ = ϕ, then ϕ induces:

C C/〈σ〉

P1

ϕ

π

ϕ̄
(2.4.11)

Here ϕ̄ if defined by ϕ̄(π(y)) = ϕ(y). Remark that ϕ̄ is well defined, since

whenever π(y) = π(y′) we have y′ = σ(y). We conclude the proof observing

that such a situation can not occur, since ϕ is 3 : 1 and π is 2 : 1.

We are ready to prove that the bielliptic locus is not totally geodesic also

in genus g = 4.

Theorem 2.4.7. The bielliptic locus is not totally geodesic if g = 4.

Proof. Let C be a bielliptic curve of genus 4. From Theorem 2.4.6 C admits

two different g1
3’s, |M | and |K −M |, switched by the bielliptic involution.

That is, the following diagram holds:

C C

P1

ϕ

σ

ψ

where ϕ and ψ are, respectively, maps induced by |M | and |K−M | over P1.

Choose a basis x1, x2 for H0(M), and a basis t1, t2 for H0(K−M), where

ti = xi ◦ σ. We need to pick a point which is fixed by the involution σ and

regular for the g1
3. It exists via the following claim.

Claim. There exists at most one fixed point for σ which is critical for the

maps ϕ and ψ as well.
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To prove the claim, argue by contradiction: suppose that there are two

different points, p and p′ fixed by σ and critical for ϕ and ψ. Call w =

ϕ(p) = ψ(p) and w′ = ϕ(p′) = ψ(p′). Consider the pullbacks:

|L| ≡ ϕ∗(w) = |2p+ q|, |K − L| ≡ ψ∗(w) = |2p+ q′|,
|L| ≡ ϕ∗(w′) = |2p′ + r|, |K − L| ≡ ψ∗(w′) = |2p′ + r′|.

(2.4.12)

Equations above imply that |K − 2L| ≡ |q′ − q| ≡ |r′ − r|. Reordering, one

gets |q′ + r| ≡ |q+ r′|. This is absurd since the curve C is not hyperelliptic.

Using the claim, we can pick a point p1 ∈ C which is fixed by the involu-

tion σ and regular for ϕ and ψ. Call p its image in P1.

Claim. The Schiffer variation ξp1 is invariant under the bielliptic involu-

tion σ.

Proof. Using Theorem 1.1.4, we can find a local chart (U, z) in a neighbour-

hood of p1 such that σ(z) = −z. Set w = −z and call σ : C → C the

involution. By hypothesis, σ(p1) = p1. Without any restriction, we can

choose the bump function bp1 to be invariant by σ. A Schiffer variation in

p1 is (we choose the coefficient λ = 1):

ξp1 =
∂̄bp1

z
· ∂
∂z

=
1

z
· ∂bp1

∂z̄
· dz̄ · ∂

∂z
. (2.4.13)

Notice that locally:

∂

∂z
=
∂w

∂z
· ∂
∂w

,
∂w

∂z
=
∂σ

∂z
= −1;

∂

∂z̄
=
∂w̄

∂z̄
· ∂
∂w̄

,
∂w̄

∂z̄
=
∂σ̄

∂z̄
= −1;

implying
∂

∂z
= − ∂

∂w
,

∂

∂z̄
= − ∂

∂w̄
.

Moreover the following holds:

1

z
=
w

z
· 1

w
= − 1

w
,

d

dz
=
dw

dz
· d
dw

= − d

dw
.

Studying separately the pullback of each term of equation (2.4.13) via the

involution σ, one gets:

1

z
7→ − 1

w

∂bp1

∂z̄
7→ −∂bp1

∂w̄
dz̄ 7→ −dw̄ ∂

∂z
7→ − ∂

∂w
. (2.4.14)
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The Schiffer variation ξp1 is invariant via σ∗, in fact:

ξp1 =
1

z
· ∂bp1

∂z̄
· dz · ∂

∂z
7→
(
− 1

w

)
·
(
− ∂bp1

∂w̄

)
·
(
− dw̄

)
·
(
− ∂

∂w

)
= ξp1 .

We have a ready-to-use invariant Schiffer variation. To apply Theorem

2.3.2, we just need to find an appropriate quadric. Notice that in genus 4

the space of quadrics containing the canonical curve has dimension 1, and

recall that every quadric in the bielliptic locus is invariant, so every nonzero

quadric Q ∈ I2(KC) = I2(KC)σ generates the whole space.

Similarly to case g ≥ 5, we construct an invariant quadric using the g3
1’s:

Q := x1t1 � x2t2 − x1t2 � x2t1 ∈ I2(KC)σ,

where H0(M) = 〈x1, x2〉 and H0(K −M) = 〈t1, t2〉. Again, using Theorem

2.3.2, it is possible to perform an explicit computation for ρ(Q) when evalu-

ated over the invariant Schiffer variation ξp1 . We immediately get that this

computation reduces to the computation of the second Gauss-Wahl map:

ρ(Q)(ξp1 � ξp1) = −2πiµ2(Q)(p1),

which we know to be

µ2(Q) = µ1,|M |(x1 ∧ x2)µ1,|K−M |(t1 ∧ t2).

Since |M | and |K −M | are base point free, by construction µ1,|M |(x1 ∧ x2)

and µ1,|K−M |(t1∧t2) vanish, respectively, only over critical points of |M | and

|K −M |. Since point p1 is non-critical for the two maps, we can conclude

that

ρ(Q)(ξp1 � ξp1) = −2πiµ2(Q)(p1) 6= 0.

This shows that the bielliptic locus is not totally geodesic also when g = 4.

Despite these ideas seem quite easy to be generalized, it turns to be hard

to perform similar computations in a general setting. The simplicity of the

bielliptic case relies in the existence of the bielliptic involution σ: using σ

one can construct an appropriate combination of Schiffer variations that is

invariant and annihilates the quadric. We anticipate that in the next section

we will generalize this result a little, studying the locus of curves admitting

a 2 : 1 cover over a hyperelliptic curve. The involution will play a key role

also in this setting.
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2.4.2 Second Gauss-Wahl map on the bielliptic locus

In this part we will use some results and properties stated before to find

a bound for the rank of the second Gauss-Wahl map on the general curve

of the bielliptic locus (g ≥ 5). Recall that the rank of the first Gauss-Wahl

map of a bielliptic curve is known to be 3g − 3 (see [24, Section 3]).

The trick in the following calculus is to use Theorem 2.2.10 to reduce the

computation of the second Gauss-Wahl map on a quadric Q to the easier

computation of the first one. Remark that this is possible if the quadric is

constructed using two adjoint line bundles. Since quadrics of this type do

not cover the whole I2(K), we will find just a lower bound.

We start giving some details: call |F | and |K − F | the adjoint g1
4’s of a

bielliptic curve C. Fix a basis for H0(F ) = 〈x, y〉, and a basis for H0(K −
F ) = 〈t1, t2, . . . , tg−4〉. Picking two independent sections in ti, tj ∈ H0(K −
F ), it is possible to construct an invariant quadric in I2(KC):

Qi,j = xti � ytj − xtj � yti ∈ I2(KC) = I2(KC)σ. (2.4.15)

For every quadric of this type, the second Gauss-Wahl map splits as:

µ2(Qi,j) = µ1,|F |(x ∧ y)µ1,|K−F |(ti ∧ tj). (2.4.16)

Since µ1,|F |(x ∧ y) is a fixed non-zero section in H0(K + 2F ), then

rankµ2 ≥ rankµ2|〈Qi,j〉 = rankµ1,|K−F |. (2.4.17)

In order to bound the rank of the second Gauss-Wahl map µ2, we study the

first Gauss map µ1,|K−F | :
∧2H0(K − F )→ H0(3K − 2F ).

To simplify the computation, make the restrictive assumption that there

exists a Galois cover C
Z/4Z−−−→ P1 that factors via the bielliptic curve:

C E

P1
Z/4Z

Z/2Z

(2.4.18)

First of all we prove that for every genus g there exists a Galois cover C → P1

with Galois group Z/4Z such that diagram (2.4.18) holds. In general, we
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want to study the number of connected components of the locus:

Bg,Gal :=

{
([C], [E]) ∈Mg ×M1 | C satisfies:

C E

P1
ψ

Z/2Z

where ψ : C → P1 is a Galois cover with group Z/4Z

}
.

Theorem 2.4.8. The locus Bg,Gal, g ≥ 3, is non empty. Moreover it is

irreducible if g is even and it has 2 connected components in case g odd.

Proof. Consider the tower of covers:

C
ϕ−→ E

π−→ P1.

By Riemann-Hurwitz formula we get that ϕ has r2,ϕ = 2(g−1) double branch

points, and π has r2,π = 4 double branch points. We want to study possible

ramification points for the composed map C → P1 and find monodromies

such that the following diagram holds:

C E

P1
ψ

ϕ

π

where ψ : C → P1 is a Galois cover with group Z/4Z.

Notice that if p ∈ C is a point of multiplicity 4 with respect to the

map ψ, then ϕ ramifies in p, and π ramifies over its image ϕ(p) ∈ E. Let

r̃2 = r2,ϕ + r2,ψ. Then the following holds:

r2,ψ =
r̃2 − 2r4,ψ

2
,

where r2,ψ and r4,ψ are respectively the number of 2 : 1 and 4 : 1 branch

points for the cover ψ (notice that we divided by two since we are interested

in double branch points of a 4 : 1 cover). Substituting, we get a relation

between the number of double and total branch points of ψ:

r2,ψ = g + 1− r4,ψ. (2.4.19)

Applying Riemann-Hurwitz formula directly to the cover ψ : C → P1, we

find a second relation between r2,ψ and r4,ψ:

2g − 2 = 4(−2) +
∑

(mi − 1) =

= −8 + r4,ψ(4− 1) + 2 · r2,ψ(2− 1) = −8 + 3 · r4,ψ + 2 · r2,ψ.
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Solving the linear system{
r2,ψ + r4,ψ = g + 1

2r2,ψ + 3r4,ψ = 2g + 6
(2.4.20)

we obtain that the only possible monodromy for the composed map C → P1

giving a Galois cover with group Z/4Z is:

r2 = g − 3; r4 = 4.

This proves that there is only one possible choice for the order of branch

points of C → P1, that is given by m = [44 : 2g−3]. To define a cover C → P1

properly, we have to define an epimorphism θ : Γ0,m � G, where:

Γ0,m =
〈
γ1, . . . , γg+1 | γmii = 1, γ1 · · · · · γr = 1

〉
. (2.4.21)

Representing G = Z/4Z = 〈z〉, if ord γ1 = · · · = ord γr2 = 2, necessarily

θ(γ1) = · · · = θ(γr2) = z2. We have to check how θ can act on γi, i ≥ r2 + 1,

that is on γi’s of order 4.

We will consider separately cases g odd and g even.

When the genus is odd. If g is odd, r2 is even. Condition γ1 . . . γr2 ·
γr2+1 . . . γr2+4 = 1 gives:

θ(γ1) · . . . θ(γr2) · θ(γr2+1) . . . θ(γr2+4) = 1,

that is: (z2)r2 · θ(γr2+1) . . . θ(γr2+4) = 1,

that is: θ(γr2+1) . . . θ(γr2+4) = 1.

So we get:

θ(γr2+1) · θ(γr2+2) · θ(γr2+3) · θ(γr2+4) = 1. (2.4.22)

Since ord(γri) = 4 for i ≥ r2 + 1, for these i’s there are two possibilities:

either θ(γi) = z or θ(γi) = z3. From condition (2.4.22) follows that the

number of γi’s such that θ(γi) = z is necessarily even (the same for γi’s such

that θ(γi) = z3). In the end, there are three possibilities, up to permutations

of γi’s:

1. θ(γr2+1) = θ(γr2+2) = θ(γr2+3) = θ(γr2+4) = z;

2. θ(γr2+1) = θ(γr2+2) = z and θ(γr2+3) = θ(γr2+4) = z3;
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3. θ(γr2+1) = θ(γr2+2) = θ(γr2+3) = θ(γr2+4) = z3.

Finally, notice that one can identify case (1) and case (3) via the diagonal

action induced by the automorphism of G switching z and z3. Moreover,

there exist Hurwitz moves permuting γi’s in every possible way. Since there

is at least one element of order 4 = ord(G) we have immediately surjectivity

for θ. This implies that, if g is odd, Bg,Gal is non empty and has exactly 2

connected components.

When the genus is even. If g is even, r2 is odd. With the same argument

as in case (1) we obtain:

θ(γr2+1) · θ(γr2+2) · θ(γr2+3) · θ(γr2+4) = z2. (2.4.23)

This equation implies that the number of γi’s such that θ(γi) = z is neces-

sarily odd. In this case we have only two possibilities, up to permutations:

1. θ(γr2+1) = θ(γr2+2) = θ(γr2+3) = z and θ(γr2+4) = z3;

2. θ(γr2+1) = z and θ(γr2+2) = θ(γr2+3) = θ(γr2+4) = z3.

As in the previous case, these monodromy are equivalent under the auto-

morphism of G switching z and z3. Since θ is surjective, this shows that in

case g is even the locus Bg,Gal is non empty and irreducible.

Using the notation of Section 1.2, Theorem 2.4.8 shows that the following

are all possible monodromies for the Galois cover C → P1 with [C] ∈ Bg,Gal:

1. If g is odd, then:

(a) a = [14 : 2g−3] or

(b) a = [12 : 32 : 2g−3].

2. If g is even, then:

(a) a = [13 : 3 : 2g−3].

In the following we compute the rank of the second Gauss-Wahl map,

considering separately cases g odd and g even.
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Rank of the second Wahl map when the genus is odd

Recall that using inequality (2.4.17), we have turned the computation of

the rank of the second Gauss-Wahl map when evaluated over a quadric Qi,j
into the computation of the rank of µ1,|K−F | : Λ2H0(K − F ) → H0(3K −
2F ). In the following, we will use the results given in Section 2.1 to write

down explicitly the forms lying in Λ2H0(K − F ). We start computing the

dimension of the eigenspaces in all connected components:

(a) d1 =
g + 1

2
; d2 = 1; d3 =

g − 3

2
;

(b) d1 =
g − 1

2
; d2 = 1; d3 =

g − 1

2
.

In both connected components, one can write H0(KC) = V1 ⊕ V2 ⊕ V3,

where eigenspaces are composed as follows:

V1 = 〈ω1,0, x ω1,0, . . . , x
d1−1 ω1,0〉;

V2 = 〈ω2,0〉;
V3 = 〈ω3,0, x ω3,0, . . . , x

d3−1 ω3,0〉.

If we choose |F | as the g1
4 given by be the fiber over 0 of the projection

(x, y) 7→ x, it is possible to write down explicitly H0(K − F ) as the direct

sum of the two eigenspaces:

W1 = 〈xω1,0, . . . , x
d1−1 ω1,0〉,

W3 = 〈xω3,0, . . . , x
d3−1 ω3,0〉.

We are interested in the space ∧2H0(K − F ), which is the domain of the

Gauss map we want to study. Notice that it decomposes in three summands:

∧2H0(K − F ) = ∧2W1 ⊕ ∧2W3 ⊕
(
W1 ⊗W3

)
. (2.4.24)

We want to check how the group G acts on these summands. We claim

that, if H0(K) decomposes as a direct sum of eigenspaces V1 ⊕ · · · ⊕ Vn−1

(same notation as before), then the tensor product ωi⊗ωj lies in the (i+j)-th

eigenspace of Vi ⊗ Vj , where ωk is an element in Vk.

Lemma 2.4.9. Keep notations as above. Identify the group G with Z/nZ,

and call ξn the primitive n-th root of unity. Then, for every g ∈ G:

g∗(ωi ∧ ωj) = ξ−(i+j)
n ωi ∧ ωj . (2.4.25)
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Proof. The proof is straightforward:

g∗(ωi ∧ ωj) = ξ−in ωi ∧ ξ−jn ωj = ξ−(i+j)
n ωi ∧ ωj .

Lemma 2.4.9 shows that, in decomposition (2.4.24), the group G acts as a

multiplication by the unit imaginary number i on the subspace ∧2W1⊕∧2W3

and is the identity on every element in W1 ⊗W3.

Since the first Gauss map is G-equivariant (see diagram (2.2.7)), we can

consider the map acting separately on eigenspaces relative to different eigen-

values. Call Z0 and Z2 the eigenspaces in H0(3K − 2F ) relative to the

eigenvalues 0 and 2 respectively. The following diagram holds:

µ1,|K−F | : ∧2H0(K − F ) −→ H0(3K − 2F )

= ∪
W1 ⊗W3 −→ Z0

⊕ ⊕
∧2W1 ⊕ ∧2W3 −→ Z2.

,

In the following we will bound, separately, the rank of µ1,|K−F | when

restricted to ∧2W1⊕∧2W3 and to W1⊗W3. The rank of the non-restricted

map will be the sum of the two. We start computing the rank of the first

Gauss map when restricted to any of the two summands of ∧2W1 ⊕ ∧2W3.

We remark that every part of the proof holds identically in the two connected

components.

Theorem 2.4.10. Keep the same notations as before. In every connected

component the following holds:

rank(µ1,|K−F |)
∣∣
∧2W1

= 2d1 − 5; rank(µ1,|K−F |)
∣∣
∧2W3

= 2d3 − 5.

Proof. Since the procedure is the same, we focus on W1. Choose a local

chart and write ω1,0 = f1,0(y)dy. Call vi = ϕ(y)if1,0(y)dy, that implies

W1 = 〈v1, . . . , vd1−1〉. Differentiating vi one gets:

dvi = (iϕ(y)i−1ϕ′(y)f1,0(y) + ϕ(y)if ′1,0(y))dy. (2.4.26)



2.4. BIELLIPTIC LOCUS 79

Performing the computation for the first Wahl map we get:

µ1(vi ∧ vj) = (iϕ(y)i−1ϕ′(y)f1,0(y) + ϕ(y)if ′1,0(y))ϕ(y)jf1,0(y)−
− ϕ(y)if1,0(y)(jϕ(y)j−1ϕ′(y)f1,0(y) + ϕ(y)jf ′1,0(y)) =

= iϕ(y)i+j−1ϕ′(y)f1,0(y)2 − jϕ(y)i+j−1ϕ′(y)f1,0(y)2 =

= (i− j)(ϕ(y)i+j−1ϕ′(y)f1,0(y)2).

(2.4.27)

Considering any linear combination of vi’s one obtains:

µ1

(∑
i,j

aijvi ∧ vj
)

=
∑
i<j

aij(i− j)(ϕ(y)i+j−1ϕ′(y)f1,0(y)2) =

= ϕ′(y)f1,0(y)2
∑
i<j

aij(i− j)ϕ(y)i+j−1 =

= ϕ′(y)f1,0(y)2
2d1−3∑
k=3

∑
i<j, i+j=k

aij(i− j)ϕ(y)k−1 =

= F (y)

2d1−3∑
k=3

Akϕ(y)k−1.

(2.4.28)

Since k may vary in the set {3, 4, . . . , 2d1 − 3}, there are 2d1 − 5 possible

exponents for ϕ(y). Moreover, remark that for every (i, j), (h, l) such that

k = i + j = h + l the corresponding vectors µ1(vi ∧ vj) and µ1(vh ∧ vl) are

linearly dependent. This implies that rank(µ1,|K−F |)|∧2W1
= 2d1− 5. In the

same way one obtains rank(µ1,|K−F |)|∧2W3
= 2d3 − 5.

From the previous theorem, substituting the dimension of di’s depending

on the chosen monodromy we have:

(a) rank(µ1,|K−F |)|∧2W1
= g − 4; rank(µ1,|K−F |)|∧2W3

= g − 8;

(b) rank(µ1,|K−F |)|∧2W1
= g − 6; rank(µ1,|K−F |)|∧2W3

= g − 6.

Since rankµ1

∣∣
∧2W1⊗∧2W2

≥ max (rankµ1

∣∣
∧2W1

, rankµ1

∣∣
∧2W3

), this com-

putation bounds the rank of the first Gauss map when evaluated on ∧2W1⊗
∧2W3. While it seems to be numerically hard to find a better estimate on

∧2W1 ⊗ ∧2W3, there is no reason for our bound to be sharp.

In the following, we compute the rank of µ1,|K−F | when restricted to the

eigenspace W1 ⊗W3. We start with an elementary but useful remark.
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Remark 2.4.11. Recall the explicit expression of forms ωn,ν given in equa-

tion (2.1.3), and notice that all forms have the common factor

F (y) :=
m

g′(ϕ(y))
. (2.4.29)

It is convenient, in some cases, to consider the simplified forms obtained

dividing all forms by F (y). In particular, we claim that the simplification

does not affect the value of the rank of the first Gauss map. More precisely,

for n = 1, . . . ,m− 1, ν = 0, . . . , dn − 1, call:

ω̃n,ν = ϕ(y)n yν
∏

(ϕ(y)− ti)l(i,n)+aidy. (2.4.30)

Forms ω̃n,ν are defined as ωn,ν/F (y). Call their local expression ω̃n,ν =

f̃n,ν(y) dy.

Comparing the first Gauss map when evaluated on the wedge product

ωn,ν ∧ ωl,η with the one evaluated on ω̃n,ν ∧ ω̃l,η, we see that they differ for

the positive value F (y)2:

µ1(ωn,ν ∧ ωl,η) =
d

dy

(
F (y) f̃n,ν(y)

)
F (y)f̃l,η(y)− f̃n,ν(y)

d

dy

(
F (y) f̃l,η(y)

)
dy =

= F (y)F ′(y)f̃n,ν(y)f̃l,η(y) + F (y)2 d

dy

(
f̃n,ν(y)

)
f̃l,η(y)−

− F (y)F ′(y)f̃n,ν(y)f̃l,η(y)− F (y)2f̃n,ν(y)
d

dy

(
f̃l,η(y)

)
=

= F (y)2µ1(ω̃n,ν ∧ ω̃l,η).

This shows that one can compute the rank of the first Gauss map on the

simplified forms ω̃n,ν instead then on the complete ones. In the remaining

part of this chapter, we will always use these simplified forms. By abuse of

notation we will simply denote ω̃n,ν as ωn,ν , and we will call fn,ν(y)dy their

local expressions.

Theorem 2.4.12. Keep notations as above. In every connected component

the following holds:

rank(µ1,|K−F |)|W1⊗W3 ≥ g − 4. (2.4.31)

Proof. The proof relies in a direct computation of the first Gauss map, that

is performed using the explicit expression of 1-forms described in Section

2.1. More precisely, we will use the simplified expression (2.4.30), calling
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forms ωn,ν simply. Via Remark 2.4.11, the simplification does not affect the

rank of the map.

Choose a local coordinate y around 0. Then:

ω1,0 = f1,0(y)dy, ω3,0 = f3,0(y)dy. (2.4.32)

As before, choosing the line bundle F given by the fiber over 0 of the

projection (x, y) 7→ x, the vector space H0(K − F ) splits as a direct sum of

the two eigenspaces:

W1 = 〈xω1,0, . . . , x
d1−1 ω1,0〉 = 〈v1, . . . , vd1−1〉,

W3 = 〈xω3,0, . . . , x
d3−1 ω3,0〉 = 〈w1, . . . , wd3−1〉,

(2.4.33)

where vi = ϕ(y)if1,0(y)dy, and wj = ϕ(y)jf3,0(y)dy.

Differentiating we get:

dvi = (iϕ(y)i−1ϕ′(y)f1,0(y) + ϕ(y)if ′1,0(y))dy,

dwj = (jϕ(y)j−1ϕ′(y)f3,0(y) + ϕ(y)jf ′3,0(y))dy.
(2.4.34)

We compute explicitly the first Gauss map on the wedge product vi ∧wj .
Although the computation is similar to the one performed in (2.4.27), since

forms in the domain lies in two different eigenspaces we will not be able to

compute the precise rank in this case, but we still give a bound for it. The

first computation gives:

µ1(vi ∧ wj) = (iϕ(y)i−1ϕ′(y)f1,0(y) + ϕ(y)if ′1,0(y))ϕ(y)jf3,0(y)−
− ϕ(y)if1,0(y)(jϕ(y)j−1ϕ′(y)f3,0(y) + ϕ(y)jf ′3,0(y)) =

= (i− j)ϕ(y)i+j−1ϕ′(y)f1,0(y)f3,0(y)+

+ ϕ(y)i+j(f ′1,0(y)f3,0(y)− f1,0(y)f ′3,0(y)).

(2.4.35)
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Considering any linear combination of vi’s and wj ’s one gets:

µ1

( d1−1∑
i=1

d3−1∑
j=1

aijvi∧wj
)

=

d1−1∑
i=1

d3−1∑
j=1

aij

[
(i− j)ϕ′(y)f1,0(y)f3,0(y)+

+ ϕ(y)(f ′1,0(y)f3,0(y)− f1,0(y)f ′3,0(y))

]
ϕ(y)i+j−1 =

=

d1+d3−2∑
k=2

∑
i+j=k

aij

[
(i− j)ϕ′(y)f1,0(y)f3,0(y)+

+ ϕ(y)(f ′1,0(y)f3,0(y)− f1,0(y)f ′3,0(y))

]
ϕ(y)k−1.

Let Ak =
∑

i+j=k aij(i− j) and Bk =
∑

i+j=k aij . Substituting, equation

above becomes:

µ1

( d1−1∑
i=1

d3−1∑
j=1

aijvi ∧ wj
)

=

d1+d3−2∑
k=2

[
Akϕ

′(y)f1,0(y)f3,0(y)+

+Bk

(
ϕ(y)(f ′1,0(y)f3,0(y)− f1,0(y)f ′3,0(y))

)]
ϕ(y)k−1.

(2.4.36)

To go further with the computation, we need to write explicitly what

coefficients f1,0(y) and f3,0(y) are. We will do that using expression (2.4.30).

Recalling the content of Section 2.1, we need the combinatorial data l(i, n) =[
−n ·ai/4

]
to write the local expression for ωn,ν . These data depend on the

chosen monodromy, and 1-forms a priori do as well. Nevertheless we will

find that, in our case, while f3,0(y) will depend on the monodromy, f1,0(y)

will not.

We write here the list of combinatorial data with monodromy (a) and (b):
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(a) l(i, 1) =
[
− ai

4

]
= −1 for all i;

l(i, 3) =
[
− 3ai

4

]
= −1 if i ≤ 4;

l(i, 3) =
[
− 3ai

4

]
= −2 if i ≥ 5;

(b) l(i, 1) =
[
− ai

4

]
= −1 for all i;

l(i, 3) =
[
− 3ai

4

]
= −1 if i ≤ 2;

l(i, 3) =
[
− 3ai

4

]
= −3 if 3 ≤ i ≤ 4;

l(i, 3) =
[
− 3ai

4

]
= −2 if i ≥ 5.

(2.4.37)

Substituting l(i, n) in expression (2.4.30), we see that, in every con-

nected components, ω3,0 has the same coefficient, while the coefficient of

ω1,0 changes:

(a) f1,0(y) =
∏
i≥5

(ϕ(y)− ti),

(b) f1,0(y) =
∏

3≤i≤4

(ϕ(y)− ti)2
∏
i≥5

(ϕ(y)− ti),

(a), (b) f3,0(y) = y2.

(2.4.38)

We write for short, both for cases (a) and (b):

f1,0(y) =
∏

1≤i≤4

(ϕ(y)− ti)I
∏
i≥5

(ϕ(y)− ti),

f3,0(y) = y2,

(2.4.39)

where I is the multi-index defined as follows:

I =

{
[0, 0, 0, 0], if monodromy is (a);

[0, 0, 2, 2] if monodromy is (b).

Notice that in both cases ti 6= 0 ∀i 6= 1 since f1,0(0) 6= 0.

Consider Taylor expansions centered in 0 for all factors appearing in equa-

tion (2.4.36). For convenience of the reader, we write down the Taylor ex-
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pansion of each term separately:

ϕ(y) =
1

h′(0)
y4 +

1

2h′′(0)
y8 + h.o.t.

ϕ′(y) =
4

h′(0)
y3 +

8

2h′′(0)
y7 + h.o.t.

f1,0(y) =
∏

1≤i≤4

(−ti)I
∏
i≥5

(−ti) + h.o.t.

f ′1,0(y) = FI(y)ϕ′(y) + h.o.t. =

= FI(y)
( 4

h′(0)
y3 +

8

2h′′(0)
y7 + h.o.t.

)
+ h.o.t.

f3,0(y) = y2,

f ′3,0(y) = 2y,

where FI(y) is a function depending on the monodromy. In particular, there

are the following possibilities for FI(y), respectively when (a) I = [0, 0, 0, 0]

or (b) I = [0, 0, 2, 2]:

(a) F1(y) =
∑
j≥5

∏
i 6=j

(ϕ(y)− ti),

(b) F1(y) =
∑
j≥5

∏
i 6=j

(ϕ(y)− ti)
∏
i=3,4

(ϕ(y)− ti)2+

+
∏
i≥5

(ϕ(y)− ti)
∑
j=3,4

∏
i 6=j

2(ϕ(y)− ti)2(ϕ(y)− tj).

(2.4.40)

Notice that in all cases f ′1,0(y) has vanishing order at least equal to 3, that

is the vanishing order of ϕ′(y). Substituting in expression (2.4.36), we get:

µ1

( d1−1∑
i=1

d3−1∑
j=1

aijvi ∧ wj
)

=

d1+d3−2∑
k=2

(
1

h′(0)
y4 +

1

2h′′(0)
y8 + h.o.t.

)k−1

·

·

{
Ak

(
4

h′(0)
y3 +

8

2h′′(0)
y7 + h.o.t.

)[ ∏
1≤i≤4

(−ti)I
∏
i≥5

(−ti) + h.o.t

]
·

· y2 +Bk

(
1

h′(0)
y4 +

1

2h′′(0)
y8 + h.o.t.

)[
FI(y)

( 4

h′(0)
y3 +

8

2h′′(0)
y7+

+ h.o.t.
)
y2 − 2y

( ∏
1≤i≤4

(−ti)I
∏
i≥5

(−ti) + h.o.t

)]}
.

(2.4.41)

In order to simplify the computation, we study the rank of the first Gauss

map not on the whole W1 ⊗W3 but on a certain subspace.
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Claim. Let W be any subspace of W1 ⊗W3 such that for every integer k ∈
{2, . . . , d1 + d3− 2} there exists exactly one pair (i, j) such that vi ∧wj ∈W
and i+ j = k. Then µ1

∣∣
W

has rank g − 4.

Fix W and call J := {(i, j) such that vi ∧ wj ∈ W}. Notice that the

double sum
∑d1−1

i=1

∑d3−1
j=1 aijvi ∧ wj is a linear combination of all elements

in W if we impose aij = 0 for all pairs (i, j) not occurring in J . Keeping

notation as before, this implies that Ak = (i − j)ak and Bk = ak, where

we called ak the only coefficient aij such that (i, j) ∈ J . The existence of a

single coefficient ak in both Ak and Bk, instead than a linear combination

of aij simplifies considerably the computation.

Come back to expression (2.4.41), impose aij = 0 for all (i, j) /∈ J , and

consider the vanishing orders in 0. In both cases (a) and (b) the lowest

vanishing order is 9, reached when k = 2. The coefficient of the term of order

9 in the Taylor expansion gives the same equation with both monodromies:

(a), (b) :
2

h′(0)2

∏
1≤i≤4

(−ti)I
∏
i≥5

(−ti)(2A2 −B2) = 0. (2.4.42)

Notice that A2 = (1 − 1)a2 = 0, and B2 = a2. Equation (2.4.42) implies

2A2 = B2 = 0, so that a2 = a1,1 = 0.

Consider the next vanishing order, that is 13. Since A2 = B2 = 0 the only

part of order 13 appears when k = 3. In this case the coefficient (again, the

same for all monodromies) is:

2

h′(0)3

∏
1≤i≤4

(−ti)I
∏
i≥5

(−ti)(2A3 −B3) = FI(y) ·B3 = 0. (2.4.43)

Also in this case B3 = A3 = 0, that implies a3 = 0. One can proceed by

induction: the coefficient of the term vanishing in 0 with order k will be:

2

h′(0)k

∏
1≤i≤4

(−ti)I
∏
i≥5

(−ti)(2Ak −Bk) = FI(y) ·Bk = 0, (2.4.44)

implying Ak = Bk = 0, so ak = 0.

This proves that rankµ1

∣∣
W

is exactly the cardinality of J . It is straight-

forward to check that the cardinality of J is the same for every possible

choice for W . We count it considering, for example, the following instance:

J = {(1, 1), (1, 2), . . . (1, d3−1), (2, d3−1), (3, d3−1), . . . (d1−1, d3−1)}.
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Counting elements, one sees that J has cardinality d3−1+d1−2 = d1+d3−3.

For the previous discussion, this value coincide with rankµ1

∣∣
W

. This proves

the claim.

The proof of the theorem is a direct consequence of the claim. Since

rankµ1

∣∣
W1⊗W3

≥ rankµ1

∣∣
W

, it is straightforward that there are at least

d1 + d3 − 3 independent sections in µ1(W1 ⊗W3). This implies:

rankµ1

∣∣
W1⊗W3

≥ d1 + d3 − 3. (2.4.45)

From the previous theorem, substituting the di’s, one can find a bound

depending on the genus. Moreover, since d1 + d3 = g− 1 in every connected

component, the final bound does not depend on the monodromy:

(a), (b) : rankµ1

∣∣
W1⊗W3

≥ g − 4. (2.4.46)

This concludes the computation in case g odd. Putting together results of

Theorem 2.4.10 and Theorem 2.4.12, one gets a general bound for the rank

of the second Gauss-Wahl map (recall equation (2.4.17)) depending on the

monodromy. Moreover Lemma 2.4.4 ensures that 5g− 5 is always an upper

bound. Summarizing:

(a) : 2g − 8 ≤ rankµ2 ≤ 5g − 5,

(b) : 2g − 10 ≤ rankµ2 ≤ 5g − 5.
(2.4.47)

Rank of the second Wahl map when the genus is even

The strategy is identical both in cases g odd and g even. One can apply

directly results obtained in the previous section just changing monodromies

and dimensions when necessary. We remark here that since in Theorem

2.4.10 we did not use monodromy and dimensions in any part of the proof,

we can apply the theorem straightforward. Nevertheless we used the mon-

odromy in Theorem 2.4.12, when we wrote explicitly forms in H0(K − F ).

We will prove that a modification of the monodromy datum does not affect

the result.

We start recalling that, from Theorem 2.4.8, the locus Bg,Gal is irreducible

if g is even, and the only admissible monodromy for C → P1 is given by:

(a) : a = [13 : 3 : 2g−3]. (2.4.48)
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As discussed in Section 2.1.3, this datum corresponds to a decomposition of

the space of holomorphic 1-forms into eigenspaces: H0(K) = V1 ⊕ V2 ⊕ V3.

Using formula (2.1.2) one can check that the dimensions of these eigenspaces

are, respectively:

(a) : d1 =
g

2
; d2 = 1; d3 =

g − 2

2
. (2.4.49)

As remarked in the beginning of this part, one can apply directly Theo-

rem 2.4.10, since in its proof we didn’t use neither the monodromy or the

dimensions of the eigenspaces, obtaining the following:

(a) : rankµ1,|K−F ||∧2W1
= g−5; rankµ1,|K−F ||∧2W3

= g−7. (2.4.50)

As in the odd case, we wish to find a bound for the first Gauss map when

restricted on the product W1 ⊗W3. We are going to show that although

new monodromies and dimensions affect the explicit expression of the 1-

forms v1’s and wj ’s, every consideration we made on the Taylor expansion of

µ1

(∑d1−1
i=1

∑d3−1
j=1 aijvi ∧wj

)
is still true. In particular, the claim inside the

proof of Theorem 2.4.10 identically holds, and the final bound, depending

on dimensions, turns to be the same:

rankµ1

∣∣
W1⊗W3

≥ d1 + d3 − 3. (2.4.51)

We give some details. Following Section 2.1, we need to compute the com-

binatorial data l(i, n) to write 1-forms explicitly. Via a direct computation

one gets:

(a) l(i, 1) =
[
− ai

4

]
= −1 for all i;

l(i, 3) =
[
− 3ai

4

]
= −1 if i ≤ 3;

l(i, 3) =
[
− 3ai

4

]
= −3 if i = 4;

l(i, 3) =
[
− 3ai

4

]
= −2 if i ≥ 5.

(2.4.52)

Using these data, one can write explicitly the local coefficients f1,0(y)

and f3,0(y) for the 1-forms ω1,0 and ω3,0 respectively. We do it, using ex-

pression (2.4.30). Despite the coefficient f3,0(y) turns to be equal to the

corresponding coefficient obtained in the odd case, f1,0(y) is not:

f1,0(y) = (ϕ(y)− t4)2
∏
i≥5

(ϕ(y)− ti),

f3,0(y) = y2.

(2.4.53)
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Notice that even if f1,0(y) is different from the corresponding coefficient

when computed in odd genus, they both satisfy f1,0(0) 6= 0 and ord0 f
′
1,0 ≥ 3,

that are the only properties of f1,0(y) we used in the claim: one can apply

straightforward Theorem 2.4.12 obtaining the following bound:

(a) : rankµ1 ≥ d1 + d3 − 3 = g − 4. (2.4.54)

From equation (2.4.51) and bound (2.4.54) we obtain a lower bound for

the rank of the first Gauss map in case g even. Recalling that Theorem 2.4.4

gives an upper bound for it, we can sum up everything as follows:

(a) : 2g − 9 ≤ rankµ2 ≤ 5g − 5. (2.4.55)

We summarize the results obtained in this section with the following corol-

lary. Here we put together bounds found in case of odd genus (2.4.47), with

bound (2.4.55) for curves of even genus.

Corollary 2.4.13. The rank of the second Gauss-Wahl map on the general

curve of the bielliptic locus satisfies the following bounds, depending on genus

and monodromy:

(1) If g is odd then:

(a) : 2g − 8 ≤ rankµ2 ≤ 5g − 5;

(b) : 2g − 10 ≤ rankµ2 ≤ 5g − 5.
(2.4.56)

(2) If g is even then:

(a) : 2g − 9 ≤ rankµ2 ≤ 5g − 5. (2.4.57)

Moreover, while the lower bounds hold for the general curve, the upper ones

hold for every bielliptic curve of genus g.

We conclude this section remarking that, even if our result is not sharp

(see also Theorem 3.1.1), it is not a consequence of Theorem 2.2.15, that

gives the lower bound g− 3 for the second Gauss-Wahl map of all curves of

genus g ≥ 4.
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2.5 Bi-hyperelliptic locus

A curve C is called bi-hyperelleptic if it is a double cover of a hyperelliptic

curve C ′, with g′ = g(C ′) ≥ 2:

C
2:1−−→ C ′

2:1−−→ P1. (2.5.1)

We will denote with BHg,g′ the locus of bi-hyperelliptic curves C → C ′

where g(C) = g and g(C ′) = g′. As in the bielliptic case, we start mak-

ing some general considerations on BHg,g′ . Then, involving the sublocus

BHg,g′,Gal (that is the locus of bi-hyperelliptic curves C → C ′ such that the

composition C → C ′ → P1 is Galois with group Z/4Z), we will prove that

BHg,g′ is not totally geodesic if g ≥ 3g′. We remark that since the last one

is a structural condition that is necessary to make the space BHg,g′,Gal non

empty, it is unavoidable using our approach.

We introduce the general set-up, stating some elementary results of BHg,g′
that will be useful in the following. We start computing its dimension.

Lemma 2.5.1. The bi-hyperelliptic locus is non-empty if 2g − 4g′ + 2 ≥ 0.

Moreover it has dimension N = 2g − 2g′ + 1 if N ≥ 0.

Proof. If C ′ is fixed, the cover C → C ′ has 2(g− 2g′+ 1) branch points. By

Riemann’s existence theorem, once the set of branch points is fixed and the

curve C ′ is fixed as well, there are finite possible covers C → C ′ with the

given branch points. Letting the curve C ′ vary in the space of hyperelliptic

curves of genus g′, we obtain that the bi-hyperelliptic locus has dimension

2(g − 2g′ + 1) + 2g′ − 1. Hence the claim.

With the following lemma we remark that BHg,g′ is irreducible.

Lemma 2.5.2. The bi-hyperelliptic locus is irreducible.

Proof. From Theorem 1.4.16, we can show that the moduli space of curves

C of genus g such that there exists a 2 : 1 map C → C ′ with g(C ′) = g′

is irreducible. In fact, fixed a datum (m, G, θ) we have Tg′,r and two such

data are exchanged by Hurwitz moves (see the discussion in Section 1.3).

Differently from case g′ = 1, here C ′ is not automatically hyperelliptic: we

have to check that the hyperelliptic part is irreducible as well.
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Denote by T(m, G, θ) the fixed point locus T Gg in the Teichmüller space,

and recall that ϕ : Tg′,r ∼= T(m, G, θ) (see Theorem 1.3.6). Denote by

M(m, G, θ) the image of T Gg in Mg and consider the following diagram:

T(m, G, θ) Tg′,r

M(m, G, θ) Mg′

π

ϕ−1

p

ψ

(2.5.2)

Here, π is the restriction of the projection map, ψ associates to a class

[C] ∈ M(m, G, θ) its quotient via the group G, and p is the composition of

the forgetful map α : Tg′,r → Tg′ with the quotient map π′; Tg′ →Mg′ .

We want to prove that the preimage of the hyperelliptic locus Hg′ ⊂Mg′

via ψ is connected inside M(m, G, θ). Since diagram (2.5.2) is commutative,

π−1(ψ−1(Hg′)) = ψ(p−1(Hg′)). Moreover, since π is surjective, the equality

implies ψ−1(Hg′) = π(ψ(p−1(Hg′)).

Consider the map p, associating to every element in the Teichmüller space

Tg′,r its quotient via the action of the mapping class group. Call THg′,r :=

π−1(Hg′) the preimage of the hyperelliptic locus. We claim that the mapping

class group preserves THg′,r. In fact, if [f ] ∈ Mapg′,r, then

f : ([C ′ −B], ϕ)→ ([C ′ −B], f ◦ ϕ).

Here we check whether the connected component in Mg′ changes if the

involution σ is transformed to a different involution σ′ via f . It is known

(see e.g. [41, Proposition 7.15]) that every couple of involutions σ and σ′

over a hyperelliptic curve are related via an element [f ] of the mapping class

group as follows: σ′ = f−1 ◦σ ◦f . This immediately shows that, if x is fixed

by σ′, then its image f(x) is fixed by σ, so that T σ
′

g′ → T σg′ .

Call S the set of all possible hyperelliptic involutions. Then π′−1(Hg′) =⋃
σ∈S T

σ
g′ and for any σ ∈ S, π′(T σg′ ) = Hg′ and T σg′ is a smooth complex

submanifold of Tg′ . Denote by T σg′,r := α−1(T σg′ ). The map α is a holo-

morphic submersion with irreducible fibers (see e.g. [5] p. 471). So the

fibers are irreducible, the set T σg′ is irreducible, hence T σg′,r = α−1(T σg′ ) is

also irreducible.

Since for all σ and σ′ the sets T σg′,r and T σ′g′,r are switched via an element of
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the mapping class group Mapg′,r, we have: ψ−1(Hg′) = π(ϕ(p−1(Hg′))) =

π(ϕ(
⋃
σ∈S T σg′,r)) = π(ϕ(T σg′,r)). This concludes the proof.

Unfortunately, there is not an analogous of Lemma 2.4.3 in the bi-hyper-

elliptic case, in fact I2(K) 6= I2(K)σ. This difference will make the compu-

tation a bit harder, but still affordable using the bi-hyperelliptic involution

and working over P1. More precisely we make the further assumption that

the composition C → C ′ → P1 gives a cyclic Galois cover of P1:

C C ′

P1
Z/4Z

Z/2Z

(2.5.3)

We will show that this extra hypothesis will not affect the generality of the

result (see Remark 2.5.5).

We start proving that, for every g ≥ 3g′, there exists a Galois cover

C → P1 with Galois group Z/4Z such that it factors through:

C C ′

P1

2:1

where g′ = g(C ′). In general, we want to count the number of connected

components of the locus:

BHg,g′,Gal :=

{
([C], [C ′]) ∈Mg ×Hg′ | C satisfies:

C C ′

P1
ψ

Z/2Z

where ψ : C → P1 is a Galois cover with group Z/4Z

}
.

Theorem 2.5.3. The locus BHg,g′,Gal is non empty if g ≥ 3g′. Moreover it

has k connected components, where

k =


(2g′ + 4)/4 if g′ is even,

(2g′ + 2)/4 if g′ is odd and g is even,

(2g′ + 6)/4 if g′ and g are odd.
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Proof. Consider the tower of covers:

C
ϕ−→ C ′

π−→ P1.

Using Riemann-Hurwitz formula (1.1.1), map π : C ′ → P1 has r2,π =

2(g′ + 1) ramification points and ϕ : C → C ′ has r2,ϕ = 2(g − 2g′ + 1)

ramification points. Notice that if p ∈ C is a point of multiplicity 4 with

respect to the map ψ, then ϕ ramifies in p, and π ramifies over its image

ϕ(p) ∈ C ′. Let r̃2 = r2,ϕ + r2,π. Then the following holds:

r2,ψ =
r̃2 − 2r4,ψ

2
, (2.5.4)

where r2,ψ and r4,ψ are respectively the number of 2 : 1 and 4 : 1 branch

points for the cover ψ. Substituting r̃2 we get a relation between the number

of double and total branch points of ψ:

r2,ψ = g − g′ + 2− r4,ψ. (2.5.5)

We find a second relation between r2,ψ and r4,ψ applying Riemann-Hurwitz

formula directly to the cover ψ : C → P1:

2g − 2 = 4(−2) +
∑

(mi − 1) =

= −8 + r4,ψ(4− 1) + 2 · r2,ψ(2− 1) = −8 + 3 · r4,ψ + 2 · r2,ψ.

Solving the linear system{
r2,ψ + r4,ψ = g − g′ + 2,

2r2,ψ + 3r4,ψ = 2g + 6,
(2.5.6)

one obtains that the only possible monodromy for the composed map C →
P1 giving a Galois cover with group Z/4Z is:

r2 = g − 3g′ ≥ 0; r4 = 2g′ + 2. (2.5.7)

Notice that it is necessary to require

g ≥ 3g′. (2.5.8)

This proves that for every possible pair (g, g′) such that g ≥ 3g′ there is

only one possible choice for the multiplicity of branch points of the composed

map C → P1, that is m = [42g′+2 : 2g−3g′ ]. Remark that the locus BHg,g′,Gal
is empty if condition (2.5.8) is not satisfied.
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To define properly the cover C → P1 we have to define an epimorphism

θ : Γ0,m � Z/4Z, where:

Γ0,m = 〈γ1, . . . , γr4 , γr4+1, . . . , γr4+r2 |γ
mi
i = 1, γ1 · · · γr = 1〉. (2.5.9)

Representing Z/4Z = 〈z〉, necessarily θ(γi) = z2 for r4 + 1 ≤ i ≤ r4 + r2,

since z2 is the only element of order 2 in Z/4Z. For 1 ≤ i ≤ r4 there are

two possibilities: they can either be z or z3. We are going to count the

number of i’s such that θ(γi) = z (or, analogously, θ(γi) = z3). The number

of different possibilities, a part from automorphisms of G, will correspond

to the number of connected components of the locus.

Condition γ1 · · · γr4 · γr4+1 · · · γr4+r2 = 1 gives:

θ(γ1) · · · θ(γr4) · θ(γr4+1) · · · θ(γr4+r2) = 1,

that is: θ(γ1) · · · θ(γr4) · (z2)r2 = 1.
(2.5.10)

Notice that r4 is always even and r2 is even if and only if g and g′ are both

even or both odd. We have to distinguish the two cases.

When the genera have the same parity Since in this case r2 is even,

condition (2.5.10) implies:

θ(γ1) · · · · θ(γr4) = 1,

where either θ(γi) = z or θ(γi) = z3, for 1 ≤ i ≤ r4.

We have to study separately cases r4 ≡ 2 mod 4 and r4 ≡ 0 mod 4. In

the first case the number of γi’s such that θ(γi) = z is necessarily odd (the

same for γi’s such that θ(γi) = z3). Up to permutations of γi’s, we have the

following possibilities:

(1) θ(γ1) = · · · = θ(γr4−1) = z and θ(γr4) = z3;

(2) θ(γ1) = · · · = θ(γr4−3) = z and θ(γr4−2) = θ(γr4−1) = θ(γr4) = z3;

...

(r4/2) θ(γ1) = z and θ(γ2) = · · · = θ(γr4) = z3.
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Notice that the previous choices are equivalent via Aut(G) two by two: in

fact we have just listed all possibilities having an odd number of γ′is equal to

z (and so, since r4 is even, also an odd number of γ′is equal to z3). Since via

automorphisms of G = Z/4Z one can switch z and z3, the epimorphism θ

numbered with (i) is always equivalent to the epimorphism numbered with

(r4/2− i+ 1). Moreover, there exist Hurwitz moves permuting γi’s in every

possible way: there are (r4 + 2)/4 possibilities for θ, and since there exists

at least one element of order 4 = ordG, the map is surjective.

This concludes the case in which g and g′ have the same parity, and r4 ≡ 2

mod 4 as well. Consider now case r4 ≡ 0 mod 4. Up to permutations of γi’s

the following holds:

(1) θ(γ1) = · · · = θ(γr4) = z;

(2) θ(γ1) = · · · = θ(γr4−2) = z and θ(γr4−1) = θ(γr4) = z3;

...

((r4 + 2)/2) θ(γ1) = · · · = θ(γr4) = z3.

Also in this case, choices (i) and ((r4 + 2)/2 − i + 1) are equivalent via

automorphism of G. Moreover since there are Hurwitz moves permuting γi’s

in every possible way, there are exactly (r4 + 4)/4 possibilities. Again, since

there is at least one element of order 4 = ord(G), we immediately deduce

surjectivity for θ.

This proves that, if g and g′ have the same parity (and g ≥ 3g′), BHg,g′,Gal
has (r4 + 2)/4 connected components in case r4 ≡ 2 mod 4, and (r4 + 4)/4

connected components in case r4 ≡ 0 mod 4.

When the genera have distinct parity When g and g′ have different

parity, relation (2.5.10) implies:

θ(γ1) · · · · θ(γr4) = z2.

As in the previous paragraph, we have to distinguish whether r4 ≡ 2 mod

4 or r4 ≡ 0 mod 4. If r4 ≡ 2 mod 4 the number of γi’s such that θ(γi) = z

is even. Up to permutations of γi’s we have:
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(1) θ(γ1) = · · · = θ(γr4) = z;

(2) θ(γ1) = · · · = θ(γr4−2) = z and θ(γr4−1) = θ(γr4) = z3;

...

((r4 + 2)/2) θ(γ1) = · · · = θ(γr4) = z3.

Since choices (i) and ((r4 + 2)/2 − i + 1) are equivalent via automorphism

of G, there are (r4 + 2)/4 possibility for γ. Moreover, since there is at least

one element of order 4 = ord(G), surjectivity is automatic.

Consider the last case: r4 ≡ 0 mod 4. In this case the number of γi’s such

that θ(γi) = z is odd. We have:

(1) θ(γ1) = · · · = θ(γr4−1) = z and θ(γr4) = z3;

(2) θ(γ1) = · · · = θ(γr4−3) = z and θ(γr4−2) = θ(γr4−1) = θ(γr4) = z3;

...

(r4/2) θ(γ1) = z and θ(γ2) = · · · = θ(γr4) = z3.

Since also these choices are equivalent via Aut(G) two by two, there are

r4/4 possibilities for γ. Moreover θ is surjective.

This proves that, if g and g′ have different parity (and g ≥ 3g′), BHg,g′,Gal
has (r4 + 2)/4 connected components in case r4 ≡ 2 mod 4, and r4/4 con-

nected components in case r4 ≡ 0 mod 4.

Substituting r4 = 2g′ + 2 in all cases, we conclude the proof.

Remark 2.5.4. In the proof of Theorem 2.5.3 we have shown that if condi-

tion (2.5.8) is satisfied, than there exist a curve C of genus g, a hyperelliptic

curve C ′ of genus g′ and a 2 : 1 cover C → C ′ such that

C C ′

P1
Z/4Z

Z/2Z

(2.5.11)

Moreover we claim that every cyclic cover C → P1 with Galois group Z/4Z
induces over C a bi-hyperelliptic structure. In particular we claim that for
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every g′ ≤ 1/3 g (see condition (2.5.8)) there exists a monodromy for C → P1

such that diagram (2.5.11) commutes, with either C ′ elliptic or hyperelliptic.

In fact applying Riemann-Hurwitz formula to C
4:1−−→ P1 one gets:

2g + 6 = 3r4 + 2r2,

where r4 and r2 are the numbers of ramification values of order 4 and 2

respectively. Notice that r4 is necessarily even, and call r4 = 2k. We get

r2 = g − 3(k − 1) ≥ 0. Comparing this expression with expression (2.5.7),

we obtain that for every value of k ≥ 1 the curve C admits a 2 : 1 map over

either an elliptic or a hyperelliptic curve C ′ of genus g′ := k − 1. Condition

r2 ≥ 0 translates in condition (2.5.8). This proves that every curve C which

is a cyclic 4 : 1 cover of P1 also covers with a 2 : 1 map an elliptic or a

hyperelliptic curve C ′ of genus g′. By varying the monodromy of the 4 : 1

cover we obtain all possible values of g′, i.e. g′ ≤ 1/3 g.

In the next part we will prove that the moduli space of bi-hyperelliptic

curves is not totally geodesic in Ag as soon as g ≥ 3g′.

2.5.1 The bi-hyperelliptic locus is not totally geodesic

In this section we will prove that the bi-hyperelliptic locus is not totally

geodesic when condition (2.5.8) is satisfied. We will consider separately cases

g′ = 2 and g′ ≥ 3.

The idea, as in the bielliptic case, is to apply Theorem 2.3.2 to write the

second fundamental form explicitly. As remarked in equality (2.3.10), if the

quadric is G-invariant, the existence of a pair of invariant Schiffer variations

(ξp, ξq) such that ρ(Q)(ξp� ξq) 6= 0, allows to conclude that the locus is not

totally geodesic.

Remark 2.5.5. We need some extra considerations to prove that the re-

striction to the locus BHg,g′,Gal does not affect the generality of the result.

Take a connected component Z ⊂ BHg,g′,Gal and consider the following

chain of inclusions:

Z ⊆ BHg,g′ ↪→ Ag. (2.5.12)

As previously said, BHg,g′ is the set of curves covering a hyperelliptic curve

C ′ with group G1 = Z/2Z, and BHg,g′,Gal is the subset of BHg,g′ made of
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curves covering P1 with group G2 = Z/4Z. Call, respectively,

ρ1 : N∗BHg,g′/Ag
→ S2H0(2K)G1 the second fundamental form

relative to BHg,g′ ⊆ Ag,
ρ2 : N∗Z/Ag → S2H0(2K)G2 the second fundamental form

relative to BHg,g′,Gal ⊆ Ag.

We are interested in ρ1. To conclude that it is not identically zero, using

equality (2.3.10), it is enough to find some quadric Q ∈ I2(K)G1 and a pair

of elements v1, v2 ∈ H1(TC)G1 such that ρ(Q)(v1 � v2) 6= 0. We will do it

passing through ρ2: take a quadric Q ∈ I2(K)G2 . Since it is invariant via the

whole G2 it is invariant also via G1 < G2. Take two elements in H1(TC)G2 :

again, they are also invariant via G1. Using the same idea behind equality

(2.3.10), this implies that

ρ(Q)(v1 � v2) = ρ2(Q)(v1 � v2) = ρ1(Q)(v1 � v2), (2.5.13)

where ρ is the second fundamental form of Mg → Ag: it is sufficient to

prove ρ2(Q)(v1 � v2) 6= 0 to conclude that the whole locus BHg,g′ is not

totally geodesic. This is what we will check in the proof of the following

theorems.

The main difference with respect to the bielliptic case is that in the

bi-hyperelliptic case I2(K) 6= I2(K)G. Nevertheless, once restricted to

BHg,g′,Gal, we can construct an invariant quadric using the decomposition

of H0(KC) given by the structure of cyclic Galois cover of P1.

We start studying case g′ ≥ 3.

Theorem 2.5.6. If g ≥ 3g′ and g′ ≥ 3, the bi-hyperelliptic locus is not

totally geodesic.

Proof. Consider a curve C ∈ BHg,g′,Gal, and take the Galois cover ψ : C →
P1. Using the same notation as in Section 2.1, consider the decomposition of

of the space of holomorphic one forms in eigenspaces, H0(KC) = V1⊕V2⊕V3,

and observe that, independently from the chosen monodromy,

dimV2 = g′ ≥ 3. (2.5.14)

This inequality implies that forms ω2,0, ω2,1, ω2,2 ∈ V2 exist (see Section 2.1

for notations). With the following claim, using these forms we construct a

quadric invariant for the whole G = Z/4Z.
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Claim. Keep notations as above. The quadric

Q := ω2,0 � ω2,2 − ω2,1 � ω2,1 (2.5.15)

is invariant via G = Z/4Z.

Notice that the quadric Q lies in I2(KC) by construction (see Subsection

2.2.2). It is straightforward that it is also invariant: let ζ4 be the fourth root

of unity, and recall from Section 2.1 that in general ωn,ν = xνωn,0. Then:

g∗(Q) = ζ2
4 · ω2,0 � ζ2

4 · ω2,2 − ζ2
4 · ω2,1 � ζ2

4 · ω2,1 = ζ4
4 ·Q = Q.

Remark that evaluating the quadric Q over two points p1, p2, lying in the

same fiber over P1 we obtain zero. In fact, let ω2,ν = xνf2,0(y)dy, then:

Q(p1, p2) = ω2,0(p1)ω2,2(p2) + ω2,0(p2)ω2,2(p1)

− ω2,1(p1)ω2,1(p2)− ω2,1(p2)ω2,1(p1) =

= f2,0(p1)x(p2)2f2,0(p2) + f2,0(p2)x(p1)2f2,0(p1)−
− x(p1)f2,0(p1)x(p2)f2,0(p2)− x(p2)f2,0(p2)x(p1)f2,0(p1) = 0,

since x(p1) = x(p2).

In order to apply Theorem 2.3.2, we need a pair of invariant (combination

of) Schiffer variations. To construct them observe that µ2(Q) is not the zero

map. In fact if ω2,0 = f(y)dy, then ω2,1 = ϕ(y)ω2,0 and ω2,2 = (ϕ(y))2ω2,0.

We have that Q = f(y)dy� (ϕ(y))2f(y)dy−ϕ(y)f(y)dy�ϕ(y)f(y)dy. This

implies:

µ2(Q) = f ′(y)(ϕ(y)2f(y))′ − (ϕ(y)f(y))′(ϕ(y)f(y))′ =

= f ′(y)(2ϕ(y)ϕ′(y)f(y) + ϕ(y)2f ′(y))−
− (ϕ′(y)f(y) + ϕ(y)f ′(y))(ϕ′(y)f(y) + ϕ(y)f ′(y)) =

= 2f ′(y)f(y)ϕ(y)ϕ′(y) + ϕ(y)2f ′(y)2−
− ϕ′(y)2f(y)2 − ϕ(y)2f ′(y)2 − 2ϕ(y)ϕ′(y)f(y)f ′(y) =

= −ϕ′(y)2f(y)2 6= 0.

(2.5.16)

So µ2(Q) 6= 0 is a section of H0(4K), hence it has a finite number of

zeros. Take p1 such that µ2(Q)(p1) 6= 0 and such that σ(p1) = p2 6= p1,

being σ the bi-hyperelliptic involution. The element ξp1 +ξp2 is invariant, in

fact: σ∗(ξp1 +ξp2) = ξσ(p1) +ξσ(p2) = ξp1 +ξp2 . Finally, using Theorem 2.3.2,
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one sees that since Q(p1, p2) = 0, necessarily ρ(Q)(ξp1 � ξp2) = 0. Moreover,

since ρ(Q)(ξp1 � ξp1) = ρ(Q)(ξp2 � ξp2) the following holds:

ρ(Q)((ξp1 + ξp2)� (ξp1 + ξp2)) = 2ρ(Q)(ξp1 � ξp1) = −4πiµ2(Q)(p1) 6= 0.

Using Remark (2.5.5), the last equation implies that the whole bi-hyperellptic

locus BHg,g′ (g ≥ 3g′) is not totally geodesic in Ag if g′ ≥ 3.

We point out that the hypothesis g′ ≥ 3 is used in the very beginning

of the proof of Theorem 2.5.6 to construct the invariant quadric involving

three forms in V2. Nonetheless, there are several possibilities to construct a

quadric using the eigenspaces V1, V2 and V3:

(1) for every quadruple (i, j, k, h) such that i + j = k + h the quadric

Q = xiωn,0� xjωn,0− xkωn,0� xhωn,0 lies in the I2(K) for n = 1, 2, 3;

(2) for every pair (i, j) such that i 6= j, the quadric Q = xiωn,0�xjωm,0−
xjωn,0 � xiωm,0 lies in the I2(K) for n 6= m.

Notice that we need to check that the dimension of the appropriate Vi’s is

big enough to perform the construction. That is, in case (1) we need that

V1 (respectively V2, V3) has dimension al least equal to 3. In case (2) we

need that both the eigenspaces involved have dimension at least 2. Once

the quadric is constructed, we need to control its invariance.

Case (1) To understand whether the previous quadrics are invariant via the

bi-hyperelliptic involution, consider a general element g ∈ G and compute

g∗Q. Recall that Vn’s are subspaces of 1-forms ω such that g · ω = ζ−n4 ω.

It is easy to check that all quadrics of type (1) are invariant under the

bi-hyperelliptic involution:

g∗(Q) = xiζ−n4 · ωn,0 � xjζ−n4 · ωn,0 − xkζ−n4 · ωn,0 � xhζ−n4 · ωn,0 =

= ζ−2n
4 ·Q = (eπi)nQ = (−1)nQ.

(2.5.17)

There are two possibilities for g∗(Q): either Q is invariant via the whole

Z/4Z (case n = 2), or Q is invariant via Z/2Z < Z/4Z (cases n = 1, 3). In

all three cases Q is invariant via the bi-hyperelliptic involution. Observe that

quadric (2.5.15) is a quadric of this type (n = 2, i = 0, j = 2, k = h = 1).
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Case (2) Consider Q quadric of type (2). Let g ∈ G and compute g∗(Q)

in this case as well:

g∗(Q) = xiζ−n4 · ωn,0 � xjζ−m4 · ωm,0 − xjζ−n4 · ωn,0 � xiζ−m4 · ωm,0 =

= ζ
−(m+n)
4 ·Q = (e2πi/4)−(m+n)Q.

(2.5.18)

There are three possibilities for g∗(Q): m + n = 3 (m = 1, n = 2 or

viceversa), m + n = 4 (m = 1, n = 3 or viceversa) and m + n = 5 (m = 2,

n = 3 or viceversa). If m+n = 3 the quadric Q is not invariant under Z/2Z,

since Z/4Z acts on the quadric as a multiplication by i. If m+ n = 4 then

g∗Q = Q: the quadric is invariant via the whole Z/4Z (and in particular via

Z/2Z). Finally, if m+n = 5 we get g∗Q = −iQ: the quadric is not invariant

via Z/2Z since the group Z/4Z acts as a multiplication by −i.

Summarizing, all quadrics of type (1) and quadrics of type (2) with m = 1,

n = 3 are invariant via Z/2Z. We remind the reader that all invariant

quadrics of type (2) have already been found in [30, Proposition 5.7]

In the following, in order to improve the restrictive condition g′ ≥ 3, we

try to apply the same argument of the proof of Theorem 2.5.6 with different

quadrics. Notice that since the condition g ≥ 3g′ is essential, the only

missing case is g′ = 2.

Theorem 2.5.7. If g ≥ 3g′ and g′ = 2, the bi-hyperelliptic locus is not

totally geodesic.

Proof. We start computing possible monodromies for C → P1 in case g′ = 2.

Applying result (2.5.7), one obtains that the orders of ramifications are

necessarily m = [46 : 2g−6]. Moreover, looking at the proof of Theorem

2.5.7, one immediately checks that:

1. If g is even then:

(a) a = [15 : 3 : 2g−6] or

(b) a = [13 : 33 : 2g−6],
(2.5.19)

and the dimension of the eigenspaces V1, V2, V3 are the following:

(a) d1 =
g

2
; d2 = 2; d3 =

g

2
− 2;

(b) d1 =
g

2
− 1; d2 = 2; d3 =

g

2
− 1.
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2. If g is odd then:

(a) a = [16 : 2g−6] or

(b) a = [14 : 32 : 2g−6],
(2.5.20)

and the dimension of the eigenspaces V1, V2, V3 are the following:

(a) d1 =
g + 1

2
; d2 = 2; d3 =

g − 1

2
− 2;

(b) d1 =
g − 1

2
; d2 = 2; d3 =

g − 1

2
− 1.

We claim that for every genus g ≥ 6, it is possible to construct an invariant

quadric in every connected component.

Consider first case g even. In the connected component denoted by (a),

if g ≥ 6 then d1 ≥ 3. One can construct the invariant quadric of type (1):

Q = x2 ω1,0 � ω1,0 − xω1,0 � xω1,0. In the connected component denoted

by (b), instead, condition g ≥ 6 implies d1 ≥ 2 and d3 ≥ 2. In this case

one can construct the quadric of type (2): Q = xω1,0 � ω3,0 − xω3,0 � ω1,0.

Condition g ≥ 6 is sufficient in case g odd as well, in fact it implies d1 ≥ 3

both in monodromy (a) and (b). One can construct the invariant quadric

Q = x2 ω2,0 � ω2,0 − xω2,0 � xω2,0.

The previous argument proves that if g′ = 2, g ≥ 6, for every possible

monodromy, we can construct an invariant quadric. Notice that for our

structural condition g ≥ 3g′, the hypothesis g ≥ 6 is the best possible.

We use these quadrics to prove that the locus of bi-hyperelliptic curves is

not totally geodesic even in case g′ = 2, with an argument identical to the

one used in Theorem 2.5.7. It is straightforward to prove that µ2(Q) 6= 0

for both quadrics of type (1) and (2): the first case is analogous to the

one analysed in expression (2.5.16), while the second one is as follows. Call

ω1,0 = f1,0(y)dy and ω3,0 = f3,0(y)dy. Let Q = xω1,0 � ω3,0 − xω3,0 � ω1,0

as before, where x = ϕ(y) (for notations see Section 2.1). Then:

µ2(Q) = (ϕ(y)f1,0(y))′f ′3,0(y)− (ϕ(y)f3,0(y))′f ′1,0(y) =

= (ϕ′(y)f1,0(y) + ϕ(y)f ′1,0(y))f ′3,0(y)−
− (ϕ′(y)f3,0(y) + ϕ(y)f ′3,0(y))f ′1,0(y) =

= ϕ′(y)f1,0(y)f ′3,0(y) + ϕ(y)f ′1,0(y)f ′3,0(y)−
− ϕ′(y)f3,0(y)f ′1,0(y)− ϕ(y)f ′3,0(y)f ′1,0(y) =

= ϕ′(y)(f1,0(y)f ′3,0(y)− f3,0(y)f ′1,0(y)) = ϕ′(y)µ1(ω1,0 ∧ ω3,0).
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We conclude that µ2(Q) is different from zero, since ϕ′ 6= 0, and the first

Gauss-Wahl map in injective on decomposable vectors (see the discussion at

the beginning of Subsection 2.2.1).

We can take p1 in C such that µ2(Q) 6= 0 and p2 = σ(p1), being σ the

bi-hyperelliptic involution. Then Q(p1, p2) = 0 and Theorem 2.3.2 gives in

all connected components:

ρ(Q)((ξp1 + ξp2)� (ξp1 + ξp2)) = 2ρ(Q)(ξp1 ⊗ ξp1) = −4πiµ2(Q)(p1) 6= 0.

Using Remark 2.5.5, this concludes the proof.



Chapter 3

Computations

In this chapter we use the computer software MAPLE to obtain more in-

formations on the rank of the first and second Gauss-Wahl map on some

loci.

The results cited in Subsection 2.2.1 and Subsection 2.2.2 suggest that

these map should be regular in some loci. We recall that the rank of both

the first and the second Gauss-Wahl map on the hyperelliptic locus depends

on the genus only (rankµ1 = 2g−3, see [46], [87]; rankµ2 = 2g−5, see [27]).

Moreover we recall that the rank of the first and second Gauss-Wahl map on

the trigonal locus depends only on g as well (rankµ1 = 4g−10, see [23], [15];

rankµ2 = 4g− 18, see [27]). The same holds for the rank of the first Gauss-

Wahl map on the bielliptic locus (rankµ1 = 3g− 3, see [23]) and for smooth

plane quintics (rankµ1 = 4g − 9, see [23]).

In the following, using the computer software MAPLE, we will perform some

computations for the rank of the first and second Gauss-Wahl map on some

particular loci. More precisely we will study the rank of the second Gauss-

Wahl map on the bielliptic locus, the rank of both the first and the second

Gauss-Wahl map on the tetragonal locus, and the rank of the first and the

second Gauss-Wahl map on the bi-hyperelliptic locus (see Section 2.5 for

notation).

The MAPLE script, explained in Appendix A, provides a lower bound for

the rank of both the first and the second Gauss-Wahl map of every curve C

which is a cyclic cover of P1, once is fixed the Galois group G, the genus g,

103
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the monodromy a = [a1, . . . aN ], and the set of branch points t = [t1, . . . tN ].

For simplicity, we will use the following notation for the monodromy:

[aM1
1 : aM2

2 : . . . aMN
N ] := [a1 : · · · : a1︸ ︷︷ ︸

M1

: a2 : · · · : a2︸ ︷︷ ︸
M2

: · · · : aN : · · · : aN︸ ︷︷ ︸
MN

].

This chapter is organized as follows:

In Section 3.1 we study the rank of the second Gauss-Wahl map on the

tetragonal locus. Recall from Lemma 2.4.4 that on this locus the second

Gauss-Wahl map has rank at most 5g−5. Via the MAPLE script we will prove

that the general bielliptic curve of genus 8 ≤ g ≤ 30 satisfies rankµ2 ≥ 2g−1.

Also, our result suggests that the rank of any bielliptic curve of genus g ≥ 8

should be 2g− 1. We point out that this result is not so far from the bound

given in Corollary 2.4.13.

In Section 3.2 we study the rank of the first Gauss-Wahl map on the

tetragonal locus. We use the MAPLE script to compute a lower bound for

the rank of the first Gauss-Wahl map when evaluated on a curve C which

covers P1 with Galois group Z/4Z. Recall that Brawner has already studied

this locus, obtaining rankµ1 ≤ 5g − 14. We will prove that this bound is

attained for any genus up to 30, and our computations suggest that 5g− 14

is the generic bound for every genus g ≥ 8.

In Section 3.3 we compute the second Gauss-Wahl map on the tetragonal

locus. We will list examples up to genus 30 e we prove that the general

tetragonal curve has rankµ2 ≥ 6g − 31 in those cases.

In Section 3.4 we study the rank of the first and second Gauss-Wahl map

on the bi-hyperelliptic locus using the MAPLE script. We will start analysing

case g′ = 2, and we conclude the section as well as the chapter reporting

the complete table of cyclic Galois covers C → P1 with Galois group Z/4Z
(g ≤ 16), listing for all of them the lower bound for the rank of the first and

second Gauss-Wahl map given by MAPLE.
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3.1 Rank of the second Gauss-Wahl map on the

bielliptic locus

In this section we will use the MAPLE code reported in Appendix A to

gain some extra information about the rank of the second Gauss-Wahl map

when evaluated over the bielliptic locus. The code gives us a lower bound

for both the rank of the first and the second Gauss-Wahl map.

Recall that the second Gauss-Wahl map is:

µ2 : I2(KC)→ H0(C, 4KC). (3.1.1)

Computing the dimensions of the vector spaces involved, one gets:

dim I2(KC) =
(g − 2)(g − 3)

2
, dimH0(C, 4KC) = 7g − 7. (3.1.2)

For dimensional reasons, the map can be injective for genus g ≤ 17 only.

Moreover, recall from Theorem 2.4.4 that the second Gauss-Wahl map has

corank at least 2g − 2 over the bielliptic locus. In particular, if g ≥ 18 the

map can not be surjective, and it can neither be injective when 14 ≤ g ≤ 17.

In the last cases, one can deduce the following lower bounds for the kernel

dimensions:

• g = 14, dim kerµ2 ≥ 1,

• g = 15, dim kerµ2 ≥ 8,

• g = 16, dim kerµ2 ≥ 16,

• g = 17, dim kerµ2 ≥ 25.

(3.1.3)

In the following, we use the MAPLE code to study the rank of the second

Gauss-Wahl map on the bielliptic locus (recall from the end of Subsection

2.2.1 that the rank of the first Gauss-Wahl map on this locus is already

known to be 3g − 3). In particular we report here a lower bound for the

rank of the map when evaluated over bielliptic curves of genus 5 ≤ g ≤ 30

that are defined as cyclic covers of P1 with Galois group Z/4Z. Recall that

we have already studied which monodromies for a cyclic 4 : 1 cover of P1

give a bielliptic curve (see Theorem 2.4.8).
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Table 3.1: Rank for the second Gauss-Wahl map of bielliptic curves

obtained as cyclic cover of P1 with group Z/4Z. The rank is computed

using MAPLE; the maximal rank is given by the minimum between

dim I2(K) and 5g − 5.

genus monodromy rankµ2 max rankµ2

5 [14 : 22] 3 3

6 [13 : 3 : 23] 6 6

7 [14 : 24] 10 10

8 [13 : 3 : 25] 15 15

9 [14 : 26] ≥ 17 21

10 [13 : 3 : 27] ≥ 19 28

11 [14 : 28] ≥ 21 36

12 [13 : 3 : 29] ≥ 23 45

13 [14 : 210] ≥ 25 55

14 [13 : 3 : 211] ≥ 27 65

15 [14 : 212] ≥ 29 70

16 [13 : 3 : 213] ≥ 31 75

17 [14 : 214] ≥ 33 80

18 [13 : 3 : 215] ≥ 35 85

19 [14 : 216] ≥ 37 90

20 [13 : 3 : 217] ≥ 39 95

21 [14 : 218] ≥ 41 100

22 [13 : 3 : 219] ≥ 43 105

23 [14 : 220] ≥ 45 110

24 [13 : 3 : 221] ≥ 47 115

25 [14 : 222] ≥ 49 120

26 [13 : 3 : 223] ≥ 51 125

27 [14 : 224] ≥ 53 130

28 [13 : 3 : 225] ≥ 55 135

29 [14 : 226] ≥ 57 140

30 [13 : 3 : 227] ≥ 59 145

In Table 3.1 we exhibited one example of bielliptic curve for every genus

5 ≤ g ≤ 30, and we reported a lower bound for the rank of the second
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Gauss-Wahl map for any of them. Remark that, from Table 3.1, we find

rankµ2 ≥ 2g − 1 for every g ≥ 8, so the general bielliptic curve of genus

8 ≤ g ≤ 30 has the same property. We point out that, in those genera, we

obtain the same lower bound for all possible monodromies of C
Z/4Z−−−→ P1 such

that C is bielliptic. Moreover, we found the same bound for the bielliptic

curves giving a Galois cover a P1 via Galois group Z/8Z or Z/12Z, i.e. curves

factorizing via the following diagrams:

C E

P1

6:1

2:1

3:1

C E

P1

8:1

2:1

4:1

We report in Appendix B the complete list of bielliptic curves obtained

as Galois cover of P1 with Galois group Z/4Z, Z/6Z and Z/12Z for genus

up to 30. We stress that the MAPLE code gives rankµ2 ≈ 2g − 1 for any

bielliptic curve of this type (g ≥ 8, prec=500, see Appendix A for details

on the script). This motivates the following:

Conjecture 3.1.1. The rank of the second Gauss-Wahl map for a bielliptic

curve of genus g ≥ 8 is 2g − 1.

Despite this conjecture follows from an approximate computation on some

explicit examples of bielliptic curves, it reflects what it seems to be quite

natural to happen: as for the first Gauss-Wahl map, we suspected some

regularity of the second Gauss-Wahl map on some loci (cfr. the end of

Subsection 2.2.1). In particular the rank over the bielliptic locus is likely to

depend on the genus only. Moreover we point out that the expectation is not

so far from the bound found in Corollary 2.4.13 considering only quadrics

constructed using two adjoint line bundles, as in (2.4.15). We conclude this

section summarizing the obtained results in the following theorem:

Theorem 3.1.1. The second Gauss-Wahl map on the bielliptic locus is

generically injective if 5 ≤ g ≤ 8, moreover it cannot be surjective for genera

g ≥ 14. The general bielliptic curve of genus 8 ≤ g ≤ 30 satisfies:

rankµ2 ≥ 2g − 1. (3.1.4)
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3.2 Rank of the first Gauss-Wahl map on the tetrag-

onal locus

In this section we study the rank of the first Gauss-Wahl map on the

tetragonal locus. We start recalling from the end of Subsection 2.2.1 that

Brawner in its Ph.D. thesis [14] has already studied this rank, obtaining:

rankµ1 ≤ 5g − 14. (3.2.1)

Here we report a table consisting in some explicit computation of the rank

of the first Gauss-Wahl map performed by MAPLE. In particular we computed

the rank of the first Gauss-Wahl map on curves C of genus 5 ≤ g ≤ 17

covering P1 with Galois group Z/4Z. We write down for every genus the

maximal rank arising from our computations and the monodromy leading

to it. We recall (see Remark 2.5.4) that every non hyperelliptic cyclic cover

of P1 with Galois group Z/4Z covers 2 : 1 either an elliptic or a hyperelliptic

curve of genus g′, and that varying the monodromy of the 4 : 1 cover we

obtain all g′ ≤ 1/3 g. In the table we list the genera g′ as well.

Table 3.2: Rank for the first Gauss-Wahl map of tetragonal curves

obtained as cyclic cover of P1 with Galois group Z/4Z. The maximal rank

is given by 5g − 14 (see Brawner [14]).

g g′ monodromy rankµ1 max rankµ1

5 1 [12 : 32 : 22] ≥ 10 11

6 2 [15 : 3] ≥ 15 16

7 2 [16 : 2] ≥ 20 21

8 2 [15 : 3 : 22] 26 26

9 2 [16 : 23] 31 31

10 3 [17 : 3 : 2] 36 36

11 3 [18 : 22] 41 41

12 4 [19 : 3] 46 46

13 4 [110 : 2] 51 51

14 4 [19 : 3 : 22] 56 56

15 5 [112] 61 61

16 5 [111 : 3 : 2] 66 66
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From Table 3.2 we find that generically rankµ1 ≥ 5g− 14 for all 8 ≤ g ≤
16. We point out that this generic lower bound coincides with the upper

bound found by Brawner [14]. Moreover, for 10 ≤ g ≤ 16, the bound is

attained by the maximum possible g′, that is:

g′ =

⌊
g

3

⌋
. (3.2.2)

We managed to go on with computations on higher genera, considering

(for time reasons) only monodromies for C → P1 such that C
2:1−−→ C ′ → P1

with C ′ hyperelliptic of genus g′ satisfying condition (3.2.2). We obtained

in this way one example of curve of rank 5g− 14 for all genus up to 30. We

report our results in the following table.

Table 3.3: Rank of the second Gauss-Wahl map of tetragonal curves

obtained as cyclic cover of P1 with Galois group Z/4Z and g′ = bg/3c.

g g′ monodromy rankµ2

5 1 [12 : 32 : 22] ≥ 10

6 2 [15 : 3] ≥ 15

7 2 [16 : 2] ≥ 20

8 2 [15 : 3 : 22] 5g − 14

9 3 [16, 32] 5g − 14

10 3 [17 : 3 : 2] 5g − 14

11 3 [18 : 22] 5g − 14

12 4 [19 : 3] 5g − 14

13 4 [110 : 2] 5g − 14

14 4 [19 : 3 : 22] 5g − 14

15 5 [112] 5g − 14

16 5 [111 : 3 : 2] 5g − 14

17 5 [112 : 22] 5g − 14

18 6 [113 : 3] 5g − 14

19 6 [114 : 2] 5g − 14

20 6 [13 : 3 : 22] 5g − 14

21 7 [114 : 32] 5g − 14
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22 7 [115 : 3 : 2] 5g − 14

23 7 [116 : 22] 5g − 14

24 8 [115 : 33] 5g − 14

25 8 [118 : 2] 5g − 14

26 8 [117 : 3 : 22] 5g − 14

27 9 [118 : 32] 5g − 14

28 9 [117 : 33 : 2] 5g − 14

29 9 [120 : 22] 5g − 14

30 10 [121 : 3] 5g − 14

Our result, combined with the result of Brawner, leads to the following

expectation:

Expectation. The rank of the first Gauss-Wahl map on the generic tetrag-

onal curve of genus g ≥ 8 is equal to 5g − 14. For every genus g this bound

is attained for some curve C such that diagram

C C ′

P1

4:1

2:1

2:1
(3.2.3)

holds, with g(C ′) =
⌊
g/3
⌋
.

As for the bielliptic case, it seems quite natural to expect that the rank

of the first Gauss-Wahl map on some loci is in some sense regular. In the

spirit of this, we point out that (at least for high genus) the rank seems

to be dependent on g and g′ only, and not the specific monodromy, i.e. it

remains the same by varying the connected component in BHg,g′,Gal (see

Section 2.5 for notations). To justify this assertion we report in Appendix

B the complete table of all the obtained results for the rank of the first

Gauss-Wahl map of a curve C which covers P1 with Galois group Z/4Z
(5 ≤ g ≤ 16), highlighting g′ as well. We conclude this section summarizing

in the following theorem the obtained results:

Theorem 3.2.1. The general tetragonal curve of genus 8 ≤ g ≤ 30 satisfies:

rankµ1 = 5g − 14. (3.2.4)
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Moreover this bound is attained by the maximum possible g′ such that dia-

gram (3.2.3) holds, that is g(C ′) =
⌊
g/3
⌋
.

3.3 Rank of the second Gauss-Wahl map on the

tetragonal locus

In this section we study the rank of the second Gauss-Wahl map on the

tetragonal locus. The results, obtained using MAPLE, suggest that the scenery

is very similar to the one analysed for the first Gauss-Wahl map. In the

following, we report the list of curves C
Z/4Z−−−→ P1 providing the greater rank

we found for the second Gauss-Wahl map for 5 ≤ g ≤ 16. Since the rank

seems to grow up as soon as g′ grows, we computed the ranks up to g = 30

for g′ such that (3.2.2) holds and for some fixed monodromy. As in Table

3.2, for all examples we report the genus g′ as well.

Table 3.4: Rank of the second Gauss-Wahl map of tetragonal (non

hyperelliptic) curves obtained as cyclic cover of P1 with Galois group

Z/4Z. The maximal rank is given by the minimum between dim I2(KC)

and h0(4KC) (see Section 3.1 for detailes).

g g′ monodromy rankµ2 max rankµ2

5 1 [12 : 32 : 22] 3 3

6 2 [15 : 3] 3 6

7 2 [16 : 2] 10 10

8 2 [15 : 3 : 22] 15 15

9 2 [14 : 32 : 23] 21 21

10 3 [17 : 3 : 2] ≥ 27 28

11 3 [18 : 22] ≥ 34 36

12 4 [17 : 3 : 23] ≥ 41 45

13 4 [18 : 24] ≥ 47 55

14 4 [19 : 3 : 22] ≥ 53 66

15 5 [110 : 32] ≥ 59 78

16 5 [111 : 3 : 2] ≥ 65 91

17 5 [112 : 22] ≥ 71 105

18 6 [113 : 3] ≥ 77 119

19 6 [114 : 2] ≥ 83 126



112 CHAPTER 3. COMPUTATIONS

20 6 [13 : 3 : 22] ≥ 89 133

21 7 [114 : 32] ≥ 95 140

22 7 [115 : 3 : 2] ≥ 101 147

23 7 [116 : 22] ≥ 107 154

24 8 [115 : 33] ≥ 113 161

25 8 [118 : 2] ≥ 119 168

26 8 [117 : 3 : 22] ≥ 125 175

27 9 [118 : 32] ≥ 131 182

28 9 [117 : 33 : 2] ≥ 137 189

29 9 [120 : 22] ≥ 143 196

30 10 [121 : 3] ≥ 149 203

Also in this case, notice that for genus big enough (12 ≤ g ≤ 30), the

generic tetragonal curve satisfies rankµ1 ≥ 6g − 31, and this bound is

achieved when g′ is the greatest possible, i.e. g′ =
⌊
g/3
⌋
. We point out that,

from our computations, this rank is the biggest one in the complete list of

curves C obtained as cover of P1 with Galois group Z/4Z, and 12 ≤ g ≤ 16

(prec = 150, see Section A for details; we did not perform the computation

in all possible monodromies for genus up to 30 for time reasons). Our result

suggests the following:

Expectation. The rank of the second Gauss-Wahl map on the generic

tetragonal curve of genus g ≥ 12 is equal to 6g − 31. For every genus g

this bound is attained for some curve C such that diagram

C C ′

P1

4:1

2:1

2:1
(3.3.1)

holds, with g(C ′) =
⌊
g/3
⌋
.

We conclude this section summarizing all the obtained results in the fol-

lowing theorem:

Theorem 3.3.1. The general tetragonal curve has injective second Gauss-

Wahl map for genus 5 ≤ g ≤ 9. For 12 ≤ g ≤ 30 the general tetragonal
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curve of genus g satisfies:

rankµ2 ≥ 6g − 31. (3.3.2)

Moreover this bound is attained by the maximum possible g′ such that dia-

gram 3.2.3 holds, that is g(C ′) =
⌊
g/3
⌋
.

3.4 Gauss-Wahl map on the bi-hyperelliptic loci

In this section, we study the rank of the first and second Gauss-Wahl

map on the bi-hyperelliptic loci using the MAPLE script. We will see that

the rank of both maps seems to depend on g and g′ only, not on the chosen

monodromy of C → P1, i.e. these ranks seem to remain the same by varying

the connected component in BHg,g′,Gal (see Section 2.4 for notations). We

will start our analysis from g′ = 2.

Case g′ = 2

In the following, we report the rank of the first and the second Gauss-Wahl

map of curves that are covers of P1 with Galois group Z/4Z and factorizing

via a genus g′ = 2 curve (see diagram 3.2.3). We will list every examples up

to genus 30.

Table 3.5: Rank of the first and second Gauss-Wahl map of curves

obtained as cyclic cover of P1 with Galois group Z/4Z such that

C → C ′ → P1 with g(C ′) = 2.

g monodromy rankµ1 rankµ2

6 [15 : 3] 15 6

6 [13 : 33] ≥ 14 6

7 [16 : 2] ≥ 20 10

7 [14 : 32 : 2] ≥ 20 10

8 [15 : 3 : 22] ≥ 26 15

8 [13 : 33 : 22] ≥ 26 15

9 [16 : 23] ≥ 31 ≥ 20

9 [14 : 32 : 23] ≥ 31 21
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10 [15 : 3 : 24] ≥ 35 ≥ 27

10 [13 : 33 : 24] ≥ 35 ≥ 27

11 [16 : 25] ≥ 39 ≥ 32

11 [14 : 32 : 25] ≥ 39 ≥ 32

12 [15 : 3 : 26] ≥ 43 ≥ 36

12 [13 : 33 : 26] ≥ 43 ≥ 36

13 [16 : 27] ≥ 47 ≥ 39

13 [14 : 32 : 27] ≥ 47 ≥ 39

14 [15 : 3 : 28] ≥ 51 ≥ 42

14 [13 : 33 : 28] ≥ 51 ≥ 42

15 [16 : 29] ≥ 55 ≥ 45

15 [14 : 32 : 29] ≥ 55 ≥ 45

16 [15 : 3 : 210] ≥ 59 ≥ 48

16 [13 : 33 : 210] ≥ 59 ≥ 48

17 [16 : 211] ≥ 63 ≥ 51

17 [14 : 32 : 211] ≥ 63 ≥ 51

18 [15 : 3 : 212] ≥ 67 ≥ 54

18 [13 : 33 : 212] ≥ 67 ≥ 54

19 [16 : 213] ≥ 71 ≥ 57

19 [14 : 32 : 213] ≥ 71 ≥ 57

20 [15 : 3 : 214] ≥ 75 ≥ 60

20 [13 : 33 : 214] ≥ 75 ≥ 60

21 [16 : 215] ≥ 79 ≥ 63

21 [14 : 32 : 215] ≥ 79 ≥ 63

22 [15 : 3 : 216] ≥ 83 ≥ 66

22 [13 : 33 : 216] ≥ 83 ≥ 66

23 [16 : 217] ≥ 87 ≥ 69

23 [14 : 32 : 217] ≥ 87 ≥ 69

24 [15 : 3 : 218] ≥ 91 ≥ 72

24 [13 : 33 : 218] ≥ 91 ≥ 72

25 [16 : 219] ≥ 95 ≥ 75

25 [14 : 32 : 219] ≥ 95 ≥ 75

26 [15 : 3 : 220] ≥ 99 ≥ 78

26 [13 : 33 : 220] ≥ 99 ≥ 78

27 [16 : 221] ≥ 103 ≥ 81

27 [14 : 32 : 221] ≥ 103 ≥ 81

28 [15 : 3 : 222] ≥ 107 ≥ 84

28 [13 : 33 : 222] ≥ 107 ≥ 84
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29 [16 : 223] ≥ 111 ≥ 87

29 [14 : 32 : 223] ≥ 111 ≥ 87

30 [15 : 3 : 224] ≥ 115 ≥ 90

30 [13 : 33 : 224] ≥ 115 ≥ 90

From the table arises that for all cyclic examples with 9 ≤ g ≤ 30 the rank

of the first Gauss-Wahl map is at least 4g− 5. Also, when 12 ≤ g ≤ 30, the

rank of the second Gauss-Wahl map is at least 3g. We point out that, for

those genera the monodromy does not affect the rank of the two considered

map. This leads to the following:

Expectation. Let C be a general tetragonal curve of genus g covering 2 : 1

a curve of genus 2. Then the following holds:

• rankµ1 = 4g − 5 for all g ≥ 9,

• rankµ2 = 3g for all g ≥ 12.

We conclude this section with a theorem summarizing our results:

Theorem 3.4.1. The general curve C covering P1 with Galois group Z/4Z
and such that diagram (3.2.3) commutes with g′ = 2 has injective first

Gauss-Wahl map in genus g = 6 and injective second Gauss-Wahl map

in genus 6 ≤ g ≤ 9. Moreover it satisfies:

• rankµ1 ≥ 4g − 5 for 9 ≤ g ≤ 30,

• rankµ2 ≥ 3g for 12 ≤ g ≤ 30.

General case

In this last part we analyse the locus of bi-hyperelliptic curves for g′ ≥
3. We simply report the complete table of cyclic Galois covers of P1 with

Galois group Z/4Z (5 ≤ g ≤ 16), highlighting g′, the monodromy, and the

rank of the first and second Gauss-Wahl map computed by MAPLE. As the

reader could notice, also in the general case it seems to be possible to make

expectations similar to the ones made in cases g′ = 1 and g′ = 2.
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Table 3.6: Rank of the first and second Gauss-Wahl map evaluated on the

locus of curves C covering P1 with group Z/4Z and g′ ≥ 3.

g g′ monodromy rankµ2 rankµ2

9 3 [18] ≥ 30 ≥ 20

9 3 [16, 32] ≥ 30 ≥ 21

9 3 [14, 34] ≥ 30 ≥ 20

10 3 [17 : 3 : 2] ≥ 36 ≥ 27

10 3 [15 : 33 : 2] ≥ 36 ≥ 27

11 3 [18 : 22] ≥ 41 ≥ 33

11 3 [16 : 32 : 22] ≥ 41 ≥ 34

11 3 [14 : 34 : 22] ≥ 41 ≥ 34

12 3 [17 : 3 : 23] ≥ 46 ≥ 41

12 3 [15 : 33 : 23] ≥ 46 ≥ 41

12 4 [19 : 3] ≥ 46 ≥ 39

12 4 [17 : 33] ≥ 46 ≥ 39

12 4 [15 : 35] ≥ 46 ≥ 39

13 3 [18 : 24] ≥ 50 ≥ 47

13 3 [16 : 32 : 24] ≥ 50 ≥ 47

13 3 [14 : 34 : 24] ≥ 50 ≥ 47

13 4 [110 : 2] ≥ 51 ≥ 45

13 4 [18 : 32 : 2] ≥ 51 ≥ 46

13 4 [16 : 34 : 2] ≥ 51 ≥ 46

14 3 [17 : 3 : 25] ≥ 54 ≥ 53

14 3 [15 : 33 : 25] ≥ 54 ≥ 53

14 4 [19 : 3 : 22] ≥ 56 ≥ 53

14 4 [17 : 33 : 22] ≥ 56 ≥ 53

14 4 [15 : 35 : 22] ≥ 56 ≥ 53

15 3 [18 : 26] ≥ 58 ≥ 58

15 3 [16 : 32 : 26] ≥ 58 ≥ 58

15 3 [14 : 34 : 26] ≥ 58 ≥ 58

15 4 [110 : 23] ≥ 61 ≥ 59

15 4 [18 : 32 : 23] ≥ 61 ≥ 59

15 4 [16 : 34 : 23] ≥ 61 ≥ 59

15 5 [112] ≥ 61 ≥ 57

15 5 [110 : 32] ≥ 61 ≥ 58

15 5 [18 : 34] ≥ 61 ≥ 58

15 5 [16 : 36] ≥ 61 ≥ 58
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16 3 [17 : 3 : 27] ≥ 62 ≥ 63

16 3 [15 : 33 : 27] ≥ 62 ≥ 63

16 4 [19 : 3 : 24] ≥ 65 ≥ 65

16 4 [17 : 33 : 24] ≥ 65 ≥ 65

16 4 [15 : 35 : 24] ≥ 65 ≥ 65

16 5 [111 : 3 : 2] ≥ 66 ≥ 65

16 5 [19 : 33 : 2] ≥ 66 ≥ 65

16 5 [17 : 35 : 2] ≥ 66 ≥ 65

We conclude this chapter commenting briefly Table 3.6. Notice that in

almost all cases the rank of the first and second Gauss-Wahl map depends on

g and g′ only. The only exceptions are given by cases (g, g′, a) = (9, 3, [16 :

32]), (11, 3, [18 : 22]) and (13, 4, [110, 2]). This makes one suspect that either

the ranks stabilize for higher genus or the precision set in the MAPLE script

is not enough for these particular monodromies (for those three cases we

made the script run up to prec=1000).
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Chapter 4

The geometry of A(1,1,2,2)
4

The purpose of this chapter is to study the geometry of the moduli space

A(1,1,2,2)
4 , parametrizing isomorphism classes of 4-dimensional abelian vari-

eties with polarization of type (1, 1, 2, 2). More precisely, our aim is to study

its Picard group Pic(A(1,1,2,2)
4 ) in order to get informations about its Kodaira

dimension.

In general, the problem of computing the Kodaira dimension of the mod-

uli spaces A(d1,...,dg)
g has been a topic of intense study in the last years. Since

the direct calculation of the Kodaira dimension κ(X) := dim
⊕

iH
0(X,K⊗iX )

of a variety X is often very hard to perform, the majority of results about

κ(A(d1,...,dg)
g ) have been obtained as a consequence of generality and rational-

ity properties: it is well known in fact that every variety of general type X

has κ(X) = dim(X), maximal, and that every variety X which is unirational

(i.e. that admits a rational dominant map P 99K X) has κ(X) = −∞.

The case Ag := A(1,...,1)
g of principally polarized abelian varieties, has

been almost solved: it has been shown that the moduli space Ag is unira-

tional if g ≤ 5, that implies that its Kodaira dimension κ(Ag) = −∞ (see

[26], [38], [62], [83]). Is has also been shown that the moduli spaces Ag are of

general type for g ≥ 7, so their Kodaira dimension turns out to be maximal

(see [65], [81]). The only unsolved case is A6, whose Kodaira dimension is

yet unknown.

Less is known about the Kodaira dimension of the case of non-principally

polarized abelian varieties: we recall the result of Tai, who proved that the

119
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4

moduli space A(d1,...,dg)
g is of general type when g ≥ 16 for every choice of

the polarization, and when g ≥ 8 but for certain polarizations [81]. The only

result about unirationality of such moduli spaces is due to Bardelli, Ciliberto

and Verra [7], who proved that A(1,2,2,2)
4 is unirational. Moreover, since this

space is isomorphic to A(1,1,1,2)
4 (see Birkenhake and Lange [10]), this also

implies the unirationality of A(1,1,1,2)
4 . Nevertheless nothing is known about

neither the unirationality of A(1,1,2,2)
4 nor its Kodaira dimension. In this

chapter, in order to better understand the geometry of A(1,1,2,2)
4 , we try to

get more information on its Picard group.

The chapter is organized as follows:

In Section 4.1 we recall some basic theory on polarized abelian varieties,

Prym maps and Prym varieties. Moreover we explain the bigonal con-

struction ([71]): a procedure that associates to a tower of double covers

D → C → K another tower of double covers, whose Prym is dual to the

Prym of D → C.

In Section 4.2 we construct explicit divisors of that moduli space following

two different approaches: the first divisor is constructed as the image of the

Prym map P : R2,6 → A(1,1,2,2)
4 , sending a cover π : D → C in R2,6 to

its Prym. The second divisor is constructed from the map Ã4 → A(1,1,2,2)
4 ,

sending a principally polarized abelian variety X of dimension 4 together

with a fixed totally isotropic order 4 subgroup H of 2-torsion elements to

the quotient X/H, and then considering the image of the Jacobian locus by

this map.

In Section 4.3, to get more informations about these divisors, we check

if they are invariant under the natural involution defined on the moduli

space A(1,1,2,2)
4 by Birkenhake and Lange, sending a polarized abelian variety

(A,LA) to its dual (A∨, L∨A) (see [10]). We almost immediately obtain that

the divisor constructed with the Prym procedure is fixed by the involution,

by using the result of Pantazis stating that two bigonally related covers have

dual Prym varieties (see [71]). On the other hand, with a bit more work,

we obtain that the second divisor is not invariant under the involution:

the clue here is a theorem due to Bardelli and Pirola, stating that if there

exists an isogeny between two Jacobians JC and JC ′ (JC generic, with

dimension at least 4), then the two Jacobians are isomorphic, and the isogeny

is the multiplication by an integer (see [9]). Since the involution does not

preserve this divisor, we get a very explicit description of a different divisor
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in A(1,1,2,2)
4 , obtained by duality.

4.1 Notation and preliminaries

We start by stating some well known results about complex polarized

abelian varieties and Pryms, then we recall the main ideas of the bigonal

construction, which will be used in the next section. Our main reference for

this preliminary section is Birkenhake and Lange’s book [11].

4.1.1 Polarized abelian varieties

A polarized abelian variety (A,H) of dimension g is the datum of a com-

plex torus A = Cg/Λ and a non-degenerate positive definite hermitian form

H ∈ H2(A,Z) satisfying Im(H)(Λ×Λ) ⊂ Z. The form H is the first Chern

class of an ample line bundle L over A. Sometimes, when the polarization

is not needed, we will use A to refer to it.

The following proposition is necessary to define the type of a polarization

H of a g-dimensional abelian variety.

Proposition 4.1.1. Let E : Λ × Λ −→ Z be an alternating and non-

degenerate form. Then there exist positive integers d1, . . . , dg such that

di | di+1 for all i = 1, . . . , g, and there exists a basis of Λ such that the

matrix associated to E in this basis is :

E =

(
0 D

−D 0

)
, where D =


d1 0 . . . 0

0 d2 . . . 0
...

...
. . .

...

0 0 . . . dn

 .

We define the type of the polarization H to be the g-tuple (d1, . . . , dg) of

integers from the proposition above (where E = Im(H)). A polarization H

whose type is (1, . . . , 1) is called principal. The main example of principally

polarized abelian varieties are Jacobians of curves.

A morphism f : A −→ A′ between two abelian varieties A and A′ is called

an isogeny if and only if it satisfies the following properties :
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1. A and A′ have the same dimension,

2. f is surjective,

3. Ker(f) is finite.

We remark that any two of the above properties imply the remaining one,

so to define an isogeny it actually suffices to have only two of the properties.

Let (A,H) be a polarized abelian variety. Fix a line bundle L ∈ Pic(A)

satisfying c1(L) = H. The morphism λL : A −→ A∨ given by a 7→ τ∗aL⊗L−1

is an isogeny. Here, A∨ = Pic0(A) is the dual of A, and τ∗a is the translation

by a in A. We get the following result, describing the kernel K(L) of λL:

Theorem 4.1.2. If L is a polarization of type (d1, . . . , dg), then di | di+1

for all i = 1, . . . , g, and

K(L) ∼=
(
Z/d1Z× . . .× Z/dgZ

)2
.

It is useful to remark that deg(λL) = |K(L)| = d2
1 × . . .× d2

g.

In order to understand better the relation between line bundles over isoge-

nous abelian varieties, we introduce the Riemann bilinear form associated

to a line bundle: if K(L) is the kernel of a line bundle L over A = V/Λ, we

define the Riemann bilinear form as the bilinear alternating form

eL : K(L)×K(L) −→ C∗

(x, y) 7−→ exp−2iπH(x̃,ỹ),

where x̃, ỹ are the liftings of respectively x, y to the vector space V . Also, we

recall that H = c1(L) and we have K(L) = {x ∈ A |H(l, x̃) ∈ Z, for all l ∈
Λ} (see [35] Chapter VI Section 4).

Notice that if the line bundle L is ample then the form eL is non-degenerate.

To appreciate the importance of this pairing, we state a useful result relat-

ing line bundles of isogenous abelian varieties, whose proof can be found

in Birkenhake and Lange’s book ([11], Corollary 6.3.5). Before stating the

theorem, recall that a subgroup K < K(L) is totally isotropic with respect

to eL if for all x, y ∈ K we have eL(x, y) = 1.

Proposition 4.1.3. Let f : X → Y be an isogeny of abelian varieties and

let L be a line bundle on X. Then the following statements are equivalent:
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1. L = f∗(M) for some M ∈ Pic(Y ),

2. ker(f) is a totally isotropic subgroup of K(L) with respect to eL.

To conclude this section we recall the construction of Birkenhake and

Lange’s involution: denote by A(d1,...,dg)
g the coarse moduli space parametriz-

ing isomorphism classes of g-dimensional polarized abelian varieties of type

(d1, . . . , dg); it is a quasi-projective variety of dimension g(g+1)
2 . In [10],

Birkenhake and Lange have shown that there is an isomorphism of the coarse

moduli spaces

A(d1,...,dg)
g

∼=−→ A

(
d1dg
dg

,
d1dg
dg−1

...,
d1dg
d2

,
d1dg
d1

)
g .

In case g = 4 and polarization (1, 1, 2, 2), the isomorphism is actually an

automorphism ρ : A(1,1,2,2)
4 −→ A(1,1,2,2)

4 , associating to a polarized abelian

variety (A,LA) its dual variety (A∨, LA∨). The polarization LA∨ on A∨

is constructed in order to satisfy (LA∨)∨ = LA (see [10], Proposition 2.3).

Since (A∨)∨ = A we get ρ2((A,LA)) = (A,LA), hence ρ is an involution on

the moduli space A(1,1,2,2)
4 .

4.1.2 Prym maps and Prym varieties

Let C ∈ Mg, D ∈ Mg′ , and let D
π−→ C be a finite morphism of degree

2 branched on a divisor B = q1 + . . . + qr, with qi ∈ C and qi 6= qj for all

i 6= j. The curve D is obtained as Spec (OC ⊕ η−1) with η ∈ Pic(C) such

that η⊗2 ∼= OC(B). Observe that Riemann-Hurwitz formula gives that the

genus of D is 2g − 1 + r
2 (notice that r has to be even).

We get the following diagram:

D Alb(D) = JD

C JC

π

It is possible to complete it using the universal property of the Albanese of

D. Hence the following commutative diagram holds:
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D Alb(D) = JD

C JC

π Nmπ

The map JD
Nmπ−−−→ JC is called norm map. It is well known that this

map is surjective if the cover is branched. We are ready to define the Prym

variety attached to a cover.

Definition 4.1.4. The Prym variety attached to the cover D
π−→ C is the

connected component containing the origin of the kernel of the norm map:

P (D,C) = ker(Nmπ)0.

The Prym variety (P (D,C), Ξ) turns to be a polarized abelian variety of

dimension g− 1 + r
2 : the polarization Ξ is obtained as the first Chern class

of the restriction on P (D,C) of the line bundle OJD(ΘD), where ΘD is the

principal polarization of JD. Notice that Ξ is of type (1, . . . , 1,︸ ︷︷ ︸
r
2
−1

2, . . . , 2)︸ ︷︷ ︸
g

.

4.1.3 The bigonal construction

The bigonal construction is a procedure that associates to a tower of

double covers D → C → K another tower of double covers, whose Prym

is dual to P (D → C). Since the duality result of Pryms will be useful

later in our discussion, we give some details (see Pantazis for an accurate

description [71]).

Let ϕ : C → K be a cover of degree 2 (hence the ”bi” in bigonal) and let

π : D → C be a branched cover of degree 2. The curve D is equipped with

an involution ι that switches the two elements of the fiber of a generic point

c ∈ C. The two given covers determine a degree 22 cover Γ −→ K, whose

fiber over a generic point k ∈ K consists of 4 sections sk of π over k:

sk : ϕ−1(k) −→ π−1ϕ−1(k), π ◦ sk = idK .

The curve Γ is defined set-theoretically as

Γ = {B ∈ Pic2(D) | FNm(B) = ϕ−1(k), k ∈ K},
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where Nm : Pic2(D) −→ Pic2(C) sends [x1 + x2] ∈ Pic2(D) to [π(x1) +

π(x2)], and FB = {x1, x2 |B = [x1 +x2]}. With this definition, one can view

a point p ∈ Γ which belongs to the fiber of some k ∈ K as a section sk.

There is an involution on Γ defined by ι̃(sk) = ι ◦ sk, k ∈ K, which in

turn gives an equivalence relation where two points s1, s2 ∈ Γ are said to be

equivalent if s1 = ι̃(s2). Considering the quotient Γ0 = Γ/ι̃ one obtains a

tower of degree 2 covers Γ −→ Γ0 −→ K.

The two towers D
π−→ C

ϕ−→ K and Γ
π̃−→ Γ0

ϕ̃−→ K are said to be bigonally

related (see Donagi for details [39]). Since ϕ and π are branched, this implies

that ϕ̃ and π̃ are branched as well. Moreover, observe that the bigonal

construction switches branch loci.

The following result, due to Pantazis [71], claims that bigonally related

Prym varieties are dual :

Theorem 4.1.5. Consider a pair of maps of degree 2, D → C → P1, and

the bigonally related tower Γ→ Γ0 → P1. Consider the Pryms:

P (D,C) := ker0(Nm : J(D)→ J(C)),

P (Γ,Γ0) := ker0(Nm : J(Γ)→ J(Γ0)).

Then (P (D,C), θ) and (P (Γ,Γ0), θ′) are dual polarized abelian varieties.

We conclude this introductory section by briefly defining some notions

and fixing some notation which we shall use throughout the rest of this

chapter:

• Xm < X is the kernel of ·m : X −→ X, the multiplication by m. We

will usually refer to Xm as the subgroup of m-torsion elements of X;

• Rg,r will denote the moduli space of double covers of a curve of genus

g with r ramifications;

• we denote as P : Rg,r → Aδg−1− r
2

the Prym map, associating to a cover

its Prym variety;

• if C is a curve, ΘC will denote the principal polarization of the Ja-

cobian JC. If A is a polarized abelian variety, we will use the line

bundle LA to refer to the polarization of A, instead of the hermitian

form H = c1(LA).
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4.2 Construction of divisors in A(1,1,2,2)
4

In this section we construct two divisors of the moduli space A(1,1,2,2)
4 :

the first one will be constructed as the image of R2,6 by the Prym map P ,

the other one will be obtained as the image ofMg in A(1,1,2,2)
4 via the Torelli

map and a quotient construction.

4.2.1 Prym construction

The first construction of a divisor inA(1,1,2,2)
4 immediately follows from the

Prym map P : R2,6 → A(1,1,2,2)
4 which sends a cover π : D → C in R2,6 to its

Prym variety. From the general theory of Pryms, since the cover π ramifies,

the kernel of the norm map is connected, thus P (D,C) = ker{Nm(π) :

JD → JC}. It is a Prym variety of dimension 4 and polarization (1, 1, 2, 2).

The Prym map P : R2,6 → A(1,1,2,2)
4 has been studied in a recent work of

J. C. Naranjo and A. Ortega [67]: the two authors show that it is injective.

Since R2,6 has dimension 3g − 3 + r = 9, its image by P is a divisor of the

10-dimensional moduli space A(1,1,2,2)
4 . We name the obtained divisor P.

4.2.2 Quotient construction

We start defining the moduli space of principally polarized abelian va-

rieties of dimension 4 with a fixed totally isotropic subgroup of 2-torsion

elements:

Ã4 = {(X,LX , H)|(X,LX) is a principally polarized abelian variety of dimension 4,

H ⊂ X2 is a totally isotropic subgroup of four elements}

Let (X,LX , H) ∈ Ã4, and take the quotient A := X/H. It gives a degree

4 isogeny f : X → A. Via Proposition 4.1.3, one can choose over A a

polarization LA whose pullback by f is L⊗2
X . Considering the isogenies
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induced by the polarizations, we get the following diagram:

X
f //

λ2Θ

��

A

λLA

��
X∨ A∨

f∨
oo

(4.2.1)

Observe that X2 = f−1(ker(f∨ ◦ λLA)). Computing the degree of the

involved maps one gets that deg(λ2Θ) = |X2| = 28 has to be equal to

deg(f∨ ◦λLA ◦ f) = 22 · | ker(λLA)| · 22, meaning that | ker(λLA)| = 24. Since

ker(λLA) is a commutative subgroup, then

ker(λLA) ∼= (Z/2Z× Z/2Z)2, (4.2.2)

so (A,LA) ∈ A(1,1,2,2)
4 .

This construction gives a finite cover $ : Ã4 −→ A(1,1,2,2)
4 which takes a

triple (X,LX , H) and sends it to (A,LA).

Consider the Torelli map τ : M4 → A4. Since this map is generically

injective, the Jacobian locus is a subvariety of dimension 9 of A4. Consider

the Jacobian locus inside Ã4 in the natural way: its image by the finite cover

$ defines a divisor in A(1,1,2,2)
4 . Call it J .

4.3 Invariance of divisors via the involution

In the previous section we have obtained the divisor P via the Prym

construction, and the divisor J via the quotient construction. In this section

we check how these two divisors behave under the involution ρ. We state

here our main result:

Theorem 4.3.1. Let P and J be the divisors of A(1,1,2,2)
4 constructed in

Section 4.2. Let ρ : A(1,1,2,2)
4 → A(1,1,2,2)

4 be the Birkenhake and Lange’s

involution. Then we have the following:

1. P = ρ(P): P is invariant under the involution;

2. J 6= ρ(J ): J is not invariant under the involution.
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Proof of point (1). To prove point (1) of Theorem 4.3.1, we need to show

that the dual of a Prym variety inside the Prym divisor P is also a Prym

variety. This will follow from the bigonal construction and Theorem 4.1.5.

In fact, let D
π−→ C be a general branched cover in R2,6. C is a hyperelliptic

curve since it is of genus two, so it admits a 2 : 1 cover of P1, which we

call ϕ. There are six Weierstrass points on C, which by generality one can

suppose to be different than the branch locus of the cover D
π−→ C. Applying

the bigonal construction to the tower D
π−→ C

ϕ−→ P1, we get a corresponding

tower Γ
π̃−→ Γ0

ϕ̃−→ P1, where Γ
π̃−→ Γ0 is a degree two cover with 6 branch

points. We need to check whether P (Γ,Γ0) is in P. Let us count the genera

of the curves Γ and Γ0: the ramification divisor of the degree 4 covering

Γ −→ P1 is

R = w1 + . . .+ w6 + b1 + . . .+ b6 + b′1 + . . .+ b′6,

where wi is in the fiber over kwi ∈ P1, which is the image of a Weierstrass

point by ϕ, whereas bi’s and b′i’s are the elements of the fiber over kbi ∈ P1

which is the image by ϕ of a branch point in C. Hence deg(R) = 18. By

Riemann-Hurwitz formula the genus of Γ is 6. The ramification divisor of

the degree 2 covering Γ
γ−→ Γ0 is

R′ = w1 + . . .+ w6 :

the points wi are as described above and are those fixed by the involution

ι̃, so deg(R′) = 6. Using Riemann-Hurwitz formula again we get that the

genus of Γ0 is 2. Thus the cover Γ
π̃−→ Γ0 lies in R2,6, meaning that P (Γ,Γ0)

is indeed in the divisor P. Using Theorem 4.1.5, we obtain that P (D,C)

and P (Γ,Γ0) are dual, which concludes the proof.

Part (2) of Theorem 4.3.1 requires more work.

From now on, let (X,LX) = (JC,ΘC) for some curve C, and (A,LA) =

( JC
〈α1,α2〉 , LA) where α1 and α2 are 2-torsion elements in JC such that

eLA(α1, α2) = 1, where eLA is the Riemann bilinear form associated to

K(LA). Recall that elements in J are polarized abelian varieties (A,LA)

with an isogeny of degree 4 from a Jacobian f : JC −→ A, such that

f∗(LA) = Θ2
C . The dual divisor J ′ = ρ(J ) is a variety whose elements

are polarized abelian varieties (A′, LA′) with an isogeny of degree 4 to a

Jacobian f ′ : A′ −→ JC ′, such that f ′∗(ΘC′) = LA′ .
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The following lemma is useful to find a more explicit description of J ′:

Lemma 4.3.2. In the previous setting, the kernel K(LA) is

K(LA) =
〈α1, α2〉⊥

〈α1, α2〉
⊂ JC

〈α1, α2〉
= A.

Proof. Since both groups have the same cardinality (16 elements), it is

enough to prove one inclusion. Let’s see that K(LA) is contained in

〈α1, α2〉⊥

〈α1, α2〉
.

Let ã ∈ K(LA), then ã = f(a) for some a ∈ JC. Therefore:

1 = eLA(f(a), 0) = eLA(f(a), f(αi)) = e2Θ(a, αi) = e2(a, αi).

Hence ã ∈ 〈α1, α2〉⊥.

Define the following moduli space:

Ã′4 = {(X,LX , H)|(X,L) is a principally polarized 4-dimensional abelian variety,

H ⊂ X2 and H⊥ is an isotropic subgroup of four elements}

We define the new divisor J ′ using a construction analogous to the quo-

tient one: let (X,LX , H) ∈ Ã′4, and put A′ = X/H. This gives a degree 4

isogeny f ′ : A′ −→ X/X2
∼= X. A′ is polarized by LA′ = f ′∗(LX), which is

of the desired type (1, 1, 2, 2). The moduli space Ã′4 also gives a finite cover

$′ for A(1,1,2,2)
4 . As before, the image of the Jacobian locus by $′ defines a

divisor which is in fact J ′.

Set A = JC/〈α1, α2〉. Then A∨ = ρ(A). By definition λLA : A → A∨:

using Lemma 4.3.2 and the third isomorphism theorem one can write A∨

explicitly as a quotient of JC:

A∨ ∼=
A

ker(λLA)
∼=

JC
/
〈α1, α2〉

〈α1, α2〉⊥
/
〈α1, α2〉

∼=
JC

〈α1, α2〉⊥
.

Moreover, (A′ = JC
〈α1,α2〉⊥

, LA′) is the image of (JC,ΘC , 〈α1, α2〉⊥) by $′.

This duality argument gives a correspondence between the two divisors J .

It is explained in the following diagram:
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Ã4 Ã′4

A(1,1,2,2)
4 A(1,1,2,2)

4

$

⊥

ρ

$′

The map ⊥ takes the triple (X,LX , H) to (X∨, L∨X , H
⊥); the maps $,

$′ are the two finite covers of A(1,1,2,2)
4 defined above, and the map ρ is

the Birkenhake and Lange’s involution. The diagram commutes via the

following lemma:

Lemma 4.3.3. The pullback by f∨ : A∨ −→ JC∨ of Θ∨C is algebraically

equivalent to LA∨.

Proof. The statement is equivalent to f ◦ λ−1
Θ ◦ f∨ = λL∨A , then it is enough

to prove that the following diagram commutes:

JC∨

λ−1
Θ

��

A∨

λL∨
A

��

f∨oo

JC
f // A

Consider the diagram:

JC
f //

λ2Θ

��

A

λLA

��
JC∨

λ−1
Θ

��

A∨
f∨

oo

λL∨
A

��
JC A

Observe that λ−1
Θ ◦λ2Θ = 2JC , and also λLA ◦λL∨A = 2A. Taking an element

x ∈ JC, we have:

λ−1
Θ ◦ λ2Θ(x) = 2x, λLA ◦ λL∨A ◦ f = 2f(x).

By linearity, one can complete the diagram with f : JC → A.
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Elements of J ′ are pairs (A′ = JC/〈α1, α2〉⊥, LA′) together with a de-

gree 4 isogeny f ′ : A′ −→ JC such that LA′ = f ′∗(ΘC). The com-

mutativity of the above diagram implies that ρ(J ) = J ′: indeed, given

(A = JC/〈α1, α2〉, LA) ∈ J , we have ρ(A) = A∨ = JC/〈α1, α2〉⊥ = A′. To

see that ρ(LA) = LA′ , observe that f ′ = f∨ and use Lemma 4.3.3.

It is useful to note that the following result holds:

Lemma 4.3.4. The pullback by λLA of LA∨ is algebraically equivalent to

L2
A.

Proof. The proof is analogous to the previous one: the statement is equiva-

lent to

(λLA)∨ ◦ λL∨A ◦ λLA = 2λLA .

But since (λLA)∨ : A→ A∨ is the same as λLA : A→ A∨, and λLA◦λL∨A = 2A
the equality is straightforward:

(λLA)∨ ◦ λL∨A ◦ λLA = λLA ◦ λL∨A ◦ λLA = 2λLA .

Proof of Theorem 4.3.1 point (2). Suppose J = J ′. Since elements in J
are of type JC

〈α1,α2〉 for some curve C and some 2-torsion elements α1 and

α2, and elements in J ′ are of type JD/〈β1, β2〉⊥ for some curve D and

some 2-torsion elements β1 and β2, the equality implies that for every pair

(JC, 〈α1, α2〉) in J one can find another pair (JD, 〈β1, β2〉) such that

JC

〈α1, α2〉
=

JD

〈β1, β2〉⊥
.

Consider the diagram

JC

2JC

��

fC // JC
〈α1,α2〉 = JD

〈β1,β2〉⊥

λLA

��

JD
fDoo

2JD

��
JC∨ JC∨

〈α1,α2〉⊥
= JD∨

〈β1,β2〉
f∨Coo

f∨D

// JD∨

Composing f∨C ◦ λLA ◦ fD, we obtain an isogeny from JD to JC∨ ∼=
JC, where the isomorphism is given using the principal polarization of JC.
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Computing the degree of this map we find that it is 212, that is the product

of the degree of the three factorizing maps (deg fD = 26, deg λLA = 24,

deg f∨C = 22). We use the following result:

Theorem 4.3.5 (Bardelli, Pirola). If χ is an isogeny between two Jaco-

bians of dimension g ≥ 4, and J is generic, than J ∼= J ′ and χ is the

multiplication by an integer.

Applying Theorem 4.3.5, we find that the Jacobians JC and JD are iso-

morphic as principally polarized abelian varieties, so, using Torelli theorem,

we get that the curves C and D have to be isomorphic as well. Moreover,

the isogeny χ = f∨C ◦λLA ◦fD has to be the multiplication by an integer map.

But this cannot be, since the multiplication by m has degree m2×4 = m8,

thus can never be equal to 212. Hence J 6= J ′, which completes the proof.
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Appendix A

MAPLE script

This appendix describes the MAPLE code used to generate the computa-

tional results from Chapter 3 of the dissertation (see [2]).

Before going deeper in technicalities, we explain here the simple strategy

behind the code. The purpose is to provide a lower bound for the rank of

the first and second Gauss-Wahl map when evaluated over a (generic) curve

which is a cyclic Galois cover of P1. Following the notation introduced in

Section 2.1, we fix the genus of the curve, the order m of the Galois group,

and the monodromy datum a=<a_1,..,a_N>. Moreover we fix the branch

points t=<t_1,...,t_N> as well. Since we want to use expression (2.1.5), we

consider only monodromies such that a1 = 1, and we always choose t1 = 0.

For convenience of the reader, we recall that the fiber over a fixed point

ti ∈ t is the normalization of the affine curve:

ym = g(x) :=
N∏
i=1

(x− ti)ai . (A.0.1)

Call ϕ the local inverse of g around 0, that is:

ϕ(y) = g−1(ym) = x. (A.0.2)

We write forms ωn,ν ∈ H0(K) concretely using expression:

ωn,ν =
m

g′(ϕ(y))
yn−1ϕ(y)ν

N∏
i=1

(ϕ(y)− ti)l(i,n)+ai dy. (A.0.3)
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We point out that MAPLE can find the local inverse of g around 0, which

we called phi, as well as the derivative of g with respect to x, obtained

via diff(g(x),x)). Every form in (A.0.3) is explicitly computable locally

around 0. It is easy to compute the first and the second Gauss-Wahl map just

using their definitions. We do it, and we consider their Taylor expansion

truncated at some fixed precision. We put all coefficients of the Taylor

expansions in two matrices: MatM1 is the matrix relative to the first Gauss-

Wahl map and MatM2 is the matrix relative to the second one. Finally,

computing the rank of these matrices, we obtain an approximate value for

the rank of µ1 and µ2 respectively.

The precision in the approximations depends on the parameter prec,

which we set at the beginning. It determines at which order all Taylor series

stop. The results we obtain are lower bounds for the rank of the first and

second Gauss-Wahl map: it is possible, in fact, that a pair of vectors which

are dependent when truncated at the n-th entry becomes independent if

truncated at level n+ 1.

In the following, we include and comment the MAPLE source in case of

a curve of genus 5 which covers P1 with Galois group G = Z/4Z and

monodromy data a = [1 : 1 : 3 : 3 : 2 : 2] over the branch points

t = [0 , 1 , −1 , 2 , −2 , 3]. Remark that we have already seen this

cover in Section 3.1 as an example of bielliptic curve with maximal second

Gauss-Wahl map (see Table 3.1).

restart;

Typesetting:-Settings(functionassign = false);

with(PolynomialTools); with(LinearAlgebra);

We use the PolynomialTools package, which provides a collection of

commands useful to work with polynomial. In particular we use in the

code the CoefficientVector(p, x) calling sequence, which returns a vec-

tor of coefficients from a polynomial p in the variable x. We use the

LinearAlgebra package as well, which offers routines to construct and ma-

nipulate matrices and vectors and solve linear algebra problems. Commands

Dimension(M), which computes the dimension of the matrix M , and com-

mand NullSpace(A), which compute a basis for the kernel of a matrix, are

inside this package.
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genus := 5; m := 4;

a := <1, 1, 3, 3, 2, 2>; t := <0, 1, -1, 2, -2, 3>;

r := Dimension(a);

l := Matrix(r, m-1);

d := Vector(m-1);

forma := Vector(genus);

prec := 150;

#Dimension of \Lambda^2 H^0(K)

L := (1/2)*genus*(genus-1);

#Dimension of I_2(K)

N := (1/2)*genus*(genus+1)-3*(genus-1);

k := 1;

Max1 := 0; Max2 := 0; Max3 := 0;

g := x -> mul((x-t(i))^a(i), i = 1 .. r);

phi := solve(g(x) = y^m, x)[1];

phiTay := y -> taylor(phi, y = 0, prec);

eq0 := x = convert(phiTay(y), polynom);

eq1 := y^m = g(x);

In the previous lines we have initialized all variables. We fixed the prec

parameter to 150. We called g the function defined in (A.0.1), and phi

is local inverse around 0. phiTay is the polynomial version of phi trun-

cated at order prec. Equations eq1 and eq0 are respectively equation

(A.0.1) and equation (A.0.2) in polynomial form. We used the command

convert(phiTay(y),polynom) to get rid of the infinitesimal term o(yprec)

in the Taylor series.

for n from 1 to m-1 do

for i from 1 to r do

l[i, n] := floor(-n*a(i)/m);

d[n] := -1+add(-n*a(j)/m-floor(-n*a(j)/m), j = 1 .. r);
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end do;

end do;

for n from 1 to m-1 do

for v from 0 to d[n]-1 do

wpar[n, v] := m*y^(n-1)*x^v*mul((x-t(i))^(l[i, n]+a(i)),

i = 1 .. r);

fnum[n, v] := convert(taylor(algsubs(eq0, wpar[n, v]),

y = 0, prec), polynom);

fden[n, v] := convert(taylor(algsubs(eq0, diff(g(x), x)),

y = 0, prec), polynom);

forma[k] := convert(taylor(fnum[n, v]/fden[n, v], y = 0,

prec), polynom);

k := k+1;

end do;

end do;

Here we computed the combinatorial data l[i,n] and d[n] to construct

all forms in H0(K) using expression (A.0.3). Then we converted them in

polynomials, using the Taylor expansion of numerator and denominator sep-

arately, and considering the Taylor expansion of the quotient truncated at

level prec. Finally, we put all forms in vector forma. Using the same nota-

tion of Section 2.1, we point out that we ordered forms as follows:

{ forma[1],...,forma[genus]}

=

{ω1,0, . . . , ω1,d1−1, ω2,0, . . . , ω2,d2−1, ω3,0, . . . , ω3,d3−1}.

#First Gauss-Wahl map

for i from 1 to genus do

for j from i+1 to genus do

M1[i, j] := convert(taylor((diff(forma[j], y))*forma[i]-

(diff(forma[i], y))*forma[j], y = 0, prec-1), polynom);
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C1[i, j] := CoefficientVector(M1[i, j], y);

Max1 := max(Max1, Dimension(C1[i, j]));

end do;

end do;

In the previous lines, we evaluated the first Gauss-Wahl map on forms

forma(i) ∧ forma(j), and we truncated the obtained polynomials at order

prec-1, that is the greater significant one. We put these polynomials in

the entry (i, j) of the matrix M1. Finally we put the coefficients of these

polynomial in the multimatrix C1. Observe that C1[i,j] is the coefficients

vector of µ1(forma(i) ∧ forma(j)).

#Multiplication map and multiplication map of derivatives

k := 1;

for i from 1 to genus do

for j from 1 to genus do

M[i, j] := convert(taylor(forma[i]*forma[j], y = 0, prec),

polynom);

CM[i, j] := CoefficientVector(M[i, j], y);

Max2 := max(Max2, Dimension(CM[i, j]));

MD[i, j] := convert(taylor((diff(forma[i], y))*(diff(forma[j],

y)), y = 0, prec-1), polynom);

if i <= j then

M2[k] := MD[i, j];

k := k+1;

end if;

end do;

end do;

Here we followed the same procedure used in the case of the first Gauss-

Wahl map. We constructed the matrix M, having in each entry the Taylor

serie for forma[i]*forma[j], and then we isolated the coefficients in the

multimatrix CM. Finally we constructed the matrix MD, such that the entry

MD[i,j] contains the Taylor serie for forma’[i]*forma’[j]. In the last if

cycle, we ordered vectors contained in the MD in the simpler matrix M2.

#Set the right length of coefficient vectors
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for i from 1 to genus do

for j from i+1 to genus do

for q from Dimension(C1[i, j])+1 to Max1 do

C1[i, j](q) := 0;

end do;

end do;

for j from 1 to genus do

for q from Dimension(CM[i, j])+1 to Max2 do

CM[i, j](q) := 0;

end do;

end do;

end do;

This is a technical for cycle, useful to guarantee that all columns in C1

and CM have the same length. To be more precise, until now C1 and CM were

not matrices, but vectors whose entry were other vectors of a-priori different

length. Here we homogenize all lengths adding zeros when necessary.

#Matrix of coefficients of the first Gauss-Wahl map

MatM1 := Vector(prec-1);

for i from 1 to genus-1 do

for j from i+1 to genus do

MatM1 := <MatM1, C1[i, j]>;

end do;

end do;

MatM1 := DeleteColumn(MatM1, 1);

Rank(MatM1);

10

As before, here we ordered the vectors contained in the multimatrix C1

in the simpler matrix MatM1. Finally, we computed Rank(MatM1), which is

a lower bound for the rank of the second Gauss-Wahl map, for the previous

discussion.

#Matrix of coefficients of the multiplication map
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MatM := Vector(prec);

for i from 1 to genus do

for j from i to genus do

MatM := <MatM, CM[i, j]>;

end do;

end do;

MatM := DeleteColumn(MatM, 1);

Rank(MatM);

12

Here we use for the multiplication map the same strategy as before: we

ordered the vectors contained in CM in matrix MatM (we will use this matrix

later to describe quadrics in the I2(K)). Finally, we computed Rank(MatM),

which is a lower bound for the rank of the multiplication map, allowing us

to check whether the curve is hyperelliptic or not.

#Computation of the second Gauss-Wahl map:

K := NullSpace(MatM);

Max3 := 0;

for k from 1 to N do

Omega[k] := add(K[k][i]*M2[i], i = 1 .. L+genus);

F[k] := CoefficientVector(Omega[k], y);

Max3 := max(Max3, Dimension(F[k]));

end do;

for k from 1 to N do

for q from Dimension(F[k])+1 to Max3 do

F[k](q) := 0;

end do;

end do;

Here we computed the second Gauss-Wahl map starting from the matrix

MatM. The output of command NullSpace(MatM) is a matrix whose columns

are vectors in the kernel of MatM. We call it K. In the first for cycle we
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computed the second Gauss-Wahl map and isolate the coefficients. In the

last for cycle we adjusted the dimensions adding zeros to make F a matrix,

as before.

#Matrix of coefficients of the second Gauss-Wahl map

Mat := Vector(prec-1);

for i from 1 to N do

Mat := <Mat, F[i]>;

end do;

Mat := DeleteColumn(Mat, 1);

Rank(Mat);

3

In the last few lines we computed the approximate rank of the second

Gauss-Wahl map. As in the case of the first Gauss-Wahl map, Rank(Mat) is

a lower bound for rankµ2. Nevertheless, in this case the approximate values

coincide with the maximal one: we can conclude that the map is injective.



Appendix B

Tables for bielliptic curves

This appendix is intended as a support for Section 2.4. Here we attach

the complete list of all bielliptic curves of genus 5 ≤ g ≤ 30 covering P1 with

Galois group Z/4Z, Z/8Z and Z/12Z, that is:

C E

P1

4:1

2:1

2:1

C E

P1

6:1

2:1

3:1

C E

P1

8:1

2:1

4:1

For all of them we report the lower bound for the rank of the second

Gauss-Wahl map provided by MAPLE. We point out that, for 8 ≤ g ≤ 30, we

obtain the same lower bound for all possible monodromies of C → P1 ∼= C/G

such that C is bielliptic, and for all possible choices for the Galois group G.

The MAPLE code gives rankµ2 ≈ 2g−1 for any bielliptic curve of this type

(g ≥ 8, prec=500). We point out that this bound is quiet similar to the

bound analytically found in Subsection 2.4.2, which we report.

Theorem B.0.1 (See Corollary 2.4.13). Let C be a bielliptic curve cov-

ering P1 with Galois group Z/4Z. As shown in Theorem 2.4.8, possible

monodromies for C → P1 are, depending on the genus:

1. In case g is odd:

(a) a = [14 : 2g−3] or

(b) a = [12 : 32 : 2g−3].

2. In case g is even:

(a) a = [13 : 3 : 2g−3].

143
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Then the following bounds holds, depending on genus and monodromy:

(1) If g is odd:

(a) : 2g − 8 ≤ rankµ2 ≤ 5g − 5;

(b) : 2g − 10 ≤ rankµ2 ≤ 5g − 5.
(B.0.1)

(2) If g is even then:

(a) : 2g − 9 ≤ rankµ2 ≤ 5g − 5. (B.0.2)

In the following, we list the complete table of bielliptic curves for g ≤ 30.

Table B.1: Table obtained when C → P1 has Galois group G = Z/4Z. We

list all possible monodromies up to g = 30.

group genus monodromy rankµ2

Z/4Z 5 [12 : 32 : 22] 3

Z/4Z 5 [14 : 22] 3

Z/4Z 6 [13 : 3 : 23] 6

Z/4Z 6 [1 : 33 : 23] 6

Z/4Z 7 [14 : 24] 10

Z/4Z 7 [12 : 32 : 24] 10

Z/4Z 8 [13 : 3 : 25] 2g − 1

Z/4Z 8 [1 : 33 : 25] 2g − 1

Z/4Z 9 [14 : 26] 2g − 1

Z/4Z 9 [12 : 32 : 26] 2g − 1

Z/4Z 10 [13 : 3 : 27] 2g − 1

Z/4Z 10 [1 : 33 : 27] 2g − 1

Z/4Z 11 [14 : 28] 2g − 1

Z/4Z 11 [12 : 32 : 28] 2g − 1

Z/4Z 12 [13 : 3 : 29] 2g − 1

Z/4Z 12 [1 : 33 : 29] 2g − 1

Z/4Z 13 [14 : 210] 2g − 1

Z/4Z 13 [12 : 32 : 210] 2g − 1

Z/4Z 14 [13 : 3 : 211] 2g − 1

Z/4Z 14 [1 : 33 : 211] 2g − 1

Z/4Z 15 [14 : 212] 2g − 1
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Z/4Z 15 [12 : 32 : 212] 2g − 1

Z/4Z 16 [13 : 3 : 213] 2g − 1

Z/4Z 16 [1 : 33 : 213] 2g − 1

Z/4Z 17 [14 : 214] 2g − 1

Z/4Z 17 [12 : 32 : 214] 2g − 1

Z/4Z 18 [13 : 3 : 215] 2g − 1

Z/4Z 18 [1 : 33 : 215] 2g − 1

Z/4Z 19 [14 : 216] 2g − 1

Z/4Z 19 12 : 32 : 216] 2g − 1

Z/4Z 20 [13 : 3 : 217] 2g − 1

Z/4Z 20 [1 : 33 : 217] 2g − 1

Z/4Z 21 [14 : 218] 2g − 1

Z/4Z 21 [12 : 32 : 218] 2g − 1

Z/4Z 22 [13 : 3 : 219] 2g − 1

Z/4Z 22 [1 : 33 : 219] 2g − 1

Z/4Z 23 [14 : 220] 2g − 1

Z/4Z 23 [12 : 32 : 220] 2g − 1

Z/4Z 24 [13 : 3 : 221] 2g − 1

Z/4Z 24 [1 : 33 : 221] 2g − 1

Z/4Z 25 [14 : 222] 2g − 1

Z/4Z 25 [12 : 32 : 222] 2g − 1

Z/4Z 26 [13 : 3 : 223] 2g − 1

Z/4Z 26 [1 : 33 : 223] 2g − 1

Z/4Z 27 [14 : 224] 2g − 1

Z/4Z 27 [12 : 32 : 224] 2g − 1

Z/4Z 28 [13 : 3 : 225] 2g − 1

Z/4Z 28 [1 : 33 : 225] 2g − 1

Z/4Z 29 [14 : 226] 2g − 1

Z/4Z 29 [12 : 32 : 226] 2g − 1

Z/4Z 30 [13 : 3 : 227] 2g − 1

Z/4Z 30 [1 : 33 : 227] 2g − 1
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Table B.2: Table obtained when C → P1 has Galois group G = Z/8Z. We

list all possible monodromies up to g = 30.

group genus monodromy rankµ2

Z/8Z 5 [12 : 2 : 4] 3

Z/8Z 5 [1 : 5 : 6 : 4] 3

Z/8Z 7 [12 : 6 : 42] 10

Z/8Z 7 [1 : 5 : 2 : 42] 10

Z/8Z 9 [12 : 2 : 43] 2g − 1

Z/8Z 9 [1 : 5 : 6 : 43] 2g − 1

Z/8Z 11 [12 : 6 : 44] 2g − 1

Z/8Z 11 [1 : 5 : 2 : 44] 2g − 1

Z/8Z 13 [12 : 2 : 45] 2g − 1

Z/8Z 13 [1 : 5 : 6 : 45] 2g − 1

Z/8Z 15 [12 : 6 : 46] 2g − 1

Z/8Z 15 [1 : 5 : 2 : 46] 2g − 1

Z/8Z 17 [12 : 2 : 47] 2g − 1

Z/8Z 17 [1 : 5 : 6 : 47] 2g − 1

Z/8Z 19 [12 : 6 : 48] 2g − 1

Z/8Z 19 [1 : 5 : 2 : 48] 2g − 1

Z/8Z 21 [12 : 2 : 49] 2g − 1

Z/8Z 21 [1 : 5 : 6 : 49] 2g − 1

Z/8Z 23 [12 : 6 : 410] 2g − 1

Z/8Z 23 [1 : 5 : 2 : 410] 2g − 1

Z/8Z 25 [12 : 2 : 411] 2g − 1

Z/8Z 25 [1 : 5 : 6 : 411] 2g − 1

Z/8Z 27 [12 : 6 : 412] 2g − 1

Z/8Z 27 [1 : 5 : 2 : 412] 2g − 1

Z/8Z 29 [12 : 2 : 413] 2g − 1

Z/8Z 29 [1 : 5 : 6 : 413] 2g − 1
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Table B.3: Table obtained when C → P1 has Galois group G = Z/12Z. We

list all possible monodromies up to g = 30.

group genus monodromy rankµ2

Z/12Z 6 [1, 9, 8, 6] 6

Z/12Z 7 [1, 2, 3, 6] 10

Z/12Z 9 [1, 8, 3, 62] 2g − 1

Z/12Z 10 [1, 2, 9, 62] 2g − 1

Z/12Z 12 [1, 9, 8, 63] 2g − 1

Z/12Z 13 [1, 2, 3, 63] 2g − 1

Z/12Z 15 [1, 8, 3, 64] 2g − 1

Z/12Z 16 [1, 2, 9, 64] 2g − 1

Z/12Z 18 [1, 9, 8, 65] 2g − 1

Z/12Z 19 [1, 2, 3, 65] 2g − 1

Z/12Z 21 [1, 8, 366] 2g − 1

Z/12Z 22 [1, 2, 9, 66] 2g − 1

Z/12Z 24 [1, 9, 8, 67] 2g − 1

Z/12Z 25 [1, 2, 3, 67] 2g − 1

Z/12Z 27 [1, 8, 3, 68] 2g − 1

Z/12Z 28 [1, 2, 9, 68] 2g − 1

Z/12Z 30 [1, 9, 8, 69] 2g − 1

We conclude stressing that the results provide evidence for the following:

Expectation. The rank of the second Gauss-Wahl map for a bielliptic curve

of genus g ≥ 8 is 2g − 1.
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