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Abstract

In the recent years, the increasing penetration of renewable energy sources
has motivated a growing interest for microgrids, energy networks composed
of interconnected Distributed Generation Units (DGUs) and loads. Micro-
grids are self-sustained electric systems that can operate either connected to
the main grid or detached from it. In this thesis, we focus on the latter case,
thus dealing with the so-called Islanded microGrids (ImGs). We propose
scalable control design methodologies for both AC and DC ImGs, allow-
ing DGUs and loads to be connected in general topologies and enter/leave
the network over time. In order to ensure safe and reliable operations, we
mirror the flexibility of ImGs structures in their primary and secondary con-
trol layers. Notably, off-line control design hinges on Plug-and-Play (PnP)
synthesis, meaning that the computation of individual regulators is comple-
mented by local optimization-based tests for denying dangerous plug-in/out
requests. The solutions presented in this work aim to address some of the
key challenges arising in control of AC and DC ImGs, while overcoming the
limitations of the existing approaches. More precisely, this thesis comprises
the following main contributions: (i) the development of decentralized pri-
mary control schemes for load-connected networks (i.e. where local loads
appear only at the output terminals of each DGU) ensuring voltage stability
in DC ImGs, and voltage and frequency stability in AC ImGs. In contrast
with the most commonly used control strategies available in the literature,
our regulators guarantee offset-free tracking of reference signals. Moreover,
the proposed primary local controllers can be designed or updated on-the-
fly when DGUs are plugged in/out, and the closed-loop stability of the
ImG is always preserved. (ii) Novel approximate network reduction meth-
ods for handling totally general interconnections of DGUs and loads in AC
ImGs. We study and exploit Kron reduction in order to derive an equiv-
alent load-connected model of the original ImG, and designing stabilizing
voltage and frequency regulators, independently of the ImG topology. (iii)
Distributed secondary control schemes, built on top of primary layers, for
accurate reactive power sharing in AC ImGs, and current sharing and volt-
age balancing in DC ImGs. In the latter case, we prove that the desired
coordinated behaviors are achieved in a stable fashion and we describe how
to design secondary regulators in a PnP manner when DGUs are added/re-
moved to/from the network. (iv) Theoretical results are validated through
extensive simulations, and some of the proposed design algorithms have
been successfully tested on real ImG platforms.
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1.1 Concept of microgrid

Generation of electrical power is traditionally performed in a centralized
fashion and the production of electric energy is mostly based on thermo-
electric and nuclear plants, relatively small in number.

Over the past two decades, however, the scenario has started to change,
moving towards local power generation using Renewable Energy Sources
(RESs) like, e.g., solar cells, hydroelectric, natural gas, biomass, geothermal
and wind power.

This paradigmatic shift in power system operation is motivated by dif-
ferent factors. At the top of the list, there is a surge of interest for discus-
sions about environmental and health consequences of traditional electricity
generation. Moreover, in the long term, a decrease in the use of nuclear
plants is expected, due to their associated risks, especially after the events
of Fukushima in March 2011. It is also a fact that fossil-fueled thermal
power generation highly contributes to greenhouse gas emissions [VWB11]
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which, in turn, have a remarkable impact on global warming and climate
change [RMC+07]. These environmental and safety concerns have lead
most of the developed countries to agree on international commitments for
limiting global warming through progressive decarbonization (see, e.g., the
Kyoto Protocol [Uni98] or the “Europe 2020” project [Eur98, dGC12]).

Another factor that is complicating the traditional generation structure
is the increasing availability of RESs. Power generation based on RESs is re-
ferred to as distributed generation [AAS01], since the green power sources
(termed Distributed Generation Units (DGUs)), are more numerous and
more distributed along the grid than traditional generators. In this con-
text, new control and operation strategies, allowing for more configurable
and flexible transmission and distribution networks, are required in order
to manage systems with a large number of RESs. This evolution of the
traditional grid toward a new and more flexible smart grid is perceived as
one of the major challenges in power distribution for the next years [Far10].

Microgrids are commonly recognized as one of the potential solution
for facilitating the change in the traditional power systems operation. A
microGrid (mG) is an autonomous electrical network composed of DGUs
and loads, interconnected through power lines [Las02, LP04, GCLL13] (see
Figure 1.1). Microgrids can operate either connected to the main grid
or detached from it [GCLL13, FHE17, CDGH15, PMar]; in the latter case,
these electrical networks are also referred to as Islanded microGrids (ImGs).
There exist mGs in Alternating Current (AC), Direct Current (DC), as well
as hybrid AC/DC mGs.

In AC mGs, RESs are interfaced to the network through power-electronic
converters (notably, voltage-source inverters), and existing AC power sys-
tem standards (such as frequency, voltage levels and principles of protec-
tion), are utilized for their operations [LM06].

Also DC mGs have started to gain interest in the recent years [DLVG16,
EMM15], due to (i) the increasing number of DC loads (e.g. electronic
appliances, LEDs and electric vehicles), (ii) the availability of efficient con-
verters (Buck and Boost converters, employed in Low Voltage (LV) and
Medium Voltage (MV) systems, respectively), and (iii) the need of inter-
facing DC energy sources (e.g. PV panels) and batteries with minimal
power losses.

Overall, mGs find applications in rural areas, avionics, military bases,
marine systems, hospitals and colleges [GCLL13, BWAT09], and have the
following key features.

(i) They bring RESs close to the customers’ loads, thus ensuring efficient
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Figure 1.1: Schematic representation of a microgrid. Square blocks repre-
sent DGUs and loads, while arrows connecting numbered nodes are power
lines.

power supply with reduced line losses.

(ii) Since mGs generate clean power, they reduce environmental pollution
and global warming.

(iii) Microgrids can quickly switch to islanded operation mode in case of
power grid failures, malfunctioning of electrical devices or lines trip-
ping. This guarantees continuous power delivery to critical loads and
helps system restoration.

(iv) Redundancy in generation units allows to increase the robustness of
the electric system, enhancing, e.g., the mG resilience to faults. More-
over, defective or hacked components can be localized, isolated, fixed
or replaced more easily.

(v) Microgrids can play a central role in the deregulation of the energy
market by allowing the active participation of consumers and owners
of small generation units [IA09].

In this thesis, we will focus on islanded AC and DC LV islanded mi-
crogrids. Moreover, we notice that, since DC mGs can be coupled to the
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main grid through AC-DC converters only, they can be thought as always
operating in islanded mode1. Hence, for the sake of simplicity, from now
on we will omit the word “islanded” when referring to DC mGs detached
from the main grid.

1.2 Challenges in islanded microgrids

In the following, we introduce the key challenges arising in ImGs and ad-
dressed in this thesis.

The first key objective is to ensure voltage and frequency stability (in
the AC case), and voltage stability (in the DC case). Indeed, while in
grid-connected AC mGs, collective voltage and frequency stability is guar-
anteed by the main grid, in islanded mode and in DC mGs, the control of
the electrical quantities must be performed by DGUs. This represents a
challenging task, especially if one allows for decentralized control schemes
(in which each DGU is equipped with a local controller and different con-
trollers do not communicate in real-time), and meshed network topologies
(i.e. networks with loops in the electrical interconnection of DGUs).

Another important task considered in this thesis is accurate power shar-
ing among DGUs. Power sharing is defined as the capability to achieve a
desired steady-state distribution of the power outputs of all DGUs, while
satisfying the load demand in the network [SSRS16]. In particular, in the
present work, we address the problem of ensuring reactive power sharing in
AC ImGs. This is an issue of practical interest in networks where generation
sources and loads are in close proximity [SSRS16], as for mGs.

The last two problems studied in this thesis are current sharing and
voltage balancing in DC mGs. Current sharing is understood as the abil-
ity of the DGUs to compensate constant load currents proportionally to
given parameters (like, e.g., the converter ratings), independently of the
mG topology and line impedances. This feature is crucial for preserving
the safety of the system, as unregulated currents may overload generators
and eventually lead to failures or system blackout [HHY+16]. Voltage bal-
ancing, instead, refers to the goal of keeping the average output voltage of
DGUs close to a prescribed level. Load devices are designed to be supplied
by a nominal reference voltage: it is therefore important to ensure that the
voltages at the load buses are spread around this value.

Besides the aforementioned challenges, several other important tasks

1This is due to the fact that converters have finite power rating, which can limit
substantially the power transfer.
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should be addressed in order to ensure reliable and secure operation of
microgrids. Among these issues, we recall active power sharing and safe
transition from grid-connected to islanded-operation mode (and vice-versa)
in AC networks, as well as optimal power and energy management in both
AC and DC microgrids. For these problems, which have not been studied
in this thesis, we refer the reader to [GVM+11, JMLJ13, MSFT+17].

In the next section, we summarize some relevant approaches to the
control of AC and DC islanded microgrids that have been proposed in the
literature for addressing the challenges considered in the present work.

1.3 Existing approaches to the control of islanded
microgrids

The most commonly used architecture for addressing the challenges dis-
cussed in Section 1.2 is hierarchical control [GVM+11]. Strongly inspired
by the control concept proposed for conventional power systems [MBB97],
hierarchical architectures allow to fulfill separate control tasks in different
regulation layers.

At the primary level, DGUs are usually equipped with decentralized reg-
ulators for voltage and frequency regulation (in AC networks) and voltage
control (in DC networks). On top of primary control schemes, secondary
regulators are employed for ensuring more advanced behaviors, such as
power sharing, current sharing and voltage balancing. These objectives
are achieved by allowing local controllers to exchange information over a
communication network.

In the light of the above considerations, mGs equipped with hierarchi-
cal control architectures represent a prominent example of Cyber-Physical
Systems (CPSs). A CPS can be seen as a group of tightly coupled sub-
systems interacting with each other through physical or communication
channels2 [KM15, MS11]. In mGs, the physical layer is given by the elec-
trical couplings among converters through power lines, while the cyber part
is identified by the combination of (i) computational resources available at
each DGU location and (ii) communication channels. The possibility to
embed computational capabilities at the level of individual subsystems and
to make subsystems exchange information through a network has started
to receive attention in the recent years. It follows that the field of CPSs

2Other examples of CPSs can be seen in smart homes and buildings, alarm sys-
tems, data centers, robotics systems, autonomous vehicular systems and transportation
[KM15].
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is still an open research area. We refer the reader to, e.g., [KM15] for a
review of recent advancements and open challenges regarding such complex
systems.

In the following, we conduct a brief review of the existing approaches to
control of mGs which are relevant for the scope of this thesis, differentiating
between AC and DC systems.

1.3.1 Control of AC microgrids

The primary level of the hierarchical control architecture is usually decen-
tralized and based on local inner voltage and current loops combined with
decentralized droop controllers [GCLL13, CD96, KIL05, PL06, GMdV+07].
Droop control makes each inverter of the ImG mimic the behavior of a syn-
chronous generator of conventional power systems under the traditional
primary control. Therefore, this control strategy consists in introducing
artificial droops in inverters output frequencies and voltages, so as to ob-
tain a sort of virtual inertia [VDH08]. Since droop control is decentralized,
communication among DGUs is not required.

On top of primary controllers, a secondary control layer is often con-
ceived to compensate frequency and voltage amplitude deviations intro-
duced by droop regulators [CD96, KI06, IEE11], to compensate voltage un-
balances [MZT+16] or to ensure accurate power sharing [MASSG12, Lu13,
SGV14]. The two latter objectives are typically addressed via distributed
consensus algorithms relying on a communication network.

Finally, a tertiary control layer can be implemented for achieving addi-
tional advanced behaviors, which, however, are not considered in this work.
Hence, we refer the reader to, e.g., [GVM+11, VDBH+05] for further de-
tails. Figure 1.2 shows a schematic representation of a hierarchical control
architecture for AC microgrids.

1.3.2 Control of DC microgrids

At the primary layer, DGUs are typically equipped with decentralized reg-
ulators aiming to control local voltages and currents [DLVG16]. As for the
AC case, the most popular solution for primary control is droop control
[SDVG14b, ZD15, DLVG16], where local regulators are built on top inner
voltage and current loops [GVM+11]. The principle of conventional droop
control applied to DC mGs is to linearly reduce the voltage reference for
the voltage inner loop of each DGU by a quantity that is proportional to
the corresponding output current [MSFT+17, SDVG14b, SDVG14a].
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Primary control

Secondary control

Tertiary control

•  Voltage and frequency regulation

• Compensation of frequency and voltage amplitude 
deviations introduced by droop regulators

• Compensation of voltage unbalances
• Power sharing

• Advanced behaviors e.g. optimal dispatch and 
control of the power flow between the microgrid and 
the main grid

Figure 1.2: Hierarchical control architecture for AC microgrids: control
layers and associated tasks.

An alternative approach to primary control of DC mGs has been pre-
sented in [ZD15]. In this paper, the authors propose a variant of the con-
ventional primary droop regulators in which (i) inner current and voltage
loops are not implemented, and (ii) the voltage reference to each generating
unit is provided by Proportional Integral (PI) local regulators.

Secondary control is usually employed for compensating voltage devia-
tions due to droop controllers or for achieving advanced behaviors, such as
proportional current sharing among DGUs [MDRP+16, ZD15, BDLG13,
ADSJ14].

Similarly to the AC case, tertiary control layers are proposed in the lit-
erature for addressing other relevant challenges. However, since these issues
are not considered in the present work, we refer the reader to [SDVG14b,
GCLL13, ZD15] for additional information. In Figure 1.3, an example of a
hierarchical control structure for DC microgrids is provided.

Primary control

Secondary control

Tertiary control

•  Voltage regulation

• Current sharing and voltage balancing
• Compensation of voltage deviations due to droop 

controllers 
• Power sharing

• Advanced behaviors e.g. management of the 
current flow from/to an external DC source or 
economic dispatch

Figure 1.3: Hierarchical control architecture for DC microgrids: control
layers and associated tasks.
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1.3.3 Limitations of the existing control approaches

We start by discussing the main drawbacks of the control techniques for
AC ImGs introduced in Section 1.3.1. First of all, we highlight that the
conventional droop method was originally proposed for large power systems
[ZW09], in which the output impedance of synchronous generators and the
line impedances are mainly inductive. However, due to their short lengths,
mGs lines can have non-negligible resistive parts [TJUM97]. Secondly, as
mentioned in Section 1.3.1, primary droop regulators lead to deviations
of steady-state frequency and voltage amplitude from their corresponding
reference values. Furthermore, these deviations are highly affected by the
load conditions.

Another fundamental issue of AC ImGs equipped with primary droop
controllers is voltage and frequency stability [GCLL13]. Stabilizing each
individual DGU, in fact, might be not enough, as the physical couplings
through electric lines the can spoil overall stability. Stability proofs for
droop-controlled AC ImGs have been proposed only recently [SPDB13,
SOA+14]. For other types of primary regulators, almost all studies focus on
radial ImGs, and the case of meshed topologies has not been fully explored
yet [GCLL13].

Next, we focus on the limitations of the control schemes for DC mGs dis-
cussed in Section 1.3.2. First, primary droop regulators do not ensure good
voltage regulation, since they induce local voltage deviations [DLVG16].
Furthermore, voltage droop control itself cannot ensure accurate current
sharing among the sources [MSFT+17].

As for the AC case, a critical issue related to DC mGs equipped with
decentralized droop controllers is voltage stability. To the best of our knowl-
edge, a rigorous stability analysis has been performed only for specific mG
topologies [SDVG14b, DLVG16]. The authors of [ZD15] provide a topology-
independent stability analysis; however, it hinges on specific modeling and
operational assumptions.

Overall, in absence of a reference topology for islanded mGs, an addi-
tional desired feature for the control architecture is scalability of the control
design. This property, which is essential for developing modular control ar-
chitectures that can be easily updated when the mG topology changes, is
discussed in details in the next section.
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1.4 Scalable control design

In Section 1.3, we have presented the most commonly used control ar-
chitectures in the field of mGs for the online computation of the control
actions. From the applicative point of view, it is also important to assess
the complexity of the offline design of such controllers.

A desired feature for the offline control synthesis in complex CPSs (and,
hence, also in mGs) is scalability, i.e. to guarantee that the complexity for
designing local regulators is independent of the size of the overall system.
Scalability is especially required when the number of subsystems changes
over time, sensors and actuators are frequently replaced, or no global model
of the plant is available.

In this section, we first focus on scalable control design in the field
of CPSs. Then, we motivate the need for scalable synthesis procedures for
mGs and review the existing control architectures in terms of offline design.

1.4.1 Scalable control design for cyber-physical systems

Control design methods for CPSs are called scalable if the computational
cost for synthesizing a local controller capable to preserve collective network
properties (e.g. stability or safety) is independent of the size of the overall
system.

The first important point to highlight is that scalability of the control
design does not necessarily follow from the implementation of decentralized
architectures. Examples of design procedures for decentralized controllers
which are not scalable can be found in [DC90] and [ZS10]; in these methods,
the synthesis of local controllers guaranteeing collective stability for the
whole system requires the knowledge of a certain number of closed-loop
subsystems or the availability of the models of all subsystems. Therefore,
the computational complexity of designing a single controller depends on
the size the overall system.

Nonetheless, there exist several approaches to scalable design. A pos-
sibility is represented by decentralized design, where the computation of
each local controller is performed using information from the corresponding
subsystem only [BL88, Bai66, HST79] (see Figure 1.4a). Another possible
approach is a bit more complex than the previous one, since it includes
the additional constraint that the design of a local controller can use infor-
mation at most from parents3 of the corresponding subsystem (see Figure

3In a network of subsystems, the parent-child relationship is related to the coupling
graph. For instance, in Figure 1.4, where couplings are given by the grey arrows, sub-
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1.4b). For this reason, the latter method is referred to as parent-based
design.

Both decentralized and parent-based design enjoy features which are
important from the applicative point of view. These properties are collected
in the following and denoted with “D” or “PB” if referred to decentralized
or parent-based design, respectively.

(i) As already observed, both approaches are scalable. It means that
the complexity of computing a local controller for each subsystem is
independent of the total number of subsystems (D), or scales with the
number of parents of the subsystem to control (PB).

(ii) No communication flow at the design stage is required (D), or it has
the same topology of the coupling graph, which is usually sparse (PB).

(iii) If, at some point in time, a subsystem wants to join the existing
network (thus performing a plug-in operation), no other subsystems
(D), or at most subsystems that will have a new parent (PB), must
retune their local controllers. All other controllers are not affected by
the plug-in event. Similarly, if a subsystem leaves the network (thus
performing an unplugging operation), no update of local controllers
is needed (D), or, at most, only the children of the removed unit have
to retune their regulators (PB).

Besides these key advantages, however, decentralized and parent-based
design suffer from the following critical limitation. Since, at the design
stage, the information flow for computing a single regulator is either absent
or very limited, there is no guarantee that local control design will be
always feasible irrespectively of the way subsystems are coupled with each
other. This observation motivated the introduction of the control design
methodology discussed next.

1.4.2 Plug-and-play design of local controllers

Plug-and-Play (PnP) design is a methodology that complements local con-
trol synthesis approaches described Section 1.4.1 with an automatic test
for assessing the feasibility of the addition/removal of a subsystem to/from
an existing network. In other words, whenever a plug-in/-out operation is
required, the existence of local controllers preserving collective properties

systems 2 and 4 are parents of 3 because they influence its dynamics through physical
couplings.
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Figure 1.4: Scalable control design methods. In the CPS in Figure 1.4a,
the synthesis of local controller C[3] requires information from subsystem 3
only (decentralized design). In the example in Figure 1.4b, the design of
C[3] exploits also information from the parents of unit 3, i.e. subsystems 2
and 4 (parent-based design).

of the overall CPS (e.g. stability, safety and constraint satisfaction) is first
verified. More in details, PnP design consists of the following steps.

1. Whenever a subsystem requests to join/leave the network, the exis-
tence of controllers capable to preserve global properties is checked in
an automatic fashion. Similarly to the scalable design approaches de-
scribed in the above section, this feasibility test can either exploit the
model of the entering/leaving subsystem only (decentralized test), or
require also information from parent subsystems (parent-based test).
Notice that, in the latter case, also the children of the entering/leav-
ing subsystem have to perform the automatic check. A graphical
representation of this process is shown in Figure 1.5.
If at least one of these tests fails, the plug-in/-out operation is denied,
since it can be dangerous for the considered CPS.

2. If, on the other hand, the automatic checks succeed, then:

• in case of a plug-in operation, one can proceed with local control
design by employing one of the scalable approaches described
in Section 1.4.1. In particular, only the regulator of the new
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subsystem is computed (D), or, in addition, also local controllers
of subsystems that will be children of the incoming unit must be
retuned (PB).

• In case of an unplugging operation, no changes in the exist-
ing control scheme must be performed (D), or at most previous
children of the leaving subsystem have to updated their local
regulators (PB).

3. Finally, the plug-in/-out operation is performed online, with the guar-
antee that the desired collective properties of the considered CPS will
be preserved.

PnP synthesis procedures are very attractive for CPSs with a number of
subsystems which can vary over time. In particular, PnP design has inter-
esting features from the modeling and the industrial point of view. At the
modeling level, with PnP design there is no need to store a global model of
whole system, which in some cases might not even exist. The computation
of a local controller is based on the model of the corresponding subsystem
only, and, at most, on the models of its parents. Moreover, the limited in-
formation flow at the design stage allows to cope with privacy requirements
in multi-owner CPSs, where it might be undesirable for different players to
disclose the complete model of the owned subsystem for allowing control
design of another subsystem in the network.

PnP synthesis has also benefits at the industrial level, as it enables
hardware replacement with minimal re-engineering effort. Indeed, the sub-
stitution of a faulty/old component with a fixed/new subsystem amounts
to perform an unplugging operation followed by plug-in one; in this pro-
cess, the feasibility of both operations is assessed automatically by the PnP
design procedure.

In the recent years, PnP design has found application in the fields of
control for constrained systems (where methods have been developed in
the framework of decentralized [LKF15] and networked control structures
[RFT15], and for Model Predictive Control (MPC) [RFFT13, RFFT15,
ZPR+13]), but also for distributed state estimation [RFSFT13, FC15] and
fault detection [RBFTP16, BVL15, YJY16].

1.4.3 Scalable control design for microgrids

Microgrids are the key component of agile power systems that, according
to [IA09], are one of the most promising emerging technologies.
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Figure 1.5: Plug-and-play synthesis: automatic check of plug-in request in
a CPS. When subsystem 5 is added to the network, the existence of a local
controller C[5] guaranteeing global properties is checked using information
about subsystem 5 only (decentralized test in Figure 1.5a), or exploiting
also information about its parent, i.e. subsystem 1 (parent-based test in
Figure 1.5b). Notice that, in the latter case, also the children of subsystem
5 (subsystems 1 and 4) must perform the feasibility check.

In this vision, it is desirable to develop modular control architectures
that can be easily updated when the mG topology changes, thus allow-
ing DGUs and loads to enter/leave the network with minimal supervision
efforts.

PnP design represents a very attractive methodology for guaranteeing
a high level of flexibility in control of mGs. Notably, thanks to PnP de-
sign, DGUs owned by different players could enter/leave an existing mG in
a seamless fashion, without requiring substantial intervention of a central
authority. This is due to the fact that, as observed in Section 1.4.2, the
design of each local regulator would require information about the corre-
sponding DGU only, or, at most, about its neighboring subsystems.

In a broader perspective, since individual control tasks in mGs are sep-
arated into several hierarchical control levels (see Section 1.3), one can also
think of developing PnP design methods embracing multiple control layers.

Some of the existing approaches to control of AC and DC ImGs do
not allow to easily cope with flexibility and scalability. Besides droop con-
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trol (which suffers from the limitations described in Section 1.3.3), almost
all studies on AC ImGs equipped with other types of primary regulators
focused on radial topologies only. Scalable design in the case of meshed
topologies is still a largely unexplored problem [GCLL13].

As for the AC case, also most of the existing approaches to DC mGs
control show limitations to scalability of the design. Indeed, voltage sta-
bility of the closed-loop mG has been studied only for specific topologies
[DLVG16, SDVG14b, CRZ15], and the synthesis of local controller is often
performed in a centralized fashion, i.e. exploiting information about all the
DGUs and power lines in the network [MQLD14, MDRP+16, HGK+16].

1.5 Thesis contributions and overview

The aim of this thesis is to develop scalable control design methodologies
for both AC and DC ImGs, capable to guarantee safe and reliable PnP op-
erations of DGUs and loads, in a topology-independent fashion.

The presented contributions allow to address the challenges in ImGs de-
tailed in Section 1.3, while overcoming the main limitations of the existing
control approaches (see Section 1.3.3). More in details:

• we propose decentralized primary control schemes ensuring offset-
free voltage (in DC mGs), and voltage and frequency (in AC ImGs)
regulation. Moreover, assuming load-connected networks (i.e. where
local loads appear only at the output terminals of each DGU), we
show that our methods guarantee closed-loop stability (both in the
AC and DC case), independently of the microgrid topology.

• For handling totally general interconnections of DGUs and loads in
AC ImGs, we studied and exploited mathematical tools (such as Kron
reduction [Kro39]) giving an equivalent load-connected model of the
original network.

• We develop distributed secondary control schemes for accurate re-
active power sharing in AC ImGs, and current sharing and voltage
balancing in DC mGs. In the latter case, besides proving that the
desired coordinated behaviors are achieved in a stable fashion, we
describe how to design secondary regulators in a PnP manner when
DGUs are added/removed to/from the network.
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Theoretical results have been validated through simulations performed in
PSCAD and PLECS, which are simulation environments for realistic elec-
trical systems [Mul10, AH13]. Moreover, some of the developed design
algorithms have been also tested on realistic mG platforms located at the
Intelligent Microgrid Laboratory [Mic] (Aalborg University).

The thesis is divided in two main parts, describing the proposed control
design methodologies for DC and AC islanded mGs, respectively.

Prior to Part I, in Chapter 2 we present the dynamic models of DC
and AC mGs which have been considered in this work for mathematical
analyses and control design purposes.

Chapter 3 In this chapter, we propose a new decentralized control design
procedure for computing local voltage regulators in DC mGs with meshed
topology. The offline control design is conducted in a PnP fashion, meaning
that: (i) the possibility of adding/removing a DGU without spoiling the
stability of the overall mG is checked through an optimization problem; (ii)
when a DGU is plugged in or out, at most its neighboring DGUs have to
update their controllers; and (iii) the synthesis of a local controller needs
only information from the corresponding DGU and power lines connected
to it. This ensures the scalability of control synthesis when the mG size
changes over time. Moreover, voltage stability of the overall closed-loop
mG is formally proved.

Chapter 3 is based on the following papers.

• [TRV+16] M. Tucci, S. Riverso, J. C. Vasquez, J. M. Guerrero, and
G. Ferrari-Trecate, “A Decentralized Scalable Approach to Voltage
Control of DC Islanded Microgrids,” IEEE Transactions on Control
Systems Technology, vol. 24, no. 6, pp. 1965-1979, 2016.

• [TRV+15b] M. Tucci, S. Riverso, J. C. Vasquez, J. M. Guerrero, and
G. Ferrari-Trecate, “Voltage Control of DC Islanded Microgrids: a
Decentralized Scalable Approach,” in Proceedings of the 54th IEEE
Conference on Decision and Control, 2015, pp. 3149-3154.

• [TRV+15a] M. Tucci, S. Riverso, J. C. Vasquez, J. M. Guerrero, and
G. Ferrari-Trecate, “A Decentralized Scalable Approach to Voltage
Control of DC Islanded Microgrids,” Tech. Rep., 2015, [Online].
Available: arXiv:1503.06292.

arXiv:1503.06292
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Chapter 4 In this chapter, we propose an extension of the control design
approach for voltage stabilization in DC mGs presented in Chapter 3. In
particular, primary regulators are still designed in a PnP fashion; however,
local control synthesis is now independent of the parameters of power lines.
Since the proposed methodology is totally decentralized, the plug-in/-out
operations of DGUs do not require anymore to update controllers of neigh-
boring subsystems. In order to show the stability of the closed-loop mG,
we exploit structured Lyapunov functions, the LaSalle invariance theorem
and properties of graph Laplacians.

Chapter 4 is based on the following publications.

• [TRFTar] M. Tucci, S. Riverso, and G. Ferrari-Trecate, “Line-Independent
Plug-and-Play Controllers for Voltage Stabilization in DC Micro-
grids,” IEEE Transactions on Control Systems Technology, 2017. To
appear.

• [TRFT16] M. Tucci, S. Riverso, and G. Ferrari-Trecate, “Voltage
Stabilization in DC Microgrids through Coupling-Independent Plug-
and-Play Controllers,” in Proceedings of the 55th IEEE Conference
on Decision and Control, 2016, pp. 4944-4949.

• [TRFT17] M. Tucci, S. Riverso, and G. Ferrari-Trecate, “Voltage Sta-
bilization in DC Microgrids: an Approach based on Line-Independent
Plug-and-Play Controllers,” Tech. Rep., 2017, [Online]. Available:
arXiv:1609.02456.

Chapter 5 In this chapter, we propose a secondary consensus-based con-
trol layer for current sharing and voltage balancing in DC mGs. The pre-
sented scheme is build on top of a primary layer capable to guarantee collec-
tive voltage stability. To this aim, one can employ, e.g., the decentralized
regulators described in Chapters 3 and 4. Under reasonable approxima-
tions of primary control loops, we prove exponential stability of the mG
equipped with the proposed hierarchical scheme, current sharing, and volt-
age balancing. In addition, we show how to design secondary controllers in
a PnP fashion when DGUs are added/removed to/from an existing mG.

Chapter 5 is based on the following published and submitted papers.

• [TMGFTed] M. Tucci, L. Meng, J. M. Guerrero, and G. Ferrari-
Trecate, “Stable Current Sharing and Voltage Balancing in DC Mi-
crogrids: a Consensus-Based Secondary Control Layer,” Automatica,
2017. Submitted.

arXiv:1609.02456
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• [TMGFT17] M. Tucci, L. Meng, J. M. Guerrero, and G. Ferrari-
Trecate, “Plug-and-Play Control and Consensus Algorithms for Cur-
rent Sharing in DC Microgrids,” in Proceedings of the 20th IFAC
World Congress, 2017, pp. 12440-12445.

• [TMGFT16] M. Tucci, L. Meng, J. M. Guerrero, and G. Ferrari-
Trecate, “A Consensus-Based Secondary Control Layer for Stable
Current Sharing and Voltage Balancing in DC Microgrids,” Tech.
Rep., 2016, [Online]. Available: arXiv:1603.03624.

The second part of the thesis focuses on the proposed PnP synthesis
procedures for scalable control of AC ImGs.

Chapter 6 In this chapter, we summarize the decentralized scheme for
voltage and frequency control in AC ImGs proposed in [RSFT15]. Ac-
cording to this methodology, (i) the offline synthesis of local stabilizing
controllers hinges on information about the corresponding DGU and lines
connected to it, and (ii) PnP operations are enabled. Hence, when a DGU is
plugged in or out, only subsystems physically connected to it must update
their local controllers.

This review chapter will be instrumental in describing our extensions of the
approach in [RSFT15] (see Chapters 7, 8 and 9).

Chapter 7 In this chapter, we present a distributed hierarchical control
architecture for AC ImGs. At the primary level, DGUs are equipped with
local regulators ensuring collective voltage and frequency stability. Simi-
larly to the method described in [RSFT15], the design of primary regulators
is performed in a decentralized fashion, thus enabling PnP operations of
DGUs. Compared to the approach in [RSFT15], we extend the control
synthesis procedure to ImGs with a different topology. Notably, while in
[RSFT15] authors focused on load-connected ImGs only (i.e. where local
loads appear at the output terminals of each DGU), in this chapter we con-
sider bus-connected topologies (i.e. networks with a common load, supplied
by all the DGUs).

At the secondary level, we propose a distributed scheme for accurate reac-
tive power sharing.

Chapter 7 hinges on the following publications.

arXiv:1603.03624
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• [RTV+ar] S. Riverso, M. Tucci, J. C. Vasquez, J. M. Guerrero, and
G. Ferrari-Trecate, “Stabilizing Plug-and-Play Regulators and Sec-
ondary Coordinated Control for AC Islanded Microgrids with Bus-
Connected Topology,” Applied Energy, 2017. To appear.

• [RTV+17] S. Riverso, M. Tucci, J. C. Vasquez, J. M. Guerrero, and
G. Ferrari-Trecate, “Plug-and-Play and Coordinated Control for Bus-
Connected AC Islanded Microgrids,” Tech. Rep., 2017, [Online].
Available: arXiv:1703.10222.

Chapter 8 In this chapter, we propose two methods for simplifying AC
electrical networks with general topologies. The developed procedures are
based on Kron reduction, a standard tool in classic circuit theory for replac-
ing an electrical network with a simpler one while preserving the behavior
of electrical variables at target nodes.
Our approximate algorithms, which allow to overcome the main drawbacks
of existing approaches to instantaneous Kron reduction, ensure the asymp-
totic equivalence between original and reduced models, even if the signals
are unbalanced.
The proposed methods can be applied to any linear electrical network. In
particular, we show that they represent a key tool for developing topology-
independent control design algorithms for AC ImGs.
Chapter 8 is based on the following published and submitted papers.

• [FTRFTed] A. Floriduz, M. Tucci, S. Riverso, and G. Ferrari-Trecate,
“Approximate Kron Reduction Methods for Electrical Networks with
Applications to Plug-and-Play Control of AC Islanded Microgrids,”
IEEE Transactions on Control Systems Technology, 2017. Submitted.

• [TFRFT16] M. Tucci, A. Floriduz, S. Riverso, and G. Ferrari-Trecate,
“Plug-and-Play Control of AC Islanded Microgrids with General Topol-
ogy,” in Proceedings of the 15th European Control Conference, 2016,
pp. 1493-1500.

• [TFRFT15] M. Tucci, A. Floriduz, S. Riverso, and G. Ferrari-Trecate,
“Kron Reduction Methods for Plug-and-Play Control of AC Islanded
Microgrids with Arbitrary Topology,” Tech. Rep., 2015, [Online].
Available: arXiv:1510.07873.

Chapter 9 In this chapter, we propose an extension of the PnP control
scheme for voltage and frequency stabilization in AC ImGs described in

arXiv:1703.10222
arXiv:1510.07873
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[RSFT15]. Differently from [RSFT15], the presented scalable design ap-
proach is line-independent. This implies that (i) the synthesis of each local
controller requires only the parameters of the corresponding DGU (and not
the model of power lines connecting neighboring DGUs), and (ii) whenever
a new DGU is plugged in, subsystems physically coupled with it do not
have to retune their regulators because of the new power line connected to
them. Similarly to the line-independent algorithm for DC mGs discussed
in Chapter 4, we rigorously analyze stability of the closed-loop AC ImGs.
Notably, we first exploit the fact that DGU interactions can be represented
by means of a graph Laplacian, and then resort to the LaSalle invariance
principle.
Chapter 9 is based on the following published and submitted works.

• [TFTed] M. Tucci, and G. Ferrari-Trecate, “A Scalable, Line-Independent
Control Design Algorithm for Voltage and Frequency Stabilization in
AC Islanded Microgrids,” Automatica, 2017. Submitted.

• [TFT17b] M. Tucci, and G. Ferrari-Trecate, “Voltage and Frequency
Control in AC Islanded Microgrids: a Scalable, Line-Independent De-
sign Algorithm,” in Proceedings of the 20th IFAC World Congress,
2017, pp. 13922-13927.

• [TFT17a] M. Tucci, and G. Ferrari-Trecate, “A scalable Line-Independent
Design Algorithm for Voltage and Frequency Control in AC Islanded
Microgrids,” Tech. Rep., 2017, [Online]. Available: arXiv:1703.

02336.

Chapter 10 This chapter is devoted to conclusions and future research
directions.

Appendix A In this appendix we provide basic definitions and notations
used in this thesis.

arXiv:1703.02336
arXiv:1703.02336
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Chapter 2

Microgrid modeling

Contents
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2.1 Introduction

We introduce the dynamical models of DGUs and lines underlying the
mathematical analyses developed in the next chapters. Following the or-
ganization of the thesis, we start by presenting the considered dynamical
models for DC mGs. Then, we focus on AC ImGs, which are slightly
more complex than their DC counterparts as they require the introduc-
tion of additional concepts and notations. For the sake of simplicity, in
both cases, the models derivation is performed considering a 2-DGUs net-
work. The obtained results, however, can be straightforwardly generalized
to mGs composed of an arbitrary number of DGUs. These models will be
introduced in Chapters 3 and 6 of the thesis.

2.2 Electrical model of DC DGUs and lines

Let us consider the scheme in Figure 2.1, in which DGUs i and j are
connected through an RL DC power line (with Rij > 0 and Lij > 0). In
each DGU, the generic renewable resource is modeled with a DC voltage
source; this approximation is justified by the observation that changes in the
power supplied by renewables take place at a timescale which is slower than
the one we are interested in for stability analysis. Moreover, renewables are
usually equipped with storage units damping stochastic fluctuations. Each
source is interfaced to a local DC load connected to the Point of Common
Coupling (PCC) via a Buck converter with its corresponding series LC
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filter. We also assume the aforementioned loads are unknown and act as
current disturbances (IL) [RSFT15, BK13].

Buck i

Rti Iti
Lti

Vti

Vi

PCCi

ILi

Cti

Iij
Rij Lij Iji

Vj

PCCj

ILj

Ctj Buck j

RtjItj
Ltj

Vtj

DGU i DGU jLine ij and ji

Figure 2.1: Electrical scheme of a DC mG composed of two radially con-
nected DGUs with unmodeled loads.

By applying Kirchhoff’s Voltage Law (KVL) and Kirchhoff’s Current
Law (KCL) to the electrical scheme of Figure 2.1, one obtains the following
set of equations:

DGU i :


dVi
dt

=
1

Cti
Iti +

1

Cti
Iij −

1

Cti
ILi

dIti
dt

= −Rti
Lti

Iti −
1

Lti
Vi +

1

Lti
Vti

(2.1a)

(2.1b)

Line ij :

{
Lij

dIij
dt

= Vj −RijIij − Vi (2.1c)

Line ji :

{
Lji

dIji
dt

= Vi −RjiIji − Vj (2.1d)

DGU j :


dVj
dt

=
1

Ctj
Itj +

1

Ctj
Iji −

1

Ctj
ILj

dItj
dt

= −Rtj
Ltj

Itj −
1

Ltj
Vj +

1

Ltj
Vtj

(2.1e)

(2.1f)

As in [RSFT15], we notice that from (2.1c) and (2.1d) one gets two
opposite line currents Iij and Iji. This is equivalent to have a reference
current entering in each DGU. We exploit the following assumption to
ensure that Iij(t) = −Iji(t), ∀t ≥ 0.

Assumption 2.1. Initial states for the line currents fulfill Iij(0) = −Iji(0).
Furthermore, it holds Lij = Lji and Rij = Rji.
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Remark 2.1. Equations (2.1c) and (2.1d) represent an expansion of the
line model obtained introducing only a single state variable1. System (2.1)
can also be seen as a system of differential-algebraic equations, given by
(2.1a)-(2.1c), (2.1e), (2.1f) and Iij(t) = −Iji(t).

2.3 Electrical model of AC DGUs and lines

The mathematical model of a DGU in an AC ImG can be derived by follow-
ing a similar procedure to the DC case. However, since we are now dealing
with three-phase electrical signals, (i) renewable sources will be interfaced
to the network via alternating current converters, and (ii) a widely used ref-
erence frame transformation will be employed for mapping three-phase AC
signals into constant ones, thus simplifying the control design and analysis.

In the sequel, we assume three-phase electrical signals without zero
sequence components and balanced network parameters2. Moreover, note
that we do not assume balanced signals; hence, the case of unbalanced load
currents is included in this framework.

Following the approach in [RSFT15, BK13, EDI12, MKKG10], we con-
sider an ImG composed of two parallel DGUs denoted with i and j, re-
spectively. As shown in the equivalent single-phase electrical scheme in
Figure 2.2, each DGU is composed of a DC voltage source for modeling a
generic renewable resource (this approximation is justified by the same mo-
tivations of the DC case), a three-phase Voltage Source Converter (VSC),
an LC three-phase filter and a step-up transformer (Y−∆), which inter-
faces the DGU to the network at the corresponding PCC. The transformer
parameters, except the transformation ratio k, are included in Rt and Lt.
Each DGU provides real and reactive power to its corresponding local load
connected to the PCC. As for the DC case, loads are assumed to be un-
known and their effect on the network is accounted for by their absorbed
currents (IL), which in turn are seen as disturbances. DGUs are coupled
with each other through three-phase RL power lines (with Rij > 0 and
Lij > 0).

Remark 2.2. We highlight that the use of single-phase equivalent networks,
(as, for instance, in Figure 2.2), is allowed by the fact that inverter output
filters, shunt capacitors, step-up transformers and three-phase lines between
DGUs are balanced. On the other hand, we recall that, in the considered

1For a definition of expansion of a system, we defer the reader to Section 3.4 in [Lun92].
2See, e.g., [AWA07] for basic definitions.
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Figure 2.2: Single phase equivalent electrical scheme of an AC ImG com-
posed of two radially connected DGUs with unmodeled loads.

framework, load currents and inverter output voltages may be unbalanced,
but they cannot contain any zero-sequence component.

By applying KVL, KCL and constitutive relations, the ImG in Figure
2.2 is described by the following set of equations:

DGU i :


vabcti = Rti i

abc
ti + Lti

d

dt
iabcti + k̃i v

abc
i

k̃∗i i
abc
ti = −iabcij + Cti

d

dt
vabci + iabcLi

(2.2a)

(2.2b)

Line ij :

{
vabci = −Rij iabcij − Lij

d

dt
iabcij + vabcj (2.2c)

Line ji :

{
vabcj = −Rji iabcji − Lji

d

dt
iabcji + vabci (2.2d)

DGU j :


vabctj = Rji i

abc
tj + Lji

d

dt
iabctj + k̃jv

abc
j

k̃∗j i
abc
tj = −iabcji + Ctj

d

dt
vabcj + iabcLj

(2.2e)

(2.2f)

where (i) k̃i and k̃j are the complex transformation ratios of transform-
ers i and j, respectively, (ii) k̃∗i and k̃∗j indicate their complex conjugate

quantities, and (iii) vectors vabc = [va, vb, vc]
T and iabc = [ia, ib, ic]

T collect,
respectively, three-phase voltages and currents in the abc reference frame.

In order to guarantee that iabcij (t) = −iabcji (t), ∀t ≥ 0, the following
modeling assumption is introduced [RSFT15].

Assumption 2.2. Initial states for the line currents fulfill iabcij (0) = −iabcji (0).
Furthermore, it holds Lij = Lji and Rij = Rji.
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Remark 2.3. As observed in [RSFT15], systems (2.2c) and (2.2d) are
equivalent to line models described by a single line current associated with
a reference direction.

At this point, we aim to rewrite equations (2.2a)-(2.2f) in dq0 coordi-
nates by means of the Park transformation [Par29]. As already anticipated,
this change of coordinates allows to represent signals which were originally
sinusoidal (in the abc reference frame) as constant ones. We will see later
in Part II of the thesis, which is dedicated to AC ImGs, how this feature
simplifies both control design and analysis. Let ω0 be the reference angu-
lar frequency for the considered ImG. When the Park transformation is
applied to equations (2.2a)-(2.2e), the phase angle θ in the transformation
matrix T (θ) [Par29] can be set equal to θ = ω0 t + φ, where φ is an angle
suitably chosen for eliminating the phase shifts introduced by the complex
transformation ratios k̃i and k̃j . We indicate the moduli of complex trans-
formation ratio as k: ki = |k̃i| and kj = |k̃j |. The models of DGUs and
lines in (2.2) can be then rewritten in the dq reference frame rotating with
speed ω0 as:

DGU i :


d

dt
V dq
i + iω0V

dq
i =

ki
Cti

Idqti +
1

Cti
Idqij −

1

Cti
IdqLi

d

dt
Idqti + iω0I

dq
ti = −Rti

Lti
Idqti −

ki
Lti

V dq
i +

1

Lti
V dq
ti

(2.3a)

(2.3b)

Line ij :

{
d

dt
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dq
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1

Lij
V dq
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Rij
Lij

Idqij −
1

Lij
V dq
i (2.3c)

Line ji :
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dt
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DGU j :


d

dt
V dq
j + iω0V

dq
j =

kj
Ctj

Idqtj +
1

Ctj
Idqji −

1

Ctj
IdqLj

d

dt
Idqtj + iω0I

dq
tj = −Rtj

Ltj
Idqtj −

kj
Ltj

V dq
j +

1

Ltj
V dq
tj

(2.3e)

(2.3f)

Remark 2.4. Models (2.1) and (2.2)-(2.3) hinge on the following assump-
tion: both Buck and VSC dynamics, that are inherently switching, have
been averaged over time. This is, however, a mild approximation for mod-
ern DC/DC and DC/AC converters which can operate at very high frequen-
cies. We further notice that these averaged models are widely used in the
literature [SDVG14a, RE09, MKKG10, EDI12].
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3.1 Introduction

In this chapter, we develop a scalable procedure for designing decentralized
voltage regulators in DC mGs. We propose a PnP methodology in which the
synthesis of a local controller requires only the model of the corresponding
DGU and the parameters of power lines connected to it. Most importantly,
no specific information about any other DGU in the network is needed.
For modeling and mathematical analyses, we exploit Quasi-Stationary Line
(QSL) approximations of line dynamics [VSZ95].

Other features of the proposed methodology are summarized hereafter.

1. Local control synthesis exploits the model of the corresponding DGU
and the values of power lines connected to it (hence the name line-
dependent design). As a consequence, whenever a DGU is plugged in
or out, only its neighboring subsystems will have to retune their local
controllers.

2. We use separable Lyapunov functions for mapping control design into
a Linear Matrix Inequality (LMI) problem, thus getting a convex
optimization problem which can be efficiently solved by LMI solvers
[BEGFB94]. This also allows to automatically deny plugging in/out
requests if these operations compromise the stability of the mG.

We recall that primary controllers for DC mGs are mainly based on
droop methods [SDVG14b, DLVG16]. So far, however, the stability of the
closed-loop systems has been rigorously analyzed only for specific islanded
mGs [SDVG14b, DLVG16]. Moreover, the design of stabilizing droop con-
trollers is often performed in a centralized fashion [MDRP+16, MQLD14].
On the contrary, the PnP control design algorithm presented in this chap-
ter is scalable, and collective voltage stability is assessed in a decentralized
fashion, independently of the way DGUs1 are interconnected.

We highlight that a topology-independent stability analysis for DC
mGs, where DGUs are assumed to controllable current sources, has been
provided [ZD15]; we will comment this work later on in Chapter 5.

The presented control algorithm shares several similarities with the one
proposed in [RSFT15] (summarized in Chapter 6), hence showing that the
combination of QSL models and separable Lyapunov functions provides a
unified framework for addressing voltage stability problems both in AC and
DC microgrids. This is a positive feature, given the fundamental differences
in microgrid models and control aims in the AC and DC cases.

1Modeled as in the dashed box in Figure 2.1.
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In order to validate our results, we run several simulations in PSCAD
using realistic models of Buck converters and associated filters. As a first
test, we consider two radially connected DGUs [SDVG14a] and we show
that, in spite of QSL approximations, PnP controllers lead to very good
performances in terms of voltage tracking and robustness to unknown load
dynamics. We also show how to embed PnP controllers in a bumpless
transfer scheme [ÅH06] so as to avoid abrupt changes of the control vari-
ables due to controller switching. Then, we consider an mG with 6 DGUs
arranged in a meshed topology including loops, and discuss the real-time
plugging in and out of a DGU.

The chapter is structured as follows. Starting from the electrical models
of DC DGUs and power lines presented in Chapter 2, we derive the state-
space QSL model of a network with two radially connected DGUs (see
Figure 2.1). The obtained model is then generalized to mGs with N DGUs.
In Section 3.3, we describe the procedure for performing PnP operations. In
Section 3.4 we assess the performance of PnP controllers through simulation
case studies. Section 3.5 is devoted to concluding remarks.

3.2 DC microgrid model

In this section, we present the state-space models of mGs used for control
design and mathematical analyses. For clarity, we first focus on the mG
shown in Figure 2.1, composed of 2 DGUs and described by the set of
equations (2.1). Recalling Assumption 2.1 and the notation introduced in
Remark 2.1 (i.e. Iij(t) = −Iji(t)), we notice that both the models of DGU
i and j in (2.1) have the same structure. In particular, since the load
current IL∗, ∗ ∈ {i, j}, is treated as a disturbance, from (2.1) we obtain
the following linear system

ẋ(t) = Ax(t) +Bu(t) +Md(t)

y(t) = Cx(t)
(3.1)

where x = [Vi, Iti, Iij , Iji, Vj,, Itj ]
T is the state, u = [Vti, Vtj ]

T the input,
d = [ILi, ILj ]

T the disturbance and y = [Vi, Vj ]
T the output of the system.
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Matrices A, B, C and M are shown below:

A =



0 1
Cti

1
Cti

0 0 0

− 1
Lti

−Rti
Lti

0 0 0 0

− 1
Lij

0 −Rij

Lij
0 1

Lij
0

1
Lji

0 0 −Rji

Lji
− 1
Lji

0

0 0 0 1
Ctj

0 1
Ctj

0 0 0 0 − 1
Ltj

−Rtj

Ltj


, (3.2)

B =



0 0

1
Lti

0

0 0

0 0

0 0

0 1
Ltj


, CT =



1 0

0 0

0 0

0 0

0 1

0 0


, M =



− 1
Cti

0

0 0

0 0

0 0

0 − 1
Ctj

0 0


. (3.3)

From (3.2) and (3.3), it can be seen that DGUs state variables (i.e. voltages
at the PCC and converter output currents) depend on line currents, which
are the states of the lines; this may render the system quite difficult to
handle. It would be desirable to obtain a simplified model in which DGUs
state variables directly depend on each other, without being influenced by
states of the lines. In the following, we show how to achieve this goal by
means of QSL approximations of line dynamics [VSZ95].

3.2.1 QSL model of a microgrid composed of 2 DGUs

As in [VSZ95] and [AWA07], we assume Lij and Lji small enough so as
to replace the left-hand side of (2.1c) and (2.1d) with zero. Consequently,
from (2.1c) and (2.1d), one gets:

Īij =
Vj
Rij
− Vi
Rij

(3.4a)

Īji =
Vi
Rji
− Vj
Rji

(3.4b)
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By replacing variable Iij in (2.1a) with the right-hand side of (3.4a), we
obtain the following QSL model of DGU i

DGU i :


dVi
dt

=
1

Cti
Iti +

Vj
CtiRij

− Vi
CtiRij

− 1

Cti
ILi

dIti
dt

= − 1

Lti
Vi −

Rti
Lti

Iti +
1

Lti
Vti

(3.5)

Switching indexes i and j in (3.5) gives the model of DGU j. It can be
equivalently derived by substituting Iji in (2.1e) with the right-hand side
of (3.4b). In a more compact form, the dynamics of DGU i is

ΣDGU
[i] :


ẋ[i](t) = Aiix[i](t) +Biu[i](t) +Mid[i](t) + ξ[i](t)

y[i](t) = Cix[i](t)

z[i](t) = Hiy[i](t)

(3.6)

where x[i] = [Vi, Iti]
T is the state, u[i] = Vti the control input, d[i] = ILi

the exogenous input and z[i] = Vi the controlled variable of the system.
Moreover, y[i](t) is the measurable output and we assume y[i] = x[i], while
ξ[i](t) = Aijx[j] represents the coupling with DGU j.

The matrices of ΣDGU
[i] are obtained from (3.5) and they are here pro-

vided:

Aii =

− 1
RijCti

1
Cti

− 1
Lti

−Rti
Lti

 , Aij =

 1
RijCti

0

0 0

 , Bi =

 0

1
Lti

 ,
Mi =

[− 1
Cti

0

]
, Ci =

[
1 0
0 1

]
, Hi =

[
1 0

]
.

As regards power line ij, we obtain the subsystem

ΣLine
[ij] :

{
ẋ[l,ij](t) = All,ijx[l,ij](t) +Ali,ijx[i](t) +Alj,ijx[j](t) (3.7)

where x[l,ij] = Iij is the state of the line. The matrices of (3.7), derived
from (2.1c), have the following form:

Ali,ij =
[
− 1
Lij

0
]
, Alj,ij =

[
1
Lij

0
]
, All,ij = −Rij

Lij
.

We have now all the ingredients to write the overall model of the mG in Fig-
ure 2.1 under QSL approximations of power line dynamics. In particular,
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from (3.6) and (3.7), we get


ẋ[i]

ẋ[j]

ẋ[l,ij]

ẋ[l,ji]

 =


Aii Aij 0 0
Aji Ajj 0 0
Ali,ij Alj,ij All,ij 0
Ali,ji Alj,ji 0 All,ji



x[i]

x[j]

x[l,ij]

x[l,ji]

+


Bi 0
0 Bj
0 0
0 0

[u[i]

u[j]

]
+

+


Mi 0
0 Mj

0 0
0 0

[d[i]

d[j]

]

[
y[i]

y[j]

]
=

[
C1 0 0 0
0 C2 0 0

]
x[i]

x[j]

x[l,ij]

x[l,ji]


[
z[i]

z[j]

]
=

[
Hi 0
0 Hj

] [
y[i]

y[j]

]
.

(3.8)

Remark 3.1. We notice that matrix A in (3.8) has the following block-
triangular structure

A =


Aii Aij 0 0
Aji Ajj 0 0

Ali,ij Alj,ij All,ij 0
Ali,ji Alj,ji 0 All,ji

 .

Consequently, its eigenvalues are given by the union of those of

[
Aii Aij
Aji Ajj

]
,

All,ij and All,ji. Moreover, by construction, All,ij = All,ji < 0. Hence,
for stability analysis, line dynamics can be neglected and just the system
composed of ΣDGU

[i] and ΣDGU
[j] (giving rise to the upper-left block of matrix

A) matters. We will refer to it as QSL-mG model.

Remark 3.2. We will show in Section 3.3.3 that QSL approximations
can be justified in terms of singular perturbation theory [KKO99, Abe86,
MVVG15]. In other words, stabilization of (3.8) (which, in the light of

Remark 3.1, depends exclusively on the stability of

[
Aii Aij
Aji Ajj

]
), will imply

stabilization of (2.1) for sufficiently small line inductances.
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3.2.2 QSL model of a microgrid composed of N DGUs

In this section, we extend the model (3.6) to mGs composed of N DGUs.
Let V = {1, . . . , N}, we call two DGUs neighbors if there is a power line
connecting them, and we denote with Ni ⊂ V the subset of neighbors of
DGU i. We highlight that the neighboring relation is symmetric, i.e. j ∈ Ni
implies i ∈ Nj . Furthermore, let E = {(i, j) : i ∈ V, j ∈ Ni} collect pairs
of indices associated with lines2. In this setting, the whole mG model is
obtained by

1. modeling each DGU i, i ∈ V, as in (2.1a)-(2.1b) after replacing Iij
with

∑
j∈Ni

Iij ;

2. modeling each line (i, j) ∈ E as in (2.1c).

However, if QSL approximations of all lines (i, j) ∈ E are used, the mG is
described only by subsystems in the following form

DGU i :


dVi
dt

=
1

Cti
Iti +

∑
j∈Ni

(
Vj

CtiRij
− Vi
CtiRij

)
− 1

Cti
ILi

dIti
dt

= − 1

Lti
Vi −

Rti
Lti

Iti +
1

Lti
Vti

(3.9)

Model (3.9) can still be written in the more compact form (3.6), where now
term ξ[i] equals to

∑
j∈Ni

Aijx[j](t). All matrices appearing in this new
model do not change, with the exception of Aii that becomes

Aii =


∑

j∈Ni
− 1
RijCti

1
Cti

− 1
Lti

−Rti
Lti

 . (3.10)

The overall QSL-mG model can be written as follows

ẋ(t) = Ax(t) + Bu(t) + Md(t)

y(t) = Cx(t)

z(t) = Hy(t)

(3.11)

where x =
[
xT[1], . . . , x

T
[N ]

]T
∈ R2N , u =

[
u[1], . . . , u[N ]

]T ∈ RN , d =[
d[1], . . . , d[N ]

]T ∈ RN , y =
[
yT[1], . . . , y

T
[N ]

]T
∈ R2N , z =

[
z[1], . . . , z[N ]

]T ∈
RN . Matrices A, B, M, C and H are reported in Appendix 3.6.4.

2Note that we consider (i, j) an ordered pair and therefore, from the symmetry of the
neighboring relation, if (i, j) ∈ E then also (j, i) ∈ E .
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Comments in Remark 3.2 apply also here: in Section 3.3.3, we will show
that the QSL-mG model can be justified treating inductances Lij , (i, j) ∈ E ,
as perturbation parameters and resorting to singular perturbation theory.

Remark 3.3. Models in the form (3.9) describe DGUs whose electrical
scheme is shown in the dashed box of Figure 2.1. Notably, we notice that
loads appear only at the PCC of each DGU. For this reason, in the sequel,
mGs composed of DGUs modeled as in (3.9) will be referred to as load-
connected. In general, however, DGUs and loads can be interconnected
according to arbitrary topologies. However, we can still describe DGUs
through models (3.9), without loss of generality. Indeed, it has been shown
that general interconnections of loads and DGUs can always be mapped into
load-connected topologies by means of a network reduction method known
as Kron reduction [DB13]. We will exploit this mathematical tool for de-
veloping the network reduction procedure presented in Chapter 8.

3.3 Plug-and-play decentralized voltage control

3.3.1 Decentralized control scheme with integrators

Let zref (t) denote the desired reference trajectory for the output z(t). In
order to track constant references zref (t) = z̄ref when d(t) = d̄ is constant,
we augment the mG model with integrators [SP96]. A necessary condition
for steering to zero the error e(t) = zref (t) − z(t) as t → ∞, is that, for
arbitrary d̄ and z̄ref , there are equilibrium states x̄ and inputs ū verifying

0 = Ax̄ + Bū + Md̄

z̄ref = HCx̄
(3.12)

Γ

[
x̄
ū

]
=

[
0 −M
I 0

] [
z̄ref

d̄

]
, Γ =

[
A B

HC 0

]
∈ R3N×3N . (3.13)

Proposition 3.1. Given z̄ref and d̄, vectors x̄ and ū satisfying (3.13)
always exist.

Proof. From [SP96], we know that there exist x̄, ū verifying (3.13) if and
only if the following two conditions are fulfilled:

(i) the number of controlled variables is not greater than the number of
control inputs;
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(ii) the system under control has no invariant zeros (i.e. rank(Γ) = 3N).

Condition (i) is fulfilled since from (3.6) one has that u[i] and z[i] have the
same size, ∀i ∈ V. In order to prove Condition (ii), we exploit the definition
of matrices A, B, C and H and the fact that electrical parameters are
positive.

mG...

−
+

∫
dt K1

zref [1] v[1] u[1]

−+
∫
dt KN

zref [N ] v[N ] u[N ]

d[1]

. . .
d[N ]

y[1]
. . .y[N ]

z[1]

z[N ]

...
...

Figure 3.1: Control scheme with integrators for the overall DC mG.

The dynamics of the integrators is (see Figure 3.1)

v̇[i](t) = e[i](t) = zref [i](t)− z[i](t)

= zref [i](t)−HiCix[i](t),
(3.14)

and hence, the DGU model augmented with integrators is

Σ̂DGU
[i] :


˙̂x[i](t) = Âiix̂[i](t) + B̂iu[i](t) + M̂id̂[i](t) + ξ̂[i](t)

ŷ[i](t) = Ĉix̂[i](t)

z[i](t) = Ĥiŷ[i](t)

(3.15)

where x̂[i] = [xT [i], v[i]]
T ∈ R3 is the state, ŷ[i] = x̂[i] ∈ R3 is the measur-

able output, d̂[i] = [d[i], zref [i]]
T ∈ R2 collects the exogenous signals (both

current of the load and reference signals), and ξ̂[i](t) =
∑

j∈Ni
Âij x̂[j](t).

Matrices in (3.15) are defined as follows
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Âii =

[
Aii 0
−HiCi 0

]
, Âij =

[
Aij 0
0 0

]
, B̂i =

[
Bi
0

]
, Ĉi =

[
Ci 0
0 1

]
,

M̂i =

[
Mi 0
0 1

]
, Ĥi =

[
Hi 0

]
.

Through the following proposition we make sure that the pair (Âii, B̂i) is
controllable, hence system (3.15) can be stabilized.

Proposition 3.2. The pair (Âii, B̂i) is controllable.

Proof. Using the definition of controllability matrix, we get

M̂C
i =

[
B̂i ÂiiB̂i Â2

iiB̂i
]

=

[
Aii Bi
−HiCi 0

]
︸ ︷︷ ︸

M̂C
i,1

[
0 Bi AiiBi
I 0 0

]
︸ ︷︷ ︸

M̂C
i,2

. (3.16)

Matrices M̂C
i,1 and M̂C

i,2 have always full rank, since all electrical param-

eters are positive, hence rank(M̂C
i ) = 3. Therefore the pair (Âii, B̂i) is

controllable.

The overall augmented system is obtained from (3.15) as
˙̂x(t) = Âx̂(t) + B̂u(t) + M̂d̂(t)

ŷ(t) = Ĉx̂(t)

z(t) = Ĥŷ(t)

(3.17)

where x̂, ŷ and d̂ collect variables x̂[i], ŷ[i] and d̂[i] respectively, and matrices

Â, B̂, Ĉ, M̂ and Ĥ are obtained from systems (3.15).

3.3.2 Decentralized plug-and-play control

This section presents the adopted control approach that allows us to design
local controllers while guaranteeing asymptotic stability for the augmented
system (3.17). Local controllers are synthesized in a decentralized fashion
enabling PnP operations. Let us equip each DGU Σ̂DGU

[i] with the following
state-feedback controller

C[i] : u[i](t) = Kiŷ[i](t) = Kix̂[i](t) (3.18)
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where Ki ∈ R1×3. As shown in Figure 3.2, controllers C[i], i ∈ V, define
a multivariable PI regulator; moreover, they are decentralized, since the
computation of u[i](t) requires the state of Σ̂DGU

[i] only.

Remark 3.4. We highlight that, in general, voltage set-points Vref,i are ei-
ther constant or determined by higher level controller devoted, for instance,
to current sharing (see [DLVG16] and Chapter 5 of the thesis) or power
flow optimization [BCCZ15]. In particular, both centralized and distributed
algorithms for these purposes exist [DLVG16, BCCZ15].

Let nominal subsystems be given by Σ̂DGU
[i] without coupling terms

ξ̂[i](t). We aim to design local controllers C[i] such that the nominal closed-

Buck i Vti

Rti Lti Iti

Cti

Rij Lij VjVi

ILi

PCCi
Iij

DGU i Power line ij

∫ -
+

V ref, i
Ki

Figure 3.2: DC mG - Electrical scheme of DGU i, power line ij, and local
PnP voltage controller.

loop subsystem
˙̂x[i](t) = (Âii + B̂iKi)x̂[i](t) + M̂id̂[i](t)

ŷ[i](t) = Ĉix̂[i](t)

z[i](t) = Ĥiŷ[i](t)

(3.19)

is asymptotically stable. From Lyapunov theory, we know that if there
exists a symmetric matrix Pi ∈ R3×3, Pi > 0 such that

(Âii + B̂iKi)
TPi + Pi(Âii + B̂iKi) < 0, (3.20)
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the nominal closed-loop subsystem equipped with controller C[i] is asymp-
totically stable. Similarly, consider the following closed-loop QSL-mG
model obtained from (3.17) and (3.18)

˙̂x(t) = (Â + B̂K)x̂(t) + M̂d̂(t)

ŷ(t) = Ĉx̂(t)

z(t) = Ĥŷ(t)

(3.21)

where Â, B̂ and K collect matrices Âij , B̂i and Ki, for all i, j ∈ V. Then,
(3.21) is asymptotically stable if matrix P = diag [P1, . . . , PN ] satisfies

(Â + B̂K)TP + P(Â + B̂K) < 0. (3.22)

Remark 3.5. It is important to highlight that, in general, (3.20) does not
imply (3.22). Indeed, decentralized design of local controllers can fail to
guarantee voltage stability of the whole mG, if couplings among DGUs are
neglected in the design phase (see the example in Appendix 3.6.2).

In order to derive conditions such that (3.20) guarantees (3.22), we first

define ÂD = diag
[
Âii, . . . , ÂNN

]
and ÂC = Â− ÂD. Then, we exploit

the following assumptions to ensure asymptotic stability of the closed-loop
QSL-mG.

Assumption 3.1. Decentralized controllers C[i], i ∈ V are designed such
that (3.20) holds with

Pi =

 ηi 0 0

0 • •
0 • •

 (3.23)

where • denotes an arbitrary entry and ηi > 0 is a local parameter.

Regarding Assumption 3.1, we will show later that checking the exis-
tence of Pi as in (3.23) and Ki fulfilling (3.20) amounts to solve a convex
optimization problem.

The next proposition provides the main stability result.

Proposition 3.3. There exist ηi > 0, i = 1, . . . , N such that, under As-
sumption 3.1, the overall closed-loop QSL-mG is asymptotically stable.
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Proof. We have to show that (3.22) holds, which is equivalent to prove that

(ÂD + B̂K)
T
P + P(ÂD + B̂K)︸ ︷︷ ︸

(a)

+ ÂT
CP + PÂC︸ ︷︷ ︸

(b)

< 0. (3.24)

We highlight that term (a) is a block diagonal matrix collecting, on its
diagonal, all left-hand sides of (3.20). It follows that term (a) is a negative
definite matrix. Moreover, each block (i, j) of term (b) can be written as

{
PiÂij + ÂTjiPj if j ∈ Ni
0 otherwise

where

PiÂij =


ηi

RijCti
0 0

0 0 0

0 0 0

 and ÂTjiPj =


ηj

RjiCtj
0 0

0 0 0

0 0 0

 .

It turns out that term (b) can be made arbitrarily close to zero by setting
coefficients ηi small enough. In view of the fact that term (a) is negative
definite, there always exist coefficients ηi satisfying (3.24).

The proof of Proposition 3.3 highlights that coefficients ηi, which are
tuning knobs that can be set by the user, should be chosen such that
ηi

RijCti
≈ 0, ∀i ∈ V, ∀j ∈ Ni. Furthermore, controllersKi should be designed

such that inequality

(Âii + B̂iKi)
TPi + Pi(Âii + B̂iKi) + γ−1

i I ≤ 0 (3.25)

is fulfilled for γi > 0 large enough and matrix Pi structured as in (3.23).
In order to complete the design of the local controller C[i], we have to solve
the following problem.

Problem 3.1. Compute a vector Ki such that the nominal closed-loop sub-
system is asymptotically stable and Assumption 3.1 is verified, i.e. (3.20)
holds for a matrix Pi structured as in (3.23).
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Consider the following optimization problem

Oi : min
Yi,Gi,γi,βi,δi

αi1γi + αi2βi + αi3δi

Yi =

η−1
i 0 0
0 • •
0 • •

 > 0 (3.26a)

[
YiÂ

T
ii +GTi B̂

T
i + ÂiiYi + B̂iGi Yi
Yi −γiI

]
≤ 0 (3.26b)[

−βiI GTi
Gi −I

]
< 0 (3.26c)[

Yi I
I δiI

]
> 0 (3.26d)

γi > 0, βi > 0, δi > 0 (3.26e)

where αi1, αi2 and αi3 represent positive weights and • are arbitrary entries.
We also recall that, since all constraints in (3.26) are LMI, the optimization
problem is convex and can be solved with efficient (i.e. polynomial-time)
LMI solvers [BEGFB94].

Lemma 3.1. Problem Oi is feasible if and only if Problem 3.1 has a solu-
tion. Moreover, Ki and Pi in (3.20) are given by Ki = GiY

−1
i , Pi = Y −1

i

and

||Ki||2 <
√
βiδi. (3.27)

Proof. Inequality (3.20) is equivalent to the existence of γi > 0 such that
(3.25) holds. By applying the Schur lemma on (3.25), we get the following
inequality[

(Âii + B̂iKi)
TPi + Pi(Âii + B̂iKi) I

I −γiI

]
≤ 0, (3.28)

which is nonlinear in Pi and Ki. In order to get rid of the nonlinear terms,
we perform the following parametrization trick [BEGFB94]

Yi = P−1
i

Gi = KiYi.
(3.29)

Notice that Yi has the same structure as Pi. By pre- and post-multiplying

(3.28) with

[
Yi 0
0 I

]
and exploiting (3.29), we obtain[

YiÂ
T
ii +GTi B̂

T
i + ÂiiYi + B̂iGi Yi
Yi −γiI

]
≤ 0. (3.30)
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Constraint (3.26a) ensures that matrix Pi has the structure required by
Assumption 3.1. At the same time, constraint (3.26b) guarantees the sta-
bility of the closed-loop subsystem. Further constraints appear in Problem
Oi with the aim of bounding ||Ki||2. In particular, we add ||Gi||2 <

√
βi

and ||Y −1
i ||2 < δi (which, via Schur complement, correspond to constraints

(3.26c) and (3.26d)) to prevent ||Ki||2 from becoming too large. These
bounds imply ||Ki||2 <

√
βiδi and then affect the magnitude of control

variables.

Remark 3.6. From (3.25), the parameter γi is the inverse of the quadratic
stability margin [BEGFB94], which is a measure of robust stability. Fur-
thermore, from (3.27), small βi and δi prevent the control action from be-
coming too aggressive. A suitable tuning of weights αi1, αi2 and αi3 in the
cost of problem Oi allows one to achieve a balance between these perfor-
mance requirements.

Next, we discuss the key feature of the proposed decentralized control
approach. We first notice that constraints in (3.26) depend upon local fixed
matrices (Âii, B̂i) and local design parameters (αi1, αi2, αi3). It follows
that the computation of controller C[i] is completely independent of the
computation of controllers C[j] when j 6= i since, provided that problem Oi
is feasible, controller C[i] can be directly obtained through Ki = GiY

−1
i .

In addition, it is clear that constraints (3.26c) and (3.26d) affect only the
magnitude of control variables as stated in Lemma 3.1. Finally, if prob-
lems Oi are feasible for sufficiently small coefficients ηi, all assumptions in
Proposition 3.3 can be verified, thus obtaining that the overall closed-loop
QSL-mG is asymptotically stable.

Remark 3.7. The two main source of conservativeness of our approach
are the block-diagonal structure of the Lyapunov matrix P and the structure
(3.23) of matrices Pi. The former assumption is common in decentralized
control [Lun92] and it is mild because, as shown in the proof of Proposition
3.3, DGUs interactions have little impact on the fulfillment of (3.22) for
sufficiently small ηi. Requiring that the stability of each DGU ΣDGU

[i] can

be certified through the Lyapunov function V[i](x[i]) = xT[i]Pix[i], with Pi as

in (3.23), is more critical. Indeed, (3.23) requires that V[i] is separable, i.e.

V[i] = ηiV
2
i + Ṽ (Iti, vi), for a suitable function Ṽ (Iti, vi). This suggests to

look at the closed-loop dynamics of Σ̂DGU
[i] as the interaction of two subsys-

tems with state Vi and [Iti, vi]
T , respectively. Letting Ki = [ki1, ki2, ki3], the
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matrix Âi + B̂iKi can be partitioned as

Âi + B̂iKi =


∑
j∈Ni

− 1
RijCti

1
Cti

0

ki1−1
Lti

ki2−Rti
Lti

ki3
Lti

−1 0 0


=

 Âcl,i1 Âcl,i2

Âcl,i3 Âcl,i4

 .
Basic results in decentralized control [Lun92] show that the possibility of
certifying stability of Âi + B̂iKi through V[i] (i.e. the fulfillment of (3.22))

depends on the magnitude of the interconnection terms Âcl,i2 and Âcl,i3 (if
they were both zero, the structure (3.23) would not be conservative). Note
also that the local controller can partially modify Âcl,i3 but not Âcl,i2.

3.3.3 QSL approximations as singular perturbations

We now discuss stability properties brought about by the proposed PnP
decentralized controllers when applied to the mG model obtained without
using QSL approximations. In other words, from (2.1a)-(2.1c), (3.14) and
(3.18), we study stability of the closed-loop mG given by the controlled
DGU models

˙̂x[i](t) = Â◦i x̂[i] + M̂id̂[i] +

 1
Cti

∑
j∈Ni

Iij
0
0

 , i ∈ V, (3.31)

with

Â◦i =


0 1

Cti
0

ki1−1
Lti

ki2−Rti
Lti

ki3
Lti

−1 0 0

 ,
and the line dynamics (2.1c), i.e.

Lij İij = −RijIij +
[
1 0 0

]
(x̂[j] − x̂[i]), ∀(i, j) ∈ E . (3.32)

Theorem 3.1. If the closed-loop QSL-mG is asymptotically stable, then
there is ε̄ > 0 such that, if Lij < ε̄, ∀(i, j) ∈ E, also the system (3.31)-
(3.32) is asymptotically stable.
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Proof. The proof, that is based on results in [Abe86], is reported in Ap-
pendix 3.6.1.

Remark 3.8. The estimation of parameter ε̄ is a well known problem in
singular perturbation theory. Some methods for deriving such bound in our
setting (i.e. multi-parameter singular perturbation problem) are discussed
in [Abe86].

3.3.4 Enhancements of local controllers for improving per-
formances

In order to improve transient performances of controllers C[i], we enhance
them with feed-forward terms for

(i) pre-filtering reference signals;

(ii) compensating measurable disturbances.

Pre-filtering of the reference signal

Pre-filtering is a well known technique used to widen the bandwidth so
as to speed up the response of the system. For each nominal closed-loop
subsystem (3.19), we consider the transfer function F[i](s) from zref [i](t) to

the controlled variable z[i](t), i.e.

F[i](s) = (ĤiĈi)(sI − (Âii + B̂iKi))
−1

[
0
1

]
. (3.33)

By virtue of a feedforward compensator C̃[i](s), it is possible to filter the
reference signal zref [i](t) (see Figure 3.3). Consequently, the new transfer

C̃[i](s) F[i](s)
zref [i] z[i]

zfref [i]

Figure 3.3: Block diagram of closed-loop DGU i with pre-filter.

function from zref [i](t) to z[i](t) becomes

F̃[i](s) = C̃[i](s)F[i](s). (3.34)
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Now, taking a desired transfer function F̃[i](s) for each subsystem, we can

compute, from (3.34), the pre-filter C̃[i](s) as

C̃[i](s) = F̃[i](s)F[i](s)
−1 (3.35)

under the following conditions [SP96]:

PF1 F[i](s) must not have Right-Half-Plane (RHP) zeros that would be-

come RHP poles of C̃[i](s), making it unstable;

PF2 F[i](s) must not contain a time delay, otherwise C̃[i](s) would have a
predictive action;

PF3 C̃[i](s) must be realizable, i.e. it must have more poles than zeros.

Hence, if these conditions are fulfilled, the filter C̃[i](s) given by (3.35) is

realizable and asymptotically stable (this condition is essential since C̃[i](s)
works in open-loop). Furthermore, since F[i](s) is asymptotically stable
(controllers C[i] are, in fact, designed solving the problem Oi), the closed-

loop system including filters C̃[i](s) is asymptotically stable as well. We
highlight that, if not all conditions PF1, PF2 and PF3 are fulfilled, then
expression (3.35) cannot be used. Still, the compensator C̃[i](s) can be
designed for being effective within a given bandwidth, as shown in [SP96].

Compensation of measurable disturbances

Since load dynamics is assumed to be unknown, we have modeled each
load current as a measurable disturbance d[i](t). Let us define new local

controllers C̃[i] as

C̃[i] : u[i] = Kix̂[i](t) + ũ[i](t), (3.36)

obtained by adding term ũ[i](t) to controllers C[i] in (3.18). The closed-loop
dynamics (3.19) can be rewritten as follows

Σ̃DGU
[i] :


˙̂x[i](t) = (Âii + B̂iKi)x̂[i](t) + M̂id̂[i](t) + B̂iũ[i](t)

ŷ[i](t) = Ĉix̂[i](t)

z[i](t) = Ĥiŷ[i](t)

(3.37)

We now use the new input ũ[i](t) to compensate the measurable disturbance

d[i](t) (recall that d̂[i] = [dT [i] z
T
ref [i]

]T ). From (3.37), the transfer function
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from the disturbance d[i](t) to the controlled variable z[i](t) is

Gd[i](s) = (ĤiĈi)(sI − (Âii + B̂iKi))
−1

[
Mi

0

]
. (3.38)

Moreover, the transfer function from the new input ũ[i](t) to the controlled
variable z[i](t) is

G[i](s) = (ĤiĈi)(sI − (Âii + B̂iKi))
−1B̂i. (3.39)

If we combine (3.38) and (3.39), we obtain

z[i](s) = G[i](s)ũ[i](s) +Gd[i](s)d[i](s).

In order to zero the effect of the disturbance on the controlled variable, we
set

ũ[i](s) = N[i](s)d[i](s).

where

N[i](s) = −G[i](s)
−1Gd[i](s) (3.40)

is the transfer function of the compensator. Note that N[i](s) is well defined
under the following conditions [SP96]:

C1 G[i](s) must not have RHP zeros that would become RHP poles of
N[i](s);

C2 G[i](s) must not contain a time delay, otherwise N[i](s) would have a
predictive action

C3 N[i](s) must be realizable, i.e. it must have more poles than zeros.

In this way, we can ensure that the compensator N[i](s) is asymptotically
stable, hence preserving the asymptotic stability of the system. When not
all conditions C1, C2 and C3 are fulfilled, formula (3.40) cannot be used and
perfect compensation cannot be achieved. Still, the compensatorN[i](s) can
be designed to reject disturbances within a given bandwidth, as shown in
[SP96]. The overall control scheme with the addition of the compensators
is shown in Figure 3.4.
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mG...

−
+

∫
dt K1 +

+
zref [1] v[1] u[1]

−+
∫
dt KN +

+
zref [N ] v[N ] u[N ]

d[1]
N[1](s)

ũ[1]

. . .
d[N ]

N[N ](s)

ũ[N ]

y[1]

. . .y[N ]

z[1]

z[N ]

...
...

Figure 3.4: Overall DC mG control scheme with compensation of measur-
able disturbances d[i](s).

3.3.5 Algorithm for the design of local controllers

Algorithm 3.1 collects the steps of the overall design procedure.

Algorithm 3.1 Design of controller C[i] and compensators C̃[i] and N[i] for

subsystem Σ̂DGU
[i]

Input: DGU Σ̂DGU
[i] as in (3.15)

Output: Controller C[i] and, optionally, pre-filter C̃[i] and compensator N[i]

(A) Find Ki solving the LMI problem (3.26). If it is not feasible stop
(controller C[i] cannot be designed).
Optional steps

(B) Design the asymptotically stable local pre-filter C̃[i] and compensator
N[i] as in (3.40).
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3.3.6 Plug-and-play operations

In the following, we discuss the operations for updating local controllers
when DGUs are added to or removed from an mG. We remind that all
these operations are performed with the aim of preserving stability of the
new closed-loop system. Consider, as a starting point, an mG composed of
subsystems Σ̂DGU

[i] , i ∈ V equipped with local controllers C[i] and compen-

sators C̃[i] and N[i], i ∈ V produced by Algorithm 3.1.

Plug-in operation. Assume that the plug-in of a new DGU Σ̂DGU
[N+1] de-

scribed by matrices, ÂN+1N+1, B̂N+1, ĈN+1, M̂N+1, ĤN+1 and {ÂN+1 j}j∈NN+1

needs to be performed. Let NN+1 be the set of DGUs that are directly cou-
pled with Σ̂DGU

[N+1] through power lines and let {ÂN+1 j}j∈NN+1
be the matri-

ces containing the corresponding coupling terms. According to our method,
the design of controller C[N+1] and compensators C̃[N+1] and N[N+i] requires

Algorithm 3.1 to be executed. Since DGUs Σ̂DGU
[j] , j ∈ NN+1, have the new

neighbor Σ̂DGU
[N+1], we need to redesign controllers C[j] and compensators C̃[j]

and N[j], ∀j ∈ NN+1 because matrices Âjj , j ∈ NN+1 change.

Only if Algorithm 3.1 does not stop in Step (A) when computing con-
trollers C[k] for all k ∈ NN+1 ∪ {N + 1}, we have that the plug-in of Σ̂DGU

[N+1]
is allowed. Moreover, we stress that the redesign is not propagated further
in the network and therefore the asymptotic stability of the new overall
closed-loop QSL-mG model is preserved for a sufficient small ηN+1 even
without changing controllers C[i], C̃[i] and N[i], i 6∈ {N + 1} ∪ NN+1.

Unplugging operation. Let us now examine the unplugging of DGU
Σ̂DGU

[k] , k ∈ V. The disconnection of Σ̂DGU
[k] from the network leads to

a change in matrix Âjj of each Σ̂DGU
[j] , j ∈ Nk. Consequently, for each

j ∈ Nk, we have to redesign controllers C[j] and compensators C̃[j] and N[j].
As for the plug-in operation, we run Algorithm 3.1. If all operations can
be successfully terminated, then the unplugging of Σ̂DGU

[k] is allowed and

stability is preserved without redesigning the local controllers C[j], j /∈ Nk.

Remark 3.9. From a practical point of view, one can imagine that, when-
ever a plug-in/-out operation needs to be performed, the neighboring DGUs
of the entering/leaving subsystem are alerted by means of a communication
network. The communication does not necessarily need to be performed
in real-time since, in principle, addition/removal operations of DGUs are
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scheduled in advance. Note also that the communication network can be
realized using different technologies (such as SCADA systems or wireless).
Furthermore, we highlight that communication channels are needed for im-
plementing secondary control schemes (see, e.g., Chapter 5). Hence, in this
framework, the same network can be exploited for announcing plug-in and
unplugging events. Finally, we notice that recent studies propose to use the
electrical interconnections (i.e. power lines) for transmitting communica-
tion signals [DWSM17].

3.3.7 Hot plugging in/out operations

Plugging in/out operations can require to switch local controllers in real-
time. In order to avoid jumps in the control variable at switching times,
we embedded each local regulator into a bumpless control scheme [ÅH06]
that is described in Appendix 3.6.3.

In particular, prior to real-time plugging in operation (hot plugging in),
it is recommended to keep set points constant for a sufficient amount of
time so as to guarantee the control variable in the bumpless control scheme
is in steady state. This ensures smooth behaviors of the electrical variables.
Similarly, when an unplugging operation is scheduled in advance, it is ad-
visable to follow an hot unplugging protocol similar to the one described
above for plugging in.

3.4 Simulation results

In this section, we study performance due to PnP controllers described in
Section 3.3. As a starting point, we consider the mG depicted in Figure 2.1
with only two DGUs (Scenario 1) and we evaluate performance in terms
of (i) tracking step references, (ii) transients after the hot plugging in of
the two DGUs and (iii) robustness to unknown load dynamics. Then, we
extend the analysis to an mG with 6 DGUs (Scenario 2) and we show that
stability of the whole microgrid is guaranteed.

Simulations have been performed in PSCAD, a simulation environment
for electric systems that allows to implement the mG model with realistic
components.

3.4.1 Scenario 1

In this scenario, we consider the mG shown in Figure 2.1 composed of two
identical DC DGUs connected through RL lines supporting 10 Ω and 6 Ω
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loads, respectively. The duration of the simulation is 8 seconds and, for the
sake of simplicity, we set i = 1 and j = 2. The output voltage reference has
been selected at 48 V and it is equal for both DGUs. Parameters values for
all DGUs are given in Table 3.2. Notice that that they are comparable to
those used in [SDVG14a]. Figures 3.6 and 3.7 show the voltages at PCC1

and PCC2, respectively, for the whole simulation.

Voltage reference tracking at the startup

We assume that at the beginning of the simulation (t = 0 s), subsystems
Σ̂DGU

[1] and Σ̂DGU
[2] are not interconnected. Therefore, stabilizing controllers

Ci, i = 1, 2 are designed neglecting coupling among DGUs. Moreover,
in order to widen the bandwidth of each closed-loop subsystem, we use
local pre-filters C̃[i], i = 1, 2 of reference signals. The desired closed-loop

transfer functions F̃i(s), i = 1, 2 have been chosen as low-pass filters with
steady-state gain equal to 0 dB and bandwidth equal to 100 Hz. The
eigenvalues of the two decoupled closed-loop QSL subsystems are shown in
Figure 3.5a. Moreover, by running Step (B) of Algorithm 3.1 we obtain two
asymptotically stable local pre-filters C̃i, i = 1, 2 whose Bode magnitude
plots are depicted in Figure 3.5b. Notice that through the addition of the
pre-filters, the frequency response of the two closed-loop transfer functions
Fi(s), i = 1, 2 coincide with the frequency response of the desired transfer
functions F̃i(s), i = 1, 2 (see the green line in Figure 3.5c). From Figures 3.6
and 3.7 we notice that, at startup, the controllers ensure excellent tracking
of the reference signals in a very short time (both voltages at PCC1 and
PCC2 are equal to zero at t = 0).

Hot plugging in of DGUs 1 and 2

At time t = 2 s, we connect DGUs 1 and 2 together. This requires real-time
switching of the local controllers which translates into two hot plugging in
operations, as described in Section 3.3.7. The new decentralized controllers
for subsystems Σ̂DGU

[1] and Σ̂DGU
[2] are designed running Algorithm 3.1. As

shown in Section 3.3.6, the interconnection of the two subsystems leads to
a variation of each DGU dynamics, therefore even compensators C̃[i] and
N[i], i = 1, 2 need to be updated. In particular, the new desired closed-loop

transfer functions F̃i(s), i = 1, 2 have been chosen as low-pass filters with
steady-state gain equal to 0 dB and bandwidth equal to 100 Hz.

Since Algorithm 3.1 never stops in Step (A), the hot plug-in of the
DGUs is allowed and local controllers get replaced by the new ones at
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Figure 3.5: Features of PnP controllers for Scenario 1 when the DGUs are
not interconnected.
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Figure 3.6: Scenario 1 - Voltage at PCC1.
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Figure 3.7: Scenario 1 - Voltage at PCC2.

t = 2 s. Figure 3.8a shows the closed-loop eigenvalues of the overall QSL-
mG composed of two interconnected DGUs. The Bode magnitude plots of
compensators C̃[i] and N[i], i = 1, 2 are depicted in Figure 3.8b and 3.8c,
respectively, while the singular values of the overall closed-loop transfer
function F (s) with inputs [zref[1]

, zref[2]
]T and outputs [z[1], z[2]]

T are shown
in Figure 3.8d.

Figures 3.6 and 3.7 show that bumpless control transfer schemes ensure
no significant deviations in the output signals when the controller switch is
performed at t = 2 s.
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(b) Bode magnitude plot of pre-filters
C̃[i], i = 1, 2.

100 105
-20

-10

0

10

20

30

40

50

60

Frequency (rad/s)

M
ag

n
it
u
d
e

(d
B
)

(c) Bode magnitude plot of distur-
bances compensators N[i], i = 1, 2.
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Figure 3.8: Features of PnP controllers for Scenario 1 when the DGUs are
connected together.

Robustness to unknown load dynamics

Next, we assess the performance of PnP controllers when loads suddenly
change. To this purpose, at t = 3 s we decrease the load resistances at
PCC1 and PCC2 to half of their initial values. Oscillations visible in Fig-
ures 3.6 and 3.7 are zoomed in in Figures 3.9a and 3.9b, respectively. These
plots confirm very good compensation of the current disturbances produced
by load changes. The small oscillations of the voltage signals are due to the
presence of complex conjugate poles in the transfer function of the overall
closed-loop microgrid including couplings (as shown in Figure 3.8a). How-
ever, these oscillations disappear after a short transient. We recall that
load currents (see Figures 3.9c and 3.9d) are treated as measurable distur-
bances in our model, and a variation of the load resistance induces step-like
changes in the disturbances.
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(d) Instantaneous load current IL2.

Figure 3.9: Scenario 1 - Performance of PnP decentralized voltage control
in presence of load switches at time t = 3 s.

Voltage tracking for DGU 1

Finally, we evaluate the performance in tracking step changes in the voltage
reference at one PCC (e.g. PCC1) when the DGUs are connected together.
This test is of particular concern if we look at the concrete implementation
of DC mGs. In fact, changes in the voltage references can be required
in order to regulate power flow among the DGU, or to control the state-
of-charge of batteries possibly embedded in the mG. To this purpose, at
t = 4 s, we let v?1,MG (i.e. the reference signal of DGU 1) step down to
47.6 V. Notice that this small variation of the voltage reference at PCC1 is
sufficient to let an appreciable amount of current flow through the line, since
the line impedance is quite small. Figure 3.6 shows how PnP controllers
are capable to guarantee good tracking performances for DGU 1, when the
corresponding voltage reference is changed (t = 4 s). Moreover, interactions
between the two DGUs are small (see Figure 3.7).
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3.4.2 Scenario 2

In this second scenario, we consider the meshed mG shown in black in
Figure 3.10 and composed of 5 DGUs. Differently from Scenario 1, some
DGU have more than one neighbor. This means that the disturbances
influencing their dynamics will be greater. Moreover, the presence of a
loop further complicates voltage regulation. While several studies focused
on radially interconnected mGs, to the best of our knowledge, control of
loop-interconnected DGUs has not been equally investigated yet.

In order to assess the capability of the proposed decentralized approach
to cope with heterogeneous dynamics, we consider an mG composed of
DGUs with non-identical electrical parameters; they are listed in tables
3.3 and 3.4 in Appendix 3.6.5. Moreover, in order to allow for current
flow through the lines, we set slightly different voltage references for the
DGUs composing the mG in Figure 3.10 (see Table 3.5 in Appendix 3.6.5).
We also assume that DGUs 1-5 supply 10 Ω, 6 Ω, 4 Ω, 2 Ω and 3 Ω

DG 1

DG 2

DG 4

DG 3 DG 5

DG 6

Figure 3.10: Scenario 2 - Scheme of the mG composed of 5 DGUs until
t = 4 s (in black) and of 6 DGUs after the plugging in of Σ̂DGU

[6] (in green).
Blue nodes represent DGUs modeled as in the dashed box in Figure 3.2,
with a local load connected to each PCC. Black arrows identify RL power
lines.

loads, respectively. Furthermore, we highlight that, for this scenario, no
compensators C̃i and Ni have been used. The duration of the simulation
is 15 seconds.
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At t = 0, all the DGUs are assumed to be isolated and not connected
to each other. However, we choose to equip each subsystem Σ̂DGU

[i] , i ∈
V = {1, . . . , 5}, with controller C[i] designed by running Algorithm 3.1 and
taking into account couplings among DGUs. This is possible because, as
shown in Section 3.3.2, local controllers stabilize the mG also in absence of
couplings.

Because of this choice of local controllers in the startup phase, when
the five subsystems are connected together at time t = 1.5 s, no bumpless
control scheme is required since no real-time switch of controllers is per-
formed. The closed-loop eigenvalues of the overall QSL-mG are depicted
in Figure 3.11a while Figure 3.11b shows the closed-loop transfer function
of the whole microgrid.
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(b) Singular values of F (s).

Figure 3.11: Features of PnP controllers for Scenario 2 with 5 intercon-
nected DGUs.

Plug-in of a new DGU

For evaluating the PnP capabilities of our control approach, at time t = 4
s, we simulate the connection of DGU Σ̂DGU

[6] with Σ̂DGU
[1] and Σ̂DGU

[5] , as
shown in Figure 3.10. This requires to update in real-time controllers C[j],
j ∈ N6, with N6 = {1, 5} (see Section 3.3.6). Notably, the new controllers
for subsystems Σ̂DGU

[1] , Σ̂DGU
[5] and Σ̂DGU

[5] are synthesized running Algorithm

3.1 and, since it never stops in Step (A), the hot plug-in of DGU 6 is al-
lowed. At the same time, the local regulators for DGU 1 and 5 get replaced
by the new ones at t = 4 s. Figures 3.12a and 3.12b show, respectively,
the closed-loop eigenvalues and the singular values of the closed-loop F (s)
of the overall QSL-mG represented in Figure 3.10 and equipped with the
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controllers described above. Moreover, from Figure 3.13, we note that, de-
spite the different voltages at PCCs of DGUs 1, 5 and 6, bumpless control
transfer schemes ensure small deviations of the output signals from their
references when controller switch is performed. Moreover, these perturba-
tions disappear after short transients.
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(b) Singular values of F (s).

Figure 3.12: Features of PnP controllers for Scenario 2 with 6 intercon-
nected DGUs

Robustness to unknown load dynamics

In order to test the robustness of the overall mG to unknown load dynamics,
at t = 8 s, the load of DGU 6 is decreased from 8 Ω to 4 Ω. Figures 3.14a
and 3.14b show that, when the load change of Σ̂DGU

[6] occurs, the voltages
at PCC1 and PCC5 exhibit very small variations which last for a short
time. Then, load voltages of Σ̂DGU

[1] and Σ̂DGU
[5] converge to their reference

values. Similar remarks can be done for the new DGU Σ̂DGU
[6] : as shown

in Figure 3.14c, there is a short transient at the time of the load change,
that is effectively compensated by the control action. These experiments
highlight that controllers C[i], i = 1, . . . , 6 may ensure very good tracking of
the reference signal and robustness to unknown load dynamics even without
using compensators C̃[6] and N[6].

Unplugging of a DGU

Next, we simulate the disconnection of Σ̂DGU
[3] so that the considered mG

assumes the topology shown in Figure 3.15. The set of neighbors of DGU 3
is N3 = {1, 4}. Because of the disconnection, there is a change in the local
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Figure 3.13: Scenario 2 - Performance of PnP decentralized voltage con-
trollers during the hot plug-in of DGU 6 at time t = 4 s.

dynamics Âjj of DGUs Σ̂DGU
[j] , j ∈ N3. Then, each controller C[j], j ∈ N3

must be redesigned (see Section 3.3.6). Consequently, we run Algorithm 3.1
for computing the vectors K1 and K4 according to the new mG topology.
Since Algorithm 3.1 never stops in Step (A), the disconnection of Σ̂DGU

[3] is
allowed. Figure 3.16a shows that the closed-loop model of the new QSL
microgrid is still asymptotically stable while Figure 3.16b shows the closed-
loop transfer function F (s) of the mG.

Hot-unplugging of Σ̂DGU
[3] is performed at time t = 12 s. Even for the

unplugging operation, by means of bumpless control transfer, load voltages
of DGUs Σ̂DGU

[j] , j ∈ N3 show small deviation from their respective refer-

ence values when the hot-unplugging of DGU 3 (and, hence, updating of
controllers C[1] and C[5]) is performed at t = 12 s (see Figure 3.17). We
stress again that stability of the mG is preserved despite the disconnection
of Σ̂DGU

[3] .
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Figure 3.14: Scenario 2 - Performance of PnP decentralized voltage con-
trollers in terms of robustness to an abrupt change of load resistances at
time t = 8 s.

3.5 Final comments

In this chapter, we presented a scalable control design approach for guar-
anteeing voltage stability in DC mGs. The main feature of the proposed
methodology is that, whenever a DGU is plugged in or out, only a limited
number of local controllers must be updated. This is due to the fact that
the synthesis of each individual regulator uses only information about the
corresponding DGU and lines connected to it.

In the next chapter, an extension of the methodology described in the
above sections is provided. Notably, we will present a procedure for design-
ing local stabilizing voltage regulators in a totally decentralized fashion,
i.e. exploiting the knowledge of the corresponding DGU model only. Other
pieces of information from neighboring subsystems (such as the value of the
power lines connected to them) will not be required anymore.

We also observe that primary PnP voltage controllers can be coupled



3.5. Final comments 61

DG 1

DG 2

DG 4

DG 3 DG 5

DG 6

Figure 3.15: Scenario 2 - Scheme of the mG composed of 5 DGUs after the
unplugging of Σ̂DGU

[3] at time t = 12 s.
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Figure 3.16: Features of PnP controllers for Scenario 2 after the unplugging
of DGU 3.

with higher level regulators so as to orchestrate mutual coordination among
DGUs and achieve advanced behaviors. As discussed in Remark 3.4, these
tasks are addressed by letting an higher control layer compute suitable volt-
age set-points for primary PnP regulators. In Chapter 5, we show how to
build a secondary consensus-based control layer on top of a primary voltage
regulation scheme, with the aim of guaranteeing stable current sharing and
voltage balancing.
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Figure 3.17: Scenario 2 - Performance of PnP decentralized voltage con-
trollers during the hot-unplugging of DGU 3 at t = 12 s.

3.6 Appendix

3.6.1 Proof of Theorem 3.1

Proof. We treat each impedance Lij in (3.32) as a singular perturbation
parameter and exploit results in [Abe86] on multi-parameter singular per-
turbations. More specifically, we want to apply Theorem 5 in [Abe86]. We
denote with N̄ the cardinality of E , assign indices 1, . . . , N̄ to pairs in E , i.e.
E = {e1, e2, . . . , eN̄}, and define x̃ = [Ie1 , . . . , IeN̄ ]T . Let also I ∈ R|V|×N̄
be the incidence matrix of the directed graph G with nodes V and edges E .
This means that, assuming ej = (k, `), row j of I has the elements

I =


−1 if i = k
1 if i = `
0 otherwise

By neglecting exogenous disturbances d̂[i] in (3.31) (as they do not affect
stability properties), model (3.31) and (3.32) can be written as

˙̂x = Â◦x̂ + B̂◦x̃ (3.41a)

E(ε) ˙̃x = Ĉ◦x̂ + D̂◦x̃ (3.41b)

where

Â◦ = diag
[
Â◦1, . . . , Â

◦
N

]
, B̂◦ = diag

[
B̂◦1 , . . . , B̂

◦
N

]
, Ĉ◦ = IT⊗

[
1 0 0

]
,

D̂◦ = diag
[
−Re1 , . . . ,−ReN̄

]
, ε = [Le1 , . . . , LeN̄ ], E(ε) = diag

[
Le1 , . . . , LeN̄

]
.
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In these matrices, Le and Re are the inductance and resistance of line e ∈ E
(see (3.32)) and, from (3.31), blocks B̂◦i , i, . . . , N are defined as

B̂◦i =
1

Cti

 1Ni

0N̄
0N̄

 ,
where 0N̄ is a row vector composed of N̄ zeros and the vector 1Ni ∈ R1×N̄

has all zero entries, except those in positions j ∈ Ni, which are equal to
one.

We now verify assumptions of Theorem 5 in [Abe86]. First, we check
that matrix D̂◦ is strongly block D-stable relative to the multi index (1, . . . , 1)
made of N̄ elements. From Definitions 1 and 3 in [Abe86], characterizing
strong block D-stability amounts to verify that there exists µ > 0 such
that, for all matrices Q ∈ RN̄×N̄ verifying

||Q||F =

 N̄∑
i=1

N̄∑
j=1

(Qij)
2

 1
2

< µ

(||·||F denotes the Frobenius norm) and for all θi > 0, i = 1, . . . , N̄ , the
matrices Θ(D̂◦ + Q), Θ = diag [θ1, . . . , θN̄ ] are Hurwitz (i.e. their eigen-
values have strictly negative real part). To prove this property, we use the
Gershgorin circle theorem [GVL12]. Note that

Θ(D̂◦ +Q) =

=


θ1(−Re1 +Q11) θ1Q12 . . . θ1Q1N̄

θ2Q21 θ2(−Re2 +Q22) . . . θ2Q2N̄
...

. . .
. . .

...
θN̄QN̄1 θN̄QN̄2 . . . θN̄ (−ReN̄ +QN̄N̄ )

.

Let B(c, ρ) ⊂ C be the closed ball of center c and radius ρ. Then, all

eigenvalues of Θ(D̂◦+Q) are in the set
⋃N̄
i=1 B(ci, ρi) where ci = θi(−Rei +

Qii) and ρi =
N̄∑
j=1
j 6=i

|θiQij |. Each ball B(ci, ρi) collects only complex numbers

with strictly negative real parts if

θi(−Rei +Qii) < −ρi. (3.42)
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Since θi > 0, condition (3.42) is equivalent to θi(−Rei +Qii) < θi
N̄∑
j=1
j 6=i

|Qij |

and hence

N̄∑
j=1
j 6=i

|Qij | < Rei −Qii. (3.43)

We show now that all conditions (3.43) for i ∈ V are fulfilled if µ =
1√
N̄

min
ei∈E

Rei . Indeed, if µ > ||Q||F , then

min
ei∈E

Rei >
√
N̄ ||Q||F ≥

√
N̄ ||Qi,•||2, (3.44)

where Qi,• is row i of matrix Q and ||Qi,•||2 = (
∑N̄

j=1

(
Qi,j)

2
) 1

2 is its Eu-

clidean norm. Denoting with ||Qi,•||1 =
∑N̄

j=1 |Qi,j | the 1-norm of Qi,•, we
have √

N̄ ||Qi,•||2 ≥ ||Qi,•||1 ≥ Qii +

N̄∑
j=1
j 6=i

|Qij |. (3.45)

From (3.44) and (3.45) we have

min
ei∈E

Rei −Qii >
N̄∑
j=1
j 6=i

|Qij |.

that implies (3.43) for all i ∈ V.
The last assumption of Theorem 5 in [Abe86] that has to be verified is

that the quasi-stationary model given by (3.41a) and

Ĉ◦x̂ + D̂◦x̃ = 0 (3.46)

is asymptotically stable, i.e. the matrix Â◦−B̂◦(D̂◦)−1Ĉ◦ is Hurwitz. Note
that (3.46) is the system of scalar equations

RejIej = V` − Vk, if ej = (k, `) (3.47)

for all ej ∈ E .
Since (3.47) are the QSL conditions (3.4a), the model given by (3.41a)

and (3.46) is the closed-loop QSL-mG model, which is asymptotically stable
by assumption. Then, the application of Theorem 5 of [Abe86] completes
the proof.
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3.6.2 How interactions among DGUs can destabilize a DC
mG

In this appendix, we show why designing decentralized stabilizing con-
trollers without counteracting the contribution of coupling terms on the
total system energy computation may lead to mG instability when DGUs
are interconnected.

We consider two DGUs with dynamics

Σ̂[1] :

{
˙̂x[1](t) = Â11x̂[1](t) + Â12x̂[2](t) + B̂1u[1](t) + M̂1d̂[1](t)

y[1](t) = Ĉ1x̂[1](t)

Σ̂[2] :

{
˙̂x[2](t) = Â22x̂[2](t) + Â21x̂[1](t) + B̂2u[2](t) + M̂2d̂[2](t)

y[2](t) = Ĉ2x̂[2](t)

(3.48)

where x̂[i] = [Vi, Iti, vi]
T , u[i] = Vti, y[i] = Vi, d̂[i] = [ILi, Vref,i]

T , i = 1, 2,
are, respectively, the state, the control input, the controlled variable and
the exogenous input. Matrices in (3.48) have the same structure as in
Section 3.2.1; hence, since in this example N1 = {2} and N2 = {1}, one
has

Aii =

− 1
RijCti

1
Cti

− 1
Lti

−Rti
Lti

 , i = 1, 2. (3.49)

Electrical parameters, which are similar to those in [SDVG14a], are re-
ported in Table 3.1.

In the sequel, we separately analyze the impact of couplings on the
mG stability when DGUs are locally stabilized via either Linear Quadratic
Regulators (LQRs) or through pole placement design.

Linear Quadratic Regulators

We design decentralized controllers for each DGU assuming that they are
dynamically decoupled, hence Â12 = Â21 = 0. Since the state x̂[i] is mea-
sured, we can design the following state-feedback decentralized controllers

u[1](t) = K1x̂[1](t)

u[2](t) = K2x̂[2](t)
(3.50)
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whereK1 andK2 are LQRs computed using the weightsQ1 = diag[10−3, 10−2, 103],
R1 = 0.1 and Q2 = diag[10−2, 10−2, 104], R2 = 10−2, respectively. Control
laws (3.50) guarantee that the closed-loop decoupled DGUs[

˙̂x[1](t)
˙̂x[2](t)

]
=

[
Â11 0

0 Â22

] [
x̂[1](t)

x̂[2](t)

]
+

[
B̂1K1 0

0 B̂2K2

] [
x̂[1](t)

x̂[2](t)

]
=

=

[
Â11 + B̂1K1 0

0 Â22 + B̂2K2

]
︸ ︷︷ ︸

ÂD
CL

[
x̂[1](t)

x̂[2](t)

]
(3.51)

are asymptotically stable. Indeed, eig(ÂD
CL) = eig(Â11+B̂1K1) ∪ eig(Â22+

B̂2K2) is the set

{−9.0629·103,−0.0143·103,−0.1945·103}∪{−9.9717·103,−0.0486·103,−0.6064·103}.

Considering coupling terms, the closed-loop system becomes[
˙̂x[1](t)
˙̂x[2](t)

]
=

[
Â11 Â12

Â21 Â22

] [
x̂[1](t)

x̂[2](t)

]
+

[
B̂1K1 0

0 B̂2K2

] [
x̂[1](t)

x̂[2](t)

]
=

=

[
˙̂x[1](t)
˙̂x[2](t)

] [
Â11 + B̂1K1 Â12

Â21 Â22 + B̂1K1

]
︸ ︷︷ ︸

ÂC
CL

[
˙̂x[1](t)
˙̂x[2](t)

]
.

(3.52)

Since the controllers have been designed without taking into account inter-
actions among DGUs, we cannot ensure that system (3.52) is asymptotically
stable. In fact, for the proposed example, we have

eig(ÂC
CL) = {−19077,20 + 560i,20− 560i,−690,−161,−11}.

Pole placement design

An alternative method for designing decentralized stabilizing controllers
(3.50), is to assume again Â12 = Â21 = 0 and place the closed-loop poles
of subsystems Σ̂[1] and Σ̂[2] (i.e. the eigenvalues of ÂD

CL) in the left half

plane. In particular, since the pair (Âii, B̂i) is controllable (see Proposition
3.2), we can set

eig(Â11 + B̂1K1) = {−8.5190 · 103,−530.4,−1.46}
eig(Â22 + B̂2K2) = {−9.3734 · 103,−571.9,−1.44}

(3.53)
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and derive gains K1 and K2 satisfying (3.53) by using the algorithm in
[KNVD85]. Obviously, the obtained controllers stabilize the closed-loop
decoupled subsystems (3.51). However, they cannot guarantee that the
interconnection of DGUs 1 and 2 (i.e. system (3.52)) is asymptotically
stable. Indeed, we get

eig(ÂC
CL) = {−18803,23 + 2319i,23− 2319i,−237,−0.16,−0.13}.

Converter parameters

DGU Rt (Ω) Lt (mH) Ct (mF)

Σ̂[1] 0.1 1.8 2.2

Σ̂[2] 0.2 1.7 2

Power line parameters

R12 (Ω) L12 (µH)

0.05 1.8

Table 3.1: Electrical parameters of the mG with dynamics (3.48).

3.6.3 Bumpless control transfer

Since the controller C[i] and the compensators C̃[i] and N[i] are dynamic sys-
tems, it is necessary to make sure that their states are correctly initialized
when a switch of the controller (i.e. a plugging in or unplugging operation)
is required. Assuming that the control switch is made at time t̄, we call
uprec,i the control signal produced by the controller C[i] up to time t̄. It
might happen that the updated controller will provide a control variable
ui(t̄) different from uprec,i(t̄). Therefore, it is necessary to ensure there is
no substantial difference in the two values. This property is called bump-
less control transfer and it has been first studied when switching between
manual and Proportional Integral Derivative (PID) control [ÅH06].

A bumpless control transfer implementation of PnP local controller for
system Σ̂DGU

[i] is illustrated in Figure 3.18.

For the sake of simplicity, from now on, we drop the index i of the
subsystem. Moreover, we assume all switches are in the position shown in
Figure 3.18 at times t < t̄ (so that the input uprec(t) is supplied to the
system Σ̂DGU ) and they close simultaneously at time t̄ (hence providing
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Figure 3.18: Bumpless control transfer scheme. The three switches close
simultaneously at time t̄.

the new input u(t) to Σ̂DGU from t = t̄ on). The PnP controller activated
at time t̄ is given by

K = [kv kc ki].

Notice that the integrator embedded in the DGU model for zeroing the
steady-state error is replaced by block A (highlighted in red in Figure 3.18),
where the polynomial Γ(s) has to be chosen such that ki

Γ(0) > 0 and such
that the transfer function

Ψ(s) =
Γ(s)− s

Γ(s)

is asymptotically stable and realizable. Indeed, under these assumptions,
the transfer function from the input to the output of block A is ki

s when
the switch is closed.

In block A, a switch is present so that the signal is either ũprec (up to
time t̄) or û (right after t̄). The variable ũprec is given by

ũprec = uprec − kvV − kcIt − ũ, (3.54)

where ũ is the additional input produced by compensator N(s), computed
with respect to the dynamics of the system after the commutation (N(s) =
0 if such a compensation is not implemented). Notice that, choosing ũprec
as in (3.54) guarantees u = uprec right before the commutation. Moreover,
we highlight that since there could be a transient in the û response to track
signal ũprec, it is fundamental to wait for the two signals to become similar3

3This eventually happens because, by construction, Ψ(s) is an asymptotically stable
transfer function with unit gain.
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before proceeding with the commutation. In this way, we avoid jumps in
the control variable. Furthermore, if an optional pre-filter of the reference
is implemented, at time t̄, it is also necessary to commute from transfer
function C̃prec(s) to C̃(s), since each plugging in or unplugging operation
of other DGU in the overall mG lead to a variation of the local dynamics
of the considered subsystem Σ̂DGU

i (see the term
∑

j∈Ni
− 1
RijCti

in (3.10)).

3.6.4 Overall model of a microgrid composed of N DGUs


ẋ[1]

ẋ[2]

ẋ[3]
...

ẋ[N ]

 =


A11 A12 A13 . . . A1N

A21 A22 A23 . . . A2N

A31 A32 A3l . . . A3N
...

...
...

. . .
...

AN1 AN2 AN3 . . . ANN


︸ ︷︷ ︸

A


x[1]

x[2]

x[3]
...

x[N ]

+

+


B1 0 . . . 0

0 B2
. . .

...
...

. . .
. . . 0

0 . . . 0 BN


︸ ︷︷ ︸

B


u[1]

u[2]
...

u[N ]

+


M1 0 . . . 0

0 M2
. . .

...
...

. . .
. . . 0

0 . . . 0 MN


︸ ︷︷ ︸

M


d[1]

d[2]
...

d[N ]



y[1]

y[2]

y[3]
...

y[N ]

 =



C1 0 0 . . . 0

0 C2 0
. . .

...

0 0 C3
. . . 0

...
. . .

. . .
. . . 0

0 . . . 0 0 CN


︸ ︷︷ ︸

C


x[1]

x[2]

x[3]
...

x[N ]




z[1]

z[2]

z[3]
...

z[N ]

 =



H1 0 0 . . . 0

0 H2 0
. . .

...

0 0 H3
. . . 0

...
. . .

. . .
. . . 0

0 . . . 0 0 HN


︸ ︷︷ ︸

H


y[1]

y[2]

y[3]
...

y[N ]

 .
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3.6.5 Electrical and simulation parameters of Scenario 1 and
2

We provide all the electrical and simulation parameters of scenarios 1 and
2 (described in Sections 3.4.1 and 3.4.2, respectively).

Parameter Symbol Value

DC power supply VDC 100 V
Output capacitance Ct∗ 2.2 mF

Converter inductance Lt∗ 1.8 mH
Inductor + switch loss resistance Rt∗ 0.2 Ω

Switching frequency fsw 10 kHz

Power line inductance L12 1.8 µH
Power line resistance R12 0.05 Ω

Table 3.2: Scenario 1 - Electrical setup of DGU ∗ ∈ {1, 2} and line param-
eters.

DGU Resistance Rt (Ω) Capacitance Ct (mF) Inductance Lt (mH)

Σ̂DGU
[1] 0.2 2.2 1.8

Σ̂DGU
[2] 0.3 1.9 2.0

Σ̂DGU
[3] 0.1 1.7 2.2

Σ̂DGU
[4] 0.5 2.5 3.0

Σ̂DGU
[5] 0.4 2.0 1.2

Σ̂DGU
[6] 0.6 3.0 2.5

Table 3.3: Scenario 2 - Buck filter parameters for DGU Σ̂DGU
[i] , i =

{1, . . . , 6}.
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Connected DGUs (i, j) Resistance Rij (Ω) Inductance Lij (µH)

(1, 2) 0.05 2.1
(1, 3) 0.07 1.8
(3, 4) 0.06 1.0
(2, 4) 0.04 2.3
(4, 5) 0.08 1.8

(1, 6) 0.1 2.5
(5, 6) 0.08 3.0

Table 3.4: Scenario 2 - Power line parameters.

DGU Voltage reference (V)

Σ̂DGU
[1] 47.9

Σ̂DGU
[2] 48

Σ̂DGU
[3] 47.7

Σ̂DGU
[4] 48

Σ̂DGU
[5] 47.8

Σ̂DGU
[6] 48.1

Table 3.5: Scenario 2 - Voltage references for DGUs Σ̂DGU
[i] , i = {1, . . . , 6}.

Parameter Symbol Value

DC power supply VDC 100 V
Switching frequency fsw 10 kHz

Table 3.6: Scenario 2 - Common parameters of DGU Σ̂DGU
[i] , i = {1, . . . , 6}.
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4.1 Introduction

In this chapter, we propose a variant of the PnP design algorithm presented
in Chapter 3. The main difference is that the computation of local con-
trollers does not require anymore the knowledge of power line parameters
(hence the name line-independent design), and the only global quantity
used in the synthesis algorithm is a scalar parameter. This feature leads to
the following advantages.
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1. If a DGU wants to plug -in or -out, its neighboring subsystems do
not have to update their local controllers. This considerably simplifies
the plug-in/-out protocol described in Section 3.3.6. In fact, switching
of local regulators and bumpless control architectures (for avoiding
abrupt changes in the control variables) are now unnecessary.

2. The design procedure proposed in this chapter allows to better comply
with privacy requirements of energy markets where DGUs can have
different owners. Indeed, the addition of new DGUs does not require
other stakeholders to disclose models of their own DGUs or change
their operation.

For the presented design procedure, the structure of each local controller
is identical to the one proposed in Section 3.3.2. Also LMI problems asso-
ciated with control design are similar to those in Chapter 3. However, the
proof of asymptotic stability of the closed-loop system is substantially dif-
ferent and more involved. In particular, it is based on the fact that, under
QSL approximations, electrical coupling among DGUs can be described by
graph Laplacians [DB13]. This feature, together with the use of structured
Lyapunov functions and the LaSalle Invariance principle [Kha01], allows us
to derive the desired result.

The chapter is structured as follows. Results from Chapter 3 about
the DGU model and the structure of PnP controllers are summarized in
Sections 4.2 and 4.3.1. The new PnP approach for designing local voltage
regulators is described in Sections 4.3.2, 4.3.3 and 4.3.4, along with the
stability analysis of the closed-loop system. Simulations in PSCAD using a
6-DGUs mG and validating the PnP capabilities of the proposed controllers
are discussed in Section 4.4.

4.2 DC microgrid model

We start by considering the same DGU model described in Section 3.2,
whose electrical scheme is depicted in Figure 3.2. Sets V, Ni (i ⊂ V) and
E are defined as in Chapter 3 (see Section 3.2.2). The topology of the mG
is described by the undirected graph1 Gel with nodes V and edges E .

Under QSL approximations of power lines, the dynamics of DGU i in

1See Appendix A.2 for basic definitions in graph theory.
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(3.9) can be written in terms of state-space variables as follows

ΣDGU
[i] :


ẋ[i](t) = Aiix[i](t) +Biu[i](t) +Mid[i](t) + ξ[i](t)

y[i](t) = Cix[i](t)

z[i](t) = Hix[i](t)

(4.1)

We recall that x[i] = [Vi, Iti]
T is the state, u[i] = Vti the control input,

d[i] = ILi the exogenous input, and z[i] = Vi the controlled variable of
the system. Moreover, y[i](t) = x[i] is the measurable output, whereas the
term ξ[i] =

∑
j∈Ni

Aij(x[j]−x[i]) accounts for the couplings with each DGU
j ∈ Ni.
Remark 4.1. Model (4.1) is identical to the one provided in Chapter 3 (see
(3.6)), except that all coupling terms have been now embedded in variables
ξ[i].

The matrices of ΣDGU
[i] are obtained from (3.9) as

Aii =

 0 1
Cti

− 1
Lti

−Rti
Lti

 , Aij =

 1
RijCti

0

0 0

 , Bi =

 0

1
Lti

 ,
Mi =

[− 1
Cti

0

]
, Ci =

[
1 0
0 1

]
, Hi =

[
1 0

]
,

and the overall QSL-mG model is given by (3.11).

4.3 Design of stabilizing voltage controllers

4.3.1 Structure of local controllers

Following the approach described in Section 3.3.1, in order to track constant
references zref (t) = z̄ref (when d(t) = d̄ is constant), we augment the mG
model with integrators, thus obtaining the following DGU model

Σ̂DGU
[i] :


˙̂x[i](t) = Âiix̂[i](t) + B̂iu[i](t) + M̂id̂[i](t) + ξ̂[i](t)

ŷ[i](t) = Ĉix̂[i](t)

z[i](t) = Ĥix̂[i](t)

(4.2)

where x̂[i] = [xT [i], v[i]]
T ∈ R3 is the state, d̂[i] = [d[i], zref [i]]

T ∈ R2 collects
the exogenous signals, and

ξ̂[i] =
∑
j∈Ni

Âij(x̂[j] − x̂[i]).
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Matrices in (4.2) are defined as follows

Âii =

[
Aii 0
−HiCi 0

]
, Âij =

[
Aij 0
0 0

]
, B̂i =

[
Bi
0

]
,

Ĉi =

[
Ci 0
0 1

]
, M̂i =

[
Mi 0
0 1

]
, Ĥi =

[
Hi 0

]
.

As in Proposition 3.2, one can show that the positivity of the electrical
parameters guarantees that the pair (Âii, B̂i) is controllable. Therefore,
system (4.2) can be stabilized.

The overall augmented system, obtained from (4.2), has the form (3.17).
We equip each DGU Σ̂DGU

[i] with the same decentralized state-feedback
controller described in Section 3.3.2 and shown in Figure 3.2, i.e.

C[i] : u[i](t) = Kix̂[i](t). (4.3)

Once again, we stress that, in general, decentralized design of local reg-
ulators can fail to guarantee voltage stability of the whole mG, if couplings
among DGUs are neglected during the design phase (see the examples in
Appendix 3.6.2).

In the sequel, we show how structured Lyapunov functions can be used
to ensure asymptotic stability of the whole mG, when DGUs are equipped
with controllers (4.3).

4.3.2 Conditions for stability of the closed-loop microgrid

In absence of coupling terms ξ̂[i](t), one would like to guarantee asymptotic
stability of the nominal closed-loop subsystem

˙̂x[i](t) = (Âii + B̂iKi)︸ ︷︷ ︸
Fi

x̂[i](t) + M̂id̂[i](t). (4.4)

By direct calculation, it can be shown that Fi has the following structure

Fi =

 0 f12,i 0

f21,i f22,i f23,i

f13,i 0 0

 =

=


0 1

Cti
0

(ki,1−1)
Lti

(ki,2−Rti)
Lti

ki,3
Lti

−1 0 0

 =

 0 F12,i

F21,i F22,i

 .
(4.5)
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From Lyapunov theory, asymptotic stability of (4.4) is equivalent to the
existence of a Lyapunov function Vi(x̂[i]) = x̂T[i]Pix̂[i], where Pi ∈ R3×3,

P = P T > 0 and

Qi = F Ti Pi + PiFi (4.6)

is negative definite. In presence of nonzero coupling terms, we will show
that asymptotic stability can be achieved under two additional conditions.
The first one is the use of the following separable Lyapunov functions

Vi(x̂[i]) = ηix̂
2
[i],1 + [x̂[i],2 x̂[i],3]P22,i[x̂[i],2 x̂[i],3]T ,

where

P22,i =

[
p22,i p23,i

p23,i p33,i

]
. (4.7)

This requirement is summarized in the next assumption.

Assumption 4.1. Gains Ki, i ∈ V are designed such that, in (4.6), the
positive definite matrix Pi has the structure

Pi =

 ηi 01×2

02×1 P22,i

 , (4.8)

where the entries of P22,i are arbitrary and ηi > 0 is a local parameter.

The second condition concerns the values of parameters ηi.

Assumption 4.2. Given a constant σ̄ > 0 (a parameter common to all
DGUs), parameters ηi in (4.8) are given by

ηi = σ̄Cti, ∀i ∈ V. (4.9)

The next result shows that, under Assumption 4.1, Lyapunov theory
certifies, at most, marginal stability of (4.4).

Proposition 4.1. Under Assumption 4.1, the matrix Qi cannot be negative
definite. Moreover, if

Qi ≤ 0, (4.10)

then Qi has the following structure:

Qi =

 0 0 0

0 q22,i q23,i

0 q23,i q33,i

 =

 0 01×2

02×1 Q22,i

 . (4.11)
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Proof. By direct computation, from (4.5) and (4.8) one has q11,i = 0, show-
ing that Qi cannot be negative definite, as its first minor is not negative.
Moreover, it is known that, if a negative semidefinite matrix has a zero
element on its diagonal, then the corresponding row and column have zero
entries. This basic property can be shown as follows. If Q ∈ Rn×n is sym-
metric and negative semidefinite, then xTQx ≤ 0, ∀x ∈ Rn. Partitioning
Q and x as

Q =

 Q11 Q̃T

Q̃ Q̂

 and x =

 x11

x̃

 ,
one obtains

xTQx = x2
11Q11 + 2x11Q̃T x̃+ x̃T Q̂x̃.

Without loss of generality, assume Q11 = 0. Then, for any x with x̃ = 0 and
x11 6= 0, one has xTQx = 0, i.e. x is a maximizer of xTQx. Consequently,
it must hold d

dx

(
xTQx

)
= 0, i.e. 2Qx = 0, yielding{

Q11x11 + Q̃T x̃ = 0

Q̃x11 + Q̂x̃ = 0

Using Q11 = 0 and x̃ = 0, the previous linear system reduces to Q̃x11 = 0,
that implies Q̃ = 0. Concluding, (4.10) implies (4.11).

Consider now the overall closed-loop mG model
˙̂x(t) = (Â + B̂K)x̂(t) + M̂d̂(t)

ŷ(t) = Ĉx̂(t)

z(t) = Ĥx̂(t)

(4.12)

obtained by combining (3.17) and (4.3), with K = diag [K1, . . . ,KN ]. Con-
sider also the collective Lyapunov function

V (x̂) =

N∑
i=1

Vi(x̂[i]) = x̂TPx̂, (4.13)

where P = diag [P1, . . . , PN ]. One has ˙V (x̂) = x̂TQx̂, with

Q = (Â + B̂K)TP + P(Â + B̂K).
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A consequence of Proposition 4.1 is that, under Assumption 4.1, the matrix
Q cannot be negative definite. At most, one has

Q ≤ 0. (4.14)

Moreover, even if (4.10) holds for all i ∈ V, the inequality (4.14) might be
violated because of the nonzero coupling terms Âij in matrix Â. The next
result shows that this cannot happen under Assumption 4.2.

Proposition 4.2. Under Assumptions 4.1 and 4.2, if gains Ki are com-
puted in order to fulfill (4.10) for all i ∈ V, then (4.14) holds.

Proof. The proof is given in Appendix 4.6.1.

Remark 4.2. The proof of Proposition 4.2 reveals that, under Assumption
4.2, interactions between local Lyapunov functions Vi(x̂[i]) due to terms Âij,
i 6= j, take the form of a weighted Laplacian matrix [GR01] associated with
the graph Gel. Furthermore, differently from the idea in Section 3.3.2 of
nullifying interactions by choosing ηi > 0 in (4.8) sufficiently small, here
(4.14) holds true even if parameters ηi are large.

The next goal is to show asymptotic stability of the mG using the
marginal stability result in Proposition 4.2 together with LaSalle invariance
theorem. The main result is then given in the next theorem.

Theorem 4.1. If Assumptions 4.1 and 4.2 are fulfilled, the graph Gel is
connected, (4.10) holds, and k3,i 6= 0, ∀i ∈ V, then the origin of (4.12) is
asymptotically stable.

Proof. The proof is presented in Appendix 4.6.2.

4.3.3 Line-independent controller computation through LMIs

We now show how to compute matrices Ki and Pi via numerical optimiza-
tion so as to comply with assumptions of Theorem 4.1. In order to enforce,
when possible, a margin of robustness, controllers Ki should be designed
such that inequality

(Âii + B̂iKi)
TPi + Pi(Âii + B̂iKi) + Γ−1

i ≤ 0, (4.15)

with Γi = diag [γ1i, γ2i, γ3i], is verified for γki ≥ 0, k = 1, 2, 3, and matrix
Pi structured as in (4.8). The design of the local controller C[i] is performed
solving the following problem.
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Problem 4.1. For parameters ηi chosen as in (4.9), compute a vector Ki

such that Assumption 4.1 is verified and (4.10) holds.

Consider the following optimization problem

Oi : min
Yi,Gi,γ1i,
γ2i,γ3i,βi,ζi

α1iγ1i + α2iγ2i + α3iγ3i + α4iβi + α5iζi

Yi =

η−1
i 0 0
0 • •
0 • •

 > 0 (4.16a)

[
YiÂ

T
ii +GTi B̂

T
i + ÂiiYi + B̂iGi Yi
Yi −Γi

]
≤ 0 (4.16b)[

−βiI GTi
Gi −I

]
< 0 (4.16c)[

Yi I
I ζiI

]
> 0 (4.16d)

γ1i, γ2i, γ3i ≥ 0, βi > 0, ζi > 0 (4.16e)

where αji, j = 1 . . . , 5 represent positive weights and • are arbitrary en-
tries. We notice that all constraints in (4.16) are LMIs. Therefore, the
optimization problem Oi is convex and can be solved in polynomial time
[BEGFB94]. The next Lemma, already proved in Section 3.3.2, establishes
the relations between problem Oi and matrices Ki and Pi.

Lemma 4.1. Problem Oi is feasible if and only if Problem 4.1 has a solu-
tion. Moreover, Ki and Pi in (4.6) are given by Ki = GiY

−1
i , Pi = Y −1

i

and

||Ki||2 <
√
βiζi.

Next, we discuss the key features of the proposed decentralized control
approach. We first notice that constraints in (4.16) depend upon local fixed
matrices (Âii, B̂i) and local design parameters (α1i, α2i, α3i, α4i, α5i). It
follows that the computation of controller C[i] is completely independent
from the computation of controllers C[j], j 6= i, up to the knowledge of
the common parameter σ̄ in (4.9). Secondly, (4.16) is independent of pa-
rameters of electrical lines connecting DGUs. Thirdly, as discussed after
Proposition 4.2, differently from the method discussed in Chapter 3, the
design procedure does not require that parameters ηi are sufficiently small,
so as to reduce the coupling among DGUs (see term (b) in (3.24)). Fi-
nally, if problems Oi, i ∈ V, are feasible, then the overall closed-loop mG
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is asymptotically stable, provided that k3,i 6= 0, i ∈ V (see Theorem 4.1).
The latter condition was always fulfilled in all numerical experiments we
performed. Algorithm 4.1 collects the steps of the overall design procedure.
For improving the closed-loop bandwidth of each controlled DGU and the
rejection of current disturbances ILi, it also includes the optional design of
pre-filters C̃[i] and disturbance compensators N[i] (see Section 3.3.4).

Algorithm 4.1 Design of controller C[i] and compensators C̃[i] and N[i] for

subsystem Σ̂DGU
[i]

Input: DGU Σ̂DGU
[i] as in (4.2)

Output: Controller C[i] and, optionally, pre-filter C̃[i] and compensator N[i]

(A) Find Ki solving the LMI problem (4.16). If it is not feasible, or k3,i 6= 0
cannot be obtained, stop (the controller C[i] cannot be designed).
Optional step

(B) Design an asymptotically stable local pre-filter C̃[i] and compensator
N[i] (see Section 3.3.4).

Remark 4.3. In order to assess the conservativeness of the LMIs (4.16),
we solved it for σ̄ = 10 and for various combinations of parameters (Rt, Lt, Ct)
characterizing the DGUs, checking when they are infeasible. In particular,
we derived from the literature meaningful parameter ranges for converters
typically used in LV DC mGs [SDVG14b, HGK+16, DGVS14]. Numerical
results, provided in Appendix 4.6.3, show that the LMIs are always feasible.
Furthermore, in the same Appendix, we compare the presented method with
the one in Chapter 3 in terms of feasibility of the corresponding problems.
Notably, we provide an example where LMIs (4.16) are feasible while the
design procedure in described in Chapter 3 is not.

4.3.4 Plug-and-play operations

We describe the operations that are required for adding and removing
DGUs, while preserving the stability of the mG. As a starting point, we
consider an mG composed of subsystems Σ̂DGU

[i] , i ∈ V, equipped with local

controllers C[i] and compensators C̃[i] and N[i], i ∈ V produced by Algorithm
4.1. We also assume that the graph Gel is connected.
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Plug-in operation. Assume that a new DGU Σ̂DGU
[N+1] sends a plug-in re-

quest. Let NN+1 be the set of DGUs that will be connected to Σ̂DGU
[N+1]. The

design of controller C[N+1] and compensators C̃[N+1] and N[N+1] requires
Algorithm 4.1 to be executed. Differently from the plugging in protocol
described in Chapter 3, there is no need to redesign controllers C[j] and

compensators C̃[j] and N[j], ∀j ∈ NN+1, because matrices Âjj , j ∈ NN+1

do not change. Therefore, if Algorithm 4.1 does not stop in Step (A) when
computing controllers C[N+1], the plug-in of Σ̂DGU

[N+1] is allowed.

Unplugging operation. Assume now that DGU k ∈ V, needs to be
disconnected from the network. Differently from the method in Chapter 3,
since the unplugging of subsystem Σ̂DGU

[k] does not change the matrix Âjj

of each Σ̂DGU
[j] , j ∈ Nk, DGU k can be removed without redesigning the

local controllers C[j], j /∈ Nk. in view of Theorem 4.1, stability is preserved
as long as the new graph Gel is still connected.

Remark 4.4. According to the above PnP operations, whenever a DGU
i wants to be plugged in or out, no updating of controllers of neighboring
DGU j, j ∈ Ni is required. As a consequence, there is no need to equip
each local controller with bumpless control scheme described in Chapter 3
for ensuring smooth behaviors of the control variable when controllers are
switched in real-time.

4.4 Simulation results

In order to compare the new PnP design methodology with the one de-
scribed in Chapter 3, we performed the same simulation discussed in Sce-
nario 2 in Section 3.4.2. Notably, we consider the meshed mG in Figure
3.10 composed of 6 DGUs, which have non-identical electrical parameters
(reported in Table 3.3). As in Section 3.4.2, voltage references for the DGUs
are set to slightly different values (see Table 3.5 in Appendix 3.6.5), so as
to make the case study more realistic, whereas the constant ratio σ̄ in (4.9)
has been chosen equal to 10.

We assume that DGUs 1-5 supply 10 Ω, 6 Ω, 4 Ω, 2 Ω and 3 Ω resistive
loads, respectively. In PnP controllers C[i], no compensators C̃i and Ni have
been used.

At t = 0, DGUs 1-5 are interconnected and equipped with controllers
C[i], i = 1, . . . , 5, produced by Algorithm 4.1.
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Plug-in of a new DGU

At time t = 4 s, we simulate the connection of DGU Σ̂DGU
[6] with Σ̂DGU

[1]

and Σ̂DGU
[5] (see Figure 3.10). According to the plug-in protocol described

in Section 4.3.4, one must run Algorithm 4.1 only for designing C[6]. As the
Algorithm does not stop in Step (A), the plug-in of DGU 6 is performed
and, most importantly, no update of the controllers C[j], j ∈ N6, with
N6 = {1, 5} is required. Figure 4.1 illustrates voltages at PCCs 1, 5 and
6 around the plug-in time. We notice very small deviations of the output
signals of DGUs 1, 5 and 6 from their references when DGU 6 is plugged-in.
Moreover, since no switch of controller is performed, these perturbations
are much smaller than those in the corresponding simulations in Chapter
3 (see the comparison in Figure 4.4).
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(a) Voltage at PCC1.

time (s)
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(b) Voltage at PCC5.

time (s)
4 4.2 4.4 4.6

V
6

(V
)

48

48.1

(c) Voltage at PCC6.

Figure 4.1: Performance of PnP decentralized voltage controllers during
the plug-in of DGU 6 at time t = 4 s.
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Robustness to unknown load changes

At t = 8 s, the load of DGU 6 is decreased from 8 Ω to 4 Ω. As shown
in Figures 4.2a-4.2b, right after t = 8 s the voltages at PCC1 and PCC5

exhibit oscillations that disappear after very short transients. A visual
comparison with the voltages in Figure 20 of [SDVG14b], where primary
droop controllers have been used to compensate load changes, shows that
transients in Figure 4.2 are very short.
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(a) Voltage at PCC1.
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(b) Voltage at PCC5.
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(c) Voltage at PCC6.

Figure 4.2: Performance of PnP decentralized voltage controllers in terms
of robustness to an abrupt change of load resistances at time t = 8 s.

Unplugging of a DGU

At time t = 12 s, we perform the disconnection of Σ̂DGU
[3] (see Figure 3.15).

As described in Section 4.3.4, no controller update is required for the DGUs
that were connected to it (i.e. DGUs 1 and 4). Figure 4.3 shows the
voltages at PCCs 1 and 4 around the unplugging event. Since controllers
C[1] and C[4] do not need to be updated, subsystems Σ̂DGU

[j] , j ∈ N3, show
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deviations from their respective references which are smaller than those
shown in Figure 3.17 (see the comparison in Figure 4.5).

time (s)
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(a) Voltage at PCC1.
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(b) Voltage at PCC4.

Figure 4.3: Performance of PnP decentralized voltage controllers during
the unplugging of DGU 3 at t = 12 s.

4.5 Final comments

In this chapter, we presented a totally decentralized control design approach
for voltage stabilization in DC mG. Differently from the PnP methodology
discussed in Chapter 3, the synthesis of local regulators does not require
the knowledge of power line parameters. Compared to the line-dependent
approach described in the previous chapter, line-independent design has
several advantages, in terms of practical implementation, performance, and
feasibility of the LMI tests providing stabilizing controllers Ki. In fact, we
have seen that, since the computation of each regulator requires the model
of the corresponding DGU only, there is no need anymore to update neigh-
boring controllers (and to implement bumpless architectures for avoiding
abrupt changes in the control variables) when subsystems are plugged in-
/out. Consequently, we have smaller voltage deviations with respect to
those shown by PnP line-dependent regulators, in correspondence of addi-
tion/removal operations of DGUs. As regards the advantages at the design
stage, they are detailed in Appendix 4.6.3.

In the next chapter, we show how to couple the primary control layers
presented in Chapters 3 and 4 with a secondary control layer ensuring stable
current sharing and voltage balancing.
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(f) Line-independent approach: voltage
at PCC6.

Figure 4.4: Visual comparison between the performance of the line-
dependent and the line-independent approach when the plug-in of a DGU
is performed.
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Figure 4.5: Visual comparison between the performance of the line-
dependent and the line-independent approach when the unplugging of a
DGU is performed.

4.6 Appendix

4.6.1 Proof of Proposition 4.2

Proof. Consider the following decomposition of matrix Â

Â = ÂD + ÂΞ + ÂC, (4.17)
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where ÂD = diag
[
Âii, . . . , ÂNN

]
collects the local dynamics only, while

ÂΞ = diag
[
Âξ1, . . . , ÂξN

]
with

Âξi =


− ∑
j∈Ni

1
RijCti

0 0

0 0 0

0 0 0

 ,
takes into account the dependence of each local state on the neighboring
DGUs. We want to prove (4.14), that, according to the decomposition
(4.17), is equivalent to show that

(ÂD + B̂K)TP + P(ÂD + B̂K)+︸ ︷︷ ︸
(a)

2ÂΞP︸ ︷︷ ︸
(b)

+ ÂT
CP + PÂC︸ ︷︷ ︸

(c)

≤ 0. (4.18)

By means of (4.10), matrix (a) = diag [Q1, . . . , QN ] is negative semidefinite.
Now, let us study the contribution of (b) + (c) in (4.18). Matrix (b), by
construction, is block diagonal and collects on its diagonal blocks in the
form

2ÂξiPi =

−2
∑
j∈Ni

η̃ij 0 0

0 0 0
0 0 0

 , (4.19)

where

η̃ij =
ηi

RijCti
. (4.20)

As regards matrix (c), we have that each the block in position (i, j) is equal
to {

PiÂij + ÂTjiPj if j ∈ Ni
0 otherwise

where

PiÂij + ÂTjiPj =


η̃ij + η̃ji 0 0

0 0 0

0 0 0

 . (4.21)
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From (4.19) and (4.21), we notice that only the elements in position (1, 1)
of each 3×3 block of (b)+(c) can be different from zero. Hence, in order to
evaluate the positive/negative definiteness of the 3N ×3N matrix (b)+(c),
we can equivalently consider the N ×N matrix

L =



−2
∑
j∈N1

η̃1j η̄12 . . . η̄1N

η̄21
. . .

. . .
...

...
. . . −2

∑
j∈NN−1

η̃N−1j η̄N−1N

η̄N1 . . . η̄NN−1 −2
∑

j∈NN

η̃Nj


, (4.22)

obtained by deleting the second and third row and column in each block of
(b) + (c). One has L =M+ G, where

M =



−2
∑
j∈N1

η̃1j 0 . . . 0

0 −2
∑
j∈N2

η̃2j
. . .

...

...
. . .

. . . 0
0 . . . 0 −2

∑
j∈NN

η̃Nj


and

G =


0 η̄12 . . . η̄1N

η̄21 0
. . .

...
...

. . .
. . . η̄N−1N

η̄N1 . . . η̄NN−1 0

 . (4.23)

Notice that each off-diagonal element η̄ij in (4.23) is equal to

η̄ij =

{
(η̃ij + η̃ji) if j ∈ Ni
0 otherwise

(4.24)

At this point, from Assumption 4.2, one obtains that η̃ij = η̃ji (see (4.20))
and, consequently, η̄ij = η̄ji = 2η̃ij (see (4.24)). Hence, L is symmetric and
has non negative off-diagonal elements and zero row and column sum. It
follows that −L is a Laplacian matrix [GR01]. As such, it verifies L ≤ 0
by construction. Concluding, we have shown that (4.18) holds.
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4.6.2 Proof of Theorem 4.1

The proof of Theorem 4.1 exploits some preliminary results (derived in the
next two propositions) that characterize the states x̂ yielding ˙V (x̂) = 0.

Proposition 4.3. Let Assumptions 4.1 and 4.2 hold and let us define
hi(vi) = vTi Q22,ivi, where Q22,i is defined in (4.11) and vi ∈ R2. If (4.10)
is guaranteed, and k3,i 6= 0, then

hi(v̄i) = 0⇐⇒ v̄i ∈ Ker(F22,i).

Proof. For the sake of simplicity, in the sequel we omit the subscript i. We
start by proving that

v̄ ∈ Ker(F22) =⇒ h(v̄) = 0. (4.25)

To this aim, we first replace (4.5) and (4.8) in (4.6), thus obtaining

Q22 = FT22P22 + P22F22. (4.26)

Then, we write

h(v̄) = v̄TQ22v̄ = 2v̄TP22 F22v̄︸︷︷︸
=02×1

= 0.

Next, we show that

h(v̄) = 0 =⇒ v̄ ∈ Ker(F22). (4.27)

We start by reformulating the condition h(v̄) = 0 in (4.27). In particular,
from basic linear algebra, we have the following orthogonal decomposition
induced by F22: R4 = Im(FT22) ⊕ Ker(F22), which allows us to write any
vector v ∈ R4 as

v = v̂ + ṽ, v̂ ∈ Im(FT22), ṽ ∈ Ker(F22). (4.28)

Since we are assuming that Q is negative semidefinite and structured as in
(4.11), vectors v̄ satisfying h(v̄) = 0 also maximize h(·). Hence,

h(v̄) = 0⇐⇒ dh

dv
(v̄) = Q22v̄ = 02×1, (4.29)

which, decomposing v̄ as in (4.28), provides

h(v̄) = 0⇐⇒ Q22v̂ + Q22ṽ︸ ︷︷ ︸
=02×1

= 02×1. (4.30)
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Notice that Q22ṽ = 02×1 in (4.30) follows from the fact that ṽ ∈ Ker(F22).
In particular, from (4.25), we know that h(ṽ) = 0, and hence condition
(4.29) must hold for v̄ = ṽ. At this point, using (4.30), we can rewrite
(4.27) as

Q22v̂ = 02×1 =⇒ v̄ ∈ Ker(F22),

which, since v̄ ∈ Ker(F22)⇐⇒ v̂ = 02×1, finally becomes

Q22v̂ = 02×1 =⇒ v̂ = 02×1. (4.31)

In summary, we have shown that, in order to prove (4.27), one can equiva-
lently demonstrate (4.31). To this aim, we parametrize v̂ ∈ Im(FT22) as

Im(FT22) =

{
FT22

[
y1

y2

]
, y1, y2 ∈ R

}
which, recalling (4.5), becomes

Im(FT22) =

{[
f22 0
f23 0

] [
y1

y2

]
, y1, y2 ∈ R

}
=

{[
f22

f23

]
y1, y1 ∈ R

}
.

Hence, we rewrite Q22v̂ = 02×1 in (4.31) as Q22[f22 f23]T y1 = 02×1, that,
by means of (4.26), implies

P22F22

[
f22

f23

]
y1 = −FT22P22

[
f22

f23

]
y1. (4.32)

Replacing (4.5) and (4.7) in (4.32), we get{
p22

(
f2

22 + f2
23

)
y1 = −f2

22p22y1 − f22f23p23y1

p23

(
f2

22 + f2
23

)
y1 = −f22f23p22y1 − f2

23p23y1

(4.33)

Notice that (4.33) is verified if y1 = 0 (i.e. if v̂ = 02×1). To conclude the
proof, we just need to show that y1 = 0 is the only solution of (4.33). To
this purpose, we proceed by contradiction and assume that there exists a
y1 6= 0 fulfilling (4.33). This leads to{

p22

(
2f2

22 + f2
23

)
= −f22f23p23

p23

(
f2

22 + f2
23

)
= −f22f23p22 − f2

23p23

(4.34a)

(4.34b)

Let us consider (4.34a) and let us assume, for the time being,

f22 6= 0 and f23 6= 0. (4.35)
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We will show later that these two conditions are satisfied if k3 6= 0. Since it
also holds p22 > 02, we have −f22f23p23 > 0, which implies p23 6= 0. Then,
we derive

p22 = − f22f23p23

2f2
22 + f2

23

and replace it in (4.34b), obtaining

2p23f
2
23 + p23f

2
22 =

f2
22f

2
23p23

2f2
22 + f2

23

. (4.36)

Finally, by direct calculation, (4.36) amounts to

4f2
22f

2
23 + 2f4

23 + 2f4
22 = 0,

which is true if and only if f22 = f23 = 0. However, from (4.35), these
conditions are never verified.

The last step is to show that (4.35) holds. Recalling that electrical
parameters are positive, one has k3 6= 0 =⇒ f23 6= 0 (see (4.5)). Moreover,
Q ≤ 0, implies Q22 ≤ 0 (in fact, as the last row of F22 is zero, Q22 cannot
be negative definite). Now, if f22 = 0 holds, we would have q22 = 0, which
implies q23 = q32 = 0. However, by construction, we have q23 = q32 =
f23p22 +f22p23 (see (4.11)), which is never zero if f22,i = 0, because f23 6= 0
and p22 6= 0.

Proposition 4.4. Let gi(wi) = wTi Qiwi. Under the same assumptions of
Proposition 4.3, only vectors w̄i in the form

w̄i =
[
αi βi δiβi

]T
with αi, βi ∈ R, and δi = −k2,i−Rti

k3,i
, fulfill

gi(w̄i) = w̄Ti Qiw̄i = 0. (4.37)

Proof. In the sequel, we omit the subscript i. From (4.11), g(w) is equal
to

[
w1 wT2

]  0 01×2

02×1 Q22

[ w1

w2

]
, (4.38)

2Matrix P is structured as in (4.8) and it is positive definite. Therefore, P22 > 0,
which implies that the first minor of P22 (i.e. p22) must be strictly positive.
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where w2 ∈ R2. Since Q is negative semidefinite, the vectors w̄ satisfying
(4.37) also maximize g(·). Hence, it must hold dg

dw (w̄) = Qw̄ = 03×1, i.e. 0 01×2

02×1 Q22

[ w̄1

w̄2

]
= 03×1. (4.39)

It is easy to show that, by direct calculation, a set of solutions to (4.37)
and (4.39) is composed of vectors in the form

w̄ =
[
α 0 0

]T
, α ∈ R. (4.40)

Moreover, from (4.38), we have that (4.37) is also verified if there exist
vectors

w̃ =
[
w1 wT2

]T
, w2 6= [0 0]T , (4.41)

such that w1 ∈ R and

wT2Q22w2 = 0. (4.42)

From Proposition 4.3, we know that vectors w2 fulfilling (4.42) belong to
Ker(F22), which, recalling (4.5), can be explicitly computed as follows

Ker(F22) =

{
x ∈ R2 :

[
f22 f23

0 0

]
x = 02×1

}
=

=

{
x ∈ R2 : x = [ β δβ ]T , β ∈ R, δ = −k2 −Rt

k3

}
.

(4.43)

The proof ends by merging (4.40) and (4.41), with w2 as in (4.43).

Proof of Theorem 4.1. From Proposition 4.2, ˙V (x̂) is negative semidef-
inite (i.e. (4.14) holds). We want to show that the origin of the mG is also
attractive using the LaSalle invariance Theorem [Kha01]. For this purpose,
we first compute the set R = {x ∈ R3N : xTQx = 0}, which, by means of
the decomposition in (4.18), coincides with

R = {x : xT ((a) + (b) + (c)) x = 0}
= {x : xT (a)x = 0}︸ ︷︷ ︸

X1

∩{x : xT [(b) + (c)] x = 0}︸ ︷︷ ︸
X2

. (4.44)

In particular, the last equality follows from the fact that (a) and (b) + (c)
are negative semidefinite matrices (see the proof of Proposition 4.2). We
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first focus on the elements of set X2. Since matrix (b) + (c) can be seen
as an “expansion” of the Laplacian (4.22), with zero entries on the second
and third row of each 3 × 3 block, we have that, by construction, vectors
in the form

x̃ = [ 0 x̃12 x̃13 | · · · | 0 x̃N2 x̃N3 ]T , x̃i2, x̃i3 ∈ R, ∀i ∈ V, (4.45)

belong to X2. Moreover, since the kernel of the Laplacian matrix of a
connected graph contains only vectors with identical entries [GR01], it also
holds

{x̄ = x̄ [ 1 0 0 | · · · | 1 0 0 ]T , x̄ ∈ R} ⊂ X2, (4.46)

with x̄ ∈ R. Hence, by merging (4.45) and (4.46), we have that

X2 = {x : x = [ x̄ x̃12 x̃13 | · · · | x̄ x̃N2 x̃N3 ]T , x̄, x̃i2, x̃i3 ∈ R}.

Next, we characterize the set X1. By exploiting Proposition 4.4, it follows
that

X1 = {x : x = [ α1 β1 δ1β1 | · · · | αN βN δNβN ]T , αi, βi ∈ R}, (4.47)

and, from (4.44),

R = {x : x = [ ᾱ β1 δ1β1 | · · · | ᾱ βN δNβN ]T , ᾱ, βi ∈ R}. (4.48)

At this point, in order to conclude the proof, we need to show that the
largest invariant set M ⊆ R is the origin. To this purpose, we consider
(4.4), include coupling terms ξ̂[i], set d̂[i] = 0 and choose as initial state

x̂(0) = [x̂1(0)| . . . |x̂N (0)]T ∈ R. We aim to find conditions on the elements
of x̂(0) that must hold for having ˙̂x ∈ R. One has, using (4.5)

˙̂xi(0) = Fix̂i(0) +
∑
j∈Ni

Âij (x̂j(0)− x̂i(0))︸ ︷︷ ︸
=03×1

=

=



βi
Cti

k1,i−1
Lti

ᾱ+
k2,i −Rti

Lti
βi +

k3,i

Lti
δiβi︸ ︷︷ ︸

=0

−ᾱ

 =


βi
Cti

k1,i−1
Lti

ᾱ

−ᾱ

 ,
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for all i ∈ V. From (4.48), ˙̂x(0) ∈ R if and only if, it holds
βi
Cti

= ρ̄

k1,i − 1

Lti
δiᾱ = −ᾱ,

(4.49a)

(4.49b)

for i ∈ V and ρ̄ ∈ R. Condition (4.49b) is fulfilled if either

ᾱ = 0 (4.50)

or

δi = − Lti
k1,i − 1

. (4.51)

Let us first focus on (4.51). From Proposition 4.1, we have that q12,i =
q13,i = 0. By direct computation, one has that

q12,i =
(k1,i − 1)

Lti
p22,i − p23,i +

ηi
Cti

. (4.52)

Moreover, we show that

p22,i = −δip23,i. (4.53)

Notably, since (4.10) and (4.11) hold, vectors v̄i satisfying hi(v̄i) = v̄Ti Q22,iv̄i =
0 also maximize hi(·), i.e.

hi(v̄i) = 0⇐⇒ dh

dv
(v̄i) = Q22,iv̄i = 02×1. (4.54)

From Proposition 4.3, we know that only vectors v ∈ Ker(F22) verify (4.54).
Hence, (4.53) can be obtained by solving (4.54) with vectors defined as in
(4.43).

By exploiting (4.53), substituting (4.9) in (4.52), and setting q12,i = 0,
we get

k1,i = 1− Lti
δi
− σ̄ Lti

p22,i
. (4.55)

Then, if we replace (4.55) in (4.51), we obtain

δi =
δip22,i

p22,i + σ̄δi
=

δi

1 + σ̄ δi
p22,i

,
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which is true if σ̄ δi
p22,i

= 0. This latter condition, however, is never verified

since Lti in (4.51) is always positive, as well as p22,i and σ̄. It follows that
(4.49b) has only one solution, which is (4.50). Therefore, by considering
also the solutions of (4.49a), we find that ˙̂x(0) ∈ R only if x̂(0) ∈ S, where

S = {x = [ 0 ρ̄Ct1 ρ̄δ1Ct1 | . . . | 0 ρ̄CtN ρ̄δNCtN ]T , ρ̄ ∈ R}. (4.56)

Furthermore, it must hold M ⊆ S. Then, in order to characterize M , we
pick an initial state x̃(0) = [x̃1(0)| . . . |x̃N (0)]T ∈ S and impose ˙̃x(0) ∈ S.
This translates into the equations

˙̃xi(0) = (Âii + B̂iKi)x̃i(0) +
∑
j∈Ni

Âij (x̃j(0)− x̃i(0))︸ ︷︷ ︸
=0

=

= (Âii + B̂iKi)

 0
ρ̄Cti
ρ̄δiCti

 =


ρ̄

0

0

 ,
for all i ∈ V. It follows that ˙̃x(0) ∈ S only if ρ̄ = 0. Since M ⊆ S, from
(4.56) one has M = {0}.

4.6.3 Feasibility of the LMI test (4.16)

This Appendix summarizes the studies we performed in order to (i) evalu-
ate the applicability of our line-independent control design procedure, and
(ii) provide a proper comparison between the proposed approach and the
method discussed in Chapter 3. For both the analyses, LMIs have been
solved in MatLab/Yalmip, using SeDuMi solver.

Line-independent design: conservativity of the plug-in test (4.16)

In order to better assess the applicability of the line-independent control
design procedure (and to provide a guideline to the choice of σ̄ in (4.9)),
we performed the following extensive analysis. For σ̄ = 10, we solved
LMI (4.16) considering different values of the DGU converter parameters
(Rt, Lt, Ct), and check when LMIs are infeasible.

Figure 4.6 shows combinations of these parameters for which the LMI
are feasible (blue circles), and infeasible (red stars). Although we used wide
ranges for converters parameters, numerical results reveal that, for values
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typically found in the literature for LV DC mGs3 (i.e. the points within
the green box in Figure 4.6), LMI are always feasible. This confirms the
validity of the proposed control design methodology.

Figure 4.6: LMI results for combinations of Rt, Lt and Ct. Blue circles
indicate feasible LMIs while red stars correspond to infeasible ones. The
green box encloses typical DGU parameters for LV DC mGs.

Comparison with the line-dependent approach in Chapter 3

In order to compare the proposed design methodology with the one in
Chapter 3, we show the existence of a limit on the maximum number of
subsystems which can be connected to the PCC of a given DGU (say DGU
i), before obtaining the infeasibility of the i-th local line-dependent plug-in
test (i.e. the LMI (3.26)).

We start by considering the interconnection of DGUs 1 and 2 at stage
k = 1 (see Figure 4.7a). Then, at each stage k > 1, we solve the LMI
(3.26) for DGU 1 (using η = 10−4), connecting one DGU at a time to
PCC1, thus creating the star topology shown in Figure 4.7b. Electrical
and optimization parameters used for this analysis are reported in Table
4.1.

Numerical results reveal that the feasibility test for DGU 1 fails when
the plug-in of DGU 4 is requested. This is due to the fact that the design of

3See, e.g., [HGK+16], [SDVG14a] and [DGVS14].
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each local controller depends on the parameters of power lines connecting
the corresponding unit to its neighbors. On the other hand, in the previous
paragraph we have shown that, for σ̄ = 10, the line-independent LMIs
(4.16) are always feasible.

DG 1 DG 2

R12 L12

(a) Starting mG (k = 1).

DG 1 DG 2

DG 3

DG 4

DG 5

DG 6

DG 7

R12 L12
R
13

L 13

R14

L14

R
15

L
15

R16L16

R
17

L 17

(b) Example of star-connected mG after
6 stages (k = 6).

Figure 4.7: Finding the maximum number of DGUs which can be connected
to PCC1 before obtaining a plug-in request failure.
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Converter parameters

DGU Rt (Ω) Lt (mH) Ct (mF)

Σ̂[1] 0.2 1.8 2.2

Σ̂[2] 0.3 2 2.2

Σ̂[3] 0.1 2.2 2.2

Σ̂[4] 0.5 3 2.2

Power line parameters

Connected DGUs (i, j) Resistance Rij (Ω) Inductance Lij(µH)

(1, 2) 0.05 2.1
(1, 3) 0.07 1.8
(1, 4) 0.03 2.5

Optimization parameters

α1 α2 α3

10−6 10−2 10−3

Table 4.1: Electrical and optimization parameters.



100
Chapter 4. Line-independent plug-and-play control of DC

microgrids



Chapter 5

Consensus-based secondary
control layer for stable

current sharing and voltage
balancing in DC microgrids

Contents

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . 102

5.1.1 Microgrid modeling and primary control . . . . . 105

5.2 Secondary control based on consensus algorithms106

5.3 Modeling and analysis of the complete system . 108

5.3.1 Unit-gain approximation of primary control loops 108

5.3.2 First-order approximation of primary control loops115

5.3.3 Plug-and-play design of secondary control . . . . 119

5.4 Validation of secondary controllers . . . . . . . . 120

5.4.1 Simulation results . . . . . . . . . . . . . . . . . 120

5.4.2 Experimental results . . . . . . . . . . . . . . . . 122

5.5 Final comments . . . . . . . . . . . . . . . . . . . 125

5.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . 127

5.6.1 Proof of Proposition 5.3 . . . . . . . . . . . . . . 127

5.6.2 Proof of Theorem 5.1 . . . . . . . . . . . . . . . 128

5.6.3 Proof of Theorem 5.2 . . . . . . . . . . . . . . . 130

5.6.4 On the eigenvalues of Q = LDM . . . . . . . . . 132

5.6.5 Electrical and simulation parameters . . . . . . 135



102
Chapter 5. Consensus-based secondary control layer for stable

current sharing and voltage balancing in DC microgrids

5.1 Introduction

In this chapter, we present a secondary consensus-based control layer for
achieving advanced behaviors in DC mGs. As discussed in Section 1.2,
besides voltage stability, other challenges must be addressed. The first de-
sirable goal is current sharing, i.e. to make DGUs compensate constant
load currents proportionally to given parameters (e.g., the converter rat-
ings) and independently of the mG topology and line impedances. We
recall that current sharing prevents the circulation of unregulated currents,
which, in turn, may overload generators and lead to failures or system
blackout.

Another objective is voltage balancing, i.e. to keep the average out-
put voltage of DGUs close to a prescribed level. Indeed, load devices are
designed to be supplied by a nominal reference voltage: it is therefore im-
portant to ensure that the voltages at the load buses are spread around
this value.

Current sharing is often realized through secondary-level consensus al-
gorithms, tightly coupled with primary controllers; therefore, stability of
the overall closed-loop system cannot be given for granted. In [BDL14,
MNLD15], a secondary-level consensus scheme is employed to guarantee
current sharing while allowing for safe addition/removal of DGUs in mGs
with a specific topology (i.e. with a common load, supplied by all the
sources). However, the design of local regulators ensuring overall closed-
loop stability is not scalable, since it requires to be performed in a central-
ized fashion. Consensus-based secondary controllers for mGs with more
general topologies have been presented in [SDA+14]; also in this case, how-
ever, stability of the closed-loop mG equipped with primary and secondary
control layers is studied through centralized analysis (i.e. root locus), or
via simulations.

Synthesis algorithms of this kind become prohibitive for large mGs. More-
over, they are unsuitable for mGs with flexible structure because, to pre-
serve voltage stability, the plugging in or out of DGUs might require to
update all local controllers in the mG. This motivated the development
of scalable design procedures for local controllers as the ones presented in
Chapters 3, 4 and in [ZD15].

In the following, a systematic method for the scalable design of sec-
ondary controllers in DC mGs with general topologies is presented. We
assume that the proposed higher-level scheme is built on top of a primary
stabilizing voltage control layer and we aim to achieve current sharing and
voltage balancing in a stable fashion. Similarly to [ZD15], at the secondary
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level we exploit consensus filters requiring DGUs to communicate in real-
time over a connected network. There is, however, a key difference between
our approach and the one presented in [ZD15]. In the latter work, authors
assume distributed sources to be controllable current sources; on the con-
trary, we aim to make primary-controlled DGUs behave as ideal voltage
generators. The main advantage of our assumption is that, in principle,
by properly choosing the reference values for the output voltages of each
DGU, one can always regulate the currents that flow through the power
lines, even when internal load conditions change. In this way, unwanted
circulating currents (which may open the safety breakers in order to pre-
vent damages on the devices) can be avoided. On the other hand, if all the
DGUs in the mG are treated as ideal current sources, the primary regu-
lation scheme alone cannot guarantee such control on the flowing currents
[ZD15].

At the modeling level, we propose two abstractions for the DGUs con-
trolled with primary voltage regulators: unit-gain and first-order transfer
function approximation. The first one is used only for tutorial purposes
and for developing basic mathematical tools that will allow us to extend
the key results to the second (more realistic) approximation of the primary
loops.

Another contribution of this chapter is the study of the eigenstructure
of the product of three matrices (LDM), where (i) L and M are the graph
Laplacians associated with the electrical and the communication graphs,
respectively, and (ii) D is a diagonal positive definite matrix defining the
desired ratios between balanced currents. While several studies focused on
the properties of the product of stochastic matrices (see e.g. [JLM03]),
which are central in discrete-time consensus, to our knowledge weighted
products of Laplacians received much less attention. In particular, we show
that, under two different conditions, LDM preserves some key features of
Laplacian matrices. In this case, the asymptotic achievement of current
sharing and voltage balancing in a globally exponentially stable fashion is
proved.

The chapter is organized as follows. In Section 5.1.1, we briefly sum-
marize the adopted electrical model of DGUs and PnP primary controllers.
The secondary control layer is developed and analyzed in Sections 5.2 and
5.3. In particular, Section 5.3.3 shows that, similarly to the regulators in
Chapters 3 and 4, secondary controllers can be designed in a PnP fashion.
Section 5.4.1 demonstrates current sharing and voltage balancing through
simulations in Simulink/PLECS, where non-idealities of real converters and
lines have been taken into account. Finally, in Section 5.4.2 we present ex-
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perimental tests performed on a real DC mG.

Preliminary notation and definitions. The average of a vector v ∈ Rn
is 〈v〉 = 1

n

∑n
i=1 vi. We denote with H1 the subspace composed of all

vectors with zero average [BM05, FTBG06] i.e. H1 = {v ∈ Rn : 〈v〉 = 0}.
The space orthogonal to H1 is H1

⊥. It holds H1
⊥ = {α1n, α ∈ R} and

dim(H1
⊥) = 1. Moreover, the decomposition Rn = H1 ⊕H1

⊥ is direct, i.e.
each vector v ∈ Rn can always be written in a unique way as

v = v̂ + v̄ with v̂ ∈ H1 and v̄ ∈ H1
⊥. (5.1)

Consider the matrix A ∈ Rn×n. With A(H1|H1) we indicate the linear map
A : H1 → H1 (i.e. the restriction of the map A : Rn → Rn to the subspace
H1). For a subspace M ⊂ Rn, we denote with PM (v) the projection
of v ∈ Rn on M . The subspace M ⊂ Rn is said to be A-invariant if
v ∈M ⇒ Av ∈M .

Let A ∈ Rn×n be a matrix with real eigenvalues. The inertia of A
is the triple i(A) = (i+(A), i−(A), i0(A)), where i+(A) is the number of
positive eigenvalues of A, i−(A) is the number of negative eigenvalues of
A, and i0(A) is the number of zero eigenvalues of A, all counted with their
algebraic multiplicity [HH91].

Laplacian matrices1 have the key properties summarized in the next
proposition [AC05, GR01, BM05].

Proposition 5.1. For a weakly connected graph2 G with weights wi > 0,
the associated Laplacian matrix L ∈ Rn×n has the following properties:

(i) it has non positive off-diagonal elements;

(ii) λ1(L) ≥ · · · ≥ λn−1(L) ≥ 0 = λn;

(iii) Ker(L) = H1
⊥ and Im(L) = H1;

(iv) L(H1|H1) is invertible.

Proof. Points (i)-(iii) are shown, e.g. in [AC05, GR01]. Point (iv) has been
shown in [BM05] with the framework of partial difference equations. Next,
we provide a proof based on linear algebra only. We start noticing that
the linear map L(H1|H1) invertible if it is surjective and injective [Lan87].

1See Appendix A.2 for the definition of Laplacian matrix of a graph.
2See Appendix A.2 for basic definitions in graph theory.
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First, we show the surjectivity of L onH1. By construction, rank(L) = n−1
because

rank(L) = dim(Im(L)) = dim(Rn)− dim(H1
⊥) = n− 1.

Moreover, since L is symmetric, each column of L has zero sum and hence
is a vector in H1. Since Im(L) is the column span, then Im(L) ⊆ H1.
Since dim(H1) = n − 1, one obtains Im(L) = H1. This proves that the
map L(H1|H1) is surjective.
Next, we prove that L(H1|H1) is also injective. By definition, this holds if

∀b ∈ H1 ∀x, y ∈ H1 (Lx = b and Ly = b)⇒ x = y.

Now, Lx = Ly = b implies that L(x−y) = 0. It means that x−y ∈ Ker(L),
therefore ∃α ∈ R such that x − y = α1n. However, since x − y ∈ H1,
x− y = α1n is verified only for α = 0; this leads to x = y.

5.1.1 Microgrid modeling and primary control

As in Chapters 3 and 4, we consider a DC mG composed of N DGUs. Each
DGU has the electrical scheme is shown in Figure 3.2 and is modeled by the
set of equations 3.9. All the state, input and output variables are defined
as in Section 3.2.

In the sequel, we will assume that DGUs are equipped with decentral-
ized primary controllers guaranteeing voltage stability. This goal can be
achieved using, for instance, PnP regulators presented in Chapters 3 and
4.

For modeling the interaction of multiple DGUs, we represent the mG
with a digraph Gel = (V, Eel,Wel) (see the example in Figure 5.1), where
(i) each node is a DGU with a decentralized primary voltage controller
and local current load, (ii) edges eel1 , . . . , e

el
M (M = |Eel|) are power lines

whose orientation define a reference direction for positive currents, (iii) the
weight weli of each edge eeli connecting nodes j and k is equal to the line
conductance3 1

Rjk
, and (iv) N = |V|. Moreover, we indicate with N el

i and

N c
i the sets of neighbors of node i ∈ V in the electrical and communication

graph, respectively.

Remark 5.1. We recall that local PnP controllers can be enhanced with
pre-filters so as to shape in a desired way the transfer function F[i](s) be-
tween voltages Vref,i and Vi represented in Figure 3.2 (see Section 3.3.4).

3Line inductances Lij are neglected as we assume QSL approximations.
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The closed-loop transfer function F[i](s) has 3 poles and in the sequel it will
be approximated by a unit gain and a first-order system. The first approx-
imation will be used mainly for tutorial reasons. The second one is very
mild at low and medium frequencies, as it can be noticed, e.g., from the
Bode plots of F[i](s) in Figure 3.8d.

DG 1 DG 2

DG 4DG 3 DG 5

Figure 5.1: Graph representation of an mG.

5.2 Secondary control based on consensus algo-
rithms

Most of the existing primary stabilizing controllers (including the PnP reg-
ulators proposed in Chapters 3 and 4), have the goal of turning DGUs
into controlled voltage generators, i.e. to approximate, as well as possible,
the identity Vi = Vref,i. As such, they do not ensure current sharing and
voltage balancing, defined in the sequel.

Definition 5.1. For constant load currents ILi, i = 1, . . . , N , current shar-
ing is achieved if, at steady state, the overall load current is proportionally
shared among DGUs, i.e. if

Iti
Isti

=
Itj
Istj

for all i, j ∈ V, (5.2)

where Isti > 0 are scaling factors.

We recall that current sharing is desirable in order to avoid situations
in which some DGUs are not able to supply local loads, thus requiring
power from other DGUs. A very common goal is to make DGUs share
the total load current proportionally to their generation capacity. This can
be obtained by measuring the output currents in per-unit (pu), i.e. setting
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each scaling factor Isti in (5.2) equal to the corresponding DGU rated current
(see Section 5.4.1 for an example). On the other hand, if the scaling factors
are all identical, the current sharing condition becomes

Iti = 〈IL〉 i = 1, . . . , N, (5.3)

where IL = [IL1, IL2, . . . , ILN ]T is the vector of the local load currents.

Assumption 5.1. Voltage references are identical for all DGUs, i.e. Vref,i =
Vref , ∀i ∈ V.

Definition 5.2. Under Assumption 5.1, voltage balancing is achieved if

〈V〉 = Vref . (5.4)

where vector V = [V1, V2, . . . , VN ]T collects the PCC voltages.

In order to guarantee current sharing and voltage balancing, we use a
consensus-based secondary control layer. Consensus filters are commonly
employed for achieving global information sharing or coordination through
distributed computations [OSM04, Bulns]. In our case, as shown in Figure
5.2, we adopt the following consensus scheme for adjusting the references
of each primary voltage regulator

˙∆Vi(t) = −kI
N∑

j=1,j 6=i
aij

(
Iti(t)

Isti
− Itj(t)

Istj

)
, (5.5)

where aij > 0 if DGUs i and j are connected by a communication link
(aij = 0, otherwise), and the coefficient kI > 0 is common to all DGUs.
The use of consensus protocols has been thoroughly studied for networks
of agents with simple dynamics, e.g. simple integrators [OSM04, Bulns],
with the goal of proving convergence of individual states to a common
value. In our case, however, (5.5) is interfaced with the mG dynamics and
convergence of currents Iti to the same value does not trivially follow from
standard consensus theory. This property will be rigorously analyzed in
Section 5.3.

In the sequel, we assume bidirectional communication, i.e. aij = aji.
The corresponding communication digraph is Gc = (V, Ec,Wc), where (i, j) ∈
Ec ⇐⇒ aij > 0, and the i-th diagonal element of Wc coincides with the
weight of edge eci , i.e. ajk if eci links nodes j and k. Considerations on the
topologies of Gc and Gel guaranteeing stable current sharing and voltage
balancing are detailed in Section 5.3.1. In all cases, however, the following
standing assumption must hold.
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Assumption 5.2. The graphs Gel and Gc are weakly connected4.

From a system point of view, the collective dynamics of the group of
DGUs following (5.5) can be expressed as

∆̇V = − kIL︸︷︷︸
L

DIt, (5.6)

where ∆V = [∆V1, . . . ,∆VN ]T = V−Vref , Vref = [Vref,1, Vref,2, . . . , Vref,N ]T ,

It = [It1, It2, . . . , ItN ]T , D = diag
[

1
Ist1
, . . . , 1

IstN

]
= diag [d1, . . . , dN ] and L

is Laplacian matrix of Gc. Note that L is the Laplacian matrix of Gc with
Wc replaced by kIWc.

5.3 Modeling and analysis of the complete system

The hierarchical control scheme of a DGU equipped with primary and sec-
ondary regulators is shown in Figure 5.2. For studying the behavior of the
closed-loop mG, we first approximate DGUs under the effect of primary
controllers by unit gains (Section 5.3.1) and prove that current sharing is
achieved in a stable way. We also provide conditions for voltage balanc-
ing. Results derived in this simple setting will be instrumental in studying
the more complex scheme where primary control loops are abstracted into
first-order transfer functions (Section 5.3.2).

5.3.1 Unit-gain approximation of primary control loops

By approximating primary loops with ideal unit gains, we have the relations
Vi = Vref,i + ∆Vi, ∀i ∈ V.

Figures 5.3a-5.3b show the resulting control scheme, used for deriving
the dynamics of the overall mG as a function of the inputs IL and Vref .
Starting from the left-hand side of Figure 5.3a, we have, in order, (5.6) and

V = ∆V + Vref . (5.7)

Then, from basic circuit theory, we derive the relation between the vector
of voltages V and the vector of line currents I` = [I`1, . . . , I`M ]T as

I` = −WBTV, (5.8)

4See Appendix A.2 for the definition of weakly connected digraph.
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Figure 5.2: Complete hierarchical control scheme of DGU i.

where W and B are the weight and the incidence matrix of Gel, respectively.
Next, we get

It = IL −BI` (5.9)

and, merging equations (5.6)-(5.9), we finally obtain

Σ : ∆̇V = −LDBWBT︸ ︷︷ ︸
M

∆V − LDIL − LDBWBT︸ ︷︷ ︸
M

Vref

= −Q∆V − LDIL −QVref

(5.10)

where M = L(Gel) = BWBT is the Laplacian matrix of the electrical
network and Q = LDM.

Properties of the matrix Q

The matrix Q in (5.10) captures the interaction of electric couplings and
communication. From (5.10), it governs the voltage dynamics and hence
the achievement of current sharing and voltage balancing. Notice that Q is
obtained pre- and post- multiplying a diagonal matrix by two Laplacians
(L and M, respectively). It follows that Q is not a Laplacian matrix itself
because it might fail to be symmetric and have positive off-diagonal en-
tries, even if weights of Gel and Gc are positive. Nevertheless, in the sequel
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we provide two distinct conditions under which Q preserves some key fea-
tures of Laplacian matrices. Before proceeding, we introduce the following
preliminary result.

Vref
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VN
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�VN
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(c) First-order approximation of the i-th
primary loop.

Figure 5.3: Hierarchical control scheme and Primary Loop (PL) approxi-
mations.

Proposition 5.2. It holds PH1(DMH1) = H1.

Proof. From Proposition 5.1-(iv), we know that M(H1|H1) is invertible,
hence surjective. Then,

DMH1 = DH1.

We now study the projection map PH1 : DH1 → H1. Since D is invertible,
we have that dim(DH1) = dim(H1) = N − 1. Therefore, one has

dim (Im(PH1)) + dim (Ker(PH1)) = N − 1. (5.11)

The next step is to show that

Ker(PH1) = {0}, (5.12)
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so that, from (5.11), PH1 is surjective. Let u ∈ DH1 and set u = ū + û,
where ū ∈ H1

⊥ and û ∈ H1. Hence, PH1u = PH1 û = û and, if u ∈ Ker(PH1),
then û = 0. In other words, u ∈ Ker(PH1) verifies{

u = αu1 for some αu ∈ R
u = Dv for some v ∈ H1

One has

||u||2D−1 = uTD−1u = αu1
TD−1Dv = αu1

T v = 0

where the last identity follows from the fact that v ∈ H1 has zero average.
But, since || · ||D−1 is a norm, ||u||2D−1 = 0 implies u = 0. This shows
(5.12).

At this point, we can introduce two assumptions which allow us to
characterize the eigenstructure of matrix Q; then, we discuss their impact
on the choice of the communication graph topology as well as on the value
of coefficients aij in (5.5).

Assumption 5.3. The diagonal matrix containing the scaling factors for
the output currents coincides with the identity, i.e. D = I.

Assumption 5.4. It holds D 6= I, D > 0 and the product LDM commutes
(i.e. LDM = MDL).

Remark 5.2. Under Assumption 5.3, the desired goal is that all converters
in the mG produce the same current (measured in Ampere and not in p.u.),
i.e. that (5.3) holds. This can be desirable, for instance, when all the
converters in the network have the same generation capacity. We notice
that Assumption 5.3 does not enforce constraints on the graphs Gel and Gc,
which must fulfill Assumption 5.2 only.

Remark 5.3. Assumption 5.4 is suited to the case of converters with differ-
ent ratings. However, it requires matrix Q to be symmetric. An interesting
case where this condition is verified is given by

L = µM, (5.13)

where µ > 0 is a global parameter, common to all the DGUs5. Relation
(5.13) holds if the following conditions are simultaneously guaranteed:

5From (5.13), Q = LDM = µMDM, which commutes since M and D are symmetric
and µ is a scalar.
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(a) Gel and Gc have the same topology;

(b) coefficients in (5.5) are chosen as aij = µ 1
Rij

if DGUs i and j are

connected by a communication link.

Condition (b) has an impact on the design of local Laplacian control laws
(5.5). Notably, each agent (say DGU i) needs to know the global parame-
ter µ and the value of the conductances 1

Rij
connecting it to its electrical

neighbors j belonging to set N el
i (which, in this particular case, coincides

with N c
i ).

Remark 5.4. Assumptions 5.3 or 5.4 are instrumental in guaranteeing
asymptotic stability of the hierarchical control architecture in Figure 5.2.
Indeed, as will be shown in the following proposition, the above conditions
imply that the eigenvalues of Q are nonnegative. Note that, if neither As-
sumption 5.3 nor 5.4 are verified, Q can have negative eigenvalues (see the
example in Appendix 5.6.4).

Proposition 5.3. The matrix Q = LDM has the following properties:

(i) Ker(Q) = H1
⊥;

(ii) Range(Q) = H1;

(iii) the linear transformation Q(H1|H1) is invertible;

(iv) under Assumption 5.3 or 5.4, Q is diagonalizable and has real non-
negative eigenvalues;

(v) under Assumption 5.3 or 5.4, the zero eigenvalue of Q has algebraic
multiplicity equal to one.

Proof. The proof of Proposition 5.3 is given in Appendix 5.6.1.

Analysis of equilibria

In order to evaluate the steady-state behavior of the electrical signals ap-
pearing in Figure 5.3a-5.3b, we study the equilibria of system (5.10). Hence,
for given constant inputs (I∗L,V

∗
ref ), we characterize the solutions ∆V∗ of

equation

Q∆V∗ = −LDI∗L −QV∗ref (5.14)

through the following Proposition.
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Proposition 5.4. For equation (5.14),

(i) there is only one solution ∆̃V
∗ ∈ H1;

(ii) all solutions ∆V∗ ∈ RN can be written as

∆V∗ = ∆̃V
∗

+ α1N α ∈ R. (5.15)

Proof. Proposition 5.3-(ii) shows that (5.14) has solutions only if −LDI∗L−
QV∗ref ∈ H1. From Propositions 5.1-(iii) and 5.3-(ii) this is always true.
Statement (i) directly follows from Proposition 5.3-(iii).

For the proof of statement (ii), we split ∆V∗ ∈ RN as in (5.1), i.e.

∆V∗ = ∆̂V
∗

+ ∆V
∗
. From (5.14) and Proposition 5.3-(i), one has that,

irrespectively of ∆V
∗

= α1N ∈ H1
⊥, Q∆̂V

∗
= −LDI∗L−QV∗ref . Moreover,

from the first part of the proof, it holds ∆̂V
∗

= ∆̃V
∗
.

Next, we relate properties of the equilibria of (5.10) to current sharing
and voltage balancing.

Proposition 5.5. Consider system (5.10) with constant inputs (I∗L,V
∗
ref ).

Then, current sharing is achieved at steady state. Moreover, if V∗ref =
Vref1N (i.e. if Assumption 5.1 holds) and α in (5.15) is equal to zero, then
the equilibrium V∗ verifies the voltage balancing condition (5.4).

Proof. At the equilibrium, since Ker(L) = H1
⊥ (see Proposition 5.1-(iii)),

from (5.6) we have that

−LDI∗t = 0N ⇔ DI∗t = Īt1N

⇔
[
I∗t1
Ist1
, . . . ,

I∗tN
IstN

]T
= Īt1N ,

(5.16)

which is (5.2). Let now ∆V∗ be an equilibrium for system (5.10). Replacing
(5.15) in (5.7) and averaging the resulting vector, we get

〈V∗〉 = 〈∆̃V
∗〉︸ ︷︷ ︸

=0

+ Nα︸︷︷︸
=0

+Vref ,

which is (5.4).
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Stability analysis

The similarities established in Proposition 5.3 between the spectral prop-
erties of graph Laplacians and the matrix Q will allow us to study the
stability properties of (5.10) using methods similar to the ones adopted for
analysis of classical consensus dynamics. Results in this section follow the
approach in [FTBG06], where stability of consensus is analyzed through the
use of invariant subspaces. An advantage of this rationale is that it carries
over almost invariably to the case of more complex models of primary loops
(Section 5.3.2).

In the sequel, we prove exponentially stable convergence of ∆V in
(5.10) to an equilibrium ensuring both current sharing and voltage bal-
ancing for constant IL

∗ and V∗ref = Vref1N . We first show that projections

PH1
⊥

(∆V) = ∆V and PH1(∆V) = ∆̂V have non-interacting dynamics

(or, equivalently, that subspaces H1 and H1
⊥ are invariant for (5.10)).

Proposition 5.6. If ∆V is given by system Σ in (5.10) for ∆V(0) =

∆V0, then ∆V = ∆V + ∆̂V, where ∆V ∈ H1
⊥ and ∆̂V ∈ H1 fulfill

Σ :

{
∆̇V = 0N

∆V(0) = 〈∆V0〉1N
(5.17)

and

Σ̂ :


˙̂

∆V = −Q∆̂V − LDIL −QVref

∆̂V(0) = ∆V0 −∆V0.
(5.18)

Proof. We write vectors ∆V(0), IL and Vref according to the decom-
position (5.1), i.e. using “ v̂ ” and “ v ” for denoting their H1 and H1

⊥
components, respectively. As described in [FTBG06], we analyze the dy-
namics of ∆V by averaging both sides of (5.10) and ∆V(0) = ∆V0,
respectively. From points (i)-(ii) of Proposition 5.3, we have 〈−Q∆V〉 = 0
and 〈−QVref 〉 = 0. Since Im(L) = H1 (see Proposition 5.1-(iii)), we
also have 〈−LDIL〉 = 0, hence obtaining d

dt〈∆V〉 = 0. Recalling that
∆V0 = 〈∆V0〉1N , we obtain (5.17).

Next, we analyze ∆̂V = ∆V −∆V. We have

˙̂
∆V = ∆̇V − ∆̇V︸︷︷︸

=0N

= −Q∆V − LDIL −QVref

and ∆̂V(0) = ∆V0−∆V0. From Proposition 5.3-(i), Q∆V = Q∆̂V and
then we have (5.18).
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Remark 5.5. The splitting of Σ into systems Σ and Σ̂ implies that, if
∆V0 has zero average, then ∆V(t) has the same property, ∀t ≥ 0 and
irrespectively of inputs (IL,Vref ). This behavior can be realized by suitable
initialization of the integrators appearing in Figure 5.3a.

According to system Σ, the value of PH1
⊥

(∆V) = ∆V remains constant

over time and equal to ∆V0. Hence, in order to characterize the stability
of equilibria (5.15), it is sufficient to study the dynamics (5.18). In an
equivalent way, one can consider system (5.10) and the following definition
of stability on a subspace.

Definition 5.3. Let M be a subspace of Rn. The origin of ẋ = Ax, x(t) ∈
Rn is Globally Exponentially Stable (GES) on M if ∃κ, η > 0 : ‖PMx(t)‖ ≤
κe−ηt‖PMx(0)‖. The parameter η is termed rate of convergence.

Note that Σ is a linear system and, for stability analysis, we can neglect
inputs, hence obtaining{

∆̇V = −Q∆V

∆V(0) = ∆V0.
(5.19)

Theorem 5.1. Under Assumption 5.3 or 5.4, the origin of (5.19) is GES
on H1. Moreover, the rate of convergence is the smallest strictly positive
eigenvalue of Q.

Proof. The proof of Theorem 5.1 is presented in Appendix 5.6.

The above results reveal that, given an initial condition ∆V(0) = ∆V0

for system (5.10) and constant inputs I∗L and V∗ref = Vref1N , the state ∆V
converges to the equilibrium (5.15) with α = 〈∆V0〉.
Summarizing the main results of this section, we have that the consensus
scheme described by (5.5), Assumption 5.1 and

〈∆V0〉 = 0 (5.20)

guarantee the asymptotic achievement of current sharing and voltage bal-
ancing in a GES fashion.

5.3.2 First-order approximation of primary control loops

Figure 5.3a and Figure 5.3c show the overall closed-loop scheme of an mG
equipped with (i) consensus current loops and (ii) primary control loops
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modeled as first-order transfer functions. Differently from the case analyzed
in Section 5.3.1, each local dynamics is now described by means of two states
which are the state of the consensus current loop (∆Vi) and the state of
the controlled DGU (Vi in Figure 5.3c). We highlight that relations (5.6)
and (5.7) still hold, while the additional state equation is

V̇ = ΩV◦ − ΩV, (5.21)

where vectors V◦ = [V ◦1 , V
◦

2 , . . . , V
◦
N ]T and V belong to RN , and the di-

agonal matrix Ω = ωcI ∈ RN×N , ωc > 0, collects on its diagonal the
approximate bandwidth of each controlled DGU. In view of Remark 5.1,
assuming equal approximate bandwidths for all the controlled DGU is a
mild constraint.

As in Section 5.3.1, in order to find the dynamics of the closed-loop
scheme, we write relations among mG variables. From Figure 5.3a, we
notice that (5.6) holds, and

V◦ = ∆V + Vref . (5.22)

Always from Figure 5.3a, we have that, for line and output currents, equa-
tions (5.8) and (5.9) are still valid. By merging relations (5.6), (5.22),
(5.21), (5.8) and (5.9), we can write the dynamics of the overall mG as{

∆̇V = −QV − LDIL

V̇ = Ω∆V − ΩV + ΩVref ,

(5.23a)

(5.23b)

or, equivalently, in compact form,[
∆̇V

V̇

]
=

[
0N −Q
Ω −Ω

]
︸ ︷︷ ︸

Q

[
∆V
V

]
+

[
0N −LD
Ω −Ω

] [
Vref

IL

]
,

with Q ∈ R2N×2N and [∆VTVT ]T ∈ RN × RN .

Analysis of equilibria

The equilibria of system (5.23) for constant inputs (I∗L,V
∗
ref ), are obtained

by computing the solutions [∆V∗T ,V∗T ]T to the system{
QV∗ = −LDI∗L

0N = Ω∆V∗ − ΩV∗ + ΩV∗ref .

(5.24a)

(5.24b)



5.3. Modeling and analysis of the complete system 117

Since matrix Ω is invertible, equation (5.24b) becomes

V∗ = ∆V∗ + V∗ref . (5.25)

By substituting (5.25) in (5.24a), we get

Q∆V∗ = −LDI∗L −QV∗ref .

that is exactly (5.14). We can then exploit Proposition 5.4 for concluding
that there are infinitely many solutions ∆V∗ ∈ RN in the form (5.15).
Replacing (5.15) in (5.25), we can write equilibria of system (5.23) as[

∆V∗

V∗

]
=

[
∆̂V

∗
+ α1N

∆̂V
∗

+ α1N + V∗ref

]
. (5.26)

Relations between the equilibria and current sharing/voltage balancing are
given in the next proposition.

Proposition 5.7. Consider the system (5.23) with constant inputs I∗L and
V∗ref . At the equilibrium, current sharing is achieved. Moreover, if V∗ref =
Vref1N (i.e. if Assumption 5.1 holds) and α in (5.26) is equal to zero, then
the equilibrium [∆V∗T ,V∗T ]T verifies the voltage balancing.

Proof. Since equation (5.6) holds, one has that, at the equilibrium, relation
(5.16) is verified. Then, the proof is identical to the one of Proposition
5.5.

Next, similarly to the simplified case described in Section 5.3.1, we eval-
uate the stability properties of the closed-loop system (5.23) so as to show
the convergence of state [∆VTVT ]T to an equilibrium which guarantees
current sharing and voltage balancing.

Stability analysis

Proposition 5.8. If [∆VTVT ]T verifies (5.23), then[
∆V
V

]
︸ ︷︷ ︸

v

=

[
∆V

V

]
︸ ︷︷ ︸

v̄

+

[
∆̂V

V̂

]
︸ ︷︷ ︸

v̂

,

where v̄ ∈ H1
⊥ ×H1

⊥ and v̂ ∈ H1 ×H1 fulfill

Σ̃1
⊥ :

∆̇V = 0N

V̇ = Ω∆V − ΩV + ΩVref

(5.27a)

(5.27b)
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and

Σ̃1 :


˙̂

∆V = −QV̂ − LDIL

˙̂
V = Ω∆̂V − ΩV̂ + ΩV̂ref ,

(5.28a)

(5.28b)

respectively.

Proof. The dynamics of ∆V and ∆̂V can be derived proceeding as in
the proof of Proposition 5.6. In a similar way, by averaging both sides of
(5.23b), one derives the (independent) dynamics of V and V̂.

The above decomposition allows us to evaluate the evolution of state v
on RN×N by separately analyzing dynamics (5.27) and (5.28), i.e. studying
the behavior of projections v̄ = PM1(v) and v̂ = PM2(v), with M1 =
H1
⊥ ×H1

⊥ and M2 = H1 ×H1.
First we focus on Σ̃1

⊥. Without loss of generality, for stability analysis
we can neglect the input vector Vref in (5.27b), thus having:∆̇V = 0N

V̇ = Ω∆V − ΩV.

(5.29a)

(5.29b)

By construction, (5.29b) collects the decoupled equations

V̇ i = ωc∆Vi − ωcV i ∀i = 1, . . . , N, (5.30)

where, according to (5.27a), each term ∆Vi in can be treated as an exoge-
nous input (thus not affecting stability properties). It follows that dynamics
(5.30) is asymptotically stable, since ωc > 0. In summary, system (5.27)
tells us that the average ∆V will remain constant in time (and equal to
〈∆V0〉), while V will converge to the origin. For studying stability prop-
erties of system Σ̃1, we consider (5.23) without inputs, i.e.{

∆̇V = −QV

V̇ = Ω∆V − ΩV
(5.31)

and analyze stability on H1 ×H1. We have the following result.

Theorem 5.2. Under Assumption 5.3 or 5.4, the origin of (5.31) is GES
on H1 ×H1. Furthermore, matrix Q has a simple zero eigenvalue and the
rate of convergence is the maximum among real parts of all other eigenval-
ues.
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Proof. The proof is given in Appendix 5.6.3.

By means of Theorem 5.2, we have that, given an initial condition
[∆V0

TV0
T ]T for system (5.23), the state [∆VTVT ]T will converge to the

equilibrium in (5.26), with α = 〈∆V0〉.
The results above show that, for system (5.23), current sharing is achieved

in a GES fashion. In a similar way, asymptotic voltage balancing is ensured
if Assumption 5.1 and (5.20) are fulfilled.

5.3.3 Plug-and-play design of secondary control

We now describe the procedure for designing secondary controllers in a PnP
fashion. We will show that, as for the PnP design of primary regulators,
when a DGU is added or removed, the secondary control layer can be
updated only locally for preserving current sharing and voltage balancing.

Plug-in operation. Under Assumption 5.3, when a DGU (say DGU i)
sends a plug-in request at a time t̄, it choses a set N c

i of communication
neighbors (which must not necessarily coincide with N el

i ) and fixes param-
eters aij > 0, ∀j ∈ N c

i , in order to design the local consensus filter (5.5). At
the same time, each DGU j, j ∈ N c

i , updates its consensus filter by setting
aji = aij in (5.5). If, instead, D 6= I, one can fulfill Assumption 5.4 by
allowing the entering DGU to receive the value of conductances 1

Rij
from

the neighboring DGUs j ∈ N el
i and by setting N c

i = N el
i (see Remark 5.3).

By doing so, DGU i can choose parameters aij = µ 1
Rij

, and each DGU

j ∈ N c
i sets aji = aij , thus updating its consensus filter (5.5). Overall,

Theorems 5.1 and 5.2 ensure that the disagreement dynamics of the mG
states is GES. Let Assumption 5.1 hold for all the interconnected DGUs
in the mG before t̄ and let us denote the common reference voltage by
Vref . If DGU i sets Vref,i = Vref and if we choose ∆Vi(t̄) = 0 (thus having

〈
[

∆V′(t̄)
∆Vi(t̄)

]
〉 = 0, where ∆V′(t̄) is the vector ∆V prior the plugging-in

of DGU i), both current sharing and voltage balancing are preserved in the
asymptotic régime (see Propositions 5.5 and 5.7).

Unplugging operation. Under Assumption 5.3 or 5.4, when a DGU
(say DGU j) is unplugged at time t̄, provided that the new graphs Gel and
Gc fulfill Assumption 5.2, the key condition that must be guaranteed is that
the vector ∆V−j (i.e. ∆V without element j) verifies 〈∆V−j(t̄)〉 = 0. If
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〈∆V(t̄−)〉 = 0, this can be achieved by re-setting

∆Vi(t̄) = ∆Vi(t̄
−) +

∆Vj(t̄
−)

|N c
j |

for all i ∈ N c
j , and keeping ∆Vi(t̄) = ∆Vi(t̄

−) for all i /∈ N c
j ∪ {j}. Indeed,

this yields

〈∆V−j(t̄)〉 =
1

N − 1

∑
i∈N c

j

∆Vi(t̄) +
1

N − 1

∑
i/∈N c

j ∪{j}
∆Vi(t̄) =

=
1

N − 1

∑
i∈N c

j

∆Vi(t̄
−) +

1

|N c
j |
∑
i∈N c

j

∆Vj(t̄
−) +

∑
i/∈N c

j ∪{j}
∆Vi(t̄

−)

 =

=
1

N − 1

(
N〈∆V(t̄−)〉

)
= 0.

5.4 Validation of secondary controllers

5.4.1 Simulation results

In this section, we aim to demonstrate the capability of the proposed con-
trol scheme to guarantee current sharing and voltage balancing when DGUs
are plugged in/out and load changes occur. Simulations have been per-
formed in Simulink/PLECS. We consider an mG composed of 7 DGUs,
interconnected as in Figure 5.4, with non-identical electrical parameters
and power lines. Notice that some DGUs have more than one neighbor,
hence the impact of couplings on their dynamics will be larger. Moreover,
the presence of loops in the electrical network further complicates the volt-
age regulation. Primary PnP voltage regulators are designed according to
the line-dependent method in Chapter 3, whereas, as regards the secondary
control layer, we choose kI in (5.6) equal to 1. DGUs have rated currents
Irti = 10 A, i = 1, 2, 3, Irt4 = Irt5 = 5 A and Irt6 = Irt7 = 3.33 A. Since, in
this scenario, we aim to achieve the current sharing condition in (5.2), we
set Isti = Irti, i = 1, . . . , 7, thus having, in (5.6), D 6= I. Then, in order to
guarantee the asymptotic stability of the hierarchical control scheme, we
fulfill Assumption 5.4 by (i) letting Gc have the same topology of Gel, and
(ii) picking aij = 1

Rij
, if DGUs i and j are connected by a communication

link (see Remark 5.3). Furthermore, the voltage reference in Assumption
5.1 is Vref = 48 V, and the electrical parameters are given in Appendix
5.6.5.
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In the following, we describe Figure 5.5, which illustrates the evolution
of the main electrical quantities (i.e. measured DGU output currents in
Amperes, DGU output currents in p.u., PCC voltages and average PCCs
voltage) during the consecutive simulation stages shown in Figure 5.4.

Stage 1. At time t0 = 0, all the DGUs are assumed to be isolated and only
the primary PnP voltage regulators, designed using the method described
in Chapter 3, are active. Therefore, as shown in Figure 5.5, (i) each DGU
supplies its local load while keeping the corresponding PCC voltage at 48
V, and (ii) the DGU output currents in p.u. are different. We further
highlight that primary controllers have been designed assuming that all
the switches in Figure 5.4 connecting DGUs 1-6 are closed. From Chapter
3, however, they also stabilize the mG when all switches are open.

Stage 2. Subsystems 1-6 are connected together at time t1 = 2 s and,
according to the previous observation, no update of primary controllers is
needed. As shown in the plot of VPCC in Figure 5.5, voltage stability and
fast transients after the plug-in operations are ensured by PnP primary
regulators. The secondary control layer is still disabled at this stage.

Stage 3. At time t2 = 5 s, we activate the secondary control layer for
DGUs 1-6, thus ensuring asymptotic current sharing among them (see the
plot of the currents in p.u.). This is achieved by automatically adjusting
the voltages at PCC (as shown in the plot of VPCC). Moreover, the top
plot of Figure 5.5 reveals that, as expected, DGUs 4 and 5 share half of the
current of DGUs 1-3, while the output current of DGUs 6 is one third of
the ones of DGUs 1-3. We further highlight that, by setting ∆Vi(t2) = 0,
i = 1, . . . , 6, as described in Section 5.3.3, condition (5.20) is fulfilled and
asymptotic voltage balancing is guaranteed (see the plot of Vav).

Stage 4. For evaluating the PnP capabilities of our control scheme, at
t3 = 15 s, DGU 7 sends a plug-in request to DGUs 4 and 5. Previous
primary controllers of DGUs 4 and 5 still fulfill the plug-in conditions in
Chapter 3: they are therefore maintained and the plug-in of DGU 7 is per-
formed. In the light of Assumption 5.3, at t3 also the secondary controller
of DGU 7 is activated, thus enabling the DGU to contribute to current
sharing. This can be noticed in Figure 5.5, as all PCC voltages change in
order to let all the output currents in p.u. converge to a common value. We
also notice that the measured output currents (top plot of Figure 5.5) are
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still shared accordingly (i.e. It1 = It2 = It3 = 2It4 = 2It5 = 3It6 = 3It7).
Furthermore, choosing ∆V7(t3) = 0 (as described in Section 5.3.3), we
maintain the average PCCs voltage at 48 V (see Vav, stage 4).

Stage 5. At t4 = 25 s, we halve the load of DGU 1, thus increasing the
corresponding load current IL1 and causing a peak in the corresponding
output current. However, after few seconds, all the DGUs share again
the total load current, while the averaged PCC voltage converges to the
reference value.

Stage 6. Finally, we assess the performance of the proposed hierarchical
scheme when the sudden disconnection of a DGU occurs. To this aim, at
time t5 = 35 s, we disconnect DGU 3. Figure 5.5 (stage 6) shows that
voltage stability, current sharing and voltage balancing are preserved in
the mG composed of DGUs 1-2 and 4-7.

5.4.2 Experimental results

Performance brought about by the presented hierarchical scheme been
also validated via experimental tests based on the mG platform in the
top-left panel of Figure 5.6, which consists of three Danfoss inverters, a
dSPACE1103 control board and LEM sensors. In order to properly emu-
late DC/DC converters (i.e. Buck converters), only the first phase of each
inverter has been used. Buck converters operate in parallel to emulate
DGUs while different local load conditions have been obtained by connect-
ing each PCC to a resistive load. All the converters are supplied by DC
source generators. For this scenario, primary PnP voltage controllers are
designed using the line-independent approach in presented in Chapter 4,
and Assumption 5.3 holds. Hence, since D = I, Ist1 = Ist2 = Ist3 = Īt, i.e. we
aim to achieve the asymptotic current sharing condition (5.3). Moreover,
we set kI in (5.6) equal to 0.5, while coefficients aij in (5.5) are equal to 1
if DGUs i and j are connected by a communication link, 0 otherwise. We
also recall that, under Assumption 5.3, the stability of the mG equipped
with our hierarchical scheme is preserved even if the topologies of Gc and
Gel differ. Notably, we consider the mG in Figure 5.6, where Gel and Gc are
highlighted in blue and red, respectively, and the edges of Gel are RL lines.

The controllers have been implemented in Simulink and compiled to the
dSPACE system in order to command the Buck switches at a frequency of
10 kHz. Although the dSPACE platform is unique, separate local PnP volt-
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Figure 5.4: Simulation stages: numbered nodes represent DGUs, while
black lines denote power lines. The secondary control layer is activated for
the DGUs contained in the red area. Open switches in stages 1, 2, 3 and
6 denote disconnected DGUs. The arrow in stage 5 represents a step up in
the load current of DGU 1.
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ST1 ST2 ST3 ST4 ST5 ST6

Figure 5.5: Simulation results: evolution of measured output currents, out-
put currents in p.u., voltages at PCCs and average PCCs voltage. Lines in
the plots are associated with different DGUs and they are color-coded as
in Figure 5.4. Simulation stages are those shown in Figure 5.4.
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age regulators have been implemented for each converter, so as to preserve
the decentralized nature of the primary control layer.

We consider the mG in Figure 5.6, where Gel and Gc are highlighted in
blue and red, respectively. The edges of Gel are RL lines. In the sequel,
we provide a detailed description of the evolution of the main electrical
quantities, which are shown in Figure 5.7.

At time t0 = 0 s, all the DGUs are isolated and not connected to each
other.

At times t1 ≈ 2.5 s, t2 ≈ 5 s and t3 ≈ 10 s, we connect DGU 1 to 2, 2 to
3 and 1 to 3, respectively, thus obtaining a loop in the electrical topology.
We recall that, since DGUs are equipped with PnP stabilizing regulators
designed following the line-independent synthesis procedure presented in
Chapter 4, no controller update is required when units are connected to-
gether. As shown in the plot of the PCC voltages in Figure 5.7, PnP
primary voltage regulators ensure smooth transitions and stability. We
also highlight that, since for t < t3 the secondary layer is not active, the
output currents are not equally shared and the PCC voltages coincide with
the reference (notably, Assumption 5.1 holds, with Vref = 48 V).

Next, at time t4 ≈ 15 s, we set ∆Vi(t4) = 0, i = 1, 2, 3 and enable the
secondary current layer. Since we choose the same scaling factor for all the
DGUs, we have that the three output currents converge to the same mea-
sured value (see It in Figure 5.7). Furthermore, similarly to the simulation
example, the fulfillment of condition (5.20) guarantees asymptotic voltage
balancing (see Vav in Figure 5.7).

Finally, in order to assess the robustness of the proposed control scheme
to unknown load dynamics, at time t5 ≈ 25 s we decrease the load of DGU 3,
causing an increment in the corresponding load current. As a consequence,
the value of Īt = 〈I∗L〉 increases as well. Also in this case, we have that
the total load current is equally shared among DGUs while Vav does not
deviate from 48 V.

5.5 Final comments

In this chapter, we presented a secondary consensus-based control layer for
current sharing and voltage balancing in DC mGs. Under the assumption
that DGUs are equipped with decentralized primary controllers guarantee-
ing voltage stability in the mG (e.g., PnP regulators), we proved stability
of the hierarchical control scheme, current sharing and voltage balancing in
the asymptotic régime. Moreover, a method for designing secondary con-
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Figure 5.6: Experimental validation: mG setup (top-left), topologies of
the electrical and communication graphs (bottom-left), and implemented
control architecture (on the right).
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Figure 5.7: Experimental results for the mG in Figure 5.6. In the time
interval from 2.5 s to 15 s, DGUs are connected together and primary PnP
voltage regulators are enabled. From time 15 s onwards, also the secondary
control layer is active. At time 25 s, the local load of DGU 3 is halved.
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trollers in a PnP fashion for handling plugging in/out of DGUs has been
presented.

In future research, communication delays [BFT08, MDGV14], will be
included in the mathematical analysis. Furthermore, we will consider com-
plex consensus controllers (e.g. PI regulators) for enhancing the conver-
gence speed.

5.6 Appendix

5.6.1 Proof of Proposition 5.3

Proof. We start by proving point (ii). Since, from Proposition 5.1-(iii),
Ker(M) = H1

⊥, one has MRN = M(H1
⊥ ⊕H1) = MH1. Furthermore, from

Proposition 5.2, PH1(DMH1) = H1. Proposition 5.1-(iv) applied to the
Laplacian L shows that L(DMRN ) = H1, which is (ii).

For proving point (i), we recall that Ker(M) = H1
⊥ and then Ker(LDM) ⊇

H1
⊥. From (ii) we have that dim(Im(Q)) = N−1. The equation dim(Im(Q))+

dim(Ker(Q)) = N implies that dim(Ker(Q)) = 1. Since dim(H1
⊥) = 1, we

have Ker(Q) = H1
⊥.

In order to prove point (iii), we show that Q(H1|H1) is both surjective and
injective [Lan87]. The surjectivity of Q on H1 has been shown above when
proving point (ii). For proving the injectivity, we need to check if it holds

∀b ∈ H1 ∀x, y ∈ H1 (Qx = b and Qy = b)⇒ x = y.

Now, Qx = Qy = b implies that Q(x − y) = 0. It means that x − y ∈
Ker(Q) = H1

⊥, therefore ∃α ∈ R such that x − y = α1n. However, since
x− y ∈ H1, x− y = α1n is verified only for α = 0; this leads to x = y.

As regards statement (iv), we first consider the case in which Assump-
tion 5.3 holds. Since D = I, we have that Q = LM. Hence, Q is the
product of two matrices, both positive semidefinite in the real sense. More-
over, since L and M are symmetric, they are positive semidefinite also in the
complex sense [Pea65]. The proof concludes by applying Corollary 2.3 in
[HH91], which states that the product of two complex positive semidefinite
matrices is diagonalizable and has nonnegative real eigenvalues.

We now prove statement (iv) when Assumption 5.4 holds. Since D is

diagonal with positive elements, the matrix D
1
2 verifying D = D

1
2D

1
2 exists

and is invertible. Then, Q can be written as follows

Q = D−
1
2 D

1
2LD

1
2︸ ︷︷ ︸

L
D

1
2MD

1
2︸ ︷︷ ︸

M
D−

1
2 . (5.32)
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Matrices L and M in (5.32) are positive semidefinite in the real sense and
symmetric; hence, they are positive semidefinite also in the complex sense.
Therefore, also in this case, we can use Corollary 2.3 in [HH91] to state

that LM is has nonnegative real eigenvalues. Now, since D−
1
2 in (5.32) is

symmetric, matrix LM is congruent to Q. Thus, since under Assumption
5.4 LM is symmetric6, by Sylvester’s law of inertia [HJ12], the inertia of
Q and LM coincide, i.e.

(i+(LM), 0, i0(LM)) = (i+(Q), 0, i0(Q)).

This concludes the proof of statement (iv) under Assumption 5.4.
Finally, point (v) follows from points (i) and (iv). Indeed, since Q is

diagonalizable, the algebraic and geometric multiplicity of null eigenvalues
coincide. From point (i), since dim(H1

⊥) = 1, we conclude that the zero
eigenvalue of Q is unique.

5.6.2 Proof of Theorem 5.1

We introduce a preliminary Lemma, partly taken from Theorem 19 in
[CD12].

Lemma 5.1. For A ∈ Rn×n, let M1 and M2 be A-invariant subspaces of
Rn such that dim(M1) = k, dim(M2) = n− k and Rn = M1⊕M2. Then:

(I) there is a matrix T ∈ Rn×n such that A = T−1AT has the block-
diagonal structure

A =

 A11 0k×(n−k)

0(n−k)×k A22

 , (5.33)

with A11 ∈ Rk×k and A22 ∈ R(n−k)×(n−k). In particular, if {b1, . . . , bk}
and {bk+1, . . . , bn} are basis for M1 and M2, respectively, the trans-
formation matrix T has the block structure

T = [b1| · · · |bk|bk+1| · · · |bn]. (5.34)

Therefore, if x ∈M1, then T−1x =

[
x̃1

0

]
with x̃1 ∈ Rk. Similarly,

if x ∈M2, then T−1x =

[
0

x̃2

]
with x̃2 ∈ Rn−k.

6Indeed, (LM)T = ML = D
1
2 MD

1
2D

1
2L︸ ︷︷ ︸

MDL=LDM

D
1
2 = LM.
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(II) The origin of ẋ = Ax is GES on M1 if and only if the origin of ˙̃x1 =
A11x̃1 is GES. Moreover, parameters κ, η > 0 verifying ‖x̃1(t)‖ ≤
κe−ηt‖x̃1(0)‖, also guarantee ‖PM1x(t)‖ ≤ κe−ηt‖PM1x(0)‖.

Proof. For the proof of point (I), we defer the reader to the proof of The-
orem 19 in [CD12].

The proof of point (II) directly follows from the block-diagonal structure
of matrix A in (5.33). Indeed,

ẋ = Ax⇔ ˙̃x = A

[
x̃1

x̃2

]
⇔

{
˙̃x1 = A11x̃1

˙̃x2 = A22x̃2,

i.e. A11 is the matrix representation of the mapA(M1|M2). In other words,
studying the stability of A on M1 is equivalent to study the stability of A11.

Moreover, by construction, PM1(x) = T

[
x̃1

0

]
. Then,

‖PM1(x(t))‖ ≤ ‖T‖‖x̃1(t)‖ ≤ ‖T‖κe−ηt‖x̃1(0)‖. (5.35)

Since ‖x̃1(0)‖ ≤ ‖T−1‖‖PM1(x(0))‖, inequality (5.35) becomes

‖PM1(x)‖ ≤ ‖T‖κe−ηt‖x̃1(0)‖ ≤ κe−ηt‖PM1(x(0))‖.

Proof of Theorem 5.1. Points (i) and (ii) of Proposition 5.3 show that
subspaces H1 and H1

⊥ are Q-invariant. Moreover, RN = H1 ⊕ H1
⊥. It

follows that Lemma 5.1 can be applied with M1 = H1 and M2 = H1
⊥. In

particular, by means of point (I), we know that there exists a transformation
matrix T ∈ RN×N such that the linear map Q can be represented as in
(5.33). Denoting with B1 = {b1, . . . , bN−1} and B1

⊥ = 1N the basis for H1

and H1
⊥, respectively, from (5.34), we have

T = [b1| · · · |bN−1|1N ].

Matrix Q = T−1QT is given by

Q =

[
Q11 0
0 q22

]
(5.36)

where Q11 ∈ R(N−1)×(N−1). Moreover, scalar q22 = 0 since, by construc-
tion, it represents the map Q(H1

⊥|H1
⊥) (see Proposition 5.3-(i)). We notice
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that the representations of ∆̂V and ∆V with respect to the basis B are
ṽ1 = T−1∆̂V = [ξ1, . . . , ξN−1, 0]T and ṽ⊥ = T−1∆V = [0, . . . , 0, ξN ]T ,
respectively. Now we prove that the origin of

˙̃v1 = −Q11ṽ1 (5.37)

is GES. Since Q and Q are similar matrices, they have the same eigenvalues.
Therefore, by exploiting points (iv) and (v) of Proposition 5.3, one has that
all the eigenvalues of Q11 are strictly positive. This proves that (5.37) is
GES and, as shown in [CD12], the convergence rate is −λ, where λ is the
minimal eigenvalue of Q11. The remainder of the proof follows directly
from point (II) of Lemma 5.1.

5.6.3 Proof of Theorem 5.2

We first present two Propositions which provide preliminary results that
will be used to prove Theorem 5.2.

Proposition 5.9. Subspaces H1 ×H1 and H1
⊥ ×H1

⊥ are Q-invariant.

Proof. We first show that, for any vector v̂ = [v̂T1 v̂T2 ]T , it holds Qv̂ ∈
H1 ×H1. Indeed,

Qv̂ =

[
0N −Q
Ω −Ω

] [
v̂1

v̂2

]
=

[
−Qv̂2

Ω(v̂1 − v̂2)

]
,

and, from Proposition 5.3-(iii), the rightmost vector belongs to H1 ×H1.

Similarly, for any vector v̄ = [v̄T1 v̄T2 ]T ∈ H1
⊥ ×H1

⊥, we have that

Qv̂ =

[
0N −Q
Ω −Ω

] [
v̄1

v̄2

]
=

[
0N

Ω(v̄1 − v̄2)

]
and then Qv̄ ∈ H1

⊥ ×H1
⊥.

Proposition 5.10. Matrix Q has two eigenvalues equal to zero and −ωc,
respectively. All other eigenvalues have strictly negative real part.

Proof. By definition, vector [∆VTVT ]T 6= 02N is an eigenvector of Q, if
there exists λi such that[

0 −Q
Ω −Ω

] [
∆V
V

]
= λi

[
∆V
V

]
. (5.38)
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From (5.38), one gets:

−QV = λi∆V (5.39a)

ωc(∆V −V) = λiV. (5.39b)

By isolating ∆V in (5.39b) and substituting it in (5.39a), we obtain

−QV =
λi(λi + ωc)

ωc︸ ︷︷ ︸
λ̂i

V. (5.40)

where λ̂i are, by construction, eigenvalues of −Q. From points (iv) and (v)
of Proposition 5.3, we have

λ̂N = 0 (5.41a)

λ̂i = −γi, γi > 0 i = 1, . . . , N − 1. (5.41b)

From (5.41a) and (5.40), one has

λi(λi + ωc) = 0

and hence Q has a single eigenvalue equal to zero and an eigenvalue equal
to −ωc. By substituting in (5.41b) the expression of λ̂i in (5.40), one gets:

λ2
i

ωc
+ λi + γi = 0 i = 1, . . . , N − 1. (5.42)

Since all the coefficients of the polynomial in (5.42) are strictly positive, we
can conclude that matrix Q has 2(N − 1) eigenvalues with Re(λi) < 0.

Proof of Theorem 5.2. Similarly to the proof of Theorem 5.1, we can
exploit Lemma 5.1 with M1 = H1 × H1 and M2 = H1

⊥ × H1
⊥. In fact,

we know that (i) subspaces H1 × H1 and H1
⊥ × H1

⊥ are Q-invariant (see
Proposition 5.9) and (ii) RN × RN = M1 ⊕M2. Hence, there exists a
transformation matrix T ∈ R2N×2N such that the linear map Q has an
equivalent block-diagonal representation of the form (5.33), i.e.

T−1QT = Q =

 Q11 02(N−1)×2

02×2(N−1) Q22

 , (5.43)
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with Q11 ∈ R2(N−1)×2(N−1) and Q22 ∈ R2×2. By construction, matrices
Q11 and Q22 in (5.43) represent the maps Q(M1|M1) and Q(M2|M2),
respectively. In particular, in the light on the consideration made for system
(5.27), we have that the eigenvalues of Q22 are zero and −ωc. Moreover,
by construction, the eigenvalues of Q11 are the 2(N − 1) eigenvalues of Q
with strictly negative real part (see Proposition 5.10).

5.6.4 On the eigenvalues of Q = LDM

In this appendix, we provide an example which shows that, by pre- and
post- multiplying a generic positive definite diagonal matrix by two posi-
tive semidefinite Laplacians (associated with graphs having different topolo-
gies), one can obtain a matrix with some negative eigenvalues.

Let us consider the graphs depicted in Figures 5.8 and 5.9.
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Figure 5.8: Topology of G1.
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Figure 5.9: Topology of G2.

According to the assigned edge directions, the incidence matrices asso-
ciated with G1 and G2 have the form

B1 =



−1 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0
1 1 0 0 −1 0 0 0 0
0 0 1 0 1 −1 −1 0 0
0 0 0 0 0 1 0 1 −1
0 0 0 0 0 0 1 −1 0
0 0 0 1 0 0 0 0 1
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and

B2 =



−1 0 0 0 0 0 0 0 0 0
1 −1 0 0 0 0 0 0 0 0
0 1 −1 −1 0 0 0 0 0 0
0 0 1 0 1 −1 0 0 0 0
0 0 0 0 −1 0 1 0 0 0
0 0 0 0 0 1 −1 −1 0 0
0 0 0 0 0 0 0 1 −1 0
0 0 0 1 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 −1


,

respectively. As regards the (positive) weights of the edges of G1 and G2,
they are collected in the following diagonal matrices

W1 = diag[0.8842, 0.8676, 0.9167, 0.8456, 0.2113, 0.0038, 0.4139, 0.1918, 0.9815]

and

W2 = diag[0.6074, 0.9785, 0.8275, 0.3907, 0.4405, 0.2719, 0.1663, 0.8310, 0.3885, 0.8292].

At this point, we have all the ingredients for computing the Laplacians of
G1 and G2 (called L and M, respectively) as

L = B1W1B
T
1 =

0.8842 0 0 0 −0.8842 0 0 0 0
0 0.8676 0 0 −0.8676 0 0 0 0
0 0 0.9167 0 0 −0.9167 0 0 0
0 0 0 0.8456 0 0 0 0 −0.8456

−0.8842 −0.8676 0 0 1.9631 −0.2113 0 0 0
0 0 −0.9167 0 −0.2113 1.5458 −0.0038 −0.4139 0
0 0 0 0 0 −0.0038 1.1771 −0.1918 −0.9815
0 0 0 0 0 −0.4139 −0.1918 0.6057 0
0 0 0 −0.8456 0 0 −0.9815 0 1.8271


and

M = B2W2B
T
2 =

0.6074 −0.6074 0 0 0 0 0 0 0
−0.6074 1.5859 −0.9785 0 0 0 0 0 0

0 −0.9785 2.1967 −0.8275 0 0 0 −0.3907 0
0 0 −0.8275 1.5399 −0.4405 −0.2719 0 0 0
0 0 0 −0.4405 0.6068 −0.1663 0 0 0
0 0 0 −0.2719 −0.1663 1.2691 −0.8310 0 0
0 0 0 0 0 −0.8310 1.2195 −0.3885 0
0 0 −0.3907 0 0 0 −0.3885 1.6085 −0.8292
0 0 0 0 0 0 0 −0.8292 0.8292


.
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Next, we pick the positive definite diagonal matrix

D = diag[0.5977, 0.4297, 0.4937, 0.0058, 0.4643, 0.0005, 0.6299, 0.8209, 0.3597]

and pre- and post- multiply it by L and M, respectively, thus obtaining

Q = LDM =

0.3210 −0.3210 0 0.1808 −0.2491 0.0683 0 0 0
−0.2264 0.5912 −0.3647 0.1774 −0.2444 0.0670 0 0 0

0 −0.4428 0.9941 −0.3744 0.0001 −0.0006 0.0004 −0.1768 0
0 0 −0.0040 0.0075 −0.0021 −0.0013 0 0.2522 −0.2522

−0.0946 −0.2701 0.3647 −0.4015 0.5531 −0.1517 0.0001 0 0
0 0.4428 −0.8614 0.4175 −0.0597 0.0193 0.1284 −0.3688 0.2817
0 0 0.0615 0.0000 0.0000 −0.6161 0.9653 −0.2485 −0.1622
0 0 −0.1943 0.0001 0.0000 0.1001 −0.3403 0.8467 −0.4123
0 0 0.0040 −0.0075 0.0021 0.5150 −0.7539 −0.3048 0.5450


.

Now, if we compute the eigenvalues of Q, we get

eig(Q) = {1.3891 + 0.1564i, 1.3891− 0.1564i, 0.9210 + 0.0000i, 0.5879 + 0.0000i,

0.4509 + 0.0000i, 0.1057 + 0.0000i,−0.0002 + 0.0039i,

−0.0002− 0.0039i, 0.0000 + 0.0000i}

that proves the desired result. This example led us to introduce Assump-
tions 5.3 and 5.4, which define conditions under which the eigenvalues of Q
are always real and nonnegative.

5.6.5 Electrical and simulation parameters

In this appendix, we provide the electrical parameters of the simulation
scenario described in Section 5.4.1.
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Converter parameters

DGU Rt (Ω) Lt (mH) Ct (mF)

Σ̂[1] 0.2 1.8 2.2

Σ̂[2] 0.3 2 1.9

Σ̂[3] 0.1 2.2 1.7

Σ̂[4] 0.5 3 2.5

Σ̂[5] 0.4 1.2 2

Σ̂[6] 0.6 2.5 3

Σ̂[7] 0.3 2 2.1

Power line parameters

Connected DGUs (i, j) Resistance Rij (Ω) Inductance Lij(µH)

(1, 2) 0.05 2.1
(1, 3) 0.07 1.8
(3, 4) 0.06 1
(2, 4) 0.04 2.3
(4, 5) 0.08 1.8
(1, 6) 0.1 2.5
(5, 6) 0.08 3
(4, 7) 0.09 2.3
(7, 5) 0.05 2.4

Table 5.1: Electrical parameters.
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6.1 Introduction

In this chapter, we summarize the PnP control design approach for AC
ImGs proposed in [RSFT15]. This review will be instrumental in describing
the extensions proposed in Chapters 7, 8 and 9.

Authors of [RSFT15] developed a decentralized control schemes capable
to guarantee voltage and frequency stability in ImGs with meshed topolo-
gies. The main features of this control design approach are reported here-
after.

1. It is decentralized; indeed, besides two global scalar quantities, the
computation of a local controller uses only information about the
corresponding DGU and lines connected to it (hence the name line-
dependent design).
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2. PnP operations are enabled, i.e. when a DGU wants to join/leave
an existing network, only DGUs physically connected to it have to
retune their local controllers.

3. The notions of (i) neutral interactions among DGUs [Lun92], and
(ii) QSL approximations of power lines are exploited at the design
stage in order to ensure collective ImG stability in spite of physi-
cal couplings between subsystems. Moreover, the synthesis of local
regulators amounts to solve an LMI problem.

The chapter is organized as follows. The considered QSL-ImG model is dis-
cussed Section 6.2. In Section 6.3, we summarize the PnP design method-
ology and describe how PnP operations can be performed without spoiling
the stability of the ImG.

In the remainder of this chapter, we use the same notations as in
[RSFT15].

6.2 AC microgrid model

Following the approach in [RSFT15], we start by focusing on the ImG com-
posed of two parallel DGUs and described by the set of equations (2.3) (see
Figure 2.2). Recalling Assumption 2.2 (which ensures iabcij (t) = −iabcji (t),
∀t ≥ 0), from (2.3), one obtains the following linear system

ẋ(t) = Ax(t) +Bu(t) +Md(t)

y(t) = Cx(t)

where x = [V d
i , V

q
i , I

d
ti, I

q
ti, I

d
ij , I

q
ij , I

d
ji, I

q
ji, V

d
j , V

q
j , I

d
tj , I

q
tj ]
T , u = [V d

ti , V
q
ti , V

d
tj , V

q
tj ]
T ,

d = [IdLi, I
q
Li, I

d
Lj , I

q
Lj ]

T , y = [V d
i , V

q
i , V

d
j , V

q
j ]T represent the state, input,

disturbance and output of the system, respectively. Matrices A, B, M and
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C are shown in the following.

A =



0 ω0
ki
Cti

0 1
Cti

0 0 0 0 0 0 0

−ω0 0 0 ki
Cti

0 1
Cti

0 0 0 0 0 0

− ki
Lti

0 −Rti
Lti

ω0 0 0 0 0 0 0 0 0

0 − ki
Lti
−ω0 −Rti

Lti
0 0 0 0 0 0 0 0

− 1
Lij

0 0 0 −Rij

Lij
ω0 0 0 1

Lij
0 0 0

0 − 1
Lij

0 0 −ω0 −Rij

Lij
0 0 0 1

Lij
0 0

1
Lji

0 0 0 −Rji

Lji
ω0 0 0 − 1

Lji
0 0 0

0 1
Lji

0 0 −ω0 −Rji

Lji
0 0 0 − 1

Lji
0 0

0 0 0 0 0 0 1
Ctj

0 0 ω0
kj
Ctj

0

0 0 0 0 0 0 0 1
Ctj
−ω0 0 0

kj
Ctj

0 0 0 0 0 0 0 0 − kj
Ltj

0 −Rtj

Ltj
ω0

0 0 0 0 0 0 0 0 0 − kj
Ltj
−ω0 −Rtj

Ltj



,

(6.1)

B =



0 0 0 0
0 0 0 0
1
Lti

0 0 0

0 1
Lti

0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 1

Ltj
0

0 0 0 1
Ltj



, CT =



1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0



,M =



1
Cti

0 0 0

0 1
Cti

0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 1

Ctj
0

0 0 0 1
Ctj

0 0 0 0
0 0 0 0



.

(6.2)

From (6.1) and (6.2), it can be seen that DGUs state variables (i.e. inverter
output currents and PCC voltages) depend on line currents (i.e. the states
of the lines), thus making the system quite difficult to handle. As discussed
in Chapter 3 for the case of DC mGs, it is desirable to obtain a simplified
model in which DGUs states depend exclusively on each other, without
being influenced by states of the lines. To this aim, QSL approximations
are exploited.
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6.2.1 QSL model of a microgrid composed of 2 DGUs

We recall that assuming QSL approximations for power line dynamics
amounts to set, in (2.3a)-(2.3f) [RSFT15]

d

dt
Idij = 0,

d

dt
Iqij = 0,

d

dt
Idji = 0,

d

dt
Iqji = 0.

At this point, lines dynamics can be disregarded and (2.3c)-(2.3d) yield

Idqij =
V dq
j

(Rij + iω0Lij)
− V dq

i

(Rij + iω0Lij)
(6.3a)

Idqji =
V dq
i

(Rji + iω0Lji)
−

V dq
j

(Rji + iω0Lji)
(6.3b)

Remark 6.1. From a practical point of view, QSL approximation assumes
lines are at AC steady state, even if their currents and voltages are not
sinusoidal. This is evident from (6.3), which express that voltage drops
on lines are directly proportional to currents via line impedances Zij =
Rij + iω0Lij and Zji = Zij evaluated at ω0, as in the AC steady state case.

By replacing (6.3) in (2.3a)-(2.3b) and (2.3e)-(2.3f), one gets the fol-
lowing QSL model for DGU i:

DGU i :


d

dt
V dqi = −iω0V

dq
i +

Idqti
Cti
− IdqLi
Cti

+
1

Cti

(
V dqj

Rij + iω0Lij
− V dqi
Rij + iω0Lij

)
d

dt
Idqi = −

(
Rti
Lti

+ iω0

)
Idqti −

V dqi
Lti

+
V dqti
Lti

(6.4)

Notice that the model of DGU j is obtained by switching indices i and j.
Now, model (6.4) can be rewritten in the following compact form

ΣDGU
[i] :


ẋ[i](t) = Aiix[i](t) +Biu[i](t) +Mid[i](t) + ξ[i](t)

y[i](t) = Cix[i](t)

z[i](t) = Hiy[i](t)

(6.5)

where x[i] = [V d
i , V

q
i , I

d
ti, I

q
ti]
T , u[i] = [V d

ti , V
q
ti ]
T , d[i] = [IdLi, I

q
Li]

T , z[i] =

[V d
i , V

q
i ]T are, respectively, the state, the control input, the exogenous input
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and the controlled variables. The measurable output y[i] is chosen equal
to the state, i.e. y[i] = x[i]. Moreover, we highlight that the contribution
ξ[i](t) = Aijx[j] represents the coupling term with DGU j.

As regards the power lines dynamics, they are still described by equa-
tions (2.3c)-(2.3d). Hence, line ij is represented by the system:

ΣLine
[ij] :

{
ẋ[l,ij](t) = All,ij x[l,ij](t) +Ali,ij x[i](t) +Alj,ij x[j](t) (6.6)

where x[l,ij] = [Idij , I
q
ij ]
T is the state of line ij.

We highlight that the systems associated with DGU j and line ji can
be obtained from (6.5) and (6.6), by switching indices i and j.

At this point, one can write the overall QSL model of the ImG shown
in Figure 2.2, that is


ẋ[i]

ẋ[j]

ẋ[l,ij]

ẋ[l,ji]

 =


Aii Aij 0 0
Aji Ajj 0 0
Ali,ij Alj,ij All,ij 0
Ali,ji Alj,ji 0 All,ji



x[i]

x[j]

x[l,ij]

x[l,ji]

+

Bi 0
0 Bj
0 0

[u[i]

u[j]

]
+

+

Mi 0
0 Mj

0 0

[d[i]

d[j]

]

[
y[i]

y[j]

]
=

[
Ci 0 0 0
0 Cj 0 0

]
x[i]

x[j]

x[l,ij]

x[l,ji]


[
z[i]

z[j]

]
=

[
Hi 0
0 Hj

] [
y[i]

y[j]

]
(6.7)

The blocks of (6.7) are shown in the following (i ∈ {1, 2}, i 6= j)

Aii =


− 1
Cti

(
Rij

|Zij |2
)

ω0 − 1
Cti

(
Xij

|Zij |2
)

ki
Cti

0

−ω0 + 1
Cti

(
Xij

|Zij |2
)

− 1
Cti

(
Rij

|Zij |2
)

0 ki
Cti

− ki
Lti

0 −Rti
Lti

ω0

0 − ki
Lti

−ω0 −Rti
Lti

 ,
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Aij =
1

Cti



Rij

|Zij |2
Xij

|Zij |2 0 0

− Xij

|Zij |2
Rij

|Zij |2 0 0

0 0 0 0

0 0 0 0

 , Bi =


0 0

0 0

1
Lti

0

0 1
Lti

 ,

Mi =


− 1
Cti

0

0 − 1
Cti

0 0
0 0

 , Ci =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , Hi =

[
1 0 0 0
0 1 0 0

]
,

Ali,ij =

[
− 1
Lij

0 0 0

0 − 1
Lij

0 0

]
, Alj,ij =

 1
Lij

0 0 0

0 1
Lij

0 0

 ,
All,ij =

[
−Rij

Lij
ω0

−ω0 −Rij

Lij

]
,

where Xij = ω0Lij , and |Zij | denotes the modulus of Zij , i.e. |Zij | =√
R2
ij +X2

ij .

Remark 6.2. Similarly to what we observed in Remark 3.1 for DC mGs,
one has that, since matrix A has the following block lower triangular form

A =


Aii Aij 0 0

Aji Ajj 0 0

Ali,ij Alj,ij All,ij 0

Ali,ji Alj,ji 0 All,ji

 , (6.8)

its eigenvalues are given by the union of the eigenvalues of the diagonal
blocks. In other words,

eig(A) = eig

(
Aii Aij
Aji Ajj

) ⋃
eig

(
All,ij 0

0 All,ji

)
=

= eig

(
Aii Aij
Aji Ajj

) ⋃
eig(All,ij)

⋃
eig(All,ji),

where All,ij = All,ji. Since lines parameters are positive, the line dynam-
ics is always asymptotically stable. As a consequence, asymptotic stability
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of the overall system (6.8) depends on the stability of local DGUs inter-
connected through the QSL model (6.3). Hence, if decentralized controllers
u[?] = k[?](y[?]), ? ∈ {i, j} are designed so as to stabilize the connection of
the DGUs, then the overall closed-loop model of the ImG is asymptotically
stable as well.

6.2.2 QSL model of a microgrid composed of N DGUs

At this point, the dynamic system developed for an ImG with two DGUs
can be generalized to a network composed of an arbitrary number (say
N) of subsystems. To this aim, we introduce the set V = {1, ..., N}, and
call two DGUs neighbors if there is a power line connecting their PCCs.
Moreover, we define Ni ⊂ V as the set of neighbors of the i-th DGU.

The dynamic system associated with DGU i can be simply retrieved
from model (6.4), replacing Idqij with

∑
j∈Ni

Idqij , i.e.

DGU i :


d

dt
V dq
i = −iω0V

dq
i +

Idqti
Cti
− IdqLi
Cti

+
∑
j∈Ni

1

Cti

(
V dq
j − V

dq
i

Zij

)
d

dt
Idqi = −

(
Rti
Lti

+ iω0

)
Idqti −

V dq
i

Lti
+
V dq
ti

Lti

(6.9a)

(6.9b)

Model (6.9) can still be written in the more compact form (6.5), inserting∑
j∈Ni

Aijx[j](t) instead of ξ[i] = Aijx[j](t). All matrices appearing in this
new model do not change, with the exception of Aii that becomes

Aii =



− 1
Cti

(∑
j∈Ni

Rij

|Zij |2

)
ω0 − 1

Cti

(∑
j∈Ni

Xij

|Zij |2

)
ki
Cti

0

−ω0 + 1
Cti

(∑
j∈Ni

Xij

|Zij |2

)
− 1
Cti

(∑
j∈Ni

Rij

|Zij |2

)
0 ki

Cti

− ki
Lti

0 −Rti
Lti

ω0

0 − ki
Lti

−ω0 −Rti
Lti


(6.10)
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Next, we can write the overall QSL-ImG model as follows

ẋ(t) = Ax(t) + Bu(t) + Md(t)

y(t) = Cx(t)

z(t) = Hy(t)

(6.11)

where x = [xT[1], . . . , x
T
[N ]]

T ∈ R4N , u = [uT[1], . . . , u
T
[N ]]

T ∈ R2N , d =

[dT[1], . . . , d
T
[N ]]

T ∈ R2N , y = [yT[1], . . . , y
T
[N ]]

T ∈ R4N and z = [zT[1], . . . , z
T
[N ]]

T ∈
R2N are the state, the control input, the exogenous input, the measured
variables and the controlled variables of the overall system of DGUs. Ma-
trices A, B, M, C and H are reported in Appendix A.3 of [RSFT14].

Remark 6.3. Models in the form (6.9) represent DGUs whose electrical
scheme is shown in the dashed box of Figure 2.2. In this scheme, local
loads appear only at the PCC of each DGU. For this reason, as for the
case of DC mGs (see Remark 3.3), also ImGs composed of DGUs modeled
as in (6.9) will be referred to as load-connected. We recall that methods for
mapping different interconnections of DGUs and load into load-connected
networks have been proposed, e.g., in [DB13]. In Chapter 8 we propose a
novel approximate network reduction method based on Kron reduction.

6.3 Plug-and-play voltage and frequency control

6.3.1 Decentralized control scheme with integrators

PCC voltages, collected in vector z, track their set-point zref , when distur-
bance d(t) is constant, if it is guaranteed

lim
t→∞

(zref (t)− z(t)) = 0

To this aim, the QSL-ImG model (6.11) is augmented with integrators (see
Figure 6.1). Steady state error zref − z is zeroed if the following condition
is verified

0 = Ax̄ + Bū + Md̄

zref = HCx̄
(6.12)

Γ

[
x̄
ū

]
=

[
0 −M
I 0

] [
zref

d̄

]
, Γ =

[
A B

HC 0

]
∈ R6N×6N , (6.13)
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ImG...

−
+

∫
dt K1

zref [1] v[1] u[1]

−+
∫
dt KN

zref [N ] v[N ] u[N ]

d[1]

. . .
d[N ]

y[1]
. . .y[N ]

z[1]

z[N ]

...
...

Figure 6.1: Control scheme with integrators for the overall AC ImG.

where x̄ and ū denotes equilibrium states and inputs, and d̄ is a constant
disturbance. From [RSFT15], given a constant set-point zref and a constant
disturbance d̄, equilibrium vectors x̄ and ū satisfying (6.13) always exist1.

As shown by Figure 6.1, the dynamics of the integrator of DGU i is

v̇[i](t) = e[i](t) = zref [i](t)− z[i](t) = zref [i](t)−HiCi x[i](t).

Consequently, the DGU model augmented with integrators has the form

Σ̂DGU
[i] :


˙̂x[i](t) = Âiix̂[i](t) + B̂iu[i](t) + M̂id̂[i](t) + ξ[i](t)

ŷ[i](t) = Ĉix̂[i](t)

z[i](t) = Ĥiŷ[i](t)

(6.14)

where x̂[i] = [xT [i], v
d
i , v

q
i ]
T ∈ R6, and ŷ[i] = x̂[i] ∈ R6 are, respectively, the

state and the measurable output; d̂[i] = [dT[i], zref
T
[i]]

T ∈ R4 represents the

augmented exogenous signals (load current and set-point, in dq reference
frame), and term ξ[i](t) =

∑
j∈Ni

Âij x̂[j](t) accounts for the couplings with
neighboring DGUs. The matrices of (6.14) are shown below

Âii =

[
Aii 0
−HiCi 0

]
, Âij =

[
Aij 0
0 0

]
, B̂i =

[
Bi
0

]
,

Ĉi =

[
Ci 0
0 I

]
, M̂i =

[
Mi 0
0 I2

]
, Ĥi =

[
Hi 0

]
. (6.15)

1The proof, provided in [RSFT15], exploits positivity of line parameters Rij and Lij .
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In [RSFT15] it is shown that the pair (Âii, B̂i) is controllable; this is proved
exploiting once more positivity of line parameters. Therefore, it is possible
to stabilize the augmented model (6.14), through the action of a control
scheme.

The overall augmented system, obtained from (6.14), is
˙̂x(t) = Âx̂(t) + B̂u(t) + M̂d̂(t)

ŷ(t) = Ĉx̂(t)

z(t) = Ĥŷ(t)

(6.16)

where x̂ = [x̂T[1], ..., x̂
T
[N ]]

T , ŷ = [ŷT[1], ..., ŷ
T
[N ]]

T and d̂ = [d̂T[1], ..., d̂
T
[N ]]

T , while

matrices Â, B̂, Ĉ, M̂, and Ĥ are obtained from systems (6.14).

6.3.2 Design of plug-and-play controllers

This section is devoted to the description of the decentralized PnP con-
trol scheme ensuring asymptotic stability for the augmented system (6.16).
Local controllers C[i] for each DGU Σ̂DGU

[i] are defined as follows:

C[i] : u[i](t) = Kiŷ[i](t) = Kix̂[i](t), (6.17)

where Ki ∈ R2×6. As shown in Figure 6.2, controllers C[i], i ∈ V are
decentralized because their outputs u[i] depend exclusively on the states of

the corresponding systems Σ̂DGU
[i] .

The closed-loop model of each subsystem Σ̂DGU
[i] is obtained from (6.14)

with the substitution u[i] = Kix̂[i].

If we neglect coupling terms with other DGUs, we get the following
subsystem

˙̂x[i](t) = (Âii + B̂iKi)x̂[i](t) + M̂id̂i(t)

ŷ[i](t) = Ĉix̂[i](t)

z[i](t) = Ĥiŷ[i](t)

(6.18)

From Lyapunov theory, the asymptotic stability of subsystem (6.18) is en-
sured if there exists a symmetric matrix Pi ∈ R6×6, Pi ≥ 0 such that

(Âii + B̂iKi)
TPi + Pi(Âii + B̂iKi) < 0. (6.19)
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VSC i Vti

Rti Lti Iti

Cti

Rij Lij VjVi

ILi

PCCi
Iij

DGU i Power line ij

∫ -
+

V ref, i

dq

abc

dq

abc

dq

abc

Ki

Figure 6.2: AC ImG - Single-phase equivalent scheme of DGU i, power line
ij, and local PnP voltage and frequency controller.

From (6.16) and (6.17), one gets the overall closed-loop system with cou-
plings

˙̂x(t) = (Â + B̂K)x̂(t) + M̂d̂(t)

ŷ(t) = Ĉx̂(t)

z(t) = Ĥŷ(t)

(6.20)

where Â, B̂ and K collect matrices Âij , B̂i and Ki, for all i, j ∈ V.
Asymptotic stability is guaranteed for system (6.20) if there exists a

matrix P = diag[P1, . . . , PN ] so that

(Â + B̂K)TP + P(Â + B̂K) < 0. (6.21)

Remark 6.4. As observed in Remark 3.5 for the case of DC networks,
also in AC ImGs, in general, (6.19) does not imply (6.21). This is due to
the fact that in subsystem (6.18), used to synthesize matrices Ki, couplings
were disregarded, while they are accounted for in the overall closed-loop
system (6.20) (see the example in Appendix B of [RSFT14]).

In order to ensure that (6.19) implies (6.21), in [RSFT15] the authors
exploit the concept of neutral interactions between subsystems. Let us
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define matrices ÂD and ÂC as

ÂD = diag[Âii, . . . , ÂNN ] and ÂC = Â− ÂD.

According to the definition provided in [RSFT15], interactions among DGUs
are neutral if matrix ÂC can be factorized as:

ÂC = SP, (6.22)

where S is a skew-symmetric matrix (i.e. S = −ST). Next, we introduce
the following assumptions.

Assumption 6.1. (i) Shunt capacitances have the same values at all
PCCs: Cti = Cs, ∀i ∈ V.

(ii) Decentralized controllers C[i], i ∈ V are designed such that (6.19) holds
with:

Pi =



η 0 0 0 0 0
0 η 0 0 0 0

0 0 • • • •
0 0 • • • •
0 0 • • • •
0 0 • • • •

 (6.23)

where • denotes arbitrary entries and η > 0 is a parameter common
to all matrices Pi, i ∈ V.

(iii) It is verified that
ηRij

Cs|Zij |2 ≈ 0, ∀i ∈ V, ∀j ∈ Ni, where |Zij | =

|Rij + iω0Lij |.

Assumption (i) is not critical; in fact, if capacitances Cti are not all
identical, then they can be rewritten as

Cti = Cs + ∆Ci.

The current absorbed by each Cti, i ∈ V, can be split into a current com-
ponent drawn by nominal capacitance Cs, and a component due to ∆Ci.
Currents associated with ∆Ci can be treated as disturbances. In [RSFT15]
it is shown, through experiments, that PnP controllers are robust enough
so as to provide an effective rejection of disturbances due to ∆Ci, when
these terms are sufficiently small.

As regards Assumption (ii), checking the existence of Ki satisfying
(6.19) and Pi as in (6.23) amounts to solve an LMI optimization problem.
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Assumption (iii) can be fulfilled in different ways. When it is known
an upper bound to all ratios Rij/|Zij |2, then we simply have to choose a
sufficiently small value for η. Conversely, if Rij/|Zij |2 ≈ 0, which is the
case of mainly inductive lines, η can assume larger values. We underline
that Cs > 0 and η > 0 are the only global parameters that must be known
to synthesize local controllers.

In [RSFT15], it is shown that under Assumptions (i)-(iii), DGU inter-
actions are neutral and the closed-loop QSL-ImG (6.20) is asymptotically
stable.

Each matrix Ki, satisfying Assumption (ii) and ensuring asymptotic
stability of (6.18), is so as to fulfill inequality

(Âii + B̂iKi)
TPi + Pi(Âii + B̂iKi) + γ−1

i I ≤ 0, (6.24)

in which Pi have the structure in (6.23) and γi > 0 provides a certain degree
of robust stability for the origin of (6.18).

The left-hand side of (6.24) can be seen as the Schur complement of a
2 × 2 block matrix, whose off-diagonal blocks are identity matrices I and
whose diagonal blocks are (Âii + B̂iKi)

TPi + Pi(Âii + B̂iKi) and −γiI.
Hence, using Schur complement, problem (6.24) becomes

[
Âii + B̂iKi)

TPi + Pi(Âii + B̂iKi) I
I −γiI

]
≤ 0 (6.25)

Since inequality is nonlinear in Pi and Ki, authors in [RSFT15] introduce
two matrices

Yi = P−1
i

Gi = KiYi
(6.26)

We underline that Yi and Pi have the identical structure. After that, we
pre- and post-multiply (6.25) by

[
Yi 0
0 I

]
and, by use of (6.26), one gets

[
YiÂ

T
ii +GTi B̂

T
i + ÂiiYi + B̂iGi Yi
Yi −γiI

]
≤ 0. (6.27)
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Now, consider the following optimization problem:

Oi : min
Yi,Gi,γi,βi,δi

αi1γi + αi2βi + αi3δi

Yi =



η−1 0 0 0 0 0
0 η−1 0 0 0 0
0 0 • • • •
0 0 • • • •
0 0 • • • •
0 0 • • • •

 > 0 (6.28a)

[
YiÂ

T
ii +GTi B̂

T
i + ÂiiYi + B̂iGi Yi
Yi −γiI

]
≤ 0

(6.28b)[
−βiI GTi
Gi −I

]
< 0 (6.28c)[

Yi I
I δiI

]
> 0 (6.28d)

γi > 0, βi > 0, δi > 0 (6.28e)

where αi1, αi2 and αi3 are positive weights and • denotes arbitrary entries.
All constraints in (6.28) are LMIs, hence we get a convex optimization
problem, which can be efficiently solved by LMI solvers [BEGFB94].

Remark 6.5. We highlight that constraint (6.28a), imposing the structure
of Pi, ensures that Assumption 2 holds. The stability of subsystem (6.18)
is guaranteed by (6.28b). Constraints (6.28c) and (6.28d) represent respec-
tively conditions ||Gi||2 <

√
βi and ||Y −1

i ||2 < δi, which are introduced to
bound ||Ki||2. Indeed, with (6.28c) and (6.28d), we have ||Ki||2 < δi

√
βi.

Finally, we observe that problem (6.28) depends upon local design pa-
rameters (αi1, αi2, αi3) and local electrical parameters, contained in ma-
trices Âii and B̂i. Consequently, once global parameters η > 0 and Cs > 0
have been fixed, the computation of each controller C[i] is not influenced by
the synthesis of the other controllers C[j], j 6= i. After having solved prob-

lem (6.28), matrix Ki is obtained as Ki = GiY
−1
i . Moreover, since Assump-

tions (i)-(iii) are verified, the closed-loop QSL-ImG (6.18) is asymptotically
stable.

Remark 6.6. Performance of controllers C[i] can be enhanced by designing

pre-filters of reference signals (C̃[i]) and local compensator of measurable
disturbances (N[i]). For details, we refer the reader to [RSFT14].
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6.3.3 Plug-and-play operations

Once global parameters Cs > 0 and η > 0 are fixed, each controller C[i] is
designed using the following algorithm.

Algorithm 6.1 Design of controller C[i] and compensators C̃[i] and N[i] for

subsystem Σ̂DGU
[i]

Input: DGU Σ̂DGU
[i] as in (6.14)

Output: Controller C[i] and, optionally, pre-filter C̃[i] and compensator N[i]

(A) Find Ki solving the LMI problem (6.28). If it is not feasible stop (the
controller C[i] cannot be designed).
Optional steps

(B) Design the asymptotically stable local pre-filter C̃[i] and compensator
N[i] as in Section 3.3. of [RSFT14].

When a new DGU is plugged in, or an already connected DGU is un-
plugged, matrices Aii of neighboring subsystems change. Hence, their con-
trollers must be redesigned in order to guarantee asymptotic stability of
the overall closed-loop system. In [RSFT15], it is described the sequence
of operations needed after the plug-in or unplugging of a DGU.

Plug-in operation. Consider an ImG with N DGUs. We want to plug-
in a new DGU, denoted as DGU N + 1, whose associated subsystem is
Σ̂DGU

[N+1], composed of matrices ÂN+1N+1, B̂N+1, ĈN+1, M̂N+1, ĤN+1 and

{ÂN+1 j}j∈NN+1
. The set NN+1 identifies the neighbors of DGU N + 1.

One must follow Algorithm 6.1 in order to design controller C[N+1], pre-filter

C̃[N+1] and compensator N[N+1]. Notably, controllers C[j] and compensators

C̃[j] and N[j], ∀j ∈ NN+1 of the neighboring DGUs Σ̂DGU
[j] , j ∈ NN+1 must

be updated. In fact, matrices Âjj , j ∈ NN+1 change after the connection
of DGU N+1. In conclusion, plug-in of DGU N+1 is allowed if Algorithm
6.1 does not stop in Step (A). We recall that only controllers of neighboring
DGUs must be redesigned; all the other controllers are not updated.

Unplugging operation Consider the unplugging of DGU k, whose as-
sociated subsystem is Σ̂DGU

[k] . Matrix Âjj of each neighboring DGU Σ̂DGU
[j] ,
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j ∈ Nk changes after DGU k is removed. Consequently, controllers C[j],

pre-filters C̃[j] and compensators N[j], j ∈ Nk must be updated. Unplug-
ging operation of DGU k is allowed if Algorithm 6.1 does not stop in Step
(A). All the other controllers C[j], j /∈ Nk must not to be redesigned.
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7.1 Introduction

In this chapter, we propose a distributed hierarchical control architecture
for voltage and frequency stabilization and reactive power sharing in AC
ImGs with specific topologies.

At the primary control layer, each DGU is equipped with a local regu-
lator for voltage and frequency stability acting on the corresponding VSC.
Following the PnP design approach proposed in [RSFT15] (and summarized
in Chapter 6), whenever the addition/removal of a subsystem is required,
the feasibility of the operation is automatically checked by designing local
controllers through convex optimization. As a consequence, the update of
primary regulators, when DGUs plug-in/-out, is automatized and stability
of the ImG is always preserved.

At the secondary level, we develop a distributed control scheme for
achieving advanced coordinated behaviors, such as reactive power sharing.

The main contributions presented in this chapter are detailed in the
following.

1. We provide an extension of the scalable algorithm in Chapter 6 which
allows to compute local stabilizing controllers for ImGs arranged in
load-connected topology only (i.e. networks with local loads appear-
ing at the output terminals of each DGU). Notably, in order to
generalize the PnP control methodology in [RSFT15] to a wider class
of ImGs, we propose a simple and effective procedure for mapping
bus-connected topologies1 (i.e. networks with a common load, sup-
plied by all the DGUs) into their equivalent load-connected models.
We highlight that bus-connected ImGs are frequently found in several
applications [VGS+13, CGS+16].

2. We demonstrate that virtual impedance, a key tool in power electron-
ics developed especially for droop controlled ImGs [HL10, VGS+13],
can be likewise extended to basic PnP controllers. This result is use-
ful since virtual impedance loops are needed for setting the output
impedance of bus-connected VSCs, thus lowering the unwanted cir-
culating currents between DGUs created by mismatches in lines and
inverters parameters.

3. On top of the stabilizing PnP primary layer, we develop a distributed
secondary control scheme for voltage tracking at the load bus and re-
active power sharing. Unlike other works considering droop-controlled

1In the literature, bus-connected topologies are also called parallel topologies.
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ImGs [EDI12, SSRS16], we show how these objectives of practical in-
terest can be ensured by coupling secondary controllers with low-level
PnP regulators. In particular, secondary controllers bring perfor-
mance improvements without compromising the stability of the ImG.

4. The proposed hierarchical control architecture is validated through
experiments on a realistic bus-connected ImG facility. We assess the
capability of PnP controllers to track set-point voltages, and show
the negligible impact of transients on stability when DGUs join/leave
the network. Furthermore, the good behavior of the closed-loop ImG
equipped with the secondary control layer is demonstrated in presence
of both linear and nonlinear loads. Experimental results prove the
feasibility of the proposed control design framework, which guarantees
seamless addition/removal of generation units, thus promoting the
deployment of autonomous electrical networks with flexible topology.

The chapter is organized as follows. In Section 7.2, we derive the formu-
lae for computing the equivalent load-connected network of a bus-connected
one. In Section 7.3, we show how to extend the PnP design procedure pre-
sented in Chapter 6 to the case of bus-connected ImGs. In Section 7.4, the
secondary coordinated control layer is presented. Section 7.5 is devoted to
the assessment, through experiments, of PnP control alone and in combi-
nation with the secondary coordinated control layer. Concluding remarks
are reported in Section 7.6.

7.2 Model of a bus-connected microgrid

The fact that the method in Chapter 6 allows to design stabilizing PnP
controllers for load-connected ImGs only, does not represent a limitation.
In fact, as shown in [DB13] and recalled in Remarks 3.3, 6.3, arbitrary in-
terconnections of loads and DGUs can always be mapped into their equiv-
alent load-connected topologies by means of Kron reduction [Kro39]. This
mathematical tool, which will be extensively described in Chapter 8, can
be exploited for computing (i) the corresponding load-connected topology
(where only DGUs are interconnected) of the original, arbitrarily connected
ImG, (ii) the admittances of the new power lines and (iii) the equivalent
currents injected at the PCCs, accounting for the effect of the eliminated
nodes (i.e. the loads that do not appear at the output terminals of DGUs)
in the original network2. An example of the transformation is provided in

2Kron reduction will be discussed in details in Chapter 8.
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Figure 7.1.

1 2

3

4

Z14 Z24

Z34

(a) Bus-connected ImG.

1 2

3

Z̃12

Z̃23Z̃13

(b) Equivalent load-connected ImG.

Figure 7.1: Example of network transformation. Red squares indicate
DGUs with corresponding local loads ILi (appearing, e.g., in Figure 6.2),
while the blue circle in Figure 7.1a denotes the unique load at the common
bus. Black arrows identify balanced power lines.

Since several works from the literature consider ImGs arranged in bus-
connected topology [SHK+17, HHY+16, VGS+13], we are interested in
mapping these topologies into the corresponding load-connected ones. While
it goes without saying that Kron reduction can also be applied to this aim
(by eliminating the node representing the load bus3), it requires the in-
version of an admittance matrix. In the following, instead, we provide an
equivalent procedure, leading to explicit formulae, for computing the ad-
mittances of the power lines of the corresponding load-connected network
(e.g. the inverse of the impedances Z12, Z13 and Z23 in Figure 7.1a). This
method relies on KCL, KVL and QSL approximation.

As a starting point, let us consider a bus-connected ImG with N DGUs
feeding a common load (IL) connected to the Point of Load (PoL). Figure
7.2 provides an example with N = 3 and shows parameters Ri, Li and
currents Ii characterizing each DGU. As usual, we assume balanced lines.
Moreover, sets V and Ni (i ⊂ V) are defined as in Chapter 6 (see Section
6.2.2).

By applying KCL and KVL in the abc-frame and performing the Park’s
transformation [Par29], we have that the dynamics of DGU i in dq-coordinates,

3Node 4 in the example in Figure 7.1a.
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with reference angular frequency ω = ω0, are described by

DGUi :


d

dt
V dq
i =

Idqti
Cti
− Idqi
Cti
− iω0V

dq
i

d

dt
Idqti = −

(
Rti
Lti

+ iω0

)
Idqti −

V dq
i

Lti
+
V dq
ti

Lti

(7.1a)

(7.1b)

The network reduction method is summarized in the following Lemma.

Lemma 7.1. Consider a bus-connected ImG with complex power lines ad-
mittances 1/Zi, where Zi = Ri + iω0Li, i = 1, ..., N , and common load
current IL. Under QSL approximations of line dynamics, voltages and
currents in (7.1) coincide with model (6.9), provided that 1/Zij and ILi in
(6.9a) are defined as

1

Zij
=

1

ZjZi
∑N

k=1
1
Zk

, ∀j 6= i (7.2)

and

IdqLi =
IdqL(

Zi
∑N

k=1
1
Zk

) , (7.3)

respectively.

Proof. The proof of Lemma 7.1 is given in Appendix 7.7.1.

We highlight that, since admittances 1/Zij i, j = 1, ..., N, i 6= j are
all nonzero, the described transformation always returns a fully connected
reduced network (see the example in Figure 7.1b, where each pair of distinct
DGUs is connected by one power line).

7.3 Plug-and-play primary control layer

7.3.1 Control structure

Figure 7.3 shows a bus-connected DGU, equipped with a decentralized
PnP controller for voltage and frequency regulation. It can be seen that the
structure of the local regulator is the same as the one depicted in Figure 6.2
for load-connected DGU. Notably, each controller exploits measurements
of the voltage V dq

i at the PCC and the current Idqti , in order to control the
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VSC 1

Rt1 It1
Lt1
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R1 L1
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PoL L2 R2

I2 V2

PCC2
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DGU 1 DGU 2Line 1 Line 2

VSC 3

Rt3It3
Lt3

Vt3

L3 R3

I3 V3

PCC3

Ct3

DGU 3Line 3

Figure 7.2: Electrical scheme of a bus-connected ImG composed of three
DGUs and a common unmodeled load.

voltage V dq
ti at the VSC i and make V dq

i track a reference signal. Moreover,
the considered controller is multivariable, and the only tunable parameter
is the matrix gain Ki in Figure 7.3. Finally, the presence of the integrators
guarantees tracking of constant set-point references in the dq-frame, and
hence of three-phase sinusoidal quantities in the abc-frame.

In addition to the scheme described in Chapter 6, Figure 7.3 reveals the
presence of a virtual impedance loop, i.e. a widely used tool in control of
parallel interconnected VSCs [HL10, VGS+13]. Its employment is instru-
mental for lowering the circulating currents between DGUs generated by
line-impedance unbalance and mismatch in inverter parameters. In prac-
tice, as shown in Figure 7.3, the virtual impedance reduces the voltage
reference by a term proportional to the line current, thus mimicking an
RL impedance connected in series to the output filter of the inverter. We
also highlight that virtual resistances and inductances should be chosen
sufficiently large so as to outnumber such uncertainties in the electrical pa-
rameters. In contrast with a physical device, a virtual impedance has no
power losses. In [HL10, VGS+13], the virtual impedance is expressed in
αβ-coordinates. Similarly, we can model it in dq-coordinates as follows:

V d
i,v = Ri,vI

d
i + Li,v

dIdi
dt
− ω0Li,vI

q
i

V q
i,v = Ri,vI

q
i + Li,v

dIqi
dt

+ ω0Li,vI
d
i

(7.4)

where Ri,v and Li,v are the virtual resistance and inductance parameters
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Figure 7.3: Bus-connected DGU equipped with local PnP regulator and
virtual impedance loop.

and Vi,v and Ii are the voltage and current in the dq-frame shown in Figure
7.3.

7.3.2 Plug-and-play design of local controllers

In this section, we show how to extend the PnP control design proce-
dure described in Chapter 6 (which assumes load-connected ImGs) to bus-
connected networks.

Whenever we want to plug-in a new DGU (say DGU i) to an existing
ImG, the first step is to compute the line impedances between DGU i and
each DGU j, j ∈ V \ {i}, using (7.2). Subsequently, the LMI test (6.28)
must be successfully solved for all the DGUs, in order to allow the safe
connection of DGU i. On the other hand, if only one of these LMIs is
infeasible, the plug-in of DGU i is denied. Unplugging of a DGU can be
performed in a similar way.

Remark 7.1. The procedure for handling plug-in/-out operations when the
original network is arranged either in a load- or bus-connected topology can
be simplified as follows. Let us assume that the hot plug-in (i.e. the plug-in
in real-time) of DGU i has been allowed and scheduled at a future time t̄. At
the same time instant, DGUs j (with j ∈ Ni if the ImG is load-connected,
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or j ∈ V \ {i} if the ImG is bus-connected) will start using the new gains.
Retuning of gains Kj, however, could be avoided if previous gains are still
feasible for the corresponding LMI test. In other words, for such DGUs j,
one can check if matrix gains Kj working for t < t̄ still fulfill the constraints
of their corresponding optimization problem (6.28). Preserving previously
designed controllers, in fact, has the advantage of reducing perturbations on
electrical signals right after t̄, which might be caused by controller switching.

In a similar way, if DGU m is disconnected, the retuning of controllers
of DGUs k (with k ∈ Nm or k ∈ V \ {m} if the ImG is load- or bus-
connected, respectively) can be avoided if the LMI (6.28) is feasible for pre-
viously designed matrix gains Kk.

7.3.3 Clock synchronization for primary control

The computation of VSC commands assumes that all clocks of local con-
trollers, used for performing abc to dq transformations, are synchronized.
As also highlighted in [EDI12], each DGU can include a crystal oscilla-
tor that generates the angular phase θ(t) =

∫ t
0 ω0 dτ . However, if the

local oscillators are not synchronized, the local angular phase is given by
θi(t) = θ(t) + θi,0, where θi,0 is the initial offset. In [EDI12], the authors
propose a synchronization using Global Positioning System (GPS) radio
clock, which could achieve an accuracy higher than 1µs [PTP08].

An alternative solution is to synchronize clocks using communication
between controllers. This operation can be performed quite rarely because,
as noted in [EDI12], currently available crystal oscillators are characterized
by high accuracy (from 2 µs to 20 ps in a year [Vig09]). Moreover, synchro-
nization can be done through packet networks, using either a distributed
protocol (e.g. Berkeley algorithm [GZ89]) or approaches based on all-to-all
communication, such as instantaneous averaging [IEE17].

If an ImG is equipped with primary PnP regulators, prior to allowing
the plug-in of a new DGU, it is mandatory to synchronize it with all the
ones already connected to the PoL. Therefore, in the experiments described
in Section 7.5, we let each new DGU estimate θi,0 by computing the average
angular phases of all the other DGUs.

7.3.4 Harmonic compensation by tuning the plug-and-play
control bandwidth

Besides collective voltage and frequency stability, PnP design can guaran-
tee good harmonic compensation, even in absence of low-level resonant con-
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trollers (described, e.g., in [VGS+13]). In fact, as explained in [RSFT15],
one can also shape, in a desired fashion, the singular values of the overall
closed-loop ImG. More specifically, in order to provide suitable attenua-
tion of the 5-th, 7-th and 11-th harmonics in abc-frame, we design primary
PnP controllers that attenuate the 4-th, 6-th and 10-th harmonics in the
rotating dq-frame. An example is provided in Figure 7.4 for an ImG with
two DGUs. The singular values of closed-loop ImG transfer function from
voltage references to the voltages at the PCCs are represented in Figure
7.4a. Similarly, the singular values of the transfer function from voltage
references to the currents in the filters are given in Figure 7.4b. Notice
that good attenuation can be obtained also when couplings between DGUs
are accounted for. In fact, assuming f0 = 50 Hz, from Figure 7.4a, the
attenuation of the 5-th, 7-th and 11-th voltage harmonics is 50 dB, 60 dB
and 70 dB, respectively.
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Figure 7.4: Singular values for the closed-loop ImG with two DGUs.

7.4 Coordinated control

Using PnP controllers described in Sections 7.3.1-7.3.2, we are able to guar-
antee voltage and frequency stability for the overall ImG. Notably, each
local controller regulates the voltage at the corresponding PCC, according
to the following reference in the abc-frame

V ∗i•(t) = V ∗i sin
(
ω0t+ φ∗i + ∆φ∗i,•

)
, • = {a, b, c}, (7.5a)
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∆φ∗i,a = 0, ∆φ∗i,b = −2π

3
, ∆φ∗i,c =

2π

3
. (7.5b)

In bus-connected ImGs, one can indirectly control voltage and frequency
at the PoL by choosing voltages V ∗i , i = 1, . . . , N in (7.5). In several
control architectures, the use of a Power-Management System (PMS) has
been proposed for this purpose (see, e.g., [EDI12]). The basic idea is to
compute voltage references such that each DGU injects prescribed active
and reactive power. The PMS must be run in real-time in order to maintain
a prescribed power flow, even if loads change. In the following, we propose
a distributed secondary control layer capable to guarantee (i) a desired
voltage at the PoL, and (ii) sharing of reactive power injections among
DGUs.

7.4.1 Voltage tracking at the PoL

Let us indicate the desired PoL voltage with V ∗PoL∠04. In absence of loads,
in order to guarantee the reference at the PoL, we could set, in (7.5),
V ∗i = V ∗PoL and φ∗i = 0. However, due to the presence of time-varying
loads, V ∗i and φ∗i must be adapted over time. We propose that each DGU
changes its set-point according to

V ∗i•(t) = (V ∗PoL + ∆VPoL) sin
(
ω0t+ ∆φPoL + ∆φ∗i,•

)
, (7.6)

with • = {a, b, c}, and ∆φ∗i,• as in (7.5b), instead of (7.5). The next aim
is to compute ∆VPoL and ∆φPoL in order to keep PoL voltage close to its
reference. Since we can not measure the voltage at the PoL, we estimate
its amplitude and phase averaging local measurements

VPoL =

N∑
i=1

VPoL,i
N

φPoL =

N∑
i=1

φPoL,i
N

(7.7)

where VPoL,i and φPoL,i are computed by each DGU from Vi and Ii (shown
in Figure 7.3) as follows

VPoL,i =
√

(V d
PoL,i)

2 + (V q
PoL,i)

2 φPoL,i =
V q
PoL,i

V d
PoL,i

, (7.8)

4Without loss of generality, the phase has been assumed equal to zero.
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where

V d
PoL,i = V d

i + ω0LiI
q
i

V q
PoL,i = V q

i − ω0LiI
d
i .

We equip each DGUwith the local controller in Figure 7.5 for computing
∆VPoL and ∆φPoL in (7.6). We note that the controller in Figure 7.5 is
replicated in each DGU instead of being unique for the whole ImG. As
shown in [SGV14], replicating the controller has several advantages when
the communication latency increases. Differently from the PnP control
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Figure 7.5: Coordinated control layer: computation of correction terms
∆VPoL and ∆φPoL. Parameters KPV and KPφ are the voltage and phase
proportional coefficients, while TIV and TIφ are the voltage and phase in-
tegral time constants.

architecture (that is completely decentralized), the secondary layer of con-
trollers is distributed as it needs a communication network in order to
exchange values VPoL,i and φPoL,i, and then to compute locally the aver-
ages (7.7). Formula (7.7) requires a fully connected communication net-
work, as all measurements VPoL,i and φPoL,i have to be broadcasted to
all DGUs. However, this limitation could be avoided by resorting to dis-
tributed algorithms, based on consensus strategies, for tracking the average
of time-varying signals [Bulns]. Indeed, these methods only require sparse,
yet connected, networks. In Figure 7.6 we show the flow of information
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for the proposed coordinated controller. Each controller in Figure 7.5 is

DGU2	DGU1	

PnP	Control		2	PnP	Control		1	

Coordinated	
Control		1	

Coordinated	
Control		2	

Communica)on	
network	

PoL	

load	

Figure 7.6: Scheme of the coordinated control.

a PI regulator with an anti-windup scheme accounting for saturations on
∆VPoL and ∆φPoL. These saturations are needed to limit the amplitude
and phase deviations, thus preventing the opening of breakers connecting
inverters to the PoL. When saturations are not active, ∆VPoL and ∆φPoL
are computed through the standard PI formulae

∆VPoL(t) = KPV (V ∗PoL − VPoL(t)) +KIV

∫ t

0
(V ∗PoL − VPoL(τ)) dτ

∆φPoL(t) = KPφ(0− φPoL(t)) +KIφ

∫ t

0
(0− φPoL(τ)) dτ.

(7.9a)

(7.9b)

At this point, we aim to select the integral time constants TIV =
KPV /KIV and TIφ = KPφ/KIφ in Figure 7.5 so as to make the corre-
sponding PI control loop sufficiently slower than the inner PnP control
loop. In order to properly design the PI parameters in (7.9), one can follow
standard design procedures by assuming that the system under control (i.e.
the transfer function describing the relation between ∆VPoL and VPoL) has
the following form:

VPoL
∆VPoL

=
µe−sτPoL

1 + sTPoL
. (7.10)

This approximation in justified in Appendix 7.7.2, where explicit formulae
for τPoL and TPoL are also given.
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7.4.2 Sharing of reactive power

Inner PnP regulators complemented with coordinated controllers for volt-
age tracking at the PoL cannot alone guarantee accurate reactive power
sharing among DGUs. For this reason, we propose an additional coor-
dinated controller dedicated to this aim. We assume that DGUs are con-
nected to the PoL through mostly inductive lines5. In this case, the sharing
of the reactive power is due to the amplitude of the voltages [YI10, TLR11].
Therefore, we propose to change the amplitude of the set-point for each
DGU as

V ∗i = V ∗PoL + ∆VPoL + ∆V Q
i , (7.11)

where V ∗PoL is the reference for voltage at PoL, ∆VPoL is computed as in

(7.9a) and ∆V Q
i is a voltage correction to guarantee reactive power sharing.

Voltage ∆V Q
i is computed by the PI controller equipped with anti-windup

shown in Figure 7.7. In particular, when the saturation on ∆V Q
i is not

active, one has:

∆V Q
i (t) = KPQ(Q(t)−Qi(t)) +KIQ

∫ t

0
(Q(τ)−Qi(τ)) dτ,

where Qi is the reactive power injected by the local DGU and Q(t) is
the average of the injected reactive powers. The PI regulator in Figure
7.7 is replicated in each DGU. Moreover, the whole control layer requires
the communication network displayed in Figure 7.6 since all units must
exchange the values of reactive power Qi(t) for computing locally average
Q(t).

Similarly to what we have done for the PI regulators in Figure 7.5,
each integral time constant TIQ is designed to make the corresponding PI
controller slower than the inner PnP ones.

7.5 Experimental results

7.5.1 Microgrid setup

We tested the performance of the proposed approach using the ImG plat-
form in Figure 5.6; it consists of three Danfoss inverters (2.2kVA with LC
filters), a dSPACE1103 control board and LEM sensors. Inverters operate
in parallel to emulate DGUs while different load conditions are obtained

5Results can be easily adapted to the case of lines that are mostly resistive.
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Figure 7.7: Control scheme for the computation of ∆V Q
i . Parameters KPQ

and TIQ are the reactive power proportional term and the reactive power
time constant, respectively.

by connecting to the bus resistive loads and/or a diode rectifier. All the
inverters are supplied by a DC source generator, therefore neither renew-
able sources nor energy storage devices are present in the experimental
setup. Although this does not allow to study the effect of power fluctua-
tions from renewable sources, the reliability of our experimental validation
is guaranteed by the fact that, in general, changes in the power supplied
by renewables take place at a timescale that is slower than the one we are
interested in for stability analysis.

The controllers have been implemented in Simulink and compiled to the
dSPACE system in order to command the inverter switches at a frequency
of 10 kHz. Although the dSPACE platform is unique (see also Figure
7.8a), separate local controllers for each inverter were implemented so as to
guarantee the control architecture can be implemented in a real distributed
inverter system. The scheme of the experimental setup is depicted in Figure
5.6.

In the performed experiments, we make sure that, at time t = 0 s, all
the controllers are already activated so that all the voltages at the PCCs
start from their reference value (230 V).

The control and electrical parameters are reported in Appendix 7.7.3.

In the following sections, we validate primary PnP controllers under
linear and nonlinear load conditions, as well as the combination of such
primary layer with the proposed secondary coordinated controllers.
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Figure 7.8: Experimental validation: ImG setup and implemented control
scheme.

7.5.2 Primary control layer validation

Voltage regulation at the PCCs with resistive load

In this first experiment, we test the capability of PnP primary controllers to
handle connection and disconnection of inverters in a bus-connected ImG.
At this stage, coordinated controllers described in Section 7.4 are not used.
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At time t = 0 s, the first and second inverter are connected to the bus;
since there is no load at the PoL, the Root Mean Square (RMS) voltages
at PCCs 1 and 2 (red and green line, respectively, in Figure 7.9a) coincide
with the reference.

At t = 5 s, we connect a resistive load (R = 92 Ω) at the PoL. Conse-
quently, the active powers provided by inverters 1 and 2 increase in order to
compensate the load (see Figure 7.9c). We also notice that the frequencies
are promptly restored after the load connection (as shown in Figure 7.9b).

Since the voltage references at PCCs are fixed, PnP controllers alone
cannot guarantee a good voltage regulation at the PoL. Moreover, as re-
called in Section 7.3.1, the presence of a local virtual impedance induces
a drop (proportional to the output current) in the corresponding reference
voltage. This behavior is shown, for instance, in Figure 7.9a, where we no-
tice a decrement in the voltages at PCCs 1 and 2 when the load is connected
to the PoL (at t = 5 s).

At time t = 15 s, we plug-in inverter 3. This event induces spikes in the
frequencies (see Figure 7.9b), whose maximal amplitude, however, is less
than 0.2 Hz. Moreover, Figure 7.9c shows that all the inverters provide the
same active power to compensate the load.

At times t = 25 s and t = 35 s, we change the load to R = 460 Ω and
R = 154 Ω, respectively. These events generate drops in the active power
of more than 50%. Moreover, voltages and frequencies are instantaneously
restored (see Figures 7.9a and 7.9b). Differently from droop-controllers,
PnP controllers are not inertia-based and hence they are capable to provide
faster transients.

Finally, at t = 40 s and t = 45 s we plug-out inverters 3 and 2, respec-
tively, thus eventually feeding the resistive load with inverter 1 only. Also
in this case, the impact of the unplugging events on the frequency profile
is minor.

Voltage regulation at the PCCs with unbalanced load

In this experiment, we show performance of PnP controllers under unbal-
anced load conditions. For the sake of simplicity, in Figures 7.10b-7.10e we
show the evolution of the main electrical quantities of inverter 1 only.

At t = 0 s, all the inverters are connected to the PoL and no load is
present. Then, at t = 5 s we connect a balanced resistive load (R = 115 Ω)
to the common bus. Consequently, inverter 1 provides the output current
shown in Figure 7.10b.

At t = 10 s, we change phase b of the load to R = 57 Ω, thus causing



7.5. Experimental results 171

the unbalance in the output current 1 shown in Figure 7.10c. Moreover,
the average of the imbalanced ratios [IEE09] for all the inverters is 0.5 %
(see Figure 7.10a).

At t = 15 s, we change phase c of the load to R = 230 Ω. As a
consequence, in Figure 7.10d we note an additional unbalance in the output
current 1. Moreover, from Figure 7.10a, we see that the average of the
imbalanced ratios increases to 0.75 %.

Finally, at t = 20 s and t = 25 s, we unplug inverters 2 and 3, respec-
tively: since inverter 1 must provide all the power required by the load, the
amplitude of its output current increases (Figure 7.10e). Figure 7.10a shows
that also its imbalance ratio increases to 1 % and then to 1.65 %. However,
we notice that, during the whole experiment, the imbalance ratio is quite
small and always lower than the maximum value (3 %) recommended by
IEEE in [IEE09].

Voltage regulation at the PCCs with nonlinear load

In this scenario, we use nonlinear loads in order to evaluate the capability
of PnP controllers to reject higher-order harmonics.

At time t = 0 s, inverters 1 and 2 are connected to the diode rectifier
shown in Figure 7.8a. Hence, the active power provided by inverter 3 is
zero (see Figure 7.11c) and the Total Harmonic Distortion (THD) index6

[IEE09] is higher for the voltages at PCCs 1 and 2 (as shown in Figure
7.11e).

At t = 5 s, we increase the power required at the PoL by connecting a
resistive load (R = 154 Ω) in parallel with the nonlinear one.

The plugging in operation of inverter 3 is performed at t = 15 s. Notice
that the frequencies are promptly restored to the nominal value (variations
less than 0.2 Hz), total active power is equally shared between all inverters
and THDs are reduced for all inverters.

In order to assess the robustness of local PnP regulators to unknown
load dynamics, at times t = 25 s and t = 35 s, we switch the resistive load
to R = 460 Ω and R = 154 Ω, respectively. Figures 7.11a and 7.11b show
fast transients of voltages and frequencies at the PCCs.

Finally, at t = 40 s and t = 45 s, we unplug inverter 3 and 2, respec-
tively. Consequently, the THD of the voltage at PCC 1 increases. However,
as shown in Figure 7.11e, the THD values are always below the maximum
limit (5%) recommended in [IEE09]. Concluding, this experiment reveals

6For the sake of simplicity, in Figure 7.11e we show only the THD indices of phase a
of the corresponding PCC voltages.
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that, even in absence of inner resonant controllers, PnP regulators are ca-
pable to guarantee high levels of robustness to load variations and harmonic
attenuation.

7.5.3 Primary and secondary layers validation

In this section, we validate the combination of the coordinated control layer
presented in Section 7.4 and PnP primary regulators.

As a first test, we consider the same experimental scenario as in Section
7.5.2, complemented with the coordinated controllers presented in Section
7.4.1 for voltage tracking at the PoL. This operation is desirable because,
as shown in Figure 7.11a, PnP regulators alone fail to keep the PoL voltage
at the nominal value, even though the voltages at the PCCs are stabilized.
As highlighted in Section 7.4, this issue is due to the fixed voltage set-points
for the PnP controllers.

In this experiment, we activate coordinated controllers at time t =
20 s. Consequently, as shown in Figure 7.12a, the voltages at the PCCs
increase in order to track the nominal PoL voltage. Moreover, the proposed
coordinated controllers are capable to keep the PoL voltage at the desired
level (by regulating the voltages at the PCCs) even when load changes (at
times t = 25 s and t = 35 s) and disconnection of inverters (at t = 40
s and t = 45 s) are performed (see Figure 7.12). We also highlight that
the presence of the coordinated controllers does not affect the frequency
profiles (see Figure 7.12b). On the other hand, Figure 7.12d reveals that
the total reactive power is still not shared equally between the inverters.

In order to ameliorate also aspect, we run a second experiment in which
the previous control scheme is complemented with coordinated controllers
for reactive power sharing (described in Section 7.4.2). In particular, we
notice that, right after their activation (at time t = 20 s), the total reactive
power is equally shared (see Figure 7.13b, to be compared with Figure
7.12d). This goal is achieved through the computation of terms ∆V Q

i in
(7.11), which are shown in Figure 7.13a.

7.6 Final comments

In this chapter, we showed how to adapt the PnP control scheme [RSFT15]
for voltage and frequency regulation in AC ImGs to bus-connected topolo-
gies. We have also proposed a secondary control layer and performed an
experimental validation of the overall control architecture. Using the par-
allel connection of three VSCs, we showed that stability, accurate tracking
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of the voltage at PoL and reactive power sharing can be successfully en-
sured. Moreover, experiments with linear and nonlinear loads show that
the harmonic distortion is kept within acceptable bounds. In our imple-
mentation, time-synchronization of DGU clocks and the secondary control
layer assume all-to-all communication among DGUs. Future research will
focus on distributing these computations as well, by exploiting only partial
communication among DGUs and, as in [SSD+14], consensus-like protocols
for estimating the average of global variables.

In the next chapter, we present two network reduction methods that
allow to design decentralized PnP voltage and frequency controllers for AC
ImGs with general topologies (hence also for bus-connected networks).

7.7 Appendix

7.7.1 Proof of Lemma 7.1

Proof. Let us consider a bus-connected ImG composed of N DGUs (see,
e.g., Figure 7.2), and let (7.1a) describe the dynamics of DGU i. For
1 ≤ j ≤ N , j 6= i, by applying KVL and Park’s transformation, one gets

V dq
i −V

dq
j = RiI

dq
i +Li

d

dt
Idqi +iω0LiI

dq
i −RjI

dq
j −Lj

d

dt
Idqj −iω0LjI

dq
j . (7.12)

By exploiting QSL approximations [RSFT15, VSZ95], in (7.12), we set
d
dtI

dq
i = 0, ∀i ∈ V. Hence, equation (7.12) becomes

V dq
i −V

dq
j = RiI

dq
i +iω0LiI

dq
i −RjI

dq
j − iω0LjI

dq
j , 1 ≤ j ≤ N, j 6= i.

Next, recalling that Zi = Ri + iω0Li, one gets

Idqj =
V dq
j − V

dq
i

Zj
+
Zi
Zj
Idqi , 1 ≤ j ≤ N, j 6= i. (7.13)

Applying KCL at the PoL, we have

Idqi +
∑
j 6=i

Idqj = IdqL (7.14)

and, inserting (7.13) in (7.14), we obtain

Idqi =
IdqL(

1 +
∑

j 6=i
Zi
Zj

)+

∑
j 6=i

1

Zj

 V dq
i(

1 +
∑

j 6=i
Zi
Zj

)−∑
j 6=i

V dq
j

Zj

1(
1 +

∑
j 6=i

Zi
Zj

) .
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(7.15)

Since in (7.15) it holds

1(
1 +

∑
j 6=i

Zi
Zj

) =
1(

Zi
∑N

k=1
1
Zk

) ,
by defining 1

Zij
as in (7.2), one has∑

j 6=i

1

Zj

 1(
Zi
∑N

k=1
1
Zk

) =
∑
j 6=i

1

Zij
. (7.16)

At this point, by replacing (7.16) in (7.15), and then substituting the re-

sulting expression into (7.1a), one gets that the dynamics of V dq
i have the

form (6.9a), where the admittances of the equivalent load-connected net-
work are given by (7.2), while the effect of the eliminated node (i.e. the
PoL) at the i-th PCC is accounted by (7.3).

7.7.2 Derivation of the approximate model (7.10)

We start by using the following first-order approximation of each DGU
equipped with the corresponding stabilizing PnP controller

V d
i =

1

1 + sT di
V ∗di V q

i =
1

1 + sT qi
V ∗qi .

Since the overall PnP architecture is stable, and due to the presence of
output impedance for each DGU, we can also state that

V d
PoL,i = µdi e

−sτdi V d
i V q

PoL,i = µqi e
−sτqi V q

i

where µdi , µ
q
i , τ

d
i and τ qi depend on the output impedance. Using (7.8),

assuming τi = τdi ≈ τ qi , Ti = T di ≈ T qi , and setting µi =
√

(µdi )
2 + (µqi )

2,

we obtain

VPoL,i =
µie
−sτi

1 + sTi
V ∗i φPoL,i = φ∗i . (7.17)

Therefore, using (7.17) and (7.7), we can provide a linear model of the
effect of V ∗i and φ∗i on VPoL and φPoL, respectively. Furthermore, since
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V ∗i = V ∗PoL + ∆VPoL and φ∗i = 0 + ∆φPoL, we also obtain a small-signal
model of the effect of ∆VPoL and ∆φPoL on VPoL and φPoL, respectively.

As regards the phase deviation, since φPoL,i = φ∗i = ∆φPoL, we can
easily derive a simplified model as

φPoL =
∆φPoL
N

which can be used for computing the PI control action in (7.9b).
For deriving a simplified model of the amplitude deviation, the closed-

loop dynamics of the DGU equipped with its corresponding voltage and
frequency regulator must be considered. The second control layer should
act mostly when the primary PnP layer is at steady-state. Hence, using
(7.17), we can write a local approximate dynamics as

VPoL,i =
µie
−sτPoL

1 + sTPoL
V ∗i =

µie
−sτPoL

1 + sTPoL
(V ∗PoL + ∆VPoL)

where τPoL = max(τ1, . . . , τN ) and TPoL = max(T1, . . . , TN ). Next, using
(7.7), we can derive

VPoL =
µe−sτPoL

1 + sTPoL
V ∗PoL +

µe−sτPoL

1 + sTPoL
∆VPoL (7.18)

where µ =
∑N

i=1
µi
N . Concluding, from (7.18), one has that the transfer

function that describes the relation between ∆VPoL and VPoL is (7.10).

7.7.3 Electrical and control parameters of the experimental
tests

Parameter Symbol Value Units

Virtual resistance Ri,v 3 Ω
Virtual inductance Li,v 0.03 H

Table 7.1: Virtual impedance parameters.
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Parameter Symbol Value

Module proportional term KPV 10−3

Module integral term KIV 0.6
Phase proportional term KPφ 10−3

Phase integral term KIφ 4

Table 7.2: Voltage tracking at the PoL.

Parameter Symbol Value

Reactive power proportional term KPQ 10−4

Reactive power integral term KIQ 10−2

Table 7.3: Reactive power sharing.

Parameter Symbol Value Units

PCC reference voltage Vref 230 V
ImG frequency f0 50 Hz

Switching frequency fsw 10 kHz
Filter resistance Rti 0.1 Ω
Filter inductance Lti 1.8 mH
Filter capacitance Cti 25 µF

Line resistance Ri 0.1 Ω
Line inductance Li 1.8 mH

Phase resistive load Ra,b,c 57-115-230-460 Ω
Nonlinear load RNL 460 Ω

Table 7.4: Electrical setup parameters.
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(a) RMS voltages of phase a at PCCs.

(b) Frequencies of phase a voltages at PCCs.

(c) Active power provided by the inverters to the load.

(d) Reactive power provided by the inverters to the load.

Figure 7.9: Voltage regulation at the PCCs with resistive load (Section
7.5.2). Red, green and blue lines are, respectively, for VSCs 1, 2 and 3.
Load change, plug-in and unplugging events are indicated with orange,
magenta and black arrows, respectively. The plots in Figures 7.9a and 7.9b
refer to the voltages of phase a of the three-phase converters composing the
ImG (see the scheme in Figure 7.8b).
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(a) Imbalance ratios. Red, green and blue lines are, re-
spectively, for VSC 1, 2 and 3. Load connection, phase b
load unbalancing, phase c load unbalancing and unplug-
ging events are indicated with orange, magenta, grey and
black arrows, respectively.

(b) Output current for inverter 1
around time t = 8.65 s (effect of bal-
anced load connection at t = 5 s). Red,
green and blue lines are for phase a, b
and c, respectively.

(c) Output current for inverter 1 around
time t = 11.65 s (effect of load phase b
unbalancing at t = 10 s). Red, green
and blue lines are for phase a, b and c,
respectively.

(d) Output current for inverter 1
around time t = 16.65 s (effect of load
phase c unbalancing at t = 15 s). Red,
green and blue lines are for phase a, b
and c, respectively.

(e) Output current for inverter 1 around
time t = 28.65 s (after the unplugging
of VSCs 2 and 3). Red, green and blue
lines are for phase a, b and c, respec-
tively.

Figure 7.10: Voltage regulation at the PCCs with unbalanced load (Section
7.5.2).



7.7. Appendix 179

(a) RMS voltages of phase a at PCCs.

(b) Frequencies of phase a voltages at PCCs.

(c) Active power provided by the inverters to the load.

(d) Reactive power provided by the inverters to the load.

(e) Total harmonic distortion.

Figure 7.11: Voltage regulation at the PCCs with nonlinear load (Section
7.5.2). Red, green and blue lines are, respectively, for VSC 1, 2 and 3. Load
change, plug-in and unplugging events are indicated with orange, magenta
and black arrows, respectively. The plots in Figures 7.11a and 7.11b refer
to the voltages of phase a of the three-phase converters composing the
microgrid (see the scheme in Figure 7.8b).
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(a) RMS voltages of phase a at PCCs.

(b) Frequencies of phase a voltages at PCCs.

(c) Active power provided by the inverters to the load.

(d) Reactive power provided by the inverters to the load.

Figure 7.12: PnP regulators and coordinated controllers for voltage tracking
at the PoL with nonlinear load. Red, green and blue lines are, respectively,
for VSC 1, 2 and 3. Load change, plug-in and unplugging events are in-
dicated with orange, magenta and black arrows, respectively. Moreover,
the grey arrow denotes the activation of secondary controllers described in
Section 7.4.1. The plots in Figures 7.12a and 7.12b refer to the voltages
of phase a of the three-phase converters composing the microgrid (see the
scheme in Figure 7.8b).
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(a) Amplitude deviations ∆V Qi in (7.11) leading to the
sharing of total reactive power.

(b) Reactive power produced by each VSC.

Figure 7.13: PnP regulators and coordinated controllers for voltage tracking
at the PoL and reactive power sharing with nonlinear load. Red, green and
blue lines are respectively for VSC 1, 2 and 3. Load change, plug-in and
unplugging events are indicated with orange, magenta and black arrows,
respectively. Moreover, the grey arrow denotes the simultaneous activation
of secondary controllers described in Sections 7.4.1 and 7.4.2.
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8.1 Introduction

In this chapter, we present two methods for simplifying AC linear electrical
network. As will be detailed in the sequel, the proposed procedures rely on
Kron Reduction (KR) and can be exploited for designing PnP decentralized
voltage and frequency controllers for AC ImGs with arbitrary topologies.
The presented algorithms aim to overcome one relevant limitation of the
existing network reduction approaches based on KR.

KR is standard tool for simplifying linear electrical networks [Kro39] while
preserving the behavior of electrical variables at target nodes. KR as-
sumes network nodes are classified either as internal or boundary nodes,
and provides an algebraic procedure for computing: (i) the topology of a
new network connecting boundary nodes only, (ii) the value of admittances
related to new edges and (iii) equivalent currents supplied at boundary
nodes accounting for the effect of internal currents in the original network.
Graph-theoretical properties of KR have been analyzed in [VdS10, DB13]
for DC resistive networks. A general analysis of AC three-phase balanced
circuits in Periodic Sinusoidal Steady State (PSSS), termed AC-KR, can be
found in [CT12]. Recently, several studies focused on generalizations of KR
methods preserving the electrical behavior of boundary variables not only
in PSSS, but also during transients [VdS10, CT12, CT14, DJDH14]. In
these instantaneous KR procedures, network line admittances are replaced
by differential models, and sufficient conditions guaranteeing well-posedness
of the network reduction process have been studied. Existing instantaneous
KR methods, however, have a relevant limitation: they do not guarantee
that reduced line models will have the same structure of the original ones,
e.g. simple RL lines could result in reduced lines with more complex dy-
namics [DJDH14]. Therefore, even though this does not happen for simple
cases such as DC resistive or homogeneous networks [CT12, DB13, VdS10],
in general one faces the problem of devising approximate instantaneous KR
methods for preserving selected features of line models.

In this chapter, we consider RL lines and propose two novel approx-
imate KR methods termed, respectively, approximate AC Kron Reduc-
tion (aAC-KR) and hybrid Kron Reduction (hKR). We show that these
techniques ensure asymptotic equivalence between original and reduced
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models, if networks reach a PSSS. Unlike the instantaneous KR procedures
in [VdS10, CT12, CT14, DJDH14], aAC-KR and hKR provide reduced cir-
cuits whose lines have first-order transfer functions, as the original lines.
The features of our methods are then validated through numerical simula-
tions.

In order to demonstrate the practical relevance of aAC-KR and hKR, in
the second part of the chapter we show how to use them to design decentral-
ized voltage and frequency controllers for AC ImGs. KR has already found
applications to ImGs; for instance, in [LD14, SOA+14] KR is advocated as
the procedure for mapping ImGs with general topologies into their equiva-
lent load-connected circuits1. This can be done by labeling other load nodes
as internal and applying KR to eliminate them. Following this procedure,
any control design method for load-connected ImG could be directly ex-
tended to ImGs with arbitrary topologies by performing control synthesis
on the reduced network. In particular, we focus on the PnP decentralized
scheme summarized in Chapter 6. We show that both aAC-KR and hKR
can be used to extend the aforementioned design method (which assumes
load-connected ImGs and RL lines) to arbitrary interconnections of DGUs
and loads, while preserving the structure of transfer functions describing
power lines. The design of PnP controllers based on the proposed approx-
imate KR methods is tested on a 21-bus ImG derived from the IEEE test
feeder in [fee11], enhanced with switches yielding changes of line topology
and plug-in/out of DGUs. Simulations performed in PSCAD confirm the
applicability of our methods to control of ImGs.

The chapter is structured as follows. Section 8.2 summarizes the exist-
ing KR methods, highlighting the corresponding features and limitations.
In Section 8.3, we present the approximate KR methods (aAC-KR and
hKR), and in Section 8.4 we assess their performances through numerical
simulations. In Section 8.5 we show how to combine the control design
methodology summarized in Chapter 6 with the proposed approximate KR
techniques. Simulations illustrating the joint use of aAC-KR/hKR and
PnP design are given in Section 8.6. Section 8.7 is devoted to conclusions.

When clear from the context, we omit time dependence of electrical
quantities.

1We recall that, in load-connected ImGs, loads appear only at the output terminals
of inverters.
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8.2 Kron reduction methods for electrical net-
works

Let G = (V, E ,W ) be the weighted directed graph2 associated with a given
circuit. We notice that, in this chapter, weights can be real numbers,
complex numbers or SISO transfer functions (in this case, we replace W
with W (s)). Following the formalism introduced in [VdS10, CT12, CT14],
each vertex corresponds to a node of the network and each edge is a branch
of the circuit (see the example in Figure 8.1). For performing KR, the vertex
set V is partitioned into a set of boundary nodes Vb and a set of internal
nodes V`. More specifically, subset Vb identifies the nodes at which the
behavior of electrical variables must be preserved, while V` contains the
nodes to be eliminated.

We denote the nodal currents injected at boundary nodes with Ib; the
nodal currents injected at internal nodes are I` and they are positive if
entering into nodes. Nodal voltages V are partitioned analogously. In this
work, each edge e1, ..., e|E| ∈ E corresponds to an electric RL line and the
orientation of the edges is arbitrary. We adopt the following sign conven-
tion: reference directions of line currents coincide with edges orientations
and line voltages Ve, e = (i, j) ∈ E are defined as Vi − Vj . Moreover, the
weight of every edge is given by its admittance transfer function We(s)
accounting for the dynamics of line e ∈ E .

Let us now consider an electrical network composed of n > 0 nodes,
partitioned into nb > 0 boundary nodes and n` = n − nb > 0 internal

nodes. We collect the nodal currents in the following vector: I =
[
ITb , I

T
`

]T
,

where Ib =
[
Ib1 , ..., Ibnb

]T
and I` =

[
I`1 , ..., I`n`

]T
. Nodal voltages V =[

V T
b , V

T
`

]T
are partitioned analogously. In order to account for the network

interconnections, by KCL and KVL one obtains [DJDH14]:[
Ib(s)
I`(s)

]
=

[
Lbb(s) Lb`(s)
L`b(s) L``(s)

] [
Vb(s)
V`(s)

]
, (8.1)

that is I(s) = L(s)V (s). Matrix L(s) is the graph Laplacian3 of the graph
G with weights

Wij(s) =
1

Rij + sLij
(8.2)

2See Appendix A.2 for basic definitions in algebraic graph theory.
3See Appendix A.2 for the definition of Laplacian matrix of a graph.
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modeling the admittance transfer function associated with edges (i, j) ∈ E .
We recall that, with a Laplacian matrix is possible to associate a unique
graph, up to the orientation of edges. By construction, one has Lij(s) =
−Wij(s) if (i, j) ∈ E and Lii(s) = −∑j∈Ni

Lij(s).
At this point, we have all the elements for introducing KR. In partic-

ular, in the sequel we will focus on summarizing two existing approaches,
namely KR in phasors domain [CT12] (called hereafter AC-KR) and in-
stantaneous KR [DJDH14].

1 4

3

2 5

e1 e4 e5

e3

e2

e6

Figure 8.1: Graph representing an electrical network.

8.2.1 AC-KR

Let us consider the directed graph G = (V, E ,W (s)), where transfer func-
tions Wij(s) in the form (8.2) represent the relation between L [Vi(t)−Vj(t)]
and L [Iij(t)], with L [·] identifying the Laplace-transform operator. We
assume the network is in PSSS with angular frequency ω0, hence Vi(t) =
Ai cos(ω0t + φi) and Ii(t) = Bi cos(ω0t + γi), ∀i ∈ V. Moreover, we
can associate each cosinusoid Vi(t) with the corresponding rotating pha-
sor ~Vi = Aiexp(i(ω0t+ φi)) [DK84]. Current phasors ~Ii are defined analo-
gously. Let us now define vectors ~V = [~V1, ~V2, ..., ~Vn]T , ~I = [~I1, ~I2, ..., ~In]T ,
and the impedance Zij = Rij + iω0Lij of line (i, j). The relation between
nodal currents and nodal voltages is then given by:

~I = LAC · ~V , (8.3)

where LACij = −1/Zij , if (i, j) ∈ E , and LACii =
∑

j∈Ni
1/Zij . In particular,

by construction, LAC = L(iω0), with L defined in (8.1).

Definition 8.1 (AC-KR). Let ~V , ~I and LAC be partitioned into boundary
and internal components as in (8.1) and assume LAC`` is invertible4. AC-

4Conditions for the invertibility of LAC
`` have been studied in [Sch15, Lemma 2.4.20].
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KR is given by the graph GACred =
(
Vb, Ered,WAC

red

)
associated with the reduced

Laplacian

LACred = K
(
LAC

)
= LACbb − LACb` (LAC`` )−1LAC`b , (8.4a)

and

~Ib = LACred ~Vb − T AC~I` (8.4b)

T AC = −LACb` (LAC`` )−1, (8.4c)

where K(·) denotes the KR operator and T AC is the accompanying matrix
of LAC .

It can be shown that the matrix LACred in (8.4a)-(8.4b) is still the Lapla-
cian of the Kron reduced graph GACred [CT12] that is uniquely defined up
to the orientation of edges (which can be arbitrarily chosen). Moreover,
WAC
red,ij = −

(
LACred

)
ij

for (i, j) ∈ Ered, while T AC provides the vector of
equivalent nodal currents

~̃Ib = T AC~I` (8.5)

to be injected at boundary nodes of GACred in order to account for the effect

of eliminated currents ~I`.

It can be shown that, as long as one provides the same voltages ~Vb in
G and GACred , the same current absorption Ib is obtained in both cases, if
currents (8.5) are injected into boundary nodes GACred [DB13, CT12].

At this point, it is convenient to show, through a simple example, how
to perform AC-KR, hence computing LAC , LACred and T AC , defined in (8.3),
(8.4a) and (8.4c), respectively.

Example 8.1. We consider the linear, single-phase circuit G shown in Fig-
ure 8.2a, and we assume the network is PSSS with angular frequency ω0 =
2πf0, f0 = 50 Hz. Consequently, all the voltages and currents can be repre-
sented through their associated rotating phasors, i.e. ~V = [~V1, ~V2, ~V3, ~V4]T ,
~I = [~I1, ~I2, ~I3, ~I4]T . The vertex set of G is partitioned in boundary and
internal nodes as follows: V = {Vb,V`}, where Vb = {1, 2, 3} and V` = {4}.
As regards the edges e1, e2, e3 ∈ E , they correspond to RL power lines,
and their parameters are reported in Table 8.1. Our aim is to derive, via
AC-KR, the equivalent network GACred connecting boundary nodes only (see
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Figure 8.2b). Notice that this operation amounts to a Y−∆ transforma-
tion. We start by writing the incidence and weights matrices of G. These
are

B =


−1 0 0
0 −1 0
0 0 −1
1 1 1

 (8.6)

and

WAC =

WAC
14 0 0
0 WAC

24 0
0 0 WAC

34

 ,
where

WAC
14 =

1

Z14
= 0.247− 1.552i

WAC
24 =

1

Z24
= 0.041− 0.451i

WAC
34 =

1

Z34
= 0.092− 0.290i.

Then, we compute the Laplacian matrix LAC = B ·WAC ·BT , and partition
it as in (8.1), thus having:

LAC =

[
LACbb LACb`
LAC`b LAC``

]
,

with

LACbb = diag [0.247− 1.552i, 0.041− 0.451i, 0.092− 0.289i] ,

LACb` =

 −0.247 + 1.552i
−0.041 + 0.451i
−0.092 + 0.289i

 , LAC`b = (LACb` )T ,

and
LAC`` = 0.380− 2.292i.

Next, using (8.4a), one obtains the reduced Laplacian

LACred =

 0.087− 0.501i −0.026 + 0.305i −0.061 + 0.196i
−0.026 + 0.305i 0.039− 0.363i −0.014 + 0.057i
−0.061 + 0.196i −0.014 + 0.057i 0.075− 0.253i

 , (8.7)
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while the accompanying matrix T AC , is given by (8.4c), as

T AC =

0.676− 0.004i
0.194− 0.014i
0.129 + 0.019i

 . (8.8)

At this point, we have all the elements for computing the weights of the
reduced edges r1, r2, r3 ∈ Ered as WAC

red,ij = −
(
LACred

)
ij

(see Table 8.1 for the

corresponding line parameters). Moreover, from (8.5) the equivalent vector
of currents injected at boundary nodes of GACred is

~̃Ib = T AC~I4.

Edge Resistance (Ω) Inductance (mH)

e1 0.1 2
e2 0.2 7
e3 1 10

r1 0.2746 10.354
r2 1.4482 14.8132
r3 3.9315 52.3706

Table 8.1: Example 8.1 - Line parameters of the original and reduced net-
work.

1 2

3

4

e1 e2

e3

(a) Original network G.

1 2

3

r1

r3r2

(b) Reduced network GACred .

Figure 8.2: Example 8.1 - Original and reduced networks. Boundary and
interior nodes are represented by red squares and blue circles, respectively.

In the next section, we summarize a KR method which, differently from
AC-KR, allows to reduce linear circuits while preserving the behavior of
boundary variables also in non-stationary regime (e.g. during transients).
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8.2.2 Instantaneous KR

Instantaneous KR is a general reduction method which can be applied to
any system composed of passive R, L, C components while guaranteeing
the equivalence between original and reduced boundary variables not neces-
sarily in PSSS [DJDH14]. This method, however, presents some drawbacks
(discussed later in this section) which further motivate the need for the
approximated KR methods proposed in Section 8.3.

Definition 8.2 (Instantaneous KR). Assume L``(s) in (8.1) is invert-
ible5 for some s ∈ C. Instantaneous KR is given by the graph Gred =
(Vb, Ered,Wred(s)) associated with Lred(s) = K (L(s)) (up to the orienta-
tion of edges, which can be arbitrarily chosen) and [DJDH14]

Ib(s) = Lred(s)Vb(s)− T (s)I`(s) (8.9a)

T (s) = −Lb`(s)L−1
`` (s). (8.9b)

We highlight that (8.9b) corresponds to (8.4c) when LAC is replaced by
L(s). Moreover, (8.9a) provides a relation similar to (8.4b). In particular,
the vector

Ĩb(s) = T (s)I`(s) (8.10)

identifies the equivalent currents to be injected into the boundary nodes.
We further notice that, by construction, for given internal currents I`(t)
and voltages Vb(t), t ≥ 0 (assuming null initial conditions), currents Ib(t)
computed through (8.1) and (8.9a) are identical at all times (hence the
name instantaneous KR).

Remark 8.1. Instantaneous KR has some limitations. More specifically,
the branch admittances of the reduced network might have different dy-
namics with respect to those in the original circuit and, what is worse,
might not even represent a physical circuit built with passive R, L, C ele-
ments. Consequently, a key issue is to understand when weights Wred,ij(s)
can be written as in (8.2) replacing Rij and Lij with suitable parameters
R̃ij and L̃ij. It has been shown that this is guaranteed only under special
assumptions, for instance if original lines are homogeneous [CT12], i.e.
Rei
Lei

=
Rej

Lej
, ∀ei, ej ∈ E. In this case, one also has R̃ij > 0 and L̃ij > 0.

5Conditions for the invertibility of L``(s) have been studied in [DJDH14].
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8.3 Approximate KR methods

In this section, we propose two approximated KR approaches, termed ap-
proximate AC-KR (aAC-KR) and hybrid KR (hKR), respectively. Both
the methods allow to (i) extend the application of AC-KR to electrical
variables not necessarily in PSSS, and (ii) overcome the realization prob-
lems of instantaneous KR discussed in Remark 8.1 (at least, as long as the
parameters of the reduced circuit are positive). In particular, the proposed
approximate techniques provide reduced circuits whose lines have the same
RL “nature” as the original ones.

From a practical point of view, aAC-KR and hKR share the idea of
using the line parameters (resistances and inductances) obtained from AC-
KR at frequency ω0, while differ in the way equivalent internal currents
referred to boundary nodes are computed.

In the sequel, we first define the approximated Kron reduced graph; it
is exploited in both aAC-KR and hKR for preserving the RL nature of
the reduced lines. Then, we separately characterize the proposed methods
by describing how the equivalent boundary currents (accounting for the ef-
fects of eliminated internal currents) are computed. Finally, in Proposition
8.1, we prove that both aAC-KR and hKR ensure asymptotic equivalence
between original and reduced models if the considered network reaches a
PSSS.

Definition 8.3 (Approximate Kron reduced graph). The approximate Kron
reduced graph GAred of the original network G with respect to a specified an-
gular frequency ω0 is obtained by:

1) computing LACred = K
(
LAC

)
and the associated directed graph GACred =(

Vb, Ered,WAC
red

)
, at the given ω0;

2) setting GAred =
(
Vb, Ered,WAred(s)

)
where, for (i, j) ∈ Ered

WAred,ij(s) =
1

R̃ij + sL̃ij
, (8.11a)

Z̃ij = −
(
LACred,ij

)−1
, R̃ij = Re

(
Z̃ij

)
, L̃ij =

1

ω0
Im
(
Z̃ij

)
. (8.11b)

Notice that, in GAred line impedances have still the dynamics (8.2) but
resistances R̃ij and inductances L̃ij are those predicted by AC-KR at an-
gular frequency ω0. Note also that, by construction, the graphs associated



8.3. Approximate KR methods 193

with LACred and Lred(s) have the same set of undirected edges. Therefore, by
choosing the same orientation, the set of directed edges of Gred and GACred
can be made identical (this is why they have been both denoted with Ered).
Remark 8.2. AC-KR does not guarantee positivity of the reduced resis-
tances and inductances. Based on the results of [CT12], one expects that
negative values can occur if the time constants of the original lines are
spread in a wide range. In practical applications such as microgrids, how-
ever, electrical lines are usually similar and so are their time constants.

8.3.1 Approximate AC-KR

The idea behind aAC-KR is to use the accompanying matrix T AC in (8.4c),
computed with respect to ω0, to obtain an approximation of the equivalent
internal currents referred to boundary nodes when the network is in non-
stationary regime. Since, by construction, T AC is a complex valued matrix
(to be multiplied by phasors ~I` so as to give other phasors, as shown in
(8.10)), we must now find a way to represent non-sinusoidal internal cur-
rents I`(t) through complex functions.

In general, given a real-valued function f(t), there is not a unique way
to represent it though a complex function f̃(t), such that Re(f̃(t)) = f(t)
[Vak96]. However, from e.g. [Vak96], one has that, among all these possible
complex functions, the analytic signal6 f̄(t) = A (f(t)) is the only repre-
sentation which guarantees harmonic correspondence (i.e. if f(t) becomes
a sinusoid, then f̄(t) coincides with the corresponding phasor ~f) and si-
multaneously verifies the generalized Tellegen’s theorem [PSD70]. For this
reason, the first approximate KR method we propose exploits the notion of
analytic signal of the real function I`(t), and it is defined as follows.

Definition 8.4 (aAC-KR). Let J̄`(t) = A (I`(t)) be a complex function
denoting the analytic signal of the real function I`(t), and let Re

(
T AC J̄`(t)

)
indicate the approximated internal currents to be injected into the boundary
nodes of the reduced network. aAC-KR is given by the network GAred and
the relation

Ib(s) = LAred(s)Vb(s)− J̃b(s), (8.12a)

where LAred(s) is the Laplacian of GAred and

J̃b(s) = L
[
Re
(
T AC J̄`(t)

)]
. (8.12b)

6Analytic signal generalizes the phasor concept. Notably, the latter one is restricted
to time-invariant amplitude, phase and frequency, while the analytic signal allows for
time-varying parameters [Bra86]. See Appendix A.4 for a definition.
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From (8.12b), we notice that the interior currents reduction is per-
formed using the entries of T AC , which, by definition, refer to variables in
PSSS. Therefore, we expect the aAC-KR to lose accuracy when applied to
nonlinear circuits or networks at a frequency ω 6= ω0 (where ω0 is used to
compute GAred and T AC). To overcome this issue, in the sequel we present
a more sophisticated approximate KR method.

8.3.2 Hybrid KR

We recall that aAC-KR and hKR differs exclusively in the way equivalent
internal currents to be injected into the boundary nodes of the reduced
network are computed. In hKR, the mapped internal currents are the
same as in (8.10), as described in the following.

Definition 8.5 (hKR). hKR is given by the network GAred and the relation

Ib(s) = LAred(s)Vb(s)− Ĩb(s) (8.13)

where LAred(s) is the Laplacian of GAred and Ĩb(s) is defined in (8.10).

In Section 8.4, we will show that, compared to aAC-KR, hKR provides
more accurate approximations of the boundary electrical variables; this is
due to the fact that, with hKR, internal currents are mapped into bound-
ary ones with no approximations (currents Ĩb in (8.13) are the same as in
(8.10)). On the other hand, performing the interior currents reduction us-
ing the entries of T (s) is more complex than implementing (8.12). In fact,
the transfer functions of T (s) may have a high degree, in the case of large
networks, and this could be an implementation limit.

Example 8.2. We want to apply (separately) aAC-KR and hKR to the
circuit described in Example 8.1 (Figure 8.2a), assuming that electric vari-
ables are not necessarily in PSSS.

The incidence matrix B has the form (8.6), while the weights matrix
W (s) is:

W (s) =


10

1+0.02s 0 0

0 5
1+0.035s 0

0 0 1
1+0.01s

 ,
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where resistances and inductances of the weights in W (s) are the same of
Example 8.1. It follows that, at PSSS with ω0 = 2π50 rad/s, W (iω0) =
WAC .

The Laplacian L(s) = B ·W (s) ·BT , partitioned as in (8.1), is

L(s) =

[
Lbb(s) Lb`(s)
L`b(s) L``(s)

]
with

Lbb(s) =


10

1 + 0.02s
0 0

0
5

1 + 0.035s
0

0 0
1

1 + 0.01s

 ,

Lb`(s) =


− 10

1 + 0.02s

− 5

1 + 0.035s

− 1

1 + 0.01s

 , L`b(s) = (Lb`(s))T ,

and

L``(s) =
16(1 + 0.011s)(1 + 0.030s)

(1 + 0.01s)(1 + 0.02s)(1 + 0.035s)
.

The accompanying matrix T (s) is obtained from (8.9b) as

T (s) =


0.625(1+0.01s)(1+0.035s)

(1+0.030s)(1+0.011s)

0.312(1+0.01s)(1+0.02s)
(1+0.030s)(1+0.011s)

0.063(1+0.02s)(1+0.035s)
(1+0.011s)(1+0.030s)

 . (8.14)

We can now characterize GAred computed with respect to ω0, and then com-
pute LAred(s). Sets Vb and Ered are the same as in Example 8.1, whereas,
following Definition 8.3, the weights matrix WAred(s) is obtained applying
(8.11) to the Laplacian LACred in (8.7). Consequently, one has

WAred(s) = diag
[
WAred,12(s),WAred,13(s),WAred,23(s)

]
=

=

 3.642
1+0.038s 0 0

0 0.69
1+0.010s 0

0 0 0.254
1+0.013s

 ,
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where WAred,12(s),WAred,13(s),WAred,23(s) are the admittance transfer func-
tions of the reduced edges r1, r2, r3, respectively (see Figure 8.2b). Next,
let

Bred =

−1 −1 0
1 0 −1
0 1 1


be the incidence matrix of the reduced network in Figure 8.2b. The Lapla-
cian LAred(s) of GAred is given by

LAred(s) = Bred ·WAred(s) ·BT
red =

=


LAred,11(s) LAred,12(s) LAred,13(s)

LAred,12(s) LAred,22(s) LAred,23(s)

LAred,13(s) LAred,23(s) LAred,33(s)

 , (8.15)

with

LAred,11(s) =
4.332(1 + 0.015s)

(1 + 0.038s)(1 + 0.010s)

LAred,12(s) = − 3.642

(1 + 0.038s)

LAred,13(s) = − 0.690

(1 + 0.010s)

LAred,22(s) =
3.896(1 + 0.015s)

(1 + 0.038s)(1 + 0.013s)

LAred,23(s) = − 0.254

(1 + 0.013s)

LAred,33(s) =
0.945(1 + 0.012s)

(1 + 0.010s)(1 + 0.013s)

Finally, equivalent boundary currents are obtained substituting (8.15) in
(8.12a) and (8.8) in (8.12b) (aAC-KR case), or replacing (8.15) in (8.13)
and (8.14) in (8.10) (hKR case).

8.3.3 Asymptotic equivalence between original and reduced
network models

The next proposition characterizes the asymptotic behaviors preserved by
aAC-KR and hKR.
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Proposition 8.1. Consider the network represented by the graph G, whose
Laplacian is partitioned as in (8.1), and assume parameters R̃ij and L̃ij
obtained through (8.11) with respect to ω0 are strictly positive. Then,

(i) if I` and Vb converge to a PSSS with angular frequency ω0, then the
asymptotic behavior of Ib computed from (8.1) is the same as when Ib
is computed through aAC-KR (i.e. using (8.12));

(ii) if Vb converge to a PSSS with angular frequency ω0, then the asymp-
totic behavior of Ib computed from (8.1) is the same as when Ib is
computed through hKR (i.e. using (8.13)).

Proof of (i). Since I` and Vb are sinusoidal with angular frequency
ω0, the reduced system will reach a PSSS and the currents Ib will also
be sinusoidal, by virtue of the Frequency Response Theorem [DK84]. In
particular, it holds J̄`(t) = A (I`(t)) = ~I`, by definition of analytic signal.
Therefore, if we write (8.12a) in time domain at frequency ω0, we get that
the relation between phasors ~Vb, ~Ib and ~I` is

~Ib = LAred(iω0)︸ ︷︷ ︸
LAC
red

~Vb − T AC~I`, (8.16)

that is (8.4b). Concluding, we have retrieved the AC-KR case, where
the equivalence between original and reduced models is always guaranteed
[CT12].

Proof of (ii). After applying hKR, the Laplace transforms of signals
Ib(t), Vb(t) and I`(t) are related by

Ib(s) = LAred(s)Vb(s)− T (s)I`(s),

where T (s) is given by (8.9b), and LAred is the Laplacian of approximate
Kron reduced graph GAred with weights Wred,ij(s) (see Definition 8.3). We
note that, by hypothesis, the poles of all entries of LAred have strictly

negative real parts. Let us denote Ib(s) and Îb(s) as the boundary cur-
rents computed from (8.1) and (8.13), respectively, and let us introduce
I∆(s) = Ib(s)− Îb(s). Then, by (8.1) and (8.13), one has:

I∆(s) =
(
Lred(s)− LAred(s)

)
Vb(s).

Suppose the inputs Vb are sinusoids with angular frequency ω0. By the
Frequency Response Theorem [DK84], each element of Lred(s)Vb(s) and
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LAred(s)Vb(s) tends to a sinusoid, so that the relation between the pha-

sors ~I∆ and ~Vb is given by ~I∆ =
(
Lred(iω0)− LAred(iω0)

)
~Vb. However,

Lred(iω0) = LAred(iω0) by construction, hence ~I∆ = 0, which means that
I∆ → 0 asymptotically.

The proofs of (i) and (ii) can be straightforwardly extended to the case
where I` and Vb are not sinusoids, but asymptotically reach a PSSS with
frequency ω0.

8.3.4 Generalization to three-phase linear networks in dq
coordinates

All the considerations reported in Sections 8.2 and 8.3 so far (along with
the related formulae) hold, without restrictions, for any linear network. In
this paragraph, we focus on three-phase linear networks in dq coordinates.
From this point on, we assume balanced RL lines, and three-phase electrical
signals without zero-sequence components. It follows that, under these
circumstances, we can split the circuit into three independent and identical
single-phase circuits. Each one is associated with the equivalent “single-
phase” directed graph Gsp = (Vsp, Esp,W sp(s)) where transfer functions
W sp
ij (s) = 1/(Rij +sLij) represent, independently of the phase ? ∈ {a, b, c},

the relation between L [V ?
i (t)− V ?

j (t)] and L [I?ij(t)], (i, j) ∈ Esp.
Three-phase signals can be conveniently represented in the dq0 coordi-

nates. In this case, under our assumptions, the graph G representing the
considered three-phase network has the same topology of the correspond-
ing single-phase circuit Gsp. Moreover, it can be shown that, in the dq0
reference frame, the RL line associated with the edge (i, j) ∈ Esp has the
dynamics

d

dt
Idqij = −

(
Rij
Lij

+ iω0

)
Idqij +

1

Lij

(
V dq
i − V

dq
j

)
and its corresponding transfer function has the form

Idqij (s) = Wij(s)
(
V dq
i (s)− V dq

j (s)
)
,

with

Wij(s) =
1

Zij + sLij
, Zij = Rij + iω0Lij . (8.17)

Also in this case, the current-balance equations Idq(s) = Ldq(s)V dq(s)

can be partitioned as in (8.1), with Idq =
[
Idq

T

b , Idq
T

`

]T
and V dq =

[
V dqT

b , V dqT

`

]T
.
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In dq coordinates, instantaneous KR is characterized analogously to Section
8.2.2. Moreover, also aAC-KR and hKR can be redefined in dq coordinates;
notably, by performing AC-KR on Gsp, one obtains the topology of the ap-
proximate Kron reduced graph GAred in dq reference frame, as well as the
reduced lines parameters R̃ij and L̃ij characterizing its weights

WAred,ij(s) =
1

Z̃ij + sL̃ij
, (8.18a)

Z̃ij = −
(
LACred,ij

)−1
= R̃ij + iω0L̃ij , L̃ij =

1

ω0
Im
(
Z̃ij

)
. (8.18b)

As regards the computation of the equivalent internal currents to be in-
jected into the boundary nodes of the reduced network, (8.12b) and (8.10)
become, respectively

J̃dqb (s) = L
[
T (θ) · Re

(
T AC J̄abc` (t)

)]
(8.19)

and

Ĩdqb (s) = T (s)Idq` (s), (8.20)

depending on whether we are using aAC-KR or hKR.

8.4 Numerical examples

In this section, we assess the features of aAC-KR and hKR through nu-
merical examples. In particular, we consider the three-phase network in
Figure 8.3a, composed of three ideal voltage sources and balanced RL lines
connecting the generators to a common load. In this simple case, both
aAC-KR and hKR amount to a Y−∆ transformation. The reduced net-
work is shown in Figure 8.3b. Since the corresponding three-phase balanced
voltage generators are identical for the original and reduced networks, from
Proposition 8.1 we expect Ib in the original and reduced models to be the
same, if a PSSS is reached. All the power line parameters are collected in
Appendix 8.8.

Example 8.3 (Linear unbalanced load). In this example, we assume that
the resistive load is unbalanced. Figures 8.4a-8.4b compare the original
output current of phase a of generator 1 with its corresponding signal in
the reduced networks obtained through aAC-KR and hKR, respectively. The
plots reveal that the proposed methods ensure asymptotic equivalence, even if
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Figure 8.3: Numerical examples: original and reduced networks. Red and
blue boxes enclose boundary and interior nodes, respectively.
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Figure 8.4: Example 8.3 - Evaluation of the output currents generated
through aAC-KR and hKR, in presence of a linear load.

the load is unbalanced but a PSSS is achieved. In particular, from Figures
8.4c-8.4d, we notice that both the aAC-KR and hKR model errors go to
zero after short transients. Analogous results are obtained for all the other
phases and nodes.

Example 8.4 (Nonlinear load). For this second example, we replace the
resistive load in Figure 8.3a by a six-pulse bridge rectifier. As in the pre-
vious example, we compare the currents at boundary nodes of the original
circuit with those of the reduced models and, for the sake of simplicity, we
concentrate on the output currents of generator 1, phase a (see Figures
8.5a-8.5b). In particular, from Figure 8.5c, one can see that the aAC-KR
model error increase substantially with respect to Example 8.3, while the
one of the hybrid Kron reduced network goes asymptotically to zero (see
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Figure 8.5d). Analogous results are obtained for all the other phases and
generators.
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Figure 8.5: Example 8.4 - Evaluation of the features of aAC-KR and hKR
in presence of a nonlinear load.

Remark 8.3. The proposed approximate methods produce similar results
in networks reaching PSSS regime at frequency ω0, but hKR provides better
performances (i.e. faster convergence and lower errors) than aAC-KR in

case of networks with nonlinear loads. This is due to the fact that Ĩdqb in
(8.13) represents the “true” internal currents mapped to boundary nodes
(they are the same as in equation (8.10)). Indeed, hKR differs from KR
(8.9) only in the dynamics of the branches, and not in the equivalent in-
ternal currents. On the other hand, as highlighted in Section 8.3.2, this
better accuracy of hKR with respect to aAC-KR comes at the expenses of
an higher implementation complexity.
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8.5 Kron reduction of microgrids

In this section, we show how to apply the approximate KR methods de-
scribed in Section 8.3 to the control of AC ImGs. Our aim is to exploit
aAC-KR and hKR to generalize the PnP algorithm summarized in Chapter
6 for designing decentralized controllers for AC ImGs guaranteeing voltage
and frequency stability. In fact, we recall that the aforementioned design
method assumes (i) load-connected ImG topologies, and (ii) RL power
lines connecting DGUs. In this context, we can resort to one of our ap-
proximate KR method to map arbitrarily interconnected ImGs into their
corresponding load-connected networks (by labeling as internal nodes those
representing loads that are not directly attached to DGU). Then, since both
aAC-KR and hKR preserve the RL structure of the reduced lines, we can
use the procedure detailed in Sections 6.3.2-6.3.3 to design PnP regulators
with respect to the equivalent simplified circuit.

In the sequel, we introduce the graph associated with an ImG, and
briefly summarize the electrical models of DGUs and lines used for con-
troller synthesis. Then, we describe how to combine the PnP design proce-
dure discussed in Chapter 6 with the proposed approximate KR methods.

8.5.1 Islanded microgrid associated graph

As for any linear electrical network, we can associate with an ImG a
weighted directed graph G = (V, E ,W (s)) (see the example in Figure 8.6)
where the vertex set V is partitioned into boundary and internal nodes.
In this case, the subset Vb identifies PCC nodes, i.e. the output terminals
of each DGU (see, e.g., Figure 6.2), while V` contains load nodes. Nodal
currents injected by the DGUs and loads are denoted with Ib and I`, respec-
tively, and they are positive if entering into the nodes. Nodal voltages are
denoted analogously. As regards the edges, they correspond to RL power
lines with arbitrary orientation and same sign convention as in Section 8.2.

8.5.2 DGU and line electrical models

The design of stabilizing voltage and frequency controllers is performed con-
sidering DGUs having the single-phase equivalent circuit shown in Figure
6.2, and described by the set of equations (6.9). We recall that three-phase
electrical signals without zero sequence components and balanced network
parameters are assumed. Note also that we do not assume balanced signals;
hence, the case of unbalanced load currents is included in the considered
framework.
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Figure 8.6: Example of a graph associated with an ImG. Red squares denote
DGUs (i.e. boundary nodes), while blue circles represent loads (i.e. internal
nodes).

Remark 8.4. As already observed in Section 2.3, local loads ILi connected
to each PCC are treated as exogenous disturbances in control design. How-
ever, it must be highlighted that they are different from load currents I`
defined in Section 8.5.1. The latter ones, in fact, identify loads that are
not directly connected to PCCs (see, e.g., the blue circles in Figure 8.6).

Consider an ImG composed of n nodes partitioned into nb boundary
nodes and n` internal nodes. If n = nb, then n` = 0, which means that
we retrieve a load-connected ImG, with load currents appearing only at
the PCCs. Otherwise, we can write nodal currents and voltages as Idq =[
Idq

T

b , Idq
T

`

]T
and V dq =

[
V dqT

b , V dqT

`

]T
, respectively. At this point, it is

possible to express the current-balance equations as Idq(s) = L(s)V dq(s),
where L(s) is the Laplacian of the graph G associated with the ImG, with
weights Wij(s) in the form (8.17).

8.5.3 Plug-and-play design for microgrids with general topolo-
gies

Now we show how to extend the design algorithm in Chapter 6 to ImGs
with arbitrary topologies.

Let us G be the directed graph associated with an ImG and let us assume
we have selected one KR method among aAC-KR and hKR. When the
plug-in of a DGU or a load node (say node i) is required, one should first
update G accordingly, thus obtaining the graph Gnew. Then, the chosen
approximate method is applied to Gnew for obtaining the reduced ImG
GA,newred with load-connected topology. If some resistances or inductances of
reduced lines are negative, the plugging in of node i is denied, as one of the
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assumption of the PnP algorithm in Chapter 6 is not fulfilled. Otherwise,
one compares the reduced graphs GAred (associated with G) and GA,newred for
finding the set U ⊆ Vb of DGUs that have new neighbors or that are
connected to lines whose impedance has changed. The LMI (6.28) is then
solved for all DGUs j ∈ U (and also for j = i, if node i is a DGU), hence
producing new controllers Cj . If no LMI is infeasible, controllers in the
original ImG are updated and connection of node i is allowed.

Unplugging of a node can be performed in a similar way.

Remark 8.5. While line changes are not common in ImGs, they could
happen in the equivalent reduced network because of the addition/removal
of load nodes in the original ImG. These phenomena are considered in the
next section.

Remark 8.6. According to the procedure described in Section 8.5.3, aAC-KR
and hKR are performed in a centralized fashion every time there is a change
in the network topology. This is in contrast with PnP design, whose main
feature is to avoid any centralized computations. In the future, we will study
how to perform the proposed approximate KR methods in a distributed fash-
ion. Notably, one can develop this generalization according to the iterative
KR procedure [DB13] proposed for both AC networks in PSSS and resistive
networks. In a similar spirit, we will study how to avoid the centralized
computation of the set U by exploiting existing distributed algorithms for
path-finding over directed graphs.

8.6 Simulation of a 21-bus network

In this section, we assess the capability of PnP control and approximate
KR methods to deal with networks characterized by complex topologies.
Since we are interested in evaluating only the stabilizing effect of PnP
controllers, local pre-filters and compensators have not been implemented.
Now, recalling that (i) each compensator takes as input the load current
ILi absorbed at the corresponding PCC (see Section 3.3. of [RSFT14] for
details), and (ii) the proposed approximate KR methods differ only in the
way equivalent internal currents referred to PCCs are computed, in this
scenario it is equivalent to use aAC-KR or hKR, as they both provide the
same reduced graph GAred.

We use a network derived from the top half of IEEE 37 topology [fee11]
and identify generation nodes and loads as in [BZ13]. The simulation has
been performed in PSCAD.
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8.6.1 Islanded microgrid topology

The ImG in Figure 8.7 has 21 nodes, with six DGUs, electrical RL lines
having time constants spread in a wide range, linear R and RL loads, as
well as highly nonlinear and highly inductive loads.
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Figure 8.7: 21-bus network: red squares denote boundary nodes (i.e.
DGUs), blue circles represent internal nodes (i.e. loads).

Compared to the IEEE 37 network, a switch SW1 has been introduced,
allowing the plugging in/unplugging of loads at nodes 16, 17 and 18. More-
over, two branches (e18 and e19) were added and connected to the microgrid
through switches SW2 e SW3, respectively. The edge e18 creates a mesh
between DGUs 1, 3 and 4; this allows us to show that PnP controllers can
also stabilize meshed networks. The edge e19 simply changes the impedance
between DGUs 3 and 5 (as long as SW1 is closed). Finally, one generation
node (vertex 21) and two loads (at nodes 19 and 20) have been introduced,
so as to simulate the plugging in of a new DGU. The new generation unit
is connected to the ImG via switch SW4.

At time t = 0 s, there is no energy stored in all the inductors and
capacitors and all the switches are open. At t = 5 s, switch SW1 closes,
causing an increase in electrical loads, mainly supplied by DGUs 3 and 5.
Next, SW2 e SW3 close at instants t = 6.5 s and t = 8 s, respectively,
connecting new branches to the network. Finally, at time t = 9.5 s switch
SW4 closes, so that the sixth generation unit is connected to the ImG. All
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the electrical parameters of the 21-bus network are collected in Appendix
8.8.2.

8.6.2 Plug-and-play control design

As described in Section 8.5.3, the first step in control design consists in
applying the chosen approximate method (aAC-KR or hKR) to the original
network, thus obtaining the equivalent load-connected model. In particular,
the reduced line impedances are computed using (8.18b), with ω0 = 2π50
rad/s.

The topology of the reduced network actually depends on the state
of the switches in the original network. As long as SW2, SW3 and SW4

are open, the network in Figure 8.7 has a radial topology. Therefore, the
equivalent impedance between nodes 3 and 5 is equal to the sum of the
impedances of edges e6, e11, e13 and e14, irrespectively of the state of switch
SW1. On the contrary, when switches SW2, SW3 and SW4 are closed, the
topology of the Kron reduced network and its impedances change. Figure
8.8 collects the reduced networks that arise during the simulation. In par-
ticular, Figure 8.8a holds when all the four switches are open, or when only
SW1 is closed. The network in Figure 8.8b refers to the case when switches
SW2 and SW3 become closed, while the diagram in Figure 8.8c holds when
all the four switches are closed. We further highlight that the resistances
and inductances of the Kron reduced circuits in Figure 8.8, collected in
Appendix 8.8.2, are positive.

At time t = 5 s, SW1 closes, but the Kron reduced network does not
change, and no redesign of the controllers is needed. In fact, the connection
of load nodes 16, 17 and 18 changes the term accounting for the effect of
internal currents (J̃b(s) in aAC-KR or Ĩb(s) in hKR), which is mapped into
an additional contribution to the load at PCCs 3 and 5. This is, however,
not critical since DGU loads are treated as disturbances by PnP controllers.

At instant t = 6.5 s, the equivalent impedances between nodes 1, 3 and
4 change; therefore, the controllers of DGUs 1, 3 and 4 must be redesigned
(all the other controllers do not change).

At instant t = 8 s, the equivalent impedance between boundary nodes
3 and 5 changes: the corresponding DGUs must update their controllers.

At t = 9.5 s, DGU 6 is connected to the network: controllers of DGUs
3 e 5 must be redesigned again.

We highlight that the proposed controllers effectively stabilize voltage
and frequency in the ImG. This is illustrated by Figures 8.9 -8.12 that show,
for every configuration of the switches, the singular values of the closed
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Figure 8.8: Simulation of a 21-bus ImG: Kron reduced networks.

loop QSL ImG, as well as its eigenvalues, with and without couplings. In
particular, Figures 8.9a, 8.10a, 8.11a and 8.12a show that all the eigenvalues
are on the left half-plane.
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Figure 8.9: Eigenvalues and singular values of the QSL ImG when all the
switches are open, or only SW1 is closed.
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Figure 8.10: Eigenvalues and singular values with SW1, SW2 closed, and
SW3, SW4 open.
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Figure 8.11: Eigenvalues and singular values when SW1, SW2, SW3 are
closed, and SW4 open.

8.6.3 Simulation results

The reference signals for all the generation units are V ref
d =

√
2 ·230 V and

V ref
q = 0 V . Figure 8.13 shows the RMS voltage, frequency and THD of

phase a at the PCCs of the boundary nodes (i.e nodes 1-5 and 21), respec-
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Figure 8.12: Eigenvalues and singular values of the QSL ImG when all the
switches are closed.

tively. We highlight that, in spite of all the variations of the ImG topology,
PnP decentralized control ensures good tracking of voltage references for all
DGUs (see Figure 8.13a). We note that real-time switch between different
controllers has been implemented using a bumpless control transfer scheme
similar to the one used in classical PID regulators [ÅH06]. This guarantees
control variables do not have sudden variations at switching times. In our
case, bumpless controllers are effective in limiting voltage surges and dips to
a few volts when updates of controllers take place (for t ≥ 4 s, the maximal
deviation from the reference RMS voltage is of less than 20 volts). Figure
8.13b shows that the impact of the topology commutations is minor also
on the frequency profiles. In fact, PnP controllers promptly restore the
frequencies to the nominal value, ensuring negligible variations (i.e. less
than 0.5 Hz when the highly inductive load is connected and less than 0.1
Hz when other events occur). Finally, from Figure 8.13c, we notice that
THD values are below the maximum limit (5%) recommended in [IEE09].

Overall, the fact that voltage and frequency stability is guaranteed even
for such a complicated network, proves that the proposed approximate KR
methods are well suited tools for extending the PnP scalable design to ImGs
with arbitrary topologies.



8.7. Final comments 211

time (s)
0 5 10

V
R

M
S

(V
)

0

50

100

150

200

250

VRMS 1
VRMS 2
VRMS 3
VRMS 4
VRMS 5
VRMS 21

(a) RMS voltages at boundary nodes.

time (s)
0 2 4 6 8 10 12

F
re

q
u
en

cy
(H

z)

49.7
49.8
49.9
50

50.1
50.2
50.3
50.4

f1
f2
f3
f4
f5
f21

(b) Frequencies at boundary nodes.

time (s)
2 4 6 8 10 12

TH
D

 (%
)

0

2

4

6
THD1
THD2
THD3
THD4
THD5
THD21

(c) THD at boundary nodes.

Figure 8.13: Performance of PnP control and approximate KR methods
with a 21-bus network. Switches SW1, SW2, SW3 and SW4 are closed at
times t = 5 s, t = 6.5 s, t = 8 s and t = 9.5 s, respectively.

8.7 Final comments

In this chapter, we introduced two approximate network reduction algo-
rithms based on KR and capable to preserve exactly the asymptotic peri-
odic behavior of voltages and currents at target nodes. We also used the
proposed KR methods for extending the PnP control design summarized
in Chapter 6 to AC ImGs with arbitrary topologies. Future research will
address the problems described in Remark 8.6.
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8.8 Appendix

8.8.1 Original and reduced parameters of Examples 8.3 and
8.4

Edge From node To node Resistance (Ω) Inductance (mH)

e1 1 4 0.1 2
e2 2 4 0.2 7
e3 3 4 1 10

Table 8.2: Parameters of the original networks.

Edge From node To node Resistance (Ω) Inductance (mH)

e12 1 2 0.2746 10.354
e13 1 3 1.4482 14.8132
e23 2 3 3.9315 52.3706

Table 8.3: Parameters of the reduced networks.

8.8.2 Electrical parameters of the 21-bus network

This appendix lists the electrical parameters of the 21-bus network shown
in Figure 8.7. The resistances and inductances of the RL lines of network
in Figure 8.7 are collected in Table 8.4. The loads connected to the buses
are listed in Tables 8.5 and 8.6.

All the electrical parameters of the Kron reduced networks are positive
(the nature of the original circuits is preserved). The reduced parameters,
when all the four switches are open, are listed in Table 8.7. Table 8.8 shows
the reduced R and L when SW1 and SW2 are closed, with SW3 and SW4

open. The reduced parameters, relative to the network with SW1, SW2

and SW3 closed and SW4 open, are collected in Table 8.9. Finally, Table
8.10 is referred to the case with all four switches closed.
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Edge From node To node Resistance (Ω) Inductance (mH)

e1 1 7 1 20
e2 6 7 0.1 1.8
e3 3 7 1 200
e4 2 8 0.6 6
e5 8 3 0.4 35
e6 3 12 0.1 1.8
e7 3 4 1 600
e8 4 11 0.1 2
e9 10 11 0.1 2.5
e10 9 10 0.2 4.5
e11 12 13 1.1 300
e12 13 15 1 40
e13 13 14 0.1 2
e14 14 5 0.3 8
e15 14 18 0.1 1
e16 16 18 0.3 30
e17 17 18 0.1 2
e18 6 10 1.1 20
e19 12 16 2.1 300
e20 14 19 0.5 10
e21 19 20 0.3 7
e22 19 21 0.1 1.8

Table 8.4: Parameters of the original 21-bus network.
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Node Resistance (Ω) Inductance (H)

6 80 0.2
7 80 0
8 50 0
10 100 0
11 100 0
12 50 0.05
13 100 0
14 50 0
15 60 0
17 3 1
18 45 0.02
19 50 0
20 50 0

Table 8.5: Linear loads parameters.

Node Resistance (Ω) Filter Inductance (µH) Filter Capacitance (µF)

9 80 84 235
16 80 84 235

Table 8.6: Nonlinear loads connected to the buses.

Edge From node To node Resistance (Ω) Inductance (mH)

r1 1 3 2 220
r2 2 3 1 41
r3 3 4 1 600
r4 3 5 1.6 311.8

Table 8.7: Equivalent parameters when SW2, SW3 and SW4 are open.
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Edge From node To node Resistance (Ω) Inductance (mH)

r1 1 3 2.2813 371.9
r5 1 4 2.6589 48.9
r2 2 3 1 41
r3 3 4 1.58 269.7
r4 3 5 1.6 311.8

Table 8.8: Equivalent parameters when SW1 SW2 are closed, while SW3

and SW4 are open.

Edge From node To node Resistance (Ω) Inductance (mH)

r1 1 3 2.2813 371.9
r5 1 4 2.6586 48.9
r2 2 3 1 41
r3 3 4 1.58 269.7
r4 3 5 1.2971 167.7

Table 8.9: Equivalent parameters when SW1, SW2 and SW3 are closed,
and SW4 is open.

Edge From node To node Resistance (Ω) Inductance (mH)

r1 1 3 2.2813 371.9
r5 1 4 2.6586 48.9
r2 2 3 1 41
r3 3 4 1.58 269.7
r4 3 5 0.5602 275.4
r6 3 21 6.1756 408.1
r7 5 21 0.9486 20.4

Table 8.10: Equivalent parameters when all the four switches are open.
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9.1 Introduction

In this chapter, we propose an extension of the decentralized control synthe-
sis procedure for AC ImGs discussed in Chapter 6. Notably, we develop a
PnP control scheme that, differently from the approach in Chapter 6, does
not require the knowledge of power lines (hence the name line-independent
design), whose parameters are often uncertain. We do not assume either to
know bounds on electrical coupling parameters, as done in [SSK17]. These
simplifications are desirable for the following reasons.
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1. The addition/removal of a DGU does not require to update any exist-
ing controller in the ImG. Indeed, plugging in/out operations do ad-
d/remove lines connected to neighboring DGUs, but DGU controllers
are line-independent.

2. DGUs with identical electrical parameters will always be equipped
with the same regulator, which can be computed off-line only once.
Therefore, for ImGs using a limited set of VSC models, no control
synthesis is required at the plug-in/-out time of a DGU.

3. While the PnP design in Chapter 6 is dependent on a global tuning
parameter, which must be sufficiently small for ensuring collective
ImG stability, here this constraint is removed. Indeed, we propose a
different proof of voltage and frequency stability (see Assumption 6.1-
(iii)). Notably, we first exploit the fact that DGU interactions can be
represented by the admittance matrix of the electric graph (which has
a Laplacian structure) for guaranteeing the decrease of a separable
Lyapunov function along state trajectories. Then, we complement
this result with the application of the LaSalle invariance principle.

Through numerical analysis, we show another important feature of the
presented control design procedure: the computation of local stabilizing
regulators is always feasible when typical electrical parameters for LV and
MV AC ImGs are considered.

The approach presented in this chapter shares several similarities with
the one discussed in Chapter 4, where DC mGs are considered and a line-
independent variant of the PnP design algorithm in Chapter 3 has been
proposed. There is however a fundamental difference: in the AC case, one
must handle three-phase balanced signals or, in an equivalent way, their
dq representation. Besides making the proofs more involved, this impacts
on the optimization problems that have to be solved for the design of local
controllers. Indeed, differently from those in Chapter 4 (see (4.16)), LMI
constraints are not sufficient for guaranteeing stability, and they must be
complemented with nonlinear constraints.

This chapter is structured as follows. Exploiting results from Chapter
6, in Sections 9.2 and 9.3.1, we summarize the considered ImG model and
the structure of PnP local controllers, respectively. In the remainder of
Section 9.3, we describe the line-independent procedure for designing PnP
regulators, and present the stability analysis of the closed-loop ImG. Sim-
ulation results using a 10-DGUs ImG with linear and nonlinear loads are
shown in Section 9.4. Finally, Section 9.5 is devoted to conclusions.
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Notation. Let A ∈ Rn×m be a matrix inducing the linear map A : Rm →
Rn: with A

∣∣
B

we denote the restriction of the map A to the domain B.

9.2 AC microgrid model

We consider the DGU model whose single-phase equivalent scheme is shown
in the left dashed frame of Figure 6.2. Notice that, by assuming loads
connected to the PCC of each DGU only, we do not loose generality. Indeed
fact, as shown in [DB13] and in Chapter 8, general interconnections of loads
and DGUs can always be mapped into load-connected topologies by means
of KR. We also highlight that sets V and Ni (i ⊂ V) are defined as in
Chapter 6. Let us indicate with Gel the undirected electric graph1 induced
by the neighboring relation over the node set V.

Being ω0 the reference network frequency, the DGU model under QSL
approximations and in dq reference frame (rotating with speed ω0) is de-
scribed by the set of equations (6.9). At this point, we derive the state-space
model of the ImG with dynamics (6.9). Notably, we can write

ΣDGU
[i] :


ẋ[i](t) = Aiix[i](t) +Biu[i](t) +Mid[i](t) + ξ[i](t)

y[i](t) = Cix[i](t)

z[i](t) = Hiy[i](t)

(9.1)

recalling that x[i] = [V d
i , V

q
i , I

d
ti, I

q
ti]
T is the state, u[i] = [V d

ti , V
q
ti ]
T the con-

trol input, d[i] = [IdLi, I
q
Li]

T the exogenous input and z[i] = [V d
i , V

q
i ]T the

controlled variable of the system. Moreover, we highlight that the output
y[i] = x[i] is measurable, while the term ξ[i] =

∑
j∈Ni

Aij(x[j]−x[i]) accounts
for the couplings with each DGU j ∈ Ni.
Remark 9.1. We highlight that model (9.1) is identical to the one in Chap-
ter 6 (see (6.5)), except that the coupling terms have been embedded in the
contribution ξ[i].

As regards the matrices in (9.1), they have the following form:

Aii =


0 ω0

1
Cti

0

−ω0 0 0 1
Cti

− 1
Lti

0 −Rti
Lti

ω0

0 − 1
Lti

−ω0 −Rti
Lti

 , Aij =
1

Cti


Rij

Z2
ij

Xij

Z2
ij

01×2

−Xij

Z2
ij

Rij

Z2
ij

01×2

02×1 02×1 02

 ,
1See Appendix A.2 for basic definitions in graph theory.
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(9.2)

Bi =

02×1 02×1
1
Lti

0

0 1
Lti

 , Mi =

− 1
Cti

0

0 − 1
Cti

02×1 02×1

 , (9.3)

Ci = I4, Hi =

[
1 0 01×2

0 1 01×2

]
, (9.4)

where Xij = ω0Lij and Zij = |Rij + iXij |. Moreover, the overall QSL-ImG
model is given by (6.16).

9.3 Design of plug-and-play stabilizing controllers

9.3.1 Structure of local controllers

As in Section 6.3.1, in order to track constant references zref (t) = z̄ref ,
we augment the ImG model with integrators, thus obtaining the following
augmented model for the i-th DGU

Σ̂DGU
[i] :


˙̂x[i](t) = Âiix̂[i](t) + B̂iu[i](t) + M̂id̂[i](t) + ξ̂[i](t)

ŷ[i](t) = Ĉix̂[i](t)

z[i](t) = Ĥiŷ[i](t)

(9.5)

where x̂[i] = [xT [i], v
T
[i]]

T ∈ R6 is the state, ŷ[i] = x̂[i] the measurable output,

d̂[i] = [dT[i], zref
T
[i]]

T ∈ R4 the exogenous signals and

ξ̂[i] =
∑
j∈Ni

Âij(x̂[j] − x̂[i]).

Matrices in (9.5) have the form

Âii =

[
Aii 04×2

−HiCi 02

]
, Âij =

[
Aij 04×2

02×4 02

]
, B̂i =

[
Bi
02

]
,

Ĉi =

[
Ci 04×2

02×4 I2

]
, M̂i =

[
Mi 04×2

02 I2

]
, Ĥi =

[
Hi 02×4

]
.
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We highlight that, since all the electrical parameters are positive, the
pair (Âii, B̂i) is controllable (see Proposition 2 in [RSFT15]). Therefore,
system (9.5) can be stabilized.

The overall augmented system, obtained from (9.5), has the form (6.16).
At this point, we equip each DGU Σ̂DGU

[i] with the decentralized state-
feedback controller described in Section 6.3.2 and shown in Figure 6.2, i.e.

C[i] : u[i](t) = Kiŷ[i](t) = Kix̂[i](t).

9.3.2 Conditions for stability of the closed-loop microgrid

If coupling terms ξ̂i(t) are not present, the asymptotic stability of the overall
ImG can be ensured by simply stabilizing each closed-loop subsystem

˙̂x[i](t) = (Âii + B̂iKi)︸ ︷︷ ︸
Fi

x̂[i](t) + M̂id̂[i], (9.6)

where, by construction, matrix Fi has the following structure

Fi =

 F11,i F12,i 02

F21,i F22,i F23,i

−I2 02 02

 =

[
F11,i F12,i

F21,i F22,i

]
, (9.7)

with

F11,i = ω0

[
0 1
−1 0

]
and F12,i =

1

Cti
I2. (9.8)

According to Lyapunov theory, system (9.6) is asymptotically stable if there
exists a Lyapunov function Vi(x̂[i]) = x̂T[i]Pix̂[i], with Pi = P Ti > 0, such that

Qi = F Ti Pi + PiFi (9.9)

is negative definite.
In a real ImG, however, electric interactions between subsystems exist.

For this reason, in the following we present the conditions which allows
us to guarantee collective ImG stability by designing totally decentralized
controllers, even in presence of couplings between DGUs.

Assumption 9.1. Each matrix gain Ki, i ∈ V is designed using Pi in (9.9)
with the following structure

Pi =

[
ηiI2 02×4

04×2 P22,i

]
, (9.10)
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where the entries of P22,i ∈ R4×4 are arbitrary and ηi > 0 is a local param-
eter.

Remark 9.2. Assumption 9.1 amounts to use local separable Lyapunov
functions in the form

Vi(x̂[i]) = ηix̂
T
[i],1x̂[i],1 + x̃T[i] P22,ix̃[i],

where x̂[i] = [x̂T[i],1, x̃
T
[i]]

T , x̃[i] ∈ R4.

The second condition regards the values of parameters ηi.

Assumption 9.2. Let σ̄ > 0 be a constant parameter, common to all the
DGUs. Parameters ηi in (9.10) are given by

ηi = σ̄Cti, ∀i ∈ V.

The stability analysis continues by showing that, if Assumption 9.1
holds, Lyapunov theory certifies at most marginal stability of (9.6). To
this purpose, we provide the following result.

Proposition 9.1. Under Assumption 9.1, matrix Qi in (9.9) cannot be
negative definite. Moreover,

Qi ≤ 0 (9.11)

implies that Qi has the following structure:

Qi =

 02 02 02

02 Q22,i Q23,i

02 Q23,i Q33,i

 =

[
02 02×4

04×2 Q22,i

]
. (9.12)

Proof. By substituting (9.7) and (9.10) in (9.9), one gets that the first two
diagonal elements of Qi are zero. This shows that Qi cannot be negative
definite. Moreover, from basic linear algebra, if a negative semidefinite ma-
trix has a zero element on its diagonal, the corresponding row and column
have zero entries (see the proof of Proposition 4.10). Then (9.11) implies
(9.12).

Next, we consider the overall closed-loop ImG model, given by
˙̂x(t) = (Â + B̂K)x̂(t) + M̂d̂(t)

ŷ(t) = Ĉx̂(t)

z(t) = Ĥŷ(t)

(9.13)
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where K = diag[K1, . . . ,KN ]. Being P = diag[P1, . . . , PN ], the collective
Lyapunov function is

V (x̂) =

N∑
i=1

Vi(x̂[i]) = x̂TPx̂.

Consequently, one has that ˙V (x̂) = x̂TQx̂, where

Q = (Â + B̂K)TP + P(Â + B̂K).

From Proposition 9.1, we know that, if Assumption 9.1 holds, then (i)
matrix Q cannot be negative definite, and (ii), at most, one can have

Q ≤ 0. (9.14)

At this point, we notice that, even if (9.11) is verified for all i ∈ V, the in-
equality (9.14) might be violated because of the nonzero coupling terms Âij
in matrix Â (an example is provided in Appendix B of [RSFT14]). How-
ever, through the next proposition, we show that (9.14) is always satisfied
if also Assumption 9.2 is fulfilled.

Proposition 9.2. Under Assumptions 9.1 and 9.2, if matrix gains Ki are
computed to satisfy (9.11) for all i ∈ V, then (9.14) holds.

Proof. The proof of Proposition 9.2 is reported in Appendix 9.6.1.

Remark 9.3. The proof of Proposition 9.2 reveals that, under Assumptions
9.1 and 9.2, interactions between local Lyapunov functions Vi(x̂[i]) due to

terms Âij, i 6= j, take the form of a weighted Laplacian matrix associated
with the graph Gel. Furthermore, differently from the idea in Chapter 6 of
nullifying interactions by choosing ηi > 0 in (9.10) sufficiently small, here
(9.14) holds true even if parameters ηi are large.

In order to show the asymptotic stability of the ImG, we need to com-
plement Proposition 9.2 with the application of the LaSalle invariance the-
orem. This will be done in the next theorem.

Theorem 9.1. If Assumptions 9.1 and 9.2 are fulfilled, the graph Gel is con-
nected, (9.11) holds, Q22,i

∣∣
Im(FT

22,i)
is invertible and det(F22,iF21,i−F23,i) 6=

0, ∀i ∈ V, the origin of (9.13) is asymptotically stable.

Proof. The proof of Theorem 9.1 is reported in the Appendix 9.6.2.
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9.3.3 Computation of local controllers through numerical
optimization

The problem of computing matrices Ki and Pi so as to fulfill the assump-
tions of Theorem 9.1, can be split into two subproblems.

SP1 Let parameters ηi be computed as in Assumption 9.2, where the ImG
parameter σ̄ is assumed to be fixed. Compute matrices Ki and Pi so
that Assumption 9.1 and inequality (9.11) hold.

SP2 Check if Q22,i

∣∣
Im(FT

22,i)
and (F22,iF21,i −F23,i) are invertible maps.

SP1 can be recast into an LMI problem. To this purpose, we enforce,
when possible, a margin of robustness by designing controllers Ki such
that inequality

(Âii + B̂iKi)
TPi + Pi(Âii + B̂iKi) + Γ−1

i ≤ 0,

with Γi = diag[γ1i, γ2i, γ3i, γ4i, γ5i, γ6i], is verified for γki ≥ 0, k = 1, . . . , 6
and matrix Pi structured as in (9.10). Then, we solve the following LMI
problem

Oi : min
Yi,Gi,{γki}6k=1,βi,ζi

6∑
k=1

αkiγki + α7iβi + α8iζi

Yi =



η−1
i 0 0 0 0 0

0 η−1
i 0 0 0 0

0 0 • • • •
0 0 • • • •
0 0 • • • •
0 0 • • • •

 > 0 (9.15a)

[
YiÂ

T
ii +GTi B̂

T
i + ÂiiYi + B̂iGi Yi
Yi −Γi

]
≤ 0 (9.15b)[

−βiI GTi
Gi −I

]
< 0, (9.15c)[

Yi I
I ζiI

]
> 0 (9.15d)

γki ≥ 0, i = 1, . . . , 6, βi > 0, ζi > 0, (9.15e)

where αji, j = 1, . . . , 8 represent positive weights and • are arbitrary en-
tries. Similarly to what has been shown in Chapter 6, feasible solutions
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of (9.15) provide Pi = Y −1
i , with the structure (9.10) and Ki = Y −1

i Gi.
Furthermore, the cost penalizes aggressive control actions because it mini-
mizes βi and ζi that, in view of (9.15c), provide the bound ||Ki||2 ≤

√
βiζi

[RSFT15].

SP2 provides constraints that can be either verified a posteriori or added
to (9.15). While the latter solution is preferable, constraints are nonlinear
in the optimization variables of problem Oi, and therefore spoil the LMI
nature of (9.15). Future research will focus on finding convex formulations
(or convex approximations) of conditions in SP2.

We highlight that the computation of controller C[i] is completely de-
centralized (i.e. independent from the synthesis of controllers C[j], j 6= i),

as constraints in (9.15) depend upon local fixed matrices (Âii, B̂i) and
local design parameters αki, k = 1, . . . , 8.. Finally, if problems SP1 and
SP2 are feasible for all DGUs, then the overall closed-loop QSL-ImG is
asymptotically stable.

Remark 9.4. Controllers C[i] yield a closed-loop DGU model that is linear.
Hence, it can be easily complemented with pre-filters (for tuning the local
bandwidth) and load-current compensators. These enhancements (not used
in the simulation in Section 9.4) are described in [RSFT15].

Remark 9.5. Similarly to what we has been done in Chapter 4 for the
line-independent PnP design in DC mGs, we assess the conservativeness
of the LMIs (9.15) by solving it for σ̄ = 104, and for different combinations
of DGU parameters (Rt, Lt, Ct). Numerical results, detailed in Appendix
9.6.3, reveal that the computation of local stabilizing regulators is always
feasible when typical electrical parameters for LV and MV AC ImGs are
considered.

9.3.4 Plug-and-play operations

In this section, we describe the operations to be performed whenever the
plug-in/-out of a DGU is required, in order to preserve the overall ImG
stability.

Plug-in operation. Suppose that we want to connect a new DGU (say
Σ̂DGU

[N+1]) to the ImG and let N[N+1] be the set of DGUs that will be directly

connected to Σ̂DGU
[N+1] through power lines. Then, we first solve subproblems

SP1 and SP2 in Section 9.3.3 for the new unit. If at least one subproblem is
infeasible, the plug-in is denied. Otherwise, Σ̂DGU

[N+1] can be connected and,
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differently from the protocol described in Section 6.3.3, DGUs in N[N+1]

do not have to retune their local controllers in order to fulfill stability
conditions. Indeed, the computation of each local controller is performed
solving (9.15), which, under Assumption 9.2, depends exclusively upon local
quantities (namely, matrices Âii and B̂i) not affected by changes in the ImG
topology.

Unplugging operation. When a DGU is disconnected, this has no im-
pact on the controllers of the remaining units, if they are designed using
the line-independent method described in Section 9.3.3. Therefore, in view
of Theorem 9.1, stability of the ImG is preserved.

Remark 9.6. In Theorem 9.1, the connectivity of Gel is assumed in order
to prove that the origin of (9.13) is asymptotic stable. On the other hand,
we should notice that unplugging operations might make Gel disconnected.
These events, however, do not affect the main results since the same analy-
sis presented in Section 9.3 can be conducted with respect to each connected
subgraph Gsel (which, in turn, can be seen as an independent ImG) aris-
ing from the unplugging operations. In the next section, we show, through
simulations, the capability of PnP line-independent regulators to preserve
voltage and frequency stability in spite of the creation of sub-islands caused
by multiple power line trips.

9.4 Simulation results

In this section, we study the performance of the proposed PnP controllers.
We consider the ImG in Figure 9.1, composed of 10 DGUs. All DGUs
feed RL loads, except DGU 2 which is connected to a three-phase six-pulse
diode rectifier. We notice a loop in the network that complicates the voltage
regulation. Furthermore, DGUs are non-identical and all the electrical
parameters are similar to those of the 11-DGUs example in [RSFT14].

The simulation (conducted in PSCAD) starts with DGUs 1-9 connected
together and equipped with PnP controllers C[i], i = 1, . . . , 9.

As a first test, we validate the capability of PnP regulators to deal with
real-time plugging in of DGUs. Therefore, at time t = 7.5 s, we simulate the
connection of DGU 10, with DGUs 2 and 8 (see Figure 9.1a). Before this
event, as described in Section 9.3.4, we solve subproblems SP1 and SP2 for
computing C[10] and, since both of them result to be feasible, the connection
of DGU 10 is allowed. The dq component of the voltages at PCCs 2, 8,
10 are shown in Figures 9.2a, 9.2d and 9.2e, respectively. Notably, we
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DG 6 DG 4 DG 2 DG 3 DG 7

DG 10 DG 8 DG 9

DG 1DG 5

(a) ImG topologies until t = 12 s. For 0 ≤ t < 7.5 s, DGUs 1-9 are
interconnected (in black); at t = 7.5 s, DGU 10 joins the network
(in red).

DG 6 DG 4 DG 2 DG 3 DG 7

DG 10 DG 8 DG 9

DG 1DG 5

Gs1el

Gs2el

(b) Independent ImGs after the trip of lines 3-7 and 8-10 occurred
at time t = 12 s.

Figure 9.1: Simulation of a 10-DGUs ImGs: considered network topologies.

notice very small deviations of the DGUs voltages from their respective
reference signals (V d

2,ref = 0.6 p.u., V q
2,ref = 0.5 p.u., V d

8,ref = 0.7 p.u.,

V q
8,ref = 0.6 p.u., and V q

10,ref = 0.8 p.u., V q
10,ref = 0.6 p.u.). Furthermore,

these deviations are compensated after a short transient.

In order to assess the robustness of the PnP-controlled ImG to load
dynamics, at time t = 10 s we simulate an abrupt switch of the RL load at
PCC 10 (i.e. from R = 60 Ω, L = 0.02 mH to R = 120 Ω, L = 0.02 mH).
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From Figures 9.2a, 9.2d and 9.2e, we notice that the d and q components
of the voltages at PCCs 2, 8 and 10, do not significantly deviate from their
references, thus revealing that step changes in the loads can be rapidly
absorbed. Figure 9.2f shows that the real-time plug-in of DGU 10 and the
load change at its PCC produce minor effects also on the frequency profiles
of the PCC voltages. Notably, PnP regulators are capable to promptly
restore the frequencies to the reference value (50 Hz) guaranteeing, overall,
variations smaller than 0.6 Hz. In a similar way, we do not notice significant
deviations from the reference RMS voltages (see Figure 9.2g).

Next, we test the capabilities of PnP regulators to preserve voltage
and frequency stability even when a sudden disconnection of a portion of
the network occurs. To this purpose, at time t = 12 s, we simulate the
simultaneous trip of lines 3-7 and 8-10, leading to the formation of two
independent ImGs (see the corresponding subgraphs Gs1el and Gs2el Figure
9.1b). In the light of Remark 9.6, the stability of the two networks is
preserved (as shown in Figures 9.2b-9.2g), without the need to redesign
any local controller. This feature can be useful in those scenarios where
the disconnection of DGUs might need to be performed abruptly, due, for
instance, to faults in the power lines.

Finally, we notice that the THD of the voltage at PCC 2 (whose local
load is nonlinear) always remains below 5%, which is the maximum limit
recommended by IEEE standards [IEE09] (see Figure 9.2h).

9.5 Final comments

In this chapter, we presented a decentralized control approach to voltage
and frequency stabilization in AC ImGs. Differently from the PnP method-
ology described in Chapter 6, the presented procedure guarantees overall
ImG stability while computing local regulators in a line-independent fash-
ion. This feature considerably simplifies the PnP protocol described in
Section 6.3.3, since neighboring DGUs do not have anymore to update
their local controllers when subsystems are added or removed. Moreover,
compared to the method in Chapter 6, it may seem that the successful com-
putation of regulators ensuring collective stability via the line-independent
procedure is more involved (as LMI constraints 9.15 are now complemented
with nonlinear constraints). However, in Appendix 9.6.3 we show that sub-
problems SP1-SP2 are always feasible for LV and MV AC ImGs.

Future research will focus on studying how to couple PnP local regula-
tors with a higher control layer for power flow regulation among DGUs.
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9.6 Appendix

9.6.1 Proof of Proposition 9.2

Proof. We start by decomposing the matrix Â as follows

Â = ÂD + ÂΞ + ÂC, (9.16)

where (i) ÂD = diag[Âii, . . . , ÂNN ] collects the local dynamics only, (ii)
ÂΞ = diag[Âξ1, . . . , ÂξN ] with

Âξi =
1

Cti


∑
j∈Ni

−R̃ij
∑
j∈Ni

−X̃ij 01×4∑
j∈Ni

X̃ij
∑
j∈Ni

−R̃ij 01×4

04×1 04×1 04

 , (9.17)

R̃ij =
Rij

Z2
ij

and X̃ij =
Xij

Z2
ij

, takes into account the dependence of each local

state on the neighboring DGUs, and (iii) ÂC includes the effect of couplings.
Notably, this latter matrix is composed of zero blocks on the diagonal and
blocks Âij , i 6= j outside the diagonal. Our goal is to demonstrate (9.14),
which, using (9.16), becomes

(ÂD + B̂K)TP + P(ÂD + B̂K)︸ ︷︷ ︸
(a)

+ ÂT
ΞP + PÂΞ︸ ︷︷ ︸

(b)

+ ÂT
CP + PÂC︸ ︷︷ ︸

(c)

≤ 0. (9.18)

Since (9.11) holds, we have that (a) = diag[Q1, . . . , QN ] ≤ 0. At this
point, we need to study the contribution of matrix (b) + (c) in (9.18).
By construction (recalling (9.10) and (9.17)), matrix (b) is block diagonal,

collecting, on its diagonal, blocks ÂTξiPi + PiÂξi in the form

ÂTξiPi + PiÂξi =


− ηi
Cti

∑
j∈Ni

(
R̃ij + R̃ij

)
ηi
Cti

∑
j∈Ni

(
X̃ij − X̃ij

)
01×4

ηi
Cti

∑
j∈Ni

(
X̃ij − X̃ij

)
− ηi
Cti

∑
j∈Ni

(
R̃ij + R̃ij

)
01×4

04×1 04×1 04


=

=


− ∑
j∈Ni

2η̃ij 0 01×4

0 − ∑
j∈Ni

2η̃ij 01×4

04×1 04×1 04


,
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(9.19)

with η̃ij = ηi
Cti
R̃ij = σ̄R̃ij . Regarding matrix (c), we have that each the

block in position (i, j) is equal to{
PiÂij + ÂTjiPj if j ∈ Ni
06 otherwise

(9.20)

In particular, recalling Assumption 9.2, by direct calculation, it results

PiÂij + ÂTjiPj =


ηi
Cti
R̃ij +

ηj
Ctj
R̃ji 0 01×4

0 ηi
Cti
R̃ij +

ηj
Ctj
R̃ji 01×4

04×1 04×1 04

 =

=


η̃ij + η̃ji 0 01×4

0 η̃ij + η̃ji 01×4

04×1 04×1 04

 =

 2η̃ijI2 02×4

04×2 04

 .
(9.21)

By looking at (9.19) and (9.21), we observe that only the elements in po-
sition (1, 1) and (2, 2) of each 6× 6 block of (b) + (c) can be different from
zero. Therefore, the positive/negative definiteness of the 6N × 6N matrix
(b) + (c) can be equivalently studied by considering the 2N × 2N matrix

L =


Φ11 Φ12 . . . Φ1N

Φ21
. . .

. . .
...

...
. . . ΦN−1 N−1 ΦN−1 N

ΦN1 . . . ΦN N−1 ΦNN

 , (9.22)

obtained by deleting the last four rows and columns in each block of (b)+(c).
In particular, we can write (9.22) as L =M+ G, where

M = diag[Φ11, . . . ,ΦNN ], Φii =


∑
j∈Ni

−2η̃ij 0

0
∑
j∈Ni

−2η̃ij

 ,
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and

G =


02 Φ12 . . . Φ1N

Φ21 02
. . .

...
...

. . .
. . . ΦN−1 N

ΦN1 . . . ΦN N−1 02

 .
We highlight that, from (9.20) and (9.21), blocks Φij , i 6= j, are equal to

Φij =


[
2η̃ij 0

0 2η̃ij

]
if j ∈ Ni

02 otherwise

Next, we notice that L is symmetric, with non negative off-diagonal ele-
ments and zero row and column sum. In other words, L is a Laplacian
matrix [GR01], and, as such, it is negative semidefinite. This allows us to
show that (9.18) (and, equivalently, (9.14)) holds.

9.6.2 Proof of Theorem 9.1

Before showing the proof of Theorem 9.1, in the next two propositions we
provide some preliminary results which are instrumental in characterizing
the states x̂ yielding ˙V (x̂) = 0.

Proposition 9.3. Let fi(vi) = vTi Q22,ivi, with vi ∈ R4, and let Assump-
tions 9.1 and 9.2 hold. If (9.11) is guaranteed and Q22,i

∣∣
Im(FT

22,i)
is invert-

ible, then
fi(v̄i) = 0⇐⇒ v̄i ∈ Ker(F22,i).

Proof. For the sake of simplicity, in the sequel we omit the subscript i.

Step 1. We start by proving that

v̄ ∈ Ker(F22) =⇒ f(v̄) = 0. (9.23)

To do so, we first replace (9.7) and (9.10) in (9.9), thus obtaining

Q22 = F T22P22 + P22F22.

Then, we write

f(v̄) = v̄TQ22v̄ =

= v̄TF T22P22v̄ + v̄TP22F22v̄ = 2v̄TP22 F22v̄︸︷︷︸
=04×1

= 0.
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Step 2. Next, we show that

f(v̄) = 0 =⇒ v̄ ∈ Ker(F22). (9.24)

To this aim, we reformulate the condition f(v̄) = 0 in (9.24). In particular,
from basic linear algebra, we have the following orthogonal decomposition
induced by F22

R4 = Im(F T22)⊕Ker(F22),

which allows us to write any vector v ∈ R4 as

v = v̂ + ṽ, v̂ ∈ Im(F T22), ṽ ∈ Ker(F22). (9.25)

Now, since we are assuming that Q is negative semidefinite and structured
as in (9.12), vectors v̄ satisfying f(v̄) = 0 also maximize f(·). Hence,

f(v̄) = 0⇐⇒ df

dv
(v̄) = Q22v̄ = 04×1, (9.26)

which, decomposing v̄ as in (9.25), translates into

f(v̄) = 0⇐⇒ Q22v̂ + Q22ṽ︸ ︷︷ ︸
=04×1

= 04×1. (9.27)

Notice that Q22ṽ = 04×1 in (9.27) comes from the fact that ṽ ∈ Ker(F22).
In particular, from (9.23), we know that f(ṽ) = 0, and hence condition
(9.26) must hold for v̄ = ṽ. At this point, using (9.27), we can rewrite
(9.24) as follows

Q22v̂ = 04×1 =⇒ v̄ ∈ Ker(F22),

which, since v̄ ∈ Ker(F22)⇐⇒ v̂ = 04×1, finally becomes

Q22v̂ = 04×1 =⇒ v̂ = 04×1. (9.28)

Since Q22,i

∣∣
Im(FT

22,i)
is invertible, (9.28) is verified. The proof ends by ob-

serving that (9.28) is equivalent to (9.24).

Proposition 9.4. Let gi(wi) = wTi Qiwi, with wi ∈ R6, and let the same
assumptions of Proposition 9.3 hold. Then, only vectors w̄i in the form

w̄i =
[
αTi βTi γTi

]T
with αi, βi, γi ∈ R2 and F22,iβi + F23,iγi = 02×1, fulfill

gi(w̄i) = 0. (9.29)
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Proof. As for the proof of Proposition 9.3, we omit the subscript i. Using
(9.12), we write

g(w) =
[
wT1 wT2

] [ 02 02×4

04×2 Q22

] [
w1

w2

]
, (9.30)

where w2 ∈ R4. Since Q is negative semidefinite, vectors w̄ satisfying (9.29)
also maximize g(·). Hence, it must hold dg

dw (w̄) = Qw̄ = 06×1, i.e.[
02 02×4

04×2 Q22

] [
w̄1

w̄2

]
= 06×1. (9.31)

Obviously, a set of solutions to (9.29) and (9.31) is composed of vectors

w̄ =
[
αT 01×4

]T
, α ∈ R2. (9.32)

Moreover, from (9.30), we have that (9.29) is also verified if there exist
vectors

w̃ =
[
wT1 wT2

]T
, w2 ∈ R4, w2 6= 04×1, (9.33)

such that

wT2 Q22w2 = 0, (9.34)

∀w1 ∈ R2. At this point, we exploit the result of Proposition 9.3. We know,
in fact, that vectors w2 satisfying (9.34) belong to Ker(F22), which can be
characterized as follows{

x ∈ R4 :

[
F22 F23

02 02

]
x = 04×1

}
=

{x ∈ R4 : x =
[
βT γT

]T
, β, γ ∈ R2,F22β + F23γ = 02×1}.

(9.35)

The proof concludes by merging (9.32) and (9.33) (with w2 as in (9.35)).

Proof of Theorem 9.1. From Proposition 9.2, we have that (9.14) holds.
Therefore, we aim to use the LaSalle invariance Theorem [Kha01] to show
that the origin of the ImG is attractive. Let us compute the set R = {x ∈
R6N : xTQx = 0}, which, using (9.18), can be written as

R = {x : xT ((a) + (b) + (c)) x = 0}
= {x : xT (a)x + xT (b)x + xT (c)x = 0}
= {x : xT (a)x = 0}︸ ︷︷ ︸

X1

∩{x : xT [(b) + (c)] x = 0}︸ ︷︷ ︸
X2

,
(9.36)
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and first focus on characterizing the vectors of set X1. Recalling that
(a) = diag[Q1, . . . , QN ], we can exploit Proposition 9.4, thus having

X1 = {x : x =
[
αT1 βT1 γT1 | · · · | αTN βTN γTN

]T
,

αi, βi, γi ∈ R2,F22,iβi + F23,iγi = 02×1}.

Next, we focus on the elements of X2. We have seen that the term (b)+(c) is
an “expansion” of the Laplacian matrix in (9.22), obtained by augmenting
each 2 × 2 block Φij of L with zero rows and columns, so as to retrieve
blocks of dimension 6 × 6. It follows that, by construction, X2 contains
vectors in the form

x̃ =
[

01×2 x̃
T
12 x̃

T
13 | · · · | 01×2 x̃

T
N2 x̃

T
N3

]T
, x̃i2, x̃i3 ∈ R2,∀i ∈ V. (9.37)

Moreover, since the kernel of the Laplacian matrix of a connected graph
contains only vectors with identical entries [GR01], we also have that

{x̄ =
[
x̄T 01×2 01×2 | · · · | x̄T 01×2 01×2

]T
, x̄ ∈ R2} ⊂ X2. (9.38)

At this point, by merging (9.37) and (9.38), we obtain

X2 =
{
x : x =

[
x̄T x̃T12 x̃

T
13 | · · · | x̄T x̃TN2 x̃

T
N3

]T
, x̄, x̃i2, x̃i3 ∈ R2

}
,

and then, from (9.36), it follows

R =
{
x : x =

[
ᾱT βT1 γT1 | · · · | ᾱT βTN γTN

]T
, ᾱ, βi, γi ∈ R2,F22,iβi+F23,iγi = 02×1

}
.

(9.39)

For concluding the proof, we must show that the largest invariant set
M ⊆ R is the origin. To this purpose, we consider (9.6), include cou-
pling terms ξ̂[i] and neglect inputs. Then, we choose the initial state

x̂(0) =
[
x̂T1 (0)| . . . |x̂TN (0)

]T ∈ R, where, according to (9.39), x̂i(0) =[
ᾱT βTi γTi

]T
, i = 1, . . . , N . Our aim is to find conditions on the ele-

ments of x̂(0) that must hold in order to guarantee ˙̂x ∈ R. Recalling (9.6)
and (9.7), we compute ˙̂xi(0) as

Fix̂i(0) +
∑
j∈Ni

Âij (x̂j(0)− x̂i(0))︸ ︷︷ ︸
=0

=

 F11,i F12,i 02

F21,i F22,i F23,i

−I2 02 02

 ᾱ
βi
γi

 =

=

 F11,iᾱ+ F12,iβi
F21,iᾱ+ δi
−ᾱ

 ,
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(9.40)

where δi = F22,iβi + F23,iγi = 02×1 since x̂i(0) ∈ R. In order to have
˙̂xi(0) ∈ R, it must hold, ∀i, j ∈ V

F11,iᾱ+ F12,iβi = F11,jᾱ+ F12,jβj

which, from (9.8), implies

1

Cti
βi =

1

Ctj
βj .

This means that there is β̄ ∈ R2, such that Ctiβ̄ = βi, ∀i ∈ V. Moreover,
˙̂xi(0) ∈ R implies the following relation between the two last sub-vectors
in (9.40)

F22,1(F21,iᾱ) + F23,i(−ᾱ) = 02×1.

Using the assumption that (F22,1F21,i − F23,i) is invertible, one has ᾱ =

02×1. Therefore, in order to have ˙̂xi(0) ∈ R, it must hold x̂i(0) =
[

01×2 β̄
T γTi

]T
,

with F22,iCtiβ̄ + F23,iγi = 02×1. Let

S =
{
x : x =

[
01×2 Ct1β̄

T γT1 | · · · | 01×2 CtN β̄
T γT1

]T
,F22,iCtiβ̄+F23,iγi = 02×1

}
.

(9.41)

Since M ⊆ S, we pick x̃(0) ∈ S and impose ˙̃x(0) ∈ S. This gives

˙̃xi(0) = Fi


02×1

Ctiβ̄

γi

 =


β̄

02×1

02×1

 , ∀i ∈ V.

It follows that ˙̃x(0) ∈ S only if β̄ = 02×1. Since M ⊆ S, from (9.41), one
has M = {0}.

9.6.3 Feasibility of the plug-in test (9.15)

In order to better assess the applicability of the presented control design
procedure, we perform the following analysis. For σ̄ = 104, we evalu-
ate subproblems SP1-SP2 (see Section 9.3.3) assuming different DGU con-
verter parameters (Rt, Lt, Ct), and then check for which combinations of
parameters both subproblems are feasible. Figure 9.3 shows the points as-
sociated with triples (Rt, Lt, Ct) returning successfully passed tests (blue
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circles); failed tests (indicated with red stars) refer to parameters for which
at least one subproblem is infeasible. Although wide ranges for converter
parameters have been considered, numerical results reveal that subprob-
lems SP1-SP2 are always feasible when typical parameters for LV and MV
AC ImGs, taken from [FSG+ar, LCS+ar, GLG17, GHMK12, HKM12] are
used (see the green box in Figure 9.3). This means that plugging in and out
operations are never denied for converters commonly found in real ImGs.
Furthermore, we recall that local controllers of DGUs with same converter
parameters (i.e. units associated with identical values (Rt, Lt, Ct) in the
green box in Figure 9.3) can share the same matrix gain Ki. In particular,
by virtue of the line-independent feature of our design method, this com-
mon quantity can be computed off-line and only once, with no need to be
updated when power lines are connected/disconnected to/from DGUs.
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Figure 9.2: Performance of PnP voltage and frequency control. Connection
of DGU 10, load change at PCC 10, and disconnection of DGUs 3 and 7,
are performed at times t = 7.5 s, t = 10 s and t = 12 s, respectively.
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Figure 9.3: Results of subproblems SP1 and SP2 for different combina-
tions of Rt, Lt and Ct. Blue circles indicate successfully passed tests while
red stars correspond to failed ones. The green box encloses typical DGU
parameters for LV and MV AC ImGs.



Chapter 10

Conclusions and future
research

In this thesis, we proposed scalable control design methods for AC and DC
islanded microgrids, allowing safe and reliable PnP operations of DGUs
and loads.

Microgrids have recently attracted the attention of many researchers. In-
deed, they are seen as one of the potential solutions for facilitating the
paradigmatic change in power system operation required by the increas-
ing penetration of RESs into electrical networks. In this context, modular
control architectures (that can be easily updated when the mG topology
changes) are desirable. This work proposed solutions for guaranteeing a
high level of flexibility of mGs structures while addressing the main chal-
lenges arising in control of such electrical systems. Moreover, our contribu-
tions aimed at overcoming the limitations of the existing approaches from
the literature. More precisely, in Part I we presented decentralized and dis-
tributed schemes for primary and secondary control of DC ImGs. At the
primary layer, we proposed a PnP procedure for designing local voltage reg-
ulators capable to ensure (i) offset-free tracking of reference signals, and (ii)
collective stability of the mG in spite of variations in the network topology
and in the load conditions. On top the primary regulation scheme, we built
a consensus-based secondary layer guaranteeing stable current sharing and
voltage balancing. Moreover, we described how to design secondary regula-
tors in a PnP manner when DGUs are added/removed to/from the network.
In Part II, we focused on AC ImGs, introducing, at the primary layer, an
extension of the PnP methodology described in [RSFT15] for designing
stabilizing voltage and frequency regulators capable to ensure offset-free
tracking of reference signals. In order to handle totally general intercon-
nections of DGUs and loads, we proposed two novel approximate network
reduction methods. Notably, we exploited KR for deriving an equivalent
load-connected model of the original ImG, thus designing PnP stabilizing
regulators independently of the network topology. At the secondary layer,
we proposed a distributed scheme ensuring accurate reactive power sharing.
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We validated the theoretical results via extensive simulations. Moreover,
some of the proposed methodologies have been also tested on real ImG
platforms, showing satisfactory performance.
The methods presented in this thesis lend themselves to follow-up investi-
gations. Specific problems deserving further study have been mentioned in
the concluding remarks of Chapters 5, 7, 8 and 9. Hereafter, we describe
broader research directions for the future.

• The distributed consensus scheme presented in Chapter 5 exploits a
communication network for transmitting information between neigh-
boring DGUs. So far, we have considered ideal communication links,
however, in real-world applications, several non-idealities (such as
transmission delays, data quantization and packet drops) must be
taken into account. For this reason, future works will focus on study-
ing the impact of such phenomena on the performance of closed-
loop mGs. Analysis of networked control systems has received con-
siderable attention from the control community in the recent past
[HNX07, ZBP01]. The goal will be to reappraise methods and tools
developed within this area in the context of microgrids.

• Another fundamental challenge that must be addressed when higher-
level networked schemes are included in the mG control architec-
ture is security against cyberattacks. While cyberattacks have been
traditionally studied in the context of communication networks, ap-
proaches based on the analysis of the dynamics of CPSs started to
appear recently [PDB13, TSJ10, Pas12]. In particular, the detection
of cyberattacks requires advanced countermeasures that go beyond
classic fault detection strategies for control systems. Hence, future
research will study these topics in the context of mGs.

• PnP controllers can also play a crucial role in grid-connected mGs
managed by an aggregator. In this framework, the main goal will be
to design, in a PnP fashion, an Energy Management System (EMS)
in order to let the mG behave as a virtual power plant. At the same
time, it will be desirable to preserve the internal flexibility of the mG
structure, meaning that (i) DGUs should feed local loads, and (ii)
the control architecture should let DGUs and loads enter/leave the
network with minimal human intervention. This will facilitate the
participation of individual DGU owners to the aggregator-managed
local power plant. In a broader vision, one can imagine to form mGs
coalitions giving rise to virtual power plants. The scale of these larger
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electrical systems could be tuned by allowing mGs to enter/leave the
coalition in a modular and safe way.

• More complex models of loads (such as constant power loads or ZIP
loads) will be considered. Future research will also study methods
for designing PnP controllers for mGs feeding smart loads (like, e.g.
smart buildings, smart appliances in houses, home charging stations
for electric vehicles and remotely controllable smart batteries). These
latter loads are controllable, hence they can be exploited for optimiz-
ing the mG operation. In addition, one can study how to apply PnP
control to design an EMS with a networked structure so that, when
a smart load is plugged in or out, just a limited number of local
regulators are updated in an automatic fashion.
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Mathematical notation and
definitions
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A.1 Basic notation

R Set of real numbers.
diag[B1, . . . , Bn] Block-diagonal matrix composed of blocks

Bi, i = 1 : n.
rank(A) Rank of matrix A.
Im(A) Image of matrix A.
Ker(A) Kernel of matrix A.
||A||p Norm p of matrix A.
AT Transpose of matrix A.
Iα α by α identity matrix.

A > 0 (resp. A ≥ 0) Positive definite (resp. positive-semidefinite)
real symmetric matrix.

A < 0 (resp. A ≤ 0) Negative definite (resp. negative-semidefinite)
real symmetric matrix.

1α Column vector with all α elements equal to 1.
0α α× α matrix with all elements equal to 0.

0α×β α× β matrix with all elements equal to 0.
× Product of two subspaces, X× Y.
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⊕ Minkowski sum of two subspaces
(orthogonal direct sum), X⊕ Y.

⊗ Kronecker product of two matrices.⋃
Set union.⋂
Set intersection.

|S| Cardinality of finite set S.

A.2 Algebraic graph theory

According to the definitions in [Bol98], a weighted graph G = (V, E ,W ) of
order n = |V| is given by a finite set of nodes V = {1, . . . , n}, a set of edges
E ⊆ V × V and a diagonal matrix W of dimension |E| × |E|, collecting on
its diagonal weights We, e ∈ E . An edge e ∈ E is a self-loop if e = (i, i),
for some i ∈ V. A graph is undirected if (x, y) ∈ E =⇒ (y, x) ∈ E . In this
case, the pairs (x, y) and (y, x) are considered as identical and unordered.
Otherwise, the graph is said to be directed (or digraph). A digraph G is
weakly connected if its undirected version is connected [Bulns]. The set of
neighbors of node i ∈ V is Ni = {j : (i, j) ∈ E or (j, i) ∈ E}. The incidence
matrix of G [Bol98] is denoted with B ∈ R|V|×|E|. The Laplacian of G is
the matrix L = B ·W ·BT [Bol98]. With a Laplacian matrix is possible to
associate a unique graph, up to the orientation of edges.

A.3 AC three-phase signals

We use fabc(t) = [fa(t), fb(t), fc(t)]
T ∈ R3 for denoting three-phase signals

in the abc frame. With fabc(t), we associate its representation in the dq0
reference frame (i.e. fdq0(t)). It is obtained from fabc(t) through the Park
transformation [Par29], denoted with T (θ(t)), θ(t) = ω0t, ω0 being the
nominal network angular frequency. To three-phase signals without zero-
sequence component (i.e. f0(t) = 0) we can associate their complex dq-
representation fdq(t) = fd(t) + i f q(t) without loss of generality.

A.4 Signals representation

For a real valued function f(t), we indicate with H[f(t)] and A [f(t)] the
corresponding Hilbert transform and analytic signal, respectively. They are
defined as follows.

Definition A.1 (Hilbert transform). The Hilbert transform H of a real
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function f(t) is defined as [Bra86]:

H(f(t))(t) = p.v.

∫ ∞
−∞

f(τ)h(t− τ) dτ =
1

π
p.v.

∫ ∞
−∞

f(τ)

t− τ dτ

where h(t) = 1/(πt) and p.v. denotes the Cauchy principal value (since the
integral is improper).

Definition A.2 (Analytic signal). The analytic signal f̄(t) = A [f(t)] is a
complex-valued function, whose real part is equal to f(t), and its imaginary
part is H [f(t)]. In formulae [Bra86]:

f̄(t) = A [f(t)] = f(t) + iH [f(t)] .
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