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Abstract (English)

The process of drug development is long and burdensome as it re-
quires a deep understanding of the underlying mechanisms of drug ac-
tion and effect. This is particularly challenging when biological drugs
are involved, as they display unique pharmacokinetic (PK) features,
with respect to more well-defined chemical drugs. Monoclonal anti-
bodies (mAbs) can be considered the most difficult biological drugs to
characterize because of their large molecules and complex structures.
They often display nonlinear PK, that is usually due, at least partly, to
target mediated drug disposition (TMDD): the binding of the mAb to
its pharmacological target influences its own disposition. Mathemat-
ical models are recognized as valuable tools to gain a deeper under-
standing of mAb PK, and in particular of the role played by the target
on drug disposition. In this thesis, different models focusing on TMDD
are explored theoretically and also applied on a real dataset in oncol-
ogy, ranging from more complex and mechanistic models, to simpler
empirical ones. More in detail, a minimal physiologically based PK
(mPBPK) model is integrated with different mechanistic TMDD mod-
els, giving rise to four mPBPK-TMDD models. These are inspected
with a particular focus on identifiability issues, to evaluate their use
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for simulation and identification on real PK data. A TMDD model is
then explored via a tool built with the R package Shiny, to demon-
strate how to gain more confidence with the model at hand through
simulations. Finally, an empirical model describing nonlinear PK built
for an anticancer mAb is refined via covariate inclusion exploiting data
coming from a real clinical trial, to confirm that the observed inter-
action with a co-administered small-molecule drug is partly due to
TMDD. Overall, this thesis presents methods for exploring, building
and refining mathematical models for mAb PK of diverse complexity.
The application of these methods leads to a greater confidence with
the model in use, allows the exploration of possible alternative study
designs, and finally bears a deepening in the understanding of mAbs
PK processes.
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Abstract (Italian)

Il processo di sviluppo di farmaci è lungo e gravoso, anche perché
è necessario conoscere approfonditamente i sottostanti meccanismi di
azione ed effetto del farmaco; ciò può rappresentare una sfida in par-
ticolare per i farmaci biologici, che manifestano caratteristiche di far-
macocinetica (PK) uniche rispetto ai farmaci di origine chimica. Gli
anticorpi monoclonali (mAbs) possono essere considerati i farmaci bi-
ologici più difficili da caratterizzare, per via delle loro grandi molecole
e delle loro strutture complesse. Per i mAbs, spesso si osserva una
PK nonlineare, dovuta (almeno in parte) alla “target mediated drug
disposition” (TMDD): i legami che si creano tra mAb e target far-
macologico influenzano la disposizione del farmaco stesso. In questa
tesi, diversi modelli focalizzati sul fenomeno del TMDD sono sia es-
plorati a livello teorico, sia applicati su un dataset reale in campo
oncologico, passando dai modelli più complessi e meccanicistici, fino
ad arrivare a modelli empirici più semplici. Più nel dettaglio, un mod-
ello minimo di PK basato sulla fisiologia (mPBPK) è integrato con
diversi modelli TMDD meccanicistici, dando origine a quattro modelli
mPBPK-TMDD. Questi vengono esaminati con un’attenzione parti-
colare ai problemi di identificabilità, per valutare il loro uso per la
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simulazione e l’identificazione su dati reali di PK. In seguito, un mod-
ello TMDD è esplorato tramite un tool costruito con il pacchetto R
Shiny, per mostrare come acquistare maggiore confidenza con il mod-
ello in uso attraverso le simulazioni. Infine, un modello empirico che
descrive una PK nonlineare, costruito per un mAb antitumorale, viene
rifinito tramite l’inclusione di covariate sfruttando dati di uno studio
clinico reale, per confermare che l’interazione osservata con una piccola
molecola cosomministrata è dovuta in parte al TMDD. Nel complesso,
questa tesi presenta metodi per esplorare, costruire e raffinare modelli
matematici di diversa complessità per la PK dei mAbs. L’applicazione
di questi metodi porta a una maggiore confidenza con il modello in uso,
permette l’esplorazione di eventuali disegni di studio alternativi, e in-
fine porta a un approfondimento nella comprensione dei processi di
PK dei mAbs.
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Chapter 1
Introduction

1.1 Background

1.1.1 Pharmaceutical research and development

The process of drug discovery and development, from compounds
selection to clinical approval, involves a number of challenges, such as
the selection of the right patient population or the right dose, and,
at the same time, the restraint of costs and time expenses [8]. This
is demonstrated by the high attrition rates (i.e. new compounds fail-
ure rates) observed in all development phases, in particular in the
later stages. In the clinics, less than 10% of new compounds entered
in Phase I eventually receive approval [9, 10]. The situation is even
worse in the oncology therapeutic area [11], where the successful com-
pounds percentage is reduced to about 5% [10]. Therefore, the need
to improve decision-making processes (e.g., dose selection, go/no go
decisions) is apparent, so as to save time and money that can be di-
verted to more promising drug candidates [9].
Pharmaceutical compounds can be divided in two main classes: chem-

1



1. Introduction

SMALL MOLECULE DRUG LARGE BIOLOGIC 

(aspirin)  

21 atoms 

MW ~ 180 Da 

(monoclonal antibody)  

~25000 atoms  

MW 150 kDa 

INCREASING COMPLEXITY 

Figure 1.1: Illustrative representation of a chemical small-molecule
drug versus a biologic compound, highlighting differences in structure,
number of atoms, and molecular weight (MW).

ical medicinal products, manufactured using chemical sources and pro-
cesses, and biologics (also called biopharmaceuticals), inherently bio-
logical in nature and manufactured using biotechnology [12]. Chemical
drugs usually consist in small molecules, with well-defined structures;
biologics instead are much larger, have more complex structures and
peculiar biological/biophysical characteristics, which lead to a difficult
characterization of the compound [12, 13, 14] (Figure 1.1). Biophar-
maceuticals, with respect to small molecules, have unique pharma-
cokinetic (PK) characteristics (e.g., slower absorption rate, confined
distribution, and long half-life) and they are generally designed for a
specific target [13].
As with small-molecule drugs, pharmaceutical research and develop-
ment of biologics is expensive and risky [15].

2



1.1. Background

1.1.2 Pharmacometrics in drug discovery and
development

The difficulties and the open challenges of pharmaceutical research
and development have been frequently debated over the years, to un-
derline the most critical passages and to suggest possible solutions.
Pharmacometrics, i.e. mathematical modeling applied in the phar-
maceutical context, has been recognized as a valid tool to help in
achieving an effective drug discovery and development process [1] (see
e.g. [8, 16, 17, 18]). Regulatory agencies as well have supported the
value of Model Informed Drug Discovery and Development (MID3),
i.e., in other words, the application of mathematical modeling to inte-
grate knowledge and generate inference from compound, mechanism
and disease level data, in terms of predictions and extrapolations
[1, 9, 19]. Mathematical models describe the temporal relationships
between drug administration according to a particular dosing regimen,
drug exposure and therapeutic/toxic effects.
The system under exam (e.g. the human body) is seen as a set of com-
partments, where the drug enters, distributes and transforms, exert-
ing its mechanism of action. Model equations are based on the mass
conservation principle and they usually consist in differential equa-
tions. According to the empirical approach, compartments do not
represent specific organs, but instead material ensembles behaving ho-
mogeneously either in terms of their kinetic properties (e.g. tissues
rapidly/slowly equilibrating with blood) or in terms of physiological
grounds (e.g. organs involved in excretion). The interconnections be-
tween compartments represent material flows, e.g. actual drug trans-
portation or drug transformation via chemical reactions. According to
the physiologically-based approach, each compartment represents an
organ or tissue (or a group of tissues that behave similarly) and has
a size and blood flow that mimics those of the organ in vivo [13, 20];
compartments are joined together via blood or lymph flows. Interest-
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1. Introduction

ingly, with this approach, it is possible to extrapolate (i) to conditions
where the physiological processes are altered (e.g. disease states), and
(ii) across different species (accounting for differences in blood flow,
organ sizes, etc.) [20].
Besides what is known about the compound and the underlying PK
and/or PD processes, also the uncertainty in the knowledge can be
taken into account via mathematical modeling. Indeed, the so called
mixed-effects (or population) models include also random variability
observed in both exposure and response for all drugs, that might be
partly explained by inter-individual differences. Such models, besides a
deterministic structure which describes the input-output relationships,
present also a statistical structure which allows the quantification of
random variability on parameters and/or observations. Furthermore,
in these models, individual characteristics (i.e. covariates), such as
body weight, age, sex, concomitant medications, etc., can be included
to evaluate their influence on drug exposure and response [21].
Pharmacometrics help addressing important scientific issues, such as
the evaluation of administration pathways, the selection of the dos-
ing regimen, the characterization of drug-drug interactions (DDIs) or
drug-disease interactions, or prediction of study outcome in terms of
PK and/or pharmacodynamic (PD) endpoints (Figure 1.2, see also
[1]). In this way, mathematical modeling supports decision-making
(e.g. go/no go decisions), thus helping in controlling costs.
Via mathematical models, data collected throughout drug develop-
ment can be progressively integrated at each stage, also incorporat-
ing relevant previous information and/or clearly stated assumptions.
Mathematical models can be considered as a knowledge repository [17],
and hence help in leveraging existing knowledge and in enhancing the
information gain [8, 18].
In particular, pharmacometrics can help in filling knowledge gaps
about the unique PK features of biologic drugs, such as monoclonal
antibodies (mAbs), cytokines, recombinant proteins, fusion proteins,
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1. Introduction

antibody fragments, antibody-drug conjugates. Mathematical mod-
els not only may help in leveraging the available incomplete informa-
tion, but they are also important to generate additional information
[5, 22]. This is of special interest as biopharmaceuticals are becom-
ing an important class of products in drug development, because of
their promise and potential [13, 23]. Furthermore, most of them target
difficult-to-treat populations, with indications ranging from oncology
and autoimmunity to orphan and genetic diseases [23]. Pharmacomet-
rics can offer a valid tool to guide their development at various stages,
and is useful for optimizing the dosing and sampling schedules [5, 23].

1.1.3 Monoclonal antibodies

The majority of biologic products consist of mAbs, followed by cy-
tokines and growth factors. The research and development of mAbs
is a rapidly progressing field, and, given the technological advances,
it is not likely to slow in the near future [21]. The number of mAbs
currently under development is over 500 [20].
Processes determining the PK properties of mAbs and functional deriva-
tives are very different from those of small chemical molecules. mAbs
can be considered the most complicated biologic products to charac-
terize. Indeed, they are the largest molecules currently available, with
molecular weight (MW) around 150 kDa and complex secondary and
tertiary structures. The main pharmacological characteristics of mAbs
are described in Chapter 2 of this thesis.
Multiple factors, such as charge, size, and target affinity, can affect
the PK of mAbs, which all could have an impact on their efficacy and
safety [23]. mAbs PK behavior, like for small molecules, can be de-
scribed by the processes of absorption, distribution, metabolism and
elimination [20]; nevertheless the underlying mechanisms that govern
such processes are not fully known.
A further avenue that should be explored regards the DDIs that may
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1.1. Background

cell 

antigen 

monoclonal antibody 

small molecule drug 

Figure 1.3: Schematic representation of DDI where the small molecule
acts as a perpetrator and the monoclonal antibody is the victim. The
small molecule drug, through its mechanism of action, interacts with
the cell expressing the antigen, for instance inducing its depletion. The
mAb and the antigen bind and start the cascade of events involved in
the mAb mechanism of action and in its disposition and elimination.

occur between mAbs or between a mAb and a small molecule. In par-
ticular for certain therapeutic areas, such as oncology, to gain greater
clinical benefit, biologics are increasingly being combined with small
molecules and/or with other biologics [23]. For many years there was
a perception that therapeutic proteins do not exhibit drug interac-
tions when administered with small molecules, because of the different
drug mechanisms. Nevertheless, in the last years the interest for DDIs
involving mAbs has grown and numerous interactions have been re-
ported [20]; frequently, the small molecule acts as a perpetrator of the
DDI by interacting with the target of the protein, leading to changes
in target mediated clearance [21] (see Figure 1.3).
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1. Introduction

1.1.4 Mathematical models for mAbs

Population analyses are routinely employed in most development
programmes to characterize the PK-PD profile of mAbs, and their
results are often reflected in drug labeling [5, 13, 23]. Mathematical
models are used in particular to quantify large molecules peculiar dis-
position features, sources of variability, and impact of covariates on
exposure and/or response.
Regardless of the PK behavior, the therapeutic antibodies PD is of-
ten described via indirect response models, accounting for lag periods
between drug administration and response. In most cases, mAb PK
appears to be nonlinear, and it can be influenced by different factors,
such as receptor shedding, the patient disease state, and the physiol-
ogy of the system being targeted [5].
Numerous models have been proposed to describe mAb PK, ranging
from the mechanistic physiologically-based to the more empirical com-
partmental ones (Figure 1.4); a brief review is presented in this thesis
in Chapter 3.

Physiologically-based PK (PBPK) models can be used to describe
mAbs PK, taking into account the physiological processes underlying
their disposition, and evaluating mAbs concentration also in the organ
where the target is located. PBPK has been used for understanding
mAb delivery; a template PBPK model for mAbs was provided by
Shah and Betts in [2]. Nevertheless, building a PBPK model is lengthy
and burdensome, due to lack of tissue concentration data, parameter
availability, and parameter identifiability [13]. Compartmental lump-
ing is a common technique used to simplify the system [13]: tissues
that behave similarly may be fused together (lumped), maintaining
the mechanistic ground of the model and reducing at the same time
the number of parameters [24, 25]. In this way, the so-called mini-
mal PBPK (mPBPK) models are obtained. The description of the
mPBPK model for mAbs proposed in [3] is provided in Chapter 3.
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1. Introduction

Simpler compartmental mechanistic models may be considered, in par-
ticular to simultaneously describe the dynamics of drug disposition and
target engagement. The nonlinearity observed in PK for the majority
of mAbs is often due to target mediated drug disposition (TMDD), i.e.
the phenomenon according to which drug-target binding significantly
influences mAb PK. For this reason, mechanistically-grounded TMDD
models are commonly used. A full TMDD model was proposed in [4]
(see Chapter 5 for an exploratory analysis of this model); a number of
approximated models, exploiting simplifying assumptions, were also
introduced [13] (see Chapter 3). The integration of TMDD models
within the mPBPK framework [3] is thoroughly evaluated in Chap-
ter 4. As they are mechanistically-grounded, TMDD models provide
unique advantage in understanding drug mechanism of action and ef-
fects. In particular they can provide insight into the antibody-target
interaction and in target concentration profiles [13, 20]. As TMDD
models may be difficult to identify based on the available data [23], in
experimental practice it is often necessary to resort to more empirical
models.
Two-compartmental models, with linear and/or nonlinear elimination,
are the most used for describing mAb PK, where the nonlinear path-
way may be attributed to saturation of target mediated clearance path-
ways [23]. This kind of model, with both linear and nonlinear clearance
components, was proposed for rituximab PK in Chronic Lymphocytic
Leukemia (CLL) patients [7], and it is refined via demographic and
PD covariates inclusion in Chapter 6. Even though they do not offer
any mechanistic understanding, empirical compartmental models offer
a viable way to identify mAb PK on commonly available data.
In general, PK models used for mAbs are often similar, notwithstand-
ing the differences in their pharmacological targets, their therapeutic
indications, and the disease status of the selected patient populations.
This might be due, at least in part, to the similarities in the molecular
structure [23].
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1.2. Thesis main contributions and overview

1.2 Thesis main contributions and

overview

The general aim of the thesis is to increase the understanding of the
PK behavior of mAbs, both in terms of physiological understanding
and in terms of modeling. Models for mAbs PK, taking into account
TMDD, are here investigated.
First, a methodological approach for assessing mPBPK and TMDD
models integration is proposed. Moreover, an exploratory simulation
analysis is performed with a newly developed tool to highlight some
key aspects of the full TMDD model (e.g., dose-dependence, variabil-
ity impact). Finally, a DDI between a mAb and a small molecule drug
is studied based on real clinical data.
The first project helps in gaining a better insight into complex PK
models, and provides suggestions on their practical use. For instance,
the type and the amount of data needed to identify mPBPK-TMDD
models are given particular attention. The second project demon-
strates that even an exploratory simulation analysis can prove helpful
to detect identifiability issues and gain general confidence with the
full TMDD model. The third project, dealing with the refinement of
an empirical mAb PK model to describe an observed DDI, gains a
deeper mechanistic understanding of both the mechanism of action of
the mAb and its interaction with the small molecule.

The thesis is organized in seven chapters (Introduction included),
and two appendices.

� Chapter 2 details pharmacological and PK properties of mAbs,
with a special mention to drug-drug interactions, and mAbs use
in clinical oncology.

� Chapter 3 reports the state of the art of the empirical and mech-
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1. Introduction

anistic models employed for mAbs PK characterization.

� Chapter 4 presents the thorough exploration of four models inte-
grating a mPBPK model with four different TMDD components.
Such explorations consist in simulation and identifiability anal-
yses; the aim is to evaluate the use of mPBPK-TMDD models
for different research objectives.

� Chapter 5 demonstrates the usefulness of a simulation software
tool (called INES, i.e. INteractive Explorator and Simulator)
in investigating a simpler yet mechanistically grounded TMDD
model. In particular, different scenarios (different doses/param-
eters) and the impact of random variability on model outcomes
are explored.

� Chapter 6 is about the application and refinement (via covariate
inclusion) of an empirical model for mAb PK, based on data
coming from a real clinical trial, in the context of cancer research.

� Chapter 7 concludes the thesis, highlighting the key messages
and contributions of each chapter and of the thesis in general.

� Appendix A includes theoretical definitions of the model prop-
erties assessed in Chapter 4 for the presented mPBPK-TMDD
models. Furthermore, software implementation details for prop-
erties assessment are provided.

� Appendix B presents the simulation software tool INES, intro-
duced in Chapter 5, in terms of general encoding, structure, and
main features. Furthermore, a corollary tool for the computation
of Probability of Technical Success (PTS), called “PTS app”, is
also briefly described.
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1.3. Collaborations and related publications

The majority of the contents reported in this thesis are the result
of scientific collaboration with pharmaceutical industries, which are
detailed in the next section.

1.3 Collaborations and related

publications

The material of Chapter 4 (and related Appendix A) is the re-
sult of a collaboration with GlaxoSmithKline, Clinical Pharmacology
Modeling and Simulation group (project leader : Monica Simeoni).
A related journal publication is being submitted; the work has already
been partially presented in:

� E. Mezzalana, S.M. Lavezzi, S. Zamuner, G. De Nicolao, P.
Ma, M. Simeoni, Integrating target mediated drug disposition
(TMDD) into a minimal physiologically-based modelling frame-
work: evaluation of different quasi-steady-state approximations.
Population Approach Group in Europe (PAGE), 24th meeting,
Hersonissos, Crete, Greece, June 2015.

� S.M. Lavezzi, S. Zamuner, G. De Nicolao, P. Ma, M. Simeoni,
Structural and practical identifiability of some mPBPK-TMDD
models. Population Approach Group in Europe (PAGE), 25th

meeting, Lisbon, Portugal, June 2016.

The material of Chapter 5 (and related Appendix B) is the result
of a project developed in collaboration with Janssen Research and
Development, Global Clinical Pharmacology group (project leaders :
Italo Poggesi, Daniele Ouellet). A related poster publication is:

� S.M. Lavezzi, Y. Cherkas, N. Haddish-Berhane, S. Jagannatha,
G. De Nicolao, D. Ouellet, I. Poggesi, Probability of Technical
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Success of a New Molecular Entity in the Preclinical to Clini-
cal Translational Phase. Population Approach Group in Europe
(PAGE), 26th meeting, Budapest, Hungary, June 2017.

The material of Chapter 6 was also developed in collaboration with
Janssen Research and Development, Global Clinical Pharmacology
group (project leader : Italo Poggesi).
This work will be reported in a journal article, and it was partly pub-
lished in:

� P. Cramer, F. Demirkan, G. Fraser, A. Pristupa, N.L. Bartlett,
M.-S. Dilhuydy, J. Loscertales, A. Avigdor, S.A. Rule, O. Samoi-
lova, A. Goy, S. Ganguly, I. Poggesi, S.M. Lavezzi, G. De Nicolao,
J. de Jong, M. Neyens, M. Salman, A. Howes, M. Mahler, Sys-
temic Exposure of Rituximab Increased By Ibrutinib: Pharma-
cokinetic Results from the Helios Trial. ASH 58 (Blood 2016),
Abstr 4403

� P. Cramer, F. Demirkan, G. Fraser, A. Pristupa, N.L. Bartlett,
M.-S. Dilhuydy, J. Loscertales, A. Avigdor, S.A. Rule, O. Samoi-
lova, A. Goy, S. Ganguly, I. Poggesi, S.M. Lavezzi, G. De Nico-
lao, J. de Jong, M. Neyens, M. Salman, A. Howes, M. Mahler,
Ibrutinib increases the systemic exposure of rituximab: pharma-
cokinetic results from the Helios trial. 14-ICML, Hematological
Oncology, 35 (S2), 232-233 (2017)

� S.M. Lavezzi, J. de Jong, M. Neyens, P. Cramer, F. Demirkan,
G. Fraser, A. Pristupa, N. Bartlett, M.-S. Dilhuydy, J. Loscer-
tales, A. Avigdor, S. Rule, O. Samoilova, A. Goy, S. Ganguly,
M. Salman, A. Howes, M. Mahler, G. De Nicolao, I. Poggesi,
Modelling of rituximab clearance reduction due to ibrutinib co-
administration. Population Approach Group in Europe (PAGE),
26th meeting, Budapest, Hungary, June 2017.
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Chapter 2
Monoclonal antibodies

2.1 Structure and general properties

Antibodies, also called immunoglobulins (Igs), are large proteins
produced by animals and humans to identify and neutralize foreign
objects, such as bacteria and viruses [26, 27]. Igs are grouped into five
classes, on the basis of their molecular mass and antigen-binding ca-
pacity: IgA, IgD, IgE, IgG and IgM. Among these, IgG is the predomi-
nant class, comprising ∼ 80% of the Igs in human serum. An antibody
is composed of a basic Y-shaped unit with three major structural do-
mains: two identical Fabs and an Fc domain (Figure 2.1). Each Fab
(fragment antigen-binding) contains an antigen-binding site. The Fc
(fragment crystallizable) contains structural features that determine
the downstream consequences of antigen binding, often called the ef-
fector function of the antibody. For example, the Fc portion deter-
mines whether binding to a cell surface receptor prevents signaling
through that receptor or causes the cell’s destruction. The Fc domain
also contains the binding site for the neonatal (or Brambell) Fc recep-
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2. Monoclonal antibodies

tor (FcRn), which mediates vectorial transport of the antibody across
some cellular membranes [28]. Each Ig molecule contains two identi-
cal heavy chains and two identical light chains [29, 27, 28]. The heavy
chain domains are designated as VH, CH1, CH2, and CH3, where V
denotes “variable” and C denotes “constant” regions. The light chain
domains are designated as VL and CL. The antigen-binding region is
formed by the variable domains of the heavy and light chains (Fv)
[28].
mAbs are a class of highly specific antibodies, produced via the hy-

bridoma technology developed in 1975 by Köhler and Milstein [30],
in which mAbs are produced by a single clone of transformed B cells
[31, 26]. In particular, the fusion of a B cell producing a single anti-
body, and a myeloma cell results in an immortal antibody-producer B
cell, called a hybridoma. mAbs produced by a clone cell population
have the same PK (e.g., distribution, elimination) and PD properties
(e.g., affinity, mechanism of action) properties [31]. mAbs were first
shown to have potential for therapeutic activity in the clinic in 1982
[5]. All of the approved therapeutic antibodies are of the IgG class
[29, 27, 28]. Intact IgGs have MW ∼ 150 kDa and they have a much
longer elimination half-life compared to the other classes (IgA, IgD,
IgE, IgM) [29]. IgGs can be in turn divided into four subclasses, based
on the structure of their heavy chains: IgG1, IgG2, IgG3, and IgG4. In
the development of new mAbs, Ig isotypes are mostly chosen with long
elimination half-lives: as IgG3 has a much shorter elimination half-life
(7 days) than those of the other IgG subtypes (20-21 days), none of
the approved mAbs is of this subtype. The long serum half-life is a
distinctive advantage over conventional low-molecular-mass drugs, as
it allows infrequent dosing. Furthermore the high specificity of ther-
apeutic mAbs facilitates precise action and limits off-target toxicity
[27, 32].
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Fc region 

Fab region 

CH2 

CH3 

Variable 
region (Fv) 

Constant 
region 

CH2 

CH3 

Antigen-binding site 

VL 

VH 

CL 

CH1 

Antigen-binding site 

VL 

VH 

CL 
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Figure 2.1: A schematic representation of the structural and functional
domains of Igs. Fc and Fab regions can be distinguished, the latter
containing antigen-binding sites. Light chains variable and constant
domains are indicated respectively with VL and CL. Each heavy chain
is composed of one variable domain, denoted with VH, followed by a
constant domain, denoted with CH1, a hinge region (blue wavy line),
and other two constant domains, i.e. CH2 and CH3. The red wavy
lines indicate interchain disulfide bonds.

17



2. Monoclonal antibodies

2.2 Classification

The first mAbs were generated from mouse and rat hybridomas.
These first-generation antibodies found only limited success in the
clinic because of their short half-lives and the induction of immunolog-
ical response (immunogenicity). Indeed, sensitization to mAb thera-
peutics poses significant risk to the patient and may blunt the efficacy
of these therapies [26]. A number of approaches have been developed
to humanize rodent antibodies, eliminating xenogeneic protein [31, 27].
A first step was the development of chimeric mAbs, which are made
of mouse variable regions and human constant regions (reducing the
mouse protein sequences to about 33% of the total molecule) [27, 28].
A further refinement of this approach resulted in humanized mAbs
[31, 28], where 90− 95% of the antibody is composed of sequence de-
rived from human IgG [27]. The bioengineering strategy even led to
the development of “fully human” mAbs [31, 28] (see Figure 2.2). The
reduced immunogenity of this new generation of mAbs is expected to
enhance efficacy, safety, and ease of use [26].

2.3 Mechanism of action

The pharmacological effects of antibodies are initiated by the non-
covalent interaction between antibody and antigen (also referred to
as receptor, or target) [28]. mAbs target a specific (most commonly
endogenous) antigen with high affinity. Affinity is expressed, in molar
units, as the antibody-antigen dissociation constant kD, and it rep-
resents the strength of the (reversible) association between antibody
and antigen. Affinity is a primary determinant of the concentration
of antibody required to bind to a given fraction of target, thus it is
important for therapeutic dose evaluation [28]. mAbs induce their
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Murine mAb Chimeric mAb Humanized mAb Fully human mAb 

100% mouse 
protein 

 ̴33% mouse protein  ̴90-95% human 
protein 

100% human 
protein 

Figure 2.2: Classification of mAbs according to the degree of human-
ization.

therapeutic effect via a number of mechanisms, which may be clas-
sified into four categories: induction of cell lysis following binding to
a cell surface receptor; neutralisation of an exogenous or endogenous
molecule (e.g., a toxin or a cytokine); alteration of cellular functions
(e.g. immunosuppression); delivery of toxic or radioactive agents to
target cells [31]. Most mAbs act through multiple cooperative mech-
anisms and may interact with concurrent therapies [28] (see Section
2.4.5).

2.4 Pharmacokinetics

mAbs are hydrophilic high MW proteins: besides their pharmaco-
logical mechanism, also their PK features are therefore different from
those of small-molecule drugs (MW < 1, 000 Da) [29]. However, like
conventional drugs, mAbs undergo absorption, distribution and elim-
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ination processes [31].

2.4.1 Administration and absorption

mAbs are commonly administered intravenously. Intravenous (IV)
route allows the administration of large volumes and total and im-
mediate systemic delivery. However, IV injection may not always be
appropriate: hour-long infusions require a hospital environment and
are often associated with side effects [26]. Hence, some therapeutic
antibodies are administered extravascularly by s.c. or i.m. injection
[31]. Absorption into the systemic circulation after s.c. or i.m. in-
jection occurs via lymphatic drainage, therefore it is a slow process.
Because of this, it generally takes a few days (typically from two to
eight [27]) to reach the peak plasma concentration after a single dose.
Extravascular routes do not allow the administration of large volumes
and lead to higher PK variability [31]. Oral administration of mAbs for
systemic therapy is not indicated, because of their size, polarity and
gastrointestinal degradation [29]. Indeed, oral bioavailability is negli-
gible, while absolute bioavailability after s.c. or i.m. administration is
generally reported between 50 and 100% [13, 27].

2.4.2 Distribution

The distribution of mAbs is determined by the rate of extravasation
and distribution in tissue, the rate and extent of antibody binding in
tissue, and the rate of elimination from tissue. Because of polarity and
molecule dimension, mAbs diffusion across vascular endothelial cells
is very slow, and convection is believed to be the primary mechanism
responsible for the transport from blood to interstitial fluid (ISF) of
tissues [29, 31, 27]. The reflection coefficient of a tissue is an indicator
of the fraction of solvent that does not filter through the tissue pores:
if it is � 1 the solvent can easily extravasate in the tissue, while if it
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is close to 1 the solvent is not allowed to pass.
For mAbs, tissue reflection coefficients are often assumed to be equal
in all tissues, with values in the range of 0.95 − 0.98. However, it is
likely that reflection coefficients may be much lower in tissues where
the vascular endothelium is known to be fenestrated or “leaky” (i.e.
there are pores in the endothelial cells). Lymphatic vessels are much
larger than paracellular pores that may be found in vascular endothe-
lium. therefore, it is assumed that antibodies have relatively little
restriction in moving via convection through the lymph [27]. For this
reason, typically reflection coefficients of 0− 0.2 are assumed for con-
vective elimination of antibody via lymphatic drainage.
About half of native IgG was found distributed in extravascular space;
because of mAbs limited cellular permeability, ISF is considered the
primary extravascular distribution space. Convective uptake into tis-
sue and convective elimination from tissue are not equally efficient:
mAbs concentrations in ISF are substantially lower than in plasma.
In many tissues, concentrations of unbound IgG are approximately
tenfold lower than concentrations in plasma (however, higher concen-
trations are observed in leaky tissues). Distribution of IgG antibodies
to the brain is poor: mAbs have a limited ability to penetrate to the
brain and cerebrospinal fluid, indeed endogenous IgG levels in CSF
are ≤ 1% of levels in serum [28, 33].
If the target of mAbs is localized in tissue, slow distribution might be
an obstacle for clinical efficacy. Indeed, according to the “binding-site
barrier” hypothesis, the antigen may be present in high concentra-
tions in peripheral tissue, leading to tight binding to cells near the
sites of extravasation. As a result, the antibody is confined to regions
surrounding blood vessels, and hence its distribution deeper into the
tissue is limited. The use or large mAb doses saturating binding sites
may resolve the situation: however, such doses may not be feasible
and/or give rise to off-target toxicities [23, 29, 27].
Because of the slow and/or low distribution, mAbs usually have small
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volumes of distribution, approximately equal to plasma volume [29,
31].

2.4.3 Metabolism and elimination

Renal elimination is a primary pathway of clearance of small-mole-
cule drugs, but it is relatively unimportant for IgGs, as their large size
prevent efficient glomerular filtration. Metabolism of endogenous IgG
occurs in various body tissues and in plasma. It is also possible that a
significant fraction of drug elimination occurs from tissue sites that do
not rapidly equilibrate with plasma [27]. Using PBPK modeling, the
contribution of various organs to the elimination of endogenous IgG
was estimated: 33% for skin, 24% for muscle, 16% for liver, and 12%
for gut tissue [29].
Several mechanisms are reported to be involved in the elimination of
Igs. The most important is catabolism: the first step of this process
is proteolysis, i.e. breaking the mAb protein down into amino acids,
mediated by liver and mononuclear phagocyte system (MPS) [29]. In
particular, MPS (i.e. the part of the immune system consisting of the
phagocytic cells, such as macrophages and monocytes, located in retic-
ular connective tissue) is expected to play a role in the elimination of
mAbs, as these are also key factors in the elimination of endogenous
IgG. Internalization and subsequent degradation of IgG by lysosomes
in these cells occur predominantly after binding of the Fc part of the
antibody to Fcγ-receptors expressed on these cells. Nevertheless, as
therapeutically administered mAbs are generally a small fraction of to-
tal endogenous IgG, it is not likely that this route is easily saturated
by therapeutic mAbs [29, 27]. Furthermore, intracellularly, a mecha-
nism is present that protects IgGs from subsequent rapid intracellular
catabolism, mediated by FcRn [29]. This is expressed on hepatocytes,
endothelial cells, and phagocytic cells of the MPS. When IgG under-
goes endocytosis, the acidic pH of the endosome promotes binding of
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the IgG Fc domain to FcRn, which recycles IgG to the cell surface and
salvages IgG from lysosomal degradation [28]: the IgG-FcRn complex
is transported back to the cell surface and released again into the cir-
culation, while unbound IgG is degraded to amino acids by lysosomes
that are present in the cell (Figure 2.3). The long elimination half-life
of endogenous IgG (21 days) compared with those of other plasma
proteins and its increased clearance at higher concentrations can be
explained by binding of IgG to the FcRn. Moreover, the low affinity of
human FcRn for mouse IgG helps to explain the very rapid elimination
of murine mAbs in humans [31, 27]. The FcRn-mediated protective
mechanism is not saturated by endogenous IgG and by most mAbs
at their therapeutic dose [27]; very high doses of therapeutic mAbs
(or mAbs with high affinity for FcRn) would be necessary to achieve
saturation [29].

Another important elimination route for mAbs is due to TMDD:
this is the primary route of antibody clearance. The term TMDD
was first coined by Levy [34], to describe the phenomenon in which
a drug is bound with high affinity and to a significant extent (rela-
tive to dose) to its pharmacologic target, such that this interaction is
reflected in the PK characteristics of the drug itself [4]. Target medi-
ated elimination consists in degradation within the target cells, after
endocytosis [27]. The free antigens on target cells surface bind to the
Fab domains of the antibody, serving as a sink; for this reason, this
phenomen is also referred to as “antigen sink” [29, 28]. This mecha-
nism is saturable because of finite target availability [27]. The rate
of uptake and elimination of antibodies by target mediated pathways
is a function of dose and the expression level of the target, as well as
a function of the kinetics of receptor internalization and intracellular
catabolism. The majority of marketed antibodies demonstrate non-
linear kinetics [29]: dose-dependent elimination consistent with target
mediated elimination (i.e. clearance decreases as a function of dose)
is frequently observed [27].
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Figure 2.3: Schematic reported in [5] for IgG salvage due to Brambell
receptors.
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2.4.4 Immunogenicity

Besides the mechanisms discussed above, several other factors are
important in the disposition of mAbs. mAbs are exogenous proteins
and can therefore induce an immune response [31] that negatively
impact the antibody’s PK, safety and efficacy profile [27, 28]: this
phenomenon is called immunogenicity. When an immune reaction oc-
curs, newly formed endogenous antiglobulins may bind to the mAb,
altering elimination rates [29]. Antiglobulin responses are designated
according to the therapeutic antibody construct: human anti-mouse
antibodies (HAMA), human anti-chimeric antibodies (HACA), and
human anti-human antibodies (HAHA) [29, 28]. Accelerated clear-
ance of therapeutic antibodies or neutralization of the antigen-binding
domain due to immunogenicity can result in loss of product efficacy,
impaired antigen targeting, or interference with antibody-based diag-
nostic tests. Serious safety risks may also be associated with immuno-
genicity: adverse reactions may be local or systemic and may vary
from mild injection site reactions to life-threating anaphylaxis [28].
All therapeutic antibodies approved to date have shown some degree
of immunogenicity [27], even in immunosuppressed patients. The de-
velopment of humanization technology has successfully decreased the
incidence of immunogenicity observed with murine and chimeric mAbs
[28]. Indeed, in general the impact of the immune response is inversely
dependent on the grade of humanization of the antibody [29, 31]. How-
ever, since humanized antibodies still present residual murine protein,
and human antibodies have unique idiotypes [27, 28], immunogenic-
ity concerns have not been eliminated. Besides antibody type, other
factors associated with immunogenicity include duration of therapy,
dose, and route of administration [27].
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2.4.5 Drug-drug interactions

In contrast with small-molecule drugs, DDIs occurring through ef-
fects on enzyme systems (e.g. cytochrome P450 [CYP] system) are
not usually expected and explicitly studied during mAbs clinical de-
velopment [29, 28], as metabolizing enzymes are not presumed to be in-
volved in mAb elimination [35]. In several specifically designed clinical
trials, no relevant influence of mAbs on metabolism of co-medication
has been shown; however, some exceptions have been reported [29].
Furthermore, other interaction mechanisms are possible and have been
observed [21].
mAbs are currently being successfully developed for indications where
patients use a number of concurrent medications, hence a more rou-
tine investigation of the PK DDI potential of any new therapeutic
mAb, especially when co-administered with small-molecule drugs, is
necessary [35]. DDIs involving mAbs are raising growing interest and
concern [23]; some interactions are now used intentionally to improve
mAb pharmacological effects [20].
DDIs where the mAb is the perpetrator and the small molecule is
the victim are rarely reported [36]. For instance, mAbs may induce
changes in cytokine levels, indirectly inducing CYP3A4 inhibition.
More frequently, DDIs where the mAb is the victim and the small
molecule is the perpetrator are observed. Small molecules might mod-
ulate the activity between the mAb and the Fcγ-receptors or might
affect the level of Fcγ-receptor expression. PD interactions may also
occur, when small molecules coadministration influences target medi-
ated clearance, by reducing target cells or target-bearing cells [20, 36]
(as shown in Chapter 6).
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2.5 Monoclonal antibodies in oncology

In cancer scientific research, mAbs are developed not only to target
a particular tissue but also tumor cells within tissues [31]. mAbs are
widely used in experimental studies either naked or with radioactive
material or other drugs attached. Since they affect the immune system,
they are also called immunotherapeutics as opposed to chemothera-
peutics, which are drugs that interfere cancer cell growth [26]. The
employment of classical therapeutic modalities such as chemotherapy,
surgery, and radiation, often leads to severe side effects. Immunother-
apy as a fourth modality of cancer therapy has already been devel-
oped and proven to be quite effective. In oncology, a combination of
therapeutic modalities, together with combinations of multiple drug
regimens, is usually required. Hence, in this therapeutic area, it is
particularly important to investigate potentially significant DDIs be-
tween mAbs and small-molecule drugs, to identify and document any
significant clinical impact [35] (see Section 2.4.5).
The first (naked) mAb used as cancer immunotherapy was rituximab.
It is a chimeric IgG-1 mAb directed against CD20, which is a trans-
membrane protein on mature B-lymphocytes [26]. It is indicated for
B-cell non-Hodgkin’s Lymphoma (NHL) and CLL; over 90% of lym-
phoma B cells are CD20 positive [31]. Rituximab is the therapeutic
protein whose PK DDI model is developed in Chapter 6, for CLL pa-
tients co-administered with either an anticancer small molecule drug
or a placebo.
The specific mechanisms of action of therapeutic antibodies in cancer
treatment can be various. For instance, mAbs can: (i) bind to cell-
surface proteins leading to the destruction of cancer cell, (ii) interfere
with the growth and differentiation of malignant cells, (iii) transport
anticancer agents (radioactive materials or other drugs) on malignant
cells via antigen binding [26, 27].
Antibody distribution in tumor tissue is very heterogeneous. Diffusion
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to the tumour may be impaired because of elevated ISF pressure and
thhe creation of a binding-site barrier (see Section 2.4.2). The problem
of poor and heterogenous tumor penetration can be addressed choosing
the appropriate dosing regimen. Indeed, fractionated doses, instead of
a single large one, can provide a decrease in tumor size, leading to
improvements and changes in blood flow and reductions in interstitial
pressure. In this way, subsequent doses can access regions different
from those accessed earlier [29]. Patient biological and clinical status
together with antitumor response were also reported to influence mAb
PK in cancer treatment [37, 38, 39, 40]: PK and PD processes are
interdependent [31]. Despite the wealth of information available in
immunology literature, little work has been done to incorporate such
knowledge into mechanistic PK-PD models, describing mechanisms
like (i), (ii) or (iii) [27], necessary to understand the interdependence
between mAb PK and PD in cancer treatment.
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Chapter 3
PK and TMDD modeling for
mAbs: state of the art

Population PK modeling and simulation have been used in the
clinical evaluation of most mAbs. The population approach should be
preferred over individual data analysis in order to develop predictive
models, to take into account individual covariates (e.g. demographic
predictors, genotypes and disease status), to find sources of variability,
and to guide the selection of appropriate dosing regimens [29, 31]. A
brief review of the model types proposed for mAb PK is now presented.

3.1 Empirical compartmental models

Most population PK analyses have reported a two-compartmental
model, with the volume of the central compartment being approx-
imately similar to the plasma volume (3 L), linear distribution to
the peripheral compartment, and elimination from the central com-
partment. The central compartment usually corresponds to blood or
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Figure 3.1: Representation of the most common empirical PK model
for mAbs. V1 and V2 are apparent distribution volumes in central and
peripheral compartments, respectively, while Q is intercompartmental
clearance. CL represents the linear elimination term, while CLnon lin,
expressed via an MM equation, is the nonlinear elimination term.

serum, whereas the peripheral compartment to organs or tissues slowly
equilibrating with blood or serum [31] (Figure 3.1).
Elimination has been reported to be linear for some mAbs, but nonlin-

ear for others: this might be explained by differences in target affinity,
tissue distribution, or the range of achieved plasma/tissue concentra-
tions. The most popular choice for describing nonlinear elimination
is a Michaelis-Menten (MM) function of the drug concentration [41]
(see Figure 3.1), representing the saturable process of drug associating
with and dissociating from the target and, in parallel, the degradation
of the drug-target complex.
Even when including nonlinear elimination from the central compart-
ment, these empirical models may be limited because they assume that
distribution is a first-order process and that the central compartment
is in equilibrium with the site of elimination. For mAbs these assump-
tions are likely not to be verified: distribution may have a nonlinear
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and saturable component as well, and furthermore non-negligible clear-
ance may occur in peripheral compartments [31]. For several mAbs,
more mechanistic models have been applied that incorporate antigen
binding and target mediated elimination [29].

3.2 TMDD models

TMDD represents one specific source of nonlinear kinetics, where
drug-target binding and subsequent events (complex dissociation and
degradation) result in dose-dependent changes in overall distribution
and/or elimination parameters [4]. TMDD occurs with many mAbs
[42, 41]; in some cases, TMDD-related nonlinearity may not be ob-
served in experimental data, because the clinical doses administered
often saturate this clearance pathway [41]. When observed, non-linear
kinetics due to TMDD has significant impact on dose selection, dosing
scheme, and sampling times. A mechanistic TMDD characterization
can provide information on the target and on its interaction with the
drug [42, 41].

3.2.1 Mechanistic full TMDD model

Mager and Jusko proposed a mechanistically-grounded model for
TMDD description, whose key feature is that saturable, high-affinity
binding of the drug to its pharmacologic target is responsible for PK
nonlinearity [4]. According to this model (Figure 3.2), drug-target
binding is assumed to occur only in the central compartment. In
particular, drug in the central compartment binds to free antigens to
form a drug-target complex. When there is no external drug input,
the endogenous free target is synthesized in a zero-order process and
degraded in a first-order process. The drug elimination pathway via
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binding to the target and subsequent degradation of the complex could
be saturated, when the target amount or capacity is limited [41]. The
total binding capacity imparts nonlinearity in distribution and some-
times in elimination. Once formed, the complex may dissociate or,
in the case of target mediated endocytosis, undergo internalization
and degradation. Unbound drug can also be directly eliminated or be
subjected to non-specific tissue binding or distribution [4]. A depot
compartment may also be included to represent s.c. or i.m. adminis-
tration sites. Variations to the full TMDD model exist: for instance,
it has been suggested that a general TMDD model with drug-target
binding in the peripheral compartment could be more relevant, since
the disease-related target sites often reside in tissues [41].

Thanks to its mechanistic base, the model proposed in [4] is flexi-
ble, as specific aspects may be included or excluded depending on the
pharmacology of the system. For example, when the drug-target com-
plex does not internalize or degrade, the corresponding rate constant
may be removed from the model.
Although its a priori identifiability has been demonstrated [43], this
model displays practical identifiability issues. Indeed, it was noticed
that the identification of the TMDD model parameters from the PK
data alone can be difficult, especially with relatively sparse clinical
data, and/or if only the drug concentration (free or total) is measured.
The concentrations of the target or the drug-target complex are rou-
tinely unavailable because of assay constraints, and, when available,
may not be sufficient to describe the initial binding process, making
the general TMDD model in [4] over-parameterized [41]. Another rea-
son for the non-identifiability of the parameters from the PK data
is the large difference between the drug-target binding process, with
the characteristic half-life of minutes or hours, and the elimination of
the free drug, with the characteristic half-life of days or weeks [44].
Furthermore, the nonlinear differential equations make the theoretical
analysis and numerical implementation of the TMDD model more diffi-
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Figure 3.2: The general TMDD model proposed in [4]. In the cen-
tral compartment, the drug (with concentration Cp) may bind to free
receptors (with concentration R) with constant rate kon, forming drug-
receptor complex (with concentration CR), or be directly eliminated
with clearance CLp. Free receptors, without drug, are synthetized with
0th-order constant rate ksyn and degraded with 1st-order rate constant
kdeg. The complex can dissociate (rate constant koff ), or undergo
internalization (rate constant kint). A peripheral compartment (with
amount AT ) can be used to consider unbound drug distribution to and
from other tissues (with rate constants kpt and ktp); a depot compart-
ment can be included for non-IV administration (with absportion rate
ka and bioavailability F ).
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cult to handle, especially in a population approach context; moreover,
model convergence and parameter estimation are sensitive to initial
values needed in running nonlinear model-fitting algorithms [41]. Some
model simplifications and a number of model variants have therefore
been proposed and discussed [4, 41, 44].

3.2.2 TMDD model approximations

A direct simplification could be to assume the total binding ca-
pacity to be constant, as suggested in [4, 41]: this holds when the
degradation rates of the complex and free target can be assumed to
be the same. The assumption is also convenient if data on the total
target are sparse or unavailable, but the amount is considered to re-
main constant during mAb administration. If this does not hold, other
attempts can be made by modifying or deriving some differential or
algebraic equations with assumptions such as QE and QSS. Setting
total binding capacity to constant is, however, an independent way of
simplification and can be attempted for all models [41]. As mentioned
before, the model reported in [4], also called “full TMDD model”, as it
has no simplifications, easily becomes over-parameterized and poorly
identifiable.
To overcome this difficulty, the QE approximation of the full TMDD
model was developed [45]. The main assumption used to derive the
QE approximation is that the free drug, the target and the complex
are at QE. This means that drug-target association and dissociation
processes are much faster than the other processes described by the
TMDD model (drug distribution, and elimination of target, drug and
complex) [45, 44]. Hence, the QE model is applicable in the situation
when the association and dissociation rates are high compared to the
other rate constants, and the relationship between concentrations of
the free drug, the free target and the drug-target complex is at any
time determined by the equilibrium dissociation constant kD. When
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the rate of elimination of the complex is not negligible compared to
the dissociation rate, the QE condition may not hold [44].
An alternative to the QE assumption is represented by a QSS condi-
tion on the drug-target complex. When complex concentration is at
QSS, drug-target association is assumed to be faster than drug dis-
sociation and all other modeled processes [46]. The QSS condition
appears to imply that the derivative of the drug-target complex over
time is equal to zero: in fact, it is not zero, but most of the time it
is negligibly small compared to the rates of the other processes. This
situation could be applicable, in particular, to a drug with fast drug-
target association and dissociation, and also fast internalization of the
drug-target complex. When assuming the suggested QSS condition
(i.e. when using the so-called “QSS TMDD model”), the number of
parameters in the model is reduced: the drug-target association and
dissociation constants, kon and koff , are substituted by kss, equal to
(koff + kint)/kon, where kint is the internalization rate constant of the
drug-target complex. The QE approximation can be considered to be
a particular case of the QSS approximation when the internalization
rate constant kint is much smaller than the dissociation rate constant
koff (hence kD∼ kss) [44]. There is an important difference between
the QSS constant kss and the dissociation constant kD. The dissocia-
tion constant is a measure of affinity between the drug and the target,
and can be obtained in in-vitro experiments. On the contrary, kss in-
cludes also the elimination rate constant of the drug-target complex
that can only be obtained in-vivo.
Equations of the QSS model can be re-parametrized in order to obtain
a formulation similar to that observed for describing MM elimination,
with parameters Vmax and Km. The difference from the standard MM
equation is that Vmax is allowed to vary over time, as it is dependent
from total target concentration [44]. Obviously, as for the QSS model,
also the parameters of the MM model are a combination of the pa-
rameters of the full TMDD model. The MM approximation may be
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used to describe systems and dosing regimens that result in the fully
saturated target, e.g. because drug concentrations significantly exceed
the total target concentration [44].
The development of QE and QSS TMDD models is based on the sep-
aration of the microscopic time-scales (usually seconds to minutes),
related to antibody-target binding, and macroscopic time-scales (usu-
ally hours to days), related to antibody-target complex elimination
process. In [42], besides investigating the above mentioned QSS as-
sumption on antibody-target complex, also two other approximations
were explored:

� QSS for target concentration, i.e. target zero-order synthesis is
considered to be balanced by target first-order elimination and
by antibody-target association and dissociation processes.

� QSS for antibody concentration at target site, i.e. the net amount
of antibody binding to the target is balanced by the amount en-
tering the target site; this can be the case when the target is not
easily accessible for the drug.

Other simplifications of the full TMDD model, based on QSS or other
assumptions, are explored in [41]. There, furthermore, the importance
of selecting the right approximation for the data at hand is underlined
and some considerations for guiding this choice are suggested.
In summary, TMDD is not easy to characterize, especially when infor-
mation on the target is poor. Appropriate data are required, coming
from adequately designed studies; unfortunately, this is not always the
case [41]. Therefore, care should be taken so that the most appropri-
ate and parsimonious model is applied [4]. Furthermore, it should be
taken into account that all the TMDD models presented in this section
assume that binding occurs in plasma or tissues rapidly equilibrating
with plasma; in some cases this assumption might not hold.
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3.3 Minimal physiologically based model

PBPK models, initially developed for describing small molecule
PK, from the mid 80s were extended to large molecules [47, 48]; a
PBPK platform for mAbs was built, based on extensive literature data,
able to predict the PK concentration in plasma and tissues in different
species utilizing a limited number of parameters of the compound to be
studied [2]. As in general the validation of a novel PBPK model may
require a substantial amount of information, in the presence of limited
data, and for reducing model complexity, techniques that lump tis-
sues with similar kinetic characteristics were proposed, both for small
[24, 49, 25, 50] and large molecules [3, 51, 52]. In particular, in [3] the
mAb PBPK model [2, 53] was reduced into a mPBPK model. When
only plasma (or blood) data are available, a mPBPK model offers a
simpler approach than PBPK models, but provides parameters with
more practical value than empirical compartmental models. Further-
more, in mPBPK models system- and drug-specific parameters are
separated, and can be compared among congeneric drugs and across
species. Additionally, as with PBPK models, the mPBPK models have
the flexibility in handling different clearance sites and various mecha-
nisms of elimination and absorption.
The mPBPK model proposed for mAbs in [3] considers specific PK
characteristics of these drugs, such as poor transcapillary and cellu-
lar permeability, less renal filtration and hepatic metabolism, possible
clearance from peripheral tissues, and nonlinearity due to receptor
binding. Separate compartments for plasma, lymph, and ISF (con-
sidered as the only extravascular distribution space) in two types of
tissues are defined. Tissues are discerned into tight and leaky, based
on their vascular endothelium structures. Tight tissues have contin-
uous capillaries; muscle, skin, adipose and brain have been assigned
to this class. Leaky tissues have discontinuous (or fenestrated) capil-
laries, and they include all other tissues, e.g., liver, kidney, and heart
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[3]. The model is represented in Figure 3.3: the drug enters in plasma,
and its distribution to tight and leaky tissues depends on their vas-
cular reflection coefficients. Through the tissues, the drug arrives in
the lymph, in a manner dependent on lymphatic capillary reflection
coefficient. From here, the drug goes back to plasma, where it can be
eliminated; clearance pathways from the tissues could also be consid-
ered.

3.3.1 Integration with TMDD

The mechanistic description of TMDD, either in plasma or in
tissue, was subsequently incorporated in the mPBPK model [6, 54,
55], leading to the so-called “mPBPK-TMDD” models. Incorporating
TMDD into a mPBPK model allows to consider target binding con-
sistently with target-expressing tissues, which is important to obtain
reliable characterizations of the target profile and of drug-target bind-
ing. The feasibility of mPBPK-TMDD integration was firstly explored
in [54]: the authors proposed mPBPK-TMDD models exploiting ei-
ther the full or QSS TMDD model, with binding occurring either in
plasma or ISF. These models were applied in a number of case studies
and identified based only on plasmatic drug concentration measure-
ments.
In the next chapter (Chapter 4), four integrated mPBPK-TMDD mod-
els are thoroughly detailed and explored, under the assumption that
target sites are located in leaky tissues, with particular attention to
the case when limited data are available.
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Leaky 
tissues 

Lymph 

Tight 
tissues 

Plasma 

IV 

Figure 3.3: Scheme of the mPBPK model for mAbs proposed in [3],
supposing IV administration and elimination from the plasmatic com-
partment. Plasma is represented in red, lymph in lightblue, tight
tissues in green with marked outline, and leaky tissues in green with
dashed outline. Vascular reflections are σ1 and σ2 respectively for tight
and leaky tissues, with σ1 > σ2. Lymphatic capillary reflection coeffi-
cient is instead represented by σL. L, i.e. total lymph flow, is equal to
the sum of L1 and L2, which are lymph flow for tight and leaky tissues,
respectively. Drug clearance from plasma is denoted with CLp.
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Chapter 4
Integrated minimal
PBPK-TMDD models:
comparison and
identifiability issues

In this chapter, a thorough feasibility assessment of the mPBPK-
TMDD incorporation for describing mAb PK is proposed, considering
binding occurring only in leaky tissues (a similar methodology can
be applied with binding occurring in tight tissues, or in both leaky
and tight tissues). In the following, four mPBPK-TMDD models are
introduced: the full one (Section 4.1, see [54] and related Supple-
mentary Material), and three different approximated models including
QSS conditions on TMDD dynamics [42] (Section 4.2). The impact
of such approximations is comparatively assessed through simulations
of plasma and tissue concentration profiles with reference to the full
mPBPK-TMDD model (Section 4.3). A sensitivity test is also per-
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formed on meaningful parameters. Furthermore, identifiability of the
full and approximated models is investigated, with respect to both
data richness and sampling design optimization; both a priori and a
posteriori identifiability issues are explored (Section 4.4). A discussion
of the results of this chapter is finally reported (Section 4.5).

4.1 The full mPBPK-TMDD model

The full mPBPK-TMDD model is built incorporating the so-called
full TMDD model [4, 41, 44] into the mPBPK model for mAbs (see
Supplementary Material of [54]), supposing that the binding occurs in
the leaky tissue. The differential equations of such model (see Figure
4.1) are:

Cp = Ap/Vp
dAp
dt

= In(t) + ClymphL− CpL1(1− σ1)− CpL2(1− σ2)
−CpCLp

dCtight
dt

=
1

Vtight
[L1(1− σ1)Cp − L1(1− σL)Ctight]

dCleakyfree
dt

=
1

Vleaky

[
L2(1− σ2)Cp − L2(1− σL)Cleakyfree

]
−konCleakyfreeRleakyfree + koffCRleaky

dRleakyfree

dt
= ksyn − kdegRleakyfree − konCleakyfreeRleakyfree

+koffCRleaky

dCRleaky

dt
= konCleakyfreeRleakyfree − koffCRleaky − kintCRleaky

dClymph
dt

=
1

Vlymph
[L1(1− σL)Ctight + L2(1− σL)Cleaky

−ClymphL]
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Cp and Clymph are free antibody concentrations in plasma volume (Vp)
and lymph volume (Vlymph) respectively, while Ctight and Cleakyfree are
antibody free concentrations in system ISF volume of tissues with
continuous endothelium (Vtight) and in ISF volume of tissues with fen-
estrated or discontinuous endothelium (Vleaky), respectively. Cao and
colleagues [3] have assigned the muscle, skin, adipose and brain to
Vtight, and all other tissues to Vleaky (liver, kidney, heart, etc.). Free
target concentration is expressed as Rleakyfree , while antibody-target
concentration is CRleaky. The total lymph flow L equals the sum of the
flows for leaky tissue, L1, and tight tissue, L2. Vascular reflection coef-
ficients for tight and leaky tissue are σ1 and σ2 (constrained to be < 1),
while σL is the lymphatic capillary reflection coefficient. Rate con-
stants are ksyn for target biosynthesis, kdeg for target degradation, kint
for antibody-target complex internalization, kon for antibody-receptor
association and koff for antibody-receptor dissociation. Finally, CLp
is clearance from plasma. All initial conditions of the differential equa-
tions are set to zero, except for Rleakyfree(0) = ksyn/kdeg.
Other simplified TMDD descriptions can be incorporated into the
mPBPK model, as shown in the next section.

4.2 Other three mPBPK-TMDD

models: QSS approximations

The QSS approximation proposed by Gibiansky et al [44], and the
two additional QSS conditions proposed by Grimm [42] (see Chapter
3, Section 3.2) can be applied to the TMDD model incorporated in the
leaky tissue compartment of the mPBPK model. Hence, in particular,
the following QSS approximations were considered:

� on antibody-target complex concentration in binding tissue, as-
suming that the right-hand side of the differential equation for
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4.2. Other three mPBPK-TMDD models: QSS approximations

the complex (CRleaky) equals zero:

kintCRleaky = konCleakyfreeRleakyfree − koffCRleaky (4.1)

� on free target concentration in binding tissue, assuming that tar-
get zero-order synthesis (ksyn) is balanced by first-order elimina-
tion (kdeg), and antibody-target complex association (kon) and
dissociation (koff ):

ksyn− kdegRleakyfree = konCleakyfreeRleakyfree − koffCRleaky (4.2)

� on free antibody concentration in binding tissue, assuming that
the net amount of antibody binding to the target must be bal-
anced by the amount entering the target site (here, the leaky
tissue):

CpL2(1− σ2)− CleakyfreeL2(1− σL) =

(konCleakyfreeRleakyfree − koffCRleaky)Vleaky (4.3)

Note that, by virtue of the adoption of a QSS approximation, the
differential equation for the variable at QSS is replaced by an algebraic
one.

4.2.1 Model A

A mPBPK model with a TMDD component including the ap-
proximation on antibody-target complex concentration (Equation 4.1)
and expressed in terms of total drug concentration in the leaky tissue
(Cleakytotal = Cleakyfree +CRleaky) and total target concentration in the
leaky tissue (Rleakytotal = Rleakyfree + CRleaky) was already considered
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in [54]:

Cp = Ap/Vp
dAp
dt

= In(t) + ClymphL− CpL1(1− σ1)− CpL2(1− σ2)
−CpCLp

dCtight
dt

=
1

Vtight
[L1(1− σ1)Cp − L1(1− σL)Ctight] (4.4)

dCleakytotal
dt

=
1

Vleaky

[
L2(1− σ2)Cp − L2(1− σL)Cleakyfree

]
−kintCRleaky

dRleakytotal

dt
= ksyn − kdegRleakyfree − kintCRleaky

dClymph
dt

=
1

Vlymph

[
L1(1− σL)Ctight + L2(1− σL)Cleakyfree

−ClymphL]

where Cleakyfree and CRleaky are computed as:

Cleakyfree =
1

2
(Cleakytotal −Rleakytotal − kss

+
√

(Cleakytotal −Rleakytotal − kss)2 + 4kssCleakytotal)

CRleaky =
RleakytotalCleakyfree
kss + Cleakyfree

(4.5)

Adding this QSS simplification, the model is reduced by one param-
eter: instead of the association and dissociation constants (kon and
koff ), the QSS constant kss = (kint + koff )/kon is introduced. In this
work, the mPBPK-TMDD model described by Equations 4.4 and 4.5
is referred to as model A.
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4.2.2 Model B

If also the approximation on target concentration in leaky tissue
(Equation 4.2) is added, model B is obtained:

Cp = Ap/Vp
dAp
dt

= In(t) + ClymphL− CpL1(1− σ1)− CpL2(1− σ2)
−CpCLp

dCtight
dt

=
1

Vtight
[L1(1− σ1)Cp − L1(1− σL)Ctight] (4.6)

dCleakytotal
dt

=
1

Vleaky

[
L2(1− σ2)Cp − L2(1− σL)Cleakyfree

]
−kintCRleaky

dClymph
dt

=
1

Vlymph

[
L1(1− σL)Ctight + L2(1− σL)Cleakyfree

−ClymphL]

where:

α = kint

β = ksskdeg − kintCleakytotal + ksyn

γ = −ksskdegCleakytotal

Cleakyfree =
1

2α

(
−β +

√
β2 − 4αγ

)
(4.7)

Rleakyfree =
ksynkss

(ksskdeg + kintCleakyfree)

CRleaky =
RleakyfreeCleakyfree

kss

This time, no reduction of the model in terms of number of parameters
is achieved.
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4.2.3 Model C

Finally, adding the approximation on free antibody concentration
in leaky tissue (Equation 4.3), model C is:

Cp = Ap/Vp
dAp
dt

= In(t) + ClymphL− CpL1(1− σ1)− CpL2(1− σ2)
−CpCLp

dCtight
dt

=
1

Vtight
[CpL1(1− σ1)− L1(1− σL)Ctight]

dClymph
dt

=
1

Vlymph

[
L1(1− σL)Ctight + L2(1− σL)Cleakyfree

−ClymphL]

where Cleakyfree , Rleakyfree and CRleaky are obtained as:

α = −kintL2(1− σL)

β = kintCpL2(1− σ2)− ksskdegL2(1− σL)− kintVleakyksyn
γ = ksskdegCpL2(1− σ2)

Cleakyfree =
1

2α
(−β −

√
β2 − 4αγ)

Rleakyfree =
ksynkss

(ksskdeg + kintCleakyfree)

CRleaky =
RleakyfreeCleakyfree

kss

Again, the number of model parameters does not decrease.
In the next sections, a detailed assessment of the four mPBPK-TMDD
models (full, A, B, C) is illustrated.
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4. mPBPK-TMDD models

4.3 A simulated study: comparison of

the four models and sensitivity test

A simulated study of the four models presented above (Figures 4.1
and 4.2) was carried out with the software for statistical computing
and graphics R (version 3.1.2, https://cran.r-project.org/), us-
ing the deSolve package for solving the differential equations systems.
First of all, taking as a reference the full model (as it does not make
simplifying assumptions), the four models were simulated and com-
pared. The aim was to see what changes are entailed by the addition
of the steady-state approximations, both in terms of antibody and
target concentrations.

4.3.1 Simulations settings and results

Simulation of the four models was performed using mPBPK and
TMDD model parameters estimated in [54] for the case study of ro-
mosozumab [56] assuming: a) a plausible value of the dissociation
constant kD equal to 0.963 nM (kD = koff/kon, see Supplementary
Material of [56]); b) a body weight of 70 kg in order to derive CLp
in L/hr (see Table 4.1). The remaining required values, L1, L2, Vtight,
and Vleaky, are derived with the following assumptions:

L1 = 0.33L

L2 = 0.67L

Vtight = 0.65 ISF Kp

Vleaky = 0.35 ISF Kp

where ISF = 15.6 L is the total ISF volume for a 70 kg body weight
person, 0.33 and 0.67 are the relative fractions to L of L1 and L2 re-
spectively, 0.65 and 0.35 are the relative fractions to available total ISF
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Table 4.1: Model parameters for mPBPK-TMDD simulations.

value unit

Vp 2.6 L
Vlymph 5.2 L
L 2.9/24 L/hr
σL 0.2 −
σ1 0.99 −
σ2 0.712 −
CLp 0.896 10−2L/hr
kss 1.31 nM
ksyn 0.172 nM/hr
kdeg 1.21 10−2/hr
kint 0.624 10−2/hr
kD 0.963 nM
kon 0.018 1/nM/hr
koff 0.017 1/hr

of Vtight and Vleaky respectively [2, 53], and Kp = 0.8 is the available
fraction of ISF for antibody distribution [54]. Simulations were per-
formed at the same dose levels of the case study reported in [56], which
were administered intravenously: one low, 1 mg/kg, and one high, 5
mg/kg. At low doses the mechanism of target mediated drug disposi-
tion significantly contributes to the overall clearance, while at higher
doses, when the target is saturated, the overall clearance is mainly
governed by the typical catabolism process for mAbs (i.e. CLp).
In the simulations, one virtual 70 kg body weight subject was consid-
ered per each dose level, with samples simulated every 5 hours up to
84 days. The input dose per subject expressed in nM was obtained
via the following formula: 103(doseBW )/MW , where dose represents
the dose in mg/kg, BW is the body weight (i.e., 70 kg), and MW is
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4. mPBPK-TMDD models

the MW of the mAb, here assumed to be equal to 150 kDa.
It was found that model A generates the closest profiles to the full
mPBPK-TMDD model in plasma and target site for both compound
and receptor variables, free and total. Model B deviates from the
full model in free and total target concentration profiles, while model
C systematically deviates from the full one for both drug and target
concentrations (see Figure 4.3).

4.3.2 Sensitivity test

For all the four models, also a univariate sensitivity test on the
following parameters was performed: σ1, σ2, CLp, kss, kint and kD, in
order to study their influence on the antibody and target concentration
profiles. In particular, the sensitivity of Cp, Cleakytotal and Rleakytotal

profiles with respect to the considered parameters is here of interest.
Usually, the plasmatic concentrations of the drug (and target, when it
resides in plasma) are indeed available; less frequently, measurements
in tissue (e.g. total drug and target concentrations) are also collected.
More in detail, a minimum and a maximum value were defined for σ1,
σ2, CLp, kss, kint and kD (see Table 4.2): in general, the nominal value
in Table 4.1 divided and multiplied by 10, respectively. This rule was
appropriately tailored for σ1, σ2, kss, and kD to respect the constraints

0 < σ1, σ2 < 1
σ1 > σ2
kss > kD.

The four models were simulated varying one parameter at a time, in
order to compare the results obtained with the minimum value to the
ones obtained with the maximum value.

The model parameters tested have a detectable impact at both
doses (e.g. CLp, see Figure 4.4), with similar magnitude in the four
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Figure 4.3: Simulations of the two IV doses, with binding in the leaky
tissue with full model (Indian red) and approximations of the binding
process (olive), binding process and target turnover (sea green), bind-
ing process, receptor turnover and drug concentration at the target
site (orchid). Upper left panel: free drug concentration in plasma.
Upper right panel: total drug concentration in leaky tissue. Lower left
panel: free receptor concentration in leaky tissue. Lower right panel:
total receptor concentration in leaky tissue.
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Table 4.2: Parameter ranges for the sensitivity test (units as reported
in Table 4.1).

min max

σ1 0.715 0.99
σ2 0.25 0.75
CLp 0.07 7
kss 0.965 20
kint 0.06/100 6/100
kD 0.1 1.30

mPBPK-TMDD models. The only exception is the dissociation con-
stant kD, which, in its range of investigation, does not seem to influence
significantly the three profiles of interest (see Figure 4.5), especially for
the approximated mPBPK-TMDD models. The almost null influence
of kD on the simulated profiles was further investigated by perfoming
another univariate sensitivity analysis, separately on kon and koff , only
on the full model, in order to discern the effects of the two parame-
ters. As before, minimum and maximum values were selected as ten
times lower and higher than the real parameter value. As depicted in
Figure 4.6, both kon and koff influence separately the three profiles
of interest, but their sensitivity curves appear to be highly correlated:
the scenario in which kon is low appear almost identical to the scenario
in which koff is high and viceversa. This might explain why kD, by
including the effects both of kon and koff , has no significant influence
on the simulated profiles.
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Figure 4.4: Plasma drug concentration, drug concentration in binding
tissue and target amount in binding tissue obtained with the four
models varying CLp, from its minimum (dashed line) to its maximum
(solid line). The dashed lines are clearly distinguishable from the
solid lines, indicating a significant sensitivity of concentration profiles
to CLp values. Left panels: simulations at 1 mg/kg; right panels:
simulations at 5 mg/kg.
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Figure 4.5: Plasma drug concentration, drug concentration in binding
tissue and target amount in binding tissue obtained with the four
models varying kD, from its minimum (dashed line) to its maximum
(solid line). In contrast with Figure 4.4, here the dashed lines are
hardly visible because they are overlapped with solid lines, indicating
that concentration profiles are not much sensitive to kD values. Left
panels: simulations at 1 mg/kg; right panels: simulations at 5 mg/kg.
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Figure 4.6: Plasma drug concentration, drug concentration in binding
tissue and target amount in binding tissue obtained with the full mod-
els varying: (i) kon (red lines), from its minimum, i.e. 0.0018 (dashed
line), to its maximum, i.e. 0.18 (solid line), (ii) koff (blue lines), from
its minimum, i.e. 0.0017 (dashed line), to its maximum, i.e. 0.17 (solid
line). Left panels: simulations at 1 mg/kg; right panels: simulations
at 5 mg/kg.
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4.4 Identifiability issues

The previous analysis suggests that not all mPBPK-TMDD mod-
els parameters influence in a detectable way the antibody and target
profiles that could be measured in clinical trials: hence, in general,
there may be identification issues. For this reason, the identifiability
of the four models, both structural (a priori) and practical (a posteri-
ori), was studied.
The measurements of total mAb and target concentrations in the bind-
ing tissue (Cleakytotal and Rleakytotal , respectively) are in general quite
invasive, hence only few samples may be generally available. Consid-
ering this constraint, the a priori and a posteriori identifiability of the
four models was studied in three realistic scenarios, in which:

i. Only Cp is measured

ii. Cp and Cleakytotal are measured

iii. Cp and Rleakytotal are measured

4.4.1 A priori identifiability

A priori identifiability is a theoretical property of the model struc-
ture; it ensures that model parameters can be uniquely (globally or lo-
cally) determined from knowledge of the input-output behavior assum-
ing perfect experimental data. Hence, the fulfillment of this property
is independent of experimental design conditions. A priori identifia-
bility is a necessary prerequisite for parameter estimation in practice.
Its study is therefore important to establish whether parameter esti-
mation difficulties are due either to the particular experimental design
or the mathematical structure of the model.
For nonlinear systems, several methods are available for the testing
of a priori identifiability, but methods for testing global identifiability
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entail a more demanding implementation, especially for large systems
[57]. An algorithm inspired by [58] for the assessment of local identi-
fiability was proposed in [59] and implemented in the Identifiability-
Analysis package of the software Mathematica [59, 60]. This tool was
chosen to explore the local a priori identifiability of the four mPBPK-
TMDD models, in scenarios i., ii. and iii.
The Mathematica implementation takes the parametrized initial con-
ditions, the system equations, and the set of measurable outputs, and
computes a number of properties of interest, e.g. identifiability and
the sets of identifiable or unidentifiable parameters [59].
Since the method implemented in the IdentiabilityAnalysis package of
Mathematica requires the model system to be rational with respect
to all its arguments [59], model A, B and C needed to be rational-
ized. However, it was not possible to complete this process for the last
model because of an unremovable irrational initial condition: in this
case, local a priori identifiability could not be assessed. Rationalized
equations of model A and B are reported in Appendix A, Section A.1.
Full Model and Model A were found to be a priori identifiable in ev-
ery scenario. Model B turned out to be a priori identifiable only with
the output choice iii. (see Table 4.3); in cases i. and ii. kdeg and kss
are the non-identifiable parameters. For more details on theory and
implementation, see Appendix A, Section A.1.

4.4.2 A posteriori identifiability

A posteriori identifiability refers to the ability of practically esti-
mating an unknown parameter vector; it is inherently related to the
type and amount of experimental data available. Since a priori identi-
fiability is a necessary, yet not sufficient condition for a posteriori iden-
tifiability, the latter property was analyzed only for the cases where
a priori identifiability is met. The Fisher Information Matrix (FIM)
[61] can provide insight into the amount of information available in the
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Table 4.3: A priori identifiability results for all models in all scenarios:
“yes/no” indicate that there is/there is not a priori identifiability, while
the“-” indicates that it’s not possible to assess the theoretical property.

i. ii. iii.

Full yes yes yes
A yes yes yes
B no no yes
C - - -

Table 4.4: Condition number of the FIM.

Scenario Full Model Model A Model B

i: Cp 2.9× 106 97.3× 106 −
ii: Cp and Cleakytotal 1.0× 106 108.0× 106 −
iii: Cp and Rleakytotal 1.8× 106 45.8× 106 98.8× 106

data (i.e. their quality), and a Monte Carlo (MC) procedure can be
exploited for the exploration of fitting results, as far as it regards both
the parameter estimates and the adherence of estimated concentration
profiles on the data.
The condition number of the FIM for all a priori identifiable mPBPK-
TMDD models and scenarios was computed (see Table 4.4). When
the condition number is large, the matrix is close to singular or, more
precisely, ill-conditioned; this entails a large uncertainty along some
directions in the parameter space. The condition number results to
be particularly elevated for models with QSS approximations, espe-
cially if only Cp or Cp and Cleakytotal are measured. The MC procedure
comprises the following steps (see Figure 4.7):

� Simulation from the Full Model of 100 datasets per each output
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choice (i., ii. and iii.), using a sampling schedule mimicking the
clinical practice and a proportional residual error model with
coefficient of variation equal to 0.2 for Cp (CVCp) and Cleakytotal
(CVCtot), and 0.3 for Rleakytotal (CVRtot).

� Fitting of the mPBPK-TMDD models (in NONMEM, http:

//www.iconplc.com/innovation/nonmem/) on each simulated
dataset, with initial parameter values equal to the true ones with
a perturbation of ±15%.

� Examination of the distribution of parameter estimates via box-
plots, and computation of outliers, sample variance, confidence
intervals (CIs), bias, percent coefficient of variation (CV%) and
Root Mean Square Error (RMSE). Furthermore, the parameters
were ranked on the basis of an index, δ, equal to the percent
RMSE with respect to the true value of the parameter.

� Exploration of fitting quality by plotting: differential equations
states vs. time, Conditional Weighted Residuals (CWRES) vs.
Time, CWRES vs. the dependent variable (DV) [62], and Good-
ness Of Fit (GOF) plots. Furthermore, Predictive Plots (PPs)
are used to compare the noise-free simulated data with the per-
centiles of the predicted noise-free curves, computed from the
100 estimates obtained.

In particular, in the simulation step, the following sampling scheme
was considered: for plasma concentration, sampling time t ∈ Tp =
{0, 1, 2, 3, 4, 8, 16, 24, 48, 72, 96, 120, 168, 336, 504, 672, 840, 1008, 1176,
1344, 2016} (i.e. rich sampling schedule on the first day, then grad-
ually more sparse), and for total antibody and target concentration
in binding leaky tissue, t ∈ Tleaky = {72, 336, 672, 2016} (i.e. day
3, 14, 28, 84). For more details about theory, implementation and the
software tools exploited, see Appendix A, Section A.2.
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Figure 4.7: Diagram of the MC a posteriori identifiability analysis.
Datasets were simulated with the Full Model and used to identify the
mPBPK-TMDD models. NONMEM output tables were obtained and
analysed.
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Table 4.5: Parameter ranking based on δ obtained after fitting model
A on drug plasmatic concentration and total drug concentration in
binding tissue (scenario ii.).

Parameter δ%

1. σ1 0.5
2. σ2 4.8
3. kint 6.0
4. CVCp 13.5
5. CLp 13.7
6. ksyn 26.0
7. CVCtot 37.3
8. kss 84.5
9. kdeg 729.9

From the results of the a posteriori identifiability analysis, it can be
observed that the parameters with the maximum CV% and δ are the
ones linked to the processes of binding, degradation and internalization
of the complex. In Figure 4.8 the distributions of the parameter esti-
mates are reported, for the scenario with the Full Model and plasma
drug concentration as output measure (scenario i.). The ranking of
the parameters based on δ allowed the quantification of the sensitivity
of parameter estimates to noise in the data: it is worth noticing that,
regardless of the scenario considered, the “worst” parameters are, for
the Full Model, kon, koff and kdeg (with δ often exceeding 120%), and,
for models A and B, kdeg and kss (with rank greater than 700%). In
Table 4.5, an example of parameter ranking, for model A estimated
on Cp and Cleakytotal data, is reported (scenario ii.). A classification of
the different scenarios, based on the maximum CV% obtained for the
estimates (that can be computed also from fitting on real data, with
unknown true parameter values), is also proposed in Table 4.6. In
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Figure 4.8: Boxplots of the estimates obtained by fitting the Full
Model on the 100 datasets with only Cp measurements (scenario i.).
The bottom and top of the box represent the first and third quartiles,
while the band inside the box is the median; whiskers extend till ±1.5
IQR (Inter Quartile Range). The horizontal red line indicates the true
value of the parameter.
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Table 4.6: Identification scenarios in decreasing order based on the
maximum CV% of the parameter estimates; the third column indicates
the parameter that leads to the maximum CV%.

Scenario max CV% parameter

Model A, i. 184.3 kdeg
Model A, ii. 160.5 kdeg
Full Model, i. 107.3 kdeg
Full Model, ii. 97.1 kon
Full Model, iii. 93.4 koff
Model B, iii. 71.4 kss
Model A, iii. 65.7 kss

this ranking, the scenario that gives the minimum maximum CV% is
the third one, where both plasma drug concentration and tissue target
concentration are measured.
As for CWRES and GOF plots, they did not show significant trends in

any scenario (see e.g. Figure 4.9). Indeed, the distribution of the resid-
uals always appears compatible with a Gaussian with null mean and
unitary variance (they are often comprised between −2 and 2). GOF
plots, representing the simulated data (DV) compared to the popula-
tion prediction (PRED), show a behavior in accordance with the pro-
portional residual error model: the scatterplot is concentrated around
the identity line and the dispersion appears to be greater for higher
concentrations. Despite the great variability in parameter estimates,
in every scenario the PPs show that the corresponding predicted curves
agree well with the noise-free measurable outputs considered. These
plots were produced by overlapping the noise-free simulated data to
the percentiles of the noise-free predicted curves obtained in each “100
runs set”. An example is reported in Figure 4.10, for the scenario which
presented the highest parameter CV% (see Table 4.6), i.e. Model A
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Figure 4.9: An example of CWRES vs time (left panel) and GOF plot
(right panel) obtained for the Full Model estimated on plasma data
(scenario i.). On the left, the residuals for all 100 NONMEM runs are
grouped together; on the right, the data (DV) are compared to the
predictions (PRED) for both doses and all runs (units: mg/L).

and plasma drug concentration as output measure.
Since the results obtained for a posteriori identifiability depend on

data richness, alternative and possibly more informative sampling de-
signs were considered.

Alternative designs

The two other sampling schedules considered were:

� an optimal one, in order to minimize the variance of parameter
Maximum-Likelihood (ML) estimators;

� a more frequent one, in order to increase the amount of informa-
tion.

More in detail, the more frequent sampling schedule was obtained as-
suming that each output variable (i., ii., iii.) can be measured every 5
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Figure 4.10: PP with the profiles of plasma concentration obtained
with all the combinations of parameters estimated for Model A on
plasmatic data. 5th, 50th and 95th percentiles of estimated profiles
(area and line) are reported, together with noise-free simulated data
(points).

hours up to day 84. The aim is to see if by collecting more data it is
possible to improve the a posteriori identifiability. The optimal sam-
pling schedule instead was obtained via PFIM, a software tool which
evaluates and/or optimizes population designs based on the expres-
sion of the FIM in nonlinear mixed effects models [63]. Each possible
output, Cp, Cleakytotal and Rleakytotal was considered separately in the
optimization process, mostly because they were associated with a dif-
ferent number of requested samplings. For more details about the
settings implemented in PFIM, see Appendix A, Section A.3.
The schedules obtained via optimal sampling still contain a realistic
number of sample times; the results of all optimizations are repre-
sented in Figure 4.11.

The a posteriori identifiability analysis procedure presented in Sec-
tion 4.4.2 was repeated using datasets generated with the more fre-
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Figure 4.11: Optimal sampling schedules obtained with PFIM, for high
(upper panels) and low (lower panels) dose level. The 21 optimal drug
samples in plasma (left) and 4+4 optimal drug and target samples in
leaky tissue (right) for each a priori identifiable model, compared with
the initial schedule (Start), are represented.
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quent sampling and with the optimal sampling. As an illustrative
example, in Table 4.7 a comparison of CV% for Model A estimates
identified on plasma data is reported.
It can be observed that the use of an optimal sampling schedule does
not improve significantly the estimates precision with respect to the
original realistic sampling schedule used for the analysis. The more
frequent sampling seems to provide a better identification of the model
parameters, maintaing the CV% of all parameter estimates below 45%.
This does not hold for all models in all scenarios: for the full model,
the dispersion in kon and koff estimates remains high even with the
more frequent sampling (CV% > 55% in scenario ii. and iii., greater
than 85% in scenario i.).
In summary, the identifiability issues cannot be considered resolved
by the realistic optimal design, while the unrealistic frequent sampling
provides an appreciable improvement in parameter estimates disper-
sion, especially for simplified models; these observations would point
to an overall over-parametrization issue.

Target saturating dose

The previous sections have shown that the addition of tissue data
improves the identification of some critical parameters and that more
frequent sampling improves precision on estimates, but not the optimal
design. Here, a third dose of 20 mg/kg has been considered to assess
potential improvements in practical identifiability. Data for the three
scenarios i., ii. and iii. were again simulated with the full model, at
doses: 1, 5 and 20 mg/kg. Full model and model A were tested for a
posteriori identifiability on all the three scenarios, while model B only
on scenario iii. CV% and δ were computed for comparison with the
two doses condition.
When considering only plasmatic concentrations (scenario i.), both
for full model and model A, the CV% generally decrease (with the
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Table 4.7: CV% of Model A parameter estimates obtained from plas-
matic data (scenario i.) with the three sampling schedules.

parameter
CV% for different sampling schedules

original optimal frequent

σ1 0.6 0.6 0.2
σ2 7.4 6.2 2.3
CLp 24.0 12.5 2.3
kss 110.1 102.6 20.6
ksyn 44.3 29.5 8.5
kdeg 184.3 165.2 42.9
kint 37.3 32.3 10.2
CVCp 11.8 12.5 2.4

exception of kss for model A), but they do not go below 60% (see
Table 4.8).
By adding tissue concentrations (scenario ii. and iii.), CV% reduction
becomes more significant. In particular, for model A in scenario iii.,
δ on average is equal to 15% and it is always below 40% (see Table
4.8), which is reasonable, since in data simulation a 20% and a 30%
proportional residual errors were included, respectively, for drug in
plasma or tissue, and target tissue concentration. For the full model
instead, δ upper limit is around 80% for both scenarios, while for model
B (scenario iii.) the maximum δ is approximately 50%.

4.5 Discussion

The integration of mPBPK and TMDD models has been studied
in depth for mAbs binding to their pharmacological target in tissues
with leaky vasculature.

70



4.5. Discussion

Table 4.8: CV% and δ of Model A parameter estimates obtained from
scenarios i. and iii., using either the two doses (1 and 5 mg/kg) or
three doses (1, 5, and 20 mg/kg) datasets.

scenario parameter
CV% δ

two
doses

three
doses

two doses three
doses

i.

σ1 0.564 0.563 0.612 0.565
σ2 7.405 4.620 7.385 4.649
CLp 23.958 5.826 23.308 5.846
kss 110.068 115.188 79.982 83.183
ksyn 44.270 18.962 47.252 19.524
kdeg 184.312 160.134 1139.393 1051.462
kint 37.326 31.832 39.745 37.915
CVCp 11.847 8.570 14.972 10.378

iii.

σ1 0.535 0.535 0.594 0.561
σ2 4.699 2.976 4.694 3.133
CLp 14.676 4.817 14.525 4.842
kss 65.665 41.98 58.761 39.965
ksyn 27.825 16.083 27.516 15.888
kdeg 40.371 22.23 49.960 22.866
kint 33.414 20.63 35.651 21.010
CVCp 11.807 8.348 13.606 9.501
CVRtot 34.14 22.308 32.607 22.143
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First, a full mPBPK-TMDD model was built. Secondly, since the
molecular processes are usually more rapid than PK processes, dif-
ferent approximations of TMDD dynamics based on QSS conditions
were considered. Three additional mPBPK-TMDD models (model A,
B and C) were hence derived adding sequentially QSS approximations,
respectively on: (a) antibody-target complex concentration, (b) target
concentration, and (c) free antibody concentration.
The four mPBPK-TMDD models have been simulated and compared
to assess the effects of quasi-steady-state assumptions on both drug
and target concentration-time profiles. The simulations have shown
that model A generates the closest profiles to the full model, while
model B differs mainly in the target concentration profiles, and model
C systematically deviates from the full one for both drug and tar-
get concentrations at the site of action. A sensitivity test focused on
plasma drug concentration and drug and target concentration in bind-
ing tissue, highlighted their insensitiveness to kD, probably due to a
confounding effect of kon and koff influences.
A priori and a posteriori identifiability of the four mPBPK-TMDD
models were explored in three experimental scenarios: (i) when mea-
surements of drug in plasma are available, and with possible addition
of (ii) total drug in tissue or (iii) total target in tissue data.
A priori identifiability is always met for the full model and for model
A, while such property is valid in model B only when both total target
concentration in binding tissue and drug plasma concentration can be
assessed. A priori identifiability cannot be assessed for model C.
The study of the a posteriori identifiability by an MC method high-
lighted practical identifiability issues, especially when only measure-
ments relative to the drug, either in tissue or in plasma, are available.
To overcome identifiability issues, three possible solutions have been
attempted, by enriching the experimental design: (i) the use of opti-
mal design methods, performed on the sampling scheme, (ii) the resort
to a non-realistic high number of sampling instants, equally spaced,
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(iii) the addition of an informative dose. While the use of an optimal
or more frequent sampling schedule could not improve significantly the
practical identifiability of all parameters, the addition of a saturating
dose to the dataset was able to bear noticeable improvements in terms
of CV%, especially when target in tissue data were considered avail-
able.
As reported in [54], mPBPK-TMDD models can handle TMDD at
the target-expressing tissues, thus extending the usual TMDD mod-
eling framework, where target binding is considered only in vascular
space. Nevertheless, in contrast with what was suggested in the same
work [54], mPBPK-TMDD models with binding occurring in the ISF
(specifically, in our case, in leaky tissues), do present parameter iden-
tifiability issues, especially when only plasmatic data, collected with a
realistic sampling, are available.
Besides providing explicitly the equations of four mPBPK-TMDD
models, pointing out their behavior in terms of drug and target con-
centration profiles, this work addressed the potential identifiability
issues of these models, indicating possible solutions (via informative
study designs). In particular, the a priori identifiability of full model
and model A in three scenarios, and of model B in the presence of
target concentration in binding tissue measurements was analytically
demonstrated. For all the four models, practical identifiability issues
were highlighted in all scenarios and two possible solutions were pro-
posed. In fact, the inclusion of target data in tissue and the addition
of a saturating dose can reduce identifiability uncertainty, especially if
both remedies are applied.
However, these solutions may not be always viable. Target concen-
tration in tissue is not easily measurable, hence it may not be always
assessed. Furthermore, the evaluation of sufficiently high doses may
not be possible: a dose providing enough target saturation to improve
parameter identification could also lead to toxicity episodes.
While the use of mPBPK-TMDD models allows the inclusion in a
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4. mPBPK-TMDD models

mechanistic framework of PK and PK-PD information, attention should
be given to the existence of practical identifiability issues. In general,
for any model, such issues could be first easily detected via simula-
tions, investigating different designs, dosing regimens, and parameter
values. This is demonstrated in the next chapter, using as a case study
the full TMDD model, whose practical identifiability issues have been
mentioned in Chapter 3 (Section 3.2).
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Chapter 5
PK/PK-PD simulator for
exploring a TMDD model

Prior or in addition to a thorough model analysis as the one pre-
sented in Chapter 4, identifiability issues can be first detected with an
exploratory simulation analysis. Indeed, simulation experiments can
be employed to explore assumptions made about the model’s structure
and parameters, and to investigate experimental designs [64]. With
appropriate tools, it is possible to investigate model-predicted profiles
in different scenarios (e.g. changing parameter values and dosing reg-
imens), inferring possible model identifiability issues.
A valid visualization software is necessary to allow for rapid exploratory
analyses, for hypotheses verification and generation [65]: interactive
web-based applications created with the R package Shiny (https:
//shiny.rstudio.com/) appear to be the ideal tool for the listed
purposes. For this reason, a Shiny app for PK and PK-PD model
simulation and exploration, called INES (INteractive Explorator and
Simulator), was developed within this thesis project.
In this chapter, an exploratory analysis of the full TMDD model is
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5. Simulator for exploring TMDD

conducted with INES, to demonstrate how inference on the model can
be made starting from simulations. First, the Shiny app INES is briefly
introduced, and the settings of the simulations are listed (Section 5.1).
Then, the exploratory analysis steps are presented and developed (Sec-
tion 5.2). Finally (in Section 5.3) the main results of this chapter are
discussed. Details about INES structure, both in terms of processing
code and user interface are reported in Appendix B, together with a
digression about a corollary tool.

5.1 Simulation tool and settings

INES is an interactive web-based Shiny application, written in R
code. It is able to simulate, both deterministically and stochastically,
the models contained in its PK and PD repositories. The PK repos-
itory contains also the full TMDD model [4] presented in Chapter 3,
Section 3.2, without peripheral compartment. The models included in
the repositories can all be implemented either with a 0th order input
(e.g. IV bolus) or 1st order input (e.g. oral administration). INES is
provided with a user-friendly web interface, where PK/PD model, pa-
rameters, dosing schedules, and simulation time instants can be set and
interactively changed. INES generates output plots (concentration vs
time, effect vs time, effect vs concentration), and tables summing up
simulation settings and results. More details about INES processing
code, user interface, and features are provided in Appendix B.

The full TMDD model implemented in INES is here considered
as a case study, assuming that drug administration is provided via a
single IV bolus. Parameters have been selected as in [66], see Table
5.1; parameter notations are as in Chapter 4 (see Section 4.1).
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Table 5.1: Case study TMDD model parameters.

parameter value unit

Vp 3.75 L
k10 0.0015 1/hr
kon 0.091 1/(mg/L)/hr
koff 0.001 1/hr
ksyn 0.11 (mg/L)/hr
kdeg 0.0089 1/hr
kint 0.003 1/hr

5.2 Simulations at different doses

Model simulations were generated with INES at low doses (1.125,
3.75, 11.25, and 37.5 mg) and high doses (112.5, 375, 1125, and 3375
mg), see Figure 5.1. The dose-dependent PK implied by the TMDD
model is here evident. Indeed, while for low doses the PK behavior
appears to be approximately linear, for high doses it is clearly nonlin-
ear.
By comparing, at different doses, the full TMDD model and the one
compartmental linear model, a “threshold dose” representing the de-
marcation line between approximate linear and nonlinear behavior can
be identified. The low and high doses listed above were tested; param-
eters for the one-compartment linear model were selected as V = 3.75
L (as in the TMDD model) and CL = (k10 + kon

ksyn
kdeg

)/V (i.e. approx-

imately 4.22 L/hr). Comparing the model-derived concentration pro-
files, both on the natural and semilogarithmic scale, it can be observed
that for low doses, from 1.125 to 11.25 mg, differences in the two PK
models are visible for small concentrations, and hence more discernible
on the semilogarithmic scale (see Figure 5.2 (a) and (b)). These differ-
ences could be misinterpreted as stochastic dispersion when identifying
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(a) 11.25 mg (b) 37.5 mg

(c) 112.5 mg (d) 375 mg

Figure 5.1: Plots downloaded from INES, representing drug concen-
tration in central compartment in semilogarithmic scale for two low
doses: (a) 11.25 mg, (b) 37.5 mg; and for two high doses: (c) 112.5
mg, (d) 375 mg.
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a noisy dataset, containing only plasmatic data after low dose admin-
istration: in this case, the linear model would probably be considered
the best choice and the TMDD model would be non-identifiable. With
a dose of 37.5 mg, on the natural scale, the linear and nonlinear profiles
appear similar, yet it can be easily observed that the TMDD model
has a slower descent (see Figure 5.2 (c) and (d)). For doses from 112.5
to 3375 mg, the difference is marked: for instance for 112.5 mg, the
nonlinear profile is close to zero at a time greater than 150 hr, while
the one-compartment model becomes null before 15 hr (Figure 5.3).

5.3 Simulations with different

parameters: rough sensitivity

analysis

In order to further explore the model, exploiting the interactivity
of INES, it is possible to perform a rough sensitivity analysis (similar
to the one reported in Chapter 4, Section 4.3), by modifying the order
of magnitude of each parameter (e.g. multiplying or dividing its value
by ten) and observing the possible concentration profile changes. The
doses here considered as reference are 11.25 mg (low) and 1125 mg
(high).
For the low dose, for instance, changing the value of k10 (k10 = 0.015
or k10 = 0.00015 1/hr), it can be observed that the concentration
profile both in natural and semilogarithmic scale does not drastically
change (see e.g. Figure 5.4). For koff , differences are visible only on
the semilogarithmic scale for small concentrations. For kint, changes
in the concentration profile can be observed only when the parameter
is multiplied by ten and the plot is on semilogarithmic scale, for con-
centrations below 10−2 mg/L. For all other parameters, changes are
always discernible for all concentration magnitudes, and for both plot
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(a) 1.125 mg, natural scale (b) 1.125 mg, semilog scale

(c) 37.5 mg, natural scale (d) 37.5 mh, semilog scale

Figure 5.2: Plots downloaded from INES, representing drug concen-
tration in central compartment, obtained from TMDD (blue) and one-
compartment linear models (red), following the low doses of 1.125 mg
(top), or of 37.5 mg (bottom), in natural scale (left) and semilogarith-
mic scale (right).
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(a) (b)

Figure 5.3: Plots downloaded from INES, representing drug concen-
tration in central compartment, obtained from TMDD (blue) and one-
compartment linear models (red), following the high dose of 112.5 mg,
truncated at 15 hr (left) or after 150 hr (right).
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(a) Sensitivity with respect to k10 (b) Sensitivity with respect to ksyn

Figure 5.4: Comparison of drug concentrations obtained with the low
dose (11.25 mg), by changing (a) k10 (multiplied by ten), (b) ksyn
(divided by ten). Plots downloaded from INES.

scales (natural or semilogarithmic; see e.g. ksyn in Figure 5.4).
For the high dose, by increasing kon (i.e., kon = 0.91 1/(mg/L)/hr),

it can be observed that the concentration profiles are only slightly dif-
ferent (differences for concentrations approximately below 10 mg/L,
better visible on semilogarithmic scale, see Figure 5.5). The same
holds for koff and kint, where differences are clearly discernible only
on semilogarithmic scale for concentrations below 1-10 mg/L. For all
other parameters, changes in drug concentration are easily detectable
(see e.g. Figure 5.5).

From this rough sensitivity analysis, it can be inferred that, when
only plasma drug concentration data are available, if only low doses
are studied, it may be difficult to identify k10. This can be explained
considering that at low drug concentrations the target is not satu-
rated, hence the linear clearance pathway and the TMDD-related one
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(a) Sensitivity with respect to kon (b) Sensitivity with respect to kdeg

Figure 5.5: Comparison of drug concentrations obtained with the high
dose (1125 mg), by changing (a) kon (multiplied by ten), (b) kdeg (di-
vided by ten). Plots downloaded from INES.
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are not distinguishable. Furthermore, identifiability issues can rise for
parameters related to binding and complex internalization: kon does
not influence the concentration profile for high doses, while modifica-
tions in koff and kint values do not imply significant PK changes, both
at low and high doses. Obviously, these considerations are valid only
locally, around the reference parameters of Table 5.1, for doses similar
to the ones here considered.
Anyway, these observations may be seen as a confirmation of the com-
plexity of the full TMDD model, both in terms of differences in pro-
cesses time-scale and of over-parametrization.

5.4 Deterministic and stochastic

explorations of significant thresholds

When the initial plasma drug concentration is larger than the en-
dogenous receptor concentration (i.e., R(0) = ksyn

kdeg
' 12.36 mg/L),

the dynamics of the TMDD model results in a characteristic plasma
drug concentration profile. On the semilogarithmic scale, four different
phases are clearly distinguishable [66]: (i) a brief initial phase, where
drug and target rapidly equilibrate; (ii) an apparent linear phase,
where target is saturated and drug is eliminated mainly via a slow
1st order process; (iii) a transition phase, where the target is no longer
saturated and drug is eliminated both linearly and via TMDD; (iv) a
linear terminal phase, where the drug concentration is so low that drug
and drug-target complex elimination is a linear 1st order process. The
target saturation phase (ii) might be of particular interest, as it gives
information about parameters not related to drug-target binding and
internalization (k10, ksyn, kdeg). Under the hypothesis Cp(0) ≥ R(0),
this phase can be assumed to start right after bolus administration
(because of the rapidity of drug and target equilibration), and it ends
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when Cp becomes comparable to the dissociation constant kD, here
' 0.011 mg/L [66]. By plotting the TMDD PK profile together with
a concentration threshold at 10kD (under which Cp and kD are con-
sidered comparable), it is possible to deduce the duration of target
saturation phase.
For the high doses here explored (112.5, 375, 1125, and 3375 mg), the
required hypothesis on Cp(0) is satisfied. For instance, for the 112.5
mg dose, the target saturation phase lasts about 7 days. Hence, in this
case, sufficiently rich data should be collected during the first week of
treatment in order to facilitate the identification of k10, ksyn, and kdeg.
With stochastic simulations, it is also possible to evaluate the impact
of variability on the duration of target saturation phase and, more
generally, on TMDD model-derived plasma drug concentration. A
virtual population composed of 100 patients is built, assuming that
kon, koff , and kint are equal for all individuals, while V , k10, ksyn,
and kdeg display inter-individual variability (IIV) following a lognor-
mal distribution. In particular the latter parameters are supposed to
be uncorrelated. The CV% are equal to 30% and 50%, for V and k10
respectively, while equal to 20% for ksyn and kdeg. Even if IIV has
been included only on four parameters, and with reasonable CV%,
its impact on the duration of target saturation phase is remarkable,
especially for higher doses. For instance, by plotting the 5th, 50th
and 95th percentiles of the plasma drug concentrations observed in
the virtual population taking the dose of 3375 mg, it can be observed
that the duration of target saturation phase can span from about 5
weeks to about four months (Figure 5.6).

INES displays only graphically the impact of variability on model
outcomes in general, and on the achievement of significant thresholds
in particular. A quantitative evaluation corresponds to the computa-
tion of the PTS. PTS is indeed defined as the probability of achieving
specific PK and/or PD thresholds following a particular dosing regi-
men, considering both variability (e.g. IIV) and uncertainty (e.g. due
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Figure 5.6: Drug concentration obtained in the simulated population
administered with 3375 mg (plot downloaded from INES). The three
blue lines represent 5th, 50th and 95th concentration percentiles, while
the horizontal line represents the 10kD threshold.
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to allometric scaling) on model parameters. PTS is usually computed
for a range of doses or for different dosage regimens in order to find the
most convenient (or “successful”), i.e. the one that gives the highest
probability. Following the example presented here, one could compute
PTS e.g. in order to find the dose which maximizes the proportion of
patients achieving Cp = 10kD after a certain time instant.
An additional Shiny application, simply called “PTS app”, was built
specifically for PTS computation; it is briefly discussed in Appendix
B.

5.5 Discussion

During model building and selection, it is important to be aware
of the peculiar characteristics and the weaknesses of the models taken
into consideration, e.g. for which PK or PD features they are usually
indicated, or in which scenarios they are identifiable. In order to have
a good grasp on the model, simulation and identifiability analyses are
highly recommended. Simulations, in particular, represent a valuable
means by which identifiability issues and model peculiarities can be
first detected, e.g. before diving into solving algebraic problems like a
priori identifiability assessment, or setting up MC analyses for a pos-
teriori identifiability evaluation.
Interactive simulation tools provide a starting point for model explo-
ration, allowing to test different scenarios. The achievement of clini-
cally and theoretically significant thresholds, and the impact of ran-
dom variability on model outcomes can be also visually inspected.
INES is taken as an example tool, to show how to implement model ex-
ploration. With its unique and user-friendly graphical interface, this
Shiny application offers a simple way to perform interactive model
simulations. Furthemore, it returns a series of graphical outputs, to-
gether with tables that afford the implementation of possible further
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analyses in other softwares. Of course, INES, as a newly created tool,
still needs further testing and refinement, especially as far as it regards
efficiency in differential equations solving.
In this work, via INES, it was demonstrated how to perform and ex-
ploit exploratory simulation analyses to make inference on the full
TMDD model. In particular, this model was explored through the
following steps: (i) simulations at low and high doses, (ii) (rough) sen-
sitivity analysis, (iii) deterministic and stochastic exploration of sig-
nificant thresholds. These analyses allowed to draw inferences about:
(i) model dose-dependence and nonlinearity, (ii) parameter influence
on possibly measurable model outcomes, (iii) impact of nonlinearity
and variability on model outcomes (and thresholds attainment).
Indeed, by simulating the full TMDD model at different dose levels,
it was made evident that this model is able to replicate the dose-
dependency often observed in mAbs PK. Furthermore, it was noted
that for low doses it could be difficult to discern between a linear and a
nonlinear TMDD-related behavior, especially if only noisy blood data
are available, which is often the case. In this experimental scenario,
through a quick sensitivity analysis, it was possible to detect which
parameters could be practically non identifiable according to the dose
level. By investigating significant thresholds achievement, it could
be inferred in which time intervals it may be important to sample,
in order to identify specific model parameters. Finally, via stochas-
tic simulations, the great impact of random variability (e.g. IIV) on
this nonlinear TMDD model outcomes was observed, e.g. suggest-
ing that, in an actual trial where a mAb is administered to a patient
population, high variations in PK/PD endpoints achievement can be
expected among individuals.
The observations that were made in this chapter are partly dependent
on the parameter and dose level choices; nevertheless the presented
work represents a useful example of exploratory analysis. The infer-
ences obtained from such analysis not only may be used as a basis
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for further investigations but could help establishing whether the full
TMDD model is appropriate for a complete characterization of the
data at hand.
As already mentioned in Chapter 3 (Section 3.2) and as remarked
here, when only blood data are available, the identification of the full
TMDD model may not be a viable choice. Therefore, in this experi-
mental scenario, either approximated or empirical models may repre-
sent valid instruments for mAb PK assessement. This is exemplified
in the next chapter, where both rituximab PK and its interaction with
a small molecule in CLL patients are characterized via an empirical
compartmental model.
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Chapter 6
Application in oncology:
TMDD phenomenon as the
cause of DDIs

When either nonlinear or linear mAb PK needs to be assessed,
especially on sparse and/or poor data, simple and easily identifiable
models are often preferred over more complex mechanistic models (as
the one explored in the previous chapter).
Indeed, in [7], a simple two-compartment model with both linear and
nonlinear elimination was considered for describing rituximab PK in
CLL patients. In the work presented in this chapter, this model was
identified and refined via evaluation of covariate effects using data com-
ing from the HELIOS trial, where CLL patients received rituximab in
combination either with bendamustine and placebo or bendamustine
and ibrutinib.
In Section 6.1, some relevant information about rituximab and ibruti-
nib is reported. Then, in Section 6.2, details about the HELIOS trial
design and assessments are illustrated. In Section 6.3 model build-
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ing methods and results are described, and finally in Section 6.4 a
discussion about the main contributions of this work is presented.

6.1 The drugs: rituximab and ibrutinib

Rituximab is a genetically engineered chimeric murine/human mon-
oclonal IgG1 antibody, directed against the CD20 antigen on the sur-
face of normal and malignant B cells. In particular, in vitro, the Fab
domain binds to the CD20 antigen on B lymphocytes, and the Fc do-
main recruits immune effectors functions to mediate B-cell lysis. It is
currently approved for the treatment of NHL, CLL, and rheumatoid
arthritis [67].
For the treatment of patients with CD20-positive CLL (both previ-
ously treated and untreated), rituximab is indicated in combination
with the chemotherapy fludarabine and cyclophosphamide [67]. How-
ever, most patients eventually experience relapse and may become
refractory to fludarabine-containing regimens. For such patients, rit-
uximab in combination with the alkylating agent bendamustine (BR)
may represent an effective and safe alternative treatment [68, 69].
Ibrutinib, an oral covalent inhibitor of Bruton’s tyrosine kinase (BTK,
a key enzyme in B-cell signaling), is also indicated for the treatment
of patients with B-cell malignancies, such as CLL/Small Lympho-
cytic Lymphoma (SLL) [70]. In this population, single-agent ibru-
tinib has been shown to significantly improve overall survival in both
relapsed/refractory and previously untreated patients [70]. The addi-
tion of ibrutinib to BR (BR-I) was investigated in a phase Ib study
to determine its safety and efficacy in patients with previously treated
CLL: therapy was well tolerated and effective [71].
In a recent phase III study, HELIOS, the efficacy and safety of the
combination BR-I versus BR were assessed in patients with previously
treated relapsed/refractory CLL or SLL [69].
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6.2 The HELIOS trial

HELIOS was a phase III, randomized, placebo-controlled, double
blind study, whose design and main efficacy and safety results have
been published in [69]. Eligible patients were ≥ 18 years, had a diag-
nosis of CLL or SLL, and had relapsed or refractory disease with at
least ≥ 1 previous lines of systemic therapy. Patients with del(17p)
were excluded. Eligible patients were randomly assigned to receive
420 mg ibrutinib (n = 289) or placebo (n = 289) in combination with
6 cycles (28 days per cycle) of bendamustine and rituximab until dis-
ease progression or unacceptable toxicity. The bendamustine IV dose
was 70 mg/m2 on days 2-3 of cycle 1 and days 1-2 of cycles 2-6. The
rituximab IV dose was 375 mg/m2 on day 1 of cycle 1 and 500 mg/m2

on day 1 of cycles 2-6. Infusion durations were typically 30 minutes
for bendamustine and varied based on individual tolerability for rit-
uximab (as per rituximab prescribing information [67]). The study
was performed in accordance with the principles of the Declaration of
Helsinki and the guidelines for Good Clinical Practice.
In the next subsections, details about study assessments (Subsection
6.2.1) and observational PK results (Subsection 6.2.2) are presented.

6.2.1 Study Assessments

Ibrutinib PK samples were collected from all patients at predose,
1, 2, and 4 hours on day 1 of cycles 1 and 2. In a subset of patients
at selected study sites, sparse blood sampling was performed in both
treatment arms for bendamustine and rituximab PK analyses, for the
exploration of PK interactions between the three drugs. Bendamus-
tine PK samples were collected on day 2 of cycles 1 and 2 at predose,
end of infusion, and at 1, 2, and 4 hours. Rituximab PK samples were
collected on days 1 (predose) and 15 of cycle 1, day 1 (predose) of
cycles 2-6, and on day 1 of cycles 7-9 (washout phase) [72, 73].
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The primary efficacy endpoint of HELIOS was progression-free sur-
vival (defined as the interval between the date of randomization and
the date of disease progression or death); for other secondary end-
points, see [69]. Tumor burden was evaluated via computed tomog-
raphy scans at baseline and then every 12 weeks. It was assessed as
sum of the products of the two largest diameters of the selected lesions
(SPD), according to iwCLL 2008 criteria [74]. Treatment with BR-I
led to significant improvements in disease outcomes, including PFS,
overall response, and quality of life, without unexpected or cumulative
toxicities [69].
All adverse events, with the exception of progression of CLL/SLL,
were collected until 30 days following the last dose of study treatment
or until the start of a subsequent systemic antineoplastic therapy, if
earlier. Adverse events reported after 30 days following the last dose
of study treatment were to be reported if considered related to study
treatment. Safety was reported for all randomized patients who re-
ceived ≥ 1 dose of study drug. No relevant differences in safety profile
were observed between the BR-I and BR arms with the increase in
systemic exposure of rituximab.

6.2.2 Observational PK results

Bendamustine and rituximab PK samples were collected only at
selected study sites from 178 patients; 84 and 94 patients from the
placebo and ibrutinib arm, respectively. Demographics and base-
line characteristics were comparable between both treatment arms in
the pharmacokinetic population. The mean dose levels of bendamus-
tine and rituximab were also similar in the placebo (68.9 ± 4.7 and
465.2 ± 65.0 mg/m2, respectively) and ibrutinib arm (68.2 ± 6.3 and
468.1± 55.3 mg/m2, respectively).
Dose-normalized bendamustine (70 mg/m2) and rituximab (500 mg/m2)
concentration-time data were stratified by treatment to evaluate the
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effect of ibrutinib on the PK of bendamustine and rituximab. For
bendamustine, they were comparable in the two treatment arms, indi-
cating that ibrutinib did not alter bendamustine PK [72]. Conversely,
systemic exposure of rituximab was higher in patients coadministered
with ibrutinib than in patients who received placebo. Mean predose
serum concentrations were 2- to 3-fold higher in the first three cycles
and 1.2- to 1.7-fold higher in subsequent cycles (Figure 6.1) [72, 73].

It was hypothesized that this difference in rituximab exposure may
be linked to TMDD. As reported in previous works [7, 75, 76], ritux-
imab PK appear to be nonlinear, probably mainly because of TMDD,
where CD20-positive B cells represent the pharmacological target.
This would explain the dose-dependence of rituximab PK: the number
of target cells is decreased by the treatment and, in turn, influences
rituximab disposition and elimination [31]. Furthermore, circulating
drug levels have been shown to be affected by tumor burden in an
inversely proportional way: clinical studies have demonstrated that
a high tumor burden is associated with low rituximab serum levels
[37, 76, 77, 78]. This is because the tumor cells act as a sink for the
antibody, adsorbing rituximab via CD20 binding and inducing target
mediated elimination.
Ibrutinib is a drug characterized by a fast clinical response [79, 80];
since this is believed to happen via B-cells depletion, rituximab TMDD-
related clearance should be lower when the BTK inhibitor is given.
The aim of the work presented in this chapter is to explore the valid-
ity of this hypothesis and describe the observed PK interaction using
a NLME modeling approach.
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Figure 6.1: Log-transformed rituximab serum concentrations vs time,
normalized to the dose of 500 mg/m2, in subjects co-administered with
placebo (white boxes) or ibrutinib (red boxes) in the HELIOS study.
The extremes of the boxes identify the 25th and 75th concentration
percentiles for each cycle; the horizontal lines in the boxes represent
medians; the whiskers extend till ±1.5 IQR (Inter Quartile Range);
outliers are represented as open circles. At the bottom: n refers to the
number of samples analyzed at each cycle (black for placebo arm, red
for ibrutinib arm).
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6.3 Model building

In order to describe the observed change in rituximab exposure
according to the treatment arm, and to demonstrate that the amount
of target plays an important role in this phenomenon, both rituximab
PK data and tumor burden assessments (SPD) were needed. In the
HELIOS study, non-missing values for rituximab serum concentrations
were reported only for 157 patients out of 178 (71 for BR arm, 86 for
BR-I arm). SPD instead was assessed in 156 patients, but only 149
had more than two measurements (one of which at baseline). By in-
tersecting the two subsets, only 147 remained available for analysis, 70
for the BR arm and 77 for the BR-I arm. Demographics and baseline
characteristics of this subset are reported in Table 6.1.
In the next subsection (Subsection 6.3.1) the steps and the approaches
employed for model building are described. Then, results of this pro-
cedure are presented and validated (Subsection 6.3.2).

6.3.1 Methods

Population rituximab PK was assessed using NLME modeling im-
plemented in NONMEM version 7.1.0 (first-order conditional estima-
tion [FOCE] method). A published model for rituximab PK in CLL
patients was used as basis [7]. As serum concentration-time relation-
ship displayed bi-exponential decay and time-dependent PK was ob-
served in the selected population, in [7] a 2-compartment model com-
prising a time-varying clearance component was selected. The model
(Figure 6.2) was parameterized in terms of: (i) a constant clearance
term related to endogenous catabolic processes of IgG (CL1), (ii) a
time-varying clearance term related to the decrease in capacity of the
target mediated clearance pathway, expressed as a decreasing expo-
nential (CL20 exp(−kdest)), (iii) apparent volumes of distribution in
the central and peripheral compartments (V1 and V2), and (iv) inter-
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Table 6.1: Characteristics of the 147 patients with both rituximab PK
data and SPD assessments.

BR (n=70) BR-I (n=77)
Number of rituximab
PK observations

562 612

Number of SPD obser-
vations

381 476

Male patients, n (%) 45 (64.3) 46 (59.7)
Female patients, n (%) 25 (35.7) 31 (40.3)
Median age (range),
yrs

61 (36-83) 61 (40-82)

Median body weight
(range), kg

78.35 (45-130) 82.75 (52.5-125.4)∗

Median CRCL
(range), mL/min

82.8 (47.0-197.3) 91.5 (43.8-207.3)∗

Median TB (range),
µmol/L

10.5 (3.42-36.3) 10.6 (3.42-28.4)

Median ALT (range),
U/L

21 (4.3-101.7) 22 (9-75)

Median AST (range),
U/L

23.15 (10-67) 23 (5-57.1)

BR = bendamustine and rituximab; I=ibrutinib; SPD=Sum of the Products
of the largest Diameters; CRCL=Creatinine Clearance; TB=Total Bilirubin;
ALT=alanine transaminase; AST=aspartate transaminase; *Data missing for 1
subject.
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IV infusion 

Figure 6.2: Base model for rituximab PK [7].

compartmental clearance (Q).
No covariate analysis was performed in [7] because of the limited

number of patients in the available study. Here, the PK model was
applied and refined via evaluation of covariate effects (see Figure 6.3),
using the data coming from the patients depicted in Table 6.1. More
in detail, model parameters were initialized equal to the estimates ob-
tained in [7]; inter-compartmental clearance Q and volume of periph-
eral compartment V2 were kept fixed and without IIV, as essentially
only Ctrough data were available from the HELIOS study. Volume of
distribution in the central compartment V1, instead, was not fixed, but
its IIV was negligible and hence removed from the model.
Inclusion of sex as categorical covariate was investigated, as it is often
reported as significant for rituximab clearance or volume of distribu-
tion [81]. As weight is correlated with sex, it was also tested as a con-
tinuous covariate. Furthermore, in order to characterize the observed
PK differences in the two study arms, the influence of treatment arm
was explored via the inclusion of a categorical covariate. It is hypoth-
esized that the difference in exposure between the BR and BR-I arms
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Figure 6.3: Scheme of model building methods.
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observed in HELIOS study is due, at least in part, to TMDD, as B
cells are targeted by rituximab and depleted by ibrutinib. For this
reason, tumor burden (measured as SPD) was evaluated as meaning-
ful covariate, considering the effects of both baseline value (continuous
constant covariate) and of the entire time-dependent profile (continu-
ous time-varying covariate).
Constant (both categorical and continuous) covariate analysis was per-
formed with the full model approach, based on clinical significance and
estimates precision [82]. According to this approach, the relationships
between covariates and parameters, to be included in the full model,
are selected based on known pharmacological information and plau-
sibility. After simultaneous identification of these relationships, their
meaningfulness is inferred from parameter estimates and their CIs.
Here, only sex and weight influences were tested on CL1: as this pa-
rameter represents endogenous clearance, neither treatment arm nor
baseline SPD effect should be meaningful. On CL20 instead, all four
constant covariates were tested for inclusion, while on kdes only the in-
fluence of treatment and baseline SPD (treatment- and disease-related
covariates) was evaluated. No constant covariates were tested on V1,
V2 and Q, as they do not have IIV.
Once the full covariate model was built and identified, and the non-
significant constant covariates were removed, the influence of time-
varying SPD, on total clearance (CL) and on volume of distribution
in the central compartment (V1), was investigated. The entire time-
dependent SPD profile was obtained via linear interpolation of the PD
data (Figure 6.4). Categorical covariates were included as flags for
PK parameters, while continuous covariates, both constant and time-
varying, were tested via power models. In particular, time-varying
SPD values were normalized via median baseline (4567.2 mm2), and
the power model was tested via the inclusion as an additive term on
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Figure 6.4: Linear interpolation (black lines) of individual SPD data
(red dots). As an example, ten subjects from each treatment arm are
depicted; BR arm on the left, and BR-I on the right.
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total clearance and as a substitute for the constant term on volume:

CL = CL1 + CL20 exp (−kdest) + CL2P

(
SPD
4567.2

)pow
V1 = V10

(
SPD
4567.2

)γV
Parameters with IIV were assumed to be lognormally distributed in
the population. Residual error on PK observations was included with
an additive model, using the logarithm-both-sides approach.
Model diagnostics were obtained via Pirana 2.9.5b and R version 3.2.4;
the R software was used also for the realization of model plots.

6.3.2 Results

From the estimation of the full covariate model, sex and weight re-
sulted to be significant on endogenous clearance (CL1), as well as treat-
ment on time-varying clearance decay (kdes). Indeed, CIs for CL1 in
males (M) and females (F) were respectively 9.35÷12.2 and 6.85÷9.69
(mL/hr), while the exponent of the power model for weight inclusion
on CL1 had CI equal to 0.051 ÷ 0.977 and was estimated as approx-
imately 0.5. CIs for kdes in patients treated with BR or BR-I com-
bination were, respectively, 0.000755 ÷ 0.00203 and 0.00857 ÷ 0.0308
(1/hr).
As far as CL20 is concerned, the CIs in males and females, treated
either with ibrutinib or placebo co-administration were overlapping
(54.5÷96.9 for F+BR, 35.4÷123.2 for F+BR-I, 57.3÷75.7 for M+BR,
45.4, 84.6 for M+BR-I, in mL/hr). Furthermore, the CI of the expo-
nent of the power model for baseline SPD effect on CL20 included
the value zero (−0.099 ÷ 0.265). Exponents of the power models for
weight inclusion on CL20 and for baseline SPD inclusion on kdes were
estimated to be close to zero.
The model including only the significant constant covariates was fur-
ther refined by testing the inclusion of SPD as a continuous time-
varying covariate on total clearance (CL) and volume of distribution
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in the central compartment (V1). The inclusion of SPD on CL pro-
vided a better fit (see Figures 6.5, 6.6, 6.7), while its inclusion on V1
led to model over-parameterization and was not considered relevant as
the exponent of the power model was small (with magnitude 10−2).

Hence, the final structure of the mixed effects model is represented
by the following equations:

CL1TV
= (SEXCL1F + (1− SEX)CL1M )

(
WT

80.1

)γWT

kdesTV
= (1− IBR)kdesBR

+ IBRkdesBR−I

CL = CL1 + CL20exp(−kdest) + CL2P

(
SPD

4567.2

)pow
dA1

dt
= −A1

Q

V1
− A1

CL

V1
+ A2

Q

V2
dA2

dt
= A1

Q

V1
− A2

Q

V2

SEX is a flag variable equal to 1 for F and 0 for M; CL1F and CL1M are
CL1 for females and males, respectively. Similarly, IBR is a flag for
ibrutinib administration (equal to 1 if co-administered, 0 otherwise);
kdesBR

and kdesBR−I
are kdes values for the placebo and ibrutinib treat-

ment arm, respectively. Finally, WT represents the individual weight
(normalized by the median, 80.1 kg), and SPD is the time-varying
tumor burden (with median baseline 4567.2 mm2). Final model pa-
rameter estimates are reported in Table 6.2.
The declining exponential clearance term was included in rituximab

PK model [7] as an empirical strategy to render target mediated clear-
ance: the addition of the SPD-related term could make it unnecessary,
as SPD is related to tumor burden and hence rituximab target. For
this reason, also an alternative version of the final model, where the ex-
ponential term is removed from the expression of total clearance, was
fitted to rituximab serum concentration data. Such a model provided
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6. Application in oncology: TMDD and DDIs
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6.3. Model building
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6. Application in oncology: TMDD and DDIs

Table 6.2: Final model parameter estimates and precisions (expressed
as CV%).

Parameter Estimate CV%
CL1 for F (mL/hr) 5.85 15%
CL1 for M (mL/hr) 8.37 14%
γWT 0.73 10%
V1 (mL) 8510 10%
Q (mL/hr) 47.9 FIX
V2 (mL) 2320 FIX
kdes for BR arm (1/hr) 0.00146 20%
kdes for BR-I arm (1/hr) 0.0261 35%
CL20 (mL/hr) 67.4 11%
CL2P (mL/hr) 3.94 39%
pow 0.431 18%
IIV on CL1 (ωCL1) 0.165 39%
IIV on V1 (ωV1) 0 FIX
IIV on kdes (ωkdes) 2.3 30%
IIV on CL20 (ωCL20

) 0.146 46%
IIV on CL2P (ωCL2P

) 1.11 56%

RV (σadd) 0.165 19%
F=females; M=males; FIX=fixed parameter; BR=bendamustine and rituximab;
I=ibrutinib; IIV=inter-individual variability; RV=residual variability; ω=variance
of parameter IIV term; σ=variance of residual variability term.
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6.4. Discussion

an increase in objective function of more than 500 points with respect
to the model including all clearance terms. This indicated that the
inclusion of SPD alone is not able to explain well the observed data.

6.4 Discussion

Herein, a model for rituximab PK was developed, based on the data
from CLL patients enrolled in the HELIOS trial, co-administered with
bendamustine and either ibrutinib or placebo. The main objective was
to determine whether the difference in rituximab exposure observed
in the BR and BR-I arms of the study, demonstrating an interaction
between ibrutinib and the mAb, is due to TMDD.
Here, the amount of target influencing mAb disposition was not truly
quantified: no measurements of B-cell counts were available. Never-
theless, tumor burden should be proportional to the amount of CD20-
positive B cells; here SPD assessments were available.
Hence, besides sex, weight and treatment arm, which were found clin-
ically significant, baseline and time-varying SPD were explored as po-
tential covariates, to explore the influence of the amount of target on
rituximab PK. In the end, baseline SPD was not found to be clini-
cally significant, while the inclusion of the time-varying covariate on
rituximab total clearance provided a better model fit. Final model pa-
rameters (Table 6.2) appear in agreement with those reported in [7],
with the exception of the more rapid kdes in the BR-I arm. Indeed,
when tumor burden effect was included in rituximab PK model, the
influence of treatment on rituximab exposure was reflected only by a
different decay rate in clearance. Patients administered with placebo
display a slower clearance decay with respect to patients administered
with ibrutinib. This is in agreement with the observed data (Figure
6.1), and with the hypothesis that the difference in exposures between
the two treatment arms is due to ibrutinib-related target depletion,
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6. Application in oncology: TMDD and DDIs

which contributes to the decrease in target mediated clearance.
Tumor burden was already identified (together with baseline CD19) as
statistically significant covariate (affecting CL20 and kdes) in the base
PK model by Li et al [7] applied to NHL patients data [83]. Simi-
larly, pretreatment tumor size was inversely correlated with exposure
in Japanese NHL patients [84], and, recently, rituximab clearance was
related to CD20 antigen count at baseline in CLL patients [85]. The
tumor burden influence on rituximab exposure and response has also
been confirmed in a mouse study [86].
Target mediated clearance was here expressed as sum of exponential
and power model terms: it is noteworthy that the inclusion of an
SPD-dependent term on total clearance did not permit to remove the
empirical exponential term. This indicates that SPD alone is not able
to fully explain the change in rituximab clearance during treatment;
this observation was reported also in a similar work on another target
mediated compound [87]. As SPD may not fully represent the overall
tumor burden and/or B-cell count (i.e. rituximab target), such con-
clusion is not unexpected.
A limitation of the modeling assessment here reported was related
to the sparse characterization of rituximab PK, which essentially in-
cluded only trough concentrations. In addition, the developed PK
model for rituximab may not be generally applicable as longitudinal
measurements of tumor size (e.g. SPD) are not always available. Fur-
thermore, the model here described is to some degree empirical. Addi-
tional data (e.g., PK, BTK occupancy, B-cell measurements, etc.) and
further modeling work may be needed to have a fully mechanistic rep-
resentation that further elucidates rituximab disposition, for instance
employing a “true” TMDD model (e.g. full or QSS) or including a PD
model for SPD progression. Moreover, the clinical significance of the
presented findings needs additional exploration.
Although based on an empirical model and sparse data, the work pre-
sented in this chapter provided some mechanistic insight into ritux-
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imab PK: it was made evident that TMDD plays a role in rituximab
PK and that this phenomenon is at the basis of the observed interac-
tion with ibrutinib.
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Chapter 7
Conclusions

Therapeutic antibodies display peculiar PK features, different from
those of small-molecule drugs [29]; the disposition of the majority of
mAbs is, at least in part, target mediated. In order to capture the
nonlinearity frequently observed in mAbs PK, numerous models have
been proposed: (minimal) PBPK, mechanistic (e.g. explicitly includ-
ing TMDD), and two-compartmental (with linear and/or nonlinear
elimination).
The open challenges addressed in this thesis were to explore and
deepen the understanding of mAbs PK and of the mathematical mod-
els usually employed to characterize its main features (e.g. nonlinear-
ity), from the more complex ones, such as integrated mPBPK-TMDD
models, to the simpler empirical compartmental ones.
In the following, the conclusions and the main contributions of the
thesis are discussed.

Overall, this thesis represents an advancement in the understand-
ing of the PK behavior of mAbs. Some mechanistic models were in-
vestigated, with a special focus on identifiability, to establish whether
or not they can be used to characterize mAb PK, depending on the
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experimental scenario. Furthermore, via an empirical model it was
proved, for a specific mAb, that TMDD is involved in its PK pro-
cesses and is the cause of an interaction with a small molecule.
More in detail, the integration of mPBPK and four different TMDD
models has been considered and studied in depth, assuming that bind-
ing occurs in leaky tissues (Chapter 4). Four integrated models were
built, incorporating into the mPBPK model the full TMDD model
(full mPBPK-TMDD model), and three approximations based on QSS
assumptions (model A, B and C). The four mPBPK-TMDD models
have been analysed via simulation and sensitivity analyses, and in
particular their identifiability has been assessed. It was analytically
demonstrated whether and when the integrated models are a priori
identifiable (except model C). Furthermore, it was observed that all
four models display practical identifiability issues, and two possible
solutions were proposed: the collection of target concentration data in
tissue, and the evaluation of an additional high dose. Despite mPBPK-
TMDD models may be key in mAbs discovery and development, by
virtue of their mechanistic and physiological grounding, practical iden-
tifiability issues should be taken into account, especially when the use
of rich experimental designs is not feasible.
Identifiability issues can be first detected via exploratory simulation
analysis. This was shown using as a case study the full TMDD model,
with the aid of the newly developed interactive tool INES (Chapter 5).
Dose-dependence, influence of model parameters on measurable out-
comes, and impact of random variability were investigated via deter-
ministic and stochastic simulations, confirming the known complexity
and identifiability issues of the model. This work demonstrated that a
simple exploratory simulation analysis may provide important consid-
erations, useful for further investigations, for having a good grasp on
the model’s peculiarities and weaknesses, and for establishing whether
the model taken into account is appropriate for a complete character-
ization of the data at hand.
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When the data are poor in information, it is often found that simpler
models are needed to describe mAb PK. For instance, rituximab PK in
CLL patients was first described via an empirical two-compartmental
model with nonlinear and linear elimination [7], which was here refined
via covariate inclusion. The relationship between rituximab serum lev-
els and tumor burden (considered as a surrogate of target amount),
already observed in [37, 77, 78], was here confirmed, giving further
proof that rituximab PK is, at least in part, target mediated. Fur-
thermore, the hypothesis that the interaction between rituximab and
ibrutinib is due to rituximab TMDD was validated: the tumor bur-
den seems to play a role in the change in clearance (and, hence, in
exposure) of rituximab when ibrutinib is co-administered.

From a methodological point of view, it can be observed that, in
the development of the thesis, different research objectives and models
with a diverse degree of complexity have been discussed. The present
investigation focused not only on theoretical aspects, such as sensi-
tivity, identifiability and simulation analyses, but also practical ones,
i.e. the identification of a model from real data. Accordingly, the
models under study ranged from mechanistically grounded ones (ei-
ther complex models integrating a mPBPK and a TMDD component,
or simpler models considering only the TMDD phenomenon), to more
empirical ones, well suited for identification purposes. These levels
of description reflect the necessity of matching the complexity of the
model with the research objective. When the research objective is
more theoretical, more complex models can be employed; in this case,
parameters may be obtained from physiological knowledge and/or pre-
vious publications. Instead, when the research objective is more prac-
tical, simpler models should be taken into consideration. This thesis
has demonstrated that it is important to theoretically and/or graphi-
cally explore the model under exam before using it, either for simula-
tion of new scenarios or identification on real data.
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From the experimental and pharmacological point of view, this the-
sis provides considerations on models a priori and a posteriori iden-
tifiability, that can influence future study designs, e.g. the selection
of the number and the level of doses to be tested, or the choice of
additional measurements to be collected. An appropriately designed
study, together with the application of a mechanistic model, could
lead to a deeper physiological understanding of mAb PK processes.
Furthermore, also the conclusions drawn for the case study of ritux-
imab not only could inform possible future trials related to this mAb,
but also suggest the testing of the TMDD and DDI hypotheses also in
other contexts, where the underlying mechanisms of action are similar
(other mAbs, other co-administrations, other diseases).

In conclusion, in this thesis, methods for exploring, building and
refining mathematical models for mAb PK including TMDD were il-
lustrated. The application of these methods is important to gain con-
fidence with the model under exam, explore possible alternative study
designs, and gain a deeper understanding of mAb PK processes.
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Appendix A
Appendix to Chapter 4

A.1 A priori identifiability

A.1.1 Theory

A priori (structural) identifiability is a property of a nonlinear sys-
tem based on its mathematical structure; it concerns the possibility
to determine the parameters of the model (at least for suitable input
functions) assuming that all observable variables are error-free [88].
Suppose that the system is represented as:{

dx
dt

= f(x(t), p) +G(x(t), p)u(t)
y(t) = h(x(t), u(t), p)

(A.1)

where x is the n−dimensional state variable (e.g. concentration of drug
in compartments), u is the m−dimensional input vector (e.g. an i.v.
infusion), y is the r−dimensional output (e.g. measurable plasmatic
drug concentration); p ∈ P is the q−dimensional parameter vector.
Then it is possible to provide the following technical definition (as
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found in [88]):
Definition: Let y = φ(p, u) be the input-output map of the system in
Equation A.1. Such system is said to be a priori globally identifiable
if and only if, for at least a generic set of points p∗ ∈ P , the equation

φ(p∗, u) = φ(p, u) (A.2)

has only one solution p∗ = p for at least one input function u; the
system is locally identifiable if and only if, for at least a generic set of
points p∗ ∈ P , Equation A.2 has more than one, but at most a finite
number of solutions, for all input functions u; the system is noniden-
tifiable if, for at least a generic set of points p∗ ∈ P , the equation has
an infinite number of solutions for all input functions u.

A.1.2 Evaluation via Mathematica- Rationalized
equations

The software tool Mathematica, with its IdentiabilityAnalysis pack-
age, was chosen to explore the local a priori identifiability of the
four mPBPK-TMDD models presented in Chapter 4. Recalling that
the method implemented in the IdentiabilityAnalysis package requires
model equations to be rational, rationalized equations for model A
and B are here reported.

Rationalized equations for model A. Adding a dummy variable xA
defined as:

xA =
√

(Cleakytotal − kss −Rleakytotal)
2 + 4kssCleakytotal ,

from Equations 4.4 and 4.5, the rationalized equations for model A
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A.1. A priori identifiability

are obtained:

Cp = Ap/Vp
dAp
dt

= In(t) + ClymphL− CpL1(1− σ1)− CpL2(1− σ2)
−CpCLp

dCtight
dt

=
1

Vtight
[L1(1− σ1)Cp − L1(1− σL)Ctight]

dCleakytotal
dt

=
1

Vleaky
[L2(1− σ2)Cp −

1

2
L2(1− σL)(Cleakytotal − kss

−Rleakytotal + xA)]− kintCRleaky

dRleakytotal

dt
= ksyn − kdegRleakytotal − (kdeg − kint)CRleaky

dClymph
dt

=
1

Vlymph
[L1(1− σL)Ctight +

1

2
L2(1− σL)(Cleakytotal − kss

−Rleakytotal + xA)− ClymphL]

dxA
dt

=
1

2xA
[2Cleakytotal(

1

Vleaky
(CpL2(1− σ2)−

1

2
(Cleakytotal

−kss −Rleakytotal + xA)L2(1− σL))− kintCRleaky

+2Rleakytotal(ksyn − kdegRleakytotal

+(kdeg − kint)CRleaky − 2kss(
1

Vleaky
(CpL2(1− σ2)

−1

2
(Cleakytotal − kss−Rleakytotal + xA)L2(1− σL))

−kintCRleaky − 2Cleakytotal(ksyn − kdegRleakytotal

+(kdeg − kint)CRleaky − 2Rleakytotal(
1

Vleaky
(CpL2(1− σ2)

−1

2
(Cleakytotal − kss −Rleakytotal + xA)L2(1− σL))

−kintCRleaky + 2kss(ksyn − kdegRleakytotal

+(kdeg − kint)CRleaky)]
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where

CRleaky =
1

2
Rleakytotal

Cleakytotal − kss −Rleakytotal + xA
kss + 1

2
(Cleakytotal − kss −Rleakytotal + xA)

The notations are as in Chapter 4, Section 4.2. Initial conditions
are: Cp(0) = Ctight(0) = Cleakytotal(0) = Clymph(0) = 0, Rleakytotal =
ksyn/kdeg, and xA(0) = −kss − ksyn/kdeg.

Rationalized equations for model B. Similarly, for model B, the dummy
variable xB is introduced:

xB =
√

(ksskdeg − kintCleakytotal + ksyn)2 − 4kint(−ksskdegCleakytotal),

and the following rationalized equations are derived from Equations
4.6 and 4.7:

Cp = Ap/Vp
dAp
dt

= In(t) + ClymphL− CpL1(1− σ1)− CpL2(1− σ2)
−CpCLp

dCtight
dt

=
1

Vtight
[L1(1− σ1)Cp − L1(1− σL)Ctight]

dCleakytotal
dt

=
1

Vleaky
[L2(1− σ2)Cp −

L2

2kint
(1− σL)(−ksskdeg

+kintCleakytotal − ksyn + xB)]− kintCRleaky

dClymph
dt

=
1

Vlymph
[L1(1− σL)Ctight +

L2

2kint
(1− σL)(−ksskdeg

+kintCleakytotal − ksyn + xB)− ClymphL]
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A.2. A posteriori identifiability

dxB
dt

=
1

2xB
[2k2intCleakytotal(

1

Vleaky
(CpL2(1− σ2)

− L2

2kint
(1− σL)(−ksskdeg + kintCleakytotal − ksyn

+xB))− kintCRleaky) + 2kintksskdeg(
1

Vleaky
(CpL2(1− σ2)

− L2

2kint
(1− σL)(−ksskdeg + kintCleakytotal − ksyn + xB))

−kintCRleaky)− 2kintksyn(
1

Vleaky
(CpL2(1− σ2)

− L2

2kint
(1− σL)(−ksskdeg + kintCleakytotal − ksyn + xB))

−kintCRleaky)]

where

CRleaky =
ksyn(−ksskdeg + kintCleakytotal − ksyn + xB)

kint(ksskdeg + kintCleakytotal − ksyn + xB)

Notations and initial conditions are again as in Chapter 4, Section 4.2;
furthermore, xB(0) = ksskdeg + ksyn.

A.2 A posteriori identifiability

A.2.1 Theory

The notion of a posteriori (practical) identifiability refers to the
quantity and quality of the collected data, i.e. their informativeness
[89, 90]. Observed data are actually discrete and noisy, so that Equa-
tion A.1 is replaced by{

dx
dt

= f(x(t), p) +G(x(t), p)u(t)
y(tk) = h(x(tk), u(tk), p) + ek, k = 1, . . . , n

(A.3)
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where e ∼ N (0,Σ), e = [e1, . . . , en]T . Letting y = [y(t1), . . . , y(tn)]T ,
it follows also that y = φ(p, u) + e, where u = [u(t1), . . . , u(tn)]T , and
φ is the input-output map defined in Section A.1. Hence the observed
data y(tk) are realizations of random variables, implying that the same
holds for parameter estimates p̂ [90]. For this reason, true values of
the parameters cannot be requested to be uniquely determined from
the observed data; instead, the practical identifiability requirement
applies to the confidence region of their estimates, which has to be
bounded.
The FIM I(p) accounts for the effect on the variance of the param-
eter estimate of measurement error e and sensitivities of predicted
responses to model parameters at all sampling times [57]:

I(p) = E

[(
∂`(y; p)

∂p

)2
]

(A.4)

where `(y; p) is the natural logarithm of the likelihood function.
Under regularity assumptions [91], I(p) is linked to C = V ar(p̂) by
the Cramér-Rao inequality:

C ≥ I(p)−1. (A.5)

The FIM I(p) is strictly connected to the notion of a posteriori iden-
tifiability. More precisely, a statistical model is said to be a posteriori
identifiable if its associated I(p) has full rank [57].
Given an estimate p̂ of the parameter vector p the FIM can be esti-
mated as:

Î(p̂) = S(p̂)TΣ−1S(p̂), (A.6)

where S(p̂) = ∂φ(p̂, u)/∂p is the sensivity matrix, and Σ is the covari-
ance matrix for residual error.
In the context of a posteriori identifiability analysis, the role of the
FIM is twofold. Its rank can be checked to assess the sharp fulfill-
ment of the a posteriori identifiability condition. Furthermore, even
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A.2. A posteriori identifiability

when it has full rank, it is worth inspecting its singular values in order
to assess the size of the confidence region, given that a (formally) a
posteriori identifiable model may still give rise to extremely unreliable
estimates.
In practice, due to the need to resort to the estimate in Equation
A.6 and numerical uncertainties, it may be difficult to unambigously
ascertain the full rank condition [57], so that the condition number
becomes a natural surrogate measure for identifiability. The condition
number of a matrix is the ratio of the largest to the smallest of its
singular values. When it is large, the multivariate confidence ellipsoid
of parameter estimates is strongly elongated in at least one direction
[90].
In the context of a simulation study like the one presented in Chap-
ter 4, the information coming from the FIM can be complemented
with a MC study (see Subsection 4.4.2). MC simulation based on the
true model is used to gain information about the reliability of each
parameter estimate. In particular, the MC procedure can be used to
evaluate:

� boxplot and outliers, to assess shape and dispersion of estimate
univariate distributions

� sample variance and confidence intervals, to quantify the disper-
sion of the empirical distributions

� bias and RMSE, to consider the difference between the expected
value of the univariate distributions and the true value of the
parameter

� CV% and δ (as defined in Subsection 4.4.2) to assess the disper-
sion of parameter estimates relative to expected and true value.

Fitting quality can also be graphically explored via:
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� concentration profiles over time, to display the predictive perfor-
mance of the mPBPK-TMDD models with the estimated sets of
parameters

� CWRES against time and dependent variable, together with
GOF plots, to evaluate the capability of the model to match
the data

� PPs, to evaluate the distribution of predicted concentration pro-
files based on the distribution of parameter estimates.

A.2.2 Evaluation via R and NONMEM

R version 3.1.2 was used both for computing the condition number
of the FIM (for all a priori identifiable mPBPK-TMDD models and
scenarios) and for the MC procedure, as reported in Chapter 4. The
ODEs of the mPBPK-TMDD models were solved using the deSolve
package. The model parameters were then estimated with NONMEM
version 7.3, with the FOCE method, initializing the algorithm with a
parameter perturbation of ±15% from the real values. The creation
and the execution of the control stream files were automated via suit-
ably written batch files. As far as running times are concerned, NON-
MEM 7.3 could fit a “100 runs block” in 1 to 13 minutes, depending
on the fitted model and the number of measurable outputs considered,
on a PC with Intel(R) Core(TM) i7 processor, at 2.40 GHz. R was
also used for the output analysis of the estimation processes.
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A.3 Optimal design

A.3.1 Theory

Optimal design aims at establishing the experiment design which
guarantees the “best” identification of nonlinear mixed effects model
parameters. Optimization methods based on the FIM I(p) have been
developed: according to the Cramér-Rao inequality, the inverse of I(p)
is the lower bound of the variance-covariance matrix of any unbiased
estimator of the parameters (see Equation A.5). The “best” identifi-
cation of the parameters is obtained when their confidence region is
as small as possible: following the D-optimality criterion, this can be
achieved by minimizing the determinant of the inverse of the FIM [63].
From the square roots of the diagonal elements of the inverse of I(p),
the predicted standard errors (SE) for estimated parameters can be
calculated.

A.3.2 Evaluation via PFIM

The software tool PFIM optimizes population design using the D-
optimal criterion; it was here employed for applying optimal design to
the mPBPK-TMDD models that resulted a priori identifiable.
For each model, the objective was to find a vector of optimal sam-
pling times for both dose levels (1 and 5 mg/kg), for each possible
measurable output. The population FIM was selected (FIM=“P”);
the variances of the IIV terms had to be fixed to a value close to,
but different from, zero in the optimization phase. After the opti-
mization, an evaluation of the optimal design(s) with all the variances
equal to zero was performed to obtain the correct criterion (equal to
det(FIM)1/np , where np is the number of parameters). Furthermore,
the block diagonal FIM was computed, as no dependence of intraindi-
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vidual variability on fixed effects was considered. Since it was required
to obtain 21 optimal sampling time points for plasmatic antibody con-
centration, and 4 for peripheric antibody and target concentration, the
optimization was performed separately for each output, exploiting the
Fedorov-Wynn algorithm [92].
Optimal sampling times have to be selected from a user-specified grid,
that must include the instants of the initial schedule. The additional
time instants to be inserted in the grid can be chosen through a graph-
ical inspection of the sensitivities, i.e. the derivatives of the mea-
surable output with respect to the parameters as functions of time.
Here, a grid of 27 and 20 time points was built respectively for plas-
matic concentration and for peripheric antibody and target concen-
tration. PFIM performance times were around 5 hours and a half for
plasmatic concentration sampling optimization, and approximately 5
minutes for peripheric concentrations sampling optimization, on a PC
with Intel(R) Core(TM) i5 processor, at 2.67 GHz.

126



Appendix B
Appendix to Chapter 5

B.1 INES: a tool for exploring

mathematical models

INES is a Shiny application developed within this thesis project.
It is based on R code and its structure consists of two main R files:

� server.R, i.e. the processing code of the application,

� ui.R, with the instructions for building the user interface.

B.1.1 server.R

From the processing code file, server.R, other R functions are called,
contributing to the functioning of the app (see Figure B.1). In fact, the
PK and PD models, fundamental elements of INES, are written as sep-
arate R functions, contained in two distinct folders, which are referred
to as PK and PD repositories. In order to keep track of measurement
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units and avoid conversion mistakes, an additional R function for mea-
surement units computation is provided.

Each PK and PD model function takes as input the model param-
eters and the simulation time instants in which the output has to be
computed. PK models require also the dosing schedule to be selected;
the main output is drug concentration in the central compartment over
time. PD models require as additional input the PK output; the PD
output is drug effect over time. The models that are included in the
PK repository are:

� one-compartment linear model;

� one-compartment model with MM elimination;

� one-compartment linear model where the volume of distribution
(V ) is dependent on the dose (D), according to:

V = V0 exp (−slopeD);

� two-compartment linear model;

� full TMDD model [4], without peripheral compartment.

They can all be implemented either with a 0th order input (e.g. IV
bolus) or 1st order input (e.g. oral administration).
The models included in the PD repository are:

� direct linear or loglinear model

� Hill model for inhibition or stimulation

� indirect response models [93, 94]

� Claret tumor growth inhibition model [95].
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Figure B.1: Conceptual scheme of INES workflow as implemented in
the processing code file.
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First of all, the user is required to select the fundamental measure-
ment units, i.e. amount, volume, and time units, which will be used
by the app to compute all the derived ones (e.g., concentration unit
as amount over volume units).
Then, models contained in the two repositories can be simulated,
either deterministically or stochastically. Deterministic pharmacoki-
netic simulations can be performed by setting:

� the desired PK model;

� appropriate parameters values;

� the dosing schedule;

� simulation time instants.

In particular, the dosing schedule is allowed to be quite flexible: dif-
ferent dosing regimens can be superimposed (e.g. a dose of 10 mg/kg
on the first day, then 5 mg/kg for the next 5 days). After a determin-
istic PK simulation, deterministic PD simulations can be performed,
by setting:

� the desired PD model; and

� appropriate PD parameters values.

The outputs that are generated by INES after deterministic model
simulations are: (i) modifiable plots of concentration vs time, effect vs
time, effect vs concentration; (ii) tables summing up model parameters
together with their measurement units, dosing schedule (only for PK
table), simulation time instants and simulated concentration or effect.
Stochastic simulations can be performed with the additional selection
of a probabilistic distribution for each model parameter. The user can
choose between a normal distribution, i.e. the parameter is expressed
as θ + η, or lognormal, i.e. the parameter is θ exp η, where θ is the
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typical value and η ∼ N (0, ω2). Variances and covariances of ηs have
to be inserted in an OMEGA matrix, analogous to the one used in
NONMEM control streams [96]. The typical values θ are inserted as
in the deterministic simulation scenario. The user can also select the
desired number of stochastic simulations, the simulation seed, and the
percentiles to be computed and plotted. A PD stochastic simulation
can be performed either giving as input a deterministic PK (hence
considering variability only on PD parameters) or a stochastic PK
(hence considering variability on both PK and PD parameters).
The outputs that are obtained after stochastic simulations are: (i)
modifiable plots of the selected percentiles of concentration or effect
vs time, and of effect vs concentration, (ii) tables summing up model
parameters (both typical and including variability) together with their
measurement units, dosing schedule (only for PK table), simulation
time instants, simulation number, and simulated concentrations or
effects.

INES was validated via the Matlab-based simulation tool A4S [97]
and the software WinNonLin (https://www.certara.com/software/
pkpd-modeling-and-simulation/phoenix-winnonlin/).

B.1.2 ui.R

User interface, built via ui.R, is subdivided in four main tabs (Fig-
ures B.2-B.5). The first tab, “Measurement units” (Figure B.2), is
dedicated to the choice of the fundamental measurement units. The
derived ones are promptly computed and showed by INES so that the
user can perform the necessary unit conversions before selecting pa-
rameter values.
The second and third tabs (Figures B.3 and B.4), denoted with “PK

analysis” and “(PK-)PD analysis”, are designed respectively for the
PK and PD settings. Here it is possible to (i) perform model selec-
tion; (ii) choose for deterministic or stochastic simulations; (iii) insert
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Figure B.2: Screenshot of the INES Shiny application: tab for mea-
surement units selection and definition.

appropriate values for PK or PD parameters and possibly for their
variability; (iv) visualize and manipulate graphical outputs, and in
particular compare the simulation results with other scenarios, via the
upload of an appropriate table; (v) download both plots and tables.
In the PK tab it is also possible to build the desired dosing schedule,
which will be reminded by a written message in the PD tab. Dosing
schedule can be specified in the section called“Dosage regimens”. First
of all, the user has to choose the number of regimens; then amount,
number of doses, time of first dose and interdose interval need to be
entered for each regimen. In case of a standard dosing schedule, e.g.
seven doses of 5 mg every 24 hr starting from time 0, the number of
regimens is only one. If the dosing schedule is more complicated, the
number of superimposed regimens needs to be increased. For instance,
if a QW3 schedule is used (three weeks of administration, 1 week of
rest) for 8 weeks, the required number of regimens is two: both will
have the same amount, number of doses (three) and interdose interval
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Figure B.3: Screenshot of the INES Shiny application: tab for PK
settings and results.

(one week), but the time of first dose will be different (week 0 and
week 5). As another example, if a loading dose is required, again the
user can select two dosing regimens: the first one with the loading
dose, and time of first dose equal to zero, and the second one with the
low amount and time of first dose greater than zero.
The intended PK or PD model can be selected from a radio buttons

list in the corresponding tab, denoted respectively with “PK models”
(Figure B.3) and “PD models” (Figure B.4). According to the selected
model, appropriate parameter boxes will appear (called “PK parame-
ters” and “PD parameters”). In here, the user will insert the nominal
values of the model parameters in case of deterministic simulation, or
the typical value of each parameter in case of stochastic simulation.
In the latter situation, by checking an appropriate checkbox (named
“Include PK parameters’ dispersion” in the PK tab, and analogously
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Figure B.4: Screenshot of the INES Shiny application: tab for PD
settings and results.
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in the PD tab), also a box for the choice of parameters distributions
(“Distribution”) and variability terms (“OMEGA matrix”) will appear.
In the “Options” tab, the user can choose the number of random sim-
ulations, the seed, and the percentiles to be computed and graphically
displayed.
After each PK or (PK-)PD simulation (either deterministic or stochas-
tic), the plot of concentration or effect versus time is displayed in the
corresponding tab (Figures B.3 and B.4). Below, a box for output
manipulation is provided. In the “Plot options” section, the user can:
apply or remove logarithmic transformation to both axes, change the
line colour, modify axes limits, and add some reference lines (repre-
senting, e.g., efficacy/toxicity thresholds) together with their labels.
In “Comparison with other scenario”, it is possible to upload an ap-
propriate table (e.g. with results from a previous simulation), choosing
the colour and line type of the new plotted curve and the legend labels.
The user will also have the possibility to hide again the added curve.
In the “Download” section both the final plot and the simulated data
can be downloaded.
The fourth tab, “PD vs PK” (Figure B.5), is for comparing PK and
PD profiles. In particular, the user can choose to visualize either PD
vs PK, or PK and PD vs time overlaid. Analogously to the PK and
(PK-)PD tabs, it is possible to modify axes scale and limits, and line
color; the final plot is downloadable.

B.2 PTS app: a tool for PTS

computation

In the same project, a corollary Shiny application was developed
for PTS computation. In the context of early clinical development of
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Figure B.5: Screenshot of the INES Shiny application: tab for com-
parison between PK and PD results.
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new compounds, PTS computation is based on the relevant preclinical
information (e.g. PK, efficacy and/or safety) to support the transition
from preclinical to clinical development and the selection of the clin-
ically relevant doses and dosing regimens [98]. In particular, PTS is
computed based on:

� the desired PK or PD endpoint to ensure drug efficacy or limit
toxicity (expressed for instance via steady state metrics, e.g.:
“CminSS > 5 ng/mL”);

� a PK or PK-PD model;

� a range of dose levels and/or dosing regimens (e.g., QD vs BID);

� the vector of typical model parameters;

� the uncertainty and IIV of model parameters (expressed with
the appropriate probability distributions).

PTS is evaluated as the ratio of the number of times the endpoint is
achieved to the total number of simulations; a sufficiently high number
of stochastic simulations is needed for each dose level/regimen. This
might entail prohibitive run times: the repeated computation of en-
tire concentration/effect versus time profiles, the exploration of a wide
range of dose levels/regimens, and the inclusion of both uncertainty
and variability on model parameters may contribute slowing down the
app.
For all these reasons, in its current version, the PTS app considers only
steady-state PK endpoints for 1 and 2 compartmental linear models
(with 0th or 1st order input). Simulation and simultaneous compar-
ison of multiple independent thresholds for the same PK metric are
allowed. A case study demonstrating features and performances of
this Shiny application was described in [98]. The PTS app, not unlike
INES, represents a valuable visualization tool that can facilitate the
discussions within program teams and early decision making.
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