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1. Introduction 
 

 

 

In the context of the broad field of applications related to non-invasive time-domain 
electromagnetic (EM) techniques for the detection of buried dielectric anomalies and 
based on the use of artificial neural networks (ANNs), the research activity described 
in the present Ph.D. thesis is primarily focused on the theme of breast cancer 
detection. 

According to recent statistical reports provided by the American Cancer Society [1], 
the breast cancer is the most common typology of cancer among women. In this 
context, in order to improve the outcomes of the treatments and reduce the mortality 
rate, an accurate diagnosis of the tumor presence during its early stage of 
development represents one of the most important and challenging tasks [2]. 

At present, the standard technique used for the diagnosis of breast cancer is the X-
ray mammogram. However, besides the health risks and difficulties that derive from 
the exposure to X-rays and the uncomfortable breast compressions, such a technique 
suffers from low and not stable values of sensitivity [3]. In order to improve the 
performance, the X-ray mammogram has been proposed in a combined way together 
with other diagnostic techniques, such as the magnetic resonance imaging (MRI), 
the ultrasound (US), and the simple clinical examination. However, clinical studies 
have found and highlighted that, despite the combined use of these diagnostic 
techniques can improve the value of sensitivity or specificity, the overall accuracy, 
that at the same time depends from both the values of sensitivity and specificity, 
varies inside the limited range of 66.6–75.6 % [4, 5]. 

Because of the above cited problems and limitations, the need of having a non-
invasive technique for detecting early-stage breast cancers with high and reliable 
values of accuracy has encouraged several groups of research to investigate and 
develop new diagnostic techniques. In this context, an interesting alternative, that in 
the last decades received more and more interest from the scientific community, is 
represented by the microwave diagnostic techniques. These techniques are focused 
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to exploit the substantial contrast that exist between the electromagnetic properties 
of the healthy and malignant breast tissues at microwave frequencies. Moreover, 
several advantages can derive from the use of such a range of frequencies, besides 
the already mentioned non-ionizing nature. Others advantages derive from the fact 
that the required instrumentation is not expensive and, thanks to the high sensitivity 
of the microwave sensors, low power signals can be used. Finally, these approaches 
are non-invasive, do not involve painful tests, and do not require uncomfortable 
breast compressions. 

Nowadays, several novel approaches and techniques are continually developed and 
proposed by different groups of research around the world. Between the main 
reasons that motivate such a search, a challenging task is related to reduce the long 
times and the high computational burden required by the complex algorithms of 
electromagnetic signals processing, but the more important aspect is to reach higher 
and more reliable values of specificity, sensitivity, and overall accuracy. 

In this context, in this Ph.D. thesis, a new breast cancer radar detection technique—
based on the ANN processing of suitable information extracted from the radar 
signals—is presented and assessed. The endpoint of the proposed approach is not the 
breast imaging, but to detect the presence, or absence, of a tumor independent of its 
depth and width. Moreover, since the use of ANNs allows the possibility of re-
formulate the inverse scattering problem considering only the unknowns of interest, 
several advantages, such as low computational burden and short times of 
computation, are provided. 

In the next sections, the present PhD thesis is composed as follows. 

Chapter 2 presents both the main benign and malignant breast diseases—namely the 
calcifications, the fibroadenomas, the cyst, and the breast carcinoma—and the main 
and standard used diagnostic techniques—namely the breast biopsy, the X-ray 
mammogram, the MRI, and the US. At the end of this chapter, the standard statistical 
diagnostic parameters—consisting of the sensitivity, the specificity, the positive 
predictive value, the negative predictive value, and the overall accuracy—are in 
detail described, and the performance of the above diagnostic techniques are 
discussed in the cases where they are used both alone or in a combined way. 

Chapter 3 is aimed to present a review of the microwave diagnostic techniques 
proposed in literature. In particular, this chapter in details describes the passive 
microwave imaging techniques and the active microwave imaging techniques 
consisting of the microwave tomography (MT) and the ultra-wide band (UWB) radar 
imaging. 
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In Chapter 4, the proposed ANN-based breast cancer radar detection technique is 
presented, designed, and assessed. In particular, the proposed technique is tested 
using both two-dimensional (2D) and three-dimensional (3D) realistic breast models 
derived from the UWCEM database [6]. Moreover, since the importance of 
suppressing the predominant reflections due to the presence of the skin [7, 8, 9, 10]—
the so-called skin-artifact component—the proposed ANN-based breast cancer radar 
detection technique was tested using both an ideal cleaning technique and the 
realistic model-based skin-artifact removal technique presented in Appendix B. 

A brief section devoted to the conclusions summarizes the principal key points of 
the present Ph.D. thesis and the results obtained putting into evidence the capabilities 
but also the limitations of the studied approach for the diagnosis of breast cancers. 

For the sake of completeness in the following a very short description of the 
Appendixes is also given. 

Appendix A presents and describes the main architectural elements and the 
operations that are need during the design of an artificial neural network. In 
particular, it describes the artificial neuron, the activation function, the principal 
ANN architectures, and both the training and test operations. 

In Appendix B, a new model-based skin-artifact removal technique is presented and 
assessed. This technique is especially proposed for UWB radar methods that work 
on the radar signals backscattered from the breast. The purpose is to find practical 
implementation method in order to suppress the strong skin reflections with good 
effectiveness, without introduce significant radar signal distortions, and without 
assuming a-priori information on the actual geometric and dielectric structures of the 
breast. 

Finally, remaining in the field of applications related to non-invasive time-domain 
electromagnetic detection techniques based on the use of artificial neural networks, 
Appendix C presents an assessment and optimization study of a new probing 
technique designed to detect and locate an EM source situated in an indoor 
environment. 
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2. The Female Breast Diseases and the 
Main Actual Diagnostic Techniques 

 

 

 

2.1. Introduction 

The breast is a female symmetrical organ located on the front surface of the chest. 
Typically, such a body is mainly composed of fibro-glandular tissue and adipose 
tissue (fat). The fibro-glandular tissue consists of 15-20 independent lobes where, at 
each of these corresponds a galactophore, namely a lactiferous duct, which drains 
the breast and opens at the nipple. The lobes are immersed in the adipose tissue and 
separated from each other by means of the connective fibrous tissues. All these 
components on the whole constitute the "mammary gland" that is externally covered 
by the skin and supported by the pectoral muscle. 

The shape and the size of the breast can considerably vary in relation to age, race 
and individual characteristics. From the puberty, due to an expansion of the glandular 
component, the breast increases in volume. The size and shape of that body, is very 
variable and this is mainly due to the amount and disposition of the adipose tissue. 
The development of the glandular tissue occurs mainly as a result of stimulation of 
the female hormones, which can vary depending on the stage of the menstrual cycle 
and the age of the woman. Generally, the glandular component is present in larger 
amounts, compared to adipose tissue, in women of young age. Conversely, in post-
menopause and with aging, the fatty tissue component tends to increase. This is the 
reason for which the mammography performed on young women, and more 
generally on women with dense breasts, is more difficult to interpret. 

In the following of the chapter, first the main benign and malignant breast diseases 
are presented. Then, a second section will be focused on describing the main and 
most used diagnostic techniques, namely the X-ray mammogram, the magnetic 
resonance imaging (MRI), and the ultrasound (US). 
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At last, the performance of these technique will be discussed in the cases where they 
are used both alone and in a combining way. 

 

2.2. The Main Benign and Malignant Breast 
Pathologies 

2.2.1. Calcifications 

The calcifications [11] consist of mineral deposits within the breast tissues. Usually 
they are not malignant and their presence, being highly correlated with aging, should 
not cause worries. 

Calcifications can be diagnosed by the physician through breast palpation, or 
generally by means of a diagnostic technique. However, using as example the X-ray 
mammogram, ambiguity may arise because both the calcifications and the tumors 
appear in a very similar way as white spots, and this may increase doubts about the 
real nature of the disease. 

Mainly there are two different typologies of calcifications, namely the macro-
calcifications and the micro-calcifications. The macro-calcifications are mineral 
deposits rather wide. They are usually associated with internal changes caused by 
aging, old injuries or inflammation. Usually, these deposits are related to not 
cancerous conditions and are present in about half of women older than 50 years, 
and in about one tenth among women under the 50 [12]. An example of macro-
calcifications are the fibroadenomas, and because the substantial differences 
compared to the tumors, it is easier to make a correct diagnosis. The micro-
calcifications [12] are small specks of calcium that usually appear in groups. Since, 
using the X-ray mammogram, they appear with not well-defined margins and 
opacities similar on those of the tumors, their presence can conduct to incorrect 
diagnoses. In these cases, as it will be more clear in the following sections, to perform 
a biopsy is strongly recommended. 

2.2.2. Fibroadenomas 

The fibroadenoma [11] is a benign tumor that develops in the tissues of the mammary 
glands. This is the most frequent nodular, solid, and benign breast pathology that can 
occur with aging. Compared to the surrounding tissues, it appears as a circumscribed 
and mobile nodule that may have dimensions ranging from less than 1 cm to over 10 
cm. In the latter case, it is named giant fibroadenoma. As mentioned in the previous 
section, the fibroadenomas are a type of calcification which belongs to the category 
of macro-calcifications. 
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Its diagnosis can be simply made by the physician through breast palpation, and can 
be confirmed by means of a common not-invasive and not-destructing diagnostic 
test. 

 

2.2.3. Cysts 

The cysts [11] can be simply bags of fluid, in which case are known as Simple Cysts, 
or partially solid, known as Complex Cysts. The first are benign, namely of not 
cancerous nature. Usually they have a soft texture, a well-defined shape, and a highly 
variable size, namely from a diameter of few millimeters up to 4-5 cm. As will be 
more clear in the following sections, even if the simple cysts are bags containing 
fluid, they have well-defined margins and can be correctly detected through an X-
ray mammogram. In contrast, since the complex cysts also contain solid parts, in a 
mammographic image they are no longer characterized by well-defined edges and 
regular opacity. In this case, to avoid failure in false positive or false negative results, 
a biopsy is strongly recommended. 

 

2.2.4. Carcinoma 

There are two most common forms of carcinoma [13]: invasive and not-invasive. 
The invasive carcinomas are those on which the dissemination of cancer cells tend 
to extend outside the origin place towards the surrounding and adjacent healthy 
tissues. The not-invasive carcinomas are those in which the cancerous cells remain 
inside of the membranes and of the lobes of the lactiferous ducts [14]. 

According to [14], the most frequently typologies of breast carcinomas are the 
following reported: 

 invasive ductal carcinoma: it is the most common type of breast cancer, 
representing about the 70-80% of the detected breast cancer cases, and forms 
in the cells of the lactiferous ducts; 

 invasive lobular carcinoma: it represents about the 10% of breast cancer 
diagnosis, and develops in the cells of the breast lobes; 

 ductal carcinoma in situ: it is a type of cancer that occurs inside the cells of 
the lactiferous ducts, but it does not extend to other parts of the breast tissues; 

 lobular carcinoma in situ: usually it does not represent a type of cancer, even 
if there are high possibilities that it develops in cancer. It consists of 
alterations in the cells that constitute the lobes of the breast. 
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2.3. The Main Actual Diagnostic Technique 

 

2.3.1. Breast Biopsy 

Once a suspicious area has been found inside the breast tissues, the only way to say 
with certainty whether it is a malignant cancer or not, is to implement a biopsy [12]. 
The discovery of the existence of such an area may has been made by using any 
physical examination, such as the X-ray mammography or other diagnostic tests that 
will be below described. During the biopsy [15] a small sample of cells or suspect 
body tissues are removed. Then, the extracted sample is sent to a pathology 
laboratory where it is processed and analyzed with a microscope. 

In modern medicine, the biopsy plays a primary role for the treatment of many 
diseases. Besides providing the diagnosis, it can provide prognostic information on 
the predictable course of the disease and guide the clinician, and in particular the 
surgeon, in the choice of the therapy to be applied to the patient. 

There are several types of biopsy and it is duty of a doctor advising the patient of the 
most appropriate method. However, the economic cost of these interventions is 
generally high. Therefore, it would be desirable trying to use a not invasive 
technique, in order to select the cases that mostly require the biopsy and to minimize 
the number of test with negative result. 

2.3.2. X-ray Mammogram 

The X-ray mammogram [12], based on the use of ionizing X-ray radiations, aims to 
detect and assess any change in the internal breast tissues. It is used as a diagnostic 
tool in order to identify and classify tumors, cysts, and calcifications. Because these 
anomalies can appear in a very similar way within a mammographic image, namely 
as white points or masses, it is very important, for a correct identification, a careful 
viewing by the radiologist and, if necessary, a biopsy is required. Looking at an X-
ray mammogram, the most common sign of a breast disease is a nodular opacity 
which can be round, oval, lobulated, or irregular. The margins of the opacity define 
its benign or malignant nature. Usually, opacities with regular margins identify 
benign anomalies such as calcifications and cysts, whereas, those with irregular 
margins are malignant. Indeed, the most representative signs of breast tumors are 
opaque formations with irregular or frayed edges. As example, the cases of both a 
benign and malignant breast pathology are represented in Figure 2.1. In particular 
Figure 2.1(a) shows the X-ray mammogram measured on a breast containing a 
benign mass, and Figure 2.1(b) shows the case where a malignant tumor is present. 
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Figure 2.1.   The X-ray mammogram. (a) Example of a digital mammogram image measured 
on a breast containing a benign pathology, it is worth noting the regularity of the margins. 
(b) A digital mammogram image measured on a cancerous breast, the tumor presents 
irregular margins. 

 

Nowadays, the X-ray mammogram is the most effective diagnostic method, and two 
different types of test are mainly used: the screening mammography (SM) and the 
diagnostic mammography (DM). The SM is an X-ray test usually performed in the 
case when the patient doesn't present critical symptoms. The objective is to detect a 
possible cancer during its early stage of development, namely when it is too small to 
be palpated by the doctor or the patient herself. The SM consists of two different 2D 
projections of both the breasts that are taken from two different angles. Since the 
goal is to detect and assess any significant change in the breast internal tissues, it is 
important that the exam should be consistently repeated by the patient with regular 
interval times. In the case on which the patient presents symptoms or the SM 
highlights symptomatic changes, it is better to perform a DM. This is an X-ray test 
for which, in addition to the images obtained with the screening mammography, 
multiple scans are made with the aim to carefully study the area of concern. 
Moreover, during a DM certain images are enlarged, or the display type is changed, 
trying to facilitate the assessment of the small areas of interest and to offer the 
possibility of a closer look. Finally, the diagnostic response suggests us if a biopsy 
exam is necessary in order to define the nature of the abnormal area, namely to know 
whether it is cancer or not. As said before, even if the mammography is the currently 
most effective method to detect tumors, frequently it is not able to accurately 
differentiate benign and malignant lesions. Therefore, the only definitive way to 
confirm the nature of a suspicious lesion, is to perform a biopsy. 
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During the X-ray mammogram, in order to prevent movement and create a thinnest 
tissue layer, the breast is compressed between two plates consisting of a plastic plate 
on the top and the X-ray plate on the bottom that are both attached to the machine. 
The compression allows to reduce the radiation exposure, the blur, and sharpen the 
image. Despite this operation can be uncomfortable and even painful for some 
women, it is necessary to obtain a good image. 

During the examination, the dose of radiation on which the patient is subjected is 
less than 1 mSv [16]. Where, the sievert (Sv) is the unit of measure of the equivalent 
radiation dose in the International System, and it is a measure of both the effects and 
damages caused by the radiation on the organism. The equivalent dose has the same 
size of the absorbed dose, or energy for mass unity. 

The entire procedure requires about 20 minutes. Depending on the type of used 
machine, there are two ways to store the images. With the Screen-film units the 
images are produced on a large sheet of film, whereas with the Full-field digital 
mammography units the data are captured in a digital format and the results are 
displayed on a computer screen. For the most of features it is possible to obtain the 
same level of accuracy by using both the formats. However, the digital 
mammography presents the important advantage that the original image can be 
enlarged and viewed in many different ways on the screen, and this can strongly help 
the work of the clinician operator. In any case, whether it be of images on film or 
digital, the important thing is that the screening must be read by competent people 
able to interpret the results. Usually this task is entrusted to the figure of the 
radiologist who is a doctor specialized on the diagnosis of internal diseases with the 
aid of images produced by means of X-rays, sound waves, magnetic fields or other 
imaging methods. 

2.3.3. Magnetic Resonance Imaging 

The magnetic resonance imaging (MRI) [17], also known as magnetic resonance 
tomography (MRT), is based on the physical phenomenon of nuclear magnetic 
resonance according which the nuclei of the examined elements, under the 
application of a magnetic field, absorb and emit electromagnetic radiation. 
Differently from the X-ray mammogram, the MRI is generally considered not 
harmful for the patient because the latter is not subjected to ionizing radiation. The 
information given by the MRI allow us to make discrimination between different 
tissues on the base of their biochemical composition. Moreover, even if this doesn't 
mean having the three-dimensionality, it is able to providing different body sections 
on three different planes, namely the axial, the coronal, and the sagittal. 
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The principle of operation is based on the fact that the patient is subjected to a strong 
static magnetic field. The intensity of the magnetic field can vary from tenths of 
Tesla (T), for small machines dedicated to the study of the joints, to 3 T for the 
machines currently used for diagnostic purposes. Some actual machines achieve 
magnetic fields of 7 T, while devices that operate to 8 and 9 T are under experimental 
trials [17]. 

As with mammography, even the MRI exam makes use of a special machine 
specially designed for the detection of breast tissues. This last is able to provide 
higher quality images than the equipment that is used for the MRI of other body 
parts. Nevertheless, not all the hospitals, or the imaging centers, have a dedicated 
tool for the MRI of the breast. 

A commercial scanner is mainly formed by elements that create static magnetic 
fields, or fields varying in time and space, and coordinated by a complex electronic 
control system. The primary elements are the main magnet, the radiofrequency coils, 
the gradient coils, and other auxiliary coils. In particular, the main magnet has the 
function of creating a static, homogeneous, and of high intensity magnetic field with 
the aim to permit the polarization of the nuclei. It is the largest and most expensive 
component of the entire system. The radiofrequency coils generate the rotating 
magnetic field at the Larmor frequency. The gradient coils generate the magnetic 
fields which vary linearly in space and that are indispensable to the images 
generation. At last, the other auxiliary coils serve to compensate for any irregularity 
or for modifying the geometry of the main fields. 

During the actual MRIs, the patient is lying prone on a platform with two cavities 
for the breasts and must remain still for the entire test duration, where the required 
time is about 30-45 minutes [12]. Usually, a contrast material named gadolinium is 
injected into the patient prior to the examination in order to help a clearest 
visualization of the internal breast tissues. The presence of prosthesis, vascular clips, 
pacemakers and other medical-surgical devices can, in many cases, prevent the 
execution or the correct reading of the test. 

Normally, the obtained images have dimensions varying from 256 × 256 pixels to 
1024 × 1024 pixels, with a depth of 16 bits/pixel. This involves an intrinsic spatial 
resolution rather low, where details of 1 mm are practically at the limit of visibility. 

Nevertheless, the importance of the MRI is in the fact that it is able to discriminate 
between internal tissue that if studied with the X-rays they should have the same 
transparency. In fact, a fundamental characteristic of the MRI is the ability on 
varying the image contrast by simply modifying the sequence of machine excitation. 
As example, it is possible to highlight or suppress the signal due to the blood, or to 
obtain functional character information rather than simply morphological. 



  
  Ph.D. Thesis – Claudio Lenzi 
 

 

 
 
  15 
  

Summarizing, the main disadvantages of using the MRI are: high costs, long time 
required for image acquisition and the fact that the proper equipment is not available 
in all facilities. 

Nevertheless, because the MRI doesn't involve the use of ionizing radiation, it is 
more indicated when there isn't particular need to have a very high spatial resolution. 
Furthermore, since the bones are white viewed by the X-rays, the MRI is more useful 
in the case of lesions located close to bony structures. 

 

2.3.4. Ultrasound 

The Ultrasound (US) [18] is another medical diagnostic method that doesn't use 
ionizing radiation. It is based on the physical principle of measuring the echoes that 
are reflected when ultra-sound waves are transmitted through the biological tissues. 
The US is an operator-dependent procedure, because it needs of special qualities of 
dexterity and observation, culture of the image, and clinical experience. 

An ultrasound scanner mainly consists of three parts: a probe, an electronic system 
and a display system. The probe is used in order to radiate and measure the signals. 
The used signals are selected inside the ultrasound band of frequencies, and they are 
chosen taking into account that higher frequencies are able to providing a higher 
images resolution, but lower capacity of penetrating deep inside the biological 
tissues. The ultrasound waves are generated by using a piezo-ceramic, or piezo-
electric, crystal that is inserted into the probe and maintained in direct contact with 
the patient’s skin. Usually, a special gel is interposed between the probe and the skin 
with the aim to helping the ultrasound in penetrating the examined anatomical object. 
The electronic system is used in order to drive the transducer, generate the transmit 
pulse, receive the return echoes, and process the received signals. Finally, the display 
system is used to display the measured data via on-screen images. 

The signals processing is focused on detecting the acoustic impedances of the 
different media. By varying the radiating aperture of the antenna, it is possible to 
change the depth up to which the beam can be considered as parallel, so that the 
incident wave can be considered as plane wave. In this way the acoustic impedance, 
that normally is a complex quantity, is real. 

The acoustic impedance, denoted by Z, is given by the ratio between the sound 
pressure and the vibration speed of the particles at one point. It is a characteristic 
property of the propagation medium. In the case of a plane wave the impedance is 
purely resistive and computable by means of the following Equation 2.1. 
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 Z v  (2.1) 

Where "ρ" is the medium density, and "v" is the speed of propagation of the wave 
inside the medium. The measuring unit of the acoustic impedance is the rayl. 

 

The acoustic propagation in a medium depends on the impedance of the latter, 
namely the resistance offered by the material to the passage of the sound. This 
translates into a progressive attenuation of the beam due to the loss of energy. 
Furthermore, when an acoustic wave encounters an interface between two different 
media of different acoustic impedance, a part of the wave is transmitted, and part is 
reflected on the interface. The notion of acoustic impedance allows us to study 
qualitatively and quantitatively the phenomenon, and estimate the amount of 
acoustic energy transmitted and reflected. The reflected signal percentage contains 
information on the difference of impedance between the two medium, and it can be 
estimated through the Equation 2.2. 
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Where, R is the reflected signal percentage, Z1 and Z2 are respectively the acoustic 
impedances of the first and the second medium. 

 

The time taken by the wave during both the forward and return path, and the depth 
from which the echo arrives are computed by the electronic system. The found point 
is related to an interface between two different media. By looking Equation 2.2, since 
the bones are characterized by an acoustic impedance much greater than the human 
tissues, it is evident that an US exam can't detect human tissues that located behind 
the bones. Moreover, both the air and gas zones, that are characterized by smaller 
values of acoustic impedance, are classified as shadow zones. 

In conclusion, the advantages in favor of an US exam may be: the fact that it doesn't 
use ionizing radiation, low times of computation and test execution, low costs, and 
ultimately the usefulness that results in the fact of being able to be used to perform 
ultrasound-guided biopsies. In fact, the US may also be useful in helping a doctor to 
guide the needle during a biopsy. The main disadvantage is that it is a highly 
operator-dependent technique. 
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2.4. Performance of the Diagnostic Techniques 

2.4.1. Standard Statistical Diagnostic Parameters 

Usually, in the medical field, the performance of the diagnostic techniques is 
evaluated by using some statistical diagnostic parameters. The most common and 
popular error indexes, representing the standard used statistical parameters, are the 
sensitivity, the specificity, and the overall accuracy. Generalizing, these terms 
represent a statistical measure of the performance of a binary classification test. 
Other parameters, that not always are declared in medical fields but that are 
important for describing the performance of a binary test, are the positive predictive 
value (PPV) and the negative predictive value (NPV). In the following of the present 
section, all the above statistical parameters are in detail described. 

The sensitivity, also known as true positive rate, is a parameter related to the ability 
of the diagnostic technique in correctly detecting the actual positive exams. As 
reported in Equation 2.3, it is defined as the proportion of sick patients for whom the 
test correctly detects the disease, namely the number of true-positive results, with 
respect to the total number of sick patients, namely the entire amount of both the 
true-positive and false-negative results. In other words, it is the probability that, 
given an actually sick patient, the test produces a positive outcome. 

 
TP

sensitivity
TP FN




 (2.3) 

Where the terms on the right represent: the true-positive (TP) results, namely the 
number of actually sick patients that are correctly diagnosed as sick; the false-
negative (FN) results, namely the number of actually sick patients that are incorrectly 
diagnosed as healthy. 

Sometimes, in the medical field, some reports refer, instead of the sensitivity, to the 
false negative rate. Where this last represents a parameter of accuracy for the patient 
side and, as reported in Equation 2.4, it is closely related to the sensitivity 
representing its complementary value. 

  1
FN

false negative rate sensitivity
TP FN

  


 (2.4) 

As higher as possible is the sensitivity value, and as more as possible the diagnostic 
technique can be considered reliable in correctly detecting patients that are really 
sick. However, this parameter cannot be used alone; in fact, by considering a 
diagnostic exam that for some reasons produces only positive results, this test 
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theoretically presents a sensitivity of 100%, when this high value is derived only by 
the fact that the test does not produce negative outcomes. For this reason, the 
sensitivity must be always considered together with the specificity. 

The specificity, also named as true negative rate, is a parameter related to the ability 
of the diagnostic exam in correctly identifying the negative test results. As defined 
in Equation 2.5, it is defined as the proportion of healthy patients for whom the test 
has not detected the disease, namely the number of true-negative results, respect to 
the total number of healthy patients, namely the entire amount of both the true-
negative and false-positive results. In conclusion, it is the probability that, in 
presence of an actually healthy patient, or evenly a not-sick patient, the exam 
produces a negative outcome. 

 
TN

specificity
TN FP




 (2.5) 

Where the right terms are: the true-negative (TN) results, namely the number of 
actually healthy patients that are correctly diagnosed as healthy; the false-positive 
(FP) results, namely the number of actually healthy patients that are incorrectly 
diagnosed as sick. 

Even in this case, if we consider a test that for some reasons provides only negative 
results, due only to the fact that there are not positive cases, it should present a 
specificity value of 100%. Therefore, if lonely considered, also this parameter is 
meaningless and it must be always evaluated together with the sensitivity. 

Also for the specificity, some reports refer to the false negative rate. As reported in 
Equation 2.6, this term represents a parameter of accuracy for the patient side that is 
closely related to the specificity. 

  1
FP

false positive rate specificity
TN FP

  


 (2.6) 

Another error index whose meaning is different from that of the sensitivity, but 
which can easily be confused with it, is the positive predictive value (PPV). As 
described by Equation 2.7, the PPV is defined as the ratio between the number of 
true-positive results and the total number of both the true-positive and false-positive 
results. The main difference with respect to the sensitivity is due to the fact that: 
while the latter represents an accuracy parameter for the patient, namely the number 
of true-positive results with respect to the total number of actually sick patients, the 
PPV is an accuracy parameter for the instrument itself that performs the test, namely 
the number of true-positive results with respect to the total number of patients that 
are diagnosed as sick from the test. 
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PPV
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 (2.7) 

Differently, as reported in Equation 2.8, the negative predictive value (NPV) is 
defined as the ratio between the number of true-negative results and the total number 
of cases diagnosed by the exam as negative, namely both the true-negative and false-
negative results. The main difference with respect to the specificity is due to the fact 
that: while the specificity represents a parameter of accuracy for the user, namely the 
number of true-negative results compared to the total number of actual healthy 
patients, the NPV is a parameter of accuracy for the tool that performs the test, 
corresponding to number of true-negative diagnoses than the total number of patients 
that are correctly or wrongly diagnosed as healthy by the test. 

 
TN

NPV
TN FN




 (2.8) 

At last, in addition to the parameters above discussed, generally also the overall 
accuracy, or simply accuracy, of the diagnostic technique is computed. As defined 
in Equation 2.9, this parameter is defined as the ratio between the total number of 
cases that are correctly detected and classified by the diagnostic exam, namely the 
number of both the true-positive and true-negative results, and the total number of 
analyzed cases. 

 
TP TN

accuracy
TP TN FP FN




  
 (2.9) 

 

 

2.4.2. Clinical Studies and Values of the Standard Statistical 
Diagnostic Parameters 

At present, the X-ray mammogram is the standard diagnostic technique for breast 
cancer detection. One of the major reasons is related to its high resolution, reaching 
order values of the fractions of millimeter [19]. However, this technique suffers of 
various problems and limitations. First, since it exposes the patient to ionizing 
radiations, it is well known that it subjects the women to serious health risks and can 
increase the chances of cancer development [20]. In addition, due to the 
uncomfortable breast compression, it can be painful for the patient. 

Another important problem regarding the X-ray mammogram is related to the wide 
variability of the number of detection failures, namely the false negative detections. 
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In fact, as reported in [3], the X-ray mammogram shows sensitivity values that vary 
in the range of 66% and 96%. This wide variability can be attributed to several 
factors [3]: such as the technical quality of the acquisition instrumentation, the 
latitude and the display contrast of the image, the skills and the experience of the 
radiologist that interprets the images, the breast compression, the size and the density 
of analyzed breasts, and the type of cancer that is present. Differently the values of 
specificity are more reliable, varying in the range from 88% to 99% [21]. 

An alternative technique for breast cancer detection is the MRI. It offers higher 
values of sensitivity, reaching the 94% [5, 22]. On the other hand, the MRI is an 
expensive exam and not all the hospitals have the suitable instrumentation. 
Moreover, it suffers of low values of specificity, varying between the 26% and 37% 
[5, 22], and this can lead to over diagnosis. These results make that the MRI is not 
currently used for detecting breast cancer, with except for the cases of high risk [23, 
24]. Moreover, in [22] was found that some lesions, not detected with X-ray 
mammogram, were instead diagnosed by the MRI. These anomalies had a diameter 
size varying between 3 and 12 mm. For these reasons, in [22] it is concluded that the 
MRI can be used in the case of radiographically dense breasts, or that received 
silicone implants or extractions of nodules. 

Also the performance of the US techniques was studied in literature. In [4] was found 
that it offers a false negative rate of 17%, corresponding to a sensitivity of 83%. 
Another study was made in [25] by considering the situations of palpable masses 
inside of radiographically dense breasts. In this cases, using as example an X-ray 
mammogram, both the benign and malignant masses can be partially or completely 
obscured, and thus not visible. Several examples of such a situation have been 
examined with the US technique achieving a false negative rate of value 25% [25]. 
Other studies have been done by taking under consideration both breasts with 
palpable and breasts with not-palpable lesions. The results have reported false 
negative results rather high, varying in the range between 0.3% and 47% [25, 26, 27, 
28, 29], where the higher values are due to cases of not-palpable tumors. At, last, it 
has been experienced that the US presents an important skill in determining the form 
of internal mass, achieving an accuracy of 96% in the diagnosis of cysts [30]. 

In order to improve performance, various modalities of four different diagnostic 
techniques, consisting of the X-ray mammogram, the MRI, the US, and the clinical 
examination, were assessed in [4, 5]. During these studies, 258 female patients have 
been involved, namely 177 patient having a malignant tumor, and 81 healthy 
patients. The obtained results are illustrated in Table 2.1. 

Looking at the table, it is evident that in the case where the X-ray mammogram, the 
MRI, and the clinical examination are together used, a sensitivity of 99.4% can be 
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reached. On the other hand, using this combination, the corresponding value of 
specificity is very low, and equal to 7%. The opposite case is when the clinical 
examination is alone applied, achieving values of sensitivity and specificity 
respectively equal to 50.3% and 92%. 

Concluding, looking at the table, it appears immediately evident that, using different 
combination modalities of different diagnostic techniques, the single values of both 
the sensitivity and specificity can be varied and improved. However, the values of 
the overall accuracy, which accounts for the values of the sensitivity and specificity 
together, vary in a range between the 63.6%, corresponding to the case where the 
clinical examination is alone applied, and 75.6%, in the case where the X-ray 
mammogram and the clinical examination are together used. 

 

Table 2.1. Performance obtained using various combination modalities of different 
diagnostic techniques. 

Diagnostic Techniques 
Performance Statistical Parameters 

Sensitivity 
(%) 

Specificity 
(%) 

PPV 
(%) 

Accuracy 
(%) 

X-ray mammogram, clinical 
examination, MRI 

99.4 7.0 70.1 70.5 

MRI 94.4 26.0 73.6 72.9 

X-ray mammogram, clinical 
examination, US 

93.2 22.0 72.4 70.9 

X-ray mammogram, US 91.5 23.0 72.3 70.2 

US 83.0 34.0 73.5 67.8 

X-ray mammogram, clinical 
examination 

77.4 72.0 58.6 75.6 

X-ray mammogram 67.8 75.0 85.7 70.2 

Clinical examination 50.3 92.0 94.0 63.6 
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3. The Microwave Diagnostic Techniques 
 

 

 

3.1. Introduction 

The interaction between the electromagnetic (EM) waves and the matter, such as the 
healthy or malignant human tissues, depends on the dielectric properties of the 
material itself, and these properties are directly related with the amount of the water 
content. Because the healthy breast is mainly formed by adipose and fibro-glandular 
tissues, it can be classified as an organ of low water content. Differently the tumors, 
due to the greater vascularization of both the internal and surrounding areas, contain 
a higher amount of blood and they can be classified as tissues of high water content. 
This leads to an increment of both the values of conductivity and relative dielectric 
permittivity, in contrast than those of the surrounding normal healthy tissues. 

Several studies and experiments have shown a remarkable diversity in the dielectric 
properties at microwave frequencies between the normal healthy breast tissues and 
the malignant tissues [31, 32, 33]. In recent decades, the existing contrast between 
the electromagnetic properties of malignant and healthy breast tissues has driven the 
development of microwave imaging techniques. Nevertheless, the dielectric 
properties of the healthy breast tissues can be highly different from patient to patient. 
In fact, the contrast between these properties and those related to tumors can vary in 
a range between 10% and 400% [34]. 

Nowadays, the microwave diagnostic techniques represent a promising alternative 
method for the detection of breast cancers. Among these, different modalities have 
been studied and proposed in literature, where they can be subdivided into two main 
topologies: consisting of the passive [35, 36] and the active approaches [31, 37, 38, 
39, 40, 41, 42]. Using the passive systems, the energy radiated from the scenario is 
directly detected without using any external excitation, then the variations on the 
material properties inside the investigation domain are mapped through suitable 
elaboration of the collected signals. Differently, with the active approaches, the 
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domain of investigation is illuminated by using signals at microwave frequencies, 
then the backscattered signals are recorded and processed in order to obtain a "map" 
of the dielectric variations inside such a domain. Among the active techniques, the 
most in alternatives are those based on microwave tomography (MT), those based 
on ultra-wide band (UWB) radar imaging, and hybrid modalities. 

Some hybrid modalities [43], are based on both the radar methodology, that is 
initially used to identify the spatial location of dielectric variations, and the 
microwave tomography, that is used to determine, through the formation of images, 
the shape and the nature of the materials within the scenario of interest. Differently, 
others hybrid techniques [44] exploit the physical phenomena on which, when a 
pulsed microwave signal is used in order to illuminate the domain of investigation, 
the absorbed microwave energy causes the radiation of acoustic waves. These last 
are detected by using an ultrasound transducer and the collected signals are 
processed with the aim to identify the presence and location of tumors. 

In the following sections, this chapter will describe in more detail the passive 
systems, and the active systems based on both the microwave tomography and UWB 
radar imaging. 

 

3.2. Passive Microwave Imaging Techniques 

3.2.1. Method and Measured Physical Parameters 

The passive microwave imaging techniques are also known with the name of 
microwave radiometry systems. According with the law of Planck, they are based on 
the measurement of EM fields that are spontaneously radiated from the bodies in 
function of their temperature. Since a heat increment is often related to the presence 
of tumors, the temperature can be used as a parameter to detect the existence of 
malignant lesions. In fact, because the cancer cells present a higher metabolism and 
a considerable blood perfusion, this fact may cause a temperature increment, in a 
range of 1 to 3 Celsius degrees, with respect to the surrounding tissues [45]. 

Bodies at elevated temperatures emit radiation at all frequencies with a peak in the 
infrared region. In the microwave region the radiation is minor, however in 
biological tissues the infrared radiation suffers of a reduced depth of transmission 
with respect to microwave frequencies, respectively of the order of millimeters 
compared to that of centimeters. It is for this reason that, since the 1970, the 
microwave radiometry has been proposed as a diagnostic technique for the detection 
of tumors [45]. 
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3.2.2. Acquisition Systems 

The emitted thermal noise power is connected to the spatial distribution of 
temperatures of the internal breast tissues. The measure of such a power is obtained 
by using a receiving system, named radiometer, which measures the emitted 
radiation [5, 46]. This instrument can be placed directly in contact with the breast or 
closer to it. However, in many cases it is preferable to place the sensor in contact in 
order to both improve the sensitivity and reduce the uncoupling caused by the layer 
of air that is present between the antenna and the breast. 

One of the main problems, regarding the microwave radiometry, is related to the low 
sensitivity of the sensor, that it should be able to detect the small powers of the 
signals radiated by the tumor cells. A possible solution could be to use a cooling 
system with the aim of reducing the temperature of the microwave sensor [47], or 
implementing an ad hoc designed receiving system. For example, in the recent study 
[48], an active antenna, that is directly integrated with low-noise amplifiers (LNAs), 
has have been specifically tested to be used in the microwave radiometry. 

Another problem is related to estimating the spatial distribution of the temperature 
of the internal breast tissues. In fact, for example, a cold target located close to the 
skin can produce the same radiated signal of another hot target that is located deep 
inside the breast. This problem can be solved by using a microwave radiometer able 
to measuring signals at different frequencies as proposed in [49] where also the size 
of the heat sources have been estimated. 

Due to the nature of the signals that are measured with the microwave radiometry 
systems, different measurement errors can be attributed both to external EM 
interferents, such as wireless devices, and to internal EM interferents, caused by the 
radiometer itself. On one hand, the effects of the external interferents can be reduced 
through suitable filtering or shielding devices, on the other hand, the systematic 
errors related to the radiometer can be easily eliminated by carefully calibrating the 
measurement system. 

3.2.3. Performance of Microwave Radiometry 

In the literature, different studies have been made with the aim to assess the 
performance of the microwave radiometry systems. In [50], a clinical study was 
performed on the breasts of 129 patients. For each case, different measurements were 
performed in 20 different positions around the breast and, for each of these, the 
sensor was held stationary for 15 seconds before moving to the next position. The 
results have highlighted that, using the microwave radiometry, tumors can be 
detected with a sensitivity of 90% and a specificity of 59%. 



  
  Ph.D. Thesis – Claudio Lenzi 
 

 

 
 
  25 
  

In [51], another clinical trial was performed on 5 different patients having a 
malignant breast cancer. In order to compare different results, the measurements 
were made by using two different radiometers operating in two different bands of 
frequency. The first was designed to operate in the range of frequencies from 1.5 to 
2 GHz, and the second in the range between 2.75 and 3.25 GHz. The characteristics 
of the two radiometers used in this experiment suggest us that: the first, because it 
works at lower frequencies, should be more adept on finding deeper lesions; while 
the second, working at higher frequencies, should be better able on detecting smaller 
tumors. However, the results showed that: in the case of four patients, having tumors 
positioned at depths lower than 0.3 cm, both the radiometers have correctly detected 
the tumor presence; instead, in the remaining patient, having a lesion at a depth 
greater than 0.3 cm, none of the two instruments has correctly detected the tumor 
presence. 

The passive microwave techniques present some important advantages. First, during 
the diagnostic exam neither the patient nor the medical technicians are exposed to 
any electromagnetic radiation. Moreover, these methods can be used to detect tumors 
even inside the male breasts, which could not be done with the X-ray mammogram. 

The main drawbacks linked are related to the fact that, anomalies located too deep 
inside the breast tissue are difficult to detect. In fact, the thermal radiation that comes 
from the malignant tissues is attenuated by the passage through the different layers 
of each healthy tissue, furthermore it is reflected and refracted at the various 
interfaces between the different tissues. So that, a crucial limit for the microwave 
radiometry is the extremely low power level of the thermal noise signal emitted by 
materials with losses, equal to about 10–15 Watt [52]. These results suggest us that 
the microwave radiometry systems could not be indicated to be used in the case of 
tumors located deep inside the breast tissues, or over a certain threshold of depth. At 
last, there is the risk of confusing the colder areas located close the outer surface, 
with the hot zones situated deeper inside the breast tissues. 

 

3.3. Active Microwave Imaging Techniques 

3.3.1. UWB Radar Imaging 

As it is guessed from the name, the UWB radar imaging techniques use very short 
microwave signals—the so-called UWB microwave pulses—in order to illuminate 
the scenario contained inside the domain of investigation. Then the image is re-
constructed through suitable software processing of the measures of the received 
radar signals. 
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These last are also known with the name of backscattered radar signals, because they 
are consequence of the electromagnetic scattering produced by the objects that are 
inside the domain of investigation. 

3.3.1.1. Acquisition Systems 

In a UWB radar imaging system, two different configurations of transmitting and 
receiving antennas, consisting of the multi-static [53] and the mono-static [42] radar 
approaches, can be used during both the operations of illumination and measurement. 
The multi-static radar configuration consists of using an antenna array of N elements. 
Each element, one at a time, radiates the incident pulse and the backscattered signals 
are recorded at the same time by all the—(N) or (N-1)—elements. In contrast, in the 
mono-static configuration, one at a time each single element of the antenna array 
radiates the UWB pulse and then measures the backscattered radar signal. In other 
words, it is equivalent to use only one single antenna, for both the operations of 
illumination and measurement, repeating the process for a fixed number of different 
space locations. 

The measures of the backscattered fields may be obtained either through 
experimental way, by making measurements with actual prototypes of antenna 
systems, both through numerical way, using suitable software programs that simulate 
the electromagnetic wave propagation. 

The first studies of experimental systems for UWB radar imaging, conducted on 
human tests, were developed at the University of Bristol, UK [39, 40, 54]. In 
particular, different prototypes of antenna arrays, characterized by a different 
number of elements—16 elements in [39], 31 in [54], and 60 in [40]—distributed 
over a hemispherical surface, were proposed. The patient is supposed to be laying 
on the prone position, the antenna array is positioned in contact with the breast, and 
the measures are collected using a multi-static radar system configuration. The 
experimental system operates in the frequency range of 4–8 GHz [40]. Others 
applications to human cases have been studied using the prototype system for UWB 
radar imaging developed at the University of Calgary, Canada [41]. In this 
experimental system, the patient is assumed to be laying on the prone position with 
the breast that extends inside a tank containing a coupling liquid and the sensor 
system. This last consists of both an UWB antenna and a laser. Both these two 
elements are attached to an arm used in order to move the sensor, and the measures 
are obtained according to the mono-static radar system configuration. The UWB 
antenna operates over the range frequencies between 0.5 GHz and 15 GHz. The 
measures of the backscattered signals are suitable processed in order to produce 3D 
images, whereas the laser data are used to better define the volume of interest with 
the aim of suppressing the strong components reflected from the skin. 
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Even though studies with actual experimental systems are present, in the literature 
related to the UWB radar imaging techniques, it is easier to find proposals that are 
preliminarily assessed and tested using radar data measurements obtained through 
numerical simulation. 

In this contest, the finite-difference time-domain (FDTD) method is one of the most 
common numerical modeling technique used to simulate the propagation of 
electromagnetic waves in biological tissues [55]. In order to acquire the measures of 
backscattered radar signals that properly refer to realistic situations, it is necessary 
to have numerical breast phantoms that accurately describe the geometries and the 
dielectric properties of both the malignant and healthy tissues. To this end, realistic 
3D models of the healthy breast tissues were developed and made available at the 
numerical breast phantom repository of the University of Wisconsin cross-
disciplinary electromagnetic laboratory (UWCEM) [6]. In this database, the 
anatomical structures and the tissues distribution of 9 different actual breasts were 
stored. The data have been obtained starting from 9 actual three-dimensional MRI 
images where, using the appropriate dielectric properties, each MRI voxel has been 
mapped in the corresponding voxel inside the FDTD model. The voxel’s dimension 
is (0.5 × 0.5 × 0.5) mm3. The numerical breast phantoms are classified on the base 
of their radiographic density into four main classes: mostly fatty (2 models), scattered 
fibro-glandular (3 models), heterogeneously dense (3 models), and very dense (1 
model). An example of a model which belongs to the scattered fibro-glandular class 
is reported in Figure 3.1. As showed in figure, each numerical model distinguishes 
eight different typologies of healthy breast tissue: the skin, three types of adipose 
tissue, a transitional tissue, and three different typologies of fibro-glandular tissue. 
All these tissues can be dielectrically characterized using both the Cole-Cole or the 
Debye model. 

 

 

Figure 3.1.   Sagittal section of a 3D realistic breast phantom provided Sagittal section of a 
3D realistic breast phantom made available at the UWCEM database. 
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Since the UWCEM models are aimed to describe only the healthy breast tissues, a 
cancerous breast can be modeled by inserting a dielectric anomaly characterized by 
suitable values of the dielectric parameters. On the basis of experimental measures 
from cancer surgeries, the parameters for a Cole-Cole description of breast tumors 
were developed in [33]. The Debye parameters can be obtained from the Cole-Cole 
ones by minimizing the cost function proposed by [32]. 

 

3.3.1.2. Beamforming Algorithms 

In the UWB radar imaging technique, the collected backscattered radar signals are 
processed using a time-domain image-formation algorithm—the so-called 
beamforming algorithm—in order to achieve a quantitative imaging of the breast 
that allows to determine the presence and location of the most significant dielectric 
scatterers. In this contest, several beamforming algorithms were proposed in 
literature, where they are differentiated in two different main categories: the data-
dependent (DD) beamforming and the data-independent (DI) beamforming. 

Between the most cited examples of DD algorithms there are the multi-static 
adaptive microwave imaging (MAMI) [56], the multi-input multi-output (MIMO) 
[57], and the time-reversal multiple signal classification (TR-MUSIC) [58, 59]. 
These techniques can reach high values of resolution in the case where the array 
steering vector—namely the set of phase delays of the wave when arrives to the 
different elements constituting the antenna array—is well known for the signal of 
interest. However, when dealing with realistic cases, it is difficult to accurately 
determine this component [7]. 

In order to overcome these drawbacks, some promising DI beamforming algorithms, 
that are free from the constraint of knowing the above information, were proposed 
in literature. Examples of the most studied and discussed DI algorithms are: the 
delay-and-sum (DAS) [31, 42, 55], the improved-delay-and-sum (IDAS) [60], and 
the delay-multiply-and-sum (DMAS) [61]. Usually these algorithms, in order to 
compensate the dependence of both the signal attenuations and dispersions from the 
propagation path inside dispersive tissues, use an assumed and homogeneous 
dielectric breast model. This model is used in order to approximating the times of 
arrivals of the signals with the aim of focusing the overall responses at specific 
locations. According to [55], the resulting accuracies are high in the case where 
homogeneous breast models are used, but they worsen where the heterogeneity of 
the internal tissues increases. In the following, the main DI beamforming algorithms 
are described in more detail. 
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3.3.1.2.1. Delay-and-Sum 

The traditional DAS beamforming algorithm [31, 42, 55] is based on the use of the 
mono-static radar system configuration described in Section 3.3.1.1. According to 
such configuration, for each different radar position, the breast is illuminated with 
an UWB microwave pulse and the backscattered radar signal is measured by means 
of the same Tx/Rx antenna. The DAS algorithm implies that the backscattered radar 
signals, measured at different time instants, are added together creating the so-called 
synthetic focal points. In this way, if a tumor exists in a particular focal point, the 
contributions due to its presence are added up in a coherent way. In contrast, the 
contributions backscattered from the confused masses—consisting of changes in the 
type of the healthy tissues—are added up incoherently and, therefore, suppressed. 
Using the DAS approach, the energy is measured and stored at each synthetic focal 
point and, by varying the position of such fires within the breast tissues, a spatial 
profile is created, where to each focal point corresponds one pixel of the image. 

Using N different radar antenna positions, it is possible to collect N different radar 
measures. Under this hypothesis, the energy associated with the focal point r—which 
corresponds to the Cartesian coordinates r = (x, y, z)—can be described according to 
Equation 3.1. 
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Where: E(r) is the energy associated with the focal point, T is the time window, Sn 
is the nth backscattered radar signal, tn(r) is the nth discrete time delay, dn(r) is the 
distance between the focal point (r) and the nth radar antenna position (rn), v is the 
average speed of propagation inside the breast tissues, T is the interval of sampling, 
and wn is a weight component introduced to compensate for the radial spread effect 
due to the cylindrical wave propagation of the incident UWB pulse. In [42] the 
weight component wn was estimated as (1/ dn(r)). 
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An example of multi-static configuration of the delay-and-sum algorithm (M-DAS) 
was developed by [62]. It is easy to understand that, using a multi-static system 
consisting of N elements it is possible to record N2 different signals, where the higher 
number of recorded channels should provide more information on the target. 
However, in [62] only (N(N-1)/2) channels have been considered. In fact, because 
the reciprocity, not all the measured traces produce useful information for imaging 
the breast profile. Using the M-DAS, the energy associated to the pixels can be 
described as reported in Equation 3.2. 
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Where: E(r) is the energy, T the time window, Sn the nth measured radar signal, tn(r) 
the nth discrete time delay, dn(r) the nth distance, and wn the nth weight component. 

 

3.3.1.2.2. Improved-Delay-and-Sum 

The IDAS beamforming algorithm [60] was developed to work on the radar signals 
measured using a multi-static radar system configuration. As mentioned in Section 
3.3.1.1, using such configuration, one at time each element of the antenna array 
radiates the UWB pulse, and the backscattered signals are recorded by all the 
antennas at the same time. Substantially, the IDAS algorithm is an improvement of 
the traditional DAS in which an additional weighting factor—the so-called quality 
factor (QF)—has been introduced. 

The QF is computed for each single focal point that is located inside the breast, and 
it represents a measure of the coherence between all the traces of the backscattered 
radar signals. First, for each focal point, the energy measured at different channels is 
summed and displayed together with the number of channels used. Then, the 
obtained curves of energy are normalized to the standard deviation of energy (σe) 
using the multiplication factor [1 / (1 + σe)]. At last, for each focal point, a polynomial 
of the second order (y = ax2 + bx + c) is fitted to the normalized curve of energy. 
The obtained values of a are assumed to be the quality factor values. 

Using the IDAS algorithm, in the case where an antenna array of N elements is used, 
the energy associated with the focal point r—with Cartesian coordinates r = (x, y, 
z)—is described using the following Equation 3.3. 
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Where: E(r) is the energy, QF(r) is the quality factor associated with the focal point 
r, T is the time window, Sn is the nth measured radar signal, wn is the nth weight 
component, tn(r) is the nth discrete time delay, dn(r) is the nth distance, v is the average 
speed of propagation inside the breast tissues, and T is the interval of sampling. 

 

3.3.1.2.3. Delay-Multiply-and-Sum 

The DMAS beamforming algorithm [61] represents another variant of the traditional 
DAS algorithm, and it can be applied using both a mono-static or a multi-static radar 
system configuration. In the DMAS algorithm the recorded signals are time shifted 
according to the computed discrete time delays. Then, the shifted signals are in pairs 
multiplied before to be summed and squared in order to obtain the energy of the focal 
points. In conclusion, the DMAS algorithm is very similar to the DAS, but with the 
addition of the pairing multiplication procedure. Equation 3.4 describes the energy 
that is computed at the focal point with Cartesian coordinates r = (x, y, z). 
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Where: E(r) is the energy, N is the number of the recorded channels, T is the time 
window, Sn is the nth measured radar signal, tn(r) is the nth discrete time delay, dn(r) 
is the nth distance, v is the average speed of propagation inside the breast tissues, and 
T is the interval of sampling. 

 

3.3.1.2.4. Performance of Beamforming Algorithms 

In order to assess the performance of the beamforming algorithms described in the 
previous paragraphs, namely the DAS, the M-DAS, the IDAS, and the DMAS, 
numerical simulations were performed in [55] using 3D realistic breast models taken 
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from the UWCEM database. In particular, in order to consider different distributions 
of internal tissues, three different 3D representations of the healthy breast were 
considered. 

The first representation consists of a homogeneous breast model composed by only 
the skin and three typologies of adipose tissues. The second is modeled as normal 
breast model characterized by the presence of the skin, the adipose tissues, and only 
one typology of fibro-glandular tissue. At last, the third phantom consists of a 
heterogeneous breast model composed by the skin, three typologies of adipose 
tissues, and three typologies of fibro-glandular tissues. 

Since the models taken from the UWCEM database aim to describe the dielectric 
properties of only the healthy breast tissues, in order to test the performance of the 
beamforming algorithms in detecting the presence of malignant lesions, different 
dielectric anomalies were inserted inside the breast models. In particular, tumors of 
three different dimensions—with global diameter values respectively equal to 5 mm, 
10 mm, and 15 mm—were positioned in two different locations inside the considered 
healthy breast models. 

All the healthy and malignant breast tissues were dielectrically characterized using 
the single pole Debye equation. The measures of the backscattered radar signals were 
obtained through numerical simulation using a software based on the finite-
difference time-domain (FDTD) method. The used UWB signal consists of a 
differentiated Gaussian pulse of time duration 120 ps, and central frequency of 7.5 
GHz. 

In order to quantify the performance of the various beamforming algorithms, a 
suitable parameter—defined as the Signal to Mean Ratio (SMR)—was used. The 
SMR describes the ratio between the energy of the measured tumor response and the 
average energy due to all the responses of the healthy tissues contained inside the 
breast. Since the data of the backscattered radar signals are collected through 
numerical simulations, the denominator term can be simulated considering the breast 
model in absence of the anomaly. Instead, the contribution of the anomaly was 
obtained by performing the subtraction between the case of breast geometry with 
anomaly and the case of breast geometry without anomaly. In this contest, for each 
of the three models, for each of the six tumor’s cases, and for each beamforming 
algorithm, the average SMR values have been computed. 

Using the homogeneous breast model, the beamforming algorithms DMAS, IDAS, 
M-DAS, and DAS have provided average values of SMR respectively equal to 16.97 
dB, 15.09 dB, 13.19 dB, and 10.12 dB. In this ideal case, the traditional DAS appears 
to be the weaker algorithm, whereas the DMAS seems to be the better one. However, 
in the case where the normal breast model is used, the performance of all the 
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beamforming algorithms are considerably reduced, showing for the DMAS, IDAS, 
M-DAS, and DAS, average values of SMR respectively equal to 13.39 dB, 8.84 dB, 
10.22 dB, and 7.47 dB. These results show that the performance decrease with the 
introduction of the fibro-glandular region. In fact, in this situation the breast can no 
longer be considered as uniform, and the existing contrast with the propagation 
model assumed by the algorithms decreases the accuracy. At last, using the 
heterogeneous breast model, the average SMR values related to the DMAS, IDAS, 
M-DAS, and DAS, were respectively equal to -3.22 dB, -10.93 dB, 0.51 dB, and 
3.14 dB. It worth noting that, where the SMR value is negative, it means that the 
average energy related to the healthy breast tissues is greater than the response due 
to the anomaly. 

In conclusion, the results reported in [55] suggest that, between the algorithms 
studied, the DAS is the most robust beamforming algorithm. In fact, in the case 
where a more complex scenario is used in order to best characterize the realistic 
breast tissues, the traditional monostatic DAS is the algorithm that provides the best 
results. 

 

3.3.2. Microwave Tomography 

The microwave tomography (MT) techniques are focused at obtaining the actual 
distribution, namely the image, of the dielectric properties of the internal breast 
tissues. The aim is build the maps that describe the spatial distribution of the 
dielectric properties, consisting of the permittivity and the conductivity. Differently 
from the UWB radar imaging techniques, that are focused at providing a qualitative 
estimation of the breast with the aim to determine the presence and location of the 
main dielectric scatterers, the MT techniques are focused at providing a quantitative 
image of the breast in order to describe information regarding the nature, the shape, 
and the distribution of all the internal tissues. 

The MT techniques are aimed at providing more informative images than the radar 
techniques, where the main advantage is related to the fact that a representation of 
this type can better identify a tumor compared to an image of the only main scatterers 
[63]. 

3.3.2.1. Acquisition Systems 

In order to provide these highly informative images, the MT systems need to extract 
the as high as possible amount of information from the electromagnetic 
measurements of the breast, and it is for this reason that they mainly use antenna 
array measurement systems based on multi-static configurations [63]. 
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The measures of the backscattered signals can be obtained in two alternative ways: 
through numerical simulations, using suitable software programs that simulate the 
electromagnetic wave propagation inside the biological tissues and suitable realistic 
breast phantoms, such as those provided by the UWCEM database previously 
described in Section 3.3.1.1; or through realistic experimental measurement systems. 
However, differently from the UWB radar imaging, in the bibliographical scenario 
relating the MT techniques it is easier to find studies on experimental systems 
applied in actual clinical trials or in laboratory experimental tests. 

One of the first prototype system for MT, designed for in-vivo human tests, were 
developed by a research group at Dartmouth College, USA [64]. The patient is 
supposed to be laying on the prone position, with her breast that extends into a tank 
containing a matching fluid, consisting of a mixture of saline and glycerine. A 
circular antenna array, consisting of 16 Tx/Rx dipoles, is located inside the bath free 
to move at seven different distances between the chest and the nipple. The measures 
are collected using microwaves signals at different frequencies inside the range of 
0.3–1.0 GHz. The obtained measurements are software processed in order to obtain 
a set of 2D images of the breast dielectric properties. A first in-vivo study has been 
conducted on 23 patients that not presented symptoms before the examination [65]. 
Another study was conducted on 150 patients, considering both cases of women 
presenting positive or negative mammograms [66], where, for tumors greater than 1 
cm, significant results have been obtained. Moreover, an extension to 3D images, 
using measurements at higher frequencies up to 1.3 GHz, was reported in [34]. The 
overall results obtained with these MT systems show a significant coherence with 
the patient histories, and appreciable differences between the conductivity values of 
malignant and healthy tissues. 

Moreover, a different MT system, that produces 2D images, was developed at the 
University of Keele, UK [67, 68, 69]. It uses a circular array of 24 Tx/Rx waveguides 
opened at the extremities and filled of ceramic material. The array is located into a 
bath of matching liquid and it operates in the frequency range of 1.0–2.3 GHz. 

In the University of Manitoba, Canada [70, 71], a 2D MT system was designed using 
a circular array of Vivaldi antennas operating in the frequency band between 3 GHz 
and 6 GHz. This system has been tested without using any matching liquid. 

Another 2D MT system, working in the frequency band between 0.5 GHz and 4.5 
GHz, has been developed at the Chalmers University of Technology, Sweden [72]. 
This system uses a circular array of 20 monopoles located inside a metallic bath filled 
of coupling liquid. 

At last, a 3D MT imaging system was developed by the Electromagnetic Engineering 
Research Team of Daejeon, Korea [63]. This system includes a hardware interface 
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for patients, that operates in the frequencies range of 0.5–3 GHz, and a 3D software 
for the image reconstruction. The hardware interface consists of a circular array 
antenna system composed by 16 Tx/Rx monopoles and placed in a tank filled with a 
coupling liquid. 

 

3.3.2.2. Inverse Scattering Problem 

Starting from the measures of the backscattered radar signals, the end point of the 
MT techniques is image the spatial distribution of the dielectric properties of all the 
internal breast tissues. In general, the reconstruction algorithm requires the solution 
of a problem of electromagnetic inverse scattering, consisting of a system of non-
linear integral equations to be solved on a three-dimensional domain. Generally, to 
solve this problem is not trivial, because it is ill-posed and does not admit unique 
solution. Moreover, its solution can involve heavy computational burden and long 
computation times, where these two parameters strongly depend on the searched 
resolution accuracy, the frequencies of the microwave signals, the signal information 
that are extracted and processed, and the problem approximations that are applied. 

The solution of the inverse scattering problem for microwave tomography has been 
widely studied in literature and different methods and approaches were proposed 
[73]. Between these, on one hand there are methods that make use of approximations 
in order to linearize the problem (the so-called methods of linear microwave 
tomography), whereas on the other hand there are methods that try to directly solve 
the non-linear problem (the so-called methods of non-linear microwave 
tomography). 

Between the linear microwave tomography techniques, the use of the Born 
approximation [74] has been widely investigated. It consists of approximating the 
total field inside the target as the incident field, neglecting the effects of the internal 
scattering and diffractions. Since the total internal field is the sum of the incident 
field and the internal backscattered field, it is easy to understand that, the 
approximation is valid if the scattered field is much smaller than the incident field, 
where this is true if the target is a weak scatterer. For these reasons, the limitations 
on both the dielectric contrast and the maximum sizes of the object, in which the 
Born approximation can be assumed as valid, were studied in different works [75, 
76]. Even if, the approaches based on approximations of linearization were 
successfully applied in order to image low-contrast objects, they suffer of limitations 
in the field of biomedical imaging, where the regions of interest are generally large 
and highly heterogeneous [73]. 
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In contrast, the non-linear microwave tomography techniques are developed by re-
formulating the problem as a minimization problem, in which a suitable cost function 
is minimized through an iterative process. Nowadays, the non-linear tomographic 
methods represent the approaches that were most studied, trying to optimize the cost 
functions, and to minimize both the number of unknowns and the computation times. 

In order to transform the inverse problem in a minimization problem, first a reference 
volume, containing the breast and the Tx/Rx antennas, is chosen and used as reference 
domain. On the basis of the numerical solution of Maxwell's equations, using for 
example an FDTD method, the entire volume is spatially discretized into a number 
of variables characterized by the unknown dielectric properties. Using the same 
configuration of antennas, the correspondent direct problem is included, and its 
solution is performed in order to obtain an initial guess of the dielectric profile within 
the breast. Then, by using the data related to the actual breast and those obtained 
through simulation of the assumed breast, it is built a cost function based on the 
difference between these two sets of data. The obtained cost function is then 
minimized by means of iterative methods, by modifying the electrical properties of 
the various cells in which the domain was discretized. Assuming that, at the end of 
the optimization, the global minimum is reached, in this situation the simulated data 
are nearly equal, or even identical, to the actual reference data. The dielectric profile 
that corresponds to the obtained minimum situation, it is the searched result. 
Therefore, the image reconstruction process consists of a multidimensional ill-posed 
optimization problem, in which the number of the unknowns, of the order of 
thousands, mainly depends on: the physical size of the computational domain, the 
required spatial resolution, the dielectric properties of the geometry, and the 
frequencies used. 

In literature, the proposed non-linear tomographic methods are classified in two 
different main categories: namely those based on gradient-based local algorithms 
and those based on global algorithms. 

The methods based on gradient-based local algorithms, are aimed to search the 
solution only in a space closed around an initial distribution, where the cost function 
is iteratively linearized using its gradient. These approaches are also known with the 
name of Newton methods, where the most popular is the Gauss-Newton method [77, 
78, 79]. Others algorithms are the conjugate gradient least squares (CGLS) algorithm 
[80] and the Landweber algorithm [81]. Moreover, an algorithm that was lately 
studied is the distorted born iterative method (DBIM) [82]. Since the size of the 
problem domain is moderate, the main advantage of the local techniques is that they 
offer lower computational burden. However, because the research of the solution is 
addressed by the direction of the gradient, the main disadvantage consists of the 
possibility to remain trapped in points of local minimum. 
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In contrast, to avoid of falling into local minimums, the methods based on global 
algorithm are aimed to search the solution inside the entire multidimensional space 
of solutions. The first methods proposed in literature were based on global 
optimization techniques such as the genetic algorithms (GA) [83, 84], differential 
evolution (DE) [85], and particle-swarm optimization (PSO) [86, 87] algorithms. 
These intelligent algorithms are aimed to mimic the behavior that is seen in nature 
in order to guide the research towards the optimal solution. However, these 
techniques can lead to a substantial increment of both the computational burden and 
the elaboration time. In order to simplify the problem and reduce the computational 
complexity, several methods were proposed in literature [88, 89, 90]. Moreover, a 
new intelligent search algorithm, consisting of the artificial bee colony (ABC) [91], 
has been recently studied for the solution of optimization problems.  In order to 
compare the performance of the algorithms ABC, GA, DE, and PSO, numerical 
simulations were made in [92]. The reported results show that the ABC algorithm 
can provide a higher accuracy than the others. The improvements are related to the 
ability of reconstructing of the exact position of dielectric anomalies included within 
the breast geometry, and of computing the actual value of the dielectric properties. 
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4. Radar Detection Technique Based on 
Artificial Neural Network 

 

 

  

4.1. Introduction 

As mentioned in the previous sections, nowadays the standard technique for breast 
cancer diagnosis is the X-ray mammogram. However, besides the well known 
problems and limitations related to the painful breast compression and the exposure 
to X-rays, this technique suffers from low, and highly fluctuating, values of 
sensitivity, where these last can vary inside the range of 66% and 96% [3]. To 
improve the performance, different diagnostic techniques—consisting of the X-ray 
mammogram, MRI, US, and clinical examination—were clinically assessed using 
several combination modalities [4, 5]. The reported results shown that, even if the 
combined use of these techniques can singly improve the value of sensitivity or 
specificity, the overall accuracy, that involves in conjunction both the sensitivity and 
specificity values, is limited to the range 63.6–75.6 % [4, 5]. 

In the last decades, the need of having a non-invasive technique able of detecting 
early-stage breast cancer with high values of accuracy has encouraged and motivated 
the research of new diagnostic techniques. In this context, the contrast that exists 
between the dielectric properties of the malignant and healthy breast tissues at the 
microwave frequencies has driven the development of the microwave imaging 
techniques [31, 32, 33]. As discussed in Chapter 2, several methods were proposed 
and studied in literature where, among these, the active methods consisting of the 
microwave tomography (MT) techniques and UWB radar imaging techniques 
represent the two most interesting approaches. 

The several advantages that can derive from the use of such a range of frequencies 
are enough to motivate the vast field of research that was developed in recent 
decades. One of the main reasons is related to the non-ionizing nature of the 
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frequencies used. A second advantage is due to the fact that the required 
instrumentation is not expensive. Moreover, thanks to the high sensitivity of the 
sensors that are available, signals of low power can be used. Finally, these 
approaches do not involve painful tests, because it is not required any compression 
or others uncomfortable placements of the breast. 

Nevertheless, nowadays, several innovative approaches are continuously developed 
and proposed by several groups of research. Between the main points that motivate 
such a search, an important aspect is related on decreasing both the high 
computational burden and the long times required for processing the data contained 
in the backscattered radar signals. Another point is to obtain higher values of image's 
resolution, but what is more important is to reach more reliable and higher values of 
specificity, sensitivity, and overall accuracy of the global diagnostic technique. 

In this context, in this Ph.D. thesis a new UWB radar detection technique, designed 
for the diagnosis of breast cancer, is presented and assessed. The proposed approach 
is based on the processing, through the use of artificial neural networks (ANNs), of 
suitable data extracted from the backscattered radar signals measured around the 
breast, and at different distances from the chest. The endpoint is not the breast 
imaging, but to detect the presence, or absence, of a tumor independent of its depth 
and width. Since the use of ANNs allows the opportunity of re-formulate the problem 
considering only the unknowns of interest, several advantages—such as short times 
of computation and low computational burden—are provided. 

The proposed technique is tested and validated using both two-dimensional (2D) and 
three-dimensional (3D) realistic breast models derived from the UWCEM database 
[6], previously described in Section 3.3.1.1. Moreover, since the importance of 
suppressing the predominant component due to the presence of the skin [7, 8, 9, 
10]—the so-called skin-artifact component—the ANN-based technique was 
assessed using both an ideal cleaning technique and a realistic model-based one 
(described in Appendix B). 

In this chapter, first a detailed description of the method as a whole is presented. 
Then, a second section will present the results obtained—using realistic 2D breast 
models and an ideal skin-artifact removal technique—in both the cases of tumors 
located inside and outside the fibro-glandular tissues. In these first assessment 
analyses, the use of two different UWB pulses will be assessed. Because the 
goodness of the results obtained especially for tumors positioned outside the fibro-
glandular tissues, a third section will be focused on this situation, where a broader 
scenario—consisting of a more generic and realistic set of testing data—will be 
considered. In this section, the performance will be assessed applying the realistic 
model-based cleaning technique described in Appendix B, moreover, some test will 
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be performed using a realistic 3D breast model. At last, a final section will present 
the improvements that are achieved in the case where the here proposed diagnostic 
criterion is applied. 

 

4.2. The Method 

4.2.1. Breast Geometries and Simulation System 

The patient is assumed to be laying on the prone position. Using a mono-static radar 
system configuration, the measures of the backscattered signals are simulated in 
different space locations situated at different distances from the chest and along a 
circumference around axially the breast. 

According to the described situation, in order to validate the performance of the 
proposed approach, a set of 2D realistic healthy and malignant breast geometries 
were considered. All the geometries were built starting from the 3D realistic breast 
models made available at the UWCEM database [6]. As mentioned in Section 
3.3.1.1, in this database nine realistic breast phantoms, derived from actual 3D MRI 
images, are freely provides. Each models dielectrically characterizes eight different 
tissue typologies of the healthy breast: the skin, three different typologies of adipose 
tissue, a transitional tissue, and three types of fibro-glandular tissue. 

In this context, starting from the UWCEM models, several 2D breast geometries 
were built taking into account different cross-sections. Each healthy tissue has been 
characterized using the Debye model and, in order to describe varied and several 
breasts, that are characterized by different densities, the values of the dielectric 
parameters—consisting of the static relative permittivity εs, the relative permittivity 
at infinite frequency ε∞, the conductivity σ, and the relaxation time τ—were chosen 
in a random way within the range of admissible the values furnished by [6]. 

The healthy breast geometries were built choosing, in random manner, the UWCEM 
model, the cross-section, and the Debye parameters—εs, ε∞, σ, and τ—used to 
dielectrically describe the internal healthy tissues. The cancerous geometries were 
obtained starting from new healthy geometries, built in the same random procedure, 
in which a dielectric anomaly—representing the tumor—was inserted. In order to 
describe a broader, significant, and generic scenario of cancerous geometries, 
different dielectric anomalies, characterized by different diameter dimensions, were 
positioned at different depth inside the healthy breast tissues. 

The diameter was randomly chosen inside the range of 0.2-1.0 cm, whereas the depth 
was chosen, always in a random mode, between 0.5-cm depth from the outer skin 
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surface and the center of the reference system. Where the reference system 
corresponds to the center of the circumferences on which the mono-static radar 
system collects the measures of the backscattered signals. 

As mentioned in Section 3.3.1.1, the Debye parameters for the tumor dielectric 
characterization was obtained from the Cole-Cole representation developed in [33] 
and minimizing the cost function proposed by [32]. In particular, the tumor has been 
characterized with an εs of 61.6, ε∞ of 14.5, σ of 0.7 S/m, and a τ of 13 ps. 

The measures of the backscattered radar signals were collected, for each different 
radar position, through numerical simulation using the finite-difference time-domain 
(FDTD)-based software GprMax [93]. As already proposed in literature by several 
authors [8, 10, 41, 42, 94], the used illuminating UWB signal is a differentiated 
Gaussian pulse (DGP). Compared to the simple Gaussian pulse, it was studied that 
the chosen waveform is able to produce a higher power of the backscattered signal, 
and for this reason it is more suitable to be used for the detection of deep targets that 
are sparsely distributed [95]. At last, the proposed approach has been assessed using 
two different DGP pulses: a DGP pulse of central frequency 6 GHz and time duration 
0.3 ns; and a DGP of central frequency 2 GHz and duration 1 ns. The used UWB 
pulses are represented in Figure 4.1. 

 

 
Figure 4.1.   The illuminating UWB pulses: (a) DGP of central frequency 2 GHz and time 
duration 1 ns; (b) DGP of central frequency 6 GHz and 0.3-ns duration. 

 

4.2.2. Radar Signals Pre-Processing 

In order to apply the proposed signal processing technique that, being based on the 
use of artificial neural networks, needs to be trained on data as representative as 
possible of the presence of tumors in the breast, suitable data must be extracted from 
the measured traces of the backscattered radar signals. However, serious 
complications occur because the backscattered radar signals do not contain only the 
echoes reflected from the healthy and malignant internal breast tissues, but also those 
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generated from the presence of the skin, the so-called skin-artifact component. Since 
this last has a predominant nature with respect to the others, its presence represents 
a challenging problem and makes difficult the choice of suitable data to be extracted 
for best characterize the tumor's presence. 

As examples for better explain the problem, Figures 4.2 and Figure 4.3 show the 
radar signals obtained before and after the application of a skin-artifact removal 
technique. In particular, Figure 4.2 show the case where the DGP at 2 GHz is used, 
and Figure 4.3 refers to the case of the DGP at 6 GHz. Moreover, Figures 4.2(a) and 
4.3(a) show the total radar signals measured on the realistic cancerous geometry, and 
Figures 4.2(b) and 4.3(b) respectively report the same radar signals after the 
application of the skin-artifact removal technique. 

The backscattered signals were measured on a 2D realistic cancerous breast 
geometry in which a dielectric anomaly, of 6-mm diameter, has been positioned at a 
depth of 1.5 cm from the outer surface of the skin. The applied skin-artifact removal 
technique consists of an ideal cleaning technique, where the ideally cleaned radar 
signal was obtained by subtracting, from the total one, the signal measured on a two-
layered geometry—having the same shape and dimensions of the realistic cancerous 
breast geometry—characterized by the presence of only the skin and adipose tissue. 

Comparing Figure 4.2(a) with Figure 4.2(b), and Figure 4.3(a) with Figure 4.3(b), it 
appears evident that the skin-artifact component is of different orders of magnitude 
higher than the other signal components. Moreover, since it overlaps the reflections 
due to the internal breast tissues, it masks also the contribution that contains the 
tumor signature. These considerations highlight that the application of a cleaning 
technique is strictly required in order to extract significant information from the 
backscattered radar signals. 

At last, since the external shape of the realistic breast geometries is not strictly 
circular, the distance between the radar antenna and the outer skin surface is not 
constant. This involves that the arrival times and the amplitudes of the measured 
signals change at varying of the mono-static radar position. For these reasons, in 
order to reduce these space-temporal errors, an equalization on both the amplitudes 
and arrival times has been applied. Using a cross-correlation technique, the time of 
arrival of the backscattered radar signal is computed for each radar position, then for 
each of these, the resulting own value is used as zero reference time of the recorded 
signal. Moreover, the signal amplitudes are multiplied by a coefficient that takes into 
account of the temporal shift. 
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Figure 4.2.   The backscattered radar traces obtained before and after the application of the 
ideal skin-artifact removal technique, and where the DGP of central frequency 2 GHz is used. 
(a) Total backscattered radar signals measured on the cancerous geometry. (b) Ideally cleaned 
radar signal, where the signal contribution of the tumor is marked in red. 

 

Figure 4.3.   The backscattered radar traces obtained before and after the application of the 
ideal skin-artifact removal technique, and where the DGP of central frequency 2 GHz is used. 
(a) Total backscattered radar signals measured on the cancerous geometry. (b) Ideally cleaned 
radar signal, where the signal contribution of the tumor is marked in red. 
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4.2.3. ANN Radar Data Processing 

Once obtained the cleaned-equalized radar signals described in the previous section, 
the idea is to exploit, as significant data in order to train and test the artificial neural 
network, the information contained in the amplitudes (A1, … Ai, … AN) and the times 
of arrival (t1, … ti, … tN) of N suitable local maxima and minima. 

The used ANN architecture consists of a multi-layer feed-forward fully-connected 
network. As described in Appendix A, this type of ANN is formed by an input layer, 
one or more hidden layers, and one output layer, where each layer is formed by a 
fixed number of nodes that represent the artificial neurons, Moreover, each node of 
each layer is connected to every one of the adjacent layers. 

The number of nodes used for characterizing both the input and the hidden layers 
will be discussed in the following sections. Instead, it is worth noting that, for the 
purposes of the diagnostic method, only ANN architectures—having as the output 
layer only a single node—were designed. This choice has been made in order to 
provide an output of type Yes/No, depending on the presence (Yes) or absence (No) 
of the breast tumor. 

 

4.2.4. ANN Processing of Single Backscattered Radar Signals 

The first mandatory objective of the proposed approach is to develop an accurate 
algorithm able to detect a cancer by working on the single radar trace. To this end, a 
fundamental step is to choose and extrapolate, from the trace of the backscattered 
radar signal, the data that best characterize the presence of the tumor. In order to 
better focus the problem, many radar signals—measured on several 2D healthy 
breast geometries in which a dielectric anomaly was inserted at different depths 
inside the breast tissues—were simulated and analyzed. The observed results can be 
summarized analyzing the waveforms reported in Figure 4.4 and Figure 4.5. 

Figure 4.4 shows the results obtained in the case where the DGP with central 
frequency 2 GHz is used. In particular, Figure 4.4(a) shows the cleaned radar signal 
measured on a 2D realistic healthy breast geometry, namely in absence of any 
dielectric anomalies. Figure 4.4(b) shows the radar signal measured on the same 
healthy geometry in which a dielectric anomaly—of diameter 6 mm—was inserted 
at a depth of 1.5 cm from the outer surface of the skin. It worth noting that such an 
anomaly is located outside from the fibro-glandular tissues area. At last, Figure 
4.4(c) refers to the case where the same dielectric anomaly was inserted at a depth 
of 1 cm inside the fibro-glandular tissues, corresponding to 3-cm depth from the 
outer skin surface. 
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Figure 4.4.   Ideally cleaned-equalized radar signals measured on a 2D healthy geometry 
where: a dielectric anomaly is inserted under different conditions; the DGP at 2 GHz is used. 
(a) Healthy breast geometry in absence of the anomaly. (b) Tumor (6-mm diameter) 
positioned at 1-cm depth from the skin surface, and outside the fibro-glandular tissues. (c) 
Same tumor positioned at a depth of 1 cm inside the fibro-glandular tissues, and 3 cm from 
the outer skin surface. The tumor contribution is red highlighted. 

 

Comparing Figure 4.4(a) with Figure 4.4(b), it is evident that, if the tumor is located 
outside the fibro-glandular tissues, only the first part of the cleaned radar signal is 
strongly influenced by its presence. In fact, the major differences are highlighted in 
the time interval of 0.5–1.5 ns. Differently, if the tumor is positioned inside the fibro-
glandular tissues, the first part of the cleaned radar signal is not influenced 
significantly. In fact, comparing Figure 4.4(a) with Figure 4.4(c), the greater 
differences are contained inside the time interval between 1.5 ns and 2.5 ns. 
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Figure 4.5.   Ideally cleaned-equalized radar signals measured on a 2D healthy geometry 
where: a dielectric anomaly is inserted under different conditions; the DGP at 2 GHz is used. 
(a) Healthy breast geometry in absence of the anomaly. (b) Tumor (6-mm diameter) 
positioned at 1-cm depth from the skin surface, and outside the fibro-glandular tissues. (c) 
Same tumor positioned at a depth of 1 cm inside the fibro-glandular tissues, and 3 cm from 
the outer skin surface. The tumor contribution is red highlighted. 

 

Differently, Figure 4.5 shows the results obtained in the case where the DGP at 6 
GHz is used. The healthy and cancerous breast geometries used for the simulations 
are the same that were used in the previous case. In particular, Figure 4.5(a) shows 
the cleaned radar signal measured on the 2D realistic healthy breast geometry. Figure 
4.5(b) shows the radar signal measured on a cancerous geometry in which a dielectric 
anomaly—of diameter 6 mm—has been inserted at a depth of 1.5 cm from the outer 
skin surface, and out from the fibro-glandular tissues. Figure 4.5(c) shows the case 
of the dielectric anomaly positioned 1-cm depth inside the fibro-glandular tissues.  
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Also in this case, if the tumor is located outside the fibro-glandular tissues, only the 
first part of the signal is influenced by its presence. In fact, comparing Figure 4.5(a) 
with Figure 4.5(b), the differences are highlighted in the time interval between 0.5 
ns and 1.5 ns. Moreover, looking at Figures 4.5(a) and 4.5(c), if the tumor is 
positioned inside the fibro-glandular tissues, the first part of the signal does not 
change significantly, and the major differences are contained in the time interval 
between 1 ns and 2 ns. 

The above analyses and considerations suggest that the research of tumors that are 
located outside and inside the fibro-glandular tissues can be conducted in a 
separately way. Following this criterion, a process able to detect breast tumors 
located outside the fibro-glandular tissues is separately applied using only the first 
part of the cleaned radar signal, whereas another process is applied in order to detect 
the presence of tumors located inside the fibro-glandular tissues by using the second 
part of the same signal. In this context, a schematic flow-chart of the detection 
algorithm that is proposed for processing the single radar trace is reported Figure 
4.6. According to Figure 4.6, two sets of data—I1 and I2—are extracted, from the 
cleaned-equalized radar signals, and then provided to two different and properly 
specialized ANNs. The designed ANNs will be described in the following sections. 

 

 
Figure 4.6.   Schematic flow chart of the detection algorithm applied to each single radar 
trace. 

 

4.2.5. Diagnostic Criterion 

As described in the previous Section 4.2.4, the first key step is to extract significant 
and suitable information from any single radar trace. However, in order to improve 
the accuracy, the proposed method also includes the application of a diagnostic 
criterion that is based on a collective analysis of all the results obtained for each 
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single radar trace. As described in the flow-chart reported in Figure 4.6, the proposed 
algorithm provides only an answer of type Yes/No for each single mono-static radar 
position, where each answer may fall in a false-positive or a false-negative result. 

In order to minimize the statistical number of wrong diagnoses and to provide a 
reliable diagnostic response, the proposed diagnostic criterion consists of giving 
credibility to a Yes answer only when such output is obtained consecutively for a 
given arc of positions, or for a given percentage of detections inside it. In this way, 
by applying the diagnostic criterion, single and isolated detections do not produce 
positive diagnoses, avoiding of falling into false positive results. The same procedure 
is applied for the negative diagnoses. On the basis of this idea, it is possible not only 
to improve both the specificity and sensitivity values of the diagnostic method as a 
whole, but also to better localize the angular zone of the tumor's location. 

 

 

4.3. Results 

4.3.1. Tumors Located Outside the Fibro-Glandular Tissues 

This section presents the ANN architecture that was designed for the detection of 
tumors located outside the fibro-glandular tissues. As mentioned in in the previous 
sections, in these situations, it is reasonable to assume that the information on the 
tumor presence—the so-called tumor signature—is contained in the first part of the 
cleaned-equalized radar signals. According to this assumption, it was chosen to 
exploit the information that is contained in the first two local maxima/minima of the 
cleaned-equalized radar signals, where a graphical representation is reported in 
Figure 4.7. In particular, Figure 4.7(a) shows a cleaned-equalized radar signal—
measured on a 2D cancerous geometry using the DGP with central frequency 2 
GHz—in which the first two maxima/minima are highlighted in red, whereas Figure 
4.7(b) shows the case where the DGP at 6 GHz is used. 

During this first analyses, in order to preliminarily assess the abilities of the proposed 
ANN-based detection approach, the cleaned radar signals were obtained applying an 
ideal cleaning technique. As mentioned in the previous sections, it consists of 
subtracting, from the total signal, the radar signal measured on a two-layered 
geometry of shape and dimension equal to those of the realistic geometry, but formed 
by only the skin and adipose tissues. It worth noting that, the two tissues of the 
cleaning model are characterized by the same Debye parameter values of the 
respective realistic geometry. 
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Figure 4.7.   Ideally cleaned-equalized radar signals measured on a 2D realistic 
heterogeneous breast geometry. (a) 2-GHz DGP at. (b) 6-GHz DGP. 

 

The used ANN architecture is of type 4-8-1. It presents one hidden layer of eight 
nodes and an input layer of four nodes. Such a network, receives four input data 
consisting of the arrival times and the amplitudes of the firsts two maxima/minima 
measured on the ideally cleaned radar signals. As mentioned in Section 4.2.3, it 
provides one output of type Yes/No, depending on the presence, or absence, of the 
tumor. 

According to the number of degrees of freedom of such an ANN architecture, the 
network was trained using 100 training data, consisting of 50 measured on cancerous 
geometries (T) and 50 measured on healthy geometries (NT). In conclusion, two 
different networks were trained: the first was formed using the radar signals 
measured with the DGP at 2 GHz (hereafter named ANN-4-8-1-DGP-2-GHz), 
whereas the second was trained using the DGP at 6 GHz (hereafter named ANN-4-
8-1-DGP-6-GHz). For the only purposes of training the ANN, the dielectric anomaly 
was positioned by respecting one constraint: the anomaly must be the first internal 
discontinuity that the radar signal encounters within the breast geometry. As 
example, one of the used 2D cancerous breast geometries is reported in Figure 4.8. 

The results obtained during the training phase gave a tumor detection accuracy of 
100% for both the two ANNs. This result implies that, for both the two incident 
pulses, the designed ANN architecture was able to adjust both the bias and weights 
of its internal nodes, namely it has found the best connections between the input-out 
pairs that were furnished during the learning process. 
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Figure 4.8.   Example of a cancerous geometry. A dielectric anomaly of 4-mm diameter is 
positioned outside the fibro-glandular tissues at 0.5-cm depth from the outer skin surface. 
Blue colors indicate the three typologies of fibro-glandular tissues; green color represents the 
intermediate tissue; red colors indicate the three adipose tissues. 

 

In order to assess the generalization capabilities using a significant scenario, two sets 
of new 100 testing data were generated and simulated, namely 50 T and 50 NT. The 
first set has been obtained using the DGP at 2 GHz, and the other with the 6-GHz 
DGP. The new test data were generated by always respecting the constraint on the 
position of the tumor. 

Table 4.1 shows the results—in terms of the confusion matrix—that were obtained 
for the network ANN-4-8-1-DGP-2-GHz, whereas the results obtained for ANN-4-
8-1-DGP-6-GHz are shown in Table 4.2. 

Looking at Table 4.1, it is evident that, in the case where the DGP at 2 GHz is used, 
the designed ANN has detected the presence of the dielectric anomaly with a 
sensitivity of 92%, a specificity of 90%, and an overall accuracy of 91%. On the 
other hand, looking at Table 4.2, in the case where the DGP at 6 GHz is used the 
anomaly is detected with a sensitivity of 88%, a specificity of 78%, and an overall 
accuracy of 83%. 

 

Table 4.1. Confusion matrix, ANN-4-8-1-DGP-2-GHz, 100 testing examples, constraints on 
the T location, and ideal cleaning technique. The overall accuracy is 91%. 

Type 
Test 

Number 

ANN output ANN performance (%) 

Yes No Sensitivity Specificity 

T 50 46 4 92 / 

NT 50 5 45 / 90 
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Table 4.2. Confusion matrix, ANN-4-8-1-DGP-6-GHz, 100 testing examples, constraints on 
the T location, and ideal cleaning technique. The overall accuracy is 83%. 

Type 
Test 

Number 

ANN output ANN performance (%) 

Yes No Sensitivity Specificity 

T 50 44 6 88 / 

NT 50 11 39 / 78 

 

 

4.3.2. Tumors Positioned Inside the Fibro-Glandular Tissues 

This section is focused on the problem of detecting tumors that are located deep 
inside the fibro-glandular tissues. Following the concepts explained in the previous 
sections, in order to best characterize the tumor's presence, suitable information is 
searched inside the second part of the cleaned-equalized radar signals. In order to 
train and test new ANNs, new healthy and cancerous 2D realistic breast geometries 
were built by positioning the dielectric anomaly inside the fibro-glandular tissues. 
As example, one of the used cancerous geometries is shown in Figure 4.9. 

 

 
Figure 4.9.   A cancerous geometry in which a dielectric anomaly of diameter 4 mm is located 
inside the fibro-glandular tissues at a depth of 3.5 cm from the skin surface. The blue colors 
indicate the three typologies of fibro-glandular tissues, the green parts represent the 
intermediate tissue, and the red colors indicate the three typologies of adipose tissue. 

 

At this point, different ANN architectures that work on different sets of input data 
were trained and tested. All the networks were designed in order to provide a binary 
output of type Yes/No. In particular, an ANN architecture of type 6-12-1 was 
designed for working on the amplitudes and arrival times of the 3°, 4° and 5° 
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maximum/minimum of the ideally cleaned-equalized radar signals. Moreover, 
another architecture of type 4-8-1 was designed for working respectively on the 
amplitudes and arrival times of the 3°-4° maximum/minimum, and on the same data 
measured for the 4°-5° maximum/minimum. All the networks were trained and 
tested using both the two different UWB incident pulses. 

According with the number of degrees of freedom, each network was trained using 
a fixed number of training data. In particular, the architecture of type 4-8-1 was 
trained using 100 training examples, namely 50 T and 50 NT. Differently, the 6-12-
1 architecture has been trained using a set of 200 input-output pairs, namely 100 T 
geometries and 100 NT geometries. The results obtained during the training 
processes are reported in Table 4.3 and Table 4.4. In particular, Table 4.3 reports the 
results obtained in the case where the DGP at 2 GHz is used, and Table 4.4 shows 
the results obtained using the 6-GHz DGP. The results show that all the networks 
have been able to find the connections between the input-out pairs that were 
furnished during the learning process in a satisfactory way. 

 

Table 4.3. Performance on training data - 2 GHz 

ANN architecture 
ANN performance (%) 

Accuracy Sensitivity Specificity 

4-8-1 (3°-4° peak) 98 96 100 

4-8-1 (4°-5° peak) 98 96 100 

6-12-1 (3°-4°-5° peak) 100 100 100 

 

Table 4.4. Performance on training data - 6 GHz 

ANN architecture 
ANN performance (%) 

Accuracy Sensitivity Specificity 

4-8-1 (3°-4° peak) 98 96 100 

4-8-1 (4°-5° peak) 96 98 94 

6-12-1 (3°-4°-5° peak) 98 98 98 

 

In order to test the networks with a significant scenario of testing data, new radar 
signals were simulated using new healthy and malignant breast geometries. The 
ANNs of type 4-8-1 were validated using 100 new testing data, 50 T and 50 NT, 
whereas the ANNs of type 6-12-1 were tested using 200 new geometries, 100 T and 
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200 NT. Table 4.5 and Table 4.6 show the results that were obtained by respectively 
using the 2-GHz DGP and the 6-GHz DGP. 

Looking at Tables 4.5 and 4.6, it is evident that the only more acceptable results were 
obtained by using the DGP at 2 GHz and the ANN 4-8-1 that works on the 3°-4° 
maximum/minimum measured on the ideally cleaned-equalized radar signals. Using 
this ANN, the tumor presence has been detected with a sensitivity of 69%, a 
specificity of 67%, and an overall accuracy of 68%. 

 

Table 4.5. Performance on testing data - 2 GHz 

ANN architecture 
ANN performance (%) 

Accuracy Sensitivity Specificity 

4-8-1 (3°-4° peak) 68 69 67 

4-8-1 (4°-5° peak) 47 58 36 

6-12-1 (3°-4°-5° peak) 55 54 56 

 

Table 4.6. Performance on testing data - 6 GHz 

ANN architecture 
ANN performance (%) 

Accuracy Sensitivity Specificity 

4-8-1 (3°-4° peak) 51 56 46 

4-8-1 (4°-5° peak) 50 52 48 

6-12-1 (3°-4°-5° peak) 48 48 47 

 

 

4.4. Robustness Assessment Study of ANN-4-8-1-
DGP-2-GHz 

In the previous Section 4.3.1, it has been shown that the best results are obtained 
using the network ANN-4-8-1-DGP-2-GHz. This ANN is specialized for the 
detection of tumors—of diameters between 0.2 cm and 1.0 cm—that are located at 
different random depths outside the fibro-glandular tissues. It receives, as input data, 
the amplitudes and arrival times of the first two maxima/minima measured on the 
ideally cleaned-equalized radar signals in the case where the 2-GHz DGP is used. 
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Since the previous analyses were performed considering a limited scenario of test 
data in the case where an ideally cleaning technique is applied, in this section, a 
robustness assessment study of such a network is presented. 

First, a broader and more generic set of test data—consisting of new healthy and 
cancerous 2D breast models—is considered. In the new cancerous geometries, the 
tumor is positioned without the constraint used in Section 4.3.1, moreover it is 
introduced also the case where the anomaly is located in contact with the outer 
surface of the fibro-glandular tissues. Using this new scenario, an analysis of the 
sensitivity values, when varying both the depth and dimensions of the tumor, is 
provided. As the second step, the performance is assessed in the case where the skin-
artifact component is suppressed by using a realistic model-based skin-artifact 
removal technique. Finally, the designed network ANN-4-8-1-DGP-2-GHz is tested 
by using the data measured on a realistic 3D breast model taken from the UWCEM 
database in the case where an ideal skin-artifact removal technique is applied. 

 

4.4.1. Generic Testing Data Without Constraints on the Tumor Position 

In order to validate the ANN using a more general data set, 2000 new realistic 2D 
breast geometries, 1000 T and 1000 NT, were generated with the anomaly positioned 
outside the fibro-glandular tissues but without any constraint. As example, Figure 
4.10 shows one of the new cancerous geometries that were generated and tested. 

In order to initially assess the changes introduced on the performance, the cleaned-
equalized radar signals were obtained by applying the ideal skin-artifact removal 
technique described in Section 4.2.2. The obtained results are presented in terms of 
the confusion matrix in Table 4.7. The table shows that the tumor presence has been 
detected with a sensitivity of 81%, a specificity of 79%, and an overall accuracy of 
80%.  

 
Figure 4.10.   Example of the cancerous models used for the general test with 2000 new 
breast geometries. A tumor of 4-mm diameter is positioned at 1-cm depth from the skin 
surface. 
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Table 4.7. Confusion matrix, ANN-4-8-1-DGP-2-GHz, 2000 testing examples, no 
constraints on the T location, and ideal cleaning technique. The overall accuracy is 80%. 

Type 
Test 

Number 

ANN output ANN performance (%) 

Yes No Sensitivity Specificity 

T 1000 810 190 81 / 

NT 1000 214 786 / 79 

 

A histogram that summarizes the statistical sensitivity values, obtained for the 1000 
cancerous breast models used for Table 4.7, is reported in Figure 4.11. This graph 
reports different values of sensitivity by subdividing them into different single 
classes in accordance with distinct ranges of both the depths and dimensions of the 
tumor. The depth is measured from the outer skin surface. 

The figure shows that, in the case where the depth varies in the range of 0.5 cm and 
1.5 cm, the sensitivity is 71% for tumors of diameter between 2 mm and 4 mm, 94% 
for tumor diameters between 4 mm and 6 mm, 88% for diameters between 6 mm and 
8 mm, and 79% for diameters between 8 mm–10 mm. Differently, for depths greater 
than 1.5 cm, the sensitivity is 77% for tumors of diameter between 2 mm and 4 mm, 
71% for tumor diameters between 4 mm–6 mm, 74% for diameters between 6 mm–
8 mm, and 9% for diameters between 8 mm–10 mm. 

It worth noting that, if the analysis is limited to only the tumors with a depth that 
ranges between 1,5 cm and 2.5 cm, the value of sensitivity reaches the 70%. 
Moreover, if the cases of tumor with a depth greater than 2.5 cm are excluded from 
the 1000 cancerous models used for Table 4.7, the global sensitivity value increases 
to 83%. 

 
Figure 4.11.   The sensitivity for different classes of the depth and dimension of the tumor. 
The 1000 cancerous geometries used for Table 4.7 were here considered. 
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4.4.2. Application of a Model-Based Skin-artifact Removal Technique 

As mentioned in the previous sections, up to now the cleaned radar signals were 
obtained using an ideal skin-artifact removal technique that was applied in order to 
preliminarily assess the abilities of the proposed ANN-based detection approach. 
The analysis of the network when it is applied to an ideal scenario is important in 
order to provide a baseline evaluation of the algorithm's capacitances. Nevertheless, 
a review of the literature on the topic of the skin suppression techniques [7, 8, 9, 10], 
suggests that to accurately suppress the strong skin contributions is a challenging 
task. In fact, in a realistic scenario, the cleaning algorithm may suppress the skin 
response, but significant residual effects—such as signal distortions and noise 
introduction—may be present after the application of the cleaning technique. 
Moreover, the suppression algorithm may alter the tumor signature and degrade the 
performance of the detecting approach. 

This section presents an analysis of the performance of the proposed approach in the 
case when the cleaned radar signals are obtained by applying a realistic model-based 
skin-artifact removal algorithm. This last is accurately described in Appendix B. The 
applied cleaning technique involves the use of a reference cleaning model in order 
to measure the backscattered signal that is used as the cleaning signal. Then, the 
measured cleaning signal is subtracted from the total real one in order to obtain the 
cleaned signal. The reference model is characterized by a two-layers cylinder 
consisting of the skin and the adipose tissue. The important parameters that compose 
the reference cleaning model are: the values of the Debye parameters for the 
dielectric characterization of both the two biological tissues, the skin thickness, the 
model dimensions, and the distance between the skin interface and the radar antenna. 

In the study reported in Appendix B it was found that the distortions, that are 
introduced during the cleaning process, are minimized in the case where a reference 
cleaning model—with a radius of 11 cm—is used by placing it at the same actual 
distance between the skin and the radar antenna. Moreover, the best results are 
obtained under the a-priori assumption of knowing the real values for characterizing 
the skin thickness and the static dielectric permittivity (εs) of both the skin and 
adipose tissue. In contrast, the other dielectric Debye parameters (ε∞, σ, and τ) remain 
fixed at average standard values, where these last have been obtained by averaging 
the range of values provided in the literature [6]. 

Respecting the above constraints, the reference cleaning models were configured and 
applied to all the 2000 realistic breast models used and described in Section 4.4.1. 
Once obtained all the new cleaned signals, the amplitudes and arrival times of the 
first two maxima/minima were extracted and tested on the network ANN-4-8-1-
DGP-2-GHz. 
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The obtained results are reported in Table 4.8 in terms of the confusion matrix. This 
table shows that the network detected the tumor with a sensitivity of 78%, a 
specificity of 74%, and an overall accuracy of 76%. 

However, the Appendix B shows that satisfactory results are achieved also using 
more generic reference cleaning models, where these last are characterized by 
average standard values for all the Debye dielectric parameters (εs, ε∞, σ, and τ) that 
describe the two biological tissues. Even in this case, the standard values are obtained 
by averaging the range of values provided in literature [6]. Moreover, in Appendix 
B it is also shown that better results are obtained in the case where the network is 
trained with training data that are measured on radar signals cleaned by using the 
generic reference cleaning models. For this reason, a new network—named ANN-4-
8-1-DGP-2-GHz-Generic-Model-Based—was trained by using the generic reference 
cleaning models composed by only dielectric standard values. The new network was 
tested using the same 2000 realistic breast models previously described and used, 
and by applying the generic model-based cleaning technique. 

Table 4.9 shows the obtained results in terms of the confusion matrix. The tumor’s 
presence was detected with a sensitivity of 74%, a specificity of 73%, and an overall 
accuracy of 74%. 

 

Table 4.8. Confusion matrix, ANN-4-8-1-DGP-2-GHz, 2000 testing examples, no 
constraints on the T location, and model-based cleaning technique. The overall accuracy is 
76%. 

Type 
Test 

Number 

ANN output ANN performance (%) 

Yes No Sensitivity Specificity 

T 1000 784 216 78 / 

NT 1000 257 743 / 74 

 

Table 4.9. Confusion matrix, ANN-4-8-1-DGP-2-GHz-Generic-Model-Based, 2000 testing 
examples, no constraints on the T location, and generic model-based cleaning technique. The 
overall accuracy is 74%. 

Type 
Test 

Number 

ANN output ANN performance (%) 

Yes No Sensitivity Specificity 

T 1000 742 258 74 / 

NT 1000 267 733 / 73 
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This last result is very interesting and highly significant, because it means that 
satisfactory values of accuracy are reached also in the case where a skin suppression 
algorithm is applied without any a-priori knowledge on both the dielectric and 
geometric properties of the skin and the adipose tissue, namely what happens in 
realistic and practical situations. It worth noting that, the only parameter that has 
been assumed to be known is the skin thickness. 

 

 

4.4.3. Test with a 3D Realistic Cancerous Breast Model 

This section presents the results obtained by testing the network ANN-4-8-1-DGP-
2-GHz with data measured on a realistic 3D breast model taken from the UWCEM 
database. As described in Section 3.3.1.1, this database provides nine realistic breast 
phantoms, subdividing them into four main classes: mostly fatty, scattered fibro-
glandular, heterogeneously dense, and very dense. In the present test, the chosen 3D 
breast model belongs to the scattered fibro-glandular class, where it is distinguished 
by ID 010204. The values of the Debye parameters, that were used to dielectrically 
characterize the breast healthy tissues, are reported in Table 4.10 [6]. According with 
the previous analyses, the tumor has been dielectrically characterized with εs of 61.6, 
ε∞ of 14.5, σ of 0.7 S/m, and τ of 13 ps. 

 

Table 4.10. Values of the Debye parameters used for dielectric characterization of healthy 
breast tissues. 

Breast 
Healthy Tissue 

Debye dielectric parameter 

εs ε∞ σ (S/m) τ (ps) 

Fibroglandular-1 54.690 14.200 0.824 13.00 

Fibroglandular-2 49.360 13.810 0.738 13.00 

Fibroglandular-3 37.390 12.990 0.397 13.00 

Intermediate 22.461 8.4890 0.239 13.00 

Adipose-1 7.532 3.987 0.080 13.00 

Adipose-2 4.708 3.116 0.050 13.00 

Adipose-3 3.952 2.848 0.005 13.00 

Skin 39.760 15.930 0.831 13.00 
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Figure 4.12.   Sagittal section of the used 3D model. A tumor of 4-mm diameter is positioned 
at a depth 1.5 cm from the skin and at a distance 5 cm from the chest. 

 

Different tumor situations were modeled by positioning the dielectric anomaly at 
three different distances from the chest—namely 2 cm, 5 cm, and 8 cm—and at a 
depth of 1.5 cm from the outer surface of the skin. For each tumor positions, 
anomalies of different diameters were considered, namely 2 mm, 4 mm, 6 mm, 8 
mm, and 10 mm. A sagittal section of one the used 3D realistic cancerous breast 
models is reported in Figure 4.12. In such a model, a tumor of 4-mm diameter is 
positioned at 1.5-cm depth from the skin and at a distance of 5 cm from the chest. 

In order to suppress the skin reflections, the ideal technique described in Section 
4.2.2 was applied. Then, starting from the ideally cleaned-equalized radar signal, the 
amplitudes and arrival times of the first two maxima/minima were extracted and 
tested on the network previously trained and tested using 2D geometries, the so-
called ANN-4-8-1-DGP-2-GHz. 

The obtained results indicate that the designed network correctly detects tumors 
positioned at a depth of 1.5 cm from the outer skin surface and characterized by a 
diameter as small as 2 mm. 

 

4.5. Diagnostic Criterion Assessment 

In this section, the improvements that derive by the application of the diagnostic 
criterion, described in Section 4.2.5, are presented by reporting some numerical 
results. Because the endpoint of this analysis is to preliminarily assess the 
improvements that are introduced, the performance is evaluated in the case where 
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the algorithm is applied to an ideal scenario, namely using the radar signals cleaned 
by means of the ideal skin-artifact removal technique described in Section 4.2.2. 

The diagnostic criterion has been tested in the case of tumors located outside the 
fibro-glandular tissues when the DGP at 2 GHz is used. Starting from the 2000 
models described in Section 4.4.1, 10 two-dimensional realistic breast models—
consisting of 5 T and 5 NT—were chosen. For each of these, 72 different radar 
signals were collected in 72 different angular positions around the breast geometry. 

Using all the simulated radar traces, the network ANN-4-8-1-DGP-2-GHz was tested 
with the amplitudes and arrival times of the first two maxima/minima extracted from 
the ideally cleaned-equalized radar signals. Finally, the diagnostic criterion has been 
applied to the outcomes provided by the network and highly satisfactory results were 
obtained. 

In the case of the NT breast geometries, even if the network has wrongly detected 
the anomaly as malignant in isolated angular positions, by applying the diagnostic 
criterion the definitive outcomes of the diagnostic technique have been only true-
negative results. Moreover, in the cases of the T breast geometries, the network has 
produced few wrong answers in some isolated angular positions, but also 
consecutives corrected detections inside a cone of about 30° centered on the actual 
position of the tumor. 

It worth noting that, the true-positive answers were detected under angles of 
approximately 30° of consecutive malignant detections (Yes), and the true-negative 
answers were detected under higher angles of consecutive non-malignant detections 
(No). For this reasons, it was found acceptable giving credibility only to arcs of at 
least 30° of consecutive malignant detections, or at least containing a percentage of 
them greater than a fixed threshold. For the analyzed cases, it has been found that 
such a percentage was always at least 70% for angles of 30°. As examples, Figure 
4.13 shows three of the 10 geometries used to assess the diagnostic criterion. 

Figure 4.13(a) shows an NT geometry where the outcomes of the ANN are reported 
for all the angular positions. The red points represent the isolated false-positive 
detections. The correct diagnosis is performed by giving credibility only to the large 
arcs of negative detections, that are represented as black points. 

Figure 4.13(b) shows the results obtained on a cancerous geometry, where the 
malignant detections are highlighted as red points. Besides few isolated wrong 
detections, the figure shows that the tumor is detected as malignant under an angle 
of 30° of consecutive red points. 
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Finally, Figure 4.13(c) shows the case of another T geometry for which, inside the 
arc of corrected malignant detections, there is a single and isolated "No" answer, 
consisting of the isolated black point. In this case, by giving credibility to the arc of 
malignant detections, it is avoided to fall in a false-negative diagnosis. 

The above considerations highlight the importance of applying the diagnostic 
criterion in order to provide high values of sensitivity and specificity, reaching for 
the cases here presented an accuracy of 100%, but also the possibility of correctly 
localizing the angular position of the detected tumor. 
 
 

 
Figure 4.13.   Three of breast geometries used to test the diagnostic criterion, where the red 
and black points represent respectively the malignant and non-malignant detections. (a) 
Healthy breast geometry for which the ANN wrongly detects a malignant tumor only on 
single isolated radar positions. (b) Cancerous breast geometry for which the ANN correctly 
identifies the malignant tumor under a 30° angle of 100% consecutive malignant detections. 
(c) Cancerous geometry for which there is one isolated wrong result inside the arc of correct 
malignant detections. In this situation the tumor is correctly identified under a 30° angle with 
85% of malignant detections. 
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5. Conclusions 
 

 

 

In the chapters of this Ph.D. thesis, a new breast cancer radar detection technique, 
based on the use of artificial neural networks (ANNs), was proposed and assessed. 
The final purpose is not the breast imaging, but to provide a Yes/No diagnostic tool 
able to detect the presence, or absence, of a tumor with the highest possible values 
of sensitivity, specificity, and overall accuracy. 

The numerical analyses were conducted using realistic 2D and 3D healthy and 
cancerous breast geometries derived from the models provided by the UWCEM 
database. A mono-static radar system configuration was assumed to measure the 
simulated backscattered signals in different space locations situated at different 
distances from the chest and along a circular line around the breast. 

The proposed approach is based on processing—through the use of ANNs—suitable 
data that are extracted from any single backscattered radar trace measured around 
the breast. In this way, for each single mono-static radar position, the ANN provides 
a Yes/No answer that determines the presence/absence of the tumor, then the final 
diagnosis response is achieved by applying a diagnostic criterion on the basis of a 
collective evaluation of all the ANN answers. According to such a criterion, the 
diagnostic outcomes will be either "Yes" and "No" only when such outputs are 
obtained consecutively for a given arc of radar positions, or for a given percentage 
of detections inside it. In this way, single and isolated malignant detections do not 
produce positive diagnoses—avoiding of falling into false-positive results—and in 
the same way single and isolated healthy detections do not produce negative 
diagnoses—avoiding false-negative results. 

First, using an ideal skin-artifact removal technique and realistic 2D healthy and 
cancerous breast geometries, the cases of tumors located both outside and inside the 
fibro-glandular tissues were studied. During these firsts analyses, the use of two 
different UWB illuminating pulses was assessed. The best results were obtained 
when the differentiated Gaussian pulse with a central frequency 2 GHz is used. In 
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the case of tumors located outside the fibro-glandular tissues, an overall accuracy of 
91% on 100 test data was obtained, whereas for tumors located inside the fibro-
glandular tissues the overall accuracy was 68%. Despite the latter result seems to be 
not very satisfactory, it ranks in the range of accuracy values—63.6–75.6 %—that 
are reached combining the use of the actual main clinical diagnostic techniques. 

Because of the highly satisfactory results obtained for tumors located outside the 
fibro-glandular tissues, this topic was more deeply investigated and a robustness 
assessment study was performed by considering a more generic and realistic scenario 
of test data. 

First, the ANN was tested using a broader and more generic set of 2000 new 2D 
healthy and cancerous breast geometries. The obtained results showed that the tumor 
presence was detected with a sensitivity of 81%, a specificity of 79%, and an overall 
accuracy of 80%. Moreover, if the cases of tumors located at a depth from the outer 
skin surface greater than 2.5 cm are excluded from the analysis, the value of 
sensitivity increases to 83%. 

Second, the performance of the proposed approach was assessed in the case where 
the cleaned radar signals are obtained by applying the realistic model-based skin-
artifact removal technique proposed in Appendix B. In this realistic situation, the 
tumor was detected with a sensitivity of 74%, a specificity of 73%, and an overall 
accuracy of 74%. This last is a highly significant result because it means that a 
satisfactory value of accuracy, that is at the top of the range of values—from 63.6 % 
to 75.6 %—reached by the actual clinical diagnostic techniques, can be obtained also 
in the case where a cleaning technique is applied without assuming any a-priori 
information on the actual both geometric and dielectric characterizations of the 
breast. 

Third, the proposed diagnostic technique was assessed using data measured on a 
realistic 3D breast model taken from the UWCEM database, and applying an ideal 
cleaning technique. In this realistic case, the designed network has correctly detected 
tumors positioned at different distances from the chest and at a depth of 1.5 cm from 
the outer surface of skin, and characterized by different dimensions with diameter 
values ranging between 2 mm and 10 mm. 

Finally, the proposed diagnostic criterion—based on the collective evaluation of all 
the ANN answers—was assessed and applied to 10 realistic 2D geometries. The 
obtained results showed that its application reduces completely to zero the wrong 
diagnostic responses. Moreover, at the same time it provides information on the 
exact angular position of the tumor. 
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6. Appendix A — 
The Artificial Neural Networks 

 

 

  

6.1. Introduction 

The artificial neural network (ANN) is a computational model whose aim is simulate 
the behavior of the human brain. To such a purpose, the ANN combines the 
capabilities of single, and simple, computing elements—which represent the 
biological neurons—highly interconnected and organized in layered structures. 
Generally, the ANNs are implemented using actual electronic components, or 
simulated using suitable software [96]. 

Because to their generic nature—namely their ability in adapting to a wide variety 
of problems—the use of ANNs can offers several advantages. Indeed, the substantial 
difference with respect to other computing systems consists of the fact that the ANNs 
are not strictly dependent from the type of data to be analyzed. An ANN is suitably 
trained using examples furnished in the form of input-output pairs. In this way, the 
network learns to connect each input to its respective output and to generalize what 
it has learned in order to apply it to new input data that were not used during the 
forming phase. 

The above characteristics make the ANNs suitable for all problems and activities 
that have to cope with the classification or the recognition of input data. The ANNs 
find application in several areas such as the recognition of texts in order to detect 
patterns of interest inside a wide amount of data, the recognition of images, remote 
sensing and robotic applications, and solving the problems of inverse 
electromagnetic scattering. This last application is particularly interesting because 
the ANNs are properly indicated to solve this typology of problems. Indeed, the use 
of ANNs allows to avoid the inversion of the direct analytical, or numerical, 
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mathematical operators that describe the relation between the characteristics of the 
studied objects to the backscattered electromagnetic fields. 

In order to acquire the knowledge that is necessary to solve the problem, the ANN 
needs a period of forming that requires the definition of strict rules for the choice of 
both the algorithm used during the training phase and the data—namely the input-
output pairs—that are provided as examples. It is worth noting that this choice plays 
a primary role. Although the generation of a significant set of examples and the 
subsequent network training phase can require long times, and also a rather high 
computational burden, when the obtained network is used in "on-field" applications, 
it can provide results approximatively in real-time and with low computational 
burden. 

In the following sections of the present appendix, the principal architectural elements 
and operations that are fundamental in order to design an operating artificial neural 
network—namely the artificial neuron, the activation function, the principal ANN 
architectures, and both the training and test operations—are in detail described. 

  

6.2. The Artificial Neurons 

The basic processing element of an ANN is the artificial neuron, or simply node. As 
represented in Figure 6.1, such an element has different incoming connections 
through which it receives the information, that arrives from other artificial neurons, 

in the form of the input vector 1 2( , , ..., ).nX X X X     

In order to model the strength of the connections between the examined neuron and 
the others nodes of the network, each input data is multiplied by a weight wi and a 
term of Bias w0 can be introduced. 

 

 

Figure 6.1.   The artificial neuron, the basic processing element of the ANN. 
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The output consists of a single connection Y that provides the result of the processing, 
performed by the node, to the next artificial neurons. The output signal is transmitted 
only in the case where the sum of the bias and the weighted inputs overcomes the 
activation threshold of the neuron. The output is computed by applying, to the 
weighted sum, the activation function f. This last is applied in order to simulate the 
discharge mechanism of the neuron [97]. 

 

6.3. The Activation Functions 

The activation function transmits the signal only if the sum of both the weighted 
inputs and bias exceeds the fixed threshold level. Moreover, in order to simulate the 
behavior of biological neurons, the activation function limits the output value and 
produces only signals of finite amplitude. Usually, the values of output range inside 
the closed interval [-1,1], or [0,1]. 

Several typologies of activation functions can be applied. Within the family that 
produces output values inside the range between 0 and 1, there are the so-called step, 
ramp, and sigmoid functions. The artificial neurons that use the step function have a 
binary behavior and are known as the McCulloch-Pitts models [96]. The ramp 
function has a linear behavior for the values of abscissa included between -1/2 and 
+1/2, and a binary behavior outside such an interval. 

Differently, as described in Equation 6.1, the sigmoid function, can assume a 
continuous range of values inside the entire interval [0, 1]. Moreover, it has the 
characteristic of being differentiable. 

   1

1 x
f x

e 


 (6.1) 

The term σ is used in order to control the variation steepness. As reported in Equation 
6.2, this function can be also defined inside the range between -1 and 1. In this case, 
it has known with the name of bipolar sigmoid. 

   1

1

x

x

e
f x

e













 (6.2) 

Other functions used to produce output values inside the interval [-1,1], are the sign 
and ramp functions. The sign function is characterized by a binary behavior. The 
ramp function provides a linear behavior for the values of abscissa included in the 
range between -1/2 and +1/2, and a binary behavior outside it. 
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6.4. Artificial Neural Network Architectures 

The choice of the ANN architecture—namely the number of layers, nodes for each 
layer, and the way in which the artificial neurons are each other connected—greatly 
affect the training algorithm used to form the network. In general, three principal 
families of architectures can be distinguished: the single-layer feed-forward 
networks, the multi-layer feed-forward networks, and the recurrent networks. 

The single-layer feed-forward typology represent the simplest architecture of 
artificial neural network, and it consist of using one input layer whose nodes are 
directly connected to the nodes of the output layer. 

The multi-layer feed-forward architectures use one or more hidden layers that are 
placed between the input and output layers. The presence of the hidden layers allows 
the network to treat data related to problems of higher-order. Moreover, because to 
the additional connections introduced, the network acquires a “global” view of the 
problem [98]. An architecture in which all the nodes of each layer are connected to 
every node of the adjacent layers is named fully-connected, whereas, if some 
connections are missed the network is defined partially-connected. 

Finally, the recurrent typologies are ANN architectures that contain at least one 
feedback loop. The presence of feedback can greatly improve the learning capacity 
of the network and its performance [96]. 

 

6.5. The Multilayer Feed-Forward Artificial Neural 
Networks 

In this section, the multi-layer feed-forward architecture is described in detail. A 
representation of such a type of network is shown in Figure 6.2. In particular, the 
figure shows an ANN composed by one input layer, one output layer, and two 
generic hidden layers. Usually, the elements of the first level perform solely the role 
of buffer layer between the external world and the ANN itself. The hidden nodes 
receive several input branches, namely the connections to all the outputs of the 
artificial neurons of the previous level. In addition, each single element provides an 
output that is passed to the nodes of the next layer, or directly to the external world 
in the case of nodes of the output level. Moreover, to each connection is associated 
a constant representing the weight of the connection, and to each artificial neuron is 
associated a term of bias. It worth noting that the actual processing of the information 
happens in the hidden and output layers of the network. 
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Figure 6.2.   Representation of a multi-layer feed-forward ANN architecture composed by 
an input layer, an output layer, and (N-1) hidden layers. 

 

In order to better understand how the signal propagates within the network, Figure 
6.2 will be analyzed in more detail. Each node j, that belongs to the level k, receives 

a number Nj of inputs. Each input corresponds to the output 1k
iX   of a generic node 

i that belongs to the previous layer (k – 1). Moreover, each connection between the 
generic node i of the layer (k – 1) and the node j of the layer k is multiplied by the 

weight 
1,k k

ijw 
 that is uniquely associated to the connection. At last, the term of bias 

is identified by the constant 0
k

jw . Therefore, when an input 1 1 1
1 2( , , ..., )nX X X X     

is applied, it crosses each layer of the network and changes the output of each 
artificial neuron in proportion to the strength of the connections between the nodes 
and the intensity of the input itself. 

As reported in Equation 6.3, the output of the artificial neuron j, belonging to the 
level k, is computed by applying the activation function f to the weighted sum of the 
inputs. 

 1, 1
0

1

jN
k k k k k
j ij i j

i

X f w X w 



 
   

 
  (6.3) 

Generally, the number of degrees of freedom for designing an artificial neural 
network is relatively high. This allows to accurately choose the architecture that best 
satisfies the necessities of the problem to solve. Among the characteristics that can 
be varied there are the number of hidden layers, the number of nodes belonging to 
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each layer, the connections, and the activation functions. Of course, the number of 
nodes for characterize the input and output layers depends on the nature of the 
problem itself. Differently, the number of nodes for the hidden layers is not obvious. 
However, in literature there are analytical studies that provide indications in 
reference to such a problem [99]. 

 

6.6. Training and Test Operations 

The training phase is necessary in order to form the network for solving a given 
problem. During such a process, the ANN modifies the weights and the bias of all 
its connections and artificial neurons with the aim to get closer to the desired 
behavior. Mainly, there are two different and distinct procedures of training: namely 
the supervised learning process and the unsupervised learning process. 

In the supervised learning process, the ANN is trained using a set of examples—the 
so-called training-set—consisting of several input-output pairs. The examples must 
be significant in order to well characterize the problem for which the network is 
designed to cope with. During this forming phase, for all the input-output pairs the 
ANN iteratively adjusts the weights and bias with the aim to decrease the errors 
between the desired outputs—the targets—and the current ones—reconstructed by 
the network. 

Differently, in the unsupervised learning process, also known as self-learning, only 
the inputs are provided to the ANN. In this way, the regulation of both the weights 
and bias is obtained by searching for any regularities on the input signals. Such a 
training process is based on the assumption that the network has the abilities of to 
organize and adapt itself to the inputs received. Of course, this process requires long 
times of signal processing. 

Once completed the training phase, all the weights and bias are stored and the 
network is ready to be used in the next phases of test and operating mode. The test 
phase consists of assessing both the performance and capabilities of the network by 
testing it with several generic examples that were not used during the previous 
training phase. Al last, the phase of operating mode consists of testing the network 
in “on-field” applications by means of actual measurements obtained for the 
particular application that is considered. 
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7. Appendix B — 
Realistic Model-Based Skin-Artifact 
Removal Technique for UWB Radar 
Breast Cancer Detection Techniques 

 

 

 

7.1. Introduction 

As previously mentioned in the Chapters of this Ph.D. thesis, the desire of having 
new non-invasive detection techniques for diagnosis breast cancer during its early 
stage of development, and with high values of sensitivity and specificity, has 
motivated several groups of research around the world to investigate new diagnostic 
techniques. Among several proposals, the development of the microwave imaging 
techniques was driven by the existing contrast between the electromagnetic 
properties of the malignant and healthy breast tissues. Among the active approaches, 
the two most promising alternatives are the microwave tomography techniques, 
previously described in Section 3.3.2, and the UWB radar imaging techniques, 
described in Section 3.3.1. 

The UWB radar imaging techniques are aimed at providing a qualitative image of 
the breast that describes the presence and location of the main dielectric scatterers. 
These techniques use a mono-static or multi-static radar system configuration to 
illuminate the breast—through UWB pulses with central frequencies in microwave 
band—and then measure the backscattered radar signals. The breast image is 
obtained by processing the recorded signals through a time-domain image-formation 
algorithm, the so-called beamforming algorithm. 

A serious and challenging issue concerning the UWB radar imaging techniques is 
related to the fact that the received signals contain not only the reflections due to the 
presence of both the malignant and healthy internal breast tissues, but also those 



  
  Ph.D. Thesis – Claudio Lenzi 
 

 

 
 
  71 
  

backscattered from the interfaces air/skin and skin/adipose tissue, the so-called skin-
artifact component [7]. This last is a predominant component because it is several 
orders of magnitude greater than the others and, since it overlaps with the reflections 
backscattered from the internal tissues, it can mask the presence of tumors because 
[7, 8, 9, 10]. For the UWB radar imaging techniques, one of the most critical aspects, 
representing a hard and fundamental challenge to overcome, is the implementation 
of a reliable and accurate skin-artifact removal algorithm that suppresses the strong 
skin reflections without introducing any distortion on the signal of interest. 

Several skin-artifact removal algorithms were proposed in literature. Some 
approaches are based on the assumption that the skin-artifact can be estimated and 
removed by creating a suitable reference waveform. Typically, these reference 
cleaning signals are obtained by averaging the radar signals that are collected at other 
elements of the antenna array system. Then, the skin-artifact is removed by 
subtracting, from each recorded radar signal, the appropriate reference waveform. 
Some algorithms that were proposed following this approach are the average 
subtraction [94], and the rotation subtraction [60]. In the average subtraction 
algorithm, a unique reference cleaning signal is estimated, and used for all the 
channels, by averaging the radar signals measured at all the elements of the antenna 
array. Differently, with the rotation subtraction approach, a different skin-artifact 
waveform-consisting of the radar signal measured at another antenna that is distant 
a number of established positions from the considered channel-is estimated for each 
element of the array. However, an approach of this type suffers of problems and 
limitations because it does not take into account of the variations between artifacts 
that are perceived at different antenna positions, where these last are caused by local 
variations in the skin thickness, breast heterogeneity, and distance between the skin 
and the antenna. 

To overcome these problems, some adaptive filtering algorithms—such as the 
Wiener filter [100] and the recursive least squares filter [101]—were proposed with 
the aim to improve the performance by limiting the effects caused by the artifact's 
variations. Using an approach of this type, the artifact component is estimated, for 
each channel, as a filtered and weighted combination of the radar signals measured 
in the others antennas. In this contest, the substantial difference, among the two 
approaches above mentioned, consists of the weights computation. In the Wiener 
filter the weights are obtained by minimizing a residual signal mean-squared error 
over a time window that corresponds to the portion of the signal where the artifact 
component is stronger. In this way, at each iteration, the obtained weight vector is 
shifted over the selected window. In contrast, using the recursive least squares filter 
method, the weight vector is computed and updated at each iteration. 
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Moreover, other proposals of skin-artifact removal techniques are the entropy based 
time window [8], the frequency domain pole splitting [9], and the singular value 
decomposition [102]. The entropy based time window approach is based on the 
assumption that, comparing the radar signals measured at different elements of the 
antenna array, the various artifact components are similar among them, whereas the 
tumor's signature is attenuated and delayed in a different way. Since the Entropy 
function is inversely proportional to the amount of variation, it can be used to 
measure the variation on the collected radar signals. In this way, higher values are 
obtained on the portion of the signal that contains the artifacts, whereas smaller 
values are provided where the tumor's signature is present. Using such an approach, 
a time window is built using the entropy values, then the cleaned signals are obtained 
by multiplying the window for each radar signal. In contrast, the frequency domain 
pole splitting approach is focused on describing the frequency response of each radar 
signal as a sum of complex exponentials. Assuming that each of the obtained 
exponentials corresponds to a specific scatterer viewed by the antenna, the artifact 
component is removed by suppressing the strongest pole, namely the one that 
corresponds to the strongest scatterers. At last, the singular value decomposition 
approach is aimed to subdivide the space of all the backscattered radar signals into 
two different subspaces, namely the artifact subspace and the tumor one. In 
conclusion, the suppressing operation is applied by selecting only the tumor 
subspace. 

The performance of these skin-artifact suppression algorithms was studied and 
assessed in [103]. The obtained results show that the average subtraction and the 
rotation subtraction algorithms are not reliable to be used in realistic cases, namely 
where there are local variations in skin thickness, breast heterogeneity, and antenna-
skin distances. On the other hand, the other proposed methods—consisting of the 
recursive least squares filter, the frequency domain pole splitting, and the singular 
value decomposition—tend to provide a non-accurate cleaning process, because too 
much distortions are introduced on the tumor response. According to [103], it seems 
to be that the best results are provided by Wiener filter and entropy based time 
window algorithms. However, even these approach is not able to completely 
suppress the skin-artifact component without introducing any distortion on the 
tumor's signature. 

For these reasons, this appendix proposes and assesses a new skin-artifact removal 
technique able to face the problem of the artifact suppression without assuming any 
a-priori information on the structure of the examined breast. Since the tumor's 
signature is overlapped with the reflections of the other healthy breast tissues, where 
all these components are hidden by the strong skin reflections, the proposed approach 
is designed to work only with the aim of removing the skin artifact and, at the same 
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time, minimizing the changes and distortions that are introduced on the components 
backscattered from the breast internal tissues independently by their benign or 
malignant nature. To this end, the proposed approach is based on the use of a two-
layered reference cleaning model characterized by suitable both geometric and 
dielectric parameters.  For each channel, the reference cleaning signal is computed 
and then subtracted, from the total backscattered one, in order to obtain the cleaned 
signal. 

In the following, this appendix presents a first section that describes the main 
differences between the cleaning techniques that are aimed to remove the artifacts 
components generated from both the skin and internal healthy tissues, and the 
cleaning techniques that are aimed to remove only the skin-artifact component. On 
the basis of these differences, some suitable characteristics of the cleaned radar 
signals will be observed and commented. These characteristics will be used in order 
to assess the performance of the proposed technique. 

Furthermore, another section will be devoted on both the design and assessment of 
the best geometric and dielectric configurations of the reference cleaning model. 
Once found the suitable configurations, a further section will be focused on the 
validation of the proposed cleaning technique. To this aim it will be tested using the 
breast cancer radar detection method, that is based on the use of artificial neural 
networks, proposed and studied in the chapters of this Ph.D. thesis. In particular, in 
this section different configuration modalities of the reference cleaning model—
obtained by using different parameter values for its dielectric characterization—will 
be considered and tested on the ANN-based diagnostic technique. 

 

7.2. Breast Geometries and Simulation System 

As described in Section 4.2.1, assuming the case where the patient is outstretched on 
the prone position, the measurement system consists of a mono-static radar system 
that collects the radar signals in different points of the space. The Tx/Rx antenna is 
designed free to move along a circumference around the breast and at different 
distances from the thoracic case. 

In order to characterize different healthy breasts, two-dimensional (2D) realistic 
breast geometries were used. These last were derived from the realistic three-
dimensional (3D) breast phantoms provided by the UWCEM database [6], and 
previously described in Section 3.3.1.1. Each model distinguishes and characterizes 
eight different healthy tissues: the skin, three typologies of adipose tissue, a 
transitional tissue, and three typologies of fibro-glandular tissue. 
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As described in Section 4.2.1, 2D healthy geometry was built in random manner by 
randomly choosing the UWCEM model, the cross-section, and the Debye parameters 
(εs, ε∞, σ, τ) for each typology of healthy internal tissue. 

The cancerous geometries were built starting by new 2D healthy geometries in which 
a tumor was inserted. This last was modeled as a circular dielectric anomaly 
characterized by different dimensions, namely different diameters randomly chosen 
between 0.2 cm and 1 cm. Even the position was defined in a random way by 
randomly choosing a depth between the outer surface of the skin and the center of 
the probing line. In order to dielectrically characterize the tumor, the values of the 
Debye parameters were obtained, from the Cole-Cole representation provided in 
[33], by minimizing the cost function proposed by [32]. In conclusion, the tumor has 
been dielectrically characterized with an εs of 61.6, ε∞ of 14.5, σ of 0.7 S/m, and a τ 
of 13 ps 

The measures of the backscattered radar signals are obtained through simulation 
using the finite-difference time-domain (FDTD)-based software GprMax. [93]. At 
last, for each mono-static radar antenna position, the breast geometry was 
illuminated using an UWB pulse, consisting of a differentiated Gaussian pulse 
(DGP) of central frequency 2 GHz and time duration 1 ns. 

 

7.3. Ideal Skin Artifact Removal Techniques 

As mentioned in the previous sections, a serious problem for all the UWB radar 
imaging techniques is related to the presence of the skin-artifact component inside 
the measures of the backscattered radar signals, namely the presence of the pulses 
backscattered from the interfaces air/skin and skin/adipose tissue. This issue rises 
from the natural and intrinsic predominance of such a component with respect to the 
pulses backscattered from both the healthy and malignant breast tissues. Moreover, 
the skin reflections are several orders of magnitude greater than the other 
components, and they overlap with them. Even if different skin-artifact suppression 
algorithms were proposed in literature, most of the radar signal processing and 
beamforming algorithms are preliminarily studied and assessed in the case where an 
ideal cleaning techniques is applied [7]. 

According with [7], the most common used ideal cleaning technique— hereafter 
called Ideal-1—is founded on a totally ideal approach, namely on the hypothesis of 
knowing the actual external shape of the skin, the actual structure of all the healthy 
breast tissues, and the actual dielectric characterization of both the skin and healthy 
internal breast tissues. 
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In fact, for each channel, the ideally cleaned signal is obtained by subtracting, from 
the total backscattered radar signal that is measured on a cancerous geometry, the 
radar signal measured on the same breast geometry but in absence of the tumor. 
Because it is focused on removing, besides the skin-artifact component, even all the 
components that derive from the heterogeneity of the internal breast tissues, such a 
totally ideal cleaning technique is aimed at providing the scattering that is related 
only to the presence of the tumor. Of course, a technique such as Ideal-1 is not 
realizable in the actual real-life, and it is used only with the aim to preliminarily 
validate the performance of the radar signal processing and beamforming algorithms. 

In contrast, another way is using a partially ideal technique—hereafter called Ideal-
2—based on the assumption of knowing only the real external shape of the skin, and 
the real dielectric characterization of both the skin and adipose tissues. Such an 
approach is based on the use of a two-layered cleaning model having the same shape 
of the corresponding actual breast model and characterized by the presence of only 
the skin and a homogeneous adipose tissue, where these last have the same dielectric 
characterization of the corresponding real model. For each channel, the ideally 
cleaned radar signal is obtained by subtracting, from the total backscattered one, the 
radar signal that is measured on the two-layered cleaning model. A technique like 
Ideal-2 is aimed to remove only the skin-artifact component independently by the 
degree of heterogeneity of the internal breast tissues. 

As examples, Figures 7.1, 7.2, and 7.3 show a study on the differences obtained by 
applying the cleaning techniques Ideal-1 and Ideal-2. The radar signals were 
measured using a 2D geometry in which a dielectric anomaly was positioned at 
different depths from the outer skin surface. Hereafter, the signal cleaned using the 
technique Ideal-1 will be referred as Cleaned-1, whereas the signal cleaned using 
Ideal-2 will be called Cleaned-2. 

In particular, for each figure, the signal (a) represents to the total backscattered signal 
measured on the 2D realistic cancerous geometry, the signal (b) corresponds to the 
signal Cleaned-1, and (c) represent the signal Cleaned-2. In Figure 7.1, the two 
cleaning techniques are assessed in the case where the dielectric anomaly is 
positioned outside the fibro-glandular tissue. In Figure 7.2 the two techniques are 
compared in the case where the outer surface of the anomaly is positioned on the 
outer surface of the fibro-glandular tissue. At last, Figure 7.3 represents the case 
where the dielectric anomaly is located deep inside the fibro-glandular tissue. 
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Figure 7.1.   The cleaning techniques Ideal-1 and Ideal-2 compared in the case where the 
dielectric anomaly is positioned outside the fibro-glandular tissue. (a) Total backscattered 
radar signal; (b) signal Cleaned-1 obtained using the cleaning technique Ideal-1; (c) signal 
Cleaned-2 obtained using the cleaning technique Ideal-2. 

 

Looking at Figure 7.1(b) and Figure 7.1(c), it is evident that in the case where the 
tumor is positioned outside the fibro-glandular tissues, the first peaks of the signals 
Cleaned-1 and Cleaned-2 are identical, whereas the tails show only negligible 
differences. From this first analysis, it is possible to conclude that both the first and 
second cleaning technique produces the same effects. In contrast, looking at Figure 
7.2, the first peaks of the cleaned radar signals appear much different from each other 
respecting to the case reported in the previous Figure 7.1, and the diversities between 
the two cleaning techniques start to appear more evident. As matter of fact, since the 
technique Ideal-1 is aimed to remove all the artifacts that exist before, around, and 
then the tumor’s signature, it affects all the radar signal. Differently, since the 
technique Ideal-2 is aimed to suppress only the reflections of the skin artifact 
component, it tends to operate only on the first part of the radar signal. 
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Figure 7.2.   The cleaning techniques in the case where the dielectric anomaly is positioned 
inside the fibro-glandular tissue and closely near to its outer surface. (a) Total backscattered 
radar signal; (b) signal Cleaned-1; (c) signal Cleaned-2.  

 

The previous considerations appear more evident in the case of deep internal tumors. 
Comparing Figure 7.3(b) with Figure 7.3(c), it is evident that the signals Cleaned-1 
and Cleaned-2 They present diversities not only in terms of both waveform shapes 
and amplitudes, but also in terms of arrival times. The most obvious reasons are 
related to the fact that, since the signal Cleaned-1 contains only the tumor's signature 
together with all the contributions due only to the "history" of the electromagnetic 
interaction between the tumor and other internal tissues, the time of arrival mainly 
depends by the tumor position, where more the tumor is deep and more the arrival 
time is greater. Differently, since the cleaning technique Ideal-2 is aimed to suppress 
only the skin-artifact component, the reflections backscattered from the internal 
healthy tissues are present with greater effects inside the signal Cleaned-2. For these 
reasons, the time of arrival strongly depends by the shape and disposition of the 
fibro-glandular tissues. 
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Figure 7.3.   Case where the dielectric anomaly is positioned deep inside the fibro-glandular 
tissue. (a) Total backscattered radar signal; (b) signal Cleaned-1; (c) signal Cleaned-2. 

 

However, looking at Figure 7.3, also inside the signal Cleaned-2 it is possible to 
identify a signature that identifies the tumor presence. Comparing Figure 7.3(b) with 
Figure 7.3(c), it is evident that, at the same time—equals to approximatively 1.9 ns—
that corresponds to the arrival time of the tumor reflection detected in the signal 
Cleaned-1, the signal Cleaned-2 exposes a signature that is univocally connected 
with the tumor presence. 

 

From these analyses some useful conclusions can be deduced. The cleaning 
technique Ideal-1 is a totally ideal technique aimed to remove the artifacts due to the 
presence of both the skin and internal healthy tissues in order to obtain a signal in 
which only the components due to the tumor and the history of its interactions with 
the internal tissues are present. On the other hand, the cleaning technique Ideal-2 is 
an ideal technique focused to suppress only the skin-artifact component. 
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For this reason, it goes to alter only the first part of the signal without modifying the 
reflections due to the internal tissues independently of their benign or malignant 
nature. 

In the present appendix, the main aim is to develop a standard way to implement the 
technique Ideal-2 without the a-priori assumption of knowing the actual shape of the 
skin, and the real values of the dielectric parameters that characterize both the skin 
and the adipose tissues. Because, from the previous analyses, it was demonstrated 
that the technique Ideal-2 goes to modify only the first part of the radar signal, the 
present study—aimed to find a possible realistic implementation—will be based on 
comparing the first part of the radar signals cleaned respectively using the technique 
Ideal-2 and the proposed realistic one. To this aim, some error indexes—built on the 
firsts two maxima/minima of the cleaned radar signals—will be considered in order 
to quantify the differences that derive from the application of the two cleaning 
approaches. 

 

 

7.4. Model-Based Skin Artifact Removal Technique 

The main goal of this section is to develop a practical implementation method in 
order to suppress the skin-artifact component without assuming a-priori information 
on the actual structure of the breast geometries. To this end, the proposed approach 
consists of using a reference cleaning model composed by a two-layered cylinder, 
representing the skin and a homogeneous adipose tissue. This reference model is 
characterized by suitable dielectric Debye parameters that describe the two tissues. 
Moreover, other important parameters are: the skin thickness, the diameter 
dimension, and the distance between the outer skin surface and the radar antenna, 
namely the position where the reference model is placed with respect to the position 
of the antenna. In this way, the suitable configuration of the reference cleaning model 
is used to simulate the reference cleaning signal that is subtracted from the total real 
one in order to obtain the cleaned signal. 

 

7.4.1. Error Indexes Used to Configure the Reference Cleaning Model 

In the previous sections it has been showed that a cleaning technique like Ideal-2 
affects only the first part of the radar signal because it is aimed to remove only the 
reflections backscattered from the skin, without modify the components due to the 
internal healthy tissues. 
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For this reason, in order to configure the proposed two-layered reference model, the 
analyses were based on comparing the first two maxima/minima measured on the 
same radar signals cleaned respectively using the ideal technique Ideal-2 and the 
proposed model-based one. To this end, the following four error indexes—built on 
the amplitudes and arrival times of the firsts two peaks—were considered. 
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 (7.1) 

Where Areal(i) and treal(i) represent respectively the amplitude and the arrival time of 
the ith maximum/minimum of the radar signal cleaned using the proposed reference 
cleaning model; Aideal(i) and tideal(i) are the amplitude and the arrival time of the ith 
peak measured on the radar signal cleaned with the technique Ideal-2. 

 

In order to study the error indexes on a suitable and significant scenario, three 
different realistic 2D healthy breast models—hereafter called Model1, Model2, and 
Model3—were considered. These models were chosen different each from other in 
terms of dimensions, heterogeneity, and dielectric characterization. 

For each of these healthy breast geometries, the error indexes were studied in three 
different situations: in the case where a tumor is located deep inside the fibro-
glandular tissues (Tint); when a tumor is located outside the fibro-glandular tissues 
(Text); in absence of the tumor (NT). 

All the simulated healthy and cancerous breast geometries are reported in Figure 7.4, 
where: Figures 7.4(a), 7.4(b), and 7.4(c) show the cases where the tumor is 
positioned deep inside the fibro-glandular tissues; Figures 7.4(d), 7.4(e), and 7.4(f) 
show the same breast models but in the case where the tumor is inserted outside the 
fibro-glandular tissues; and Figures 7.4(g), 7.4(h), and 7.4(i) show the breast 
geometries in absence of the tumor. 
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Figure 7.4.   Breast geometries used to configure the reference cleaning model on the basis 
of the analyses of the error indexes. (a) Model1-Tint; (b) Model2-Tint; (c) Model3-Tint; (d) 
Model1-Text; (e) Model2-Text; (f) Model3-Text; (g) Model1-NT; (h) Model2-NT; (i) Model3-NT. 

 

7.4.2. Geometric Configuration 

This section is focused on configuring the dimension and distance of the reference 
cleaning model by searching for the best compromise on the obtained values of the 
error indexes. In this context, for each of the nine realistic breast models previously 
described and showed in Figure 7.4, two-layered reference cleaning models—
characterized by the same Debye dielectric parameters for both the skin and adipose 
tissue, and the same skin thickness of the corresponding real model—were 
considered. 
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First, considering the case where the reference cleaning model is positioned at the 
real distance—namely the same of the corresponding realistic breast model—an 
analysis at varying the model dimension was performed. In particular, the radius 
dimension was varied between the range of 5 cm and 40 cm with step of 1cm. 

The obtained results showed that, for the six NT and Tint cases, the error indexes Ia1, 
Ia2, It1, and It2, were always lower or equal respectively than 2.01 %, 1.10 %, 2.25 
ps, and 1.18 ps. In contrast, as shown in Figure 7.5, for the Text cases the variations 
were more significant. In particular, Figure 7.5 reports four graphics that show the 
variations of the four error indexes obtained for the Text cases. Indeed, each graph 
reports three curves that correspond to the three different models Model1-Text, 
Model2-Text, and Model3-Text. Looking at the graphs shown in Figure 7.5, it is evident 
that even in this cases the error indexes Ia2, It1, and It2 have negligible values. 
whereas significant error values—reaching the 30 %—are observed for the error 
index Ia1. 

According with the above considerations, searching for the radius dimension that 
minimizes the value of Ia1, it is possible to conclude that an acceptable situation 
appears in the case where a radius of 11 cm is used. Using such a configuration of 
the reference cleaning model, the values obtained for all the four error indexes are 
reported in Table 7.1. 

 

 
Figure 7.5.   Error indexes obtained at varying of the radius dimension of the reference 
cleaning model, and computed using the realistic cancerous models Model1-Text (blue lines), 
Model2-Text (green lines), and Model3-Text (red lines). (a) Ia1; (b) Ia2; (c) It1; (d) It2. 
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Table 7.1. Error indexes obtained in the case where the reference cleaning model of radius 
11 cm is positioned at the same realistic distance as in the real breast models. 

Breast Models 
Error Indexes 

Ia1 (%) Ia2 (%) It1 (ps) It2 (ps) 

Model1-NT 0.60 0.01 0.00 0.01 

Model2-NT 0.27 0.24 8.26 1.18 

Model3-NT 0.46 0.59 1.18 0.00 

Model1-Tint 0.65 0.01 0.01 0.00 

Model2-Tint 0.25 0.26 8.24 1.19 

Model3-Tint 0.43 0.57 1.16 0.00 

Model1-Text 9,33 0.39 7.08 1.18 

Model2-Text 1.74 0.97 23.59 1.18 

Model3-Text 13.23 2.06 10.61 0.00 

 

Once found the best compromise on the model dimension, using such a case, the 
error indexes were studied at varying of the distance between the reference cleaning 
model and the radar antenna. This analysis highlighted that, for all the cases here 
studied, the knowledge of the real distance is required. Indeed, if an error of only 
±1cm is introduced on the distance, the average variations observed on the error 
indexes and computed on all the nine models, demonstrate error increments equal 
to: 8.70 % on Ia1; 1.10 % on Ia2; 2.70-ps It1; 0.40-ps It2. 

In conclusion, on the basis of the assessment of the variations of the error indexes, 
the best results were obtained in the case where a reference cleaning model—with 
11-cm radius—is used by placing it at the same real distance that exists between the 
skin and the antenna. It is worth noting that, since the proposed technique is based 
on the use of a mono-static radar system, the computation of the real distance does 
not represent a challenging task also in real-life. 

 

7.4.3. Dielectric Characterization and Skin Thickness 

In order to dielectrically configure the reference cleaning model, this section presents 
a study on how the skin thickness and each single Debye parameter (εs, ε∞, and σ) 
for the dielectric characterization of both the skin and adipose tissues affect the value 
of the error indexes. As mentioned in the previous section, Table 7.1 shows the 
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values of Ia1, Ia2, It1, and It2 in the case where the total backscattered signals are 
cleaned using a reference cleaning model with the actual skin thickness and the 
actual Debye dielectric characteristics of the corresponding real breast models. In 
this context, the values reported in Table 7.1 were used as reference values, and the 
differences introduced by varying each single parameter one at time have been 
studied. 

First, the importance of knowing the real values of all the parameters that 
dielectrically characterize both the skin and adipose tissue was studied. To this end, 
the three Debye parameters εs, ε∞, and σ were varied, one at time, between the ±10% 
of their real values. Then, the averages on the maximum variations that were 
introduced on the error indexes were computed on the three real models. These 
values are reported in Table 7.2. Looking at this table, it is evident that the dielectric 
parameters of those the knowledge of the actual values is fundamental are the εs of 
the skin and the εs of the adipose tissue. 

 

Table 7.2. Average values of the maximum increments introduced on the error indexes by 
varying, one at time, the Debye parameters of the skin and the adipose tissue. 

Breast 
Tissues 

Debye 
Parameters 

Error Indexes 

Ia1 (%) Ia2 (%) It1 (ps) It2 (ps) 

Adipose εs 24.76 6.24 8.65 3.93 

 ε∞ 2.53 0.81 5.07 0.01 

 σ 6.58 1.87 6.52 0.08 

Skin εs 12.03 3.49 7.08 1.97 

 ε∞ 1.33 0.35 2.75 0.00 

 σ 5.68 0.56 3.15 0.39 

 

At last, in order to assess the importance of knowing of the real value of the skin 
thickness, different cleaning models characterized by different skin thicknesses were 
studied. It is worth noting that, for the real models—Model1, Model2, and Model3—
the real actual of the skin thickness is 1.5 mm. For these reason, the skin thickness 
values of the reference cleaning model were varied between 1 mm and 2 mm. 

The averages on the maximum variations introduced on the error indexes, and 
computed on the three real models, were: 28.85 % on Ia1; 8.75 % on Ia2; 16.12-ps 
It1; and 0.00-ps It2. Looking at these results, it is evident that it is particularly 
important to know the actual value of the skin thickness. 
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In conclusion, on the basis of the assessment studies conducted on the variations of 
the error indexes, the obtained results show that it is fundamental to assume the a-
priori knowledge of at least the real values of the εs of the skin, the εs of the adipose 
tissue, and the skin thickness. 

 

7.4.4. Validation of the Proposed Skin-Artifact Removal Technique 

In this section, the proposed skin-artifact component suppression technique is tested 
in case where its cleaned data are processed using the ANN-based breast cancer radar 
detection technique previously designed and presented in Chapter 3 of the present 
Ph.D. thesis. 

In the previous sections of this appendix, it was concluded that, on the basis of the 
analyses of the error indexes, the best results are obtained under the a-priori 
assumption of knowing the real values of the skin thickness and the εs of both the 
skin and adipose tissue. Nevertheless, in this section the proposed cleaning technique 
is tested using different configuration modalities of the reference cleaning model, 
consisting of the use of different dielectric characterizations. 

In particular, the following cases were considered: when the real values of the skin 
thickness and all the Debye dielectric parameters of both the skin and adipose tissue 
are known; when only the real values of the skin thickness and the εs of both the skin 
and adipose tissue are assumed known; when only the skin thickness is known and 
all the Debye dielectric parameters are fixed at an average standard value. At last, 
with the aim to assess the results in a more comprehensive also, the case where the 
technique Ideal-2 is applied was considered. 

Section 4.2.4 described the concept under which, if a tumor is located outside the 
fibro-glandular tissue—Text—then its signature is contained in the first part of the 
cleaned radar signal, whereas, if a tumor is located deep inside the fibro-glandular 
tissue—Tint—then its signature is contained in the second part of the cleaned signal.  

Therefore, since the proposed cleaning technique is aimed on removing the skin-
artifact component and it affects mainly the first part of the radar signal, in order to 
assess the performance of the different reference cleaning model configurations, the 
analyses were focused on cases of tumors located outside the fibro-glandular tissue, 
representing the situations where the tumor presence is mostly masked by the skin 
presence. 
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In this context, different networks were trained and tested using the ANN 
architecture 4-8-1 described and used in the previous Section 4.3.1. 

As before described, this ANN architecture has an input layer of four nodes, a hidden 
layer of eight nodes, and an output layer of one node that provides an output of type 
Yes/No, depending on the presence or absence of the tumor. Moreover, such an 
architecture receives four input data, consisting of the amplitudes and the arrival 
times of the firsts two maxima/minima measured on the cleaned signals. 

Following the random manner previously described in the Section 2, 100 realistic 
2D cancerous geometries (T) and 100 realistic 2D healthy geometries (NT) were 
generated. For the purpose to train the networks, 50 T models and 50 NT models 
were used. The remaining 50 T and 50 NT geometries were used for test the 
networks. In particular, four different networks were formed using, for each of these, 
one of the four different cleaning model configuration previously described. 
Hereafter the four different ANN will be referred as ANN1, ANN2, ANN3, and 
ANN4, where: 

a) ANN1 is the network trained using the radar signals cleaned using the ideal 
cleaning technique Ideal-2; 

b) ANN2 is the network trained under the a-priori assumption of knowing all 
the real values of the skin thickness and all the Debye dielectric parameters 
that characterize both the skin and adipose tissue; 

c) ANN3 was trained under the assumption of knowing the real values of the 
skin thickness and the εs of both the skin and adipose tissue; 

d) ANN4 was trained in the case where only the skin thickness is known 
whereas all the Debye parameters that dielectric characterize the skin and 
the adipose tissue are fixed to average standard value. 

Moreover, in the same way the four sets of test data Test1, Test2, Test3, and Test4 
were generated. 

Table 7.3 reports the values of accuracy obtained in the cases where the different 
ANNs were tested using the different sets of test data. As expected, the best results— 
reaching an accuracy of 91%—were obtained in the case where the network ANN1 
was tested using the set Test1, namely the case where the ideal cleaning technique 
Ideal-2 is used during both the phases of training and test. Unfortunately, this ideal 
situation does not correspond to what truly happens in the real-life. However, Table 
7.3 shows that very good results—achieving an accuracy of 87%—were obtained 
also under the a-priori assumption of knowing at least the real values of the skin 
thickness, the εs of the skin, and the εs of the adipose tissue, namely where the 
network ANN1 is tested using the set Test3. 
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This last result is important because, during the training phase, the assumption of 
knowing the real values of the parameters that characterize the breast models is 
acceptable also in the context of an "on-field" actual application. Nevertheless, the 
more significant result—reaching an accuracy of 84%—was obtained by testing the 
ANN4 with the set of test data Test4. Indeed, this means that good values of accuracy 
can be achieved also in the case where reference cleaning models—made up of 
standard values for both the geometric and dielectric characterizations—are used 
during both the training and test phases. It worth noting that the only parameter that 
was assumed as known is the skin thickness, however all the realistic 2D breast 
models used during the simulations present a skin thickness of 1.5 mm. 

 

Table 7.3. Accuracy values obtained by testing the different ANNs 4-8-1 (ANN1, ANN2, 
ANN3, and ANN4) using different sets of test data (Test1, Test2, Test3, and Test4). 

ANNs 4-8-1 
Performance for Different Test Data (%) 

Test1 Test2 Test3 Test4 

ANN1 91 79 87 76 

ANN2  84 86 87 

ANN3   83 79 

ANN4    84 
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8. Appendix C — 
EM-Source Through-the-Wall 
Localization by Using 
Artificial Neural Networks 

 

 

 

8.1. Introduction 

In the last decades, the problem of detecting and localizing electromagnetic (EM) 
sources has received a lot of interest for several applications such as radar systems, 
global positioning systems (GPS), sonar, radio astronomy, satellite navigation, 
military applications, and commercial purposes. In this context, indoor detection and 
localization of EM sources has become an interesting object of study in last years. 
As example, in [104] a method to locate an EM source, working in the very high-
frequency (VHF) band and positioned inside an indoor location, is presented. In 
addition, in the case of emergency calls, essential information necessary to guide 
rescuers to the right place is knowing the location accurately. This has made 
necessary the development of devices and services to detect and locate survivors for 
their recovery and for the protection of human lives [105, 106]. 

To find the position of a pulsed EM source, most of the methods existing in the 
literature are based on the measurements of the time difference of arrival TDOAs or 
of the direction of arrival (DOA) in different points in space. Some methods are 
based on using the TDOAs in order to estimate the DOAs, then the source position 
is obtained through intersection of the DOAs estimated in different places [107, 108]. 
Differently, other methods only rely on the TDOAs to directly detect the source 
position [109, 110]. Even though the methods solely based on TDOA have a strong 
ability to locate single sources, they cannot deal with multiple sources, and they are 
weak in a multipath environment [111]. 
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In this appendix, the capabilities of a new probing technique, based on use of 
artificial neural networks (ANNs) to detect and locate an EM source that is located 
in an indoor environment, are introduced and assessed. As mentioned in [104], for 
such a class of applications, an important aspect is how to ensure the line of sight 
between the transmitter antennas and the receiver antennas. In these cases, because 
of the strong attenuation introduced by the passage of the signal through walls and 
obstacles, maintaining visibility should be a problem. On one hand, the use of lower 
frequencies should reduce these attenuations, but on the other hand, it may reduce 
the resolution’s accuracy on the reconstruction of the position. According to [104], 
the use of EM sources that operate in the VHF band can be a good compromise 
between lower attenuation and high resolution. In this context, the present appendix 
introduces a new probing technique based on ANNs to detect and localize a pulsed 
EM source that is placed behind a wall and radiates UWB pulses at regular time 
intervals with a central frequency in the VHF band. The main purpose is to study the 
performances of a method that allows to obtain a good compromise between two 
principal goals: accuracy in the reconstruction of the source position as high as 
possible and a probe dimension that is as small as possible. 

Because the solution of such a problem is related to the solution of an inverse EM 
scattering problem, most of the methods that exist in the state of the art that are based 
on the inversion of the direct mathematical operators or on the minimization of 
suitable cost functions, require long computation times and a high computational 
burden. In the proposed method, the resolution of the inverse scattering problem is 
based on the use of ANNs. This approach provides several advantages, such as short 
computational times, low computational burden, and the opportunity to reformulate 
the problem by considering only the few unknowns of interest. 

 

8.2. Localization of EM Source Behind a Wall 

The main purpose of this section is to present a new technique, based on the use of 
a probe comprising a linear array of antennas and on a signal data processing 
technique developed using an ANN, to detect and locate an EM source positioned 
behind a wall. To this end, the model represented in Figure 8.1 is considered. On one 
side of the wall there is an EM source (Tx) and on the other side there is a probe. 

The EM source can be located in any position within distances up to 3 meters from 
the wall, and it radiates UWB pulses at regular time intervals. The probe is formed 
by a linear array of receiving antennas (R1, … Rn), each placed at a fixed distance. 
This sensor moves parallel to the wall and measures the differences on the times of 
arrival (t1, …tn) and on the amplitudes (A1, … An) of the pulses arriving to the 
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different receivers. The probe should be as small as possible and formed by the 
smallest number of receiving antennas. 

 

 

Figure 8.1.   Schematic representation of the problem’s geometry. There is a wall; on one 
side there is an EM source and on the other side, there is the probe. For each position of the 
sensor, the EM source is uniquely identified by the distance ‘d’ and the angle ‘ϑ.’ 

  

The purpose is to detect the EM source position by providing its distance (d) and 
direction (ϑ) with respect to the position of the sensor. In order to do this, as it will 
be better explained in the next sections, once the various times of arrival (t1, … tn) 
and amplitudes (A1, … An) are measured, appropriate data will be used to train an 
ANN to provide the distance and direction of the EM source. 

First, a scenario without a wall is considered where there is an EM source that 
radiates UWB pulses and a probe formed by ‘n’ receiving antennas (R1, … Ri, … 
Rn), measuring the incident signal. In Figure 8.2, a schematic representation of this 
situation is shown. 

 

 

Figure 8.2.   Schematic representation of the geometry of the problem with the EM source 
and the probe positioned in free space. The probe is formed by ‘n’ receiving antennas. Each 
ith receiver is positioned at a different distance di from the EM source. 
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Looking at Figure 8.2, the coordinates of the EM source (x, y, z) are assumed to be 
the unknowns of the problem, and each ith receiving antenna, labeled Ri, is positioned 
in the known coordinates (Xi, Yi, Zi). 

According with [109], assuming a free space geometry and a spherical wave 
propagation model, the relations between the positions of each antenna (namely each 
distance di between the ith receiver and the source) and the differences on the times 
of arrival (t1, …tn) of the pulses arriving to the different receivers can be expressed 
using Equation 8.1. 
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 (8.1) 

Where: the first antenna R1 is assumed to be the reference for the computation of the 
EM source location, and it is positioned in the center of the reference coordinates 
system; Tij is the TDOA between the receiving receiver i and the receiver j; c is the 
speed of light (3 × 108 m/s); (Xi, Yi, Zi) are the spatial 3D coordinates of the ith 
antenna; and di is the distance between the EM source and the ith antenna. 

 

Under the hypotheses of free space geometry and spherical wave propagation model, 
and according to Equation 8.1, the signal measured by the ith receiving antenna can 
be represented by Equation 8.2. 

 

      0
i i i i

i

A
S t AU t t U t t

d
     (8.2) 

Where: Si(t) is the signal measured by the ith receiver, Ai is its amplitude, U(t) is the 
waveform of the pulse radiated by the EM source, A0 is the amplitude of the radiated 
pulse, di is the distance of the ith receiver from the source, and ti is the arrival time of 
the pulse. 
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Moreover, according to Equations 8.1 and 8.2, it is possible to relate the signals 
measured between adjacent receivers through the following relations: 
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 (8.3) 

 

By simply inverting Equation 8.3, it is easy to find the position of the EM source for 
a given position of the sensor. Indeed, in the case, for example, that the antenna R1 
is assumed as reference, the relative position between the source and the probe 
(namely the distance d and the angle ϑ), can be described as indicated in Equation 
8.4. 

 
1

1

d d
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 (8.4) 

Where: d1 and ϑ1 are, respectively, the distance and the angle under which the EM 
source is seen by the receiving antenna R1 (see Figure 8.2). 

Under this hypothesis, it easy to obtain by means of the analytical inversion of 
Equation 8.3 that the distance and the angle can be written using Equation 8.5. 
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Where: 1iR R  represents the distance of the ith antenna Ri from the reference antenna 

R1. 

However, in presence of obstacles like a wall, the hypothesis of free space and 
spherical propagation is not satisfied and the equations are no longer valid. Even if, 
in the presence of the wall, the signal amplitude and time of arrival still depend on 
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the wave propagation path between the receivers and the EM source, in this real-life 
case, the propagation path is not the same as the simple Euclidean distance in free 
space. Moreover, when the wall has a thickness and an electric conductivity that is 
not negligible, strong attenuations affect the received signals. According to the Snell 
laws, the direction of propagation changes depending on the angle of incidence. 
Therefore, the longer the path within the wall, the higher the corruption of the 
propagation model in terms both of direction and amplitude. For these reasons, the 
real relations existing between both the amplitudes and times of arrival with the 
propagation paths are more complex than those reported in Equation 8.2 and 
consequently in Equation 8.3. Nevertheless, even if these relations are complex, they 
certainly depend on the relative position between the EM source and the probe, 
providing the wall characteristics are assumed to be known. In this context, Equation 
8.3 can be rewritten as Equation 12. 
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 (8.6) 

Where: as shown in Figure 8.1, d and ϑ describe the position of the EM source with 
respect to the position of the probe. 

 

These equations show that the differences on the times of arrival (∆ti+1,i) and on the 
amplitude ratios (Ai/Ai+1) are functions, respectively, f and g, of the distance d and of 
the angle ϑ under which the source is viewed by the probe. 

Trying to solve the problem represented by Equation 8.6 means solving an inverse 
electromagnetic scattering problem. As mentioned in the introduction, most of the 
methods that exist in the literature require not only long computation times and high 
computational burden, but also knowing the mathematical operators that must be 
solved. 

In the proposed approach, in order to avoid mathematically developing Equation 8.6 
and to reduce the computation time to reach quasi real-time response, ANNs are 
used. In particular, as described in the following sections, an ANN has been built 
starting with the knowledge of a certain number of “examples” relating the relative 
position of the probe and source (d and ϑ) to the signal data ∆ti+1,i and (Ai/Ai+1), 
measured by each receiving antenna constituting the probe. 
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8.3. Artificial Neural Network Application to the 
Source Localization 

In this section, a new probing technique, based on the use of ANNs to detect and 
localize a pulsed EM source that is placed behind a wall, is designed and assessed. 
As mentioned in the previous sections, the main purpose is to study the performance 
of a method that allows to obtain a good compromise between two principal 
objectives: an accurate reconstruction of the source position that is as high as 
possible and a probe dimension that is as small as possible. 

To this aim, the case of a probe formed by three receiving antennas (R1, R2, R3) 
equally spaced 10 cm apart was initially considered. The total width of the sensor is 
20 cm, and it moves parallel to the wall with a distance of 50 cm. The three receivers 
are linearly placed to avoid any geometric ambiguous localization, whereas the 
distance of 10 cm represents an initial guest to search for an acceptable minimum 
probe dimension respect to allow, for the given operating central frequency, useful 
differences on the signals received at the 3 antennas. The EM source has been 
modeled using a differentiated Gaussian pulse (DGP) of central frequency 300 MHz 
and time duration 5 ns. A graphic representation of the EM pulse is shown in Figure 
8.3. The EM source can be arbitrarily located in any position within a square of area 
3 × 3 m2 behind the wall. The wall in question is a wet brick wall, with a thickness 
of 30 cm, a relative dielectric permittivity of 4.0, and a conductivity of 0.2 S/m [112]. 

 

 
Figure 8.3.   Graphic representation of the DGP of central frequency 300 MHz and time 
duration 5 ns. The position of the first peak at which each receiver antenna measures the 
amplitude and the time of arrival is marked in red. 

Usually, the measurement of the TDOA is a critical operation that requires the 
implementation of specific techniques that measure the times of arrival (DOAs) at 
the different receivers or use a cross-correlation technique. In order to reduce these 
critical issues, in this section, instead to estimate the TDOA by computing the 
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signals’ TOAs or any signal’s cross-correlation, the measure of the arrival time of 
the first peak of the radiated UWB pulse is used. It is worth noting that the principal 
aim is to assess the performance of the diagnostic technique itself, independently of 
which technique for the TDOA estimation is implemented. Moreover, because the 
signal radiated by the EM source is a pulse, measuring the amplitude and the arrival 
time of this first peak is simpler than measuring the amplitude and the arrival time 
of the total signal. For these reasons, in this study, the arrival times and the signal 
amplitudes measured by each receiver are substituted by the arrival times and the 
amplitudes of the first peak of the UWB pulse measured by each receiver. 

Another important aspect is that, to correctly measure the TDOA, synchronization 
between the transmitter and the receiving antennas is fundamental. In a practical 
sense, this is achieved simply by waiting for a preliminary time before starting the 
locating operations. Because the main purpose of this section is to assess the 
capabilities of the proposed source localization method based on the ANN technique, 
the synchronization process is assumed to be ideally applied. 

As mentioned in the previous sections, the main purpose of the locating technique is 
to detect the EM source position by providing its distance (d) and direction (ϑ) with 
respect to the position of the sensor. In Equation 8.6 has been shown that the 
differences on the TOAs (∆ti+1,i) and on the amplitude ratios (Ai/Ai+1), measured by 
different receivers, are functions, respectively, f and g, of the distance d and of the 
angle ϑ under which the EM source is viewed by the probe. 

Therefore, because the probe is formed by three receiving antennas, Equation 8.6 
furnishes four relations connecting the unknown quantities, d and ϑ, to four known 
pieces of data—namely, the two differences between the arrival times of the pulse’s 
first peak measured by different receivers (∆t2,1 and ∆t3,2) and the two ratios between 
the amplitudes of the pulse’s first peak measured by different antennas ((A1/A2) and 
(A2/A3)). 

Consequently, the ANN used receives four pieces of input data and provides two 
outputs—namely, the distance d and the angle ϑ referred to the probe position. If 
examined in more detail, ∆t2,1 is the difference between the arrival times of the first 
peak measured by the receivers R2, R1; ∆t3,2 is the difference between the arrival 
times of the first peak measured by the receivers R3, R2; (A1/A2) is the ratio between 
the amplitudes of the first peak measured, respectively, by the receivers R1, R2; and 
(A2/A3) is the ratio between the amplitudes of the first peak measured, respectively, 
by the receivers R2, R3. 

As proposed by [99, 112] a good choice is to use a multilayer feed-forward ANN 
with only one hidden layer. This number of nodes should be twice the number of 
input data. Therefore, because for the problem considered, four inputs and two 
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outputs are considered, the ANN that has been developed and used—hereafter called 
ANN 4-8-2—is formed by an input layer with four nodes, a hidden layer with eight 
nodes, and an output layer with two nodes. The number of degrees of freedom of the 
network considered is 56, which is given by the number of unknown parameters, the 
weights, and the bias, characterizing the ANN (see Appendix A). Indeed, the ANN 
considered has 4 × 8 weights connecting the nodes of the input layer with those of 
the hidden one, 8 bias for each node of the hidden layer, and 8 × 2 weights connecting 
the nodes of the hidden layer with those of the output one. 

In order to train the network, a grid of different fixed EM source positions inside the 
square domain of 3 × 3 m2 was chosen. Differently, a set of 900 new test positions 
selected in totally random manner inside the same area were chosen as testing 
examples. For these examples, all the grid points used during the network training 
phase have been excluded. 

 

8.3.1. Performance Analysis 

The first assessment study has been focused on studying the variation of the accuracy 
of the EM source position reconstruction by varying the training set dimension—
namely, the number of examples used during the training phase. For each different 
training-set dimension, a different network, using the same ANN architecture (ANN 
4-8-2), has been trained and tested. Four different training-set dimensions were 
considered: four networks have been trained by using, respectively, 57, 76, 109, and 
133 items of training data. For the performance assessment, the same set, formed by 
900 totally random test examples, has been consistently used. 

Figure 8.4 shows the errors on the distance d and on the angle ϑ reconstructed by 
varying the training set dimensions. Figure 8.4(a) shows the variations of the 
maximum, minimum, and average relative errors on the distances, whereas the 
variations of the maximum, minimum, and average absolute errors on the angles are 
reported in Figure 8.4(b). 

Looking at the figure, it is possible to note that when the number of training data 
inputs increases, the errors tend to decrease. When the ANN is trained with 133 
training data inputs, the average percentage error on the distance is 6.1% and the 
average absolute error on the angle is 0.6 degree(s). The maximum absolute error on 
the angle is 2.58 degree(s). The maximum percentage error on the distance is not 
very good, reaching 36.14%, but it is worth noting that the error value is over 30% 
for only five cases among the 900 random test examples and this seems to be a very 
valuable result. 
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Figure 8.4.   Errors by varying the dimensions of the training set. (a) Maximum, average, 
and minimum relative errors on the reconstruction of the distance d. (b) Maximum, average, 
and minimum absolute errors on the reconstruction of the angle ϑ. 

 

Table 8.1. Maximum, average, and minimum errors on the distance and on the angle for the 
case of the ANN 4-8-2 trained with 133 training data. The errors are evaluated by using a set 
of 900 different test examples. 

ANN trained with 133 examples 
Error values 

Maximum Average Minimum 

Relative error on the distance (%) 36.14 6.10 0.005 

Absolute error on the angle (°) 2.58 0.60 0.0004 

 

 

Given these considerations, it seems reasonable to consider the case of the network 
trained with 133 examples as the better case. The numerical values of the maximum, 
minimum, and average errors on the distance and on the angle of this situation are 
reported in Table 8.1. 

 

8.3.2. Optimization Analysis 

For the second step, the optimum dimension of the probe was assessed. In order to 
do this, different sensors, formed by three receiving antennas, always equally spaced 
but with different distances, were considered and assessed. The distances were 
chosen in a range between 1 cm and 20 cm. 
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The goal was to find the “optimum” size that allows to find a good compromise 
between a highly accurate reconstruction of the location of the EM source and a 
small probe dimension. 

In this context, four different new networks in which the ANN 4-8-2 is trained using 
four different sets of 133 new examples and tested with four different sets of 900 
new totally random test examples have been assessed. Figure 8.5 shows the errors 
on the distance d and on the angle ϑ reconstructed by varying the probe’s dimensions: 
the variations of the maximum, minimum, and average relative errors on the 
distances are shown in Figure 8.5(a), whereas the variations of the maximum, 
minimum, and average absolute errors on the angles are shown in Figure 8.5(b). 

The results show that for small probe dimensions, the errors are high, but, as 
expected, they decrease as the probe size increases. It is worth noting that the errors 
both on distance and on angle are very high (greater than 100% for the distance and 
greater than 50 degree(s) for the angle) when the receiving antennas are spaced less 
than 10 cm apart. At 10 cm the average percentage error on the distance is 6.1% and 
the average absolute error on the angle is 0.6 degree(s). After that, the errors tend to 
slowly decrease, reaching, at 20 cm, the average percentage error on the distance of 
4.1% and the average absolute error on the angle of 0.33 degree(s). 

This suggests that using a probe with the receiving antennas equally spaced 10 cm 
apart could be an acceptable compromise. For such a case, the numerical values of 
the maximum, average, and minimum errors on the distance and on the angle are the 
same as the ones reported in Table 8.1. 

 

 

Figure 8.5.   Errors by varying the dimensions of the probe. (a) Maximum, average, and 
minimum relative errors on the reconstruction of the distance d. (b) Maximum, average, and 
minimum absolute errors on the reconstruction of the angle ϑ. 
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Finally, the optimum dimension of the probe when moved 3 m from the wall has 
been assessed. To this end, the same four sizes of the previous case (1, 5, 10, and 20 
cm) were considered. Four different new networks, in which the ANN 4-8-2 is 
trained, respectively, with four different sets of 133 new examples and tested with 
four different sets of 900 totally random new test examples, have been assessed. 
Figure 8.6 shows the errors on the distance d and on the angle ϑ reconstructed by 
varying the probe’s dimensions and moving it 3 m from the wall. 

The results show once again that the probe with the receiving antennas equally 
spaced 10 cm apart could be an acceptable compromise, giving an average 
percentage error on the distance of 9.79% and an average absolute error on the angle 
of 0.43 degree(s). Table 8.2 shows the numerical values of the maximum, minimum, 
and average errors on the distance and on the angle for the case of the probe that is 
moved 3 meters from the wall and formed by three receivers equally spaced 10 cm 
apart. 

 

 

Figure 8.6.   Errors by varying the dimensions of the training set. (a) Maximum, average, 
and minimum relative errors on the reconstruction of the distance d. (b) Maximum, average, 
and minimum absolute errors on the reconstruction of the angle ϑ. 

 

Table 8.2. Maximum, average, and minimum errors on the distance and on the angle for the 
case of the probe that is moved 3 meters from the wall with the receivers equally spaced 10 
cm apart. The errors are evaluated by using a set of 900 different test data. 

ANN trained with 133 examples 
Error values 

Maximum Average Minimum 

Relative error on the distance (%) 57.15 9.79 0.001 

Absolute error on the angle (°) 2.45 0.43 0.0003 
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8.4. Conclusions 

In this appendix, the problem of localizing an UWB pulsed EM source has been 
considered, and in particular a new probing technique, based on the use of ANNs, 
was proposed and assessed in order to localize an UWB pulsed EM source that is 
positioned behind a wall. The intent was to satisfy two main objectives: accurate 
reconstruction of the EM source position as high as possible and using a probe with 
dimensions that are as small as possible. 

The source can be arbitrarily located in a square domain of 3 × 3 m2 and it radiates, 
at regular time intervals, UWB pulses of central band frequency 300 MHz and time 
duration 5 ns. The probe, made up of three linearly placed and equally spaced 
receiving antennas (R1, R2, R3), moves parallel to the other side of the wall, and it 
measures the differences on the times of arrival and on the amplitudes of the pulses 
measured by each receiver. Suitable data—namely the differences on the times of 
arrival (∆ti+1,i) and on the amplitude ratios (Ai/Ai+1) of the first peak of each received 
pulse—were used to train and test an ANN able to provide the direction ϑ and the 
distance d of the EM source relative to the position of the probe. 

An ANN was built that receives four data inputs: the two differences in the arrival 
times ∆t2,1, ∆t3,2 and the two ratios of amplitude (A1/A2), (A2/A3); and it provides two 
outputs: the distance d and the angle ϑ referring to the probe position. 

First, the best training-set dimension has been studied by using a probe formed by 
three receiving antennas equally spaced 10 cm apart. It has been found that the 
optimal training set comprises 133 examples. Indeed, when the ANN is trained with 
133 training data inputs, it is possible to find the source position with an average 
percentage error on the distance d equal to 6.1% and the average absolute error on 
the angle ϑ of 0.6 degree(s). The errors have been evaluated on a set of 900 totally 
random test examples. 

Second, the optimum dimension of the probe has been assessed, by changing the 
distance among the equally spaced receiving antenna form 1 cm up to 20 cm.  The 
obtained results confirmed that the use of a probe with the receiving antennas spaced 
10 cm apart is a good compromise to achieve the two goals—namely, highly accurate 
source positioning and the use of a probe with the smallest dimensions. 

Finally, the optimum dimension of the probe when moved 3 m from the wall has 
been studied. Also in this case, it was found that the probe with the receiving 
antennas equally spaced 10 cm apart could be an acceptable compromise, giving an 
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average percentage error on the distance of 9.79% and an average absolute error on 
the angle of 0.43 degree(s). 

These encouraging results suggest to move on further studies. First of all by 
assessing the robustness of this probing technique against for example different types 
of wall, through their dielectric characteristics and thickness. Second, it will be 
important to assess the approach considering different distances of the probe from 
the wall, as well as its different orientations. The final optimum goal would be to try 
to detect and localize the EM source position by moving the probe along a totally 
random path and not only parallel to the wall. 
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