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ABSTRACT	

A	growing	number	of	epidemiological	studies	have	provided	strong	evidence	for	

the	 adverse	 health	 effects	 of	 air	 pollution.	 However,	 the	 association	 at	 levels	

below	 the	U.S.	 Environmental	 Protection	Agency	 (EPA)	 standards	 (12	µg/m3	of	

annual	average	PM2.5)	is	unclear.	In	addition,	a	traditional	regression	framework	

does	not	have	a	causal	interpretation,	due	to	sensitivity	to	model	choice.		

Our	 goal	 was	 to	 recreate	 an	 experimental	 design	 starting	 from	 observational	

data,	 in	 order	 to	 strengthen	 the	 causal	 interpretation	 of	 the	 link	 between	 low	

levels	of	PM2.5	and	hospital	admissions.		

One	 of	 the	major	 issues	 in	 environmental	 epidemiology	 is	 confounding.	 Using	

aggregate	exposure	to	PM2.5	(two-years	prior	annual	average	levels	at	zip	codes	

level)	 and	all-cause	hospitalization	 rate,	we	 compared	 the	 standard	 regression-

based	approach,	in	which	the	confounders	at	the	zip	code	level	were	treated	as	

covariates,	to	an	approach	in	which	zip	codes	were	initially	matched	according	to	

the	 confounders	 and	 then	 the	 effect	 of	 PM2.5	 on	 health	 was	 estimated	 with	

regression	models	restricted	to	matched	zip	codes.		

We	showed	that	observed	confounders	widely	differed	depending	on	the	PM2.5	

levels.	We	estimated	that,	even	in	very	low	levels	of	PM2.5,	increasing	long-term	

exposure	 to	 PM2.5	by	 1	 μg/m3	 causally	 increased	 all-cause	 admissions	 by	 6.2%	

(95%	CI	=	3.8%,	8.7%)	when	the	range	of	PM2.5	was	3.50-7.83	μg/m3	,9.2%	(95%	

CI	=	1.9%,	6.9%)	with	a	range	of	7.84-8.65	μg/	m3	and	12%	(95%	CI	=	4.7%,	19.8%)	

when	 the	 exposure	 range	 was	 9.37-10.29	 μg/	 m3	 using	 nearest-neighbor	

matching.	 With	 Mahalanobis	 distance	 matching	 method	 we	 estimated	 that	

increasing	long-term	exposure	to	PM2.5	by	1	μg/	m3	causally	increased	all-cause	

admissions	 by	 4.7%	 (95%CI	 =	 2.3%,	 7.1%),	 10.2%	 (95%CI	 =	 2.2%,	 18.9%)	 and	

16.1%	(95%CI	=	8.7%,	23.9%)	in	the	same	restricted	range	of	PM2.5	respectively.	

In	 addition,	 also	 the	 analysis	 with	 all	 variables	 as	 covariates,	 showed	 that	
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increasing	 long-term	 exposure	 to	 PM2.5	 by	 1	 μg/m3,	 even	 in	 very	 low	 levels,	

causally	increases	all-cause	admissions.		

Our	study	was	 rooted	 in	potential	outcomes	methods	 for	causal	 inference	 that	

consisted	of	a	design	phase	that	sought	using	observational	data	to	approximate	

the	 design	 of	 randomized	 experiments,	 where	 “unexposed”	 (T	 =	 1)	 and	

“exposed”	 (T	 =	 0)	 units	were	 balanced	with	 respect	 to	 observed	 confounders;	

and	an	outcome	analysis	phase	where	the	causal	effects	of	adverse	health	effects	

to	 air	 pollution	 exposure	 were	 estimated.	 We	 provided	 strong	 evidence	 of	

different	 confounders	 at	 each	 shift	 in	 exposure	 to	 PM2.5	and	 the	 developed	

method	was	 robust	 to	model	misspecifications.	 Last	 but	 not	 least,	we	 showed	

that	 long-term	 exposure	 to	 PM2.5	 were	 causally	 associated	 with	 all-cause	

hospitalizations,	even	for	exposure	levels	not	exceeding	the	U.S.	EPA	standards,	

suggesting	that	adverse	health	effects	occur	at	low	levels	of	fine	particles.	
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1. INTRODUCTION	
	

Over	the	past	decade,	through	epidemiological	studies	(1–6),	long-term	exposure	

to	 air	 pollution	 has	 been	 associated	with	 adverse	 health	 outcomes.	 They	 have	

identified	 fine	 particulate	 matter	 (PM2.5)	 as	 the	 cause	 of	 numerous	 cases	 of	

mortality	and	morbidity	from	respiratory	to	cardiovascular	diseases.		

Previous	 studies	 have	 generally	 focused	 on	 long-term	 exposures	 across	 the	

entire	 range	of	PM2.5	concentrations.	 In	2012,	 the	US	Environmental	Protection	

Agency	 (EPA)	 set	 at	 12	 μg/m3	 the	 National	 Ambient	 Air	 Quality	 Standards	

(NAAQS)	 for	 the	annual	average	of	PM2.5.	 Just	 few	studies	 (7–12)	have	showed	

the	health	effects	of	air	pollution	at	 levels	 in	accordance	with	or	 lower	than	12	

μg/m3	.		

In	addition,	the	majority	of	the	aforementioned	studies	were	observational	and	

this	design	does	not	permit	conclusions	as	whether	there	is	a	causal	relationship.		

The	 objective	 of	many	 epidemiological	 studies	 is	 to	 study	 the	 causal	 effect	 of	

exposure	to	an	outcome.	 	As	exposure	 in	observational	studies	 is	not	randomly	

assigned,	confounding	is	a	major	threat	to	the	validity	of	the	inference	estimates.			

Confounders	 are	 those	 variables	 that	 confound	 the	 relationship	 between	

exposure	 and	 outcome	 because	 they	 are	 associated	 with	 both.	 .	 Among	 the	

methods	available	to	control	for	confounding,	there	are:	regression	adjustments,	

stratification	on	covariates	and	matching.		

The	first	solution	to	estimate	the	association	between	exposure	and	outcome	of	

interest	 is	 a	 regression	 model	 adjusted	 for	 any	 potential	 confounders.	 With	
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covariance	adjustment,	a	model,	usually	linear,	is	fit	to	the	regression	of	y	on	x,	

and	 is	 used	 to	 create	 an	 adjusted	 estimate	of	 the	 exposure	 effect	 of	 the	 form	

!"	–	!% −	' (" −	(%)	 where	!"	, ("	*+,	!%, (%		are	 the	 y	 and	 x	 means	 in	 the	

exposed	and	unexposed	groups,		and	'	is	the	estimate	of	the	slope,	',	of	y	on	x.					

Furthermore,	 with	 this	 adjustment	 the	 balance	 of	 the	 distribution	 of	 the	

confounders	 across	 exposure	 groups	 is	 not	 guaranteed.	As	 a	 consequence,	 the	

exposure	groups	are	not	comparable	with	respect	to	confounding	variables.		

In	 terms	of	 stratification,	 the	effects	of	 confounding	can	be	controlled	 through	

stratifying	 levels	 of	 the	 potential	 confounder,	 because	 groups	 are	 produced	

within	 which	 the	 confounder	 does	 not	 vary.	 At	 each	 level	 or	 stratum	 of	 the	

potential	confounder,	subjects	are	relatively	balanced.		

The	 confounding	 is	 controlled	 when,	 precisely,	 the	 association	 of	 interest	 is	

estimated	 within	 each	 stratum.	 Although	 stratification	 is	 a	 robust	 method	 of	

adjustment	 for	 potential	 confounders,	 it	 has	 problems	 when	 there	 are	 many	

potential	 confounding	variables.	 	When	 the	number	of	 confounders	 rises,	each	

stratum	has	too	few	subjects	to	estimate	the	association	between	outcome	and	

exposure	reliably.			

Formally	these	techniques	can	be	seen	as	serving	two	purposes:	to	increase	the	

precision	of	comparisons	and	to	remove	initial	bias	due	to	x.	Anyway	correlation	

or	association	is	not	the	same	as	causation.	

Seeing	that	the	goal	of	the	observational	study	is	to	estimate	the	causal	effect	of	

an	exposure	on	an	outcome	and,	the	presence	of	potential	confounders	due	to	
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not	randomized	exposure	assignment,	causal	inference	methods	are	the	correct	

approaches.		

	

1.1 POTENTIAL	OUTCOME	FRAMEWORK	

In	everyday	life,	causal	language	is	widely	used	in	an	informal	way.	Investigators	

are	 often	 interested	 in	 estimating	 the	 effect	 of	 exposure	 on	 an	 outcome	 of	

interest.	 Causal	 inference	 methods	 are	 often	 employed	 to	 address	 such	

questions.	 	One	core	piece	of	 causal	 inference	 relies	on	 the	potential	outcome	

model.	 The	 first	 time	we	 read	 about	 the	 potential	 outcome	 framework	was	 in	

Neyman	paper	(13)	and	then	with	Fisher	(14).	

The	 concept	 of	 potential	 outcome	 was	 used	 exclusively	 in	 the	 context	 of	

randomized	 experiment,	 not	 in	 observational	 studies.	 It	 is	 only	more	 recently,	

with	Rubin	(15),	that	the	framework	of	potential	outcomes	was	associated	with	

observational	study	settings.	The	fundamental	notion	underlying	our	approach	is	

that	causality	is	tied	to	an	intervention	applied	to	a	unit.			

From	potential	outcome	point	of	view,	an	 individual	 in	a	population	of	 interest	

can	be	exposed	to	two	alternative	states	of	a	cause.	

Therefore,	a	causal	statement	presumes	that,	although	a	unit	was	exposed	to	a	

particular	risk,	the	same	unit	could	have	been	exposed	to	an	alternative	risk.		

Give	 a	 unit	 a	 set	 of	 exposure,	 we	 associate	 each	 exposure-unit	 pair	 with	 a	

potential	 outcome.	 We	 refer	 these	 outcomes	 as	 potential	 outcomes	 because	

only	 one	 will	 ultimately	 be	 realized	 and	 therefore	 possibly	 observed:	 the	

potential	outcome	corresponding	to	the	risk	actually	exposed.		
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The	 key	 assumption	 of	 the	model	 is	 that	 each	 individual	 in	 the	 population	 of	

interest	has	a	potential	outcome	under	each	exposure	state,	even	though	each	

individual	can	be	observed	in	only	one	exposure	state	at	any	point	in	time.	These	

what-if	 potential	 outcomes	 are	 counterfactual	 in	 the	 sense	 that	 they	 exist	 in	

theory	but	are	not	observed.		

There	 are	 two	 important	 aspects	 of	 the	 definition	 of	 causal	 effect:	 first,	 the	

definition	 of	 the	 causal	 effect	 depends	 on	 the	 potential	 outcomes,	 but	 it	 does	

not	depend	on	which	outcome	is	actually	observed;	second,	the	causal	effect	 is	

the	 comparison	 of	 potential	 outcomes,	 for	 the	 same	 subject,	 at	 the	 same	

moment	in	time	post-exposure.		

	

1.2 THE	CAUSAL	EFFECT	ESTIMATION	

For	the	estimation	and	inference	of	causal	effect,	we	need	to	compare	observed	

outcomes	 and	 because	 there	 is	 only	 one	 observed	 potential	 outcome	 per	

subject,	 we	 will	 need	 to	 consider	 multiple	 units.	 More	 specifically,	 we	 must	

observe	multiple	units,	some	exposed	and	some	unexposed.	 In	order	to	exploit	

the	 presence	 of	 multiple	 units,	 we	 use	 the	 stable	 unit	 treatment	 value	

assumption	(SUTVA)	(16).	The	stability	assumption	states	that	exposure	applied	

to	one	unit	do	not	affect	the	outcome	for	another	unit	and	the	concept	that	for	

each	unit	there	is	only	a	single	version	of	each	exposure	level.		

Just	 to	 be	 in	 compliance	 with	 the	 literature	 and	 be	 more	 understandable,	 as	

follow	we	refer	to	exposure	as	treatment.		
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Formalizing	 this	 conceptualization,	 let	 T	 be	 the	 binary	 treatment	 of	 interest,	

where	T	is	0	for	“control”	or	1	for	“treated”,	and	Y	be	the	continuous	outcome.	

Then,	 according	 to	 Rosenbaum	 &	 Rubin	 (17),	 each	 unit,	 I,	 has	 two	 potential	

outcomes,	Y0	and	Y1.	The	causal	effect	of	treatment,	T,	on	an	outcome,	Y,	for	an	

observational	 or	 experimental	 unit,	 i,	 can	 be	 defined	 by	 comparisons	 between	

the	outcomes	 that	would	have	occurred	under	each	of	 the	different	 treatment	

possibilities.		

In	 this	 scenario,	 the	 treatment	effect	 (TE)	 for	 the	unit,	 i,	can	be	defined	as	 the	

difference	 between	 Yi1	 and	 Yi0	 (TEi	=	 Yi1	 -	 Yi0).	 Usually,	 when	 a	 participant	 has	

been	 assigned	 to	 the	 treatment	 condition,	 the	 outcome,	 Y1,	 is	 observed	 and	

whereas	 Y0	 is	 the	 unobserved	 counterfactual	 outcome,	 specifically	 referring	 to	

what	would	have	happened	 to	 the	 individual	 if	 assigned	 to	 the	control;	on	 the	

other	 hand,	 for	 the	 control	 unit,	 Y0	 is	 observed	 and	 Y1	 is	 counterfactual.	

Therefore,	 TEi	 is	 not	 observed	 for	 any	 unit	 i.	 This	 is	 called	 the	 “fundamental	

problem	of	causal	inference”	(18).	

It	 is	 therefore	 a	 problem	 that	 at	 most	 one	 of	 the	 potential	 outcomes	 can	 be	

realized	and	observed.		

For	the	reason	that	for	each	unit	 i,	only	one	of	Yi1	and	Yi0	are	observed	because	

individual	 units	 can	 only	 receive	 the	 treatment	 or	 the	 control	 but	 not	 both,	

interest	 lies	 in	 estimating	 the	 average	 of	 individual	 treatment	 effects	 (ATE)	

defined	as:	

																																																						ATE	=	E	(TEi)	=	E	(Yi1	-	Yi0)																									(Equation	1)	

or	the	average	treatment	effect	strictly	for	the	treated	population,	defined	as:	
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																																							ATT	=	E	(TEi	|	T	=	1)	=	E	(Yi1	-	Yi0|	Ti	=1)																	(Equation	2)	

	

The	fundamental	problem	of	causal	inference	is	the	presence	of	missing	data	due	

to	 the	 “assignment	 mechanism”:	 it	 determines	 which	 units	 receive	 with	

treatments,	 hence	 which	 potential	 outcomes	 are	 observed	 and,	 as	 a	

consequence,	 which	 potential	 outcomes	 are	 missing.	 	 This	 “assignment	

mechanism”	turns	out	to	be	the	key	component	in	a	causal	analysis.	Fortunately,	

a	classical	randomized	design,	based	on	each	unit	having	the	same	probability	of	

receiving	 each	 of	 the	 possible	 treatments,	 can	 be	 used	 to	 compare	 treatment	

and	control	outcomes.		

Randomized	experiments	have	their	origins	in	the	work	of	a	statistician	Ronald	A.	

Fisher	 during	 the	 1920s	 (14).	 	 By	 the	 definition	 of	 Cox	 and	 Reid	 (19),	 	 a	

randomized	experiment	can	be	defined	as:		

“The	word	experiment	 is	used	 in	a	quite	precise	sense	to	mean	an	 investigation	

where	the	system	under	study	is	under	the	control	of	the	investigator.	This	means	

that	 the	 individuals	 or	 material	 investigated,	 the	 nature	 of	 the	 treatments	 or	

manipulations	 under	 study	 and	 the	 measurement	 procedures	 used	 are	 all	

selected,	 in	 their	 important	 features	at	 least,	by	 the	 investigator.	By	contrast	 in	

an	observational	study	some	of	these	features,	and	in	particular	the	allocation	of	

individuals	to	treatment	groups,	are	outside	the	investigator’s	control.”		

To	be	classified	as	classical	randomized	experiment,	the	assignment	mechanism	

requires	 to	 be	 individualistic	 (the	 dependence	 on	 values	 of	 covariates	 and	

potential	outcomes	for	other	units	limited),	probabilistic	(each	experimental	unit	
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has	 a	 positive	 probability	 of	 being	 assigned	 to	 the	 treatment	 and	 a	 positive	

probability	 of	 being	 assigned	 to	 the	 control),	 unconfounded	 (given	 covariates	

does	not	depend	on	potential	outcomes)	and	controlled	by	the	researcher.		

Through	 this,	 both	 the	 nt=1	 and	 nt=0	 groups	 are	 randomly	 selected	 and	 they	

represent	the	correspondent	treated	and	control	units	of	the	entire	population.	

The	same	is	equivalent	for	Yi1	and	Yi0.	The	advantage	is	that	randomization	allows	

balance	in	potential	confounders	between	these	two	experimental	groups.	As	a	

consequence,	 the	 control	 group	 (nt=0),	 when	 randomly	 selected,	 can	 behave	

counterfactually	for	the	treatment	group	and,	vice	versa,	the	randomly	selected	

treated	group	(nt=1)	counterfactually	for	the	control	group.	With	this	illustration,	

it	 is	 clear	why	a	 randomized	 study	 is	 considered	 the	 “gold	 standard”	design	 to	

determine	causal	effects	of	treatment.	

The	 ATE	 can	 be	 easily	 calculated	 as	 the	 difference	 between	 the	 two	marginal	

means	of	outcomes	( ),	respectively,	the	observed	mean	when	the	units	are	

assigned	to	the	treatment	condition	and	the	observed	mean	when	the	units	are	

assigned	to	the	control	condition.		

As	Neyman	demonstrated	 (13),	 the	 difference	 of	 the	 observed	means	 ( )	

between	the	nt=1	treatment	and	nt=0	control	samples	is	an	unbiased	estimator	of	

the	average	treatment	effect	(ATE).		

	

	

	

	

Y1 −Y0

Y1 −Y0
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1.3 APPLICATION	TO	OBSERVATIONAL	STUDIES	

The	 aforementioned	 definition	 given	 by	 Cox	 and	 Reid	 underlines	 the	 main	

difference	between	experimental	and	observational	studies.		

However,	 what	 can	we	 do	with	 observational	 studies	where	 the	 units	 are	 not	

randomly	selected	from	the	entire	population?		

As	 we	 know	 from	 observational	 studies,	 exposure	 is	 observed,	 where,	 on	 the	

contrary,	with	randomized	studies,	treatment	is	assigned.	

In	 the	 causal	 framework,	 a	 comparison	 of	 outcomes	 between	 exposed	 and	

unexposed	groups	is	non-confounded	if	the	two	populations	are	comparable	for	

factors	that	relate	to	outcomes.	Considering	that	through	an	observational	study,	

we	 do	 not	 select	 units	 at	 random	 from	 the	 entire	 population,	 a	 systematic	

difference	between	the	exposed	and	unexposed	group	could	be	present.	These	

systematic	 differences	 take	 the	 name	 of	 confounders,	 denoted	 by	 a	 high	

dimensional	vector,	W,	and,	as	a	result,	the	outcome,	Y,	could	be	affected.				

With	 a	 randomized	 experiment	 through	 a	 simple	 difference	 between	 the	 two	

marginal	means	( ),	we	can	estimate	the	effect	of	the	exposure.	Yet,	with	

an	 observational	 study	 where	 there	 are	 indeed	 confounders,	 the	 estimation	

results	tend	to	be	more	complicated.		

In	 the	 regression	 scenario,	 the	 resulting	 linear	 regression,	 when	 we	 observe	

confounders,	is:		

																																																								 																													(Equation	3)	

Y1 −Y0

yi =α +βiT +δiW +εi
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Adding	W	(W	generally	being	a	vector	of	k	disturbing	variables),	we	improve	our	

model	because	we	better	explain	the	variability	of	Y,	but	we	cannot	say	that	the	

coefficient	of	T	is	the	causal	effect	of	the	exposure.		

When	 we	 talk	 about	 estimating	 causal	 effect	 with	 observational	 data,	 it	 is	

advisable	 to	mimic	 a	 randomized	 experiment	 as	 closely	 as	 possible	 by	 dividing	

the	 sample	 into	 exposed	 and	 unexposed	 groups	 with	 similar	 covariate	

distributions.	 One	may	wonder	why	 and	 the	 solution	 is,	 as	mentioned	 earlier,	

that	a	randomized	experiment	 is	the	gold	standard	for	estimating	causal	effect,	

because	thanks	 to	 the	"random	assignment”	of	exposure,	 the	researchers	 feels	

confident	that	all	 the	possible	accounted	and	unaccounted	confounders	will	be	

equally	distributed	in	the	groups.		

Therefore,	 simulating	 the	 design	 of	 a	 randomized	 study,	 can	 be	 achieved	 by	

employing	matching	methods,	 thanks	 to	well-matched	 samples,	 of	 the	 original	

exposed	and	unexposed	groups,	reducing	bias	from	covariates.	

	

1.4 MATCHING	METHODS	

Prior	to	implementing	any	methods	for	estimating	causal	effects,	it	is	important	

to	 conduct	 a	 design	 phase	 of	 an	 observational	 study,	 during	 which	 one	 can	

construct	a	sample	such	that	 inferences	are	more	robust	and	credible.	There	 is	

one	 important	 feature	 of	 this	 initial	 analysis:	 it	 does	 not	 involve	 the	 outcome	

data.		

The	 first	 stage	of	 this	phase	 is	 to	assess	 the	degree	of	balance	 in	 the	covariate	

distribution	 between	 exposed	 and	 unexposed	 units.	 Differences	 in	 the	
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distribution	 of	 the	measured	 confounders	 (W)	 between	 these	 two	 unit	 groups	

would	lead	to	confounding	bias.	

One	 of	 the	 most	 common	 numerical	 balance	 diagnostics	 is	 the	 standardized	

difference	in	means	(SMD),	defined	as	the	difference	in	means	of	each	covariate	

divided	by	 the	 standard	deviation	 in	 the	 full	 sample.	 This	provides	 a	 scale-free	

way	to	assess	the	differences.		

Just	 to	 remind,	when	exposed	groups	have	 important	covariates	 that	are	more	

than	 one-quarter	 or	 one-half	 of	 a	 standard	 deviation	 apart,	 simple	 regression	

methods	 are	 unreliable	 to	 remove	 biases	 associated	 with	 differences	 in	

covariates.		

If	the	basic	samples	exhibits	a	substantial	amount	of	imbalance,	we	may	wish	to	

construct	 a	 “subsample”	 that	 is	 characterized	 by	 better	 balance.	 Such	 a	

subsample	 leads	 to	 more	 robust	 and	 thus	 more	 credible	 causal	 inferences.	

Therefore,	we	 sequentially	match	 each	 exposed	 unit	 to	 the	 closest	 unexposed	

units	through	matching	methods.		

The	main	 purpose	of	matching	 is	 to	 replicate	 a	 randomized	 experiment	where	

the	only	difference	in	the	two	groups	is	exposure.		

One	 assumption	 of	 matching	 methods	 is	 “ignorability”,	 that	 means	 no	

unobserved	differences	between	the	treatment	and	control	groups,	conditional	

upon	 the	 observed	 covariates	 (22).	 Therefore,	 it	 is	 necessary	 to	 add	 in	 the	

matching	 procedure	 all	 variables	 known	 to	 be	 related	 to	 both	 treatment	

assignment	 and	 the	 outcome.	 	 After	 having	 determined	 which	 covariates	 to	

include	into	the	matching,	another	key	concept	is	to	define	the	“distance”,	that	is	
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the	 similarity	 between	 two	 units.	 We	 have	 four	 definition	 of	 distance,	 Dij,	

between	the	units,	i	and	j,	for	matching	(22):		

• Exact,	where 	 	 ;	

• Mahalanobis,	where	 ;	

• Propensity	score,	where	 ,	ek	is	the	propensity	score	for	units,	

k;		

• Linear	propensity	score,	 .	

Exact	matching	 is	 the	 best	 approach,	 though	 it	 is	 not	 perfectly	 apt	when	W	 is	

highly	 dimensional;	 the	 same	 is	 true	 for	Mahalanobis	 distance.	 Exact	matching	

requires	 that	 for	each	unit,	 i,	 there	 is	 the	exact	matched	unit,	 j,	and	often	 this	

leads	 to	many	 units	 that	 are	 not	matched.	When	 there	 are	 several	 covariates,	

fewer	 than	 eight	 (23,24),	 and	 they	 are	 normally	 distributed,	 Mahalanobis	

distance	is	quite	appropriate.	

In	contrast,	 the	propensity	score	summarizes	all	covariates	 into	one	scalar.	 It	 is	

defined	 for	each	unit,	 I,	 as	 the	probability	of	being	 treated	given	 the	observed	

covariates,	 .	

One	 of	 the	 easiest	 and	 common	 techniques	 employed	 is	 k:1-nearest-neighbor	

matching	(25),	which	pairs	each	treated	unit,	 i,	and	the	control	unit,	 j,	with	the	

smallest	 distance	 between	 them.	 When	 there	 are	 more	 treated	 units	 than	

controls,	 matching	 can	 be	 accomplished	 with	 replacement.	 This	 means	 that	

control	units	can	be	utilized	as	matches	or	more	than	one	treated	unit.		This	can	

Dij =
0
∞

"
#
$

if
if
Wi =Wj

Wi ≠Wj

Dij = Wi( −Wj )" Wi(
−1

∑ −Wj )

Dij = ei − ej

Dij = logit(ei )− logit(ej )

ei Wi( ) = P Ti( =1|Wi )
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often	 decrease	 bias	 because	 controls	 that	 look	 to	 be	 similar	 to	 many	 treated	

units	 can	 be	 used	multiple	 times.	 	 Unfortunately,	 the	 estimation	 of	 the	 causal	

effect	 becomes	 more	 complex	 because	 the	 fact	 that	 there	 is	 more	 than	 one	

matched	control	in	the	matched	sample	must	be	accounted	for	by,	for	example,	

employing	frequency	weights.		

The	next	important	step,	once	having	applied	matching	methods,	is	to	check	the	

quality	of	the	resulting	matched	samples.	Such	quality	is	defined	as	the	balance	

of	 the	 empirical	 distributions	 of	 the	 full	 set	 of	 covariates	 (W)	 in	 the	matched	

treated	 and	 control	 groups.	 The	 absolute	 standardized	 differences	 of	 means	

should	be	less	than	0.25	(26).		
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2. AIM	

This	study	aimed	to	recreate	an	experimental	design	starting	from	observational	

data	through	matching	methods,	in	order	to	strengthen	the	causal	interpretation	

of	 the	 link	 between	 low	 levels	 of	 PM2.5	 and	 health	 outcome	 using	 aggregate	

exposure	data	(annual	average	PM2.5)	and	hospital	admissions	at	zip	code	level.		
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3. METHODS	

	

	

3.1 DATA	

The	 long-term	 (annual	 2	 years	 prior	 the	 reference	 date)	 PM2.5	 levels	 and	

temperatures	 for	 the	 year	 2013	 were	 obtained	 at	 the	 monitor	 level	 from	 US	

Environmental	 Protection	 Agency	 (EPA)	 Air	 Quality	 System	 (AQS)	 database,	

accessible	through	arepa	package	(20).		In	order	to	have	all	data	at	the	ZIP	code	

level,	the	monitors	were	linked	to	zip	codes.		

All-cause	 hospitalization	 counts	 and	 the	 total	 number	 of	 people	 at	 risk	 for	 the	

year	 2013	were	obtained	 at	 the	 ZIP	 code	 level	 from	billing	 claims	of	Medicare	

enrollees	who	were	 fee-for-service	Medicare	 beneficiaries	 (≥	 65	 years	 of	 age).	

For	 each	 of	 the	 PM2.5	monitor	 locations,	 we	 acquired	 annual	 numbers	 of	

hospitalization	 admissions	 and	 people	 at	 risk	 among	 the	 Medicare	 enrollees	

residing	in	each	ZIP	code	with	a	centroid	<	6	miles	from	a	PM2.5	monitor	location.		

We	 gathered	 ZIP	 code–level	 data	 on	 community-level	 confounding	 variables,	

including	 demographic	 and	 socioeconomic	 (SES)	 information	 from	 the	 U.S.	

Census	2010	(21).	We	averaged	values	over	all	ZIP	codes	with	centroids	within	6	

miles	of	each	PM2.5	monitor	and	assigned	the	averaged	value	to	each	monitor.		

Based	on	that	fact	that	all	our	sources	were	at	the	zip	code	level,	we	aggregated	

them	into	a	unique	dataset	where	at	each	zip	code,	we	had	PM2.5	concentration,	

temperature,	 U.S	 Census	 demographic,	 SES	 variables,	 and	 hospitalization	
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outcomes.	The	list	of	U.S	Census	demographic	and	SES	variables	are	presented	as	

Supplementary	material.		

	

3.2 STATISTICAL	ANALYSIS	

Seen	that	the	aim	of	our	study	was	to	estimate	the	causal-effect	of	low	levels	of	

air	pollution	exposure	on	health	outcome,	we	had	two	important	key	phases:	the	

design	and	outcome	analysis.		

	

3.2.1 DESIGN	PHASE	

During	 this	 design	 phase,	 the	 idea	was	 to	 approximate	 an	 observational	 study	

into	 a	 series	 of	 hypothetical	 randomized	 experiments.	 	 We	 had	 two	

“experimental	designs”:		

1. “ONE	SAMPLE”	where	we	divided	our	sample	 into	two	groups	based	

on	PM2.5	levels.	We	used	a	cut-off	9	μg/m3.	The	zip	codes	with	PM2.5	

<9	 μg/m3	of	 exposure	were	 considered	 “unexposed”	 (T=0),	whereas	

the	others	were	the	“exposed”	(T=1).			

2. “RESTRICTED	 SAMPLES”	 where	 we	 divided	 our	 sample	 into	 ten	

different	bins	based	on	PM2.5	concentrations	as	shown	in	Figure	1.	We	

used	 the	quantile	 function	because	we	wanted	 enough	 zip	 codes	 in	

each	bin.	The	next	step	was	to	recreate	a	restricted	design	within	zip	

code	 characterized	 by	 consecutive	 exposure	 level.	 For	 example,	

Experiment	 1	 was	 the	 joining	 of	 the	 first	 bin	 with	 the	 second,	

Experiment	2	the	joining	of	the	third	bin	with	the	fourth,	and	so	on.	In	
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each	experiment,	the	zip	codes	of	the	bin	with	 lower	PM2.5	exposure	

were	 considered	 “unexposed”	 (T=0),	 whereas	 the	 others	 were	 the	

“exposed”	(T=1).		A	depiction	of	this	experimental	design	is	presented	

in	Figure	2.	

	

	

Figure	1.	The	ten	different	bins	based	on	exposure	to	PM2.5	levels.	The	vertical	dashed	line	corresponds	to	
12	μg/m3	
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Figure	2.	The	"RESTRICTED	SAMPLES"	design:	the	pairing	of	bin	to	design	five	experiments.	

	

For	 both	 experimental	 designs,	 we	 checked	 for	 which	 temperature	 related	

variables,	demographic	variables,	and	SES,	as	a	full	set	of	variables	denoted	with	

W,	were	unbalanced	through	the	standardized	mean	difference	(SMD)	between	

the	 exposed	 and	 unexposed	 groups.	 In	 addition,	 we	 also	 determined	 the	

correlation	between	these	variables	(W)	and	outcomes	to	discern	any	potential	

confounders.	 In	 our	 scenario,	 a	 confounder	 was	 generally	 a	 factor	 that	 was	

simultaneously	 associated	 with	 pollution	 exposure	 and	 health	 outcomes	

(specifically,	the	outcome	of	interest	was	all-cause	hospital	admissions).		

To	establish	if	one	variable	was	a	potential	confounder,	we	cautiously	applied	an	

absolute	 cutoff	 of	 at	 least	 0.1	 for	 both	 the	 standardized	mean	 difference	 and	
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correlation	coefficient.	 	Therefore,	those	variables	turned	out	to	be	unbalanced	

and	correlated	with	the	outcomes,	and	as	such	were	considered	confounders.		

We	 employed	 two	 different	 matching	 methods	 (17,22)	 to	 approximate	 our	

observational	 sample	 into	 simulated	 randomized	 experiments	 adjusting	 for	

confounders	 –	 nearest-neighbor	 matching	 and	 Mahalanobis	 distance	 using	

propensity	scoring.		

The	ultimate	goal	of	the	design	phase	was	to	construct	groups	of	T	=	0	and	T	=	1	

zip	codes	that	were	as	comparable	as	possible	with	respect	to	W.	

After	adjusting	 through	matching	methods,	any	model	 for	pollution	and	health	

outcomes	can	be	used	to	estimate	causal	effects	in	a	manner	that	is	significantly	

less	susceptible	to	observed	confounding	(27).	

	

3.2.2 OUTCOME	PHASE	

The	aim	of	matching	methods	was	to	construct	a	series	of	experimental	design,	

where	groups	of	T	=	0	and	T	=	1	zip	codes	were	as	comparable	as	possible	with	

respect	to	W.	

After	 the	employment	of	matching	methods,	we	projected	 the	 causal	 effect	of	

long-term	exposure	to	low	levels	of	PM2.5		on	a	hospitalization	outcome,	Y.		

The	outcome	variable	for	our	analysis	was	all-cause	hospitalization	rate	(number	

of	hospitalizations	per	person-year).		

The	Poisson	distribution	is	typically	used	for	count	data		however,	we	decided	to	

apply	 a	 negative	 binomial	 regression	 because	 through	 the	 Poisson	 regression	

model,	the	variance	was	larger	than	the	mean		(called	overdispersion)	(28,29).	
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In	literature,	the	negative	binomial	distribution	is	presented	as	a	combination	of	

two	 distributions,	 giving	 a	 combined	 Poisson-gamma	 distribution	 (30).	 It	 is	

important	 to	 realize	 that	 this	 distribution	 is	 for	 discrete	 (integers)	 and	 non-

negative	data.		

As	 hospital	 admissions	were	 non-negative	 discrete	 numbers,	 and,	 hence,	were	

not	 normally	 distributed,	 we	 applied	 the	 generalized	 linear	 model	 (GLM)	 of	

negative	binomial	regression	(31)		

GLM-based	negative	binomial	models	are	presented	in	R	through	the	glm.nb	and	

negative.binomial	functions,	which	are	functions	in	the	MASS	package	(32).		

The	negative	binomial	 regression	model,	 used	 to	estimate	 the	 causal	 effect	on	

all-cause	hospitalization	rate	of	variations	for	long-term	PM2.5	exposure,	was:	

																																																				Yi	~	NG(µi	,k)	,	i=	1,2…,n																														(Equation	4)	

																																																		E(Yi)=	µi	and	var(Yi)=	µi	+		
-./
0 																							(Equation	5)	

																																											log(µi)=	log(Ni)+	α0	+β1Xi1	+	…	+	βqXiq																	(Equation	6)	

where	 Yi	 and	 Ni	 were	 the	 number	 of	 hospitalizations	 and	 the	 size	 of	 the	

population	 at	 risk,	 as	 an	 offset,	 for	 the	 ith	 zip	 code.	 In	 the	 negative	 binomial	

model,	µ	is	the	mean	and	k	is	the	dispersion	parameter	(31).	This	model	included	

an	 offset	 of	 the	 natural	 logarithm	 of	 the	 number	 of	 people	 at	 risk	 in	 that	 zip	

code,	taken	to	be	the	total	number	of	Medicare	enrollees	for	that	zip	code	in	the	

year	2013.	We	both	fitted	models	with	just	PM2.5	concentrations	as	explanatory	

predictors,	 and	adjusted	 for	 all	 the	 variables	 in	order	 to	eliminate	any	 residual	

confounds	not	accommodated	by	matching	methods	and	to	 improve	efficiency.	
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A	 key	 point	 in	 terms	 of	 matching	 methods	 is	 that	 they	 are	 not	 applied	 to	

“compete”	 with	 linear	 regression	 adjustments.	 On	 the	 contrary,	 it	 has	 been	

demonstrated	 that	 the	 two	methods	work	 best	 in	 combination	 (22).	 	 Through	

this	 “double	 robustness,”	we	wanted	 the	 exposure	 effect	 estimates	 to	 be	 less	

sensitive	 to	 particular	 outcome	 model	 specifications	 (27).	 	 The	 results	 were	

expressed	as	a	rate	ratio	(RR)	estimate.	All	statistical	tests	were	conducted	using	

an	 α	 level	 of	 0.05	 and	 95%	 CIs	 were	 utilized	 to	 measure	 precision.	 Statistical	

analysis	was	performed	with	R	Statistical	software,	version	3.3.2	(33).	The	R	code	

used	during	the	statistical	analysis	is	shown	as	Supplementary	material.		
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4. RESULTS	
	

In	 this	 study,	 the	 overall	 goal	 was	 to	 estimate	 the	 causal	 effect	 of	 long-term	

exposure	to	low	levels	of	PM2.5.	For	our	analysis,	data	were	considered	at	the	zip	

code	level,	therefore,	for	each	zip	code,	we	had	measures	of	long-term	PM2.5,	all-

cause	 hospitalization	 rate	 and	 demographic	 and	 socioeconomic	 characteristics.	

The	final	dataset	contained	5740	zip	codes,	located	as	depicted	in	Figure	3,	with	

an	indication	of	PM2.5	concentrations.		

	

Figure	3.	Locations	of	all	5740	zip	codes	available	for	the	analysis	with	average	exposure	to	PM2.5	levels	in	
the	year	2013.	

	

The	 median	 of	 PM2.5	was	 8.99	 μg/m3	 (range	 3.50–22.30	 μg/m3)	 in	 the	 overall	

sample,	in	addition	95.6%	of	our	zip	codes	were	designated	as	“attainment”	for	

PM2.5	levels	 according	 to	 the	 National	 Ambient	 Air	 Quality	 Standards	 (NAAQS)	

(set	to	12	μg/m3).		
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4.1 ONE	SAMPLE	

After	we	divided	our	sample	into	two	different	groups	based	on	PM2.5	levels	(cut-

off	9	μg/m3),	we	identified	the	potential	confounders	as	shown	in	Figure	4.			

Section	A	shows	the	standardized	mean	difference	(SMD)	between	the	zip	codes	

with	PM2.5	levels	 <9	μg/m3	and	 those	with	higher	 levels.	While,	 section	B	 show	

the	correlation	with	the	outcome.			

	

Figure	4.	Potential	confounders:	section	A	shows	the	standardized	mean	difference	(SMD)	for	the	full	set	
of	variables.	Section	B	visualizes	the	correlation	of	our	variables	with	the	outcome;	in	this	section	those	
turned	out	to	be	correlated	with	the	outcome	were	highlighted	with	a	dot.	For	both	A	and	B,	we	used	an	
absolute	cutoff	>0.10	to	determine	variables	that	were	unbalanced	and	correlated	with	the	outcome.	

	

Those	 variables	 turned	 out	 to	 be	 unbalanced	 in	 regard	 to	 the	 exposure	 and	

correlated	with	outcomes,	 thereby	being	 considered	potential	 confounders.	All	

these	variables	were	used	in	the	next	step	when	we	matched	the	two	sets	of	zip	
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codes	with	respect	to	all	the	measured	potential	confounders.	We	were	satisfied	

when	we	 reached	 the	 balance	 between	 the	 “exposed”	 and	 “unexposed”	 units	

regarding	the	identified	potential	confounders	as	shown	in	Figure	5.	

	

Figure	5.	Balance	of	the	identified	potential	confounders	after	the	application	of	the	employed	matching	
methods.	 The	 identified	 potential	 confounders	were	 variables	 that	 prior	 to	matching	were	 unbalanced	
(SMD	³	0.10)	and	correlated	with	outcome	(highlighted	with	correlation	coefficient	in	cells).		

With	 regards	 to	unbalanced	 sample	analysis,	we	meant	 the	analysis	 conducted	

with	 the	 sample	before	application	of	matching	methods.	On	 the	contrary,	 the	

balanced	 sample	 analysis	 refers	 to	 the	 analysis	 applied	 to	 the	 sample	 after	

matching	methods.		The	results	of	negative	binomial	models	are	shown	in	table	

1.			
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Table	1.	Results	of	negative	binomial	regressions	with	ONE	SAMPLE	design.	

	

As	mentioned	above,	we	demonstrated	 that	matching	methods	work	better	 in	

synergy	with	linear	regressions.	Actually,	we	estimated	that	increasing	long-term	

exposure	 to	 PM2.5	 by	 1	 μg/m3	 causally	 increases	 all-cause	 admissions	 by	 0.6%	

(95%	CI	=	0.3%,	0.9%)	and	0.4%	(95%	CI	=	0%,	0.8%),	with	Nearest-neighbor	and	

Mahalanobis	distance	matching	methods	respectively,	when	we	adjusted	for	all	

the	variables.		

The	analysis	of	balanced	sample	with	only	PM2.5	as	explanatory	variable,	showed	

a	 lower	 magnitude	 of	 the	 effect,	 probably	 due	 to	 the	 residual	 of	 some	

confounds.	 As	 consequence,	 we	 decided	 to	 restrict	 the	 levels	 of	 PM2.5	

(“RESTRICTED	 SAMPLES”)	 in	 order	 to	 eliminate	 any	 residual	 confounds	 not	

accommodated	with	a	cut-off	9	μg/m3	of		exposure	and	to	improve	efficiency	in	

our	estimates.		

	

	

	 	 UNBALANCED	SAMPLE	ANALYSIS	

	 	 Only	PM2.5	as	explanatory	variables	 PM2.5	+	all	variables	as	covariates	

	
PM2.5	μg/m

3		

(range)	
RR	 95%	CI	 p-value	 RR	 95%	CI	 p-value	

One	sample	

(n=5740)	
3.50-22.30	 1.007	 1.003-1.011	 0.0002	 1.007	 1.004-1.010	 <0.0001	

	 	 BALANCED	SAMPLE	ANALYSIS	

	 	 Only	PM2.5	as	explanatory	variables	 PM2.5	+	all	variables	as	covariates	

	
PM2.5	μg/m

3		

(range)	
RR	 95%	CI	 p-value	 RR	 95%	CI	 p-value	

Nearest-neighbor	

(n=4478)	
3.50-22.30	 0.996	 0.992-1.001	 0.0673	 1.006	 1.003-1.009	 <0.0001	

Mahalanobis	

distance	(n=3072)	
3.50-22.30	 0.995	 0.989-0.999	 0.0354	 1.004	 1.000-1.008	 0.0472	
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4.2 RESTRICTED	SAMPLES	

After	 we	 divided	 our	 sample	 into	 ten	 different	 bins	 based	 on	 PM2.5	levels,	 we	

identified	the	potential	confounders	for	consecutive	deciles	of	the	exposure	level	

distribution	 (Experiment).	 As	 Figure	 6	 portrays,	 at	 different	 levels	 of	 PM2.5	

exposure	we	had	different	sets	of	potential	confounders.		

	

Exp1 (3.5-7.83μg/m3) Exp2 (7.84-8.65μg/m3) Exp3 (8.66-9.36μg/m3) Exp4 (9.37-10.29μg/m3) Exp5 (10.3-22.3μg/m3)
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Figure	6.	Section	A	shows	the	standardized	mean	difference	(SMD)	for	the	full	set	of	variables,	 for	each	
experiment,	 between	 the	 zip	 codes	 identified	 as	 “exposed”	 and	 those	 identified	 as	 “unexposed”.	 B	
visualizes	 the	 correlation	 of	 our	 variables	with	 the	 outcomes.	 For	 both	 A	 and	 B,	we	 used	 an	 absolute	
cutoff	>0.10	to	determine	variables	that	were	unbalanced	and	correlated	with	the	outcome.	 In	B,	those	
that	turned	out	to	be	correlated	with	the	outcome	were	highlighted	with	a	dot.	

	

Section	 A	 shows	 the	 standardized	 mean	 difference	 (SMD)	 in	 the	 unadjusted	

experiments	between	the	zip	codes	coded	as	“exposed”	and	those	identified	as	

“unexposed”.	It	is	straightforward	to	understand	that	at	different	exposure	levels	

to	PM2.5,	we	had	variables	that	were	unbalanced.	The	same	was	also	valid	for	the	

correlation	section	(B).		

Therefore,	 for	each	experiment	 (T	=	0,	T	=	1),	 those	variables	 turned	out	 to	be	

unbalanced	 in	 regard	 to	 the	 exposure	 and	 correlated	 with	 outcomes,	 thereby	

being	 considered	 potential	 confounders.	 All	 these	 variables	 were	 used	 in	 the	
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next	 step	when	we	matched	 the	 two	 sets	 of	 zip	 codes	with	 respect	 to	 all	 the	

measured	 potential	 confounders.	 We	 were	 satisfied	 when	 we	 reached	 the	

balance	 between	 the	 “exposed”	 and	 “unexposed”	 units,	 in	 each	 experiment,	

regarding	the	identified	potential	confounders	as	shown	in	Figure	7.				

	

Figure	 7.	 Balance	 of	 the	 identified	 potential	 confounders	 for	 each	 experiment	 after	 application	 of	 the	
employed	matching	methods.	The	identified	potential	confounders	were	variables	that	prior	to	matching	
were	 unbalanced	 (standardized	 mean	 difference	 (SMD)	 ≥	 0.1)	 and	 correlated	 with	 outcomes	 (were	
highlighted	with	correlation	coefficient	in	cells).	

	

From	 the	 aforementioned	 SMD	 graphing	 in	 Figure	 7,	 we	 concluded	 that	 the	

matching	methods	 did	 satisfy	 balancing	 the	 covariates	 between	 the	 “exposed”	

and	 “unexposed”	 zip	 codes.	 Figure	 8	 outlines	 the	 dimensions	 for	 each	

experiment	before	and	after	application	of	the	employed	matching	methods.		
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Figure	 8.	 Dimension	 of	 the	 sample	 for	 each	 experiment	 before	 and	 after	 application	 of	 the	 employed	
matching	methods.	

	

The	results	of	the	fitted	model	are	shown	in	the	following	table	(Table	2).	As	for	

“ONE	SAMPLE”	design,	also	for	the	“RESTRICTED	SAMPLES”	design	with	regards	

to	unbalanced	samples	analysis,	we	meant	the	analysis	conducted	with	the	five	

experimental	 samples	 before	 application	 of	 the	 employed	 matching	 methods,	

while	 the	 balanced	 samples	 analysis	 with	 the	 five	 experimental	 samples	 after	

employing	matching	methods.			

When	we	applied	Nearest-neighbor,	we	estimated	that	 ,even	 in	very	 low	 levels	

of	PM2.5,	 increasing	 long-term	exposure	to	PM2.5	by	1	μg/m3	causally	 increases	

all-cause	admissions	by		6.2%	(95%	CI	=	3.8%,	8.7%)	,	9.2%	(95%	CI	=	1.9%,	6.9%),	

12%	(95%	CI	=	4.7%,	19.8%),	 in	Experiment	1	(PM2.5		3.50-7.83	μg/m3	),	2	(PM2.5		

7.84-8.65	μg/m3	),	4	(PM2.5		9.37-10.29	μg/m3	)	respectively,	while	on	the	contrary	
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in	 Experiment	 5	 (PM2.5	 10.30-22.30	 μg/m3	 )	 increasing	 long-term	 exposure	 to	

PM2.5	by	 1	 μg/m3	 	 causally	 decreases	 all-cause	 admissions	 by	 6.1%	 (95%CI	 =	 -

7.7%,	-4.4%).		

After	 employing	 Mahalanobis	 distance	 matching	 method	 we	 estimated	 that	

increasing	 long-term	 exposure	 to	 PM2.5	by	 1	 μg/m3	causally	 increases	 all-cause	

admissions	 by	 4.7%	 (95%CI	 =	 2.3%,	 7.1%),	 10.2%	 (95%CI	 =	 2.2%,	 18.9%)	 and	

16.1%	(95%CI	=	8.7%,	23.9%)	in	always	Experiment	1	(PM2.5		3.50-7.83	μg/m3	),	2	

(PM2.5	 	 7.84-8.65	 μg/m3	 ),	 4	 (PM2.5	 	 9.37-10.29	 μg/m3	 )	 respectively,	 while	 in	

Experiment	5	(PM2.5	10.30-22.30	μg/m3	)	causally	decreases	all-cause	admissions	

by	5%	(95%CI	=	-7.3%,	-2.6%).		

When	we	move	to	the	analysis	with	all	variables	as	covariates,	we	estimated	that	

increasing	 long-term	 exposure	 to	 PM2.5	by	 1	 μg/m3	causally	 increases	 all-cause	

admissions	by	3%	(95%CI	=	1.4%,	4.7%),	11.4%	(95%CI	=	5.6%,	17.5%)	and	7.6%	

(95%CI	=	3.1%,	12.2%)	 in	Experiment	1	(PM2.5		3.50-7.83	μg/m3	),	2	(PM2.5		7.84-

8.65	 μg/m3	),	 4	 (PM2.5	 	 9.37-10.29	 μg/m3	)	 respectively,	 while	 in	 Experiment	 5	

(PM2.5	 10.30-22.30	 μg/m3	 )	 causally	 decreases	 all-cause	 admissions	 by	 2.6%	

(95%CI	=	-3.7%,	-1.4%),	when	we	used	Nearest-neighbor	matched	samples.		

With	Mahalanobis	distance	matched	samples,	we	estimated	that	increasing	long-

term	 exposure	 to	 PM2.5	by	 1	 μg/m3	causally	 increases	 all-cause	 admissions	 by	

2.9%	(95%CI	=	1.2%,	4.6%),	13%	(95%CI	=	6.6%,	19.7%)	and	11.5%	(95%CI	=	6.6%,	

16.6%)	 in	Experiment	1	 (PM2.5		 3.50-7.83	μg/m3	),	2	 (PM2.5		 7.84-8.65	μg/m3	),	4	

(PM2.5		9.37-10.29	μg/m3	)	respectively,	while	in	Experiment	5	(PM2.5	10.30-22.30	

μg/m3	)	causally	decreases	all-cause	admissions	by	2.2%	(95%CI	=	-3.9%,	-0.5%).	



	

	
	

Table	2.	The	RR	from	the	negative	binomial	regressions	for	each	restricted	experiment	prior	and	after	applying	the	matching	methods.	

	 	
UNBALANCED	SAMPLES	ANALYSIS	

Only	PM2.5	as	explanatory	variables	 PM2.5	+	all	variables	as	covariates	
Experiment	 Exposure	PM2.5	μg/m3		

(range)	
RR	 95%CI	 p-value	 RR	 95%CI	 p-value	

Experiment	1	(n=1147)	 3.50	–	7.83	 1.061	 1.041-1.081	 <0.0001	 1.033	 1.018-1.048	 <0.0001	
Experiment	2	(n=1143)	 7.84	–	8.65	 1.073	 1.008-1.142	 0.027	 1.111	 1.056-1.168	 <0.0001	
Experiment	3	(n=1141)	 8.66	–	9.36	 1.123	 1.034-1.220	 0.0064	 0.964	 0.912-1.018	 0.2	
Experiment	4	(n=1157)	 9.37	–	10.29	 1.033	 0.973-1.10	 0.3	 1.099	 1.056-1.144	 <0.0001	
Experiment	5	(n=1152)	 10.30	–	22.3	 0.973	 0.965-0.982	 <0.0001	 0.991	 0.984-0.998	 0.0083	
	

	
	

BALANCED	SAMPLES	ANALYSIS	
	 	 Only	PM2.5	as	explanatory	variables	 PM2.5	+	all	variables	as	covariates	
	 Exposure	PM2.5	μg/m3		

(range)	 RR	 95%CI	 p-value	 RR	 95%CI	 p-value	

Nearest-neighbor	matching	
Experiment	1	(n=792)	 3.50	–	7.83	 1.062	 1.038-1.087	 <0.0001	 1.030	 1.014-1.047	 0.00031	
Experiment	2	(n=940)	 7.84	–	8.65	 1.092	 1.019-1.169	 0.013	 1.114	 1.056-1.175	 <0.0001	
Experiment	3	(n=762)	 8.66	–	9.36	 0.950	 0.861-1.049	 0.3	 0.963	 0.902-1.029	 0.3	
Experiment	4	(n=826)	 9.37	–	10.29	 1.120	 1.047-1.198	 0.001	 1.076	 1.031-1.122	 0.0007	
Experiment	5	(n=542)	 10.30	–	22.3	 0.939	 0.923-0.956	 <0.0001	 0.974	 0.963-0.986	 <0.0001	
Mahalanobis	distance	matching	
Experiment	1	(n=776)	 3.50	–	7.83	 1.047	 1.023-1.071	 <0.0001	 1.029	 1.012-1.046	 0.0008	
Experiment	2	(n=698)	 7.84	–	8.65	 1.102	 1.022-1.189	 0.012	 1.130	 1.066-1.197	 <0.0001	
Experiment	3	(n=724)	 8.66	–	9.36	 1.034	 0.937-1.141	 0.5	 1.014	 0.949-1.082	 0.7	
Experiment	4	(n=688)	 9.37	–	10.29	 1.161	 1.087-1.239	 <0.0001	 1.115	 1.066-1.166	 <0.0001	
Experiment	5	(n=328)	 10.30	–	22.3	 0.950	 0.927-0.974	 <0.0001	 0.978	 0.961-0.995	 0.011	



	

	
	

	To	be	able	to	compare	the	estimates	with	the	ones	of	“ONE	SAMPLE”	design,	we	

recombined	the	entire	dataset	with	the	5	restricted	matched	samples.		

The	 results	 of	 these	 new	 models	 are	 shown	 in	 Table	 3.	 We	 estimated	 that	

increasing	 long-term	 exposure	 to	 PM2.5	by	 1	 μg/m3	causally	 increases	 all-cause	

admissions	by	2.3%	(95%CI	=	1.7%,	2.9%)	and	by	3.6%	(95%CI	=	3%,	2.4%),	with	

Nearest-neighbor	 and	 Mahalanobis	 distance	 matching	 methods	 respectively	

when	we	added	just	exposure	as	explanatory	variable.		

While,	 in	 the	 analysis	 with	 all	 the	 variables	 as	 covariates,	 the	 causal	 effect	 of	

long-term	exposure	to	PM2.5	on	hospitalization	were	less	but	still	significant.		

Table	3.	The	results	of	the	negative	binomial	regressions	with	the	"recombined"	dataset.	

	

From	 the	 “RESTRICTED	 SAMPLES”	 design	 is	 easy	 to	 see	 that	 the	 relationship	

between	 exposure	 PM2.5	 and	 all-cause	 hospital	 admissions	 was	 not	 linear,	

probably	 this	was	 the	 reason	why	 in	 the	 “ONE	SAMPLE”	analysis,	 the	matched	

samples	were	not	able	to	get	the	causal	effect	of	exposure	on	all-cause	hospital	

admissions.	 Therefore,	 for	 the	 recombined	 samples,	we	approximated	a	 curve,	

drawing	 a	 natural	 cubic	 spline	 between	 our	 findings,	 to	 indicate	 the	 general,	

estimated	causal	effect	of	increasing	long-term	exposure	to	on	all-cause	hospital	

admissions,	 when	 PM2.5	 levels	 is	 below	 the	 National	 Ambient	 Air	 Quality	

	 	 Only	PM2.5	as	explanatory	variable	 PM2.5	+	all	variables	as	covariates	

	
PM2.5	μg/m

3		

(range)	
RR	 95%	CI	 p-value	 RR	 95%	CI	 p-value	

Nearest-neighbor	

(n=3862)	
3.50-22.30	 1.023	 1.017-1.029	 <0.0001	 1.006	 1.002-1.010	 0.0026	

Mahalanobis	

distance	(n=3214)	
3.50-22.30	 1.036	 1.030-1.024	 <0.0001	 1.014	 1.010-1.019	 <0.0001	
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Standards	 (NAAQS)	 (Figure	 9).	 Therefore,	we	 removed	 zip	 codes	with	 levels	 of	

PM2.5	above	12	μg/m3.	For	the	continuous	variable,	we	defined	4.	These	4	knots	

were	5th,	25th,	75th	and	95th	percentile	of	PM2.5.	

	

Figure	9.	Predicted	all-cause	hospital	admission	rate	(per	1000	person-year)	with	a	natural	cubic	spline.		
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5. DISCUSSION	

	

Our	 approach	was	 rooted	 in	 potential	 outcomes	methods	 for	 causal	 inference	

that	 consisted	 of	 a	 design	 phase	 that	 sought	 using	 observational	 data	 to	

approximate	 the	 design	 of	 randomized	 experiments,	 where	 “exposed”	 (T	 =	 1)	

and	 “unexposed”	 (T	 =	 0)	 units	 were	 balanced	 with	 respect	 to	 observed	

confounders;	and	an	outcome	analysis	phase	where	the	causal	effects	of	adverse	

health	effects	to	air	pollution	exposure	were	estimated.			

We	 have	 constructed	 these	 hypothetical	 randomized	 designs	 to	 address	 the	

following	 question:	 does	 increasing	 low	 level	 of	 PM2.5	 (below	 the	 12	 μg/m3)	

causally	increase	hospitalizations?		

To	the	best	of	our	knowledge,	this	is	the	first	epidemiological	study	that	provides	

robust	 evidence	 on	 the	 adverse	 health	 effects	 of	 low	 long-term	 exposure	 to	

PM2.5	 (2	 years	 average)	 under	 the	 non-confounded	 assumption	 by	 employing	

matching	methods	to	estimate	causal	effects.		

In	 our	 context,	 confounders	 were	 factors	 that	 differed	 between	 exposed	 and	

unexposed	groups	that	also	had	a	relationship	with	hospitalization	outcome.	As	

we	 reported	 (Figure	 6),	 observed	 confounders	 widely	 differed	 depending	 on	

PM2.5	level.	Therefore,	at	each	shift	in	long-term	exposure	to	PM2.5,	we	identified	

different	 confounders.	 	 Our	 matching	 method	 approach	 was	 able	 to	 group	

exposed	 and	 unexposed	 zip	 codes	 that	 were	 most	 similar	 on	 the	 basis	 of	

potential	confounders	and	also	estimate	the	association	of	being	exposed	to	low	

levels	 of	 PM2.5	 on	 all-cause	 hospital	 admissions	 in	 the	 causal	 inference	
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framework.		Comparing	the	two	matching	methods,	the	Nearest-neighbor	was	a	

bit	better	than	Mahalanobis	distance	because	it	pruned	less	observations	and	it	

reached	the	balance	faster	than	the	other	method.		

We	found	that,	even	in	very	low	levels	of	PM2.5,	increasing	long-term	exposure	

to	 PM2.5	by	 1	 μg/m3	 causally	 increased	 all-cause	 admissions	 by	 6.2%	 (95%	CI	 =	

3.8%,	 8.7%)	 ,	 9.2%	 (95%	 CI	 =	 1.9%,	 6.9%),	 12%	 (95%	 CI	 =	 4.7%,	 19.8%),	 in	

Experiment	1	(PM2.5		3.50-7.83	μg/m3	),	2	(PM2.5		7.84-8.65	μg/m3	),	4	(PM2.5		9.37-

10.29	μg/m3	)	respectively	after	we	applied	nearest-neighbor	matching.	

After	 employing	 Mahalanobis	 distance	 matching	 method	 we	 estimated	 that	

increasing	 long-term	 exposure	 to	 PM2.5	by	 1	 μg/m3	causally	 increased	 all-cause	

admissions	 by	 4.7%	 (95%CI	 =	 2.3%,	 7.1%),	 10.2%	 (95%CI	 =	 2.2%,	 18.9%)	 and	

16.1%	(95%CI	=	8.7%,	23.9%)	in	always	Experiment	1-2-4	respectively.		

Also	 the	 analysis	with	 all	 variables	 as	 covariates,	 showed	 that	 increasing	 long-

term	exposure	to	PM2.5	by	1	μg/m3	causally	increases	all-cause	admissions.		

Our	results	were	consistent	with	Makar	et.	al.	study	(12),	where	they	found		that	

increasing	long-term	exposure	to	PM2.5		from	levels	lower	than	12	μg/m3	to	levels	

higher	 than	 12	 μg/m3	 increased	 all-cause	 admissions.	 They	 also	 found	 a	 15%	

(95%	 CI:	 8%,	 23%)	 increase	 in	 hospitalization	 rate	 when	 PM2.5	 increased	 from	

levels	below	8	μg/m3	to	levels	above	8	μg/m3.		

Generally,	 several	 studies	 continue	 to	 demonstrate	 evidence	 of	 an	 association	

between	 long-term	 exposure	 to	 PM2.5	 and	 cardiovascular	 and	 respiratory	

morbidity.	
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Kloog	 and	 colleagues	 (34)	 used	 satellite-derived	 aerosol	 optical	 depth	 (AOD)	

measurements	 to	 predict	 PM2.5	 concentrations	 and	 reported	 a	 4.22%	 (95%	 CI:	

1.06,4.75)	increase	in	respiratory	hospital	admissions	associated	with	a	10	µg/m3	

rise	 in	 long-term	 PM2.5	 concentration.	 Likewise,	 Neupane	 et	 al.	 (35)	 observed	

that	long-term	exposure	to	PM2.5	was	linked	with	hospitalization	for	community-

acquired	 pneumonia	 (OR:	 13.64,	 95%	 CI:	 1.79,101.01),	 while	 Meng	 et	 al.	 (36)	

noted	associations	between	annual	average	concentrations	of	PM2.5	and	asthma-

related	emergency	department	visits	and	asthma-related	hospitalizations.	On	the	

contrary,	Karr	et	al.	evaluated	exposure	to	PM2.5	over	an	 infant’s	 lifetime	(0-12	

months)	 and	 did	 not	 observe	 an	 association	 between	 PM2.5	 and	 bronchiolitis	

hospitalizations.	

Other	 studies	 (37,38)	 	 have	 reported	 positive	 association	 between	 short-term	

exposure	to	air	pollution	and	cause-specific	hospital	admissions.		

Despite	 robustness	 of	 our	 method	 (specifically	 designed	 to	 balance	 observed	

confounders),	 the	 possibility	 of	 residual	 (such	 as	 individual	 level:	 “smoking	

status”)	 and	 unobserved	 confounding	 remained	 a	 threat	 to	 the	 validity	 of	 our	

work.	 Furthermore,	 having	 used	 the	 Medicare	 billing	 claims,	 where	 Medicare	

enrollees	are	≥	65	years	of	age,	was	not	a	convenient	sample.		

In	light	of	our	limitations,	our	findings	should	be	viewed	as	preliminary.	Here,	we	

have	 supplied	 the	 basis	 for	 further	 exploration	 in	 large	 epidemiologic	 studies	

with	more	detailed	information	on	potential	county-level	confounders.		

In	 conclusion,	 we	 initially	 demonstrated	 that	 at	 each	 shift	 of	 low	 long-term	

exposure	 to	 PM2.5,	 there	 were	 different	 confounders.	 Our	 findings	 show	 that	
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long-term	 exposure	 to	 PM2.5	 were	 causally	 associated	 with	 all-cause	

hospitalizations,	even	for	exposure	levels	not	exceeding	the	U.S.	EPA	standards,	

suggest	that	adverse	health	effects	occur	at	low	levels	of	fine	particles.		
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Supplementary	material 

List	of	U.S	Census	demographic	and	SES	variables	

	 	
PctUrban	 %	Urban	population	
PctInUAs	 %	In	Urbanized	Areas	
PctInUCs	 %	In	Urbanized	Clusters	
PctWhite	 %	White	alone	
PctBlack	 %	Black	alone	
PctHisp	 %	Hispanic	

PctHighSchool	 %	High	School	Grad	or	GED	
MedianHHinc	 Median	household	income	

PctPoor	 %	Persons	below	poverty	
PctFemale	 %	Female	

PctOccupied	 %	Occupied	Housing	units	
PctMovedIn5	 %	Moved	in	last	5	years	

MedianHValue	 Median	Home	value	
PopPerSQM	 Person	per	Sq	mile	

TotPop	 Total	population		
Urban	 Urban	population	
InUAs	 In	Urbanized	Areas	
InUCs	 In	Urbanized	Clusters	
Rural	 Rural	population	

White1	 White	alone	
Black1	 Black	alone	
HispPop	 Hispanic	

HighSchool	 High	School	Grad	or	GED	
Over25	 Over	25	years	old	
Poor	 Poor	persons	

PovUniverse	 Persons	for	whom	poverty	status	is	determined	
Female	 Female	
TotHUs	 Total	housing	units	

UrbanHUs	 Urban	Housing	units	
RuralHUs	 Rural	Housing	units	
Occupied	 Occupied	housing	units	
MovedIn5	 Moved	in	last	5	years	

avgASOStemp	 Average	temperature	in	Fahrenheit	
avgASOSdew	 Average	Dew	Point	in	Fahrenheit	
avgASOSalti	 Average	Pressure	altimeter	in	inches	
avgASOSrelh	 Average	Relative	Humidity	in	%	
Mean_age	 Average	age	

Female_rate	 Female	
White_rate	 White	
Black_rate	 Black	
Dual_rate	 Dual-eligible	beneficiaries	
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R	Code	
	
final.imputed<-read.csv(file.choose(), header=T, sep=",",dec=".",  
na.strings="NA") 
dim(final.imputed)  
str(final.imputed$zipcode_R) 
names(final.imputed) 
library(zipcode) 
final.imputed$zipcode_R<-clean.zipcodes(final.imputed$zipcode_R) 
str(final.imputed$zipcode_R) 
 
 
OVERALL<-final.imputed[,-c(16,28,29,50,52:54,59,67:71)] 
names(OVERALL) 
all.variables<-names(OVERALL) 
all.variables 
variables<-all.variables[-c(1,16:28,47,56,58)] 
length(variables)  
variables 
 
 
############################################################################# 
################################DESIGN PHASE################################# 
############################################################################ 
 
 
########################## 
####ONE SAMPLE SAMPLE #### 
########################## 
 
one.sample<-OVERALL 
one.sample$treatment<-ifelse(one.sample$avgPM<9,0,1) 
summary(one.sample) 
table(one.sample$treatment) 
 
 
ASD.table<-function(dat, cutoff,index){ 
  if(is.numeric(index)){ 
    variables<-names(dat)[index] 
  } 
  else{ 
    position<-which(colnames(dat) %in% index) 
  } 
  variables<-names(dat)[position] 
  library(tableone) 
  tab<- CreateTableOne(vars = variables, strata = "treatment", data = dat, 
test = FALSE) 
  OUT<-round(ExtractSmd(tab),3) 
  B<-names(OUT[OUT>=cutoff]) 
  C<-list(OUT,B) 
  C 
} 
tab.RAW<-ASD.table(one.sample,0.10,variables) 
tab.RAW 
umbalanced.raw<-as.vector(tab.RAW[[2]]) 
length(umbalanced.raw) 
 
correlated.with.y<-function(dat,var1,var2,cutoff){ 
   
  if(is.numeric(var1)){ 
    var1<-names(dat)[var1]} 
  else{var1<-var1} 
  if(is.numeric(var2)){ 
    var2<-names(dat)[var2]} 
  else{var2<-var2} 



50	
	

  corr.mat<-cor(dat[,var1],dat[,var2]) 
  library(reshape) 
  dt<-melt(corr.mat) 
  sel<-dt[abs(dt[,3])>cutoff,] 
  variables<-sel$X2 
  final<-list(corr.mat,sel,variables) 
  return(final) 
} 
 
correlated.raw<-correlated.with.y(one.sample,"Tot_num.All.cause.admissions", 
variables,0.10) 
correlated.raw<-as.vector(correlated.raw[[3]]) 
length(correlated.raw)#24 
 
names(correlated.raw[[1]][1,]) 
 
potential.confounder<-function(unbalanced,correlated.y){ 
  common<-intersect(unbalanced, correlated.y) 
  diff1<-setdiff(unbalanced,common) 
  diff2<-setdiff(correlated.y, common) 
  tomatch<-c(common, diff1,diff2) 
  tomatch 
} 
 
potential_confounder<-potential.confounder(umbalanced.raw, correlated.raw) 
potential_confounder 
 
collinearity<-function(dat,setvar,cutoff){ 
  corr.mat<-cor(dat[,setvar],dat[,setvar]) 
  dt<-melt(corr.mat) 
  sel<-dt[abs(dt[,3])>cutoff,] 
  sel1<-sel[-which(sel[,1]==sel[,2]),] 
  nosel<-setdiff(setvar,sel1[,1]) 
  sel2<-sel1[duplicated(sel1[,3]),] 
  sel3<-setdiff(sel2[,1],sel2[,2]) 
  tomatch<-c(nosel,sel3) 
  # 
  final<-list("Correlation matrix"=corr.mat, 
              "Correlation matrix of selected variables"=sel1, 
              "Variables selected"=sel3,"Variables to match"=tomatch) 
  return(final) 
} 
 
tomatch<-collinearity(one.sample,potential_confounder,0.7) 
tomatch<-tomatch$`Variables to match` 
length(tomatch) 
 
library(Matching) 
library(MatchIt) 
nearest_neighbor<-function(dat, index.y,index.x, replace,caliper){ 
  if(is.numeric(index.x)){ 
    variables<-colnames(dat)[index.x] } 
  else{position<-which(colnames(dat) %in% index.x)} 
  variables<-names(dat)[position] 
  if(is.numeric(index.y)){ 
    treatment<-colnames(dat)[index.y]} 
  else{position<-which(colnames(dat) %in% index.y)} 
  treatment<-names(dat)[position] 
  frml<-as.formula(paste(treatment, paste(variables,sep=" ", collapse=" 
+"),sep="~")) 
  ps<-matchit(frml  ,dat,method="nearest",distance="logit",  
              reestimate =TRUE, replace=replace, caliper=caliper) 
  data.nn<-match.data(ps) 
} 
 
mahalanobis.match<-function(dat, index.y, index.x, replace, caliper){ 
  if(is.numeric(index.x)){ 
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    variables<-colnames(dat)[index.x]} 
  else{position<-which(colnames(dat) %in% index.x)} 
  variables<-names(dat)[position] 
  if(is.numeric(index.y)){ 
    treatment<-colnames(dat)[index.y]} 
  else{position<-which(colnames(dat) %in% index.y)} 
  treatment<-names(dat)[position] 
  frml<-as.formula(paste(treatment, paste(variables, sep=" ", collapse=" 
+"),sep="~")) 
  psModel.1 <- glm(frml,family  = binomial(link = "logit"),data    = dat) 
  ## Predicted probability of being assigned to TREATED 
  dat$pTreated <- predict(psModel.1, type = "response") 
  ## Predicted probability of being assigned to CONTROL 
  dat$pControl <- 1 - dat$pTreated 
   
  ## Predicted probability of being assigned to the 
  ## treatment actually assigned (either TREATED or CONTROL) 
  dat$pAssign <- NA 
  dat$pAssign[dat[index.y] == "Treated"]    <- dat$pTreated[dat[index.y]   == 
"Treated"] 
  dat$pAssign[dat[index.y]  == "Control"]    <- 
dat$pControl[dat[index.y]   == "Control"] 
   
  ## Smaller of pTREATED vs pCONTROL for matching weight 
  dat$pMin <- pmin(dat$pTreated, dat$pControl) 
  listMatch.1 <- Match(Tr       = (dat[index.y] == "1"),      # Need to be in 
0,1 
                       ## logit of PS,i.e., log(PS/(1-PS)) as matching scale 
                       X        = log(dat$pTreated / dat$pControl), 
                       ## 1:1 matching 
                       M        = 1, 
                       ## caliper = 0.2 * SD(logit(PS)) 
                       caliper  = caliper, 
                       replace  = replace, 
                       ties     = FALSE, 
                       version  = "fast", 
                       Weight = 2) 
  ## Extract matched data 
  dati.Matched.1<- 
dat[unlist(listMatch.1[c("index.treated","index.control")]), ] 
} 
 
 
#####MATCHING#### 
 
#NEAREST NEIGHBOR 
one.sample.near<-
nearest_neighbor(one.sample,"treatment",c(one.sample.tomatch,"avgASOSalti"),F
ALSE,0.02) 
tab.NEAR<-ASD.table(one.sample.near,0.10,variables) 
tab.NEAR 
dim(one.sample.near) 
table(one.sample.near$treatment) 
 
#MAHALANOBIS MATCHING 
one.sample.maha<-mahalanobis.match(one.sample,"treatment", 
c(one.sample.tomatch,"avgASOStemp","avgASOSalti","Dual_rate"),FALSE,0.001) 
tab.MAHA<-ASD.table(one.sample.maha,0.10,variables) 
tab.MAHA 
dim(one.sample.maha) 
table(one.sample.maha$treatment) 
 
 
 
 
 
create.bin<-function(dat,column,upper.cutoff,lower.cutoff){ 
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  if(is.na(lower.cutoff)){ 
    bin.1<-subset(dat,dat[,column]<upper.cutoff) 
  } 
  else { 
    if(is.na(upper.cutoff)){ 
      bin.3<-subset(dat,dat[,column]>=lower.cutoff) 
    } 
    else{ 
      bin.2<- subset(dat,dat[,column]<upper.cutoff & 
dat[,column]>=lower.cutoff) 
    } 
  } 
  if(is.na(lower.cutoff)){ 
    return(bin.1) 
  } 
  else{ 
    if(is.na(upper.cutoff)){ 
      return(bin.3) 
    } 
    else{ 
      return(bin.2)  
    } 
  } 
} 
 
Q<-quantile(OVERALL$avgPM, probs = seq(0,1,0.10)) 
Q 
bin1<-create.bin(OVERALL,"avgPM",Q[[2]],NA) 
dim(bin1)  
bin2<-create.bin(OVERALL,"avgPM",Q[[3]],Q[[2]]) 
dim(bin2)  
bin3<-create.bin(OVERALL,"avgPM",Q[[4]],Q[[3]]) 
dim(bin3)  
bin4<-create.bin(OVERALL,"avgPM",Q[[5]],Q[[4]]) 
dim(bin4)  
bin5<-create.bin(OVERALL,"avgPM",Q[[6]],Q[[5]]) 
dim(bin5)  
bin6<-create.bin(OVERALL,"avgPM",Q[[7]],Q[[6]]) 
dim(bin6)  
bin7<-create.bin(OVERALL,"avgPM",Q[[8]],Q[[7]]) 
dim(bin7)  
bin8<-create.bin(OVERALL,"avgPM",Q[[9]],Q[[8]]) 
dim(bin8)  
bin9<-create.bin(OVERALL,"avgPM",Q[[10]],Q[[9]]) 
dim(bin9)  
bin10<-create.bin(OVERALL,"avgPM",NA,Q[[10]]) 
dim(bin10) 
 
joint_data<-function(subset.1, subset.2) { 
  
  subset.1<-cbind(subset.1, treatment=0) 
  subset.2<-cbind(subset.2, treatment=1) 
  final<-rbind(subset.1, subset.2) 
  return(final) 
} 
 
 
dati.1<-joint_data(bin1,bin2) 
length(unique(dati.1$zipcode)) 
 
 
dati.3<-joint_data(bin3,bin4) 
length(unique(dati.3$zipcode)) 
 
 
dati.5<-joint_data(bin5,bin6) 
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length(unique(dati.5$zipcode)) 
 
dati.7<-joint_data(bin7,bin8) 
length(unique(dati.7$zipcode))  
 
dati.9<-joint_data(bin9,bin10) 
length(unique(dati.9$zipcode))  
 
 
 
 
dati.1$Experiment<-rep("Exp1",times=dim(dati.1)[1]) 
dati.3$Experiment<-rep("Exp3",times=dim(dati.3)[1]) 
dati.5$Experiment<-rep("Exp5",times=dim(dati.5)[1]) 
dati.7$Experiment<-rep("Exp7",times=dim(dati.7)[1]) 
dati.9$Experiment<-rep("Exp9",times=dim(dati.9)[1]) 
 
dati.1$bin.name<-ifelse(dati.1$treatment==0,1,2) 
dati.3$bin.name<-ifelse(dati.3$treatment==0,3,4) 
dati.5$bin.name<-ifelse(dati.5$treatment==0,5,6) 
dati.7$bin.name<-ifelse(dati.7$treatment==0,7,8) 
dati.9$bin.name<-ifelse(dati.9$treatment==0,9,10) 
 
 
 
 
 
############################################## 
########## EXPERIMENTS SAMPLE ############### 
############################################# 
#Umbalanced variables 
tab.RAW.exp<-lapply(list(dati.1,dati.3,dati.5,dati.7,dati.9),function(x) 
ASD.table(x, 0.10, variables)) 
 
umbalanced.raw.1<-tab.RAW.exp[[1]][[2]] 
umbalanced.raw.3<-tab.RAW.exp[[3]][[2]] 
umbalanced.raw.5<-tab.RAW.exp[[5]][[2]] 
umbalanced.raw.7<-tab.RAW.exp[[7]][[2]] 
umbalanced.raw.9<-tab.RAW.exp[[9]][[2]] 
 
 
#Correlated with y 
correlated.raw.exp<-
lapply(list(dati.1,dati.3,dati.5,dati.7,dati.9),function(x)  
correlated.with.y(x,"Tot_num.All.cause.admissions",variables,0.10)) 
 
correlated.raw.1<-
as.vector(correlated.raw.exp[[1]][[3]]);length(correlated.raw.1) 
correlated.raw.3<-
as.vector(correlated.raw.exp[[3]][[3]]);length(correlated.raw.3) 
correlated.raw.5<-
as.vector(correlated.raw.exp[[5]][[3]]);length(correlated.raw.5) 
correlated.raw.7<-
as.vector(correlated.raw.exp[[7]][[3]]);length(correlated.raw.7) 
correlated.raw.9<-
as.vector(correlated.raw.exp[[9]][[3]]);length(correlated.raw.9) 
 
 
 
#Selection of variables unbalanced and correlated with y 
potential.1<-potential.confounder(umbalanced.raw.1, correlated.raw.1) 
potential.3<-potential.confounder(umbalanced.raw.3, correlated.raw.3) 
potential.5<-potential.confounder(umbalanced.raw.5, correlated.raw.5) 
potential.7<-potential.confounder(umbalanced.raw.7, correlated.raw.7) 
potential.9<-potential.confounder(umbalanced.raw.9, correlated.raw.9) 
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#Selection of variables to match no collinearity 
tomatch.1<-collinearity(dati.1,potential.1,0.7) 
tomatch.1<-tomatch.1$`Variables to match` 
tomatch.3<-collinearity(dati.3,potential.3,0.7) 
tomatch.3<-tomatch.3$`Variables to match` 
tomatch.5<-collinearity(dati.5,potential.5,0.7) 
tomatch.5<-tomatch.5$`Variables to match` 
tomatch.7<-collinearity(dati.7,potential.7,0.7) 
tomatch.7<-tomatch.7$`Variables to match` 
tomatch.9<-collinearity(dati.9,potential.9,0.7) 
tomatch.9<-tomatch.9$`Variables to match` 
 
Invert.treatment<-function(dat){ 
  treatment2<-ifelse(dat$treatment==1,0,1) 
} 
library(MatchIt) 
library(Matching) 
 
#EXP1 
table(dati.1$treatment) 
dati.1$treatment<-Invert.treatment(dati.1) 
exp.1.nearest<-
nearest_neighbor(dati.1,"treatment",c(tomatch.1,"PctWhite","Black_rate"),FALS
E, 0.2) 
tabNEAREST.1<-ASD.table(exp.1.nearest,0.10,variables) 
tabNEAREST.1 
dim(exp.1.nearest) 
table(exp.1.nearest$treatment) 
 
exp.1.maha<-
mahalanobis.match(dati.1,"treatment",c(tomatch.1,"PctWhite","Black_rate"),FAL
SE, 0.8) 
tabMAHALANOBIS.1<-ASD.table(exp.1.maha, 0.10,variables) 
tabMAHALANOBIS.1 
dim(exp.1.maha) 
table(exp.1.maha$treatment) 
 
 
#EXP3 
exp.3.nearest<-nearest_neighbor(dati.3,"treatment",tomatch.3,FALSE, 0.008) 
tabNEAREST.3<-ASD.table(exp.3.nearest,0.10,variables) 
tabNEAREST.3 
dim(exp.3.nearest) 
table(exp.3.nearest$treatment) 
 
exp.3.maha<-mahalanobis.match(dati.3,"treatment",tomatch.3,FALSE, 0.8) 
tabMAHALANOBIS.3<-ASD.table(exp.3.maha, 0.10,variables) 
tabMAHALANOBIS.3 
dim(exp.3.maha) 
table(exp.3.maha$treatment) 
 
 
#EXP5 
exp.5.nearest<-nearest_neighbor(dati.5,"treatment",tomatch.5,FALSE, 0.02) 
tabNEAREST.5<-ASD.table(exp.5.nearest,0.10,variables) 
tabNEAREST.5 
dim(exp.5.nearest) 
table(exp.5.nearest$treatment) 
 
exp.5.maha<-mahalanobis.match(dati.5,"treatment",c(potential.5),FALSE, 0.02) 
tabMAHALANOBIS.5<-ASD.table(exp.5.maha, 0.10,variables) 
tabMAHALANOBIS.5 
dim(exp.5.maha) 
table(exp.5.maha$treatment) 
 
 
#EXP7 
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exp.7.nearest<-nearest_neighbor(dati.7,"treatment",tomatch.7,FALSE, 0.02) 
tabNEAREST.7<-ASD.table(exp.7.nearest,0.10,variables) 
tabNEAREST.7 
dim(exp.7.nearest) 
table(exp.7.nearest$treatment) 
 
exp.7.maha<-mahalanobis.match(dati.7,"treatment",tomatch.7,FALSE, 0.06) 
tabMAHALANOBIS.7<-ASD.table(exp.7.maha, 0.10,variables) 
tabMAHALANOBIS.7 
dim(exp.7.maha) 
table(exp.7.maha$treatment) 
 
 
 
#EXP9 
dati.9$treatment<-Invert.treatment(dati.9) 
exp.9.nearest<-nearest_neighbor(dati.9,"treatment",potential.9,FALSE, 0.1) 
tabNEAREST.9<-ASD.table(exp.9.nearest,0.10,variables) 
tabNEAREST.9 
dim(exp.9.nearest) 
table(exp.9.nearest$treatment) 
 
exp.9.maha<-mahalanobis.match(dati.9,"treatment",potential.9,FALSE, 1.5) 
tabMAHALANOBIS.9<-ASD.table(exp.9.maha, 0.10,variables) 
tabMAHALANOBIS.9 
dim(exp.9.maha) 
table(exp.9.maha$treatment) 
 
 
#MATCHED SAMPLES 
 
nearest.1<-exp.1.nearest 
nearest.3<-exp.3.nearest 
nearest.5<-exp.5.nearest 
nearest.7<-exp.7.nearest 
nearest.9<-exp.9.nearest 
 
 
maha.1<-exp.1.maha 
maha.3<-exp.3.maha 
maha.5<-exp.5.maha 
maha.7<-exp.7.maha 
maha.9<-exp.9.maha 
 
 
############################################################################# 
###############################OUTCAME PHASE################################# 
############################################################################ 
 
 
 
#FUNCTION 
NB_regression<-function(dat, index.y, index.x){ 
  library(MASS) 
  if(is.numeric(index.x)){ 
    variables<-colnames(dat)[index.x] } 
  else{variables<-index.x} 
  if(is.numeric(index.y)){ 
    outcome<-colnames(dat)[index.y]} 
  else{outcome<-index.y} 
  frml<-as.formula(paste(outcome, paste(c(variables), sep=" ", collapse=" 
+"),sep="~")) 
  options(digits = 5) 
  Negative_binomial<-glm.nb(frml, dat) 
  summary_NB<-summary(Negative_binomial) 
  coef<-Negative_binomial$coeff[[2]] 
  Exponential.coefficients_NB<-exp(Negative_binomial$coeff) 
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  Exponential.CI_NB<-exp(confint(Negative_binomial)) 
  results<-c("NEGATIVE 
BINOMIAL"=list("Model"=Negative_binomial,"Summary"=summary_NB, 
                                      "AvgPM"=coef,  
                                      "Exponential of 
coefficients"=Exponential.coefficients_NB, 
                                      "Exponential of confidence 
interval"=Exponential.CI_NB)) 
  return(results) 
}  
adjust<-variables[-c(18,19,30)] 
 
#ONE SAMPLE 
M.OS<-NB_regression(one.sample,"Tot_num.All.cause.admissions", 
c("avgPM","offset(log(Total_den))")) 
M.OS 
 
M.OS.ADA<-NB_regression(one.sample,"Tot_num.All.cause.admissions", 
c("avgPM",adjust,"offset(log(Total_den))")) 
M.OS.ADA 
 
M.OS.NEAR<-NB_regression(one.sample.near,"Tot_num.All.cause.admissions", 
c("avgPM","offset(log(Total_den))")) 
M.OS.NEAR 
 
M.OS.NEAR.ADA<-NB_regression(one.sample.near,"Tot_num.All.cause.admissions", 
c("avgPM",adjust,"offset(log(Total_den))")) 
M.OS.NEAR.ADA 
 
M.OS.MAHA<-NB_regression(one.sample.maha,"Tot_num.All.cause.admissions", 
c("avgPM","offset(log(Total_den))")) 
M.OS.MAHA 
 
M.OS.MAHA.ADA<-NB_regression(one.sample.maha,"Tot_num.All.cause.admissions", 
c("avgPM",adjust,"offset(log(Total_den))")) 
M.OS.MAHA.ADA 
 
 
#5 EXPERIMENTS  
M.EXP<-lapply(list(dati.1,dati.3,dati.5,dati.7,dati.9), 
function(x) NB_regression(x,"Tot_num.All.cause.admissions" , 
c("avgPM","offset(log(Total_den))"))) 
M.EXP[[1]] 
M.EXP[[2]] 
M.EXP[[3]] 
M.EXP[[4]] 
M.EXP[[5]] 
 
dim(one.sample) 
 
lapply(list(one.sample.near, one.sample.maha), function(x) dim(x)) 
lapply(list(dati.1,dati.3,dati.5,dati.7,dati.9), 
       function(x) dim(x)) 
 
lapply(list(nearest.1,nearest.3, 
            nearest.5,nearest.7,nearest.9, 
            maha.1,maha.3,maha.5,maha.7, maha.9), 
       function(x) dim(x)) 
 
lapply(list(NEAR.EXP, MAHA.EXP), 
       function(x) dim(x)) 
 
M.EXP.ADA<-lapply(list(dati.1, dati.3,dati.5,dati.7,dati.9), 
function(x)NB_regression(x,"Tot_num.All.cause.admissions",c("avgPM",adjust,"o
ffset(log(Total_den))"))) 
M.EXP.ADA[[1]] 
M.EXP.ADA[[2]] 
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M.EXP.ADA[[3]] 
M.EXP.ADA[[4]] 
M.EXP.ADA[[5]] 
 
 
M.EXP.M<-lapply(list(nearest.1,nearest.3, 
nearest.5,nearest.7,nearest.9, 
maha.1,maha.3,maha.5,maha.7, maha.9),function(x)NB_regression(x, 
"Tot_num.All.cause.admissions", c("avgPM","offset(log(Total_den))"))) 
 
 
 
lapply(list(nearest.1,nearest.3, 
            nearest.5,nearest.7,nearest.9, 
            maha.1,maha.3,maha.5,maha.7, maha.9), 
       function(x) range(x$avgPM)) 
 
#NEAR 
M.EXP.M[[1]] 
M.EXP.M[[2]] 
M.EXP.M[[3]] 
M.EXP.M[[4]] 
M.EXP.M[[5]] 
 
#NEAR 
M.EXP.M[[6]] 
M.EXP.M[[7]] 
M.EXP.M[[8]] 
M.EXP.M[[9]] 
M.EXP.M[[10]] 
 
M.EXP.M.ADA<-lapply(list(nearest.1,nearest.3, 
nearest.5,nearest.7,nearest.9, 
maha.1,maha.3,maha.5,maha.7, maha.9), 
function(x)NB_regression(x, "Tot_num.All.cause.admissions", 
c("avgPM",adjust,"offset(log(Total_den))"))) 
 
#NEAR 
M.EXP.M.ADA[[1]] 
M.EXP.M.ADA[[2]] 
M.EXP.M.ADA[[3]] 
M.EXP.M.ADA[[4]] 
M.EXP.M.ADA[[5]] 
 
#MAHA 
M.EXP.M.ADA[[6]] 
M.EXP.M.ADA[[7]] 
M.EXP.M.ADA[[8]] 
M.EXP.M.ADA[[9]] 
M.EXP.M.ADA[[10]] 
 
 
NEAR.EXP<-rbind(nearest.1,nearest.3, 
nearest.5,nearest.7,nearest.9) 
 
 
MAHA.EXP<-rbind(maha.1,maha.3,maha.5, 
maha.7,maha.9) 
 
M.EXP.NEAR<-NB_regression(NEAR.EXP,"Tot_num.All.cause.admissions", 
c("avgPM","offset(log(Total_den))")) 
M.EXP.NEAR 
 
M.EXP.NEAR.ADA<-NB_regression(NEAR.EXP,"Tot_num.All.cause.admissions", 
c("avgPM",adjust,"offset(log(Total_den))")) 
M.EXP.NEAR.ADA 
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M.EXP.MAHA<-NB_regression(MAHA.EXP,"Tot_num.All.cause.admissions", 
c("avgPM","offset(log(Total_den))")) 
M.EXP.MAHA 
 
M.EXP.MAHA.ADA<-NB_regression(MAHA.EXP,"Tot_num.All.cause.admissions", 
c("avgPM",adjust,"offset(log(Total_den))")) 
M.EXP.MAHA.ADA 
 
 
 
 
####SPLINES 
library(splines) 
#SAMPLE MATCHED 
#sample no obs >15 of pm2.5 
ORIGINAL<-one.sample[-which(one.sample$avgPM>12),] 
summary(ORIGINAL) 
ORIGINAL<-ORIGINAL[order(ORIGINAL$avgPM),] 
head(ORIGINAL) 
 
NEAR.EXP.SPLINE<-NEAR.EXP[-which(NEAR.EXP$avgPM>12),] 
summary(NEAR.EXP.SPLINE$avgPM) 
quantile(NEAR.EXP.SPLINE$avgPM, c(0.05,0.25,0.75,0.95)) 
 
MAHA.EXP.SPLINE<-MAHA.EXP[-which(MAHA.EXP$avgPM>12),] 
summary(MAHA.EXP.SPLINE$avgPM) 
quantile(MAHA.EXP.SPLINE$avgPM, c(0.05,0.25,0.75,0.95)) 
 
M.EXP.NEAR_spline.12<-
NB_regression(NEAR.EXP.SPLINE,"Tot_num.All.cause.admissions", 
c("ns(avgPM,knots=c(6.35,7.97,9.70,11.19))","offset(log(Total_den))")) 
M.EXP.NEAR_spline.12$`NEGATIVE BINOMIAL.Summary` 
 
M.EXP.MAHA_spline.12<-
NB_regression(MAHA.EXP.SPLINE,"Tot_num.All.cause.admissions", 
c("ns(avgPM,knots=c(6.21,7.87,9.57,10.84))","offset(log(Total_den))")) 
M.EXP.MAHA_spline.12$`NEGATIVE BINOMIAL.Summary` 
 
 
PREDICT.DT<-data.frame(avgPM=ORIGINAL$avgPM,Total_den=1) 
PREDICT.NEAR<-cbind(ORIGINAL, predict(M.EXP.NEAR_spline.12$`NEGATIVE 
BINOMIAL.Model`,newdata=PREDICT.DT, type="response", se.fit=T)) 
tail(PREDICT.NEAR) 
 
PREDICT.MAHA<-cbind(ORIGINAL, predict(M.EXP.MAHA_spline.12$`NEGATIVE 
BINOMIAL.Model`,newdata=PREDICT.DT, type="response", se.fit=T)) 
tail(PREDICT.MAHA) 
 
names(PREDICT.MAHA) 
PREDICT.NEAR$Method<-"Nearest-neighbor" 
PREDICT.MAHA$Method<-"Mahalanobis distance" 
 
PREDICT.SPLINE.12<-rbind(PREDICT.NEAR,PREDICT.MAHA) 
 
library(ggplot2) 
ggplot(data=PREDICT.SPLINE.12, aes(x=avgPM, 
y=(Tot_num.All.cause.admissions/Total_den)*1000, group=Method))+ 
  geom_point(alpha=0.05) +  
  geom_line(aes(x=avgPM, y=fit*1000, colour=Method))+ 
  #geom_smooth(method="auto",se=TRUE)+ 
  theme_bw() +   
  ylim(100,325)+ 
  scale_x_continuous(breaks=round(seq(min(PREDICT.SPLINE.12$avgPM), 
max(12.5),by=0.5),1))+ 
  #geom_vline(xintercept=c(7.83,8.65,9.36),linetype="dashed") + 
  ggtitle(NULL) +   
  theme( plot.title=element_text(vjust=1.0) ) +   
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  xlab(expression(paste("PM"["2.5 "],mu,g,"/",m^{3}))) +   
  theme( axis.title.x = element_text(vjust=-.5) ) +   
  ylab("Predicted all-cause hospital admissions rate (per 1000 person-year)") 
+   
  theme( axis.title.y = element_text(vjust=1.0) , 
         legend.position = "bottom")  
 
 
 
 
 
 

	
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	


