
Università degli Studi di Pavia

Dipartimento di
Ingegneria Industriale e dell’informazione

Scuola di Dottorato in
Ingegneria Elettronica, Informatica ed Elettrica

XXX Ciclo

Mining Git based Software
Repositories

Tesi di dottorato di:
Gianluca Roveda

Relatore:
Dott. Tullio Facchinetti

A.A. 2016/2017

Questa tesi è dedicata a Michela,

che mi supporta e sopporta ogni giorno,

alla mia famiglia e ai miei amici.

Contents

Contents v

List of Figures vii

List of Tables xi

1 Introduction 3
1.1 Impact of VCS mining in research and industrial fields 6
1.2 Objectives of the work . 8
1.3 Structure of the thesis . 10

2 Git and GitHub 13
2.1 Basic concepts of Git . 13
2.2 Basic concepts of GitHub . 16

2.2.1 Issue tracker and code review 17
2.2.2 Continuous Integration and project metrics 18
2.2.3 Documentation and social features 19

2.3 Data mining of Git and GitHub features 20

3 Related works 25
3.1 Git repository and their mining . 27

4 Tools used 35
4.1 Python . 35
4.2 MongoDB . 35

4.2.1 Map-reduce . 36
4.3 KNIME . 38
4.4 Gephi . 38

v

vi CONTENTS

4.4.1 ForceAtlas2 . 39
4.5 HTTP and REST API . 41
4.6 GHTorrent . 42
4.7 System setup . 43

5 Data analysis 45
5.1 Datasets . 45

5.1.1 Datasets format . 47
5.2 Data exploration . 50

5.2.1 Size of the repositories . 51
5.2.2 Popularity of the repositories 60

5.3 Note of commit authors . 70
5.4 Sparsity of contributions . 74

6 The network graph 81
6.1 Implementation . 82

6.1.1 Data retrieval . 82
6.1.2 Data processing . 84
6.1.3 Graph visualization . 87

6.2 Interpretation of results . 91
6.2.1 MSR14: jkbr/httpie . 91
6.2.2 MSR14: mangos/MaNGOS and TrinityCore/TrinityCore . . . 93
6.2.3 MSR14: mxcl/homebrew . 97
6.2.4 MSR14: django/django . 101
6.2.5 MSR14: PHP frameworks . 104
6.2.6 Android REST API client libraries 106
6.2.7 ELECTRON: electron/electron 110
6.2.8 LANGUAGES: collaboration between programming languages 113

7 Conclusion and future works 117

Bibliography 123

List of Figures

1.1 Comparison between possible CVCS and DVCS scenarios. 5

1.2 Number of questions posted on Stack Overflow by users for a specific
VCS until 2016, with Git exhibiting an increasing trend. 8

2.1 Sample Git project representation; from the top two branches (add_sqlite_db
and add_css) are developed in parallel by different users and later
merged on master. 15

2.2 GitLab graph representation for the Inkscape project shows a more
complex usage of the Git VCS. Unlike the fictional example of Fig-
ure 2.1, this is read from bottom to top. 16

3.1 Number of MSR papers published per year. 26

3.2 Number of cited MSR papers published per year. 26

4.1 System setup, which illustrates how data is collected from GitHub
REST API and is stored in a database, which in turn is accessed by
KNIME for data exploration and Python scripts. Results produced
are then displayed in Gephi. 44

5.1 Commits, authors and forks counts boxplots for the four datasets.
Most of the displayed values are outliers, and the actual boxes appear
as flat lines. 54

5.2 Commits, authors and forks counts for the four datasets, with forks
excluded. 55

5.3 Graphical representation of projects sizes for MSR dataset. 57

5.4 Graphical representation of projects sizes for ANDROID dataset. . . 57

5.5 Graphical representation of projects sizes for ELECTRON dataset. . 58

vii

viii LIST OF FIGURES

5.6 Graphical representation of projects sizes for LANGUAGES dataset. 58

5.7 How many objects for each parameter of the non forked repositories
in MSR14. 62

5.8 How many objects for each parameter of the non forked repositories
in ANDROID. 63

5.9 How many objects for each parameter of the non forked repositories
in LANGUAGES. 63

5.10 How many objects for each parameter of the non forked repositories
in ELECTRON. 64

5.11 Popularity map for non forked repositories and non empty issue tracker
repositories for MSR14. 66

5.12 Popularity map for non forked repositories and non empty issue tracker
repositories for ANDROID. 66

5.13 Popularity map for non forked repositories and non empty issue tracker
repositories for LANGUAGES. 67

5.14 Popularity map for non forked repositories and non empty issue tracker
repositories for ELECTRON. 67

5.15 Popularity map for non forked repositories, without pull requests and
active forks, for ANDROID. 68

5.16 Popularity map for non forked repositories, without pull requests and
active forks, for LANGUAGES. 69

5.17 Popularity map for non forked repositories, without pull requests and
active forks, for ELECTRON. 69

5.18 Committers for jquery using emails (Top 10 + others). 71

5.19 The number of commits produced by the top contributors for each
month. 71

5.20 Committers for jquery using logins (Top 10 + missing + others). . . 72

5.21 Percentage of authors with exactly 1 commit for each repository; 30%
of repositories have 50% or more authors with exactly 1 commit. . . 75

5.22 Percentage of authors with 5 or less commits for each repository; 80%
of repositories have 50% or more authors with 5 or less commits. . . 76

LIST OF FIGURES ix

5.23 Percentage of authors with 10 or less commits for each repository;
86% of repositories have 50% or more authors with 10 or less commits,
and 51% of authors have 80% or more authors who contributed with
10 or less commits. 77

5.24 Number of repositories that was contributed from each author; 30.7%
contributed only to a fork (0 repositories), 61.6% contributed to exactly
one non forked repositories, and only 7.7% of authors contributed to
two or more non forked repositories. 78

6.1 Pseudocode of the algorithm for data retrieval. 83
6.2 Gephi interface when data streaming is complete. 88
6.3 Gephi graph for project HTTPie after color, size and positions have

been set. 90
6.4 The contributions in the first months of HTTPie. 94
6.5 Static graph for MaNGOS and TrinityCore. 95
6.6 Four moments in the history of MaNGOS and TrinityCore. 98
6.7 Homebrew static graph. 99
6.8 Django static graph, with django-cms and django-debug-toolbar high-

lighted in blue and yellow color. 101
6.9 Static graph for PHP frameworks in MSR14. 104
6.10 Android static graph. 107
6.11 Animated graph at the month in which JakeWharton contributed to

Volley. 109
6.12 Static graph for the Electron project (whole view). 111
6.13 Static graph for the Electron project (zoomed on center). 111
6.14 Static graph for LANGUAGES. 115

List of Tables

2.1 List of features and their usage in this thesis. 20

5.1 Projects included in the ANDROID dataset. 46

5.2 Projects included in the LANGUAGES dataset. 46

5.3 Projects included in the ELECTRON dataset. 48

5.4 Collections included in a snapshot. 50

5.5 Size of repos, commits and users on the datasets. 51

5.6 Number of commits, forks and authors for 3 repositories of MSR14. . 52

5.7 Missing issue tracker comments. 61

5.8 Counts of different logins that created commits with the same email
address. 73

5.9 Average number of commits per author who committed to exactly 1,
exactly 2 and 3 or more repositories. 78

6.1 Settings for the network graph algorithm. 85

6.2 Number of commits for repositories and users in HTTPie. 92

6.3 MaNGOS and TrinityCore contributors, and their total contributions
on either projects. 96

6.4 Top 10 contributors on Homebrew, and the corresponding number of
commits on Homebrew. 100

6.5 Top 25 contributors to projects other than Homebrew, the number of
contributed commits and the corresponding repository. 100

6.6 Top 10 committers on Django. 102

6.7 Committers for the project django-debug-toolbar. In italic the ones
that also appears in Table 6.6. 103

6.8 Committers for the project django-cms. 103

xi

xii LIST OF TABLES

6.9 Top 10 contributors who contributed to more than 1 projects in
Section 6.2.5. 106

6.10 Top 10 contributors who contributed to only 1 project in Section 6.2.5.108
6.11 Repositories of Section 6.2.5, and their commits count. 108
6.12 Commit message for ten randomly selected users who only made few

contributions on Electron. 112
6.13 Top 10 contributors on Electron project 113
6.14 Top 10 contributors on Atom project. 113
6.15 Top 10 contributions on projects different than both Electron and

Atom in Section 6.2.7. 114
6.16 Common contributors and their commits for top 5 projects in LAN-

GUAGES. 114

Acronyms

MSR Mining Software Repositories

VCS Version Control Systems

DVCS Distributed Version Control Systems

CVCS Centralized Version Control Systems

CI Continuous Integration

OO Object Oriented

GH GitHub

GL GitLab

OSS Open Source Software

MSR14 Mining Software Repositories 2014 Mining Challenge Dataset

PCA Principal Component Analysis

HTTP HyperText Transfer Protocol

REST REpresentational State Transfer

URI Uniform Resource Identifier

API Application Programming Interface

CLI Command Line Interface

MMORPG Massively Multiplayer Online Role-Playing Game

WoW World of Warcraft

1

MVC Model View Controller

CMS Content Management System

2

Chapter 1

Introduction

Version Control Systems (VCS) are software and/or systems used by developers
to keep track of changes in their applications’ source code. In general, VCS allow
to preserve the history of a set of files through the creation of checkpoints, each
containing the files content, the creation timestamp and possibly a human written
description [67]. Users can review the history of the modifications and eventually
revert their code to investigate the history of bugs or undo harmful modifications.

To conceptualize, a trivial VCS form often used by young practitioners is to copy
their working directory at regular intervals and before making difficult changes which
may break the code; these backups are placed in folders with easily understandable
names, such as “graphic interface working”, “added feature X”, “project final version”
or “snapshot before major rework”. This allows for partial history review and disaster
recovery, with manual restoration of the files in the working directory. While this
primitive form of VCS is indeed a working solution for simple projects, it is limited
in functionalities, does not scale well with the growing of the project and is difficult
to use when multiple programmers are cooperating.

Source Code Control System (SCCS) [64], one of the first VCS softwares, was
invented in 1972 and features many functionalities of modern VCS. Still, it lacked
collaboration along different machines.

Allowing for seamless cooperation in large teams, in particular, is a hard challenge,
which poses problems that even modern VCS are still facing.

A possible solution to add collaboration in a VCS is the introduction of a
central server, which is responsible to store the main version of the project. Clients
can connect to the central server, obtain a copy of the project, modify it locally

3

4 CHAPTER 1. INTRODUCTION

and push the modifications. This paradigm, called Centralized Version Control
Systems (CVCS), is implemented by many VCS, such as Concurrent Versions
System (CVS)1 [52], which was released in the middle of the 80s2, and Subversion3.
Subversion, in particular, is still one of the most widely used VCS4.

While CVCS paradigm works for many real-life scenarios, and was/is widely used,
its requirement of having a unique central server poses technical problems when said
server is unreachable, and ethical questions for open source softwares, such as who
should host the repository when the owner is not a company or an individual, but
a community. In the early 90s, Sun released a VCS which based its collaboration
abilities on different premises: each copy of the repository acts as a fully fledged, self
contained repository, and the VCS provides tools to merge the modifications between
the different copies of the repository. With this approach, there may not even be a
“central repository”, as intended in CVCS, or there may be as many as the users
so desire. This paradigm is called Distributed VCS (DVCS), since the repository
is distributed over all of the machines. Moreover, in CVCS the act of creating a
checkpoint is usually contextual to its propagation on the central server, while in
DVCS the two operations are independent. Having the two operations divided allows
for offline working, and postpone the eventual conflicts between different versions to
the act of synchronization, favoring the creation of smaller checkpoints and richer
checkpoint histories.

A sample figure, comparing a CVCS and a DVCS scenario, can be seen in
Figure 1.1. The CVCS example is pretty straightforward: there is a single central
server and three different users, connecting to the central server to synchronize their
contents. In the DVCS scenario, instead, a more complex situation can be observed.
As previously stated, in DVCS each machine hosts a full copy of the repository and
can be used for synchronization by other clients. In this example, GitHub is used
as a central server to expose the project to external contributors, here represented

1CVS page, last visited on January, 12th 2018: http://www.nongnu.org/cvs/.
2A copy on Google groups of the original usenet message with CVS, last visited on Jan-

uary, 12th 2018: https://groups.google.com/forum/?hl=en#!msg/mod.sources/eqze_AHbIK0/

uE90wCq3ui4J.
3Official Subversion homepage, last visited on January, 12th 2018: https://subversion.apache.

org/.
4VCS trends for 2016, last visited on January, 12th 2018: https://rhodecode.com/insights/

version-control-systems-2016.

http://www.nongnu.org/cvs/
https://groups.google.com/forum/?hl=en#!msg/mod.sources/eqze_AHbIK0/uE90wCq3ui4J
https://groups.google.com/forum/?hl=en#!msg/mod.sources/eqze_AHbIK0/uE90wCq3ui4J
https://subversion.apache.org/
https://subversion.apache.org/
https://rhodecode.com/insights/version-control-systems-2016
https://rhodecode.com/insights/version-control-systems-2016

5

Central Repository

User A User B User C

Sync Sync

S
y
n
c

(a) CVCS: 3 clients with a central server;
the clients require the synchronization
against the server to properly share the
updates

GitHub Repository

User A User B User C

S
y
n
c

S
y
n
c

Sync

GitLab mirror

Sync

(b) DVCS: 5 nodes with mixed behaviour;
client A synchronizes to a server, client C
to the other server, client B uses client C
as a server and the two server synchronize
each other

Figure 1.1: Comparison between possible CVCS and DVCS scenarios.

as User A. User C, instead, synchronizes with a copy of the repository hosted on
the company’s GitLab server, to achieve faster synchronization. The GitLab copy
acts both as a client, since it synchronizes automatically with the GitHub server,
and as a central server for the company workers. Finally, User B needs access to the
code from the company, but he his forbidden from using the company’s network.
Therefore, User B establish a private connection with User C and synchronizes with
his repository. When User B gets back home, he will find his work on the public
GitHub repository, even though he used User C as a central server. This example
shows the flexibility of DVCS: out of five machines, two are acting as pure clients,
one as a pure server and two as both clients and servers.

Over the years, several CVCS and DVCS alternatives were proposed, such as
Subversion (CVCS), and Bitkeeper (DVCS), however in recent days many developers
are choosing Git as the DVCS for their open and closed source developments. Git is
an open source DVCS written by Linux Torvalds specifically for maintaining the
Linux kernel, after using Bitkeeper for many years. Since the Linux project receives
thousands of contributions from a huge number of contributors, Git was specifically
designed to work with big projects and large number of users and activities. Most of
the open source communities switched from CVS to Git for its ability to handle large
repositories and many contributors, and created web platforms such as BitBucket

6 CHAPTER 1. INTRODUCTION

and GitHub to share projects and allow users to freely propose their contributions.

These platforms are nowadays used for both open and closed source projects,
and feature more than just the source code history: tools such as issue trackers,
code compilation and automated tests, chat and messaging, code reviews, product
deployment and milestones tracking are examples of what is commonly included.
The recorded data contains many different aspects of software development, such as
programmers activities, bugs introduction, discovery and fixing, users reactions, and
is therefore interesting for researchers. Extracting useful information from this data
is, however, difficult: due to its raw size and the variance between the data format
in different repositories.

1.1 Impact of VCS mining in research and industrial

fields

At the best of the author’s knowledge, an in-depth analysis of the impact of mining
VCS in the current scientific literature is not available. From the analysis of the state
of the art, which is detailed in Chapter 3, it emerges that the research in the VCS
area is focusing on answering practical questions that are related to the efficiency
and the effectiveness in software development. For example, [50] addresses a problem
that can be summarized by the question “Can I foresee a commit introducing a
bug in my codebase?”. Other works deal with different aspects: “Will my team
be successful?” [48] or “How does the programmers handle multitasking?” [76].
In general, the effort of the research aims at providing valuable information to
programmers and their team leaders. For these reasons, in this section we discuss an
assessment of the impact of the proposed work by considering the size of the domain
that could be interested by new discoveries coming from the mining of VCS, namely,
the software industry.

The first aspect that can be useful to consider is the number of programmers
world-wide. There are different sources of information on this subject, which lead to
different views of the aspect. In [23] the world-wide population of programmers is
estimated in 22 million persons in 2017, considering 40 different countries and using
information from the International Monetary Fund and the World Bank. On the

1.1. IMPACT OF VCS MINING IN RESEARCH AND INDUSTRIAL FIELDS 7

other hand, the DataUSA website5, powered by Deloitte, Datawheel estimates the
total workforce of software developers, applications and systems software in 1.17
million at the date of this writing6. Finally, the Business Software Alliance (BSA)
provides data on the total direct and indirect employment created by the software
industry. Their analysis report indicate a total of 2.5 million direct and 9.8 million
indirect workers in the USA in the year 2016 [3] and a total of 3.1 million direct and
11.6 million indirect workers in EU in the year 2014 [2].

While it is hard to provide an exact number of the users of the Git VCS,
companies such as Rhodecode7 provide charts that supports the idea of Git being
widely used. In particular, Figure 1.2 shows the number of questions for several
VCS per year on Stack Overflow, a popular community of programmers. The figure
suggests that the interest in Git is steadily increasing, while less questions per year
are posted for other VCS. On the other hand, GitHub yearly posts statistics of
the users activities on a website called Octoverse8. While historic data can not be
accessed, the latest information regarding the year 2017 indicate a total of 24 million
of user accounts and 1.5 million of organizations, providing a rough estimation on
the number of programmers using Git.

Tackling the assessment from a different perspective, the impact of the software
development industry can be evaluated from some indicators on the size of the
market. One of these indicators is the “Gross Domestic Product (GDP)” of the
software industry, which measures the monetary market value for all goods produced
by the software industry in a given country in an yearly period. In particular, BSA,
in the previously mentioned USA report [3] estimates that the software industry did
a total of 1.07 trillion dollars of total value added GDP in the USA for the year
2016, with a direct total value added GDP estimated in 475.3 billion dollars for
the same year. Given that the same company, in the year 2007, estimated the total
value added GDP in the USA by the software industry to be 261 billion dollars [1],
the software industry total value added had a growth of more than 400% over 9
years. The EU report for the year 2014 [2] provides similar data, with a direct total

5The DataUSA website, last visited on January, 12th 2018: https://datausa.io.
6The statistics at DataUSA, last visited on January, 12th 2018: https://datausa.io/profile/

soc/15113X/
7Rhodecode VCS surveys for 2016, last visited on January, 12th 2018: https://rhodecode.com/

insights/version-control-systems-2016.
8Octoverse website, last visited on January, 12th 2018: https://octoverse.github.com/

https://datausa.io
https://datausa.io/profile/soc/15113X/
https://datausa.io/profile/soc/15113X/
https://rhodecode.com/insights/version-control-systems-2016
https://rhodecode.com/insights/version-control-systems-2016
https://octoverse.github.com/

8 CHAPTER 1. INTRODUCTION

Figure 1.2: Number of questions posted on Stack Overflow by users for a specific
VCS until 2016, with Git exhibiting an increasing trend.

value added GDP of 910 million euros, while the indirect total value added GDP is
estimated to have been 249 billion euros.

Finally, the existence of several commercial tools to extract insights from private
repositories indicate the demand of the market for this kind of tools. For example,
the Codacy Automated Code Review tool, from Codacy9; Code Climate10, which is
claimed to be used by over 100.000 projects, and analyzing over 2 billion lines of
code daily; and Gitential11.

1.2 Objectives of the work

This thesis focuses on the extraction of valuable information from software repositories
managed by the Git VCS. The Git VCS was selected since it is currently the most
widely used versioning system, and its adoption in the open source community results
in a huge amount of public data available for researches, as shown in Section 1.1.
In particular, this thesis applied data mining methods to information from GitHub,
which is the most popular platform for hosting and sharing Git projects.

The first objective of this thesis consists in the collection, validation and explo-
ration of different datasets collected through the GHTorrent [33] tool. The experience
described may be of use for future research, as most researchers do not describe

9Codacy homepage, last visited on January, 12th 2018: https://www.codacy.com/.
10Code Climate homepage, last visited on January, 12th 2018: https://codeclimate.com/.
11Gitential homepage, last visited on January, 12th 2018: https://gitential.com/.

https://www.codacy.com/
https://codeclimate.com/
https://gitential.com/

1.2. OBJECTIVES OF THE WORK 9

the collection of their dataset, and may either be using an already available dataset
(such as the MSR14) or a complete GHTorrent dump. Other online tools, such as
GitHub Archive12 and Google BigQuery, can be used to access public datasets as
well. The author, however, thinks that being able to create a dataset, rather than
using a pre-built one, helps in obtaining transparent results, as it ensures that data
was not altered by third parties. Further reasons that make the usage of custom
datasets valuable are that the complete GHTorrent dumps may be missing recent
updates to repositories, that they require powerful machines to be run on, and that
they do not contain any private repository. The latter, in particular, may pose a
limit for companies that do not develop open source code, and value the secrecy of
their source codes.

The existence of problems in the collected datasets, and the discovery of a large
number of users with a wrongly set-up Git account, may therefore represent valuable
examples for future researches addressing the collection and the analysis of non
pre-collected datasets for their studies.

The second objective of this thesis is to propose an approach to achieve a
representation of complex attributes, such as “large” and “popular”, which people
often use when referring to repositories, but cannot be measured by any numeric
metrics. This approach includes the aggregation of simple, numeric parameters
through principal component analysis (PCA). Considerations can be made through
proximity in the resulting maps, i.e. closer repositories are similar sized or have
similar popularity.

The third objective of this thesis consists in the analysis, design, implementation
and results interpretation of a novel visualization technique, which makes use of
graphs to represent users contribution to one or more repositories. Unlike other
available tools, such as Gource [18], which are focused on the representation of
the activities over a single repository, this methodology aims at studying the “link”
between different repositories created by common users’ activities. The underlying
idea is that the concepts, the methodologies and the techniques are transported
among different repositories by common developers, who acquire knowledge on
a project codebase in writing their contributions. Said technique is applied on
the collected datasets, with results shown and commented in Section 6.2. Results
are interpreted and compared to expert knowledge on the projects’ history, and

12GitHub Archive website, last visited on January, 12th 2018: https://www.githubarchive.org/

https://www.githubarchive.org/

10 CHAPTER 1. INTRODUCTION

interesting aspects of the repositories life can be read.

The presented approach, albeit currently using only a limited amount of features
per project, scales to large datasets and can be extended to combine different features,
in the form of different forms of contribution other than commits). The resulting
tool, in its current state, can provide useful information to a team of developers. For
example, in Section 6.2.6, it is presented a case where it may help in deciding which
library should be included in a project, and Section 6.2.2 presents the scenario of a
project ceasing to be actively supported, with developers steadily migrating on an
alternative project.

The results described in Section 6.2.1, where a library for web development
is used in many web related projects, and Section 6.2.4, where a debug tool was
developed for the main project, are examples of how the presented approach is able
to provide complex informations, that would otherwise require the expert knowledge
on the history of the projects to be acquired. Albeit these results, in the current
state of the presented work, requires a human interpretation to be of use, the tool
is still useful to researchers as a preliminary step to identify the repositories that
match certain conditions.

1.3 Structure of the thesis

To help the reader in having a better understanding of this thesis contents, the
basic concepts of both Git and GitHub are presented in Chapter 2. The chapter
also describes how repositories attributes can be used as features for data mining.
In Chapter 3, a review of the related works is presented. The work is focused on
the method applied by researchers to collect useful data from several repositories.
Chapter 4 describes the tools used in the context of this thesis, and is concluded, in
Section 4.7, with a graph displaying the interactions between each component.

In Chapter 5, the analysis of the 4 datasets used in the thesis is done. The
chapter includes a detailed description of the datasets. It illustrates the included
repositories and the criteria of their inclusion. Moreover, it describes the datasets
format and a statistical analysis of the repositories features. The chapter also includes
the description and the results of the visualization technique proposed to compare
popularity and size between several repositories.

This thesis proposes a new method to represent information from a repository:

1.3. STRUCTURE OF THE THESIS 11

the usage of graphs, both static and time-dynamic, to represent the flow of knowledge
existing between different repositories, generated by the users who make contributions.
Chapter 6 discusses this approach, from the idea to a working implementation. Several
example results are discussed and validated, with comparisons to their actual history.
Each specific result presents a peculiar pattern in the interactions between users and
repositories. These interactions have been discovered and commented in the text.

Finally, conclusions, critical considerations and possible future works are pre-
sented in Chapter 7.

Chapter 2

Git and GitHub

2.1 Basic concepts of Git

The basic operation that a developer performs on Git is the commit, a snapshot of
the changed files with respect to the previous recorded version of the files, which is
recorded with the name and email of the author and the timestamp of the commit.

Simpler projects may be composed by a set of subsequent commits, which can be
thought as changes aligned in a sequence on a straight line. More complex projects,
however, may have different structures, and may feature several independent “lines”
of commits, written in parallel, isolated spaces that are joined later. These “lines”,
in the Git jargon, are called branches, and represent different lines of development.
There is always at least one branch, called by default master. However, developers
are free to create as many branches as they want, and later use a merge operation
to merge the commits of a branch on another.

Branches can be created starting from any commit on any given branch, and can
be later merged on one or more branches. When a branch is merged, the commits are
automatically propagated from the branch that will be merged (the source branch)
to the target branch. Sometimes, when the same file has modifications on both the
source and the target branch, Git is not able to produce a reliable automatic merge,
and presents the user with a merge conflict error, requiring him/her to manually
fix the ambiguities and produce a merge conflict fixing commit. Fixing a merge
conflict may require a huge effort in case the source and the target branch diverged
significantly. Therefore, it is advisable to have short lived branches. On the other
hand, having to solve conflicts on every commit may distract the developer. For this

13

14 CHAPTER 2. GIT AND GITHUB

reason, it is advisable to work on atomic branches, that will be merged when their
specific purpose has been fulfilled.

Most repositories adopt rules to determine how branches should be created and
merged. Such set of rules are called Git flow. There are several different commonly
used Git flows, and online platforms such as GitHub propose their own featured
flow that works best with the tools provided by the platform itself. As a commonly
followed convention, the master branch represents a stable version of the software
and should not be tainted by non compiling/non working commits. Pushing commits
directly on the master branch is therefore considered a bad practice, but researchers
have to account that a considerable amount of developers is still only using the
master branch on their repositories, especially for projects with very few contributors.
Features and bug-fixes may either be done on separate branches (feature branches)
or on a single development branch; in the first scenario the branch is merged when
the atomic purpose it serves is completed, in the latter when it reaches a stable
state and the release goals are fulfilled. In bigger projects, the two approaches are
often mixed: there are several long life branches, such as release, release candidate,
beta, alpha, development and feature branches are used to push new content to
development or hot-fix the bugs. Branches may be merged on the release branch
after some criteria are met, such as all tests pass, code reviews, etc. Ultimately, it is
the project manager who chooses which flow is appropriate, and since the flow is a
set of rule he/she must also enforce them on other developers.

Git also allows to tag important commits, i.e. attaching a label (the tag) to a
commit to easily identify it when reviewing the project history. Git tagging feature is
often used for long term support to released versions. In many scenarios, new features
are introduced in future releases of the software. However, security and bug fixes
must be provided for previous versions as well. Given that the fixes were developed
in self contained branches, Git tags simplify this process, since it is sufficient to
merge these over the tagged commits of the previous versions to propagate the fixes.

An illustration of a fictional Git repository created to illustrate this concept can
be seen in Figure 2.1. In this example, commits are represented as colored dots, in a
top-to-bottom timeline. Each vertical line corresponds to a branch.

The project is created with a first initial commit having a commit message equal
to Initial commit, with the commit unique identifier f157645. The unique identifier is
a hash calculated using the SHA algorithm, which identifies uniquely the snapshot of

2.1. BASIC CONCEPTS OF GIT 15

Figure 2.1: Sample Git project representation; from the top two branches
(add_sqlite_db and add_css) are developed in parallel by different users and later
merged on master.

the content. Two feature branches are created from the first commit: add_sqlite_db

and add_css, represented with the teal and green dots respectively. The work is made
in parallel on the two feature branches by the two different developers. Meanwhile,
one of the two developers also pushed a hot fix commit on the master branch. Notice
that merging the branches created new commits (namely f4be8eb and 04e32ae) on
the master branch. The final commit (6ef9a03) contains an important version of the
code, which may be of interest in the future. Therefore it has been tagged as 0.1

version of the project.

Non fictional Git repositories are often much more complex. As an example, Fig-
ure 2.2 depicts a graphical representation of the Inkscape project between December,
30th 2017 and January, 1st 2018. A total of 18 commits are divided in a total of 9
branches. The red line on the right represents the master branch of the project. The
remaining branches are a mix of long-lived branches and feature branches, some of
which are merged into the master branch. For example, the green branch contains a
fix and is merged into master. Notice how the purple branch is also merged in the
green branch before being merged into master, and that master itself is being merged
over other branches. The latter usually happens when fixes from the master branch
are needed in a feature branch, or when the feature branch has diverged too much

16 CHAPTER 2. GIT AND GITHUB

Figure 2.2: GitLab graph representation for the Inkscape project shows a more
complex usage of the Git VCS. Unlike the fictional example of Figure 2.1, this is
read from bottom to top.

from the master branch and the developer wants to incorporate missing commits
to avoid integration hell. It can also be noticed that, mostly, a single developer is
working on a single branch, that two fixes and a cleanup commit were made directly
on the master branch by a single user, which is a project maintainer.

In its internal representation of the content, Git uses a format that is quite
different than what has been presented here; this summary presents Git from the
developer’s standpoint, and it was written with the purpose of guiding the reader to
a better understanding of the following chapters.

2.2 Basic concepts of GitHub

GitHub is a web platform that hosts private and public Git repositories. A key aspect,
which is fundamental to understand several analyses performed in this work, is that
GitHub promotes the so-called fork and pull model. Under the fork and pull model,
every user is free to create a copy of a public project, called fork. The developer can
freely modify the forked repository. Moreover, he can eventually propose modifications

2.2. BASIC CONCEPTS OF GITHUB 17

to the original (forked) project through the so-called pull requests (hence the name
“fork and pull”). When a pull request is opened, a notification is sent to the project
maintainers. The maintainers review the code and eventually start a discussion on its
content. The opened discussion is public: any other GitHub user with access to the
project is free to participate, albeit the final decision of integrating the pull request
contents (accept) or discard them (close) can only be taken from one of the project
maintainers. A pull request discussion may also result in further modifications of
the contributions, until it is either accepted or closed.

When a repository is hosted on GitHub, it is integrated with several other tools
such as:

• an issue tracker;

• code review and discussions for pull requests and commits;

• statistics on continuous integration;

• project metrics;

• documentation (in a dedicated Wiki);

• social context (star projects and users, notifications etc.).

2.2.1 Issue tracker and code review

The project issue tracker is where developers, contributors and external testers can
report bugs or request for new features. The issue tracker is organized into messages
in a forum-like style, where further details may be requested, such as details of the
bug, possible ways to fix it, details of the proposed new features, their effective value
and pertinence to project and such.

Since the issue tracker may contain thousands of open issues, the project owner
can define custom labels to help people navigate through the tracked issues. Example
of such labels may be bug and feature, but also newcome friendly to identify easier
issues that may be addressed by less expert contributors, or question for user
questions on the project.

When feature branches are used, a branch can be linked to an issue to follow the
progresses made by the developers.

18 CHAPTER 2. GIT AND GITHUB

Many projects do not use the GitHub issue tracker, either since they do not use
any issue trackers at all, or because the project is configured to use an external issue
tracker.

Code review is used in pull request discussions to contextualize comments. The
preview of the resulting branch is shown, and the differences with respect to the
current target branch are highlighted in green (additions) or in red (deletions). Users
can write a comment on a portion of code diff 1, and the comment is shown in the
pull request discussions. The code review tool can also be used outside of a pull
requests, for example to show the differences between a previous version and the
current version of the code.

Both in the issue tracker and in the code review, a user can be marked as the
assignee. It is expected that an issue assignee is who will work in the next step on
the issue completion, usually by writing code, and that a pull request assignee is
who should review the code and decide whether or not to accept the pull request. To
notify a user that his/her interaction is required on an issue/pull request discussion,
it is possible to write his username in the form of @username in a comment. A
notification is then sent to that user to notify he has been mentioned, along with
the discussion link.

2.2.2 Continuous Integration and project metrics

Continuous Integration (CI) is a development methodology that belong to the class
of the extreme programming. CI is used to avoid the perils of stale branches and
integration hell. Stale branches refer to branches that either contain too much code or
diverged too much from master, and are therefore difficult to merge. The integration
hell, on the other hand, refers to branches that require more work to be merged than
to have their content re-write from scratch, due to the master branch being changed
too much during the branch lifetime. Continuous Integration as a programming
technique requires developers to work to small, atomic feature branches that are
tested and merged frequently into the master branch.

Long term pull requests discussions are not suitable for CI, since they would
require too much time and slow the developers’ work. On the other hand, it is
necessary to ensure that any code that enters the master branch is correctly working

1A code diff is the portion of different code between the stored snapshot of the project and the
current version of the files in the working directory.

2.2. BASIC CONCEPTS OF GITHUB 19

and do not introduce bugs. As a results, tools such as Jenkins and Travis were
invented to automatically compile the code and run developers written tests.

GitHub can be configured to interact with such tools, and automatically run
tests when a pull request is opened. The tools results (compiling or not, list of
passed tests) are reported in the pull request, and can be used to speedup the code
review process significantly. Even when CI methodologies are not used, the CI tools
integration provide value to the project maintainers, and ease the job of evaluating
a pull request. Still, since GitHub itself does not run any CI tool, many projects are
not configured to use CI tools.

GitHub also features a collection of project metrics called GitHub insights. The
metrics offered are on a project level, and include contributors’ activities, commits
distribution over time and a pulse check overview, with the summary of recent
activities made on the project.

2.2.3 Documentation and social features

GitHub offers an in-built wiki platform to host the project documentation in markup
language (Markdown, RST, Textile etc.). The wiki is basically a Git repository itself,
and can be accessed through Git for offline working. It lacks, however, the features
offered by GitHub such as issue tracker and pull requests.

As the issue trackers and CI, many projects do not use GitHub wiki for documen-
tation. The majority of the projects, however, do host some form of documentation in
the form of one or more Markdown files. The most commonly used one, README.md,
is by default shown by GitHub as the project homepage. The README.md usually
includes the project description, setup and contributions guide, in an unstructured
format. The README.md may include links to other Markdown files, so it is possible
that it acts as the homepage for the whole project documentation, and that this is
contained in the project files and not in the wiki.

GitHub allows some forms of social interaction, such as following a user to receive
updates on his/her activity and star a project to receive information on the project.
These features generate data that is interesting in analyzing social behaviors.

20 CHAPTER 2. GIT AND GITHUB

Feature Usage

Commits
Commit content (author, time, sha) for both
statistics and graphs,
Commit count: metric for amount of user work

Branches Not used

Tags Not used

Issue tracker/pull requests Statistical considerations

Forks Identify active/passive users

CI Not used

Documentation/Wiki Not used

User rating Statistical considerations

Table 2.1: List of features and their usage in this thesis.

2.3 Data mining of Git and GitHub features

Sections 2.1 and 2.2 present an overview on how Git and GitHub are used by
developers. Regardless on the tool used by researchers to gather the data, the
concepts that have been explained are translated into collections of objects or
database tables. These objects, and their properties, are the features used in the
works based on MSR. Chapter 3 presents an overview of such related works, and
each of them is mostly focused on analyzing a specific set of features.

Basically, in current scientific literature, most works focus on analyzing a specific
aspect of repositories, e.g., social interactions using issue trackers and pull requests,
or distribution of commits over the day using only the commits.

This section will provide an overview of how the concepts presented in this
chapter can be used to obtain useful features, and, for the features that was used in
this work, what is their role. For convenience, a summary of the features and their
usage in this thesis is shown in Table 2.1.

Commits

A commit contains a number of precious information. The commit author, the
message that was written by hand by the developer writing the commit, the date of
the commit and the differences of the project files with respect to previous commits

2.3. DATA MINING OF GIT AND GITHUB FEATURES 21

are included and can be analyzed to derive useful data. The work carried out in this
thesis, and in particular the algorithm of Chapter 6, is heavily based on commit
objects, and in particular to the commit authors and commit timestamps.

By analyzing the commit message, the occurrences of merge conflicts can be
detected. Merge conflicts are interesting features that motivate several studies. Due
to their negative impact on the developer’s productivity, it is worth to study their
occurrence and the patterns that lead to conflicts. The study of conflicts, however,
is outside the goals of this thesis.

The commit unique identifier, the so-called sha field, can be used as a check for
a collected dataset: no duplicated commit shas should be found in a valid dataset. A
commit also includes its parent(s) sha, allowing for the reconstruction of the commit
tree. These observations, however, were not relevant in this study, which is assuming
that the content of the dataset is reliable.

The count of commits performed by a user, or that was made for a repository, is
a feature as well, as it reflects the amount of development that a user made or that
was made on a repository. This feature was widely used in the present work for a
statistical analysis of the dataset (Chapter 5) and in Chapter 6.

The main advantage of conducting the analysis on the basis of commit-related
information is that commit objects are included in every repository, and that
regardless of the tool used for gathering the datasets, commits data will always be
available.

Branches

Whether branches are used or not in a project is an important indicator by itself.
Interesting evaluations can be done on the patterns used when working with branches
(Git flow), the number of commits in a branch, and the lifetime of the branch. This
work does not consider any feature related to branches, albeit Chapter 3 includes
many studies focused on branches.

Tags

Git tags are a useful feature to study the evolution of software projects. One of
the problems that need to be faced when building an analysis based on tags is
that they are not always used by project maintainers. Moreover, their usage is

22 CHAPTER 2. GIT AND GITHUB

not standard. This means that, even when they are used, they may be adopted
for different purposes. For this reason, this work does not make use use of tags
information. This is also motivated by the fact that the tool used to gather the
datasets, i.e., GHTorrent (see Chapter 5), does not support them in the collected
data.

Issue tracker and pull requests

The number of open, close and total issues contained in an issue tracker are indicators
that reflect the activity of users on that repository. For each issue, the discussion
activities that are generated from the users contain features, such as the discussion
timestamps and the discussion messages, that were studied in literature. For instance,
sentiment analysis can be conducted on such data. This work considers the number
of issues in a repository as a feature to compare repositories when studying the
datasets.

Using data from the issue tracker as features, however, suffers from the problem
that not every repository use an issue tracker. Some repositories do use external
issue trackers rather than the GitHub integrated one.

Pull requests offer similar features and problems, with the bonus of having the
proposed code differences as a feature (code review). In this thesis some considerations
are made on the authors who were active in discussion within the issue tracker vs.
the authors who prefer to discuss in a pull requests. These aspects are leveraged in
Chapter 5.

Forks

The number of forks of a repository is a feature that reflects how many users are
interested in the project. Moreover, the commits made on a fork can be compared to
those made on the corresponding original repository to evaluate how the developments
are influenced by external project contributors.

The results derived in this thesis do consider the number of forks of a repository.
Moreover, the concept of active fork is introduced, which is defined as a fork where
at least one contribution is propagated from the forked repository to the original
one. In Chapter 5, active forks are used to differentiate between active users, users
who actively contributed to the original repository with code contributions, and

2.3. DATA MINING OF GIT AND GITHUB FEATURES 23

passive users, users who forked a project but never pushed code contributions back
to the original repository.

Continuous integration

Continuous Integration (CI) data include interesting results on the build process and
tests passed, which can be used as starting point for interesting researches. However,
many projects are lacking CI data, since CI requires a dedicated machine to be
configured and connected to the repository. This forces CI studies to be built around
ad-hoc datasets. For this reason, the work presented in this thesis does not consider
CI data.

Documentation and user evaluation

The existence of any form of documentation, and the percentage of the codebase
covered by documentation, are features that are studied by researchers interested
in software engineering aspects. Documentation, however, was not relevant in this
thesis.

On the other hand, the total number of stars a project has received is an indicator
reflecting the popularity of a repository. The whole history of “who star what” is
recorded and can be used as a useful information to study, for example, the influence
of popular users on his/her followers. The assessment presented in this thesis uses
the number of stars as a measure of popularity when comparing different projects.

Chapter 3

Related works

Software repositories are a source of precious information for project managers and
researchers, and have been studied since the beginning to extract useful indications
regarding the evolution of a project. The increase in usage of VCS and the growth
in Open Source Software (OSS) communities encouraged more researches to address
the issues related to this field. As can be seen in Figure 3.1, the number of papers
published on the topics has a strongly growing trend.

This chapter covers the most meaningful papers focused on GitHub and Git
repository mining in general. The papers published between 2005 and the first half
of 2016 will be considered. Figure 3.2 shows that these papers also have a growing
trend, similarly shaped to the more generic VCS mining papers.

The first objective of this work, as stated in Section 1.2, is to mine data from a
set of GitHub-based datasets, and provide a graphical approach to suitably compare
different repositories. The availability of a graphical method for comparison purposes
is valuable as a tool for researchers and developers to conduct preliminary analysises
on a dataset, as it may be used to understand which repositories are the best fit to
match the given criteria. As an example, a developer who requires to select the best
library for his project may need to compare tens of alternatives. By providing him a
tool to quickly identify the bigger/most popular projects, he may choose to focus
his attentions only on a limited amount of such projects, and will save him the time
he spent on less important projects. It is worth to note that a graphical approach
is not the only possible way to achieve this result. For example, one could think of
building a recommendation system that outputs the most meaningful repositories.
The graphical approach, however, carries more information, while it is not allowed

25

26 CHAPTER 3. RELATED WORKS

Figure 3.1: Number of MSR papers published per year.

Figure 3.2: Number of cited MSR papers published per year.

3.1. GIT REPOSITORY AND THEIR MINING 27

to autonomously select which projects should be discarded.
Several previous works have studied GitHub datasets, albeit at the best of

the author’s knowledge no existing work was done with the goal of providing a
graphical representation for comparison purposes. The tool used to collect the
dataset, GHTorrent, is presented in [33].

The second objective of this thesis is to provide an approach to analyze the flow
of the commits and the contributors in common between repositories, as a way to
analyze the relationship between them and their history. Again, no papers were
found in the literature that analyze this aspect on different repositories. The closest
work is presented in [18], which describes a tool to achieve a rich visualization of a
repository history. The aforementioned work, however, does not take into account
the interactions among different repositories.

Out of the four datasets used (see Section 5.1), only the MSR14 was widely
investigated in scientific literature, and several important aspects and issues were
derived in previous researches. The MSR14 dataset is also addressed to apply the
analysis developed in this thesis.

3.1 Git repository and their mining

This section discusses several previous works on Git repository analysis and data ex-
traction. The considered existing works are grouped by topic to ease the presentation
and to categorize the different investigated aspects.

VCS usage by feature

Researchers have studied how people use the features that Git-based VCS offer.
Some works consider how branching and forking are used by developers [9], where
the authors compare how branches are used by users that migrate to DVCS. The
paper concludes that DVCS usage results in less “interference” and more cohesive
branch w.r.t. CVCS. Interference is used in this context to define conflicts in code
changes when merging different branches; conflicts are time-costly to fix and are
therefore undesirable. A branch is called cohesive by the authors when its changes
are focused to a single aspect of the project, e.g., fix a specific bug or implement a
new feature.

In [13] the sparsity of data over forks is considered and measured using a

28 CHAPTER 3. RELATED WORKS

proposed set of metrics, while in [12] topology techniques are applied to branches
in the repository and recurrent patterns are discovered and analyzed. The research
in [43] considers why and how developers fork from other GitHub projects. The
authors conclude that repositories are forked to propose code contributions through
pull requests, and mostly the fork is done on the original repository.

In [4], the authors present an analysis on the size of the contributions for 9000 code
contributions from OSS projects. The article proposes an approach to differentiate
over three types of commits: single focused (a single passage in the developments of
a single contributor), aggregate team contributions (aggregated chunk of code with
different goals) and repository refactorings (merging of different revision systems,
initial check-in of projects, etc.).

VCS usage by user category

A research trend focuses on how VCS are used by a particular category of users.
The authors of [21] consider how computer engineering students use VCS, their
usage of branching and the amount of garbage1 that they include in their working
directory, while [68] further strengthen this study by correlating it with code quality
and peer review considerations. In [51] studies are presented on users who exploit
the features of VCS for text editing, and the strength and weakness of VCS for
collaborative text editing are analyzed in comparison to alternative solutions2. The
authors in [45] make considerations on how GitHub, a platform born for hosting
open source software, can be used effectively for commercial softwares, and use
surveys and interviews to inquire developers on its usage in commercial software.
The answers show that typical practices of OSS community, such as self organization
and reduced communication, are adopted in commercial projects as well. In [17]
there are considerations on how digital music maker use GitHub as a platform for
collaboration. The main result shows that less commits are produced during the week,
and more commits are produced during the weekends w.r.t. software repositories.
Moreover, these results show that digital music repositories have similar bug reports
and contributions to software repositories. Finally, [35] analyzes the contributor’s

1Garbage content in a repository consists of generated files that should not be committed
2A private instance of GitLab was used to coordinate the development and the review of this

thesis, while keeping track of versions and changes. This thesis is thus an example of the result
obtained by the use of VCS in collaborative text editing.

3.1. GIT REPOSITORY AND THEIR MINING 29

perspective in collaborating on a GitHub project, with results focused on problems
in communications and social aspects, and results in a set of useful recommendations
for practitioners.

Impact of pull requests

Several aspects of pull requests have been studied as well. The authors of [62]
provide insights on around 78.000 accepted and rejected pull requests, and the
~20.000 developers who made them. The insights include interesting observations.
For example, it is pointed out that “the more experienced developers are not
necessarily the ones who produce the most commits/pull requests merged”. On the
other hand, the authors state that “many pull requests do not succeed due to a few
unresolved technical problems”. In [79], the authors consider factors that affect the
closing time of a pull request. They provide several statistics, and conclude that it is
difficult to estimate in advance the time required. The single most impacting factor
is the number of comments to the pull requests, but this information is – of course –
not available in advance at the opening of a pull request. Therefore, it becomes hard
to reliably predict the time required to address a pull request. In [38] it is shown
that, if the coding style of the contribution is similar to the codebase, then the pull
request is more easily accepted than rejected. To achieve this result, language models
were used. The authors also noticed that most of the code review effort is spent
on the more dissimilar portion of the code reviewed. Some considerations on the
aspects of conflicts that arise during the code review phase of the pull requests are
studied in [40]. In particular, the authors compare three possible strategies, namely
rational explanation, constructive suggestion and social encouragement, and discover
that only constructive suggestions are helpful for not losing contributors when pull
requests are not accepted.

Considerations on social aspects

Social aspects related to Git-based projects have been also investigated. In [24] the
authors present a tool that automatically evaluates the bus factor of a project. The
bus factor is defined as the number of developers that must be struck by a bus in
order for the project to stop due to lack of knowledge. This is a useful metric for
project manager to prevent missing deadlines due to accidents/illness and to better

30 CHAPTER 3. RELATED WORKS

manage programmers turnover.

A revisit of the concept of Pareto principle applied to software development is
presented in [78], where the authors suggest that the Pareto principle does not seem
to apply for software project. They do notice, however, that many projects have a
very low bus factor, and that a core developer leaving the project may have a strong
negative impact on the project “survival”. The authors of [48] evaluate the reasons
that make (or prevent a group to be) a successful team, studying projects on GitHub
and concluding that small teams, possibly even composed by a single person, tend
to achieve success more often; therefore the authors conclude that it is advisable to
break a large team in smaller and more focused teams. Popular users, i.e. users with
a high number of followers, are considered in [15]. Digging through what makes them
popular, the authors conclude that understanding popular users is important since,
as stated in [65], they tend to attract contributors to projects where they collaborate
(social contagion). In [8] the authors study the dynamics of users influence, by
exploring 3 metrics that measure popularity: number of followers, number of forks
to one’s projects and number of project watchers. They find that these metrics do
capture both popularity and – rather unexpectedly – code reusability. The usage of
CI services is analyzed in [75]. Among the findings, the authors discover that direct
code modifications (commits) have higher chances to not compile or not passing
tests w.r.t. indirect ones (pull requests). The research in [58] aims at providing a
comparison method between developers by means of specific metrics, such as code
survivability3. The authors claim that the proposed method matches the project
manager’s expectations in a real world case study for the most productive developers,
but does not necessarily produce accurate results for the least productive ones, for
which human investigations are needed.

In [16] the authors analyze the differences in the usage of CVCS and DVCS by
the users, and discover that DVCS highly correlates with smaller, atomic commits
and in DVCS the commit messages has higher chances of containing references to
issue tracking tool entries. An analysis of the usage of Gists, which are the GitHub
equivalent of code snippets, is shown in [77]. The authors investigate both how they
are perceived and what they are used for. They conclude that Gists are not widely
used. Moreover, users using Gists mostly have a few snippets published, and often

3Code survivability is defined as the amount of code that survived during the life of the project
vs code that was deleted or changed

3.1. GIT REPOSITORY AND THEIR MINING 31

made by a single file.

In [59] the authors consider the usage of the goto function in C programs, which
is often considered a bad programming practice. Their findings show that goto is
actually rather popular, but in most cases its usage is appropriate. In particular,
it is used in contexts – such as error handling – where it does not jeopardize the
code maintainability. The authors of [28] find a correlation between the number of
files per commit and the dependencies among them. In [76] the authors study how
users collaborate on multiple projects at the same time (multitasking), identifying
several behavioral patterns and trying to understand the impact of multitasking on
code quantity and quality. One of the findings is that users who do multitask do
not seem to perceive their own limits, and end up lowering their productivity. The
authors of [66] focus on analyzing the sentiments from commit logs. Most of the
commits have a neutral sentiment, with a strong correlation between the number of
files changed and the sentiment expressed in the commit log.

Bug handling

Some studies focus on software bugs. In [50], an approach is presented to automatically
determine commits that caused bugs and the corresponding fixes (named fix-inducing

changes). The authors correlate commit messages with issue tracker (Bugzilla) to
perform a syntactic and semantic analysis on the commit message. The authors
of [5] consider several problems that may invalidate the results when mining software
repositories for bugs. The main correlation is with social, organizational and technical
factors that are external to the issue trackers. Therefore, the paper presents strategies
that may mitigate the errors accountable to these factors. The paper also features a
bug history discussed with professionals to present patterns that may be used by
future researchers.

In [54] the authors present a tool that generates a report on bugs introducing
commits and fixing commits, as well as computing several Object Oriented (OO)
programming language metrics. A correlation between the main programming lan-
guage and the number of bugs, for several GitHub projects, is investigated in [63].
The results show that the type of language used in the project has a modest impact
on the quality of the resulting software. The authors of [27] find a correlation with
the time associated to commits and the probability that the commit introduces a

32 CHAPTER 3. RELATED WORKS

bug. Similarly, a correlation is found between the day of the week and the introduced
bugs. In particular, commits made at late night have higher chances of introducing
bugs, while smaller commits are generally safer than bigger commits. Moreover,
different projects have different daily distributions of bug-inducing commits.

The work in [30] is focused on development turnover in OSS world, and its
impact on overall code quality. External and internal turnover are used, respectively,
to indicate contributors leaving/joining the project and contributors focusing on
different aspects of the same project. In [37] a database collected from 13 Java
projects is presented, with an authors handmade characterization of bugs to be used
by future researchers.

Tools and frameworks

Some studies present tools that can be used by MSR researchers. Gousios et al.
present both Alitheia core [34], a platform for software analytics, and GHTorrent [33],
a tool to create a snapshot of GitHub to overcome GitHub API requests limitations.
Gousious also created an online, public, collectivity-gathered dataset obtained by
GHTorrent [36]. Alternative platforms to analyze Git repositories are presented
in [19] and [25]. In [31] a 3D visualization tool for Git repositories, designed for
educational usage, is presented. The author of [10] present a framework for applying
big data technique to MSR. Torch [72] is a tool for code reviewing, particularly
focused on object-oriented programming languages.

Surveys

In the literature there are several surveys on the topic, from pre-2006 surveys [44],
to more Git-specific ones [14]. Follow ups of [14] are reported in [47] and [46].

The work in [39] reports a set of suggestions for young MSR researchers, based
on papers from 2004 to 2012. In [20], the authors present a comparisons of tool used
by researchers in MSR, along with their application. A comparison on the limitations
of 93 different papers in the topic of MSR, in terms of data size, replicability and
other factors is studied in [26].

3.1. GIT REPOSITORY AND THEIR MINING 33

Other studies

Further studies involve working on fixing logical problems with the obtained data,
such as [69] where an approach is presented to detect file renaming and [80] where
incorrect tasks completion times are detected. In [57], an approach is presented to
track software performance along different revisions, together with a test-case study.
The authors of [42] present metrics to evaluate software quality, and [56] presents
a big data approach to discover architectural software designs. In [71], a manual
emotion analysis on over 800 issue comments is performed, to analyze the possibility
of automatic emotion analysis, and concluding that it may be feasible for some
kind of emotions (such as love, joy and sadness) and impossible for others. The
authors of [32] conduct a survival analysis of 5 database frameworks used in 3707
Java projects from GitHub. The work in [70] represents activities in a repository as
a function, and combines it with events that occurred to the programmers in order
to classify the effects of technical debt. A social diversity analysis on the GHTorrent
dataset from 2014 is conducted in [74], while the authors of [49] present a model to
estimate the growth stage of OSS projects based on project activity and project size.

In [7] a possible approach to evaluate a project bus factor is presented and
validated on several GH repositories. A survival analysis on GH projects based on
both project features and project members is conducted in [53]. In [6] the authors
analyze how exception handling is used in Java projects, and discover that in it is
often used improperly.

Chapter 4

Tools used

This chapter provides a reference for the tools used to obtain, analyze, process and
visualize data in this thesis.

4.1 Python

Python is a high level, object oriented, interpreted programming language. The first
version of Python was released in 1991 by Guido Van Rossum, and nowadays it
has become one of the most popular programming languages, according to trend
analyzing websites1 2 .

What makes Python a widely used programming language is the high number of
available libraries, covering most of the high level applications, making it suitable
for many tasks.

In the academic world, Python is used for data analysis [60], machine learning [61],
molecular biology [22] and more [55].

4.2 MongoDB

MongoDB is a non relational, non SQL, document oriented database. Unlike SQL
based databases, data is not represented as a set of entry in fixed structure tables,
but is gathered in collections of documents. Documents inside a collection are not

1Code popularity of programming languages in 2016, last visited on January, 12th 2018: http:

//blog.codeeval.com/codeevalblog/2016/2/2/most-popular-coding-languages-of-2016.
2Programming languages trends, last visited on January, 12th 2018: http://pypl.github.io/

PYPL.html.

35

http://blog.codeeval.com/codeevalblog/2016/2/2/most-popular-coding-languages-of-2016
http://blog.codeeval.com/codeevalblog/2016/2/2/most-popular-coding-languages-of-2016
http://pypl.github.io/PYPL.html
http://pypl.github.io/PYPL.html

36 CHAPTER 4. TOOLS USED

constrained in sharing the same structure, but may have arbitrary fields and subfields.
Although internally data is represented in BSON for performance improvements,
documents are presented to user as JSON objects, and JSON can be used for querying
data for fields values and regular expressions. In general, MongoDB allows to handle
easily flexible/complex structures, with good performances on the insertions [73].
Performances on retrieving data, with respect to SQL databases, greatly depends on
how the data is accessed and indexed, as well as the hardware setup of the machine
hosting the database (the datasets indexes must fit in ram for best performances).
MongoDB offers two paradigms for high performance data retrieval: aggregation and
map-reduce.

Aggregation is a multi-step pipelined framework of simple commands, such as
filtering, grouping and sorting, and offers the best performances. On the other hand,
aggregation is limited in its capabilities to the commands offered by the framework,
and the user cannot run a custom coded command step in the pipeline. For its
flexibility, in this work the map-reduce paradigm was used instead for querying
aggregated data.

4.2.1 Map-reduce

From the official MongoDB documentation3: Map-reduce is a data processing paradigm

for condensing large volumes of data into useful aggregated results. Map-reduce can
be seen as a three step pipelined aggregation (map-reduce-finalize), with the first
step used to associate (map) values to a key, the second step reducing the multiple
values associated with that key to a single value and the third, optional step to
apply a transformation to the results. Unlike the aggregation framework, however,
the three steps are Javascript function which can contain arbitrary code.

As an example, suppose that one wants to compute the number of commits per
repository. The map function should take a commit object, find its repository full
name, that will be used as the key, and map the value 1 (this commit count) to the
repository key.

var map = function () {
var u r l = this . u r l ;

3MongoDB documentation on map-reduce, last visited on January, 12th 2018: https://docs.

mongodb.com/manual/core/map-reduce/.

https://docs.mongodb.com/manual/core/map-reduce/
https://docs.mongodb.com/manual/core/map-reduce/

4.2. MONGODB 37

// We want to extract the full repository name from URL

// First we remove the commit sha trough regexp

var regexp = / (. ∗) \/[^\/]+/ i ;
var r e s u l t = regexp . exec (u r l) [1] ;

// Then we remove the rest of the URL stuff from left and right

r e s u l t = r e s u l t . r e p l a c e (’https ://api.github.com/repos/’ , ’’) ;
r e s u l t = r e s u l t . r e p l a c e (’/commits ’ , ’’) ;

// Finally , we change the dot from . to utf8 encoding

r e s u l t = r e s u l t . r e p l a c e (/ \ . / g , ’\uff0E’) ;

// This repository now has +1 commit count

emit (r e s u l t , 1) ;
}

The map function is called for each commit in the commits collection, and for
each commit extracts the full repository name through substitutions and emits the
repository name (the key) and the commits count - which is always 1 for a single
commit. The reduce function also remove any dot (.) character and replaces them
with the UTF8 equivalent (‘\uff0E’), since the dot is an allowed character in GitHub
repository names, but creates many problems in MongoDB, where it is used to
indicate subfields in keys.

This example shows why map-reduce is more flexible than aggregation: several
non standard operations must be conducted in the map operation to extract the
repository name from the commit URL.

The reduce function will receive a couple of key (repository) and values (an array
of values, each being either 1 or a partial result produced by a previous reduce call).
Therefore, the reduce function must simply sum the values received from the map:

var reduce = function (key , va lue s) {
return Array . sum(va lue s) ;

}

The result can either be consumed immediately or saved in a new collection for
future usages.

38 CHAPTER 4. TOOLS USED

4.3 KNIME

KNIME [11] is an open source platform for data analytics released in 2004, with
machine learning and data mining components. It allows for the creation of data
pipelines through a graphic interface which represent each pipeline step as a node.
Many nodes come pre-built in KNIME: nodes for creating data table from files,
nodes from managing the data, filters, statistics and data representation. Moreover,
KNIME have a repository of community made extensions to integrate new nodes.

KNIME can also include WEKA and R nodes, and allows for the inclusion of
custom Python, R and Java code. Custom code can be written inside special nodes
which handles the interfaces required to interact with incoming data and propagate
the results to following nodes.

Among the many available nodes, KNIME also features a set of nodes to interact
with MongoDB, making it a good choice for mining GHTorrent data.

4.4 Gephi

Gephi4 is an open source tool to visualize and analyze graphs and networks. The
authors define Gephi as fast, simple and modular. These three concepts illustrate
what makes Gephi different than alternatives, and the reasons why it may be the
best alternative in several contexts:

• it is fast since it uses OpenGL for rendering networks, using graphics card for
the rendering. This allows to use Gephi for rendering networks with a large
number of nodes. Renderings are made online, to have a live preview while
running node positioning algorithms;

• it is simple because the live preview allows to tune the algorithms during the
run, thus having a better understanding of the influences of parameters on the
final results through trial and errors;

• it is modular because it can be extended through plugins, therefore serving for
many purposes.

Unlike many alternatives, Gephi is not powered by a graph database, but is
focused on the visualization and positioning of the nodes. The positioning, in

4Gephi on GitHub, last visited on January, 12th 2018: https://github.com/gephi/gephi.

https://github.com/gephi/gephi

4.4. GEPHI 39

particular, can be done by many algorithms, but the default one, ForceAtlas (versions
1 and 2) [41], is oriented at online node positioning, with nodes repelling each other
and edge between nodes acting as a spring, attracting the connected nodes with
force proportional to the edge weight. The algorithm is not guaranteed to converge
to a stable situation, and in general it runs unless the user manually stop it after
achieving the desired results.

One of the available plugins, called GephiStreamer, can be used to stream data
from Python, thus making it a good combination with Python/KNIME.

Finally, Gephi supports the representation of dynamic graphs, through a moving
window over a time interval. Both a node existence and the node’s properties can
either be static (a single value) or dynamic (an array of timestamp/value pairs). If
the node property is dynamic, Gephi will use values inside the current time window
to represent the node.

Dynamic graphs are still an unstable feature, and their use often results in crash
and software instabilities. Nevertheless, they are still able to provide interesting and
unique results for displaying the evolution of the data over a certain period of time.

4.4.1 ForceAtlas2

To make the work self-contained, this section reports the details of the behavior of
the ForceAtlas2 algorithm that is used to place a node in the 2D graph, originally
proposed in [41].

As aforementioned, ForceAtlas2 is a node layout positioning based on forces and
repulsions, specifically designed to be used in Gephi. When executed, the algorithm
does not stop automatically, but rather runs infinitely until the user manually end
the positioning. While the algorithm is executed, forces and repulsions are computed
and applied continuously. Depending on the nodes and the edges, it is possible that
the resulting graph does not converge to a stable situation. The main advantage of
ForceAtlas2 over many alternative positioning layouts is that the user may see the
node positioning during the execution of the algorithm, and even interact with the
nodes or change the settings without stopping the execution.

The positioning of each node depends only on the other nodes positions and on
its connections with other nodes. Node properties do not impact the node positions.
For this reason, as stated by the authors in [41], “the result cannot be read as a

40 CHAPTER 4. TOOLS USED

Cartesian projection”: a node position makes sense only when compared to other
nodes, and the resulting graph may be different over executions. This makes the
result produced by ForceAtlas2 not deterministic. Moreover, the algorithm may be
stuck when the resulting graph is in a state of local minimum, i.e. when the sum of
all of the forces is 0, but the current reached equilibrium is only neutral or unstable.

For the works of this thesis, it is important for the graph to converge to a stable
equilibrium. This is because, since information is provide through nodes proximities,
a graph in an unstable or neutral equilibrium would carry wrong information to
the user. The real time interaction capabilities of ForceAtlas2 and Gephi can be
exploited to check the state of the current equilibrium: when the user manually moves
nodes, if the graph is in an unstable equilibrium status, the node positioning would
change drastically; on the opposite, if the graph is in a neutral state the nodes would
not change their positioning. When a stable equilibrium is reached, on the other
hand, moving nodes out of their equilibrium position would result in them returning
to their original positions, relatively to the other nodes. A stable equilibrium was
reached for all of the graphs presented in this thesis, and in particular in those
reported in Chapter 6.

In ForceAtlas2, nodes attraction is linearly dependent on their distances:

𝐹𝑎 (𝑛1, 𝑛2) = 𝑑 (𝑛1, 𝑛2) (4.1)

with 𝑛1 and 𝑛2 being two nodes.
On the other hand, repelling force considers a node degree (deg), which is the

number of edges connected to a node:

𝐹𝑟 (𝑛1, 𝑛2) = 𝑘𝑟
(𝑑𝑒𝑔 (𝑛1) + 1) (𝑑𝑒𝑔 (𝑛2) + 1)

𝑑 (𝑛1, 𝑛2) (4.2)

The coefficient 𝑘𝑟 is defined by the user settings. The value 𝑑𝑒𝑔(𝑛)+1 is used instead
of 𝑑𝑒𝑔(𝑛) to ensure that even nodes having null degree are subject to some non-null
repulsion force.

The two equations of attraction (Equation (4.1)) and repulsion (Equation (4.2))
are the core of how ForceAtlas2 works. However, to understand the algorithm settings
that are used in Chapter 6, few more concepts are needed.

The scaling setting affects the spacing of the nodes in the graph, and is the
value 𝑘𝑟 in Equation (4.2). Increasing the scaling results in having nodes more spaced
amongst them, while reducing it results in a more compact graph.

4.5. HTTP AND REST API 41

Another parameter that affects the positioning of the nodes is called gravity:
it adds a third force, gravity, to the graph, that attracts nodes to the center and
prevent non connected nodes to drift away. The force 𝐹𝑔 that gravity applies on
each node only depends on that node degree and on a user specified constant, 𝑘𝑔:

𝐹𝑔 (𝑛) = 𝑘𝑔 (𝑑𝑒𝑔 (𝑛) + 1) (4.3)

If edges are weighted, weight values will be used when computing attraction forces,
as in Equation (4.4):

𝐹𝑎 = 𝑤 (𝑒)𝛿𝑑 (𝑛1, 𝑛2) (4.4)

with 𝑤 (𝑒) being the weight of the edge 𝑒, and 𝛿 being a user selectable parameter
to change the influence of edges. The value 𝛿 = 0 results in edges having no weights,
while 𝛿 > 1 increases the effects of edge weights.

Finally, the user may choose to use the LinLog mode for the attraction force:

𝐹𝑎 (𝑛1, 𝑛2) = 𝑙𝑜𝑔 (1 + 𝑑 (𝑛1, 𝑛2)) (4.5)

According to the authors of ForceAtlas2, the use of the LinLog mode has “a strong
impact on the shape of the graph, making the clusters tighter”.

In this thesis, the LinLog mode is used for some graphs in Chapter 6 with many
clusters, that would otherwise result in either a too large scale or an unreadable
representation due to the graph being too crowded.

4.5 HTTP and REST API

HyperText Transfer Protocol (HTTP) is an application level protocol, widely used
for communications between machines in the World Wide Web (WWW). It is a
request-response based protocol, where a client machine asks the server for a resource
through the resource Uniform Resource Identifier (URI) and the server provides the
requested resource (content). HTTP describes several methods to interact with the
requested resource, such as GET, to fetch the requested resource, POST, to update it
with new data, PUT, to create a new one and DELETE to delete a resource. These
methods and their behavior, however, are only expected in an HTTP based protocol,
since their actual details are strongly dependent on the application which implements

42 CHAPTER 4. TOOLS USED

the protocol. An example of usage of HTTP is the communication between web
browsers and web servers.

The concept of REpresentational State Transfer (REST) was invented by Roy
Fielding in his PhD thesis [29], to describe a stateless implementation based on the
HTTP protocol. More in details, a REST application response must not depend on
the history of previous requests and responses.

The set of resources provided by a REST service is called REST Application
Programming Interface (API). In more general terms, API denotes the set of re-
sources available to a developer using a tool or a service. A service offering a REST
API exposes a set of resource URIs (the APIendpoints), and provides a documenta-
tion on how an application should interact with the API. Since the interaction is
usually based on standard HTTP methods, several libraries are available for most
development programming languages and environments, both for client and server
side of implementations.

REST is nowadays a widely used choice to provide resources by many services
and they provide a consistent interface. Many websites, such as weather, video
streaming (Youtube, Twitch among the many) and Google are also offering a REST
interface to provide access with third party applications, such as mobile apps.

4.6 GHTorrent

GitHub offers an API access (Section 4.5) to obtain repository data from scripts and
programs. The provided API calls represent a simple way to access repositories data,
and therefore to conduct mining experiments. To prevent services abuse, however,
GitHub limits the number of API calls a single user can make to a certain limit. To
date, the limit imposed by the online platform is approximately 3.000 requests per
hour. Unfortunately, this limit is usually not enough to access the amount of data
contained in a large single repository.

To overcome this limitation, Georgios Gousios created a software, called GHTor-

rent [33], which automatically navigates through all of the different API endpoints,
to collect and store GitHub responses. The calls to the API endpoints performed by
GHTorrent are still limited by GitHub, but when GHTorrent dump is completed the
collected dataset can be used without any more interruptions. An interested user
can freely download the program to create a custom copy of a subset of GitHub, by

4.7. SYSTEM SETUP 43

collecting repositories of interest. On the other hand, the GHTorrent project also
features pre-collected snapshots of GitHub [36]. These snapshots include the history
of a huge portion of GitHub hosted repositories, up to a certain date in time. Users
who are not interested in running GHTorrent themselves can donate their GitHub
API key to help the project maintainers to keep their publicly available snapshot
updated.

Data, whether it was collected by the user or downloaded from GHTorrent public
datasets, is stored by GHTorrent in two different databases. The first database is
SQL-based. The official snapshots are dumped from MySQL. The SQL database
has the disadvantage of lacking some data, since several repository data is only
partially structured. This organization does not cope with SQL based databases,
which must have a strongly structured format. Queries executed on the SQL database
are however the fastest option, since they are executed on structured data. The
second database is MongoDB, which is a non relational database (so-called NoSQL
database), based on the JSON format for the internal data representation. Given
that GitHub APIs use JSON for responses, GitHub data fits perfectly in MongoDB.
MongoDB is, however, generally slower than MySQL in executing queries.

4.7 System setup

The system setup, shown in Figure 4.1, displays the interactions of the described
components. To create a dataset, a file containing the list of wanted repositories
must be provided to GHTorrent. GHTorrent queries the GitHub REST APIs for
each repository and stores the resulting data in a MongoDB database. Moreover, for
each repository in the provided list, all of the forks are identified and their data is
recursively added to the database. MongoDB is then accessed by KNIME for data
analysis (Chapter 5), and by Python scripts to generate the graphs described in
Chapter 6. Python scripts are also using the database as a cache to store the results
of map-reduce operations. Finally, Gephi is used to display the resulting graphs,
allowing the user for interactions and further exploration of the results.

44 CHAPTER 4. TOOLS USED

GitHub

REST API

Internet

GHTorrent

MongoDB

Python
scripts

GephiKNIME

List
of

repos

Figure 4.1: System setup, which illustrates how data is collected from GitHub
REST API and is stored in a database, which in turn is accessed by KNIME for
data exploration and Python scripts. Results produced are then displayed in Gephi.

Chapter 5

Data analysis

Understanding the data is the first step in mining tasks. In order to conduct data
analysis, however, it is required to collect the data that will be studied.

Since the analysis requires many access to the data, the proposed work uses
GHTorrent (presented in Section 4.6) to construct snapshots of datasets. Only the
MongoDB collected data will be used, since in this research it is preferable to have
access to more complete data than to perform faster operations on the data base.

5.1 Datasets

Four different datasets have been used for this thesis. The first dataset is the Mining

Software Repositories 2014 Mining Challenge Dataset (MSR14) [33]. The MSR14 is
a subset of a GHTorrent snapshot, containing data from 90 repositories, along with
their forks. These 90 repositories are, according to the GHTorrent description page1,
the top-10 starred software projects for the top programming languages on Github.
The purpose for which the MSR14 was created is a mining challenge, held in 2014,
for the 11th edition of the Mining Software Repositories conference. For this reason,
many researchers have been using the MSR14 for their studies, and therefore many
results and considerations are available for this dataset.

However, the use of the MSR14 dataset alone presents two problems: 1) it is a
relatively old dataset and 2) the included project may not be optimal for analyzing
repositories interaction, i.e. based on the inclusion criteria, the project may have

1GHTorrent description page, last visited on January, 12th 2018: http://ghtorrent.org/msr14.

html.

45

http://ghtorrent.org/msr14.html
http://ghtorrent.org/msr14.html

46 CHAPTER 5. DATA ANALYSIS

google/volley stanfy/helium nisrulz/OptimusHTTP

SpartanJ/restafari apptik/jus greengrowapps/ggarest

square/retrofit alirezaafkar/JsonRequester magnetsystems/rest2mobile

studioidan/HttpAgent orhanobut/wasp foxykeep/DataDroid

jianastrero/Sweet-Mother-of-Json jaksab/EasyNetwork kevinsawicki/http-request

reisub/HttPizza

Table 5.1: Projects included in the ANDROID dataset.

eclipse/golo-lang elixir-lang/elixir chapel-lang/chapel

ruby/ruby dlang/dmd micropython/micropython

scala/scala typelead/eta apache/groovy

lua/lua factor/factor racket/racket

jashkenas/coffeescript rust-lang/rust nulang/nu

Table 5.2: Projects included in the LANGUAGES dataset.

limited interactions. Therefore, three more datasets were populated with repository
information specifically obtained for the purposes of this research. GHTorrent was
used to collect the data. Each dataset focuses on a specific topic. The datasets
are labelled as ANDROID, LANGUAGES and ELECTRON. Their content and
characteristics are described below.

ANDROID was built with the idea of having a comparison of different REST
APIs client libraries (see Section 4.5) for the Android platform. The supposed
scenario consists of a user who needs to include a REST API library to his Android

application, performs a search on the web and obtains a list of possible alternatives.
It is a relatively small dataset, and includes 15 projects and their forks. The full list
of the included projects can be seen in Table 5.1. Among all the alternatives, the
most widely known libraries on this topic are google/volley, which is mentioned in
the Android developers official website2, and square/retrofit.

The LANGUAGES dataset includes 15 open-source programming languages
hosted on GitHub. The projects were arbitrarily chosen from the list of 49 program-
ming languages showcased by GitHub3, with the goal of including programming
languages only in the results. The list of the included projects are shown in Table 5.2.

Finally, the fourth used dataset, ELECTRON, includes 122 projects that are built
2Official Android developers website, last visited on January, 12th 2018: https://developer.

android.com/index.html
3Programming languages showcased by GitHub, last visited on January, 12th 2018: https:

//github.com/showcases/programming-languages.

https://developer.android.com/index.html
https://developer.android.com/index.html
https://github.com/showcases/programming-languages
https://github.com/showcases/programming-languages

5.1. DATASETS 47

on top of Electron, a framework to build cross platform applications using Javascript,
HTML and CSS. Some popular open source examples of Electron based projects are
Atom, a text editor, Beaker, a peer-to-peer web browser and Visual Studio Code, a
cross platform IDE. Electron is also used by many closed source applications. Some
known examples are the official Slack client, a professional communication platform,
GitKraken, a Git graphics frontend, Discord, a chat for gamer and Whatsapp, a
smartphone communication application. The collection of projects were gathered
from sindresorhus/awesome-electron, a GitHub repository that is referenced from the
official Electron repository as a collection of useful resources. In particular, only the
open source projects were included. The projects included in the resulting dataset
are listed in Table 5.3.

5.1.1 Datasets format

The MongoDB (see Section 4.2) snapshots feature several collections corresponding to
different API endpoints from GitHub. The information regarding the dataset format
can be retrieved from the GitHub developers documentation4. Nevertheless, the
most significant aspects on GHTorrent snapshots will be reported for completeness,
and as a reference in case of future significant API changes.

The snapshots feature 14 collections, shown in Table 5.4. Collections such as
repos, users and commits are a good starting point to investigate the repositories.

The repos collection contains general information on the repositories. Among the
many fields contained in a repo document, the following will always be found:

• full_name: the full name of the repository;

• owner : the identifier and information on the repository owner;

• description: a short description of the repository;

• fork: a boolean flag indicating whether the repository is a fork;

• url, forks_url, keys_url etc.: the API endpoints for the repository on GitHub
API;

• created_at, updated_at: the creation/update date for the repository;
4GitHub developers documentation, last visited on January, 12th 2018: https://developer.

github.com/.

https://developer.github.com/
https://developer.github.com/

48 CHAPTER 5. DATA ANALYSIS

electron/electron whoisandie/yoda nurtext/active-collab-desktop

beakerbrowser/beaker mmckegg/loop-drop-app appetizermonster/hain

zeit/hyper frankhale/toby MeoBeoI/Catify

getinsomnia/insomnia EragonJ/Kaku jenslind/minira

wulkano/kap yeoman/yeoman-app m0g/ansel

minbrowser/min minodisk/markn willmendesneto/build-checker-app

princejwesley/Mancy rhysd/Shiba teesloane/moonview

zz85/space-radar Bahlaouane-Hamza/Yays tryghost/ghost-desktop

k0kubun/Nocturn sapjax/TimoFM mattermost/desktop

muan/mojibar maxogden/monu xwartz/PupaFM

mafintosh/playback jenslind/piglet sivragav/mediumdesk

railsware/upterm twolfson/google-music-electron sachinchoolur/lightgallery-desktop

atom/atom pomodoro HR/Crypter

Microsoft/vscode dvcrn/markright yakyak/yakyak

oguzhaninan/Buka officert/mongotron KeitIG/museeks

brave/browser-laptop colonizers/colonizers-desktop fresk-nc/VOX

jlord/git-it-electron mazehall/eintopf vesparny/marky

sindresorhus/caprine mawie81/whatsdesktop decosoftware/deco-ide

Automattic/simplenote-electron sqlectron/sqlectron-gui tofuness/Toshocat

LeeChSien/nuTorrent khornberg/docker-indicator ningt/iStats

brrd/Abricotine LightTable/LightTable wireapp/wire-desktop

luin/medis makotot/Tubehead terkelg/ramme

muffinista/before-dawn MarshallOfSound/Google-Play-Music-Desktop-Player-UNOFFICIAL-

evancohen/smart-mirror auchenberg/chrome-devtools-app temps

hachibasu/koko yeobara/yeobara-desktop web-pal/DBGlass

keeweb/keeweb steventhanna/proton dermike/slide-beacon-app

ekonstantinidis/gitify uxebu/james saenzramiro/rambox

moose-team/friends alchen/DTCP sedwards2009/extraterm

gillesdemey/Cumulus fgnass/inbox-app mike-schultz/materialette

pwambach/fat-file-finder alienbox vutran/dext

maxogden/screencat midnightSuyama/tweet-rec sidneys/pb-for-desktop

sindresorhus/gulp-app teesloane/snippet-bar dcrousso/GroupMe

webuildsg/osx geeeeeeeeek/electronic-wechat 720kb/ndm

hij1nx/levelui xwartz/dida dcrousso/GIFBar

maddox/kart kilian/fromscratch oguzhaninan/Stacer

yoshuawuyts/vmd kalpetros/hawkpass-desktop tinytacoteam/zazu

cheeaun/kyoku Zhangdroid/Gokotta sarah-seo/Inpad

Nekle/greader lumios/shake KELiON/cerebro

leanote/desktop-app vitorgalvao/fog sidneys/desktop-dimmer

pt2121/Snapper Thomas101/wmail mifi/lossless-cut

imagemin/imagemin-app BoostIO/Boostnote sential/wexond

Table 5.3: Projects included in the ELECTRON dataset.

5.1. DATASETS 49

• watchers_count: how many users are watching this repository;

• language: the language mainly used by the files in the repository;

• has_issues, has_wiki: boolean flags indicating whether the issue tracker/the
wiki is used;

• forks_count and/or forks: how many forks were created for this project;

• open_issue_counts: how many open issues are present.

An important aspect that is worth to mention is that GitHub APIs are designed to
be explored with a sequence of related calls. For instance, let us consider a user who
wants to obtain a list of the forks for a given repository. In this case, the user has to
ask GitHub for that repository, obtaining the URL for forks_url. Afterwards, he can
obtain the fork list through a series of subsequent calls. The same pattern, however,
can not be adopted for the GHTorrent snapshots: only the API responses are saved
during the snapshot creation, and a layer that translates an API URI to the resulting
data is missing. The solution is to reverse the problem: from the collection forks, all
forks that have their main repository equals to the repo of interest (parent.full_name

== repo_of_interest) should be found. This operation, however, may be costly as it
must navigate through all of the documents in the collection.

The users collection features information on the users. The most important
information that can be found here are the login, the name and the email. The login

field is the unique identifier of the user on GitHub, and can be used to safely match
documents from other collections. The fields name and email can be used to match
documents when login is not present, however this poses threats as the user has
many degrees of flexibility on these attributes. More details on this, and in general
on the problem of matching documents to the corresponding user, are presented in
Section 5.3.

Other potentially interesting fields are type (which can be Organization or User),
company, location, hireable, followers and following. The created_at field can be used
to evaluate for how long the user has been on GitHub.

The commits collection contains information on the commits pushed on a reposi-
tory. In the commit field, the information on the Git commit can be found. Examples
of important attributes in commit field are the message (the commit message), the
tree, which can be used to position the commit in a history of commits, and the

50 CHAPTER 5. DATA ANALYSIS

Collection Description

commit_comments user written messages on commit content (usually in pull requests)

commits data on commits, such as authors, date and contents

events history data on starting and ending of events, such as forking and watching

forks same data as repos collection, but only for forked repositories

issues data on issues in issue tracker at the moment of the snapshot creation

issue_events history of issues, such as creation, renaming and closing

issue_comments replies to issues

org_members members of GitHub organizations

pull_request data on pull requests at the moment of snapshot creation

pull_requests_comments comments posted on the pull requests

repo_labels the set of labels used in a repository

repos data about repositories themselves, such as names, dates and programming languages

users users data, including name, login and email

watchers information on users watching repositories

Table 5.4: Collections included in a snapshot.

author and committer raw data, as logged by Git. When they are present, the author

and committer fields contain information on who created the code in the commit
(the author) and who wrote the commit (the committer). For both the author and
the committer fields the login field can be used to quickly match a document from
the users collection, when available.

Another important field in a commit document is url, which stores the original
URL of the commit. Since the base of the URL contains the repository full name,
it can be used to identify the commit repository, as shown in the example of
Section 4.2.1.

5.2 Data exploration

The initial questions that have to be made regarding the features of a dataset are
related to the size of the involved objects. Size matters, since it provides a rough
estimation of the complexity of the problems involved when studying a dataset. The
number of documents for the 3 collections repos, users and commits, contained in
the 4 datasets, is reported in Table 5.5.

A possible way to carry out the analysis on this data is to use data analytics
tools. Among the many options, KNIME (presented in Section 4.3) is a good choice
since - among other features - it also offers a MongoDB node to collect data directly
from the MongoDB server.

5.2. DATA EXPLORATION 51

n_repos non_forked_repos n_users n_commits

MSR14 108,710 90 496,519 601,080

ANDROID 5930 16 13,480 6,941

LANGUAGES 11,785 14 71,319 341,303

ELECTRON 19,926 110 121,603 82,115

Table 5.5: Size of repos, commits and users on the datasets.

When using raw data from the dataset, it must be kept in mind that queries
involving a large number of documents are too expensive to be executed, either
because the query requires a long time for the execution, or because the results
are so large that they can not fit in the maximum space available for MongoDB
responses. In these scenarios, the Map-reduce method, which was illustrated in
Section 4.2.1, could be used to compute pre-processed, aggregated data beforehand.
The processed data can feed KNIME to compute the results. For instance, a query
for all of the non-forked repositories requires a few seconds to be executed on all of
the 4 considered datasets, returning less then 200 documents per dataset. A query
to return all of the commits, on the other hand, can not complete successfully on the
MSR14 dataset (with 601, 080 commits). It is therefore impossible to obtain results,
such as finding all of the commits for a given repository (the example provided in
Section 4.2.1) when the matching is done client side on the query resultset.

In the remainder of this section, along with the computed statistics and the
related considerations, the corresponding map-reduce applied to the data will be
reported to facilitate the understanding and the reproducibility of the results.

5.2.1 Size of the repositories

The basic numbers reported in Table 5.5 are useful to provide a rough estimation
of how many elements are included in the datasets. However, several interesting
numbers can be further derived for a more accurate characterization of the datasets.

A metric that is really important when considering a repository is how “big” it
is. Most users involved in the OSS community will not have any doubt in saying
that projects such as Linux and Firefox are “big”, and for a reason: these two are
known projects, with rich history, many famous contributors, a huge codebase. On
the other hand, the same users may find difficult to provide a definition of what

52 CHAPTER 5. DATA ANALYSIS

repository commits forks authors

mavam/stat-cookbook 56 41 2

django/django 15,981 2,692 476

jquery/jquery 5,983 4,920 320

Table 5.6: Number of commits, forks and authors for 3 repositories of MSR14.

would be considered a big project, or to classify an unknown repository as “big”
or “small”. Referring to the MSR14 dataset, the repository mavam/stat-cookbook

contains activities of a single user who writes a book on statistics. The value of
every single attribute related to this repository is smaller than django/django (the
Django Python web framework), as can be seen from Table 5.6, therefore it is
easy to conclude that mavam/stat-cookbook is smaller than django/django. On the
other hand, when comparing django/django with jquery/jquery (a popular javascript
library), the situation is less clear-cut, since some numbers are bigger and others are
smaller.

Defining the size of a repository is not a simple task, as there is not any single
attribute that can be chosen to compare the size of two repositories without intro-
ducing a certain amount of subjectivity. Yet, it is important for a user to compare
different repositories, especially when he must decide which project best serves his
purposes.

One of the statistics provided by GitHub in the project page, and that many users
are currently using to evaluate the size of a repository, is the number of commits
that were pushed to the repository itself. The number of commits is certainly related
to the amount of activity that was done on the repository. On the other hand, this
number may be misleading. For example, it may happen that a skilled developer,
with a limited amount of time, does not want to spend the time needed to write a
rich commit history, and therefore produces a small amount of big commits with
bug-free, tested code. Comparisons of this repository to another one with many less
skilled developers, who are writing buggy code and are producing many bug fixing
commits, would be deceiving if they are limited on the commits count.

A better way to assess the size of a repository is to consider a combination of
several attributes, which can be related to the size of a project, and either let the
user make considerations on the raw values or aggregate them to provide a graphic

5.2. DATA EXPLORATION 53

comparison. The idea behind this approach is that the error introduced by using a
single parameter to estimate the size of a project is reduced and redistributed over
the number of parameters used.

Some parameters that relates to the size of a project are:

• number of commits: while this alone is not correct, it is related to the size of a
project;

• number of forks: bigger projects tend to attract contributors, and in turn to
have a large number of forks.

• number of users: similar to the number of forks, but different since not all
users who create a fork contribute back to the original projects, and also not
all users who contribute do so in a GitHub fork.

The number of commits per repository and the number of unique users that
committed to a repository can be found through a map-reduce, while the number
of forks is available in the repo collection. Given the fields contained in a commit,
however, it is yet unclear which fields should be used to identify the user. Different
options are available. For example, the author, the committer and the GitHub login
fields are usually available. The GitHub login can uniquely identify the author, but
sometimes it is missing. On the other hand, the committer and author data are not
validated by GitHub, and the user may have entered incorrect data. For the next
steps only the author email address will be used, but an in-depth observation on the
problem of identifying the unique authors is discussed in Section 5.3.

The resulting statistics for commits and users and forks numbers, for each dataset,
are shown in the graphs of Figure 5.1. As can be seen from the graphs, most of the
displayed values are outliers (represented as small crosses), and the actual boxes
are just small horizontal lines near the value 0. This apply for all of the three
considered parameters: commits, authors and forks. This is because most of the
projects contained in the datasets are forks, with much less activities on them w.r.t.
the main repositories from which they were forked. Therefore, it is more interesting
to have a look at the data from the non-forked repositories.

Data from the non-forked repositories is shown in Figure 5.2. From this figure
it can be seen that the projects are fairly different among the datasets: the LAN-
GUAGES dataset features repositories with much more commits, on average, than

54 CHAPTER 5. DATA ANALYSIS

MSR14 ANDROID LANGUAGES ELECTRON

8.0 3.0 6.0 6.09.0
1609.0
3212.0
4775.0
6295.0

9018.0

11003.0

14306.0
15981.0

22133.0

33073.0

37342.0

41827.0

4.0
90.0

321.0
402.0
476.0

663.0

1848.0

2062.0

7.0

4786.0

11154.0

14321.0

20812.0

27976.0

30457.0

38787.0

41885.0

48951.0

51405.0

7.0
711.0
1438.0
2124.0

9039.0

17306.0

N
u
m

b
e
r

o
f

o
b

je
ct

s
(n

o
rm

a
liz

e
d

 s
ca

le
)

(a) Commits

MSR14 ANDROID LANGUAGES ELECTRON

1.0 1.0 1.0 1.02.0
128.0
260.0

407.0

599.0

816.0

2236.0

3374.0

2.0
10.0
18.0

64.0

210.0

2.0
72.0

168.0
242.0
310.0

401.0

485.0

744.0

1900.0

2.0
31.0

67.0

110.0

182.0

782.0

N
u
m

b
e
r

o
f

o
b
je

ct
s

(n
o
rm

a
liz

e
d
 s

ca
le

)

(b) Authors

MSR14 ANDROID LANGUAGES ELECTRON

0.0 0.0 0.0 0.01.0
274.0
518.0
799.0
1093.0
1363.0

1744.0
1999.0
2270.0
2542.0
2834.0

3408.0

4736.0

5434.0

6548.0

6911.0

1.0
209.0

649.0

4731.0

1.0
244.0

807.0

1081.0

1487.0

1920.0
2159.0

3505.0

4202.0

1.0
271.0

623.0

1300.0

6117.0

6887.0

N
u
m

b
e
r

o
f

o
b
je

ct
s

(n
o
rm

a
liz

e
d
 s

ca
le

)

(c) Forks

Figure 5.1: Commits, authors and forks counts boxplots for the four datasets. Most
of the displayed values are outliers, and the actual boxes appear as flat lines.

5.2. DATA EXPLORATION 55

MSR14 ANDROID LANGUAGES ELECTRON

12030.0

5731.0

2522.0

56.0

663.0

444.5

90.0

51405.0

34622.0

15155.0

3179.0

548.0

1781.0

758.0
57.0

14306.0
15981.0

22133.0

33073.0

37342.0

41827.0

1848.0

2062.0

1824.0
2577.0

9039.0

17306.0

N
u
m

b
e
r

o
f

o
b

je
ct

s
(n

o
rm

a
liz

e
d

 s
ca

le
)

(a) Commits (no forks)

MSR14 ANDROID LANGUAGES ELECTRON

599.0

277.0

126.0

24.0

6.5

744.0

372.0

252.0

61.0

51.0

8.5

613.0

816.0

2236.0

3374.0

64.0

210.0 1900.0

59.0

110.0

182.0

782.0

N
u
m

b
e
r

o
f

o
b
je

ct
s

(n
o
rm

a
liz

e
d
 s

ca
le

)

(b) Authors (no forks)

MSR14 ANDROID LANGUAGES ELECTRON

3497.0

1744.0

820.0

365.0

0.0

258.0

8.5

3505.0

1703.5

615.5

194.5
328.0

44.0

4736.0

5434.0

6548.0

6911.0

649.0

4731.0

4202.0

379.0
648.0

1300.0

6117.0

6887.0

N
u
m

b
e
r

o
f

o
b

je
ct

s
(n

o
rm

a
liz

e
d

 s
ca

le
)

(c) Forks (no forks)

Figure 5.2: Commits, authors and forks counts for the four datasets, with forks
excluded.

56 CHAPTER 5. DATA ANALYSIS

the others, while ANDROID and ELECTRON projects have less commits than the
MSR14. The authors for project and forks both follow similar trends. In summary,
projects in LANGUAGES seems to be bigger than the ones from MSR14, which in
turns have bigger projects than ANDROID and ELECTRON on average.

The next analysis compares the size of the repositories inside a single dataset,
which is a result that can be used by a final user to make better decisions when
choosing among many alternative repositories. A possible approach to analyze this
aspect could be the generation of a 2D representation, i.e., create scatter plots, of
pair of parameters. However, this method may not capture possible relationships
among multiple parameters, leading to unclear and and poorly usable results. A
more effective alternative method is to use the Principal Component Analysis (PCA),
a technique to lower the number of features of a dataset, to obtain a bi-dimensional
representation on an x-y plane of multiple parameters. PCA necessarily leads to lose
details and introduces approximations in the final results, but with the advantage of
allowing the representation of elements with similar values for the same parameter
that are close to each other. This way, the results become easier to interpret by the
user, who can derive useful relationships among projects that are close each others
in the representation.

KNIME offers a PCA node, which provides a simple way to apply it on previously
computed statistics. Before applying the PCA, it is important to normalize the
data to prevent attributes with a bigger scale to have a major impact on the final
results. KNIME lacks a native node to create a scatter plot with labels, but a Python

node with custom script using pyplot can be used instead. To further simplify the
representation, k-means clustering was used to isolate the bigger cluster and hide
labels, to prevent the graph from being unreadable. The repositories from the more
dense cluster are represented in red color and without the labels attached.

For the size maps, the three previously considered parameters (commits, authors
and forks) are used. Figures 5.3 to 5.6 show the resulting map for sizes of the
four datasets. Notice that the two axis, X and Y, cannot be represented as any
measurement unit, since they are the projections of the used parameters. In Figure 5.3,
the repository stat-cookbook is in the left side, forming a cluster with many other
projects.

As previously stated, stat-cookbook is a small project, therefore the user knows
that the cluster of nearby projects is composed by the smaller projects in the dataset.

5.2. DATA EXPLORATION 57

stat-cookbook

Figure 5.3: Graphical representation of projects sizes for MSR dataset.

Figure 5.4: Graphical representation of projects sizes for ANDROID dataset.

58 CHAPTER 5. DATA ANALYSIS

Figure 5.5: Graphical representation of projects sizes for ELECTRON dataset.

Figure 5.6: Graphical representation of projects sizes for LANGUAGES dataset.

5.2. DATA EXPLORATION 59

stat-cookbook is also known to be smaller then jquery, therefore the user knows that
close projects, such as joyent/node and h5bp/html5-boilerplate, are similarly sized
and bigger than stat-cookbook. The size for projects that are far away from both
jquery and stat-cookbook remains unknown, until the user reading the figure adds his
own evaluations on other projects, which are similarly far away from known ones.
For example, in this result, the user may choose to evaluate the characteristics of
mxcl/homebrew and mono/mono, as they are the farthest projects from the cluster
of small projects. This hypothetic user would then know that both repositories are
big projects. However, while mono has much more commits, homebrew has more
forks and authors. Given the shape of this result, the two axis stat-cookbook-jquery

and stat-cookbook-mono can be used to estimate the sizes of all of the repositories
in the dataset: the further the repositories are from stat-cookbook, the bigger the
repositories, and the more they go towards either homebrew or mono, the more they
tend to have more or less commits with respect to authors and forks.

In Figure 5.4, the volley and retrofit projects are represented far from each other
in the map. Even though they are both big projects, they are not close together. This
is not an incorrect result, since volley has less forks and authors but similar number
of commits to retrofit. The two repositories are therefore different enough that it is
required for the user to manually check both of them to interpret the results.

In the left side, again, there are many smaller projects clustered together. Among
them there are many repositories such as http-request, DataDroid and helium. This
information matches an expert knowledge: DataDroid is a now deprecated project,
which was interesting at the launch time in 2010, and was actively developed for
three years; http-request is a widely used and known Java and Android library to
wrap the Java HttpURLConnection object, and helium is a tool to create Domain
Specific Languages (DSL) for REST API, capable of creating Java/Android code.
None of this repositories can be classified as small, but neither can be considered as
big: DataDroid development ceased with the arrival of other Android libraries, while
http-request and helium, even as important project, are much smaller than retrofit

and volley.

Figure 5.5 shows a cluster which includes almost every project in the dataset. As
a remainder, this dataset includes electron/electron, a framework to build HTML,
CSS and Javascript applications, and many projects built on top of it. The framework
itself is detached from the left cluster. There are also two projects notably far away

60 CHAPTER 5. DATA ANALYSIS

from the cluster: browser-laptop and atom. The first is actually the repository with
most commits, after electron itself, and has a significant amount of authors and forks.
Atom, on the other hand, is a well known text editor and, while not having many
commits in the repository, has by far the higher amount of forks in this dataset.

Finally, Figure 5.6 shows a more distributed map. On the left side there is still a
cluster with smaller projects. Unlike previous results, projects do not seem to grow
on a single axis/bi dimensional axis, but rather distribute in a radial way from the
cluster. Bigger projects distribute on the borders again, with chapel and ruby having
more commits and rust having the highest number of authors and forks.

5.2.2 Popularity of the repositories

Popularity is a concept that refers to persons, objects or ideas to indicate how much
they are known and appreciated by people, and capable of attracting more people.

Similarly to what happens for size, users often consider repositories as “popular”
when they are followed and contributed to by many people and “unpopular” when
they are not. The concept of popularity associated to a repository, however, suffers
from the same problems of the size: there are no simple metrics to measure popularity,
and no clear distinction between different repositories. Therefore, an approach similar
to the one explored in Section 5.2.1 for the size can be used to provide a graphical
representation that allows the user to estimate projects popularity based on distances
from previously known repositories.

Some parameters related to popularity can already be found in a repo document.
These parameters are the number of forks, which was already used for size, and
the number of watchers. The count of subscriber could only be accounted for newer
datasets, since this field is missing in the older MSR14 dataset. This latter dataset,
in fact, was generated before the introduction of APIs that allow to obtain the value
of the parameter. The number of contributors, which was used for projects size, is
also relevant here.

Two other parameters related to the popularity of a project are the number
of users that wrote comments, either in the issue tracker or in a pull request
discussion. Both parameters can be computed with map-reduce, starting from the
issue_comments and pull_request_comments collections, collecting unique logins
used and counting them in the finalize step. Since not all of the repositories use the

5.2. DATA EXPLORATION 61

non_forked_repos missing_issue_tracker

MSR14 90 2 (2%)

ANDROID 17 3 (18%)

LANGUAGES 33 2 (6%)

ELECTRON 117 13 (11%)

Table 5.7: Missing issue tracker comments.

issue tracker and/or pull requests, a value of 0 is used in case of missing values.

The number of projects which are not using issue trackers and/or pull requests,
or is not including any user comment, is reported in Table 5.7. As can be seen
in the table, the number of projects without issue tracker data is significant. The
MSR14 is the dataset with less missing data, which understandable since it was built
explicitly for data mining purposes. Moreover, it features mostly big projects, which
are typically managed using the various facilities from GitHub.

The datasets built for this thesis, however, include many smaller projects. A
project with no issue tracker data may either be using an external tool or not using
any issue tracker entirely, and often small projects happen to belong to the second
case. Still, if a project is using an external issue tracker, a lot of activity on issues
is missing in GitHub and therefore in the resulting graphs an error is introduced.
Once again, this error is mitigated by the aggregation of the wrong resulting count
with the other parameters.

Finally, a parameter called “active forks” were introduced in the popularity graph.
This parameter is a count of how many unique forks submitted a pull request to the
project - without considering whether this was accepted or rejected. This parameter
correlates with how well the project attracts active contributors, in opposition to
attracting passive users. Active forks are computed using a map-reduce, by counting
the unique repository from which a fork was submitted for a pull request in the
pull_request collection. Missing values are set to 0 without introducing any error,
since there were effectively no active external contributor for these projects.

After computing these statistics for the four datasets, an error in the datasets
was discovered. All of the projects with no issue tracker data resulted in no active
forks and pull request recorded. This may be reasonable for smaller projects in the
ANDROID and ELECTRON sets, but seemed suspicious for many of the bigger

62 CHAPTER 5. DATA ANALYSIS

3497.0

1744.0

820.0

365.0

0.0

13870.0

6694.0

2732.0

1.0

516.0

263.0
124.0

397.0

213.0

39.0

1480.0

678.0

296.0

83.0

35.0
11.5

4736.0

5434.0

6548.0

6911.0

16972.0

18365.0

19587.0

22292.0

23692.0

599.0

816.0

2236.0

3374.0

521.0
651.0

874.0

1655.0

3388.0

1716.0
2049.0

2600.0
2942.0

5681.0

8545.0

97.0
120.0

166.0

411.0

488.0

577.0

pull com
m

.

N
u
m

b
e
r

o
f

o
b

je
ct

s
(n

o
rm

a
liz

e
d

 s
ca

le
)

forks

watchers

authors

active
forks

issue com
m

.

Figure 5.7: How many objects for each parameter of the non forked repositories in
MSR14.

projects of LANGUAGES, which are known to be using GitHub’s pull requests. The
problem is that pull request data is missing entirely from the collected datasets
when no issue tracker is used, while still being present on GitHub. It is yet unclear
to the author if this is due to a bug in the GitHub API, or a bug in GHTorrent,
or an incompatibility between the latest version of GitHub APIs and GHTorrent.
The problem does not seem to occur in the MSR dataset, since there are very few
projects with missing issue tracker.

Results based on wrong data would be meaningless, therefore the resulting maps
are presented in two forms: one including all of the repositories with pull request
commentators and active forks discarded, and one including all of the parameters
but discarding projects without the issue tracker.

The results for the four repositories, is shown in Figures 5.7 to 5.10. Out of the
four datasets, MSR (Figure 5.7) and LANGUAGES (Figure 5.9) appear as more
homogeneous, with outliers which are closer to boxes and most data contained in the
central quartiles. ANDROID (Figure 5.8) and ELECTRON (Figure 5.10), on the
other hand, are more heterogeneous, with many smaller projects and few outliers
which are very distant from most data. For all of the datasets it can be noticed that

5.2. DATA EXPLORATION 63

258.0

8.5
759.0

102.0

4.5

24.0

6.5
9.0

1.0
36.0

10.0

4.5

0.0

649.0

4731.0

2355.0

23439.0

222.0

1424.0

64.0

210.0

24.0

177.0

106.0

1709.0 84.0

pull com
m

.

forks

subscribers

watchers

authors

active
forks

issue com
m

.

N
u
m

b
e
r

o
f

o
b
je

ct
s

(n
o
rm

a
liz

e
d
 s

ca
le

)

Figure 5.8: How many objects for each parameter of the non forked repositories in
ANDROID.

pull com
m

.

forks

subscribers

watchers

authors

active forks

issue com
m

.

3505.0

1703.5

615.5

194.5

14115.0

9663.0

2079.5

310.0

1182.0

691.5

178.5

46.0

744.0

372.0

252.0

61.0

376.0

236.5

91.0

16.5

1164.0

549.0

100.5
0.0

242.0

110.0

34.0

3.5

4202.0

22861.0

1900.0

621.0

652.0 2440.0

N
u
m

b
e
r

o
f

o
b
je

ct
s

(n
o
rm

a
liz

e
d
 s

ca
le

)

Figure 5.9: How many objects for each parameter of the non forked repositories in
LANGUAGES.

64 CHAPTER 5. DATA ANALYSIS

pull com
m

.

forks

subscribers

watchers

authors

active forks

issue com
m

.

328.0

44.0

4443.0

1926.5
7.0

152.0

26.0

51.0

8.5

34.0

4.0
179.0

11.0

0.0

379.0
648.0

1300.0

6117.0

6887.0

5123.0

7769.0
9727.0

16468.0

38833.0

48616.0

220.0

376.0

485.0

2187.0

59.0

110.0

182.0

782.0

40.0

82.0

128.0

158.0

584.0

210.0

560.0
768.0

1177.0

1505.0

2145.0

4825.0

12.0

21.0

42.0

50.0

92.0

168.0

N
u
m

b
e
r

o
f

o
b

je
ct

s
(n

o
rm

a
liz

e
d

 s
ca

le
)

Figure 5.10: How many objects for each parameter of the non forked repositories
in ELECTRON.

the number of people posting messages on the issue tracker is on average double the
amount of authors, while the number of people discussing the pull requests is much
lower. This is interesting since it means that the number of users who are discussing
issues or requesting new features is much higher than the number of people who
are discussing code contributions. On the other hand, the number of active forks is
higher than the number of pull requests commentators, while being still lower than
the issue tracker commentators. This means that users on this dataset do propose
their contributions for bugs and for new features, but are not discussing others
contributions. Notice also how the number of active forks is much lower than the
number of total forks.

With the values of the parameters found in Figures 5.11 to 5.14, the popularity
map can be found with the same approach used for size: the values are flattened to
a bi-dimensional space trough PCA. The resulting maps, with only the repositories
with issue tracker entries, are shown in Figures 5.11 to 5.14. At first impression,
these maps are similar to the size of the repositories, which is expected since a
popular project is more likely to be mature, and therefore grown, than an unpopular
one. After a closer look, however, many repositories in Figure 5.11 are different:

5.2. DATA EXPLORATION 65

big projects such as mono and mongodb have moved to the cluster of less popular
repositories, while most of the remaining repositories are related to web-development.
For examples, web development projects that appear as popular are django, symfony,
d3, impress.js, jquery, node, html5-boilerplate, rails, fundation, three.js and chosen.
This suggests that web development projects are more popular than the others.

Moreover, in this figure, one can notice that there seems to be two axis coming out
of the repository clusters: one ending with homebrew and one with node/jquery/html5-

boilerplate. By looking at the raw, single repository level data, one can conclude
that homebrew has a high number of “active” users, with more authors, issue
commentators, pull request commentators and active forks then the other projects.
html-5-boilerplate and its neighborhood have less active users, but higher watchers
and, in proportion, total forks. Therefore, the two axis may be read here as “active”
popularity (projects which attracts more active users) and “passive” popularity
(projects with many users who are only observing the project).

Figure 5.12 looks quite similar to the same plot that was done to assess the size
(Figure 5.4), which suggests that the smaller projects are also less popular, and that
most repositories in the ANDROID dataset are both small and not popular.

In Figure 5.13 the number of repositories is halved with respect to the size map
(Figure 5.6). In particular, most of the repositories that were placed on the outer
border, far away from the left cluster in the size map are not present since they
lack the issue tracker. This may suggest that bigger projects tend to use their issue
tracker rather than using GitHub integrated one. coffeescript is also notably farther
away from the other repositories, possibly due to its number of issue commentators
being much higher then the other projects.

Figure 5.14 shows more repositories than the size map. atom and electron are
still farther away from the left cluster, but browser-laptop, which was more different
in terms of size from the majority of the projects, has moved near the cluster in
popularity. The one thing that can be understood from this figure is that many
project built on top of electron, while not being so big when compared to electron

itself or atom, are still popular among users.
In Figures 5.15 to 5.17 the popularity maps for ANDROID, LANGUAGES and

ELECTRON, without the pull requests and active forks parameters, are shown. The
popularity map for MSR is not shown since it is not affected by the bug of the
missing pull request data. The popularity map for ANDROID, shown in Figure 5.15,

66 CHAPTER 5. DATA ANALYSIS

Figure 5.11: Popularity map for non forked repositories and non empty issue
tracker repositories for MSR14.

Figure 5.12: Popularity map for non forked repositories and non empty issue
tracker repositories for ANDROID.

5.2. DATA EXPLORATION 67

Figure 5.13: Popularity map for non forked repositories and non empty issue
tracker repositories for LANGUAGES.

Figure 5.14: Popularity map for non forked repositories and non empty issue
tracker repositories for ELECTRON.

68 CHAPTER 5. DATA ANALYSIS

Figure 5.15: Popularity map for non forked repositories, without pull requests and
active forks, for ANDROID.

after filtering the repositories without the pull requests, does not change significantly
from the one presented in Figure 5.12: the filtered repositories, with the exception
of orhanobut/wasp, are in the cluster of small projects, and the distances between
the repositories do not change.

In Figure 5.16 there are more repositories than the previous version with filtered
repositories (Figure 5.13), both in the cluster of similar projects and outside of it.
The common nodes seem to maintain similar distances, which may indicate that the
additional parameters do not provide a significant differentiation on this dataset.

Figure 5.17 is different from the version of Figure 5.14 with repositories filtered
and more parameters used: the minor number of parameters makes repositories closer,
and more projects are now in the cluster of similar repositories. Distances are also
different among the two versions: LightTable, for example, is closer to browser-laptop

than to Google-Play-Music-Desktop-Player-UNOFFICIAL in the map with filtered
repositories, while in Figure 5.17 it is the opposite. Still, the two maps appear similar,
and there are no significant differences.

5.2. DATA EXPLORATION 69

Figure 5.16: Popularity map for non forked repositories, without pull requests and
active forks, for LANGUAGES.

Figure 5.17: Popularity map for non forked repositories, without pull requests and
active forks, for ELECTRON.

70 CHAPTER 5. DATA ANALYSIS

5.3 Note of commit authors

When counting the number of unique authors, two assumptions were made:

• each author is using a unique email address for his/her commits;

• each email address is used by an unique author.

These assumption are reasonable, however, they proved to be false. Therefore, some
degree of error is introduced in the results due to these unsatisfied assumptions.
The introduced error is expected to be relatively low for inter-project level statistics.
Nevertheless, it is useful to study the data and measure this error for further
considerations.

Let’s consider, for example, the most active committers for the repository jquery/j-

query, from the MSR14 dataset. jquery is a popular and large repository, and is
expected to have many contributors and contributions. Through map-reduce, the
unique committer emails and the count of the commits they produced can be
extracted from the commits collection. In total, 320 unique email addresses are
associated to 5,983 commits in the repository. Out of these, only 12 unique emails
pushed more than 100 contributions, and only 58 emails wrote more than 5 commits.
The distribution of the commits for each email address is shown in Figure 5.18,
where it can be noticed that the most active contributor, jeresig@gmail.com, made
as many commit as all of the users who are not in the top 10 committers. This
suggests that most contributions come from few users, while less contributions are
coming from a high number of users.

Considering a unique email address as a user, however, introduces two possible
distortions in the results:

1. a user may be using more than one email address, in which case a single user
is detected as multiple users;

2. the same email address may be used by different users, therefore multiple users
may be detected as a single one.

The first error can be seen in Figure 5.19, where the timeline with the commits pro-
duced by the top contributors over the project duration is shown. The users jaubourg

and timmywill, in particular, are using different email addresses. Notice also how the

5.3. NOTE OF COMMIT AUTHORS 71

jeresig@gmail.com

dave.methvin@gmail.com

timmywillisn@gmail.com

joern.zaefferer@gmail.com
waldron.rick@gmail.com

j@ubourg.net

aubourg.julian@gmail.com

brandon.aaron@gmail.com

aflesler@gmail.com

richard.gibson@gmail.com

Others

Figure 5.18: Committers for jquery using emails (Top 10 + others).

n
°

co
m

m
it

s

Figure 5.19: The number of commits produced by the top contributors for each
month.

72 CHAPTER 5. DATA ANALYSIS

jeresig

Missing

dmethvintimmywil

jzaefferer

rwaldron

jaubourg

flesler

gibson042

orkel

mikesherov

Others

Figure 5.20: Committers for jquery using logins (Top 10 + missing + others).

same email address appears for different author name, such as jeresig@gmail.com,
which is used by John Resig and jeresig, and timmywillisn@gmail.com, which is
used by timmywill and Timmy Willison. For these two examples the different names
seem similar enough, and therefore one can assume that they belong to the same
user and thus they could be merged, but this may not always be the case.

Given that the GitHub login can be assumed correct, when present, one can
think of using it as a mean to distinguish the authors. Following this approach the
results change slightly: only 9 unique logins produced more than 100 commits, with
47 logins producing more than 5. Instead of the previously counted 320 emails, a
total of 256 logins were found in total from the commits. On the other hand, 898
commits did not include the login field, and their author is therefore unknown.

The distribution of the commits made by authors considering logins can be seen
from Figure 5.20, which is is similar to the previously seen pie chart of commits
considering authors by email (Figure 5.18). Again, most commits come from few
users. Here, however, it can be seen that the number of commits made by unknown
logins is significant. Moreover, while many logins can be imagined to belong to
similar emails, the email brandon.aaron@gmail.com is not appearing in the top 10
committing logins. This may be either because this email is used by one of the other
logins or because the login cannot be associated by GitHub.

In summary, the GitHub login produces reliable data, at the cost of possibly

5.3. NOTE OF COMMIT AUTHORS 73

email unique logins

flangy@gmail.com 2114.0

jacknagel@gmail.com 736.0

fabien.potencier@gmail.com 338.0

jose.valim@gmail.com 298.0

source@sharpsteen.net 248.0

info@bnoordhuis.nl 236.0

mike@mikemcquaid.com 230.0

ry@tinyclouds.org 188.0

jeremy@bitsweat.net 172.0

pratiknaik@gmail.com 162.0

Table 5.8: Counts of different logins that created commits with the same email
address.

having missing data (18% in the considered example). One could think of using the
GitHub login when available and some heuristics on username and email addresses
when the login is missing. To produce meaningful results, however, it is still required
that an email address is not used by more than one person, which seems to be a
reasonable assumption. Since the GitHub login can be assumed correct, it can be
verified that it does not occur on the used datasets that the same email is used by
more than a single login. To do so, a map-reduce can be used to count the unique
logins associated to an email address. The results of this evaluation are shown in
Table 5.8.

These results may be surprising: either the same user, using the email address
flangy@gmail.com, created more than 2.000 accounts on GitHub or more than
2.000 users willingly entered the email of someone else in their GIT configuration.
Both scenarios are unrealistic, as there is hardly any conceivable reason to have
multiple GitHub accounts, and there are no reasons to enter someone else email
address as well.

A quick search on GitHub web interface for flangy finds a single user, named
Adam Vandenberg, with its personal profile page with the email of flangy@gmail.com.
Among his repositories, one, named dotfiles, has description My OS X configuration

files and utilities. Within this repository, a file named git-config contains a pre-built

74 CHAPTER 5. DATA ANALYSIS

configuration for Git clients for the OSX operating system, with name set as Adam
Vandenberg and email as flangy@gmail.com. A similar repository can be found
for the second email in the list, jacknagel@gmail.com, which again features a Git
configuration file. Unlike the previous repository, this one has removed the reference
to the user and his email, but these data can be seen in the previous versions through
the commit history.

While there is no proof to it, a reasonable explanation would be that many
users used pre-built configurations without changing the username and email. This
would also explain why 405 unique login have produced both commits with the
email flangy@gmail.com and with the email jacknagel@gmail.com. In general,
this suggests that one can not assume that user data in commits is correct, and that
users can make mistakes in configuring their environment. This also discourages
heuristics to match users through the tuple name-email-login: it is not guaranteed
that a commit without login, created by a user with the same email and name of a
commit with login, is created by the same user of the latter.

Therefore, reasonings must be made either using logins (no errors, missing data)
or through email addresses (no missing data but introduce an arbitrary error).

5.4 Sparsity of contributions

In Section 5.3 the contributions to the jquery/jquery repository were discussed as an
example, and it was shown that most contributions come from few users, while most
of the users provide a few contributions. It is thus interesting to evaluate whether
this is a general situation that is shared by other repositories in the datasets. This
analysis provides a good understanding on how contributions do work among the
repositories.

Figure 5.21 shows how many authors for each repository have contributed with
a single commit to that repository. The 𝑋 axis reports all the 230 non forked
repositories considered in the four datasets, while the 𝑌 axis is the percentage of
authors that contributed with exactly 1 contribution to that repository. Since there
is a high variance on the total number of authors among different datasets, the
number of authors with 1 contribution is shown as a percentage with respect to the
total number of authors for the same repositories, according to Equation (5.1).

5.4. SPARSITY OF CONTRIBUTIONS 75

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9
Pe

rc
e
n
ta

g
e
 o

f
a
u
th

o
rs

 w
it

h
 n

_c
o
m

m
it

s
=

 1

Repositories (1 bar per repository)

Figure 5.21: Percentage of authors with exactly 1 commit for each repository; 30%
of repositories have 50% or more authors with exactly 1 commit.

% contributors = number of contributors with 𝑁 commits
total number of contributors (5.1)

To derive the results depicted in Figure 5.21, it was set 𝑁 = 1. The corresponding
figure shows that 30% of the repositories have 50% or more authors that made
exactly 1 commit to the project. This result confirms that a significant amount of
contributors has only a few contributions made to a project.

In Figure 5.22 the same approach is repeated by setting 𝑁 = 5 in Equation (5.1),
i.e., counting those authors who provided 5 or commits less. The results show that,
for 80% of repositories, 50% of authors provided only 5 or less commits. It is worth
to observe that 5 commits can still be considered a small number of contributions
for many projects (see Figure 5.2 for the evaluation of the number of commits in the
considered repositories).

Finally, Figure 5.23 depicts the chart derived from Equation (5.1) by setting
𝑁 = 10. It results that 86% of the repositories have 50% or more authors that
performed 10 or less commits, and 50% of the repositories have 80% or more
contributors who wrote 10 or less contributions. The right side of the graph shows

76 CHAPTER 5. DATA ANALYSIS

0

0,2

0,4

0,6

0,8

1

1,2
Pe

rc
e
n
ta

g
e
 o

f
a
u
th

o
rs

 w
it

h
 n

_c
o
m

m
it

s
<

=
 5

Repositories (1 bar per repository)

Figure 5.22: Percentage of authors with 5 or less commits for each repository; 80%
of repositories have 50% or more authors with 5 or less commits.

that there are 10% of the repositories having no contributors (zero contributors)
that wrote 10 or less commits. In other words, every author of these repositories has
contributed more than 10 commits.

In summary, for most repositories in the considered datasets, a significant amount
of authors, which for many repositories is the majority of the contributors, has written
only a very limited amount of commits.

On the other hand, for 13% of the repositories studied this conclusion does not
hold. A further manual evaluation of such repositories shows that 27 of 31 projects
have only 1 to 3 contributors, who wrote all of the repositories commits. Therefore,
it can be concluded that the results on the sparsity of the commits per authors do
not hold for small repositories with a limited amount of contributors.

Finally, an interesting aspect that is considered is the number of projects that is
contributed by an author. The pie chart in Figure 5.24 shows how many repositories
an author contributed to in the datasets used in this thesis. The graph is constructed
by counting, for each author, the number of unique repository he/she has contributed.
The forked repositories are detected and discarded. The number of authors that

5.4. SPARSITY OF CONTRIBUTIONS 77

0

0,2

0,4

0,6

0,8

1

1,2

Pe
rc

e
n
ta

g
e
 o

f
a
u
th

o
rs

 w
it

h
 n

_c
o
m

m
it

s
<

=
 1

0

Repositories (1 bar per repository)

Figure 5.23: Percentage of authors with 10 or less commits for each repository;
86% of repositories have 50% or more authors with 10 or less commits, and 51% of
authors have 80% or more authors who contributed with 10 or less commits.

78 CHAPTER 5. DATA ANALYSIS

A
30.7%

B
61.6%

C
6.0%

D
1.2%

E
0.5%

A: Authors who only contributed
to forks

B: Authors who contributed to
exactly 1 non forked project

C: Authors who contributed to
exactly 2 non forked project

D: Authors who contributed to
exactly 3 non forked project

E: Authors who contributed to 4
or more non forked project

Figure 5.24: Number of repositories that was contributed from each author; 30.7%
contributed only to a fork (0 repositories), 61.6% contributed to exactly one non
forked repositories, and only 7.7% of authors contributed to two or more non forked
repositories.

contributed exactly to 𝑋 repositories are then counted, with 𝑋 ranging from 0
(the author only contributed to forked repositories) to 12, the maximum number of
unique repositories an author contributed to. The result is that 30.7% of users only
contributed to forks (the pie slice 0), but the graph shows that most contributors
(61.6%) only contributed to 1 repository. In total, only 7.7% of the authors contributed
to 2 or more repositories.

The number of authors who committed to 2 or more repositories is relatively
low, as shown in Figure 5.24. Table 5.9, on the other hand, shows that – on

Number of repositories Average commits

1 28.76

2 82.66

3+ 227.51

Table 5.9: Average number of commits per author who committed to exactly 1,
exactly 2 and 3 or more repositories.

5.4. SPARSITY OF CONTRIBUTIONS 79

average – authors who contributed to more than one repository wrote many more
contributions than users who contribute to one repository only. In particular, authors
who committed to 3 or more repositories have on average almost 10 times the commits
count of users who contributed to only 1 repository. The low number of common
authors between repositories, therefore, is partially compensated by the fact that,
on average, such users write more contributions, and are therefore more interesting
to study than “non common” authors. In general, the scarcity of common authors
between repositories may be a limitation and must be accounted when applying the
presented approach on other datasets.

Chapter 6

The network graph

The bi-dimensional maps presented in Chapter 5 illustrate concepts which can not
be captured by simple metrics, and allow for comparisons in a set of projects through
graphical representation of distances. Their purpose is mainly to help a user in
choosing the better repository for his needs, either by understanding which are the
bigger and most popular repositories and by comparing unknown projects to known
ones.

This chapter proposes a different approach to characterize repositories: an ap-
proach to analyze the interactions of developers who work on multiple repositories.
The times in which each contribution was written may either be ignored, to create
a situation in which the whole history of the interactions is summarized (static

analysis) or may be used as a dependent variable, to analyze how the contributions
were made in a particular time interval or observe the evolution of the contributions
over time (dynamic analysis).

The idea is that a developer contributing to a project acquires a certain degree
of expertize on the topic, the language, the libraries and the techniques used in that
particular project. If the same developer also contributes to other projects, a part of
his acquired knowledge is transmitted to those projects through his contributions.
It is therefore expected that two projects sharing many contributors acquire a
certain amount of common knowledge, and, consequently, that the two projects have
similarities in libraries used, techniques and ideas.

As a way to provide a graphical representation of such analysis, this thesis
proposes the usage of directed graphs, with nodes representing both repositories and
users, and edges representing the commits. To provide a meaningful representation,

81

82 CHAPTER 6. THE NETWORK GRAPH

the number of commits can be used as weights for the edges, and as the node sizes.
This way, a certain degree of information on the repositories, the users and their
interactions is captured by the graph.

As mentioned, a dynamic graph adds the time dimension to the final results.
This result can be achieved, using Gephi, through a moving window over the
time dimension, showing only elements that have non zero value within that time
window, and adapting node sizes appropriately. The obtained result resembles the
representation provided by Gource [18], a visualization tool for users activities on a
repository. Gource, however, provides a representation of a single repository, and does
not address the aspects of multiple repositories. Moreover, Gource offers visualization
at file level of the repository, while file details are not relevant for the proposed
approach.

6.1 Implementation

Three steps are involved in the construction of a network graph: 1) data retrieval, 2)
data processing and 3) graph visualization.

6.1.1 Data retrieval

To have a meaningful analysis on projects interactions through contributors, it
is necessary for some repositories in the dataset to share common users. Having
repositories with no common contributors, would obviously lead to not have any
interaction at all to evaluate.

The knowledge that a set of repositories does have few or no contributors in
common between projects is a result by itself, and may be further analyzed, e.g.,
by an in-depth analysis on the projects developers, their history and their goals.
The proposed approach does account for this situation to possibly happen, and the
resulting graph would show the projects as sets of non connected nodes.

In Figure 6.1 a pseudocode that illustrates the algorithm used is shown. While
the pseudocode uses a C-like syntax, to achieve a clear and concise representation
some conventions have been established:

• dictionaries are indicated in Python language syntax, with curly brackets for
declaration ({}) and dictionary[’field’]=value syntax for additions;

6.1. IMPLEMENTATION 83

1 repos_to_scan = start_repo ;
2 found_authors = {} ;
3 found_repos = [] ;
4

5 for (d=0; d<max_depth ; d++){
6 next_repos = []
7

8 for (repo in repo_to_scan) {
9 commits = find_commits_for_repo (repo) ;

10 authors = find_authors_from_commits (commits) ;
11

12 for (author in authors) {
13 commit_counts = find_commit_counts (author ,

commits) ;
14 t i m e l i n e = f ind_t ime l ine (author , commits) ;
15

16 i f (! author in found_authors) {
17 found_authors [author] = {}
18 }
19 found_author = found_authors [author] ;
20 found_author [repo] = { ’ t i m e l i n e ’ : t ime l ine , ’

commit_counts ’ : commit_counts } ;
21

22 repos_from_author = find_repos_from_author (
author) ;

23 repos_from_author = repos_from_author −
found_repos ;

24 found_repos += repos_from_author ;
25 next_repos += repos_from_authors ;
26 }
27 }
28 repo_to_scan = next_repos ;
29 }

Figure 6.1: Pseudocode of the algorithm for data retrieval.

• to cycle through an array of objects, the syntax for (x in array) is used (again,
inspired by the Python language);

• arrays concatenation of unique elements is shown with the += operator (e.g.,
𝐴+=𝐵 adds to the array 𝐴 each element of 𝐵 if not already present in 𝐴).

The algorithm to generate a network graph starts from a repository name, start

repo and a max_depth parameter which is used to determine the desired max level
of recursion. At the first level of recursion, the algorithm finds only the repositories
connected to start repo. Two repositories are connected if at least an author is in
common with start repo. Increasing the level of recursion, the algorithm explores
repositories that are not directly connected to start repo, but are connected to it
along a multi-hop path.

84 CHAPTER 6. THE NETWORK GRAPH

Lines from 1 to 3 are initializations: repos_to_scan contains the name of the
repositories to be considered in the upcoming iteration, and found_authors and
found_repos will be used to store the algorithm results.

In line 5, a main loop is used to iterate over the recursion level. Line 6 is used to
initialize a variable, next_repos, which will contain the repository to be considered
in the next recursion iteration.

Lines 8-10 start an iteration over repositories in repo_to_scan, and, for each
repository, finds the commits and, from the commits, the authors. Then, in lines
12-20, for each author in the newly find authors set, the commits from the current
repository are found, both as a raw count for the static graph (line 13) and as a
timeline for the dynamic graph (line 14). The commit statistics are then added
to the dictionary of results for authors (line 20), but only after finding the author
element and adding it if not present (lines 16-19).

In line 22, the whole collection of commits in the dataset is scanned to find all
the repositories where the author contributions are present. Repositories that were
already considered in previous iterations are not scanned again. Therefore, they are
removed from the array of found repositories in line 23. In line 24, on the other hand,
the newly found repositories are added to the found_repos array. Line 25 is used to
update next_repos, since the newly found repositories will be eventually scanned
in the next iteration.

Finally, in line 28, repo_to_scan is updated for the next recursion iteration
using the values in next_repos.

In the implementation of the algorithm, to reduce computational times, 3 map-
reduce operations can be used to generate the author list for a repository beforehand,
the repository list for an author and the commit timelines and count for each
repository of each author.

6.1.2 Data processing

Data collected from the dataset requires a preliminary processing before being used.
Part of the pre-processing consists in the removal of data that is not useful for
the intended analysis, and part depends on the desired results (user settings). The
settings that were implemented in the algorithm are described in the followings, but
a summary is provided in Table 6.1.

6.1. IMPLEMENTATION 85

Setting Description

use_login
If true, GitHub logins are used to detect commit
authors. If false, committer emails are used instead

max_depth Max recursion depth for the algorithm

exclude_forks If true, the forked repositories are discarded

forks_only Keeps only forked repositories and starting repository

keep_only_one_contributors
If true, users who contributed to a single repository
are kept. If false, they are discarded

min_commits
Discards user who did not make at least
min_commits commits to a repository

force_include_repositories
Force to keep repositories in this list, even if they
are not linked by contributors to graph results

force_exclude_repositories
Discards any repository in this list, without
considering these repositories when detecting users

Table 6.1: Settings for the network graph algorithm.

The collected authors must be checked for any data inconsistency. If logins were
used to identify authors, there may be null entries for missing commits that must
be eliminated. If emails were used instead, either manual or semiautomatic systems
can be used to merge different users here, albeit no automatic merging system was
implemented in this work. The known list of problematic emails associated to invalid
users (see Section 5.3) must also be eliminated, as such data can not be considered
reliable.

As shown in Chapter 5, forked repositories present statistical characteristics
that are different from non forked ones. Depending on the user’s goals, analyzing
forks may either be interesting or generate unwanted noise in the resulting graph.
Therefore, while processing data, the user needs to choose whether he wants to keep
forks, eliminate them or keep only the forks and remove non forked projects from the
results. The two settings exclude_forks and forks_only map the two described
behaviors.

Authors that contributed to only one project are not interesting for analyzing
common contributions, and may therefore be discarded. On the other hand, showing
those nodes with a different graphic style (e.g., a different color) provides a graphical
way to get how common contributors and one-repository-only contributors are

86 CHAPTER 6. THE NETWORK GRAPH

distributed in the dataset. The setting keep_only_one_contributors can be used
to choose whether to keep or discard these users. Similarly, a threshold can be used
to filter authors with only a few commits (setting min_commits), when graphs are
overpopulated by too many users with few contributions. Both settings are strongly
dependent on the dataset and the repositories involved, thus the best combination
has to be found by means of a trial and error process. In particular, when the
resulting graphs are crowded by a high number of user nodes, these settings may
be used to remove the ones that provide less information. In the followings of this
chapter, many examples are presented and highlight the differences.

If there is the need to include repositories that would not appear in the resulting
graph otherwise, for example because these repositories do not share any contributor
with the graph results, the setting force_include_repositories may be used to
define a list of repositories to be included regardless. Similarly, if some repositories
must be excluded from the results, for example because of a partially bad dataset with
invalid entries, they can be removed by filling the list force_exclude_repositories

with their names.

The visualization will be done in Gephi (see Section 4.4). The GephiStreamer
plugin1 is used for this purpose. GephiStreamer provides two Python classes, Node

and Edge, to map objects to nodes and edges, respectively. Both classes must have a
label (specified by the class constructor) and can have a set of custom properties.
Some custom properties, such as color, x and y are interpreted by Gephi as node
properties and used for rendering. Properties which are not internally used by Gephi
are still attached to Node objects, and made available for Node sizing and coloring
through ranking or partitioning.

In preparing Node and Edge objects, it is important to use the required data for-
mat. Numbers must be extracted from strings, and commit times must be converted
from date strings to Unix timestamps, also called epochs2. Commit timestamps
for dynamic graphs should be sent as arrays. However, GephiStreamer does not
currently support arrays. The solution is to represent the arrays as strings in the

1Gephistreamer plugin on GitHub, last visited on January, 12th 2018: https://github.com/

totetmatt/GephiStreamer.
2Unix time, or epoch time, is a method for describing a point in time. It is defined as the number

of seconds elapsed from 00:00:00 UTC, Thursday, 1 January 1970. The count takes into account the
number of leap seconds that have taken place since then.

https://github.com/totetmatt/GephiStreamer
https://github.com/totetmatt/GephiStreamer

6.1. IMPLEMENTATION 87

Gephi format: the whole array must be wrapped in the ‘<’ and ‘>’ symbols, and
each element must be wrapped in square brackets, separated by a semicolon. Since
timestamp intervals with values should be sent, each array element contains the
first and last timestamp of the interval, and the commit number. For instance, to
represent an author pushing 10 commits between timestamp 0 and 10, and 100
commits between 20 and 30, the string would be formatted as:

<[0.0, 10.0, 10]; [20.0, 30.0, 100];>

The number of commits performed by a user on a repository is set as an Edge
weight to allow proper node positioning (see Section 6.1.3). To help Gephi nodes
positioning algorithms, it is convenient to set a custom 𝑥 and 𝑦 coordinate for each
Node. This is done since Gephi uses force-driven algorithms for positioning, and
having the nodes in the same exact coordinates creates an unstable equilibrium.
Here, the nodes properties 𝑥 and 𝑦 are set randomly in a [−1, 1] interval.

After these steps are performed, the resulting data can be sent to Gephi for
visualization.

6.1.3 Graph visualization

When all of the data is received, Gephi represents the results in its interface as
shown in Figure 6.2, which depicts the results of the algorithm run for the repository
jkbr/httpie (max_depth=1, exclude_forks=True, min_commits=1,
keep_only_one_contributors=False). The graph preview is shown in the center of
the figure, and depicts a colorless graph with all of the nodes and the edges almost
on the center of the canvas, with no size set.

On the top left of the window, the Appearance tab offers tool to color and
size nodes with static values or based on parameters. Node sizes, in particular,
are required to be set before node positioning, since node positioning takes this
parameter into account. When an animated graph is desired, the node sizes should
be set to a pessimistic size (e.g., the biggest number of commits in the history, or
the sum of commits in the whole history) to provide better results.

On the bottom left of the window the Layout tab should be used for automatic
node positioning. ForceAtlas2 (see Section 4.4.1) is the positioning algorithm that
provides the best results for these graphs, as it also accounts for the edge weights

88 CHAPTER 6. THE NETWORK GRAPH

Figure 6.2: Gephi interface when data streaming is complete.

6.1. IMPLEMENTATION 89

(the number of commits a user performed) to position the nodes. In particular,
ForceAtlas2 tries to place a certain user closer to a repository when that user has
made more commits to that repository then to other repositories. For example, if a
user has 10 commits to repository 𝐴 and 100 commits to repository 𝐵, the user will
be placed closer to 𝐴. A user with 50 commits to 𝐴 and 50 commits to 𝐵, however,
will be placed mid-way between 𝐴 and 𝐵.

The user must still fine tune the scaling (repulsion between nodes) and gravity
(how much the nodes are attracted to the center) until a reasonably understandable
layout is found. The LingLog mode of ForceAtlas2 can be used when clusters have
too many nodes, since it tends to make the visualization more compact, albeit the
whole graph assumes a circular shape.

In balancing gravity and scaling, it may occur that user and repositories nodes
overlap, partially or completely. ForceAtlas2 features a no overlap flag to prevent
nodes from overlapping, however it often results in achieving an unstable equilibrium
in the nodes positioning, with resulting graph rotating and floating from the center
of the map endlessly. Therefore, for the presented graphs, two more node positioning
algorithms were run after ForceAtlas2 achieved a reasonable node positioning:
Noverlap, which slightly moves nodes to prevent their overlap, and Label adjust,
which slightly moves the nodes to prevent the overlap of their labels.

The results after node positioning with ForceAtlas2, coloring based on Node type
and sizes based on number of commits are shown in Figure 6.3. In this figure, in
particular, the user nodes are colored in red, and the repositories nodes are colored
in green. The size of the nodes has been set between 20 and 150, proportional to the
number of commits. As a result of edge weighting, user nodes are more attracted
by repositories to which they have contributed more. For example, most of the
contribution from the user Southern were done to joyent/node, some contributions
were found in jquery/jquery and only one contribution was present in jbkr/httpie.
On the opposite, the user faulkner contributed much more to jkbr/httpie than he
did on jquery/jquery.

More details on the interpretation of this graph are presented in Section 6.2.1.
Animated graphs are handled by Gephi through a dynamic filter, which is

controlled by a bottom slider in the user interface. To tune the visualization, the
user can choose the playback speed and the length of the considered interval over
the bottom slider. Moreover, node sizes can be automatically changed during the

90 CHAPTER 6. THE NETWORK GRAPH

Figure 6.3: Gephi graph for project HTTPie after color, size and positions have
been set.

6.2. INTERPRETATION OF RESULTS 91

playback if the dynamic property is set.

6.2 Interpretation of results

In this section, some examples of applications of the network graph algorithm are
shown. The presented projects were manually selected on the basis of specific char-
acteristics and the gathered knowledge on the considered datasets and repositories.
The guiding idea in choosing the projects is to use the network graph algorithm to
analyze repositories with different contexts and background. It could be expected
that, for example, a project born as a debug tool would result in a different graph
organization than the one generated when analyzing a web framework project. The
interactions between repositories and users in each example are explained and are
therefore representative of possible patterns in such interactions.

6.2.1 MSR14: jkbr/httpie

The first presented graph is created from jkbr/httpie, which was used as a sample
graph in Section 6.1.3 and is shown in Figure 6.3. The HTTPie project is a Command
Line Interface (CLI) tool to perform HTTP requests, whose development started in
2012.

In the static graph, shown in Figure 6.3, HTTPie is the green circle in the center.
The red circles around HTTPie are the authors who contributed to both HTTPie

and at least another project. The numerical data that were used to elaborate this
graph are reported in Table 6.2. The bigger author circle, jkbr, is the first author of
the HTTPie project, who also contributed to the project kennethreitz/requests. The
latter is a Python library to perform HTTP requests, therefore the two projects are
similar: they offer a way to achieve the same goal (performing an HTTP request)
through different means (a CLI or a Python software).

Most of the other repositories in the graph are web related repositories: rails/rails

(Ruby on Rails), facebook/tornado and mitsuhiko/flask (Python web frameworks),
joyent/node, diaspora/diaspora (a social network) and jquery/jquery (JavaScript

libraries), divio/django-cms (strongly related to Django, which is a web framework).
Other repositories such as bitcoin/bitcoin (Bitcoin project) and sbt/sbt are present in
the graph even though it is unclear if they are using HTTP for any reason; however,
their inclusion might just depend on having a common author with both the HTTPie

92 CHAPTER 6. THE NETWORK GRAPH

Node ID Node type Node total commits

rails/rails repo 33073

mxcl/homebrew repo 23339

diaspora/diaspora repo 14306

symfony/symfony repo 9936

joyent/node repo 9018

jquery/jquery repo 5983

divio/django-cms repo 5068

kennethreitz/requests repo 3212

sbt/sbt repo 2522

bitcoin/bitcoin repo 2064

facebook/tornado repo 1918

mitsuhiko/flask repo 1706

jkbr/httpie repo 410

jkbr user 351

msabramo user 35

gandaro user 19

Southern user 17

simono user 12

laurentb user 6

faulkner user 5

mmb user 4

brutasse user 3

dzen user 2

Table 6.2: Number of commits for repositories and users in HTTPie.

6.2. INTERPRETATION OF RESULTS 93

project and another project with common authors. Finally, mxcl/homebrew is present
in the graph as well, but its presence here and in other graphs resulting in the MSR14
dataset is analyzed in Section 6.2.3.

Since the distance between an author and a repository is dependent on the
number of commits performed, one can conclude that most authors that contributed
to HTTPie are mainly involved in web development, and their contributions on
HTTPie do not represent their main focus. Given the web oriented nature of both
HTTPie and of many other projects in the graph, a reasonable supposition is that
the HTTPie project caught the interest of web developers as a debug/test tools for
their main work.

Some more conclusions can be made from the animated version of this graph.
For example, given that both HTTPie and Requests are written in Python language,
and both serve similar purposes, it may be interesting to know which of the two
repositories came first. Since the whole animation can not be represented in a
printable document, the video was shared on the YouTube streaming platform3.

The most notable conclusion that can be made from the animated video is that
HTTPie was born after Requests. The user jkbr, in particular, contributed to requests
only after the creation of HTTPie, albeit starting shortly after its creation, and
committed to both repositories for an extended period of time. This suggests a
bi-directional interaction between HTTPie and Requests.

The first frame featuring HTTPie, depicted in Figure 6.4, shows that many
contributors were already contributing to the project during its first months of
existence.

In summary, the following hypothesis can be formulated from both the statics
and animated graphs of HTTPie: 1) HTTPie was possibly created as a development
tool to test HTTP calls in web projects, and 2) more web developers were attracted
to the project during its evolution.

6.2.2 MSR14: mangos/MaNGOS and TrinityCore/TrinityCore

The Massive Network Game Object Server Suite (MaNGOS) project was born in
2005, as an educational project. Its goal is to emulate a Massively Multiplayer
Online Role-Playing Game (MMORPG) server, and particularly a World of Warcraft

3HTTPie animated graph, last visited on January, 12th 2018: https://youtu.be/AEVKgMz7tbA.

https://youtu.be/AEVKgMz7tbA

94 CHAPTER 6. THE NETWORK GRAPH

Figure 6.4: The contributions in the first months of HTTPie.

(WoW) server. While MaNGOS was born to be an educational and collaborative
project, many users used the project to host their own WoW private server. Unlike
the official WoW server, which is based on a pay-per-month model, the private
servers were free projects, often offering premium content as a business model. This
attracted a large number of players to the private servers, which were basically
acting as beta testers for the MaNGOS project. Moreover, the same users hosting
the private servers were creating bug-fixing contributions to attract more players,
and many of these fixes were sent back to MaNGOS as well.

In the year 2008, some developers decided to split from the main project, and
created their own fork, TrinityCore. This split is said to be happened due to an
excessive attention from MaNGOS founder and main maintainer, TheLuda (GitHub
login danielsreichenbach), to code style and code stability, which resulted in slower
acceptance of code contributions.

A few years later, in 2012, a further split happened in the MaNGOS project,
with many of the main developers creating the CMaNGOS project. TrinityCore, in

6.2. INTERPRETATION OF RESULTS 95

Figure 6.5: Static graph for MaNGOS and TrinityCore.

the same years, was one of the project with more contributors4.

From this point onward, the activities on the original MaNGOS project are
scarse, as contributors prefer either TrinityCore or CMaNGOS.

The static graph of Figure 6.5, along with the tabular representation of involved
data reported in Table 6.3, shows that there are interaction between the two reposi-
tories, and that there are contributors which are more involved in one of the two
repositories.

The dynamic graph, however, is much more interesting in this case since it is
able to represent the moving of the authors between the two repositories during the
years, and the different number of contributors attracted by each other. The set-
tings for the dynamic graphs are: max_depth, keep_only_one_contributors=True,
exclude_forks=True, min_commits=1. Users with contributions to only one repos-

4The Octoverse in 2012: https://github.com/blog/1359-the-octoverse-in-2012.

https://github.com/blog/1359-the-octoverse-in-2012

96 CHAPTER 6. THE NETWORK GRAPH

User Total commits on MaNGOS Total commits on TrinityCore

VladimirMangos 2163 6

Shauren 1 1206

DDuarte 1 1060

Machiavell1 3 423

kaelima 2 293

insider42 253 1

click 1 195

Zakamurite 147 1

tomrus88 130 1

Lynx3d 74 1

SilverIce 71 1

stfx 55 6

LordJZ 24 11

tibbi 1 26

vermie 18 8

derex 20 4

L1ghtGu4rd 17 1

krofna 2 14

Fredi 1 13

Christyan 1 1

Table 6.3: MaNGOS and TrinityCore contributors, and their total contributions
on either projects.

6.2. INTERPRETATION OF RESULTS 97

itory were not filtered, in this scenarios, as it is of interest to capture popularity
as well as common users. The common developers between the two repositories are
orange-colored, while the users with contributions to only one of the two are colored
in light blue. Since it is impossible to represent the animation in this document for
obvious reasons, four time snapshots were captured and are shown in Figure 6.6.
The full animated graph can be viewed on the online plaftform YouTube5.

Figure 6.6a shows the situation in the beginning of the year 2009. TrinityCore

did not have any active users yet, and MaNGOS had some contributors working
on it. Figure 6.6b, which depicts the end of the year 2009, shows some activities on
TrinityCore, albeit much less than MaNGOS. In Figure 6.6c, taken in the second
half of the year 2011, the activities on TrinityCore are higher than MaNGOS, and
this trend continues in Figure 6.6d, where only a few contributions are made on
MaNGOS.

This particular graph is interesting since it shows how the network graph approach
can be used to detect the particular situation of a project being overtaken by another
one.

6.2.3 MSR14: mxcl/homebrew

Homebrew is a free and open source packet manager for Apple macOS operating
system. It is one of the most popular repositories on GitHub: in the year 2012, it was
the project with the highest number of unique contributors hosted on the platform.

The static graph of Homebrew is shown in Figure 6.7. For this graph, the following
settings were used: exclude_forks=True, keep_only_one_contributors=False,
min_commits=1. This graph is barely unreadable, as there are too many nodes and
almost no label can be read. Even ignoring the unreadable users nodes, the large
number of repository nodes makes it difficult to obtain a readable positioning of the
nodes in the graph. In fact, this graph includes almost the whole MSR14 dataset:
73 repositories out of 89 have at least a common contributor with Homebrew.

A depth look at the static graph reveals that ruby/ruby has the highest num-
ber of common contributors with Homebrew. Common activities between the two
repositories are expected, since Homebrew is using Ruby internally, and the packages
instructions are written as Ruby scripts (the so called formulas). Most of the projects,

5MaNGOS vs TrinityCore animated graph, last visited on January, 12th 2018: https://youtu.

be/q_ZBtxrWzME.

https://youtu.be/q_ZBtxrWzME
https://youtu.be/q_ZBtxrWzME

98 CHAPTER 6. THE NETWORK GRAPH

(a) Early 2009 (b) Late 2009

(c) 2011 (d) 2013

Figure 6.6: Four moments in the history of MaNGOS and TrinityCore.

6.2. INTERPRETATION OF RESULTS 99

Figure 6.7: Homebrew static graph.

however, have only a low number of contributors in common with Homebrew. A
realistic explanation for these contributors is that they are contributing with formulas
to automate the install of their projects, since Homebrew hosts a list of default
formulas on its GitHub page. Additionally, since Homebrew is widely used by macOS

programmers, it is likely that developers that are Mac owners were interested in
contributing to the project, even if it is hosted in a repository that is different from
the repositories where they are usually contributing to (e.g., different language,
different technologies involved etc.).

Table 6.4 shows the top 10 contributors on the Homebrew project, while Table 6.5
shows the top 25 contributions for the rest of the projects in the resulting graph.
As can be seen from these two tables, only 2 users created more than 100 commits
on GitHub, while 25 users have more than 100 commits on other repositories. In
general, 480 users contributed to Homebrew, with an average commit count of 13.56
commits each. Excluding the users adamv and asparagui, which are the most active
on Homebrew projects, the average commit count is 4.4.

100 CHAPTER 6. THE NETWORK GRAPH

User Commits

adamv 3157

asparagui 1247

trevor 125

MindTooth 69

kashif 65

sjonnet19 63

fsouza 44

TylerBrock 32

sferik 32

chrmoritz 31

Table 6.4: Top 10 contributors on Homebrew, and the corresponding number of
commits on Homebrew.

User Commits Repository

josevalim 2094 rails/rails

kennethreitz 2075 kennethreitz/requests

paulp 1834 scala/scala

josevalim 1255 plataformatec/devise

isaacs 1253 joyent/node

josh 1032 rails/rails

parkr 991 mojombo/jekyll

jezdez 881 django/django

casualjim 677 scalatra/scalatra

technoweenie 456 rails/rails

pvlugter 390 akka/akka

alex 370 django/django

pietern 343 antirez/redis

ralphschindler 312 zendramework/zf2

guilleiguaran 284 rails/rails

kriswallsmith 260 symfony/symfony

arunagw 231 rails/rails

dustin 214 memcached/memcached

jstedfast 206 mono/mono

parkr 174 imathis/octopress

steveklabnik 169 rails/rails

dannenberg 158 mongodb/mongo

fhemberger 129 imathis/octopress

stevegury 127 twitter/finagle

johanoskarsson 101 twitter/zipkin

Table 6.5: Top 25 contributors to projects other than Homebrew, the number of
contributed commits and the corresponding repository.

6.2. INTERPRETATION OF RESULTS 101

Figure 6.8: Django static graph, with django-cms and django-debug-toolbar high-
lighted in blue and yellow color.

6.2.4 MSR14: django/django

Django is a Python framework for developing web applications using the Model View
Controller (MVC) pattern. Many popular websites are built on top of Django6, such
as Disqus, Mozilla, Instagram, Pinterest and The Washington Post7.

Figure 6.8 shows the static graph of django/django (settings: exclude_forks=True,
keep_only_one_contributors=False, min_commits=5). Users with few contribu-
tions (less then 5) were filtered to achieve a more readable result. In this figure, the
two closest repositories to Django, which are divio/django-cms and django-debug-

toolbar, are colored in blue and in yellow respectively. The user nodes in common
between the three repositories are also colored with a mix of their repositories colors
(purple for django-cms and orange for django-debug-toolbar). As can be seen, most of
the contributors in the graph are shared between these three projects. There is also

6Django official page, including Django based projects list, last visited on January, 12th 2018:
https://www.djangoproject.com/start/overview/.

7News on Django blog about its adoption for The Washington Post, last visited on January, 12th
2018:https://www.djangoproject.com/weblog/2005/dec/08/congvotes/.

https://www.djangoproject.com/start/overview/
https://www.djangoproject.com/weblog/2005/dec/08/congvotes/

102 CHAPTER 6. THE NETWORK GRAPH

User Total commits

freakboy3742 1703

jacobian 890

jezdez 881

aaugustin 814

spookylukey 470

ramiro 410

alex 370

akaariai 215

apollo13 127

loic 87

Table 6.6: Top 10 committers on Django.

a high number of repositories with fewer common contributors to django/django,
which are mainly web-related repositories.

In summary, the static graph shows strong connections, created by a large number
of user, between Django and the two colored projects django-cms and django-debug-

toolbar, and weaker connections, created by fewer users, between Django and a
number of web development repositories. The latter suggests that there are some
activities in the web development area that are shared even among projects written
in different languages and with different purposes.

The existence of a stronger connection between Django, django-cms and django-

debug-toolbar is interesting, since the two latter projects are based on Django itself:
django-cms is a Content Management System (CMS), and django-debug-toolbar is
a set of graphical component to help users who are using Django to debug their
application.

The most active committers for these repositories are reported in Table 6.6
(Django project), Table 6.7 (django-debug-toolbar project) and Table 6.8 (django-

cms project). In Table 6.7 and Table 6.8, the users in common with Table 6.6 are
highlighted in italic font.

The relationship between these repositories can be further investigated by looking
at the animated graph, which can be seen on Youtube8. The animated graph shows
that Django project was developed well before the other two projects, and that
django-debug-toolbar was created from the most active users on the Django project.
Once its development started, django-debug-toolbar appears with constant activities

8Django animated graph, last visited on January, 12th 2018: https://youtu.be/P6f-MG6Chls.

https://youtu.be/P6f-MG6Chls

6.2. INTERPRETATION OF RESULTS 103

User Total commits

dcramer 156

jezdez 88

idan 31

alex 28

mindsocket 7

akaariai 4

jacobian 3

SmileyChris 3

charettes 2

dbrgn 2

mattrobenolt 2

apollo13 1

freakboy3742 1

gavinwahl 1

loic 1

Table 6.7: Committers for the project django-debug-toolbar. In italic the ones that
also appears in Table 6.6.

User Total commits

evildmp 72

DrMeers 47

jezdez 43

kezabelle 35

stephrdev 20

mitar 14

spookylukey 13

yohanboniface 8

erlenddalen 5

dstufft 4

Table 6.8: Committers for the project django-cms.

104 CHAPTER 6. THE NETWORK GRAPH

Figure 6.9: Static graph for PHP frameworks in MSR14.

by mostly the same user in the animated graph; a reasonable explanation for this is
that it was created to debug Django itself, and was moved to an ad-hoc repository
as it could be used by other users to debug their projects as well. The project
django-cms, instead, has a different history: it received contributions from Django

contributors, but for most of its early stages the contributions came from users
that only later on contributed to Django. This indicates that django-cms is more
of a standalone project built on Django, which only later on resulted in its users
having enough skills, knowledge, or interest to contribute back to the original Django

project.

6.2.5 MSR14: PHP frameworks

The MSR14 includes 5 repositories of different PHP frameworks: symfony/symfony,
zendframework/zf2, cakephp/cakephp, EllisLab/CodeIgniter and codeguy/Slim. Out
of these 5, only the Slim project is nowadays deprecated, while the others are still
actively maintained and popular.

6.2. INTERPRETATION OF RESULTS 105

The static graph of these five repositories is shown in Figure 6.9. To construct
this graph, the following settings were used: exclude_forks=True, min_commits=1,
keep_only_one_contributors=True. Moreover, the network graph was forced to
ignore any repository outside of the aforementioned ones. Again, the contributions
to a single repository have been included to have a graphical representation of the
projects popularity, as well as to understand how many contributors contribute to
more than one repository.

From the graph, it can be seen that there are are a low amount of users who
contributed to more than one repository (41 out of 1,508 total users, less than 3%).
Nevertheless, there are some users in common among all of the repositories. In
particular, most of the common users can be seen between symfony/symfony and
zendramework/zf2. The author is not currently aware of any event, in the history of
these two repositories, that could have caused a high number of contributors to shift
from one repository to the other.

The animated graph, which can be found on Youtube9, can be used to investigate
the common users between Symfony and Zend Framework (v2). The results show
that the activities for the two repositories started at about the same time, in the
late 2011-beginning of 2012, and that most common contributors were contributing
to both projects at the same time. Moreover, the common contributors are shown
mid way from both repositories, meaning that their contribution is mostly equally
split to both repositories. This confirms that the situation is not the one seen in
Section 6.2.2, where authors move from a repository to another, but it is more like
the two repositories had “something” in common.

Both zendramework/zf2 and symfony/symfony are actually the second version
of previously existing frameworks, which can now be found on GitHub under the
names of zendframework/zendframework and symfony/symfony1. The projects are
based on an updated version of PHP (5.3, vs the 5.2 used in their previous version).
PHP 5.3 is not a major update over its previous version, but it is possible that a
part of the common users were fixing problems due to PHP version change. Another
reasonable hypothesis for the common developers is that, since the two projects were
developed in the same time frame, the design choices of the two projects were similar.
Many PHP programmers may have been familiar with the previous versions of both

9Animated network graph for PHP framework repositories on MSR14 on YouTube, last visited
on January, 12th 2018: https://youtu.be/2wDu3MwPQrA.

https://youtu.be/2wDu3MwPQrA

106 CHAPTER 6. THE NETWORK GRAPH

User Total commits

Maks3w 284

hhamon 71

Ocramius 66

pborreli 59

beberlei 55

samsonasik 55

jmikola 50

Danez 37

tPl0ch 35

stealth35 33

Table 6.9: Top 10 contributors who contributed to more than 1 projects in Sec-
tion 6.2.5.

framework, and may have influenced the design process of both newer versions. For
example, both frameworks offered a renewed version on how dependency injection
works, with Symfony 2 using the Dependency Injection pattern extensively and
coming with a built-in Dependency Injection Container10 and Zend Framework 2

providing the Dependency Injection Container11, a new object to handle dependency
injection.

To contextualize the differences between common contributors and contributors
who contributed to only one project, Table 6.9 shows the top 10 contributors who
contributed to more than 1 project, while Table 6.10 reports the top 10 contributors
who contributed to only 1 project. Finally, Table 6.11 shows the total commits for
the PHP web framework repositories.

6.2.6 Android REST API client libraries

The static graph for the REST API libraries in the ANDROID dataset is shown in
Figure 6.10. To construct this graph, force_include_repositories were set with
the whole list of the repositories in the ANDROID dataset. The graph shows that
most of the previously classified as “small” (see Section 5.2.1) and “less popular”
(see Section 5.2.2) have few contributors, and no contributions come from authors
who are also contributing to other projects.

10Symfony official changelog page, last visited on January, 12th 2018: http://symfony.com/blog/

symfony-2-0.
11Zend introduction to DI, last visited on January, 12th 2018:

https://framework.zend.com/manual/2.0/en/modules/zend.di.introduction.html.

http://symfony.com/blog/symfony-2-0
http://symfony.com/blog/symfony-2-0
https://framework.zend.com/manual/2.0/en/modules/zend.di.introduction.html

6.2. INTERPRETATION OF RESULTS 107

Figure 6.10: Android static graph.

108 CHAPTER 6. THE NETWORK GRAPH

User Commits

fabpot 5156

weierophinney 3786

markstory 3515

phpnut 1564

narfbg 1492

nateabele 1042

lorenzo 778

derekjones 567

philsturgeon 382

ADmad 358

Table 6.10: Top 10 contributors who contributed to only 1 project in Section 6.2.5.

Repository Commits

zendframework/zf2 12030

cakephp/cakephp 11844

symfony/symfony 9936

EllisLab/CodeIgniter 5941

codeguy/Slim 1250

Table 6.11: Repositories of Section 6.2.5, and their commits count.

In general, there are only three authors that contributed to more than one
repository. Given the limited amount of common authors and their contributions,
an in-depth analysis can be made.

Of the three common authors, JakeWharton, the orange node close to RetroFit,
is a famous Android developer12, who created many popular libraries, such as
butterknife13 and ActionBarSherlock14. He is the one who wrote the highest number
of commits on RetroFit (1001 out of 2062 commits on the whole project), which
is not surprising since the RetroFit project is developed by Square Open Source15

company and he has been working there as an Android Engineer since 201216. It
is surprising, however, that JakeWharton contributed to Volley, albeit only with a

12JakeWharton biography on Google developers, last visited on January, 12th 2018:
https://developers.google.com/experts/people/jake-wharton.

13butterknife repository on GitHub, last visited on January, 12th 2018: https://github.com/

JakeWharton/butterknife.
14ActionBarSherlock on GitHub, last visited on January, 12th 2018: https://github.com/

JakeWharton/ActionBarSherlock.
15Square Open Source website, last visited on January, 12th 2018: http://square.github.io/.
16JakeWharton Linkedin profile with career history, last visited on January, 12th 2018: https:

//www.linkedin.com/in/jakewharton/.

https://developers.google.com/experts/people/jake-wharton
https://github.com/JakeWharton/butterknife
https://github.com/JakeWharton/butterknife
https://github.com/JakeWharton/ActionBarSherlock
https://github.com/JakeWharton/ActionBarSherlock
http://square.github.io/
https://www.linkedin.com/in/jakewharton/
https://www.linkedin.com/in/jakewharton/

6.2. INTERPRETATION OF RESULTS 109

Figure 6.11: Animated graph at the month in which JakeWharton contributed to
Volley.

single commit. Figure 6.11 shows the month in which the contribution was written,
and shows that the user was also contributing to RetroFit and http-request at the
same time. The commit that was made on Volley17 has the following commit message:
“Allow override point for connection creation. This provides an easy insertion point
for alternate implementations of the HttpUrlConnection API (e.g., OkHttp)”. Since
OkHTTP is another library developed by Square Open Source, it makes sense
for JakeWharton to make that contribution to a competitor of RetroFit. This,
however, represents a new and unforeseen case where a common contributor between
two repositories does not translate in a contribution of “knowledge” between the
two repositories. In fact, the knowledge transmitted through the contribution is
actually from a repository, square/okhttp, which is not included in the dataset.
Similarly, JakeWharton’s contributions to http-request have similar commit messages,
delineating a similar situation.

The second user, EddieRingle, which can be found in the top left between RetroFit

and http-request, made only a minor contribution (typo-fix) on http-request, and his
presence in the graph is not particularly impactful. The third user, called roman-

mazur, is more interesting, since he made many contributions (445 out of 663 of the

17JakeWharton only commit on Volley, last visited on January, 12th 2018:
https://api.github.com/repos/google/volley/git/commits/05a1b0edb25ed84c95523df7a81bd87a44b697d7.

https://api.github.com/repos/google/volley/git/commits/05a1b0edb25ed84c95523df7a81bd87a44b697d7

110 CHAPTER 6. THE NETWORK GRAPH

whole repository) to Helium, and three commits on RetroFit with technical content.

The animated graph, which can be seen on YouTube18, is coherent with what
can be seen on the static graph: Volley and RetroFit have a much higher number
of users contributing than the other libraries. Moreover, smaller libraries show up
from time to time in the graph, while bigger projects are constantly appearing in
the representation. This means that the smaller libraries are also not continuously
developed.

Since the original goal to collect the ANDROID dataset was to evaluate the
usage of the Network Graph tool to choose the best library for the goal, the latter is
particularly important: not only by choosing a smaller library the developer would
use a project with less commits and less contributors, he would also risk having to
wait more time for bugfixes.

6.2.7 ELECTRON: electron/electron

Electron is an open source framework developed by the GitHub company. Its purpose
is to build desktop applications using web components (Chromium for the front-end
and Node.js for the backend). The Electron project started in 2013. Back than, the
project was named Atom Shell, and it was part of the Atom project. In 2015, the
project name changed to Electron, and in 2016 the version 1.0 was released.

The ELECTRON dataset was created with the goal of understanding the interac-
tions between the framework and the projects that are based on it, and in particular
to investigate on whether the users who created an application using Electron also
used their acquired knowledge on the project to contribute back to the framework,
for example in fixing a bug, or by proposing their own improvements/new features.

Figure 6.12 shows the static graph, with the three bigger green nodes in the
center being Electron, Atom and browser-laptop. Due to the high number of nodes,
a zoomed in version of the graph that shows the closer projects to Electron can be
seen in Figure 6.13.

The graphs include 50 repositories. Every repository has at least one contributor
in common with Electron, and in total the common contributors created 12,745
commits (out of 17,441 total commits of the repository) on Electron. This count,
however, includes commits made by authors who mainly developed on Electron, such

18Animated graph for Android REST API libraries:https://youtu.be/QZzicsDft_Y.

https://youtu.be/QZzicsDft_Y

6.2. INTERPRETATION OF RESULTS 111

Figure 6.12: Static graph for the Electron project (whole view).

Figure 6.13: Static graph for the Electron project (zoomed on center).

112 CHAPTER 6. THE NETWORK GRAPH

user commit message

mawie81 [ci skip] fix link in screen docs

Rokt33r fix typoCode block should be ended “

maxcnunes Improve error handling from remote. This way copy [...]

khornberg Correct link of debugging UI.Using the link provided [...]

stefanbuck fix broken links

orderedlist Get radius working with frameless window.Right now it’s [...]

rhysd fix TouchBarSpacer class name in doc

Hum4n01d Fix order of OSs.It was previously inconsistent

appetizermonster Fix small mistakes in CONTRIBUTING-ko.md

ellerbrock fixed broken link "how to share data between web pages" [...]

Table 6.12: Commit message for ten randomly selected users who only made few
contributions on Electron.

as zcbenz, who made 7,217 commits on Electron. Without counting the commits
of the nodes closest to Electron, and closer to Electron than to other projects, the
commits made by common contributors are still about 5,000 (39% of the total
commits). Most of these commits are coming from Atom developers. It is thus
debatable whether commits from the Atom project should be considered as from
other projects. Discarding the commits from Atom developers still leaves about 1,700
commits coming from contributors who mainly developed on other projects, which
is about 10% of the total commits of Electron.

With either 10% or 39% commits coming from external contributors, Electron

based projects influenced the Electron repository considerably. To further investigate
these commits, 10 random commits were chosen from users with only few contribu-
tions on Electron. These commits, shown in Table 6.12, mostly seem to be related to
bug-fixes.

The animated graph, which can be seen on Youtube19, does not contribute much
in understanding the interactions between Electron and Electron-based repositories.
However, it is interesting since it clearly shows the initial developments on Electron,
and how it was born from Atom. Another aspect that can be derived from the

19Electron animated graph on YouTube, last visited on January, 12th 2018: https://youtu.be/

Xs4VtOJHslQ.

https://youtu.be/Xs4VtOJHslQ
https://youtu.be/Xs4VtOJHslQ

6.2. INTERPRETATION OF RESULTS 113

User Commits

zcbenz 7217

kevinsawicki 3365

zeke 565

paulcbetts 264

MarshallOfSound 261

bridiver 141

bbondy 125

gerhardberger 105

maxogden 93

joshaber 53

Table 6.13: Top 10 contributors on Electron project

User Commits

kevinsawicki 8329

nathansobo 5013

probablycorey 2379

maxbrunsfeld 1285

as-cii 1261

50Wliu 604

zcbenz 452

joshaber 372

mcolyer 366

simurai 245

Table 6.14: Top 10 contributors on Atom project.

animated graph is that the projects based on Electron do not start from Electron

contributors, but rather their authors contribute back to Electron after a certain
amount of time. This is likely to happen since such developers have possibly discovered
bugs in Electron and implemented the proposed fixes.

Tables 6.13 to 6.15 provide the number of commits for the top 10 contributors of
Electron, Atom and the other projects in this dataset.

6.2.8 LANGUAGES: collaboration between programming languages

As described in Section 5.1, LANGUAGES includes the repositories for several
programming languages. The static graph constructed from this dataset is shown
in Figure 6.14. The graph shows a situation where some degree of collaboration is
noticeable within all of the repositories.

Rust, Ruby and Elixir, in particular, are the 3 repositories with most contributors

114 CHAPTER 6. THE NETWORK GRAPH

User Repository Commits

bbondy brave/browser-laptop 2876

pfrazee beakerbrowser/beaker 1847

MarshallOfSound MarshallOfSound/Google-Play-Music-Desktop-Player-UNOFFICIAL- 1374

bsclifton brave/browser-laptop 1198

diracdeltas brave/browser-laptop 956

yuya-oc mattermost/desktop 904

Rokt33r BoostIO/Boostnote 823

bridiver brave/browser-laptop 727

k0kubun k0kubun/Nocturn 623

maxcnunes sqlectron/sqlectron-gui 618

Table 6.15: Top 10 contributions on projects different than both Electron and Atom

in Section 6.2.7.

repository
common
contrib.

total
contrib.

commits by
common contrib.

commits
total

rust-lang/rust 80 2070 2456 58715

ruby/ruby 28 401 270 51405

elixir-lang/elixir 35 744 813 15989

scala/scala 16 485 280 30457

jashkenas/coffeescript 19 343 81 6070

Table 6.16: Common contributors and their commits for top 5 projects in LAN-
GUAGES.

who committed on more than one repository. In Table 6.16 the number of common
contributors with respect to total contributors are shown, and also the number of
commits made by common contributors for each of these 5 projects is shown. When
compared to the situation of Electron (see Section 6.2.7), this dataset shows less
common activities between repositories: the absolute values of both contributors
and commits are higher, but in percentage the numbers are lower. This situation
is expectable, since different programming languages have much more differences
among themselves then framework based applications with the framework itself.
Moreover, in Electron the common activities and contributions were considered only
on the framework itself, while here the contributions are randomly sparse over the
programming languages.

6.2. INTERPRETATION OF RESULTS 115

Figure 6.14: Static graph for LANGUAGES.

116 CHAPTER 6. THE NETWORK GRAPH

The animated graph, shown on YouTube20, shows that there are no contributions
between the repositories of the programming languages until Rust appearance in
the second half of 2010. Starting from that time, most of the common contributors
are between Rust and another programming language. Rust is known for being a
very popular programming language.

In terms of “sentiment evaluation”, recently Rust was voted by developers as the
most loved programming language on Stack Overflow21 (a programmers community)
for the second year consecutively.

Rust is popular and loved, but it does not appear in any chart of the most used
programming languages. In general, very few projects are actually based on Rust.
This may be due to the project being still not mature: the version 1.0 was only
released in the year 201522, and up until that version, code written for previous
releases were difficult to adapt and maintain to work with newer versions.

In summary, developers who were interested in Rust in the past would rather
contribute to the project itself then use the language, and due to the language
popularity, many developers from other repositories have decided to offer their
contributions.

20LANGUAGES animated network graph on YouTube: https://youtu.be/FPUZLwwlU3s.
21Stack Overflow insights for 2017, last visited on January, 12th 2018: https://insights.

stackoverflow.com/survey/2017.
22Rust 1.0 release, last visited on January, 12th 2018:https://blog.rust-lang.org/2015/05/

15/Rust-1.0.html.

https://youtu.be/FPUZLwwlU3s
https://insights.stackoverflow.com/survey/2017
https://insights.stackoverflow.com/survey/2017
https://blog.rust-lang.org/2015/05/15/Rust-1.0.html
https://blog.rust-lang.org/2015/05/15/Rust-1.0.html

Chapter 7

Conclusion and future works

Version Control Systems (VCS) are widely used both in closed and in open source
projects, as they have many features that help working in teams, such as code conflicts
management and code history, version control and parallel development of features
and bugfixes. The usage of VCS produces huge amount of data, which contains
valuable information to characterize a software project and its development. Project
managers, for example, may use this information to pro-actively discover conflicts
arising in their teams, or to shed the light on patterns that lower productivity in
their team’s activities. Researchers are interested in data from repositories as well,
as it provides insights and historical evolution on the life-cycle of projects, on the
adoption of software engineering principles, and on developers activities, locations
and discussions. VCS mining involves methods developed in different research fields,
such as software engineering, social science, Natural Language Processing (NLP),
big data, project management and statistics.

Since it is one of the mostly used VCS, and is widely used by many open source
projects, this thesis focused on mining repositories managed using the Git VCS. More
specifically, the datasets for this thesis were collected from GitHub, a web platform
which integrates the Git repositories with issue trackers and code reviewing tools
(see Chapter 2 for more details). The most important works in scientific literature,
focused on mining data from Git and Github, are presented in Chapter 3.

This work presented different visualization approaches that provides a graphical
overview of different aspects of repositories. Four different datasets were presented
in Chapter 5, one of which (the MSR14) is already widely studied by researchers.
The other 3 were built on purpose for the use in this thesis, each one referring to a

117

118 CHAPTER 7. CONCLUSION AND FUTURE WORKS

a specific topic. Chapter 5 also considers the use of Principal Component Analysis
(PCA) to provide a compact, bi-dimensional view where projects with similar features
appear as close. This technique was used to provide a graphical representation of
two concepts, size and popularity, which can not be measured by simple metrics
such as threshold based metrics.

Chapter 6 proposed the analysis of common contributors between different
repositories as a way to obtain information. The evaluation of common contributors
between projects is a novel approach in scientific study of repositories characteristics.
The idea behind this study is that a user contributing to a project is also acquiring
knowledge on the topic, tools and design patterns used in that project. Therefore,
when the same user contributes on other projects, his contributions are influenced
by his acquired knowledge. From the standpoint of this analysis, the contributors
are hubs through which knowledge moves between repositories. Repositories and
users can be represented as nodes in a directed graph, with contributions (commits)
being the edges connecting them.

Gephi, a tool to visualize graphs, was chosen to create a visual representation
of this graph, for its ability to display dynamic graphs, i.e., graphs with nodes and
edge changing over time, with time being the projects life in this work. The resulting
graphs were interpreted with expert knowledge on the repositories and their history.
When interpreted by a human observer who is expert on the topic, the resulting
graphs show different patterns of interactions between users and repositories. Some
example cases that may translate into different patterns are presented in this section.
A project to make HTTP calls was created and maintained by web projects developers
as a tool for their main project (see Section 6.2.1). Albeit this tool is a small project,
the main contributors were already major contributors of larger projects with a
strong similarity in language and topic (web development). Another interesting case
referred to a repository that stopped being contributed to from the community,
which moved to a different version of the same project with more open contributions
rules (Section 6.2.2). The animated graph has a unique pattern of interactions, as
common users clearly stop interacting with one of the two repositories, and focus
their efforts on the other. In analyzing the Django web framework, differences were
found between a project built as a submodule of Django, and a Django-based project
(Section 6.2.4). The amount of initial contributors and the timeline of the contributors
actions (both committing and being attracted to the repository) of the two projects

119

exhibited visual differences. Moreover, while the Django submodule contributors
were contributing to the Django repository as well during the project first month
of life, the authors of Django-based projects contributed to Django only at later
stages of their project life. Finally, it was found that many developers who chose to
build projects on top of Electron, a framework for cross platform HTML/Javascript
desktop apps, contributed back to the Electron project with bug fixes (Section 6.2.7).

During the elaboration of this work, several critical aspects have emerged that
impact on the quality of the analysis and may be addressed in future works.

The first issue is that the study was carried out on the four datasets collected
and described in Chapter 5. However, the projects in these datasets represent a
small subset of the set of projects that can be found on GitHub. Results may
vary considerably with different datasets. This limitation is due to the practical
impossibility to operate on much larger sets of repositories, which would require
to access online GitHub repositories by an extended and intense use of GitHub
API calls. These latter, however, are throttled by GitHub to guarantee the smooth
functioning of the platform.

A key assumption to apply the proposed analysis is that repositories should share
some common contributors. The finding of a lack of common contributors is by itself
a result. However, no useful considerations can be elaborated with the proposed
approaches for those sets of projects that are developed in isolated environments.
This means that the proposed method may not be suitable for closed source projects.

This work only considered a form of user interaction where users were creating
one or more commits. GitHub features different ways for user to contribute to
a project, and the usage of the issue tracker to file a bug or to discuss a new
feature, or reviewing a submitted code and giving constructive feedback, are forms
of contribution that are currently not addressed in the present work. Their inclusion,
with the goal to obtain an “holistic” assessment of the interaction of users with
software projects, may be evaluated in future works. However, this assessment would
require to differentiate between useful and unuseful contributions, which is something
that is not necessary for commits: a useless or bad code contribution would not be
accepted in the project history by the authors in the first place. Therefore, additional
evaluation would be required to integrate these aspects in the evaluation.

Additionally, in the proposed approach all of the commits are considered as
having the same important for the development of the corresponding software project.

120 CHAPTER 7. CONCLUSION AND FUTURE WORKS

It is debatable whether a one line contribution to update the project documentation
should be considered more or less important than a major commit refactoring many
software components of the project. This may be further explored in the future,
using software analysis metrics. However, these considerations are highly language
dependent, making the evaluation of the quality of the contribution very hard to
assess objectively.

List of publications

• Tullio Facchinetti, Guido Benetti, Moses A. Koledoye, Gianluca Roveda, "De-

sign and implementation of a web-centric remote data acquisition system", in
Proceedings of the 10th IEEE International Workshop on Service-Oriented
Cyber-Physical Systems in Converging Networked Environments (SOCNE)”,
Berlin, September, 2016.

• Gianluca Roveda, Moses A. Koledoye, Enea Parimbelli, John H. Holmes, “Pre-

dicting Clinical Outcomes in Patients With Traumatic Bleeding: A Secondary

Analysis of the CRASH-2 Dataset”, in 3° International Forum on Research
and Technologies for Society and Industry, Modena, Italy, September, 2017

• Daniele De Martini, Gianluca Roveda, Alessandro Bertini, Agnese Marchini
and Tullio Facchinetti, “A Framework for Automatic Generation of Fuzzy

Evaluation Systems for Embedded Applications”, in 9th International Joint
Conference on Computational Intelligence, Madeira, Portugal, November 2017

• Inventor of a patent whose deposit will be requested shortly (the title cannot
be disclosed due to agreements with the owner company)

121

Bibliography

[1] Business Software Alliance. Software industry facts and figures, US, 2007.

[2] Business Software Alliance. Economic impact of software, EU, 2014.

[3] Business Software Alliance. Economic impact of software, US, 2016.

[4] O. Arafat and D. Riehle. The commit size distribution of open source software.
In 2009 42nd Hawaii International Conference on System Sciences, pages 1–8,
Jan 2009.

[5] J. Aranda and G. Venolia. The secret life of bugs: Going past the errors and
omissions in software repositories. In 2009 IEEE 31st International Conference

on Software Engineering, pages 298–308, May 2009.

[6] Muhammad Asaduzzaman, Muhammad Ahasanuzzaman, Chanchal K. Roy, and
Kevin A. Schneider. How Developers Use Exception Handling in Java? In Pro-

ceedings of the 13th International Conference on Mining Software Repositories,
MSR ’16, pages 516–519, New York, NY, USA, 2016. ACM.

[7] G. Avelino, L. Passos, A. Hora, and M. T. Valente. A novel approach for
estimating Truck Factors. In 2016 IEEE 24th International Conference on

Program Comprehension (ICPC), pages 1–10, May 2016.

[8] Ali Sajedi Badashian and Eleni Stroulia. Measuring User Influence in GitHub:
The Million Follower Fallacy. In Proceedings of the 3rd International Workshop

on CrowdSourcing in Software Engineering, CSI-SE ’16, pages 15–21, New York,
NY, USA, 2016. ACM.

[9] Earl T. Barr, Christian Bird, Peter C. Rigby, Abram Hindle, Daniel M. German,
and Premkumar Devanbu. Cohesive and Isolated Development with Branches. In

123

124 BIBLIOGRAPHY

Juan de Lara and Andrea Zisman, editors, Fundamental Approaches to Software

Engineering, number 7212 in Lecture Notes in Computer Science, pages 316–331.
Springer Berlin Heidelberg, March 2012. DOI: 10.1007/978-3-642-28872-2_22.

[10] S. Bayati, D. Parsons, T. Susnjak, and M. Heidary. Big data analytics on large-
scale socio-technical software engineering archives. In 2015 3rd International

Conference on Information and Communication Technology, ICoICT 2015,
pages 65–69. Institute of Electrical and Electronics Engineers Inc., 2015.

[11] Michael R. Berthold, Nicolas Cebron, Fabian Dill, Thomas R. Gabriel, Tobias
Kötter, Thorsten Meinl, Peter Ohl, Christoph Sieb, Kilian Thiel, and Bernd
Wiswedel. KNIME: The Konstanz Information Miner, pages 319–326. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2008.

[12] M. Biazzini, M. Monperrus, and B. Baudry. On Analyzing the Topology of
Commit Histories in Decentralized Version Control Systems. In 2014 IEEE

International Conference on Software Maintenance and Evolution (ICSME),
pages 261–270, September 2014.

[13] Marco Biazzini and Benoit Baudry. "May the Fork Be with You": Novel Metrics
to Analyze Collaboration on GitHub. In Proceedings of the 5th International

Workshop on Emerging Trends in Software Metrics, WETSoM 2014, pages
37–43, New York, NY, USA, 2014. ACM.

[14] C. Bird, P. C. Rigby, E. T. Barr, D. J. Hamilton, D. M. German, and P. Devanbu.
The promises and perils of mining git. In 2009 6th IEEE International Working

Conference on Mining Software Repositories, pages 1–10, May 2009.

[15] K. Blincoe, J. Sheoran, S. Goggins, E. Petakovic, and D. Damian. Understanding
the popular users: Following, affiliation influence and leadership on GitHub.
Information and Software Technology, 70:30–39, 2016.

[16] Caius Brindescu, Mihai Codoban, Sergii Shmarkatiuk, and Danny Dig. How Do
Centralized and Distributed Version Control Systems Impact Software Changes?
In Proceedings of the 36th International Conference on Software Engineering,
ICSE 2014, pages 322–333, New York, NY, USA, 2014. ACM.

[17] G. Burlet and A. Hindle. An empirical study of end-user programmers in
the computer music community. In IEEE International Working Conference

BIBLIOGRAPHY 125

on Mining Software Repositories, volume 2015-August, pages 292–302. IEEE
Computer Society, 2015.

[18] Andrew H. Caudwell. Gource: Visualizing software version control history. In
Proceedings of the ACM International Conference Companion on Object Oriented

Programming Systems Languages and Applications Companion, OOPSLA ’10,
pages 73–74, New York, NY, USA, 2010. ACM.

[19] T. Chaikalis, E. Ligu, G. Melas, and A. Chatzigeorgiou. SEAgle: Effortless Soft-
ware Evolution Analysis. In 2014 IEEE International Conference on Software

Maintenance and Evolution (ICSME), pages 581–584, September 2014.

[20] K. K. Chaturvedi, V. B. Sing, and P. Singh. Tools in Mining Software Reposi-
tories. In 2013 13th International Conference on Computational Science and

Its Applications (ICCSA), pages 89–98, June 2013.

[21] Michael Cochez, Ville Isomöttönen, Ville Tirronen, and Jonne Itkonen. How
Do Computer Science Students Use Distributed Version Control Systems? In
Vadim Ermolayev, Heinrich C. Mayr, Mykola Nikitchenko, Aleksander Spi-
vakovsky, and Grygoriy Zholtkevych, editors, Information and Communication

Technologies in Education, Research, and Industrial Applications, number 412 in
Communications in Computer and Information Science, pages 210–228. Springer
International Publishing, June 2013. DOI: 10.1007/978-3-319-03998-5_11.

[22] Peter J. A. Cock, Tiago Antao, Jeffrey T. Chang, Brad A. Chapman, Cymon J.
Cox, Andrew Dalke, Iddo Friedberg, Thomas Hamelryck, Frank Kauff, Bartek
Wilczynski, and Michiel J. L. de Hoon. Biopython: freely available python
tools for computational molecular biology and bioinformatics. Bioinformatics,
25(11):1422–1423, 2009.

[23] Evans Data Corporation. Global developer population and demographic study
vol. 2, 2017.

[24] V. Cosentino, J. L. C. Izquierdo, and J. Cabot. Assessing the bus factor of Git
repositories. In 2015 IEEE 22nd International Conference on Software Analysis,

Evolution, and Reengineering (SANER), pages 499–503, March 2015.

[25] Valerio Cosentino, Javier Luis Cánovas Izquierdo, and Jordi Cabot. Gitana:
A SQL-Based Git Repository Inspector. In Paul Johannesson, Mong Li Lee,

126 BIBLIOGRAPHY

Stephen W. Liddle, Andreas L. Opdahl, and Óscar Pastor López, editors,
Conceptual Modeling, number 9381 in Lecture Notes in Computer Science, pages
329–343. Springer International Publishing, October 2015. DOI: 10.1007/978-3-
319-25264-3_24.

[26] Valerio Cosentino, Javier Luis, and Jordi Cabot. Findings from GitHub: Meth-
ods, Datasets and Limitations. In Proceedings of the 13th International Confer-

ence on Mining Software Repositories, MSR ’16, pages 137–141, New York, NY,
USA, 2016. ACM.

[27] J. Eyolfson, L. Tan, and P. Lam. Correlations between bugginess and time-based
commit characteristics. Empirical Software Engineering, 19(4):1009–1039, 2014.

[28] H. Fang, C. Fu, F. Chen, and Q. Xuan. Analyzing file-motif committed by
developers in open source software repository. Complex Systems and Complexity

Science, 12(2):78–84, 2015.

[29] Roy Thomas Fielding. Architectural Styles and the Design of Network-based

Software Architectures. PhD thesis, 2000. AAI9980887.

[30] M. Foucault, M. Palyart, X. Blanc, G.C. Murphy, and J.-R. Falléri. Impact of
developer turnover on quality in open-source software. pages 829–841, 2015.
DOI: 10.1145/2786805.2786870.

[31] Minyuan Gao and Chang Liu. TeamWATCH Demonstration: A Web-based
3d Software Source Code Visualization for Education. In Proceedings of the

1st International Workshop on Code Hunt Workshop on Educational Software

Engineering, CHESE 2015, pages 12–15, New York, NY, USA, 2015. ACM.

[32] M. Goeminne and T. Mens. Towards a survival analysis of database framework
usage in Java projects. In 2015 IEEE 31st International Conference on Software

Maintenance and Evolution, ICSME 2015 - Proceedings, pages 551–555. Institute
of Electrical and Electronics Engineers Inc., 2015.

[33] Georgios Gousios. The ghtorrent dataset and tool suite. In Proceedings of

the 10th Working Conference on Mining Software Repositories, MSR’13, pages
233–236, 2013.

BIBLIOGRAPHY 127

[34] Georgios Gousios and Diomidis Spinellis. Conducting quantitative software en-
gineering studies with Alitheia Core. Empirical Software Engineering, 19(4):885–
925, February 2013.

[35] Georgios Gousios, Margaret-Anne Storey, and Alberto Bacchelli. Work Practices
and Challenges in Pull-based Development: The Contributor’s Perspective. In
Proceedings of the 38th International Conference on Software Engineering, ICSE
’16, pages 285–296, New York, NY, USA, 2016. ACM.

[36] Georgios Gousios, Bogdan Vasilescu, Alexander Serebrenik, and Andy Zaidman.
Lean GHTorrent: GitHub Data on Demand. In Proceedings of the 11th Working

Conference on Mining Software Repositories, MSR 2014, pages 384–387, New
York, NY, USA, 2014. ACM.

[37] P. Gyimesi, G. Gyimesi, Z. Tóth, and R. Ferenc. Characterization of source

code defects by data mining conducted on GitHub, volume 9159 of 15th Interna-

tional Conference on Computational Science and Its Applications, ICCSA 2015.
Springer Verlag, 2015.

[38] V.J. Hellendoorn, P.T. Devanbu, and A. Bacchelli. Will They like this? Evalu-
ating code contributions with language models. In IEEE International Working

Conference on Mining Software Repositories, volume 2015-August, pages 157–
167. IEEE Computer Society, 2015.

[39] H. Hemmati, S. Nadi, O. Baysal, O. Kononenko, W. Wang, R. Holmes, and
M. W. Godfrey. The MSR Cookbook: Mining a decade of research. In 2013

10th IEEE Working Conference on Mining Software Repositories (MSR), pages
343–352, May 2013.

[40] W. Huang, T. Lu, H. Zhu, G. Li, and N. Gu. Effectiveness of conflict management
strategies in peer review process of online collaboration projects. In Proceedings

of the ACM Conference on Computer Supported Cooperative Work, CSCW,
volume 27, pages 717–728. Association for Computing Machinery, 2016.

[41] Mathieu Jacomy, Tommaso Venturini, Sebastien Heymann, and Mathieu Bastian.
Forceatlas2, a continuous graph layout algorithm for handy network visualization
designed for the gephi software. PLOS ONE, 9(6):1–12, 06 2014.

128 BIBLIOGRAPHY

[42] O. Jarczyk, B. Gruszka, S. Jaroszewicz, L. Bukowski, and A. Wierzbicki. Github

projects. quality analysis of open-source software, volume 8851 of 6th Inter-

national Conference on Social Informatics, SocInfo 2014. Springer Verlag,
2014.

[43] Jing Jiang, David Lo, Jiahuan He, Xin Xia, Pavneet Singh Kochhar, and
Li Zhang. Why and how developers fork what from whom in GitHub. Empirical

Software Engineering, pages 1–32, May 2016.

[44] H. Kagdi, M.L. Collard, and J.I. Maletic. A survey and taxonomy of approaches
for mining software repositories in the context of software evolution. Journal of

Software Maintenance and Evolution, 19(2):77–131, 2007.

[45] E. Kalliamvakou, D. Damian, K. Blincoe, L. Singer, and D. M. German. Open
Source-Style Collaborative Development Practices in Commercial Projects Using
GitHub. In 2015 IEEE/ACM 37th IEEE International Conference on Software

Engineering, volume 1, pages 574–585, May 2015.

[46] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D.M. German, and
D. Damian. An in-depth study of the promises and perils of mining GitHub.
DOI: 10.1007/s10664-015-9393-5, 2015.

[47] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M.
German, and Daniela Damian. The Promises and Perils of Mining GitHub. In
Proceedings of the 11th Working Conference on Mining Software Repositories,
MSR 2014, pages 92–101, New York, NY, USA, 2014. ACM.

[48] M. Klug and J.P. Bagrow. Understanding the group dynamics and success of
teams. Royal Society Open Science, 3(4), 2016.

[49] Y. Kuwata and H. Miura. A study on growth model of OSS projects to estimate
the stage of lifecycle. In Howlett R.J., Ding L., Pang C., Leong M.K., and Jain
L.C., editors, Procedia Computer Science, volume 60, pages 1004–1013. Elsevier,
2015.

[50] Jacek Śliwerski, Thomas Zimmermann, and Andreas Zeller. When Do Changes
Induce Fixes? In Proceedings of the 2005 International Workshop on Mining

Software Repositories, MSR ’05, pages 1–5, New York, NY, USA, 2005. ACM.

BIBLIOGRAPHY 129

[51] Justin Longo and Tanya M. Kelley. Use of GitHub As a Platform for Open
Collaboration on Text Documents. In Proceedings of the 11th International

Symposium on Open Collaboration, OpenSym ’15, pages 22:1–22:2, New York,
NY, USA, 2015. ACM.

[52] P. Louridas. Version control. IEEE Software, 23(1):104–107, Jan 2006.

[53] J.F. Low, T. Yathog, and D. Svetinovic. Software analytics study of Open-
Source system survivability through social contagion. In IEEE International

Conference on Industrial Engineering and Engineering Management, volume
2016-January, pages 1213–1217. IEEE Computer Society, 2016.

[54] R. Malhotra, N. Pritam, K. Nagpal, and P. Upmanyu. Defect Collection and
Reporting System for Git based Open Source Software. In 2014 International

Conference on Data Mining and Intelligent Computing (ICDMIC), pages 1–7,
September 2014.

[55] K. J. Millman and M. Aivazis. Python for scientists and engineers. Computing

in Science Engineering, 13(2):9–12, March 2011.

[56] M. Mirakhorli, H.-M. Chen, and R. Kazman. Mining Big Data for Detecting,
Extracting and Recommending Architectural Design Concepts. In Proceedings -

1st International Workshop on Big Data Software Engineering, BIGDSE 2015,
pages 15–18. Institute of Electrical and Electronics Engineers Inc., 2015.

[57] N. Mostafa and C. Krintz. Tracking performance across software revisions. In
Proceedings of the 7th International Conference on Principles and Practice of

Programming in Java, PPPJ 2009, pages 162–171, 2009.

[58] M. H. D. d Moura, H. A. D. d Nascimento, and T. C. Rosa. Extracting New
Metrics from Version Control System for the Comparison of Software Developers.
In 2014 Brazilian Symposium on Software Engineering (SBES), pages 41–50,
September 2014.

[59] Meiyappan Nagappan, Romain Robbes, Yasutaka Kamei, Éric Tanter, Shane
McIntosh, Audris Mockus, and Ahmed E. Hassan. An Empirical Study of
Goto in C Code from GitHub Repositories. In Proceedings of the 2015 10th

Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2015, pages
404–414, New York, NY, USA, 2015. ACM.

130 BIBLIOGRAPHY

[60] T. E. Oliphant. Python for scientific computing. Computing in Science Engi-

neering, 9(3):10–20, May 2007.

[61] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and É. Duchesnay. Scikit-learn: Machine
learning in python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[62] Mohammad Masudur Rahman and Chanchal K. Roy. An Insight into the Pull
Requests of GitHub. In Proceedings of the 11th Working Conference on Mining

Software Repositories, MSR 2014, pages 364–367, New York, NY, USA, 2014.
ACM.

[63] Baishakhi Ray, Daryl Posnett, Vladimir Filkov, and Premkumar Devanbu. A
Large Scale Study of Programming Languages and Code Quality in Github. In
Proceedings of the 22Nd ACM SIGSOFT International Symposium on Founda-

tions of Software Engineering, FSE 2014, pages 155–165, New York, NY, USA,
2014. ACM.

[64] M. J. Rochkind. The source code control system. IEEE Transactions on

Software Engineering, SE-1(4):364–370, Dec 1975.

[65] Z. Shoroye, W. Yaqub, A.A. Mohammed, Z. Aung, and D. Svetinovic. Exploring

social contagion in open-source communities by mining software repositories,
volume 9492 of 22nd International Conference on Neural Information Processing,

ICONIP 2015. Springer Verlag, 2015.

[66] Vinayak Sinha, Alina Lazar, and Bonita Sharif. Analyzing Developer Sentiment
in Commit Logs. In Proceedings of the 13th International Conference on Mining

Software Repositories, MSR ’16, pages 520–523, New York, NY, USA, 2016.
ACM.

[67] D. Spinellis. Version control systems. IEEE Software, 22(5):108–109, Sept 2005.

[68] S. Sripada, Y. R. Reddy, and A. Sureka. In Support of Peer Code Review and
Inspection in an Undergraduate Software Engineering Course. In 2015 IEEE

28th Conference on Software Engineering Education and Training, pages 3–6,
May 2015.

BIBLIOGRAPHY 131

[69] Daniela Steidl, Benjamin Hummel, and Elmar Juergens. Incremental Origin
Analysis of Source Code Files. In Proceedings of the 11th Working Conference

on Mining Software Repositories, MSR 2014, pages 42–51, New York, NY, USA,
2014. ACM.

[70] T. Suovuo, J. Holvitie, J. Smed, and V. Leppänen. Mining knowledge on
technical debt propagation. In Sievi-Korte O., Makinen E., and Nummenmaa J.,
editors, CEUR Workshop Proceedings, volume 1525, pages 281–295. CEUR-WS,
2015.

[71] Parastou Tourani, Bram Adams, Marco Ortu, and Alessandro Murgia. Do
Developers Feel Emotions? An Exploratory Analysis of Emotions in Software
Artifacts. In Proceedings of the 11th Working Conference on Mining Software

Repositories, MSR 2014, pages 262–271, New York, NY, USA, 2014. ACM.

[72] V. Uquillas Gómez, S. Ducasse, and T. D’Hondt. Visually characterizing source
code changes. Science of Computer Programming, 98(P3):376–393, 2015.

[73] J. S. van der Veen, B. van der Waaij, and R. J. Meijer. Sensor data storage
performance: Sql or nosql, physical or virtual. In 2012 IEEE Fifth International

Conference on Cloud Computing, pages 431–438, June 2012.

[74] B. Vasilescu, A. Serebrenik, and V. Filkov. A data set for social diversity
studies of GitHub teams. In IEEE International Working Conference on Mining

Software Repositories, volume 2015-August, pages 514–517. IEEE Computer
Society, 2015.

[75] B. Vasilescu, S. Van Schuylenburg, J. Wulms, A. Serebrenik, and M.G.J. Van
Den Brand. Continuous integration in a social-coding world: Empirical evidence
from GITHUB. In Proceedings - 30th International Conference on Software

Maintenance and Evolution, ICSME 2014, pages 401–405. Institute of Electrical
and Electronics Engineers Inc., 2014.

[76] Bogdan Vasilescu, Kelly Blincoe, Qi Xuan, Casey Casalnuovo, Daniela Damian,
Premkumar Devanbu, and Vladimir Filkov. The Sky is Not the Limit: Mul-
titasking Across GitHub Projects. In Proceedings of the 38th International

Conference on Software Engineering, ICSE ’16, pages 994–1005, New York, NY,
USA, 2016. ACM.

132 BIBLIOGRAPHY

[77] W. Wang, G. Poo-Caamaño, E. Wilde, and D.M. German. What is the GIST?
Understanding the use of public gists on GitHub. In IEEE International

Working Conference on Mining Software Repositories, volume 2015-August,
pages 314–323. IEEE Computer Society, 2015.

[78] K. Yamashita, S. McIntosh, Y. Kamei, A.E. Hassan, and N. Ubayashi. Revisiting
the applicability of the pareto principle to core development teams in open
source software projects. In International Workshop on Principles of Software

Evolution (IWPSE), volume 30-Aug-2015, pages 46–55. Institute of Electrical
and Electronics Engineers Inc., 2015.

[79] Y. Yu, H. Wang, V. Filkov, P. Devanbu, and B. Vasilescu. Wait for It: Deter-
minants of pull request evaluation latency on GitHub. In IEEE International

Working Conference on Mining Software Repositories, volume 2015-August,
pages 367–371. IEEE Computer Society, 2015.

[80] Q. Zheng, A. Mockus, and M. Zhou. A method to identify and correct prob-
lematic software activity data: Exploiting capacity constraints and data redun-
dancies. In 2015 10th Joint Meeting of the European Software Engineering

Conference and the ACM SIGSOFT Symposium on the Foundations of Software

Engineering, ESEC/FSE 2015 - Proceedings, pages 637–648. Association for
Computing Machinery, Inc, 2015.

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Impact of VCS mining in research and industrial fields
	1.2 Objectives of the work
	1.3 Structure of the thesis

	2 Git and GitHub
	2.1 Basic concepts of Git
	2.2 Basic concepts of GitHub
	2.2.1 Issue tracker and code review
	2.2.2 Continuous Integration and project metrics
	2.2.3 Documentation and social features

	2.3 Data mining of Git and GitHub features

	3 Related works
	3.1 Git repository and their mining

	4 Tools used
	4.1 Python
	4.2 MongoDB
	4.2.1 Map-reduce

	4.3 KNIME
	4.4 Gephi
	4.4.1 ForceAtlas2

	4.5 HTTP and REST API
	4.6 GHTorrent
	4.7 System setup

	5 Data analysis
	5.1 Datasets
	5.1.1 Datasets format

	5.2 Data exploration
	5.2.1 Size of the repositories
	5.2.2 Popularity of the repositories

	5.3 Note of commit authors
	5.4 Sparsity of contributions

	6 The network graph
	6.1 Implementation
	6.1.1 Data retrieval
	6.1.2 Data processing
	6.1.3 Graph visualization

	6.2 Interpretation of results
	6.2.1 MSR14: jkbr/httpie
	6.2.2 MSR14: mangos/MaNGOS and TrinityCore/TrinityCore
	6.2.3 MSR14: mxcl/homebrew
	6.2.4 MSR14: django/django
	6.2.5 MSR14: PHP frameworks
	6.2.6 Android REST API client libraries
	6.2.7 ELECTRON: electron/electron
	6.2.8 LANGUAGES: collaboration between programming languages

	7 Conclusion and future works
	Bibliography

