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Abstract (French)

Le choix de protocole de prélèvements dans un essai clinique ou préclinique est une

étape cruciale car un protocole non informatif peut conduire à des études non concluantes.

Des approches basées sur la matrice d’information de Fisher (FIM) pour les modèles

non linéaires à effets mixtes ont donc été développées pour l’évaluation et l’optimisation

de protocoles dans des études pharmacocinétiques (PK)/pharmacodynamiques (PD) de

population, i.e. en pharmacométrie. La FIM est utilisée pour quantifier l’information

attendue provenant d’un protocole donné et prédire les erreurs standard relatives (pRSE)

des paramètres de population.

Le choix de protocole optimal dépend de la connaissance préalable sur les modèles

et les paramètres, ce qui peut être partiellement erroné. Cependant, les protocoles de

prélèvements sont souvent fixés tout au long d’un essai avec des données analysées

seulement à la fin.

Des approches des protocoles robustes ont été développées pour tenir compte de

l’incertitude sur les paramètres, en attribuant aux paramètres des distributions à priori.

Des approches alternatives sont les designs adaptatifs (AD), qui consistent en des designs

qui utilisent l’accumulation d’informations pour modifier les aspects prédéfinis de l’étude

après chaque nouvelle cohorte d’individus. Ces deux approches ont fait l’objet d’une

évaluation plus approfondie dans le cadre de ce doctorat en utilisant des exemples de PKPD

en oncologie pour des données continues et une nouvelle évaluation de la FIM pour des

études avec des données longitudinales discrètes.

En outre, la planification statistique de protocoles était rarement appliquée aux études

précliniques. Dans cette thèse, nous avons appliqué la théorie du design pour le modèle

d’inhibition de la croissance tumorale de Simeoni afin d’évaluer l’importance d’inclure des

mesures au cours de la phase de croissance de la tumeur des expériences de xénogreffe pour

une meilleure estimation des paramètres du modèle.

En conclusion, cette thèse présente différents contextes et l’utilisation de stratégies

de planification de protocoles basées sur la FIM qui sont des approches puissantes qui

permettent d’améliorer la qualité d’une étude, en garantissant sa fiabilité et une meilleure

précision de l’estimation des paramètres.
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Abstract (Italian)

La scelta di un buon design (numero di individui, tempi di campionamento) è essenziale

nella pianificazione di uno studio in ambito clinico o preclinico, in quanto un design non

informativo può portare a conclusioni sbagliate, o perlomeno imprecise. Per la valutazione

e l’ottimizzazione del design, i.e. "optimal design", è stato considerato un approccio

che si basa sulla matrice di informazione di Fisher (FIM) per modelli di popolazione,

detti modelli non lineari a effetti misti. In particolare, il contesto è quello di studi

farmacocinetici (PK) / farmacodinamici (PD), ossia nell’ambito della farmacometrica. La

matrice di Fisher è utilizzata per il calcolo dell’errore standard atteso di ciascun parametro

di popolazione, rispetto ad un determinato design.

La scelta del design ottimale dipende dalle informazioni note a priori sul modello e sui

parametri del modello, informazioni che possono essere imprecise o addirittura in parte

sbagliate. Tuttavia, il design solitamente rimane fissato durante tutto il periodo dello studio,

e i dati vengono analizzati solo al termine.

Approcci basati su design robusti sono stati sviluppati in modo da introdurre l’incertezza

dei parametri, assumendo una distribuzione a priori per ciascun parametro. Un approccio

alternativo è l’optimal adaptive design, un metodo flessibile che consente di modificare

alcuni aspetti predefiniti attraverso l’informazione accumulata nel corso dello studio.

Entrambi gli approcci sono stati oggetto di una valutazione approfondita in questo

dottorato, per la quale è stato utilizzato un modello PKPD in ambito oncologico per dati

continui e un nuovo metodo per ottenere la matrice di Fisher per un modello con dati

longitudinali discreti.

Inoltre, l’optimal design è stato raramente applicato a studi in ambito preclinico. In

questa tesi, la teoria del design è stata utilizzata in esperimenti in vivo sugli xenograft, al fine

di valutare quantitativamente la diversità, in termini di precisione della stima dei parametri,

nel caso in cui venissero o meno prese le misure della massa tumorale anche dopo il termine

del trattamento.

Per concludere, questa tesi presenta diversi contesti per l’utilizzo di approcci legati

all’optimal design basato sulla matrice di Fisher, mostrando che sono approcci potenti che

consentono di migliorare la qualità di uno studio, garantendone l’affidabilità e una migliore

precisione della stima dei parametri.
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Chapter 1

Introduction

Drug disease model resources (DDMoRe)

This thesis was funded by the DDMoRe consortium (http://ddmore.eu), a five-years

Innovative Medicines Initiative (IMI) project, since October 2013, in which EFPIA, Academic

and Small Medium Enterprise (SME) partners are involved to provide with new tools to

facilitate modeling and simulation in model-based drug development (Harnisch et al., 2013).

Within the passed five years, three main DDMoRe open sources products have been

released. These are: i) the DDMoRe model repository, i.e. a public repository where models

can be published, are supported by peer review, and can be downloaded; ii) the DDMoRe

interoperability framework, i.e. an integrated infrastructure that provides with exchange

and integration of models across modeling languages and existing or new tools through the

Pharmacometrics Markup Language (PharmML), developed by Swat et al. (2015), and the

standard model description language MDL (human readable language); iii) the DDMoRe

training, i.e. courses about how to use DDMoRe products and how to apply them in drug

development.

1.1 Pharmacometrics

Pharmacometrics is a relatively young bridging discipline that links biostatistics and

pharmacology (Barrett et al., 2008; Pfister and D’Argenio, 2010). First introduced by L.B.

Sheiner, it was defined by van der Graaf (2012) as "the science of developing and applying

mathematical and statistical methods to characterize, understand, and predict a drug’s

pharmacokinetic and pharmacodynamic behavior".

Pharmacometrics’s methods are widely used in drug development, and their benefit over

traditional statistical approaches was reported in (Jonsson and Sheiner, 2002; Bhattaram

et al., 2007).

1



Introduction

1.1.1 Pharmacokinetics and pharmacodynamics

Pharmacometrics is mainly used for analysis of pharmacokinetic (PK) and

pharmacodynamic (PD) data. As reported in (Ette and Williams, 2006), "pharmacokinetics

is what the body does to the drug; pharmacodynamics is what the drug does to the body".

Indeed, pharmacokinetics is the study of the movement of the drug into, through and

out various areas of the body through the mechanism of the ADME of the drug, where

ADME stands for absorption, distribution, metabolism and elimination (Gabrielsson and

Weiner, 2006; Rowland and Tozer, 1995). Drug concentration measurements over time help

to characterize the PK of the drug. Figure 1.1 (panel A) shows an example of the plasma

drug concentration profile over time, after an oral administration. During the phase of

absorption, concentration increases until reaching a maximum (Cmax). It then decreases

in the elimination phase. The measurement that helps quantifying the total exposure to

the drug of an individual is the so called "area under the curve", AUC , which is the area

underlying the drug concentration curve over time. The parameter related to the drug

distribution is the volume of distribution,V , whereas the drug elimination is characterized

by the clearance, C l . From the elimination phase it is possible to derive the half-life, t1/2,

i.e. the time needed by the organism for eliminating half of the quantity of administered

drug . In case of oral administration, V and C l are estimated over a constant F , i.e. the

bioavailability, which is the fraction of active pharmaceutical ingredient reaching the

systemic circulation. F can be estimated by comparing concentration measurements

obtained after oral and intravenous administration. In case of single dose administration

and linear pharmacokinetic, C l can be derived knowing the AUC , F and the dose D , with

the following: AUC = F D
C l (Gabrielsson and Weiner, 2006).

The PK models used in this thesis are based on the assumption that the organism

is composed by one or more compartments in which the drug enters, is distributed,

metabolized and eliminated. In figure 1.2 a one-compartment first order absorption and

elimination model for an oral administration is presented, with ka being the rate constant of

absorption of the drug and ke =C l /V the first order rate constant of elimination.

Compartmental models can be written either using differential equations or with

analytic expression, if the analytic solution exists. The analytic expression of the

model in figure 1.2 can be defined with two different parameterizations: (ka ,ke ,V /F ) or

(ka ,C l /F,V /F ). Using the first parameterization, the structural model f is described by the

following equation:

f (θ, t ) = F D

V

ka

ke −ka
(e−ka t −e−ke t ) (1.1)

where θ is the vector of model parameters (ka ,ke ,V /F ).

In order for the drug to produce the desired effect, it is necessary to reach concentrations

that are pharmacodynamically active in the biophase– a compartment for the site of action

2
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Figure 1.1: Example of plasma drug concentration pro�les over time: (A) Measurements in one

individual; (B) Non-compartmental analysis - area under the curve performed with the

trapezoidal rule; (C) Nonlinear regression using one-compartment �rst order absorption

and elimination PK model, where the black line represents model predictions; (D)

Repeated measurements observed in several individuals (empty dots linked by dashed

lines) which are analyzed using nonlinear mixed-e�ect model: the solid line represents

the "population" pro�le obtained from the estimated �xed-e�ects.

- -
ka ke

�� ��V

Figure 1.2: Schematic illustration of the one-compartment model with �rst order absorption and

elimination.

of the drug– regardless the root of administration used. Pharmacodynamics, indeed, is the

study of the effect of a drug.

In presence of a direct link between concentrations C and effect E , with drug increasing

the response, the usual model that describes this link is the Emax model. The sigmoid Emax

model is expressed with the following equation:

E = E0 +
EmaxCγ

Cγ
50 +Cγ

(1.2)

where E0 is the baseline value, Emax is the maximal drug effect, C50 is the drug concentration

needed to achieve the 50% of the maximal effect (E = E0 +Emax/2) and γ is a sigmoidicity

factor which controls the steepness of the concentration-response curve. It was introduced

by Hill as extension to the traditional Emax model, that is obtained for γ = 1. Sometimes

the response E is directly explained by the dose D . The equation 1.2 can then be written

3
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by replacing C with D and C50 with D50. If the effect of the drug causes a decrease in the

response, the model is called Imax. The sigmoid Imax model is expressed with the following

equation:

E = E0

(
1− ImaxCγ

Cγ
50 +Cγ

)
(1.3)

where Imax is maximal inhibitory effect and C50 is the drug concentration needed to achieve

the 50% of the maximal inhibition.

- -ksyn kout�� ��E

Figure 1.3: Schematic illustration of a turnover model of the e�ect E .

Several drugs do not act directly on the effect E . In that case, E is produced and

eliminated by the input synthesis rate, ksyn, and the output elimination rate constant, kout,

respectively. These kind of models have a similar structure to the one presented in figure 1.3.

The corresponding differential equation is expressed with the following:

dE

d t
= ksyn −kout E (1.4)

In absence of treatment, E(t ) = ksyn

kout
, which is the initial condition before the start of the

treatment. By introducing the drug, its action can impact the input (ksyn) or the output (kout).

For instance, a turnover model with drug inhibiting the input is expressed with:

dE

d t
= ksyn

(
1− ImaxC

C50 +C

)
−kout E (1.5)

Figure 1.4 displays the concentration and effect curves over time, related to the mean

profiles obtained from a one compartment PK model with first order absorption and

elimination and a turnover PD model, as the one described in equation 1.5. The simulated

parameters are the following : ka = 2 h−1, V = 8 L, C l = 0.1 L h−1, Imax = 1, ksyn = 6, kout

= 0.04 h−1, C50 = 1 mg L−1. A documentation of various PK and PD models is available in

(Gabrielsson and Weiner, 2006; Dubois et al., 2014)

1.1.2 Modeling

In the context of population PKPD studies, repeated samples are taken over time from

several individuals. Various approaches have been developed for analyzing this type of data.

One method is the naïve average data (NAD) (Magni et al., 2014) in which the model can

be fitted using standard nonlinear regression. In this approach, the average of the subjects

observations is computed at each sampling time to obtain the typical response, leading to

a more straightforward parameter estimation. However, NAD does not model all sources of

4
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Figure 1.4: PK (left) and PD (right) simulated mean pro�les for a total daily dose of 150 mg.

variability, therefore no information about the differences between subjects is considered.

NAD is suitable for case studies in which all individuals are similar, with a small inter-

individual variability. On the other hand, if between subject variability is high, NAD might

lead to biased results.

A more practical method than NAD is the naïve pooled data (NPD) (Magni et al., 2014). In

NPD repeated subjects observations are fitted simultaneously and considered as measured

from the same subject. As for NAD, NPD works better in cases with low inter-individual

variability. Moreover, NPD is more flexible than NAD as the experiment and number of

samples can differ among subjects. Nonetheless, this may cause biases when a different

amount of data is available for each subject, as individuals with rich data are more influential

than those with few observations, i.e. sparse data.

An alternative approach that can be used when naïve methods are not feasible is the

standard two-stage (STS) (Steimer et al., 1984; Magni et al., 2014). In the first step parameters

are estimated from each individual, whereas population parameters can be derived in the

second stage using the summary statistics from the individual estimates. It is simple to apply

but it leads to overestimation of the variability, and it requires a rich design.

Nonlinear mixed effects models (NLMEMs) (Sheiner et al., 1972; Sheiner and Steimer,

2000; Lalonde et al., 2007; Smith and Vincent, 2010; Asín-Prieto et al., 2014; Lavielle, 2014)

are a popular alternative approach. This method is in general more complex, but it has been

increasingly used in the biomedical field as it keeps all the data of all subjects, and it allows

to model all sources of variability.

NLMEM is the main approach adopted in this PhD. For the preclinical example in

oncology – discussed in Chapter 2 – NPD, and therefore standard nonlinear regression, was

also applied.
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1.1.3 Nonlinear mixed effects models

A NLMEM incorporates both fixed effects that describe a typical individual, and random

effects, which include the variability between individuals, assessing the distribution for the

respective model parameters, and residual unexplained variability (error). Some or all of

the fixed and random effects occur non-linearly in the model function (Pinheiro and Bates,

2000). Additionally NLMEM allows different structures for the residual errors – like additive

and proportional.

Continuous outcome Let yi k be the ni –vector of k continuous responses (e.g.

concentrations and effect, for k = 2) measured from subject i (i = 1, . . . , N ) at times ξi =
(ti 1, . . . , ti ni ). Assuming k = 1, and removing the index k for simplicity, yi is denoted with:

yi = f (θi ,ξi )+εi (1.6)

where f is the nonlinear structural model and ξi is the elementary design of individual

i composed of ni sampling times. Of note, in this thesis the attention was restricted to

sampling times, but other design variables may be of interest, such as the doses. θi is the

vector of p individual parameters and εi is the vector of residual error following a normal

distribution εi ∼ N (0,Σ(θ,ξi )) with Σ(θ,ξi ) = di ag (σinter +σslope × f (θi ,ξi ))2. σinter is the

parameter for the additive error andσslope for proportional error. The individual parameters

θi for the i th subject is modeled as a function g , such that θi = g (µ,ηi ). Often it is assumed

that θi follows a normal distribution, then the function g is additive:

g (µ,ηi ) =µ+ηi (1.7)

or it can be assumed that θi follows a log-normal distribution, then g is exponential:

g (µ,ηi ) =µ×eηi (1.8)

where µ is the vector of p fixed effects similar in all individuals and ηi is the random

effect associated to subject i which follows a normal distribution ηi ∼ N (0,Ω), where Ω is

a p × p variance-covariance matrix, that is assumed diagonal with diagonal elements the

variances ω2
s , s = 1, . . . , p. We assume that εi |ηi are independent between subjects and, for

each individual, εi and ηi are independent.

Part of variability can be explained by subject-specific characteristics, as the age, weight,

gender, type of treatment received etc., which can be expressed by introducing covariates in

the model. Covariates can be either continuous or discrete, and they may or may not vary

between occasions. Let us consider a binary covariate Ci for the individual i , which does not

vary during time, (Ci = 0 for the reference class otherwise Ci = 1), the individual parameter
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vector θi , assuming that it is normally distributed, is defined as follows:

θi =µ+βCi +ηi (1.9)

or for log-normal distribution of θi :

log (θi ) = log (µ)+βCi +ηi (1.10)

where µ is the vector of fixed effects related to the reference class of the covariates, β is the

effect of the covariate C , i.e. the increase of θi with respect to µ when Ci = 1.

If Ci is a continuous covariate, the values that it takes are in the continuous scale. By

considering a reference individual, and assuming log-normal distribution for the parameter

θi , the model for continuous covariates can be written as following:

log (θi ) = log (µ)+β(log (Ci )− log (Cpop ))+ηi (1.11)

where µ is the reference value of the parameter, and Cpop is the covariate set to

its reference value, e.g. observed median or mean. In equation 1.11, the variability

is decomposed in the following: i) in the term β(log (Ci ) − log (Cpop )) the variability is

expressed by the variation of the covariate log (Ci ) with respect to the reference log (Cpop ); ii)

the component ηi , that is the remaining variability, describes the between subject variability

for individuals that have same value for the covariate.

Let λ be the vector of variances terms (ω2
1, . . . ,ω2

p ,σinter,σslope), the vector of population

parameters to be estimated is defined asΨ= (µ′,β′,λ′)′, which is of size P .

Figure 1.1 (D) displays the individual profiles over time of plasma concentration and

the corresponding mean profile for an oral administration of a certain compound. The

prediction of the mean profile is obtained from the PK function f which is the one-

compartment model with first order absorption and elimination, and the fixed effects

estimated from the data.

Discrete outcome For discrete data, the probability for all observations j = 1, . . . ,ni from

an individual i (i = 1, . . . , N ) at times ξi = (ti 1, . . . , ti ni ), is denoted with:

P (yi ,Ψ|ηi ) =
ni∏

j=1
h(yi j ,θi ,ξi ) (1.12)

where h is a known link function that describes the probability model of observing yi at times

ξi . Of note, as opposed to the definition of models for continuous outcomes, the residual

error term ε is not present in the expression of model for discrete outcomes.

Discrete data can be classified mainly into two groups: count data and noncount

data. The former are repeated measurements of events occurring in specific time intervals,

whereas the latter are either grouped binary data, i.e. numbers of successes (or failures)
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obtained from a Bernoulli process, or ordinal data. The Poisson model is often used to

describe count data, whereas a binomial distribution better describes the grouped binary

data. More details can be found in (Plan, 2014), an extensive tutorial on modeling of count

data.

An example of NLMEM for repeated binary response was proposed by Riviere et al.

(2016); Ueckert and Mentré (2016) and it is expressed as follows:

log i t (π) = θ1 +θ2(1−µ3δ)t (1.13)

where π is the probability of success.

The fixed effects vector µ = (µ1,µ2,µ3) is given by the intercept µ1, the slope µ2 and

the treatment effect µ3. An additive random effect is associated to θ1 and θ2, such that

θ = g (µ,η) = µ+η. δ is the treatment group indicator, i.e. δ= 0 in control group and δ= 1 in

treatment group.

1.1.4 Estimation methods

Most estimation methods are based on the maximum likelihood estimation (MLE). In

NLMEM, the likelihood of the vector of observations y of an individual i is defined as the

integral over the random effects of its conditional likelihood:

L(yi ;Ψ) =
∫

Rp
p(yi |ηi ;Ψ)p(ηi ;Ψ)dηi =

∫

Rp
p(yi ,ηi ;Ψ)dηi (1.14)

where p(y |η;Ψ) is the conditional probability density function (p.d.f.) of y given the random

effects η, p(η;Ψ) is the p.d.f. of η and p(y,η;Ψ) is the joint likelihood of the data y and the

random effects η. Because of the non-linearity of the structural model f on the parameters,

there is no closed form solution for the likelihood. However, several methods have been

developed to approximate it.

Plan et al. (2012) proposed a review on the estimation algorithms in NLMEM existing in

the literature (Pillai et al., 2005). These methods are implemented in various software, such

as NONMEM (Beal et al., 2009), MONOLIX (Team MONOLIX, 2012), R (R Core Team, 2014),

SAS (SAS Institute Inc, 2004) etc., and they will be introduced in this section.

The first developed algorithms are based on the first order Taylor expansion of f . The

linearization leads to a linear mixed effect model, whose likelihood has a closed form. These

algorithms are the first order (FO) and first order conditional estimation (FOCE) developed

by Sheiner et al. (1972) and Lindstrom and Bates (1990), respectively. FO linearizes the model

around the expectation of the random effects, i.e. 0, whereas FOCE linearizes the function

around the individual estimates of the random effects η̂i . Both algorithms are implemented

in NONMEM (Beal et al., 2009), the first software developed to analyze NLMEM, which is

widely adopted by the pharmacometrics community. The algorithm FO is also implemented

in the NLMIXED procedure in the SAS software, whereas the nlme function available in R
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and S-plus (Pinheiro and Bates, 2000) implements an approximation of FOCE. In presence

of large individual variability or with a number of observations per subjects that grows slower

than the number of subjects, FO and FOCE tend to produce biased estimators (Ge et al., 2004;

Vonesh, 1996).

More precise methods that are not based on linearization, have followed. Of note, the

gain in precision requires more intensive computation time. Laplacian approximation,

proposed in (Wolfinger, 1993) is based on second order Taylor expansion around the random

effects, and the method is implemented in NONMEM and SAS.

Adaptive Gaussian quadrature (AGQ) (Pinheiro and Bates, 1995) computes L(y ;Ψ)

numerically, as a weighted average of p(y |η;Ψ) and p(η;Ψ) with predefined number of nodes

and weights. AGQ with one node corresponds to the Laplacian approximation. Moreover,

AGQ is an extension of Gaussian quadrature (GQ) (Golub and Welsch, 1969) as the nodes

instead of being centered on the expectation of the random effects (i.e. 0), they are centered

on the estimated conditional modes of the random effects. As standard GQ does not

consider the nature of the integrand, it requires a high number of nodes for obtaining precise

estimates. AGQ instead requires a smaller number of nodes than GQ as it centers and scales

the standard quadrature nodes, based on the areas of high density, and therefore it improves

the approximation. Nevertheless, the method is not suitable for models with high number of

random effects, as the computational complexity increases exponentially with the number

of random effects of the model. This approach is implemented in the NLMIXED procedure

of SAS.

The expectation maximization (EM) algorithm is an iterative algorithm, first developed

by Dempster et al. (1977), used for maximizing the likelihood by treating as missing data

the unknown individual random effect. Let Ψ̂k−1 be the population parameters vector at the

beginning of the k th iteration. In the E-step, the conditional expectation of the log-likelihood

of the complete data is evaluated with respect to the distribution of unknown random effect

η given the observations y and Ψ̂k−1:

Qk (Ψ|Ψ̂k−1) = E
[
l og p(y,η;Ψ)|y,Ψ̂k−1

]
(1.15)

In the M-step Ψ̂k−1 is updated for the next step by maximizing the expectation Q of the k th

iteration:

Ψ̂k = argmax
Ψ

Qk (Ψ|Ψ̂k−1) (1.16)

In this thesis, a stochastic version of the EM algorithm known as the stochastic

approximation expectation maximisation (SAEM) algorithm, was used. It was developed by

Delyon et al. (1999), and then modified in (Kuhn and Lavielle, 2004) by introducing a Markov

chain Monte Carlo (MCMC) approach. In this method, the E-step of the k th iteration is

divided into two parts: first missing data (unknown individual random effect) are simulated

from the conditional distribution p(.|y ;Ψ̂k−1) using the Markov chain Monte Carlo (MCMC)
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algorithm. Then, in the second part, the stochastic approximation is computed by replacing

the integral of the likelihood with a sufficient statistic, which is then maximized for updating

the vector of population parametersΨ. The updated parameter vector will then be used for

the first part of the next iteration until convergence, which should be reached at a local or

global maximum of the likelihood, under general conditions (Delyon et al., 1999).

The SAEM algorithm was extended by (Panhard and Samson, 2009) to allow for the

estimation of the inter-occasion variability and it is implemented in the MONOLIX software,

as well as in NONMEM (since version 7), in S-ADAPT (since version 1.56) and in the R

package saemix (www.saemix.biostat.fr) since 2011 (Comets et al., 2016).

1.2 Optimal design

The development of estimation software and methods in NLMEM helps carrying out

pharmacometrics analysis. Nevertheless, the definition of a good study design is still a

problem that needs to be investigated.

The study of the influence of design on experiments goes back to the 20th century (Fisher

and Mackenzie, 1923). By that time, R.A. Fisher discovered that there is a link between

the information obtained from an experiment and the Fisher information matrix (FIM)

(Box, 1980). Around twenty years later, Cramer and Rao observed that the variance of any

unbiased estimator is greater than the inverse of FIM, which is defined independently of any

estimation method (Cramer, 1946; Rao, 1992). Cramer-Rao inequality is the principle on

which the optimal design theory described in this section is based.

A drawback of optimal designs is the fact that it requires previous information, both on

models and parameters (Pronzato and Pázman, 2013a), which can be partially wrong as

they may be difficult to guess. Currently, population designs are often fixed for the whole

study with data analyzed at its end. Local optimal designs are optimized based on a set of

parameters values defined prior to the study. As alternative to local designs, robust designs

or adaptive designs can be applied. These two approaches are expanded in subsections 1.2.3

and 1.2.5, respectively.

1.2.1 Design definition

In the approximate design theory, a continuous design ξ is considered as a series of

sampling times with a specific weight assigned, and the sum of these weights must be 1.

Herein, without considering the weights, we define an elementary design for the subject i

as ξi , which is given by the number of individual observations ni and the sampling times

ti 1, . . . , ti ni . A population designΞ is defined by the total number N of individuals and the set

of individual elementary designs to be performed in each individual: ξ1, . . . ,ξN , with a total

number of observations ntot =
∑N

i=1 ni . A special case is when the same elementary design

is performed in all individuals (ξi = ξ for i = 1, . . . , N ), then ntot = n×N andΞ= {ξ; N }. Often
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population designs are composed of Q individual groups with same elementary design ξq

in each group of Nq subjects (q = 1, . . . ,Q). The population design in this case is defined as

Ξ= {[ξ1, N1]; . . . ; [ξQ , NQ ]}, with N =∑Q
q=1 Nq and ntot =

∑Q
q=1 nq ×Nq . For the projects in this

thesis the focus was on optimizing the allocation in time of the sampling times, for some

fixed N and n.

Defining an appropriate design requires a good balance between the total number of

subjects, the number of groups, the proportion of subjects associated to each group, the

allocation in time of the sampling times, the number of observations per subject. All this

factors, which are part of the design, are influential for the precision of parameter estimates

of the model selected for the study. This has been shown very early by simulation studies

(Al-Banna et al., 1990; Hashimoto and Sheiner, 1991; Jonsson et al., 1996).

This can be essential in cases of sparse design, such as in studies with children, old

patients, or other studies. Making an adequate choice on the design thus leads to more

informative and more ethical studies.

There are two main approaches to design evaluation. The first, by trial simulation,

involves parameter estimation using numerous simulated datasets and thus is a time-

consuming method (Holford et al., 2010). The second approach, which avoids simulation,

relies on the Cramer-Rao inequality, thus on the expected FIM.

1.2.2 Fisher information matrix in NLMEM

From the individual likelihood expressed in equation 1.14, it is possible to define the

individual Fisher information matrix MF (Ψ;ξi ), for the subject i and the elementary design

ξi , which can be defined as:

MF (Ψ;ξi ) = E

(
∂ logL(yi ;Ψ)

∂Ψ
× ∂ logL(yi ;Ψ)

∂Ψ′

)
(1.17)

or equivalently as:

MF (Ψ;ξi ) =−E

(
∂2 logL(yi ;Ψ)

∂2Ψ

)
(1.18)

Because of the assumption that individuals are independent, the population FIM MF (Ψ,Ξ)

is defined as the sum of N elementary FIMs:

MF (Ψ,Ξ) =
N∑

i=1
MF (Ψ,ξi ) (1.19)

In case of Q elementary designs it can be defined as:

MF (Ψ,Ξ) =
Q∑

q=1
Nq MF (Ψ,ξq ) (1.20)

As previously mentioned in the estimation methods section 1.1.4, because of the

nonlinearity of the structural model f in the parameters, there is no analytic expression for
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the likelihood, therefore also for FIM. Indeed, several approximations were developed for the

evaluation of FIM in both continuous and discrete NLMEM.

Continuous outcome The first approximation of FIM for single response NLMEMs with

continuous data was provided by Mentré et al., in the case of additive residual error model,

with normally distributed errors with 0 mean and homoscedastic variance (Mentré et al.,

1997). The method consisted in a linearization of f around the random effects, i.e. 0,

using the FO approximation. The development of FIM was extended by Retout et al.

(2002) who introduced the variability parameters of the combined residual error model in

the vector of parameters to be estimated, allowing for heteroscedastic error models. The

new method was tested by a simulation study using real data from the pharmacokinetics

of the enoxaparin.(Retout et al., 2002; Retout and Mentré, 2003). The FIM can then be

expressed either as full matrix or as block diagonal. The former is more complex than

the latter because it requires calculation of the second derivatives of the model, however,

there is no clear consensus on which is the best approximation. Some comparison studies

have been performed by (Nyberg et al., 2015) by simulation, for a simple PK model and a

more complex PKPD model. They showed that the block-diagonal matrix provided with

results that were closer to those obtained using the full matrix. These conclusions were also

supported by (Mielke, 2012). Moreover, the observed FIM is implemented as block-diagonal

in the MONOLIX software. The FIM’s expression in NLMEM was later extended to multiple

response models, using the same linearization method (Hooker and Vicini, 2005). The new

method was validated in a PKPD simulation study by Bazzoli et al. (2009). Dumont et al.

(2013) proposed an extension of that matrix by taking into account the correlations among

random effects, i.e. the full variance-covariance matrix Ω. Nevertheless, the linearization

of the FIM by FO approximation has some limits. It performs well when the random effects

variances are small, or in presence of moderate model nonlinearity (Jones et al., 1999; Jones

and Wang, 1999).

Several new methods that avoid the FO approximation have been developed. For

instance, methods based on the FOCE estimation algorithm were proposed by Retout and

Mentré (2003), for which the linearization of the model around the individual random effects

was performed, or by Nyberg et al. (2010), in which the linearization was computed around

the expected mode of the marginal likelihood. The results obtained with FOCE are similar

to those obtained by FO, but FOCE takes higher computational time because it requires MC

simulations. Other approaches based on simulations were proposed by Vong et al. (2012)

who used the Laplacian approach, or by Mielke (2012), who implemented MC integration in

the design evaluation. These approaches provide correct predictions of the precision of the

parameter estimates, but they are computationally expensive. Nguyen and Mentré (2014)

used a method based on MC–AGQ to approximate FIM for normally distributed responses.

They showed the superiority of their approach compared to FO, when the nonlinearity of the
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model increases. Finally, Riviere et al. (2016) proposed an alternative method to compute the

asymptotically exact FIM, based on MC–MCMC. This method is available in the R package

MIXFIM and it uses functions that are written in the probabilistic language STAN (Carpenter

et al., 2016), for Bayesian inference.

Discrete outcome In case of discrete outcomes, a closed form of FIM is not available in

both generalized linear mixed effects models (GLMEM) and discrete NLMEM. Some pre-

existing methods for the approximation of FIM for discrete data in GLMEM are available

from the literature, but most of them have the limitation of being response-specific (Ueckert

and Mentré, 2016). For instance, the method by Niaparast (2009) is limited to Poisson models

with random intercept. Waite and Woods (2015) were the first to calculate FIM for general

GLMEM, using marginal quasi-likelihood (MQL), which is similar to FO (Retout and Mentré,

2003) and penalized quasi-likelihood approximations, avoiding a full maximum likelihood

estimation.

For discrete NLMEM Ogungbenro et al. (2005) developed a method based on generalized

estimating equations and MQL approximation for count, binary and ordinal responses;

Nyberg et al. (2009) used an approach based on second-order approximation of the

likelihood and applied it to binary and count responses. The method of Nguyen and

Mentré (2014) based on MC–AGQ for continuous response was recently extended by Ueckert

and Mentré (2016) to discrete response mixed effects model, and the program for the

implementation was written in R. This new method does not use any approximation and

it allows to numerically compute FIM by calculating the derivatives of the exact conditional

likelihood, however it should be noted that for more than three random effects the method

becomes very computationally expensive. Finally, the method proposed by Riviere et al.

(2016), based on MC–MCMC, can also be applied to NLMEMs with discrete outcome.

1.2.3 Optimality criteria

From equations (1.17,1.18) it is clear that the FIM in the context of NLMEMs depends on

the design and on the vector of population parameters. When performing optimal design,

we would like to obtain the most precise parameter estimates for the selected model, which

means to "minimize" the estimation variances, i.e. "maximizing" the FIM. Several optimality

criteria based on some scalar functions were developed for comparing FIMs in NLMEMs, by

extending those already available in classic nonlinear regression (Fedorov, 1972; Atkinson

et al., 1992). These criteria are also called "alphabetic" criteria as their name is an alphabetic

letter (Atkinson et al., 1992).

The most important criterion, and widely used in pharmacometrics is the D-optimality

(Fedorov, 1972), which consists in maximizing the determinant of FIM, allowing for

minimizing the generalized variance of the parameter estimates. An extension of D criterion

is the Ds criterion, which is useful when the interest is on estimating a subset s of
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parameters. Another criterion is the A-optimality, for which the inverse of the trace of the

FIM is minimized, therefore the average variance is minimized. E-optimality consists in

maximizing the least eigenvalue of FIM, whereas C-optimality is based on minimizing the

variance of a linear combination of the parameter estimates. These criteria were developed

for performing "local" optimality, for which a design is optimized for a specific set of model

parameters values, that is defined prior to the study.

Robustness with respect to parameters As opposed to local optimality, the principle of

robust approaches with respect to parameters consists in assigning a prior distribution to

population parameters, instead of constraining them to a fixed value. Several robust criteria

based on D-optimality have been developed first in classic nonlinear regression (D’Argenio,

1981; Pronzato and Walter, 1985, 1988), and later they were adopted in pharmacometrics

(Dodds et al., 2005). Optimal designs obtained using robust criteria are called robust designs

(RD).

Robust criteria first proposed by Pronzato and Walter (1985) are the ED- and EID-

optimality (Walter and Pronzato, 1987) which consist in maximizing the expectation of the

determinant of the FIM and the inverse of the expectation of the inverse of the determinant,

respectively. DE-optimality criterion, i.e. the determinant of the expectation of the FIM, is

not equivalent to ED-optimality in nonlinear regression models. ED-optimal designs might

have poor performance for parameters that are associated to small values of probability

density function. Pronzato and Walter (1988) thus proposed the maxmin criterion (MM-

optimality), which requires knowledge of a prior feasible region for population parameters

Ψ. Indeed MM implies maximization of the least value of the determinant of FIMs

associated to the different parameters that lie in that domain. Other robust criteria were

further proposed. The ELD-optimality, or API (D’Argenio, 1990), consists in maximizing the

expectation of the logarithm of the determinant of the FIM. A simplified version of these

criteria– which does not require the whole prior parameters distribution but instead it uses

only the 2.5th and 97.5th percentiles of that distribution (Pronzato and Pázman, 2013b) – are

the so called HCDs criteria, developed for the hypercube D-optimal designs (HCDs) (Foo

and Duffull, 2010). By using HCD the time for the computation is considerably reduced.

In the passed decades various studies have been performed using a robust design

approach. Tod et al. (1998) used the EID robust criterion to find the optimal design in a

population pharmacokinetics study; Dodds et al. (2005) showed in two-case studies that

RDs, obtained using ED-optimality, are better than D-optimal designs in cases of miss-

specified prior information; Hennig et al. (2009) used ED-optimality to optimize treatment

length in a disease progression study; Foo and Duffull (2010) compared in a PK study

HCDs versus some robust designs, highlighting how HCDs designs are computed much

faster than traditional RDs, being an approximation of traditional RDs. Nyberg and Hooker

(2012) also compared standard robust criteria and HCDs for an Emax model and for an
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exponential decay model. Parameter uncertainty was also taken into account in the context

of generalized linear models (Woods et al., 2006)

Robustness with respect to models T-optimality (Atkinson and Fedorov, 1975b,a) can be

used for taking into account of uncertainty around several models. T-optimality used

in combination with D-optimality leads to compound optimality (McGree et al., 2008),

which consists in combining opposing criteria. Indeed, D-optimality concerns parameter

estimation, whereas T-optimality accounts for model discrimination. Jamsen et al. (2013)

applied T-optimality to discriminate among models that describe the individual patient’s

parasite-time profile; Nguyen et al. (2016) used compound optimality as weighted criterion

for combining optimality criteria of several models to find informative sampling times for

two different drugs while studying the influence of the model weight on the optimization

results. (Woods et al., 2006) took into account models uncertainty in the context of

generalized linear models.

1.2.4 Optimization algorithms

Several algorithms were developed for the optimization of a design. As explained in

subsection 1.2.1, a population design for Q groups of Nq subjects with same elementary

design is defined as Ξ = {[ξ1, N1]; . . . ; [ξQ , NQ ]}, with N = ∑Q
q=1 Nq and ntot =

∑Q
q=1 nq × Nq .

It is possible to attribute a rational weight to each group, mq = Nq

N , corresponding to the

proportion of subjects mq who have same elementary design ξq such that
∑Q

q=1 mq = 1. Ξ

can thus be defined as Ξ= {[ξ1,m1]; . . . ; [ξQ ,mQ ]}, which is a statistical design.

A widely used algorithm is the Fedorov-Wynn (FW), which provides the optimal

statistical design, no matter the initial design used for the initialization of the algorithm

(Fedorov, 1972; Wynn, 1972; Walter and Pronzato, 1997). The FW algorithm was initially

developed in a context of nonlinear regression (Kiefer and Wolfowitz, 1959), and then

extended to NLMEMs by Mentré et al. (1997) in order to determine D-optimal designs.

FW is an iterative algorithm that can determine the best elementary design combination

among all possible predefined finite times or doses, which maximizes the FIM. Indeed,

the FW algorithm optimizes the number of Q elementary designs, and the proportions of

subjects mq who are assigned to each elementary design (ξq ). All these features constitute

the structure of the population design Ξ.

For obtaining optimal exact designs, i.e. without accounting for proportions of subjects,

based on D-optimality, some specific algorithms were developed, based on the Fedorov

exchange algorithm. Let time be the design variable, the principle of these algorithms is to

improve at each iteration the initial design by exchanging one or more sampling times with

better times, i.e. times that lead to higher determinant (Fedorov, 1972; Wynn, 1972; Mitchell,

1974). Ogungbenro et al. (2005) proposed a modified version Fedorov exchange algorithm,

in order to obtain exact D-optimal design with respect to the design variable. They showed
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the good performance of the algorithm but computational time is higher with respect to the

classical exchange algorithm.

Other optimization algorithms are the gradient or the Newton algorithms, which are

based on the computation of first and second derivatives, respectively. The simplex

algorithm can also be used in this context, and it does not require any derivative

computation. However, these algorithms are local algorithms that do not guarantee to

find a global optimum but just a local one, i.e. an optimum in the neighborhood of the

initial point. The random search algorithm allows to find a global optimum and it does

not require derivative calculation. A two-stage approach of this algorithm based on the

method of stochastic gradient, also called method of Broyden-Fletcher-Goldfarb-Shanno

(Broyden, 1970) was described by (Foracchia et al., 2004). Simulated annealing is a global

optimization algorithm, more often used than simplex and the random search algorithms,

for more complex design situations (Duffull et al., 2002).

Retout et al. (2007) compared FW and simplex algorithm, and showed a better

performance of the former, in case of complex design structures. More recently (Retout

and Mentré, 2003) proposed an extension FW algorithm by incorporating cost functions and

showed the applicability for multiple-response models. The costs were based on clinical

practice, e.g. cost of the elementary design defined by the number of samples to be taken;

cost of including a new patient in the study etc.

1.2.5 Adaptive design in pharmacometrics

Adaptive designs (ADs) are promising alternatives to local or robust designs (Dodds

et al., 2005). As opposite to traditional clinical studies, ADs are clinical trial designs that

use accumulating information in order to decide how to modify predefined aspects of the

study during its implementation instead of leaving them fixed until the end (Chang, 2007;

Pronzato, 2009; Foo and Duffull, 2012). This is very important, for instance when designing

a clinical trial, having only prior information on preclinical data, or designing a study in

children from adults information. ADs are useful to provide some flexibility but were rarely

used for NLMEM (Zamuner et al., 2010). Nevertheless, Maloney et al. (2007) showed that

ADs are less sensitive to miss-specification of the initial design. Moreover, Leonov and

Miller (2009) implemented ADs for the Emax model, with an application of dose findings in

Alzheimer’s disease study, whereas (Zamuner et al., 2010) applied ADs in positron emission

tomography studies.

According to a survey by Mentré et al. (2013), adoption of adaptive design approach

for population PKPD studies is promising in pharmaceutical industries. Indeed, ADs in

NLMEMs were recently used in different context: Foo and Duffull (2012) showed the

applicability of ADs for a PK bridging study; Strömberg and Hooker (2015) implemented

stopping criteria defined by the Food and Drug Administration in pediatric PK bridging

studies; Ryeznik et al. (2016) applied ADs in a dose finding study for time to event responses
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with adaptive choice of the number of patient based on the rate of response. Finally Bogacka

(2016) presented an application of ADs in clinical trials optimizing both doses and PK

parameters.

It was shown, in previous studies not concerning NLMEM, that two-stage designs could

be more efficient than fully adaptive designs (Fedorov et al., 2012) when the adaptation is

performed after each patient. (Chen, 1997) compared three- versus two-stage AD. They

found that the gain of extending a two-stage design approach to three-stage design is

not as relevant as compared to the advantage of using two-stage instead of one-stage

design. Moreover, two-stage designs are easier to implement in clinical practice as only one

adaptation is performed. Some important steps in AD are choosing the number of stages

one wants to compute, i.e., the number of times parameters estimation and adaptations will

be performed, and the cohort size to be set for each stage. For NLMEM, Dumont et al. (2016)

implemented the optimization of the determinant of FIM for two-stage adaptive designs. In

that paper (Dumont et al., 2016) a simulation study that mimicked the design of a pediatric

PK trial was used and it was analyzed through NLMEM. For the first stage, parameters were

guessed from adults. Simulations of one- and two-stage designs were evaluated assuming

that some parameters were different than the initial ones. The influence of the size of

the cohorts in two-stage designs was also investigated. They showed the applicability and

usefulness of the approach that we wished to further investigate in this thesis in a more

complex example.

1.2.6 Optimal design software

Several software that allow for computing the FIM and performing optimal design based

on the D-criterion have been developed in the past years. These are: PFIM (Mentré et al.,

2014), PopED (Nyberg et al., 2012), PopDes (Gueorguieva et al., 2007), POPT (Duffull, 2006),

MIXFIM (Riviere and Mentré, 2015). PFIM, PopED and MIXFIM are available in R, the other

software are implemented in MATLAB. A MATLAB version of PopED is also available. Besides

POPT, all the software can be freely downloaded online.

A recent study (Mentré et al., 2013) showed that all these optimal design software,

excluding MIXFIM as it was not already built at that time, provide with the same answers

using the same FO approximation of FIM. PopED is the only software presently which

allows robust design. The new release of PFIM, PFIM 4.0, was the first software allowing

to perform adaptive design (Dumont et al., 2016), as the FIM can be saved and prior FIM can

be uploaded. Andrew Hooker has recently developed an R prototype for adaptive design,

"MBAOD" (Model Based Adaptive Optimal Design), and it was already used by Ryeznik et al.

(2016). MBAOD allows to perform adaptive design in R through sequential use of PopED

and NONMEM, the former for optimizing design, and the latter for generating data and

estimating parameters.
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1.3 Pharmacometrics and oncology

Modeling in clinical pharmacology and translational medicine research in oncology has

put a big effort in building models for simplifying and describe complex biological systems

(Rew, 2000; Quaranta et al., 2005). Indeed, mathematical modeling is a powerful discipline

that can be used to derive quantitative measures of biological functions for performing

predictions and prognosis (Della Pasqua, 2011).

First models in oncology were developed to describe the simple exponential growth

of solid tumors, with cell accruing at a constant rate (Laird, 1964). Subsequently, the

mathematics behind these models became more complex, in order to account for the

process of tumor cells spread; the development of metastasis, and for considering that

some tumor cells are not immortal (Deisboeck et al., 2001). Nowadays, population PKPD

modeling is a key tool in oncology drug development, for describing and quantifying

dose-response relationships (Bender et al., 2015; Venkatakrishnan et al., 2015). The main

modeling approaches concern tumor growth studies, tumor marker/biomarker and survival

analysis.

Figure 1.5 by Bender (2016) displays a schema of modeling in oncology drug

development. Everything starts with defining a population PK model. Subsequently,

the PK is linked to the PD leading to PKPD models for various outcomes, such as

tumor and biomarker responses etc., which can help predicting the overall survival (OS).

More specifically, the efficacy of anti-tumor treatment is often determined using tumor

bearing mice, whereas in clinical studies, treatment effect for solid tumors is assessed

by tumor sum of longest diameter (SLD) measurements. Other indicators of treatment

effect are the biomarkers associated with drug mechanism of action. Chemotherapy-

induced myelosuppression or other adverse effects can be recognized in cancer treatments.

Treatment success is established using progression-free survival (PFS) and overall survival

(OS) clinical endpoints.
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1.3.1 In vivo preclinical studies

Xenografts experiments Among in vivo preclinical studies, the most popular is the

xenograft model (Kelland, 2004), for which the common practice is either to implant tumor

fragments subcutaneously or to inject tumor cells into the flank of athymic mice (Simeoni

et al., 2004a). When the tumor has reached the desired volume, mice are randomized into

control and treatment arms receiving either a vehicle (control arm) or the compound to be

tested at different dose levels or with different drug administration schedules (treatment

arms). Tumor sizes are measured at repeated time points during the study and the collected

19



Introduction

data may be analyzed by various methods, such as NPD or NLMEM (see subsection 1.1.2)

Until now preclinical studies have been rarely designed using optimal design strategies.

Moreover, in vivo tumor size measurements in xenograft experiments are often taken

only during and shortly after treatment (Nagy et al., 2015; Chang et al., 2016), possibly

preventing correct identification of some parameters of tumor growth inhibition (TGI)

models (Rocchetti et al., 2013). It has been proved that the time efficacy index (TEI), which

is a secondary parameter of the Simeoni TGI model (Simeoni et al., 2004a; Magni et al.,

2006) that is linked to the drug potency parameter, is better estimated when considering

regrowth (Magni et al., 2006). Moreover, many institutions have already had the common

intuition that sampling during tumor regrowth would allow for more informative studies,

nevertheless, to our knowledge, this was never proven before.

Tumor growth inhibition models Several tumor growth inhibition (TGI) models have been

developed for describing drug action on tumor cells. Among those, the Gompertz model

(Simpson-Herren and Lloyd, 1970) was one of the first developed and largely used model

and it has been successfully used for both in vitro and in vivo preclinical studies, for different

tumors in various unperturbed situations, i.e. without drug administration (Bonate, 2011).

The Gompertz equation can be expressed as reported in Ribba et al. (2014):

d y

d t
=α · y · l og

( y

θ

)
(1.21)

where, y is the tumor size, α is the deceleration rate related to the natural death of the tumor

cells and θ is the maximum value that y can reach. In perturbed scenarios, the Gompertz

model can be used for the net growth process, i.e. the difference between growth and natural

death, in which the saturation size (θ) varies as a function of different parameters, especially

of a drug effect parameter (Ribba et al., 2014).

TGI models can be divided in three categories, based on their formulation (Ribba et al.,

2012): i) models with structure similar to Emax model, i.e. models that assume first-order

exponential net growth process with a term for the drug-induced decay (e.g. Gompertz

model), which is function of the concentration; ii) models with a second compartment that

has back-and-forth exchange with the first compartment, based on the assumption that the

drug acts on a tumor cells fraction; iii) models with four transit compartments, which are

introduced for accounting on the assumption of a delay in the action of the drug. Of note,

there is lack of experimental data supporting the assumption for formulation ii).

A model that is presently widely used by industry for the in vivo evaluation of antitumor

effect in xenograft experiments, is the Simeoni tumor growth inhibition (TGI) model

(Simeoni et al., 2004a, 2013).

The Simeoni TGI model is a pharmacokinetic-pharmacodynamic (PKPD) model in

which the dose of an anticancer compound is linked, through concentration, to the

inhibition of tumor growth. It has been used for analysis of hundreds of single-agent
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experiments in preclinical studies in the industry (Simeoni et al., 2004a; Terranova et al.,

2013) and was recently used to evaluate interaction effects when drugs are administered in

combination (Terranova et al., 2013). Figure 1.6 displays tumor growth curves related to

control and treated arms. The Simeoni model is further described in Chapter 2.
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Figure 1.6: Simeoni tumor growth inhibition model. Black and purple curves are the tumor weight

(g) over time in control arm and treatment arm, respectively.

1.3.2 Tumor growth models in clinical studies

The Response Evaluation Criteria in Solid Tumors (RECIST) is used as guideline in

solid tumor clinical trials (Eisenhauer et al., 2009). The main issue is that RECIST criteria

evaluation is performed at discrete time points, not allowing for taking into account the

dynamic of tumor growth, treatment-related shrinkage, and development of resistance

(Ribba et al., 2014). Indeed, according to the US Food and Drug Administration Critical Path

Initiative, modeling should be used for taking better decisions in drug development (U.S.

Food and Drug Administration, 2004).

Several tumor growth models have been developed with algebraic equations for

describing the tumor size curve as a combination of linear growth and exponential decay

(Wang et al., 2009; Stein et al., 2011; Bonate and Suttle, 2013). Other models were expressed

by differential equations, such as the Gompertz model (Simpson-Herren and Lloyd, 1970).

Gompertz model, described in subsection 1.3.1, was also applied to clinical studies, such as a

myeloma study (Sullivan and Salmon, 1972) and a survival study to analyze data of untreated

breast cancer female patients (Norton, 1988).

As reported by Ribba et al. (2014), in clinical studies, longitudinal analysis of the

tumor size in eight different therapeutic indications were proposed since 2008. These
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are: colorectal cancer (Bruno and Claret, 2009; Claret et al., 2013), non-small cell lung

cancer (Tham et al., 2008; Wang et al., 2009), renal cell carcinoma (Houk et al., 2010; Stein

et al., 2012; Maitland et al., 2013; Bonate and Suttle, 2013), thyroid cancer (Claret et al.,

2010), metastatic breast cancer (Frances et al., 2011), prostate cancer (Stein et al., 2011),

gastrointestinal stromal tumor (Houk et al., 2010; Hansson et al., 2013), and low-grade

glioma (Ribba et al., 2012).

1.3.3 Models for tumor markers and biomarkers

In certain types of cancer, tumor markers are used instead of tumor size measurements

for diagnosing cancer or for monitoring the response to treatment (Bender et al., 2015).

Tumor markers are produced in the body by cells that can be either or not related to cancer,

and they are measured in blood. An example of marker is the prostate specific antigen (PSA)

and it reaches high levels in men with prostate cancer. You et al. (2009) used population

models to describe PSA levels after prostatectomy. Other markers are the M-protein in

myeloma, cancer antigen 125 (CA-125) in ovarian cancer and carcinoembryonic antigen

(CEA) in colorectal cancer. A joint model for tumor size and CA-125 kinetics was developed

by Wilbaux et al. (2014).

Biomarkers are molecules that are present in the blood or other fluids, and they can

be used to assess how the body has reacted to treatment. Turnover models (Sharma and

Jusko, 1998) are often used for characterizing the PD when the effect is produced by an

indirect mechanism of the drug that induces the production or inhibition of some factors,

i.e. biomarkers, which directly control the effect.

1.3.4 Other models in oncology

Adverse effects occurring during a therapy can also be modeled (Trocóniz

et al., 2012). One important example is the myelosuppression model developed

by Friberg et al. (2002). Myelosuppression is considered as adverse effect for the

majority of cancers, and it is caused by certain cancer treatments. The model can

be freely downloaded on the Drug Disease Model Resources (DDMoRe) repository

(http://repository.ddmore.eu/model/DDMODEL00000186).

To conclude, all the former models presented, such as TGI models, turnover models and

those for the adverse effects, can be used to predict the overall survival (OS), by linking these

metrics to time to event (TTE) models (Bender et al., 2015). A nice example is the one by

Desmée et al. (2015) who proposed NLMEMs for prostate-specific antigen kinetics linked to

OS in metastatic prostate cancer.
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1.4 Aims

In this thesis we aimed at evaluating robust and adaptive designs in pharmacometrics

with application in oncology. Our goal was to analyze optimal setups for these trials based

on models developed on previous knowledge on the disease and the respective drug. We

also aimed at applying optimal design to preclinical studies in oncology to allow for a better

translation into clinical studies.

Chapter 1 was dedicated to the introduction to the basic concepts of pharmacometrics,

optimal design in pharmacometrics and pharmacometrics in oncology.

In Chapter 2 a proof of concept study about optimal design in xenograft experiments

is presented. Indeed, xenografts experiment were rarely conducted using optimal design

strategies. One relevant objective of that project was to use optimal design in several

xenograft experiments that were already published in (Simeoni et al., 2004a).

Chapter 3 is dedicated to an adaptive design simulation study, where the aim was to

compare different cohort sizes of two-stage designs for an oncology example, but also to

investigate the gain of performing more than one adaptation.

In Chapter 4 a comparison study of robust design criteria is illustrated, with an evaluation

for two examples with longitudinal clinical data. In that study we aimed at comparing all

the robust design criteria existing in the literature in the context of NLMEM, and to apply

optimal and robust designs to a NLMEM with discrete outcome. To our knowledge, it was

never performed before.

As this thesis was supported by the drug disease model and resources (DDMoRe), part of

the PhD was dedicated to help integrating the optimal design software developed in the lab

in Paris (IAME UMR-S 1137, INSERM and Université Paris Diderot) to the DDMoRe platform.

This work is described in Chapter 5.

Finally, in Chapter 6 the overall conclusions and perspectives of this thesis are drawn.
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Chapter 2

Optimal design in xenograft experiments

2.1 Summary

Experimental models in rodents have been developed in recent decades to evaluate in

vivo the antitumor effect of a new compound (Bernard et al., 2012). Among in vivo preclinical

studies, the most popular is the xenograft model (Kelland, 2004), that is the human tumor

transplanted into animals. When the tumor has reached the desired volume, mice are

randomized into control and treatment arms. Tumor sizes are measured at repeated time

points during the study and specific metrics are then calculated to assess tumor activity in

the different arms (Bissery et al., 1996).

The first objective of this study was to assess quantitatively in two-arm experiments,

i.e. one control and one treatment arm, the difference in terms of precision of parameter

estimation of taking samples only during and shortly after the treatment administration,

or also later, during the tumor regrowth phase, by using standard nonlinear regression or

NLMEM. The second objective of this work was to investigate the influence of including

arms with different doses or different drug administration schedules in the trials, as well as

the number of treated and control mice to be used in the experiments, when using NLMEMs.

We used the Simeoni tumor growth inhibition (TGI) model. Ten xenograft experiments

were selected from the literature (Simeoni et al., 2004a,b) involving various drugs with

various modes of action, different drug administration schedules and cell lines. For each

experiment two scenarios were considered: a "short study", in which it was possible to

measure only until three days after the end of the treatment period in order to mimic

the frequently adopted setting of those preclinical studies, and a "long study", in which

measurements could be taken also later, after the end of the treatment period, during

the tumor regrowth phase, but for ethical reasons only up to a tumor weight of 6

grams. Optimization of sampling times from the allowed sampling window was performed

simultaneously in control and treatment arms for each selected experiment and for short

and long studies. For the second objective, optimal design was applied in the context of

four-arm designs, i.e. one control and three treatment arms, with either different doses per

arm or different drug administration schedules per arm.
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The optimal design approach used in this study was the one based on the Fisher

information matrix (FIM), and the D-optimality criterion was chosen as the optimal design

metric. To compute FIM, first-order (FO) linearization method was used from the PFIM

program and optimal measurement times were found using the Fedorov-Wynn algorithm,

also implemented in PFIM.

We found that in long studies, some optimal times were always located in the regrowth

phase of treatment arms, highlighting the importance of continuing the experiment after

the end of the treatment. These results were obtained for all two-arm experiments, i.e. one

treatment and one control arm, either when only one subject was assigned per arm, or when

more mice were included in each arm. Moreover, predicted relative standard errors (%) of

the Simeoni TGI model parameters obtained in long studies were better than those obtained

in the short study of the corresponding experiment. Making measurements during tumor

regrowth should become a general rule for informative preclinical studies in oncology,

independently of adopting standard nonlinear regression or an NLMEM approach. In the

four-arm designs, the results showed that the proportions of control and treated mice can

differ.

This work was a first attempt to provide some general guidelines for preclinical xenograft

experiments and proved that optimal design can help us perform more informative

preclinical tumor growth inhibition studies, by measuring tumor growth for longer after the

end of treatment, thus ensuring more precise model parameter estimation and hence better

translation into clinical studies.
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2.2 Article I (published)
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Abstract. Tumor growth inhibition (TGI) models are increasingly used during preclinical
drug development in oncology for the in vivo evaluation of antitumor effect. Tumor sizes are
measured in xenografted mice, often only during and shortly after treatment, thus preventing
correct identification of some TGI model parameters. Our aims were (i) to evaluate the
importance of including measurements during tumor regrowth and (ii) to investigate the
proportions of mice included in each arm. For these purposes, optimal design theory based
on the Fisher information matrix implemented in PFIM4.0 was applied. Published xenograft
experiments, involving different drugs, schedules, and cell lines, were used to help optimize
experimental settings and parameters using the Simeoni TGI model. For each experiment, a
two-arm design, i.e., control versus treatment, was optimized with or without the constraint of
not sampling during tumor regrowth, i.e., Bshort^ and Blong^ studies, respectively. In long
studies, measurements could be taken up to 6 g of tumor weight, whereas in short studies the
experiment was stopped 3 days after the end of treatment. Predicted relative standard errors
were smaller in long studies than in corresponding short studies. Some optimal measurement
times were located in the regrowth phase, highlighting the importance of continuing the
experiment after the end of treatment. In the four-arm designs, the results showed that the
proportions of control and treated mice can differ. To conclude, making measurements
during tumor regrowth should become a general rule for informative preclinical studies in
oncology, especially when a delayed drug effect is suspected.

KEY WORDS: Fisher information matrix; oncology; optimal design; pharmacodynamic; tumor growth
inhibition models.

INTRODUCTION

The in vivo evaluation of antitumor effect is an
important step of preclinical drug development in oncol-
ogy. Experimental models in rodents have been devel-
oped in recent decades to assess the antitumor effect of a
new compound (1). Among in vivo preclinical studies,
the most popular is the xenograft model (2), that is the
human tumor transplanted into animals. Most recent
xenograft experiments have been performed on athymic
nude mice (3), which are mice with reduced capacity to
reject foreign cells. The common practice is either to
implant tumor fragments subcutaneously or to inject
tumor cells into the flank of athymic mice (4). When

the tumor has reached the desired volume, mice are
randomized into control and treatment arms receiving
either a vehicle (control arm) or the compound to be
tested at different dose levels or with different drug
administration schedules (treatment arms). Tumor sizes
are measured at repeated time points during the study
and specific metrics are then calculated to assess tumor
activity in the different arms (5). The main purpose of
those studies is to quantify the inhibition of tumor
growth provided by the treatment, which depends on
dose, time, and dosing regimen (4, 6). For this reason,
mathematical models able to dissect system-related from
drug-related parameters have been proposed to describe
and predict the antitumor effect of a new compound. We
chose to use the Simeoni tumor growth inhibition (TGI)
model (7, 8) for in vivo evaluation of antitumor effect in
xenografted mice. The Simeoni TGI model is a
pharmacokinetic-pharmacodynamic (PKPD) model in
which the dose of an anticancer compound is linked,
through concentration, to the inhibition of tumor growth.
By searching for papers that cite the model and looking
at author affiliations, we observed that the model is
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widely used in both industry and academia. It has been
used for analysis of hundreds of single-agent experiments
in preclinical studies in the industry (4, 9) and was
recently used to evaluate interaction effects when drugs
are administered in combination (9). Xenograft data may
be analyzed by various methods. One method is the
Bnaïve pooled data^ (NPD) approach (10) in which the
model can be fitted using standard nonlinear regression.
In this approach parameter estimation is straightforward
but does not model all sources of variability, so no
information about the differences between subjects is
considered. Nonlinear mixed effects models (NLMEMs)
(11–13) are a popular alternative approach. This method
is more complex than NPD, but has been increasingly
used in the biomedical field as it keeps all the data of all
subjects.

Before performing the experiment, it is important to
define an appropriate design, which implies there has to
be a good balance between the number of subjects, the
number of samples per subject, and the timing of
sampling and the doses, in line with the experimental
conditions. As reported in (4), until now, preclinical
studies have been rarely designed using optimal design
strategies. When planning a study, it is crucial to choose
a good design as it can play an important part in
parameter estimation (14), and poor design can lead to
inconclusive studies. As recommended in (4), designing
experiments with optimal design strategies would lead to
more informative studies and ensure more precise
parameter estimates for the selected model.

There are two main approaches to design evaluation.
The first, by trial simulation, involves parameter estima-
tion using numerous simulated datasets and thus is a
time-consuming method (15). The second approach,
which avoids simulation, relies on the Cramer-Rao
inequality, which states that the inverse of the Fisher
information matrix (FIM) is the lower bound of the
variance-covariance matrix of any unbiased parameter
estimate. Several criteria based on FIM have been
proposed. One is the D-optimality criterion, which
consists in maximizing the determinant of FIM, consid-
ering all model parameters. In NLMEMs, there is no
closed form of the likelihood and thus of FIM; therefore,
an approximation method must be used. Mentré et al.
(16) first introduced the first-order (FO) linearization
method and further approximations have been developed
since. FIM is implemented in several optimal design
software programs for NLMEMs (17, 18). These are as
follows: PFIM (19, 20), PopED (21), PopDes (22), and
POPT (23). These tools allow for design evaluation/
optimization by computing FIM and the D-optimality
criterion (24), and it was shown in (17) that they all
provide the same answer when using the same FO
approximation of FIM.

The aim of this study was thus to apply optimal design
strategies to the xenograft experiments analyzed with the
Simeoni TGI model, to derive some general rules that could
be used as guidelines for future preclinical studies in this field,

and to assess the impact of suboptimal design. More
specifically, in vivo tumor size measurements in xenograft
experiments are often taken only during and shortly after
treatment (25, 26), possibly preventing correct identification
of some parameters of TGI models (27). The first objective of
this study was to assess quantitatively in two-arm designs, i.e.,
one control and one treatment arm, the difference in terms of
precision of parameter estimation of taking samples only
during and shortly after the treatment administration, or also
later, during the tumor regrowth phase, by using standard
nonlinear regression or an NLMEM. The main idea behind this
thought is that the time efficacy index (TEI), which is a
secondary parameter of the Simeoni TGI model that is linked
to the drug potency parameter, is estimated better when
considering regrowth (8). Although many institutions have
already had the common intuition that sampling during tumor
regrowth would allow for more informative studies, to our
knowledge, this was never proven before.

The second objective of this work was to investigate the
influence of including arms with different doses or different
drug administration schedules in the trials, as well as the
number of treated and control mice to be used in the
experiments, when using NLMEMs.

MATERIALS AND METHODS

Experimental Settings

Several xenograft experiments were selected from the
literature (7, 28) involving various drugs with various modes of
action, different drug administration schedules, and cell lines.
The compounds tested in the experiments considered were
paclitaxel and 5-fluorouracil (5-FU), which are available on the
market, and two drugs (drug A and drug B) synthesized by
Pharmacia (7). The A2780 human ovarian carcinoma and
HCT116 colon carcinoma cell lines were used. Tumor fragments
were subcutaneously implanted into the left flank of athymic
nude mice and, one week after tumor inoculation, mice bearing
a palpable tumor were randomized into control and treatment
arms. Tumor dimensions were measured using calipers and the
tumormasseswwere calculated at each time twith the following
formula reported in (7):

w ¼ l⋅z
2

ρ ð1Þ

where l is the length of the tumor measured in millimeters
and z is the tumor squared width expressed in square
millimeters. It was assumed that the density ρ was equal to
1 mg/mm3 for tumor tissue such that the tumor weight w is
expressed in milligrams.

A schematic description of selected experiments is
reported in Table I. Experimental settings for experiments
1, 2, 9, and 10 were taken from (28), whereas the information
for the other experiments was found in (7).
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Tumor Growth Inhibition Model

The Simeoni TGI model is built based on the assumption
that tumor growth follows an exponential curve in the early
phases followed by linear growth (5, 7). The unperturbed
growth model for untreated mice is expressed with the
following differential equation (7):

dw tð Þ
dt

¼ λ0⋅w tð Þ

1þ λ1
λ0
⋅w tð Þ

� �ψ
� �1=ψ

w 0ð Þ ¼ w0

ð2Þ

where w0 is the tumor weight at inoculation time, and λ0 and
λ1 are parameters describing the rate of exponential and
linear growth, respectively. The parameter ψ is set to 20
ensuring a sharp system transfer from first-order growth
(exponential) to zero-order growth (linear) (7). With this
model, if the tumor weight w tð Þ is small, the denominator of
Eq. 2 can be approximated to 1 and then the tumor growth is
given by λ0∙w tð Þ; whereas when w tð Þ is large, 1 can be
neglected in the denominator and the tumor growth is
approximated by λ1. The system-related parameters of the
unperturbed model are therefore: λ0, λ1; and w0.

In the treatment arms, the action of the antitumor
compound prevents the proliferation of a proportion of
tumor cells, which go through a three-stage chain at a
constant rate of damage k1, with different levels of impair-
ment, and then, eventually, die. The antitumor potency is
characterized by the constant parameter k2, which is propor-
tional to c tð Þ∙x1 tð Þ, where c tð Þ is the drug concentration, which
can be predicted with a PK model, and xi tð Þ are the
proliferating cells in w tð Þ. A schematic representation of the
perturbed growth model is reported in Fig. 1.

The perturbed growth model for treated mice is de-
scribed with the following system of differential equations (7):

dx1 tð Þ
dt

¼ λ0⋅x1 tð Þ

1þ λ1
λ0
⋅w tð Þ

� �ψ
� �1=ψ

−k2⋅c tð Þ⋅x1 tð Þ

dx2 tð Þ
dt

¼ k2⋅ c tð Þ ⋅ x1 tð Þ− k1⋅ x2 tð Þ

dx3 tð Þ
dt

¼ k1 x2 tð Þ−x3 tð Þ½ �

dx4 tð Þ
dt

¼ k1 x3 tð Þ−x4 tð Þ½ �

w tð Þ ¼ x1 tð Þ þ x2 tð Þ þ x3 tð Þ þ x4 tð Þ
c tð Þ ¼ 0 for 0 < t ≤ t0

ð3Þ

where t0 represents the time of beginning of treatment.
Before the start of treatment, the concentration c tð Þ is equal
to 0 and the model follows an unperturbed growth, with
w tð Þ ¼ x1 tð Þ. After time t0, the model follows a perturbed
growth and w tð Þ ¼ x1 tð Þþx2 tð Þþx3 tð Þþx4 tð Þ.

The parameters of the perturbed growth model therefore
are: λ0, λ1, w0, and k1, k2, which are the system-related and
drug-related parameters, respectively.

For each proposed experiment, a PK model was used
in order to predict the c tð Þ needed for the treatment arm
in the TGI model. The PK model and its parameter

values were taken from the literature (7, 28). For
experiments 1 to 7 of Table I, a two-compartment model
with intravenous (i.v.) bolus was used, whereas in exper-
iment 8, a two-compartment model with continuous i.v.
infusion was used.

Figure 2 shows the simulated PK model and TGI model
for experiments 1 and 9 of Table I.

Statistical Model

In standard nonlinear regression, the vector yi of
observations yi1;…; yini measured from the subject i at
times ξi ¼ ti1;…tinið Þ is defined with yi ¼ f θi; ξið Þ þ εi
where f is the nonlinear structural model describing the
tumor growth over time and ξi is the elementary design
composed of ni sampling times. θi is the vector of p
individual parameters and εi is the vector of residual
error following a normal distribution εi eN 0; Σ θ; ξið Þð Þ
with Σ θ; ξið Þ ¼ diag σinter þ σslope � f θi; ξið Þ� �2. σinter is the
parameter for the additive error and σslope for propor-
tional error. The individual parameters vector is γ

0 ¼
θi;σinter;σslope
� �

.
In NLMEMs, all samples of all individuals are analyzed

simultaneously. The individual parameters θi for the ith subject is
modeled as θi ¼ μeηi with a fixed effect μ, which represents the
median values of the parameter in the population, and a random

effect ηi eN 0; Ωð Þ, whereΩ ¼ diag ω2
1;…;ω2

p

� �
accounts for the

between-subject variability. The population parameter vector is

Φ
0 ¼ μ1;…;μp;ω

2
1;…;ω2

p;σinter;σslope

� �
.

All parameter values used in this article are given in
Table I and were estimated from real experiments in (7)
for experiments 3 to 8, and in (28) for experiments 1, 2, 9,
and 10. Moreover, experiments 1 and 2 have the same
mean parameter values as experiments 9 and 10, respec-
tively, and experiments A and B in Table II have same
TGI model parameters as those of experiments 9 and 10
in Table I.

Optimal Design Strategy

Criterion and Optimization

For optimal design, we used the D-optimal criterion,
which corresponds to the maximization of the determinant

Fig. 1. Schematic representation of the Simeoni TGI model. The first
box represents the proliferating cells for which the tumor growth is
characterized by an exponential growth followed by a linear growth.
k2 is the parameter related to drug potency, C is the plasma
concentration of the anticancer agent and k1 is the parameter related
to the rate of death of the tumor cells
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of the individual or population FIM, corresponding to the
minimization of the confidence region associated with the
individual or population parameter estimates. The re-
ported optimality criterion is the determinant to the
power 1/p, where p is the total number of estimated
parameters in the model. A search for optimal measure-
ment times was performed using the Fedorov-Wynn
algorithm implemented in the R function PFIM, in the
PFIM 4.0 program (19, 29), in which both individual and
population FIMs can be computed.

Together with the optimal design, PFIM returns the
predicted relative standard error (pRSE) in percent for each
model parameter, and pRSE is defined as:

pRSE pð Þ ¼
SE φ̂

� �
φ

� 100 ð4Þ

where SE φ̂ð Þ is the expected standard error of parameter φ.

Two-Arm Designs

All experiments described in Table I were used for the
first objective of the present study, that is to assess quantita-
tively the difference in precision of parameter estimates in
two-arm designs, when taking four measurement samples
only during and shortly after the treatment period, compared
with taking measurements also later, in the tumor regrowth
phase. In experiments 1 to 8, only one mouse per arm was
included in order to perform individual design optimization.
This can be viewed as an NPD approach where mean data are
fitted, hence assuming that they come from a single mouse. In
experiments 9 and 10, four and seven mice were assigned to
each arm, respectively, such that population design optimiza-
tion could be computed.

For each experiment, two scenarios were thus consid-
ered: a Bshort study,^ in which it was possible to measure only
until 3 days after the end of the treatment period in order to
mimic the frequently adopted setting of those preclinical

Table II. Experimental and Optimal Designs Settings and Results in Four-Arm Designs from Reference (28)

Experimental settings Optimal design settings and results

Exp Drug Daily
Dose
(mg/kg)

Treatment Dosing frequency
(route: i.v. bolus)

Allowed sampling
window (days)

Optimal design (scenario 1) Optimal design (scenario 2)

Starting
day

Last
day

Optimized
times (days)

n
(optimized)

D-optimal
criterion

Optimized
times (days)

n
(fixed)

D-optimal
criterion

A 0 8–48 11, 26, 29, 41, 47, 68 6 2100 8, 11, 14, 17, 47, 49 4 1924
Paclitaxel 20 8 16 every 4 days 8–68 0 8, 11, 14, 32, 56, 68 4

30 8 16 every 4 days 8–68 0 8, 11, 23, 44, 47, 68 4
40 8 16 every 4 days 8–68 8, 11, 14, 17, 47, 49 10 11, 23, 26, 29, 41, 68 4

B 0 9–27 9, 11, 17, 23, 25, 27 10 4708 9, 10, 11, 16, 26, 27 7 4643
drug B 60 9 12 bid 9–33 9, 11, 15, 23, 31, 33 9 10, 11, 16, 22, 32, 33 7

60 9 9 tid 9–29 0 9, 12, 14, 20, 28, 29 7
60 9 19 qd 9–35 9, 11, 13, 21, 27, 35 9 11, 14, 22, 27, 34, 35 7

TGI parameters for experiment A and B are those of experiment 9 and 10 of Table I, respectively

Fig. 2. Simulated PK (left) and PD (right) for experiments 1 and 9 of Table I. The PK is a two compartment model i.v. bolus with multiple doses
administration (of 30 mg/kg given every 4 days for three times). The PD is the TGI model for a two-arm experiment with control arm (black
curve) and treatment arm (purple curve)
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studies, and a Blong study,^ in which measurements could be
taken also later, after the end of the treatment period, during
the tumor regrowth phase, but for ethical reasons only up to a
tumor weight of 6 g. Note that 6 g is an overestimated
threshold adopted to emphasize the impact on precision of
parameter estimates in short versus long studies. See the
BDISCUSSION^ section for more details. The two scenarios
therefore only differ in the chosen range of allowed sampling
times, in the optimal design settings. The parameters were
used to simulate the tumor weight with and without treatment
for each experiment, to define the time when a tumor weight
of 6 g was reached. Allowed sampling time ranges for the two
scenarios are reported in Table I under the BSampling
window^ column for both treatment and control arms, first
line for the short study and second line for the long study.
Note that in the long study, treatment arms should have
larger allowed sampling time windows compared with those
for the corresponding control arms, as treated mice reached a
tumor weight of 6 g later, because of the treatment effect.

The allowed sampling times were chosen based on the
time ranges defined for each experiment. In short studies, a
dense grid for each day in the range was set as the allowed
sampling times, except for experiment 5 in which the allowed
times were allocated every other day. In long studies, the
allowed sampling times were allocated every other day, if the
last time in the range was before day 38, every 3/4 days if the
last time in the range was before day 50 and every 4 or 5 days
for the long studies of experiments 1 and 9, in which the last
allowed time was day 68.

Optimization of sampling times from the allowed sam-
pling window was performed simultaneously in control and
treatment arms for each selected experiment and for short
and long studies. In the individual design optimization, for
experiments 1 to 8, the model was implemented as a two-
response model, each response corresponding to one arm.
For experiments 9 and 10 and population design optimization,
as the Fedorov-Wynn algorithm would also optimize the
proportion of subjects per arm, two steps were used to get the
optimal times with a fixed number of mice per arm. The
model was implemented as a single response model with a
two-arm design. As currently in PFIM, the same allowed
sampling window should be set for the two arms—the
treatment arm window was chosen, as it includes all the
possible times for both arms. Optimal design was performed
and the optimal times obtained were stored. For the control
arm, optimal times exceeding the allowed range were
replaced by the last possible times. We then performed two-
arm design evaluation of all possible combinations of four
times among the optimal times found in the previous step for
a fixed number of mice in each arm. The two-arm design with
the combination that led to the highest criterion was defined
as the optimal design.

pRSE (%) were used to compare long and short studies
in all the experiments, knowing that the lower pRSE (%)
would guarantee the more precise parameter estimates for
the study considered.

Graphs of sensitivity functions, i.e., partial derivatives of
the Simeoni TGI model prediction with respect to each
parameter, were used to visualize the impact of each model
parameter through time. Sensitivity functions with respect to
each parameter provide knowledge on the design values (e.g.,

tumor weight measurement time) leading to the greatest
information, i.e., the times for which the square of the
sensitivity function is maximal. Figure 3 displays the graph
of sensitivity functions for experiments 1 and 9. The PFIM
input and output files for experiment 1 are reported in the
supplementary material.

Four-Arm Designs

The second objective of this study was to apply optimal
design in the context of four-arm designs, i.e., one control and
three treatment arms, with (i) different doses per arm or (ii)
different drug administration schedules per arm. The exper-
iments used for this purpose were experiments A and B
reported in Table II, which were analyzed by an NLMEM.
Experiment A had three different doses of 20, 30, and
40 mg/kg in each treatment arm, respectively, whereas
experiment B had three different drug administration sched-
ules: i.v. bolus bid, i.e., twice a day, in treatment arm 1; i.v.
bolus tid, i.e., three times a day, in treatment arm 2; and i.v.
bolus qd, i.e., once daily, in treatment arm 3. The allowed
sampling time ranges for treatment and control arms were
defined as before, using the criterion of stopping the study
when the tumor weight reached 6 g.

In a first scenario, six sampling times from the allowed
sampling times were optimized with the Fedorov-Wynn
algorithm. The initial design for experiment A consisted of
four mice per arm at six times; 8, 17, 20, 26, 29, 35 days,
arbitrarily chosen. The same was true for experiment B,
where the initial design consisted of seven mice per arm at the
six times: 11, 13, 15, 17, 19, 21 days. Using the Fedorov-Wynn
algorithm in PFIM for optimization could lead to some arms
being dropped from the experiment. The model was imple-
mented as a one-response model and in a first scenario the
four-arm design was optimized using the same approach that
was applied to optimize the two-arm design for experiments 9
and 10 of Table I, with the exception that the arms and
number of mice per arm were those found to be optimal with
the Fedorov-Wynn algorithm instead of being fixed.

As it might be useful to keep all the arms, in a second
scenario a different approach was used. First, three two-arm
designs were optimized (control and treatment arms 1, 2, or
3) with four mice and seven mice in each arm of experiments
A and B, respectively. Optimal design of the three two-arm
designs was obtained using the same approach as that used
for experiments 9 and 10 of Table I. The four-arm design with
the previously obtained optimal times for each arm could
then be evaluated, keeping fixed the number of mice per arm.

RESULTS

Two-Arm Designs

Optimal sampling times obtained simultaneously in the
control and treatment arms of all the selected experiments in
short and long studies are reported in Table I. In long studies,
some optimal times were located in the regrowth phase of
treatment arms, highlighting the importance of continuing the
experiment after the end of the treatment. These results were
obtained for all two-arm experiments, i.e., one treatment and
one control arm, either when only one subject was assigned
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per arm, as for experiments 1 to 8, or when more mice were
included in each arm, as for experiments 9 and 10, using a
population approach.

Graphs showing results for experiment 1 are reported in
Fig. 4. In the graph on the left, it is noticeable that two out of
four optimal sampling times obtained in the long study lie on
the last times of the curve. In the graph on the right, it is
evident that pRSE (%) of the Simeoni TGI model parame-
ters obtained in long studies (blue bars) were better than

those obtained in the short study (red bars) of the corre-
sponding experiment. Sensitivity graphs related to experi-
ments 1 and 9 (Fig. 3) provide a visual check of the impact of
model parameters through time for those experiments. When
focusing on the fixed effects of the drug-related parameters k1
and k2, it is noticeable that they start to be informative, i.e.,
the curve stops being constant at 0, when the treatment is
given (day 8), and they both reach an optimum after the end
of treatment, at around day 25 and day 35, respectively.

Fig. 3. Graphs of sensitivity functions of tumor weight (w) versus time for TGI parameters in treatment arm and control arm obtained for
experiments 1 and 9 of Table I

Fig. 4. Optimal times (left) in the long study (dark blue symbols) and short study (red symbols) and predicted RSE (%) in TGI model
parameters (right) for experiment 1 of Table I. In the left panel red dashed lines define the end of the short study; dashed black and purple lines
define the end of the long study for control and treatment arm, respectively
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Similar reasoning regarding sensitivity graphs was possible for
the other experiments, but it was chosen not to report all the
graphs in the article.

Ratios of pRSE (%) from short to long studies (Fig. 5)
were calculated for all experiments reported in Table I for the
treatment-related parameters k1 and k2. The ratio was greater
than 1 in all experiments, proving that pRSE (%) in long
studies were better than the corresponding pRSE (%) in
short studies.

Four-Arm Designs

For experiment A in Table II, not surprisingly, it was
found that the highest dose (40 mg/kg) gave the greatest
information, indeed although the initial design had four arms
with four mice per arm, the design obtained after the
optimization of FIM was a two-arm design with six control
mice, 37.5% of the total number, and ten treated mice, 62.5%
of the total number, at the highest dose (40 mg/kg). The
criterion obtained for the optimal design was 2100, which is
much higher than the criterion obtained for the initial design
of 1255, i.e., an increase of efficiency of 1.67. The criterion
obtained for the four-arm design with four mice per arm was
1924, i.e., a small loss of efficiency of 0.92 from the optimal
design, but a gain of efficiency of 1.53 from the initial design.
An evaluation of the first optimal two-arm design was
performed including eight mice in each arm to investigate
the loss of having 50% of control and treated mice instead of
37.5% and 62.5%, respectively. The criterion found was 2049,
i.e., a small loss of efficiency of 0.98. Graphs showing the
initial design, the two-arm design and the four-arm design are
in Fig. 6, top panel.

For experiment B, the criterion obtained with the initial
design was 2765 and the optimal design obtained was a three-
arm design, thus only one arm was Bexcluded^ from the
optimal design: treatment arm 2 with tid treatment. The
proportions of treated and control mice were approximately
the same as for the first example: 64% treated, of which nine
mice in both treatment arms 1 and 3, and 36% controls, which
is ten mice. The criterion obtained was 4708, i.e., an increase
of efficiency of 1.70. The criterion obtained for the four-arm
design with seven mice per arm was 4643, i.e., a small loss of
efficiency of 0.99 from the optimal design, but a gain of
efficiency of 1.68 from the initial design. Graphs showing the

initial design, the three-arm design, and the four-arm design
are in Fig. 6, bottom panel.

DISCUSSION

Optimal design strategies have rarely been applied to
experiments concerning the in vivo evaluation of antitumor
effect in xenografted mice (4), and none of them, to our
knowledge, have approached the question using optimal
design theory. Some work on design of xenograft experiments
has been published (30), but the focus was on comparing
treatment and control groups, disregarding the correct
estimation of drug-related parameters. The use of optimal
design will ensure more informative studies and provide
measurement times that guarantee the smallest pRSE for the
model parameters. In the present work, optimal design was
performed for the Simeoni TGI model, for different sets of
experiments, in order to answer some important questions
arising from these studies.

Optimal designs strategies applied in two-arm designs,
i.e., control versus treatment, showed that studies curtailed
three days after the end of treatment administration led to a
much higher pRSE of the drug-related parameters k1 and k2,
compared with those obtained in longer studies, where for
ethical reasons tumor growth measurements could only be
taken until tumor weight reached 6 g. This result proved that
short studies would likely prevent correct identification of
parameters k1 and k2, whereas long studies should ensure
more precise estimates of Simeoni TGI model parameters,
leading to a more informative study. This can be considered
as a proof-of-concept study, where the hypothesis has been
stated in the past by many laboratories and in (27), but has
never been proved before, to our knowledge. Graphs of
sensitivity functions through time (Fig. 3) showed the time
points in which the Simeoni TGI model parameters were
more informative in each experiment, underlying the fact that
parameters k1 and k2 increase their impact starting from the
treatment period, and continuing also afterwards, during the
regrowth phase. These results were observed in all the
experiments of Table I, where either individual or population
approaches were used. Moreover, those experiments were
performed for different cell lines, drugs, and drug adminis-
tration schedules. Furthermore, the optimal sampling times
reported in Table I were located in the last part of the
regrowth phase at least two out of four times, which partially

Fig. 5. Ratio of predicted RSE (%) of short study to long study in two-arm designs for
drug-related parameters k1 (blue bars) and k2 (pink bars) for the experiments listed in
Table I
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supports the initial intuition that sampling during the tumor
regrowth phase would ensure more informative studies.

In some laboratories, experiments stop when the tumor
reaches 2 g (5), disregarding the fact that the regrowth rate
may be well visible and then model parameters could be well
estimated. Furthermore, other researchers stop analyzing
when the tumor weight in the control group reaches the
maximum allowed by the Institutional Animal Care and Use
Committee (IACUC) (31), which corresponds to 4 g. This
may be an issue for the estimation of drug-related parame-
ters, in cases where the tumor in the treatment group has not
started regrowing by the time the control group has reached a
tumor weight of 4 g. Note that 6 g is an overestimated
threshold adopted to emphasize the impact on precision of
parameter estimates in short versus long studies. However,
results are substantially confirmed also choosing lower limits.
It should also be considered that longer studies may cost
more than short studies. A cost-efficacy analysis could be
performed in order to define a good balance between
information acquisition and cost, as envisaged in our study.

The conclusion drawn from the results discussed in this
first part is that making measurements during tumor regrowth
should become a general rule for informative preclinical
studies in oncology, independently of adopting standard
nonlinear regression or an NLMEM approach.

Using a population approach, we further investigated the
application of optimal design strategies to four-arm designs in
two experiments with several mice included in each arm,
considering for the three treatment arms either three
different doses or three different drug administration sched-
ules and the same dose. The former optimal design experi-
ment led to the expected conclusion that the treatment arm
with the highest dose would provide the greatest information,
and the other treatment arms were excluded from the optimal
design. We may suspect that in cases where the relationship

between drug concentration and cell killing effect is not
linear, intermediate doses might be selected by the optimal
design, but these analyses were not performed in this work. In
preclinical trials, intermediate doses are often studied to
answer other experimental questions, e.g., toxicology studies.
We therefore evaluated an optimal four-arm design including
also intermediate doses and using the same number of mice in
each arm. We found that keeping the intermediate doses did
not lead to a large loss of information, compared with the
optimal two-arm design obtained with the highest doses. For
the latter experiment with different dosing regimens, the
same optimal design strategy was employed. In the optimal
design, one treatment arm with a Bpoor^ drug administration
schedule was excluded, but in the optimal four-arm design
evaluation with same number of mice per arm it was again
found that this experiment did not greatly reduce the
information yielded by the study. For both experiments, the
proportions of mice were approximately 63% treated mice
(divided in the treatment arms) and 37% control mice. As
computation of FIM is independent of the number of
subjects, these proportions should remain the same when
performing the same experiment with a different number of
mice in the initial design.

In this work, the design variable to be optimized was the
sampling time, but dose and dosing regimen could also be
considered as design variables. It would be interesting for
future studies to investigate the impact of dosing for longer
compared with shorter times.

In optimizing design, it is necessary to define the
model and parameter values for the model at the
beginning of the analysis. In practice, the values for the
parameters can be taken from previous experiments. The
estimation of parameters from well-planned experiments
based on these D-optimal designs provides better esti-
mates than the initial ones and optimal design can be

Fig. 6. From left to right: initial design, optimal design for first scenario, and optimal design for second scenario (i.e., with fixed proportions of
mice per arm) for Exp A (top panel) and Exp B (bottom panel). D-optimal criteria (BCrit^) obtained for each design are specified inside each
corresponding graph
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generated with this new set of parameters for subsequent
studies. For laboratories in which xenograft experiments
are routinely performed, optimal design could be applied
in a sequential manner, to fine-tune the experimental
design. A limitation of this work is that the model
parameters were assumed to be true and error-free.
Indeed, the D-optimality used here does not handle
uncertainty in parameters. To introduce uncertainty in
the parameters, several robust design criteria (32–34) have
been developed in recent years, based on the assumption
of assigning prior distributions for the parameters, rather
than constraining them to a fixed value. An alternative to
robust design methods could be to apply two-stage
adaptive design (35), e.g., starting the experiment with a
small number of mice in the first cohort and then
performing a second part of the experiment with a better
design. Moreover, considering the model as true could
also be a limitation. The concept of robustness could be
extended across models, leading to model averaging
criteria (36), which could be considered for application
in future studies.

We would like to stress the fact that in the present work
the performance of the optimal designs in long and short
studies was compared based on the predicted precision of the
model parameters. Complementary to this analysis, Monte
Carlo simulations could be performed to obtain the empirical
precision and biases of the parameter estimates, considering
that parameter estimation would be computed for a certain
number of simulated datasets, for which responses are
simulated at the optimal times found in the optimal design
analysis. The Monte Carlo approach could thus be considered
for use in future studies.

An additional limitation of this work is that the number of
sampling times to be optimized was kept low, i.e., either four or six
times for each experiment described in Tables I and II, respectively.
But it may be important for researchers to take more measure-
ments in long studies, to keep track of tumor size more frequently.
In practice, measurements are taken at a higher frequency, also
considering the fact that caliper readings are relatively inexpensive.

Another limitation of our work relates to software
limitations. It would be interesting to introduce more
flexibility into the design optimization settings by requiring
optimal time ranges instead of optimal fixed times.

CONCLUSION

To conclude, this work was a first attempt to provide
some general guidelines for preclinical xenograft experiments
and proved that optimal design can help us perform more
informative preclinical tumor growth inhibition studies, by
measuring tumor growth for longer after the end of treat-
ment, thus ensuring more precise model parameter estimation
and, hence, better translation into clinical studies.
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Chapter 3

Adaptive design in pharmacometrics

3.1 Summary

Adaptive designs are a promising alternative to robust design, for taking uncertainty

in the model parameters into account. In traditional "local" designs, parameters are fixed

during the study; adaptive designs (ADs) are more flexible designs as they allow to modify

predefined aspects – such as parameter values – while the study is still ongoing, using the

accruing information (Chang, 2007; Foo and Duffull, 2012).

Some important steps in AD are choosing the number of stages one wants to compute,

i.e. the number of times parameters estimation and adaptations will be performed, and the

cohort size to be set for each stage.

The example used, concerns a PKPD model in oncology, based on the SMAD

phosphorylation (pSMAD) biomarker, and developed for a novel oral transforming growth

factor β (TGF-β) inhibitor (Gueorguieva et al., 2007; Bueno et al., 2008). This example was

proposed by the EFPIA, for DDMoRe. In this study the aim was at evaluating ADs by clinical

trial simulation and to compare them with one-stage designs, i.e., when no adaptation is

performed, using wrong prior parameters.

The PKPD model was assumed known. Two sets of population parameters were

considered: wrong "prior" parameters (Gueorguieva et al., 2014)Ψ0, and "true" parameters,

Ψ∗. We evaluated several designs of N = 50 patients: two one-stage designs ξ0 and ξ∗
optimized withΨ0 andΨ∗, respectively, and various two-stage designs with different cohort

sizes at each stage (N1 +N2 = N ). Two-stage designs have N1 patients with design ξ0 in the

first cohort and N2 = N patients with design ξ2 in the second cohort, where ξ2 is optimized

using parameter estimates from data collected after first stage. We finally compared a two-

stage adaptive design with N1 = 10 patients in the first cohort with 2 three- and 1 five-

stage adaptive designs with the same number of patients in the first cohort as in the two-

stage design. Design optimization was performed using the FW optimization algorithm and

the determinant of FIM, which was computed by FO linearization of the structural model

around the random effects (Mentré et al., 1997) with block diagonal expression (Mielke and

Schwabe, 2010; Nyberg et al., 2015), in PFIM 4.0. For the adaptive designs, prior information
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obtained after each stage was incorporated in the evaluation of FIM.

We simulated 100 datasets for each scenario using true parametersΨ∗. Parameters were

then estimated – after each cohort, for adaptive designs – using the SAEM algorithm in

MONOLIX 4.3 (Lavielle, 2014).

Results showed that adaptive design is useful in case of wrong prior information on

parameters, allowing to improve the design and obtaining meaningful results, almost as

good as the optimal design if good priors were assumed.

Comparison of two-stage designs of different cohort size showed that the balanced

design, with same size for the two cohorts, performed better. Two-stage designs with a small

initial cohort could be reasonable to be used in some situation, for instance in early phases

for ethical and safety reasons. Estimation results for designs with a large first cohort were

less satisfactory compared to the other two-stage designs, because the few patients included

in the second stage were not enough to correct for the wrong initial design. In case of small

first cohort, more adaptations are needed but these designs are more complex to implement

in clinical practice.

To conclude, this study confirmed for a PKPD simulation study in oncology that two-

stage design can be useful when the correct prior information is not available. Moreover,

it can be more suitable in clinical practice than designs with more stages, as only one

adaptation is needed.

For further information on adaptive design method, various publications may be

examined, as those here listed: Gautier and Pronzato (1999); Dette et al. (2013); Pronzato

and Pázman (2013b); Lane et al. (2014).
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3.2 Article II (published)
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ABSTRACT
Purpose In this study we aimed to evaluate adaptive designs
(ADs) by clinical trial simulation for a pharmacokinetic-
pharmacodynamic model in oncology and to compare them with
one-stage designs, i.e., when no adaptation is performed, using
wrong prior parameters.
Methods We evaluated two one-stage designs, ξ0 and ξ*,
optimised for prior and true population parameters, Ψ0 and
Ψ*, and several ADs (two-, three- and five-stage). All designs
had 50 patients. For ADs, the first cohort design was ξ0. The next
cohort design was optimised using prior information updated
from the previous cohort. Optimal design was based on the
determinant of the Fisher information matrix using PFIM. Design
evaluation was performed by clinical trial simulations using data
simulated from Ψ*.
Results Estimation results of two-stage ADs and ξ* were close
and much better than those obtained with ξ0. The balanced two-
stage AD performed better than two-stage ADs with different
cohort sizes. Three- and five-stage ADs were better than two-
stage with small first cohort, but not better than the balanced two-
stage design.
Conclusions Two-stage ADs are useful when prior parameters
are unreliable. In case of small first cohort, more adaptations are
needed but these designs are complex to implement.

KEY WORDS adaptive design . Fisher informationmatrix .
nonlinear mixed effects model . optimal design .
pharmacokinetic-pharmacodynamic

ABBREVIATIONS
AD Adaptive design
FIM Fisher information matrix
NLMEM Nonlinear mixed effects model
PD Pharmacodynamic
PK Pharmacokinetic
REE Relative estimation error
RRMSE Relative root mean squared error
TGF-β Transforming growth factor β

INTRODUCTION

Nonlinear Mixed Effects Models (NLMEM) [1] are increas-
ingly performed for analysis of pharmacokinetic and pharma-
codynamic (PKPD) data of preclinical or clinical studies [2, 3]
in drug development and drug use.

The design of a so-called population PKPD study, that is
the number of patients, the sampling times for each patient
and their allocation in time, plays an important role on pa-
rameter estimation [4]. Choosing a good design when plan-
ning a study is essential and it is a crucial step as poor design
can lead to inconclusive studies. For the evaluation and opti-
misation of population designs, the first approach was clinical
trial simulation, which involves parameter estimation and thus
is a time-consuming method [5]. The approach that avoids
simulations, based on the Fisher information matrix (FIM) for
NLMEM utilizing first-order (FO) linearisation method [6],
has been first proposed by Mentré et al. in 1997 and several
developments have been done since then. Different software
are in use to perform optimal design in NLMEM [7, 8]; these
are: PFIM [9, 10], PopED [11], PopDes [12], POPT [13].
Within those, one can evaluate the different designs by com-
puting FIM and perform design optimisation based on the D-
optimality criterion, i.e., maximization of the determinant of
FIM. Furthermore, it was shown in [8] that all software
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provided with the same answer using the same FO approxi-
mation of FIM.

Optimal designs depend on a priori information, both on
models and parameters, which can be partially wrong as they
may be difficult to guess. Currently, population designs are
often fixed for the whole study with data analyzed at its end.
Local optimal designs are optimised based on a set of param-
eters values known a priori, whereas in robust optimal designs
[14–16], a prior parameter distribution is defined.

Adaptive designs (ADs) are promising alternatives to local
or robust designs [17]. As opposite to traditional clinical stud-
ies, ADs are clinical trial designs that use accumulating infor-
mation in order to decide how to modify predefined aspects of
the study during its implementation instead of leaving them
fixed until the end [18, 19]. This is very important, for in-
stance when designing a clinical trial, having only prior infor-
mation on preclinical data, or designing a study in children
from adults information. ADs are useful to provide some flex-
ibility during the design but were rarely used for NLMEM
[20]. Nevertheless, according to a survey by Mentré et al.[7],
adoption of adaptive design approach for population PKPD
studies is promising in pharmaceutical industries. It was
shown, in previous studies not concerning NLMEM, that
two-stage designs could be more efficient than fully adaptive
designs [21] when the adaptation is performed after each pa-
tient. Chen et al.[22] compared three- versus two-stage AD.
They found that the gain of extending a two-stage design
approach to three-stage design is not as relevant as compared
to the advantage of using two-stage instead of one-stage de-
sign. Moreover, two-stage designs are easier to implement in
clinical practice as only one adaptation is performed.

Some important steps in AD are choosing the number of
stages one wants to compute, i.e., the number of times param-
eters estimation and adaptations will be performed, and the
cohort size to be set for each stage.

For NLMEM, Dumont et al. [23] implemented the optimi-
sation of the determinant of FIM for two-stage adaptive de-
signs. In that paper [23] a simulation study that mimicked the
design of a pediatric PK trial was used and it was analyzed
through NLMEM. For the first stage, parameters were
guessed from adults. Simulations of one- and two-stage de-
signs were evaluated assuming that some parameters were
different than the initial ones. They showed the applicability
and usefulness of the approach that we wish to further inves-
tigated in this study in a more complex example.

The example used for this study concerns a PKPD model
in oncology, based on the SMAD phosphorylation (pSMAD)
biomarker, and developed for a novel oral transforming
growth factor β (TGF-β) inhibitor [12, 24]. TGF-β, plays an
important role on regulation of many physiological processes.
TGF-β signalling leads to phosphorylation of SMAD com-
plexes which stimulates transcription of TGF-β responsive
gene. The compound LY2157299, that is a small molecule

TGF-β inhibitor, inhibits the TGF-β induced Smad phos-
phorylation [25].

The objective of the present work is to evaluate by clinical
trial simulation two-stage ADs for this model and compare
them with one-stage designs, i.e., when no adaptation is per-
formed, when wrong prior parameters are used. We then
studied the influence of the size of each cohort in two-stage
ADs. Finally we studied extensions of two-stage AD, not yet
investigated in NLMEM, as three- and five-stage ADs. We
used the new release of PFIM 4.0, where prior information
can be incorporated on FIM evaluation and/or optimisation
in order to perform adaptive design [10, 23].

MATERIALS AND METHODS

Standard NLMEM

In NLMEM, the vector of observations yi for the i
th individual

is described by a function f that depends nonlinearly on
the p-sized vector of individual parameters ϕi and on
the elementary design ξi of ni sampling times ti1; ::tnið Þ then
yi=f(ϕi,ξi)+єi. The model can also be defined as yi=f(g(β,bi),
ξi)+єi, with ϕi=g(β,bi), where β is the p-sized vector of fixed
effects parameters, bi are the random effects assumed normal-
ly distributed with zero mean and variance Ω. The standard
functions for g are g(β,bi)=β+bi and g(β,bi)=β×exp(bi), cor-
responding to additive or exponential random effects, respec-
tively. Here it is further assumed that Ω is a p×p diagonal
matrix with diagonal elements the variances ωs

2,s=1,..,p each
one corresponding to the variance of the sth component of the
vector bi. The ni -vector of residual errors єi is normally dis-
tributed with zero mean and variance equal to Σ(β,bi,σinter,
σslope,ξi)=diag(σinter+σslope×f(g(β,bi),ξi))

2, where σinter and
σslope are the standard deviations of the additive and propor-
tional components respectively.

The vector of the population parameter Ψ is composed of
the vector of fixed effects β and the vector of variance terms
λ′=(ω1

2,…,ωp
2,σinter,σslope), such that Ψ′=(β′,λ′).

Adaptive Population Design

A fixed population designΞ, i.e., a one-stage design, is defined
by the total number N of individuals and the set of individual
elementary designs to be performed in each individual: ξ1,…,
ξN with a total number of observations ntot=∑i=1

N ni, so that
Ξ={ξ1,…,ξN}. A special case is when the same elementary
design is performed in all individuals (ξi=ξ for i=1,…,N),
then ntot=n×N and Ξ={ξ;N}. In the case of K-stage design,
K population designs are defined for N1,…, NK groups of
individuals (N1+…+NK=N) and are denoted by Ξ1,…, ΞK.

In this work, the following assumptions were made: i) the
same elementary design ξk is performed for all individuals
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within each cohort k; ii) the size of each cohort Nk (k=1,…,K)
is fixed, and iii) the number of sampling times n in each ele-
mentary design is fixed and is the same for each cohort.

The K-stage adaptive design schema is shown in Fig. 1 and
the approach can be defined as follows. For the first
stage, data Y1 are collected for N1 individuals with a
prior design ξ1 optimised from prior parameters Ψ0.

Population parameters bΨ1 are then estimated from the col-
lected data. At the kth stage, data Yk are collected for Nk indi-
viduals with design ξk, where ξk is optimised using parameter

estimates bΨk−1. Population parameters bΨk can thus be esti-
mated with both data Y1,…,Yk gathered together from N1+
…+Nk individuals. The process of adaptation continues until
the last step, that is the Kth stage, where the final parametersbΨK are estimated using data Y1,…,Yk,…,YK, collected for
N1+…+Nk+…+NK=N individuals.

Several approaches can be used for design optimisation,
here D-optimality criterion was used, which is the
maximisation of the determinant of the Fisher information
matrix.

Fisher Information Matrix

Let l(Ψ|y) be the log-likelihood of the vector of observations y
for an individual (the index i is omitted for simplicity) for the
population parameters Ψ. The elementary FIM for that indi-
vidual with design ξ is defined as

MF Ψ; ξð Þ ¼ E −
∂2l Ψjyð Þ
∂Ψ∂Ψ0

� �
: ð1Þ

Because of nonlinearity of the model f(g(β,b),ξ), there is no
analytical expression of the log-likelihood and therefore of
FIM. Several approaches have been developed in the years
to compute FIM. Although there is no clear consensus on
what is the best approximation, in this approach by FO line-
arization of the structural model around the random effects it
is assumed the choice of block diagonal expression [8, 26].

As shown in Dumont et al. [23], in adaptive design, the
population FIM in the first stage can be written as

M1
F ¼ MF Ψ0;N1ξð Þ ¼ N1MF Ψ0; ξð Þ ð2Þ

A design ξ1 maximises the determinant of MF
1.

At the kth stage, using parameters estimates from the pre-

vious stage (bΨk−1), the design ξk corresponds to the maximum
of the determinant of Fisher information matrix MF

k , where

Mk
F ¼ MF bΨk−1;N1ξ1 þ ⋯þNk−1ξk−1 þ Nkξ

� �
¼ N1MF bΨk−1; ξ1

� �
þ ⋯þ Nk−1MF bΨk−1; ξk−1

� �
þ NkMF bΨk−1; ξ

� �
ð3Þ

so that

ξk ¼ argmax
ξ

det Mk
F

� �� � ð4Þ

The process continues until the last stage (K) where the
population FIM can be written as:

MK
F ¼ MF bΨK−1;N1ξ1 þ ⋯þNK−1ξK−1 þ NKξ

� �
¼ N1MF bΨK−1; ξ1

� �
þ ⋯þ NK−1MF bΨK−1; ξK−1

� �
þNKMF bΨK−1; ξ

� �
ð5Þ

and ξK is the optimal design for MF
K:

ξK ¼ argmax
ξ

det MK
F

� �� � ð6Þ

Fig. 1 Schema of K-stage adaptive
design.
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Simulation Study

The example used in this study is based on a PKPD model
published in [12] for the compound LY2157299, a small mol-
ecule TGF-β inhibitor. A single oral daily dose of 80 mg was
considered.

In the model reported in the literature, the PK was
modelled by a one-compartment first-order absorption model
given by:

C tð Þ ¼ D
V

ka
ka− CL=Vð Þ e− CL=Vð Þ⋅t−e−kat

� �
ð7Þ

where D is the dose, ka is the first order rate constant
of absorption, V is the volume of distribution, CL is the
clearance. Please note that CL and V are apparent
volume and clearance. As there is no data after intra-
venous administration, bioavailability of typical individ-
ual was set to 1. The inhibition of TGF-β signalling by
the treatment is represented by a turnover model [12],
that is a simplification of the semi-mechanistic model devel-
oped by Bueno et al.[24]:

dR tð Þ
dt

¼ ksyn 1−Imax
C tð Þ

C tð Þ þ IC50

� �
−koutR tð Þ ð8Þ

where R(t) is the quantity of pSMAD (correlated to TGF-β
activity); ksyn and kout are a zero order rate constant of synthe-
sis and a first order rate constant of degradation of pSMAD,
respectively, and IC50 is the concentration necessary to
achieve 50% maximum inhibition. The maximum inhibitory
response Imax was set to 1. A graphical representation of the
model is shown in Fig. 2.

The PD used in the modelling is I(t), the relative inhibition
of TGF-β defined by:

I tð Þ ¼ R0−R tð Þ
R0

ð9Þ

where R0 is the baseline pSMAD equal to ksyn
kout

. The PD model

is therefore rewritten as follow:

dI tð Þ
dt

¼ kout Imax
C tð Þ

C tð Þ þ IC50
−koutI tð Þ ð10Þ

Two sets of PK and PD parameter values were defined for
this study (Table I): prior (wrong) parameters Ψ0 and true
parameters Ψ*. Prior parameters for PK were those coming
from a PK analysis for the clinical study [25], whereas for the
PD, similar values to those obtained in a preclinical study [24]
were assumed. Concerning the true parameters Ψ*, it was
assumed that prior values were correct except for CL and kout
which were set to be four fold smaller and ten folds smaller,
respectively. The PKPD model for the two sets of parameters
is displayed in Fig. 3.

Exponential random effect model was chosen for all pa-
rameters with similar inter-individual variability of 70% ex-
cept for ka whose variability was set to 0. Proportional error
model and additive error model were assumed for PK and PD
respectively, with σprop and σinter set to 0.2.

Evaluated Designs

Several one-stage designs, i.e., non-adaptive designs, various
two-stage ADs, two three-stage and one five-stage ADs were
considered for a total number of N=50 patients.

The evaluated one-stage designs were: first a rich design,
ξrich, with n=6 sampling times, 0.1, 0.5, 1.5, 4, 6, 12 h for both

Fig. 2 Graphical representation of the PKPD model.

Table I PK and PD Parameter of the Oncology Model Used in the Simu-
lation Studies: Prior (Ψ0) and True (Ψ*)

PK Parameters Prior (Ψ0) True (Ψ*)

ka (h
−1) 2 2

V (L) 100 100

CL (L h−1) 40 10

ω2
ka

0 0

ω2
V 0.49 0.49

ω2
CL 0.49 0.49

σinter,PK 0 0

σslope,PK 0.2 0.2

PD Parameters

kout (h
−1) 2 0.2

IC50 (mg L
−1) 0.3 0.3

ω2
kout

0.49 0.49

ω2
IC50

0.49 0.49

σinter,PD 0.2 0.2

σslope,PD 0 0
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PK and PD; then two optimal designs with n=3 samples
among the n=6 sampling times in ξrich that could differ be-
tween PK and PD. These designs are: ξ0, D-optimal design for
the prior parametersΨ0 and ξ*, D-optimal design for the true
parameters Ψ*. For ξ0 the optimal sampling times were for
PK: 0.1, 4, 12 h and for PD: 0.5, 1.5, 4 h. For ξ* the optimal
sampling time were for PK: 0.1, 4, 12 h and for PD: 4, 6, 12 h.
It should be noted that they are similar for PK and rather
different for PD. A mixed design ξ0* with N1 =25 patients
with design ξ0 and N2 =25 patients with design ξ* was also
evaluated. ξ0* can be considered as a special case of two-stage
design that would occur in the ideal case of estimating after the
first stage the exact set of true parameters values, that isbΨ1 ¼ Ψ�. Graphs of PK and PD simulated models with pa-
rameters Ψ0 and Ψ* and optimal designs ξ0 and ξ* are shown
in Fig. 3.

The two-stage designs evaluated in this study were: first a
balanced design ξ25−25 with the same cohorts size, i.e., same
number of patients in the two cohorts: N1 = N2 = 25; then
various unbalanced designs with different sizes in the two co-
horts: ξ10−40; ξ15−35; ξ35−15; ξ40−10, where the first two de-
signs have fewer patients in the first cohort whereas the second
two designs have greater first cohort size.

The two three-stage designs considered have 10 pa-
tients in the first cohort: ξ10−20−20 and ξ10−10−30, whereas
the five-stage design is ξ10−10−10−10−10 with N1 = N2 = N3 =
N4 = N5 =10 patients.

All adaptive designs (two-, three- and five-stage) start by
having the first design ξ1 equal to the prior design ξ0 for the
first cohort.

Clinical Trial Simulation and Designs Comparison

One hundred datasets of N=50 patients were simulated with
the true parameters Ψ* and design ξrich described in the sec-
tion above. In order to get datasets for the other designs only
the corresponding sampling times were selected from the
dataset of ξrich.

Design optimisation was performed using PFIM 4.0 [10,
23]. Adaptive designs were implemented in PFIM 4.0 [10, 23]
thanks to the new features that allow for saving FIM and for
considering previous information, i.e., previous FIM, in the
calculation of FIM.

Parameters estimation was performed with the Stochastic
Approximation ExpectationMaximisation (SAEM) algorithm
in the software MONOLIX 4.3 [1], with five chains and ini-
tial parameters estimates Ψ0. By linking through an R code
PFIM 4.0 and Monolix 4.3, it was thus possible to perform K-
stage adaptive design.

In order to compare the designs in terms of the precision of
parameter estimates, relative estimation error (REE) and rel-
ative root mean squared error (RRMSE) were calculated from
the R=100 final parameters estimates for 50 patients and for
each design considered in this study:

REE Ψr
q

� �
¼
bΨr
q −Ψ

*
q

Ψ*
q

� 100 ð11Þ

RRMSE Ψq
� � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
R

XR
r¼1

bΨr
q −Ψ

*
q

Ψ*
q

 !2
vuut � 100 ð12Þ

In those expressions, bΨr
q represents the q

th estimated pop-

ulation parameter from the rth simulated dataset, and Ψq
* is

the correspondent true parameter value.
Furthermore, standardized RRMSEs [23] were computed

for each design and each population parameter using as refer-
ence the RRMSE obtained with the best optimal one-stage
design ξ* optimised with the true parametersΨ*. More precise-
ly the RRMSE associated to each parameter for a given design
was divided by the corresponding RRMSE obtained with ξ*,
optimised with the true parametersΨ*. Means of the standard-
ized RRMSEs across all parameters were also calculated and
the closer they are to 1 the better is the design performance.

Estimated Optimal Designs for Various Adaptive
Designs

For the 100 clinical trial simulations and for each studied
adaptive design, the optimised designs of each cohort (except
the first one which is fixed to ξ0) were studied and it was also

Fig. 3 PK (left) and PD (right) simulatedmodels for a total daily dose of 80mg,
with prior parameters Ψ0, in dark, and optimal sampling times ξ0, in ○, and
with true parameters Ψ*, in grey, and optimal sampling times ξ*, in *.

Adaptive Design for a PKPD model in oncology

Adaptive design in pharmacometrics

43



compared how many elementary designs differed and how
many were equal to the optimal design ξ*.

RESULTS

One- and Two-Stage designs

Boxplots of the REEs for PK parameters ka and CL, and PD
parameters kout and IC50, for the various one-stage designs
and the balanced two-stage adaptive design ξ25−25 are pre-
sented in Fig. 4. As expected, as design ξ0 and ξ* for PK are
similar, estimation of PK parameters was found good for all
designs and medians are close to 0. Different conclusions were
drawn from the boxplots for PD parameters, where the me-
dians REEs for the one-stage design ξ0 in parameters kout and
IC50 were very large (about 30% and 50%, respectively),

showing a systematic bias. Good results were obtained for ξ*
as expected, and also for the mixed design ξ0* and for the
balanced two-stage design ξ25−25. Those results were con-
firmed by the RRMSE values and the standardized RRMS
Es to those of ξ* (Table II). RRMSE values for PK parameters
were similar to those of ξ* in all designs. For PD parameters,
large RRMSE values were obtained for design ξ0, with value
larger than 2 for mean standardized RRMSE, whereas good
results were observed for design ξ25−25 and design ξ0*, similarly
to those obtained with ξ*, except somehow for IC50 and ω2

IC50
.

Influence of the Size of each Cohort in Two-Stage
Adaptive Designs

Boxplots of REEs of PK and PD parameters for the various two-
stage adaptive designs are presented in Fig. 5 and RRMSEs
are presented in Table III. As before, there is a good

Fig. 4 Boxplot of relative estimation error (REE) for PK parameters ka and CL (top panel) and PD parameters kout and IC50 (bottom panel) in four one-stage
designs and a balanced two-stage adaptive design.

Lestini, Dumont and Mentré

Adaptive design in pharmacometrics

44



precision of PK parameters estimates among all designs, whereas
for PD parameters some differences between designs are notice-
able, with a better result for the balanced two-stage adaptive
design ξ25−25. Results of RRMSEs and standardized RRMSEs
for the various two-stage adaptive designs (Table III), confirmed
a better performance of design ξ25−25, and worst performance
of designs with a larger sample size in the first cohort (ξ35−15

and ξ40−10), where indeed the design adaptation is performed
in only a small number of patients.

Two-, Three- and Five-Stage Adaptive Designs

Finally we compared two-, three- and five-stage ADs all with
same number of patients in the first cohort (N1 =10). Mean of
standardized RRMSEs was smaller with the three-stage de-
sign ξ10−20−20 and the five-stage design ξ10−10−10−10−10, com-
pared to the two-stage design ξ10−40 and the three-stage design
ξ10−10−30 (Table IV). Overall, ξ10−40 performed less well than
the two three- and one five-stage designs considered, but those
three- and five-stage designs were not better than the balanced
two-stage design ξ25−25. Furthermore, the five-stage design was
not better than the best three-stage design ξ10−20−20.

Comparison of Optimal Designs at each Step
in Adaptive Design

Considering all adaptive designs, the number of different de-
signs for the second cohort was the largest (12 different designs
in 100 datasets) when the first cohort had only 10 patients, and
was only 6 for design with larger first cohort (Table V).

For the two-stage ADs, the greatest number of datasets
with optimal designs ξ2 equal to ξ* was obtained in the bal-
anced two-stage AD ξ25−25 (Table V). Large numbers were

also obtained for designs ξ35−15 and ξ40−10 but only a small
sample of patients was affected in the second stage (15 and 10
patients, respectively), which explains the bad performance of
the two designs (Table III).

In three-stage designs the greatest number of simulated
datasets with optimal designs ξ2 equal to ξ*, was obtained for
designs with smaller sample size in the second cohort (ξ10−10−30)
(Table V), whereas a greater number of optimal designs ξ3
equal to ξ* was obtained for the design that performed better,
that is ξ10−20−20.

Considering the first three stages of the five-stage design,
results are similar to those obtained with the three-stage design
ξ10−10−30 with the same greatest number of simulated datasets
with optimal designs ξ2 equal to ξ* and with only one design ξ3
equal to ξ* less, but in five-stage design fewer patients were used
(only 30 in the first three stages, versus the 50 patients included in
the three-stage design). For the fourth stage of five-stage designs
the number of ξ4 equal to ξ* is smaller than the number of ξ3
equal to ξ* in the three-stage design ξ10−20−20, whereas the
number of ξ5 equal to ξ* in the fifth stage is slightly bigger than
the number of optimal designs equal to ξ* in the third stage of ξ10
−20−20, and this could explain why results of RRMSEs for the
five-stage designs were similar to those obtained with ξ10−20−20.

DISCUSSIONS

Two-stage AD in NLMEM was developed and implemented
by Dumont et al. [23]. They have compared by simulation one-
stage design, i.e., no adaptive design, with two-stage design, for
a PK model in paediatrics simulation study, showing the im-
portance of the adaptive design method if poor prior informa-
tion is available. One point of discussion in their work was the

Table II RRMSE % (and
Standardized RRMSE with Respect
to ξ*) of Final Estimated Parameters
in One-Stage Design and in Bal-
anced Two-Stage Adaptive Design
(N=50 Patients)

RRMSE % (standardized RRMSE)

Parameters ξ* ξ0 ξ0* ξ25−25

ka (h
−1) 5.8 5.6 (0.97) 5.7 (0.98) 5.0 (0.86)

V (L) 9.9 9.9 (1.00) 9.9 (1.00) 9.3 (0.94)

CL (L h−1) 12.5 12.4 (0.99) 12.5 (1.00) 12.5 (1.00)

ω2
V 22.8 22.5 (0.99) 22.5 (0.99) 22.2 (0.97)

ω2
CL 24.6 24.7 (1.00) 24.4 (0.99) 24.3 (0.99)

σslope,PK 10.1 10.2 (1.01) 10.0 (0.99) 9.9 (0.98)

kout (h
−1) 23.8 54.5 (2.29) 25.4 (1.07) 24.1 (1.01)

IC50 (mg L
−1) 22.1 91.3 (4.13) 30.4 (1.38) 30.3 (1.37)

ω2
kout

76.0 59.5 (0.78) 59.2 (0.78) 60.9 (0.80)

ω2
IC50

72.2 709.8 (9.83) 95.3 (1.32) 98.6 (1.37)

σinter,PD 7.3 6.4 (0.88) 6.3 (0.86) 6.2 (0.85)

Mean Standardized RRMSE 1.00 2.17 1.03 1.01

RRMSE in bold have at least a two-fold increase standardized RRMSE
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fact of having used a small number of simulated dataset after
the first stage, which was due to software connection limitation
that comported manual work to import estimated parameters
after first cohort needed for the optimisation of the design of the
second stage. The need of additional studies to provide further
validation of the approach was therefore necessary.

In the present study, we compared by clinical trial simula-
tion various adaptive designs for a PKPD model in oncology
[12], where themodel is defined by ordinary differential equa-
tion. Design optimisations were performed in PFIM 4.0 [10],
thanks to the new features that allow for saving the FIM into a
text file and using FIM as prior information for the evaluation
or optimisation of a design. For each design we simulated 100
clinical trials and parameters were estimated after each cohort
with MONOLIX 4.3. Parameter estimates were imported in
R and iteratively used in PFIM through an R loop for design
optimisation of the next cohort.

We first compared one-stage design and two-stage AD as
confirmatory analysis of the previous work by Dumont et al.
Although with the prior design ξ0 based on wrong prior pa-
rameters, there is evident bias in PD parameters, estimation
results with two-stage designs were close to those with the
optimal design ξ* and much better than those with ξ0. Two-
stage AD thus improved the design after the first stage and is
therefore useful when the correct prior information is not
available. We also compared various two-stage designs of dif-
ferent cohort size. The choice of two-stage designs with a small
initial cohort is reasonable in some situation, for instance in
early phases for ethical and safety reasons. Estimation results
for designs with a large first cohort were less satisfactory com-
pared with the other two-stage designs, because only few pa-
tients are then included in the second stage which is not
enough to correct for the wrong initial design. In both
Dumont et al. [23] and our study, results obtained with two-

Fig. 5 Boxplot of relative estimation error (REE) for PK parameters ka and CL (top panel) and PD parameters kout and IC50 (bottom panel) in various two-stage
adaptive designs.
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stage designs were better than those obtained with ξ0.
Moreover, a balanced two-stage design, i.e., with same num-
ber of patients in the two cohorts, provided the smaller mean
standardized RRMSE, and therefore was preferable within
the different cohort sizes of two-stage designs. The present
results confirmed the results obtained in Dumont et al. [23].

We then investigated adaptive designs with more stages,
which, according to our knowledge, were never evaluated in
NLMEM. We considered designs with a small number of
patients in the first cohort (N1 =10). Results on RRMSEs were
better in the three- and five-stage design considered, than in
the two-stage design, but not much better than those obtained
for the balanced two-stage design. Of note, the three-stage
design that performed best, ξ10−20−20, is again the balanced

design of the remaining 40 patients after the first stage.
More stage designs with larger size in the first cohort were
not taken into account in this study. Further studies on
feasibility of adaptive designs with more stage in clinical
practice should be performed, especially if the prior guess
is very far from the true value of parameters. But it should
be noted that with more stages the practical implementa-
tion is more complex, hence two-stage AD seems a good
approach [21].

There are several limitations in the scope of the simulation
study performed here, limitations that were also present in
[23]. First we assumed that the same elementary design was
performed in patients belonging to the same cohort, with a fix
number of sampling times. Second, we assumed that the

Table IV RRMSE % (and Stan-
dardized RRMSE with Respect to
ξ*) of Final Estimated Parameters in
a Two-Stage Design, Two Three-
Stage Designs and Five-Stage De-
sign (N=50 Patients). All Designs
are Characterized by Having 10
Patients in the First Cohort

RRMSE % (standardized RRMSE)

Parameters ξ10−40 ξ10−20−20 ξ10−10−30 ξ10−10−10−10−10

ka (h
−1) 5.5 (0.95) 5.6 (0.97) 5.6 (0.97) 5.5 (0.95)

V (L) 9.4 (0.95) 9.7 (0.98) 9.8 (0.99) 9.7 (0.98)

CL (L h−1) 12.4 (0.99) 12.5 (1.00) 12.4 (0.99) 12.4 (0.99)

ω2
V 22.4 (0.98) 22.4 (0.98) 22.2 (0.97) 22.2 (0.97)

ω2
CL 24.1 (0.98) 24.3 (0.99) 24.3 (0.99) 23.9 (0.97)

σslope,PK 10.6 (1.05) 10.7 (1.06) 10.7 (1.06) 10.8 (1.07)

kout (h
−1) 28.7 (1.21) 22.3 (0.94) 25.6 (1.08) 23.0 (0.97)

IC50 (mg L
−1) 49.1 (2.22) 27.1 (1.23) 31.8 (1.44) 26.3 (1.19)

ω2
kout

60.5 (0.80) 65.8 (0.87) 72.4 (0.95) 73.0 (0.96)

ω2
IC50

104.5 (1.45) 96.6 (1.34) 95.2 (1.32) 92.2 (1.28)

σinter,PD 6.2 (0.85) 6.5 (0.89) 6.5 (0.89) 6.4 (0.88)

Mean Standardized RRMSE 1.13 1.02 1.06 1.02

RRMSE in bold have at least a two-fold increase of standardized RRMSE

Table III RRMSE % (and Stan-
dardized RRMSEwith Respect to ξ*)
of Final Estimated Parameters in
Balanced and Various Unbalanced
Two-Stage Adaptive
Designs (N=50 Patients)

RRMSE % (standardized RRMSE)

Parameters ξ10−40 ξ15−35 ξ25−25 ξ35−15 ξ40−10

ka (h
−1) 5.5 (0.95) 5.5 (0.95) 5.0 (0.86) 5.3 (0.91) 5.6 (0.97)

V (L) 9.4 (0.95) 9.7 (0.98) 9.3 (0.94) 9.5 (0.96) 9.7 (0.98)

CL (L h−1) 12.4 (0.99) 12.5 (1.00) 12.5 (1.00) 12.5 (1.00) 12.5 (1.00)

ω2
V 22.4 (0.98) 22.0 (0.96) 22.2 (0.97) 22.1 (0.97) 22.3 (0.98)

ω2
CL 24.1 (0.98) 24.8 (1.01) 24.3 (0.99) 24.2 (0.98) 25.1 (1.02)

σslope,PK 10.6 (1.05) 10.0 (0.99) 9.9 (0.98) 9.9 (0.98) 9.9 (0.98)

kout (h
−1) 28.7 (1.21) 26.4 (1.11) 24.1 (1.01) 32.0 (1.34) 33.1 (1.39)

IC50 (mg L
−1) 49.1 (2.22) 36.0 (1.63) 30.3 (1.37) 45.8 (2.07) 57.2 (2.59)

ω2
kout

60.5 (0.80) 63.8 (0.84) 60.9 (0.80) 58.8 (0.77) 62.9 (0.83)

ω2
IC50

104.5 (1.45) 102.5 (1.42) 98.6 (1.37) 197.6 (2.74) 246.5 (3.41)

σinter,PD 6.2 (0.85) 6.7 (0.92) 6.2 (0.85) 6.4 (0.88) 6.4 (0.88)

Mean Standardized RRMSE 1.13 1.07 1.01 1.24 1.37

RRMSE in bold have at least a two-fold increase standardized RRMSE
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structural model was known, correct and similar for all the
stages. As in early phases there usually is no certainty about
the model whereas there are various possible models that can
be considered, we suggest using a model averaging approach
for future studies [27]. Third, we assumed that the dose was
fixed and identical in all patients in all cohorts and that design
optimisation was performed only on sampling times. It would
be interesting to expand the approach also for dose findings,
optimising for instance the maximum tolerated doses in addi-
tion to the sampling times.

In adaptive design, as in optimal design, it is also necessary
to define at the beginning of the analysis some prior parame-
ters values for the model, which are usually difficult to guess
when correct information is not available. Prior parameters
shown in Table I were assumed to be error free. Indeed D-
optimality used here at each stage does not handle uncertainty
in parameters. However it should be noted that here, the
changes in prior and true parameters (four fold for CL and
tenfold for kout) do not intend to represent estimation uncer-
tainty but are mimicking a change from preclinical to clinical
parameters. In that case taking into account estimation uncer-
tainty using a robust design criteria, for instance for the first
cohort, is expected to make only few changes. Further studies
are needed to analyze the impact of the use of robust criteria
in adaptive designs. Furthermore, to introduce this uncertain-
ty in the parameters, several robust designs criteria were de-
veloped for optimal designs of fixed experiments in previous
studies [17, 28, 29]. The common characteristic that links
these methods is the assumption of assigning prior distribu-
tions for the parameters, rather than constraining them to a
fixed value. A perspective of this work could thus be to use a
robust design approach for defining prior information in the
first stage of adaptive design.

In this work, we only changed two parameters, one in the
PK model (CL) and one in the PD model (kout) and we made
rather large change in order to clearly see a variation of the
shape of PK and PD curves with respect to time. In addition,
by changing IC50 to four fold bigger or smaller, the optimal
PD design did not change. When reducing inter-individual
variability on PK parameters (30% instead of 70%), the design
ξ* was only slightly changed for PK (0.1, 1.5, 12 h), whereas ξ0
was unchanged. The full simulation study with that lower
variability was not performed. Inter-patient variability on ka
was not considered in the present study.

To conclude, two-stage designs provided satisfactory results
close to those of the design optimised with true parameters,
which allowed compensating the poor information of the prior
design. The balanced two-stage design seems the best option,
as in Dumont et al. [23], although a two responses (PKPD)
model in oncology was used. Furthermore, in case of small
first cohort, more adaptations may be performed but those
designs are more complex to implement in clinical practice.
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Chapter 4

Robust design in pharmacometrics

4.1 Summary

Optimal design requires prior information on model and parameters which may be

difficult to guess. D-optimal criterion, which maximizes the determinant of FIM, is often

used as optimal design metric in local optimality for a given value of the parameters, but it

does not consider parameter uncertainty. Robust designs methods can be used for taking

into account uncertainty on model parameters (Pronzato and Walter, 1985; Dodds et al.,

2005; Nyberg and Hooker, 2012), by assuming prior distributions for the parameters, rather

than constraining them to a fixed value.

Robust criteria, such as DE, ED, EID, ELD or API, MM, are described in subsection 1.2.3

and they are all based on the determinant of FIM. Robust criteria were never systematically

compared in NLMEM, according to our knowledge. Our aim was indeed at comparing robust

criteria in continuous and discrete NLMEMs through two examples: the PKPD model that

was already used for the AD study described in Chapter 3 and published in (Lestini, 2016),

and a longitudinal binary model that was previously used by Riviere et al. (2016); Ueckert

and Mentré (2016). For the former model, 50 patients were considered and 3 observations

were allowed to be optimized among 11 discrete times, assuming same elementary design

all individuals; for the latter, a total of 100 patients, half treated and half control, were

considered and four observations were allowed, but the first and last times were kept fixed,

and therefore only the two central sampling times could be optimized among a set of 11

discrete times, also assuming same design in all individuals.

The models for the two examples were known, and values of model parameters, Ψ∗,

were defined. Moreover, prior distributions were assumed in both continuous and discrete

NLMEMs, for two fixed-effects parameters, in order to take into account parameters

uncertainty.

Robust criteria were computed through MC simulations. Indeed, a finite set of K

population parameter vectors Ψ1, . . . ,ΨK was simulated from the prior distribution p(Ψ),

and FIM was computed for each Ψk and each possible elementary design ξ. For FIM

calculation, for the model with continuous outcome, the approximation method used was
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the FO linearization of the structural model around the random effects (Mentré et al., 1997)

with block diagonal expression (Mielke and Schwabe, 2010; Nyberg et al., 2015). For the

example with discrete outcome, the new method developed by Ueckert and Mentré (2016)

that allows to derive the exact FIM was used. This method is based on quasi random Monte

Carlo (QRMC) simulations and the adaptive Gaussian quadrature (AGQ) which are used to

perform the derivatives of the exact conditional likelihood (Ueckert and Mentré, 2015).

Once all possible FIMs were obtained, robust criteria were computed and optimal RDs

were derived. For design comparison, D-efficiency and D-criterion were then computed for

eachΨk and for the various designs of interest: the optimal RDs, the D-optimal design, and a

fixed design. A clinical trial simulation study was also performed for both examples to assess

each robust design. More specifically, for each evaluated design, one dataset of N subjects

was simulated for each population parameters setΨk ,k = 1, ...,1000. Population parameters

were then estimated from each simulated dataset using the SAEM algorithm in the software

MONOLIX 4.3.

For both examples, the various robust criteria lead to different optimal designs. D-

efficiencies suggest that the design obtained from the expectation of the logarithm of the

determinant (ELD criterion) is the more robust. Moreover, the D-optimal design performed

quite well, whereas the fixed design was poor, in both examples. From CTS the difference

of estimation performances between robust designs was less clear. Most designs showed

rather good properties in those two examples, as also the D optimal design for the mean

parameters.

To conclude, various robust criteria lead to various optimal designs, design ELD

preserving best the loss of efficiency across parameter values. However, the clinical trial

simulation did no find such a difference in estimation performances of these designs,

perhaps due to the limited uncertainty in the prior distribution and the rather rich

elementary designs used.

51



Robust design in pharmacometrics

4.2 Article III (in preparation)

Comparison of robust design criteria in
model-based analysis of longitudinal
clinical data
Giulia Lestini, Sebastian Ueckert and France Mentré
IAME, UMR 1137, INSERM, Université Paris Diderot Sorbonne Paris Cité, F-
75018 Paris, France

Robust approaches have been developed for taking into account the
uncertainty of parameters when optimizing study designs. In this work we
compared various robust criteria for designing studies in nonlinear mixed
effect models (NLMEM), assuming a prior distribution on the parameters.
Those criteria are based on the determinant of the Fisher information
matrix (FIM), using different ways to account for the prior distribution of
the parameters. We used two examples: (i) a population pharmacokinetic
(PK)/pharmacodynamic (PD) model, considering uncertainty on two PD
parameters, and (ii) a longitudinal binary model, adapted from a previous
study, for which the uncertainty was considered on two fixed-effect
parameters. For the PKPD model we computed the FIM using first
order approximation implemented in PFIM; whereas for longitudinal binary
model, we computed the FIM using a new method based on adaptive
Gaussian quadrature and quasi random Monte Carlo. For each example, 1000
population parameter vectors from the prior distribution were simulated to
compute the robust criteria by Monte Carlo. For both examples, the various
robust criteria lead to different optimal designs. Using loss of efficiencies,
compared to the optimal design for each simulated vector of population
parameters, suggest that the design obtained from the expectation of the
logarithm of the determinant (ELD criterion) is the most robust. We also
performed a clinical trial simulation to assess each robust design. We found
that the difference of estimation performances between robust designs was
less clear. Most designs showed rather good properties in those two examples,
as also the D optimal design for the mean parameters.

In conclusion, various robust criteria led to various optimal designs,
design ELD preserving best the loss of efficiency in the extreme cases.
However, the clinical trial simulation did not find such a difference in
estimation performances of these designs.

Key workds: Fisher information matrix; Nonlinear mixed effect model; Optimal design;
Pharmacokinetic-pharmacodynamic; Robust design.
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1 INTRODUCTION

Longitudinal analyses of clinical data are increasingly performed. Those studies provide
repeated continuous or discrete data over time in several individuals. The main statistical
tool used to analyze longitudinal data through models, is the nonlinear mixed effects model
(NLMEM)(Lavielle, 2014), which allows for estimation of population parameters and inter-
individual variability. Choosing a good design for a planned study is essential but it is
not always straightforward. It is a crucial step as poor designs can lead to inconclusive
studies. For this reason, optimal design approaches have been developed for evaluation
and optimization of the design of these studies (Retout et al., 2001; Waterhouse et al., 2005;
Gueorguieva et al., 2006). The optimal design approach used, which avoids simulation,
relies on the Fisher information matrix (FIM) as its inverse is the lower bound of the
variance-covariance matrix of any unbiased parameter estimator, as stated in the Cramer-
Rao inequality. The calculation of FIM in continuous and discrete NLMEM, but also in
generalized linear mixed effect models (GLMEM) is quite challenging due to the fact that
there is no closed form of FIM. For this reason, different approximation methods were
developed in the last decades, such as the first order (FO) linearization, which was first
proposed by Mentré et al. (1997) for continuous data, and later on it was extended to various
scenarios. Waite and Woods (2015) were the first to calculate FIM for general GLMEM,
using marginal quasi-likelihood (MQL) and penalized quasi-likelihood approximations.
For discrete NLMEM Ogungbenro et al. (2005) developed a method based on generalized
estimating equations and MQL approximation for count, binary and ordinal responses;
Nyberg et al. (2009) used an approach based on second-order approximation of the
likelihood and applied it to binary and count responses. The method of Nguyen and Mentré
(2014) based on Monte Carlo (MC) simulations and adaptive Gaussian quadrature (AGQ)
for continuous response was recently extended by Ueckert and Mentré (2016) to discrete
response mixed effects model. This new method does not use any approximation and it
allows to numerically compute FIM by calculating the derivatives of the exact conditional
likelihood. Finally, Riviere et al. (2016) proposed an alternative method to compute the
asymptotically exact FIM for both continuous and discrete NLMEMs, based on MC and
Hamiltonian Monte Carlo (HMC). This method is available in the R package MIXFIM and
it uses functions that are written in the probabilistic language STAN (Carpenter et al., 2016),
which was developed for Bayesian inference.

Optimal design requires prior information on model and parameters that can be
partially wrong as it may be difficult to guess. D-optimal criterion, which maximizes the
determinant of FIM, is often used as optimal design metric for local optimality, as it provides
with the highest precision of parameter estimates, but it does not consider parameter
uncertainty (Atkinson et al., 1992). Robust design (RD) methods can be used for taking into
account uncertainty on model parameters (Pronzato and Walter, 1985; Dodds et al., 2005),
by assuming prior distributions for the parameters, rather than constraining them to a fixed
value. Several robust criteria were developed in order to compute D-optimality and they
are known in the literature. Robust criteria first proposed by Pronzato and Walter (1985)
are the ED and EID criteria (Walter and Pronzato, 1987) which consist in maximizing the
expectation of the determinant of FIM and the inverse of the expectation of the inverse of the
determinant, respectively. Pronzato and Walter (1988) then proposed the maxmin criterion

2
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(MM), which requires knowledge of a prior feasible region for population parameters.
Indeed MM-optimality implies maximization of the smallest value of the determinant of
FIMs associated to the different parameters that lie in that domain. Other robust criteria
were further proposed. The ELD, or API (D’Argenio, 1990; Nyberg and Hooker, 2012),
consists in maximizing the expectation of the logarithm of the determinant of FIM. A
simplified version of these criteria – which does not require the whole prior parameters
distribution but instead it uses only the 2.5th and 97.5th percentiles of that distribution –
are the so called HCDs criteria, developed for the hypercube D-optimal designs (HCDs) by
Foo and Duffull (2010). Finally, parameter uncertainty was also taken into account in the
context of generalized linear models (Woods et al., 2006).

Different software are in use to perform optimal design, which are adopted by
pharmaceutical industry (Mentré et al., 2013). These are: PFIM (Mentré et al., 2014), popED
(Nyberg et al., 2012), PopDes (Gueorguieva et al., 2007), POPT (Duffull, 2006). They provided
with similar results when using the same (FO) approximation of FIM. PopED is the only one
that presently has implemented also a robust criterion, more specifically the ED criterion.

All the proposed robust criteria were never systematically compared in NLMEM,
according to our knowledge. Our aim was indeed at comparing robust criteria in continuous
and discrete NLMEM through two examples: a PKPD model and a longitudinal binary
model. We compared both optimal designs obtained and their results through an extensive
simulation study.

2 METHODS

2.1 Continuous and discrete NLMEM

For continuous NLMEM, the ni –vector yi of observations for subject i (i = 1, . . . , N ) at
times ξi = (ti 1, . . . , ti ni ), is given by yi = f (g (µ,ηi ),ξi )+εi , where f is the nonlinear structural
model and ξi is the elementary design composed of ni sampling times. The vector of p
individual parameters is expressed by the function g of the vector of fixed effectsµ and of the
vector of random effects ηi . εi is the vector of residual error following a normal distribution
εi ∼ N (0,Σ(θ,ξi )) with Σ(θ,ξi ) = (di ag (σinter +σslope × f (θi ,ξi )))2. σinter and σslope are the
additive and proportional error model parameters, respectively. It is assumed that ηi follows
a normal distribution ηi ∼ N (0,Ω), where Ω is a p × p variance-covariance matrix with
diagonal elements the variances ω2

s , s = 1, . . . , p, each one corresponding to the variance of
the s th component of the vector ηi . The vector of the population parameterΨ is composed
of the vector of fixed effects µ and the vector of variance terms λ′ = (ω2

1, . . . ,ω2
p ,σinter,σslope),

such thatΨ′ = (µ′,λ′)′.
For discrete NLMEM, the probability of the ni –vector yi of observations for subject i (i =

1, . . . , N ) at times ξi = (ti 1, . . . , ti ni ), is given by P (yi ,Ψ|ηi ) = ∏ni
j=1 h(yi j , g (µ,ηi ),ξi ), where h

is a known link function that describes the probability model of observing yi at times ξi . The
vector of individual parameters is given by g , the function of the fixed effects µ and of the
random effects ηi . It is assumed that ηi follows a normal distribution ηi ∼ N (0,Ω), whereΩ
is a p ×p variance-covariance matrix with diagonal elements the variances ω2

s , s = 1, . . . , p,
each one corresponding to the variance of the s th component of the vector ηi . The vector
of the population parameterΨ is composed of the vector of fixed effects µ and the vector of
variance terms λ′ = (ω2

1, . . . ,ω2
p ), such thatΨ′ = (µ′,λ′)′.
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2.2 Population design

The elementary design for subject i , ξi , is given by the number of individual observations
ni and the sampling times ti 1, . . . , ti ni . A population design Ξ is defined by the total number
N of individuals and the set of individual elementary designs to be performed in each
individual: ξ1, . . . ,ξN , with a total number of observations ntot = ∑N

i=1 ni . In the present
work the same elementary design was performed in all individuals (ξi = ξ for i = 1, . . . , N ),
then ntot = n ×N and Ξ= {ξ; N }.

2.3 Fisher information matrix in NLMEM

The individual FIM, MF (Ψ;ξi ), for subject i and the elementary design ξi , is defined as:

MF (Ψ;ξi ) =−E

(
∂2l (yi ;Ψ)

∂2Ψ

)
(1)

where l (yi ;Ψ) is the log-likelihood of the vector of observations yi for the individual i , for
the population parametersΨ. It is assumed that individuals are independent, therefore the
population FIM MF (Ψ,Ξ) is defined as the sum of N elementary FIMs:

MF (Ψ,Ξ) = N ×MF (Ψ,ξ) (2)

Because of non-linearity in f (θi ,ξi ) or h, there is no analytical expression of the log-
likelihood, thus of FIM, therefore approximation methods need to be used.

2.4 Optimal design criteria

The criterion most often used in optimal design is the D-criterion. For a given a priori
vector of population parameters Ψ∗, the D-optimal design is the design ξD that maximizes
the determinant of the FIM:

ξD = argmax
ξ

|MF (Ψ∗,ξ)| (3)

When performing RD, a distribution p(Ψ) is assumed for Ψ. The various robust optimality
criteria to account for this prior are: DE, ED, EID, ELD, MM. Corresponding optimal robust
designs are defined below:

ξDE = argmax
ξ

|EΨ(MF (Ψ,ξ))|; (4)

ξED = argmax
ξ

EΨ|MF (Ψ,ξ)|; (5)

ξE I D = argmax
ξ

(EΨ|MF (Ψ,ξ)|−1)−1; (6)

ξELD = argmax
ξ

EΨ[l og |MF (Ψ,ξ)|]; (7)

ξM M = argmax
ξ

min
Ψ

|MF (Ψ∗,ξ)| (8)

4
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3 EVALUATION ON TWO EXAMPLES

3.1 Examples specifications

3.1.1 Continuous NLMEM

The example used is based on a PKPD model published by Gueorguieva et al. (2007) for
the compound LY2157299, a small molecule TGF-β inhibitor. The model was already used
for an adaptive design study (Lestini et al., 2015) and it was published in the drug disease
models resources (DDMoRe) model repository (Lestini, 2016). A single oral daily dose of 80
mg was considered. The PK was a one-compartment model with first-order absorption:

C (t ) = D

V /F

ka

ka −C L/V
(e−(C L/V )t −e−ka t ) (9)

where D is the dose, ka is the first order rate constant of absorption, V is the apparent volume
of distribution, CL is the apparent clearance. Of note, C L and V are in reality C L/F and V /F .
Because of absence of data after intravenous administration, the absolute bioavailability F
was assumed to be 1. The inhibition of TGF-β signaling by the treatment is represented by a
turnover model (Lestini et al., 2015), that is a simplification of the semi-mechanistic model
developed by Bueno et al. (2008):

d I (t )/d t = kout Imax

(
C (t )

C (t )+ IC50

)
−kout I (t ) (10)

I (t ) = (R0 −R(t ))/R0 is the relative inhibition of TGF-β, where R0 = ks yn/kout is the pSMAD
baseline and R(t ) is the quantity of pSMAD, which is correlated to TGF-β activity. ks yn and
kout are a zero order rate constant of synthesis and a first order rate constant of degradation
of pSMAD, respectively, and IC50 is the concentration necessary to achieve 50% maximum
inhibition. The maximum inhibitory response Imax was set to 1.

The fixed effects vector µ is given by µ = (µka ,µV ,µC L ,µkout ,µIC50 ). An exponential
random effect model was assumed, such that g (µ,η) =µexp(η), where η∼ N (0,Ω), andΩ is
the diagonal matrix of elements ω2

s = V ar (ηs). The values Ψ∗ of the model parameters are
similar to those in (Lestini et al., 2015) and are displayed in Table 1.

Prior parameter distribution A multivariate log-normal distribution was assumed as
prior parameter distribution, p(Ψ), for two PD parameters µkout and µIC50 , with mean the
vector of the logarithm of the corresponding Ψ∗ values presented in Table 1, i.e. M =
((log (0.2), log (0.3))′, and variance

V =

 0.82 0

0 0.82




such that
(µkout ,µIC50 )′ ∼ log MV N (M ,V ) (11)

Design constraints A total number of N = 50 subjects was considered. For PK, times were
fixed to 0.1, 4 and 12 hours. For PD, n = 3 sampling times could be optimized among the
possible times: 1, 2, 3, 4, 6, 9, 10, 15, 22, 23, 24 hours, i.e.

(11
3

) = 165 possible elementary

5

Robust design in pharmacometrics

56



designs.
A design "ξES",with sampling times fixed to 1, 10 and 24 hours, was also considered for

design comparison.

3.1.2 Discrete NLMEM

The discrete model is a logistic model for repeated binary response with treatment
increasing the slope of the logit of the response with time, and it is similar to the one in
(Ogungbenro and Aarons, 2011; Ueckert and Mentré, 2016; Riviere et al., 2016) and it is
expressed as follows:

log i t (π) = θ1 +θ2(1+µ3δ)t (12)

where π is the probability of success.
The fixed effects vector µ = (µ1,µ2,µ3) is given by the intercept µ1, the slope µ2 and the

treatment effect µ3. An additive random effect model is associated to θ1 and θ2, such that
θ = g (µ,η) =µ+ηwhere η∼ N (0,Ω), andΩ is the diagonal matrix of elementsω2

s =V ar (ηs).
δ is the treatment group indicator, i.e. δ= 0 in control group and δ= 1 in treatment group.

The values Ψ∗ of the model parameters are displayed in Table 2 and they where
arbitrarily chosen such that treatment group at the end of the study (t = 12) have a high
probability of success (99%), whereas control group have a much lower probability of
success (29%).

Prior parameter distribution A multivariate normal distribution was assumed as prior
parameter distribution, p(Ψ), for two fixed effects µ2 and µ3, i.e. the treatment slope and
the treatment effect parameters, with mean the vector of the corresponding values of Ψ∗

displayed in Table 2, i.e. M = (0.09,5)′, and variance

V =

 0.22 0

0 22




such that
(µ2,µ3)′ ∼ MV N (M ,V ) (13)

Design constraints In this study Nt = 50 and Nc = 50 for treatment and control group,
respectively. Assuming n = 4 and the first and last time fixed to 0 and 12, respectively, two
sampling times could be optimized among the following times: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
months, i.e.

(11
2

)= 55 possible elementary designs.
An equispaced design ξES of times 0, 4, 8, and 12 months, i.e. a design for which samples

are taken in time intervals of equal distance, was also considered for the design comparison.

3.2 Design optimization

The expectation on the prior distribution of the parameters in the robust criteria was
computed by MC simulations. For each example, K = 1000 sets of parameters values were
simulated from the prior distribution p(Ψ): Ψk ,k = 1, . . . ,1000.

For the continuous NLMEM FO linearization of the structural model around the random
effects (Mentré et al., 1997) with block diagonal expression (Mielke and Schwabe, 2010;
Nyberg et al., 2015) was applied using the PFIM program (Mentré et al., 2014) to compute the
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FIM for eachΨk . For the discrete NLMEM, the first MC–AGQ method (Ueckert and Mentré,
2016) was improved on the MC part (Ueckert and Mentré, 2015) and we chose here quasi
random MC (QRMC). We used the following settings: 500 integration samples for QRMC
and 3 nodes for AGQ computation.

For each of the 165 (55) designs for the continuous (discrete) example, robust criteria
were computed as the average over all Ψk ,k = 1, . . . ,1000, of the FIM for Ψk to get the
corresponding optimal design. Optimal design using the standard D-criterion for Ψ∗, ξD ,
and for eachΨk , ξD,k , was also obtained.

3.3 Design Comparison

Optimal robust designs and loss of efficiency For each example, optimal designs for the
various criteria were compared and the loss of efficiency of each optimal design, for each of
the criteria, was computed.

We then compared each robust design with all designs ξD,k , which are indeed the best D-
optimal design if the valueΨk for the parameters were known a priori. We therefore defined
for each optimal design, and eachΨk the loss of efficiency as:

E f f D
k (ξ) =

( |MF (Ψk ,ξ)|
|MF (Ψk ,ξD,k )|

)1/p

(14)

For each design, boxplots of these loss of efficiencies over the K=1000 values of the
parameters were computed, and we focused mainly on the lower 5th percentile. Indeed it
represents the "greatest" loss of efficiency, compared to the D-optimal design if theΨk value
were known.

We also computed for each design, the D criterion for each simulated vector of
parametersΨk ,k = 1, . . . ,1000 and similarly drew boxplots.

Clinical trial simulations CTS include simulating the PKPD observations of a study, and
estimating the population parameters based on these observations.

CTS were performed for both examples using the same simulation strategy. For each
design one dataset of N subjects was simulated for each population parameters setΨk ,k =
1, . . . ,1000. Population parameters were then estimated for each simulated dataset using
the stochastic approximation expectation maximisation (SAEM) algorithm in the software
MONOLIX 4.3 (Lavielle, 2014) with five chains and initial parameter estimatesΨ∗.

For continuous NLMEM, relative estimation errors (REE) (%) and the 95th percentile
of the absolute REE(%) distribution were calculated from the 1000 population parameters
estimates for each design considered in this study.

REEk = Ψ̂k −Ψk

Ψk
(15)

For the discrete NLMEM, estimation errors (EE) were computed instead of REE, to avoid
infinite values obtained for values of Ψk that were close to 0. The 95th percentile of the
absolute EE distribution were calculated from the 1000 population parameters estimates
for each design considered in this study: EEk = Ψ̂k −Ψk .
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4 RESULTS

4.1 Optimal robust designs and loss of efficiency

Figure 1 displays the time locations of each optimal robust design and the most frequent
(at least 10%) D-optimal designs across the K=1000Ψk vectors. For the continuous example,
the various robust optimality criteria led to rather different designs. For the discrete
example, optimal design ξDE was identical to ξELD and optimal design ξM M was identical
to ξE I D . Design ξD , D-optimal for Ψ∗, has high frequency among ξD,k for both examples.
Especially for the discrete examples it stands for 25% of the K designs, and only 12% for the
continuous example.

Of note, the evaluation of FIM in this discrete NLMEM with the new proposed approach
was rather fast, allowing its first application for design optimization.

Loss in efficiency of the optimal designs across the criteria for continuous and discrete
examples are displayed in Table 3 and 4. Surprisingly, none of the optimal designs was good
across all criteria, with dramatic loss of efficiency for some criteria.

Boxplot of loss of D-efficiencies across the 1000 valuesΨk are displayed in top of Figure 2
for the various designs for both continuous and discrete examples. It can be seen that some
robust design led to rather great loss of D-efficiency across Ψk values. The highest value
of the 5th percentile, i.e. the lower whisker of the boxplot, was obtained for design ξELD ,
in both examples. Moreover, for the discrete NLMEM, the 5th percentile of D-efficiency for
ξELD (= ξDE ) was above 50%. Boxplot of D-criteria across the 1000 values Ψk are displayed
in bottom of Figure 2 for the various designs for both continuous and discrete examples.
Rather similar results, although less strong, were obtained for the boxplot related to D-
criterion. Highest median was obtained by the ξELD design in continuous example and by
ξELD (=ξDE ) and ξE I D (= ξM M ) designs in the discrete example. Indeed, in that example,
the couples of identical designs ξDE = ξELD , and ξE I D = ξM M are very similar, with only one
different sampling time. The similarity of those designs can be due to the design constraints
of the discrete NLMEM, for which the first and last sampling times were kept fixed and only
the two central times had to be optimized.

Based on these results, ξELD seems to be more robust in both examples, compared to the
other designs. Furthermore, the non-optimised ξES design performed worse than most of
the optimal designs.

4.2 Clinical trial simulation results

Boxplot of REE(%) for the continuous NLMEM are presented in Figure 3 showing the
impact of each evaluated design in the PD parametersµkout andµIC50 , i.e. the parameters on
which uncertainty was accounted for. The values of 95th percentile of absolute REE(%), are
reported in Table 5. It is noticeable that on average no design performed better than ξELD .
CTS study confirmed the results expected for continuous NLMEM, reported in subsection
4.1.

Boxplot of EE related to the discrete NLMEM are presented in Figure 5, for the three
fixed effect parameters µ1, µ2, and µ3, but uncertainty was accounted only for µ2, and µ3.
Corresponding values of 95th percentile of absolute EE are displayed in Table 5. The designs
performance based on EE does not vary considerably within the various designs.

The differences in loss of D-efficiencies of the various designs illustrated above, had few
consequences in the estimation performance in this CTS, which was close to the results seen
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in the D-criterion distribution displayed in Figure 2, bottom part.

5 DISCUSSION

Optimal designs obtained with five different robust criteria were compared together
with D-optimal design and a design with fixed sampling times, in two longitudinal models
for continuous and for discrete data. All these robust designs were never systematically
compared in NLMEM. Moreover, optimal design was applied to discrete NLMEM for the first
time, using a new method, based on QRMC and AGQ, that allows to compute the exact FIM
rather quickly, and it was implemented in R by Ueckert and Mentré (2016). For continuous
NLMEM, uncertainty was accounted for two PD parameters that were assumed to be log-
normally distributed, whereas for the discrete NLMEM uncertainty was assumed for the
slope and treatment effect parameters, and they were assumed to be normally distributed.

The prior distributions assumed in continuous and discrete NLMEM were centered
to the "true" means. This was the first intuitive guess, but other scenarios may also be
considered in future studies such as, non-central prior distribution dispersed over some
regions of the true distribution.

All the criteria led to different optimal sampling times in the continuous example,
whereas in the discrete example robust criteria DE and EID led to same optimal designs as
those obtained with ELD and MM, respectively. For the continuous example, three sampling
times were optimized among eleven possible times, whereas in the discrete example each
design had four sampling times with only the two central times to be optimized, as the first
and last times were kept fixed. That constraint may explain why some criteria led to the
same optimal designs in the NLMEM with discrete outcome. Allowing all four sampling
times to be optimized, without keeping fixed any time, would be an important perspective
of this work, as it may lead to stronger differences in the optimal designs that are obtained
using the same criteria.

D-efficiency boxplots were used to evaluate the robust designs, compared to the one we
would get if the true value of the parametersΨk was known. Results showed that the highest
5th percentile was obtained in both examples by robust design ξELD (= ξDE for the discrete
example). ξELD can be considered the most robust design, as it guarantees higher efficiency
than the other designs for the "worst" values of the parameters.

CTS were performed as complementary study to the previous analysis. Surprisingly, the
estimation performances across the various designs were rather similar. An explanation
could be related to the limited uncertainty that was assumed in the priors and the fact
that it was centered on Ψ∗. Also, elementary designs for each example were rather rich
(three and four sampling times in continuous and discrete example, respectively). Another
limitation of this CTS study is the fact that only one dataset was simulated for each of the
1000 population parameter sets. It would be interesting to simulate more datasets, e.g. one
hundred, from each set of population parameters but this might be too computationally
expensive unless a subgroup of simulated population parameter sets would be selected.

Some limitations of this work are based on some designs aspects, such as the assumption
of optimizing only times, whereas other design variables may also be of interest, or the
fact of assuming the same design in all patients. Moreover, the two NLMEM models were
considered "true" models. In order to account for model uncertainty, model averaging
techniques may be applied (Hoeting et al., 1999).

Finally, another perspective of this work could be to combine adaptive design (Lestini
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et al., 2015) and robust design. Indeed, adaptive design requires previous information on the
parameters for the first cohort. A prior distribution could be assumed for model parameters
in the first stage of adaptive design, instead of assigning fix values, and robust criteria may
thus be applied. For the second stage, the information accrued from the first stage may
be sufficient and local optimality may be used, or robust criterion using the uncertainty in
the estimated parameters after the first cohort may be applied. In this framework, model
averaging approaches (Hoeting et al., 1999) may also be integrated, at each stage of adaptive
design.
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Table 1: PK and PD parameters of continuous example.

PK parameters Ψ∗

µka (h−1) 2

µV (L) 100

µC L(Lh−1) 10

ω2
V 0.49

ω2
C L 0.49

σi nter,PK 0

σsl ope,PK 0.2

PD parameters

µkout (h−1) 0.2

µIC50(mg L−1) 0.3

ω2
kout

0.49

ω2
IC50

0.49

σi nter,PD 0.2

σsl ope,PD 0
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Table 2: Parameters of discrete example.

Parameters Ψ∗

µ1 -2

µ2(months−1) 0.09

µ3 5

ω2
1 0.49

ω2
2(months−2) 0.03
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Table 5: 95th percentile of absolute REE(%) of estimated PD fixed effects parameters from CTS study
for continuous example.

Designs ξDE ξED ξE I D ξELD ξM M ξD ξES

Parameters

µkout 71 70 65 55 64 67 66

µIC50 49 44 68 49 66 56 52

Average 60 57 66.5 52 65 61.5 59
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Table 6: 95th percentile of absolute EE of estimated fixed effects parameters from CTS study for
discrete example. Of note, ξDE = ξELD , and ξE I D = ξM M .

Designs ξDE ξED ξE I D ξELD ξM M ξD ξES

Parameters

µ1 0.5 0.6 0.5 0.5 0.5 0.6 0.6

µ2 1.8 1.5 1.9 1.8 1.9 1.8 1.3

µ3 3.7 3.6 3.8 3.7 3.8 3.7 3.7

Average 2.0 1.9 2.1 2.0 2.1 2.0 1.9
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Legend to Figures

Figure 1 Robust designs (red dots), D-optimal and equispaced designs (blue dots) in
continuous (top) and discrete (bottom) NLMEMs. D-optimal designs ξD,k with frequencies
higher than 10% over the 1000 population parameters vectors are reported with black dots
with size proportional to the frequency. For the discrete NLMEM, the first and last time have
light color dots to underline that they were kept fixed during the optimization. Of note, for
discrete example, ξDE = ξELD , and ξE I D = ξM M .

Figure 2 Boxplot of D-efficiency (top) and D-criteria (bottom) obtained across 1000
Ψk values of the parameters in continuous (left) and discrete (right) NLMEMs, for robust
designs (red) and for D-optimal and equispaced designs (blue). The whiskers represent
the 5th and 95th percentiles of the data. Of note, for discrete example, ξDE = ξELD , and
ξE I D = ξM M .

Figure 3 Boxplot of relative estimation error (REE)(%) in the clinical trial simulation, for
PD parameters µkout and µIC50 of continuous NLMEM, in robust designs (red), D-optimal
and equispaced designs (blue). The whiskers represent the 5th and 95th percentiles of the
data.

Figure 4 Boxplot of estimation error (EE) in the clinical trial simulation, for parameters
µ1, µ2 and µ3 of discrete NLMEM in robust designs (red), D-optimal and equispaced designs
(blue). The whiskers represent the 5th and 95th percentiles of the data. Of note, ξDE = ξELD ,
and ξE I D = ξM M .
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Chapter 5

Contribution to optimal design software
development

5.1 Optimal design software PFIM

PFIM (www.pfim.biostat.fr) is a collection of functions in R, used to evaluate and/or

optimize population or individual design and it enables the calculation of the FIM in

continuous NLMEMs (Mentré et al., 1997; Retout et al., 2002; Retout and Mentré, 2003;

Retout et al., 2007; Bazzoli et al., 2009; Nguyen et al., 2012). Several optimal design programs

are available and they all provided with similar results when compared using the same FO

approximation (Nyberg et al., 2015). The new release, PFIM 4.0, allows to perform adaptive

optimal design, as the FIM can be saved into a text file and used as prior information for

the evaluation or optimization of a design. This new version of PFIM also allows to compute

individual or bayesian design (Combes et al., 2013) and models can be written in a new user-

defined form.

As member of the PFIM group, part of my task was to alpha-test PFIM 4.0 before the

release, and I contributed in writing the documentation of examples and implementing

the corresponding examples that show all the new features of PFIM 4.0. Similarly, I also

contributed to the release of PFIM Interface 4.0., the new version of the PFIM graphical user

interface. PFIM 4.0 documentation of examples and PFIM Interface 4.0. documentation are

reported in the Appendices 1.1 and 1.2, respectively.

5.2 DDMoRe

The main contribution of this thesis was performed for the work package (WP) 6.2.,

which concerns model-based adaptive optimal design (MBAOD). One of the goals of WP6.2

was to define methodologies and software tools appropriate for implementing MBAOD.

Indeed, a project on adaptive design methods using an EFPIA example was worked on

during the first year of PhD, and it was published in a peer-reviewed journal. That project

is described in Chapter 3. For the robust design criteria comparison study presented in
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Chapter 3-4, the same EFPIA example was used, and that project can also be considered

a contribution for WP6.2. Indeed, robust design could be used in the first cohort of adaptive

design, to account for prior parameters uncertainty.

Furthermore, Andrew Hooker implemented the MBAOD program in R, that allows for

performing MBAOD by calling in R two different programs used for performing optimal

design, simulating data and for model parameters estimation. Together with Sebastian

Ueckert, I helped testing the MBAOD software tool, using the same adaptive design example

in Chapter 4, and results were close to those previously obtained, although MBAOD was

using different programs with respect to those applied in the previous study.

This PhD is a joint PhD with the University of Pavia, which is also part of DDMoRe,

Work Package 1 (WP1). Indeed, the second PhD project, which is presented in Chapter 2,

was worked on under the supervision of Professor Magni and Professor Mentré, i.e. my co-

supervisor and supervisor, respectively, and it was published on a peer-reviewed journal.

For that project, optimal design was applied to xenograft experiments – using a model in

oncology of expertise of the lab in Pavia – and one of those examples was used for the

demonstration of the DDMoRe interoperability framework, that was presented at PAGE

meeting of Lisbon, 2016.

The objective of WP1 is to prepare a selection of approved models relevant to diabetes,

oncology and diseases of other therapeutics areas, and to integrate them into the DDMoRe

model repository. In that respective, I contributed by submitting a model to the DDMoRe

model repository, which is available for download (Lestini, 2016).

In addition, I contributed to connect PFIM to the DDMoRe framework, by providing

extensive PFIM examples and by translating into PFIM files some models that were written

in the MDL language and that were provided by the MDL development group.
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Chapter 6

Discussion and conclusions

Optimal design methodologies were applied in pharmacometrics to investigate the use

and benefit of the approach in different phases of model based drug development in

oncology. Indeed, optimal design was applied to preclinical experiments and to a clinical

Phase 1 case study.

Part of this PhD focused on methods that allow to take into account model parameters

uncertainty by either assuming prior distributions for the parameters, and these are the

robust designs approaches, or by applying adaptive designs that consist in integrating

the information of previous stages into the following stages, while the study is ongoing.

Moreover, optimal and robust designs were applied for the first time in an NLMEM with

discrete outcome, using a new method for computing the FIM (Ueckert and Mentré, 2016).

Discussion

Optimal design in xenograft experiment Optimal design strategies have rarely been

applied to experiments concerning the in vivo evaluation of antitumor effect in xenografted

mice (Simeoni et al., 2013), and none of them, to our knowledge, have approached the

question using optimal design theory. In the project presented in Chapter 2, optimal

design strategies were applied to published two-arm design experiments, i.e. control vs

treatment, and results showed that studies curtailed three days after the end of treatment

administration led to much higher pRSE of the drug-related parameters of Simeoni TGI

model, compared with those obtained in longer studies, where for ethical reasons tumor

growth measurements could only be taken until tumor weight reached 6 grams. This

result proved that short studies would likely prevent correct identification of drug-related

parameters, whereas long studies should ensure more precise estimates of Simeoni TGI

model parameters, leading to a more informative study. This can be considered as a proof-

of-concept study, where the hypothesis has been stated in the past by many laboratories and

in (Rocchetti et al., 2013), but has never been proved before, to our knowledge.

Graphs of sensitivity functions through time showed the time points in which Simeoni

TGI model parameters were more informative in each experiment, underlying the fact
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that drug-related parameters increase their impact starting from the treatment period,

and continuing also afterwards, during the regrowth phase. These results were observed

in several experiments, where either individual or population approaches were used.

Moreover, those experiments were performed for different cell lines, drugs and drug

administration schedules. The conclusion drawn from the results discussed in this first

part is that making measurements during tumor regrowth would be recommended for

informative preclinical studies in oncology, independently of adopting standard nonlinear

regression or an NLMEM approach.

Moreover, using a population approach, we further investigated the application of

optimal design strategies to four-arm designs in two experiments with several mice included

in each arm, considering for the three treatment arms either three different doses or three

different drug administration schedules and the same dose. The former optimal design

experiment led to the expected conclusion that the treatment arm with the highest dose

would provide the greatest information, and the other treatment arms were excluded from

the optimal design. We may suspect that in cases where the relationship between drug

concentration and cell killing effect is not linear, intermediate doses might be selected by

the optimal design, but these analyses were not performed in this work. In preclinical trials

intermediate doses are often studied to answer other experimental questions, e.g. toxicology

studies. We therefore evaluated an optimal four-arm design including also intermediate

doses and using same number of mice in each arm. We found that keeping the intermediate

doses did not lead to a large loss of information, compared with the optimal two-arm design

obtained with the highest doses. For the latter experiment with different dosing regimens,

the same optimal design strategy was employed. In the optimal design one treatment arm

with a "poor" drug administration schedule was excluded, but in the optimal four-arm

design evaluation with same number of mice per arm it was again found that this experiment

did not greatly reduce the information yielded by the study. For both experiments the

proportions of mice were approximately 63% treated mice (divided in the treatment arms)

and 37% control mice. As computation of FIM is independent of the number of subjects,

these proportions should remain the same when performing the same experiment with

a different number of mice in the initial design. In this work, the design variable to be

optimized was the sampling time, but dose and dosing regimen could also be considered

as design variables. It would be interesting for future studies to investigate the impact of

dosing for longer compared with shorter times.

A limitation of this work is that the model parameters were assumed to be known and

true. Indeed, the D-optimality used here does not handle uncertainty in parameters. To

introduce uncertainty in the parameters, robust approaches may be applied. The concept of

robustness could be extended across models, leading to model averaging criteria (Hoeting

et al., 1999), which could be considered for application in future studies.

An additional limitation of this work is that the number of sampling times to be
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optimized was kept low, i.e. either 4 or 6 times for each experiment described in Table I and

Table II, respectively. But it may be important for researchers to take more measurements in

long studies, to keep track of tumor size more frequently. In practice, measurements are

taken at a higher frequency, also considering the fact that caliper readings are relatively

inexpensive. Another limitation of our work relates to software limitations. It would be

interesting to introduce more flexibility into the design optimization settings by requiring

optimal time ranges instead of optimal fixed times.

To conclude, this work was a first attempt to provide some general guidelines for

preclinical xenograft experiments and proved that optimal design can help us perform more

informative preclinical tumor growth inhibition studies, by measuring tumor growth for

longer after the end of treatment, thus ensuring more precise model parameter estimation

and hence better translation into clinical studies.

Adaptive design in pharmacometrics Two-stage AD in NLMEM was developed and

implemented by Dumont et al. (2016). They have compared by simulation one-stage design,

i.e. no adaptive design, with two-stage design, for a PK model in paediatrics simulation

study, showing the importance of the adaptive design method if poor prior information is

available. One point of discussion in their work concerned the way CTS were computed,

that was by using a small number of simulated dataset after the first stage, due to software

limitation. The need of additional studies to provide further validation of the approach was

therefore necessary.

In the study presented in Chapter 4, we compared by CTS various ADs for a PKPD

model in oncology (Gueorguieva et al., 2007; Bueno et al., 2008), where the model is defined

by ordinary differential equation, and it was published in the DDMoRe model repository

(Lestini, 2016). Design optimization was performed in PFIM 4.0 (Mentré et al., 2014). For

each design one hundred clinical trials were simulated and parameters were estimated after

each cohort with MONOLIX 4.3.

We first compared one-stage design and two-stage ADs. Although the prior design in

ADs was based on "wrong" prior parameters, estimation results with two-stage designs were

close to those with the optimal design based on "true" parameters and much better than

those with the optimal design based on "wrong" parameters. Two-stage AD thus improved

the design after the first stage and it is therefore useful when the correct prior information

is not available. We also compared various two-stage designs of different cohort size. The

choice of two-stage designs with a small initial cohort is reasonable in some situation, for

instance in early phases for ethical and safety reasons. Estimation results for designs with a

large first cohort were less satisfactory compared with the other two-stage designs, because

only few patients are then included in the second stage which is not enough to correct for the

wrong initial design. In both (Dumont et al., 2016) and our study, results obtained with two-

stage designs, of any cohort size, were better than those obtained with optimal design based
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on "wrong" parameters. Moreover, a balanced two-stage design, i.e. with same number of

patients in the two cohorts, provided the smaller mean standardized RRMSE, and therefore

was preferable within the different cohort sizes of two-stage designs. The present results

confirmed the results obtained in (Dumont et al., 2016).

We then investigated adaptive designs with more stages, which, according to our

knowledge, were never evaluated in NLMEM. We considered designs with a small number

of patients (10 patients) in the first cohort. Results on RRMSEs were better in the three-

and five-stage design considered, than in the two-stage design, but not much better than

those obtained for the balanced two-stage design. Further studies on feasibility of adaptive

designs with more stage in clinical practice should be performed, especially if the prior guess

is very far from the true value of parameters. But it should be noted that with more stages

the practical implementation is more complex, hence two-stage AD seems a good approach

(Fedorov et al., 2012).

There are several limitations in the scope of the simulation study performed here,

limitations that were also present in (Dumont et al., 2016). First we assumed that the

same elementary design was performed in patients belonging to the same cohort, with a

fix number of sampling times. Second, we assumed that the structural model was known,

correct and similar for all the stages. As in early phases there usually is no certainty about the

model whereas there are various possible models that can be considered, we suggest using a

model averaging approach for future studies (Hoeting et al., 1999). Third, we assumed that

the dose was fixed and identical in all patients in all cohorts and that design optimization

was performed only on sampling times. It would be interesting to expand the approach also

for dose findings, optimizing for instance the maximum tolerated doses in addition to the

sampling times.

Finally, a perspective of this work could be to combine adaptive design and robust

design. Indeed, adaptive design, as optimal design, requires previous information on the

parameters. A prior distribution could be assumed for model parameters in the first stage

of adaptive design, instead of assigning fix values, and robust criteria may thus be applied.

For the second stage, the information accrued from the first stage may be sufficient and

local optimality may be used, or estimated uncertainty. In this framework, model averaging

approaches may also be applied, at each stage of adaptive design.

Robust design in pharmacometrics Five robust optimal designs were compared together

with D-optimal design and a design with equispaced sampling times, in two examples: a

continuous and a discrete NLMEM, where the continuous NLMEM is the same PKPD model

that was used for an adaptive design study presented in Chapter 3. All these robust designs

were never systematically compared in NLMEM. Moreover, optimal and robust designs were

applied to discrete NLMEM for the first time, using a new method, based on QRMC and

AGQ, that allows to compute the exact FIM rather quickly, and it was implemented in R by
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Ueckert and Mentré (2016). For continuous NLMEM, uncertainty was accounted for two

PD parameters that were assumed to be log-normally distributed, whereas for the discrete

NLMEM uncertainty was assumed for the slope and treatment effect parameters, and they

were assumed to be normally distributed.

The prior distributions in continuous and discrete NLMEM were centered to the "true"

means. This was the first intuitive guess, but other scenarios may also be considered in

future studies such as non-central prior distribution dispersed over some regions of the true

distribution.

All the criteria led to different optimal sampling times in the continuous example,

whereas in the discrete example robust criteria DE and EID led to same optimal designs as

those obtained with ELD and MM, respectively. For the continuous example, three sampling

times were optimized among eleven possible times, whereas in the discrete example each

design had four sampling times with only the two central times to be optimized among 11

times, as the first and last times were kept fixed. That constraint may explain why some

criteria led to the same optimal designs in the discrete NLMEM. Allowing all four sampling

times to be optimized, without keeping fixed any time, would be an important perspective

of this work, as it may lead to stronger differences in the optimal designs that are obtained

using the same criteria.

Evaluation of the designs through D-efficiency showed a better performance of the ELD

design in both NLMEMs with continuous and discrete outcome. Moreover, the D-optimal

design performed quite well, and it was selected D-optimal in more than 10% of the 1000

MC simulated population parameters sets in both continuous and discrete NLMEMs.

CTS were performed as complementary study to the previous analysis. Surprisingly, the

estimation performances across the various designs were rather similar. These results can

be explained by the fact that the initial values of the parameters for the estimation wereΨ∗,

which is the center of the prior distribution and therefore already a good estimate for all

parameters with no uncertainty in the prior. Another explanation could be related to the

limited uncertainty that was assumed in the priors and the fact that it was centered on Ψ∗.

Moreover, one limitation of this CTS study is the fact that only one dataset was simulated

for each of the 1000 population parameter sets. It would be interesting to simulate more

datasets, e.g. one hundreds, from each set of population parameters but this might be too

computationally expensive unless a subgroup of simulated population parameter sets would

be selected.

Other limitations of this study are based on some designs aspects, such as the

assumption of optimizing only times, whereas other design variables may also be of interest,

or the fact of assuming the same design in all patients. Finally, the two NLMEM models

were considered "true" models. In order to account for model uncertainty, model averaging

techniques may be applied (Hoeting et al., 1999).
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Contribution to optimal design software development PFIM 4.0 release was successful:

many world-wide users has downloaded either the R version or the graphical interface.

Thanks to the documentation of examples and the evaluated examples that are downloaded

together with the program, one can easily learn how to apply all the new features of the

program. Moreover, PFIM 4.0 is also used by some pharmaceutical companies.

Finally, PFIM 4.0. was used in all projects presented in this thesis, underlying its ability

to fulfill different optimal design questions.

The Simeoni model implemented in R and used in PFIM in Chapter 3, was successfully

used for a demonstration of the DDMoRe interoperability framework at the international

conference PAGE, 2016, in which an application of optimal design was shown.

General conclusions

The three PhD projects led to some interesting results: i) optimal design was applied to

several xenograft experiment and it showed that it could help reaching more informative

preclinical xenografts studies; ii) two-stage ADs were applied to a PKPD model in oncology

and performed better than fix designs with wrong prior parameters, confirming the results

obtained in a different study. In case of small first cohort, more adaptations may be needed

but these designs are complex to implement; iii) robust design criteria were compared in

continuous and discrete NLMEMs and showed better performance of ELD design based on

D-efficiency. Moreover, the release of the optimal design software PFIM 4.0 was successful,

allowing the software to be used world-wide.

To conclude, this PhD project presents different contexts and use of optimal design

strategies and it shows that these are powerful approaches which allow for improving

the quality of a study, guarantying its reliability and a better precision of the acquired

information.
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This documentation contains a series of examples for EVALUATION (first section) and OPTIMISATION 

(second section) of design in pharmacokinetics (PK) and pharmacodynamics (PD).  

We have tried to illustrate all the features of PFIM 4.0 in this choice of examples.  In  example 1 of 

each section we have more specifically illustrated all the new features in this version 4.0  of PFIM. 

All the input, model and output codes used for this example are available when PFIM is downloaded. 

In this document we have copied the specific part of the code on the illustrated features. 

Please remember to update the directories in the PFIM.R file before running each example. 

EVALUATION 

1. Example 1: PK Model 
 

The purpose is to evaluate a design for a one compartment first order absorption PK model with 

parameters ka, V and k after single dose administration. 

1.1. Model Files 

Four possible and exchangeable ways for defining models are available in PFIM. These are listed 

below: 

A. Model Library 

B. Expression 

C. User-defined Model 

D. Ordinary Differential Equations (ODE)  

For completeness, this model was written in the four available forms. 

A. Model Library: 

source(file.path(directory.program,"LibraryPK.r")) 

 

formA<-oral1_1cpt_kaVk()[[1]] 

 

form<-c(formA) 

B. Expression: 

formA <-expression(dose/V*ka/(ka-k)*(exp(-k*t)-exp(-ka*t))) 

form<-c(formA) 

C. User-defined Model: 

form<-function(t,p,X){ 

ka<-p[1]  
k<-p[2] 

V<-p[3] 

y<-(X/V*ka/(ka-k)*(exp(-k*t)-exp(-ka*t))) 

return(y) 

} 



5 
 

D. choiceODE: 

formED<-function(t,y,p) 

{ 

ka<-p[1]  
k<-p[2] 

V <-p[3] 

yd1<-ka*y[2]-k*y[1] 

yd2<--ka*y[2] 

list(c(yd1,yd2),c(y[1]/V)) 

} 

NB 1: Derivatives 

A new feature for specifying the derivatives is available under the Analytical Model Option (in the 

“stdin.R” file). This option is available only if the model is written as a function using User-defined 

Model form. The code for this feature in the stdin.R file is: 

#Numerical derivatives  (Yes=T, No=F) 

#If 'Yes', specify the model function "form" in the model file 

#If 'No', specify the object "form" which is a vector of expressions in the model 

file 

#----------------------------------------------------------- 

NUM<-F 

 

NB 2: Graphs 

Another new feature allows one to display graphs of the simulated model and sensitivity functions 

without evaluation of the Fisher Information Matrix (FIM). This can help for a better initial 

understanding of the case study and to check the model code.  

In order to do this, one can set in the stdin.R file the “graph.only” option equals to true (“T”). 

Then for the evaluation of FIM it is necessary to switch the graphic.only option back to false and 

re-run PFIM. 

 

1.2. Population Fisher Information Matrix (P-FIM) 

Evaluation of the Population Fisher information matrix (P-FIM) for several designs, all patient have a 

a dose of 100. 

1.2.1. One group with Elementary Design    

200 subjects who have the same elementary design  composed of 4 sampling times: 

      (0.33, 1.5, 5, 12)  

For this first example, we report the PFIM input files (stdin.R) for each possible model form (see 

section 1.1). We therefore repeated the example four times, using four input files. Note that all the 

outputs are identical so only one is given. 
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 For other features in EXAMPLE 1, the model was written always in the “User-Defined” form.  

Graphs pre-evaluation 

Graphs were obtained using the graphical option “graphic.only” showed in section 1.1. 

Simulated model 
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Sensitivity functions with respect to each parameter 

 

 

INPUT FILE; model called from the library 
######################################################################### 

##     INPUT FILE FOR PFIM 4.0                          ##                                                                

######################################################################### 

 

 

#Name of the project 

#-------------------- 

project<-"1.1_ModLibrary_1.2.1" 

 

#Name of the file containing the PK or PD model 

#---------------------------------------------- 

file.model<-"model.R" 

 

#Name of the output file for the results and for the Fisher information matrix 

#--------------------------------------- 

output<-"Stdout.r"; 

outputFIM<-"FIM.txt"; 

 

#FIM: Population (P) or Individual (I) or Bayesian (B) Fisher information matrix 

#--------------------------------------- 

FIM<-"P" 

 

#Previous information for population design (FIM<-"P") only: 

#If previous information is available, please specify below the file name; 

#otherwise leave it as the default 

#-------------------------------------------------------- 

previous.FIM<-"" 
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#RUN:  Evaluation (EVAL) or Optimisation (OPT) 

#------------------------------------------------------- 

run<-"EVAL" 

 

#To display only  graphs of models and/or sensitivity functions before computing 

the Fisher Information matrix 

graph.only<-F 

 

#Block diagonal Fisher information matrix (option<-1) or complete Fisher 

information matrix (option<-2) 

#---------------------------------------------------------- 

option<-1 

 

#Number of responses 

#-------------------------------------------------------------------- 

nr<-1 

 

################### MODEL OPTION ########################### 

 

#Model form: Differential equations (DE) or analytical form (AF) 

#--------------------------------------------------------------- 

 

modelform<-"AF" 

 

###### ANALYTICAL MODEL OPTION ############################# 

############################################################ 

 

#Identical dose in each elementary design (Yes=T, No=F) 

#------------------------------------------------------------- 

dose.identical<-T 

 

# If 'Yes', enter the value of the dose, 

# else, enter the vector of the dose values for each elementary design 

#-------------------------------------------------------------------- 

dose<-c(100) 

 

#Vector of the times intervals of each expression 

#----------------------------------------------------------- 

boundA<-list(c(0,Inf)) 

 

#Numerical derivatives  (Yes=T, No=F) 

#If 'Yes', specify the model function "form" in the model file 

#If 'No', specify the object "form" which is a vector of expressions in the model 

file 

#----------------------------------------------------------- 

NUM<-F 

 

###### END ANALYTICAL MODEL OPTION ######################## 

#Name of the fixed effects parameters 

#------------------------------------- 

parameters<-c("ka","k","V") 

 

#Fixed effects parameters values 

#------------------------------- 

beta<-c(2,0.25,15) 

 

#Some parameters may not be estimated (not estimated = T, estimated = F) 
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#-------------------------------- 

beta.fixed<-c(F,F,F) 

 

#Number of occasions 

#-------------------------------------------------------------------------- 

n_occ<-1 

 

#Random effect model (1) = additive  (2) = exponential 

#------------------------------------------------------------------ 

Trand<-2; 

 

#Diagonal Matrix of variance for inter-subject random effects: 

#--------------------------------------------------- 

omega<-diag(c(1,0.25,0.1)) 

 

#Diagonal Matrix of variance for inter-occasion random effects: 

#--------------------------------------------------- 

gamma<-diag(c(0,0,0)) 

 

#Standard deviation of residual error (sig.inter+sig.slope*f)^2: 

#------------------------------------------------------------------ 

sig.interA<-0.5 

sig.slopeA<-0.15 

 

 

#List of the vectors of sampling times for each elementary design 

#You can specify that a group has no sampling time by writing NULL 

#(ONLY if you have several response) 

#----------------------------------------------------------------- 

protA<-list(c(0.33,1.5,5,12)) 

 

#Vector of initial proportions or numbers of subjects for each elementary design 

#-------------------------------------------------------------- 

subjects<-c(200) 

 

#Subjects input: (1) for number of subjects (2) for proportions of subjects 

#--------------------------------------------------------------------------- 

subjects.input<-1 

 

#If 'proportions of subjects' give the total number of samples 

#------------------------------------------------------------- 

#Ntot<-40 

############## GRAPH SPECIFICATION OPTION ############### 

 

#graphical representation of the model (Yes=T, No=F) 

#------------------------------------- 

graph.logical<-T 

 

#graphical representation of sensitivity functions (Yes=T, No=F) 

#------------------------------------- 

graphsensi.logical<-T 

 

 

#Vector of Names on X axes for each response 

#--------------------------------- 

names.datax<-c("Time") 

 

#Vector of Names on Y axes for each response 

#--------------------------------- 
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names.datay<-c("Concentration") 

 

#Controls logarithmic axes for the graphical representation of the model 

#Values "xy", "x", or "y" produce log-log or log-x or log-y axes. 

#(For standard graphic, log.logical<-F) 

#-------------------------------------------------------------- 

log.logical<-F 

#log.logical<-'y' 

 

#Vector of lower and upper sampling times for the graphical representations 

#------------------------------------------------------------------------- 

graph.infA<-c(0) 

graph.supA<-c(16) 

 

#Vector of lower and upper concentration for the graphical representations 

#------------------------------------------------------------------------ 

y.rangeA<-NULL # default range 

#y.rangeA<-c(1,10) 

 

INPUT FILE; model written in expression form 

Same stdin.R as in the sub-section above, where the model is called from the library. 

#Name of the project 

#-------------------- 

project<-"1.1_ExpressionMod_1.2.1" 

 

INPUT FILE; model written in User-defined model form 
 

#Name of the project 

#-------------------- 

project<-"1.1_UserDefMod_1.2.1" 

  

Change in the stdin.R code 
 

 

#Numerical derivatives  (Yes=T, No=F) 

#If 'Yes', specify the model function "form" in the model file 

#If 'No', specify the object "form" which is a vector of expressions in the model 

file 

#----------------------------------------------------------- 

NUM<-T 

 

INPUT FILE; ODE Model 
 

 

#Name of the project 

#-------------------- 

project<-"1.1_ModeOde_1.2.1" 

 

 

 

################### MODEL OPTION ########################### 
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#Model form: Differential equations (DE) or analytical form (AF) 

#--------------------------------------------------------------- 

 

modelform<-"DE" 

###### DIFFERENTIAL EQUATION OPTION ########################## 

############################################################## 

 

#Initial time for which initial conditions are given 

#--------------------------------------------------- 

time.condinit<-0 

 

#Identical initial conditions in each elementary design (Yes=T, No=F) 

#------------------------------------------------------------- 

condinit.identical<-T 

 

# If 'Yes', enter once the expression of the initial values of the system at the 

initial time 

# else, enter the vectors of the initial conditions for each elementary design 

# If initial values depend on the parameters to be estimated, 

# enter this parameter into the expression without any quotation marks 

#--------------------------------------------------------- 

condinit<-expression(c(0,100)) 

 

# Error tolerance for solving differential equations 

#---------------------------------------------------- 

 

RtolEQ<-1e-08 

AtolEQ<-1e-08 

Hmax<-Inf 

 

###### END DIFFERENTIAL EQUATION OPTION ################################# 

 

OUTPUT FILE 
PFIM 4.0  

  

Project:  1.1_ModeOde_1.2.1 

  

Date:  Mon Jan 27 13:34:58 2014 

  

 

  

**************************** INPUT SUMMARY ******************************** 

  

Differential Equations form of the model:   

  

function(t,y,p) 

{ 

ka<-p[1] 

k<-p[2] 

V <-p[3] 

yd1<-ka*y[2]-k*y[1] 

yd2<--ka*y[2] 

list(c(yd1,yd2),c(y[1]/V)) 

} 

 

  

Design:   

Sample times for response: A  
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                times subjects 

1 c(0.33, 1.5, 5, 12)      200 

 

  

Initial Conditions at time 0 :  

  

0 100  

 

  

Random effect model: Trand =  2 

  

Variance error model response A : ( 0.5 + 0.15 *f)^2 

 

  

Error tolerance for solving differential equations system: RtolEQ = 1e-08 , AtolEQ 

= 1e-08 , Hmax =  Inf 

  

Computation of the Population Fisher information matrix: option =  1 

  

FIM saved in FIM.txt 

  

  

******************* FISHER INFORMATION MATRIX ****************** 

  

         [,1]       [,2]      [,3]      [,4]       [,5]       [,6]       [,7] 

[1,] 38.46761   82.86692 -3.770150  0.000000   0.000000    0.00000    0.00000 

[2,] 82.86692 8310.88573 77.977974  0.000000   0.000000    0.00000    0.00000 

[3,] -3.77015   77.97797  4.938229  0.000000   0.000000    0.00000    0.00000 

[4,]  0.00000    0.00000  0.000000 59.190272   4.291829   31.98157   28.15945 

[5,]  0.00000    0.00000  0.000000  4.291829 674.519743  213.76984  193.67427 

[6,]  0.00000    0.00000  0.000000 31.981572 213.769845 3086.36662  295.74231 

[7,]  0.00000    0.00000  0.000000 28.159451 193.674273  295.74231 1208.60605 

[8,]  0.00000    0.00000  0.000000 85.786203 226.638153 1167.39334 1544.00251 

          [,8] 

[1,]    0.0000 

[2,]    0.0000 

[3,]    0.0000 

[4,]   85.7862 

[5,]  226.6382 

[6,] 1167.3933 

[7,] 1544.0025 

[8,] 4118.3997 

 

  

************************** EXPECTED STANDARD ERRORS ************************ 

  

------------------------ Fixed Effects Parameters ------------------------- 

  

    Beta   StdError      RSE   

ka  2.00 0.17480763 8.740382 % 

k   0.25 0.01239415 4.957658 % 

V  15.00 0.52291111 3.486074 % 

  

------------------------- Variance of Inter-Subject Random Effects ---------------- 

  

   omega²   StdError      RSE   

ka   1.00 0.13203570 13.20357 % 

k    0.25 0.03977275 15.90910 % 

V    0.10 0.01933249 19.33249 % 
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------------------------ Standard deviation of residual error ---------------------  

  

           Sigma   StdError       RSE   

sig.interA  0.50 0.04077340  8.154681 % 

sig.slopeA  0.15 0.02293716 15.291443 % 

 

  

******************************* DETERMINANT ******************************** 

  

2.930398e+20 

  

******************************** CRITERION ********************************* 

  

361.7144 

  

 

  

******************* EIGENVALUES OF THE FISHER INFORMATION MATRIX ****************** 

  

        FixedEffects VarianceComponents 

min      2490.782065           3.598669 

max      8312.446904         702.614499 

max/min     3.337284         195.242883 

 

  

******************* CORRELATION MATRIX ****************** 

  

           [,1]       [,2]       [,3]          [,4]          [,5]        [,6] 

[1,]  1.0000000 -0.2836925  0.3614018  0.0000000000  0.0000000000  0.00000000 

[2,] -0.2836925  1.0000000 -0.4466787  0.0000000000  0.0000000000  0.00000000 

[3,]  0.3614018 -0.4466787  1.0000000  0.0000000000  0.0000000000  0.00000000 

[4,]  0.0000000  0.0000000  0.0000000  1.0000000000  0.0008945392 -0.01707707 

[5,]  0.0000000  0.0000000  0.0000000  0.0008945392  1.0000000000 -0.13147269 

[6,]  0.0000000  0.0000000  0.0000000 -0.0170770725 -0.1314726865  1.00000000 

[7,]  0.0000000  0.0000000  0.0000000  0.0186040065 -0.1824110351  0.12863649 

[8,]  0.0000000  0.0000000  0.0000000 -0.1283096902  0.0574454505 -0.31004595 

            [,7]        [,8] 

[1,]  0.00000000  0.00000000 

[2,]  0.00000000  0.00000000 

[3,]  0.00000000  0.00000000 

[4,]  0.01860401 -0.12830969 

[5,] -0.18241104  0.05744545 

[6,]  0.12863649 -0.31004595 

[7,]  1.00000000 -0.68199073 

[8,] -0.68199073  1.00000000 

 

 

  

Time difference of 0.539031 secs 
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1.2.2. One group with Elementary Design    

200 subjects who have the same elementary design composed of 3 sampling times: 

    (1, 3, 8)  

INPUT FILE 
#Name of the project 

#-------------------- 

project<-"1.2.2" 

 

 

#List of the vectors of sampling times for each elementary design 

#You can specify that a group has no sampling time by writing NULL 

#(ONLY if you have several response) 

#----------------------------------------------------------------- 

protA<-list(c(1,3,8)) 

 

 

OUTPUT FILE 
PFIM 4.0  

  

Project:  1.2.2 

  

Date:  Mon Jan 27 15:05:21 2014 

  

 

  

**************************** INPUT SUMMARY ******************************** 

  

Analytical function models :   
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 function(t,p,X){ 

ka<-p[1] 

k<-p[2] 

V<-p[3] 

y<-(X/V*ka/(ka-k)*(exp(-k*t)-exp(-ka*t))) 

return(y) 

} 

 

  

Design:   

Sample times for response: A  

       times subjects doses 

1 c(1, 3, 8)      200   100 

 

  

Random effect model: Trand =  2 

  

Variance error model response A : ( 0.5 + 0.15 *f)^2 

 

  

 

  

Computation of the Population Fisher information matrix: option =  1 

  

FIM saved in FIM.txt 

  

  

******************* FISHER INFORMATION MATRIX ****************** 

  

           [,1]       [,2]      [,3]       [,4]       [,5]       [,6]      [,7]      [,8] 

[1,]  24.824352  114.28686 -3.961996   0.000000   0.000000    0.00000   0.00000    0.0000 

[2,] 114.286857 8098.01333 80.527748   0.000000   0.000000    0.00000   0.00000    0.0000 

[3,]  -3.961996   80.52775  5.116281   0.000000   0.000000    0.00000   0.00000    0.0000 

[4,]   0.000000    0.00000  0.000000  24.649938   8.163429   35.31918  33.35118  147.8426 

[5,]   0.000000    0.00000  0.000000   8.163429 640.408398  227.97837 186.69165  204.3552 

[6,]   0.000000    0.00000  0.000000  35.319180 227.978372 3312.94177 284.04661 1079.4933 

[7,]   0.000000    0.00000  0.000000  33.351180 186.691652  284.04661 455.36961  971.8908 

[8,]   0.000000    0.00000  0.000000 147.842611 204.355180 1079.49330 971.89080 2577.3614 

 

  

************************** EXPECTED STANDARD ERRORS ************************ 

  

------------------------ Fixed Effects Parameters ------------------------- 

  

    Beta   StdError       RSE   

ka  2.00 0.24120620 12.060310 % 

k   0.25 0.01361296  5.445183 % 

V  15.00 0.55940163  3.729344 % 

 

  

------------------------- Variance of Inter-Subject Random Effects ---------------- 

  

   omega²   StdError      RSE   

ka   1.00 0.37079715 37.07971 % 

k    0.25 0.05288198 21.15279 % 

V    0.10 0.02260288 22.60288 % 

 

  

------------------------ Standard deviation of residual error ---------------------  
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           Sigma   StdError      RSE   

sig.interA  0.50 0.18804055 37.60811 % 

sig.slopeA  0.15 0.09283442 61.88961 % 

 

  

******************************* DETERMINANT ******************************** 

  

1.230099e+18 

  

******************************** CRITERION ********************************* 

  

182.4914 

  

 

  

******************* EIGENVALUES OF THE FISHER INFORMATION MATRIX ****************** 

  

        FixedEffects VarianceComponents 

min      2020.201440           3.027094 

max      8100.430663         627.104778 

max/min     4.009714         207.163955 

 

  

******************* CORRELATION MATRIX ****************** 

  

           [,1]       [,2]       [,3]       [,4]       [,5]       [,6]       [,7]       [,8] 

[1,]  1.0000000 -0.4582328  0.5094178  0.0000000  0.0000000  0.0000000  0.0000000  0.0000000 

[2,] -0.4582328  1.0000000 -0.5360254  0.0000000  0.0000000  0.0000000  0.0000000  0.0000000 

[3,]  0.5094178 -0.5360254  1.0000000  0.0000000  0.0000000  0.0000000  0.0000000  0.0000000 

[4,]  0.0000000  0.0000000  0.0000000  1.0000000 -0.4660810  0.4704245  0.7368611 -0.8188563 

[5,]  0.0000000  0.0000000  0.0000000 -0.4660810  1.0000000 -0.4194565 -0.6482711  0.5995498 

[6,]  0.0000000  0.0000000  0.0000000  0.4704245 -0.4194565  1.0000000  0.5456326 -0.6075711 

[7,]  0.0000000  0.0000000  0.0000000  0.7368611 -0.6482711  0.5456326  1.0000000 -0.9589960 

[8,]  0.0000000  0.0000000  0.0000000 -0.8188563  0.5995498 -0.6075711 -0.9589960  1.0000000 

 

 

  

Time difference of 0.02700186 secs 
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1.2.3. Two Groups Design 

Two group population design of 400 subjects: 200 with elementary designs     and 200 with 

elementary design   .  

INPUT FILE 
 

#Name of the project 

#-------------------- 

project<-"1.2.3" 

 

 

#List of the vectors of sampling times for each elementary design 

#You can specify that a group has no sampling time by writing NULL 

#(ONLY if you have several response) 

#----------------------------------------------------------------- 

protA<- list(c(0.33,1.5,5,12),c(1,3,8)) 

 

#Vector of initial proportions or numbers of subjects for each elementary design 

#-------------------------------------------------------------- 

subjects<-c(200,200) 

 

#Subjects input: (1) for number of subjects (2) for proportions of subjects 

#--------------------------------------------------------------------------- 

subjects.input<-1 

 

OUTPUT FILE 
PFIM 4.0  

  

Project:  1.2.3 

  

Date:  Mon Jan 27 15:37:15 2014 
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**************************** INPUT SUMMARY ******************************** 

  

Analytical function models :   

  

function(t,p,X){ 

ka<-p[1] 

k<-p[2] 

V<-p[3] 

y<-(X/V*ka/(ka-k)*(exp(-k*t)-exp(-ka*t))) 

return(y) 

} 

 

  

Design:   

Sample times for response: A  

                times subjects doses 

1 c(0.33, 1.5, 5, 12)      200   100 

2          c(1, 3, 8)      200   100 

 

  

Random effect model: Trand =  2 

  

Variance error model response A : ( 0.5 + 0.15 *f)^2 

 

  

 

  

Computation of the Population Fisher information matrix: option =  1 

  

FIM saved in FIM.txt 

  

  

******************* FISHER INFORMATION MATRIX ****************** 

  

           [,1]       [,2]       [,3]      [,4]       [,5]       [,6] 

[1,]  63.291953   197.1538  -7.732147   0.00000    0.00000    0.00000 

[2,] 197.153796 16408.8991 158.505718   0.00000    0.00000    0.00000 

[3,]  -7.732147   158.5057  10.054510   0.00000    0.00000    0.00000 

[4,]   0.000000     0.0000   0.000000  83.84019   12.45526   67.30076 

[5,]   0.000000     0.0000   0.000000  12.45526 1314.92814  441.74820 

[6,]   0.000000     0.0000   0.000000  67.30076  441.74820 6399.30871 

[7,]   0.000000     0.0000   0.000000  61.51064  380.36592  579.78890 

[8,]   0.000000     0.0000   0.000000 233.62885  430.99333 2246.88658 

           [,7]      [,8] 

[1,]    0.00000    0.0000 

[2,]    0.00000    0.0000 

[3,]    0.00000    0.0000 

[4,]   61.51064  233.6288 

[5,]  380.36592  430.9933 

[6,]  579.78890 2246.8866 

[7,] 1663.97567 2515.8934 

[8,] 2515.89337 6695.7614 

 

  

************************** EXPECTED STANDARD ERRORS ************************ 
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------------------------ Fixed Effects Parameters ------------------------- 

  

    Beta    StdError      RSE   

ka  2.00 0.141381876 7.069094 % 

k   0.25 0.009077767 3.631107 % 

V  15.00 0.377988684 2.519925 % 

 

  

------------------------- Variance of Inter-Subject Random Effects ---------------- 

  

   omega²   StdError      RSE   

ka   1.00 0.11577052 11.57705 % 

k    0.25 0.02893401 11.57360 % 

V    0.10 0.01357748 13.57748 % 

 

  

------------------------ Standard deviation of residual error ---------------------  

  

           Sigma   StdError       RSE   

sig.interA  0.50 0.03908612  7.817223 % 

sig.slopeA  0.15 0.02065427 13.769511 % 

 

  

******************************* DETERMINANT ******************************** 

  

1.665585e+22 

  

******************************** CRITERION ********************************* 

  

599.3712 

  

 

  

******************* EIGENVALUES OF THE FISHER INFORMATION MATRIX ****************** 

  

        FixedEffects VarianceComponents 

min      4693.602414           6.806441 

max     16412.806404        1313.606918 

max/min     3.496846         192.994680 

 

  

******************* CORRELATION MATRIX ****************** 

  

           [,1]       [,2]       [,3]        [,4]        [,5]        [,6] 

[1,]  1.0000000 -0.3572238  0.4228893  0.00000000  0.00000000  0.00000000 

[2,] -0.3572238  1.0000000 -0.4813562  0.00000000  0.00000000  0.00000000 

[3,]  0.4228893 -0.4813562  1.0000000  0.00000000  0.00000000  0.00000000 

[4,]  0.0000000  0.0000000  0.0000000  1.00000000 -0.02281874  0.03522493 

[5,]  0.0000000  0.0000000  0.0000000 -0.02281874  1.00000000 -0.14572956 

[6,]  0.0000000  0.0000000  0.0000000  0.03522493 -0.14572956  1.00000000 

[7,]  0.0000000  0.0000000  0.0000000  0.11792720 -0.24609424  0.16443852 

[8,]  0.0000000  0.0000000  0.0000000 -0.28514144  0.12142535 -0.33126615 

           [,7]       [,8] 

[1,]  0.0000000  0.0000000 

[2,]  0.0000000  0.0000000 

[3,]  0.0000000  0.0000000 

[4,]  0.1179272 -0.2851414 

[5,] -0.2460942  0.1214254 

[6,]  0.1644385 -0.3312662 
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[7,]  1.0000000 -0.7482048 

[8,] -0.7482048  1.0000000 

 

 

Time difference of 0.04000306 secs 

 

 

1.2.4. Previous Information on PFIM 

A new feature in v4.0 is the possibility to evaluate a population design with previous information 

stored in a file.  Here we evaluate a design with 200 subjects with elementary design     in addition 

to a previous information stored in the file “FIM_Prev_Info.txt”. This file was produced from the 

example in section 1.2.1(with the name of “FIM.txt”) which corresponds to the FIM evaluated for 

200 subjects with the elementary design   . 

INPUT FILE 
 

#Previous information for population design (FIM<-"P") only: 

#If previous information is available, please specify below the file name; 

#otherwise leave it as the default 

#-------------------------------------------------------- 

previous.FIM<-"FIM_Prev_Info.txt" 

 

 

#List of the vectors of sampling times for each elementary design 

#You can specify that a group has no sampling time by writing NULL 

#(ONLY if you have several response) 

#----------------------------------------------------------------- 

protA<-list(c(1,3,8)) 

 

#Vector of initial proportions or numbers of subjects for each elementary design 

#-------------------------------------------------------------- 

subjects<-c(200) 
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OUTPUT FILE 
PFIM 4.0  

  

Project:  1.2.4 

  

Date:  Mon Jan 27 16:23:13 2014 

  

 

  

**************************** INPUT SUMMARY ******************************** 

  

Analytical function models :   

  

function(t,p,X){ 

ka<-p[1] 

k<-p[2] 

V<-p[3] 

y<-(X/V*ka/(ka-k)*(exp(-k*t)-exp(-ka*t))) 

return(y) 

} 

 

  

Design:   

Sample times for response: A  

       times subjects doses 

1 c(1, 3, 8)      200   100 

 

  

Random effect model: Trand =  2 

  

Variance error model response A : ( 0.5 + 0.15 *f)^2 

 

  

 

  

Computation of the Population Fisher information matrix: option =  1 

  

Previous FIM from file FIM_Prev_Info.txt 

  

FIM saved in FIM.txt 

  

  

******************* FISHER INFORMATION MATRIX ****************** 

  

             V1         V2         V3        V4         V5         V6 

[1,]  63.291953   197.1538  -7.732147   0.00000    0.00000    0.00000 

[2,] 197.153796 16408.8991 158.505718   0.00000    0.00000    0.00000 

[3,]  -7.732147   158.5057  10.054510   0.00000    0.00000    0.00000 

[4,]   0.000000     0.0000   0.000000  83.84019   12.45526   67.30076 

[5,]   0.000000     0.0000   0.000000  12.45526 1314.92814  441.74820 

[6,]   0.000000     0.0000   0.000000  67.30076  441.74820 6399.30871 

[7,]   0.000000     0.0000   0.000000  61.51064  380.36592  579.78890 

[8,]   0.000000     0.0000   0.000000 233.62885  430.99333 2246.88658 

             V7        V8 

[1,]    0.00000    0.0000 

[2,]    0.00000    0.0000 

[3,]    0.00000    0.0000 

[4,]   61.51064  233.6288 

[5,]  380.36592  430.9933 
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[6,]  579.78890 2246.8866 

[7,] 1663.97567 2515.8934 

[8,] 2515.89337 6695.7614 

 

  

************************** EXPECTED STANDARD ERRORS ************************ 

  

------------------------ Fixed Effects Parameters ------------------------- 

  

    Beta    StdError      RSE   

ka  2.00 0.141381876 7.069094 % 

k   0.25 0.009077767 3.631107 % 

V  15.00 0.377988684 2.519925 % 

 

  

------------------------- Variance of Inter-Subject Random Effects ---------------- 

  

   omega²   StdError      RSE   

ka   1.00 0.11577052 11.57705 % 

k    0.25 0.02893401 11.57360 % 

V    0.10 0.01357748 13.57748 % 

 

  

------------------------ Standard deviation of residual error ---------------------  

  

           Sigma   StdError       RSE   

sig.interA  0.50 0.03908612  7.817223 % 

sig.slopeA  0.15 0.02065427 13.769511 % 

 

  

******************************* DETERMINANT ******************************** 

  

1.665585e+22 

  

******************************** CRITERION ********************************* 

  

599.3712 

  

 

  

******************* EIGENVALUES OF THE FISHER INFORMATION MATRIX ****************** 

  

        FixedEffects VarianceComponents 

min      4693.602414           6.806441 

max     16412.806404        1313.606918 

max/min     3.496846         192.994680 

 

  

******************* CORRELATION MATRIX ****************** 

  

         [,1]       [,2]       [,3]        [,4]        [,5]        [,6] 

V1  1.0000000 -0.3572238  0.4228893  0.00000000  0.00000000  0.00000000 

V2 -0.3572238  1.0000000 -0.4813562  0.00000000  0.00000000  0.00000000 

V3  0.4228893 -0.4813562  1.0000000  0.00000000  0.00000000  0.00000000 

V4  0.0000000  0.0000000  0.0000000  1.00000000 -0.02281874  0.03522493 

V5  0.0000000  0.0000000  0.0000000 -0.02281874  1.00000000 -0.14572956 

V6  0.0000000  0.0000000  0.0000000  0.03522493 -0.14572956  1.00000000 

V7  0.0000000  0.0000000  0.0000000  0.11792720 -0.24609424  0.16443852 

V8  0.0000000  0.0000000  0.0000000 -0.28514144  0.12142535 -0.33126615 
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         [,7]       [,8] 

V1  0.0000000  0.0000000 

V2  0.0000000  0.0000000 

V3  0.0000000  0.0000000 

V4  0.1179272 -0.2851414 

V5 -0.2460942  0.1214254 

V6  0.1644385 -0.3312662 

V7  1.0000000 -0.7482048 

V8 -0.7482048  1.0000000 

 

 

  

Time difference of 0.1180069 secs 

 

Comment on results 

When comparing the results from the output with those obtained in section 1.2.2, it is noticeable 

that the criterion increased when prior information on FIM is used. It increased from 182.5 to 599.3. 

There are evident improvements also in the RSE of both fixed and random effects, which are lower 

here than in point 1.2.2. 

Comparing the output of one group design using prior information with the output of the two groups 

design in section 1.2.3, it is evident that results are the same. Indeed, the prior information on FIM 

used was the FIM obtained for the first group design, group that was evaluated in section 1.2.1. 

 

1.3. Individual Fisher Information Matrix (I-FIM) 

Evaluation of the  Individual Fisher Information Matrix for the elementary design    and then    . 

1.3.1. Elementary Design    

INPUT FILE 
 

#Name of the project 

#-------------------- 

project<-"1.3.1" 

 

#FIM: Population (P) or Individual (I) or Bayesian (B) Fisher information matrix 

#--------------------------------------- 

FIM<-"I" 

 

 

#List of the vectors of sampling times for each elementary design 

#You can specify that a group has no sampling time by writing NULL 

#(ONLY if you have several response) 

#----------------------------------------------------------------- 

protA<-list(c(0.33,1.5,5,12)) 

 

#Vector of initial proportions or numbers of subjects for each elementary design 

#-------------------------------------------------------------- 

subjects<-c(1) 

 

#Subjects input: (1) for number of subjects (2) for proportions of subjects 

#--------------------------------------------------------------------------- 

subjects.input<-1 
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OUTPUT FILE 
PFIM 4.0  

  

Project:  1.3.1 

  

Date:  Mon Jan 27 16:33:26 2014 

  

 

  

**************************** INPUT SUMMARY ******************************** 

  

Analytical function models :   

  

function(t,p,X){ 

ka<-p[1] 

k<-p[2] 

V<-p[3] 

y<-(X/V*ka/(ka-k)*(exp(-k*t)-exp(-ka*t))) 

return(y) 

} 

 

  

Design:   

Sample times for response: A  

                times subjects doses 

1 c(0.33, 1.5, 5, 12)        1   100 

 

  

Variance error model response A : ( 0.5 + 0.15 *f)^2 

 

  

 

  

Computation of the Individual Fisher information matrix 

  

FIM saved in FIM.txt 

  

  

******************* FISHER INFORMATION MATRIX ****************** 

  

           [,1]       [,2]       [,3]     [,4]     [,5] 

[1,]  1.3302192   1.159014 -0.2522055  0.00000  0.00000 

[2,]  1.1590137 214.546128  3.6213766  0.00000  0.00000 

[3,] -0.2522055   3.621377  0.1479803  0.00000  0.00000 

[4,]  0.0000000   0.000000  0.0000000 12.85799 21.91468 

[5,]  0.0000000   0.000000  0.0000000 21.91468 66.59115 

 

  

************************** EXPECTED STANDARD ERRORS ************************ 

  

------------------------ Fixed Effects Parameters ------------------------- 

  

    Beta  StdError      RSE   

ka  2.00 1.4531150 72.65575 % 

k   0.25 0.1228738 49.14952 % 

V  15.00 5.6733768 37.82251 % 

 

  

------------------------ Standard deviation of residual error ---------------------  
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           Sigma  StdError       RSE   

sig.interA  0.50 0.4208513  84.17025 % 

sig.slopeA  0.15 0.1849298 123.28655 % 

 

  

******************************* DETERMINANT ******************************** 

  

3317.958 

  

******************************** CRITERION ********************************* 

  

5.060276 

  

 

  

******************* EIGENVALUES OF THE FISHER INFORMATION MATRIX ****************** 

  

        FixedEffects VarianceComponents 

min         5.053743         0.02977512 

max       214.613529         1.38102331 

max/min    42.466252        46.38178541 

 

  

******************* CORRELATION MATRIX ****************** 

  

           [,1]       [,2]       [,3]       [,4]       [,5] 

[1,]  1.0000000 -0.6884871  0.8014327  0.0000000  0.0000000 

[2,] -0.6884871  1.0000000 -0.8305558  0.0000000  0.0000000 

[3,]  0.8014327 -0.8305558  1.0000000  0.0000000  0.0000000 

[4,]  0.0000000  0.0000000  0.0000000  1.0000000 -0.7489284 

[5,]  0.0000000  0.0000000  0.0000000 -0.7489284  1.0000000 

 

 

  

Time difference of 0.02400112 secs 

1.3.2. Elementary Design    

INPUT FILE 
 

#Name of the project 

#-------------------- 

project<-"1.3.2" 

 

 

#FIM: Population (P) or Individual (I) or Bayesian (B) Fisher information matrix 

#--------------------------------------- 

FIM<-"I" 

 

#List of the vectors of sampling times for each elementary design 

#You can specify that a group has no sampling time by writing NULL 

#(ONLY if you have several response) 

#----------------------------------------------------------------- 

protA<-list(c(1,3,8)) 

 

#Vector of initial proportions or numbers of subjects for each elementary design 

#-------------------------------------------------------------- 

subjects<-c(1) 
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OUTPUT FILE 
PFIM 4.0  

  

Project:  1.3.2 

  

Date:  Mon Jan 27 17:02:58 2014 

  

 

  

**************************** INPUT SUMMARY ******************************** 

  

Analytical function models :   

  

function(t,p,X){ 

ka<-p[1] 

k<-p[2] 

V<-p[3] 

y<-(X/V*ka/(ka-k)*(exp(-k*t)-exp(-ka*t))) 

return(y) 

} 

 

  

Design:   

Sample times for response: A  

       times subjects doses 

1 c(1, 3, 8)        1   100 

 

  

Variance error model response A : ( 0.5 + 0.15 *f)^2 

 

  

 

  

Computation of the Individual Fisher information matrix 

  

FIM saved in FIM.txt 

  

  

******************* FISHER INFORMATION MATRIX ****************** 

  

            [,1]       [,2]        [,3]      [,4]     [,5] 

[1,]  0.35331883   1.538575 -0.08983448  0.000000  0.00000 

[2,]  1.53857495 214.538102  3.84156478  0.000000  0.00000 

[3,] -0.08983448   3.841565  0.13399054  0.000000  0.00000 

[4,]  0.00000000   0.000000  0.00000000  7.836682 17.89450 

[5,]  0.00000000   0.000000  0.00000000 17.894502 60.29574 

 

  

************************** EXPECTED STANDARD ERRORS ************************ 

  

------------------------ Fixed Effects Parameters ------------------------- 

  

    Beta  StdError       RSE   

ka  2.00 2.7633469 138.16734 % 

k   0.25 0.1464156  58.56623 % 

V  15.00 6.3313534  42.20902 % 

 

  

------------------------ Standard deviation of residual error ---------------------  
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           Sigma  StdError      RSE   

sig.interA  0.50 0.6291957 125.8391 % 

sig.slopeA  0.15 0.2268342 151.2228 % 

 

  

******************************* DETERMINANT ******************************** 

  

279.0063 

  

******************************** CRITERION ********************************* 

  

3.08406 

  

 

  

******************* EIGENVALUES OF THE FISHER INFORMATION MATRIX ****************** 

  

        FixedEffects VarianceComponents 

min         2.314023         0.02215148 

max       214.617932         0.38532766 

max/min    92.746652        17.39511865 

 

  

******************* CORRELATION MATRIX ****************** 

  

           [,1]       [,2]       [,3]       [,4]       [,5] 

[1,]  1.0000000 -0.7437627  0.7857500  0.0000000  0.0000000 

[2,] -0.7437627  1.0000000 -0.8806589  0.0000000  0.0000000 

[3,]  0.7857500 -0.8806589  1.0000000  0.0000000  0.0000000 

[4,]  0.0000000  0.0000000  0.0000000  1.0000000 -0.8232092 

[5,]  0.0000000  0.0000000  0.0000000 -0.8232092  1.0000000 

 

 

  

Time difference of 0.02400088 secs 

1.4. Bayesian Fisher Information Matrix (B-FIM) 

Evaluation of the Bayesian Fisher Information Matrix for the elementary design    and then   . 

1.4.1. Elementary Design    

INPUT FILE 
 

#Name of the project 

#-------------------- 

project<-"1.4.1" 

 

 

#FIM: Population (P) or Individual (I) or Bayesian (B) Fisher information matrix 

#--------------------------------------- 

FIM<-"B" 

 

 

#List of the vectors of sampling times for each elementary design 

#You can specify that a group has no sampling time by writing NULL 

#(ONLY if you have several response) 

#----------------------------------------------------------------- 

protA<-list(c(0.33,1.5,5,12))  
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#Vector of initial proportions or numbers of subjects for each elementary design 

#-------------------------------------------------------------- 

subjects<-c(1) 

 

#Subjects input: (1) for number of subjects (2) for proportions of subjects 

#--------------------------------------------------------------------------- 

subjects.input<-1 

 

OUTPUT FILE 
PFIM 4.0  

  

Project:  1.4.1 

  

Date:  Mon Jan 27 17:09:24 2014 

  

 

  

**************************** INPUT SUMMARY ******************************** 

  

Analytical function models :   

  

function(t,p,X){ 

ka<-p[1] 

k<-p[2] 

V<-p[3] 

y<-(X/V*ka/(ka-k)*(exp(-k*t)-exp(-ka*t))) 

return(y) 

} 

 

  

Design:   

Sample times for response: A  

                times subjects doses 

1 c(0.33, 1.5, 5, 12)        1   100 

 

  

Random effect model: Trand =  2 

  

Variance error model response A : ( 0.5 + 0.15 *f)^2 

 

  

 

  

Computation of the Bayesian Fisher information matrix 

  

FIM saved in FIM.txt 

  

  

******************* FISHER INFORMATION MATRIX ****************** 

  

           [,1]       [,2]       [,3] 

[1,]  1.5802192   1.159014 -0.2522055 

[2,]  1.1590137 278.546128  3.6213766 

[3,] -0.2522055   3.621377  0.1924248 

 

  

************************** EXPECTED STANDARD ERRORS ************************ 

 ------------------------ Fixed Effects Parameters ------------------------- 
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     Beta   StdError      RSE Shrinkage   

ka  2.00 0.96051649 48.02582 %  23.06480 % 

k   0.25 0.07402618 29.61047 %  35.07121 % 

V  15.00 3.16229457 21.08196 %  44.44492 % 

  

******************************* DETERMINANT ******************************** 

  

43.88159 

  

******************************** CRITERION ********************************* 

  

3.527179 

  

 

  

******************* EIGENVALUES OF THE FISHER INFORMATION MATRIX ****************** 

  

        FixedEffects VarianceComponents 

min     9.700529e-02                 NA 

max     2.785981e+02                 NA 

max/min 2.871988e+03                 NA 

 

  

******************* CORRELATION MATRIX ****************** 

  

           [,1]       [,2]       [,3] 

[1,]  1.0000000 -0.3642010  0.5585526 

[2,] -0.3642010  1.0000000 -0.5855403 

[3,]  0.5585526 -0.5855403  1.0000000 

 

 

  

Time difference of 0.02100205 secs 

1.4.2. Elementary Design    

INPUT FILE 
 

 

#Name of the project 

#-------------------- 

project<-"1.4.2" 

 

 

#FIM: Population (P) or Individual (I) or Bayesian (B) Fisher information matrix 

#--------------------------------------- 

FIM<-"B" 

 

#List of the vectors of sampling times for each elementary design 

#You can specify that a group has no sampling time by writing NULL 

#(ONLY if you have several response) 

#----------------------------------------------------------------- 

protA<-list(c(1,3,8)) 

 

#Vector of initial proportions or numbers of subjects for each elementary design 

#-------------------------------------------------------------- 

subjects<-c(1) 
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OUTPUT FILE 
PFIM 4.0  

  

Project:  1.4.2 

  

Date:  Tue Jan 28 08:26:36 2014 

  

 

  

**************************** INPUT SUMMARY ******************************** 

  

Analytical function models :   

  

function(t,p,X){ 

ka<-p[1] 

k<-p[2] 

V<-p[3] 

y<-(X/V*ka/(ka-k)*(exp(-k*t)-exp(-ka*t))) 

return(y) 

} 

 

  

Design:   

Sample times for response: A  

       times subjects doses 

1 c(1, 3, 8)        1   100 

 

  

Random effect model: Trand =  2 

  

Variance error model response A : ( 0.5 + 0.15 *f)^2 

 

  

Computation of the Bayesian Fisher information matrix 

  

FIM saved in FIM.txt  

  

******************* FISHER INFORMATION MATRIX ****************** 

  

            [,1]       [,2]        [,3] 

[1,]  0.60331883   1.538575 -0.08983448 

[2,]  1.53857495 278.538102  3.84156478 

[3,] -0.08983448   3.841565  0.17843498 

 

  

************************** EXPECTED STANDARD ERRORS ************************ 

  

------------------------ Fixed Effects Parameters ------------------------- 

  

     

Beta StdError      RSE Shrinkage   

ka  2.00 1.419173 70.95865 %  50.35130 % 

k   0.25 0.075761 30.30440 %  36.73427 % 

V  15.00 3.090213 20.60142 %  42.44184 % 

  

******************************* DETERMINANT ******************************** 

  

17.34976 
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******************************** CRITERION ********************************* 

  

2.588796 

  

 

  

******************* EIGENVALUES OF THE FISHER INFORMATION MATRIX ****************** 

  

        FixedEffects VarianceComponents 

min        0.1004813                 NA 

max      278.5996083                 NA 

max/min 2772.6525284                 NA 

 

  

******************* CORRELATION MATRIX ****************** 

  

           [,1]       [,2]       [,3] 

[1,]  1.0000000 -0.3321737  0.4065396 

[2,] -0.3321737  1.0000000 -0.6046221 

[3,]  0.4065396 -0.6046221  1.0000000 

 

 

  

Time difference of 0.02000093 secs 

 

Comment on results 

Comparing examples 1.3 and 1.4, it is noticeable that the evaluation of B-FIM leads to smaller RSE 

particularly for the parameter ka, which in the evaluation of I-FIM is very high, above all for the 

second elementary design, reaching the value of 138 %. 

Comparing the two elementary designs, for both I-FIM and B-FIM, results are overall better with     

than with   ,as the variability on ka is kept lower and the criterion is slightly higher. For B-FIM, 

shrinkage values are provided and they show that with    it is obtained more information than with 

  . 

1.5. Delta Method  

Using the delta method available in the R package “car”, we can compute the standard error (SE) of 

any derived parameters. 

Here we evaluate the SE of the Clearance (Cl= k*V) for the Population, Individual and Bayesian Fisher 

Matrix using design   . We use MF stored in the outputFIM for each of these three cases, or the 

one directly obtained in R console after running PFIM(). 

 

1.5.1. P-FIM 
 

setwd("C:\\Users\\Guilia\\Desktop\\ExamplesPFIM4\\EVALUATION\\EXAMPLE 

1\\1.1_UserDefMod_1.2.1") 

 

Beta<-c(2,0.25,15) # provided from the stdin.r file in example 

#1.1_UserDefMod_1.2.1. 

names(Beta) <- c("ka","k","V") 

 

fishmat <- read.table("FIM.txt",sep="") 
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colnames(fishmat) <- paste(1:8)  
 

varcov<-solve(fishmat)[1:3,1:3]#we only include the columns of the fix effects 

 

DMcl <- deltaMethod(Beta,"k*V",vcov.=varcov)  

> DMcl 

      Estimate        SE 

k * V     3.75 0.1730348 

1.5.2. I-FIM 
 

directory<-"C:\\Users\\Guilia\\Desktop\\ExamplesPFIM4\\EVALUATION\\EXAMPLE 

1\\1.3.1" 

directory.program<-"C:\\Users\\Guilia\\Documents\\PFIM4.0\\Program" 

 

result<-PFIM() 

fishmat<-result$mfisher 

colnames(fishmat) <- paste(1:5) 

 

varcov<-solve(fishmat)[1:3,1:3] 

DMcl <- deltaMethod(Beta,"k*V",vcov.=varcov) 

> DMcl 

      Estimate       SE 

k * V     3.75 1.032634 

1.5.3. B-FIM 
directory<-"C:\\Users\\Guilia\\Desktop\\ExamplesPFIM4\\EVALUATION\\EXAMPLE 

1\\1.4.1" 

 

colnames(fishmat) <- paste(1:3) 

 

varcov<-solve(fishmat)[1:3,1:3] 

DMcl <- deltaMethod(Beta,"k*V",vcov.=varcov) 

> DMcl 

      Estimate        SE 

k * V     3.75 0.9110153 

 

1.6. Evaluation of FIM with Fixed Parameter 

Another new feature of v4.0 is to assume that a parameter is known (fixed) and not estimated. 

Here we evaluated Population, Individual and Bayesian Fisher Information Matrix for the design    

assuming that the parameter     is fixed (and has no variability .  

1.6.1. P-FIM 

INPUT FILE 
 

 

#Name of the project 

#-------------------- 

project<-"1.6.1" 

 

 

#FIM: Population (P) or Individual (I) or Bayesian (B) Fisher information matrix 

#--------------------------------------- 

FIM<-"P" 
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#Name of the fixed effects parameters 

#------------------------------------- 

parameters<-c("ka","k","V") 

 

#Fixed effects parameters values 

#------------------------------- 

beta<-c(2,0.25,15) 

 

#Some parameters may not be estimated (not estimated = T, estimated = F) 

#-------------------------------- 

beta.fixed<-c(T,F,F) 

omega<-diag(c(0,0.25,0.1)) 

OUTPUT FILE 
PFIM 4.0  

  

Project:  1.6.1 

  

Date:  Mon Jan 27 17:15:03 2014 

  

**************************** INPUT SUMMARY ******************************** 

  

Analytical function models :   

  

function(t,p,X){ 

ka<-p[1] 

k<-p[2] 

V<-p[3] 

y<-(X/V*ka/(ka-k)*(exp(-k*t)-exp(-ka*t))) 

return(y) 

} 

 

  

Design:   

Sample times for response: A  

                times subjects doses 

1 c(0.33, 1.5, 5, 12)      200   100 

 

  

Random effect model: Trand =  2 

  

Variance error model response A : ( 0.5 + 0.15 *f)^2  

 

  

Computation of the Population Fisher information matrix: option =  1 

  

FIM saved in FIM.txt 

  

  

******************* FISHER INFORMATION MATRIX ****************** 

  

           [,1]     [,2]      [,3]       [,4]      [,5]      [,6] 

[1,] 8906.33251 50.88726   0.00000    0.00000    0.0000    0.0000 

[2,]   50.88726  6.17076   0.00000    0.00000    0.0000    0.0000 

[3,]    0.00000  0.00000 774.63632   91.03759  212.6390  298.6706 

[4,]    0.00000  0.00000  91.03759 4819.28232  362.6152 1318.2543 

[5,]    0.00000  0.00000 212.63905  362.61524 1502.9442 2413.8017 

[6,]    0.00000  0.00000 298.67055 1318.25428 2413.8017 6880.7738 
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 ************************** EXPECTED STANDARD ERRORS ************************ 

  

------------------------ Fixed Effects Parameters ------------------------- 

  

   Beta   StdError      RSE   

k  0.25 0.01085503 4.342010 % 

V 15.00 0.41239269 2.749285 % 

 

  

------------------------- Variance of Inter-Subject Random Effects ---------------- 

  

  omega²   StdError      RSE   

k   0.25 0.03667690 14.67076 % 

V   0.10 0.01482801 14.82801 % 

 

  

------------------------ Standard deviation of residual error ---------------------  

  

           Sigma   StdError       RSE   

sig.interA  0.50 0.03957486  7.914972 % 

sig.slopeA  0.15 0.01861316 12.408776 % 

 

  

******************************* DETERMINANT ******************************** 

  

8.000286e+17 

  

******************************** CRITERION ********************************* 

  

963.4982 

  

******************* EIGENVALUES OF THE FISHER INFORMATION MATRIX ****************** 

  

        FixedEffects VarianceComponents 

min      8350.060448           5.879818 

max      8906.623447         795.196613 

max/min     1.066654         135.241698 

 

  

******************* CORRELATION MATRIX ****************** 

  

           [,1]       [,2]        [,3]        [,4]        [,5]        [,6] 

[1,]  1.0000000 -0.2170653  0.00000000  0.00000000  0.00000000  0.00000000 

[2,] -0.2170653  1.0000000  0.00000000  0.00000000  0.00000000  0.00000000 

[3,]  0.0000000  0.0000000  1.00000000 -0.02729577 -0.15390246  0.03342554 

[4,]  0.0000000  0.0000000 -0.02729577  1.00000000  0.06116443 -0.19591071 

[5,]  0.0000000  0.0000000 -0.15390246  0.06116443  1.00000000 -0.74204223 

[6,]  0.0000000  0.0000000  0.03342554 -0.19591071 -0.74204223  1.00000000 

 

  

Time difference of 0.02500105 secs 

 

 

 

Comment on results 

Comparing the output of this example with the one in section 1.2.1, we can see that the standard 

errors are slightly reduced in this example. 
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1.6.2. I-FIM 

INPUT FILE 
 

#Name of the project 

#-------------------- 

project<-"1.6.2" 

 

outputFIM<-"FIM.txt"; 

 

#FIM: Population (P) or Individual (I) or Bayesian (B) Fisher information matrix 

#--------------------------------------- 

FIM<-"I" 

 

###### END ANALYTICAL MODEL OPTION ######################## 

#Name of the fixed effects parameters 

#------------------------------------- 

parameters<-c("ka","k","V") 

 

#Fixed effects parameters values 

#------------------------------- 

beta<-c(2,0.25,15) 

 

#Some parameters may not be estimated (not estimated = T, estimated = F) 

#-------------------------------- 

beta.fixed<-c(T,F,F) 

OUTPUT FILE 
PFIM 4.0  

  

Project:  1.6.2 

  

Date:  Mon Jan 27 17:21:44 2014 

  

 

 

  

**************************** INPUT SUMMARY ******************************** 

  

Analytical function models :   

  

function(t,p,X){ 

ka<-p[1] 

k<-p[2] 

V<-p[3] 

y<-(X/V*ka/(ka-k)*(exp(-k*t)-exp(-ka*t))) 

return(y) 

} 

 

  

Design:   

Sample times for response: A  

                times subjects doses 

1 c(0.33, 1.5, 5, 12)        1   100 

 

  

Variance error model response A : ( 0.5 + 0.15 *f)^2  
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Computation of the Individual Fisher information matrix 

  

FIM saved in FIM.txt 

  

  

******************* FISHER INFORMATION MATRIX ****************** 

  

           [,1]      [,2]     [,3]     [,4] 

[1,] 214.546128 3.6213766  0.00000  0.00000 

[2,]   3.621377 0.1479803  0.00000  0.00000 

[3,]   0.000000 0.0000000 12.85799 21.91468 

[4,]   0.000000 0.0000000 21.91468 66.59115 

 

  

************************** EXPECTED STANDARD ERRORS ************************ 

  

------------------------ Fixed Effects Parameters ------------------------- 

  

   Beta   StdError      RSE   

k  0.25 0.08911405 35.64562 % 

V 15.00 3.39316156 22.62108 % 

 

  

------------------------ Standard deviation of residual error ---------------------  

  

           Sigma  StdError       RSE   

sig.interA  0.50 0.4208513  84.17025 % 

sig.slopeA  0.15 0.1849298 123.28655 % 

 

  

******************************* DETERMINANT ******************************** 

  

7006.011 

  

******************************** CRITERION ********************************* 

  

9.148875 

  

 

  

******************* EIGENVALUES OF THE FISHER INFORMATION MATRIX ****************** 

  

        FixedEffects VarianceComponents 

min        74.395393         0.08682947 

max       214.607279         0.08682947 

max/min     2.884685         1.00000000 

 

  

******************* CORRELATION MATRIX ****************** 

  

           [,1]       [,2]       [,3]       [,4] 

[1,]  1.0000000 -0.6427045  0.0000000  0.0000000 

[2,] -0.6427045  1.0000000  0.0000000  0. 

[3,]  0.0000000  0.0000000  1.0000000 -0.74892840000000 

[4,]  0.0000000  0.0000000 -0.7489284  1.0000000 

 

  

Time difference of 0.02300096 secs 
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Comments on the results 

As for PFIM, fixing ka resulted in slight improvements of the Relative Standard Errors with respect to 

the results in section 1.3.1. 

1.6.3. B-FIM 

INPUT FILE 
 

#Name of the project 

#-------------------- 

project<-"1.6.3" 

 

 

#FIM: Population (P) or Individual (I) or Bayesian (B) Fisher information matrix 

#--------------------------------------- 

FIM<-"B" 

 

 

 

#Some parameters may not be estimated (not estimated = T, estimated = F) 

#-------------------------------- 

beta.fixed<-c(T,F,F) 

 

OUPTUT FILE 
PFIM 4.0  

  

Project:  1.6.3 

  

Date:  Mon Jan 27 17:27:30 2014 

  

 

  

**************************** INPUT SUMMARY ******************************** 

  

Analytical function models :   

  

function(t,p,X){ 

ka<-p[1] 

k<-p[2] 

V<-p[3] 

y<-(X/V*ka/(ka-k)*(exp(-k*t)-exp(-ka*t))) 

return(y) 

} 

 

  

Design:   

Sample times for response: A  

                times subjects doses 

1 c(0.33, 1.5, 5, 12)        1   100 

 

  

Random effect model: Trand =  2 

  

Variance error model response A : ( 0.5 + 0.15 *f)^2 
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Computation of the Bayesian Fisher information matrix 

  

FIM saved in FIM.txt 

  

  

******************* FISHER INFORMATION MATRIX ****************** 

  

           [,1]      [,2] 

[1,] 278.546128 3.6213766 

[2,]   3.621377 0.1924248 

 

  

************************** EXPECTED STANDARD ERRORS ************************ 

  

------------------------ Fixed Effects Parameters ------------------------- 

  

   Beta   StdError      RSE   Shrinkage   

k  0.25 0.06894209 27.57684 %  30.41928 % 

V 15.00 2.62302564 17.48684 %  30.57895 % 

 

  

******************************* DETERMINANT ******************************** 

  

40.48481 

  

******************************** CRITERION ********************************* 

  

6.362767 

  

 

  

 

 

 

 

 

******************* EIGENVALUES OF THE FISHER INFORMATION MATRIX ****************** 

  

        FixedEffects VarianceComponents 

min        0.1453187                 NA 

max      278.5932338                 NA 

max/min 1917.1190240                 NA 

 

  

******************* CORRELATION MATRIX ****************** 

  

           [,1]       [,2] 

[1,]  1.0000000 -0.4946462 

[2,] -0.4946462  1.0000000 

 

  

Time difference of 0.02200103 secs 
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2. Example 2: PK and immediate response PD model using the libraries of 

PK and PD Models (ODE) 

The purpose is to evaluate a population design using a PKPD model. The PK model is a one 

compartment model with an infusion of 1 hour and a Michaelis-Menten elimination. The PD model is 

an immediate response model with linear drug action and no baseline. The PKPD model is described 

by a differential equation system using the function create_formED implemented in the file 

CreateModel_PKPDdesign.r.  

The design to be evaluated is composed of one group of 100 subjects with a dose of 100 and 

sampling times at 0.5, 2, 30, 49, 180 for the PK and 0.5, 2, 14, 110, 150 for the PD. 

2.1. Model File 
 

source(file.path(directory.program,"CreateModel_PKPDdesign.r")) 

create_formED(infusion_1cpt_VVmkm,immed_lin_null,dose=100,TInf=1) 

# The differential equation system is created in the file model_created.r 

2.2. Input File (P-FIM) 

 

######################################################################### 

##           INPUT FILE FOR PFIM 4.0                          ## 

######################################################################### 

 

 

#Name of the project 

#--------------------  

project<-"EXAMPLE 2" 

 

#Name of the file containing the PK or PD model 

#---------------------------------------------- 

file.model<-"model.R" 

 

#Name of the output file for the results and for the Fisher information matrix 

#--------------------------------------- 

output<-"Stdout.r"; 

outputFIM<-""; 

 

#FIM: Population (P) or Individual (I) or Bayesian (B) Fisher information matrix 

#--------------------------------------- 

FIM<-"P" 

 

#Previous information for population design (FIM<-"P") only: 

#If previous information is available, please specify below the file name; 

#otherwise leave it as the default 

#-------------------------------------------------------- 

previous.FIM<-"" 

 

#RUN:  Evaluation (EVAL) or Optimisation (OPT)  

#------------------------------------------------------- 

run<-"EVAL" 

 

#To display only  graphs of models and/or sensitivity functions before evaluating 

the Fisher Information matrix 

graph.only<-F 



40 
 

 

#Block diagonal Fisher information matrix (option<-1) or complete Fisher 

information matrix (option<-2) 

#---------------------------------------------------------- 

option<-1 

 

#Number of responses 

#-------------------------------------------------------------------- 

nr<-2 

 

 

 

################### MODEL OPTION ########################### 

 

#Model form: Differential equations (DE) or analytical form (AF) 

#--------------------------------------------------------------- 

 

modelform<-"DE" 

###### DIFFERENTIAL EQUATION OPTION ########################## 

############################################################## 

 

#Initial time for which initial conditions are given 

#--------------------------------------------------- 

time.condinit<-0 

 

#Identical initial conditions in each elementary design (Yes=T, No=F) 

#------------------------------------------------------------- 

condinit.identical<-T 

 

# If 'Yes', enter once the expression of the initial values of the system at the 

initial time 

# else, enter the vectors of the initial conditions for each elementary design 

# If initial values depend on the parameters to be estimated,  

# enter this parameter into the expression without any quotation marks  

#--------------------------------------------------------- 

condinit<-expression(c(0,0)) 

 

# Error tolerance for solving differential equations 

#---------------------------------------------------- 

 

RtolEQ<-1e-08 

AtolEQ<-1e-08 

Hmax<-Inf  

 

###### END DIFFERENTIAL EQUATION OPTION ################################# 

 

 

 

#Name of the fixed effects parameters 

#------------------------------------- 

parameters<-c("V","Vm","km","Alin") 

 

#Fixed effects parameters values 

#------------------------------- 

beta<-c(12.2,0.082,0.37,0.1) 

 

#Some parameters may not be estimated (not estimated = T, estimated = F) 

#-------------------------------- 

beta.fixed<-c(F,F,F) 
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#Number of occasions 

#-------------------------------------------------------------------------- 

n_occ<-1 

 

#Random effect model (1) = additive  (2) = exponential  

#------------------------------------------------------------------ 

Trand<-2; 

 

#Diagonal Matrix of variance for inter-subject random effects: 

#--------------------------------------------------- 

omega<-diag(c(0.25,0.25,0,0.25)) 

 

#Diagonal Matrix of variance for inter-occasion random effects: 

#--------------------------------------------------- 

gamma<-diag(c(0,0,0)) 

 

#Standard deviation of residual error (sig.inter+sig.slope*f)^2: 

#------------------------------------------------------------------ 

sig.interA<-0 

sig.slopeA<-0.2 

 

sig.interB<-0.1 

sig.slopeB<-0 

 

#List of the vectors of sampling times for each elementary design  

#You can specify that a group has no sampling time by writing NULL  

#(ONLY if you have several response) 

#----------------------------------------------------------------- 

protA<-list(c(0.5, 2, 30, 49, 180)) 

protB<-list(c(0.5, 2, 14, 110, 150)) 

 

#Vector of initial proportions or numbers of subjects for each elementary design  

#-------------------------------------------------------------- 

subjects<-c(100) 

 

#Subjects input: (1) for number of subjects (2) for proportions of subjects 

#--------------------------------------------------------------------------- 

subjects.input<-1 

 

#If 'proportions of subjects' give the total number of samples 

#------------------------------------------------------------- 

#Ntot<-40 

############## GRAPH SPECIFICATION OPTION ############### 

 

#graphical representation (Yes=T, No=F) 

#------------------------------------- 

graph.logical<-T 

 

#Vector of Names on Y axes for each response 

#--------------------------------- 

names.datax<-c("Time","Time") 

 

#Vector of Names on Y axes for each response 

#--------------------------------- 

names.datay<-c("Concentration","Effet") 

 

#Controls logarithmic axes for the graphical representation. 

#Values "xy", "x", or "y" produce log-log or log-x or log-y axes. 
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#(For standard graphic, log.logical<-F) 

#-------------------------------------------------------------- 

#log.logical<-'y' 

log.logical<-F 

 

#Vector of lower and upper sampling times for the graphical representation 

#------------------------------------------------------------------------- 

graph.infA<-c(0) 

graph.supA<-c(180) 

graph.infB<-c(0) 

graph.supB<-c(180) 

 

#Vector of lower and upper concentration for the graphical representation 

#------------------------------------------------------------------------ 

y.rangeA<-NULL # default range 

#y.range<-c(0,10) 

 

############# END OF GRAPH SPECIFICATION OPTION ############### 

2.3. Output File 
PFIM 4.0  

  

Project:  EXAMPLE 2 

  

Date:  Fri Mar 21 15:57:00 2014 

  

 

  

**************************** INPUT SUMMARY ******************************** 

  

Differential Equations form of the model:   

  

function(t,y,p){ 

V<-p[1] 

Vm<-p[2] 

km<-p[3] 

Alin<-p[4] 

pk<-y[1:1] 

pd<-y[2:2] 

conc<-y[1] 

if(t<=1){ 

dpk1<-(100/(1*V))+(-Vm)*pk[1]/(km+pk[1])} 

else{ 

dpk1<-(-Vm)*pk[1]/(km+pk[1])} 

dpd1<-0 

pdIm<-Alin*conc 

return(list(c(dpk1,dpd1),c(pk[1],pdIm))) 

} 

 

  

Design:   

Sample times for response: A  

                   times subjects 

1 c(0.5, 2, 30, 49, 180)      100 

 

  

Sample times for response: B  

                    times subjects 

1 c(0.5, 2, 14, 110, 150)      100 
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Initial Conditions at time 0 :  

  

0 0 

  

Random effect model: Trand =  2 

  

Variance error model response A : ( 0 + 0.2 *f)^2 

Variance error model response B : ( 0.1 + 0 *f)^2 

 

  

Error tolerance for solving differential equations system: RtolEQ = 1e-08 , AtolEQ 

= 1e-08 , Hmax =  Inf 

  

Computation of the Population Fisher information matrix: option =  1 

  

******************* FISHER INFORMATION MATRIX ****************** 

  
             [,1]         [,2]        [,3]          [,4]         [,5]        [,6]         [,7]         [,8]         [,9] 

 [1,]   2.6770341     9.444202   -57.39048    -0.7254162 0.000000e+00   0.0000000 0.000000e+00 0.000000e+00     0.000000 

 [2,]   9.4442023 50919.213161  7982.73905   657.4076389 0.000000e+00   0.0000000 0.000000e+00 0.000000e+00     0.000000 

 [3,] -57.3904833  7982.739050 33057.82792 -6714.1078293 0.000000e+00   0.0000000 0.000000e+00 0.000000e+00     0.000000 

 [4,]  -0.7254162   657.407639 -6714.10783 38772.8151987 0.000000e+00   0.0000000 0.000000e+00 0.000000e+00     0.000000 

 [5,]   0.0000000     0.000000     0.00000     0.0000000 7.938111e+02   0.4463216 3.916193e-03 2.546794e+00     8.097541 

 [6,]   0.0000000     0.000000     0.00000     0.0000000 4.463216e-01 586.1230244 1.453005e-01 9.449987e+01   301.234913 

 [7,]   0.0000000     0.000000     0.00000     0.0000000 3.916193e-03   0.1453005 7.516656e+02 8.332548e-01   116.540931 

 [8,]   0.0000000     0.000000     0.00000     0.0000000 2.546794e+00  94.4998735 8.332548e-01 1.725786e+04  1714.876645 

 [9,]   0.0000000     0.000000     0.00000     0.0000000 8.097541e+00 301.2349133 1.165409e+02 1.714877e+03 64572.948196 

 

  

************************** EXPECTED STANDARD ERRORS ************************ 

  

------------------------ Fixed Effects Parameters ------------------------- 

  

       Beta    StdError      RSE   

V    12.200 0.624822332 5.121495 % 

Vm    0.082 0.004534793 5.530235 % 

km    0.370 0.005841524 1.578790 % 

Alin  0.100 0.005182493 5.182493 % 

 

  

------------------------- Variance of Inter-Subject Random Effects ---------------- 

  

     omega²   StdError      RSE   

V      0.25 0.03549293 14.19717 % 

Vm     0.25 0.04137028 16.54811 % 

Alin   0.25 0.03647948 14.59179 % 

 

  

------------------------ Standard deviation of residual error ---------------------  

  

           Sigma    StdError      RSE   

sig.slopeA   0.2 0.007625037 3.812519 % 

sig.interB   0.1 0.003945487 3.945487 % 

 

  

******************************* DETERMINANT ******************************** 

  

5.994606e+31 

  

******************************** CRITERION ********************************* 

  

3395.176 
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 ******************* EIGENVALUES OF THE FISHER INFORMATION MATRIX ***************** 

  

        FixedEffects VarianceComponents 

min     26521.376944           2.561446 

max     64636.681018       17196.209993 

max/min     2.437154        6713.478513 

 

  

******************* CORRELATION MATRIX ****************** 

  

             [,1]        [,2]       [,3]        [,4]          [,5]          [,6]          [,7]          [,8]         [,9] 
 [1,]  1.00000000 -0.06785010  0.2062542  0.04352023  0.000000e+00  0.0000000000  0.000000e+00  0.0000000000  0.000000000 

 [2,] -0.06785010  1.00000000 -0.2101514 -0.05600795  0.000000e+00  0.0000000000  0.000000e+00  0.0000000000  0.000000000 

 [3,]  0.20625422 -0.21015142  1.0000000  0.19876898  0.000000e+00  0.0000000000  0.000000e+00  0.0000000000  0.000000000 

 [4,]  0.04352023 -0.05600795  0.1987690  1.00000000  0.000000e+00  0.0000000000  0.000000e+00  0.0000000000  0.000000000 

 [5,]  0.00000000  0.00000000  0.0000000  0.00000000  1.000000e+00 -0.0005826757  1.311462e-05 -0.0006146867 -0.001068259 

 [6,]  0.00000000  0.00000000  0.0000000  0.00000000 -5.826757e-04  1.0000000000  5.840399e-04 -0.0272653545 -0.047524772 

 [7,]  0.00000000  0.00000000  0.0000000  0.00000000  1.311462e-05  0.0005840399  1.000000e+00  0.0006127203 -0.016746938 

 [8,]  0.00000000  0.00000000  0.0000000  0.00000000 -6.146867e-04 -0.0272653545  6.127203e-04  1.0000000000 -0.050000216 

 [9,]  0.00000000  0.00000000  0.0000000  0.00000000 -1.068259e-03 -0.0475247719 -1.674694e-02 -0.0500002164  1.000000000 

 

  

Time difference of 3.551203 secs 
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3. Example 3: PK model with inter-occasion variability  
 

The purpose of this example is to evaluate a design for a PK model including inter-occasion 

variability. The PK model is a one compartment oral model with first order absorption and first order 

elimination. The inter-occasion variability was 15% for the three parameters. The design to be 

evaluated is composed of one group of 40 subjects with a dose of 30 and sampling times at 0.5, 2, 4, 

8. 

3.1. Model File 
 

source(file.path(directory.program,"LibraryPK.r")) 

 

formA<-oral1_1cpt_kaVCl()[[1]] 

 

form<-c(formA) 

3.2. Input File (P-FIM) 
######################################################################### 

##             INPUT FILE FOR PFIM 4.0                              ## 

######################################################################### 

 

 

#Name of the project 

#--------------------  
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project<-"EXAMPLE 3" 

 

#Name of the file containing the PK or PD model 

#---------------------------------------------- 

file.model<-"model.R" 

 

#Name of the output file for the results and for the Fisher information matrix 

#--------------------------------------- 

output<-"Stdout.r"; 

outputFIM<-""; 

 

#FIM: Population (P) or Individual (I) or Bayesian (B) Fisher information matrix 

#--------------------------------------- 

FIM<-"P" 

 

#Previous information for population design (FIM<-"P") only: 

#If previous information is available, please specify below the file name; 

#otherwise leave it as the default 

#-------------------------------------------------------- 

previous.FIM<-"" 

 

#RUN:  Evaluation (EVAL) or Optimisation (OPT)  

#------------------------------------------------------- 

run<-"EVAL" 

 

#To display only  graphs of models and/or sensitivity functions before evaluating 

the Fisher Information matrix 

graph.only<-F 

 

#Block diagonal Fisher information matrix (option<-1) or complete Fisher 

information matrix (option<-2) 

#---------------------------------------------------------- 

option<-1 

 

#Number of responses 

#-------------------------------------------------------------------- 

nr<-1 

 

 

 

################### MODEL OPTION ########################### 

 

#Model form: Differential equations (DE) or analytical form (AF) 

#--------------------------------------------------------------- 

 

modelform<-"AF" 

 

###### ANALYTICAL MODEL OPTION ############################# 

############################################################ 

 

#Identical dose in each elementary design (Yes=T, No=F) 

#------------------------------------------------------------- 

dose.identical<-T 

 

# If 'Yes', enter the value of the dose,  

# else, enter the vector of the dose values for each elementary design 

#-------------------------------------------------------------------- 

dose<-c(30) 

#Vector of the times intervals of each expression   
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#----------------------------------------------------------- 

boundA<-list(c(0,Inf)) 

 

#Numerical derivatives  (Yes=T, No=F) 

#If 'Yes', specify the model function "form" in the model file 

#If 'No', specify the object "form" which is a vector of expressions in the model 

file 

#----------------------------------------------------------- 

NUM<-F  

###### END ANALYTICAL MODEL OPTION ######################## 

#Name of the fixed effects parameters 

#------------------------------------- 

parameters<-c("ka","V","Cl") 

 

#Fixed effects parameters values 

#------------------------------- 

beta<-c(1,3.5,2) 

 

#Some parameters may not be estimated (not estimated = T, estimated = F) 

#-------------------------------- 

beta.fixed<-c(F,F,F) 

 

#Number of occasions 

#-------------------------------------------------------------------------- 

n_occ<-2 

 

#Random effect model (1) = additive  (2) = exponential  

#------------------------------------------------------------------ 

Trand<-2; 

 

#Diagonal Matrix of variance for inter-subject random effects: 

#--------------------------------------------------- 

omega<-diag(c(0.09,0.09,0.09)) 

 

#Diagonal Matrix of variance for inter-occasion random effects: 

#--------------------------------------------------- 

gamma<-diag(c(0.0225,0.0225,0.0225)) 

 

#Standard deviation of residual error (sig.inter+sig.slope*f)^2: 

#------------------------------------------------------------------ 

sig.interA<-0.1 

sig.slopeA<-0 

 

#List of the vectors of sampling times for each elementary design  

#You can specify that a group has no sampling time by writing NULL  

#(ONLY if you have several response) 

#----------------------------------------------------------------- 

protA<-list(c(0.5,2,4,8)) 

 

#Vector of initial proportions or numbers of subjects for each elementary design  

#-------------------------------------------------------------- 

subjects<-c(40) 

 

#Subjects input: (1) for number of subjects (2) for proportions of subjects 

#--------------------------------------------------------------------------- 

subjects.input<-1 

#If 'proportions of subjects' give the total number of samples 

#------------------------------------------------------------- 

#Ntot<-40 
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3.3. Output File 
PFIM 4.0  

  

Project:  EXAMPLE 3 

  

Date:  Tue Jan 28 11:40:35 2014 

  

 

  

**************************** INPUT SUMMARY ******************************** 

  

Analytical function models :   

  

dose/V * ka/(ka - (Cl/V)) * (exp(-(Cl/V) * t) - exp(-ka * t))  

  

Design:   

Sample times for response: A  

            times subjects doses 

1 c(0.5, 2, 4, 8)       40    30 

 

  

Number of occasions: 2 

  

Random effect model: Trand =  2 

  

Variance error model response A : ( 0.1 + 0 *f)^2 

 

  

 

  

Computation of the Population Fisher information matrix: option =  1 

  

******************* FISHER INFORMATION MATRIX ****************** 

  

            [,1]        [,2]       [,3]         [,4]         [,5]         [,6] 

 [1,] 326.376227 -15.9864218  3.8839055    0.0000000    0.0000000    0.0000000 

 [2,] -15.986422  28.3366743  0.9574449    0.0000000    0.0000000    0.0000000 

 [3,]   3.883905   0.9574449 98.1347183    0.0000000    0.0000000    0.0000000 

 [4,]   0.000000   0.0000000  0.0000000 1331.5180159   39.1334952    0.7542361 

 [5,]   0.000000   0.0000000  0.0000000   39.1334952 1506.1906549    0.5614793 

 [6,]   0.000000   0.0000000  0.0000000    0.7542361    0.5614793 1926.0845868 

 [7,]   0.000000   0.0000000  0.0000000  665.7590079   19.5667476    0.3771180 

 [8,]   0.000000   0.0000000  0.0000000   19.5667476  753.0953275    0.2807396 

 [9,]   0.000000   0.0000000  0.0000000    0.3771180    0.2807396  963.0422934 

[10,]   0.000000   0.0000000  0.0000000  486.6656278  340.8242080   22.4031198 

              [,7]         [,8]         [,9]       [,10] 

 [1,]     0.000000 0.000000e+00 0.000000e+00     0.00000 

 [2,]     0.000000 0.000000e+00 0.000000e+00     0.00000 

 [3,]     0.000000 0.000000e+00 0.000000e+00     0.00000 

 [4,]   665.759008 1.956675e+01 3.771180e-01   486.66563 

 [5,]    19.566748 7.530953e+02 2.807396e-01   340.82421 

 [6,]     0.377118 2.807396e-01 9.630423e+02    22.40312 

 [7,] 11180.419592 5.410321e+03 9.653853e+01  2203.93606 

 [8,]  5410.320690 1.766938e+04 8.459735e+01  1682.30579 

 [9,]    96.538535 8.459735e+01 3.679038e+04   634.05703 

[10,]  2203.936057 1.682306e+03 6.340570e+02 21694.43805 

 

  

************************** EXPECTED STANDARD ERRORS ************************ 
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------------------------ Fixed Effects Parameters ------------------------- 

  

   Beta   StdError      RSE   

ka  1.0 0.05615162 5.615162 % 

V   3.5 0.19055327 5.444379 % 

Cl  2.0 0.10099429 5.049714 % 

 

  

------------------------- Variance of Inter-Subject Random Effects ---------------- 

  

   omega²   StdError      RSE   

ka   0.09 0.02797418 31.08242 % 

V    0.09 0.02614241 29.04712 % 

Cl   0.09 0.02293631 25.48479 % 

 

  

------------------------- Variance of Inter-Occasion Random Effects --------------- 

  

   gamma²    StdError      RSE   

ka 0.0225 0.010507710 46.70093 % 

V  0.0225 0.008278751 36.79445 % 

Cl 0.0225 0.005249319 23.33031 % 

 

  

------------------------ Standard deviation of residual error ---------------------  

  

           Sigma    StdError      RSE   

sig.interA   0.1 0.006890589 6.890589 % 

 

  

******************************* DETERMINANT ******************************** 

  

4.122587e+32 

  

******************************** CRITERION ********************************* 

  

1826.068 

  

 

  

******************* EIGENVALUES OF THE FISHER INFORMATION MATRIX ****************** 

  

        FixedEffects VarianceComponents 

min     18665.494014           27.46247 

max     36847.167079         8088.68560 

max/min     1.974079          294.53599 

 

  

******************* CORRELATION MATRIX ****************** 

  

             [,1]        [,2]        [,3]          [,4]          [,5] 

 [1,]  1.00000000  0.16669388 -0.02507303  0.0000000000  0.0000000000 

 [2,]  0.16669388  1.00000000 -0.02207619  0.0000000000  0.0000000000 

 [3,] -0.02507303 -0.02207619  1.00000000  0.0000000000  0.0000000000 

 [4,]  0.00000000  0.00000000  0.00000000  1.0000000000 -0.0347716680 

 [5,]  0.00000000  0.00000000  0.00000000 -0.0347716680  1.0000000000 

 [6,]  0.00000000  0.00000000  0.00000000 -0.0004678731 -0.0002900774 

 [7,]  0.00000000  0.00000000  0.00000000 -0.1783934889  0.0676233782 
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 [8,]  0.00000000  0.00000000  0.00000000  0.0756870609 -0.1565953140 

 [9,]  0.00000000  0.00000000  0.00000000  0.0022115605  0.0013941467 

[10,]  0.00000000  0.00000000  0.00000000 -0.0684619703 -0.0523532439 

               [,6]          [,7]          [,8]          [,9]         [,10] 

 [1,]  0.0000000000  0.0000000000  0.0000000000  0.0000000000  0.0000000000 

 [2,]  0.0000000000  0.0000000000  0.0000000000  0.0000000000  0.0000000000 

 [3,]  0.0000000000  0.0000000000  0.0000000000  0.0000000000  0.0000000000 

 [4,] -0.0004678731 -0.1783934889  0.0756870609  0.0022115605 -0.0684619703 

 [5,] -0.0002900774  0.0676233782 -0.1565953140  0.0013941467 -0.0523532439 

 [6,]  1.0000000000  0.0005358684  0.0002096836 -0.1143575380 -0.0009338365 

 [7,]  0.0005358684  1.0000000000 -0.3886303379 -0.0014888252 -0.1064630705 

 [8,]  0.0002096836 -0.3886303379  1.0000000000 -0.0009173038 -0.0305013497 

 [9,] -0.1143575380 -0.0014888252 -0.0009173038  1.0000000000 -0.0218405019 

[10,] -0.0009338365 -0.1064630705 -0.0305013497 -0.0218405019  1.0000000000 

  

Time difference of 0.04000306 secs 

 

 

4. Example 4: PK model with inter-occasion variability and covariate 

effects (Equivalence test) 
 

The purpose of this example is to evaluate a design for a crossover PK trial with two periods, two 

sequences: 20 subjects receive treatment A at period 1 then treatment B at period 2; 20 subjects 

receive treatment B at period 1 then treatment A at period 2. The PK model is a one compartment 

oral model with first order absorption and first order elimination. We add a gender effect which does 

not change with the occasion on the volume of distribution (V) and a treatment effect changing with 

the occasion on the clearance (Cl). The dose is fixed to 30 for the 40 subjects with the same sampling 

times at 0.5, 2, 6 and 8. With alpha=0.05, we then compute the expected power of the Wald test for 
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equivalence on the interval [ln(0.8) and ln(1.25)] and the number of subjects needed for a given 

power of 0.9. 

4.1. Model File 
#User-defined model  

form<-function(t,p,X){ 

ka<-p[1] 

V<-p[2] 

Cl<-p[3] 

y<-X/V * ka/(ka - (Cl/V)) * (exp(-(Cl/V) * t) - exp(-ka * t)) 

return(y)  
} 

4.2. Input File (P-FIM) 
######################################################################### 

##             INPUT FILE FOR PFIM 4.0                             ## 

######################################################################### 

 

 

#Name of the project 

#--------------------  

project<-"EXAMPLE 4" 

 

#Name of the file containing the PK or PD model 

#---------------------------------------------- 

file.model<-"model.R" 

 

#Name of the output file for the results and for the Fisher information matrix 

#--------------------------------------- 

output<-"Stdout.r"; 

outputFIM<-""; 

 

#FIM: Population (P) or Individual (I) or Bayesian (B) Fisher information matrix 

#--------------------------------------- 

FIM<-"P" 

 

#Previous information for population design (FIM<-"P") only: 

#If previous information is available, please specify below the file name; 

#otherwise leave it as the default 

#-------------------------------------------------------- 

previous.FIM<-"" 

 

#RUN:  Evaluation (EVAL) or Optimisation (OPT)  

#------------------------------------------------------- 

run<-"EVAL" 

 

#To display only  graphs of models and/or sensitivity functions before evaluating 

the Fisher Information matrix 

graph.only<-F 

 

#Block diagonal Fisher information matrix (option<-1) or complete Fisher 

information matrix (option<-2) 

#---------------------------------------------------------- 

option<-1 

 

#Number of responses 

#-------------------------------------------------------------------- 

nr<-1 



52 
 

################### MODEL OPTION ########################### 

 

#Model form: Differential equations (DE) or analytical form (AF) 

#--------------------------------------------------------------- 

 

modelform<-"AF" 

 

###### ANALYTICAL MODEL OPTION ############################# 

############################################################ 

 

#Identical dose in each elementary design (Yes=T, No=F) 

#------------------------------------------------------------- 

dose.identical<-T 

 

# If 'Yes', enter the value of the dose,  

# else, enter the vector of the dose values for each elementary design 

#-------------------------------------------------------------------- 

dose<-c(30) 

 

#Vector of the times intervals of each expression   

#----------------------------------------------------------- 

boundA<-list(c(0,Inf)) 

 

#Numerical derivatives  (Yes=T, No=F) 

#If 'Yes', specify the model function "form" in the model file 

#If 'No', specify the object "form" which is a vector of expressions in the model 

file 

#----------------------------------------------------------- 

NUM<-T  

 

###### END ANALYTICAL MODEL OPTION ######################## 

#Name of the fixed effects parameters 

#------------------------------------- 

parameters<-c("ka","V","Cl") 

 

#Fixed effects parameters values 

#------------------------------- 

beta<-c(1,3.5,2) 

 

#Some parameters may not be estimated (not estimated = T, estimated = F) 

#-------------------------------- 

beta.fixed<-c(F,F,F) 

 

#Number of occasions 

#-------------------------------------------------------------------------- 

n_occ<-2 

 

#Random effect model (1) = additive  (2) = exponential  

#------------------------------------------------------------------ 

Trand<-2; 

 

#Diagonal Matrix of variance for inter-subject random effects: 

#--------------------------------------------------- 

omega<-diag(c(0.09,0.09,0.09)) 

 

#Diagonal Matrix of variance for inter-occasion random effects: 

#--------------------------------------------------- 

gamma<-diag(c(0.0225,0.0225,0.0225)) 
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#Standard deviation of residual error (sig.inter+sig.slope*f)^2: 

#------------------------------------------------------------------ 

sig.interA<-0.1 

sig.slopeA<-0 

 

 

#List of the vectors of sampling times for each elementary design  

#You can specify that a group has no sampling time by writing NULL  

#(ONLY if you have several response) 

#----------------------------------------------------------------- 

protA<-list(c(0.5,2,4,6,8)) 

 

#Vector of initial proportions or numbers of subjects for each elementary design  

#-------------------------------------------------------------- 

subjects<-c(40) 

 

#Subjects input: (1) for number of subjects (2) for proportions of subjects 

#--------------------------------------------------------------------------- 

subjects.input<-1 

 

#If 'proportions of subjects' give the total number of samples 

#------------------------------------------------------------- 

#Ntot<-40 

 

 

 

 

################################################################### 

#                                                                 # 

#                        Covariate model                          # 

#                                                                 # 

################################################################### 

 

########################################## 

# Covariates not changing with occasion  #  

########################################## 

 

#Add covariate to the model  (Yes==T No==F) 

#--------------------------------------------------------------------------- 

covariate.model<-T 

 

#Vector of covariates 

#--------------------------------------------------------------------- 

covariate.name<-list(c("Sex")) 

 

#Categories for each covariate (the first category is the reference) 

#----------------------------------------------------------------------- 

covariate.category<-list(Sex=c("M","F")) 

 

#Proportions of subjects in each category 

#------------------------------------------------------------------------- 

covariate.proportions<-list(Sex=c(0.5,0.5)) 

 

#Parameter(s) associated with each covariate 

#------------------------------------------------------------------------- 

parameter.associated<-list(Sex=c("V")) 

 

# Values of covariate parameters in covariate model  
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# (values of parameters for all other categories than the reference category (for 

which beta=0)  

# covariate is additive on parameter if additive random effect model (Trand=1) 

# covariate is additive on log parameters if exponential random effect model 

(Trand=2) 

#----------------------------------------------------------------------- 

beta.covariate<-list(Sex=list(c(log(1.2)))) 

 

 

 

##################################### 

#Covariates changing with occasion  #  

##################################### 

 

 

#Add covariate to the model   (Yes==T No==F) 

#--------------------------------------------------------------------------- 

covariate_occ.model<-T 

 

#Vector of covariates depending on the occasion 

#--------------------------------------------------------------------- 

covariate_occ.name<-list(  c("Treat") ) 

 

#Categories for each covariate (the first category is the reference) 

#----------------------------------------------------------------------- 

covariate_occ.category<-list(  Treat=c("A","B") ) 

 

#Sequences of values of covariates at each occasion  

#Specify as many values in each sequence as number of occasions (n_occ) for each 

covariate 

#---------------------------------------------------------------------------------- 

  

covariate_occ.sequence<-list(  Treat=list(c("A","B"),c("B","A"))  ) 

 

#Proportions of elementary designs corresponding to each sequence of covariate 

values 

#Specify as many values of proportion as number of sequences defined in 

covariate_occ.sequence for each covariate 

#----------------------------------------------------------------------------------

------------------------------- 

covariate_occ.proportions<-list(  Treat=c(0.5,0.5)  ) 

 

#Parameter(s) associated with each covariate 

#------------------------------------------------------------------------- 

parameter_occ.associated<-list(  Treat=c("Cl")  ) 

 

# Values of covariate parameters in covariate model  

# (values of parameters for all other categories than the reference category (for 

which beta=0)  

# covariate is additive on parameter if additive random effect model (Trand=1) 

# covariate is additive on log parameters if exponential random effect model 

(Trand=2) 

#----------------------------------------------------------------------- 

beta.covariate_occ<-list(  Treat=list(c(log(1.1)))  ) 

 

#Type one error alpha  

#----------------------------------------------------------------------------- 

alpha<-0.05 
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#Compute expected power for comparison test (Yes=T, No=F) 

#--------------------------------------------------------------------------- 

compute.power<-F 

 

#Compute the number of subjects needed for a given power for comparison test(Yes=T, 

No=F) 

#---------------------------------------------------------------------------- 

compute.nni<-F 

 

#Equivalence interval 

interval_eq<-c(log(0.8),log(1.25)) 

 

#Compute expected power for equivalence test (Yes=T, No=F) 

#--------------------------------------------------------------------------- 

compute.power_eq<-T 

 

#Compute the number of subjects needed for a given power for equivalence test 

(Yes=T, No=F)  
#---------------------------------------------------------------------------- 

compute.nni_eq<-T 

 

#Set value the given power 

#--------------------------------------------------------------------------- 

given.power<-0.9 

4.3. Output File 
PFIM 4.0  

  

Project:  EXAMPLE 4 

  

Date:  Tue Jan 28 11:59:42 2014 

  

 

  

**************************** INPUT SUMMARY ******************************** 

  

Analytical function models :   

  

function(t,p,X){ 

ka<-p[1] 

V<-p[2] 

Cl<-p[3] 

y<-X/V * ka/(ka - (Cl/V)) * (exp(-(Cl/V) * t) - exp(-ka * t)) 

return(y) 

} 

 

  

Design:   

Sample times for response: A  

               times subjects doses 

1 c(0.5, 2, 4, 6, 8)       40    30 

 

  

Number of occasions: 2 

  

Random effect model: Trand =  2 

  

Variance error model response A : ( 0.1 + 0 *f)^2 
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 Covariate model :   

  

 NB: Covariates are additive on log parameters 

  

 Covariates not changing with occasion  

  

 Covariate 1 : Sex ( V )  

    Categories References Proportions 

(1)          M          *         0.5 

(2)          F                    0.5 

 

  

 Covariates changing with occasion  

  

 Covariate  1 : Treat ( Cl )  

    Categories References 

(1)          A          * 

(2)          B            

 

  

    Sequences Proportions 

(1)       A B         0.5 

(2)       B A         0.5 

 

  

 

  

Computation of the Population Fisher information matrix: option =  1 

  

******************* FISHER INFORMATION MATRIX ****************** 

  

                                              s2                          

   339.888866 -12.1244029  2.2403232 -17.9762700   1.8294873    0.0000000 

   -12.124403  29.3831440  0.5085979  52.3319426   0.4561115    0.0000000 

     2.240323   0.5085979 98.2790307   0.8587853  98.1435338    0.0000000 

s2 -17.976270  52.3319426  0.8587853 183.1617993   0.8270805    0.0000000 

     1.829487   0.4561115 98.1435338   0.8270805 953.4932901    0.0000000 

     0.000000   0.0000000  0.0000000   0.0000000   0.0000000 1444.4800034 

     0.000000   0.0000000  0.0000000   0.0000000   0.0000000   23.0348957 

     0.000000   0.0000000  0.0000000   0.0000000   0.0000000    0.2509671 

     0.000000   0.0000000  0.0000000   0.0000000   0.0000000  736.6832299 

     0.000000   0.0000000  0.0000000   0.0000000   0.0000000   34.0127520 

     0.000000   0.0000000  0.0000000   0.0000000   0.0000000   32.8694695 

     0.000000   0.0000000  0.0000000   0.0000000   0.0000000  423.7018814 

                                                                              

      0.000000    0.0000000 0.000000e+00 0.000000e+00     0.00000     0.00000 

      0.000000    0.0000000 0.000000e+00 0.000000e+00     0.00000     0.00000 

      0.000000    0.0000000 0.000000e+00 0.000000e+00     0.00000     0.00000 

s2    0.000000    0.0000000 0.000000e+00 0.000000e+00     0.00000     0.00000 

      0.000000    0.0000000 0.000000e+00 0.000000e+00     0.00000     0.00000 

     23.034896    0.2509671 7.366832e+02 3.401275e+01    32.86947   423.70188 

   1620.000487    0.1586320 2.250149e+01 8.207294e+02    33.13093   269.48022 

      0.158632 1931.7539827 1.103168e-01 4.364955e-01   966.47638    18.52264 

     22.501490    0.1103168 1.214320e+04 4.704703e+03   189.35871  2594.79722 

    820.729393    0.4364955 4.704703e+03 2.268081e+04   281.84596  2441.16633 

     33.130931  966.4763757 1.893587e+02 2.818460e+02 39310.95582  1152.57041 

    269.480223   18.5226438 2.594797e+03 2.441166e+03  1152.57041 36667.05676 
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************************** EXPECTED STANDARD ERRORS ************************ 

  

------------------------ Fixed Effects Parameters ------------------------- 

  

                      Beta   StdError       RSE   

ka              1.00000000 0.05466202  5.466202 % 

V               3.50000000 0.26457492  7.559283 % 

Cl              2.00000000 0.10650676  5.325338 % 

beta_V_Sex_F    0.18232156 0.10545703 57.841231 % 

beta_Cl_Treat_B 0.09531018 0.03418960 35.871924 % 

 

  

------------------------- Variance of Inter-Subject Random Effects ---------------- 

  

   omega²   StdError      RSE   

ka   0.09 0.02678397 29.75997 % 

V    0.09 0.02510621 27.89579 % 

Cl   0.09 0.02289350 25.43722 % 

 

  

------------------------- Variance of Inter-Occasion Random Effects --------------- 

  

   gamma²    StdError      RSE   

ka 0.0225 0.009674645 42.99842 % 

V  0.0225 0.007009914 31.15517 % 

Cl 0.0225 0.005077443 22.56641 % 

 

  

------------------------ Standard deviation of residual error ---------------------  

  

           Sigma   StdError     RSE   

sig.interA   0.1 0.00527779 5.27779 % 

 

  

******************************* DETERMINANT ******************************** 

  

1.124604e+38 

  

******************************** CRITERION ********************************* 

  

1482.234 

  

 

  

 

  

***************************** EQUIVALENCE TEST ******************************** 

  

                      Beta       90 % CI   exp(Beta)       90 % CI 

beta_V_Sex_F    0.18232156 [0.009;0.356]         1.2 [1.009;1.427] 

beta_Cl_Treat_B 0.09531018 [0.039;0.152]         1.1  [1.04;1.164] 

 

  

Type I error = 0.05 

Equivalence interval = [log(0.8),log(1.25)] 

  

                Expected_power Number_subjects_needed (for a given power=0.9) 

beta_V_Sex_F         0.1042397             2286.08074                         

beta_Cl_Treat_B      0.9818745               24.50351                         
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******************* EIGENVALUES OF THE FISHER INFORMATION MATRIX ****************** 

  

        FixedEffects VarianceComponents 

min       1906.77601           13.14078 

max      39940.96957        10311.16801 

max/min     20.94686          784.66932 

 

  

******************* CORRELATION MATRIX ****************** 

  

                                                        s2               

    1.0000000000  0.1001424653 -0.0130648058 -0.0208510685  0.0008066425 

    0.1001424653  1.0000000000 -0.0080189689 -0.7116799991  0.0004664293 

   -0.0130648058 -0.0080189689  1.0000000000  0.0008174403 -0.3205794817 

s2 -0.0208510685 -0.7116799991  0.0008174403  1.0000000000 -0.0002392205 

    0.0008066425  0.0004664293 -0.3205794817 -0.0002392205  1.0000000000 

    0.0000000000  0.0000000000  0.0000000000  0.0000000000  0.0000000000 

    0.0000000000  0.0000000000  0.0000000000  0.0000000000  0.0000000000 

    0.0000000000  0.0000000000  0.0000000000  0.0000000000  0.0000000000 

    0.0000000000  0.0000000000  0.0000000000  0.0000000000  0.0000000000 

    0.0000000000  0.0000000000  0.0000000000  0.0000000000  0.0000000000 

    0.0000000000  0.0000000000  0.0000000000  0.0000000000  0.0000000000 

    0.0000000000  0.0000000000  0.0000000000  0.0000000000  0.0000000000 

                                                                        

    0.0000000000  0.0000000000  0.0000000000  0.000000000  0.0000000000 

    0.0000000000  0.0000000000  0.0000000000  0.000000000  0.0000000000 

    0.0000000000  0.0000000000  0.0000000000  0.000000000  0.0000000000 

s2  0.0000000000  0.0000000000  0.0000000000  0.000000000  0.0000000000 

    0.0000000000  0.0000000000  0.0000000000  0.000000000  0.0000000000 

    1.0000000000 -0.0200347674  0.0001617218 -0.177542015  0.0509009583 

   -0.0200347674  1.0000000000  0.0002346615  0.040695390 -0.1389520685 

    0.0001617218  0.0002346615  1.0000000000  0.000553334  0.0006633813 

   -0.1775420153  0.0406953900  0.0005533340  1.000000000 -0.2827635331 

    0.0509009583 -0.1389520685  0.0006633813 -0.282763533  1.0000000000 

   -0.0020201992 -0.0022890742 -0.1108965657 -0.002912419 -0.0055072134 

   -0.0393506869 -0.0267091218  0.0010141798 -0.095641750 -0.0497080067 

                            

    0.000000000  0.00000000 

    0.000000000  0.00000000 

    0.000000000  0.00000000 

s2  0.000000000  0.00000000 

    0.000000000  0.00000000 

   -0.002020199 -0.03935069 

   -0.002289074 -0.02670912 

   -0.110896566  0.00101418 

   -0.002912419 -0.09564175 

   -0.005507213 -0.04970801 

    1.000000000 -0.02893390 

   -0.028933901  1.00000000 

 

 

  

Time difference of 0.09300518 secs 
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OPTIMISATION 
 

We illustrate optimisation algorithms with the same examples used in the Evaluation section. As for 

Evaluation, Example 1 is more detailed with all the new features. For Example 2, 3 and 4, 

optimisation was performed only with Federow-Wynn (FW) algorithm. We therefore paste in the 

INPUT FILE only the part concerning optimisation.  

1. Example 1: PK Model 

1.1. Population Fisher Information Matrix (P-FIM) 

Optimize a design for 200 subjects with a dose of 100. 

1.1.1. Simplex algorithm  

 Initial sampling times vector:                       

 Time interval for the optimisation: (0,12) 

INPUT FILE 
 

#Name of the project 

#--------------------  

project<-"1.1.1" 

#RUN:  Evaluation (EVAL) or Optimisation (OPT)  

#------------------------------------------------------- 

run<-"OPT" 

 

############ONLY FOR OPTIMISATION ############################### 

 

#Identical sampling times for each response 

# (only if you do not have sampling times==NULL) 

#---------------------------------------------------------------------------------- 

identical.times<-F 

 

######## OPTIMISATION ALGORITHM OPTION ############### 

 

#Character string for choice of the optimisation algorithm:  

# "FW" for the Fedorov-Wynn algorithm  

# "SIMP" for the Simplex algorithm 

#------------------------------------------ 

 

algo.option<-"SIMP" 

 

 

######################## 

#SIMPLEX SPECIFICATION # 

######################## 

 

#Optimisation of the proportions of subjects: (Yes=T, No=F) 

#-------------------------------------------------------------- 

 

subjects.opt<-T 

 

#Vector of lower and upper admissible sampling times 

#--------------------------------------------------- 
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lowerA<-c(0)  

upperA<-c(12)  
 

#Minimum delay between two sampling times 

#------------------------------------------- 

 

delta.time<-0 

 

#Print iteration step (Yes=T, No=F) 

#--------------------------------- 

 

iter.print<-T 

 

 

#Parameter for initial simplex building (%) 

#------------------------------------------ 

 

simplex.parameter<-20 

 

 

#Maximum iteration number 

#------------------------ 

 

Max.iter<-5000 

 

 

#Relative convergence tolerance 

#------------------------------  

Rctol<-1e-6 

OUTPUT FILE  
PFIM 4.0  

  

Option 1 

  

Project: 1.1.1 

  

Date: Wed Apr 02 11:28:22 2014 

  

 

  

**************************** INPUT SUMMARY ******************************** 

  

Analytical function model:   

  

function(t,p,X){ 

ka<-p[1] 

k<-p[2] 

V<-p[3] 

y<-(X/V*ka/(ka-k)*(exp(-k*t)-exp(-ka*t))) 

return(y) 

} 

 

  

Initial design:   

 

  

Sample times for response: A  

                times subjects.prop doses 
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1 c(0.33, 1.5, 5, 12)           200   100 

 

  

 

  

Total number of samples (nr responses): 800 

  

Associated criterion value: 361.7144 

  

 

  

Window of the allowed optimised sampling times: 

  

Upper and lower admissible samples times for the response A : [ 0 : 12 ]  

 

  

Minimum delay between two sampling times: 0 

  

Optimisation of the proportions of subjects: TRUE 

  

 

  

Random effect model: Trand =  2 

  

Variance error model response A : ( 0.5 + 0.15 *f)^2 

 

  

**************************** OPTIMISED DESIGN ***************************** 

  

Number of iterations: 80 

Number of function evaluations: 105 

Convergence Achieved 

  

 

  

Design:   

 

  

Sample times for response: A  

                     times subjects.prop subjects 

1 c(0.325, 1.632, 4.9, 12)             1      200 

 

  

 

  

Associated optimised criterion: 362.4325 

  

 

  

Computation of the Population Fisher information matrix: option =  1 

  

******************* FISHER INFORMATION MATRIX ****************** 

  

          [,1]       [,2]      [,3]      [,4]       [,5]       [,6]       [,7] 

[1,] 38.769206   82.24941 -3.519151  0.000000   0.000000    0.00000    0.00000 

[2,] 82.249405 8247.39675 79.157847  0.000000   0.000000    0.00000    0.00000 

[3,] -3.519151   79.15785  5.006781  0.000000   0.000000    0.00000    0.00000 

[4,]  0.000000    0.00000  0.000000 60.122052   4.228103   27.86495   28.36476 

[5,]  0.000000    0.00000  0.000000  4.228103 664.253448  220.28782  194.26206 
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[6,]  0.000000    0.00000  0.000000 27.864947 220.287825 3172.65027  302.74176 

[7,]  0.000000    0.00000  0.000000 28.364762 194.262062  302.74176 1200.08551 

[8,]  0.000000    0.00000  0.000000 86.421975 224.605138 1165.00625 1538.20498 

           [,8] 

[1,]    0.00000 

[2,]    0.00000 

[3,]    0.00000 

[4,]   86.42197 

[5,]  224.60514 

[6,] 1165.00625 

[7,] 1538.20498 

[8,] 4050.28122 

 

  

 

  

 

  

************************** EXPECTED STANDARD ERRORS ************************ 

  

------------------------ Fixed Effects Parameters ------------------------- 

  

    Beta   StdError      RSE   

ka  2.00 0.17257305 8.628652 % 

k   0.25 0.01243021 4.972085 % 

V  15.00 0.51585801 3.439053 % 

 

  

------------------------- Variance of Inter-Subject Random Effects ---------------- 

  

   omega2   StdError      RSE   

ka   1.00 0.13103070 13.10307 % 

k    0.25 0.04013111 16.05244 % 

V    0.10 0.01905418 19.05418 % 

 

  

------------------------ Standard deviation of residual error ---------------------  

  

           Sigma   StdError       RSE   

sig.interA  0.50 0.04125377  8.250754 % 

sig.slopeA  0.15 0.02329525 15.530170 % 

 

  

******************************* DETERMINANT ******************************** 

  

2.977264e+20 

  

******************************** CRITERION ********************************* 

  

362.4325 

  

 

  

******************* EIGENVALUES OF THE FISHER INFORMATION MATRIX ****************** 

  

        FixedEffects VarianceComponents 

min      2543.534911           3.704497 

max      8248.980105         691.463321 

max/min     3.243117         186.655122 
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******************* CORRELATION MATRIX ****************** 

  

           [,1]       [,2]       [,3]          [,4]          [,5]         [,6] 

[1,]  1.0000000 -0.2736378  0.3393837  0.0000000000  0.0000000000  0.000000000 

[2,] -0.2736378  1.0000000 -0.4453064  0.0000000000  0.0000000000  0.000000000 

[3,]  0.3393837 -0.4453064  1.0000000  0.0000000000  0.0000000000  0.000000000 

[4,]  0.0000000  0.0000000  0.0000000  1.0000000000 -0.0005031654 -0.004823983 

[5,]  0.0000000  0.0000000  0.0000000 -0.0005031654  1.0000000000 -0.135409227 

[6,]  0.0000000  0.0000000  0.0000000 -0.0048239829 -0.1354092271  1.000000000 

[7,]  0.0000000  0.0000000  0.0000000  0.0225623149 -0.1862954540  0.127956169 

[8,]  0.0000000  0.0000000  0.0000000 -0.1340088049  0.0616794121 -0.307811878 

            [,7]        [,8] 

[1,]  0.00000000  0.00000000 

[2,]  0.00000000  0.00000000 

[3,]  0.00000000  0.00000000 

[4,]  0.02256231 -0.13400880 

[5,] -0.18629545  0.06167941 

[6,]  0.12795617 -0.30781188 

[7,]  1.00000000 -0.68756593 

[8,] -0.68756593  1.00000000 

 

Time difference of 0.6150351 secs 

sys.self  

    0.03 

 

 

Comment on results 

The criterion associated with the initial times (  ) was 361.7. 

When optimizing with Simplex algorithm, the criterion associated to the optimal times (0.325, 1.632, 

4.9, 12) improved of about 1 point, (362.4).  
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1.1.2. Fedorov-Wynn algorithm  

 Allowed sampling times: 0.33,1,1.5,3,5,8,12 

 Maximum total number of points in one elementary protocol: 4 

Compare the result with the one obtained  with Simplex algorithm. 

INPUT FILE 
 

#Name of the project 

#--------------------  

project<-"1.1.2" 

 

#List of the vectors of sampling times for each elementary design  

#You can specify that a group has no sampling time by writing NULL  

#(ONLY if you have several response) 

#----------------------------------------------------------------- 

protA<-list(c(0.33,1.5,5,12)) 

 

######## OPTIMISATION ALGORITHM OPTION ############### 

 

#Character string for choice of the optimisation algorithm:  

# "FW" for the Fedorov-Wynn algorithm  

# "SIMP" for the Simplex algorithm 

#------------------------------------------ 

 

algo.option<-"FW" 

############################# 

#FEDOROV-WYNN SPECIFICATION # 

############################# 

 

#Number of sampling windows 

#-------------------------- 

nwindA<-1 

 

#List of vector of the allowed sampling times for each sampling window 

#-------------------------------------------------------------------- 

 

sampwinA<-list(c(0.33,1,1.5,3,5,8,12)) 

 

#Fixed times (times which will be in all evaluated protocols, corresponding to 

fixed constraints) 

#-------------------------------------------------------------------- 

fixed.timesA<-c() 

 

#List of vector of allowed number of points to be taken from each sampling window 

#------------------------------------------------------------------------------ 

 

nsampA<-list(c(4)) 

 

#Maximum total number of sampling times per subject 

#-------------------------------------------------- 

 

nmaxptsA<-4 

 

#Minimum total number of sampling times per subject 

#-------------------------------------------------- 

 

nminptsA<-4 

############# END OF OPTIMISATION ALGORITHM OPTION ############### 
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OUTPUT FILE 
PFIM 4.0   

  

Option: 1  

 

  

Project: 1.1.2 

  

Date: Tue Jan 28 13:56:35 2014 

  

 

  

**************************** INPUT SUMMARY ******************************** 

  

Analytical function model:   

  

function(t,p,X){ 

ka<-p[1] 

k<-p[2] 

V<-p[3] 

y<-(X/V*ka/(ka-k)*(exp(-k*t)-exp(-ka*t))) 

return(y) 

} 

 

   

Initial design:  

 

  

Sample times for response: A  

              Protocol subjects doses 

1 c=(0.33, 1.5, 5, 12)      200   100 

 

  

Total number of samples: 800 

  

Associated criterion value: 361.7144 

  

Identical sampling times for each response: FALSE 

  

Random effect model: Trand =  2 

  

Variance error model response A : ( 0.5 + 0.15 *f)^2 

 

 

Optimization step:   

  

Sampling windows for the response: A  

Window 1 : t= 0.33 1 1.5 3 5 8 12  

    Nb of sampling points to be taken in this window, n[ 1 ]= 4  

Maximum total number of points in one elementary protocol : 4  

Minimum total number of points in one elementary protocol : 4  

 

  

 

Now evaluating the Fisher Information Matrix for the 35 protocols generated  

 

  

BEST ONE GROUP PROTOCOL:  
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Sample times for response: A  

                times freq Subjects doses 

1 c(0.33, 1.5, 5, 12)    1      200   100 

 

  

Associated criterion: 361.7144 

  

 

  

**************************** OPTIMISED DESIGN ***************************** 

  

Optimised design:  

Sample times for response: A  

                times       freq   Subjects doses 

1  c(0.33, 1, 1.5, 8) 0.35271097  70.542193   100 

2 c(0.33, 1.5, 8, 12) 0.61581304 123.162608   100 

3 c(0.33, 1.5, 3, 12) 0.03147599   6.295199   100  

 

  

Associated optimised criterion: 371.3125 

  

 

  

Computation of the Population Fisher information matrix: option =  1 

  

******************* FISHER INFORMATION MATRIX ****************** 

  

          [,1]       [,2]      [,3]     [,4]      [,5]       [,6]       [,7] 

[1,] 37.939211   64.62921 -4.169241  0.00000   0.00000    0.00000    0.00000 

[2,] 64.629208 8560.77091 62.570273  0.00000   0.00000    0.00000    0.00000 

[3,] -4.169241   62.57027  4.976251  0.00000   0.00000    0.00000    0.00000 

[4,]  0.000000    0.00000  0.000000 57.57818   2.61675   39.23578   28.01875 

[5,]  0.000000    0.00000  0.000000  2.61675 718.59967  138.15673  225.75506 

[6,]  0.000000    0.00000  0.000000 39.23578 138.15673 3144.16863  286.25131 

[7,]  0.000000    0.00000  0.000000 28.01875 225.75506  286.25131 1080.19191 

[8,]  0.000000    0.00000  0.000000 89.57049 200.03981 1334.31438 1543.24600 

           [,8] 

[1,]    0.00000 

[2,]    0.00000 

[3,]    0.00000 

[4,]   89.57049 

[5,]  200.03981 

[6,] 1334.31438 

[7,] 1543.24600 

[8,] 4822.65968 

 

  

************************** EXPECTED STANDARD ERRORS ************************ 

  

------------------------ Fixed Effects Parameters ------------------------- 

  

    Beta   StdError      RSE   

ka  2.00 0.17491805 8.745902 % 

k   0.25 0.01164345 4.657380 % 

V  15.00 0.50355898 3.357060 % 
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------------------------- Variance of Inter-Subject Random Effects ---------------- 

  

   omega²   StdError      RSE   

ka   1.00 0.13382715 13.38272 % 

k    0.25 0.03891768 15.56707 % 

V    0.10 0.01919088 19.19088 % 

 

  

------------------------ Standard deviation of residual error ---------------------  

  

           Sigma   StdError       RSE   

sig.interA  0.50 0.04302074  8.604149 % 

sig.slopeA  0.15 0.02094322 13.962147 % 

 

  

******************************* DETERMINANT ******************************** 

  

3.613401e+20 

  

******************************** CRITERION ********************************* 

  

371.3125  

 

  

******************* EIGENVALUES OF THE FISHER INFORMATION MATRIX ****************** 

  

        FixedEffects VarianceComponents 

min      2520.328902           3.876959 

max      8561.718019        2520.328902 

max/min     3.397064         650.078745 

 

  

******************* CORRELATION MATRIX ****************** 

  

           [,1]       [,2]       [,3]         [,4]         [,5]        [,6] 

[1,]  1.0000000 -0.2261971  0.3567942  0.000000000  0.000000000  0.00000000 

[2,] -0.2261971  1.0000000 -0.3565652  0.000000000  0.000000000  0.00000000 

[3,]  0.3567942 -0.3565652  1.0000000  0.000000000  0.000000000  0.00000000 

[4,]  0.0000000  0.0000000  0.0000000  1.000000000  0.008100681 -0.03710528 

[5,]  0.0000000  0.0000000  0.0000000  0.008100681  1.000000000 -0.09027489 

[6,]  0.0000000  0.0000000  0.0000000 -0.037105280 -0.090274892  1.00000000 

[7,]  0.0000000  0.0000000  0.0000000 -0.002578939 -0.259173157  0.12946239 

[8,]  0.0000000  0.0000000  0.0000000 -0.108202443  0.115209250 -0.32726371 

             [,7]       [,8] 

[1,]  0.000000000  0.0000000 

[2,]  0.000000000  0.0000000 

[3,]  0.000000000  0.0000000 

[4,] -0.002578939 -0.1082024 

[5,] -0.259173157  0.1152093 

[6,]  0.129462393 -0.3272637 

[7,]  1.000000000 -0.6698686 

[8,] -0.669868635  1.0000000 

  

Time difference of 1.401081 secs 

sys.self  

    0.13  
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For this example, the optimisation with Fedorov-Wynn (FW) algorithm led to a criterion of 371.3, 

higher than the one obtained with the Simplex algorithm (362.4) in point 1.1.1. Relative standard 

errors are acceptable in both cases (below 20%).   

1.1.3. Fixed  Parameter 

Optimize the design in 1.1 keeping the parameter    fixed (assuming no variability on 

  ) using the constrains as in 1.1.1 and 1.1.2. 

1.1.3.1. Simplex algorithm 

INPUT FILE 
 

#Name of the project 

#--------------------  

project<-"1.1.3.1" 

#------------------------------------- 

parameters<-c("ka","k","V") 

 

#Some parameters may not be estimated (not estimated = T, estimated = F) 

#-------------------------------- 

beta.fixed<-c(T,F,F) 

omega<-diag(c(0,0.25,0.1)) 

 

######## OPTIMISATION ALGORITHM OPTION ############### 

 

#Character string for choice of the optimisation algorithm:  

# "FW" for the Fedorov-Wynn algorithm  

# "SIMP" for the Simplex algorithm 

#------------------------------------------ 

algo.option<-"SIMP" 
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OUTPUT FILE 
PFIM 4.0  

  

Option 1 

  

Project: 1.1.3.1 

  

Date: Thu Apr 17 15:50:27 2014 

  

 

  

**************************** INPUT SUMMARY ******************************** 

  

Analytical function model:   

  

function(t,p,X){ 

ka<-p[1] 

k<-p[2] 

V<-p[3] 

y<-(X/V*ka/(ka-k)*(exp(-k*t)-exp(-ka*t))) 

return(y) 

} 

 

  

Initial design:   

 

  

Sample times for response: A  

                times subjects.prop doses 

1 c(0.33, 1.5, 5, 12)           200   100 

 

  

 

  

Total number of samples (nr responses): 800 

  

Associated criterion value: 963.4982 

  

 

  

Window of the allowed optimised sampling times: 

  

Upper and lower admissible samples times for the response A : [ 0 : 12 ]  

 

  

Minimum delay between two sampling times: 0 

  

Optimisation of the proportions of subjects: TRUE 

  

 

  

Random effect model: Trand =  2 

  

Variance error model response A : ( 0.5 + 0.15 *f)^2 

 

  

**************************** OPTIMISED DESIGN ***************************** 

  

Number of iterations: 111 
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Number of function evaluations: 146 

Convergence Achieved 

  

 

  

Design:   

 

  

Sample times for response: A  

                       times subjects.prop subjects 

1 c(0.939, 0.942, 8.038, 12)             1      200 

 

  

 

  

Associated optimised criterion: 1081.782 

  

 

  

Computation of the Population Fisher information matrix: option =  1 

  

******************* FISHER INFORMATION MATRIX ****************** 

  

           [,1]      [,2]      [,3]       [,4]      [,5]      [,6] 

[1,] 9265.40922 35.103559   0.00000    0.00000    0.0000    0.0000 

[2,]   35.10356  6.528763   0.00000    0.00000    0.0000    0.0000 

[3,]    0.00000  0.000000 838.35750   43.32164  241.6202  202.8993 

[4,]    0.00000  0.000000  43.32164 5394.69421  304.1137 1442.1010 

[5,]    0.00000  0.000000 241.62021  304.11367 1544.1300 2123.2272 

[6,]    0.00000  0.000000 202.89928 1442.10098 2123.2272 7237.6960 

 

  

 

  

 

  

************************** EXPECTED STANDARD ERRORS ************************ 

  

------------------------ Fixed Effects Parameters ------------------------- 

  

   Beta   StdError      RSE   

k  0.25 0.01049631 4.198526 % 

V 15.00 0.39541549 2.636103 % 

 

  

------------------------- Variance of Inter-Subject Random Effects ---------------- 

  

  omega2   StdError      RSE   

k   0.25 0.03543207 14.17283 % 

V   0.10 0.01401500 14.01500 % 

 

  

------------------------ Standard deviation of residual error ---------------------  

  

           Sigma   StdError       RSE   

sig.interA  0.50 0.03373599  6.747199 % 

sig.slopeA  0.15 0.01561541 10.410275 % 
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******************************* DETERMINANT ******************************** 

  

1.60265e+18 

  

******************************** CRITERION ********************************* 

  

1081.782 

  

 

  

******************* EIGENVALUES OF THE FISHER INFORMATION MATRIX ****************** 

  

        FixedEffects VarianceComponents 

min      8618.806407           6.395675 

max      9265.542306         995.276798 

max/min     1.075038         155.617157 

 

  

******************* CORRELATION MATRIX ****************** 

  

           [,1]       [,2]        [,3]        [,4]        [,5]        [,6] 

[1,]  1.0000000 -0.1427261  0.00000000  0.00000000  0.00000000  0.00000000 

[2,] -0.1427261  1.0000000  0.00000000  0.00000000  0.00000000  0.00000000 

[3,]  0.0000000  0.0000000  1.00000000 -0.01310911 -0.20830125  0.07075104 

[4,]  0.0000000  0.0000000 -0.01310911  1.00000000  0.05635404 -0.21370973 

[5,]  0.0000000  0.0000000 -0.20830125  0.05635404  1.00000000 -0.63060423 

[6,]  0.0000000  0.0000000  0.07075104 -0.21370973 -0.63060423  1.00000000 

 

Time difference of 0.8560491 secs 

sys.self  

       0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



73 
 

 

 

 

 

 

1.1.3.2. Fedorov-Wynn algorithm  

INPUT FILE 
#Name of the project 

#--------------------  

project<-"1.1.3.2" 

 

#Some parameters may not be estimated (not estimated = T, estimated = F) 

#-------------------------------- 

beta.fixed<-c(T,F,F)  
 

######## OPTIMISATION ALGORITHM OPTION ############### 

 

#Character string for choice of the optimisation algorithm:  

# "FW" for the Fedorov-Wynn algorithm  

# "SIMP" for the Simplex algorithm 

#------------------------------------------ 

 

algo.option<-"FW" 

OUTPUT FILE  
PFIM 4.0   

  

Option: 1  
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Project: 1.1.3.2  

Date: Tue Jan 28 15:07:15 2014 

  

 

  

**************************** INPUT SUMMARY ******************************** 

  

Analytical function model:   

  

function(t,p,X){ 

ka<-p[1] 

k<-p[2] 

V<-p[3] 

y<-(X/V*ka/(ka-k)*(exp(-k*t)-exp(-ka*t))) 

return(y) 

} 

Initial design:  

 

  

Sample times for response: A  

              Protocol subjects doses 

1 c=(0.33, 1.5, 5, 12)      200   100 

 

  

Total number of samples: 800 

  

Associated criterion value: 963.4982 

  

Identical sampling times for each response: FALSE 

  

Random effect model: Trand =  2 

  

Variance error model response A : ( 0.5 + 0.15 *f)^2 

 

  

 

Optimization step:   

  

Sampling windows for the response: A  

Window 1 : t= 0.33 1 1.5 3 5 8 12  

    Nb of sampling points to be taken in this window, n[ 1 ]= 4  

Maximum total number of points in one elementary protocol : 4  

Minimum total number of points in one elementary protocol : 4  

 

  

 

Now evaluating the Fisher Information Matrix for the 35 protocols generated  

 

  

BEST ONE GROUP PROTOCOL:  

  

Sample times for response: A  

                times freq Subjects doses 

1 c(0.33, 1.5, 8, 12)    1      200   100 

 

  

Associated criterion: 713.2923 
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**************************** OPTIMISED DESIGN ***************************** 

  

 

  

Optimised design:  

Sample times for response: A  

                times      freq  Subjects doses 

1 c(0.33, 1.5, 8, 12) 0.8620492 172.40984   100 

2  c(0.33, 1, 1.5, 8) 0.1379508  27.59016   100 

 

  

Associated optimised criterion: 1003.861 

  

 

  

Computation of the Population Fisher information matrix: option =  1 

  

******************* FISHER INFORMATION MATRIX ****************** 

  

           [,1]      [,2]      [,3]       [,4]      [,5]     [,6] 

[1,] 9164.75153 39.514527   0.00000    0.00000    0.0000    0.000 

[2,]   39.51453  6.256111   0.00000    0.00000    0.0000    0.000 

[3,]    0.00000  0.000000 821.25546   54.89381  237.7609  215.400 

[4,]    0.00000  0.000000  54.89381 4961.58304  359.2888 1388.113 

[5,]    0.00000  0.000000 237.76094  359.28876 1546.0399 2284.918 

[6,]    0.00000  0.000000 215.40005 1388.11316 2284.9178 6651.617 

 

  

 

  

************************** EXPECTED STANDARD ERRORS ************************ 

  

------------------------ Fixed Effects Parameters ------------------------- 

  

   Beta   StdError      RSE   

k  0.25 0.01059096 4.236382 % 

V 15.00 0.40536223 2.702415 % 

 

  

 

  

------------------------- Variance of Inter-Subject Random Effects ---------------- 

  

  omega²   StdError      RSE   

k   0.25 0.03583385 14.33354 % 

V   0.10 0.01466132 14.66132 % 

 

  

------------------------ Standard deviation of residual error ---------------------  

  

           Sigma   StdError       RSE   

sig.interA  0.50 0.03713537  7.427074 % 

sig.slopeA  0.15 0.01795893 11.972620 % 

 

  

******************************* DETERMINANT ******************************** 

  

1.023392e+18 
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******************************** CRITERION *********************************  

1003.861 

  

******************* EIGENVALUES OF THE FISHER INFORMATION MATRIX ****************** 

  

        FixedEffects VarianceComponents 

min      8171.126965           6.085627 

max      9164.922016        8171.126965 

max/min     1.121623        1342.692610 

 

  

******************* CORRELATION MATRIX ****************** 

  

           [,1]       [,2]        [,3]        [,4]        [,5]        [,6] 

[1,]  1.0000000 -0.1650229  0.00000000  0.00000000  0.00000000  0.00000000 

[2,] -0.1650229  1.0000000  0.00000000  0.00000000  0.00000000  0.00000000 

[3,]  0.0000000  0.0000000  1.00000000 -0.01850452 -0.20874886  0.08681517 

[4,]  0.0000000  0.0000000 -0.01850452  1.00000000  0.06481377 -0.21521132 

[5,]  0.0000000  0.0000000 -0.20874886  0.06481377  1.00000000 -0.70786839 

[6,]  0.0000000  0.0000000  0.08681517 -0.21521132 -0.70786839  1.00000000 

 

 

  

Time difference of 0.714041 secs 

sys.self  

    0.13  
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1.1.4. Fixed  Sampling Times 

Optimize the design in 1.1 with the Fedorov-Wynn algorithm keeping fixed two 

sampling times (        ), using the constrains as in 1.1.1 and 1.1.2. 

INPUT FILE 
#Name of the project 

#--------------------  

project<-"1.1.4" 

######## OPTIMISATION ALGORITHM OPTION ############### 

 

#Character string for choice of the optimisation algorithm:  

# "FW" for the Fedorov-Wynn algorithm  

# "SIMP" for the Simplex algorithm 

#------------------------------------------ 

 

algo.option<-"FW" 

 

#Fixed times (times which will be in all evaluated protocols, corresponding to 

fixed constraints) 

#-------------------------------------------------------------------- 

fixed.timesA<-c(0.33,1.5) 

############# END OF OPTIMISATION ALGORITHM OPTION ############### 

OUTPUT FILE 
PFIM 4.0   

  

Option: 1  

 

  

Project: 1.1.4.2 

  

Date: Tue Apr 22 15:30:37 2014 

  

 

  

**************************** INPUT SUMMARY ******************************** 

  

Analytical function model:   

  

function(t,p,X){ 

ka<-p[1] 

k<-p[2] 

V<-p[3] 

y<-(X/V*ka/(ka-k)*(exp(-k*t)-exp(-ka*t))) 

return(y) 

} 

 

  

 

  

Initial design:  

 

  

Sample times for response: A  

              Protocol subjects doses 

1 c=(0.33, 1.5, 5, 12)      200   100 
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Total number of samples: 800 

  

Associated criterion value: 361.7144 

  

Identical sampling times for each response: FALSE 

  

Random effect model: Trand =  2 

  

Variance error model response A : ( 0.5 + 0.15 *f)^2 

  

 

Optimization step:   

  

Sampling windows for the response: A  

Window 1 : t= 0.33 1 1.5 3 5 8 12  

    Nb of sampling points to be taken in this window, n[ 1 ]= 4  

Maximum total number of points in one elementary protocol : 4  

Minimum total number of points in one elementary protocol : 4  

 

  

 

Now evaluating the Fisher Information Matrix for the 10 protocols generated  

 

  

BEST ONE GROUP PROTOCOL:  

  

Sample times for response: A  

                times freq Subjects doses 

1 c(0.33, 1.5, 5, 12)    1      200   100 

 

  

Associated criterion: 361.7144 

  

 

  

**************************** OPTIMISED DESIGN ***************************** 

  

 

  

Optimised design:  

Sample times for response: A  

                times       freq   Subjects doses 

1  c(0.33, 1, 1.5, 8) 0.35271097  70.542193   100 

2 c(0.33, 1.5, 8, 12) 0.61581304 123.162608   100 

3 c(0.33, 1.5, 3, 12) 0.03147599   6.295199   100 

 

  

  

Associated optimised criterion: 371.3125 

  

 

  

Computation of the Population Fisher information matrix: option =  1 

  

******************* FISHER INFORMATION MATRIX ****************** 

  

          [,1]       [,2]      [,3]     [,4]      [,5]       [,6]       [,7] 

[1,] 37.939211   64.62921 -4.169241  0.00000   0.00000    0.00000    0.00000 

[2,] 64.629208 8560.77091 62.570273  0.00000   0.00000    0.00000    0.00000 
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[3,] -4.169241   62.57027  4.976251  0.00000   0.00000    0.00000    0.00000 

[4,]  0.000000    0.00000  0.000000 57.57818   2.61675   39.23578   28.01875 

[5,]  0.000000    0.00000  0.000000  2.61675 718.59967  138.15673  225.75506 

[6,]  0.000000    0.00000  0.000000 39.23578 138.15673 3144.16863  286.25131 

[7,]  0.000000    0.00000  0.000000 28.01875 225.75506  286.25131 1080.19191 

[8,]  0.000000    0.00000  0.000000 89.57049 200.03981 1334.31438 1543.24600 

           [,8] 

[1,]    0.00000 

[2,]    0.00000 

[3,]    0.00000 

[4,]   89.57049 

[5,]  200.03981 

[6,] 1334.31438 

[7,] 1543.24600 

[8,] 4822.65968 

 

  

 

  

************************** EXPECTED STANDARD ERRORS ************************ 

  

------------------------ Fixed Effects Parameters ------------------------- 

  

    Beta   StdError      RSE   

ka  2.00 0.17491805 8.745902 % 

k   0.25 0.01164345 4.657380 % 

V  15.00 0.50355898 3.357060 % 

 

------------------------- Variance of Inter-Subject Random Effects ---------------- 

  

   omega2   StdError      RSE   

ka   1.00 0.13382715 13.38272 % 

k    0.25 0.03891768 15.56707 % 

V    0.10 0.01919088 19.19088 % 

 

  

------------------------ Standard deviation of residual error ---------------------  

  

           Sigma   StdError       RSE   

sig.interA  0.50 0.04302074  8.604149 % 

sig.slopeA  0.15 0.02094322 13.962147 % 

 

  

******************************* DETERMINANT ******************************** 

  

3.613401e+20 

  

******************************** CRITERION ********************************* 

  

371.3125 

  

******************* EIGENVALUES OF THE FISHER INFORMATION MATRIX ****************** 

  

        FixedEffects VarianceComponents 

min      2520.328902           3.876959 

max      8561.718019        2520.328902 

max/min     3.397064         650.078745 
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******************* CORRELATION MATRIX ****************** 

  

           [,1]       [,2]       [,3]         [,4]         [,5]        [,6] 

[1,]  1.0000000 -0.2261971  0.3567942  0.000000000  0.000000000  0.00000000 

[2,] -0.2261971  1.0000000 -0.3565652  0.000000000  0.000000000  0.00000000 

[3,]  0.3567942 -0.3565652  1.0000000  0.000000000  0.000000000  0.00000000 

[4,]  0.0000000  0.0000000  0.0000000  1.000000000  0.008100681 -0.03710528 

[5,]  0.0000000  0.0000000  0.0000000  0.008100681  1.000000000 -0.09027489 

[6,]  0.0000000  0.0000000  0.0000000 -0.037105280 -0.090274892  1.00000000 

[7,]  0.0000000  0.0000000  0.0000000 -0.002578939 -0.259173157  0.12946239 

[8,]  0.0000000  0.0000000  0.0000000 -0.108202443  0.115209250 -0.32726371 

             [,7]       [,8] 

[1,]  0.000000000  0.0000000 

[2,]  0.000000000  0.0000000 

[3,]  0.000000000  0.0000000 

[4,] -0.002578939 -0.1082024 

[5,] -0.259173157  0.1152093 

[6,]  0.129462393 -0.3272637 

[7,]  1.000000000 -0.6698686 

[8,] -0.669868635  1.0000000 

 

 

  

Time difference of 0.2184012 secs 

sys.self  

    0.06  
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1.1.5. Fixed  Parameter  and Fixed  Sampling Times 

Optimize P-FIM using the Fedorov-Wynn algorithm keeping the parameter    fixed 

(assuming no variability on   ) and keeping fixed 2 sampling times (        ). 

 

INPUT FILE 
######################################################################### 

##             INPUT FILE FOR PFIM 4.0                        ## 

######################################################################### 

#Name of the project 

#--------------------  

project<-"1.1.5" 

 

beta.fixed<-c(T,F,F) 

 

######## OPTIMISATION ALGORITHM OPTION ############### 

#Character string for choice of the optimisation algorithm:  

# "FW" for the Fedorov-Wynn algorithm  

# "SIMP" for the Simplex algorithm 

#------------------------------------------ 

 

algo.option<-"FW" 

############################# 

#FEDOROV-WYNN SPECIFICATION # 

############################# 

#Fixed times (times which will be in all evaluated protocols, corresponding to 

fixed constraints) 

#-------------------------------------------------------------------- 

fixed.timesA<-c(0.33,1.5) 

OUPUT FILE 
PFIM 4.0   

  

Option: 1  

 

  

Project: 1.1.5 

  

Date: Tue Apr 22 15:37:32 2014 

  

 

  

**************************** INPUT SUMMARY ******************************** 
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Analytical function model:   

  

function(t,p,X){ 

ka<-p[1] 

k<-p[2] 

V<-p[3] 

y<-(X/V*ka/(ka-k)*(exp(-k*t)-exp(-ka*t))) 

return(y) 

} 

 

  

 

  

Initial design:  

 

  

Sample times for response: A  

              Protocol subjects doses 

1 c=(0.33, 1.5, 5, 12)      200   100 

 

  

Total number of samples: 800 

  

Associated criterion value: 963.4982 

  

Identical sampling times for each response: FALSE 

  

Random effect model: Trand =  2 

  

Variance error model response A : ( 0.5 + 0.15 *f)^2 

 

  

 

Optimization step:   

  

Sampling windows for the response: A  

Window 1 : t= 0.33 1 1.5 3 5 8 12  

    Nb of sampling points to be taken in this window, n[ 1 ]= 4  

Maximum total number of points in one elementary protocol : 4  

Minimum total number of points in one elementary protocol : 4  

 

  

 

Now evaluating the Fisher Information Matrix for the 10 protocols generated  

 

  

BEST ONE GROUP PROTOCOL:  

  

Sample times for response: A  

                times freq Subjects doses 

1 c(0.33, 1.5, 8, 12)    1      200   100 

 

  

Associated criterion: 999.542 

  

 

  

**************************** OPTIMISED DESIGN ***************************** 
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Optimised design:  

Sample times for response: A  

                times      freq  Subjects doses 

1 c(0.33, 1.5, 8, 12) 0.8542171 170.84342   100 

2  c(0.33, 1, 1.5, 8) 0.1457829  29.15658   100 

 

 

  

Associated optimised criterion: 1003.871 

  

 

  

Computation of the Population Fisher information matrix: option =  1 

  

******************* FISHER INFORMATION MATRIX ****************** 

  

          [,1]      [,2]      [,3]       [,4]      [,5]      [,6] 

[1,] 9157.4312 39.518203   0.00000    0.00000    0.0000    0.0000 

[2,]   39.5182  6.261843   0.00000    0.00000    0.0000    0.0000 

[3,]    0.0000  0.000000 819.99351   54.90407  237.9162  216.0253 

[4,]    0.0000  0.000000  54.90407 4971.04579  358.6388 1386.2277 

[5,]    0.0000  0.000000 237.91618  358.63875 1539.3337 2289.9023 

[6,]    0.0000  0.000000 216.02528 1386.22774 2289.9023 6693.1956 

 

  

************************** EXPECTED STANDARD ERRORS ************************ 

  

------------------------ Fixed Effects Parameters ------------------------- 

  

   Beta  StdError      RSE   

k  0.25 0.0105952 4.238079 % 

V 15.00 0.4051770 2.701180 % 

  

  

------------------------- Variance of Inter-Subject Random Effects ---------------- 

  

  omega2   StdError      RSE   

k   0.25 0.03587088 14.34835 % 

V   0.10 0.01464165 14.64165 % 

 

  

------------------------ Standard deviation of residual error ---------------------  

  

           Sigma   StdError       RSE   

sig.interA  0.50 0.03727137  7.454275 % 

sig.slopeA  0.15 0.01792088 11.947254 % 

 

  

******************************* DETERMINANT ******************************** 

  

1.023455e+18 

  

******************************** CRITERION ********************************* 

  

1003.871 

  

 

  

******************* EIGENVALUES OF THE FISHER INFORMATION MATRIX ****************** 
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        FixedEffects VarianceComponents 

min      8203.777970           6.091192 

max      9157.601823        8203.777970 

max/min     1.116266        1346.826382 

 

  

******************* CORRELATION MATRIX ****************** 

  

           [,1]       [,2]        [,3]        [,4]        [,5]        [,6] 

[1,]  1.0000000 -0.1650286  0.00000000  0.00000000  0.00000000  0.00000000 

[2,] -0.1650286  1.0000000  0.00000000  0.00000000  0.00000000  0.00000000 

[3,]  0.0000000  0.0000000  1.00000000 -0.01850719 -0.20992982  0.08790201 

[4,]  0.0000000  0.0000000 -0.01850719  1.00000000  0.06395325 -0.21352190 

[5,]  0.0000000  0.0000000 -0.20992982  0.06395325  1.00000000 -0.70879981 

[6,]  0.0000000  0.0000000  0.08790201 -0.21352190 -0.70879981  1.00000000 

 

  

Time difference of 0.2028 secs 

sys.self  

    0.03  

 

 

 

 

 

 

1.1.6. Previous information on PFIM 

1.1.6.1. Simplex  algorithm  

For the optimization with previous information, it was used the prior FIM “priorFIM.txt” 

created in the “priorInfo” folder, stored in the folder of this example. 

This prior FIM was created on purpose giving early initial times: (0.33, 1, 1.5).  
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INPUT FILE 
 

#Name of the project 

#--------------------  

project<-"1.1.6.1" 

 

#Previous information for population design (FIM<-"P") only: 

#If previous information is available, please specify below the file name; 

#otherwise leave it as the default 

#-------------------------------------------------------- 

previous.FIM<-"priorFIM.txt" 

 

#List of the vectors of sampling times for each elementary design  

#You can specify that a group has no sampling time by writing NULL  

#(ONLY if you have several response) 

#----------------------------------------------------------------- 

protA<-list(c(1.5,8)) 

#Vector of initial proportions or numbers of subjects for each elementary design  

#-------------------------------------------------------------- 

subjects<-c(100) 

 

 

OUTPUT FILE 
PFIM 4.0  

  

Option 1 

  

Project: 1.1.6.1 

  

Date: Thu Apr 17 14:00:37 2014 

  

 

  

**************************** INPUT SUMMARY ******************************** 

  

Analytical function model:   

  

function(t,p,X){ 

ka<-p[1] 

k<-p[2] 

V<-p[3] 

y<-(X/V*ka/(ka-k)*(exp(-k*t)-exp(-ka*t))) 

return(y) 

} 

 

  

Initial design:   

 

  

Sample times for response: A  

      times subjects.prop doses 

1 c(1.5, 8)           100   100 

  

Total number of samples (nr responses): 200 

  

Associated criterion value: 148.6897 
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Window of the allowed optimised sampling times: 

  

Upper and lower admissible samples times for the response A : [ 0 : 12 ]  

 

  

Minimum delay between two sampling times: 0 

  

Optimisation of the proportions of subjects: TRUE 

  

 

  

Random effect model: Trand =  2 

  

Variance error model response A : ( 0.5 + 0.15 *f)^2 

 

  

**************************** OPTIMISED DESIGN ***************************** 

  

Number of iterations: 55 

Number of function evaluations: 71 

Convergence Achieved 

  

Design:   

  

Sample times for response: A  

         times subjects.prop subjects 

1 c(9.395, 12)             1      100 

 

  

Associated optimised criterion: 215.3191 

  

  

Computation of the Population Fisher information matrix: option =  1 

  

Previous FIM from file priorFIM.txt 

  

******************* FISHER INFORMATION MATRIX ****************** 

  

            V1         V2        V3        V4         V5         V6         V7 

[1,] 19.138168   49.07954 -1.908044  0.000000   0.000000    0.00000    0.00000 

[2,] 49.079541 5092.04238 68.482856  0.000000   0.000000    0.00000    0.00000 

[3,] -1.908044   68.48286  2.868817  0.000000   0.000000    0.00000    0.00000 

[4,]  0.000000    0.00000  0.000000 28.530155   1.668454   20.98622   14.72601 

[5,]  0.000000    0.00000  0.000000  1.668454 386.741448  166.91230  134.56302 

[6,]  0.000000    0.00000  0.000000 20.986224 166.912299 1785.26280  145.47772 

[7,]  0.000000    0.00000  0.000000 14.726007 134.563018  145.47772  813.66712 

[8,]  0.000000    0.00000  0.000000 47.319224 139.206982  601.75932 1099.59528 

             V8 

[1,]    0.00000 

[2,]    0.00000 

[3,]    0.00000 

[4,]   47.31922 

[5,]  139.20698 

[6,]  601.75932 

[7,] 1099.59528 

[8,] 3764.97222 

************************** EXPECTED STANDARD ERRORS ************************ 
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------------------------ Fixed Effects Parameters ------------------------- 

  

    Beta   StdError       RSE   

ka  2.00 0.25582962 12.791481 % 

k   0.25 0.01839233  7.356932 % 

V  15.00 0.79194479  5.279632 % 

  

------------------------- Variance of Inter-Subject Random Effects ---------------- 

  

   omega2   StdError      RSE   

ka   1.00 0.18959249 18.95925 % 

k    0.25 0.05343693 21.37477 % 

V    0.10 0.02485754 24.85754 % 

  

------------------------ Standard deviation of residual error ---------------------  

  

           Sigma   StdError       RSE   

sig.interA  0.50 0.04629044  9.258087 % 

sig.slopeA  0.15 0.02156098 14.373985 % 

  

******************************* DETERMINANT ******************************** 

  

4.620192e+18 

  

******************************** CRITERION ********************************* 

  

215.3191 

   

******************* EIGENVALUES OF THE FISHER INFORMATION MATRIX ****************** 

  

        FixedEffects VarianceComponents 

min      1645.644667           1.561834 

max      5093.437880         503.888117 

max/min     3.095102         322.625898 

  

******************* CORRELATION MATRIX ****************** 

  

         [,1]       [,2]       [,3]        [,4]        [,5]        [,6] 

V1  1.0000000 -0.3807142  0.4259198  0.00000000  0.00000000  0.00000000 

V2 -0.3807142  1.0000000 -0.6361945  0.00000000  0.00000000  0.00000000 

V3  0.4259198 -0.6361945  1.0000000  0.00000000  0.00000000  0.00000000 

V4  0.0000000  0.0000000  0.0000000  1.00000000  0.01474447 -0.06375773 

V5  0.0000000  0.0000000  0.0000000  0.01474447  1.00000000 -0.19257026 

V6  0.0000000  0.0000000  0.0000000 -0.06375773 -0.19257026  1.00000000 

V7  0.0000000  0.0000000  0.0000000 -0.01288362 -0.22656742  0.07587018 

V8  0.0000000  0.0000000  0.0000000 -0.09204095  0.08428419 -0.20714892 

          [,7]        [,8] 

V1  0.00000000  0.00000000 

V2  0.00000000  0.00000000 

V3  0.00000000  0.00000000 

V4 -0.01288362 -0.09204095 

V5 -0.22656742  0.08428419 

V6  0.07587018 -0.20714892 

V7  1.00000000 -0.61883269 

V8 -0.61883269  1.00000000 

 

Time difference of 0.5510318 secs 

sys.self  

       0 



88 
 

 

 

 

 

 

 

 

1.1.6.2. Best One Group design  
 

INPUT FILE 
#Name of the project 

#--------------------  

project<-"1.1.6.2" 

 

#Previous information for population design (FIM<-"P") only: 

#If previous information is available, please specify below the file name; 

#otherwise leave it as the default 

#-------------------------------------------------------- 

previous.FIM<-"priorFIM.txt" 

 

#List of the vectors of sampling times for each elementary design  

#You can specify that a group has no sampling time by writing NULL  

#(ONLY if you have several response) 

#----------------------------------------------------------------- 

protA<-list(c(1.5,8)) 

 

#Vector of initial proportions or numbers of subjects for each elementary design  

#-------------------------------------------------------------- 

subjects<-c(100) 
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OUTPUT FILE 
PFIM 4.0   

  

Option: 1  

  

Project: 1.1.6.2 

  

Date: Thu Apr 17 10:00:15 2014 

  

  

**************************** INPUT SUMMARY ******************************** 

  

Analytical function model:   

  

function(t,p,X){ 

ka<-p[1] 

k<-p[2] 

V<-p[3] 

y<-(X/V*ka/(ka-k)*(exp(-k*t)-exp(-ka*t))) 

return(y) 

} 

  

Initial design:  

 

  

Sample times for response: A  

    Protocol subjects doses 

1 c=(1.5, 8)      100   100 

 

  

Total number of samples: 200 

  

Associated criterion value: 148.6897 

  

Identical sampling times for each response: FALSE 

  

Random effect model: Trand =  2 

  

Variance error model response A : ( 0.5 + 0.15 *f)^2 

 

 

Optimization step:   

  

Sampling windows for the response: A  

Window 1 : t= 0.33 1 1.5 3 5 8 12  

    Nb of sampling points to be taken in this window, n[ 1 ]= 2  

Maximum total number of points in one elementary protocol : 2  

Minimum total number of points in one elementary protocol : 2  

 

  

BEST ONE GROUP PROTOCOL:  

  

Sample times for response: A  

     times freq Subjects doses 

1 c(8, 12)    1      100   100 

 

  

Associated criterion: 214.2912 
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Previous FIM from file priorFIM.txt 

  

Computation of the Population Fisher information matrix: option =  1 

  

******************* FISHER INFORMATION MATRIX ****************** 

  

           V1         V2        V3        V4         V5         V6         V7 

[1,] 19.25130   54.34133 -1.802420  0.000000   0.000000    0.00000    0.00000 

[2,] 54.34133 5159.92461 73.396138  0.000000   0.000000    0.00000    0.00000 

[3,] -1.80242   73.39614  2.967429  0.000000   0.000000    0.00000    0.00000 

[4,]  0.00000    0.00000  0.000000 28.535801   2.132073   21.26297   14.92574 

[5,]  0.00000    0.00000  0.000000  2.132073 398.485186  189.64107  117.76653 

[6,]  0.00000    0.00000  0.000000 21.262967 189.641070 1798.82796  155.27405 

[7,]  0.00000    0.00000  0.000000 14.925744 117.766531  155.27405  777.68829 

[8,]  0.00000    0.00000  0.000000 47.680745 147.847133  619.48320 1115.37779 

             V8 

[1,]    0.00000 

[2,]    0.00000 

[3,]    0.00000 

[4,]   47.68074 

[5,]  147.84713 

[6,]  619.48320 

[7,] 1115.37779 

[8,] 3804.74812 

  

 

  

************************** EXPECTED STANDARD ERRORS ************************ 

  

------------------------ Fixed Effects Parameters ------------------------- 

  

    Beta   StdError       RSE   

ka  2.00 0.25623615 12.811807 % 

k   0.25 0.01887938  7.551752 % 

V  15.00 0.79850925  5.323395 % 

  

------------------------- Variance of Inter-Subject Random Effects --------------- 

  

   omega2   StdError      RSE   

ka   1.00 0.18957978 18.95798 % 

k    0.25 0.05245918 20.98367 % 

V    0.10 0.02489123 24.89123 % 

  

------------------------ Standard deviation of residual error --------------------- 

  

           Sigma   StdError       RSE   

sig.interA  0.50 0.04797421  9.594842 % 

sig.slopeA  0.15 0.02187599 14.583994 % 

 

  

******************************* DETERMINANT ******************************** 

  

4.446667e+18 

  

******************************** CRITERION ********************************* 

  

214.2912 

 ******************* EIGENVALUES OF THE FISHER INFORMATION MATRIX ***************** 
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        FixedEffects VarianceComponents 

min      1655.303411           1.536137 

max      5161.542600        1655.303411 

max/min     3.118185        1077.575115 

  

******************* CORRELATION MATRIX ****************** 

  

         [,1]       [,2]       [,3]        [,4]        [,5]        [,6] 

V1  1.0000000 -0.4014290  0.4296629  0.00000000  0.00000000  0.00000000 

V2 -0.4014290  1.0000000 -0.6630338  0.00000000  0.00000000  0.00000000 

V3  0.4296629 -0.6630338  1.0000000  0.00000000  0.00000000  0.00000000 

V4  0.0000000  0.0000000  0.0000000  1.00000000  0.01228004 -0.06344937 

V5  0.0000000  0.0000000  0.0000000  0.01228004  1.00000000 -0.21184140 

V6  0.0000000  0.0000000  0.0000000 -0.06344937 -0.21184140  1.00000000 

V7  0.0000000  0.0000000  0.0000000 -0.01245173 -0.18708739  0.06908877 

V8  0.0000000  0.0000000  0.0000000 -0.08998746  0.06500474 -0.20304566 

          [,7]        [,8] 

V1  0.00000000  0.00000000 

V2  0.00000000  0.00000000 

V3  0.00000000  0.00000000 

V4 -0.01245173 -0.08998746 

V5 -0.18708739  0.06500474 

V6  0.06908877 -0.20304566 

V7  1.00000000 -0.63690284 

V8 -0.63690284  1.00000000 

  

Time difference of 0.4670269 secs 

sys.self  

    0.04  
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1.2. Individual Fisher Information Matrix (I-FIM) 

Optimize the design in 1.1 this time for the Individual Fisher Information Matrix (I-FIM). Use 

same constraints in 1.1.1 and 1.1.2. 

1.2.1. Simplex algorithm  

INPUT FILE 
 

#Name of the project 

#--------------------  

project<-"1.2.1" 

 

#FIM: Population (P) or Individual (I) or Bayesian (B) Fisher information matrix 

#--------------------------------------- 

FIM<-"I" 

subjects<-c(1) 

############ONLY FOR OPTIMISATION ############################### 

 

#Identical sampling times for each response 

# (only if you do not have sampling times==NULL) 

#---------------------------------------------------------------------------------- 

identical.times<-F 

 

######## OPTIMISATION ALGORITHM OPTION ############### 

 

#Character string for choice of the optimisation algorithm:  

# "FW" for the Fedorov-Wynn algorithm  

# "SIMP" for the Simplex algorithm 

#------------------------------------------ 

 

algo.option<-"SIMP" 

 

 

OUTPUT FILE 
PFIM 4.0  

  

Option 1 

  

Project: 1.2.1 

  

Date: Fri Apr 04 09:53:14 2014 

  

 

  

**************************** INPUT SUMMARY ******************************** 

  

Analytical function model:   

  

function(t,p,X){ 

ka<-p[1] 

k<-p[2] 

V<-p[3] 

y<-(X/V*ka/(ka-k)*(exp(-k*t)-exp(-ka*t))) 

return(y) 

} 
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Initial design:   

 

  

Sample times for response: A  

                times subjects.prop doses 

1 c(0.33, 1.5, 5, 12)             1   100 

  

Total number of samples (nr responses): 4 

  

Associated criterion value: 5.0603 

  

 

Window of the allowed optimised sampling times: 

  

Upper and lower admissible samples times for the response A : [ 0 : 12 ]  

 

  

Minimum delay between two sampling times: 0 

  

Optimisation of the proportions of subjects: FALSE 

  

 

  

Variance error model response A : ( 0.5 + 0.15 *f)^2 

 

  

**************************** OPTIMISED DESIGN ***************************** 

  

Number of iterations: 64 

Number of function evaluations: 113 

Convergence Achieved 

  

 

  

Design:   

 

  

Sample times for response: A  

                            times subjects.prop subjects 

1 c(0.388, 1.984, 10.109, 10.103)             1        1 

 

   

Associated optimised criterion: 5.4114 

   

Computation of the Individual Fisher information matrix 

 

 

 

  

******************* FISHER INFORMATION MATRIX ****************** 

  

           [,1]        [,2]       [,3]     [,4]     [,5] 

[1,]  1.2325747   0.8128637 -0.2303858  0.00000  0.00000 

[2,]  0.8128637 225.3364445  2.9541561  0.00000  0.00000 

[3,] -0.2303858   2.9541561  0.1250120  0.00000  0.00000 

[4,]  0.0000000   0.0000000  0.0000000 14.84573 20.15214 

[5,]  0.0000000   0.0000000  0.0000000 20.15214 56.25539 
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************************** EXPECTED STANDARD ERRORS ************************ 

  

------------------------ Fixed Effects Parameters ------------------------- 

  

    Beta   StdError      RSE   

ka  2.00 1.34079039 67.03952 % 

k   0.25 0.09664122 38.65649 % 

V  15.00 5.06159668 33.74398 % 

 

  

------------------------ Standard deviation of residual error ---------------------  

  

           Sigma  StdError       RSE   

sig.interA  0.50 0.3621023  72.42046 % 

sig.slopeA  0.15 0.1860159 124.01058 % 

 

  

******************************* DETERMINANT ******************************** 

  

4640.201 

  

******************************** CRITERION ********************************* 

  

5.411372 

  

******************* EIGENVALUES OF THE FISHER INFORMATION MATRIX ****************** 

  

        FixedEffects VarianceComponents 

min         6.657679         0.03753734 

max       225.378114         1.27838008 

max/min    33.852356        34.05622730 

 

  

******************* CORRELATION MATRIX ****************** 

  

           [,1]       [,2]       [,3]       [,4]       [,5] 

[1,]  1.0000000 -0.5581703  0.7400163  0.0000000  0.0000000 

[2,] -0.5581703  1.0000000 -0.7236730  0.0000000  0.0000000 

[3,]  0.7400163 -0.7236730  1.0000000  0.0000000  0.0000000 

[4,]  0.0000000  0.0000000  0.0000000  1.0000000 -0.6973299 

[5,]  0.0000000  0.0000000  0.0000000 -0.6973299  1.0000000 

 

Time difference of 0.5850329 secs 

sys.self  

       0 



95 
 

 

1.2.2. Fedorov-Wynn algorithm  
 

#Name of the project 

#--------------------  

project<-"1.2.2" 

#FIM: Population (P) or Individual (I) or Bayesian (B) Fisher information matrix 

#--------------------------------------- 

FIM<-"I" 

 

######## OPTIMISATION ALGORITHM OPTION ############### 

 

#Character string for choice of the optimisation algorithm:  

# "FW" for the Fedorov-Wynn algorithm  

# "SIMP" for the Simplex algorithm 

#------------------------------------------ 

 

algo.option<-"FW" 

############# END OF OPTIMISATION ALGORITHM OPTION ############### 

OUTPUT FILE 
PFIM 4.0   

  

Option: 1  

 

  

Project: 1.2.2 

  

Date: Tue Jan 28 16:09:34 2014 

  

 

  

**************************** INPUT SUMMARY ******************************** 
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Analytical function model:   

  

function(t,p,X){ 

ka<-p[1] 

k<-p[2] 

V<-p[3] 

y<-(X/V*ka/(ka-k)*(exp(-k*t)-exp(-ka*t))) 

return(y) 

} 

 

  

 

  

Initial design:  

 

  

Sample times for response: A  

              Protocol subjects doses 

1 c=(0.33, 1.5, 5, 12)        1   100 

 

  

Total number of samples: 4 

  

Associated criterion value: 5.0603 

  

Identical sampling times for each response: FALSE 

  

Variance error model response A : ( 0.5 + 0.15 *f)^2 

 

  

 

Optimization step:   

  

Sampling windows for the response: A  

Window 1 : t= 0.33 1 1.5 3 5 8 12  

    Nb of sampling points to be taken in this window, n[ 1 ]= 4  

Maximum total number of points in one elementary protocol : 4  

Minimum total number of points in one elementary protocol : 4  

 

  

 

  

BEST ONE GROUP PROTOCOL:  

  

Sample times for response: A  

                times freq Subjects doses 

1 c(0.33, 1.5, 8, 12)    1        1   100 

 

  

Associated criterion: 5.2451 

  

 

  

Computation of the Individual Fisher information matrix 
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******************* FISHER INFORMATION MATRIX ****************** 

  

           [,1]        [,2]       [,3]     [,4]     [,5] 

[1,]  1.3081545   0.2980722 -0.2731617  0.00000  0.00000 

[2,]  0.2980722 214.9216449  2.7951498  0.00000  0.00000 

[3,] -0.2731617   2.7951498  0.1280792  0.00000  0.00000 

[4,]  0.0000000   0.0000000  0.0000000 14.60286 20.34989 

[5,]  0.0000000   0.0000000  0.0000000 20.34989 57.63562 

 

  

 

  

************************** EXPECTED STANDARD ERRORS ************************ 

  

------------------------ Fixed Effects Parameters ------------------------- 

  

    Beta  StdError      RSE   

ka  2.00 1.4570744 72.85372 % 

k   0.25 0.1000394 40.01575 % 

V  15.00 5.5016631 36.67775 % 

 

  

 

  

------------------------ Standard deviation of residual error ---------------------  

  

           Sigma StdError      RSE   

sig.interA  0.50 0.367167  73.4334 % 

sig.slopeA  0.15 0.184815 123.2100 % 

 

  

******************************* DETERMINANT ******************************** 

  

3969.882 

  

******************************** CRITERION ********************************* 

  

5.245121 

  

******************* EIGENVALUES OF THE FISHER INFORMATION MATRIX ****************** 

  

        FixedEffects VarianceComponents 

min         6.503832         0.03157995 

max       214.958418         6.50383230 

max/min    33.051040       205.94814148 

 

  

******************* CORRELATION MATRIX ****************** 

  

           [,1]       [,2]       [,3]       [,4]       [,5] 

[1,]  1.0000000 -0.5923083  0.7998900  0.0000000  0.0000000 

[2,] -0.5923083  1.0000000 -0.7313914  0.0000000  0.0000000 

[3,]  0.7998900 -0.7313914  1.0000000  0.0000000  0.0000000 

[4,]  0.0000000  0.0000000  0.0000000  1.0000000 -0.7014513 

[5,]  0.0000000  0.0000000  0.0000000 -0.7014513  1.0000000 

  

Time difference of 0.6250348 secs 

sys.self  

    0.09 
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1.2.3. Fixed  Parameter  and Fixed  Sampling Times 

Optimize I-FIM using the Fedorov-Wynn algorithm keeping the parameter    fixed 

(assuming no variability on   ) and keeping fixed 2 sampling times (        ). 

 

INPUT FILE 
#Name of the project 

#--------------------  

project<-"1.2.3" 

#FIM: Population (P) or Individual (I) or Bayesian (B) Fisher information matrix 

#--------------------------------------- 

FIM<-"I" 

#Some parameters may not be estimated (not estimated = T, estimated = F) 

#-------------------------------- 

beta.fixed<-c(T,F,F) 

#Diagonal Matrix of variance for inter-subject random effects: 

#--------------------------------------------------- 

############ONLY FOR OPTIMISATION ############################### 

 

######## OPTIMISATION ALGORITHM OPTION ############### 

 

#Character string for choice of the optimisation algorithm:  

# "FW" for the Fedorov-Wynn algorithm  

# "SIMP" for the Simplex algorithm 

#------------------------------------------ 

 

algo.option<-"FW" 

############################# 

#FEDOROV-WYNN SPECIFICATION # 

############################# 
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#Fixed times (times which will be in all evaluated protocols, corresponding to 

fixed constraints)  
#-------------------------------------------------------------------- 

fixed.timesA<-c(0.33,1.5) 

 

OUTPUT FILE 
PFIM 4.0   

  

Option: 1  

 

  

Project: 1.2.3 

  

Date: Tue Apr 22 15:20:04 2014 

  

 

  

**************************** INPUT SUMMARY ******************************** 

  

Analytical function model:   

  

function(t,p,X){ 

ka<-p[1] 

k<-p[2] 

V<-p[3] 

y<-(X/V*ka/(ka-k)*(exp(-k*t)-exp(-ka*t))) 

return(y) 

} 

 

   

Initial design:  

 

  

Sample times for response: A  

              Protocol subjects doses 

1 c=(0.33, 1.5, 5, 12)        1   100 

 

  

Total number of samples: 4 

  

Associated criterion value: 9.1489 

  

Identical sampling times for each response: FALSE 

  

Variance error model response A : ( 0.5 + 0.15 *f)^2 

 

  

 

Optimization step:   

  

Sampling windows for the response: A  

Window 1 : t= 0.33 1 1.5 3 5 8 12  

    Nb of sampling points to be taken in this window, n[ 1 ]= 4  

Maximum total number of points in one elementary protocol : 4  

Minimum total number of points in one elementary protocol : 4  
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BEST ONE GROUP PROTOCOL:  

  

Sample times for response: A  

                times freq Subjects doses 

1 c(0.33, 1.5, 8, 12)    1        1   100 

 

  

Associated criterion: 9.5815 

  

  

Computation of the Individual Fisher information matrix 

  

******************* FISHER INFORMATION MATRIX ****************** 

  

          [,1]      [,2]     [,3]     [,4] 

[1,] 214.92164 2.7951498  0.00000  0.00000 

[2,]   2.79515 0.1280792  0.00000  0.00000 

[3,]   0.00000 0.0000000 14.60286 20.34989 

[4,]   0.00000 0.0000000 20.34989 57.63562 

 

  

 

  

************************** EXPECTED STANDARD ERRORS ************************ 

  

------------------------ Fixed Effects Parameters ------------------------- 

  

   Beta   StdError      RSE   

k  0.25 0.08060287 32.24115 % 

V 15.00 3.30180471 22.01203 % 

 

  

 

  

------------------------ Standard deviation of residual error ---------------------  

  

           Sigma StdError      RSE   

sig.interA  0.50 0.367167  73.4334 % 

sig.slopeA  0.15 0.184815 123.2100 % 

 

  

******************************* DETERMINANT ******************************** 

  

8428.321 

  

******************************** CRITERION ********************************* 

  

9.581539 

  

******************* EIGENVALUES OF THE FISHER INFORMATION MATRIX ****************** 

  

        FixedEffects VarianceComponents 

min        65.734649         0.09171149 

max       214.958013        65.73464882 

max/min     3.270087       716.75477518 
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******************* CORRELATION MATRIX ****************** 

  

           [,1]       [,2]       [,3]       [,4] 

[1,]  1.0000000 -0.5327529  0.0000000  0.0000000 

[2,] -0.5327529  1.0000000  0.0000000  0.0000000 

[3,]  0.0000000  0.0000000  1.0000000 -0.7014513 

[4,]  0.0000000  0.0000000 -0.7014513  1.0000000 

  

Time difference of 0.2652011 secs 

sys.self  

    0.03  

 

 

 

 

1.3. Bayesian Fisher Information Matrix (B-FIM) 

Optimize the design in 1.1 this time for the Bayesian Fisher Information Matrix (B-FIM). Use     

same constraints in 1.1.1 and 1.1.2. 

1.3.1. Simplex algorithm 

INPUT FILE 
######################################################################### 

##              INPUT FILE FOR PFIM 4.0                       ## 

######################################################################### 

 

 

#Name of the project 

#--------------------  

project<-"1.3.1" 
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#FIM: Population (P) or Individual (I) or Bayesian (B) Fisher information matrix 

#--------------------------------------- 

FIM<-"B" 

 

######## OPTIMISATION ALGORITHM OPTION ############### 

 

#Character string for choice of the optimisation algorithm:  

# "FW" for the Fedorov-Wynn algorithm  

# "SIMP" for the Simplex algorithm 

#------------------------------------------ 

 

algo.option<-"SIMP" 

 

OUTPUT FILE 
PFIM 4.0  

  

Option 1 

  

Project: 1.3.1 

  

Date: Thu Apr 17 15:06:38 2014 

  

 

  

**************************** INPUT SUMMARY ******************************** 

  

Analytical function model:   

  

function(t,p,X){ 

ka<-p[1] 

k<-p[2] 

V<-p[3] 

y<-(X/V*ka/(ka-k)*(exp(-k*t)-exp(-ka*t))) 

return(y) 

} 

 

  

Initial design:   

 

  

Sample times for response: A  

                times subjects.prop doses 

1 c(0.33, 1.5, 5, 12)             1   100 

 

  

 

  

Total number of samples (nr responses): 4 

  

Associated criterion value: 3.5272 

  

 

  

Window of the allowed optimised sampling times: 

  

Upper and lower admissible samples times for the response A : [ 0 : 12 ]  
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Minimum delay between two sampling times: 0 

  

Optimisation of the proportions of subjects: FALSE 

  

 

  

Random effect model: Trand =  2 

  

Variance error model response A : ( 0.5 + 0.15 *f)^2 

 

  

**************************** OPTIMISED DESIGN ***************************** 

  

Number of iterations: 70 

Number of function evaluations: 122 

Convergence Achieved 

  

 

  

Design:   

 

  

Sample times for response: A  

                         times subjects.prop subjects 

1 c(0.332, 2.13, 6.537, 6.538)             1        1 

 

  

Associated optimised criterion: 3.8917 

  

 

  

Computation of the Bayesian Fisher information matrix 

  

******************* FISHER INFORMATION MATRIX ****************** 

  

           [,1]       [,2]       [,3] 

[1,]  1.5579242   3.378667 -0.1817856 

[2,]  3.3786674 402.310191  5.0219864 

[3,] -0.1817856   5.021986  0.1912682 

  

************************** EXPECTED STANDARD ERRORS ************************ 

  

------------------------ Fixed Effects Parameters ------------------------- 

  

    Beta   StdError      RSE   Shrinkage   

ka  2.00 0.93681117 46.84056 %  21.94038 % 

k   0.25 0.06704337 26.81735 %  28.76681 % 

V  15.00 3.23108382 21.54056 %  46.39957 % 

 

  

******************************* DETERMINANT ******************************** 

  

58.94244 

  

******************************** CRITERION ********************************* 

  

3.89173 
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******************* EIGENVALUES OF THE FISHER INFORMATION MATRIX ****************** 

  

        FixedEffects VarianceComponents 

min     9.363022e-02                 NA 

max     4.024013e+02                 NA 

max/min 4.297772e+03                 NA 

  

******************* CORRELATION MATRIX ****************** 

  

           [,1]       [,2]       [,3] 

[1,]  1.0000000 -0.4211662  0.5050159 

[2,] -0.4211662  1.0000000 -0.6608620 

[3,]  0.5050159 -0.6608620  1.0000000 

 

Time difference of 0.6450372 secs 

sys.self  

       0   

 

 

 

1.3.2. Fedorov-Wynn algorithm  

INPUT FILE  
#Name of the project 

#--------------------  

project<-"1.3.2" 

#FIM: Population (P) or Individual (I) or Bayesian (B) Fisher information matrix 

#--------------------------------------- 

FIM<-"B" 

######## OPTIMISATION ALGORITHM OPTION ############### 

#Character string for choice of the optimisation algorithm:  

# "FW" for the Fedorov-Wynn algorithm  

# "SIMP" for the Simplex algorithm 

#---------------------------------------- 

algo.option<-"FW" 
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OUTPUT FILE 
PFIM 4.0   

  

Option: 1  

 

  

Project: 1.3.2 

  

Date: Tue Jan 28 16:45:40 2014 

  

 

  

**************************** INPUT SUMMARY ******************************** 

  

Analytical function model:   

  

function(t,p,X){ 

ka<-p[1] 

k<-p[2] 

V<-p[3]  
y<-(X/V*ka/(ka-k)*(exp(-k*t)-exp(-ka*t))) 

return(y) 

} 

 

  

 

  

Initial design:  

 

  

Sample times for response: A  

              Protocol subjects doses 

1 c=(0.33, 1.5, 5, 12)        1   100 

 

  

Total number of samples: 4 

  

Associated criterion value: 3.5272 

  

Identical sampling times for each response: FALSE 

  

Random effect model: Trand =  2 

  

Variance error model response A : ( 0.5 + 0.15 *f)^2 

 

  

 

Optimization step:   

  

Sampling windows for the response: A  

Window 1 : t= 0.33 1 1.5 3 5 8 12  

    Nb of sampling points to be taken in this window, n[ 1 ]= 4  

Maximum total number of points in one elementary protocol : 4  

Minimum total number of points in one elementary protocol : 4 

  

BEST ONE GROUP PROTOCOL:  

  

Sample times for response: A  

               times freq Subjects doses 
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1 c(0.33, 1.5, 5, 8)    1        1   100 

 

  

Associated criterion: 3.8066 

 

  

Computation of the Bayesian Fisher information matrix 

  

******************* FISHER INFORMATION MATRIX ****************** 

  

          [,1]       [,2]       [,3] 

[1,]  1.590507   2.096455 -0.2426030 

[2,]  2.096455 354.843266  4.4964361 

[3,] -0.242603   4.496436  0.2013882 

 

  

************************** EXPECTED STANDARD ERRORS ************************ 

  

------------------------ Fixed Effects Parameters ------------------------- 

  

    Beta  StdError      RSE   Shrinkage   

ka  2.00 0.9638509 48.19255 %  23.22522 % 

k   0.25 0.0688475 27.53900 %  30.33586 % 

V  15.00 3.1862487 21.24166 %  45.12080 % 

  

******************************* DETERMINANT ******************************** 

  

55.15913 

  

******************************** CRITERION ********************************* 

  

3.806617 

  

******************* EIGENVALUES OF THE FISHER INFORMATION MATRIX ****************** 

  

        FixedEffects VarianceComponents 

min     9.552493e-02                 NA 

max     3.549127e+02                 NA 

max/min 3.715393e+03                 NA 

 

  

******************* CORRELATION MATRIX ****************** 

  

           [,1]       [,2]       [,3] 

[1,]  1.0000000 -0.4133690  0.5638373 

[2,] -0.4133690  1.0000000 -0.6330761 

[3,]  0.5638373 -0.6330761  1.0000000 

 

 

Time difference of 0.7720439 secs 

sys.self  

    0.09  
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1.3.3. Fixed  Parameter  and Fixed  Sampling Times 

Optimize B-FIM using the Fedorov-Wynn algorithm keeping the parameter    fixed 

(assuming no variability on   ) and keeping fixed 2 sampling times (        ). 

INPUT FILE 
#Name of the project 

#--------------------  

project<-"1.3.3" 

 

#FIM: Population (P) or Individual (I) or Bayesian (B) Fisher information matrix 

#--------------------------------------- 

FIM<-"B" 

#Some parameters may not be estimated (not estimated = T, estimated = F) 

#-------------------------------- 

beta.fixed<-c(T,F,F) 

#Diagonal Matrix of variance for inter-subject random effects: 

#--------------------------------------------------- 

omega<-diag(c(0,0.25,0.1)) 

 

######## OPTIMISATION ALGORITHM OPTION ############### 

 

#Character string for choice of the optimisation algorithm:  

# "FW" for the Fedorov-Wynn algorithm  

# "SIMP" for the Simplex algorithm 

#------------------------------------------ 

 

algo.option<-"FW" 

#Fixed times (times which will be in all evaluated protocols, corresponding to 

fixed constraints) 

#-------------------------------------------------------------------- 

fixed.timesA<-c(0.33,1.5) 
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OUTPUT FILE 
PFIM 4.0   

  

Option: 1  

 

  

Project: 1.3.3 

  

Date: Tue Apr 22 15:24:41 2014 

  

 

  

**************************** INPUT SUMMARY ******************************** 

  

Analytical function model:   

  

function(t,p,X){ 

ka<-p[1] 

k<-p[2] 

V<-p[3] 

y<-(X/V*ka/(ka-k)*(exp(-k*t)-exp(-ka*t))) 

return(y) 

} 

 

  

Initial design:  

 

  

Sample times for response: A  

              Protocol subjects doses 

1 c=(0.33, 1.5, 5, 12)        1   100 

 

  

Total number of samples: 4 

  

Associated criterion value: 6.3628 

  

Identical sampling times for each response: FALSE 

  

Random effect model: Trand =  2 

  

Variance error model response A : ( 0.5 + 0.15 *f)^2 

 

  

 

Optimization step:   

  

Sampling windows for the response: A  

Window 1 : t= 0.33 1 1.5 3 5 8 12  

    Nb of sampling points to be taken in this window, n[ 1 ]= 4  

Maximum total number of points in one elementary protocol : 4  

Minimum total number of points in one elementary protocol : 4  

 

  

 

  

BEST ONE GROUP PROTOCOL:  

  

Sample times for response: A  
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               times freq Subjects doses 

1 c(0.33, 1.5, 5, 8)    1        1   100 

 

  

Associated criterion: 7.1584 

  

 

  

Computation of the Bayesian Fisher information matrix 

  

******************* FISHER INFORMATION MATRIX ****************** 

  

           [,1]      [,2] 

[1,] 354.843266 4.4964361 

[2,]   4.496436 0.2013882 

 

  

 

  

************************** EXPECTED STANDARD ERRORS ************************ 

  

------------------------ Fixed Effects Parameters ------------------------- 

  

   Beta   StdError      RSE   Shrinkage   

k  0.25 0.06269002 25.07601 %  25.15225 % 

V 15.00 2.63147786 17.54319 %  30.77634 % 

 

   

******************************* DETERMINANT ******************************** 

  

51.2433 

  

******************************** CRITERION ********************************* 

  

7.158443  

 

  

******************* EIGENVALUES OF THE FISHER INFORMATION MATRIX ****************** 

  

        FixedEffects VarianceComponents 

min        0.1443879                 NA 

max      354.9002664                 NA 

max/min 2457.9640320                 NA 

 

  

******************* CORRELATION MATRIX ****************** 

  

           [,1]       [,2] 

[1,]  1.0000000 -0.5319039 

[2,] -0.5319039  1.0000000 

 

 

  

Time difference of 0.1715999 secs 

sys.self  

    0.03  
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2. Example 2: PK and immediate response PD model using the libraries of 

PK and PD Models (ODE) 
 100 subjects with a dose of 100 

 Allowed sampling times for PK response: 0.5, 2, 30, 49, 180  

 Allowed sampling times for PD response: 0.5, 2, 14, 110, 150  

 Number of sampling times to be optimized: 3 

2.1. Input File (P-FIM) 
######################################################################### 

##               INPUT FILE FOR PFIM 4.0                            ## 

######################################################################### 

 

 

#Name of the project 

#--------------------  

project<-"EXAMPLE 2" 

#FIM: Population (P) or Individual (I) or Bayesian (B) Fisher information matrix 

#--------------------------------------- 

FIM<-"P" 

#RUN:  Evaluation (EVAL) or Optimisation (OPT)  

#------------------------------------------------------- 

run<-"OPT" 

################### MODEL OPTION ########################### 

 

#Model form: Differential equations (DE) or analytical form (AF) 

#--------------------------------------------------------------- 

 

modelform<-"DE" 

#List of the vectors of sampling times for each elementary design  

#You can specify that a group has no sampling time by writing NULL  

#(ONLY if you have several response) 

#----------------------------------------------------------------- 

protA<-list(c(0.5, 2, 30)) 

protB<-list(c(14, 110,150)) 
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############ONLY FOR OPTIMISATION ############################### 

 

#Identical sampling times for each response 

# (only if you do not have sampling times==NULL) 

#---------------------------------------------------------------------------------- 

identical.times<-F 

 

######## OPTIMISATION ALGORITHM OPTION ############### 

 

#Character string for choice of the optimisation algorithm:  

# "FW" for the Fedorov-Wynn algorithm  

# "SIMP" for the Simplex algorithm 

#------------------------------------------ 

 

algo.option<-"FW" 

############################# 

#FEDOROV-WYNN SPECIFICATION # 

############################# 

 

 

#Number of sampling windows 

#-------------------------- 

nwindA<-1 

nwindB<-1 

 

 

#List of vector of the allowed sampling times for each sampling window 

#-------------------------------------------------------------------- 

 

sampwinA<-list(c(0.5, 2, 30, 49, 180)) 

sampwinB<-list(c(0.5, 2, 14, 110, 150 )) 

 

 

#Fixed times (times which will be in all evaluated protocols, corresponding to 

fixed constraints) 

#-------------------------------------------------------------------- 

fixed.timesA<-c() 

fixed.timesB<-c() 

 

 

#List of vector of allowed number of points to be taken from each sampling window 

#------------------------------------------------------------------------------ 

 

nsampA<-list(c(3)) 

nsampB<-list(c(3)) 

 

#Maximum total number of sampling times per subject 

#-------------------------------------------------- 

 

nmaxptsA<-3 

nmaxptsB<-3 

 

#Minimum total number of sampling times per subject 

#-------------------------------------------------- 

 

nminptsA<-3 

nminptsB<-3 

############# END OF OPTIMISATION ALGORITHM OPTION ############### 
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2.2. Output File 
PFIM 4.0   

  

Option: 1  

 

  

Project: EXAMPLE 2 

  

Date: Sun Mar 23 19:53:50 2014 

  

 

  

**************************** INPUT SUMMARY ******************************** 

  

Differential Equations form of the model:   

  

function(t,y,p){ 

V<-p[1] 

Vm<-p[2] 

km<-p[3] 

Alin<-p[4] 

pk<-y[1:1] 

pd<-y[2:2] 

conc<-y[1] 

if(t<=1){ 

dpk1<-(100/(1*V))+(-Vm)*pk[1]/(km+pk[1])} 

else{ 

dpk1<-(-Vm)*pk[1]/(km+pk[1])} 

dpd1<-0 

pdIm<-Alin*conc 

return(list(c(dpk1,dpd1),c(pk[1],pdIm))) 

} 

 

  

Initial Conditions at time 0 :  

  

0 0  

 

Error tolerance for solving differential equations system: RtolEQ = 1e-08 , AtolEQ 

= 1e-08 , Hmax =  Inf 

  

Initial design:  

 

  

Sample times for response: A  

        Protocol subjects condinit 

1 c=(0.5, 2, 30)      100  c(0, 0) 

 

  

Sample times for response: B  

          Protocol subjects condinit 

1 c=(14, 110, 150)      100  c(0, 0) 

 

  

Total number of samples: 600 

  

Associated criterion value: 1098.507 

  

Identical sampling times for each response: FALSE 
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 Random effect model: Trand =  2 

  

Variance error model response A : ( 0 + 0.2 *f)^2 

Variance error model response B : ( 0.1 + 0 *f)^2 

 

  

 

Optimization step:   

  

Sampling windows for the response: A  

Window 1 : t= 0.5 2 30 49 180  

    Nb of sampling points to be taken in this window, n[ 1 ]= 3  

Maximum total number of points in one elementary protocol : 3  

Minimum total number of points in one elementary protocol : 3  

 

  

Sampling windows for the response: B  

Window 1 : t= 0.5 2 14 110 150  

    Nb of sampling points to be taken in this window, n[ 1 ]= 3  

Maximum total number of points in one elementary protocol : 3  

Minimum total number of points in one elementary protocol : 3  

 

  

 

Now evaluating the Fisher Information Matrix for the 100 protocols generated  

 

  

BEST ONE GROUP PROTOCOL:  

  

Sample times for response: A  

            times freq Subjects condinit 

1 c(0.5, 49, 180)    1      100  c(0, 0) 

Sample times for response: B  

          times freq Subjects condinit 

1 c(2, 14, 110)    1      100  c(0, 0) 

 

  

Associated criterion: 2549.118 

  

 

  

**************************** OPTIMISED DESIGN ***************************** 

  

 

  

Optimised design:  

Sample times for response: A  

            times      freq Subjects condinit 

1 c(0.5, 49, 180) 0.8449125 84.49125  c(0, 0) 

2 c(0.5, 30, 180) 0.1550875 15.50875  c(0, 0) 

 

  

Sample times for response: B  

          times      freq Subjects condinit 

1 c(2, 14, 110) 0.8449125 84.49125  c(0, 0) 

2 c(2, 14, 110) 0.1550875 15.50875  c(0, 0) 
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Associated optimised criterion: 2549.662 

  

 

  

Computation of the Population Fisher information matrix: option =  1 

  

******************* FISHER INFORMATION MATRIX ****************** 

  

             [,1]        [,2]        [,3]          [,4]         [,5] 

 [1,]   2.6759559    10.42278   -56.61471    -0.7251327 0.000000e+00 

 [2,]  10.4227805 50031.09185  7276.78572   657.1611100 0.000000e+00 

 [3,] -56.6147102  7276.78572 18134.47440 -6628.5770930 0.000000e+00 

 [4,]  -0.7251327   657.16111 -6628.57709 38614.6748550 0.000000e+00 

 [5,]   0.0000000     0.00000     0.00000     0.0000000 7.931719e+02 

 [6,]   0.0000000     0.00000     0.00000     0.0000000 5.505482e-01 

 [7,]   0.0000000     0.00000     0.00000     0.0000000 3.962926e-03 

 [8,]   0.0000000     0.00000     0.00000     0.0000000 2.159984e+00 

 [9,]   0.0000000     0.00000     0.00000     0.0000000 9.940642e+00 

             [,6]         [,7]         [,8]         [,9] 

 [1,]   0.0000000 0.000000e+00    0.0000000     0.000000 

 [2,]   0.0000000 0.000000e+00    0.0000000     0.000000 

 [3,]   0.0000000 0.000000e+00    0.0000000     0.000000 

 [4,]   0.0000000 0.000000e+00    0.0000000     0.000000 

 [5,]   0.5505482 3.962926e-03    2.1599843     9.940642 

 [6,] 566.1136216 1.470446e-01   80.1122193   369.810105 

 [7,]   0.1470446 7.455466e+02    0.5814468   131.816702 

 [8,]  80.1122193 5.814468e-01 7762.5613244  1446.770561 

 [9,] 369.8101053 1.318167e+02 1446.7705613 23734.044514 

 

  

 

  

************************** EXPECTED STANDARD ERRORS ************************ 

  

------------------------ Fixed Effects Parameters ------------------------- 

  

       Beta    StdError      RSE   

V    12.200 0.637550069 5.225820 % 

Vm    0.082 0.004646813 5.666846 % 

km    0.370 0.008266279 2.234130 % 

Alin  0.100 0.005290312 5.290312 % 

 

  

 

  

------------------------- Variance of Inter-Subject Random Effects ---------------- 

  

     omega²   StdError      RSE   

V      0.25 0.03550730 14.20292 % 

Vm     0.25 0.04226093 16.90437 % 

Alin   0.25 0.03664206 14.65682 % 
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------------------------ Standard deviation of residual error ---------------------  

  

           Sigma    StdError      RSE   

sig.slopeA   0.2 0.011419528 5.709764 % 

sig.interB   0.1 0.006562738 6.562738 % 

 

  

******************************* DETERMINANT ******************************** 

  

4.553482e+30 

  

******************************** CRITERION ********************************* 

  

2549.662 

  

 

  

 

  

******************* EIGENVALUES OF THE FISHER INFORMATION MATRIX ****************** 

  

        FixedEffects VarianceComponents 

min     14719.494342            2.46017 

max     51662.449933        14719.49434 

max/min     3.509798         5983.12052 

 

  

******************* CORRELATION MATRIX ****************** 

  

             [,1]        [,2]       [,3]        [,4]          [,5] 

 [1,]  1.00000000 -0.10289582  0.2826168  0.07960564  0.000000e+00 

 [2,] -0.10289582  1.00000000 -0.2708936 -0.08784124  0.000000e+00 

 [3,]  0.28261681 -0.27089364  1.0000000  0.27291243  0.000000e+00 

 [4,]  0.07960564 -0.08784124  0.2729124  1.00000000  0.000000e+00 

 [5,]  0.00000000  0.00000000  0.0000000  0.00000000  1.000000e+00 

 [6,]  0.00000000  0.00000000  0.0000000  0.00000000 -5.760357e-04 

 [7,]  0.00000000  0.00000000  0.0000000  0.00000000  6.305945e-05 

 [8,]  0.00000000  0.00000000  0.0000000  0.00000000 -6.134416e-04 

 [9,]  0.00000000  0.00000000  0.0000000  0.00000000 -2.145170e-03 

               [,6]          [,7]          [,8]        [,9] 

 [1,]  0.0000000000  0.000000e+00  0.0000000000  0.00000000 

 [2,]  0.0000000000  0.000000e+00  0.0000000000  0.00000000 

 [3,]  0.0000000000  0.000000e+00  0.0000000000  0.00000000 

 [4,]  0.0000000000  0.000000e+00  0.0000000000  0.00000000 

 [5,] -0.0005760357  6.305945e-05 -0.0006134416 -0.00214517 

 [6,]  1.0000000000  2.866158e-03 -0.0277520479 -0.09748089 

 [7,]  0.0028661579  1.000000e+00  0.0030368822 -0.03161925 

 [8,] -0.0277520479  3.036882e-03  1.0000000000 -0.10337783 

 [9,] -0.0974808856 -3.161925e-02 -0.1033778325  1.00000000 

 

 

  

Time difference of 4.783273 secs 

sys.self  

     0.2 
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3. Example 3: PK model with inter-occasion variability  
 40 subjects with a dose of 30 

 Allowed sampling times: 0.5,1,1.5,2,4,6,8 

 Number of sampling times to be optimized: 4 

3.1. Input File (P-FIM) 
######################################################################### 

##                INPUT FILE FOR PFIM 4.0                      ## 

######################################################################### 

 

 

#Name of the project 

#--------------------  

project<-"EXAMPLE 3" 

 

#FIM: Population  (P) or Individual (I) or Bayesian (B) Fisher information matrix 

#--------------------------------------- 

FIM<-"P" 

 

 

#RUN:  Evaluation (EVAL) or Optimisation (OPT)  

#------------------------------------------------------- 

run<-"OPT" 

 

################### MODEL OPTION ########################### 

 

#Model form: Differential equations (DE) or analytical form (AF) 

#--------------------------------------------------------------- 
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modelform<-"AF" 

 

###### ANALYTICAL MODEL OPTION ############################# 

############################################################ 

 

#Identical dose in each elementary design (Yes=T, No=F) 

#------------------------------------------------------------- 

dose.identical<-T 

 

# If 'Yes', enter the value of the dose,  

# else, enter the vector of the dose values for each elementary design 

#-------------------------------------------------------------------- 

dose<-c(30) 

 

#Vector of the times intervals of each expression   

#----------------------------------------------------------- 

boundA<-list(c(0,Inf)) 

 

#Numerical derivatives  (Yes=T, No=F) 

#If 'Yes', specify the model function "form" in the model file 

#If 'No', specify the object "form" which is a vector of expressions in the model 

file 

#----------------------------------------------------------- 

NUM<-F  

 

###### END ANALYTICAL MODEL OPTION ######################## 

 

#Name of the fixed effects parameters 

#------------------------------------- 

parameters<-c("ka","V","Cl") 

 

#Fixed effects parameters values 

#------------------------------- 

beta<-c(1,3.5,2) 

 

#Some parameters may not be estimated (not estimated = T, estimated = F) 

#-------------------------------- 

beta.fixed<-c(F,F,F) 

 

#Number of occasions 

#-------------------------------------------------------------------------- 

n_occ<-2 

 

#Random effect model (1) = additive  (2) = exponential  

#------------------------------------------------------------------ 

Trand<-2; 

 

#Diagonal Matrix of variance for inter-subject random effects: 

#--------------------------------------------------- 

omega<-diag(c(0.09,0.09,0.09)) 

 

#Diagonal Matrix of variance for inter-occasion random effects: 

#--------------------------------------------------- 

gamma<-diag(c(0.0225,0.0225,0.0225)) 

 

#Standard deviation of residual error (sig.inter+sig.slope*f)^2: 

#------------------------------------------------------------------ 

sig.interA<-0.1 

sig.slopeA<-0 
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#List of the vectors of sampling times for each elementary design  

#You can specify that a group has no sampling time by writing NULL  

#(ONLY if you have several response) 

#----------------------------------------------------------------- 

protA<-list(c(0.5,2,4,8)) 

 

#Vector of initial proportions or numbers of subjects for each elementary design  

#-------------------------------------------------------------- 

subjects<-c(40) 

 

#Subjects input: (1) for number of subjects (2) for proportions of subjects 

#--------------------------------------------------------------------------- 

subjects.input<-1 

 

#If 'proportions of subjects' give the total number of samples 

#------------------------------------------------------------- 

#Ntot<-40 

3.2. Output File 
PFIM 4.0   

  

Option: 1  

 

  

Project: EXAMPLE 3 

  

Date: Wed Jan 29 10:30:16 2014 

  

 

  

**************************** INPUT SUMMARY ******************************** 

  

Analytical function model:   

  

dose/V * ka/(ka - (Cl/V)) * (exp(-(Cl/V) * t) - exp(-ka * t))  

  

 

  

Initial design:  

 

  

Sample times for response: A  

          Protocol subjects doses 

1 c=(0.5, 2, 4, 8)       40    30 

 

  

Total number of samples: 160 

  

Associated criterion value: 1826.068 

  

Identical sampling times for each response: FALSE 

  

Number of occasions: 2 

  

Random effect model: Trand =  2 

  

Variance error model response A : ( 0.1 + 0 *f)^2 

 

 Optimization step:   



119 
 

Sampling windows for the response: A  

Window 1 : t= 0.5 1 1.5 2 4 6 8  

    Nb of sampling points to be taken in this window, n[ 1 ]= 4  

Maximum total number of points in one elementary protocol : 4  

Minimum total number of points in one elementary protocol : 4  

 

  

 

Now evaluating the Fisher Information Matrix for the 35 protocols generated  

 

  

BEST ONE GROUP PROTOCOL:  

  

Sample times for response: A  

            times freq Subjects doses 

1 c(0.5, 2, 6, 8)    1       40    30 

 

  

Associated criterion: 1913.953 

  

  

**************************** OPTIMISED DESIGN ***************************** 

  

  

Optimised design:  

Sample times for response: A  

            times freq Subjects doses 

1 c(0.5, 2, 6, 8)    1       40    30 

 

  

 

  

Associated optimised criterion: 1913.953 

  

 

  

Computation of the Population Fisher information matrix: option =  1 

  

******************* FISHER INFORMATION MATRIX ****************** 

  

            [,1]       [,2]      [,3]         [,4]         [,5]         [,6] 

 [1,] 342.070959 -11.909950  2.294299    0.0000000    0.0000000    0.0000000 

 [2,] -11.909950  29.371134  0.624963    0.0000000    0.0000000    0.0000000 

 [3,]   2.294299   0.624963 98.030214    0.0000000    0.0000000    0.0000000 

 [4,]   0.000000   0.000000  0.000000 1462.6567613   21.7203074    0.2631903 

 [5,]   0.000000   0.000000  0.000000   21.7203074 1618.1679873    0.2392295 

 [6,]   0.000000   0.000000  0.000000    0.2631903    0.2392295 1921.9845543 

 [7,]   0.000000   0.000000  0.000000  731.3283806   10.8601537    0.1315952 

 [8,]   0.000000   0.000000  0.000000   10.8601537  809.0839937    0.1196147 

 [9,]   0.000000   0.000000  0.000000    0.1315952    0.1196147  960.9922772 

[10,]   0.000000   0.000000  0.000000  414.3130643  276.7056180   28.1724200 

              [,7]         [,8]         [,9]       [,10] 

 [1,] 0.000000e+00 0.000000e+00 0.000000e+00     0.00000 

 [2,] 0.000000e+00 0.000000e+00 0.000000e+00     0.00000 

 [3,] 0.000000e+00 0.000000e+00 0.000000e+00     0.00000 

 [4,] 7.313284e+02 1.086015e+01 1.315952e-01   414.31306 

 [5,] 1.086015e+01 8.090840e+02 1.196147e-01   276.70562 

 [6,] 1.315952e-01 1.196147e-01 9.609923e+02    28.17242 

 [7,] 1.252260e+04 4.388584e+03 3.991645e+01  2608.00290 



120 
 

 [8,] 4.388584e+03 1.961824e+04 6.185025e+01  1889.93103 

 [9,] 3.991645e+01 6.185025e+01 3.560094e+04   926.11512 

[10,] 2.608003e+03 1.889931e+03 9.261151e+02 20551.58326 

 

  

 

  

************************** EXPECTED STANDARD ERRORS ************************ 

  

------------------------ Fixed Effects Parameters ------------------------- 

  

   Beta   StdError      RSE   

ka  1.0 0.05445931 5.445931 % 

V   3.5 0.18585115 5.310033 % 

Cl  2.0 0.10101646 5.050823 % 

 

   

------------------------- Variance of Inter-Subject Random Effects ---------------- 

  

   omega²   StdError      RSE   

ka   0.09 0.02660961 29.56624 % 

V    0.09 0.02516549 27.96165 % 

Cl   0.09 0.02296550 25.51722 % 

 

  

------------------------- Variance of Inter-Occasion Random Effects --------------- 

  

   gamma²    StdError      RSE   

ka 0.0225 0.009552479 42.45546 % 

V  0.0225 0.007539081 33.50703 % 

Cl 0.0225 0.005339183 23.72970 % 

 

  

------------------------ Standard deviation of residual error ---------------------  

  

           Sigma    StdError      RSE   

sig.interA   0.1 0.007098313 7.098313 % 

 

  

******************************* DETERMINANT ******************************** 

  

6.596486e+32 

  

******************************** CRITERION ********************************* 

  

1913.953 

  

******************* EIGENVALUES OF THE FISHER INFORMATION MATRIX ****************** 

  

        FixedEffects VarianceComponents 

min     18402.235009           28.91084 

max     35690.090280        18402.23501 

max/min     1.939443          636.51680 

 

  

******************* CORRELATION MATRIX ****************** 

  

             [,1]        [,2]        [,3]          [,4]          [,5] 

 [1,]  1.00000000  0.11898386 -0.01401299  0.0000000000  0.0000000000 
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 [2,]  0.11898386  1.00000000 -0.01323044  0.0000000000  0.0000000000 

 [3,] -0.01401299 -0.01323044  1.00000000  0.0000000000  0.0000000000 

 [4,]  0.00000000  0.00000000  0.00000000  1.0000000000 -0.0192963816 

 [5,]  0.00000000  0.00000000  0.00000000 -0.0192963816  1.0000000000 

 [6,]  0.00000000  0.00000000  0.00000000 -0.0001505132 -0.0001422569 

 [7,]  0.00000000  0.00000000  0.00000000 -0.1695130986  0.0478699472 

 [8,]  0.00000000  0.00000000  0.00000000  0.0533692914 -0.1475617586 

 [9,]  0.00000000  0.00000000  0.00000000  0.0019716819  0.0016536078 

[10,]  0.00000000  0.00000000  0.00000000 -0.0509821501 -0.0400931222 

               [,6]          [,7]          [,8]         [,9]         [,10] 

 [1,]  0.0000000000  0.0000000000  0.0000000000  0.000000000  0.0000000000 

 [2,]  0.0000000000  0.0000000000  0.0000000000  0.000000000  0.0000000000 

 [3,]  0.0000000000  0.0000000000  0.0000000000  0.000000000  0.0000000000 

 [4,] -0.0001505132 -0.1695130986  0.0533692914  0.001971682 -0.0509821501 

 [5,] -0.0001422569  0.0478699472 -0.1475617586  0.001653608 -0.0400931222 

 [6,]  1.0000000000  0.0002223017  0.0002468429 -0.116089527 -0.0005440808 

 [7,]  0.0002223017  1.0000000000 -0.2776209058  0.003259840 -0.1332452332 

 [8,]  0.0002468429 -0.2776209058  1.0000000000 -0.000289734 -0.0472408862 

 [9,] -0.1160895270  0.0032598400 -0.0002897340  1.000000000 -0.0341367622 

[10,] -0.0005440808 -0.1332452332 -0.0472408862 -0.034136762  1.0000000000 

 

 

  

Time difference of 1.110063 secs 

sys.self  

    0.05  

 

 

 

4. Example 4: PK model with inter-occasion variability and covariate 

effects (Equivalence test)  
 40 subjects with a dose of 30 

 Allowed sampling times: 0.5, 2, 4, 6, 8 
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 Number of sampling times to be optimized: 3 

4.1. Input File (P-FIM) 
######################################################################### 

##              INPUT FILE FOR PFIM 4.0                       ## 

######################################################################### 

 

 

#Name of the project 

#--------------------  

project<-"EXAMPLE 4" 

 

#Name of the file containing the PK or PD model 

#---------------------------------------------- 

file.model<-"model.r" 

 

#Name of the output file for the results and for the Fisher information matrix 

#--------------------------------------- 

output<-"Stdout.r"; 

outputFIM<-""; 

 

#FIM: Population (P) or Individual (I) or Bayesian (B) Fisher information matrix 

#--------------------------------------- 

FIM<-"P" 

 

#RUN:  Evaluation (EVAL) or Optimisation (OPT)  

#------------------------------------------------------- 

run<-"OPT" 

 

#To display only  graphs of models and/or sensitivity functions before evaluating 

the Fisher Information matrix 

graph.only<-F 

 

#Block diagonal Fisher information matrix (option<-1) or complete Fisher 

information matrix (option<-2) 

#---------------------------------------------------------- 

option<-1 

 

#Number of responses 

#-------------------------------------------------------------------- 

nr<-1 

 

################### MODEL OPTION ########################### 

 

#Model form: Differential equations (DE) or analytical form (AF) 

#--------------------------------------------------------------- 

 

modelform<-"AF" 

 

###### ANALYTICAL MODEL OPTION ############################# 

############################################################ 

 

#Identical dose in each elementary design (Yes=T, No=F) 

#------------------------------------------------------------- 

dose.identical<-T 

 

# If 'Yes', enter the value of the dose,  

# else, enter the vector of the dose values for each elementary design 

#-------------------------------------------------------------------- 
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dose<-c(30) 

 

#Vector of the times intervals of each expression   

#----------------------------------------------------------- 

boundA<-list(c(0,Inf)) 

 

#Numerical derivatives  (Yes=T, No=F) 

#If 'Yes', specify the model function "form" in the model file 

#If 'No', specify the object "form" which is a vector of expressions in the model 

file 

#----------------------------------------------------------- 

NUM<-T  

 

###### END ANALYTICAL MODEL OPTION ######################## 

 

 

 

#Name of the fixed effects parameters 

#------------------------------------- 

parameters<-c("ka","V","Cl") 

 

#Fixed effects parameters values 

#------------------------------- 

beta<-c(1,3.5,2) 

 

#Some parameters may not be estimated (not estimated = T, estimated = F) 

#-------------------------------- 

beta.fixed<-c(F,F,F) 

 

#Number of occasions 

#-------------------------------------------------------------------------- 

n_occ<-2 

 

#Random effect model (1) = additive  (2) = exponential  

#------------------------------------------------------------------ 

Trand<-2; 

 

#Diagonal Matrix of variance for inter-subject random effects: 

#--------------------------------------------------- 

omega<-diag(c(0.09,0.09,0.09)) 

 

#Diagonal Matrix of variance for inter-occasion random effects: 

#--------------------------------------------------- 

gamma<-diag(c(0.0225,0.0225,0.0225)) 

 

#List of the vectors of sampling times for each elementary design  

#You can specify that a group has no sampling time by writing NULL  

#(ONLY if you have several response) 

#----------------------------------------------------------------- 

protA<-list(c(0.5,2,4)) 

############################# 

#FEDOROV-WYNN SPECIFICATION # 

############################# 

 

 

#Number of sampling windows 

#-------------------------- 

nwindA<-1 

#nwindB<-1 
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#List of vector of the allowed sampling times for each sampling window 

#-------------------------------------------------------------------- 

 

sampwinA<-list(c(0.5,2,4,6,8)) 

#sampwinB<-list(c(0, 0.5, 1, 2, 6, 9, 12, 24, 36, 48, 72, 96, 120)) 

 

 

#Fixed times (times which will be in all evaluated protocols, corresponding to 

fixed constraints) 

#-------------------------------------------------------------------- 

fixed.timesA<-c() 

#fixed.timesB<-c() 

 

 

#List of vector of allowed number of points to be taken from each sampling window 

#------------------------------------------------------------------------------ 

 

nsampA<-list(c(3)) 

#nsampB<-list(c(3)) 

 

#Maximum total number of sampling times per subject 

#-------------------------------------------------- 

 

nmaxptsA<-3 

#nmaxptsB<-3 

 

#Minimum total number of sampling times per subject 

#-------------------------------------------------- 

 

nminptsA<-3 

#nminptsB<-3 

############# END OF OPTIMISATION ALGORITHM OPTION ############### 

4.2. Output File 
PFIM 4.0   

  

Option: 1  

 

  

Project: EXAMPLE 4 

  

Date: Wed Jan 29 10:52:55 2014 

  

  

**************************** INPUT SUMMARY ******************************** 

  

Analytical function model:   

  

function(t,p,X){ 

ka<-p[1] 

V<-p[2] 

Cl<-p[3] 

y<-X/V * ka/(ka - (Cl/V)) * (exp(-(Cl/V) * t) - exp(-ka * t)) 

return(y) 

} 

 

  

Initial design:  
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Sample times for response: A  

       Protocol subjects doses 

1 c=(0.5, 2, 4)       40    30 

 

  

Total number of samples: 120 

  

Associated criterion value: 1115.614 

  

Identical sampling times for each response: FALSE 

  

Number of occasions: 2 

  

Random effect model: Trand =  2 

  

Variance error model response A : ( 0.1 + 0 *f)^2 

 

  

Covariate model :   

  

 NB: Covariates are additive on log parameters 

  

 Covariates not changing with occasion  

  

 Covariate 1 : Sex ( V )  

    Categories References Proportions 

(1)          M          *         0.5 

(2)          F                    0.5 

 

 

  

 Covariates changing with occasion  

  

 Covariate  1 : Treat ( Cl )  

    Categories References 

(1)          A          * 

(2)          B            

 

  

    Sequences Proportions 

(1)       A B         0.5 

(2)       B A         0.5 

 

  

 

Optimization step:   

  

Sampling windows for the response: A  

Window 1 : t= 0.5 2 4 6 8  

    Nb of sampling points to be taken in this window, n[ 1 ]= 3  

Maximum total number of points in one elementary protocol : 3  

Minimum total number of points in one elementary protocol : 3  

 

  

 

 

Now evaluating the Fisher Information Matrix for the 10 protocols generated  
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BEST ONE GROUP PROTOCOL:  

  

Sample times for response: A  

         times freq Subjects doses 

1 c(0.5, 2, 6)    1       40    30 

 

  

Associated criterion: 1189.867 

  

 

**************************** OPTIMISED DESIGN ***************************** 

  

  

Optimised design:  

Sample times for response: A  

         times freq Subjects doses 

1 c(0.5, 2, 6)    1       40    30 

 

  

 

  

Associated optimised criterion: 1189.867 

  

 

  

Computation of the Population Fisher information matrix: option =  1 

  

******************* FISHER INFORMATION MATRIX ****************** 

  

                                             s2                         

   329.525019 -14.8691158  3.6912288 -22.229595   3.834115    0.0000000 

   -14.869116  28.6258030  0.9910258  51.227048   1.140631    0.0000000 

     3.691229   0.9910258 97.7403300   1.572171  97.536153    0.0000000 

s2 -22.229595  51.2270485  1.5721714 179.294670   1.950838    0.0000000 

     3.834115   1.1406306 97.5361532   1.950838 921.108493    0.0000000 

     0.000000   0.0000000  0.0000000   0.000000   0.000000 1357.8361093 

     0.000000   0.0000000  0.0000000   0.000000   0.000000   34.5732189 

     0.000000   0.0000000  0.0000000   0.000000   0.000000    0.6847072 

     0.000000   0.0000000  0.0000000   0.000000   0.000000  693.0899074 

     0.000000   0.0000000  0.0000000   0.000000   0.000000   34.3142049 

     0.000000   0.0000000  0.0000000   0.000000   0.000000   24.8299228 

     0.000000   0.0000000  0.0000000   0.000000   0.000000  471.2181021 

                                                                              

      0.0000000    0.0000000 0.000000e+00 0.000000e+00     0.00000    0.00000 

      0.0000000    0.0000000 0.000000e+00 0.000000e+00     0.00000    0.00000 

      0.0000000    0.0000000 0.000000e+00 0.000000e+00     0.00000    0.00000 

s2    0.0000000    0.0000000 0.000000e+00 0.000000e+00     0.00000    0.00000 

      0.0000000    0.0000000 0.000000e+00 0.000000e+00     0.00000    0.00000 

     34.5732189    0.6847072 6.930899e+02 3.431420e+01    24.82992  471.21810 

   1537.8685241    0.6068128 2.694200e+01 7.729341e+02    26.16533  318.44875 

      0.6068128 1910.6360130 3.082288e-01 9.221043e-01   954.18480   37.92596 

     26.9419991    0.3082288 1.123026e+04 5.252065e+03   167.39074 2376.07691 

    772.9340538    0.9221043 5.252065e+03 1.996723e+04   197.52750 2192.63445 

     26.1653310  954.1848020 1.673907e+02 1.975275e+02 35807.24708 1526.11630 

    318.4487533   37.9259602 2.376077e+03 2.192634e+03  1526.11630 5510.31204  

 

************************** EXPECTED STANDARD ERRORS ************************ 

  



127 
 

------------------------ Fixed Effects Parameters ------------------------- 

  

                      Beta   StdError       RSE   

ka              1.00000000 0.05577975  5.577975 % 

V               3.50000000 0.26955025  7.701436 % 

Cl              2.00000000 0.10700134  5.350067 % 

beta_V_Sex_2    0.18232156 0.10686697 58.614553 % 

beta_Cl_Treat_B 0.09531018 0.03484141 36.555810 % 

 

 

------------------------- Variance of Inter-Subject Random Effects ---------------- 

  

   omega²   StdError      RSE   

ka   0.09 0.02788743 30.98604 % 

V    0.09 0.02590788 28.78653 % 

Cl   0.09 0.02303141 25.59046 % 

 

  

------------------------- Variance of Inter-Occasion Random Effects --------------- 

  

   gamma²    StdError      RSE   

ka 0.0225 0.010554907 46.91070 % 

V  0.0225 0.007702135 34.23171 % 

Cl 0.0225 0.005353992 23.79552 % 

 

  

------------------------ Standard deviation of residual error ---------------------  

  

           Sigma   StdError      RSE   

sig.interA   0.1 0.01451322 14.51322 % 

 

  

******************************* DETERMINANT ******************************** 

  

8.053415e+36 

  

******************************** CRITERION ********************************* 

  

1189.867 

   

******************* EIGENVALUES OF THE FISHER INFORMATION MATRIX ****************** 

  

        FixedEffects VarianceComponents 

min       1883.79090           12.66685 

max      35923.72080         1883.79090 

max/min     19.06991          148.71823 

 

  

******************* CORRELATION MATRIX ****************** 

  

                                                      s2               

    1.0000000000  0.1263435890 -0.022352927 -0.026138657 -0.0004354741 

    0.1263435890  1.0000000000 -0.016440418 -0.712334240 -0.0004483848 

   -0.0223529273 -0.0164404185  1.000000000  0.002774252 -0.3249099148 

s2 -0.0261386565 -0.7123342396  0.002774252  1.000000000 -0.0003998150 

   -0.0004354741 -0.0004483848 -0.324909915 -0.000399815  1.0000000000 

    0.0000000000  0.0000000000  0.000000000  0.000000000  0.0000000000 

    0.0000000000  0.0000000000  0.000000000  0.000000000  0.0000000000 

    0.0000000000  0.0000000000  0.000000000  0.000000000  0.0000000000 
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    0.0000000000  0.0000000000  0.000000000  0.000000000  0.0000000000 

    0.0000000000  0.0000000000  0.000000000  0.000000000  0.0000000000 

    0.0000000000  0.0000000000  0.000000000  0.000000000  0.0000000000 

    0.0000000000  0.0000000000  0.000000000  0.000000000  0.0000000000 

                                                                         

    0.0000000000  0.0000000000  0.0000000000  0.0000000000  0.0000000000 

    0.0000000000  0.0000000000  0.0000000000  0.0000000000  0.0000000000 

    0.0000000000  0.0000000000  0.0000000000  0.0000000000  0.0000000000 

s2  0.0000000000  0.0000000000  0.0000000000  0.0000000000  0.0000000000 

    0.0000000000  0.0000000000  0.0000000000  0.0000000000  0.0000000000 

    1.0000000000 -0.0194471821 -0.0002298133 -0.1511036995  0.0781512752 

   -0.0194471821  1.0000000000 -0.0000652991  0.0711693764 -0.1362821286 

   -0.0002298133 -0.0000652991  1.0000000000  0.0005569804  0.0003365315 

   -0.1511036995  0.0711693764  0.0005569804  1.0000000000 -0.3212630803 

    0.0781512752 -0.1362821286  0.0003365315 -0.3212630803  1.0000000000 

    0.0125884017  0.0078633772 -0.1147072179  0.0201752344  0.0078965258 

   -0.1327148141 -0.0943115113  0.0005960777 -0.2303374371 -0.1100174414 

                              

    0.000000000  0.0000000000 

    0.000000000  0.0000000000 

    0.000000000  0.0000000000 

s2  0.000000000  0.0000000000 

    0.000000000  0.0000000000 

    0.012588402 -0.1327148141 

    0.007863377 -0.0943115113 

   -0.114707218  0.0005960777 

    0.020175234 -0.2303374371 

    0.007896526 -0.1100174414 

    1.000000000 -0.1117917937 

   -0.111791794  1.0000000000 

 

 

  

Time difference of 0.5230298 secs 

sys.self     0.06  
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1. Introduction 
 

Model based optimal design approaches are increasingly performed in 

population pharmacokinetic/pharmacodynamics (PKPD) [1], which consist in 

determining a balance between the number of subjects and the number of 

samples per subject, as well as the allocation of times and doses, 

according to experimental conditions. A good choice of design is crucial 

for an efficient estimation of model parameters, especially when the 

studies are conducted in patients where only a few samples can be taken per 

subject. These approaches rely on the Fisher information matrix (FIM) for 

nonlinear mixed effect models (NLMEM), available in several software tools 

[2] and are a good alternative to clinical trial simulation. They require a 

priori knowledge of the model and its parameters, which can usually be 

obtained from previous experiments. 

PFIM (www.pfim.biostat.fr), developed in our group since 2001 [3,4], is the 

first tool for design evaluation and optimisation that has been developed 

in R. Two versions are available: a R script version and a graphical user 

interface version. PFIM Interface 4.0 is an extension of the graphical user 

version PFIM Interface 3.1 and includes several new features based on the R 

script program of PFIM 4.0 [5]. 

 
In this new version, for population designs, optimisation can be performed 

with fixed parameters or fixed sampling times. The Fisher information 

matrix obtained after evaluation or optimisation can be saved in a file. 

Additional features for Bayesian designs are now available. The Bayesian 

Fisher information matrix has been implemented. Design for maximum a 

posteriori estimation of individual parameters can be evaluated or 

optimised and the predicted shrinkage is also reported [6]. A new way has 

been added to specify user-defined models through an R function. It is now 

possible to visualise the graphs of the model and the sensitivity functions 

without performing evaluation or optimisation.  

 
This documentation describes the methodology implemented in PFIM Interface 

4.0 in Section 2. Section 3 describes how to specify models, either by 

using the PKPD library or the user-defined model option. Section 4 explains 

how to install and use PFIM Interface 4.0. Lastly, Sections 5 presents in 

detail an evaluation and an optimisation output of PFIM Interface 4.0. 
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2. Methodology 
 

 

2.1 Design 

 

The elementary design 𝜉𝑖 of individual i (𝑖 = 1,… , 𝑁) is defined by the number 

𝑛𝑖 of samples and their allocation in time (𝑡𝑖1, … , 𝑡𝑖𝑛𝑖).  
For N individuals, the population design is composed of the N elementary 

designs such as 𝛯 = {𝜉1, … , 𝜉𝑁}. Usually, population designs are composed of a 
limited number Q of groups of individuals with identical design 𝜉𝑞 within 

each group, performed in a number 𝑁𝑞 of individuals. The population design 

can thus be written as 𝛯 = {[𝜉1, 𝑁1]; … ; [𝜉𝑄 , 𝑁𝑄]}. 
Individual and Bayesian designs include only one elementary design. 

 

 

2.2 Nonlinear mixed effects models 

 

 

A nonlinear mixed effects model, or a population model, is defined as 

follows. The vector of observations 𝑌𝑖 for the individual i (𝑖 = 1,… , 𝑁) is 
defined as  

 

𝑌𝑖 = 𝑓(𝜃𝑖 , 𝜉𝑖) + ɛ𝑖, 
 

where the function f defines the nonlinear structural model, 𝜃𝑖 is the 

vector of the p-individual parameters for individual i, 𝜉𝑖 is the elementary 

design of individual i and ɛ𝑖 is the vector of residual error.  

The vector of individual parameters 𝜃𝑖 depends on μ, the p-vector of the 
fixed effects parameters and on bi, the p-vector of the random effects for 

individual i. The relation between 𝜃𝑖 and (μ,bi) can be additive for a 

normal distribution of parameters, that is 

 

𝜃𝑖 = 𝜇 + 𝑏𝑖, 
 

or exponential for a lognormal distribution of parameters so that 

 

𝜃𝑖 = 𝜇exp(𝑏𝑖). 
 

It is assumed that 𝑏𝑖~𝑁(0,𝛺) with 𝛺 defined as a 𝑝𝑝 diagonal variance-
covariance matrix, for which, each diagonal element 𝜔𝑗, 𝑗 = 1,… , 𝑝, represents 

the inter-individual variability of the 𝑗𝑡ℎ component of the vector bi.  

It is also supposed that ɛ𝑖~𝑁(0, 𝛴𝑖), where 𝛴𝑖 is a 𝑛𝑖𝑛𝑖-diagonal matrix such 
that 

 

𝛴𝑖(𝜇, 𝑏𝑖 , 𝜎𝑖𝑛𝑡𝑒𝑟 , 𝜎𝑠𝑙𝑜𝑝𝑒 , 𝜉𝑖) = 𝑑𝑖𝑎𝑔(𝜎𝑖𝑛𝑡𝑒𝑟 + 𝜎𝑠𝑙𝑜𝑝𝑒𝑓(𝜃𝑖 , 𝜉𝑖))
2. 

 

The terms 𝜎𝑖𝑛𝑡𝑒𝑟 and 𝜎𝑠𝑙𝑜𝑝𝑒 are the additive and proportional parts of the 

error model, respectively. Conditionnally on the value of 𝑏𝑖, it is assumed 

that the ɛ𝑖 errors are independently distributed. 
 

In the case of K multiple responses, the vector of observations 𝑌𝑖 can then 
be composed of  K vectors for the different responses:  

 

𝑌𝑖 = [𝑦𝑖1
𝑇 , 𝑦𝑖2

𝑇 , … , 𝑦𝑖𝐾
𝑇 ]𝑇, 
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where 𝑦𝑖𝑘, 𝑘 = 1,… , 𝐾, is the vector of 𝑛𝑖𝑘 observations for the 𝑘
𝑡ℎ response. 

Each of these responses is associated with a known function fk, which can 

be grouped in a vector of multiple response model F, such as 

 

𝐹(𝜃𝑖 , 𝜉𝑖) = [𝑓1(𝜃𝑖 , 𝜉𝑖1)
𝑇 , 𝑓2(𝜃𝑖 , 𝜉𝑖2)

𝑇 , … , 𝑓𝐾(𝜃𝑖 , 𝜉𝑖𝐾)
𝑇]𝑇, 

 

where 𝜉𝑖 is composed of K sub-designs such that 𝜉𝑖 = (𝜉𝑖1, 𝜉𝑖2, … , 𝜉𝑖𝐾). The sub-

design 𝜉𝑖𝑘 is then defined by (𝑡𝑖𝑘1, 𝑡𝑖𝑘2, … , 𝑡𝑖𝑘𝑛𝑖𝑘), with 𝑛𝑖𝑘 sampling times for the 

observations of the kth response, so that 𝑛𝑖 = ∑ 𝑛𝑖𝑘
𝐾
𝑘=1 . 

Each response can have its error model and ɛ𝑖 is then the vector composed of 

the K vectors of residual errors ɛ𝑖𝑘, 𝑘 = 1,… , 𝐾, associated with the K 

responses.  

 

 

 

 

2.3 Fisher information matrix 

 

 

2.3.1 Population Fisher information matrix 

 

The population Fisher information matrix  ,FM    for multiple response 

models, for an individual with an elementary design  , with the vector of 

population parameters  , is given as: 

 

 
( , ) ( , )1

,
( , ) ( , )2

F T

A E V C E V
M

C E V B E V

 
    

 
 

 

with E and V the approximated marginal expectation and the variance of the 

observations of the individual. The vector of population parameter   is 

defined by 𝛹𝑇 = (𝜇𝑇 , 𝜆𝑇) with 𝜇 the p-vector of the fixed effects and 𝜆 the 

vector of the variance terms. 𝑀𝐹 is given as a block matrix (more details 

are given in [7–9]) with:  

 

1 1 1( ( , )) 2 ( )     
 

   

T

ml

m l l m

E E V V
A E V V tr V V

   
 with m  and 1, ,l p  

 

1 1( ( , )) ( )  


 
ml

m l

V V
B E V tr V V

 
  with m  and  1, ,diml    

 

1 1( ( , )) ( )  


 
ml

l m

V V
C E V tr V V

 
 with  1, ,diml   and 1, ,m p  

 

 

If the dependence of V in 𝜇 is neglected so that 0
V







, the population 

Fisher information matrix is a block diagonal matrix that is to say the 

block C of the matrix is supposed to be 0. Also, the block A is simplified 

and expressed as:  

 

1( ( , )) 2  


 

T

ml

m l

E E
A E V V

 
 with m  and 1, ,l p  
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Since PFIM Interface 3.1, the user can choose to compute either a full or a 

block diagonal matrix for population designs. However, based on 

publications showing the better performance of the block diagonal 

expression compared to the full one with linearisation [2], the default 

option in PFIM is the block diagonal information matrix.  

 

 

Prediction of standard errors 

 

According to the inequality of Cramer-Rao, the inverse of MF is the lower 

bound of the variance-covariance matrix of any unbiased estimate of the 

parameters. From the square roots of the diagonal elements of the inverse 

of MF, the predicted standard errors (SE) for estimated parameters can be 

calculated. 

  

 

2.3.2 Bayesian Fisher information matrix 

 

New feature: The new version 4.0 of PFIM Interface enables design 

evaluation and optimisation for maximum a posteriori estimation of 

individual parameters based on the Bayesian Fisher information matrix [6]. 

 

We are interested in the precision estimation of individual parameters for 

a subject i, associated to the vector of observation y (index i being 

omitted). These individual parameters can be estimated by maximum a 

posteriori (MAP). As 𝜇 is known, estimating 𝜃 is similar to estimating 𝜂. 

More precisely, the MAP estimate of 𝜂 is given by   

    )(log) |(log argmax
)(

)() |(
 argmax))y |(( argmaxˆ 


 pyp

yp

pyp
p 








  

where p is the probability density. The Bayesian Fisher information matrix, 

taking into account the a priori distribution of the random effects, is 

expressed as 

     

  1
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) |(log
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2

, expression of the individual Fisher 

information matrix in classical nonlinear regression models. The 

expectation  )),,((  gME
IF

 can be obtained by first order approximation 

of the model around the expectation of random effects (i.e., 0).  

The shrinkage (Sh) is quantified from the ratio of the estimation variance 

predicted by MBF
-1 and the a priori variance, and can be calculated as the 

diagonal elements of the matrix 11
)()(

  
BF

MWI   (see [6] for more 

details). 

 

When a parameter has an a priori variance equal to 0, it will be 

considered as fixed to the mean value and no predicted shrinkage will be 

computed.   
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2.4 Design evaluation 

 

Population, individual and Bayesian design evaluation is based on the 

computation of the population, individual and Bayesian Fisher information 

matrix, respectively. During this process, the expected standard errors on 

the population or individual parameters with the design are evaluated. The 

user can choose to fix one or several parameters in the model that will not 

be computed in the Fisher information matrix. 

Eigenvalues and conditional number are given by default. When considering 

design for Bayesian estimation of individual parameters, the shrinkages are 

also reported.  

The computed Fisher information matrix can be saved in a file if requested.  

 

 

 

2.5 Design optimisation 

 

PFIM Interface 4.0 allows to optimise exact or a statistical designs. In 

the case of an exact optimisation, the group structure of the design is 

fixed: the number of elementary designs, the number of samples per 

elementary design and the number of subjects per elementary design are 

given and the design variables to optimise are only the sampling times. In 

the case of statistical optimisation, the sampling times (number and 

allocation) and the proportions of subjects in each elementary design are 

optimised. 

PFIM Interface 4.0 optimises population design using the D-optimal 

criterion, i.e. maximising the determinant of the population Fisher 

information matrix, or, similarly, minimising its inverse.  

 

The Fedorov-Wynn algorithm and the Simplex algorithm are available to 

design optimisation. Compared to the Simplex algorithm, the Fedorov-Wynn 

algorithm better affords high design variables optimisation. Moreover, it 

considers only pre-specified sampling times, avoiding, clinically 

unfeasible sampling times. The drawback is the huge number of elementary 

designs to be created (with corresponding huge number of Fisher information 

matrices to compute) when the set of allowed sampling times is very large. 

 

2.5.1 Simplex algorithm 

 

The Simplex algorithm optimises statistical or exact designs in constrained 

intervals, given a total number of samples.  

An initial population design needs to be supplied to start the 

optimisation. The maximum number of elementary designs and the number of 

sampling times per elementary design are fixed, the sampling times and the 

proportions of subjects in each elementary design are then optimised. From 

this initial design, initial vertices for the simplex algorithm are 

derived, reducing successively each component by 20% (a default value which 

can be changed) from the original component. 

PFIM Interface 4.0 uses the Splus function “fun.amoeba” from Daniel Heitjan 

(revised 12/94), which is a translation from the Numerical Recipes for 

Nelder and Mead Simplex function [10].  

 

 

2.5.2 Fedorov-Wynn algorithm 

 

The Fedorov-Wynn algorithm is specifically dedicated to design optimisation 

problems and has the property to converge towards the D-optimal design [11–
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13]. It optimises statistical designs for a given total number of samples. 

The sampling times are chosen among a given finite set of times. Minimum 

and maximum numbers of samples per subject are specified.  

To start the algorithm, an initial population design is then required. 

The Fedorov-Wynn algorithm is programmed in a C code and is linked to PFIM 

Interface 4.0 through a dynamic library, called libFED.dll and libFED64.dll 

for R 32-bit and 64-bit respectively. Moreover, PFIM Interface uses the 

function combn in the R package “combinat”.  

 

New feature: The best one group protocol, which maximises the determinant 

of the elementary Fisher information matrix of all elementary protocols 

chosen among the predefined set of samples, is given by default when 

running Fedorov-Wynn algorithm (before calling the dynamic library). This 

is the optimal protocol for individual design and Bayesian design. 

Moreover, in PFIM Interface 4.0, optimisation with Fedorov-Wynn algorithm 

can be performed assuming that some sampling times are fixed. 
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3. Models 

 
Models in PFIM Interface 4.0 can be specified either through their 

analytical form or as a solution of system of differential equations. PFIM 

Interface provides libraries of models (see Section 3.1), and users may 

also define their own model analytically or using a system of differential 

equations (see Section 3.2).  

 

The PFIM Interface 4.0 library implements R expressions or differential 

equation systems for PKPD models. The PK model library includes one, two 

and three compartment models with linear elimination and with Michaelis-

Menten elimination. The PD model library supports immediate response models 

(alone or linked to a pharmacokinetic model) and the turnover response 

models (linked to pharmacokinetic model). These libraries have been derived 

from the PKPD library developed by Bertrand and Mentré for the MONOLIX 

software, and all analytical expressions are in that document [14]. A 

documentation of PKPD models for PFIM Interface is available when 

downloading PFIM Interface 4.0. Presently, there is no model with lag time 

in the library.  

 

New feature: In the previous versions of PFIM Interface, a user-defined 

model given in analytical form needed to be specified through an R 

expression. An alternative way to write the model is now available, through 

an R function with a specific format (see section 3.2.3).  

 

3.1 Library of models 

3.1.1 Library of pharmacokinetic models 

Two types of PK models can be used in PFIM Interface 4.0, PK models with a 

first order linear elimination or PK models with a Michaelis-Menten 

elimination. The PK models with a linear elimination are written using an 

analytical form through an R expression whereas the PK models with a 

Michaelis-Menten elimination are written using a differential equation 

system.  

 

The following sections show the list of models for each type of PK model in 

separate tables. These tables display all the information in order to use 

the model function chosen.  The model is described by: 

- a name 

- the type of input 

- the type of elimination 

- the number of compartments 

- the parameters used (parameterisation) 

- the type of administration (sd : single dose, md: multiple dose, 

ss: steady state) depending on administration type, additional 

variables may be required. They are specified in the arguments (N: 

number of doses, tau: interval between two doses, TInf: duration 

of the infusion, dose: dose) 

 

For models with infusion, the user has to specify the duration of infusion 

(TInf) in the needed variables. The rate of infusion is computed 

automatically in the function model by the expression: dose/TInf. The dose 

has to be specified in the tab design (see section 4.4). 

 

For example, if one uses after a multiple dose administration, the first 

order oral absorption with one compartment model (oral1_1cpt_kaVCl_md) from 

the library which has three parameters (ka, Cl and V) and two needed 
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variables (N, tau), the number of doses (N) and the interval between two 

doses (tau) have to be specified. 

 

 

Pharmacokinetic models with a linear elimination 

 

The library of PK models with linear elimination is composed of one, two 

and three compartment models for the three types of input (bolus, infusion 

and first order oral absorption) and the three types of administration 

(single dose, multiple dose, steady state).  

 

The list of these PK models is given in Table 1. 
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Table 1. Pharmacokinetic models with first order linear elimination included in the library of models 

 

Name Input Cpt Elimination Parameterisation Administration Arguments 

bolus_1cpt_Vk IV-bolus 1 1st order V, k 

sd - 

md N, tau 

ss tau 

bolus_1cpt_VCl IV-bolus 1 1st order V, Cl 

sd - 

md N, tau 

ss tau 

infusion_1cpt_Vk IV-infusion 1 1st order V, k 

sd TInf 

md TInf, N, tau 

ss TInf, tau 

infusion_1cpt_VCl IV-infusion 1 1st order V, Cl 

sd TInf 

md TInf, N, tau 

ss TInf, tau 

oral1_1cpt_kaVk 1st order 1 1st order ka, V, k 

sd - 

md N, tau 

ss tau 

oral1_1cpt_kaVCl 1st order 1 1st order ka, V, Cl 

sd - 

md N, tau 

ss tau 

bolus_2cpt_Vkk12k21 IV-bolus 2 1st order V, k, k12, k21 

sd - 

md N, tau 

ss tau 

bolus_2cpt_ClV1QV2 IV-bolus 2 1st order Cl, V1, Q, V2 

sd - 

md N, tau 

ss tau 

infusion_2cpt_Vkk12k21 IV-infusion 2 1st order V, k, k12, k21 

sd TInf 

md TInf, N, tau 

ss TInf, tau 
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infusion_2cpt_ClV1QV2 IV-infusion 2 1st order Cl, V1, Q, V2 

sd TInf 

md TInf, N, tau 

ss TInf, tau 

oral1_2cpt_kaVkk12k21 1st order 2 1st order ka, V, k, k12, k21 

sd - 

md N, tau 

ss tau 

oral1_2cpt_kaClV1QV2 1st order 2 1st order ka, Cl, V1, Q, V2 

sd - 

md N, tau 

ss tau 

bolus_3cpt_Vkk12k21k13k31 IV-bolus 3 1st order V, k, k12, k21, k13, k31 

sd - 

md N, tau 

ss tau 

bolus_3cpt_ClV1Q1V2Q2V3 IV-bolus 3 1st order Cl, V1, Q1, V2, Q2, V3 

sd - 

md N, tau 

ss tau 

infusion_3cpt_Vkk12k21k13k31 IV-infusion 3 1st order V, k, k12, k21, k13, k31 

sd TInf 

md TInf, N, tau 

ss TInf, tau 

infusion_3cpt_ClV1Q1V2Q2V3 IV-infusion 3 1st order Cl, V1, Q1, V2, Q2, V3 

sd TInf 

md TInf, N, tau 

ss TInf, tau 

oral1_3cpt_kaVkk12k21k13k31 1st order 3 1st order ka, V, k, k12, k21, k13, k31 

sd - 

md N, tau 

ss tau 

oral1_3cpt_kaClV1Q1V2Q2V3 1st order 3 1st order ka, Cl, V1, Q1, V2, Q2, V3 

sd - 

md N, tau 

ss tau 
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Pharmacokinetic models with a Michaelis-Menten elimination 

 

One, two and three compartment models are implemented for the three types 

of input. For bolus input, only single dose models are implemented. For 

infusion and first order absorption input, single dose and multiple dose 

are implemented. There is no steady-state form for PK models with 

Michaelis-Menten elimination (in this case the user can use a multiple dose 

model with enough doses to reach SS). The list of these PK models is given 

in Table 2. 

For models with a bolus input, the dose has to be specified in the tab of 

the ODE variables (see section 4.3) as the initial condition of the 

differential equation system. For models with infusion or first order 

absorption input, dose has to be specified as an argument and NOT IN THE 

INITIAL CONDITION OF THE MODEL IN THE ODE VARIABLE TAB.  

 

 As the dose is an argument, it is not possible to specify different 

doses per group for models with infusion or first order absorption input. 

All groups of the design considered have the same dose. Otherwise, the user 

should use the user defined model option. 
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Table 2. Pharmacokinetic models with Michaelis-Menten elimination included in the library of models 
 

Name Input Cpt Elimination Parameterisation Administration Arguments 

bolus_1cpt_VVmkm IV-bolus 1 Michaelis-Menten V, Vm, km sd - 

infusion_1cpt_VVmkm IV-infusion 1 Michaelis-Menten V, Vm, km 
sd doseMM,TInf 

md doseMM,TInf, tau 

oral1_1cpt_kaVVmkm 1st order 1 Michaelis-Menten ka, V,Vm, km 
sd doseMM 

md doseMM,tau 

bolus_2cpt_Vk12k21Vmkm IV-bolus 2 Michaelis-Menten 
V, k12, k21, Vm, 

km 
sd - 

bolus_2cpt_V1QV2Vmkm IV-bolus 2 Michaelis-Menten 
V1, Q, V2, Vm, 

km 
sd - 

infusion_2cpt_Vk12k21Vmkm IV-infusion 2 Michaelis-Menten 
V, k12, k21, Vm, 

km 

sd doseMM,TInf 

md doseMM,TInf, tau 

infusion_2cpt_ V1QV2Vmkm IV-infusion 2 Michaelis-Menten 
V1, Q, V2, Vm, 

km 

sd doseMM,TInf 

md doseMM,TInf, tau 

oral1_2cpt_kaVk12k21Vmkm 1st order 2 Michaelis-Menten 
ka, V, k12, k21, 

Vm, km 

sd doseMM 

md doseMM, tau 

oral1_2cpt_kaV1QV2Vmkm 1st order 2 Michaelis-Menten 
ka, V1, Q, V2, 

Vm, km 

sd doseMM 

md doseMM, tau 

bolus_3cpt_Vk12k21k31k13Vmkm IV-bolus 3 Michaelis-Menten 
V, k12, k21, 

k13, k31, Vm, km 
sd - 

bolus_3cpt_ V1Q1V2Q2V3Vmkm IV-bolus 3 Michaelis-Menten 
V1, Q1, V2, Q2, 

V3, Vm, km 
sd - 

infusion_3cpt_Vk12k21k13k31Vmkm IV-infusion 3 Michaelis-Menten 
V, k12, k21, 

k13, k31, Vm, km 

sd doseMM,TInf 

md doseMM,TInf, tau 

infusion_3cpt_V1Q1V2Q2V3Vmkm IV-infusion 3 Michaelis-Menten 
V1, Q1, V2, Q2, 

V3, Vm, km 

sd doseMM,TInf 

md doseMM,TInf, tau 

oral1_3cpt_kak12k21k13k31Vmkm 1st order 3 Michaelis-Menten 
ka, k12, k21, 

k13, k31, Vm, km 

sd doseMM 

md doseMM,tau 

oral1_3cpt_kaV1Q1V2Q2V3Vmkm 1st order 3 Michaelis-Menten 
ka, V1, Q1, V2, 

Q2, V3, Vm, km 

sd doseMM 

md doseMM, tau 
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3.1.2 Library of pharmacodynamic models 

 

The library of PD models supports immediate response models (either as a 

function of observed concentrations, or linked to a pharmacokinetic model) 

and turnover response models (linked to pharmacokinetic models).  

The following tables present these models, giving the following elements 

for each drug model:  

- the name of the model function in the library 

- the parameters used (parameterisation) 

 

 

 

Immediate response pharmacodynamic models alone 

 

Linear, quadratic, logarithmic, Emax, sigmoid Emax, Imax, sigmoid Imax 

models with null or constant baseline are available. The list of these 

models is given in Table 3.  

These models are written in closed form and can be used in the case of a 

model with one response (PD evaluation or optimisation).  

 

For these models, the design variables are the concentrations or the doses 

instead of the sampling times.  

For example, if one uses a linear drug action model with a constant 

baseline (immed_lin_const) from the library, the model uses two parameters 

(Alin, S0). 

 
Pharmacodynamic models linked to pharmacokinetic model 

 
In this section, we consider models with two responses, with one response 

for the PK and the other one for the PD. We thus optimise sampling times 

for both responses using a PK/PD model. Using the libraries of models, we 

have four cases to compose the PK/PD model depending on the form for each 

submodel: either with an analytical form (AF) or a differential equation 

system (ODE). 

 

Therefore, there are four cases of PK/PD models in PFIM library: 

 

1. PK model with linear elimination (AF) and immediate response PD 

model (AF) 

2. PK model with linear elimination (AF) and turnover response PD 

model (ODE) 

3. PK model with Michaelis-Menten elimination (ODE) and immediate 

response PD model (AF) 

4. PK model with Michaelis-Menten elimination and turnover response 

PD model (ODE)  
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Table 3. Immediate response pharmacodynamic models included in the PD library for PD alone and for PK/PD model 

 

Drug action 

models 

Baseline 

Null baseline Constant baseline 

Name Parameterisation Name Parameterisation 

Linear immed_lin_null Alin immed_lin_const Alin, S0 

Quadratic immed_quad_null Alin, Aquad immed_quad_const Alin, Aquad, S0 

Logarithmic immed_log_null Alog immed_log_const Alog, S0 

Emax immed_Emax_null Emax, C50 immed_Emax_const Emax, C50, S0 

Sigmoid Emax immed_gammaEmax_null Emax, C50, gamma immed_gammaEmax_const Emax, C50, gamma, S0 

Imax immed_Imax_null Imax, C50 immed_Imax_const Imax, C50, S0 

Sigmoid Imax immed_gammaImax_null Imax, C50, gamma immed_gammaImax_const Imax, C50, gamma, S0 
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To use PFIM Interface for design evaluation and optimisation for a PK/PD 

model, the two models must be in the same format.  

 

In the first case, immediate response pharmacodynamic models are written 

with an analytical form and thus they can be associated to pharmacokinetic 

models with first order linear elimination (Table 1) which are also written 

with analytical forms. In this case, the user has to complete the tab using 

analytical form options.  

 

However, for the three other cases, the PK response and the PD response are 

written either with different forms or both with a differential equation 

system (Case 4). That is why, PFIM Interface 4.0 calls a specific function 

in order to create a system of differential equations describing the 

corresponding PK/PD model. 

 

For these cases, the user has thus to complete the tab of the ODE variables 

(section 4.3.3).  

  

 

The list of the immediate response PD models is thus given in Table 3 plus 

those of Table 4. The list of the turnover response PD models is given in 

Table 5.  

For the second case where a PK model with linear elimination is associated 

to a turnover PD response model, the PK model is written with a 

differential equations system. Consequently, only some PK models from the 

Table 1 are implemented: 

- for bolus input, only single dose models; 

- for infusion input, single dose and multiple dose  

- for first order absorption input, single dose and multiple dose\\ 

 

 

For models with a bolus input, the dose has to be specified in the tab of 

the ODE variables (section 4.3.3) as the initial condition of the 

differential equation system. For models with infusion or first order 

absorption input, dose has to be specified as an argument. Consequently, it 

is not possible to specify different doses per group for models with 

infusion or first order absorption input. All groups of the design 

considered have the same dose. Otherwise, the user should use the user 

defined model option. 
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Table 4. Immediate response pharmacodynamic models linked to a pharmacokinetic model included in the library* 

 

Drug action 

models 

 

Baseline/disease models 

Linear progression Exponential increase Exponential decrease 

Name Param. Name Param. Name Param. 

Linear immed_lin_lin 
Alin, S0, 

kprog 
immed_lin_exp 

Alin, S0, 

kprog 
immed_lin_dexp 

Alin, S0, 

kprog 

Quadratic immed_quad_lin 
Alin, Aquad, 

S0, kprog 
immed_quad_exp 

Alin, 

Aquad, S0, 

kprog 

immed_quad_dexp 
Alin, Aquad, 

S0, kprog 

Logarithmic immed_log_lin 
Alog, S0, 

kprog 
immed_log_exp 

Alog, S0, 

kprog 
immed_log_dexp 

Alog, S0, 

kprog 

Emax immed_Emax_lin 
Emax, C50, 

S0, kprog 
immed_Emax_exp 

Emax, C50, 

S0, kprog 
immed_Emax_dexp 

Emax, C50, 

S0, kprog 

Sigmoid 

Emax 
immed_gammaEmax_lin 

Emax, C50, 

gamma, S0, 

kprog 

immed_gammaEmax_exp 

Emax, C50, 

gamma, S0, 

kprog 

immed_gammaEmax_dexp 

Emax, C50, 

gamma, S0, 

kprog 

Imax immed_Imax_lin 
Imax, C50, 

S0, kprog 
immed_Imax_exp 

Imax, C50, 

S0, kprog 
immed_Imax_dexp 

Imax, C50, 

S0, kprog 

Sigmoid 

Imax 
immed_gammaImax_lin 

Imax, C50, 

gamma, S0, 

kprog 

immed_gammaImax_exp 

Imax, C50, 

gamma, S0, 

kprog 

immed_gammaImax_dexp 

Imax, C50, 

gamma, S0, 

kprog 

 

* In addition to those in Table 3.  
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Table 5. Turnover response pharmacodynamic models linked to a pharmacokinetic model included in the library 

 

Types  

of 

response 

Models with impact on the 

Input Output 

 Name Parameterisation Name Parameterisation 

Emax turn_input_Emax Rin,kout,Emax,C50 turn_output_Emax Rin,kout,Emax,C50 

Sigmoid 

Emax 
turn_input_gammaEmax Rin,kout,Emax,C50,gamma turn_output_gammaEmax Rin,kout,Emax,C50,gamma 

Imax turn_input_Imax Rin,kout,Imax,C50 turn_output_Imax Rin,kout,Imax,C50 

Sigmoid 

Imax 
turn_input_gammaImax Rin,kout,Imax,C50,gamma turn_output_gammaImax Rin,kout,Imax,C50,gamma 

Full 

Imaxa  
turn_input_Imaxfull Rin,kout,C50 turn_output_Imaxfull Rin,kout,C50 

Sigmoid 

full 

Imaxa 

turn_input_gammaImaxfull Rin,kout,C50,gamma turn_output_gammaImaxfull Rin,kout,C50,gamma 

  
a Full Imax means Imax is fixed equal to 1 
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3.2 User-defined models  

Users can also define their own model, analytically (as an R expression or 

an R function) or using a system of differential equations. A file has to 

be created according to each model form (see Section 4.3.2). 

 

3.2.1 Analytical form defined through an R expression  

 

Description 

 

The model file must start with the three following red lines, without any 

space between each line; moreover they have to start with the key symbol 

“#$” to be understood by PFIM. 

 

#$Model definition 

#$ka, V, Cl 

#$ 

formA <-expression() 

form<-c(formA) 

tf<-list(Inf) 

 

The first line cannot be changed. The second line indicates the names of 

the parameters of the model to be estimated. The third line specified the 

argument(s) when a function is specified on the fourth line.  

 

The user must start to specify the model from the fourth line. Here only 

“#$” is written on the third line (no additional argument to be specified 

since the model equation is given directly using the R function 

“expression” on the fourth line. 

 

In case of analytical form, the model for each response should be written 

assigned in an object called ‘formi’ where i is the letter of the alphabet 

A,B,C,…. The “formi” for all the responses are then grouped in a vector 

called “form”: 
 

form<-c(formA,formB,formC,…) 

 

If the model for a response is defined over intervals by different 

expressions, each response should be written as a vector of expressions. 

Each expression can be defined in an object ‘formI’, where I = 1, 2, 3,…. 

For example, if the user wants to give three expressions for the first 

response, he can write as follows: 

 

formA<-c(form1,form2,form3) 

 

formA can be a model of the PFIM libraries or defined by the user.  

 

User also needs to define an object “tf” which indicates the time until 

when to use the model for the expression form1. “tf” has to be a list of 

objects corresponding to “tf” for each response. The length of “tf” must be 

equal to the number of responses. In case of one response model, using one 

expression defined from 0 to Infinity:  

 

tf<-c(Inf) 
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Example 1: Single response model at steady-state in analytical form using 

an R expression  

 

 
#$Model definition 

#$k,V 

#$ 

formA <-expression(1/(V)/(1-exp(-k*24))*(exp(-k*t))) 

form<-c(formA) 

tf<-list(Inf) 

 
The analytical expression in this example describes a one compartment model 

after IV bolus at steady-state, with a dose interval equal to 24h 

(bolus_1cpt_Vk). In this case, if the dose is not equal to 1, the user has 

to specify the variable “dose” in the expression and the value of the dose 

in the design tab (see section 4.4). However, if the user defines his 

model, he can also specified the value of the dose in the analytical 

expression by replacing 1 by 500 for instance for a dose equal to 500. In 

this case, the user has to put in the design tab the dose equal to 1. If 

the dose is defined by the user in the analytical expression of the model, 

the options of design with multiple groups with different doses can no 

longer be used. The “tf” object indicates the time until when to use the 

specified expression for the model (here, time Infinity). 

 

 

 

Example 2: PK model with a linear elimination and immediate response PD 

model in analytical form using an R expression  

 

 

#$Model definition 

#$ka,V,Cl,Imax,C50,S0 

#$ 

formA<-expression(dose/V*ka(ka-(Cl/V))*(exp(-(Cl/V)*t)-exp(-ka * t))) 

formB<-paste("-Imax*",formA,"/(C50+",formA,")+S0") 

formB<-parse(text=formB) 

tf<-list(Inf,Inf) 

form<-c(formA,formB) 

 

These analytical expressions describe a PK/PD model. The PK model is a one 

compartment model with a first order absorption and elimination (formA) and 

the PD model (formB) is an immediate response model with a constant 

baseline. In this case, the user has to specify the dose in the design tab 

(see section 4.4).  

 

Note that  to write formB, we use the R function paste which converts its 

arguments to character strings and concatenate them. The R function parse 

is used in order to obtain an expression of the model. 

 

The “tf” object indicates the time until when to use the model for the PK 

(here, time Infinity) and until when to use the PD model (here, time 

Infinity). Here, “tf” is thus a list of two elements.   

 

 

“form” is the vector of the models for all responses, and the second object 

is “tf”. 
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Example 3: PK model after multiple dose administration using an analytical 

form, based on functions from the library of models 

 

It is also possible to use the functions of the library of models to create 

new models. This is illustrated in the following example.  
 
#$Model definition 

#$ka,V,k 

#$ 

form1<-oral_1cpt_kaVk()[[1]] 

form2<-oral_1cpt_kaVk_md(N=5,tau=12)[[1]] 

formA<-c(form1,form2) 

tf<-list(c(12,Inf)) 

form<-formA 

 

In this illustration, the user creates a model combining two analytical 

expressions for a one compartment oral absorption: the first expression 

corresponds to the model after the first administration (form1) and the 

second expression corresponds to the model after the fifth administration 

(form2). Use of predefined functions of the library of models implies the 

use of “[[1]]” at the end of the call of the function to select the part of 

the function corresponding to the expression of the model.  

 

The “tf” object indicates the time until when to use the model for the 

first administration (here, time 12) and until when to use the model for 

the fifth administration (here, time Infinity). 

Then, the user defines two objects: the first object is “form”, the vector 

of the models, and the second one is “tf”. 

 

This case is useful for evaluation and optimisation of a design including 

sampling times after the first and the fifth administration.  

If the user defines the model by using the library of model, he has to 

specify the dose in the design tab (see section 4.4).  

 

 

Example 4: PK model with a linear elimination and immediate response PD 

model in analytical form, based on functions from the library of models 

 

This example illustrates how to write a PK/PD model using functions 

implemented the PKPD library. 

 

#$Model definition 

#$ka,V,Cl,Imax,C50,S0 

#$ 

formA<-oral1_1cpt_kaVCl()[[1]] 

formB<-immed_Imax_const(formA)[[1]] 

tf<-list(Inf,Inf) 

form<-c(formA,formB) 
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3.2.2 Analytical form defined through an R function 

 
Description 

 

The R function for a PFIM Infertace 4.0 model should take the following 

form: 

 

#$Model definition 

#$ ka,k,V 

#$ 

form<-function(t,p,X) { 

. . . 

} 
 

The four lines in red have to be written, without any space between each 

line; moreover the three first lines have to start with the key symbol “#$” 

to be understood by PFIM. The first line cannot be changed. The second line 

indicates the names of the parameters of the model to be estimated. The 

third line specified the additional argument(s) of the function. Here there 

is no additional argument except except t, y and p which are default 

arguments. Therefore only “#$” is written on the third line. Last, the 

fourth line indicates the name of the function (form) which must remain 

unchanged. The 3 arguments of the function are: 

- a vector of times t  

- a vector of parameters p  

- a scalar X which represents the dose  

 

The function returns a vector of predictions of each time point in t, 

computed using the dose X and the parameters p. 

 

 
 

 
Example 5: PK model after single dose administration using an analytical 

form with user-defined R function 

 

#$Model definition 

#$ ka,k,V 

#$ 

form<-function(t,p,X){ 

ka<-p[1] 

k<-p[2] 

V<-p[3] 

y<-(X/V*ka/(ka-k)*(exp(-k*t)-exp(-ka*t))) 

return(y) 

} 

 

 

In this example, the user creates a function of a one response model 

describing a one compartment oral absorption. 
 

 

 

  



 
28 

Example 6: PK model after multiple dose administration using an analytical 

form with user-defined R function 

 

#$Model definition 

#$ ka,V, Cl 

#$ 

form<-function(t,p,X){ 

ka<-p[1] 

V<-p[2] 

Cl<-p[3] 

 

N<-5 

tau<-12 

 

y<-0 

for (n in 1:N) 

  { 

  indic<-t>=(n-1)*tau 

  yn<-indic*(X/V*ka/(ka-Cl/V)*(exp(-Cl/V*(t - (n - 1) * tau))-exp(-ka*(t - 

(n - 1) * tau))))  

  y<-y+yn 

  } 

return(y) 

} 

 

In this illustration, the user creates a function of one response model 

describing a one compartment oral absorption after five administration 

doses with a between dose interval equal to twelve hours. The number of 

doses and the between dose interval are defined within the function. 

 

3.2.3 Models defined through a differential equation system  

 
Description 

 
Model defined as a solution of a differential equation system must be 

called “formED”. It can be given by the users who need to write an R 

function in a format suitable for the solver package deSolve, using the 

following form: 

 

 

          #$Model definition ODE 

          #$ka,km,Vm,V 

          #$ 

          formED<-function(t,y,p) 
{ 

  ...  

} 

 

 

 

The four lines in red have to be written, without any space between each 

line; moreover, the three first lines have to start with the key symbols 

“#$”. The first line of this Block, ‘#$Model definition ODE’ cannot be 

changed. The second line indicates the names of the parameters of the model 

to be estimated. The third line specified the additional argument(s) of the 

function. Here there is no additional argument, except t, y and p which are 

default arguments. Therefore only “#$” is written on the third line. Last, 

the fourth line indicates the name of the function (formED) which must 

remain unchanged. The 3 arguments of the function are: 
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- a vector of time t 

- the current estimate of the variables in the ode system y 

- a vector of parameters p 

 

Within the function, the user has to define the name of the parameters in 

vector p and the differential equation system. 

 

The function returns a list with 2 elements: 

- the first element is a vector giving the values of the derivatives 

for each equation in the differential equation system, computed 

for each time point in t using the parameters p 

- the second element is a vector of predictions computed for each 

time point in t using the parameters p; in PFIM, this vector 

contains the response(s) we are observing 

 

The initial values of the system have to be specified in the ODE tab 

presented in the section 4.3.3. 

 

The implementation of differential equations system requires the use of the 

lsoda function included in the library “deSolve” (R. Thomas Petzoldt) and 

of the fdHess function included in the library “nlme” developed by Jose 

Pinheiro and Douglas Bates. 

The lsoda function uses a function of the same name written in Fortran by 

Linda R. Petzold and Alan C. Hindmarsh. This function solves system of 

differential equations using the Adams method, a predictor – corrector 

method for non-stiff systems; it uses the Backward Differentiation Formula 

(BDF) for stiff systems. The fdHess is used for numerical derivation. It 

evaluates an approximate gradient of a scalar function using finite 

differences.  

 

 

 

Example 7: Single response PK model using a differential equation system 

created by the user 

 

 
#$Model definition ODE 

#$ka,km,Vm,V 

#$ 

formED<-function(t,y,p) 

{ 

   ka<-p[1] 

   km<-p[2] 

   Vm<-p[3] 

   V<-p[4] 

  

   yd1<--ka*y[1] 

   yd2<-+ka*y[1]- V * (Vm * y[2]/(V * km + y[2])) 

 

   list(c(yd1,yd2),c(y[[2]]/V)) 

  } 

 

This example describes a one compartment model first order absorption and 

Michaelis-Menten elimination. 

 

The first four lines in the body of the function assign model parameters 

from the vector p.  The next two lines describe the derivatives of the 

system (yd1 and yd2). More specifically, each derivative represent the drug 

concentration in the specific compartment at the instant t, and its 

elements can be either positive or negative. The notation ydX denotes the 
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derivative of the variable in compartment X while the notation y[X] denotes 

the quantity in the same compartment (see 

documentation for the deSolve package for details).The last line defines 

the elements returned by the function: 

- the first item is mandatory for the deSolve package, and should 

always consist of a vector with the derivatives of the system 

(here, the two elements yd1 and yd2) 

- the second item defines the response, here the concentration in 

the second (central) compartment which is defined by the quantity 

in this compartment (y[2]) divided by the volume of distribution 

V. Several responses can be given. 

 

 

 

Example 8: Multiple response PK model using a differential equation system 

created by the user 

 

 

#$Model definition ODE 

#$ka,cl,V,Clm,R 

#$ 

formED<-function(t,y,p) 

{ 

ka<-p[1] 

cl<-p[2] 

V<-p[3] 

clm<-p[4] 

R<-p[5] 

yd1<--ka*y[1] 

yd2<-ka*y[1]-cl/V*y[2]-R*y[2]        

yd3<-R*y[2]-clm*y[3] 

                   

list(c(yd1,yd2,yd3),c(y[2]/V,y[3])) 

} 

 

 

This example describes a two response model using a differential equation 

system. In this case, the second argument of the list is composed of two 

objects corresponding to: the first measure of interest is the 

concentration in the compartment 2 scaled by the volume and the second 

measure of interest is the concentration in the compartment 3, 

respectively. 
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Example 9: PK model after multiple dose administration using a differential 

equation system created by the user 

 

#$Model definition ODE 

#$ka,V, Cl 

#$ 

formED<-function(t,y,p) 

{ 

ka<-p[1] 

V<-p[2] 

Cl <-p[3] 

 

tau<-12 

input_oral1<-function(ka,V,dose,n,tau,t){ 

if(n==0){return(dose*ka/V*exp(-ka*t))} 

else{return(dose*ka/V*exp(-ka*(t-

n*tau))+input_oral1(ka,V,dose,n-1,tau,t))} 

} 

n<-t%/%tau 

input<-input_oral1(ka,V,dose,n,tau,t)  

  

dy<--Cl/V*y[1]+input 

 

list(c(dy),c(y[1])) 

} 

 

In this illustration, the user creates a function of one response model 

describing a one compartment oral absorption after multiple dose 

administration with a between dose interval between two doses equal to 

twelve hours. The number of doses and the between dose interval are defined 

within the function. 
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4. Installation 
The R 2.6 or higher and available in Windows operating system (32bits or 

64bits) needs to be installed. Depending on the use of PFIM Interface 4.0, 

additional packages available in the R library are needed: 

to use a differential equation system to describe the model: “deSolve” and 

“nlme” packages 

to use the Federov-Wynn algorithm: “combinat” package. 

An additional package “numDeriv” is needed for the computation of the full 

Fisher information matrix and for numerical derivatives of models written 

as standard R functions 

The easiest way to install packages is directly from the web. To install 

the packages deSolve, nlme, combinat and numDeriv, start R and choose the 

Packages item from the menu. Choose Install package(s) from CRAN to install 

from the web (you will see a list of all available packages pop up -- 

choose deSolve, nlme, combinat and numDeriv).  

  

4.1 Windows installation 

To install the Windows version of PFIM Interface 4.0, download the 

application ‘http://www.pfim.biostat.fr/download/PFIM-4.0-windows-

installer.exe’ available on the webpage www.pfim.biostat.fr. Then simply 

double click on this application and click on the button to execute the 

program. 

To complete the installation of PFIM interface 4.0, follow the different 

steps detailed below. 
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Figure 1: Click the button “Next”              Figure 2: Indicate the path to 

to continue the procedure               install the directory files and                                                       

n                                       click the button next 

                                                                                                                     

                    

 

 

 

 

 

                  
Figure 3: Click the button « Next »         Figure 4 : The setup is proceeding 
To begin the installation  

                      

 

 

 

 

 

 

                                          
                       Figure 5: To complete the installation  

                       click on the button “Finish”.  

                       Installation is successful 
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5. Use 

5.1 Main user Interface 

Figure 6 shows the screen that appears when the user starts the program 

PFIM Interface 4.0. 

 
Figure 6: PFIM Interface 4.0: initial screen. 

The user can either create a new project directory (File/New project) or 

load an existing one (File/ Open project) as it is shown in Figure 7. 

 
Figure 7: Load or create a new project. 

5.1.1 Creation of a new project 

In order to create a new project, the path of the directory for the “New 

project” must be specified as shown in Figure 8. 
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Figure 8: Choose directory for the new project 

By default, the names of the new project and of the output file (Figure 9) 

are “My Project” and Stdout.r, respectively, but these names can be 

modified.  

 
Figure 9: Default tab after the creation of a project. 

5.1.2 Loading existing project 

In order to load an existing project, it is either possible to use the Menu 

of PFIM Interface 4.0 as shown in Figure 10, or by clicking on the 

stdin.pfim file stored in the directory of the project selected.  
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Figure 10 Loading existing project tab 

 

 

 

 

 

 

 
Figure 11 Browsing project to be loaded tab 

5.2 Input tab 

The user should enter a name for the project and specify the name for the 

output file where the results will be stored. The Project location is 

created automatically once selected the folder where the new project can be 

stored. The user can choose the R version to be used by specifying the path 

in the “Path to R” section. It is also possible to require the saving of 
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the Fisher Infromation Matrix in a text file by specifying the name of the 

text file (“filename.txt”) in the “Output FIM file” section. 

 

5.3 Model tab 

This tab is for model specification. A model can be either selected from 

the PFIM library or it can be written in a user defined form, using either 

analytical form or a system of differential equations (ODE). Below some 

figures showing how specify a model in the PFIM Interface 4.0. In the 

“Models” section of this documentation, model writings and examples are 

reported in more details. 

5.3.1 Model from the library 

After having opened a project or created a new project in PFIM Interface 

4.0 it is possible to select the preferred model from the library of models 

using the scroll bar in the model tab (Figure 12) and choose the regimen 

(Single dose, Multiple doses, Steady State). For the first example we 

selected a PK one compartment first order absorption model, with parameters 

ka, V, k, and a single dose regimen. 

 
Figure 12: Model-selection from the model library 
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Figure 13: Specification of multiple doses administration type and specification of 

the needed variables N and tau 

It is also possible to define a PKPD model through the model library as 

shown is Figure 14. Please mind to specify the two responses in the number 

of responses section. 

 

 

 
Figure 14: PKPD model selection from the model library. The PK is a one compartment 

first order oral absorption model, with function in the library parameterized in 

ka, V k. The PD is an Imax model with constant baseline parameterized in Imax, C50  

and S0.  

  



 
39 

5.3.2 User-defined model 

The user can create either an analytical model or an ODE system (Figure 

15). If a user defined model has already been specified in this project, it 

can also be edited and modified.   

See “Models” section for details on how to write its own model.  

 

Figure 15: Definition of the model by the user here for a model with two responses 

 

5.3.3 Parameters of the model 

Once the model is specified, one can click on the “Parameters” section 

(Figure 16), where values of the mean and the variance of the population 

parameters have to be defined.  

If the between-subject variance of a parameter is assumed to be zero, this 

should be specified under the variance column of the related parameter. 

PFIM would then remove the corresponding row and column in the Fisher 

information matrix. In the parameter tab it is also possible to indicate 

whether some parameter should be kept fixed in the evaluation or 

optimisation of FIM. In that case, the variance of the correspondent fixed 

parameter will be automatically set to 0.   

In the same tab it is possible to choose between either additive or 

exponential model for the between-subject variance.  

Values of the standard deviation of the residual error should be specified. 

The residual error is additive with a general model for variance: 

var()=(inter+slope*f)
2
, where f is the structural model. This variance error 

model includes the constant variance model (slope = 0) or the constant 

coefficient of variation model (inter = 0) as special cases. The parameters 

inter and slope are included in the population parameters to be estimated. 

Regarding a multiple response model, the user has to complete the different 

values for the standard deviation of the residual error for all responses 

one by one using the list box (Figure 17).  
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Figure 16: Parameters section tab for a single response model 

 

 

 

 

 
Figure 17: Parameters section tab for a multiple response model with the list box 

to choice the parameters of the residual error for each response 

In case of an ODE system, the ODE variables section has to be filled as in 

Figure 18.  
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Figure 18: Tab of the ODE variables  

In this case, the time for the initialisation of the system must be given 

(usually 0) and the initial values in each compartment at this time have to 

be given as a vector in the “initial conditions for each elementary 

design”. The size of this vector has to be equal to the number of equations 

of the system. For the models coming from the libraries, the number of 

equations of the system is equal to the number of compartments of the 

model. Several vectors can be specified in case of different groups of 

subjects with different initial conditions. 

 

To use this tab, an example is presented below illustrated in Figure 19 

using a system with two equations.   

If there are two elementary design with different initial conditions 

defined as (13.8; 0) and (15; 0) respectively for the first and the second 

elementary design. The size of the vectors for the initial conditions is 

equal to 2 due to the two equation system. 

To input the initial condition for the first elementary design, the user 

has to follow the next instructions with the illustration on Figure 19. 

 Put the value 13.8 in the white box     .     

 To validate the value click on the button     , the value is in the 

box     .  

 Repeat these two previous steps for the value 0.  

 Click on the button     , the first elementary design is specified 

and validated in the box     .  

 

In order to validate the initial conditions for the second elementary 

design defined here 15 and 0, the user has to repeat the previous steps. 

The screen showed on Figure 19 should be obtained. The first line and the 

second line in the box     correspond respectively to the initial 

conditions for the first and the second elementary design. 

1
2

3

4 5

5

5
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Figure 19: Tab of the ODE variables: illustration to enter the initial conditions 

 
Finally, parameters of “Error tolerance for the differential equation 

solver” are set by default but can be changed by the user. Those parameters 

are the following: 

- RtolEQ: relative error tolerance, either a scalar or an array as 

long as 'y'. See details in help for lsoda function. 

Default value is 1e-06. 

- AtolEQ:  absolute error tolerance, either a scalar or an array as 

long as 'y'.  See details in help for lsoda function*. 

Default value is 1e-06 

- Hmax:  an optional maximum value of the integration stepsize. A 
maximum value may be necessary for non-autonomous models 

(with external inputs), otherwise the simulation possibly 

ignores short external events. Default value is Inf. 

 

 

*Copied from help for lsoda: 

“The input parameters 'rtol', and 'atol' determine the error control 

performed by the solver.  The solver will control the vector *e* of 

estimated local errors in *y*, according to an inequality of the form max-

norm of ( *e*/*ewt* ) <= 1, where *ewt*is a vector of positive error 

weights.  The values of 'rtol' and 'atol' should all be non-negative. The 

form of *ewt* is: 

 

                      *RtolEQ* * abs(*y*) + *AtolEQ* 

 

where multiplication of two vectors is element-by-element. If the request 

for precision exceeds the capabilities of the machine, the Fortran 

subroutine lsoda will return an error code; under some circumstances, the R 

function 'lsoda' will attempt a reasonable reduction of precision in order 

to get an answer. It will write a warning if it does so.” 

5.4 Design tab 

In this tab, the user specifies the characteristics of the population 

design to be evaluated or optimised. 

In the Fisher Information Matrix section, the type of Fisher information 

matrix to be evaluated or optimised can be selected. Three possible Fisher 

information matrices are implemented in PFIM Interface 4.0.: Population 

1
2

3
4

5
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(also available in previous versions of PFIM Interface), Individual and 

Bayesian.   

In the Dose regimen section, the user specifies if the dose is the same or 

not for all the involved groups in the population design. If the dose is 

the same, its value should be specified; if not, the values for each group 

can be defined (Figure 20). 

NB: if the model used is a user-defined model in which the dose was 

defined, the default value of a dose of 1 should be kept here. 

NB2: for models of the library after infusion, total dose should be given 

and the rate of infusion will be computed using the needed variable TInf. 

 

In the initial population design section, the user enters, for each group, 

the corresponding elementary designs. The value for the number of groups in 

the population design is then computed automatically.    

The user specifies also if the subjects in each elementary design are given 

as numbers or as proportions and enter the values. 

 

Figure 20 shows an example of Design tab for a single response model, for 

which the population design is composed of 2 groups of 30 and 90 subjects 

respectively, both with dose of 100 and 200, respectively, with the 

sampling times (0.5, 1, 4, 12) and (0.5, 2, 6) respectively. 

  
Figure 20: Design tab example for a single response model 

Figure 21 provides with an example of Design tab for a two response model 

with the same sampling times for both responses. Indeed the button 

“identical design for all responses” is selected.  

The population design is composed of one group of 32 subjects with a dose 

of 100 and with the same sampling times for both responses (0.5, 1, 4, 12). 
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Figure 21: Design tab example for a two response model with the same sampling times 

for both responses 

 

 

Figure 22 and Figure 23 give an example of Design tab for a two response 

model with different sampling times for each response. The button 

“identical design for all responses” has to be unselected.  

The population is composed of one group of 32 subjects with a dose of 100 

and with the sampling times for the first response (0.5, 1, 4, 12) (Figure 

22) and for the second response: (0, 0.5, 12, 48, 120) (Figure 23). 

 

 

   
Figure 22: Design tab example for a two response model with different sampling 

times for each response: choice of the design for the first response 
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Figure 23: Design tab example for a two response model with different sampling 

times for each response: choice of the design for the second response 

In all these examples (Figure 20 – Figure 23) the requested Fisher 

information matrix to be evaluated or optimized is the Population one.  

5.5 Design evaluation step tab 

At this step, evaluation of the population design entered in the “Design 

tab” can be performed by clicking on the ‘Run’ button on the windows 

toolbar, following with a click on the ‘Evaluation’ (see Figure 24). See 

Section 6 for the output. Evaluation can be performed either using the 

expression of the block diagonal Fisher information matrix (Figure 24) or 

the full expression of the Fisher information matrix (Figure 25).  

 
Figure 24: How to perform evaluation with the “run” button using the block diagonal 

expression of the Fisher information matrix 
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Figure 25: How to perform evaluation with the “run” button using the full 

expression of the Fisher information matrix  

 

5.6 Optimisation algorithms tab 

 
This tab must be filled in to optimise a design. The optimisation can be 

performed with either the Simplex or the Fedorov-Wynn algorithm. 

Corresponding section of the chosen algorithm must be filled in. In the 

case of multiple response models, the selection of the button “identical 

design for all responses” on the Design tab allows to optimise the design 

with the same sampling times for all responses.  

5.6.1 Simplex algorithm 

The first option to be chosen is whether optimising or not the proportions 

or number of subjects. Then, a value for the minimum delay between two 

sampling times can be entered. By default, this delay is set to 0.  

It is then possible to specify whether the iteration step should be printed 

or not in the R command window.  

If different optimal sampling times for each response are required, the 

allowed intervals of sampling times for the optimisation must be provided 

for each response (Figure 26). 

Parameters for the Simplex algorithm are set by default but they can be 

changed by the user. These are:  

- the parameter for the initial simplex building gives the percentage 

of change from the initial design to create the initial vertices of 

the Simplex algorithm. Default is 20% 

- the maximum iteration number of the Simplex algorithm which is set by 

default to 5000 

- the relative convergence criterion of the Simplex algorithm set by 

default to 1e-6. 
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Figure 26: Optimisation algorithms tab for the Simplex algorithm  

5.6.2 Fedorov-Wynn algorithm 

Allowed sampling times can be specified in the Fedorov-Wynn algorithm 

corresponding tab. Several set of allowed sampling times may be provided, 

each set being called the sampling interval. 

Then, the user must specify the number of sampling times to be taken from 

each sampling interval. More flexibility can be given by specifying for 

each sampling interval several numbers: the Fedorov-Wynn algorithm will 

then select the best ones. 

The number of sampling intervals and the total number of samples per 

subject are then computed automatically. 

The Federov-Wynn algorithm always optimises the number of groups and the 

proportions of subjects per group. 

Please note that the initial population design given in the “Design” tab 

must correspond to the constraint specified in this Fedorov-Wynn algorithm: 

the sampling times must be included in the sampling interval and the number 

of sampling times from each interval must be concordant with the allowed 

numbers.  

  

An example of the Fedorov-Wynn section is given in Figure 27 for a single 

response model. In this example, two sampling intervals are specified with 

the allowed sampling times (0.5, 1, 2, 3, 4, 6, 8, 10, 12) and (48.5, 49, 

50, 51, 52, 56, 58, 60) respectively. The user allowed optimization of a 

design with either two or three sampling times in each interval. The 

minimal total number of allowed sampling times per subject is then 4 and 

the maximum 6.  
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Figure 27: Example of the Optimisation algorithms tab for the Fedorov-Wynn 

algorithm for a single response model  

 
An example of the Fedorov-Wynn section is given in Figure 28 and Figure 29 

for a two response model. In this example, one sampling interval is 

specified with the allowed sampling times (0, 0.5, 1, 6, 12, 24, 48, 72, 

96, 120, 144) for the first response (see Figure 28) and for the second 

response (0, 24, 36, 48, 72, 96, 120, 144) (see Figure 29). The user 

allowed optimization of a design with five sampling times in this interval 

for each response. The minimal total number of allowed sampling times per 

subject is then 4 and the maximum 4.  

 
Figure 28: Example of the Optimisation algorithms tab for the Fedorov-Wynn 

algorithm for a two response model: choice for the first response 
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Figure 29: Example of the Optimisation algorithms tab for the Fedorov-Wynn 

algorithm for a two response model: choice for the second response  

5.7 Design optimisation step tab 

At this step, optimisation can be performed by clicking on the ‘Run’ button 

on the windows toolbar and then choosing ‘Optimization’.  

  
Figure 30: How to perform optimisation with the ‘run’ button using the expression 

of the block Fisher information matrix  
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Figure 31: How to perform optimisation with the ‘run’ button using the expression 

of the complete Fisher information matrix  

5.8 Graph tab 

Graph of either the model or sensitivity function or both can be requested 

by selecting corresponding button(s) (Figure 32). Intervals for the times 

(X axis) have to be specified. Intervals for the Y axis are set by defaults 

to the range of the concentrations but can be changed.  

It is possible to plot a graph with a log scale for X and/or Y axis by 

selecting respectively the ‘Log X axis’ button and/or the ‘Log Y axis’ 

button. 

Format of the graph can be either jpeg or pdf.  

Regarding multiple response models, the user can choose to have a graph for 

each response with different scales and different labels. To do that, the 

user has to unselect the button entitled “Identical lower and upper 

sampling times for each response”.  

   
Figure 32: Graph tab 
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Please note that graphs of the model or sensitivity function may also be 

obtained before performing any design evaluation or optimisation by 

clicking the ‘Run’ button on the windows toolbar and then choosing “Graph 

only“(Figure 33)  

 
Figure 33: Run graph only 

 
6. Results 

PFIM Interface 4.0 opens an R command window to run the evaluation or the 

optimisation (Figure 34). At the end, an output file (named by default 

Stdout.r or with the name specified in the input files tab) is created in 

the directory of the project. It can be viewed by clicking on the button 

“View output file” in the output R command window.  

 
Figure 34: Tab of the results with buttons to see the output file and the graph  

Regarding optimisation step with the Fedorov-Wynn algorithm, in addition to 

the R command windows PFIM Interface 4.0 opens a warning window (Figure 35) 
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but as it does not prevent the PFIM Interface to run it can just be 

ignored. It will be removed for the next version of PFIM.  

  
Figure 35: Tab of the results with buttons to see the output file and the graph and 

a warning window 

If any graph was requested, a file called ‘Rplots’ is also created in the 

project directory and can be viewed by clicking on the “Show graph” or 

“Show sensitivity graph” button in the same output R command window.  

The results are also written in the output file named by default stdout.r.  

According design evaluation or design optimisation, the following sections 

are going to describe the different elements of the output file. 

6.1 Evaluation output file and objects 

6.1.1 Single response model 

 
Figure 36 represents the output file from the design evaluation as in the 

Example 1 - described in the “Examples” section.  

 

The user can read on Figure 36: 

 

The name of the function used: PFIM Interface 4.0. 

 

The name of the project and the date. 

 

A summary of the input: model, variance error model, residual 

between-subject variance model, initial population design, initial numbers 

or proportions of subjects and doses, initial conditions values, errors 

tolerances for the solver of differential equations system if used and the 

expression of the Fisher information matrix used (block or full).  

 

     The population Fisher information matrix, a dim*dim symmetric matrix 

where dim is the total number of population parameters to be estimated. 

 

 The value of each population parameter with the expected standard 

error on each parameter and the corresponding coefficient of variation.  

 

4
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The value of the determinant of the Fisher information matrix and the 

value of the criterion (determinant^(1/dim)) where dim is the total number 

of population parameters.  

 

    The eigenvalues of the Fisher information matrix and the correlation 

matrix. 

 

 

PFIM Interface 4.0  

  

Project:  Example 1.1_ExpressionMod_1.2.1 

  

Date:  Tue May 12 08:16:29 2015 

  

**************************** INPUT SUMMARY ******************************** 

Analytical function models :   

 

dose/V * ka/(ka - k) * (exp(-k * t) - exp(-ka * t))  

  

Design:   

Sample times for response: A  

                times subjects doses 

1 c(0.33, 1.5, 5, 12)      200   100 

  

Random effect model: Trand =  2 

  

Variance error model response A : ( 0.5 + 0.15 *f)^2 

Computation of the Population Fisher information matrix: option =  1 

  

FIM saved in FIM.txt 

  

******************* FISHER INFORMATION MATRIX ****************** 

          [,1]       [,2]      [,3]      [,4]       [,5]       [,6]       [,7] 

[1,] 38.467601   82.86694 -3.770151  0.000000   0.000000    0.00000    0.00000 

[2,] 82.866939 8310.88576 77.977971  0.000000   0.000000    0.00000    0.00000 

[3,] -3.770151   77.97797  4.938229  0.000000   0.000000    0.00000    0.00000 

[4,]  0.000000    0.00000  0.000000 59.190253   4.291831   31.98158   28.15946 

[5,]  0.000000    0.00000  0.000000  4.291831 674.519747  213.76982  193.67427 

[6,]  0.000000    0.00000  0.000000 31.981582 213.769824 3086.36693  295.74230 

[7,]  0.000000    0.00000  0.000000 28.159462 193.674273  295.74230 1208.60606 

[8,]  0.000000    0.00000  0.000000 85.786235 226.638153 1167.39328 1544.00257 

           [,8]  
[1,]    0.00000 

[2,]    0.00000 

[3,]    0.00000 

[4,]   85.78624 

[5,]  226.63815 

[6,] 1167.39328 

[7,] 1544.00257 

[8,] 4118.40001 

************************** EXPECTED STANDARD ERRORS ************************ 

------------------------ Fixed Effects Parameters ------------------------- 

    Beta   StdError      RSE   

ka  2.00 0.17480765 8.740383 % 

k   0.25 0.01239415 4.957658 % 

V  15.00 0.52291110 3.486074 % 

 

------------------------- Variance of Inter-Subject Random Effects --------- 

   omega2   StdError      RSE   

ka   1.00 0.13203572 13.20357 % 

k    0.25 0.03977275 15.90910 % 

V    0.10 0.01933249 19.33249 % 

------------------------ Standard deviation of residual error -------------  

           Sigma   StdError       RSE   

sig.interA  0.50 0.04077340  8.154681 % 

sig.slopeA  0.15 0.02293716 15.291443 % 
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******************************* DETERMINANT ******************************** 

2.930397e+20 

******************************** CRITERION ********************************* 

  

361.7144 

******************* EIGENVALUES OF THE FISHER INFORMATION MATRIX *********** 

  

        FixedEffects VarianceComponents 

min      2490.782416           3.598669 

max      8312.446928         702.614507 

max/min     3.337283         195.242884 

******************* CORRELATION MATRIX ****************** 

  

           [,1]       [,2]       [,3]          [,4]          [,5]        [,6] 

[1,]  1.0000000 -0.2836926  0.3614018  0.0000000000  0.0000000000  0.00000000 

[2,] -0.2836926  1.0000000 -0.4466787  0.0000000000  0.0000000000  0.00000000 

[3,]  0.3614018 -0.4466787  1.0000000  0.0000000000  0.0000000000  0.00000000 

[4,]  0.0000000  0.0000000  0.0000000  1.0000000000  0.0008945383 -0.01707708 

[5,]  0.0000000  0.0000000  0.0000000  0.0008945383  1.0000000000 -0.13147266 

[6,]  0.0000000  0.0000000  0.0000000 -0.0170770841 -0.1314726648  1.00000000 

[7,]  0.0000000  0.0000000  0.0000000  0.0186040109 -0.1824110325  0.12863647 

[8,]  0.0000000  0.0000000  0.0000000 -0.1283097535  0.0574454432 -0.31004589 

            [,7]        [,8] 

[1,]  0.00000000  0.00000000 

[2,]  0.00000000  0.00000000 

[3,]  0.00000000  0.00000000 

[4,]  0.01860401 -0.12830975 

[5,] -0.18241103  0.05744544 

[6,]  0.12863647 -0.31004589 

[7,]  1.00000000 -0.68199073 

[8,] -0.68199073  1.00000000 

 

Figure 36: Example of design evaluation output file for a single response model 
 

Moreover, several R objects are returned in the R command window: 

dose 

prot: design evaluated for each response 

subjects: number of subjects for each group 

mfisher: the population Fisher information matrix  

determinant: the determinant of the population Fisher information matrix 

crit: the value of the criterion 

p: the vector  

se: the vector of the expected standard errors for each parameter 

cv: the corresponding coefficient of variation, expressed in persent. 

EigenValues: the eigenvalues of the Fisher information matrix 

corr.matrix: the correlation matrix 

 

6.1.2 Multiple response model 

Figure 37 represents the output file from the design evaluation as in the 

Example 2 described in the “Examples” section.  

 
The user can read on the Figure 37: 

 

The name of the function used: PFIM Interface 4.0. 

 

The name of the project and the date. 

 

A summary of the input: model(s), sampling times in the elementary 

designs for each model(s), doses or initial conditions and subjects 

corresponding to those designs, residual variance error model for each 

model(s), residual between-subject variance model, initial population 

design, errors tolerances for the solver of differential equations system 

if used and the expression of the Fisher information used (block or full). 

1
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The figure shows a two responses model(differential equations form) with a 

group described by 5 sampling times for both first and secon responses for 

100 subjetcs. The dose is equal to 100. 

 

     The population Fisher information matrix, a dim*dim symmetric matrix 

where dim is the total number of population parameters to be estimated. 

 

The value of each population parameter with the expected standard error 

on each parameter and the corresponding coefficient of variation.  

 

The value of the determinant of the Fisher information matrix and the 

value of the criterion (determinant^(1/dim)) where dim is the total number 

of population parameters.  

 

    The eigenvalues of the Fisher information matrix and the correlation 

matrix. 

 

PFIM Interface 4.0  

  

Project:  Example 2 

  

Date:  Tue May 12 08:24:26 2015 

  

**************************** INPUT SUMMARY ******************************** 

  

Differential Equations form of the model:   

function (t, y, p)  

{ 

    V <- p[1] 

    Vm <- p[2] 

    km <- p[3] 

    Alin <- p[4] 

    pk <- y[1:1] 

    pd <- y[2:2] 

    conc <- y[1] 

    if (t <= 1) { 

        dpk1 <- (100/(1 * V)) + (-Vm) * pk[1]/(km + pk[1]) 

    } 

    else { 

        dpk1 <- (-Vm) * pk[1]/(km + pk[1]) 

    } 

    dpd1 <- 0 

    pdIm <- Alin * conc 

    return(list(c(dpk1, dpd1), c(pk[1], pdIm))) 

} 

Design:   

Sample times for response: A  

                   times subjects 

1 c(0.5, 2, 30, 49, 180)      100 

 

Sample times for response: B  

                    times subjects 

1 c(0.5, 2, 14, 110, 150)      100 

  

Initial Conditions at time 0 :  

0 0  

Random effect model: Trand =  2 

  

Variance error model response A : ( 0 + 0.2 *f)^2 

Variance error model response B : ( 0.1 + 0 *f)^2 

  

Error tolerance for solving differential equations system: 

RtolEQ = 1e-08 , AtolEQ = 1e-08 , Hmax =  Inf 

Computation of the Population Fisher information matrix: option =  1 

FIM saved in FIM.txt 

  

4
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******************* FISHER INFORMATION MATRIX ****************** 

  

             [,1]         [,2]        [,3]          [,4]         [,5] 

 [1,]   2.6770341     9.444202   -57.39048    -0.7254162 0.000000e+00 

 [2,]   9.4442023 50919.213161  7982.73905   657.4076389 0.000000e+00 

 [3,] -57.3904833  7982.739050 33057.82792 -6714.1078293 0.000000e+00 

 [4,]  -0.7254162   657.407639 -6714.10783 38772.8151987 0.000000e+00 

 [5,]   0.0000000     0.000000     0.00000     0.0000000 7.938111e+02 

 [6,]   0.0000000     0.000000     0.00000     0.0000000 4.463216e-01 

 [7,]   0.0000000     0.000000     0.00000     0.0000000 3.916193e-03 

 [8,]   0.0000000     0.000000     0.00000     0.0000000 2.546794e+00 

 [9,]   0.0000000     0.000000     0.00000     0.0000000 8.097541e+00 

             [,6]         [,7]         [,8]         [,9] 

 [1,]   0.0000000 0.000000e+00 0.000000e+00     0.000000 

 [2,]   0.0000000 0.000000e+00 0.000000e+00     0.000000 

 [3,]   0.0000000 0.000000e+00 0.000000e+00     0.000000 

 [4,]   0.0000000 0.000000e+00 0.000000e+00     0.000000 

 [5,]   0.4463216 3.916193e-03 2.546794e+00     8.097541 

 [6,] 586.1230244 1.453005e-01 9.449987e+01   301.234913 

 [7,]   0.1453005 7.516656e+02 8.332548e-01   116.540931 

 [8,]  94.4998735 8.332548e-01 1.725786e+04  1714.876645 

 [9,] 301.2349133 1.165409e+02 1.714877e+03 64572.948196 

 

  

************************** EXPECTED STANDARD ERRORS ************************ 

  

------------------------ Fixed Effects Parameters ------------------------- 

  

       Beta    StdError      RSE   

V    12.200 0.624822332 5.121495 % 

Vm    0.082 0.004534793 5.530235 % 

km    0.370 0.005841524 1.578790 % 

Alin  0.100 0.005182493 5.182493 % 

 

  

------------------------- Variance of Inter-Subject Random Effects --------- 

  

     omega2   StdError      RSE   

V      0.25 0.03549293 14.19717 % 

Vm     0.25 0.04137028 16.54811 % 

Alin   0.25 0.03647948 14.59179 % 

 

  

------------------------ Standard deviation of residual error -------------- 

  

           Sigma    StdError      RSE   

sig.slopeA   0.2 0.007625037 3.812519 % 

sig.interB   0.1 0.003945487 3.945487 % 

 

  

******************************* DETERMINANT ******************************** 

 

5.994606e+31 

 

******************************** CRITERION ********************************* 

 

3395.176 
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****************** EIGENVALUES OF THE FISHER INFORMATION MATRIX *********** 

  

        FixedEffects VarianceComponents 

min     26521.376944           2.561446 

max     64636.681018       17196.209993 

max/min     2.437154        6713.478513 

 

  

******************* CORRELATION MATRIX ****************** 

  

             [,1]        [,2]       [,3]        [,4]          [,5] 

 [1,]  1.00000000 -0.06785010  0.2062542  0.04352023  0.000000e+00 

 [2,] -0.06785010  1.00000000 -0.2101514 -0.05600795  0.000000e+00 

 [3,]  0.20625422 -0.21015142  1.0000000  0.19876898  0.000000e+00 

 [4,]  0.04352023 -0.05600795  0.1987690  1.00000000  0.000000e+00 

 [5,]  0.00000000  0.00000000  0.0000000  0.00000000  1.000000e+00 

 [6,]  0.00000000  0.00000000  0.0000000  0.00000000 -5.826757e-04 

 [7,]  0.00000000  0.00000000  0.0000000  0.00000000  1.311462e-05 

 [8,]  0.00000000  0.00000000  0.0000000  0.00000000 -6.146867e-04 

 [9,]  0.00000000  0.00000000  0.0000000  0.00000000 -1.068259e-03 

               [,6]          [,7]          [,8]         [,9] 

 [1,]  0.0000000000  0.000000e+00  0.0000000000  0.000000000 

 [2,]  0.0000000000  0.000000e+00  0.0000000000  0.000000000 

 [3,]  0.0000000000  0.000000e+00  0.0000000000  0.000000000 

 [4,]  0.0000000000  0.000000e+00  0.0000000000  0.000000000 

 [5,] -0.0005826757  1.311462e-05 -0.0006146867 -0.001068259 

 [6,]  1.0000000000  5.840399e-04 -0.0272653545 -0.047524772 

 [7,]  0.0005840399  1.000000e+00  0.0006127203 -0.016746938 

 [8,] -0.0272653545  6.127203e-04  1.0000000000 -0.050000216 

 [9,] -0.0475247719 -1.674694e-02 -0.0500002164  1.000000000 

 

  

Figure 37: Example of design evaluation output file for a two response model 

 

 
Moreover, the PFIM() function returns the following R objects:  

dose 

prot: design evaluated for each response 

subjects: number of subjects for each group 

mfisher: the population Fisher information matrix  

determinant: the determinant of the population Fisher information 

matrix 

crit: the value of the criterion 

p: the vector  

se: the vector of the expected standard errors for each parameter 

cv: the corresponding coefficient of variation, expressed in persent. 

EigenValues: the eigenvalues of the Fisher information matrix 

corr.matrix: the correlation matrix 

 
  

  
7  
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6.2 Optimisation output file and objects 

Figure 38 represents the output file corresponding to the optimal Bayesian 

design described in the Examples section in the paragraph 1.3.  

 

The user can read on the Figure 38: 

 

The name of the function used: PFIM Interface 4.0  

 

The name of the project and the date. 

 

A summary of the input: structural model, between-subject and error 

variance model, initial design, initial numbers or proportions of subjects 

and doses, total number of allowed samples, criterion associated to the 

initial design. 

 

Sampling times specifications (according to the algorithm used) 

within which the optimal samples will be chosen and error tolerances for 

the solver of differential equations system if used.  

 

The optimised design and the associated criterion.  

For the simplex algorithm, the number of iterations performed and the 

number of function evaluations, the status of the convergence (false or 

achieved) are reported  

For the Fedorov-Wynn algorithm for optimal population design, the 

optimal group structure with the proportion of subjects and the equivalence 

in number are then reported. The best one group protocol is also always 

reported with associated criterion.  

When optimising a Bayesian or an individual design, the resulted 

design correspond to the best one group protocol. 

 

The population or individual or Bayesian Fisher information matrix, a 

dim*dim symmetric matrix where dim is the total number of population 

parameters to be estimated, the number of individual parametres + the 

number of the error model parameters or only the number of individual 

parameters respectively. The name of the file where is possibly saved the 

Fisher information matrix is given. 

 

The value of each parameter with the expected standard error 

(StdError) and relative standard error (RSE). In case of Bayesian design, 

the associated shrinkages values are also reported. 

 

The value of the determinant of the Fisher information matrix and the 

value of the criterion (determinant^(1/dim)) where dim is defined in  

    

      The eigenvalues of the Fisher information matrix and the correlation 

matrix. 
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PFIM Interface 4.0   

  

Project: Example Optimisation 

  

Date: Thu Jul 31 09:22:17 2014 

  

 

  

**************************** INPUT SUMMARY ******************************** 

  

Analytical function model:   

  

function(t,p,X){ 

ka<-p[1] 

k<-p[2] 

V<-p[3] 

y<-(X/V*ka/(ka-k)*(exp(-k*t)-exp(-ka*t))) 

return(y) 

} 

 

  

  

Initial design:  

 

  

Sample times for response: A  

              Protocol subjects doses 

1 c=(0.33, 1.5, 5, 12)        1   100 

 

  

Total number of samples: 4 

  

Associated criterion value: 3.5272 

  

Identical sampling times for each response: FALSE 

  

Random effect model: Trand =  2 

  

Variance error model response A : ( 0.5 + 0.15 *f)^2 

 

  

 

Optimization step:   

  

Sampling windows for the response: A  

Window 1 : t= 0.33 1 1.5 3 5 8 12  

    Nb of sampling points to be taken in this window, n[ 1 ]= 4  

Maximum total number of points in one elementary protocol : 4  

Minimum total number of points in one elementary protocol : 4  

 

  

 

  

BEST ONE GROUP PROTOCOL:  

  

Sample times for response: A  

               times freq Subjects doses 

1 c(0.33, 1.5, 5, 8)    1        1   100 

 

  

Associated criterion: 3.8066 
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Computation of the Bayesian Fisher information matrix 

 
FIM saved in FIM.txt 

 

******************* FISHER INFORMATION MATRIX ****************** 

  

          [,1]       [,2]       [,3] 

[1,]  1.590507   2.096455 -0.2426030 

[2,]  2.096455 354.843266  4.4964361 

[3,] -0.242603   4.496436  0.2013882 

 

  

************************** EXPECTED STANDARD ERRORS ************************ 

  

------------------------ Fixed Effects Parameters ------------------------- 

  

    Beta  StdError      RSE   Shrinkage   

ka  2.00 0.9638509 48.19255 %  23.22522 % 

k   0.25 0.0688475 27.53900 %  30.33586 % 

V  15.00 3.1862487 21.24166 %  45.12080 % 

 

  

******************************* DETERMINANT ******************************** 

  

55.15913 

  

******************************** CRITERION ********************************* 

  

3.806617 

  

 

  

******************* EIGENVALUES OF THE FISHER INFORMATION MATRIX ****************** 

  

        FixedEffects VarianceComponents 

min     9.552493e-02                 NA 

max     3.549127e+02                 NA 

max/min 3.715393e+03                 NA 

 

  

******************* CORRELATION MATRIX ****************** 

  

           [,1]       [,2]       [,3] 

[1,]  1.0000000 -0.4133690  0.5638373 

[2,] -0.4133690  1.0000000 -0.6330761 

[3,]  0.5638373 -0.6330761  1.0000000 

 

 

Figure 38: Example of design optimisation output file 

 

 
Moreover, the PFIM() function returns the following R objects:  

mfisher: the population or individual or Bayesian Fisher information matrix 

corresponding to the optimised protocole 

determinant:  the determinant of the Fisher information matrix 

crit: the value of the criterion 

se: the vector of the expected standard errors for each parameter 

cv: the corresponding coefficient of variation, expressed in percent 

(relative standard error) 

sh: the shrinkage values for each parameter in case of Bayesian design 

EigenValues: the eigenvalues of the Fisher information matrix 

corr.matrix: the correlation matrix 

 

  

5

 
6 

   
7   

8 
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7. Examples  
This section contains a series of examples for EVALUATION (first section) 

and OPTIMISATION (second section) of design in pharmacokinetics (PK) and 

pharmacodynamics (PD).  

We have tried to illustrate all the features of PFIM Interface 4.0, in this 

choice of examples. In Example_1 of each section we have more specifically 

illustrated all the new features in this version 4.0 of PFIM Interface. 

Furthermore, examples available from the previous version of PFIM 

Interface, version 3.1, were also implemented in PFIM Interface 4.0.  

All the input, model and output codes used for these examples are available 

when PFIM is downloaded, in the directory “Examples” stored in Documents in 

the directory “PFIM Interface 4.0”. They are detailed below. 

 

Evaluation 

1. Example 1: PK Model 
The purpose is to evaluate a design for a one compartment first order 

absorption PK model with parameters ka, V and k after single dose 

administration. 

Random effects are exponentially modelled. 

 

 Mean Fixed mean Variance 

ka 

k 

2 

0.25 

 1 

0.25 

V 15  0.1 

   

inter 0.5  

slope 0.15  

Please note: as we don’t fix here any parameter, the “Fixed mean” column is 

kept as default that is without any of the squares checked 

 

1.1 Model Files 

Four possible and exchangeable ways for defining the model are available 

in PFIM. These are described in section 3 of this documentation. Below 

are reported the figures of the 4 possible models (Figure 39-42). 

 
Figure 39 : Model defined from the library 
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Figure 40 : User defined model thorough analytical expression 

 

 
Figure 41 : User defined model thorough analytical function 

 

 

 
Figure 42 : User defined model thorough differential equations 

Graphs pre-evaluation 
Graphs of the simulated model and sensitivity function with respect to 

parameters were obtained by running “Graph only” (see the “Use” section 

paragraph 6.8 “Graph tab”.  
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Figure 43 : Simulated model 

 
Figure 44 : Sensitivity function with respect to parameters 

 

Population Fisher Information Matrix (P-FIM) 

Evaluation of the Population Fisher information matrix (P-FIM) for several 

designs, all patients have a dose of 100. 

 

1.1.1 One group with Elementary Design 𝛏𝟏 

200 subjects who have the same elementary design composed of 4 sampling 

times: 

  ξ1 = (0.33, 1.5, 5, 12)  

For this first example, we report the PFIM files (stdin.R, model.r and 

Stdout.r) for each possible model form (see paragraph 1.1 of this section 

of Examples). We therefore repeated the example four times, using four 

input files. Those PFIM files are stored in the directory of Examples, 

under EVALUATION and EXAMPLE_1 in 4 different folders that are called: 
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“Exemple 1.1._ModLibrary_1.2.1; 1.1_ExpressionMod_1.2.1; 1.1_ModeOde_1.2.1; 

1.1_UserDefMod_1.2.1. 

 
Figure 45 : Design tab for examples of section 1.1.1 

1.1.2 One group with Elementary Design 𝛏𝟐 

200 subjects who have the same elementary design composed of 3 sampling 

times: 

ξ2 = (1, 3, 8)  

 

 

Figure 46: Design tab for example 1.1.2 

1.1.3 Two Groups Design 

Two group population design of 400 subjects: 200 with elementary designs  ξ1 

and 200 with elementary design ξ2.  
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Figure 47: Design tab for example 1.1.3 

1.2 Individual Fisher Information Matrix (I-FIM) 

Evaluation of the Individual Fisher Information Matrix for the elementary 

design ξ1 and then ξ2. 

1.2.1 Elementary Design 𝛏𝟏 

 
Figure 48 : Design tab for example 1.2.1 
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1.2.2 Elementary Design 𝛏𝟐 

 
Figure 49: Design tab for example 1.2.2 

1.3 Bayesian Fisher Information Matrix (B-FIM) 

Evaluation of the Bayesian Fisher Information Matrix for the elementary 

design ξ1 and then ξ2. 

1.3.1 Elementary Design 𝛏𝟏 

 
Figure 50: Design tab for example 1.3.1 
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1.3.2 Elementary Design 𝛏𝟐 

 

 
Figure 51: Design tab for example 1.3.2 

Comment on results 

Comparing examples in 1.2 and 1.3 it is noticeable that the evaluation of 

B-FIM leads to smaller RSE particularly for the parameter ka, which in the 

evaluation of I-FIM is very high, above all for the second elementary 

design, reaching the value of 138 %. 

Comparing the two elementary designs, for both I-FIM and B-FIM, results are 

overall better with  ξ1 than with ξ2,as the variability on ka is kept lower 
and the criterion is slightly higher. For B-FIM, shrinkage values are 

provided and they show that with ξ1 more information is obtained than with 

ξ2. 

1.4 Evaluation of FIM with Fixed Parameter 

Another new feature of v4.0 is to assume that a parameter is known (fixed) 

and not estimated. 

Here we evaluated Population, Individual and Bayesian Fisher Information 

Matrix for the design ξ1 assuming that the parameter ka  is fixed (and has 

no variability). Those examples are stored in the directory of EXAMPLE 

EVALUATIONEXAMPLE1, and the names of their folder are: 1.4.1, 1.4.2, 

1.4.3 for P-FIM, I-FIM or B-FIM evaluation, respectively. 

Comment on results 

Comparing the output of example 1.4.1 with the one in section 1.1.1, we can 

see that the standard errors are slightly reduced in this example. 

As for example 1.4.1, fixing ka resulted in slight improvements of the 

Relative Standard Errors in 1.4.2 with respect to the results in section 

1.2.1 
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Figure 52: Parameters tab when fixing parameter ka 

 
2. Example 2:PK and immediate response PD model using the 

libraries of PK and PD Models (ODE) 

 100 subjects with a dose of 100 

The aim is to evaluate, in a population approach, the following one 

group designs: 

 sampling times for PK response: 0.5, 2, 30, 49, 180  

 sampling times for PD response: 0.5, 2, 14, 110, 150  

 

for a PKPD model, where the PK is one compartment infusion input with 

Michaelis-Menten elimination after a single dose administration with 

parameters V, Vm and km and the PD is an immediate response model with a 

linear drug action and without baseline, where the parameter is Alin. 

 

 

  Mean Fixed 

mean 

Variance 

 V 

Vm 

12.2 

0.082 

 0.25 
0.25 

 km 0.37  0 

 Alin 0.1  0.25 

    

Resp A inter 0  

slope 0.2  

Resp B inter 0.1  

slope 0  

 

Optimisation 

1. Example 1: PK Model 
We illustrate optimisation algorithms with the same examples used in the 

Evaluation section and with an additional example (Example 3) that shows a 

case of repeated dose regimen. As for Evaluation, Example 1 is more 

detailed with all the new features. For Example 2 and 3 optimisation was 
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performed only with Federow-Wynn (FW) algorithm. For Example 1 and 2 we 

therefore show only the parts concerning optimisation.  

1.1 Population Fisher Information Matrix (P-FIM) 

The aim is to optimise a design for 200 subjects with a dose of 100. 

 

1.1.1 Simplex algorithm 

 Initial sampling times vector: ξ1 = (0.33, 1.5, 5, 12)  

 Time interval for the optimisation: (0,12) 

 
Figure 53: Simplex algorithm specifications 

Comment on results 

The criterion associated with the initial times (ξ1) was 361.7. 
When optimizing with Simplex algorithm, the criterion associated to the 

optimal times (0.325, 1.632, 4.9, 12) improved of about 1 point, (362.4).  

1.1.2 Fedorov-Wynn algorithm  

 Allowed sampling times: 0.33,1,1.5,3,5,8,12 

 Maximum total number of points in one elementary 

protocol: 4 

Compare the result with the one obtained with Simplex algorithm 

 
Optimal times where found for three groups of approximately 71, 123 and 6 

subjects, respectively. These are: (0.33, 1, 1.5, 8); (0.33, 1.5, 8, 12) and 
(0.33, 1.5, 3, 12) for the first, second and third group, respectively. For 

this example, the optimisation with Fedorov-Wynn (FW) algorithm led to a 

criterion of 371.3, higher than the one obtained with the Simplex algorithm 

(362.4) in point 1.1.1. Relative standard errors are acceptable in both 

cases (below 20%.   

1.1.3 Fixed parameters 

The aim is to optimise the design in 1.1 keeping the parameter ka fixed 

(assuming no variability on 𝑘𝑎) using the constrains as in 1.1.1 and 1.1.2. 
Corresponding examples are stored in the directory of PFIM interface 4.0 

(ExamplesOPTIMISATION->EXAMPLE_1) in the folder 1.1.3.1 and 1.1.3.2 for 

the examples optimisation with Simplex or with FW algorithm, respectively.  
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Figure 54: Fedorov-Wynn algorithm specifications 

1.1.4 Fixed sampling times 

Optimize the design in 1.1 with the Fedorov-Wynn algorithm keeping fixed 

two sampling times (0.33, 1.5), using the constrains as in 1.1.1 and 1.1.2. 
(In PFIM Interface 4.0 it is possible to fix times only with the Fedorov-

Wynn algorithm). 

 

 
Figure 55: Fedorov-Wynn algorithm specifications: fixed sampling times 

1.1.5 Fixed Parameter and Fixed Sampling Times 

Optimize P-FIM using the Fedorov-Wynn algorithm keeping the parameter ka 

fixed (assuming no variability on ka) and keeping fixed 2 sampling times 
(0.33, 1.5). 

Essentially this example is the combination of examples 1.1.3.2 and 1.4.1.  
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1.2 Individual Fisher Information Matrix (I-FIM) 

Optimize the design in 1.1 this time for the Individual Fisher Information 

Matrix (I-FIM). Use same constraints in 1.1.1 and 1.1.2. 

The optimisations performed for P-FIM are repeated in case of I-FIM. 

Examples 1.2.1 and 1.2.2 show the optimisation of I-FIM with the Simplex 

algorithm and Fedorov-Wynn algorithm, respectively; in Example 1.2.3 the 

optimisation is performed with the Fedorov-Wynn algorithm, fixing parameter 

ka and two sampling times (0.33, 1.5).   

1.3 Bayesian Fisher Information Matrix (B-FIM) 

Optimize the design in 1.1 this time for the Bayesian Fisher Information 

Matrix (I-FIM). Use same constraints in 1.1.1 and 1.1.2. 

The optimisations performed for P-FIM are repeated in case of B-FIM. 

Examples 1.3.1 and 1.3.2 show the optimisation of B-FIM with the Simplex 

algorithm and Fedorov-Wynn algorithm, respectively; in Example 1.3.3 the 

optimisation is performed with the Fedorov-Wynn algorithm, fixing parameter 

ka and two sampling times (0.33, 1.5).   
 

 

2. Example 2: PK and immediate response PD model using the 
libraries of PK and PD Models (ODE) 

 100 subjects with a dose of 100 

 Allowed sampling times for PK response: 0.5, 2, 30, 49, 180  

 Allowed sampling times for PD response: 0.5, 2, 14, 110, 150  

 Number of sampling times to be optimized: 3 
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Figure 56: Fedorov-Wynn algorithm specifications for the first response  

 

 
Figure 57: Fedorov-Wynn algorithm specifications for the second response 
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3. Example 3: Repeated doses 
This example deals with the optimisation of a design using the Fedorov-Wynn 

algorithm and with a model defined by the user using the functions of the 

library of models. 

Repeated doses of 100 with oral absorption every 12 hours are considered. 

The model is a one compartment model first order absorption, parameterized 

with rate constant of absorption (ka), volume (V) and clearance (Cl). The 

mean and the variance of those parameters are given in the table below. 

The random effects are exponentially modelled and the variance error model 

is proportional.  

 

 

 

 Mean Fixed mean Variance 

ka 

Cl 

0.7 

0.5 

 0.25 

0.25 

V 5  0.25 

   

inter 0  

slope 0.2  

 

 

The purpose is to optimise a design with 90 subjects, with sampling times 

after the first and the fifth doses, using the Fedorov-Wynn algorithm. 

After the first dose, 2 or 3 samples per subject are allowed in the 

following set (0.5, 1, 2, 3, 4, 6, 8, 10, 12). After the fifth dose, 2 or 3 

samples per subject are also allowed in the following set: (48.5, 49, 50, 

51, 52, 56, 58, 60). 

The initial population design used to run the Fedorov-Wynn algorithm is 

composed of four sampling times: (0.5, 12, 50, 60) to be performed in 90 

subjects. 
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4. Examples from PFIM Interface 3.1 

 

4.1 Single response model 

4.1.1 Evaluation 

4.1.1.1 Example A 

This example deals with the evaluation of a population design using the 

library of model. 

The purpose is to evaluate a design using a one compartment model after a 

single bolus administration. The parameters and their values are given in 

the table. The random effects are modelled exponentially. The variance 

error model is a combined error model. 
The design to be evaluated is composed of two groups: one group of 30 

subjects with a dose of 100 and sampling times at (0.5, 2, 3, 10) and one 

group of 90 subjects with a dose of 200 and sampling times at (1, 4, 12). 

 

                               

 Mean Fixed mean Variance 

V 

k 

10 

0.2 

 0.25 

0.25 

   

inter 0.5  

slope 0.15  

 

4.1.1.2 Example B 

This example deals with the evaluation of a design using a differential 

equation system. The model is a one compartment model first order 

absorption and Michaelis-Menten elimination. The parameters and their 

values are given in the table below. 

The design to be evaluated is 0.5, 2, 16, 23.5 with a dose of 13.8 

performed in 30 subjects.  

The variance error model is proportional and the modelling of the random 

effects is exponential. 
 

 

 

 Mean Fixed mean Variance 

ka 

V 

2.72 

12.2 

 0.25 

0.25 

Vm 1.004  0.25 

km 0.37  0.25 

   

slope 0.2  

 

4.1.2 Optimisation 

 Be careful, remember that, with the Fedorov-Wynn algorithm, the sampling 

times of the initial population design should be included in the allowed 

sampling times, so as the number of allowed samples per group.  
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4.1.2.1 Example C 

This example deals with the optimisation of a design using the Fedorov-Wynn 

algorithm and with a model defined by the user using the functions of the 

library of models. 

Repeated doses of 100 with oral absorption every 12 hours are considered. 

The model is a one compartment model first order absorption, parameterized 

with rate constant of absorption (ka), volume (V) and clearance (Cl). The 

mean and the variance of those parameters are given in the table below. 

The random effects are exponentially modelled and the variance error model 

is proportional.  

 

 

 

 

 Mean Fixed mean Variance 

ka 

Cl 

0.7 

0.5 

 0.25 

0.25 

V 5  0.25 

   

slope 0.2  

 

The purpose is to optimise a design with 90 subjects, with sampling times 

after the first and the fifth doses, using the Fedorov-Wynn algorithm. 

After the first dose, 2 or 3 samples per subject are allowed in the 

following set (0.5, 1, 2, 3, 4, 6, 8, 10, 12). After the fifth dose, 2 or 3 

samples per subject are also allowed in the following set: (48.5, 49, 50, 

51, 52, 56, 58, 60). 

The initial population design used to run the Fedorov-Wynn algorithm is 

composed of four sampling times: (0.5, 12, 50, 60) to be performed in 90 

subjects. 

 

4.1.2.2 Example D 

This example deals with the optimisation of a design using the Fedorov-Wynn 

algorithm.  The model is described by a two compartment model after 

infusion administration, parameterized in volume (V), rate constant of 

elimination (k), and inter-compartmental parameters k12 and k21. The total 

dose is equal to 550 and the duration of infusion is 0.0625. The random 

effects are modelled exponentially. The variance error model is 

proportional. 

The mean, the variance of the parameters and the parameters of the variance 

error model are given in the tab bellow. 

 

 

 Mean Fixed mean Variance 

V 

k 

3.08 

0.0808 

 0.1 

0.2 

k12 0.175  0.3 

k21 0.116  0.1 

   

slope 0.25  

 

A set of eleven allowed sampling times is given: (0.0625, 1, 2, 3, 4, 6, 7, 

10, 14, 18, 21). 

90 subjects can be involved with either 3 or 4 samples per subject.  

An initial design is proposed, with 4 samples per subject, the same into 

the 90 subjects: (0.0625, 7, 14, 21). 

 



 
76 

4.1.2.3 Example E  

This example deals with the optimisation of a design using the Simplex 

algorithm and with a model defined by the user using the functions of the 

library of models. 

Ten repeated doses of 2.5 with oral absorption every 24 hours are 

considered. The model is a two compartment model first order absorption, 

parameterized with rate constant of absorption (ka), volume for the first 

compartment (V1), clearance (Cl), volume (V2) and the intercompartmental 

clearance (Q). The between subject variance model is exponentially and the 

variance model is additive. 

Values of the parameters are given in the tab bellow: 

 

 

 Mean Fixed mean Variance 

ka 

Cl 

1.5 

0.345 

 0.502 

0.059 

V1 8  0.018 

Q 0.145  0 

V2 18  1.9 

   

inter 0.08  

 

 

The aim is to optimise a design with 250 subjects, with sampling times 

between the first dose and the tenth doses and also five days after the 

last one, using the Simplex algorithm. Thus, the admissible sampling times 

are between 0 and 360 hours. 

The initial population design used to run the Simplex algorithm is composed 

of 6 sampling times: (1, 24, 96, 180, 250, 300) to be performed into 250 

subjects. 

 

4.2 Multiple response model 

4.2.1 Evaluation 

4.2.1.1 Example F  

 
This example deals with the evaluation of a joint modelling of a drug 

concentration and its effect (two responses): a one compartment model with 

a first order absorption and elimination for the drug concentration is used 

and an immediate response model with a constant baseline for the effect. 

The model is described using the libraries of models. The between subject 

variance model is exponentially and the variance model is combined for the 

first response and additive for the second response. 

Values of the parameters are given in the tab bellow: 

 

 Mean Fixed mean Variance 

ka 

V 

1.6 

8 

 0.70 

0.02 

Cl 0.13  0.06 

Imax 0.73  0.001 

C50 0.17  0.7 

S0 100  0 

   

inter(first response)  0.6  

slope 0.07  

inter(second response) 8  
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The aim is to evaluate a design with one group with sampling times at 0.5, 

1, 2, 3, 6, 9, 12, 24, 36, 48, 72, 96, 120 hours for the first response and 

0, 24, 36, 48, 72, 96, 120, 144 hours for the second response with 32 

subjects. The total dose is equal to 100.  

 

4.2.1.2 Example G  

 
This example deals with the evaluation of a design for a joint model for a 

drug and its metabolite. The first response is described by a one 

compartmental model with first order absorption and the second response is 

described by a one compartment with a first order metabolic rate constant. 

Because of structural identifiability problem in absence of urinary data, 

we fix the volume of distribution (Vm) of the metabolite equal to 1, and 

thus estimate Clm and km. The model is described using a differential 

equation system. The length of vector in the “initial conditions for each 

elementary design” is equal to 3. The first element of this vector is the 

dose equal to 300 in this example. The between subject variance model is 

exponentially and the variance model is combined for the first response and 

proportional for the second response. 

 

Values of the parameters are given in the tab bellow: 

 

 
 Mean Fixed mean Variance 

ka 

V 

2.86 

300 

 0.7 

0.02 

Cl 160  0.06 

Clm 0.16  0.17 

km 0.03  0 

   

inter(first response)  0.003  

slope 0.28  

inter(second response) 0.13  

 

 
The design to be evaluated is composed of 1 group of 80 subjects with 

sampling times at (1, 3, 6, 12) for the first response and sampling times 

at (1, 6, 11, 12) for the second response. 

 

4.2.1.3 Example H  

 
This example deals with the evaluation of a design study for a PK/PD model 

(two responses). The PK model is a one compartmental model with first order 

absorption and elimination. The drug effect (PD model) is described by a 

turnover model with inhibition of the input.  

This PK/PD model is described using the libraries of models. In this 

example, we are in the case where we have a PK model with linear 

elimination (written using an analytical form) and a turnover response PD 

model (written using a differential equation system). Thus, the user has to 

complete the tab of the ODE variables because PFIM Interface 3.1 calls a 

specific function in order to create a system of differential equation 

system describing the corresponding PK/PD model. The between subject 

variance model is exponentially. The variance model is combined for the PK 

model and additive for the second response. 
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Values of the parameters are given in the tab bellow: 

 

 
 Mean Fixed mean Variance 

ka 

V 

1.6 

8 

 0.70 

0.02 

Cl 0.13  0.06 

Rin 5.4  0.2 

kout 0.06  0.02 

Imax 1  0 

C50 1.2  0.01 

   

inter(first response)  0.6  

slope 0.07  

inter(second response) 8  

 

 
The design to be evaluated is composed of one group of 32 subjects with 

sampling times at 0.5, 1, 2 ,3 ,6, 9,12,24,36,48,72,96,120 for the PK model 

and 0, 24,36,48,72,96,120,144 for the PD model. The dose is equal to 100.  

 

4.2.2 Optimisation 

4.2.2.1 Example I  

 
This example deals with the optimisation of a design using the Simplex 

algorithm for a joint modelling of a drug concentration and its effect: a 

one compartment model with a first order absorption and elimination for the 

drug concentration is used and an immediate response model with a constant 

baseline for the effect. The model is described using analytical forms with 

the ‘user defined model’ option. 
This model has been used for design evaluation in the section 5.2.1.1 using 

the library of models.  

 

Values of the parameters are given in the tab bellow: 

 

 

 Mean Fixed mean Variance 

ka 

V 

1.6 

8 

 0.70 

0.02 

Cl 0.13  0.06 

Imax 0.73  0.001 

C50 0.17  0.7 

S0 100  0 

   

inter(first response)  0.6  

slope 0.07  

inter(second response) 8  

 

The aim is to optimise a design with one group of 32 subjects with 5 

sampling times between 10 min and 120 hours for the drug concentration 

measurements and 5 sampling times between 0 and 144 hours for the effect 

measurements.  
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4.2.2.2 Example J  

 
This example deals with the optimisation of a design using the Fedorov-Wynn 

algorithm for a joint model for a drug and its metabolite (two responses). 

The first response is described by a one compartmental model with first 

order absorption and the second response is described by a one compartment 

with a first order metabolic rate constant. The model is described using a 

differential equation system. The between subject variance model is 

exponentially and the variance model is combined for the first response and 

proportional for the second response. 

This model has been used for design evaluation in the section 5.2.1.2.  

 
Values of the parameters are given in the tab bellow: 

 

 
 Mean Fixed mean Variance 

ka 

V 

2.8 

300 

 0.70 

0.02 

Cl 160  0.06 

Clm 0.16  0.001 

R 0.03  0.7 

   

inter(first response)  0.03  

slope 0.28  

slope(second response) 0.13  

 

 

 
The aim is to optimise a design (same sampling times for both responses) 

with 4 sampling times for a total number of samples equal to 400 using the  

following allowed sampling times: 0.0625, 1, 3, 6, 11, 12, 14 and 15hours. 

 Be careful, remember that, with the Fedorov-Wynn algorithm, the sampling 

times of the initial population design should be included in the allowed 

sampling times, so as the number of allowed samples per group.  
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