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Notations and conventions

Throughout this thesis, we will use natural units h̵ = c = 1. Light italic roman
type will be used for four-vectors, while boldface italic will be used for three-
vectors and two-vectors. The latter will be also indicated with the “⊥” suffix.
Greek indices range from 0 to 3 and refer to Lorentz components; Latin in-
dices range from 1 to 3 and refer to spatial components, namely (a1, a2, a3) =
(ax, ay, az). Einstein’s convention for summation of repeated Latin indices will
always be assumed, whereas repeated Lorentz indices are meant to be con-
tracted with the metric tensor: aµbµ = aµgµνbν .
We will consider the Levi-Civita totally-antisymmetric tensor in four dimen-
sions with the convention ε0123 = 1; accordingly, in three dimensions we will
take εijk = ε0ijk, while in two dimensions εij is defined through ε12 = −ε21 = 1,
ε11 = ε22 = 0
We will use the Standard representation for Dirac matrices:

γ0 = (1 0
0 −1) , γi = ( 0 σi

−σi 0
) , γ5 = (0 1

1 0
) ,

where σi are the 2 × 2 Pauli’s matrices

σ1 = (0 1
1 0

) , σ2 = (0 −i
i 0

) , σ3 = (1 0
0 −1

) .

The commutator of Dirac matrices is σµν = i
2 [γµ, γν]. We will also adopt

Feynman’s slash notation /p = γµpµ.
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Chapter 1
Introduction

In this thesis we will discuss examples of applications of the light-front quanti-
zation formalism in Quantum Field Theories. The purpose of this Introduction
is to describe the background of our studies and to provide the motivations
that inspired this research.

1.1 Quantum Field Theory

In the mid 1920s, when Quantum Mechanics was emerging as the formalism
that describes Physics at the subatomic scale, the theory of Special Relativity
was already well-established. A lot of effort was therefore immediately devoted
to reconcile the two theories in a unified framework. It soon became clear that
the approach offered by Quantum Field Theory (QFT), as presented in the
pioneering works by Born, Jordan, Heisenberg and Dirac [1, 2], was the most
suitable to attack the problem. Quantum Electrodynamics (QED), in partic-
ular, proved to be extremely successful in the description of the interactions
between radiation and matter.
Thanks to the subsequent introduction of renormalization techniques, which
made it possible to obtain an incredibly precise predictive power, QED has
become over the years the best-tested and one of the most consolidated the-
ories in all of Physics [3]. Quantum Field Theory is nowadays the underlying
framework of the Standard Model (SM), that describes elementary particles
and the fundamental forces ruling their interactions.

In the canonical QFT formulation, given some boundary condition on a
three-dimensional hypersurface at fixed time t = 0, the state associated to a
given system is evolved in the time direction according to the Schrödinger
equation. As noticed already by Dirac in 1949 [4], however, the choice of a
preferred direction for the evolution of the system is somewhat arbitrary: there
are (infinitely many, in principle) equivalent possibilities, or forms of relativis-
tic dynamics, as Dirac called them. The canonical one is referred to as the
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1. Introduction

instant form. The light-front form, instead, mixes the direction of time and of
the z coordinate, thus rotating the t = 0 hypersurface to make it tangent to the
light cone centered at the origin. The formulation of QFT in the light-front
form is named light-front quantization.

As we will extensively discuss throughout this thesis, the different forms of
dynamics eventually provide perfectly equivalent results. Nevertheless, they
turn out to be more or less suitable for the analysis of a given problem. In the
framework of Particle Physics, light-front quantization proves to be an elegant
language for the description of a composite particle in terms of its elementary
constituents. For this reason, this formalism is effectively employed in the
context of Hadron Physics and Quantum Chromodynamics (QCD), although
it can be in principle applied to any QFT.

1.2 Hadronic Physics and QCD

The main goal of Hadronic Physics is to describe the global properties of
nucleons (namely, protons and neutrons) in terms of the underlying proper-
ties of their constituents (namely, quarks and gluons) and of the interactions
among them. The latter are ruled by QCD, which is the Standard-Model the-
ory of strong interactions. Its non-Abelian nature makes it far different from
the electroweak sector of the SM, introducing in particular the phenomena of
asymptotic freedom and confinement. These aspects complicate the treatment
of QCD both from the theoretical and the experimental side, making the final
goal extremely challenging to achieve.
Besides lacking a complete mathematical formulation, QCD misses to explain
the nature of fundamental physical quantities related to protons and neutrons.
Over the last few years, tremendous progresses have been made in matching
the QCD theoretical predictions of nucleons’ fundamental physical quantities,
mainly through the lattice-QCD approach. Nevertheless, QCD still lacks a
complete mathematical formulation; it cannot therefore, at present, provide a
method for the analytical derivation of such quantities, and eventually explain
of their generation mechanisms. Typical examples in this regard are given by
the origin of the nucleons’ mass (which amounts to about 99% of the mass of
the visible universe) as due to the gluon dynamics [5,6], and the decomposition
of the nucleons’ spin in terms of contributions from spin and orbital angular
momentum of the constituents [7].
The fundamental primary tools for the inspection of the internal structure of
nucleons are the partonic distribution functions, which provide us with multi-
dimensional maps of the inside of nucleons both in momentum and position
space. A proper determination of these functions, both from the theoretical
and the experimental point of view, would hence be key to shed light on the
above-mentioned open problems. For this reason, over the last few decades
the worldwide Hadronic Physics community has spent a major effort in their
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1.3. Outline of the thesis

investigation.
The light-front quantization formalism is a precious theoretical instrument for
the study of partonic distributions since, other than simplifying practical cal-
culations, it allows one to have an intuitive physical interpretation of their
content [8]. Furthermore, the possibility to apply it to a generic Quantum
Field Theory makes it a suitable common ground for the comparison of theo-
ries with different properties, such as QED and QCD, thus highlighting their
similarities and differences.

1.3 Outline of the thesis

The goal of this thesis is to present some novel applications of the light-front
quantization formalism to the fields of QED and QCD.
In Chapter 2 we will review the basic concepts that form the foundations of
light-front quantization. We will adopt a historical perspective, stressing at the
same time the advantages of this formalism with respect to the usual instant-
form quantization.
In Chapter 3 we will prove that light-front Time-Ordered Perturbation Theory
and the covariant Feynman-diagram approach in light-front coordinates and
in light-cone gauge are equivalent at one-loop level in QED. As we work in a
gauge theory, the presence of instantaneously-propagating photons makes the
problem non-trivial. Our proof clarifies which form should be used for the
gauge-field propagator in light-cone gauge.
In Chapter 4 we will give a brief overview of the available distribution functions
in Hadronic Physics. These instruments allow one to investigate the internal
structure of composite particles in terms of their constituents. Examples of
their application both in the field of QED and in that of QCD will be showed
in Chapters 5 and 6.
In Chapter 5 we will study the α-order structure of the dressed electron, con-
sidering it as composed of a bare electron and a virtual photon1. To this
aim, we will consider the Generalized Transverse-Momentum Dependent and
the Transverse-Momentum Dependent distribution functions in QED. We will
provide their analytical calculation and discuss their gauge-invariance, with
particular focus on the role of the transverse gauge link. Besides the academic
interest in viewing the point-like electron in a new perspective as a composite
system, the purpose of working in the QED framework is to gain a deeper
knowledge of light-front quantization methods by enlightening their general
features.
In Chapter 6 we will turn our attention to Hadronic Physics and describe
angular-momentum distributions of quarks in position space inside the nu-

1In the field-theoretical picture, the electron cloud contains (in principle) an infinite num-
ber of virtual photons and electron-positron pairs, consistently with the quantum numbers
of the physical electron. Here we will restrict ourselves to the dominant electron-photon
component.

3



1. Introduction

cleon. At the level of densities, the interpretation of contributions from orbital
angular momentum and spin of the constituents to the total spin of the nucleon
is not straightforward, due to divergence terms that vanish upon integration.
A correct assessment of these quantities is nonetheless crucial if we want to un-
derstand how the nucleon’s spin originates from the properties of the partons.
We will illustrate our findings in the scalar-diquark model of the nucleon, in
terms of Generalized Parton Distribution functions in the impact-parameter
space.
We will finally summarize our results and offer some outlooks for future per-
spective of this work in Chapter 7.

4





1. Introduction

6



Chapter 2
Light-front quantization

All throughout the present work, we will adopt the formalism of light-front
quantization, discussing some of its applications in the contexts of Quantum
ElectroDynamics (QED) and Quantum ChromoDynamics (QCD). Over the
last few decades, light-front quantization has become a well-established lan-
guage for the investigation of composite systems in Quantum Field Theory,
providing a clear intuition of the physical picture under analysis and relevant
simplifications of the practical calculations. In this Chapter we recall the basic
ideas behind this approach and show some of the advantages that it offers,
mainly following the discussion in Ref. [9].

2.1 Foundations

Quantum Field Theories provide a quantum-mechanical description of a physi-
cal system in the arena of a flat, four-dimensional Minkowski spacetime (M, g),
endowed with the metric

gµν =
⎛
⎜⎜⎜
⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎟
⎠

(2.1)

and with coordinates written canonically as xµ = (x0, x1, x2, x3) = (t,x). Let
ψ(t,x) be the state that describes the system at a certain point in spacetime.
As we deal with the dynamics of the system, the “time” coordinate t plays
a special role, since ψ(t,x) evolves along the time-like direction through the
Schrödinger equation

i
∂

∂t
ψ(t,x) = P0ψ(t,x) . (2.2)

Eq. (2.2) is uniquely solved once we have fixed some boundary conditions
ψ(t0,x0) on a space-like hypersurface at fixed time t = 0, and yields an op-
erational definition for the Hamiltonian P0 as a displacement operator with

7



2. Light-front quantization

respect to time t.
It is easy to realize that the concepts of “time” and “space” are to some ex-
tent arbitrary in the context of a covariant theory: one can obtain a new
parametrization of spacetime by taking some generalized coordinates x̃µ(xµ) =
(x̃0, x̃)(xµ) and considering initial conditions ψ(x̃0

0, x̃0) on the null-time hyper-
surface x̃0 = 0. The system would then evolve in the direction of the new“time”
x̃0, orthogonal to the null-time hypersurface, still according to the Schrödinger
equation:

i
∂

∂x̃0
ψ(x̃0, x̃) = P̃0ψ(x̃0, x̃) , (2.3)

which we can interpret as the definition of the Hamiltonian operator P̃0 in the
new coordinates.

The minimal constraint to be required for the transformation x̃µ is that
it should be an invertible function of the canonical coordinates. The metric
tensor in turn changes according to

g̃µν = (∂x
ρ

∂x̃µ
) gρλ (

∂xλ

∂x̃ν
) ≡ Cρ

µ gρλC
λ
ν , (2.4)

thus conserving the volume element ds2 = gµνdxµdxν = g̃µνdx̃µdx̃ν . Such a
transformation would of course leave the physics of the system unaffected.
There are, in principle, infinite possibilities for the choice of the parametriza-
tion. One must exclude, however, all those which are connected to each other
through a Lorentz transformation, since they are already included in a co-
variant formalism. In fact, it turns out that only five independent param-
eterizations [10] survive; each of them can be characterized, in general, by
the respective null-time hypersurface (see also Fig. 2.1). In 1949, Dirac [4]
identified three of them, which he referred to as forms of relativistic dynamics:

• The instant form, which refers to the canonical coordinates xµ = (x, t)
and to the metric tensor (2.1). The null-time hypersurface is given by
the condition t = 0.

• The front form, which is associated to the transformation x̃µ(xµ) =
(x̃0, x̃3, x̃1, x̃2) = (x+, x−,x⊥), where:

x+ = 1√
2
(x0 + x3) , x− = 1√

2
(x0 − x3) , x⊥ = (x1, x2) . (2.5)

In this case, the null-time hypersurface x+ = 0 is obtained via rotation of
the hyperplane t = 0 by an angle of π/4, making it tangent to the light-
cone centered at the origin. For this reason, the coordinates in Eq. (2.5)
are called light-front coordinates and the front-form dynamics is referred
to also as light-front quantization. The new metric reads

g̃µν =
⎛
⎜⎜⎜
⎝

0 1 0 0
1 0 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎟
⎠
. (2.6)

8



2.1. Foundations

Figure 2.1: Null-time hyperplanes in Dirac’s forms of relativistic dynamics. From top to
bottom: hyperplane t = 0 (instant form), hypersurface x+ = 0 tangent to the light-cone (front
form), hypersurface x2 = 1 (point form).
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2. Light-front quantization

• The point form, which is associated to the transformation that takes xµ =
(τ coshω, τ sinhω sin θ cosφ, τ sinhω sin θ sinφ, τ sinhω cos θ) into x̃µ(xµ) =
(τ, ω, θ, φ), with the new metric given by

g̃µν =
⎛
⎜⎜⎜
⎝

1 0 0 0
0 −τ 2 0 0
0 0 −τ 2 sinh2 ω 0
0 0 0 −τ 2 sinh2 ω sinh2 θ

⎞
⎟⎟⎟
⎠
.

The corresponding null-time hypersurface is identified by the condition
x2 − a2 = 0, with x0 > 0.

The two remaining parameterizations are characterized by the following null-
time hypersurfaces:

• (x0)2 − (x1)2 − (x3)2 − a2 = 0, with x0 > 0 .

• (x0)2 − (x3)2 − a2 = 0, with x0 > 0 .

Although the five forms eventually produce the same physical results, they
may be more or less suitable for attacking different problems. For the pur-
poses of this work, we will focus on the front form, which turns out to offer a
particularly intuitive framework when dealing with many-body systems. We
will enlighten some of the motivations supporting this choice in the next Sec-
tions.

2.2 Relation with the infinite-momentum

frame

After Dirac’s work in 1949, the alternative forms of dynamics were not further
investigated until the late 60’s and early 70’s, when considerable interest grew
around the possibility of studying current algebras and scattering processes in
a reference frame moving with velocity close the speed of light [11–20]. It was
later recognized that this approach (which offers significant simplifications, as
we will briefly illustrate) is completely equivalent to that of light-front quanti-
zation.

Let us consider a reference frame moving along the z direction with velocity
−v (v > 0) with respect to a given “ordinary” reference frame. If a particle trav-
els with four-momentum p = (E,px, py, pz) as observed in the ordinary frame,
Lorentz transformations provide us with the components of the corresponding
four-momentum p′ in the moving frame:

E′ = 1√
1 − v2

(E + vpz) , (2.7)

10



2.2. Relation with the infinite-momentum frame

= +

+ + + +

(a) (b) (c)

(d) (e) (f) (g)

t

Figure 2.2: Triangle diagram for the scalar φ3 theory (a), as a sum of the corresponding
time-ordered diagrams (b)-(g). Time t flows from left to right and dashed lines indicate
intermediate states at a fixed value of time.

p′x = px , (2.8)

p′y = py , (2.9)

p′z =
1√

1 − v2
(pz + vE) . (2.10)

By taking the limit v → c = 1 of a frame moving with velocity close to the
speed of light, the momentum along the z direction becomes infinite; it is thus
justified to refer to such a frame as Infinite-Momentum Frame (IMF).
Weinberg [12] was the first to examine the consequences of working in the IMF
by discussing the rules of old-fashioned Time-Ordered Perturbation Theory
(TOPT) in the infinite-momentum limit, for a scalar φn theory. We briefly
recall that in order to calculate a scattering amplitudeMαβ for a given process
with initial and final states ∣α⟩ and ∣β⟩, respectively, the TOPT rules prescribe
that one should:

• Sum the contributions from all possible diagrams for the process α → β,
drawn by assigning to each interaction vertex a time index i = 1, . . . n
and by considering as distinct the n! diagrams which have a different
ordering of the vertices. We show in Fig. 2.2 an example for the case of
the triangle diagram in the scalar φ3 theory.

• Require conservation of three-momentum (and not of energy) at each
vertex, considering each intermediate state on the mass-shell.

Notice that the last requirement marks a difference with respect to the
Feynman diagram approach, where four-momentum is conserved at each ver-

11



2. Light-front quantization

tex, but particles in the intermediate states are virtual. Moreover, in TOPT
manifest covariance is lost, since a single diagram is not Lorentz-invariant
(while their sum of course is); on the other hand, unitarity is explicit, since all
particles propagate forward in time.
Weinberg showed that, by taking the limit of the total incident momentum
P = ∣P∣ to infinity, all time-ordered diagrams containing vacuum fluctuations
(i.e. creation from / annihilation into vacuum of two or more particles) vanish,
since they are power-suppressed as P −2 1. This means that in the case of the
triangle diagram shown in Fig. 2.2, out of the six possible time-ordered dia-
grams, only two [namely (b) and (c)] survive in the infinite-momentum frame.
It was later suggested that the infinite-momentum-frame results could be
achieved through a simple change of variables, without needing to take explic-
itly the limit of infinite momenta [13, 14]. Chang and Ma [15], in particular,
proved that it is possible to reproduce the rules of TOPT for the scalar φ3

theory in the infinite-momentum frame by introducing new variables η = t + z
and s = t − z . More recently, Sawicki [22] considered again the triangle di-
agram in the same model to prove that the TOPT formalism in light-front
coordinates exactly reproduces the covariant result in the Feynman approach.
We will come back to this argument in Chapter 3 in the framework of QED.
A rigorous extension of the IMF formalism to the case of QED was obtained by
Bjorken, Kogut and Soper [17,23], using the light-front coordinates (2.5). They
also derived the rules for the fermion and photon propagators from the expan-
sion of the Scattering matrix S. We finally mention that the first application
to the quark parton model of QCD is due to Drell, Levy and Yan [18–20].

2.3 Poincaré group on the light-front

In general, a field theory is described by a Lagrangian density

L = L (ϕr(x), ∂µϕr(x), x) (2.11)

depending on the fields ϕr(x) along with their derivatives. Invariance of the
theory under translations results, via Noether’s theorem, into conservation of
the energy-momentum tensor

T µν(x) = πµr ∂νϕr(x) , ∂µT
µν = 0 , (2.12)

where

πµr =
∂L

∂ (∂µϕr(x))
is the momentum conjugate to the field φr(x). Lorentz invariance leads instead
to the conservation of the so-called generalized angular momentum density

Jµνρ(x) = Lµνρ(x) + Sµνρ(x) , ∂µJ
µνρ = 0 . (2.13)

1The same argument is also reviewed in [21].
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2.3. Poincaré group on the light-front

Here
Lµνρ(x) = xνT µρ(x) − xρT µν(x) (2.14)

is a Orbital Angular Momentum (OAM) contribution, while

Sµνρ(x) = −iπµr (Σνρ)rs ϕs(x) (2.15)

is interpreted as the intrinsic spin contribution to the total angular momentum
density. The spin operator is [7]:

(Σµν)rs = 0 , spin-0 particle φr(x) , (2.16)

(Σµν)rs =
i

2
([γµ, γν])rs , spin-1/2 Dirac particle ψr(x) , (2.17)

(Σµν)βα = i (δµαgνβ − δναgµβ) , spin-1 particle Aα(x) . (2.18)

The conserved charges associated with the quantities in Eqs. (2.12) and (2.13)
are, respectively, the four-momentum vector

P ν = ∫ d4xT 0ν(x) (2.19)

and the angular momentum tensor

Mµν = ∫ d4x [xµT 0ν(x) − xνT 0µ(x) + S0µν(x)] . (2.20)

Let us now consider these objects as operators at the level of algebraic quantum-
mechanics. The algebra of operators is generated by xµ, pµ and the identity 1

with the canonical commutation relation

[xµ, pν] = −i1 . (2.21)

If we write P µ = pµ, Mµν = xµpν − xνpµ, we find

[P µ, P ν] = 0 , (2.22)

[Mµν , P ρ] = −i (gµρP ν − gνρP µ) , (2.23)

[Mµν ,Mρσ] = −i (gµρMνσ − gµσMνρ − gνρMµσ + gνσMµρ) . (2.24)

These coincide with the commutation relations of the Lie algebra that gener-
ates the Poincaré group, where P µ are the translations and Mµν the Lorentz
transformations. In the instant form, rewriting the Lorentz group generators
in terms of rotations J i = εijkM jk and boosts Ki = M0i, we can equivalently
express the relations (2.23)-(2.24) as

[J i, P l] = iεilmPm , (2.25)

[J i, P 0] = 0 , (2.26)

[Ki, P l] = −iδilP 0 , (2.27)

[Ki, P 0] = −iP i , (2.28)
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2. Light-front quantization

[J i, J l] = iεilmJm , (2.29)

[J i,K l] = iεilmKm , (2.30)

[Ki,K l] = −iεilmJm . (2.31)

We distinguish two types of operators, calling kinematic operators those
which leave the hypersurface t = 0 invariant; the remaining ones, which evolve
equal-time hypersurfaces along the direction of time, are referred to as dy-
namical operators or Hamiltonians, in the spirit of Eq. (2.2) [4]. Kinematic
operators do not depend on the interaction, whereas dynamical operators do.
In instant form, the three rotations J i and the three space-translations P i are
kinematic, while time translation P 0 and the three boosts Ki are dynamical.

The interpretation of the algebra of Poincaré generators in light-front quan-
tization is one of the crucial features of the formalism. In order to obtain the
commutation relations corresponding to Eqs. (2.22) and (2.25) to (2.31) in
light-front coordinates, we apply the transformation Mµν → M̃µν = Cµ

ρMρσCν
σ ,

with Cµ
ν defined in Eq. (2.4). One finds [17]:

M̃µν =
⎛
⎜⎜⎜
⎝

0 −K3 B1 B2

K3 0 S1 S2

−B1 −S1 0 J3

−B2 −S2 −J3 0

⎞
⎟⎟⎟
⎠
, (2.32)

where

B1 = 1√
2
(K1 + J2) , B2 = 1√

2
(K2 − J1) , (2.33)

S1 = 1√
2
(K1 − J2) , S2 = 1√

2
(K2 + J1) . (2.34)

The ten generators of the Poincaré group in light-front coordinates are then
P µ = (P +, P −,P⊥), B⊥ = (B1,B2), Jz = J3, S⊥ = (S1, S2), Kz =K3. Note that,
in terms of the angular momentum tensor in light-front coordinates, we can
write2 Bi⊥ =M+i, Si⊥ =M−i, Kz =M−+ and Jz =M12. Furthermore, in terms of
the energy-momentum tensor, from Eqs. (2.19) and (2.20) we have

P ν = ∫ d4xT +ν(x) , (2.35)

Mµν = ∫ d4x [xµT +ν(x) − xνT +µ(x) + S+µν(x)] . (2.36)

The generators satisfy the following commutation relations:

[P µ, P ν] = [Jz, P +] = [Jz, P −] = [Bi
⊥, P

+] = 0 , (2.37)

2We omit the tilde for light-front operators, from now on.

14



2.3. Poincaré group on the light-front

[P −,Bi
⊥] = iP i

⊥ , (2.38)

[Jz, P i
⊥] = iεilP l

⊥ , (2.39)

[Jz,Bi
⊥] = iεilBl

⊥ , (2.40)

[P i
⊥,B

l
⊥] = iδilP + , (2.41)

[Bi
⊥,B

l
⊥] = [Si⊥, P −] = [Si⊥, Sl⊥] = [Jz,Kz] = [P i

⊥,Kz] = 0 , (2.42)

[Bi
⊥,Kz] = iBi

⊥ , (2.43)

[P ±,Kz] = ±iP ± , (2.44)

[Si,Kz] = −iSi⊥ , (2.45)

[Jz, Si⊥] = iεilSl⊥ , (2.46)

[Si⊥,Bl
⊥] = i (δilKz + εilJz) , (2.47)

[P +, Si⊥] = iP i
⊥ , (2.48)

[P i
⊥, S

l
⊥] = iδilP + , (2.49)

as can be readily checked from Eqs. (2.25) to (2.31).
The relations (2.37) to (2.41) are particularly interesting since they allow us
to single out a subgroup of the Poincaré group spanned by P µ, B⊥ and Jz
and isomorphic to the two-dimensional subgroup of non-relativistic Galilean
transformations. To this extent, we can identify P − with the Hamiltonian,
P + with the mass and P⊥, B⊥ and Jz respectively with translations, Galilean
boosts and rotations in the transverse plane of coordinates x, y [13,17]. Notice
also from Eqs. (2.42) to (2.45) that the boost operator along the z direction
Kz simply acts as a rescaling of the other generators, as can be explicitly seen
by exponentiating: we have, for instance,

eiωKzP ±e−iωKz = e±ωP ±

and similarly for the other generators.
We will now naturally transpose the nomenclature adopted for the instant form
to the light-front scenario and call kinematic the operators that leave invariant
the hypersurfaces at instant-form time τ = 0. It is easy to check that this is the
case for the generators P +, P⊥, B⊥ and J3 belonging to the Galilean subgroup.
This entails, in particular, that boosts in the transverse plane are independent
of the interaction; that is a crucial difference compared to the instant-form
case, whose consequences will be pointed out later in more detail.
A final remark concerns the interpretation of the P − generator as the Hamil-
tonian of the system. If we compute the on-shell relation M2 = P µPµ =
2P +P − −P 2⊥ in light-front coordinates, we can rewrite

P − ≡H = P 2⊥
2P + +

M2

2P + , (2.50)

which has a manifestly non-relativistic form. Furthermore, the operator P −

acts as a translation with respect to the light-front time τ , accordingly with
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2. Light-front quantization

Eq. (2.3). We also notice that Eq. (2.50) helps to support the interpretation
of P + as a mass parameter, which is in fact justified by the fact that P + is a
positive semi-definite operator.

2.3.1 The Impact-Parameter space

The isomorphism between generators of the Poincaré group on the light front
and generators of the two-dimensional Galilean subgroup of Lorentz transfor-
mation helps us to interpret the structure of composite systems in the trans-
verse plane, as we will be better illustrate in Section 4.4.1. Here we introduce
some key concepts to this extent.

In non-relativistic quantum mechanics, when dealing with a composite sys-
tem, if the Hamiltonian is invariant under translations it is possible to separate
the dynamics of the center of mass

R = ∑
i=1

xiri (2.51)

from that of the constituents and work in the center-of-mass frame. In Eq. (2.51)
each constituent contributes with a fraction xi = mi/M to the total mass M
of the system and has coordinates ri in position space. It should be em-
phasized here that the center of mass also corresponds the generator B of
(three-dimensional) Galilean boosts up to a factor of M [24]:

B = −MR . (2.52)

Let us now restrict to the description in the transverse plane. Recall that
the isomorphism described in Section 2.3 associates the mass M with the
translation operator along the longitudinal direction P + and the transverse
boosts B⊥ with the operators Bi introduced in Eq. (2.33), suggesting us to
define the center of transverse momentum

R⊥ = ∑
i=1

k+i
P +ri,⊥ = ∑

i=1

xiri,⊥ , (2.53)

where now
xi = k+i /P + (2.54)

is the boost-invariant longitudinal momentum fraction carried by the i-th par-
ton. This means that Eq. (2.52), in two dimensions, will correspond to

R⊥ = −
1

P +B⊥ . (2.55)

Another way to justify the relation (2.55) is to consider the field-theoretical
definition of center of transverse momentum [25]

R⊥ = ∫ dx−d2x⊥x⊥ T ++(x) = − 1

P +B⊥ , (2.56)
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2.4. Light-Front Wave Functions

where T µν is the energy momentum tensor and hence T ++(x) represents the
light-front momentum density. In order to recover the right-hand side of
Eq. (2.56), we write Bi =M+i and use Eq. (2.36) in the limit3 x+ = 0 .
We define the coordinates of the i-th parton in the transverse plane relative to
the center of transverse momentum as the impact parameter

bi,⊥ = ri,⊥ −R⊥ . (2.57)

In particular, we call impact-parameter space the coordinate system b⊥ =
(bx, by) in the transverse plane whose origin coincides with the center of trans-
verse momentum, namely R⊥ = 0⊥.

2.4 Light-Front Wave Functions

We now address explicitly the problem of describing the state of a composite
particle in terms of its elementary constituents. Light-front quantization pro-
vides an elegant language for this purpose, in terms of the so-called Light-Front
Wave Function representation [26].

2.4.1 Light-front helicity states

In the following, we will focus on composite particles endowed with a spin
degree of freedom. To this end, in the context of light-front quantization, it is
useful to introduce the concept of light-front helicity [24].
Consider the operator

jz = Jz −R⊥ ×P⊥ ,

where R⊥ is given by Eq. (2.55). It is defined as the difference between the
longitudinal component Jz of the total angular momentum operator and the
orbital angular momentum operator along the z direction R⊥ × P⊥, thus de-
serving the interpretation as an“intrinsic”angular momentum operator. It can
be proved [17,24] that jz coincides with the ordinary helicity operator p ⋅S/p
in the infinite-momentum-frame limit. We label with ∣p,Λ⟩ ≡ ∣p+,p⊥,Λ⟩ an
eigenstate of jz which is, at the same time, an eigenstate of the momentum
operators P + and P⊥ with eigenvalues p+ and p⊥, respectively. The eigenvalue
Λ satisfying

jz ∣p,Λ⟩ = Λ∣p,Λ⟩ (2.58)

is the light-front helicity of the particle. Strictly speaking, we can consider
ordinary and light-front helicities to be equivalent in the infinite-momentum
limit up to effects of order M/p+.

3We will discuss in Chapter 6 how to deal with time dependence of angular-momentum
densities.
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2. Light-front quantization

2.4.2 Fock-state decomposition

Let ∣Ψ⟩ be the state that describes a composite, or parent, particle of mass M
and light-front helicity Λ, satisfying the eigenvalue equation for the Hamilto-
nian H

H ∣Ψ⟩ = M
2 +P 2⊥
2P + ∣Ψ⟩ . (2.59)

The state ∣Ψ⟩ will be in general dependent on M , P +, P⊥ and Λ. It can
be conveniently decomposed in terms of Fock states {∣µn(ωn)⟩}n∈N, where
∣µn(ωn)⟩ is a state of n free quanta depending on the collective index ωn =
{k+i ,ki,⊥, λi}i=1...n. Here k+i , ki,⊥ and λi are respectively the longitudinal mo-
mentum, the transverse momentum and the light-front helicity of the i-th
parton.
Fock states are constructed in a very simple way by acting with creation oper-
ators on the vacuum, which has a trivial structure in light-front quantization.
One can indeed postulate the vacuum ∣0⟩ to be the lowest-energy state (as-
suming the vacuum’s energy to be zero) and to be invariant under Lorentz
transformations [27]. This means in particular that the vacuum must be an
eigenstate of the generators of space translations, namely

P +∣0⟩ = 0 , (2.60)

P⊥∣0⟩ = 0⊥ . (2.61)

Recalling that P + is a positive semi-definite operator, Eq. (2.60) implies that
the vacuum coincides with the zero-particle Fock state4: it is not possible to
make the total momentum along the longitudinal direction vanish by summing
only positive contributions. This is the reason why diagrams with vacuum
fluctuations are null on the light-front, consistently with the description in the
Infinite-Momentum Frame (see Section 2.2).
We consequently construct the Fock states as:

∣µn(ωn)⟩ =
n

∏
i=1

a†
i(k+i ,ki,⊥, λi)∣0⟩ , (2.62)

with proper ladder operators a†
i that can be related to scalar particles, fermions

or gauge bosons. Fock states form a basis of the Hilbert space of ∣Ψ⟩:

∑
n
⨋ dω ∣µn(ωn)⟩⟨µn(ωn)∣ = 1 , (2.63)

where the ⨋ symbol means that we integrate over the continuous variables, such
as momenta, and sum over the discrete variables, namely parton helicities. We

4Actually this is true, strictly speaking, only up to corrections proportional to δ (P +
).

Some issues arise concerning the limit P +
→ 0 of particles in the ground state with vanishingly

small longitudinal momentum; they become relevant especially in the QCD case (see Ref. [9,
15]). We do not discuss this problem in the present work. This issue is beyond the scope of
this thesis.
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2.4. Light-Front Wave Functions

can therefore rewrite

∣Ψ⟩ = ∑
n
⨋ dωΨn(ωn)∣µn(ωn)⟩ . (2.64)

The coefficients of the combination (2.64) are the Light-Front Wave Functions
(LFWFs)

Ψn(ωn) ≡ ΨΛ
n,λi

(xi,ki,⊥) = ⟨Ψ∣µn(ωn)⟩ . (2.65)

In the notation used in Eq. (2.65), Λ indicates the light-front helicity of the
parent particle, while xi = ki/P + is the longitudinal momentum fraction in
Eq. (2.54). By construction, LFWFs are eigenstates of the longitudinal com-
ponent Jz of the total angular momentum operator, with eigenvalue Λ, and of
the momentum operators P + and P⊥, with eigenvalues

P⊥ =
n

∑
i=1

ki,⊥ , P + =
n

∑
i=1

k+i . (2.66)

The longitudinal momentum fractions are therefore normalized as

n

∑
i=1

xi = 1 . (2.67)

Notice that LFWFs do not actually depend on the transverse momentum P⊥
of the composite particle, due to the fact that transverse boosts are kine-
matic. Therefore it is convenient to set P⊥ = 0 in practical calculations: from
Eq. (2.66), this results into the condition

n

∑
i=1

ki,⊥ = 0⊥ . (2.68)

The frame of reference where the state has zero transverse momentum is also
called hadron frame. It is possible to connect the coordinates of a given four-
vector v in a generic frame to those in the hadron frame via the light-front
boost:

(v+, v−,v⊥) Ð→ (v+, v− − v⊥ ⋅ a⊥
a+

+ v+a2⊥
2(a+)2

,v⊥ −
v+

a+
a⊥) , (2.69)

where the boost parameters must be chosen as a+ = v+, a⊥ = v⊥ so as to obtain
zero for the transverse component in the new frame.
The square modulus ∣ΨΛ

n(ωn)∣
2

also enjoys the interpretation of probability
density in three-momentum space of finding n partons, in the states specified
by the collective index ωn, inside a parent particle with light-front helicity Λ.

2.4.3 Light-cone gauge

When we consider a gauge theory, such as QED or QCD, it is convenient to fix
a certain gauge to work with. Since light-front quantization selects a preferred

19



2. Light-front quantization

direction along the light cone, the most natural choice in this case is the axial
gauge

nµA
µ = 0 , nµ = (0,1,0⊥) , (2.70)

where Aµ indicates the gauge-boson field. The gauge condition (2.70), often
written simply as A+ = 0, is referred to as light-cone gauge.
We will discuss extensively the consequences of working in this gauge rather
than in the covariant Feynman gauge, usually adopted in instant-form quan-
tization. What we would like to enlighten here is that LFWFs do depend on
the gauge choice; hereafter it will always be assumed that they are evaluated
in the light-cone gauge. In this case it can be shown [26,28] that for a longitu-
dinally polarized particle, the LFWFs are also eigenstates of the longitudinal
component Lz of the OAM operator L (see Eq. (2.14)), with eigenvalue

lz = Λ −∑
i

λi . (2.71)

In view of the afore-mentioned properties of the LFWFs, it is justified to assert
that they encode all the information about the internal structure of composite
system as described in terms of their components.
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Chapter 3
Gauge-field propagator in
light-cone gauge

The explicit proof of the equivalence between the instant-form and the light-
front form of dynamics has been the subject of several works [12,15,17,21,22,
29–36] with applications over a wide range of field theories: some examples
include scalar φ3 theory [22], Yukawa interaction [32,33], scalar QED [34] and
standard QED [35,36]. In this Chapter we are going to prove the equivalence
at one-loop level in QED by using the same argument proposed by Sawicki
in Ref. [22] in the context of a φ3 model (see also Section 2.2): we compare
old-fashioned time-ordered perturbation theory with the covariant approach of
Feynman diagrams in the light-front quantization framework, i.e. in light-cone
gauge nµAµ = 0 [with nµ = (0,1,0⊥)] and using light-front coordinates. We
mainly follow the discussion in Refs. [37,38].
When dealing with a gauge theory, one is confronted with the problem of
matching the presence of particles that propagate instantaneously; further-
more, the use of a non-covariant gauge makes it non-trivial to determine which
of the gauge boson’s degrees of freedom have to be taken into account. As we
will motivate in the following, these difficulties are ultimately related to the
correct assessment of which form should be used for the gauge-field propaga-
tor in the covariant formulation, when working in the light-cone gauge. Our
derivation allows one to eventually provide an answer to this question.

3.1 Overview of the problem

As mentioned in Chapter 2, Feynman rules for QED in light-front quantization
were established as early as the 1970s in the works by Bjorken, Kogut and
Soper [17, 23]. Nonetheless, a controversy concerning the explicit expression
that one should adopt for the photon propagator in light-cone gauge has later
emerged, as remarked e.g. in Refs. [34, 35, 39]. In the literature one can in
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3. Gauge-field propagator in light-cone gauge

fact encounter two different expressions for the light-cone gauge propagator
Dµν(q). The first expression contains the sum of two terms and reads [17,40]:

Dµν(q) = −i
q2

(gµν − q
µnν + qνnµ

q+
) . (3.1)

It can be recovered by adding to the Lagrangian density for the free electro-
magnetic field a gauge-fixing term of the form (nµAµ)2

, as shown in Ref. [41];
but this is not enough to fix the gauge completely, and as a result both the
longitudinal and the transverse photon degrees of freedom propagate.
The second expression contains instead the sum of three terms [42]:

DµνT (q) = −i
q2

(gµν − q
µnν + qνnµ

q+
+ q2 n

µnν

(q+)2) . (3.2)

It can in turn be recovered by adding to the Lagrangian density a gauge-fixing
term of the form (nµAµ)2 + (∂µAµ)2

[41], which completely fixes the gauge;
this is equivalent to considering only the transverse degrees of freedom as the
propagating ones. However, the use of a non-covariant axial gauge, such as
the light-cone gauge, generates a new contribution to the interaction Hamilto-
nian, corresponding to a four-fermion interaction with an instantaneous-photon
propagator. The last term of Eq. (3.2), which comes from removing the longi-
tudinal degree of freedom, compensates for the extra-term that describes the
instantaneous interaction from the Hamiltonian [34, 35]. Therefore, it is pos-
sible to use either the three term expression of Eq. (3.2) together with the
instantaneous interaction in the Hamiltonian, or the two-term expression of
Eq. (3.1), omitting at the same time the instantaneous interaction.
This ambiguity is at the origin of the confusion about which form one should
use for the propagator. As discussed in Ref. [35], the role of the propagator
is crucial when proving the equivalence between the covariant perturbation
theory and light-front TOPT, in particular when matching the contribution
from instantaneous photons. We thus find it illustrative to repeat the proof
of the equivalence, trying to clarify a few misleading results and statements in
the literature. In particular, our findings partially differ from previous calcu-
lations [34–36].

Our approach to these issues is based on the two following considerations:

1. The form of the propagator must be deduced from the free-photon equa-
tions of motion in light-cone gauge.

2. The starting point of the calculation in the covariant theory does depend
on the gauge choice; once this is fixed, one can decide whether to integrate
over the light-front rather than the instant-form energy.

We stress that, although we perform our derivation in the QED framework
and discuss the photon propagator, the results are not affected by the Abelian
nature of the theory and are thus immediately transferable to the QCD case
of the gluon propagator.
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3.2 Light-front QED

Let us consider the gauge- and Lorentz-invariant QED Lagrangian density

LQED = ψ̄(i /∂ −m)ψ − 1

4
F µνFµν + eψ̄γµψAµ , (3.3)

where e > 0, m is the bare electron mass and F µν = ∂µAν − ∂νAµ is the
electromagnetic-field tensor. We first focus on the contribution from the free
electromagnetic field, in order to recover an expression for the photon prop-
agator. The photon polarization vectors εµλ(q) have four possible polariza-
tion states, but only two are actually physical. One can get rid of the re-
dundant degrees of freedom via a proper transformation of the photon field
Aµ(x) ↦ Aµ(x) + ∂µα(x), thus selecting a convenient gauge to work with.
In the Lorenz gauge, we assume

∂µA
µ = 0 (3.4)

and modify the free-photon Lagrangian by adding a gauge-fixing term, namely

Lelm = −1

4
F µνFµν −

1

2β
(∂µAµ)2

. (3.5)

The Lorenz gauge leaves one residual degree of freedom. The covariant Feyn-
man gauge, usually adopted in the Feynman diagram approach, coincides with
the Lorenz gauge where we fix β = 1/2.
Alternatively, one can add a second gauge-fixing term: in a non-covariant axial
gauge nµAµ = 0, the electromagnetic-field Lagrangian becomes

Lelm = −1

4
F µνFµν −

1

2α
(nµAµ)2 − 1

2β
(∂µAµ)2

. (3.6)

We stress here that the axial-gauge condition, just like the Lorenz-gauge con-
dition, is not by itself sufficient to fix the gauge completely. Once we have
completely fixed the gauge, it is possible to reconstruct the propagator Dµλ(q)
of the free photon with the Green’s function method: more precisely, we solve,
in momentum space,

Oµν(q)Dµλ(q) = δλν , (3.7)

where the operator Oµν satisfies Lelm = AµOµνAν . In Feynman gauge, one
obtains the well-known result

Dµν(q) = −igµν
q2

, (3.8)

that is manifestly Lorentz-invariant and proportional to the sum of the polar-
ization vectors over all the degrees of freedom:

dµν(q) = ∑
λ

εµ∗λ (q)ενλ(q) = −gµν . (3.9)
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3. Gauge-field propagator in light-cone gauge

In light-cone gauge, instead, in the limit α,β → 0, one obtains [41]

DµνT (q) = −i
q2

(gµν − q
µnν + qνnµ

q+
+ q2 nµnν

(q+)2) , (3.10)

which is proportional to the sum over the transverse-polarization degrees of
freedom

dµνT (q) =
2

∑
λ=1

εµ∗λ (q)ενλ(q) = −gµν +
qµnν + qνnµ

q+
− q2 n

µnν

(q+)2 . (3.11)

In light-front quantization an equivalent result can be recovered by impos-
ing the light-cone gauge condition only. The reason is that the equations of
motion for the free photon

(gµν∂2 − ∂µ∂ν)Aν = 0 (3.12)

in light-front coordinates along with A+ = 0, automatically imply the Lorenz-
gauge condition (3.4). We can use the latter to write the transverse components
of the gauge field as

∂⊥ ⋅A⊥ = ∂+A− . (3.13)

It is then possible to evaluate the propagator through [43]

⟨0∣[Aµ(x)Aν(0)]∣0⟩ = i

(2π)4 ∫ d4q e−ix⋅q
dµνT (q)
q2 + iε , (3.14)

where dµνT (q) coincides with the three-term sum given in Eq. (3.11).

Let us now go back to the full Lagrangian (3.3). In presence of an interac-
tion term, the equations of motion of the photon become

(gµν∂2 − ∂µ∂ν)Aν = Jµ , (3.15)

with the electromagnetic current Jµ = eψ̄γµψ. Even though Eq. (3.15) does
not lead to the Lorenz condition, we can still use it to rewrite the transverse
components of the photon fields in terms of the other ones, by defining [42]

A− = a− + χ , (3.16)

with
∂+a− = ∂⊥ ⋅A⊥ , (∂+)2

χ = −J+ . (3.17)

Similarly, one can take advantage of the Dirac equation to isolate two inde-
pendent (or “good”) components of the fermion field [17,42]

ψ+ =
1

2
γ−γ+ψ . (3.18)
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V1 V2 V3

x+

Figure 3.1: Time-ordered vertices corresponding to the interaction terms that appear in
the light-front QED Hamiltonian. From left to right: three-point vertex in Eq. (3.21); four-
fermion interaction with an instantaneous photon in Eq. (3.22); four point vertex with an
instantaneous fermion in Eq. (3.23). Light-front time is supposed to flow from left to right.

We then take a⊥ = A⊥ and ψ+ as the dynamical fields of QED in light-front
quantization, introducing for convenience the four vector aµ = (0, a−,a⊥).
We are now in position to describe the light-front dynamics of the fields. The
QED Hamiltonian can be written in terms of the energy-momentum tensor
T µν , defined in Eq. (2.12), as [42]

H = ∫ d2x⊥dx− T +−(x) =H0 + V1 + V2 + V3. (3.19)

In Eq. (3.19), H0 is the free Hamiltonian

H0 = ∫ d2x⊥dx− [
i

2
ψ̄+γ−∂+ψ+ +

1

2
(F 12)2 − 1

2
a−∂+∂⊥ ⋅ a⊥] , (3.20)

while the interaction terms read

V1 = e∫ d2x⊥dx− ψ̄+(x)γµψ+(x)aµ(x) , (3.21)

V2 = −
ie2

4 ∫ d2x⊥dx−dy− Θ (x− − y−) ψ̄+(x)γiai(x)γ+γjaj(y)ψ+(y) , (3.22)

V3 = −
e2

4 ∫ d2x⊥dx−dy− ψ̄+(x)γ+ψ+(x) ∣x− − y−∣ ψ̄+(y)γ+ψ+(y) , (3.23)

with y = (x+, y−,x⊥). The V1 term in Eq. (3.21) describes a standard QED
three-point vertex; V2 in Eq. (3.22) and V3 in Eq. (3.23), instead, are the non-
local four-point vertices corresponding to the exchange of an instantaneous
fermion and photon, respectively. The time-ordered diagrams of the three ver-
tices are shown in Fig. 3.1. From the Hamiltonian (3.19), one can derive the
light-front time-ordered contributions to one-loop processes in QED, as we will
show in the following sections.
It is important to stress that the two instantaneous terms actually have dif-

ferent origins. The instantaneous-fermion interaction is ultimately due to the
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3. Gauge-field propagator in light-cone gauge

fact that the fermions must have positive momenta [17], and hence it is a con-
sequence of the choice of light-front coordinates. The instantaneous-photon
interaction, on the other hand, is related to the fact that we are working in the
non-covariant light-cone gauge. Its presence is in fact a property of any axial
gauge nµAµ = 0, as shown in Ref. [34] for the scalar QED case (which can be
easily extended to the QED case as well). This situation is well known also in
the case of the Coulomb gauge [44] and does not therefore depend on the use
of light-front rather than instant-form coordinates.
In view of the considerations stated in the previous Section, we conclude that
the natural starting point for the covariant calculation in light-cone gauge is
the three-term propagator (3.10), recovered from the free electromagnetic-field
Lagrangian with the proper gauge-fixing terms, including at the same time the
diagrams containing both the standard triangle vertex and the instantaneous-
photon interactions, which are consequence of the choice of the gauge. As we
already mentioned, however, it can be proven that the contribution coming
from the diagrams that contain an instantaneous photon is exactly canceled
by an opposite contribution from the third term of the propagator (propor-
tional to q2) [34, 35, 43]. Therefore, one can alternatively drop the third term
and consider only the ordinary three-point vertex. The diagrams with an
instantaneous-fermion exchange, on the other hand, should not be included
explicitly from the beginning, but rather recovered when we take the limit of
light-front coordinates. In this way it is possible to connect one-by-one the
diagrams arising in light-front TOPT with different terms from the covariant
calculation, by applying the ordinary technique of integration by residues; we
devote the rest of this Chapter to the proof of these statements for one-loop
QED processes.

3.3 QED vertex correction

In this section we discuss the vertex correction at one-loop level in QED. We
first revisit the calculation in light-front TOPT [12, 21, 42], then we present
the results in covariant theory using light-front coordinates. We show how
the contributions of light-front time-ordered diagrams can be recovered from a
given Feynman diagram by integrating over the light-front energy. In proving
the equivalence between the different formulations of the theory, we will discuss
the form of the photon propagator.

3.3.1 Light-front TOPT

The vertex correction in light-front TOPT originates from contributions of
the interaction terms in the form (V1)3, V1V2 and V1V3, see Eqs. (3.21)-(3.23).
The (V1)3 contribution brings the two diagrams shown in Fig. 3.2, which are
distinct for different ordering of the interaction vertexes with light-front time;
note that in diagram (b) there appears a positron, labeled with an arrow of
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Figure 3.2: Diagrams for the vertex correction in light-front TOPT at one-loop order. The
vertical dashed lines are at fixed light-front time.
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Figure 3.3: Diagrams for the vertex correction in light-front TOPT at one-loop order with
instantaneous fermion exchange [(c) and (d)] and instantaneous photon exchange [(e)]. The
vertical dashed lines are at fixed light-front time.

opposite direction with respect to its plus momentum. These diagrams are the
analogue of the two diagrams that survive in the infinite-momentum frame in
the scalar φ3 theory, as explained in Section 2.2. Just like in the scalar case, all
other possible time-ordered diagrams, with disconnected contributions of pair
production or annihilation from the vacuum, vanish in the infinite-momentum
frame. Here, however, the presence of the V2 and V3 interaction terms in the
Hamiltonian leads to additional diagrams, shown in Fig. 3.3, which contain
instantaneous fermions and photon propagators. It should be noticed that
diagram (c) of Fig. 3.3 is peculiar, since it can be recovered from both diagram
(a) and (b) of Fig. 3.2, by considering the propagator with momentum k1 as
instantaneous. Diagrams (d) and (e), on the contrary, can be drawn only as
limits of diagrams (a) and (b), respectively.

In the calculation of the scattering amplitude we set the momenta of the
particles as shown in the corresponding diagrams. As we aim to match the
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3. Gauge-field propagator in light-cone gauge

terms derived from the evaluation of the light-front time-ordered diagrams with
the corresponding current obtained in the covariant approach, it is convenient
to decompose the momentum kµ of a particle of mass m into an on-shell and
an off-shell component, by defining

kµon−shell ≡ k̃µ = (k+, k
2⊥ +m2

2k+
,k⊥) , (3.24a)

kµoff−shell ≡ k̂µ = (0,
k2 −m2

2k+
,0⊥) =

k2 −m2

2k+
nµ , (3.24b)

so that kµ = k̃µ + k̂µ.
It is also useful to introduce the symmetric notation

q1 ≡ ∆ , P1,2 = P ∓ ∆

2
, k1,2 = k ∓

∆

2
, q2 = P − k . (3.25)

As we already remarked, in the TOPT approach all particles are on shell but
energy is not conserved at each vertex, contrarily to what happens in the
covariant formulation. It is therefore understood that the last two identities
in Eq. (3.25) are are valid only for the plus and transverse components, when
working within light-front TOPT. We also define the longitudinal momentum
fraction x = k+/P + and the skewedness parameter1 ξ = ∆+/2P +. Furthermore,
without loss of generality, we can fix ξ > 0, which means we are considering an
incoming photon, and work in the reference frame where P⊥ = 0⊥. The on-shell
conditions give:

P − = 1

2P + (m2 − t

4
) , ∆− = −2ξP − , k−1,2 =

k2
1,2,⊥ +m2

2k+1,2
, q−2 =

q2
2,⊥

2q+2
, (3.26)

with t ≡ ∆2 and

k+1,2 = k+ ∓
∆+

2
, k1,2,⊥ = k⊥ ∓

∆⊥
2

, q+2 = P + − k+ , q2,⊥ = −k⊥ . (3.27)

Let us start from the contribution of order V 3
1 to the scattering amplitude.

The corresponding matrix element of the transition matrix iT is:

ΛTOPT
(V 3

1 ) = ⟨eP2 ∣iT ∣eP1γq1⟩ = i ⟨eP2 ∣V1
1

P −
i −H0

V1
1

P −
i −H0

V1∣ eP1γq1⟩ (3.28)

where P −
i = P −

1 + q−1 is the total energy of the initial states. Spin indices
are omitted as they are not relevant in the current discussion. By inserting
the resolution of the identity with the complete set of eigenstates of the free

1This is the notation usually adopted in the treatment of Generalized Parton Distribu-
tions (GPD) and Generalized Transverse-Momentum Dependent (GTMD) distributions, see
Sections 4.4 and 4.5. Note however that, in the GPD and GTMD notation, ξ is defined with
an extra minus sign, see Eq. (4.37).

30



3.3. QED vertex correction

Hamiltonian, it is possible to identify the contributions ΛTOPT
(a) and ΛTOPT

(b)
corresponding to diagrams (a) and (b) of Fig. 3.3, i.e.

ΛTOPT
(V 3

1 ) = ΛTOPT
(a) +ΛTOPT

(b) . (3.29)

The first contribution can be recast in the form

ΛTOPT
(a) = (2π)3δ (P +

1 + q+1 − P +
2 ) δ(2) (P1,⊥ + q1,⊥ −P2,⊥) (−ie) εµ(q1)Jµ(a) .

(3.30)
For later convenience , we isolate the energy denominator of the current Jµ(a):

D(a) =⟨γq1ek1γq2 ∣
1

P −
1 + q−1 −H−

0

∣γq1ek1γq2⟩ ⟨ek2γq2 ∣
1

P −
1 + q−1 −H−

0

∣ ek2γq2⟩

= 1

P −
1 + q−1 − (q−1 + k−1 + q−2 )

1

P −
1 + q−1 − (k−2 + q−2 )

. (3.31)

By switching to the symmetric notation and using Eqs. (3.26) and (3.27), one
can rewrite:

P −
1 + q−1 − (q−1 + k−1 + q−2 ) = κ3 − κ1 , (3.32)

P −
1 + q−1 − (k−2 + q−2 ) = κ3 − κ2 , (3.33)

where we have defined

κ1,2 =
k2⊥ ∓ k⊥ ⋅∆⊥ + (1 ∓ ξx) (m2 − t

4
)

2P +(x ∓ ξ) , (3.34a)

κ3 =
k2⊥ + (x − 1) (m2 − t

4
)

2(x − 1)P + . (3.34b)

The numerator of the current Jµ(a) is given by

Nµ
(a) = −

e2P +

(2π)3 ∫
1

ξ
dx∫ d2k⊥

1

(2P +)3 (1 − x) (x2 − ξ2)
× ū(P2)γρ (k̃/2 +m)γµ (k̃/1 +m)γνdνρ (q̃2)u(P1) , (3.35)

where the limits of integration in the variable x are given by the constraint
that all particles move along the positive light-front direction. In Eq. (3.35)
the intermediate photon is on-shell, consistently with the rules of old-fashioned
perturbation theory; accordingly, the sum dµν(q) over transversely-polarized
states of the intermediate photon is given by Eq. (3.9) with q2 = 0:

dµν(q) = −gµν + q
µnν + qνnµ

q+
. (3.36)

This is at variance with respect to Ref. [34], which uses the three-term sum of
Eq. (3.11) for the calculation of light-front time-ordered diagrams.
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3. Gauge-field propagator in light-cone gauge

If we collect the results from Eqs. (3.31) and (3.35), we finally obtain the
following contribution of the diagram (a) to the current

Jµ(a) = −
e2P +

(2π)3 ∫
1

ξ
dx∫ d2k⊥

1

(2P +)3 (1 − x) (x2 − ξ2)

× ū(P2)γρ
(k̃/2 +m)
κ3 − κ1

γµ
(k̃/1 +m)
κ3 − κ2

γνdνρ (q̃2)u(P1) . (3.37)

A similar procedure can be followed also for diagram (b) in Fig. 3.2, corre-
sponding to the contribution

ΛTOPT
(b) = (2π)3δ (P +

1 + q+1 − P +
2 ) δ(2) (P1,⊥ + q1,⊥ −P2,⊥) (−ie) εµ(q1)Jµ(b) . (3.38)

The current Jµ(b) has an energy denominator given by

D(b) =⟨eP1e
+
k1
ek2 ∣

1

P −
1 + q−1 −H− ∣ eP1e

+
k1
ek2⟩ ⟨ek2γq2 ∣

1

P −
1 + q−1 −H− ∣ ek2γq2⟩

= 1

P −
1 + q−1 − (P −

1 − k−1 + k−2 )
1

P −
1 + q−1 − (k−2 + q−2 )

. (3.39)

We can rewrite:
P −

1 + q−1 − (P −
1 − k−1 + k−2 ) = κ2 − κ1 , (3.40)

while the energy denominator for the second intermediate state is again given
by Eq. (3.33). If we evaluate also the numerator of Jµ(b), we come up with the
final result:

Jµ(b) = −
e2P +

(2π)3 ∫
ξ

−ξ
dx∫ d2k⊥

1

(2P +)3 (1 − x) (x2 − ξ2)

× ū(P2)γρ
(k̃/2 +m)
κ3 − κ2

γµ
(k̃/1 +m)
κ2 − κ1

γνdνρ (q̃2)u(P1) . (3.41)

We now focus on the diagrams containing instantaneous propagators, which
come from V1V2, V2V1 and V1V3 interaction terms in the matrix element. The
result for the current Jµ(c) of diagram (c) in Fig. 3.3 corresponds to the matrix
element

ΛTOPT
(V1V2) = i ⟨eP2 ∣V1

1

P −
i −H0

V2∣ eP1γq1⟩ (3.42)

= (2π)3δ (P +
1 + q+1 − P +

2 ) δ(2) (P1,⊥ + q1,⊥ −P2,⊥) (−ie) εµ(q1)Jµ(c) .
(3.43)

By following a procedure similar to the one described above, one finds that the
current Jµ(c) is given by

Jµ(c) = −
e2P +

(2π)3 ∫
1

−ξ
dx∫ d2k⊥

1

(2P +)3 (1 − x) (x2 − ξ2)
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× ū(P2)γρ
(k̃/2 +m)
κ3 − κ2

γµγ+γνdνρ (q̃2)u(P1) . (3.44)

Note that this result can also be obtained by summing the contributions from
diagrams (a) and (b), if we and make the replacement (/k1 + m) ↦ γ+ and
remove from them the energy denominators (3.32) and (3.40), respectively.
This is consistent with the light-front TOPT rules for an instantaneous fermion
propagator [45]. Similarly, we obtain the following result for the contributions
to the current from diagrams (d) in Fig. 3.3:

Jµ(d) = −
e2P +

(2π)3 ∫
1

ξ
dx∫ d2k⊥

1

(2P +)3 (1 − x) (x2 − ξ2)

× ū(P2)γργ+γµ
(/̃k1 +m)
κ3 − κ1

γνdνρ (q̃2)u(P1) . (3.45)

Finally, diagram (e) in Fig. 3.3 with an instantaneous photon can be obtained
from Eq. (3.41) with the substitution dµν(q)/q+ ↦ nµnν/(q+)2 and removing
the term κ2 − κ1 from the energy denominator (3.41). As a result, it reads

Jµ(e) = −
e2P +

(2π)3 ∫
ξ

−ξ
dx∫ d2k⊥

1

4 (P +)3 (1 − x) (x2 − ξ2)

× ū(P2)γρ
(k̃/2 +m)
κ3 − κ1

γµ (/̃k1 +m)γν nνnρ
(1 − x)P +u(P1) . (3.46)

3.3.2 Covariant approach

The one-loop vertex correction in the covariant approach with the light-cone-
gauge condition nµAµ = 0 is described in Fig. 3.4. Diagram (a) is the triangle
diagram due to the term of the form (V1)3 in the interaction Hamiltonian
(3.19) and diagram (b) is the so-called swordfish diagram due to the V1 V3 term
that contains a four-fermion interaction. The matrix element of the triangle
diagram reads

Λ = (2π)4δ(4) (P1 + q1 − P2) (−ie)εµ(q1)JµCov ,

with the current JµCov given by

JµCov =
e2

(2π)4 ∫ d4k1 ū (P2)γρSF (k2)γµSF (k1)γν DνρT (q2)u(p1) , (3.47)

where

SF (k) =
i (/k +m)
k2 −m2 + iε (3.48)

is the electron propagator, and DµνT (q) is the photon propagator in the light-
cone gauge from Eq. (3.10). As discussed in Sections 3.1 and 3.2, the third term
in DµνT (q) generates a contribution which cancels out the one arising from the
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Figure 3.4: Vertex correction at one-loop order in covariant QED: (a) triangle diagram;
(b) swordfish diagram containing the V3 vertex.

four-fermion interaction, corresponding to diagram (b) in Fig. 3.4. As a result,
the vertex correction in the covariant approach can effectively be obtained by
taking into account the contribution from the triangle diagram in Fig. 3.4 (a)
alone and replacing DµνT in (3.47) with the two-term expression Dµν of Eq. (3.1)
for the photon propagator.
In the following we show the equivalence of the covariant approaches with the
results of light-front TOPT discussed in the previous Section. In covariant
theories, momentum is conserved at each vertex and we can write

q2 = P1 − k1 , k2 = k1 + q1 , P2 = k2 + q2 . (3.49)

If we apply again the splitting of the momenta in Eqs. (3.24a) and (3.24b),
the fermion’s and gauge boson’s propagators get in turn decomposed into two
parts, according to:

SF (k) = i (k/ +m)
k2 −m2 + iε =

i (k̃/ +m)
k2 −m2 + iε +

iγ+

2k+
, (3.50a)

Dµν (q) = −i
q2 + iε (g

µν − q
µnν + qνnµ

q+
)

= −i
q2 + iε (g

µν − q̃
µnν + q̃νnµ

q+
) + in

µnν

(q+)2 = id
µν(q̃)
q2 + iε + in

µnν

(q+)2 . (3.50b)

The first terms in both decompositions depend on the light-front energy com-
ponents k− and q−; therefore they yield the propagating part. The remaining
terms, instead, do not depend on the minus component of the momenta and
hence they correspond to the non-propagating instantaneous particles [33]. It
should be noticed that, to some extent, in Eq. (3.50b) we recovered a three
term propagator, but this time the numerator of the second term only depends
on the on-shell component q̃ of the gauge-field momentum q.
As a consequence of the splitting in Eqs. (3.50a) and (3.50b), the current JµCOV
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in Eq. (3.47) can be rewritten as:

JµCov = −
ie2

(2π)4 ∫ d4k1 ū (P2)γρ
⎛
⎝

/̃k2 +m
k2

2 −m2 + iε +
γ+

2k+2

⎞
⎠

× γµ
⎛
⎝

/̃k1 +m
k2

1 −m2 + iε +
γ+

2k+1

⎞
⎠
γν (dνρ (q̃2)

q2
2 + iε

+ nνnρ
(q+2 )2

)u (P1) . (3.51)

We can hence separate JµCov into eight contributions, depending on different
combinations of the propagating and instantaneous components of the propa-
gators. Out of these eight contributions, four are non-vanishing2:

Jµ1 [k̃1, k̃2, q̃2] = −
ie2

(2π)4 ∫ d4k1 ū (P2)γρ
⎛
⎝

/̃k2 +m
k2

2 −m2 + iε
⎞
⎠

× γµ
⎛
⎝

/̃k1 +m
k2

1 −m2 + iε
⎞
⎠
γν
dνρ (q̃2)
q2

2 + iε
u (P1) , (3.52a)

Jµ2 [k̂1, k̃2, q̃2] = −
ie2

(2π)4 ∫ d4k1 ū (P2)γρ
⎛
⎝

/̃k2 +m
k2

2 −m2 + iε
⎞
⎠

× γµ γ
+

2k+1
γν
dνρ (q̃2)
q2

2 + iε
u (P1) , (3.52b)

Jµ3 [k̃1, k̂2, q̃2] = −
ie2

(2π)4 ∫ d4k1 ū (P2)γρ
γ+

2k+2

× γµ
⎛
⎝

/̃k1 +m
k2

1 −m2 + iε
⎞
⎠
γν
dνρ (q̃2)
q2

2 + iε
u (P1) , (3.52c)

Jµ4 [k̃1, k̃2, q̂2] = −
ie2

(2π)4 ∫ d4k1 ū (P2)γρ
⎛
⎝

/̃k2 +m
k2

2 −m2 + iε
⎞
⎠

× γµ
⎛
⎝

/̃k1 +m
k2

1 −m2 + iε
⎞
⎠
γν
nνnρ

(q+2 )
2u (P1) , (3.52d)

while three are vanishing because of their Dirac matrix structures:

Jµ5 [k̂1, k̃2, q̂2] ∝ γρ (/̃k2 +m)γµγ+γνnνnρ = 0 , (3.53a)

Jµ6 [k̃1, k̂2, q̂2] ∝ γργ+γµ (/̃k1 +m)γνnνnρ = 0 , (3.53b)

Jµ7 [k̂1, k̂2, q̂2] ∝ γργ+γµγ+γνnνnρ = 0 . (3.53c)

There is one last term left, which is:

Jµ8 [k̂1, k̂2, q̃] ∝ γργ+γµγ+γν (gνρ −
nν q̃2ρ + nρq̃2ν

q+2
) = γνγ+γ−γ+γνgµ− . (3.54)

2We use the arguments in square brackets to specify which part (on-shell rather than
off-shell) of the momenta enters in the numerator of the corresponding propagator.
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x < −ξ −ξ < x < ξ ξ < x < 1 x > 1

κ1ε + + - -
κ2ε + - - -
κ3ε + + + -

Table 3.1: Distribution of the poles in Jµ1 in the complex plane: the symbols +,− denote
whether the pole is located in the upper- or lower-half complex plane, respectively.

It is not vanishing by itself, but we notice that when we contract it with the
polarization vector of the external photon, we obtain ε+(q)J−8 which is zero in
the light-cone gauge; therefore we can disregard this term as well.
The equivalence with the light-front TOPT approach can be established by
applying the method of integration by residues over the light-front energy k−.
We focus on the contribution Jµ1 in Eq. (3.52a) as an example. We can use
again the momentum parametrization (3.25), which is this time valid for all
the components of the momenta. The denominator of Jµ1 is then

D1 [k̃1, k̃2, q̃2] = [(k + ∆

2
)

2

−m2 + iε] [(k − ∆

2
)

2

−m2 + iε] [(P − k)2 + iε] .

(3.55)
If we also take advantage of the on-shell conditions for both the initial- and
final-state electron, i.e. the first two identities in Eq. (3.26), the zeros of the
denominator (3.55) are:

κ1ε = κ1−
iε

2(x − ξ)P + , κ2ε = κ2−
iε

2(x + ξ)P + , κ3ε = κ3−
iε

2(x − 1)P + , (3.56)

where κ1, κ2 and κ3 are defined in Eqs. (3.34a)-(3.34b). By changing the
variable of integration from k1 to k according to the relations (3.25), we see
that the poles of the integrand in Jµ1 are distributed in the complex k plane
as shown in Table 3.1. The non-vanishing k−-integral in Jµ1 therefore comes
from the region −ξ < x < 1: if we close the circuit of integration in the upper-
or lower-half complex plane, the integral is obtained from the residue in κ1ε ,
with the result

Jµ1 = − e2P +

(2π)3 ∫
ξ

−ξ
dx∫ d2k⊥ ū(P2)γρ

⎛
⎝

/̃k2 +m
(2P +)3 (x2 − ξ2) (x − 1)

⎞
⎠

× γµ
⎛
⎝

/̃k1 +m
κ−2 − κ−1

⎞
⎠
γν (dνρ(q̃2)

κ−2 − κ−3
)u (P1)

+ e2P +

(2π)3 ∫
1

ξ
dx∫ d2k⊥ ū(P2)γρ

⎛
⎝

/̃k2 +m
κ−3 − κ−2

⎞
⎠

× γµ
⎛
⎝

/̃k1 +m
κ−3 − κ−1

⎞
⎠
γν ( dνρ(q̃2)

(2P +)3 (x2 − ξ2) (x − 1)
)u (P1) . (3.57)
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We remark that the numerator remains unchanged after integration, since it
does not depend on the minus component of k.
The same procedure can be applied to terms Jµ2 , Jµ3 and Jµ4 . The integrand
in Jµ2 does not exhibit a pole in k−1 ; therefore, after integration, it still results
into the sum of two terms

Jµ2 = − e2P +

(2π)3 ∫
ξ

−ξ
dx∫ d2k⊥ ū(P2)γρ

⎛
⎝

/̃k2 +m
(2P +)3 (x2 − ξ2) (x − 1)

⎞
⎠

× γµ γ+γν (dνρ(q̃2)
κ−2 − κ−3

)u (P1)

+ e2P +

(2π)3 ∫
1

ξ
dx∫ d2k⊥ ū(P2)γρ

⎛
⎝

/̃k2 +m
κ−3 − κ−2

⎞
⎠

× γµ γ+γν ( dνρ(q̃2)
(2P +)3 (x2 − ξ2) (x − 1)

)u (P1) , (3.58)

yielding as a result

Jµ2 = e
2P +

(2π)3 ∫
1

−ξ
dx∫ d2k⊥ ū(P2)γρ

⎛
⎝

/̃k2 +m
κ−3 − κ−2

⎞
⎠

× γµ γ+γν ( dνρ(q̃2)
(2P +)3 (x2 − ξ2) (x − 1)

)u (P1) . (3.59)

The contributions Jµ3 and Jµ4 , instead, are non-vanishing only in the regions
ξ < x < 1 and −ξ < x < ξ, respectively:

Jµ3 = e
2P +

(2π)3 ∫
1

ξ
dx∫ d2k⊥ ū(P2)γρ γ+γµ

⎛
⎝

/̃k1 +m
κ−3 − κ−1

⎞
⎠

× γν ( dνρ(q̃2)
(2P +)3 (x2 − ξ2) (x − 1)

)u (P1) , (3.60)

Jµ4 = − e2

(2π)3 ∫
ξ

−ξ
dx∫ d2k⊥ ū(P2)γρ

⎛
⎝

/̃k2 +m
4 (P +)3 (x2 − ξ2) (1 − x)2

⎞
⎠

× γµ
⎛
⎝

/̃k1 +m
κ−2 − κ−1

⎞
⎠
γν nνnρu (P1) . (3.61)

We are now ready to discuss the equivalence between the covariant approach
and the light-front TOPT approach. Let us consider Jµ1 in Eq. (3.57), which is
the sum of two terms; if we compare them with the light-front TOPT results
(3.37) and (3.41), we see that these contributions coincide with the sum of
diagrams (a) and (b) in Fig. 3.2, where all particles in the intermediate states
are propagating and we do not have instantaneous propagators.
The second contribution Jµ2 in covariant approach, Eq. (3.59), coincides in-
stead with Eq. (3.44); notice that also in the covariant approach we can split
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3. Gauge-field propagator in light-cone gauge

Light-Front TOPT Covariant Approach

Jµ(a) + J
µ
(b) Jµ1

Jµ(c) Jµ2
Jµ(d) Jµ3
Jµ(e) Jµ4

Table 3.2: Correspondence between the different contributions to the triangle diagram in
light-front TOPT and covariant approach.

this term into two, according to the value of the plus momentum flowing in
the instantaneous propagator, thus reproducing the situation in the light-front
TOPT case.
Finally, the current terms Jµ3 in (3.60) and Jµ4 in (3.61) are exactly equiva-
lent to their light-front TOPT counterparts, namely Eq. (3.45) and Eq. (3.46),
respectively; the second term, in particular, refers to the diagram with the
instantaneously-propagating photon.
The correspondence between the two approaches for the one-loop vertex cor-
rection is summarized in Table 3.2. Our result differs from the one found by
Misra et al. in Ref. [35], where it is claimed that the three-term propagator is
needed in order to obtain the equivalence. This is due to the fact that they
do not evaluate dµν(q) at the pole in the calculation of the residue. By cor-
rectly accounting for this, one would automatically include the contribution
from the instantaneous photon, with no need of adding it separately in the
third term. Moreover, our results are more general as they apply to all the
Lorentz components of the current, while the results in Ref. [35] refer only to
the contribution from the plus component.

3.4 One-loop self-energy diagrams

In this section we complete the proof of the equivalence between light-front
TOPT and covariant approaches in QED at one-loop order, by considering
the self-energy diagrams for both the electron and the photon. We revisit the
results in light-front TOPT which were also discussed in Refs. [35,42], and we
prove the equivalence with the covariant approaches, fixing some imprecisions
in the calculation of Ref. [35].

3.4.1 Electron self-energy

We follow the derivation of Ref. [42] and consider the order-α amplitude

TPP = ⟨P,S′∣T ∣P,S⟩ (3.62)

of the transition matrix

T = V + V 1

P − −H0

V , V = V1 + V2 + V3 (3.63)
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3.4. One-loop self-energy diagrams
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Figure 3.5: Diagrams for the electron self-energy in light-front TOPT at one-loop or-
der, including the instantaneous exchange of fermions [(b)] and instantaneous exchange of
photons [(c) and (d)].

between two electron states ∣P,S⟩, and ∣P,S′⟩. The latter are normalized as

⟨P ′, S′∣P,S⟩ = 16π3P +δ(P + − P ′+)δ(2) (P⊥ −P ′⊥) δS,S′ . (3.64)

We can write
TPP ≡ δS,S′ δT = ū(P,S′)Σ(P )u(P,S) , (3.65)

which defines the transition matrix Σ(P ) 3. The order-α expansion of δT
can be split into three contributions, arising from the different terms of the
interaction Hamiltonian:

δTδS,S′ = (δTa + δTb + δTc+d) δS,S′
= ū(P,S′) [Σ(2)

a (P ) +Σ
(2)
b (P ) +Σ

(2)
c+d(P )]u(P,S) . (3.66)

The δTa term corresponds to the contribution of second order in V1, de-
scribed by diagram (a) in Fig. 3.5. With the notation k+ = xP + and (l+, l⊥) =
((1 − x)P +,−k⊥), one finds

δTaδS,S′ = ūS′(P )Σ(2)
a (P )uS(P )

= 2e2P +∫
d2k⊥
(4π)3 ∫

1

0
dx

1

x(1 − x) (P +)2 ūS′(P )
γν (/̃l +m)γµdµν(k̃)

P − − k− − l− uS(P ) .

(3.67)

3Our Σ(P ) has the dimension of a mass (consistently with the Peskin-Schroeder nota-
tion [46] where Σ(P ) represents the self-energy correction to the bare electron mass), at
variance with the case of Ref. [42], where Σ(P ) is dimensionless.
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3. Gauge-field propagator in light-cone gauge

The minus components can again be written from the on-shell conditions, i.e.

P − = m2

2P + , k− = k2⊥
2xP + , l− = k2⊥ +m2

2(1 − x)P + . (3.68)

The δTb term, instead, refers to the contact interaction with an instantaneously-
propagating fermion, due to the contribution in V1V2 in light-front TOPT and
corresponds to diagram (b) in Fig. 3.5. It is given by

δTbδS,S′ = ūS′(P )Σ(2)
b (P )uS(P )

= e2 (P +)2∫
d2k⊥
(2π)3 ∫

∞

0
dx

1

x(1 − x) (P +)2 δS,S′ . (3.69)

Finally, the third term δTc+d refers to the contact interaction with an instantaneously-
propagating photon, due to the contribution in V1V3 in light-front TOPT and
corresponds to the sum of diagrams (c) and (d) in Fig. 3.5. It results into

δTc+dδS,S′ = ūS′(P )Σ(2)
c+d(P )uS(P )

= e2 (P +)2∫
d2k⊥
(2π)3 ∫

∞

0
dx

1

(P +)2 [ 1

(1 − x)2
− 1

(1 + x)2
] δS,S′ . (3.70)

We now turn our attention to the covariant approach. As we discussed in the
case of the vertex correction, the calculation in light-front quantization can
effectively be performed by taking into account only diagram (a) in Fig. 3.5,
disregarding the contributions from instantaneous interactions, and using the
two-term expression for the photon propagator.
The Feynman rules for diagram (a) in Fig. 3.5 give

− iūS′(P )Σ(2)(P )uS(P ) = − e2

(2π)4 ∫ d4k ūS′(P )γν
/l +m

l2 −m2 + iεγ
µdµν(k)
k2 + iε uS(P )

= − e2

(2π)4 ∫ d4k ūS′(P )γν
⎛
⎝

/̃l +m
l2 −m2 + iε +

γ+

2l+
⎞
⎠
γµ

⎡⎢⎢⎢⎢⎣

dµν (k̃)
k2 + iε −

nµnν

(k+)2

⎤⎥⎥⎥⎥⎦
uS(P ) ,

(3.71)

where we split the momenta according to Eqs. (3.24a) and (3.24b); it is un-
derstood that l = P − k. One can rewrite iΣ as the sum of the following four
terms

−iūS′(P )Σ(2)
1 (P )uS(P ) [l̃, k̃]

= − e2

(2π)4 ∫ d4k ūS′ (P )γν l̃/ +m
l2 −m2 + iεγ

µ
dµν (k̃)
k2 + iε uS (P ) , (3.72a)

−iūS′(P )Σ(2)
2 (P )uS(P ) [l̂, k̃] = − e2

(2π)4 ∫ d4k ūS′ (P )γν γ
+

2l+
γµ
dµν (k̃)
k2 + iε uS (P ) ,

(3.72b)
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3.4. One-loop self-energy diagrams

−iūS′(P )Σ(2)
3 (P )uS(P ) [l̃, k̂]

= e2

(2π)4 ∫ d4k ūS′ (P )γν l̃/ +m
l2 −m2 + iεγ

µ nµnν

(k+)2uS (P ) , (3.72c)

iūS′(P )Σ(2)
4 (P )uS(P ) [l̂, k̂] = e2

(2π)4 ∫ d4k ūS′ (P )γνγ+γµ nµnν
(k+)2uS (P ) .

(3.72d)

The contribution from Σ4 in Eq. (3.72d) is vanishing due to the structure of
Dirac matrices. For the remaining contributions, we proceed as outlined in
the previous section and perform the integration over k− by residues. The first
term in Eq. (3.72a) becomes

− iūS′(P )Σ(2)
1 (P )uS(P )

= −P + ie2

2(2π)3 ∫
1

0
dx∫ d2k⊥ ūS′(P )γ

ν(/̃k +m)γµdµν(q̃)
P + [k2⊥ + x2m2] uS(P ) . (3.73)

It exactly coincides with Eq. (3.67), via the conditions (3.68). The terms in
Eqs. (3.72b) and (3.72c) are explicitly evaluated in Appendix A. Here we
report only the final results given by

ūS′(P )Σ(2)
2 (P )uS(P ) = e2

(2π)3 ∫ d2k⊥∫
∞

0
dx

1

x(1 − x)δS,S
′ , (3.74)

ūS′(P )Σ(2)
3 (P )uS(P ) = e2

(2π)3 ∫ d2k⊥∫
∞

0
dx [ 1

(1 − x)2
− 1

(1 + x)2
] δS,S′ .

(3.75)
By comparing these expressions with Eqs. (3.69) and (3.70), we can conclude
that our calculation in the covariant approach perfectly reproduces the light-
front TOPT results.
We remark again that this result is in contrast with what is claimed in Ref. [35],
where the equivalence with the light-front TOPT result, however, is actually
not achieved; this is again due to the fact that in Eq. (58) of Ref. [35] one
should evaluate dµν(k) at the pole position.

3.4.2 Photon self-energy

We finally discuss the photon self-energy corrections, corresponding to the dia-
grams in Fig. 3.6 in light-front TOPT at order α. Again following Ref. [42], we
denote with T ′

PP the α-order amplitude of the transition matrix T in Eq. (3.63)
between free-photon states with momentum and helicity (P,λ) and (P ′, λ′).
We can define the self-energy correction to the fictitious photon mass as

δµ2δλ,λ′ = 2P +T ′
PP , (3.76)

and identify a tensor Πµν through the identity

δµ2δλ,λ′ = ε∗λ′,µ(P )Πµν(P )ελ,ν(P ) . (3.77)
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3. Gauge-field propagator in light-cone gauge
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Figure 3.6: Diagrams for the photon self-energy in light-front TOPT at one-loop order,
including the instantaneous exchange of electrons [(b)] and positrons [(c)].

It is important to notice that, in the above expressions, we need to consider
only the physical degrees of freedom since both the incoming and the outgoing
photons are real; therefore λ,λ′ = 1,2.
We are then able to separate δµ2 (and consequently Πµν) into two contribu-
tions. The first one arises from a contribution in (V1)2 in the (light-front time-
ordered) perturbative expansion, and corresponds to diagram (a) of Fig. 3.6:

δµ2
aδλ,λ′ = ε∗λ′,µ(P )Πµν

a (P )ελ,ν(P )

= 2e2P +∫
d2k⊥
(4π)3 ∫

1

0
dx

1

x(1 − x) (P +)2

Tr [/ε∗λ′(P )(/̃k +m)/ελ(P )(/̃l −m)]
P − − k− − l− .

(3.78)

The on-shell conditions now give

P − = 0 , k− = k
2⊥ +m2

2xP + , l− = k2⊥ +m2

2(1 − x)P + . (3.79)

The second contribution is due to the V1V2 interaction terms, corresponding
to the sum of diagram (b) and (c) in Fig. 3.6, and turns out to be [42]

δµ2
b+cδλ,λ′ = ε∗λ′,µ(P )Πµν

b+c(P )ελ,ν(P ) = e2∫
d2k⊥
(2π)3 ∫

∞

0
dx [ 1

1 − x −
1

1 + x] δλ,λ
′ .

(3.80)
In the covariant approach, we proceed as discussed in Sections 3.3.2 and 3.4.1
and apply the Feynman rules for the calculation of the diagram (a) in Fig. 3.6:

iε∗λ′,ν(P )Πµν(P )ελ,µ(P ) = e2

(2π)4
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3.4. One-loop self-energy diagrams

× ∫ d4k ε∗λ′,ν(P )
Tr [γν(−/l +m)γµ(/k +m)]
(l2 −m2 + iε) (k2 −m2 + iε) ελ,µ(P ) . (3.81)

By using the decompositions for the momenta in Eqs. (3.24a) and (3.24b), we
can identify the following four contributions to the self-energy:

iε∗λ′,ν(P )Πµν
1 (P )ελ,µ(P ) [k̃, l̃]

= − e2

(2π)4 ∫ d4k1 ε
∗
λ′,ν(P )

Tr [γν (/̃l −m)γµ (/̃k +m)]
(l2 −m2 + iε) (k2 −m2 + iε) ελ,µ(P ) ,

(3.82)

iε∗λ′,ν(P )Πµν
2 (P )ελ,µ(P ) [k̂, l̃]

= − e2

(2π)4 ∫ d4k ε∗λ′,ν(P )
Tr [γν (/̃l −m)γµγ+]

2k+ (l2 −m2 + iε) ελ,µ(P ) , (3.83)

iε∗λ′,ν(P )Πµν
3 (P )ελ,µ(P ) [k̃, l̂]

= e2

(2π)4 ∫ d4k ε∗λ′,ν(P )
Tr [γνγ+γµ (/̃k +m)]

2l+ (k2 −m2 + iε) ελ,µ(P ) , (3.84)

iε∗λ′,ν(P )Πµν
4 (P )ελ,µ(P ) [k̂, l̂]

= e2

(2π)4 ∫ d4k
1

2l+
1

2k+
ε∗λ′,ν(P )Tr [γνγ+γµγ+] ελ,µ(P ) . (3.85)

We can further evaluate Πµν
1 in Eq. (3.82) by following the same procedure

adopted for the electron self-energy, with the on-shell condition P 2 = 0; we
obtain

iε∗λ′,ν(P )Πµν
1 (P )ελ,µ(P ) [k̃, l̃]

= − ie2

2(2π)3 ∫
1

0
dx∫ d2k⊥

Tr [/ελ(P ) (/̃k +m) /ε∗λ′(P ) (/̃l −m)]
k2⊥ +m2

.

(3.86)

As we show explicitly in Appendix A, the contributions from Πµν
2 and Πµν

3 in
Eqs. (3.83) and (3.84) can be rewritten as

iε∗λ′,ν(P )Πµν
2 (P )ελ,µ(P ) [k̂, l̃] = − ie2

2 (2π)3 ∫ d2k⊥∫ dx
1

x
sgn (1 − x) δλ,λ′ ,

(3.87)

iε∗λ′,ν(P )Πµν
3 (P )ελ,µ(P ) [k̃, l̂] = ie2

2 (2π)3 ∫ d2k⊥∫ dx
1

1 − xsgn (x) δλ,λ′ .

(3.88)

Finally, the contribution from Πµν
4 in (3.85) is vanishing. This follows from

Tr [γνγ+γνγ+] = 2gν+gµ+ (3.89)
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3. Gauge-field propagator in light-cone gauge

and the contraction with the polarization vectors in light-cone gauge. If we
use the substitution x → 1 − x′ in Eq. (3.87) and then sum it with Eq. (3.88),
it is straightforward to check that

iε∗λ′,ν(P ) [Πµν
2 +Πµν

3 ] ελ,µ(P ) = e2

(2π)3 ∫ d2k⊥ [∫
∞

0
dx

1

1 − x − ∫
0

−∞
dx

1

1 − x]

= e2

(2π)3 ∫ d2k⊥∫
∞

0
dx ( 1

1 − x −
1

1 + x) . (3.90)

The final outcome of the covariant calculation is therefore given by Eqs. (3.82)
and (3.90). If we compare them with the TOPT results (3.78) and (3.80), we
once again find perfect agreement between the two approaches. This argument
concludes the proof of the equivalence at one-loop level.

3.5 Summary

In this Chapter we addressed the controversy of which form should be used
for the gauge-field propagator in light-cone gauge, due to the fact that in the
literature two different expressions appear, namely Eqs. (3.1) and (3.2). This
issue becomes particularly relevant when proving that the covariant formula-
tion of quantum field theory in light-front coordinates can be matched with
old-fashioned Time-Ordered Perturbation Theory in light-front quantization.
Our point of emphasis is that one should not wonder which of the two is the
correct form, as done e.g. in Ref. [35, 41, 47]: the photon propagator obtained
from the electromagnetic-field Lagrangian is the one given in Eq. (3.2) and
contains the sum of three terms, but the third term is exactly canceled by
the contribution from diagram containing instantaneous photons. Both forms,
then, are actually correct, as long as one deals properly with the instantaneous
interactions.
We proved the equivalence between covariant approach and light-front TOPT
at one-loop level in QED by assuming that the covariant calculation must be
performed with the two-term photon propagator and neglecting, at the same
time, the contributions from diagrams with instantaneously-propagating par-
ticles. By applying the ordinary technique of integration by residues over the
light-front energy, we were able to recover all the time-ordered diagrams that
emerge in light-front QED, including the ones with instantaneous photon and
fermions. This result is in contrast with the findings of Ref. [35], where it is
claimed that the three-term propagator in the covariant approach is needed in
order to match the contribution from instantaneously-propagating photons in
TOPT.
A more general extension of this work could be achieved by interpolating the
light-front and instant-form coordinates, as done in [12] for the scalar QED
case, and working in a generic axial gauge nµAµ = 0.

44



Chapter 4
QCD distribution functions

Our current knowledge of the internal structure of nucleons relies on the in-
formation encoded in partonic correlation functions, parametrized in terms of
various types of distribution functions [48–52]. These objects provide a multi-
dimensional description of the nucleon in terms of its elementary constituents
both in momentum and position space. Although here we present them in the
context of QCD, these distributions can be actually considered as instruments
used to investigate the internal structure of any composite particle.

4.1 Generalized parton correlator

Let us consider a process in which a nucleon of mass M , with initial momentum
p and light-front helicity Λ, interacts with a probe particle, ending up in a state
with momentum p′ and helicity Λ′. The following on-shell conditions must be
satisfied:

p2 = p′2 =M2 . (4.1)

It is convenient to introduce two new kinematic variables

P = p + p
′

2
, ∆ = p′ − p , (4.2)

representing respectively the average momentum and the momentum transfer
between the initial and final states. Notice that the on-shell conditions (4.1)
for the initial and final states are equivalent to

P 2 =M2 − ∆2

4
, (4.3)

P ⋅∆ = 0 . (4.4)

In the parton model assumption, the interaction takes place between the probe
and one of the nucleon’s partons, referred to as active parton. In this Chapter
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P − ∆
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k − ∆
2 k + ∆
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Figure 4.1: Kinematics for the Generalized Parton Correlator.

we focus on the case where the active parton is a quark. We denote its initial
and final momenta with k − ∆

2 and k + ∆
2 , respectively. The situation is repre-

sented schematically in Fig. 4.1.

Related to such processes is the most general, fully unintegrated quark-
quark correlator function between hadron states in light-front helicity basis
[49,53]

[ΦΛ,Λ′]ij (k,∆;P ) = ∫
d4z

(2π)4
eik⋅z ⟨p′,Λ′∣ψ̄j(0)U(0,z)ψi(z)∣p,Λ⟩ . (4.5)

Here ψi(x) is a quark field carrying a Dirac index i, while U(0,z) is a gauge link
operator (see Section 4.1.1). The correlator (4.5) is a six-dimensional object
depending on the variables k and ∆, whereas P,Λ and Λ′ can be considered
as parameters.
It is useful to introduce also the trace of the correlator (4.5) multiplied by an
operator Γ generated by the Dirac space basis D = {1, γµ, γ5, γµγ5, iσµν}:

Φ
[Γ]
Λ,Λ′(k,∆;P ) = 1

2
Tr [ΦΛ,Λ′(k,∆;P )Γ]

= 1

2 ∫
d4z

(2π)4
eik⋅z ⟨p′,Λ′∣ψ̄j(0)U(0,z) Γjiψi(z)∣p,Λ⟩ . (4.6)

In the following we will work in the leading-twist1 approximation and consider
only Γ = γ+, γ+γ5, iσj+γ5. These Dirac matrices project on different spin con-
figurations of the active parton in the initial and final states, allowing one to
account for contributions to the correlator from various helicity-transforming
processes.
The quark-quark correlator in QCD cannot be calculated further analytically:
this is due to the non-perturbative nature of strong interactions that is en-
coded in the hadron states. We can, however, parametrize the correlator in
terms of measurable quantities and reconstruct its analytical structure adopt-
ing phenomenological methods. The most generic decomposition of the fully-
unintegrated quark-quark correlator (4.6) in terms of complex-valued func-
tions, called Generalized Parton Correlation Functions (GPCFs) X(k,∆;P ),

1In this work we adopt the working definition of twist t proposed by Jaffe [54]. The
leading twist corresponds to t = 2.
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4.1. Generalized parton correlator

was derived in Ref. [49] for all the elements of the Dirac basis D. In a similar
fashion, one can formally define different distribution functions by parametriz-
ing proper limits of the so-called Generalized Transverse-Momentum Depen-
dent (GTMD) correlator, namely the integral over k− of the generalized parton
correlator (4.5):

ΦΛ,Λ′(x,k⊥,∆;P ) = ∫ dk− ΦΛ,Λ′(k,∆;P )

= ∫
dz−d2z⊥
(2π)3

ei(k
+z−−z⊥⋅k⊥)⟨p′,Λ′∣ψ̄(0)U(0,z)ψ(z)∣p,Λ⟩∣

z+=0

,

(4.7)

where x = k+/P + is the (average) longitudinal momentum fraction carried by
the active parton. In the following sections we will show specific examples for
cases of our interest.
We finally remark that, although the generalized correlator (4.7) is defined in
six-dimensional momentum space, we can gain information also about the po-
sition of the partons inside the nucleon by Fourier transforming the momentum
transfer to position space. In particular, for the interpretation of correlation
functions in position space as quasi-probability distributions we will restrict
to the impact-parameter space of coordinates b⊥, introduced in Section 2.3.1.
We will come back to this point in Section 4.4.1.

4.1.1 Gauge link

A bi-local product of fermion-field operators at two different positions x and y
in spacetime is not gauge-invariant: consider an Abelian, local transformation

ψ(x) ↦ e−igα(x)ψ(x) , (4.8)

where g is the coupling constant between the fermion and the gauge field
Aµ(x). Consequently, we have

ψ̄(x)ψ(y) ↦ ψ̄(x)ψ(y) eig[α(x)−α(y)] . (4.9)

In order to restore gauge-invariance, the following gauge-link (or Wilson line)
operator is included in the definition of the correlator (4.5) [55–57]:

U(x,y) = P exp [ig∫
y

x
dξµAµ(ξ)] . (4.10)

The symbol P denotes path ordering of the integral from x to y and is actually
needed only when we deal with non-Abelian gauge fields.
We will illustrate the physical interpretation of the gauge link in the QED
case in Section 5.3.1. Here it is worth to stress, however, that the insertion
of a Wilson line introduces a dependence of the correlator on the path chosen
to perform the integration from x = 0 to y = z. We now briefly describe two
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ξ

0

η = −1

(a)

0

ξ

n+

η = 1

(b)

n+

Figure 4.2: Different Wilson lines connecting the points 0 and z. Dashed lines indicate that
integration along the n+ direction is meant to be taken up to infinity. Path (a) [respectively,
path (b)] is a past-pointing (future-pointing) Wilson line corresponding to the value η = −1
(η = 1).

possible path configurations associated to the processes of Semi-Inclusive Deep
Inelastic Scattering (SIDIS) and Drell-Yan [48]. More complicated gauge-link
structures arise for different processes (see Ref. [57]).
Let us consider the integrated correlator (4.7). Since we are working with z+ =
0, we need to specify a path in the z−-z⊥ plane. By defining the longitudinal
gauge link

UL(x−, y−;ξ⊥) = P exp [ig∫
y−

x−
dξ−A+(0, ξ−,ξ⊥)] (4.11)

and the transverse gauge link

U⊥(x⊥,y⊥; ξ−) = P exp [−ig∫
y⊥

x⊥
d2ξ⊥ ⋅A⊥(0, ξ−,ξ⊥)] , (4.12)

the physics of the SIDIS and Drell-Yan processes will lead us, respectively, to
a future-pointing Wilson line Uη=1

(0,z) or a past-pointing Wilson line Uη=−1
(0,z) . They

are given by

Uη=±1
(0,z) = U(0,±∞)U(±∞,z) , (4.13)

where

U(0,±∞) = UL(0−,±∞−;0⊥)U⊥(0⊥,∞⊥;±∞−) , (4.14)

U(±∞,ξ) = U⊥(∞⊥,ξ⊥;±∞−)UL(±∞−, ξ−;ξ⊥) . (4.15)

The two possible choices possibilities are depicted in Fig. 4.2 and are related
respectively to the SIDIS and Drell-Yan processes.
The variable η = ±1 has been introduced in order to explicitly keep track of
the dependence of the correlator on the integration path, through the nota-
tion ΦΛ,Λ′(k,∆;P ∣η) in light-front helicity basis. The GPCFs will in turn be
denoted with X(k,∆;P ∣η). Due to the properties of parity, hermiticity and
time-reversal invariance of the correlator, the trace (4.6) must satisfy [49]:

Φ
[Γ]
Λ,Λ′(k,∆;P ∣η) =Φ

[γ0Γγ0]
ΛP ,Λ

′
P

(k̃, ∆̃; P̃ ∣η) (4.16)
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[Φ[Γ]
Λ,Λ′(k,∆;P ∣η)]

∗
=Φ

[γ0Γ†γ0]
Λ′,Λ (k,−∆;P ∣η) , (4.17)

[Φ[Γ]
Λ′,Λ(k,∆;P ∣η)]

∗
=Φ

[(−iγ5C)Γ∗(−iγ5C)]
ΛT ,Λ

′
T

(k̃, ∆̃; P̃ ∣−η) , (4.18)

where C = iγ2γ0, P̃ µ = (P 0,−P ) (and similarly for the other four-vectors),
while ΛP and ΛT denote the parity-reversed and time-reversed helicities, re-
spectively. In particular, the relations (4.17)-(4.18) imply for all GPCFs:

[X(k,∆;P, ∣η)]∗ = ±X(k,−∆;P ∣η) , (4.19)

[X(k,∆;P, ∣η)]∗ =X(k,∆;P ∣−η) . (4.20)

Since η can only take the values ±1, it follows from Eqs. (4.19) and (4.20)
that only the imaginary part of X depends on η, allowing us to write the
decomposition:

X(k,∆;P ∣η) =Xe(k,∆;P ) + iXo(k,∆;P ∣η) , (4.21)

with

Xo(k,∆;P ∣η) = −Xo(k,∆;P ∣−η) . (4.22)

The real and imaginary parts of the GPCFs X are called respectively the T-
even part Xe and the T-odd part Xo. Eq. (4.22), in particular, tells us that
the T-odd part changes sign if we flip the direction of the Wilson line.

In the remaining of the present Chapter, for simplicity, it will always be as-
sumed that the Wilson line is an identity, namely U(0,z) = 1. This is, in fact, not
a drastic requirement if we assume to work in the light-cone gauge: Eq. (4.11)
implies that the longitudinal gauge link does not contribute when A+ = 0, and
consequently only the path in the transverse direction survives. Nevertheless,
the transverse gauge link cannot be completely neglected as some subtleties
concerning its contribution still arise, as we will discuss in Section 5.3.4.

4.2 Landscape of distribution functions

The landscape of the available distribution functions, as well as the links con-
necting them, is pictured in Fig. 4.3 [52].
As we mentioned at the end of Section 4.1, different distribution functions can
be formally defined by parametrizing proper limits of the k−-integrated corre-
lator (4.7); we will show specific examples in the following sections. It follows
that the most general distributions that is possible to consider will show the
full dependence on the six variables x, k⊥, ∆+ and ∆⊥. This is actually the case
for the Generalized Transverse-Momentum Dependent Distribution functions
(GTMDs) [28, 52, 58, 59]. For ∆+ = 0 they can be related, via Fourier trans-
form from ∆⊥ to b⊥, to the so-called Wigner distributions [60,61], namely the
quantum-mechanical analog of the classical phase-space distributions in five
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GTMDs
(x,k⊥, ∆)

PDFs
(x)

TMFFs
(k⊥, ∆)

Charges

TMSDs
(k⊥)

TMDs
(x,k⊥)

FFs
(∆2)

GPDs
(x, ∆)

dx

∆ = 0

d2k⊥

Figure 4.3: Links among different distribution functions. The blue, red and green lines
indicate the limits in which we integrate over x, take ∆ = 0 and integrate over k⊥, respectively.

dimensions. We address GTMDs and Wigner distributions in greater detail in
Section 4.5 and consider their application in QED in Chapter 5.

GTMDs are sometimes called “mother” distributions, since all the other
functions can be recovered from them by taking proper limits, as one can
see in Fig. 4.3. Of particular interest are the Transverse-Momentum De-
pendent distribution functions (TMDs), obtained from GTMDs in the limit
∆ = 0, and the Generalized Parton Distributions (GPDs) that correspond to
the integral of GTMDs over the transverse momentum k⊥ of the active par-
ton. TMDs [48, 62–64] depend on (x,k⊥) and thus offer a three-dimensional
picture of the nucleon in momentum space. We refer to Section 4.3 for more
details and to Chapter 5 for their calculation in the QED case. GPDs [65–68]
depend on (x,∆) but can as well be Fourier-transformed to the (x,b⊥) space
(again with ∆+ = 0), providing a simultaneous description in momentum and
position space (see Section 4.4). This allows one to gather information about
the Angular Momentum of partons, as we will show in Chapter 6. It should
be emphasized that there is no direct connection between TMDs and GPDs,
as one can appreciate also from Fig. 4.3. Both TMDs and GPDs reduce to the
well-known collinear Parton Distribution Functions (PDFs) in their respective
limits of integration over k⊥ and ∆ = 0. Moreover, by integrating GPDs over
the longitudinal momentum fraction x we end up with the electroweak Form
Factors (FFs). PDFs and Form Factors in turn reduce to global properties
of nucleons, labeled as “charges” in Fig. 4.3, which are the quantities that
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4.3. Transverse-Momentum Dependent parton distributions

one measures by looking at the proton as a whole. The remaining distribu-
tions that complete the landscape are the Transverse-Momentum Dependent
Form Factors (TMFFs) and Transverse-Momentum Dependent Spin Densities
(TMSDs); they are more of academic interest.

4.3 Transverse-Momentum Dependent parton

distributions

We devote this Section to the theoretical definition of Transverse-Momentum
Dependent parton distributions (TMDs); for the purpose of this work, we do
not enter either experimental or phenomenological issues, for which we refer
e.g. to Refs. [62,63,69].
Our starting point is the transverse-momentum dependent correlator [53, 62,
64]:

ΦΛ,Λ′(x,k⊥;P ) = ∫ dk− ΦΛ,Λ′(k;P )

= ∫
dz−d2z⊥
(2π)3

eik⋅z⟨P,Λ′∣ψ̄(0)ψ(z)∣P,Λ⟩∣
z+=0

. (4.23)

It can be obtained as the limit for ∆ = 0 of the k−-integrated Generalized
Parton Correlator given in Eq. (4.7), namely

ΦΛ,Λ′(x,k⊥;P ) = ΦΛ,Λ′(x,k⊥,∆ = 0;P ) . (4.24)

It is convenient to rewrite the correlator (4.24) in the spin basis as [70]

ΦS(x,k⊥;P ) = ∫
dz−d2z⊥
(2π)3

eik⋅z⟨P,S∣ψ̄(0)ψ(z)∣P,S⟩∣
z+=0

. (4.25)

The four-momentum P and covariant spin four-vector S satisfy P 2 = M2,
S2 = −1 and P ⋅ S = 0. In the hadron frame, we have [71,72]

Sµ = (sz
P +

M
,−sz

M

2P + ,s⊥) , (4.26)

where (s⊥, sz) is the spin three-vector in the rest frame and s2 = 1. The relation
between the correlators in the spin and light-front helicity basis is:

ΦS(x,k⊥;P ) = 1 + sz
2

Φ+,+(x,k⊥;P ) + 1 − sz
2

Φ−,−(x,k⊥;P )

+ sx − isy
2

Φ+,−(x,k⊥;P ) + sx + isy
2

Φ−,+(x,k⊥;P ) . (4.27)

The diagrammatic representation of the correlator (4.27) is shown in Fig. 4.4.
It corresponds to the QCD handbag diagram (see Appendix B.1), “amputated”
of the virtual photon lines. We will see in Section 5.3.2 how the correlator can
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P, S

k k

P, S

ΦS(k; P ) =

Figure 4.4: Diagrammatic representation of the quark-quark correlator for ∆ = 0.

be evaluated in the framework of QED, by applying the usual Feynman rules.

The leading-twist parametrization of the TMD correlator (4.23), written in the
Dirac basis D, is then [53,70]

Φ =1

2
[/n+f1 −

εijki⊥s
j
⊥

M
/n+f⊥1T + szγ5 /n+g1L +

k⊥ ⋅ s⊥
M

γ5 /n+g1T +
[/s⊥, /n+]

2
γ5h1T

+Λ
[/k⊥, /n+]

2M
γ5h⊥1L +

k⊥ ⋅ s⊥[/k⊥, /n+]
2M2

γ5h⊥1T +
i[/k⊥, /n+]

2M
h⊥1] , (4.28)

where n+ = (1,0,0⊥). Eq. (4.28) introduces the leading-twist TMDs f1, f⊥1T ,
g1L, g1T , h1T , h⊥1L, h⊥1T , h⊥1 depending on (x,k2⊥). The notation used for labeling
the TMDs is related to the polarizations of the parent hadron and of the active
quark. Here we adopt the convention proposed in Ref. [62]: letters L and T
refer, respectively, to the situation where the spin of the hadron is along the
longitudinal direction [s = (0⊥, sz)] and in the transverse plane [s = (s⊥,0)].
Similarly, letters f , g and h refer to unpolarized (i.e. averaged over all polariza-
tions), longitudinally-polarized and transversely-polarized active quark. The
“⊥” symbols stands for an explicit dependence on transverse momenta with an
uncontracted index.
The leading-twist Dirac-space projections of the TMD correlator, obtained by
integrating Eq. (4.6), are rewritten in terms of combinations of TMDs as [62,64]

Φ
[γ+]
S (x,k⊥) =f1(x,k2

⊥) −
εijki⊥s

j
⊥

M
f⊥1T (x,k2

⊥) , (4.29)

Φ
[γ+γ5]
S (x,k⊥) =szg1L(x,k2

⊥) +
k⊥ ⋅ s⊥
M

g1T (x,k2
⊥) , (4.30)

Φ
[iσj+γ5]
S (x,k⊥) =sj⊥h1(x,k2

⊥) + sz
kj⊥
M
h⊥1L(x,k2

⊥)

+ si⊥
2ki⊥k

j
⊥ − k2⊥δij

2M2
h⊥1T (x,k2

⊥) +
εjiki⊥
M

h⊥1(x,k2
⊥) , (4.31)

where

h1(x,k2
⊥) = h1T (x,k2

⊥) +
k2⊥

2M2
h⊥1T (x,k2

⊥) . (4.32)
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A final remark concerns the behavior of TMDs under time-reversal. According
to the definition that we gave in Section 4.1, it is possible to identify two T-odd
TMDs, namely the Boer-Mulders [73] function h⊥1 and the Sivers [74] function
f⊥1T . The six remaining leading-twist TMDs are T-even.

4.4 Generalized Parton Distributions

In this section we address the definition of Generalized Parton Distributions
(GPDs). Also in this case we focus only on the theoretical side; detailed re-
views covering experimental issues can be found e.g. in Refs. [65,67].
The relevant correlator for the GPD case is obtained by integrating the gen-
eralized parton correlator (4.5) over k−, k⊥:

ΦΛ,Λ′(x,∆;P ) = ∫ dk− d2k⊥ΦΛ,Λ′(k,∆;P )

= ∫
dz−

2π
eik

+z−⟨p′,Λ′∣ψ̄(0)ψ(z)∣p,Λ⟩∣
z+=0,z⊥=0⊥

. (4.33)

Notice that in the above Equation we are taking the fermion fields at the same
transverse position. This means that the previous expression remains valid
as long as we work in the light-cone gauge (where the gauge link along the
longitudinal direction coincides with the identity), whereas a Wilson line still
needs to be inserted for different gauge choices.
Similarly to the TMD case, we consider the projection Φ[Γ] of the correla-
tor over the space of Dirac matrices. The leading-twist contribution to its
parametrization turns out to be [65,71]

Φ
[γ+]
Λ,Λ′(x,∆) = 1

2P + ūΛ′(p′) [γ+H(x, ξ, t) + iσ
+µ∆µ

2M
E(x, ξ, t)]uΛ(p) , (4.34)

Φ
[γ+γ5]
Λ,Λ′ (x,∆) = 1

2P + ūΛ′(p′) [γ+γ5 H̃(x, ξ, t) + ∆+γ5

2M
Ẽ(x, ξ, t)]uΛ(p) , (4.35)

Φ
[iσj+γ5]
Λ,Λ′ (x,∆) = − iε

ij

2P + ūΛ′(p′) [iσ+iHT (x, ξ, t) +
γ+∆i⊥ −∆+γi⊥

2M
ET (x, ξ, t)

+P
+∆i⊥ −∆+P i⊥

M2
H̃T (x, ξ, t) +

γ+P i⊥ − P +γi⊥
M

ẼT (x, ξ, t)]uΛ(p) . (4.36)

The relations (4.34)-(4.36) define the leading-twist GPDs H, E, H̃, Ẽ, HT ,
ET , H̃T and ẼT depending on the three variables

x = k+

P + , ξ = − ∆+

2P + , t = ∆2 , (4.37)

already introduced in Section 3.3.1. As shown in Fig. 4.3, GPDs reduce to
ordinary form factors via integration over x. More precisely, we are interested
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in the following sum rules2 [65]:

∫
1

−1
dxH(x, ξ, t) = F1(t) , ∫

1

−1
dxE(x, ξ, t) = F2(t) , (4.38)

∫
1

−1
dx H̃(x, ξ, t) = GA(t) , ∫

1

−1
dx Ẽ(x, ξ, t) = GP (t) , (4.39)

where F1(t) and F2(t) are, respectively, the Dirac and Pauli form factors de-
fined by the relation

⟨p′,Λ′∣ψ̄(0)γµψ(0)∣p,Λ⟩ = ūΛ′(p′) [γµF1(t) +
iσµν∆ν

2M
F2(t)]uΛ(p) , (4.40)

whileGA(t) andGP (t) are, respectively, the axial-vector and induced-pseudoscalar
form factors defined through

⟨p′,Λ′∣ψ̄(0)γµγ5ψ(0)∣p,Λ⟩ = ūΛ′(p′) [γµγ5GA(t) +
γ5∆µ

2M
GP (t)]uΛ(p) . (4.41)

We anticipate that fundamental relations exist between moments of the GPDs
with respect to the x variable and form factors of the QCD energy-momentum
tensor, see Section 6.4.

4.4.1 GPDs in the impact parameter space

GPDs provide the possibility of accessing simultaneously information about the
partons’ longitudinal momentum and position in the transverse plane. This is
achieved through a Fourier transform from the transverse component ∆⊥ of
the momentum transferred to the impact parameter space of coordinates b⊥.
We devote this section to the interpretation of the impact-parameter variable
(and of the distributions that depend on it) in light-front quantization, mainly
following Refs. [25,75].

Form factors [recovered as averages of the GPDs over x, according to
Eqs. (4.38) and (4.39)] parametrize off-forward matrix element of a given cur-
rent, as one can see from Eqs. (4.40) and (4.41). Nonetheless, they can be gen-
erally related, via Fourier transform, to position-space distributions of charges,
that correspond in turn to diagonal matrix element of the same current in po-
sition space. Actually, this is true only if we disregard relativistic corrections
that eventually arise from the boost transformations needed to connect states
with different momenta: these are purely kinematic only in the non-relavistic
limit of Galilean boosts, whereas they become dynamical in the relativistic
case (see the discussion in Section 2.3).
A qualitative proof of the above statements was carried out explicitly in Ref. [75];

2Note that integration over the longitudinal momentum fraction x runs from −1 to 1 to
account for contributions from antiquarks.
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here we simply report a sketch of the derivation. Consider the charge distribu-
tion in position space ρ(x) associated to the form factor F1(t) and satisfying

⟨p′∣ρ(0)∣p⟩ = (p′0 − p0)F1(t) , (4.42)

with p0 =
√
M2 + p2, p′0 =

√
M2 + (p +∆)2. Given a wave packet

∣Ψ⟩ = ∫
d3p√

2(2π)3p0

ψ(p)∣p⟩ (4.43)

with a certain distribution ψ(p) in momentum space, we take as Fourier trans-
form of the charge distribution:

FΨ(∆) = ∫ d3xe−i∆⋅x ⟨Ψ∣ρ(x)∣Ψ⟩ . (4.44)

It can be shown that Eq. (4.44) coincides with F1(t = −∆2) only in the non-
relativistic limit M2 ≫ q2,p ⋅ ∆ (where p0 = p′0 and therefore ∆0 = 0) and
assuming that the wave packet is arbitrarily broad in momentum space (i.e. lo-
calized in an arbitrarily small region in position space), so that

∫ d3pψ∗(p +∆)ψ(p) ∼ ∫ d3p ∣ψ(p)∣2 . (4.45)

On the other hand, if we include terms up to order O(∆2) in the expansion of
FΨ(∆), the equivalence is spoiled by corrections scaling with (p ⋅∆)/ (p0)2

and
∆2/ (p0)2

, which are not negligible in the assumption of a wave packet local-
ized in an arbitrarily small region. A natural way to get rid of these relativistic
corrections is to work in the infinite-momentum frame with ∆0 = 0, so as to
keep p ⋅∆, ∆2 constant while sending p0 →∞. We call elastic frames the class
of reference frames where the energy transfer vanishes. Thanks to Eq. (4.4), in
instant-form coordinates elastic frames are defined by the condition P ⋅∆ = 0;
we then pick P = (0,0, Pz), ∆ = (∆⊥,0) and let Pz → ∞. By doing so, one
comes up with the result that in the IMF the form factor F (−∆2⊥) can be
identified with Fourier transform of a charge distribution in two-dimensional
position space, without being affected by relativistic corrections.

From the above discussion, it is evident that light-front quantization offers
the best framework to describe distributions functions in position space. The
kinematic property of transverse boosts in the light-front formalism, pointed
out in Section 2.3, is the underlying reason why we need to restrict ourselves
to the transverse plane in order to avoid relativistic corrections to our distri-
butions [25].
The physical interpretation of two-dimensional spatial distributions relies on
the definition (2.55) of the center of transverse momentum, which allows us to
localize the nucleon in the transverse plane; we can then naturally infer how
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partons are distributed around it. To this purpose, we consider light-front-
helicity eigenstates ∣p+,p⊥,Λ⟩ and Fourier-transform them to position space
according to:

∣p+,R⊥ = 0⊥,Λ⟩ = N ∫
d2p⊥
(2π)2

∣p+,p⊥,Λ⟩ , (4.46)

where N satisfies

∣N ∣2∫
d2p⊥
(2π)2

= 1 . (4.47)

The states defined in (4.46) are simultaneously eigenstates of the operators
P +, R⊥ = −B⊥/p+ and Jz with eigenvalues p+, 0⊥ and λ, respectively.
Let us rewrite the Dirac-space projection of the GPD correlator as

Φ
[Γ]
Λ,Λ′(x,∆) = 1

2 ∫
dz−

2π
eik

+z− ⟨p′,Λ′∣ψ̄(0,0,0⊥)Γψ(0, z−,0⊥)∣p,Λ⟩

= ⟨p′,Λ′∣O[Γ](x,0⊥)∣p,Λ⟩ , (4.48)

so as to emphasize its definition in terms of the off-forward matrix element of
the operator

O[Γ](x,b⊥) =
1

2 ∫
dz−

2π
eik

+z− ψ̄(0,0,b⊥)Γψ(0, z−,b⊥) (4.49)

with b⊥ = 0⊥. As we previously mentioned, in order to get rid of probabilistic
corrections one must reduce himself to the frame where the energy transfer
is vanishing. In light-front coordinates, this condition is equivalent to the
requirement ξ = 0, which we will assume from now on. This consequently
results into t = −∆2⊥, meaning that GPDs will eventually depend only on
(x,∆⊥). We also take, as an example, the case Γ = γ+ with Λ = Λ′, so that
Eq. (4.34) becomes

Φ
[γ+]
Λ,Λ (x,0, t = −∆2

⊥) =H(x,0, t = −∆2
⊥) ≡H(x,−∆2

⊥) . (4.50)

Let us now consider the following forward matrix element of the operator (4.49)
at generic b⊥ ≠ 0⊥:

ρ(x,b⊥) = ⟨p+,R⊥ = 0⊥,Λ∣O[γ+](x,b⊥)∣p+,R⊥ = 0⊥,Λ⟩ . (4.51)

It is possible to show that Eq. (4.51) represents the probability distributions
of finding a parton with longitudinal momentum x at a position b⊥ in the
transverse plane with respect to the center of transverse momentum, that we
identify with the origin of the xy-plane. According to the discussion at the end
of Section 2.3, we hence identify b⊥ with the impact parameter of the parton.
Using Eqs. (4.46), (4.47) and (4.50) along with the translation property of the
field ψ(x), we have

ρ(x,b⊥) = ∣N ∣2∫
d2p⊥
(2π)2 ∫

d2p′⊥
(2π)2

H (x,−(p⊥ − p′⊥)2) eib⊥⋅(p⊥−p′⊥)
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= ∫
d2∆⊥
(2π)2

H(x,−∆2
⊥)e−ib⊥⋅∆⊥ . (4.52)

In the last step we changed the integration variables according to ∫ d2p⊥ ∫ d2p′⊥ =
∫ d2P⊥ ∫ d2∆⊥ and used the fact that the distributions which parametrize the
correlator, as already emphasized, do not in fact depend on P⊥.
Eq. (4.52) shows that the density (4.51) is nothing but the Fourier transform
with respect to ∆⊥ of the GPD H, taken at ξ = 0. It follows that, thanks to
the relations (4.38) and (4.39), by integrating both sides of Eq. (4.52) over x
we can relate the Fourier conjugate of form factors with charge distributions
in the transverse plane, without suffering from relativistic corrections. GPDs
in the transverse plane therefore give us information about the contributions
to two-dimensional charge distributions from different regions of x. This is
a crucial result that can be simply illustrated in the language of light-front
quantization. We dedicate Chapter 6 to an application of these considerations
in QCD.

4.5 GTMDs and Wigner distributions

So far we have focused on specific regions of phase space, both in momentum
and position space. It is natural to wonder whether it is possible to explore the
whole six-dimensional phase space of a composite system in Quantum Field
Theory. The study of Wigner distributions is motivated by the attempt to
answer this question.

The evolution of a point-like particle at the classical level is fully described
by a trajectory f(r,p, t) in six-dimensional phase space. At any time t, we
can interpret f(r,p)d3r d3p as the probability of finding the particle in an
infinitesimal volume d3r d3p around the point (r,p), which specifies the state
of the particle. In principle, nothing limits the precision with which we can
access the values of position and momentum at the same time.
In the context of non-relativistic Quantum Mechanics, on the other hand,
Heisenberg uncertainty principle prescribes ∆p∆r ≳ h̵3 and does not allow one
to access simultaneously position and momentum of the system with arbitrary
precision. Still one can define a six-dimensional Wigner distribution [60,76]

ρW (r,p) = ∫
d3z

(2π)3
e−

i
h̵
p⋅z ψ∗(r)ψ (r + z) , (4.53)

where ψ(r) is the wave function describing the system.
Because of Heisenberg’s principle, the distribution (4.53) is not positive-definite:
this prevents us from interpreting it as a probability density. Nonetheless, in
the classical limit h̵→ 0 we have:

ρW (r,p) h̵→0ÐÐ→ f(r,p) . (4.54)
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4. QCD distribution functions

In this sense, we can state that the Wigner distribution has a quasi-probabilistic
(or semi-classical) interpretation: the regions of space-time where ρW (r,p) is
negative are volumes of order h̵3 and we hence recover the probabilistic inter-
pretation in the classical limit.

The first attempt to transpose this formalism to the framework of Quantum
Field Theory is due to Ji et al. [60,61]. They introduced a Wigner operator

W[Γ](r, k) = 1

2 ∫
d4z

(2π)4
eik⋅z ψ̄ (r)Γψ (r + z) , (4.55)

which resembles the non-relativistic distribution (4.53), but where ψ(r) is now
a fermionic field operator. In Eq. (4.55) the matrix Γ is again an element
generated by the basis D of Dirac operators and r = (0,r). Observe that the
Wigner operator reduces, for r = 0, to the operator appearing in the Dirac
projection of the generalized parton correlator (4.6), analogously to the situ-
ation discussed for the operator (4.49) in the GPD case. This consideration
suggests to follow the same procedure adopted in the previous section, in or-
der to relate Wigner distributions to Fourier transform of off-forward matrix
elements of the Wigner operator.
To this aim, Ji and collaborators proposed to consider, in instant-form coordi-
nates, the elastic frame ∆0 = 0 and introduced the distribution

W
[Γ]
S,S′(r, k) = ∫

d3∆

(2π)3
⟨P + ∆

2
, S′ RRRRRW

[Γ](r, k)RRRRRP − ∆

2
, S⟩

= ∫
d3∆

(2π)3
e−ir⋅∆ ⟨P + ∆

2
, S′ RRRRRW

[Γ](0, k)RRRRRP − ∆

2
, S⟩ , (4.56)

where ∆ = (0,∆). Integrating the previous expression over k− = (k0 − kz)/
√

2,
we obtain the six-dimensional Wigner distribution

W
[Γ]
S,S′(r,k) = ∫ dk−W [Γ]

S,S′(r, k) . (4.57)

In consideration of what we discussed in Section 4.4.1, however, the distribu-
tion defined in Eq. (4.57) presents problems for its interpretation as a quasi-
probability density, since it it is spoilt by relativistic corrections. There is, in
fact, no way to avoid them as long as we want to have a picture of the system in
three-dimensions in position space, due to the impossibility to connect states
with different three-momenta with only kinematic boosts.
It is therefore necessary to give up information about one direction in position
space and restrict ourselves to the description in the transverse plane, as was
first proposed by Lorcé and Pasquini [28, 58, 77]. To this end, we switch to
light-front coordinates and re-define the Wigner operator as

W[Γ](x,b⊥,k⊥) =
1

2 ∫
dz+d2z⊥
(2π)3

ei(k
+z−−k⊥⋅z⊥) ψ̄ (r)Γψ (r + z) ∣

z+=0

, (4.58)
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4.5. GTMDs and Wigner distributions

where now r = (0,0,b⊥). By taking matrix elements of Eq. (4.58) at ξ = 0, so as
to get rid of relativistic corrections, we come up with the Wigner distributions

W
[Γ]
Λ,Λ′(x,k⊥,b⊥) =∫

d2∆⊥
(2π)2

⟨p+,P⊥ +
∆⊥
2
,Λ′ RRRRRW

[Γ](x,k⊥,b⊥)RRRRRp
+,P⊥ −

∆⊥
2
,Λ⟩ .

(4.59)

These distributions (yet still not-positive-definite) do have a quasi-probabilistic
interpretation in the sense given by Eq. (4.54), i.e. they are no longer affected
by relativistic correction, unlike the six-dimensional functions (4.57).
Let us consider again the GTMD correlator (4.7): we report here the leading-
twist decomposition of its projection over Dirac space [49]

Φ
[γ+]
Λ,Λ′(x,k⊥,∆) = 1

2M
ūΛ′(p′) [F1,1 +

iσi+ki⊥
P + F1,2 +

iσi+∆i⊥
P + F1,3

+iσ
ijki⊥∆

j
⊥

M2
F1,4]uΛ(p) , (4.60)

Φ
[γ+γ5]
Λ,Λ′ (x,k⊥,∆) = 1

2M
ūΛ′(p′)[ − iε

ijki⊥∆
j
⊥

M2
G1,1 +

iσi+γ5ki⊥
P + G1,2 +

iσi+γ5∆i⊥
P + G1,3

+ iσ+−γ5G1,4]uΛ(p) , (4.61)

Φ
[iσj+γ5]
Λ,Λ′ (x,k⊥,∆) = 1

2M
ūΛ′(p′) [−iε

ijki⊥
M

H1,1 −
iεij∆i⊥
M

H1,2 +
Miσj+γ5

P + H1,3

+k
j
⊥iσi+γ5ki⊥
MP + H1,4 +

∆j
⊥iσi+γ5ki⊥
MP + H1,5 +

∆j
⊥iσi+γ5∆i⊥
MP + H1,6

+k
j
⊥iσ+−γ5

M
H1,7 +

∆j
⊥iσ+−γ5

M
H1,8]uΛ(p) . (4.62)

The 16 leading-twist Generalized Transverse-Momentum Dependent distribu-
tion functions F1,i, G1,i andH1,i appearing on the right-hand sides of Eqs. (4.60)
to (4.62) depend in general on x, k⊥, ξ and ∆⊥. Proper limits of the GTMDs
link them to GPDs and TMDs, as shown in detail in Ref. [49].
By following the same procedure described in the case of GPDs in Section 4.4.1,
one can show that Wigner distributions are related to Fourier transforms of
GTMDs at ξ = 0 according to:

W
[Γ]
Λ,Λ′(x,k⊥,b⊥) =∫

d2∆⊥
(2π)2

e−ib⊥⋅∆⊥ Φ
[Γ]
Λ,Λ′(x,k⊥,∆⊥) , (4.63)

where

Φ
[Γ]
Λ,Λ′(x,k⊥,∆⊥) =

1

2 ∫
dz−d2z⊥
(2π)3

ei(k
+z−−k⊥⋅z⊥)
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× ⟨P +,P⊥ +
∆⊥
2
,Λ′∣ψ̄(0)Γψ(z)∣P +,P⊥ −

∆⊥
2
,Λ⟩ ∣

z+=0

(4.64)

is the projection in Dirac space of the GTMD correlator (4.7) for ξ = 0.
As they provide information simultaneously on position and momentum of par-
tons in the transverse plane, Wigner distributions are valuable instruments for
the the investigation of Orbital Angular Momentum contributions from both
quarks [78–82] and gluons [83–85].
At variance with the cases relative to the other distributions functions, dis-
cussed in the previous sections, there is no universal agreement concerning a
process that can be used to obtain experimental measures of either GTMDs
or Wigner distributions, although in the recent years it has been argued that
measurements are possible both in the gluon [86–88] and in the quark [89]
sectors of GTMDs. These proposals are, at the present time, still waiting for
an experimental validation.

4.6 LFWF overlap representation of distribu-

tion functions

Light-front quantization does not only offer a suitable language for the de-
scription of distribution functions in the impact-parameter space, but provides
also an effective tool for performing practical calculations with the language of
Light-Front Wave Functions (LFWFs), introduced in Section 2.4. Indeed it is
easy to realize that we can use the Fock-state expansion (2.64) to rewrite the
hadron states appearing in the correlators, which will eventually be expressed
as overlap of LFWFs. Thanks to the properties of LFWFs, this leads to an
intuitive parton interpretation of the content of a given parton distribution.
In this section, we briefly illustrate how this procedure can be applied by con-
sidering, as an example, the case of GTMDs; detailed derivations can be found
in Ref. [52,90–92]. It is then immediate to transpose the results to the case of
other parton distributions.
We first rewrite the Fock-state expansion of an hadron state ∣P,Λ⟩ in the light-
front helicity basis and in light-cone gauge A+ = 0 as

∣P,Λ⟩ = ∑
n,λi

∫ [dx]n[d2k⊥]n ΨΛ
n,λi

(xi,k⊥,i)∣µn(xi,k⊥,i, λi)⟩ , (4.65)

where the integration measures

[dx]n = [
n

∏
i=1

dxi] δ (1 −
n

∑
j=1

xj) , (4.66)

[d2k⊥]n =
1

(16π3)n−1 [
n

∏
i=1

d2k⊥,i] δ(2) (
n

∑
j=1

k⊥,j) (4.67)
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4.6. LFWF overlap representation of distribution functions

take into account the conditions (2.67)-(2.68). In practical calculations, one
has to truncate the sum at a finite value of n, which represents the number of
particles to be included in the description (the typical choice is n = 3 for the
nucleon). The hadron states are normalized according to Eq. (3.64) and the
LFWFs satisfy

∑
n,λi

∫ [dx]n[d2k⊥]n ∣ΨΛ
n,λi

(xi,k⊥,i)∣
2 = 1 . (4.68)

In order to rewrite the correlator, we also need the following Fourier expansion
of the “good’ components of the quark field [see Eq. (3.18)] at fixed light-front
time z+ = 0:

ψ+(z−,z⊥) =∫
dk+d2k⊥
2(2π)3k+

Θ(k+)

×∑
λ

[bλ(k)u+,λ(k)e−i(k
+z−−z⊥⋅k⊥) + d†

λ(k)v+,λ(k)ei(k
+z−−z⊥⋅k⊥)] ,

(4.69)

where b, b† and d, d† are the ladder operators that create and annihilate quarks
and antiquarks, respectively, and u+,λ = 1

2γ
−γ+uλ, v+,λ = 1

2γ
−γ+vλ. For the

gluon field one similarly has (omitting color indices for better readability):

Aµ(z−,z⊥) =∫
dq+d2q⊥
2(2π)3q+

Θ(q+)

×∑
λγ

[aλγ(q)εµλγ(q)e
−i(q+z−−z⊥⋅q⊥) + a†

λγ
(q)εµ ∗

λγ
(q)ei(q+z−−z⊥⋅q⊥)] ,

(4.70)

a,a† being the gluon creation and annihilation operators. The usual commu-
tation and anti-commutation relations are assumed:

{bλ(k), b†λ′(k′)} = {dλ(k), d†
λ′(k′)} = 2(2π)3k+δ (k+ − k′+) δ(2) (k⊥ − k′⊥) δλ,λ′ ,

(4.71)

[aλ(q), a†
λ′(q′)] = 2(2π)3q+δ (q+ − q′+) δ(2) (q⊥ − q′⊥) δλ,λ′ . (4.72)

We take for simplicity the ξ = 0 case and obtain for the 3-particle contribution
to the projection (4.64) of the GTMD correlator in Dirac space [52]

Φ
[Γ]
Λ,Λ′(x,k⊥,∆⊥) =3 ∑

λi,λ′i
∫ [dx]3[d2k⊥]3 Θ(x)δ(x − x1)δ(2) (k⊥ − k1,⊥)

×M [Γ]
λ1,λ′1

δλ2,λ′2δλ3,λ′3 [ΨΛ′
3,λ′i

(x′i,k′i,⊥)]
∗

ΨΛ
3,λi

(xi,ki,⊥) . (4.73)

In Eq. (4.73) the index i = 1 refers to the active quark, whereas i = 2 and
i = 3 to the spectators. The final-state momenta appearing as arguments of
the LFWFs are

x′i = xi , i = 1,2,3 ,

61



4. QCD distribution functions

k′1,⊥ = k1,⊥ + (1 − x1)
∆⊥
2

k′i,⊥ = ki,⊥ − xi
∆⊥
2

, i = 2,3 .

One can select different configurations of both initial-state and final-state po-
larizations of the active quark via proper projections in Dirac space, described
by the operator M

[Γ]
λ,λ′ . More precisely, denoting the Pauli matrices with σi

(i = 1,2,3), for the Dirac operators that contribute at leading twist we have

M
[γ+]
λ,λ′ = δλ,λ′ , M

[iσj+γ5]
λ,λ′ = (σj)λ,λ′ , M

[γ+γ5]
λ,λ′ = (σ3)λ,λ′ . (4.74)

Since LFWFs are eigenstates of light-front helicity, the overlap representation
(4.73) helps to have an immediate perception of which helicity transformations
of the active quark are involved in a given distribution. Moreover, thanks to
the probabilistic interpretation of the square modulus of LFWFs, mentioned
at the end of Section 2.4, in this language it is easy to recognize the correlators
depending on diagonal matrix elements as a probability density.
We will show examples of LFWFs overlap representations of GTMDs and
TMDs in the framework of QED in Chapter 5 and of GPDs in the context of
QCD in Chapter 6.
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Chapter 5
The electron structure in
light-front QED

We are now going to apply the formalism of correlation functions, introduced
in Chapter 4 in the framework of QCD, to the field of Quantum Electrody-
namics (QED). Due to its perturbative nature, QED serves as an ideal proving
ground for the test of novel techniques to be applied in Quantum Field Theory;
as such it has been studied e.g. in Ref. [26,93–96].

The electron, unlike hadrons, is a point-like particle. Nonetheless, due to
Heisenberg uncertainty principle, in the QFT picture the electron field en-
counters quantum fluctuations that cause the emission and re-absorption of
photons; these can, in turn, break into virtual electron-positron pairs, con-
sistently with the quantum numbers of the parent electron. As a result, the
latter effectively becomes a dressed particle consisting of a cloud of photons,
electrons and positrons. To this extent, it is legitimate to think of the elec-
tron as an object with a three-dimensional structure, both in momentum and
position space, and to give it an interpretation as a composite particle. One
can then probe the inner content of the electron cloud and describe it in terms
of its partons with the language of distribution functions, in analogy with the
QCD case. In this perspective, it is possible to define the notion of “shape” of
the electron [93, 94] and analyze how its spin arises form the contribution of
Orbital Angular Momentum (OAM) and spin of the constituents [26,93–95].
The purpose of the present Chapter is to address these issues with the lan-
guage of GTMDs and TMDs (introduced in Chapter 4) in light-cone quan-
tization. This approach allows for a description of the dressed electron in
three-dimensional momentum space, along with an assessment of non-trivial
relations between position, momentum and spin of the partons. We also focus
on the comparison between QED and QCD, with particular emphasis on their
Abelian rather than non-Abelian nature. To this aim, we provide a detailed
treatment of the role of Wilson lines in the context of gauge-invariance, en-
lightening differences and similarities of the two theories. For our purposes, it
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5. The electron structure in light-front QED

will be sufficient to consider the electron at order α as a composite two-body
system, consisting of an electron-photon pair.

5.1 Fock-state decomposition of the electron

cloud

Let ∣eD⟩ ≡ ∣eD; p,Λ⟩ denote the state of a “dressed” (or “physical”, or “parent”)
electron with mass M , light-cone helicity Λ and momentum p = (p+, p−,0⊥)
in the reference frame that we denote as electron frame, in analogy with the
hadron frame in QCD. In view of the above discussion, it is justified to decom-
pose the state ∣eD⟩ through the Fock-space expansion

∣eD⟩ = ∣e⟩ + ∣eγ⟩ + ∣eγγ⟩ + . . . . (5.1)

Each term in the right-hand side of Eq. (5.1) represents a bound state con-
taining a given number n of particles, compatibly with the quantum numbers
of the dressed electron in the left-hand side. In particular, we denote with e
the bare electron inside the physical electron and consider it as a constituent
parton, within the analogy between the electron cloud and the nucleon as com-
posite systems. We label the three momentum of the internal electron in the
electron frame as

pe = (xp+,k⊥)
and its light-cone helicity with λe. One can recognize that Eq. (5.1) corresponds
to a perturbative expansion of the parent-electron state in powers of the QED
coupling constant e. In the present discussion, we truncate the sum up to
order e and, accordingly, study the dressed electron as a composite two-body
system consisting of an electron-photon pair:

∣eD⟩ =
√
Z ∣e⟩ + ∣eγ⟩ , (5.2)

where we also introduced the renormalization constant Z, that one can prop-
erly evaluate by fixing a convenient regularization scheme (e.g. Pauli-Villars
regularization, see Ref. [26]).
The one-particle, bare-electron state in the first term is given by

∣e⟩ = b†Λ(p)∣0⟩ , (5.3)

where in this context b and b† are the electron ladder operators. The second
term in Eq. (5.2) indicates the electron-photon state, written in terms of the
two-particle LFWF ΨΛ

λe,λγ
(x,k⊥) as1

∣eγ⟩ = ∑
λe,λγ
∫

dxd2k⊥
2(2π)3

√
x(1 − x)

ΨΛ
λe,λγ

(x,k⊥)∣pe, λe;pγ, λγ⟩ , (5.4)

1One should pay attention not to confuse the bound state ∣eγ⟩ with the state of free
particles

∣pe, λe;pγ , λγ⟩ = b
†
λe

(pe)a
†
λγ

(pγ)∣0⟩ .
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where λγ is the photon polarization. We emphasize that in Eq. (5.4), in view
of the conditions (2.67)-(2.68), it is assumed that the photon three-momentum
is written as

pγ = ((1 − x)p+,−k⊥) . (5.5)

In the framework of QED it is possible to obtain an explicit expression for
the LFWFs by carrying out the perturbative expansion of the bound states
up to the desired perturbative order. This fact marks a crucial difference with
respect to the QCD case, where LFWFs inherit the non-perturbative nature
of strong interactions binding nucleon states. For the electron-photon bound
state, light-front perturbation theory yields2

∣eγ;p,Λ⟩ = ∑
λe,λγ
∫

dp+e d2pe,⊥
2(2π)3p+e

∫
dp+γ d2pγ,⊥
2(2π)3p+γ

⟨pe, λe;pγ, λγ ∣V ∣e;p,Λ⟩
p− − p−e − p−γ

∣pe, λe;pγ, λγ⟩ ,

(5.6)
with the QED potential V given by

V = −e∫ dx−d2x⊥ ψ̄(x−,x⊥)γµψ(x−,x⊥)Aµ(x−,x⊥) . (5.7)

The energy denominator in Eq. (5.6) can be conveniently expressed via the
on-shell conditions

p2 =M2 , p2
e =m2 , p2

γ = µ2 , (5.8)

where m is the bare electron mass appearing in the QED Lagrangian and µ
is a fictitious photon mass that we keep different from zero for regularization
issues. We recall that, even in the limit µ = 0, the physical mass M does not
coincide with the bare mass m, due to self-energy corrections.
If we compare Eqs. (5.4) and (5.6), and use the expansions (4.69)-(4.70) along
with the (anti)commutation relations (4.71)-(4.72), we find

ΨΛ
λe,λγ

(x,k2
⊥) = φ(x,k2

⊥)ūλe(pe)γµεµ∗λγ (pγ)uΛ(p) , (5.9)

with

φ(x,k2
⊥) =

e
√
x(1 − x)

k2⊥ + u(x,µ2) (5.10)

and

u(x,µ2) = xµ2 + (1 − x)m2 − x(1 − x)M2 . (5.11)

2For better clarity, here we explicitly denote momentum and spin of the states appearing
in the expansion Eq. (5.1).
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The free light-front spinors and antispinors for a fermion of mass m read [97]:

u1/2(k) =
1√

23/2k+

⎛
⎜⎜⎜⎜
⎝

√
2k+ +m
kR√

2k+ −m
kR

⎞
⎟⎟⎟⎟
⎠
, u−1/2(k) =

1√
23/2k+

⎛
⎜⎜⎜⎜
⎝

−kL√
2k+ +m
kL

−
√

2k+ +m

⎞
⎟⎟⎟⎟
⎠
,

(5.12)

v1/2(k) = −
1√

23/2k+

⎛
⎜⎜⎜⎜
⎝

−kL√
2k+ −m
kL

−
√

2k+ −m

⎞
⎟⎟⎟⎟
⎠
, v−1/2(k) = −

1√
23/2k+

⎛
⎜⎜⎜⎜
⎝

√
2k+ −m
kR√

2k+ +m
kR

⎞
⎟⎟⎟⎟
⎠
,

(5.13)

where
kR,L = kx ± iky , ∆R,L = ∆x ± i∆y . (5.14)

If we insert them into Eq. (5.9), the dressed electron LFWFs read

Ψ+
+,+1(x,k⊥) = − [Ψ−

−,−1(x,k⊥)]
∗ =

√
2

x

(kx − iky)
(1 − x) φ(x,k2

⊥) , (5.15)

Ψ+
+,−1(x,k⊥) = − [Ψ−

−,+1(x,k⊥)]
∗ = −

√
2x

(kx + iky)
(1 − x) φ(x,k2

⊥) , (5.16)

Ψ+
−,+1(x,k⊥) = Ψ−

+,−1(x,k⊥) =
√

2

x
(m − xM)φ(x,k2

⊥) , (5.17)

Ψ+
−,−1(x,k⊥) = Ψ−

+,+1(x,k⊥) = 0 . (5.18)

Here and throughout this Chapter the ± sign indicates Λ, λe = ±1/2 for the
light-front helicities of the dressed and bare electrons, whereas λγ = ±1 is the
light-front polarization of the internal photon. Notice that the LFWFs in
Eqs. (5.15) to (5.18) are related by

ΨΛ
λe,λγ

(x,k⊥) = (−1)Λ−λe+λγ [Ψ−Λ
−λe,−λγ(x,k⊥)]

∗
. (5.19)

5.2 Wigner distributions for the dressed elec-

tron

5.2.1 Analytical evaluation in the bx-ky space

Let us now consider the GTMD correlator for the physical electron

Φ
[Γ]
Λ,Λ′(x,k⊥,∆;P ) =∫

dz−d2z⊥
(2π)3

ei(k
+z−−k⊥⋅z⊥)

× ⟨eD; p′,Λ′∣ψ̄(0)Γψ(z)∣eD; p,Λ⟩∣
z+=0

, (5.20)
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where ∣eD; p,Λ⟩ is a dressed electron state, as introduced in the previous sec-
tion. For the moment we still neglect the gauge-link contribution. We can
use the Fock state decomposition (5.2) in order to obtain the LFWF overlap
representation of the correlator (5.20). We restrict to the case ξ = 0 and work
in the so-called “average frame” where P⊥ = 0⊥. We denote the three-momenta
of the incoming and outgoing partons as

pe = (xP +,k⊥ −
∆⊥
2

) , pγ = ((1 − x)P +,−k⊥) , (5.21)

p′e = (xP +,k⊥ +
∆⊥
2

) , p′γ = ((1 − x)P +,−k⊥) , (5.22)

so that

p = (P +,−∆⊥
2

) , p′ = (P +,
∆⊥
2

) . (5.23)

We recall, however, that the momenta appearing in the arguments of the
LFWFs in the two-particle state (5.4) are to be taken in the respective electron
frames; one can resort to the light-front boost (2.69) so as to recover them.
Taking this into account, one obtains the following overlap representation of
the correlator for Γ = γ+ and Γ = γ+γ5

Φ
[γ+]
Λ,Λ′(x,k⊥,∆⊥) =ZδΛ,Λ′δ(1 − x)δ(2)(k⊥)

+ 1

2(2π)3 ∑
λe,λγ

ΨΛ′ ∗
λe,λγ

(x, k̃⊥)ΨΛ
λe,λγ

(x, k̂⊥) , (5.24)

Φ
[γ+γ5]
Λ,Λ′ (x,k⊥,∆⊥) =ZδΛ,Λ′δ(1 − x)δ(2)(k⊥)

+ 1

2(2π)3∑
λγ

[ΨΛ′ ∗
+,λγ(x, k̃⊥)Ψ

Λ
+,λγ(x, k̂⊥)

−ΨΛ′ ∗
−,λγ(x, k̃⊥)Ψ

Λ
−,λγ(x, k̂⊥)] , (5.25)

where

k̃⊥ = k⊥ + (1 − x)∆⊥
2

, k̂⊥ = k⊥ − (1 − x)∆⊥
2

.

The bare-particle contribution proportional to Z becomes relevant only at the
end-point x = 1, k⊥ = 0⊥. We will exclude the end-point from our results
since its inclusion would require a proper renormalization procedure which is
beyond the scope of the present work. By inverting Eqs. (4.60) and (4.61), we
recover the following expressions of GTMDs in terms of the correlators (5.24)
and (5.25):

F1,1 =
1

2
[Φ[γ+]

+,+ +Φ
[γ+]
−,− ] , (5.26)

F1,4 =
M2

(kL∆R − kR∆L)
[Φ[γ+]

+,+ −Φ
[γ+]
−,− ] , (5.27)

G1,1 =
M2

(kR∆L − kL∆R)
[Φ[γ+γ5]+,+ +Φ

[γ+γ5]−,− ] , (5.28)
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G1,4 =
1

2
[Φ[γ+γ5]+,+ −Φ

[γ+γ5]−,− ] , (5.29)

kR,L and ∆R,L being defined in Eq. (5.14). If we insert the explicit expressions
of the LFWFs given in Eqs. (5.15) to (5.18) in the overlap representations
Eqs. (5.24) and (5.25), we obtain the following expressions for the GTMDs at
x ≠ 1, k⊥ ≠ 0⊥:

F1,1(x,k⊥,∆⊥) =
α

2π2(1 − x)f(x,k⊥,∆⊥)

× {(1 + x2) [k2
⊥ − (1 − x)2 ∆2⊥

4
] +M2(1 − x)4} , (5.30)

F1,4(x,k⊥,∆⊥) = −G1,1(x,k⊥,∆⊥) =
α(1 − x2)M2

2π2f(x,k⊥,∆⊥)
, (5.31)

G1,4(x,k⊥,∆⊥) =
α

2π2(1 − x)f(x,k⊥,∆⊥)

× {(1 + x2) [k2
⊥ − (1 − x)2 ∆2⊥

4
] −M2(1 − x)4} , (5.32)

where

f(x,k⊥,∆⊥) = [(k⊥ + (1 − x)∆⊥
2

)
2

+M2(x)] [(k⊥ − (1 − x)∆⊥
2

)
2

+M2(x)]

and

M2(x) = µ2x +M2(1 − x)2 .

As we mentioned in Section 4.5, Wigner distributions are related to Fourier
transforms of the GTMDs. One can distinguish different Wigner distributions
according to the possible spin configurations assumed by the active parton and
the parent particle. In particular, the GTMDs in (5.26)-(5.29) are connected
to the distributions describing the situation where either the bare electron or
the dressed electron are either unpolarized or polarized in the longitudinal
direction: this is achieved through the definition [28]

ρΛ,λe(x,k⊥,b⊥) =
1

2
[W[γ+]

Λ,Λ (x,k⊥,b⊥) + λeW[γ+γ5]
Λ,Λ (x,k⊥,b⊥)] , (5.33)

where W[Γ]
Λ,Λ(x,k⊥,b⊥) is given in Eq. (4.63). It is possible to decompose the

distribution in Eq. (5.33) as

ρΛ,λe =
1

2
[ρUU +ΛρLU + λeρUL +ΛλeρLL] , (5.34)

where the dependence of both sides on the argument (x,k⊥,b⊥) is understood.
In the notation used in Eq. (5.34), suffixes U and L indicate respectively unpo-
larized and longitudinally polarized dressed electron (first entry) and internal
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5.2. Wigner distributions for the dressed electron

electron (second entry). The distributions ρUL, ρLU and ρLL actually rep-
resent the distortion caused by longitudinal polarization with respect to the
unpolarized case ρUU . The following relations hold:

ρUU(x,k⊥,b⊥) = ∫
d2∆⊥
(2π)2

e−ib⊥⋅∆⊥ F1,1(x,k⊥,∆⊥) , (5.35)

ρLU(x,k⊥,b⊥) = −
1

M2
(k⊥ ×

∂

∂b⊥
)
z
∫

d2∆⊥
(2π)2

e−ib⊥⋅∆⊥ F1,4(x,k⊥,∆⊥) , (5.36)

ρUL(x,k⊥,b⊥) =
1

M2
(k⊥ ×

∂

∂b⊥
)
z
∫

d2∆⊥
(2π)2

e−ib⊥⋅∆⊥G1,1(x,k⊥,∆⊥) , (5.37)

ρLL(x,k⊥,b⊥) = ∫
d2∆⊥
(2π)2

e−ib⊥⋅∆⊥G1,4(x,k⊥,∆⊥) . (5.38)

It can be readily checked that ρLU(x,k⊥,b⊥) = ρUL(x,k⊥,b⊥) for the dressed
electron.
From a practical point of view, it turns out to be impossible to carry out
the integration analytically and obtain a closed-form expression for any of
the Wigner distributions in Eqs. (5.35) to (5.38). Nonetheless, if we further
integrate over kx and by, we obtain [28,94,96]

ρ(x, ky, bx) = ∫ dbydkx ρ(x,k⊥,b⊥) , (5.39)

whose analytical expressions can be derived explicitly. One obtains

ρUU(x, ky, bx) =
α

4π(1 − x)2
exp [−2

∣bx∣
1 − x

√
k2
y +M2(x)]

×
2M2(1 − x)2(x2 − x + 1) + (1 + x2)(2k2

y + xµ2)
k2
y +M2(x) , (5.40)

ρLU(x, ky, bx) =ρUL(x, ky, bx)

= − α(1 + x)
2π(1 − x) exp [−2

∣bx∣
1 − x

√
k2
y +M2(x)] ky sign(bx)√

k2
y +M2(x)

,

(5.41)

ρLL(x, ky, bx) =
α

4π(1 − x)2
exp [−2

∣bx∣
1 − x

√
k2
y +M2(x)]

×
2k2

y(1 + x2) + x [2M2(1 − x)2 + µ2(1 + x2)]
k2
y +M2

. (5.42)

The ky and bx variables are orthogonal in the transverse plane and thus not
constrained by Heisenberg uncertainty principle; consequently, (combinations
of) the integrated distributions (5.40)-(5.42) have the interpretation of three-
dimensional probability densities. It is clear from the analytical expressions
Eqs. (5.30) to (5.32) of the GTMDs that one can obtain ρ(x, kx, by) from
ρ(x, ky, bx) simply through the exchange (ky, bx) → (kx, by).
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5. The electron structure in light-front QED

5.2.2 Numerical results

Figure 5.1: 3D-plots of the Wigner distributions ρUU , ρLU = ρUL and ρLL (top to bottom),
integrated over the longitudinal momentum fraction from x = 0 to x = 0.9, in the bx-ky space.
The plots are in units of α

4π
and the value of the masses are M =m = 0.5 MeV and µ = 0.
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5.2. Wigner distributions for the dressed electron

Figure 5.2: 3D-plots of the combinations of Wigner distributions (ρUU ± ρLL) /2 (top to
bottom), integrated over the longitudinal momentum fraction from x = 0 to x = 0.9, in the
bx-ky space. The plots are in units of α

4π
and the value of the masses are M =m = 0.5 MeV

and µ = 0.

In Figs. 5.1 and 5.2 we report the 3D-plots plots in the ky-bx plane rela-
tive to the Wigner distributions ρUU , ρLU = ρUL, ρLL and to the combinations
(ρUU ± ρLL) /2. Since in our treatment we have excluded the end-point, we
integrate over the longitudinal momentum fraction from x = 0 to x = 0.9 to
draw the plots. Accordingly, we take µ = 0 for the photon mass.
We notice that the distribution ρUU is always positive, consistently with its in-

terpretation as a probability density. At a fixed value of the impact parameter,
the distribution appears even in the ky variable and, for bx ≠ 0, the probability
of finding the bare electron with momentum ky inside the dressed electron has
a maximum at a certain value of ∣ky ∣. As ∣bx∣ grows, the value of the maximum
decreases in magnitude and its position shifts from from ∣ky ∣ = ∞ to ky = 0.
At bx = 0, the ky profile exhibits a minimum for ky = 0 and then reaches an
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5. The electron structure in light-front QED

asymptotic limit for growing ∣bx∣. On the other hand, at a fixed value ky of
momentum, the probability of finding the unpolarized bare electron inside the
unpolarized dressed electron at a distance bx from the center of transverse mo-
mentum has a maximum in bx = 0 and goes monotonically to zero as we move
towards the periphery of the electron cloud, the fall-off becoming steeper as
∣ky ∣ grows. The same behavior is observed also for ρLL as a function of (ky, bx);
the difference between the two is in fact too small to be appreciated by eye.
Contrary to ρUU and ρLL, the distribution ρLU = ρUL assumes also negative
values. We stress again, however, that ρLU , as well as ρUL and ρLL, represent
only the distortions with respect to ρUU caused by longitudinal polarization;
therefore only the combinations (ρUU ± ρLU) /2 and (ρUU ± ρLL) /2 must be
positive, in agreement with their interpretation as probability densities. This
is indeed what we find, as one can readily recognize by comparing the scales
of the two plots in Fig. 5.1.
The combinations (ρUU ± ρLL) /2 describe the probability distributions relative
to the cases where the spin of the internal electron is, respectively, aligned and
antialigned with the spin of the dressed electron. We note that the probability
of having the spins antialigned shows an opposite behavior with respect to the
aligned case, reaching a maximum for bx = ky = 0 and decreasing monotoni-
cally in both directions. By comparing the scales of the two plots we also see
that the antialigned configuration is suppressed with respect to the aligned one.

Distributions in mixed position and momentum space in the x-y plane
provide us information about orbital angular momentum of the dressed electron
polarized in the z-direction. More precisely, the average contribution of the
internal electron to OAM is given by [28]

lz = ∫ dxd2k⊥ d2b⊥ (b⊥ × k⊥) [ρUU(x,k⊥,b⊥) + ρLU(x,k⊥,b⊥)] . (5.43)

Symmetry of ρUU with respect to the origin, both in the bx and in the ky
direction, implies that the bare electron’s contribution to OAM is zero in the
unpolarized case:

∫ dxd2k⊥ d2b⊥ (b⊥ × k⊥)ρUU(x,k⊥,b⊥) = 0 . (5.44)

On the contrary, the distribution ρLU(ky, bx) is an odd function with respect
to both variables and thus gives a non-vanishing contribution to the parent
electron’s OAM, that can be evaluated as [28,98]:

lz = −∫ dxd2k⊥
k2⊥
M2

F1,4(x,k⊥,0⊥) . (5.45)

Finally, we compare our results with the existing literature. We find that
the analytical expression for ρUU(x, bx, ky) in Eq. (5.40) does not match the
one reported by Miller in Ref. [94], although they show a similar behavior. The
reason is that in Ref. [94] a longitudinal-polarization degree of freedom for the
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ΦS(k; P ) =

P, S

k

P − k P − k P, S

k

∆

k + ∆

∆

k + ∆

(a)

P, S

k

P − k P − k P, S

k

(b)

Figure 5.3: Diagrammatic representation of the correlator for the dressed electron ΦS(k;P )

(a) and QED handbag diagram (b).

massive photon is also included, giving origin to an additional contribution
from the corresponding LFWFs. More recently, Kumar and Mondal [96] also
produced plots of the Wigner distributions for the electron in the mixed space.
Their results do not seem to be compatible with ours, as for the behavior of the
considered distributions is concerned. We refrain from guessing the possible
source of the discrepancies, as Ref. [96] does not provide enough details about
the derivation of the plots that are necessary for a proper comparison.

5.3 TMDs for the dressed electron

In this Section we present the leading-twist Transverse-Momentum Dependent
distribution functions for the electron-photon system. In an effort to provide a
treatment that is as complete as possible, we derive analytical expressions for
the TMDs by means of two different techniques: the diagrammatic approach
with QED Feynman rules, both in light-cone gauge and Feynman gauge, and
the Light-Front Wave Function overlap representation. The contribution com-
ing from the Wilson line becomes crucial as we compare two different gauges.
We thus illustrate in details how to account for it, with particular emphasis on
the role of the transverse gauge link, defined in Eq. (4.12). Finally, we give a
brief description of the TMDs relative to the internal photon. Our discussion
mainly follows Refs. [99,100].

5.3.1 General framework

As shown in Section 4.3, TMDs parametrize the transverse-momentum depen-
dent correlator (4.23), that we report here in the spin basis for the dressed
electron3:

ΦS(x,k⊥;P ) = ∫
dz−d2z⊥
(2π)3

eik⋅z⟨eD;P,S∣ψ̄(0)ψ(z)∣eD;P,S⟩∣
z+=0

= ∫ dk−ΦS(k;P ) . (5.46)

3Here we denote the momentum of the states appearing in the correlator with p = p′ = P .
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(a) (b) (c)

(d) (e) (f)

Figure 5.4: Contributions to the correlator at order α and up to second order in the
gauge link. Notice that also the Hermitian conjugates of each diagram should be taken into
account.

In analogy with the QCD case, the correlator (5.46) has the diagrammatic
representation shown in Fig. 5.3 (a), corresponding to the “lower part” of the
handbag diagram in Fig. 5.3 (b).
The QED Lagrangian (3.3) is invariant under the following local transformation
of the fields:

ψ(z) → eieα(z)ψ(z) , Aµ(z) → Aµ(z) + ∂µα(z) . (5.47)

Gauge-invariance of the correlator is therefore guaranteed by the insertion of
a guage-link operator U(0,z), as defined in Eq. (4.10) with g = −e; accordingly,
we rewrite

ΦS(x,k⊥;P ) = ∫
dz−d2z⊥
(2π)3

eik⋅z⟨eD;P,S∣ψ̄(0)U(0,z)ψ(z)∣eD;P,S⟩∣
z+=0

. (5.48)

Hereafter we will consider a future-pointing Wilson line U(0,z) = U(0,+∞)U(+∞,z)
[see Eqs. (4.14) and (4.15)]. From a physical point of view, this choice allows
one to take into account the so-called final-state interactions, i.e. the (infinitely
many, in principle) photons that can be emitted and re-absorbed by the out-
going particles in a SIDIS process [57, 101, 102]. The situation is represented
diagrammatically in Fig. 5.4, where we show the order-α contributions to the
handbag diagram (and consequently to the correlator) in presence of the gauge
link. Similarly, a past-pointing Wilson line would be needed when considering
a Drell-Yan process, so as to account for the initial-state interactions involving
the incoming particles.
Diagrams (a) and (b) in Fig. 5.4 are actually of zeroth order in the gauge link,
as they refer, respectively, to the handbag diagram already shown in Fig. 5.3
and to the correction due to the self-energy of the internal electron; diagrams
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(c) and (d) contain one gauge photon and they are hence described using the
first-order approximation of the Wilson line in the coupling constant e, while
(e) and (f) are of second order in the expansion of the gauge link. Diagram (d),
in particular, accounts for the virtual vertex correction; along with diagram
(b) it will hence contribute only at the end point x = 1, k⊥ = 0⊥. Consistently
with what we did in the case of GTMDs, we exclude the end-point from our
analysis and hence neglect diagrams (b) and (d). Diagrams (e) and (f) are
proportional to n2− [with nµ− = (0,1,0⊥)] and can thus be discarded as well, as
long as we take the direction of the gauge link off the light front. Nevertheless,
we remark here that a proper definition of TMDs must deal also with the end
points and the occurrence of infrared and rapidity divergences, which can be
regularized, e.g., by taking n− to be off the light cone. These are critical issues
in proving factorization theorems and introducing well-defined TMDs, both
for QCD and for QED. Careful investigations of these issues can be found in
several papers and books (see e.g. [48,103–109]).
Note that, contrarily to QCD, we can evaluate the correlator analytically ei-
ther by adopting the usual Feynman rules obtained in standard perturbation
theory, or via the overlap representation in terms of the QED LFWFs (5.15)
to (5.18).

5.3.2 TMDs in Feynman gauge

We derive analytical expressions for the TMDs of the bare electron inside the
dressed electron by working in the covariant Feynman gauge (see Section 3.2).
Hereafter we assume, for simplicity, M =m for the masses of the physical and
bare electron and µ = 0 for the internal photon.
We first focus on the gauge-link structure. In Feynman gauge the boundary
condition A⊥(∞) = 0⊥ is assumed for the transverse components of the gauge
field at infinity, implying that the transverse gauge link reduces to the identity
in this gauge. On the other hand, the longitudinal gauge link is non-trivial,
unlike in the light-cone gauge case: this means that we need to add also the
contribution from diagram (c) in Fig. 5.4 (along with its Hermitian conjugate)
to our calculation. The situation is summarized in Fig. 5.5.

Let us focus first on the contribution of diagram (a) in Fig. 5.5, whose
amplitude can be written as

∣M∣2 = 1

(2π)3
δ ((P − k)2) δ ((k +∆)2 −m2)M low

ij Mup
ji . (5.49)

The notation used in Eq. (5.49), where we re-introduced Dirac indices explic-
itly, indicates that we can factor out the transition matrix corresponding to

75



5. The electron structure in light-front QED
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Figure 5.5: Handbag diagrams contributing to TMDs in Feynman gauge at order α and
for x ≠ 1, k⊥ ≠ 0⊥.

the “upper part” of the handbag diagram4, given by

Mup
ij = e2(/ε∗λv(∆)(/k + /∆ +m)/ελv(∆))

ij
, (5.50)

λv being the polarization of the virtual photon, from the one corresponding to
the “lower part”, namely

Mlow
ij = e2ūS,k(P )(γν

/k +m
k2 −m2 − iε)

kj

dµν(P − k)( /k +m
k2 −m2 + iεγµ)

il

uS,l(P ) .

(5.51)
In Eq. (5.51) we take

dµν(p) = ∑
λγ

εµ∗λγ(p)ε
ν
λγ

(p) = −gµν (5.52)

in Feynman gauge, as in Eq. (3.9). The unintegrated correlator appearing in
the second line of Eq. (5.46) is then related to the transition matrix of the
lower part through

[ΦS]ij (k;P ) = 1

(2π)3
δ ((P − k)2)Mlow

ij . (5.53)

The on-shell condition is equivalent to

δ ((P − k)2) = 1

2(P − k)+ δ (k
− − P − + k2⊥

2(P − k)+) , (5.54)

4In the context of QED we refrain from using the QCD nomenclature of “hard” and “soft”
parts of the scattering process, since it is not possible to distinguish between a perturbative
and non-perturbative part.
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with P − = m2/(2P +) in the reference frame where P⊥ = 0⊥. By integrating
over k− and projecting with different Dirac matrices Γ, we finally recover the
contribution of diagram (a) in Fig. 5.5 for all TMDs. Here we take as an
example the distribution f e1(x,k⊥) relative to an unpolarized bare electron in
an unpolarized dressed electron5; accordingly, we consider the trace of the
correlator (5.53) multiplied by Γ = γ+ (with a factor 1/2) and average over the
initial-state (respectively, sum over the final-state) spin configurations. As a
result, we obtain:

fa1 (x,k2
⊥) =∑

S
∫ dk−

1

8(2π)3(P − k)+ δ (k
− − P − + k2⊥

2(P − k)+)

× (−e2)
(k2 −m2)2

[ūS(P )γµ(/k +m)γ+(/k +m)γµuS(P )]

= 1

(2π)3
[k

2⊥ +m2(1 − 4x + x2)
x

]φ2(x,k2
⊥) , (5.55)

where φ(x,k⊥) is the same as in Eq. (5.10) with M =m and µ = 0. In Eq. (5.55)
we dropped the imaginary part of the fermion propagator since the internal
electron cannot be on-shell.

The evaluation of the contribution from diagrams (b) and (c) of Fig. 5.5
can be performed in a similar fashion, except for what concerns the separation
of the handbag diagram into its upper and lower part.
The amplitude of diagram (b) is

∣M∣2 = − e4 δ (l2) δ ((k +∆)2 −m2) ūS(k + l)γνgµν
/k +m

k2 −m2 − iε

× /ε∗λv(∆)(/k + /∆ +m)γµ
/k + /∆ + /l +m

(k +∆ + l)2 −m2 + iε/ελv(∆)uS(k + l) . (5.56)

Notice that the transition-matrix term in Eq. (5.50) cannot be factored out,
due to the presence of a Dirac structure in the propagator of the electron with
momentum k + l + ∆. We can overcome this issue by applying the so-called
eikonal approximation [55, 103], which consists in considering as relevant only
the “-” component of the momentum of the electron after interaction with the
virtual photon; moreover, it is assumed that the emission or the absorption of a
“soft” photon, with small momentum l, does not alter the fermion momentum.
This requirements are summarized in the following conditions:

(k +∆ + l)− ≫ (k +∆ + l)+ , (k +∆ + l)− ≫ ki,⊥ +∆i,⊥ + li,⊥ ,
(k +∆ + l)− ≫m , (k +∆)− ≫ l− . (5.57)

5Here and in the following, we append the superscript “e” to indicate the TMDs of the
internal electron.
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Along with the on-shell relations (k +∆)2 =m2 and l2 = 0, Eq. (5.57) allow us
to rewrite the propagator of the struck electron as

/k + /∆ + /l +m
(k +∆ + l)2 −m2 + iε ≃

(k +∆)−γ+
2(k +∆)−l+ + iε =

γ+

2l+ + iε′ , (5.58)

where
ε′ = ε

(k +∆)−
is still positive, since k + ∆ is the momentum of the outgoing electron. The
sign of the imaginary part in the eikonal propagator (5.58) actually depends
on the considered processes; we refer to Appendix B.3 for a brief treatment of
the Drell-Yan case. The numerator of the amplitude (5.56) now contains the
Dirac structure

γµ(/k + /∆+m)γµγ+ ≃ (k +∆)−γµγ+γµγ+ = 2γµg
µ−(k +∆)−γ+ ≃ 2γ+(/k + /∆+m) ,

(5.59)
where in the first and last steps we applied the eikonal approximation. As a
result, the amplitude (5.56) finally becomes

∣M∣2 = − e4δ (l2) δ ((k +∆)2 −m2)

× ūS(P )gµ− γµ
l+ + iε

/k +m
k2 −m2 − iε/ε

∗
λ(∆)(/k + /∆ +m)/ελ(∆)uS(P ) , (5.60)

and we can factor out the transition matrix related to the correlator, that reads

Mlow
ij = − e2

l+ + iεg
µνn−µ ūS,k(P )(γν

/k +m
k2 −m2 − iε)

kj

uS,i(P ) . (5.61)

The imaginary part in the fermion propagator can be discarded with the same
argument discussed for the contribution of diagram (a). As far as the denom-
inator of the photon propagator is concerned, we have

1

l+ + iε =
1

l+
− iπδ(l+) . (5.62)

The second term on the right-hand side is however canceled by an opposite
contribution coming from diagram (c), where the photon vertex appears on
the other side of the cut.

The separation of the handbag diagram into its upper and lower parts
through the eikonal approximation has the diagrammatic representation shown
in Fig. 5.6, where we introduce a new representation for the Feynman rules
related to the eikonal propagator, illustrated in Fig. 5.7. It is easy to check
that the lower diagram on the right-hand side of Fig. 5.6 yields the transition
matrix (5.61).
The resulting contributions from diagrams (b) and (c) to the TMD f1(x,k⊥)
turn out to be:

f b1(x,k⊥) = f c1(x,k⊥) =
1

(2π)3
[k

2⊥ +m2(1 − x)2

(1 − x)2
] ϕ2(x,k⊥) . (5.63)
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=

Figure 5.6: Handbag diagram with a photon loop separated into its upper and lower part,
the latter corresponding to the correlator. The two factorized subdiagrams are meant to be
“attached” by joining crosses with crosses and circles with circles.

l
=

i

l+ + iε
l, λ

= −ienµε
µ∗
λ (l)= i

l+ + iε ,
l

= −ienµ−.

Figure 5.7: Feynman rules for the eikonal propagator (left) and vertex (right), when
appearing on the left-hand side of cut diagrams. Notice that the momentum flowing in the
propagator is equal to the momentum of the photon attached to vertex.

If we sum the contributions in Eqs. (5.55) and (5.63), the final expression for
the TMD f e1(x,k⊥) is:

f e1(x,k⊥) =
φ2(x,k⊥)
(2π)3

[(1 + x
2)k2⊥ +m2(1 − x)4

x(1 − x)2
] . (5.64)

One can readily check that f e1(x,k⊥) = F1,1(x,k⊥,0⊥) by comparison of Eqs. (5.30)
and (5.64), in agreement with the ∆→ 0 limit of GTMDs pictured in Fig. 4.3.
The same procedure yields for the remaining leading-twist TMDs6:

ge1L(x,k⊥) =
1

(2π)3
[k2⊥(1 + x2) −m2(1 − x)4

x(1 − x)2
]ϕ2(x,k2

⊥), (5.65)

ge1T (x,k2
⊥) = −

2m2

(2π)3
ϕ2(x,k2

⊥) , (5.66)

h⊥e1L(x,k2
⊥) =

2m2

(2π)3x
ϕ2(x,k2

⊥) , (5.67)

h⊥e1T (x,k2
⊥) = 0 , (5.68)

he1(x,k2
⊥) =

2

(2π)3

k2⊥
(1 − x)2

ϕ2(x,k2
⊥) , (5.69)

h⊥e1 (x,k2
⊥) = f⊥e1T (x,k2

⊥) = 0 . (5.70)

Note, in particular, that the T-odd TMDs f⊥e1T and h⊥e1 are identically van-
ishing. This is in contrast with respect to what happens in QCD, where the
Sivers [74] and Boer-Mulders [73] effects occur. This discrepancy between the

6In Appendix B.2 we report also, for each leading-twist TMD, the separated contributions
from the three diagrams in Fig. 5.5.
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Figure 5.8: QCD handbag diagram with a gauge-photon loop at one side of the cut.

two theories is due to the fact that only diagrams with a gauge-boson loop
at one side of the cut can potentially give a non-zero contribution to T-odd
TMDs [101], as shown in Fig. 5.8 for the QCD handbag diagram. In our model
for the electron, since the gauge photon cannot couple to the the “remnant”
(that is a photon itself), only diagrams (b) and (d) of Fig. 5.4 contain such
loops, but they vanish for x ≠ 1, k⊥ ≠ 0⊥. This holds true at least up to order
α2, whereas at higher orders it could be possible, in principle, to link the gauge
photon by inserting fermion loops in the remnant. We will further comment
on this in Section 5.4

5.3.3 TMDs in light-cone gauge

We now check that the same results that we found in the Feynman gauge are
recovered also in the light-cone gauge. We will adopt both the diagrammatic
approach and the formalism of light-front quantization, thus obtaining an over-
lap representation of TMDs in terms of LFWFs.

We already remarked that the longitudinal gauge link is trivial in the light-
cone gauge. For the moment we also neglect the contribution coming from
the transverse gauge link, that we will study separately later. Therefore, the
expression we should start with is the correlator in Eq. (5.46). An effective
way to derive explicit expressions for the TMDs is to represent the correlator in
the basis where we consider the light-front helicity of both the dressed and the
internal electron, and we treat them symmetrically. We can therefore define
the light-front helicity amplitudes [70]:

ΦΛ′,λ′e;Λ,λe(x,k⊥) =
1

N
⟨eD;P,Λ′∣b†λ′e(x,k⊥)bλe(x,k⊥)∣eD;P,Λ⟩ , (5.71)

where λe, λ′e are the light-front helicities of the internal electron in the initial
and final state, respectively and

N = [2(2π)3]2xδ(3)(0) .
By inserting in Eq. (5.71) the Fock-state expansion (5.2), we obtain the fol-
lowing overlap representation of the correlator:

ΦΛ′,λ′e;Λ,λe(x,k⊥) =
1

2(2π)3∑
λγ

ΨΛ′ ∗
λ′e,λγ(x,k⊥)Ψ

Λ
λe,λγ

(x,k⊥) . (5.72)
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The light-front helicity amplitudes are parametrized by the following combi-
nations of TMDs [70,110]:

Φ =

⎛
⎜⎜⎜⎜⎜
⎝

1
2(f e1 + ge1L) − kR

2m(ih⊥e1 − h⊥e1L)
kL
2m(if⊥e1T + ge1T ) he1

kL
2m(ih⊥e1 + h⊥e1L) 1

2(f e1 − ge1L)
k2L

2m2h⊥e1T
kL
2m(if⊥e1T − ge1T )

− kR
2m(if⊥ e1T − ge1T )

k2R
2m2h⊥e1T

1
2(f e1 − ge1L) − kR

2m(ih⊥e1 + h⊥e1L)
he1 − kR

2m(if⊥e1T + ge1T )
kL
2m(ih⊥e1 − h⊥e1L) 1

2(f e1 + ge1L) ,

⎞
⎟⎟⎟⎟⎟
⎠

(5.73)
where the row entries are (Λ′, λ′e) = (++), (+−), (−+), (−−), while the column
entries are (Λ, λe) = (++), (+−), (−+), (−−). The resulting LFWF overlap
representation of the T-even TMDs is:

f e1(x,k2
⊥) =

1

4(2π)3 ∑
Λ,λe,λγ

∣ΨΛ
λe,λγ

(x,k⊥)∣2

= 1

2(2π)3
[∣Ψ+

+,+1(x,k⊥)∣2 + ∣Ψ+
+,−1(x,k⊥)∣2 + ∣Ψ+

−,+1(x,k⊥)∣2] ,

(5.74)

ge1L(x,k2
⊥) =

1

2(2π)3
[∣Ψ+

+,+1(x,k⊥)∣2 + ∣Ψ+
+,−1(x,k⊥)∣2 − ∣Ψ+

−,+1(x,k⊥)∣2] , (5.75)

ge1T (x,k2
⊥) =

m

4(2π)3k2⊥
∑
λγ

[kR Ψ+ ∗
+,λγ(x,k⊥)Ψ

−
+,λγ(x,k⊥)

+kL Ψ− ∗
+,λγ(x,k⊥)Ψ

+
+,λγ(x,k⊥)] , (5.76)

h⊥e1L(x,k2
⊥) =

m

2(2π)3k2⊥
∑
λγ

[kR Ψ+ ∗
−,λγ(x,k⊥)Ψ

+
+,λγ(x,k⊥)

+kL Ψ+ ∗
+,λγ(x,k⊥)Ψ

+
−,λγ(x,k⊥)] , (5.77)

h⊥e1T (x,k2
⊥) =

m2

2(2π)3k2⊥
∑
λγ

[k2
R Ψ+ ∗

−,λγ(x,k⊥)Ψ
−
+,λγ(x,k⊥)

+k2
L Ψ− ∗

+,λγ(x,k⊥)Ψ
+
−,λγ(x,k⊥)] , (5.78)

he1(x,k2
⊥) =

1

2(2π)3
[Ψ+ ∗

+,+1(x,k⊥)Ψ−
−,+1(x,k⊥) +Ψ+ ∗

+,−1(x,k⊥)Ψ−
−,−1(x,k⊥)] .

(5.79)

The analytic results found by inserting the explicit expressions (5.15)-(5.18) of
the LFWFs indeed coincide with the results (5.64)-(5.70) obtained in Feynman
gauge.
As already mentioned in Section 2.4.3, the LFWFs are eigenstates of the to-
tal light-front helicity of the partons Λeγ = λe + λγ and of the total OAM
Lz = Λ − Λeγ. For the two-body LFWFs of the electron, one can have only
Lz = 0, and Lz = ±1. They are commonly labeled as S and P waves, respec-
tively, although this is an abuse of language as partial waves should refer to
L and not Lz. The LFWF overlap representation in Eqs. (5.74) to (5.79) al-
lows one to disclose the different contributions to the TMDs from the spin
and OAM configurations of the partons. In particular, f e1 , ge1L and he1 are all
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5. The electron structure in light-front QED

diagonal in the OAM, while the remaining TMDs contain different interfer-
ence terms between S and P waves, and therefore involve a transfer of OAM
between the initial and final electron states. The interplay between the differ-
ent partial waves in the TMDs will be discussed in more detail in Section 5.3.6.

It is useful to analyze the diagrammatic approach in light-cone gauge also,
in order to explicitly enlighten the gauge invariance of TMDs. Since we are
disregarding the contributions from the gauge link, we need to take into ac-
count only diagram (a) in Fig. 5.5. Instead of the photon propagator (5.52) in
Feynman gauge, however, we have to use the two-term propagator (3.36) that
we already introduced in Section 3.3.1 and that we report here7:

dµν(p) = ∑
λγ=1,2

εµ∗λγ(p)ε
ν
λγ

(p) = −gµν + 1

p+
(pνnµ− + pµnν−) . (5.80)

If we insert Eq. (5.80) into Eq. (5.51), we get three contributions for the lower
part of the diagram:

Mlow ≡ A +B +C ,

with

A = −e2ūS(P )γµ
/k +m

k2 −m2 − iε
/k +m

k2 −m2 + iεγ
µuS(P ) , (5.81)

B = e2

(P − k)+ ūS(P )γ+ /k +m
k2 −m2 − iε

/k +m
k2 −m2 + iε(

/P − /k)uS(P ) , (5.82)

C = e2

(P − k)+ ūS(P )( /P − /k) /k +m
k2 −m2 − iε

/k +m
k2 −m2 + iεγ

+uS(P ) . (5.83)

It is now easy to recognize that the term A is equivalent to the contribution of
Eq. (5.51) evaluated in the Feynman gauge. Let us focus on the B term: by
using the Dirac equation ( /P −m)uS(P ) = 0, we can rewrite

/k +m
k2 −m2

( /P − /k)uS(P ) = /k +m
k2 −m2

(m − /k)uS(P ) = −uS(P ) .

Hence we find that term B, which comes from the extra term in the polarization
sum in light-cone gauge, actually coincides with the contribution of Eq. (5.61),
treated with the eikonal approximation. The same applies also to term C,
which in turn corresponds to diagram (c) of Fig. 5.5 in Feynman gauge after
eikonal approximation. We can also easily check that the term of the correlator
that is related to diagram (b) and (c) of Fig. 5.5 are actually vanishing in the
light-cone gauge. If we still use the eikonal approximation, but substitute the
polarization-vector sum in light-cone gauge in (5.61), the latter becomes:

Mlow = − e2

(P − k)+ + iε ūS(P )γν [−gµν +
(P − k)µnν− + (P − k)νnµ−

(P − k)+ ]

7In this case we are considering a real, on-shell photon; we hence sum over the transverse
degrees of freedom, omitting the term proportional to p2 = 0, like we did in (3.36).
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× /k +m
k2 −m2 − iεn−µuS(P ) , (5.84)

which contains the Dirac structure

−γ+ + 1

(P − k)+γµn
µ
−(P − k)νn−ν +

1

(P − k)+ (
/P − /k)n2

− = 0 .

5.3.4 Transverse gauge link

In the previous sections we performed the derivation of the TMDs for the elec-
tron, first in Feynman gauge including the contribution from the longitudinal
gauge link, then in light-cone gauge but neglecting the Wilson line. As a re-
sult, we found perfect agreement between the two gauges, as expected in a
gauge-invariant theory; however, we did not include the transverse gauge link
in the the light-cone gauge evaluation. The latter does have an important role
in taking into account the final-state interactions when working in light-cone
gauge, as it was noticed by Ji et al. in Refs. [102, 111]. The reason why the
equivalence still holds is that the contribution of the transverse gauge link
shows up only at x = 1. Even though we have so far excluded the end-point
from our analysis, we find it illustrative to discuss the role of the transverse
gauge link in the context of QED.

Let us go back to the diagrams contributing to the TMD correlator, shown
in Fig. 5.5. We observe that, according to the cut-diagram rules, the four-
momentum of the intermediate photon must be integrated over. When we use
the sum over the polarization vectors in light-cone gauge given in Eq. (5.80),
then, we should actually regularize the singularity due to the p+ factor in the
denominator. In practice, this can be done in three different ways, i.e. by
choosing among the following prescriptions for the regularization:

Retarded ∶ 1

p+
Ð→ 1

p+ + iε , (5.85)

Advanced ∶ 1

p+
Ð→ 1

p+ − iε , (5.86)

Principal value ∶ 1

p+
Ð→ 1

2
[ 1

p+ + iε +
1

p+ − iε] . (5.87)

Physical results must not depend on the choice of a specific prescription and
must also coincide with their counterparts in Feynman gauge, where the prob-
lem of regularizing the denominators does not arise and the transverse gauge
link does not contribute. Nonetheless, if we come back to our evaluation of the
TMD f e1(x,k2⊥) from Feynman diagrams, we can quickly check that it is not
the case if we do not include the contribution from the transverse gauge link
at infinity.
Let us first take the retarded prescription as an example: if we make the
replacement (5.85) in Eq. (5.80) and then put the latter in the amplitude
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Eq. (5.51), term A in Eq. (5.81) would be unchanged, whereas terms B and C
in (5.82) and (5.83) would be modified into

B = e2

(P − k)+ + iε ūS(P )γ+ /k +m
k2 −m2 − iε

/k +m
k2 −m2 + iε(

/P − /k)uS(P ) , (5.88)

and similarly for C. We rewrite

1

(P − k)+ + iε = P.V.( 1

(P − k)+) − iπδ ((P − k)+) . (5.89)

This leads us to the final result for the TMD f e1 (including all three terms):

f ret
1 (x,k2

⊥) =
1

(2π)3
[k2
⊥
(1 + x2)
x(1 − x)2

+m2 (1 − x)2

x
]ϕ2(x,k2

⊥)

− i

(2π)2
[ k

2⊥
1 − x +m

2(1 − x)]ϕ2(x,k2
⊥) δ(1 − x)

=f e1(x,k2
⊥) − i

e2

(2π)2

1

k2⊥
δ(1 − x) . (5.90)

Similarly, we obtain for the advanced prescription:

f adv
1 (x,k2

⊥) = f e1(x,k2
⊥) + i

e2

(2π)2

1

k2⊥
δ(1 − x) . (5.91)

In the principal-value prescription, instead, the denominators of B and C
remain unchanged since

1

2
[ 1

p+ + iε +
1

p+ − iε] =
1

2
[P.V.( 1

p+
) − iπδ(p+) +P.V.( 1

p+
) + iπδ(p+)] = 1

p+

and hence the final result coincides with the one found in Feynman gauge:

fpv
1 (x,k2

⊥) = f e1(x,k2
⊥) . (5.92)

We expect all results to be the same when adding also the transverse gauge-link
contribution. In order to prove it, we perform a straightforward evaluation of
the correlator (5.48) in light-cone gauge, by means of the Fock-state expansion
(5.2). We can restrict immediately to the case of f e1(x,k⊥) and consider the
diagonal matrix element of the electron current between light-front helicity
states in the correlator:

Φ
[γ+]
Λ (x,k⊥) = ∫

dz−d2z⊥
2(2π)3

eik⋅z ⟨P,Λ∣ψ̄(0)γ+U(0,∞)U(∞,z)ψ(z)∣P,Λ⟩∣
z+=0

.

(5.93)
We approximate the Wilson line at first order in e as

U(0,∞)U(∞,z) ≃ 1 + ie∫
z⊥

0⊥
dξ⊥ ⋅A⊥(0,∞,ξ⊥) = 1 + ie∫

1

0
dtA⊥(0,∞, tz⊥) ⋅ z⊥ .

(5.94)
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We neglect the identity in (5.94) and focus on the gauge-link terms. If we insert
the Fock expansion (5.2), the correlator splits into the sum of four contribu-
tions. However, the term containing the gauge link between two ∣eγ⟩ states
is vanishing, because the photon coming from the final- (or initial-) state in-
teraction cannot couple to the spectator photon. The term with the gauge
link between one-particle states, instead, accounts for the virtual-vertex and
self-energy corrections. The only relevant contributions will then come from
the terms where the matrix element is between the states ∣e⟩ and ∣eγ⟩; in this
situation, the gauge photon which interacts with the bare particle in the initial
(or final) state coincides with the photon in the dressed electron. Therefore,
we are left with the following two terms, contributing to the correlator:

I = ie∫
dz−d2z⊥
2(2π)3

eik⋅z ⟨e∣ψ̄(0)γ+ (∫
1

0
dtA⊥(0,∞, tz⊥) ⋅ z⊥)ψ(z)∣eγ⟩∣

z+=0

,

(5.95)

II = ie∫
dz−d2z⊥
2(2π)3

eik⋅z ⟨eγ∣ψ̄(0)γ+ (∫
1

0
dtA⊥(0,∞, tz⊥) ⋅ z⊥)ψ(z)∣e⟩∣

z+=0

.

(5.96)
After some manipulations and by resolving the integral over t, the contribution
of I to f e1 can be split into two terms, I = IA + IB, with

IA = − e
2 ∫

dz−d2z⊥
2(2π)3 ∫

dx′d2k′⊥
2(2π)3

√
x′(1 − x′)

ei(k−pe)⋅ze−ip
+
γ∞

× ∑
Λ,λe,λγ

ελγ ,⊥(pγ) ⋅ z⊥
pγ,⊥ ⋅ z⊥

ūΛ(P )γ+uλe(pe)ΨΛ
λe,λγ

(x′,k′⊥)∣
z+=0

, (5.97)

IB =e
2 ∫

dz−d2z⊥
2(2π)3 ∫

dx′d2k′⊥
2(2π)3

√
x′(1 − x′)

ei(k−pe)⋅ze−ip
+
γ∞eipγ ⋅z⊥

× ∑
Λ,λe,λγ

ελγ ,⊥(pγ) ⋅ z⊥
pγ,⊥ ⋅ z⊥

ūΛ(P )γ+uλe(pe)ΨΛ
λe,λγ

(x′,k′⊥)∣
z+=0

, (5.98)

where pe = (x′P +,k′⊥) and pγ = ((1 − x′)P +,−k′⊥). The sum appearing in the
second line of Eqs. (5.97) and (5.98) is

∑
Λ,λ,λγ

ūΛ(P )γ+uλe(pe)ΨΛ
λe,λγ

(x′,k′⊥)
ελγ ,⊥(pγ) ⋅ z⊥
pγ,⊥ ⋅ z⊥

= 4P + (1 + 2
x′

1 − x′) . (5.99)

Equation (5.97) consequently becomes

IA = − 2eP +∫
dz−d2z⊥
2(2π)3 ∫

dx′d2k′⊥
2(2π)3

√
x′(1 − x′)

ei(k−pe)⋅z

× (e−i∞p+γ + 2x′P + e
−i∞p+γ

p+γ
)ϕ(x′,k′2⊥ )∣

z+=0

. (5.100)
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We can handle the exponential at infinity appearing in the term in brackets in
Eq. (5.100) in the sense of principal-value distributions [102,111], and write

e−i∞p
+
γ

p+γ
≡ lim
L→∞

e−iLp
+
γ

p+γ
= 2πiχδ(p+γ) , (5.101)

where χ is a constant that takes different values, according to the prescription
that we adopt for the denominator:

χ =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−1 Retarded ,

0 Advanced ,

−1
2 Principal value .

(5.102)

Still in the sense of principal-value distribution, we have

e−i∞p
+
γ = 0 , (5.103)

which allows us to drop the first term in the bracket of (5.100). Note that this
term comes from the −gµν in the polarization sum, which appears in Feynman
gauge also; Eq. (5.103) is then consistent with the fact that the transverse
gauge link does not contribute in the Feynman gauge.

Now we can easily perform the integration over z−, z⊥, x′ and k′⊥; we finally
obtain

IA = − iχe2

(2π)2

x

[(1 − x)m2 + k2⊥]
δ(1 − x) = ie2

(2π)2

χ

k2⊥
δ(1 − x) . (5.104)

Let us now focus on term IB, which is rewritten as

IB = −eP +2

∫
dz−d2z⊥
(2π)3 ∫

dx′d2k′⊥
(2π)3

√
x′(1 − x′)

ei(k−pe)⋅z
e−i∞p

+
γ

p+γ
x′ϕ(x′,k′2⊥ )∣

z+=0

.

(5.105)
We notice that in any prescription (except for the advanced, where it is van-
ishing), it would become proportional to δ(1 − x), thanks to Eq. (5.101); fur-
thermore, the integral over ξ2⊥ would now yield a δ(2)(k⊥). We can henceforth
conclude that this term would be relevant only at the end point (x = 1,k⊥ = 0⊥),
and for this reason we neglect it in our discussion.

Term II in Eq. (5.96) can be handled in a similar fashion: it can in turn be
split into the sum of two contributions, of which the first one becomes relevant
only at the end point, while the second one reads

IIA = − eP +

(2π)3 ∫ dx′
x′√

x′(1 − x′)
ei∞p

+
γ

p+γ
ϕ(x′,k2

⊥)δ(1 − x) . (5.106)

In the sense of principal-value distribution, also in the above equation we can
write

ei∞p
+
γ

p+γ
= 2πiζδ(p+γ) , (5.107)
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where in this case, according to the different prescriptions, the constant ζ takes
the values

ζ =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 Retarded ,

1 Advanced ,
1
2 Principal value .

(5.108)

We now need to fix a prescription in order to proceed further. In the retarded
prescription, IIA is vanishing while IA becomes, from (5.104),

IA = ie2

(2π)2

1

k2⊥
δ(1 − x) . (5.109)

If we were to fix the advanced prescription, instead, we would find that IA is
zero, while IIA would read

IIA = −ieP +

(2π)2 ∫ dx′
x′

[(1 − x′)2m2 + k2⊥]
δ(1 − x′)
P + δ(1 − x) = − ie

(2π)2

1

k2⊥
δ(1 − x) .

(5.110)
Finally, in the principal-value prescription the sum of IA and IIA gives zero.

We may summarize our results by stating that the contribution of the
transverse gauge link to the TMD f e1(x,k2⊥), in the different prescriptions, is

Retarded:
ie2

(2π)2

1

k2⊥
δ(1 − x) ,

Advanced: − ie2

(2π)2

1

k2⊥
δ(1 − x) ,

Principal value: 0 . (5.111)

We remark that this is not what one usually finds in the case of the nucleon
(see e.g. [12]), since the retarded prescription is the one corresponding to hav-
ing A⊥(∞) = 0⊥ and hence the transverse gauge link should vanish in that
prescription. However, we stress that in the present discussion we have not
taken into account all the corrections to the distributions at the end point
x = 1, and this might explain the discrepancy with the existing calculations in
QCD.
If we compare the contributions in Eq. (5.111) to the values (5.90), (5.91)
and (5.92) of the TMD f e1 in the corresponding prescriptions, we see that the
transverse gauge link allows one to compensate exactly for the extra terms that
come from specific choices for the regularization of the pole. We thus recover
the same results obtained in the Feynman gauge.

5.3.5 Photon TMDs

Although in the present work we have been focusing only on the distribution
functions relative to quarks inside the nucleon (and, accordingly, to the bare
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P P

k k

P − k P − k

Figure 5.9: Handbag diagrams related to the photon TMDs.

electron inside the dressed electron), it is interesting to study also the contri-
bution of the photon to the TMDs of the physical electron. This is done in
analogy with the gluon distributions in QCD (see e.g. [71,112–115]).

We still consider the scattering of the physical electron off a lepton, with
the situation this time described by the handbag diagram in Fig. 5.9, where
the internal photon acts as the active parton; we indicate its four-momentum
with k = (xP +, k−,k⊥). In this section, we add the superscript ”γ“ both to the
correlator and to the photon TMDs to distinguish them from the ones relative
to the internal electron.
The relevant correlator between initial and final electron states for photon
TMDs is8

Φ
γ[ij]
S (k;P ) = 1

xP + ∫
dz−d2z⊥
(2π)3

eik⋅z⟨P,S∣F +j(0)F +i(z)∣P,S⟩∣
z+=0

. (5.112)

The field tensor F µν in QED is already invariant under the gauge transforma-
tion (5.47); therefore in this case a Wilson line is not required. The situation
is different in QCD, where the field tensor is not gauge invariant and gluon
self-interactions are present.
In order to obtain the parametrization of the correlator (5.112), we introduce
the symmetry operator in the transverse plane Ŝ, whose action on given object
Oij is defined by

ŜOij = 1

2
(Oij +Oji − δi,j∑

m

Omm) . (5.113)

The leading-twist TMDs of a photon inside the dressed electron are defined by
the following decomposition of the correlator [71]:

2

∑
i=1

Φγ[ii](x,k⊥) =fγ1 −
εij⊥ ki⊥s

j
⊥

m
f⊥γ1T , (5.114)

iεijΦγ[ij](x,k⊥) =szgγ1L +
k⊥ ⋅ s⊥
m

gγ1T , (5.115)

−ŜΦγ[ij](x,k⊥) = −
Ŝki⊥k

j
⊥

2m2
h⊥γ1 + sz

Ŝεjkki⊥kk⊥
2m2

h⊥γ1L +
Ŝεjkki⊥sk⊥

2m
(hγ1T +

k2⊥
2m2

h⊥γ1T)

8Indices i and j here refer to transverse Lorentz components.

88



5.3. TMDs for the dressed electron

+ Ŝki⊥εjk(2kk⊥k⊥ ⋅ s⊥ − sk⊥k2⊥)
4m3

h⊥γ1T , (5.116)

where on the right-hand side we omitted the dependence of the TMDs on
(x,k2⊥). For the photon TMDs we adopt the nomenclature of Ref. [71]: letters
f , g and h refer,respectively, to an unpolarized, circularly polarized or linearly
polarized photon, while L and T still indicate the polarization of the dressed
electron in the longitudinal rather than transverse direction. Out of the eight
photon TMDs implicitly defined in Eqs. (5.114) to (5.116), four are T-even
(fγ1 , g

γ
1L, g

γ
1T and h⊥γ1 ) and four T-odd (f⊥γ1T , h

⊥γ
1L, h

γ
1T and h⊥γ1T ). If we work in

the light-cone gauge, the components of the field tensor entering the correlator
(5.112) reduce to F +i = ∂+Ai. In light-front helicity basis, the LFWF overlap
representation of the correlator reads

Φ
γ[ij]
Λ,Λ′ (x,k⊥) =

1

2(2π)3 ∑
λe,λγ ,λ′eλ′γ

ΨΛ′ ∗
λ′e,λ′γ ((1 − x),−k⊥)

×ΨΛ
λe,λγ

((1 − x),−k⊥) εj
∗

λ′γ
(k)εiλγ(k) . (5.117)

Further development of (5.117) yields9

Φ
γ[ij]
Λ,Λ′ (x,k⊥) =

∣ϕ ((1 − x),k2⊥)∣2
2(2π)3

ūΛ′(P )(−γj + kj⊥
xP +γ

+)

× (/pe +m) (−γi + ki⊥
xP +γ

+)uΛ(P ) , (5.118)

where the three-momentum of the inner electron is now pe = ((1−x)P +,−k⊥).
The Feynman-gauge result is completely equivalent, the difference in the polar-
ization vectors being compensated by the extra ∂iA+ term in the field tensor.

If one takes the proper combinations of helicities for the dressed electron
and transverse indices, it is easy to recover from Eqs. (5.114) to (5.116) the
following results for the leading-twist photon TMDs:

fγ1 (x,k2
⊥) =

e2

(2π)3

k2⊥[1 + (1 − x)2] +m2x4

x [k2⊥ +m2x2]2 , (5.119)

gγ1L(x,k2
⊥) =

e2

(2π)3

k2⊥(2 − x) +m2x3

[k2⊥ +m2x2]2 , (5.120)

gγ1T (x,k2
⊥) = −

2e2

(2π)3
m2 x(1 − x)

[k2⊥ +m2x2]2 , (5.121)

h⊥γ1 (x,k2
⊥) =

2e2

(2π)3
m2 (1 − x)

x [k2⊥ +m2x2]2 , (5.122)

f⊥γ1T (x,k2
⊥) = h⊥γ1L(x,k2

⊥) = h⊥γ1T (x,k2
⊥) = hγ1T (x,k2

⊥) = 0 . (5.123)

9Notice that the denominator from the photon propagator does not need to be regularized,
since we are not integrating over the photon momentum.
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Figure 5.10: TMDs fe1 (x,k
2
⊥) (upper-left panel), ge1L(x,k

2
⊥) (upper-right panel), along

with their sum (lower-left panel) and their difference (lower-right panel). All distributions
are rescaled by a factor 2π2

/α, and shown as function of k2⊥, and for different values of the
longitudinal momentum fraction x: x = 0.1 (solid lines); x = 0.2 (dashed lines), and x = 0.5
(dashed-dotted lines).

Notice that the T-odd functions are vanishing: this is not surprising, since
there are no contributions that can be interpreted as final-state interactions.
Even if we go up to order α2, we can check explicitly that T-odd photon TMDs
still vanish. This is probably true to all orders, since it is related to the absence
of a gauge link in the correlator. The vanishing of the Sivers function up to
order α2 is also consistent with the sum rule derived by Burkardt [113,116,117],
since we found that the Sivers effect for the electron vanishes both at order α
and α2.

5.3.6 Numerical results

In this section we discuss the results of our calculations for the electron and
photon TMDs at O(α), which are strictly valid at (x,k⊥) ≠ (1,0). In Fig. 5.10,
we present the unpolarized TMD f e1 (upper-left panel), and the TMD ge1L
(upper-right panel) for a longitudinally polarized electron in a longitudinally
polarized dressed electron, as functions of k2⊥ and for different values of x. In
the lower panels of Fig. 5.10, we show the combinations f+e = (f e1 + ge1L)/2 and

90



5.3. TMDs for the dressed electron

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

k!2!MeV2"
!MeV

!
2 "

2 Π2

Α
h1e!xi, k!2 "

x!0.1
x!0.2
x!0.5

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

k!2!MeV2"

!MeV
!
2 "

2 Π2

Α
h$e!xi, k!2 "

x!0.1
x!0.2
x!0.5

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

k!2!MeV2"

!MeV
!
2 "

2 Π2

Α
h!e!xi, k!2 "

x!0.1
x!0.2
x!0.5

Figure 5.11: TMDs he1(x,k
2
⊥) (upper panel), h+e(x,k2⊥) (lower left panel) and h−e(x,k2⊥)

(lower right panel), rescaled by a factor 2π2
/α, as function of k2⊥, and for different values

of the longitudinal momentum fraction x: x = 0.1 (solid lines); x = 0.2 (dashed lines), and
x = 0.5 (dashed-dotted lines).

f−e = (f e1 − ge1L)/2, describing the probability to find the internal electron with
spin aligned and antialigned to the spin of the parent electron, respectively.
As discussed in Section 5.3.3, f e1 and ge1L are given by different combinations
of the squares of S- and P-wave components. In particular, f e1 is obtained
from the sum of the contribution from the two partial waves, while in ge1L one
has the difference between the S- and P-wave contributions. Correspondingly,
with the combination f+e we isolate the contribution from P waves to both f e1
and ge1L, while f−e gives the S-wave contribution which enters with a positive
sign in f e1 and a negative sign in ge1L. We notice that for k2⊥ → 0, the P-wave
contribution is vanishing, while the S-wave contribution reaches its maximum,
with larger values at increasing x. On the other side, the falloff in k2⊥ of the
S-wave contribution is very steep, and the contribution of the P wave takes
over at increasing transverse momentum. This also means that, for vanishing
transverse momentum, the configuration with the spin of the internal electron
being antialigned with the spin of the target electron and the spin of the photon
being aligned with the spin of the target electron is favored, and at larger k2⊥
the spin of the internal electron is most likely to flip in the direction of the
spin of the parent electron. The spin-flip of the active parton at low transverse

91



5. The electron structure in light-front QED

0.0 0.1 0.2 0.3 0.4 0.5 0.6
!35

!30

!25

!20

!15

!10

!5

0

k!2!MeV2"

!MeV
!
2 "

2 Π2

Α
g1 Te !xi, k!2 "

x!0.1
x!0.2
x!0.5

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0

10

20

30

40

50

60

k!2!MeV2"

!MeV
!
2 "

2 Π2

Α
h1 L! e!xi, k!2 "

x!0.1
x!0.2
x!0.5

Figure 5.12: TMDs ge1T (x,k
2
⊥) (left panel), he1L(x,k

2
⊥) (right panel), rescaled by a factor

2π2
/α, as function of k2⊥, and for different values of the longitudinal momentum fraction x:

x = 0.1 (solid lines); x = 0.2 (dashed lines), and x = 0.5 (dashed-dotted lines).

momentum is also responsible for the sign change in ge1L, which occurs faster
in k2⊥ at larger values of x.

In Fig. 5.11 we show the results for the transversity TMD he1, and the
combinations h+e = (f e1 +he1)/2 and h−e = (f e1 −he1)/2, describing the probability
of finding the internal electron with transverse spin aligned and antialigned
to the transverse spin of the parent electron, respectively. Being chiral odd,
he1 involves a helicity-flip of the internal electron from the initial to the final
state, which is compensated by a helicity flip of the parent electron in the
same direction. Since total helicity is the same in initial and final states, he1 is
diagonal in OAM, and, from the LFWF overlap representation in Eq. (5.79), we
note that it is given in terms of the partial waves with Lz = ±1 only, without
contributions from the S-wave components. The P-waves enter in he1 with
different combinations with respect to the contribution in f e1 and ge1L, as given
by f+e. In particular, from the LFWF overlap representation in Eqs. (5.74),
(5.75), and (5.79), we find that f+e contains the sum of the square of the
Lz = +1 and Lz = −1 components, while he1 is given by the interference between
the two P waves, i.e.

f+e(x,k2
⊥) =

1

2(2π)3
[∣Ψ+

+,+1(x,k⊥)∣2 + ∣Ψ+
+,−1(x,k⊥)∣2] , (5.124)

he1(x,k2
⊥) =

1

(2π)3
Re [Ψ+ ∗

+,+1(x,k⊥)Ψ−
−,+1(x,k⊥)] , (5.125)

where we used the property (5.19) of the two-body component of the electron
LFWFs. From the analytical expressions in Eqs. (5.64), (5.65) and (5.69), one
also finds

he1(x,k2
⊥) =

2x

1 + x2
f+e(x,k2

⊥) . (5.126)

As a result, he1 has the same dependence on k2⊥ as f+e, but its overall size is
always smaller, particularly at smaller values of x. In the combination h+e, the
positive contribution from the S-wave components of f e1 is evident at vanishing
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Figure 5.13: Density plots in the transverse momentum plane kx−ky and at fixed value of
x = 0.5 for f+e (upper left panel), f−e (upper right panel) and fe1 (lower panel), rescaled by a
factor 2π2

/α. The legend in the bottom-right corner of each panel indicates the correspond-
ing spin configurations: the grey and white empty discs refer to the unpolarized dressed
and unpolarized bare electron, respectively; the circle and cross inside the discs stand for
polarization along the longitudinal axes, in opposite directions.

transverse momentum, while at higher values of k2⊥ the contributions of the
P waves from f e1 and he1 become dominant. In the case of h−e the P-wave
contributions from f e1 and he1 partially cancel, especially at higher values of x,
and we find that the low-k2⊥ behavior is dominated by the S-wave contribution
of f e1 , while the P waves still control the tail at higher transverse momentum.
As a consequence, at x = 0.5 the transverse spin of the internal electron tends
to be aligned with the transverse spin of the parent electron in the full k2⊥
range, while for smaller values of x there is no marked preference between the
parallel or antiparallel configuration of the two transverse spins. In Fig. 5.12
we show the TMD ge1T for longitudinally polarized electrons in a transversely-
polarized electron target in comparison with h⊥e1L, describing the momentum
distribution for transversely polarized electron in a longitudinally polarized
electron target. These distributions are characteristic effects due to transverse
momentum, since they are the only ones which have no analog in the spin
densities related to the GPDs in the impact parameter space [118], and vanish
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after integration over k⊥. Since the LFWFs Ψ+−,− and Ψ−+,+ vanish, the LFWF
overlap representation in Eqs. (5.76) and (5.77) can be rewritten as

ge1T (x,k2
⊥) =

m

2(2π)3k2⊥
Re [kR Ψ+ ∗

+,−1(x,k⊥)Ψ−
+,−1(x,k⊥)] , (5.127)

h⊥e1L(x,k2
⊥) =

m

(2π)3k2⊥
Re [kR Ψ+ ∗

−,+1(x,k⊥)Ψ+
+,+1(x,k⊥)] . (5.128)

We notice that ge1T requires a helicity flip of the electron target that is not
compensated by a change of the helicity of the internal electron, and vice versa
h⊥e1L involves a helicity flip of the internal electron, but is diagonal in the helicity
of the electron target. As a result, the two distributions require a transfer of
OAM between the initial and final states: in the case of ge1T , this comes from
the interference of the S wave and the P wave with Lz = +1, while for h⊥e1L it is
driven from the S wave and the P wave with Lz = −1. The difference between
the two P waves in Eqs. (5.15) and (5.16) leads to the following relations for
the TMDs:

ge1T (x,k2
⊥) = −xh⊥e1L(x,k2

⊥) , (5.129)

which explains the suppression of ge1T , in absolute value, with respect to h⊥e1L,
especially at lower values of x. From Eqs. (4.29)-(4.31) and omitting the con-
tributions of f⊥e1T , h⊥e1 and h⊥e1T , which are vanishing at leading order in α, we can
form the following densities for electrons of definite longitudinal or transverse
polarization:

ρλe,se⊥,Λ,S⊥(x,k⊥) =
1

2
[f e1 + λeΛ ge1L +

λe s⊥ ⋅ k⊥
m

ge1T +
Λse⊥ ⋅ k⊥

m
h⊥e1L + se⊥ ⋅S⊥ he1] ,

(5.130)

where we denote the transverse spin of the internal electron with se⊥. In
Fig. 5.13 we show the densities in the transverse momentum plane and at
fixed x = 0.5 for a longitudinally polarized electron target and longitudinally
polarized internal electron, with helicity in the same (f+e) or opposite (f−e)
direction, along with the corresponding results for f e1 . As discussed above, the
behavior of f+e is determined from the P waves, which rapidly increase starting
from the dip in the center, reach a maximum at ∣k⊥∣ ≈ 200 keV and smoothly
decrease at larger values. On the other hand, the S-wave contribution to f−e is
maximum at the centre and rapidly falls off towards the periphery of the kx-ky
plane. The interplay between the P-and S-wave contributions determines the
pattern of f e1 = f+e + f−e from the center to higher values of k⊥. In summary,
the density of electrons in a dressed electron in momentum space, averaged
over all polarizations, at x = 0.5, looks like a ring-shaped image, with a radius
of about 200 keV. In Fig. 5.14 we show the transverse polarization densities h+e

and h−e. Qualitatively, they look similar to their longitudinal counterparts, but
they are different in the details. The P-wave contribution is more pronounced
in h+e, but the S wave is also present, and the density at k2⊥ = 0 is not zero.
The S wave dominates in h−e, but a P-wave contribution is also present, even
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5.3. TMDs for the dressed electron

Figure 5.14: Density plots in the transverse momentum plane kx−ky and at fixed value of
x = 0.5 for h+e (left panel) and h−e (right panel), rescaled by a factor 2π2

/α. The legend in
the bottom-right corner of each panel indicates the corresponding spin configurations: the
grey and white discs refer to the dressed and bare electron, respectively; the arrows indicate
polarization along the y direction.

though it is suppressed. Note that the transverse polarization density could in
principle be not cylindrically symmetric. However, the fact that h⊥e1T and h⊥e1

vanish in QED at this order makes the density symmetric.
In Fig. 5.15 the distorting effect induced by the polarization is shown. In

the left panel, we present the density in the transverse momentum plane and
at fixed x = 0.5 for longitudinally polarized electrons in an electron target
transversely polarized along the y direction. This is obtained by adding the
dipole deformation due to the term (ky/m) ge1T in Eq. (5.130) to the monopole
distribution of f e1 . The term in ge1T features a significant dipole deformation
along the direction of the spin of the parent electron, and is responsible for
the sizable downward shift along y. An analogous observation can be made for
transversely polarized electrons in a longitudinally polarized electron target, as
displayed in the right panel of Fig. 5.15. In this case, the effect of the distortion
is even more pronounced and in the opposite direction, since the strength of
the deformation is due to the term (ky/m)h⊥e1L, with h⊥e1L = −2ge1T at x = 0.5.
We avoid showing plots of all the photon TMDs, but we take the chance to
make a few observations. The functions fγ1 and gγ1T are similar to their electron
counterparts with the replacement x↔ (1 − x). The helicity distribution has
no straightforward relation to the electron helicity distribution. At variance
with the electron case, the combination f−γ contains contributions only from
P waves, while f+γ contains contributions from both P and S waves. The
other nonvanishing photon TMD is the so-called Boer-Mulders function h⊥γ1 ,
describing linearly polarized photons in an unpolarized electron [71, 73, 112].
We plot it in Fig. 5.16 (left panel), where we observe that it is very large, es-
pecially at low x. The corresponding function for gluons in a proton has been
the topic of a few articles in the last years [119–121], mainly because it does
not require polarized targets and it can be generated through perturbative
QCD corrections [122], similarly to what happens in our QED calculation. In
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Figure 5.15: Density plots in the transverse momentum plane kx−ky and at fixed value of
x = 0.5 for the sum (fe1 + (ky/m) ge1T )/2 (left panel) and (fe1 + (ky/m)h⊥e1L)/2 (right panel),
rescaled by a factor 2π2

/α. The legend in the bottom-right corner of each panel indicates
the corresponding spin configurations: the grey and white discs refer to the dressed and bare
electron, respectively; the circle inside the discs stands for polarization along the longitudinal
axes; the arrows indicate polarization along the y direction.

Fig. 5.16 (right panel), we plot the combination [fγ1 + (k2
y − k2

x)/(2m2)h⊥γ1 ] /2
corresponding to the density of photons with linear polarization along the y
direction in an unpolarized dressed electron. The distribution has two peaks,
shifted along the polarization direction by approximately ±200 keV at x = 0.5.

5.4 Summary

In this Chapter we applied the formalisms of Wigner distributions and Transverse-
Momentum Dependent distributions, described in Chapter 4, to the electron
cloud, imagined as a electron-photon bound system. The goal was to obtain
a description of the point-like electron in a new perspective, by taking into
account its quantum fluctuations that give it an extended structure both in
position and momentum space. To this end, we applied methods that are usu-
ally addressed to the study of nucleons in the context of QCD.
We first derived the exact (up to order α) expressions of the Light-Front Wave
Functions of the dressed electron as a two-body system. As for the Wigner
distributions is concerned, we provided analytical expressions for their projec-
tion in the mixed space of coordinates bx-ky.
We recovered analytical expressions also for the leading-twist TMDs, related
both to internal electron and to the internal photon. Furthermore, in our
treatment we have put particular emphasis on the issue of gauge-invariance,
by explicitly checking that the results obtained in Feynman gauge coincide
with those in light-cone gauge. In particular, we proved that the transverse
gauge link makes the evaluation of TMDs prescription independent in light-
cone gauge.
A comment is in order about the T-odd TMDs of the bare electron. We showed
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Figure 5.16: Left panel: photon TMD h⊥γ1 (x,k2⊥), rescaled by a factor 2π2
/α, as function

of k2⊥, and for different values of the longitudinal momentum fraction x: x = 0.1 (solid lines);
x = 0.2 (dashed lines), and x = 0.5 (dashed-dotted lines). Right panel: density plot in
the transverse momentum plane kx − ky and at fixed value of x = 0.5 for the combination
[(fγ1 + (k2y − k

2
x)/(2m

2
)h⊥γ1 ] /2, rescaled by a factor 2π2

/α. The legend in the bottom-right
corner of indicates the corresponding spin configurations: the grey empty disc refers to
the unpolarized dressed electron, the white disc with arrow indicate a photon with linear
polarization along the y direction.

that they are vanishing in our model up to order α2, at variance with the QCD
case; however, the Sivers and Boer-Mulders effects should be a general prop-
erty of a gauge theory, irrespectively of its Abelian rather than non-Abelian
nature. This suggests that T-odd TMDs should be non-zero also in QED. One
reason why we did not find this behavior in our derivation may be due to the
fact that, as we already stressed, up to order α2 it is not possible to draw a
diagram with a photon loop at one side of the cut (at least as far as we exclude
the end-point). However, we cannot exclude that the effects show up at higher
order.
We mention that another source of investigation of the Sivers and Boer-Mulders
effects in QED could be the analysis of the positronium system10: in this case,
both the active parton and the remnant are fermions and therefore we can eas-
ily obtain a diagram that could in principle give contribution to T-odd TMDs.
The situation is described in Fig. 5.17, both for the SIDIS and the Drell-Yan
cases. If the T-odd TMDs of the positron in fact turn out to be non-zero,
one should also observe a sign difference in the TMDs calculated in these two
processes, as it is in QCD [123].

10One has to take into account that the positron is a spin-0 or spin-1 boson, at variance
with the spin-1/2 nucleon, and modify the TMD formalism accordingly.

97



5. The electron structure in light-front QED

(b)(a)

Figure 5.17: Diagrams for the SIDIS (a) and Drell-Yan (b) processes involving a positro-
nium bound state, with a gauge-photon loop at one side of the cut.
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Chapter 6
Angular-momentum density
inside the nucleon

We are finally going to apply the formalism of light-front quantization to the
analysis of the nucleon’s structure. In particular, we will study the form factors
of the QCD energy-momentum tensor, that can be connected with the Gener-
alized Parton Distributions introduced in Chapter 4 and provide information
about the quark’s angular momentum density inside the nucleon.

As we mentioned in the Introduction of the present work, the ultimate goal
of Hadronic Physics is to explain how global properties of protons and neutrons
emerge from different contributions of their constituents. A typical example
is given by the proton’s spin, whose decomposition in terms of spin and Or-
bital Angular Momentum (OAM) of quarks and gluons has been a puzzle over
the last few decades and still represents one of the key open questions in the
field. Many conceptual issues concerning gauge-symmetry, relativity and non-
perturbative aspects make this problem far from trivial to address, both from
the theoretical and the experimental point of view. One of the most relevant
issues is that the nucleon spin decomposition is not unique [7, 124–126], since
it is possible to give various gauge-invariant definitions of the different contri-
butions.
Generalized Parton Distributions help us in the investigation of the problem,
as they are measurable quantities that can be related to the (kinetic) total an-
gular momentum of quarks and gluons [66,127]. As we showed in Section 4.4.1,
GPDs contain information about the spatial distribution of quarks and gluons
inside the nucleon; it is therefore conceivable that they encode also informa-
tion about the spatial distribution of their angular momentum. However, the
relation between GPD and total angular momentum has been clearly estab-
lished only at the level of quantities integrated over all space; it remains an
open question how to precisely interpret the corresponding densities. The de-
scription at the density level is nonetheless relevant if we want to understand
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6. Angular-momentum density inside the nucleon

the global properties of nucleons as arising from those of their elementary con-
stituents.
Polyakov et al. provided in Refs. [128–131] an attempt to answer this ques-
tion by defining angular momentum densities in terms of form factors of the
QCD energy-momentum tensor in the instant-form formalism. They consid-
ered three-dimensional densities and took the limit of infinite nucleon mass,
so as to avoid the relativistic corrections that we discussed in Section 4.4.1.
More recently, Adhikari and Burkardt mentioned in Ref. [132] the possibility
to study impact-parameter densities in the light-front quantization framework,
where, as we saw, relativistic corrections are automatically avoided. In addi-
tion, they compared different definitions of the angular momentum density and
reached the conclusion that none of the them agree at the density level. They
attributed some of the discrepancies to missing total divergence terms, as it
had been pointed out earlier in Refs. [128,129].
In this Chapter we revisit the works of Polyakov and collaborators and dis-
cuss in detail how to connect three-dimensional densities in the instant-form
and impact-parameter densities in the front-form. At variance with Ref. [128],
where the Belinfante’s version of the energy-momentum tensor is considered,
here we take as a starting point a non-symmetric energy-momentum tensor.
The comparison of the two possibilities also help us to explain the apparent
inconsistencies pointed out in Ref. [132]. We follow the discussion of Ref. [133].

6.1 Canonical and Belinfante’s

energy-momentum tensors

In Section 2.3 we introduced the generalized angular momentum tensor at the
density level

Jµαβ(x) = Lµαβ(x) + Sµαβ(x) , (6.1)

sum of a spin-density contribution Sµνρ(x) and of an OAM-density contribu-
tion

Lµαβ(x) = xαT µβ(x) − xβT µα(x) . (6.2)

We remark that each one of these tensors is antisymmetric under α↔ β.
The Energy-Momentum Tensor (EMT) density T µν(x) appearing in Eq. (6.2)
is referred to as canonical EMT and is obtained via Noether’s theorem from
Eq. (2.12) with the QCD Lagrangian 1

LQCD =
Nf

∑
q

ψ̄q(i /D −mq)ψq −
1

4
GµνG

µν . (6.3)

Here Nf is the number of quark flavors, the covariant derivative reads Dµ =
∂µ − igsAµ, gs is the strong coupling constant and the field-strength tensor is

1Both quark and gluon fields should carry a color index. We omit them in the present
discussion.
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6.1. Canonical and Belinfante’s energy-momentum tensors

Gµν(x) = ∂µAν(x) − ∂νAµ(x) − igs [Aµ(x),Aν(x)], Aµ denoting now the gluon
field.
The canonical EMT it is in general neither gauge invariant nor symmetric.
In particular, it follows from the conservation of both T µν and Jµνρ that the
antisymmetric part is given by the divergence of the spin density:

T [αβ](x) = −∂µSµαβ(x), (6.4)

where a[µbν] = aµbν − aνbµ.
Belinfante and Rosenfeld [134–136] proposed to add a so-called superpotential
term to the definition of both the energy-momentum and generalized angular
momentum tensors, defining the Belinfante-improved tensors as

T µνBel(x) = T µν(x) + ∂λGλµν(x), (6.5)

JµαβBel (x) = Jµαβ(x) + ∂λ[xαGλµβ(x) − xβGλµα(x)] , (6.6)

where the superpotential Gλµν is given by the combination

Gλµν(x) = 1

2
[Sλµν(x) + Sµνλ(x) + Sνµλ(x)] = −Gµλν(x) . (6.7)

In the usual hypothesis that surface terms vanish after integration, the effect of
such addition is to modify the definition of the local density, without changing
the total charge. The Belinfante-improved tensors (6.5)-(6.6) are conserved and
usually turn out to be gauge invariant. Moreover, the particular choice (6.7)
allows us to write the total AM in a purely orbital form

JµαβBel (x) = xαT µβBel(x) − xβT
µα
Bel(x). (6.8)

Since the new tensors are conserved, it follows from this expression that the
Belinfante-improved EMT is symmetric.
As discussed in Refs. [7, 137], the requirement of a symmetric EMT is usually
motivated in the context of General Relativity, where the notion of spin is not
accounted for from the beginning and it is natural to consider AM as purely
orbital. From a Particle Physics perspective, however, one naturally includes a
spin contribution to the total AM as in Eq. (6.1). In the Belinfante-improved
tensors, instead, spin and angular momentum are reshuffled and the effects of
spin is hidden in a new contribution to momentum that has a rather obscure
interpretation. Nevertheless, the choice of the Belinfante’s version seems to be
the most typical in the Hadronic Physics literature.

6.1.1 Kinetic tensor

Instead of the Belinfante-improved tensors, Ji [66] proposed to use in the con-
text of QCD the kinetic EMT

T µνkin(x) = T
µν
kin,q(x) + T

µν
kin,g(x), (6.9)
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6. Angular-momentum density inside the nucleon

where the gauge-invariant quark and gluon contributions are given by [7,137]

T µνkin,q(x) =
1

2
ψ(x)γµi←→Dνψ(x) , (6.10)

T µνkin,g(x) = −2 Tr [Gµλ(x)Gν
λ(x)] +

1

2
gµν Tr[Gρσ(x)Gρσ(x)] . (6.11)

Here
←→
Dµ = ←→∂ µ−igsAµ, with

←→
∂ µ = Ð→∂ µ−←Ð∂ µ. The kinetic generalized AM tensor

is
Jµαβkin (x) = Lµαβkin,q(x) + Sµαβq (x) + Jµαβkin,g(x) (6.12)

with

Lµαβkin,q(x) = xαT
µβ
kin,q(x) − xβT

µα
kin,q(x) , (6.13)

Sµαβq (x) = 1

2
εµαβλψ(x)γλγ5ψ(x) , (6.14)

Jµαβkin,g(x) = xαT
µβ
kin,g(x) − xβT

µα
kin,g(x) . (6.15)

Contrary to the quark total AM, the gluon total AM cannot be split into
orbital and spin contributions which are at the same time gauge-invariant
and local [138, 139]. The kinetic and Belinfante-improved tensors in QCD are
related as follows

T µνkin,q(x) = T
µν
Bel,q(x) −

1

2
∂λS

λµν
q (x) , (6.16)

Lµαβkin,q(x) + Sµαβq (x) = JµαβBel,q(x) −
1

2
∂λ[xαSλµβq (x) − xβSλµαq (x)] , (6.17)

while the gluon contributions are the same in both cases, namely T µνkin,g(x) =
T µνBel,g(x) and Jµαβkin,g(x) = J

µαβ
Bel,g(x). By using the conservation of the total AM

Jµαβkin (x) and the symmetry of T µνkin,g(x), one can relate the antisymmetric part
of the quark kinetic EMT to the quark spin divergence

T
[αβ]
kin,q (x) = −∂µSµαβq (x), (6.18)

similarly to Eq. (6.4). More explicitly, by means of the QCD equations of
motion, it is possible to show that

ψ(x)γ[αi
←→
Dβ]ψ(x) = −εαβµλ ∂µ[ψ(x)γλγ5ψ(x)] . (6.19)

It then follows that the Belinfante-improved EMT simply coincides with the
symmetric part of the kinetic EMT:

1

2
T

{µν}
kin,a (x) = T

µν
Bel,a(x) , a = q, g (6.20)

where a{µbν} = aµbν + aνbµ. This relation is eventually due only to the total
antisymmetry of the spin contribution.
Since kinetic and Belinfante-improved tensors differ by superpotential terms,
they lead to the same charges. For this reason, the superpotentials are often
dropped from the discussions in the literature. However, it is crucial to pay
attention to these terms when discussing quantities at the density level, as we
will show explicitly in the next Sections.
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6.2. Three-dimensional densities in the instant form

6.1.2 Energy-Momentum Tensor parametrization

We are interested in the matrix elements of the above-mentioned density op-
erators. It will be sufficient to consider the operators evaluated at x = 0, since
the general case is recovered simply through a translation of fields. Moreover,
since the average position is the Fourier conjugate of the momentum transfer
∆, we need to consider off-forward matrix elements. As shown in Ref. [140],
the matrix elements of the general local asymmetric Energy-Momentum Tensor
for a spin-1/2 target are parametrized in terms of five form factors2:

⟨p′,s′∣T µν(0)∣p,s⟩ = u(p′,s′) [P
µP ν

M
A(t) + P

µiσνλ∆λ

4M
(A +B +D)(t)

+∆µ∆ν − gµν∆2

M
C(t) +Mgµν C̄(t) + P

νiσµλ∆λ

4M
(A +B −D)(t)]u(p,s) .

(6.21)

Here M denotes the nucleon mass and the three-vectors s and s′ (with s2 =
s′2 = 1) indicate the three-dimensional rest-frame polarization of the initial
and final states, respectively. As for the momentum four-vector, we follow the
GPD notation in Chapter 4. It is important to stress the presence of the D(t)
form factor, that is due to antisymmetry of the generic EMT and thus vanishes
in the parametrization of the corresponding Belinfante’s version.
Beside the EMT, we also need a parametrization of the matrix elements of the
quark spin operator Sµαβq (0). Owing to Eq. (6.14), we can write

⟨p′,s′∣Sµαβq (0)∣p,s⟩ = 1

2
εµαβλ u(p′,s′) [γλγ5G

q
A(t) +

∆λγ5

2M
Gq
P (t)]u(p,s),

(6.22)
where Gq

A(t) and Gq
P (t) are, respectively, the axial-vector and induced pseu-

doscalar form factors already introduced in Eq. (4.39). It then follows from the
QCD identity (6.19) that the form factor associated with the antisymmetric
part of the quark EMT is related to the axial-vector form factor according
to [7, 140]

Dq(t) = −Gq
A(t) . (6.23)

6.2 Three-dimensional densities in the instant

form

Inspired by Sachs’ interpretation of the electromagnetic form factors in the
Breit frame [141], Polyakov and collaborators discussed the spatial distribu-
tion of angular momentum in instant form based on the Belinfante form of the
EMT [128–131]. Here we revisit their discussion in more detail by using, this

2Several notations can be found in the literature to denote the form factors; here we use
the convention of Ref. [7]. See Ref. [130] for more details.
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time, the more general asymmetric EMT.
In the following we will consider the kinetic version (6.9) of the EMT. As we
aim to discuss how OAM and spin contribute to the total angular momentum,
emphasizing at the same time the role of the antisymmetric part of the EMT,
from now on we will disregard the gluon term of the kinetic EMT, in view of
the considerations that we made after Eqs. (6.15) and (6.17). It will therefore
be understood that T µν = T µνkin,q, the latter being given in Eq. (6.10).

Let us start with the definition of kinetic OAM distribution in four-dimensional
position space

⟨Li⟩(x) = εijk xj ∫
d3∆

(2π)3
ei∆⋅x ⟨T 0k⟩, (6.24)

where we introduced for convenience

⟨T µν⟩ ≡ ⟨p′,s∣T µν(0)∣p,s⟩
2
√
p′0p0

. (6.25)

Notice that the energy transfer ∆0 is not an independent variable but a function
of the three-momentum transfer ∆ through the on-shell conditions (4.4); more
precisely, we have

∆0 = P ⋅∆
P 0

, P 0 = 1

2

⎡⎢⎢⎢⎢⎣

√
(P + ∆

2
)

2

+M2 +
√

(P − ∆

2
)

2

+M2

⎤⎥⎥⎥⎥⎦
. (6.26)

By using integration by parts, and disregarding as usual the surface term, we
rewrite Eq. (6.24) as

⟨Li⟩(x) = εijk ∫
d3∆

(2π)3
ei∆⋅x [−i∂⟨T

0k⟩
∂∆j

+ x
0

2
(p

′j

p′0
+ p

j

p0
) ⟨T 0k⟩] . (6.27)

The second term in square brackets is in general different from zero. Its explicit
time dependence comes from the non-conservation of the individual contribu-
tions to the total AM of the system. We can give it an interpretation as a
distortion that changes the OAM distribution about the center of energy of
the system, whit respect to the situation at rest (i.e. P = 0). Accordingly, this
term goes to zero if we take L and P parallel. It is interesting to notice that
the total OAM remains nonetheless unvaried, as the distortion vanishes upon
integration over space:

εijk ∫ d3x∫
d3∆

(2π)3
e−i∆⋅x x0

2
(p

′j

p′0
+ p

j

p0
) ⟨T 0k⟩ = εijkx0P

j

P 0
⟨T 0k⟩ ∣

∆=0
= 0 ,

(6.28)

where we used ⟨T 0k⟩ ∆=0ÐÐ→ 2P 0P k.
A simple way to get rid of the distortion term, along with the x0 dependence
in Eq. (6.27), is to restrict ourselves to the Breit (or “brick-wall”) frame (BF),
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6.2. Three-dimensional densities in the instant form

defined by the condition P = 0. This implies in particular ∆0 = 0 and P 0 =√
∆2

4 +M2. We can then define the spatial density of kinetic OAM as3

⟨Li⟩(x) = −iεijk ∫
d3∆

(2π)3
e−i∆⋅x ∂⟨T 0k⟩

∂∆j
∣
BF

, (6.29)

where the notation indicates that we need to take the Breit-frame limit after
derivation. Eq. (6.29) is indeed consistent with a density interpretation since
p′ = −p implies that the initial and final wave functions undergo the same
Lorentz contraction.
We use the general parametrization (6.21) with the same rest-frame polar-
ization three-vector s for both the initial and final states. If we insert the
following relations involving Dirac bilinears [142]:

u (∆
2 ,s)γ5u (−∆

2 ,s) = −(∆ ⋅ s) , (6.30)

u (∆
2 ,s)γkγ5u (−∆

2 ,s) = 2P 0sk − ∆k(∆ ⋅ s)
2(P 0 +M) , (6.31)

u (∆
2 ,s) iσkλ∆λu (−∆

2 ,s) = −2M iεklm∆lsm , (6.32)

we find that the kinetic OAM density reads

⟨Li⟩(x) = ∫
d3∆

(2π)3
e−i∆⋅x [siL(t) + [(∆ ⋅ s)∆i −∆2si] dL(t)

dt
]
t=−∆2

, (6.33)

where we introduced for convenience the combination of energy-momentum
form factors

L(t) = 1

2
[A(t) +B(t) +D(t)] . (6.34)

Similarly, for the spin density we find that

⟨Si⟩(x) = 1

2
εijk ∫

d3∆

(2π)3
e−i∆⋅x ⟨S0jk⟩∣

BF

= ∫
d3∆

(2π)3
e−i∆⋅x [s

i

2
GA(t) −

(∆ ⋅ s)∆i

4

dG(t)
dt

]
t=−∆2

, (6.35)

where we introduced for better readability

dG(t)
dt

= 1

2P 0
[ GA(t)
P 0 +M + GP (t)

M
] . (6.36)

As we previously mentioned, Polyakov and collaborators [128–131] considered
the Belinfante-improved form of the EMT. Recalling that T µνBel = 1

2T
{µν}, it is

3We note in passing that the incorrect sign for the Fourier transform was used in [128–
131].
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6. Angular-momentum density inside the nucleon

easy to see that the density of Belinfante-improved total AM assumes the same
structure as in Eq. (6.33), but now without the D(t) contribution:

⟨J iBel⟩(x) = ∫
d3∆

(2π)3
e−i∆⋅x [si J(t) + [(∆ ⋅ s)∆i −∆2si] dJ(t)

dt
]
t=−∆2

, (6.37)

where we used Polyakov’s form factor

J(t) = 1

2
[A(t) +B(t)] . (6.38)

We can compare this expression with the kinetic total AM density ⟨J i⟩ (x) =
⟨Li⟩ (x) + ⟨Si⟩ (x). From Eqs. (6.33) and (6.35) and taking into account that
D(t) = −GA(t), we find

⟨J i⟩ (x) = ∫
d3∆

(2π)3
e−i∆⋅x

× [si J(t) + [(∆ ⋅ s)∆i −∆2si] dL(t)
dt

− (∆ ⋅ s)∆i

4

dG(t)
dt

]
t=−∆2

. (6.39)

Therefore we have at the density level

⟨J i⟩(x) ≠ ⟨J iBel⟩(x) , (6.40)

while
⟨J i⟩ = ∫ d3x ⟨J i⟩(x) = ∫ d3x ⟨J iBel⟩(x) = siJ(0) , (6.41)

which is nothing but the Ji relation [66] in the rest frame of the target. The
reason for this mismatch is the total divergence in Eq. (6.17). We obtain for
the corresponding density

⟨M i⟩(x) = 1

2
εijk ∫

d3∆

(2π)3
e−i∆⋅x ∆l ∂⟨Sl0k⟩

∂∆j
∣
BF

= −∫
d3∆

(2π)3
e−i∆⋅x [[(∆ ⋅ s)∆i −∆2si]

2

dGA(t)
dt

+ (∆ ⋅ s)∆i

4

dG(t)
dt

]
t=−∆2

,

(6.42)

leading then to
⟨J i⟩(x) = ⟨J iBel⟩(x) + ⟨M i⟩(x) , (6.43)

as expected.
Notice that, since integrating over x is equivalent to setting ∆ = 0, from
Eqs. (6.37), (6.39) and (6.41) we can also write

J i = si∫ d3x∫
d3∆

(2π)3
e−i∆⋅x J(−∆2) . (6.44)

It may therefore be tempting to interpret the Fourier transform of the form
factor J(t) as the density of total angular momentum. We see however from
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Eqs. (6.37) and (6.39) that, in both the Belinfante’s and in the kinetic case,
other terms explicitly depending on ∆ do also contribute at the density level.
More precisely, for the kinetic total AM we can introduce the following decom-
position:

⟨J i⟩ (x) = ⟨J i⟩
naive

(x) + ⟨J i⟩
corr

(x) (6.45)

into a “naive” contribution

⟨J i⟩
naive

(x) = ∫
d3∆

(2π)3
e−i∆⋅x siJ(−∆2) (6.46)

and a correction

⟨J i⟩
corr

(x) =∫
d3∆

(2π)3
e−i∆⋅x

× [[(∆ ⋅ s)∆i −∆2si] dL(t)
dt

− (∆ ⋅ s)∆i

4

dG(t)
dt

]
t=−∆2

, (6.47)

satisfying

∫ d3x ⟨J i⟩
naive

(x) = ⟨J i⟩ , ∫ d3x ⟨J i⟩
corr

(x) = 0 . (6.48)

Finally, in order to establish the connection with the results of [128–131], we
decompose Eq. (6.37)

⟨J iBel⟩(x) = ⟨J iBel⟩mono(x) + ⟨J iBel⟩quad(x), (6.49)

into monopole and quadrupole contributions

⟨J iBel⟩mono(x) = si∫
d3∆

(2π)3
e−i∆⋅x [J(t) + 2t

3

dJ(t)
dt

]
t=−∆2

, (6.50)

⟨J iBel⟩quad(x) = sj ∫
d3∆

(2π)3
e−i∆⋅x [∆i∆j − 1

3
δij∆2] dJ(t)

dt
∣
t=−∆2

. (6.51)

6.3 Densities in the impact-parameter space

The density interpretation in the Breit frame is valid only when relativistic
effects associated with the motion of the target can be neglected. For this
reason, we considered P = 0 to define 3D densities in the previous Section.
As argued in Section 4.4.1, the front-form dynamics represents an elegant way
of getting rid of these relativistic corrections. Here we first consider, in the
instant form, the two-dimensional limit of the Breit-frame densities introduced
in Section 6.2, then the 2D densities in the elastic frame with P ≠ 0; finally
we show how these are connected with the light-front densities in the impact-
parameter space. In order to comply with the notation adopted in the rest of
this work, we will denote the Fourier conjugate variable to ∆⊥ by b⊥ instead
of x⊥.
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6.3.1 2D densities in the Breit frame

We first consider two-dimensional densities in the Breit frame P = 0, obtained
as projections on the transverse plane of the 3D distributions in Eqs. (6.33),
(6.35), (6.37) and (6.42), namely

⟨ji⟩(b⊥) = ∫ dx3 ⟨ji⟩(x)∣
x=(b⊥,x3) (6.52)

with ji = Li, Si, J iBel,M
i and i = 1,2,3. Note that since x is Fourier conjugate

to ∆, integrating over x3 amounts to set ∆3 = 0.
As we integrate out a specific direction, spherical symmetry is broken and it
is hence convenient to distinguish between longitudinal and transverse compo-
nents of the considered angular momentum densities. As far as the longitudinal
components is concerned, we find

⟨Lz⟩(b⊥) = sz ∫
d2∆⊥
(2π)2

e−i∆⊥⋅b⊥ [L(t) + t dL(t)
dt

]
t=−∆2⊥

, (6.53)

⟨Sz⟩(b⊥) =
sz

2 ∫
d2∆⊥
(2π)2

e−i∆⊥⋅b⊥GA(−∆2
⊥) , (6.54)

⟨JzBel⟩(b⊥) = sz ∫
d2∆⊥
(2π)2

e−i∆⊥⋅b⊥ [J(t) + t dJ(t)
dt

]
t=−∆2⊥

, (6.55)

⟨M z⟩(b⊥) = −
sz

2 ∫
d2∆⊥
(2π)2

e−i∆⊥⋅b⊥ [t dGA(t)
dt

]
t=−∆2⊥

. (6.56)

The distributions are axially symmetric and satisfy once again

⟨Jz⟩(b⊥) = ⟨Lz⟩(b⊥) + ⟨Sz⟩(b⊥) = ⟨JzBel⟩(b⊥) + ⟨M z⟩(b⊥) . (6.57)

Note also that the dependence on the induced pseudoscalar form factor GP (t)
has disappeared because the latter is multiplied by ∆3 = 0.
As for the transverse components, instead, we obtain

⟨Li⊥⟩ (b⊥) = ∫
d2∆⊥
(2π)2

e−i∆⊥⋅b⊥ [si⊥L(t) + [(∆⊥ ⋅ s⊥)∆i
⊥ −∆2

⊥s
i
⊥]

dL(t)
dt

]
t=−∆2⊥

,

(6.58)

⟨Si⊥⟩(b⊥) = ∫
d2∆⊥
(2π)2

e−i∆⊥⋅b⊥ [s
i⊥
2
GA(t) −

(∆⊥ ⋅ s⊥)∆i⊥
4

dG(t)
dt

]
t=−∆2⊥

, (6.59)

⟨J iBel,⊥⟩(b⊥) = ∫
d2∆⊥
(2π)2

e−i∆⊥⋅b⊥ [si⊥ J(t) + [(∆⊥ ⋅ s⊥)∆i
⊥ −∆2

⊥s
i
⊥]

dJ(t)
dt

]
t=−∆2⊥

,

(6.60)

⟨M i
⊥⟩(b⊥) = −∫

d2∆⊥
(2π)2

e−i∆⊥⋅b⊥ [[(∆⊥ ⋅ s⊥)∆i⊥ −∆2⊥si⊥]
2

dGA(t)
dt

+(∆⊥ ⋅ s⊥)∆i⊥
4

dG(t)
dt

]
t=−∆2⊥

, (6.61)

with i = 1,2.
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6.3. Densities in the impact-parameter space

6.3.2 2D densities in the elastic frame

Let us now consider the case where P ≠ 0. The only densities we can define are
necessarily two-dimensional: in order to preserve the condition ∆0 = 0, which
ensures that both the initial and final states are affected by the same Lorentz
contraction factor, we have to restrict ∆ to the subspace orthogonal to P .
In Section 4.4.1 we defined the elastic frames (EF) by the condition P ⋅∆ = 0.
They constitute a class of frames characterized by the fact that there is no
energy transferred to the system, i.e. ∆0 = 0; the energy of the system is then
given by

P 0 =
√
P 2 + ∆2

4
+M2 .

The Breit frame appears as a particular element of this class.
Also in this case, P distinguishes a particular spatial direction; it is thus
convenient to write three-vectors in terms of longitudinal and transverse com-
ponents. Without loss of generality, we choose the spatial axes so that P lies
along the z axis

P = (0⊥, P ) , ∆ = (∆⊥,0) . (6.62)

Accordingly, we treat longitudinal and transverse components of the consid-
ered densities separately. Since the transverse ones involve complicated depen-
dencies on the P variable, that are not relevant for our discussion, here it is
sufficient to focus on the longitudinal components only. Note that this choice
allows us to automatically get rid of the time-dependence in Eq. (6.27).
We define the impact-parameter densities of kinetic OAM and spin as

⟨Lz⟩(b⊥) = −iε3jk ∫
d2∆⊥
(2π)2

e−i∆⊥⋅b⊥
∂⟨T 0k⟩
∂∆j

⊥
∣
EF

= sz ∫
d2∆⊥
(2π)2

e−i∆⊥⋅b⊥ [L(t) + t dL(t)
dt

]
t=−∆2⊥

, (6.63)

⟨Sz⟩(b⊥) =
1

2
ε3jk ∫

d2∆⊥
(2π)2

e−i∆⊥⋅b⊥ ⟨S0jk⟩∣
EF

= s
z

2 ∫
d2∆⊥
(2π)2

e−i∆⊥⋅b⊥GA(−∆2
⊥) . (6.64)

Similarly, for the impact-parameter densities of Belinfante-improved total AM
and total divergence, we find

⟨JzBel⟩(b⊥) = −iε3jk ∫
d2∆⊥
(2π)2

e−i∆⊥⋅b⊥
∂⟨T 0k

Bel⟩
∂∆j

⊥
∣
EF

= sz ∫
d2∆⊥
(2π)2

e−i∆⊥⋅b⊥ [J(t) + t dJ(t)
dt

]
t=−∆2⊥

, (6.65)

⟨M z⟩(b⊥) =
1

2
ε3jk ∫

d2∆⊥
(2π)2

e−i∆⊥⋅b⊥ ∆l
⊥
∂⟨Sl0k⟩
∂∆j

⊥
∣
EF
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= −s
z

2 ∫
d2∆⊥
(2π)2

e−i∆⊥⋅b⊥ [t dGA(t)
dt

]
t=−∆2⊥

. (6.66)

The following Dirac bilinears in the elastic frame have been used:

u (Pz, ∆⊥
2 ,s)γ3γ5u(Pz,−∆⊥

2 ,s) = 2P 0 sz , (6.67)

u (Pz, ∆⊥
2 ,s) iσkλ∆λu(Pz,−∆⊥

2 ,s) = −2M iεkl3∆lsz , k = 1,2 . (6.68)

Note that, remarkably, the 2D distributions (6.53)-(6.56) appear to be inde-
pendent of P . The reason is that longitudinal boosts do not mix longitudinal
components of angular momentum. As a consequence, as long as we restrict to
the longitudinal direction, 2D distributions in the elastic frame coincide with
the projections onto the transverse plane of the 3D distributions in the Breit
frame, namely Eqs. (6.53) to (6.56).

6.3.3 2D densities in the front form

Let us now switch to light-front coordinates. Similarly to the instant-form case,
we start with the definition of kinetic OAM distribution in four-dimensional
position space. Once again we focus on the longitudinal component only, and
write

⟨Lz⟩(x) = ε3jk xj⊥∫
d2∆⊥ d∆+

(2π)3
ei∆⋅x ⟨T +k⟩LF, (6.69)

where4

⟨T µν⟩LF ≡ ⟨p′,s∣T µν(0)∣p,s⟩
2
√
p′+p+

. (6.70)

Via the onshell conditions, we can express the light-front energy transfer ∆−

in terms of the three-momentum transfer (∆+,∆⊥) as

∆− = P⊥ ⋅∆⊥ − P −∆+

P + , (6.71)

P − = 1

2
[
(P⊥ + ∆⊥

2 )2 +M2

2(P + + ∆+
2 )

+
(P⊥ − ∆⊥

2 )2 +M2

2(P + − ∆+
2 )

] . (6.72)

If we use integration by parts and disregard the surface term, we can rewrite
Eq. (6.69) as

⟨Lz⟩(x) = ε3jk ∫
d2∆⊥ d∆+

(2π)3
ei∆⋅x [−i∂⟨T

+k⟩LF

∂∆j
⊥

+ x
+

2
( p

′j
⊥
p′+

+ p
j
⊥
p+

) ⟨T +k⟩LF] .

(6.73)
Densities in the light-front formalism are defined in the Drell-Yan (DY) frame
where ∆+ = 0 and P⊥ = 0⊥; this amounts to integrating the four-dimensional

4In this context, we indicate the spin-dependence of the states with the rest-frame spin
s.
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6.3. Densities in the impact-parameter space

distributions over the longitudinal light-front coordinate x−. In such a frame,
analogously to the situation in the Breit frame in instant form, the dependence
on the light-front time x+ in Eq. (6.73) drops out. We can use the following
Dirac bilinears involving light-front spinors uLF:

uLF (P +, ∆⊥
2 ,s)γ+γ5uLF(P +,−∆⊥

2 ,s) = 2P +sz , (6.74)

uLF (P +, ∆⊥
2 ,s) iσkλ∆λuLF (P +,−∆⊥

2 ,s) = −2M iεkl3∆l
⊥s
z , k = 1,2 . (6.75)

The impact-parameter densities of kinetic OAM and spin in the light-front
formalism are then given by

⟨Lz⟩(b⊥) = −iε3jk ∫
d2∆⊥
(2π)2

e−i∆⊥⋅b⊥
∂⟨T +k⟩LF

∂∆j
⊥

∣
DY

= sz ∫
d2∆⊥
(2π)2

e−i∆⊥⋅b⊥ [L(t) + t dL(t)
dt

]
t=−∆2⊥

, (6.76)

⟨Sz⟩(b⊥) =
1

2
ε3jk ∫

d2∆⊥
(2π)2

e−i∆⊥⋅b⊥ ⟨S+jk⟩LF∣DY

= s
z

2 ∫
d2∆⊥
(2π)2

e−i∆⊥⋅b⊥GA(−∆2
⊥) . (6.77)

Similarly, for the impact-parameter densities of Belinfante-improved total an-
gular momentum and total divergence, we find

⟨JzBel⟩(b⊥) = −iε3jk ∫
d2∆⊥
(2π)2

e−i∆⊥⋅b⊥
∂⟨T +k

Bel⟩LF

∂∆j
⊥

∣
DY

= sz ∫
d2∆⊥
(2π)2

e−i∆⊥⋅b⊥ [J(t) + t dJ(t)
dt

]
t=−∆2⊥

, (6.78)

⟨M z⟩(b⊥) =
1

2
ε3jk ∫

d2∆⊥
(2π)2

e−i∆⊥⋅b⊥ ∆l
⊥
∂⟨Sl+k⟩LF

∂∆j
⊥

∣
DY

= −s
z

2 ∫
d2∆⊥
(2π)2

e−i∆⊥⋅b⊥ [t dGA(t)
dt

]
t=−∆2⊥

. (6.79)

We observe that these light-front densities in the Drell-Yan frame coincide with
the corresponding instant-form densities in the elastic frame in Eqs. (6.63)
to (6.66). This should not be too surprising, since the Drell-Yan frame is noth-
ing but the elastic frame with P defining the light-front direction. Moreover,
instant-form and front-form definitions of the longitudinal angular momentum
coincide in the infinite-momentum frame limit5 Pz → ∞. Since the 2D densi-
ties that we considered do not depend on Pz, they should be the same in both
instant form and front form.

5We mention here that the link between instant-form and light-front form is not so
straightforward for the transverse components, see e.g. Ref. [143–145] for the related issues.
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6.3.4 Impact-parameter dependent form factors

By inspection of Eqs. (6.58) to (6.61) and (6.76) to (6.79), we recognize that the
impact-parameter densities can be expressed with combinations of 2D Fourier
transform of the form factors, defined as

F̃ (b⊥) = ∫
d2∆⊥
(2π)2

e−i∆⊥⋅b⊥ F (−∆2
⊥) . (6.80)

Let us consider the longitudinal components first. One finds

⟨Lz⟩(b⊥) = −
sz

2
b⊥

dL̃(b⊥)
db⊥

, (6.81)

⟨Sz⟩(b⊥) =
sz

2
G̃A(b⊥) , (6.82)

⟨JzBel⟩(b⊥) = −
sz

2
b⊥

dJ̃(b⊥)
db⊥

, (6.83)

⟨M z⟩(b⊥) =
sz

2
[G̃A(b⊥) +

1

2
b⊥

dG̃A(b⊥)
db⊥

] . (6.84)

where again we integrated by parts and used

−2∆2
⊥
dF

dt
= ∆⊥ ⋅ (∇∆⊥F ) , ∇b⊥F̃ = b⊥

b⊥

dF̃

db⊥
.

The impact-parameter density of kinetic total AM ⟨Jz⟩(b⊥) = ⟨Lz⟩(b⊥)+⟨Sz⟩(b⊥)
will differ from the “naive” density

⟨Jz⟩naive(b⊥) = szJ̃(b⊥) (6.85)

by a correction term

⟨Jz⟩corr(b⊥) = −sz [L̃(b⊥) +
1

2
b⊥

dL̃(b⊥)
db⊥

] . (6.86)

We can also project the 3D monopole and quadrupole contributions to the
Belinfante-improved total AM (6.50) and (6.51) onto the transverse plane.
This gives

⟨JzBel⟩mono(b⊥) =
sz

3
[J̃(b⊥) − b⊥

dJ̃(b⊥)
db⊥

] , (6.87)

⟨JzBel⟩quad(b⊥) = −
sz

3
[J̃(b⊥) +

1

2
b⊥

dJ̃(b⊥)
db⊥

] . (6.88)

Clearly, the total divergence (6.84), the correction (6.86) and the quadrupole (6.88)
terms vanish once integrated over b⊥

2π∫ db⊥ b⊥ ⟨M z⟩(b⊥) = 2π∫ db⊥ b⊥ ⟨Jz⟩corr(b⊥)
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= 2π∫ db⊥ b⊥ ⟨JzBel⟩quad(b⊥) = 0, (6.89)

as one can see using integration by parts. This explains why the naive J̃(b⊥),
the Polyakov-Goeke ρPG

J (b⊥) and the infinite-momentum frame ρIMF
J (b⊥) defi-

nitions considered by Adhikari and Burkardt [132] (corresponding in our nota-
tions to ⟨Jz⟩naive(b⊥), ⟨JzBel⟩mono(b⊥) and ⟨JzBel⟩(b⊥), respectively) are different,
even though they lead to the same integrated total angular momentum.

As for the transverse components is concerned, from Eqs. (6.58) to (6.61)
we obtain

⟨Li⊥⟩ (b⊥) =
si⊥
2
L̃ (b⊥) +

1

2
[(s⊥ ⋅ b⊥)

b⊥
bi⊥ − si⊥b⊥]

dL̃

db⊥
, (6.90)

⟨Si⊥⟩ (b⊥) =
si⊥
2
G̃A(b⊥) −

1

8
[s

i⊥
2
G̃(b⊥) +

1

2

(s⊥ ⋅ b⊥)
b⊥

bi⊥
dG̃

db⊥
] , (6.91)

⟨J iBel,⊥⟩ (b⊥) =
si⊥
2
J̃ (b⊥) +

1

2
[(s⊥ ⋅ b⊥)

b⊥
bi⊥ − si⊥b⊥]

dJ̃

db⊥
, (6.92)

⟨M i
⊥⟩ (b⊥) = −

si⊥
4
G̃A(b⊥) +

1

4

(s⊥ ⋅ b⊥)
b⊥

bi⊥
dG̃A

db⊥
− s

i

4
b⊥

dG̃A

db⊥

+ 1

8
[s

i⊥
2
G̃(b⊥) +

1

2

(s⊥ ⋅ b⊥)
b⊥

bi⊥
dG̃

db⊥
] . (6.93)

Finally, we comment on the decomposition of the transverse components of
the Belinfante total AM ⟨J iBel,⊥⟩ into quadrupole and monopole contributions.
If we first separate the corresponding three-dimensional density according to
Eq. (6.49), we find

⟨J iBel,⊥⟩quad
(b⊥) =

si⊥
6
J̃ (b⊥) −

1

2
[b⊥

3
si⊥ −

(s⊥ ⋅ b⊥)
b⊥

bi⊥]
dJ̃

db⊥
, (6.94)

⟨J iBel,⊥⟩mono
(b⊥) = si [

1

3
J̃ (b⊥) −

1

3
b⊥

dJ̃

db⊥
] , (6.95)

whose sum correctly yields Eq. (6.92). Nonetheless, we could proceed the other
way around, by going to 2-dimensional space first, via integration over x3, and
then separating the two contributions. The latter would of course differ from
the previous case, yielding

⟨J iBel,⊥⟩quad
(b⊥) = [−b⊥

4
si⊥ +

1

2

(s⊥ ⋅ b⊥)
b⊥

bi⊥]
dJ̃

db⊥
, (6.96)

⟨J iBel,⊥⟩mono
(b⊥) = si⊥ [

1

2
J̃ (b⊥) −

1

4
b⊥

dJ̃

db⊥
] , (6.97)

but their sum would still give Eq. (6.92). The two operations are therefore
commuting.
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6.4 Illustration within the scalar-diquark

model

In this Section we provide explicit calculations for the impact-parameter den-
sities in the framework of the scalar-diquark model [9, 91, 146]. This simple
model depicts the nucleon as a two-body system formed by an active quark
of mass m and a spectator system described by a scalar diquark of mass mD.
We suppose the interaction to be ruled by a Yukawa potential with coupling
constant g. We stress that, strictly speaking, this is not a QCD model of the
nucleon, as there are no gluon fields involved. Nonetheless, we consider this
model for illustrative purposes and in order to establish a direct comparison
with the results of Ref. [132].

Similarly to what we did for the dressed electron, we can reconstruct the
quark Light-Front Wave Functions ΨΛ

λ(x,k⊥) in the scalar-diquark model by
applying perturbation theory up to first order in the Yukawa coupling. Here
Λ = ± and λ = ± denote the light-front helicities of the nucleon and of the
quark, respectively. One finds:

Ψ+
+(x,k⊥) = Ψ−

−(x,k⊥) = (M + m
x
)φ(x,k2

⊥), (6.98)

Ψ+
−(x,k⊥) = − [Ψ−

+(x,k⊥)]
∗ = −k

x + iky
x

φ(x,k2
⊥), (6.99)

where

φ(x,k2
⊥) = −

g x
√

1 − x
k2⊥ + u(x,m2

D) (6.100)

and u(x,µ2) is the same defined in Eq. (5.11). We define the 2-dimensional
Fourier transform of LFWFs from momentum to impact-parameter space as [132,
147,148]

ΨΛ
λ(x,b⊥) =

1

1 − x ∫
d2k⊥
(2π)2

eik⊥⋅b⊥/(1−x) ΨΛ
λ(x,k⊥). (6.101)

As remarked in Ref. [132], the quark’s momentum in the transverse plane k⊥
is not Fourier conjugate to the impact parameter b⊥, but rather to the dis-
placement r⊥ = r1,⊥ −r2,⊥ between the active quark and the spectator; in order
to account for that, a factor 1

1−x appears in the exponent of Eq. (6.101). The
overall prefactor of 1

1−x is instead needed to guarantee proper normalization of
the wave functions.
Writing b⊥ = b⊥ (cosφb, sinφb), we obtain (see Appendix C.1 for details)

Ψ+
+(x,b⊥) = Ψ−

−(x,b⊥) = −
g (xM +m)
2π

√
1 − x

K0(Z), (6.102)

Ψ+
−(x,b⊥) = [Ψ−

+(x,b⊥)]
∗ =

ig
√
u(x,m2

D) eiφb
2π

√
1 − x

K1(Z), (6.103)
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where Kn is the n-th order modified Bessel function of the second kind and
Z =

√
u(x,m2

D) b⊥/(1 − x).

In Sections 4.4 and 4.4.1 we introduced Generalized Distribution Functions
in momentum space first, then showed how their Fourier transform in the
impact-parameter space can be interpreted as probability distribution. As we
will briefly illustrate in the following, it is possible to establish a connection
between the leading-twist GPDs and the form factors of the energy-momentum
tensor in b⊥-space and eventually to the angular-momentum densities (6.81)-
(6.84). As a final result, we obtain overlap representations of the impact-
parameter densities in terms of LFWFs.
We denote the Fourier transforms of GPDs as

F(x, b⊥) = ∫
d2∆⊥
(2π)2

e−i∆⊥⋅b⊥ F (x,0,−∆2
⊥) .

The following LFWF overlap representation in impact-parameter space holds6

[132] :

H(x, b⊥) =
1

2(2π)(1 − x)2
[∣Ψ+

+(x,b⊥)∣2 + ∣Ψ+
−(x,b⊥)∣2] ,

(6.104)

− 1

2M
(i ∂
∂bx

+ ∂

∂by
)E(x, b⊥) =

1

2(2π)(1 − x)2
[Ψ+∗

+ (x,b⊥)Ψ−
+(x,b⊥)

+Ψ+∗
− (x,b⊥)Ψ−

−(x,b⊥)] , (6.105)

H̃(x, b⊥) =
1

2(2π)(1 − x)2
[∣Ψ+

+(x,b⊥)∣2 − ∣Ψ+
−(x,b⊥)∣2] .

(6.106)

In the scalar-diquark model, by using Eqs. (6.102)-(6.103), we find

H(x, b⊥) =
g2

2(2π)3(1 − x) {(xM +m)2 [K0(Z)]2 + u(x,m2
D) [K1(Z)]2} ,

(6.107)

E(x, b⊥) =
g2

2(2π)3
2M(xM +m) [K0(Z)]2

, (6.108)

H̃(x, b⊥) =
g2

2(2π)3(1 − x) {(xM +m)2 [K0(Z)]2 − u(x,m2
D) [K1(Z)]2} .

(6.109)

Taking the second Mellin moment of these expression, we obtain the EMT
form factors in impact-parameter space [65]:

∫
1

0
dxx [H(x, b⊥) + E(x, b⊥)] = Ã(b⊥) + B̃(b⊥), (6.110)

6We provide a derivation in Appendix C.1
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∫
1

0
dx H̃(x, b⊥) = G̃A(b⊥) = −D̃(b⊥) , (6.111)

which can then be inserted in Eqs (6.81)-(6.88) to get the various contributions
to the density of AM in the longitudinal direction.

In Fig. 6.1 we plot the above-mentioned densities as functions of the mod-
ulus b⊥ of the impact parameter for a longitudinally polarized target. We
choose the same mass parameters as Adhikari and Burkardt [132], namely
M =m =mD = 1 fm−1. In order to regulate the ultraviolet divergences b⊥ → 0,
we adopt the Pauli-Villars regularization, using the diquark mass mD as a reg-
ulator. More precisely, for each one of the functions ⟨jz⟩(b⊥;m2

D) considered,
we plot

b⊥ [⟨jz⟩(b⊥;m2
D) − ⟨jz⟩(b⊥;M2

D)] , (6.112)

with M2
D = 10m2

D. The extra factor of b⊥ comes from the Jacobian of the
transformation to polar coordinates.
Going from top to bottom, in the first plot we present the kinetic total AM
⟨Jz⟩ (solid line) resulting from the sum of kinetic orbital angular momentum
⟨Lz⟩ in Eq. (6.76) (dashed line) and spin ⟨Sz⟩ in Eq. (6.77) (dashed line). In
the scalar diquark model both contributions appear to be positive.
In the second plot we compare the kinetic total angular momentum ⟨Jz⟩ (solid
line) with the Belinfante-improved total AM ⟨JzBel⟩(b⊥) in Eq. (6.78) (dashed
line), the difference being attributed to the ⟨M z⟩(b⊥) term in Eq. (6.79) (dot-
ted line), which originates from the total-divergence term in Eq. (6.17).
In the third plot, we compare the kinetic total angular momentum ⟨Jz⟩(b⊥)
(solid line) with the naive density J̃(b⊥) in Eq. (6.85) (dashed line). Their dif-
ference is given by the correction term ⟨Jz⟩corr(b⊥) in Eq. (6.86) (dotted line).
In the fourth and last plot, we decomposed the Belinfante-improved total AM
⟨JzBel⟩(b⊥) (dashed line) into the sum of the monopole contribution ⟨JzBel⟩mono

in

Eq. (6.87) (dashed line) and the quadrupole contribution ⟨JzBel⟩quad
in Eq. (6.88)

(dotted line).

The monopole term is what Adhikari and Burkardt called the Polyakov-
Goeke definition [132]. Once again, although the total divergence term ⟨M z⟩(b⊥),
the correction term ⟨Jz⟩corr(b⊥) and the quadrupole contribution ⟨JzBel⟩quad(b⊥)
integrate to zero, they need to be taken into account when comparing different
definitions for the density of angular momentum.
Since there is no gauge field in the scalar diquark model we considered, we
expect the kinetic OAM to coincide with the canonical (or Jaffe-Manohar)
OAM [7]. The latter can be expressed in terms of the following LFWF overlap
representation in impact-parameter space:

Lz(b⊥) =
1

2(2π) ∫
1

0
dx (1 − x) ∣Ψ+

−(x,b⊥)∣2 . (6.113)
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Figure 6.1: Plots of the densities of longitudinal angular momentum in units of g2

16π
fm−1

as functions of b⊥ = ∣b⊥∣. See the body of the text for a more detailed description.
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By inserting Eq. (6.103), we find

Lz(b⊥) =
g2

2(2π)3 ∫
1

0
dxu(x,m2

D) [K1(Z)]2
. (6.114)

Note that the canonical OAM can alternatively be defined in terms of GTMDs
according to Eq. (5.45)7 leading to the same expression as in Eq. (6.113) in the
scalar diquark model [149]. This has to be compared with the expression for the
kinetic OAM ⟨Lz⟩(b⊥) that we obtain from Eq. (6.81), using (6.107)-(6.111):

⟨Lz⟩(b⊥) =
g2

2(2π)3

1

2 ∫
1

0
dx

1

1 − x{ [(1 − x)(x2M2 −m2) + (1 + x)u(x,m2
D)]

×ZK0(Z)K1(Z)(1 + x)u(x,m2
D) [K1(Z)]2 } .

(6.115)
As we prove in Appendix C.3, we find that ⟨Lz⟩(b⊥) = Lz(b⊥) for b⊥ > 0. To
the best of our knowledge, this is the first time that the equality between
kinetic and canonical OAM is checked explicitly at the density level. We also
understand the failure to observe the equality in Ref. [132] as coming from the
fact that the authors incorrectly defined the density of kinetic OAM as

LzIMF(b⊥) ≡ ⟨JzBel⟩(b⊥) − ⟨Sz⟩ (b⊥) , (6.116)

which misses the total divergence term ⟨M z⟩(b⊥) as one can see from Eq. (6.57).

6.5 Summary

In this Chapter we addressed the question of the definition of angular mo-
mentum at the density level. Our point of emphasis is that in the context
of Particle Physics, where spin densities play a fundamental role, one should
consider the canonical, non-symmetric version of the Energy-Momentum Ten-
sor. While superpotential terms do not play any role at the level of integrated
quantities, it is of crucial importance to keep track of them at the density level.
In particular, we showed that for a spin-1/2 target the form factor accounting
for the antisymmetric part of the energy-momentum tensor coincides (up to a
sign) with the axial-vector form factor. This provides an interesting new way
of calculating the latter on the lattice.

We revisited and extended Polyakov’s work on the three-dimensional distri-
bution of angular momentum in instant form and in the Breit frame. Working
with an asymmetric energy-momentum tensor allowed us to derive directly
the correct density of orbital angular momentum. Densities in the Breit frame
can be extended to the more general class of the elastic frame, provided one

7To be precise, Eq. (5.45) coincides with the Jaffe-Manohar definition of the OAM only
when the Wilson line has the staple shape given by Eq. (4.13). In light-cone gauge, however,
the residual transverse gauge link does not contribute to the OAM and can thus be ignored
[7].
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projects onto a two-dimensional plane. Thanks to this generalization, we were
able to establish a simple connection between instant-form densities defined in
the Breit frame and light-front densities defined in the Drell-Yan frame for the
longitudinal components of angular momentum.

We used the scalar diquark model to illustrate our results. We showed ex-
plicitly that when all the terms integrating to zero are included in the expres-
sions, no discrepancies are found between the different definitions of angular
momentum. In particular, we checked for the first time explicitly that the
canonical and kinetic angular momentum do coincide at the density level, as
expected in a system without gauge bosons.
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Chapter 7
Summary and conclusions

The Standard Model (SM) has encountered invaluable success over the last few
years in classifying and describing elementary particles that build the visible
universe. Despite these tremendous achievements, however, it still misses to
explain some fundamental properties of subatomic particles. This is true, in
particular, for what concerns the QCD sector of the SM, which accounts for
the strong interactions: the non-Abelian nature of the theory makes it impos-
sible to solve it mathematically with the ordinary perturbative approaches and
introduces difficulties in the interpretation of experiments. As a result, we are
currently not able to see the global properties of nucleons, such as its mass and
spin, as deriving from the properties of their elementary constituents, namely
quarks and gluons. The ultimate goal of Hadronic Physics is to provide a so-
lution to these problems.
The Standard Model is formulated in the framework of Quantum Field Theory
(QFT). In this thesis we considered the formalism of light-front quantization,
a QFT language which turns out to be particularly effective to reveal the in-
ternal structure of composite particles, and we applied it to the cases of QCD
and QED.
We showed how light-front quantization helps us to rewrite and interpret the
partonic distribution functions, which map quarks and gluons inside nucleons.
We focused in particular on Generalized Transverse-Momentum Dependent
(GTMD) and Transverse-Momentum Dependent (TMD) distribution func-
tions, which we analyzed in the QED context. This procedure allowed us
to obtain a order-α description, both in momentum and position space, of the
dressed electron, thought as a two-body system composed of a bare electron
and a photon.
Since light-front quantization prescribes the choice of the non-covariant light-
cone gauge, we took the opportunity to discuss gauge invariance of QED in
many facets. More precisely, we addressed the issue of which gauge-field prop-
agator should be used in light-cone gauge in order to match light-front Time-
Ordered Perturbation Theory and covariant approach with Feynamn diagrams;
we also emphasized the role of the gauge link in preserving gauge invariance
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7. Summary and conclusions

when dealing with the calculation of TMDs. These are examples of results
that are immediately transferable from QED to QCD, as they depend only on
the common nature of the two as gauge theories.
We finally focused on the problem of properly defining quark’s angular mo-
mentum densities in position space inside the nucleon. This is a relevant is-
sue concerning the spin-decomposition puzzle. Light-front quantization again
provides a beautiful solution aimed to avoid relativistic corrections in the two-
dimensional impact-parameter space, thus making it possible to interpret the
considered densities as probability distributions.

In the following we summarize the results and possible outlooks of this
work, referring to Sections 3.5, 5.4 and 6.5 for a more extended discussion.

7.1 Results

In this thesis we first gave an overview of light-front quantization methods
for QCD, with particular emphasis on partonic distribution functions, then
showed possible applications of this formalism in QED and QCD.
In Chapter 2 we introduced light-front quantization, mainly by adopting an
historical point of view. We discussed several advantages of this formalism
compared to the usual equal-time quantization, focusing especially on the sim-
plification of the time-order perturbation theory (TOPT) approach, as well as
on the effects related to the dynamics in the impact-parameter space.
In Chapter 3 we addressed the question of which form should be used for the
gauge-field propagator in light-cone gauge, for the purpose of clarifying some
inconsistencies and misleading results in the literature. To this end we reviewed
the proof of the equivalence between light-front TOPT and Feynman-diagram
approach in light-cone gauge at one-loop level in QED. Our conclusion is that
the photon propagator should contain the sum of three terms, but the third
can be dropped if one ignores at the same time the contributions from four-
fermion interactions with instantaneous photons (which appear whenever we
work in an axial gauge) in the covariant theory. We showed explicitly how light-
front time-ordered diagrams containing instantaneous photons can be matched
starting from the two-term propagator, by correctly applying integration by
residues of Feynman diagrams; this result is in contrast with what had been
previously stated in the literature.
In Chapter 4 we recalled the definitions of the various distribution functions
of partons inside the nucleon, adopting the light-front language. We focused
in particular on the Fourier transforms of GPDs and GTMDs to the impact-
parameter space. The definitions of these objects are actually valid for any
spin-1/2 composite system, thus making it possible to apply them also in the
QED case of the electron.
In Chapter 5 we derived analytical expressions for the three-dimensional Wigner
distributions in mixed momentum and position space and for the TMDs rel-
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ative to the bare electron and to the photon inside the dressed electron. The
latter appears as a ring-shaped object in momentum space, with a radius of
about 200 keV. Remarkably, the electron’s T-odd TMDs are vanishing at order
α if we do not include vertex-correction and self-energy contributions. This
fact represents a difference with respect to quark’s TMDs in the QCD scenario.
We argue, however, that this should not be the case, since the Sivers effect is
supposed to show up in any gauge theory, regardless of its Abelian nature. The
mismatch could then be due to the approximations we assumed; namely, our
results are valid only up to order α and excluding the end-point x = 0, k⊥ = 0⊥.
We showed how the formalism of LFWF overlap representation gives a clear
and simple interpretation of spin-spin and spin-orbit correlations encoded in
TMDs. We also discussed the role of the transverse-gauge link in restoring
gauge invariance of the theory, finding similar (yet not exactly equivalent) re-
sults compared to what happens in QCD.
Finally, in Chapter 6 we studied angular-momentum densities of quarks inside
the nucleon in terms of form factors of the QCD energy-momentum tensor.
In this regard, our work marks a step forward with respect to the preexisting
literature, as it clarifies which definitions should be taken for the orbital angu-
lar momentum and spin density contributions to the total angular momentum
density. We also stressed the importance of using the non-symmetric version
of the energy-momentum tensor in the context of Particle Physics: in our
derivation it is indeed crucial to take into account superpotential terms at the
density level, although they vanish after integration. We evaluated the impact-
parameter densities in the scalar-diquark model of the nucleon, by means of
the Light-Front Wave Function representation of GPDs, thus explaining the
discrepancies between different definitions of (total) angular momentum found
in previous works Ref. [132].

7.2 Outlooks

This thesis offers several opportunities for future perspectives, including both
straightforward extensions of this work and applications in original projects.
First, it is natural to wonder whether the results related to the distribution
functions in the QED context could be verified experimentally. Although we
cannot provide an answer to this question, a couple of comments are in or-
der. As for the GTMDs is concerned, we remark that the identification of a
QED process that could (at least in principle) allow for their measurement
would be of great theoretical importance, since GTMDs are currently not ac-
cessible experimentally even in QCD1. Some proposals have been advanced for
measurement of Wigner distributions with Quantum Optics methods [150,151],
that may be connected to Wigner distributions of the photon inside the dressed
electron. The dressed electron TMDs, instead, could be used to evaluate ra-

1Actually, as we mentioned in Section 4.5, there have recently been new suggestions for
measurements of GTMDs in QCD, which are currently awaiting experimental validation.
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diative correction relevant in high-precision experiments involving a leptonic
probe, with a procedure similar to the evaluation of proton-proton collisions
(i.e. via a convolution of the TMDs of the electron and that of the target).
Before embarking in such tasks, however, it would be necessary to provide a
proper regularization and renormalization procedure so as to make sure that
all physical contributions are taken into account. It would be interesting also
to check whether the Sivers and Boer-Mulders effects are present in the QED
context, either by extending the calculations presented in this thesis to higher
perturbative orders, or by considering the analogous case of the positronium
system.
For what concerns the quark’s angular momentum densities, an interesting ex-
tension consists in considering also the transverse components of the operators
studied in Chapter 6. We expect these to show a non-trivial dependence on the
average momentum P of the system. In this case, then, it would be interesting
to establish a connection between instant-form and light-front form results. We
finally mention that also the other components of the QCD Energy-Momentum
Tensor (EMT) could be analyzed in terms of form factors with a procedure
similar to ours. As discussed in Ref. [128], these are related to fundamental
quantities such as the nucleon mass and shear forces and pressures inside the
nucleon. We stress again the importance, as our derivation makes evident, of
adopting the non-symmetric EMT in this context. In particular, the D(t) form
factor related to the antisymmetric part of the EMT could be investigated on
the lattice, by taking advantage of its simple relation with the axial-vector
form factor, as we have derived from the QCD equations of motion.
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Appendix A
Electron self-energies

In this Appendix we explicitly derive the results (3.74) and (3.75) which give,
respectively, the contributions Σ2 and Σ3 to the electron self-energy in covari-
ant approach.

We start from the contribution Σ2. The matrix element in the numerator
of the integrand in Eq. (3.72b) can be rewritten as

ūs′(P )γνγ+γµdµν(k̃)us(P ) = 2ūs′(P )γ+us(P ) = 4P +δs,s′ , (A.1)

where we used the relations

γµγ
νγµ = −2γν , ūs′(P )γ+us(P ) = 2P +δs,s′ .

As a result we can write

−iūs′(P )Σ2(P )us(P ) = − e2P +

2m(2π)3
δs,s′ ∫ d2k⊥∫ dx

4P +

2(1 − x)P + I1 , (A.2)

where in the I1 term we have isolated the integral over k−, i.e.

I1 = ∫
dk−

2π

1

k2 + iε .

By introducing the new variable

u = 1

k−
, (A.3)

we can rewrite I1 as

I1 = −
1

2xP + ∫
du

2π

1

u

1

[1 − u (k2⊥−iε
2xP+ )]

, (A.4)

which shows poles for u = 0 (i.e. k− = ∞) and u = 2xP+
k2⊥−iε ≡ ux. We regularize the

first singularity by substituting

1

u
→ 1

2
( 1

u + iδ +
1

u − iδ) . (A.5)
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As a result, we have

I1 = −
1

4xP + ∫
du

2π

1

[1 − u (k2⊥−iε
2xP+ )]

( 1

u + iδ +
1

u − iδ) . (A.6)

When considering the first term in round brackets, the first singularity now
falls into the lower half-plane (at u = −iδ); therefore we will obtain a nonzero
result when ux is in the upper half-plane, which means for x > 0. The specular
situation holds for the second term in round brackets, which will then con-
tribute only for x < 0.
If we choose the contour of integration for the first and second term enclosing
the −iδ and +iδ poles, respectively, and then take the limit δ → 0, it is easy to
see that we come up with the following result

I1 =
i

4xP + [θ(x) − θ(−x)] = i

4xP + sgn(x) . (A.7)

As we insert Eq. (A.7) into (A.2), we finally get

−iūs′(P )Σ2(P )us(P ) = − ie2

4m(2π)3
δs,s′ ∫ d2k⊥∫ dx

1

x(1 − x)sgn(x)

= − ie2

2m(2π)3 ∫ d2k⊥∫
∞

0
dx

1

x(1 − x)δs,s
′ , (A.8)

as reported in Eq. (3.74).
For the calculation of the contribution Σ3, we start from Eq. (3.72c) and rewrite
the matrix element in the numerator of the integrand as

ūs′(P )γ+(/̃l +m)γ+us(P ) = l+ūs′(P )γ+γ−γ+us(P )
= 2(1 − x)P +ūs′(P )γ+us(P ) = 4(1 − x) (P +)2

δs,s′ .
(A.9)

As a result, we have

−iūs′(P )Σ3(P )us(P ) = e2P +

2m(2π)3
δs,s′ ∫ d2k⊥∫ dx

4(1 − x) (P +)2

(xP +)2 I2 , (A.10)

where the integral I2 over k− is given by

I2 = ∫
dk−

2π

1

(P − k)2 −m2 + iε . (A.11)

By changing the variable of integration as in (A.3), and using the on-shell
condition P 2 =m2, one obtains

I2 = −
1

2(1 − x)P + ∫
du

2π

1

u

1

[1 − u xm2+k2⊥−iε
2(x−1)P+ ]

. (A.12)
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We can henceforth proceed as before, replacing 1/u according to (A.5); the
integration around the pole at u = −iδ will now give a nonzero result only
when x − 1 > 0, while the integration around the pole at u = iδ contributes
when x − 1 < 0. By taking the limit δ → 0, one finds

I2 =
i

4(x − 1)P + [θ(x − 1) − θ(1 − x)] = − i

4(x − 1)P + sgn(1 − x) . (A.13)

Inserting this back in (A.10), one comes up with

−iūs′(P )Σ3(P )us(P ) = ie2

2m (2π)3 δs,s′ ∫ d2k⊥∫ dx
1

x2
sgn(1 − x) . (A.14)

Note that, since 1/x2 is an even function of x, we have:

∫ dx
1

x2
sgn(1 − x) = −∫

1

−∞
dx

1

x2
+ ∫

∞

1
dx

1

x2
= −∫

∞

−1
dx

1

x2
+ ∫

∞

1
dx

1

x2

= −∫
∞

0
dx

1

(1 − x)2
+ ∫

∞

0
dx

1

(1 + x)2
. (A.15)

We therefore conclude that Eq. (A.14) becomes

ūs′(P )Σ3(P )us(P ) = e2

2m(2π)3
δs,s′ ∫ d2k⊥∫

∞

0
dx [ 1

(1 − x)2
− 1

(1 + x)2
] ,

(A.16)
which coincides with Eq. (3.75).

Let us now prove the derivation of Eqs. (3.87) and (3.88) from (3.83) and
(3.84), respectively. Notice that (thanks to the invariance of the trace under
cyclic permutations), Eqs. (3.83) and (3.84) can be obtained one from the other
via the exchange k↔ l, up to a minus sign; we hence evaluate only one of the
two equations. The numerator of (3.83) is

Tr [γν /̃lγµγ+] = l+Tr [γνγ−γµγ+] + l−Tr [γνγ+γµγ+] − liTr [γνγiγµγ+] . (A.17)

Out of these three terms, the second one can be neglected with the same
argument made for (3.85), while the third one can be dropped since li = −ki
(i = 1,2) and we are integrating over k⊥. Consequently, we are left with

ε∗λ′, ν(P )Tr [γνγ−γµγ+] ελ,µ(P ) = 4δλ,λ′ , (A.18)

where we used

ε∗λ′, µ(P )εµλ(P ) = gλ,λ′ = −δλ,λ′ , for λ,λ′ = 1,2 .

Therefore we can rewrite

iε∗λ′,ν(P )Πµν
2 (P )ελ,µ(P ) = −4e2P +

(2π)3 ∫ d2k⊥∫ dx
(1 − x)P +

xP + δλ,λ′I2 , (A.19)

where the integral I2 coincides with (A.11) and yields the result (A.13); if we
put the latter into (A.19), we finally get Eq. (3.87). The substitution k → l
now reduces to the exchange x→ 1 − x; if we also put an extra minus sign, we
recover Eq. (3.88).
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Appendix B
On the TMD calculation

B.1 Handbag diagram and Deep Inelastic Scat-

tering

It is useful to revisit how the correlator (4.27) is linked to the cross section of
the simplest process involving a diagonal matrix element of the quark current
between initial and final states with zero momentum transfer, namely inclusive
Deep Inelastic Scattering (DIS) [62, 63, 152]. We eventually recover that the
diagrammatic representation of the correlator is given by the handbag diagram
Fig. 4.4. It should be emphasized, however, that DIS cannot be used to ex-
perimentally access TMDs, since in this process we are not sensitive to the
transverse momentum of the active parton.
DIS is illustrated in Fig. B.1: a leptonic probe with momentum l and spin s
scatters off an hadron with momentum P , mass M and spin S via the exchange
of a virtual photon with momentum q. The process is said to be inclusive when
we detect only the lepton with momentum l′ = l − q and spin s′ in the final
state, while the final hadronic states, which we denote as X, are unobserved.
We define the virtuality of the photon as Q2 = −q2, which is referred to also
as the hard scale of the process. The scattering is considered deep in the limit
Q2 ≫M2 along with P ⋅ q ≫M2, while the ratio

xB = Q2

2P ⋅ q , (B.1)

which defines the Bjorken variable xB, is assumed to remain constant as Q,P ⋅
q →∞. In this approximation, the parton-model approach where the scattering
takes place only between the lepton probe and one of the quarks inside the
nucleon, while the other are considered as non-interacting spectators, is a good
assumption.
The differential cross section of the inclusive DIS process can be expressed as

l′
dσ

d3l′
= 1

l ⋅ P
α2

Q4
LµνWµν , (B.2)
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Figure B.1: Inclusive Deep Inelastic Scattering.
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Figure B.2: DIS amplitude with a quark in the final state (a) and handbag diagram for
the corresponding cross section (b).

where we separated the contributions from the leptonic tensor

Lµν(l, l′; s) = 1

2
∑
s′

(ūs′(l′)γµus(l))
∗
(ūs′(l′)γνus(l)) , (B.3)

and the hadronic tensor

W µν(q,P ;S) = 1

2π ⨋X(2π)4δ4 (pX − P − q) ⟨P,S∣Jµ(0)∣X⟩ ⟨X ∣Jν(0)∣P,S⟩ .
(B.4)

Here Jµ(x) = ef ψ̄(x)γµψ(x) is the electromagnetic current related to a quark
with charge ef in units of e.1 The leptonic tensor takes into account the
electromagnetic interaction of the probe with the active parton and can be
hence calculated perturbatively. The hadronic tensor, instead, contains all the
non-perturbative information about the target.

Let us now split the final state ∣X⟩ in Eq. (B.4) into a free quark with

1To be precise, a flavor index should be attached to each fermion field and, consequently,
to the quark currents. We will omit it for better readability of the equations.

130



B.1. Handbag diagram and Deep Inelastic Scattering

momentum k
′ = k + q and mass m and a remnant state ∣X ′⟩, as shown in

diagram (a) of Fig. B.2. By using the on-shell condition to rewrite

∫
d3k′

(2π)32k′0
= ∫ d4k δ (k′2 −m2) θ(k′0 −m) (B.5)

and the completeness for ∣X ′⟩, we obtain

W µν(q, k,P ;S) =∑
f

e2
f ∫ d4k δ ((k + q)2 −m2) θ (k0 + q0 −m)∫

d4z

(2π)4
eik⋅z

× [⟨P,S∣ψ̄(0)ψ(z)∣P,S⟩γµ(/k + /q +m)γν

+⟨P,S∣ψ(0)ψ̄(z)∣P,S⟩γν(/k + /q +m)γµ] . (B.6)

The second term in square brackets in Eq. (B.6) refers to the situation where,
instead of a quark, we have an antiquark interacting with the virtual photon;
we will drop it in the present discussion from now on.
We refer to Fig. B.2 for a diagrammatic interpretation of Eq. (B.6). It is easy to
recognize that the right-hand side corresponds to the square of the amplitude
described by diagram (a), “amputated” of the virtual photon line. Thanks to
the optical theorem [46], we can represent the square of (a) with the handbag
diagram (b), where the cut indicates that, in addition to the usual Feynman
rules, we have to integrate over the final states and insert the on-shell condition
δ (P 2

X −m2
X) θ (p0

X) for each particle in the final state. Furthermore, imaginary
parts in the propagators change sign going from the left side to the right side
of the cut.
We finally relate the hadronic tensor with the correlator at vanishing momen-
tum transfer by rewriting

W µν =∑
f

e2
f ∫ d4k δ ((k + q)2 −m2) θ (k0 + q0 −m)

×Tr [ΦS(k;P )γµ (/k + /q +m)γν] , (B.7)

where

ΦS(k;P ) = ∫
d4z

(2π)4
eik⋅z ⟨P,S∣ψ̄(0)ψ(z)∣P,S⟩ (B.8)

coincides with Eq. (4.27) once we integrate over k−. The diagrammatic repre-
sentation of the correlator is shown in Fig. 4.4. It corresponds to the “lower
part”of the handbag diagram (b) of Fig. B.2, obtained by removing the fermion
propagator and the virtual photons, but still including the cut. This can
be seen by reinserting the completeness on the hadronic final state ∣X ′⟩ in
Eq. (B.8):

ΦS(k;P ) = ⨋
X′ ⟨P,S∣ψ̄(0)∣X

′⟩⟨X ′ ∣ψ(0)∣P,S⟩ δ(4) (P − k − PX′) . (B.9)
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B.2 TMD gauge invariance

In Section 5.3.2 we showed that, in Feynman gauge, the leading-twist TMDs at
order α receive contributions from three different diagrams, namely (a) to (c)
in Fig. 5.5. It was then demonstrated in Section 5.3.3 that these contributions
can be identified with the three terms coming from diagram (a) alone, but
written with the light-cone gauge photon propagator. Here we summarize how
the T-even TMDs reported in Eqs. (5.64) to (5.70) can be decomposed in the
sum of these three terms:

fA1 (x,k⊥) =
1

(2π)3
[k

2⊥ +m2(1 − 4x + x2)
x

]ϕ2(x,k⊥) ,

fB1 (x,k⊥) = fC1 (x,k⊥) =
1

(2π)3
[k

2⊥ +m2(1 − x)2

(1 − x)2
] ϕ2(x,k⊥) . (B.10)

gA1L(x,k⊥) =
1

(2π)3
[k

2⊥ −m2(1 + x2)
x

]ϕ2(x,k⊥) ,

gB1L(x,k⊥) = gC1L =
1

(2π)3
[k

2⊥ +m2(1 − x)2

(1 − x)2
]ϕ2(x,k⊥) . (B.11)

gA1T (x,k⊥) = −
2m2

(2π)3
ϕ2(x,k⊥) , gB1T (x,k⊥) = gC1T (x,k⊥) = 0 . (B.12)

hA1L(x,k⊥) = −
2m2

(2π)3x
ϕ2(x,k⊥) , hB1L(x,k⊥) = hC1L(x,k⊥) = 0 . (B.13)

h⊥ A1T (x,k⊥) = h⊥ B1T (x,k⊥) = h⊥ C1T (x,k⊥) = 0 . (B.14)

hA1T (x,k⊥) = −
2m2

(2π)3
ϕ2(x,k⊥) ,

hB1T (x,k⊥) = hC1T (x,k⊥) =
1

(2π)3
[k

2⊥ +m2(1 − x)2

(1 − x)2
] , (B.15)

where for each TMD f e(x,k⊥) the notation f e(x,k⊥) = fA(x,k⊥)+fB(x,k⊥)+
fC(x,k⊥) is understood. We observe in particular that for the TMDs ge1T and
he1L the second and third term are vanishing: this means that their evaluation
in Feynman and light-cone gauge would coincide even omitting the insertion
of the Wilson line.

B.3 Eikonal approximation in the Drell-Yan

process

In Section 5.3.2 we described the eikonal approximation for the SIDIS case and
showed how to isolate the sub-diagram corresponding to the electron correlator
from the handbag diagram, in presence of a gauge photon. The key result of
the approximation is the introduction of the eikonal propagator (5.58) to which
we associate the Feynman rules illustrated in Fig. 5.7. Here we provide the
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l
ll + k

l + k

k

q q
q − k − lq − k

q − k

(b)

P P

q q

q − k

(a)

k

P − k P − k

k

q − k

Figure B.3: Cut diagram for the electron-positron annihilation, with a gauge photon.

Figure B.4: Cut diagram for the electron-positron annihilation, split into its upper and
lower part, which is the one contributing to the correlator. Diagrams are meant to be joined
by attaching crosses with crosses and circles with circles.

analog derivation of the eikonal propagator for the QED Drell-Yan scattering,
where the partonic content of the dressed electron is probed by a positron that
annihilates with the internal electron, producing an outgoing photon.
The amplitude of the Drell-Yan process can be obtained by evaluating the
cut diagram in Fig. B.3 (a); its factorization into an upper and lower part is
trivial. We thus focus on diagram (b) in Fig. B.3, where we consider the same
process with the inclusion of a initial-state interaction with a gauge photon.
The corresponding amplitude reads

M2 = e4

(2π)3
δ(l2)δ(q2)v̄S′(q − k)γµ

/k +m
k2 −m2 + iεγνuS(l + k)

× ūS(l + k)γµ
/q − /k − /l −m

(q − k − l)2 −m2 − iεγ
νvS′(q − k) . (B.16)

Let us apply the eikonal approximation to the fermion propagator with mo-
mentum q − l − k: similarly to Eq. (5.58), we obtain:

/q − /k − /l −m
(q − k − l)2 −m2 − iε ≃ −

(q − k)−γ+
2(q − k)−k+ + iε =

γ+

−2k+ + iε′ , (B.17)

where ε′ = −ε/(q − k)− is still positive since q − k is the momentum of the
outgoing positron. Therefore, with respect to the SIDIS case, here we have a
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k

k, λ
= i

k+−iǫ = −ienµε
µ ∗

Figure B.5: Feynman rules for the eikonal propagator and vertex in the Drell-Yan case;
the rules refer to the left-hand side of the cut.

sign difference in the momentum of the eikonal propagator.
In Fig. B.4 we show the diagrammatic representation of the splitting. The
Feynman rules for the eikonal propagator in the Drell-Yan case are indicated
in Fig. B.5. Notice that the position of the cross and the circle in the eikonal
propagator are flipped, with respect to the SIDIS case.
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Appendix C
From momentum to position
space

C.1 Overlap representation of GPDs in the

impact-parameter space

We show how to derive Eqs. (6.104) to (6.106), reporting the discussion in
Ref. [148].
In momentum space, the LFWF overlap representation of GPDs can be re-
covered from that of (proper combinations of) GTMDs by integrating over
the active quark’s transverse momentum k⊥. Referring to the scalar-diquark
model, one has, for ξ+ = 0:

H(x,∆⊥) =∫
d2k⊥

2(2π)3
[ψ+∗+ (x,k′⊥)ψ++(x,k⊥) + ψ+∗− (x,k′⊥)ψ+−(x,k⊥)] , (C.1)

E(x,∆⊥) = −
2M

∆L
∫

d2k⊥
2(2π)3

[ψ+∗+ (x,k′⊥)ψ−+(x,k⊥) + ψ+∗+ (x,k′⊥)ψ−−(x,k⊥)] ,

(C.2)

H̃(x,∆⊥) =∫
d2k⊥

2(2π)3
[ψ+∗+ (x,k′⊥)ψ++(x,k⊥) − ψ+∗− (x,k′⊥)ψ+−(x,k⊥)] , (C.3)

where k′⊥ = k⊥ + (1 − x)∆⊥.
Let us consider a generic function G in the form

G(∆⊥) = ∫
d2k⊥
(2π)2

f∗(k⊥ − a∆⊥)g(k⊥) (C.4)

for some arbitrary parameter a. If the functions f and g satisfy

f(k⊥) = ∫ d2r⊥ e−ir⊥⋅k⊥ f̃(x,r⊥) , (C.5)

g(k⊥) = ∫ d2r⊥ e−ir⊥⋅k⊥ g̃(x,r⊥) , (C.6)
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where f̃ and g̃ denote the respective Fourier transforms, we can write:

∫
d2∆⊥
(2π)2

eib⊥⋅∆⊥G(∆⊥) =
1

∣a∣2 f̃
∗ (b⊥

a
) g̃ (b⊥

a
) . (C.7)

If we apply the last relation to Eqs. (C.1) to (C.3) with a = (1 − x), r⊥ =
b⊥/(1 − x), we recover the overlap representation in Eqs. (6.104) to (6.106).

C.2 Hankel transform

Let us now consider the Fourier transform (6.101) of the LFWFs to the impact-
parameter space. In order to recover Eqs. (6.102) and (6.103), we need the
two-dimensional Fourier transform f̃(x⊥) of a generic function f(p⊥), where
p⊥ = ∣p⊥∣ and x⊥ = ∣x⊥∣:

f̃(x⊥) = 2π∫
∞

0
dp⊥ g(p⊥)J0(x⊥p⊥)p⊥ . (C.8)

Here J0(z) is the zeroth order Bessel function of the first kind; these functions
have, for generic n, the following integral representation:

Jn(z) =
1

2πin ∫
2π

0
dφe−iz cosφ einφ . (C.9)

In the following, we will need the Hankel transform of a function g in the form
g(p⊥) = 1/(a2 + p2⊥), that is given by

∫ d2p⊥
eix⊥⋅p⊥

a2 + p2⊥
= 2πK0(ax⊥) , (C.10)

where Kn(z) is the n-th order modified Bessel function of the first kind.
We now use Eq. (C.8) to derive the Fourier transforms of the light-front wave
functions (6.98)-(6.99). The wave functions Ψ++ and Ψ−− depend on k2⊥ only
through the function ϕ(x,k2⊥) in Eq. (6.100). Therefore, we can directly apply
to them (C.10), with a = u(x,m2

D), and obtain Eq. (6.102).
In order to evaluate the Fourier transforms of ψ+− and ψ−+, instead, we first need
to switch to polar coordinates, and set:

b⊥ = b⊥(cosφb, sinφb) , k⊥ = k⊥(cosφk, sinφk) .

Let us consider ψ+− as an example; we can rewrite its Fourier transform as:

ψ+−(x,b⊥) =∫
+∞

0

k⊥ dk⊥
2(2π)3 ∫

2π

0
dφk e

ib⊥k⊥(cosφb cosφk+sinφb sinφk)

× g
√

1 − x
(2π)2

k⊥ eiφk

k2⊥ + u(x,m2
D) . (C.11)
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The integral in the angular variable is:

∫
2π

0
dφk e

ib⊥k⊥ cos(φb−φk) e−i(φb−φk)e−iφb ≡ ∫
2π

0
dφk e

−ib⊥k⊥ cosφk e−iφkeiφb

= (2πi) eiφb J1(b⊥k⊥) , (C.12)

where we used (C.9). The intermediate step is allowed, because the complex
exponentials are 2π-periodic, and we are integrating over a whole period 2π.
By inserting Eq. (C.12) into Eq. (C.11), the latter becomes:

Ψ+
−(x,b⊥) = −i

g
√

1 − x
2π

eiφb ∫
+∞

0
dk⊥

k2⊥
k2⊥ + u(x,m2

D) J1(b⊥k⊥) . (C.13)

By substituting α = 1, β = 0, z2 = u(x,m2
D) and s = b⊥ in the identity [93]

∫
+∞

0
dt

tα+1

(t2 + z2)β+1
Jα(st) =

sβzα−β

2βΓ(β + 1)Kα−β(sz) ,

where Γ(r) is the Gamma function, we arrive at the final result (6.103).

C.3 Kinetic and canonical orbital angular mo-

mentum

Proving the equality between Eqs. (6.114) and (6.115) amounts to establishing
the following identity

∫
1

0
dx

1

1 − x [(1 − x)(x2M2 −m2) + (1 + x)u]ZK0(Z)K1(Z)

= ∫ dx
1 − 3x

1 − x u [K1(Z)]2
, (C.14)

Using
1

Z

∂Z

∂x
= 1

2u

∂u

∂x
+ 1

1 − x, x
∂u

∂x
= u + x2M2 −m2, (C.15)

we find that

1

1 − x [(1 − x)(x2M2 −m2) + (1 + x)u]Z = 2ux
∂Z

∂x
. (C.16)

Noting now that

d(Z2 [K1(Z)]2)
dZ

= −2Z2K0(Z)K1(Z), (C.17)

we can rewrite the LHS of Eq. (C.14) as

∫
1

0
dx

1

1 − x [(1 − x)(x2M2 −m2) + (1 + x)u]ZK0(Z)K1(Z)

= −∫
1

0

xu

Z2

∂(Z2 [K1(Z)]2)
∂x

. (C.18)

Integrating by parts, the boundary term vanishes identically for b⊥ > 0 and we
obtain the RHS of Eq. (C.14).
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