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Abstract 
 
 
 
 
 
In the chain of water distribution, the network is the most complex element to be 
analyzed and managed to deliver safe water to the users due to the vast 
dispersion of the potential contamination spots.  
For this reason, some countries, especially those most sensible to the terrorist 
attacks (USA, Israel, Europe) have already started research programs aimed at 
the development of an Online Water Quality Monitoring (OWQM) and of Early 
Warning Systems (EWSs). Both of them are based on sensors installed in 
selected nodes of the network and are capable of quickly detecting 
contamination events.  
The implementation of EWSs paves the way to new interesting research topics, 
with particular reference to the technological aspects, to the employment of 
expert systems for the interpretation of the detected data, and to the definition of 
modeling tools for the design and management of the monitoring and alarm 
systems. 
The Thesis focuses on some of these aspects, with the aim of contributing to a 
partial systematization of the knowledge required for the design and 
management of the aforementioned systems. 
This Thesis can be divided into two parts. 
The former part of the Thesis (Chapters 1, 2 and 3) describes the general issues 
and the approach normally adopted in choosing the water parameters to be 
monitored. In particular, a wide overview of the currently available sensors for 
in situ and continuous automatic detection of physical, chemical and biological 
parameters of the water flowing through the pipeline is presented. However, due 
to the wide spectrum of possible contaminants, the almost real-time 
identification of risk situations in the delivered water is a very difficult scientific 
and technological challenge. In fact, while there are laboratory technologies 
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capable of measuring all the substances present in water, the analysis capabilities 
of the devices that can be used in situ for continuous and automatic monitoring 
are very limited. The current Thesis discusses this problem, which represents 
one of the most significant complexities in the implementation of the EWS, and 
the approaches generally adopted for its solution.  
The latter part of the Thesis (Chapters 4, 5 and 6) deals with some modeling 
aspects regarding the design and management of EWSs, introducing innovative 
proposals and developments. 
In particular, the attention is given to the issue of determining the number and 
the optimal location of the sensors within the network. In fact, the effectiveness 
of the EWS depends on the number, as well as on the location of the sensors. For 
a pre-determined number of sensors, necessarily limited for budget reasons, the 
best placement is the one that maximizes its effectiveness, that is the ability of 
the system to reduce the impact of contamination accidents on public health. 
This is an optimization problem that must be addressed with reference to at least 
two conflicting objectives: the cost (to be minimized) and the system 
effectiveness (to be maximized). To resolve this optimization problem, it is 
useful to define all the contamination events that may potentially affect the 
network. 
Each event is characterized by (i) the node, or nodes, where the contamination 
occurs (ii) the starting time of the same contamination (iii) its duration, and (iv) 
the value of its mss. Thus, the number of the potential events can become huge 
for extended and complex networks. For each contamination event, it is 
necessary to evaluate the propagation of the contaminant in the network through 
a hydraulic analysis, which includes quantitative and qualitative aspects. In 
addition, the optimization procedures are computationally burdensome when the 
number of the potential events to be considered is high. For these reasons, the 
ensemble of the contamination events to be taken into account in the calculation 
needs to be reduced. This can be done by selecting a small sample of events, but 
still representative of the global set. In the Thesis, a sampling procedure based 
on practical considerations regarding the topology and the network management 
is proposed. The application of these criteria to a case study showed that the 
final output (Pareto front) does not significantly change considering the reduced 
sample rather than the totality of the events. 
Another important aspect associated with the optimization problem concerns the 
translation of the above-mentioned criterion, which reflects the minimum impact 
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of the contamination on public safety, into Objective Functions that can be 
quantitatively expressed.  
For example, a possible objective function is the probability (to be maximized) 
that the contaminated flow passes through a monitored node in the network 
(detection likelihood). Alternatively, the objective functions can be expressed by 
other variables (to be minimized), such as the elapsed time between the 
contamination and its detection, the number of inhabitants that is reached by the 
contaminant, the number of people that receives a contaminant concentration 
higher than a certain threshold, the amount of the provided contaminated water, 
and the percentage of the non-detected contamination events. In the Thesis, this 
problem is addressed by examining how the choice of the objective functions 
affects the final results. To this purpose, two different variants were developed 
and compared to each others. Both of them adopt the number of installed sensors 
as the first objective function (to be minimized) but they differ in the choice of 
the second objective function. This function was assumed to be the detection 
likelihood (to be maximized) and the average contaminated population (to be 
minimized), in the former and latter variant respectively. The results of the 
optimizations, and the re-evaluations of the optimal solutions in terms of various 
effectiveness indicators for the water quality monitoring system, prove that the 
first variant (O. F. = detection likelihood) tends to produce better solutions in 
terms of detection likelihood and sensor redundancy. On the other hand, the 
second (O. F. = contaminated population) tends to produce better solutions in 
terms of contaminated population and event detection time. The choice between 
the two variants should thus be taken into account even in relation to the specific 
situation and the alarm-programmed interventions, depending on whether the 
preference should be given to the detection security or its promptness. The 
Thesis also shows that the two different variants give rise to sensitively different 
sensor locations. 
For each contamination event considered in the optimization procedure, all the 
processing requires the assessment of the contaminant propagation in the 
network through a hydraulic analysis, which includes quantitative and 
qualitative aspects. To this purpose, in the optimization process the simplified 
hypothesis of conservative contaminant was adopted, neglecting the contaminant 
reactions that occur when it is combined with the other elements present in 
water. However, the issue of non-conservative contaminant was also addressed 
in the Thesis through numerical experiments, carried out by the EPANET Multi-
Species Extension (EPANET-MSX) software. In details, they quantitatively 
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faced the chlorine decay as a result of E. coli contaminations. In addition to 
illustrating the numerical results, the Thesis describes the experimental 
apparatus and activities developed at the Civil Engineering and Geo-
Environmental Laboratory of the Lille University (Villeneuve-d'Ascq, Lille - 
France) for the validation of the numerical models, developed by the Author.  
Ultimately, the last chapter shows the technical feasibility of a smart prototype 
system for the early detection of biological contaminations within the network. 
This system will efficiently enable water utility managers to ensure a real-time 
adoption of water quality control procedures. To this end, an automated 
statistical model and Artificial Intelligence (AI) supported algorithms are 
presented and validated using chlorine data obtained from the numerical 
simulations above-mentioned. The developed algorithms exploit the concept of 
expert pattern recognition: an algorithm appropriately trained on the standard 
conditions of a system is able to recognize deviations from the normal 
conditions enough evident to constitute an anomaly. Among the available 
supervised learning models, advance pattern recognizers, such as the Support 
Vector Machines (SVMs), as well as the Artificial Neural Network (ANN), were 
tested and compared to each other. The results show not only an efficient 
anomaly detection and risk-based classification, but also the ability of the final 
output to visualize the contaminated nodes on the network map, according to a 
risk severity scale.  
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Nell’ambito della filiera di produzione e di erogazione dell’acqua potabile, la 
rete di distribuzione idrica rappresenta l’elemento più complesso da analizzare e 
gestire per quanto riguarda la sicurezza qualitativa dell’acqua consegnata 
all’utenza, a causa della grande dispersione dei punti di potenziale 
contaminazione. Per questo motivo, soprattutto nei Paesi più sensibili al 
problema degli attacchi terroristici (Nord America, Europa, Israele), sono stati 
da tempo avviati programmi di ricerca finalizzati alla messa a punto di sistemi di 
monitoraggio continuo e di allarme precoce (EWS) basati su sensori, da 
installare in punti opportunamente scelti della rete, in grado di rilevare in tempi 
rapidi gli eventi di contaminazione. 
L’implementazione di questi sistemi apre nuovi interessanti temi di ricerca con 
particolare riferimento agli aspetti tecnologici, all’implementazione di sistemi 
esperti per l’interpretazione dei dati rilevati, alla definizione di strumenti 
modellistici per la progettazione e la gestione dei sistemi di monitoraggio e di 
allarme. 
La Tesi focalizza l’attenzione su alcuni di questi aspetti, con lo scopo di 
contribuire ad una pur parziale sistematizzazione delle conoscenze necessarie 
per la progettazione e la gestione dei sistemi sopra citati.  
La Tesi può essere suddivisa in due parti. 
La prima parte (Capitoli 1, 2 e 3) descrive le problematiche generali e 
l’approccio generalmente adottato nella scelta dei parametri da monitorare. In 
particolare, viene presentata un’ampia disamina dei sensori attualmente 
disponibili per il rilevamento automatico in situ e in continuo dei parametri 
fisici, chimici e biologici dell’acqua che transita nella tubazione. In ragione 
dell’ampio spettro delle possibili sostanze contaminanti, l’identificazione in 
tempo pressoché reale di situazioni di rischio nell’acqua distribuita rappresenta, 
però, una sfida scientifica e tecnologica molto ardua. Mentre, infatti, esistono 
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tecnologie da laboratorio atte a misurare praticamente tutte le sostanze di 
interesse presenti nell’acqua, le capacità di analisi dei dispositivi utilizzabili in 
situ per il monitoraggio continuo e automatico sono molto limitate. La Tesi 
discute questo problema, che costituisce una delle maggiori difficoltà di 
implementazione dei EWS, e gli approcci generalmente adottati per la sua 
soluzione.  
La seconda parte della Tesi (Capitoli 4, 5 e 6) affronta poi, anche con proposte e 
sviluppi originali, alcuni aspetti modellistici riguardanti la progettazione e la 
gestione degli EWS. 
In particolare, molta attenzione è dedicata al problema della definizione del 
numero e della localizzazione ottimale dei sensori nell’ambito della rete.  
L’efficacia del sistema EWS dipende infatti dal numero e dalla localizzazione 
dei sensori. Per un prefissato numero di sensori, necessariamente limitato per 
ragioni di costo, la migliore localizzazione è quella che ne massimizza 
l’efficacia, ovvero la capacità del sistema di ridurre l’impatto degli incidenti di 
contaminazione sulla salute pubblica. Si tratta di un problema di ottimizzazione 
che va affrontato con riferimento ad almeno due obiettivi fra loro in conflitto: il 
costo (che va minimizzato) e l’efficacia del sistema (che va massimizzato). Per 
la risoluzione del problema di ottimizzazione sopra indicato, è utile definire tutti 
gli eventi di contaminazione che potenzialmente possono interessare la rete.  
Ogni evento è caratterizzato dal nodo (o dai nodi) in cui avviene la 
contaminazione, dall’istante iniziale della stessa, dalla sua durata, dal valore 
della massa inquinante immessa in rete e quindi, per reti estese e complesse, il 
numero degli eventi potenziali può diventare enorme. Poiché, per ogni evento, è 
necessario valutare la propagazione del contaminante nella rete attraverso 
un’analisi del funzionamento idraulico che comprenda gli aspetti quantitativi e 
qualitativi e poiché anche le procedure di ottimizzazione sono molto onerose 
sotto il profilo computazionale quando il numero dei potenziali eventi da 
prendere in considerazione sia elevato, è necessario ridurre significativamente 
l’insieme delle situazioni di contaminazione di cui tenere conto nel calcolo. Ciò 
può essere fatto selezionando un campione di eventi ridotto, ma comunque 
rappresentativo dell’insieme globale. Nella Tesi è proposta una procedura di 
campionamento basata su considerazioni di tipo pratico relativamente alla 
topologia e alla gestione della rete. L’applicazione di questi criteri ad un caso 
studio ha mostrato che il risultato finale (fronte di Pareto) non cambia in modo 
significativo considerando il campione ridotto anziché la totalità degli eventi. 
Un altro importante aspetto associato al problema di ottimizzazione riguarda la 
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traduzione in Funzioni Obiettivo esprimibili in termini quantitativi dell’obiettivo 
generale sopra indicato, che contempla il minimo impatto della contaminazione 
sulla salute pubblica.   
Ad esempio, una possibile funzione obiettivo esprimibile in termini quantitativi 
corrisponde alla probabilità (da massimizzare) che il flusso contaminato transiti 
per un punto monitorato della rete (probabilità di rilevamento). In alternativa, la 
funzione obiettivo può essere espressa attraverso grandezze (da minimizzare) 
quali, ad esempio, il tempo intercorrente fra la contaminazione e il suo 
rilevamento, il numero degli abitanti che in questo tempo sono raggiunti dal 
contaminante, il numero degli abitanti che ricevono una concentrazione di 
contaminante superiore ad una determinata soglia, il quantitativo di acqua 
contaminata erogata, la percentuale degli eventi di contaminazione non rilevati. 
Nella Tesi questo problema è affrontato esaminando come la scelta della 
funzione obiettivo influenzi il risultato finale. A tal fine, sono state esaminate e 
fra loro comparate due diverse impostazioni, entrambe basate sull’impiego del 
numero dei sensori come prima funzione obiettivo (da minimizzare). Le due 
impostazioni si differenziano invece per la seconda funzione obiettivo che è stata 
assunta rispettivamente corrispondente alla probabilità di rilevamento (da 
massimizzare) e all’entità della popolazione raggiunta dal contaminante (da 
minimizzare). I risultati delle ottimizzazioni e le rivalutazioni delle soluzioni 
ottimali in termini di alcuni indicatori dell’efficacia del sistema di monitoraggio 
mostrano che la prima impostazione (F.O. = probabilità di rilevamento) produce 
soluzioni più efficaci per quanto riguarda la probabilità di rilevamento e il grado 
di ridondanza del sistema di monitoraggio. Per contro, la seconda impostazione 
(F.O. = n° utenti contaminati) produce soluzioni più efficaci con riferimento alla 
riduzione dell’entità della popolazione raggiunta dalla contaminazione e del 
tempo intercorrente fra l’inizio della contaminazione e il suo rilevamento. La 
scelta fra le due impostazioni va fatta quindi tenendo conto, anche in relazione 
alla situazione specifica e agli interventi programmati in caso di allarme, se sia 
preferibile privilegiare la sicurezza del rilevamento o la sua tempestività. La Tesi 
evidenzia anche che le due differenti impostazioni danno origine a localizzazioni 
dei sensori sensibilmente diverse fra loro. 
Tutte le elaborazioni sopra indicate, richiedono, per ogni evento considerato nel 
processo di ottimizzazione, la valutazione della propagazione del contaminante 
nella rete attraverso un’analisi del funzionamento idraulico comprendente gli 
aspetti quantitativi e qualitativi. A tal fine, nel processo di ottimizzazione, è stata 
adottata l’ipotesi semplificata di contaminante conservativo, trascurando quindi 
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le alterazioni che il contaminante subisce quando si combina con altri elementi 
presenti nell’acqua. Nella Tesi, tuttavia, si è voluto affrontare anche il problema 
del contaminante non conservativo, mediante sperimentazioni numeriche, 
condotte attraverso il software EPANET Multi-Species Extension (EPANET-
MSX), che hanno affrontato in termini quantitativi il decadimento del cloro per 
effetto di una contaminazione da E. coli. La Tesi, oltre a illustrare i risultati 
numerici, descrive anche gli apparati e le attività sperimentali messi a punto 
presso il Laboratorio di Ingegneria Civile e Geo-Ambientale dell'Università di 
Lille (Villeneuve-d'Ascq, Lille - Francia), per la validazione dei modelli di 
simulazione numerica, curata dalla scrivente. 
Infine, nell’ultimo capitolo viene illustrata la fattibilità tecnica di un sistema 
intelligente atto a rilevare con rapidità contaminazioni biologiche nelle reti di 
distribuzione, consentendo agli enti gestori la definizione, in tempo reale, delle 
modalità di intervento per mantenere un'idonea qualità dell'acqua. A tal fine, 
nella Tesi, si sono presentati un modello statistico e algoritmi di apprendimento 
basati sull'Intelligenza Artificiale, validati mediante i dati che riproducono 
l'andamento della concentrazione del cloro nelle simulazioni numeriche sopra 
citate. Gli algoritmi sviluppati considerano il principio per cui una volta 
conosciuta la qualità "standard" dell’acqua in rete, definita dall’andamento tipico 
dei parametri chimico fisici misurati, le loro deviazioni dal range di "normalità" 
consentono di identificare celermente le anomalie. Tra le metodologie di 
apprendimento automatico (o "supervisionato"), sono state testate e confrontate 
le Macchine a Vettore di Supporto (dall'inglese Support Vector Machines-SVM) 
e la Rete Neurale Artificiale (dall'inglese Artificial Neural Network-ANN). I 
risultati mostrano non solo un rilevamento efficace delle anomalie e una 
classificazione in funzione del rischio generato, ma anche la capacità di offrire 
un output che garantisca la visualizzazione dei nodi contaminati sulla mappa 
della rete di distribuzione in esame, secondo una scala di gravità del rischio. 
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Introduction 
 
 
 
 
 
In the chain of water distribution, the network is the most complex element to be 
analyzed and managed to deliver safe water to the users. This topic has recently 
been addressed with attention at legislative level. In fact, water introduced into 
the water distribution network can be subjected to various types of 
contamination in the network itself like, endogenous or exogenous, either 
accidental and deliberative (terrorist attack or sabotage), phenomena.  
In general, the above-mentioned contamination risks equally affect all the parts 
of the network, resulting in difficulties for prevention and control. For this 
reason, some countries, especially those most sensible to the terrorist attacks 
(USA, Israel, Europe) have already started research programs aimed at the 
development of Online Water Quality Monitoring (OWQM) and Early Warning 
Systems (EWSs). Both are based on sensors installed in selected nodes of the 
network and are capable of quickly detecting contamination events.  
The implementation of EWSs gives way to new interesting research topics, with 
particular reference to the technological aspects of the automatic online 
detection, to the employment of expert systems for the interpretation of the 
detected data, and to the definition of modeling tools for the system design and 
management. 
This Thesis, which illustrates the research activity developed by the Author in 
this field, deals with some general, technological, and modeling aspects related 
to the application of online Monitoring and EWSs to the water distribution 
networks. 
In particular:  
 After a brief legislative framework, Chapter 1 explains the various types of 
contamination that may occur within distribution networks. Then, the general 
setup of the continuous monitoring systems and of the associated alarm systems 
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are described, with particular reference to the selection of the observed 
parameters and to the expert systems for the interpretation of the detected data. 
 Chapter 2 provides a vast overview of the technologies currently available 
for the continuous monitoring of the water quality in the network, with particular 
reference to chemical, biological and radiological contaminations. 
 Chapter 3 investigates the main design and management aspects of the water 
quality monitoring systems in the network, with particular emphasis on the 
following issues: 
- acquisition and transmission of the vast amount of data collected by sensors; 
- optimal sensor locations within the network; 
- identification of the contamination sources, once a contamination has been 
detected; 
- definition of the urgent actions to be taken once a contamination has been 
detected; 
- definition of the interventions to be implemented for the restoration of the 
regular distribution service. 
 Chapter 4 deals with the problem of the optimal location of monitoring 
stations within a water distribution network, with particular reference to the 
sampling of a small number of events, among all the potential contamination 
scenarios, to be taken into account in the optimization framework. For this 
problem, some innovative concepts and their applications to a case study are 
presented. In this chapter, the problem of selecting the objective functions to be 
introduced in the optimization is also addressed, using numerical comparisons. 
In all calculations, the assumption of conservative contaminant is considered. 
After removing the conservation assumption, Chapter 5 studies the actual 
behavior of the contaminants, once they have been dissolved in water. In 
particular, the results of numerical simulations carried out with engineering 
models (EPANET-MSX) are shown to analyze the E. coli fate and transport 
when chlorine is in the network, identifying the concentrations of the involved 
chemical/biological species. The experimental results available in the scientific 
literature, obtained in a pilot laboratory site created at the Civil Engineering and 
Geo-Environmental Laboratory of the Lille University (Villeneuve-d'Ascq, Lille 
- France), are also used to validate the numerical model. 

Chapter 6 develops and demonstrates the technical feasibility of a prototype 
system for the early detection of biological contaminations within the network. 
This system will efficiently enable water operators to apply in real-time water 
quality control procedures. To this end, an automated statistical model and AI-
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supported algorithms are presented and validated using chlorine data obtained 
from the numerical simulations above-mentioned. In particular, the algorithms 
are developed in the field of the machine learning: after being trained on the 
standard conditions of water quality, they are able to recognize deviations from 
the baseline, identifying anomalies. The selected parameters for the training 
phase, thus for the definition of the standard conditions of water quality, are the 
chlorine and the TOC. 
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Chapter 1 
 

Monitoring and early Detection Systems for 
contamination events in Water Distribution 

Networks: general approach 
 

 

 

 

 

1.1 Introduction 

The existing European legislation in the field of water intended for human 
consumption prescribes minimum requirements regarding the physical, 
chemical, biological and radiological characteristics that water must have 
throughout the all water distribution system (WDS). 
To this end, following the European Directive 2015/1787, a new approach for 
the consumer safety is being imposed in Italy, implementing the Water Safety 
Plans (WSPs) in accordance with the model that has been introduced for over a 
decade from the World Health Organization (WHO, 2005). 
WSPs aimed at assessing the risk of water contamination throughout the all 
production and supply chain (from capture, to distribution, and delivery), as well 
as defining the consequential management strategies. 
The guidelines for the WSPs implementation are set out in a few documents of 
the World Health Organization (WHO, 2008; WHO, 2011), and in some 
international standards, such as EN 15975-2 (2013). In Italy, the guidelines for 
the WSPs implementation were formulated by the Italian National Institute of 
Health (Istituto Superiore di Sanità, 2014). 
The main purpose of the WSPs is to ensure that the levels of the delivered water 
quality are adequate to protect human health. This objective is pursued through a 
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series of actions ranging from the analysis of the hydraulic system with its 
related contamination risks, to the definition of the monitoring measures and the 
action plans necessary for the priority risk and emergencies management. 
Therefore, assessing the entire drinking water production and supply chain, the 
water distribution network is surely the most complex element to be analyzed 
and managed as regards the safety of the water quality delivered to the user. 

 

1.2 Contamination events in Water Distribution Systems 

Ignoring the eventual cases of contamination of the supply sources and the 
inadequate operation of the treatment plants, all the water entering in the water 
distribution network, even thought it has qualitative characteristics that meet the 
necessary requirements, can be subjected to contamination phenomena in the 
network itself, which are typically included in one of the following three main 
situations. 
 

1.2.1 Endogenous contamination 

An endogenous contamination is due to phenomena that occur inside the pipes, 
such as precipitation and flocculation of certain substances, decay of disinfectant 
agents with consequent bacterial growth, corrosion of the wall pipes, 
trialomethanes formation.  
The development of bio-film that is formed on the inner pipe walls is also very 
important: in fact, it is a crucial problem in the control of the drinking water 
quality due to the presence and persistence of several microbial species (US-
EPA, 2002). As highlighted by researchers of the Italian National Institute of 
Health (Bonadonna and Della Libera, 2005), the magnitude of the bio-film 
development is conditioned not only by the presence of nutrients, but also by the 
water residence time in the network and the water temperature. It is thus 
important that the water residence time in the network is the least possible. In 
terms of hydraulic network functionality this means that the velocities in the 
pipes have to be sufficiently high and the water path from the source nodes to 
the distribution ones has to be minimized. 
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1.2.2 Accidental contamination 

An accidental contamination is usually related to the infiltration of dirty water, 
mud and other contaminants from the external environment. In general, this can 
occur with reference to two different situations: 

i. Infiltration of contaminated water from the environment surrounding the 
pipeline due to hydraulic sealing defects (always present with lower or 
higher magnitude), especially nearby the joints. 

ii. Backflow into the network of water coming from pressurized circuits 
erroneously connected to the main network. 

The first case occurs when the pressure of dirty water in the surrounding external 
environment is higher than the one inside the pipe. Since generally the dirty 
water presents in the environment surrounding the pipeline is characterized by 
atmospheric pressure (or slightly higher), infiltrations occur when there is no 
pressure or even there is depression in the pipes. Therefore, with the exception 
of rough design errors that determine depression in some parts of the network, 
the internal pressure annulment is most of the time associated with the drainage 
of pipes related to maintenance works, which should be reduced to the required 
minimum. If possible, an alternative could be interventions without service 
interruptions.  
The depression phenomenon in the pipes may also occur if water is drawn from 
the network by means of pumping systems without a hydraulic disconnection on 
the suction pipe. In order to reduce the risk of this kind of accidental 
contaminations, the elevation layout of the water distribution network should 
also be carefully designed with respect to other pipelines' structures. Particularly 
in the sewage systems, it is necessary to avoid the stagnation of contaminated 
liquids in contact with the pipelines of the WDS. 
 
The second case of accidental contaminations is associated with erroneous 
connections between the drinking water network and other pressurized systems, 
which in turn are connected to a second network, conveyor of non-drinking 
water. In case there is a reversal of the pressure gradient between the drinking 
and non-drinking networks, the water from the pressurized plants returns to the 
water distribution network, unless an effective backflow preventer valve is set 
in. These situations of erroneous connections between different networks 
typically occur at household users employing private wells for non-drinking 
purposes, and at industrial users. In fact in these latter cases, the drinking water 
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network is sometimes connected without a hydraulic disconnection to technical 
plants, working with non drinking process water. 
 

1.2.3 Intentional contamination associated with terrorism attacks or 
sabotage 

Intentional contamination actions can be carried out through the injection of 
chemical, biological and radioactive contaminants in one or more spots of the 
network. 
 Although structurally protected from intentional contamination because of their 
primarily underground location and their pressurized functioning, water 
distribution networks are one of the most vulnerable components in the supply 
of drinking water, according to many experts (US-EPA, 2005a). In fact, all 
devices (such as air-relief valves, bottom drains, hydrants, public water 
fountains) that connect buried pipes to the outside environment and above all, 
the user supply taps when connections are not equipped with suitable backflow 
preventer devices are potential input sites. 
 
In general, the above explained contamination risks concern the all network, 
resulting in difficulties for the prevention and control. For this reason, some 
countries, especially those most vulnerable to the terrorist attacks (USA, Israel, 
Europe) have started for a long time research programs aimed at the 
development of an Online Water Quality Monitoring (OWQM) and Early 
Warning Systems (EWS). Both of them are based on sensors which are installed 
at selected nodes of the network and are capable of quickly detecting 
contamination events.  
Various cases of intentional and also accidental water contamination that 
historically occurred advise us of the necessity to improve water monitoring. For 
instance, in 1972 a right-wing neo-Nazi group acquired 30–40 kg of typhoid 
bacteria cultures with the intention to use this against water supplies in Chicago 
(Kupperman and Trent, 1979). More recently, in 2000, workers at the Cellatex 
chemical plant in northern France dumped 5,000 litres of sulphuric acid into a 
tributary of the Meuse River, when they were denied workers’ benefits (Gleick, 
2006). In other episodes, the introduction of a contaminant would have affected 
nearly 4,000 households; officials suspect that the incident was related to 
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professional work beyond vandalism (Groover, 2008) and again, few officers 
were arrested before executing a plan to poison a tank in Khao that supplies 
water to American troops in Jordan (Times, N. Y., 2003). Accidental water 
contaminations were also registered, as for example in Greenville, South 
Carolina, where the town's water supply was threatened with a castor oil 
poisoning. The attacker caused changes to the federal regulations regarding the 
number of hours that ground truckers were allowed to drive without rest (Gleick, 
2006). Another exemplary incident is the contamination of drinking water with 
treated wastewater in Nokia (Finland) in 2007; this incident resulted in 8,453 
cases of gastroenteritis, with costs exceeding 4.6 million Euros for clean-up 
(Williamson et al, 2014), reimbursed hospital expenses, claims for damages etc. 
  

1.3 General approach of continuous monitoring and Early 
Warning Systems (EWSs)  

The conventional monitoring of the water quality provided by the network is 
based on sampling at some taps, as well as on chemical and microbiological 
analysis performed in the laboratory (or on-site through suitable kits). In general, 
it allows a complete chemical and microbiological characterization of the 
supplied water, along with the research for almost any contaminant. 
However, this type of monitoring is not capable of supporting an EWS due to the 
sampling which does not usually occur in a short term and due to the long time 
that characterizes some types of analysis (especially the microbiological ones). 
Therefore, there is the need of a continuous monitoring system (or in any case 
characterized by a very dense temporal discretization) implemented through 
devices directly connected to the distribution network. They have to be capable 
of automatically performing the desired analysis in situ and in a very short time, 
as well as transmitting its results to a central control apparatus responsible for  
the outcomes interpretation and the implementation of the scheduled alarm 
actions. 
An EWS is not limited to a collection of surveillance technologies; it is an 
integrated system for i) monitoring sensors (ii) water analysis (iii) interpretation 
and reporting of the results (iv) communication of the results in order to make 
decisions that are protective for public health and minimize unnecessary 
community concerns. The desired characteristics for an ideal EWS were 
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indicated by the Italian National Institute of Health (2004), the European 
Commission (2013) and the Environmental Protection Agency (EPA, 2005). 
Some of them include: 

 high degree of automation, including automatic sample archiving; 
 rapid response; 
 detection of a sufficiently wide range of potential contaminants; 
 acquisition, maintenance, and upgrades at an affordable cost; 
 identification of the source contaminant and accurate prediction of the 

location, together with the concentration downstream of the detection 
point; 

 minimal false-positives/false-negatives; 
 function continuously; 
 data acquisition at different locations of the network and their 

transmission to a processing center; 
 equipment of an expert system capable of interpreting analytical results 

and providing support for the development of the strategies to contain the 
contamination effects. 

Currently, there is no EWS with all the features listed above. However, there are 
some technologies that can be used to build an EWS as they show some basic 
characteristics: (i) functioning as an automated system that allows remote 
monitoring (ii) a rapid response, and (iii) the detection of contaminants 
maintaining acceptable sensitivity. Without these three characteristics, an EWS 
cannot be reputed an effective and reliable system. While emphasis is placed on 
these three characteristics, the other presented characteristics cannot be ignored 
designing an EWS. For example, the rate of false positive/false negative results 
and the sensitivity of the methods used to interpret the results should be 
considered.  
The monitoring system is still the main component of the EWS thus, it must be 
carefully designed. Hasan et al. (2004) proposed a tiered monitoring, that 
consists of two stages: the first might provide a continuous screen for a range of 
contaminants that could pose a threat to public health. A positive result from the 
first stage would trigger confirmatory analysis using more specific and sensitive 
techniques, and a positive result from the confirmatory analysis would trigger a 
response action. 
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WaterSentinel project (US-EPA, 2005b)1 considers that a complete EWS must 
include few important components, that are i) the online water quality 
monitoring; ii) the sampling and the analysis; iii) the enhanced security 
monitoring; iv) the consumer complaint surveillance; v) the public health 
surveillance. 
 

1.4 Features of online contamination monitoring systems 

Considering the wide spectrum of possible contaminants, the real-time 
identification of risks in WDSs is a very difficult scientific and technological 
challenge. 
While there are laboratory technologies capable of measuring all of the 
substances in the water, the analysis abilities of devices that can be used in situ 
for continuous and automatic monitoring are very limited. A promising approach 
(Roberson and Morley, 2005; Janke et al., 2014) considers the continuous (or 
almost continuous) detection of the most common physical and chemical water 
parameters such as flow rate, turbidity, pH, temperature, conductivity, pressure,   
chlorine, fluoride, nitrate, particle count, Total Organic Carbon (TOC), 
Oxidation Reduction Potential (ORP).  
Table 1.1 shows the top 10 parameters monitored online from raw to distributed 
water by different water companies around the world (BTO Report.028, 2008). 
 
 
 
 
 
 
 
 
 
 
 
 

                                                      
1
 The name comes from the collaboration of EPA and the Office of Water Security initiative-WSi 

and the program was developed in partnership with drinking water utilities and other key 
stakeholders involving the design, deployment, and evaluation of a EWS for drinking water 
systems. 
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Table 1-1. Top 10 parameters monitored online by drinking water companies in the 
USA, Belgium and the Netherlands, the United Kingdom and Australia (BTO 
Report.028, 2008). 

Rate Parameter USA 
(%) 
n=52 

Parameter B-N 
(%) 
n=10 

Parameter UK 
(%) 
n=7 

Parameter 
Australia (%) 

n=6 

1 Flow rate 100 Flow rate 100 Flow rate 100 Flow rate 100 

2 Turbidity 89 Turbidity 100 Turbidity 100 Turbidity 100 

3 pH 79 pH 90 pH 100 pH 100 

4 Water 
Temperatu

re 

77 Oxygen 90 Chlorine 100 Water 
Temperat

ure 

100 

5 Conductivi
ty 

39 Water 
Temperatu

re 

80 Water 
Temperatu

re 

86 Free 
Chlorine 

100 

6 Particle 
count 

37 Conductivi
ty 

60 Conductivi
ty 

72 Pressure 83 

7 Fluoride 21 Ca/Mg/Har
dness 

50 Pressure 72 Conducti
vity 

83 

8 Oxygen 17 Biomonito
rs 

50 Iron 72 Fluoride 83 

9 Chlorine 14 Particle 
count 

30 Oil in 
water 

57 Particle 
count 

83 

10 TOC 14 Spectral 
Absorption 

30 Nitrate 57 Total 
Chlorine 

50 

 
Through these investigations, basic information on the qualitative 
characterization (expected values) of the delivered water is acquired, together 
with the quantitative characterization in terms of pressures/flow rates of the 
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delivery service, if reputed useful. The detection of water quality alterations due 
to contamination events occurs through the implementation of suitable software 
(expert systems) capable of interpreting the variations eventually measured in 
the values of the above mentioned chemical-physical parameters. Hall et al. 
(2007) investigated several water quality sensors in terms of their response to a 
contaminant that could be injected into the water. All the examined sensors were 
continuous online monitoring device and they were tested in a pilot-scale 
system, which was a re-circulating pipe loop distribution system simulator. The 
results showed that the most effective responses came from the free chlorine and 
the TOC sensors: the first sensors responded to all contaminants, although some 
contaminants did not react significantly with chlorine while the second sensors 
responded to all the organic (carbon-containing) compounds. Similar results 
were obtained within the project WaterSentinel (US-EPA, 2005b), which 
highlighted how the free chlorine and the TOC are potentially the most useful 
indicators of contamination, since they detected 28 out of the 33 tested baseline 
contaminants. In particular, the results illustrated that free chlorine is the most 
sensitive indicator of contamination, showing significant changes from baseline 
values at concentrations of one to two orders of magnitude below lethal 
concentrations. Also, TOC was indicated as a useful parameter for detecting the 
presence of many organic compounds, with a sensitivity ranging from a few 
tenths of a mg/L to more than 1 mg/L, depending on baseline levels and 
variability.  
Based on these studies, US-EPA recommended the free chlorine, and the TOC 
as primary contamination indicators, while it suggested the Oxidation Reduction 
Potential (ORP), the pH, the conductivity and turbidity, as secondary indicators. 
In fact, ORP usually shows a behavior like the chlorine residual, of which it can 
corroborate an observed change. ORP is also employed in systems that use a 
chloramine residual disinfectant because certain oxidation reactions can take 
place without consuming chloramines. Conductivity and pH are both important 
to aqueous chemistry and they may be valuable in understanding observed 
changes in other parameters, such as free residual chlorine. Turbidity is an 
untrustworthy indicator of contamination but, as well as conductivity and pH, it 
may be considered for proving the understanding in the changes of other 
measured parameters.  
Clark et. al (2002) also confirmed that chlorine residual and pH had been 
previously considered in research as surrogate candidates for on-line monitoring 
of distribution systems. 
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A summary of the most exhaustive study on this subject was offered by US-EPA 
(US-EPA, 2005a), while some guidelines for the design of on-line contamination 
detection systems were presented by Pikus (2004). Their consequent instruction 
is a more functional application of what was said above. It is based on the 
installation of water quality sensors located throughout the WDS combined with 
a public health surveillance system, as well as, with a customer complaint 
monitoring program for the detection of a wide range of contaminants (Janke et 
al, 2014). 
Several typologies of new technologies will strongly impact the advancing 
online measurement of contaminants, but presently the field is not sufficiently 
mature to provide devices that would meet the needs of drinking water utilities. 
In fact, a new generation of on-line monitoring tools has emerged in recent 
years; however, an effective implementation of these tools has not been realized 
for a number of reasons: (i) they do not meet practical utility needs, (ii) their 
cost, reliability and maintenance are unsatisfactory, and (iii) the data handling 
and management along with the ability to produce meaningful operational 
information is still to be grasped (Van der Gaag and Volz, 2008). 
 

1.5 Early Detection Software 

The detection of a contamination event requires that the related variations in the 
values of the measured parameters can be distinguished from the normal daily 
and/or seasonally fluctuations (the so-called background noise), which are due to 
several reasons, such as the contribution of different supply sources variable 
with the demand. Another complexity lies in the fact that water quality may have 
different characteristics at various points of the distribution network in relation 
to the multiplicity of supply sources, the different materials and the age of the 
pipes. It is therefore necessary to use specific algorithms, essentially based on 
statistical methodologies, which are able to highlight abnormal variations in the 
observed parameters compared to normal fluctuations.  
In practice, according to the approach described above and through a vast variety 
of water sensors, an EWS is based on a continuous acquisition of the values of 
the measured parameters and their transmission to a Supervisory Control and 
Data Acquisition (SCADA) integrated with an Early Detection software that 
reads and interprets the acquired data by distinguishing the abnormal variations 
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from the normal fluctuations. The abnormal variations then require prompt 
attention or intervention. 
To this purpose, CANARY software (open source), developed by Sandia 
National Laboratories in collaboration with US-EPA, (Hart et al., 2007; US-
EPA, 2010; US-EPA, 2012; Hagar et al., 2013) is often cited in the literature.  
CANARY has been developed to provide both real-time, and off-line analysis 
tools, giving particular emphasis to the following features (i) the use of a 
standard format for input and output of water quality and operations data streams 
(ii) the ability to connect various detection algorithms, both in MATLAB and in 
compiled library formats for the testing and the evaluation by using a well 
defined interface (iii) an operation approach that simulates the utility operator 
mode iv) comparison of tools for different evaluation metrics, including 
Receiver Operating Characteristic (ROC) curves, time to detect, and false alarm 
rates.  
Traditionally, water utilities use set points (thresholds) to identify changes in 
water quality parameters: set points provide alarms when the actual value of the 
water parameters goes above or below the set point value. For example, free 
chlorine levels nearby zero need to be communicated immediately to an 
operator. Hence, the discussion focuses on the deepening of the different 
detection algorithms used by CANARY to identify the water quality values that 
are significantly different from the background values whether or not they 
exceed the set point limits. 
In fact, CANARY provides a platform within which different event detection 
algorithms can be developed and tested. These algorithms process the water 
quality data at each time step to identify anomalies in the water quality. 
CANARY works by reading in real-time (online) time series of data coming 
from any type of water sensor available on the market; it commonly uses from 
five to seven sensors, including free chlorine, pH, conductivity, TOC, ORP, 
temperature, and turbidity. For the analyzed time series, each quality signal (S) is 
constituted of the background water quality (B), any deviation from that 
background (D) due to an anomalous event, and the noise (N) intrinsic in the 
water quality monitoring system. All of the algorithms assume that past water 
quality observations can be used to accurately predict future water quality values 
under normal conditions.  
The algorithms are planned to continuously update and learn the characteristics 
of the background signal in order to take them into consideration when a new 
water quality observation is presented.  
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Four main steps are involved in the event detection algorithms: (i) estimation of 
the future water quality values (ii) comparison of the estimated values with the 
measured values as they become available and calculation of the "residual" as 
the difference between estimated and observed values (iii) comparison of the 
residual at each time step against a threshold: those that exceed the threshold are 
"outliers", and (iv) use of the probability distribution (in particular the so-called 
Binomial Event Discriminator - BED algorithm) to determine the probability of 
an event from the number of outliers over a given number of time steps. 
Therefore, the final output is an indication of the probability of a water quality 
condition existing at each time step. 
During the estimation phase, CANARY considers a pre-defined set of previous 
time steps to predict the values of the next time step; CANARY can also easily 
combined all the diverse signals characterized by different units of measurement. 
Regarding the estimation process, two approaches are available within 
CANARY, that is the linear filtering and the multivariate nearest neighbor.   
The first one applies an optimal set of weights to each of the previously 
measured standardized observations for each water quality signal. The weights 
are calculated using an auto-covariance function independently computed for 
each signal, reflecting the importance of the previous value in the prediction of 
the next one.   
The second approach considers the set of values at each time step as a point in a 
n-dimensional space. All of the data from previous time steps can be mapped as 
points in this space, and their mutual distance is evaluated. At each time step a 
new point is created and  the closest point serves as the predicted value for this 
time step. 
Starting from this process, the residual and the outliers are evaluated to get the 
final probability, as above explained.  
A comparative analysis of the performance of CANARY and the other 
commercial Early Detection software (OptiDES, Ana :: tool, BlueBox, Event 
Monitor) has been published by US-EPA (2013b). 
The Evaluation Center in Cincinnati (Ohio), together with the researchers in 
sensor industries such as the Hach Corporation in Loveland (Colorado), were 
also involved with water quality sensor testing, developing the Guardian Blue 
EWS to detect, alert, and classify a wide variety of threat contaminants in 
drinking WDSs (Kroll, 2006).  
The optimal Event Detection System (optiEDS) monitors a set of water quality 
and operational data; once an abnormal combination of the monitored data set 
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has been detected, the system alerts and reports the "suspicious" parameters. The 
basic algorithm of optiEDS uses trend analysis to monitor deviations from a 
steady parameters baseline. The innovation was here the possibility of 
embedding the water network operation logic into optiEDS, empowering the 
water utility's engineers and operators with specific knowledge of the system. 
The main capabilities of optiEDS are thus (i) the monitoring of a large set of 
water quality and operational parameters (ii) the real-time alarming for abnormal 
changes in the water quality (iii) the definition of a normal dynamic baseline for 
the monitored parameters, and (iv) the possible custom adjustments into a water 
network using the utility's knowledge. 
Ana::tool evaluates measurement data that have been cleaned by the validation 
module. Once it has identified the normality of the analyzed data, it is able to 
trigger an alarm when a significant deviation from normality is detected, 
enabling the operators to timely react to faults in the monitored system. 
Combining, Static Alarms, Dynamic Alarms, Pattern Recognition and Spectral 
Alarms, ana::tool detects an alarm and let the users evaluate a feedback in order 
to learn which alarms are real and which ones are false (mostly associated with 
the normal changes in the water quality). Gradual composition changes (e.g., 
seasonal variations) are accounted for by automatic training on a moving time 
window. Among the main features of ana::tool, it should be highlighted the auto-
correction of data based on threshold, outlier and noise analysis, as well as the 
capability of exploiting the enormous information contained in UV spectra, 
which provide the most sensitive and stable data source for event detection. It 
shows the ability of training itself on any type of data coming in, learning 
automatically which data are useful for event detection, and which ones are 
useless. Ana::tool also weighs automatically the results as appropriate when a 
variety of algorithms are applied in real-time analysis; finally, all the event 
information is aggregated into a "traffic light" output and a "deviation from 
normal” output.  
Regarding BlueBox, the EPA Challenge contributed to the development of the 
product. In fact, it acquired the ability to define and incorporate operational 
variables, such as discrete variables (e.g., indication of pumps and valves on/off 
status), or substantial changes in the measurements of operational parameters 
like flow, pressure and water direction. This allows the system to cross reference 
and correlate between suspected quality events and the operational environment, 
increasing the certainty and the accuracy of the alarm. BlueBox is also able to 
distinguish the cause of the alert, whether it is a result of a water quality event or 
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an equipment malfunction. It can exchange data with any standard industrial 
automation system and, as the other detection software, presents a self-learning 
mechanism based on event classifications, facilitating the users with the 
classification "true-false". BlueBox can also do more than the other detection 
algorithms because it integrates several time parameters as part of the system 
inputs, enabling the detection of abnormalities based on seasonal parameters 
(time of the day/month of the year). The level of false alarms is thus reduced 
from seasonality effects. 
As the other software, the Event Monitor (Hach Company) evaluates data from 
multiple sensors, interprets the significance of water quality deviations from the 
established baseline (e.g., deviations due to operational fluctuations), calculates 
a "fingerprint" of each system event registered in the software library, and 
provides a single trigger signal. Operators can adjust the trigger threshold, as 
well as other simple settings, and they can label event fingerprints for simplified 
identification if the event recurs. Also, Hach Event Monitor incorporates the 
ability to learn specific system dynamics, and the self-tuning capability, which 
modifies the definition of what constitutes an abnormality according to the 
variability encountered for a given time frame at a specific site. Both these 
features improve the water quality conditions, eliminating many false alarms due 
to the noise. Hach Company also developed an Agent Library to enhance the 
capabilities of the Event Monitor when used as part of the GuardianBlue Early 
Warning System. The Agent Library is capable of classifying threat 
contaminants so that they are easily differentiated from water quality events.  
 
Since in this context CANARY is still undoubtedly the most used software, 
some results related to its application in the Cincinnati case study are given 
hereafter. Allgeier et al. (2008) reviewed the first year of operation for the 
Cincinnati Pilot’s online water quality Contamination Warning System (CWS). 
Allgeier reported that 3.7 alarms were generated per day across the network of 
17 monitoring stations (15 were in the distribution system and 2 were located at 
the treatment plants) but they were triggered by regular operational changes for 
the most part. Consequently, the number of alarms was too high to be 
sustainable.  
Later, in 2011, the same authors reported that 92% of the alerts were invalid, 
while the 8% valid were due to unusual plant conditions, changes in the process 
at the treatment plant, maintenance or repair activities in the distribution system, 
main breaks, or verified water quality anomaly with unknown causes (Allgeier et 
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al., 2011). As a result, Allgeier et al. (2011) tested CANARY software, using the 
Cincinnati Pilot field and simulating several events (1,588). For the simulated 
events, their detection rate of the true positives was 40%, leaving the 60% as 
false negative. However, the authors showed that even if only 40% of the 
simulated contamination incidents were detected, those undetected scenarios 
caused low consequences. 
The approach based on the analysis of the measured variations with reference to 
the most common physic-chemical parameters must be therefore enhanced by 
the search for specific contaminants that may cause a public health threat. In 
addition, investigating the opportunities to improve the event detection, Vugrin 
et al. (2009) used historical water quality data from the utility to identify 
recurring patterns and saved those patterns in a library that can be accessed 
during online operation. This pattern matching capability was implemented 
within CANARY in order to demonstrate a decrease in false alarms. 
Finally, a significant false alarms decrease was noticed through the method 
proposed by Koch and McKenna (2011), according to which data can be 
combined from multiple stations considering the location and time of individual 
detections.  
Kulldorff’s scan test can thus find statistically significant clusters of detections, 
which reduce the false alarms resulting from background noise and indicate 
time, as well as source location of the contaminant. 
Concluding, detection software has to be based on the evaluation of baseline 
water measured parameters. However, when changes are detected, additional 
analyses should be carried out in order to identify real contamination threats, 
which need conscientious and secure response activities.   
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Chapter 2 

Water Quality Sensors 
 
 
 
 
 
The needs of EWSs have encouraged the development of different types of 
devices based on various technologies (Storey et al, 2011; European 
Commission, 2013; Banna et al, 2014). Some of these devices are simple sensors 
already manufactured and marketed for a long time, such as those that can detect 
the most common chemical-physical water parameters (e.g., Chlorine, Total 
Organic Carbon, Turbidity, pH, Conductivity, etc.). Others, are monitoring 
stations which combine one or more sensors together. 
There are also latest-generation sensors: some of which exploit very innovative 
physical-chemical principles (e.g., Refractive Index), others are sensors that 
directly detect specific chemical, biological or radioactive contaminants. For 
instance, the newest and most expensive one use the ability of Algae or 
Fluorescent Bacteria to differently react in the presence or absence of pollutants. 
The most common devices are listed below divided into three categories: 

 sensors, even multi-parametric, for detecting the physical/chemical water 
parameters (hereafter called water quality parameters); 

 monitoring stations, 
 sensors for detecting specific contaminants. 
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2.1 Sensor for the water quality parameters 

Since the detection of water contaminations through the analysis of the most 
common water quality parameters (shown by EPA as possible indicators of 
water conditions) is still a worldwide used technique, in recent years several 
manufacturers have developed a vast variety of sensors.  
Regarding the chlorine, James et al. (2005) developed a membrane-covered 
amperometric sensor, providing direct chlorine response without the need for 
chemical reagents. Examples of chlorine sensors are: 

 Series B20 Residual Chlorine Recorder produced by Analytical 
Technology, Inc.; 

 AccuChlor 2 Residual Chlorine Measurement System or  CL17 Free 
Residual Chlorine Analyzer produced by Hach. 

As for the Total organic Carbon (TOC) measure, Hach Co. developed the Astro 
TOC UV analyzer, which combines a chemical and Ultraviolet (UV) oxidation 
technique in a low-temperature reactor (James et al., 2005). Another available 
sensor for the TOC measurements is Phoenix 8000 UV-Persulfate TOC Analyzer 
developed by TeledyneTekmar.  
James et al. (2005) also presented a method for the measurement of the turbidity, 
according to which it is measured with a 90◦ scatter nephelometer, using a 
Refractive Index (RI) light source for stability and a sealed flow chamber to 
reduce bubble formation. The incandescent light is directed from the sensor head 
assembly down into the turbidimeter body and is scattered by suspended 
particles in the sample.  
Examples of turbidity sensors are: 

 4670 Series Turbidity System produced by ABB Instrumentation; 
 WTM500 On-line Turbidimeter developed by Sigrist. 

The pH can be measured through a differential sensor, containing two glass pH 
electrodes, one for sensing and another in buffer to serve as a reference electrode 
or through an amperometric method.  
Conductivity is continuously measured by a two-electrode cell/four-electrode 
conductivity sensor or through the conductance method.  
The differential Oxidation Reduction Potential (ORP) sensor contains a 
platinum-sensing electrode and a separate glass electrode in buffer to serve as a 
reference electrode.  
Examples of sensors that can concurrently measure pH, conductivity and 
temperature are: 
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 Water Distribution Monitoring (WDM) PipeSonde In-Pipe Probe 
developed by Hach; 

 Quanta-Display/Transmitter  Multiparameter Water Quality Instrument 
developed by Hydrolab. 

 
Recently, a more advanced application of the sensors lies in the simultaneously 
measurement of several water parameters in order to distinguish changes in 
multiple parameters and promptly identify the contaminations. Therefore, the 
goal is to use multi-parameter water quality sensors, that is the so called multi-
parametric probes. Typically, they are based on the following types of water 
monitoring methods (US-EPA, 2005b ): 

 colorimetric and membrane electrode for chlorine; 
 thermistor for temperature; 
 membrane electrode or optical sensors for Dissolved Oxygen (DO); 
 potentiometric method for ORP; 
 glass bulb electrode for pH; 
 nephelometric method or optical sensor for turbidity; 
 conductivity cell method for specific conductance; 
 ion-selective electrodes for Cl-, NO3 and NH4

+. 
Featuring fully automatic operation and remote connection, they can be directly 
installed on a pipeline, or they can be put in monitoring stations located close to 
the pipe and taking the water sample with a frequency of few minutes.  
For example, an almost thorough list of multi-parametric probes is mentioned 
below, including their features (Highsmith, 2004; US-EPA, 2005b; European 
Commission, 2013): 

 Six-CENSE developed by Dascore - it measures chlorine, 
monochloramine or dissolved oxygen, pH, temperature, conductivity, 
ORP/REDOX; 

 WDM Water Distribution Monitoring PipeSonde In-Pipe Probe developed 
by Hach - it measures pH, ORP, conductivity, turbidity, dissolved oxygen, 
pressure, temperature; 

 (WDMP)Water Distribution Monitoring Panel developed by Hach - it 
measures chlorine, conductivity, pH, turbidity, pressure, temperature; 

 Kapta 3000 AC4 developed by Veolia under the European SecurEau 
project (www.secureau.eu/) - it measures residual chlorine, pressure, 
temperature, electrical conductivity and turbidity; 
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 Spectro::lyser developed by the Austrian industry S::CAN - it measures a 
selection of parameters chosen by the user between: Total Suspended 
Solids (TSS), Nitrate-nitrogen (NO3-N), Biochemical Oxygen Demand 
(BOD), Chemical Oxygen Demand (COD), TOC, Dissolved Organic 
Carbon (DOC), UV254, O3, Hydrogen sulfide (H2S),  Assimilable 
Organic Carbon (AOC), color, turbidity, temperature and pressure; 

 Carbo::lyser developed by S::CAN - it measures the organic carbon load, 
represented by parameters like Spectral Absorption Coefficient (SAC), 
TOC, COD, or BOD, and at the same time, turbidity or TSS; 

 Nitro::lyser II developed by S::CAN - it measures TSS and NO3-N or 
turbidity and NO3-N; 

 Multi::lyser, also developed by S::CAN, is a combination of carbo::lyser 
and nitro::lyser - it measures organic carbon and nitrate; 

 Ozo::lyser II developed by S::CAN - it measures turbidity and ozone; 
 Sulfi::lyser II/III  developed by S::CAN - they measure TSS, HS, H2S and 

TSS, HS, NO3-N, H2S, respectively; 
 UV::lyser developed by S::CAN - it measures turbidity or TSS and up to 4 

freely chosen wavelengths between 190 and 720 nm (measuring principle: 
UV-Vis spectrometry); 

 Ammo::lyser III pro developed by S::CAN - it measures Ammonium-N 
(NH4-N) and temperature. Likewise, Ammo::lyser IV pro+pH and 
Ammo::lyser IV pro+NO3-N measure NH4-N, temperature and pH (with 
potassium compensation) and NH4-N, temperature and NO3-N, 
respectively; 

 Ammo::lyser II eco developed by S::CAN - it measures NH4-N and 
temperature. Moreover, ammo::lyser III eco+pH additionally monitors 
pH; ammo::lyser III eco+NO3-N also monitors NO3-N; ammo::lyser III 
eco+Cl adds Chloride measurements; ammo::lyser IV eco+pH+NO3-N 
additionally monitors pH and NO3-N; ammo::lyser IV eco+pH+Cl 
includes pH and chloride measurements; 

 Chlori::lyser developed by S::CAN - it measures free chlorine (Cl2 + 
HOCl + OCl-) or total chlorine (free chlorine + combined chlorine); 

 Chlodi::lyser developed by S::CAN - it measures chlorine dioxide; 
 Hyper::lyser developed by S::CAN as an amperometric sensor - it 

monitors hydrogen peroxide, while peroxy::lyser, also developed by 
S..CAN as an amperometric sensor, controls the peracetic acid; 
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 Condu::lyser developed by S::CAN - it measures conductivity and 
temperature;  

 Redo::lyser eco developed by S::CAN - it measures ORP and 
temperature. Redo::lyser pro is then well performing within a high 
temperature range; 

 PH::lyser eco developed by S::CAN - it measures pH and temperature. In 
addition, PH::lyser pro performs well within a high temperature and pH 
ranges; 

 Fluor::lyser developed by S::CAN - it measures fluoride and temperature; 
 Soli::lyser developed by S::CAN - it measures TSS; 
 Oxi::lyser developed by S::CAN - it measures dissolved oxigen and 

temperature; 
 I::scan developed by S::CAN - it measures turbidity, UV254 absorption, 

color, and TOC, using the high performance of a multi wavelength 
spectrophotometer; 

 EventLab developed by Optiqua - it is equipped with a highly sensitive 
sensor for Refractive Index changes (RI), which is an effective indicator 
of water quality because when any substance is dissolved in water, it 
changes the refractive index of the water matrix in proportion to its own 
RI, as well as, its concentration. 

 

2.2 Monitoring stations 

In some cases several multi-parameter probes are aggregated into a single 
monitoring station in order to evaluate a vast collection of water parameters at 
the same time, and to provide a timely and effective response.  
For examples (US-EPA, 2005b), in terms of drinking water regulation the 
S::CAN industry also designed the micro::station for the online monitoring of 
the water quality parameters. The spectro::lyser, few S::CAN probes and a 
controller are assembled with all required flow cells, mounting fittings and pipe 
working conditions into a compact and versatile system. The S::CAN 
nano::station presents a further step forward since it is a super-compact and 
versatile system, where as in the previous case, the users only have to connect it 
to the water supply through the "plug & measure" process to receive a prompt 
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variety of available information regarding the water parameters. It combines the 
i::scan, different S::CAN probes and a S::CAN controller.  
For an illustration purpose, some S::CAN probes are reported in Figure 2-1 and 
the two monitoring stations are shown in Figure 2-2. 
 

                                    

                                        

                                            
 

Figure 2-2. S::CAN Monitoring stations a) Micro::station b) Nano::station (www.s-can.at) 
 

a) b) c) d) e) 

a) b) 

Figure 2-1. S::CAN Probes a) Multi::lyser b) Carbo::lyser c) Chlori::lyser d) pH::lyser e) 
i::scan (www.s-can.at) 
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Also, the Hach Corporation developed its monitoring station, named Water 
Distribution Monitoring Panel. It combines several instruments into a single 
system for a more complete monitoring. The basic model includes the Hach 
CL17 Chlorine Analyzer, the Hach 1720D Low Range Turbidimeter, the 
Hach/GLI pH Controller, the Hach/GLI Oxidation Reduction Potential 
Controller, the Hach/GLI Conductivity Controller, and the GEMS Pressure 
Sensor. The expanded model also incorporates a Hach Astro UV TOC analyzer 
and an American Sigma 900 MAX auto sampler that can be activated to collect 
and archive samples when pre-specified set-point values are exceeded for any of 
the parameters being measured. The Hach Distribution Monitoring Panel 
continually measures these six or seven water quality parameters from a side 
stream of water in a municipal distribution system, and the results can be 
directly reported to the utility SCADA system.  
The Hach WDM PipeSonde In-Pipe Probe (above explained) can be added to the 
system, being installed on any water pipe (at least eight inches diameter). It 
measures pressure, temperature, conductivity, turbidity, ORP, DO, chlorine 
concentration, TOC, and it is able to direct communicate with the SCADA 
system of a water utility. Therefore, the Hach Event Monitor Trigger System 
(Figure 2-3) allows an effective water monitoring, giving an alarm when water 
quality significantly deviates from the baseline.   
 

                      
 Figure 2-3. Water Distribution Monitoring Panel with the Event Detection System by Hach 

Corporation (www.hach.com) 
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Dascore, Inc. developed a monitoring station named Six-Cense, which was 
designed for permanent insertion into a pressurized water main. It consists of 
electrochemical sensors mounted on a one squared inch ceramic chip layered 
with gold. It continuously measures six parameters, including chlorine or 
chloramine, DO, pH, ORP, conductivity, and temperature, using electrochemical 
methods, rather than reagents. The system can work remotely, with data reported 
to the utility SCADA system.  
Emerson Process produced the Model WQS Multi-Parameter 
Electrochemical/Optical Water Quality System (Model 1055 Solu Comp II) 
which measures pH, conductivity, ORP, DO, free chlorine, and monochloramine 
by electrochemical methods. Two more parameters, turbidity and particle index, 
are evaluated through optical methods.  
MetriNet, derived from Network Metrics and developed by Analytical 
Technology, Inc., let the user choose the desired parameters and integrate them 
in a monitoring package, suitable for continuous monitoring, alarming, and data 
collection. The system can measure free chlorine, combined chlorine, dissolved 
ozone, pH, ORP, conductivity, temperature, DO, and turbidity. The system 
provides several methods for delivering detected data, including cellular modem, 
Wi-Fi, wired Modbus, Ethernet/IP, or Profibus DP, as well as cloud-based data 
storage. 
Sentinal, developed by Clarion Sensing Systems, integrated sensor data into a 
single display which can be remotely viewed. As in the case explained above, 
the user can choose among several parameters, including chlorine pH, 
temperature, flow, pressure, conductance, turbidity, ORP, DO, radiation, TOC, 
VOCs, and certain chemical weapons. Data can be transmitted via LAN or 
satellite link. 
Finally, although designed for wastewater applications, STIP-scan produced by 
STIP Isco GmbH can be adapted to drinking WDSs and it can concurrently 
measure nitrate, Chemical Oxygen Demand (COD), TOC, Spectral Absorption 
Coefficient (SAC 254), total solids, turbidity and absorption in any specified 
range within the wavelength spectrum from 190 to 720 nm for detection of other 
compounds. The entire system is equipped with a controller, as well as, a 
bidirectional serial interface to transmit data. Examples of monitoring stations 
are represented in Figure 2-4. 
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Figure 2-4 Examples of monitoring stations a) MetriNet b) Sentinal                                                    

 

2.3 New Detection Technologies  

Even though sensors that measure the common water quality parameters are 
much more widespread, new devices have recently been developed that 
implement innovative detection techniques.  
For examples, they are able to detect contaminants by utilizing the measure of 
the refractive index, the toxicity level etc.  
For illustration purpose, the following common devices are reported, divided in 
three categories: the first is for the measurement of the toxicity level, the second 
concerns the detection of biological contaminants, and the third identifies 
radiological contaminations.  
 

2.3.1 Toxicity Indicators  

Most of the sensors that are able to detect specific chemical contaminants are 
intended for laboratory or in situ use, and cannot be directly installed on the 
distribution network pipelines.  
However, few instruments that were born to detect chemical contaminations are 
also able to identify the toxicity level, being based on the use of microorganisms. 
They are named "biosensors" because they allow the detection of the presence of 

a) b) 
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water contaminants through the use of organisms: the changes in physiology or 
behavior of living organisms resulting from stresses induced by toxins are 
measured to indicate that there is an unusual condition in the water. Among the 
numerous biosensors, US-EPA (2005b) reported the Tox Screen II by Check 
Light and MicroTox/DeltaTox by Strategic Diagnostics for the online water 
monitoring.   
In the following years, researchers from various industries noticed that many 
organisms are actually able to change their behavior in the presence of water 
pollutants. Mussels, for instance, change the frequency of valve opening and 
closing in response to toxins. MosselMonitor, developed by Delta Consult, can 
monitor chlorinated drinking water after a pre treatment to remove chlorine. 
Indeed, it is a biological EWS for continuous on-line monitoring of surface 
waters and drinking water, allowing for near real-time graphical presentation at a 
remote location or through Internet.  
Then, few instruments are able to detect the photosynthetic activity of the algae: 
standardized algae are mixed with the sample water and the devices serve as a 
toxicity measurement, determining the percentage of active chlorophyll under 
illumination. In fact, damage to the algae (e.g., due to herbicides) causes a 
reduction in algae activity and activates an alarm. This principle is used by 
Algae Toximeter from BBE Moldaenken, by LuminoTox from Lab_Bell, and by 
ALGControl by MicroLAN.  
Again, the TOX control developed by MicroLAN is a completely automated 
system that uses freshly cultivated lightemitting bacteria (Vibrio fischeri) as a 
biological sensor. The luminescence is measured before and after exposition to 
calculate the inhibition in percentage: as long as the sample toxicity is greater, 
the percentage light loss from the test suspension of luminescent bacteria 
increases. Other devices use the enzymes property of electron transport and the 
oxidative phosphorylation to monitor the redox state, or rather, the ratio of the 
concentration of the oxidized species, that is related to the toxic effects.  
Finally, x-raies fluorescence technology can also be used for the detection of 
contaminant substances: ITN Energy Systems provided a smart, automatic early 
warning sensor to continuously trace levels of toxic metals in drinking water on 
a ppb scale.  
For the purpose of illustration, examples of the described devices are reported 
below in Figure 2-5. 
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Figure 2-5 Examples of monitoring devices a) ALGControl b) TOXControl with its Integrated c) 

Toxicity Detection (www.microlan.nl) 
 
In details, Figure 2-5a represents the ALGControl, which uses LEDs for 
fluorescence excitation. When chlorophyll molecules absorb light, a fraction of 
the energy absorbed is reemitted as fluorescence. As algae of the same classes 
contain a similar quantity and quality of pigments, it is possible to differentiate 
divisions of algae by their fluorescence excitation spectrum. Figure 2-5b shows 
the TOXcontrol, which uses a decrease in luminescence of the luminescent 
bacteria as an effect to measure the toxicity of water samples while the 
automated processing to detect an anomaly is illustrated in Figure 2-5c 
(www.microlan.nl).  
   

2.3.2 Biological Contaminants 

As in the previous case, even for biological contaminants most of the sensors are 
unable to detect specific pathogenic organism in drinking water due to the 
microbial culture time. Actually, culture methods are relatively slow, requiring 
at least 24 to 48 hours but the water monitoring should be rapid and prove results 
in two hours or less to be efficient. For this reason, only few technologies can be 
implemented for the online water monitoring and they cannot be specific for a 
single pathogen.  
For instance, flow cytometry was used to distinguish some microorganisms on 
the basis of differential light scatter properties with the addition of fluorescent 

a) b) c) 
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tags. In fact, a mono-disperse suspension of cells flows past a laser beam and the 
device measures properties of each cell, such as size, granularity, green 
fluorescence, red fluorescence, and far red fluorescence intensities. An example 
of this methodology is employed in Microcyte Aqua by BioDetect, which is a 
stationary device suited for online and continuous water surveillance.  
In addition, BioSentry from JMAR Technologies is able to identify 
Cryptosporidium and other microorganism (e.g., Giardia) in water matrix 
particles by means of the light scattering technology, which is a simple scanning 
procedure that provides information about the presence of particles of a certain 
size (US-EPA, 2005b). 
Finally, two sensors available on the market are able to detect a specific 
biological contaminant, the E. coli. The first one is called COLIGUARD, 
developed by the Austrian  start-up Mb Online GmbH, and it indicates the E. 
coli by the optical analysis (luminescence) of the enzyme ß-Glucuronidase. A 
second version of the instrument also detects coliforms, analyzing the activity of 
ß-Galactosidase (European Commission, 2013). Similarly, the second sensor, 
which is the BACTcontrol from MicroLAN, measures the specific enzymatic 
activity of β-galactosidase (for coliforms), β-glucuronidase (for E. coli) and 
alkaline phosphatase as indicators of bacterial contaminations. The enzyme 
activity is detected by adding reagents that contain a fluorescent indicator: there 
is an increase in fluorescence when the enzyme is present in the sample. As the 
latter two sensors are the most innovative in their field being able to detect 
specific biological contaminants, they are represented in Figure 2-6. 
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Figure 2-6 Examples of specific biological detectors a) COLIGUARD b) BACTcontrol 

(www.mbonline.at, www.microlan.nl) 
 

2.3.3 Radiological Contaminants 

Radiation is another possible cause of contamination in WDSs. For this reason, 
the Federal Water Pollution Control Act (Clean Water Act), the Safe Drinking 
Water Act (SDWA), and the Maximum Contaminant Levels (MCLs) have 
recently addressed protection of water systems from radiation and other 
contaminants.  
Until the last decade, radiation did not require continuous monitoring; however, 
since the terrorism is a major security concern in the U.S., as well as in many 
other nations, even the laws in this field have to become stricter and the real-
time monitoring of radiation is turning out to be important for the immediate 
detection and response. The available systems detect the total amount of 
radiation (including alpha particles, beta/photon emitters and gamma radiation), 
alert operators but many of these do not identify the specific contaminant (US-
EPA, 2005b). Concerning these relevant issues, general information are 
available on the EPA’s website or on the Multi Agency Radiation Survey and 
Site Investigation Manual (US-EPA, 2000), developed by EPA, DOE, DOD, and 
the U.S. Nuclear Regulatory Commission. 
Hence, among the various technologies available on the market, the following 
are those related to the online drinking water monitoring. 
Technical Associates produces several radiation monitoring instruments which 
are sensitive to Alpha, Beta, Gamma, X-ray, Neutron and Positron Radiation. 



Water Quality Sensors 
 

42 

 

Regarding the drinking water, it marketed (i) MEDA-SP, for the continuous 
monitoring of intentional contamination or accidental spills of gamma radiation 
into the water source (ii) SSS-33DHC and SSS-33DHC-4193 to continuously 
monitor and detect tritium leakage, and (iii) SSS-33M8 monitor194 for the 
monitoring of tritium in water (www.tech-associates.com).  
The 3710 RLS Sampler192 is also avalable by Teledyne Isco, which detects 
radionuclides and continuously monitors water for all types of radiation.  
For the purpose of illustration, MEDA-SP and SSS-33DHC are represented 
below in Figure 2-7. 
 

                           
Figure 2-7 Examples of specific radiological sensors a) MEDA-SP b) SSS-33DHC  

(www.tech-associates.com) 
 

2.4 Application Cases for Sensor Use 

In order to demonstrate and prove what has been said in the previous paragraphs, 
some application cases of the use of the presented sensors are reported (www.s-
can.at).  
In these real applications, S::CAN also contemplates terminals and software to 
manage data, together with the installed monitoring stations. For examples, 
moni::tool is a new platform for the management of an almost unlimited number 
of stations, online probes, analyzers and parameters; vali::tool automatically 
detects, marks and corrects untrustworthy data, distinguishing outliers, noise and 
discontinuous data; ana::tool defines the normality for the baseline data, 
identifies unusual conditions and let an alarm start when a significant deviation 
is detected; the terminal con::lyte displays the readings of all S::CAN probes and 

a) b) 
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sensors connected on site through backlight LCD; con::cube and con::nect are 
respectively a compact terminal for data acquisition and a commercial notebook 
for operating the spectro::lyser (www.s-can.at). 
It is important to note that the cost of the analyzed devices varies from a few 
thousands of Euros for the simpler multi-parameter probes up to some tens of 
thousands of Euros for probes that detect the presence of toxic substances and 
bacterial (e.g., Coliforms and E. coli). Their diffusion within the normal 
management of WDSs will only enhance the market, with consequent reduction 
of costs and interest in the production system, investing in the research and in 
the development of new technologies. 
 
Over the last few years, the small communities of the First Nations in Canada 
had to face with the management of WDSs quality, as contamination events had 
reached a considerable number, causing a series of annoying accidents for the 
population. For this reason, the Canadian government launched a relevant 
project to provide safe drinking water to the communities of the First Nations, 
improving the infrastructure. More in detail, the government decided to install a 
remote monitoring of drinking water quality to ensure that industry operators can 
be promptly alerted in case of anomalies. This monitoring system consists of 
micro-stations, designed for the on-line monitoring of the most common water 
quality parameters. Each stations can combine up to four different s::can probes 
previously discussed  (spectro::lyser, ammo::lyser, chlori::lyser and pH::lyser)  
and the terminal con::cube, being able to measure a total of ten parameters, 
including TSS, COD, BOD, Electric Current (EC), pH, temperature, NH4, DO, 
NO3-N, chlorine and free chlorine.  
The stations were installed in combination with moni::tool. 
The collected data are then transferred in real time to a computer network that 
connects all the Firs Nations. 
 
In order to detect any problems caused by pipeline deterioration and to ensure 
good drinking water quality, the i::scan probe was installed in the city of Zurich 
(Swiss). It is a revolutionary and cost-effective spectrometer that uses the latest 
LED technology to measure the absorption spectrum, being able to quantify 
different parameters, that is turbidity, UV254, TOC, BOD and color. I::scan was 
installed in the pipes using a unique fixture that can withstand pressures up to 10 
bar. The probe also has a valve to close the connection to the network: this 
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allows its removal from the pipe for inspections and cleaning procedures without 
interference with the regular water flow.  
Here also, the probe was installed in combination with moni::tool in order to 
manage several monitoring stations. 
 
In Bratislava, since the water quality from the sources is high, only the 
chlorination treatment is carried out, which excludes any microbiological growth 
during the distribution phase. To ensure that the possible contamination of one 
of the sources does not compromise the high water quality, the Bratislava Water 
Company (BVS) has sought a system capable of monitoring the various water 
sources coupled with robust event detection devices along the network to send 
an alarm in case of an event. To be able to evaluate a wide range of parameters, 
the UV spectro::lyser probe was installed and therefore, the measured 
parameters are: absorption spectrum (whole), TSS, turbidity, NO3-N, COD, 
BOD, TOC, DOC, UV254, color, O3, H2S, Assimilable Organic Carbon (AOC), 
Benzene-Toluene-Xylene (BTX), temperature and pressure.  
Here again, the probe was installed in combination with Moni::tool. 
 
The city of Burgos (Spain) is one of the four demonstration sites of the 
"SmartWater4Europe" European project (SW4EU) project, in which the Author 
of this Thesis took part (as will be shown in the next chapters). The site is 
properly focused on the detection of the water quality anomalies, as well as on 
the integration of this information with the management of the WDS. For 
potable water monitoring, Optiqua EventLab probes have been distributed in the 
network, capable of detecting changes in any type of dissolved chemicals in real 
time. In the city of Burgos, the water provider is Acciona Agua, who was also 
responsible for the adoption of the S::CAN nano::station in El Prat of 
Llobregat. After seeing in the latter location the efficient and rapid response of 
this station to changes in salinity, turbidity and fouling, nano::station has been 
recently purchased also for the city of Burgos, together with the con::cube 
terminal. 

 
BactControl was installed at the plant in Aigues de Barcelona, the water utility 
of Barcelona, where it showed excellent results. 
 
Finally ,Vitens, the largest drinking water utility in the Netherlands, is currently 
installing a large-scale smart drinking water network in the province of 
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Friesland. More than 2,200 km of distribution network are currently fitted with 
200 sensors that will measure the demand and quality of the drinking water in 
real time. In detail, eight S::CAN nano::stations were installed, measuring 
turbidity, color, UV254, TOC and DOC, conductivity, pH. Each station was 
made up of an i::scan, a pH::lyser and a condu::lyser. Data are transferred via 
3G to the central Office in Leuwarden.  
The Vitens initiative has also  been part of the SW4E project. 
 
Finally, it has to be pointed out that since these technologies are new and not yet 
widely tested, the choice between the different available sensors is challenging. 
In fact, the parameters that each type of sensor is able to measure, as well as its 
cost, are very clear but information about their reliability together with the costs 
of ordinary and extraordinary maintenance are still unknown. Choosing between 
the various types of sensors, the performance of any associated software 
packages must also be taken into account, as well as their ability to effectively 
interface and integrate with the information system serving the WDS to be 
monitored. 
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Chapter 3 

Design and Management problems of Monitoring 
Systems 

 
 
 
 
 
Once the sensors are defined, additional needs arise. Therefore, this chapter aims 
to discuss some aspects regarding the design and the management of an EWS. In 
details, concerning the EWS design, the following issues have to be addressed: 

 definition of the sensor optimal locations along the WDS; 
 acquisition and transmission of the enormous amount of data gathered 

together from the sensors. 
Regarding the EWS management, other problems have to be taken into account: 

 identification of the location of the contamination sources; 
 assessment of the response acts consequent to a contamination event; 
 restoration of the distribution network after a contamination event. 

All of these issues are described below. 
 

3.1 Sensors Placement 

Considering the different types of sensors and the data they collect, the problem 
of determining the sensor optimal locations arises for the EWS in order to be 
efficient.  
In fact, the contaminant, which can be accidentally or intentionally injected at 
any point of the distribution network, is predominantly propagated in relation to 
the hydraulic conditions (generated from the water demand). If a lot of sensors 
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are installed in the network, the contamination short-time detection likelihood is 
high; on the contrary, if the sensors are few, or they are located at irrelevant 
points of the network, the contaminant could be detected after a long time from 
the injection time, or it may even not be detected if the flow that conveys the 
contaminant does not pass in the monitored spots. Therefore, the effectiveness of 
the EWS system depends on the number, as well as on the location of the 
sensors and their definition becomes a crucial aspect for the design of an EWS. 
Thus, the current section will address this issue: for a pre-determined number of 
sensors2, necessarily limited for cost reasons, the best localization is the one that 
maximizes its effectiveness, that is the ability of the system to reduce the impact 
of contamination accidents on public health. 
The general criterion which reflects the minimum impact on public safety must 
be translated into objective functions that can be expressed quantitatively so that 
they can be introduced in the optimization models (Hart & Murray, 2010). For 
example, a possible objective function is the probability (to be maximized) that 
the contaminated flow passes through a monitored node in the network 
(detection likelihood). Alternatively, the objective functions can be expressed by 
other variables (to be minimized), such as the elapsed time between the 
contamination and its detection, the number of inhabitants that is reached by the 
contaminant, the number of people that receives a contaminant concentration 
higher than a certain threshold, the amount of the provided contaminated water, 
and the percentage of the non-detected contamination events. 
Hart and Murray (2010) identified seven steps common to most of the 
optimization-based sensor placement strategies, including: (i) the definition of 
contamination risk to minimize consequences (e.g., public health consequences) 
(ii) the description of the sensor characteristics used in the warning system (iii) 
the selection of the objective performance (iv) the definition of the optimization 
objective (v) the formulation of the optimization model (vi) the application of an 
appropriate optimization strategy, and (vii) the implementation of the design. 
Hart and Murray (2010) also analyzed the literature state of the art, grouping the 
papers according to how the authors addressed each step. 
In fact, the issue of the optimal location of sensors has been investigated for long 
time and it has been faced through both single-objective (Lee and Deininger, 
1992; Kumar et al., 1997; Kessler et al., 1998; Woo et al., 2001; Al-Zahrani and 

                                                      
2
 Even though those located in a distribution network are monitoring stations, hereafter they will 

be simply called "sensors" for more brevity. 
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Moied, 2001; Ostfeld and Salomons, 2004, 2005; Berry et al., 2006, 2009; 
Propato, 2006; Shastri and Diwekar, 2006; Cheifetz et al., 2015) and multi-
objective (McKenna et al., 2006; Ostfeld et al., 2008; Ostfeld and Salomons, 
2006; Preis and Ostfeld, 2006; Dorini et al., 2006; Eliades and Polycarpou, 
2006; Gueli, 2006; Huang et al., 2006; Wu and Walski, 2006) methodologies. 
Among the single-objective methodologies, Kessler et al. (1998) introduced a 
single-objective algorithm aimed at finding the best combination of sensors 
capable of providing a given level of service through a set covering algorithm. In 
the approach proposed by Kessler et al. (1998), the term "level of service" 
indicated the maximum volume of polluted water exposed at a concentration 
higher than a minimum hazard level and consumed before detecting the 
contamination. Ostfeld and Salomons (2004) used a similar approach, solving 
the optimization problem through a Genetic Algorithm while Ostfeld and 
Salomon (2005) extended their previous work by introducing uncertainties to the 
demands and the injected contamination events. Berry et al. (2006) introduced a 
mixed-integer programming (MIP) for sensor placement. Propato (2006) 
formulated a linear mixed-integer programming model to identify optimal sensor 
locations for early warning against accidental and intentional contaminations, 
considering few design objectives. Shastri and Diwekar (2006) introduced the 
study of uncertainties related to contamination location and demand at the time 
of the intrusion. Since changing water demand can cause changes in flow 
directions, contaminated nodes may also change; consequently, a change in 
demand by 25% was introduced. Cheifetz et al. (2015) proposed a greedy 
incremental sensor-placement approach to be used for sensor optimization in 
large real-world water system.  
At the same time, Ostfeld et al. (2008) pointed out the importance of creating 
multi-objective algorithms to refine the problem of sensors optimal location; in 
this context several algorithms have been developed (Dorini et al., 2006; Eliades 
and Polycarpou, 2006; Gueli, 2006; Huang et al., 2006). In particular, Ostfeld 
and Salomons (2006) and Preis and Ostfeld (2006) used the multi-objective 
genetic algorithm NSGA-II (Deb et al., 2002). In this context, McKenna et al. 
(2006) investigated the perfect sensor assumption that shows an ability to 
indicate a positive contamination event as soon as any amount of contamination 
reaches the sensor. Indeed, they evaluated the impact of sensor detection limits 
and proved that the detection of events is dependent on the detection limit. The 
results of their research showed that a sensor detection limit of 0.01 times the 
average source concentration is adequate for maximum protection.  
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During the Battle of the Water Sensor Networks (BWSN) held in the United 
States, many other approaches were evaluated in order to face the problem of the 
sensor optimal location: a summary of the results can be found in Ostfeld et al. 
(2008). Later, Berry et al. (2009) addressed the problem of the imperfect 
sensors, taking into account the effect of false sensor readings: the inclusion of 
false negative/positive led to a non-linear formulation of the optimization 
problem and the results showed that the false sensor readings can have a 
significant impact on network safety. Nowadays, a wide variety of sensors is 
commercially available. Since the technology is advancing, the sensors are able 
to measure simultaneously an increasing amount of physical-chemical water 
parameters, considered to be crucial for detection of contamination events (e.g., 
US-EPA, 2012; Perelman et al., 2012; Arad et al., 2013; Oliker and Ostfeld, 
2014a; 2014b). In the context of event detection, Perelman et al. (2012) utilized 
the artificial neural networks for studying the interplay between multivariate 
water quality parameters and detecting possible outliers: the results consist of 
alarms indicating a possible contamination event based on single and multiple 
water quality parameters. Arald et al. (2013) aimed to detect events by exploring 
the time series behavior of routine hydraulic and water quality measurements, 
developing a dynamic threshold scheme. Oliker and Ostfeld (2014a, 2014b) 
improved the contamination events detection ability including the support vector 
machines for the detection of outliers and a multivariate analysis for the 
examination of the relationships between water quality parameters and their 
mutual patterns. 
However, despite the large research carried out in the field, a challenge is still 
unsolved: the potential contamination events in a real WDS with complex 
network topology are countless, since each of them is characterized by a 
different injection location, duration, mass rate and starting time. The large 
number of contamination events to be taken into account makes the problem of 
the optimal location of sensors intractable in practice. Hence, the necessity to set 
up a sampling method able to select the most representative events which can be 
considered in order to make the problem less burdensome to solve, arises. In this 
context Preis and Ostfeld (2008a) developed a heuristic procedure for sampling a 
set of contamination events: they reduced the initial contamination matrix size 
by using a statistical approach which selects representative events considering 
their geographical x/y coordinates, few specific injection mass rates, injection 
starting times and injection durations. Weickgenannt et al. (2010) introduced an 
importance-based sampling method to effectively classify the contamination 
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events based on their importance in terms of the total volume of water that is 
polluted in a given interval of time. Due to the complexity of WDSs the 
prediction of the performance under various conditions such as failure scenarios, 
detection of contamination intrusion sources and of sensor placement locations 
is difficult. Thus, Perelman and Ostfeld (2011) developed a graph theory 
connectivity based algorithm to simplify the system behavior. They introduced 
the notion of clustering in the context of topological/connectivity analysis and 
they suggested connectivity analysis for topological clustering of nodes, 
facilitating the nodes sampling for sensor optical locations. Chang et al. (2012) 
established a rule-based expert system where the two rules, accessibility and 
complexity, converge to a set of nodes for the final sensor locations based on 
four design objectives, including the expected time of detection, the expected 
population affected prior to detection, the expected consumption of contaminant 
water prior to detection, and the detection likelihood. Diao and Rauch (2013) 
presented a controllability analysis of the network as preprocessing method for 
sensor placement: it determines the nodes that have an outcome indication over a 
maximum number of downstream nodes. Rathi and Gupta (2016) formulated a 
simplified method that simultaneously maximizes two performance objectives, 
the demand coverage and the time-constrained detection likelihood, which were 
combined into a single objective by using weights; they also used Genetic 
Algorithm to obtain the final optimum sensor locations. Zhao et al. (2016) 
proposed a sensor placement algorithm based on greedy heuristics and convex 
relaxation and demonstrated significant performance by applying it to repeated 
sampling of random subsets of events.  
The current research aims to face the optimal sensor-location problem as a bi-
objective optimization problem where the number of sensors and the 
contaminated population are both minimized. Because the solution of the 
optimization problem requires definition of a set of possible contamination 
events, a sampling method was developed in order to select a reduced but 
representative set of events, making the problem solution computationally 
feasible.  
Unlike the approaches described earlier, the proposed methodology no longer 
selects the representative events considering their geographical x/y coordinates, 
their importance in terms of location etc., but rather it takes into account 
practical information on network topology, together with the hydraulic 
characteristics of the network (as illustrated in the next chapters). 
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Ultimately, a software for locating the sensors along the water distribution 
network is available on the EPA website. In fact, the work of Uber et al. (2004) 
led to the development of the Threat Ensemble Vulnerability Assessment 
(TEVA) Research Program, which resulted in the most significant example of 
software in this filed: the TEVA-Sensor Placement Optimization Tool (SPOT) 
(U.S. EPA, 2013a; Morley et al., 2007; Murray et al., 2004). It is a software 
designed to optimally place a series of sensors, it allows the definition of a 
scenario of contamination, it simulates the spread of contaminant/contaminants 
throughout the water network and it analyzes the consequences, displaying the 
results in the form of charts and tables (Berry et al., 2012).   
The software initially requires some input data to define the scenario of 
contaminations including, the chemical species to be injected, the injection 
locations, the effects on the population via the lethal dose or other methods that 
calculate the ingested contaminated volume, and the estimated population. 
Subsequently, the number of sensors to be located and the method used for their 
placement have to be specified: the solvers provide two options for the 
resolution of the optimization problem, that are the "GRASP (heuristic)" and the 
"Lagrangian"; GRASP is preferred as the Lagrangian requires much greater 
computational costs. Once all data are entered, the result shows the positioning 
of the number of sensors in the water distribution network.  
The running time is highly influenced by the network size and the defined 
contamination scenarios but it is always a matter of minutes. 
However, TEVA-SPOT software shows several limits listed below: 

 In the input file any flow measurement unit is considered in gallons per 
minute; 

 If very small doses are injected in the network, many nodes result with 
low concentrations that could therefore not be considered as dangerous 
(this aspect can be exceeded or reduced by specifying a value for the 
concentration thresholds in mg/L); 

 For a proper functioning, TEVA-SPOT needs to be installed along with a 
compiler (Visual C or similar); 

 If an EPANET Multi-Species Extension (EPANET-MSX, an extension of 
EPANET) file is used, the results cannot be displayed after the 
simulations; 

 It is not easy to use since it involves the introduction of many parameters, 
often complicated to determine and to be familiar with for the users who 
are not specialists in the chemical/biological/medical sectors. 
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For these reasons, the software has not yet obtained a strong response from the 
scientific community and it is very hard to find (it is made available by EPA 
upon request). 
 

3.2 Data Acquisition, Communication and Decision Making 

As anticipated in the previous chapter, sensors application involves data 
management. In fact, once acquired, data must be validated, processed and 
transmitted to central units for their analysis. Since a large amount of data is 
involved, expert and automated systems are required in order to save time, 
increasing the analysis accuracy. 
In this context, various data acquisition and transmission systems are known in 
literature. 
Regarding data collection systems, the Supervisory Control and Data 
Acquisition (SCADA) systems are widely used for environmental monitoring. 
The SCADA systems are a computer-controlled type of Industrial Control 
System (ICS) that monitor and control physical industrial processes. SCADA 
systems historically distinguish themselves from the other ICS systems by being 
integrated into large-scale processes that can include multiple sites and large 
distances (Janke et al., 2014). These processes embrace industrial, infrastructure, 
and facility-based processes.  
Since a SCADA system can often incorporate data from online or remote 
sensors in a cost effective manner (Mays, 2004), it has gained popularity for a 
long time among the largest water utilities for the control of the WDSs.  
According to Panguluri et al. (2004), a water utility SCADA system usually 
consists of (i) a Human–Machine Interface (HMI) through which the human 
operator monitors and controls the process (ii) a supervisory computer system, 
gathering data on the process and sending commands control to the process (iii) 
Remote Terminal Units (RTUs) connecting to sensors in the process, and 
sending digital data to the supervisory system (iv) Programmable Logic 
Controllers (PLCs) (v) various process and analytical instrumentation.  
Data acquisition begins at the RTU or PLC level, which includes meter readings 
and equipment status reports that are communicated to SCADA systems as 
required. Data are then compiled and formatted in such a way that a control 
room operator using the HMI can make supervisory decisions to adjust or 
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override normal RTU or PLC controls. A HMI presents process data to a human 
operator: they are usually linked to the SCADA system’s databases and software 
programs to provide trending, diagnostic data, and management information, 
such as scheduled maintenance procedures, logistics information, and detailed 
schematics for a particular sensor or machine. An important part of most 
SCADA implementations is alarm processing (i.e. determining when alarms 
should be activated if certain alarm conditions are satisfied). Once an alarm 
event has been detected, one or more actions are taken, such as the generation of 
e-mail or text messages to inform management or remote SCADA operators. 
SCADA systems were born as independent systems with no connectivity to 
other systems and they were later connected through a Local Area Network 
(LAN) to share information in real time. They were finally linked with Internet, 
becoming vulnerable to remote attack.  
Once data are collected, the common approach initially used to manage them 
consisted in creating mathematical models to fit them with the available data but 
due to the nature of environmental phenomena (noise, non linearity, non 
stationary, missing data), the data often did not fulfill the hypothesis of these 
mathematical models.  
Thus, a more recent approach consists in relying on the data to build predictive 
models3, following firstly the verification and validation process.  
Regarding these processes, in the last decade Carlson et al. (2004) proposed a 
comparison between data received from monitoring sites with data stored at the 
sensor locations to ensure accuracy and completeness. Following methods 
provide automated data filtering, such as the moving window averaging, which 
reduces random noise retaining a quick step response or the Gaussian, 
Blackman, and multiple-pass moving average that has demonstrated slightly 
better performance in the frequency domain at the expense of increased 
computation time. Other procedures are simple outlier detection like the ones 
used to find deviation from the regular condition of the network in terms of the 
most common physical/chemical water parameters.  
The statistical learning theory (SLT) principle is a more modern theory, which 
combines knowledge of Artificial Intelligence (AI) learning theory, statistics, 
geo-statistics and time series analysis to provide tools for the analysis of these 
databases, called "environmental data mining" (European Project, 2002). Its 

                                                      
3
 Predictive modeling uses statistics to predict any type of unknown event or to guess the 

probability of an outcome given a set amount of input data (contamination event in this case). 
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result shows a new modeling of long and short term time events, identification 
and monitoring of extreme events applying Support Vector Machines for mono-
class and multiclass problems, Support Vector Regression, Artificial Neural 
Networks, multi-scale Kernel Approach, and stochastic simulation in order to 
solve real environmental problems (case studies in water contamination analysis, 
air quality forecasting and risk assessment). 
Following the data verification process, data should go through the 
transformation and analysis process (AWWARF, 2002). Data analysis is 
performed by specialized software and can take the form of 
univariate/multivariate analysis, Rule-Based Systems (RBS), or Case-Based 
Systems (CBSs)(US-EPA, 2005a). Univariate analysis considers one single 
variable, like for example a specific parameter or an instrument response that 
changes as a function of the water quality. On the contrary, multivariate analysis 
simultaneously uses inputs from all water parameters/instruments to detect data 
anomalies, minimizing false alarms. RBSs attempt to interpret information from 
a starting set of data and rules; they are usually characterized by IF-THEN rules, 
which provide real-time reasoning by looping through rules. CBSs operate by 
comparing a collection of current measurements to a database of historical 
measurements. Any deviations of the current state from past data are notified to 
the operator, who can run a predictive model to evaluate anomalous scenarios 
(Carlson et al., 2004).  
Processed data should be transmitted to the central database through either 
hardwired or wireless systems; the latter one can use a variety of methods, 
including microwave, basic telephone modems, cellular telephone modems, or 
satellite. Wireless transmission may require a direct line of sight between the 
transmitter and the receiver, or the use of re-transmitters, also known as 
repeaters and amplifiers  (AWWA Workshop, 2004; US-EPA, 2005a).  
Since both acquisition and transmission systems usually require the use of 
Internet, the security plays a vital role: the existing monitoring system would 
need to be evaluated not only for its vulnerability to direct physical attacks but 
also to cyber attacks (e.g., tapping). Transmission of unencrypted data is another 
security risk thus, hardware and software should have encryption capabilities.  
In this context, several researches have been led in order to study potential 
Internet disruptions and to develop plans for Internet recovery. For instance, the 
U.S. Government Accountability Office (GAO) was asked to identify examples 
of major Internet disruptions, together with the evaluation of laws and 
regulations for facilitating the recovery (Janke et al., 2014; U.S. GAO, 2006). 
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GAO found that a major disruption to the Internet could be caused by a cyber 
incident, such as a software malfunction or a malicious virus, a physical incident 
as a natural disaster or an attack that affects key facilities, and a combination of 
both cyber and physical incidents.  
The security of SCADA systems were also investigated as they are seen as 
potentially vulnerable to cyber attacks. The two main threats are the 
unauthorized access to the control software, whether it is a human access or 
changes induced intentionally or unintentionally by virus infections along with 
other software threats residing in the control host machine, and the packet access 
to the network hosting SCADA devices with one’s possibility to control or 
interrupt critical facility operations. For these reasons, more recently SCADA 
systems incorporate analog signals which require special drivers to accept data 
from monitors (e.g., particle counters) with digital signals.  
 
Concluding, a data management plan should be implemented and deepened 
during the EWS design. Each data feature, including source, destination, 
collection, transmission and storage methods should be taken into consideration 
in detail to specifically illustrate how data flow through the system.  
For the only purpose of illustration, an example of a generic data management 
plan is presented in Figure 3-1. 
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Figure 3-1. Utility Consumer Complaint Data Flow (US-EPA, 2005b) 

 
Figure 3-1 shows the components of a data collection, transmission and 
integration system for consumer complaint surveillance: data types and formats 
should be listed, as well as data privacy, sensitivity, security, authorization, 
encryption, timeliness, cost, redundancy, and availability should be developed. 
Finally, the last step of the communication pathway concerns the communication 
between data analysts and decision-makers during event detection. There are 
many possible communication mechanisms which may be employed, such as 
land-line, pager, cell phone, satellite communications, radio, television, internet, 
and emergency numbers. The type of communication mechanism is dependent 
on the information provider, source, recipient, content, format, timeliness, and 
other requirements. Anyway, the most common procedure would utilize voice 
calls, with supplementary data transmitted electronically. Communication during 
consequence management also shows many forms, depending on the message 
and target audience. Emergency broadcast warnings to the public can use well-
established communication mechanisms, such as radio and television and/or 
internet websites (US-EPA, 2005b). 
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3.3 Contaminant Source Identification 

As a result of what has been proven so far, water monitoring sensors are located 
only at some nodes of the network.  
Once the EWS is realized, a model capable of revealing the possible 
contamination injection characteristics (e.g., injection sources, time, 
concentration, etc.) needs to be provided to face the occurrence of a 
contamination event. 
In order to do that, the useful observations about water quality coming from 
sensors could be exploited. In fact, given a set of concentration observations at 
sensors in the network, an inverse problem can be constructed to identify the 
contaminant source characteristics (including location, strength, and release 
history). 
Many research works have been already conducted to analyze the formulation of 
this inverse problem. 
Starting with the review of the European projects in this field, around the end of 
the first decade of 2000, different strategies were implemented by the European 
Project SecurEau to identify the location of the contamination sources 
(www.secureau.eu). The considered approaches were: (i) a method based on the 
analysis of flow data (ii) a deterministic method based on successive positive 
readings of sensors (iii) methods based on Artificial Neural Networks (ANNs) 
for single and multiple contamination events, and (iv) stochastic methods, such 
as least-squares solving with Tikhonov regularization or minimum relative 
entropy solution (MRE).  
The method based on the analysis of the nodes where contamination has been 
detected and on flow directions was tested in different cases. The results allow 
concluding that the method gives good results especially for the cases with a 
single contamination event. The method is fast and does not require any prior 
testing phases (www.secureau.eu).   
The deterministic method based on successive positive readings of sensors 
concerned the analysis of the residence time of water in pipes and it only 
required a binary sensor status over time. The results for the localization of 
contamination sources are given sequentially, being updated each time a new 
sensor detected a change in contaminant concentration. In some situations this 
method enables the occurrence of false negatives and false positives thus, the 
ANNs algorithms were investigated: they identify the correct contamination 
source and predict the correct contamination time associated with each possible 
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contamination source, even in the case of large and complex WDSs. The method 
that extended the application of ANNs to multiple contamination scenarios 
achieved very satisfactory results for real WDSs. The method is generally able to 
correctly determine the simulated source and to define a very restricted set of 
possible contamination sources, even considering hydraulic scenarios with 
demand uncertainties. However, the estimation of the contamination time for 
scenarios characterized by demand uncertainties shows larger deviation 
compared to the simulated contamination sources. The time of required 
computation is generally very low, which has made this method very suitable for 
application in real contamination scenarios.  
Within the SecurEau Project, the French research Institute Irstea, a member of 
the SecurEau Consortium, developed a two-step enumeration/exploration 
method (which is an inverse problem method) for the source identification base. 
Firstly, the input/output transport matrix was worked out with a backtracking 
method and then, minimum relative entropy method, without any assumption for 
the Probability Density Function (PDF) distribution, or the least squares method 
with Tikhonov regularization were used to refine the results and be a source as a 
confidence interval. The backtracking algorithm yielded good results giving very 
quickly the full list of potential node sources of contamination at the different 
times, and the in/out (transport) matrix returned the relation between the 
potential source and the detecting sensors. That matrix could then be used either 
on a minimum relative entropy method or a Tikhonov method: the real 
contaminant source is always determined as potential source, even though the 
minimum relative entropy method seems discriminating more the potential 
nodes than the Tikhonov method.  
Regarding the last two approaches, numerous studies were already present in 
literature from the second half of the 90's. In fact, Islam et al. (1997) showed an 
inverse model for directly calculating the chlorine concentrations needed at the 
system sources in unsteady flow conditions for meeting a specified 
concentration value at a particular node in the network. The model used a one-
dimensional chlorine transport equation which was discretized by using a four-
point implicit finite difference scheme. The main weakness of the model is that 
it is suitable only for an even-determined case in which the number of unknowns 
(i.e., nodal and source concentrations) equals the number of equations (i.e., the 
one-dimensional transport equations along pipes and the mass balances 
equations at junctions). Al-Omari and Chandhry (2001) extended Islam’s model 
to the underdetermined case where the number of unknowns is greater than the 
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number of available equations and there are more than one solution for which 
the prediction error was zero. Supplementary a priori information was added to 
the problem: a unique solution was generated by minimizing the Euclidian 
length of the solution vector subject to the equations that describe chlorine 
transport in the network. The input/output model based on the backtracking 
algorithm, which has been investigated by SecurEau project, was presented by 
Shang et al. (2002). As mentioned above, the model provided information about 
the relationships between water quality at input and output locations by tracking 
water parcels, and moving them simultaneously along their paths. The algorithm 
was geared mainly toward feedback control, providing information on all paths 
between pairs of nodes, and less toward contamination source identification 
using monitoring stations information.  
Later, Bart G. van Bloemen Waanders et al. (2003) and Laird et al. (2005, 2006) 
introduced a  large scale nonlinear programming approach that used real-time 
concentration information from an installed sensor grid to accurately determine 
the time and location of the contamination event. This approach introduced 
unknown, time dependent injection terms at every node in the network and 
formulated a quadratic program to solve for the time profiles of the injections. 
Van Bloemen Waanders et al. (2003) used a nonlinear least-squares 
minimization of the errors between the calculated and measured node 
concentrations at the sensor nodes with a regularization term to force a unique 
solution. The constraints in the optimization problem were the Partial 
Differential Equations (PDE) of the water quality model for the network.  
Laird et al. (2005) discretized the problem, using an origin tracking algorithm to 
characterize the pipe time delays and remove the need to discretize along the 
length of the pipes. The resulting large scale nonlinear program was solved using 
a nonlinear interior point code and it provided good results in identifying a 
family of possible injection scenarios.  
The following year, Laird et al. (2006) formulated the inverse problem of 
identifying the time and the unique injection scenarios, using concentration 
information from a sparse sensor grid and by means of a Mixed Integer 
Quadratic Program (MIQP). This formulation included constraints that limited 
the solution space and allowed the distinction between single and multiple 
injection locations.  
Preis and Ostfeld (2006) solved the same problem through a hybrid Model Trees 
(MT), together with a Linear Programming (LP) scheme. The MT replaced 
EPANET through learning (i.e., training and cross validation), simulating the 
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network response to different random contamination events, while the LP used 
the classification structures of the model trees linear rules to solve the inverse 
problem. In this context, the MT represented forward modeling and the LP on 
the linear tree structure allowed backward inverse modeling, being the 
contamination injections characteristics the unknown problem. In the same year, 
Zechman et al. (2006) recognized that the accuracy of the source 
characterization problem depends on the degree of non-uniqueness present in the 
study, since it may cause misidentification of the source characteristics. In fact, 
as more sensors are added to the network, the non-uniqueness is reduced and a 
unique solution may be identified.  
Thus, a systematic search for a set of alternatives that are maximally different in 
solution characteristics can be used to address and quantify non-uniqueness. For 
this reason, Zechman et al. (2006) investigated the use of Evolutionary 
Algorithm (EA)-based alternatives generation procedures to quantify and 
address non-uniqueness presented in a contaminant source identification 
problem for a water distribution network.  
At the same time, Di Cristo and Leopardi (2006) used time-varying 
concentration measurements to identify the source location of an accidental 
contamination. In particular, as nodal demand uncertainty in input data and 
errors in concentration measurements determine a high level of uncertainty in 
the analyzed inverse problem, an analysis based on a Monte Carlo procedure 
was performed. The results showed a good identification frequency of the right 
pollution source node also at high uncertainty levels; however, the results 
depended on the number and the location of water quality measurements. The 
maximum coverage criterion appeared as a good method for selecting 
measurement location.  
The EPANET water distribution system simulator (Rossman, 2000) has been 
also exploited to solve a nonlinear contaminant source as it provides a 
convenient platform for implementing the approach of Guan and Aral (1999) 
and Aral et al. (2001) in a WDS. In fact, Guan et al. (2006) coupled EPANET 
with an optimization code, solving the contaminant-source identification and 
release-history problem. In details, EPANET was firstly used to simulate 
concentrations at a priori selected monitoring locations with release histories of 
potential contaminant sources. Then, the optimization model was used as a 
predictor-corrector algorithm to identify the sources and their release histories 
based on similarity of responses between simulation results and measured data at 
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the selected monitoring locations. This information exchange was developed as a 
closed-loop system that yielded a rapidly converging algorithm. 
More recently, Liu et al. (2011) proposed an adaptive dynamic optimization 
technique (ADOPT) for providing a real-time response and they investigated a 
new multiple population–based search that used an Evolutionary Algorithm 
(EA); the multiple populations were designed to maintain a set of alternative 
solutions that represented various non-unique solutions. Facing the non-
uniqueness in the solution, the procedure was coupled with a systematic method 
to identify a set of alternative solutions that were as different as possible in the 
solution space. Thus, at any stage of the solution procedure, possible solutions 
that best describe the observations were determined and were used as starting 
solutions for subsequent searches as more information became available.  
 
In addition, several approaches have been used to develop software tools for the 
simulation of contamination transport (www.secureau.eu). The following 
approaches have been considered: (i) an off-line software tool based on 
equations governing bacterial re-growth that is affected by sorption, desorption, 
chlorine and substrate concentration (ii) a software tool considering sorption 
developed using MATLAB, Visual Basic for Applications (VBA) and EPANET 
with models for the evaluation of contaminant concentrations, and (iii) an on-
line software tool that uses flow direction data for tracking contamination 
spread.  
The off-line software tool is supported with a model developed through 
EPANET-MSX (refer to Shang et al., 2008). The model contains differential 
equations defining functions of attached bacteria, bulk bacteria, substrate and 
chlorine concentrations as a function of time and also considers the phenomena 
of pathogen adsorption/desorption. The model parameters are user-adjustable as 
various types of contaminants have different adsorption and desorption 
coefficients. The graphical user interface of the EPANET software has been 
added to the model, allowing the operator to modify model parameters, to set 
initial conditions (e. g. contamination sources), to view results in graphical or 
tabular form, as well as to visualize the distribution of contamination over the 
network. The advantage of the off-line software tool is that it contains a 
comprehensive model that besides convection takes into account 
adsorption/desorption and re-growth of bacteria, as well as chlorine and 
substrate concentration. The model can be used to run simulations and study 
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contamination development, long-term effects including sorption, effects of 
chlorine disinfectant addition and substrate concentration.  
The software tool developed on Matlab and VBA enables testing the effect of 
sorption phenomena on contamination spread in drinking water distribution 
systems and studying long-term behavior of a partially adsorbed contaminant in 
a drinking water distribution system. It has been shown that the proposed 
method is suitable for the study of the effects of the sorption phenomena in the 
modeling of the transport of contaminants in real drinking WDSs.  
The on-line software tool enables running simulations of contamination transport 
in a water distribution network based on flow direction data. The concept of the 
on-line software tool is based on the idea that in case of contamination accident 
the affected area of the network is mostly determined by flow directions rather 
than flow magnitudes. Flow direction data can be obtained by means of flow 
direction sensors or by hydraulic simulation. A combined approach (flow 
direction sensors installed in some pipes, simulation for other pipes) is also 
possible. The advantage of the method is that if flow direction sensors are used, 
the software tool uses real-time data from the network and therefore, it provides 
more robust simulation results. 
 

3.4 Response after Contamination 

An important management problem concerns the intervention phase that follows 
the occurrence of the contamination event. 
For this reason, the existing technical regulations (e.g., the ISO 11830 "Guide on 
crisis management process") states that drinking water supply should manage the 
response and the restoration of WDSs after contamination events to ensure 
secure and hygienically proper drinking water to the customers. 
This section will address the response problem, while the next one will deal with 
the recovery, following a contamination event. 
The response can be implemented in different ways such as a simple alerting of 
the population or the injection of substances into the system that can neutralize 
the effects of the contaminant. Alternatively, the devices that control the flow 
and the functioning of the system (e.g., isolation valves and hydrants) can be 
managed in order to limit the diffusion of the contaminant with its consumption 
by users. This represents an alternative to the more conservative approach that 
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imposes the shutdown of the entire water supply, considered not feasible if the 
WDS is not divided into District Metered Areas (DMAs) or for many customers 
with special needs (hospitals, clinics, factories, etc.).  
However, the teams that water utility managers usually have available to 
intervene following a contamination event are not so many. Thus, there is a need 
to determine the procedure and the order that must be executed to intervene, 
deciding, for example, which valves should be closed or which hydrants should 
be opened.  
This issue leads to the formulation of different optimization problems, giving 
birth to several studies in literature. 
The first, Baranowski and LeBoeuf (2006) proposed three different optimization 
techniques (an unconstrained and a constrained first-order reliability method, as 
well as, a parameter estimation method) for determining the optimal nodal 
demand to reduce the contaminant concentration within the network after the 
detection. In the same year, Poulin et al. (2006) aimed to minimize the risk that 
contaminated water is consumed, to identify the valves to be closed safely 
containing the contaminated water as well as proceeding with the isolation 
actions, and to define a set of operations to efficiently flush contaminated water 
from the network for the quick returning to the normal operation conditions. 
Therefore, they proposed a heuristic algorithm based on simple rules, capable of 
marking and isolating the contaminated zones through the simultaneous closure 
of a certain number of valves in the system with the assumption of an unlimited 
number of response teams. Since the response to a contamination event 
intrinsically involves conflicting objectives (e.g., isolation of some network 
areas versus operation costs or citizens' need), Pries and Ostfeld (2008a) 
introduced a multi-objective procedure to develop an optimal response, 
minimizing the contamination mass consumed after the first sensor detection and 
the total number of operations (i.e. valves closure and hydrants opening) 
required for the isolation and the flushing of the contamination from the 
network. The study solved the optimization problem through the Non-
Dominated Sorted Genetic Algorithm-II (NSGA-II); it also assumed that the 
number of response teams is unlimited, all the operations take place 
simultaneously, and the characteristics of the contamination event (i.e. location, 
time, duration etc.) are known a priori. Similarly, Guidorzi et al. (2009) 
proposed a procedure based on two consecutive optimization process: the first 
one defines the position of a given number of sensors, minimizing the 
percentage of undetected contamination events and the volume of contaminated 
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water consumed up to the beginning of the response operations; the second one 
identifies the hydrant-opening, together with the valve-closing operations to be 
carried out for a generic configuration of sensors, resulting from the first 
optimization procedure. Alfonso et al. (2010) similarly proposed a multi-
objective procedure for a preliminary identification of the operations to be 
activated in order to minimize their number and the contaminated volume 
consumed after the detection. While, once the operations are identified, Guidorzi 
et al. (2009) also suggested an a posteriori analysis to determine the sequence 
according to which the operations should be activated based on the number of 
response teams actually available, Alfonso et al. (2010) did not take into account 
the problem of the best operation time. Both of the last two cited works assumed 
that the characteristics of the contamination event are not known a priori . 
Finally, Alvisi et al. (2012) recalled the study of Guidorzi et al. (2009), locating 
the sensors in the network, activating them when one of these triggers an alarm 
and developing a procedure which enables the automatic identification of the 
optimal scheduling of a set of devices (hydrants to be opened and valves to be 
closed) in order to minimize the contaminated volumes consumed by users after 
a contamination detection (the source is assumed unknown). In this study, the 
constraints were represented by the number of available response teams and the 
maximum speed at which these teams could travel along the roadway; the 
optimization process was based on a genetic algorithm (GA) which interacted 
with a Mixed Integer Linear Programming (MILP) solver and which is coupled 
with an hydraulic/quality simulator to calculate the contaminated water 
consumed.  
The effectiveness of any response strategy largely depends on the length of time 
needed to implement the required actions since response means intervening and 
ending any consequences on public health. Numerous researchers have also 
investigated the influence of response time on the magnitude of public health 
consequences (Janke et al., 2006; Skadsen et al., 2008; Murray et al., 2008), 
showing that an increase from 12 to 48 hours in the response delay can reduce 
the effectiveness of a warning system by 50%, or more (up to 70%).  
Bristow and Brumbelow (2006) finally analyzed the temporal and procedural 
space between the detection of an anomaly in the water quality and the response 
decisions, including the process by which decision-makers confirm 
contamination and activate the initial phases of an emergency response plan. The 
results showed that the cumulative time required to detect the contamination 
event, perform emergency response, and address the compliance process can 
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take a considerable amount of time, generally on the order of magnitude of days, 
where the contaminant verification and the response transmission are the most 
significant sources of delay (Bristow and Brumbelow, 2006).  
Consequently, an effective and preventive monitoring system is essential in a 
WDS as it provides crucial information for timely intervention by limiting 
damage to citizens. 
 

3.5 Recovery after Contamination 

Once a contamination event has been proved, it appears necessary to promptly 
intervene in order to limit the negative effects of the contamination itself on 
public health. While the response involves the isolation of the contaminated 
areas and the development of strategies to reduce the consumed contaminated 
water, the recovery phase imposes pipe wall cleaning and decontamination. 
This section will discuss the latter issue, that is, the time period in which all the 
actions necessary to restore the network back to the regular operating conditions 
are implemented.  
In particular, the contaminant does not have to be zero but only be below a 
certain limit (detection limit, acceptable level, etc.). Hence, the cleaning 
procedures must lead the WDS to an acceptable low concentration of the 
contaminant in the water and in the deposits. Only if this criterion is met, the 
clearance can be given to distribute drinking water to the customers and to return 
to the routine operation. 
The recovery problem has been investigated in several European projects, as for 
instance in the SecurEau Project, already mentioned. In details, it proposed a 
strategy for pipe wall cleaning and decontamination to be carried out in situ (i.e. 
inside the pipe), flushing neutralized contaminants out of the system. 
If cleaning is very intensive, pipes could be damaged and contamination leaked 
out to groundwater thus, SecurEau avoided to apply aggressive methods. 
However, flushing should have been more effective than traditional methods, 
which were mostly focusing on removing loose deposits because corrosion layer 
inside the pipe absorbed some of contaminants and the only way to remove it 
was to flush it out with incrustation layer.  
Several methods for cleaning drinking water distributions systems were taken 
into account; after that,  simple solution "how to deal with adsorbed Chemical, 
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Biological, Radiological and Nuclear  (CBRN) agents" were proposed 
(www.secureau.eu).   
The following steps should be always followed to ensure efficient cleaning:  

 the selection of the most suitable decontamination method as a function of 
the contaminant location; 

 when the surface is associated with loose deposits and/or bio-films, 
traditional techniques (e.g., water/air flushing) let this surface layer to be 
removed; 

 the selection of deeper methodologies for the deposits when an effective 
diffusion of the CBRN agents is presented.  

Both spores, non-spore forming bacteria, and viruses were used by SecurEau as 
models for testing decontamination procedures, which are summarized below. 
Shock-chlorination was studied by adding high concentration of chlorine and 
keeping it to reach the optimal Concentration multiplied by Time (CT) value:  
although reasonable efficacy was observed in water, bio-films were not 
effectively removed. In fact, results showed that disinfection with shock 
chlorination was an effective method for neutralizing bacteria but the removal of 
bio-films was not possible without treatments to activate them. Ultrasound 
cavitations may be used to detach spores from surfaces towards a further 
procession (i.e. DNA analysis or quantification) but it should be followed by 
other disinfection methods, which together has been too expensive to use in case 
of contamination of WDSs. One of the most promising results on surface 
disinfection was the regime alternating between the free chlorine (200 mg/L) and 
the sodium hydroxide (1.5%): this technique was based on the spore disinfection 
in a bulk and afterwards, the releasing of spores adhered to the surface.  
Advanced oxidation process was successfully tested in SecurEau to take 
advantage of iron and cupper in WDSs and in bio-films, while mercury was used 
as model substance of inorganic agent, testing several methods (water flushing 
with chlorinated or non chlorinated water, ice pigging). Chemicals as release 
agents of radiological agents from pipe material and real pipe deposits were 
tested: sodium bicarbonate was the most effective chemical for cleaning 
compared to other decontamination chemicals. 
Moreover in SecurEau, several solutions and strategy for effective in situ 
cleaning based on using simple reagents were selected:  

 Chemicals such as pesticides as well as pathogens and autochthonous 
bacteria could be removed using Hydrogen Peroxide solutions;  
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 Removal of resistant microorganisms, such as Bacillus spores, from pipe 
surfaces could be achieved by alternating treatment with sodium 
hydroxide and chlorination;  

 For removal of radionuclides, desorption by sodium bicarbonate solution 
and flushing of the system for safe storage offered a remediate option; 

 Ice slugs and gravel in combination with water flushing were effective 
methods for removing both loose deposits and corrosion layer of pipes.
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Chapter 4 

Early Detection Systems with the hypothesis of 
conservative contaminants - Optimal Sensors 

Placement 
 
 
 
 
 
As was explained in the previous introductory chapters, water distribution 
networks can be equipped with water quality monitoring systems to successfully 
detect potential contamination events. These systems include sensors installed at 
strategic locations, selected in such a way as to guarantee early warning and 
reduced impact (Walski et al., 2003). 
The issue of the optimal placement of sensors, which is usually dealt with a 
multi-objective approach, is crucial for network management and protection, and 
hides various pitfalls. One of them lies in the definition of the significant 
contamination events. In fact, contamination events can occur at any node of the 
network and at any time of the day, with whatever values of duration and mass. 
All this generates a very high number of potential contamination scenarios. 
However, taking account of all of them may be exceedingly demanding from the 
computational viewpoint. 
Another pitfall lies in the suitable choice of objective functions to be considered. 
In fact, numerous objective functions were formulated in the scientific literature 
(e.g., Ostfeld et al., 2008; Presis and Ostfeld, 2008b), including number of 
installed sensors, as a surrogate for the cost, and event detection time, 
contaminated population and sensor redundancy, as surrogates for system 
reliability. Though all these variables could be simultaneously considered in the 
same optimization framework, optimization techniques lose resolution 
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effectiveness as the number of objective functions grows (Creaco et al., 2016). 
Therefore, while considering a total number of two conflicting objectives, 
associated with the cost and reliability of the monitoring system respectively, the 
issue of which single pair of objective functions can give the best results in the 
context of the optimal placement of sensors in WDNs arises. 
In the chapter, first details will be given about the quantity and quality 
simulations that need to be carried out to represent the network behavior during 
contamination events (section 4.1). Then, a procedure for the sampling of the 
significant contamination events will be presented in the context of bi-objective 
optimization, by adopting an explicative pair of objective functions (section 4.2). 
Unlike other approaches described in the scientific literature (Preis and Ostfeld, 
2008b; Weickgenannt et al., 2010; Perelman and Ostfeld, 2011; Chang et al., 
2012; Diao and Rauch, 2013; Rathi and Gupta, 2016; Zhao et al., 2016), this 
procedure has the peculiarity of being based on practical information on network 
topology and operation (drawn from Tinelli et al., 2017a). The chapter ends with 
section 4.3, in which an analysis is reported concerning the impact of the 
objective function selection on the optimal placement of sensors (drawn from 
Tinelli et al., 2017b; Tinelli et al., under review). 
 

4.1 Quantity and Quality Simulations for Contamination Events 

After a set of potential contamination events has been defined, quantity and 
quality simulations need to be carried out to model network behavior during 
each of them. These simulations can be carried out through such software as 
EPANET. 
The quantity simulation can be carried out una tantum with reference to the 
typical day of network operation prior to the set of quality simulations. This 
reflects the common assumption that hydraulics is not affected by contaminant 
propagation. 
Then, thanks to quality simulations, it is possible to identify how the 
contaminant propagates in the network for each contamination event.  
In EPANET, water quality is solved through a system of one-dimensional (1D) 
advection-reaction pipe equations, and perfect mixing is considered at junction 
nodes. This approach is considered acceptable in the search for optimal sensor 
locations in which the contaminant is often considered conservative. 
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Nevertheless, under specific hydraulic conditions, a better representation of the 
water-quality processes, above all with regards to mixing at the junctions, could 
be obtained by taking account of more accurate modeling, such as computational 
fluid dynamics (CFD) (Braun et al., 2015 offers an example). CFD and other 
accurate modeling approaches, which are too burdensome to be considered in 
the sensor design phase, remain valid and useful tools to be adopted for an a 
posteriori analysis of the results.  
For each contamination event, EPANET is able to calculate the fate of the 
contaminants injected into the network, identifying which nodes are reached and 
when they are reached following the initial injection time. 
Starting from these simulations, two matrices can be calculated, providing 
information about the network behavior during the various contamination 
events. These two matrices are (i) the contamination matrix (introduced for the 
first time by Kessler at al., 1998), and (ii) the time matrix. They both have as 
many rows and columns as the number of nodes and contamination events, 
respectively. In detail, for each contamination event, the contamination matrix 
helps distinguishing reached and unaffected nodes (matrix values equal to 1 and 
0, respectively). The time matrix gives the time interval for the generic node to 
be reached, following the initial instant of contamination. For unaffected nodes, 
this time interval is +∞. 
Explicative examples of the two matrices are illustrated in Figure 4-1. 
By simple manipulations on these matrices, it is possible to assess the 
performance of a generic system of sensors installed in the network. In detail, it 
is possible to assess how many events are detected by the system in a total group 
of events, and then to calculate the event detection likelihood. Other 
performance functions that can be potentially evaluated thanks to these matrices 
include the average time of detection and the sensor redundancy, that is how 
many sensors are on average able to detect the generic event. By leaning on info 
on the number of inhabitants connected to the network nodes, the contamination 
and time matrices also enable quantifying the average contaminated population 
for the group of contamination events considered. 
As the following sub-sections will show, the previous performance indicators 
can be usefully adopted in the context of multi-objective optimization, for the 
search of the optimal sensor locations in the network. 
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Figure 4-1. Explicative examples of a) contamination matrix b) time matrix

 

4.2 Sampling Problem 

Due to the initial operations reported in section 4.1, the optimization procedures 
are computationally very burdensome when the number of the considered 
potential events is high. For these reasons, the contamination scenarios to be 
taken into account in the calculations must be reduced. Thus, a method for 
defining a small significant set of contamination ev
for the totality of the events, was set up. Each possible contamination event is 
characterized by certain values of injection location, starting time, mass rate, and 
duration. Therefore, the sampling was done for each of the 
as it is explained in the following sub-paragraphs.
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Explicative examples of a) contamination matrix b) time matrix 

Due to the initial operations reported in section 4.1, the optimization procedures 
very burdensome when the number of the considered 

potential events is high. For these reasons, the contamination scenarios to be 
taken into account in the calculations must be reduced. Thus, a method for 
defining a small significant set of contamination events, which is representative 

was set up. Each possible contamination event is 
characterized by certain values of injection location, starting time, mass rate, and 
duration. Therefore, the sampling was done for each of the event characteristics, 

paragraphs. 
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4.2.1 Sampling of contamination events 

Injection location 

Although all the network nodes could theoretically be potential injection 
locations, an algorithm was developed using the graph theory to select the 
representative nodes that should be considered for the injection of contaminants. 
A preliminary step of the algorithm is the opening of network loops and source 
interconnection paths, which can be carried out through the minimum spanning 
tree algorithm (Kruskal, 1956) and/or other procedures accounting for pipe 
diameters and water discharges. Subsequently, the representative nodes of the 
system are selected as a function of their gradually increasing distance from the 
source nodes. In fact, the distance from the source node is a variable with more 
hydraulic meaningfulness than the nodal geographical x/y coordinates of Preis 
and Ostfeld (2008b). Specifically, sampling is done with a prefixed frequency, 
i.e. one out of two, three, four (and so forth) nodes, along the path outgoing from 
the network source(s). In each path, the closest nodes to the sources were always 
accounted for. Subsequently, the sampling is modified through the two 
following steps, which force selection of the dead-ends at the expense of the 
close nodes: 

i. Dead-ends are included in the list of selected nodes; 
ii. Nodes adjacent to dead-ends, whether previously sampled, are excluded 

from the list if they are serial nodes. 
Inclusion of dead-ends is important because they are the final nodes of the 
network where the generic contamination events can be detected. In fact, let the 
generic water path in the network be considered. The dead end is the only node 
able to detect all the contamination events that have injections along this path. 
The network in Figure 4-2 is provided as an example for the application of the 
selection with one out of two and one out of three sampling frequency.  
The network has 13 nodes with one source node placed at Node 1. The 
application of the minimum spanning tree algorithm leads to the removal of pipe 
13 for loop opening. Subsequently, nodes are selected according to their 
gradually increasing distance from the source node.  
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Figure 4-2 Explicative WDS for visualization of the sampling frequency

 

Figure 4-3. Selected nodes considering a sampling frequency for the injection nodes equal to 2 
an explicative WDS. The source node is indicated with a box and the dashed line indicates the pipe 

that is removed for loop opening. Node numbers close to the nodes. Pipe numbers inside circles 
and close to the pipes.
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Explicative WDS for visualization of the sampling frequency 

 
Selected nodes considering a sampling frequency for the injection nodes equal to 2 in 

an explicative WDS. The source node is indicated with a box and the dashed line indicates the pipe 
that is removed for loop opening. Node numbers close to the nodes. Pipe numbers inside circles 

and close to the pipes. 
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As shown in Figure 4-3, the closest nodes to the tank (node 2 and 3) are selected. 
Therefore, considering a frequency of one out of two nodes, the selected nodes 
are 2, 3, 5, 6, 7, 12 and 13. In particular, being a dead-end, node 12, which 
should not have been included as a result of the frequency sampling, is finally 
included in the list at the expense of node 11, which is a serial node adjacent to 
node 12. In the same way, it would have to proceed by selecting a frequency of 
3, 4, and so on. 
A remark must be made about the injection location sampling, which may fail to 
select important crossroad nodes or supernodes, which, as defined by Deuerlein 
et al. (2014), belong to several paths. In this context, even if an important node is 
missed in the sampling, information about this node is not lost; in fact, 
contamination events will always reach it through paths including other nodes 
sampled by the algorithm. Furthermore, exclusion from contamination location 
sampling does not prevent the generic node from being a good sensor location. 
 

Starting time 

Taking as benchmark the typical day of WDS operation, every instant could 
theoretically be the starting time of contamination. This means that considering 
the whole day sampled with a 0.5-h step, there could be 48 potential starting 
times. The sampling of the starting times is carried out based on the WDS 
operation phases, detected as a function of pipe-water discharges, which can 
vary based on nodal demand, source head patterns, and switching on/off of 
pumps. 
In detail, these phases can be identified by detecting the times when the water 
discharges in network pipes vary significantly. Assuming that the water 
discharge in a pipe follows the daily trend shown in Figure 4-4, the instants 
associated with significant changes in the flow are 0, 7, and 15 h.  
Three phases are then detected for the pipe, that is, Phase 1 from 0 to 7 h, Phase 
2 from 7 to 15 h, and Phase 3 from 15 to 24 h. 
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Figure 4-4. Water discharge in a WDS pipe during 

 
The instants of significant flow variation for the whole network are obtained by 
putting in a single timeline the instants of significant flow variation in all the 
network pipes. The generic phase is then detected as the time slot between tw
successive instants in the timeline. Then, a representative instant can be selected 
for each phase, i.e., either the initial instant or an inner instant in which the pipe
water discharges are closest to the average values in the phase. These 
representative instants are selected as significant starting times for the sampled 
contamination events.  
In the assessment of any objective functions, the operating
be used as weights to be associated with contamination events.
 

Mass rate 

The contaminant advection-reaction equations are linear if the contaminant is 
conservative or first-order reactions are used (often the case with the optimal 
sensor location). The consequences of this aspect are easily shown through the 
explicative example of the network in Figure 4
and six demanding nodes (Nodes 2–7). 
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Water discharge in a WDS pipe during a typical day 

The instants of significant flow variation for the whole network are obtained by 
putting in a single timeline the instants of significant flow variation in all the 
network pipes. The generic phase is then detected as the time slot between two 
successive instants in the timeline. Then, a representative instant can be selected 
for each phase, i.e., either the initial instant or an inner instant in which the pipe-
water discharges are closest to the average values in the phase. These 

ve instants are selected as significant starting times for the sampled 

In the assessment of any objective functions, the operating-phase durations can 
be used as weights to be associated with contamination events. 

reaction equations are linear if the contaminant is 
order reactions are used (often the case with the optimal 

sensor location). The consequences of this aspect are easily shown through the 
the network in Figure 4-5, with one source node (Node 1) 
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Figure 4-5. Explicative water distribution network for sampling contamination mass rates

 
In this network, which features a constant demand of 26 L/s, two contamination 
events are considered with the same injection location (node 2) and duration (4 
h) and differing in the mass rate - only for explicative purposes, equal to 50 
gr/min (32.05 mg/L) and 200 gr/min (128.21 mg/L) in the two events, 
respectively. The separate effects of the two events are shown in Figure 4
 

Figure 4-6. Trend of the contaminant concentration at node
50 gr/min and 200 gr/min in the explicative water distribution network shown in Figure 4

 
In detail, this graph reports, for Node 7, the trends of the contaminant 
concentration in response to the two events. 
The results clearly show that the two trends are proportional and one can be 
obtained from the other through multiplication by a factor equal to the mass rate 
ratio, which is 4. Considering the two trends in Figure 4
contaminant concentration rises almost instantaneously to the highest value 
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Explicative water distribution network for sampling contamination mass rates 

In this network, which features a constant demand of 26 L/s, two contamination 
events are considered with the same injection location (node 2) and duration (4 

only for explicative purposes, equal to 50 
) and 200 gr/min (128.21 mg/L) in the two events, 

respectively. The separate effects of the two events are shown in Figure 4-6.  

 
Trend of the contaminant concentration at node 7 in response to the injected masses of 

50 gr/min and 200 gr/min in the explicative water distribution network shown in Figure 4-5 

In detail, this graph reports, for Node 7, the trends of the contaminant 
concentration in response to the two events.  

results clearly show that the two trends are proportional and one can be 
obtained from the other through multiplication by a factor equal to the mass rate 
ratio, which is 4. Considering the two trends in Figure 4-6, where the 

s almost instantaneously to the highest value 
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(very high variation speed), a sensor placed in Node 7 would be able to detect 
the event in both cases, as long as its sensitivity is small enough (usual 
assumption in the framework of optimal sensor placement) to detect the 
contamination. Nevertheless, in real networks, cases in which the contaminant 
concentration is so low as to be under the sensor sensitivity are less dangerous in 
terms of network safety. 
In light of the linearity of the contaminant advection-reaction equations, the 
mass of injected contaminants does not influence certain variables, such as 
number of contaminated nodes or contaminated population, if the pollutant 
concentrations are high enough to be detected by the sensors. Therefore, if the 
focus is on the number of contaminated nodes and/or the contaminated 
population, rather than on the contamination concentration, the average of the 
possible masses can be sampled as a representative value. 
Furthermore, when the contamination concentration is also relevant, the WDS 
quality simulation can always be carried out only for one contamination mass 
rate. The results associated with other values can then be derived by taking 
advantage of the linearity of the equations, as discussed earlier. 
 
Duration 

Under conditions of constant (or slightly variable) pipe water discharges (as it 
occurs in every WDS operation phase), the nodes reached by the generic 
contamination do not change as a function of the event duration; only the 
contaminants residence time into a single node can change. This is easily 
demonstrated likewise the previous sub-section, by separately injecting 200 
gr/min for 120, 300 and 600 min in the explicative water distribution network 
shown in Figure 4-5. The trend of the contaminant concentrations in response to 
the three injections at Node 7 are illustrated in Figure 4-7.  
 



Early Detection Systems with the hypothesis of conservative contaminants - 
Optimal Sensors Placement 
 

79 

 

 
Figure 4-7. Trend of contaminant concentrations at node 7 for the injected durations of 120, 300 

and 600 min in the explicative water distribution network shown in Figure 4-5 

 
The results clearly show that the concentration trends are only shifted along 
time, confirming that the event duration only affects the residence time of the 
contaminants in the nodes. The average duration can then be sampled from a list 
of possible contaminant event durations. 
Furthermore, the long duration events can be regarded as a succession of short 
duration events. Therefore, a single short duration, shorter than the network 
operating phase durations, can be sampled. It must be underlined that an event 
lying astride two consecutive operation phases can always be decomposed into 
the combination of two events, each of which is fully lying inside a single 
operation phase. Either composing element is banally decomposable into a series 
of events equal to the short duration event used for the sampling.  
 

4.2.2 Optimal Sensor Location 

It is evident that application of the aforementioned sampling method enables a 
significant reduction in the number of contamination events to be considered, 
and, therefore, in the size of the contamination and time matrices. 
The effectiveness of the sampling method is hereinafter tested in the problem of 
optimal sensor placement. The idea is to define a total set of contamination 
events, which are then sampled through the procedure described above. Then, 
the effectiveness of the sampling procedure must be proven through the 
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comparison of the results of optimal sensor placement in the total and sampled 
groups of events.  
Regarding the objective functions to adopt in the optimization, a lot of them 
have been explained in literature to face the problem of the optimal sensor-
location. In order to demonstrate the proposed sampling method, two generic 
functions are selected: the sensor redundancy, f1, and contaminated population, 
f2, resulting in a bi-objective formulation of the stated problem. 
The objective function f1 is related to the number nr of sensors that can detect the 

generic contamination event within a time interval ∆tred (to be specified) 
following the first event detection. For a generic contamination event r, nr is 
equal to 0 if no sensor can detect the event; it is equal to 1 if only one sensor can 
detect the event; it is equal to 2 if two sensors can detect the contamination event 
in close times, that is, the first detection sensor and an extra sensor that detects 

the event within a time interval ∆tred following the first event detection; 
generalizing the concept, nr is equal to x when, besides the first detection sensor, 
there are other x-1 sensors able to detect it within ∆tred following the first 
detection. After assessing nr for each contamination event, f1 is calculated as the 
weighted average value of nr: 
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,                                                                                                  (4.1) 

where S is the total number of contamination events and wr is a weight 
coefficient associated with the generic contamination event. This coefficient is 
set to 1 if no event sampling has been carried out. Otherwise, it is set equal to the 
operating phase duration. A large value of f1 is associated with a large 
redundancy in the system. This means that, on average, there are numerous 
sensors able to detect the generic contamination event in the system in a short 
time interval between one another. Therefore, should a sensor fail, another 
sensor would be able to give the warning in its place. 
The objective function f2 is related to the contaminated population pop before 
the first detection of the generic contamination event. In the generic 
contamination event r, the nodes contaminated before the first event detection 
can be evaluated, and popr can be assessed by summing up the inhabitants 
served by the contaminated nodes. In details, the evaluation of the contaminated 
population takes into account the residential population belonging to each single 
node, neglecting indeed the urban mobility that varies according to the time. It is 
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assumed that a warning is given to interrupt network service in a reaction time 
interval ∆treact after the event detection. Hereinafter, ∆treact is set to 0 for 
simplifying purposes, but can be set to other values without loss of validity of 
the whole methodology. After assessing pop for each contamination event, f2 is 
calculated as the average value of popr: 
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                                                                                                (4.2) 

For the generic location of sensors in the network, the objective functions can be 
assessed through simple manipulations on the contamination and time matrices 
explained in section 4.1. Functions f1 and f2 are minimized simultaneously as 
mutually contrasting objectives in the bi-objective optimization process. In 
detail, the minimization of the former yields benefits of system cost, whereas 
minimization of the latter impacts positively on the system security. Therefore, 
the optimization results consist of a Pareto front of compromised solutions. 
Regarding the optimal sensor placement, efficient algorithms can be used to find 
a global optimum when specific objective functions are used. For example, 
Kessler et al. (1998) and Ostfeld and Salomons (2004) solved a set-covering 
problem, whereas Propato and Piller (2006) solved a MILP problem. 
Additionally, it is possible to solve with a greedy algorithm in very efficient 
manner, even for large networks (e.g., Cheifetz et al., 2015), with an additional 
optimal sensor added at each iteration. Nevertheless, although being able to 
guarantee only the near-optimality of the solutions, genetic algorithms have the 
advantage of being easily implementable with whatever objective functions, 
even in the multi-objective framework. Therefore, for the bi-objective 
optimization of this paper, non-dominated sorting genetic algorithm II (NSGAII) 
(Deb et al., 2002) was chosen. 
In NSGAII population individuals, the number of genes is equal to the number 
of network nodes where sensors can be installed. Each gene can take one of two 
possible values, 0 and 1, which stand for absence and presence of the sensor in 
the node associated with the gene, respectively. At each NSGAII generation 
starting from the initial population, the parent population is selected based on its 
fitness. The algorithm then generates the offspring population through crossover 
and mutation from the parent population. After being obtained as a combination 
of the parent and offspring populations, the new population is sorted according 
to fitness criteria, with the best individuals chosen in order to keep the total 



Early Detection Systems with the hypothesis of conservative contaminants - 
Optimal Sensors Placement 
 

82 

 

number of population individuals constant during generations. The process is 
repeated until the maximum number of generations. 
To ensure robustness of the end solutions found, which are expected to be close 
to the global optima, a certain number (npar) of NSGAII runs can be carried out 
in parallel. The ultimate solutions are then put together and some solutions are 
sampled on the basis of their fitness. The sampled solutions can be used inside 
the population of new parallel NSGAII runs. This process can be repeated for a 
certain number of times (niter). 
 

4.2.3 Case Study 

The presented method was developed and applied to a WDS, that is the pipe 
network model used as benchmark in the Battles of Water Networks of the last 
Water Distribution Systems Analysis (WDSA) conferences (Marchi et al., 
2014). The pipe and node characteristics for this district were reported by Creaco 
and Pezzinga (2015). The number of inhabitants connected to each network node 
is reported in Table 4-1.  
The choice of the NSGAII settings was made based on the results of preliminary 
simulations unreported here. In particular, the NSGAII run was carried out 
considering a population of 50 individuals and a maximum number of 50 
generations. 
Furthermore, both npar and niter were set to 5; ∆tred, useful for the evaluation of f1 
[Eq. (4.1)],was set to 0.5 hr. 
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Table 4-1. Inhabitants connected to the nodes in the first case study. 

Node Inhabitants Node Inhabitants 

1 0 24 282 
2 213 25 165 
3 288 26 271 
4 341 27 215 
5 353 28 300 
6 100 29 7 
7 59 30 38 
8 233 31 46 
9 148 32 0 
10 149 33 193 
11 196 34 237 
12 330 35 196 
13 167 36 298 
14 97 37 32 
15 20 38 35 
16 88 39 160 
17 352 40 314 
18 22 41 270 
19 141 42 220 
20 131 43 135 
21 182 44 93 
22 141 45 0 
23 39 46 0 

 
As shown in Figure 4-8, the network of the first case study had 45 demanding 
nodes, 52 pipes, and 1 tank. In the lowest node in the layout, the water input 
from a pumping station was considered as a negative demand, as previously 
done by Creaco and Pezzinga (2015). 
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Figure 4-8. Case study layout
 
In this case study, the following assumptions were made to define the whole sets 
of contamination events: 

i. All the nodes except for the tank and 
were considered possible injection locations;

ii. Possible injections were assumed to occur every 30 minutes, leading to 48 
possible values of the starting time in the day;

iii.  Mass injection rate offered four possible values of 5
gr/min; 

iv. Injection duration offered five possible values of 60, 220, 380, 500, and 
600 min. 

Assumptions 2, 3 and 4 were taken from the work of Preis and Ostfeld (2008b).
Therefore, the S total number of contamination events was 44*48*4*
Once S was set, the contamination and time matrices could be evaluated, as 
explained in the "Sampling Methodology" section.
In network modeling for the construction of the total contamination and time 
matrices, the multiplying coefficients used for nodal demands were expressed 
through 1-day-long patterns with 24 hourly steps. Because injections were 
assumed to take place during the first day of network operation, the simulations 
had to be conducted for 3 days, because the highest residence time i
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Case study layout 

In this case study, the following assumptions were made to define the whole sets 

All the nodes except for the tank and the input node, that is 44 nodes, 
were considered possible injection locations; 
Possible injections were assumed to occur every 30 minutes, leading to 48 
possible values of the starting time in the day; 
Mass injection rate offered four possible values of 50, 200, 350, and 500 

Injection duration offered five possible values of 60, 220, 380, 500, and 

Assumptions 2, 3 and 4 were taken from the work of Preis and Ostfeld (2008b). 
total number of contamination events was 44*48*4*5= 42,240. 

was set, the contamination and time matrices could be evaluated, as 
explained in the "Sampling Methodology" section. 
In network modeling for the construction of the total contamination and time 

for nodal demands were expressed 
long patterns with 24 hourly steps. Because injections were 

assumed to take place during the first day of network operation, the simulations 
had to be conducted for 3 days, because the highest residence time in the 
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network is approximately 24 h. This was done to make sure that even 
contaminants injected close to the sources at the last instant of the first day had 
enough time to leave the network. Furthermore, the fact that the simulation 
duration is superior to the residence time inside the network (Piller et al., 2015) 
is sufficient to avoid the influence of initial conditions on the numerical 
concentration solution.  
Sampling for the selection of the most representative contamination events was 
carried out on all the variables, i.e., location, starting time, mass rate, and 
duration. The optimizations were carried out to search for solutions up to a 
number of sensors equal to the number of nodes with positive demand, i.e., 44. 
 

4.2.4 Results and Discussion 

This section presents the results for the bi-objective optimal placement of 
sensors, aimed at minimizing simultaneously sensor redundancy and the 
contaminated population in the discussed case study. 
The scenario considering the total number of contamination events is indicated 
as S0. The method proposed for sampling the events was applied considering 
various scenarios (S1, S1a, S1b, S1c, S1d, and S2) to reduce the size of the 
contamination and time matrices. The sampling was done considering (1) 
frequencies of one out of two or one out of three for the injection location, (2) 
representative starting times of 0, 5, and 18 h, (3) intermediate mass injection 
rate of 200 gr/min, and (4) smallest event duration of 60 min. 
Scenarios S1, S1a, S1b, S1c, and S1d were obtained considering the location 
sampling frequency of one out of two nodes, whereas Scenario S2 was obtained 
considering the location sampling frequency of one out of three nodes. 
Subsequently, 23 and 19 possible injection locations were sampled in S1, S1a, 
S1b, S1c, and S1d on the one hand (Figure 4-9a) and S2 on the other hand 
(Figure 4-9b), respectively. Furthermore, in S1 and S2, all variables other than 
the injection location, i.e., starting time, mass rate, and duration, were sampled at 
the same time. In S1a, S1b, S1c, and S1d, the sampling concerned one variable 
at a time instead. The features of all sampling scenarios are reported in Table 4-
2. This table shows that, compared to Scenario S0, a large reduction in the 
number of events is obtained through the sampling method, above all in 
Scenarios S1 and S2 operating on all the sampled variables at the same time. 
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Table 4-2. Features of the sampling scenarios in the first case study. 

scenario 
 

injection sampling 
with one out of two frequency 

injection sampling 
with one out of three frequency 

S0 
S1 X 
S1a X 
S1b 
S1c 
S1d 
S2 X 

 

scenario 
 

starting time 
sampling 

mass rate 
sampling 

duration 
sampling 

number 
of events 

S0   42,240 
S1 X X X 69 
S1a   22,080 
S1b X  2,640 
S1c  X 10,560 
S1d   X 8,448 
S2 X X X  57 

 
In fact, Scenarios S1 and S2 are made up of 69 and 57 events, respectively, 
which are smaller than the number of events in S0 (42,240) by three orders of 
magnitude.  
Genetic algorithm (GA) applications enabled deriving the Pareto fronts of 
optimal solutions in the trade-off between sensor redundancy and contaminated 
population in all the scenarios. Figure 4-9 reports the Pareto front obtained in 
Scenarios S1a, S1b, S1c, and S1d in comparison with that of S0. As expected, 
each front shows decreasing values of the contaminated population as the sensor 
redundancy, and therefore the number of installed sensors, increases. 
Furthermore, the best benefits in terms of contaminated population are obtained 
up to a redundancy of 2.5 sensors. Analysis of Figure 4-9 reveals that the fronts 
obtained in Scenarios S1a, S1b, S1c, and S1d are close to the S0 front. As 
expected considering the linearity of the advection-reaction equations, the fronts 
are almost coincident in Figure 4-9c associated with the mass sampling. 
However, in the other cases, the differences between the fronts are small. 



Early Detection Systems with the hypothesis of conservative contaminants 
Optimal Sensors Placement 
 

 

Figure 4-9. Pareto fronts of optimal solutions in the tradeoff
between sensor redundancy (f1

in Scenarios S0 and (a) S1a; (b) S1b; (c) S1c; (d) S1d; curves of optimal
S1a, S1b, S1c, and S1d solutions revalued in Scenario S0
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Pareto fronts of optimal solutions in the tradeoff 

1) and contaminated population (f2) 
in Scenarios S0 and (a) S1a; (b) S1b; (c) S1c; (d) S1d; curves of optimal 

S1a, S1b, S1c, and S1d solutions revalued in Scenario S0 

a) 

b) 

c) 

d) 
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To better compare the results obtained in S1a, S1b, S1c, S1d, and S0, the 
optimal sensor locations obtained in S1a, S1b, S1c, and S1d were tested in S0, 
considering the totality of contamination events. This led to the curve of 
revalued solutions in Figure 4-9. The closeness of these curves to the Pareto 
front of S0 attests to the fact that the performance of the optimal sensor
solutions obtained in S1a, S1b, S1c, and S1d do not decay when tested against 
the totality of events of S0. Similar remarks can be made as in the comparison of 
Scenarios S1 and S2, featuring sampling on all the var
(Figure 4-10). 
 

Figure 4-10. Pareto fronts of optimal solutions in the tradeoff
between the sensor redundancy (f1) and contaminated population

(f2) in Scenarios S0 and (a) S1; (b) S2; curves of S1 and S2 optimal
solutions revalued in Scenario S0

 
As an example of the obtained solutions, Figure 4
of four sensors in Scenarios S0 and S1, with values of 

Early Detection Systems with the hypothesis of conservative contaminants - 

88 

compare the results obtained in S1a, S1b, S1c, S1d, and S0, the 
ations obtained in S1a, S1b, S1c, and S1d were tested in S0, 

considering the totality of contamination events. This led to the curve of 
9. The closeness of these curves to the Pareto 

erformance of the optimal sensor-location 
solutions obtained in S1a, S1b, S1c, and S1d do not decay when tested against 
the totality of events of S0. Similar remarks can be made as in the comparison of 
Scenarios S1 and S2, featuring sampling on all the variables, with Scenario S0 

 
Pareto fronts of optimal solutions in the tradeoff 

) and contaminated population 
Scenarios S0 and (a) S1; (b) S2; curves of S1 and S2 optimal 

solutions revalued in Scenario S0 

As an example of the obtained solutions, Figure 4-11 shows identical locations 
of four sensors in Scenarios S0 and S1, with values of f1 and f2 equal to 0.63 and 

a) 

b) 
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772.21, respectively, assessed based on the total number of contamination events 
(S0).  
 

Figure 4-11. Optimal location of four sensors in Scenarios
S0 and S1

 
Figure 4-11 shows that one of the four sensors is located close to the water input, 
whereas the other three are halfway between the input and the tank. The four 
locations were selected by the optimizer to promptly detect the generic 
contamination event, wherever it takes place in th
compromise the contaminated population with the sensor redundancy. The 
results shown in Figure 4-11 corroborate the previous findings concerning the 
representativeness of the sampled events and the effectiveness of the sampl
method. 
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772.21, respectively, assessed based on the total number of contamination events 

 
Optimal location of four sensors in Scenarios 

S0 and S1 

of the four sensors is located close to the water input, 
whereas the other three are halfway between the input and the tank. The four 
locations were selected by the optimizer to promptly detect the generic 
contamination event, wherever it takes place in the network, and in an attempt to 
compromise the contaminated population with the sensor redundancy. The 

11 corroborate the previous findings concerning the 
representativeness of the sampled events and the effectiveness of the sampling 
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4.3 Selection of the objective functions 

In section 4.2, the problem of the optimal sensor location was formulated in 
mathematical terms, defining decision variables, objective functions, constraints, 
and any possible modeling assumptions. 
Regarding the objective functions, two of them were selected only for the 
purpose of demonstrating the proposed sampling methodology. However, there 
are many objective functions that can be used and their choice significantly 
influences the results of the optimization process. For this reason, the impact of 
the objective function selection was investigated in the optimal placement of 
water quality sensors. 
This research is hereafter explained: a bi-objective optimization is used to search 
for the sensor optimal locations in the network and it has been applied to a real 
WDS. 
 

4.3.1 Description of Objective Functions 

Several competing design objectives have been used for sensor placement. In 
fact, on one hand, some objective functions minimize the cost of the system, 
such as the number of installed sensors.  
On the other hand, many objective functions can be taken into account to 
minimize the impact of contamination events on public health, such as: 

 the detection likelihood (to be maximized); 
 the redundancy, which is related to the number of sensors that can detect 

the generic contamination event within a specified time interval, following 
the first event detection (to be maximized) 

 the population exposed to a contaminant or the number of individuals 
receiving a dose above a fixed threshold (to be minimized); 

 the detection time, defined as the elapsed time from the beginning of the 
contamination event to the instant of the detection in the first sensor (to be 
minimized); 

 the extent of the contamination in the pipe network (to be minimized); 
 the percentage of the contamination incidents not detected (to be 

minimized); 
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 the volume of the delivered water after the contamination or the volume of 
the contaminated water consumed prior to detection; 

 etc. 
 
Like in section 4.2, the optimization problem has been formulated as a bi-
objective problem but two different variants are here used. Both of them adopt 
for the first objective function f1, the number of installed sensors, as a surrogate 
for the total cost of the monitoring system. The difference between the two 
variants lies in the choice of the second objective function f2, which accounts for 
the performance of the monitoring system. 
In detail, the former variant considers the detection likelihood, which is the 
probability of events being detected by at least one of the installed sensors. This 
function to be maximized inside the optimization is calculated as follows: 
 

�� =
�

�
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�
��� ,                                                                                                 (4.3) 

where S is the total number of potential contamination events considered in the 
analysis. Variable dr is equal to 1 if at least one sensor detects the r-th 
contamination event; otherwise, it is equal to 0. 
The second variant, instead, uses the average population contaminated before the 
first detection of the generic event. This function to be minimized inside the 
optimization is expressed as explained above [Eq. (4.2)]. 
For each solution considered inside the optimization process, variables dr and 
popr can be assessed through simple manipulations on the matrices evaluated in 
section 4.1. 
Since Genetic Algorithms (GA) have the advantage of being easily 
implementable with whatever objective functions, NSGA-II is still used to solve 
the optimization problem.  
As the objectives clearly compete against each other, the output of the 
optimization still consists of a set of trade-off solutions, that is the Pareto front. 
Various criteria can be used by the decision maker to select the ultimate 
solution, such as a constraint in f1 or f2. Otherwise, the knee-point in the Pareto 
front can be identified, in which an increase in the cost of the monitoring 
systems f1 is no longer paid back by a significant benefit in terms of f2. 
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4.3.2 Objective Functions Application

The case-study considered in this work is a network in 
et al., 2009; Creaco and Franchini, 2012), made up of 536 demanding nodes, 825 
pipes and 2 reservoirs (layout in Figure 4-12).
 

Figure 4-12. Layout of Ferrara Network

 

The sampling procedure was applied to select a representative set of 
contamination events. As a result, all 536 demanding nodes of the WDS were 
considered possible injection locations. Single values of mass rate and injection 
duration, equal to 200 g/min and 60 min, respectively, were considered 
following the assumption that contamination events should be massive. Only one 
representative starting time was accounted for, that is 8:00 a.m., because 
preliminary analyses showed the network to have a single oper
(i.e., no flow inversion at any pipes). The overall number 
events was then equal to 536. 
As in the case study reported in section 4.2.3, the system water demand was 
assumed to vary with hourly steps. Therefore, 1
the demand multiplying coefficients and the simulations
The NSGAII settings were chosen based on the results of preliminary 
simulations unreported here, which enabled obtaining a trade
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Objective Functions Application 

study considered in this work is a network in Northern Italy (Guidorzi 
et al., 2009; Creaco and Franchini, 2012), made up of 536 demanding nodes, 825 

12). 

 
Layout of Ferrara Network 

The sampling procedure was applied to select a representative set of 
contamination events. As a result, all 536 demanding nodes of the WDS were 
considered possible injection locations. Single values of mass rate and injection 

nd 60 min, respectively, were considered 
following the assumption that contamination events should be massive. Only one 
representative starting time was accounted for, that is 8:00 a.m., because 
preliminary analyses showed the network to have a single operating condition 
(i.e., no flow inversion at any pipes). The overall number S of contamination 

As in the case study reported in section 4.2.3, the system water demand was 
to vary with hourly steps. Therefore, 1-day-long patterns were used for 

the demand multiplying coefficients and the simulations were run for 3 days.  
The NSGAII settings were chosen based on the results of preliminary 
simulations unreported here, which enabled obtaining a trade-off between 
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accuracy of the results and computational overhead. In detail, nin and the 
maximum number of generations were both set to 500. Furthermore, npar and niter 
were both set to 5. 
The graphs in Figure 4-13 show the Pareto fronts of optimal trade-off solutions 
in the two variants of optimization. In graph a), associated with the first variant, 
a monotonous trend of f2(f1) is shown, in which a significant benefit in terms of 
detection likelihood (f2) is obtained as the number of installed sensors (f1) 
increases up to about 10, which is close to the knee of the front. A further 
increase in f1 does not yield significant benefits. Compared to graph a), the main 
difference of graph b) lies in the monotonous decreasing trend of the 
contaminated population f2. The position of the knee of the front in the results of 
the second variant is also close to f1=10. 
 

 
Figure 4-13. Pareto fronts obtained in the first a) and second b) variant of optimization 

 
To thoroughly compare the solutions obtained in the two variants of 
optimization, these solutions were re-evaluated in terms of four effectiveness 
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indicators for the water quality monitoring system. Besides the detection 
likelihood and contaminated populations, evaluated over the whole group of S 
events through equations 1 and 2 respectively, the detection time and the sensor 
redundancy were adopted as a benchmark. These two additional indicators, 
instead, were assessed over the sub-group of detected events, that is the events 
that are detected by at least one sensor. In detail, the detection time is the 
average time elapsing between the contamination start and the time instant when 
the first sensor is reached. The redundancy is defined as explained above [Eq. 
(4.1)], which contributes to the safety of the monitoring systems. 
The graphs in Figure 4-14 show the curves of re-evaluated solutions plotted 
against the number of installed sensors. Looking at the solutions of the first 
variant of optimization, the curve in graph a) coincides with the Pareto front in 
Figure 4-14a and then features a monotonous increasing trend. The trend of the 
curves in the other graphs is not strictly monotonous since the contaminated 
population (graph b), the detection time (graph c) and the sensor redundancy 
(graph d) were not objective functions in the first variant of optimization. In fact, 
optimal solutions are usually sub-optimal when re-evaluated in terms of different 
indicators from the objective functions used in the optimization. 
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________   variant 1 _______  variant 2 

 
Figure 4-14. Solutions obtained in the two variants of optimization, re-evaluated in terms of a) 
detection likelihood, b) contaminated population, c) detection time and d) sensor redundancy 

 
Analogously, looking at the solutions of the second variant of optimization, the 
curve in graph b) coincides with the Pareto front in Figure 4-13b and then 
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features a monotonous decreasing trend. The trend of the curves in the other 
graphs is not strictly monotonous since the detection likelihood (graph a), the 
detection time (graph c) and the sensor redundancy (graph d) were not objective 
functions in the second variant of optimization. However, as Table 4-3 shows, 
the four effectiveness indicators are always strongly intercorrelated in both 
variants of optimization. 
 
Table 4-3. Correlation coefficient between the objective functions used in the two 
variants of optimization and the four effectiveness indicators. 

  First Variant Second Variant 
  Detection Likelihood Contaminated Population 

Detection Likelihood 1.00 -0.96 
Contaminated Population -0.94 1.00 

Detection Time -0.90 -0.84 
Sensor Redundancy 0.83 0.84 

 
Overall, the analysis of the results in Figure 4-14 shows that neither variant of 
optimization is superior. In fact, the first variant yields solutions that better 
perform in terms of detection likelihood and sensor redundancy, both positive 
indicators of the effectiveness of the monitoring system (black line above grey 
line in graphs a) and d). The second variant, instead, produces better performing 
solutions in terms of contaminated population and detection time, both inverse 
indicators of the effectiveness of the monitoring system (grey line below black 
line in graphs b and c). However, by leaning on graphs such as those in Figure 4-
14, water utility managers can choose the ultimate solution for in situ installation 
based on their budget (which impacts the number of installed sensors), on the 
effectiveness indicator they prefer and on the degree of effectiveness they aim to 
reach in terms of the various indicators. As an example, the solution obtained 
through variant 1 with 10 sensors has a detection likelihood of 0.81, a 
contaminated population of 4%, a detection time of 3.2 hr and a redundancy of 
1.2. The solution obtained through variant 2 with 10 sensors, instead, features 
almost halved detection likelihood (0.45) and contaminated population (2.3%), a 
lower detection time (2.1 hr) and a similar sensor redundancy (1.1). It is 
important to underline that the objective function related to the contaminated 
population pop provides the number of inhabitants that are averagely reached by 
the contamination, whose health effect depends on many factors such as, the 
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type of contaminant, its concentration, and the alarm timeliness. In most of the 
possible contamination events, a significant damage to the affected population 
can be reasonably excluded thus, its non-zero value can be accepted, as long as it 
is sufficiently small. 
Another criterion that can be adopted for the choice concerns the location of the 
sensors in the various optimal solutions. As an example, Figure 4-15 enables 
analysis and comparison of the results of the two variants of optimization, in 
terms of optimal placement of 10 sensors. Figure 4-15a shows that the placement 
obtained in the first variant is made up of sensors located in the intermediate 
area of the network, that is at the maximum hydraulic distance from either 
reservoir. This happens because most water paths outgoing from the reservoirs 
converge to this area. Therefore, the placement of sensors in this area is essential 
for maximizing the event detection likelihood. In the second variant, sensors are 
more scattered over the whole layout at gradually increasing distance from the 
reservoirs (Figure 4-15b), to guarantee early warning and therefore reduced 
impact in terms of contaminated population. 
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Figure 4-15. Optimal locations of 10 sensors for the a) first and b) second variant of optimization
 
As a confirmation of the results described above for 10 sensors, Figure
shows the optimal locations of 5 and 15 sensors for the two variants.
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a) first and b) second variant of optimization  

As a confirmation of the results described above for 10 sensors, Figure 4-16 
shows the optimal locations of 5 and 15 sensors for the two variants. 
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Figure 4-16. Optimal locations of 5 and 15 
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Optimal locations of 5 and 15 a) first and b) second variant of optimization 

 

a) 

b) 
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Chapter 5 

 Modeling and Measuring non-conservative 
contaminants  

 
 
 
 
 
In the previous chapters contaminants were assumed to be conservative, i.e. their 
changes when dissolved in water were neglected. Though being a good 
assumption of the first attempt in the context of optimal sensor placement, the 
attention received by water quality topics worldwide, also inside Water Safety 
Plans (WSPs), spurred the writer to abandon this assumption for better analyzing 
the actual behavior of the contaminants. In fact, once dissolved in water, the 
chemical or biological substances can react with each other, with pipe walls, as 
well as with water, or also transform themselves into other compounds, still 
propagating throughout the water distribution network. Some substances may 
also precipitate in pipes; thus, the assumption of conservative contaminants 
would overestimate too much the propagation effects. For examples, Arsenic 
Pentoxide (As2O5) is often used as a solution in the production of herbicides, 
metal adhesives or insecticides. It quickly dissolves in water forming Arsenic 
Acid (H3AsO4), which is characterized by high toxicity. The pesticide 
Chlorpyrifos (CP) is a moderately toxic insecticide (toxicity category 2), able to 
oxidize in the presence of free chlorine (Duirk and Collette, 2006). Consumption 
of CP causes malfunction of the nervous system and may result in death in the 
case of large consumption. Again, the powerful insecticide Parathion (PA) is 
capable of oxidizing to Paraxon (PAO) in the presence of free chlorine (Duirk et 
al., 2009). Consumption of extremely small volumes of Paraxon (PA) (3-5 
mg/kg body weight) results in death. 
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Therefore, it is very important to consider the reactions that occur following the 
injection of contaminants into the network. 
The simulations presented so far have been performed with EPANET, which 
carries out hydraulic and quality simulations in water distribution networks even 
for extended periods of time. Within the Quality Module, EPANET enables the 
modeling of (i) a non-reactive tracer material through the network over time (ii) 
the movement and fate of a reactive material as it grows (e.g., a disinfection by-
product) or decays (e.g., residual chlorine) with time (iii) the age of water 
throughout a network (iv) the reactions both in the bulk flow and at the pipe wall 
(v) time-varying concentration or mass inputs at any location in the network. 
However, EPANET is not able to model the behavior of a generic contaminant 
injected into the network because it is limited to track the transport and fate of 
just a single chemical species, such as fluoride used in a tracer study or free 
chlorine used in a disinfectant decay study (Rossman, 2000).  
For this reason, the research continued using another software, that is EPANET 
Multi-Species Extension (Shang et al., 2008). 
It is an EPANET plug-in that allows modeling of any system of multiple, 
interacting chemical and biological species (Shang and Uber, 2008). In 
particular, EPANET-MSX computes the flow transported volume and apply 
dynamic reactions within each pipe segment and storage tank over the defined 
time step. It takes into account either bulk species and surface species, enabling 
modeling of the interaction between any contaminants with bulk species and 
pipe wall surface. The water quality contained in the system can be modeled 
using principles of conservation of mass coupled with reaction kinetics.  
Consequently, EPANET-MSX can simulate any injected substances in the 
network but sets of differential-algebraic equations are used, along with all the 
required kinetic constants, equilibrium equations, and bulk/wall coefficients.  
Being aware that not all the potentially injected substances can be considered, 
this chapter presents the research carried out by Tinelli, Juran & Cantos (2017), 
Tinelli and Juran (2017) because it faces the problem of the presence of the 
Escherichia Coli bacterium (E. coli) in WDSs. Since chlorine is added to 
drinking water in order to kill certain bacteria and other microbes, the research 
had to analyze the fate and transport of E. coli when chlorine is in the network, 
identifying the adequate kinetic models for the chlorine decay. 
Once an appropriate EPANET-MSX model was defined, it had to be tested for 
its proper functioning and accuracy before its application to a real distribution 
network. To face this problem, a pilot laboratory site was created at the 
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University of Lille, able to test the behavior of the injected chemical/biological 
substances. In fact, in order to confirm the validity of the multi-species model, 
the pilot lab allowed the comparison with the numerical simulations reproducing 
the real conditions of WDSs, especially in terms of materials, velocity and 
pressure, and performing the same tests that had been modeled through 
EPANET-MSX (Abdallah, 2015). 
 

5.1 Numerical Modeling of Chemical-Biological Contaminations 

The common goal of the US National Drinking Water Regulation and the 
European Drinking Water Regulation is to protect public health by monitoring 
the level of the specific chemical/biological substances (e.g., chlorine, arsenic, 
iron, E. coli) in public water systems. Thus, several researches related to the 
survival and transport of these substances have followed the increasing concern 
for intentional intrusion of contaminants into drinking WDSs. 
For example, even though many efforts have been made in the last decades, the 
modeling of chlorine is still complex, as it relies on the accuracy of hydraulic 
models to describe flows as well as flow velocities (Blokker et al., 2008; Pasha 
and Lansey, 2010) and on the adequacy of chlorine decay kinetic models (Fisher 
et al., 2011).  
In addition, contamination of water by accidental entry of biological matter is 
very likely. Therefore, a multi-species model is used in the present research to 
analyze the fate and transport of the E. coli bacterium, incorporating the chlorine 
inactivation and its consequent decay through interaction with the organic matter 
itself.  
The multispecies model was proposed by Pemmasani (2012) according to 
previous laboratory studies where the E. coli was grown in a nutrient broth, 
called Tryptic Soy Broth, and chlorinated water solution. The Tryptic Soy Broth 
has been assumed as a composition of three species, deriving a four-species 
model with eight parameters (TSB ratio/TSB reaction rate coefficients), where 
they can be determined using optimization and parameter estimation techniques 
(Bacteriological Analytical Manual, 1998).  
In the EPANET-MSX model, all the reactions between the species are expressed 
in the form of differential equations; the E. coli inactivation because of the 
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chlorine is represented by the chlorine first order decay from a predefined initial 
chlorine concentration.  
The differential equations were formulated as follows: 
��

��
= −�����−�����−����� − ��                                                               (5.1) 

��


��
= −�������                                                                                               (5.2) 

���

��
= −�������                                                                                                (5.3) 

�� 

��
= −�������                                                                                               (5.4) 

�!

��
= −�"�#,                                                                                                    (5.5) 

 
where: 

 k1= fast TSB reaction rate coefficient; 
 k2= medium TSB reaction rate coefficient; 
 k3= slow TSB reaction rate coefficient; 
 k= Chlorine reaction rate based on the initial chlorine concentration; 
 r1= fast TSB pseudo-stoichiometric ratio; 
 r2= medium TSB pseudo-stoichiometric ratio; 
 r3= slow TSB pseudo-stoichiometric ratio; 
 ke= E. coli inactivation coefficient; 
 C= Chlorine; 
 E= E. coli; 
 T1= Fast reacting TSB; 
 T2= Medium reacting TSB; 
 T3= Slow reacting TSB. 

Fractional coefficients of T1, T2, T3 are f1, f2, f3 respectively i.e., f1+f2+f3 =1. 
 
The ke inactivation E. coli coefficient was predetermined by exploiting other 
studies (Rice et al., 1999), and it is equal to 0.10349 L/mg*s. This coefficient 
estimates the rate of E. coli decay due to interaction with the residual chlorine 
present in the WDS. 
The influence of the initial chlorine concentration on the kinetics decay of the 
chlorine itself is considered within the model using the chlorine first order 
reaction (k). It was firstly derived from Uber et al. (2003) for an initial chlorine 
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concentration of 5.25 mg/L but the used value were drawn from Pemmasani 
(2012).  
Table 5.1 lists the parameter values used in the model. 
 
Table 5-1. Values of the Model Parameters 

Symbol Value Description 
�� 0.04816 Fast TSB reaction rate coefficient, L*mL-1s-1 

�� 0.00953 
 

Medium TSB reaction rate coeff., L*mL-1s-1 

�� 9.07E-6 
 

Slow TSB reaction rate coefficient, L*mL-1s-1 

�� 0.10218 Fast TSB pseudo-stoichiometric ratio, L*mg-1 

�� 0.00630 Medium TSB pseudo-stoichiometric ratio, L*mg-1 

�� 0.00201 Slow TSB pseudo-stoichiometric ratio, L*mg-1 

�� 0.6414 Fast TSB partition coefficient 

�� 0.0718 Medium TSB partition coefficient 

�� 0.2868 Slow TSB partition coefficient 

� 1.620E-6 Cl bulk reaction rate coefficient, /sec 
 
The final outcome of the EPANET-MSX simulations is made up of (i) the trend 
representation of the considered species, such as chlorine and E. coli (ii) the 
calculation of their concentrations at all nodes/pipes of the network over the 
analysis time period (iii) the evaluation of the parameters specified in the input 
files (e.g., pH, temperature, TOC, etc.).   
All the simulations let the user impose the coefficients of the reactions between 
the different chemical and biological species (refer to Shang et al., 2008). 
 

5.2 Experimental Activities for Chemical-Biological 
Contaminations  

This section illustrates the pilot laboratory site created at the University of Lille. 
As already mentioned, the laboratory was built to test chemical reactions and 
transformations that occur once the E. coli, as well as the chlorine, have been 
injected into the network. In addition, being connected to some sensors, the pilot 
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lab can also test the ability and the sensitivity of sensors available on the market 
in the detection of chemical or biological contamination in drinking water.

5.2.1 Pilot laboratory site at the University of Lille

As part of the European project Smart Water for Europe (SW4EU), the pilot 
laboratory site was built at the Laboratory of Civil Engineering and Geo
Environment, located in the Campus of Lille University (a scientific city in 
Northern France).  
The pilot lab is 61 meters long and it includes: pipe
tanks for the filling, a draining and a pump system, connections for the 
equipment to be tested through water quality sensors, valves for the control of 
flow direction, a device for the injection of contaminants, instrumenta
the control of water pressure and velocity. 
Figure 5-1 shows the pilot laboratory scheme. 
 

Figure 5-1. Scheme of the pilot laboratory site (Abdallah, 2015)
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lab can also test the ability and the sensitivity of sensors available on the market 
in the detection of chemical or biological contamination in drinking water. 

Pilot laboratory site at the University of Lille 

ter for Europe (SW4EU), the pilot 
laboratory site was built at the Laboratory of Civil Engineering and Geo-
Environment, located in the Campus of Lille University (a scientific city in 

The pilot lab is 61 meters long and it includes: pipes for the circulation of water, 
tanks for the filling, a draining and a pump system, connections for the 
equipment to be tested through water quality sensors, valves for the control of 
flow direction, a device for the injection of contaminants, instrumentations for 

1 shows the pilot laboratory scheme.  

 
Scheme of the pilot laboratory site (Abdallah, 2015) 
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Opaque dual-layer pipes have been used in the pilot system to prevent the entry 
of light and the formation of bio-films. These pipes are 16 mm in diameter and 
they are made of aluminum on the outside and plastic on the inside.  
A 40-liter tank feeds the system with a pump station. An additional chlorine tank 
is connected to the system to directly introduce chlorine.  
Two specific funnels (1) and (2) have been used to inject chemicals and 
biological agents. The water quality sensors used in the experiments have been 
connected in line at 41 meters from the injection points.  
Several manometers have been added to the circuit to permanently measure the 
pressure at any point of the circuit. 
The flow of water is controlled by several valves and continuously measured 
with an automatic flow meter (3). The laboratory layout permits the circulation 
of water in an open circuit by opening the valve (4) and closing the valve (5), or 
in a closed circuit by opening the valve (6) and closing the valve (4). 
During the open-loop experiments, the water is transmitted to an external tank 
for the discharge and treatment of the polluted water (9).  
Finally, backflow preventer valves, and safety shut-off valves have been 
installed to prevent the return of contaminated water to the distribution system. 
 

5.2.2 Simulation Processes 

During the simulation processes, the feeding of the system is always supplied 
through the tank without direct connection to the main network in order to 
prevent the return of contaminated water. The flow rate is set by adjusting the 
individual valves in the downstream section of the pump.  
Figure 5-2 shows the sequence of the performed analysis: 

 The inlet tank is filled with tap water; 
 The connection tap of the injection is open: contaminants are injected by 

feeding the two funnels, and then by letting the water go throughout the 
pump system; 

 The pump allows the flow of the contaminated water in the circuit; 
 The monitoring instruments are connected to the network, measuring the 

water quality parameters.  
The other parameters (e.g., pressure, speed, ...) are also continuously monitored. 
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Figure 5-2. Sequence of the performed analysis (Abdallah, 2015)
 
As part of the European project SW4EU, S::can
selected for the monitoring of water quality, determining the difference between 
the normal variation of background and a contamination event. 
In particular, the S::can station combines several instruments, that is the 
Spectro::Lyser, the S::can probes (i::scan, 
condu::lyser), and the terminal con::cube; these components are assembled in 
one single compact panel.  
Optiqua EventLab measures the presence of substances in the water through the 
change in the refractive using the principle of interferometry, and 
uses electrochemical/optical technologies to control conductivity, temperature, 
pH, free and total chlorine, dissolved oxygen, oxidation
redox, turbidity and color. 
 
Regarding the analysis, the tests can be carried out according to two protocols:

 Open circuit: the water is directly discharged for the treatment and the 
circuit is continuously supplied from the reservoir;

 Closed circuit: the valve (4) of the discharge tank is closed, the network is 
supplied to compensate only the water used in the monitoring instruments 
of the water quality. 
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Sequence of the performed analysis (Abdallah, 2015) 

S::can, Optiqua and Intellisonde were 
selected for the monitoring of water quality, determining the difference between 
the normal variation of background and a contamination event.  

combines several instruments, that is the 
i::scan, chlori::lyser, pH::lyser, 

; these components are assembled in 

measures the presence of substances in the water through the 
change in the refractive using the principle of interferometry, and Intellisonde 
uses electrochemical/optical technologies to control conductivity, temperature, 

olved oxygen, oxidation-reduction potential, 

Regarding the analysis, the tests can be carried out according to two protocols: 
Open circuit: the water is directly discharged for the treatment and the 

lied from the reservoir; 
Closed circuit: the valve (4) of the discharge tank is closed, the network is 
supplied to compensate only the water used in the monitoring instruments 
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For all the experiments, by setting the valves of the syst
constant and equal to 3 L/min, the pressure is 2 bar in the downstream section of 
the pump. The measurements are continuously recorded.
 

5.3 Comparison between Numerical Modeling and Experiments

This section illustrates the comparison
numerical analysis and those that come from the experimental activities. 
In the experimental activities Abdallah (2015) stated that 
reliability in detecting low concentrations of chemical contamina
ability in the detection of biological contaminants, while the 
(especially the spectro::lyser) were able to detect either chemical and biological 
contaminants, for bacterial concentrations above 10
results obtained from the S::Can monitoring station were considered. 
 

Figure 5-3. Results of S::can probes with different 
 
Figure 5-3 shows the trend of the parameters measured by the 
according to different E. coli concentrations (from 10
parameters start to change when the E. coli
UFC/mL.  
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For all the experiments, by setting the valves of the system, the flow rate is kept 
constant and equal to 3 L/min, the pressure is 2 bar in the downstream section of 
the pump. The measurements are continuously recorded. 

Comparison between Numerical Modeling and Experiments 

This section illustrates the comparison between the results obtained by the 
numerical analysis and those that come from the experimental activities.  
In the experimental activities Abdallah (2015) stated that EventLab showed high 
reliability in detecting low concentrations of chemical contaminants and no 
ability in the detection of biological contaminants, while the S::can probes 

) were able to detect either chemical and biological 
contaminants, for bacterial concentrations above 105UFC/mL). Therefore, the 

monitoring station were considered.  

 
probes with different E. coli injections (Abdallah, 2015) 

3 shows the trend of the parameters measured by the S::can probes 
concentrations (from 105 up to 108 UFC/mL): the 

E. coli concentration reaches at least 105 
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In addition, Figure 5-4 shows that contaminant concentrations below this level 
are not detectable also by chlorine sensors. In fact, for an initial chlorine 
concentration of 0.25 mg/L, the chlorine level decreases by 0.05 mg/L after an 
E. coli injection of 105 CFU/mL. The chlorine decrease reaches 0.15 mg/L (60% 
of the initial concentration) with an E. coli injection of 10
 

Figure 5-4. Free chlorine variation as a function of time in response to the injection of different 
coli concentrations (Abdallah, 2015)

 
Finally, Figure 5-5 illustrates the chlorine decrease with an 

105 CFU/mL. The E. coli was injected in the pilot lab and different initial 

chlorine concentrations were tested: 0,3 mg/L, 0,5 mg/L, and 1 mg/L.
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4 shows that contaminant concentrations below this level 
are not detectable also by chlorine sensors. In fact, for an initial chlorine 
concentration of 0.25 mg/L, the chlorine level decreases by 0.05 mg/L after an 

CFU/mL. The chlorine decrease reaches 0.15 mg/L (60% 
injection of 108 CFU/mL. 

 
Free chlorine variation as a function of time in response to the injection of different E. 

concentrations (Abdallah, 2015) 

5 illustrates the chlorine decrease with an E. coli injection of 

was injected in the pilot lab and different initial 

chlorine concentrations were tested: 0,3 mg/L, 0,5 mg/L, and 1 mg/L. 
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Figure 5-5. Chlorine concentrations with E. coli
experimental activities (Abdallah, 2015)

 
As regards the numerical analysis, EPANET
is (i) EPANET .inp file for the network definition (ii)
all the equations and reactions of the problem to be scanned (iii) .rpt file that is 
the file which the simulation results are saved in. Therefore, being known the 
pump curve and all the geometric-hydraulic characteristics of the network, the 
WDS of the laboratory had to be modeled in EPANET
 

Figure 5-6. Layout of the EPANET
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E. coli injection of 105 CFU/mL according to the 

experimental activities (Abdallah, 2015) 

s the numerical analysis, EPANET-MSX requires three input files, that 
.inp file for the network definition (ii) .msx file which contains 

reactions of the problem to be scanned (iii) .rpt file that is 
the file which the simulation results are saved in. Therefore, being known the 

hydraulic characteristics of the network, the 
eled in EPANET, as shown in Figure 5-6. 

 
Layout of the EPANET model for the laboratory WDS  



Modeling and Measuring non-conservative contaminants 
 

112 

 

In details, the system water demand was assumed to vary with hourly steps, the 
simulations were run for 24 hours with the same features of the experimental 
activities thus, they considered:  

 initial chlorine concentration of 0.3 mg/L, 0.5 mg/L and 1 mg/L; 

 E. coli injection equal to 105 UFC/mL. 

The comparison between the experimental activities and the numerical model is 
illustrated in Figure 5-7: the comparison is reported in terms of chlorine 
decrease, for an initial chlorine concentration of 0.3 mg/L (and an E. coli 

injection of 105 CFU/mL). 

 

 
Figure 5-7. Comparison of chlorine concentrations between the experimental activity and the 

numerical model with E. coli injection of 105 CFU/mL  

 
Figure 5-7 shows that chlorine concentrations reach zero in both of the two 
analysis but the chlorine decay is faster with the numerical model than the 
experimental activity. In fact, according to the numerical model, chlorine arrives 
at zero more rapidly. For this reason, the two red circled points in Figure 5-7 
differ from the bisector: they specifically represent the delay of the experiments 
in achieving zero, as compared to the numerical model. These two points are 
also responsible for the reduction of the factor R2, which is still satisfactory for 
water quality analyses.  
An improvement of the Equations (5.1-5.5) and an enhancement in the model 
calibration could lead to a better matching of the two chlorine decreases. 
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Approximately the same results were obtained comparing the two studies for 
initial chlorine concentrations of 0.5 and 1 mg/L with an E. coli injection of 105 

CFU/mL. 

Therefore, both of the two studies demonstrate that (i) the chlorine decreases 
when the bacterium is injected into the network but only with an initial chlorine 
concentration of 0.3 mg/L the zero is reached, if the E. coli injection is equal to 

105 CFU/mL (ii) the time required to reach the residual chlorine value increases 

with the decrease in the initial concentration of chlorine, and subsequently (iii) 
the detection of microbial contamination of the order of 105 Colony-Forming 

Unit (CFU)/mL is faster for chlorine concentrations between 0.5 and 1 mg/L. 

Even using the numerical model, it is proved that chlorine does not drop to zero 
if the concentration of E. coli decreases. In fact, considering an initial chlorine 
concentration of 0.3 mg/L and injecting 107 CFU/mL of E. coli, the chlorine 
drops but it does not reach zero, as represented in Figure 5-8. 
 

 
Figure 5-8. Chlorine concentrations with E. coli injection of 107 CFU/mL according to the 

numerical model 
 
Thus, Figure 5-8 corroborates the experimental activity in terms of the threshold 
above which the bacteriological species is significantly detected. 
Hence, the type of the injected contaminant and, above all, its dynamic 
interaction with the fluid and with the pipe walls, are of fundamental 
importance.  
This aspect identifies EPANET-MSX as an essential support for qualitative 
studies in WDS because, unlike the traditional software used in the literature 
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(such as EPANET), it is able to describe the behaviour of the most common 
chemical/physical water reactions during E. coli presence and identify variation 
patterns in the biological and chemical parameters. 
Finally, since currently there is no direct measure for biological contaminations 
in the water, the chlorine can be monitored to detect E. coli injections, and more 
in general, looking at all the measured water quality parameters, a pattern 
recognition able to distinguish the normal conditions of water quality from 
anomalies is recognized.  
 

5.4 Extension of the study to a real water distribution network 

Once the EPANET-MSX numeric model has been validated, it was possible to 

apply it to a real case study: the water distribution network of the Lille Cité 
Scientifique Campus. 
 

5.4.1 Case Study 

The Lille Campus is located in the town of Villeneuve d'Ascq (Northern France) 
from 1967, although its academic roots date back to 1562.  
It covers an area of 110 hectares and it comprises 145 buildings with very 
different uses (teaching and research buildings, administrative buildings and 
university residences). It welcomes 25,000 users, including 4,000 students who 
live in the campus, presented below. The water supply system of the Lille 
Scientific Campus is relatively old: it was lain during the campus construction. 
The network is nearly 15 km long. The pipes are mainly made of cast iron with 
diameters ranging from 20 to 300 mm. The water network includes 49 fire 
hydrants, 250 valves, 93 Automatic Meters Readers (AMR) measure hourly 
water consumption, 5 pressure sensors and 2 Virtual District Metering Areas 
(VDMA). Therefore, the campus can be compared to a small city. 
An EPANET hydraulic model was created in order to simulate the behavior of 
the network towards bio-contamination injections. EPANET Lille network has 
393 nodes, 412 pipes and 5 reservoirs as shown in Figure 5-9. 
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Figure 5-9. Network layout of Lille Cité Scientifique Campus 

 
After selecting the species to be injected into the network (E. coli and chlorine), 
the knowledge of the hydraulic system and the solution of the advection/reaction 
equations, which can be carried out through such software as EPANET, 
determine the contaminants transport and fate.  
Initially, the system water demand was assumed to vary with hourly steps. 
Therefore, 1 day long patterns were used for the demand multiplying 
coefficients and the simulations were run for 24 hours with the EPANET 
software. All calculations were performed setting the traditional SI units. 
However, this setting did not enable the understanding of the exact concentration 
of the pollutants in the network as a result of the complex reactions between the 
injected chemical/biological species and the reactions related to the liquid mass 
in contact with the pipe walls. For this purpose, the system water demand was 
assumed to vary with a 10 minutes step.  
The EPANET-MSX multi-species model was used for running the simulations: 
as said, it provides the evaluation of the chlorine and the E. coli.  
 
 

R1-CITE' Tank 

R-2-4 CANTON Tank 
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5.4.2 Results and Discussion 

In a first stage of the analysis, two scenarios have been analyzed in order to test 
the transportation of the contaminants in the network. 10
in 1 mL) of E. coli was injected in the nodes adjacent to the two tanks 
represented in Figure 5-9, that is R-1-CITE' Tank and R
initial chlorine concentration equal to 0.5 mg/L was assumed in all the nodes. 
For the sake of brevity, only the analysis of the injections close to the first tank, 
that is the injection in node 1, is reported (refer to Tinelli and Juran, 2017 for the 
full analysis) . 
Figure 5-10 visualizes the injection location together with the monitored nodes 
and shows the results of E. coli and chlorine trends. 
 

1 
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In a first stage of the analysis, two scenarios have been analyzed in order to test 
the transportation of the contaminants in the network. 108 CFU (as units diluted 

was injected in the nodes adjacent to the two tanks 
CITE' Tank and R-2-4CANTON Tank. An 

mg/L was assumed in all the nodes. 
For the sake of brevity, only the analysis of the injections close to the first tank, 
that is the injection in node 1, is reported (refer to Tinelli and Juran, 2017 for the 

ection location together with the monitored nodes 
and chlorine trends.  
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Figure 5-10. E. coli injection in node 1 with E. coli and chlorine concentrations in the monitored 

nodes 
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In details, Figure 5-10 illustrates the chlorine decomposition, following the 
injections of E. coli at a single point.  
As long as the distance from the injection location increases, the contaminant 
effect on the chlorine is less evident. Starting from node 14, it demonstrates an 
immediate contaminant effect on the chlorine. Then, nodes 23, 50, and 60 
illustrate a delay in the chlorine decrease, while node 80 shows a drop in the 
chlorine even if the E. coli does not reach its peak. Only a small quantity of 
contaminant with an apparent decrease in the chlorine is reported in node 284. 
Ultimately, node 185 is too far from the injection location to be influenced; here, 
the chlorine decrease is only due to the chlorine demand4.   
Therefore, the analysis showed a clear possibility to detect E. coli bacteria by 
analyzing the level of the chlorine in the network. In fact, the E. coli presents an 
immediate effect on the network: if E. coli quantity increases, the level of total 
chlorine directly decreases. 
  
In a second stage of the analysis, due to the absence of a pumping system 
capable of injecting chlorine in the distribution network, an initial chlorine 
concentration of 1 mg/L was assumed. Some of the monitored nodes were 
analyzed before and after E. coli injections in order to (i) illustrate the chlorine 
trend without any contaminant injections (ii) corroborate the sudden reaction 
between chlorine and E. coli.  
 
 
 

                                                      
4
 Chlorine demand is the difference between total chlorine added in the water and residual 

chlorine. It is the amount which reacts with organic materials and other compounds present in 
water prior to disinfection. 
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Figure 5-11. Chlorine concentrations in some of the monitored nodes after the stabilization 

 
As expected (Hallama et al., 2002), after an initial drop due to the chlorine 
reactions with organic materials, tank walls and substances present in the water 
(e.g., metals), the chlorine reaches its stabilization. Thus, the remaining chlorine 
is the total chlorine divided into: i) the amount of chlorine that has reacted with 
nitrates and is unavailable for disinfection which is called combined chlorine 
and, ii) the free chlorine, which is the chlorine available to inactivate disease-
causing organisms, and used as a measure to determine the drinkability of water. 
Hence, Figure 5-11 shows the chlorine trend after the stabilization. As for nodes 
1, 14 and 23, as long as the distance from the tank increases, the chlorine 
concentrations decrease due to its reactions and its dilution. The chlorine trends 
are also very similar, showing the slight daily variation.   
The furthest node, that is node 60, reveals a concentration higher than node 23, 
probably due to the change in dilution phenomena (also related to the flow 
rates).  
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Figure 5-12. Chlorine concentrations on node 14 after different E. coli injections 

 
EPANET-MSX simulations of E. coli injections were repeated. The bacterium 
was injected in node 1 (see Figure 5-10) at the 48th hour with different 

concentrations: 2, 5 and 100 CFU/mL.  

Figure 5-12 shows the chlorine trend in the presence of the three E. coli 
concentrations for node 14. It demonstrates that the chlorine drops down in the 
presence of the bacterium, without reaching the zero. The results are consistent 
with the laboratory experiments and their simulations, proving that (i) the 
chlorine, which is one of the most common disinfectants, is consumed when it 
reacts with pathogens (ii) the chlorine drops down to zero when the E. coli 
injections reach the order of magnitude of 108 CFU/mL.  
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Chapter 6 

Prototype System for Early non-specific Biological 
Contaminations Detection  

 
 
 
 
 
After studying the sensitivity of the quality sensors to detect biological 
accidental or deliberate contaminations in WDSs, as the quality sensors produce 
a huge amount of data, a rapid, as well as smart data processing procedure has to 
be established for the development of a risk assessment model, together with a 
decision support system. In details, the model should be able to early detect 
biological contaminations in drinking water network in order to efficiently 
enable water operators to ensure real-time water quality control management.  
Consequently, this procedure should consist of pre-processing/processing, 
training, validation, and forecasting phases, filtering out data anomalies and false 
alarms. 
In addition, Chapter 5 discussed the feasibility of detecting non-specific 
biological anomalies (such as E. coli) through the use of the chlorine trend to 
develop a prototype system for early non specific bio-contamination detection. 
For this purpose, the numerical simulations of the chlorine decay trend during 
injection of E. coli were compared with the laboratory model test results 
performed at the University of Lille.  
In the absence of field data of bio-contamination, the EPANET-MSX model was 
used for scenario-simulations to produce numerical data, hereafter named 
Chlorscan: they simulate the effect of bio-anomaly scenarios on chlorine 
concentration in water distribution networks. 
Therefore, this chapter first presents an automated statistical based approach to 
detect bio-anomalies in a generic WDS (drawn in Tinelli, Juran & Cantos, 
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2017), starting from a database, which consists of Chlorscan time series (section 
6.1). The same procedure becomes more accurate in the rest of the chapter 
(section 6.2), where the statistical data analysis approach is supported by the use 
of the Artificial Intelligence (AI). In fact, by exploiting some principles such as 
the pattern recognition, the detection process is able to recognize a 
contamination scenario in quasi-real-time. To do this, not only chlorine but also 
different water quality parameters are analyzed so that the bio-contamination 
signature, its likelihood and severity can be detected when a contamination event 
occurs.  
 

6.1 Statistical based Early Detection 

6.1.1 Chlorscan Data Analysis 

Typical Chlorscan data are considered as relevant indicators of potential non-
specific bio-contamination, thus they can be used as input for a risk assessment 
system in WDSs. They require a first processing step, which consists in 
identifying the chlorine trend after its stabilization, as shown in Figure 5.11. 
Taking as input the numerically simulated Chlorscan data, which are aggregated 
into a continuously updated data file, false alarms due to the initial data temporal 
variability are filtered out.  
A multi-spots approach is used to compare the anomalies detected by the 
Chlorscan at different locations over the water distribution network.  
 
Starting from a database, which consists of Chlorscan time series, statistical tests 
are implemented to establish the 1st, 2nd, and 3rd Standard Deviation (STDs). 
Afterwards, the analysis requires the following steps: 

 Chlorscan data are normalized to the average (F) to filter out any outlier 
that might be generated; 

 5 threshold levels (Insignificant, Low, Moderate, High, Very High) of 
normalized Chlorscan data are defined to establish likelihood and risk 
severity levels corresponding to the amplitude of normalized 
concentration deviation from the average (ΔF); 

 The Likelihood is defined as a function of the ΔF amplitude and the 
elapsed time period (ΔT in Hours) of the detected anomaly; 
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 Using the selected thresholds  of the state parameters (ΔF; ΔT) the 
likelihood matrix is established, as shown in Figure 6-1a; 

 The risk severity matrix is obtained, using a similar process, considering 
respectively the normalized Chlorscan concentration deviation data (ΔF) 
and the exposure period (ΔTex in hours). Therefore, using the selected 
thresholds of the state parameters (ΔF; ΔTex) the severity matrix is 
established, as shown in Figure 6-1b. 

 

 
 

 
Figure 6-1. a) Likelihood matrix and Likelihood scale; b) Severity matrix and Severity scale  

 
 Using the likelihood scale and the severity scale the risk matrix is defined 

as shown in Figure 6-2. 
 

 
Figure 6-2. Risk scale and Risk assessment matrix 

 
 Finally, using the risk scale, the time series of the Risk Indicator is 

defined based on the appropriate state color of the time step. 

∆F% 1 2 3 4 >4

0-4%
4-10%

10-20%
20-30%
>30%

Likelihood Matrix
Hours

0 – 10 % 
10- 30 % 
30-60 % 
60-90% 

>90
High

Very High

Likelihood Scale (0-100%)
Insignificant

Low
Moderate

∆F% 0-1 1-3 3-12 12-24 >24

0-4%

4-10%

10-20%

20-30%

>30%

Severity Matrix
Exposure Hours

1
2
3
4
5

Insignificant
Low

Moderate
High

Very High

Severity Scale (1-5)

Likelihood
 Scale 1 2 3 4 5
0-10%
10-30%
30-60%
60-90%
>90%

Severity Scale 
Risk Assessment Matrix

0-0.1
0.1-0.2
0.3-0.6
0.6-0.9
0.9-1 Very High

Risk Scale (0-1)
Insignificant

Low
Moderate

High

    a) 

    b) 



Prototype System for Early non - specific Biological Contaminations Detection 
 

124 

 

6.1.2 Application of Chlorscan Analysis 

The methodology was deployed in the Lille University Campus, already 
explained in Chapter 5 (section 5.4).  
In order to demo-illustrate the application of the proposal analysis, numerical 
Chlorscan data simulating the effect of bio-anomaly scenario on chlorine 
concentration in two nodes (nodes 23 and 80) of the network were used.  
In particular, they were obtained from 8 hours EPANET-MSX simulations, 
using a reporting time step of 10 minutes. An initial chlorine concentration equal 
to 0.4 mg/L along with an E. coli injection of 105 CFU/mL were assumed.  
Thus, the data were classified as follows: 

 Chlorscan1: node 23; 
 Chlorscan2: node 80. 

The numerical Chlorscan data are reported from the 24th hour of the analysis to 
avoid the initial variability of the chlorine, as shown for the previous simulations 
(Figure 5.11). 
Table 6.1 illustrates the numerical Chlorscan data that were employed in the 
analysis: each Chlorscan value is reported with reference to the sequential 
number of the time series to be easily represented in the procedure application.  
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Table 6-1. Chlorscan data used in the statistical based analysis. 
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For the purpose of showing the proposed statistical procedure
series, that is Chlorscan1is used. 
Therefore, Figures 6-3, and 6-4 illustrate the Chlorscan data analysis, as follows:
 

Figure 6-3. Normalization of Chlorscan data to the average (F) and Contamination Likelihood 
Assessment

 

Figure 6-4. Risk Indicator with its scale for Lille Case Study
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he proposed statistical procedure, the first time 

4 illustrate the Chlorscan data analysis, as follows: 

 
Normalization of Chlorscan data to the average (F) and Contamination Likelihood 

Assessment 

 
Risk Indicator with its scale for Lille Case Study 
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In details, Figure 6-3 shows the numerical trend of the normalized data in 
percentage along with time. 
In particular, consistently with the results of the laboratory test and the 
numerical simulations presented in Chapter 5, an initially increasing anomaly is 
detected. It tends to be constant once the peak is reached, with a residual of 
about 40% of the initial default value without any bio-anomaly. The statistical 
tools of the 1st, 2nd, and 3rd standard deviations were used as default values for 
identifying the thresholds for the likelihood and the severity levels, reaching a 
high orange color-coded likelihood on the likelihood scale with ΔF greater than 
30%.  
Operators can input threshold levels based on their experience.  
Figure 6-4 illustrates the time series of the risk indicator with its scale, taking 
into account the likelihood and the severity scale. It is evident that the risk 
indicator indicates a high orange color-coded risk level and an alarm should be 
emitted for the water utility operators in order to support the decisions makers in 
their resolution for the public community.  
 
Within the framework of the SW4EU project, the W-SMART Association5 
acting as an integrator for the research conducted in several universities 
including University of Lille, NYU, and the University of Pavia has engaged the 
collaboration with the French University ESIEA ("Ecole D'Ingénieurs Du 
Monde Numérique" located in Paris) for the development of the Bio-CON 
Prototype System and its support software.  
The software is able to run scenarios that are loaded as Excel data and it quickly 
provides the risk matrix to detect anomalies in the data. The analyzed WDS is 
also displayed in the software through the user accessibility and the Google 
Earth visualization in such a way that the detected anomalies can be geo-located 
on the map, according to the color-based procedure. In fact nodes can remain 
grey if no anomaly occurs or they can appear from blue to red as a function of 
the anomaly severity, as shown in Figure 6-5. 
 

                                                      
5
 W-Smart Association is an International Association of Water & Wastewater Utilities for 

Sustainable Water Security located in France. 
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Figure 6-5. Color-based detection system 

 
The alarm system is finally based upon the identified risk matrix: the levels of 
likelihood-severity-risk are plot on graphs, and an alarm panel displays each 
anomalies with its related day, type and location.  
Figure 6-6a illustrates how the user can display the likelihood-severity-risk 
graph for each uploaded dataset, while Figure 6-6b indicates an example of the 
final alarm panel with the detected anomalies.  
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a) 
 

 
Figure 6-6. An example of a) likelihood-severity-risk graphs for uploaded dataset b) alarm panel 

with the detected anomalies 
 

6.2 Statistical based Early Detection 

6.2.1 Multi-parameters AI-based Analysis 

Trying to improve the accuracy and the efficiency of the analysis, in a second 
stage the research dismissed the statistical approach and it developed, adapted 
and demonstrated the feasibility of an Artificial Intelligence (AI) based smart 
system to ensure quasi real-time quality control for early chemical and/or bio-

b) 
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contamination detection. Instead of monitoring only the chlorine, the 
methodology became multi-parameters in order to have a clearer fingerprint of 
the contamination scenarios, reducing the error detection.  
In this context, advance pattern recognizers, such as Support Vector Machines 
(SVMs), and innovative sensing technology solutions, as Artificial Neural 
Network (ANN), were used (Girolami, 2002; Smola, 2004).  
In machine learning  the SVMs are supervised learning models (Cortes and 
Vapnik, 1995) with associated learning algorithms that analyze data used 
for classification and regression analysis. Given a set of training examples, each 
marked as belonging to one out of two categories, a SVM training algorithm 
builds a model that assigns new examples to one category or the other, becoming 
a non-probabilistic binary linear classifier (Cui and Wang, 2010).   
Hence, the designed SVM identified two different classes, that is (+1) or (0) 
respectively for "anomaly" or "no-anomaly" classification. However, due to the 
fact that a single SVM only resolves two classifier problems, the research set up 
an SVM model composed by several classifiers to distinguish different states of 
anomaly levels (Mamo et al., 2014). Thus, diverse signatures were defined in 
such a way that the proposed SVM could classify the incoming unknown data as 
belonging to one specific signature, based on the anomaly severity.  
The definition of each of the anomaly signature started according to the already 
explained matrix: the 1st, the 2nd and the 3rd STDs6 of the input data were used 
to distinguish the values of the Amplitude (A), while the time identified the 
different values of the Duration (D). In particular, the Amplitude has three 
levels, that is A1 included in the range between the 1st and the 2nd STD, A2 
between the 2nd and the 3rd STD, and A3 above the 3rd STD. Durations are 
simply divided in 4 groups, as a function of the duration in hours.  
 

D (hours) 
A 1 2 3 4 

A1 (1std-2std)         
A2 (2std-3std)         

A3 (>3 std) 
Figure 6-7. Matrix used for the definition of the anomaly signature 

                                                      
6
 Starting from a database, which consists of multi-parameters time series (such as Chlorine, TOC, 

pH etc.), the 1st, the 2nd and the 3rd STDs were calculated to find the data deviation from the 
normal conditions (without any contamination).  
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Figure 6-7 illustrates the definition of the anomaly signatures, according to the 
Amplitude and Duration levels. 
Using the classification of the signatures, the risk scale was defined as shown in 
Figure 6-8. 
 

  >90% A2D4-A3D3-A3D4 
  60-90% A1D4-A2D3-A3D2 
  30-60% A1D3-A2D2-A3D1 
  10-30% A1D2-A2D1 
  0-10% A1D1   

Figure 6-8. Risk scale for the classification of the SVM output 
 
Figure 6-8 shows how the risk of each signature is classified according to a 
color-based risk scale. 
In details, to be able to classify new upcoming data from the sensors, the 
designed SVM had initially to be trained. To this purpose, the SVM was coded 
in Matlab, using functions already implemented, such as "svmstruct" and 
"svmtrain". In particular, "svmstruct" contains information about the trained 
SVM classifier, which is the actual data separator. 
The used command line was "SVMStruct= svmtrain (Training, Group)", where 
the Training was the matrix of training data and the Group is the grouping 
variable (numeric, logical vector or matrix) representing a class label.  
According to the SVMs theory, each training data item is plotted as a point in n-
dimensional space, with n equal to the number of available features. Then, the 
"svmtrain" uses an optimization method to define an hyperplane, which linearly 
separates the n-dimensional data into two classes, being a discriminative 
classifier. The optimal hyperplane maximizes the distances between nearest data 
point: the distance is called "Margin", and the selection of the hyperplane with 
the higher margin demonstrates the best robustness.  
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Figure 6-9. Maximum-margin hyperplane for an SVM trained with samples from two classes. 

 
Figure 6.9 shows the optimal hyperplane which is used for the classification, 
after being trained from two data categories: samples on the margin are called 
the Support Vectors because they actually define the hyperplane. 
Sometimes data cannot be linearly separable thus, SVMs introduce the notion of 
a "Kernel induced feature space", which casts data into a higher dimensional 
space, where data are separable.  
In this case as explained below, the Kernel function was considered linear 
(Boswell, 2002). 
Therefore, the required inputs were: 

 X - Matrix of predictor data, where each row was one monitored node of 
the network (thus, rows were equal to the number of nodes), and each 
column was one parameter (e.g., Chlroine, TOC etc.); 

 Y - Array of class labels with each row corresponding to the value of the 
corresponding row in X. Y was indeed a column vector, whose values 
were "+1" or "0", according to the belonged category of "anomaly" or 
"no-anomaly"; 

 Kernel Function - The default value was 'linear' for two-classes learning, 
which separates data by a hyperplane; 

 Class Names - It distinguished between the negative and positive class, or 
specified which classes to be included in the data. The "0 class" was here 
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the "negClass" (no-anomaly) class, whi
(anomaly) class. 

 
The resulting trained model ("svmmodel" in Matlab) contained the optimized 
parameters from the SVM algorithm, enabling the classification of the new data 
as "anomaly" or "no anomaly". Once the model was trai
of predicting the specific signature of the new upcoming data from the sensors.
Since the proposed methodology investigated the physical/chemical water 
parameters in every single node, it was able to identify the anomalies at each 
single node. In particular, the identification of the node anomaly signatures was 
made based on the assigned input and the upcoming data from the sensors. 
Therefore, the ith SVM was design to recognize one of the presented anomaly 
signature, providing as output the stated "+1, or positive" if the contamination 
was actually present in the specific node, "+0, or negative" otherwise. 
Figure 6-10 illustrates the steps of the Multi
anomaly is detected, the procedure continues wit
severity level, according to the defined signatures.
 

Figure 6-10. Scheme of the Multi
 
In order to have a comparison for the obtained results, the ANN was applied 
(Kohavi and Provost, 1998). Like the SVM, the ANNs are used to solve a wide 
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anomaly) class, while the "+1" was the "posClass" 

The resulting trained model ("svmmodel" in Matlab) contained the optimized 
parameters from the SVM algorithm, enabling the classification of the new data 
as "anomaly" or "no anomaly". Once the model was trained, it became capable 
of predicting the specific signature of the new upcoming data from the sensors. 
Since the proposed methodology investigated the physical/chemical water 
parameters in every single node, it was able to identify the anomalies at each 

ngle node. In particular, the identification of the node anomaly signatures was 
made based on the assigned input and the upcoming data from the sensors. 

SVM was design to recognize one of the presented anomaly 
put the stated "+1, or positive" if the contamination 

was actually present in the specific node, "+0, or negative" otherwise.  
10 illustrates the steps of the Multi-class SVM anomaly detector: if an 

anomaly is detected, the procedure continues with the identification of the 
severity level, according to the defined signatures. 

 
Scheme of the Multi-class SVM anomaly detector 

In order to have a comparison for the obtained results, the ANN was applied 
the SVM, the ANNs are used to solve a wide 
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variety of tasks, as pattern recognition. The ANN recognition problem is being 
posed as a classification task, where the classes are defined by the system 
designer. The approach of the ANN learns from a set of examples (training set) 
and adapts themselves to the data.  
To define the pattern recognition problem, functions already implemented in 
Matlab were used; particularly, the Neural Network Pattern Recognition Tool 
was applied. It is an information processing that is inspired by the biological 
nervous system: it is composed of a large number of highly interconnected 
processing elements (neurons) working for pattern recognition, through a 
learning process (Basu et al., 2010). Neurons are organized in layers so that 
signals can travel from the first (input), to the last (output), passing the 
information and adjusting the network to reflect that information.  
 

 
Figure 6-11. Structure of Neural Network Pattern Recognition in Matlab 

 
Figure 6-11 illustrates the structure of the Neural Network Pattern Recognition 
implemented in Matlab: two-layers feed-forward network with output neurons 
can classify vectors arbitrarily well, given enough neurons in its hidden layer.  
Therefore, regarding the inputs and targets for the ANN pattern recognition 
problem, a set of vectors was required as columns in a matrix. Then, another set 
of target vectors was needed, indicating the classes which the input vectors were 
assigned to. In details:  

 X - Matrix of predictor data, where each row was one parameter (e.g., 
Chlroine, TOC etc.) and each column was one monitored node of the 
network (thus, rows were equal to the number of nodes); 

 Y - Array of class labels: when there were only two classes, each scalar 
target value was set to either "0" or "+1", indicating which class the 
corresponding input belonged to. As in the SVM, the values were "+1" or 
"0", according to the category of "anomaly" or "no-anomaly".  

Once the input was defined, the pattern recognition tool was able to (i) train the 
network (ii) evaluate its performance using Cross-Entropy and percent 
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misclassification error, and (iii) analyze the results using visualization tools, 
such as Confusion Matrices and Receiver Operating Characteristic curves (ROC 
curve).  
 

6.2.2 Application of AI-based Analysis 

The data analysis was deployed in the Lille University Campus, already 
explained in Chapter 5 (section 5.4).   
Using the illustrated Chlorscan data and the data obtained during the testing of 
the numerical analysis described in the previous chapter (section 5.4), a further 
database was built: TOC was calculated, starting from chlorine and according to 
the modeling of chlorine residuals in WDSs. In fact, Ahn et al. (2012) proposed 
a mathematical model of chlorine bulk decay based on multiple regression 
analysis. The dependent variables were the initial chlorine concentration, 
temperature and TOC; the independent and dependent variables were first 
formed into natural logarithms, and then the coefficients of the dependent 
variables were identified by multiple regression analysis. Consequently, TOC 
was evaluated using the Equations 6.1 and 6.2: 
 
� = �*exp (−/01),                                                                                          (6.1) 
/0 = 0.0488 ∙ �*.�889 ∙ �*

:�.��89 ∙ �;�*.<=>=,                                                 (6.2) 

where, C is the chlorine concentration at time t (mg L-1), C0 is the initial chlorine 
concentration (mg L-1), Kb is the chlorine bulk decay coefficient (d-1) calculated 
according to the first order model, T is the temperature (°C), and TOC is the 
TOC concentration.  
Chlorine and TOC were thus used as input data to run multi-variables analysis 
for specific bio-contaminations, that is E. coli injections at a mono-spot and/or 
multi-spots.   
 
Regarding the SVM, a matrix of predictor data for mono-spot analysis (chlorine 
and TOC) was input, as reported for example in Figure 6-12a. 
The array of class labels was defined according to the statistical process: for 
each row of the matrix, the proposed model included the evaluation of chlorine 
and TOC in order to classify the row into one of the two different classes, that is 
"+1" or "0" respectively for "anomaly" or "no-anomaly" classification. As 
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described, the recognition of each of the anomaly signature started according to 
Amplitude (A) and the Duration (D). Thus, the array of class labels was a vector 
made up of "+1" or "0", as shown in figure 6-12b.  
Figures 12a and 12b report an example of the SVM coding input: starting from 
the chlorine concentrations obtained in section 5.4 for the node 14 (shown in 
Figure 5.12), the TOC was derived along with the array of the two classes. 
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 a)  b)  
Figure 6-12. Coding Input for a) Chl/TOC SVM data b) Array of class labels 

 
Matlab functions were used to train and cross-validates the SVM model for the 
two-classes (binary) classification. 
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After importing the datasets (either the Chlorscan time series and the data 
obtained in section 5.4) into the code, data were randomly divided, assigning 
70% of the database for the training phase, and 30% for the testing phase. 
Hence, the results displayed the properties of SVM model, including: 

i. the class order which was "+1" for the negative class, and "0" for the 
positive class;  

ii. the SVM classifier that was the radial basis kernel in this case;  
iii.  the testing phase, that estimated the out-of-sample misclassification rate; 
iv. the "Class Loss" (so-called in the Matlab functions), that is the 

classification rate, was approximately 40/00. 
 

Finally, the main output of the research was the visualization of the 
contaminated nodes in the network, according to the color-based analysis, as 
shown in Figure 6-13.  
 

 
 
 
 
 
 
 
 

Figure 6-13. Color-based approach visualization for mono-spot analysis 
 
The same was done applying the ANN in order to compare the obtained results. 
To define a pattern recognition problem, Chlorine and TOC were input as rows 

Injection 
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in a matrix. Then, another set of row vectors were arranged to indicate the 
classes to which the input vectors were assigned (ANN required the same SVM 
input but the matrices were transposed).  
During the coding phase, the Neural Network Pattern Recognition Tool 
classified inputs into a set of target categories: it randomly divided up the 
samples into training (70%), validation (15%), and testing (15%). The latter two 
options were assumed following the default options. Also, in the phase of 
building the network architecture, the number of neurons was assumed following 
the defaults options (10) because the network performed well after training.  
Hence, the Neural Pattern Recognition application created, trained a network, 
and evaluated its performance using Cross-Entropy error and Confusion Matrix. 
In particular, the Cross-Entropy error defines the error in classification problem, 
while the Confusion Matrix is a table with two rows and two columns that 
reports the number of false positives, false negatives, true positives, and true 
negatives. These allow detailed analysis in terms of accuracy.  
 

 
 

a) 
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    b) 
Figure 6-14. ANN Results a) Algorithm performance b) Confusion Matrix 

 
Figure 6-14 shows the best validation performance of the artificial network (6-
14a) and the Confusion Matrix applied to the current analysis (6-14b). Error was 
approximately 20/00, confirming the efficiency and the accuracy of the described 
methodology. In fact, minimizing Cross-Entropy (as shown in Figure 6-14a) the 
classification results are accurate because it means no error and a value of zero 
error means no misclassifications in the incoming data. This is reflected in the 
Confusion Matrix in which the false negative, as well as the false positive are 
zero. 
Finally, the difference between the SVM and the ANN was 0.0018, 
approximately 20/00.  
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The same process was done for multi-injections analysis. Regarding the SVM, 
matrix of predictor data and the array of class labels for multi-spots analysis 
were the same but they showed multiple changes in the values of Chlorine and 
TOC, according to the injections.  
Figure 6-15 shows the multi-injections analysis carried out at the Lille Campus 
and characterized by contamination injection at nodes 1 and 204. In details, it 
displays the contaminated nodes according to the color-based procedure, and it 
indicates the difference with the respect to the mono-spot analysis. 
 

 
 

 
Figure 6-15. Color-based approach visualization for multi-injections analysis 

 
Considering the multi-parameters analysis, an efficient and reliable bio-anomaly 
detection method based on AI simulations was developed and the final output 
supports the anomaly visualization, both temporal and spatial. In fact, the 
Chlorine and the TOC were input as time series in which every value 
corresponded to the predefined time step (hourly pattern time step in this case). 
Therefore, the tested advanced pattern recognizers demonstrate an improvement 
of data control in order to sustain water utilities with a secure decision support 
system. 
 

Injections 
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Conclusions 
 
 
 
 
 
Regarding the Water Safety Plans (WSPs), which have been introduced about a 
decade ago by the World Health Organization, the analysis of contamination risk 
in water distribution networks has taken particular importance.  
In particular, since the contamination events which may potentially affect the 
distribution network are distributed throughout all the network and, so, they are 
hardly predictable and controllable, the increasingly focused attention on 
security issues has created a great interest in monitoring and Early Warning 
Systems (EWS) applied to water distribution networks. 
For this reason, there are already research programs (such as the European 
project SW4EU, to which this Thesis has provided a scientific contribution) 
aimed at the realization of alarm systems based on appropriate sensors to be 
installed all over the network, capable of analyzing and interpreting the results in 
real time. Some of these sensors are already designed and marketed; in this 
Thesis, an updated state of the art is presented about these equipments. In 
particular, it is highlighted that nowadays instruments for real-time monitoring 
of water quality include either very simple and inexpensive systems suitable for 
the detection of the most common physical-chemical parameters (e.g.: pressure, 
pH, temperature, conductivity, chlorine, etc.), and also more complex systems, 
such as those based on UV spectrometry and on toxicity or biological 
contaminants assessment systems. 
However, the state of the art highlights many still open problems. 
Among these, it is particularly important to underscore the difficulty of sensor 
technology currently available to cope with the wide spectrum of substances that 
can potentially contaminate the delivered water.  
The possible breakthroughs are the technological development that leads to the 
availability of less expensive and more polyvalent sensors on one hand, and the 
development of new interpretative models that allow detection of a large 
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spectrum of contaminations on the other hand, starting from a limited number of 
measured parameters.  
In addition, once the sensors to be installed in the network are chosen in relation 
to the risks to be addressed, the problem of the definition of the sensors number 
and optimal locations arises. This is a typical multi-objective optimization 
problem, where the objective to be minimized is the number of sensors (directly 
associated to the cost of the system), and the objective to be maximized is the 
ability of the system to reduce the impact of contaminations on the public health. 
Since the solution of the optimization problem requires the definition of all the 
contamination events that may potentially affect the network, and due to the fact 
that each possible contamination event is characterized by certain values of 
injection location, starting time, mass rate and duration, the complexity of the 
algorithms for the design of monitoring systems causes many difficulties in 
large-scale network applications. Therefore, this Thesis proposes and tests a 
procedure based on practical considerations on network topology and operation 
for sampling the most representative contamination events. The procedure is 
applied to one case study. The results do not vary significantly when the 
sampled contamination events are used inside the optimization, instead of the 
totality of the possible contamination events.  
In addition, the Thesis examines how the choice of the objective functions to be 
used in the optimization process affects the final results. To this end, two 
different variants of optimization were considered. Both variants feature the total 
number of sensors as first objective function to minimize, like a surrogate for the 
cost of the monitoring system. The two variants differ, instead, in the second 
objective function, which is the likelihood of contamination event detection (to 
be maximized) and the contaminated population (to minimized) for the former 
and latter variant, respectively. 
The results of the optimizations, and the re-evaluations of the optimal solutions 
in terms of various effectiveness indicators for the water quality monitoring 
system, prove that the first variant tends to produce better solutions in terms of 
detection likelihood and sensor redundancy. The second, instead, tends to 
produce better solutions in terms of contaminated population and event detection 
time. However, all the effectiveness indicators are well intercorrelated in the 
solutions of the optimizations. The ultimate choice of water utility managers is 
based on their preferences. In fact, minimizing the contaminated population 
yields benefits in terms of detection time and thus mainly contributes to the 
system’s early warning capacity. On the other hand, maximizing the detection 
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likelihood strongly impacts on the system redundancy and therefore contributes 
to the system safety. A further difference between the two variants of analyzed 
optimization lies in the placement of sensors in the network layout. In fact, 
whereas the first variant tends to locate the sensors in the area where most water 
paths converge, the second produces a more scattered distribution over the 
layout. 
The subsequent part of the Thesis removed the assumption used in the first part 
of conservative contaminant.  
Though being a good assumption of the first attempt in the context of optimal 
sensor placement, the attention received by water quality topics worldwide 
spurred the writer to abandon this assumption for better analyzing the actual 
behavior of the contaminants. In this context, the Thesis identifies the software 
EPANET-MSX as an essential support for qualitative studies in WDSs because, 
unlike other software used in literature, it describes dynamic interactions 
between contaminants, water and pipe/tank walls. 
In fact, the multi-species numerical model used in the EPANET-MSX software 
to carry out the numerical simulations is able to show an initial drop in the 
chlorine due to its reactions with organic materials, tank walls and other 
substances present in the water. Then, the model reports the residual chlorine 
stabilization, and it correctly corroborates the fact that the presence of natural or 
injected organic matter (like E. coli) in the WDSs plays a vital role in the fate 
and transportation of chlorine. In particular, the numerical simulations 
demonstrate in a laboratory case study that E. coli injections can be detected if 
bacterial concentrations reach a concentration equal to 105UFC/mL and if they 
result in significant reduction of the free chlorine to a residual level, which 
depends either on E. coli and chlorine concentrations. For instance, the chlorine 
drops down to zero when the initial chlorine concentration is 0.3 mg/L and the 

E. coli injection is at least equal to 105 CFU/mL. Chlorine decays but does not 

reach zero if the concentration of the injected E. coli decreases (or the initial 
chlorine concentration increases). In addition, the Thesis describes the 
experimental apparatus and activities developed at the Civil Engineering and 
Geo-Environmental Laboratory of the Lille University (Villeneuve-d'Ascq, Lille 
- France) for the validation of the numerical models. The two studies yield the 
same results, confirming the threshold above which the bacteriological species is 
significantly detected and showing that the time required to reach the residual 
chlorine value increases with the decrease in the initial concentration of chlorine. 
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Consequently, the detection of microbial contamination of the order of 105 

(CFU)/mL is faster for chlorine concentrations between 0.3 and 0.5 mg/L, rather 

than 1 mg/L.  
 
Finally, knowing the feasibility of the early detection of non-specific biological 
anomalies (such as E. coli) through the use of the chlorine trend, chlorine 
measurements were exploited to develop an automated smart prototype system 
for the early anomaly detection, which efficiently enables water operators to 
apply in real-time management water quality control procedures, as well as a 
preemptive decision making process. In particular, an automated statistical 
model and AI-supported algorithms were developed and validated using chlorine 
data obtained from the numerical simulations above-mentioned. According to 
the statistical procedure, simulated chlorine data are statistically evaluated to 
define a risk indicator for the anomaly detection, which is lastly visualized by a 
color-based procedure.  
Then, the AI-based algorithms exploit the concept of expert pattern recognition: 
an algorithm appropriately trained on the standard conditions of the water 
quality is able to recognize deviations from the normal conditions, identifying an 
anomaly. Chlorine and TOC are the parameters used to train the algorithms, and 
the Support Vector Machines (SVMs), as well as the Artificial Neural Network 
(ANN), are the supervised learning models that are tested and compared. In both 
proposed models, the results prove an efficient anomaly detection together with 
a risk-based classification of the detected anomalies. In fact, following the 
definition of each anomaly class based on the duration and the severity of the 
anomaly itself, the SVMs show a classification error of 40/00, which decreases to 
approximately 20/00 using the ANN.  The results of the ANN are corroborated by 
the Confusion Matrix, which is a table with two rows and two columns that 
reports the number of false positives, false negatives, true positives, and true 
negatives.  
Ultimately, the main output of the research is the visualization of the 
contaminated nodes on the network map, according to a color-based risk severity 
scale. 
 
An extension of the optimization problem can involve multiple and simultaneous 
injections of contaminant at multiple points. Furthermore, analysis of spreading 
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contamination during short transients with significant pipe flow changes, which 
would require use of unsteady flow modeling, is another field to explore. 
Regarding the non conservative contaminants, future developments may concern 
the study of other species (like pesticides, herbicides, etc.) in order to have a 
general picture of the water quality parameters, if a contamination event occurs. 
Finally, a software can be developed associating ArcGIS with the advance 
pattern recognizers in order to contribute the decision support system of the 
water utilities managers.  
 
It should be noted that the applications of early warning solutions to water 
distribution networks involve many skills (chemical, biological, hydraulic, 
electronic, computer and mathematical). The highly interdisciplinary 
connotation of the problem consequently implies significant difficulties in 
triggering an effective collaboration between the various involved cultural areas. 
However, it is reasonable to foresee that if early monitoring and warning 
systems are increasingly used in the regular management of WDSs in relation to 
the growing security demand, the interaction between different disciplines will 
become more and more effective, determining a significant and positive impact 
on the advancement of knowledge and technologies. 
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