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Chapter 1

Introduction

The present thesis focuses on the mathematical analysis of a class of phase field systems
involving partial differential equations and arising from thermodynamic models.

In the first chapter, we deal with some phase–field systems that perturbed by a max-
imal monotone nonlinearity, proving existence, uniqueness and longtime behavior of the
strong solution. The second chapter is concerned with the study of Cahn–Hilliard sys-
tems characterized by the presence of a maximal monotone term: we prove existence,
uniqueness and regularity of the solution; moreover, we consider the related sliding mode
control problem and we can discuss the sliding mode property. In the third chapter, we
analyze a singular phase–field system containing a logarithmic nonlinearity and by a pos-
sibly nonlocal maximal monotone operator: the resulting problem is highly nonlinear and
difficult to handle, so that we are able to prove only the existence of solutions.

1.1 Phase–field systems

In the first chapter, we consider the phase–field system

∂t(ϑ+ `ϕ)− k∆ϑ+ ζ = f a.e. in Q := (0, T )× Ω, (1.1.1)

∂tϕ− υ∆ϕ+ ξ + π(ϕ) = γϑ a.e. in Q, (1.1.2)

ζ(t) ∈ A(ϑ(t) + αϕ(t)− η∗) for a.e. t ∈ (0, T ), (1.1.3)

ξ ∈ β(ϕ) a.e. in Q, (1.1.4)

where Ω is the domain in which the evolution takes place, T is some final time, ϑ denotes
the relative temperature around some critical value that is taken to be 0 without loss of
generality, and ϕ is the order parameter which can represent the local proportion of one
of the two phases. As usual, to ensure thermomechanical consistency, suitable physical
constraints on ϕ are considered: if it is assumed, e.g., that the two phases may coexist
at each point with different proportions, it turns out to be reasonable to require that ϕ
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6 Nonlinear phase–field systems

lies between 0 and 1, with 1 − ϕ representing the proportion of the second phase. In
particular, the values ϕ = 0 and ϕ = 1 may correspond to the pure phases, while ϕ is
between 0 and 1 in the regions when both phases are present. Clearly, the the system
provides an evolution for ϕ that has to comply with the previous physical constraint.
Moreover, `, k, υ, γ and α are positive constants, η∗ is a given function in H2(Ω) with
suitable regularity properties and f is a source term. The above system is complemented
by homogeneous Neumann boundary conditions for both ϑ and ϕ, that is,

∂νϑ = 0, ∂νϕ = 0 on Σ := (0, T )× Γ, (1.1.5)

where Γ is the boundary of Ω and ∂ν is the outward normal derivative, and by the initial
conditions

ϑ(0) = ϑ0, ϕ(0) = ϕ0 in Ω. (1.1.6)

The term ξ + π(ϕ), appearing in (1.1.2), represents the derivative (or the subdifferential)
of a double–well potential W defined as the sum

W = β̃ + π̃, (1.1.7)

where
β̃ : R −→ [0,+∞] is proper, l.s.c. and convex with β̃(0) = 0, (1.1.8)

π̃ : R→ R, π̃ ∈ C1(R) with π := π̃′ Lipschitz continuous. (1.1.9)

Since β̃ is proper, l.s.c. and convex, the subdifferential ∂β̃ =: β is well defined and is a
maximal monotone graph. In our problem we also consider a maximal monotone operator

A : H := L2(Ω) −→ 2H (1.1.10)

such that

0 ∈ A(0), ‖y‖H ≤ C(1 + ‖x‖H) for all x ∈ H, y ∈ Ax, (1.1.11)

for some constant C > 0. For a comprehensive presentation of the theory of subdifferen-
tials and maximal monotone operators, we refer, e.g., to [1, 11,61].

The problem (1.1.1)–(1.1.6), thoroughly discussed in [32], is an interesting development
of the following simple version of the phase–field system of Caginalp type (see [13]):

∂t(ϑ+ `ϕ)− k∆ϑ = f in Q, (1.1.12)

∂tϕ− υ∆ϕ+W ′(ϕ) = γϑ in Q. (1.1.13)

As already noticed,W ′ ∼= ξ+π is related to a double–well potentialW . Typical examples
for W are

Wreg(r) =
1

4
(r2 − 1)2, r ∈ R, (1.1.14)

Wlog(r) = ((1 + r) ln (1 + r) + (1− r) ln (1− r))− c0r
2, r ∈ (−1, 1), (1.1.15)
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where c0 > 1 in (1.1.15) in order to produce a double–well. The potentials (1.1.14) and
(1.1.15) are the usual classical regular potential and the so–called logarithmic potential,
respectively.

The well–posedness, the long-time behavior of solutions, and also the related optimal
control problems concerning Caginalp-type systems have been widely studied in the liter-
ature. We refer, without any sake of completeness, e.g., to [12, 13, 29, 38, 43, 53, 54, 56, 63]
and references therein for the well–posedness and long time behavior results and to
[22,23,30,48,49] for the treatment of optimal control problems.

The paper [2] is related to control problems, but it goes in the direction of designing
sliding mode controls (SMC) for a particular phase–field system. The main objective of
the authors is to find some state-feedback control laws (ϑ, ϕ) 7→ u(ϑ, ϕ) that, that, once
inserted into the equations, can force the solution to reach some submanifold of the phase
space, in finite time, then slide along it. The first analytical difficulty consists in deriving
the equations governing the sliding modes and the conditions for this motion to exist.
The problem needs the development of special methods, since the conventional theorems
regarding existence and uniqueness of solutions are not directly applicable. Moreover,
the authors need to manipulate the system through the control in order to constrain the
evolution on the desired sliding manifold.

In particular, in the paper [2] the authors consider the operator Sign : H −→ 2H

defined as Sign(v) = v
‖v‖ , if v 6= 0, and Sign(0) = B1(0), if v = 0, where B1(0) is the closed

unit ball of H. Sign is a maximal monotone operator on H and is a nonlocal counterpart
of the operator sign : R −→ 2R defined as sign(r) = r

|r| , if r 6= 0, and sign(0) = [−1, 1], if

r = 0. Let us point out the system dealt with in [2]:

∂t(ϑ+ `ϕ)− k∆ϑ = f − ρσ a.e. in Q, (1.1.16)

∂tϕ− υ∆ϕ+ ξ + π(ϕ) = γϑ a.e. in Q, (1.1.17)

σ(t) ∈ Sign(ϑ(t) + αϕ(t)− η∗) for a.e. t ∈ (0, T ), (1.1.18)

ξ ∈ β(ϕ) a.e. in Q, (1.1.19)

∂νϑ = 0, ∂νϕ = 0 on Σ, (1.1.20)

ϑ(0) = ϑ0, ϕ(0) = ϕ0 in Ω, (1.1.21)

which turns out to be a particular case of (1.1.1)–(1.1.6) with A = ρ Sign. The paper [2]
is mostly concerned with the sliding mode property for (1.1.16)–(1.1.21).

In the first chapter of this thesis we deal with (1.1.1)–(1.1.6), which is rather a gen-
eralization of the problem (1.1.16)–(1.1.21) since we only require (1.1.10)–(1.1.11) for the
maximal monotone operator A. We prove existence and regularity of the solutions for
the problem (1.1.1)–(1.1.6), as well as the uniqueness and the continuous dependence on
the initial data in case α = `. In order to obtain our results, we first make a change of
variable. We set:

η = ϑ+ αϕ− η∗. (1.1.22)
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Consequently, the previous system (1.1.1)–(1.1.6) becomes

∂t(η + (`− α)ϕ)− k∆η + kα∆ϕ+ ζ = f − k∆η∗ a.e. in Q, (1.1.23)

∂tϕ− υ∆ϕ+ ξ + π(ϕ) = γ(η − αϕ+ η∗) a.e. in Q, (1.1.24)

ζ(t) ∈ A(η(t)) for a.e. t ∈ (0, T ), (1.1.25)

ξ ∈ β(ϕ) a.e. in Q. (1.1.26)

∂νη = 0, ∂νϕ = 0 on Σ, (1.1.27)

η(0) = η0, ϕ(0) = ϕ0 in Ω. (1.1.28)

In order to prove the existence of solutions to (1.1.23)–(1.1.28), we first consider the
approximating problem (Pε), obtained from problem (P ) by approximating A and β by
their Yosida regularizations. Then we construct a further approximating problem (Pε,n),
obtained from (Pε) by a Faedo-Galerkin scheme based on a system of eigenfunctions
{vn} ⊆ W , where

W = {u ∈ H2(Ω) : ∂νu = 0 on ∂Ω}. (1.1.29)

Then, we prove the existence of a local solution for (Pε,n) and, passing to the limit as
n → +∞, we infer that the limit of some subsequence of solutions for (Pε,n) yields a
solution of (Pε). Finally, we pass to the limit as ε ↘ 0 and show that some limit of a
subsequence yields a solution of (P ).

Next, we let α = ` and write problem (P ) for two different sets of initial data fi,
η∗i , η0i and ϕ0i , i = 1, 2. By performing suitable contracting estimates for the difference
of the corresponding solutions, we deduce the continuous dependence result whence the
uniqueness property is also achieved.

1.2 Cahn–Hilliard systems

The Cahn–Hilliard equation, originally introduced in [14] and first studied mathematically
in the seminal paper [37], yields a description of the evolution phenomenon of the solid–
solid phase separation. In general, an evolution process goes on diffusively. However, the
phenomenon of the solid–solid phase separation does not seem to follow this structure:
e.g., when a binary alloy is cooled down sufficiently, each phase concentrates and the
material quickly becomes inhomogeneous, forming a fine-grained structure in which each
of the two components appears more or less alternatively (see, e.g., [54]). The Cahn–
Hilliard equation is a celebrated model which describes this process (usually known as
spinodal decomposition) by the simple framework of partial differential equations. The
mathematical literature concerning this problem is rather vast. Let us quote [15,20,24,42,
45,55,59,60,66] and also refer to [19] in which a forced mass constraint on the boundary
is considered.
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In the second chapter, we consider the following Cahn–Hilliard system perturbed by
the presence of an additional maximal monotone nonlinearity:

∂t(ϑ+ `ϕ)−∆ϑ+ ζ = f a.e. in Q, (1.2.1)

∂tϕ−∆µ = 0 a.e. in Q, (1.2.2)

µ = −υ∆ϕ+ ξ + π(ϕ)− γϑ a.e. in Q, (1.2.3)

ζ(t) ∈ A(aϑ(t) + bϕ(t)− η∗) for a.e. t ∈ (0, T ), (1.2.4)

ξ ∈ β(ϕ) a.e. in Q, (1.2.5)

where ϑ, ϕ and µ denote the temperature, the order parameter and the chemical potential,
respectively. We point out that here ϑ does not represent the absolute temperature, but
it is related to it by

ϑ = Θ−Θc, (1.2.6)

where Θc denotes a critical temperature. Moreover, η∗ is a function in H2(Ω) with null
outward normal derivative on the boundary of Ω, f is a source term and a, b, `, γ are
constants. In particular, let ` and γ be positive. The above system is complemented by
homogeneous Neumann boundary conditions for ϑ, ϕ and µ, that is,

∂νϑ = ∂νϕ = ∂νµ = 0 on Σ, (1.2.7)

and by the initial conditions

ϑ(0) = ϑ0, ϕ(0) = ϕ0 in Ω. (1.2.8)

The term ξ + π(ϕ), appearing in (1.2.3), represents the derivative of the double–well
potential W defined as in (1.1.7) and satisfying (1.1.8)–(1.1.9), while A is the maximal
monotone operator described by (1.1.10)–(1.1.11).

As usual for Cahn–Hilliard system, the integral mean value of ϕ(t) remains constant
during the whole evolution. Indeed, fixing an arbitrary t ∈ (0, T ) and integrating (1.2.2)
over Ω, we infer that

d

dt

∫
Ω

ϕ(t) = 0, (1.2.9)

whence it immediately follows that

m(ϕ(t)) :=
1

|Ω|

∫
Ω

ϕ(t) =
1

|Ω|

∫
Ω

ϕ0 for every t ∈ (0, T ). (1.2.10)

We also observe that the system (1.2.1)–(1.2.8) is a fourth-order problem constructed as
the conserved version of the phase–field system (1.1.1)–(1.1.6).

In this thesis (see also [33]), we first show the existence of solutions for Problem (P )
(see (1.2.1)–(1.2.8)). In order to carry out this purpose, we consider the approximating
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problem (Pε), obtained from (P ) by approximating A and β by their Yosida regular-
izations. In performing our uniform estimates we often refer to [21], where the authors
propose the study of a nonlinear diffusion problem as an asymptotic limit of a particular
Cahn–Hilliard system. Then, we pass to the limit as ε ↘ 0 and show that some limit of
a subsequence of solutions for (Pε) yields a solution of (P ). Next, we let a` = b which is,
in some sense, a physical restriction since the argument of the variable in the operator A
is thus proportional to the internal energy of the system. We also write Problem (P ) for
two different sets of data fi, η

∗
i , ϑ0i and ϕ0i , i = 1, 2. By suitably performing contract-

ing estimates for the difference of the corresponding solutions, we deduce the continuous
dependence result whence the uniqueness property is also achieved.

Then, we consider a sliding mode control (SMC) problem. Hence, the main idea
behind this scheme is first to identify a manifold of lower dimension (called the sliding
manifold) where the control goal is fulfilled and such that the original system restricted
to this sliding manifold has a desired behavior, and then to act on the system through the
control in order to constrain the evolution on it, that is, to design a SMC-law that forces
the trajectories of the system to reach the sliding surface and maintains them on it (see,
e.g., [51,57]). The main advantage of sliding mode control is that it allows the separation
of the motion of the overall system in independent partial components of lower dimensions,
and consequently it reduces the complexity of the control problem. In particular, we prove
the existence of sliding modes for the solutions of our system (P ) for a suitable choice of
the operator A and of the coefficients a and b. We take a = 1, b = ` and A = ρ Sign,
where ρ is a positive coefficient and Sign : H −→ 2H is the maximal monotone operator
defined in the previuos Subsection. Thus we prescribe a state-feedback control law acting
on the rescaled internal energy (ϑ + `ϕ) of the system in order that the dynamics of the
system modified in this way forces the value (ϑ(t) + `ϕ(t)) to reach a manifold of the
phase space in a finite time and then lie there with a sliding mode (cf. [2, 27]).

Concerning the study of optimal control problems for phase–field systems, we quote
[22, 23, 30, 49]. Recent investigations have been also addressed to the optimal control
problem for Cahn-Hilliard systems: let us mention [17, 18, 24–26, 46]. We also refer to
[67, 68] which deals with the convective Cahn–Hilliard equation, and to [47, 65], where
some discretized versions of the general Cahn–Hilliard systems are studied.

Then, assuming a = 1, b = ` and A = ρ Sign in (1.2.1)–(1.2.8), we prove the existence
of sliding modes for Problem (P ) by identifying ρ∗ > 0 such that the following property
is fulfilled: for every ρ > ρ∗, there exists a solution (ϑ, ϕ, µ) to Problem (P ) and a time
T ∗ such that, for every t ∈ [T ∗, T ]

ϑ(t) + `ϕ(t) = η∗ a.e. in Ω. (1.2.11)

It is curious and interesting that we are able to handle a feedback law and prove the
mentioned property just for the internal energy of the system, which is a special linear
combination of the variables ϑ and ϕ. However, for a discussion of the SMC laws, linear
and nonlinear, that can be considered for phase–field systems, we refer to the Introduction
of [2].
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1.3 Singular phase–field systems

In the third chapter of the Thesis, we consider a system of partial differential equations
(PDE) arising from a thermodynamic model describing phase transitions. The system is
written in terms of a rescaled balance of energy and of a balance law for the microforces
that govern the phase transition. Moreover, the first equation of the system is perturbed
by the presence of an additional maximal monotone nonlinearity. The third chapter
will focus only on analytical aspects and, in particular, will investigate the existence of
solutions. In order to make the presentation clear from the beginning, we briefly introduce
the main ingredients of the PDE system and give some comments on the physical meaning.

We deal with a two–phase system located in a smooth bounded domain Ω ⊆ R3 and let
T > 0 denote some final time. The unknowns of the problem are the absolute temperature
ϑ and an order parameter ϕ.

Now, let us state precisely the equations as well as the initial and boundary conditions.
The equations governing the evolution of ϑ and ϕ are recovered as balance laws. The first
equation comes from a reduction of the energy balance equation divided by the absolute
temperature ϑ (see [5, formulas (2.33)–(2.35)]). Therefore, the so-called entropy balance
can be written in Ω× (0, T ) as follows:

∂t(lnϑ+ `ϕ)− k∆ϑ = f, (1.3.1)

where ` is a positive parameter, k > 0 is a thermal coefficient for the entropy flux Q,
which is related to the heat flux vector q by Q = q/ϑ, and f stands for an external
entropy source.

Here, we assume that the entropy balance equation (1.3.1) is perturbed by the presence
of an additional maximal monotone nonlinearity, i.e.,

∂t(lnϑ+ `ϕ)− k∆ϑ+ ζ = f, (1.3.2)

where
ζ(t) ∈ A(ϑ(t)− ϑ∗) for a.e. t ∈ (0, T ). (1.3.3)

Here, ϑ∗ is a positive and smooth function (ϑ∗ ∈ H2(Ω) with null outward normal deriva-
tive on the boundary) and A, i.e. the maximal monotone operator described by (1.1.10)–
(1.1.11), is the subdifferential of a proper, convex and lower semicontinuous function
Υ : L2(Ω) → R. In order to explain the role of this further nonlinearity, we refer to [2],
where a class of sliding mode control problems is considered: a state-feedback control
(ϑ, ϕ) 7→ u(ϑ, ϕ) is added in the balance equations with the purpose of forcing the trajec-
tories of the system to reach the sliding surface (i.e., a manifold of lower dimension where
the control goal is fulfilled and such that the original system restricted to this manifold
has a desired behavior) in finite time and maintains them on it. As widely described
in [2], this study is physically meaningful in the framework of phase transition processes.

In the first two chapters of this thesis (see also [32,33]) the existence of strong solutions,
the global well–posedness of the system and the sliding mode property can be proved;
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unfortunately, here the problem we consider is rather more delicate due to the doubly
nonlinear character of equation (1.3.2) and it turns out that we cannot perform a so
complete analysis. On the other hand, we observe that, due to the presence of the
logarithm of the temperature in the entropy equation (1.3.2), in the system we investigate
here the positivity of the variable representing the absolute temperature follows directly
from solving the problem, i.e., from finding a solution component ϑ to which the logarithm
applies. This is an important feature and avoids the use of other methods or the setting
of special assumptions, in order to guarantee the positivity of ϑ in the space-time domain.

The second equation of the system under study describes the phase dynamics and is
deduced from a balance law for the microscopic forces that are responsible for the phase
transition process. According to [40,44], this balance reads

∂tϕ−∆ϕ+ β(ϕ) + π(ϕ) 3 `ϑ, (1.3.4)

where β+π represents the derivative, or the subdifferential, of the double–well potentialW
defined as in (1.1.7) and satisfying (1.1.8)–(1.1.9). We recall that many different choices
of β̃ and π̃ have been introduced in the literature (see, e.g., [3, 6, 39, 58]). In case of a
solid-liquid phase transition, W may be taken in a way that the full potential (cf. (1.3.4))

ϕ 7→ β̃(ϕ) + π̃(ϕ)− `ϑϕ

exhibits one of the two minima ϕ = 0 and ϕ = 1 as global minimum for equilibrium,
depending on whether ϑ is below or above a critical value ϑc, which may represent a
phase change temperature. A sample case is given by π̃(ϕ) = `ϑcϕ and by the β̃ that
coincides with the indicator function I[0,1] of the interval [0, 1], that is,

β̃(ρ) = I[0,1](ρ) =

{
0 if 0 ≤ ρ ≤ 1

+∞ elsewhere

so that β = ∂I[0,1] is specified by

r ∈ β(ρ) if and only if r


≤ 0 if ρ = 0

= 0 if 0 < ρ < 1

≥ 0 if ρ = 1

.

Of course, this yields a singular case for the potential W , in which β̃ is not differentiable,
and it is known in the literature as the double obstacle case (cf. [3, 6, 40])

In the last decades phase–field models have attracted a number of mathematicians
and applied scientists to describe many different physical phenomena. Let us just recall
some results in the literature that are related to our system. Some key references are the
papers [4–6]. Besides, we quote [8], where a first simplified version of the entropy system
is considered, and [7,9] for related analyses and results. About special choices of the heat
flux and phase–field models ensuring positivity of the absolute temperature, we aim to
quote the papers [28,29,31], where some Penrose–Fife models have been addressed.
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The full problem investigated in the third chapter consists of equations (1.3.2)–(1.3.4)
coupled with suitable boundary and initial conditions. In particular, we prescribe a no-
flux condition on the boundary for both variables:

∂νϑ = 0, ∂νϕ = 0 on Σ. (1.3.5)

Besides, in the light of (1.3.3), initial conditions are stated for lnϑ and ϕ:

lnϑ(0) = lnϑ0, ϕ(0) = ϕ0 in Ω. (1.3.6)

The resulting system is highly nonlinear. The main difficulties lie in the treatment
of the doubly nonlinear equation (1.3.2). The expert reader can realise that it is not
trivial to recover some coerciveness and regularity for ϑ from (1.3.2), (1.3.3) and (1.3.5);
morever, the presence of both lnϑ under time derivative and the selection ζ from A(ϑ−ϑ∗)
complicates possible uniqueness arguments. For the moment, we are just able to prove
the existence of solutions for the described problem (see [16]). To this aim, we introduce a
backward finite differences scheme and first examine the solvability of it, for which we have
to introduce another approximating problem based on the use of Yosida regularizations
for the maximal monotone operators. We prove several uniform estimates which allow us
to pass to the limit by means of compactness and monotonicity arguments.
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Chapter 2

Preliminary assumptions

2.1 Notations

We assume Ω ⊆ R3 to be open, bounded, connected, of class C1 and we write |Ω| for
its Lebesgue measure. Moreover, Γ and ∂ν stand for the boundary of Ω and the outward
normal derivative, respectively. Given a finite final time T > 0, for every t ∈ (0, T ] we set

Qt = Ω× (0, t), Q = QT , Σt = Γ× (0, t), Σ = ΣT .

We also introduce the spaces

H = L2(Ω), V = H1(Ω), V0 = H1
0 (Ω), W = {u ∈ H2(Ω) : ∂νu = 0 on Γ}, (2.1.1)

with usual norms ‖ · ‖H , ‖ · ‖V , ‖ · ‖W and related inner products (·, ·)H , (·, ·)V , (·, ·)W ,
respectively. We identify H with its dual space H∗, so that W ⊂ V ⊂ H ⊂ V ∗ ⊂ W ∗

with dense and compact embeddings. Let 〈·, ·〉 denote the duality pairing between V ∗ and
V . The notation ‖ · ‖p (1 ≤ p ≤ ∞) stands for the standard norm in Lp(Ω). For short, in
the notation of norms we do not distinguish between a space and a power thereof.

Moreover, in the following the small–case symbol c stands for different constants which
depend only on Ω, on the final time T , on the shape of the nonlinearities and on the
constants and the norms of the functions involved in the assumptions of our statements.
On the contrary, we use different symbols to denote precise constants to which we could
refer. It is important to point out that the meaning of c might change from line to line
and even in the same chain of inequalities.

Finally, from now on, we interpret the operator −∆ as the Laplacian operator from the
space W to H, then including the Neumann homogeneous boundary condition. Moreover,
we extend −∆ to an operator from V to V ∗ by setting

〈−∆u, v〉 :=

∫
Ω

∇u · ∇v, u, v ∈ V. (2.1.2)

15
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2.2 Inequalities

In the sequel, we account for the continuous embeddings V ⊂ Lq(Ω), with 1 ≤ q ≤ 6,
W ⊂ C0(Ω) and for the related Sobolev inequalities:

‖v‖q ≤ Cs ‖v‖V and ‖v‖∞ ≤ Cs ‖v‖W (2.2.1)

for v ∈ V and v ∈ W , respectively, where Cs depends on Ω only, since sharpness is not
needed. Now, let us recall a variant of the Poincaré inequality, i.e., there exists a positive
constant Cp such that

‖v‖V ≤ Cp

(
‖v‖L1(Ω) + ‖∇v‖H

)
, v ∈ V. (2.2.2)

Moreover, we will use an inequality deduced from the compactness of the embedding
V ⊂ H ⊂ V ∗ (see [62, Lemma 8, p. 84]): for all δ > 0 there exists a constant K > 0 such
that

‖z‖H ≤ δ‖z‖V +K‖z‖V ∗ for all z ∈ H. (2.2.3)

Furthermore, we often employ the Hölder inequality, and the Young’s inequalities, i.e.,
for every a > 0, b > 0, α ∈ (0, 1) and δ > 0 we have that

ab ≤ αa
1
α + (1− α)b

1
1−α , (2.2.4)

ab ≤ δa2 +
1

4δ
b2. (2.2.5)

Finally, let us point out that for every a, b ∈ R we have that

(a− b)a =
1

2
a2 − 1

2
b2 +

1

2
(a− b)2. (2.2.6)

2.3 Preliminary results

In this section, we state some useful results.

Lemma 2.3.1. Assume that a, b ∈ R are strictly positive. Then

(a− b) ≤
(

ln a2 − ln b2
)
(a+ b). (2.3.1)

Proof. We consider a > b (if b > a the technique of the proof is analogous) and obtain

(a− b) ≤ (ln a2 − ln b2)(a+ b) = 2(ln a− ln b)(a+ b) = 2 ln

(
a

b

)
(a+ b).

Then, dividing by b, we have that(
a

b
− 1

)
≤ 2 ln

(
a

b

)(
a

b
+ 1

)
. (2.3.2)
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Letting x = a/b, we can rewrite (2.3.2) as

(x− 1) ≤ 2(x+ 1) lnx for x ≥ 1.

Now, we observe that (2.3.1) is verified if and only if the function

f(x) := 2(x+ 1) lnx− x+ 1 is nonnegative for every x ≥ 1. (2.3.3)

Since f(1) = 0 and f ′(x) > 0 for every x ≥ 1, we conclude that (2.3.3) holds. Then, the
proof of the lemma is complete. �

Lemma 2.3.2. Let a0, b0, ψ0, ρ ∈ R be such that

a0, b0, ψ0 ≥ 0 and ρ > a2
0 + 2b0 + 2

ψ0

T
(2.3.4)

and let ψ : [0, T ] → [0,+∞) be an absolutely continuous function satisfying ψ(0) = ψ0

and
ψ′ + ρ ≤ a0ρ

1/2 + b0 a.e. in the set P := {t ∈ (0, T ) : ψ(t) > 0}. (2.3.5)

Then, the following conditions hold true:

1. If ψ0 = 0, then ψ vanishes identically.

2. If ψ0 > 0, then there exists T ∗ ∈ (0, T ) satisfying T ∗ ≤ 2ψ0/(ρ− a2
0− 2b0) such that

ψ is strictly decreasing in (0, T ∗) and ψ vanishes in [T ∗, T ].

Proof. See [2, Lemma 4.1]. �

Finally, let us recall the discrete version of the Gronwall lemma.

Lemma 2.3.3. If (a0, . . . , aN) ∈ [0,+∞)N+1 and (b1, . . . , bN) ∈ [0,+∞)N satisfy

am ≤ a0 +
m−1∑
n=1

anbn for m = 1, . . . , N , (2.3.6)

then

am ≤ a0 exp

(
m−1∑
n=1

bn

)
for m = 1, . . . , N . (2.3.7)

Proof. See [52, Prop. 2.2.1]. �

2.4 Operators

In this section, we describe the operators appearing in the systems under study.
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The double–well potential W. We introduce the double–well potentialW as the sum

W = β̃ + π̃, (2.4.1)

where
β̃ : R −→ [0,+∞] is proper, l.s.c. and convex with β̃(0) = 0, (2.4.2)

π̃ : R→ R, π̃ ∈ C1(R) with π := π̃′ Lipschitz continuous. (2.4.3)

Since β̃ is proper, l.s.c. and convex, the subdifferential β := ∂β̃ is well–defined. We denote
by D(β) and D(β̃) the effective domains of β and β̃, respectively, and also assume that
int(D(β)) 6= ∅. Thanks to these assumptions, β is a maximal monotone graph. Moreover,
as β̃ takes its minimum in 0, we have that 0 ∈ β(0). Now, we observe that β induces the
operator B on L2(Q) in the following way:

B : L2(Q) −→ L2(Q) (2.4.4)

ξ ∈ B(ϕ)⇐⇒ ξ(x, t) ∈ β(ϕ(x, t)) for a.e. (x, t) ∈ Q. (2.4.5)

We notice that
β = ∂β̃, B = ∂Ψ, (2.4.6)

where
Ψ : L2(Q) −→ (−∞,+∞] (2.4.7)

Ψ(u) =

{ ∫
Q
β̃(u) if u ∈ L2(Q) and β̃(u) ∈ L1(Q),

+∞ elsewhere, with u ∈ L2(Q).
(2.4.8)

The maximal monotone operator A. We consider the maximal monotone operator

A : H −→ H (2.4.9)

and we assume that

A is the subdifferential of a convex and l.s.c. function Υ : H −→ R
which takes its minimum in 0 and has at most a quadratic growth. (2.4.10)

These properties are related to our assumptions on A = ∂Υ, which read

0 ∈ A(0), ∃CA > 0 such that ‖y‖H ≤ CA(1 + ‖x‖H) ∀x ∈ H, ∀ y ∈ Ax. (2.4.11)

We also introduce the operator A induced by A on L2(0, T ;H) in the following way

A : L2(0, T ;H) −→ L2(0, T ;H) (2.4.12)

ζ ∈ A(η)⇐⇒ ζ(t) ∈ A(η(t)) for a.e. t ∈ (0, T ). (2.4.13)

We notice that A is a maximal monotone operator.
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The operator Sign. Let us consider the operator

sign : R −→ 2R, sign(r) =

{
r
|r| if r 6= 0,

[−1, 1] if r = 0,
(2.4.14)

and its nonlocal counterpart in H, that is,

Sign : H −→ 2H , Sign(v) =

{
v
‖v‖H

if v 6= 0,

B1(0) if v = 0,
(2.4.15)

where B1(0) denotes the closed unit ball of H. It is straightforward to check that Sign
satisfies (2.4.10)–(2.4.11) and turns out to be the subdifferential of the norm function v 7→
‖v‖H . Concerning the graph sign, it is well known that it induces a maximal monotone
operator in H which is the the subdifferential of the convex function v 7→

∫
Ω
|v|. In

the following two paragraphs, we consider other interesting operators satisfying (2.4.10)–
(2.4.11).

Example 1. We consider the operator

A1 : R −→ R (2.4.16)

A1(r) =


α1r if r < 0,
0 if 0 ≤ r ≤ 1,
α2r if r > 1,

(2.4.17)

where α1 and α2 are positive coefficients. We observe that A1 is a maximal monotone
operator on R, whose graph consists of an horizontal line segment and two rays of slope
α1, α2. Moreover, 0 ∈ A1(0) and

|v| ≤ C(1 + |r|) for all r ∈ R, v ∈ A1(r), (2.4.18)

with C = max (α1, α2). Then A1 satisfies (2.4.11)–(2.4.11). We notice that A1 corresponds
to the graph which correlates the enthalpy to the temperature in the Stefan problem (see,
e.g., [34, 36,41]).

Example 2. We consider the operator

A2 : H −→ H (2.4.19)

A2(v) = α|v|q−1v, (2.4.20)

where 0 < q < 1 and α is a function in L∞(Ω) with α(x) ≥ 0 for a.e. x ∈ Ω. We
observe that A2 induces a (nonlocal) multivalued maximal monotone operator on H, with
0 ∈ A2(0). Moreover, A2 can be considered a weighted perturbation of the operator
appearing in the porous media equation and in the fast diffusion equation (see, e.g.,
[35, 50,64]).
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The operator m. We consider the operator m : V ∗ → R defined by

m(z∗) :=
1

|Ω|
〈z∗, 1〉V ∗,V for all z∗ ∈ V ∗. (2.4.21)

We observe that, if z∗ ∈ H, then

m(z∗) =
1

|Ω|

∫
Ω

z∗dx. (2.4.22)

The operator N . We also consider the operator

N : D(N ) ⊆ V ∗ → V, (2.4.23)

defined on its domain

D(N ) := {w ∈ V ∗ : m(w∗) = 0}. (2.4.24)

For every w∗ ∈ D(N ), we define w = Nw∗ if w ∈ V , m(w) = 0 and w is a solution of the
following variational equation∫

Ω

∇w · ∇zdx = 〈w∗, z〉V ∗,V for all z ∈ V. (2.4.25)

If w∗ ∈ D(N ) ∩H, then w is the unique solution to the elliptic problem
−∆w = w∗ a.e. in Ω,

∂νw = 0 a.e. in Γ,

m(w) = 0.

(2.4.26)

We observe that, due to elliptic regularity, w ∈ W . Moreover, for every v∗, w∗ ∈ D(N ),
v = N v∗ and w = Nw∗ we have that

〈w∗,N v∗〉V ∗,V = 〈w∗, v〉V ∗,V =

∫
Ω

∇w · ∇vdx

= 〈v∗, w〉V ∗,V = 〈v∗,Nw∗〉V ∗,V .

Consequently, by defining

‖w∗‖2
V ∗ :=

∥∥∇N (w∗ −m(w∗)
)∥∥2

H3 +
∣∣m(w∗)

∣∣2 for all w∗ ∈ V ∗, (2.4.27)

it turns out that ‖ · ‖V ∗ is a norm in V ∗.
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2.5 Moreau–Yosida regularization

Moreau–Yosida regularization of β and β̃. We introduce the Yosida regularization
of the operator β (see (2.4.2)). For ε > 0 let

βε : R −→ R, βε =
I − (I + εβ)−1

ε
. (2.5.1)

We remark that βε is Lipschitz continuous (with Lipschitz constant 1/ε) and satisfies the
following properties: denoting by Rε = (I + εβ)−1 the resolvent operator, we have that

βε(x) ∈ β(Rεx) for all x ∈ R, (2.5.2)

|βε(x)| ≤ |β◦(x)|, lim
ε↘0

βε(x) = β◦(x) for all x ∈ D(β), (2.5.3)

where β◦(x) is the element of the range of β(x) having minimal modulus. We also intro-
duce the Moreau–Yosida regularization of β̃. For ε > 0 and x ∈ R we set

β̃ε : R −→ [0,+∞], β̃ε(x) := min
y∈R

{
β̃(y) +

1

2ε
|x− y|2

}
and recall that

β̃ε(x) ≤ β̃(x) for every x ∈ R. (2.5.4)

We also observe that βε is the derivative of β̃ε. Then, for every x1, x2 ∈ R we have that

β̃ε(x2) = β̃ε(x1) +

∫ x2

x1

βε(s) ds. (2.5.5)

Yosida regularization of A. We introduce the Yosida regularization of A (see ). For
ε > 0 we define

Aε : H −→ H, Aε =
I − (I + εA)−1

ε
. (2.5.6)

Note that Aε is Lipschitz-continuous (with Lipschitz constant 1/ε) and maximal monotone
in H. Moreover, A satisfies the following properties: denoting by Jε = (I + εA)−1 the
resolvent operator, for all δ > 0 and for all x ∈ H, we have that

Aεx ∈ A(Jεx), (2.5.7)

‖Aεx‖H ≤ ‖A◦x‖H , lim
ε↘0
‖Aεx− A◦x‖H = 0, (2.5.8)

where A◦x is the element of the range of A having minimal norm. Let us point out a key
property of Aε, which is a consequence of (2.4.11): indeed, there holds

‖Aεx‖H ≤ CA(1 + ‖x‖H) for all x ∈ H. (2.5.9)

Notice that 0 ∈ A(0) and 0 ∈ I(0): consequently, for every ε > 0 we infer that Jε(0) = 0.
Moreover, since A is maximal monotone, Jε is a contraction. Then, from (2.4.11) and
(2.5.7), for every x ∈ H we have that

‖Aεx‖H ≤ CA(‖Jεx‖H + 1) ≤ CA(‖Jεx− Jε0‖H + 1) ≤ CA(‖x‖H + 1).
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Yosida regularization of Sign. Let us introduce the operator Signε : H → H as the
Yosida regularization at level ε > 0 of the operator Sign. We observe that Signε(v) is the
gradient at v of the C1 functional ‖ · ‖H,ε defined as

‖v‖H,ε := min
w∈H
{ 1

2ε
‖w − v‖2

H + ‖w‖H} =

∫ ‖v‖H
0

min {s/ε, 1} ds for every v ∈ H.

(2.5.10)
We also recall that

Signε(v) =
v

max {ε, ‖v‖H}
for every v ∈ H. (2.5.11)

Yosida regularization of ln. We introduce the Yosida regularization of ln. For ε > 0
we set

lnε : R −→ R, lnε :=
I − (I + εln)−1

ε
. (2.5.12)

where I denotes the identity. We point out that lnε is monotone, Lipschitz continuous
(with Lipschitz constant 1/ε) and satisfies the following properties: denoting by Lε =
(I + εln)−1 the resolvent operator, we have that

lnε(x) ∈ ln(Lεx) for all x ∈ R, (2.5.13)

|lnε(x)| ≤ |ln(x)|, lim
ε↘0

lnε(x) = ln(x) for all x > 0. (2.5.14)

We also introduce the nonnegative and convex functions

Λ(x) =

∫ x

1

ln r dr, Λε(y) =

∫ y

1

lnε r dr for all x > 0 and y ∈ R. (2.5.15)

Note that the graph x 7→ lnx is nothing but the subdifferential of the convex function Λ
extended by lower semicontinuity in 0 and with value +∞ for x < 0. On the other hand,
Λε coincides with the Moreau–Yosida regularization of Λ and, in particular, we have that

0 ≤ Λε(x) ≤ Λ(x) for every x > 0. (2.5.16)

Regularization of f . Assume that f ∈ L2(0, T ;H). We denote by fε the regularization
of f , constructed in such a way that

fε ∈ C1([0, T ];H) for all ε > 0, lim
ε↘0
‖fε − f‖L2(0,T ;H) = 0. (2.5.17)

For example, we can consider fε as the solution of the following system:{
−εf ′′ε (t) + fε(t) = f(t), t ∈ (0, T ),
fε(0) = fε(T ) = 0.

(2.5.18)

Thanks to Sobolev immersions and elliptic regularity, (2.5.17) is achieved.



Chapter 3

Solvability of a class of phase–field
systems related to a sliding mode
control problem

In this chapter we investigate a phase–field system of Caginalp type perturbed by the
presence of an additional maximal monotone nonlinearity. Such a system arises from a
recent study of a sliding mode control problem. We prove existence of strong solutions.
Moreover, under further assumptions, we show the continuous dependence on the initial
data and the uniqueness of the solution.

3.1 Setting of the problem and results

We assume that
`, α, k, υ, γ ∈ (0,+∞), (3.1.1)

f ∈ L2(Q), η∗ ∈ W, (3.1.2)

η0 ∈ V, ϕ0 ∈ V, β̃(ϕ0) ∈ L1(Ω). (3.1.3)

We look for a pair (η, ϕ) satisfying at least the regularity requirements

η, ϕ ∈ H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ) (3.1.4)

and solving the problem (P ):

∂t(η + (`− α)ϕ)− k∆η + kα∆ϕ+ ζ = f − k∆η∗ a.e. in Q, (3.1.5)

∂tϕ− υ∆ϕ+ ξ + π(ϕ) = γ(η − αϕ+ η∗) a.e. in Q, (3.1.6)

ζ(t) ∈ A(η(t)) for a.e. t ∈ (0, T ), (3.1.7)

ξ ∈ β(ϕ) a.e. in Q, (3.1.8)

23
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∂νϑ = 0, ∂νϕ = 0 on Σ, (3.1.9)

η(0) = η0, ϕ(0) = ϕ0 in Ω. (3.1.10)

We notice that the homogeneous Neumann boundary conditions for both η and ϕ required
by (3.1.9) follow from (3.1.4), due to the definition of W (see (2.1.1)).

Theorem - (Existence) 3.1.1. Assume (3.1.1)–(3.1.3), (2.4.2)–(2.4.3) and (2.4.9)–
(2.4.11). Then problem (P ) (see (3.1.5)–(3.1.10)) has at least a solution (η, ϕ) satisfying
the regularity requirements (3.1.4).

Theorem - (Uniqueness and continuous dependence) 3.1.2. Assume (3.1.1)–
(3.1.3), (2.4.2)–(2.4.3) and (2.4.9)–(2.4.11). If α = `, the solution (ϕ, η) of problem
(P ) (see (3.1.5)–(3.1.10)) is unique. Moreover, if fi, η

∗
i , η0i, ϕ0i, i = 1, 2, are given as in

(3.1.2)–(3.1.3) and (ϕi, ηi), i = 1, 2, are the corresponding solutions, then the estimate

‖η1 − η2‖L∞(0,T ;H)∩L2(0,T ;V ) + ‖ϕ1 − ϕ2‖L∞(0,T ;H)∩L2(0,T ;V )

≤ C(‖f1 − f2‖L2(Q) + ‖η∗1 − η∗2‖W + ‖η01 − η02‖H + ‖ϕ01 − ϕ02‖H) (3.1.11)

holds true for some constant C depending only on Ω, T and the parameters `, α, k, υ, γ.

3.2 Proof of the existence theorem

3.2.1 The approximating problem (Pε)

This section is devoted to the proof of Theorem 3.1.1. In order to obtain this result, we
look for a pair (ηε, ϕε) satisfying at least the regularity requirements

ηε, ϕε ∈ H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ) (3.2.1)

and solving the approximating problem (Pε):

∂t(ηε + (`− α)ϕε)− k∆ηε + kα∆ϕε + ζε = fε − k∆η∗ a.e. in Q, (3.2.2)

∂tϕε − υ∆ϕε + ξε + π(ϕε) = γ(ηε − αϕε + η∗) a.e. in Q, (3.2.3)

ζε(t) = Aεηε(t) for a.e. t ∈ (0, T ), (3.2.4)

ξε = βε(ϕε) a.e. in Q, (3.2.5)

∂νηε = 0, ∂νϕε = 0 on Σ, (3.2.6)

ηε(0) = η0, ϕε(0) = ϕ0 in Ω, (3.2.7)

where Aε and βε are the Yosida regularizations of A and β defined in (2.5.6) and (2.5.1),
respectively. We notice that the homogeneous Neumann boundary conditions for both ηε
and ϕε required by (3.2.6) follow from (3.2.1) due to the definition of W (see (2.1.1)).
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3.2.2 The approximating problem (Pε,n)

Now, we apply the Faedo-Galerkin method to the approximating problem (Pε). We
consider the orthonormal basis {vi}{i≥1} of V formed by the normalized eigenfunctions of
the Laplace operator with homogeneous Neumann boundary condition, that is{

−∆vi = λivi in Ω,
∂νvi = 0 on ∂Ω.

(3.2.8)

Note that, owing to the regularity of Ω, vi ∈ W for all i ≥ 1. Then, for any integer n ≥ 1,
we denote by Vn the n-dimentional subspace of V spanned by {v1, · · · , vn}. Hence, {Vn}
is a sequence of finite dimensional subspaces such that

⋃+∞
n=1 Vn is dense in V and Vk ⊆ Vn

for all k ≤ n.

Definition of the approximating problem (Pε,n). We first approximate the initial
data η0 and ϕ0. We set

η0,n = PVnη0, ϕ0,n = PVnϕ0. (3.2.9)

We notice that

lim
n→+∞

‖η0,n − η0‖V = 0 and lim
n→+∞

‖ϕ0,n − ϕ0‖V = 0. (3.2.10)

Note that the convergence provided by (3.2.10) assures that η0,n and ϕ0,n are bounded in
V . Now, we introduce the new approximating problem (Pε,n). We look for tn ∈]0, T ] and
a pair (ηε,n, ϕε,n) (in the following we will write (ηn, ϕn) instead of (ηε,n, ϕε,n)) such that

ηn ∈ C1([0, tn];Vn), ϕn ∈ C1([0, tn];Vn), (3.2.11)

and, for every v ∈ Vn and for every t ∈ [0, tn], solving the approximating problem (Pε,n):

(∂t[ηn(t) + (`− α)ϕn(t)]− k∆ηn(t) + kα∆ϕn(t) + Aεηn(t), v)H

= (fε(t)− k∆η∗, v)H , (3.2.12)

(∂tϕn(t)− υ∆ϕn(t) + βε(ϕn(t)) + π(ϕn(t)), v)H

= (γ[ηn(t)− αϕn(t) + η∗], v)H , (3.2.13)

∂νηn = 0, ∂νϕn = 0 on Σ, (3.2.14)

ηn(0) = η0,n, ϕn(0) = ϕ0,n in Ω. (3.2.15)

This is a Cauchy problem for a system of nonlinear ordinary differential equations. In the
next section we will show by a change of variable that this system admits a local solution
(ηn, ϕn), which is of the form

ϕn(t) =
n∑
i=1

ain(t)vi, (3.2.16)

ηn(t) =
n∑
i=1

bin(t)vi, (3.2.17)

for some ain ∈ C1([0, tn]) and bin ∈ C1([0, tn]).
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Remark. We point out that∫
Ω

β̃ε(ϕ0,n) ≤ C +
1

2ε
‖ϕ0 − ϕ0,n‖H(‖ϕ0‖H + ‖ϕ0,n‖H), (3.2.18)

where
C = ‖β̃(ϕ0)‖L1(Ω). (3.2.19)

Indeed, for every ε ∈ (0, 1], thanks to the property (2.5.4) of β̃ε, we have that

0 ≤ β̃ε(ϕ0) ≤ β̃(ϕ0). (3.2.20)

Since β̃(ϕ0) ∈ L1(Ω) (see (3.1.3)), we obtain that∫
Ω

β̃ε(ϕ0) ≤ C, (3.2.21)

where C = ‖β̃(ϕ0)‖L1(Ω). From (2.5.5), using the Lipschitz continuity of βε, we have

β̃ε(ϕ0,n) ≤ β̃ε(ϕ0) +
∣∣∣ ∫ ϕ0,n

ϕ0

βε(s) ds
∣∣∣

≤ β̃ε(ϕ0) +
1

ε

∫ ϕ0,n

ϕ0

|s| ds

≤ β̃ε(ϕ0) +
1

2ε
|ϕ0 − ϕ0,n|(|ϕ0|+ |ϕ0,n|). (3.2.22)

By integrating (3.2.22) over Ω, we obtain that∫
Ω

β̃ε(ϕ0,n) ≤ Qε(n), (3.2.23)

where

Qε(n) = C +
1

2ε
‖ϕ0 − ϕ0,n‖H(‖ϕ0‖H + ‖ϕ0,n‖H).

Remark 3.2.1. Thanks to (3.2.17) and the Lipschitz continuity of Aε, we obtain that

Aε(ηn) ∈ C0,1([0, tn];H). (3.2.24)

Indeed, ‖vi‖H ≤ ‖vi‖V = 1, for all i ∈ N. Then we choose t, t′ ∈ [0, tn] and we have the
following inequality:

‖Aε(ηn(t))− Aε(ηn(t′))‖H =

∥∥∥∥∥Aε
(

n∑
i=1

bin(t)vi

)
− Aε

(
n∑
i=1

bin(t′)vi

)∥∥∥∥∥
H

≤ 1

ε

∥∥∥∥∥
n∑
i=1

(bin(t)− bin(t′))vi

∥∥∥∥∥
H

≤ 1

ε

n∑
i=1

|bin(t)− bin(t′)| ‖vi‖H

=
1

ε

n∑
i=1

|bin(t)− bin(t′)|.

Since bin are continuous, we obtain (3.2.24).
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Existence of a local solution for (Pε,n). In order to prove the existence of a local
solution (ηn, ϕn) for the approximating problem (Pε,n), we make a change of variable. We
set

ϑn = ηn + (`− α)ϕn, ϑ0,n = η0,n + (`− α)ϕ0,n, (3.2.25)

and we prove that there exists a local solution (ϑn, ϕn) of the problem

(∂tϑn − k∆ϑn + k`∆ϕn + Aε(ϑn − (`− α)ϕn), v)H = (fε − k∆η∗, v)H ,
(∂tϕn − υ∆ϕn + βε(ϕn) + π(ϕn), v)H = (γ[ϑn − `ϕn + η∗], v)H ,
ϕn(0) = ϕ0,n, ϑn(0) = ϑ0,n,

(3.2.26)

whenever v ∈ Vn. Re-arranging the above system in explicit form, we have

(∂tϑn, v)H = (k∆ϑn − k`∆ϕn − Aε(ϑn − (`− α)ϕn) + fε − k∆η∗, v)H ,
(∂tϕn, v)H = (υ∆ϕn − βε(ϕn)− π(ϕn) + γ[ϑn − `ϕn + η∗], v)H ,
ϕn(0) = ϕ0,n, ϑn(0) = ϑ0,n,

(3.2.27)

whenever v ∈ Vn. Thanks to the initial hypotheses (3.1.1)–(3.1.3), (2.4.2)–(2.4.3) and
to the regularity of Aε shown in (3.2.24), the right-hand side of (3.2.27) is a Lipschitz
continuous function from [0, tn] to Rn. Consequently, there exists a local solution for the
approximating problem (Pε,n).

3.2.3 Global a priori estimates

In this section we obtain four a priori estimates inferred from the main equations of the
approximating problem (Pε,n) (see (3.2.12)–(3.2.15)).

First a priori estimate. We add υϕn to both sides of (3.2.13) and we test (3.2.12) by
ηn and (3.2.13) by ∂tϕn, respectively. Then we sum up and integrate over Qt, t ∈ (0, T ].
We obtain that

1

2

∫
Ω

|ηn(t)|2 + (`− α)

∫
Qt

∂tϕnηn + k

∫
Qt

|∇ηn|2 − kα
∫
Qt

∇ϕn · ∇ηn +

∫
Qt

Aεηnηn

+

∫
Qt

|∂tϕn|2 +
υ

2

∫
Ω

|ϕn(t)|2 +
υ

2

∫
Ω

|∇ϕn(t)|2 +

∫
Qt

∂tβ̂ε(ϕn)

=
1

2

∫
Ω

|η0,n|2 +
υ

2

∫
Ω

|ϕ0,n|2 +
υ

2

∫
Ω

|∇ϕ0,n|2 +

∫
Qt

(fε − k∆η∗)ηn

+

∫
Qt

[γηn + (υ − αγ)ϕn + γη∗]∂tϕn −
∫
Qt

π(ϕn)∂tϕn. (3.2.28)

To estimate the last integral on the right-hand side of (3.2.28), we observe that π is a
Lipschitz continuous function with Lipschitz constant Cπ. Consequently we have that

|π(ϕn)| ≤ |π(ϕn)− π(0)|+ |π(0)|
≤ Cπ|ϕn|+ |π(0)|
≤ C1(|ϕn|+ 1), (3.2.29)
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where C1 = max {Cπ; |π(0)|}. Due to (2.2.5) and (3.2.29), we obtain that

−
∫
Qt

π(ϕn)∂tϕn ≤
∫
Qt

|π(ϕn)∂tϕn|

≤
∫
Qt

C1(|ϕn|+ 1)|∂tϕn|

≤ 1

8

∫
Qt

|∂tϕn|2 + 2C2
1

∫
Qt

(|ϕn|+ 1)2

=
1

8

∫
Qt

|∂tϕn|2 + 4C2
1

∫
Qt

|ϕn|2 + c. (3.2.30)

Now, we recall that Aε is a maximal monotone operator and Aε(0) = 0. Hence we have
that ∫

Qt

Aεηnηn ≥ 0. (3.2.31)

Using (3.2.30)–(3.2.31), from (3.2.28) we obtain that

1

2

∫
Ω

|ηn(t)|2 + k

∫
Qt

|∇ηn|2 +

∫
Qt

|∂tϕn|2 +
υ

2

∫
Ω

|ϕn(t)|2 +
υ

2

∫
Ω

|∇ϕn(t)|2 +

∫
Ω

β̂ε(ϕn(t))

≤ c+
1

2

∫
Ω

|η0,n|2 +
υ

2

∫
Ω

|ϕ0,n|2 +
υ

2

∫
Ω

|∇ϕ0,n|2 +

∫
Ω

β̂ε(ϕ0,n)

−(`− α)

∫
Qt

∂tϕnηn + kα

∫
Qt

∇ϕn · ∇ηn +
1

8

∫
Qt

|∂tϕn|2 + 4C2
1

∫
Qt

|ϕn|2

+

∫
Qt

(fε − k∆η∗)ηn +

∫
Qt

[γηn + (υ − αγ)ϕn + γη∗]∂tϕn. (3.2.32)

We notice that the convergence provided by (3.2.10) assures that η0,n and ϕ0,n are bounded
in V . Consequently, thanks to (3.2.23), the first four integrals on the right-hand side of
(3.2.32) are estimated as follows:

1

2

∫
Ω

|η0,n|2 +
υ

2

∫
Ω

|ϕ0,n|2 +
υ

2

∫
Ω

|∇ϕ0,n|2 +

∫
Ω

β̂ε(ϕ0,n) ≤ c+Qε(n). (3.2.33)

We also notice that

kα

∫
Qt

∇ϕn · ∇ηn =
k

2

(
2α

∫
Qt

∇ϕn · ∇ηn
)

≤ k

2

∫
Qt

|∇ηn|2 +
kα2

2

∫
Qt

|∇ϕn|2

=
k

2

∫
Qt

|∇ηn|2 +
kα2

υ

∫
Qt

υ

2
|∇ϕn|2. (3.2.34)
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We re-arrange the right-hand side of (3.2.32) using (2.2.5), (3.2.33) and (3.2.34). Then
we have that

1

2
‖ηn(t)‖2

H + k

∫
Qt

|∇ηn|2 +

∫
Qt

|∂tϕn|2 +
υ

2
‖ϕn(t)‖2

V +

∫
Ω

β̂ε(ϕn(t))

≤ c+Qε(n) + 2(`− α)2

∫
Qt

|ηn|2 +
1

8

∫
Qt

|∂tϕn|2 +
k

2

∫
Qt

|∇ηn|2 +
kα2

υ

∫
Qt

υ

2
|∇ϕn|2

+
1

8

∫
Qt

|∂tϕn|2 + 4C2
1

∫
Qt

|ϕn|2 + 2

∫
Qt

|fε − k∆η∗|2 +
1

8

∫
Qt

|ηn|2

+2

∫
Qt

|γηn + (υ − αγ)ϕn + γη∗|2 +
1

8

∫
Qt

|∂tϕn|2. (3.2.35)

According to (2.5.17), fε is bounded in L2(0, T ;H) uniformly with respect to ε. Conse-
quently, due to (3.1.2)–(3.1.2), the seventh integral on the right-hand side of (3.2.35) is
under control and similarly the third addendum in the ninth integral on the right-hand
side. Then we infer that

1

2
‖ηn(t)‖2

H + k

∫
Qt

|∇ηn|2 +

∫
Qt

|∂tϕn|2 +
υ

2
‖ϕn(t)‖2

V +

∫
Ω

β̂ε(ϕn(t))

≤ c+Qε(n) +
[
2(`− α)2 +

1

8

] ∫
Qt

|ηn|2 +
1

2

∫
Qt

|∂tϕn|2 +
kα2

υ

∫
Qt

υ

2
|∇ϕn|2

+4C2
1

∫
Qt

|ϕn|2 + 8γ2

∫
Qt

|ηn|2 + 8(υ − αγ)2

∫
Qt

|ϕn|2. (3.2.36)

Now, we recollect the constants in (3.2.36) and obtain that

1

2
‖ηn(t)‖2

H + k

∫
Qt

|∇ηn|2 +

∫
Qt

|∂tϕn|2 +
υ

2
‖ϕn(t)‖2

V +

∫
Ω

β̂ε(ϕn(t))

≤ c+Qε(n) + C2
1

2

∫ t

0

‖ηn(s)‖2
H ds+ C3

υ

2

∫ t

0

‖∇ϕn(s)‖2
H ds+ C4

υ

2

∫ t

0

‖ϕn(s)‖2
H ds,

(3.2.37)
where

C2 = 2[2(`− α)2 +
1

8
+ 8γ2], C3 =

kα2

υ
, C4 =

2[4C2
1 + 8(υ − αγ)2]

υ
.

Consequently, from (3.2.37) we have that

1

2
‖ηn(t)‖2

H + k

∫
Qt

|∇ηn|2 +

∫
Qt

|∂tϕn|2 +
υ

2
‖ϕn(t)‖2

V +

∫
Ω

β̂ε(ϕn(t))

≤ c+Qε(n) + C5

(
1

2

∫ t

0

‖ηn(s)‖2
H ds+

υ

2

∫ t

0

‖ϕn(s)‖2
V ds

)
, (3.2.38)
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where
C5 = max (C2, C3, C4).

Then, from (3.2.38) we conclude that

1

2
‖ηn(t)‖2

H + k

∫
Qt

|∇ηn|2 +

∫
Qt

|∂tϕn|2 +
υ

2
‖ϕn(t)‖2

V +

∫
Ω

β̂ε(ϕn(t))

≤ cε

(
1 +

1

2

∫ t

0

‖ηn(s)‖2
H ds+

υ

2

∫ t

0

‖ϕn(s)‖2
V ds

)
. (3.2.39)

Now, we apply the Gronwall lemma to (3.2.39) and infer that

1

2
‖ηn(t)‖2

H + k

∫
Qt

|∇ηn|2 +

∫
Qt

|∂tϕn|2 +
υ

2
‖ϕn(t)‖2

V +

∫
Ω

β̂ε(ϕn(t)) ≤ cε. (3.2.40)

As (3.2.40) holds true for any t ∈ [0, tn), we conclude that

‖ϕn‖H1(0,tn;H)∩L∞(0,tn;V ) ≤ cε, (3.2.41)

‖ηn‖L∞(0,tn;H)∩L2(0,tn;V ) ≤ cε, (3.2.42)

‖β̂ε(ϕn)‖L∞(0,tn;L1(Ω)) ≤ cε. (3.2.43)

Second a priori estimate. First of all, we notice that π(ϕn) is bounded in L2(0, tn;H)
owing to (2.4.3) and (3.2.41). Thanks to (3.2.41)–(3.2.43), we can rewrite (3.2.13) as

(−υ∆ϕn + βε(ϕn), v)H = (g1, v)H , for all v ∈ Vn, (3.2.44)

with ‖g1‖L2(0,tn;H) ≤ cε. The choice of the basis vi as in (3.2.8) allows us to test (3.2.44)
by −∆ϕn. Integrating over (0, t), we obtain that

υ

∫
Qt

|∆ϕn|2 +

∫
Qt

∇ϕn · ∇βε(ϕn) = −
∫
Qt

g1∆ϕn. (3.2.45)

Using inequalities (2.2.4)–(2.2.5), from (3.2.45) we have that

υ

2

∫
Qt

|∆ϕn|2 +

∫
Qt

β′ε(ϕn)|∇ϕn|2 ≤
1

2υ

∫
Qt

|g1|2. (3.2.46)

Due to (3.2.41) and the monotonicity of βε, from (3.2.46) we obtain that

‖∆ϕn‖L2(0,t;H) ≤ cε. (3.2.47)

We observe that (3.2.47) holds true for any t ∈ [0, tn). Then, using elliptic regularity,
from (3.2.41) and (3.2.47) we infer that

‖ϕn‖L2(0,tn;W ) ≤ cε. (3.2.48)
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Third a priori estimate. Thanks to the previous a priori estimates, from (3.2.12) it
follows that

(∂tηn − k∆ηn + Aεηn, v)H = (g2, v)H for all v ∈ Vn, (3.2.49)

with ‖g2‖L2(0,tn;H) ≤ cε. We test (3.2.49) by ∂tηn and integrate over (0, t); we obtain that∫
Qt

|∂tηn|2 +
k

2

∫
Ω

|∇ηn(t)|2 +

∫
Qt

Aεηn∂tηn =
k

2

∫
Ω

|∇η0,n|2 +

∫
Qt

g2∂tηn. (3.2.50)

Then, using the property (2.5.9) of Aε and inequalities (2.2.4)–(2.2.5), from (3.2.50) we
infer that ∫

Qt

|∂tηn|2 +
k

2

∫
Ω

|∇ηn(t)|

≤ k

2

∫
Ω

|∇η0,n|2 +

∫
Qt

|Aεηn∂tηn|+ 2

∫
Qt

|g2|2 +
1

8

∫
Qt

|∂tηn|2

≤ k

2

∫
Ω

|∇η0,n|2 + 2

∫
Qt

|Aεηn|2 +
1

8

∫
Qt

|∂tηn|2 + 2

∫
Qt

|g2|2 +
1

8

∫
Qt

|∂tηn|2

=
k

2

∫
Ω

|∇η0,n|2 + 2

∫ t

0

‖Aεηn(s)‖2
H ds+

1

4

∫
Qt

|∂tηn|2 + 2

∫
Qt

|g2|2

≤ k

2

∫
Ω

|∇η0,n|2 + 2

∫ t

0

[C(‖ηn(s)‖H + 1)]2 ds+
1

4

∫
Qt

|∂tηn|2 + 2

∫
Qt

|g2|2

≤ c+
k

2

∫
Ω

|∇η0,n|2 + 4C2

∫ t

0

‖ηn(s)‖2
H ds+

1

2

∫
Qt

|∂tηn|2 + 2

∫
Qt

|g2|2. (3.2.51)

Due to (3.1.3), the first integral on the right-hand side of (3.2.51) is under control. Then,
from (3.2.51) we infer that

1

2

∫
Qt

|∂tηn|2 +
k

2

∫
Ω

|∇ηn(t)| ≤ c+ 4C2

∫ t

0

‖ηn(s)‖2
H ds+ 2

∫
Qt

|g2|2. (3.2.52)

We observe that (3.2.52) holds true for any t ∈ [0, tn), Then, due to the previous estimates
(3.2.41)–(3.2.42), we conclude that

‖ηn‖H1(0,tn;H)∩L∞(0,tn;V ) ≤ cε. (3.2.53)

Fourth a priori estimate. Due to the previous estimates (3.2.41)–(3.2.43), (3.2.48)
and (3.2.53), by comparison in (3.2.49), we infer that

‖∆ηn‖L2(0,tn;H) ≤ cε. (3.2.54)

Consequently, we conclude that

‖ηn‖L2(0,tn;W ) ≤ cε. (3.2.55)
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Summary of the a priori estimates. Since the constants appearing in the a priori
estimates are all independent of tn, the local solution can be extended to a solution
defined on the whole interval [0, T ], i.e., we can assume tn = T for any n. Hence, due to
(3.2.41)–(3.2.43), (3.2.48), (3.2.53) and (3.2.55), we conclude that

‖ϕn‖H1(0,T ;H)∩L∞(0,T ;V )∩L2(0,T ;W ) ≤ cε, (3.2.56)

‖ηn‖H1(0,T ;H)∩L∞(0,T ;V )∩L2(0,T ;W ) ≤ cε. (3.2.57)

3.2.4 Passage to the limit as n→ +∞

Now, we let n→ +∞ and show that the limit of some subsequences of solutions for (Pε,n)
(see (3.2.12)–(3.2.15)) yields a solution of (Pε) (see (3.2.2)–(3.2.7)). Estimates (3.2.56)–
(3.2.57) for ϕn and ηn and the well–known weak or weak* compactness results ensure the
existence of a pair (ϕε, ηε) such that, at least for a subsequence,

ϕn ⇀ ϕε in H1(0, T ;H) ∩ L2(0, T ;W ), (3.2.58)

ϕn ⇀
∗ ϕε in L∞(0, T ;V ), (3.2.59)

ηn ⇀ ηε in H1(0, T ;H) ∩ L2(0, T ;W ), (3.2.60)

ηn ⇀
∗ ηε in L∞(0, T ;V ), (3.2.61)

as n → +∞. We notice that W , V , H are Banach spaces and W ⊂ V ⊂ H with dense
and compact embeddings. Then, we are under the assumptions of [62, Prop. 4, Sec. 8]
and this fact implies the following strong convergences:

ϕn → ϕε in C0([0, T ];H) ∩ L2(0, T ;V ), (3.2.62)

ηn → ηε in C0([0, T ];H) ∩ L2(0, T ;V ), (3.2.63)

as n→ +∞. Since π, Aε and βε are Lipschitz continuous, we infer that

|π(ϕn)− π(ϕε)| ≤ Cπ|ϕn − ϕε| a.e. in Q, (3.2.64)

‖Aεηn − Aεηε‖H ≤
1

ε
‖ηn − ηε‖H a.e. in [0, T ], (3.2.65)

|βε(ϕn)− βε(ϕε)| ≤
1

ε
|ϕn − ϕε| a.e. in Q. (3.2.66)

Due to (3.2.64)–(3.2.64), we conclude that

π(ϕn)→ π(ϕε) in C0([0, T ];H), (3.2.67)

Aεηn → Aεηε in C0([0, T ];H), (3.2.68)

βε(ϕn)→ βε(ϕε) in C0([0, T ];H), (3.2.69)

as n → +∞. Now, we fix k ≤ n and we observe that, for every v ∈ Vk and for every
t ∈ [0, T ], the solution (ηn, ϕn) of problem (Pε,n) satisfies

(∂t[ηn(t) + (`− α)ϕn(t)]− k∆ηn(t) + kα∆ϕn(t) + Aεηn(t), v)H
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= (fε(t)− k∆η∗, v)H , (3.2.70)

(∂tϕn(t)− υ∆ϕn(t) + βε(ϕn(t)) + π(ϕn(t)), v)H

= (γ[ηn(t)− αϕn(t) + η∗], v)H . (3.2.71)

If k is fixed and n→ +∞, we have the convergence of every term of (3.2.70)–(3.2.71) to
the corresponding one with ηε, ϕε whenever v ∈ Vk, i.e.,

(∂t[ηε(t) + (`− α)ϕε(t)]− k∆ηε(t) + kα∆ϕε(t) + Aεηε(t), v)H

= (fε(t)− k∆η∗, v)H , (3.2.72)

(∂tϕε(t)− υ∆ϕε(t) + βε(ϕε(t)) + π(ϕε(t)), v)H

= (γ[ηε(t)− αϕε(t) + η∗], v)H . (3.2.73)

As k is arbitrary, the limit equalities hold true for every v ∈
⋃∞
k=1 Vk, which is dense in

V . Then the limit equalities actually hold for every v ∈ V , i.e.,

∂t(ηε + (`− α)ϕε)− k∆ηε + kα∆ϕε + Aεηε = fε − k∆η∗ a.e. in Q, (3.2.74)

∂tϕε − υ∆ϕε + βε(ϕε) + π(ϕε) = γ(ηε − αϕε + η∗) a.e. in Q. (3.2.75)

Now, we prove the convergence of the initial data. We recall that

η0,n = PVnη0, ϕ0,n = PVnϕ0. (3.2.76)

If ε is fixed, then

lim
n→+∞

η0,n = η0 in V , (3.2.77)

lim
n→+∞

ϕ0,n = ϕ0 in V , (3.2.78)

and then also in H. These observations and (3.2.62)–(3.2.63) show that the weak limit of
some subsequences of solutions for (Pε,n) (see (3.2.12)–(3.2.15)) yields a solution for (Pε)
(see (3.2.2)–(3.2.7)). We also notice that taking the limit as n→ +∞ in (3.2.23) entails
that Qε(n)→ C, with ∫

Ω

β̃ε(ϕ0) ≤ C. (3.2.79)

Then, after the first passage to the limit, we conclude that estimates (3.2.56)–(3.2.57)
still hold for the limiting functions with constants independent of ε, i.e.,

‖ϕε‖H1(0,T ;H)∩L∞(0,T ;V )∩L2(0,T ;W ) ≤ c, (3.2.80)

‖ηε‖H1(0,T ;H)∩L∞(0,T ;V )∩L2(0,T ;W ) ≤ c. (3.2.81)
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3.2.5 Passage to the limit as ε↘ 0

Now, we let ε↘ 0 and show that the limit of some subsequences of solutions for (Pε) (see
(3.2.2)–(3.2.7)) tends to a solution of the initial problem (P ) (see (3.1.5)–(3.1.10)). First of
all, due to (3.2.58)–(3.2.63), (3.2.69) and (3.2.79), we have that the constants in (3.2.80)–
(3.2.81) do not depend on ε. Moreover, thanks to (3.2.80)–(3.2.81), by comparison in
(3.2.75), we infer that

‖βε(ϕε)‖L2(Q) ≤ c. (3.2.82)

The well–known weak or weak∗ compactness results and the useful theorem [62, Prop. 4,
Sec. 8] ensure the existence of a pair (ϕ, η) such that, at least for a subsequence,

ϕε ⇀
∗ ϕ in H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ), (3.2.83)

ηε ⇀
∗ η in H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ), (3.2.84)

ϕε → ϕ in C0([0, T ];H) ∩ L2(0, T ;V ), (3.2.85)

ηε → η in C0([0, T ];H) ∩ L2(0, T ;V ), (3.2.86)

as ε↘ 0. Now, we observe that (3.2.85) implies that

ϕε → ϕ in L2(0, T ;H) ≡ L2(Q) (3.2.87)

as ε↘ 0. We set ξε = βε(ϕε) and remark that

‖ξε‖L2(Q) = ‖βε(ϕε)‖L2(Q) ≤ c. (3.2.88)

Thus, we may suppose that, as ε↘ 0, at least for a subsequence,

ξε ⇀ ξ in L2(Q), (3.2.89)

for some ξ ∈ L2(Q). Now, we introduce the operator Bε induced by βε on L2(Q) in the
following way:

Bε : L2(Q) −→ L2(Q) (3.2.90)

ξε ∈ Bε(ϕε)⇐⇒ ξε(x, t) ∈ βε(ϕε(x, t)) for a.e. (x, t) ∈ Q. (3.2.91)

Due to (3.2.87) and (3.2.89), we have that{
Bε(ϕε) ⇀ ξ in L2(Q),
ϕε → ϕ in L2(Q),

(3.2.92)

lim sup
ε↘0

∫
Q

ξεϕε =

∫
Q

ξϕ. (3.2.93)

Thanks to (3.2.92)–(3.2.93) and to the useful results proved in [1, Prop. 2.2, p. 38], we
conclude that

ξ ∈ B(ϕ) in L2(Q), (3.2.94)
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where B is defined by (2.4.4)–(2.4.5). This is equivalent to say that

ξ ∈ β(ϕ) a.e. in Q. (3.2.95)

Moreover, we pass to the limit in Aε by repeating the previous arguments and conclude
that

ζ ∈ A(η) in L2(0, T ;H), (3.2.96)

with obvious definition for A (see (2.4.12)–(2.4.13)), and this is equivalent to say that

ζ ∈ A(η) a.e. in [0, T ]. (3.2.97)

Conclusion of the proof. Thanks to the previous steps, we conclude that, as ε↘ 0,
the limit of some subsequences of solutions (ηε, ϕε) to (Pε) (see (3.2.2)–(3.2.7)) yields a
solution (η, ϕ) of the initial boundary value problem (P ), i.e.,

∂t(η + (`− α)ϕ)− k∆η + kα∆ϕ+ ζ = f − k∆η∗ a.e. in Q, (3.2.98)

∂tϕ− υ∆ϕ+ ξ + π(ϕ) = γ(η − αϕ+ η∗) a.e. in Q, (3.2.99)

ζ(t) ∈ A(η(t)) for a.e. t ∈ (0, T ), (3.2.100)

ξ ∈ β(ϕ) a.e. in Q, (3.2.101)

∂νη = 0, ∂νϕ = 0 on Σ, (3.2.102)

η(0) = η0, ϕ(0) = ϕ0 in Ω. (3.2.103)

We notice that the homogeneous Neumann boundary conditions for both η and ϕ follow
from (3.1.4), due to the definition of W (see (2.1.1)).

3.3 Proof of the continuous dependence theorem

This section is devoted to the proof of Theorem 3.1.2.

Assume α = `. If fi, η
∗
i , η0i , ϕ0i , i = 1, 2, are given as in (3.1.2)–(3.1.3) and (ϕi, ηi),

i = 1, 2, are the corresponding solutions, we can write problem (3.1.5)–(3.1.10) for both
(ϕi, ηi), i = 1, 2, obtaining

∂tηi − k∆ηi + k`∆ϕi + ζi = fi − k∆η∗i a.e. in Q, (3.3.1)

∂tϕi − υ∆ϕi + ξi + π(ϕi) = γ(ηi − `ϕi + η∗i ) a.e. in Q, (3.3.2)

ζi(t) ∈ A(ηi(t)) for a.e. t ∈ (0, T ), (3.3.3)

ξi ∈ β(ϕi) a.e. in Q, (3.3.4)

∂νηi = 0, ∂νϕi = 0 on Σ, (3.3.5)
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ηi(0) = η0i , ϕi(0) = ϕ0i . (3.3.6)

First of all, we set

ϕ = ϕ1 − ϕ2, η = η1 − η2, (3.3.7)

f = f1 − f2, η∗ = η∗1 − η∗2, (3.3.8)

ϕ0 = ϕ01 − ϕ02 , η0 = η01 − η02 . (3.3.9)

We write (3.3.1) for both (ϕ1, η1) and (ϕ2, η2) and we take the difference. We obtain that

∂tη − k∆η + k`∆ϕ+ ζ1 − ζ2 = f − k∆η∗. (3.3.10)

We write (3.3.2) for both (ϕ1, η1) and (ϕ2, η2) and we take the difference. We obtain that

∂tϕ− υ∆ϕ+ ξ1 − ξ2 + π(ϕ1)− π(ϕ2) = γ(η − `ϕ+ η∗). (3.3.11)

We multiply (3.3.10) by η and (3.3.11) by kl2

υ
ϕ. Then we sum up and integrate over Qt,

t ∈ (0, T ]. We have that

1

2

∫
Ω

|η(t)|2 +
k`2

2υ

∫
Ω

|ϕ(t)|2 + k

∫
Qt

(|∇η|2 − `∇ϕ∇η + `2|∇ϕ|2)

+

∫
Qt

(ζ1 − ζ2)(η1 − η2) +
k`2

υ

∫
Qt

(ξ1 − ξ2)(ϕ1 − ϕ2)

=
1

2
‖η0‖2

H +
k`2

2υ
‖ϕ0‖2

H −
k`2

υ

∫
Qt

[π(ϕ1)− π(ϕ2)](ϕ1 − ϕ2)

+

∫
Qt

(f − k∆η∗)η +
γk`2

υ

∫
Qt

ηϕ− γk`3

υ

∫
Qt

|ϕ|2 +
γk`2

υ

∫
Qt

η∗ϕ. (3.3.12)

Since A and β are maximal monotone, we have that∫
Qt

(ζ1 − ζ2)(η1 − η2) ≥ 0, (3.3.13)

∫
Qt

(ξ1 − ξ2)(ϕ1 − ϕ2) ≥ 0. (3.3.14)

Moreover, thanks to the Lipschitz continuity of π, we infer that

−k`
2

υ

∫
Qt

[π(ϕ1)− π(ϕ2)](ϕ1 − ϕ2) ≤ k`2

υ

∫
Qt

|π(ϕ1)− π(ϕ2)||ϕ1 − ϕ2|

≤ k`2Cπ
υ

∫
Qt

|ϕ|2. (3.3.15)

We notice that the integral involving the gradients in (3.3.12) is estimated from below in
this way: ∫

Qt

(|∇η|2 − `∇ϕ∇η + `2|∇ϕ|2) ≥ 1

2

∫
Qt

(|∇η|2 + `2|∇ϕ|2). (3.3.16)
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We also observe that

−γk`
3

υ

∫
Qt

|ϕ|2 ≤ 0. (3.3.17)

Then, due to (3.3.13)–(3.3.17), from (3.3.12) we infer that

1

2

∫
Ω

|η(t)|2 +
k`2

2υ

∫
Ω

|ϕ(t)|2 +
1

2

∫
Qt

(|∇η|2 + `2|∇ϕ|2)

≤ 1

2
‖η0‖2

H +
k`2Cπ
υ

∫
Qt

|ϕ|2 +
k`2

2υ
‖ϕ0‖2

H +

∫
Qt

(f − k∆η∗)η +
γk`2

υ

∫
Qt

ηϕ+
γk`2

υ

∫
Qt

η∗ϕ.

By applying the inequality (2.2.4) to the last three terms of the right-hand side of the
previous equation, we obtain that

1

2
‖η(t)‖2

H +
k`2

2υ
‖ϕ(t)‖2

H +
1

2

∫
Qt

(|∇η|2 + `2|∇ϕ|2)

≤ 1

2
‖η0‖2

H +
k`2

2υ
‖ϕ0‖2

H +
1

8

∫
Qt

|η|2 + 2

∫
Qt

|f − k∆η∗|2 +
1

8

∫
Qt

|η|2

+2
(γk`2

υ

)2
∫
Qt

|ϕ|2 +
1

8

∫
Qt

|η∗|2 + 2
(γk`2

υ

)2
∫
Qt

|ϕ|2 +
k`2Cπ
υ

∫
Qt

|ϕ|2. (3.3.18)

From (3.3.18) we infer that

1

2
‖η(t)‖2

H +
k`2

2υ
‖ϕ(t)‖2

H +
1

2

∫
Qt

(|∇η|2 + `2|∇ϕ|2)

≤ 1

2
‖η0‖2

H +
k`2

2υ
‖ϕ0‖2

H + 4‖f‖2
L2(Q) + 4k2T‖η∗‖2

W +
1

8
T‖η∗‖2

H

+M

∫ t

0

(
1

2
‖η(s)‖2

H +
k`2

2υ
‖ϕ(s)‖2

H +
1

2

∫
Qs

(|∇η|2 + `2|∇ϕ|2)

)
ds, (3.3.19)

where

M = max

(
4γ2k`2 + 2υCπ

υ
;
1

2

)
.

From (3.3.19), by applying the Gronwall lemma, we conclude that

1

2
‖η(t)‖2

H +
k`2

2υ
‖ϕ(t)‖2

H +
1

2
‖∇η‖2

L2(0,t;H) +
`2

2
‖∇ϕ‖2

L2(0,t;H)

≤ C1

[
4‖f‖2

L2(Q) + 4k2T‖η∗‖2
W +

1

8
T‖η∗‖2

W + C0

(
‖η0‖2

H + ‖ϕ0‖2
H

)]
, (3.3.20)

where

C0 = max

(
1

2
;
k`2

2υ

)
, C1 = eTM .
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From (3.3.20), we infer that

C3

(
‖η(t)‖2

H + ‖ϕ(t)‖2
H + ‖∇η‖2

L2(0,t;H) + ‖∇ϕ‖2
L2(0,t;H)

)
≤ 1

2
‖η(t)‖2

H +
k`2

2υ
‖ϕ(t)‖2

H +
1

2
‖∇η‖2

L2(0,t;H) +
`2

2
‖∇ϕ‖2

L2(0,t;H)

≤ C2

(
‖f‖2

L2(Q) + ‖η∗‖2
W + ‖η0‖2

H + ‖ϕ0‖2
H

)
≤ C2

(
‖f‖L2(Q) + ‖η∗‖W + ‖η0‖H + ‖ϕ0‖H

)2

, (3.3.21)

where

C2 = max

(
4C1; 4k2TC1;

1

8
TC1; C1C0

)
, C3 = min

(
1

2
;
k`2

2υ
;
`2

2

)
.

From (3.3.21) we obtain that

‖η(t)‖2
H + ‖ϕ(t)‖2

H + ‖∇η‖2
L2(0,t;H) + ‖∇ϕ‖2

L2(0,t;H)

≤ C4

(
‖f‖L2(Q) + ‖η∗‖W + ‖η0‖H + ‖ϕ0‖H

)2

, (3.3.22)

where C4 = C2

C3
. From (3.3.22) we conclude that there exists a constant C > 0 which

depends only on Ω, T depends only on Ω, T and the parameters `, α, k, υ, γ of the
system, such that

‖η1 − η2‖L∞(0,T ;H)∩L2(0,T ;V ) + ‖ϕ1 − ϕ2‖L∞(0,T ;H)∩L2(0,T ;V )

≤ C
(
‖f1 − f2‖L2(Q) + ‖η∗1 − η∗2‖W + ‖η01 − η02‖H + ‖ϕ01 − ϕ02‖H

)
. (3.3.23)

To infer the uniqueness of the solution, we choose f1 = f2, η∗1 = η∗2, ϕ01 = ϕ02 , η01 = η02 .
Then, replacing the corresponding values in (3.3.23), we obtain that

‖η1 − η2‖L∞(0,T ;H)∩L2(0,T ;V ) + ‖ϕ1 − ϕ2‖L∞(0,T ;H)∩L2(0,T ;V ) = 0. (3.3.24)

Hence η1 = η2 and ϕ1 = ϕ2. Then the solution of problem (P ) (see (3.3.1)–(3.3.6)) is
unique.



Chapter 4

On a class of conserved phase–field
systems with a maximal monotone
perturbation

In this chapter we prove existence and regularity for the solutions to a Cahn–Hilliard
system describing the phenomenon of phase separation for a material contained in a
bounded and regular domain. Since the first equation of the system is perturbed by the
presence of an additional maximal monotone operator, we show our results using suitable
regularization of the nonlinearities of the problem and performing some a priori estimates
which allow us to pass to the limit thanks to compactness and monotonicity arguments.
Next, under further assumptions, we deduce a continuous dependence estimate whence the
uniqueness property is also achieved. Then, we consider the related sliding mode control
(SMC) problem and show that the chosen SMC law forces a suitable linear combination
of the temperature and the phase to reach a given (space-dependent) value within finite
time.

4.1 Setting of the problem and results

We assume that
`, υ, γ ∈ (0,+∞), a, b ∈ R, (4.1.1)

f ∈ L2(0, T,H), (4.1.2)

η∗ ∈ W, ϑ0 ∈ H, ϕ0 ∈ V, β̃(ϕ0) ∈ L1(Ω), m(ϕ0) =: m0 ∈ int(D(β)). (4.1.3)

We look for a triplet (ϑ, ϕ, µ) satisfying at least the regularity requirements

ϑ ∈ H1(0, T ;V ∗) ∩ L∞(0, T ;H) ∩ L2(0, T ;V ), (4.1.4)

ϕ ∈ H1(0, T ;V ∗) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ), (4.1.5)

39
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µ ∈ L2(0, T ;V ), (4.1.6)

and solving the Problem (P ), that is,

∂t(ϑ+ `ϕ)−∆ϑ+ ζ = f a.e. in Q, (4.1.7)

∂tϕ−∆µ = 0 a.e. in Q, (4.1.8)

µ = −υ∆ϕ+ ξ + π(ϕ)− γϑ a.e. in Q, (4.1.9)

ζ(t) ∈ A(aϑ(t) + bϕ(t)− η∗) for a.e. t ∈ (0, T ), (4.1.10)

ξ ∈ β(ϕ) a.e. in Q, (4.1.11)

∂νϑ = ∂νϕ = ∂νµ = 0 on Σ, (4.1.12)

ϑ(0) = ϑ0, ϕ(0) = ϕ0 in Ω. (4.1.13)

Theorem 4.1.1 (Existence). If (2.4.2)–(2.4.3), (2.4.9)–(2.4.11) and (4.1.1)–(4.1.3) hold,
then Problem (P ) (see (4.1.7)–(4.1.13)) has at least one solution (ϑ, ϕ, µ) satisfying (4.1.4)–
(4.1.6).

Theorem 4.1.2 (Regularity). Assume (2.4.2)–(2.4.3), (2.4.9)–(2.4.11), (4.1.1)–(4.1.2),

η∗ ∈ W, ϑ0 ∈ V, ϕ0 ∈ W, β0(ϕ0) ∈ H, m0 ∈ int(D(β)) (4.1.14)

and that there exists ε0 ∈ (0, 1] such that

‖ − υ∆ϕ0 + βε(ϕ0) + π(ϕ0)− γϑ0‖V ≤ c for every ε ∈ (0, ε0], (4.1.15)

for some positive constant c, where βε is the Yosida regularization of β (see (2.5.1)). Then
Problem (P ) (see (4.1.7)–(4.1.13)) has at least one solution (ϑ, ϕ, µ) satisfying

ϑ ∈ H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ), (4.1.16)

ϕ ∈ W 1,∞(0, T ;V ∗) ∩H1(0, T ;V ) ∩ L∞(0, T ;W ), (4.1.17)

µ ∈ L∞(0, T ;V ) ∩ L2(0, T ;W ). (4.1.18)

Remark. We fix t ∈ (0, T ) and integrate (4.1.8) over Ω. We infer that∫
Ω

∂tϕ(t)−
∫

Ω

∆µ(t) = 0. (4.1.19)

Integrating by parts the second term of the left-hand side of (4.1.19), we obtain that

d

dt

∫
Ω

ϕ(t) = 0. (4.1.20)

Consequently, recalling the definition of m stated by (2.4.21)–(2.4.22), we conclude that

m(ϕ(t)) =
1

|Ω|

∫
Ω

ϕ(t) =
1

|Ω|

∫
Ω

ϕ0 = m(ϕ0) =: m0 for every t ∈ (0, T ). (4.1.21)
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Change of variables. In the following it we will be useful to consider the equivalent
modified form of the initial Problem (P ) (see (4.1.7)–(4.1.13)). We make a change of
variables and set

η = aϑ+ bϕ− η∗, η0 = aϑ0 + bϕ0 − η∗. (4.1.22)

Due to (4.1.22), from (4.1.7)–(4.1.13) we obtain the modified problem (P̃ ):

∂t(η + (a`− b)ϕ)−∆η + b∆ϕ−∆η∗ + aζ = af a.e. in Q, (4.1.23)

∂tϕ−∆µ = 0 a.e. in Q, (4.1.24)

µ = −υ∆ϕ+ ξ + π(ϕ)− γ

a
(η − bϕ+ η∗) a.e. in Q, (4.1.25)

ζ(t) ∈ A(η(t)) for a.e. t ∈ (0, T ), (4.1.26)

ξ ∈ β(ϕ) a.e. in Q, (4.1.27)

∂νη = ∂νϕ = ∂νµ = 0 on Σ, (4.1.28)

η(0) = η0, ϕ(0) = ϕ0 in Ω. (4.1.29)

Theorem 4.1.3 (Uniqueness and continuous dependence). Assume (2.4.2)–(2.4.3),
(2.4.9)–(2.4.11) and (4.1.1)–(4.1.3). If a, b > 0 and a` = b, then the solution (η, ϕ, µ)

of problem (P̃ ) (see (4.1.23)–(4.1.29)) is unique. Moreover, we assume that fi, η
∗
i , η0i,

ϕ0i, i = 1, 2, are given as in (4.1.2)–(4.1.3) and (ηi, ϕi, µi), i = 1, 2, are the corresponding
solutions. If

m(ϕ01) = m(ϕ02), (4.1.30)

then the estimate

‖η1 − η2‖L∞(0,T ;H)∩L2(0,T ;V ) + ‖ϕ1 − ϕ2‖L∞(0,T ;V ∗)∩L2(0,T ;V )

≤ c
(
‖ϕ01 − ϕ02‖V ∗ + ‖η01 − η02‖H + ‖f1 − f2‖L2(0,T ;H) + ‖η∗1 − η∗2‖W

)
(4.1.31)

holds true for some constant c that depends only on Ω, T and the structure (2.4.2)–(2.4.3),
(2.4.9)–(2.4.11) and (4.1.1)–(4.1.3) of the system.

Theorem 4.1.4 (Sliding mode control). Assume (2.4.2)–(2.4.3), (2.4.9)–(2.4.11), (4.1.1),
a = 1, b = ` and

f ∈ L∞(0, T,H), (4.1.32)

η∗ ∈ W, ϑ0 ∈ V, ϕ0 ∈ W, β0(ϕ0) ∈ H, m0 ∈ int(D(β)). (4.1.33)

We consider A = ρ Sign, where ρ is a positive coefficient, Sign is defined as in (2.4.15)
and σ is an element of the range of Sign, i.e.,

σ(t) ∈ Sign(ϑ(t) + `ϕ(t)− η∗) for a.e. t ∈ (0, T ), (4.1.34)

Then, for some ρ∗ > 0 and for every ρ > ρ∗, there exists a solution (ϑ, ϕ, µ) to Problem
(P ) (see (4.1.7)–(4.1.13)) and a time T ∗ such that, for every t ∈ [T ∗, T ]

ϑ(t) + `ϕ(t) = η∗ a.e. in Ω. (4.1.35)
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4.2 Existence - The approximating problem (Pε)

The following three sections are devoted to the proof of the existence Theorem 4.1.1.

Regularization of the initial data. We denote by ϑ0ε and ϕ0ε the regularization of
the initial data ϑ0 and ϕ0, respectively, obtained solving the following elliptic problems:{

ϑ0ε − ε∆ϑ0ε = ϑ0 in Ω,
∂νϑ0ε = 0 on Γ.

(4.2.1)

{
ϕ0ε − ε∆ϕ0ε = ϕ0 in Ω,
∂νϕ0ε = 0 on Γ.

(4.2.2)

Since ϑ0 ∈ H and ϕ0 ∈ V , by elliptic regularity we infer that ϑ0ε ∈ W and ϕ0ε ∈
W ∩H3(Ω). Moreover, integrating over Ω the first equation of (4.2.2), we obtain that

m0 =
1

|Ω|

∫
Ω

ϕ0 =
1

|Ω|

∫
Ω

ϕ0ε =: m0ε. (4.2.3)

From (4.1.3) and (4.1.21) it immediately follows that m0ε ∈ int(D(β)). Since β is maximal
monotone, testing the first equation of (4.2.2) by βε(ϕ0ε) and integrating over Ω, we have
that ∫

Ω

(ϕ0ε − ϕ0)βε(ϕ0ε) = −ε
∫

Ω

|∇ϕ0ε|2β′ε(ϕ0ε) ≤ 0. (4.2.4)

Recalling that βε is the subdifferential of β̃ε, from (4.2.4) we infer that∫
Ω

β̃ε(ϕ0ε)−
∫

Ω

β̃ε(ϕ0) ≤
∫

Ω

(ϕ0ε − ϕ0)βε(ϕ0ε) ≤ 0. (4.2.5)

Consequently, due to (4.1.3), (2.5.4), (4.2.5) and the definition of β̃ε, we conclude that

0 ≤
∫

Ω

β̃ε(ϕ0ε) ≤
∫

Ω

β̃ε(ϕ0) ≤
∫

Ω

β̃(ϕ0) < +∞, (4.2.6)

whence there exists a positive constant c, independent of ε, such that ‖β̃(ϕ0ε)‖L1(Ω) ≤ c.
Now, we test (4.2.1) by ϑ0ε and integrate over Ω. We obtain that∫

Ω

|ϑ0ε|2 + ε

∫
Ω

|∇ϑ0ε|2 =

∫
Ω

ϑ0ϑ0ε ≤
1

2

∫
Ω

|ϑ0|2 +
1

2

∫
Ω

|ϑ0ε|2. (4.2.7)

Since ϑ0 ∈ H, from (4.2.7) it immediately follows that εϑ0ε −→ 0 in V as ε↘ 0. Besides,
there exists a positive constant c, independent of ε, such that ‖ϑ0ε‖H ≤ c. Then, testing
the first equation of the system (4.2.1) by an arbitrary function v ∈ V and passing to the
limit as ε↘ 0, we obtain that

lim
ε↘0

(∫
Ω

ϑ0εv + ε

∫
Ω

∇ϑ0ε · ∇v −
∫

Ω

ϑ0v

)
= 0 for all v ∈ V , (4.2.8)
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whence ϑ0ε ⇀ ϑ0 in H. Moreover, from (4.2.7) and (4.2.8) we infer that∫
Ω

|ϑ0|2 ≤ lim inf
ε↘0

∫
Ω

|ϑ0ε|2 ≤ lim sup
ε↘0

∫
Ω

|ϑ0ε|2 ≤
∫

Ω

|ϑ0|2. (4.2.9)

Thanks to (4.2.9), ‖ϑ0ε‖H −→ ‖ϑ0‖H and this ensures, due to the weak convergence
already proved, that ϑ0ε −→ ϑ0 in H.

With a similar technique, testing (4.2.2) by ϕ0ε and integrating over Ω, we obtain that
ϕ0ε −→ ϕ0 in H. Now, we test (4.2.2) by −∆ϕ0ε and integrate over Ω. We obtain that∫

Ω

|∇ϕ0ε|2 + ε

∫
Ω

|∆ϕ0ε|2 =

∫
Ω

∇ϕ0 · ∇ϕ0ε ≤
1

2

∫
Ω

|∇ϕ0|2 +
1

2

∫
Ω

|∇ϕ0ε|2. (4.2.10)

Since ϕ0 ∈ V , from (4.2.10) it immediately follows that εϕ0ε −→ 0 in W as ε ↘ 0.
Furthermore, there exists a positive constant c, independent of ε, such that ‖∇ϕ0ε‖H ≤ c.
Recalling that ‖ϕ0ε‖H ≤ c, we conclude that ‖ϕ0ε‖V ≤ c. Then, testing the the first
equation of the system (4.2.2) by −∆w, where w is an arbitrary function in W , and
passing to the limit as ε↘ 0, we obtain

lim
ε↘0

(∫
Ω

∇ϕ0ε · ∇w + ε

∫
Ω

∆ϕ0ε ·∆w −
∫

Ω

∇ϕ0 · ∇w

)
= 0 for all w ∈ W, (4.2.11)

whence ϕ0ε ⇀ ϕ0 in V . Moreover, from (4.2.10)–(4.2.11) we infer that∫
Ω

|∇ϕ0|2 ≤ lim inf
ε↘0

∫
Ω

|∇ϕ0ε|2 ≤ lim sup
ε↘0

∫
Ω

|∇ϕ0ε|2 ≤
∫

Ω

|∇ϕ0|2. (4.2.12)

Thanks to (4.2.12), ‖∇ϕ0ε‖H −→ ‖∇ϕ0‖H and this ensures, due to the weak convergence
already proved, that ϕ0ε −→ ϕ0 in V . Now, let us summarize the main properties of ϑ0ε

and ϕ0ε. For every ε ∈ (0, 1) we have that

ϑ0ε ∈ W, ϕ0ε ∈ W ∩H3(Ω), m0ε ∈ int(D(β)), ‖β̃(ϕ0ε)‖L1(Ω) ≤ c, (4.2.13)

lim
ε↘0
‖ϑ0 − ϑ0ε‖H = 0, lim

ε↘0
‖ϕ0 − ϕ0ε‖V = 0, (4.2.14)

−υ∆ϕ0ε + βε(ϕ0ε) + π(ϕ0ε)− γϑ0ε ∈ V. (4.2.15)

Approximating problem (Pε). We look for a triplet (ϑε, ϕε, µε) satisfying at least the
regularity requirements

ϑε ∈ H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ), (4.2.16)

ϕε ∈ W 1,∞(0, T ;V ∗) ∩H1(0, T ;V ) ∩ L∞(0, T ;W ), (4.2.17)

µε ∈ L∞(0, T ;V ) ∩ L2(0, T ;W ), (4.2.18)
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and solving the approximating problem (Pε):

∂t(ϑε + `ϕε)−∆ϑε + ζε = fε a.e. in Q, (4.2.19)

∂tϕε −∆µε = 0 a.e. in Q, (4.2.20)

µε = −υ∆ϕε + ξε + π(ϕε)− γϑε a.e. in Q, (4.2.21)

ζε(t) ∈ Aε(aϑε(t) + bϕε(t)− η∗) for a.e. t ∈ (0, T ), (4.2.22)

ξε ∈ βε(ϕε) a.e. in Q, (4.2.23)

∂νϑε = ∂νϕε = ∂νµε = 0 on Σ, (4.2.24)

ϑε(0) = ϑ0ε, ϕε(0) = ϕ0ε in Ω, (4.2.25)

where βε and Aε are the Yosida regularizations of β and A defined in (2.5.6) and (2.5.1).
We notice that the homogeneous Neumann boundary conditions are already contained in
the conditions (4.2.16)–(4.2.18) due to the definition of W (see (2.1.1)).

We observe that, for almost every t ∈ (0, T ), we can re-write the approximating
problem (Pε) in the following way:

〈∂t(ϑε + `ϕε)(t), z〉V ∗,V +

∫
Ω

∇ϑε(t) · ∇z + 〈ζε(t), z〉V ∗,V = 〈fε(t), z〉V ∗,V for all z ∈ V ,

(4.2.26)

〈∂tϕε(t), z〉V ∗,V +

∫
Ω

∇µε(t) · ∇z = 0 for all z ∈ V , (4.2.27)

µε(t) = −υ∆ϕε(t) + ξε(t) + π(ϕε(t))− γϑε(t) in H, (4.2.28)

ζε(t) ∈ Aε(aϑε(t) + bϕε(t)− η∗), (4.2.29)

ξ ∈ βε(ϕε) a.e. in Q, (4.2.30)

∂νϕε = 0 a.e. on Σ, (4.2.31)

ϑε(0) = ϑ0ε, ϕε(0) = ϕ0ε in Ω. (4.2.32)

Since m0ε = m0, recalling the definition of N (see (2.4.23)–(2.4.26)), we have that
∂tϕε(t) ∈ D(N ). Hence, (4.2.27) can be written as

N∂tϕε(t) = m(µε(t))− µε(t) in V , (4.2.33)

and this and (4.2.27) entail

m(µε(t))−N∂tϕε(t) = −υ∆ϕε(t) + ξε(t) + π(ϕε(t))− γϑε(t) in H. (4.2.34)

4.3 Existence - Global a priori estimates

In this section, we will deduce some a priori estimates inferred from (4.2.26)–(4.2.34).
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First a priori estimate. According to (4.2.3), m(∂tϕε) = 0. Consequently, ∂tϕε ∈
D(N ) and we can test (4.2.27) by N∂tϕε. Integrating over (0, t), t ∈ (0, T ], we obtain
that ∫ t

0

‖∂tϕε(s)‖2
V ∗ ds+

∫
Qt

∇µε · ∇N∂tϕε =

∫ t

0

‖∂tϕε‖2
V ∗ +

∫
Qt

µε∂tϕε = 0. (4.3.1)

Recalling that

υ

∫
Qt

ϕε∂tϕε =
υ

2

∫
Ω

|ϕε(t)|2 −
υ

2

∫
Ω

|ϕ0ε|2, (4.3.2)

we combine (4.2.26) tested by γ
`
ϑε, (4.3.1) and (4.3.2). Then we subtract (4.2.28) tested

by ∂tϕε and integrate over (0, t). We have that

γ

2`

∫
Ω

|ϑε(t)|2 +
γ

`

∫
Qt

|∇ϑε|2 +

∫ t

0

‖∂tϕε(s)‖2
V ∗ ds+

υ

2
‖ϕε(t)‖2

V +

∫
Ω

β̂ε(ϕε(t))

=
γ

2`
‖ϑ0ε‖2

H +
υ

2
‖ϕ0ε‖2

V +

∫
Ω

β̂ε(ϕ0ε) +
γ

`

∫
Qt

fεϑε −
γ

`

∫
Qt

ζεϑε +

∫
Qt

(υϕε − π(ϕε))∂tϕε.

(4.3.3)
As π is a Lipschitz continuous function with Lipschitz constant Cπ = ‖π′‖∞, we obtain
that

|π(ϕε(s))| ≤ |π(ϕε(s))− π(0)|+ |π(0)| ≤ Cπ|ϕε(s)|+ |π(0)|. (4.3.4)

Consequently, thanks to (4.3.4), we infer that

‖υϕε(s)− π(ϕε(s))‖2
V =

∫
Ω

|υϕε(s)− π(ϕε(s))|2 +

∫
Ω

|υ∇ϕε(s)− π′(ϕε(s))∇ϕε(s)|2

≤ 2

∫
Ω

(
υ2|ϕε(s)|2 + |π(ϕε(s))|2

)
+ 2

∫
Ω

(
υ2|∇ϕε(s)|2 + ‖π′‖2

∞|∇ϕε(s)|2
)

≤ 2υ2

∫
Ω

|ϕε(s)|2 + 4C2
π

∫
Ω

|ϕε(s)|2 + 4|Ω||π(0)|2 + 2υ2

∫
Ω

|∇ϕε(s)|2 + 2C2
π

∫
Ω

|∇ϕε(s)|2

= (2υ2 + 4C2
π)

∫
Ω

|ϕε(s)|2 + (2υ2 + 2C2
π)

∫
Ω

|∇ϕε(s)|2 + 4|π(0)|2|Ω| ≤ c(‖ϕε(s)‖2
V + 1),

whence we obtain that the last term on the right-hand side of (4.3.3) is estimated as
follows∫

Qt

(υϕε − π(ϕε))∂tϕε ≤
1

2

∫ t

0

‖∂tϕε(s)‖2
V ∗ ds+

1

2

∫ t

0

‖υϕε(s)− π(ϕε(s))‖2
V ds

≤ 1

2

∫ t

0

‖∂tϕε(s)‖2
V ∗ ds+ c

∫ t

0

(‖ϕε(s)‖2
V + 1) ds. (4.3.5)

Due to the liear growth of Aε stated by (2.5.9), we have that

−γ
`

∫
Qt

ζεϑε ≤
γ

`

∫
Qt

|ζε(s)||ϑε(s)| ds ≤
γ

`

∫ t

0

‖ζε(s)‖2
H ds+

γ

`

∫ t

0

‖ϑε(s)‖2
H ds
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≤ γ

`

∫ t

0

C2
A(1 + ‖aϑε(s) + bϕε(s)− η∗‖H)2 ds+

γ

`

∫ t

0

‖ϑε(s)‖2
H ds

≤ γ

`

∫ t

0

4C2
A(1 + |a|2‖ϑε(s)‖2

H + |b|2‖ϕε(s)‖2
H + ‖η∗‖2

H) ds+
γ

`

∫ t

0

‖ϑε(s)‖2
H ds

≤ γ

`
4C2

AT +
γ

`
4C2

A|a|2
∫ t

0

‖ϑε(s)‖2
H ds+

γ

`
4C2

A|b|2
∫ t

0

‖ϕε(s)‖2
H ds

+
γ

`
4C2

AT‖η∗‖2
H +

γ

`

∫ t

0

‖ϑε(s)‖2
H ds

≤ c

(∫ t

0

‖ϑε(s)‖2
H ds+

∫ t

0

‖ϕε(s)‖2
H ds+ 1

)
. (4.3.6)

Moreover, by applying (2.2.5) to the fourth term on the right-hand side of (4.3.3), we
have that

γ

`

∫
Qt

fεϑε ≤
γ

`

∫
Qt

|fε|2 +
γ

4`

∫
Qt

|ϑε|2 =
γ

`

∫
Qt

|fε|2 +
γ

4`

∫ t

0

‖ϑε(s)‖2
H ds. (4.3.7)

We rearrange the right-hand side of (4.3.3) using (4.3.5)–(4.3.7) and obtain that

γ

2`

∫
Ω

|ϑε(t)|2 +
γ

`

∫
Qt

|∇ϑε|2 +
1

2

∫ t

0

‖∂tϕε(s)‖2
V ∗ ds+

υ

2
‖ϕε(t)‖2

V +

∫
Ω

β̂ε(ϕε(t))

≤ γ

2`
‖ϑ0ε‖2

H +
υ

2
‖ϕ0ε‖2

V +

∫
Ω

β̂ε(ϕ0ε) +
γ

`

∫ t

0

‖fε(s)‖2
H ds

+c

(∫ t

0

‖ϕε(s)‖2
V ds+

∫ t

0

‖ϑε(s)‖2
H ds+ 1

)
+
γ

4`

∫ t

0

‖ϑε(s)‖2
H ds. (4.3.8)

Due to (4.2.13)–(4.2.14), the first three terms of the right-hand side of (4.3.8) are bounded
and similarly the fourth term, thanks to (2.5.17). Then, applying the Gronwall lemma,
we conclude that there exists a positive constant c, independent of ε, such that

γ

2`

∫
Ω

|ϑε(t)|2 +

∫
Qt

|∇ϑε|2 +
1

2

∫ t

0

‖∂tϕε(s)‖2
V ∗ ds+

υ

2
‖ϕε(t)‖2

V +

∫
Ω

β̂ε(ϕε(t)) ≤ c, (4.3.9)

whence it immediately follows that

‖ϑε‖L∞(0,T ;H)∩L2(0,T ;V ) ≤ c, (4.3.10)

‖ϕε‖H1(0,T ;V ∗)∩L∞(0,T ;V ) ≤ c, (4.3.11)

‖β̂ε(ϕε)‖L∞(0,T ;L1(Ω)) ≤ c. (4.3.12)

Due to (4.3.10)–(4.3.12), by (2.5.9) we have that

‖ζε‖L∞(0,T ;H) ≤ c, (4.3.13)

and, consequently, by comparison in (4.2.26) we infer that

‖∂tϑε‖L2(0,T ;V ∗) ≤ c. (4.3.14)
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Second a priori estimate. Recalling that m0ε = m0 due to (4.2.27), we have that
ϕε(s)−m0 ∈ D(N ) for every s ∈ (0, T ). We test (4.2.34) at time s by (ϕε(s)−m0) ∈ D(N )
and we infer that

(ξε(s), ϕε(s)−m0)H = −(N∂tϕε(s), ϕε(s)−m0)H + (m(µε(s)), ϕε(s)−m0)H

+υ(∆ϕε(s), ϕε(s)−m0)H − (π(ϕε(s)), ϕε(s)−m0)H + γ(ϑε(s), ϕε(s)−m0)H . (4.3.15)

We recall that there exists a positive constant c such that ‖z‖V ∗ ≤ c‖z‖H for all z ∈ H.
Consequently the first term of the right-hand side of (4.3.15) is estimated as follows:

−(N∂tϕε(s), ϕε(s)−m0)H = −(∂tϕε(s), ϕε(s)−m0)V ∗

≤ ‖∂tϕε(s)‖V ∗(‖ϕε(s)‖V ∗ + |m0||Ω|)
= c‖∂tϕε(s)‖V ∗(‖ϕε(s)‖H + 1). (4.3.16)

Recalling (4.2.3), we have that

(m(µε(s)), ϕε(s)−m0)H = m(µε(s))

(∫
Ω

ϕε(s)− |Ω|m0

)
= 0. (4.3.17)

Due to the Neumann homogeneous boundary conditions for ϕε, we have that∫
Ω

∆ϕε(s) = 0. (4.3.18)

Thanks to (4.3.18), we infer that

υ(∆ϕε(s), ϕε(s)−m0)H = −υ‖∇ϕε(s)‖2
H−m0

∫
Ω

∆ϕε(s) = −υ‖∇ϕε(s)‖2
H ≤ 0. (4.3.19)

As π is a Lipschitz continuous function with Lipschitz constant Cπ, we obtain that

−(π(ϕε(s)), ϕε(s)−m0)H ≤
∫

Ω

|π(ϕε(s))||ϕε(s)−m0|

≤
∫

Ω

(
|π(ϕε(s))− π(0)|+ |π(0)|

)(
|ϕε(s)|+ |m0|

)
≤

∫
Ω

(
Cπ|ϕε(s)|+ |π(0)|

)(
|ϕε(s)|+ |m0|

)
≤ Cπ‖ϕε(s)‖2

H +

(
Cπ|m0|+ |π(0)|

)
‖ϕε(s)‖2

H + c

≤ c(‖ϕε(s)‖2
H + 1). (4.3.20)

Moreover, we have that

γ(ϑε(s), ϕε(s)−m0)H ≤ γ

∫
Ω

|ϑε(s)||ϕε(s)|+ γ|m0|
∫

Ω

|ϑε(s)|

≤ γ‖ϑε(s)‖2
H + γ‖ϕε(s)‖2

H + γ|m0|‖ϑε(s)‖2
H + γ|m0||Ω|

≤ c(‖ϑε(s)‖2
H + ‖ϕε(s)‖2

H + 1). (4.3.21)



48 Nonlinear phase–field systems

Consequently, rearranging the right-hand side of (4.3.15) using (4.3.16)–(4.3.17) and
(4.3.19)–(4.3.21), we obtain that

(ξε(s), ϕε(s)−m0)H ≤ c

(
‖∂tϕε(s)‖V ∗ + ‖ϕε(s)‖2

H + ‖ϑε(s)‖2
H + 1

)
. (4.3.22)

Due to a useful inequality stated in [42, Section 5], it turns out that

|ξε(s)| ≤ c[ξε(s)(ϕε(s)−m0) + 1]. (4.3.23)

We integrate (4.3.23) over Ω and, due to (4.3.22), we infer that

‖ξε(s)‖L1(Ω) ≤ c

[
(ξε(s), ϕε(s)−m0)H + 1

]

≤ c

(
‖∂tϕε(s)‖V ∗ + ‖ϕε(s)‖2

H + ‖ϑε(s)‖2
H + 1

)
. (4.3.24)

Due to (4.3.10)–(4.3.11), from (4.3.24) we conclude that there exists a positive constant
c, independent of ε, such that

‖ξε‖L2(0,T ;L1(Ω)) ≤ c. (4.3.25)

Third a priori estimate. As π is a Lipschitz continuous function with Lipschitz con-
stant Cπ, for every s ∈ (0, T ) we have that

|π(ϕε(s))|2 ≤
(
|π(ϕε(s))− π(0)|+ |π(0)|

)2

≤
(
Cπ|ϕε(s)|+ |π(0)|

)2

≤ c
(
|ϕε(s)|2 + 1

)
. (4.3.26)

Now, integrating (4.2.34) over Ω, squaring the resultant and using (4.3.10)–(4.3.14) and
(4.3.26), we obtain that

|m(µε(s))|2 ≤
3

|Ω|2

(
‖ξε(s)‖2

L1(Ω) + |Ω|‖π(ϕε(s))‖2
H + γ‖ϑε(s)‖2

H

)
≤ c

(
‖ξε(s)‖2

L1(Ω) + ‖ϕε(s)‖2
H + ‖ϑε(s)‖2

H + 1

)
. (4.3.27)

Consequently, integrating (4.3.27) over (0, T ) and recalling the previous a priori estimates
(4.3.10)–(4.3.11) and (4.3.25), we conclude that there exists a positive constant c, inde-
pendent of ε, such that

‖m(µε)‖L2(0,T ) ≤ c. (4.3.28)
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Fourth a priori estimate. We recall that the Poincaré inequality states that there
exists a positive constant cp such that

‖z‖2
V ≤ cp‖∇z‖2

H for all z ∈ V with m(z) = 0. (4.3.29)

We integrate over (0, T ) the square of the norms in V of each term of (4.2.33). Then,
applying (4.3.28) and (4.3.29), we obtain that∫ T

0

‖µε(s)‖2
V ds ≤ 2

∫ T

0

‖m(µε(s))‖2
V ds+ 2

∫ T

0

‖N∂tϕε(s)‖2
V ds

≤ 2

∫ T

0

|m(µε(s))|2 ds+ 2cp

∫ T

0

‖∇N∂tϕε(s)‖2
H ds

≤ c+ 2cp

∫ T

0

‖∂tϕε(s)‖2
V ∗ ds. (4.3.30)

Due to (4.3.11), we conclude that there exists a positive constant c, independent of ε,
such that

‖µε‖L2(0,T ;V ) ≤ c. (4.3.31)

Fifth a priori estimate. We test (4.2.28) at time s ∈ (0, T ) by ξε(s) ∈ V and integrate
the resultant over Ω. We obtain that

‖ξε(s)‖2
H =

(
µε(s) + υ∆ϕε(s)− π(ϕε(s)) + γϑε(s), ξε(s)

)
H
. (4.3.32)

Due to the monotonicity of βε, we have that

(υ∆ϕε(s), ξε(s))H = υ

∫
Ω

∆ϕε(s)ξε(s)

= −υ
∫

Ω

∇ϕε(s) · ∇ξε(s)

= −υ
∫

Ω

|∇ϕε(s)|2β′ε(ϕε(s)) ≤ 0. (4.3.33)

Using (4.3.33) and the Young inequality, we can estimate (4.3.32) as follows

‖ξε(s)‖2
H ≤

(
µε(s)− π(ϕε(s)) + γϑε(s), ξε(s)

)
H

≤ ‖µε(s)− π(ϕε(s)) + γϑε(s)‖H‖ξε(s)‖H

≤ 1

2
‖ξε(s)‖2

H + 2
(
‖µε(s)‖2

H + ‖π(ϕε(s))‖2
H + γ2‖ϑε(s)‖2

H

)
. (4.3.34)

Due to (4.3.26), from (4.3.34) we infer that

‖ξε(s)‖2
H ≤ c

(
‖µε(s)‖2

H + ‖ϕε(s)‖2
H + ‖ϑε(s)‖2

H + 1
)
. (4.3.35)

Then, integrating (4.3.35) over (0, T ) with respect to s and using (4.3.10)–(4.3.11) and
(4.3.31), we have that

‖ξε‖L2(0,T ;H) ≤ c, (4.3.36)

for some positive constant c, independent of ε.
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Sixth a priori estimate. We integrate over (0, T ) the square of the norms in H of
each term of (4.2.28). Then, using (4.3.26), (4.3.31) and (4.3.36), we obtain that

υ2

∫ T

0

‖∆ϕε(s)‖2
H ds

≤ 4

∫ T

0

‖µε(s)‖2
H ds+ 4

∫ T

0

‖ξε(s)‖2
H ds+ 4

∫ T

0

‖π(ϕε(s))‖2
H ds+ 4γ2

∫ T

0

‖ϑε(s)‖2
H ds

≤ c

(∫ T

0

‖ϕε(s)‖2
H ds+

∫ T

0

‖ϑε(s)‖2
H ds+ 1

)
. (4.3.37)

Thanks to (4.3.10)–(4.3.11), we conclude that there exists a positive constant c, indepen-
dent of ε, such that

‖ϕε‖L2(0,T ;W ) ≤ c. (4.3.38)

Summary of the a priori estimates. Let us summarize the a priori estimates. From
(4.3.10)–(4.3.14), (4.3.31), (4.3.36) and (4.3.38) we conclude that there exists a constant
c > 0, independent of ε, such that

‖ϑε‖H1(0,T ;V ∗)∩L∞(0,T ;H)∩L2(0,T ;V ) ≤ c, (4.3.39)

‖ϕε‖H1(0,T ;V ∗)∩L∞(0,T ;V )∩L2(0,T ;W ) ≤ c, (4.3.40)

‖ζε‖L∞(0,T ;H) ≤ c, (4.3.41)

‖ξε‖L2(0,T ;H) ≤ c, (4.3.42)

‖µε‖L2(0,T ;V ) ≤ c. (4.3.43)

4.4 Existence - Passage to the limit as ε↘ 0

Based on available results (cf., e.g., [19]), it turns out that there exists a solution (ϑε, ϕε, µε)
of (Pε) satisfying the regularity requirements (4.2.16)–(4.2.18) and solving (4.2.19)-(4.2.25).
In this section we pass to the limit as ε↘ 0 and prove that the limit of subsequences of
solutions (ϑε, ϕε, µε) for (Pε) (see (4.2.19)–(4.2.25)) yields a solution (ϑ, ϕ, µ) of (P ) (see
(4.1.7)–(4.1.13)).

Thanks to the uniform estimates (4.3.39)–(4.3.43), there exists a subsequence {εk}k∈N
with εk ↘ 0 as k → +∞ and some limit functions ϑ ∈ H1(0, T ;V ∗) ∩ L∞(0, T ;H) ∩
L2(0, T ;V ), ϕ ∈ H1(0, T ;V ∗)∩L∞(0, T ;H)∩L2(0, T ;W ), µ ∈ L2(0, T ;V ), ξ ∈ L2(0, T ;H)
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and ζ ∈ L∞(0, T ;H) such that

ϑεk ⇀
∗ ϑ in H1(0, T ;V ∗) ∩ L∞(0, T ;H), (4.4.1)

ϑεk ⇀ ϑ in L2(0, T ;V ), (4.4.2)

ϕεk ⇀
∗ ϕ in H1(0, T ;V ∗) ∩ L∞(0, T ;V ), (4.4.3)

ϕεk ⇀ ϕ in L2(0, T ;W ), (4.4.4)

µεk ⇀ µ in L2(0, T ;V ), (4.4.5)

ξεk ⇀ ξ in L2(0, T ;H), (4.4.6)

ζεk ⇀
∗ ζ in L∞(0, T ;H), (4.4.7)

as k → +∞. From (4.4.1)–(4.4.4) and the well–known Ascoli–Arzelá theorem (see, e.g.,
[62, Sect. 8, Cor. 4]), we infer that

ϑεk −→ ϑ in C0([0, T ];V ∗) ∩ L2(0, T ;H), (4.4.8)

ϕεk −→ ϕ in C0([0, T ];H) ∩ L2(0, T ;V ), (4.4.9)

as k → +∞. As π is a Lipschitz continuous function, for a.e. s ∈ [0, T ] we have that

|π(ϕεk(s))− π(ϕ(s))| ≤ Cπ|ϕεk(s)− ϕ(s)|. (4.4.10)

Thanks to (4.4.9), we conclude that

π(ϕεk(s)) −→ π(ϕ(s)) in L2(0, T ;H), (4.4.11)

as k → +∞.

Passage to the limit on ξε. In this paragraph we check that ξ ∈ β(ϕ) a.e. in Q. To
this aim, we recall that

ϕεk → ϕ in L2(0, T ;H) ≡ L2(Q), (4.4.12)

ξεk ⇀ ξ in L2(0, T ;H), (4.4.13)

as k → +∞. Now, we introduce the operator Bε induced by βε on L2(Q) in the following
way

Bε : L2(Q) −→ L2(Q)

ξε ∈ Bε(ϕε)⇐⇒ ξε(x, t) ∈ βε(ϕε(x, t)) for a.e. (x, t) ∈ Q. (4.4.14)

Due to (4.4.12)–(4.4.13), as k → +∞, we have that{
Bεk(ϕεk) ⇀ ξ in L2(Q),
ϕεk → ϕ in L2(Q),

(4.4.15)

lim sup
k→+∞

∫
Q

ξεkϕεk =

∫
Q

ξϕ. (4.4.16)
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Thanks to (4.4.15)–(4.4.16) and to the general result [1, Proposition 2.2, p. 38], we con-
clude that

ξ ∈ B(ϕ) in L2(Q), (4.4.17)

with analogous definition for B (see (2.4.4)–(2.4.5)). This is equivalent to saying that

ξ ∈ β(ϕ) a.e. in Q. (4.4.18)

Passage to the limit on ζε. In this paragraph we check that ζ(t) ∈ A(aϑ(t)+bϕ(t)−η∗)
for a.e. t ∈ [0, T ]. Let us recall that

ϑεk → ϑ in L2(0, T ;H), (4.4.19)

ϕεk → ϕ in L2(0, T ;H), (4.4.20)

ζεk ⇀ ζ in L2(0, T ;H), (4.4.21)

as k → +∞. Setting

ηεk := aϑεk + bϕεk − η∗, η := aϑ+ bϕ− η∗,

thanks to (4.4.19)–(4.4.20), we have that

ηεk −→ η in L2(0, T ;H), (4.4.22)

as k → +∞. Now, we introduce the operator Aε induced by Aε on L2(0, T ;H) in the
following way

Aε : L2(0, T ;H) −→ L2(0, T ;H)

ζε ∈ Aε(ηε)⇐⇒ ζε(t) ∈ Aε(ηε(t)) for a.e. t ∈ [0, T ]. (4.4.23)

Due to (4.4.19)–(4.4.21), we have that{
Aεk(ηεk) ⇀ ζ in L2(0, T ;H),
ηεk → η in L2(0, T ;H),

(4.4.24)

lim sup
k→+∞

∫
Q

ζεkηεk =

∫
Q

ζη. (4.4.25)

Thanks to (4.4.24)–(4.4.25) and the convergence result [1, Proposition 2.2, p. 38], we
conclude that

ζ ∈ A(η) in L2(0, T ;H), (4.4.26)

with obvious definition for A (see (2.4.12)–(2.4.13)). This is equivalent to saying that

ζ(t) ∈ A(aϑ(t) + bϕ(t)− η∗) for a.e. t ∈ [0, T ]. (4.4.27)

Conclusion of the proof Using (4.4.1)–(4.4.11), (4.4.18) and (4.4.27), we can pass to
the limit as ε↘ 0 in (4.2.19)–(4.2.25) obtaining (4.1.7)–(4.1.13) for the limiting functions
ϑ, ϕ and µ.
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4.5 Regularity

This section is devoted to the proof of Theorem 4.1.2. In order to obtain additional regu-
larity for the solutions, we need further a priori estimates obtained from the approximating
problem (Pε) (see (4.2.19)–(4.2.25)) in which we take ϑ0ε = ϑ0 and ϕ0ε = ϕ0.

Seventh a priori estimate. We test (4.2.19) by ∂tϑε and integrate over Qt, t ∈ (0, T ].
We have that∫

Qt

|∂tϑε|2 + `

∫
Qt

∂tϕε∂tϑε+
1

2

∫
Ω

|∇ϑε(t)|+
∫
Qt

ζε∂tϑε =

∫
Qt

fε∂tϑε+
1

2

∫
Ω

|∇ϑ0|. (4.5.1)

We now proceed with a formal estimate since we have to differentiate (4.2.20) and (4.2.21)
with respect to time. For a rigorous approach, one can argue, e.g., as in [20, Subsection
4.4]. By time differentiation of (4.2.20) and (4.2.21) we have

∂ttϕε −∆∂tµε = 0, (4.5.2)

∂tµε = −υ∆∂tϕε + β′ε(ϕε)∂tϕε + π′(ϕε)∂tϕε − γ∂tϑε. (4.5.3)

According to (4.2.3), m(∂tϕε) = 0. Consequently, ∂tϕε ∈ D(N ) and we can test (4.5.2)
by `

γ
N (∂tϕε). Integrating the resultant over Qt, we obtain that

− `
γ

∫
Qt

∂tµε∂tϕε =
`

2γ
‖∂tϕε(t)‖2

V ∗ −
`

2γ
‖∂tϕε(0)‖2

V ∗ . (4.5.4)

We test (4.5.3) by `
γ
∂tϕε and integrate over Qt. We have that

`

γ

∫
Qt

∂tµε∂tϕε

=
υ`

γ

∫
Qt

|∇∂tϕε|2 +
`

γ

∫
Qt

β′ε(ϕε)|∂tϕε|2 +
`

γ

∫
Qt

π′(ϕε)|∂tϕε|2 − `
∫
Qt

∂tϕε∂tϑε. (4.5.5)

By combining (4.5.1), (4.5.4) and (4.5.5), we infer that∫
Qt

|∂tϑε|2 +
1

2

∫
Ω

|∇ϑε(t)|+
υ`

γ

∫
Qt

|∇∂tϕε|2 +
`

2γ
‖∂tϕε(t)‖2

V ∗ =
1

2

∫
Ω

|∇ϑ0|

+

∫
Qt

fε∂tϑε +
`

2γ
‖∂tϕε(0)‖2

V ∗ −
∫
Qt

ζε∂tϑε −
`

γ

∫
Qt

β′ε(ϕε)|∂tϕε|2 −
`

γ

∫
Qt

π′(ϕε)|∂tϕε|2.

(4.5.6)
By applying inequality (2.2.5) to the second term on the right-hand side of (4.5.6), we
infer that ∫

Qt

fε∂tϑε ≤ ‖fε‖2
L2(0,T ;H) +

1

4

∫
Qt

|∂tϑε|2. (4.5.7)
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Moreover, as βε is a maximal monotone operator, we have that β′ε > 0 and consequently

− `
γ

∫
Qt

β′ε(ϕε)|∂tϕε|2 ≤ 0. (4.5.8)

Due to (4.3.13), we have that

−
∫
Qt

ζε∂tϑε ≤
∫
Qt

|ζε|2 +
1

4

∫
Qt

|∂tϑε|2 ≤ c+
1

4

∫
Qt

|∂tϑε|2. (4.5.9)

As π is a Lipschitz continuous function with Lipschitz constant Cπ, we have that

− `
γ

∫
Qt

π′(ϕε)|∂tϕε|2 ≤
`

γ

∫
Qt

|π′(ϕε)||∂tϕε|2 ≤
Cπ`

γ

∫
Qt

|∂tϕε|2. (4.5.10)

Adding υ`
γ

∫
Qt
|∂tϕε|2 to both side of (4.5.6) and rearranging the right-hand side of (4.5.6)

using (4.5.7)–(4.5.10), we obtain that

1

2

∫
Qt

|∂tϑε|2 +
1

2

∫
Ω

|∇ϑε(t)|+
υ`

γ

∫ t

0

‖∂tϕε(s)‖2
V ds+

`

2γ
‖∂tϕε(t)‖2

V ∗

≤ 1

2
‖ϑ0‖2

V +
`

2γ
‖∂tϕε(0)‖2

V ∗+‖fε‖2
L2(0,T ;H) +

(
Cπ`

γ
+
υ`

γ

)∫ t

0

‖∂tϕε(s)‖2
V ∗ ds+c. (4.5.11)

Thanks to the compactness of the embedding V ⊂ H ⊂ V ∗, the inequality stated by [62,
Lemma 8, p. 84] ensures that, choosing

δ =

(
υ`

4γ

(
Cπ`

γ
+
υ`

γ

)−1) 1
2

,

we can estimate the fourth term on the right-hand side of (4.5.11) as follows(
Cπ`

γ
+
υ`

γ

)∫ t

0

‖∂tϕε(s)‖2
H ds ≤ υ`

2γ

∫ t

0

‖∂tϕε(s)‖2
V ds+ c

∫ t

0

‖∂tϕε(s)‖2
V ∗ ds. (4.5.12)

Due to (4.5.12), from (4.5.11) we have that

1

2

∫
Qt

|∂tϑε|2 +
1

2

∫
Ω

|∇ϑε(t)|+
υ`

2γ

∫ t

0

‖∂tϕε(s)‖2
V ds+

`

2γ
‖∂tϕε(t)‖2

V ∗

≤ 1

2
‖ϑ0‖2

V +
`

2γ
‖∂tϕε(0)‖2

V ∗ + ‖fε‖2
L2(0,T ;H) + c

∫ t

0

`

2γ
‖∂tϕε(s)‖2

V ∗ ds

≤ 1

2
‖ϑ0‖2

V +
`

2γ
‖∂tϕε(0)‖2

V ∗ + ‖fε‖2
L2(0,T ;H) + c‖ϕε‖2

H1(0,T ;V ∗) + c. (4.5.13)

Since (−υ∆ϕ0 + βε(ϕ0) + π(ϕ0) − γϑ0) is bounded in V uniformly with respect to ε
according to (4.1.15), we deduce, by comparison in (4.2.20)–(4.2.21), that the second
term on the right-hand side of (4.5.13) is estimated by a positive constant. Hence, due
to (4.1.14), (4.2.14)–(4.2.18) and (4.3.40), the right-hand side of (4.5.13) is bounded and
we conclude that there exists a positive constant c, independent of ε, such that

‖ϑε‖H1(0,T ;H)∩L∞(0,T ;V ) + ‖ϕε‖W 1,∞(0,T ;V ∗)∩H1(0,T ;V ) ≤ c. (4.5.14)
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Eighth a priori estimate. From (4.2.19), we have that

∆ϑε = ∂t(ϑε + `ϕε) + ζε − fε =: hε. (4.5.15)

We observe that (4.5.14) ensures that hε is bounded in L2(0, T ;H) uniformly with respect
to ε. Then we infer that there exists a constant c > 0, independent of ε, such that

‖ϑε‖H1(0,T ;H)∩L∞(0,T ;V )∩L2(0,T ;W ) ≤ c. (4.5.16)

Ninth a priori estimate. Due to (4.5.14)–(4.5.16), from (4.3.24) we deduce that

‖ξε‖L∞(0,T ;L1(Ω)) ≤ c. (4.5.17)

Now, using (4.3.27), we infer that ‖m(µε)‖L∞(0,T ) ≤ c. By comparison in (4.2.17) and
(4.2.33), it follows that

‖µε‖L∞(0,T ;V ) ≤ c. (4.5.18)

Moreover, from (4.3.35), we obtain that ‖ξε‖L∞(0,T ;H) ≤ c. Then, by comparison in
(4.2.21), we conclude that

‖∆ϕε‖L∞(0,T ;H)∩L2(0,T ;W ) ≤ c. (4.5.19)

Conclusion of the proof. As (4.5.14), (4.5.16) and (4.5.17)–(4.5.19) follow uniformly
with respect to ε, the same estimates hold true for the limiting functions ϑ, ϕ and µ.
Hence, (4.1.16)–(4.1.18) are fulfilled and

‖ϑ‖H1(0,T ;H)∩L∞(0,T ;V )∩L2(0,T ;W ) ≤ c, (4.5.20)

‖ϕ‖W 1,∞(0,T ;V ∗)∩H1(0,T ;V )∩L∞(0,T ;W ) ≤ c, (4.5.21)

‖µ‖L∞(0,T ;V ) ≤ c. (4.5.22)

4.6 Uniqueness and continuous dependence

This section is devoted to the proof of Theorem 4.1.3.

Assume a` = b. If fi, η
∗
i , η0i , ϕ0i , i = 1, 2, are given as in (4.1.2)–(4.1.3) and (ηi, ϕi),

i = 1, 2, are the corresponding solutions of problem (P̃ ) (see (4.1.23)–(4.1.29)), then we

can write problem (P̃ ) for both (ηi, ϕi), i = 1, 2 and take the difference between the
respective equations. Setting η := η1 − η2, ϕ := ϕ1 − ϕ2, µ := µ1 − µ2, f := f1 − f2,
η∗ := η∗1 − η∗2, η0 := η01 − η02 , ϕ0 := ϕ01 − ϕ02 , we obtain that

∂tη −∆η + b∆ϕ−∆η∗ + a(ζ1 − ζ2) = af, (4.6.1)

∂tϕ−∆µ = 0, (4.6.2)
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µ = −υ∆ϕ+ ξ1 − ξ2 + π(ϕ1)− π(ϕ2)− γ

a
(η − bϕ+ η∗). (4.6.3)

We observe that, due to (4.1.30), m(ϕ0) = 0. Consequently, thanks to (4.1.21), m(ϕ) = 0
and ϕ ∈ D(N ) a.e. in (0, T ) (see (2.4.24)). Now, we test (4.6.1) by η. Integrating over
Qt, t ∈ (0, T ], we have that

1

2

∫
Ω

|η(t)|2 +

∫
Qt

|∇η|2 − b
∫
Qt

∇ϕ · ∇η + a

∫
Qt

(ζ1 − ζ2)(η1 − η2)

=
1

2

∫
Ω

|η0|2 +

∫
Qt

(af + ∆η∗)η. (4.6.4)

We test (4.6.2) by b2

υ
Nϕ. Integrating over (0, t), we obtain that

b2

υ

∫ t

0

〈∂tϕ(s),Nϕ(s)〉V ∗,V ds+
b2

υ

∫
Qt

∇µ · ∇Nϕ = 0,

b2

2υ
‖ϕ(t)‖2

V ∗ +
b2

υ

∫
Qt

µϕ =
b2

2υ
‖ϕ0‖2

V ∗ . (4.6.5)

Testing (4.6.3) by − b2

υ
ϕ and integrating over Qt, we have that

−b
2

υ

∫
Qt

µϕ = −b2

∫
Qt

|∇ϕ|2 − b2

υ

∫
Qt

(ξ1 − ξ2)(ϕ1 − ϕ2)

−b
2

υ

∫
Qt

[π(ϕ1)− π(ϕ2)](ϕ1 − ϕ2) +
γb2

aυ

∫
Qt

(η − bϕ+ η∗)ϕ. (4.6.6)

Then, we combine (4.6.4)–(4.6.6) and infer that

1

2
‖η(t)‖2

H +

∫
Qt

(|∇η|2 − b∇ϕ · ∇η + b2|∇ϕ|2) +
b2

2υ
‖ϕ(t)‖2

V ∗

+a

∫
Qt

(ζ1 − ζ2)(η1 − η2) +
b2

υ

∫
Qt

(ξ1 − ξ2)(ϕ1 − ϕ2)

= −b
2

υ

∫
Qt

[π(ϕ1)− π(ϕ2)](ϕ1 − ϕ2) +
γb2

aυ

∫
Qt

(η − bϕ+ η∗)ϕ

+
b2

2υ
‖ϕ0‖2

V ∗ +
1

2
‖η0‖2

H +

∫
Qt

(af + ∆η∗)η. (4.6.7)

Since A and β are maximal monotone, we have that

a

∫
Qt

(ζ1 − ζ2)(η1 − η2) ≥ 0, (4.6.8)

b2

υ

∫
Qt

(ξ1 − ξ2)(ϕ1 − ϕ2) ≥ 0. (4.6.9)
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Moreover, thanks to the Lipschitz continuity of π, we infer that

−b
2

υ

∫
Qt

[π(ϕ1)− π(ϕ2)](ϕ1 − ϕ2) ≤ b2

υ

∫
Qt

|π(ϕ1)− π(ϕ2)||ϕ1 − ϕ2|

≤ Cπb
2

υ

∫
Qt

|ϕ|2. (4.6.10)

We also notice that the integral involving the gradients is estimated from below in this
way: ∫

Qt

(|∇η|2 − b∇ϕ · ∇η + b2|∇ϕ|2) ≥ 1

2

∫
Qt

(|∇η|2 + b2|∇ϕ|2). (4.6.11)

Recalling that

−γb
3

aυ

∫
Qt

|ϕ|2 ≤ 0, (4.6.12)

applying inequality (2.2.5) to the second and fifth term on the right-hand side of (4.6.7),
using (4.6.8)–(4.6.11) and adding to both sides b2

∫ t
0
‖ϕ(s)‖2

H ds, we infer that

1

2
‖η(t)‖2

H +

∫
Qt

|∇η|2 + b2

∫ t

0

‖ϕ(s)‖2
V ds+

b2

2υ
‖ϕ(t)‖2

V ∗

≤ (K+b2)

∫ t

0

‖ϕ(s)‖2
H ds+

1

2

∫
Qt

|η|2 +
b2

2υ
‖ϕ0‖2

V ∗+
1

2
‖η0‖2

H +2a2‖f‖2
L2(0,T ;H) +3T‖η∗‖2

W ,

(4.6.13)
where

K =

[
Cπb

2

υ
+ 2
(γb2

aυ

)2
]
.

We observe that, for every δ > 0,

‖ϕ(t)‖2
H = 〈ϕ(t), ϕ(t)〉V ∗,V ≤ ‖ϕ(t)‖V ∗‖ϕ(t)‖V ≤

δ

2
‖ϕ(t)‖2

V +
1

2δ
‖ϕ(t)‖2

V ∗ . (4.6.14)

Choosing δ = b2

K+b2
in (4.6.14), we can estimate the first term of the right-hand side of

(4.6.13) as follows:

(K + b2)

∫ t

0

‖ϕ(s)‖2
H ds ≤ b2

2

∫ t

0

‖ϕ(s)‖2
V ds+

(K + b2)2υ

b4

∫ t

0

b2

2υ
‖ϕ(s)‖2

V ∗ ds. (4.6.15)

Then, due to (4.6.15), from (4.6.13) we obtain that

1

2
‖η(t)‖2

H +

∫
Qt

|∇η|2 +
b2

2

∫ t

0

‖ϕ(s)‖2
V ds+

b2

2υ
‖ϕ(t)‖2

V ∗

≤ c

∫ t

0

(
1

2
‖η(s)‖2

H +
b2

2υ
‖ϕ(s)‖2

V ∗

)
ds+

b2

2υ
‖ϕ0‖2

V ∗+
1

2
‖η0‖2

H +2a2‖f‖2
L2(0,T ;H) +3T‖η∗‖2

W .

(4.6.16)



58 Nonlinear phase–field systems

Due to (4.1.2)–(4.1.6), the last four terms on the right-hand side of (4.6.16) are bounded
uniformly with respect to ε . Then, by applying the Gronwall lemma, we conclude that

‖η(t)‖H + ‖∇η‖L2(0,T ;H) + ‖ϕ‖L2(0,T ;V ) + ‖ϕ(t)‖V ∗

≤ c

(
‖ϕ0‖V ∗ + ‖η0‖H + ‖f‖L2(0,T ;H) + ‖η∗‖W

)
(4.6.17)

for some positive constant c which depends only on Ω, T and the structure (2.4.2)–
(2.4.3), (2.4.9)–(2.4.11) and (4.1.1)–(4.1.3) of the system. Now, we recall that (4.6.17) is
equivalent to

‖η1 − η2‖L∞(0,T ;H)∩L2(0,T ;V ) + ‖ϕ1 − ϕ2‖L∞(0,T ;V ∗)∩L2(0,T ;V )

≤ c
(
‖ϕ01 − ϕ02‖V ∗ + ‖η01 − η02‖H + ‖f1 − f2‖L2(0,T ;H) + ‖η∗1 − η∗2‖W

)
. (4.6.18)

If f1 = f2, η∗1 = η∗2, η01 = η02 and ϕ01 = ϕ02 , from (4.6.18) we conclude that η1 = η2

and ϕ1 = ϕ2, i.e., the solution of problem (P̃ ) (see (4.1.23)–(4.1.29)) is unique. From this
fact, we immediately infer the uniqueness of the solution for our initial Problem (P ) (see
(4.1.7)–(4.1.13)).

4.7 Sliding mode control

This section is devoted to the proof of Theorem 4.1.4. The argument we use in the proof
relies in Lemma 2.3.2 (see [2, Lemma 4.1, p. 20]). We assume a = 1, b = ` and A = ρ Sign

and consider the approximating problem (P̃ε) obtained from (Pε) (see (4.2.19)–(4.2.25))
with the usual change of variables

ηε = ϑε + `ϕε − η∗, η0ε = ϑ0ε + `ϕ0ε − η∗. (4.7.1)

We have that

∂tηε −∆ηε + `∆ϕε −∆η∗ + ρσε = fε a.e. in Q, (4.7.2)

∂tϕε −∆µε = 0 a.e. in Q, (4.7.3)

µε = −υ∆ϕε + ξε + π(ϕε)− γ(ηε − `ϕε + η∗) a.e. in Q, (4.7.4)

σε(t) ∈ Signε(ηε(t)) for a.e. t ∈ (0, T ), (4.7.5)

ξε ∈ βε(ϕε) a.e. in Q, (4.7.6)

∂νηε = ∂νϕε = ∂νµε = 0 on Σ, (4.7.7)

ηε(0) = η0ε, ϕε(0) = ϕ0ε in Ω. (4.7.8)
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Further a priori uniform estimates. We test (4.7.2) by ∂tηε and integrate over Qt.
Recalling that ∫

Qt

ρσε∂tηε = ρ‖ηε(t)‖H,ε − ρ‖η0‖H,ε, (4.7.9)

we have that ∫
Qt

|∂tηε|2 +
1

2

∫
Ω

|∇ηε(t)|2 + ρ‖ηε(t)‖H,ε =
1

2

∫
Ω

|∇η0|2

+ρ‖η0‖H,ε +

∫
Qt

∆η∗∂tηε +

∫
Qt

fε∂tηε −
∫
Qt

`∆ϕε∂tηε. (4.7.10)

We observe that ‖η0‖H,ε ≤ ‖η0‖H (cf. (2.5.10)). Then, thanks to (4.1.3) and (4.1.15), the
first two terms on the right-hand side of (4.7.10) are estimated as follows:

1

2

∫
Ω

|∇η0|2 + ρ‖η0‖H,ε ≤ c(1 + ρ). (4.7.11)

Due to (4.1.3) and (2.5.17), applying (2.2.5) to the third and fourth term on the right-hand
side of (4.7.10), we have that∫

Qt

∆η∗∂tηε ≤
1

4

∫
Qt

|∂tηε|2 +

∫
Qt

|∆η∗|2 =
1

4

∫
Qt

|∂tηε|2 + c, (4.7.12)

∫
Qt

fε∂tηε ≤
1

4

∫
Qt

|∂tηε|2 +

∫
Qt

|fε|2 ≤
1

4

∫
Qt

|∂tηε|2 + c. (4.7.13)

Moreover, integrating by parts the last term of (4.7.10), we formally have that

−
∫
Qt

`∆ϕε∂tηε = `

∫
Qt

∇ϕε · ∇(∂tηε)

= `

∫
Ω

∇ϕε(t) · ∇ηε(t)− `
∫

Ω

∇ϕ0 · ∇η0 − `
∫
Qt

∇(∂tϕε) · ∇ηε. (4.7.14)

Using (2.2.5) and the Hölder inequality, the first term on the right-hand side of (4.7.14)
is estimated as follows:∣∣∣∣∣`

∫
Ω

∇ϕε(t) · ∇ηε(t)

∣∣∣∣∣ ≤ 1

4

∫
Ω

|∇ηε(t)|2 + `2

∫
Ω

|∇ϕε(t)|2

=
1

4

∫
Ω

|∇ηε(t)|2 + `2

∫
Ω

∣∣∣∣∇(ϕ0 +

∫ t

0

∂tϕε(s) ds

)∣∣∣∣2
≤ 1

4

∫
Ω

|∇ηε(t)|2 + 2`2

∫
Ω

|∇ϕ0|2 + 2`2

∫
Ω

∣∣∣∣ ∫ t

0

∇(∂tϕε(s)) ds

∣∣∣∣2
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≤ 1

4

∫
Ω

|∇ηε(t)|2 + 2`2

∫
Ω

|∇ϕ0|2 + 2T`2

∫
Qt

|∇(∂tϕε)|2. (4.7.15)

Due to (4.1.3), the second term on the right-hand side of (4.7.14) and similarly the second
term on the right-hand side of (4.7.15) are estimated by a positive constant c independent
of ρ and ε. Indeed

−`
∫

Ω

∇ϕ0 · ∇η0 ≤ `2

∫
Ω

|∇ϕ0|2 +
1

4

∫
Ω

|∇η0|2 ≤ c. (4.7.16)

Applying inequality (2.2.5) to the last term on the right-hand side of (4.7.14) we obtain
that

−`
∫
Qt

∇(∂tϕε) · ∇ηε ≤
1

4

∫
Qt

|∇ηε|2 + `2

∫
Qt

|∇(∂tϕε)|2. (4.7.17)

Then, thanks to (4.7.11)–(4.7.17), from (4.7.10) we infer that

1

2

∫
Qt

|∂tηε|2 +
1

4

∫
Ω

|∇ηε(t)|2 + ρ‖ηε(t)‖H,ε

≤ c(1 + ρ) + `2(1 + 2T )

∫
Qt

|∇(∂tϕε)|2 +
1

4

∫
Qt

|∇ηε|2. (4.7.18)

Now, we formally differentiate (4.7.3) and (4.7.4) with respect to time and obtain that

∂ttϕε −∆∂tµε = 0, (4.7.19)

∂tµε = −υ∆∂tϕε + β′ε(ϕε)∂tϕε + π′(ϕε)∂tϕε − γ(∂tηε − `∂tϕε). (4.7.20)

According to (4.2.3), m(∂tϕε) = 0. Consequently, ∂tϕε ∈ D(N ) and we can test (4.7.19)
by N (∂tϕε) and (4.7.20) by ∂tϕε, respectively. Integrating over Qt, we have that

−
∫
Qt

∂tµε∂tϕε =
1

2
‖∂tϕε(t)‖2

V ∗ −
1

2
‖∂tϕε(0)‖2

V ∗ , (4.7.21)

∫
Qt

∂tµε∂tϕε = υ

∫
Qt

|∇∂tϕε|2 +

∫
Qt

β′ε(ϕε)|∂tϕε|2

+

∫
Qt

π′(ϕε)|∂tϕε|2 − γ
∫
Qt

∂tϕε∂tηε + `γ

∫
Qt

|∂tϕε|2. (4.7.22)

Combining (4.7.21) and (4.7.22) we obtain that

1

2
‖∂tϕε(t)‖2

V ∗ + υ

∫
Qt

|∇∂tϕε|2 + `γ

∫
Qt

|∂tϕε|2 =
1

2
‖∂tϕε(0)‖2

V ∗

−
∫
Qt

β′ε(ϕε)|∂tϕε|2 −
∫
Qt

π′(ϕε)|∂tϕε|2 + γ

∫
Qt

∂tηε∂tϕε. (4.7.23)

Thanks to (4.1.3) and (4.1.15), the first term on the right-hand side of (4.7.23) is bounded
by a positive constant c independent of ρ and ε (cf. the analogous bound discussed below
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(4.5.13)). Since βε is maximal monotone, the second term on the right-hand side of
(4.7.23) is non-positive. As π is a Lipschitz continuous function with Lipschitz constant
Cπ, we have that

−
∫
Qt

π′(ϕε)|∂tϕε|2 ≤ Cπ

∫
Qt

|∂tϕε|2. (4.7.24)

Finally, using (2.2.5), the last term on the right-hand side of (4.7.23) is estimated as
follows:

γ

∫
Qt

∂tηε∂tϕε ≤
1

4

(
υ

`2(1 + 2T ) + 1

)∫
Qt

|∂tηε|2 + γ2 `
2(1 + 2T ) + 1

υ

∫
Qt

|∂tϕε|2, (4.7.25)

where the reason of such involved constants will be clear in a moment. Due to (4.7.24)–
(4.7.25) and the previous observations, from (4.7.23) we infer that

1

2
‖∂tϕε(t)‖2

V ∗ + υ

∫
Qt

|∇∂tϕε|2 + `γ

∫
Qt

|∂tϕε|2

≤ c+
1

4

(
υ

`2(1 + 2T ) + 1

)∫
Qt

|∂tηε|2 +

(
γ2 `

2(1 + 2T ) + 1

υ
+ Cπ

)∫
Qt

|∂tϕε|2. (4.7.26)

Multiplying (4.7.26) by (`2(1 + 2T ) + 1)/υ and adding it to (4.7.18), we infer that

1

4

∫
Qt

|∂tηε|2 +
1

4

∫
Ω

|∇ηε(t)|2 + ρ‖ηε(t)‖H,ε +

∫
Qt

|∇∂tϕε|2 + C1

∫
Qt

|∂tϕε|2

+C2‖∂tϕε(t)‖2
V ∗ ≤ c(1 + ρ) +

1

4

∫
Qt

|∇ηε|2 + C3

∫
Qt

|∂tϕε|2, (4.7.27)

where

C1 =
`3γ(1 + 2T ) + `γ

υ
, C2 =

`2(1 + 2T ) + 1

2υ
,

C3 = γ2

(
`2(1 + 2T ) + 1

υ

)2

+ Cπ
`2(1 + 2T ) + 1

υ
+ `2(1 + 2T ).

Denoting by C4 the minimum between 1 and C1, and applying the inequality (2.2.3) with
δ =
√
C4/
√

2C3 to the last term on the right-hand side of (4.7.27), we obtain that

C3

∫
Qt

|∂tϕε|2 ≤
C4

2

∫ t

0

‖∂tϕε(s)‖2
V ds+ 2K2C3

∫ t

0

‖∂tϕε(s)‖2
V ∗ ds. (4.7.28)

Thanks to (4.7.28), from (4.7.27) we infer that

1

4

∫
Qt

|∂tηε|2 +
1

4

∫
Ω

|∇ηε(t)|2 + ρ‖ηε(t)‖H,ε +
C4

2

∫ t

0

‖∂tϕε(s)‖2
V + C2‖∂tϕε(t)‖2

V ∗

≤ c(1 + ρ) +
1

4

∫
Qt

|∇ηε|2 + 2K2C3

∫ t

0

‖∂tϕε(s)‖2
V ∗ . (4.7.29)
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From (4.7.29), by applying the Gronwall lemma, we conclude that

‖∂tηε‖L2(0,T ;H) + ‖ηε‖L∞(0,T ;V ) + ‖∂tϕε‖L∞(0,T ;V ∗) + ‖∂tϕε‖L2(0,T ;V ) ≤ c(1 + ρ1/2), (4.7.30)

whence
‖ηε‖H1(0,T ;H)∩L∞(0,T ;V ) ≤ c(1 + ρ1/2), (4.7.31)

‖ϕε‖W 1,∞(0,T ;V ∗)∩H1(0,T ;V ) ≤ c(1 + ρ1/2). (4.7.32)

Due to (4.7.31)–(4.7.32) and the change of variables stated by (4.7.1), we have that

‖ϑε‖H1(0,T ;H)∩L∞(0,T ;V ) ≤ c(1 + ρ1/2). (4.7.33)

Proceeding as in the second a priori estimate (cf. (4.3.15)–(4.3.23)) and recalling (4.7.32)–
(4.7.33), from (4.3.24) we infer that

‖ξε‖L∞(0,T ;L1(Ω)) ≤ c(1 + ρ1/2). (4.7.34)

Now, with the analogous technique applied in the third a priori estimate, thanks to
(4.7.32)–(4.7.34), from (4.3.27) we obtain that

‖m(µε)‖L∞(0,T ) ≤ c(1 + ρ1/2). (4.7.35)

Then, due to (4.7.35) and the Poincaré inequality, by comparison in (4.7.3) we deduce
that

‖µε‖L∞(0,T ;V ) ≤ c(1 + ρ1/2). (4.7.36)

Finally, with the same computations as explained in the fifth a priori estimate (cf.
(4.3.32)–(4.3.34)), thanks to (4.7.32)–(4.7.33) and (4.7.36), from (4.3.35) we infer that

‖ξε‖L∞(0,T ;H) ≤ c(1 + ρ1/2), (4.7.37)

whence, by comparison of every term in (4.7.4), we conclude that

‖∆ϕε‖L∞(0,T ;H) ≤ c(1 + ρ1/2). (4.7.38)

Existence of sliding mode. Due to (4.1.3), (2.5.17) and (4.7.38), we can rewrite (4.7.2)
in the form

∂tηε −∆ηε + ρσε = gε := fε − `∆ϕε + ∆η∗, (4.7.39)

with
‖gε‖L∞(0,T ;H) ≤ c(1 + ρ1/2), (4.7.40)

where c depends only on the structure and the data involved in the statement. In order
to prove the existence of sliding mode, we fix the constant c appearing in (4.7.40) and set

ρ∗ := c2 + 2c+
2

T
‖ϑ0 + `ϕ0 − η∗‖H (4.7.41)
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and assume ρ > ρ∗. We also set

ψε(t) := ‖ηε(t)‖H for t ∈ [0, T ]. (4.7.42)

By assuming h ∈ (0, T ) and t ∈ (0, T − h), we multiply (4.7.39) by σε = Signε(ηε) and
integrate over (t, t+ h)× Ω. We have that∫ t+h

t

(∂tηε(s), σε(s))H ds+

∫ t+h

t

∫
Ω

∇ηε · ∇σε + ρ

∫ t+h

t

‖σε(s)‖2
H ds

=

∫ t+h

t

(gε(s), σε(s))H ds. (4.7.43)

Recalling that Signε(v) is the gradient at v of the C1 functional ‖ · ‖H,ε, from (2.5.10)–
(2.5.11) we deduce that

(∂tηε(s), σε(s))H =
d

dt

∫ ψε(t)

0

min {s/ε, 1} ds for a.a. t ∈ (0, T ).

Then, for the first term on the right-hand side of (4.7.43) we have that∫ t+h

t

(∂tηε(s), σε(s))H ds =

∫ ψε(t+h)

ψε(t)

min {s/ε, 1} ds.

We also notice that (2.5.11) implies that

∇ηε(t) · ∇σε(t) =
|∇ηε(t)|2

max {ε, ‖ηε(t)‖H}
≥ 0 a.e. in Ω, for a.e. t ∈ (0, T ),

whence the second integral on the left-hand side of (4.7.43) is nonnegative. Moreover, as
‖σε(s)‖H ≤ 1 for every s (see (2.4.15)) and (4.7.40) holds, we infer from (4.7.43) that∫ ψε(t+h)

ψε(t)

min {s/ε, 1} ds+ ρ

∫ t+h

t

‖σε(s)‖2
H ds ≤ hc(ρ1/2 + 1). (4.7.44)

At this point, we let ε ↘ 0. Due to (4.4.8)–(4.4.9), (4.7.1) and the uniqueness of the
solution of the limit Problem (4.1.23)–(4.1.29) (cf. Theorem 4.1.3) we have that

ηε → η in C0(0, T ;H). (4.7.45)

Besides, using standard weak, weakstar and compactness results, from (4.7.44) we infer
that

σε ⇀
∗ σ in L∞(0, T ;H). (4.7.46)

Then, taking the limit as ε↘ 0 in (4.7.44) and denoting by

ψ(t) := ‖η(t)‖H for t ∈ [0, T ], (4.7.47)
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we obtain that

ψ(t+ h)− ψ(t) + ρ

∫ t+h

t

‖σ(s)‖2
H ds

≤ lim
ε↘0

∫ ψε(t+h)

ψε(t)

min {s/ε, 1} ds+ ρ lim inf
ε↘0

∫ t+h

t

‖σε(s)‖2
H ds ≤ hc(ρ1/2 + 1) (4.7.48)

for every h ∈ (0, T ) and t ∈ (0, T − h). Finally, we multiply (4.7.48) by 1/h and let h
tend to zero. We conclude that

ψ′(t) + ρ‖σ(t)‖2
H ≤ c(ρ1/2 + 1) for a.a. t ∈ (0, T ). (4.7.49)

As ‖σ(t)‖H = 1 if ‖η(t)‖H > 0 (see (2.4.15)), we can apply Lemma 2.3.2 with a0 = b0 = c
and we observe that our condition ρ > ρ∗ completely fits the assumptions by (4.7.41).
Thus, we find T ∗ ∈ [0, T ) such that η(t) = 0 for every t ∈ [T ∗, T ], i.e., (4.1.35).



Chapter 5

Singular system related to a sliding
mode control problem

In this chapter we consider a singular phase–field system located in a smooth and bounded
three-dimensional domain. The entropy balance equation is perturbed by a logarithmic
nonlinearity and by the presence of an additional term involving a possibly nonlocal max-
imal monotone operator and arising from a class of sliding mode control problems. The
second equation of the system accounts for the phase dynamics, and it is deduced from a
balance law for the microscopic forces that are responsible for the phase transition pro-
cess. The resulting system is highly nonlinear; the main difficulties lie in the contemporary
presence of two nonlinearities, one of which under time derivative, in the entropy balance
equation. Consequently, we are able to prove only the existence of solutions. To this
aim, we will introduce a backward finite differences scheme and argue on this by proving
uniform estimates and passing to the limit on the time step.

5.1 Statement of the problem and results

As far as the data of our problem are concerned, let ` and k > 0 be two real constants.
We also consider the data f , ϑ∗, ϑ0 and ϕ0 such that

f ∈ H1(0, T ;H) ∩ L1(0, T ;L∞(Ω)), (5.1.1)

ϑ∗ ∈ W, ϑ∗ > 0 in Ω, (5.1.2)

ϑ0 ∈ V, ϑ0 > 0 a.e. in Ω, lnϑ0 ∈ H, ϕ0 ∈ W. (5.1.3)

We also assume that

ϕ0 ∈ D(β) a.e. in Ω, and there exists ξ0 ∈ H such that ξ0 ∈ β(ϕ0) a.e. in Ω, (5.1.4)

whence
β̃(ϕ0) ∈ L1(Ω). (5.1.5)

65
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Indeed, thanks to the definition of the subdifferential and to (2.4.2), we have that

0 ≤
∫

Ω

β̃(ϕ0) ≤ (ξ0, ϕ0) ≤ ‖ξ0‖H‖ϕ0‖H .

Our aim is to find a quadruplet (ϑ, ϕ, ζ, ξ) satisfying the regularity conditions

ϑ ∈ L2(0, T ;V ), (5.1.6)

ϑ > 0 a.e. in Q and lnϑ ∈ H1(0, T ;V ∗) ∩ L∞(0, T ;H), (5.1.7)

ϕ ∈ H1(0, T ;H) ∩ C0([0, T ];V ) ∩ L2(0, T ;W ), (5.1.8)

ζ ∈ L2(0, T ;H), ξ ∈ L2(0, T ;H), (5.1.9)

and solving the Problem (P ) defined by

∂t(lnϑ(t) + `ϕ(t))− k∆ϑ(t) + ζ(t) = f(t) in V ∗, for a.e. t ∈ (0, T ), (5.1.10)

∂tϕ−∆ϕ+ ξ + π(ϕ) = `ϑ a.e. in Q, (5.1.11)

ζ(t) ∈ A(ϑ(t)− ϑ∗) for a.e. t ∈ (0, T ), (5.1.12)

ξ ∈ β(ϕ) a.e. in Q, (5.1.13)

∂νϑ = 0, ∂νϕ = 0 in the sense of traces on Σ, (5.1.14)

lnϑ(0) = lnϑ0, ϕ(0) = ϕ0 a.e. in Ω. (5.1.15)

Here, we pointed out the boundary conditions (5.1.14) although they are already contained
in the specified meaning of −∆ (cf. (2.1.2)). By the way, a variational formulation of
(5.1.10) reads

〈∂t(lnϑ(t) + `ϕ(t)) + ζ(t), v〉+ k

∫
Ω

∇ϑ(t) · ∇v =

∫
Ω

f(t)v (5.1.16)

for all v ∈ V and for a.e. t ∈ (0, T ). About the initial conditions in (5.1.15), note that
from (5.1.7) it follows that lnϑ is at least weakly continuous from [0, T ] to H.

The following result is concerned with the existence of solutions to Problem (P).

Theorem 5.1.1. Assume (5.1.1)–(2.4.11). Then the Problem (P ) stated by (5.1.10)–
(5.1.15) has at least a solution (ϑ, ϕ, ζ, ξ) satisfying (5.1.6)–(5.1.9) and the regularity
properties

ϑ ∈ L∞(0, T ;V ), ζ ∈ L∞(0, T ;H), (5.1.17)

ϕ ∈ W 1,∞(0, T ;H) ∩H1(0, T ;V ) ∩ L∞(0, T ;W ), ξ ∈ L∞(0, T ;H). (5.1.18)

The proof of Theorem 5.1.1 will be given in the subsequent three sections.
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5.2 The approximating problem (Pτ )

First of all, let us underline that, for simplicity, in this chapter the same symbol β and
A will be used for the maximal monotone operators induced by β and A on H ≡ L2(Ω)
and L2(0, T ;H) ≡ L2(Q).

In order to prove the existence theorem, first we introduce a backward finite differences
scheme. Assume that N is a positive integer and let Z be any normed space. By fixing
the time step

τ = T/N, N ∈ N,
we introduce the interpolation maps from ZN+1 into either L∞(0, T ;Z) or W 1,∞(0, T ;Z).
For (z0, z1, . . . , zN) ∈ ZN+1, we define the piecewise constant functions zτ and the piece-
wise linear functions ẑτ , respectively:

zτ ∈ L∞(0, T ;Z), z((i+ s)τ) = zi+1, ẑτ ∈ W 1,∞(0, T ;Z),

ẑ((i+ s)τ) = zi + s(zi+1 − zi), if 0 < s < 1 and i = 0, . . . , N − 1. (5.2.1)

By a direct computation, it is straightforward to prove that

‖zτ − ẑτ‖L∞(0,T ;Z) = max
i=0,... ,N−1

‖zi+1 − zi‖Z = τ‖∂tẑτ‖L∞(0,T ;Z), (5.2.2)

‖zτ − ẑτ‖2
L2(0,T ;Z) =

τ

3

N−1∑
i=0

‖zi+1 − zi‖2
Z =

τ 2

3
‖∂tẑτ‖2

L2(0,T ;Z), (5.2.3)

‖zτ − ẑτ‖2
L∞(0,T ;Z) = max

i=0,... ,N−1
‖zi+1 − zi‖2

Z

≤
N−1∑
i=0

τ 2

∥∥∥∥zi+1 − zi
τ

∥∥∥∥2

Z

≤ τ‖∂tẑτ‖2
L2(0,T ;Z). (5.2.4)

Then, we consider the approximating problem (Pτ ). We set

f i :=
1

τ

∫ iτ

(i−1)τ

f(s) ds, for i = 1, . . . , N , (5.2.5)

and we look for two vectors (ϑ0, ϑ1, . . . , ϑN) ∈ V N+1, (ϕ0, ϕ1, . . . , ϕN) ∈ WN+1 satisfying,
for i = 1, . . . , N , the system

ϑi > 0 a.e. in Ω, lnϑi ∈ H, ∃ ζ i, ξi ∈ H such that (5.2.6)

τ 1/2ϑi + lnϑi + `ϕi + τζ i − τk∆ϑi = τf i + τ 1/2ϑi−1 + lnϑi−1 + `ϕi−1 a.e. in Ω,
(5.2.7)

ϕi − τ∆ϕi + τξi + τπ(ϕi) = ϕi−1 + τ`ϑi a.e. in Ω, (5.2.8)

ζ i ∈ A(ϑi − ϑ∗) a.e. in Ω, (5.2.9)

ξi ∈ β(ϕi) a.e. in Ω, (5.2.10)

∂νϑ
i = ∂νϕ

i = 0 a.e. on Γ, (5.2.11)

ϑ0 = ϑ0, ϕ0 = ϕ0 a.e. in Ω. (5.2.12)
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In view of (5.1.1)–(5.1.3), we infer that for i = 1 the right-hand side of (5.2.7) is an
element of H, and for any given ϕ1 (present in the left-hand side) we have to find the
corresponding ϑ1, along with ξ1, fulfilling (5.2.6)–(5.2.7) and (5.2.9); in case we succeed,
from a comparison in (5.2.7) it will turn out that ϑ1 ∈ W . Then, we insert ϑ1, depending
on ϕ1, in the right-hand side of (5.2.8) and we seek somehow a fixed point ϕ1 , together
with ξ1 ∈ H, satisfying (5.2.8) and (5.2.10). Once we recover ϕ1 and the related ϑ1,
we can start again our procedure, and so on. Then, it is important to show that, for a
fixed i and known data f i, ϑi−1, lnϑi−1, ϕi−1 we are able to find a pair (ϑi, ϕi) solving
(5.2.6)–(5.2.11).

Theorem 5.2.1. There exists some fixed value τ1 ≤ min{1, T}, depending only on the
data, such that for any time step 0 < τ < τ1 the approximating problem (Pτ ) stated by
(5.2.6)–(5.2.12) has a unique solution

(ϑ0, ϑ1, . . . , ϑN) ∈ V ×WN , (ϕ0, ϕ1, . . . , ϕN) ∈ WN+1.

Let us now rewrite the discrete equation (5.2.7)–(5.2.12) by using the piecewise con-
stant and piecewise linear functions defined in (5.2.1), with obvious notation, and obtain
that

τ 1/2∂tϑ̂τ + ∂t l̂nϑτ + `∂tϕ̂τ + ζτ − k∆ϑτ = f τ a.e. in Q, (5.2.13)

∂tϕ̂τ −∆ϕτ + ξτ + π(ϕτ ) = `ϑτ a.e. in Q, (5.2.14)

ζτ (t) ∈ A(ϑτ (t)− ϑ∗) for a.e. t ∈ (0, T ), (5.2.15)

ξτ ∈ β(ϕτ ) a.e. in Q, (5.2.16)

∂νϑτ = ∂νϕτ = 0 a.e. on Σ, (5.2.17)

ϑ̂τ (0) = ϑ0, ϕ̂τ (0) = ϕ0 a.e. in Ω. (5.2.18)

5.2.1 The auxiliary approximating problem (APε)

In this subsection we introduce the auxiliary approximating problem (APε) obtained by
considering the approximating problem (Pτ ) at each step i = 1, . . . , N and replacing
the monotone operators appearing in (5.2.6)–(5.2.12) with their Yosida regularizations.
About general properties of maximal monotone operators and subdifferentials of convex
functiions, we refer the reader to [1, 11].

Definition of the auxiliary approximating problem (APε). We fix τ and specify an
auxiliary approximating problem (APε), which is obtained by considering (5.2.6)–(5.2.11)
for a fixed i and introducing the regularized operators defined above. We set

g := τf i + τ 1/2ϑi−1 + lnϑi−1 + `ϕi−1, h := ϕi−1, (5.2.19)
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and note that both g and h are prescribed elements of H (cf. (5.2.5), (5.1.1), (5.1.3),
(5.1.3) and (5.2.6)). We look for a pair (Θε,Φε) such that

τ 1/2Θε + lnεΘε + τAε(Θε − ϑ∗)− τk∆Θε = −`Φε + g a.e. in Ω, (5.2.20)

Φε − τ∆Φε + τβε(Φε) + τπ(Φε) = h+ τ`Θε a.e. in Ω, (5.2.21)

where lnε, Aε and βε are the Yosida regularization of ln, A and β defined by (2.5.12), (2.5.6)
and (2.5.1), respectively. Here, according to the extended meaning of −∆ (see (2.1.2)),
we omit the specification of the boundary conditions as with (5.2.11).

Theorem 5.2.2. Let g, h ∈ H. Then there exists some fixed value τ2 ≤ min{1, T},
depending only on the data, such that for every time step τ ∈ (0, τ2) and for all ε ∈
(0, 1] the auxiliary approximating problem (APε) stated by (5.2.20)–(5.2.21) has a unique
solution (Θε,Φε).

5.2.2 Existence of a solution for (APε)

In order to prove the existence of the solution for the auxiliary approximating problem
(APε) we intend to apply [1, Corollary 1.3, p. 48]. To this aim, we point out that, for τ
small enough, the two operators

[τ 1/2I + lnε + τAε( · − ϑ∗)− τk∆] appearing in (5.2.20), (5.2.22)

[I + τβε + τπ − τ∆] appearing in (5.2.21), (5.2.23)

both with domain W and range H, are maximal monotone and coercive. Indeed, they
are the sum of a monotone, Lipschitz continuous and coercive operator:

τ 1/2I + lnε + τAε( · − ϑ∗) in (5.2.22), and I + τβε + τπ in (5.2.23),

and of a maximal monotone operator that is −∆ with a positive coefficient in front. We
now check our first claim. Letting v1, v2 ∈ H, we have that(

(τ 1/2I + lnε + τAε( · − ϑ∗))(v1)− (τ 1/2I + lnε + τAε( · − ϑ∗))(v2), v1 − v2

)
≥ τ 1/2‖v1 − v2‖2

H +
(
lnε(v1)− lnε(v2), v1 − v2

)
+ τ
(
Aε(v1 − ϑ∗)− Aε(v2 − ϑ∗), (v1 − ϑ∗)− (v2 − ϑ∗)

)
.

Due to the monotonicity of lnε and Aε, we have that the last two terms on the right-hand
side are nonnegative, so that(

(τ 1/2I + lnε + τAε( · − ϑ∗))(v1)− (τ 1/2I + lnε + τAε( · − ϑ∗))(v2), v1 − v2

)
≥ τ 1/2‖v1 − v2‖2

H , (5.2.24)

i.e., the operator τ 1/2I + lnε + τAε( · − ϑ∗) is strongly monotone, hence coercive, in H.
Next, for all v1, v2 ∈ H we have that

((I + τβε + τπ)(v1)− (I + τβε + τπ)(v2), v1 − v2)

≥ ‖v1 − v2‖2
H + τ(βε(v1)− βε(v2), v1 − v2)− Cπτ‖v1 − v2‖2

H . (5.2.25)
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where Cπ denotes a Lipschitz constant for π. Since βε is monotone, it turns out that

τ(βε(v1)− βε(v2), v1 − v2) ≥ 0

and, choosing τ2 ≤ 1/2Cπ, from (5.2.25) we infer that

((I + τβε + τπ)(v1)− (I + τβε + τπ)(v1), v1 − v2) ≥ 1

2
‖v1 − v2‖2

H , (5.2.26)

whence the operator I+τβε+τπ is strongly monotone and coercive in H, for every τ ≤ τ2.

Now, in order to prove Theorem 5.2.2, we divide the proof into two steps. In the first
step, we fix Θε ∈ H in place of Θε on the right-hand side of (5.2.21) and find a solution Φε

for (5.2.21). In the second step, we insert on the right-hand side of (5.2.20) the element
Φε obtained in the first step and find a solution Θε to (5.2.20). Now, let Θ1,ε and Θ2,ε be
two different input data. We denote by Φ1,ε, Φ2,ε the corresponding solutions for (5.2.21)
obtained in the first step and by Θ1,ε, Θ2,ε the related solution of (5.2.20) found in the
second step.

Hence, taking the difference between the two equations (5.2.21) written for Θ1,ε and
Θ2,ε and testing the result by (Φ1,ε − Φ2,ε), we have that(

(I + τβε + τπ)(Φ1,ε)− (I + τβε + τπ)(Φ2,ε),Φ1,ε − Φ2,ε

)
+ τ

∫
Ω

|∇(Φ1,ε − Φ2,ε)|2 ≤ τ`
(
Θ1,ε −Θ2,ε,Φ1,ε − Φ2,ε

)
. (5.2.27)

Then, applying (5.2.26) and (2.2.5) to the first term on the left-hand side of (5.2.27) and
to the right-hand side of (5.2.27), respectively, we infer that

1

2
‖Φ1,ε − Φ2,ε‖2

H + τ

∫
Ω

|∇(Φ1,ε − Φ2,ε)|2 ≤
1

4
‖Φ1,ε − Φ2,ε‖2

H + τ 2`2‖Θ1,ε −Θ2,ε‖2
H ,

whence
‖Φ1,ε − Φ2,ε‖2

H ≤ 4τ 2`2‖Θ1,ε −Θ2,ε‖2
H . (5.2.28)

Now, we take the difference between the corresponding equations (5.2.20) written for the
solutions Φ1,ε, Φ2,ε obtained in the first step and test by (Θ1,ε −Θ2,ε). We obtain that(

(τ 1/2I + lnε + τAε( · − ϑ∗))(Θ1,ε)− (τ 1/2I + lnε + τAε( · − ϑ∗))(Θ2,ε),Θ1,ε −Θ2,ε

)
+ τk

∫
Ω

|∇(Θ1,ε −Θ2,ε)|2 ≤
`2

2τ 1/2
‖Φ1,ε − Φ2,ε‖2

H +
τ 1/2

2
‖Θ1,ε −Θ2,ε‖2

H . (5.2.29)

By recalling (5.2.24) and using it in the left-hand side of (5.2.29) we infer that

τ 1/2‖Θ1,ε −Θ2,ε‖2
H ≤

`2

τ 1/2
‖Φ1,ε − Φ2,ε‖2

H . (5.2.30)

Then, by combining this inequality with (5.2.28), we deduce that

‖Θ1,ε −Θ2,ε‖2
H ≤ 4τ`4‖Θ1,ε −Θ2,ε‖2

H , (5.2.31)

whence we obtain a contraction mapping for every τ ≤ τ2, provided that τ2 ≤ 1/(8`4).
Finally, by applying the Banach fixed point theorem, we conclude that there exists a
unique solution (Θε,Φε) to the auxiliary problem (APε).
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5.2.3 A priori estimates on APε

In this subsection we derive a series of a priori estimates, independent of ε, inferred from
the equations (5.2.20)–(5.2.21) of the auxiliary approximating problem (APε).

First a priori estimate. We test (5.2.20) by τ(Θε − ϑ∗) and (5.2.21) by Φε, then we
sum up. By exploiting the cancellation of the suitable corresponding terms and recalling
the definition (2.5.15) of Λε, we obtain that

τ 3/2‖Θε − ϑ∗‖2
H + τΛε(Θε) + τ 2(Aε(Θε − ϑ∗),Θε − ϑ∗) + τ 2k

∫
Ω

|∇(Θε − ϑ∗)|2

+
(
(I + τβε + τπ)(Φε)− (I + τβε + τπ)(0),Φε

)
+ τ

∫
Ω

|∇Φε|2

≤ − τ 3/2(ϑ∗,Θε − ϑ∗) + τΛε(ϑ
∗)− τ 2k

∫
Ω

∇ϑ∗ · ∇(Θε − ϑ∗)

+ `τ(Φε, ϑ
∗) + τ(g,Θε − ϑ∗)− τ(π(0),Φε) + (h,Φε). (5.2.32)

Let us note that all terms on the left-hand side are nonnegative; in particular, recalling
(5.2.26), we have that(

(I + τβε + τπ)(Φε)− (I + τβε + τπ)(0),Φε

)
≥ 1

2
‖Φε‖2

H , (5.2.33)

Due to (5.1.2) and the continuity of the positive function ϑ∗, (2.5.16) helps us in estimating
the second term on the right-hand side of (5.2.32):

τΛε(ϑ
∗) ≤ τΛ(ϑ∗) ≤ c τ. (5.2.34)

Since g, h ∈ H and (5.1.2) holds, by applying the Young inequality (2.2.5) to the other
terms on the right-hand side of (5.2.32), we find that

−τ 3/2(ϑ∗,Θε − ϑ∗) ≤
τ 3/2

4
‖Θε − ϑ∗‖2

H + c τ 3/2, (5.2.35)

−τ 2k

∫
Ω

∇ϑ∗ · ∇(Θε − ϑ∗) ≤
τ 2k

2

∫
Ω

|∇(Θε − ϑ∗)|2 + c τ 2, (5.2.36)

`τ(Φε, ϑ
∗) ≤ 1

8
‖Φε‖2

H + c τ 2, (5.2.37)

τ(g,Θε − ϑ∗) ≤
τ 3/2

4
‖Θε − ϑ∗‖2

H + c τ 1/2, (5.2.38)

− τ(π(0),Φε) ≤
1

8
‖Φε‖2

H + c τ 2, (h,Φε) ≤
1

8
‖Φε‖2

H + c. (5.2.39)

Then, in view of (5.2.33)–(5.2.39), from (5.2.32) and (5.1.2) it is not difficult to infer that

τ 3/4‖Θε‖H + τ‖∇Θε‖H + ‖Φε‖H + τ 1/2‖∇Φε‖H ≤ c (5.2.40)

taking into account that τ ≤ τ2.
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Second a priori estimate. We test (5.2.21) by βε(Φε) and obtain that(
Φε, βε(Φε)

)
+ τ

∫
Ω

β′ε(Φε)|∇Φε|2 + τ

∫
Ω

|βε(Φε)|2

≤ − τ
∫

Ω

π(Φε)βε(Φε) + τ`

∫
Ω

Θεβε(Φε) +

∫
Ω

hβε(Φε). (5.2.41)

Thanks to the monotonicity of βε and to the condition βε(0) = 0, the terms on the left-
hand side are nonnegative. As π is Lipschitz continuous, by applying the Young inequality
(2.2.5) to every term on the right-hand side of (5.2.41) and using (5.2.40), for 0 < τ ≤ 1
we obtain that

−τ
∫

Ω

π(Φε)βε(Φε) ≤
τ

4

∫
Ω

|βε(Φε)|2 + c, (5.2.42)

τ`

∫
Ω

Θεβε(Φε) ≤
τ

4

∫
Ω

|βε(Φε)|2 +
c

τ 1/2
, (5.2.43)∫

Ω

hβε(Φε) ≤
τ

4

∫
Ω

|βε(Φε)|2 +
c

τ
. (5.2.44)

Then, owing to (5.2.42)–(5.2.44), from (5.2.41) it follows that

τ‖βε(Φε)‖2
H ≤ c

(
1 + τ−1

)
, so that τ‖βε(Φε)‖H ≤ c. (5.2.45)

Hence, by comparison in (5.2.21), we conclude that τ‖∆Φε‖H ≤ c and, from (5.2.40) and
standard elliptic regularity results,

τ‖Φε‖W ≤ c. (5.2.46)

Third a priori estimate. Recalling (2.5.9), (5.1.2) and (5.2.40), we immediately de-
duce that

τ‖Aε(Θε − ϑ∗)‖H ≤ τ CA(1 + ‖Θε‖H + ‖ϑ∗‖H) ≤ c. (5.2.47)

Next, we test (5.2.20) by lnεΘε and obtain that

‖lnεΘε‖2
H + τk

∫
Ω

ln′ε(Θε)|∇Θε|2 ≤ − τ 1/2(Θε, lnεΘε)

− τ
(
Aε(Θε − ϑ∗), lnεΘε

)
− `(Φε, lnεΘε) + (g, lnεΘε). (5.2.48)

Then, by applying the Cauchy–Schwarz inequality to every term on the right-hand side
and using (5.2.40) and (5.2.47), we infer that

‖lnεΘε‖H ≤ τ 1/2‖Θε‖H + c ≤ c
(
τ−1/4 + 1

)
, (5.2.49)

whence
τ 1/4‖lnεΘε‖H ≤ c. (5.2.50)

Moreover, due to (5.2.50) and (5.2.40), by comparison in (5.2.20) it is straightforward to
see that τ 5/4‖∆Θε‖H ≤ c and consequently

τ 5/4‖Θε‖W ≤ c. (5.2.51)
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5.2.4 Passage to the limit as ε↘ 0

In this subsection we pass to the limit as ε↘ 0 and prove that the limit of subsequences
of solutions (Θε,Φε) for (APε) (see (5.2.20)–(5.2.21)) yields a solution (ϑi, ϕi) to (5.2.6)–
(5.2.10); then, we can conclude that the problem (Pτ ) has a solution.

Since the constants appearing in (5.2.40) and (5.2.45)–(5.2.51) do not depend on ε, we
infer that, at least for a subsequence, there exist some limit functions (ϑi, ϕi, Li, Zi, Bi)
such that

Θε ⇀ ϑi and Φε ⇀ ϕi in W, (5.2.52)

lnε(Θε) ⇀ Li, Aε(Θε − ϑ∗) ⇀ Zi and βε(Φε) ⇀ Bi in H, (5.2.53)

as ε ↘ 0. Thanks to the well–known compact embedding W ⊂ V , from (5.2.52) we
infer that

Θε → ϑi and Φε → ϕi in V. (5.2.54)

Besides, as π is Lipschitz continuous, we have that |π(Φε)−π(ϕi)| ≤ Cπ|Φε−ϕi|, whence,
thanks to (5.2.54), we obtain that

π(Φε)→ π(ϕi) in H, (5.2.55)

as ε ↘ 0. Now, we pass to the limit on lnε(Θε), Aε(Θε − ϑ∗) and βε(Φε). In view of a
general convergence result involving maximal monotone operators (see, e.g., [1, Proposi-
tion 1.1, p. 42]), thanks to the strong convergences in H ensured by (5.2.54) and to the
weak convergences in (5.2.53), we conclude that

Li ∈ ln(ϕi), Zi ∈ A(ϑi − ϑ∗), Bi ∈ β(ϕi). (5.2.56)

In conclusion, using (5.2.52)–(5.2.56) and recalling (5.2.19), we can pass to the limit as
ε ↘ 0 in (5.2.20)–(5.2.21) so to obtain (5.2.6)–(5.2.10) for the limiting functions ϑi and
ϕi.

5.2.5 Uniqueness of the solution of (Pτ)

In this section we prove that the approximating problem (Pτ ) stated by (5.2.6)–(5.2.12)
has a unique solution. Then, the proof of Theorem 5.2.1 will be complete.

We write problem (Pτ ) for two solutions (ϑi1, ϕ
i
1), (ϑi2, ϕ

i
2) and set ϑi := ϑi1 − ϑi2 and

ϕi := ϕi1 − ϕi2, i = 1, . . . , N. Then, we multiply by τϑi the difference between the corre-
sponding equations (5.2.7) and by ϕi the difference between the corresponding equations
(5.2.8). Adding the resultant equations, we obtain that

τ 3/2‖ϑi‖2
H + τ

(
lnϑi1 − lnϑi2, ϑ

i
1 − ϑi2

)
+ τ 2

(
ζ i1 − ζ i2, ϑi1 − ϑ∗ − (ϑi2 − ϑ∗)

)
+ τ 2

∫
Ω

|∇ϑi|2

+ ‖ϕi‖2
H + τ

∫
Ω

|∇ϕi|2 + τ(ξi1 − ξi2, ϕi1 − ϕi2) = − τ
(
π(ϕi1)− π(ϕi2), ϕi1 − ϕi2

)
. (5.2.57)
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Since ln, A and β are monotone, in view of (5.2.9) and (5.2.10) the second, the third and
the seventh term on the left-hand side of (5.2.57) are nonnegative. Besides, if τ ≤ 1/(2Cπ),
thanks to the Lipschitz continuity of π, the right-hand side of (5.2.57) can be estimated
as

− τ
(
π(ϕi1)− π(ϕi2), ϕi1 − ϕi2

)
≤ 1

2
‖ϕi‖2

H . (5.2.58)

Then, due to (5.2.58), from (5.2.57) we infer that

τ 3/2‖ϑi‖2
H + τ 2

∫
Ω

|∇ϑi|2 +
1

2
‖ϕi‖2

H + τ

∫
Ω

|∇ϕi|2 ≤ 0, (5.2.59)

whence we easily conclude that ϑi = ϕi = 0, i.e., ϑi1 = ϑi2 and ϕi1 = ϕi2 for i = 1, . . . , N .

5.3 A priori estimates on (APτ )

In this section we deduce some uniform estimates, independent of τ and inferred from the
equations (5.2.6)–(5.2.12) of the approximating problem (Pτ ).

First uniform estimate. We test (5.2.7) by ϑi and (5.2.8) by (ϕi − ϕi−1)/τ , then we
sum up. Adding (ϕi, ϕi − ϕi−1) to both sides of the resulting equality and exploiting the
cancellation of the suitable corresponding terms, we obtain that

τ 1/2(ϑi − ϑi−1, ϑi) +
(

lnϑi − lnϑi−1, ϑi
)

+ τ(ζ i, ϑi − ϑ∗) + τk

∫
Ω

|∇ϑi|2

+ τ

∥∥∥∥ϕi − ϕi−1

τ

∥∥∥∥2

H

+ (ϕi, ϕi − ϕi−1) + (∇ϕi,∇ϕi −∇ϕi−1) + (ξi, ϕi − ϕi−1)

= −τ(ζ i, ϑ∗) + τ(f i, ϑi)−
(
π(ϕi)− ϕi, ϕi − ϕi−1

)
. (5.3.1)

Due to (2.2.6), we can rewrite the first, the fifth and the sixth term on the left-hand side
of (5.3.1) as

τ 1/2(ϑi − ϑi−1, ϑi) =
τ 1/2

2
‖ϑi‖2

H −
τ 1/2

2
‖ϑi−1‖2

H +
τ 1/2

2
‖ϑi − ϑi−1‖2

H , (5.3.2)

(ϕi, ϕi − ϕi−1) + (∇ϕi,∇ϕi −∇ϕi−1) =
1

2
‖ϕi‖2

V −
1

2
‖ϕi−1‖2

V +
1

2
‖ϕi − ϕi−1‖2

V . (5.3.3)

Moreover, since the function u 7−→ eu is convex and eu turns out to be its subdifferential,
by setting ui = lnϑi we obtain that

(
lnϑi−lnϑi−1, ϑi

)
=
(
ui−ui−1, eu

i) ≥ ∫
Ω

eu
i−
∫

Ω

eu
i−1

= ‖ϑi‖L1(Ω)−‖ϑi−1‖L1(Ω). (5.3.4)
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Recalling that A is a maximal monotone operator and 0 ∈ A(0), by (5.2.9) the third
term on the left-hand side of (5.3.1) is nonnegative. We also notice that, since β is the
subdifferential of β̃, from (5.2.10) it follows that

(ξi, ϕi − ϕi−1) ≥
∫

Ω

β̃(ϕi)−
∫

Ω

β̃(ϕi−1), (5.3.5)

while, due to (2.2.2), (2.2.5) and the sub-linear growth of A stated by (2.4.11), we deduce
that

−τ(ζ i, ϑ∗) ≤ CAτ(1 + ‖ϑi − ϑ∗‖H)‖ϑ∗‖H ≤ cτ(1 + ‖ϑi‖H) ≤ cτ(1 + ‖ϑi‖V )

≤ cτ(1 + ‖ϑi‖L1(Ω) + ‖∇ϑi‖H) ≤ cτ + τC1‖ϑi‖L1(Ω) + τ
k

2
‖∇ϑi‖2

H , (5.3.6)

where we have applied the Young inequality in the last term and where the constant C1

depends on CA, ‖ϑ∗‖H and Cp. Due to the the boundedness of f i in L∞(Ω) and the
Lipschitz continuity of π, we also infer that

τ(f i, ϑi) ≤ τ‖f i‖L∞(Ω)‖ϑi‖L1(Ω), (5.3.7)

−
(
π(ϕi)− ϕi, ϕi − ϕi−1

)
≤ cτ(1 + ‖ϕi‖H)

∥∥∥∥ϕi − ϕi−1

τ

∥∥∥∥
H

(5.3.8)

≤ τ

2

∥∥∥∥ϕi − ϕi−1

τ

∥∥∥∥2

H

+ τC2(1 + ‖ϕi‖2
H), (5.3.9)

where C2 depends on Cπ, |π(0)| and |Ω|. Now, we apply the estimates (5.3.2)–(5.3.9) to
the corresponding terms of (5.3.1) and sum up for i = 1, . . . , n, letting n ≤ N . We obtain
that

τ 1/2

2
‖ϑn‖2

H +
n∑
i=1

τ 1/2

2
‖ϑi − ϑi−1‖2

H + ‖ϑn‖L1(Ω) +
k

2

n∑
i=1

τ‖∇ϑi‖2
H

+
1

2

n∑
i=1

τ

∥∥∥∥ϕi − ϕi−1

τ

∥∥∥∥2

H

+
1

2
‖ϕn‖2

V +
1

2

n∑
i=1

‖ϕi − ϕi−1‖2
V +

∫
Ω

β̃(ϕn)

≤ τ 1/2

2
‖ϑ0‖2

H + ‖ϑ0‖L1(Ω) +
1

2
‖ϕ0‖2

V +

∫
Ω

β̃(ϕ0) + τ
n∑
i=1

‖f i‖L∞(Ω)‖ϑi‖L1(Ω)

+ C1

n∑
i=1

τ‖ϑi‖L1(Ω) + C2

n∑
i=1

τ‖ϕi‖2
H + c. (5.3.10)

On account of (5.1.3)–(5.1.3) and (5.1.5), the first four terms on the right-hand side of
(5.3.10) are bounded. Now, recalling the definition (5.2.5) of f i, we have that

τ
n∑
i=1

‖f i‖L∞(Ω)‖ϑi‖L1(Ω) = ‖ϑn‖L1(Ω)

∫ nτ

(n−1)τ

‖f(s)‖L∞(Ω) ds+
n−1∑
i=1

‖f i‖L∞(Ω)‖ϑi‖L1(Ω).
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Thanks to the absolute continuity of the integral, if τ is small enough (independently of
n) we have that ∫ nτ

(n−1)τ

‖f(s)‖L∞(Ω) ds ≤
1

4
, C1τ ≤

1

4
, C2τ ≤

1

4
. (5.3.11)

Then, on the basis of (5.3.11), from (5.3.10) we infer that

τ 1/2

2
‖ϑn‖2

H +
n∑
i=1

τ 1/2

2
‖ϑi − ϑi−1‖2

H +
1

2
‖ϑn‖L1(Ω) +

k

2

n∑
i=1

τ‖∇ϑi‖2
H

+
1

2

n∑
i=1

τ

∥∥∥∥ϕi − ϕi−1

τ

∥∥∥∥2

H

+
1

4
‖ϕn‖2

V +
1

2

n∑
i=1

‖ϕi − ϕi−1‖2
V +

∫
Ω

β̃(ϕn)

≤ c+
n−1∑
i=1

τ

(
‖f i‖L∞(Ω)‖ϑi‖L1(Ω) + C1‖ϑi‖L1(Ω) + C2‖ϕi‖2

H

)
. (5.3.12)

Now, we observe that

n−1∑
i=1

τC1 ≤
N∑
i=1

τC1 = C1T,
n−1∑
i=1

τC2 ≤
N∑
i=1

τC2 = C2T. (5.3.13)

and, according to (5.1.1),

n−1∑
i=1

τ‖f i‖L∞(Ω) ≤
N∑
i=1

∫ iτ

(i−1)τ

‖f(s)‖L∞(Ω) ds =

∫ T

0

‖f(s)‖L∞(Ω) ds ≤ c.

Then, we can apply Lemma 2.3.3 and, recalling the notations (5.2.1), we conclude that

τ 1/2‖ϑτ‖2
L∞(0,T ;H) + τ 3/2‖∂tϑ̂τ‖2

L2(0,T ;H) + ‖ϑτ‖L∞(0,T ;L1(Ω)) + ‖∇ϑτ‖2
L2(0,T ;H)

+ ‖∂tϕ̂τ‖2
L2(0,T ;H) + ‖ϕτ‖2

L∞(0,T ;V ) + τ‖∂tϕ̂τ‖2
L2(0,T ;V ) + ‖β̃(ϕτ )‖L∞(0,T ;L1(Ω)) ≤ c.

(5.3.14)

Since the third and the fourth term of the left-hand side of (5.3.14) are bounded, owing
to (2.2.2) we also infer that

‖ϑτ‖L2(0,T ;V ) ≤ c. (5.3.15)

Besides, in view of (5.2.9) and due to the sub-linear growth of A stated by (2.4.11) and
to (5.1.2), we deduce that

‖ζτ‖L2(0,T ;H) ≤ c. (5.3.16)

Second uniform estimate. We formally test (5.2.8) by ξi and obtain

(ϕi − ϕi−1, ξi) + τ‖ξi‖2
H ≤ τ

(
π(ϕi) + `ϑi, ξi

)
. (5.3.17)
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We point out that the previous estimate (5.3.17) can be rigorously derived by testing
(5.2.21) by βε(Φε) and then passing to the limit as ε ↘ 0. Since β is the subdifferential
of β̃, we have that

(ϕi − ϕi−1, ξi) ≥
∫

Ω

β̃(ϕi)−
∫

Ω

β̃(ϕi−1). (5.3.18)

Moreover, due to the Lipschitz continuity of π, applying the Young inequality (2.2.5) to
the right-hand side of (5.3.17), we deduce that

τ
(
π(ϕi) + `ϑi, ξi

)
≤ 1

2
τ‖ξi‖2

H + c τ
(
1 + ‖ϕi‖2

H + ‖ϑi‖2
H

)
. (5.3.19)

Now, combining (5.3.17)–(5.3.19) and summing up for i = 1, . . . , n, with n ≤ N , we
infer that∫

Ω

β̃(ϕn) +
1

2

n∑
i=1

τ‖ξi‖2
H ≤

∫
Ω

β̃(ϕ0) +
n∑
i=1

τ
(
1 + ‖ϕi‖2

H + ‖ϑi‖2
H

)
, (5.3.20)

whence, due to (5.3.14)–(5.3.15), we obtain that

‖ξτ‖L2(0,T ;H) ≤ c. (5.3.21)

Finally, by comparison in (5.2.14), we conclude that ‖∆ϕτ‖L2(0,T ;H) ≤ c. Then, thanks to
(5.3.14) and elliptic regularity, we find that

‖ϕτ‖L2(0,T ;W ) ≤ c. (5.3.22)

Third uniform estimate. We introduce the function ψn : R 7−→ R obtained by trun-
cating the logarithmic function in the following way:

ψn(u) =

{
ln(u) if u ≥ 1/n,

− ln(n) if u < 1/n.

It is easy to see that ψn is an increasing and Lipschitz continuous function. Then, defining

jn(u) =

∫ u

1

ψn(s) ds, u ∈ R, and j(u) =

∫ u

1

ln s ds, u > 0, (5.3.23)

and testing (5.2.7) by ψn(ϑi), we obtain that

τ 1/2
(
ϑi − ϑi−1, ψn(ϑi)

)
+
(

lnϑi − lnϑi−1, ψn(ϑi)
)

+ τk

∫
Ω∩{ϑi≥1/n}

|∇ϑi|2

ϑi

= −`
(
ϕi − ϕi−1, ψn(ϑi)

)
− τ
(
ζ i, ψn(ϑi)

)
+ τ
(
f i, ψn(ϑi)

)
. (5.3.24)

Recalling that jn is a convex function with derivative ψn, we have that

τ 1/2
(
ϑi − ϑi−1, ψn(ϑi)

)
≥ τ 1/2

∫
Ω

jn(ϑi)− τ 1/2

∫
Ω

jn(ϑi−1), (5.3.25)
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and consequently from (5.3.24) we infer that

τk

∫
Ω∩{ϑi≥1/n}

|∇ϑi|2

ϑi
≤ τ 1/2

∫
Ω

jn(ϑi−1)− τ 1/2

∫
Ω

jn(ϑi)

−
∫

Ω

(lnϑi − lnϑi−1)ψn(ϑi)−
∫

Ω

(
`(ϕi − ϕi−1) + τζ i − τf i

)
ψn(ϑi). (5.3.26)

Due to the properties of the subdifferential, we have that

0 ≤ j(ϑk) ≤ j(1) + (lnϑk, ϑk − 1) for k = 0, 1, . . . , N. (5.3.27)

Since lnϑk ∈ H, ϑk > 0 a.e. in Ω and ϑk ∈ H, from (5.3.27) we infer that j(ϑk) ∈ L1(Ω);
consequently, passing to the limit as n→ +∞, we obtain that

ψn(ϑk) → lnϑk in H and a.e. in Ω,

jn(ϑk) → j(ϑk) in L1(Ω) and a.e. in Ω,

for k = 0, 1, . . . , N. Then, taking the lim inf in (5.3.26) as n → +∞ and applying the
Fatou Lemma and (2.2.6), we have that

τk

∫
Ω

|∇ϑi|2

ϑi
≤ τ 1/2

∫
Ω

j(ϑi−1)− τ 1/2

∫
Ω

j(ϑi) +
1

2

∫
Ω

| lnϑi−1|2 − 1

2

∫
Ω

| lnϑi|2

− 1

2

∫
Ω

| lnϑi − lnϑi−1|2 −
∫

Ω

(
`(ϕi − ϕi−1) + τζ i − τf i

)
lnϑi. (5.3.28)

Now, sum up (5.3.28) for i = 1, . . . , k, with k ≤ N , and obtain that

τ 1/2

∫
Ω

j(ϑk) +
1

2
‖ lnϑk‖2

H +
1

2

k∑
i=1

τ 2

∥∥∥∥ lnϑi − lnϑi−1

τ

∥∥∥∥2

H

+ k
k∑
i=1

τ

∫
Ω

|∇ϑi|2

ϑi

≤ τ 1/2

∫
Ω

j(ϑ0) +
1

2
‖ lnϑ0‖2

H +
1

4

k∑
i=1

τ‖ lnϑi‖2
H + c

k∑
i=1

τ

∥∥∥∥ϕi − ϕi−1

τ

∥∥∥∥2

H

+ c

k∑
i=1

τ‖ζ i‖2
H + c

k∑
i=1

τ‖f i‖2
H . (5.3.29)

We observe that if τ ≤ 1 then

1

4

k∑
i=1

τ‖ lnϑi‖2
H ≤

1

4

k−1∑
i=1

τ‖ lnϑi‖2
H +

1

4
‖ lnϑk‖2

H . (5.3.30)

We also notice that the fourth and the fifth term on the right-hand side of (5.3.29) are
bounded by a positive constant c, due to (5.3.14) and (5.3.16), respectively. Moreover,
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thanks to (5.1.1) and to the definition (5.2.5) of f i, by using the Hölder inequality the
last term on the right-hand side of (5.3.29) can be estimated as follows:

c

k∑
i=1

τ‖f i‖2
H ≤ c

k∑
i=1

τ

∥∥∥∥1

τ

∫ iτ

(i−1)τ

f(s) ds

∥∥∥∥2

H

≤ c

k∑
i=1

∫ iτ

(i−1)τ

‖f(s)‖2
H ds ≤ c‖f‖2

L2(0,T ;H). (5.3.31)

Then, combining (5.3.29) with (5.3.30)–(5.3.31) (see also (5.1.3) and (5.3.27)), we infer
that

τ 1/2

∫
Ω

j(ϑk) +
1

4
‖ lnϑk‖2

H +
1

2

k∑
i=1

τ 2

∥∥∥∥ lnϑi − lnϑi−1

τ

∥∥∥∥2

H

+ 4k
k∑
i=1

τ

∫
Ω

∣∣∇(ϑi)1/2
∣∣2 ≤ c+

1

4

k−1∑
i=1

τ‖ lnϑi‖2
H ,

whence, by applying Lemma 2.3.3, we conclude that

τ 1/2‖j(ϑτ )‖L∞(0,T ;L1(Ω)) + ‖lnϑτ‖L∞(0,T ;H) +
∥∥∇ϑ1/2

τ

∥∥
L2(0,T ;H)

≤ c. (5.3.32)

Moreover, due to (5.3.14) as well, we also infer that

‖ϑ1/2
τ‖L∞(0,T ;H)∩L2(0,T ;V ) ≤ c. (5.3.33)

Fourth uniform estimate. We test (5.2.7) by (ϑi−ϑi−1). Then, we take the difference
between (5.2.8) written for i and for i− 1, and test by (ϕi − ϕi−1)/τ . Using (2.4.10) and
adding, it is note difficult to obtain that

τ 1/2‖ϑi − ϑi−1‖2
H + (lnϑi − lnϑi−1, ϑi − ϑi−1) + `(ϕi − ϕi−1, ϑi − ϑi−1)

+ τΥ(ϑi − ϑ∗)− τΥ(ϑi−1 − ϑ∗) + τ
k

2

(
‖∇ϑi‖2

H + ‖∇(ϑi − ϑi−1)‖2
H − ‖∇ϑi−1‖2

H

)
+
τ

2

∥∥∥∥ϕi − ϕi−1

τ

∥∥∥∥2

H

+
τ

2

∥∥∥∥ϕi − ϕi−1

τ
− ϕi−1 − ϕi−2

τ

∥∥∥∥2

H

− τ

2

∥∥∥∥ϕi−1 − ϕi−2

τ

∥∥∥∥2

H

+ τ 2

∥∥∥∥∇ϕi − ϕi−1

τ

∥∥∥∥2

H

+ (ξi − ξi−1, ϕi − ϕi−1)− τ`
(
ϑi − ϑi−1,

ϕi − ϕi−1

τ

)
≤ τ(f i, ϑi − ϑi−1)− τ

(
π(ϕi)− π(ϕi−1),

ϕi − ϕi−1

τ

)
, (5.3.34)

for i = 2, . . . , N . Now, we write (5.2.7) and (5.2.8) for i = 1 and test the corresponding
equations by (ϑ1−ϑ0) and (ϕ1−ϕ0)/τ , respectively. Since ϑ0 = ϑ0 and ϕ0 = ϕ0, we have
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that

τ 1/2‖ϑ1 − ϑ0‖2
H + (lnϑ1 − lnϑ0, ϑ1 − ϑ0) + `(ϕ1 − ϕ0, ϑ1 − ϑ0) + τΥ(ϑ1 − ϑ∗)

− τΥ(ϑ0 − ϑ∗) + τ
k

2

(
‖∇ϑ1‖2

H + ‖∇(ϑ1 − ϑ0)‖2
H − ‖∇ϑ0‖2

H

)
+ τ

∥∥∥∥ϕ1 − ϕ0

τ

∥∥∥∥2

H

+ ‖∇(ϕ1 − ϕ0)‖2
H + (ξ1 − ξ0, ϕ

1 − ϕ0) ≤ −τ
(
π(ϕ1)− π(ϕ0),

ϕ1 − ϕ0

τ

)
+ τ`

(
ϑ1 − ϑ0,

ϕ1 − ϕ0

τ

)
+ τ(f 1, ϑ1 − ϑ0) + (`ϑ0 + ∆ϕ0 − ξ0 − π(ϕ0), ϕ1 − ϕ0).

(5.3.35)

Then, we divide (5.3.34) and (5.3.35) by τ and sum up the corresponding equations for
i = 1, . . . , n, with n ≤ N . Since β is maximal monotone and (5.2.10) and (5.1.4) hold,
then the eleventh term on the left-hand side of (5.3.34) and the ninth term on the left-hand
side of (5.3.35) are nonnegative. Assuming ϕ−1 = ϕ0, we infer that

τ 1/2

n∑
i=1

τ

∥∥∥∥ϑi − ϑi−1

τ

∥∥∥∥2

H

+
n∑
i=1

1

τ
(lnϑi − lnϑi−1, ϑi − ϑi−1) + Υ(ϑn − ϑ∗)

+
k

2
‖∇ϑn‖2

H +
k

2
τ

n∑
i=1

τ

∥∥∥∥∇ϑi − ϑi−1

τ

∥∥∥∥2

H

+
1

2

∥∥∥∥ϕn − ϕn−1

τ

∥∥∥∥2

H

+
1

2

n∑
i=1

∥∥∥∥ϕi − ϕi−1

τ
− ϕi−1 − ϕi−2

τ

∥∥∥∥2

H

+
1

2

∥∥∥∥ϕ1 − ϕ0

τ

∥∥∥∥2

H

+
n∑
i=1

τ

∥∥∥∥∇ϕi − ϕi−1

τ

∥∥∥∥2

H

≤ Υ(ϑ0 − ϑ∗) +
k

2
‖∇ϑ0‖2

H + ‖`ϑ0 + ∆ϕ0 − ξ0 − π(ϕ0)‖2
H +

1

4

∥∥∥∥ϕ1 − ϕ0

τ

∥∥∥∥2

H

+ (fn, ϑn)− (f 1, ϑ0)−
n−1∑
i=1

(f i+1 − f i, ϑi) +
n∑
i=1

Cπτ

∥∥∥∥ϕi − ϕi−1

τ

∥∥∥∥2

H

. (5.3.36)

In view of (2.4.3)–(5.1.4) and noting that ϑ0 ∈ V , ϕ0 ∈ W and Υ has at most a quadratic
growth (see (5.1.3)–(5.1.3) and (2.4.10)), the first three terms on the right-hand side of
(5.3.36) are bounded by a positive constant. Besides, using (2.2.5), (2.2.2) and the Hölder
inequality and recalling (5.1.1) and (5.3.14), the fifth and the sixth term on the right-hand
side of (5.3.36) can be estimated as follows:

|(fn, ϑn)| ≤ ‖fn‖H‖ϑn‖H ≤ Cp‖fn‖H
(
‖ϑn‖L1(Ω) + ‖∇ϑn‖H

)
≤ Cp‖f‖C0([0,T ];H)

(
‖ϑτ‖L∞(0,T ;L1(Ω)) + ‖∇ϑn‖H

)
≤ k

4
‖∇ϑn‖2

H + c, (5.3.37)

|(f 1, ϑ0)| ≤ ‖f 1‖H‖ϑ0‖H ≤ ‖f‖C0([0,T ];H)‖ϑ0‖H ≤ c. (5.3.38)

With the help of (2.2.5), Hölder’s inequality and (5.3.15) we also infer that∣∣∣∣ n−1∑
i=1

(f i+1 − f i, ϑi)
∣∣∣∣ ≤ n∑

i=2

τ

∥∥∥∥f i − f i−1

τ

∥∥∥∥
H

‖ϑi−1‖H
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≤ 1

2

n∑
i=2

τ

∥∥∥∥f i − f i−1

τ

∥∥∥∥2

H

+
1

2

n−1∑
i=1

τ‖ϑi‖2
H ≤

1

2

n∑
i=2

τ

∥∥∥∥f i − f i−1

τ

∥∥∥∥2

H

+ c. (5.3.39)

Recalling (5.1.1) and the definition of f i (see (5.2.5)), we have that∥∥∥∥f i − f i−1

τ

∥∥∥∥2

H

=

∥∥∥∥ 1

τ 2

∫ iτ

(i−1)τ

f(s) ds− 1

τ 2

∫ (i−1)τ

(i−2)τ

f(s) ds

∥∥∥∥2

H

=

∥∥∥∥ 1

τ 2

∫ iτ

(i−1)τ

(
f(s)− f(s− τ)

)
ds

∥∥∥∥2

H

≤ 1

τ 4

∣∣∣∣∫ iτ

(i−1)τ

‖f(s)− f(s− τ)‖H ds
∣∣∣∣2 ≤ 1

τ 3

∫ iτ

(i−1)τ

∥∥∥∥∫ s

s−τ
∂tf(t) dt

∥∥∥∥2

H

ds

≤ 1

τ 2

∫ iτ

(i−1)τ

(∫ s

s−τ
‖∂tf(t)‖2

H dt

)
ds ≤ 1

τ
‖∂tf‖2

L2((i−2)τ,iτ ;H),

so that
1

2

n∑
i=2

τ

∥∥∥∥f i − f i−1

τ

∥∥∥∥2

H

≤ ‖∂tf‖2
L2(0,T ;H). (5.3.40)

Next, we take advantage of Lemma 2.3.1 in order to deal with the second term on the
left-hand side of (5.3.36). Indeed (cf. (2.3.1)), we realize that∣∣(ϑi)1/2 − (ϑi−1)1/2

∣∣2 ≤ (lnϑi − lnϑi−1, ϑi − ϑi−1),

whence
n∑
i=1

1

τ
(lnϑi − lnϑi−1, ϑi − ϑi−1) ≥

n∑
i=1

τ

∥∥∥∥(ϑi)1/2 − (ϑi−1)1/2

τ

∥∥∥∥2

H

. (5.3.41)

Collecting now (5.3.37)–(5.3.41), from (5.3.36) and (5.3.14) we infer that

τ 1/4‖∂tϑ̂τ‖L2(0,T ;H) + ‖∂tϑ̂1/2
τ‖L2(0,T ;H) + ‖Υ(ϑτ − ϑ∗)‖L∞(0,T ) + ‖ϑτ‖L∞(0,T ;V )

+ τ 1/2‖∂tϑ̂τ‖L2(0,T ;V ) + ‖∂tϕ̂τ‖L∞(0,T ;H) + ‖∂tϕ̂τ‖L2(0,T ;V ) ≤ c. (5.3.42)

Therefore, thanks to (5.2.15) and using (2.4.11) and (5.1.2), we have that

‖ζτ‖L∞(0,T ;H) ≤ c. (5.3.43)

Moreover, by comparison in (5.2.13) and in view of (5.3.14)–(5.3.16), (5.3.21)–(5.3.22),
(5.3.32)–(5.3.33) and (5.3.42), we obtain that

‖∂t l̂nϑτ‖L2(0,T ;V ∗) ≤ cτ 1/2‖∂tϑ̂τ‖L2(0,T ;H) + c‖∂tϕ̂τ‖L2(0,T ;H)

+ c‖ζτ‖L2(0,T ;H) + k‖∆ϑτ‖L2(0,T ;V ∗) + c‖f τ‖L2(0,T ;H) ≤ c. (5.3.44)

Furthermore, recalling (5.2.14), a comparison of the terms yields the bound

‖∆ϕτ + ξτ‖L∞(0,T ;H) ≤ c. (5.3.45)

Hence, by arguing as in the Second uniform estimate, we can improve (5.3.21) and (5.3.22)
to find out that

‖ξτ‖L∞(0,T ;H) + ‖ϕτ‖L∞(0,T ;W ) ≤ c. (5.3.46)
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Summary of the uniform estimates. Let us collect the previous estimates. From
(5.3.14)–(5.3.16), (5.3.21)–(5.3.22), (5.3.32)–(5.3.33) and (5.3.42)–(5.3.46) we conclude
that there exists a constant c > 0, independent of τ , such that

‖ϑτ‖L∞(0,T ;V ) + ‖ϑ̂τ‖L∞(0,T ;V ) + τ 1/4‖∂tϑ̂τ‖L2(0,T ;H)

+ ‖lnϑτ‖L∞(0,T ;H) + ‖l̂nϑτ‖H1(0,T ;V ∗)∩L∞(0,T ;H)

+ ‖ϑ1/2
τ‖L∞(0,T ;H)∩L2(0,T ;V ) + ‖ϑ̂1/2

τ‖H1(0,T ;H)∩L2(0,T ;V ) + ‖ζτ‖L∞(0,T ;H)

+ ‖ϕτ‖L∞(0,T ;W ) + ‖ϕ̂τ‖W 1,∞(0,T ;H)∩H1(0,T ;V )∩L∞(0,T ;W ) + ‖ξτ‖L∞(0,T ;H) ≤ c. (5.3.47)

5.4 Passage to the limit as τ ↘ 0

Thanks to (5.3.47) and to the well–known weak or weak* compactness results, we deduce

that, at least for a subsequence of τ ↘ 0, there exist ten limit functions ϑ, ϑ̂, λ, λ̂, w, ŵ,
ζ, ϕ, ϕ̂, and ξ such that

ϑτ ⇀
∗ ϑ in L∞(0, T ;V ), (5.4.1)

ϑ̂τ ⇀
∗ ϑ̂ in L∞(0, T ;V ), (5.4.2)

τ 1/4ϑ̂τ ⇀
∗ 0 in H1(0, T ;H) ∩ L∞(0, T ;V ), (5.4.3)

lnϑτ ⇀
∗ λ in L∞(0, T ;H), (5.4.4)

l̂nϑτ ⇀
∗ λ̂ in H1(0, T ;V ∗) ∩ L∞(0, T ;H), (5.4.5)

ϑ1/2
τ ⇀

∗ w in L∞(0, T ;H) ∩ L2(0, T ;V ), (5.4.6)

ϑ̂1/2
τ ⇀ ŵ in H1(0, T ;H) ∩ L2(0, T ;V ), (5.4.7)

ζτ ⇀
∗ ζ in L∞(0, T ;H), (5.4.8)

ϕτ ⇀
∗ ϕ in L∞(0, T ;W ), (5.4.9)

ϕ̂τ ⇀
∗ ϕ̂ in W 1,∞(0, T ;H) ∩H1(0, T ;V ) ∩ L∞(0, T ;W ), (5.4.10)

ξτ ⇀
∗ ξ in L∞(0, T ;H). (5.4.11)

First, we observe that ϑ = ϑ̂: indeed, thanks to (5.2.3) and (5.4.3), we have that

‖ϑτ − ϑ̂τ‖L2(0,T ;H) ≤
τ√
3
‖∂tϑ̂τ‖L2(0,T ;H) ≤ cτ 3/4 (5.4.12)

and consequently ϑτ − ϑ̂τ → 0 strongly in L2(0, T ;H). Moreover, it turns out that λ = λ̂:
in fact, on account of (5.2.4) and (5.4.5) we have that

‖lnϑτ − l̂nϑτ‖L∞(0,T ;V ∗) ≤ τ 1/2‖∂t l̂nϑτ‖L2(0,T ;V ∗) ≤ cτ 1/2, (5.4.13)

whence
lim
τ↘0
‖lnϑτ − l̂nϑτ‖L∞(0,T ;V ∗) = 0. (5.4.14)
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Similarly, thanks to (5.2.3) and (5.4.10), we see that

‖ϑ1/2
τ − ϑ̂1/2

τ‖L2(0,T ;H) ≤
τ√
3
‖∂tϑ̂1/2

τ‖L2(0,T ;H) ≤ cτ, (5.4.15)

which entails
lim
τ↘0
‖ϑ1/2

τ − ϑ̂1/2
τ‖L2(0,T ;H) = 0 (5.4.16)

and w = ŵ. Finally, we check that ϕ = ϕ̂. In the light of (5.2.4), we have that

‖ϕτ − ϕ̂τ‖L∞(0,T ;V ) ≤ τ‖∂tϕ̂τ‖L2(0,T ;V ) ≤ cτ (5.4.17)

and consequently
lim
τ↘0
‖ϕτ − ϕ̂τ‖L∞(0,T ;V ) = 0. (5.4.18)

Next, in view of the convergences in (5.4.5), (5.4.7), (5.4.10) and owing to the strong
compactness lemma stated in [62, Lemma 8, p. 84], we have that

l̂nϑτ → λ in C0([0, T ];V ∗), (5.4.19)

ϑ̂1/2
τ → w in L2(0, T ;H), (5.4.20)

ϕ̂τ → ϕ in C0([0, T ];V ). (5.4.21)

Then, by (5.4.14)–(5.4.18) we can also conclude that

lnϑτ → λ in L∞(0, T ;V ∗), (5.4.22)

ϑ1/2
τ → w in L2(0, T ;H), (5.4.23)

ϕτ → ϕ in L∞(0, T ;V ). (5.4.24)

Thanks to (5.4.24) and to the Lipschitz continuity of π, we have that

π(ϕτ )→ π(ϕ) in L∞(0, T ;H). (5.4.25)

Now, we check that λ = ln θ: in fact, due to the weak convergence of ϑτ ensured by (5.4.1)
and to the strong convergence of ln(ϑτ ) in (5.4.22) (see (5.4.4) as well), we have that

lim sup
τ↘0

∫ T

0

∫
Ω

(
lnϑτ

)
ϑτ = lim

τ↘0

∫ T

0

〈lnϑτ , ϑτ 〉 =

∫ T

0

〈λ, ϑ〉 =

∫ T

0

∫
Ω

λϑ, (5.4.26)

so that a standard tool for maximal monotone operators (cf., e.g., [1, Lemma 1.3, p. 42])
ensure that λ = lnϑ. In the light of (5.2.16) and of the convergences (5.4.11) and (5.4.24),
it is even simpler to check that ξ and ϕ satisfy (5.1.13).

At this point, recalling also (5.4.4), (5.4.5), (5.4.10) and passing to the limit in (5.2.13)
and (5.2.14), we arrive at (5.1.10) and (5.1.11). In addition, note that (5.2.12) implies

that l̂nϑτ (0) = lnϑ0 and ϕ̂τ (0) = ϕ0; thus, thanks to (5.4.22) and (5.4.24), passing to the
limit as τ ↘ 0 leads to the initial conditions (5.1.15).
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It remains to show (5.1.12). To this aim, we point out that (5.4.23) implies that,

possibly taking another subsequence, ϑ1/2
τ → w almost everywhere in Q. Then, using

(5.4.1) and the Egorov theorem, it is not difficult to verify that

ϑτ =
(
ϑ1/2

τ

)2

→ w2 a.e. in Q and in L2(0, T ;H), (5.4.27)

as well as ϑ = w2. Details of this argument can be found, for instance, in [10, Exercise 4.16,
part 3, p. 123]. Then, as A induces a natural maximal monotone operator on L2(0, T ;H),
recalling (5.2.15) and observing that (cf. (5.4.8))

lim sup
τ↘0

∫ T

0

(
ζτ , ϑτ − ϑ∗

)
H

= lim
τ↘0

∫ T

0

(
ζτ , ϑτ − ϑ∗

)
H

=

∫ T

0

(ζ, ϑ− ϑ∗)H , (5.4.28)

we easily recover (5.1.12). Therefore, Theorem 5.1.1 is completely proved.
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Birkhäuser Verlag, Basel, 1990.

[39] M. Fabrizio, Free energies in the materials with fading memory and applications to
PDEs, in: R. Monaco, S. Pennisi, S. Rionero, T. Ruggeri (Eds.), WASCOM 2003–
12th Conference on Waves and Stability in Continuous Media, World Sci. Publishing
(2004), 172–184.



88 Nonlinear phase–field systems
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