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The Human mind has claimed for Water one
of its highest values - the Value of Purity
- Gaston Bachelard (1884 - 1962)
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Abstract

Abstract

In the chain of water distribution, the networkhe most complex element to be
analyzed and managed to deliver safe water to #esudue to the vast
dispersion of the potential contamination spots.

For this reason, some countries, especially thosst sensible to the terrorist
attacks (USA, Israel, Europe) have already stamtsdarch programs aimed at
the development of an Online Water Quality Monitgr{(OWQM) and of Early
Warning Systems (EWSs). Both of them are based emsoss installed in
selected nodes of the network and are capable ofklgu detecting
contamination events.

The implementation of EWSs paves the way to neer@sting research topics,
with particular reference to the technological atpeto the employment of
expert systems for the interpretation of the detbdata, and to the definition of
modeling tools for the design and management ofntioaitoring and alarm
systems.

The Thesis focuses on some of these aspects, athim of contributing to a
partial systematization of the knowledge requireor fthe design and
management of the aforementioned systems.

This Thesis can be divided into two parts.

The former part of the Thesi€lgapters 1, 2 and3) describes the general issues
and the approach normally adopted in choosing théeemwparameters to be
monitored. In particular, a wide overview of theremtly available sensors for
in situ and continuous automatic detection of physicatnalcal and biological
parameters of the water flowing through the pipeligpresented. However, due
to the wide spectrum of possible contaminants, #imost real-time
identification of risk situations in the deliveradter is a very difficult scientific
and technological challenge. In fact, while there Eboratory technologies
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capable of measuring all the substances presevdter, the analysis capabilities
of the devices that can be udgadsitu for continuous and automatic monitoring
are very limited. The current Thesis discusses phablem, which represents
one of the most significant complexities in the lempentation of the EWS, and
the approaches generally adopted for its solution.

The latter part of the Thesi€lfapters 4, 5 and6) deals with some modeling
aspects regarding the design and management of BEW@slucing innovative
proposals and developments.

In particular, the attention is given to the issdiedetermining the number and
the optimal location of the sensors within the ratw In fact, the effectiveness
of the EWS depends on the number, as well as olo¢hdon of the sensors. For
a pre-determined number of sensors, necessarilietinfior budget reasons, the
best placement is the one that maximizes its effmoess, that is the ability of
the system to reduce the impact of contaminatiaridaats on public health.
This is an optimization problem that must be adslrdswith reference to at least
two conflicting objectives: the cost (to be miniew) and the system
effectiveness (to be maximized). To resolve thisinggation problem, it is
useful to define all the contamination events timaty potentially affect the
network.

Each event is characterized by (i) the node, oespdhere the contamination
occurs (i) the starting time of the same contatnama(iii) its duration, and (iv)
the value of its mss. Thus, the number of the piste@vents can become huge
for extended and complex networks. For each com@oin event, it is
necessary to evaluate the propagation of the camdamin the network through
a hydraulic analysis, which includes quantitatived aqualitative aspects. In
addition, the optimization procedures are comporatly burdensome when the
number of the potential events to be considerdigk. For these reasons, the
ensemble of the contamination events to be takenaiccount in the calculation
needs to be reduced. This can be done by selextngall sample of events, but
still representative of the global set. In the Tisiea sampling procedure based
on practical considerations regarding the topolagy the network management
is proposed. The application of these criteria tcase study showed that the
final output Pareto fron} does not significantly change considering thaiced
sample rather than the totality of the events.

Another important aspect associated with the ogtition problem concerns the
translation of the above-mentioned criterion, wiieflects the minimum impact
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of the contamination on public safety, in@bjective Functionghat can be
quantitatively expressed.

For example, a possible objective function is thebpbility (to be maximized)
that the contaminated flow passes through a madterode in the network
(detection likelihood). Alternatively, the objeatifunctions can be expressed by
other variables (to be minimized), such as the seldptime between the
contamination and its detection, the number of liithats that is reached by the
contaminant, the number of people that receivesrdaminant concentration
higher than a certain threshold, the amount ofptle¥ided contaminated water,
and the percentage of the non-detected contaminatients. In the Thesis, this
problem is addressed by examining how the choicth@fobjective functions
affects the final results. To this purpose, twdetdént variants were developed
and compared to each others. Both of them adopiuhwer of installed sensors
as the first objective function (to be minimizedjt they differ in the choice of
the second objective function. This function wasuased to be the detection
likelihood (to be maximized) and the average comataed population (to be
minimized), in the former and latter variant redpety. The results of the
optimizations, and the re-evaluations of the optisadutions in terms of various
effectiveness indicators for the water quality nhoring system, prove that the
first variant (O. F. = detection likelihood) tentts produce better solutions in
terms of detection likelihood and sensor redundady the other hand, the
second (O. F. = contaminated population) tendsréolyce better solutions in
terms of contaminated population and event detedtine. The choice between
the two variants should thus be taken into acceuan in relation to the specific
situation and the alarm-programmed interventiorepedding on whether the
preference should be given to the detection sgcuwritits promptness. The
Thesis also shows that the two different variainte gse to sensitively different
sensor locations.

For each contamination event considered in themopdition procedure, all the
processing requires the assessment of the contamprapagation in the
network through a hydraulic analysis, which incledguantitative and
qualitative aspects. To this purpose, in the o@tnon process the simplified
hypothesis otonservative contaminamtas adopted, neglecting the contaminant
reactions that occur when it is combined with thileeo elements present in
water. However, the issue nbn-conservative contaminanias also addressed
in the Thesis through numerical experiments, cdroigt by the EPANET Multi-
Species Extension (EPANET-MSX) software. In detailsey quantitatively
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faced the chlorine decay as a resultEofcoli contaminations. In addition to
illustrating the numerical results, the Thesis dbss the experimental
apparatus and activities developed at the Civil il®ying and Geo-
Environmental Laboratory of the Lille University i{Mneuve-d'Ascq, Lille -
France) for the validation of the numerical moddiyeloped by the Author.
Ultimately, the last chapter shows the technicakiigility of a smart prototype
system for the early detection of biological contations within the network.
This system will efficiently enable water utilityanagers to ensure a real-time
adoption of water quality control procedures. Tas tlend, an automated
statistical model and Artificial Intelligence (Alsupported algorithms are
presented and validated using chlorine data oldaiftem the numerical
simulations above-mentioned. The developed algostlkexploit the concept of
expert pattern recognitioran algorithm appropriately trained on the staddar
conditions of a system is able to recognize dewsti from the normal
conditions enough evident to constitute an anomamong the available
supervised learning models, advance pattern rezegmisuch as the Support
Vector Machines (SVMs), as well as the Artificiabddal Network (ANN), were
tested and compared to each other. The results stwawonly an efficient
anomaly detection and risk-based classification,d&o the ability of the final
output to visualize the contaminated nodes on #tevark map, according to a
risk severity scale.
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Nell’ambito della filiera di produzione e di erogaze dell'acqua potabile, la
rete di distribuzione idrica rappresenta I'elemgpitocomplesso da analizzare e
gestire per quanto riguarda la sicurezza qualdatiel’acqua consegnata
all'utenza, a causa della grande dispersione denti pdi potenziale
contaminazione. Per questo motivo, soprattutto Paési piu sensibili al
problema degli attacchi terroristici (Nord Ameridajropa, Israele), sono stati
da tempo avviati programmi di ricerca finalizzdthanessa a punto di sistemi di
monitoraggio continuo e di allarme precoce (EWSkatasu sensori, da
installare in punti opportunamente scelti della &t grado di rilevare in tempi
rapidi gli eventi di contaminazione.

L'implementazione di questi sistemi apre nuovi fagsanti temi di ricerca con
particolare riferimento agli aspetti tecnologicilieplementazione di sistemi
esperti per l'interpretazione dei dati rilevatilaaldefinizione di strumenti
modellistici per la progettazione e la gestione sisiemi di monitoraggio e di
allarme.

La Tesi focalizza I'attenzione su alcuni di queaspetti, con lo scopo di
contribuire ad una pur parziale sistematizzazioakle dconoscenze necessarie
per la progettazione e la gestione dei sistemissoipati.

La Tesi puo essere suddivisa in due parti.

La prima parte Capitoli 1, 2 e 3) descrive le problematiche generali e
I'approccio generalmente adottato nella sceltap@gametri da monitorare. In
particolare, viene presentata un’ampia disamina sensori attualmente
disponibili per il rilevamento automaticim situ e in continuo dei parametri
fisici, chimici e biologici dellacqua che transitgella tubazione. In ragione
dellampio spettro delle possibili sostanze contanti, l'identificazione in
tempo pressoché reale di situazioni di rischio'aedjua distribuita rappresenta,
pero, una sfida scientifica e tecnologica moltouardVientre, infatti, esistono
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tecnologie da laboratorio atte a misurare praticaendutte le sostanze di
interesse presenti nellacqua, le capacita di sind®i dispositivi utilizzabiliin
situ per il monitoraggio continuo e automatico sono tmdimitate. La Tesi
discute questo problema, che costituisce una delggiori difficolta di
implementazione dei EWS, e gli approcci generalmeadottati per la sua
soluzione.

La seconda parte della Te€igpitali 4, 5 e 6) affronta poi, anche con proposte e
sviluppi originali, alcuni aspetti modellistici m@rdanti la progettazione e la
gestione degli EWS.

In particolare, molta attenzione e dedicata al l@mh della definizione del
numero e della localizzazione ottimale dei senswil'ambito della rete.
L'efficacia del sistema EWS dipende infatti dal rarm e dalla localizzazione
dei sensori. Per un prefissato numero di sensedessariamente limitato per
ragioni di costo, la migliore localizzazione & daekhe ne massimizza
I'efficacia, ovvero la capacita del sistema di ridul'impatto degli incidenti di
contaminazione sulla salute pubblica. Si trattardproblema di ottimizzazione
che va affrontato con riferimento ad almeno dueitivi fra loro in conflitto: il
costo (che va minimizzato) e I'efficacia del siste(ghe va massimizzato). Per
la risoluzione del problema di ottimizzazione soipdicato, € utile definire tutti
gli eventi di contaminazione che potenzialmentespoe interessare la rete.
Ogni evento & caratterizzato dal nodo (o dai nadi)cui avviene la
contaminazione, dall'istante iniziale della stesdalla sua durata, dal valore
della massa inquinante immessa in rete e quindirgieestese e complesse, il
numero degli eventi potenziali puo diventare enorA@ché, per ogni evento,
necessario valutare la propagazione del contan@naella rete attraverso
un’analisi del funzionamento idraulico che compremdi aspetti quantitativi e
gualitativi e poiché anche le procedure di ottirazene sono molto onerose
sotto il profilo computazionale quando il numeroi g®tenziali eventi da
prendere in considerazione sia elevato, € necessdtirre significativamente
l'insieme delle situazioni di contaminazione di ¢emere conto nel calcolo. Cio
puo essere fatto selezionando un campione di eveito, ma comunque
rappresentativo dell'insieme globale. Nella Tespréposta una procedura di
campionamento basata su considerazioni di tipoicpratelativamente alla
topologia e alla gestione della rete. L'applicagiah questi criteri ad un caso
studio ha mostrato che il risultato finale (frodiePareto) nhon cambia in modo
significativo considerando il campione ridotto a# la totalita degli eventi.

Un altro importante aspetto associato al problemattomizzazione riguarda la
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traduzione inFunzioni Obiettivoesprimibili in termini quantitativi dell’obiettivo
generale sopra indicato, che contempla il minimpatto della contaminazione
sulla salute pubblica.

Ad esempio, una possibile funzione obiettivo esil@ in termini quantitativi
corrisponde alla probabilita (da massimizzare) itflasso contaminato transiti
per un punto monitorato della rete (probabilitaigivamento). In alternativa, la
funzione obiettivo pud essere espressa attraveimudgzze (da minimizzare)
quali, ad esempio, il tempo intercorrente fra lantaminazione e il suo
rilevamento, il numero degli abitanti che in questapo sono raggiunti dal
contaminante, il numero degli abitanti che ricevamma concentrazione di
contaminante superiore ad una determinata sodliguantitativo di acqua
contaminata erogata, la percentuale degli eventbdiaminazione non rilevati.
Nella Tesi questo problema é affrontato esaminacdme la scelta della
funzione obiettivo influenzi il risultato finale. #al fine, sono state esaminate e
fra loro comparate due diverse impostazioni, enbernasate sull'impiego del
numero dei sensori come prima funzione obiettiva (ainimizzare). Le due
impostazioni si differenziano invece per la secdiniaione obiettivo che e stata
assunta rispettivamente corrispondente alla prétzabili rilevamento (da
massimizzare) e all’entitad della popolazione rag@iudal contaminante (da
minimizzare). | risultati delle ottimizzazioni e kvalutazioni delle soluzioni
ottimali in termini di alcuni indicatori dell’effiacia del sistema di monitoraggio
mostrano che la prima impostazione (F.O. = probialdi rilevamento) produce
soluzioni piu efficaci per quanto riguarda la proitita di rilevamento e il grado
di ridondanza del sistema di monitoraggio. Per moni& seconda impostazione
(F.O. = n° utenti contaminati) produce soluzioni pfficaci con riferimento alla
riduzione dell’entita della popolazione raggiuntall@ contaminazione e del
tempo intercorrente fra l'inizio della contaminamoe il suo rilevamento. La
scelta fra le due impostazioni va fatta quindi teteeconto, anche in relazione
alla situazione specifica e agli interventi prognaati in caso di allarme, se sia
preferibile privilegiare la sicurezza del rilevant®o la sua tempestivita. La Tesi
evidenzia anche che le due differenti impostaziamno origine a localizzazioni
dei sensori sensibilmente diverse fra loro.

Tutte le elaborazioni sopra indicate, richiedorar, @gni evento considerato nel
processo di ottimizzazione, la valutazione dellappgazione del contaminante
nella rete attraverso un’analisi del funzionameigt@ulico comprendente gli
aspetti quantitativi e qualitativi. A tal fine, nelocesso di ottimizzazione, é stata
adottata I'ipotesi semplificata dontaminante conservatiytrascurando quindi
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le alterazioni che il contaminante subisce quandmmbina con altri elementi
presenti nell'acqua. Nella Tesi, tuttavia, si ewolaffrontare anche il problema
del contaminante non conservativanediante sperimentazioni numeriche,
condotte attraverso il software EPANET Multi-Spaciextension (EPANET-
MSX), che hanno affrontato in termini quantitativdecadimento del cloro per
effetto di una contaminazione d&a coli. La Tesi, oltre a illustrare i risultati
numerici, descrive anche gli apparati e le attigerimentali messi a punto
presso il Laboratorio di Ingegneria Civile e Geodientale dell'Universita di
Lille (Villeneuve-d'Ascq, Lille - Francia), per laalidazione dei modelli di
simulazione numerica, curata dalla scrivente.

Infine, nell'ultimo capitolo viene illustrata la ttébilita tecnica di un sistema
intelligente atto a rilevare con rapidita contarzioai biologiche nelle reti di
distribuzione, consentendo agli enti gestori lani&bne, in tempo reale, delle
modalita di intervento per mantenere un'idoneaigudell'acqua. A tal fine,
nella Tesi, si sono presentati un modello statisti@lgoritmi di apprendimento
basati sull'lntelligenza Atrtificiale, validati meuite i dati che riproducono
'andamento della concentrazione del cloro neltsukizioni numeriche sopra
citate. Gli algoritmi sviluppati considerano il pecipio per cui una volta
conosciuta la qualita "standard" dell’acqua in rdefinita dall’andamento tipico
dei parametri chimico fisici misurati, le loro daxioni dal range di "normalita”
consentono di identificare celermente le anomalim| le metodologie di
apprendimento automatico (0 "supervisionato"), ssiate testate e confrontate
le Macchine a Vettore di Supporto (dall'inglese @upVector Machines-SVM)
e la Rete Neurale Artificiale (dallinglese Artiti¢ Neural Network-ANN). |
risultati mostrano non solo un rilevamento efficadelle anomalie e una
classificazione in funzione del rischio generata, amche la capacita di offrire
un output che garantisca la visualizzazione deii wodtaminati sulla mappa
della rete di distribuzione in esame, secondo sakagli gravita del rischio.
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| ntr oduction

In the chain of water distribution, the networkhe most complex element to be
analyzed and managed to deliver safe water togbesuThis topic has recently
been addressed with attention at legislative lewmefact, water introduced into
the water distribution network can be subjected Marious types of
contamination in the network itself like, endogemoor exogenous, either
accidental and deliberative (terrorist attack dratage), phenomena.
In general, the above-mentioned contamination resksally affect all the parts
of the network, resulting in difficulties for previon and control. For this
reason, some countries, especially those mostidensi the terrorist attacks
(USA, Israel, Europe) have already started rese@rdgrams aimed at the
development of Online Water Quality Monitoring (OWKQand Early Warning
Systems (EWSs). Both are based on sensors installeelected nodes of the
network and are capable of quickly detecting coirtation events.
The implementation of EWSs gives way to new intiémgsresearch topics, with
particular reference to the technological aspedtsthe automatic online
detection, to the employment of expert systemstffier interpretation of the
detected data, and to the definition of modelinggdor the system design and
management.
This Thesis, which illustrates the research agtidiéveloped by the Author in
this field, deals with some general, technologieald modeling aspects related
to the application of online Monitoring and EWSs ttee water distribution
networks.
In particular:

After a brief legislative frameworlChapter 1 explains the various types of
contamination that may occur within distributiontwerks. Then, the general
setup of the continuous monitoring systems andhefassociated alarm systems
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are described, with particular reference to theecd®n of the observed
parameters and to the expert systems for the netixtjpn of the detected data.

Chapter 2 provides a vast overview of the technologies culyeavailable
for the continuous monitoring of the water qualitythe network, with particular
reference to chemical, biological and radiologmaitaminations.

Chapter 3 investigates the main design and management aspiettte water
guality monitoring systems in the network, with fgarar emphasis on the
following issues:

- acquisition and transmission of the vast amodrdata collected by sensors;
- optimal sensor locations within the network;

- identification of the contamination sources, orceontamination has been
detected;

- definition of the urgent actions to be taken omaceontamination has been
detected;

- definition of the interventions to be implementiut the restoration of the
regular distribution service.

Chapter 4 deals with the problem of the optimal location mbnitoring
stations within a water distribution network, wigarticular reference to the
sampling of a small number of events, among all gbtential contamination
scenarios, to be taken into account in the optitiwmaframework. For this
problem, some innovative concepts and their apjbica to a case study are
presented. In this chapter, the problem of selgdtie objective functions to be
introduced in the optimization is also addresseilhginumerical comparisons.
In all calculations, the assumption of conservativetaminant is considered.
After removing the conservation assumptig@hapter 5 studies the actual
behavior of the contaminants, once they have beassolgded in water. In
particular, the results of numerical simulationsrieal out with engineering
models (EPANET-MSX) are shown to analyze thecoli fate and transport
when chlorine is in the network, identifying thencentrations of the involved
chemical/biological species. The experimental tesaVailable in the scientific
literature, obtained in a pilot laboratory siteatesl at the Civil Engineering and
Geo-Environmental Laboratory of the Lille Univeys(Villeneuve-d'Ascq, Lille
- France), are also used to validate the numemicalel.

Chapter 6 develops and demonstrates the technical feasibiligy prototype
system for the early detection of biological contations within the network.
This system will efficiently enable water operattosapply in real-time water
quality control procedures. To this end, an autechatatistical model and Al-

10
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supported algorithms are presented and validated) whlorine data obtained
from the numerical simulations above-mentionedpéamticular, the algorithms
are developed in the field of the machine learnifger being trained on the
standard conditions of water quality, they are dbleecognize deviations from
the baseline, identifying anomalies. The selectathipeters for the training
phase, thus for the definition of the standard dant of water quality, are the
chlorine and the TOC.

11
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Monitoring and early Detection Systems for contation events in Water
Distribution Networks: general approach

Chapter 1

Monitoring and early Detection Systems for
contamination eventsin Water Distribution
Networks: general approach

1.1 Introduction

The existing European legislation in the field o&ter intended for human
consumption prescribes minimum requirements reggrdithe physical,

chemical, biological and radiological charactecistithat water must have
throughout the all water distribution system (WDS).

To this end, following the European Directive 2AIA7, a new approach for
the consumer safety is being imposed in Italy, enmnting the Water Safety
Plans (WSPs) in accordance with the model thatkas introduced for over a
decade from the World Health Organization (WHO,%)00

WSPs aimed at assessing the risk of water contgiminghroughout the all

production and supply chain (from capture, to dstron, and delivery), as well

as defining the consequential management strategies

The guidelines for the WSPs implementation areoséin a few documents of
the World Health Organization (WHO, 2008; WHO, 2Q)1and in some

international standards, such as EN 15975-2 (20@3}jaly, the guidelines for

the WSPs implementation were formulated by thealtaNational Institute of

Health (Istituto Superiore di Sanita, 2014).

The main purpose of the WSPs is to ensure thdettets of the delivered water
quality are adequate to protect human health. diyjisctive is pursued through a

13
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series of actions ranging from the analysis of ligdraulic system with its
related contamination risks, to the definition loé tmonitoring measures and the
action plans necessary for the priority risk aneegancies management.
Therefore, assessing the entire drinking water ywtion and supply chain, the
water distribution network is surely the most coexpklement to be analyzed
and managed as regards the safety of the watatygdelivered to the user.

1.2 Contamination eventsin Water Distribution Systems

Ignoring the eventual cases of contamination of sheply sources and the
inadequate operation of the treatment plants hallwater entering in the water
distribution network, even thought it has qualitatcharacteristics that meet the
necessary requirements, can be subjected to corgtiam phenomena in the
network itself, which are typically included in ooé the following three main
situations.

1.2.1 Endogenous contamination

An endogenous contamination is due to phenomenaotitarr inside the pipes,
such as precipitation and flocculation of certaibstances, decay of disinfectant
agents with consequent bacterial growth, corrosmn the wall pipes,
trialomethanes formation.

The development of bio-film that is formed on theer pipe walls is also very
important: in fact, it is a crucial problem in tkentrol of the drinking water
guality due to the presence and persistence ofralem@crobial species (US-
EPA, 2002). As highlighted by researchers of tladiadh National Institute of
Health (Bonadonna and Della Libera, 2005), the ritada of the bio-film
development is conditioned not only by the presarfcaitrients, but also by the
water residence time in the network and the wagenperature. It is thus
important that the water residence time in the petws the least possible. In
terms of hydraulic network functionality this meatiat the velocities in the
pipes have to be sufficiently high and the wateah geom the source nodes to
the distribution ones has to be minimized.
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1.2.2 Accidental contamination

An accidental contamination is usually relatedie infiltration of dirty water,
mud and other contaminants from the external enwient. In general, this can
occur with reference to two different situations:

i. Infiltration of contaminated water from the enviment surrounding the
pipeline due to hydraulic sealing defects (alwayssent with lower or
higher magnitude), especially nearby the joints.

ii. Backflow into the network of water coming from psagzed circuits
erroneously connected to the main network.

The first case occurs when the pressure of dirtymia the surrounding external
environment is higher than the one inside the p&iace generally the dirty
water presents in the environment surrounding tpelipe is characterized by
atmospheric pressure (or slightly higher), infiittas occur when there is no
pressure or even there is depression in the pifresefore, with the exception
of rough design errors that determine depressicsbime parts of the network,
the internal pressure annulment is most of the tissociated with the drainage
of pipes related to maintenance works, which shbeldeduced to the required
minimum. If possible, an alternative could be imgtions without service
interruptions.

The depression phenomenon in the pipes may alsg dowater is drawn from
the network by means of pumping systems withoutdadulic disconnection on
the suction pipe. In order to reduce the risk ois tkind of accidental
contaminations, the elevation layout of the watetrithution network should
also be carefully designed with respect to othpelpies' structures. Particularly
in the sewage systems, it is necessary to avoicgtdgnation of contaminated
liquids in contact with the pipelines of the WDS.

The second case of accidental contaminations iecedsd with erroneous
connections between the drinking water network athr pressurized systems,
which in turn are connected to a second networkyvegor of non-drinking
water.In case there is a reversal of the pressure grabletaveen the drinking
and non-drinking networks, the water from the pueged plants returns to the
water distribution network, unless an effective Kilmwv preventer valve is set
in. These situations of erroneous connections lertwdifferent networks
typically occur at household users employing pevatells for non-drinking
purposes, and at industrial users. In fact in thatter cases, the drinking water
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network is sometimes connected without a hydradisconnection to technical
plants, working with non drinking process water.

1.2.3 Intentional contamination associated with terrorigttacks or
sabotage

Intentional contamination actions can be carriet thvough the injection of

chemical, biological and radioactive contaminamt®mne or more spots of the
network.

Although structurally protected from intentionalnt@mination because of their
primarily underground location and their pressutizéunctioning, water

distribution networks are one of the most vulnezatmponents in the supply
of drinking water, according to many experts (USAEROO5a). In fact, all

devices (such as air-relief valves, bottom draihgdrants, public water
fountains) that connect buried pipes to the outsidéronment and above all,
the user supply taps when connections are not pedigith suitable backflow
preventer devices are potential input sites.

In general, the above explained contamination risiscern the all network,
resulting in difficulties for the prevention andntml. For this reason, some
countries, especially those most vulnerable toténmrist attacks (USA, Israel,
Europe) have started for a long time research progr aimed at the
development of an Online Water Quality Monitorin@WQM) and Early
Warning Systems (EWS). Both of them are based nsose which are installed
at selected nodes of the network and are capablequatkly detecting
contamination events.

Various cases of intentional and also accidentaterva@ontamination that
historically occurred advise us of the necessitiyrprove water monitoring. For
instance, in 1972 a right-wing neo-Nazi group acepli30-40 kg of typhoid
bacteria cultures with the intention to use thiaiast water supplies in Chicago
(Kupperman and Trent, 1979). More recently, in 2000rkers at the Cellatex
chemical plant in northern France dumped 5,00@diwf sulphuric acid into a
tributary of the Meuse River, when they were demieakers’ benefits (Gleick,
2006). In other episodes, the introduction of ataemnant would have affected
nearly 4,000 households; officials suspect that itt@dent was related to
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professional work beyond vandalism (Groover, 2088) again, few officers
were arrested before executing a plan to poisoank in Khao that supplies
water to American troops in Jordan (Times, N. YOP3). Accidental water
contaminations were also registered, as for exanmplésreenville, South
Carolina, where the town's water supply was threatewith a castor oil
poisoning. The attacker caused changes to thediedmgulations regarding the
number of hours that ground truckers were alloveedrive without rest (Gleick,
2006).Another exemplary incident is the contaminatiordofhking water with

treated wastewater in Nokia (Finland) in 2007; tinisident resulted in 8,453
cases of gastroenteritis, with costs exceedingmndilbon Euros for clean-up
(Williamson et al, 2014), reimbursed hospital exgem claims for damages etc.

1.3 General approach of continuous monitoring and Early
Warning Systems (EW Ss)

The conventional monitoring of the water qualityyided by the network is
based on sampling at some taps, as well as on cheamd microbiological
analysis performed in the laboratory (or on-sitetigh suitable kits). In general,
it allows a complete chemical and microbiologicdla@acterization of the
supplied water, along with the research for alnamgt contaminant.

However, this type of monitoring is not capablesopporting an EWS due to the
sampling which does not usually occur in a sharttand due to the long time
that characterizes some types of analysis (espettial microbiological ones).
Therefore, there is the need of a continuous mongcsystem (or in any case
characterized by a very dense temporal discratizatimplemented through
devices directly connected to the distribution rekw They have to be capable
of automatically performing the desired analysisitu and in a very short time,
as well as transmitting its results to a centralticd apparatus responsible for
the outcomes interpretation and the implementatbrthe scheduled alarm
actions.

An EWS is not limited to a collection of surveilzn technologies; it is an
integrated system for i) monitoring sensors (iixevaanalysis (iii) interpretation
and reporting of the results (iv) communicationtleé results in order to make
decisions that are protective for public health andhimize unnecessary
community concerns. The desired characteristics dor ideal EWS were

17



Monitoring and early Detection Systems for contation events in Water
Distribution Networks: general approach

indicated by the Italian National Institute of Hal(2004), the European
Commission (2013) and the Environmental Protectmency (EPA, 2005).
Some of them include:

» high degree of automation, including automatic darapchiving;

= rapid response;

= detection of a sufficiently wide range of potentahtaminants;

» acquisition, maintenance, and upgrades at an afiibedcost;

= identification of the source contaminant and adeugarediction of the
location, together with the concentration downstreaf the detection
point;

» minimal false-positives/false-negatives;

= function continuously;

»data acquisition at different locations of the ramtev and their
transmission to a processing center;

» equipment of an expert system capable of intemgetinalytical results
and providing support for the development of thiatsgies to contain the
contamination effects.

Currently, there is no EWS with all the featuresdd above. However, there are
some technologies that can be used to build an BsVBey show some basic
characteristics: (i) functioning as an automatedtesy that allows remote
monitoring (i) a rapid response, and (iii) the efion of contaminants
maintaining acceptable sensitivity. Without thelsee¢ characteristics, an EWS
cannot be reputed an effective and reliable syst#hile emphasis is placed on
these three characteristics, the other present@daeristics cannot be ignored
designing an EWS. For example, the rate of falsitige/false negative results
and the sensitivity of the methods used to intérphe results should be
considered.

The monitoring system is still the main componefthe EWS thus, it must be
carefully designed. Hasan et al. (2004) proposetier@d monitoring that
consists of two stages: the first might provideoatimuous screen for a range of
contaminants that could pose a threat to publittined positive result from the
first stage would trigger confirmatory analysisngsmore specific and sensitive
techniques, and a positive result from the confioryaanalysis would trigger a
response action.
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WaterSentinel projecfUS-EPA, 2005H8) considers that a complete EWS must
include few important components, that are i) theline water quality
monitoring; ii) the sampling and the analysis; ithe enhanced security
monitoring; iv) the consumer complaint surveillancd the public health
surveillance.

1.4 Features of online contamination monitoring systems

Considering the wide spectrum of possible contanigjathe real-time
identification of risks in WDSs is a very difficuticientific and technological
challenge.

While there are laboratory technologies capablenwfasuring all of the
substances in the water, the analysis abilitiedeofces that can be usedsitu
for continuous and automatic monitoring are vemyitied. A promising approach
(Roberson and Morley, 2005; Janke et al., 2014¥kidens the continuous (or
almost continuous) detection of the most commorsiglay and chemical water
parameters such as flow rate, turbidity, pH, terapge, conductivity, pressure,
chlorine, fluoride, nitrate, particle count, Tot&rganic Carbon (TOC),
Oxidation Reduction Potential (ORP).

Table 1.1 shows the top 10 parameters monitorddeofiom raw to distributed
water by different water companies around the w{BIHO Report.028, 2008).

! The name comes from the collaboration of EPA twedOffice of Water Security initiative-WSi
and the program was developed in partnership wiithkithg water utilities and other key
stakeholders involving the design, deployment, awdluation of a EWS for drinking water
systems.
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Table 1-1. Top 10 parameters monitored online by drinking waempanies in the
USA, Belgium and the Netherlands, the United Kingdand Australia (BTO
Report.028, 2008).

Rate | Parameter USA Parameter B-N Parameter UK Parameter
(%) (%) (%) Australia (%)
n=52 n=10 n=7 n=6

1 Flowrate | 100 Flowrate] 10D Flow rat 1p0 Floterfa 100
2 Turbidity | 89 Turbidity | 100| Turbidity| 100 Turbigit| 100
3 pH 79 pH 90 pH 100 pH 10(
4 Water 77 Oxygen 90 Chlorine| 10( Water] 100
Temperatu Temperat
re ure
5 Conductivi | 39 Water | 80 Water | 86 Free | 100
ty Temperatu Temperatu Chlorine
re re
6 Particle | 37 Conductivi| 60 Conductivi| 72 Pressure| 83
count ty ty
7 Fluoride | 21 Ca/Mg/Har 50 Pressure | 72 Conducti83
dness vity
8 Oxygen 17 Biomonito| 50 Iron 72 Fluoride| 83
rs
9 Chlorine | 14 Particle | 30 Oilin 57 Particle | 83
count water count

10 TOC 14 Spectral | 30 Nitrate 57 Total | 50

Absorption Chlorine

Through these investigations, basic information dhe qualitative

characterization (expected values) of the delivexater is acquired, together
with the quantitative characterization in termspoéssures/flow rates of the
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delivery service, if reputed useful. The detectdnwvater quality alterations due
to contamination events occurs through the impleatam of suitable software
(expert systems) capable of interpreting the vianat eventually measured in
the values of the above mentioned chemical-phygieaameters. Hall et al.
(2007) investigated several water quality sensottelims of their response to a
contaminant that could be injected into the watdirthe examined sensors were
continuous online monitoring device and they weested in a pilot-scale
system, which was a re-circulating pipe loop disttion system simulator. The
results showed that the most effective responsee ¢eom the free chlorine and
the TOC sensors: the first sensors responded tmathminants, although some
contaminants did not react significantly with cinher while the second sensors
responded to all the organic (carbon-containinghmaunds. Similar results
were obtained within the project WaterSentinel (EFA, 2005b), which
highlighted how the free chlorine and the TOC am&eptially the most useful
indicators of contamination, since they detected@Bof the 33 tested baseline
contaminants. In particular, the results illustdateat free chlorine is the most
sensitive indicator of contamination, showing sfigaint changes from baseline
values at concentrations of one to two orders ofymtade below lethal
concentrations. Also, TOC was indicated as a ugeitdmeter for detecting the
presence of many organic compounds, with a seitgitiganging from a few
tenths of a mg/L to more than 1 mg/L, depending baigeline levels and
variability.

Based on these studies, US-EPA recommended thelitegne, and the TOC
as primary contamination indicators, while it susigd the Oxidation Reduction
Potential (ORP), the pH, the conductivity and tdityi as secondary indicators.
In fact, ORP usually shows a behavior like the chiresidual, of which it can
corroborate an observed change. ORP is also entplioysystems that use a
chloramine residual disinfectant because certaidadon reactions can take
place without consuming chloramines. Conductivitgl H are both important
to aqueous chemistry and they may be valuable menstanding observed
changes in other parameters, such as free resalatine. Turbidity is an
untrustworthy indicator of contamination but, adlvas conductivity and pH, it
may be considered for proving the understandinghim changes of other
measured parameters.

Clark et. al (2002) also confirmed that chlorinesideal and pH had been
previously considered in research as surrogateidated for on-line monitoring
of distribution systems.
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A summary of the most exhaustive study on thisetthwas offered by US-EPA
(US-EPA, 2005a), while some guidelines for the giesif on-line contamination
detection systems were presented by Pikus (200wir Tonsequent instruction
is a more functional application of what was sambwe. It is based on the
installation of water quality sensors located tigtoaut the WDS combined with
a public health surveillance system, as well aghwa customer complaint
monitoring program for the detection of a wide ramg contaminants (Janke et
al, 2014).

Several typologies of new technologies will strgngipact the advancing
online measurement of contaminants, but presehéyfield is not sufficiently
mature to provide devices that would meet the neédisinking water utilities.
In fact, a new generation of on-line monitoring Ifobas emerged in recent
years; however, an effective implementation of ¢hie®ls has not been realized
for a number of reasons: (i) they do not meet prakcutility needs, (ii) their
cost, reliability and maintenance are unsatisfgctand (iii) the data handling
and management along with the ability to produceammgful operational
information is still to be grasped (Van der Gaad ¥olz, 2008).

1.5 Early Detection Software

The detection of a contamination event requirestti@related variations in the
values of the measured parameters can be distireglisom the normal daily

and/or seasonally fluctuations (the so-called beakgd noise), which are due to
several reasons, such as the contribution of efftesupply sources variable
with the demand. Another complexity lies in thetfdat water quality may have
different characteristics at various points of thigribution network in relation

to the multiplicity of supply sources, the diffetenaterials and the age of the
pipes. It is therefore necessary to use specifjorahms, essentially based on
statistical methodologies, which are able to hgjttliabnormal variations in the
observed parameters compared to normal fluctuations

In practice, according to the approach describeda@lnd through a vast variety
of water sensors, an EWS is based on a continumyssition of the values of

the measured parameters and their transmissionSoparvisory Control and

Data Acquisition (SCADA) integrated with an Earlyefection software that

reads and interprets the acquired data by disshguy the abnormal variations
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from the normal fluctuations. The abnormal variasiothen require prompt
attention or intervention.

To this purpose, CANARY software (open source), eligped by Sandia
National Laboratories in collaboration with US-EP@Jart et al., 2007; US-
EPA, 2010; US-EPA, 2012; Hagar et al., 2013) ismftited in the literature.
CANARY has been developed to provide both real-tiarved off-line analysis
tools, giving particular emphasis to the followifgatures (i) the use of a
standard format for input and output of water dyaind operations data streams
(if) the ability to connect various detection algoms, both in MATLAB and in
compiled library formats for the testing and thealeation by using a well
defined interface (iii) an operation approach thiatulates the utility operator
mode iv) comparison of tools for different evaloati metrics, including
Receiver Operating Characteristic (ROC) curvese timdetect, and false alarm
rates.

Traditionally, water utilities use set points (tsinelds) to identify changes in
water quality parameters: set points provide alamtnen the actual value of the
water parameters goes above or below the set paloe. For example, free
chlorine levels nearby zero need to be communicatechediately to an
operator. Hence, the discussion focuses on theede®p of the different
detection algorithms used by CANARY to identify thater quality values that
are significantly different from the background wed whether or not they
exceed the set point limits.

In fact, CANARY provides a platform within which firent event detection
algorithms can be developed and tested. Theseithlgsr process the water
quality data at each time step to identify anonsalie the water quality.
CANARY works by reading in real-time (online) tingeries of data coming
from any type of water sensor available on the etark commonly uses from
five to seven sensors, including free chlorine, pbinductivity, TOC, ORP,
temperature, and turbidity. For the analyzed tiemges, each quality signeb)(is
constituted of the background water qualif$),(any deviation from that
background @) due to an anomalous event, and the ndeir(trinsic in the
water quality monitoring system. All of the algbms assume that past water
quality observations can be used to accuratelyigirdure water quality values
under normal conditions.

The algorithms are planned to continuously updatklaarn the characteristics
of the background signal in order to take them iedasideration when a new
water quality observation is presented.
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Four main steps are involved in the event detedaigorithms: (i) estimation of
the future water quality values (ii) comparisontloé estimated values with the
measured values as they become available and atdculbf the "residual” as
the difference between estimated and observed wdliip comparison of the
residual at each time step against a thresholdettitat exceed the threshold are
"outliers”, and (iv)use of the probability distribution (in particuldre so-called
Binomial Event Discriminator - BED algorithnd determine the probability of
an event from the number of outliers over a givermber of time steps.
Therefore, the final output is an indication of fm@bability of a water quality
condition existing at each time step.

During the estimation phase, CANARY considers ade®ned set of previous
time steps to predict the values of the next tite@;SCANARY can also easily
combined all the diverse signals characterizeditigrdnt units of measurement.
Regarding the estimation process, two approaches aaailable within
CANARY, that is the linear filtering and the mubltiiate nearest neighbor.

The first one applies an optimal set of weightsetch of the previously
measured standardized observations for each watditygsignal. The weights
are calculated using an auto-covariance functiaependently computed for
each signal, reflecting the importance of the presivalue in the prediction of
the next one.

The second approach considers the set of valusschttime step as a point in a
n-dimensional space. All of the data from previdosetsteps can be mapped as
points in this space, and their mutual distanceveduated. At each time step a
new point is created and the closest point semsebie predicted value for this
time step.

Starting from this process, the residual and th#eos are evaluated to get the
final probability, as above explained.

A comparative analysis of the performance of CANARMNd the other
commercial Early Detection software (OptiDES, Andool, BlueBox, Event
Monitor) has been published by US-EPA (2013b).

The Evaluation Center in Cincinnati (Ohio), togethéth the researchers in
sensor industries such as the Hach Corporationoieland (Colorado), were
also involved with water quality sensor testingyeleping theGuardian Blue
EWS to detect, alert, and classify a wide variety bfeat contaminants in
drinking WDSs (Kroll, 2006).

The optimal Event Detection SystdioptiEDS monitors a set of water quality
and operational data; once an abnormal combinatidche monitored data set
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has been detected, the system alerts and repertsubpicious” parameters. The
basic algorithm of optiEDS uses trend analysis tinitor deviations from a
steady parameters baseline. The innovation was Heee possibility of
embedding the water network operation logic intdiEEIpS, empowering the
water utility's engineers and operators with spedihowledge of the system.
The main capabilities of optiEDS are thus (i) thenitoring of a large set of
water quality and operational parameters (i) #ead-time alarming for abnormal
changes in the water quality (iii) the definitiohsonormal dynamic baseline for
the monitored parameters, and (iv) the possibléoousidjustments into a water
network using the utility's knowledge.

Ana::tool evaluates measurement data that have been clegribe validation
module. Once it has identified the normality of trealyzed data, it is able to
trigger an alarm when a significant deviation framrmality is detected,
enabling the operators to timely react to faultstie monitored system.
Combining, Static Alarms, Dynamic Alarms, PatterecBgnition and Spectral
Alarms, ana::tool detects an alarm and let thesusealuate a feedback in order
to learn which alarms are real and which ones aee f(mostly associated with
the normal changes in the water quality). Gradwahmosition changes (e.g.,
seasonal variations) are accounted for by autonti@icing on a moving time
window. Among the main features of ana::tool, ingd be highlighted the auto-
correction of data based on threshold, outlier moide analysis, as well as the
capability of exploiting the enormous informatioontained in UV spectra,
which provide the most sensitive and stable datamcsofor event detection. It
shows the ability of training itself on any type dta coming in, learning
automatically which data are useful for event d#ec and which ones are
useless. Ana::tool also weighs automatically tteilte as appropriate when a
variety of algorithms are applied in real-time as#; finally, all the event
information is aggregated into a "traffic light" tput and a "deviation from
normal” output.

RegardingBlueBox the EPA Challenge contributed to the developmérnhe
product. In fact, it acquired the ability to defiaad incorporate operational
variables, such as discrete variables (e.g., itidicaf pumps and valves on/off
status), or substantial changes in the measurenoéraperational parameters
like flow, pressure and water direction. This alfothe system to cross reference
and correlate between suspected quality eventshandperational environment,
increasing the certainty and the accuracy of theral BlueBox is also able to
distinguish the cause of the alert, whether itiesalt of a water quality event or
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an equipment malfunction. It can exchange data Wit standard industrial
automation system and, as the other detection amtvwpresents a self-learning
mechanism based on event classifications, fadigathe users with the
classification "true-false”. BlueBox can also doredhan the other detection
algorithms because it integrates several time petens as part of the system
inputs, enabling the detection of abnormalitiesedasn seasonal parameters
(time of the day/month of the year). The level alsé alarms is thus reduced
from seasonality effects.

As the other software, tHevent Monitor(Hach Company) evaluates data from
multiple sensors, interprets the significance ofewvguality deviations from the
established baseline (e.g., deviations due to tpasd fluctuations), calculates
a "fingerprint" of each system event registeredthia software library, and
provides a single trigger signal. Operators camsidjhe trigger threshold, as
well as other simple settings, and they can labehefingerprints for simplified
identification if the event recurs. Also, Hach Ewveéonitor incorporates the
ability to learn specific system dynamics, and $k#-tuning capability, which
modifies the definition of what constitutes an atmnality according to the
variability encountered for a given time frame asgecific site. Both these
features improve the water quality conditions, elating many false alarms due
to the noise. Hach Company also developed an Agdnary to enhance the
capabilities of the Event Monitor when used as paithe GuardianBlue Early
Warning System. The Agent Library is capable of ssifying threat
contaminants so that they are easily differentifitech water quality events.

Since in this context CANARY is still undoubtedlizet most used software,
some results related to its application in the @imati case study are given
hereafter. Allgeier et al. (2008) reviewed the tfiygar of operation for the
Cincinnati Pilot’s online water quality Contamirati Warning System (CWS).
Allgeier reported that 3.7 alarms were generateddpg across the network of
17 monitoring stations (15 were in the distributgystem and 2 were located at
the treatment plants) but they were triggered loyliee operational changes for
the most part. Consequently, the number of alarnas wo high to be
sustainable.

Later, in 2011, the same authors reported that 82%he alerts were invalid,
while the 8% valid were due to unusual plant caodg, changes in the process
at the treatment plant, maintenance or repair iiesvin the distribution system,
main breaks, or verified water quality anomaly witiknown causes (Allgeier et
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al., 2011). As a result, Allgeier et al. (2011)i¢esCANARY software, using the
Cincinnati Pilot field and simulating several ew&i(t,588). For the simulated
events, their detection rate of the true positmes 40%, leaving the 60% as
false negative. However, the authors showed than éf only 40% of the
simulated contamination incidents were detectedseahundetected scenarios
caused low consequences.

The approach based on the analysis of the measaridions with reference to
the most common physic-chemical parameters mushéefore enhanced by
the search for specific contaminants that may caugeblic health threat. In
addition, investigating the opportunities to impeahe event detection, Vugrin
et al. (2009) used historical water quality datenfrthe utility to identify
recurring patterns and saved those patterns ifbraryi that can be accessed
during online operation. This pattern matching tégg was implemented
within CANARY in order to demonstrate a decreastalge alarms.

Finally, a significant false alarms decrease wasced through the method
proposed by Koch and McKenna (2011), according toclv data can be
combined from multiple stations considering theatiom and time of individual
detections.

Kulldorff's scan test can thus find statisticaligrsificant clusters of detections,
which reduce the false alarms resulting from baglkgd noise and indicate
time, as well as source location of the contaminant

Concluding, detection software has to be basedhenevaluation of baseline
water measured parameters. However, when changedetected, additional
analyses should be carried out in order to ideme® contamination threats,
which need conscientious and secure responsetidivi
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Chapter 2

Water Quality Sensors

The needs of EWSs have encouraged the developriatifferent types of
devices based on various technologies (Storey et 28ll1; European
Commission, 2013; Banna et al, 2014). Some of tesiEes are simple sensors
already manufactured and marketed for a long tgueh as those that can detect
the most common chemical-physical water paramefeis, Chlorine, Total
Organic Carbon, Turbidity, pH, Conductivity, etcQthers, are monitoring
stations which combine one or more sensors together
There are also latest-generation sensors: soméiighvexploit very innovative
physical-chemical principles (e.g., Refractive Ixdeothers are sensors that
directly detect specific chemical, biological odi@active contaminants. For
instance, the newest and most expensive one usealiiey of Algae or
Fluorescent Bacteria to differently react in theg@nce or absence of pollutants.
The most common devices are listed below dividénl tiree categories:

» sensors, even multi-parametric, for detecting thgsigal/chemical water

parameters (hereafter called water quality paraisiete
* monitoring stations,
= sensors for detecting specific contaminants.
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2.1 Sensor for thewater quality parameters

Since the detection of water contaminations throtigh analysis of the most
common water quality parameters (shown by EPA assiple indicators of
water conditions) is still a worldwide used techr@gin recent years several
manufacturers have developed a vast variety ofosens
Regarding the chlorine, James et al. (2005) deeelop membrane-covered
amperometric sensor, providing direct chlorine oese without the need for
chemical reagents. Examples of chlorine sensors are

= Series B20 Residual Chlorine Recordgroduced by Analytical

Technology, Inc.;
= AccuChlor 2 Residual Chlorine Measurement System CL17 Free
Residual Chlorine Analyzgaroduced by Hach.

As for the Total organic Carbon (TOC) measure, Haoh developed thAstro
TOC UV analyzerwhich combines a chemical and Ultraviolet (UV)dation
technique in a low-temperature reactor (James.e@D5). Another available
sensor for the TOC measurementRh®enix 8000 UV-Persulfate TOC Analyzer
developed by TeledyneTekmar.
James et al. (2005) also presented a method fon¢lasurement of the turbidity,
according to which it is measured with a- %tatter nephelometer, using a
Refractive Index (RI) light source for stability cdam sealed flow chamber to
reduce bubble formation. The incandescent lighiriscted from the sensor head
assembly down into the turbidimeter body and istteced by suspended
particles in the sample.
Examples of turbidity sensors are:

= 4670 Series Turbidity Systgroduced by ABB Instrumentation;

= WTM500 On-line Turbidimetateveloped by Sigrist.
The pH can be measured through a differential seosataining two glass pH
electrodes, one for sensing and another in buffeetve as a reference electrode
or through an amperometric method.
Conductivity is continuously measured by a two-tmbe cell/four-electrode
conductivity sensor or through the conductance otkth
The differential Oxidation Reduction Potential (ORBensor contains a
platinum-sensing electrode and a separate glassagle in buffer to serve as a
reference electrode.
Examples of sensors that can concurrently meastte cpnductivity and
temperature are:
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= Water Distribution Monitoring (WDM) PipeSonde Inpei Probe
developed by Hach;

» Quanta-Display/Transmitter Multiparameter Water &ty Instrument
developed by Hydrolab.

Recently, a more advanced application of the seriges in the simultaneously
measurement of several water parameters in ordelistonguish changes in
multiple parameters and promptly identify the camteations. Therefore, the
goal is to use multi-parameter water quality sefisthrat is the so called multi-
parametric probes. Typically, they are based onfdfilewing types of water
monitoring methods (US-EPA, 2005b ):

= colorimetric and membrane electrode for chlorine;

= thermistor for temperature;

= membrane electrode or optical sensors for Dissa»eghen (DO);

= potentiometric method for ORP;

= glass bulb electrode for pH;

» nephelometric method or optical sensor for turigidit

= conductivity cell method for specific conductance;

= jon-selective electrodes for Cl-, N@nd NH".
Featuring fully automatic operation and remote @mtion, they can be directly
installed on a pipeline, or they can be put in rtayimg stations located close to
the pipe and taking the water sample with a frequerfi few minutes.
For example, an almost thorough list of multi-paetmc probes is mentioned
below, including their features (Highsmith, 2004S48PA, 2005b; European
Commission, 2013):

» Six-CENSE developed by Dascore - it measures chlorine,
monochloramine or dissolved oxygen, pH, temperateanductivity,
ORP/REDOX;

= WDM Water Distribution Monitoring PipeSonde In-Pipeobedeveloped
by Hach - it measures pH, ORP, conductivity, tutpjdlissolved oxygen,
pressure, temperature;

* (WDMP)Water Distribution Monitoring Panealeveloped by Hach - it
measures chlorine, conductivity, pH, turbidity, gsere, temperature;

= Kapta 3000 AC4developed by Veolia under the European SecurEau

project (www.secureau.eu/) - it measures resididbrine, pressure,
temperature, electrical conductivity and turbidity;
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= Spectro::lyserdeveloped by the Austrian industry S::CAN - it s@e&@s a
selection of parameters chosen by the user betwketal Suspended
Solids (TSS), Nitrate-nitrogen (NEN), Biochemical Oxygen Demand
(BOD), Chemical Oxygen Demand (COD), TOC, Dissolv@dyanic
Carbon (DOC), UV254, ¢ Hydrogen sulfide (kB), Assimilable
Organic Carbon (AOC), color, turbidity, temperatarel pressure;

= Carbo::lyserdeveloped by S::CAN - it measures the organicamatbad,
represented by parameters like Spectral Absorplioefficient (SAC),
TOC, COD, or BOD, and at the same time, turbidity 8S;

= Nitro::lyser Il developed by S::CAN - it measures TSS ands-NCor
turbidity and N@-N;

= Multi::lyser, also developed by S::CAN, is a combination oboatyser
and nitro::lyser - it measures organic carbon atrdte;

= Ozo::lyser lldeveloped by S::CAN - it measures turbidity andrez

= Sulfi::lyser 1I/11l developed by S::CAN - they measure TSS, HS ahd
TSS, HS, N@N, H,S, respectively;

= UV::lyser developed by S::CAN - it measures turbidity or Te8 up to 4
freely chosen wavelengths between 190 and 720 reaguning principle:
UV-Vis spectrometry);

= Ammo::lyser lll prodeveloped by S::CAN - it measures Ammonium-N
(NHs-N) and temperature. Likewise, Ammo:lyser IV prétpand
Ammo::lyser IV pro+NQ@-N measure NN, temperature and pH (with
potassium compensation) and NN, temperature and NEN,
respectively;

= Ammo::lyser Il ecodeveloped by S::CAN - it measures NN and
temperature. Moreovelammo::lyser Il eco+pHadditionally monitors
pH; ammo::lyser 1ll eco+N@N also monitors N@N; ammo::lyser I
eco+Cl adds Chloride measurementnmo::lyser IV eco+pH+N©N
additionally monitors pH and NEN; ammo:lyser IV eco+pH+CI
includes pH and chloride measurements;

= Chlori::lyser developed by S::CAN - it measures free chloring €
HOCI + OCI) or total chlorine (free chlorine + combined ciney);

= Chlodi::lyserdeveloped by S::CAN - it measures chlorine dioxide

= Hyper::lyser developed by S::CAN as an amperometric sensor - it
monitors hydrogen peroxide, whilperoxy::lyser also developed by
S..CAN as an amperometric sensor, controls thecpticaacid,
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= Condu::lyser developed by S::CAN - it measures conductivity and
temperature;

» Redo::lyser ecodeveloped by S:CAN - it measures ORP and
temperature.Redo::lyser prois then well performing within a high
temperature range;

= PH::lyser ecodeveloped by S::CAN - it measures pH and tempezatn
addition, PH::lyser pro performs well within a high temperature and pH
ranges;

= Fluor::lyser developed by S::CAN - it measures fluoride and teraure;

» Soli::lyserdeveloped by S::CAN - it measures TSS;

= Oxi::lyser developed by S::CAN - it measures dissolved oxigeul
temperature;

= |::scan developed by S::CAN - it measures turbidity, UV2i#sorption,
color, and TOC, using the high performance of atimwivelength
spectrophotometer;

» EventLabdeveloped by Optiqua - it is equipped with a hygbénsitive
sensor for Refractive Index changes (RI), whiclnseffective indicator
of water quality because when any substance ildes$ in water, it
changes the refractive index of the water matripnoportion to its own
RI, as well as, its concentration.

2.2 Monitoring stations

In some cases several multi-parameter probes ageegaged into a single
monitoring station in order to evaluate a vastestibn of water parameters at
the same time, and to provide a timely and effeatasponse.

For examples (US-EPA, 2005b), in terms of drinkiwgter regulation the
S::CAN industry also designed timeicro::stationfor the online monitoring of
the water quality parameters. Tlipectro::lyser few S::CAN probes and a
controller are assembled with all required flowigsemounting fittings and pipe
working conditions into a compact and versatile tasys The S::CAN
nano::station presents a further step forward since it is a isapmpact and
versatile system, where as in the previous casajsbrs only have to connect it
to the water supply through the "plug & measuraicpss to receive a prompt
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variety of available information regarding the watarameters. It combines the
i::scan, different S::CAN probes and a S::CAN controller.

For an illustration purpose, some S::CAN probesraperted in Figure 2-1 and
the two monitoring stations are shown in Figure 2-2

a) b)

Figure 2-1. S::CAN Probes a) Multi::lyser b) Carbo::lyser c)l@in:lyser d) pH::lyser e)
i::scan (www.s-can.at)

b)

Figure 2-2. S::CAN Monitoring stations a) Micro::station b) INa:station (www.s-can.at)
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Also, the Hach Corporation developed its monitorstgtion, named/Nater
Distribution Monitoring Panel It combines several instruments into a single
system for a more complete monitoring. The basidehancludes theHach
CL17 Chlorine Analyzer the Hach 1720D Low Range Turbidimetethe
Hach/GLI pH Controlley the Hach/GLI Oxidation Reduction Potential
Controller, the Hach/GLI Conductivity Controllerand theGEMS Pressure
Sensor The expanded model also incorporatdsagh Astro UV TOC analyzer
and an Americaisigma 900 MAXauto sampler that can be activated to collect
and archive samples when pre-specified set-poinesgaare exceeded for any of
the parameters being measured. The HBdstribution Monitoring Panel
continually measures these six or seven water tyupdirameters from a side
stream of water in a municipal distribution systemmd the results can be
directly reported to the utility SCADA system.

The HachWDM PipeSonde In-Pipe Prolfjabove explained) can be added to the
system, being installed on any water pipe (at leéght inches diameter). It
measures pressure, temperature, conductivity, ditybiORP, DO, chlorine
concentration, TOC, and it is able to direct comivate with the SCADA
system of a water utility. Therefore, the Haglrent Monitor Trigger System
(Figure 2-3) allows an effective water monitoriggying an alarm when water
quality significantly deviates from the baseline.

Figure 2-3. Water Distribution Monitoring Panel with the Evddgtection System by Hach
Corporation (www.hach.com)
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Dascore, Inc. developed a monitoring station narBedCensg which was
designed for permanent insertion into a pressunizattr main. It consists of
electrochemical sensors mounted on a one squacidcieramic chip layered
with gold. It continuously measures six parameténsjuding chlorine or
chloramine, DO, pH, ORP, conductivity, and tempg&etusing electrochemical
methods, rather than reagents. The system cannewngtely, with data reported
to the utility SCADA system.

Emerson  Process produced theModel WQS  Multi-Parameter
Electrochemical/Optical Water Quality System (Mod€s5 Solu Comp II)
which measures pH, conductivity, ORP, DO, free gthy and monochloramine
by electrochemical methods. Two more parameteriidity and particle index,
are evaluated through optical methods.

MetriNet, derived from Network Metrics and developed by Analytical
Technology, Inc., let the user choose the desiegdrpeters and integrate them
in a monitoring package, suitable for continuoushitasing, alarming, and data
collection. The system can measure free chloriombened chlorine, dissolved
ozone, pH, ORP, conductivity, temperature, DO, amdidity. The system
provides several methods for delivering detected,dacluding cellular modem,
Wi-Fi, wired Modbus, Ethernet/IP, or Profibus DB, waell as cloud-based data
storage.

Sentina) developed by Clarion Sensing Systems, integragdor data into a
single display which can be remotely viewed. Agha case explained above,
the user can choose among several parameters,dimgluchlorine pH,
temperature, flow, pressure, conductance, turbi@P, DO, radiation, TOC,
VOCs, and certain chemical weapons. Data can besrtisted via LAN or
satellite link.

Finally, although designed for wastewater applaratj STIP-scanproduced by
STIP Isco GmbH can be adapted to drinking WDSs iar@an concurrently
measure nitrate, Chemical Oxygen Demand (COD), T8&ctral Absorption
Coefficient (SAC 254), total solids, turbidity arabsorption in any specified
range within the wavelength spectrum from 190 t0 iéh for detection of other
compounds. The entire system is equipped with araker, as well as, a
bidirectional serial interface to transmit data.aBwles of monitoring stations
are represented in Figure 2-4.
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Figure 2-4 Examples of monitoring stations a) MetriNet b) St

2.3 New Detection Technologies

Even though sensors that measure the common watditygparameters are
much more widespread, new devices have recenthyn losveloped that
implement innovative detection techniques.

For examples, they are able to detect contaminanigilizing the measure of
the refractive index, the toxicity level etc.

For illustration purpose, the following common dms are reported, divided in
three categories: the first is for the measureroétite toxicity level, the second
concerns the detection of biological contaminamtsd the third identifies
radiological contaminations.

2.3.1 Toxicity Indicators

Most of the sensors that are able to detect spediifemical contaminants are
intended for laboratory an situ use, and cannot be directly installed on the
distribution network pipelines.

However, few instruments that were born to detbeingcal contaminations are
also able to identify the toxicity level, being bdn the use of microorganisms.
They are named "biosensors" because they allowetextion of the presence of
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water contaminants through the use of organisnesckianges in physiology or
behavior of living organisms resulting from stresgaduced by toxins are
measured to indicate that there is an unusual tondn the water. Among the
numerous biosensors, US-EPA (2005b) reportedTire Screen Ilby Check
Light and MicroTox/DeltaToxby Strategic Diagnostics for the online water
monitoring.

In the following years, researchers from varioudustries noticed that many
organisms are actually able to change their behamidhe presence of water
pollutants. Mussels, for instance, change the faqu of valve opening and
closing in response to toxinslosselMonitor developed by Delta Consult, can
monitor chlorinated drinking water after a pre tneent to remove chlorine.
Indeed, it is a biological EWS for continuous amelimonitoring of surface
waters and drinking water, allowing for near reale graphical presentation at a
remote location or through Internet.

Then, few instruments are able to detect the plnothstic activity of the algae:
standardized algae are mixed with the sample veatdrthe devices serve as a
toxicity measurement, determining the percentagaative chlorophyll under
illumination. In fact, damage to the algae (e.gie do herbicides) causes a
reduction in algae activity and activates an alafimis principle is used by
Algae Toximetefrom BBE Moldaenken, bizuminoToxfrom Lab_Bell, and by
ALGControlby MicroLAN.

Again, theTOX control developed by MicroLAN is a completely automated
system that uses freshly cultivated lightemittiragteria Yibrio fischer) as a
biological sensor. The luminescence is measuregrdeind after exposition to
calculate the inhibition in percentage: as londgh&ssample toxicity is greater,
the percentage light loss from the test suspensiotuminescent bacteria
increases. Other devices use the enzymes propfeeteairon transport and the
oxidative phosphorylation to monitor the redox etadr rather, the ratio of the
concentration of the oxidized species, that igeel#o the toxic effects.

Finally, x-raies fluorescence technology can alsoubed for the detection of
contaminant substances: ITN Energy Systems prowadeaart, automatic early
warning sensor to continuously trace levels ofdorietals in drinking water on
a ppb scale.

For the purpose of illustration, examples of thectiéed devices are reported
below in Figure 2-5.
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Figure 2-5 Examples of monitoring devices a) ALGControl b) TOr)htroI Wlth its Integrated c)
Toxicity Detection (www.microlan.nl)

In details, Figure 2-5a represents tA&GControl which uses LEDs for
fluorescence excitation. When chlorophyll molecudésorb light, a fraction of
the energy absorbed is reemitted as fluorescersalgae of the same classes
contain a similar quantity and quality of pigmeritds possible to differentiate
divisions of algae by their fluorescence excitatspectrum. Figure 2-5b shows
the TOXcontrol, which uses a decrease in luminescence of the lwrEme
bacteria as an effect to measure the toxicity otewasamples while the
automated processing to detect an anomaly is réitest in Figure 2-5c
(www.microlan.nl).

2.3.2 Biological Contaminants

As in the previous case, even for biological cortemts most of the sensors are
unable to detect specific pathogenic organism inkdrg water due to the
microbial culture time. Actually, culture methods aelatively slow, requiring
at least 24 to 48 hours but the water monitorirgukhbe rapid and prove results
in two hours or less to be efficient. For this mgawonly few technologies can be
implemented for the online water monitoring andytikannot be specific for a
single pathogen.

For instance, flow cytometry was used to distingugesme microorganisms on
the basis of differential light scatter propertigsh the addition of fluorescent
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tags. In fact, a mono-disperse suspension of flelis past a laser beam and the
device measures properties of each cell, such zs gjranularity, green
fluorescence, red fluorescence, and far red floemese intensities. An example
of this methodology is employed Microcyte Aquaby BioDetect, which is a
stationary device suited for online and continumater surveillance.

In addition, BioSentry from JMAR Technologies is able to identify
Cryptosporidium and other microorganism (e.g., @&r in water matrix
particles by means of the light scattering techgglavhich is a simple scanning
procedure that provides information about the preseof particles of a certain
size (US-EPA, 2005b).

Finally, two sensors available on the market arte @b detect a specific
biological contaminant, thdz. coli. The first one is calledCOLIGUARD
developed by the Austriarstart-up Mb Online GmbH, and it indicates the
coli by the optical analysis (luminescence) of the erey3-Glucuronidase. A
second version of the instrument also detectsarali§, analyzing the activity of
3-Galactosidase (European Commission, 2013). Sigmilthe second sensor,
which is theBACTcontrolfrom MicroLAN, measures the specific enzymatic
activity of B-galactosidase (for coliformsB-glucuronidase (forE. coli) and
alkaline phosphatase as indicators of bacteriataromations. The enzyme
activity is detected by adding reagents that cargafluorescent indicator: there
is an increase in fluorescence when the enzymeesept in the sample. As the
latter two sensors are the most innovative in tlield being able to detect
specific biological contaminants, they are représsbin Figure 2-6.
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w

Figure 2-6 Examples of specific biological detectors a) COLIERD b) BACTcontrol
(www.mbonline.at, www.microlan.nl)

2.3.3 Radiological Contaminants

Radiation is another possible cause of contaminatioVDSs. For this reason,
the Federal Water Pollution Control Act (Clean Waket), the Safe Drinking
Water Act (SDWA), and the Maximum Contaminant LevéMCLs) have
recently addressed protection of water systems fragtiation and other
contaminants.

Until the last decade, radiation did not requiratoouous monitoring; however,
since the terrorism is a major security concerthian U.S., as well as in many
other nations, even the laws in this field havébégome stricter and the real-
time monitoring of radiation is turning out to bmgortant for the immediate
detection and response. The available systems td#tectotal amount of
radiation (including alpha particles, beta/photaoniteers and gamma radiation),
alert operators but many of these do not identify $pecific contaminant (US-
EPA, 2005b). Concerning these relevant issues, rgeneformation are
available on the EPA’s website or on the Multi AggrRadiation Survey and
Site Investigation Manual (US-EPA, 2000), developgd&EPA, DOE, DOD, and
the U.S. Nuclear Regulatory Commission.

Hence, among the various technologies availabl¢hermarket, the following
are those related to the online drinking water naimg.

Technical Associates produces several radiationitovimg instruments which
are sensitive to Alpha, Beta, Gamma, X-ray, Neutwod Positron Radiation.
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Regarding the drinking water, it marketed MEDA-SRE for the continuous
monitoring of intentional contamination or accidargpills of gamma radiation
into the water source (iipSS-33DHCand SSS-33DHC-41980 continuously
monitor and detect tritium leakage, and (i85S-33M8 monitorl94or the
monitoring of tritium in water (www.tech-associat@sm).

The 3710 RLS Samplerl9® also avalable by Teledyne Isco, which detects
radionuclides and continuously monitors water fotypes of radiation.

For the purpose of illustratiorlMIEDA-SP and SSS-33DHCare represented
below in Figure 2-7.

Figure 2-7 Examples of specific radiological sensors a) MEDA{§ SSS-33DHC
(www.tech-associates.com)

2.4 Application Casesfor Sensor Use

In order to demonstrate and prove what has beedrirs#tie previous paragraphs,
some application cases of the use of the pressetesbrs are reported (www.s-
can.at).

In these real applications, S::CAN also contemplageminals and software to
manage data, together with the installed monitostafions. For examples,
moni::toolis a new platform for the management of an alma$mited number
of stations, online probes, analyzers and parasjetati::tool automatically
detects, marks and corrects untrustworthy datéindigshing outliers, noise and
discontinuous dataagna::tool defines the normality for the baseline data,
identifies unusual conditions and let an alarmtstdren a significant deviation
is detected; the terminabn::lyte displays the readings of all S::CAN probes and
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sensors connected on site through backlight L&®r::cubeandcon::nectare
respectively a compact terminal for data acquisiatoad a commercial notebook
for operating thespectro::lyseriwww.s-can.at).

It is important to note that the cost of the anatyzlevices varies from a few
thousands of Euros for the simpler multi-paramet@bes up to some tens of
thousands of Euros for probes that detect the peesef toxic substances and
bacterial (e.g., Coliforms andt. col). Their diffusion within the normal
management of WDSs will only enhance the market) wonsequent reduction
of costs and interest in the production systemesting in the research and in
the development of new technologies.

Over the last few years, the small communitieshef First Nations in Canada
had to face with the management of WDSs qualitygcedamination events had
reached a considerable number, causing a seriaenalying accidents for the
population. For this reason, the Canadian govertnewmched a relevant
project to provide safe drinking water to the comitias of the First Nations,
improving the infrastructure. More in detail, thevgrnment decided to install a
remote monitoring of drinking water quality to ensthat industry operators can
be promptly alerted in case of anomalies. This tooimg system consists of
micro-stations, designed for the on-line monitorafgthe most common water
quality parameters. Each stations can combine diputodifferent s::can probes
previously discussedsgectro::lyser, ammo::lyser, chlori::lyseand pH::lyser)
and the terminaton::cube being able to measure a total of ten parameters,
including TSS, COD, BOD, Electric Current (EC), pidmperature, Ni DO,
NOs-N, chlorine and free chlorine.

The stations were installed in combination witbni::tool.

The collected data are then transferred in read iocna computer network that
connects all the Firs Nations.

In order to detect any problems caused by pipeleterioration and to ensure
good drinking water quality, thescan probe was installed in the city of Zurich
(Swiss). It is a revolutionary and cost-effectiyestrometer that uses the latest
LED technology to measure the absorption spectiuemg able to quantify
different parameters, that is turbidity, UvV254, TAROD and colorl::scan was
installed in the pipes using a unique fixture ttet withstand pressures up to 10
bar. The probe also has a valve to close the ctioneto the network: this
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allows its removal from the pipe for inspectionsl @eaning procedures without
interference with the regular water flow.

Here also, the probe was installed in combinatiatt ywoni::tool in order to
manage several monitoring stations.

In Bratislava, since the water quality from the ees is high, only the
chlorination treatment is carried out, which exésiény microbiological growth
during the distribution phase. To ensure that thesjble contamination of one
of the sources does not compromise the high watality, the Bratislava Water
Company (BVS) has sought a system capable of nrorgtéhe various water
sources coupled with robust event detection devitesg the network to send
an alarm in case of an event. To be able to evaluatide range of parameters,
the UV spectro::lyser probe was installed and therefore, the measured
parameters are: absorption spectrum (whole), T8@®ijdity, NO;-N, COD,
BOD, TOC, DOC, UV254, color, DH,S, Assimilable Organic Carbon (AOC),
Benzene-Toluene-Xylene (BTX), temperature and piress

Here again, the probe was installed in combinatiith Moni::tool.

The city of Burgos (Spain) is one of the four destomtion sites of the
"SmartWater4Europe" European project (SW4EU) ptojecwhich the Author
of this Thesis took part (as will be shown in thexihchapters). The site is
properly focused on the detection of the water iguahomalies, as well as on
the integration of this information with the managmt of the WDS. For
potable water monitoring)ptiqua EventLab probdsave been distributed in the
network, capable of detecting changes in any tymissolved chemicals in real
time. In the city of Burgos, the water providerAsciona Aguawho was also
responsible for the adoption of the S::CAMno::stationin ElI Prat of
Llobregat After seeing in the latter location the efficieartd rapid response of
this station to changes in salinity, turbidity dedling, nano::stationhas been
recently purchased also for the city of Burgos,etbgr with thecon::cube
terminal.

BactControlwas installed at the plant in Aigues de Barceldha,water utility
of Barcelona, where it showed excellent results.

Finally ,Vitens, the largest drinking water utility the Netherlands, is currently
installing a large-scale smart drinking water nekwvon the province of
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Friesland. More than 2,200 km of distribution netikvare currently fitted with
200 sensors that will measure the demand and yudlithe drinking water in
real time. In detail, eight S::CANMano::stationswere installed, measuring
turbidity, color, UV254, TOC and DOC, conductivitpH. Each station was
made up of afii:scan, apH::lyser and acondu::lyser Data are transferred via
3G to the central Office in Leuwarden.

The Vitens initiative has also been part of thed®roject.

Finally, it has to be pointed out that since thiestinologies are new and not yet
widely tested, the choice between the differenilalbke sensors is challenging.
In fact, the parameters that each type of sensablesto measure, as well as its
cost, are very clear but information about thélialglity together with the costs
of ordinary and extraordinary maintenance are stiknown. Choosing between
the various types of sensors, the performance @f associated software
packages must also be taken into account, as wéheir ability to effectively
interface and integrate with the information systsemving the WDS to be
monitored.

45



46



Design and Management problems of Monitoring System

Chapter 3

Design and M anagement problems of M onitoring
Systems

Once the sensors are defined, additional needs ditierefore, this chapter aims
to discuss some aspects regarding the design anmdahagement of an EWS. In
details, concerning the EWS design, the followsspes have to be addressed:
= definition of the sensor optimal locations along WDS;
= acquisition and transmission of the enormous amadirdata gathered
together from the sensors.
Regarding the EWS management, other problems lodwve taken into account:
= identification of the location of the contaminatisources;
» assessment of the response acts consequent ttaanaaation event;
= restoration of the distribution network after a @onination event.
All of these issues are described below.

3.1 Sensor s Placement

Considering the different types of sensors anditta they collect, the problem
of determining the sensor optimal locations arigesthe EWS in order to be
efficient.

In fact, the contaminant, which can be accidentafiyntentionally injected at
any point of the distribution network, is predormmtig propagated in relation to
the hydraulic conditions (generated from the waemand). If a lot of sensors
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are installed in the network, the contaminationrshime detection likelihood is
high; on the contrary, if the sensors are few,haytare located at irrelevant
points of the network, the contaminant could beecleid after a long time from
the injection time, or it may even not be detedfetthe flow that conveys the
contaminant does not pass in the monitored spbtxefore, the effectiveness of
the EWS system depends on the number, as well atheoitocation of the
sensors and their definition becomes a crucial@dpethe design of an EWS.
Thus, the current section will address this iséoiea pre-determined number of
sensors necessarily limited for cost reasons, the bestlipation is the one that
maximizes its effectiveness, that is the abilitythad system to reduce the impact
of contamination accidents on public health.

The general criterion which reflects the minimunpant on public safety must
be translated into objective functions that caekgressed quantitatively so that
they can be introduced in the optimization modelar{ & Murray, 2010). For
example, a possible objective function is the pbillig (to be maximized) that
the contaminated flow passes through a monitorede nm the network
(detection likelihood). Alternatively, the objeatifunctions can be expressed by
other variables (to be minimized), such as the seldptime between the
contamination and its detection, the number of liithats that is reached by the
contaminant, the number of people that receivesrdaminant concentration
higher than a certain threshold, the amount ofpttegided contaminated water,
and the percentage of the non-detected contaminatients.

Hart and Murray (2010) identified seven steps commo most of the
optimization-based sensor placement strategiefydimg): (i) the definition of
contamination risk to minimize consequences (euwplic health consequences)
(if) the description of the sensor characteristised in the warning system (iii)
the selection of the objective performance (iv) de€inition of the optimization
objective (v) the formulation of the optimizatiorodel (vi) the application of an
appropriate optimization strategy, and (vii) theplementation of the design.
Hart and Murray (2010) also analyzed the literasiege of the art, grouping the
papers according to how the authors addressedségzh

In fact, the issue of the optimal location of sesdwas been investigated for long
time and it has been faced through both singleetivg (Lee and Deininger,
1992; Kumar et al., 1997; Kessler et al., 1998; Wbal., 2001; Al-Zahrani and

’ Even though those located in a distribution netwarekmonitoring stations, hereatfter they will
be simply called "sensors" for more brevity.

48



Design and Management problems of Monitoring System

Moied, 2001; Ostfeld and Salomons, 2004, 2005; \Betr al., 2006, 2009;

Propato, 2006; Shastri and Diwekar, 2006; Cheitdtal., 2015) and multi-

objective (McKenna et al., 2006; Ostfeld et al.0200stfeld and Salomons,
2006; Preis and Ostfeld, 2006; Dorini et al., 208ades and Polycarpou,
2006; Gueli, 2006; Huang et al., 2006; Wu and WaldR06) methodologies.

Among the single-objective methodologies, Kessleale (1998) introduced a
single-objective algorithm aimed at finding the tboesmbination of sensors
capable of providing a given level of service tlgla set covering algorithm. In
the approach proposed by Kessler et al. (1998),t¢hm "level of service"

indicated the maximum volume of polluted water esqub at a concentration
higher than a minimum hazard level and consumedréetietecting the

contamination. Ostfeld and Salomons (2004) usetndas approach, solving

the optimization problem through a Genetic Algarmthwhile Ostfeld and

Salomon (2005) extended their previous work byoehiicing uncertainties to the
demands and the injected contamination eventsyB¢ral. (2006) introduced a
mixed-integer programming (MIP) for sensor placetmeRropato (2006)

formulated a linear mixed-integer programming maddedtentify optimal sensor

locations for early warning against accidental ameéntional contaminations,
considering few design objectives. Shastri and Raxg2006) introduced the
study of uncertainties related to contaminatioratmn and demand at the time
of the intrusion. Since changing water demand canse changes in flow
directions, contaminated nodes may also changesecpently, a change in
demand by 25% was introduced. Cheifetz et al. (RQifbposed a greedy
incremental sensor-placement approach to be usedefwsor optimization in

large real-world water system.

At the same time, Ostfeld et al. (2008) pointed that importance of creating
multi-objective algorithms to refine the problems#nsors optimal location; in
this context several algorithms have been devel@pedni et al., 2006; Eliades
and Polycarpou, 2006; Gueli, 2006; Huang et al0620In particular, Ostfeld

and Salomons (2006) and Preis and Ostfeld (2006} tise multi-objective

genetic algorithm NSGA-II (Deb et al., 2002). Instltontext, McKenna et al.
(2006) investigated the perfect sensor assumptiat shows an ability to

indicate a positive contamination event as soocangsamount of contamination
reaches the sensor. Indeed, they evaluated thecimpaensor detection limits
and proved that the detection of events is depdraiethe detection limit. The
results of their research showed that a sensocti#idimit of 0.01 times the

average source concentration is adequate for maxiprotection.
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During the Battle of the Water Sensor Networks (BW®eld in the United
States, many other approaches were evaluated én turdace the problem of the
sensor optimal location: a summary of the resudts lze found in Ostfeld et al.
(2008). Later, Berry et al. (2009) addressed theblpm of the imperfect
sensors, taking into account the effect of falsessereadings: the inclusion of
false negative/positive led to a non-linear formiola of the optimization
problem and the results showed that the false semsalings can have a
significant impact on network safety. Nowadays, idewariety of sensors is
commercially available. Since the technology isaamng, the sensors are able
to measure simultaneously an increasing amounthgbipal-chemical water
parameters, considered to be crucial for deteafactontamination events (e.g.,
US-EPA, 2012; Perelman et al., 2012; Arad et &132 Oliker and Ostfeld,
2014a; 2014b). In the context of event detecti@relman et al. (2012) utilized
the artificial neural networks for studying thedrglay between multivariate
water quality parameters and detecting possibléeosit the results consist of
alarms indicating a possible contamination evelseteon single and multiple
water quality parameters. Arald et al. (2013) ainmedetect events by exploring
the time series behavior of routine hydraulic aratew quality measurements,
developing a dynamic threshold scheme. Oliker astfe@d (2014a, 2014b)
improved the contamination events detection ahitijuding the support vector
machines for the detection of outliers and a maitate analysis for the
examination of the relationships between water igugarameters and their
mutual patterns.

However, despite the large research carried otitarfield, a challenge is still
unsolved: the potential contamination events ineal WDS with complex
network topology are countless, since each of thentharacterized by a
different injection location, duration, mass rated astarting time. The large
number of contamination events to be taken int@aatcmakes the problem of
the optimal location of sensors intractable in pcac Hence, the necessity to set
up a sampling method able to select the most reptasve events which can be
considered in order to make the problem less bgatar to solve, arises. In this
context Preis and Ostfeld (2008a) developed a $tauprocedure for sampling a
set of contamination events: they reduced theainitbntamination matrix size
by using a statistical approach which selects sgmitive events considering
their geographical x/y coordinates, few specifigdtion mass rates, injection
starting times and injection durations. Weickgenagtral. (2010) introduced an
importance-based sampling method to effectivelyssifg the contamination
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events based on their importance in terms of the twlume of water that is
polluted in a given interval of time. Due to thenguexity of WDSs the
prediction of the performance under various coodgisuch as failure scenarios,
detection of contamination intrusion sources andasfsor placement locations
is difficult. Thus, Perelman and Ostfeld (2011) eleped a graph theory
connectivity based algorithm to simplify the systbehavior. They introduced
the notion of clustering in the context of topolmiconnectivity analysis and
they suggested connectivity analysis for topoldgiclustering of nodes,
facilitating the nodes sampling for sensor optloahtions. Chang et al. (2012)
established a rule-based expert system where therules, accessibility and
complexity, converge to a set of nodes for thelfsensor locations based on
four design objectives, including the expected tiofiedetection, the expected
population affected prior to detection, the expgaensumption of contaminant
water prior to detection, and the detection liketil. Diao and Rauch (2013)
presented a controllability analysis of the netwaskpreprocessing method for
sensor placement: it determines the nodes thatdraeeitcome indication over a
maximum number of downstream nodes. Rathi and G{ata6) formulated a
simplified method that simultaneously maximizes tperformance objectives,
the demand coverage and the time-constrained amtdiktelinood, which were
combined into a single objective by using weights®ey also used Genetic
Algorithm to obtain the final optimum sensor looas. Zhao et al. (2016)
proposed a sensor placement algorithm based onlyghesuristics and convex
relaxation and demonstrated significant performamcapplying it to repeated
sampling of random subsets of events.

The current research aims to face the optimal sdasation problem as a bi-
objective optimization problem where the number sénsors and the
contaminated population are both minimized. Becathse solution of the
optimization problem requires definition of a sdt possible contamination
events, a sampling method was developed in ordesetect a reduced but
representative set of events, making the probleitiso computationally
feasible.

Unlike the approaches described earlier, the pegbasethodology no longer
selects the representative events considering gie@igraphical x/y coordinates,
their importance in terms of location etc., butheatit takes into account
practical information on network topology, togetheith the hydraulic
characteristics of the network (as illustratedhi@ hext chapters).
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Ultimately, a software for locating the sensorsngladhe water distribution
network is available on the EPA website. In faleg tork of Uber et al. (2004)
led to the development of the Threat Ensemble \falibty Assessment
(TEVA) Research Program, which resulted in the nsigmificant example of
software in this filed: the TEVA-Sensor Placememti@ization Tool (SPOT)
(U.S. EPA, 2013a; Morley et al., 2007; Murray et &004). It is a software
designed to optimally place a series of sensorg]lavs the definition of a
scenario of contamination, it simulates the spreadontaminant/contaminants
throughout the water network and it analyzes thesequences, displaying the
results in the form of charts and tables (Berrglgt2012).
The software initially requires some input data define the scenario of
contaminations including, the chemical species ¢oitjected, the injection
locations, the effects on the population via thibdedose or other methods that
calculate the ingested contaminated volume, and etemated population.
Subsequently, the number of sensors to be locatgdh& method used for their
placement have to be specified: the solvers provide options for the
resolution of the optimization problem, that are ttsRASP (heuristic)" and the
"Lagrangian”; GRASP is preferred as the Lagrangequires much greater
computational costs. Once all data are enteredrethdt shows the positioning
of the number of sensors in the water distributietwork.
The running time is highly influenced by the netiwaize and the defined
contamination scenarios but it is always a matteniautes.
However, TEVA-SPOT software shows several limggeld below:
= In the input file any flow measurement unit is adesed in gallons per
minute;
= If very small doses are injected in the networknynaodes result with
low concentrations that could therefore not be cmmed as dangerous
(this aspect can be exceeded or reduced by spegifyivalue for the
concentration thresholds in mg/L);
= For a proper functioning, TEVA-SPOT needs to beaihed along with a
compiler (Visual C or similar);
= [f an EPANET Multi-Species Extension (EPANET-MSX) extension of
EPANET) file is used, the results cannot be dispthyafter the
simulations;
= |t is not easy to use since it involves the inticighn of many parameters,
often complicated to determine and to be familig&hvior the users who
are not specialists in the chemical/biological/matsectors.
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For these reasons, the software has not yet obtairsgtrong response from the
scientific community and it is very hard to find {(§ made available by EPA
upon request).

3.2 Data Acquisition, Communication and Decision Making

As anticipated in the previous chapter, sensorslicghn involves data
management. In fact, once acquired, data must bdated, processed and
transmitted to central units for their analysisac® a large amount of data is
involved, expert and automated systems are requiredrder to save time,
increasing the analysis accuracy.

In this context, various data acquisition and tnaission systems are known in
literature.

Regarding data collection systems, the Supervis@gntrol and Data
Acquisition (SCADA) systems are widely used for ieonmental monitoring.
The SCADA systems are a computer-controlled typelnofustrial Control
System (ICS) that monitor and control physical stdal processes. SCADA
systems historically distinguish themselves from dther ICS systems by being
integrated into large-scale processes that camdachultiple sites and large
distances (Janke et al., 2014). These processaaegribdustrial, infrastructure,
and facility-based processes.

Since a SCADA system can often incorporate datan fanline or remote
sensors in a cost effective manner (Mays, 2004)a# gained popularity for a
long time among the largest water utilities for tdoatrol of the WDSs.
According to Panguluri et al. (2004), a water ttilSCADA system usually
consists of (i) a Human—Machine Interface (HMl)atingh which the human
operator monitors and controls the process (iip@esvisory computer system,
gathering data on the process and sending comntamdi®l to the process (iii)
Remote Terminal Units (RTUs) connecting to sendarghe process, and
sending digital data to the supervisory system [ ®rpgrammable Logic
Controllers (PLCs) (v) various process and anadyiitstrumentation.

Data acquisition begins at the RTU or PLC leveliolvhncludes meter readings
and equipment status reports that are communicate8CADA systems as
required. Data are then compiled and formatteduchsa way that a control
room operator using the HMI can make supervisorgisiens to adjust or
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override normal RTU or PLC controls. A HMI preseptscess data to a human
operator: they are usually linked to the SCADA syst databases and software
programs to provide trending, diagnostic data, amahagement information,
such as scheduled maintenance procedures, logista®nation, and detailed
schematics for a particular sensor or machine. wportant part of most
SCADA implementations is alarm processing (i.e.edatning when alarms
should be activated if certain alarm conditions satisfied). Once an alarm
event has been detected, one or more actionskae, tsuch as the generation of
e-mail or text messages to inform management ooterSCADA operators.
SCADA systems were born as independent systems natltonnectivity to
other systems and they were later connected thrauglocal Area Network
(LAN) to share information in real time. They wdnaally linked with Internet,
becoming vulnerable to remote attack.

Once data are collected, the common approachlipitided to manage them
consisted in creating mathematical models to &titwith the available data but
due to the nature of environmental phenomena (naisa& linearity, non
stationary, missing data), the data often did nfillf the hypothesis of these
mathematical models.

Thus, a more recent approach consists in relyintherdata to build predictive
models, following firstly the verification and validatioprocess.

Regarding these processes, in the last decadeo@atsal. (2004) proposed a
comparison between data received from monitorites sivith data stored at the
sensor locations to ensure accuracy and completeriadiowing methods
provide automated data filtering, such as the npwmdow averaging, which
reduces random noise retaining a quick step respanrs the Gaussian,
Blackman, and multiple-pass moving average that dexsonstrated slightly
better performance in the frequency domain at tkpemse of increased
computation time. Other procedures are simple exutletection like the ones
used to find deviation from the regular conditidrttee network in terms of the
most common physical/chemical water parameters.

The statistical learning theory (SLT) principleasmore modern theory, which
combines knowledge of Artificial Intelligence (Algarning theory, statistics,
geo-statistics and time series analysis to protodés for the analysis of these
databases, called "environmental data mining" (Be@o Project, 2002). Its

* Predictive modeling uses statistics to predict &ype of unknown event or to guess the
probability of an outcome given a set amount ofiimgata (contamination event in this case).
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result shows a new modeling of long and short tenme events, identification
and monitoring of extreme events applying Suppattdr Machines for mono-
class and multiclass problems, Support Vector Resgoa, Artificial Neural
Networks, multi-scale Kernel Approach, and stodbasimulation in order to
solve real environmental problems (case studiegber contamination analysis,
air quality forecasting and risk assessment).

Following the data verification process, data stHowjo through the
transformation and analysis process (AWWARF, 200Rata analysis is
performed by specialized software and can take tfm of
univariate/multivariate analysis, Rule-Based SystefRBS), or Case-Based
Systems (CBSs)(US-EPA, 2005a). Univariate analgsissiders one single
variable, like for example a specific parameteranrinstrument response that
changes as a function of the water quality. Orcth@rary, multivariate analysis
simultaneously uses inputs from all water paransétestruments to detect data
anomalies, minimizing false alarms. RBSs attempht@rpret information from
a starting set of data and rules; they are uschbyacterized by IF-THEN rules,
which provide real-time reasoning by looping througles. CBSs operate by
comparing a collection of current measurements tdatabase of historical
measurements. Any deviations of the current state past data are notified to
the operator, who can run a predictive model tduata anomalous scenarios
(Carlson et al., 2004).

Processed data should be transmitted to the ced#talbase through either
hardwired or wireless systems; the latter one cea al variety of methods,
including microwave, basic telephone modems, calltdlephone modems, or
satellite. Wireless transmission may require aadtitime of sight between the
transmitter and the receiver, or the use of reswmatiers, also known as
repeaters and amplifiers (AWWA Workshop, 2004; EfSA, 2005a).

Since both acquisition and transmission systemsllysuequire the use of
Internet, the security plays a vital role: the 8w monitoring system would
need to be evaluated not only for its vulnerabildydirect physical attacks but
also to cyber attacks (e.g., tapping). Transmisefaimencrypted data is another
security risk thus, hardware and software shoule flencryption capabilities.

In this context, several researches have beennleatder to study potential
Internet disruptions and to develop plans for imerecovery. For instance, the
U.S. Government Accountability Office (GAO) was edko identify examples
of major Internet disruptions, together with thealesation of laws and
regulations for facilitating the recovery (Jankeaét 2014; U.S. GAO, 2006).
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GAO found that a major disruption to the Internetild be caused by a cyber
incident, such as a software malfunction or a n@l& virus, a physical incident
as a natural disaster or an attack that affectdadaities, and a combination of
both cyber and physical incidents.

The security of SCADA systems were also investidads they are seen as
potentially vulnerable to cyber attacks. The two imadhreats are the
unauthorized access to the control software, whethis a human access or
changes induced intentionally or unintentionallyiyus infections along with
other software threats residing in the control Imathine, and the packet access
to the network hosting SCADA devices with one’s gibiity to control or
interrupt critical facility operations. For theseasons, more recently SCADA
systems incorporate analog signals which requiegiapdrivers to accept data
from monitors (e.g., particle counters) with digganals.

Concluding, a data management plan should be imgpitad and deepened
during the EWS design. Each data feature, includsiogrce, destination,
collection, transmission and storage methods shoellthken into consideration
in detail to specifically illustrate how data fladtwough the system.

For the only purpose of illustration, an exampleacjeneric data management
plan is presented in Figure 3-1.
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Figure 3-1. Utility Consumer Complaint Data Flow (US-EPA, 2005b

Figure 3-1 shows the components of a data collecticansmission and
integration system for consumer complaint survedé& data types and formats
should be listed, as well as data privacy, sersitisecurity, authorization,
encryption, timeliness, cost, redundancy, and alaity should be developed.
Finally, the last step of the communication pathwagcerns the communication
between data analysts and decision-makers duriegtedetection. There are
many possible communication mechanisms which magrbployed, such as
land-line, pager, cell phone, satellite commun@ai radio, television, internet,
and emergency numbers. The type of communicatiocharésm is dependent
on the information provider, source, recipient, teoi, format, timeliness, and
other requirements. Anyway, the most common proaeeould utilize voice
calls, with supplementary data transmitted eleatadly. Communication during
consequence management also shows many forms, diegpesm the message
and target audience. Emergency broadcast warnmnteetpublic can use well-
established communication mechanisms, such as matiotelevision and/or
internet websites (US-EPA, 2005b).
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3.3 Contaminant Source I dentification

As a result of what has been proven so far, wataritoring sensors are located
only at some nodes of the network.

Once the EWS is realized, a model capable of riangathe possible
contamination injection characteristics (e.g., dtin sources, time,
concentration, etc.) needs to be provided to faee occurrence of a
contamination event.

In order to do that, the useful observations abwater quality coming from
sensors could be exploited. In fact, given a satoofcentration observations at
sensors in the network, an inverse problem candbstaicted to identify the
contaminant source characteristics (including locatstrength, and release
history).

Many research works have been already conductadalyze the formulation of
this inverse problem.

Starting with the review of the European projeatshis field, around the end of
the first decade of 2000, different strategies wemglemented by the European
Project SecurEau to identify the location of thentamination sources
(www.secureau.eu). The considered approaches (ieeemethod based on the
analysis of flow data (ii) a deterministic methodsbd on successive positive
readings of sensors (iii) methods based on Aréifibleural Networks (ANNS)
for single and multiple contamination events, anl §tochastic methods, such
as least-squares solving with Tikhonov regulargratior minimum relative
entropy solution (MRE).

The method based on the analysis of the nodes vdeetamination has been
detected and on flow directions was tested in diffe cases. The results allow
concluding that the method gives good results ealbedor the cases with a
single contamination event. The method is fast doeks not require any prior
testing phases (www.secureau.eu).

The deterministic method based on successive pesrgadings of sensors
concerned the analysis of the residence time okmwiat pipes and it only
required a binary sensor status over time. Theltse$or the localization of
contamination sources are given sequentially, beingated each time a new
sensor detected a change in contaminant concemtrdti some situations this
method enables the occurrence of false negativeésase positives thus, the
ANNs algorithms were investigated: they identifye thorrect contamination
source and predict the correct contamination tissoeiated with each possible
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contamination source, even in the case of largecangplex WDSs. The method
that extended the application of ANNs to multiplentamination scenarios
achieved very satisfactory results for real WD3we Tethod is generally able to
correctly determine the simulated source and tinded very restricted set of
possible contamination sources, even consideringraojic scenarios with
demand uncertainties. However, the estimation ef dbntamination time for
scenarios characterized by demand uncertaintiesvshiarger deviation
compared to the simulated contamination sourcee Time of required
computation is generally very low, which has mads method very suitable for
application in real contamination scenarios.

Within the SecurEau Project, the French researstitute Irstea, a member of
the SecurEau Consortium, developed a two-step emtim@'exploration
method (which is an inverse problem method) forgberce identification base.
Firstly, the input/output transport matrix was wedkout with a backtracking
method and then, minimum relative entropy methdthaut any assumption for
the Probability Density Function (PDF) distributjar the least squares method
with Tikhonov regularization were used to refine tiesults and be a source as a
confidence interval. The backtracking algorithmigesl good results giving very
quickly the full list of potential node sources aintamination at the different
times, and the infout (transport) matrix returndm trelation between the
potential source and the detecting sensors. Thabneauld then be used either
on a minimum relative entropy method or a Tikhonmethod: the real
contaminant source is always determined as potestiarce, even though the
minimum relative entropy method seems discrimirgatmore the potential
nodes than the Tikhonov method.

Regarding the last two approaches, numerous stuekes already present in
literature from the second half of the 90's. Irntfaglam et al. (1997) showed an
inverse model for directly calculating the chloribencentrations needed at the
system sources in unsteady flow conditions for mgeta specified
concentration value at a particular node in thevagt. The model used a one-
dimensional chlorine transport equation which wissretized by using a four-
point implicit finite difference scheme. The mairakness of the model is that
it is suitable only for an even-determined casefiich the number of unknowns
(i.e., nodal and source concentrations) equalsitineber of equations (i.e., the
one-dimensional transport equations along pipes Hr mass balances
equations at junctions). Al-Omari and Chandhry @0éxtended Islam’s model
to the underdetermined case where the number ofawiks is greater than the
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number of available equations and there are mae tme solution for which
the prediction error was zero. Supplementanyriori information was added to
the problem: a unique solution was generated byimzmg the Euclidian
length of the solution vector subject to the eduretithat describe chlorine
transport in the network. The input/output modesdsh on the backtracking
algorithm, which has been investigated by Secunaject, was presented by
Shang et al. (2002). As mentioned above, the muaelided information about
the relationships between water quality at input aatput locations by tracking
water parcels, and moving them simultaneously atbeg paths. The algorithm
was geared mainly toward feedback control, progdirformation on all paths
between pairs of nodes, and less toward contaramatource identification
using monitoring stations information.

Later, Bart G. van Bloemen Waanders et al. (2088)Laird et al. (2005, 2006)
introduced a large scale nonlinear programmingaggh that used real-time
concentration information from an installed sengod to accurately determine
the time and location of the contamination everttisTapproach introduced
unknown, time dependent injection terms at evergeno the network and
formulated a quadratic program to solve for theetipmofiles of the injections.
Van Bloemen Waanders et al. (2003) used a nonlineast-squares
minimization of the errors between the calculatedd ameasured node
concentrations at the sensor nodes with a regataiz term to force a unique
solution. The constraints in the optimization peshl were the Partial
Differential Equations (PDE) of the water qualitpdel for the network.

Laird et al. (2005) discretized the problem, usangorigin tracking algorithm to
characterize the pipe time delays and remove tleel h@ discretize along the
length of the pipes. The resulting large scale inear program was solved using
a nonlinear interior point code and it provided damsults in identifying a
family of possible injection scenarios.

The following year, Laird et al. (2006) formulatede inverse problem of
identifying the time and the unique injection sa@rs using concentration
information from a sparse sensor grid and by meain®a Mixed Integer
Quadratic Program (MIQP). This formulation includeohstraints that limited
the solution space and allowed the distinction ketw single and multiple
injection locations.

Preis and Ostfeld (2006) solved the same probleoutih a hybrid Model Trees
(MT), together with a Linear Programming (LP) scleenfhe MT replaced
EPANET through learning (i.e., training and crosgdidation), simulating the
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network response to different random contaminatieents, while the LP used
the classification structures of the model treaedr rules to solve the inverse
problem. In this context, the MT represented fodvarodeling and the LP on
the linear tree structure allowed backward inversedeling, being the
contamination injections characteristics the unkmg@noblem. In the same year,
Zechman et al. (2006) recognized that the accurafy the source
characterization problem depends on the degreersliniqueness present in the
study, since it may cause misidentification of foeirce characteristics. In fact,
as more sensors are added to the network, the mgneness is reduced and a
unique solution may be identified.

Thus, a systematic search for a set of alternathetsare maximally different in
solution characteristics can be used to address|aactify non-uniqueness. For
this reason, Zechman et al. (2006) investigated uke of Evolutionary
Algorithm (EA)-based alternatives generation praged to quantify and
address non-unigueness presented in a contamimantes identification
problem for a water distribution network.

At the same time, Di Cristo and Leopardi (2006) duseme-varying
concentration measurements to identify the souocation of an accidental
contamination. In particular, as nodal demand uag®y in input data and
errors in concentration measurements determingyta Ieivel of uncertainty in
the analyzed inverse problem, an analysis based blonte Carlo procedure
was performed. The results showed a good ideniificdrequency of the right
pollution source node also at high uncertainty levéowever, the results
depended on the number and the location of watelitguneasurements. The
maximum coverage criterion appeared as a good metloo selecting
measurement location.

The EPANET water distribution system simulator (foan, 2000) has been
also exploited to solve a nonlinear contaminantre®uas it provides a
convenient platform for implementing the approa¢hGoan and Aral (1999)
and Aral et al. (2001) in a WDS. In fact, Guan let(2006) coupled EPANET
with an optimization code, solving the contaminantice identification and
release-history problem. In details, EPANET wastfir used to simulate
concentrations a priori selected monitoring locations with release hisoiof
potential contaminant sources. Then, the optinopatnodel was used as a
predictor-corrector algorithm to identify the soescand their release histories
based on similarity of responses between simula#eanlts and measured data at
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the selected monitoring locations. This informateechange was developed as a
closed-loop system that yielded a rapidly conveggilgorithm.

More recently, Liu et al. (2011) proposed an adaptiynamic optimization
technique (ADOPT) for providing a real-time respom@d they investigated a
new multiple population—based search that used \awluBonary Algorithm
(EA); the multiple populations were designed to mtein a set of alternative
solutions that represented various non-unique isolsit Facing the non-
uniqueness in the solution, the procedure was eduplth a systematic method
to identify a set of alternative solutions that evess different as possible in the
solution space. Thus, at any stage of the solyiroeedure, possible solutions
that best describe the observations were deternanddwere used as starting
solutions for subsequent searches as more infasmb@came available.

In addition, several approaches have been useeMiap software tools for the
simulation of contamination transport (www.secuteayi The following
approaches have been considered: (i) an off-liniwaoe tool based on
equations governing bacterial re-growth that ie@#d by sorption, desorption,
chlorine and substrate concentration (ii) a sofewtol considering sorption
developed using MATLAB, Visual Basic for Applicatis (VBA) and EPANET
with models for the evaluation of contaminant camitions, and (iii)) an on-
line software tool that uses flow direction data foeacking contamination
spread.

The off-line software tool is supported with a mbdieveloped through
EPANET-MSX (refer to Shang et al., 2008). The modehtains differential
equations defining functions of attached bactdsislk bacteria, substrate and
chlorine concentrations as a function of time alsd aonsiders the phenomena
of pathogen adsorption/desorption. The model patensh@re user-adjustable as
various types of contaminants have different adsmrpand desorption
coefficients. The graphical user interface of tHRARET software has been
added to the model, allowing the operator to modifydel parameters, to set
initial conditions (e. g. contamination sources),vtew results in graphical or
tabular form, as well as to visualize the distrittof contamination over the
network. The advantage of the off-line softwarel ta that it contains a
comprehensive model that besides convection takeso iaccount
adsorption/desorption and re-growth of bacteria, vadl as chlorine and
substrate concentration. The model can be usedrtcsimulations and study
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contamination development, long-term effects intlgdsorption, effects of
chlorine disinfectant addition and substrate cotregion.

The software tool developed on Matlab and VBA eesliesting the effect of
sorption phenomena on contamination spread in ihgnkvater distribution
systems and studying long-term behavior of a ghrtaisorbed contaminant in
a drinking water distribution system. It has bedmven that the proposed
method is suitable for the study of the effectshaf sorption phenomena in the
modeling of the transport of contaminants in realkdng WDSs.

The on-line software tool enables running simutaiof contamination transport
in a water distribution network based on flow dii@e data. The concept of the
on-line software tool is based on the idea thataise of contamination accident
the affected area of the network is mostly deteeatiby flow directions rather
than flow magnitudes. Flow direction data can b&ioled by means of flow
direction sensors or by hydraulic simulation. A domed approach (flow
direction sensors installed in some pipes, simufafor other pipes) is also
possible. The advantage of the method is thaow fllirection sensors are used,
the software tool uses real-time data from the agtvand therefore, it provides
more robust simulation results.

3.4 Response after Contamination

An important management problem concerns the iatgiwn phase that follows
the occurrence of the contamination event.

For this reason, the existing technical regulati@g., the ISO 11830 "Guide on
crisis management process") states that drinkirtgiveaipply should manage the
response and the restoration of WDSs after conttinim events to ensure
secure and hygienically proper drinking water & thistomers.

This section will address the response problemlevthe next one will deal with
the recovery, following a contamination event.

The response can be implemented in different wagh as a simple alerting of
the population or the injection of substances thw system that can neutralize
the effects of the contaminant. Alternatively, thevices that control the flow
and the functioning of the system (e.g., isolat@tves and hydrants) can be
managed in order to limit the diffusion of the @minant with its consumption
by users. This represents an alternative to thesroonservative approach that
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imposes the shutdown of the entire water supplgsicered not feasible if the
WDS is not divided into District Metered Areas (Dg)yor for many customers
with special needs (hospitals, clinics, factorets,).

However, the teams that water utility managers lisuzave available to
intervene following a contamination event are rotm&ny. Thus, there is a need
to determine the procedure and the order that ineistxecuted to intervene,
deciding, for example, which valves should be adosewhich hydrants should
be opened.

This issue leads to the formulation of differentimzation problems, giving
birth to several studies in literature.

The first, Baranowski and LeBoeuf (2006) propodedée different optimization
techniques (an unconstrained and a constraindebfider reliability method, as
well as, a parameter estimation method) for detangi the optimal nodal
demand to reduce the contaminant concentrationinvttie network after the
detection. In the same year, Poulin et al. (20@6ed to minimize the risk that
contaminated water is consumed, to identify thevaslto be closed safely
containing the contaminated water as well as pudingewith the isolation
actions, and to define a set of operations toiefiity flush contaminated water
from the network for the quick returning to the matf operation conditions.
Therefore, they proposed a heuristic algorithm tasesimple rules, capable of
marking and isolating the contaminated zones thrdhg simultaneous closure
of a certain number of valves in the system with dssumption of an unlimited
number of response teams. Since the response tontntination event
intrinsically involves conflicting objectives (e,gisolation of some network
areas versus operation costs or citizens' need@s Rmd Ostfeld (2008a)
introduced a multi-objective procedure to develop aptimal response,
minimizing the contamination mass consumed afteffitist sensor detection and
the total number of operations (i.e. valves closaral hydrants opening)
required for the isolation and the flushing of thentamination from the
network. The study solved the optimization problgehrough the Non-
Dominated Sorted Genetic Algorithm-1I (NSGA-II); &lso assumed that the
number of response teams is unlimited, all the aip®rs take place
simultaneously, and the characteristics of theamirtation event (i.e. location,
time, duration etc.) are knowa priori. Similarly, Guidorzi et al. (2009)
proposed a procedure based on two consecutive i@ption process: the first
one defines the position of a given number of semsaninimizing the
percentage of undetected contamination eventshengdlume of contaminated
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water consumed up to the beginning of the respopseations; the second one
identifies the hydrant-opening, together with ttadve-closing operations to be
carried out for a generic configuration of sensoesulting from the first
optimization procedure. Alfonso et al. (2010) sarly proposed a multi-
objective procedure for a preliminary identificatiof the operations to be
activated in order to minimize their number and ttentaminated volume
consumed after the detection. While, once the dpesaare identified, Guidorzi
et al. (2009) also suggested amposteriorianalysis to determine the sequence
according to which the operations should be aat/diased on the number of
response teams actually available, Alfonso et2811Q) did not take into account
the problem of the best operation time. Both oflé&s¢ two cited works assumed
that the characteristics of the contamination ewvangt not known goriori.
Finally, Alvisi et al. (2012) recalled the study @Glidorzi et al. (2009), locating
the sensors in the network, activating them whes anthese triggers an alarm
and developing a procedure which enables the atitnakentification of the
optimal scheduling of a set of devices (hydrantbdocopened and valves to be
closed) in order to minimize the contaminated vasmonsumed by users after
a contamination detection (the source is assumé&dawn). In this study, the
constraints were represented by the number ofablairesponse teams and the
maximum speed at which these teams could traveigathe roadway; the
optimization process was based on a genetic agor(lGA) which interacted
with a Mixed Integer Linear Programming (MILP) seilvand which is coupled
with an hydraulic/quality simulator to calculate ethcontaminated water
consumed.

The effectiveness of any response strategy lamdgends on the length of time
needed to implement the required actions sinceorsgpmeans intervening and
ending any consequences on public health. Numeressarchers have also
investigated the influence of response time onntagnitude of public health
consequences (Janke et al., 2006; Skadsen et08B; RMurray et al., 2008),
showing that an increase from 12 to 48 hours inrsponse delay can reduce
the effectiveness of a warning system by 50%, aienfap to 70%).

Bristow and Brumbelow (2006) finally analyzed thlemporal and procedural
space between the detection of an anomaly in therwgaality and the response
decisions, including the process by which decisimkers confirm
contamination and activate the initial phases ofmergency response plan. The
results showed that the cumulative time requiredigtect the contamination
event, perform emergency response, and addressothpliance process can
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take a considerable amount of time, generally erotider of magnitude of days,
where the contaminant verification and the respdragsmission are the most
significant sources of delay (Bristow and Brumbel@®06).

Consequently, an effective and preventive monitpsgstem is essential in a
WDS as it provides crucial information for timelptérvention by limiting
damage to citizens.

3.5 Recovery after Contamination

Once a contamination event has been proved, itaaippecessary to promptly
intervene in order to limit the negative effectstbé contamination itself on
public health. While the response involves theagoh of the contaminated
areas and the development of strategies to reduecednsumed contaminated
water, the recovery phase imposes pipe wall clggaund decontamination.

This section will discuss the latter issue, thathg time period in which all the
actions necessary to restore the network backetoepular operating conditions
are implemented.

In particular, the contaminant does not have tazé® but only be below a
certain limit (detection limit, acceptable levelicg Hence, the cleaning
procedures must lead the WDS to an acceptable lomcentration of the
contaminant in the water and in the deposits. Gintigis criterion is met, the
clearance can be given to distribute drinking wedghe customers and to return
to the routine operation.

The recovery problem has been investigated in aé#eiropean projects, as for
instance in the SecurEau Project, already mentiolmedetails, it proposed a
strategy for pipe wall cleaning and decontaminatmbe carried oun situ (i.e.
inside the pipe), flushing neutralized contaminamisof the system.

If cleaning is very intensive, pipes could be daethgnd contamination leaked
out to groundwater thus, SecurEau avoided to apulgressive methods.
However, flushing should have been more effecthanttraditional methods,
which were mostly focusing on removing loose degsdsécause corrosion layer
inside the pipe absorbed some of contaminants lamanly way to remove it
was to flush it out with incrustation layer.

Several methods for cleaning drinking water distiitms systems were taken
into account; after that, simple solution "howdeal with adsorbed Chemical,
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Biological, Radiological and Nuclear (CBRN) agéntsvere proposed
(www.secureau.eu).
The following steps should be always followed tsue efficient cleaning:
= the selection of the most suitable decontaminatiethod as a function of
the contaminant location;
=when the surface is associated with loose dep@sit¥or bio-films,
traditional techniques (e.g., water/air flushingp this surface layer to be
removed;
= the selection of deeper methodologies for the depadien an effective
diffusion of the CBRN agents is presented.
Both spores, non-spore forming bacteria, and vewsere used by SecurEau as
models for testing decontamination procedures, kwiaiee summarized below.
Shock-chlorination was studied by adding high cotreion of chlorine and
keeping it to reach the optimal Concentration mpligd by Time (CT) value:
although reasonable efficacy was observed in wdbér;films were not
effectively removed. In fact, results showed thasindection with shock
chlorination was an effective method for neutraligbacteria but the removal of
bio-films was not possible without treatments tdivate them. Ultrasound
cavitations may be used to detach spores from sesfaowards a further
procession (i.e. DNA analysis or quantification)t ftushould be followed by
other disinfection methods, which together has lieerexpensive to use in case
of contamination of WDSs. One of the most promisiegults on surface
disinfection was the regime alternating betweerfie chlorine (200 mg/L) and
the sodium hydroxide (1.5%): this technique wastam the spore disinfection
in a bulk and afterwards, the releasing of spodbgiged to the surface.
Advanced oxidation process was successfully testedsecurEau to take
advantage of iron and cupper in WDSs and in bindijlwhile mercury was used
as model substance of inorganic agent, testingrakexeethods (water flushing
with chlorinated or non chlorinated water, ice pgg. Chemicals as release
agents of radiological agents from pipe materiad agal pipe deposits were
tested: sodium bicarbonate was the most effectivemical for cleaning
compared to other decontamination chemicals.
Moreover in SecurEau, several solutions and styafeg effective in situ
cleaning based on using simple reagents were sdlect
» Chemicals such as pesticides as well as pathogathsaatochthonous
bacteria could be removed using Hydrogen Peroxatigiens;
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= Removal of resistant microorganisms, such as Bac8pores, from pipe
surfaces could be achieved by alternating treatmeith sodium
hydroxide and chlorination;

= For removal of radionuclides, desorption by sodhigarbonate solution
and flushing of the system for safe storage offereeimediate option;

= |ce slugs and gravel in combination with water Hiing were effective
methods for removing both loose deposits and ciomokayer of pipes.
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Chapter 4

Early Detection Systemswith the hypothesis of
conser vative contaminants - Optimal Sensors
Placement

As was explained in the previous introductory chept water distribution
networks can be equipped with water quality momgpsystems to successfully
detect potential contamination events. These systrolude sensors installed at
strategic locations, selected in such a way asutramtee early warning and
reduced impact (Walski et al., 2003).

The issue of the optimal placement of sensors, wiscusually dealt with a
multi-objective approach, is crucial for networkmagement and protection, and
hides various pitfalls. One of them lies in theinigibn of the significant
contamination events. In fact, contamination eveats occur at any node of the
network and at any time of the day, with whatevaugs of duration and mass.
All this generates a very high number of potentiahtamination scenarios.
However, taking account of all of them may be exosgly demanding from the
computational viewpoint.

Another pitfall lies in the suitable choice of otfjge functions to be considered.
In fact, numerous objective functions were formediin the scientific literature
(e.g., Ostfeld et al., 2008; Presis and Ostfeld)82), including number of
installed sensors, as a surrogate for the cost, ereht detection time,
contaminated population and sensor redundancy, uamgates for system
reliability. Though all these variables could bmuitaneously considered in the
same optimization framework, optimization technsjuéose resolution
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effectiveness as the number of objective functigmsvs (Creaco et al., 2016).
Therefore, while considering a total number of teonflicting objectives,
associated with the cost and reliability of the itammg system respectively, the
issue of which single pair of objective functiorenaive the best results in the
context of the optimal placement of sensors in WiaNses.

In the chapter, first details will be given aboltetquantity and quality
simulations that need to be carried out to repitetbennetwork behavior during
contamination events (section 4.1). Then, a proeeflor the sampling of the
significant contamination events will be preseritethe context of bi-objective
optimization, by adopting an explicative pair ofaatiive functions (section 4.2).
Unlike other approaches described in the scienttecature (Preis and Ostfeld,
2008b; Weickgenannt et al., 2010; Perelman andefdst011; Chang et al.,
2012; Diao and Rauch, 2013; Rathi and Gupta, 2@hép et al., 2016), this
procedure has the peculiarity of being based octiped information on network
topology and operation (drawn from Tinelli et &017a). The chapter ends with
section 4.3, in which an analysis is reported coring the impact of the
objective function selection on the optimal placatef sensors (drawn from
Tinelli et al., 2017b; Tinelli et al., under revigw

4.1 Quantity and Quality Smulationsfor Contamination Events

After a set of potential contamination events haenbdefined, quantity and
guality simulations need to be carried out to maaetwork behavior during
each of them. These simulations can be carriedhovough such software as
EPANET.

The quantity simulation can be carried auta tantumwith reference to the
typical day of network operation prior to the sétgoality simulations. This
reflects the common assumption that hydraulicsotsaffected by contaminant
propagation.

Then, thanks to quality simulations, it is possildie identify how the
contaminant propagates in the network for eacharointation event.

In EPANET, water quality is solved through a systeinone-dimensional (1D)
advection-reaction pipe equations, and perfectngixé considered at junction
nodes. This approach is considered acceptablecisdhrch for optimal sensor
locations in which the contaminant is often consde conservative.
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Nevertheless, under specific hydraulic conditiangetter representation of the
water-quality processes, above all with regardsitang at the junctions, could
be obtained by taking account of more accurate tm@jesuch as computational
fluid dynamics (CFD) (Braun et al., 2015 offers example). CFD and other
accurate modeling approaches, which are too buodesmgo be considered in
the sensor design phase, remain valid and usedid to be adopted for am
posteriorianalysis of the results.

For each contamination event, EPANET is able t@utate the fate of the
contaminants injected into the network, identifyimgich nodes are reached and
when they are reached following the initial injectitime.

Starting from these simulations, two matrices can dalculated, providing
information about the network behavior during tharious contamination
events. These two matrices are (i) the contaminatiatrix (introduced for the
first time by Kessler at al., 1998), and (ii) then¢ matrix. They both have as
many rows and columns as the number of nodes anthrotnation events,
respectively. In detail, for each contaminationréy¢he contamination matrix
helps distinguishing reached and unaffected noaegrix values equal to 1 and
0, respectively). The time matrix gives the timeeral for the generic node to
be reached, following the initial instant of contaation. For unaffected nodes,
this time interval is <.

Explicative examples of the two matrices are illatd in Figure 4-1.

By simple manipulations on these matrices, it issgile to assess the
performance of a generic system of sensors indtail¢he network. In detail, it
IS possible to assess how many events are detegtihe system in a total group
of events, and then to calculate the event detectikelihood. Other
performance functions that can be potentially eat&ld thanks to these matrices
include the average time of detection and the serestundancy, that is how
many sensors are on average able to detect theigement. By leaning on info
on the number of inhabitants connected to the métwodes, the contamination
and time matrices also enable quantifying the aye@ntaminated population
for the group of contamination events considered.

As the following sub-sections will show, the pressoperformance indicators
can be usefully adopted in the context of multieahive optimization, for the
search of the optimal sensor locations in the netwo
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Contamination Events
Node
1 2 Nevents
1 0 1 0
2 1 0 1
nnodes O 1 0
a)
Contamination Events
Node
1 2 v | Nayents
1 +00 t, +c0
2 t21 +00 t2n.e\.'ents
t;
nnodes +00 tn.nodez 0 b)

Figure 4-1. Explicative examples of a) contamination matrixib)e matri

4.2 Sampling Problem

Due to the initial operations reported in sectioh, 4he optimization procedur
are computationallyvery burdensome when the number of the consic
potential events is high. For these reasons, timagonation scenarios to |
taken into account in the calculations must be e¢edu Thus, a method f
defining a small significant set of contaminatiozents, which is representative
for the totality of the eventsyas set up. Each possible contamination eve
characterized by certain values of injection lamatistarting time, mass rate, ¢
duration. Therefore, the sampling was done for edi¢heevent characteristics,
as it is explained in the following sytaragraph
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4.2.1 Sampling of contamination events

Injection location

Although all the network nodes could theoreticabg potential injection
locations, an algorithm was developed using theplyréneory to select the
representative nodes that should be considerettiéanjection of contaminants.
A preliminary step of the algorithm is the openifgnetwork loops and source
interconnection paths, which can be carried owugh the minimum spanning
tree algorithm (Kruskal, 1956) and/or other progeduaccounting for pipe
diameters and water discharges. Subsequently epiregentative nodes of the
system are selected as a function of their gragliradreasing distance from the
source nodes. In fact, the distance from the sonoce is a variable with more
hydraulic meaningfulness than the nodal geographiyacoordinates of Preis
and Ostfeld (2008b). Specifically, sampling is davith a prefixed frequency,
I.e. one out of two, three, four (and so forth) esdalong the path outgoing from
the network source(s). In each path, the closetsito the sources were always
accounted for. Subsequently, the sampling is medlifthrough the two
following steps, which force selection of the desmiis at the expense of the
close nodes:

i. Dead-ends are included in the list of selected siode

ii. Nodes adjacent to dead-ends, whether previouslylsamare excluded

from the list if they are serial nodes.

Inclusion of dead-ends is important because theythe final nodes of the
network where the generic contamination eventsbeadetected. In fact, let the
generic water path in the network be considere@. déad end is the only node
able to detect all the contamination events thaé igections along this path.
The network in Figure 4-2 is provided as an exanfiptehe application of the
selection with one out of two and one out of ttsampling frequency.
The network has 13 nodes with one source node glateNode 1. The
application of the minimum spanning tree algoritl®ads to the removal of pipe
13 for loop opening. Subsequently, nodes are ssleeiccording to their
gradually increasing distance from the source node.
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Figure 4-3. Selected nodes considering a sampling frequendpéoinjection nodes equal tcn
an explicative WDS. The source node is indicatetti @ibox and the dashed line indicates the
that is removed for loop opening. Node numbersectoghe nodes. Pipe numbers inside cir
and close to the pipt
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As shown in Figure 4-3, the closest nodes to thke faode 2 and 3) are selected.
Therefore, considering a frequency of one out af hedes, the selected nodes
are 2, 3, 5, 6, 7, 12 and 13. In particular, beandead-end, node 12, which
should not have been included as a result of taguency sampling, is finally
included in the list at the expense of node 11ctviis a serial node adjacent to
node 12. In the same way, it would have to prodsedelecting a frequency of
3, 4, and so on.

A remark must be made about the injection locasimmpling, which may fail to
select important crossroad nodes or supernodeshwas defined by Deuerlein
et al. (2014), belong to several paths. In thigedneven if an important node is
missed in the sampling, information about this nadglenot lost; in fact,
contamination events will always reach it througtihg including other nodes
sampled by the algorithm. Furthermore, exclusi@mfrcontamination location
sampling does not prevent the generic node fromgogigood sensor location.

Starting time

Taking as benchmark the typical day of WDS opematievery instant could
theoretically be the starting time of contaminatidhis means that considering
the whole day sampled with a 0.5-h step, theredcbel 48 potential starting
times. The sampling of the starting times is cdrrait based on the WDS
operation phases, detected as a function of pigerwdischarges, which can
vary based on nodal demand, source head pattamdsswitching on/off of
pumps.

In detail, these phases can be identified by detgt¢he times when the water
discharges in network pipes vary significantly. éssng that the water
discharge in a pipe follows the daily trend shownFigure 4-4, the instants
associated with significant changes in the flow®&ré, and 15 h.

Three phases are then detected for the pipe,shBhase 1 from 0 to 7 h, Phase
2 from 7 to 15 h, and Phase 3 from 15 to 24 h.
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Figure 4-4. Water discharge in a WDS pipe during a typical day

The instants of significant flow variation for thole network are obtained |
putting in a single timeline the instants of siggaht flow variation in all the
network pipes. The generic phase is then detectdbeatime slot between o
successive instants in the timeline. Then, a reptative instant can be selec
for each phase, i.e., either the initial instandwinner instant in which the p-
water discharges are closest to the average valuethe phase. The:
representatie instants are selected as significant startimggifor the sample
contamination events.

In the assessment of any objective functions, fheraiin¢-phase durations can
be used as weights to be associated with contaiminaents

Mass rate

The contaminant advectioeaction equations are linear if the contaminai
conservative or firsbrder reactions are used (often the case with gtienal
sensor location). The consequences of this aspeaasily shown through tl
explicative example ahe network in Figure-5, with one source node (Node 1)
and six demanding nodes (Nodes 2-7).
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1 Contaminant
Injection
2 4 7
3
5 6

Figure 4-5. Explicative water distribution network for samplingntamination mass ra

In this network, which features a constant demé&n26ad./s, two contaminatio
events are considered with the same injection ilmeghode 2) and duration
h) and differing in the mass rateonly for explicative purposes, equal to
gr/min (32.05 mg/L and 200 gr/min (128.21 mg/L) in the two eve
respectively. The separate effects of the two everg shown in Figure-6.

140
g 10 N : ——50 gr/min
E‘” 100 —: I = = 200 gr/min
g 80 |
S 60 ki I
S |
T 40
3
§ 20
U O 1 A — 1 I
0 4 8 12 16 20 24

t(h)
Figure 4-6. Trend of the contaminant concentration at 1 7 in response to the injected masses of
50 gr/min and 200 gr/min in the explicative watetidbution network shown in Figure-5

In detail, this graph reports, for Node 7, the d®nof the contaminal
concentration in response to the two eve

The results clearly show that the two trends are priopaal and one can t
obtained from the other through multiplication bfaator equal to the mass r:
ratio, which is 4. Considering the two trends inglfe <6, where the
contaminant concentration rssealmost instantaneously to the highest v
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(very high variation speed), a sensor placed ineNpdvould be able to detect
the event in both cases, as long as its sensitigitgmall enough (usual
assumption in the framework of optimal sensor pile=eat) to detect the
contamination. Nevertheless, in real networks, €asevhich the contaminant
concentration is so low as to be under the semswitdvity are less dangerous in
terms of network safety.

In light of the linearity of the contaminant advieotreaction equations, the
mass of injected contaminants does not influena#aicevariables, such as
number of contaminated nodes or contaminated ptpnlaif the pollutant
concentrations are high enough to be detected dgéehsors. Therefore, if the
focus is on the number of contaminated nodes antlier contaminated
population, rather than on the contamination cotreéon, the average of the
possible masses can be sampled as a representidtiee

Furthermore, when the contamination concentratoonl$o relevant, the WDS
guality simulation can always be carried out ordy éne contamination mass
rate. The results associated with other valuestban be derived by taking
advantage of the linearity of the equations, asudised earlier.

Duration

Under conditions of constant (or slightly variabpepe water discharges (as it
occurs in every WDS operation phase), the nodesheeh by the generic

contamination do not change as a function of thenewuration; only the

contaminants residence time into a single node aznge. This is easily
demonstrated likewise the previous sub-section,séparately injecting 200

gr/min for 120, 300 and 600 min in the explicativater distribution network

shown in Figure 4-5. The trend of the contaminamicentrations in response to
the three injections at Node 7 are illustratedigufe 4-7.
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Figure 4-7. Trend of contaminant concentrations at node 7Helinjected durations of 120, 300

and 600 min in the explicative water distributicetwork shown in Figure 4-5

The results clearly show that the concentrationdseare only shifted along
time, confirming that the event duration only atéethe residence time of the
contaminants in the nodes. The average duratiottheambe sampled from a list
of possible contaminant event durations.

Furthermore, the long duration events can be regaad a succession of short
duration events. Therefore, a single short duratghorter than the network
operating phase durations, can be sampled. It brisinderlined that an event
lying astride two consecutive operation phasesatamays be decomposed into
the combination of two events, each of which idyfuying inside a single
operation phase. Either composing element is badatomposable into a series
of events equal to the short duration event useth@Bosampling.

4.2.2 Optimal Sensor Location

It is evident that application of the aforementidreampling method enables a
significant reduction in the number of contaminatievents to be considered,
and, therefore, in the size of the contaminaticthtéme matrices.

The effectiveness of the sampling method is hefi@ngested in the problem of

optimal sensor placement. The idea is to definetal set of contamination

events, which are then sampled through the proeedescribed above. Then,
the effectiveness of the sampling procedure mustptm/en through the
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comparison of the results of optimal sensor placgnrethe total and sampled
groups of events.

Regarding the objective functions to adopt in tipgimization, a lot of them
have been explained in literature to face the mmbbf the optimal sensor-
location. In order to demonstrate the proposed Sagmethod, two generic
functions are selected: the sensor redunddncgnd contaminated population,
f,, resulting in a bi-objective formulation of thet&d problem.

The objective functioffy is related to the numbey of sensors that can detect the
generic contamination event within a time intendtl.y (to be specified)
following the first event detection. For a genecmntamination event, n, is
equal to O if no sensor can detect the event;agigl to 1 if only one sensor can
detect the event; it is equal to 2 if two sensans @detect the contamination event
in close times, that is, the first detection sersmmt an extra sensor that detects
the event within a time intervallty following the first event detection;
generalizing the concept, is equal toc when, besides the first detection sensor,
there are othex-1 sensors able to detect it withifit,.y following the first
detection. After assessimgfor each contamination eveffif,is calculated as the
weighted average value of

Yi=1 Wity
fi= #’ m.

Z$:1Wr
where S is the total number of contamination events amdis a weight
coefficient associated with the generic contamomagvent. This coefficient is
set to 1 if no event sampling has been carried@ilterwise, it is set equal to the
operating phase duration. A large value fpfis associated with a large
redundancy in the system. This means that, on geerthere are numerous
sensors able to detect the generic contaminatientem the system in a short
time interval between one another. Therefore, shaulsensor fail, another
sensor would be able to give the warning in ite€@la
The objective functiorf, is related to the contaminated populatp before
the first detection of the generic contaminationerdv In the generic
contamination event, the nodes contaminated before the first evergctien
can be evaluated, armmbp can be assessed by summing up the inhabitants
served by the contaminated nodes. In details, \thkiation of the contaminated
population takes into account the residential paiah belonging to each single
node, neglecting indeed the urban mobility thategaaccording to the time. It is
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assumed that a warning is given to interrupt nektvgarvice in a reaction time
interval At..x after the event detection. Hereinaftl..; is set to 0 for
simplifying purposes, but can be set to other \v@lwéhout loss of validity of
the whole methodology. After assesspp for each contamination every,is
calculated as the average valugof:

S
f, = Lr=1WrPOPr (4.2)

Z$:1Wr
For the generic location of sensors in the netwitrd&,objective functions can be
assessed through simple manipulations on the camaéion and time matrices
explained in section 4.1. Functiofisandf, are minimized simultaneously as
mutually contrasting objectives in the bi-objectieptimization process. In
detail, the minimization of the former yields betgebf system cost, whereas
minimization of the latter impacts positively oreteystem security. Therefore,
the optimization results consist of a Pareto fafrtompromised solutions.
Regarding the optimal sensor placement, efficiggréghms can be used to find
a global optimum when specific objective functiom® used. For example,
Kessler et al. (1998) and Ostfeld and Salomons4R@0lved a set-covering
problem, whereas Propato and Piller (2006) solvedM&P problem.
Additionally, it is possible to solve with a greedigorithm in very efficient
manner, even for large networks (e.g., Cheifetal.e2015), with an additional
optimal sensor added at each iteration. Nevertbelaishough being able to
guarantee only the near-optimality of the solutjayenetic algorithms have the
advantage of being easily implementable with whattesbjective functions,
even in the multi-objective framework. Thereforepr fthe bi-objective
optimization of this paper, nhon-dominated sortiegetic algorithm 11 (NSGAII)
(Deb et al., 2002) was chosen.
In NSGAII population individuals, the number of gsnis equal to the number
of network nodes where sensors can be installech Bene can take one of two
possible values, 0 and 1, which stand for absendepeesence of the sensor in
the node associated with the gene, respectivelyeash NSGAIlI generation
starting from the initial population, the parenpptation is selected based on its
fitness. The algorithm then generates the offsppimgulation through crossover
and mutation from the parent population. After lgeabtained as a combination
of the parent and offspring populations, the neywupation is sorted according
to fitness criteria, with the best individuals chonsin order to keep the total
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number of population individuals constant during@etions. The process is
repeated until the maximum number of generations.

To ensure robustness of the end solutions found;hwdre expected to be close
to the global optima, a certain numbag.{) of NSGAII runs can be carried out
in parallel. The ultimate solutions are then puetbier and some solutions are
sampled on the basis of their fitness. The sampbdations can be used inside
the population of new parallel NSGAII runs. Thiogess can be repeated for a
certain number of timesif,).

4.2.3 Case Study

The presented method was developed and appliedW8&, that is the pipe
network model used as benchmark in the Battles afeWWNetworks of the last
Water Distribution Systems Analysis (WDSA) conferes (Marchi et al.,
2014). The pipe and node characteristics for tisigict were reported by Creaco
and Pezzinga (2015). The number of inhabitants ected to each network node
is reported in Table 4-1.

The choice of the NSGAII settings was made basetth®mesults of preliminary
simulations unreported here. In particular, the ®W8Gun was carried out
considering a population of 50 individuals and aximam number of 50
generations.

Furthermore, bothy, andny. were set to S\t.oq, useful for the evaluation of
[Eg. (4.1)],was set to 0.5 hr.
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Table 4-1. Inhabitants connected to the nodes in the first chsdy.

Node I nhabitants Node Inhabitants
1 0 24 282
2 213 25 165
3 288 26 271
4 341 27 215
5 353 28 300
6 100 29 7
7 59 30 38
8 233 31 46
9 148 32 0

10 149 33 193
11 196 34 237
12 330 35 196
13 167 36 298
14 97 37 32
15 20 38 35
16 88 39 160
17 352 40 314
18 22 41 270
19 141 42 220
20 131 43 135
21 182 44 93
22 141 45 0
23 39 46 0

As shown in Figure 4-8, the network of the firsseatudy had 45 demanding
nodes, 52 pipes, and 1 tank. In the lowest nodiénlayout, the water input
from a pumping station was considered as a negaveand, as previously
done by Creaco and Pezzinga (2015).
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Tank

Input —/>

Figure 4-8. Case study layo

In this case study, the following assumptions weagle to define the whole si
of contamination events:
i. All the nodes except for the tank athe input node, that is 44 nodes,
were considered possible injection locati
li. Possible injections were assumed to occur everyiBOtes, leading to 4
possible values of the starting time in the
iii. Mass injection rate offered four possible value$0, 200, 350, and 500
gr/min;
iv. Injection duration offered five possible values6ff, 220, 380, 500, ar
600 min.
Assumptions 2, 3 and 4 were taken from the worRreis and Ostfeld (2008
Therefore, theS total number of contamination events was 44*4%6= 42,240.
Once S was set, the contamination and time matrices cbeldevaluated, ¢
explained in the "Sampling Methodology" sect
In network modeling for the construction of theatotontamination and tirr
matrices, the multiplying coefficients uséat nodal demands were expres
through 1-dayeng patterns with 24 hourly steps. Because irngpesti were
assumed to take place during the first day of nkweperation, the simulatior
had to be conducted for 3 days, because the higlsgience timen the
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network is approximately 24 h. This was done to enaure that even
contaminants injected close to the sources atasteinstant of the first day had
enough time to leave the network. Furthermore, fdad that the simulation
duration is superior to the residence time inskdertetwork (Piller et al., 2015)
is sufficient to avoid the influence of initial oditions on the numerical
concentration solution.

Sampling for the selection of the most represergatbntamination events was
carried out on all the variables, i.e., locatiotarttng time, mass rate, and
duration. The optimizations were carried out torcegor solutions up to a
number of sensors equal to the number of nodespsiitive demand, i.e., 44.

4.2.4 Results and Discussion

This section presents the results for the bi-ohjecbptimal placement of
sensors, aimed at minimizing simultaneously sensatundancy and the
contaminated population in the discussed case study

The scenario considering the total number of comtation events is indicated
as S0. The method proposed for sampling the eweassapplied considering
various scenarios (S1, Sla, Sib, Slc, S1d, andoS@®duce the size of the
contamination and time matrices. The sampling wasedconsidering (1)
frequencies of one out of two or one out of threethe injection location, (2)
representative starting times of 0, 5, and 18 h,jr{&rmediate mass injection
rate of 200 gr/min, and (4) smallest event duratib60 min.

Scenarios S1, Sla, Slb, Slc, and S1d were obteoreidering the location
sampling frequency of one out of two nodes, wheRBenario S2 was obtained
considering the location sampling frequency of omat of three nodes.
Subsequently, 23 and 19 possible injection locatere sampled in S1, Sla,
S1b, Slc, and S1d on the one hand (Figure 4-9a)S@ndn the other hand
(Figure 4-9b), respectively. Furthermore, in S1 &2d all variables other than
the injection location, i.e., starting time, maater and duration, were sampled at
the same time. In Sla, S1b, Slc, and S1d, the smrquncerned one variable
at a time instead. The features of all samplingnaces are reported in Table 4-
2. This table shows that, compared to ScenarioaSlarge reduction in the
number of events is obtained through the samplirgghod, above all in
Scenarios S1 and S2 operating on all the sampigables at the same time.
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Table 4-2. Features of the sampling scenarios in the first casdy.

scenario injection sampling injection sampling
with one out of two frequency | with oneout of threefrequency
SO
S1 X
Sla X
Slb
Slc
Sld
S2 X
scenario starting time massrate duration number
sampling sampling sampling of events
SO 42,240
S1 X X X 69
Sla 22,080
Slb X 2,640
Slc X 10,560
Sld X 8,448
S2 X X X 57

In fact, Scenarios S1 and S2 are made up of 695&ndvents, respectively,

which are smaller than the number of events in&)2@40) by three orders of

magnitude.

Genetic algorithm (GA) applications enabled degvithe Pareto fronts of

optimal solutions in the trade-off between sensoglundancy and contaminated
population in all the scenarios. Figure 4-9 repthts Pareto front obtained in
Scenarios Sla, Slb, Slc, and S1d in comparisontlkathof SO. As expected,

each front shows decreasing values of the contdedrn@opulation as the sensor
redundancy, and therefore the number of installeshsars, increases.
Furthermore, the best benefits in terms of contataenh population are obtained
up to a redundancy of 2.5 sensors. Analysis offeigu9 reveals that the fronts
obtained in Scenarios Sla, S1lb, Slc, and S1d ase ¢b the SO front. As

expected considering the linearity of the adveetigiction equations, the fronts
are almost coincident in Figure 4-9c associatech wite mass sampling.

However, in the other cases, the differences betweefronts are small.
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Figure 4-9. Pareto fronts of optimal solutions in the trad
between sensor redundancy) @nd contaminated population)(f
in Scenarios SO and (a) Sla; (b) S1b; (c) S1c$1di) curves of optim

Sla, Si1b, Slc, and S1d solutions revalued in Soefé

87



Early Detection Systems with the hypothesis ofe@wasive contaminant-
Optimal Sensors Placement

To bettercompare the results obtained in Sla, S1b, Slc, &idl, SO, th
optimal sensor lations obtained in Sla, S1b, Slc, and S1d weredt@éstSO
considering the totality of contamination eventdisTled to the curve
revalued solutions in Figure %- The closeness of these curves to the P
front of SO attests to the fact that thexfprmance of the optimal sen-location
solutions obtained in Sla, S1b, Slc, and S1d dalecdy when tested agail
the totality of events of SO. Similar remarks camftade as in the comparisor
Scenarios S1 and S2, featuring sampling on allvéhiables, with Scenario SO
(Figure 4-10).
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Figure 4-10. Pareto fronts of optimal solutions in the trad:
between the sensor redundangy éhd contaminated populat
(fo) in Scenarios SO and (a) S1; (b) S2; curves of S1 arapma
solutions revalued in Scenario

As an example of the obtained solutions, Figt-11 shows identical locations
of four sensors in Scenarios SO and S1, with vabif, andf, equal to 0.63 and
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772.21, respectively, assessed based on the totdler of contamination ever
(S0).

Input ="~

Figure 4-11. Optimal location of four sensors in Scena
SO and S

Figure 4-11 shows that o the four sensors is located close to the waiauti
whereas the other three are halfway between thet i@wpd the tank. The fol
locations were selected by the optimizer to proynpletect the gener
contamination event, wherever it takes place e network, and in an attempt to
compromise the contaminated population with thesserredundancy. Tt
results shown in Figure #1 corroborate the previous findings concerning
representativeness of the sampled events and fingtieéness of the saning
method.
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4.3 Selection of the objective functions

In section 4.2, the problem of the optimal sensmation was formulated in
mathematical terms, defining decision variablegeative functions, constraints,
and any possible modeling assumptions.

Regarding the objective functions, two of them weedected only for the
purpose of demonstrating the proposed sampling adetbgy. However, there
are many objective functions that can be used &aeit thoice significantly
influences the results of the optimization proc&ss. this reason, the impact of
the objective function selection was investigatedhie optimal placement of
water quality sensors.

This research is hereafter explained: a bi-objeadptimization is used to search
for the sensor optimal locations in the network @rths been applied to a real
WDS.

4.3.1 Description of Objective Functions

Several competing design objectives have been fmsesensor placement. In
fact, on one hand, some objective functions mininttze cost of the system,
such as the number of installed sensors.
On the other hand, many objective functions cantdi&n into account to
minimize the impact of contamination events on ulbéalth, such as:
= the detection likelihood (to be maximized);
= the redundancy, which is related to the numbereatsrs that can detect
the generic contamination event within a specifiee interval, following
the first event detection (to be maximized)
= the population exposed to a contaminant or the euna individuals
receiving a dose above a fixed threshold (to bemmzed);
= the detection time, defined as the elapsed time fitte beginning of the
contamination event to the instant of the detedtiothe first sensor (to be
minimized);
= the extent of the contamination in the pipe netwtelkbe minimized);
=the percentage of the contamination incidents netealed (to be
minimized);
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= the volume of the delivered water after the conteatidon or the volume of
the contaminated water consumed prior to detection;
= etc.

Like in section 4.2, the optimization problem haseib formulated as a bi-
objective problem but two different variants areehased. Both of them adopt
for the first objective functioffy, the number of installed sensors, as a surrogate
for the total cost of the monitoring system. Th&edence between the two
variants lies in the choice of the second objedtivetionf,, which accounts for
the performance of the monitoring system.

In detail, the former variant considers the detectiikelihood, which is the
probability of events being detected by at least ohthe installed sensors. This
function to be maximized inside the optimizatiorcagculated as follows:

f2 :é r=1dr, x®.3
whereSis the total number of potential contamination éseronsidered in the
analysis. Variabled, is equal to 1 if at least one sensor detects rthie
contamination event; otherwise, it is equal to 0.

The second variant, instead, uses the averagegimputontaminated before the
first detection of the generic event. This functimnbe minimized inside the
optimization is expressed as explained above HKEQ)](

For each solution considered inside the optimizapoocess, variabled and
pop can be assessed through simple manipulationseoméitrices evaluated in
section 4.1.

Since Genetic Algorithms (GA) have the advantage lafing easily
implementable with whatever objective functions,G¥SlI is still used to solve
the optimization problem.

As the objectives clearly compete against each rptttee output of the
optimization still consists of a set of trade-affigions, that is the Pareto front.
Various criteria can be used by the decision makeiselect the ultimate
solution, such as a constraintfinor f,. Otherwise, the knee-point in the Pareto
front can be identified, in which an increase ie ttost of the monitoring
systemd; is no longer paid back by a significant benefitdrms off,.
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4.3.2 Obijective Functions Applicatit

The casestudy considered in this work is a networkNorthern Italy (Guidorzi
et al., 2009; Creaco and Franchini, 2012), madef {36 demanding nodes, 8
pipes and 2 reservoirs (layout in Figuré2)-

Figure4-12. Layout of Ferrara Netwo

The sampling procedure was applied to select aeseptative set «
contamination events. As a result, all 536 demandindes of the WDS we
considered possible injection locations. Singlaigalof mass rate and injecti
duration, equal to 200 g/minnd 60 min, respectively, were conside
following the assumption that contamination evestisuld be massive. Only o
representative starting time was accounted forf tha8:00 a.m., becau:
preliminary analyses showed the network to havengles opeating condition
(i.e., no flow inversion at any pipes). The overalimberS of contamination
events was then equal to 536.

As in the case study reported in section 4.2.3,system water demand w
assumedo vary with hourly steps. Therefore-day-long patternsiere used for
the demand multiplying coefficients and the simolad were run for 3 days.
The NSGAIl settings were chosen based on the sesoit preliminary
simulations unreported here, which enabled obtgingn trad-off between
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accuracy of the results and computational overhéaddetail, n,, and the
maximum number of generations were both set to BOGhermoren,,, andne,
were both set to 5.

The graphs in Figure 4-13 show the Pareto frontsptimal trade-off solutions
in the two variants of optimization. In graph ajsaciated with the first variant,
a monotonous trend &f(f;) is shown, in which a significant benefit in terofs
detection likelihood ff) is obtained as the number of installed sensfjs (
increases up to about 10, which is close to thee kofethe front. A further
increase irf; does not yield significant benefits. Comparedrap a), the main
difference of graph b) lies in the monotonous dasiregg trend of the
contaminated populatidn. The position of the knee of the front in the tesof
the second variant is also closd;tel 0.
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Figure 4-13. Pareto fronts obtained in the first a) and secondhliant of optimization

To thoroughly compare the solutions obtained in theo variants of
optimization, these solutions were re-evaluatedenrms of four effectiveness
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indicators for the water quality monitoring systemesides the detection
likelihood and contaminated populations, evaluateer the whole group db
events through equations 1 and 2 respectivelygdétection time and the sensor
redundancy were adopted as a benchmark. These dditioaal indicators,
instead, were assessed over the sub-group of détegents, that is the events
that are detected by at least one sensor. In detal detection time is the
average time elapsing between the contaminatiohastd the time instant when
the first sensor is reached. The redundancy iseefas explained above [Eq.
(4.1)], which contributes to the safety of the ntoring systems.

The graphs in Figure 4-14 show the curves of réuated solutions plotted
against the number of installed sensors. Lookinghatsolutions of the first
variant of optimization, the curve in graph a) @iiles with the Pareto front in
Figure 4-14a and then features a monotonous inogeaend. The trend of the
curves in the other graphs is not strictly monotensince the contaminated
population (graph b), the detection time (graphai)l the sensor redundancy
(graph d) were not objective functions in the firatiant of optimization. In fact,
optimal solutions are usually sub-optimal whenvahgated in terms of different
indicators from the objective functions used in dipgimization.
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Figure 4-14. Solutions obtained in the two variants of optimiaaf re-evaluated in terms of a)
detection likelihood, b) contaminated populationgetection time and d) sensor redundancy

Analogously, looking at the solutions of the seceadant of optimization, the
curve in graph b) coincides with the Pareto framtFigure 4-13b and then
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features a monotonous decreasing trend. The trérdeocurves in the other
graphs is not strictly monotonous since the deiaclikelihood (graph a), the
detection time (graph c) and the sensor redund@eyh d) were not objective
functions in the second variant of optimization.wéwer, as Table 4-3 shows,
the four effectiveness indicators are always stsorigtercorrelated in both

variants of optimization.

Table 4-3. Correlation coefficient between the objective fimes used in the two
variants of optimization and the four effectivenaslicators.

First Variant Second Variant
Detection Likelihood | Contaminated Population
Detection Likelihood 1.00 -0.96
Contaminated Population -0.94 1.00
Detection Time -0.90 -0.84
Sensor Redundancy 0.83 0.84

Overall, the analysis of the results in Figure 4shdws that neither variant of
optimization is superior. In fact, the first variayields solutions that better
perform in terms of detection likelihood and senssiundancy, both positive
indicators of the effectiveness of the monitoriggtem (black line above grey
line in graphs a) and d). The second variant, atstproduces better performing
solutions in terms of contaminated population aatection time, both inverse
indicators of the effectiveness of the monitoriygtem (grey line below black
line in graphs b and c). However, by leaning orpgsasuch as those in Figure 4-
14, water utility managers can choose the ultirsatetion forin situinstallation
based on their budget (which impacts the numbensiglled sensors), on the
effectiveness indicator they prefer and on the elegf effectiveness they aim to
reach in terms of the various indicators. As anngda, the solution obtained
through variant 1 with 10 sensors has a detectikalilood of 0.81, a
contaminated population of 4%, a detection tim&.@f hr and a redundancy of
1.2. The solution obtained through variant 2 withskensors, instead, features
almost halved detection likelihood (0.45) and conteted population (2.3%), a
lower detection time (2.1 hr) and a similar sensedundancy (1.1). It is
important to underline that the objective functi@tated to the contaminated
populationpop provides the number of inhabitants that are awyagached by
the contamination, whose health effect depends anynfactors such as, the
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type of contaminant, its concentration, and thenalameliness. In most of the
possible contamination events, a significant damagthe affected population
can be reasonably excluded thus, its non-zero \@ode accepted, as long as it
is sufficiently small.

Another criterion that can be adopted for the ah@oncerns the location of the
sensors in the various optimal solutions. As anmgta, Figure 4-15 enables
analysis and comparison of the results of the tadants of optimization, in
terms of optimal placement of 10 sensors. Figui®&shows that the placement
obtained in the first variant is made up of sendocated in the intermediate
area of the network, that is at the maximum hydcadlstance from either
reservoir. This happens because most water patgeing from the reservoirs
converge to this area. Therefore, the placemese$ors in this area is essential
for maximizing the event detection likelihood. hetsecond variant, sensors are
more scattered over the whole layout at gradualtyeasing distance from the
reservoirs (Figure 4-15b), to guarantee early vwayrrand therefore reduced
impact in terms of contaminated population.
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Figure 4-15. Optimal locations of 10 sensors for thefirst and b) second variant of optimiza

As a confirmation of the results described abowelf® sensors, Figu 4-16
shows the optimal locations of 5 and 15 sensorthitwo variant:
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Figure 4-16. Optimal locations of 5 and 1a) first and b) second variant of optimization
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Chapter 5

Modeling and M easuring non-conser vative
contaminants

In the previous chapters contaminants were asstnee conservative, i.e. their
changes when dissolved in water were neglected.ugthobeing a good
assumption of the first attempt in the context pfimal sensor placement, the
attention received by water quality topics worldeidilso inside Water Safety
Plans (WSPs), spurred the writer to abandon tlsgraption for better analyzing
the actual behavior of the contaminants. In faogeodissolved in water, the
chemical or biological substances can react witthesdher, with pipe walls, as
well as with water, or also transform themselvet® iother compounds, still
propagating throughout the water distribution nekwd@ome substances may
also precipitate in pipes; thus, the assumptiorcariservative contaminants
would overestimate too much the propagation effdéts examplesArsenic
Pentoxide(As,Os) is often used as a solution in the production erfbltides,
metal adhesives or insecticides. It quickly diseshin water formingArsenic
Acid (HsAsO,), which is characterized by high toxicity. The te@de
Chlorpyrifos (CP) is a moderately toxic insecticide (toxicigtegory 2), able to
oxidize in the presence of free chlorine (Duirk &allette, 2006). Consumption
of CP causes malfunction of the nervous systemnaawg result in death in the
case of large consumption. Again, the powerful dtisele Parathion (PA) is
capable of oxidizing t®araxon(PAO) in the presence of free chlorine (Duirk et
al., 2009). Consumption of extremely small volunt#sParaxon (PA) (3-5
mg/kg body weight) results in death.
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Therefore, it is very important to consider thectems that occur following the
injection of contaminants into the network.

The simulations presented so far have been pertbnwith EPANET, which
carries out hydraulic and quality simulations intevadistribution networks even
for extended periods of time. Within the Quality ddibe, EPANET enables the
modeling of (i) a non-reactive tracer material tigb the network over time (ii)
the movement and fate of a reactive material geoivs (e.g., a disinfection by-
product) or decays (e.g., residual chlorine) withet (iii) the age of water
throughout a network (iv) the reactions both in itk flow and at the pipe wall
(v) time-varying concentration or mass inputs & &tation in the network.
However, EPANET is not able to model the behavioa generic contaminant
injected into the network because it is limitedtrack the transport and fate of
just a single chemical species, such as fluoricl us a tracer study or free
chlorine used in a disinfectant decay study (Ross2@00).

For this reason, the research continued using anstiftware, that is EPANET
Multi-Species Extension (Shang et al., 2008).

It is an EPANET plug-in that allows modeling of asystem of multiple,
interacting chemical and biological species (Shamgl Uber, 2008). In
particular, EPANET-MSX computes the flow transpdrteolume and apply
dynamic reactions within each pipe segment ancgétank over the defined
time step. It takes into account either bulk speeied surface species, enabling
modeling of the interaction between any contamimamith bulk species and
pipe wall surface. The water quality contained hie system can be modeled
using principles of conservation of mass coupleith weaction kinetics.
Consequently, EPANET-MSX can simulate any injectdbstances in the
network but sets of differential-algebraic equati@me used, along with all the
required kinetic constants, equilibrium equaticarg] bulk/wall coefficients.
Being aware that not all the potentially injectedbstances can be considered,
this chapter presents the research carried outirslliT Juran & Cantos (2017),
Tinelli and Juran (2017) because it faces the probbf the presence of the
Escherichia Coli bacteriumE( col) in WDSs. Since chlorine is added to
drinking water in order to kill certain bacteriadaather microbes, the research
had to analyze the fate and transporEotoli when chlorine is in the network,
identifying the adequate kinetic models for theocinle decay.

Once an appropriate EPANET-MSX model was definetiad to be tested for
its proper functioning and accuracy before its &apion to a real distribution
network. To face this problem, a pilot laboratonye swas created at the
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University of Lille, able to test the behavior tietinjected chemical/biological
substances. In fact, in order to confirm the validif the multi-species model,
the pilot lab allowed the comparison with the nuiearsimulations reproducing
the real conditions of WDSs, especially in termsnuditerials, velocity and
pressure, and performing the same tests that ha Ineodeled through
EPANET-MSX (Abdallah, 2015).

5.1 Numerical M odeling of Chemical-Biological Contaminations

The common goal of the US National Drinking WateegRlation and the
European Drinking Water Regulation is to protedblmuhealth by monitoring
the level of the specific chemical/biological sw@stes (e.g., chlorine, arsenic,
iron, E. col) in public water systems. Thus, several researchiased to the
survival and transport of these substances hal@net the increasing concern
for intentional intrusion of contaminants into dsiimg WDSs.

For example, even though many efforts have beerermathe last decades, the
modeling of chlorine is still complex, as it relies the accuracy of hydraulic
models to describe flows as well as flow velociiiBiokker et al., 2008; Pasha
and Lansey, 2010) and on the adequacy of chloesaydkinetic models (Fisher
etal., 2011).

In addition, contamination of water by accidentatrg of biological matter is
very likely. Therefore, a multi-species model i®disn the present research to
analyze the fate and transport of Ehecoli bacterium, incorporating the chlorine
inactivation and its consequent decay through actésn with the organic matter
itself.

The multispecies model was proposed by Pemmasdti2j2according to
previous laboratory studies where the coli was grown in a nutrient broth,
called Tryptic Soy Broth, and chlorinated watemusion. The Tryptic Soy Broth
has been assumed as a composition of three speerging a four-species
model with eight parameters (TSB ratio/TSB reactiate coefficients), where
they can be determined using optimization and patamestimation techniques
(Bacteriological Analytical Manual, 1998).

In the EPANET-MSX model, all the reactions betwé®n species are expressed
in the form of differential equations; tHe. coli inactivation because of the
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chlorine is represented by the chlorine first ordeecay from a predefined initial
chlorine concentration.
The differential equations were formulated as fofo

& = ki Ty C—koTyC—k3TC — kC (5.1)

dT:

d_tl = _klrlTlc (52)
drT:

d_tz = _kzrszc (53)
drT-

d_t3 = _k3T3T3C (54)
dE

L = —k,CE, »-
where:

= k,= fast TSB reaction rate coefficient;
= k,= medium TSB reaction rate coefficient;
= k;= slow TSB reaction rate coefficient;
= k= Chlorine reaction rate based on the initial dhl® concentration;
= r,= fast TSB pseudo-stoichiometric ratio;
= r,= medium TSB pseudo-stoichiometric ratio;
= r;= slow TSB pseudo-stoichiometric ratio;
= k.= E. coliinactivation coefficient;
= C= Chlorine;
= E=E. coli
= T,= Fast reacting TSB;
= T,= Medium reacting TSB;
= T3= Slow reacting TSB.
Fractional coefficients of T1, T2, T3 are f1, f3,respectively i.e. #f,+f3 =1.

The k. inactivationE. coli coefficient was predetermined by exploiting other
studies (Rice et al., 1999), and it is equal td84B L/mg*s. This coefficient
estimates the rate &. coli decay due to interaction with the residual chierin
present in the WDS.

The influence of the initial chlorine concentration the kinetics decay of the
chlorine itself is considered within the model w@gsithe chlorine first order
reaction K). It was firstly derived from Uber et al. (2003 fan initial chlorine
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concentration of 5.25 mg/L but the used value wenavn from Pemmasani
(2012).
Table 5.1 lists the parameter values used in thgemo

Table 5-1. Values of the Model Parameters

Symbol Value Description
ky 0.04816 Fast TSB reaction rate coefficient, L*fsL.
k, 0.00953 Medium TSB reaction rate coeff., L*ris”
ks 9.07E° Slow TSB reaction rate coefficient, L*riiE™
mn 0.10218 Fast TSB pseudo-stoichiometric ratio, L*mg
Ty 0.00630 Medium TSB pseudo-stoichiometric ratio, ig*m
3 0.00201 Slow TSB pseudo-stoichiometric ratio, L*mg
fi 0.6414 Fast TSB partition coefficient
fo 0.0718 Medium TSB partition coefficient
fs 0.2868 Slow TSB partition coefficient
k 1.620F° Cl bulk reaction rate coefficient, /sec

The final outcome of the EPANET-MSX simulationsmniade up of (i) the trend
representation of the considered species, sucthlasine andE. coli (ii) the
calculation of their concentrations at all nodgs#gi of the network over the
analysis time period (iii) the evaluation of thegraeters specified in the input
files (e.g., pH, temperature, TOC, etc.).

All the simulations let the user impose the coeffits of the reactions between
the different chemical and biological species (rédeShang et al., 2008).

5.2 Experimental Activities for Chemical-Biological
Contaminations

This section illustrates the pilot laboratory siteated at the University of Lille.

As already mentioned, the laboratory was builtest ithemical reactions and
transformations that occur once tBe coli, as well as the chlorine, have been
injected into the network. In addition, being coctieel to some sensors, the pilot
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lab can also test the ability and the sensitivitgensors available on the mar
in the detection of chemical or biological contaatian in drinking wate

5.2.1 Pilot laboratory site at the University of Li

As part of the European project Smart térafor Europe (SW4EU), the pil
laboratory site was built at the Laboratory of CitEingineering and Ge
Environment, located in the Campus of Lille Univgrga scientific city in
Northern France).

The pilot lab is 61 meters long and it includeges for the circulation of water,
tanks for the filling, a draining and a pump systetonnections for th
equipment to be tested through water quality sens@ves for the control «
flow direction, a device for the injection of comtimants, instrumentions for
the control of water pressure and velocity.

Figure 51 shows the pilot laboratory scher
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Figure 5-1. Scheme of the pilot laboratory site (Abdallah, 2
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Opaque dual-layer pipes have been used in thegygtem to prevent the entry
of light and the formation of bio-films. These ppare 16 mm in diameter and
they are made of aluminum on the outside and plastithe inside.

A 40-liter tank feeds the system with a pump statin additional chlorine tank
is connected to the system to directly introduderdtne.

Two specific funnels (1) and (2) have been usedniect chemicals and
biological agents. The water quality sensors useithé experiments have been
connected in line at 41 meters from the injectiom{s.

Several manometers have been added to the cioccpgrimanently measure the
pressure at any point of the circuit.

The flow of water is controlled by several valvesdacontinuously measured
with an automatic flow meter (3). The laboratorydat permits the circulation
of water in an open circuit by opening the valvgdad closing the valve (5), or
in a closed circuit by opening the valve (6) armbeig the valve (4).

During the open-loop experiments, the water isgmaitted to an external tank
for the discharge and treatment of the pollutecewgs).

Finally, backflow preventer valves, and safety gbffit valves have been
installed to prevent the return of contaminatedewsd the distribution system.

5.2.2 Simulation Processes

During the simulation processes, the feeding ofywtem is always supplied
through the tank without direct connection to thairmnetwork in order to

prevent the return of contaminated water. The ftate is set by adjusting the
individual valves in the downstream section of plenp.

Figure 5-2 shows the sequence of the performegsisal

» The inlet tank is filled with tap water;

* The connection tap of the injection is open: cormtamis are injected by
feeding the two funnels, and then by letting theéewgo throughout the
pump system;

* The pump allows the flow of the contaminated watehe circuit;

» The monitoring instruments are connected to thevordt, measuring the
water quality parameters.

The other parameters (e.g., pressure, speedge.a)so continuously monitored.
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Confaminants S::can
Injections r

@ Stations — -
Optiqua 1

Intellisonde

&

Figure 5-2. Sequence of the performed analysis (Abdallah, 2

As part of the European project SW4E%j;car, OptiquaandIntellisondewere
selected for the monitoring of water quality, detenng the difference betwet
the normal variation of background and a contarionatvent.

In particular, theS::can stationcombines several instruments, that is
Spectro::Lyser the S:can probes i(:scan, chlori:lyser, pH::lyser,
condu::lysej, and the terminaton::cube these components are assemble
one single compact panel.

Optigua EventLalmeasures the presence of substances in the wedagkhthe
change in the refractive using the principle oerfgrometry, andntellisonde
uses electrochemical/optical technologies to coromductivity, temperature
pH, free and total chlorine, dislsed oxygen, oxidatic-reduction potential,
redox, turbidity and color.

Regarding the analysis, the tests can be carriedazording to two protoco
= Open circuit: the water is directly discharged foe treatment and tt
circuit is continuously supigd from the reservoi
= Closed circuit: the valve (4) of the discharge tem&losed, the network
supplied to compensate only the water used in theitoring instrument
of the water quality.
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For all the experiments, by setting the valveshefsysem, the flow rate is kept
constant and equal to 3 L/min, the pressure isr 2nbidie downstream section
the pump. The measurements are continuously red:

5.3 Comparison between Numerical Modeling and Experiments

This section illustrates the compari between the results obtained by the
numerical analysis and those that come from theréxental activities

In the experimental activities Abdallah (2015) stathatEventLabshowed high
reliability in detecting low concentrations of chieal contaminnts and no
ability in the detection of biological contaminanishile the S::can probes
(especially thespectro::lysey were able to detect either chemical and biold¢
contaminants, for bacterial concentrations abov’UFC/mL). Therefore, the
results obtained from th&::Canmonitoring station were considere
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Figure 5-3. Results ofS::canprobes with differenE. coliinjections (Abdallah, 2015)

Figure 53 shows the trend of the parameters measured bS::can probes
according to differenE. coli concentrations (from > up to 16 UFC/mL): the

parameters start to change when Ehecoli concentration reaches at least 10
UFC/mL.
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In addition, Figure 3 shows that contaminant concentrations below |&vsl
are not detectable also by chlorine sensors. I, fac an initial chlorine
concentration of 0.25 mg/L, the chlorine level éases by 0.05 mg/L after
E. coliinjection of 16 CFU/mL. The chlorine decrease reaches 0.15 mg/%(
of the initial concentration) with aB. coliinjection of 1¢ CFU/mL.

0.3

[10° UFC/mL 10° UFC/mL 107 UFC/mL 10% UFC/mL

0.25

4
N

Free Chlorine (mg/L)
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[9.]
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Figure 5-4. Free chlorine variation as a function of time isgense to the injection of differeE.
coli concentrations (Abdallah, 20:

Finally, Figure 55 illustrates the chlorine decrease withE. coli injection of
10> CFU/u.L. The E. coli was injected in the pilot lab and different inii
chlorine concentrations were tested: 0,3 mg/L,nogbL, and 1 mg/L
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Figure 5-5. Chlorine concentrations wit. coli injection of 18 CFU/.L according to the
experimental activities (Abdallah, 20:

As regard the numerical analysis, EPAN-MSX requires three input files, that
is (i) EPANET .inp file for the network definition (i .msx file which contains
all the equations anckactions of the problem to be scanned (iii) .fet that is
the file which the simulation results are savedTiherefore, being known tt
pump curve and all the geomethgdraulic characteristics of the network,
WDS of the laboratory had to be n&eld in EPANE’, as shown in Figure 5-6.
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Figure 5-6. Layout of the EPANE model for the laboratory WDS
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In details, the system water demand was asstonedry with hourly steps, the
simulationswere run for 24 hours with the same features ofetkigerimental
activities thus, they considered:

= initial chlorine concentration of 0.3 mg/L, 0.5 ragind 1 mg/L;

= E. coliinjection equal to TOJFC/..L.

The comparison between the experimental activities the numerical model is
illustrated in Figure 5-7: the comparison is reedrtin terms of chlorine
decrease, for an initial chlorine concentration0d8 mg/L (and arE. coli
injection of 16 CFU/..L).

1

2 o8}
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2 04 - R2=0.751
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S 02t

5 X 0.3 mg/L
0 @ 1 1 1 1 1 1 1

0O 01 02 03 04 05 06 07 08 09 1
Cl conc. Exp. Activity

Figure 5-7. Comparison of chlorine concentrations between pemental activity and the
numerical model wittE. coliinjection of 16 CFU/u.L

Figure 5-7 shows that chlorine concentrations resmto in both of the two

analysis but the chlorine decay is faster with thenerical model than the
experimental activity. In fact, according to themarical model, chlorine arrives
at zero more rapidly. For this reason, the two cieded points in Figure 5-7

differ from the bisector: they specifically repras¢he delay of the experiments
in achieving zero, as compared to the numericalahothese two points are
also responsible for the reduction of the factérvhich is still satisfactory for

water quality analyses.

An improvement of the Equations (5.1-5.5) and ahaacement in the model
calibration could lead to a better matching oftihe chlorine decreases.
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Approximately the same results were obtained comgathe two studies for
initial chlorine concentrations of 0.5 and 1 mg/itwanE. coli injection of 18
CFU/u.L.

Therefore, both of the two studies demonstrate (hahe chlorine decreases
when the bacterium is injected into the networkdnly with an initial chlorine
concentration of 0.3 mg/L the zero is reachedhafE. coli injection is equal to
10° CFU/.L (i) the time required to reach the residual cinle value increases
with the decrease in the initial concentration loiodne, and subsequently (iii)
the detection of microbial contamination of the er@f 16 Colony-Forming
Unit (CFU)/u.L is faster for chlorine concentrations betweenah8 1 mg/L.

Even using the numerical model, it is proved thdodiine does not drop to zero
if the concentration oE. coli decreases. In fact, considering an initial chierin
concentration of 0.3 mg/L and injecting"10FU/mL of E. coli, the chlorine
drops but it does not reach zero, as representeigjume 5-8.
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Figure 5-8. Chlorine concentrations with. coliinjection of 10 CFU/mL according to the
numerical model

Thus, Figure 5-8 corroborates the experimentaviagtn terms of the threshold
above which the bacteriological species is sigaiftty detected.

Hence, the type of the injected contaminant andyveball, its dynamic
interaction with the fluid and with the pipe wallgre of fundamental
importance.

This aspect identifies EPANET-MSX as an essentigdpsrt for qualitative
studies in WDS because, unlike the traditionalveafé used in the literature
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(such as EPANET), it is able to describe the behavof the most common
chemical/physical water reactions duriBgcoli presence and identify variation
patterns in the biological and chemipakameters.

Finally, since currently there is no direct meadrebiological contaminations
in the water, the chlorine can be monitored to etdéfe coli injections, and more
in general, looking at all the measured water tygharameters, a pattern
recognition able to distinguish the normal condiioof water quality from

anomalies is recognized.

5.4 Extension of the study to a real water distribution network

Once the EPANET-MSX numeric model has been valdjatewas possible to
apply it to a real case study: the water distrimuthetwork ofthe Lille Cité
Scientifique Campus.

5.4.1 Case Study

The Lille Campus is located in the town of Villeneuwd'Ascq (Northern France)
from 1967, although its academic roots date badbG?.

It covers an area of 110 hectares and it comprgis buildings with very
different uses (teaching and research buildingspimidtrative buildings and
university residences). It welcomes 25,000 useduding 4,000 students who
live in the campus, presented below. The water Iguppstem of the Lille
Scientific Campus is relatively old: it was lainrohg the campus construction.
The network is nearly 15 km long. The pipes arentganade of cast iron with
diameters ranging from 20 to 300 mm. The water ogtwncludes49 fire
hydrants, 250 valves, 93 Automatic Meters Reada&iR) measure hourly
water consumption, 5 pressure sensors and 2 ViBisitict Metering Areas
(VDMA). Therefore, the campus can be compareddmall city.

An EPANET hydraulic model was created in orderitoudate the behavior of
the network towards bio-contamination injection®ARET Lille network has
393 nodes, 412 pipes and 5 reservoirs as showigume5-9.
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- R1-CITE' Tank

Figure 5-9. Network layout of Lille Cité Scientifique Campus

After selecting the species to be injected intorteivork €. coliand chlorine),
the knowledge of the hydraulic system and the swiutf the advection/reaction
equations, which can be carried out through sudtwace as EPANET,
determine the contaminants transport and fate.

Initially, the system water demand was assumedaty with hourly steps.
Therefore, 1 day long patterns were used for thenase multiplying
coefficients and the simulations were run for 24iisowith the EPANET
software. All calculations were performed settirge ttraditional SI units.
However, this setting did not enable the understanadf the exact concentration
of the pollutants in the network as a result of tbenplex reactions between the
injected chemical/biological species and the reastirelated to the liquid mass
in contact with the pipe walls. For this purpode system water demand was
assumed to vary with a 10 minutes step.

The EPANET-MSX multi-species model was used foming the simulations:
as said, it provides the evaluation of the chlodnd theE. coli.
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5.4.2 Results and Discussion

In a first stage of the analysis, two scenarioshasen analyzed in order to t

the transportation of the contaminants in the netwdC® CFU (as units diluted
in 1 mL) of E. coli was injected in the nodes adjacent to the two t

represented in Figure 5-9, that is FGIFE' Tank and 2-4CANTON Tank. An
initial chlorine concentration equal to Ondg/L was assumed in all the nod

For the sake of brevity, only the analysis of thiegtions close to the first tar

that is the injection in node 1, is reported (reéeminelli and Juran, 2017 for tl

full analysis) .

Figure 5-10 visualizes the egtion location together with the monitored no

and shows the results Bf coliand chlorine trend:
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Figure 5-10. E. coliinjection in node 1 withe. coliand chlorine concentrations in the monitored
nodes
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In details, Figure 5-10 illustrates the chlorinecaimposition, following the
injections ofE. coliat a single point.

As long as the distance from the injection locatiocreases, the contaminant
effect on the chlorine is less evident. Startirapfrnode 14, it demonstrates an
immediate contaminant effect on the chlorine. Theodes 23, 50, and 60
illustrate a delay in the chlorine decrease, whitele 80 shows a drop in the
chlorine even if theE. coli does not reach its peak. Only a small quantity of
contaminant with an apparent decrease in the cleas reported in node 284.
Ultimately, node 185 is too far from the injectimeation to be influenced; here,
the chlorine decrease is only due to the chlorgreahd.

Therefore, the analysis showed a clear possilititgdetectE. coli bacteria by
analyzing the level of the chlorine in the netwdrkfact, theE. coli presents an
immediate effect on the network: H. coli quantity increases, the level of total
chlorine directly decreases.

In a second stage of the analysis, due to the abseha pumping system
capable of injecting chlorine in the distributiomtwork, an initial chlorine

concentration of 1 mg/L was assumed. Some of theitored nodes were
analyzed before and aftér coli injections in order to (i) illustrate the chlorine
trend without any contaminant injections (ii) cdrovate the sudden reaction
between chlorine ané. coli.

* Chlorine demand is the difference between totabrimé added in the water and residual
chlorine. It is the amount which reacts with organiaterials and other compounds present in
water prior to disinfection.
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Figure 5-11. Chlorineconcentrations in some of the monitored nodes #feestabilization

As expected Hallama et al., 2002)after an initial drop due to the chlorine
reactions with organic materials, tank walls anldssances present in the water
(e.g., metals), the chlorine reaches its stabitimaflhus, the remaining chlorine
is the total chlorine divided into: i) the amourftoblorine that has reacted with
nitrates and is unavailable for disinfection whishcalled combined chlorine
and, ii) the free chlorine, which is the chlorineaable to inactivate disease-
causing organisms, and used as a measure to deteimai drinkability of water.
Hence, Figure 5-11 shows the chlorine trend affterstabilization. As for nodes
1, 14 and 23, as long as the distance from the tacileases, the chlorine
concentrations decrease due to its reactions ardilittion. The chlorine trends
are also very similar, showing the slight dailyistion.

The furthest node, that is node 60, reveals a cdraten higher than node 23,
probably due to the change in dilution phenomenso (aelated to the flow
rates).
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Figure 5-12. Chlorine concentrations on node 14 after diffeientoliinjections

EPANET-MSX simulations oE. coli injections were repeated. The bacterium
was injected in node 1 (see Figure 5-10) at theh 48tur with different
concentrations: 2, 5 and 100 CFUL

Figure 5-12 shows the chlorine trend in the preseat the threeE. coli
concentrations for node 14. It demonstrates thaftcttlorine drops down in the
presence of the bacterium, without reaching the.ZEne results are consistent
with the laboratory experiments and their simuladio proving that (i) the
chlorine, which is one of the most common disirdets, is consumed when it
reacts with pathogens (i) the chlorine drops dawrzero when thee. coli
injections reach the order of magnitude of C&FU/mL.
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Chapter 6

Prototype System for Early non-specific Biological
Contaminations Detection

After studying the sensitivity of the quality sersoto detect biological
accidental or deliberate contaminations in WDSghagjuality sensors produce
a huge amount of data, a rapid, as well as smeatptacessing procedure has to
be established for the development of a risk asssssmodel, together with a
decision support system. In details, the model shbe able to early detect
biological contaminations in drinking water netwoirk order to efficiently
enable water operators to ensure real-time watitgeontrol management.
Consequently, this procedure should consist of ppoeessing/processing,
training, validation, and forecasting phases,ritig out data anomalies and false
alarms.

In addition, Chapter 5 discussed the feasibility ddtecting non-specific
biological anomalies (such & coli) through the use of the chlorine trend to
develop a prototype system for early non speciiicdontamination detection.
For this purpose, the numerical simulations of ¢hiorine decay trend during
injection of E. coli were compared with the laboratory model test tesul
performed at the University of Lille.

In the absence of field data of bio-contaminatibe, EPANET-MSX model was
used for scenario-simulations to produce numeritata, hereafter named
Chlorscan: they simulate the effect of bio-anomabenarios on chlorine
concentration in water distribution networks.

Therefore, this chapter first presents an automstiatistical based approach to
detect bio-anomalies in a generic WDS (drawn inellinJuran & Cantos,
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2017), starting from a database, which consistShdérscan time series (section
6.1). The same procedure becomes more accurateeimest of the chapter
(section 6.2), where the statistical data analggjgoach is supported by the use
of the Atrtificial Intelligence (Al). In fact, by etoiting some principles such as
the pattern recognition, the detection process lide ato recognize a
contamination scenario in quasi-real-time. To ds, thot only chlorine but also
different water quality parameters are analyzedhsd the bio-contamination
signature, its likelihood and severity can be dettevhen a contamination event
occurs.

6.1 Statistical based Early Detection

6.1.1 Chlorscan Data Analysis

Typical Chlorscan data are considered as relevatitators of potential non-
specific bio-contamination, thus they can be usedput for a risk assessment
system in WDSs. They require a first processing,stehich consists in
identifying the chlorine trend after its stabilimat, as shown in Figure 5.11.
Taking as input the numerically simulated Chlorsdata, which are aggregated
into a continuously updated data file, false aladws to the initial data temporal
variability are filtered out.

A multi-spots approach is used to compare the ahesnaletected by the
Chlorscan at different locations over the watetriistion network.

Starting from a database, which consists of Chiordiine series, statistical tests
are implemented to establish the 1st, 2nd, andSBaddard Deviation (STDs).
Afterwards, the analysis requires the followingoste
= Chlorscan data are normalized to the average (Flteo out any outlier
that might be generated,
=5 threshold levels (Insignificant, Low, Moderateighi Very High) of
normalized Chlorscan data are defined to estaliigihood and risk
severity levels corresponding to the amplitude obrnmalized
concentration deviation from the averagé&)
= The Likelihood is defined as a function of thA& amplitude and the
elapsed time period\T in Hours) of the detected anomaly;
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= Using the selected thresholds of the state pamméhF; AT) the
likelihood matrix is established, as shown in Feybrla;

= The risk severity matrix is obtained, using a samjrocess, considering
respectively the normalized Chlorscan concentratieviation dataAF)
and the exposure periodTe in hours). Therefore, using the selected
thresholds of the state parameterds=;( ATe,) the severity matrix is

established, as shown in Figure 6-1b.

Likelihood Matrix

Hours

|

AF% 1 2 3 4 >4 Likelihood Scale (0-100%)
4-10% 10- 30 % Low
10-20% 30-60 % Moderate
20-30% 60-90% High
Severity Matrix
Exposure Hours b)
AF% 0-1 1-3 3-12 12-24 >24 Severity Scale (1-5)
4-10% 2 Low
10-20% 3 Moderate
20-30% 4 High

Figure 6-1. a) Likelihood matrix and Likelihood scale; b) Satyematrix and Severity scale

= Using the likelihood scale and the severity sclaéerisk matrix is defined
as shown in Figure 6-2.

Figure 6-2. Risk scale and Risk assessment matrix

Risk Assessment Matrix
Likelihood Severity Scale
Scale 2 3 4 5 Risk Scale (0-1)
10-30% 0.1-0.2 Low
30-60% 0.3-0.6 Moderate
60-90% ‘ 0.6-0.9 High
(0901 [ VeryHigh |

» Finally, using the risk scale, the time series lod Risk Indicator is
defined based on the appropriate state color diirtiee step.
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6.1.2 Application of Chlorscan Analysis

The methodology was deployed in the Lille UniversiCampus, already
explained in Chapter 5 (section 5.4).
In order to demo-illustrate the application of ghxposal analysis, numerical
Chlorscan data simulating the effect of bio-anomagenario on chlorine
concentration in two nodes (nodes 23 and 80) ohéteork were used.
In particular, they were obtained from 8 hours EEANMSX simulations,
using a reporting time step of 10 minutes. An abihlorine concentration equal
to 0.4 mg/L along with a&. coliinjection of 16 CFU/mL were assumed.
Thus, the data were classified as follows:

= Chlorscanl: node 23;

= Chlorscan2: node 80.
The numerical Chlorscan data are reported fron2#b hour of the analysis to
avoid the initial variability of the chlorine, ab@vn for the previous simulations
(Figure 5.11).
Table 6.1 illustrates the numerical Chlorscan dhta were employed in the
analysis: each Chlorscan value is reported witleregice to the sequential
number of the time series to be easily represantdee procedure application.
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Table 6-1. Chlorscan data used in the statistical based sisaly

. X Chlorscan 1 - Node 23 Chlorscan 2 - Node 80
R e e Time Chlor. (mg/l) Time Chlor. (mg/l)

1 24:00:00' 0.164 24:00:00" 0.182
2 24:10:00' 0.164 24:10:00" 0.182
3 24:20:00' 0.163 24:20:00" 0.182
4 24:30:00' 0.163 24:30:00" 0.183
5 24:40:00" 0.166 24:40:00" 0.183
6 24:50:00' 0.166 24:50:00" 0.183
7 25:00:00° 0.162 25:00:00 0.183
8 25:10:00 0.161 25:10:00" 0.184
9 25:20:00" 0.154 25:20:00' 0.184
10 25:30:00' 0.157 25:30:00 0.184
11 25:40:00° 0.152 25:40:00 0.184
12 25:50:00' 0.151 25:50:00" 0.185
13 26:00:00' 0.158 26:00:00" 0.185
14 26:10:00' 0.154 26:10:00 0.185
15 26:20:00' 0.157 26:20:00 0.185
16 26:30:00' 0.153 26:30:00" 0.185
17 26:40.00' 0.151 26:40:00" 0.186
18 26:50:00' 0.145 26:50:00 0.186
19 27:00:00' 0.146 27:00:00 0.185
20 27:10:00' 0.125 27:10:00" 0.185
21 27:20:00' 0.093 27:20:00 0.187
22 27:30:00' 0.080 27:30:00 0.187
23 27:40:00' 0.075 27:40:00" 0.186
24 27:50:00' 0.072 27:50:00" 0.141
25 28:00:00' 0.074 28:00:00" 0.123
26 28:10:00' 0.078 28:10:00 0.118
27 28:20:00' 0.068 28:20:00" 0.122
28 28:30:00° 0.072 28:30:00" 0.118
29 28:40:00' 0.075 28:40:00" 0.119
30 28:50:00' 0.078 28:50:00" 0.119
31 29:00:00' 0.069 29:00:00" 0.141
32 29:10:00' 0.156 29:10:00" 0.123
33 29:20:00' 0.162 29:20:00" 0.118
34 29:30:00' 0.163 29:30:00" 0.122
35 29:40:00' 0.159 29:40:00 0.118
36 29:50:00' 0.159 29:50:00 0.119
37 30:00:00' 0.160 30:00:00' 0.119
38 30:10:00" 0.153 30:10:00' 0.121
39 30:20:000 0.161 30:20:00" 0.121
40 30:30:00" 0.161 30:30:00' 0.12
41 30:40:00' 0.161 30:40:00' 0.12
42 30:50:00° 0.162 30:50:00' 0.119
43 31:00:00' 0.163 31:00:00' 0.119
44 31:10:00" 0.162 31:10:00' 0.12
45 31:20:00' 0.162 31:20:00' 0.12
46 31:30:00' 0.160 31:30:00' 0.119
47 31:40:00" 0.161 31:40:00' 175
48 31:50:00' 0.161 31:50:00' 179
49 32:00:00' 0.161 32:00:00' 0.184
50 32:10:00' 0.160 32:10:00' 0.183
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For the purpose of showindpe proposed statistical procec, the first time
series, that is Chlorscanlis used.
Therefore, Figures 6-3, anddatlustrate the Chlorscan data analysis, as fail

1 gL AN/ \Y/
g XX XKENx S —
8 09 X
§ 0.8 %
T~
e o\,;,0.7
—_ LL i
§ EO.G X 1%
05 r X X X 10%
Xy X X 20%
§ 0.4 W/=AICiAvg) e _30(;;
O . _ .
= C= Chlorine conc X _Anomaly
o 03—
10 15 20 25 30 35 40
Time series
Figure 6-3. Normalization of Chlorscan data to the averagea(fe) Contamination Likelihoa
Assessmel
1
=—(.1
0.9 0.3
i 0.6 High
0.8 —09
0.7 H = Risk Indicato
0.6
(]
§0.5 i Moderat
e
_ﬁ .

16171819202122232425262829303132333435
Time Series

Figure 6-4. Risk Indicator with its scale for Lille Case Sti
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In details, Figure 6-3 shows the numerical trendth®d@ normalized data in
percentage along with time.

In particular, consistently with the results of theboratory test and the
numerical simulations presented in Chapter 5, #dially increasing anomaly is
detected. It tends to be constant once the peadaished, with a residual of
about 40% of the initial default value without abip-anomaly. The statistical
tools of the T, 2" and & standard deviations were used as default values fo
identifying the thresholds for the likelihood arfeetseverity levels, reaching a
high orange color-coded likelihood on the likelikdogcale withAF greater than
30%.

Operators can input threshold levels based on éx@erience.

Figure 6-4 illustrates the time series of the iistticator with its scale, taking
into account the likelihood and the severity scdtles evident that the risk
indicator indicates a high orange color-coded leslel and an alarm should be
emitted for the water utility operators in orderstgpport the decisions makers in
their resolution for the public community.

Within the framework of the SWA4EU project, the W-8RIT Association
acting as an integrator for the research conduatedeveral universities
including University of Lille, NYU, and the Univetg of Pavia has engaged the
collaboration with the French University ESIEA (‘e D'Ingénieurs Du
Monde Numérique" located in Paris) for the develepmof the Bio-CON
Prototype System and its support software.

The software is able to run scenarios that arecldas Excel data and it quickly
provides the risk matrix to detect anomalies in daéa. The analyzed WDS is
also displayed in the software through the useessmibility and the Google
Earth visualization in such a way that the deteeateoimalies can be geo-located
on the map, according to the color-based procedaréact nodes can remain
grey if no anomaly occurs or they can appear fréume bo red as a function of
the anomaly severity, as shown in Figure 6-5.

> W-Smart Associatioris an International Association of Water & WastevaUltilities for
Sustainable Water Security located in France.
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Figure 6-5. Color-based detection system

The alarm system is finally based upon the idesdifiisk matrix: the levels of
likelihood-severity-risk are plot on graphs, and alarm panel displays each
anomalies with its related day, type and location.

Figure 6-6a illustrates how the user can display likelihood-severity-risk
graph for each uploaded dataset, while Figure G@izates an example of the
final alarm panel with the detected anomalies.
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MNF 1 Likelihood 1 Severity 1 Risk 1 MNF 2 ‘ Likelihood 2 Severity 2 Risk 2 AF

Likelihood AF Severity AF Risk AF

Severity AF =
s2
2011-07-24 1
Zoom 1d 5d 03:00
2011-07-25 0
4= 2011-07-26 1
03:00
W= I =
—_— = 2011-07-27 1
25. jul 1. Aug 8. Aug 15. Aug 03:00
2011-07-28 0
[ D 03:00
S 2ses —— 8. Aug R .
" > 2011-07-29 1 "
na-:nn a)
Anomalies (45)
Nature: INCOM leak
Name: DMA-S2
Date: 2012-09-12 02:00 to 2012-09-18 01:59
Nature: INCOM leak
Name: DMA-S2
Date: 2012-09-09 02:00 to 2012-09-10 01:59
Nature: INCOM leak
Name: DMA-S1
Date: 2012-07-06 02:00 to 2012-07-18 01:59 b)

Figure 6-6. An example of a) likelihood-severity-rigkaphs for uploaded dataset b) alarm panel
with the detected anomalies

6.2 Statistical based Early Detection

6.2.1 Multi-parameters Al-based Analysis

Trying to improve the accuracy and the efficiendytree analysis, in a second
stage the research dismissed the statistical agipraad it developed, adapted
and demonstrated the feasibility of an Artificialtdlligence (Al) based smart
system to ensure quasi real-time quality controldarly chemical and/or bio-

129



Prototype System for Early non - specific BiologiCantaminations Detection

contamination detection. Instead of monitoring onllge chlorine, the
methodology became multi-parameters in order tahaelearer fingerprint of
the contamination scenarios, reducing the errceaien.

In this context, advance pattern recognizers, clsupport Vector Machines
(SVMs), and innovative sensing technology solutioas Artificial Neural
Network (ANN), were used (Girolami, 2002; Smolap2}

In machine learning the SVMs are supervised legrnmodels (Cortes and
Vapnik, 1995) with associated learning algorithimstt analyze data used
for classification and regression analysis. Givesewof training examples, each
marked as belonging to one out of two categorieSVM training algorithm
builds a model that assigns new examples to omgaat or the other, becoming
a non-probabilistic binary linear classifier (CaiddWang, 2010).

Hence, the designed SVM identified two differerdisdes, that is (+1) or (0)
respectively for "anomaly" or "no-anomaly" classiiion. However, due to the
fact that a single SVM only resolves two classifieoblems, the research set up
an SVM model composed by several classifiers tongjgish different states of
anomaly levels (Mamo et al., 2014). Thus, diveligaaures were defined in
such a way that the proposed SVM could classifyitheming unknown data as
belonging to one specific signature, based on loenaly severity.

The definition of each of the anomaly signaturetsthaccording to the already
explained matrix: the 1st, the 2nd and the 3rd STthe input data were used
to distinguish the values of the Amplitude (A), Vehihe time identified the
different values of the Duration (D). In particylahe Amplitude has three
levels, that is Al included in the range betweesn 18t and the 2nd STD, A2
between the 2nd and the 3rd STD, and A3 above 1theéS3D. Durations are
simply divided in 4 groups, as a function of theadion in hours.

D (hours)
A 1 2 3 4
Al (1std-2std
A2 (2std-3std
A3 (>3 std)
Figure 6-7. Matrix used for the definition of the anomaly sigra

¢ Starting from a database, which consists of mudtBmeters time series (such as Chlorine, TOC,
pH etc.), the 1st, the 2nd and the 3rd STDs weleulzded to find the data deviation from the
normal conditions (without any contamination).
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Figure 6-7 illustrates the definition of the anoynaignatures, according to the
Amplitude and Duration levels.

Using the classification of the signatures, thk ssale was defined as shown in
Figure 6-8.

- >00% | A2D4-A3D3-A3D4

60-90% |A1D4-A2D3-A3D2
30-60% |A1D3-A2D2-A3D1
10-30% | Al1D2-A2D1
0-10% |A1D1

Figure 6-8. Risk scale for the classification of the SVM output

Figure 6-8 shows how the risk of each signaturelassified according to a
color-based risk scale.

In details, to be able to classify new upcomingadabm the sensors, the
designed SVM had initially to be trained. To thigmose, the SVM was coded
in Matlab, using functions already implemented, hswas "svmstruct” and
"svmtrain”. In particular, "svmstruct" contains @nfation about the trained
SVM classifier, which is the actual data separator.

The used command line waSVMStruct= svmtrain (Training, Group)Where
the Training was the matrix of training data and toup is the grouping
variable (numeric, logical vector or matrix) reprang a class label.

According to the SVMs theory, each training daganitis plotted as a point m
dimensional space, with equal to the number of available features. Thiea, t
"svmtrain" uses an optimization method to definengperplane, which linearly
separates ther-dimensional data into two classes, being a disoative
classifier. The optimal hyperplane maximizes thatatices between nearest data
point: the distance is callé®largin”, and the selection of the hyperplane with
the higher margin demonstrates the best robustness.
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Support Vectors

Margin
Width

X,

Figure 6-9. Maximum-margin hyperplane for an SVM trained wittmples from two classes.

Figure 6.9 shows the optimal hyperplane which isdufor the classification,
after being trained from two data categories: saspin the margin are called
the Support Vectors because they actually defiadyiperplane.
Sometimes data cannot be linearly separable thiidsSntroduce the notion of
a "Kernel induced feature space", which casts ddataa higher dimensional
space, where data are separable.
In this case as explained below, the Kernel fumctreas considered linear
(Boswell, 2002).
Therefore, the required inputs were:
= X - Matrix of predictor data, where each row wa® enonitored node of
the network (thus, rows were equal to the numbenaafes), and each
column was one parameter (e.g., Chlroine, TOC;etc.)
=Y - Array of class labels with each row correspoigdio the value of the
corresponding row in X. Y was indeed a column vecthose values
were "+1" or "0", according to the belonged catggof "anomaly" or
"no-anomaly";
= Kernel Function - The default value was 'linear' tiwo-classes learning,
which separates data by a hyperplane;
= Class Names - It distinguished between the negatigdepositive class, or
specified which classes to be included in the dEe. "0 class" was here
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the "negClass" (nanomaly) class, wle the "+1" was the "posClass"
(anomaly) class.

The resulting trained model ("svmmodel” in Matladmntained the optimize
parameters from the SVM algorithm, enabling thesification of the new da
as "anomaly" or "no anomaly". Once the model wained, it became capable
of predicting the specific signature of the newarping data from the sensc
Since the proposed methodology investigated thesipalychemical wate
parameters in every single node, it was able tatiiyethe anomalies at ea
single node. In particular, the identification of thede anomaly signatures w
made based on the assigned input and the upconaiteg ftom the sensol
Therefore, they SVM was design to recognize one of the presentednaly
signature, providing as quit the stated "+1, or positive" if the contamioa
was actually present in the specific node, "+(ewative" otherwise

Figure 640 illustrates the steps of the M-class SVM anomaly detector: if an
anomaly is detected, the procedure continueh the identification of the
severity level, according to the defined signat

No-Anomaly o

Verv High Risk (‘,:‘ o- Check the next signature

High Risk C:é ®:> Check the next signature
and so on..

Figure 6-10. Scheme of the Mu-class SVM anomaly detector

It is an
Anomaly

In order to have a comparison for the obtainedltgsthe ANN was applie
(Kohavi and Provost, 1998). Likbe SVM, the ANNs are used to solve a w
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variety of tasks, as pattern recognition. The ANfdognition problem is being
posed as a classification task, where the classegdefined by the system
designer. The approach of the ANN learns from aoEetxamples (training set)
and adapts themselves to the data.

To define the pattern recognition problem, functicadready implemented in
Matlab were used; particularly, tiéeural Network Pattern Recognition Tool
was applied. It is an information processing tlsatnispired by the biological
nervous system: it is composed of a large numbehiglly interconnected
processing elements (neurons) working for pattexnognition, through a
learning process (Basu et al., 2010). Neurons aganized in layers so that
signals can travel from the first (input), to thastl (output), passing the
information and adjusting the network to reflecttinformation.

MNeural Network

Cutput Layer

Figure 6-11. Structureof Neural Network Pattern Recognition in Matlab

Figure 6-11 illustrates the structure of the Neilnatwork Pattern Recognition
implemented in Matlab: two-layers feed-forward natkvwith output neurons
can classify vectors arbitrarily well, given enougturons in its hidden layer.
Therefore, regarding the inputs and targets for ANN pattern recognition
problem, a set of vectors was required as columm@smatrix. Then, another set
of target vectors was needed, indicating the ctasgech the input vectors were
assigned to. In details:
= X - Matrix of predictor data, where each row was grarameter (e.g.,
Chliroine, TOC etc.) and each column was one madtarode of the
network (thus, rows were equal to the number ofsid
=Y - Array of class labels: when there were only telasses, each scalar
target value was set to either "0" or "+1", indiegtwhich class the
corresponding input belonged to. As in the SVM, ihkies were "+1" or
"0", according to the category of "anomaly" or "@oemaly"”.
Once the input was defined, the pattern recogntiioh was able to (i) train the
network (ii) evaluate its performance using Crossépy and percent

134



Prototype System for Early non - specific Biologi€antaminations Detection

misclassification error, and (iii) analyze the rdeswsing visualization tools,
such as Confusion Matrices and Receiver Operathaydcteristic curves (ROC
curve).

6.2.2 Application of Al-based Analysis

The data analysis was deployed in the Lille Uniggr&ampus, already

explained in Chapter 5 (section 5.4).

Using the illustrated Chlorscan data and the dhtaiwed during the testing of
the numerical analysis described in the previowptdr (section 5.4), a further
database was built: TOC was calculated, startiogn fchlorine and according to
the modeling of chlorine residuals in WDSs. In fatn et al. (2012) proposed
a mathematical model of chlorine bulk decay basednultiple regression

analysis. The dependent variables were the initidbrine concentration,

temperature and TOC; the independent and dependeidbles were first

formed into natural logarithms, and then the coedffits of the dependent
variables were identified by multiple regressioralggis. Consequently, TOC
was evaluated using the Equations 6.1 and 6.2:

C = Cyexp (—Kpt), (6.1)
Kb = 0.0488 - T0.3668 . CO—1.3268 . T0C0'5979, Zﬁ

where,C is the chlorine concentration at titngng L), C, is the initial chlorine
concentration (mg 1), K, is the chlorine bulk decay coefficientjdcalculated
according to the first order model, T is the terapare (°C), and TOC is the
TOC concentration.

Chlorine and TOC were thus used as input datariomulti-variables analysis
for specific bio-contaminations, that & coli injections at a mono-spot and/or
multi-spots.

Regarding the SVM, a matrix of predictor data fano-spot analysis (chlorine
and TOC) was input, as reported for example inf@@al2a.

The array of class labels was defined accordinthéostatistical process: for
each row of the matrix, the proposed model incluthedevaluation of chlorine
and TOC in order to classify the row into one @ ttvo different classes, that is
"+1" or "0" respectively for "anomaly" or "no-anotya classification. As
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described, the recognition of each of the anomiglyagure started according to
Amplitude (A) and the Duration (D). Thus, the arafyclass labels was a vector
made up of "+1" or "0", as shown in figure 6-12b.

Figures 12a and 12b report an example of the SVllingpinput: starting from
the chlorine concentrations obtained in section fér4dthe node 14 (shown in
Figure 5.12), the TOC was derived along with thrayaof the two classes.
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Time [hlor. (mg/|TOC (mg/I C) Class
24:00:00' 0.91 0.094442518
25:00:00' 0.89 0.13454182
26:00:00 0.882 0.152427912
27:00:00' 0.901 0.11167289
28:00:00 0.883 0.150134206
29:00:00" 0.887 0.141125045
30:00:00 0.899 0.115682715
31:00:00' 0.884 0.147857078
32:00:00 0.911 0.092610237
33:00:00' 0.91 0.094442518
34:00:00' 0.895 0.123899808
35:00:00' 0.909 0.096291244
36:00:00" 0.895 0.123899808
37:00:00' 0.913 0.088995025
38:00:00 0.903 0.107728842
39:00:00" 0.903 0.107728842
40:00:00 0.904 0.105781479
41:00:00" 0.911 0.092610237
42:00:00" 0.897 0.119758343
43:00:00 0.897 0.119758343
44:00:00" 0.915 0.085445643
45:00:00' 0.91 0.094442518
46:00:00" 0.913 0.088995025
47:00:00" 0.916 0.083695653
48:00:00" 0.91 0.094442518
49:00:00" 0.559 1.979576277

50:00:00"| 0.1237 16.81320793
5100:00" | 0.1267 16.49202293
52:00:00'( 0.1277 16.38719236
53:00:00"| 0.1267 16.49202293
54:00,00'( 0.1257 16.59795599
55:00:00"| 0.1257 16.59795599
56:00:00"| 0.1257 16.59795599
57:00:00'( 0.1257 16.59795599
58:00:00"| 0.126 16.56605916
59:00:00'| 0.126 16.56605916
60:00:00' [ 0.1253 16.64064226
61:00:00"| 0.1257 16.59795599
62:00:00'[ 0.1254 16.6299538
63:00:00'| 0.1254 16.6299538
64:00:00' [ 0.1267 16.49202293
65:00:00' [ 0.1267 16.49202293
66:00:00"| 0.1264 16.52368621
67:00:00'| 0.1254 16.6299538
68:00:00'| 0.1257 16.59795599
69:00:00' [ 0.1261 16.55544923
70:00:00"| 0.1257 16.59795599
7100:00' [ 0.1267 16.49202293
72:00:00"| 0.1257 16.59795599

P RPRRPRPRPRPPPPRPRPPRPPRPPEPRPPPRPPPPLPOOODOODOODOCOO0DO0DO0D0O0O0000000000O0

a) b)
Figure 6-12. Coding Input fora) Chl/TOC SVM data b) Array of class labels

Matlab functions were used to train and cross-aadis the SVM model for the
two-classes (binary) classification.
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After importing the datasets (either the Chlors¢eme series and the data
obtained in section 5.4) into the code, data warelomly divided, assigning

70% of the database for the training phase, andf8@%he testing phase.

Hence, the results displayed the properties of Siddel, including:

i. the class order which was "+1" for the negativesglaand "0" for the

positive class;
ii. the SVM classifier that was the radial basis kemméhis case;

iii. the testing phase, that estimated the out-of-samfdelassification rate;
iv. the "Class Loss" (so-called in the Matlab functjpnthat is the

classification rate, was approximatefyod

Finally, the main output of the research was theualization of the
contaminated nodes in the network, according tocibler-based analysis, as

shown in Figure 6-13.
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Figure 6-13. Color-based approach visualization for mono-spatyeis
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The same was done applying the ANN in order to @mphe obtained results.
To define a pattern recognition problem, Chloring ZOC were input as rows
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in a matrix. Then, another set of row vectors ware@nged to indicate the
classes to which the input vectors were assign&tN(fequired the same SVM
input but the matrices were transposed).

During the coding phase, thBleural Network Pattern Recognition Tool
classified inputs into a set of target categoriesandomly divided up the
samples into training (70%), validation (15%), aesting (15%). The latter two
options were assumed following the default optioAko, in the phase of
building the network architecture, the number ainoas was assumed following
the defaults options (10) because the network pedd well after training.
Hence, theNeural Pattern Recognitioapplication created, trained a network,
and evaluated its performance using Cross-Entromy and Confusion Matrix.
In particular, the Cross-Entropy error defineséh®r in classification problem,
while the Confusion Matrix is a table with two rovasid two columns that
reports the number of false positives, false negafitrue positives, and true
negatives. These allow detailed analysis in terffi@couracy.

Best Validation Performance is 0.0022098 at epoch 5

Train
Validation
Test
Best

Cross-Entropy (crossentropy)

11 Epochs a)
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Figure 6-14. ANN Results a) Algorithm performance b) Confusioatkik

Figure 6-14 shows the best validation performarfci® artificial network (6-

14a) and the Confusion Matrix applied to the cureeralysis (6-14b). Error was
approximately ¥4, confirming the efficiency and the accuracy of trescribed

methodology. In fact, minimizing Cross-Entropy &wn in Figure 6-14a) the
classification results are accurate because it smearerror and a value of zero
error means no misclassifications in the incomiatadThis is reflected in the
Confusion Matrix in which the false negative, adlvas the false positive are

zero.
Finally, the difference between the SVM and the ANMas 0.0018,

approximately Yoq.
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The same process was done for multi-injectionsyarsal Regarding the SVM,
matrix of predictor data and the array of classlalior multi-spots analysis
were the same but they showed multiple changeseirvalues of Chlorine and
TOC, according to the injections.

Figure 6-15 shows the multi-injections analysisiedrout at the Lille Campus
and characterized by contamination injection atesotl and 204. In details, it
displays the contaminated nodes according to ther-based procedure, and it
indicates the difference with the respect to theoaspot analysis.
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Figure 6-15. Color-based approach visualization for multi-injens analysis

Considering the multi-parameters analysis, aniefficand reliable bio-anomaly
detection method based on Al simulations was deeelcand the final output
supports the anomaly visualization, both temponmadl spatial. In fact, the
Chlorine and the TOC were input as time series imclv every value
corresponded to the predefined time step (hourtepatime step in this case).
Therefore, the tested advanced pattern recognilegm®nstrate an improvement
of data control in order to sustain water utilitiggh a secure decision support
system.
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Conclusions

Regarding the Water Safety Plans (WSPs), which baes introduced about a
decade ago by the World Health Organization, tfayars of contamination risk
in water distribution networks has taken particimaportance.

In particular, since the contamination events whady potentially affect the
distribution network are distributed throughouttakk network and, so, they are
hardly predictable and controllable, the incredginfpcused attention on
security issues has created a great interest intonmgy and Early Warning
Systems (EWS) applied to water distribution network

For this reason, there are already research preg(soch as the European
project SWA4EU, to which this Thesis has providedceentific contribution)
aimed at the realization of alarm systems basea@ppropriate sensors to be
installed all over the network, capable of analgzamd interpreting the results in
real time. Some of these sensors are already dsbignd marketed; in this
Thesis, an updated state of the art is presentedt ahese equipments. In
particular, it is highlighted that nowadays instents for real-time monitoring
of water quality include either very simple andxpensive systems suitable for
the detection of the most common physical-chenpeaameters (e.g.: pressure,
pH, temperature, conductivity, chlorine, etc.), aisb more complex systems,
such as those based on UV spectrometry and onitjoxic biological
contaminants assessment systems.

However, the state of the art highlights many siién problems.

Among these, it is particularly important to under® the difficulty of sensor
technology currently available to cope with the evgpectrum of substances that
can potentially contaminate the delivered water.

The possible breakthroughs are the technologicaldpment that leads to the
availability of less expensive and more polyvaleensors on one hand, and the
development of new interpretative models that alldetection of a large
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spectrum of contaminations on the other hand,istaftom a limited number of
measured parameters.

In addition, once the sensors to be installed énrnittwork are chosen in relation
to the risks to be addressed, the problem of tfieitlen of the sensors number
and optimal locations arises. This is a typical tivalbjective optimization
problem, where the objective to be minimized isnbenber of sensors (directly
associated to the cost of the system), and thectblgeto be maximized is the
ability of the system to reduce the impact of contetions on the public health.
Since the solution of the optimization problem rieegi the definition of all the
contamination events that may potentially affeet mietwork, and due to the fact
that each possible contamination event is chaiaeterby certain values of
injection location, starting time, mass rate andatian, the complexity of the
algorithms for the design of monitoring systemssesumany difficulties in
large-scale network applications. Therefore, thiesis proposes and tests a
procedure based on practical considerations onanktt@pology and operation
for sampling the most representative contaminagweents. The procedure is
applied to one case study. The results do not wagyificantly when the
sampled contamination events are used inside thmiaption, instead of the
totality of the possible contamination events.

In addition, the Thesis examines how the choicthefobjective functions to be
used in the optimization process affects the firedults. To this end, two
different variants of optimization were considerBdth variants feature the total
number of sensors as first objective function taimize, like a surrogate for the
cost of the monitoring system. The two variantdedjfinstead, in the second
objective function, which is the likelihood of camination event detection (to
be maximized) and the contaminated population (fumized) for the former
and latter variant, respectively.

The results of the optimizations, and the re-evedna of the optimal solutions
in terms of various effectiveness indicators foe thater quality monitoring
system, prove that the first variant tends to peedoetter solutions in terms of
detection likelihood and sensor redundancy. Theors#cinstead, tends to
produce better solutions in terms of contaminatgelfation and event detection
time. However, all the effectiveness indicators aedl intercorrelated in the
solutions of the optimizations. The ultimate choafevater utility managers is
based on their preferences. In fact, minimizing tomtaminated population
yields benefits in terms of detection time and timainly contributes to the
system’s early warning capacity. On the other hanalximizing the detection
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likelihood strongly impacts on the system redungaamad therefore contributes
to the system safety. A further difference betwtentwo variants of analyzed
optimization lies in the placement of sensors ia ttetwork layout. In fact,
whereas the first variant tends to locate the ssriadhe area where most water
paths converge, the second produces a more scattigstibution over the
layout.

The subsequent part of the Thesis removed the g$sumused in the first part
of conservative contaminant.

Though being a good assumption of the first atteimghe context of optimal
sensor placement, the attention received by watedityg topics worldwide
spurred the writer to abandon this assumption ftteb analyzing the actual
behavior of the contaminants. In this context, Thesis identifies the software
EPANET-MSX as an essential support for qualitasugdies in WDSs because,
unlike other software used in literature, it ddsesi dynamic interactions
between contaminants, water and pipe/tank walls.

In fact, the multi-species numerical model usethen EPANET-MSX software
to carry out the numerical simulations is able lbovg an initial drop in the
chlorine due to its reactions with organic matstiailank walls and other
substances present in the water. Then, the mogeltsethe residual chlorine
stabilization, and itorrectly corroboratethe fact that the presence of natural or
injected organic matter (likg. coli) in the WDSs plays a vital role in the fate
and transportation of chlorine. In particular, tmemerical simulations
demonstrate in a laboratory case study Ehatoli injections can be detected if
bacterial concentrations reach a concentrationléquE’PUFC/mL and if they
result in significant reduction of the free chl@imo a residual level, which
depends either oB. coliand chlorine concentrations. For instartbe, chlorine
drops down to zero when the initial chlorine corration is 0.3 mg/L and the
E. coliinjection is at least equal to lGFU/..L. Chlorine decays but does not

reach zero if the concentration of the injecidcoli decreases (or the initial
chlorine concentration increases). In addition, thbeesis describes the
experimental apparatus and activities developethetCivil Engineering and
Geo-Environmental Laboratory of the Lille Univeys{Villeneuve-d'Ascq, Lille

- France) for the validation of the numerical meddlhe two studies yield the
same results, confirming the threshold above wttiehbacteriological species is
significantly detected and showing that the timgureed to reach the residual
chlorine value increases with the decrease inrtitialiconcentration of chlorine.
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Consequently, the detection of microbial contanimatof the order of 10
(CFU)/iL is faster for chlorine concentrations betweenghd 0.5 mg/L, rather
than 1 mg/L.

Finally, knowing the feasibility of the early deten of non-specific biological
anomalies (such ak. coli) through the use of the chlorine trend, chlorine
measurements were exploited to develop an autonsatedt prototype system
for the early anomaly detection, which efficiendpables water operators to
apply in real-time management water quality conpaicedures, as well as a
preemptive decision making process. In particubar, automated statistical
model and Al-supported algorithms were developeathatidated using chlorine
data obtained from the numerical simulations abmeetioned. According to
the statistical procedure, simulated chlorine data statistically evaluated to
define a risk indicator for the anomaly detectishjch is lastly visualized by a
color-based procedure.

Then, the Al-based algorithms exploit the concdmxpert pattern recognition:
an algorithm appropriately trained on the standemdditions of the water
quality is able to recognize deviations from thenmal conditions, identifying an
anomaly. Chlorine and TOC are the parameters wsgdih the algorithms, and
the Support Vector Machines (SVMs), as well asAhiicial Neural Network
(ANN), are the supervised learning models thatested and compared. In both
proposed models, the results prove an efficientraaiy detection together with
a risk-based classification of the detected anawalln fact, following the
definition of each anomaly class based on the murand the severity of the
anomaly itself, the SVMs show a classification enb4’,, which decreases to
approximately %o, using the ANN. The results of the ANN are cornatted by
the Confusion Matrix, which is a table with two wand two columns that
reports the number of false positives, false negatitrue positives, and true
negatives.

Ultimately, the main output of the research is thisualization of the
contaminated nodes on the network map, accordiagctor-based risk severity
scale.

An extension of the optimization problem can inultiple and simultaneous
injections of contaminant at multiple points. Ferttmore, analysis of spreading
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contamination during short transients with sigrfit pipe flow changes, which
would require use of unsteady flow modeling, isthaofield to explore.
Regarding the non conservative contaminants, fudawelopments may concern
the study of other species (like pesticides, hatbg; etc.) in order to have a
general picture of the water quality parameterg, gbntamination event occurs.
Finally, a software can be developed associatingG# with the advance
pattern recognizers in order to contribute the sieni support system of the
water utilities managers.

It should be noted that the applications of earlrning solutions to water
distribution networks involve many skills (chemicdiological, hydraulic,
electronic, computer and mathematical). The highiyterdisciplinary

connotation of the problem consequently impliesnigicant difficulties in

triggering an effective collaboration between theaus involved cultural areas.
However, it is reasonable to foresee that if eamgnitoring and warning
systems are increasingly used in the regular manageof WDSs in relation to
the growing security demand, the interaction betwaiferent disciplines will

become more and more effective, determining a fsogmt and positive impact
on the advancement of knowledge and technologies.
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