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Abstract (Italiano) 

 
Nel corso degli ultimi anni, l’impiego di cartelle cliniche elettroniche si sta 

largamente diffondendo, costituendo una sempre più grande fonte di 

informazioni rilevanti sia per la cura del paziente che per la ricerca in 

campo biomedico. Nonostante gli sforzi profusi nella raccolta di dati 

strutturati, che possono essere facilmente consultati ed interrogati, molte 

informazioni sono disponibili soltanto in forma di testo libero. Per questo 

motivo, sviluppare sistemi per l’estrazione automatica di informazioni 

rilevanti dai testi clinici è fondamentale. Inoltre, riassumere tutti i dati 

disponibili per un paziente – che potrebbero essere sparsi in diversi 

documenti testuali – rappresenta un obiettivo essenziale.  

Nell’ambito dei sistemi di estrazione di informazioni cliniche, sono stati 

sviluppati diversi strumenti, soprattutto per l’analisi di testi scritti in lingua 

inglese. Tuttavia, l’attività di ricerca per lingue diverse dall’inglese è 

ancora limitata. In questa tesi, diverse tecniche di estrazione di 

informazioni e alcuni metodi di sintesi sono stati applicati all’analisi di 

referti medici scritti in italiano. Per questa lingua, non è facile avere a 

disposizione risorse condivise per l’estrazione di informazioni cliniche. In 

questo lavoro, è stato utilizzato un corpus di referti di cardiologia 

molecolare come dataset principale per lo sviluppo di metodi di analisi. 

Inoltre, per permettere la realizzazione e la validazione di diverse 

soluzioni, un sottoinsieme di questo corpus è stato annotato, identificando 

manualmente le informazioni da estrarre dai testi. Per facilitare 

quest’attività di annotazione, sono state sviluppate delle linee guida 

specifiche. 

Per accedere alla conoscenza contenuta nei referti medici testuali, un 

primo passo riguarda l’identificazione di eventi clinici. Nel campo del 

natural language processing, questo compito è spesso svolto mediante 

l’uso di metodi di apprendimento supervisionato. In questa attività di 

ricerca, sono stati sfruttati due diversi approcci per l’estrazione di eventi 

dal testo. Innanzitutto, è stato utilizzato un approccio semplice ma efficace 

basato su ricerca tramite dizionari esterni. In secondo luogo, è stata 

investigata un’applicazione delle reti neurali ricorrenti. 

Nei testi clinici, gli eventi sono inoltre spesso menzionati in 

associazione con attributi di interesse medico, che devono essere estratti 

per caratterizzare l’evento stesso. In questa tesi, è stato utilizzato un 

approccio guidato da ontologie per identificare gli attributi degli eventi 

contenuti nei referti di cardiologia molecolare. In particolare, è stata 

sviluppata manualmente un’ontologia specifica del dominio, contenente 
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tutti gli eventi rilevanti con i relativi attributi. Come gold standard per la 

fase di validazione, è stato sfruttato un database ospedaliero, che registra la 

maggior parte delle informazioni scritte nei referti. 

Un altro compito importante per una corretta ricostruzione delle storie 

cliniche dei pazienti è l’associazione di un tempo specifico ad ogni evento 

estratto dal testo. A questo scopo, un primo passo è dato 

dall’identificazione delle espressioni temporali contenute nel testo stesso. 

In questa attività di ricerca, due sistemi esistenti per l’estrazione di 

informazioni temporali sono stati riadattati all’analisi dei testi clinici. Il 

primo sistema è basato su un insieme di regole scritte a mano, mentre il 

secondo sfrutta una grammatica formale. 

Per processare ogni documento, i tre step illustrati (estrazione di eventi, 

attributi ed espressioni temporali) sono stati aggregati in una pipeline. 

Come nota importante, per ciascun evento ed espressione temporale 

identificati nel testo, la pipeline estrae anche alcune proprietà di interesse 

(e.g., la polarità dell’evento). Tra queste proprietà, viene ricavata la 

relazione (DocTimeRel) tra ciascun evento e la data di creazione del 

documento. Sulle basi di questa relazione, ogni evento viene poi associato 

ad un tempo di riferimento (la data di creazione del documento o un’altra 

espressione temporale), attraverso l’applicazione di un insieme di regole 

costruite manualmente. 

Oltre a processare singoli referti medici, il sistema sviluppato in 

quest’attività di ricerca è in grado di sintetizzare le informazioni contenute 

in documenti diversi ma riferiti ad uno stesso paziente. In questo caso, la 

pipeline per l’estrazione di informazioni viene inizialmente impiegata per 

processare i singoli documenti riguardanti quel paziente. In seguito, il 

sistema costruisce e visualizza una timeline con tutti gli eventi estratti, 

sfruttando l’informazione data dal DocTimeRel e le associazioni evento-

tempo di riferimento. 

Per quanto riguarda la fase di validazione, la pipeline sviluppata ha 

ottenuto buoni risultati sul corpus italiano considerato. Partendo 

dall’estrazione di eventi, il classificatore basato su reti neurali ricorrenti ha 

mostrato una buona performance. In particolare, combinando questo 

metodo con la ricerca basata su dizionari esterni, la pipeline ha ottenuto i 

risultati migliori su tutti gli esperimenti condotti. In merito all’estrazione di 

attributi, l’approccio guidato da ontologie ha ottenuto buoni risultati, con 

accuratezze elevate per la maggior parte degli eventi clinici. Inoltre, è stata 

verificata la possibilità di adattare questo step all’analisi di un’altra lingua 

(i.e., inglese), con risultati promettenti. In modo simile, l’ontologia è stata 

adattata all’analisi di un altro dominio clinico (i.e., oncologia), portando 

alla realizzazione di un sistema di estrazione con buone prestazioni. Infine, 

per quanto riguarda l’estrazione di espressioni temporali, sono stati ottenuti 

buoni risultati riadattando opportunamente i due sistemi considerati. 

In merito alla validazione dell’attività di sintesi, è stata condotta una 

valutazione preliminare analizzando la timeline ricostruita per un singolo 

paziente. Quest’analisi ha mostrato come il sistema abbia le potenzialità 

per essere impiegato come un efficace strumento per esaminare le storie 
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cliniche dei pazienti, riducendo il tempo richiesto per accedere a grandi 

quantità di dati. 

In conclusione, i risultati ottenuti indicano che gli approcci indagati 

possono rappresentare una buona strategia per estrarre informazioni da testi 

clinici scritti in lingue diverse dall’inglese. Per quanto riguarda le 

applicazioni pratiche della ricerca condotta, si sta attualmente lavorando 

all’integrazione in due archivi di ricerca basati sul sistema i2b2 delle 

informazioni estratte tramite la pipeline sviluppata. 
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Abstract (English) 

Electronic health records have been widely adopted over the years, 

representing a great source of valuable information for both patient care 

and biomedical research. Despite the efforts put into collecting structured 

data, which can be easily accessed and queried, a lot of information is 

available only in the form of free text. For this reason, developing systems 

that automatically extract relevant information from clinical narratives is 

essential. In addition, summarizing all the data related to one single patient 

– maybe scattered across multiple textual documents – represents an 

essential task.  

In the field of clinical information extraction, several systems have been 

developed, especially for the analysis of texts written in English. However, 

the related research for non-English languages is still limited. In this 

research activity, information extraction techniques and summarization 

methods were applied to the analysis of medical reports written in Italian. 

For this language, shared resources for clinical information extraction are 

not easily available. In this work, a corpus of molecular cardiology reports 

was considered as the main dataset for methods development. Moreover, to 

enable the design and the evaluation of different approaches, a subset of 

this corpus was annotated by manually identifying the information to be 

extracted from the texts. To enable this annotation task, specific guidelines 

were developed. 

To access the knowledge included in textual medical reports, a first step 

involves the identification of clinical events. In the natural language 

processing community, this task is often addressed by using supervised 

methods. In this research activity, two different approaches were exploited 

to perform event extraction. First, a simple, yet effective approach based on 

dictionary lookup was used. Second, an application of recurrent neural 

networks was investigated. 

In clinical texts, events are often mentioned together with relevant 

attributes that have to be extracted to characterize the event itself. In this 

thesis, an ontology-driven approach was used to identify events’ attributes 

in the molecular cardiology reports. In particular, a domain-specific 

ontology was manually developed, including all the relevant events with 

their associated attributes. As the gold standard for the evaluation phase, a 

hospital database, which stores most of the information written in the 

reports, was exploited. 

As another important task, to correctly reconstruct patients’ clinical 

histories, it is necessary to assign a specific time to each event extracted 

from the text. To this end, the identification of temporal expressions is a 
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first, mandatory step. In this research activity, two existing systems for 

temporal information extraction were adapted to the analysis of clinical 

narratives. The first system relies on a set of hand-written rules, while the 

second one makes use of a formal grammar.   

To process each document, the three illustrated steps (event, attribute, 

and temporal expression extraction) were aggregated into a pipeline. As an 

important remark, for each event and temporal expression identified in the 

text, the pipeline extracts a few properties of interest (e.g., the event’s 

polarity), too. Among these properties, the temporal relation between each 

event and the document creation time is computed (DocTimeRel). On the 

basis of this relation, each event is further linked to a reference time (either 

the document creation time or another time expression) by applying a set of 

hand-crafted rules. 

Besides processing single medical reports, the system developed in this 

research activity is able to summarize multiple documents referred to the 

same patient. In this case, the information extraction pipeline is initially 

run on all the documents belonging to that patient. Then, the system builds 

and visualizes a timeline of all the extracted events, exploiting the 

DocTimeRel information and the event-time links. 

As regards the system’s evaluation, the overall information extraction 

pipeline performed well on the considered Italian cardiology corpus. 

Starting from the event extraction task, the recurrent neural network 

classifier achieved a good performance. In particular, by combining this 

method with the dictionary lookup approach, the pipeline obtained the best 

results across all experiments.  With respect to the attribute extraction task, 

the proposed ontology-driven approach performed well, with high 

accuracies for most clinical events. In addition, the possibility to adapt this 

step to the analysis of another language (i.e., English) was assessed, with 

promising results. In a similar way, the developed ontology was adapted to 

the analysis of another clinical domain (i.e., oncology), leading to a well -

performing extraction system. Finally, as regards the extraction of time 

expressions, good results were achieved by properly adapting the two 

investigated systems. 

With respect to the summarization task, a preliminary evaluation was 

conducted by analyzing the timeline reconstructed for one single patient. 

This preliminary validation showed that the summarization system could 

serve as an effective tool for reviewing patients’ clinical histories, reducing 

the time needed to access large amounts of data. 

In conclusion, the obtained results indicate that the investigated 

approaches can be a good strategy to extract information from clinical texts 

in non-English languages. As regards the practical applications of the 

conducted research, the information extracted through the developed 

pipeline is currently being integrated into two research repositories based 

on the i2b2 system. 
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Chapter 1 

1 Introduction 

1.1. Clinical natural language processing 

Thanks to the rapid adoption of information technologies in the clinical 

setting, the amount of patient-related information available in electronic 

form is growing incredibly fast. Enabling timely access to this clinical 

information is of paramount importance for several reasons, above all to 

improve patient care and to facilitate knowledge discovery. For example, 

the data included in electronic health records can be effectively reused to 

strengthen evidence-based medicine and to evaluate the quality of 

healthcare. 

Although electronic health records facilitate the storage of structured 

data, which can be queried and processed in an automatic way, they also 

include much information in the form of narrative text. Despite the 

availability of this rich textual content, performing manual inspections to 

draw meaningful conclusions is expensive in terms of time and resources. 

On the other hand, automatically performing queries to access information 

of interest is not straightforward, due to the unstructured nature of the 

information. 

For the above mentioned reasons, developing automatic natural language 

processing (NLP) techniques represents a necessary step towards the full 

exploitation of all available clinical data [1]. Following the definition by 

Hirschberg et al., natural language processing can be described as follows 

[2]: 

<<Natural language processing is the subfield of computer 

science concerned with using computational techniques to 

learn, understand, and produce human language content.>> 

As regards the clinical domain, by applying NLP techniques on natural 

language narratives, all portions of medical records can be transformed to 

structured data, which can be later processed and examined in an automatic 

way.  
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As a main task in clinical NLP, information extraction (IE) deals with 

the automatic identification of a predefined set of concepts in a specific 

domain [3]. For example, to record the outcomes of patient visits and 

diagnostic procedures, physicians write medical reports containing relevant 

findings, diagnostic conclusions, and therapeutic considerations. To be 

accessed and reused for monitoring and decision making, these concepts 

have to be extracted in a reliable way, also taking into consideration the 

context in which the single mention occurs [1]. For instance, negated 

findings (e.g., “no evidence of ventricular arrhythmias”) or hypothetical 

diagnoses (e.g., “suspected Brugada Syndrome”) should be treated in a 

different way with respect to affirmed facts. As another aspect to be 

considered, it is important to capture possible relations between a certain 

concept and other relevant elements in the text. For example, whenever a 

medication name occurs in the text, it would be important to search for 

possible related dosages and frequencies of assumption. 

A single medical report intrinsically reflects a certain time in the 

patient’s history. However, it also contains references to both previous 

facts (i.e., that happened in the past), or scheduled events (i.e., that will 

happen in the future). Therefore, extracting information from medical 

reports requires addressing two complementary tasks. First, all the relevant 

concepts related to the patient’s history need to be identified. From now on, 

these concepts will be referred to as events. As a second step, each event 

has to be contextualized from the temporal point of view, as the clinical 

information included in an electronic record is only significant in a certain 

temporal context [4]. To analyze the temporal aspects of narratives, the 

extraction and the normalization of the temporal expressions included in 

reports is required. By linking the events and the temporal expressions 

found in the text, it becomes possible to build a system that automatically 

“understands” not only if a certain event happened, but also when the event 

took place. 

From a practical point of view, clinical IE techniques allow 

automatically processing patient-related narratives to search for relevant 

data. In the clinical setting, as a result of multiple ambulatory visits and 

hospital stays, many documents can be produced over time for each patient. 

In light of this consideration, another important step to support patient 

monitoring and decision making consists in clinical summarization. From 

the work by Feblowitz et al. [5]:  

<<Clinical summarization can be defined as the act of 

collecting, distilling, and synthesizing patient information for 

the purpose of facilitating any of a wide range of clinical tasks. 

>> 

Collecting and synthesizing the information included in free text, 

indeed, can effectively enhance the process of reviewing and making sense 

of all available data points. 
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1.2. Motivation and objectives 

As pointed out in the previous section, there is a well-recognized need to 

access the huge amount of clinical information locked in free-text. As a 

matter of fact, many approaches have been proposed in the literature to 

perform clinical IE [6]. However, the majority of published works concern 

the English language, and advances in other languages are still limited 

mostly due to the lack of shared resources [7]. As clinical notes are always 

written in the institution local language, though, developing techniques that 

are able to process a specific language is crucial. Moreover, considering 

that clinical narratives frequently include jargon, abbreviations, and 

specialty-specific phrases, targeting NLP techniques to the analysis of this 

kind of text is needed. 

Starting from this observation, this thesis is focused on the problem of 

extracting relevant information from textual medical reports written in the 

Italian language. The final aim is to build a system that is able to extract 

and visualize a clinical timeline of events starting from multiple patient 

documents. 

The main research questions that motivated this thesis can be 

summarized as follows: 

• What are the NLP challenges specific for the Italian medical 

language, and how can they be addressed? 

• Is it possible to convert Italian medical reports into structured 

information that can be queried and examined in an automatic 

way? 

• Is it possible to guide the clinical IE process to preserve some 

semantic relations inside the text? 

• Is it possible to effectively summarize the information included in 

multiple medical reports, visualizing extracted data in a smart 

way? 

To answer these questions, this dissertation presents methodologies that 

analyze texts written in Italian at different levels, extracting both clinical 

and temporal information. In particular, an IE approach relying on a 

domain ontology has been defined in order to extract clinical information in 

such a way that it verifies some predefined semantic relations. 

From a general point of view, exploring the applicability of IE 

approaches to clinical text written in Italian represents a significant 

contribution to research on clinical NLP for non-English languages. 

As a main clinical case to support the development of both IE methods 

and summarization approaches, the techniques explored in this thesis have 

been used to process documents in the molecular cardiology domain. As it 

will be explained throughout the dissertation, the extension to other clinical 

domains is investigated as well.  
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1.3. Relevance in the clinical setting 

In the clinical practice, the implications of building a clinical IE system 

that is able to process text by extracting structured data are multi-fold. 

First, this kind of system would help clinicians to access unstructured 

information at the time of need, avoiding key-word search and manual 

inspection. As a main consequence, the time spent into such a demanding 

and error-prone activity would be reduced, providing a significant support 

to patient care. As an additional advantage, transforming clinical notes into 

structured data could facilitate improvements in data quality, allowing 

monitoring errors and missing data in a computer-aided way [8]. 

As regards clinical summarization, developing a system that reconstructs 

synthetic clinical histories could be important for two main reasons. On the 

one hand, displaying information belonging to the same patient on a single 

temporal line could facilitate the process of reviewing and making sense of 

multiple data points. On the other hand, comparing the clinical histories of 

different patients would allow searching for recurrent patterns, which could 

lead to interesting conclusions. 

1.4. Dissertation outline 

This dissertation is organized as follows: 

 

Chapter 2 The second chapter provides the dissertation background. As 

this research activity focuses on extracting information from clinical 

narratives, this chapter formalizes the IE problem in this domain, 

presenting the related relevant literature. First, a few basic definitions are 

given. Then, the main IE methods found in the literature are presented. 

Besides describing the revised works from a methodological point of view, 

a few existing architectures and systems, which are useful to contextualize 

the conducted research activity, are illustrated. 

Given that this dissertation investigates the applicability of IE 

approaches to Italian clinical text, relevant work in this language is 

presented. First, an overview of the main issues to be addressed is given. 

Then, the approaches that have been proposed to address these issues are 

described. 

In the last section of the chapter, the problem of clinical summarization 

is considered. Specifically, a few relevant works on unstructured data 

summarization are described. 

 

Chapter 3 The third chapter describes the methodological approaches 

proposed in this work for clinical and temporal IE in the Italian language. 

First of all, the main corpus used for the development of IE techniques is 

presented, i.e., a corpus of medical reports belonging to the molecular 

cardiology domain. To allow evaluating the proposed approaches, a subset 
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of this corpus was manually analyzed, identifying the information to be 

automatically extracted. In Chapter 3, this annotation process is described 

as well. 

After providing an overview of the considered dataset, Chapter 3 

presents the complete developed IE pipeline. To describe the 

methodologies proposed for each extraction step, a separate section is 

available (e.g., extraction of clinical concepts, extraction of temporal 

information). Finally, the approach used for summarizing the information 

extracted from multiple patient reports is described. 

 

Chapter 4 The fourth chapter presents the main results of this research 

activity. Each section contains both the results obtained through the 

proposed evaluations, and a discussion including a comparison to the 

related literature. The chapter focuses on the work conducted on the main 

cardiology dataset: for each of the pipeline steps, a separate section is 

available. In the last section, the results of the summarization task are 

shown. 

 

Chapter 5 The fifth chapter describes a multilingual extension of the 

developed IE pipeline, considering texts in the English language. Then, the 

chapter discusses the extension of the IE task to a different domain (i.e., 

oncology), highlighting the main differences to be addressed. 

In the last part of Chapter 5, the exploitation of the proposed IE pipeline 

in two real clinical settings is discussed.  

 

Chapter 6 The last chapter presents the main conclusions of this 

research activity, providing a summary of the conducted work, and 

highlighting its main novelties and contributions. In addition, the possible 

future directions are outlined. 
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Chapter 2 

2 Background 

This chapter provides the background material and the literature review for 

IE from clinical narratives. Section 2.1 provides a few basic definitions and 

presents approaches for clinical and temporal IE from free text, with an 

emphasis on the first task. Section 2.2 illustrates a few NLP architectures 

and IE systems that have been explored as part of this research activity. 

Section 2.3 describes relevant work in clinical and temporal IE for the 

Italian language. Finally, Section 2.4 outlines the problem of clinical 

summarization starting from multiple texts referring to the same patient.  

2.1. Information extraction approaches 

In this section, the problem of extracting information from a given corpus 

of documents is presented. 

The section starts by introducing a few basic definitions that will be 

used throughout the dissertation. Then, it describes the most common 

preprocessing steps that convert the input corpus into a format suitable for 

subsequent analyses. Finally, the main methods found in literature to 

extract clinical and temporal information are presented. 

2.1.1. Basic definitions 

Unlike information retrieval, which deals with finding relevant documents 

in a certain collection, IE focuses on identifying predefined types of 

information in the text. Among IE subtasks, named entity recognition 

(NER) deals with the identification and the classification of relevant 

entities into predefined categories (e.g., persons, organizations, and 

locations). In clinical and temporal IE, which are the focus of this 
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dissertation, different extraction tasks are performed besides named entity 

recognition. 

Clinical IE deals with identifying clinical information inside the text. In 

this case, the concepts to be identified are represented by diseases, 

medications, diagnostic procedures, and other relevant mentions. Besides 

extracting these concepts, clinical IE involves searching for additional 

related information of interest. First, for each identified concept, a few 

contextual properties are usually considered. For example, to determine the 

role of an extracted mention within the clinical narrative, it would be 

important to capture both its polarity (negative vs positive mention) and 

uncertainty level (e.g., concepts mentioned with some degree of 

uncertainty). Moreover, as clinical concepts are often mentioned together 

with a set of related attributes, extracting these attributes and their values 

would be important to fully identify all event-related information. For 

example, drugs prescriptions could be related to dosages and frequencies, 

while diagnostic procedures could be linked to their results. 

Temporal IE aims to analyze the temporal structure of the text, and 

substantially requires three different steps: (i) the identification of relevant 

events, (ii) the identification of temporal expressions (e.g., “today”, “4 

pm”), which are typically referred to as TIMEXes, and (iii) the 

identification of temporal relations between entity pairs (Event-Event, 

Event-TIMEX, or TIMEX-TIMEX relations). A formal description of these 

steps can be found in the TimeML specification language, a set of rules that 

describe temporal IE in the general domain for the English language [9]. As 

defined by TimeML, entity properties can be extracted for both event 

mentions and temporal expressions. With respect to TIMEX entities, the 

value property is used to convert temporal expressions to standardized 

values, which allows ordering events on the same temporal line. 

When applying temporal IE to the clinical domain, the events of interest 

can be defined as those that are relevant to the patient’s clinical t imeline 

[10,11]. As regards the temporal expressions, although most TIMEXes are 

common across different domains, further particular cases should be 

considered (e.g., the “post-operative” adjective conveys a temporal 

meaning). 

 

It is important to point out that, to enable the development and the 

evaluation of an IE system, one first crucial step consists in manually 

annotating the information of interest inside the text [7]. This annotation 

process is required to define the entities, the properties, and possibly the 

relations to be extracted, thus creating a gold standard to be used as 

reference for the evaluation. Hence, to create a reliable and consistent 

annotated corpus, the development of clear annotation guidelines is 

essential. 

 

In Figure 2.1, a high-level schema for extracting information from 

clinical narratives is depicted. On the left, the main steps that are 

performed on the input text are shown: preprocessing (i.e., an initial 
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elaboration of the input), clinical IE (e.g., extraction of events and their 

attributes), and temporal IE (e.g., extraction of temporal expressions and 

temporal links). On the right-hand side, the manual annotation of the input 

text is reported. As shown in the figure, the so produced gold standard can 

be exploited both for developing IE methods (“knowledge-based 

approaches” and “machine learning methods” arrows) and for the final 

evaluation of the system. 

 

Figure 2.1: High-level schema for IE from clinical text. 

Although the IE systems that have been proposed over the years rely on 

a variety of different approaches, most methodologies fall into one of two 

classes: knowledge-based techniques and machine learning methods. In the 

following, the use of these approaches, both separately and in combination, 

will be described in detail. For each approach, references to both clinical 

and temporal IE systems will be provided, with a focus on the former 

problem. 

2.1.2. Preprocessing methods 

In an IE pipeline, it is frequent to start analyzing the text by applying a set 

of preprocessing techniques, such as morphological and syntactic analyses. 

Figure 2.2 shows the main preprocessing steps that can be used to prepare 

the text for subsequent IE tasks. 
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Figure 2.2: Main preprocessing steps. 

Text tokenization is one of the first steps to be performed on the input 

text. In this phase, the text is divided into tokens, i.e., linguistic units such 

as words, punctuations, and numbers. Although segmenting the text into 

tokens may seem straightforward, a few challenges must be considered. For 

example, deciding how to treat a hyphenated term (e.g., “patient-

controlled”) is not a trivial task, as either one or two tokens could be 

created, depending on the context. As a related issue, correctly identifying 

tokens that include punctuation marks, such as dates (e.g., “05/10/90”) and 

times (“3:00”), could be challenging.  

Another task closely linked to text tokenization is sentence 

segmentation, which deals with identifying sentence boundaries in the text. 

Also in this case, performing a correct segmentation requires addressing a 

few issues, above all the ambiguity of punctuation marks. For example, the 

presence of a period does not always denote the end of one sentence: such 

punctuation marks can be found in both abbreviations (e.g., “Dr.”) and 

numbers (“2.5”). 

Once the text is segmented into tokens, a common processing step is 

represented by morphological analysis. This analysis is needed to perform 

lemmatization, a task that consists in assigning to each word its base form, 

called lemma (e.g., “patient” for “patients”, or “complain” for 

“complained”). As lemmatization converts many possible variants to the 

same form, it allows making the content of the text uniform. For those 

languages, such as Italian, that have a high degree of inflection, working on 

lemmas can be useful to facilitate some subsequent NLP tasks, such as 

looking up terms in a dictionary. As another important processing step, 

Part-of-speech (POS) tagging assigns to each token the corresponding POS 

tag, i.e., a grammatical class such as noun, verb, and adjective. Among 

other tasks, POS tagging can be useful to disambiguate between two 

different word meanings. For example, the word “discharge” as a noun can 

refer to a bodily emission, while the same word as a verb can indicate a 

release from the hospital [7].  

To obtain a shallow syntactic analysis of the text, tokens can be grouped 

into predefined constituents, such as noun phrases (e.g., “the old woman”) 

and verb phrases (e.g., “was discharged”). This process, known as text 

chunking, can be useful to restrict subsequent analyses to predefined types 

of phrases. For example, to look for named entities inside the text, 

restricting the search to noun phrases could represent a good choice. 
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To perform each of the described steps, different methods can be used. 

In general, the approaches proposed in literature can rely either on general 

linguistic knowledge or on the specific corpus features. 

To accomplish text tokenization and sentence segmentation, the most 

common approaches are based on regular expressions, i.e., standard 

notations used to specify text strings [12]. An example of regular 

expression is given by 

\d\d\-\d\d\-\d\d\d\d 

This expression identifies all the strings that represent a date in the 

format DD-MM-YYYY (2 digits for the day, 2 digits for the month, and 4 

digits for the year). Besides regular expressions, resources like lexicons and 

predefined word lists (e.g., abbreviations, acronyms) can be used. 

Another step often heavily relying on regular expressions is 

morphological analysis [13]. Also in this case, language-specific lexicons 

can be exploited. An example for the Italian language is given by the 

Morph-It lexicon, that includes word forms and lemmas obtained by 

processing a corpus with more than 3 million words [14]. 

As regards the POS tagging task, the most common approaches are 

based on either hand-crafted rules or statistical models [12]. While rule-

based taggers use hand-written rules to disambiguate between two different 

POS tags, statistical taggers use a training corpus to compute the 

probability of a word having a certain tag in relation to the specific context 

(i.e., based on the adjacent words). It is clear that for this second type of 

algorithms, the choice of the training corpus is crucial to determine the 

tagging performance. For example, a POS tagger trained on a general 

domain corpus may not perform well on corpora belonging to other 

domains. 

Finally, to address the text chunking problem, a variety of different 

approaches have been proposed. Among others, rule-based systems, 

memory-based systems, and statistical systems (e.g., hidden Markov 

models, maximum entropy models) have been explored [15]. 

2.1.3. Information extraction using knowledge-based 
approaches 

As previously mentioned, both clinical and temporal IE require identifying 

domain-specific entities within the text. To this end, pattern matching 

techniques, such as dictionary lookup and rule-based approaches, provide a 

simple, yet effective solution. Dictionary lookup consists in searching for 

dictionary entries inside the text, thus basically performing a string 

matching. Rule-based techniques require defining a set of structural or 

grammatical rules that encompass more elaborate information. 
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Dictionary lookup approaches. As regards clinical IE, the availability of 

shared terminologies in the biomedical field greatly supports the creation of 

systems that exploit these resources, especially for the English language. 

For example, Pakhomov et al. developed a system that identifies relevant 

entities in clinical notes by using a set of shared medical dictionaries [16]. 

As another example, the MedEx system [17] extracts medication names and 

signature information from free text by exploiting RxNorm [18], a 

normalized naming system for generic and branded drugs. 

Among available biomedical resources, the Unified Medical Language 

System (UMLS) is a particularly rich compendium, developed by the 

National Library of Medicine (NLM), that integrates and distributes 

terminology, classification and coding standards in the biomedical field 

[19]. The UMLS Metathesaurus is one of the three knowledge sources 

available within the UMLS, and gathers terms and codes from many 

vocabularies, including RxNorm, ICD-10-CM [20], and SNOMED CT 

[21]. In the UMLS Metathesaurus, terms are univocally identified by a 

Concept Unique Identifier (CUI) and organized into semantic categories. 

As this vocabulary database not only is very large, but also identifies useful 

relationships between the concepts, it has been widely used to develop 

automatic systems for extracting entities from clinical text. Among these 

systems, MetaMap was developed by the NLM itself to allow searching for 

UMLS Metathesaurus entries in text [22]. A detailed description of this 

system is provided in Section 2.2.3. 

Besides exploiting public resources, it is possible to develop ad hoc 

vocabularies that include entities of interest for a specific application. As a 

well-known example, the MedLEE system extracts and encodes clinical 

information in textual patient reports, relying on hand-crafted lexicons 

[23]. Zhou et al. developed a tool that extracts information from clinical 

text by using both standard and institution-specific terminologies [24]. 

Carrell et al. created a custom dictionary to process electronic clinical notes 

for women with breast cancers [25]. 

 

Rule-based approaches. To identify complex information inside the text, 

such as drug regimens (e.g., dosage, frequency of assumption) or test 

results (e.g., heart rate, blood pressure), dictionary lookup alone is not a 

good choice, as all possible variants should be listed in the dictionary. To 

capture this complex information, it can be useful to rely on regular 

expressions and/or rules that combine different elements, including lexicon 

entries. For example, in the MedEx system, a dictionary lookup tagger and 

a regular expression tagger are used in combination to identify drug 

regimens [17]. While the first tagger relies on lexicon files to extract drug 

names and forms, the second tagger exploits regular expressions to identify 

information expressed through patterns, such as the prescription frequency 

(e.g., “q4h”, “q6h”). In addition, the system uses predefined context rules 

to determine the appropriate semantic categories for ambiguous terms. As 

another example, in a recent work by Patterson et al. a combination of 

dictionary lookup, rules, and patterns is used to extract echocardiogram 
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measurements [26]. In this case, the authors created a domain-specific 

lexicon to look for measurement names (e.g., “left ventricular ejection 

fraction”), and used regular expressions to identify measurement values. 

These extracted names and values were then linked through manually 

defined patterns (e.g., term + separating string + value + unit). 

As stated earlier, in a plain dictionary-lookup approach, concepts 

included in specific dictionaries are searched for in the texts. As an 

additional way to guide the IE process, it is possible to rely on domain 

ontologies, too [27]. In the clinical domain, using an ontology that includes 

information on concepts and their semantic relations can be helpful to 

extract complex information [28]. For example, an ontology-driven 

approach could facilitate the task of extracting clinical concepts together 

with related attributes and their values. Spasić et al. proposed an ontology-

driven system to extract information on findings and anatomical regions 

from magnetic resonance imaging (MRI) reports written in English [29]. 

The developed ontology was used to guide and constrain text analysis, 

while language processing was modeled through a set of sophisticated 

lexico-semantic rules. Mykowiecka et al. developed a rule-based system 

that extracts information from Polish clinical texts to fill in template forms 

[30]. To specify the information to be extracted, a domain ontology was 

designed, and manually translated into typed feature structures (TFSs) i.e., 

sets of attribute-value pairs. To extract information, these TFSs were 

combined by manually written grammar rules. In another work, Toepfer et 

al. created a system that extracts objects (mostly body parts), attributes, and 

values from German clinical texts [31]. To formalize these concepts, a 

domain ontology was developed and refined by domain experts, in a semi-

automatic and iterative way. In this ontology, the most fundamental kinds 

of entries are variants, which specify lexical expressions referring to 

concepts, in form of either a string or a regular expression. At each 

iteration, the expert accepted or rejected the annotations that were 

automatically extracted by the system on the basis of the ontology, thus 

refining the ontology itself. 

With respect to temporal IE, using lexicons and rules can be an effective 

way to both identify (i.e., finding boundaries) and normalize (i.e., 

converting to a standard format) temporal expressions. As a representative 

example, the HeidelTime system relies on regular expressions for the 

identification process, and uses  knowledge  resources and linguistic clues 

to normalize the extracted expressions to a standard format [32]. 

TimeNorm is another example of rule-based system performing temporal 

normalization [33]. In this case, the system exploits a synchronous context 

free grammar (SCFG [34]) that maps the language used in the text to 

formal operators for time manipulation. 
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2.1.4. Information extraction using machine learning methods 

From a general point of view, machine learning techniques enable 

computers to automatically learn how to solve specific tasks, without being 

explicitly programmed. In supervised machine learning, the system is 

presented with example inputs and expected output labels, and aims to 

learn how to map each input to the corresponding label. Conversely, in 

unsupervised machine learning, no labels are given instead, letting the 

system finding regularities in the input data by itself. Therefore, in order to 

solve those NLP tasks that can be addressed as a classification problem 

(i.e., where each input must be assigned the corresponding label or class) 

supervised machine learning can be exploited. An example of classification 

problem in NLP is represented by entity recognition. As previously 

mentioned, the goal of this task is to identify predefined entities in the text. 

To address this problem, the beginning-inside-outside (BIO) classification 

schema is commonly used. In this schema, the input data are represented by 

sequences of tokens, while the corresponding outputs are given by B, I, O 

labels denoting the inclusion (B, I) or the exclusion (O) of each token in an 

entity. For example, in a NER task focused on the identification of persons, 

the sentence “Barack Obama was president” would be translated to the 

following sequence: “B I O O”. In this case, the B and the I labels represent 

the beginning and the inside of the Barack Obama entity, respectively. 

 

Annotated corpora and competitions. As a matter of fact, developing 

supervised classifiers requires the availability of large datasets to “learn 

from”. This is true also for NLP classification problems: to enable the 

development of effective classifiers, the most important first step is the 

creation of large, reliably-annotated corpora [35]. 

For the English language, a few corpora have been collected and 

annotated to support advances in supervised clinical IE (e.g., MiPACQ 

[36], ShARe [37]). Most of these corpora have been then used to organize 

IE competitions, thus enabling the development and the evaluation of 

various supervised approaches (e.g., 2010 i2b2 challenge [38], 2013 

ShARe/CLEF eHealth task [39], SemEval-2015 task [40]). As an example 

of clinical IE competition, the SemEval-2015 task “Analysis of clinical 

text” focused on entity recognition and template slot filling for clinical 

texts [40]. In this case, the ShARe corpus, consisting of 531 de-identified 

clinical notes annotated with disorder mentions and a set of relevant 

properties (e.g., negation, uncertainty), was used as the main dataset. 

Regarding temporal IE from clinical narratives, annotated resources 

have been created, too. The Informatics for Integrating Biology and the 

Bedside (i2b2) project created a temporally annotated corpus consisting of 

310 de-identified summaries, all annotated with clinical and temporal 

information [10]. The developed corpus was used for organizing the 2012 

i2b2 Challenge, which involved the identification of events, TIMEXes, and 

a subset of the TimeML temporal links inside the texts [41]. Styler IV et al. 

developed a formal specification for annotating temporal information in 
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clinical text, extending the TimeML guidelines to the clinical domain [11]. 

This formalization effort resulted in the creation of the THYME corpus, 

which consists of 1254 de-identified notes annotated with clinical and 

temporal information. This corpus has been exploited in different NLP 

challenges (Clinical TempEval competitions [42–44]). Among the most 

recent ones, the 2016 Clinical TempEval task required participants to 

extract events, TIMEXes, and their properties from the texts [44]. As 

regards temporal links, two kinds of relations were considered for the 

competition: (i) relations between each event and the document creation 

time, and (ii) relations between an event or a TIMEX and a narrative 

container, i.e., a time span that is central to the discourse. 

 

Supervised extraction methods. In the described clinical and temporal IE 

competitions, most state of the art solutions involved supervised methods. 

As previously mentioned, the SemEval-2015 task “Analysis of clinical 

text” involved two different assignments [40]. For the first task, i.e., 

disorder span recognition and UMLS/SNOMED-CT normalization, most 

teams used supervised approaches based on conditional random fields 

(CRFs [45]). For the second task, which consisted in identifying nine 

properties for the extracted disorders, different classifiers were built for 

each property. Referring to a clinical/temporal IE challenge, the 2016 

Clinical TempEval task consisted in extracting events, TIMEXes, and 

temporal links from clinical narratives [44]. Also in this case, all the state 

of the art solutions included supervised approaches. The best performing 

systems relied on structured learning models, namely support vector 

machines (SVMs [46]) and CRFs. It is important to point out that the 

temporal relation tasks were regarded as the most difficult ones.  

The supervised methods used to identify entities and properties use a 

variety of different features. Among the most common ones, lexical and 

morphological features (e.g., bag of words, word orthographic forms), as 

well as syntactic aspects (e.g., POS tag, phrase chunks) are usually 

exploited. The quality of these features is highly dependent on the 

performance of the preceding processing steps. As another useful set of 

features, the inclusion of concepts from external resources (e.g., medical 

dictionaries) can be exploited, too. Finally, word representation features 

have been recently used for their ability to automatically capture useful 

morpho-syntactic aspects [47,48]. Going a little bit into the details, a word 

representation is a mathematical object associated with each word, often a 

vector [49]. These word vectors can be learnt on large unlabeled corpora 

through different techniques (e.g., word embeddings [50]), and represent 

the actual features that can be used in a supervised learning context.  

Supervised approaches like CRFs and SVMs usually rely on complex 

features to be adequately trained. As an alternative approach that allows 

reducing the annotation effort, neural network architectures have raised 

increasing interest in the NLP community [51]. Neural networks are 

powerful machine learning models based on connected computation units, 

called nodes, which receive scalar inputs (each associated to a weight) and 
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produce scalar outputs. To solve a generic IE task, a neural network model 

receives a list of tokens as inputs (more precisely, the corresponding word 

representations would be used), and returns specific labels as outputs. In 

the network training phase, the set of weights which better describe the 

relation between the inputs and the outputs are automatically learnt. As a 

main advantage, neural network models do not need language-specific 

preprocessing or manually engineered features. Thanks to these 

characteristics, neural network models have been successfully applied to 

many entity recognition tasks [52–55] on different domains and languages 

[56–58]. In the clinical domain, Li and Huang investigated neural networks 

to identify event spans and their properties  from  clinical  notes  and  

pathology  reports written in English [56]. As regards the Italian language, 

Bonadiman et al. proposed a neural network to predict tags for entity 

recognition in the general domain [57]. 

2.1.4.1. Recurrent neural networks for entity recognition 

Among the supervised approaches available for clinical IE, this research 

activity investigated the application of neural network models to the task of 

event extraction. This section provides an introduction to the considered 

models, with a particular focus on recurrent architectures. 

As mentioned, any entity recognition task, including the identification of 

clinical concepts, can be treated as a classification problem. More 

specifically, recognizing entities formed by multiple tokens represents a 

sequence labelling problem: a sequence of tokens must be transcribed to a 

sequence of labels indicating the inclusion of the tokens in the predefined 

entities. As it will be explained in the following, there exists a class of 

neural networks, called recurrent neural networks (RNNs), which are 

specialized for processing and classifying input data in the form of 

sequences. Thanks to this characteristic, RNNs are particularly suitable to 

solve entity recognition tasks [53–55,57]. In the following paragraphs, an 

introduction to neural networks models and RNNs is provided. 

 

Neural networks. Inspired by the brain’s functioning, neural networks are 

machine learning models consisting of computation units resembling the 

brain’s neurons. These units, or nodes, receive scalar inputs and produce 

scalar outputs, and they are connected to each other by means of weighted 

links. The network is activated by providing an input to some of the nodes, 

and this activation then spreads from one node to the other along the 

weighted connections [59].  

Although many types of neural network have been proposed over the 

years, a substantial distinction exists between feed-forward neural 

networks, whose connections do not form cycles, and RNNs, which are 

characterized by cyclic connections. 

The most popular example of feed-forward neural network is the 

multilayer perceptron, shown in Figure 2.3. In this network, nodes are 
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organized in layers, with connections going from one layer to the next. An 

input layer receives the input data, and an output layer produces the 

network output. All layers in between are referred to as hidden layers. 

Neural network models including a high number of hidden layers are 

typically referred to as deep neural networks. 

 

Figure 2.3: Multilayer perceptron [59]. 

During the network activation, each node in the network calculates a 

weighted sum of its input units, and applies a non-linearity (called 

activation function) to this sum. Considering a node h with I inputs xi, each 

associated to a weight wih, the weighted sum of inputs is given by ah. The 

final output bh is obtained by applying the activation function (fh) to ah 

[59]: 

  

 

The obtained output of the unit (bh) will serve as input to the subsequent 

layer’s nodes in the network. 

The parameters of the model (i.e., the set of weights wih) are estimated 

during the network training phase: an optimization algorithm computes the 

best set of values to model the input-output relations over the training set. 

For neural network models, the stochastic gradient descent algorithm (or 

one of its variants) is usually exploited [60]. 

 

For some classes of applications, the described structure does not seem 

to be adequate. For example, in case of a sequential input (such as the 

words of a sentence), the feed-forward neural networks would treat each 

item as an independent input, without memory of the previous one. For this 

kind of problems, RNN have been proposed. As a main difference with 

respect to feed-forward neural networks, RNNs allow cyclical connections, 

too. So, while feed-forward architectures are intended to map from one 
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single input vector to one output vector, an RNN architecture takes as input 

an ordered list of vectors (e.g., they can be interpreted as inputs at different 

time steps) and returns an ordered list of vectors as the output. In Figure 

2.4, a simple RNN with only one hidden layer is depicted: at each time 

step, the hidden layer receives activations from both the current external 

input and the hidden layer activations from the previous time step [59]. 

 

Figure 2.4: Recurrent neural network [59]. 

Going into the mathematical details, an RNN takes as input a sequence 

of vectors x1, …, xN as well as an initial state s0, and returns a list of state 

vectors s1, …, sN  together with a sequence of output vectors y1, …, yN [51]. 

The xn vectors are given as inputs to the network in a sequential way: at the 

n-th time step, sn and yn represent the state and the output of the network 

after processing the inputs x1, …, xn. The state vector sn is a function R of 

the current input (xn) and the previous state (sn-1), while the output vector 

yn is a (typically non-linear) function O of the corresponding state vector 

(sn): 

  

 

As for feed-forward neural networks, both R and O depend on a set of 

parameters θ, which represent the network’s weights. 

Figure 2.5 provides a graphical representation of an RNN, “unrolled” 

over time. In this case, a sequence of five input vectors is considered, 

resulting in a neural network in which the same parameters (θ) are shared 

across all time steps, since on each input the same classification task is 

performed.  
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Figure 2.5: “Unrolled” recurrent neural network [51]. 

As it can be noticed from Figure 2.5, an unrolled RNN is a deep neural 

network. As a main consequence, the parameters of the model can be 

learned in the same way as for feed-forward networks. In particular, for a 

given input sequence, it is sufficient to train the unrolled network by 

applying an optimization algorithm. 

 

Word embeddings. As previously explained, neural network models are 

used to process numeric inputs, and require the computation of weighted 

sums. For this reason, strings are not a good choice to represent the input of 

a neural network. Therefore, to apply this class of methods to the analysis 

of natural language, words are usually converted into real-valued vectors 

called embeddings [50]. 

Embeddings can be defined as vector representations of words. In an 

unsupervised framework, these vectors are learnt from a large corpus of 

documents through different techniques. Most of these methods rely on the 

distributional hypothesis, which states that words occurring in the same 

contexts tend to have similar meanings [61]. In this framework, given a 

target word, its context is defined as the set of surrounding words (e.g., the 

2 preceding and the 2 following words). Among the models used for 

learning embeddings, the continuous bag-of-words (CBOW) and the skip-

gram models are the most widespread. Both of them involve the definition 

of a probabilistic classification problem: given a large corpus, the first 

model predicts target words starting from their context, while the second 

one operates the other way around [62]. In a CBOW model, for example, 

each word in the input context is a one-hot encoded vector indicating its 

position inside the vocabulary (only one element is 1, and all the others are 

0), while the output is a vector where each element represents the posterior 

probability of that word being the target word. To compute the probability 

of each target word given the context, words are converted via lookup 

tables to vectors with lower dimensionality with respect to the vocabulary 

size: these vectors are the searched numerical representations of the words 

(i.e., the embeddings). The embeddings learnt in this way were shown to 
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effectively capture the syntactic and semantic features of words, and can be 

used to support many NLP tasks [63]. 

Word embeddings can be used also in a supervised NLP classification 

task based on neural networks. In this case, embedding layers can be used 

to convert each word to a fixed-size embedding vector, that will serve as 

input to the main neural network structure. In this framework, the word 

embeddings are learned during the training of the overall network, designed 

to solve the specific supervised task (e.g., the classification of input tokens 

with B, I, or O labels). In this sense, these embeddings are different from 

the ones that are learnt in an unsupervised way on a large corpus, for 

example through the CBOW or the skip-gram models. However, it has been 

shown that initializing embeddings with vectors pre-trained in an 

unsupervised way can be helpful to build a neural network for a supervised 

task, as it provides a “good” starting point that guides the network training 

[64]. 

2.1.5. Combined approaches 

For extracting domain-specific entities and their properties, both pattern-

matching approaches and supervised machine learning methods present 

advantages and drawbacks. 

Approaches that exploit external lexicons and rules are a good choice to 

identify concepts that are included in standardized resources (e.g., drug 

names), or extract information that follows well defined patterns (e.g., drug 

dosages). However, these approaches present two main disadvantages. On 

the one hand, textual reports could contain relevant mentions that are not 

found in external resources. On the other hand, creating well performing 

rules requires a considerable manual effort. 

As regards supervised machine learning, two main advantages can be 

pointed out. First, supervised classifiers can learn to effectively identify 

non-standard entities in the text, without requiring much human intuition. 

Second, in case of generalizable enough classifiers, the models developed 

for one application can be easily retrained and reused on a new different 

domain. Also in this case, though, a crucial drawback must be considered. 

To obtain well performing and generalizable classifiers, large annotated 

training corpora are needed, and building such corpora is expensive in 

terms of both time and resources. 

To combine the advantages of these two classes of approaches, it is 

possible to develop systems that integrate multiple modules, each relying 

on a different methodology. One of the most popular systems of this kind is 

cTAKES, an NLP pipeline for the extraction of information from clinical  

free-text  [65]. As it will be detailed in Section 2.2.3, cTAKES allows 

performing several tasks through different NLP modules, which can be 

customized using both dictionaries and machine learning. 

Another example of hybrid system for clinical IE was proposed by 

Wang et al., who focused on the problem of extracting disorder concepts 
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from clinical narratives [66]. In this case, the developed system includes 

three extraction components, one based on supervised machine learning, 

and the others based on pattern matching. The first component is an SVM 

classifier that uses different kinds of features, such as bag of words and 

orthographic features, to identify disorder mentions in the text. The second 

component is a rule-based annotator that corrects the errors performed by 

the SVM classifier. Finally, the third extraction component relies on the 

MetaMap system to identify concepts not included in the training data. 

With respect to temporal IE applied to the clinical domain, an example 

of hybrid system was proposed by Kovačević et al. as a contribution to the 

2012 i2b2 Challenge [67]. To extract both event mentions and temporal 

expressions, the authors combined rules and machine learning techniques. 

For extracting all types of events, suitable CRF classifiers were developed. 

For one specific event type (Clinical Department), the CRF module was 

also combined with a manually-curated dictionary. To extract temporal 

expressions, the authors combined 65 manually engineered rules and a CRF 

module based on token-level features (e.g., lexical and domain features). 

Finally, for the normalization task, a rule-based approach was exploited. 

2.2. Information extraction systems 

In this section, a few existing architectures and systems, which are useful to 

contextualize the conducted research activity, are illustrated: 

• General architectures: GATE, UIMA 

• Preprocessing tools: Stanford CoreNLP, Apache OpenNLP, 

TextPro 

• Clinical IE systems: MetaMap, cTAKES 

2.2.1. General architectures 

GATE. GATE is an open-source infrastructure for developing software 

components that process human language [68]. As an architecture, it allows 

defining the structure of an NLP system that combines many of these 

components. To facilitate software development, GATE also provides a set 

of building blocks that can be reused, extended, and customized. 

Thanks to its flexibility, the GATE architecture has been used to develop 

several NLP applications. For example, it has been recently exploited to 

perform a real-time semantic analysis of social media content [69]. 

Regarding the biomedical domain, Cunningham et al. have described three 

well-performing systems that leverage on the GATE architecture [70]. The 

first one contributes to gene-disease association studies by using a method 

called Adjusting Association Priors with Text (AdAPT). This method 

searches research paper abstracts for prior knowledge on single nucleotide 

polymorphisms, thus facilitating the discovery of gene-disease associations. 
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The second system was developed to extract information from a large 

mental health case register in the UK. The system extracts the results of a 

cognitive ability test (the Mini Mental State Examination) from textual 

medical records, identifying assessments, scores and dates. Finally, the 

third system uses GATE’s ontology tools and a data repository to search 

for drug-related information over patent data. It performs a semantic 

annotation of patents, identifying references to drugs and additional related 

information (e.g., ingredients, organizations, dosages and routes of 

administration). 

 

UIMA. UIMA is a software architecture for developing unstructured 

information management applications [71]. These applications analyze 

large volumes of unstructured data, such as textual documents or images, to 

discover relevant knowledge. As a main feature, UIMA allows 

decomposing applications into modules, each with a different role. With 

respect to language processing, it is possible to build a pipeline that takes 

in input a collection of textual documents, and outputs the same documents 

annotated with the relevant information found by each component 

(Annotator). Given that UIMA enables to easily develop, customize, and 

aggregate different Annotators, which may be independent or rely on 

previous annotations, many NLP tools have been implemented by 

exploiting this architecture. For example, the already mentioned cTAKES 

system is built upon UIMA, and has a modular structure that allows to 

reuse any UIMA compatible component [65]. As regards other well-known 

systems for IE, both MetaMap [22] and HeidelTime [32] are available as 

UIMA components, allowing them to be easily integrated in existing 

applications. As a final example in biomedical NLP, the BioNLP UIMA 

Component Repository maintains several annotators used in biomedical text 

processing as UIMA components [72]. Specifically, this repository includes 

components for gene identification, biomedical term recognition and 

mutation identification, as well as general preprocessing components 

(tokenization, sentence detection, and semantic parsing). 

2.2.2. Preprocessing tools 

Stanford CoreNLP. Stanford CoreNLP provides tools to perform many 

NLP tasks [73]. At the token level, it allows obtaining the base forms of 

words, their POS tags, and whether they are named entities (e.g., 

companies, people). At the sentence level, it identifies phrases and 

syntactic dependencies, indicating which noun phrases refer to the same 

entities. The basic Stanford CoreNLP distribution provides model files to 

analyze well-written English texts. However, packaged models are 

available also for Arabic, Chinese, French, German, and Spanish. 

 

Apache OpenNLP. Apache OpenNLP is another tool that supports the 

most common NLP tasks [74]. Among others, it performs tokenization, 



Background 

 

 22 

sentence segmentation, POS tagging, named entity extraction, chunking, 

and parsing. Also in this case, most OpenNLP models were developed for 

the English language. For the most basic tasks, however, pre-trained 

models are available also for Danish, German, Swedish, Dutch, Spanish, 

and Portuguese. 

 

TextPro. As regards the Italian language, TextPro is a well-known suite of 

modular NLP tools that perform different tasks [75]. The TextPro pipeline 

includes modules for tokenization, sentence segmentation, morphological 

analysis, POS tagging, lemmatization, text chunking, NER, and syntactic 

analysis. TextPro is available for both the Italian and the English 

languages, and the different modules have been evaluated in several shared 

tasks (e.g., EVALITA [76]). 

2.2.3. Systems for clinical information extraction 

MetaMap. The MetaMap tool identifies UMLS concepts in the text by 

performing dictionary lookup and other elaborate processing [22]. The 

structure of MetaMap is depicted in Figure 2.6.  

 

Figure 2.6: MetaMap system diagram [22]. HR, human readable; MMO, 

MetaMap machine output; UMLS, unified medical language system. 

First, the input text undergoes lexical and syntactic analysis through four 

basic steps: text segmentation (i.e., tokenization, sentence splitting, and 

identification of acronyms/abbreviations), POS tagging, lexical lookup on 



Background 

 

 23 

the SPECIALIST lexicon (i.e., an UMLS lexicon that includes syntactic, 

morphological, and orthographic information about words), and a syntactic 

analysis that identifies phrases and their lexical heads, i.e., the word that 

determines the syntactic category of that phrase. The output of this 

processing is a list of phrases, that are subsequently analyzed by four 

components: 

1. Variant generation: the variants of all phrase words are computed 

(e.g., spelling variants, acronyms); 

2. Candidate identification: based on the generated variants, the 

possible Metathesaurus strings (candidates) are identified. Each 

candidate is then evaluated according to how well it matches the 

input text; 

3. Mapping construction: the extracted candidates are combined, and 

the results are evaluated to produce the best match for the input 

text; 

4. Word sense disambiguation (optional): when multiple UMLS 

mappings are regarded as possible, surrounding tokens (i.e., the 

context) are used to determine the preferred one. 

The MetaMap system has been used for extracting different kinds of 

information from clinical text, such as for recognizing specimens and their 

findings [77], or for problem extraction [78].  As reported by Aronson et 

al., this system has evolved significantly over the years, and has been used 

by many groups in the biomedical informatics community. 

 

Apache cTAKES. The Apache cTAKES system extracts relevant 

information from clinical narratives by exploiting a variety of different 

approaches, including both pattern matching and machine learning 

techniques [65]. As already mentioned, this system relies on the UIMA 

architecture, and consists of several modules, each with a specific role. In 

Figure 2.7, the components for the most recent version (currently, Apache 

cTAKES 4.0) are shown. 
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Figure 2.7: Apache cTAKES components [79]. 

First, the textual input undergoes the usual preprocessing steps (e.g., 

tokenization, sentence segmentation, POS tagging, chunking). To obtain 

token annotations that depend on surrounding tokens, it is possible to use a 

context dependent tokenizer. To generate the lexical variants of words, the 

SPECIALIST tool is exploited. 

Once the text is preprocessed, different components for clinical IE can 

be used: 

1. The Dictionary Lookup component identifies terms in text and 

normalizes them according to a specific terminology (e.g., UMLS, 

Snomed-CT, RxNorm). 

2. The Dependency Parser component provides syntactic information 

about sentences. Instead of finding standard phrases (e.g., noun 

phrases, verbal phrases), it looks for other types of dependencies 

between words. 
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3. The Assertion component identifies the contextual properties of an 

extracted concept (e.g., polarity, uncertainty).  

Besides performing clinical IE at the general level, cTAKES allows 

addressing more specific tasks: 

4. The Drug NER component identifies drug mentions and related 

attributes, such as dosage and format. The Side Effect component 

subsequently extracts asserted side effects, or sentences that 

possibly contain causative drugs and their side effects. 

5. The PAD Term Spotter processes radiology notes to extract 

information specifically pertaining to lower limb Peripheral Artery 

Disease (PAD). 

6. The Clinical Documents Pipeline processes clinical documents by 

combining all the components that are available in cTAKES. Once 

the execution of this pipeline is terminated, a few additional 

processing steps can be performed. In particular, the Smoking 

Status component can be used to determine patients smoking 

habits according to five possible “smoking” categories (past 

smoker, current smoker, smoker, non-smoker, and unknown). The 

Constituency Parser component instead identifies subphrases in the 

text, such as noun phrases and verb phrases. Once the constituency 

parse tree is obtained, two final steps can be performed: 

Coreference Resolution, which finds all the expressions that refer 

to the same entity, and Relation Extraction, which annotates 

predefined relations between different annotations.   

As an interesting feature, cTAKES includes a temporal module that 

extracts events, temporal expressions, and their relations. The Event 

annotator uses a Begin-Inside-Outside (BIO) format to extract clinically 

relevant events. The temporal expressions annotator exploits various 

machine learning methods (e.g., CRFs, SVMs) to identify expressions that 

denote dates, times, frequencies and durations. For every event, an SVM-

based annotator computes the temporal relation between the event itself 

and the document creation time. Finally, different SVM approaches are 

used for detecting relations between pair of entities (Event-TIMEX or 

Event-Event) occurring in the same sentence. 

 

Thanks to the availability of several modules and the possibility to easily 

add extensions, cTAKES has been widely adopted by the clinical NLP 

community. In some cases, it has been used to extract the features needed 

for subsequent machine learning analyses [80,81]. Currently, the system is 

used by different hospitals (e.g., Boston Children’s Hospital, Mayo Clinic) 

and academic institutions (e.g., Massachusetts Institute of Technology, 

University of Pittsburgh). 



Background 

 

 26 

2.3. Related work on the Italian language 

Despite the increasing research activity in clinical and temporal IE, 

advances in languages other than English are still limited, mainly due to the 

lack of shared resources and tools. This is true also for the Italian language, 

which is the focus of this thesis. In this section, the main challenges and the 

relevant literature related to IE from clinical text written in Italian are 

presented. 

2.3.1. Main challenges 

To process clinical narratives in the Italian language, one main issue is 

represented by the substantial lack of shared annotated corpora. The 

availability of a corpus annotated with the information of interest is 

essential for two reasons: not only it is needed for evaluation purposes, but 

it also enables the development of supervised machine learning approaches.  

As far as it is known, only two annotated corpora were developed for the 

extraction of clinical concepts in the Italian language, as it will be 

described in Section 2.3.2. However, these corpora are not publicly 

available and cannot be reused for further exploration of supervised 

techniques. 

A second issue specific to the Italian language concerns the availability 

of shared medical dictionaries and terminologies. Although there are a few 

medical resources that can be exploited for clinical IE, their coverage is 

much smaller in comparison to their English counterpart. As an emblematic 

example, while the English version of the UMLS Metathesaurus currently 

gathers 131 sources, the Italian version of the same vocabulary only 

includes 6 different dictionaries. 

As a final issue, despite the availability of preprocessing tools for the 

Italian language, the underlying models were mostly developed on general 

domain corpora. However, with respect to the general domain text, clinical 

narratives present additional challenges, such as the abundancy of 

abbreviations and acronyms, the presence of ungrammatical phrases, and 

the use of institution-specific jargon. Therefore, using preprocessing tools 

developed on a general domain corpus may not perform equally well when 

applied to clinical narratives. 

2.3.2. Relevant literature 

Unsupervised approaches for clinical IE. To assess the usability of IE 

tools that do not require annotated data, Chiaramello et al. applied the 

MetaMap system to clinical text written in Italian [82]. The main goal of 

the study was to determine whether a linguistic tool developed to process 

English text could be suitable to extract medical concepts in the Italian 

language. To adapt MetaMap for this purpose, the Italian version of the 
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UMLS Metathesaurus was used as source for candidate retrieval. For all 

other steps, the original English modules were exploited. To allow a 

systematic evaluation of the adapted system, the authors annotated 3462 

unstructured sentences, taken from 100 clinical notes written in Italian, 

with mentions of medical concepts (ITA-TXT corpus). In the manual 

annotation process, each identified concept was assigned the corresponding 

CUI in the UMLS Metathesaurus. For comparison purposes, the authors 

also created an English corpus by means of automatic translation, and 

annotated this translated corpus as well (EN-TXT corpus). To compare the 

performance of the system on the two languages, the ITA-TXT corpus was 

processed with the Italian MetaMap system, while the EN-TXT corpus was 

processed with the original English system. The experiments conducted in 

this work led to two main results. First, by manually identifying terms and 

CUIs in the two corpora, the authors found that the Italian UMLS 

Metathesaurus has a smaller coverage in comparison to the English one: 

while 99% of concepts were found in the English UMLS Metathesaurus, 

only 91% of concepts were included in its Italian version. As a second 

interesting result, the authors obtained a better performance by running the 

original English MetaMap on the automatically translated corpus (EN-

TXT) than by using the adapted system on the ITA-TXT corpus. In 

particular, the lack of the “variant generation step” for Italian was 

identified as the main source of annotation failures on the ITA-TXT 

dataset. 

Another work not relying on annotated data was proposed by Alicante et 

al. [83]. The developed system extracts information from clinical records 

written in Italian by using only unsupervised methods. It includes two main 

components: first, relevant entities are extracted by using standard 

preprocessing tools and external dictionaries; then, unsupervised clustering 

methods are exploited to discover relations among the entities extracted 

from the whole dataset. As a first step, the input texts are preprocessed by 

the TextPro tool, which identifies sentences and tokens, including their 

POS tags and lemmatized forms. Then, entity extraction is performed 

through a pattern matching approach: predefined POS sequences are 

considered as candidates for dictionary lookup, which is then performed on 

the UMLS Metathesaurus and on an Italian list of pharmaceutical terms. 

Regarding the relation extraction step, the underlying hypothesis is that a 

potential relation could exists between all entity pairs occurring in the same 

sentence. These pairs are thus represented by ad hoc feature vectors, and 

clustering techniques are used to group similar pairs. To compute the 

feature vector for a certain entity pair, the features associated to the two 

involved entities are concatenated together: the entity type, a predefined list 

of n-grams (sequences of 1, 2 or 3 words) where at least one word belongs 

to the entity, and barrier features, which use POS tags to capture 

information about syntactic patterns inside the sentence. In the clustering 

phase, entity pairs belonging to the same clusters are assumed to have the 

same type of relation, while cluster having a small size are considered as 

representative for “non-relations”. The proposed methods were used to 
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process 989 medical records written in Italian. As a qualitative assessment 

of the obtained results, it was noticed that the system identified clusters 

corresponding to possible relations, which were automatically labelled by 

using the most significant features. 

 

Supervised approaches for clinical IE. In the Italian clinical NLP 

community, few works have dealt with corpora annotation for developing 

supervised IE techniques. In the work by Esuli et al., 500 mammography 

reports were annotated by two different annotators with segments 

belonging to one of 9 classes (e.g., mammography standardized code, 

technical info) [84]. Annotated segments not necessarily coincided with 

entire sentences (they could also cross sentence boundaries) and had an 

average length of 17.33 words. As a result of the annotation process, three 

corpora were created: two datasets were annotated by a single annotator, 

and the third was annotated by both. These corpora were then used to 

explore two IE approaches based on CRFs. The first approach consisted in 

a two-stage method using two taggers generated via a linear-chain CRFs 

learner [45]. The second approach was an ensemble method that combined 

standard LC-CRFs and the proposed two-stage method. As an interesting 

point, positional features were used to account for the position of a token 

inside the text. As a main result, the authors found that combining the two-

stage method with standard linear-chain CRFs outperformed the traditional 

single-stage CRFs system. 

In another work related to corpora annotation and supervised machine 

learning, Attardi et al. addressed the problem of extracting information 

from large scale records written in Italian [85,86]. To enable the 

development of supervised approaches, the authors created a corpus of 

10000 sentences taken from a collection of 23695 medical reports written 

in Italian. Sentences were annotated with six different mentions: active 

ingredients, body parts, signs or symptoms, diseases or syndromes, drugs, 

and treatments [85]. In this case, the corpus was created by using automatic 

tools and manually correcting the obtained annotations. To identify 

measurements as well, a rule-based approach was used to create 

corresponding annotations in a semi-automatic way [86]. Besides 

recognizing relevant entities, the authors extracted two other kinds of 

information: relations between measurements and entities, and the presence 

of negations. To carry out the NER tasks, a customizable statistical 

sequence labeler was exploited. In particular, three different classifiers 

were built: one for body parts and treatments, one for other medical 

entities, and one for measurements. In the performed experiments, the best 

results were obtained by using a support vector classifier (with L2 

regularization term). To perform relation extraction and identify negations, 

a subset of the corpus (10%) was annotated with this additional 

information. For both these tasks, features involving the parse trees of 

sentences were used, and suitable SVM-based classifiers were developed. 

As stated by the authors, although the obtained results were promising, a 

corpus extension would be needed to further assess the performance. 
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As a topic not directly related to the extraction of medical concepts, 

Gerevini et al. recently worked on the automatic classification of Italian 

radiological reports following a multilevel schema [87]. To develop 

supervised machine learning techniques, they manually annotated a corpus 

of 346 reports using five levels of classification (exam type, test result, 

lesion neoplastic nature, lesion site, and lesion type). The annotated corpus 

was used to run experiments with different learning algorithms (Naïve 

Bayes, SVMs, decision trees, random forests, and neural networks), leading 

to encouraging results. 

 

In Table 2.1, the methodologies that have been proposed for processing 

clinical text in the Italian language are summarized. It is important to point 

out that, among the revised papers, only one work has dealt with the 

extraction of relations between concepts and related attributes (e.g., 

measurements) [86]. 

Table 2.1: Relevant literature on clinical text processing for the Italian 

language. NB: naïve bayes; CRF: conditional random field; SVM: support 

vector machine; DT: decision tree; RF: random forest; NN: neural network; 

Paper Task Method Dataset 

Chiaramello 

et al. [82] 
Clinical IE Rule-based (MetaMap 

system) 
3462 sentences 

Alicante et al. 

[83] 
Clinical IE and 

entity clustering 
Rule-based and unsupervised 

ML (clustering) 
989 medical 

records 
Esuli et al. 

[84] 
Clinical IE Supervised ML (CRFs) 500 medical 

reports 
Attardi et al. 

[85,86] 
Clinical IE and 

relation extraction 
Supervised ML (SVMs) 10000 

sentences 
Gerevini et 

al.[87] 
Text classification Supervised ML (NB, SVMs, 

DT, RF, NN) 
346 reports 

 

Temporal information extraction. As regards temporal IE in the Italian 

language, few challenges have been organized, all involving texts 

belonging to the general domain. The 2007 EVALITA task on temporal IE 

(“Temporal Expression Recognition and Normalization”) required 

participants to recognize and normalize the temporal expressions included 

in 525 newspaper articles written in Italian [88]. A multilingual task within 

the SemEval 2010 conference (TempEval-2 [89]) involved temporal IE 

from newspaper articles written in Italian. The 2014 EVALITA task named 

“EValuation of Events aNd Temporal Information” extended the 2007 

temporal IE task to the extraction of events and temporal relations [90]. 

This competition also provided the chance to test the Ita-TimeBank 

resource, a corpus of Italian texts annotated according to the It-TimeML 

guidelines (an adaptation of TimeML to the Italian language) [91].  

The organization of competitions for the Italian language has greatly 

supported the development of systems for temporal IE in the general 
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domain. For example, Manfredi et al. adapted the HeidelTime system to the 

analysis of the Italian language by tackling the recognition of empty tags 

(i.e., temporal expressions without an explicit correspondence in the text, 

but that can be inferred from other expressions)  and  by  tuning 

HeidelTime’s  Italian  resources [92]. As another example, Mirza and 

Minard created an end-to-end system for temporal IE, mostly based on 

supervised machine learning approaches [93]. In the developed system, 

SVM classifiers were used for TIMEX recognition, event detection and 

classification, and temporal relation identification and classification. For 

normalizing each extracted TIMEX to a standard value, the TimeNorm tool 

was adapted to the Italian language. 

Despite the increasing interest in applying temporal NLP techniques to 

Italian texts, most efforts have targeted the general domain. As far as it is 

known, only one work has focused on the development of temporally 

annotated resources for the biomedical domain [94]. However, the 

developed corpus is not currently available. 

2.4. Clinical summarization approaches 

Besides performing clinical and temporal IE on single patient documents, 

summarizing the individual information extracted from multiple sources 

can effectively enhance the process of reviewing longitudinal data [5]. 

The need for patient record summarization has been known for a long 

time [95]. Several tools for the automatic summarization of patient records 

have been proposed over the years [96]. In many cases, structured 

electronic health records are considered [97,98]. Nevertheless, a few tools 

deal with unstructured data as well [99–101]. In this section, a brief 

description of such tools is reported. 

CliniViewer is one of the first examples of summaries created using 

NLP [99]. In this system, multiple patient reports are first processed by 

using MedLEE, that creates structured XML outputs containing the 

extracted information. These outputs are then modified and merged by a 

Tree Generator, resulting into two different XML trees: a conceptual tree, 

that provides a summarized view of all the extracted concepts, and a report 

tree, that includes the original reports. These two trees can be visualized 

through a Tree Viewer interface, and the communication between them is 

obtained through a Communicator component. When a node is selected in 

one tree, the corresponding information on the other tree is highlighted. 

Thanks to this visualization strategy, it is possible to navigate the extracted 

information in a straightforward way. 

Another example for NLP-based clinical summarization is given by 

Bashyam et al. [100]. The developed system extracts, structures, and 

presents the information included in multiple patient records. As a first 

step, an IE module uses NLP techniques to identify problems and findings, 

along with the associated properties and relationships. Then, a second 

module characterizes this extracted information along four dimensions: 
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time, space, existence, and causality. Finally, the obtained categorizations 

are used by a third module that displays the information in an integrated 

format. In this format, findings are organized into a problem list, that can 

be sorted based on anatomic location. Elements from the list can be 

selected to populate a timeline grid, where cells are color coded to show 

existential information at a certain time. By clicking on a specific cell, 

finally, it is possible to access available reports and images.  

As a final, recent example, HARVEST is a longitudinal patient record 

summarizer that extracts content from patient notes and aggregates 

information from multiple care settings [101]. The system consists of two 

online processing modules: a distributed HL7 message and visit parsing 

module, and a web-based patient-specific visualization module. In the 

content extraction process, clinical notes are processed by extracting 

document structure elements (e.g., sections, sentences) and mentions of 

problems. In the visualization phase, the summarizer retrieves the data 

available for a single patient, and displays the extracted information on 

three different panels: a timeline, a problem cloud, and a note display 

panel. For each visit, the timeline includes a mark that indicates the visit 

type (e.g., clinic, inpatient), and an information bubble providing additional 

meta-information (e.g., visit date, attending physician, primary billing 

code). By using a slider, the user can select a certain time range on the 

timeline: the concepts and the notes available for this time range are used 

to populate the problem cloud and the note display panel, respectively. 

HARVEST was deployed at the New York Presbyterian Hospital in 

September 2013, and has been used by physicians as a support tool for 

reviewing patient data. 
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Chapter 3 

3 Materials and methods 

This chapter describes the methodological approaches proposed in this 

research activity, providing details on their implementation. Section 3.1 

presents the main corpus considered for the development of IE techniques. 

Section 3.2 illustrates the manual annotation that was conducted on a 

subset of this corpus. Section 3.3 outlines the complete IE pipeline 

developed as part of this work. Section 3.4 describes the methodologies 

proposed for the extraction of clinical concepts (i.e., the events), while 

Section 3.5 presents an ontology-driven approach for the identification of 

their attributes. Section 3.6 illustrates the methods used for temporal 

expression identification and normalization. Section 3.7 discusses the 

solution proposed for identifying temporal links. In addition, it presents the 

approach used for summarizing the information extracted from multiple 

reports of the same patient. Finally, Section 3.8 describes the evaluation 

conducted for each IE step and for the timeline reconstruction task. 

3.1. Main dataset 

As a main clinical case to support the development of NLP techniques for 

the Italian language, a set of clinical texts belonging to the molecular 

cardiology domain was considered. 

The documents used in this research activity were provided by the 

Molecular Cardiology Laboratories of the ICS Maugeri hospital in Pavia, 

Italy. This corpus is made up of medical reports belonging to patients with 

inherited arrhythmias, such as Long QT Syndrome and Brugada Syndrome. 

To overcome any privacy issues, all the considered reports are anonymized, 

i.e., they do not contain any sensitive patient data (e.g., names, addresses, 

telephone numbers). In Figure 3.1, as a descriptive statistic, the distribution 

of the most frequent diseases is reported. 
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Figure 3.1: Distribution of diseases in the considered corpus. 

To carry out this research activity, a set of 5432 reports was used. This 

dataset, which will be referred to as CARDIO dataset, was obtained after 

cleaning the original corpus to remove a few duplicate instances and those 

reports that did not include a specific date. 

Reports in the CARDIO dataset cover a time span of 6 years (2010-

2015), and each report contains the visit date. Since patients are followed 

over time, in several cases there is more than one report referred to the 

same patient. 

Although the considered documents are not structured in a fixed way, 

most are organized in sections, including an anamnestic fitting, the family 

history, information on performed tests, and a conclusion with possible 

drug prescriptions. The anamnestic fitting provides a summary of the 

patient’s clinical history, including past diagnostic procedures, found 

problems, and prescribed treatments. The family history section describes 

the relevant events involving the patient’s relatives, such as cardiologic 

diseases and sudden deaths. The sections referring to diagnostic procedures 

(e.g., ECG section) provide a detailed description of the performed tests, 

including their results. In the conclusions section, the reached diagnostic 

considerations are reported, together with possible drug prescriptions and 

information on future follow-up visits.   

In Figure 3.2, an example of one medical report in the CARDIO dataset 

is shown. The visit date, i.e., the document creation time, is written in the 

first line (Date: Pavia, 22 February 2014). In this example, the document 

is composed of the following 7 sections: anamnestic fitting, family history, 

physical examination, electrocardiogram test (ECG) results, effort stress 

test results, Holter ECG test (a 24-hour ECG test) results, and conclusions. 

As an example of one section describing a test, the ECG section provides 

the following relevant data: type of rhythm (sinus rhythm), measured heart 

rate (57 bpm), PR interval length (156 msec), QRS interval length (106 

msec), QRS axis value (40°), QT interval length (430 msec), and corrected 

QT interval length (425 msec). The report conclusions contain one drug 

prescription, including the drug name with its dosage and format: 

“CORGARD 80 mg (nadolol): 1 tablet in the morning” . 
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Figure 3.2: Example of one medical report in the CARDIO dataset. The 

document creation time and the 7 sections composing the report are 

highlighted. 

At the moment, a selection of the data written in the textual reports is 

manually entered in a hospital system, named Transatlantic Registry of 

Inherited Arrhythmogenic Diseases (TRIAD) [102]. This system stores data 

on diagnoses, tests, prescriptions, and other relevant events in the field of 

genetic mutations and inherited arrhythmias. 

3.2. Corpus annotation 

As explained in Section 2.1.1, annotating a corpus with the information of 

interest is one important step to enable the development and the evaluation 

of an IE system. In the case of supervised machine learning, in fact, the 

availability of annotated data is essential for both training and testing the 

classification models. In this work, a subset of 75 documents were 

randomly selected from the CARDIO dataset, and manually annotated with 

the information of interest. 

 

To annotate documents in an effective way, the first step is to formalize 

the IE problem, identifying the information to be automatically extracted. 

Once the extraction task is well defined, it is a good practice to define clear 

and exhaustive rules that serve as a guide for the annotation process. In this 

section, the manual annotation conducted as part of this work is described. 

The developed annotation guidelines are reported in Appendix 2. 
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The aim of this research is to ultimately build a system that retrieves and 

summarizes the events included in multiple unstructured reports, taking 

into account also the available temporal details. To this end, the annotation 

strategy was developed based on previous work in the field of temporal IE 

applied to clinical narratives. For defining the entities to be annotated, the 

THYME annotation guidelines were considered [11]. In particular, the 

definitions of the Event and the TIMEX tags were reused to define relevant 

clinical concepts and temporal expressions, respectively. With respect to 

temporal relations, identifying these links inside the text is regarded as a 

harder task than entity annotation: the set of all possible relations in a 

document is essentially quadratic to the number of events and time 

expressions, which makes it nearly impossible to annotate all temporal 

links by human means alone [103]. In the scope of this work, to avoid 

introducing a layer of complexity in the task definition, it was therefore 

decided not to annotate temporal relations. 

 

Annotations were performed by exploiting Anafora, a web-based tool 

that enables multiple annotators to access documents remotely [104]. 

Anafora provides simple representations of the data used in the annotation 

process: annotation schemas (consisting of tag definitions) and performed 

annotations are stored as human-readable XML files. In addition, plaintext 

files are saved alongside annotation data. Thanks to these features, Anafora 

allows to easily administrate datasets and annotators, enabling the 

development of annotated corpora in a controlled way. 

In Figure 3.3, the Anafora annotation interface is shown. In the proposed 

annotation schema, event annotations are marked in blue, while temporal 

expressions are represented in yellow. To annotate a new entity, it is 

necessary to select its boundaries inside the text. Subsequently, the related 

properties can be specified in the PROPERTY form. 

 

Figure 3.3: Anafora annotation interface. 

3.2.1. Event annotation 

As an initial step to determine the information of interest in the CARDIO 

dataset, a small set of 20 reports was selected to be manually reviewed and 

discussed with clinicians. In this phase, the relevant events to be extracted 

were identified, and classified into four semantic types: 
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• Problems, including diseases, disorders, and relevant health-

related issues. As shown in Figure 3.1, the Long QT Syndrome and 

the Brugada Syndrome are the most prevalent diseases in the 

CARDIO dataset. 

• Tests, referring to diagnostic procedures. In the molecular 

cardiology unit, the most commonly performed tests are the ECG, 

the Holter ECG, and the effort stress test. 

• Treatments, mostly related to medication data. For cardiology 

patients, prescribed therapies are generally beta-blockers and/or 

anti-arrhythmic drugs. 

• Occurrences, i.e., events that play a role in the patient’s clinical 

history but are not included in the first three groups (e.g., 

“admission”, “discharge”). 

To annotate Problems, Tests and Treatments, the UMLS Metathesaurus 

was used as a guide [105]: the UMLS entries belonging to one of these 3 

defined semantic types were considered as the main events to be annotated. 

For instance, expressions that could be traced back in the UMLS ontology 

to the “Pharmacologic Substance” or to the “Therapeutic or Preventive 

Procedure” semantic types were annotated as Treatments. As regards 

occurrences, a list of relevant events to be searched for was manually 

created. For this group only, also single verbs were regarded as candidates 

for event annotation (e.g., “discharged”). As an important remark, 

overlapping events, such as “Test with Flecainide” (Test) and “Flecainide” 

(Treatment), were annotated in a few specific cases, i.e., when it was 

important to maintain information about both events. 

For each identified concept, both its boundaries and the selected 

semantic type were annotated. From the THYME annotation guidelines, 

three additional properties were captured: 

• The DocTimeRel, which is the relation of the event to the 

document creation time. This property encompasses the temporal 

aspects of the event and has four possible values: OVERLAP, 

BEFORE, BEFORE/OVERLAP, or AFTER.  

• The polarity of the event, which can be either POSITIVE or 

NEGATIVE. Events are usually regarded as negative when they 

did not happen, or were found not to be true (e.g., “the patient did 

not experience syncopal episodes”). 

• The contextual modality of the event, which can take one of four 

values: ACTUAL, HEDGED, HYPOTHETICAL, or GENERIC. 

Actual events are those having already happened or being 

scheduled. Hedged events are concepts mentioned with any sort of 

hedging (e.g., “Suspicious for X”). Hypothetical events are those 

that might happen in the future, without certainty (e.g., “If X 

happens, then…”). Generic events are concepts mentioned in a 

general sense and should not appear on the patient’s clinical 

timeline (e.g., “In all patients with X…”). 
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As events in the CARDIO dataset are often referred to family members 

(e.g., arrhythmias can be inherited diseases), the experiencer of each event 

was annotated, too. As proposed by Harkema et al., this property can take 

two possible values: PATIENT, when the event is experienced by the 

patient himself, or OTHER, when the event is experienced by any other 

individual [106]. 

Figure 3.4 shows an example of the described annotations on a portion 

of text taken from the CARDIO dataset. In this case, three events are 

highlighted: sudden death, which happened to the patient’s brother in the 

past (“before” DocTimeRel and “other” experiencer), syncopes, referring to 

the patient’s previous history but in a negated way since he did not suffer 

from this problem (“before” DocTimeRel and “negative” polarity), and 

ECG test, that was performed on the patient during the current visit 

(“actual” DocTimeRel). 

 

Figure 3.4: Example of Event annotations. 

3.2.2. Temporal expression annotation 

To address the annotation of temporal expressions for the Italian language, 

the IT-TimeML guidelines were used for defining the TIMEXes and the 

properties to be annotated [91]. 

As a first step in the guideline adaptation process, a small set of 20 

reports was selected for manual review, in a similar way as for the Event 

extraction task. Then, the IT-TimeML annotation rules were carefully read, 

with the aim to determine the definitions (i.e., entities and properties) that 

were most useful to capture the temporal information included in the 

considered documents. Afterwards, a few domain-specific rules were 

manually developed, dealing with cases not included in the original 

guidelines. As an important remark, this high-level methodology, though 
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developed on the cardiology use case, could be easily reused to annotate 

other corpora including temporal information. 

 

In the IT-TimeML guidelines, a TIMEX entity can be defined as a 

reference to time. Examples might be phrases like “the 24 th of September”, 

“tomorrow”, “one month”, and “twice a day”. To adapt the guidelines to 

the CARDIO dataset, the following TIMEX properties were considered: 

• The type property, that classifies the temporal expression into one 

of four types: DATE, TIME, DURATION, or SET. Dates are 

temporal expressions describing calendar units (e.g., “1985”, 

“tomorrow”). Times are used to refer to certain times of the day, 

even if in an indefinite way (e.g., “4 pm”, “Saturday night”).  

Durations denote periods of time not pointing to any specific area 

in the temporal axis. (e.g., “three days”). Sets are used to describe 

reoccurring temporal expressions (e.g., “twice a day”). 

• The value property, that assigns to the temporal expression a 

normalized value representing a calendar date (e.g., “2015-06-

04”), a clock time (e.g., “2015-06-04T08.45”), or a special format 

for durations (e.g., “P1D” for a duration of one day). 

• The mod property (optional), that is used to signal the presence of 

certain modifiers. In this research activity, this property was used 

only to denote approximate temporal expressions (e.g., “about one 

year”). 

• The quant and the freq properties (optional), that are used in 

conjunction with temporal expressions classified with type SET. 

Quant is a piece of text representing a quantifier (e.g., “every”), 

whereas freq is expressed as an integer and a time granularity (e.g., 

“2X” for “twice a day”). 

As previously mentioned, considering that clinical texts might contain 

additional temporal expressions with respect to the general domain, a few 

adaptations were required. In particular, specific rules were written for the 

annotation of drug prescription times and frequencies (e.g., the latin word 

“die” is used to express the “daily” concept). 

In Figure 3.5, an example of the TIMEX annotations is depicted. The 

reported textual portion includes three temporal expressions: the visit date, 

representing the document creation time (“21 October 2013”), a SET 

temporal expression, related to an event that occurs every year 

(“annually”), and another relevant date (“1997”), for which only the year is 

specified. For these three TIMEXes, the optional properties mod, quant, 

and freq do not take specific values. 
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Figure 3.5: Example of TIMEX annotations. 

3.3. Information extraction pipeline 

As the main contribution of this research activity, a pipeline for the 

analysis of Italian clinical text was designed and implemented. For each 

step in the pipeline, one or more annotators were developed using the 

UIMA architecture [71]. 

In Figure 3.6, the implemented IE modules are depicted. 

 

Figure 3.6: Information extraction pipeline. 



Materials and methods 

 

 40 

First, the TextPro tool is exploited to carry out standard preprocessing 

tasks [75]. In particular, text tokenization, sentence splitting, 

lemmatization, and POS tagging are performed. Then, preprocessed texts 

are given as inputs to the pipeline for clinical and temporal information 

extraction. As an important remark, the document creation time is 

identified by using a regular expression representing a date (e.g., 

“\d\d\.\d\d\.\d\d\d\d”). In particular, an external configuration file can be 

used to specify whether this date should be found at the beginning or at the 

end of the documents. 

 

The first step in the pipeline involves the identification of sections. This  

is done by using an optional configuration file containing possible names 

for sections, such as “raccordo anamnestico” (anamnestic fitting). Starting 

from these names, a Section Annotator constructs a simple section pattern, 

to be searched for in the document. Essentially, this pattern consists of one 

section name followed by one of four predefined characters: colon, new 

line, full stop, or comma. If the configuration file is not provided to the 

Section Annotator, no sections are identified in the text.  

The second IE step regards the identification of relevant events and their 

properties. To address event extraction, two different approaches were 

developed: the first approach is based on dictionary lookup (Event 

Annotator and cTAKES Dictionary Lookup Annotator), while the second 

one relies on a neural network model (Supervised Event Annotator). In 

these approaches, event semantic types are extracted alongside with the 

events themselves. The polarity, the modality, and the experiencer 

properties are then determined by means of an algorithm named ConText 

[106]. To classify the DocTimeRel of each event, a supervised method 

based on SVMs was developed (DocTimeRel Annotator). 

After events are extracted, the third IE step deals with the identification 

of additional attributes that can be found in the text. Examples of such 

attributes are given by drug regimens and test results. To define these 

attributes and their relationships to relevant events, a domain ontology was 

designed. To link each event to the corresponding attributes in the text, a 

rule-based approach was implemented (Attribute Annotator), using the 

developed ontology. 

Moving to temporal IE, the fourth step in the pipeline involves the 

identification and the normalization of temporal expressions. For extracting 

TIMEXes from the text, the HeidelTime system [32] was exploited, after 

performing an extension to the biomedical domain (HeidelTime 

Annotator). On the other hand, to normalize each temporal expression to a 

standardized format, both the HeidelTime and the TimeNorm [33] tools 

were explored (HeidelTime Annotator and TimeNorm Annotator). 

Once relevant events and temporal expressions have been identified, one 

last step is required, i.e., the extraction of temporal relations. As previously 

mentioned, extracting temporal links is a challenging task, which strongly 

depends on the results of the previous extraction steps. In this research 

activity, it was decided to limit the extent of this task by identifying only 
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Event-TIMEX intra-sentence links (i.e., relations between an event and a 

TIMEX occurring in the same sentence). To extract these links, a few rules 

were manually engineered (TLINK Annotator). 

Table 3.1 summarizes the methodological approaches and the UIMA 

Annotators developed for each pipeline step. In the next sections, each 

approach will be described in detail. 

Table 3.1: Developed UIMA IE pipeline. 

Step Task Methods UIMA Annotators 

1 
Section 

Extraction 
Rule-based approach Section Annotator 

2 
Event 

Extraction 

Dictionary lookup 

Neural network classifier 

SVM classifier 

Event Annotator 

cTAKES Dictionary Lookup Annotator 

Supervised Event Annotator 

DocTimeRel Annotator 

3 
Attribute 

Extraction 
Rule-based approach 

(ontology-driven) 
Attribute Annotator 

4 
TIMEX 

Extraction 
Rule-based approach 

HeidelTime Annotator 

TimeNorm Annotator 

5 
TLINK 

Extraction 
Rule-based approach TLINK Annotator 

 

To allow developing and evaluating some of these IE steps, it was 

decided to split the annotated dataset into training and test sets, made up of 

60 (80%) and 15 (20%) documents, respectively. As it will be explained in 

the next sections, the training set was used to train supervised algorithms 

and to manually refine rules. The test set was used for evaluation purposes. 

3.4. Event extraction 

For extracting the text spans denoting relevant events, two different 

approaches were developed and compared: a knowledge-based approach 

that uses a dictionary lookup of a controlled vocabulary, which does not 

require annotated data, and a supervised approach based on neural 

networks. 

3.4.1. Dictionary lookup approach 

The dictionary lookup approach is a simple, yet useful solution for 

extracting events in an unsupervised way. In this approach, concepts 

included in specific dictionaries are searched for in the texts. In an effort to 

leverage the availability of shared terminologies, the Italian version of 
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UMLS and the FederFarma Italian dictionary of drugs were used [107]. 

The Italian UMLS Metathesaurus includes 5 knowledge sources (ICPC, 

LOINC, MedDRA, MeSH, MTHMST) and about 141700 distinct concepts. 

The FederFarma dictionary contains about 6500 drug names and 4100 

active principles. To better account for all the concepts mentioned in the 

reports, two additional domain-specific vocabularies were manually 

developed, containing 38 procedures (Tests), and 30 general events of 

interest (Occurrences), respectively. These vocabularies are reported in 

Appendix 1. To expand the list of concepts to be searched for, an additional 

dictionary of acronyms was created, including 29 expressions that are 

commonly used in the CARDIO dataset. 

To extract the terms included in the FederFarma dictionary and the 

hand-crafted lexicons, an Event Annotator was developed. This annotator 

receives the external dictionaries as inputs, and looks up the available terms 

inside the text. To allow identifying both singular and plural forms, the 

search is performed on TextPro normalized tokens. As an important aspect, 

it is possible to provide different input dictionaries to the pipeline through a 

simple configuration file (e.g., to process documents belonging to other 

clinical domains). 

To identify UMLS concepts, the cTAKES Dictionary Lookup Annotator 

was exploited [65]. This cTAKES component is available in two versions: 

the original annotator, essentially looking for dictionary matches inside the 

text, and a fast annotator, which improves the search time thanks to the use 

of a rare word index [108]. In the developed IE pipeline, this second 

annotator was employed, targeting the search to the UMLS semantic types 

representing problems (Sign or Symptom, Injury or Poisoning, Pathologic 

Function, Disease or Syndrome, Mental or Behavioral Dysfunction, 

Neoplastic Process, Cell or Molecular Dysfunction, and Experimental 

Model of Disease), diagnostic procedures (Diagnostic Procedure), and 

treatments (Pharmacologic Substance, Antibiotic, and Therapeutic or 

Preventive Procedure). Although a detailed description of rare word 

indexing is not currently available in the cTAKES documentation, this 

annotation process substantially requires six steps: 

1. Get lookup windows, i.e., strings representing the inputs to the 

dictionary lookup system; 

2. For each lookup window, get lookup tokens, i.e., candidate tokens 

to be searched for in the dictionary;  

3. For each lookup token, get matches in a dictionary index; 

4. For each token match, check lookup window for a full text match; 

5. For each full text match, create a corresponding concept; 

6. Store extracted concepts as UIMA annotations; 

As mentioned earlier, the Italian UMLS Metathesaurus was used as the 

dictionary source for the annotation process. To be used inside the 

cTAKES annotator, it was converted to a suitable dictionary index, 

required by the annotator itself. To integrate the resulting annotator within 



Materials and methods 

 

 43 

the IE pipeline, TextPro sentences were used as lookup windows, while 

TextPro normalized tokens were used as lookup tokens. In this way, the 

identification of both singular and plural concepts was enabled. 

3.4.2. Neural network classifier 

As explained in Section 2.1.4.1, RNN models represent a good strategy for 

solving sequence labelling problems like entity recognition: they can 

process sequential information through cyclical connections [109]. 

Moreover, RNN models do not rely on manually engineered features, and 

are able to learn representations that are useful to describe input-output 

relations inside the dataset. For these reasons, in this research activity, the 

RNN architecture was investigated and applied to the task of event 

extraction. To develop the supervised RNN classifier, the annotated portion 

of the CARDIO dataset was exploited. 

 

The classification model. To treat the event extraction task as a sequence 

labelling problem, the annotated corpus was converted to the BIO format, 

classifying each token as belonging to the span of one event (Beginning or 

Inside) or not (Outside). In the CARDIO dataset, relevant events are those 

belonging to one of four semantic types. To take this aspect into account, 

the information on semantic types was included in the token labels, using 

the format “BIO label – semantic type”. Using this notation, the sentence 

“we performed an ECG test” would be translated to the sequence “O O O 

B-TEST I-TEST”. Since the standard BIO format does not allow classifying 

a single token into multiple entities, for overlapping events such as “Test 

with Flecainide” and “Flecainide” only the longest event was kept, 

including its semantic type. In this way, the aim was to build a classifier 

that recognizes the longest, and possibly the most specific event. 

Figure 3.7 shows the proposed methodological approach. The 

classification model takes as inputs the sentences of N tokens identified in 

the preprocessing phase. For each sentence, the output is a sequence of B, 

I, O labels including semantic types. As shown in the figure, the model 

includes an embedding layer and an RNN layer. The embedding layer is 

used to compute the features that serve as input to the RNN. As it will be 

explained in the following, these features are created starting from the 

tokens of a sentence and their POS tags. 
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Figure 3.7: RNN model for supervised event extraction. 

Embedding layer. In the developed model, both the tokens and their POS 

tags are converted into real-valued vectors of fixed size. The choice to 

include POS tags was made to account for the fact that identified BI 

sequences should correspond to specific POS sequences (e.g., noun-

adjective, noun-preposition-noun). For token embeddings, 200-dimensional 

vectors were chosen, while POS embeddings were represented with 40-

dimensional vectors. To define these dimensions, a simple criterion was 

followed: since the number of possible POS tags is smaller than the 

vocabulary size, it was assumed that POS tags could be effectively 

represented by using a smaller number of features with respect to tokens. 

For each input token, the token embedding and the POS embedding are 

concatenated, resulting in a 240-elements vector. Each of these vectors 

represents the n-th input to the RNN layer. 

To pre-train word embeddings, a large corpus was created by merging 

all the available cardiology reports (32300 different words) with 3000 

general domain documents gathered from the web, such as Wikipedia pages 

(103800 different words) [110]. As medical reports often include general 

domain expressions that should not be confounded with domain-specific 

concepts, combining these two sources was considered as useful to extend 

the number of “context examples” for these expressions. For pre-training 

the embeddings on the created corpus, the word2vec implementation of the 

CBOW algorithm was used [111]. The learnt representations were finally 

used to initialize the word embeddings, which were then learned in the 

developed model. 

 

Recurrent neural network layer. In the developed RNN model, at each 

step n = 1…N, the input xn is given by the 240-dimensional embedding 
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representing the n-th token, and the output yn is given by the B, I, O label 

for that token. As shown in Figure 3.7, to compute each output label yn, the 

RNN considers both the current input xn and information coming from the 

processing of previous tokens (i.e., the left context). For standard RNN 

architectures, the extent of previous context that can be actually accessed is 

quite limited, due to an effect known as the vanishing gradient problem 

[112]. The Long Short-Term Memory (LSTM) architecture is a well-known 

RNN model that is able to successfully store and access information over 

long periods of time [113]. To do so, this model maintains a state of the 

performed computations, and relies on specific structures, called gates, to 

learn which information should be let through and which should be 

“forgotten” [51]. In particular, the LSTM architecture includes three gates 

that operate for each new input: a “forget gate”, to control the amount of 

information to be removed from the state, an “input gate”, to decide how 

much of the new information will be stored in the state, and an “output 

gate”, to select the information to be given as the output. In order to 

perform this control action, the gates are characterized by their own 

parameters, which have to be learnt during the network training phase. 

Although LSTM networks provide an effective solution to the vanishing 

gradient problem, they also rely on a rather complex model, containing 

many weights to be learnt. To reduce the model’s complexity, a simpler 

variation of the LSTM architecture has been recently proposed: the Gated 

Recurrent Unit (GRU) [114]. Among other modifications, GRU networks 

rely on only two gating components, combining the forget and the input 

gates into a single gate. Despite using a simpler model, the GRU 

architecture was shown to provide comparable results with respect to 

LSTM [115]. For this reason, the GRU architecture was chosen to 

implement the RNN layer shown in Figure 3.7. For implementing the 

complete network, Keras, an open source library written in Python, was 

exploited [116]. 

 

The developed model was trained on the annotated training set, and the 

resulting classifier was integrated into the IE pipeline. This integration 

required the implementation of a UIMA annotator (Supervised Event 

Annotator) that: (i) runs the RNN classifier on each TextPro sentence, and 

(ii) stores the output B-I sequences (i.e., the identified events) as proper 

UIMA annotations. 

3.4.3. Properties extraction 

In the IE pipeline, the dictionary lookup approach and the RNN classifier 

are used to extract event boundaries together with semantic types. For each 

identified event, four additional properties of interest are determined: the 

DocTimeRel, the polarity, the modality, and the experiencer. For 

identifying the DocTimeRel property, a suitable SVM classifier was 
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developed. The remaining three properties were extracted by exploiting an 

algorithm named ConText [106].   

 

DocTimeRel SVM classifier. The supervised classifier for the 

DocTimeRel property was built by using SVMs [46]. The reason 

underlying this choice is that SVMs have been proven successful on a 

variety of classification task, including information extraction from clinical 

text written in Italian [86]. 

The DocTimeRel classifier developed in this research activity takes as 

input the event itself, and returns its relation to the document creation time 

as the output (OVERLAP, BEFORE, BEFORE/OVERLAP, AFTER). In 

particular, the classifier uses 8 features: the first token of the event, its POS 

tag, the section in which the event is found, the temporal tense of the first 

verb in the sentence, and four features representing the event’s context (the 

2 preceding and the 2 following tokens). To compute the POS tag and the 

verb temporal tense, the annotations produced by TextPro were used. For 

obtaining the event’s section, the available Section annotations were 

exploited. 

The DocTimeRel classifier was implemented through the libsvm library 

[117], training the model on the annotated training set. Based on this 

model, a suitable UIMA Annotator was integrated into the IE pipeline 

(DocTimeRel Annotator). 

 

ConText algorithm. The ConText algorithm was developed to infer the 

status of a clinical concept with regard to three specific properties: 

Negation (affirmed, negated), Temporality (recent, historical, 

hypothetical), and Experiencer (patient, other) [106].  To determine these 

properties, the algorithm uses a few simple lexical clues occurring in the 

context of the concept itself. In particular, it searches for trigger terms 

preceding or following the concept. The underlying idea can be easily 

illustrated for the Negation property: the assumption is that a certain 

concept occurring in the text is affirmed by default, and a departure from 

the default value (i.e., a negated value) can be inferred when a trigger term 

denoting negation occurs “close” to the concept itself. This same idea is 

applied for the Temporality and the Experiencer properties. 

Besides using trigger terms that change the default value of a contextual 

property, ConText also uses pseudo-trigger terms, corresponding to 

expressions that contain trigger terms but should not act as such. For 

example, the term “no increase”, which includes a trigger term for a 

negated concept (“no”), should not prompt a change in the value of the 

polarity property. 

The portion of text to which a trigger applies, i.e., its scope, usually 

includes all the concepts following the trigger term until the end of the 

sentence. However, specific termination terms can signal the end of this 

scope, indicating that the following concepts should not be affected by the 

presence of the trigger term. For example, the term “because” serves as 

termination term for the Negation property. 
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In the ConText system, all the trigger terms, the pseudo-trigger terms, 

and the termination terms for each property are listed in a specific lexicon. 

Although this resource was originally developed for the English language, 

most entries are available in other languages, too [118]. In this research 

activity, the original English lexicon was translated to the Italian language, 

and the algorithm was exploited as it is to identify negations, hedged 

conditions, and the event experiencer. For identifying generic and 

hypothetical events, a set of simple rules were defined by manually looking 

at a few reports in the annotated training set. 

3.5. Attribute extraction 

In the CARDIO medical reports, events are often mentioned together with a 

set of relevant attributes, with specific values. As explained in Section 3.1, 

test mentions (i.e., events with type Test) can be related to a number of 

different results, while drug prescriptions (i.e., events with type Treatment) 

are usually linked to regimen information. In Figure 3.8, an example of text 

containing an ECG event and four of its attributes (rhythm, heart rate, PR 

interval, and atrio-ventricular block) is shown. 

 

Figure 3.8: One sentence of example. One event and four attributes are 

highlighted. 

Given that the same attribute could be in principle related to many 

events (e.g., the heart rate is measured in both ECGs and effort stress tests), 

it is not possible to rely on dictionary lookup alone to extract event-

attribute relations. To capture this kind of complex information, in the 

developed IE pipeline relevant attributes and associated values are 

extracted by exploiting a domain ontology. 
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3.5.1. Ontology-driven annotation 

The ontology developed in this research activity is structured into Event 

and Attribute classes, and each event is linked to the corresponding 

attributes through ontology relations. In addition, the same attribute can be 

connected to multiple events, without the need to redefine the concept. For 

example, the information regarding an ECG test is formalized as an Event 

(“ECGTest”) with many Attributes, representing its results and findings 

(e.g., “AverageHeartRate”, “Rhythm”). Some of these Attributes are shared 

with the Holter tests as well. 

All the concepts in the developed ontology are related to a regular 

expression, which allows searching for concept mentions inside the text. In 

addition, each Attribute is characterized by a set of properties, such as the 

value, which can be numeric or categorical. In the first case, the attribute 

properties also include a unit of measurement, a minimum and a maximum 

value. In the second case, the value is represented by a set of possible 

strings. Figure 3.9 shows an example of the illustrated properties for the 

ECG event and two of its attributes. In particular, the following properties 

are highlighted: 

• For all concepts, the “hasRegularExpression” property is specified, 

i.e., the string pattern denoting an occurrence of the concept itself; 

• The Average Heart Rate Attribute includes the 

“hasUnitOfMeasurement” and “hasNumericValue” properties, 

representing the possible units of measurement and the range of 

possible values for the measured heart rate. 

• The Rhythm Attribute includes the “hasStringValue” property, 

including all the possible string descriptions for the recorded 

rhythm (bradycardia, tachycardia, sinus rhythm). 

From Figure 3.9, it is possible to notice that the only language-

dependent components of the ontology are the properties 

“hasRegularExpression” and “hasStringValue”, which are in this case 

specified for the Italian language. 

 

Figure 3.9: Ontology properties for one event and two of its attributes. 
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From a methodological point of view, the development of an ontology 

that could be used to support the described IE task, required two initial 

steps. On the one hand, it was necessary to manually review a subset of 

medical reports to identify candidate events with related attributes. On the 

other hand, external knowledge on the considered domain was needed, to 

verify which information was important to capture. In general, this external 

knowledge could either be provided by a domain expert, or there might 

already exist a structured database including the relevant information that 

can be found inside the text. In either case, this knowledge source can be 

considered as a gold reference, to be used to define and progressively 

refine the ontology. In the specific case of the CARDIO dataset, an external 

structured database (i.e., TRIAD) was exploited. The process followed to 

define all the ontology classes and their properties will be described in 

detail in Section 4.3.1. 

 

The ontology was developed in Protégé [119]. To facilitate its use in the 

UIMA annotation process, the Protégé OWL content is automatically 

converted to an XML file, which includes events, attributes, and the 

relationships among them, without additional metadata. This file is given as 

input to the UIMA Attribute Annotator. 

The Attribute Annotator matches each event extracted by the pipeline to 

the corresponding concept in the ontology, and uses relations to identify the 

attributes to be searched for. Then, it exploits TextPro, Section, and Event 

annotations to define event-specific lookup windows where the identified 

attributes should be searched for. As a final step, the annotator uses the 

regular expressions included in the ontology to extract all the attributes and 

their values. 

 

Lookup windows definition. The lookup windows for extracting attributes 

and their values are mostly dependent on the semantic types of events. 

Events with type Test are generally described in a detailed way, and the 

related attributes can be scattered across many sentences. Starting from this 

observation, the lookup window for an extracted test is computed by using 

both TextPro sentences and Section Annotations. If no sections are found 

in the document, the paragraph containing the event (i.e., the sequence of 

characters until the next newline) is used as the lookup window. If at least 

one section is found in the document, three situations can occur: 

1. the event is contained in its matching section (e.g., an ECG test 

found in an ECG section); the lookup window is defined as the 

section itself. 

2. the event is not included in any section; the lookup window is 

defined as one paragraph. 

3. the event is included in one section not corresponding to that event 

(e.g., an ECG test found in the Anamnestic Fitting section); to 

avoid considering “section-related” information which does not 
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concern the considered event, the lookup window is defined as one 

sentence. 

In case of lookup windows made up of one paragraph, an additional 

check is performed: if multiple tests are included in the same paragraph, 

the corresponding windows are truncated not to overlap with each other.  

For events with type Treatment, related attributes are generally written 

close to the event itself. For this reason, the lookup window for a given 

drug is defined as the TextPro sentence containing that drug. Also in this 

case, an additional check is performed. If another drug is found in the same 

sentence, the annotator checks whether this second mention represents 

another name for the same drug (i.e., it is included between brackets). If so, 

the second drug is simply ignored, and no lookup window is created for i t. 

In the case the second mention does correspond to a new drug, the lookup 

windows are truncated accordingly. 

In Table 3.2, the criteria illustrated for the definition of lookup windows 

are summarized. 

Table 3.2: Criteria for lookup window definition. For the windows marked 

with *, an additional check on the presence of multiple events is performed.  

Event 

semantic type 
Contextual information Lookup window 

Test No sections available One paragraph* 

Test Included in matching section One section 

Test Not included in any section One paragraph* 

Test Included in non-matching section One sentence 

Treatment NA One sentence* 

 

Attribute extraction. Once the lookup window for one event is defined, 

the extraction of attribute names and values is performed according to the 

properties defined in the ontology (regular expressions and 

numeric/categorical values). 

For events with type Test, both attributes’ names (e.g., “heart rate”) and 

values (e.g., “78 bpm”) are searched for in the text. For most numeric 

attributes, a rigid pattern is used, composed by the attribute name, a 

numeric value, and the unit of measurement. As many numeric attributes 

share the same range of possible values, this “rigid” search is needed to 

avoid linking a certain value to the wrong attribute name. For categorical 

attributes, instead, the search is performed in two steps. First, the attribute 

name is identified by using the regular expression. Then, the attribute value 

is looked for in the whole surrounding sentence. This “relaxed” search can 

be performed on specific numeric attributes, too. 

As a special case for the identification of attribute names, there exist a 

few attributes which are written with similar expressions but refer to 
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different concepts (e.g., basal, stress, and recovery QT interval). In this 

case, disambiguation is achieved by including in the ontology appropriate 

attribute modifiers: whenever an “ambiguous” attribute name is found, the 

related modifier is identified in the context surrounding the concept.  For 

example, if the “QT” string is found in the text, the words “basal”, “stress”, 

and “recovery” (with other possible variants) are searched for in the same 

sentence. To select the specific attribute to be annotated, the closest 

modifier (in terms of tokens) is considered (e.g., BasalQT). 

For events with type Treatment, attribute extraction is performed in a 

simpler way with respect to tests. In particular, only the attributes values 

(e.g., “80 mg”) are searched for in the text, as the corresponding attribute 

names (e.g., “drug dosage”) are not likely to be explicitly written. For 

numeric attributes, therefore, only the number and the unit of measurement 

are considered. In a similar way, only the possible string values of 

categorical attributes are looked for in the text. 

3.5.2. Ontology extensions 

The ontology and the Attribute Annotator were developed to process 

reports written in a specific language (i.e., Italian) and belonging to a 

specific clinical domain (i.e., molecular cardiology). On the one hand, the 

language-dependent components of the ontology are represented by the 

regular expressions referring to attribute names and values. On the other 

hand, knowledge on the clinical domain is needed to define the attributes to 

be extracted, as well as their relationships to events. 

As the ontology-driven approach is the only step in the IE pipeline 

which heavily depends on the reports language and on the specific domain, 

it was decided to verify its extendibility in two different ways. First, the 

possibility to use the proposed approach to process texts written in English 

was investigated. Then, the developed methodology was adapted to a 

different application, involving anatomic pathology reports in the oncology 

domain. In this section, these two different extensions are described. 

 

Multilingual extension. To assess the extendibility of the proposed 

approach to other languages, the developed pipeline was adapted to the 

analysis of English texts. In particular, the English versions of TextPro and 

ConText, and the English translation of external dictionaries were used. 

Also, the configuration file for the Section Annotator was conveniently 

translated. For adapting the ontology, the only step to be performed was the 

translation of regular expressions, without performing any additional 

changes. To this end, the “hasRegularExpression_EN” and the 

“hasStringValue_EN” properties were included in the already existing 

ontology. As regards the Attribute annotator, the definition of lookup 

windows remained unchanged, as it is similar for the Italian and the 

English languages. It is important to point out that, for other languages 
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characterized by longer sentences (e.g., Japanese or Chinese), it might be 

necessary to tune lookup windows differently. 

 

Domain extension. In the molecular cardiology domain, identifying events 

and related attributes was straightforward, also thanks to the availability of 

the TRIAD system, containing most of the information to be extracted in a 

structured way. Starting from this consideration, it was considered 

appropriate to see whether the proposed ontology structure could be easily 

adapted to a different clinical domain, without the guidance of a structured 

repository as TRIAD. To assess this adaptability, a set of anatomic 

pathology reports belonging to the oncology domain was considered. A 

detailed description of this corpus will be given in Section 5.2.1. 

To process the new dataset, the Italian version of the TextPro system 

was used, and the Section Annotator was adapted by providing an external 

file with the new sections to be identified in the texts. Also, domain-

specific lexicons were manually created for the event extraction task, in a 

similar way as for the molecular cardiology pipeline. 

3.6. Temporal expression extraction 

In clinical NLP, besides searching for relevant concepts inside the text, 

analyzing the extracted information from the temporal point of view is 

essential. To this end, one first step involves the identification of temporal 

expressions. Once a temporal expression is extracted, a normalization step 

is needed to convert it to a standard format, which serves as a formal 

representation along a timeline. 

To extract and normalize the temporal expressions included in the 

CARDIO dataset, it was decided to exploit two existing unsupervised 

systems for temporal IE in the Italian language: HeidelTime and 

TimeNorm. The first tool performs both TIMEX extraction and 

normalization, while the second tool deals with the normalization task only.  

Although both HeidelTime and TimeNorm were already available for 

the Italian language, they had been developed on general domain corpora, 

such as newspaper texts [92,93]. In this research activity, both tools were 

adapted to the clinical domain by manually analyzing the TIMEX entities 

available in the annotated training set. 

3.6.1. HeidelTime and its adaptation to the clinical context 

HeidelTime is a rule-based system for the extraction and the normalization 

of temporal expressions. For the first task, the system uses regular 

expressions representing the TIMEXes to be extracted. For the 

normalization task, knowledge resources and linguistic clues are exploited. 

HeidelTime was originally developed as a contribution to the TempEval-

2 challenge on temporal information extraction from general domain texts 
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[89]. Figure 3.10 shows the UIMA pipeline that was originally proposed 

for designing and using the system [32]. On the left, the workflow for 

system development is shown: the TempEval-2 training set (which includes 

annotations for tokens and sentences) was used to manually develop the 

rules for TIMEX extraction and normalization. In this phase, a POS tagger 

was run on the input tokens, thus obtaining additional information to be 

exploited inside the rules. To refine existing rules and create new ones, the 

annotations extracted by HeidelTime were compared to the gold standard 

TIMEX annotations (TempEval-2 Evaluator). On the right-hand side of 

Figure 3.10, the workflow for exploiting HeidelTime on a generic dataset is 

shown. The documents are first split into tokens and sentences, and a part-

of-speech tagger is used to extract the token POS tags. The HeidelTime 

rules are then applied to these input annotations, thus allowing the 

extraction and the normalization of temporal expressions. 

 

Figure 3.10: UIMA pipeline for designing and using HeidelTime [32]. 

Within the HeidelTime system, extraction rules are organized into four 

groups, which correspond to the four types of temporal expressions defined 

in TimeML (date, time, duration, and set). In a specific group, each rule 

includes (i) an extraction pattern, which identifies the expression inside the 

text, and (ii) a normalization function, defining how the extracted 

expression should be normalized. For both tasks, language-specific external 

resources are exploited. For example, dates in the format “DD Month 

YYYY” (e.g., “14 April 2009”) are extracted by the following rule: 

RULENAME="date_r0a",EXTRACTION="%reDayNumber %reMonth 

%reFullYear",NORM_VALUE="group(3)-%normMonth(group(2))-

%normDay(group(1))" 
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In this case, the extraction pattern exploits three external resources 

containing regular expressions for day numbers (%reDayNumber), month 

strings (%reMonth), and years (%reFullYear). In the normalization 

function, two external resources specify how to normalize months 

(%normMonth) and days (%normDay). For the temporal expression “14 April 

2009”, the resulting normalized value is given by “2009-04-14”. 

For explicit temporal expressions, such as “14 April 2009” or “20-05-

2009”, the value attribute can be directly assigned by looking at the 

temporal expressions itself. However, implicit temporal expressions, such 

as “tomorrow” or “in October”, require contextual knowledge to be 

correctly normalized. More specifically, these expressions can be 

normalized only when a reference time is available. To address this issue, 

HeidelTime performs the normalization task in two different steps. First, 

the extraction rules are applied to every sentence of a document, and 

extracted TIMEXes are assigned either a specific value or an 

underspecified format (for implicit expressions). Then, a post-processing 

step is executed to disambiguate these underspecified values: according to 

the extraction rule, either the document creation time or the previously 

mentioned date is used as the reference date for normalization. 

 

The HeidelTime system includes rules and external resources in many 

different languages, including Italian. To process documents in the 

CARDIO dataset, the Italian version of HeidelTime was adapted by 

working on a subset of documents in the annotated training set. This 

adaptation process required both (i) the extension of a few general domain 

rules and (ii) the creation of new domain-specific ones. Also, some minor 

modifications were performed on the UIMA Annotator code. 

In Table 3.3, a summary of the main adaptations performed on the 

HeidelTime system is reported. 
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Table 3.3: Main adaptations performed on the HeidelTime system.  

Type Modification Examples 

Extension of general 

domain rules 

Correct normalization of dates in the 

format DD/MM/YY 
“21/10/15” 

Added rules for dates in the format 

DD.MM.YYYY and DD/MM 

“21.10.2015”, 

“21/10” 

Added rules for specific sets “every six months” 

Creation of domain- 

specific rules 

Added rules for TIMEXes including 

the word “die” (daily) 
“2/die” 

Added rules to handle multiple times 

for drug intake 
“at 8, 20” 

Added rules to identify the duration 

of effort stress tests 
“7:18 min” 

Creation of negative 

rules 
Added negative rules for 

expressions denoting drug formats 
“1/2 cp” 

Improvements of the 

Annotator code 

Check maximum distance between a 

TIMEX and its reference date 
NA 

Normalization of approximate 

TIMEXes 
“2-3 days” 

 

The extension of general domain rules mostly concerned the extraction 

of dates. For example, TIMEXes in the format DD/MM/YY, i.e., using 

only two numbers for the year, were not correctly normalized for dates 

following the year 2000 (e.g., the date “21/10/15” was normalized to the 

value “1915-10-21”). To address this issue, the old rule was removed, and 

two specific rules were created instead. In addition, dates in the format 

DD.MM.YYYY and DD/MM were not recognized at all. In this case, it 

was sufficient to add the corresponding extraction rules: an explicit one 

was introduced for the former, and an implicit one for the latter. Another 

extension, finally, involved TIMEXes with type Set. In this case, a few 

patterns were added to correctly identify expressions such as “every six 

months”. 

As regards the creation of new domain-specific rules, most interventions 

involved TIMEXes related to drug prescriptions. For example, a few 

specific rules were created to extract temporal expressions including the 

word “die” (i.e., a daily set). For these TIMEXes, the normalization value 

was defined as P1D. In addition, a few rules were hand-crafted to handle 

multiple times for drug assumption (e.g., “at 8, 20” to indicate 8.00 am and 

8.00 pm). In this case, for each specific time one TIMEX is identified, and 

its normalized value is given by composing an undefined date with the 

extracted time (e.g., “XXXX-XX-XXT08:00” and “XXXX-XX-

XXT20:00”). The underlying reason is that the times for drug prescriptions 

should not be related to a concrete day of the year. As another domain-

specific extension, new HeidelTime rules were created to capture the 

durations of effort stress tests. In particular, these durations are often 
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expressed in the format “ss:mm” (e.g., “7:18 min”), thus requiring the use 

of specific terms (e.g., “min”) to differentiate the extraction pattern from a 

standard simple time (e.g., “at 18:00”). 

To avoid the extraction of expressions that resemble TIMEXes but 

should not be considered as such, a few “negative rules” were hand-crafted, 

too. For example, expressions denoting drug formats (e.g., “1/2 cp” stands 

for “one-half tablet”) should not be considered as temporal expressions. To 

address this specific issue, a negative rule was created by removing all the 

temporal expressions in the form “number/number” followed by a set of 

specific strings, i.e., those denoting drug formats and units of measurement. 

With respect to the HeidelTime Annotator code, a few changes were 

carried out to improve the normalization phase. Although HeidelTime deals 

with implicit temporal expressions by assigning them a reference date, 

many errors were performed by the original algorithm, which was trained 

on general domain texts. In particular, most normalization errors regarded 

TIMEXes related to drug prescriptions. To overcome this issue, whenever 

an implicit temporal expression has to be normalized, it has been decided to 

associate it to the last-mentioned date only if it falls within a maximum 

distance with respect to that date (in terms of characters). Otherwise, the 

reference to an undefined date is kept (“XXXX-XX-XX”). Another 

modification on the UIMA Annotator code regarded the normalization of 

approximate expressions such as “2-3 days”, which should be normalized 

to a mean value like P2.5D. To this end, a function that computes the 

average value between two numeric inputs was implemented. 

3.6.2. TimeNorm and its adaptation to the clinical domain 

TimeNorm [33] is a rule-based system for temporal normalization based on 

a synchronous context free grammar (SCFG). Given an extracted temporal 

expression and a reference date, the system performs time normalization 

according to the rules included in the SCFG. 

From a general point of view, a formal grammar consists of a set of 

rules, called production rules, which specify how to form syntactically 

valid strings over a given alphabet. These rules make use of two different 

types of symbols: terminal symbols (those included in the alphabet) and 

non-terminal symbols. In particular, each rule in the grammar associates a 

non-terminal symbol to a sequence which can be composed of terminal 

and/or non-terminal symbols. Therefore, the production rules define how to 

generate a valid string starting from a non-terminal symbol. For example, 

given a start symbol S, and two terminals a and b, a formal grammar could 

be given by the following rules: 
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According to these rules, an infinite set of valid strings can be created: 

aa, baab, bbaabb, etc. 

Synchronous context-free grammars are a type of formal grammar that 

operates simultaneously on a source language and on a target language, 

specifying the structure of two phrases at the same time [34]. In this case, 

each production rule defines how to expand a non-terminal symbol in both 

the source and the target language, simultaneously. In a SCFG, each rule 

can be written in the form: 
 

 
 

where X represents a non-terminal, R represents its expansion in the 

source language, T represents its expansion in the target language, and A is 

the alignment between the non-terminals of R and T. An example of a 

SCFG is represented by the following rules, which allow translating an 

English sentence into a Japanese sentence [34]:  
 

  𝑆 →  𝑁𝑃1𝑉𝑃2, 𝑁𝑃1𝑉𝑃2  

𝑉𝑃 →  𝑉1𝑁𝑃2, 𝑁𝑃2𝑉1  

𝑁𝑃 →  𝑖, 𝑤𝑎𝑡𝑎𝑠ℎ𝑖 𝑤𝑎  

𝑁𝑃 →  𝑡ℎ𝑒 𝑏𝑜𝑥, ℎ𝑎𝑘𝑜 𝑤𝑜  

𝑉 →  𝑜𝑝𝑒𝑛, 𝑎𝑘𝑒𝑚𝑎𝑠𝑢  
 

The subscripts on non-terminals symbols indicate the alignment between 

the source and the target parses. In this example, starting from a pair of 

linked start symbols, such as (S10, S10), it is possible to derive two 

sentences that are one the translation of the other. This is done by 

repeatedly applying the production rules on the two sides, simultaneously 

(respecting the alignments between non-terminals). The results of this 

process can be viewed as a pair of synchronous trees, as shown in Figure 

3.11. 

 

Figure 3.11: Example of an English-Japanese synchronous parse [34]. 
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In the SCFG exploited by the TimeNorm system, the source language is 

the natural language, while the target language is a formal grammar of 

temporal operators, defining how to create temporal objects. Starting from 

a natural language sentence, the set of SCFG rules are applied to build the 

parse tree for the source side. These parses are then deterministically 

translated into the corresponding target side parses, using the alignments 

that are defined in the SCFG rules. 

A concrete example of a TimeNorm SCFG rule is given by the following 

notation:  

 

 
 

In this case, the non-terminal X represents a month of the year, R is a 

specific string month, i.e., “January” (the expansion of X in the source 

language), and T is a sequence representing the corresponding month 

number (the expansion of X in the target language). 

 

Although TimeNorm was originally developed to process English texts 

in the general domain, the underlying SCFG was already available also for 

the Italian language [93]. To exploit TimeNorm for normalizing TIMEXes 

in the CARDIO dataset, the annotated training set was used to extend the 

Italian grammar as needed. In particular, to use TimeNorm within the 

developed IE pipeline, the HeidelTime system was exploited for the 

identification of temporal expressions and their reference time, which were 

then given as inputs to the TimeNorm code. The output of TimeNorm was 

then conveniently processed to correctly extract the type, value and mod 

properties (the optional properties freq and quant were not considered). 

As for the HeidelTime system, adapting TimeNorm required both the 

extension of general domain rules and the creation of a few entries specific 

to the molecular cardiology domain. In this case, though, no major 

modifications were performed on the annotator’s code.  Table 3.4 reports 

the main modifications performed on the TimeNorm system. 

Table 3.4: Main adaptations performed on the TimeNorm system.  

Type Modification Examples 

Extension of general 

domain rules 

Added rules for identifying 

expressions like “min” and “h” 
“24 h”, “8 min” 

Added rules to handle dates in the 

format MM/YYYY 
“10/2015” 

Added rules to handle approximate 

TIMEXes  
“about 1 year” 

Creation of domain- 

specific rules 

Added rules to handle TIMEXes 

including the word “die” (daily) 
“2/die” 

Added rules to identify the duration 

of efforts stress tests 
“7:18 min” 
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As regards general domain rules, a few variants had to be added to cover 

those expressions that were not available in the Italian grammar. For 

example, neither “min” (short for “minutes”) nor “h” (standing for “hours”) 

were recognized by TimeNorm. In addition, dates in the format 

MM/YYYY were not considered by the normalization rules. As another 

problem, a few terms denoting approximate values (e.g., “about 1 year”) 

were not available among the Italian entries. To address these issues, it was 

sufficient to add suitable rules to the TimeNorm grammar. 

Moving to domain specific temporal expressions, a few rules had to be 

created, too. As for the HeidelTime system, it was necessary to consider 

those expressions that are characteristic of drug prescriptions. In particular, 

the expressions including “die” or “bid” (i.e., twice a day) were added to 

the grammar. Also, the duration expressions, typical for example of effort 

stress tests, were considered. 

3.7. Timeline construction 

The final aim of this research activity is to reconstruct patient clinical 

timelines starting from the information included in multiple textual reports. 

The previous sections of this chapter focused on the extraction of events 

(Section 3.4) and temporal expressions (Section 3.6) as two independent 

tasks. In this section, the problem of linking each extracted event to a 

corresponding reference TIMEX is addressed. In addition, an approach to 

summarize multiple reports referring to the same patient is described. 

3.7.1. Temporal link extraction 

Extracting temporal relations from a single document represents a rather 

complex task, as the number of possible links is given by all the possible 

combinations of entity pairs available in the document itself (Event-

TIMEX, Event-Event, or TIMEX-TIMEX). In an effort to simplify this 

extraction task and still obtain useful results, it was decided to create 

temporal links only between Event-TIMEX pairs included in the same 

sentence. In addition, following the approach proposed by the THYME 

Annotation Guidelines, only five possible temporal relations were 

considered [11]: 

• BEFORE: one entity happens before the other; 

• BEGINS_ON: one entity begins on a certain date/time; 

• ENDS_ON: one entity ends on a certain date/time; 

• CONTAINS: one date/time completely contains another entity; 

• OVERLAP: two entities overlap, i.e., one entity starts before the 

other ends; 
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In this work, the candidates for temporal link extraction were defined as 

all the Event-TIMEX pairs found in the same sentence. The subsequent 

classification task consisted in assigning each extracted pair to one of the 

following classes: BEFORE, BEGINS_ON, ENDS_ON, CONTAINS, 

OVERLAP, and NOLINK. The NOLINK relation was used to classify 

those extracted pairs that are not temporally related (e.g., a symptom which 

was not present on a certain date). 

Given the unavailability of annotated data for temporal link 

identification, the TLINK Annotator was developed by manually creating a 

set of extraction rules. To define the features that could be used for rule 

development, the relevant literature in this field was reviewed [120–122]. 

For example, D’Souza and Ng investigated the task of temporal relation 

extraction and classification in the clinical domain [121]. To categorize 

each extracted link, the authors developed a system that combines a 

machine learning approach and a rule-based approach. As reported by the 

authors, the basic features for temporal relation classification can be 

divided into six categories: lexical (e.g., entity strings), grammatical (e.g., 

POS tags), entity properties (e.g., event polarity, TIMEX type), semantic 

(e.g., inclusion in semantic dictionaries), distance (e.g., entities belonging 

to the same sentence), and related to the document creation time (e.g., 

DocTimeRel class). In another paper, Mirza and Tonelli explored both 

temporal and causal relation extraction from general domain texts [122]. 

Also in this case, a combination of supervised machine learning and rule-

based modules was exploited for temporal link classification. As an 

interesting aspect, to classify Event-TIMEX links, the authors built a set of 

rules exploiting the temporal sense of some prepositions (e.g., “since”, 

“until”) [123]. 

Based on the illustrated revised works, the following features were 

investigated for temporal link extraction: 

• Event string: the string representing the extracted event (e.g., 

“Brugada Syndrome”, “electrocardiogram”, “Visit”); 

• Event DocTimeRel: the relation of the event to the document 

creation time (Before, After, Overlap, Before/overlap); 

• Event semantic type: the semantic type of the event (Problem, 

Test, Treatment, Occurrence); 

• Event polarity: the polarity of the event (Positive, Negative); 

• Event section: the section in which the event was found (e.g., 

“Anamnestic fitting”, “ECG test”); 

• TIMEX string: the string representing the extracted temporal 

expression (e.g., “05/07/2009”, “the following day”); 

• TIMEX type: the type of the temporal expression (Date, Time, 

Duration, Set); 

• TIMEX value: the normalized value of the temporal expression 

(e.g., “2009-07-05”); 
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• Event-TIMEX distance: the distance between the two entities in 

terms of tokens; 

• Temporal preposition: the presence of specific prepositions 

encompassing a temporal sense; 

• Verb temporal tense: the temporal tense of the first verb in the 

sentence (e.g., past tense, future tense); 

• Temporal verbs: presence of specific verbs denoting a “start” or an 

“end” (e.g., “begin”, “terminated”); 

To verify whether these features could be effectively used for rule 

development, a set of 5 reports was randomly selected in the annotated 

training set. The IE pipeline was then run on these documents to (i) extract 

all intra-sentence Event-TIMEX pairs and (ii) compute the selected features 

for each extracted pair. As a final step, the correct temporal link was 

manually assigned to each extracted pair. Table 3.5 shows an example of an 

automatically extracted Event-TIMEX pair, including the computed 

features. In this example, the correct temporal link is CONTAINS. 

Table 3.5: Event-TIMEX pair: computed features. 

Element Example EN Example IT 

Sentence 

During the previous 

encounter in January 2010, 

an Holter was performed.  

Nel corso del precedente 

controllo del gennaio 2010, 

è stato eseguito Holter. 

Event encounter controllo 

TIMEX January 2010 gennaio 2010 

Event DocTimeRel Before Before 

Event semantic type Test Test 

Event polarity Positive Positive 

Event section Anamnesis Raccordo Anamnestico 

TIMEX type Date Date 

TIMEX value 2010-01-XX 2010-01-XX 

Event-TIMEX distance 1 1 

Temporal preposition none none 

Verb temporal tense past passato 

Temporal verbs none none 

 

After having identified the temporal links included in the analyzed 

documents, a list of rules was manually created to classify new Event-

TIMEX pairs. In Table 3.6, a few examples of rules are shown. For each 

rule, a possible sentence is given (“Example” column), including the event 

and the TIMEX to be associated (both between square brackets). 
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Table 3.6: Examples of TLINK rules. 

Rule TLINK Example 

timex type = DATE &  

temporal verb type = 

BEGIN (“initiate”) 

BEGINS_ON 

IT: Nel [febbraio 2012], si è deciso di 

intraprendere terapia con [Chinidina]. 

EN: In [February 2002], it was 

decided to initiate [quinidine] therapy. 

timex type = DATE &  

temporal preposition = 

“since” & event 

polarity = NEGATED 

ENDS_ON 

IT: Da [marzo 1986], nessun altro 

[episodio sincopale]. 

EN: Since [March 1986], no other 

[syncopal episode]. 

timex type = DATE &  

timex value = 

PRESENT_REF 

OVERLAP 

IT: Durante l’[attuale] controllo, 

abbiamo effettuato un [ECG]. 

EN: During the [current] encounter, 

we have performed an [ECG test]. 

 

To identify the temporal links inside the text, the TLINK Annotator 

performs two different tasks. First, it extracts all the possible candidate 

pairs by assigning to each Event the closest TIMEX belonging to the same 

sentence. Then, for each extracted pair, it selects the correct temporal link 

by applying the set of manually created rules. In the case of a NOLINK 

class, no temporal link is created. 

3.7.2. Timeline reconstruction 

As previously mentioned, extracting information from single documents 

represents only the first step towards clinical timelines reconstruction. To 

correctly summarize all the clinical information available for one patient, 

all the reports belonging to that patient must be processed, and the 

extracted data consistently aggregated. In this section, the proposed 

approach for summarizing the information extracted from multiple reports 

of the same patient is described in detail. 

 

Methodological approach. All the different steps involved in clinical 

timeline reconstruction are shown in Figure 3.12: 

1. The patient of interest is selected.  

2. The medical reports referred to the selected patient are retrieved, 

and given as inputs to the NLP pipeline for single document 

information extraction.   

3. The NLP pipeline processes the retrieved patient documents. Each 

report is automatically annotated with extracted events and 

associated attributes, as well as temporal information. In particular, 

the DocTimeRel of each event is identified at this point. 
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4. The events extracted from all patient documents are aggregated 

and visualized on a timeline. If one event is mentioned multiple 

times with reference to the same date, only one entry is created. 

 

Figure 3.12: Steps for building a patient’s clinical timeline. 

As a first attempt, it was decided to display on the timeline only those 

events that are related to the document creation time by a DocTimeRel of 

type OVERLAP. In this basic approach, each extracted event is associated 

to the report creation date, and additional event-related information is 

included in the timeline as well. Specifically, for those events that are 

related to a set of attributes, extracted values are visualized too. For events 

that are not associated to attributes in the text, the section where the event 

was found, the event polarity, and the event experiencer are shown. 

In the second version of the patient timeline reconstruction, events that 

do not “overlap” the document creation time were considered, too. 

According to their specific DocTimeRel value (BEFORE, 

BEFORE/OVERLAP, or AFTER), these events are likely to be related to 
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dates or times that precede or follow the report date. Hence, linking them to 

a specific reference TIMEX is needed to enable timeline reconstruction. 

To deal with events that precede or follow the document creation date, 

the output of the TLINK Annotator was exploited. In particular, only the 

temporal relations with type “CONTAINS” were considered.  There were 

two main reasons underlying this choice. First, this type of temporal link 

allows assigning to the involved event a specific point in time, which is 

particularly convenient for an unambiguous timeline reconstruction. For the 

other relation types, instead, further reasoning would be needed to precisely 

identify the temporal boundaries of each event. As a second motivation, the 

CONTAINS links were the most frequent type of temporal relations in the 

CARDIO dataset. Therefore, it was assumed that most of the patient 

timeline could be effectively reconstructed by only considering these link 

types. 

 

Implementation details. To reconstruct the clinical timeline for one 

patient, the data extracted from all the reports referring to that patient are 

aggregated and visualized through the TimelineJS tool [124]. 

TimelineJS is an open-source tool that allows creating rich and 

interactive timelines. In this framework, a timeline is defined as a list of 

events, each related to a specific time. From the technical point of view, 

timelines are stored as JSON objects with four properties: events (the 

timeline itself), title (the timeline title), eras (objects that are used to label a 

span of time), and scale (a property that allows dealing with dates in the 

very distant past or future). Among these properties, the “events” object 

represents the actual timeline, including a list of “slide” objects, each with 

the following properties: 

• start_date: a “date” object representing the event’s starting date; 

• end_date: a “date” object representing the event’s end date; 

• text (optional): a “text” object including a headline and a textual 

content; 

• media (optional): a “media” object that allows including different 

content types, such as images and videos; 

When a patient is selected, the system extracts and aggregates all patient 

events, saving the resulting timeline according to this TimelineJS JSON 

format. In particular, each “event” object is filled with an extracted event: 

the associated TIMEX is used to define the start_date and the end_date 

properties, while the event-related information (e.g., its attributes) is 

included in the text property. 

For events that “overlap” the document creation time, this reference date 

is used as both the start date and the end date. For the other events, a 

CONTAINS temporal relation to a specific TIMEX is searched for. If such 

relation is found, the event is added to the timeline, using the related 

temporal expression to determine its date. 
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3.8. Proposed evaluation 

In this section, the evaluation performed for each of the IE steps is 

described. For the event extraction and the TIMEX extraction tasks, the 

evaluation was conducted against the manually annotated dataset. For the 

attribute extraction task, the data included in the TRIAD system was 

considered as the gold standard. 

As regards the timeline reconstruction task, considering the lack of a 

reference to be used for a quantitative evaluation, a preliminary manual 

validation was performed.  

3.8.1. Event extraction evaluation 

To evaluate results on event extraction, the annotated test set (gold events) 

described in Section 3.2.1 was used to compare different configurations. 

First, the dictionary lookup approach and the RNN classifier were applied 

separately, and then the output of the two approaches were merged. 

The extraction of event text spans was evaluated using precision, recall, 

and F1 score. Gold events whose boundaries are correctly identified by the 

system, i.e., there is an exact match between the two events’ offsets, 

represent true positives (TPs). Gold events that are not detected by the 

system are considered as false negatives (FNs), while events extracted by 

the system but not found in the gold annotations are considered as false 

positives (FPs). Precision (P), recall (R), and F1 score (F1) are computed as 

follows: 

 

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
             𝑅 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
              𝐹1 =

2 ∙ 𝑃 ∙ 𝑅

𝑃 + 𝑅
 

 
 

For events marked as TPs, the performance of property extraction was 

calculated as well. For each property (semantic type, DocTimeRel, polarity, 

modality, and experiencer), the accuracy (acc) was computed as the number 

of correctly extracted values over the total number of extracted properties 

(the event TPs): 

 

  𝑎𝑐𝑐 =
# 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑣𝑎𝑙𝑢𝑒𝑠

# 𝑒𝑣𝑒𝑛𝑡 𝑇𝑃𝑠
 

 
 

To analyze the effects created by a potential class imbalance, the F1 

score of each property value was computed, too. As a matter of fact, this 

evaluation procedure highlights the effect of the misclassifications 

performed on minority classes. 
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3.8.2. Attribute extraction evaluation 

The attribute extraction performance was evaluated by running a basic 

configuration of the IE pipeline, using the Section Annotator, the dictionary 

lookup Event Annotator (in this case, only the ontology events were 

considered), and the Attribute Annotator itself, which was the focus of the 

validation. Besides evaluating the event-attribute extraction system on the 

CARDIO dataset, two other scenarios were tested: (i) the extendibility to 

the English language, and (ii) the extendibility to the oncology domain. 

 

Main evaluation on the CARDIO dataset. Given the unavailability of 

annotated reports, the proposed approach was evaluated against TRIAD, 

the hospital system that stores data on diagnoses, tests, prescriptions, and 

other relevant events. It is important to point out that there is not an exact 

alignment between information in reports and data in TRIAD: some 

information could have been written in the documents but not transferred to 

TRIAD, or the electronic data can come from sources other than the 

reports. 

The steps of the evaluation are shown in Figure 3.13. For each event 

extracted by the IE pipeline (System Event), the matching entry in TRIAD 

was looked for. To match events, the date stored in TRIAD was compared 

to the date of the report where the event was found. For those events that 

could be retrieved, each of the items extracted by the pipeline (System 

Items) was matched to the corresponding data item in TRIAD. The 

performance was evaluated on those items extracted by the pipeline for 

which a TRIAD entry was found (TRIAD Items). For each of these items, a 

correct annotation corresponds to an exact match between the system and 

the TRIAD value.  

The accuracy of the system was computed on single events as the ratio 

between correct annotations and TRIAD items. 

 

Figure 3.13: Item extraction evaluation for one report. 
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In Figure 3.14, an example of the performed evaluation is reported for 

one short report, translated to English for convenience. The figure shows 

the report itself (Input Text), the information extracted by the system 

(Extracted Information), and the matching entry in the TRIAD database 

(TRIAD Holter ECG matching rows). In this case, the report includes a 

date (“05/08/2012”) and one event (an Holter ECG test) with four attributes 

(Rhythm, Average Heart Rate, ST Elevation, ST Elevation Type). The 

extracted date is used to retrieve the matching entry in TRIAD, through the 

Visit Date field. For each attribute related to the extracted event, the system 

values and the TRIAD values are compared. In this example, out of the 

four System Items, the number of correct annotations is three, leading to a 

final accuracy of 75%. In particular, due to the presence of the negated 

sentence “no significant elevation in the other right precordial leads”, the 

system extracts an “ST Elevation Type” attribute with an “absent” value. 

However, the correct value for this attribute reported in TRIAD is 

“saddleback”. 

 

Figure 3.14: Example on accuracy computation. 

3.8.3. Temporal expression extraction evaluation 

The performance of temporal expression extraction was evaluated on the 

annotated test set. For HeidelTime, the extraction of TIMEX text spans was 

evaluated against the manual annotations described in Section 3.2.2 (gold 

TIMEXes), using precision, recall, and F1 score. The definition of TPs, 

FPs, and FNs are identical to those proposed for the event extraction task. 

Specifically, TPs are defined as gold TIMEXes whose boundaries are 

correctly identified by HeidelTime. FNs are represented by gold TIMEXes 
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that are not detected by the system. FPs, finally, are temporal expressions 

extracted by HeidelTime but not found in the gold annotations. 

For temporal expressions marked as TPs, the accuracy of property 

extraction was computed as well. In particular, the value, the type, and the 

mod property were considered. For each property, the accuracy (acc) is 

given by the number of correctly extracted values over the total number of 

extracted TIMEXes (the TIMEX TPs): 

 

  𝑎𝑐𝑐 =
# 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑣𝑎𝑙𝑢𝑒𝑠

# 𝑇𝐼𝑀𝐸𝑋 𝑇𝑃𝑠
 
 

 

As for the event extraction task, for analyzing the effects created by a 

potential class imbalance, the F1 score of the type property was computed, 

too. 

3.8.4. Timeline reconstruction validation 

As previously pointed out, there was no availability of a gold standard for 

evaluating the approach proposed for clinical timeline reconstruction. 

However, a preliminary evaluation was conducted to assess the system’s 

ability to correctly aggregate data belonging to the same patient. In 

particular, the evaluation consisted in randomly selecting one patient, and 

manually reviewing his/her clinical timeline. 

In a more comprehensive evaluation involving clinicians, a few criteria 

for success could be highlighted. First, following the approach proposed by 

Hirsch et al. [101], it would be important to assess whether it is possible to 

use the reconstructed timeline to effectively retrieve dates and relevant 

events. To evaluate this aspect, one possibility would be to measure the 

time needed to manually search for this information inside the documents, 

and compare it to the time required to explore the reconstructed timeline. 

As another evaluation criterion, it would be important to verify whether the 

information displayed on the timeline (e.g., event experiencer, attribute 

values) is sufficiently detailed to draw relevant conclusions. As a matter of 

fact, the approach proposed for timeline visualization uses a few heuristics 

to define how events are aggregated and displayed. In particular, the “day” 

granularity was chosen to refer each event to a specific point in time. Given 

that events in the CARDIO dataset are usually not related to a specific time 

of the day, this approximation is expected to be acceptable for most use 

cases. However, for certain clinical episodes, it might be important to 

preserve more detailed temporal information on the extracted events. To 

evaluate these potential issues, a specific questionnaire could be prepared 

to be filled in by clinicians. 
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Chapter 4 

4 Results and discussion 

This chapter illustrates the results obtained on the CARDIO dataset, 

discussing each of the pipeline steps. In particular, each section contains 

both the evaluation results and a discussion including a comparison to the 

related literature. 

Section 4.1 presents the distribution of entities and their properties in the 

annotated subset of documents. Section 4.2 describes the results of the 

event extraction task, discussing both the dictionary lookup approach and 

the neural network classifier. Section 4.3 illustrates the performance of 

attribute extraction, describing the developed ontology and the obtained 

extraction results. Section 4.4 presents the results of temporal expression 

extraction and normalization, performing a comparison between the 

HeidelTime and the TimeNorm systems. Finally, Section 4.5 discusses the 

outcomes of temporal link extraction and clinical timeline reconstruction. 

4.1. Statistics on the annotated corpus 

To develop an annotated corpus to be used for methods development and 

validation, a subset of 75 documents were randomly selected from the 

CARDIO dataset. These documents were manually annotated with 

mentions of events and temporal expressions, according to the guidelines 

described in Section 3.2. 

This section provides a summary of the performed annotations. In Table 

4.1, the total number of manually annotated events and temporal 

expressions is reported, grouped into training set and test set. As it can be 

noticed from the table, the number of annotated events is about 4 times 

greater than the number of temporal expressions. To give a sense of the 

documents average size, Table 4.1 also reports the number of sentences and 

tokens detected in the text preprocessing phase. 
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Table 4.1: Statistics on the annotated corpus. 

 
Training set Test set Corpus 

Documents 60 15 75 

Tokens 44115 13148 57263 

Sentences 3347 941 4288 

Events 3159 992 4151 

TIMEXes 814 288 1102 

  

In Table 4.2, the distribution of property values for the 4151 annotated 

events is reported. The most frequent semantic type is the Problem type 

(42%), followed by Test (28%), Occurrence (17%), and Treatment (13%). 

As most events mentioned in the text are temporally referred to the visit 

date, the most common DocTimeRel value is OVERLAP (44%). About the 

other DocTimeRel values, 38% of events happen “before” the report date, 

while 17% of events occur “after”. The BEFORE/OVERLAP value, finally, 

is specified for only 1% of events. This result reflects a precise annotation 

choice: the BEFORE/OVERLAP value is selected only when the text 

clearly indicates that an event started before the visit date and continues 

into and through this reference date [11]. As regards the polarity, modality 

and experiencer properties, it is possible to notice a strongly unbalanced 

distribution among classes. In particular, the majority of events are 

characterized by a positive polarity (88%), an actual modality (90%), and 

are experienced by the patient himself (92%). 

Table 4.2: Distribution of Event property values in the annotated dataset. 

Property Class distribution 

Semantic type 

1766 (42%) Problem 

1155 (28%) Test 

696   (17%) Occurrence 

534   (13%) Treatment 

DocTimeRel 

1828 (44%) Overlap 

1574 (38%) Before 

696   (17%) After 

53     (1%) Before/overlap 

Polarity 
3634 (88%) Positive 

517   (12%) Negative 

Modality 

3729 (90%) Actual 

167   (4%) Hypothetical 

139   (3%) Hedged 

116   (3%) Generic 

Experiencer 
3824 (92%) Patient 

327   (8%) Other 

 

Table 4.3 shows the distribution of the type and the mod properties for 

the 1102 annotated temporal expressions. As shown in this table, most 
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TIMEXes are represented by dates (61%). Durations, sets and times 

account for the 19%, the 12% and the 8% of temporal expressions, 

respectively. As a final observation, the mod property is defined for only 

6% of TIMEXes; for these expressions, the APPROX value denotes an 

“approximate” meaning. 

Table 4.3: Distribution of TIMEX property values in the annotated dataset. 

Property Class distribution 

Type 

672 (61%) Date 

209 (19%) Duration 

131   (12%) Set 

90   (8%) Time 

Mod 
1036 (94%) No value 

66 (6%) Approx 

4.2. Event extraction results 

This section presents the results obtained for the event extraction task, 

which consists in correctly identifying the text spans and the properties of 

the events mentioned in the texts. 

4.2.1. Text span extraction 

For the extraction of event spans, experiments were performed with a 

dictionary lookup approach and a GRU classifier. To quantify the 

improvements achieved by feeding POS tags to this neural network model, 

experiments were run also by removing these additional inputs, i.e., using 

word embeddings only. 

To compare these GRU classifiers (with and without POS inputs) to 

reference supervised algorithms, both a CRF and an SVM running on 

embedding-related features were evaluated. Specifically, the baseline CRF 

classifies each token using as features its embedding, and the embeddings 

of the two previous tokens. For the SVM, the B, I, O labels of the previous 

tokens were considered, too. 

Table 4.4 reports the results obtained on the test set. As the events in the 

annotated corpus are not necessarily included in the external dictionaries, 

the dictionary lookup approach did not perform well, resulting in an F1 

score of 66.1% (row 1). The supervised CRF and SVM classifiers obtained 

better extraction results, mostly thanks to an improvement in recall (rows 2 

and 3). Comparing these classifiers and the RNN models, it can be noticed 

that both the GRU models (rows 4 and 5) outperformed the CRF and the 

SVM, with an increase in both recall (up to 87.0%) and precision (up to 

89.0%). 
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Table 4.4: Results for the extraction of event text spans (test set). 

Row Extraction method TP FP FN P R F1 

1 Dictionary lookup 548 118 444 82.3% 55.2% 66.1% 

2 CRF classifier 795 189 197 80.8% 80.1% 80.5% 

3 SVM classifier 748 103 244 87.9% 75.4% 81.2% 

4 GRU classifier 844 111 148 88.4% 85.1% 86.7% 

5 
GRU classifier with 

POS input 
863 107 129 89.0% 87.0% 88.0% 

6 

Dictionary lookup + 

GRU classifier with 

POS input 

895 114 97 88.7% 90.2% 89.5% 

 

To investigate whether the combination of supervised and knowledge-

based approaches could lead to an improved performance, it was decided to 

merge the outputs of the best performing GRU classifier and the dictionary 

lookup approach, and evaluate results on this new output (Table 4.4, row 

6). Both methods identify events in the text, creating corresponding UIMA 

annotations according to the identified boundaries and semantic types. In 

the merging phase, the annotations found by the GRU classifier were added 

to the list of annotations already performed by the dictionary lookup 

approach. In case of two overlapping annotations with the same semantic 

type, only the longest one was kept. In Figure 4.1, an example of this kind 

of overlap is shown: as “Sindrome del QT Lungo” (Long QT Syndrome) 

and “Difetto genetico responsabile di Sindrome del QT Lungo” (Genetic 

defect responsible for Long QT Syndrome) are characterized by the same 

semantic type (i.e., Problem), only the longest event is annotated by the 

system. 

 

Figure 4.1: Integration of Event annotations (dictionary lookup and RNN 

classifier). 
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Comparing the results obtained in row 5 and row 6 of Table 4.4, it can 

be noticed that combining dictionary entries with the GRU classifier output 

obtained the best F1 score across all experiments (89.5%). 

4.2.2. Property extraction 

In the event extraction task, the dictionary lookup approach and the RNN 

classifier are used to extract event boundaries together with semantic types. 

For identifying the other event properties, the ConText rule-based 

algorithm (for polarity, modality, and experiencer) and an SVM (for 

DocTimeRel) were explored. To evaluate the performance, the best event 

extraction configuration obtained from the previous step was selected 

(“Dictionary lookup + GRU classifier with POS input”), and results were 

computed on the 895 events extracted with correct boundaries (TPs). For 

each of these events, the property values selected by the pipeline were 

compared to the corresponding gold values.  

In Table 4.5 the accuracies of the different property extraction systems 

are shown (“Raw accuracy” column). For comparison purposes, the results 

obtained with simple majority classifiers (that assign to all properties the 

most frequent value in the training set) are included, too (“Raw majority 

accuracy” column). As expected, the developed system outperforms the 

majority classifier for all the properties, especially as regards the semantic 

type (98.5% versus 40.9%) and the DocTimeRel (83.4% versus 40.3%). 

As shown in Table 4.2, the polarity, modality, and experiencer 

properties are characterized by a strongly unbalanced distribution among 

classes. To avoid overestimating the extraction performance for these 

properties, a weighted accuracy was computed too for both the developed 

pipeline step and the majority classifier (“Weighted accuracy” and 

“Weighted majority accuracy” columns). This measure uses different 

multipliers to weight the number of correct classifications for the different 

property values, thus increasing the impact given by less frequent values on 

the final performance indicator. For a property with two possible values A 

and B, where B is the less frequent value, the weighted accuracy (accW) is 

computed as follows (considering a weight W > 1): 

 

𝑎𝑐𝑐𝑊 =
#𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝐴 + 𝑊 ∙ #𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝐵 

#𝑡𝑟𝑢𝑒𝐴 + 𝑊 ∙ #𝑡𝑟𝑢𝑒𝐵
 

 
 

To compute weighted accuracies, weights were selected according to the 

proportion between classes. For example, as events with positive polarity 

are 7 times more frequent then events with negative polarity, a weight of 7 

was chosen for the polarity attribute with the negative value. On the basis 

on this metric, it is possible to notice that the accuracies of the methods 

developed for the polarity, modality and experiencer properties are much 

greater than those obtained by the dual majority classifiers. 
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Table 4.5: Event property extraction accuracies (test set). 

Attribute 
Raw 

accuracy 

Raw 

majority 

accuracy 

Weighted 

accuracy 

Weighted 

majority 

accuracy 

Semantic Type 98.5% 40.9% NA NA 

DocTimeRel 83.4% 40.3% NA NA 

Polarity 96.9% 89.8% 90.2% 61.1% 

Modality 93.3% 88.9% 61.5% 22.9% 

Experiencer 95.3% 93.1% 72.2% 52.8% 

 

As mentioned, the results shown in Table 4.5 were computed on those 

events that were correctly identified by the system, thus depending on the 

performance of event recognition. To verify the performance of property 

extraction alone and assess the variability of results, it was decided to 

evaluate this task on gold events, too (992). In this case, given that event 

semantic types are extracted together with the events themselves, extraction 

accuracies were computed for the remaining four properties: DocTimeRel, 

polarity, modality, and experiencer. As shown in Table 4.6, results were 

comparable to the ones computed on event TPs. 

Table 4.6: Event property extraction accuracies (gold events). 

Attribute 
Raw 

accuracy 

Raw 

majority 

accuracy 

Weighted 

accuracy 

Weighted 

majority 

accuracy 

DocTimeRel 82.9% 43.2% NA NA 

Polarity 97.0% 89.2% 90.8% 54.2% 

Modality 93.0% 89.1% 60.6% 23.3% 

Experiencer 95.5% 93.1% 72.8% 53.1% 

 

To further analyze the effects of class imbalance, the F1 score was 

computed for all different property values, including those of the semantic 

type and the DocTimeRel properties. For properties with more than two 

values (e.g., the semantic type), the F1 score of a specific value (e.g., 

“problem”) was computed by considering that value as positive and all the 

others as negative. 

In Table 4.7, the F1 scores for each property value are shown. As the 

property extraction performance was similar on both event TPs and on gold 

events, only the results on event TPs are reported. For all semantic type 

values, a great performance was achieved (F1 scores above 97%). The 

DocTimeRel classifier resulted in overall good results, with the only 

exception of the BEFORE/OVERLAP value (F1 score of 0%). With respect 
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to the polarity property, high F1 scores can be noticed for both the 

“positive” value (F1 score of 98.2%) and the “negative” value (F1 score of 

85.6%). For the last two properties (modality and experiencer), slightly 

lower F1 scores were obtained for those values that were less represented 

in the dataset. 

Table 4.7: F1 scores for each event property value (test set). 

Property Raw accuracy F1 score for each value 

Semantic Type 98.5% 

Problem  99.3% 

Test   98.5% 

Treatment  98.0% 

Occurrence  97.2% 

DocTimeRel 83.4% 

Overlap  85.3% 

Before   83.4% 

After   80.3% 

Before/Overlap 0% 

Polarity 96.9% 
Positive  98.2% 

Negative  85.6% 

Modality 93.3% 

Actual   96.7% 

Hypothetical  46.6% 

Hedged  66.7% 

Generic  77.8% 

Experiencer 95.3% 
Patient   97.5% 

Other   55.3% 

4.2.3. Discussion 

In this thesis, a supervised approach based on RNN architectures was 

explored to extract clinical events from medical reports written in Italian.  

 

Event extraction results. To assess the system performance on event 

identification, the proposed RNN-based model was compared to an 

unsupervised strategy based on dictionary lookup, to a CRF classifier, and 

to an SVM classifier, using an independent test set. Although dictionary 

lookup can be an effective method to identify standardized concepts 

included in external dictionaries, it fails in extracting the non-standard, 

domain specific terms frequently used in the CARDIO dataset. As shown in 

Table 4.4, this approach misses a high number of relevant events, resulting 

in low system recall (55.2%) and an overall F1 score of 66.1%. These 

results are comparable to the ones obtained by Chiaramello et al., who used 

the MetaMap tool to extract UMLS medical concepts from Italian clinical 

notes [82]. In their case, the MetaMap annotation showed recall, precision 

and F1 score equal to 53%, 98% and 69%, respectively. As the main reason 

for annotation failures, the authors identified the impossibility of 

generating concepts variants for the Italian language. As regards the 

presented CRF and SVM baseline models, which rely on embedding-
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related features, it is possible to notice a considerable increase in recall 

with respect to dictionary lookup (from 55.2% to 80.1% and 75.4%, 

respectively). For the SVM classifier, an increase in precision can be 

noticed, too (from 82.3% to 87.9%). In this case, FNs decreased from 444 

to 244, and FPs decreased from 118 to 103. Compared to the SVM, the 

proposed RNN-based classifiers resulted in an even better performance, 

allowing a further improvement in recall up to 87.0%, with a decrease in 

FNs to 129. The RNN model using POS tags obtained the best result across 

all supervised classifiers, with an F1 score of 88.0%. A possible 

explanation for this result is that event mentions correspond to syntactically 

meaningful n-grams. Providing easily-obtainable syntactic information, 

therefore, could play a role in the correct detection of event boundaries.  

To investigate whether it was possible to improve the performance by 

exploiting the availability of external dictionaries, the developed classifier 

was integrated into a dictionary-based NLP pipeline for clinical 

information extraction. Although the considered dictionaries only partially 

include the relevant terms found in reports, merging the outputs of the two 

proposed approaches allowed a slight improvement in results (F1 score up 

to 89.5%), with an increase in recall, and a slight drop in precision. After 

an error analysis, it was noticed that, thanks to the dictionary lookup 

approach, the integrated system was able to find very specific and 

infrequent medical concepts, such as “Hashimoto’s Thyroiditis” and the 

“Tiklid” drug, that could not be extracted by the RNN classifier (neither 

these terms nor similar ones were ever seen in the training set). On the 

other hand, the slight increase in false positives was due to the extraction of 

dictionary entries that overlapped only partially with the gold text spans. 

 

Property extraction results. Besides extracting event spans and semantic 

types, ad-hoc methods were developed to extract other event properties, 

such as the polarity and the modality. Correctly extracting these details is a 

crucial task, as events that are mentioned with a negative or a hypothetical 

meaning should not be represented as part of a patient’s history.  

Overall, the ConText system achieved good extraction accuracies, 

indicating that this kind of rule-based approaches represents an effective 

method to extract details on the polarity, modality, and experiencer of 

event mentions. As shown in Table 4.5, the extraction of these properties 

resulted in weighted accuracies that were considerably greater than those 

achieved by the majority classifiers. As an interesting observation, slightly 

lower F1 scores were obtained for those values that were less represented 

in the dataset (Table 4.7). For example, the classification of the experiencer 

property resulted in an F1 score of 97.5% for the “patient” value, and 

55.3% for the “other” value. As a matter of fact, this second value is found 

in only 8% of all annotated events. 

As regards the SVM-based extraction of the DocTimeRel property, a 

good overall performance was obtained as well, with F1 scores above 80% 

for the OVERLAP, BEFORE, and AFTER values. The only exception was 

represented by the BEFORE/OVERLAP value, for which the computed F1 
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score was 0% (i.e., no true positives). In this case, the limited number of 

examples available in the training set did not allow a correct classification 

on the test set. 

 

Comparison to related work. Although the challenges related to clinical 

information extraction depend on the task complexity (e.g., corpus 

heterogeneity and size, event definition) it is possible to compare the 

obtained results to previous work on clinical texts in Italian. The system 

proposed by Esuli et al., based on a two-stage CRF method, resulted in a F1 

score of 85.9% for a single-annotator experiment [84]. Comparing the 

approach proposed in this work to the paper by Esuli et al., two main 

differences can be found in the information extraction task definition. First, 

in this paper the authors aim to extract longer segments compared to the 

ones in the CARDIO dataset (their average segment length is 17.33 words), 

which might explain the lower results they obtained. On the other hand, 

their approach is evaluated at the token level (each token counts as a TP, 

FP, TN, or FN for a given tag), which credits the system also for partial 

success. As regards the system presented by Attardi et al., which relies on a 

statistical sequence labeller, the authors obtained higher F1 scores (e.g., 

98.26% for the annotation of body-parts and treatments) with respect to the 

ones shown in Table 4.4 [86]. In this case, though, the reference 

annotations were mostly generated automatically, which is likely to have 

biased the creation of the corpus used for evaluation. As another difference 

related to the task definition, the authors developed different classifiers to 

account for different semantic types (e.g., body-parts and treatments, and 

other mentions were classified with two different models). Targeting the 

classification model to each semantic type may have increased the 

performance by reducing the variability of the features. Finally, in the work 

by Gerevini et al., the authors propose a supervised method for automatic 

report classification, which represents a different task with respect to event 

extraction [87]. While their work is focused on labelling each whole report 

according to five levels of classification (exam type, test result, lesion 

neoplastic nature, lesion site, and lesion type), one of the aims of this 

research activity is to identify events and their properties inside the text. 

LSTM models have been investigated for a long time in the area of 

general domain NER, especially for English texts [54,55]. As regards other 

languages, Lample et al. used neural network architectures based on 

LSTMs to identify named entities in Spanish, German, and Dutch [55]. 

More specifically, the authors proposed two models: (i) a bidirectional 

LSTM with a sequential conditional random layer above it, and (ii) a model 

that builds and labels chunks using an algorithm inspired by transition-

based parsing (with states represented by stack LSTMs). The proposed 

models obtained a state of the art performance for all the analyzed 

languages. Specifically, while the LSTM-CRF model achieved an F1 score 

of 90.94% on the English dataset, using the same approach on the Spanish 

dataset (the most similar language to Italian) led to an F1 score of 85.75%, 

which is in line with the results shown in Table 4.4. As another example, 
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Athavale et al. used bidirectional LSTM architectures to perform NER in 

Hindi, reaching a F1 score of 77.48% on the test set [125]. These results, 

though obtained on general domain NER tasks, show the great potential for 

extension of LSTM approaches to other domains and languages. With 

respect to the approach proposed in this dissertation, the application of 

LSTM models to Italian clinical text has shown a good performance, which 

is in line with the recent advances found in the literature. 

Compared to the English language, Italian presents some specific 

challenges, being more morphologically complex and allowing a flexible 

word order, for example in the ordering of nouns and adjectives. As far as 

it is known, only one work has applied recurrent architectures to extract 

named entities from Italian news [57]. With respect to general domain text, 

clinical notes are characterized by an additional layer of complexity, as 

sentences do not always respect syntactic rules, and domain-specific jargon 

(abbreviations, acronyms) is commonly used. Despite the overall 

complexity of the considered task, the RNN-based approach that was 

proposed in this research activity performs well. In particular, the use of 

LSTM architectures allowed improving the system recall with respect to 

other approaches. Limiting false negatives is a challenge, as relevant events 

are usually mentioned in the reports by using terms that are often 

institution-specific (or even expert-specific), and are thus not likely to be 

found in standardized terminologies. For this reason, it is particularly 

important to develop an effective solution for the extraction of non-

standard events, too. As an interesting observation, the performed 

experiments indicate that integrating a well-performing supervised 

approach with a dictionary lookup strategy can represent a good choice to 

further improve the extraction performance. 

 

Limitations. The supervised methods proposed for event extraction suffer 

from some limitations. 

First, although a considerable effort was put into the corpus annotation, 

the size of the annotated dataset is small in comparison to other works (e.g., 

[40]). Also, although the annotation guidelines were developed through a 

shared effort, the dataset used in the performed experiments was annotated 

by a single person. Based on this work, the task seems to be learnable with 

high accuracy even with small datasets. However, since the scope was 

limited, questions remain about how general this conclusion is. In the 

future, two additional annotators will be involved, and more documents 

will be annotated with the information of interest. At the moment, a second 

annotator is working on the same subset of documents considered in this 

research activity, following the developed annotation guidelines. Analyzing 

the inter-annotator agreement will allow assessing the reliability of the 

annotations and the complexity of the problem. 

Another limitation related to the annotation process concerns the 

definition of the event tags: in this research activity, it was decided to 

consider clinical events mostly expressed through noun phrases, without 

taking into account verbs representing actions (e.g., “the patient 
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complained...”). In future work, it will be interesting to extend annotations 

to verbs denoting events, too. 

Finally, with respect to the developed RNN classifier, the proposed 

LSTM architecture was not combined to other models, such as CRFs. 

Although this choice was made to reach a trade-off between the complexity 

of the classifier and the still limited dimension of the annotated corpus, it 

would be interesting to explore additional configurations. 

4.3. Attribute extraction results 

This section presents the evaluation conducted for the attribute extraction 

task, which involves: (i) the development of the domain-specific ontology, 

and (ii) the use of this ontology to identify the names and the values of 

each event attribute. 

4.3.1. CARDIO ontology development 

To define the events and the attributes to be extracted from the CARDIO 

dataset, a domain ontology was manually developed (CARDIO ontology). 

The ontology was designed and refined on a development set including 

4429 reports. The main steps that were followed are shown in Figure 4.2. 

1. As a first step, a set of 20 reports were randomly selected from the 

development set and analyzed to identify the information of 

interest (“set for ontology design”). To define Event and Attribute 

classes in the ontology, both the information written in the text and 

the data stored in the Maugeri hospital’s system (TRIAD) were 

considered. For example, it was noticed that most reports include 

sections that describe specific diagnostic tests, with related results. 

As these results are also reported in TRIAD, they were considered 

as relevant items for the extraction. Starting from this observation, 

the specific attributes to be extracted were discussed with 

clinicians, who provided the clinical knowledge needed to deal 

with ambiguous terms and acronyms. After this manual analysis, 

each of the identified tests was modelled as an ontology Event 

(e.g., “ECG Test”), and all the related results were captured in 

suitable ontology Attributes (e.g., “Average Heart Rate”). To 

define which attribute types should be considered (numeric or 

categorical), both domain knowledge and the TRIAD structure 

were exploited. As a result of these analyses, a first version of the 

Attribute Annotator was created (system version 1). 

2. To evaluate the extraction performance, system version 1 was ran 

on the whole development set. The ontology and the annotator 

were then iteratively improved according to the results of an error 

analysis (Figure 4.2, step 2). In this phase, two major 
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improvements were performed on the ontology: many regular 

expressions were enhanced, and specific modifiers were created 

for a few ambiguous attributes. As regards the Attribute Annotator, 

the identification of attribute names was considerably improved by 

changing the definition of event-specific lookup windows. Thanks 

to the performed changes, a system version 2 was obtained. 

3. For the final evaluation, system version 2 was run on an 

independent test set (1003 reports). 

 

Figure 4.2: CARDIO Ontology development and refinement. 

The developed ontology contains 11 events and 61 attributes: 44 

attributes are numeric, the others are categorical. Figure 4.3 shows the class 

structure as it was defined in the Protégé framework. Both events and 

attributes are grouped into three main classes: Problem, Test, and 

Treatment (events with type Occurrence were not included as they are not 

currently related to any attribute). 
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Figure 4.3: Domain ontology for the CARDIO dataset. 

In the developed ontology, the main diagnosis of the patient represents 

one event (Diagnosis class) identified by its name, and currently has no 

attributes. Drug prescriptions represent another event (DrugTreatment 

class), identified by a name, with three attributes: dose, frequency and 

format. The other events are diagnostic procedures (e.g., ECGTest class, 

EchocardiogramTest class), each with several attributes. To provide an 

example, Figure 4.4 shows how the ECG test class is related to several 

attributes through the “hasAttribute” relation. 

 

Figure 4.4: ECGTest class description. 
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4.3.2. Validation against TRIAD 

As explained in Section 3.8.2, the performance of attribute extraction was 

evaluated against TRIAD, the hospital system recording data about patient 

diagnoses, tests, and treatments. In particular, the evaluation was conducted 

on the five events most frequently stored in TRIAD: main diagnosis, 

prescribed drugs, and three diagnostic tests (ECG, Holter ECG, and Effort 

stress test). For prescribed drugs, two evaluations were performed: (i) an 

evaluation focused on only drug names, and (ii) an evaluation considering 

drug names with associated dosages. Given that drug format and 

prescription frequency are not included in TRIAD, these two attributes 

were not evaluated. 

In the process of developing the ontology and the Attribute Annotator, 

two system versions were created: system version 1 and system version 2 

(Figure 4.2). In the evaluation phase, system version 1 was run on the 

development set (Table 4.8). The final system version 2 was run both on the 

development and the test sets. Results on the test set are shown in Table 

4.8; it is important to mention that a similar performance was obtained on 

the development set (data not shown). In the table, column “a” represents 

the number of items extracted by the system; column “b” represents the 

number of extracted items for which an entry was detected in TRIAD; 

column “c” corresponds to the number of correct annotations; column “d” 

represents the accuracy, computed as c/b. Cells marked with * are related 

to the results for drug names and dosages. 

Table 4.8: Evaluation of system version 1 on the development set, and of 

system version 2 on the test set. SV: System Version. 

SV Set 
Event 

Name 

System 

Items (a) 

TRIAD 

Items (b) 

Correct 

Annot. (c) 

Accuracy 

(d) 

1 

 

Dev 

(4429 

docs) 

Main 

Diagnosis 
4202 4077 3607 88.5% 

ECG 26669 22546 21352 94.7% 

Holter ECG 26767 21538 19058 88.5% 

Effort 

Stress Test 
9683 3978 2367 59.5% 

Prescribed 

Drug 

8720 

(8270*) 

2436 

(4584*) 

2186 

(2860*) 

89.7% 

(62.4%*) 

2 

 

Test 

(1003 

docs) 

Main 

Diagnosis 
927 913 845 92.6% 

ECG 7452 5070 4885 96.4% 

Holter ECG 7173 5127 4757 92.8% 

Effort 

Stress Test 
2543 1118 1064 95.2% 

Prescribed 

Drug 

1999 

(1999*) 
538 (930*) 435 (672*) 

80.9% 

(72.3%*) 
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  In the evaluation of system version 1, an accuracy of 88.5% was obtained 

for diagnoses. The error analysis showed that most errors were due to 

problems in matching diagnosis names in reports with the corresponding 

entries names in TRIAD. As regards tests, the system achieved the best 

accuracy for ECGs (94.7%), followed by Holter tests (88.5%), which are 

described with more complex sentences. On the other hand, a poor 

performance was obtained for Effort Stress tests (59.5%). In this case, the 

main issue was the misclassification of attributes that are written in the 

same way (e.g., “QT” for QT interval), but are related to different test 

phases (e.g., baseline, stress, recovery QT length). Regarding drug 

prescriptions, drug names identification led to good results (89.7%). 

However, extracting drug dosages was not trivial (62.4%) because, while 

the TRIAD database contains only daily doses, reports often include 

sentences with both unit dosages and frequencies of assumption. 

In the evaluation of system version 2 on the test set, higher accuracies 

were achieved for almost all events. For diagnoses, the knowledge provided 

by physicians was exploited to refine the mapping of the terms used in 

TRIAD to those used in the reports. The most significant improvement 

concerned effort stress tests, with an increase in accuracy from 59.5% to 

95.2%. The only decrease in performance was given by drug names (from 

89.7% to 80.9%). Many of the non-matching drug names in this case were 

due to the insertion of erroneous data in TRIAD: two very similar drugs 

(“Metoprolol” and “Metoprolol Retard”) were frequently stored with the 

same name. 

4.3.3. Discussion 

In this research activity, besides extracting clinical events, the proposed IE 

approach allows capturing attributes of interest and linking them to the 

events they are related to. To define events and related attributes, a domain-

specific ontology was developed. 

 

Ontologies for information extraction. Formalizing information through 

ontologies brings several advantages. First, thanks to the flexible Event-

Attribute structure, it is possible to relate the same attribute to different 

events, reusing shared concepts multiple times. Second, the inclusion of 

regular expressions in the ontology makes the proposed approach easily 

language extensible. To analyze reports in another language, it would be in 

principle sufficient to translate regular expressions. This multilingual 

extension will be further discussed in Section 5.1. Finally, although 

ontologies are built for a specific domain, they allow easy updates and 

extensions to account for new information. The proposed approach, for 

example, could be applied to the analysis of reports coming from other 

clinical domains. To adapt the system, only the ontology (and possibly the 

external dictionaries) should be updated. A detailed discussion on this 
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aspect will be provided in Section 5.2, which presents an extension of the 

developed ontology to process anatomic pathology reports for breast cancer 

patients. 

The possibility to adapt an IE system to a new language or domain is an 

important feature, as it allows reusing the same framework to process 

different kinds of documents. As a main advantage of the approach 

proposed in this thesis, it is possible to tune the underlying ontology 

without the availability of annotated data. On the other hand, efforts have 

to be put into manually defining the entities to be extracted, as well as their 

regular expressions. Conversely, using a machine learning approach, 

adapting the extraction system would only require re-training the 

underlying classification model. However, this step could not be performed 

without the availability of a large and reliably-annotated corpus. As a 

matter of fact, manually developing such a corpus would probably require 

greater efforts with respect to those needed for ontology adaptation. 

 

Comparison to related work. Although a few works have used ontologies 

for clinical NLP, it is possible to highlight a few differences between the 

approach used in this research activity and previous efforts on this area. 

Spasić et al. developed an ontology-driven system, KneeTex, that extracts 

information from English knee MRI reports [29]. KneeTex is focused on 

the extraction of findings and anatomical regions, with possible classifiers 

defined in the ontology. Although the resulting system performs very well 

for the considered task, the developed ontology is strongly domain-specific. 

In the CARDIO ontology, instead, the definition of events and attributes is 

more general, thus facilitating the extension to other clinical domains. 

Mykowiecka et al. proposed an ontology-driven system to analyze 

mammography reports in Polish [30]. The proposed system works well on 

the analyzed clinical domain. However, a considerable manual effort was 

put into complex rules engineering. As a main difference, the CARDIO 

ontology is automatically translated into an XML file, which is then given 

as an input to the NLP pipeline. Moreover, the approach used to extract and 

relate information has a smaller dependency on syntax. Toepfer et al. used 

an ontology to extract objects (with attribute and values) from German 

transthoracic echocardiography reports [31]. The developed IE system 

performs well. The proposed ontology structure is similar to the CARDIO 

one, especially as regards the definition of attributes and values. As one 

main difference, the IE task proposed in this research activity does not 

consider objects, but events characterized by a semantic type. Moreover, 

events are related to attributes that can be either numeric or categorical, 

rather than only textual variants. As a final consideration, while Toepfer et 

al. defined the ontology in a semi-automatic way, the CARDIO ontology 

was developed by manually analyzing reports. In the future, it would be 

interesting to explore the possibility of automatically developing the 

ontology from free-text [126,127]. To this end, concepts automatically 

extracted from UMLS could be exploited. 
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As a distinctive feature of this research activity, it was possible to 

exploit a structured database, i.e., TRIAD, to guide the definition of the IE 

task and evaluate the extraction performance. The availability of structured 

data that is correlated to the text content is an interesting situation. With 

respect to the methodology proposed in this thesis, for example, it could be 

possible to automatically define the IE ontology starting from TRIAD, thus 

reducing the manual effort needed to extract relevant information from text. 

 

Limitations. The approach proposed for the extraction of event attributes 

has some limitations. First, given the unavailability of annotated data, it 

was not possible to evaluate the performance on a gold standard dataset. 

Given the large size of the CARDIO dataset, manually annotating all the 

documents would be hard and time consuming. To overcome this issue, 

system annotations were validated against the data included in TRIAD. 

However, only the item values that are both extracted from reports and 

found in TRIAD could be considered, thus focusing on the accuracy of 

extracted items. To evaluate false negatives, data that are available in 

TRIAD, but not extracted from reports, should be considered. Since 

additional sources could have been used to fill in the database, some 

attributes that are available in TRIAD may not be present inside the 

documents; for this reason, computing FNs (and therefore the system’s 

recall) is not possible. To evaluate false positives, on the other hand, data 

extracted from reports, but not available in TRIAD, should be considered. 

Given that data entered in TRIAD are not guaranteed to be complete, it is 

hard to evaluate false positives as well. As a final remark, even when the 

same items are present in both reports and TRIAD, there could be human 

errors in data entry.  

Another limitation of the proposed approach concerns the structure of 

the considered reports. In the Italian clinical setting, the structure of 

clinical free text reports is in general defined by the specific center that 

issues the report to the patient. For this reason, completely unstructured 

documents are as frequent as more structured texts organized in sections 

and paragraphs. In the majority of the documents considered in this work 

the content is organized in a clear way, and it is possible to identify 

specific sections, some of which actually correspond to clinical events 

(e.g., “ECG test”, “Holter ECG test”). This feature may have affected the 

results that were obtained, which may not extend equally well to other 

clinical corpora. 

As a final limitation, regular expression matching was used to look for 

attribute names and values in the text. However, the possible variants of 

concepts were not considered (except those already included in the 

ontology). Also, misspelled forms were not dealt with. To further improve 

the developed system, these aspects will be considered in a future version. 
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4.4. Temporal expression extraction results 

This section presents the results obtained for the TIMEX extraction task, 

which consists in correctly identifying the text spans and the properties of 

the temporal expressions mentioned in the texts. 

4.4.1. Text span extraction 

For extracting the text spans denoting temporal expressions, the Italian 

version of HeidelTime was used. In particular, the system was adapted to 

the molecular cardiology domain by manually looking at a subset of reports 

included in the annotated training set. 

Table 4.9 reports the results obtained by running the original system on 

the training set, and the updated system on both the training and the test 

sets. As shown in the first two rows of the table, tuning the system’s 

resources allowed increasing the F1 score from 59.2% to 93.8% on the 

training set. On the other hand, using the updated system on the test set 

resulted in an F1 score of 95.1%. 

Table 4.9: Results for the extraction of TIMEX text spans. 

System Set TP FP FN F1 

HeidelTime 

original 
Training 425 196 389 59.2% 

HeidelTime 

updated 
Training 760 47 54 93.8% 

HeidelTime 

updated 
Test 273 13 15 95.1% 

4.4.2. Property extraction 

To identify the properties of each TIMEX (type, value, and mod), both 

HeidelTime and TimeNorm were adapted to the clinical context by 

analyzing a subset of reports in the annotated training set.  As inputs to 

TimeNorm, the TIMEXes extracted by the “updated” version of 

HeidelTime were considered. 

Table 4.10 shows the accuracies obtained for the property extraction 

task. In particular, the results marked in bold represent the final 

performance of the two updated systems on the test set. 

Starting with HeidelTime, running the original system on the training set 

obtained initial high accuracies (above 91%) for the three considered 

properties. Tuning the system’s rules on the training set allowed greatly 

improving the value extraction accuracy (from 91.5% to 97.8%). However, 

this same accuracy was slightly lower on the test set (93.8%). With respect 
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to the other properties, the highest improvement in accuracy was obtained 

for the type property (accuracy of 99.3% on the test set). 

Moving to the TimeNorm performance, running the original system on 

the training set obtained worse results with respect to those of HeidelTime 

(accuracies between 57% and 71%). Thanks to the system’s adaptation, it 

was possible to greatly improve the performance over the training set, with 

the highest improvement for the value property (from 56.7% to 94.5%). 

Using this updated system on the test set resulted in good results, too 

(accuracies around 90% for the three properties).  

Table 4.10: Results for the extraction of TIMEX type, value, and mod 

properties. 

System Set TP Property Correct Accuracy 

HeidelTime 

original 
Training 425 

type 404 95.1% 

value 389 91.5% 

mod 423 99.5% 

HeidelTime 

updated 
Training 760 

type 717 94.3% 

value 743 97.8% 

mod 757 99.6% 

HeidelTime 

updated 
Test 273 

type 271 99.3% 

value 256 93.8% 

mod 271 99.3% 

TimeNorm 

original 
Training 760 

type 521 68.6% 

value 431 56.7% 

mod 540 71.1% 

TimeNorm 

updated 
Training 760 

type 717 94.3% 

value 718 94.5% 

mod 686 90.3% 

TimeNorm 

updated 
Test 273 

type 247 90.5% 

value 243 89.0% 

mod 243 89.0% 

 

To take into account the class imbalance problem for the type property, 

Table 4.11 reports the F1 scores for each type value on the test set.  From 

this table, it is possible to notice that overall high F1 scores were obtained 

for most TIMEX types (F1 scores between 89% and 99%). As a matter of 

fact, the only low result was obtained by TimeNorm on TIMEXes with type 

Time (F1 score of 58.6%). 
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Table 4.11: F1 scores for each TIMEX type value (test set). 

System Raw accuracy F1 score for each value 

HeidelTime 

updated 
99.3% 

Date  99.1% 

Duration 88.7% 

Set  97.0% 

Time  95.0% 

TimeNorm 

updated 
90.5% 

Date  93.9% 

Duration 89.8% 

Set  97.0% 

Time  58.6% 

4.4.3. Discussion 

In this thesis, two existing rule-based systems for the extraction of 

temporal expressions were applied to medical reports written in Italian. 

 

TIMEX extraction results. The extraction of TIMEX text spans was 

performed by adapting the HeidelTime system to the molecular cardiology 

domain. As shown in Table 4.9, this adaptation allowed a great 

improvement of the F1 score over the training set (from 59.2% to 93.8%). 

As an interesting observation, the same updated system obtained a higher 

F1 score on the test set (95.1%), which is probably due to the small 

variability of the temporal expressions included in these reports. 

As regards the extraction of TIMEX properties, it was decided to 

compare the performance of two systems, HeidelTime and TimeNorm, 

which rely on different rule-based approaches. From Table 4.10 it is 

possible to notice that HeidelTime performed better than TimeNorm for the 

extraction of all TIMEX properties. Starting from the value property, the 

adaptation of HeidelTime resulted in an increase in accuracy from 91.5% to 

97.8% on the training set, with a final accuracy of 93.8% on the test set. 

Conversely, the adaptation of TimeNorm allowed raising the accuracy from 

56.7% to 94.5% on the training set, with a final accuracy of 89.0% on the 

test set. Moving to the type property, while applying HeidelTime on the 

test set allowed obtaining an accuracy of 99.3%, using TimeNorm on the 

same documents resulted in an accuracy of 90.5%. As shown in Table 4.11, 

this lower result was mostly due to the difficulty in correctly identifying 

the temporal expressions with type Time (F1 score of 58.6%). With respect 

to the mod property, finally, HeidelTime achieved an accuracy of 99.3% on 

the test set, whereas TimeNorm obtained an accuracy of 89.0%. 

As an important remark, the lower results obtained by TimeNorm could 

be probably explained by considering that this system does not access the 

TIMEX context. As a matter of fact, to normalize specific temporal 

expressions, knowledge about their surrounding context would be needed. 

For example, when dealing with times for drug prescriptions (e.g., “at 8, 

20”), accessing the preceding tokens would be crucial to obtain a correct 

value normalization. 
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Comparison to related work Despite the unavailability of papers on 

temporal IE from clinical narratives in the Italian language, it is interesting 

to compare the results obtained in this research activity to other works 

using the HeidelTime or the TimeNorm systems. 

In the EVENTI task for temporal IE from newspaper texts [90], both 

systems were used and adapted to analyze the Italian language [92,93]. 

Manfredi et al. worked on tuning HeidelTime resources to process the 

documents included in the EVENTI dataset [92]. As stated by the authors, 

most efforts were put into extending the existing Italian resources by 

carefully applying the guidelines provided by the task organizers. In 

particular, while modifying existing patterns to improve normalization was 

regarded as a rather simple task, a considerable work was needed to 

improve the performance in the extraction phase. By running the updated 

system on the test set, the authors obtained F1 scores of 82.1%, 70.9%, and 

79.2% for the extraction of text spans, TIMEX values, and TIMEX types, 

respectively. These results are lower than the ones obtained in this research 

activity, which might be explained by the greater complexity of the 

EVENTI tasks definition. As another interesting work, Mirza and Minard 

adapted the TimeNorm system for normalizing the temporal expressions 

included in the EVENTI dataset [93]. The main adaptations concerned the 

translation and the modification of the existing English grammar and a few 

modifications on the TimeNorm code. Also, a preprocessing step was 

performed to deal with temporal expressions formed by only one or two 

digits (either a unit or the name of a month are added, based on the TIMEX 

context). By performing experiments on the test set, the accuracy in 

determining the TIMEX value was 66.5%, while the accuracy in 

determining the TIMEX type was 80.0%. Also in this case, the obtained 

performance is lower than the one presented in this research activity, which 

is probably due to the difference in complexity between the two considered 

tasks. 

As an interesting work exploring HeidelTime on non-English clinical 

narratives, Hamon and Grabal proposed the tuning of this system for 

identifying temporal expressions in clinical texts written in English and in 

French [128]. For the English use case, the authors exploited the corpus 

used in the 2012 i2b2 Challenge [41]. The French corpus, instead, was 

developed for the purpose of the specific study. In this corpus, 182 

documents were used as the training set, and 120 documents were used as 

the test set. As stated by the authors, the most important adaptations 

involved the enrichment and the encoding of linguistic expressions specific 

to the clinical domain, such as “b.i.d.” (i.e., twice a day). This finding is 

similar to the one that was reached by adapting the HeidelTime system on 

the CARDIO dataset. As regards the performance on text span extraction, 

the evaluation conducted on the English dataset resulted in an F1 score of 

85%, while the experiments performed on the French dataset obtained an 

F1 score of 94.3%. As a matter of fact, these results are in line with the F1 

extraction scores shown in Table 4.9. 
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Limitations. The approach proposed for temporal IE presents one main 

limitation, that is the small size of the annotated dataset. In particular, the 

good results that were obtained might be influenced by the limited 

variability of the temporal expressions found in the texts, i.e. the annotated 

TIMEXes are frequently expressed in very similar ways. Despite this 

limitation, the conducted experiments show that it is possible to port rule-

based systems for temporal processing from the general to the clinical 

domain. As a future improvement, an extension of the annotated corpus 

will be performed. 

4.5. Reconstructed patient timelines 

This section presents the results obtained for the timeline reconstruction 

task, which requires to consistently aggregate all the events referring to one 

patient on a single temporal line. 

 

The CARDIO dataset includes 5432 documents belonging to 1786 

different patients. To highlight the importance of aggregating different 

reports referring to the same individual, Table 4.12 reports the distribution 

of the number of documents that are available for each patient. For 649 

patients (36.3%), the corpus contains only one report. For all the other 

patients, at least two reports could be retrieved. 

Table 4.12: number of reports per patient (CARDIO dataset). 

# patient 

reports 
# patients % patients 

1 649 36.3 % 

2 333 18.6 % 

3 244 13.7 % 

4 185 10.4 % 

5 153 8.6 % 

[6-10] 187 10.5 % 

[11-15] 27 1.5 % 

[16-29] 8 0.4 % 

4.5.1. Patient timeline validation 

To assess whether the complete system was able to correctly aggregate data 

belonging to the same patient, a preliminary evaluation was performed by 
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randomly selecting one patient, and manually reviewing his/her clinical 

timeline. In particular, two versions of the timeline were reviewed. In the first 

version, only the events that “overlap” the document creation time were 

considered (simple timeline). In the second version, events that happen 

“before” or “after” the document creation time were included, too  

(complete timeline). In this case, the temporal links computed through a 

rule-based approach were exploited (Section 3.7.1). 

For the selected patient, the corpus contains 10 documents. In the simple 

timeline, 83 distinct events with an OVERLAP relation to the document 

creation time were identified. All these events are associated to the 

corresponding visit date, and events mentioned multiple times are 

consistently aggregated. In the complete timeline, 123 distinct events were 

extracted and visualized. Of these, 40 events were associated to a specific 

date thanks to the computed temporal links. 

Figure 4.5 shows one portion of the reconstructed timeline, together with 

the additional information that is visualized when one event is selected. For 

example, for the ECG test performed in May 2011 (Figure 4.5-a), the 

system displays nine extracted attributes (heart rate, PQ length, etc.), with 

their associated values. For the clinical problem “sudden death” (morte 

improvvisa, Figure 4.5-b), the displayed information regards the section 

(“Family history”), the polarity (“affirmed”) and the experiencer (“family”) 

of the event. 

 

Figure 4.5: Portion of patient simple timeline with event details. 
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To allow comparing the simple and the complete versions of the 

timeline, Figure 4.6 and Figure 4.7 show these two different 

reconstructions for the same patient. As it can be noticed from these 

figures, the complete timeline includes a higher number of events, i.e., 

including those that were found through the temporal links. In particular, 

each of these “additional” events is also related to the document containing 

the event mention itself. For example, Figure 4.7 shows how the 

highlighted Echocardiogram event (“Ecocardiogramma”) was found in a 

specific report (“Visit ID: 2201”). 

 

Figure 4.6: Patient simple timeline. 

 

Figure 4.7: Patient complete timeline. 

As explained in Section 3.7.2, the reconstructed timelines were 

visualized thought the TimelineJS tool. As an interesting visualization 

feature, TimelineJS allows both adjusting the temporal granularity and 

switching from one event to the other in a dynamic way. By exploiting 
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these functionalities, it is easy to visualize and compare events regardless 

of their temporal distance. 

4.5.2. Discussion 

The system presented in this research activity extracts and summarizes 

individual information included in longitudinal medical reports. Extracted 

information is aggregated and displayed on a clinical timeline that can be 

used in an interactive way. 

Many methods have been proposed in the literature to automatically 

perform patient record summarization [96]. Although a few summarizers 

have been developed to deal with textual reports, most of them are intended 

to process documents written in English. This research activity is focused 

on the design and the implementation of summarization methods for the 

Italian language. 

Although the proposed system is still at an early stage, the qualitative 

evaluation that was performed indicates that it is able to present 

information effectively and timely. For example, looking at the timeline 

portion reported in Figure 4.5-a, it is immediately clear that the selected 

patient performed an ECG test with certain results on a specific date. By 

improving both the NLP pipeline and the visualization strategy, it would be 

possible to enrich the timeline as needed. 

 

Comparison to previous work. Besides the considered language, the 

proposed approach differs from previous works in other ways. As regards 

the way to display the information, Liu and Friedman use an XML tree 

structure to visualize summarized records [99], while Bashyam et al. 

present information as a problem list that can be used to populate a timeline 

grid [100]. In this research activity, it was decided to display aggregated 

data by building an interactive clinical timeline. This is similar to the 

approach proposed by Hirsch et al. [101]. However, while HARVEST is a 

problem-oriented system (since it renders patient data through a timeline 

and a problem cloud), this dissertation deals with events with different 

semantic types, including treatments and procedures. Moreover, additional 

information on the extracted events (e.g., attributes of interest) is integrated 

into the timeline. 

 

Use in the clinical practice. The developed system has the potential to 

serve as a useful cognitive support for physicians for multiple reasons. 

First, it allows reducing the time needed to retrieve single patient 

documents and manually search for information in free-text. Second, it 

displays information belonging to the same patient on a single temporal 

line, facilitating the process of reviewing and making sense of multiple data 

points. Besides its usage for patient-level summarization, the system could 

be exploited to compare the clinical histories of different patients. This 
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analysis would be useful to support decision making in case of patients 

with similar records. 

As regards the data sources to be summarized, this research activity is 

focused on unstructured medical reports. The application of NLP 

techniques to the clinical text is an important step to gather all the valuable 

information that is available for one patient. Nevertheless, relevant clinical 

data are often available also in other formats. As previously pointed out, in 

the Molecular Cardiology Unit of the ICS Maugeri hospital, patient data 

are stored in a structured database called TRIAD. In the future, it would be 

interesting to integrate this data source, too. As another major extension, 

the system could be enriched with non-textual data, such as diagnostic 

images and signals. From the technical point of view, these types of content 

could be easily integrated into the timeline, allowing physicians to 

visualize patient information from different sources at the same time.  

 

Limitations. Although the proposed approach allows visualizing 

information effectively and timely, some limitations can be highlighted. As 

a first drawback, the duration of events is currently not considered, i.e., 

each event is related to a single specific date. This assumption does not 

accurately represent those conditions or prescriptions that start during one 

visit and last for a certain period of time. To overcome this limitation, 

further work on temporal relation extraction will be performed. In 

particular, for events that can be related to an interval of time rather than a 

date (e.g., temporal links with class “BEGINS_ON” or “ENDS_ON”) , 

suitable temporal spans will be displayed. 

Another limitation of this work concerns the lack of a comprehensive 

evaluation. As noted by Pivovarov et al., previous research on clinical 

summarization lacks standard evaluation metrics [96]. In the analyzed 

literature, indeed, different evaluation approaches were used. Liu and 

Friedman conducted an experiment to determine whether their system 

functioned properly and promptly: they generated the default views for 

three patients with more than 10 discharge summaries [99]. Bashyam et al. 

evaluated the different modules of the proposed NLP system, and obtained 

positive feedback from the users who tried the whole system on a small set 

of reports [100]. Hirsch et al., finally, assessed clinical usability with 

physician participants, using a timed, task-based chart review and 

questionnaire [101]. As a general consideration, evaluating a summarizer 

ideally requires either comparing automatically-created summaries to gold 

standard ones, or assessing its usefulness for the completion of a specific 

task. In the first case, a considerable human effort should be put into gold 

standard creation. In the second case, implementation into clinical care 

would be needed. Nevertheless, the extraction performance on single 

reports was evaluated (i.e., event, attribute, and TIMEX extraction), 

obtaining good results. As regards the whole summarizer, it was decided to 

perform a manual review of one patient clinical timeline. The resulting 

qualitative considerations could be considered as a preliminary evaluation 

for the complete system. 
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Chapter 5 

5 Extensions and integrations 

This chapter presents and discusses a few additional experiments conducted 

during this research activity. Section 5.1 describes a multilingual extension 

of the developed IE pipeline, considering English texts provided by the 

Molecular Cardiology Laboratories of the ICS Maugeri hospital. Section 

5.2 discusses the extension of the event-attribute extraction task to a 

different domain, highlighting the main changes to be addressed. In 

particular, medical reports belonging to patients with breast cancer were 

considered. Finally, Section 5.3 illustrates two applications of the 

developed IE techniques in a real setting: the first one involves the 

cardiology domain, while the second one concerns oncology reports. 

5.1. Multilingual extension 

The IE pipeline presented in this dissertation was developed for processing 

medical reports written in Italian. However, most of the described modules 

rely on tools and resources that are applicable to other languages, too. For 

example, the TextPro tool, the UMLS dictionary, and the HeidelTime tool 

are available also for the English language. In addition, the RNN-based 

event annotator could be easily trained on English texts, provided the 

availability of annotated data. 

As anticipated in Section 3.5.2, the attribute extraction module is the 

only step in the IE pipeline which heavily depends on the reports language, 

due to the use of regular expressions that are specific to the considered 

corpus. To assess the multilingual extendibility of the proposed approach, 

experiments were run on an English corpus belonging to the molecular 

cardiology domain. In this section, the results of this multilingual extension 

are described. 
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5.1.1. English cardiology dataset 

To test the multilingual extension of the proposed approach, a suitable 

English corpus had to be used. Although the Molecular Cardiology Unit 

outpatient service is mostly delivered to Italian patients, it was possible to 

find 37 reports written in English (prepared for foreign patients), which had 

a similar structure with respect to the Italian ones. These reports were used 

for the translation of the ontology and the evaluation of the attribute 

extraction module. In particular, 10 documents were used as a guide to 

translate regular expressions, and the remaining 27 reports were used as the 

test set. 

5.1.2. Validation against TRIAD 

After adapting the pipeline to the analysis of English text, the resulting 

system (system version 2-EN) was run on the English test set (27 reports). 

As for the Italian pipeline, the evaluation was conducted against the 

TRIAD system. 

Table 5.1 reports the results obtained for this multilingual extension. As 

it can be noticed from column “d” (Accuracy), the English pipeline 

obtained good accuracies, in particular for the extraction of diagnoses 

names (94.7%), ECG test attributes (94.9%), and drug names (85%). 

However, for events that are described with long sentences, a slightly lower 

performance can be highlighted with respect to the Italian counterpart. In 

particular, the English pipeline obtained accuracies of 86.2% for the Holter 

ECG test, and of 87.2% for the Efforts Stress test. The corresponding 

accuracies for the Italian pipeline were 92.8% and 95.2%, respectively 

(Table 4.8). This difference in results was probably caused by a few 

translations that were not straightforward, mainly due to syntactic 

differences among languages (e.g., word order). 

Table 5.1: Multilingual extendibility results. SV: system version. 

SV Set 
Event 

Name 

System 

Items (a) 

TRIAD 

Items (b) 

Correct 

Annot. (c) 

Accuracy 

(d) 

2- 

EN 

 

EN 

test 

(27 

docs) 

Main 

Diagnosis 
27 19 18 94.7% 

ECG 183 78 74 94.9% 

Holter ECG 115 65 56 86.2% 

Effort 

Stress Test 
110 39 34 87.2% 

Prescribed 

Drug 
91 (91*) 20 (31*) 17 (23*) 

85% 

(74.2%*) 
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5.1.3. Discussion 

The ontology proposed in this research activity was developed for clinical 

text written in Italian. To evaluate the feasibility of a multilingual 

extension based on translation, the IE pipeline was adapted to process a set 

of clinical reports in the English language.  

 

Multilingual extension. Although the considered corpus was small, this 

preliminary evaluation showed encouraging results. Despite this, it must be 

pointed out that the syntactic structure of sentences can be different across 

languages: the translation of concepts could be not straightforward, 

especially for those that are expressed by several words. To mitigate this 

issue, one option could be restricting attribute names to span only one word 

(e.g., “Regurgitation” instead of “Mitral regurgitation”), and including all 

other identifying words (e.g., “Mitral”) in a suitable modifier, to be 

searched for in a lookup window. However, this solution would introduce a 

layer of complexity into the definition of the ontology. As another 

interesting observation, all the considered reports were written in English 

by Italian physicians, which might have introduced a translation bias. In 

other words, these documents could be closer to Italian reports than those 

written by native English speakers. In future work, it will be interesting to 

re-evaluate the system performance on a corpus of documents issued by an 

English institution. Finally, since the multilingual extendibility assessment 

was focused on the ontology, the different coverage of dictionaries across 

languages was not considered. Analyzing this aspect would be instead 

relevant in a more comprehensive assessment including the whole NLP 

pipeline. 

 

Limitations. A main limitation of the described multilingual extension 

concerns the size of the considered corpus. To ultimately assess the 

feasibility of an approach based on ontology translation for multilingual 

extendibility, it would be necessary to consider a larger corpus, with more 

variability. Unfortunately, it was not possible to retrieve many documents 

that were originally written in English, and it was decided not to 

automatically translate reports to avoid introducing translation errors. Still, 

the evaluation that was conducted can be considered as a preliminary 

assessment, with promising results. 

5.2. Extension to different domains 

The IE pipeline presented in this dissertation was developed for processing 

medical reports in the field of molecular cardiology. However, most of the 

described modules could be used to process documents belonging to other 

domains, too. First of all, the UMLS Lookup Annotator searches for entries 

included in a wide terminology, containing terms from different medical 

specialties. As regards the other annotators, adaptations to other domains 
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are feasible as well. For example, the Event Annotator can receive as inputs 

different medical dictionaries, provided as external resources through a 

configuration file. The RNN-based classifier could be easily retrained on 

other texts, subject to the availability of reliable annotations. With respect 

the temporal IE modules, tuning the underlying resources on a specific 

domain should be straightforward, as it has been done for the molecular 

cardiology field.  

Due to the use of an ontology, the attribute extraction module is the 

pipeline step with the highest dependency on the considered domain. To 

assess the extendibility of the proposed approach to other domains, 

experiments were run on a corpus of medical reports belonging to the 

oncology field. In this section, the results of this adaptation are described. 

5.2.1. Oncology dataset 

The extendibility of the developed pipeline was assessed on a corpus of 

medical reports provided by the Hospital Papa Giovanni XXIII in Bergamo, 

Italy. This corpus, which will be referred to as ONCO dataset, consists of 

221 anatomic pathology reports belonging to patients with breast cancer. 

Each report in the ONCO dataset is generated through an electronic 

form, which includes a set of predefined sections to be filled in by 

physicians. The most relevant sections are the following: 

• Clinical information (Notizie cliniche), including references to 

previously performed tests. 

• Sent specimen (Materiale inviato), describing one or more 

analyzed specimens, such as a breast quadrant or a nipple. 

• Specimen description (Testo macro), containing details on the 

analyzed specimens (e.g., their size). 

• Diagnosis (Testo diagnosi), illustrating the reached diagnostic 

conclusions (e.g., “invasive ductal carcinoma” or “no metastasis 

found”). In this section, the histopathological stage of the tumor 

and possible prognostic factors are usually reported. 

In Figure 5.1, an example of a complete anatomic pathology report is 

depicted. In this case, four sections are highlighted: “clinical information”, 

including the references to three previous examinations, “sent specimen”, 

which lists five different specimens, “specimen description”, containing a 

few details about the analyzed specimens, and “diagnosis”, which reports 

the diagnostic conclusions for each of the analyzed specimens. 
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Figure 5.1: Example of a medical report in the ONCO dataset. The 4 

sections composing the report are highlighted. 

It is important to point out that specimen mentions can be found in both 

the “Sent specimen” and the “Specimen description” sections. As a matter  

of fact, physicians could use the first section to provide a very general 

description, and exploit the second section to characterize all the analyzed 

elements in detail. Moreover, whenever multiple items are mentioned in the 

“Sent specimen” section, each of them is assigned a different number 

(specimen number). These numbers are then used in the other sections to 

keep track of the specific item that is being referred to. In Figure 5.1, an 

example of this particular structure can be found. 

As another important remark, each report might include different 

diagnoses, each related to one specific specimen. For example, in the report 

shown in Figure 5.1, an invasive ductal carcinoma was found in the first 

analyzed specimen (a breast quadrant, with the areola and the nipple), 

while the other specimens did not show signs of neoplasia (for three 

margins) or metastasis (for the axillary lymph nodes). 

5.2.2. Information extraction task 

As a first step for adapting the developed pipeline to the oncology domain, 

it was necessary to formalize the IE problem, identifying the information to 

be extracted from the texts. To this end, a set of 20 reports was randomly 

selected to be manually reviewed and discussed with physicians (“set for 

ontology design”). Moreover, to facilitate the identification of relevant 

concepts (including their variants), the n-grams that are most frequent in 

the considered dataset were computed. 
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As the result of these first analyses, the following relevant entities were 

identified: 

• Specimen. Given that anatomic pathology reports describe 

pathologic findings on one or more specimens (e.g., core biopsies, 

organ portions), these entities were considered as one of the main 

targets for the IE task. To identify the most frequent specimen 

types, the Italian guidelines on the use of cells and tissues for 

diagnostic investigations were exploited [129]. In particular, 

according to these guidelines, all specimens can be grouped in two 

categories: biopsies or surgical resections. 

• Diagnosis. Considering that each document contains relevant 

diagnostic conclusions (even in a negated form), these diagnoses 

represented another important information to be extracted. To 

specify the most relevant diagnoses that can be found in the texts, 

the medical knowledge provided by physicians was fundamental. 

• Histopathological stage. In the case a breast cancer is found, the 

related report often includes its histopathological stage, which 

follows a standardized format called “TNM staging system” [130]. 

According to this format, specific characters are used to identify 

the tumor size (T), the lymph node involvement (N), and whether 

the cancer has metastasized (M). As the histopathological stage 

summarizes the main findings obtained by analyzing the specimen, 

extracting this entity was essential. 

• Prognostic factor. Prognostic factors are patients’ characteristics 

that are used to estimate the chance of recovery from a disease or 

the chance of a relapse [131]. Reports in the ONCO dataset 

frequently include an assessment of a few prognostic factors, such 

as the expression of estrogen receptors and progesterone receptors 

in a breast cancer. As discussed with physicians, it was important 

to capture the results of these assessments, too. 

Ontology structure. In this research activity, to extract information from 

medical reports, it was proposed to use a domain ontology structured into 

event and attribute classes. To reuse this structure to analyze reports in the 

ONCO dataset (thus creating an ONCO ontology), the four identified 

entities were modeled as ontology events (specimen, diagnosis, 

histopathological stage, prognostic factor), and for each of these events a 

few attributes of interest were identified. For example, analyzed specimens 

can be related to a specific size (e.g., “8x5x3 cm”), while assessed 

prognostic factors can be linked to a test result (positive or negative). 

Moreover, both specimens and diagnoses can be related to the specimen 

number. 

 

Event-Event relations. In the automatic processing of anatomic pathology 

reports, it is important to keep the relation between each extracted 

diagnosis and the specimen it refers to. In the ONCO ontology, diagnoses 
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and specimens were both represented as Events, each associated to specific 

attributes. To allow creating diagnosis-specimen links, therefore, an 

extension of the event-attribute approach was required. In particular, 

relations between pair of events were taken into account, too. 

To allow linking each diagnosis to its related specimen, a new UIMA 

annotator was developed and integrated into the IE pipeline. For each 

diagnosis extracted from the text, the annotator looks for the related 

specimen in two different ways. First, a specimen mention is looked for in 

the same sentence containing the diagnosis. Second, the fact that each 

diagnosis and specimen can be related to a specific number is exploited. In 

particular, for those diagnoses that are linked to one number, this number is 

used to retrieve the associated specimens. 

5.2.3. ONCO ontology development 

To develop and refine the ONCO ontology and the annotation process, the 

same approach proposed for the CARDIO application was used (Section 

4.3.1). The first version of the system (system version 1) was built on the 

“set for ontology design”, considering both the information written in 

reports (with the aid of automatically computed n-grams) and the available 

domain knowledge. Then, the ontology and the annotator were refined in an 

iterative way, evaluating the system’s performance on the same “design” 

set. 

For the ONCO application, there was no availability of a structured 

database to be used as the gold standard. However, the system’s output was 

iteratively validated through several discussions with the domain expert.  

Some of the modifications that were performed in this phase can be 

summarized as follows: 

• For each found lump (e.g., a nodule), its distance from the 

resection margin was extracted. To disambiguate between a 

distance and a specimen size (both expressed as a number followed 

by “cm” or “mm”), a suitable modifier was used. 

• For the computed distances, quantity modifiers such as “more 

than” or “less than” were identified, too. 

• As ONCO reports frequently mention tests that were performed in 

the past, these references were extracted. In particular, each test 

was linked to the specific reference ID used in the text. 

As the result of this refinement process, the final version of the system 

(system version 2) was obtained. This system version was evaluated on an 

independent test set (34 documents). 

 

The ONCO ontology contains 44 events and 16 attributes: 3 attributes 

are numeric, the others are categorical. 
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The left-hand side of Figure 5.2 shows the class structure as it was 

defined in the Protégé framework. Both events and attributes are arranged 

into four main classes: Specimen, Diagnosis, Histopathology Stage, and 

Prognostic Factors. Specimens are grouped into biopsies and surgical 

resections, such as organs (e.g., left breast) and organ portions (e.g., left 

nipple). As an interesting characteristic, all specimens are related to a 

specific organ through an “hasAttribute” relation. Moreover, a few 

specimens can be linked to an organ portion or a nodule, too. Therefore, 

there are a few ontology classes (i.e., Localized Organ, Organ Portion, and 

Nodule) that can actually represent both events and attributes. 

The right-hand side of Figure 5.2 shows one specimen, namely a Core 

Biopsy, that can be related to three “higher-level” specimens. As it can be 

noticed from its attribute list, this item can be related to (i) an organ 

(LocalizedOrgan), such as the left breast, (ii) an organ portion 

(OrganPortion), such as a breast quadrant, or (iii) a nodule (Nodule). 

 

Figure 5.2: Domain ontology for the ONCO dataset. On the left side, the 

whole class structure is depicted. On the right side, the description of the 

Core Biopsy class is shown. 

Specimen granularity property. In the ONCO reports, the “Sent 

specimen” section lists all the specimens that were analyzed. It often 

happens that one single line of this section mentions more than one 

specimen at different levels of detail (e.g. the left breast and the 

specification of the quadrant). To allow managing this feature, the ontology 

includes the “specimen granularity” property, which specifies the most 

specific item to be considered. For assigning a granularity value to each 

specimen in the ontology (according to its level of detail), the indications 

provided by physicians were followed. Going from the lowest to the 

highest level of detail, four different classes were identified: organs 
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(granularity of 1), organ portions (granularity of 2), nodules (granularity of 

3), and biopsies (granularity of 4). 

For those lines in the “Sent specimen” section which include multiple 

specimen mentions, the one with the highest granularity (i.e., the highest 

level of detail) is searched for. For example, the following line describes 

one specimen, more precisely a core biopsy (granularity of 4): 

Italian: core biopsy del quadrante supero-esterno della 

mammella sinistra. 

English: core biopsy of the upper outer quadrant of the 

left breast. 

However, the same line includes two other specimen mentions, namely 

an upper outer quadrant (granularity of 2) and a left breast (granularity of 

1). These mentions actually specify the organ portion and the localized 

organ to which the core biopsy is related. In this case, only the core biopsy 

(i.e., the specimen with the highest granularity) is considered by the 

following IE steps (i.e., attribute extraction and diagnosis-specimen 

relation extraction). 

5.2.4. Validation with expert 

To evaluate the final performance of the system, system version 2 was run 

on a test set made up of 34 documents. 

To give a sense of the task complexity, the number of items that were 

automatically extracted from each report was computed (system items). 

These items include: extracted events and their attributes (with associated 

values), specimen-number links, diagnosis-specimen links, and attribute 

quantity modifiers (e.g., “less than”). 

In the test set, a total of 476 system items were identified, which 

corresponds to an average of 14 extracted items per report. Figure 5.3 

shows the number of system items in the 34 documents. In 22 reports, less 

than 10 items per document were identified, indicating that these 

documents are characterized by a simple content. In the most complex 

report, 68 system items were found. 
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Figure 5.3: number of system items per report (ONCO test set). 

To enable the evaluation of the IE system, the information extracted 

from each report was written on a suitable output file, including both the 

original report and the system items. This output was manually reviewed by 

a domain expert, who was trained to identify three types of errors: 

• Additional items, i.e., relevant information that was not previously 

considered as an item to be extracted (and was therefore not 

included in the ONCO ontology). 

• False negatives (FN), i.e., information that should have been 

extracted but was not found in the system’s output. 

• False positives (FP), i.e., errors found in the system’s output, such 

as incorrect specimen-number associations or items linked to the 

wrong event. 

In Table 5.2, the total number of additional items, false negatives, and 

false positives are shown (“raw count” column). These three groups were 

further analyzed by removing duplicates or similar entries (“distinct count” 

column); for example, although the string “c-erbB-2” was marked as an 

additional item in several reports, this item was counted only once in the 

“distinct count” computation. 

As it can be noticed from the table, most errors were due to additional 

items that are currently not searched for (38 distinct items). As regards 

false negatives and false positives, which are instead a more direct measure 

of the performance of the IE system itself, the raw counts were 15 and 26, 

respectively. 
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Table 5.2: Evaluation results: error types (ONCO test set). 

Items Raw count Distinct count 

Additional items 57 38 

FN 15 11 

FP 26 21 

 

For false negatives and false positives, an error analysis was performed, 

dividing both groups into relevant categories. For false negatives, three 

different categories were identified. For false positives, five main 

categories were highlighted. Table 5.3 reports the number of errors for each 

identified category. 

As regards false negatives, 9 out of 15 errors were due to a missing 

variant among the ontology regular expressions. The other 6 errors were 

performed in the attribute annotation phase (e.g., the system was not able to 

identify an event’s attribute). 

With respect to false positives, most issues (9 out of 26) were given by 

the creation of wrong specimen-number links. Six errors were caused by a 

missing additional item, e.g., an attribute was linked to the wrong event 

because the real related event had not been extracted. In 4 cases, a 

specimen was not correctly recognized as another specimen’s attribute, 

e.g., a quadrant was not identified as the organ portion of an extracted 

biopsy. In 4 cases, the same item was extracted twice, e.g., both 

“carcinoma lobulare” and its substring “carcinoma” were extracted as 

different events. Finally, three errors were due to the definition of an 

inadequate lookup window to search for an event’s attributes , e.g., a 

specimen size was linked to the wrong specimen. 

Table 5.3: Error analysis for false negatives and false positives (ONCO test 

set). 

Items Categories # errors 

FN 

• considerable variation with respect to the 

regular expression in the ontology 

• small variation with respect to the regular 

expression in the ontology 

• error performed by attribute annotator 

6 

 

3 

 

6 

FP 

• specimen-number link error  

• error due to missing additional item 

• specimen not recognized as an attribute 

• same information extracted twice 

• error due to inadequate lookup window 

9 

6 

4 

4 

3 

 

Starting from the identified error types, it was possible to compute the 

recall (R) and the precision (P) of the IE system. To this end, true positives 
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(TP) were defined as those system items that were regarded as completely 

correct by the domain expert. To compute true positives, it was sufficient to 

subtract false positives from the total number of system items: 
 

𝑇𝑃 = # 𝑠𝑦𝑠𝑡𝑒𝑚 𝑖𝑡𝑒𝑚𝑠 − 𝐹𝑃  
 

Given the numbers of true positives, false negatives, and false positives, 

the following formulas were applied: 

 

𝑅 =
𝑇𝑃 

𝑇𝑃 + 𝐹𝑁
            𝑃 =

𝑇𝑃 

𝑇𝑃 + 𝐹𝑃
 

 
 

The so computed values were 96.8%, for recall, and 94.5%, for 

precision. 

5.2.5. Discussion 

In this research activity, an ontology-driven approach was proposed to 

extract events and attributes from medical reports in the molecular 

cardiology field. For assessing the possibility to extend this approach to 

another clinical domain, a corpus of anatomic pathology reports was 

considered. 

 

Ontology adaptation. Despite the evident differences between the 

cardiology and the oncology reports, the proposed ontology structure was 

reused without major modifications. In particular, it was possible to exploit 

the event-attribute framework to model the relevant entities to be extracted. 

As an interesting observation, the resulting ONCO ontology presents a 

different distribution of events and attributes with respect to the CARDIO 

one. While cardiology reports include more attributes than events (11 

events and 61 attributes), the oncology dataset shows the opposite trend (44 

events and 16 attributes). As a matter of fact, anatomic pathology reports 

are characterized by many different events, especially referred to 

specimens. To take into account this aspect, the specimen-related portion of 

the ontology was carefully developed, including advices coming from 

specific guidelines on this field [129]. Despite this variety, many of these 

events often share the same few attributes, which explains the relatively 

low number of Attribute classes that were created. 

As an important result of the described adaptation, processing the 

ONCO dataset required to address a new IE task, which is the extraction of 

Event-Event relations. In particular, it was necessary to link each extracted 

diagnosis to the corresponding specimen. To this end, a suitable UIMA 

Annotator was developed, relying on two simple criteria. First, the intra-

sentence occurrence of a diagnosis-specimen pair was considered. Second, 

the relation of each event to a specimen number was exploited. Although 

these two approaches do not allow reconstructing relations that are reported 
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in a complex way, they perform well when the relation to be extracted is 

clearly stated within the text. According to the positive feedback given by 

the domain expert and the evaluation results, the obtained output could be 

effectively used to help retrieve useful information for both diagnostic 

purposes and biomedical research. 

One interesting observation regards the use of n-grams to facilitate the 

creation of the ontology. In this research activity, the n-grams that most 

frequently occur in the ONCO dataset were automatically computed and 

manually analyzed. Looking at these n-grams was particularly useful for 

extending the regular expressions included in the ontology. In future work, 

it would be interesting to automatically create the ontology starting from 

the extracted n-grams. 

The developed IE system was manually evaluated by a domain expert, 

with promising results. In particular, most relevant items were extracted in 

the correct way, leading to a recall of 96.8% and a precision of 94.5%. 

Moreover, the conducted evaluation allowed identifying several items that 

were regarded as relevant by the domain expert, but were not previously 

considered (38 additional items). In a future version of the system, these 

items will be added to the existing ontology. 

 

Limitations. The IE approach proposed for the ONCO dataset has a few 

limitations. First, the conducted evaluation highlighted a few issues 

concerning the annotation process (Table 5.3). The most frequent error type 

involved the extraction of specimen-number links. In particular, specimen 

sizes were often mistaken for specimen numbers, leading to the 

construction of an incorrect link. To address this issue, future work will 

focus on how to disambiguate these different items. 

Another main limitation regards the small size of the corpus considered 

for the evaluation (34 documents). In future work, it will be interesting to 

extend the evaluation procedure to all the available anatomic pathology 

reports (i.e., those that were not included in the “set for ontology design”). 

As a matter of fact, the domain expert is currently validating more 

documents, which will allow gathering further suggestions on how to 

improve the system. 

5.3. Exploitation in real settings 

This research activity presents an NLP system that is able to retrieve the 

events included in unstructured medical reports, including their contextual 

properties (e.g., negations) and the available temporal details. Such a 

system could be exploited in the clinical practice for different purposes, 

above all to enable the access to the valuable information locked in free 

text. With respect to biomedical studies, populating research repositories 

with clinical data extracted from free text can considerably contribute to 

the reuse of collected data. 
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In this section, the problem of exploiting the developed IE pipeline in a 

real setting is discussed. In particular, two applications involving the use of 

Informatics for Integrating Biology and the Bedside (i2b2) software are 

presented [132]. 

The main goal of i2b2 is to provide a secure presentation of patient 

information (e.g., electronic health records and other patient data) to 

facilitate the reuse of clinical data for research purposes. Within this 

mission, the i2b2 software was designed to support two main use cases 

[133]. The first is to browse through all the available data to find sets of 

patients that would be of interest for further research. The second is to use 

the data provided by the medical record to analyze the phenotype of the 

identified patients, in support of subsequent studies. To empower these two 

use cases, in the i2b2 infrastructure data are collected into suitable 

repositories, which can be easily queried by researchers. 

5.3.1. CARDIO i2b2 

The ICS Maugeri hospital in Pavia is currently exploiting the i2b2 software 

to support research activities in different fields. Among these, several 

efforts have been made in molecular cardiology research.  

The CARDIO-i2b2 project is an initiative to customize the i2b2 tool 

with the aim to support translational research in cardiology [134]. 

CARDIO-i2b2 integrates clinical and research data coming from multiple 

sources and allows the users to jointly query them. In particular, it gathers 

data from the Molecular Cardiology Laboratories databases and merges 

them with the clinical information from the TRIAD system. The collected 

data are then stored in the i2b2 data warehouse, where facts are 

hierarchically structured as ontologies. In 2012, a total of 591 patients, 

13987 visits, 367 concepts and 262512 observations had been exported 

from TRIAD and inserted into the i2b2 data warehouse. 

As part of this research activity, the information extracted through the 

cardiology IE pipeline is currently being integrated into the CARDIO-i2b2 

data warehouse, together with the available structured data. To this end, the 

data extracted from each report are converted to a structured format that is 

suitable for i2b2 integration. 

5.3.2. i2b2 Bergamo application 

In the hospital Papa Giovanni XXIII in Bergamo, there are ongoing efforts 

to implement an i2b2 platform for research in the oncology field. The 

objective is to create a data warehouse that integrates all the information 

available for cancer patients in a predefined format. Currently, there are 

about 24.400 patients that are treated in the oncology unit. Out of these, 

about 23.500 have already been included in the i2b2 system. 
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For all hospital patients, a lot of relevant information is available in a 

variety of different forms, which does not facilitate data access and 

analysis. For example, about 19.000 unstructured histology reports related 

to breast cancer are currently available. 

In this research activity, the proposed IE pipeline was adapted to the 

oncology domain, thus allowing the processing of the anatomic pathology 

reports produced by the Papa Giovanni XXIII hospital. In particular, the 

developed IE system was targeted to the field of breast cancer. As future 

work, the information extracted through this oncology pipeline will be 

integrated into the i2b2 data warehouse. To this end, the ontology used in 

the IE approach is currently being converted to a suitable i2b2 ontology, 

which will facilitate the data integration phase. 

Figure 5.4 summarizes the proposed methodological approach. First, the 

ONCO ontology was developed starting from the available anatomic 

pathology reports. This ontology is currently exploited by an IE pipeline 

that converts the input texts into a structured output, to be stored in a i2b2 

data warehouse. To be able to store and then query the extracted 

information, a suitable i2b2 taxonomy is being developed starting from the 

ONCO ontology. 

 

Figure 5.4: Ontology-driven IE and i2b2 ontology curation. 
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Chapter 6 

6 Conclusions 

This chapter presents the main conclusions of this research activity. Section 

6.1 provides a summary of the proposed methodologies, with a focus on the 

obtained results. Section 6.2 highlights the main novelties and the 

contributions of the overall research. Finally, Section 6.3 outlines a few 

possible future directions for the conducted work. 

6.1. Work summary and main results 

This work addressed the problem of extracting information from medical 

reports in the Italian language, with the final aim of reconstructing patients’ 

clinical timelines. Specifically, a system that extracts and summarizes 

individual information included in longitudinal medical reports was 

developed. To mine information from single free-text reports, an IE 

pipeline was implemented, made of different annotators. The pipeline 

processes each document by extracting clinical events and their attributes, 

as well as temporal expressions. Besides processing single documents, the 

developed system aggregates the data extracted from multiple reports 

referred to the same patient, reconstructing and visualizing events on a 

temporal line. 

The methodologies proposed in this research activity were developed on 

a large corpus of documents belonging to the molecular cardiology domain. 

To enable the evaluation of the IE steps as well as the development of 

supervised classification methods, a subset of this corpus was manually 

annotated with mentions of relevant events, temporal expressions, and their 

properties (e.g., the event’s polarity). To perform this annotation task, a set 

of specific guidelines was created. 

The event extraction task was addressed by developing a supervised 

approach based on recurrent neural networks. To train and validate the 

RNN-based classifier, the annotated dataset was exploited. Developing 

classifiers that do not rely on complex features (that would require the use 

of specific NLP tools) is an important step to analyze documents across 
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different domains and languages. As clinical texts are often available only 

in the institution’s local language, the availability of IE techniques that do 

not require language-specific resources is particularly important. The RNN-

based approach developed in this work performed well for event extraction 

in the Italian language, indicating that the investigated RNN models (GRU 

neural networks) can be a good choice for this kind of tasks. 

Besides extracting event mentions, this work focused on identifying 

their contextual properties, too. To extract the polarity, the modality, and 

the experiencer of each event, a rule-based approach was used. To identify 

the relation of each event to the document creation time, an SVM was 

created by exploiting the annotated dataset. For all properties, the proposed 

extraction methods obtained good results, indicating that they could be 

effectively reused for different IE tasks. 

To extract the attributes that might be related to each event, an ontology-

driven, rule-based approach was proposed. To identify and formalize 

relevant concepts, both domain knowledge and the information written in 

reports were exploited. The resulting IE system was partially validated 

against a structured clinical database named TRIAD. The results of this 

validation indicate that the proposed approach performs well, thus 

suggesting its eligibility to analyze languages such as Italian, where shared 

corpora and resources may not be easily accessible. Moreover, thanks to 

the use of regular expressions, the developed ontology can be easily 

enriched and translated. As regards multilingual extension, the performed 

preliminary assessment indicates that this approach could be effectively 

extended to other languages. With respect to the processing of documents 

belonging to different domains, the adaptation conducted on the oncology 

dataset shows that the proposed ontology structure could be adapted as 

needed. 

For the identification and the normalization of temporal expressions, two 

existing rule-based systems, i.e., HeidelTime and TimeNorm, were adapted 

to the analysis of clinical documents. The performance of the proposed 

approaches was evaluated on the annotated dataset, leading to promising 

results. Therefore, as a first step for temporal IE on clinical corpora, tuning 

the investigated systems represents a good strategy, as it only requires the 

extension of external resources. 

As a last step, the developed system summarizes the information 

extracted from longitudinal medical reports referred to the same patient. To 

this end, each event extracted from the reports is linked to a reference time. 

For all events, the relation to the document creation time is computed.  If 

one event “overlaps” the document creation time, a temporal link to this 

reference time is created. Conversely, if one event is found to happen 

before or after the document creation date, a temporal link to another time 

is extracted, relying on a rule-based approach. The preliminary evaluation 

conducted on the reconstructed timelines indicates that the system could be 

successfully used to aggregate and present information in an effective way.  
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6.2. Main novelties and contributions 

In the field of clinical NLP, several systems have been found in the 

literature, especially for the English language. Many systems include 

machine learning modules, developed through supervised techniques. To 

both develop such modules and enable their evaluation, the availability of 

annotated corpora is essential. For languages other than English, however, 

shared clinical corpora are not easily available. As a main consequence, 

research on IE from clinical narratives in non-English languages is still 

limited, especially as regards the analysis of temporal details. This research 

activity presents a system that extracts clinical events and temporal 

expressions from medical reports written in Italian. In the conducted work, 

various contributions and novelties can be highlighted. 

A first novelty involves the annotation of resources in the Italian 

language, which is the language of interest for this research activity. In 

particular, a set of guidelines for temporally annotating a clinical corpus 

written in Italian was presented. As far as it is known, these are the first 

guidelines for the Italian language that include directions on both clinical 

and temporal event annotation, and were developed based on state-of-the-

art guidelines in these two fields [11,91]. 

A second contribution of this work concerns the methodology proposed 

for the event extraction task. In this research activity, a supervised 

framework not relying on elaborately engineered features was proposed. In 

particular, the developed classifier is based on recurrent neural networks. 

As far as it is known, no other work has focused on exploiting these types 

of networks to perform event recognition on clinical narratives written in 

Italian. As mentioned, it was possible to find only one paper using RNN 

models, but on the general domain [57]. Another novelty related to the 

event extraction task regards the extraction of event properties, such as the 

polarity and the DocTimeRel. As far as it is known, this is the first time 

this problem is addressed for clinical narratives written in Italian. 

Another contribution of this research activity concerns the event-

attribute extraction task, which was addresses without the use of supervised 

machine learning techniques. The proposed ontology-driven approach, 

embedded in a well-performing NLP methodology, allows the analysis of 

the Italian language without the need for annotated data. Besides extracting 

clinical events, this approach allows capturing attributes of interest and 

linking them to the events they are related to. This particular task is not 

currently addressed by many of the systems available for clinical IE. 

As one last contribution to be highlighted, this research activity deals 

with the problem of processing multiple medical reports referred to the 

same patient, with the aim of reconstructing an interactive clinical timeline. 

As far as it is known, no other work has addressed this problem for medical 

reports written in Italian. 
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Overall, the proposed IE approach has several potential implications to 

clinical practice. First of all, relevant information is extracted by using 

specific relations that are defined through a domain knowledge 

formalization. This feature allows converting textual content into a 

structured format that verifies an event-attribute logic, and can be easily 

queried. The possibility to timely access this clinical data is of paramount 

importance to facilitate patient review and support clinical decision. In 

addition, thanks to the proposed summarization approach, it is possible to 

visualize information belonging to the same patient on a single temporal 

line, which facilitates the process of analyzing multiple patient data. 

As pointed out by Botsis et al., NLP methods can play an important role 

in reducing the health data that is unavailable, inaccessible or incomputable 

[8]. This is particularly important for biomedical research, too, especially 

as regards the reuse of collected data. In this research activity, there are 

ongoing efforts to integrate the data extracted through the developed IE 

pipeline into two i2b2 data warehouses. Integrating the information 

extracted from text into research repositories can considerably contribute to 

the reuse of collected data.  

6.3. Future directions 

For each of the conducted activities, some main future directions can be 

outlined. 

Starting from the annotation task, a corpus of 75 documents was 

annotated with mentions of events and temporal expressions. The Event 

annotations were exploited for the development of a supervised classifier, 

while the TIMEX annotations were used for adequately tuning two 

temporal IE systems. As a first direction for future work, an extension of 

the annotated corpus will be performed, above all to evaluate the system’s 

generalization capability. Moreover, two additional annotators will be 

involved, thus allowing the computation of an inter-annotator agreement. 

On the basis of this measure, it will be possible to assess the complexity of 

the extraction problems and better evaluate the performance of the 

developed IE systems. 

Moving to the approach proposed for attribute extraction, the domain 

ontologies used in the CARDIO and in the ONCO contexts were manually 

developed. In future work, the possibility of automatically developing the 

ontology from free-text will be explored [126,127]. To this end, the most 

frequent n-grams extracted from the reports could be exploited. In addition, 

the concepts already present in UMLS could be reused. As another 

direction for future work, it will be interesting to consider the variants and 

the misspelled forms of the regular expressions included in the ontology, 

thus improving the search of concepts inside the text. 

With respect to the extraction of events and attributes, two future 

applications of the developed pipeline can be delineated. As a first practical 

application, the cardiology pipeline could be used to automatically populate 
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TRIAD, thus saving a lot of manual work. In this case, using an automatic 

extraction system would be also useful to check the manually entered items 

to improve data quality. As another future work involving research on 

NLP, the annotations currently produced by the IE system could be 

considered as a pseudo-gold standard corpus, thus enabling the exploration 

of supervised methods for the event-attribute extraction task. 

In this research activity, the problem of summarizing multiple reports 

referred to the same patient was addressed by reconstructing a clinical 

timeline (including all the events extracted for that patient). Also in this 

case, two future directions can be highlighted. First, it will be interesting to 

integrate additional data sources in the reconstructed timeline, beyond the 

information retrieved from free text. For example, possible structured data 

could be integrated, too. Another direction for future work regards the 

evaluation of the timeline from the point of view of the complete system. 

To assess its added value in a real clinical setting, an extrinsic evaluation 

involving physicians will be performed. 

It is important to point out that, to integrate the proposed system in the 

clinical practice, a few practical issues should be taken into account. From 

the technical point of view, processing a large number of documents 

requires the availability of a pipeline that runs sufficiently fast. To this end, 

optimizing each of the extraction tasks is fundamental. Another aspect to 

be carefully considered regards the usability of the system. First, clinicians 

would need time to learn how to exploit it to retrieve relevant patient 

information (i.e., events and dates). Moreover, even if the system is easy to 

understand, they could still prefer to look for the needed information in a 

manual way. To moderate the effect of these potential obstacles, future 

work will concern system optimization and usability testing. 
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Appendix 1 

Domain-specific vocabularies 

In this research activity, to account for all the domain-specific concepts 

mentioned in the CARDIO dataset, two vocabularies were manually 

developed, containing 38 concepts with type Test, and 30 concepts with 

type Occurrence, respectively. The first vocabulary is shown in Table A1.1, 

while the second is reported in Table A1.2. Concepts are reported in the 

language used in the considered reports, i.e. Italian. For each concept, the 

corresponding UMLS concept unique identifier (CUI) and semantic type 

are shown, too. 

Table A1.1: Concepts with type Test. 

Concept UMLS CUI UMLS semantic type 

Holter C0013801 Diagnostic Procedure 

ECG Holter C0013801 Diagnostic Procedure 

Holter ECG C0013801 Diagnostic Procedure 

ECG dinamico secondo Holter C0013801 Diagnostic Procedure 

controllo Holter C0013801 Diagnostic Procedure 

ECG C1623258 Diagnostic Procedure 

controllo ECG C1623258 Diagnostic Procedure 

esame ECOcardiografico C0013516 Diagnostic Procedure 

controllo ECOcardiografico C0013516 Diagnostic Procedure 

registrazione ECGgrafica C1623258 Diagnostic Procedure 

Studio elettrofisiologico C0430467 Diagnostic Procedure 

Potenziali tardivi C0199591 Diagnostic Procedure 

SAECG C0199591 Diagnostic Procedure 

Test ergometrico C0015260 Diagnostic Procedure 

Test da sforzo C0015260 Diagnostic Procedure 

Test da sforzo al treadmill C0087110 Diagnostic Procedure 

Test ergometrico al treadmill C0087110 Diagnostic Procedure 

EST C0015260 Diagnostic Procedure 

Test al treadmill C0087110 Diagnostic Procedure 

Walking test C0430506 Diagnostic Procedure 

RMN cuore C3888835 Diagnostic Procedure 

RM cuore C3888835 Diagnostic Procedure 

cineRM C3888835 Diagnostic Procedure 
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Ecocolordoppler C2022193 Diagnostic Procedure 

Ecocolordopplergrafia C2022193 Diagnostic Procedure 

Ecocardiogramma C0013516 Diagnostic Procedure 

Esame Ecocardiografico C0013516 Diagnostic Procedure 

Test farmacologico C1096540 Diagnostic Procedure 

Test con Flecainide C1096540 Diagnostic Procedure 

Test alla Flecainide C1096540 Diagnostic Procedure 

Diagnostica molecolare C1513388 Laboratory Procedure 

Diagnosi molecolare C1513388 Laboratory Procedure 

analisi genetica C0796344 Laboratory Procedure 

analisi genetiche C0796344 Laboratory Procedure 

indagine genetica C0796344 Laboratory Procedure 

Esame obiettivo C0031810 Diagnostic Procedure 

Ematochimici C0018941 Laboratory Procedure 

Esami ematochimici C0018941 Laboratory Procedure 

Table A1.2: Concepts with type Occurrence. 

Concept UMLS CUI UMLS semantic type 
visita cardiologica C1512346 Health Care Activity 

visita cardiologica-genetica C1512346 Health Care Activity 

visita cardiologica C1512346 Health Care Activity 

visita C1512346 Health Care Activity 

valutazione cardiologica C1512346 Health Care Activity 

consulenza cardiologica C0010210 Health Care Activity 

consulenza cardiologica-genetica C0017382 Therapeutic or Preventive Procedure 

consulenza genetica C0017382 Therapeutic or Preventive Procedure 

visita di controllo C0422303 Health Care Activity 

controllo C0422303 Health Care Activity 

dimissione C0030685 Health Care Activity 

ricovero C0184666 Health Care Activity 

follow-up C1522577 Health Care Activity 

dimette C0030685 Health Care Activity 

dimettiamo C0030685 Health Care Activity 

ricovera C0184666 Health Care Activity 

ricoveriamo C0184666 Health Care Activity 

dimessa C0030685 Health Care Activity 

dimesse C0030685 Health Care Activity 

dimessi C0030685 Health Care Activity 

dimesso C0030685 Health Care Activity 

ricoverata C0184666 Health Care Activity 

ricoverate C0184666 Health Care Activity 

ricoverati C0184666 Health Care Activity 

ricoverato C0184666 Health Care Activity 

rivalutazione C0422303 Health Care Activity 

gravidanza C0032961 Organism Function 

parto C1148523 Organism Function 

partorito C1148523 Organism Function 

travaglio C0022864 Organism Function 
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Appendix 2 

Temporal Annotation Guidelines for 

Italian clinical text 

The aim of this research activity is to extract clinical and temporal 

information from clinical narratives in the Italian language. These 

guidelines, which were developed on a set of medical reports belonging to 

the cardiology domain, show how to annotate the relevant events and the 

temporal expressions that can be found in medical reports. To develop the 

guidelines presented in this work, the THYME annotation guidelines [1] 

and the It-TimeML annotation guidelines [2] were used as a guide. 

1. EVENTS 

An EVENT is defined as “anything that is relevant to the patient’s clinical 

timeline”, including both clinical events and general events:  

• Clinical events (tests, treatments or problems) are represented 

through noun phrases 

Examples for the Italian language: “Sindrome di Brugada” 

(Brugada Syndrome), “Episodi sincopali” (Syncopal episodes), 

“Elettrocardiogramma” (Electrocardiogram) 

• General events are represented through noun phrases or verbs 

Examples for the Italian language: “ricovero” (admission), “parto” 

(childbirth), “dimesso” (discharged) 

 

Clinical Events. To identify clinical events, the following concepts were 

considered: 

• concepts included in UMLS (or synonyms) belonging to selected 

semantic types (problems, tests, treatments) 

• concepts included in ICD9cm-diagnosis (or synonyms) 
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• drugs and active principles included in FederFarma (an Italian 

dictionary of drugs) 

• diagnostic procedures and general events that are relevant in the 

cardiology domain 

 

NOTE: In UMLS, relevant events are those belonging to one of the 

following semantic types: 

• Pharmacologic Substance TREATMENT 

• Antibiotic TREATMENT 

• Therapeutic or Preventive Procedure TREATMENT 

• Diagnostic Procedure TEST 

• Sign or Symptom PROBLEM 

• Injury or Poisoning PROBLEM 

• Pathologic Function PROBLEM 

• Mental or Behavioral Dysfunction PROBLEM 

• Neoplastic Process PROBLEM 

• Cell or Molecular Dysfunction PROBLEM 

• Experimental Model of Disease PROBLEM 

• Disease or Syndrome PROBLEM 

 

General Events. OCCURRENCES are events that play a role in the 

patient’s clinical history but are not included in the other three groups (e.g., 

“hospital admission”, “discharge”, etc.). 

To identify OCCURRENCES, an external dictionary of concepts was 

manually developed, considering both the information included in the 

reports and the concepts annotated as Occurrences in the 2012 i2b2 

Challenge (“Evaluating temporal relations in clinical text”) [3]. 

 

Examples for the Italian language: “visita cardiologica” (cardiac 

examination), “visita medica” (medical examination), “dimissione” 

(discharge), “ricovero” (admission), “follow-up” (follow-up), “dimettiamo” 

(we discharge), “attività sportiva” (physical activity) 

1.1  Event annotation procedure 

• Results and findings of tests (e.g., “Rhythm” and “Heart Rate” for 

ECG tests) are not annotated as EVENTS. The only exception to 

not capturing the test result is when the result of a test is a 
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diagnosis (e.g., “prolonged QT interval”). In other words, a result 

is not a separate EVENT from the test which indicated it, but a 

diagnosis or disease shown by a test is. 

• A very generic word such as "test, esame, patologia, terapia, 

episodio, evento" (test, exam, pathology, episode, event) should 

not be annotated when the context (e.g., the set of surrounding 

words) does not specify its meaning. 

o Examples of events to be annotated: “terapia farmacologica” 

(pharmacological therapy), “terapia antiaritmica” 

(antiarrhythmic therapy), “episodio sincopale” (syncopal 

episode), “evento aritmico” (arrhythmic event). All these 

strings represent specific events (their meaning is conveyed 

by the adjectives). 

o Exception: In a sentence like “Dopo il primo ciclo di 

penicillina non è stata più effettuata la terapia” (after the 

first round of penicillin, the therapy was no longer 

administered) the word “terapia” (therapy) should be 

annotated because its meaning is specified within the 

sentence. Moreover, this annotation is needed to capture the 

fact that the therapy has stopped. 

• Words like “mutazioni” (mutations) and “difetto” (defect) should 

be annotated only when the context includes the related 

gene/disease. 

1.2 Event properties 

For each EVENT annotation, five properties of interest must be specified: 

1) DocTimeRel. This property represents the temporal relation 

between the EVENT and the document creation date: 

 

• BEFORE: this value is used for events that ended before the 

patient was seen (and thus, before the document was 

written). 

 

• AFTER: this value is used for events that are scheduled or 

planned to begin after the document creation time. 

 

• OVERLAP: this value is used for events or states which are 

true at the time that the patient was seen (and thus, when the 

document was written). 
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• BEFORE-OVERLAP (uncommon): this value is used for 

events that started BEFORE the document creation time and 

continue into and through this reference time (OVERLAP). 

 

Note: It is important to make sure that any time the 

BEFORE-OVERLAP relation is used, the documents 

explicitly states that the EVENT started before the document 

creation time and continues through this reference time. 

 

2) Semantic Type. This property represents the semantic type of the 

event. As previously explained, it takes one of four possible 

values: PROBLEM, TREATMENT, TEST or OCCURRENCE. 

 

Note: The annotator must be careful with words that could have 

different semantic types according to the context. For example, the 

word “controllo” (check) could be part of an OCCURRENCE or a 

TEST. An example for the first type is given by the sentence 

“sottoponiamo il paziente ad un controllo” (we examine the 

patient). Two examples for the second type are given by “controllo 

della pressione arteriosa” (blood pressure test) and “controllo 

Holter” (Holter test). 

 

3) Polarity. This property is used to explicitly indicate whether an 

event has occurred (POSITIVE) or not (NEGATIVE). As an 

important remark, a NEGATIVE value means "did not happen" or 

"not true", rather than "negative" in the medical testing sense. 

 

4) Contextual modality. This property provides information about the 

event’s modality: 

 

• ACTUAL (default): it is used for events that have already 

happened or are scheduled (without hedging) to happen. 

This value is used most of the time, and is the default option. 

 

Note: test that have already been scheduled should have an 

ACTUAL modality. 

 

• HEDGED: events are marked as hedged when they are 

mentioned with any sort of hedging. This hedging can be 

lexical ("seems", "likely", "suspicious", "possible", 

"consistent with"), or phrasal ("I suspect that...", "It would 

seem likely that"). 

 

Examples for the Italian language: events that are referred to 

as “sospetto”, “suggestivo di”, “probabile”. 
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• HYPOTHETICAL: this value is useful for annotating 

hypothetical events (e.g., diagnoses, theories). Hypothetical 

events will often follow "if" statements ("If X happens, then 

we’ll perform Y") or other sorts of conditionals ("Depending 

on the patient’s response, we might treat with B or with C").  

 

Examples for the Italian language: 

- “Si raccomanda di evitare stati di elevato stress 

psico-fisico.” 

- “Utile l'assunzione di integratori di potassio in caso 

di pratica di attività sportiva, sudorazione eccessiva, 

vomito o diarrea”. 

-  “è stato spiegato al paziente che sarebbe utile 

seguire Test farmacologico” 

- “si potrebbe considerare la terapia…” 

- “al fine di garantire protezione da eventuali eventi 

aritmici…” 

 

• GENERIC: this value is used for events which may be 

mentioned in a note, but are only mentioned in a general 

sense, and should not appear on the patient’s clinical 

timeline.  

 

Example for the Italian language: “Secondo i più recenti 

studi, nei pazienti con Sindrome di Brugada è indicato...” 

 

Note: if an EVENT is GENERIC, the DocTimeRel will 

always be OVERLAP. 

 

5) Experiencer: this property identifies the subject to which an event 

refers. There are two possible values for the Experiencer property: 

PATIENT or OTHER. 

 

Note: for most GENERIC events, the Experiencer will be OTHER. 

2. TIMEXes  

A TIMEX is a reference to time. Examples might be phrases like "today", 

"tomorrow", "24 hours ago", "at this time" and "early March". In addition, 

specific dates are annotated as TIMEX objects as well.  

• Noun phrases ("this weekend", "tomorrow", "yesterday", 

"Tuesday", "Last May", "May 16th", "6/9/1985"). 

Examples for the Italian language: lunedì (Monday), il mese scorso 

(last month). 
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• Adjective phrase ("two-hour-long", "half-hour" as in "a half-hour 

trip", "preoperative", "post-partum"). 

Examples for the Italian language: annuale (annual), mensile 

(monthly), quotidiano (daily). 

• Adverbial phrase ("lately", "recently", "shortly", "hourly", 

"intraoperatively"). 

Examples for the Italian language: oggi (today), ieri (yesterday), 

finora (so far). 

• Time/Date patterns, such as “31-12-2006”, “14.30”, “24/08”. 

2.1 TIMEX annotation procedure 

• Any preposition which precede (or in some cases, follow) a 

temporal expression must be left unmarked, even when it seems to 

provide additional context for interpreting the TIMEX (e.g., 

“During”, “From”, “After”, etc.). 

Exceptions for the Italian language: 

- “circa” (about), “intorno a” (around), “verso” (around). 

These propositions must be included into the extent of the tag 

because they have a role in the normalization of the TIMEX; 

- “per ora” (for now), “dopo domani” (the day after 

tomorrow), “di recente” (recently). Given that these whole 

expressions are considered as single units, the prepositions 

must be annotated, too; 

• All pre- and post-modifiers of a temporal expression must be 

included into the tag. 

Example for the Italian language: “durante lo scorso mese” (during 

the last month). 

• The word “dopo” (after) must be included into the tag span only 

when it has the function of adjective, otherwise it must be 

excluded. 

Examples for the Italian language: “tre giorni dopo”, but “dopo tre 

giorni”. 

 

2.2 TIMEX properties 

For each TIMEX annotation, five properties of interest can be specified: 

1) Type: this property represents the type of the temporal expression. 
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• DATE: These TIMEXes can be calendar dates (“January 4”) 

and other verbal expressions which can be mapped to 

calendar dates either concretely (“last week”, “this month”, 

“next Friday”, or “this time”), or in a fuzzier sense (“lately”, 

“the past”); 

 

• TIME: this value is used for specific time points within a 

day, for instance, “3:00PM” or “23:45”; 

 

Note: In other words, temporal expressions which give 

minute-by-minute or hour-by-hour detail are marked as 

TIME. Day-by-day (or larger) details are marked with 

DATE. 

 

• DURATION: this value is used for temporal expressions 

denoting a span of time, rather than a point ("24 hours" or 

"all of February"). 

 

Note: Two dates can be used to construct a duration. 

However, since each TIMEX represents a single point in 

time (rather than a duration), both will still be labeled as 

DATE. 

Example: “From May 1stDATE to the 3rdDATE, she will refrain 

from eating solid food”. 

 

• SET: this value is used to describe reoccurring temporal 

expressions (e.g., "three times weekly", "monthly", or 

“1/day”). 

 

2) Value: this property represents the normalized value of the 

temporal expression. Its annotation is strictly dependent upon the 

type assigned to the temporal expression. In the following, a few 

examples for each TIMEX type are provided (in the Italian 

language). 

 

DATE 

Format: YYYY-MM-[WW]-DD 

 

<TIMEX type="DATE" value="2008-12-02">venerdì due dicembre 

2008</TIMEX>  

<TIMEX type="DATE" value="2008-W49">questa 

settimana</TIMEX> 
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If some information cannot be recovered from the context, then 

the missing information must be signaled using the placeholders 

X. 

Ad <TIMEX type="DATE" value="XXXX-08-XX">agosto</TIMEX> 

 

Note: The word “oggi” (today) is given a different value 

according to the surrounding context. 

 

Example 1: “nowadays, there are many satellite channels in 

television” 

<TIMEX type="DATE" value="PRESENT_REF">oggi</TIMEX>ci 

sono moltissimi canali satellitari in TV 

 

Example 2: “Today the new government takes office” 

<TIMEX type="DATE" value="2008-12-02">oggi</TIMEX>si 

insedia il nuovo Parlamento 

 

Special cases (from the It-TimeML annotation guidelines [2]) 

 

 

TIME 

Formats: THH:MM:SS, THH:MM or THH 

 

<TIMEX type="TIME" value="T16:00"> le 16.00 </TIMEX> 

<TIMEX type="DATE" value="2008-11-27"> Ieri </TIMEX> alle 

<TIMEX type="TIME" value="2008-11-27T16:00"> 16.00 

</TIMEX> 
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Special cases (from the It-TimeML annotation guidelines [2]) 

 
 

DURATION 

Format: the value begins with a ‘P’ 

<TIMEX type="DURATION" value="P4M">4 mesi</TIMEX> 

Per <TIMEX type="DURATION" value="PT45M">45 

minuti</TIMEX> 

<TIMEX type="DURATION" value="PXY">alcuni anni 

fa</TIMEX> 

<TIMEX type="DURATION" value="P0.5D">mezza 

giornata</TIMEX> 

 

Note: special tokens are used to represent durations referring to 

periods of the day (MO, MI, AF, EV, NI, DT), weekends (WE), 

seasons (SP, SU, FA, WI), quarters (Q), year halves (H), and 

fiscal years (FY). 

 

Example: three nights 

<TIMEX type="DURATION" value="PT3NI">3 notti</TIMEX> 

 

SET 

 

To fully annotate sets, the TIMEX tag can include either the 

quant or freq properties, if not both. 

The quant and freq properties (optional) are fulfilled only in 

presence of specific expressions realizing them, they cannot be 

inferred. 

 

Example 1: “once a week” 

<TIMEX type="SET" value="P1W" freq="1X">una volta a 

settimana</TIMEX> 

 

Example 2: “every three days” 

<TIMEX type="SET" value="P3D" quant="ogni">ogni tre 

giorni</TIMEX> 
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Example 3: “three days per week” 

<TIMEX type="SET" value="P1W" freq="3D">3 giorni a 

settimana</TIMEX> 

 

Example 4: “every October” 

<TIMEX type="SET" value="XXXX-10" quant="ogni">ogni 

ottobre</TIMEX> 

 

Note: In the last example, the value looks like a point and not a 

duration: in this way it is possible to mark the calendar 

information (e.g., every October) present in the temporal 

expression. The general rule, useful to understand when to use a 

DATE-like annotation instead of a DURATION-like format, is 

that if there is no specified calendar date (for example, October 

or Monday), then the value for the SET will be like that of a 

DURATION. 

 

3) Quant: see Value property for type SET 

 

4) Freq: see Value property for type SET 

 

5) Mod: this property represents the modality of the temporal 

expression. In this research activity, either the default value or the 

“APPROX” value can be used. In particular, the “APPROX” value 

is used for approximate TIMEXes, such as “all’incirca tra un 

anno” (in about one year). 

3. DOCTIME 

The DOCTIME represents the date in which the report was written. This 

date must be annotated by using the TIMEX notation. 
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