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Abstract (English)

Metabolic engineering was defined more than 25 years ago as the directed
modulation of metabolic pathways, using methods of recombinant DNA tech-
nology, for the purpose of overproducing high-value compounds, such as phar-
maceutical products, food additives and fuels. Given the increasing need of
more sustainable processes for the production of value-added chemicals and
materials from renewable resources, metabolic engineering became a powerful
tool for the development of highly efficient microbial cell factories.
The main innovation introduced from metabolic engineering, compared to tra-
ditional trial-and-error approaches, is the use of predictive modelling methods
to study the behaviour of cellular metabolism and to guide the rational strain
design. In this context, the cellular metabolism is described by the complete
set of biochemical reactions that occur in the target microorganism, known
as genome-scale metabolic model, and can be analyzed in terms of flux distri-
butions, namely the reaction rates. Differently from gene expression levels or
protein and metabolite concentration, the metabolic flux profiles are able to
reflect the consequences of cellular component interactions.
Despite a variety of in-silico modelling approaches have been developed for the
study of cellular metabolism, only those requiring a limited number of readily
available parameters can be successfully applied to genome-scale models. Cur-
rently, constraint-based modelling approach is the best methodology by which
genome-scale models are constructed and analyzed. This approach identifies
a set of allowable solutions, by the assumption of steady-state conditions and
limiting the fluxes, and then finds an unique flux distribution, by an opti-
mization problem that maximizes or minimizes a biological objective function.
Several methods based on different objective functions, and therefore appro-
priate for specific study goals, were developed. Flux Balance Analysis (FBA)
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is the most popular method, which determines the flux through the metabolic
network that maximizes growth rate. However, in some contexts the reliability
of such models in the quantitative prediction of cellular phenotypes and fluxes
through biochemical reactions can be low. The integration of additional biolog-
ical information in the model, e.g., genome-scale transcriptomic or proteomic
profiles, has been recently proposed as an attempt to improve prediction ac-
curacy.
The last and crucial step for strain improvement is the application of genetic
manipulations for the control of metabolic fluxes through recombinant DNA
technologies. The perturbations, identified by the in-silico design phase, are
implemented through the synthetic biology techniques for the tight control of
gene expression levels, namely over-, down-expression and deletion. Synthetic
biology is an emerging discipline, closely coupled with metabolic engineer-
ing field, that promotes the optimization of microorganisms using toolkits of
pre-characterized regulatory elements. In particular, regulatory parts such as
promoters or ribosome binding sites (RBS) are commonly used for the over- or
down-regulation of transcriptional and translational processes of target genes,
respectively, whereas gene knockouts are implemented using homologous re-
combination or silencing the gene via the new proposed techniques.
This thesis work includes both in-silico and in-vivo investigations on different
metabolic engineering tools on Escherichia coli and Bacillus subtilis.
In Chapter 1 the key concepts of metabolic engineering field are introduced.
An overview of the main computational approaches and experimental tools
used in this field are presented.
In Chapter 2 a general analysis of the most widely used constraint-based meth-
ods applied for the study of E. coli metabolism is presented. The impact of
input data, required for modelling the environmental conditions, on results is
described and the prediction capability, under different genetic and environ-
mental conditions, is then reported. Moreover, the integration of transcrip-
tomic data into genome-scale metabolic model is implemented with the aim to
increase the prediction accuracy.
In Chapter 3 the construction of an enzyme-constrained B. subtilis metabolic
model is described and its performance, both for wild type and mutant strains,
are reported. The target perturbations, identified using the developed model,
for increasing the production of a relevant biopolymer are presented.
In Chapter 4 the design, construction and evaluation of small RNAs for the
silencing of target genes expression in E. coli are described. Their repression
performance is quantitatively evaluated, also with the help of mathematical
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modelling.
In Chapter 5 a novel allelic replacement vector for chromosomal gene deletion
in E. coli, based on the colorimetric XylE assay and the BioBrick standard, is
proposed and used for the disruption of three genes encoding the production of
organic acids, that compete for pyruvate utilization in ethanologenic strains.
Finally, in Chapter 6 the overall conclusions of this thesis work are drawn,
considering the improvements obtained in the described studies, and the reli-
ability of the investigated in-vivo and in-silico methods, based on high-impact
case studies.
The studies illustrated in Chapter 2, 4 and 5 have been performed in the Cell
Culture Laboratory of the Center for Health Technologies (CHT) and in the
Laboratory of Bioinformatics, Mathematical Modelling and Synthetic Biology
(BMS) University of Pavia, Italy, while the study reported in Chapter 3 has
been carried out at the Novo Nordisk Foundation Center for Biosustainability
(CFB), Technical University of Denmark.
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Abstract (Italian)

L’ingegneria Metabolica è stata definita più di 25 anni fa come la discipli-
na finalizzata alla modifica diretta di pathway metabolici, attraverso l’utilizzo
delle tecnologie del DNA ricombinante, in modo da aumentare la produzione di
sostanze di interesse, come farmaci, additivi alimentari e biocarburanti. Data
la crescente richiesta di processi biosostenibili per la produzione di composti
chimici a partire da risorse rinnovabili, l’ingegneria metabolica si è affermata
un potente strumento per lo sviluppo di efficienti cell factory.
La principale innovazione che distingue l’ingegneria metabolica, rispetto ai
tradizionali approcci di mutazione genica trial-and-error, è l’utilizzo di metodi
modellistici per lo studio del comportamento metabolico cellulare e per guidare
la progettazione razionale di microorganismi. Il metabolismo cellulare viene
descritto attraverso il completo set di reazioni identificate per il microorgani-
smo in studio, noto come modello metabolico genome-scale, il quale può essere
poi analizzato in termini di flussi, ossia la velocità con cui avviene una reazio-
ne. Questi ultimi, a differenza dei dati di espressione genica o concentrazione
di proteine e metaboliti, hanno il vantaggio di descrivere le interazioni tra le
diverse componenti cellulari.
Nonostante i molteplici approcci proposti per la modellizzazione in-silico del
comportamento cellulare, solamente quelli per cui viene richiesto un numero
limitato di parametri facilmente reperibile risultano adatti per l’applicazione
ai modelli metabolici su scala genomica. Attualmente, l’approccio di model-
lizzazione constraint-based è riconosciuto come il miglior metodo per la costru-
zione e l’analisi dei modelli metabolici. Tale approccio identifica uno spazio
di soluzioni possibili, attraverso l’assunzione di stato stazionario e vincolan-
do il range di variazione di ciascun flusso, e successivamente trova un’unica
soluzione, applicando un problema di ottimizzazione che massimizza o mini-
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mizza una funzione obiettivo. Sono stati sviluppati differenti metodi basati
sull’approccio constraint-based, il più famoso dei quali, chiamato Flux Balance
Analysis (FBA), massimizza la velocità di crescita del microorganismo in stu-
dio. Tuttavia, in alcuni contesti tali modelli presentano una bassa affidabilità,
in termini di predizioni quantitative del fenotipo cellulare e dei flussi attraver-
so le reazioni biochimiche. Recentemente, sono stati proposti nuovi approcci
che prevedono l’integrazione di aggiuntive informazioni biologiche nel modello,
come profili trascrittomici o proteomici su scala genomica, al fine di migliorare
l’accuratezza di predizione.
L’ultima e fondamentale fase per l’ottenimento di microorganismi metabolica-
mente ottimizzati, consiste nell’applicazione delle manipolazioni geniche per il
controllo dei flussi metabolici attraverso le tecnologie del DNA ricombinante.
Tali perturbazioni, identificate dalla precedente fase di progettazione in-silico,
vengono implementate tramite le avanzate tecniche di biologia sintetica, che
permettono il controllo in maniera fine e predicibile dei livelli di espressio-
ne genica, ossia sovra-, sotto-espressione e delezione. La biologia sintetica è
una disciplina emergente, strettamente legata all’ingegneria metabolica, che
favorisce l’ottimizzazione di microorganismi mediante specifici elementi di re-
golazione. In particolare, collezioni di elementi di regolazione pre-caratterizzati
quantitativamente, come promotori e siti di legame al ribosoma (RBS), vengo-
no generalmente utilizzati per sovra- o sotto-regolare i processi di trascrizione
e traduzione dei geni target, mentre la delezione genica può essere effettua-
ta mediante ricombinazione omologa oppure mediante silenziamento genico,
sfruttando tecniche recentemente proposte.
In questo lavoro di tesi verranno investigati diversi metodi in-vivo e in-silico
di ingegneria metabolica in Escherichia coli e Bacillus subtilis.
Nel Capitolo 1 verranno introdotti i concetti chiave dell’ingegneria metabolica.
In particolare verranno presentati i principali approcci computazionali e gli
strumenti sperimentali utilizzati in questo campo.
Nel Capitolo 2 verrà riportata l’analisi dei metodi constraint-based maggior-
mente utilizzati per lo studio di E. coli. Per prima cosa verrà discusso l’impatto
dei dati in input, per la modellizzazione delle condizioni ambientali, sui risulta-
ti e successivamente verranno analizzate le capacità predittive al variare delle
condizioni ambientali e genetiche. Inoltre, l’integrazione di dati trascrittomici
verrà implementata con lo scopo di aumentare l’accuratezza dei risultati.
Nel Capitolo 3 verrà descritta la costruzione del modello metabolico basato
su vincoli enzimatici del B. subtilis e verrà valutata l’accuratezza delle pre-
dizioni ottenute per ceppi wild type e mutanti. Inoltre saranno presentate le
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manipolazioni target identificate attraverso il nuovo modello per migliorare la
produzione di un importante biopolimero.
Nel Capitolo 4 verrà descritta la progettazione, lo sviluppo e la valutazione
di small RNA per il silenziamento dell’espressione di geni target in E. coli.
L’efficienza di silenziamento verrà quantitativamente analizzata anche attra-
verso l’utilizzo di un modello matematico.
Nel Capitolo 5 verrà presentato un nuovo metodo per delezione genica a livello
cromosomiale in E. coli, basato su saggio colorimetrico XylE e standard Bio-
Brick, ed utilizzato per l’eliminazione dei geni responsabili della produzione di
acidi organici che competono per l’uso di piruvato in ceppi etanologenici.
Infine, nel Capitolo 6 verranno tratte le conclusioni di questo lavoro di tesi,
considerando i miglioramenti ottenuti negli studi descritti, e l’affidabilità dei
metodi in-silico e in-vivo investigati, sulla base di alcuni casi di studio ad alto
impatto.
Gli studi illustrati nei Capitoli 2, 4 e 5 sono stati svolti presso il Laboratorio
di Colture Cellulari del Centro di Tecnologie per la Salute (CHT) e il Labora-
torio di Bioinformatica e Biologia Sintetica (BMS), Università degli Studi di
Pavia, mentre lo studio riportato nel Capitolo 3 è stato condotto presso Novo
Nordisk Foundation Center for Biosustainability (CFB), Technical University
of Denmark.
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Chapter 1
Metabolic Engineering

Metabolic engineering is an emergent discipline aimed at direct improving
product formation or cellular proprieties of microorganisms through the mod-
ification of specific biochemical reaction(s) or the introduction of new one(s)
with the use of recombinant DNA technology [1]. The main innovation, respect
to the traditional concept of metabolic pathway manipulation, is the rational
approach used to identify the genetic modifications required to obtain the de-
sired phenotype.
Over the past few years, due to the limited fossil energy and environmental
problems, the need of an economic and ecological production of chemicals,
drugs and fuels from renewable resources is increased. Therefore, in order to
avoid money- and time-consuming trial-and-error approaches or random mu-
tagenesis techniques, the new approach for the development of cell factories to
produce high-value metabolites is based on a preliminary study of the complete
biochemical reaction networks, called genome-scale metabolic models (GEMs),
with the aim to investigate the properties of integrated metabolic pathways.
The analysis of GEMs with an appropriate mathematical model leads to the
prediction and in-silico optimization of metabolic capacity, expressed in terms
of fluxes through each reaction. Despite the variety of in-silico modelling ap-
proaches in biology, the GEMs are mainly studied using stoichiometry-based
models. These methods have the main advantage of requiring easily available
information in large-scale.
Once the optimal genetic configuration is predicted, this is experimentally ap-
plied in the target strain through synthetic biology techniques, such as gene
deletion, gene addition, gene knockdown, or gene over-expression. Synthetic
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1. Metabolic Engineering

biology aims to create novel biological functions and systems not found in na-
ture by combining biology with engineering and plays an important role in
metabolic engineering field. Indeed, its powerful tools and approaches, based
on three engineering principles, namely standardization/modularity, decou-
pling, and abstraction, are crucial to reduce the time and cost required for the
development of cell factories.
In order to support a commercial process, namely the ultimate purpose of
this field, the optimization of titer (final concentration in the fermentation
medium), rate (production per unit of time) and yield (units of product syn-
thesized per unit of raw material consumed) is essential and represents a cur-
rent challenge [2]. The construction of a strain that meets these industrial
requirements is the last but most intense part of developing a novel biopro-
cess, involving many years of costly development time, due to the large number
of genetic modifications, that typically can only be done in a serial fashion, and
subsequent phenotypic characterization [3]. This final process involves several
rounds of the so-called design-build-test cycle, in which a specific metabolic
design is implemented and thereafter tested. The different genetic perturba-
tions are needed not only to enhance the production of the target metabolite,
but also to maintain the metabolic equilibrium. In particular, the production
of cellular components has to be balance with energy production and con-
sumption in order to ensure the homeostasis even when the microorganism is
exposed to varying environmental and nutritional conditions. The use of mi-
croorganisms for which the genome was sequenced and the molecular and ge-
netic methodologies for their cultivation and manipulation are well established,
for example Escherichia coli, Saccharomyces cerevisiae, Bacillus subtilis and
Corynebacterium glutamicum, promotes the scale-up to the industrial level.
However, other nonstandard microorganisms can be considered on the basis of
their ability to grow well in specific environments, use a variety of alternative
feedstocks or naturally produce and tolerate amounts of the desired product.
Moreover, there is a need for new tools of synthetic biology that can facilitate
the genetic manipulations, such as CRISPR/Cas9 systems, that allow the en-
gineering of nearly any host that is transformable [4], the insertion of many
genes into many target sites [5], knockout or down-regulation of competing
pathways [6], and up-regulation of beneficial pathways, in addition to the use
of well-characterized promoters and ribosome binding sites.
In this work, the study and optimization of E. coli and B. subtilis metabolism
were carried out, which are the best-characterized members of the Gram-
positive and Gram-negative bacteria, respectively. In the following subsections,
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1.1. Computational strain design methods

an overview of computational methods commonly used to provide targets for
metabolic engineering on the basis of genome-scale metabolic models and the
main synthetic biology tools applied for its realization are presented.

1.1 Computational strain design methods

The reconstruction of the genome-scale metabolic model is the first essen-
tial step for the in-silico study of metabolic behaviour and the design of target
cell factories. The metabolic phenotype of an organism, mathematically rep-
resented in the respective GEM, can be characterized in terms of either fluxes
(metabolite mass per dry organism mass per unit time) through each reaction
or network topology. The first approach, based on the concept of flux balance
analysis, provides quantitative predictions of metabolic networks by solving
optimization problems, while the second one, based on the topology analysis,
allows a qualitative description of small networks, subsection of GEM, due to
its computational complexity.
In order to facilitate the implementation of the several computational meth-
ods used in metabolic engineering field, different software tools with specific
characteristics [7] are implemented. These software applications can be classi-
fied on the basis of their platform and software dependencies as toolbox-based,
such as Metatool [8] and COBRA toolbox [9] based on MATLAB, COBRApy
[10] and CAMEO [11] written in Python, stand-alone, such as OptFlux [12]
and web-based such as FAME [13].

1.1.1 Genome-scale metabolic models

A GEM contains the complete set of chemical reactions that occurs in the
target microorganism, including the biomass reaction, and their relations to
the genome and proteome. The reactions are represented as a set of stoichio-
metric equations and the main cellular compartments are modelled in order to
distinguish intracellular from extracellular reactions, which can be reversible
or irreversible. As for biomass reaction, it is composed of the key components
for growth (i.e., cell wall, proteins, lipids, carbohydrates, DNA and RNA),
which are determined on the basis of experimental measurements, and its flux
represents the growth rate (µ). Moreover, the relationships of genes, proteins
and reactions are described in the model by using Boolean logical rules, called
gene-protein-reaction (GPR) relationships, and the genetic states are assigned
classifying each gene as either “on” (variable equal to 1) or “off” (variable equal
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to 0). In particular, for the reactions catalyzed by more than one enzyme (or
codified from more than one gene) the GPR relationships use the standard
operators “and” and “or”. For example, when two or more enzymes are re-
quired to catalyze a reaction, as in the case of multi-protein complexes, these
are linked with the “and” operator, while if a reaction is catalyzed by any of
several enzymes, as in case of isonzymes, these are linked with the “or” opera-
tor.
The general work-flow for the development of a high-quality GEM [14] (Fig.
1.1) consists of a first draft reconstruction based on the genome annotation
of the considered microorganism and information retrieved from biochemical
databases, such as KEGG (Kyoto Encyclopedia of Genes and Genomes) [15]
and BioCyc [16]. The draft model is then evaluated against organism-specific
data from literature and it is refined. The reconstruction is converted into a
mathematical format and the environmental growth conditions are defined. In
particular, the m internal metabolites and the n reactions of the model are
represented within a stoichiometric matrix S [m x n]. Furthermore, for each
reaction, the upper and lower flux bounds [mmol gDW

−1 h−1] can be set in
order to include information about the directionality and the environmental
condition, and these are included in two different flux vectors (vlb and vub).
Finally, with the aim to ensure an appropriate accuracy of model predictions,
a validation step is carried out.
The improvement in genome-annotation technologies and the easy availabil-

ity of omics data promoted the GEMs reconstruction for both prokaryotic and
eukaryotic organisms [18, 19, 20, 21, 22, 23], which are integrated in BIGG
(Biochemical Genetic and Genomic) Models database [24]. Moreover, recently
several tools to facilitate the GEM reconstruction were proposed, such as Model
SEED [25], RAVEN [26], or merlin [27]. The standard format for the repre-
sentation of GEMs is SBML (Systems Biology Markup Language) [28], which
is based on XML format and contains all the information to be directly used
in different software tools.
Most up-to-date GEM versions of the same microorganism are usually de-
veloped on the basis of the previous model and with the integration of new
information, such as reactions, genes or thermodynamic data. For example,
five GEM versions of E. coli K-12 MG1655 [29, 30, 31, 18, 32] and four of
B. subtilis 168 [20, 33, 34, 35] are currently available. In order to distinguish
between the different models, a naming convention in form of iXXxxx was pro-
posed for E. coli models and subsequently adopted for other organisms. The
first letter i of this name stands for in-silico, XX is for the initials of the first

4
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Figure 1.1: The general work-flow for the reconstruction of GEMs.
After that the list of biochemical reactions and of their associated genes are defined, on the basis of the

genome annotation and curated biochemical databases, the network is converted to mathematical form. The

draft reconstruction is then refined through a comparison with experimental data from literature sources.

Finally, through the implementation of computational methods, the evaluated model is used to predict the

metabolic phenotype of the target microorganism and optimize its metabolic capacity. Reference: [17].
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author and xxx for the number of genes included in the model. Alternative syn-
taxes were used, as the insertion of organism initials instead of those of author.

1.1.2 Principles of constraint-based modelling

Stoichiometric models are studied under the steady-state assumption, which
corresponds to consider the total amount of consumed internal metabolites
equal to the total amount of produced internal metabolites. Therefore, the set
of mass balances becomes a system of linear algebric equations:

n∑
j=1

Sijvj = 0 for i = 1...m (1.1)

where Sij is the stoichiometric coefficient of i-th metabolite in the j-th reaction
and vj is the flux of j-th reaction.
This steady-state condition is experimentally encountered in chemostat oper-
ation, in which the volume of liquid cell cultures is maintained constant by
simultaneously adding fresh medium and removing cultured broth. Therefore,
the cells remain indefinitely in their exponential growth phase, during which
their growth rate is constant and maximum.
The space of allowable solutions obtained using this constraint, also known
as the convex polyhedral cone, is further restricted by adding thermodynamic
constraints to describe the reaction directionality and fixing the maximum and
minimum flux through each reaction on the basis of experimental data. In par-
ticular, the lower flux bound of irreversible reactions is fixed to 0 mmol gDW

−1

h−1, while the environmental condition is modelled imposing the uptake rate
to 0 mmol gDW

−1 h−1 for the exchange reactions of nutrients that are not avail-
able in the medium and to 100 mmol gDW

−1 h−1 for the unlimited nutrients
or, when known, to experimental values:

vj ≥ 0 if j ∈ irrev (1.2)

vlbj < vj < vubj for j = 1...n (1.3)

The approach based on these physico-chemical constraints is so-called COnstraint-
Based Reconstruction and Analysis (COBRA) and is frequently used in the
field of microbial metabolic engineering to predict the metabolic phenotype
using genome-scale models. Over the past decade more of 100 methods were
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developed on the basis of COBRA approach [36].

Since the number of reactions (n), which represent the unknown variables,
is higher than the number of metabolites (m), namely the equations, the ob-
tained equation system (Equations 1.1, 1.2 and 1.3) is often under-determined.
Therefore, additional constraints are required in order to obtain an unique
steady-state flux distribution:

� Optimization-based methods

A large family of COBRA methods is based on the optimization of a bio-
logically relevant objective function (Z), in order to identify the optimal flux
distribution, with respect to the constraints previously defined (Equations 1.1,
1.2 and 1.3):

max/min Z = f(
n∑
j=1

(cj · vj)k) (1.4)

where the cj coefficients are the weights indicating how much each reaction
contributes to the objective function. Considering the vector notation, c has 1
at the position of the reaction whose flux must be optimized, while the other
values are equal to zero. The k constant represents the objective function de-
gree, for example equal to 1 for linear optimization problems, or 2 for quadratic
optimization problems.
The choice of objective function depends on the target study and the desired
goal. A variety of methods, based on the constraints of steady-state, reversibil-
ity, flux capacity and with a specific optimization problem, were proposed and
successfully applied to different organisms.

Flux Balance Analysis
The most popular constraint-based method in metabolic engineering field is
flux balance analysis (FBA) [37], appropriate for the metabolic behaviour study
of wild type organisms or mutants that have evolved over a large number of
generations, for example by Adaptive Laboratory Evolution (ALE). FBA uses
a linear programming (LP) to find the flux distribution that maximizes the
objective function (Z), commonly defined as the flux through the biomass re-
action (vbiomass), i.e., the growth rate (µ), on the basis of evolutionary pressure
concept:

max Z = vbiomass (1.5)
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However, different objective function can be considered in function of target
study, such as the maximization of ATP production.
Over the past few years, variants of FBA method were developed, such as par-
simonious enzyme usage FBA (pFBA) [38]. In particular, since FBA problems
often have non-unique solutions, pFBA method uses a bilevel linear program-
ming optimization to find a flux distribution with the minimal sum of fluxes
and maximal growth rate (vbiomass):

max vbiomass, min

n∑
j=1

|vj| (1.6)

The alternative flux distributions computed by FBA can be analyzed in order
to test the robustness. In fact, Flux Variability Analysis (FVA) [39] method
finds the variation range of each flux by solving a pair of LP problems that
computes the maximum and minimum fluxes through each reaction for which
the objective function remains optimal and with respect for the other defined
constraints:

max vj for j = 1...n, j 6= Z (1.7)

min vj for j = 1...n, j 6= Z (1.8)

Dynamic Flux Balance Analysis
An extension of FBA method, called Dynamic Flux Balance Analysis (dFBA)
[40], was developed in 1994 with the aim to study the dynamic metabolic be-
haviour of the target organism, for example to describe the diauxic growth.
dFBA can be implemented using nonlinear programming, for a dynamic opti-
mization problem, or by using linear programming on a series of short time in-
tervals, for a static optimization. In the static optimization approach, the time
period is divided into several time intervals and the initial substrate concentra-
tion Sc0 (mmol/L) is used (for t=t0) to determine the substrate concentration
Sc for the successive time interval:

Sc = Sc0 (1.9)

A system of the ordinary differential equations (ODEs) is used to describe the
evolution of the target system:

dX(t)

dt
= µ ·X(t) (1.10)
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dSc(t)

dt
= Su ·X(t) (1.11)

where X(t) (gDW/L) is the biomass concentration, µ (h−1) the growth rate and
Su (mmol/gDW h) is the vector of substrate uptake.
With the integration of Eq. 1.10 and Eq. 1.11 in a specific time interval the
following equations are obtained:

X(t) = X(t0) · eµ∆t (1.12)

Sc(t) = Sc(t0) +
Su
µ
X(t0) · (1− eµ∆t) (1.13)

Finally, with the assumption of steady-state condition for each time interval,
the growth, nutrient uptake and by-product secretion rates can be predicted.

Minimization of Metabolic Adjustments and Regulatory On/Off
Minimization
Alternative methods to FBA principles were developed in order to study the
metabolic phenotype of mutant strains affected by genetic perturbations, in
particular gene deletions. In fact, these strains assume a suboptimal flux dis-
tribution intermediate to wild type and mutant optimum, due to the inability
to immediately adapt their metabolic network to achieve the wild type objec-
tive function.
In this regard, the method of Minimization of Metabolic Adjustment (MoMA)
[41] is based on the constraint-based approach and considers as objective func-
tion the minimization of Euclidean distance between the flux distributions in
the wild type (vWT ) and mutant (vM) strains, which is mathematically for-
malized as quadratic programming (QP) problem:

min Z(vWT , vM) =

√√√√ n∑
j=1

(vWT
j − vMj )2 (1.14)

Despite the success achieved with MoMA method for the prediction of mutant
phenotypes, it is unable to model large modifications in single fluxes. Therefore
a new method, known as Regulatory On/Off Minimization (ROOM) [42], was
proposed few years later. ROOM method implements the minimization of the
total number of significant flux changes from the wild type flux distribution,
on the basis of the assumption that the adaptation cost, in terms of genetic
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regulatory changes, after gene deletions is minimized, and it is independent of
the magnitude of flux change:

min Z =
n∑
j=1

(yj), yj ∈ {0, 1} (1.15)

where yj is a binary variable defined for each flux, which is equal to 1 when
the respective flux change is significant, namely the difference between the wild
type and mutant strains is higher than a user-defined threshold value, and is
equal to 0 otherwise.

Since the end goal of metabolic engineering field is the identification of
optimal genetic configuration of a target organism to improve the production
of the desired byproduct, different methods, to guide the rational design of
microbial cell factories, were developed.

OptKnock and OptGene
OptKnock [43] was the first method based on the simultaneous optimization of
cellular growth rate and the target chemical production, namely the so-called
growth-coupled design approach. The bilevel optimization can be reformulated
as a single mixed integer linear programming (MILP) problem and its structure
consists of an inner problem that identifies the possible flux distribution (usu-
ally using FBA method, based on the maximization of biomass yield, but also
MoMA or ROOM) and an outer problem that finds the reaction eliminations
for maximizing the bioengineering objective, namely the desired product:
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max
yj

vMchemical

subject to max
vj

vMbiomass

subject to S · vMj = 0

vMbiomass ≥ γ(vWT
biomass)max

vlbj · yj ≤ vj ≤ vubj · yj for j = 1...n

yj ∈ {0, 1}

n∑
j=1

(1− yj) ≤ K

(1.16)

where yj is a binary variable defined for each reaction to indicate its active
(equal to 1) or the inactive state (equal to 0) and K represents the maximum
number of allowable reaction eliminations. Parameter γ determines the mini-
mum value which the biomass flux can assume, that is the percentage of the
maximum biomass yield obtained for wild type. Different extended and im-
proved versions of OptKnock were developed to overcome its limitations and
improve the results. For example, since for some pathways the coupling be-
tween maximum production of the target compound and maximal biomass flux
is not possible, a new method, called RobustKnock [44], identifies the reaction
eliminations for which the minimal production rate is maximized.
OptGene [45] is a further alternative optimization strategy based on genetic
algorithms, which was implemented to avoid the high computational cost ob-
tained with MILP formulation, when a large numbers of deletions are ac-
counted. Moreover, OptGene allows the optimization of non-linear objective
functions. As for its work-flow, in the first step a population of individuals,
which is represented through a specific set of genes, is initialized by assigning
a status (present/absent) to each gene randomly. Subsequently, the best indi-
viduals are selected on the basis of a fitness score, which is calculated using the
desired objective function value (FBA, MoMA or ROOM) and then crossed to
produce a new offspring. Finally, the individuals obtained from the crossover
are perturbed in terms of gene deletions. The steps of computation of fitness
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score, crossover and mutation are repeated until an individual with desired
phenotype characteristics is found.

Flux Scanning based on Enforced Objective Flux
The main metabolic engineering strategies for the overproduction of a desired
metabolite are the deletion and amplification of target genes. As described
in the previous section, several methods for identifying gene deletion targets
are available. Whereas, a limited number of methods for identifying gene am-
plification targets have been developed, given the complexity of the metabolic
phenotype predictions after this manipulation. A strategy to identify gene am-
plification targets was implemented in the method called Flux Scanning based
on Enforced Objective Flux (FSEOF) [46]. In particular, the initial flux dis-
tribution (vinitialj ) was predicted using FBA method and the production flux
of target compound (vinitialchemical) is extracted. Then, the maximal production
flux of target compound (vchemicalmax) is computed with FBA but changing the
standard objective function. Finally, FBA is again implemented considering
the cell growth as objective function and fixing the production flux of target
compound at increasing values for each step, from the initial flux value to
90% of the maximum theoretical value. A reaction is selected if its maximum
flux assumed during the different steps is higher than the initial value without
changing the direction:

|vj|max >
∣∣vinitialj

∣∣ and vmaxj × vminj ≥ 0 (1.17)

where vmaxj and vminj are the maximum and minimum fluxes of the j-th reaction.

� Pathway-based methods

An alternative approach based on the constraint-based modelling (Equations
1.1, 1.2 and 1.3) aims at identifying the topology of cellular metabolism with-
out solving the optimization of an objective function. This type of analysis has
been successfully applied for the study of network structure and robustness and
for rational strain designs. Since the pathway-based methods fully describe the
steady-state solution space, their computational complexity increases with the
size of the metabolic network. Therefore, in this context, the analysis of small
GEMs or their subsections is preferred.
Despite pathway-based methods were not applied in this work, the key princi-
ples and applications will be described to provide a complete description.
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Figure 1.2: Initial tableau used for elementary modes computations.
The transposed stoichiometric matrix (ST ) is augmented with the identity matrix to build the initial tableau.

Elementary Mode Analysis
The most popular method for metabolic pathway analysis is based on the con-
cept of elementary flux modes (EMFs) as building blocks of network and has
the main purpose to identify the set EMFs, namely metabolic pathways re-
quired to obtain the desired phenotype [47]. Therefore, the elementary mode
analysis is particularly suited for the creation of a minimal cell that is able to
self-assemble and to self-replicate and is specialized for the formation of the
desired product with a limited number of genes [48].
In order to identify a finite set of solutions, the non-decomposability constraint,
also called genetic independence, is added to the assumption of steady-state
and thermodynamic constraints. Under this new constraint each elementary
mode is unique and is composed of a minimal set of enzymes (catalyzing reac-
tions) necessary to operate as a functional unit under steady-state condition.
“Minimal” indicates that if any enzyme is eliminated, the resulting elementary
mode cannot operate as a functional unit. As for the work-flow, in the first
step the stoichiometric matrix S, in which irreversible and reversible reactions
are distinct, is transposed and combined with an identity matrix, to obtain a
matrix called initial tableau (Fig. 1.2). New tableaux are obtained by pair-
wise linear combination of rows, reversible or irreversible reactions, so that the
columns consecutively become null vectors successively and the steady-state
assumption is assured. In general, linear combinations of two rows correspond-
ing to the same type of directionality are inserted into the part of the respective
type in the new tableau, whereas linear combinations of rows corresponding
to different types are inserted into the “irreversible” part. Moreover, a linear
combination of “irreversible” rows can be carried out only using a positive coef-
ficient in order that the appropriate reaction direction is considered. Therefore,
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if the combination of two rows leads nonelementary modes, duplicate modes or
flux modes violating the sign restriction for the irreversible reactions, this can-
didate pair is rejected. In the final tableau all the columns in the left-hand side
are null vectors and the rows in the right-hand side represent the elementary
modes, namely the irreversible reactions or pathways.

Extreme Pathway Analysis
An alternative approach for structure analysis of a metabolic network that links
the cellular phenotype to the corresponding genotype, is based on the identifi-
cation of extreme pathways (ExPas) [49]. ExPas represent a subset of elemen-
tary modes, namely only the internal reactions. Extreme pathway analysis, in
addition to the set of constraints considered for elementary mode analysis (that
are the state-state assumption, the thermodynamic and non-decomposability
constraints) introduces the principle of systematic independence. This new
constraint requires that none of the ExPas can be expressed as a non-negative
combination of at least two other ExPas.

1.1.3 Integration of omics data into genome-scale metabolic
models

The main reason for the popularity of constraint-based methods is the high
availability of stoichiometric data required for the reconstruction of GEMs
and for the prediction of cellular metabolism in terms of biochemical reaction
rates. But on the other hand this simplified modelling strategy, in which the
predicted fluxes are strongly based on the constraint of carbon source uptake
rate, leads to unrealistic predictions, especially when the environmental and
genetic conditions are different from the optimal state. The optimal metabolic
phenotype, predicted by FBA method, differs significantly from the experimen-
tal behaviour measured under different conditions. More accurate predictions
could be computed using experimental measurements of nutrient uptake rates
as upper bound constraints, which are rarely available due to the complex-
ity for the high-throughput quantification. Therefore, different approaches for
integration of additional biological information [50], such as gene expression
and proteomic data and enzyme kinetic parameters, were developed in order
to further reduce the solution space and refine predictions both of growth rate
and internal fluxes without using measurements of nutrient uptake rates. In
particular, transcriptomic and proteomic data can be readily integrated into
GEMs using GPR relationships. Thanks to the advent of high-throughput
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technologies, a large amount of “omics” data are available for different organ-
isms. However, the data integration usually covers a limited subset of genes
and reactions that are included in a GEM.
In the following parts, the methods used in this work are described.

� Transcriptomic data

Transcriptomic profiles of different organisms under specific environmental con-
ditions are available in literature. Therefore, several methods to integrate gene
expression data into GEMs were developed and evaluated [51].
The techniques usually used to measure the transcripts are DNA microarray
[52], which allows to compare thousands of genes at once, and RNA-Seq [53],
with clear advantages in terms of amount of sequence coverage. The first ap-
proach measures the amount of the mRNA (or cDNA) in terms of fluorescent
intensity. Indeed, it is fluorescently labeled and bound to a specific DNA tem-
plate on the array. Whereas, with RNA-Seq technology the mRNA is used to
generate a DNA library, which is analyzed using next-generation sequencing
(NGS) methods.
Some of these computational methods use transcriptomic data to predict the
flux distribution by maximizing the correlation, whereas others reconstruct a
new model with only the reactions classified as active and predict the flux
distribution based on FBA approach. We evaluated the methods based on
FBA, which differ from the rule used to classify active and inactive reactions.
Åkesson and co-workers [54] proposed one of the earliest methods to tailor the
GEMs to the specific context by using gene expression data. This approach is
based on a very simple rule: a reaction is considered as inactive if the asso-
ciated gene expression is lower than a specific threshold. More complex rules
were then adopted to improve the building of context-specific models. In par-
ticular, the method used in this work is presented in the next paragraph.

GIMME
The Gene Inactivity Moderated by Metabolism and Expression (GIMME) [55]
approach aims to reconstruct context-specific models, in which the reactions
with gene expression data below a specific threshold and that are not needed
to achieve the presupposed metabolic objective function are removed. More-
over, the flux distribution is predicted in order to minimize the utilization of
reactions with gene expression data below the threshold but that are needed
for the objective function. The fluxes of these “inactive” reactions are com-
puted by a two-step procedure, in which first the FBA method is used to find
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the maximum possible flux through the objective function and then under the
constraint that the flux of objective function can be equal or higher than a
percentage of the maximum value, the following linear programming problem
is solved:

min
vj

∑
cj · |vj|

subject to S · v = 0

vlbj ≤ vj ≤ vubj

where cj =

{
xcutoff − xj, if xcutoff > xj

0, otherwise

for j = 1....n

(1.18)

� Proteomic and kinetic data

Since a finite protein pool with a limited efficiency is used to complete the dif-
ferent cellular processes, the integration of protein or enzyme levels and kinetic
parameters are fundamental to model the cellular metabolism.
Proteome analysis is usually obtained through mass spectrometry measures.
Despite thousands of proteins can be quantify, thanks to the advancement of
omics technologies, the acquisition of good quality data is difficult. Constraints
of protein abundance, measured in relative or absolute value, can be integrated
into the GEM for each protein or for a protein pool. For what concerns the
enzyme kinetic, it is commonly represented by the maximal turnover rate of
the enzyme (kcat). kcat values are generally measured through in-vitro enzyme
assays and they can be collected from enzyme databases, such as BRENDA
[56] and SABIO-RK [57]. However, these values are usually available for a
small number of enzymes. This data scarcity leads to include kinetic infor-
mation only for a small part of the total number of enzymes and limits the
improvement of prediction accuracy.
Here we described the two methods implemented and evaluated in this work.

MOMENT
MetabOlic Modeling with ENzyme kineTics (MOMENT) [58] requires turnover
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numbers and molecular weights for each enzyme and the total mass of proteins
respect to the dry weight mass (C) as new inputs to predict the concentrations
(g) for each enzyme needed to catalyze the predicted metabolic flux rates:∑

gi ·MWi ≤ C (1.19)

The GPR relationships are used to associate the enzyme parameters with
the reaction fluxes and specific flux constraints are imposed for isozymes, pro-
tein complexes and multifunctional enzymes.
For the j-th reaction catalyzed by the i-th single enzyme:

vj ≤ kcatj · gi (1.20)

For the j-th reaction catalyzed by two isozymes a or b:

vj ≤ kcatj · (ga + gb) (1.21)

For the j-th reaction catalyzed by an enzyme complex a and b:

vj ≤ kcatj ·min(ga, gb) (1.22)

GECKO
GECKO (Enzymatic Constraints using Kinetic and Omics data) [59] is the
most recent method based on the integration of enzymatic data and it was
implemented in this work to improve the predictions of B. subtilis flux distri-
bution. The key principle of this approach is the addition of a new constraint
into the GEMs to ensure that each metabolic flux (vj) does not exceed its
maximum capacity (vmax), corresponding to the product of turnover number
(kijcat) and enzyme’s abundance ([Ei]) :

vj ≤ kijcat · [Ei] (1.23)

This constraint (Eq. 1.23) represents the simplest scenario, but different con-
straints are considered for more complicated relationships.

Since the enzymes are considered as pseudo-metabolites and their import
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Figure 1.3: Implementation of GECKO approach. (A) The stoichiometry of

reactions reported in GEMs is modified through the inclusion of the enzymes as pseuo-metabolites with a

specific stoichiometric coefficient, equal to the inverse of kcat value, and with a limited concentration. (B)

kijcat values are integrated in the stoichiometric matrix (S) by adding new rows that represent the enzymes

and new columns that represent each enzyme’s usage. After the integration the new stoichiometric matrix

consistes of 4 submatrices: the upper left submatrix is equivalent to the original stoichiometric matrix, the

upper right submatrix is a matrix of zeros, the lower left submatrix has the kinetic information, and the

lower right submatrix is the identity matrix. While the enzyme concentrations are integrated in the vector

containing upper bounds on the metabolic fluxes (UB). Reference: [59].
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as pseudo-reaction (Fig. 1.3A), the kinetic information is readily integrated
into the model through the expansion of the stoichiometric matrix (S) and the
vector of the upper flux bounds (UB) to include kcat values (expressed as h−1)
and the enzyme concentrations (mmol/gDW ), respectively (Fig. 1.3B).

1.2 Synthetic biology tools

Once the design phase of a cell factory is completed, synthetic biology tools
are used to genetically edit metabolism and reroute metabolic flux towards a
given native or non-natural metabolic pathway. There are many synergies be-
tween metabolic engineering and synthetic biology, and the two fields need one
another [2]. Synthetic biology aims to build novel synthetic biological systems
to carry out specific user-defined tasks, laying its foundations on key principles
from the engineering world, like abstraction, modularity and model-based de-
sign. This field can be applied for different goals, such as the high-throughput
chemical synthesis of DNA and the construction of genetic control circuits,
however, the design and construction or manipulation of metabolic pathways
has received the most attention due to its industrial relevance [2].
The fundamental idea is to consider the basic cell components, namely spe-
cific DNA sequences, as separate modules and embed them in a more complex
system [60]. In order to achieve a physical standardization, introduction of
standardized assembly techniques is required. The BioBrick�Standard As-
sembly [61] is the most popular procedure to construct complex circuits from
basic parts via an easy and iterative assembly procedure. The basic parts are
DNA sequences that can be classified on the basis of their function and they
represent the functional components (modules) of genetic circuits. The main
modules are defined through the following four categories.

Promoters
Promoters are DNA sequences located upstream of the coding sequence and
are responsible for transcription process. The RNA polymerase complex rec-
ognizes and binds the promoter site to transcribe the genetic information of
DNA into a new molecule of messenger RNA (mRNA). Each promoter can
be quantitatively characterized on the basis of the affinity between its specific
sequence and RNA polymerase, which defines its strength, namely the rate of
transcription initiation. Moreover, a promoter is classified as inducible if its ac-

19



1. Metabolic Engineering

tivity can be regulated by transcriptional factors and/or chemicals, conversely
as constitutive if it works with a constant activity.

Ribosome Binding Sites
Ribosome Binding Sites (RBSs) are small RNA sequences, located between the
coding sequence and the promoter at 5’ untraslated region (UTR), to which
ribosomes bind in order to initiate translation. In prokaryotes, the RBS, also
called Shine Dalgarno sequence, is complementary to the 16S ribosomal RNA
(rRNA) and is directly responsible for the efficiency of translation initiation.
However, the real translation efficiency of RBSs is not easy to predict since it
could affect the stability of the mRNA and is highly gene sequence-dependent.
In the last few years many efforts have been carried out to develop computa-
tional tools able to predict the activity of RBSs starting from their sequence,
such as RBS Calculator [62], UTR Designer [63] and RBSDesigner [64], based
on a thermodynamic model of bacterial translation initiation. Although none
of the three evaluated tools shows a high prediction accuracy, RBS Calculator
performs better than the others.

Coding Sequences
A coding sequence (CDS) is a DNA sequence located downstream of RBS
sequence and bounded by a start (usually ATG) and stop (TAA, TGA ot TAG)
sequence. The CDS is first transcribed into mRNA and then is translated
by ribosomes to produce proteins. Each amino acid, the building block of
the protein, is encoded by a nucleotide triplet, called codon. Reporter genes
are essential tools for the study of biological systems. They encode proteins
that can be readily assayed, for example fluorescent proteins (such as GFP or
RFP) or enzymes that can be quantified using specific fluorimetric/colorimetric
assays (such as β-galactosidase).

Terminators
Terminators are DNA sequences located at the end of a gene or of a set of genes
regulated by a single promoter (i.e. operon) and are responsible for triggering
the end of transcription process. In prokaryotes, terminators can be classified
as ρ -independent or ρ -dependent terminators based on their sequence. ρ -
independent terminators consist of a G-C rich stem loop, followed by a T-rich
sequence, while in the latter a protein called ρ factor is required to unbind the
RNA polymerase from the DNA fragment which is transcribing.

These BioBrick�parts are properly incorporated in a special circular and
double-stranded DNA molecule, called plasmid, with standardized features

20



1.2. Synthetic biology tools

Figure 1.4: Synthetic genetic circuit architecture. The simplest genetic circuit is

composed by a promoter (green), a ribosome binding site (blue), a coding sequence (orange) and a termi-

nator (red). These components are inserted in a plasmid backbone with selection marker (ABR, antibiotic

resistance) and an origin of replication (ORI), which ensure the plasmid maintenance and propagation in

the host cell.

(Fig. 1.4). Indeed, in order to simplify the assembly procedure, the mod-
ules are put in the cloning site, in a special plasmid backbone, that is flanked
by a prefix sequence upstream and a suffix sequence downstream. The prefix is
composed by EcoRI (E) and XbaI (X) restriction sites, while the suffix includes
the SpeI (S) and PstI (P) sites. Each of these restriction sites must be unique
in the plasmid. Moreover, an antibiotic resistance gene, used as a selection
marker, and a replication origin, which determines the number of copies of the
plasmid per cell, are necessary features in plasmids.

BioBrick parts are collected in an open access repository, called Registry of
Standard Biological Parts [65], founded in 2003 by the Massachusetts Institute
of Technology (MIT).
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Chapter 2
Evaluation of constraint-based
methods in Escherichia coli

In-silico design based on genome-scale metabolic models is the first step of
the rational metabolic engineering. Constraint-based methods provide a quan-
titative description of cellular metabolism of wild type or mutant strains, in
terms of flux distributions, by optimization of an objective function, using the
steady-state assumption and limiting the variation range of each flux. Their
accuracy depends on the flux constraints, through which physio-chemically and
biologically infeasible results are eliminated.
In this chapter, the prediction performance of constraint-based methods for E.
coli, under different environmental and genetic conditions, will be described.
An introduction on the state of the art of constraint-based methods and the
alternative approaches proposed to overcome their limits will be reported (Sec.
2.1). The experimental datasets, collected from the literature and measured in
this work, will be presented and the implementation of computational methods
and parameters used for the accuracy evaluation will be explained (Sec. 2.2).
The impact of realistic flux constraints, derived from experimental data, on the
predictions (Sec. 2.3.1) and the ability to predict the phenotype of metaboli-
cally optimized strains, using both standard methods and the transcriptomic
data integration, will be shown (Sec. 2.3.2). Based on the results obtained
in this study, the quantitative prediction performance of E. coli models, as a
function of the available biological knowledge, will be discussed in Sec. 2.4.
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2. Evaluation of constraint-based methods in E. coli

2.1 Introduction

Within the past 25 years, different computational methods have been devel-
oped and applied to study the metabolism of organisms, mainly prokaryotes,
and to guide their engineering as cell factories for the chemical of interest.
All the available information useful to describe the organism metabolism is
integrated into GEMs. Their reconstruction is primarily based on the genome
annotation and, thanks to advances in sequencing technologies, GEMs for a
wide variety of microorganisms are available. In particular, E. coli is the most
suitable organism to be used for metabolic engineering purpose, because of its
ability to grow in different environmental conditions and to be easily manip-
ulate in the laboratory. In the last few years, several updated versions of E.
coli GEM were reconstructed [29, 30, 31, 18] and applied for different in-silico
studies [46, 66].
GEMs are commonly modelled by constraint-based approaches and, as de-
scribed in Chapter 1, FBA is the most used method. It identifies the flux
distribution through all the reactions reported into the GEM, such that the
growth rate is maximized [37]. Extensions of FBA (pFBA [38], dFBA [40] and
FVA [39]) and alternative approaches specific for the simulation of mutant
strains (MoMA [41] and ROOM [42]) were subsequently proposed.
Although the traditional constraint-based approaches are widely used to cap-
ture the genotype-phenotype relationship, they suffer from some intrinsic limi-
tations. Generally, they showed a low accuracy, especially in terms of intracel-
lular flux distributions, to simulate a metabolic model with perturbed genetic
and environmental conditions [67, 51], both due to the limited information
that can be used for their modelling and the unrealistic objective function
in some contexts, based on an optimal-yield metabolism. Indeed, the genetic
deletions are modelled just by setting the flux of respective encoded reaction(s)
to zero and the specific environmental context constraining the fluxes of nutri-
ent uptakes. Therefore, new approaches for integration of additional biological
information, such as gene expression and proteomic data, were developed in
order to improve the prediction performance of an organism metabolism under
different substrate conditions and genetic perturbations [68, 58, 59].
In particular, the advancements in high-throughput sequencing methods pro-
moted the development of new methods for integration of transcriptomic data
into GEMs, based on FBA principles. Åkesson et al. [54] proposed the earliest
and simplest approach for the addition of transcriptomic data, that considers
only the reactions with relative gene expression higher than a specified thresh-
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old. Subsequently, other variations of the former method were developed with
a more complex rule for the classification of inactive reactions. One approach,
GIMME [55] relies on the usage minimization of low-expression reactions while
keeping the growth rate, namely the objective function, above a certain value.
Alternative methods are not based on FBA, but use gene expression data to
infer metabolic fluxes, such as Lee-12 [69] and EXAMO [70].
Given the recent development of constraint-based approaches and their de-
pendence on the simulation context, a limited number of evaluation studies,
changing the genetic and environmental conditions, are available. In this work,
we tested the accuracy of constraint-based methods to predict the metabolic
flux distribution of E. coli wild type and mutant strains grown in minimal
medium with different elements, such as the carbon source and culture mode.
In particular, a sensitivity analysis of predictions respect to the uptake rate
constraints of key nutrients was presented to evaluate how the accuracy can
increase when experimental values are known. Furthermore, both pFBA and
MoMA were applied for the simulation of strains engineered to improve the
production of the target high-value metabolite, namely ethanol, pyruvate and
acetate and the accuracy predictions were analyzed. Finally, the former simu-
lations were repeated with the integration of transcriptomic data into E. coli
GEM by GIMME method, to test if an improvement of prediction can be
achieve.

2.2 Materials and Methods

2.2.1 Experimental datasets

We retrieved the experimental fluxes (single value for each reaction, ex-
pressed as mmol/gDWh) measured for E. coli wild type and knockout strains
grown in minimal media with different carbon sources, culture modes (batch
or chemostat) and oxygen conditions, from seven studies found in literature,
that are briefly described below.
Edwards et al., 2001 [71]: growth experiments of E. coli MG1655 in aero-
bic batch conditions and using succinate or acetate minimal M9 media were
carried out, changing both the carbon source concentration (0.05-4 g/L) and
the temperature (27.5-37 ◦C). Measurements of growth rates, uptake rates of
carbon source and oxygen during the growth exponential phase were reported
for the two conditions.
Causey et al. 2003 [72]: fermentations in glucose-minimal medium and
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micro-aerobic conditions of E. coli W3110 wild type and three mutant strains,
developed with the aim to improve the acetate yields, were conducted. Mea-
surements of specific growth rates, maximum specific glucose utilization rates
and maximum specific acetate production rates were reported.
Causey et al. 2004 [73]: fermentations in glucose-minimal medium and
micro-aerobic conditions of E. coli W3110 wild type and four mutant strains,
developed with the aim to improve the pyruvate yield, were conducted. Mea-
surements of maximum growth rates, maximum specific glucose utilization
rates and maximum specific pyruvate production rates were reported.
Kayser et al., 2005 [74]: growth experiments of E. coli K-12 strain TG1 in
aerobic glucose-limited continuous cultures were carried out at dilution rates
ranging from 0.044 to 0.415 h−1. The glucose uptake rate, carbon dioxide evo-
lution rate, oxygen uptake rate, acetate formation rate and ammonium uptake
rate were measured during steady-state growth at the various dilution rates.
Ishii et al., 2007 [75]: aerobic growth experiments of E. coli K-12 strain
BW25113 wild type and 23 single-gene knockout mutants in glucose-limited
chemostat cultures were carried out. Production rate of lactate, acetate, succi-
nate, pyruvate and formate were determined by the measurements of respective
metabolite concentrations and the internal fluxes through the central carbon
reactions were measured by 13C-labeling experiments for each condition.
Kim et al., 2007 [76]: specific growth rates under aerobic and anaerobic con-
ditions and in glucose minimal medium were reported for E. coli K-12 strain
W3110 wild type and three mutant strains, developed with the aim to improve
the ethanol yield.
Orencio-Trejo et al., 2008 [77]: E. coli C was grown under anaerobic batch
conditions, in M9 minimal media with glucose. Measurements of glucose up-
take rate and production rates of acetate, formate, succinate and ethanol dur-
ing the exponential phase were reported.
In addition, we measured the growth rate for three mutant strains of E. coli W,
developed by allelic replacement vector (see Cap. 5), with the aim to improve
the ethanol production from lactose, growing in aerobic and anaerobic batch
culture with glucose M9 media.

2.2.2 Transcriptomic data

We collected five transcriptomic datasets of E. coli, four of these measured
in anaerobic conditions and one in micro-aerobic conditions, that are described
below. They were properly analyzed and processed for the integration into the
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GEM.
Covert et al., 2004 [78]: expression data of 4202 genes were measured, at
least in triplicate, by microarray in anaerobic glucose minimal medium condi-
tions.
Park et al., 2013 [79]: expression data of 4150 genes were measured, in trip-
licate, under anaerobic conditions.
Bordbar et al., 2014 [80]: expression data of 4295 genes were measured, in
triplicate, by RNA-seq analysis in anaerobic glucose minimal medium condi-
tions.
von Wulffen et al., 2016 [81]: expression data of 3539 genes were measured,
at least in triplicate, by RNA-seq in anaerobic batch cultures.
Singh et al., 2010 [82]: a single measure of expression data were reported
for 4344 genes under micro-aerobic conditions.
For the datasets with two or more replicates, we evaluated their degree of
agreement, through the coefficients of variation, to test the reliability of mea-
sures and the mean value was computed and used for the integration into
GEM. The mean gene expressions among the replicates were compared for
each dataset measured under the same conditions, by normalizing with the
median expression of measured genes, and the correlation was assessed. More-
over, the over-expressed genes, namely with highest fold-change, respect to
the data measured in aerobic conditions, were identified and verified with the
experimental evidence.
For each dataset, the expression levels of each reaction were determined by
mapping the data of each associated gene using the gene-protein-reaction
(GPR) association rules reported in the GEM. In particular, for the reactions
catalyzed by enzyme complexes (and operator) the relative expression level
was set equal to the minimum value of associated genes, wheres for reactions
catalyzed by isozymes (or operator) the relative expression level was set equal
to the sum of the values of associated genes.

2.2.3 Simulations

All the simulations were based on iJO1366 GEM [18] and performed us-
ing the available implementation in the COBRA Toolbox [9] using MATLAB
R2012a. In general, the different growth conditions were simulated setting,
when required, appropriate values for uptake of the key nutrients, namely for
oxygen 0 mmol/gDWh, 100 mmol/gDWh, 5 mmol/gDWh when anaerobic, aero-
bic and micro-aerobic conditions were considered, whereas glucose uptake rate
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was constrained to the experimental value or, if it was not available, to the val-
ues reported by Varma and Palsson [83] both for anaerobic (18.5 mmol/gDWh)
and aerobic (10.5 mmol/gDWh) batch conditions and continuous cultures in
function of dilution rate. Instead for mutant strains, the glucose uptake rate
was imposed equal to the specific experimental value or to the value measured
for wild type, with the assumption that the implemented deletions did not lead
relevant changes.
The metabolic flux distributions of wild type were simulated by pFBA method
[38], whereas for the mutant strains, both pFBA and MoMA [41] were used. For
simulation of gene deletions, the respective gene(s) or reaction(s) was blocked
prior to simulation.
In order to understand the influence of imposed nutrient uptake rates on the
prediction accuracy of the constraint-based methods, some simulations were
repeated setting the available experimental measure for glucose, oxygen and
ammonium salt, one at a time. These results were compared with predictions
obtained with standard uptake rate (0 or 100 mmol/gDWh for oxygen, 100
mmol/gDWh for ammonium salt and 18.5, 10.5 mmol/gDWh or the value as a
function of dilution rate for glucose), namely unlimited for oxygen and ammo-
nium, and fixed to previously measured values for carbon source.
The GIMME implementation in the COBRA Toolbox was used for the in-
tegration of transcriptomic data. For the mutant strains, we assumed that
expression levels are unchanged respect to wild type for all genes except for
the gene knockout(s), imposed equal to zero. A simulation using each of the
four transcriptomic datasets was carried out, in which the gene expression
cutoff value was imposed equal to the 90th quantile of each given dataset,
whereas the minimum fraction of growth rate was set to 90% (default value)
of the maximum growth rate.

2.2.4 Evaluation of prediction accuracy

The prediction accuracy for each simulation was evaluated by the compar-
ison with available experimental fluxes, usually growth rate, secretion rates
of main products, nutrient uptake rates and internal fluxes of central carbon
reactions. The prediction error was computed for each simulation of a strain
grown under a specific condition by the normalized Euclidean distance between
the experimental and the respective predicted fluxes:

PRED ERROR =
‖exp flux− pred flux‖

‖exp flux‖
(2.1)
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2.3 Results

In order to evaluate the predictive capability of constraint-based methods,
under different experimental conditions, we simulated E. coli grown anaero-
bically or aerobically in minimal medium with a different carbon source and
different culture mode, and the obtained results were compared with experi-
mental datasets, taken from the literature. This work aims to investigate if the
modelling of study-specific growth conditions, in terms of uptake rates, leads
to increased prediction accuracy, or the use of literature values already pro-
vides a reasonable prediction accuracy. We tested such features using pFBA
and MoMA on different increasingly complex studies of metabolic engineer-
ing applications. Finally, we integrated transcriptomic data as an attempt to
improve prediction accuracy.

2.3.1 Impact of nutrient uptake rate constraints

We analyzed the differences between the predictions of E. coli metabolic
flux distributions, under different environmental and genetic conditions, ob-
tained using or not experimental measures to constraint the nutrient uptake
rates. The key nutrients considered in this work are glucose (GLC) and ammo-
nium salt (NH4), the only source of carbon and nitrogen in a minimal medium,
respectively, and oxygen (O2), responsible for the activation of fermentative or
respiratory pathways.
As for the evaluation of oxygen and ammonium uptake rate impact, datasets
published by Kayser et al. [74], Ishii et al. [75] and Edwards et al. [71] were
used. For both the metabolites, two simulations were implemented fixing the
respective uptake rate to experimental or standard value (100 mmol/gDWh,
i.e., unlimited), and the experimentally measured glucose uptake rate. The
error distributions, obtained using the two different constraints, (Fig. 2.1A
and 2.1C) are very similar. In particular, the median values of prediction er-
rors are equal to 0.22 and 0.26, changing the constraint of oxygen uptake rate,
and equal to 0.18 and 0.11, changing the constraint of ammonium uptake rate.
From the scatter plots of the experimental and predicted uptake rate values for
each condition, we observed a very high correlation (see regression lines in Fig.
2.1B and 2.1D; correlation coefficient of 0.99 and 0.79, respectively). However,
bisector lines in both panels show a low-entity offset (Fig. 2.1B) and slope
discrepancy (Fig. 2.1D) compared to regression lines, demonstrating that the
model is able to accurately capture the experimentally observed variation of
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uptake values, though with small systematic errors in both oxygen and am-
monium, as highlighted by the deviation of data points from bisector. This
analysis shows the low impact on model predictions using specific measures of
oxygen or ammonium uptake rates, demonstrating the ability of the method,
in most cases, to properly set these values only with the knowledge of the con-
straint of carbon source uptake rate.
Despite unlimited values can be used as maximum rate of oxygen and ammo-

nia uptake, the uptake rate of carbon source, which is chosen from the method
in order to optimize the growth rate, must be constraint.
We evaluated if the values of glucose utilization rates indicated by Varma
and Palsson [83], for aerobic and anaerobic (10.5 and 18.5 mmol/gDWh) batch
conditions and continuous cultures at different dilution rates, are sufficiently
reliable, or if the predictions can be improved using their experimental mea-
sure. For this analysis, datasets published by Kayser et al. [74], Ishii et al. [75]
and Orencio-Trejo et al. [77] were considered. The prediction errors for each
simulated growth condition and with or without context-specific experimental
glucose uptake were reported in Figure 2.2A. We obtained a small decrease of
median error (from 0.25 to 0.15) constraining the glucose uptake to the exper-
imental value, however a good accuracy with the values found in literature can
be reached. Indeed, the correlation between the specific experimental glucose
uptake rates and the collected values from analogous studies shows that the
latter can be used as a reference (Fig. 2.2B).
Moreover, the evaluation of glucose uptake rate impact was tested also in

mutant strain predictions. The metabolic flux distributions of 23 single-gene
knockout strains grown in glucose-limited chemostat cultures, reported by Ishii
et al. [75], were simulated using as constraint for maximum glucose uptake rate
the specific measure for each mutant or the value measured for wild type. The
prediction errors for the two simulations were computed and the distributions
are shown in Figure 2.3. Differently from the results for wild type, the pre-
dictions for mutant strains do not improve when experimental values are used
for setting the glucose uptake rate. Indeed, the obtained median errors are
analogous and equal to 0.3. We observed that the glucose uptake rates specific
for each mutant are included in a range between 2.7 and 4.5 mmol/gDWh, and
they are not very different from the value measured for wild type, equal to 2.93
mmol/gDWh, grown at the same dilution rate.
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Figure 2.1: Impact of oxygen and ammonium salt uptake rates on
predictions of wild type E. coli. Distributions of prediction errors for each experimental

condition constraining the oxygen A) or ammonium C) uptake rate to experimental value and standard value

reported in iJO1366 model (100 mmol/gDW h, i.e., unlimited). Correlation analysis between experimental

and predicted uptake rates of oxygen B) and ammonium D) through linear regression and bisector. For

the analysis of oxygen uptake, the growth in aerobic batch or continuous conditions and with a different

carbon source were considered. For the analysis of ammonium uptake, the growth in aerobic glucose-limited

continuous cultures was considered.
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Figure 2.2: Impact of glucose uptake rate on predictions of wild type
E. coli. A) Distributions of prediction errors for each experimental condition constraining the glu-

cose uptake rate to specific measures and standard values reported in literature [83] for analogous growth

conditions. B) Correlation analysis between experimental uptake rates of glucose and the respective value

reported in literature through linear regression and bisector. The aerobic or anaerobic growth in batch or

continuous conditions were considered.

2.3.2 Metabolic engineering applications

So far, different successful results were obtained by modifying microorgan-
isms for a sustainable production of high-value metabolites. The constraint-
based methods are generally used to accelerate the design process of cell fac-
tories.
Ethanol is one of most widely used metabolites as renewable and sustainable
energy source. Numerous research groups have focused on the development
of new ethanologenic E. coli strains for fermentation of different substrates
[84, 85, 86, 76, 48]. In this context, we tested the ability of constraint-based
methods, pFBA and MoMA, to predict the growth rate of four different mu-
tant strains, WL, WP, WLF and WLP (see Tab. 2.1), developed with the aim
to improve the ethanol yield. In particular, the growth rates under aerobic
and anaerobic conditions in glucose minimal medium reported by Kim et al.
[76] and measured in this work were considered. Comparing the experimen-
tal growth rates, we observed a different growth phenotype, under anaerobic
conditions, when pflB and ldhA genes were simultaneously deleted. Indeed,
whereas Kim et al. [76] reported no growth for WLP strain, according to the
elementary mode analysis presented by Trinh et al. [48], because the synthe-
sis of acetyl-CoA, required for biomass synthesis, is blocked, we measured a
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2.3. Results

Figure 2.3: Impact of glucose uptake rate on predictions of E. coli
single-gene knockout mutants. Distributions of prediction errors for each experimental

condition constraining the glucose uptake rate to specific measures and using the value of wild type. The

aerobic growth in continuous cultures was considered.
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Strain Genotype Ref.
WL ∆ldhA [76], This work
WP ∆(pflB-focA) [76]

WLP ∆ldhA ∆(pflB-focA) [76], This work
WLF ∆ldhA ∆frdAB This work
SZ47 ∆(focA-pflB) ∆frdBC ∆ldhA [72]
TC24 ∆(focA-pflB) ∆frdBC ∆ldhA ∆atp(FH) [72]
TC36 ∆(focA-pflB) ∆frdBC ∆ldhA ∆atp(FH) ∆adhE ∆sucA [72]
TC38 ∆(focA-pflB) ∆frdBC ∆ldhA ∆atp(FH) ∆adhE ∆sucA, ∆ackA [73]
TC42 ∆(focA-pflB) ∆frdBC ∆ldhA ∆atp(FH) ∆adhE ∆sucA, ∆poxB [73]
TC44 ∆(focA-pflB) ∆frdBC ∆ldhA, ∆atp(FH) ∆adhE ∆sucA ∆ackA ∆poxB [73]

Table 2.1: Strains of E. coli simulated in this work.

growth rate different to zero although it was lower than the other mutants.
The experimental and predicted growth rates obtained by pFBA and MoMA
for the different strains under aerobic and anaerobic conditions are represented
in Figure 2.4. A good prediction accuracy was obtained by the both methods,
except for WP and WLP strains grown under anaerobic conditions. As noted
through the experimental measurements, the deletion of pflB gene, encoding
pyruvate formate-lyase, leads to a controversial situation in the absence of
oxygen. Considering WP, with the single deletion of pflB, pFBA method com-
puted a growth rate equal to 0.38 h−1, that is lower than the predicted value for
WT and WL strains (0.47 h−1 for both of us) but higher than the experimen-
tal measure (0.17 h−1) reported by Kim et. al, instead MoMA computed no
growth phenotype. When the deletion of ldhA gene, encoding lactate dehydro-
genase, is carried out in addition to pflB gene (WLP strain), pFBA predicted
an unchanged behaviour respect to WP strain, namely a growth rate of 0.38
h−1, in agreement with our measure (0.13 h−1), whereas, also in this case no
growth was computed by MoMA method due to the pflB deletion, as reported
by Kim et al.

For a more comprehensive evaluation of computational constraint-based
methods, alternative fluxes in addition to growth rate should be considered.
We retrieved two experimental works [72, 73] in which six mutant strains:
SZ47, TC24, TC36, TC38, TC42 and TC44 (Tab. 2.1), were developed to
improve the production of acetate (the first three mutants) and pyruvate (the
last three mutants), widely used as food additive, from glucose. The growth
rate and secretion flux of the respective target metabolite were predicted for
each strain grown micro-aerobically and compared to the experimental values.
In these cases, the micro-aerobic condition introduces a new variable that can
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Figure 2.4: Experimental and predicted growth rates for E. coli wild
type and mutant strains engineered to improve the ethanol produc-
tion. The experimental values measured in this work and by Kim et al. [76] and the predicted values

by pFBA and MoMA methods under aerobic and anaerobic glucose minimal medium conditions are rep-

resented. We measured the growth rate for each strain except for WP, in both conditions. The genotype

characteristics for each mutant strain are reported in Table 2.1.
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not be specifically controlled because the relative value of oxygen uptake rate
is undefined. In order to consider a good compromise between aerobic and
anaerobic conditions, we chose to limit the oxygen uptake to 5 mmol/gDWh,
for micro-aerobic growth, as previously carried out by Zsolt et al. [87].
The results confirmed that pFBA is able to properly predict the growth rate
also for mutants with multiple gene deletions, and we can observe that, due to
the inactivation of PFL reaction, MoMA predicted no growth for these strains
also under micro-aerobic conditions (Fig. 2.5A). As for the predictions of inter-
nal or external fluxes, obtaining a good accuracy is more complicated respect
to the growth rate. The experimental data indicate that, the inactivation of
oxidative phosphorylation (∆atpFH) and cyclic function of the tricarboxylic
acid pathway (∆sucA), in addition to native fermentation pathways, leads to
an increase of acetate production. However, very similar acetate yields are
computationally predicted for all strains (Fig. 2.5B). The pyruvate secretion
fluxes predicted by simulating three mutants (TC38, TC42 and TC44) with
larger number of gene deletions are not in agreement with the experimental
values. Indeed, the computed rates of pyruvate secretion are equal or close
to zero for each engineered strain, and the positive impact, shown through
the experimental data, of the perturbation that eliminates acetate production
(∆ackA) was not obtained.

As expected, the predictions of acetate and pyruvate secretion rates of the
engineered strains change in function of oxygen uptake rate. We observed that,
a predicted acetate secretion rate in agreement with the experimental value is
achieved when the oxygen uptake rate increased from 5 to 7 mmol/gDWh for
SZ47 strain, and to 17.37 mmol/gDWh for TC24 and TC36. Whereas for the
pyruvate secretion rate, the predicted value increases only in TC44 strain but
for an oxygen uptake close to aerobic condition (16-20 mmol/gDWh).
Through the in-silico studies, the elimination of some reactions may lead to
the activation of others, known as inactive, in order to optimize the growth
rate (objective function). For this reason, we tried to prevent an uncorrected
configuration of active reactions with the integration of omics data.
GECKO was recently proposed by Sánchez et al. [59] as a powerful tool for im-
proving the predictive performance of GEMs by the integration of enzymatic
data, in terms of turnover numbers and protein abundance. But since pro-
teomic datasets for E. coli grown anaerobically or micro-aerobically in minimal
medium with glucose are not available in literature, we cannot apply GECKO
tool for improving the prediction of engineered strains reported in Table 2.1.
However a context-specific model was created by integrating transcriptomic
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Figure 2.5: Experimental and predicted values of growth rate and
secretion rate of target metabolite for the E. coli mutant strains
engineered to improve the acetate and pyruvate production. The ex-

perimental values reported by Causey et al. [72, 73] and the predictions obtained by pFBA are reported.

The predictions obtained by MoMA are reported only for the growth rate, equal to zero. The growth under

micro-aerobic conditions in glucose minimal medium was considered. For the simulation of micro-aerobic

conditions the oxygen uptake rate was constraint to 5 mmol/gDW h. The genotype characteristics for each

mutant strain are reported in Table 2.1.
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data. From the evaluation of methods for integration of transcriptomic data,
published by Machado and Herrgard [51], we selected GIMME [55], among the
approaches based on FBA, because it combines widely available gene expres-
sion data with presupposed cellular function to predict the subset of active
reactions under particular conditions.
Once the robustness of transcriptomic datasets, used as input, was verified,
the predicted results obtained with GIMME were compared with the experi-
mental values. We observed that, unchanged results were obtained for each of
simulated mutant strains, compared to the implementation of pFBA in GEM
(data not shown). This inefficiency of transcriptomic data on the prediction
accuracy can be due to their inability to model the modification of expres-
sion at post-transcriptional and post-translational level. Indeed, we observed
that PDH reaction is predicted active both under anaerobic and micro-aerobic
conditions, despite its enzymatic complex, in the absence of oxygen, is not
sufficiently active to support the flux.

2.4 Conclusion

In this work the performance of constraint-based methods, under different
genetic and environmental conditions, were investigated.
First, we provided a general description, useful for the user, about the input
data, in terms of nutrient uptake rate constraints, required to obtain accu-
rate predictions also changing the default configuration of the GEM. From
the shown results, the experimental uptake rate of carbon source is the input
with higher impact on the predictions of metabolic flux distribution of wild
type under the different environmental conditions, which is able to decrease
the error from 0.25 to 0.15. The other inputs, such as oxygen and ammonium
uptake rates, are automatically adjusted only as a function of the this last
constraint. However, we observed a good prediction accuracy also using the
values of glucose uptake rates reported by Varma and Palsson [83] to simulate
the wild type stain under different growth conditions. Whereas for mutant
strains, the knowledge of specific glucose uptake rates does not improve the
predictions. This can be due to experimental noise on the measurements or
because the mutant phenotypes are not properly modelled.
Constraint-based methods are important tools to study the steady-state cel-
lular metabolic phenotype of microorganisms requiring only simple physical-
chemical constraints, however, they present some limits when used for metabolic
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engineering applications. We showed that, the predictions of actual growth
rate, and especially of target metabolite secretion rate, are difficult to compute
for engineered strains with a large number of gene deletions, grown anaerobi-
cally or micro-aerobically, both by pFBA and MoMA methods.
In particular, we described the controversial situation due to the deletion of
PFL reaction when the oxygen level is low or equal to zero. Despite PFL
reaction was defined essential [76, 48], a growth rate different to zero was ex-
perimentally measured in this work for the strain with ldhA and pflB deletion
(WLP). For this disagreement there was no proper motivation, but could be
due to different wild type strains used for the construction of mutants, a spon-
taneous activation of pyruvate dehydrogenase (PDH) in our strain, as reported
by Singh et al. [82], or a growth under no strict anaerobic condition in our
experiments. Similarly, when these deletions were in-silico simulated, pFBA
predicted a growth different to zero and analogous to the value of wild type,
instead with MoMA no growth was obtained.
The limited ability of constraint-based methods to represent context-specific
phenotypes is due both to the starting metabolic model and the computa-
tional method. Indeed, the metabolic model includes all reactions implied by
the genome annotation, some of which are not active under specific conditions,
and the constraint-based methods are not able to identify the specific pathway
configuration, but find the one that optimizes the objective function, namely
the maximum growth rate for pFBA and the minimum changes between wild
type and mutant strain for MoMA.
In order to tailor the GEM into a context-specific network and promote more
accurate predictions for these engineered strains, different methods for the in-
tegration of additional omics data, in particular transcriptomic and proteomic,
have been developed. Due to a lack of proteomic data for E. coli under anaero-
bic and micro-aerobic conditions, we focused on the integration of specific tran-
scriptomic datasets, found in literature, by using GIMME approach. However,
we obtained the same inaccurate predictions also considering transcriptomic
data, that in this context are not able to properly simulate the real metabolic
phenotype. As an example, the PDH reaction is predicted active, both under
anaerobic and micro-aerobic conditions. However, it is catalyzed by a com-
plex of three enzymes that under anaerobic growth conditions is transcribed
but its activity is negligible due to the inhibition by NADH. For this reason,
since transcriptomic data are not able to model the modification of expression
at post-transcriptional and post-translational level, PDH reaction is wrongly
modelled also with GIMME method. Therefore, despite the integration of
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this type of omics data adds more specific information on GEM, under similar
complex situations these are unable to reflect the proper refinements at reac-
tion level and therefore this approach does not always lead to an increase of
prediction accuracy.
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Chapter 3
Integration of enzymatic data in
Bacillus subtilis genome-scale
metabolic model to improve the
phenotype predictions

The predictions obtained from constraint-based methods rely on the flux
constraints, that define the space of all feasible solutions and exclude physio-
chemically and biologically infeasible behaviours. Commonly, the uptake rate
of carbon source is the only constraint imposed into the model, that, in some
cases, is not enough to obtain a good prediction accuracy, also if the experi-
mental value is known. Different methods limiting the metabolic fluxes using
enzymatic data were proposed.
Here, an enzyme-constraint model of B. subtilis has been developed to im-
prove the in-silico design process useful for the metabolic engineering of this
bacterium, frequently used as cell factory. The genome-scale metabolic models
available for B. subtilis and the main approaches for the integration of enzyme
levels will be introduced (Sec. 3.1). The construction of the new model and
the conditions used for the performance evaluation will be described in Sec.
3.2 and then, the results obtained using it for the study of metabolic pheno-
type of wild type and mutant strains (Sec. 3.3.1) and for a direct metabolic
engineering goal (Sec. 3.3.2) will be presented. Finally, the advantages of this
approach will be discussed (Sec. 3.4).
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3. B. subtilis enzyme-constrained model

3.1 Introduction

B. subtilis is the best-characterized bacterium among all the Gram-positive.
It is able to produce large amounts of proteins, enzymes, vitamins and food
supply fermentation by efficient secretion pathways [88, 89] and it has been
defined as Generally Recognized as Safe (GRAS) by the FDA.
For its advantageous characteristics, in both research and industrial applica-
tions, B. subtilis is one of the most studied microorganisms in the metabolic
engineering field. Different works were carried out, aimed at optimizing B.
subtilis as cell factory for relevant medical, agricultural, pharmaceutical and
other industrial bioproducts [90, 91, 92, 93].
Despite industrially-attractive results were achieved in the metabolic engineer-
ing of different strains, the rational identification of target manipulations to op-
timize the metabolism of microorganisms and the knowledge of the respective
perturbed behaviour are the current challenges in the metabolic engineering
field, due to the complexity of the biological systems and the growth condi-
tions dependency. Therefore, in order to avoid a full trial-and-error approach,
an in-silico approach to study metabolic behaviour, described via GEMs, was
recently adopted for different microorganisms, especially bacteria, to drive the
genomic optimization process before strain construction.
During the last ten years, three different versions of B. subtilis GEM [20, 33,
34, 35] were reconstructed and analyzed with the final aim to identify the
genetic perturbations required to optimize the production of a target high-
value metabolite, such as riboflavin, cellulase, (R,R)-2,3-butanediol and isobu-
tanol [35]. The first B. subtilis GEM [20], called iYO844, is based on the
annotated genome sequence [94], biochemical [95] and high-throughput phe-
notyping data and consists of 844 genes, 1020 biochemical reactions and 988
metabolites. However, since the genome annotation used for the iYO844 re-
construction is incomplete, two years later a new model (iBsu1103) was re-
constructed from an up-to-date annotation generated by the SEED Project
[96]. iBsu1103 model was further refined in 2013 [34] and the final GEM
includes 1108 genes, associated to 1700 reactions, and 1390 metabolites and
showed an improvement of accuracy, compared to iYO844, in terms of growth
phenotype predictions (growth/no-growth), under different environmental and
genetic conditions. Another B. subtilis GEM was proposed in 2013, called
iBsu1147, and is primarily based on the first reconstruction of iBsu1103 with
the addition of genomic information retrieved from KEGG and Uniprot and it
was refined according to the simulations on biomass and ATP synthesis. This
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last B. subtilis GEM is characterized by 1147 genes, 1742 reactions and 1198
metabolites. It represents the most detailed version among the available B.
subtilis GEMs, with superior accuracy in the prediction of growth phenotypes
under different conditions [35].
Although the available B. subtilis GEMs were validated based on the growth
rate under different substrates and gene essentiality analysis, these models
show a low accuracy on the prediction of fluxes through the central carbon
reactions and of secreted metabolites, and the integration of additional infor-
mation on its metabolism could improve the prediction capability.
Since the GEMs are generally analyzed through constraint-based methods,
commonly the predicted growth rate and the production of the target metabo-
lite are mainly limited by the carbon source uptake rate constrained in the
model. However, each metabolic flux is highly dependent on the concentration
and kinetics of the enzyme catalyzing the reaction. For this reason, the predic-
tions based only on the flux constraints may not agree with the experimental
behaviour. Therefore, different approaches for the integration of enzyme levels
in the metabolic model were developed to reduce the solution space and leave
out the infeasible predictions. FBAwMC [97] was one of the first approaches
using the concentration constraints for enzymes within the crowded cytoplasm,
to improve the prediction of growth rates of E. coli under different growth me-
dia, without using the measurements of nutrients uptake rates. Other methods
were proposed as an extension of FBAwMC, such as MOMENT [58], which
utilizes the kinetic parameters under the limitations of the total enzyme pool
available. Similarly, Nilsson et al. [98] used an extension of FBA to predict
the metabolic trad-offs in yeast, in which the sum of fluxes was constrained to
the sum of the product of the maximum in-vitro activity and the total enzyme
mass, respect to a saturation factor. An alternative approach integrates quanti-
tative measurements of protein and metabolite levels into GEM, by associating
them with metabolic fluxes by using Michaelis Menten-like rate equations [99].
The most recent method, referred to as GECKO, uses enzymatic data, in the
form of protein abundance and turnover number, as new constraints for each
metabolic flux, so that it does not exceed its maximum capacity [59]. GECKO
was applied to S. cerevisiae GEM and more realistic predictions than FBA
were obtained under different carbon sources in excess, temperature stress, for
the simulation of Crabtree effect and of metabolic behaviour of a single-gene
knockout strain.
In this work, we integrated enzyme constraints for the reactions of central
carbon and poly-γ-glutamic acid (γ-pga) production pathways into iYO844
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GEM of B. subtilis, following the principles of GECKO method [59], with the
aim to improve the predictions in terms of fluxes through the central carbon
reactions and secretion rate of the main products, in addition to the growth
rate, without the use of nutrient uptake rates. Subsequently, the accuracy
of the developed enzyme-constrained model was evaluated under different ge-
netic conditions and considering minimal medium supplemented with glucose
as growth medium. Finally, we tested the potential of the B. subtilis enzyme-
constrained model in a metabolic engineering application aiming to improve
the production of the promising biopolymer γ-pga.

3.2 Materials and Methods

3.2.1 Data collection

The kinetic data, in the form of kcat values [s−1], for the enzymes of B. sub-
tilis central carbon and γ-pga production pathways, and of other two enzymes
connected to these, were manually collected from BRENDA [56] and SABIO-
RK [57] databases and literature, with the respective molecular weights [kDa].
In particular, we focused on active reactions in glucose minimal medium and
aerobic condition. In literature, when kcat values are not directly reported for
the characterized enzymes, their activity can be expressed as specific activity
(SA). This value is defined as the number of micromoles of product formed per
milligram of enzyme per minute, under given temperature and pH. In this case,
SA values were converted into the respective kcat using the molecular weight
of enzyme [100], with the assumption that the prepared enzyme is 100% pure
and that the number of subunits is equal to the number of active sites [101]:

kcat[s
−1] =

SA[µmol ·mg−1 ·min−1]×MW [mg · µmol−1]

60[s−1]
(3.1)

In particular, a manual search of parameters about the kinetic activity, in terms
of kcat value or specific activity, for the 43 enzymes of central carbon pathway
and for the 5 enzymes of γ-pga production pathway reported in iYO844 model
[20] was carried out. When no measure was available specifically for B. sub-
tilis, kcat value for E. coli was retrieved from the collection reported by Davidi
et al. [100], resulting in a final data collection for 15 enzymes. In fact, since
E. coli is the most widely studied species of bacteria, the number of enzymes
with measured kcat values is larger than in other organisms and moreover its
central carbon pathway is very similar to those of B. subtilis. However, since
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the preliminary simulation of the model obtained by the integration of this
set of enzymatic data predicted the activation of two new reactions (MICITL
and PGCDr) experimental reported as inactive, the addition of data for these
reactions was required.
We considered only the reactions catalyzed by a unique enzyme, except for the
CS and OXADC reactions, for which 2 enzymes are associated but they are
mainly catalyzed by citZ [102] and oxdC [103], respectively, while the second
enzyme of both reactions (citA and oxdD, respectively) does not give a rele-
vant contribution.
As for the absolute protein quantifications, the data reported by Goelzer et al.
were considered [104]. These values are expressed in number of molecules per
cells and are obtained from LC/MSE analysis [105] for most of the cytosolic
proteins in B. subtilis 168 strain, growing under aerobic batch conditions and
in minimal media. In particular, the measurements in minimal medium with
glucose were extracted for this study and converted into mmol/gDW by assum-
ing 6.3 x 108 cells per ml per OD [105]. For each enzyme with known kcat,
we used the upper limit of the 95% confidence interval of abundance value to
allow flexibility in case of variable measurements (Table 3.1). When the quan-
tification of a specific enzyme was not available, we assumed that the measure
is under detection limit, and the minimum value among all the measurements
in the same condition was considered.
The total amount of proteins (Ptotal) in the cell was considered equal to 0.55
g/gDW , corresponding to the value measured for E. coli [106], and the mass
fraction of proteins (f) was computed equal to 0.0191, by summing the abun-
dance, expressed as parts per million (ppm), of the 17 considered proteins,
retrieved from PaxDB database [107].

3.2.2 Integration of enzymatic data in the model

The enzymatic data reported in Table 3.1 were integrated into the iYO844
model, consisting of 1020 reactions, in order to obtain a enzyme-constrained
model [59] easy to use with all the computation methods of metabolic engineer-
ing. This method was implemented via MathWorks MATLAB R2012a and run
with COBRA toolbox [9]. The construction of the enzyme-constrained model
was based on the same formalism of FBA [37]. To implement the enzymatic
data integration following GECKO approach (see section 1.1.3), an additional
constraint was considered so that the metabolic flux through the j-th reaction
(Rj), reported in Table 3.1, does not exceed its maximum capacity (vmax),
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Reaction
name

Gene
name

Equation
kcat
[s−1]

[E]
[mmol/gDW ]

Organism
of kcat
data

Ref. for
kcat data

PGI pgi g6p→f6p 126 1.55 × 10−5 E. coli [108]

TPI tpiA dhap→g3p 150 1.28 × 10−5 E. coli [109]

GAPD NAD gapA g3p+nad+pi→13dpg+h+nadh 70 5.77 × 10−5 B. subtilis [110]

PGK pgk 13dpg+adp→3pg+atp 329 3.60 × 10−5 E. coli [111]

PGM pgm 3pg→2pg 765.9 8.85 × 10−6 B. subtilis [112]

ENO eno 2pg→h2o+pep 130.4 3.17 × 10−5 B. subtilis [113]

G6PDH zwf g6p+nadp→6pgl+h+nadph 174 8.05 × 10−6 E. coli [114]

CS citZ accoa+h2o+oaa→cit+coa+h 49 2.51 × 10−5 B. subtilis [102]

ICDHy icd icit+nadp→akg+co2+nadph 82 1.10 × 10−4 B. subtilis [115]

FUM citG fum+h2o→mal-L 283.3 7.29 × 10−6 E. coli [116]

MDH mdh mal-L+nad→h+nadh+oaa 177.1 1.06 × 10−4 B. subtilis [117]

PTAr pta accoa+pi → actp+coa 651.6 8.49 × 10−6 B. subtilis [118]

LDH L ldh lac-L+nad→h+nadh+pyr 6416.6 3.60 × 10−6 B. subtilis [119]

PGCDr serA 3pg+nad→3php+h+nadh 14.56 1.90 × 10−5 B. subtilis [120]

OXADC oxdC h+oxa→co2+for 59 6.21 × 10−7 B. subtilis [121]

MICITL yqiQ micit→pyr+succ 19 6.80 × 10−8 E. coli [122]

OXGDC menD akg+h→co2+sucsal 20 6.80 × 10−8 B. subtilis [123]

Table 3.1: List of kcat values and protein quantifications integrated
in iYO844 model. For each reaction reported in the table, the encoding gene, the equation, the

kcatand concentration of catalyzing enzyme are reported. Moreover, the organism for which the kcat value

was measured and the paper in which it was found are specified. The reaction names, with the associated

gene names and equations, correspond to the annotations used in iYO844 model.

corresponding to the product between the kcat value (expressed as h−1) of the
enzyme Ei (that catalyzes the j-th reaction) and its abundance (expressed as
mmol/gDW , as described above):

vj ≤ kijcat · [Ei] for i and j = 1....17 (3.2)

Since we considered reactions catalyzed by a unique enzyme, the number of
enzyme-constrained reactions (17) is equal to the number of enzymes.
In summary, each constrained metabolic reactionRj includes a pseudo-metabolite
representing enzyme usage, which is limited by protein abundance.
To implement the described method, as a first step, the iYO844 model was
converted into an irreversible model and the constraint for uptake rate of glu-
cose, the sole carbon source, was removed. Then, the stoichiometric matrix
and the upper bound vector of the model were expanded by adding the kcat
values and the protein abundance known (Table 3.1).
Specific proteomic data for the mutant strains tested in this work were not
available. For this reason, the approach shown above was applied under the
assumption that enzyme concentrations in wild type and mutant strains are
the same, except for the enzyme associated to the deleted reaction, whose con-
centration was fixed to zero. An alternative approach was tested for mutant
strains simulations, in which only the total amount of enzymes was constrained,
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similar to previously proposed approaches [58, 97]:

17∑
i

MWiei ≤ f · Ptotal (3.3)

The mass fraction of accounted proteins (f) and the total protein measured
in the cell (Ptotal) were retrieved from PaxDB database and literature [106],
respectively. In addition, the kinetics data, in terms of turnover number, were
integrated in the stoichiometric matrix (S) as in the standard approach.

3.2.3 Simulations

For the in-silico simulation of each mutant strain, the reaction encoded by
the knocked-out gene was set as inactive, namely with a flux equal to zero. All
strains were simulated using both the previously-published iYO844 model and
the new enzyme-constrained model obtained in this work. The upper bound of
glucose uptake rate was fixed to the specific experimental value for the iYO844
model, based only on stoichiometric reactions and directionality, whereas to
an unlimited value (1000 mmol/gDWh) for the enzyme-constrained iYO844
model. The metabolic phenotypes of B. subtilis wild type and mutant strains
were predicted by pFBA [38]. Mutant strains were also simulated using MoMA
method [41], which minimizes the distance between the flux distributions in
the wild type and mutant strains. The pFBA and MOMA methods were run
in Matlab using the available packages in COBRA Toolbox [9].

3.2.4 Identification of deletion and over-expression tar-
gets

The genetic perturbations that are required to optimize the production of
γ-pga were identified by using the iYO844 model and its enzyme-constrained
version, via two different algorithms, specific for the prediction of gene dele-
tion and amplification targets, respectively. The first method uses MoMA to
find the single or multiple gene deletions corresponding to the best trade-off
between growth rate and secretion rate of the target metabolite [66]. The sec-
ond one, FSEOF (see section 1.1.2), selects the fluxes that increase when the
flux towards product formation is enforced as an additional constraint during
flux analysis [46]. In particular, we considered the reactions whose flux pro-
file increases monotonically with the enforced objective flux and with highest
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fold-change respect to its initial value. Since the pgs operon, including the
enzyme-encoding genes responsible for γ-pga production, is not expressed in
the laboratory strain modelled in iYO844, we added the production reaction
reported in the GEM of Bacillus licheniformis [124] (0.77 glu-D + 0.23 glu-L
→ γ-pga). Moreover, we considered, as an alternative approach to optimize the
γ-pga production, the maximization of three of its well-characterized precur-
sors: 2-Oxoglutarate (akg), D-Glutamate (glu-D) and L-Glutamate (glu-L). In
this case, the secretion reactions of these precursors were added into the model.

3.2.5 Evaluation of prediction accuracy

For the evaluation of the prediction accuracy of flux distributions for B.
subtilis wild type and single-gene deletion strains, grown under M9 minimal
medium with glucose, the respective experimental growth rate [h−1] and mea-
sured external and internal fluxes [mmol/gDWh] from the literature were con-
sidered (single value for each reaction) [125, 126]. The internal fluxes are re-
ported for the main reactions of the central carbon pathway and were measured
by 13C-labeling experiments. Furthermore, 95 single-gene deletions, experi-
mentally found to be lethal [125, 127], were simulated via pFBA and MoMA
methods with standard and integrated models, in minimal medium with glu-
cose, and the percentage of correctly predicted essential genes (i.e., yielding a
predicted growth rate lower than 0.05) was calculated and compared.
The prediction error was computed for each simulation of a strain grown under
a specific condition by the normalized Euclidean distance between the experi-
mental and the respective predicted fluxes:

PRED ERROR =
‖exp flux− pred flux‖

‖exp flux‖
(3.4)

The distribution of prediction errors for the five mutant strains was evaluated
to analyze the accuracy of the models under perturbed genetic conditions.

3.2.6 Sensitivity analysis

The prediction errors, obtained from 10,000 simulations of wild type strain
using the enzyme-constrained model with kcat values randomly extracted from
the list of measured values (Tab. 3.1), were computed. Furthermore, by fol-
lowing a stepwise inclusion procedure, we selected the minimum set of reac-
tions that must be constrained with the respective enzymatic data in order
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to achieve the final accuracy of the new model. In particular, the prediction
errors for wild type and mutant strains together with the accuracy of gene
essential predictions were taken into account as indexes for the final accuracy.

3.3 Results

From the comparison of the three B. subtilis models [20, 34, 35], we noted
that the latest published GEM, iBsu1147, describes the glucose transport from
external to internal compartment via proton symport (GLC-Dt2), instead of
using the transport via PEP and the phosphotransferase system (GLCpts)
[128], as is correctly predicted by the other two models. Finally, considering
the predicted central carbon pathway fluxes and acetate external flux, iYO844
showed higher accuracy than iBsu1103V2, with a prediction error equal to 0.37
and 0.65, respectively. Therefore, we decided to used iYO844 to model the B.
subtilis phenotype.

3.3.1 Evaluation of prediction performance

The metabolic behaviour of wild type B. subtilis, grown in minimal medium
with glucose, was predicted with pFBA method both using iYO844 model,
with glucose uptake rate fixed to the experimentally measured value (7.71
mmol/gDWh) for a more realistic simulation, and using the developed enzyme-
constrained model. The comparison of available experimental fluxes with the
corresponding predicted values (Fig. 3.1) showed that, despite iYO844 model
is able to accurately predict growth rate, the flux distribution for central car-
bon metabolism is not consistent with experimental values, especially for the
reactions of pentose phosphate pathway (PPP) and acetate secretion. A sig-
nificant improvement was achieved with the integration of enzymatic data,
that corrects the largely inaccurate predictions of the PPP and acetate flux
distribution. The overall increase of prediction accuracy using the enzyme-
constrained model is confirmed by the decreasing of the prediction error from
0.47 to 0.27.
Moreover, the prediction performance of the new model was tested also under

perturbed genetic conditions. In particular, the metabolic behaviours of five
mutant strains, constructed by single-gene deletions, (∆pgi, ∆zwf, ∆sdhABC,
∆mdh, ∆serA) were simulated with pFBA and MoMA methods using the
two models. The experimental fluxes of four central carbon reactions (PGI,
G6PDH, PYK and CS) and acetate production [125] were compared with the
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Figure 3.1: Experimental and predicted fluxes for wild type B. sub-
tilis. The predictions of growth rate (h−1), acetate secretion rate (mmol/gDW h), fluxes through the

reactions of glycolysis, TCA cycle and pentose phosphate pathway (mmol/gDW h) for wild type, using

iYO844 model with the experimental value of glucose uptake rate and the enzyme-constrained model (red

and green bars, respectively), are compared to the experimental measures (blue bars) to analyzed the re-

spective accuracy.
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Figure 3.2: Distribution of prediction errors for B. subtilis mutant
strains. The normalized prediction errors obtained using iYO844 with the experimental value of glucose

uptake rate and the enzyme-constrained model were computed (see section 3.2) for each of 5 mutant strains

considered in this work.

corresponding predicted values. First, we noted that MoMA gives consider-
ably lower error than pFBA in the prediction of flux distribution of mutants,
especially when the initial iYO844 model is used (data not shown). For this
reason, we considered the predictions obtained from MoMA method to com-
pare the two models. The results show an overall improvement of prediction
accuracy when enzymatic data are integrated also for mutant strains: consid-
ering the distribution of prediction errors, for all mutants the median value
decreases from 0.67, using the initial model, to 0.43 (Fig. 3.2). In particular,
from the comparison between each flux predicted by the two models and the
experimental measure (Fig. 3.3), a significant improvement of accuracy for the
acetate secretion rate and for the flux of G6PDH reaction is observed. The
rates of acetate production computed by analysis of iYO844 are lower than
the measures for each strain, especially for ∆mdh and ∆serA, in which MDH
and SUCD1 reaction is blocked respectively, with predicted value closed to
zero. However, with the integration of enzymatic data into the model, the
predicted rates become similar to the experimental values. Similar results are
obtained for the G6PDH reaction, the first one of PPP. G6PDH flux is mea-
sured active in ∆pgi, ∆sdhABC, ∆mdh, ∆serA strains, with maximum value
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of 6.5 mmol/gDWh, when the PGI reaction is blocked (∆pgi strain), and with
minimum value of 0.6, when PGDHr reaction is blocked (∆serA strain). But,
except for ∆sdhABC strain, only using the new model the predicted fluxes
through G6PDH reaction are in agreement with the measurements.
Moreover, with the model developed in this work, the fluxes through CS re-
action of TCA cycle decrease for each mutant strain, resulting more similar
to experimental values, thanks to the respective enzymatic data that limit the
maximum flux.
We compared the performance of developed enzyme-constrained model with
those of model in which, similarly to MOMENT method [58], the kcat values
for the 17 reactions were integrated and only the total amount of enzymes
(g/gDW ) was constrained (see section 3.2). The results showed that, also in
this context, the predictions obtained by GECKO approach are the most ac-
curate. Indeed, the median value of the prediction errors for the five mutants
obtained with this alternative method is computed equal to 0.55, namely lower
than the error obtained with the initial model (0.67), but higher than the de-
veloped model with the integration of concentration for each of the 17 enzymes
(0.43).

Finally, the new model was evaluated by gene essentiality analysis, a com-
monly performed step for the validation of new GEMs. As before, we used
both pFBA and MoMA methods to simulate the growth phenotype of single-
gene deletions, but only the results obtained with MoMA were showed since
it has a higher prediction accuracy with both models, as obtained above for
the flux distribution analysis of mutants. From a list of 95 essential genes,
the enzyme-constrained model is able to correctly predict the lethal effect of
each deletion on growth with 75% accuracy, which is 3% higher than the ac-
curacy using the initial model (Tab. 3.2). Considering only the 11 knockout
strains with single deletion in central carbon metabolism genes (eno, pgm,
ywlF, pycA, pdhA, odhB, fbaA, tpiA, pgk, tkt and pfkA), no growth phenotype
was predicted by iYO844 only for two strains (∆pgk and ∆tkt), whereas the
developed model was able to predict the essentiality of 3 additional central
carbon genes (pfkA, eno and pgm), for a total of 5 out of 11 correctly pre-
dicted strains. No difference was observed in the prediction of the remaining
84 strains, in which deletions are present in genes belonging to other pathways.
The sensitivity of the model respect to kcat values was analyzed considering the
variation of prediction accuracy obtained with these values randomly assigned
(see section 3.2). Results (Fig. 3.4) showed that the median value of prediction
errors using random kcat (0.64) is significantly higher than the value obtained
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Figure 3.3: Experimental and predicted fluxes for B. subtilis mutant
strains. Five different mutants strains (∆pgi, ∆mdh, ∆zwf, ∆sdhABC and ∆serA) were simulated using

iYO844 model, with the experimental value of glucose uptake rate, and the enzyme-constrained model (red

and green bars, respectively). The predictions of growth rate (h−1), acetate secretion rate (mmol/gDW h)

and fluxes through PGI, G6PDH, PYK, CS reactions (mmol/gDW h) are compared to the experimental

measures (blue bars) to analyzed the respective accuracy.

Essential genes
CC OTHERS TOT

Experimental data 11 84 95
Predicted with GEM 2 67 69
Predicted with enzyme-constrained model 5 67 72

Table 3.2: Gene essentiality analysis. The number of essential genes reported by [125,

127], and predicted using iYO844 GEM and the enzyme-constrained model are reported. The number of

genes encoding the central carbon (CC) pathway and the others are specified.
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Figure 3.4: Distribution of predicted errors obtained from enzyme-
constrained model with mixed kcat values. Considering the wild type simulations,

the dashed blue line indicates the median value of the prediction errors obtained using kcat values randomly

assigned and the solid green line the prediction error obtained using kcat values properly assigned.

by enzyme-constrained model (0.27). The knowledge of specific kcat values is
therefore essential to obtain accurate predictions. Moreover, among the 17
enzyme-constrained reactions, we identified TPI, GAPD NAD, CS, PGCDr as
the minimum set required to achieve the final prediction performance of the
developed model, namely a prediction error equal to 0.27 for wild type, equal
to 0.43 for mutants and the 75% of gene essentiality accuracy. This result,
however, depends on the study on which the model is applied and as the num-
ber of enzyme-constrained reactions increases, the accuracy of the predictions
improves.

3.3.2 Metabolic engineering application

Once an overall improvement of prediction performance was found with the
new model, it was used to identify the genetic perturbations required to in-
crease the production of γ-pga. The former is a biodegradable, water-soluble,
non-toxic, and edible biopolymer that has a large number of biotechnologi-
cal applications, ranging from biomedicine to bioremediation. Since the pgs
operon, including the enzyme-encoding genes responsible for the synthesis of
this biopolymer, is not expressed in laboratory strains, several experimental
studies were performed to improve γ-pga production by using derivatives of B.
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subtilis 168 strain [129, 93].
For the in-silico modelling, iYO844 and the enzyme-constrained model were
modified to properly take into account the γ-pga production process (γ-PGA
reaction) and both gene deletion (with MoMA method) and amplification (with
FSEOF method) targets were predicted for its production optimization (see
section 3.2), in addition to three of its precursors (akg, glu-L, glu-D).
The identified deletions are the same for each of target metabolites with both
the two models. Using GEM the suggested single-reaction deletions are AKGD
(akg + coa + nad → co2 + nadh + succoa) and SUCOAS (atp + coa + succ
⇔ adp + pi + succoa) reactions (Tab. 3.3). In particular, the elimination
of SUCOAS reaction results more efficient than AKGD deletion, with a pro-
duction rate of target metabolite about two-fold higher (data not shown).
However, the best performance of target production is predicted by the double
deletion of AKGD and OXGDC or SSALy reactions (akg + h → co2 + suc-
sal/h2o + nadp + sucsal → (2) h + nadph + succ), for which is associated a
growth rate lower than the predicted single deletions. SUCOAS and AKGD
reactions are downstream of the akg production in the TCA cycle (see Fig.
3.5), whereas OXGDC and SSALy are consecutive reactions forming a bypass
pathway for the production of succ from akg. OXGDC and SSALy reactions
are predicted to be active only when the AKGD reaction is blocked, however
experimental studies reported an undetectable concentration for the protein
associated with OXGDC (menD). This incorrect prediction was settled using
the enzyme-constrained model developed in this work, in which OXGDC is one
of the enzyme-constrained reactions and therefore the bypass pathway was not
classified as a competitor for the use of akg. In this way, the single deletions
of AKGD and SUCOAS were identified also using the new model (Tab. 3.4),
but the first one achieves alone the same performance of the double deletion
predicted with the GEM.
Similarly, simulating the best deletion predicted with MoMA on the relative

model (SUCOAS and AKGD, respectively), we identified by FSEOF the reac-
tion fluxes whose increase promotes the production rate of γ-pga and each of
its precursors. In particular, using GEM we selected PC (atp + hco3 + pyr
→ adp + h + oaa + pi) as the best candidate reaction to be over-expressed
to increase the production rate of akg and GLUR reaction for glu-D and γ-pga
production, whereas no reaction was selected with our criteria for glu-L (see
Tab. 3.5). PC reaction is the first of TCA cycle and GLUR reaction produces
glu-D from glu-L, which are the metabolites used for the γ-pga production (Fig.
3.5). With the integration of enzymatic data into the model, CS, ACONT and
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GEM
Target metabolite Suggested deletions

akg AKGD, SUCOAS, AKGD+OXGDC/SSALy
glu-L AKGD, SUCOAS, AKGD+OXGDC/SSALy
glu-D AKGD, SUCOAS, AKGD+OXGDC/SSALy
γ-pga AKGD, SUCOAS, AKGD+OXGDC/SSALy

Table 3.3: Deletions identified with GEM to improve the production
of target metabolite in B. subtilis. Deletions with the best trade-off between growth

rate and secretion rate of the target metabolite based on MoMA approach are indicated. For the reaction

names, the nomenclature reported into iYO844 model is reported.

Enzyme-constrained model
Target metabolite Suggested deletions

akg AKGD, SUCOAS
glu-L AKGD, SUCOAS
glu-D AKGD, SUCOAS
γ-pga AKGD, SUCOAS

Table 3.4: Deletions identified with enzyme-constrained model to im-
prove the production of target metabolite. Deletions with the best trade-off between

growth rate and secretion rate of the target metabolite based on MoMA approach are indicated. For the

reaction names, the nomenclature reported into iYO844 model is reported.
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GEM
Target metabolite Suggested over-expressions

akg PC
glu-L —
glu-D GLUR
γ-pga GLUR

Table 3.5: Over-expressions identified with GEM to improve the pro-
duction of target metabolite. The results specific for each target metabolite are indicated.

No reaction was identified considering glu-L as target metabolite. The strain with the best deletion identi-

fied with MoMa was considered. For the reaction names, the nomenclature reported into iYO844 model is

reported.

Enzyme-constrained model
Target metabolite Suggested over-expressions

akg CS, ACONT, ICDHy, R HIST
glu-L CS, ACONT, ICDHy
glu-D GLUR, CS, ACONT, ICDHy
γ-PGA GLUR, CS, ACONT, ICDHy

Table 3.6: Over-expressions identified with enzyme-constrained model
to improve the production of target metabolite. The results specific for each

target metabolite are indicated. The strain with the best deletion identified with MoMa was considered. For

the reaction names, the nomenclature reported into iYO844 model is reported, except for R HIST through

which a set of 8 reactions of histidine pathway are summarized.

ICDHy reaction fluxes showed an increasing pattern with increasing the pro-
duction of each target metabolite considered in this work (Tab. 3.6). These
three reactions are located in the TCA cycle and are responsible for akg produc-
tion. In addition, with the enzyme-constrained model, 8 reactions of histidine
pathway (R HIST) were selected to increase the akg production and, as found
also with GEM, GLUR reaction when the maximization of glu-D and γ-pga
production is considered. R HIST reactions describe the degradation process
of L-histidine and the corresponding production of L-glutamate.

3.4 Discussion

In this work, an enzyme-constrained model of B. subtilis was developed
with the aim to improve prediction power about the metabolic behaviour un-
der different conditions, without using the experimental uptake rate of the
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3. B. subtilis enzyme-constrained model

Figure 3.5: Central carbon and γ-PGA production pathways of B.
subtilis. The central carbon pathway that includes the pathway of glycolysis (blue and cyan arrows),

the pentose phosphate pathway (yellow arrows) and the TCA cycle (red arrows), and the pathway of γ-pga

synthesis (orange arrows) are represented. The target metabolites considered in this work are marked with

a green circle.
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carbon source, and facilitate the rational design process for its metabolic opti-
mization. In this context, for its advantageous characteristics, in both research
and industrial applications, B. subtilis is one of most engineered Gram-positive
bacteria as cell factory for commercially interesting products.
The principles proposed by GECKO method [59] were applied to the first
GEM published for B. subtilis [20], namely the maximum flux of reactions was
constrained by the product between the kcat value and the concentration of
enzyme. Since kcat measures are available for a small number of enzymes, we
focused on retrieving enzymatic data for the reactions of central carbon and
γ-PGA production pathway, and finally, 17 of these reactions were enzymati-
cally constrained into the iYO844 model.
Using the developed model to simulate the metabolic phenotype of B. subtilis,
under different genetic conditions, in terms of growth rate, flux distribution
through central carbon reactions and acetate secretion rate, we showed that
the integration of enzymatic data is essential to increase the prediction capabil-
ity of GEM, despite in this work the number of enzyme-constrained reactions
is limited. It decreases the prediction error from 0.47 to 0.27 for wild type,
and from 0.67 to 0.43 for five mutant strains considered in this study. In par-
ticular, a significant improvement was obtained for the prediction of acetate
production rate and of fluxes through the pentose phosphate pathway, which
using GEM are computed much lower than the experimental measures. For
mutant strains, since the specific protein abundance is not available, we used
the data of wild type changing only the concentration of enzyme associated
to the deleted reaction, fixed equal to zero, assuming that protein abundances
are not significantly perturbed by the single knockout. Alternatively, MO-
MENT, based on a less restrictive constraint for enzyme concentrations, was
implemented only for mutant strains. We showed that GECKO approach was
superior in terms of simulation accuracy, with a prediction error of 0.43, while
an error of 0.55 was obtained with the MOMENT approach. Moreover, 3
additional essential genes of central carbon pathway were properly identified
using the model developed by GECKO method, with a final gene essentiality
accuracy of 75%, higher than the percentage obtained with GEM (72%).
Finally, we presented the results obtained using B. subtilis enzyme-constrained
model on a specific metabolic engineering application. In particular, the knock-
out and amplification targets were identified to optimize the production of
γ-pga, a biopolymer with many useful proprieties. We showed that, AKGD
and SUCOAS reactions are predicted by the developed model as the best can-
didates for the deletion, in agreement with the results obtained with GEM.
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However, with the only deletion of AKGD reaction the enzyme-constrained
model is able to compute a production rate of target metabolite similar to the
performance achieved by the double deletion (AKGD+OXGCD/SSALy) pre-
dicted with GEM. In this way, the integration of enzymatic data prevents the
prediction of knockout for reactions with very low enzymatic activity (OXGCD
and SSALy) and therefore without significant impact. The inverse correlation
of γ-pga production with the SUCOAS and AKGD reactions was confirmed
by Yu et al. [130] in B. licheniformis. Whereas for the amplification tar-
gets, the integration of enzymatic data leads to identify as candidates new
reactions closely connected with the production of γ-pga, akg, glu-L and glu-D.
Experimental validations are required to specifically evaluate the power of new
model to identify the target manipulations for the optimization of a considered
metabolic capacity.
According to the result reported by Sánchez et al. [59], the predictions ob-
tained from the developed model largely rely on the assigned kcat values, which
are therefore essential to achieve good accuracy.
In general, since enzymatic information was integrated considering the central
carbon metabolism and γ-PGA production pathway, the improvement of pre-
diction performance in this pathway is consistent with our expectations; other
pathways, currently not improved, may benefit from the GECKO approach
once enzymatic information is available at genome scale.
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Chapter 4
Quantification of the gene
silencing performances of
rationally-designed synthetic
small RNAs1

Synthetic biology provides different techniques and tools for specific gene
expression control to achieve desired phenotypes of various bacteria. A tra-
ditional metabolic engineering strategy for the overproduction of the target
chemical consists in the inactivation of competing pathways. Experimentally,
gene deletion is commonly obtained via homologous recombination, that alters
the host cell’s genotype permanently. Despite the successful applications of this
gene deletion technique, a laborious procedure and a previous accurate study
of essential genes are required for the permanent inactivation, and, moreover,
multiple deletions are hard to be obtained simultaneously. Therefore, methods
to repress gene expression levels, without modification of genome sequences,
were developed.
In this chapter, small RNAs (sRNAs), tools for the silencing of target genes,
will be characterized in E. coli, also with the support of a mathematical model.
First, the three general categories of naturally occurring sRNAs will be intro-
duced and the previous studies and applications of artificial sRNAs will be
reported (Sec. 4.1). An accurate description of design and construction pro-

1The contents of this chapter are published in Massaiu I, Pasotti L, Casanova M, Politi
N, Zucca S, Cusella De Angelis MG and Magni P Systems and synthetic biology
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4. Quantification of the gene silencing performances of synthetic sRNAs

cesses implemented in this study and the mathematical model used for the
characterization will be presented (Sec. 4.2). The silencing performance of
the developed sRNAs, at different copy numbers, targeting the reporter gene
RFP, expressed at different transcription levels, under the control of different
promoters, in different strains, and in single-gene or operon architecture, will
be shown (Sec. 4.3). Moreover, in this section, the specific silencing of the
endogenous ldhA gene, encoding lactate dehydrogenase (LDH) involved in the
fermentation pathway of E. coli, will be described. Finally, the overall silenc-
ing capability of the two synthetic sRNAs, designed with recently proposed
guidelines, will be discussed in Sec. 4.4. Additional figures about the results
of evaluation study are reported in the App. A.
This study has been published in [131].

4.1 Introduction

Naturally occurring sRNAs are short non-coding RNAs, typically between
50-250 nucleotide long, able to control the expression of target genes in bacte-
ria, predominantly at the post-transcriptional level [132, 133, 134, 135]. Hun-
dreds of sRNAs have been identified in different bacteria so far, especially
in E. coli. These sRNAs can be sorted in three general categories: sRNAs
that have intrinsic catalytic activity or are components of ribonucleoproteins,
sRNAs that affect protein activity and sRNAs that regulate gene expression
by base-pairing to a target mRNA [133]. The third sRNAs category is the
best-characterized and the most abundant in Gram-negative bacteria. The
post-transcriptional control system of sRNAs belonging to the latter category
is based on a trans-acting mechanism, in which sRNAs bind to the 50 untrans-
lated region (50-UTR) or to the translation initiation region (TIR) of single
or multiple target messenger RNAs (mRNAs) through imperfect base-pairing
[136], although sRNA binding in regions downstream of the TIR have also been
reported [137]. The regulation of gene expression is carried out, upon binding,
by the modulation of translation or transcript stability [135, 138, 139, 140]. In
particular, specific sRNAs are known to change ribosome accessibility, mainly
repressing translation, although examples of positive regulation have also been
reported [141, 135]. Conversely, the final effect of other sRNAs is to change
the stability of the target mRNA, mainly by accelerating its degradation
[141, 135, 142]. Morita et al. [143] analyzed the repression effects of two
sRNAs, SgrS and RyhB, which experimentally showed to degrade their target
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transcript. By inhibiting the mRNA degradation machinery of the host strain,
the authors showed that SgrS and RyhB could act as translation inhibitors
without affecting transcript stability. This double final effect of the investi-
gated sRNAs, i.e., translation repression and mRNA degradation, could be
motivated by the necessity to rid the cell of translationally inactive mRNAs
[143]. A major class of sRNAs requires (or are strengthened by) the RNA
chaperone Hfq for efficient gene silencing [136, 141, 135].
In nature, sRNAs are involved in the regulation of disparate functions in bacte-
ria, such as stress response, outer membrane protein biogenesis, quorum sens-
ing, virulence, iron and sugar metabolism [141, 133]. Due to their importance,
several studies have been recently carried out to discover sRNAs, identify their
targets and characterize their regulation mechanisms, also with the help of
mathematical models. Among all the research investigations, high-throughput
analyses have been performed to search for novel sRNAs or specific targets
of known sRNAs by microarray studies [141, 138, 144] and, more recently,
by the sort-seq approach [135]. Reporter gene fusions with the initial part
of a target gene (including the 5’-UTR) have been adopted to quantitatively
study the contribution of sRNAs and their specificity [145]. Mathematical
models, generally studied at the steady-state, were developed to quantify the
effects of parameter changes, such as mRNA/sRNA levels and their half life
[142, 146]. Such kinetic models were able to capture the observed behaviour
of artificially-constructed systems where sRNA and mRNA levels were tuned
[142, 146]. Moreover, the proposed models are sufficiently general to describe
the contribution of sRNAs affecting translation and/or transcript degradation
[134]. One of these models was recently refined to investigate the effects of
ribosome binding site (RBS) strength on the RyhB, DsrB and OmrA sRNA
efficiency towards their target gene, whose expression was studied via gene
fusion and quantitative PCR [147]. Comparison between model simulations
and experimental data demonstrated that, in the context of the investigated
sRNAs, increasing translation rate can lead to increased repression [147].
Inspired by the features of natural control systems, sRNAs can also play an
important role in the design of synthetic biological systems. In metabolic
engineering studies, metabolic fluxes towards the target bioproduct can be op-
timized by the simultaneous expression of heterologous genes, over-expression
and down-regulation of endogenous genes. In this case, sRNAs can be used
to down-regulate the expression of the target genes involved in the desired
pathway. The use of an sRNA-based approach has several advantages over the
common gene knockout method: 1) sRNA expression plasmids, which actuate
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the silencing of target genes, can be incorporated in the host strain by simple
bacterial transformation and it makes sRNA systems highly portable to dif-
ferent hosts; 2) several combinations of sRNAs can be simultaneously tested
by co-transforming different expression plasmids or assembling multiple cas-
settes in the same vector; 3) a scalable, sRNA sequence-dependent, repression
efficiency can be obtained; 4) sRNAs can be used to down-regulate essential
genes, since sRNAs can be placed under the control of inducible promoters
[133].
It is worth noting that other post-transcriptional control systems, such as an-
tisense RNAs (asRNAs) also have many of the advantages described above
[148, 149]. However, asRNA-based systems are generally characterized by a
lower efficiency than sRNAs [133], although efforts have been recently carried
out to improve their activity [150].
Another recently proposed method for programmable silencing of gene expres-
sion in bacteria is CRISPR interference (CRISPRi). It uses an engineered
clustered regularly interspaced palindromic repeats (CRISPR) pathway, where
a customizable single guide RNA (sgRNA) forms a complex with a catalitically
inactive Cas9 protein (dCas9) that can bind DNA [151, 152]. Differently from
sRNAs, which act at post-transcriptional level, CRISPRi relies on transcrip-
tional regulation by steric block of promoter binding or transcription elongation
[151]. Activation of gene expression in bacteria has also been reported via this
method, upon dCas9 protein engineering [153]. The regulation mechanism of
CRISPRi is highly promising for genome-wide control of gene expression and it
is complementary to post-transcriptional regulation elements, like sRNAs and
asRNAs. CRISPRi is characterized by high expression modulation efficiency,
it has been shown to work in many species, and guidelines for sgRNA rational
design have been proposed [151, 152]; compared to post-transcriptional ele-
ment, an intrinsic drawback of CRISPRi is that the selective repression of an
individual gene in polycistronic transcript cannot be easily achieved [154].
Many bacterial genes are organized in operon architecture. The clustering
of genes in operons is an important context in E. coli and other prokary-
otic organisms, allowing to coordinately express proteins that are involved
in common processes, while greatly facilitating the ability to efficiently re-
spond to environmental changes. Because transcription and translation are
physically coupled in prokaryotes, operons provide a highly efficient method
of regulating the transfer of genetic information from DNA to protein [155].
Genes in polycistronic transcripts can be naturally targeted for repression
by sRNAs. Intuitively, the silencing mechanism is important when target-
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ing operon genes, since transcript degradation leads to the down-regulation
of all the operon genes, while translation repression can specifically target
individual genes within an operon. Specific E. coli operons were analyzed
in different works [156, 139, 144, 157]. The sdhCDAB operon, involved in
succinate metabolism, is targeted by the RyhB sRNA, which binds the tran-
script between the first and the second gene of the operon, resulting in mRNA
degradation [139, 144]. Conversely, the galETKM operon, involved in galac-
tose metabolism, is targeted by the Spot 42 sRNA, which binds the mRNA
upstream of the third gene of the operon (galK), but it does not result in tran-
script degradation. Only the galK gene is down-regulated by Spot 42, which
acts as a translator inhibitor [156]. Other, more complex, operon regulation
mechanisms have recently been reported. For example, the iscRSUA tran-
script, involved in the Fe-S clusters biosynthesis, is targeted for degradation
by the RyhB sRNA, but the first operon gene (iscR) is not down-regulated,
thanks to a strong repetitive extragenic palindromic secondary structure (be-
tween iscR and iscS) which may protect the gene against ribonucleases degra-
dation [157].
Motivated by the attractive features of sRNA-based control systems, after the
discovery of natural sRNAs in bacteria many efforts were carried out to design
synthetic sRNAs that can repress the desired target genes. Inspired by the
natural architecture of the discovered bacterial sRNA, the synthetic sRNA are
composed of two functional parts: a target-binding sequence and a scaffold
sequence [133, 158, 159]. The first part is a sequence complementary to the
TIR of its target mRNA, which specifically binds to the target and actuates
the gene silencing. The scaffold sequence recruits the RNA chaperone Hfq, a
highly abundant protein that facilitates the binding of the sRNA to the target
mRNA at a much faster rate than that of the binding of ribosomes [159].
However, owing to a lack of full understanding of the sRNA silencing mecha-
nism in prokaryotic, the first studies on synthetic sRNA design mainly focused
on random screening methods [133, 158]. Man et al. [133] developed a semi-
rational strategy for sRNA design based on the sequence of well-known trans-
encoded E. coli sRNAs.The target-binding sequence was complementary to the
5’-UTR of the target mRNA and then appropriately adjusted to have a sec-
ondary structure with least two stem loops. The Hfq-binding scaffold sequence
and the transcriptional terminator were extracted from a list of well-studied
endogenous sRNAs and randomly combined to the target-binding part. These
candidate sRNAs were finally filtered according to their secondary structure
and a shorter list of candidates was obtained. This method resulted in the de-
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sign of successful sRNAs, although out of the 16 initially selected candidates,
only two repressed the target gene expression by 70% or more.
Sharma et al. [158] developed a screening strategy that can identify synthetic
sRNAs capable of regulating endogenous genes. They constructed a large li-
brary of artificial sRNAs by fusing a randomized antisense domain to a scaffold
sequence from four natural sRNAs that interact with the Hfq protein. In or-
der to select the sRNA actually targeting the mRNA of interest, expression
plasmids including the random sRNA library were co-transformed with and
expression plasmid including a fluorescent reporter gene (GFP) fused with the
5’ leader sequence of the mRNA of interest. Fluorescence detection by visual
inspection of transformation plates identified the colonies containing the de-
sired sRNAs. The described method enabled the obtainment of sRNAs that
repressed the ompF target gene by 45- to 145-fold, but the approach required
the screening of a large number of clones (>105) and was characterized by a
low probability to find a clone where fluorescence was repressed (0.03%).
Guidelines for the rational design of customized sRNA were recently proposed
by Na et al. [159]. The authors used reporter genes to test different features
of sRNA expression systems, by investigating the repression capability as a
function of different scaffold sequences, hybridization energy, binding position
of sRNA within the transcript and target-binding sequence length. From their
investigations, they selected the MicC [145, 160] sequence as the best scaffold
among four candidates, 24 nucleotides as the optimal length of target-binding
sequence and an hybridization energy lower than -20 kcal/mol. In their work,
the proposed guidelines were successfully applied to metabolic engineering,
demonstrating that complex pathways can be optimized via large libraries of
rationally designed sRNAs and such strategy can be easily adopted to search
the best producer among a collection of candidate E. coli strains.
The aim of this work is to quantitatively evaluate the performance of synthetic
sRNAs designed with guidelines proposed by Na and colleagues. We designed
the sRFP silencer, which represses the expression of reporter target gene RFP,
encoding the Red Fluorescent Protein, to evaluate its performance on differ-
ent ad-hoc constructed model systems, in two E. coli strains, as a function
of sRNA and mRNA levels, also with the help of mathematical modelling for
data interpretation. Since the operon context has never been quantitatively
tested before using rationally designed sRNAs [161], in this work we studied
the down-regulation of a target gene in a synthetic operon. Finally, we present
data on the silencing of an endogenous gene, ldhA, which has a crucial role in
the fermentation pathway of E. coli and in metabolic engineering studies, by
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means of another rationally designed sRNA. The quantitative study performed
in this work elucidated interesting performance-related and context-dependent
features of synthetic sRNAs that have never been investigated before. The
obtained results and data will strongly support predictable gene silencing in
disparate basic or applied research studies via novel designed sRNAs.

4.2 Materials and methods

4.2.1 Strains and plasmids

The E. coli TOP10 (Invitrogen) strain was used for cloning. The TOP10
and W (ATCC 9637; [162]) strains were used for quantitative experiments.
We designed the sRFP, sLDH, sACK, sFRD and sPFL synthetic sRNAs, tar-
geting the RFP, ldhA, ackA, frdA and pflB genes, respectively, according to
the guidelines proposed by [159]. The target-binding sequence was designed
as the reverse complement of the first 24 bp of the coding sequence included
in the target mRNA. The hybridization energy of the target-binding sequence
was computed via the UNAfold web server ([163]; [164]), to verify that it was
lower than -20 kcal/mol. The MicC scaffold sequence was included down-
stream of the target-binding sequence to obtain the final sRNA. This sRNA
sequence is placed between the strong promoter PR upstream and the T1/TE
transcriptional terminator downstream. The genomic sequences of the DH10B
(NC 010473.1), closely related to TOP10 and with the same genotype, and the
W (NC 017664.1) strains in the NCBI database were used to retrieve the ldhA,
ackA, frdA and pflB gene sequences. All the genes had identical nucleotides
in the initial 24 bp of their coding sequences between the two strains. The se-
quence of the RFP gene was retrieved from the BBa E1010 entry in the MIT
Registry of Standard Biological Parts (Registry) ([65]; [61]).
The sRNA expression cassettes were de-novo synthesized by the GenScript
gene synthesis service (Piscataway, NJ, USA). They were designed with the
standard Bio-Brick�prefix upstream and suffix downstream [61] to facilitate
their transfer in different plasmid vectors. These cassettes were delivered in
the pUC57-Simple shipping vector and they were subsequently transferred,
upon EcoRI/PstI digestion, both into the pSB3K3 and into the pSB1A2 Bio-
Brick�vectors [165].
All the other parts were either physically retrieved from the Registry DNA Dis-
tribution 2008-2011 or assembled in this study from existing BioBrick�parts,
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by using the BioBrick�Standard Assembly procedure [61].
All the strains were grown in 5 ml of L-broth (LB; [166]) at 37 ◦C, 220 rpm.
When required, ampicillin (100 mg/l), kanamycin (20 mg/l) and chloram-
phenicol (12.5 mg/l) were added to cultures to maintain plasmids. Long-
term glycerol stocks, stored at -80 ◦C, were prepared for all the recombinant
strains by mixing 750 µl of bacterial culture and 250 µl of sterile 80% glyc-
erol. Plasmids were extracted from overnight cultures through the NucleoSpin
Plasmid kit (Macherey-Nagel). DNA was digested as appropriate, with the
EcoRI/XbaI/SpeI/PstI enzymes, and the fragments of interest were extracted
from 1% agarose gel by NucleoSpin Extract II kit (Macherey-Nagel) before pro-
ceeding with ligation. DNA-modifying enzymes were purchased from Roche
Diagnostics and used according to manufacturer’s instructions.
We constructed model systems to quantitatively evaluate the performance
and the specificity of the synthetic sRNAs (see Fig. 4.1). In particular,
these systems include synthetic circuits expressing RFP and/or GFP in sin-
gle gene or operon, which are driven by promoters and RBSs with different
strength. All these constructs were placed in the pSB4C5 low-copy plasmid
and they were co-transformed with an sRNA expression cassette, placed in the
pSB3K3, pSB1A2 or pUC57-Simple plasmid. This expression systems design
allows to study genes transcribed/translated at different levels (through pro-
moter/RBS/inducer concentration changes) in combination with sRNAs ex-
pressed at different levels (through plasmid copy number changes). A similar
experimental design, including a two-plasmid expression system for reporter
gene and silencer, respectively, has been used by Levine et al. [142] and Lavi-
Itzkovitz et al. [147] to characterize the effects of transcription, translation and
RNA degradation parameters change. We use copy number change to tune the
sRNA level in order to reproduce the same expression system design proposed
by Na et al. [159], which proved to be successful as sRNA production cassette.
The J101-R (Fig. 4.1A) and J101-R32 (Fig. 4.1B) constructs have the same
constitutive promoter (BBa J23101) upstream of RFP, but different RBSs (the
BBa B0034 RBS is stronger than BBa B0032 when placed upstream of RFP;
[167]). The Plux-R (Fig. 4.1C) circuit contains RFP driven by the Plux in-
ducible promoter. Plux in the induced state is about eightfold stronger than
BBa J23101 [168]. These circuits allow to characterize RFP silencing as a
function of mRNA level (J101-R and Plux-R constructs) and RBS strength
(J101-R and J101-R32 constructs).
We studied the unspecific silencing by comparing the output of the Plux-R and
Plux-G (Fig. 4.1D) circuits, where the latter includes an inducible expression

68



4.2. Materials and methods

Figure 4.1: Synthetic circuits used in this study. The BioBrick�codes
are reported in brackets and can be found in the Registry of
Standard Biological Parts with their nucleotide sequences. A) J101-

R (BBa J107029): single-gene cassette for the expression of RFP driven by the constitutive BBa J23101

promoter, with the BBa B0034 RBS upstream of the RFP coding sequence. B) J101-R32 (BBa K516132):

single-gene cassette for the expression of RFP driven by the constitutive BBa J23101 promoter, with the

BBa B0032 RBS upstream of the RFP coding sequence. C) Plux-R (BBa J107032): single-gene cassette

for the expression of RFP driven by the inducible Plux promoter, with the BBa B0034 RBS upstream

of the RFP coding sequence. D) Plux-G (BBa T9002): single-gene cassette for the expression of GFP

driven by the Plux promoter, with the BBa B0032 RBS upstream of the GFP coding sequence. E) Plux-RG

(BBa J107042): RFP-GFP operon driven by the Plux promoter, with the BBa B0034 and BBa B0032 RBSs

upstream of RFP and GFP, respectively. F) Plux-GR (BBa J107043): GFP-RFP operon driven by the Plux

promoter, with the BBa B0032 and BBa B0034 RBSs upstream of GFP and RFP, respectively. G) Plux-

RG30 (BBa J107044): RFP-GFP operon driven by the Plux promoter, with the BBa B0034 and BBa B0030

RBSs upstream of RFP and GFP, respectively. H) Plux-G30R (BBa J107045): GFP-RFP operon driven by

the Plux promoter, with the BBa B0030 and BBa B0034 RBSs upstream of GFP and RFP, respectively. All

the described constructs are present in the pSB4C5 low-copy vector. Curved arrows represent promoters,

ovals represent RBSs, straight arrows represent genes and hexagons represent transcriptional terminators.

RBS34, RBS32 and RBS30 are the BBa B0034, BBa B0032 and BBa B0030 BioBrick�RBSs.
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cassette for GFP, which is not targeted by the designed sRNAs. We also stud-
ied unspecific silencing by characterizing the output of the above constructs in
presence of sLDH, sACK, sFRD or sPFL, which do not target RFP and GFP.
The RFP-GFP and GFP-RFP operons (circuits Plux-RG, Plux-GR, Plux-
RG30 and Plux-G30R, see Fig. 4.1E-H) allow the study of the specific and
unspecific gene silencing in polycistronic mRNA by red and green fluorescence
quantification. The RFP and GFP genes of these circuits are in different po-
sitions and the GFP gene is placed under two different RBSs (the BBa B0030
RBS is stronger than BBa B0032 when placed upstream of GFP).
Transformation was carried out in TOP10 and W by heat shock at 42 ◦C.
Both the ampicillin-resistant high-copy plasmids pSB1A2 and pUC57-Simple
have a ColE1-based replication origin, but it has a single nucleotide mismatch
(according to their sequence in the Registry and in the provided GenScript
document, respectively), which could contribute to a different copy number.
Finally, the pSB3K3 plasmid has a p15A replication origin and the pSB4C5
plasmid has a pSC101 origin [165].

4.2.2 Fluorescence assays

Recombinant strains were grown in 2-ml tubes at 37 ◦C, 220 rpm for 16-20
h in 0.5 ml of M9 supplemented medium (11.28 g/l M9 salts-M6030, Sigma
Aldrich, 2 mM MgSO4, 0.1 mM CaCl2, 2 g/l casamino acids, 1 mM thi-
amine hydrochloride and 4 ml/l glycerol; [166]) with antibiotics as required,
inoculated with a single colony from a streaked selective LB-agar plate (at
least 3 independent biological replicates were carried out for each recombinant
strain). The grown cultures were 100-fold diluted in 200 µl of M9 in a 96-well
microplate. When required, 2 µl of the N-3-oxohexanoyl-L-homoserine lactone
(HSL) inducer (K3007, Sigma Aldrich) were added to reach the desired final
concentration. Unless differently indicated, 100 nM of HSL were used to induce
the Plux promoter. The microplate was incubated at 37 ◦C in the Infinte F200
reader (Tecan) and the following kinetic cycle, programmed via the i-control
software (Tecan), was carried out: linear shaking 15 s (amplitude 3 mm), wait
5 s, absorbance measurement (600 nm), fluorescence measurement (excitation
485 nm, emission 540 nm for GFP; excitation 535 nm, emission 620 nm for
RFP, gain of 50 or 80), sampling time 5 min [167, 169].
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4.2.3 Data analysis for fluorescence assays

Matlab R2010a (MathWorks) and Microsoft Excel were used to analyze
the absorbance and fluorescence time series to obtain doubling time and av-
erage RFP or GFP synthesis rate per cell (Scell; [170, 171]). Scell is expressed
in arbitrary units (AU), proportional to the average per-cell protein synthesis
rate. In each experiment, the absorbance of M9 without bacteria (background
absorbance) and the fluorescence of the TOP10 and W strains without re-
porter genes (background fluorescence) were measured. The background ab-
sorbance time series was subtracted from the absorbance of each culture of
interest to obtain a time series (OD600) proportional to bacterial cell density
(see Fig. A.1A-B; [170, 171]). Similarly, the RFP fluorescence background
(which is not characterized by a relevant OD600-dependent autofluorescence,
see Fig. A.1B-C) time series was substracted from the raw RFP fluorescence
of each culture to yield a time series proportional to the total RFP proteins
in the microplate well. Since GFP shows a relevant OD600-dependent aut-
ofluorescence (see Fig. A.1D), a different background subtraction procedure
was carried out: a standard curve was obtained by fitting GFP background
fluorescence against OD600 via linear regression for each of the two strains
(see Fig. A.1E; [172]); the fitted standard curve was used to subtract GFP
background fluorescence from the raw GFP fluorescence of each culture at the
same OD600, yielding a time series proportional to the total GFP proteins in
the microplate well [172]. Raw and background-subtracted absorbance and
fluorescence data are shown in Fig. A.1F-I (for RFP-expressing cultures) and
in Fig. A.1K-N (for GFP-expressing cultures). The slope of the ln(OD600) time
series in the OD600 range 0.05-0.18 (exponential growth phase) was computed,
via linear regression, to calculate the cell growth rate. Doubling time was com-
puted as ln(2) divided by the slope. A signal proportional to the RFP or GFP
synthesis rate per cell was computed as the numerictime derivative of RFP or
GFP time series, divided by OD600 (see Fig. A.1J and O for representative
data of RFP- and GFP-expressing cultures, respectively). This signal was av-
eraged over the exponential growth phase and the obtained value was divided
by the average synthesis rate per cell of a reference culture expressing RFP
or GFP, to compute Scell. RFP and GFP reference cultures were recombinant
strains (TOP10 or W) bearing an RFP (BBa I13507) and a GFP (BBa E0240)
expression system under the control of the constitutive BBa J23101 promoter,
in pSB4C5. The silencing capability (Eff%) for a given gene in each of the
above illustrated constructs was computed as reported in Eq. 4.1.
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Eff% = 100 ∗
(

1− Scell with silencer

Scell without silencer

)
(4.1)

However, in case Scell with silencer was higher than without silencer, Eff% was
set to zero. Assuming that pSB4C5 is present at 5 copies per cell, the per-cell
copy numbers of pSB3K3, pSB1A2 and pUC57-Simple in the TOP10 and W
strains were estimated as reported in Eqs. 4.2, 4.3, 4.4 [173, 168].

Copy number pSB3K3 =

(
5

Scell4C5

)
∗ Scell3K3

(4.2)

Copy number pSB1A2 =

(
5

Scell4C5

)
∗ Scell1A2

(4.3)

Copy number pUC57Simple =

(
5

Scell4C5

)
∗ ScellpUC

(4.4)

where Scell4C5
, Scell3K3

, Scell1A2
and Scell values of cultures bearing the J101-R

construct (Fig. 4.1A) in the pSB4C5, pSB3K3, pSB1A2 and pUC57-Simple
vectors, respectively, assuming that no metabolic overload affects cells at the
highest copy numbers [168].

4.2.4 Lactate dehydrogenase assay

The activity of lactate dehydrogenase (LdhA) was determined by a spe-
cific enzymatic assay. LdhA catalyzes the conversion of pyruvate and NADH
to lactate and NAD+, respectively. The decrease of NADH concentration is
measured by absorbance (340 nm) in order to compute the reaction rate, which
is proportional to the enzyme concentration in the sample [174].
2 ml of LB with 100 mM phosphate buffer and 40 g/l of glucose were inocu-
lated with 5 µl of recombinant bacteria from a glycerol stock and incubated at
37 ◦C, 220 rpm for 16-20 h. The grown cultures were 100-fold diluted in 9 ml
of the same medium and incubated as before for 4 h. One ml of sample was
taken, centrifuged at 13,000 rpm for 1 min and the supernatant was removed.
The bacterial pellet was resuspended with 1 ml of Tris-HCl 100 mM pH 7.3,
the vial was centrifuged and the supernatant discarded as before. The CelLytic
B (Sigma Aldrich) lysis buffer, supplemented with protease inhibitor cocktail,
was used to resuspend the pellet, and the vial was incubated at room temper-
ature for 10 min under slow shaking conditions. Cell debris were separated by
centrifugation (13,000 rpm, 5 min). 20 µl of supernatant, which includes the
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intracellular content, were transferred into the well of a microplate and mixed
with 180 ll of a solution containing Tris-HCl pH 7.3 100 mM, NADH 0.4 mM
and sodium pyruvate 10 mM. The 96-well microplate was incubated at 25 ◦C
in the Infinite F200 reader and absorbance (340 nm) was read every 5 min.
The enzymatic activity of the sample in the well was computed by linear re-
gression of the absorbance time series. Since this activity depends from cell
lysis efficiency and initial amount of cells in the sample, we computed the spe-
cific enzymatic activity by dividing the enzymatic activity of the sample by the
milligrams of total proteins extracted during lysis, quantified with the Micro
BCA Protein Assay Kit (Thermo Scientific). The specific activity of all the
bacterial cultures analyzed is divided by the wild type activity.

4.2.5 Statistical tests

Statistical analysis was performed on Scell values via the Kruskal-Wallis
(KW) nonparametric test to evaluate the statistical significance of repression
in the assayed conditions. When the KW test detects at least a significantly
different Scell value (p value <0.05) among groups, the least significant differ-
ence (LSD) method was used to evaluate the significantly different conditions
by multiple comparisons. We implemented the test by the kruskalwallis Mat-
lab function. In such multiple comparisons, we focused on the significance of
silencing (specific or non-specific) of each condition compared to the recom-
binant strain without sRNA. For this reason, we only evaluated the contexts
where Scell was lower than the reference context, by one-sided test. An analo-
gous procedure was used to analyze the statistical significance of specific LdhA
enzymatic activity among the tested contexts.

4.2.6 Mathematical modelling

The kinetic model of Eqs. 4.5, 4.6, 4.7, 4.8, 4.9 was considered [142, 146,
175, 170] and a summary of species and parameters is reported in Table 4.1.

dm

dt
= αm − βm ·m− k+ · s ·m+ k− · c (4.5)

ds

dt
= αs − βs ·m− k+ · s ·m+ k− · c (4.6)

dc

dt
= k+ · s ·m+ k− · c− βc · c (4.7)
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di

dt
= ρ ·m− (z + µ) · i (4.8)

dr

dt
= z · i− µ · r (4.9)

The equations above describe the transcription process of the target mRNA
(m) and of the sRNA (s), assuming constant transcription rates (αm and αs,
respectively) and linear degradation rates (βm and βs, respectively). The c
state variable represents the mRNA-sRNA complex, which is formed upon m
and s interaction with kinetic constant k+; the complex releases m and s with
kinetic constant k− and its degradation rate is linear βc. The immature (i.e.,
non-fluorescent; [170]) protein (i) synthesis process is described by a linear
production term (ρ · m, where ρ is the translation rate per mRNA unit) and
a linear extinction rate (z + µ, where z is the maturation rate to yield the
fluorescent form, and µ is the cell growth rate which represents the protein
dilution due to cell division). The last equation describes protein maturation,
to yield the fluorescent form r of the reporter protein. The described model
assumes that RNA degradation rate is much faster than cell growth rate, while
protein degradation rate is negligible and cell division is the only responsible
of the intracellular protein extinction rate.
Considering the steady-state of the system, Scell = q · z · i (where the bar
indicates the steady-state) is the experimentally observable variable [175, 176],
already defined above, where q represents the unit conversion constant between
the actual protein synthesis rate per cell and the Scell values (in AU) obtained
in the experiments described above. Scell is also proportional to the steady-
state mRNA level: Scell = b · m, where b = q·z·ρ

z+µ
.

The solution of the system, which is Scell, can be analytically computed as
[142]:

Scell =
1

2
·
(
a− as − aλ +

√
(as + aλ − a)2 + 4 · a · aλ

)
(4.10)

This equation describes the Scell value of an RFP expression system in pres-
ence of the sRFP silencer. In this equation, a = b·αm

βm
is proportional to the

transcription rate of the target mRNA and it is identical to the Scell value in
absence of sRNA, as = b·αs

βm
is proportional to the transcription rate of sRNA,

and aλ = b·λ
βm

, where λ = βm·βs
k

has been previously defined as the leakage rate

(since its value affects the threshold-linear response of the target mRNA, as a
function of its transcription rate for a given sRNA level value; [142]) and k =
βc·k+
k−+βc

.
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Species or
parameter

Description Units

m mRNA per-cell level Molecules

s sRNA per-cell level Molecules

c mRNA-sRNA complex per-cell level Molecules

i Immature reporter protein per-cell level Molecules

r Mature reporter protein per-cell level Molecules

αm mRNA transcription rate per cell Molecules time−1

αs sRNA transcription rate per cell Molecules time−1

βm mRNA degradation rate time−1

βs sRNA degradation rate time−1

k+
Kinetic constant for mRNA and sRNA

association to form the mRNA-sRNA complex
Molecules−1 time−1

k−
Kinetic constant for mRNA-sRNA complex

dissociation
time−1

βc mRNA-sRNA complex degradation rate time−1

ρ Protein translation rate per RNA unit per cell time−1

z Protein maturation rate time−1

µ Cell growth rate time−1

Table 4.1: Description of kinetic model species and parameters. Param-

eters refer to the ordinary differential equation model (Eqs. 4.5, 4.6, 4.7, 4.7, 4.8, 4.9).
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The analytical solution of the model allows to study the Scell output value,
at the steady-state, of systems including a target gene (RFP) and a specific
sRNA (sRFP) for different RFP (a) and sRFP levels (as). In this study, the
RFP level is tuned by inducing the Plux promoter upstream of the RFP gene
through different HSL concentrations (with the Plux-R construct), while the
sRFP level is tuned by changing the copy number of the plasmid containing
the sRNA expression cassette. Equation 4.10 was used to fit experimental
data (Scell value in the non-repressed condition in the x-axis, Scell value in the
repressed conditions tested in the y-axis, for different HSL concentrations) via
the lsqnonlin Matlab routine. A different as parameter value was estimated
for each sRNA level tested, while a single ak parameter value for all the sRNA
levels was estimated, as described in [142].

4.3 Results

4.3.1 RFP silencing in a single-gene cassette

The constructs with reporter target gene RFP driven by the Plux inducible
promoter (Plux-R, Figure 4.1C) were tested, both in the TOP10 and W strains,
in presence of no silencer and the sRFP silencer in medium-copy (pSB3K3 vec-
tor) and high-copy (pSB1A2 and pUC57-Simple vectors) contexts. The RFP
synthesis rate per cell was measured as systems output that reflects gene si-
lencing. Such tests allowed the study of specific silencing as a function of
intracellular concentration of sRNA, which is regulated by changing the intra-
cellular copy number of the sRNA expression system.
Results, reported in Fig. 4.2A, show that the sRFP silencer works as expected
in both strains, since RFP is repressed only in presence of its silencer. Sta-
tistical analysis of the Scell values showed a significant difference between the
condition with the silencer and the condition without the silencer, in both
strains and in all conditions (p-value<0.05, Kruskal-Wallis and multiple com-
parisons). Figure 4.2A shows that the silencer represses RFP by up to 92% in
TOP10 and 68% in the W strain. Repression values were systematically higher
in TOP10 than in W, with sRFP in medium-copy giving the lowest Eff% value
and the pUC context giving the highest value, for a given strain. Doubling
times were similar among the tested conditions for each of the two strains (see
Fig. A.2A).
The per-cell copy numbers of pSB3K3, pSB1A2 and pUC57-Simple in the
TOP10 and W strains were estimated to investigate the difference of repres-
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Vector Replication
origin

Copy number in
TOP10 strain

Copy number in
W stain

pSB4C5 pSC101 5 (fixed) 5 (fixed)

pSB3K3 p15A 26 12

pSB1A2 Mutated pMB1 39 16

pUC57-Simple Mutated pMB1 52 28

Table 4.2: Estimated copy numbers for the pSB4C5 lowcopy (from
the literature), pSB3K3 medium-copy, pSB1A2 and pUC57-Simple
high-copy vectors. Both high-copy replication origins are noted as ”Mutated pMB1”, but their

sequences are different in a single nucleotide mismatch, therefore they can be considered as different origins,

since they can be characterized by a quantitatively different copy number.

sion values between strains and among the conditions of a given strain. Results
are shown in Table 4.2.
The obtained copy number values for TOP10 strain are comparable to the
values of the literature for similar laboratory strains [173, 177], whereas for
the W strain data are not available. Copy numbers are systematically higher
in the TOP10 strain than in the W strain. Such copy number values are
highly correlated with the RFP repression efficiencies in the tested conditions
with a Pearson correlation coefficient of 0.98. These results suggest that the
silencer copy number is the main responsible of the repression efficiency vari-
ation among the tested sRFP plasmid contexts and strains. To evaluate if
the obtained repression efficiencies were actually due to the specific action of
sRFP, we studied the effect of different unspecific silencers on the target genes
RFP and GFP driven by the Plux inducible promoter (Plux-R and Plux-G,
Figure 4.1C-D), both in TOP10 and W. In particular, RFP or GFP repression
was tested in presence of: 1) no silencer, 2) the highest-copy number vector
without expression cassettes (pUC-RING), and 3) a set of silencers (sLDH,
sACK, sFRD and sPFL, see section 4.2), in different copy numbers, designed
to target specific genes involved in the E. coli fermentation pathway.
Results (Figure 4.2B) showed that unspecific silencers have a low repression
capability towards both the RFP and GFP gene. In particular, the highest
unspecific repression values of RFP (31% in the TOP10 strain and 26% in
the W strain) were obtained when sRNA expression systems are in the high
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Figure 4.2: Silencing results for RFP or GFP expressed by a single-
gene cassette driven by Plux (Plux-R or Plux-G). A) Specific silencing of the

target gene (RFP) via sRFP in TOP10 and W. B) Unspecific silencing of RFP or GFP via different sRNAs in

TOP10 and W. Red and green bars correspond to RFP and GFP, respectively. Bars represent the mean Scell

value computed on at least three biological replicates. Error bars represent the 95% confidence intervals of

the mean value. Asterisks indicate that the Scell value in the condition is statistically different from the Scell

of the expression cassette without sRNA (Plux-R and Plux-G conditions for RFP and GFP, respectively).

Percentages represent the Eff% values.

copy number pUC57-Simple vector. On the other hand, the highest repression
values observed for GFP were 35% for the TOP10 strain (sRFP silencer in
the pUC57-Simple vector) and 21% for the W strain (sRFP silencer in the
pSB1A2 vector). In general, the entity of the observed unspecific repressions
is lower than the specific silencing percent values obtained above (compare
Figure 4.2A and Figure 4.2B) and the highest values corresponded to condi-
tions where silencer is placed in a high copy plasmid. The doubling times
of the recombinant strains in the illustrated conditions did not significantly
correlate with unspecific repression values (see Fig. A.2B) and are similar to
the ones shown above for specific silencing (Fig. A.2A). Statistical analysis of
the unspecific silencing data showed that no significant difference between the
condition without sRNA and the conditions with plasmid-borne sRNA occurs.

78



4.3. Results

Figure 4.3: RFP silencing as a function of target mRNA and sRNA
levels in TOP10 with the Plux-R construct. Data points represent average Scell

values in presence of sRFP in three different copy number conditions (corresponding to three different sRFP

levels), as a function of a, corresponding to the average Scell in absence of sRFP that is proportional to the

mRNA level. Lines represent model fitting. Estimated parameters are reported in Table 4.3. Average Scell

values are computed on at least three biological replicates.

4.3.2 Model-based characterization of RFP silencing

A mathematical model, previously developed to describe silencing efficiency
as a function of sRNA and mRNA levels, was used to support the character-
ization of the sRFP-dependent RFP gene repression. The sRFP level and
the RFP transcript level were varied by means of plasmid copy number (as
in previous section) and by tuning the Plux promoter transcriptional activity,
respectively. The resulting data are shown in Figure 4.3 and they were fitted
with the steady-state solution of the kinetic model (Equation 4.10). The fitted
curves showed that the model was able to describe RFP silencing according to
different sRNA/mRNA levels, with the trend reported previously [142]. The
estimated model parameters are reported in Table 4.3. The as parameters, cor-
responding to the sRNA levels for each of the three copy number conditions,
were consistent with the estimated plasmid copy number reported in the previ-
ous section (see Table 4.2): the estimated as value in the pSB1A2 context was
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Parameter Description Estimated value (AU)

aλ Leakage rate 1.0198

as−3K3
Transcription rate of sRNA placed in the

high-copy vector (pSB3K3)
7.2256

as−1A2
Transcription rate of sRNA placed in the

high-copy vector (pSB1A2)
11.8460

as−pUC
Transcription rate of sRNA placed in the

high-copy vector (pUC-Simple)
33.1899

Table 4.3: Definitions and estimated values of model parameters. Pa-

rameters refer to the analytical solution of the model (Eq. 4.10).

1.6-fold higher than in the pSB3K3 context, consistent with the data of Table
4.2 where a 1.5-fold variation is observed. The estimated as value in the pUC
context was higher than the values of the two other plasmids, as expected, but
it was 2.8- and 4.6-fold higher than as in pSB1A2 and pSB3K3, while data of
Table 4.2 showed a smaller fold-change (1.3 and 2, respectively). This could be
due to saturation phenomena in the measurement of the copy number through
RFP; in fact, protein expression may not change in a linear fashion at high
per-cell copy numbers and measured values can be underestimated [168].
The obtained as and aλ parameter units depend on our acquisition system
(see section 4.2) and for this reason they are not immediately comparable with
published values. In order to enable such comparisons, we computed the αs
(per DNA copy) and k values in absolute units as RNAmolecules

s
and 1

nM ·min ,
respectively. We considered the as value in the medium copy context (αs =
65) and we assumed: a transcriptional activity of 0.03 RNAmolecules

s
per DNA

copy for a = 1 (corresponding to the activity of the BBa J23101 promoter;
[170]), plasmid copy numbers of 5 for pSB4C5 and 26 for pSB3K3, an E. coli
cell volume of 1 µm3 [106], and a half-life of 6.8 min [178] for both mRNA and
sRNA molecules.
We found an sRNA transcription rate of about 0.042 RNAmolecules

s
, which is

consistent with the activity of the PR promoter, previously found to have an
about 2.5-fold higher activity than the BBa J23101 promoter [167]. We found
a k value of 0.0007 1

nM ·min , which is about 30-fold lower than typical k values
found in literature for naturally occurring regulatoryRNAs (0.02 1

nM ·min ; [142].
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This result highlights that, under the hypotheses above, the sRNA designed in
this work following the guidelines of [159] resulted to be functional but with a
lower binding rate, k, than observed in nature, thus showing a lower repression
efficiency [142].

4.3.3 RFP silencing in different expression systems

While the previous sections focused on RFP repression when produced
by a Plux-driven expression system, here we considered a different expression
cassette for RFP, which is driven by the constitutive BBa J23101 promoter
(J101-R construct of Fig. 4.1A). As above, the sRFP-mediated silencing was
tested in TOP10 and W in different copy number contexts and the RFP ex-
pression system was kept in a low-copy plasmid. Results, shown in Fig. 4.4A,
were consistent with the ones obtained for the Plux-driven cassette (see Fig.
4.2A): silencing efficiencies were copy number- and strain-dependent, with sys-
tematically higher repression for TOP10 than W. Again, repression efficiencies
were highly correlated with the estimated copy numbers of Table 4.2 (Pearson
correlation coefficient of 0.96). Statistical analysis showed that RFP repres-
sion in most of the conditions with the sRFP silencer was significantly different
from the sRNA-free condition. In principle, the tested condition is equivalent
to setting the target mRNA to 1 (i.e., the Scell value of the J101-R construct)
in the mathematical model, while leaving all the other parameters unchanged,
since mRNA and sRNA sequences were the same, and the tested copy number
context and strains were identical. However, according to the prediction of the
described mathematical model (i.e., the Scell values of the silenced systems
as a function of mRNA level and for three different sRNA levels), reported
in Fig. 4.3, higher repression efficiencies were expected for this mRNA level
(see Fig. 4.4B). The observed differences could be due to the slightly different
mRNA sequences between the BBa J23101- and the Plux-driven expression
cassettes; in fact, the transcription start site (TSS) of the two promoters is
different [179, 180]. For this reason, the mRNA sequence of the BBa J23101-
driven mRNA has the ACTAGAG sequence upstream of the BBa B0034 RBS,
while the corresponding sequence for Plux has 4 additional nucleotides and
it is AAATACTAGAG. Despite this structural difference, the local secondary
structure free energy was predicted to be the same between the two sequences
and the reasons determining the unexpected difference are unclear. Free en-
ergy was computed as described in [180], by analyzing the entire 50-UTR and
30 nucleotides of the RFP coding sequence, via the UNAfold web server [164].
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Figure 4.4: Silencing results for RFP expressed by a single-gene cas-
sette driven by BBa J23101 (J101-R). A) Specific silencing of the target gene (RFP)

via the specific silencing device (sRFP) in TOP10 and W. B) Experimental Scell results and values predicted

by the mathematical model in the different copy number conditions of sRFP in TOP10. Bars represent the

mean Scell value computed on at least three biological replicates. Error bars represent the 95% confidence

intervals of the mean value. Asterisks indicate that the Scell value in the condition is statistically different

from the Scell of the expression cassette without sRNA (J101-R). Percentages represent the Eff% values.
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Doubling times for the conditions tested above are reported in Fig. A.3 and are
consistent with the ones obtained for the other tested systems (see Fig. A.2A
and Fig. A.2B).
A similar RFP expression system (J101-R32 construct of Fig. 4.1B), which
has the BBa B0032 RBS upstream of RFP instead of the stronger BBa B0034
RBS, was tested in the TOP10 strain. Results (see Fig. A.4) demonstrated
that sRFP was also functional in a different RBS context and the quantita-
tive repression values were similar to the ones obtained with J101-R. Since the
RBS sequence has been recently shown to exert a complex effect, the tested
context of J101-R32 could not be used to draw strong conclusions on the RBS-
dependent functioning of rationally designed sRNAs and further investigations
are needed.
The obtained results showed that an sRNA designed with the guidelines of
[159] can work in several contexts (different promoters and RBSs for the tar-
get gene, and different strains), with qualitatively expected strain and copy
number dependence, although the precise repression values could not be pre-
dicted, thus highlighting the need for additional studies and the importance of
evaluating sRNA efficiency on different measurement constructs.

4.3.4 Silencing of a target gene in a synthetic operon

We used synthetic two-gene operons, including RFP and GFP under the
control of the Plux promoter, to complete the characterization of the sRFP
silencer. Specifically, the repression capability of the sRNA designed in this
work was evaluated when targeting a specific gene present in a polycistronic
transcript. The Plux-RG and Plux-GR constructs (Fig. 4.1E, 4.1F), in a
low-copy plasmid, were used as model systems in the TOP10 and W strains,
and the sRFP expression system, in pSB3K3, pSB1A2 or pUC57-Simple, was
co-transformed. Red and green fluorescence signals were simultaneously quan-
tified to study the protein synthesis rate for the target and non-target gene,
respectively. The fluorescence acquisition system used in this study was pre-
viously characterized and a negligible crosstalk was found to occur between
the red and green fluorescence signals [167]. Considering the TOP10 strain, as
observed for single-gene cassettes, RFP repression correctly worked (although
statistical differences were detected only for the pSB1A2 and pUC57-Simple
contexts in both operon systems) and it was dependent on the copy number
of the specific sRNA (see Fig. 4.5A). Such experiments showed that RFP
repression occurred when the RFP target gene was present as both the first
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Figure 4.5: Silencing results for RFP and GFP expressed by the Plux-
RG and Plux-GR synthetic operons in the TOP10 strain. A) Silencing of

the target gene (RFP) and the non-target gene (GFP) via the silencing device sRFP. B) Unspecific silencing

of RFP and GFP, in the Plux-GR construct, via different sRNAs. Bars represent the mean Scell value

computed on at least three biological replicates. Error bars represent the 95% confidence intervals of the

mean value. Asterisks indicate that the Scell value of RFP or GFP in the condition is statistically different

from the Scell of the operon without sRNA (Plux-RG or Plux-GR). Percentages represent the Eff% values.

When Scell in a given condition is higher than Scell without sRNA, Eff% value is set to zero.
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(Plux-RG construct) and the second (Plux-GR construct) operon gene. In par-
ticular, repression values were systematically higher when RFP was present in
the second position. A direct comparison among repression values in operons
and single-gene cassette contexts is not trivial to carry out, since the stability
of mRNA molecules with different sequence can be different [181]. GFP was
expected not to be repressed as the RFP target protein. Unfortunately, the
GFP signal could not be detected for Plux-RG. The operon context is known to
be highly unpredictable [182, 181], thus preventing synthetic biological systems
designers to infer the translation efficiency of operon genes when their order
is changed. GFP could be successfully detected when present as the first gene
of the operon (Plux-GR construct). Results showed that an sRFP expression-
dependent repression occurred for GFP, although it was much smaller than the
one observed for RFP (see Fig. 4.5A). In particular, while RFP in Plux-GR
was repressed by 73, 86 and 93% in the pSB3K3, pSB1A2 and pUC57-Simple
contexts, a repression was observed for GFP in the pSB1A2 and pUC57-Simple
conditions (15 and 34% respectively), although only the latter was found to be
statistically significant.
As in the case of single-gene cassettes, the analysis of unspecific silencing was
carried out by testing a set of sRNAs, in different plasmids, targeting genes
that were different from RFP and GFP. The GFP-RFP operon (Plux-GR con-
struct) was considered for the unspecific silencing study. Results (see Fig.
4.5B) showed that RFP production was repressed up to 28%, in the sLDH-pUC
context, although a statistically significant RFP repression was not detected
for any of the tested conditions. On the other hand, GFP was significantly
repressed, up to 47%, in the two tested conditions where an sRNA (sLDH and
sFRD) expression cassette was present in the pUC57-Simple vector.
The obtained results indicate that the RFP target gene is specifically repressed
also in operon context, while the non-target gene in the operon mRNA was
not affected. According to the unspecific silencing data (Fig. 4.5B), the ob-
served repression of GFP was most probably due to the metabolic overload of
the host strain, caused by the presence of two plasmids with an operon and
an sRNA expression cassettes. The observation of a considerable repression of
similar entity for both RFP (27-28%) and GFP (47%, statistically significant)
by unspecific silencers only in the conditions in which sRNAs are expressed in
the pUC57-Simple plasmid supports this statement. Doubling times, reported
in Fig. A.5, were consistent with the ones reported for single-gene cassettes.
Moreover, since RFP is efficiently repressed while GFP is not, the data suggest
that the designed sRFP silencer acts as a repressor of protein synthesis, not
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4. Quantification of the gene silencing performances of synthetic sRNAs

increasing the mRNA decay rate like other natural sRNAs, although sRNAs
can always affect target mRNA stability.
The GFP-RFP operon (Plux-GR construct) was also tested in the W strain in
presence of the specific RFP target gene repressor, sRFP, in pSB3K3, pSB1A2
and pUC57-Simple, or with unspecific sRNAs. Specific silencing results (see
Fig. A.6A) showed that RFP silencing in operon also works in W, with similar
repression efficiency to the single-gene context (see Figs. 4.2A, 4.4A). Re-
pression values of RFP were systematically lower than in TOP10 tested with
the same plasmid (see Fig. 4.5A), as expected from the lower sRNA plasmid
copy number in the W strain. While RFP is repressed in a copy number-
dependent fashion, as expected, reaching up to 62% repression, GFP is never
repressed by sRFP. GFP expression unexpectedly increased up to 1.7-fold when
the operon was co-transformed with the sRFP-pUC context, compared to the
operon without sRNA expression cassettes. Unspecific silencing experiments
(see Fig. A.6B) showed that RFP and GFP were not repressed by sRNAs dif-
ferent from sRFP. However, these data showed a highly variable RFP and GFP
expression, which were highly correlated. Importantly, doubling times analysis
showed that in all the conditions with Plux-GR in W growth is clearly slower
than in conditions with single-gene cassettes (see Fig. A.7). This slow growth
occurs even when the operon was tested without sRNAs, demonstrating that
the operon itself is responsible of the high doubling time and this was not due
to the presence of a co-transformed sRNA expression cassette. This effect sug-
gests a metabolic burden of recombinant strains with the operon. The highly
variable RFP and GFP expression may be explained by the metabolic burden
of the strains in such conditions, which could result in copy number variation
of the medium- and high-copy number plasmids, as previously reported [183].
Overall, the results obtained in W were consistent with the ones obtained in
TOP10 and confirmed the conclusions drawn above.
Finally, we attempted to overcome the GFP detection limit problem in the
RFP-GFP operon (Plux-RG) by constructing and studying novel operons with
a stronger RBS (BBa B0030 instead of BBa B0032) upstream of GFP (Plux-
RG30 and Plux-G30R constructs of Fig. 4.1G, H). Unfortunately, they resulted
in slow, highly variable doubling times (see Fig. A.8) and significant unspe-
cific silencing (see Fig. A.9). For this reason, the obtained results cannot be
considered to draw robust conclusions.
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Figure 4.6: Lactate dehydrogenase assay results for sLDH characteri-
zation in TOP10 and W. Specific enzymatic activity of LdhA in the strain without sRNA, in

the strain with an unspecific sRNA (sRFP) and in the strain with the sRNA targeting LdhA (sLDH). Bars

represent the mean activity value computed on at least three biological replicates. Error bars represent the

95% confidence intervals of the mean value. Asterisks indicate that the value in the condition is statistically

different from the value without sRNA (first bar). Percentages represent the Eff% values computed on

activity values.

4.3.5 Silencing of the endogenous lactate dehydroge-
nase

One of the sRNAs used to evaluate the RFP and GFP unspecific silencing,
sLDH, was used to study the specific silencing of the endogenous ldhA gene,
encoding for a lactate dehydrogenase (LdhA) involved in the fermentation
pathway of E. coli.
The change of LdhA activity in presence of the sLDH silencer was studied
through enzymatic assay (see section 4.2) in the TOP10 and W strains. In
this case, the sRFP silencer was used as unspecific sRNA to evaluate the
nonspecific repression of LdhA activity. Both sLDH and sRFP were tested in
the high-copy number pUC57-Simple vector. Results (see Figure 4.6) showed
that sLDH significantly repressed LdhA activity, with 50 and 72% repression
values in TOP10 and W, respectively. LdhA repression was very low and not
statistically significant (14 and 16%, respectively) for TOP10 and W with the
unspecific silencer sRFP. Such results demonstrated that the sLDH silencer,
designed in this study according to the guidelines of [159], is functional. The
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observed LdhA repression difference between the TOP10 and W strains was
unexpected, since the pUC57-Simple plasmid is maintained at higher copy
number in TOP10 than in W. However, differences in the ldhA gene expression
and regulation between the two strains, not investigated in this work, can occur
and might explain the observed repression values. Such differences can be due
to differences in nucleotide sequences of the ldhA gene or promoter in the
genomes of TOP10 and W, even if the 24-bp binding sequence of sLDH is
identical.

4.4 Discussion

In this work, the silencing capability of sRNAs designed with recently pro-
posed guidelines was characterized. In particular, key features that are typ-
ically investigated in quantitative studies on natural sRNA have been herein
measured to evaluate the performance of synthetic sRNAs in several contexts
and to enable the comparison with natural sRNAs. Since synthetic sRNAs de-
signed with the guidelines of [159] have never been tested in different contexts,
such as different target mRNA/sRNA levels, when the target gene is in operon
architecture and in gene expression cassettes driven by different promoters
[161], this study is of wide importance in the bottom-up design of artificial
sRNAs. Our study is mainly focused on quantitative performance evaluation
for a synthetic sRNA targeting a reporter gene, but data on another sRNA,
targeting a gene of interest in metabolic engineering, are also reported.
A synthetic sRNA targeting the reporter gene RFP, here called sRFP, was de-
signed and used in most of the performed experiments. sRFP was expressed at
different levels by tuning the copy number of the plasmid bearing the sRNA ex-
pression system, while the target gene was produced via different constitutive
or inducible expression systems. Statistical analysis was carried out for all the
performed experiments to highlight the conditions where significant repression
was present, compared to the recombinant strain without sRNA. Unspecific
silencing analysis was also carried out to decouple specific gene silencing from
other non-specific silencing mechanisms. To this aim, sRNAs designed to tar-
get genes different from RFP were used, as well as the GFP gene, which is not
targeted by sRFP and is easily detectable.
When RFP was present in a single-gene expression cassette, driven by the Plux
promoter at full induction, sRFP showed to work as expected in two differ-
ent E. coli strains (TOP10 and W) and repressed red fluorescence in a copy
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number-dependent fashion, reaching silencing levels up to 92%, in the highest
copy number condition (pUC57- Simple plasmid in TOP10) of sRFP. The same
construct (called Plux-R) was used to study RFP silencing for different mRNA
(tuned via Plux induction with HSL) and sRNA (tuned via plasmid copy num-
ber, as above) levels and results showed the expected mRNA-dependent trend
[142]. By using a previously proposed kinetic model of target gene silencing
with sRNA, we fitted the experimental data and estimated the binding affinity
parameter of sRFP, under different assumptions and considering the Plux-R
construct. It resulted to be about 30-fold lower than the one of RyhB, an
extensively studied natural sRNA involved in iron metabolism in E. coli.
When RFP was constitutively expressed via a single-gene cassette driven by
the BBa J23101 promoter, sRFP also worked as expected in both strains, but
the repression values were lower than the ones predicted by the mathematical
model that was trained on data from Plux-R. Such observed deviation could
be due to the different target mRNA sequence, which is 4 nucleotide longer
in transcripts produced by Plux than by BBa J23101. Synthetic operons in-
cluding the target RFP gene and a non-target reporter gene (GFP) were used
to study gene silencing, via sRFP, in polycistronic transcripts. RFP repres-
sion successfully worked, in an sRNA copy number dependent fashion, and
it was higher when RFP was present as the second operon gene. This result
could be due to different mRNA decay rates of the two operons, which af-
fects the steady-state level, or by the mRNA folding which differently exposes
the binding sequence. RFP repression level reached values up to 93% in the
highest copy number condition (pUC57-Simple plasmid in TOP10), while the
non-target gene, GFP, was not considerably repressed. Experimental data of
operon systems suggested that sRFP silencing acts only at the translation level,
not by enhancing the decay rate of the whole transcript. GFP signal could not
be detected in one of the tested operons (Plux-RG), while in the other operon
(Plux-GR) specific and unspecific silencing could be fully studied. The latter
operon was also successfully tested in the W strain, although it caused a slow
growth for the host. Additional operons were also constructed (Plux-RG30
and Plux-G30R) with a stronger RBS upstream of GFP, than Plux-RF and
Plux-GR. However, although both of them worked as expected, they resulted
in slow growth and could not be used to draw sound conclusions, since unspe-
cific silencing was considerable probably due to the metabolic burden exerted
by the operon.
Overall, the obtained results on reporter genes demonstrated the importance
of the target sequence that could affect gene silencing, and the difficulty of
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characterizing gene silencing in operon via ad-hoc constructed model systems.
Experimental data were also presented for a second sRNA, targeting the en-
dogenous ldhA gene in the TOP10 and W strains. Repression efficiency was 50
and 72%, respectively, while unspecific silencing, via sRFP, did not result in
significant repression values, thus confirming that another rationally designed
silencer works as expected. In this case, the quantitative repression values ob-
tained could be explained by measuring the expression level of the target ldhA
gene.
The rational design of sRNAs with predictable performance is a key feature in
synthetic biology and the guidelines proposed by Na et al. can be successfully
used without relying on trial-and-error searches. Quantitative characteriza-
tion studies, like the one proposed in this work, will strongly support the pre-
dictability of sRNA performances in different contexts. Although the measured
variables can have an sRNA- and target gene-specific behaviour, the reported
procedure and results support the future characterization of novel sRNAs,
confirm the effectiveness of the design via the used guidelines, and elucidate
quantitative performance-related and context-dependent features never inves-
tigated before for such synthetic silencers. Synthetic sRNAs will enable to face
different problems in synthetic biology, such as the simultaneous silencing of
different pathways in metabolic engineering studies [159], the silencing of essen-
tial or non-essential genes for bacterial physiology research studies [133, 184]
and the tuning of synthetic circuits [159] to engineer repression systems with
low-fluctuations or noise in the regulation of target proteins [142], which is an
important feature to control cell-to-cell variability [185, 186].
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Chapter 5
A BioBrick�-Compatible Vector
for Allelic Replacement Using
the XylE Gene as Selection
Marker1

Once the reactions that compete for the production of the target chemical
were selected for the elimination, their total inactivation can be achieved only
by permanent deletion of encoding gene(s). Different experimental methods
for the gene deletion have been proposed over the years.
A novel allelic replacement vector for chromosomal gene deletion in E. coli,
based on the colorimetric XylE assay and the BioBrick standard, will be pre-
sented in this chapter and used for the disruption of three genes encoding the
production of organic acids, that compete for pyruvate utilization in ethanolo-
genic strains.
A general introduction of different genome engineering methods in E. coli and
other bacteria and their common limitations will be described (Sec. 5.1). Then,
the characteristics of the developed vector and the analysis of strain with ldhA
gene deletion, encoding lactate dehydrogenase (LDH), will be reported (Sec.
5.2). The capacity and advantages of this BioBrick�-compatible vector, com-
pared with other plasmid-based solutions will be discussed in Sec. 5.3.
This study has been published in [187], and subsequently this deletion tool

1The contents of this chapter are published in Casanova M, Pasotti L, Zucca S, Politi
N, Massaiu I, Calvio C, Cusella De Angelis MG and Magni P Biological Procedures Online
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has been used for the further disruption of frdAB and pflB-focA genes, encod-
ing the production of fumarate reductase (FRD) and pyruvate formatelyase
(PFL), respectively.
The materials and methods sections and supplementary notes, results, figures
and tables are reported in the App. B.

5.1 Background

A large number of methods, recently reviewed by Song et al. [188], are avail-
able for the efficient genome engineering of E. coli and other bacteria. Among
them, circular plasmid-mediated homologous recombination is commonly used
for marker-less allelic replacement, exploiting the endogenous recombination
machinery of the host. In such method, a mutated version of the target lo-
cus is cloned in a conditional-replication plasmid, together with the two DNA
sequences flanking it. Upon transformation, a first cross-over event integrates
the plasmid in the target chromosomal region and a second one excises the in-
tegrated plasmid, leaving the allele with the desired modifications without any
plasmid DNA sequences. While clones in which the first cross-over success-
fully occurs are easily selected via antibiotic resistance, the second cross-over
is a rare event and clones that have lost the plasmid are usually screened via
a counter-selection method [188]. Finally, the counter-selected clones, which
have the same theoretical probability (50%) to contain the desired modified
allele or to maintain the original state, need to be screened by PCR [189]. The
counter-selection gene most widely used in this type of plasmids is sacB, which
converts sucrose into a toxic product, thus enabling the selection of clones in
growth media containing this sugar [190]. Apart from the requirement of spe-
cific media, a reported drawback of such popular method is the spontaneous
mutation that can occur in sacB, resulting in false positive clones [191]. Other
counter-selection methods available, such as those based on the rpsL, galK,
thyA, tetA and tolC genes, also present strong strain and/or medium limita-
tions [192, 193]. The I-SceI counter-selection system has been proposed to over-
come such issues [194], but false positive clones due to mutations can still occur
at high frequency [195]. This is a common feature of synthetic kill switches
implemented via toxic genes [196], although combination of multiple counter-
selection systems has been reported to decrease the false positive rate [193].
Methods have been proposed that use temperature-sensitive vectors without
toxic genes, exploiting the integrated replication origin to stimulate the second
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recombination event in permissive (replicative) conditions [197]. This strategy,
coupled with a lacZ gene-mediated blue/white screening, is successfully used
in Gram-positive bacteria [198], although its use in E. coli would be limited to
specific lacZ-mutant strains.
In this work, we propose a new vector (pBBknock, see Fig. 5A) for allelic
replacement in E. coli that exploits a temperature-sensitive replication ori-
gin and the xylE gene from Pseudomonas putida, coding for the catechol 2,3-
dioxygenase enzyme [199]. This enzyme is not toxic for E. coli (data not
shown) and converts the colourless substrate catechol into the yellow product
2-hydroxymuconic semialdehyde within seconds, resulting in a cheap and fast
colorimetric assay to identify clones in which the second recombination event,
i.e., plasmid excision, has not occurred. Although the xylE gene has previously
been used as a reporter for gene expression in different microorganisms, such
as B. subtilis, Actinosynnema pretiosum and Streptomyces spp [199, 200, 201]
its application as selection marker in marker-less genome engineering protocols
for E. coli represents a novel aspect of this work. XylE is encoded by a single
0.9-kbp gene and its activity can be detected without the requirement of spe-
cific strains or media. It was preferred over other available reporter systems
for coloured product formation because the latter have less attractive features
for pBBknock: violacein and carotenoid pathways are encoded by large multi-
genic constructs [202]; the single gene for melanin production requires specific
medium formulation [203]. Finally, fluorescent reporters can be hard to detect
when expressed from low or single DNA copies.

Since the development of standard genetic tools is one of the hallmarks of
synthetic biology, strongly facilitating and speeding up the recombinant strain
construction process [182, 204], we designed a vector that is compatible with
commonly used BioBrick�standards (RFC10, RFC12 and RFC23) [65]. This
novel plasmid for allelic replacement represents an advanced genetic tool in the
ready-to-use BioBrick�-compatible vectors for genome engineering that have
been recently proposed by our group [169], which, although enabling marker-
less genome engineering, still introduce plasmid-derived sequences surrounding
the target locus.

5.2 Results

The pBBknock vector includes a pSC101ts temperature-sensitive origin
(BBa J107112) derived from pAH123 [205] [GenBank: AY048726] (see sec-
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Figure 5.1: Description of the pBBknock vector, knockout experimen-
tal design and protocol. A) Vector description; all the elements are described in the box below

the panel. B) The AB DNA sequence is assembled in the pBBknock vector and the resulting plasmid is

used to carry out chromosomal gene deletion via two successive recombination events, described in panel

C). After the two recombination events, the resulting genomic target sequence is shown: it has about 50%

probability to be successfully modified or to revert to the wild type state (not shown). C) Allele replacement

protocol description. Notes on protocol development are reported in B.2.2

.
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tion B.2.1). The vector also carries a chloramphenicol resistance cassette
(BBa P1004) including the cat gene with its own promoter and ribosome
binding site (RBS) and the xylE gene with its own RBS (BBa J33204) un-
der the control of the BBa J23101 constitutive promoter [65]. BBa J23101 is
a medium-strength promoter that is widely used in synthetic biology studies
and often serves as a standard reference in promoter characterization experi-
ments [169, 170, 131, 186]. We used BBa J23101 to drive the xylE expression
in preliminary experiments in different strains and plasmid copy numbers and,
according to catechol plate assay, the resulting expression cassette was func-
tional and did not significantly reduce bacterial growth rate (data not shown).
The L3S2P42 and L3S3P22 synthetic transcriptional terminators [206] are
used downstream of the cat and xylE cassette, respectively. Properly-placed
unique EcoRI, XbaI, SpeI and PstI restriction sites constitute the BioBrick�-
compatible cloning site. The vector was fully constructed via the GenScript
(Piscataway, NJ, USA) gene synthesis service.
The design specifications described above, including heterologous and synthetic
components, allowed us to obtain a BioBrick�-compatible vector with a sig-
nificantly low level of similarity to the E. coli genome, thus minimizing the
off-target integration probability. The pBBknock sequence (see Fig. 5.1) can
be accessed as BBa J107077 in the Registry of Standard Biological Parts [65]
and its DNA is available upon request.
As expected, the resulting vector replicates in E. coli at 30 ◦C and not at
42 ◦C. The copy number of pBBknock is very similar to the one of pSB4C5,
demonstrating that in permissive conditions the pSC101ts origin is maintained
at a copy number comparable with the one of a vector with the non-ts pSC101
low-copy number origin (see section B.2.3).
We used pBBknock to delete the lactate dehydrogenase (ldhA) gene in the
chromosome of E. coli W, a widely used strain in metabolic engineering stud-
ies [162]. In particular, A and B sequences were designed, constructed and
ligated to pBBknock to delete the chromosomal sequence comprised between
the ldhA core promoter region (annotated in [EcoCyc: G592]) and the last 7
codons of the coding sequence (see Fig. 5.1B).
The process followed to achieve the gene knockout, inspired by Hamilton et al.
[197] and Arnaud et al. [198], is described in Fig. 5.1C. Among 6 independent
experiments, white colonies (i.e., with successful vector excision) ranged from
1% to 11% of the total colonies, with a 4% mean occurrence. Ten white clones
were screened by colony PCR: three of them were successful knockout strains,
while the others maintained the original allele (see Fig. 5.1C). Gene deletion
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was also confirmed by the absence of lactate dehydrogenase activity in the
three ldhA- strains (see Fig. 5.1C).

5.3 Discussion

This work develops a novel allelic replacement vector, merging physical
standardization concepts and a screening procedure based on a simple colori-
metric assay, never applied before in marker-less allelic replacement methods
for E. coli, that can be virtually used with any growth medium and host.
The false positive rate is expected to be lower than in counter-selection sys-
tems based on toxic genes, which can frequently mutate (see section B.2.2).
However, allelic replacement efficiency may vary in different strains and experi-
ments, according to the host recombination capability, allele-dependent fitness,
and flanking sequence length and homology [207]. Homologous sequences can
be retrieved from a specific collection of BioBrick�parts [169] or can be easily
constructed via PCR (as it was carried out in this work). BioBrick�parts can
also be assembled between the two homologous DNA regions to be integrated
in the target locus. Since pBBknock is replicated at low copy, it is particu-
larly suited to deliver difficult parts (toxic when present in high copy) in the
chromosome, for which other plasmid-based methods, e.g., the ones using the
conditional R6K origin which is replicated at medium or high copy, may not
be successful [192, 205]. Although novel promising techniques for large-scale
genome editing have been developed [188], the modification of a single gene
via the plasmid-based sacB method is still commonly carried out in many lab-
oratories [208, 209, 210]. Efficient one-step methods based on linear DNA are
also commonly used [188, 211], but they require a helper plasmid expressing
specific recombinases and are applicable only to limited bacterial strains, since
others might suffer from poor transformation efficiency with linear fragments.
In this view, we expect that pBBknock will represent a versatile solution both
for practitioners, also among the iGEM competition teams, and for research
laboratories that use BioBrick�-based assembly procedures.
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Chapter 6
Overall conclusions

The shift of production from petrochemical-based processes to bioprocesses
is an important emerging challenge to establish a sustainable society. Metabolic
engineering is the practice of optimizing cellular proprieties to obtain high pro-
duction yield of high-value metabolites through analysis and rational manipu-
lation of metabolic pathways, using genetic engineering techniques. Currently,
it is obtained thanks to the development and advances of several computational
tools for the in-silico design and sophisticated recombinant DNA techniques
for the targeted genetic manipulation of microbial metabolic systems suitable
for bioproduction.
In this thesis work, in-silico and in-vivo tools for metabolic engineering have
been investigated, in E. coli and B. subtilis, at different levels. Starting from a
preliminary study about the impact of experimental nutrient uptake rates on
the predictions obtained with the constraint-based approach, different compu-
tational methods have been evaluated on metabolic engineering applications,
considering several experimental datasets, and then applied to identify the
target perturbations required for increasing the production of a high-value
metabolite. Finally, experimental tools have been developed and character-
ized to implement the manipulations for obtaining the desirable metabolic
phenotype, both at genomic and transcriptomic levels.
In Chapter 2 constraint-based methods have been analyzed in E. coli, under
different genetic and environmental conditions, by means of comparison be-
tween the predicted and experimental flux distributions. In particular, since
the predictions rely heavily on the flux constraints imposed in the metabolic
model, defining the solution space, a preliminary study was focused on the im-
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pact of values used for constraining the main nutrient uptake rates. Moreover,
the predictions of different engineered strains, under different growth condi-
tions, have been evaluated and transcriptomic data have been integrated as
an attempt to improve it. The carbon source uptake rate is the key constraint
on which the predictions are based. The results demonstrated that, for wild
type strains the knowledge of its experimental value improves the prediction
performance, whereas for mutants it does not impact and the values measured
for wild type can be used. FBA and MOMA methods showed limited predic-
tion performance, both in terms of growth rate and production rate of main
metabolite, when used to simulate E. coli strains subject to a large number of
genetic deletions under anaerobic and micro-aerobic conditions. The same in-
accurate results have been predicted also with the integration of transcriptomic
data by GIMME method, which has been shown to be inefficient in complex
contexts.
Recently, a new powerful tool, known as GECKO, for the integration of enzy-
matic data, in terms of kcat values and protein abundance, has been proposed
to further reduce the space of allowable solutions and improve the predictions.
This method has not been applied for improving the former predictions, be-
cause the proteomic data for E. coli in anaerobic or micro-aerobic conditions
are not currently available in literature. Chapter 3 describes the development
and evaluation of an enzyme-constrained model for B. subtilis, based on the
principles of GECKO. Given the small number of available kcat measures, this
integration has been focused on a small set of enzymes, namely for central car-
bon pathway and some connected reactions of glutamate pathway. Through
this new model, an increase of accuracy has been demonstrated considering
both quantitative predictions for wild type and mutant strains, especially for
the fluxes of pentose phospate reactions and the acetate production rate, and
in terms of gene essentiality predictions. However, a greater improvement
can be achieved with a genome-scale integration of enzymatic data into the
model. The increased accuracy shown for the predicted fluxes, has been ob-
tained also for the identification of modifications required to improve the target
metabolite production. Indeed, the developed enzyme-constrained model of B.
subtilis, after properly modifications, has subsequently been applied as engi-
neering guide for improving the production of an emerging polyvalent natural
product, poly-γ-glutamic, whose enzyme-encoding genes are not expressed in
laboratory strains. Differently from the deletions identified by GEM analysis,
the results obtained through the integration of enzymatic data showed the ad-
vantage of predicting only the deletions of active reactions under the specific
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considered condition. Moreover, a set of reactions, directly connected with
γ-pga production, has been selected for the over-expression. However, for an
appropriate evaluation of identified target manipulations, an experimental val-
idation is necessary.
Finally, the following two chapters focus on the experimental applications of ge-
netic manipulations, through advanced synthetic biology techniques, to achieve
the final goal of metabolic engineering.
Synthetic sRNAs are genetic tools able to control the target gene expression in
bacteria. Chapter 4 describes the quantitative evaluation of sRNAs designed
and constructed in E. coli on the basis of recently proposed guidelines. Despite
developed synthetic sRNA showed to properly work under different contexts, a
complete repression of target pathway, generally required for the reactions that
compete for production of the desirable metabolite, was not achieved. Indeed
the higher repression efficiency obtained for sRNA targeting the endogenous
lactate dehydrogenase gene (ldhA) has been shown equal to 72%.
In this context, despite the different advantages of methods for down-regulation
of the target gene expression, such as sRNAs, without modification of genome
sequences, once the elimination of a specific reaction was established, its total
inactivation can be achieved only by permanent deletion of encoding gene(s).
Chapter 5 reports a novel allelic replacement vector for chromosomal gene
deletion in E. coli, based on the colorimetric XylE assay and compatible with
commonly used BioBrick�standards. It has been used for the disruption of
lactate dehydrogenase (ldhA), fumarate reductase (frdAB) and pyruvate for-
matelyase (pflB-focA) genes, that compete for pyruvate utilization in ethanolo-
genic strains. These gene deletions have been confirmed by properly experi-
mental assay, in this chapter the absence of lactate dehydrogenase activity in
ldhA− strain has been shown.
Taken together, the results show the relevance of constraint-based methods
in metabolic engineering applications and that, differently from the transcrip-
tomic data, which, in the considered contexts, were not able to model the
modification of expression at post-transcriptional and post-translational level,
the integration of enzymatic data is a promising approach to improve the pre-
dictions based on genome-scale metabolic models. These in-silico approaches
can be efficiently supported by the two in-vivo tools for the repression or com-
pletely elimination of target genes, constructed in this thesis using the synthetic
biology toolkits of pre-characterized regulatory elements.
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A. Supplementary Figures for Ch. 4

Figure A.1: Raw data and processed time series for cultures in repre-
sentative experiments.
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Figure A.1: A)Raw absorbance time series of sterile medium (M9) and a non-fluorescent culture

(TOP10). B) Background-subtracted absorbance (OD600) time series of a non-fluorescent culture (TOP10).

C) Raw red fluorescence of sterile medium (M9) and a non-fluorescent culture (TOP10) time series, showing

that the auto-fluorescence of bacteria is comparable with the fluorescence of medium and it is not OD600-

dependent. D) Raw green fluorescence of sterile medium (M9) and a non-fluorescent culture (TOP10) time

series, showing that the auto-fluorescence of bacteria is higher than the fluorescence of medium and it is

OD600-dependent. E) Raw green fluorescence as a function of OD600 for several non-fluorescent strains

assayed in the same experiment; such data are used to compute the OD600-dependent auto-fluorescence

function (by linear regression), which represents the background green fluorescence at a given OD600; circles

represent data points and solid line represents the regression line. F) Raw absorbance time series of three

RFP-expressing cultures: Plux-R, sRFP-1A2+Plux-R and J101-R in TOP10. G) Background-subtracted

OD600 time series of the three RFP-expressing cultures. H) Raw red fluorescence time series of the three

RFP-expressing cultures. I) Background subtracted red fluorescence time series of the three RFP-expressing

cultures, yielding a time series proportional to the total RFP proteins in the microplate well. J) Numeric

time derivative of RFP divided by OD600, yielding a signal proportional to the RFP synthesis rate per

cell at the steady-state; the time series in the exponential growth phase (OD600 between 0.05 and 0.18,

assumed) is shown for the three RFP-expressing cultures; for each culture, this time series is averaged and

divided by the average RFP synthesis rate per cell of the reference culture (see Methods section in the main

text). K)-O) the same time series as panels F)-J) are shown for two GFP-expressing cultures: Plux-G and

sRFP-1A2+Plux-G.
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Figure A.2: Doubling times of recombinant strains bearing a single-
gene RFP or GFP expression system driven by Plux (Plux-R or Plux-
G). A) Specific silencing of the target gene (RFP) via sRFP in TOP10 and W. B) Unspecific silencing of

RFP or GFP via different sRNAs in TOP10 and W. Bars represent the mean doubling time value computed

on at least three biological replicates. Error bars represent the 95% confidence intervals of the mean value.
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Figure A.3: Doubling times of recombinant strains bearing an RFP
expression system driven by BBa J23101 (J101-R). Bars represent the mean

doubling time value computed on at least three biological replicates in the indicated conditions. Error bars

represent the 95% confidence intervals of the mean value.
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Figure A.4: Silencing results for RFP expressed by a single-gene cas-
sette (J101-R32) driven by BBa J23101 with the BBa B0032 RBS
upstream of the RFP gene. A) Specific silencing of the target gene (RFP) via sRFP in

TOP10. Bars represent the mean Scell value computed on at least three biological replicates. Error bars rep-

resent the 95% confidence intervals of the mean value. Asterisks indicate that the Scell value in the condition

is statistically different from the Scell of the expression cassette without sRNAs (J101-R32). Percentages

represent the Eff% values. B) Doubling times.

106



Figure A.5: Doubling times of recombinant TOP10 bearing the Plux-
RG and Plux-GR synthetic operons. A) Silencing of the target gene (RFP) and the

non-target gene (GFP) via the silencing device sRFP. B) Unspecific silencing of RFP and GFP, in the Plux-

GR construct, via different sRNAs. Bars represent the mean doubling time value computed on at least three

biological replicates. Error bars represent the 95% confidence intervals of the mean value.
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Figure A.6: Silencing results for RFP and GFP expressed by the Plux-
GR synthetic operon in the W strain. A) Silencing of the target gene (RFP) and the

non-target gene (GFP) via the silencing device sRFP. B) Unspecific silencing of RFP and GFP via different

sRNAs. Bars represent the mean Scell value computed on at least three biological replicates. Error bars

represent the 95% confidence intervals of the mean value. Asterisks indicate that the Scell value of RFP

or GFP in the condition is statistically different from the Scell of the operon without sRNAs (Plux-GR).

Percentages represent the Eff% values. When Scell in a given condition is higher than Scell without sRNA,

Eff% value is set to zero.
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Figure A.7: Doubling times of recombinant W bearing the Plux-GR
synthetic operon. A)Specific silencing of the target gene (RFP) and the non-target gene (GFP)

via the silencing device sRFP. B) Unspecific silencing of RFP and GFP via different sRNAs. Bars represent

the mean doubling time value computed on at least three biological replicates. Error bars represent the 95%

confidence intervals of the mean value.
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Figure A.8: Doubling times of recombinant strains bearing the Plux-
RG30 and Plux-G30R synthetic operons in TOP10 and W. A)Silencing of

the target gene (RFP) and the non-target gene (GFP) via the silencing device sRFP. B) Unspecific silencing

of RFP and GFP via different sRNAs. Bars represent the mean doubling time value computed on at least

three biological replicates. Error bars represent the 95% confidence intervals of the mean value.
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Figure A.9: Silencing results for RFP and GFP expressed by the Plux-
RG30 and Plux-G30R synthetic operons in TOP10 and W. A)Silencing of

the target gene (RFP) and the non-target gene (GFP) via the silencing device sRFP. B) Unspecific silencing

of RFP and GFP via different sRNAs. Bars represent the mean Scell value computed on at least three

biological replicates. Error bars represent the 95% confidence intervals of the mean value. Asterisks indicate

that the Scell value of RFP or GFP in the condition is statistically different from the Scell of the operon

without sRNA (Plux-RG30 or Plux-G30R). Percentages represent the Eff% values. When Scell in a given

condition is higher than Scell without sRNA, Eff% value is set to zero.
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Appendix B
Methods and supplementary
information for Ch. 5

B.1 Materials and Methods

B.1.1 E. coli Strains, Reagents and Cloning

TOP10 (Invitrogen) were used for cloning according to manufacturer’s in-
structions. For gene knockout experiments, the W strain (ATCC 9637) was
transformed by a standard heat shock protocol [166]. Strains were routinely
grown in LB medium; chloramphenicol (12.5 mg/l) or ampicillin (100 mg/l)
were added as required. Catechol (C9510, Sigma Aldrich) was dissolved in
deionized water to obtain a 10 mM stock that was prepared fresh every day.
Primers used in this work are listed in Tab. B.1.
The pBBknock vector was specialized to delete the ldhA gene of E. coli W by
assembling the ldhA flanking DNA fragments (A and B, both 0.9 kbp-long,
see Fig. 5.1B) in the cloning site. A and B regions were separately amplified
from the genome of E. coli W with primer pairs PAtail F/PAtail R and PB-
tail F/PBtail R, respectively, with Phusion Hot Start Flex polymerase (New
England Biolabs). Each PCR product was purified (NucleoSpin Extract II,
Macherey-Nagel), digested with EcoRI and PstI (Roche), purified again, and
finally individually ligated (T4 ligase, Roche) into the EcoRI-PstI-digested
pSB1A2 vector [65]. Each construct was sequence-verified with standard Bio-
Brick�primers VF2 and VR. The A and B fragments in pSB1A2 were then di-
gested with SpeI-PstI and XbaI-PstI, respectively, and ligated according to the
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BioBrick�Standard Assembly to yield the AB construct (in pSB1A2), which
was sequence-verified and, upon EcoRI-PstI digestion, finally ligated into pB-
Bknock.

B.1.2 Lactate Dehydrogenase Assay

The assay was performed as described by Massaiu et al. [131]. Cultures
grown to saturation at 37 ◦C at 220 rpm in 2 ml of LB with 100 mM phos-
phate buffer and 40 g/l glucose, were 100-fold diluted in 9 ml of the same
medium and grown for 4 h. One ml of culture was centrifuged (13,000 rpm,
1 min), washed with 1 ml of 100 mM Tris-HCl pH 7.3 and the pellet was re-
suspended with 0.4 ml of CelLytic B (Sigma Aldrich), supplemented with a
protease inhibitor cocktail, to lyse the cells. After 10 min at room tempera-
ture, cell debris were removed by centrifugation (13,000 rpm, 5 min) and the
supernatant was assayed. Reaction mix (180 µl), containing 100 mM Tris-HCl
pH 7.3, 0.4 mM NADH and 10 mM sodium pyruvate, was mixed with 20 Î¼l of
lysate and absorbance at 340 nm (OD340) was monitored at 25 ◦C every 5 min
in an Infinite F200 (Tecan) microplate reader. The slope of the absorbance
time series, proportional to enzymatic activity of the sample, was computed
via linear regression. Protein quantification in the lysate was obtained via Mi-
cro BCA Protein Assay Kit (Thermo Scientific). Specific enzymatic activity
was calculated by dividing the total enzymatic activity by protein level and
expressed as 104 *OD340/min/µg of cell protein.

B.1.3 Copy Number Estimation for pBBknock

The copy number of pBBknock was estimated by comparing it to the
one of pSB4C5 [65], which carries a non-ts pSC101 origin. To this aim, the
BBa J107029 part containing a constitutive promoter driving the Red Fluo-
rescent Protein (RFP) expression, was assembled in both vectors upon EcoRI-
PstI digestion. Transformed TOP10 cells were assayed both in selective LB
and M9 supplemented medium (11.28 g/l M9 salts - M6030, Sigma Aldrich, 2
mM MgSO4, 0.1 mM CaCl2, 2 g/l casamino acids, 1 mM thiamine hydrochlo-
ride and 4 ml/l glycerol) as previously reported [169], except that cultures
were always incubated at 30 ◦C. RFP synthesis rate per cell (Scell), expressed
in arbitrary units (AU), was computed and assumed to be proportional to the
plasmid copy number. Scell and cell growth rate were computed as previously
described [169]. Results were expressed as average Scell values of at least three
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biological replicates and the confidence intervals of Scell mean were reported.

B.2 Supplementary notes, results, figures and

tables

B.2.1 Details about pBBknock thermosensitive sequence
design

The pBBknock vector was obtained via de-novo synthesis. In order to de-
sign it, the sequence of the pSC101ts temperature-sensitive replication origin
was retrieved and modified to remove unwanted restriction sites (SpeI). In this
process we found inconsistencies among the available sequences for some widely
used temperature-sensitive vectors, which are described below.
BBa I50052 (pSC101ts) is a thermo-sensitive version of BBa I50042 (pSC101),
both present in the Registry; the mutation conferring the temperature-sensitive
phenotype of BBa I50052 is annotated.
Consistently, this mutation is also found in the sequence of the temperature-
sensitive pKOV vector [189] [https://www.addgene.org/25769]; conversely, in
the deposited sequence of another widely used temperature-sensitive vector,
pAH123 [205] [GenBank: AY048726], such mutation is not reported. Be-
cause of such inconsistency, we sequenced pAH123 with primers P1 F, P2 R,
P3 F, P4 F, P5 R (reported in Tab. B.1) and we could confirm the presence
of the temperature-sensitive mutation described in pSC101ts and pKOV; thus,
the sequence given in the [GenBank: AY048726] entry does not include the
temperature-sensitive nucleotide change. Since comparison between our se-
quence of pAH123 and the one of BBa I50052 showed additional mismatches
(not shown), we decided to rely on pAH123 origin to design our vector. We
extended the origin region to the upstream NcoI restriction site and to the
downstream stop codon of the ampicillin resistance gene in pAH123. We also
modified the origin region by removing the SpeI site, following the strategy
used to modify pSC101 (BBa I50042), present in the widely used pSB4C5 vec-
tor, to ensure that the nucleotide changes do not affect the replication origin
functioning. The resulting sequence is annotated in the BBa J107077 entry
of the Registry as temperature-sensitive replication origin pSC101ts and has
been submitted as part BBa J107112.
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B.2.2 Notes on protocol development

The second recombination is a rare event and the corresponding step of the
protocol (DAY 3-4, Fig. 5.1C) is critical. No white colonies were present in
catechol-stained plates if the incubation at 30 ◦C was carried out for 6 hours
only; an overnight incubation, followed by a 100-fold dilution and additional
6-hour incubation, was essential to obtain positive clones in the strain and
conditions tested. Also, no white colonies were present in catechol-stained
plates if the incubation temperature of DAY 3-4 (Fig. 5.1C) was set at 42
◦C instead of 30 ◦C, demonstrating that the second recombination event is
stimulated only at permissive temperature for the pSC101ts origin. Since no
white colonies were present in such conditions, these results also suggest that
the false positive rate (i.e., the occurrence of white colonies in which the second
recombination did not happen) is negligible in the host strain and condition
tested.

B.2.3 Copy number characterization

Measured fluorescence values (used to estimate plasmid copy number) were
similar between pBBknock and pSB4C5: Scell=1.52 ± 0.17 AU and 1.48 ± 0.29
AU, respectively, in LB, and 3.34 ± 0.03 AU and 2.65 ± 0.05 AU, respectively,
in M9. Doubling times of recombinant strains bearing pBBknock and pSB4C5
were 78 min and 54 min, respectively, in LB, and 161 min and 112 min, respec-
tively, in M9. Figure B.1 shows the growth curves of E. coli bearing pBBknock
or pSB4C5.

B.2.4 Occurrence of illegal restriction sites in homolo-
gous fragments

Here we report the probability of finding at least one illegal restriction
site (EcoRI, XbaI, SpeI or PstI) when designing a homologous fragment to be
cloned, like A or B in this work. To perform this task, we considered the EcoRI,
XbaI, SpeI or PstI restriction sites in the ATCC 9637 genome sequence. By
using a nucleotide window moving along the genome, we found via Perl script
this probability, shown in Figure B.2 as a function of the nucleotide window
length. The considered lengths have been chosen in accordance with the length
of homologous fragments used in previous studies [189, 190, 197]. Although a
high probability of finding at least one site (about 26%) is present for a length
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of 0.9 Kb, i.e., the one used in this work, this probability dramatically decreases
when a lower length is considered, e.g., about 16% for 0.5 Kb, successfully used
in several applications [189].

Figure B.1: Growth curves for TOP10 strain bearing pBBknock or
a control vector (pSB4C5) with pSC101 replication origin. Both vectors

have BBa J107029 as insert. Data are relative to the copy number characterization experiment carried out

in microplate reader [169]. Data represent background-subtracted absorbance (OD600) over time in cultures

grown in LB or M9 supplemented medium. Solid lines represent the mean of four independent clones, while

dotted lines are the 95% confidence intervals of the mean.
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Figure B.2: Probability of finding at least one illegal Bio-
Brick�restriction site in a nucleotide window of variable length in
the genome of E. coli W. Points represent probability values for different length values.

PAtail F (EcoRI)a CTTCGAATTCGCGGCCGCTTCTAGAGGAATGTTTTGATCAAACAGAGGGC
PAtail R (PstI) CTTCCTGCAGCGGCCGCTACTAGTATGCCCGAACGAACTGGTTTA

PBtail F (EcoRI) CTTCGAATTCGCGGCCGCTTCTAGAGCATCAACAACTATGCTTAGTGTAG
PBtail R (PstI) CTTCCTGCAGCGGCCGCTACTAGTACATCGCTTACGGTCAATTGTTGAC

VF2 TGCCACCTGACGTCTAAGAA
VR ATTACCGCCTTTGAGTGAGC

PA F TTACACATCCCGCCATCAGC
PB R GCAATTTCGCCAGACAAGCA
P1 F TAGCCAGTCTGAATGACCTGTCAC
P2 R CCTCAGATCCTTCCGTATTTAGCC
P3 F CAAACAGCGTTTGCGACATCCT
P4 F GCCCGACTGATACGTTGATTTTCC
P5 R AAGGCTTAAGTAGCACCCTCGCAA

Table B.1: Primers used in this study. a) The restriction sites used for cloning are

reported in brackets and their sequence is underlined.
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[114] Olavarŕıa K, Valdes D, and Cabrera R. The cofactor preference of
glucose-6-phosphate dehydrogenase from Escherichia coli–modeling the
physiological production of reduced cofactors. The FEBS journal,
279(13):2296–2309, 2012.

130



BIBLIOGRAPHY

[115] Singh SK, Miller SP, Dean A, Banaszak LJ, and LaPorte DC. Bacil-
lus subtilis Isocitrate Dehydrogenase A SUBSTRATE ANALOGUE
FOR ESCHERICHIA COLI ISOCITRATE DEHYDROGENASE KI-
NASE/PHOSPHATASE. Journal of Biological Chemistry, 277(9):7567–
7573, 2002.

[116] Ueda Y, Yumoto N, Tokushige M, Fukui K, and Ohya-Nishiguchi H. Pu-
rification and characterization of two types of fumarase from Escherichia
coli. The Journal of Biochemistry, 109(5):728–733, 1991.

[117] Smith K, Sundaram TK, Kernick M, and Wilkinson AE. Purification of
bacterial malate dehydrogenases by selective elution from a triazinyl dye
affinity column. Biochimica et Biophysica Acta (BBA)-Protein Structure
and Molecular Enzymology, 708(1):17–25, 1982.

[118] Shin B-S, Choi S-K, and Park S-H. Regulation of the Bacillus subtilis
Phosphotransacetylase Gene. The Journal of Biochemistry, 126(2):333–
339, 1999.

[119] Garvie EI. Bacterial lactate dehydrogenases. Microbiological reviews,
44(1):106, 1980.

[120] SASKI R and PIZER LI. Regulatory Properties of Purified 3-
Phosphoglycerate Dehydrogenase from Bacillus subtilis. The FEBS Jour-
nal, 51(2):415–427, 1975.
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