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Abstract

This thesis is centred on Fokker-Planck Equation and its application in Econophysics.
Part I is devoted to the modeling of wealth distribution and it is based on two works that were developed
under the supervision of Professor G.Toscani [85, 86]. Within this Part, in Chapter 4, we study a Fokker-
Planck equation with variable coefficient of diffusion and boundary conditions which appears in the study
of the wealth distribution in a multi-agent society [17, 32, 76]. In particular, we analyze the large-time
behaviour of the solution, by showing that convergence to the steady state can be obtained in various
norms at different rates. In Chapter 5, we consider the same Fokker-Planck equation with variable
coefficient of diffusion which appears in Chapter 4. At difference with previous studies, to describe a
society in which agents can have debts, we allow the wealth variable to be negative. It is shown that
even starting with debts, if the initial mean wealth is assumed positive, the solution of the Fokker-Planck
equation is such that debts are absorbed in time, and a unique equilibrium density located in the positive
part of the real axis will be reached.
Part II shows an application of Fokker-Planck equation in the formulation of rating model. It is based on
a joint work with Professor B.Düring and with Dr.Marie-Therese Wolfram [40]. In this paper, we propose
and study a new kinetic rating model for a large number of players, which is motivated by the well-known
Elo rating system. Each player is characterised by an intrinsic strength and a rating, which are both
updated after each game. We state and analyse the respective Boltzmann type equation and derive the
corresponding nonlinear, nonlocal Fokker-Planck equation. We investigate the existence of solutions to
the Fokker-Planck equation and discuss their behaviour in the long-time limit. Furthermore, we illustrate
the dynamics of the Boltzmann and Fokker-Planck equation with various numerical experiments.
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Chapter 1

Introduction

In the last three decades, different theories were developed in the attempt to explain complex phenomena
through the use of Theoretical Physics and Statistical Mechanics techniques. In fact, various research
communities, from Biology to Sociology and Economics, have developed increasing interest in the de-
scription of collective phenomena, made of large numbers of individuals. It is interesting to show and to
clarify the ideas on which these new theories were built.
Many physical phenomena can be described by analogy with particles dynamic. The modeling of these
phenomena is based on the search of universal properties and the laws that regulate their evolution. The
main idea (that is also the most relevant issue) at the base of these theories is to find their analogous in
the description of the human phenomena and in the Social Sciences. We can describe complex human
multiagent systems as sets of autonomous individuals who show a collective behaviour as the result of
their interactions.
The attempts to study social events using physical laws are ancient, in particular in Finance and Econ-
omy. During the nineteenth century, the Italian economist Vilfredo Pareto investigated the distribution
of wealth in a population: he predicted that the 20% of the population had the 80% of total wealth or,
in other words, he postulated the existence of a small fraction of very rich people [78]. This criterion is
known as Pareto’s principle (or also as 80− 20 rule) and was the first power-law ever discovered for the
description of both natural and social phenomena. In the twentieth century, the engineer J.M.Juran ap-
plied the Pareto’s principle to quality issues and since then it was applied in several fields. The currently
used version of the Pareto’s Principle affirms that the fraction of population having revenue greater than
some amount w >> 1 is proportional to w−α, where the parameter α > 1 is known as Pareto’s index
[28]. In other words, if f(w) is the probability density function of the wealth and F (w) =

∫ w
0
f(x)dx is

the corresponding cumulative distribution function,

1− F (w) ∼ w−α.

This kind of behaviour is not common in comparison with many natural phenomena. Indeed, the more
frequent distribution is the Gaussian, that presents an exponential decay at infinity. In other words, we
can observe the most relevant difference if we compare the fraction of population that is characterized
by a value of the quantity in the object of study greater than a certain w >> 1: it results very greater in
the case of power-law decays with respect to the Gaussian distribution. In consequence of this, it is said
that a population with beahviour as Pareto’s prediction exhibits "heavy tails". Models involving heavy-
tailed distributions are used in many fields of applications as economics, telecommunications, physics,
and biology and have been confirmed by data [69, 70, 91]. The Levy theory in probability, the concept
of scaling of thermodynamic function and correlation function in physics allowed the development of
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new distribution with heavy tails. A stochastic process is defined as Levy stable if it is governed by a
generalized central limit theorem. Mandelbrot in [71] postulated that price changes obey to a Levy stable
distribution. The sum of i.i.d. Levy stable random variables is a Levy distribution, that is characterized
by a density distribution with power decays. This fact indicates that the distribution of a Levy stable
process is a power-law distribution when the stochastic variable v assumes large values.
In the first half of 1900s, other links to the bond between the physics and the social sciences were high-
lighted by Majorana [67, 68]. He stressed, in particular, the importance of the non-deterministic aspects
in the modelling of social phenomena. Majorana wrote: "It is known that the laws of the mechanics, in
a particular way, have longly appeared as the insuperable type of our knowledge of nature, and...also all
the other sciences should have been brought back to such type (of laws)." Moreover, Majorana underlined
the success achieved by the deterministic conception in the development of modern science not only in
physics but also in unexpected fields of application such as social science. More precisely, Majorana
identified the analogy between thermodynamic and social science,in particular between particles and
individuals: "For example, when a statistic law is enunciated on a population, the investigation on the
biography of the single individuals is dropped; in the same way, if we define the (macroscopic) state of
a gas with pressure and volume, we abdicate to investigate position and velocity of a single particle".
In the second part of his works, Majorana underlined the role of the non-deterministic aspects in con-
sideration of the new knowledge of the quantum mechanics: "also the laws that concern the elementary
(atomic systems) phenomena have statistic character...These statistic laws point out a reality defect of
deterministic conception". The same considerations are valid for social sciences: "if we remember what
we have said above on the mortality of the radioactive atoms, we are induced to ask us if there is an
analogy with social facts, that are rather described with similar language". Nevertheless, the uncon-
ventional Majorana’s point of view was considered of marginal interest for several decades and the true
development of this way of thinking began only in the late 1900s.
In the second part of 1900, several new attempts were made to apply the methods of physics and statistic
mechanics to social sciences. Among these, the Black-Scholes rational option-pricing formula had a key
role in introducing random effects in human phenomena, despite it doesn’t represent precisely the reality
[15]. They established that under certain "ideal condition", the value of the option will depend only on
the price of the stock and on time. One of this condition provides that the stock price follows a random
walk in continuous time. The random walk is a very common concept in natural sciences. This concept
had been introduced in the doctoral thesis of Bachelier in 1900 [5], five years before Einstein’s paper on
the Brownian motion. Bachelier’s work is considered pioneering, even if it is not entirely rigorous from
the mathematical point of view. The intuitions of Majorana and Bachelier may be considered the roots
of modern Econophysics [72].
The word "Econophysics" was introduced in 1996 by H.E. Stanley in [84], in analogy with Biophyisics
and Astophysics. The examples of Pareto and Mandelbrot showed that there is a bidirectional relation
between both physics and economics; however, the contribution of Physics to Economics is more relevant
than the reverse. There are several definitions of Econophysics. According to Burda [20], "Econophysics
is an approach to quantitative economy using ideas, models, conceptual and computational methods of
statistical physics". It also explains a large spectrum of problems of Economy. Its target is to explain
phenomena of finance and economy as the evolution of complex systems by using instruments and prin-
ciples of Statistical Physics (microscopic models, scaling laws). The development of this new discipline
was triggered by two principal reasons: a) certain difficulties met by the classical Economics approach
and b) the benefits of the new method. In [61], Keen underlines how the theories of the classical economy
were based on hypothesis (as Completeness, Transitivity, Non-satiation, and Convexity) that turned out
to be not trustworthy. Furthermore, the fundamental laws that characterize the models of economic
systems were not yet completely understood [92]. Otherwise, Physics seeks universal laws and its models
are supported and confirmed by experimental data [12]. As economic phenomena show certain empirical
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regularities, a relevant proportion of social organizations may be included in Physics schemes.
One of the major intuition of Econophysics has been to understand how asset prices evolve in terms
of fractional Brownian motion. This kind of description can explain the behaviour of several similar
structure as model asset price dynamics, stock prices, stock indexes, currency exchange rates and the
DAX data series. For example, by analyzing the correlation among different stock returns, we can note
its resemblance with the correlation among spectroscopic data on energy levels: both phenomena were
interpreted with the use of random matrix theory, that had been developed in nuclear physics. In the
description of stock market movements, the physical concept of entropy plays a significant role. This
idea arose in the nineteenth century in Thermodynamics to explain the evolution of an isolated system
toward equilibrium and it was incorporated in the framework of Statistical Mechanics by Boltzmann and
Gibbs [16, 53] (For a brief presentation of the Boltzmann theory, see Chapter 2). The concept of Entropy
came into knowledge of information theory and probability with the work of Shannon and Kolmogorov
[81, 63]. More precisely, it became an instrument to study the equilibrium of systems that are driven
by space or temporal interactions. However, the evolution of many phenomena is not governed by the
Shannon entropy. This necessarily led to the introduction of new forms of entropy [90]. Independently
from its expression, the entropy is an index of disorder and of lack of knowledge and information about a
system. The correspondent economic meaning is the uncertainty about the values that characterize the
population [55]. Entropy communicates more information about probability distribution than standard
deviation; in consequence of this, entropy has replaced the standard deviation in many applications, such
as index of the volatility of the stock market.
In the context of Econophysics, Fokker-Plank equations play an important role. This type of equations is
useful to describe systems that are affected by a certain noise. For this reason, it was applied to describe
several human phenomena, such as opinion formation [88] and wealth distribution [17, 32]. The aim of
this thesis is to show some applications of Fokker-Planck equations and related mathematical problems.
In the next chapter, I will introduce the most important mathematical tools that were the basis for the
development of Econophysics and that are still used in the description of economic phenomena. More
precisely, I will introduce the Boltzmann Equation with the famous H-Theorem and some results on the
classical Fokker-Planck equation.
Part I of the thesis is focused on models of wealth distribution. In particular, in chapter 3, I will describe
some kinetics models and some results about the convergence towards equilibrium of the solutions of
Fokker Planck equation. In the other two chapters, I will present two works that I developed during my
doctorate under the supervision of Professor G.Toscani [85, 86].
Kinetics models are used also to describe human phenomena that are far away from Economy. Sometimes
these theories are indicated with the term Sociophysics. In this set, in addition to opinion formation
models that I recalled before, there are ranking systems. In part II, I will deal with the argument of
ranking systems. I will present my work on an Elo model with dynamical strength, that I wrote with
Professor B.Düring and with the Dr.Marie-Therese Wolfram [40].
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Chapter 2

Preliminaries

2.1 Boltzmann equation
In 1872, Boltzmann formulated the most famous kinetic equation in the context of gas theory [16]. A
kinetic equation describes the dynamical state of a single particle, that is characterized at any time by
coordinates and velocity. Boltzmann equation is a non-linear partial integro-differential equation that
describes statistical behaviour of a thermodynamic system. This equation correlates the microscopic
properties of particles (atom and molecules) to the macroscopic qualities of the system, such as tem-
perature. More precisely, the Boltzmann equation predicts the evolution of the density of a rarefied
monoatomic gas, determined by mutual interactions among its particles. The description of a system
in terms of statistical mechanics relies on the identification of the fraction of particles positioned a time
t > 0 in a particular position x ∈ R3 (or in the infinitesimal range between the position x and x + dx)
having velocity v ∈ R3 (or between v and v + dv). Let us indicate with f(x, v, t) the probability density
of particles that at time t are in position x ∈ R3 with velocity v ∈ R3. Thus, the evolution equation for
an isolated system (on which external strengths do not act) is

∂

∂t
f(x, v, t) = −v · ∇xf(x, v, t) +Q(f, f)(x, v, t). (2.1)

The term −v · ∇xf(x, v, t) describes the transport of particles, i.e. the movement of a particle in the
short time lag which occurs between two successive interactions. In this context, the only admissible
interactions are the binary collisions, due to the hypotesis of rarefaction of the gas, and we only consider
elastic collisions that preserve both momentum and energy. If we indicate with (x, v) and (y, w) the
positions and the velocities of the two particles before the collision, the respective velocities after collision
v∗ and w∗ are determined by the rules

v∗ = v − n[n · (v − w)] w∗ = w − n[n · (v − w)],

where n is the unitary vector from position x to position y [25]. According to the pervious rules, we have

v∗ + w∗ = v + w |v∗|2 + |w∗|2 = |v|2 + |w|2,

that are precisely the momentum and energy preservation. The operator Q(f, f) is defined as

Q(f, f)(v) =

∫
R3×S+

[f(v∗)f(w∗)− f(v)f(w)]|(v − w) · n|dwdn,

where S+ is the unitary emisphere and dn is the normalized surface measure on S+.

11
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Homogeneous case

Let us consider the homogeneous Boltzmann equation in which the distribution f does not depend on
the position x, i.e. f = f(v, t). With this assumption, Boltzmann equation reads as

∂

∂t
f(v, t) = Q(f, f)(v, t), (2.2a)

f(v, 0) = f0(v). (2.2b)

The problem can be written as a differential equation in an appropriate Banach space. Let us introduce
the space

L1
s = {f : R3 → R : ‖f‖L1

s
< +∞}

where

‖f‖L1
s

=

∫
R3

(1 + |v|2)
s
2 |f(v)|dv.

It is possible to apply standard arguments of O.D.E. in Banach space that guarantee existence and
uniqueness of the solution.

Theorem 1. ([19]) Assume that f0 ∈ L1
4 and f0 ≥ 0 for a.e. v ∈ R3. Then the Cauchy problem

(2.2a)-(2.2b) has a unique solution, defined for all t ≥ 0. The map t 7→ f(t) is continuously differentiable
as a map with values in L1

2. Moreover, for every t ≥ 0 there holds∫
R3

f(v)dv =

∫
R3

f0(v)dv, ‖f‖L1
2

= ‖f0‖L1
2
.

By direct computation, it is not hard to show that homogeneous Boltzmann equation presents some
invariants. Let us consider functional of the form

Φ(f) =

∫
R3

φ(v)f(v, t)dv,

where φ(v) is a (smooth enough) function. This functional is invariant of Boltmzann equation if∫
R3

φ(v)Q(f)dv = 0,

for every f solution of (2.2a). If f ∈ C∞c , the previous condition is equivalent to

φ(v) + φ(w) = φ(v∗) + φ(w∗). (2.3)

A function φ for which previous condition holds, has the form

φ(v) = a+ bv + c|v|2,

where a, c ∈ R and b ∈ R3. For suitable choice of this constants, we obtain the preservation of mass
φ(v) = 1, momentum φ(v) = v and energy φ(v) = |v|2

2 that are the three desired invariants.
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Maxwellian distribution and H-theorem

Operator Q(f, f) describes the total effect on the system of all binary collisions. So it is important to
individuate a distribution f for which Q(f, f) = 0 and if such a distribution exists. Let us start with
the homogeneous case. Direct computation show that for each x, y > 0, (y − x)log

(
x
y

)
≥ 0 and the

equivalence holds if and only if x = y. This proves the following Boltzmann inequality∫
R3

Q(f, f)log(f)dv ≤ 0,

and it is equal to zero if and only if f(v∗)f(w∗) = f(v)f(w) [25]. In other words, the function φ(f) =
log(f) satisfies (2.3). In the homogeneous case, it implies that the function f has the form

f(v, t) = Ce−α|v−y|
2

,

where C,α ∈ R+ and y ∈ R3. In the general case of inhomogeneous Boltzmann equation (2.1), we define
Maxwellian distribution a function M(x, v, t) such that Q(M,M) = 0. The Maxwellian equilibrium
distribution M(x, v, t) may be written as function of macroscopic quantities as mass ρ, velocity V and
temperature T which are expressed by using the first three moments of the solution of the Boltzmann
equation:

ρ(x, t) =

∫
R3

f(x, v, t)dv,

V (x, t) = ρ(x, t)−1

∫
R3

vf(x, v, t)dv,

T (x, t) = (3ρ(x, t))−1

∫
R3

[
v − V

]2
f(x, v, t)dv.

With this notation, it results

M(x, v, t) = ρ(x, t)
(
2πT (x, t)

)− 3
2 e−

|v−V (x,t)|
2T (x,t) .

This fact helps to clarify the link between microscopic and macroscopic properites.
Furthermore, as a consequence of the analisys of the properties of the solution of (2.1), Boltzmann
formulated the famous H-theorem: it affirms that for an isolated rarefied gas the function

H(t) =

∫
f(x, v, t)lnf(x, v, t)dxdv

is non-increasing in time and the minimum is achieved in correspondance of a Maxwell distribution. This
minimum is the same value (except for the sign) computed by Gibbs [53]. The Boltzmann H-theorem was
the first molecular-kinetic interpretation of the second law of thermodynamics and provided a statistical
explanation of the concept of entropy.
The importance of the Boltzmann work is not limited to the interpretation of entropy. In every system
in which the number of agents is huge, the agents are indistinguishable and they don’t have memory of
previous collision, it is possible to replicate Boltzmann’s approach. In particular, the collisional bilinear
operator of Boltzmann equation becomes the model on which it is possible to construct the interaction
operator of the system.
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2.2 Fokker-Planck equation
Fokker-Planck equation was introduced by Fokker [48] and Planck [79] to study the Brownian motion of
particles. Fokker-Planck equation furnishes a strong instrument to study the effects of fluctuations close
to transition points. It has turned out that this approach is more efficient than others. Fokker-Planck
equation can adequately treat problems that are affected by noise and is used not only in physics (e.g.
in studies of electrical circuits or quantum optics) but also in a large number of different fields, such as
natural sciences, chemical physics, theoretical biology and social sciences [80].
Let us consider a small but macroscopic particle of mass m, e.g. a small sphere, that is placed in a
fluid. If the mass m is big enough (with respect to the mass of fluid particles), the thermal velocity of

the sphere, defined as vt =
√

KT
m (where K is the Boltzmann’s constant and T is the temperature), is

small and negligible. Nevertheless, if the mass m is not so big, it is necessary to take into account count
vt in the equation of the velocity of the small sphere. There are several forces that act on the sphere.
We can observe a friction force Fv and a fluctuation force Ff . These forces are the result of impacts
of the molecules of the fluid on the surface of the sphere. Due to large number of these collisions, it
is not possible to predict the exact position of the sphere, because it would be necessary to solve the
coupled equations of motion for all the molecules of the fluid (that are about 1023) and for the sphere.
Furthermore, we do not know the initial positions and velocities of all the molecules of the fluid, so
it is not possible to compute their exact trajectory. If we have changed the initial values of the fluid,
we would observe a different motion of the sphere. We can look for the probability that the particle
has to be in a certain area of the fluid. In thermodynamics, one usual approach is to consider a set
of systems (sphere in a fluid) of the same type (Gibbs’ensemble). In this context, since the force Ff
and, consequently, velocities are not the same from system to system, we consider them as stochastic
quantities and compute the average force on the entire ensemble. It means to normalize Ff and to
introduce the Langevin force F =

Ff
m . We may assume that F is distributed as a Gaussian of mean 0

and variance σ2, i.e. F ∼ N(0, σ2).
We ask for the fraction of sphere of the ensemble whose velocities are in the interval (v, v + dv), or, in
other words, we look for the probability W (v, t) that, at time t > 0, the velocity of one sphere is in the
interval (v, v + dv). The equation for the distribution function is

∂

∂t
W (v, t) = γ

∂

∂v
[vW (v, t)] + γ(KT/m)

∂2

∂v2
W (v, t),

where K is the Boltzmann’s constant, T is the temperature and γ is the coefficient of friction per unit
mass. The second order term arises from the stochastic force F. Previous equation is one of the simplest
Fokker-Planck equation. Fokker-Planck equation in general form reads as

∂

∂t
W (v, t) = −

d∑
j=1

∂

∂vj
(aj(v)W (v, t)) +

1

2

d∑
i,j=1

∂2

∂vjvi
(Dij(v)W (v, t)),

W (v, 0) = W0(v),

(2.4)

where v = (v1, . . . , vd) ∈ Rd. From a mathematical point of view, it is a parabolic linear second-order
partial differential equation and is also called a forward Kolmogorov equation. It represents a diffusion
process on Rd with an additional first-order derivative in which drift and diffusion coefficients are time-
independent and in which the diffusion matrix is always non-negative.
The easiest Fokker-Planck equation is obtained forDij(v) = σ2In, where In is the unitary n− dimensional
matrix. In this case, and in general in every case in which the operator of the right side of (2.4) is
uniformly elliptic for each t, the existence and uniqueness of a weak solution are the consequence of
standard arguments in the theory of parabolic equations [45].
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Chapter 3

Wealth distribution models

Fokker-Planck equations are an important model in the description of wealth distribution. One of the
first attempts to describe wealth distribution with a Fokker-Planck equation was done by J.P.Bouchaud
and M.Mézard. In 2000 [17], they introduced a simple model characterized by the presence of a random
speculative trading. The aim of this model is to describe the formation of Pareto’s tails with a general
simple model which takes into account economic growth, taxes and redistribution mechanisms. The
Bouchaud-Mézard model founds his roots in the physical problem of ’directed polymer’. The model
is based on an evolution stochastic differential equation that considers the trading between individuals
together with the natural oscillations of the economy due to investments effects. These oscillations are
described with a Gaussian random variable of mean m and variance 2σ2. In the simplest case, the rate
J at which agent i trades with agent j is constant or, in other words, all agents’ behaviours have the
same effect on the system evolution. In the assumption of a large number of agents, the population may
be described by a deterministic Fokker-Plank equation

∂

∂t
f(v, t) =

∂

∂v

[(
J(v − 1) + σ2v

)
f(v, t)

]
+ σ2 ∂

∂v

[
v
∂

∂v

(
vf(v, t)

)]
, (3.1)

where f(v, t) is the fraction of population that has wealth w at time t > 0. The asymptotic distribution
for equation (3.1) reads as

f∞(v) =
(µ− 1)µ

Γ(µ)

e−
µ−1
v

v1+µ
,

where µ = 1+ J
σ2 and J is the rate of exchange between agents. This distribution exhibits Pareto’s heavy

tails for v >> 1. More precisely, Pareto’s index µ increases when J increases or when σ2 decreases: from
an economic point of view, it means that the distribution of wealth is more equitable when the exchanges
are encouraged and when the oscillations in individual wealth, due to investments, are small. From a
mathematical point of view, equation (3.1) may be brought back to the class of Fokker-Plack equations
that are explicitly solved in [56]. It is possible to define the model as a stochastic process in a discrete
time. For this discrete model too, the steady state has a power-law decay, with an exponent µ > 0.
For µ > 1, the behaviour of the solution is the same as the continuous model. Conversely, if µ < 1,
we observe a wealth codensation, i.e. a small fraction of the population has a significant part of total
wealth.
Even if this model is not completely realistic, this work reaches two important outcomes. Firstly, it
underlines the existence of a phase transition with respect to the chosen value of the parameter µ.
Secondly, it correlates a simple economic model to a large class of equations of type (3.1).
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In the same year, Dragulescu and Yakovenko in [35] and Chakraborti and Chakrabarti in [27] introduced
simple models of a closed economy. Dragulescu and Yakovenko assumed that at every interaction a
certain amount of money ∆m is simply moved from agent i to agent j (or vice-versa), i.e.

v∗ = v + ∆m, w∗ = w −∆m,

where v and w are the pre-interaction money of the agents and v∗ and w∗ are the post interaction ones.
These interaction rules are in accordance with the hypothesis of preservation of thr total amount of
money, i.e.

v∗ + w∗ = v + w.

This claim is postulated in analogy with energy conservation in gas dynamics. The correspondence with
statistical mechanics is also reflected in the identification of a stationary state. In statistical mechanics,
the Boltzmann-Gibbs law establishes that the probability distribution of energy E is P (E) = Ce−E/T ,
where T is the temperature, and C is a normalizing constant. Due to conservation property, Dragulescu
and Yakovenko claimed that, in their model, the steady state for the money w is given by distribution
function P (w) = Ce−w/T , where T represents the average of money, owned by each agent. This claim is
supported by some observations about the model. Indeed, the total amount of money w is preserved and
money is an additive quantity, i.e. if we split the population into two subsets and their respective amount
of money is wi, it results w = w1 +w2. On the other hand, the fraction of population having wealth w =
w1+w2 is P (w) by definition but it may also be described as the probability of intersection of the of having
money w1 (for an agent in the first subset) and w2 (for an agent in the second subset), i.e. P (w1)P (w2).
These observations lead to write the equation P (w1)P (w2) = P (w1 +w2) and an exponential law solves
it. Another way to justify the Boltzmann-Gibbs’ distribution as an equilibrium state for this economic
model is to use an entropy argument. More precisely, the distribution P (w) = Ce−w/T maximize the
entropy S = −

∫ +∞
0

P (w)lnP (w)dw, under the condition of money preservation. These results, that are
obtained in comparison with gas dynamics, are confirmed by numerical simulations for a large class of
initial data [35]. According to [27], one of the most important outcomes achieved in [35] has been to
explain the meaning of T as the average of money of each agent. Nevertheless, in this model, a huge
fraction of agents has few money in the steady state. For this reason, this prediction is not very realistic,
as the authors themselves underlined. Starting from this model, Chakraborti and Chakrabarti in [27]
wrote more general interaction rules that consider the saving propensity λ (called "marginal propensity
to save" in the economic context) of each agent. In fact, in each trading, every agent uses a fraction of
his total wealth and saves a fraction that is proportional to his pre-interaction wealth. Although each
agent is characterized by a personal saving propensity, in [27] it is assumed to be constant and strictly
positive for all the agent. The model of Dragulescu and Yakovenko, that corresponds in [27] to the case
λ = 0, reflects the behaviour of non-cooperative market.
Moreover, Chakraborti and Chakrabarti assumed that the portion of wealth that is involved in the
trading is totally split among the agents or, in other words, they assumed that the market is strictly
conservative. With these assumptions, the interaction rules read as

v∗ = λv + (1− η)(1− λ)(v + w), w∗ = λw + η(1− λ)(v + w), (3.2)

where λ ∈ (0, 1) and η is a random variable in the interval (0, 1). The presence of a random variable
underlines that the not-saved portion of wealth is randomly shared among the agents. Furthermore, in
[27] debts are not allowed, i.e. w, v ≥ 0. Saving propensity changes the collective behaviour of the agents,
that becomes more cooperative. Moreover, it also disrupts the multiplicative property of the distribution
function. Even if it is not possible to compute explicitly the steady state, it is robustly obtained with
numerical results. Due to the effect of saving propensity, most of the agents assembled very close to 0
cannot be observed in the steady state, as in [35], and the maximum value of the distribution function
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(the most probable quantity of money held by an agent) becomes closer to the average amount of wealth
T as λ becomes closer to 1. In addition, stationary state for each λ > 0 does not show heavy tails. The
numerical results are in accordance with the theoretical results in the simple case in which the portion
of wealth that is involved in the trading is equally split among the agents, i.e. η = 1

2 . In this simple
case, the interaction rules become

v∗ = λv +
1

2
(1− λ)(v + w), w∗ = λw +

1

2
(1− λ)(v + w).

The steady state becomes a Dirac-δ concentrated in T . This kind of singularity is natural in this
econophysics context, although there is not an equivalent of saving propensity in gas dynamics. In
consequence of this, there is no similar distribution in the physical framework where we observe more
regular equilibrium such as Gibbs’ distribution.
Some analysis, such as the two previously described, show that the wealth presents a power-law decay
at infinity and an exponential decay at 0. Moreover, it is plausible to consider a model in which there is,
at the macroscopic level, a net increase of total wealth, as an effect of human activities. This behaviour
has many similarities with inelastically scattering particles of granular gas. There was a lot of numerical
results that have confirmed this intuition. In this direction, Slanina obtained an analytical result in a
simple case [83]. Although the structure of the equations for the granular gas and wealth are the same,
it is not possible to transfer directly the solution from physical to economical framework. This is due to
the different sign in the time variations of the energy of granular gas (that is decreasing) and the average
value of the wealth (that is increasing). Slanina considered an open market, in which the net gain of
wealth is the effect of the contribution of an external source (energy of Earth and Sun). The interaction
rules read as

v∗ = (1 + γ − β)v + βw, w∗ = (1 + γ − β)w + βv,

where β ∈ (0, 1) represents the exchanged fraction of wealth and γ > 0 is the income from the external
environment. These interaction rules lead to a Boltzmann-like equation for the distribution function of
wealth

∂

∂t
P (v, t) + P (v, t) =

∫
R2

+

P (wi, t)P (wj , t)δ((1− β + γ)wi + βwj − v)dwidwj , (3.3)

which is an exact description of the phenomenon in the limit of infinite number of particles and has
the same structure of the distribution of inelastically scattering particles. The first moment of solution
of (3.3) m(t) =

∫ +∞
0

v(P (v, t)dv is exponentially increasing. In consequence of it, in [83] a scaling
(self-similar) function Φ(v, t) is introduced such that

P (v, t) =
1

m(t)
Φ

(
v

m(t)
, t

)
.

With this scaling,the first moment of Φ(v, t) is constant in time. The properties of the solution are
investigated by using Laplace transform Φ̂(x, t) of Φ(v, t), defined as Φ̂(x, t) =

∫ +∞
0

e−xvΦ(v, t)dv where
x ∈ C. Firstly, in the limit x → 0, the behaviour for large v is investigated. The result confirms the
presence, in the distribution Φ(v, t), of heavy tails of index α ∈ (1, 2) which depends on γ and β. Other
results are obtained in the contiunuos trading limit, i.e. to perform the limit γ → 0 and β → 0. The
unique identified stationary state (that presents power-law decay at infnity) has the form

Φ(v) = Cv−α−1e−
α−1
v ,

where α ∈ (1, 2) and C is the normalization constant and it depends on α. One of the outcomes
of Slanina’s model was to underline the correlation between the Pareto’s index and the rates of both
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increasing and exchanging wealth. However, in this model, we can observe an important element that
was missing in the aforesaid models, i.e. the derivation, in the continuous trading limit, of an evolution
equation starting from the interactions rules.
In 2005, Cordier et al. [32] proposed the CPT model for an open market, that takes into account trading
between agents, risk investment and speculation. Due to their strong interconnection, money and wealth,
in this model, assume the same meaning even they are not completely interchangeable. The change of
wealth that is due to investments is not governed by a deterministic mechanism; so it generates a random
gain or loss of wealth that, in [32], is assumed to be proportional to pre-interaction wealth. Furthermore,
the agents interact without taking on debt. With this assumptions, the interaction rules are

v∗ = (1− γ + η)v + γw,

w∗ = (1− γ + η∗)w + γv,
(3.4)

where γ ∈ (0, 1
2 ) is a constant that is related to the saving propensity of each agent and η, η∗ are i.i.d.

random variables which describe risk investment. In order to maintain non-negative post-interaction
wealth of each agent, we should assume η, η∗ ≥ −(1− γ). Firstly, in [32] the authors analyze the case in
which η is distributed as Gaussian, centered in the origin with variance σ2, η ∼ N(0, σ2). In this case,
the market, even if it is not pointwise conservative, results conservative on the average, i.e.

〈v∗ + w∗〉 = 〈v + w〉.

Otherwise, the model describes a non-conservative economy. In the general case, by using standard
techniques of statistical mechanics, the authors write the Boltzmann-like equation for the distribution
function of the wealth f(v, t). In weak form, it reads for all smooth test function φ(v)

∂

∂t

∫
R+

φ(v)f(v, t)dv =

∫
R2

∫
R2

+

βf(w)f(v)(φ(w∗)− φ(w))dwdvdηdη∗, (3.5)

where β = β(η, η∗, v, w) is a kernel interaction that guarantees the assumption of an economy without
debts. It is possible to choose a particular form of this kernel, such as

β(η, η∗, v, w) = Θ(η)Θ(η∗)χ(w∗ ≥ 0)χ(v∗ ≥ 0),

where χ(·) is the characteristic function and Θ(·) is a symmetric probability density which has mean zero
and variance σ2. This choice may be simplified by taking η ∈ (−(1−γ), 1−γ). With this semplification,
the interaction kernel does not depend on w and v and corresponds to the case of preservation of average
wealth. In the general case, the increase of wealth has an exponential rate and it depends on the choice
of Θ(·). In this case, as in [83], the more conventional method to obtain information on steady state is
to scale the solution to have a distribution with constant average wealth. Let us assume that the initial
distribution f0(v) is smooth enough, i.e. the moments of f0(v) are bounded up to the order 2 + δ with
δ > 0, and define the solution to the weak Boltzmann-like equation gγ(v, τ) = f(v, t) where τ = γt. With
this further assumption, in [32] the authors prove that in the limit σ, γ → 0 in such way that σ2 = γλ,
the sequence gγ(v, τ) converges to a density g(v, τ) that is a weak solution of a Fokker-Planck equation

∂

∂t
g =

λ

2

∂2

∂v2

(
v2g
)

+ ((v −m)g) .

Stationary solution (explicitly computed) is the same as the model of Bouchaud and Mezard and shows
heavy tail as Pareto’s prediction. Numerical results confirm both this behaviour of steady state and the
rate of growth of the average wealth in the general case before the scaling.
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Although these results are interesting from a modellistic point of view, it was necessary to complete some
theoretical gaps. With this aim, in 2006 D. Matthes and G.Toscani investigated the hypothesys under
which on microscopic interactions in a conservative economy an unique (non-trivial) steady state exists
and it exhibits Pareto’s tails [74]. Binary collisions are defined, in a very general notation, as

v∗ = p1v + q1w, w∗ = p2v + q2w, (3.6)

where pi and qi, for i = 1, 2, can be constant parameters or random variables, with the only constraint of
the maintence of positivity of post-interaction values of wealth. In [74], mean wealth preservation means
both the concept of "pointwise preservation", i.e. p1 + p2 = q1 + q2 = 1, and "preservation in the mean",
i.e. 〈p1 + p2〉 = 〈q1 + q2〉 = 1. However, pi and qi are choosen as independent on time and variables v
and w. With these interaction rules, Boltzmann-likes equation for the density of wealth f(v, t), in weak
form, reads as

∂

∂t

∫
R+

φ(v)f(v)dv =
1

2

〈∫
R+

∫
R2

+

f(w)f(v)(φ(v∗) + φ(w∗)− φ(v)− φ(w))dwdv

〉
. (3.7)

The aim of this work is to relate the existence of the stationary state and the formation of heavy tails
with the quantity G(s), that is defined for each s > 0 as

G(s) =
1

2

2∑
i=1

〈psi + qsi 〉 − 1. (3.8)

By using the Fourier transform of (3.7), it is possible to write the Fourier distance ds(f1, f2) between
two solutions of (3.7) ds(f1, f2). With direct computations, the authors of [74] obtained the following
result:

Theorem 2. ([74]). Let f1(t) and f2(t) be two solutions of the Boltzmann equation (3.7), corresponding
to initial values f1,0 and f2,0 satisfying conditions of normalization of mass and mean value∫ +∞

0

fi,0(v)dv = 1,

∫ +∞

0

vfi,0(v)dv = M, (3.9)

for i = 1, 2. Let s ≥ 1 be such that ds(f1,0, f2,0) is finite. Then, for all times t ≥ 0,

ds(f1(t), f2(t)) ≤ ds(f1,0, f2,0)exp{G(s)t}. (3.10)

In particular, if G(s) is negative, then the ds-distance between f1 and f2 decays exponentially in time.

Putting f1,0 = f2,0 = f0 in (3.10) and using s = 1 yields

Corollary 1. ([74]) If f0 is a nonnegative density satisfying conditions (3.9), then there exists an unique
weak solution f(t) of the Boltzmann equation with f(0) = f0.

The aforesaid analysis shows the relation between the sign of G(s) and the uniqueness of solution of
(3.7). The authors in [74] analyze its relation with the existence of the steady state. Due to definition
of G(s) and average conservation of wealth, it results G(1) = 0. In consequence of this, G(s) is well
defined for s ∈ (0, 1] but it is possible that for each s > s∞ ≥ 1 G(s) = +∞. Furthermore, convexity of
G(s) allows only three different cases. In the first case, G(s) ≥ 0 for all s > 0. In this case, the previous
analysis does not provide information about the existence of a steady state. In the second case, G(s) < 0
for some 0 < s < 1 and G(s) > 0 for all s > 1. It is possible to prove that an unique stationary state
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exists and it is precisely a Dirac-δ centrated in the origin. In the third case, G(s) < 0 for 1 < s < s
and G(s) > 0 for the other value of s. Let us consider an s ∈ (1,min{2, s}) and let us assume that the
initial distribution has finite moments up to order S > s. With this assumptions, the unique solution
of Boltzmann-like equation (3.7) f(v, t) converges in the metric ds to a limit distribution f∞(v) with
exponential rate G(s). The distribution f∞(v) results as the (unique) stationary solution for the same
equation and it presents the same first moment of initial distribution f0(v). In this third case, there are
two different situation:

(PT) s < +∞ and G(s) = 0,

(ST) s = +∞, i.e. G(s) < 0 for all s > 1.

In case (PT), steady distribution f∞(v) exhibits Pareto’s tails of index that is exactly s. In case (ST),
f∞(v) has slim tail.
We can apply these criteria to previous models. Pointwise conservative models, as the ones of Dragulescu
and Yakovenko or Chakraborti and Chakrabarti, are examples of the cases (ST). A general way to write
pointwise conservative interaction rules is to set p1 = q2 = λ and p2 = q1 = 1− λ, where λ is a random
variable λ ∈ [0, 1]. In this case, it results G(s) = λs + (1 − λ)s − 1 ≤ 0 for all s > 1. If G(s) 6= 0, the
assumptions of case (ST) hold and the stationary solution has slim tail. If λ = 0, 1 a.s. , i.e. G(s) ≡ 0,
the interaction rules become trivial and the unique solution is f(v, t) = f0(v), for all t ≥ 0. If G(s) ≡ 0
with λ 6= 0, 1 a.s., all the moments of the solution are increasing and the only stationary state is Dirac-δ,
centered in the origin. The model of Chakraborti and Chakrabarti gives one example. Although in [27]
the interaction rules depend on a random variable η (see (3.2)), the choice of this variable does not affect
the behaviour of the steady state. Indeed, by inserting (3.2) in (3.8), it results

G(s) =
1

2
(〈[λ+ (1− η)(1− λ)]s〉+ 〈[1− (1− η)(1− λ)]s〉+ [〈(1− η)s〉+ 〈ηs〉](1− λ)s)− 1.

Due to its convexity,for each s > 1, G(s) results negative. Thus, as previously indicated in case (ST),
the steady state has slim tails. In consequence of these observations, it is possible to conclude that only
the models that are conservative in mean, but not pointwise, may have heavy tails. One example is
furnished by CPT model. It may be useful to underline the role of the random variable that is involved
in interaction rules together with the necessity of a well balance between random effects and saving
propensity. The easiest choice for centred η in (3.4) is η = ±µ where the random variable assumes each
value with probability 1

2 and 0 < µ < 1 − 2γ. Observe that this condition is enough to maintain the
positivity of post interaction wealth. With this choice, it results

G(s) =
1

2
[(1− γ + µ)s + (1− γ − µ)s] + γs − 1.

If γ > 1
4 or µ < 2γ the steady state shows slim tails. This situation corresponds to a market with

both low risk and low saving propensity (the parameter γ has the opposite meaning). By increasing
saving propensity and risk of the market, there is a region of the plane in which wealth distribution
shows Pareto’s tails. Finally, when γ is very close to 0 and µ is very close to 1, a small fraction of
the population is very rich while a huge fraction loses his wealth. From an economic point of view, a
sufficient saving propensity is necessary for the formation of wealth. Nevertheless, it is not possible to
accumulate richness in the hands of few agents until the investment risk is big enough.
Previous results underline the interest of Econophysics community on wealth distribution and the role
of Fokker-Planck Equation. In particular, aforesaid theoretical results represent the base on which my
work on wealth distribution model was developed. In chapter 4, a Fokker-Planck equation with variable
coefficient is used as a model of wealth distribution on the positive half-line, i.e. a model in absence of
debts. In chapter 5, this model is generalized in a context in which debts are allowed.



Chapter 4

Wealth distibution without debts

4.1 Introduction
Among the mathematical models introduced in recent years to study the evolution of wealth distribution
in a multi-agent society [76], Fokker–Planck type equations play an important role. Let f(v, t) denote
the density of agents with personal wealth v ≥ 0 at time t ≥ 0. The prototype of these Fokker–Planck
equations reads

∂f

∂t
= J(h) =

σ

2

∂2

∂v2

(
v2f
)

+ λ
∂

∂v
((v − 1)f) , (4.1)

where λ and σ denote two positive constants related to essential properties of the trade rules of the
agents. Equation (4.1) has been first derived by Bouchaud and Mezard [17] through a mean field limit
procedure applied to a stochastic dynamical equation for the wealth density. The same equation was
subsequently obtained by one of the present authors with Cordier and Pareschi [32] via an asymptotic
procedure from a Boltzmann-type kinetic model for trading agents. This procedure also furnished the
existence (without uniqueness) of a weak solution to equation (4.1).

One of the main features of equation (4.1) is that it possesses a unique stationary solution of unit
mass, given by the (inverse) Γ-like distribution [17, 32]

f∞(v) =
(µ− 1)µ

Γ(µ)

exp
(
−µ−1

v

)
v1+µ

, (4.2)

where
µ = 1 + 2

λ

σ
> 1.

This stationary distribution, as predicted by the analysis of the italian economist Vilfredo Pareto [78],
exhibits a power-law tail for large values of the wealth variable.

Equation (4.1) differs from the classical Fokker–Planck equation in two important points. First, the
domain of the wealth variable v takes only values in R+. Second, the coefficient of diffusion depends on
the wealth variable. This makes the analysis of the large-time behavior of the solution to equation (4.1)
very different from the analogous one studied in [87] for the classical Fokker–Planck equation.

Indeed, Fokker–Planck equations with variable coefficients and in presence of boundary conditions
have been rarely studied. Maybe the first result in this direction can be found in a paper by Feller [46],
who treated the case v ∈ R+ and coefficient of diffusion v, with a general drift term (cf. also the book
[47] for a general view about boundary conditions for diffusion equations). In particular, the importance
of the boundary conditions has been shown in [46] to be related to the action of the drift term.
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More recently, Fokker-Planck type equations with almost general coefficient of diffusions have been
studied by Le Bris and Lions in [65]. Unlikely, their analysis does not apply to equation (4.1).

As far as the large-time behavior is concerned, the main argument in the standard Fokker–Planck
equation is to resort to entropy decay, and to logarithmic Sobolev inequalities [4]. However, as discussed
in [73], this type of inequalities do not seem available in presence of variable diffusion coefficients.

In the following, we will try to give a satisfactory answer to some of the open questions. As we shall
see, various properties of the solution to equation (4.1) can be extracted from the limiting relationship
between the Fokker–Planck description and its kinetic level, given by the bilinear Boltzmann-type equa-
tion introduced in [32]. We will discuss this aspect in Section 4.2, by means of a detailed Fourier analysis.
In particular, we will show that, at least for some range of the parameters λ and σ, the Fokker–Planck
equation (4.1) can be rigorously obtained in the asymptotic limit procedure known as quasi-invariant
trade limit. Then, convergence to equilibrium will be discussed in Section 4.3. The essential argument
here will be to resort to an inequality of Chernoff type [30, 62], that allows to prove convergence with
exponential rate in the case of initial data sufficiently close to the steady state, and to a rate at least 1/t
for a large class of initial data.

4.2 Kinetic model and Fokker-Planck equation

4.2.1 Main properties of the Fokker–Planck equation
To start with the analysis of the initial value problem for the Fokker–Planck equation (4.1), it is essential
to consider, together with a suitable decay of the solution at infinity, physical boundary conditions at
the point v = 0. Let φ(v) be a smooth function, bounded at v = 0. Then, a simple computation shows
that

d

dt

∫
R+

φ(v)f(v, t)dv =

∫
R+

[σ
2
v2φ′′(v)− λ(v − 1)φ′(v)

]
f(v, t) dv +[

σ

2

(
φ(v)

∂

∂v
(v2f(v, t))− v2φ′(v)f(v, t)

)
+ λφ(v)(v − 1)f(v, t)

]∞
0

.

While the vanishing of the boundary term at infinity follows by choosing initial data with a smooth and
rapid decay, at the boundary v = 0 it is required that

v2f(v, t) |v=0 = 0, t > 0 (4.3)

and
λ(v − 1)f(v, t) +

σ

2

∂

∂v

(
v2f(v, t)

)∣∣∣∣
v=0

= 0, t > 0. (4.4)

Condition (4.3) is automatically satisfied for a sufficiently regular density f . On the contrary condition
(4.4) requires an exact balance between the so-called advective and diffusive fluxes on the boundary
v = 0. This condition is usually referred to as the no-flux boundary condition. If both conditions (4.3)
and (4.4) hold, we can pass from equation (4.1) to its weak form, given by

d

dt

∫
R+

φ(v)f(v, t)dv = (φ, J(f)) =

∫
R+

[σ
2
v2φ′′(v)− λ(v − 1)φ′(v)

]
f(v, t) dv. (4.5)

By choosing φ(v) = 1, v shows that the solution to (4.1) satisfies

d

dt

∫
R+

f(v, t)dv = 0,
d

dt

∫
R+

vf(v, t)dv = λ

(
−
∫
R+

vf(v, t) dv +

∫
R+

f(v, t) dv

)
.
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Therefore, if the (nonnegative) initial value ϕ(v) of equation (4.1) is a density function satisfying the
normalization conditions ∫

R+

ϕ(v) dv = 1;

∫
R+

vϕ(v) dv = 1 (4.6)

the solution to (4.1) still satisfies conditions (4.6). In other words, if the initial datum is a probability
density with unit mean, then the solution at any subsequent time remains a probability density with
unit mean. For n ∈ N+ let us define

Mn(t) =

∫
R+

vnf(v, t)dv.

An elementary computation shows that, if ϕ satisfies conditions (4.6) and its second moment is bounded,
the second moment of the solution follows the law

d

dt
M2(t) = (σ − 2λ)M2(t) + 2λ. (4.7)

Hence, the value of the second moment stays bounded when σ < 2λ, while it diverges in the opposite
case. In the former case, solving equation (5.36) we obtain

M2(t) = e(σ−2λ)t

(
M2(0) +

2λ

σ − 2λ

)
+

2λ

2λ− σ
, (4.8)

which implies

lim
t→∞

M2(t) =
2λ

2λ− σ
.

It is clear that the principal moments of the solution to the Fokker–Planck equation can be obtained
recursively, and explicitly evaluated at the price of increasing length of computations. Since it will be
useful in the following, we evaluate here the third moment M3(t). We obtain

d

dt
M3(t) = 3(σ − λ)M3(t) + 3λM2(t).

Then, if the initial density ϕ(v) has the third moment bounded, the evolution law for M3(t) is given by

M3(t) = e3(σ−λ)t

{
M3(0) + 3λ

∫ t

0

e−3(σ−λ)rM2(r)dr

}
. (4.9)

Using (5.37), the third moment is evaluated as

M3(t) = M3(0)e3(σ−λ)t +

(
3λ

(λ− 2σ)
M2(0) +

6λ2

(σ − 2λ)(λ− 2σ)

)(
e(σ−2λ)t − e3(σ−λ)t

)
+

2λ2

(σ − 2λ)(λ− σ)

(
1− e3(σ−λ)t

)
. (4.10)

Therefore the third moment is uniformly bounded in time if σ < λ and it grows to +∞ in the opposite
case.

Last, choosing φ(v) = e−iξv we obtain the Fourier transformed version of the Fokker–Planck equation
(4.1)

∂

∂t
f̂(ξ, t) = Ĵ(f̂) =

σ

2
ξ2 ∂

2

∂ξ2
f̂(ξ, t)− λξ ∂

∂ξ
f̂(ξ, t)− iλξf̂(ξ, t), (4.11)

where, as usual ĝ(ξ) denotes the Fourier transform of g(v), v ∈ R+. In this case

ĝ(ξ) =

∫
R+

e−iξvg(v) dv.



26 CHAPTER 4. WEALTH DISTIBUTION WITHOUT DEBTS

4.2.2 The kinetic model
The basic model discussed in this section has been introduced in [32] within the framework of classical
models of wealth distribution in economy.

As shown in [32], the Fokker–Planck equation (4.1) is strongly related to a bilinear kinetic model
of Boltzmann type, modelling the evolution of wealth in a multi-agent society in which agents interact
through binary trades [76]. This model belongs to a class of models in which the interacting agents
are indistinguishable. The agent’s state at any instant of time t ≥ 0 is completely characterized by his
current wealth v ≥ 0 [38, 39]. When two agents encounter in a trade, their pre-trade wealths v, w change
into the post-trade wealths v∗, w∗ according to the rule [26, 27, 29]

v∗ = p1v + q1w, w∗ = q2v + p2w.

The interaction coefficients pi and qi are non-negative random variables. While q1 denotes the fraction
of the second agent’s wealth transferred to the first agent, the difference p1 − q2 is the relative gain (or
loss) of wealth of the first agent due to market risks. It is usually assumed that pi and qi have fixed
laws, which are independent of v and w, and of time. This means that the amount of wealth an agent
contributes to a trade is (on the average) proportional to the respective agent’s wealth.

In [32] the trade has been modelled to include the idea that wealth changes hands for a specific reason:
one agent intends to invest his wealth in some asset, property etc. in possession of his trade partner.
Typically, such investments bear some risk, and either provide the buyer with some additional wealth, or
lead to the loss of wealth in a non-deterministic way. An easy realization of this idea consists in coupling
the saving propensity parameter [26, 27] with some risky investment that yields an immediate gain or
loss proportional to the current wealth of the investing agent. The interactions rules for this model are
obtained by fixing

p1 = 1− ελ+ ηε, q1 = ελ

p2 = ελ, q2 = 1− ελ+ η̃ε,
(4.12)

where 0 ≤ λ ≤ 1 is the parameter which identifies the saving propensity, namely the intuitive behavior
which prevents the agent to put in a single trade the whole amount of his money, while ε is a small
positive parameter, which measures the quantity of money exchanged in a single trade. The coefficients
ηε, η̃ε are independent and identically distributed random parameters, such that always ηε, η̃ε ≥ ελ− 1.
This clearly implies v∗, w∗ ≥ 0. Therefore, the collision rule in [32] reads

v∗ = (1− ελ)v + ελw + ηεv,

w∗ = (1− ελ)w + ελv + η̃εw.
(4.13)

Remark 2. In the rest of the paper, the mean value of a random quantity θ will be denoted by 〈θ〉.
A simple way to characterize the ε-dependence of the random parameters is to define ηε and η̃ε as
independent copies of a random variable η with finite variance σ, with ηε = η̃ε =

√
εη. If the random

parameters are even, so that 〈ηε〉 = 〈η̃ε〉 = 0

〈v∗ + w∗〉 = (1 + 〈ηε〉)v + (1 + 〈η̃ε〉)w = v + w, (4.14)

implying conservation of the average wealth. In the remaining cases, it is immediately seen that the
mean wealth is not preserved, but it increases or decreases exponentially (see the computations in [32]).
Various specific choices for the random parameters have been discussed in [74]. Note that, when 〈η〉 = 0,
〈η2
ε〉 = 〈η̃2

ε〉 = εσ.

Owing to classical arguments of kinetic theory [76], it has been shown in [32] that the evolution of
the wealth density consequent to the binary interactions (4.13) obeys to a Boltzmann-type equation.
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To outline the dependence on ε, let us denote with hε(v, τ) the distribution of the agents wealth v ≥ 0
at time τ > 0. Then, the equation for the evolution of hε can be fruitfully written in weak form. It
corresponds to say that, for any smooth function φ, hε satisfies the equation

d

dτ

∫
R+

φ(v)hε(v, τ)dv =
1

2

〈∫
R+×R+

hε(v, τ)hε(w, τ)
(
φ(v∗) + φ(w∗)− φ(v)− φ(w)

)
dvdw

〉
. (4.15)

Existence and uniqueness of the solution to equation (4.15) has been proven in [74]. We will detail later
on some of these results for their connection with the Fokker–Planck equation (4.1). The weak form
(4.15) allows to evaluate moments of the solution in a closed form. The choice φ(v) = 1 immediately
gives mass conservation. In addition, if φ(v) = v, in view of (4.14) one obtains that the mean value
of the solution is preserved in time. Therefore, if the initial value satisfies the normalization conditions
(4.6) it follows that the solution hε(v, τ) still satisfies the same conditions at any subsequent time τ > 0.

Let us choose now φ(v) = v2. A simple computation gives

〈v∗2 + w∗2 − v2 − w2〉 = 2(ε2λ2 − ελ)(v − w)2 + εσ(v2 + w2).

Therefore
d

dτ

∫
R+

v2hε(v, t)dv = ε
[
σ − 2

(
λ− ελ2

)] ∫
R+

v2hε(v, τ)dv + 2ε(λ− ελ2). (4.16)

The evolution law of the second moment of hε(v, τ) depends explicitly on ε, and clearly changes with ε.
This is due to the fact that changing the value of ε in the binary collision (4.13) we change the quantity
of wealth which is involved into the trade. In the limit case ε → 0, we have a trade in which the post
interaction wealths are left unchanged. This suggests to scale time in such a way to maintain an effective
law of evolution of the second moment even in the limit ε→ 0. This can be easily done by setting t = ετ
, while hε(v, τ) = fε(v, t) [32]. One then obtains that fε(v, t) satisfies

d

dt

∫
R+

φ(v)fε(v, t)dv = (φ,Qε(fε, fε)) , (4.17)

where we defined

(φ,Qε(fε, fε)) =
1

2ε

〈∫
R+×R+

fε(v, t)fε(w, t)
(
φ(v∗) + φ(w∗)− φ(v)− φ(w)

)
dvdw

〉
. (4.18)

In this case, (4.16) changes into

d

dt

∫
R+

v2fε(v, t)dv =
[
σ −

(
λ− ελ2

)] ∫
R+

v2fε(v, t)dv + 2(λ− ελ2). (4.19)

Remark 3. Note that the conservation of the mean value is not modified by this scaling. However, in
(4.19) the dependence on ε remains in the factor λ − ελ2. One can easily eliminate this dependence by
choosing in (4.13) a different value (ε-dependent) of the saving propensity λ. This can be obtained by
the choice

λ̃ = λ̃(ε) =
2λ

1 +
√

1− 4ελ
, (4.20)

which is such that λ̃− ελ̃2 = λ. Moreover

λ̃ > λ, lim
ε→0

λ̃ = λ.

Clearly, definition (4.20) requires to choose ε small enough.
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4.2.3 The invariant trade limit of the Boltzmann equation
The close relation between the kinetic equation (4.17) and the Fokker–Planck equation (4.5) has been
outlined in [32], where it was shown that in the limit ε→ 0 a subsequence of solutions fε(v, t) to (4.17)
converges to f(v, t), solution of (4.5). In this section we aim in improving these results.

In the rest, we will fix a time T > 0, and we will consider both equations (4.17) and (4.1) in the time
interval 0 ≤ t ≤ T . In addition, let the even random variable η which defines the random part of the
trade possess the third moment bounded, and let us set 〈|η|3〉 = σ3. Analogously, let 〈|η|〉 = σ1. Using
a Taylor’s formula at the second order, one can write φ(v∗) as

〈φ(v∗)− φ(v)〉 = φ′(v)〈v∗ − v〉+
1

2
φ′′(v)〈v∗ − v〉2 +

1

3!
〈φ′′′(ṽ)(v∗ − v)3〉

where, for some α such that 0 ≤ α ≤ 1, ṽ = αv + (1 − α)v∗. Then, by (4.13) and the properties of the
random variable η it holds

〈v∗ − v〉 = ελ(w − v),

〈(v∗ − v)2〉 = ε2λ2(w − v)2 + εσv2,

〈|v∗ − v|3〉 ≤ ε3/2
[
σ3v

3 + 3ε1/2σλv2|w − v|+ 3εσ1λ
2v(w − v)2 + ε3/2λ3|v − w|3

]
.

(4.21)

In particular, (4.17) can be rewritten as

d

dt

∫
I

φ(v)fε(v, t)dv =

∫
R+

fε(v, t)
[σ

2
v2φ′′(v)− λ(v − 1)φ′(v)

]
dv +

∫
R+

Rε(φ(v), t) fε(v, t) dv, (4.22)

where the last integral (the remainder) accounts for all the higher order ε-dependent terms in the ex-
pansion

Rε(φ(v), t) =

∫
R+

[
1

2
ελ2(w − v)2φ′′(v) +

1

ε 3!
〈φ′′′(ṽ)(v∗ − v)3〉

]
fε(w, t) dw. (4.23)

Therefore, for any given (smooth function) φ(v) and density f(v), v ∈ R+, we have the identity

(φ,Qε(f, f)− J(f)) =

∫
R+

Rε(φ(v), t) f(v, t) dv. (4.24)

Remark 4. In reason of the fact that the solution to the kinetic model (4.17) satisfies conditions (4.6)
for all times t ≥ 0, it follows from (4.22) that∫

R+

Rε(φ(v)) fε(v, t) dv = 0

whenever φ(v) = 1, v.

For m ∈ N+, let Cm(R+) be the set of m-times continuously differentiable functions, endowed with
its natural norm ‖ · ‖m. Then for f = f(v), v ∈ R+, let us define

‖f‖∗m = sup {|(φ, f)| , φ ∈ Cm(R+), ‖φ‖m ≤ 1} . (4.25)

Let m ≥ 3. Thanks to (4.21) , whenever f(v) is a probability density with the third moment bounded

‖Qε(f, f)− J(f)‖∗m = sup
φ

∣∣∣∣∣
∫
R+

Rε(φ(v)) f(v) dv

∣∣∣∣∣ ≤ ε1/2Cε(M1(f),M2(f),M3(f)),
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and
lim
ε→0
‖Qε(f, f)− J(f)‖∗m = 0. (4.26)

Let the initial datum of the Fokker–Planck equation possess moments bounded up to the order three.
Thanks to (4.10) the moments up to the third order of the solution to the Fokker-Planck equation remain
uniformly bounded in the time interval 0 ≤ t ≤ T . Therefore, if f(v, t) is a solution to the Fokker–Planck
equation (4.5), for 0 ≤ t ≤ T

‖Qε(f, f)− J(f)‖∗m (t) = sup
φ

∣∣∣∣∣
∫
R+

Rε(φ(v)) fε(v, t) dv

∣∣∣∣∣ ≤ ε1/2Cε(T ), (4.27)

where the constant Cε(T ) depends on moments of f(v, t) up to the order three.
Let us consider a family of metrics that has been introduced in the paper [50] to study the trend

to equilibrium of solutions to the space homogeneous Boltzmann equation for Maxwell molecules, and
subsequently applied to a variety of problems related to kinetic models of Maxwell type. For a more
detailed description, we address the interested reader to the lecture notes [24].

Given s > 0 and two probability densities f1 and f2, their Fourier based distance ds(f1, f2) is given
by the quantity

ds(f1, f2) := sup
ξ∈Rn

∣∣∣f̂1(ξ)− f̂2(ξ)
∣∣∣

|ξ|s
. (4.28)

The distance is finite, provided that f1 and f2 have the same moments up to order [s], where, if s /∈ N+,
[s] denotes the entire part of s, or up to order s− 1 if s ∈ N+. Moreover ds is an ideal metric. Its main
properties are the following

1. Let X1, X2, X3, with X3 independent of the pair X1, X2 be random variables with probability
distributions f1, f2, f3. Then

ds(f1 ∗ f3, f2 ∗ f3) ≤ ds(f1, f2)

where the symbol ∗ denotes convolution;

2. Define for a given nonnegative constant a the dilation

fa(x) =
1

a
f
( v
a

)
.

Then, given two probability densities f1 and f2, for any nonnegative constant a

ds(aX1, aX2) = ds(f1,a, f2,a) ≤ as ds(f1, f2) = as ds(X1, X2).

3. Let ds(f1, f2) be finite for some s > 0. Then the following interpolation property holds [24]

dp(f1, f2) ≤ 2

(
s− p

2p

)p/s
s

s− p
[ds(f1, f2)]p/s = Cp,s[ds(f1, f2)]p/s, (4.29)

for any 0 < p < s.

Since the equation for the Fourier transform of the density fε(v, t), solution of the kinetic equation (4.17)
takes the form [74]

∂

∂t
f̂ε(ξ, t) = Q̂ε(fε, fε)(ξ, t) =

1

ε

[
〈f̂ε
(
(1− ελ+ ηε)ξ

)
〉f̂ε(ελξ)− f̂ε(ξ, t)

]
, (4.30)
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in reason of (4.24) we can write
Ĵ(f̂) = Q̂ε(f̂ , f̂) + R̂ε(f̂), (4.31)

where
R̂ε(f̂) = Ĵ(f̂)− Q̂ε(f̂ , f̂).

As proven in [89], the metric d2 is equivalent to ‖ · ‖∗m, m ∈ N+, that is

d2(f, g)→ 0 if and only if ‖f − g‖∗m → 0.

Let the initial datum of the Fokker–Planck equation possess moments bounded up to the order three.
Thanks to (4.27), if f(v, t) is the corresponding solution to the Fokker–Planck equation, in the time
interval 0 ≤ t ≤ T , for a suitable constant rε

d2

(
Ĵ(f̂(t)), Q̂ε(f̂(t), f̂(t))

)
= sup

ξ

1

|ξ|2
|R̂ε(f̂)(t)| ≤ rε(T ), (4.32)

where
lim
ε→0

rε(T ) = 0.

Using the expression (4.31) for the Fokker–Planck operator in (4.5), we obtain that the difference between
the solution fε of (4.30) and the solution f to the Fokker–Planck equation (4.11) satisfies

∂

∂t

(
f̂ε − f̂
|ξ|2

)
+
f̂ε − f̂
|ξ|2

=

1

ε

f̂ε
(
(1− λ+ η)ξ

)
f̂ε(λξ)− f̂

(
(1− λ+ η)ξ

)
f̂(λξ)

|ξ|2
+

1

|ξ|2
R̂ε(f̂).

(4.33)

Let fε(v, t) and f(v, t) solutions departing from initial value f̃0 and f0 satisfying conditions (4.6) and
such that their distance d2(f̃0, f0) is finite. Let us set

hε =
f̂ε − f̂
|ξ|2

,

which is such that ‖hε(·, t)‖∞ = d2(fε, f). Since |f̂ε| = |f̂ | = 1 we obtain for any 0 ≤ t ≤ T∣∣∣∣ ∂∂thε +
1

ε
hε

∣∣∣∣ ≤1

ε

∣∣∣∣∣ f̂ε
(
(1− λε+ ηε)ξ

)
− f̂

(
(1− λε+ ηε)ξ

)
〈|1− λε+ ηεξ|2〉

∣∣∣∣∣ 〈|1− λε+ ηε|2〉

+
1

ε

∣∣∣∣∣ f̂ε(λξ)− f̂(λξ)

|λεξ|2

∣∣∣∣∣ (λε)2 +
1

|ξ|2
|R̂ε(f̂)|

≤ 1

ε
‖hε(·, t)‖∞

[
〈(1− λε+ ηε)

2〉+ (λε)2
]

+ rε(T ).

(4.34)

Consider that, if σ < 2λ, for ε sufficiently small

〈(1− λε+ ηε)
2〉+ (λε)2 = 1 + ε [σ − 2λ(1− λε)] ≤ 1. (4.35)

If this is the case, hε(t) satisfies ∣∣∣∣ ∂∂thε +
1

ε
hε

∣∣∣∣ ≤ 1

ε
‖hε(·, t)‖∞ + rε(T ) (4.36)
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Proceeding as in [89], Theorem 5, we conclude by Gronwall inequality that (4.36) implies

‖hε(·, t)‖∞ ≤ ‖hε(·, 0)‖∞ + rε(T ) t. (4.37)

Letting ε going to 0 we obtain
lim
ε→0

d2(fε, f)(t) ≤ d2(f̃0, f).

Hence, if we start with the same initial value f̃0 = f0, we conclude with limε→0 d2(fε, f)(t) = 0 for
0 ≤ t ≤ T .

Analogous reasoning can be used to prove uniqueness of the solution to the Fokker–Planck equation
(5.12). By resorting to the approximation (4.31) of the Fokker–Planck operator in (4.5), we obtain that
the difference between two solutions f(v, t) and g(v, t) to the Fokker–Planck equation (5.13), for any
given small value of ε satisfies

∂

∂t

(
f̂ − ĝ
|ξ|2

)
+
f̂ − ĝ
|ξ|2

=

1

ε

f̂
(
(1− λ+ η)ξ

)
f̂(λξ)− ĝ

(
(1− λ+ η)ξ

)
ĝ(λξ)

|ξ|2
− 1

|ξ|2
R̂ε(f̂) +

1

|ξ|2
R̂ε(ĝ).

(4.38)

Let f(v, t) and g(v, t) solutions departing from initial value f0 and g0 satisfying conditions (4.6) and such
that their distance d2(f0, g0) is finite. If the third moments of f0 and g0 are finite, proceeding as before
we conclude with the bound

d2(f, g)(t) ≤ d2(f0, g0),

that clearly implies uniqueness of the solution. We can resume the previous result in the following.

Theorem 5. Let f0(v) be a probability density in R+ satisfying conditions (4.6), and such that its third
moment is finite. Assume moreover that the random part η in the binary collision (4.13) is such that
〈|η|3〉 is finite. Then, for any finite time T , as ε → 0, the unique solution fε(v, t) to the kinetic model
(4.17) with initial datum f0 converges to the solution f(v, t) of the Fokker–Planck equation (5.12) with
the same initial datum f0, and

d2(fε, f)(t)→ 0, 0 < t ≤ T.

Moreover, the solution to the Fokker–Planck equation is unique.

4.2.4 A regularity result
Theorem 5 shows that, for any given datum with a suitable decay at infinity, the Fokker–Planck equation
(5.12) possesses a unique solution. As usual, the homogeneous Sobolev space Ḣs, for s > 0 is defined by
the norm

‖f‖Ḣs =

∫
R
|ξ|2s |f̂ |2(ξ) dξ.

However, if the initial datum belongs to Ḣp(R+), we can conclude that the solution maintains the same
regularity for any subsequent positive time. Let f̂(ξ, t) = a(ξ, t) + ib(ξ, t). Starting from the Fourier
transform version of the Fokker-Planck equation (5.13), let us split it into the real and imaginary part.
We obtain

∂

∂t
a(ξ, t) =

σ

2
ξ2 ∂

2

∂ξ2
a(ξ, t)− λξ ∂

∂ξ
a(ξ, t) + λξb(ξ, t),

∂

∂t
b(ξ, t) =

σ

2
ξ2 ∂

2

∂ξ2
b(ξ, t)− λξ ∂

∂ξ
b(ξ, t)− λξa(ξ, t).

(4.39)
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Multiplying equations (4.39) respectively by 2a and 2b and summing up, we get

∂

∂t
|f̂ |2 = σξ2

[
a
∂2

∂ξ2
a+ b

∂2

∂ξ2
b

]
− λξ ∂|f̂ |

2

∂ξ
. (4.40)

Hence, multiplying by |ξ|p and integrating over R with respect to ξ, we obtain the evolution equation of
the Ḣp/2−norm of f(v, t). We have

∂

∂t

∫
R
|ξ|p |f̂ |2 dξ = σ

∫
R
|ξ|2+p

[
a
∂2

∂ξ2
a+ b

∂2

∂ξ2
b

]
dξ − λ

∫
R
ξ|ξ|p ∂|f̂ |

2

∂ξ
dξ. (4.41)

Integrating by parts the two integrals, it results

∂

∂t

∫
R
|ξ|p |f̂ |2 dξ = (p+ 1)

[
σ

2
(p+ 2) + λ

] ∫
R
|ξ|p|f̂ |2dξ − σ

∫
R
|ξ|2+p

[∣∣ ∂
∂ξ
a
∣∣2 +

∣∣ ∂
∂ξ
b
∣∣2]dξ. (4.42)

The last integral in (4.42) can be estimated from below as follows∫
R
|ξ|2+p

[∣∣ ∂
∂ξ
a
∣∣2 +

∣∣ ∂
∂ξ
b
∣∣2]dξ ≥ (p+ 1)2

2

∫
R
|ξ|p|f̂ |2.

Indeed, for all µ > 0 it holds

0 ≤
∫
R
|ξ|p

(
ξ
∂a

∂ξ
+ µa

)2

dξ =

∫
R
|ξ|2+p

∣∣∣∣∂a∂ξ
∣∣∣∣2 +

(
µ2 − µ(p+ 1)

) ∫
R
|ξ|2+pa2 dξ.

Optimizing over µ we get ∫
R
|ξ|2+p

∣∣∣∣∂a∂ξ
∣∣∣∣2 dξ ≥ (p+ 1)2

4

∫
R
|ξ|2+pa2 dξ.

An analogous computation works for b. Hence

∂

∂t

∫
R
|f̂ |2|ξ|pdξ ≤ p+ 1

2

[
σ + 2λ

] ∫
R
|ξ|p|f̂ |2dξ. (4.43)

The inequality (4.43) implies that if the initial data has finite Ḣp−norm, then for all finite t > 0, the
Ḣp−norm of the solution remains finite and it grows up to +∞ for t→ +∞.

4.3 Convergence to equilibrium

4.3.1 L1-convergence
In this section, we will be concerned with the study of the large-time behaviour of the Fokker–Planck
equation (4.1). The main argument here will be the study of the time evolution of various Lyapunov
functionals, starting from Shannon entropy of the solution f(v, t) relative to the steady state f∞(v). We
recall that the relative Shannon entropy of the two probability density functions f and g is defined by
the formula

H(f, g) =

∫
I

f(v) log
f(v)

g(v)
dv. (4.44)
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As a first step in this analysis, we will introduce in the following equivalent formulations of the Fokker–
Planck equation, that result to be very useful to justify rigorously the behaviour of these Lyapunov
functionals.

Indeed, equation (4.1) admits many equivalent formulations, each of them well adapted to different
purposes [49]. To this extent, recall that the equilibrium distribution f∞ defined in (4.2) satisfies

∂

∂v
(v2f∞) + (v − 1)f∞ = 0, (4.45)

or, equivalently
∂

∂v
log(v2f∞) = −v − 1

v2
. (4.46)

Then, for v > 0
∂

∂v

(
v2f
)

+ (v − 1) f = v2f

(
∂

∂v
log(v2f) +

v − 1

v2

)
=

v2f

(
∂

∂v
log(v2f)− ∂

∂v
log(v2f∞)

)
= v2f

∂

∂v
log

f

f∞
= v2f∞

∂

∂v

f

f∞
.

Hence, we can write the Fokker–Planck equation (4.1) in the equivalent form

∂f

∂t
=

∂

∂v

[
v2f

∂

∂v
log

f

f∞

]
, (4.47)

which enlightens the role of the logarithm of the quotient f/f∞, and

∂f

∂t
=

∂

∂v

[
v2f∞

∂

∂v

f

f∞

]
. (4.48)

In particular, owing to (4.45), the form (4.48) allows us to obtain the evolution equation for the quotient
F = f/f∞. Indeed

∂f

∂t
= f∞

∂F

∂t
= v2f∞

∂2

∂v2

f

f∞
+

∂

∂v
(v2f∞)

∂

∂v

f

f∞
=

= v2f∞
∂2F

∂v2
− (v − 1)f∞

∂F

∂v
,

which shows that F satisfies the equation

∂F

∂t
= v2 ∂

2F

∂v2
− (v − 1)

∂F

∂v
. (4.49)

If mass conservation is imposed on equation (4.1), we obtain at v = 0 the boundary conditions (4.3)
and (4.4). In analogous way, the boundary conditions of the equivalent form (4.49) are now written in
the form

v2f∞(v)F (v, t)
∣∣
v=0

= 0, (4.50)

and

v2f∞(v)
∂

∂v

f(v, t)

f∞(v)

∣∣∣∣
v=0

= v2f∞(v)
∂F (v, t)

∂v

∣∣∣∣
v=0

= 0. (4.51)

In view of the decay property at v = 0 of the steady state f∞, the boundary conditions (4.50) and (4.51)
are satisfied any time the solution to equation (4.49) is bounded together with its derivative at zero.
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To proceed, and to avoid inessential difficulties, for any given initial density f0(v) and positive constant
δ � 1, let us consider a regular approximation fδ0 (v) satisfying the conditions

fδ0 (v) = f∞(v) if v ≤ δ and v ≥ 1/δ, δ2 ≤ fδ0 (v) ≤ 1/δ2 if δ ≤ v ≤ 1/δ, (4.52)

while ∫
R+

fδ0 (v) dv = 1. (4.53)

Then, in a time interval (0, T ) the (unique) solution F δ(v, t) of the initial-boundary value problem for
equation (4.49) corresponding to the initial value F δ0 = fδ0/f∞ is such that

F δ(v, t) = 1 if v ≤ δ and v ≥ 1/δ, δ2/∆+ ≤ F δ(v, t) ≤ δ2/∆−if δ ≤ v ≤ 1/δ, (4.54)

where we denoted
∆+ = max

v
f∞(v), ∆− = min

δ≤v≤1/δ
f∞(v) > 0.

Indeed, a solution constant in the interval v ≤ δ satisfies both the boundary conditions (4.50) and (4.51),
and equation (4.49), and converges to the right initial value as t → 0. Analogous conclusion can be
drawn in the interval v ≥ 1/δ. Consider now the solution to equation (4.49) in a bounded interval
(v−, v+), where v− ≤ δ and v+ ≥ 1/δ, with boundary conditions F (v−, t) = 1 and F (v+, t) = 1 for
t ≤ T , and initial value F δ0 = fδ0/f∞. Since in this interval the coefficient of the second-order term is
strictly positive, the second condition in (4.54) follows from the maximum principle for the solution to
a uniformly parabolic equation.

The previous discussion shows that, since the initial datum F δ0 satisfies

mδ ≤ F δ0 (v) ≤Mδ (4.55)

for some positive constants mδ < Mδ, the same condition holds at any subsequent time t ≤ T , so that

mδ ≤ F δ(v, t) ≤Mδ. (4.56)

As remarked in [49], condition (4.56) allows to recover rigorously the time decay of various Lyapunov
functionals. Indeed, the following holds (cf. Theorem 3.1 of [49])

Theorem 6. Let the smooth function Φ(x), x ∈ R+ be convex. Then, if F (v, t) is the solution to equation
(4.49) in R+, and c ≤ F (v, t) ≤ C for some positive constants c < C, the functional

Θ(F (t)) =

∫
I

f∞(v)Φ(F (v, t)) dv

is monotonically decreasing in time, and the following equality holds

d

dτ
Θ(F (t)) = −IΘ(F (t)), (4.57)

where IΘ denotes the nonnegative quantity

IΘ(F (t)) =

∫
R+

v2f∞(v)Φ′′(F (v, t))

∣∣∣∣∂F (v, t)

∂v

∣∣∣∣2 dv. (4.58)

We can couple Theorem 6 with the so-called Chernoff inequality with weight, recently proven in [49]
(cf. Theorem 3.3). In our case, this result reads
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Theorem 7. Let X be a random variable distributed with density f∞(v), v ∈ R+, where the probability
density function f∞ satisfies the differential equality

∂

∂v

(
v2f∞

)
+ (v − 1) f∞ = 0, v ∈ R+. (4.59)

If the function φ is absolutely continuous on R+ and φ(X) has finite variance, then

V ar[φ(X)] ≤ E
{
X2[φ′(X)]2

}
(4.60)

with equality if and only if φ(X) is linear in X.

Choose now Φ(x) = x log x, x ≥ 0. Then, Θ(F δ(t)) coincides with the entropy of fδ relative to f∞.
If the relative entropy is finite at time t = 0, by Theorem 6 it decays, and its rate of decay is given by
the expression

I(F δ(t)) =

∫
R+

v2f∞(v)
1

F δ(v, t)

∣∣∣∣∂F δ(v, t)∂v

∣∣∣∣2 dv = 4

∫
R+

v2f∞(v)

∣∣∣∣∣∂
√
F δ(v, t)

∂v

∣∣∣∣∣
2

dv. (4.61)

If we apply inequality (4.60) with φ(v) =
√
F δ(v, t) with fixed t > 0 we get

I(F δ(t)) = 4

∫
R+

v2f∞(v)

(
∂v

√
fδ(v, t)

f∞(v)

)2

dv ≥

4

∫
R+

fδ(v, t)

f∞(v)
f∞(v) dv −

(∫
R+

√
f(v, t)

f∞(v)
f∞(v) dv

)2
 =

4

1−

(∫
R+

√
fδ(v, t) f∞(v) dv

)2
 .

(4.62)

On the other hand, as remarked in [59], whenever f and g are probability density functions, the square
of their Hellinger distance

dH(f, g) =

[∫
R+

(√
f −√g

)2

dv

]1/2

(4.63)

satisfies
= dH(f, g)2 =

∫
R

(
f(v) + g(v)− 2

√
f(v) g(v)

)
dv =

2

(
1−

∫
R

√
f(v) g(v) dv

)
≤ 2

(
1−

(∫
R

√
f(v) g(v) dv

)2
)
.

(4.64)

The last inequality in (4.64) follows by Cauchy–Schwartz inequality. Finally, for t > 0

I(F δ(t)) ≥ 2dH(fδ(t), f∞)2, t > 0. (4.65)

that implies the differential inequality

d

dt
H(fδ(t)|f∞) ≤ −2dH(fδ(t), f∞)2, (4.66)
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and, consequently, the bound ∫ ∞
0

dH(fδ(t), f∞)2 dt ≤ 1

2
H(fδ0 |f∞). (4.67)

Now, let us apply again Theorem 6 to the convex function φ(x) = (
√
x − 1)2. In this case Θ(F δ(t))

coincides with the square of the Hellinger distance (4.63) between fδ and f∞, which in consequence of
(4.57) is shown to decay in time.

Therefore, inequality (4.67) coupled with the time decay of the Hellinger distance shows that for large
times

dH(fδ(t), f∞)2 = o(1/t). (4.68)

Note that to obtain the decay we need the boundedness of the relative entropy H(fδ0 |f∞). Last, by
Cauchy–Schwartz inequality we can bound the L1 distance between two densities f and g in terms of
the Hellinger distance dH(f, g). Indeed∫

I

|f(v)− g(v)| dv =

∫
I

∣∣∣√f(v)−
√
g(v)

∣∣∣ (√f(v) +
√
g(v)

)
dv

≤
(∫

I

(√
f(v)−

√
g(v)

)2

dv

) 1
2
(∫

I

(√
f(v) +

√
g(v)

)2

dv

) 1
2

= dH(f, g)

(∫
I

(
f(v) + g(v) + 2

√
f(v)g(v)

)
dv

) 1
2

=
√

2dH(f, g)

(
1 +

∫
I

√
f(v)g(v) dv

) 1
2

.

Therefore
‖f − g‖L1 ≤ 2dH(f, g). (4.69)

Finally, in view of (4.68), the L1-distance between fδ(t) and f∞ decays to zero as time goes to infinity,

‖fδ(t)− f∞‖2L1 ≤ o(1/t), (4.70)

and ∫ ∞
0

‖fδ(t)− f∞)‖2L1
dt ≤ 2H(fδ0 |f∞). (4.71)

Let us now proceed to remove the lifting of the initial value. The following lemma will be useful

Lemma 8. Let f(v, t) be a solution of the initial-boundary value problem for the Fokker–Planck equation
(4.1), corresponding to an initial value f0(v) such that, as in Theorem 5 |f0(v)| ∈ L1(R+) and v3|f0(v)| ∈
L1(R+). Then, the L1-norm of f(v, t) is non-increasing for t ≥ 0.

Proof. For a given γ > 0, let us consider a regularized increasing approximation of the sign function
signγ(z), with z ∈ R, and let us define the regularized approximation |f |γ(z) of |f |(z) via the primitive
of signγ(f)(z). We now multiply equation (4.1) by signγ(f(t)) to obtain, after integrating by parts

d

dt

∫
R+

signγ(f(t))f(t) dv = −
∫
R+

sign′γ(f)

[
σ

2

∂f

∂v

∂(v2f)

∂v
+ λ(v − 1)f

∂f

∂v

]
dv

= −
∫
R+

sign′γ(f)
σ

2
v2

∣∣∣∣∂f∂v
∣∣∣∣2 dv − ∫

R+

(λ+ σ)v − λ
2

sign′γ(f)f
∂f

∂v
dv.

(4.72)
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Indeed, the border term contribution vanishes in view of condition (4.4). Moreover, since we have the
equality

sign′γ(f)f
∂f

∂v
=

∂

∂v
[f signγ(f)− |f |γ ]

after another integration by parts in the last term of the right-hand side of (4.72) we obtain

−
∫
R+

(λ+ σ)v − λ
2

sign′γ(f)f
∂f

∂v
dv =

λ

2

[
(f signγ(f)− |f |γ) (v = 0) +

∫
R+

(f signγ(f)− |f |γ) dv

]
,

and this contribution, in the limit γ → 0 vanishes. Hence

d

dt

∫
R+

|f(v, t)| dv ≤ 0.

In reason of lemma 8, for any given initial datum f0(v) satisfying the hypotheses of theorem 5, and
its modification (4.52), we have that, at any subsequent time t > 0

‖f(v, t)− fδ(v, t)‖L1
≤ ‖f0(v)− fδ0 (v)‖L1

.

Hence, since fδ0 (v) converges to f0(v) in L1-norm and in relative entropy, letting δ → 0 inequality (4.70)
implies

‖f(t)− f∞‖2L1 ≤ o(1/t). (4.73)

Moreover, for each finite time T , inequality (4.71) yields∫ T

0

‖f(t)− f∞)‖2L1
dt ≤ 2

∫ T

0

‖fδ(t)− f∞)‖2L1
dt+ 2

∫ T

0

‖fδ(t)− f(t))‖2L1
dt ≤

2

∫ T

0

‖fδ(t)− f∞)‖2L1
dt+ 2T‖fδ0 − f0‖2L1

≤ 4H(fδ0 |f∞) + 2T‖fδ0 − f0‖2L1
.

Hence, letting δ → 0 we obtain, for each T > 0 the inequality∫ T

0

‖f(t)− f∞)‖2L1
dt ≤ 4H(f0|f∞). (4.74)

We proved

Theorem 9. Let f(v, t) be a solution of the initial-boundary value problem for the Fokker–Planck equa-
tion (4.1), corresponding to an initial density f0(v) such that, as in Theorem 5 f0(v) ∈ L1(R+) and
v3f0(v) ∈ L1(R+). Then, if the relative entropy between f0 and f∞ is bounded, f(v, t) converges in
L1(R+) towards the steady state f∞, and both (4.73) and (4.74) hold.
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4.3.2 Further convergence results

The analysis of the previous section shows that the solution to the Fokker–Planck equation converges
towards the stationary state in the L1-norm for a large class of initial data, but with a polynomial rate
of decay. However, stronger results of convergence can be obtained by suitably restricting the allowed
initial data, or, in alternative, by relaxing the distance in which the decay holds.

Let us apply Theorem 6 to the convex function φ(x) = (x− 1)2. In this case Θ(F δ(t)) coincides with
the weighted (with weight f∞) L2-norm between fδ and f∞

Θ(F δ(t)) =

∫
R+

|fδ(v, t)− f∞(v)|2f−1
∞ (v) dv.

Then

IΘ(F δ(t)) = 2

∫
R+

v2f∞(v)

∣∣∣∣∂F δ(v, t)∂v

∣∣∣∣2 dv,
and application of Chernoff inequality with weight (4.60) gives

IΘ(F δ(t)) ≥ 2Θ(F δ(t)).

Hence, exponential decay follows, and∫
R+

|fδ(v, t)− f∞(v)|2f−1
∞ (v) dv ≤ e−2t

∫
R+

|fδ0 (v)− f∞(v)|2f−1
∞ (v) dv. (4.75)

Proceeding as before, and removing the lifting on the initial data we obtain the following

Theorem 10. Let f(v, t) be a solution of the initial-boundary value problem for the Fokker–Planck
equation (4.1), corresponding to an initial density f0(v) such that, as in Theorem 5 f0(v) ∈ L1(R+) and
v3f0(v) ∈ L1(R+). Then, if the the weighted L2-norm

‖f0 − f∞‖∗2 =

∫
R+

|f0(v)− f∞(v)|2f−1
∞ (v) dv

is bounded, f(v, t) converges in L∗2(R+) towards the steady state f∞, and

‖f(t)− f∞‖∗2 ≤ e−2t‖f0 − f∞‖∗2. (4.76)

Last, we analyze the rate of decay towards equilibrium in the weak d2-distance defined in (4.28).
Proceeding as in Section 4.2.3, it is immediate to compute the rate of convergence of two different
solution of Boltzmann equation (4.15). Let fε(t) and gε(t) denote two solutions of the kinetic model
(4.15), departing from initial data f̃0 and g̃0 respectively. Let us suppose in addition that the distance
in the Fourier metric d3(fε, gε) is initially bounded, and let us define

hε(ξ, t) =
f̂ε(ξ, t)− ĝε(ξ, t)

|ξ|3
.

Then, proceeding as in section 4.2.3, we obtain∣∣∣∣ ∂∂thε +
1

ε
hε

∣∣∣∣ ≤ 1

ε
‖hε‖∞

[
〈|1− λε+ η̃ε|3〉+ |λε|3

]
.
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Since by construction the quantity 1− λε+ η̃ε is nonnegative, and 〈η̃3
ε〉 = 0

〈|1− λε+ η̃ε|3〉+ |λε|3 = 1− 3ε(λ− σ)(1− λε).

Therefore Gronwall inequality yields

d3(fε(t), gε(t)) ≤ d3(f̃0, g̃0)e−3(λ−σ)(1−λε)t. (4.77)

Clearly, if λ > σ, and ε � 1 so that λε ≤ δ < 1, the distance between the solutions d3(fε, gε), for each
ε > 0 decays exponentially with a rate bigger than 3(λ− σ)(1− δ). The decay of two different solutions
to the Kinetic Boltzmann-type equation (4.15) allows to prove a similar result for the Fokker–Planck
equation. To this aim, we recall a result on the Fourier distance proven in [23], adapted to the present
situation

Lemma 11. Let {fn(v)}n≥0 and {gn(v)}n≥0, v ∈ R+, be two sequences of probability density functions
with moments bounded up to the second order, such that fn ⇀ f and gn ⇀ g. Suppose in addition that,
for some r > 2 ∫

R+
|v|rf(v) < +∞,

∫
R+
|v|rg(v) < +∞.

If
dr(fn, gn) < +∞,

then for all s < r,
ds(f, g) ≤ lim inf ds(fn, gn).

Thanks to the interpolation formula (4.29) with s = 3 and p = 2, we obtain from (4.77) the bound

d2(fε(t), gε(t)) ≤
[
d3(f̃0, g̃0)

]2/3
e−2(1−δ)(λ−σ)t. (4.78)

Thus, by Lemma 11, letting ε → 0, we conclude that, if f(t) and g(t) are solutions of the Fokker-
Planck equation (4.1), corresponding to initial values f̃0 and g̃0 such that d3(f̃0, g̃0) is finite, the distance
d2(f(t), g(t)) decays to zero with the explicit exponential rate 2(1 − δ)(λ − σ). We can resume the
previous result in the following.

Theorem 12. Let f(v, t) be a solution of the initial-boundary value problem for the Fokker–Planck
equation (4.1), corresponding to an initial density f0(v) such that, as in Theorem 5 f0(v) ∈ L1(R+)
and v3f0(v) ∈ L1(R+). Then, provided d3(f0, f∞) is finite, the solution f(v, t) converges towards the
equilibrium density in the Fourier distance d2, and for each constant δ such that 0 < δ < 1, the following
bound holds

d2(f(t), f∞) ≤ [d3(f0, f∞)]
2/3

e−2(1−δ)(λ−σ)t.

4.4 Conclusions
In this paper, we studied existence, uniqueness and asymptotic behavior of a Fokker–Planck equation
for wealth distribution first derived in [17]. In particular, we investigated the connections between a
bilinear kinetic model for wealth distribution introduced in [32] and the Fokker–Planck equation (4.1).
In various cases, these connections allow to pass results which have been found for the kinetic model to
the Fokker–Planck equation.

Some problems, however, remain open. In particular, the invariant trade limit which allows to obtain
the Fokker–Planck equation has been proven to hold only when the initial values in the kinetic equation
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possess moments bounded up to the order three. This condition reflects also on the limit Fokker–Planck
equation, where, for example, the exponential decay towards equilibrium obtained in Theorem 12 requires
the boundedness of the d3-distance between the initial datum and the corresponding equilibrium density.
Thus, convergence results towards equilibrium in absence of a sufficiently high number of moments
initially bounded is unknown.
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Chapter 5

Wealth distribution with debts

5.1 Introduction
Mathematical modeling of wealth distribution has seen in recent years a remarkable development, mainly
linked to the understanding of the mechanisms responsible of the formation of Pareto tails [78] (cf.
Chapter 5 of [76] for a recent survey). Among the various kinetic and mean field models considered
so far [26, 27, 29, 38, 39], the Fokker–Planck type description of the evolution of the personal wealth
revealed to be successful. In [17] Bouchaud and Mezard introduced a simple model of economy, where
the time evolution of wealth is described by an equation capturing both exchange between individuals
and random speculative trading, in such a way that the fundamental symmetry of the economy under an
arbitrary change of monetary units is insured. A Fokker–Planck type model was then derived through
a mean field limit procedure, with a solution becoming in time a Pareto (power-law) type distribution.
Let f(v, t) denote the probability density at time t ≥ 0 of agents with personal wealth v ≥ 0, departing
from an initial density f0(v) with a mean value fixed equal to one

m(f0) =

∫
R+

vf0(v) dv = 1. (5.1)

The evolution in time of the density f(v, t) was described in [17] by the Fokker–Planck equation

∂f

∂t
= J(h) =

σ

2

∂2

∂v2

(
v2f
)

+ λ
∂

∂v
((v − 1)f) , (5.2)

where λ and σ denote two positive constants related to essential properties of the trade rules of the
agents.

The key features of equation (5.2) is that, in presence of suitable boundary conditions at the point
v = 0, the solution is mass and momentum preserving, and approaches in time a unique stationary
solution of unit mass [85]. This stationary state is given by the (inverse) Γ-like distribution [17]

f∞(v) =
(µ− 1)µ

Γ(µ)

exp
(
−µ−1

v

)
v1+µ

, (5.3)

where the positive constant µ > 1 is given by

µ = 1 + 2
λ

σ
.

41
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As predicted by the observations of the Italian economist Vilfredo Pareto [78], (5.3) exhibits a power-law
tail for large values of the wealth variable.

The explicit form of the equilibrium density, which represents one of the main aspects linked to the
validity of the model in its economic setting, is indeed very difficult to achieve at the Boltzmann kinetic
level, where only few relatively simple models can be treated analytically [9, 10, 60].

In addition to [17], the Fokker–Planck equation (5.2) appears as limit of different kinetic models. It
was obtained by one of the present authors with Cordier and Pareschi [32] via an asymptotic procedure
applied to a Boltzmann-type kinetic model for binary trading in presence of risks. Also, the same
equation with a modified drift term appears when considering suitable asymptotics of Boltzmann-type
equations for binary trading in presence of taxation [13], in the case in which taxation is described by the
redistribution operator introduced in [14]. Systems of Fokker–Planck equations of type (5.2) have been
considered in [42] to model wealth distribution in different countries which are coupled by mixed trading.
Further, the operator J(f) in equation (5.2) and its equilibrium kernel density have been considered in
a nonhomogeneous setting to obtain Euler-type equations describing the joint evolution of wealth and
propensity to trading [41], and to study the evolution of wealth in a society with agents using personal
knowledge to trade [77].

These results contributed to retain that this limit model represents a quite satisfactory description
of the time-evolution of wealth density towards a Pareto-type equilibrium in a trading society.

Existence, uniqueness and asymptotic behavior of the solution to equation (5.2) have been recently
addressed in [85]. In this paper, by resorting in part to the strategy outlined in [49], a precise relation-
ship between the solution of the kinetic model considered in [32] and the solution to the Fokker–Planck
equation (5.2) was obtained, together with an exhaustive study of the large-time behavior of the latter.
Various properties of the solution to equation (5.2) can in fact be extracted from the limiting relation-
ship between the Fokker–Planck description and its kinetic level, given by the bilinear Boltzmann-type
equation introduced in [32]. It is essential to remark that, in reason of the fact that the domain of the
wealth variable v takes values in R+, and that the coefficient of diffusion depends on the wealth variable,
the analysis of the large-time behavior of the solution to equation (5.2) appears very different from the
analogous one studied in [4, 87] for the classical Fokker–Planck equation. In particular, the essential
argument in [85] was to resort to an inequality of Chernoff type [30, 62], recently revisited in [49], that
allows to prove convergence to equilibrium in various settings.

All the previous results describe a society in which all agents have initially a non negative wealth, and
do not consider the unpleasant but realistic possibility that part of the agents would have debts, clearly
expressed by a negative wealth. Recent results on one-dimensional kinetic models [8, 7] showed however
that there are no mathematical obstacles in considering the Boltzmann-type equation introduced in [32]
with initial values supported on the whole real line.

Following the idea of [8, 7], we will study in this paper the initial value problem for the Fokker–Planck
equation (5.2) posed on the whole real line R, by assuming that the initial datum satisfies condition (5.1),
that is by assuming that part of the agents of the society could initially have debts, while the initial
(conserved) mean wealth is positive. As we shall see, also in this situation, the positivity of the mean
wealth will be enough to drive the solution towards the (unique) equilibrium density, still given by (5.3).
Also, the forthcoming analysis will clearly indicate that the initial-boundary value problem considered in
[85], in which the initial density is supported on the positive half-line, is simply a particular case of the
general situation studied here. However, while the analysis of [85] allows to conclude that the solution to
the initial-boundary value problem for (5.2) converges strongly towards the equilibrium density (5.3) with
an explicit rate, in the general situation discussed in this paper, we are able to show that exponential in
time convergence to equilibrium takes place only in a weak setting, well described by resorting to Fourier
based metrics.

As discussed in Section 5.3.3, the usual approach to convergence to equilibrium via entropy arguments
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fails in reason of the fact that in this situation the initial density and consequently the solution at each
time t > 0 is supported on the whole real line R, while the equilibrium density is supported only on
the positive half-line R+. This problem can be bypassed by resorting to entropy functionals different
from the standard relative Shannon entropy. However, a detailed evaluation of the entropy production of
the new entropy functional allows to conclude only with a result convergence in the classical L1 setting,
without rate.

5.2 Main results

5.2.1 Existence and uniqueness
Existence of a (unique) solution for the initial value problem for the Fokker–Planck equation can be
recovered by means of the analysis done in [85], which is based on the strong connection between equation
(5.2) and the kinetic equation of Boltzmann type introduced in [32]. Indeed, the existence proof in [85]
is based on the Fourier transformed version of the kinetic equation, and applies without any change even
if the wealth variable takes values on the whole real line. However, while Fokker–Planck equations with
variable coefficients and in presence of boundary conditions have been rarely studied [46] (cf. also the
book [47] for a general view about boundary conditions for diffusion equations), in absence of boundaries,
other results are available, which apply directly to the Fokker–Planck equation (5.2).

Particular cases of Fokker–Planck type equations with variable coefficient of diffusion, mainly related
to the linearization of fast diffusion equations have been studied in details (cf. [23] and the references
therein). Then, the initial value problem for Fokker-Planck type equations with general coefficients has
been recently investigated by Le Bris and Lions in [65]. Their results allow to conclude that the initial
value problem for equation (5.2) has a unique solution for a large class of initial values. In one-dimension
of space Le Bris and Lions consider Fokker-Planck equations in one of the the forms

∂

∂t
p(v, t) =

1

2

∂

∂v2

(
σ2(v)p(v, t)

)
+

∂

∂v
(b(v)p(v, t)) , (5.4)

which corresponds to our case, equations in divergence form

∂

∂t
p(v, t) =

∂

∂v

(
1

2
σ2(v)

∂

∂v
p(v, t) + b(v)p(v, t)

)
, (5.5)

and the so-called backward Kolmogorov equation

∂

∂t
p(v, t) =

1

2
σ2(v)

∂

∂v2
p(v, t)− b(v)

∂

∂v
p(v, t). (5.6)

Let bσ and the Stratonovich drift bs be defined as

bσ = b− 1

2

∂

∂v
σ2, bs = b− 1

2
σ
∂

∂v
σ.

Furthermore, for 1 ≤ p, q ≤ +∞, let us define the space

Lp + Lq(R) = {f : R→ R /ϕ = g + h, where g ∈ Lpand h ∈ Lq} .

Then, the following holds

Theorem 13. ([65]) Let us assume that any one of the three drift functions b, bσ or bStrat satisfies

b(v) ∈W 1,1
loc (R),

∂

∂v
b(v) ∈ L∞(R),

b(v)

1 + |v|
∈ L1 + L∞(R), (5.7)
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and that σ satisfies

σ(v) ∈W 1,2
loc (R),

σ(v)

1 + |v|
∈ L2 + L∞(R). (5.8)

Then for each initial condition in L1∩L∞(R) (resp. L2∩L∞(R)), the Fokker-Planck equation (5.4), the
Fokker-Planck equation of divergence form (5.5), and the backward Kolmogorov equation (5.6) all have
a unique solution in the space

p ∈ L∞
(
[0, T ], L1 ∩ L∞

) (
resp. L∞

(
[0, T ], L2 ∩ L∞

))
, σ

∂

∂v
p ∈ L2

(
[0, T ], L2

)
. (5.9)

The natural condition for the Fokker–Planck equation (5.2) is to apply Theorem 13 considering as
initial value a probability density in L1 ∩L∞(R). To this extent, it is sufficient to rewrite equation (5.2)
in the divergence form

∂

∂t
f =

1

2

∂

∂v

(
σv2 ∂

∂v
f

)
+

∂

∂v

[(
(σ + λ)v − λ

)
f

]
, (5.10)

that is the analogous of equation (5.5), and to remark that in our case b(v) = (σ+λ)v−λ and σ(v) = σ1/2v
.
We obtain

Theorem 14. Let f0(v) belong to L1 ∩L∞(R). Then, the the Fokker–Planck equation (5.2), for t ≤ T ,
has a unique solution f(v, t) in the space

f(v, t) ∈ L∞
(
[0, T ], L1 ∩ L∞

)
, v

∂

∂v
f(v, t) ∈ L2

(
[0, T ], L2

)
. (5.11)

5.2.2 Regularity
The regularity of the solution to the initial-boundary value problem for equation (5.2) has been studied
in [85]. For the sake of completeness, and for its consequences on the large-time behavior of the solution,
we give here a short proof.

For any given smooth function ϕ(v), v ∈ R let us consider the weak form of equation (5.2)

d

dt

∫
R
ϕ(v)f(v, t)dv = (ϕ, J(f)) =

∫
R

[σ
2
v2ϕ′′(v)− λ(v − 1)ϕ′(v)

]
f(v, t) dv. (5.12)

Under the hypotheses of Theorem 14, by choosing ϕ(v) = e−iξv we obtain the Fourier transformed
version of the Fokker–Planck equation (5.2)

∂

∂t
f̂(ξ, t) = Ĵ(f̂) =

σ

2
ξ2 ∂

2

∂ξ2
f̂(ξ, t)− λξ ∂

∂ξ
f̂(ξ, t)− iλξf̂(ξ, t), (5.13)

where, as usual ĝ(ξ) denotes the Fourier transform of g(v), v ∈ R

ĝ(ξ) =

∫
R
e−iξvg(v) dv.

Let f̂(ξ, t) = a(ξ, t) + ib(ξ, t). Then the real and imaginary parts of f̂ satisfy

∂

∂t
a(ξ, t) =

σ

2
ξ2 ∂

2

∂ξ2
a(ξ, t)− λξ ∂

∂ξ
a(ξ, t) + λξb(ξ, t),

∂

∂t
b(ξ, t) =

σ

2
ξ2 ∂

2

∂ξ2
b(ξ, t)− λξ ∂

∂ξ
b(ξ, t)− λξa(ξ, t).

(5.14)
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Let us multiply equations (5.14) respectively by 2a and 2b. Summing up we get the evolution equation
satisfied by |f̂(ξ, t)|2.

∂

∂t
|f̂ |2 = σξ2

[
a
∂2

∂ξ2
a+ b

∂2

∂ξ2
b

]
− λξ ∂|f̂ |

2

∂ξ
. (5.15)

Hence, multiplying by |ξ|p and integrating over R with respect to ξ, we obtain the evolution equation of
the Ḣp/2−norm of f(v, t), where, as usual, the homogeneous Sobolev space Ḣs, is defined by the norm

‖f‖Ḣs =

∫
R
|ξ|2s |f̂ |2(ξ) dξ.

We obtain
∂

∂t

∫
R
|ξ|p |f̂ |2 dξ = σ

∫
R
|ξ|2+p

[
a
∂2

∂ξ2
a+ b

∂2

∂ξ2
b

]
dξ − λ

∫
R
ξ|ξ|p ∂|f̂ |

2

∂ξ
dξ, (5.16)

and integrating by parts the two integrals, it results

∂

∂t

∫
R
|ξ|p |f̂ |2 dξ = (p+ 1)

[
σ

2
(p+ 2) + λ

] ∫
R
|ξ|p|f̂ |2dξ − σ

∫
R
|ξ|2+p

[∣∣ ∂
∂ξ
a
∣∣2 +

∣∣ ∂
∂ξ
b
∣∣2]dξ. (5.17)

Since the last integral in (5.17) can be bounded from below [85]∫
R
|ξ|2+p

[∣∣ ∂
∂ξ
a
∣∣2 +

∣∣ ∂
∂ξ
b
∣∣2]dξ ≥ (p+ 1)2

4

∫
R
|ξ|p|f̂ |2 dξ.

we finally obtain
∂

∂t

∫
R
|ξ|p|f̂ |2 dξ ≤ p+ 1

2

[
σ
p+ 3

2
+ 2λ

] ∫
R
|ξ|p|f̂ |2dξ. (5.18)

The inequality (5.18) implies that if the initial data has bounded Ḣp−norm, then for all t > 0, the
Ḣp−norm of the solution remains bounded, even if not uniformly bounded with respect to time. We
proved

Theorem 15. ([85]) Let f0(v) be a probability density in R that belongs to Ḣr(R). Then, the Ḣr−norm
of the solution f(v, t) to the Fokker–Planck equation (5.2), for t ≤ T , still belongs to Ḣr(R), and∫

R
|ξ|2r|f̂ |2(t) dξ ≤ exp

{
2r + 1

2

[
σ

2r + 3

2
+ 2λ

]
t

}∫
R
|ξ|2r|f̂0|2 dξ. (5.19)

Remark 16. The difficulty of recovering the uniform boundedness of the Ḣr(R)-norm of the solution to
the Fokker–Planck equation (5.2) is strictly related to the singularity of the coefficient of diffusion σv2,
which vanishes in correspondence to the point v = 0. Indeed, as proven in [23] for a similar Fokker–
Planck equation with coefficient of diffusion 1 + σv2, the uniform boundedness of the Ḣr(R)-norm of the
solution holds.
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5.2.3 Further properties
The analysis of [65] do not care about the eventual preservation of positivity of the solutions to (5.4).
However, this property can be easily proved for equation (5.2), by resorting to the same argument used
in [85] for the same equation posed in R+. Indeed, as proven in [85], the solution to the Fokker–Planck
equation (5.2) is the limit of the solution to a kinetic equation of Boltzmann type, for which it is
elementary to obtain the positivity property.

Positivity can however be proven directly by working on the Fokker–Planck equation, by resorting
to the following argument [57]. Suppose the initial data f0(v) (and hence the unique solution) to the
Fokker–Planck equation (5.2) are smooth and vanish for v = ±∞. Suppose moreover that f0(v) ≥ 0.
Since the (smooth) initial value is non negative, for t ≥ 0, every point vm(t) in which f(vm(t), t) = 0 is
either a local minimum, and

∂

∂v
f(v, t)

∣∣∣∣
v=vm(t)

= 0,
∂2

∂v2
f(v, t)

∣∣∣∣
v=vm(t)

> 0. (5.20)

or a stationary point, and in this case

∂

∂v
f(v, t)

∣∣∣∣
v=vm(t)

= 0,
∂2

∂v2
f(v, t)

∣∣∣∣
v=vm(t)

= 0. (5.21)

Computing derivatives, the Fokker–Planck equation (5.2) can be written in the form

∂

∂t
f(v, t) =

σ

2
v2 ∂

2

∂v2
f(v, t) + [(2σ + λ)v − λ]

∂

∂v
f(v, t) + (λ+ σ)f(v, t). (5.22)

Hence, evaluating (5.22) at the point v = vm(t), and using (5.20) shows that, if vm(t) 6= 0 is a local
minimum

∂

∂t
f(v, t) |v=vm(t) =

σ

2
vm(t)2 ∂

2

∂v2
f(v, t) |v=vm(t) > 0.

This entails that the function f(v, t) is increasing in time at the point v = vm(t), unless vm(t) = 0.
Indeed, if the local minimum is attained at vm(t) = 0

∂

∂t
f(v, t) |v=0 = 0,

and f(0, t) remains equal to zero at any subsequent time.
If now vm(t) is a stationary point, so that (5.21) holds,

∂

∂t
f(v, t) |v=vm(t) = 0,

and f(v, t) remains equal to zero. Therefore

min
x∈R

f(v, t) ≥ 0, (5.23)

and positivity follows. The proof for initial data satisfying the conditions of Theorem 14 then follows
first considering a suitable smoothing of the initial data, and then using the fact that at any subsequent
time t > 0, the solution corresponding to the smoothed initial data converges to the solution of the
original data when eliminating the initial smoothing.
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Remark 17. A further consequence of this analysis is that, if the initial datum vanishes on the half-line
v ≤ 0, in reason of the properties of the solution at the point v = 0, the solution at any subsequent time
t ≥ 0 will remain equal to zero on the half-line v ≤ 0.

Further results in this direction follows by studying the evolution of the mass located in the negative
part of the real axis. To start with, consider that by evaluating (5.12) with test functions φ(v) = 1, v
one obtains that, if the initial value f0(v) vanishes for v = ±∞, the solution to (5.2) satisfies

d

dt

∫
R
f(v, t)dv = 0,

d

dt

∫
R
vf(v, t)dv = λ

(
−
∫
R
vf(v, t) dv +

∫
R
f(v, t) dv

)
.

Therefore, if the (nonnegative) initial value of the Fokker–Planck equation (5.2) is a density function
satisfying the normalization conditions∫

R
f0(v) dv = 1;

∫
R
vf0(v) dv = 1 (5.24)

the solution f(v, t) to (5.2) still satisfies conditions (5.24). In other words, if the initial datum is a
probability density with unit mean, then the solution at any subsequent time remains a probability
density with unit mean.

A further interesting property of the solution can be extracted by analyzing the behaviour of the mass
and the mean value separately on the left and right half-line. Let us denote by ρ+(t) (respectively ρ−(t))
the fraction of the mass distributed on the positive half-line (respectively on the negative half-line) at
time t ≥ 0, that is

ρ+(t) =

∫ +∞

0

f(v, t) dv; ρ−(t) =

∫ 0

−∞
f(v, t) dv. (5.25)

Let the initial value f0(v) ∈ C(R) satisfy conditions (5.24). Let Hn(v) be a smooth approximation to
the Heaviside step function, for example the logistic function

Hn(v) =
1

1 + e−2nv
.

Then, equation (5.12) implies, for any t > 0∫
R
Hn(v)f(v, t) dv =

∫
R
Hn(v)f0(v) dv+

+

∫ t

0

∫
R

[σ
2
v2H ′′n(v)− λ(v − 1)H ′n(v)

]
f(v, s) dv ds.

Letting n → +∞, and considering that H ′n(v) converges to a Dirac delta in zero, while v2H ′′n(v) is a
uniformly bounded function that converges pointwise to zero, we obtain

lim
n→+∞

∫ t

0

∫
R

[σ
2
v2H ′′n(v)− λ(v − 1)H ′n(v)

]
f(v, s) dv ds =

∫ t

0

f(0, s) ds.

Therefore, since for ant t ≥ 0

lim
n→+∞

∫
R
Hn(v)f(v, t) dv =

∫ +∞

0

f(v, t) dv = ρ+(t),
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it follows that

ρ+(t) = ρ+(0) +

∫ t

0

f(0, s) ds, (5.26)

namely that the mass in the positive half-line can not decrease if the mean value is positive.
With similar arguments it is possible to analyze the time behaviour of the parts of the mean value

located on the positive and negative parts of the real line. Let us indicate these parts by m+(t) and
m−(t), where

m+(t) =

∫ +∞

0

vf(v, t) dv, m−(t) =

∫ 0

−∞
vf(v, t) dv (5.27)

A direct computation shows that, for each time t > 0

m+(t) = m+(0) +

∫ t

0

(−ρ−(s)m+(s) + ρ+(s)m−(s)) ds,

m−(t) = m−(0) +

∫ t

0

(ρ−(s)m+(s)− ρ+(s)m−(s)) ds.

(5.28)

The choice of mean value m = 1 > 0 implies m+(t) = |m−|(t) + 1. Therefore using this equality into
the second equation in (5.28) we obtain

d

dt
|m−(t)| = − ((ρ−(t)m+(t)− ρ+(t)m−(t)) = − (|m−(t)|+ ρ−(t)|m−(t)|) ≤ −|m−(t)| .

Consequently, by Gronwall inequality we conclude that

|m−(t)| ≤ |m−(0)|e−t, (5.29)

and the negative part of the mean value decays exponentially fast towards zero. We can group the
previous results into the following

Theorem 18. Let f0(v) be a probability density in R, satisfying the normalization conditions (5.24).
Then, the solution f(v, t) to the Fokker–Planck equation (5.2) remains a probability density for each
subsequent time t ≥ 0, and satisfies conditions (5.24). Moreover, the mass ρ+(t) located on the positive
part of the real line is non decreasing in time and (5.26) holds. Also, the part of the mean value m−(t)
located on the negative part of the real axis is exponentially decreasing in time, and (5.29) holds.

In the economic context, the consequences of Theorem 18 appear relevant.

Remark 19. Equation (5.26), coupled with the property of mass conservation, implies that, in the
particular case in which the initial data is a smooth probability density which takes values only in the
region v ≥ 0, since the mass in this region can only increase, the solution at any subsequent time t > 0
remains a smooth probability density distributed on the same region v ≥ 0. This independently of any
boundary condition one can introduce to justify mass and momentum conservation [49, 85]. This property
can be easily relaxed to general probability measures initially taking values on the set v ≥ 0. In other
words, the lack of diffusion at the point v = 0, as outlined in Remark 17, is enough to maintain the whole
mass, initially located on the positive part of the real line, on the same set.
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Remark 20. The previous results about the time evolution of the mass and mean value located on the
set v ≥ 0 show that the part of mass that is initially distributed on the negative half-space (the debts)
moves to the region v ≥ 0, and this process is exponentially rapid in terms of the negative part of the
mean value. However, since the regularity results of Theorem 15 are not uniform with respect to time, it
could happen that there is accumulation of the negative fraction of the mass at the point v = 0, with the
eventual formation of a Dirac delta in v = 0, namely the point in which there is no diffusion.

5.2.4 The stationary state
Let us consider the Γ-like distribution (5.3), continuously extended to zero for v < 0

f∞(v) =
(µ− 1)µ

Γ(µ)

exp
(
−µ−1

v

)
v1+µ

if v ≥ 0; f∞(v) = 0 if v < 0. (5.30)

where
µ = 1 + 2

λ

σ
> 1. (5.31)

It can be easily verified that the equilibrium distribution (5.30) achieves its maximum value

f̄∞ =
(µ+ 1)µ+1

Γ(µ)(µ− 1)
exp (−(µ+ 1)) (5.32)

at the point

v̄ =
µ− 1

µ+ 1
. (5.33)

Therefore it is increasing in the interval (0, v̄) and decreasing on (v̄,+∞). Note that the value 1 + µ
defines the rate of decay at infinity of the power tailed distribution (5.30). Consequently∫

R
|v|rf∞(v) dv <∞ (5.34)

if and only if r < µ.
Then, owing to elementary properties of the Gamma function, it is immediate to conclude that,

provided µ > 2, the second moment of the steady state is bounded, and∫
R
f∞(v) dv = 1;

∫
R
v f∞(v) dv = 1;

∫
R
v2f∞(v) dv =

µ− 1

µ− 2
. (5.35)

It follows that, if the initial value for the Fokker–Planck equation (5.2) posed in the whole space R is
a probability density function of mean value equal to one, f∞(v) is a smooth probability density with
the same mean value, which in addition satisfies the Fokker–Planck equation (5.2) on R. If in addition
µ > 2, and the initial value has the second moment bounded, then the second moment of the solution
converges exponentially towards the second moment of f∞.

For n ∈ N+ let us define

Mn(t) =

∫
R+

vnf(v, t)dv.

Then [85]
d

dt
M2(t) = (σ − 2λ)M2(t) + 2λ. (5.36)
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Hence, the value of the second moment stays bounded when σ < 2λ (or, what is the same µ > 2), while
it diverges in the opposite case. In the former case, solving equation (5.36) we obtain

M2(t) = e(σ−2λ)t

(
M2(0) +

2λ

σ − 2λ

)
+

2λ

2λ− σ
, (5.37)

which implies

lim
t→∞

M2(t) =
2λ

2λ− σ
.

Thus, f∞(v) is the (unique) steady state of the Fokker–Planck equation with moments satisfying (5.35).
This clearly indicates that one could expect that, even starting with a probability density defined on
the whole R, but with positive mean value (equal to one in our case), the solution to the initial value
problem will converge in time towards the equilibrium (5.30). A rigorous proof of this property will be
presented in the next section.

Remark 21. It is clear that the evolution of the principal moments of the solution to the Fokker–Planck
equation (5.2) can be obtained recursively, and explicitly evaluated at the price of an increasing length of
computations.

5.3 Convergence to equilibrium

5.3.1 Fourier based metrics
As shown in Section 5.2, in reason of the positivity property, and mass and momentum conservation
of the solution of the Fokker–Planck equation (5.2), one can always assume that both the solution
and the steady state are probability densities satisfying (5.24). This remark allows to use metrics for
probability distributions to study convergence to equilibrium. This is a method that in kinetic theory
of rarefied gases goes back to [50], where convergence to equilibrium for the Boltzmann equation for
Maxwell pseudo-molecules was studied in terms of a metric for Fourier transforms (cf. also [24, 74, 89]
for further applications).

For a given constant s > 0 let Ms be the set of probability measures µ on the Borel subsets of R such
that ∫

R
|v|s µ(dv) <∞,

and let Fs be the set of Fourier transforms of probability distributions µ in Ms. A useful metric in
Fs has been introduced in [50] in connection with the Boltzmann equation for Maxwell molecules, and
subsequently applied in various contexts, which include kinetic models for wealth distribution [76]. For
a given pair of random variables X and Y distributed according to φ and ψ this metric reads

ds(X,Y ) = ds(φ, ψ) = sup
ξ∈R

|φ̂(ξ)− ψ̂(ξ)|
|ξ|s

, (5.38)

As shown in [50], the metric ds(φ, ψ) is finite any time the probability distributions φ and ψ have equal
moments up to [s], namely the entire part of s ∈ R+, or equal moments up to s − 1 if s ∈ N, and it is
equivalent to the weak∗ convergence of measures for all s > 0. Among other properties, it is easy to see
[50, 76] that, for any random variable Z independent of X and Y and for any constant c

ds(X + Z, Y + Z) ≤ ds(X,Y ),

ds(cX, cY ) = |c|sds(X,Y ).
(5.39)
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These properties classify ds as an ideal probability metric in the sense of Zolotarev [95].
Few years after the publication of [50], Baringhaus and Grübel [6], in connection with the study of

convex combinations of random variables with random coefficients, considered a Fourier metric similar
to (5.38), defined by

Ds(X,Y ) = Ds(φ, ψ) =

∫
R

|φ̂(ξ)− ψ̂(ξ)|
|ξ|1+s

dξ. (5.40)

As shown in [6], also Ds as an ideal probability metric in the sense of Zolotarev, and for 1 < s < 2 the
space F̃s ⊂ F of probability distributions satisfying (5.24) endowed with the metric Ds is complete.

It can be verified that the metrics ds and Ds are strictly connected. In particular, if r < s, Dr(φ, ψ) ≤
c(r, s)ds(φ, ψ)r/s, where c(r, s) is a positive constant which depends only on r, s.

Indeed, since |φ̂(ξ)| ≤ 1, |ψ̂(ξ)| ≤ 1, for any given positive constant R∫
|ξ|>R

|φ̂(ξ)− ψ̂(ξ)|
|ξ|1+r

dξ ≤
∫
|ξ|>R

2

|ξ|1+r
dξ =

4

rRr
.

On the other hand, on the interval |ξ| ≤ R, for s > r it holds∫
|ξ|≤R

|φ̂(ξ)− ψ̂(ξ)|
|ξ|1+r

dξ =

∫
|ξ|≤R

|φ̂(ξ)− ψ̂(ξ)|
|ξ|s

· 1

|ξ|1+r−s dξ ≤

ds(φ, ψ)

∫
|ξ|≤R

1

|ξ|1+r−s dξ = 2 ds(φ, ψ)
Rs−r

s− r
.

Therefore, for for any given positive constant R

Dr(φ, ψ) ≤ 2 ds(φ, ψ)
Rs−r

s− r
+

4

rRr
,

and, optimizing over R we obtain, for s > r

Dr(φ, ψ) ≤ c(r, s)ds(φ, ψ)r/s, (5.41)

where
c(r, s) = 22−r/s s

r(s− r)
. (5.42)

This allows to conclude that for 1 < r < 2, and for s > r, the space F̃s endowed with the metric ds is
complete.

New metrics on Fs can be introduced according to the following definition. Let p ≥ 1, and s > 0.
For a given pair of random variables X and Y distributed according to φ and ψ we define

Ds,p (X,Y ) = Ds,p (φ, ψ) =

[∫
R
|ξ|−(ps+1)|φ̂(ξ)− ψ̂(ξ)|pdξ

] 1
p

. (5.43)

The metric Ds corresponds to Ds,1, while the metric ds is obtained by taking the limit p→∞ of Ds,p.
Moreover, for any given value of the constant p, the Ds,p metric is an ideal probability metric in the
sense of Zolotarev. Proceeding as before, it is immediate to show that these metrics satisfy an inequality
similar to (5.41)

Ds,p(φ, ψ) ≤ c(p, r, s)ds(φ, ψ)r/s, (5.44)
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where

c(p, r, s) = 21−r/s
[

2s

pr(s− r)

] 1
p

. (5.45)

In addition, it can be shown that the Ds,p-metrics are strictly related each other. In fact, if p < q and
r < s, by similar methods one proves that there exists a finite explicitly computable constant such that
the following estimate holds

Dr,p(φ, ψ) ≤ c(p, q, r, s)Ds,q(φ, ψ)r/s. (5.46)

A distinguished case is obtained by fixing p = 2. Then the Ds,2 metric

Ds,2 (φ, ψ) =

[∫
R
|ξ|−(2s+1)|φ̂(ξ)− ψ̂(ξ)|2dξ

] 1
2

. (5.47)

coincides with the distance between φ and ψ in the homogeneous Sobolev space of fractional order with
negative index Ḣ−q, with q = s+ 1/2, where, for h ∈ Ḣ−q

‖h‖Ḣ−q =

∫
R
|ξ|−2q|ĥ(ξ)|2 dξ. (5.48)

5.3.2 Convergence in Fourier metric
Convergence to equilibrium of the solution to the Fokker–planck equation (5.2) in the metric Ds,2 is an
easy consequence of the result of Theorem 15. Indeed, looking at its proof it is immediate to notice that
all computations leading to formula (5.19) still holds when r < 0. Moreover, thanks to the linearity of
the Fokker–Planck equation (5.2), formula (5.19) remains valid if we substitute f(v, t) with the difference
f(v, t)− f∞(v). Hence, by setting r = −(s+ 1/2) we obtain

Ds,2 (f(t), f∞) =

[∫
R
|ξ|−(2s+1)|f̂(ξ)− f̂∞(ξ)|2dξ

] 1
2

≤

exp
{
−s

2
((1− s)σ) + 2λ)

}[∫
R
|ξ|−(2s+1)|f̂0(ξ)− f̂∞(ξ)|2dξ

] 1
2

=

exp
{
−s

2
((1− s)σ) + 2λ)

}
Ds,2 (f0, f∞).

(5.49)

Therefore, if the exponent is negative, there is exponential convergence in Ds,2-metric of the solution
f(v, t) towards the steady distribution f∞(v). This happens if

s < 1 + 2
λ

σ
= µ (5.50)

where the constant µ has been defined in (5.31), and characterizes the decay at infinity of the stationary
distribution f∞(v). Note that, since µ > 1, by taking s = 1 we obtain that convergence to equilibrium
holds for all initial values satisfying (5.24) at a rate 2λ, which results to be independent of the coefficient
of diffusion σ of the Fokker–Planck equation (5.2). Hence we have

Theorem 22. Let f0(v) be a probability density in R satisfying (5.24), and such that Ds,2(f0, f∞) is
finite for some s < µ, where µ is defined in (5.31). Then, the solution to the Fokker–Planck equation
(5.2) posed in the whole space R is exponentially converging to the equilibrium density f∞ in D2,s-metric
and the following decay holds

D2,s(f(t), f∞) ≤ exp
{
−s

2
((1− s)σ) + 2λ)

}
D2,s(f0, f∞). (5.51)
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It is immediate to verify that the rate of decay to equilibrium is maximum when s = µ/2. In this
case, provided D2,µ/2(f0, f∞) <∞

D2,µ/2(f(t), f∞) ≤ exp

{
−σµ

2

8

}
D2,µ/2(f0, f∞). (5.52)

5.3.3 The monotonicity of relative entropy
The result of Section 5.3.2 shows that, at least in a weak sense, there is exponential convergence of the
solution to the Fokker–Planck equation (5.2) posed in the whole space towards the unique steady state
f∞(v) defined in (5.30). As usual for this type of equations [49], to obtain stronger convergence results,
tipically in L1(R), a classical method is to resort to the study of the time decay of various Lyapunov
functionals involving the solution f(v, t) and the steady state.

Among these functionals, a leading rule is usually assumed by the relative Shannon entropy H(f, h),
where, for any given pair of probability densities f, h

H(f, h) =

∫
R
f(v) log

f(v)

h(v)
dv. (5.53)

However, since in our case the steady state (5.30) is supported on the positive real line, while the
initial value is in general supported on the whole real line, the Shannon entropy H(f(t), f∞) of the
solution f(v, t) to the Fokker–Planck equation (5.2) relative to the steady state f∞(v) is unbounded, and
consequently useless.

A related relative entropy which appears more appropriate to treat the present problem is the so-
called Jensen-Shannon entropy, introduced by Lin in [66]. Given the pair of probability densities f, h,
and a constant 0 < α < 1, the Jensen-Shannon entropy Hα of f relative to h is defined by

Hα(f, h) =

∫
R
f(v) log

f(v)

αf(v) + (1− α)h(v)
dv. (5.54)

Note that, since the convex combination αf + (1 − α)h of the two probability densities f and h is still
a probability density, say hα, the Jensen-Shannon entropy Hα of f relative to h is simply the Shannon
entropy of f relative to hα. The main properties of these entropies have been studied in [66] (cf. also
[49]). In particular, thanks to Lemma 27 in [49] the Jensen–Shannon entropy of two probability densities
is always bounded.

Let g(v, t) = αf(v, t)+(1−α)f∞(v). Thanks to (5.24) and (5.35), it follows that g(v, t) is a probability
density of unit mean. Moreover, since both f(v, t) and f∞(v) are solutions to the linear Fokker–Planck
equation (5.2), g(v, t) is itself a solution to (5.2). Note that for v ≤ 0, f(v)/g(v) = 1/α. Moreover, if
v > 0, f(v)/g(v) ≤ 1/α. Since for r ≥ 0 the function r log r is bounded from below, writing

Hα(f, f∞) =

∫
R

(
f(v)

g(v)
log

f(v)

g(v)

)
g(v) dv,

it is immediate to conclude that Hα(f, f∞) is well defined and bounded from above and below indepen-
dently of the regularity of the initial data.

In what follows, to avoid inessential difficulties in the forthcoming computations, we will assume that
the initial density f0(v) (and consequently the solution f(v, t)), is smooth and has enough moments
bounded.

To compute the evolution of the Jensen–Shannon entropy, let us first remark that∫ 0

−∞
f(v, t) log

f(v, t)

αf(v, t) + (1− α)f∞(v)
dv = log

1

α

∫ 0

−∞
f(v, t) dv.
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Since, according to (5.26) the mass in the negative half-line can not increase, and log 1
α > 0, the part of

Jensen–Shannon entropy relative to the domain v ≤ 0 is nonincreasing in time.
On the set (γ,+∞) we have

d

dt

∫ ∞
γ

f log
f

g
dv =

∫ ∞
γ

{
log

f

g

∂2

∂v2
(v2f)− f

g

∂2

∂v2
(v2g)

}
dv

+

∫ ∞
γ

{
log

f

g

∂

∂v
[(v − 1)f ]− f

g

∂

∂v
[(v − 1)g]

}
dv.

(5.55)

Using the identity f/g = (v2f)/(v2g), that clearly holds when v ∈ (γ,+∞), integration by parts gives
(cf. the proof of Proposition 25 in [49])∫ +∞

γ

{
log

v2f

v2g

∂2

∂v2
(v2f)− v2f

v2g

∂2

∂v2
(v2g)

}
dv =[

log
f

g

∂

∂v
(v2f)− f

g

∂

∂v
(v2g)

]+∞

γ

−
∫ +∞

γ

v2f

[
∂

∂v
log

f

g

]2

dv.

(5.56)

The contribution of the border term at infinity can be easily shown to vanish provided f(v, t) has
moments bounded of order 2 + δ for some δ > 0. Indeed, given p, q conjugate exponents, namely such
that 1/p+ 1/q = 1∣∣∣∣log

f

g

∂

∂v
(v2f)

∣∣∣∣ =

∣∣∣∣∣
(
f

g

)1/q

log
f

g

(
v2g

v2f

)1/q
∂

∂v
(v2f)

∣∣∣∣∣ ≤ Cq(v2g)1/qp

∣∣∣∣∂(v2f)1/p

∂v

∣∣∣∣ .
In the previous inequality we defined

Cq = sup

∣∣∣∣∣
(
f

g

)1/q

log
f

g

∣∣∣∣∣ ,
which is bounded in reason of the fact that f/g ≤ 1/α. Moreover, by Hölder inequality, whenever
p/q ≤ δ/2 ∫

R
(v2f)1/p dv =

∫
R

(v2f)1/p(1 + v2)1/q(1 + v2)−1/q dv ≤(∫
R
v2(1 + v2)p/qf dv

)1/p(∫
R

(1 + v2)−1 dv

)1/q

≤ C.

Consequently, as soon as p/q ≤ δ/2, both the smooth functions v2g and (v2f)1/p are integrable, and

lim
v→∞

(v2g)1/q

∣∣∣∣∂(v2f)1/p

∂v

∣∣∣∣ = 0. (5.57)

Analogous arguments can be used to prove that

lim
v→∞

f

g

∂

∂v
(v2g) = 0. (5.58)

On the other extremal point, the choice p = q = 2 gives∣∣∣∣log
f

g

∂

∂v
(v2f)

∣∣∣∣ ≤ 2C2(v2g)1/2

∣∣∣∣∂(vf1/2)

∂v

∣∣∣∣ = 2C2

∣∣∣∣vg1/2

(
v
∂f1/2

∂v
+ f1/2

)∣∣∣∣ .
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Then, considering that both f and g are smooth, and f1/2 ∈ L2(R), one obtains

lim
v→0

(v2g)1/2

∣∣∣∣∂(v2f)1/2

∂v

∣∣∣∣ = 0, (5.59)

and

lim
v→0

f

g

∂

∂v
(v2g) = 0. (5.60)

Let us consider now the second integral into (5.55). Integrating by parts first on the interval (γ, 1− γ),
and using the identity f/g = (v − 1)f/[(v − 1)g] we obtain∫ 1−γ

γ

(
log

f

g

∂

∂v
[(v − 1)f ]− f

g

∂

∂v
[(v − 1)g]

)
dv =[

log
f

g
(v − 1)f − (v − 1)f

]1−γ

γ

=

[
f

g
log

f

g
(v − 1)g − (v − 1)f.

]1−γ

γ

(5.61)

Hence, since the quantity (f/g) log(f/g) is uniformly bounded from above and below

lim
v→1

(
f

g
log

f

g
(v − 1)g − (v − 1)f

)
= 0.

Moreover, since

lim
v→0

f(v)

g(v)
=

1

α
,

we obtain

lim
v→0

(
log

f(v)

g(v)
(v − 1)f(v)− (v − 1)f(v)

)
= f(0) (1 + logα) .

This implies ∫ 1

0

(
log

f

g

∂

∂v
[(v − 1)f ]− f

g

∂

∂v
[(v − 1)g]

)
dv = −f(0) (1 + logα)

Similar computations then give∫ +∞

1

(
log

f

g

∂

∂v
[(v − 1)f ]− f

g

∂

∂v
[(v − 1)g]

)
dv = 0.

Grouping the various pieces, we conclude that the Jensen–Shannon entropyHα(f(t), f∞) is nonincreasing
in time. We proved

Theorem 23. Let f0(v) be a smooth probability density in R satisfying (5.24), and such that its moments
up to 2+δ are finite for some δ > 0. Then, for any 0 < α < 1, the Jensen–Shannon entropy Hα(f(t), f∞)
of the solution to the Fokker–Planck equation (5.2) relative to the equilibrium solution is monotonically
nonincreasing, and the following decay holds

Hα(f(t), f∞) = Hα(f0, f∞)−
∫ t

0

f(0, s) ds−
∫ t

0

∫ +∞

0

v2f(v, s)

[
∂

∂v
log

f(v, s)

g(v, s)

]2

dv ds. (5.62)
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5.3.4 The monotonicity of Hellinger distance
A second interesting functional that has been shown to be monotonically decreasing along the solution
to Fokker–Planck type equations [49] is the Hellinger distance. For any given pair of probability densities
f and h defined on R, the Hellinger distance dH(f, h) is [95]

dH(f, h) =

(∫
R

(√
f(v)−

√
h(v)

)2

dv

) 1
2

. (5.63)

In what follows, in analogy with the definition of Jensen-Shannon entropy, defined in (5.54), we will
define, for 0 < α < 1 the α-Hellinger distance of f and h by

dH,α(f, h)2 =

∫
R

(√
f(v)−

√
αf(v) + (1− α)h(v)

)2

dv, (5.64)

and we will study the time-evolution of the square of the α-Hellinger distance between the solution
f(v, t) of the Fokker–Planck equation (5.2), and the equilibrium density f∞(v), namely the square of the
Hellinger distance between f(v, t) and g(v, t) = αf(v, t) + (1− α)f∞(v).

As in Section 5.3.3, we will assume that the initial density f0(v) (and consequently the solution
f(v, t)), is smooth and has enough moments bounded. Moreover, since most of the computations that
follow are analogous to the computations of Section 5.3.3, we will only outline the differences.

To compute the the evolution of the square of the α-Hellinger distance, let us first remark that∫ 0

−∞

(√
f(v)−

√
αf(v) + (1− α)f∞(v)

)2

dv =
(
1−
√
α
)2 ∫ 0

−∞
f(v, t) dv.

Therefore, since according to (5.26) the mass in the negative half-line can not increase, and (1−
√
α)

2
> 0,

the part of the square of the α-Hellinger distance relative to the domain v ≤ 0 is nonincreasing in time.
On the set (γ,+∞) we have

d

dt

∫ ∞
γ

(
√
f −√g)2 dv =

∫ ∞
γ

{(
1−

√
g

f

)
∂2

∂v2
(v2f) +

(
1−

√
f

g

)
∂2

∂v2
(v2g)

}
dv

+

∫ ∞
γ

{(
1−

√
g

f

)
∂

∂v
[(v − 1)f ] +

(
1−

√
f

g

)
∂

∂v
[(v − 1)g]

}
dv.

(5.65)

Using the identity f/g = (v2f)/(v2g), that clearly holds when v ∈ (γ,+∞), integration by parts gives
(cf. the proof of Proposition 25 in [49])∫ +∞

γ

{(
1−

√
v2g

v2f

)
∂2

∂v2
(v2f) +

(
1−

√
v2f

v2g

)
∂2

∂v2
(v2g)

}
dv =

[(
1−

√
v2g

v2f

)
∂

∂v
(v2f) +

(
1−

√
v2f

v2g

)
∂

∂v
(v2g)

]+∞

γ

− 1

2

∫ +∞

γ

v2
√
fg

[
∂

∂v
log

f

g

]2

dv.

(5.66)

Proceeding as in the proof of monotonicity of Jensen-Shannon entropy, the contribution of the border
term at infinity in (5.66) can be easily shown to vanish provided f(v, t) possesses moments bounded of
order 3+δ for some δ > 0. Indeed, it is enough to follow the proof of Section 5.3.3 by choosing p = q = 2.
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On the other extremal point, considering that both f and g are smooth, and f1/2 ∈ L2(R), one
obtains

lim
v→0

(v2g)1/2

∣∣∣∣∂(v2f)1/2

∂v

∣∣∣∣ = 0, (5.67)

and, since f/g is bounded,

lim
v→0

√
f

g

∂

∂v
(v2g) = 0. (5.68)

Let us consider now the second integral into (5.65). Integrating by parts first on the interval (γ, 1− γ),
and using the identity f/g = (v − 1)f/[(v − 1)g] we obtain

∫ 1−γ

γ

((
1−

√
g

f

)
∂

∂v
[(v − 1)f ] +

(
1−

√
f

g

)
∂

∂v
[(v − 1)g]

)
dv =

[
(v − 1)(f + g)− 2(v − 1)

√
fg

]1−γ

γ

.

(5.69)

Hence
lim
v→1

(
(v − 1)(f + g)− 2(v − 1)

√
fg
)

= 0,

and
lim
v→0

(
(v − 1)(f + g)− 2(v − 1)

√
fg
)

= −f(0)
(
1−
√
α
)2
.

This implies ∫ 1

0

(
(v − 1)(f + g)− 2(v − 1)

√
fg

)
dv = f(0)

(
1−
√
α
)2
.

Similar computations then give∫ +∞

1

(
(v − 1)(f + g)− 2(v − 1)

√
fg

)
dv = 0.

Grouping the various pieces, we conclude that the square of the α-Hellinger distance is nonincreasing in
time. We have

Theorem 24. Let f0(v) be a smooth probability density in R satisfying (5.24), and such that its moments
up to 3 + δ are finite for some δ > 0. Then, for any 0 < α < 1, the α-Hellinger distance dH,α(f(t), f∞)
between the solution to the Fokker–Planck equation (5.2) and the equilibrium solution is monotonically
nonincreasing, and the following decay holds

dH,α(f(t), f∞) = dH,α(f0, f∞)− 1

2

∫ t

0

∫ +∞

0

v2
√
f(v, s)g(v, s)

[
∂

∂v
log

f(v, s)

g(v, s)

]2

dv ds. (5.70)

Note that, at difference with the Jensen–Shannon entropy, the behavior of the solution at the point
v = 0 does not enter into the expression of the entropy production.

As we shall see in the next Section, the monotonicity of Hellinger distance can coupled with the
monotonicity of Jensen–Shannon entropy to obtain decay without rate of some α-Hellinger distance
towards zero.
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5.3.5 The decay of the α-Hellinger distance
In general, precise lower bounds for the entropy production of the Jensen–Shannon entropy are difficult
to obtain. The main obstacle comes from the fact that, at difference with the case treated in [85], where
the support of the initial value coincides with the support of the steady state a Chernoff-type inequality
[30, 62, 49] connecting the relative entropy production (5.62) found in Theorem 23 with the Hellinger
distance (5.64) ( cf. [59, 49]) is not available here. Nevertheless, we can still resort to Chernoff inequality
to obtain a convergence result in α-Hellinger distance. Thanks to the identity

f

(
∂

∂v
log

f

g

)2

= f

(
1

g

∂

∂v
g − 1

f

∂

∂v
f

)2

=
(1− α)2

α2
g

(
1

g

∂

∂v
g − 1

f∞

∂

∂v
f∞

)2
f2
∞
fg

, (5.71)

and to the upper bound

f =
1

α
· αf ≤ 1

α
g,

the integral part of the entropy production of the Jensen–Shannon entropy can be bounded as∫ ∞
0

v2f(v, s)

[
∂

∂v
log

f(v, s)

g(v, s)

]2

dv =

(1− α)2

α2

∫ ∞
0

v2g(v, s)

[
∂

∂v
log

g(v, s)

f∞(v)

]2
f∞(v)2

f(v, s)g(v, s)
dv ≥

(1− α)2

α

∫ ∞
0

v2g(v, s)

[
∂

∂v
log

g(v, s)

f∞(v)

]2(
f∞(v)

g(v, s)

)2

dv =

4
(1− α)2

α

∫ ∞
0

v2f∞(v)

[
∂

∂v

√
g(v, s)

f∞(v)

]2 (
f∞(v)

g(v, s)

)2

dv =

4
(1− α)2

α

∫ ∞
0

v2f∞(v)

[
∂

∂v

√
f∞(v)

g(v, s)

]2

dv.

(5.72)

For the last equality in (5.72) we refer to [49, 59].
We can now apply Chernoff inequality with weight, in the form proven in [49].

Theorem 25 ([49]). Let X be a random variable distributed with density f∞(v), v ∈ I ⊆ R, where the
probability density function f∞ satisfies the differential equality

∂

∂v
(κ(v)f∞) + (v −m) f∞ = 0, v ∈ I. (5.73)

If the function φ is absolutely continuous on I and φ(X) has finite variance, then

V ar[φ(X)] ≤ E
{
κ(X)[φ′(X)]2

}
(5.74)

with equality if and only if φ(X) is linear in X.

We apply Theorem 25 with I = R+, κ(v) = σ/(2λ)v2, and density f∞(v), which is such that (5.73)
holds in R+. Moreover

φ(v) =

√
f∞(v)

g(v)
.
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By (5.74) ∫ ∞
0

κ(v)f∞(v)

[
∂

∂v

√
f∞(v)

g(v, s)

]2

dv ≥

∫ ∞
0

[√
f∞(v)

g(v, s)
−
∫ ∞

0

√
f∞(w)

g(w, s)
f∞(w) dw

]2

f∞(v) dv =

‖h(s)‖L1

[
1−

(∫ ∞
0

√
h̄(v, s)f∞(v)

)2
]
.

(5.75)

In (5.75) we defined

h(v, s) =
f∞(v)2

g(v, s)
, (5.76)

and with h̄(v, s) the probability density on R+ given by

h̄(v, s) =
h(v, s)

‖h(s)‖L1

. (5.77)

Note that, since by definition f∞(v)/g(v, s) ≤ 1/(1− α), and by Cauchy–Schwartz inequality

1 =

∫ ∞
0

f∞(v) dv =

∫ ∞
0

f∞(v)√
g(v, s)

√
g(v, s) dv ≤ ‖h(s)‖1/2L1

(∫ ∞
0

g(v, s) dv

)1/2

,

for all s ≥ 0 it holds

1 ≤ ‖h(s)‖L1 ≤
1

1− α
. (5.78)

On the other hand, as proven in [59], for any given pair of probability densities f, g

1−
(∫ ∞

0

√
f(v)g(v) dv

)2

≥ 1

2
dH(f, g)2. (5.79)

In conclusion we obtain that on R+ the entropy production of the Jensen–Shannon entropy satisfies the
lower bound ∫ ∞

0

v2f(v, s)

[
∂

∂v
log

f(v, s)

g(v, s)

]2

dv ≥ ασ

4(1− α)2λ
dH(h(s), ‖h(s)‖L1

f∞(s))2. (5.80)

Note that in (5.80) the coefficient is independent of time. Substituting into (5.62), (5.80) implies that∫ ∞
0

dH(h(s), ‖h(s)‖L1
f∞(s))2 ds ≤ ασ

2(1− α)2λ
Hα(f0, f∞).

Consequently, the sequence {dH(h(t), ‖h(t)‖L1f∞(t))}t≥0 contains a subsequence
{dH(h(tn), ‖h(tn)‖L1f∞(tn))}n≥0 such that, as n→∞, tn →∞, and

lim
n→∞

dH(h(tn), ‖h(tn)‖L1f∞) = 0. (5.81)
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Now, consider that, for any given nonnegative L1-functions p(v) and q(v), v ∈ R it holds∫
R
|p(v)− q(v)| dv =

∫
R

∣∣∣√p(v)−
√
q(v)

∣∣∣ · ∣∣∣√p(v) +
√
q(v)

∣∣∣ dv ≤[∫
R

(√
p(v)−

√
q(v)

)2

dv

]1/2

·
[∫

R

(√
p(v) +

√
q(v)

)2

dv

]1/2

≤

dH(p, q)

[
2

∫
R

(p(v) + q(v)) dv

]1/2

=
√

2 dH(p, q) (‖p‖L1
+ ‖q‖L1

)
1/2

.

(5.82)

Hence, using (5.78) we obtain∫
R
|h(tn)− ‖h(tn)‖L1

f∞| dv ≤
2

1− α
dH(h(tn), ‖h(tn)‖L1

f∞),

namely the L1-convergence to zero of the sequence {h(tn)− ‖h(tn)‖L1
f∞}n≥0. This implies that we can

extract from the above sequence of times a subsequence, still denoted by tn, such that on this subsequence

h(v, tn)− ‖h(tn)‖L1
f∞(v)→ 0 a.s. in R+.

Since f∞(v) > 0, v ∈ R+, it holds

f∞(v)

‖h(tn)‖L1
g(v, tn)

→ 1 a.s. in R+,

or, what is the same
f∞(v)

‖h(tn)‖L1

− g(v, tn)→ 0 a.s. in R+.

Integrating on R+, and recalling that by Theorem 22∫ ∞
0

g(v, tn) dv →
∫ ∞

0

f∞(v) dv = 1,

shows that
lim
n→∞

‖h(tn)‖L1 → 1. (5.83)

The validity of (5.81) and (5.83) then imply

lim
n→∞

dH(h(tn), f∞) = 0. (5.84)

Indeed
dH(h(tn), f∞)2 = dH(h(tn), ‖h(tn)‖L1

f∞)2+

1− ‖h(tn)‖L1
+ 2

(
‖h(tn)‖L1

f∞)1/2 − 1
) ∫ ∞

0

√
hf∞ dv,

(5.85)

and ∫ ∞
0

√
hf∞ dv =

∫ ∞
0

√
f∞
g(tn)

f∞ dv ≤ 1√
1− α

,
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Last, consider that

dH(h(tn), f∞)2 =

∫ ∞
0

(
f∞√
g(tn)

−
√
f∞

)2

dv =∫ ∞
0

f∞
g(tn)

(√
g(tn)−

√
f∞

)2

dv ≥
∫
{f∞≥g(tn)}

(√
g(tn)−

√
f∞

)2

dv.

(5.86)

Thanks to (5.82), from (5.86) we obtain

dH(h(tn), f∞) ≥ 1

2

∫
{f∞≥g(tn)}

(f∞ − g(tn)) dv. (5.87)

Taking into account that both f∞ and g(tn) are probability density functions, it holds∫
{f∞≥g(tn)}

(f∞ − g(tn)) dv =
1

2
‖g(tn)− f∞‖L1

. (5.88)

Also, since for a > b > 0
(a− b)2 ≤ a2 − b2,

one obtains easily the inequality

dH(g(tn), f∞)2 ≤ ‖g(tn)− f∞‖L1 . (5.89)

Grouping all these inequalities we finally get

dH(h(tn), f∞) ≥ 1

4
‖g(tn)− f∞‖L1 ≥

1

4
dH(g(tn), f∞)2. (5.90)

It follows that, along the subsequence {tn}n≥0

lim
n→∞

dH(g(tn), f∞) = lim
n→∞

dH,α(f(tn), f∞) = 0 (5.91)

However, in view of Theorem 24, the sequence dH,α(f(t), f∞), t ≥ 0 is monotonically nonincreasing.
This implies that the whole sequence converges to zero as time goes to infinity.

Theorem 26. Let f0(v) be a smooth probability density in R satisfying (5.24), and such that its moments
up to 3 + δ are finite for some δ > 0. Then, for 0 < α < 1, the solution to the Fokker–Planck equation
(5.2) converges towards the equilibrium density f∞ in α-Hellinger distance.

Theorem 26 has important consequences. First, in view of the inequality

‖f − g‖L1 ≤ 2dH(f, g),

that holds for any pair of probability densities f, g, we get, for 0 < α < 1

(1− α)

∫
R
|f(v)− g(v)| dv =

∫
R
|f − (αf(v) + (1− α)g(v))| dv ≤ dH,α(f, g).

Hence, under the same conditions of Theorem 26 the convergence to zero in α-Hellinger distance implies
the L1-convergence of the solution to the Fokker–Planck equation (5.2) towards its equilibrium density.

Moreover, as proven in [85], Lemma 3.3, the condition of smoothness of the initial value can be
dropped as soon as convergence is restricted to L1.

Corollary 27. Let f0(v) be a probability density in R satisfying (5.24), and such that its moments up
to 3 + δ are finite for some δ > 0. Then, the solution to the Fokker–Planck equation (5.2) converges
towards the equilibrium density f∞ in L1.
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5.4 Conclusions
The Fokker–Planck equation (5.2) studied in this paper appears as a useful and consistent model to
study the evolution in time of the distribution of wealth in a population, even in the realistic case in
which part of the agents can have debts. If the total mean wealth of the population is positive, it is
shown that the unique equilibrium density, supported in half-line of positive wealths, is still attracting
any density, with part of the mass located on the negative half-line. At difference with the case studied
in [85], where convergence to the equilibrium density has been shown in L1-norm, here convergence with
rate has been proven only in terms of a Fourier-based metric, equivalent to the weak∗-convergence of
measures. A rigorous study of the time evolution of relative entropy functionals, Jensen–Shannon entropy
[66] and α-Hellinger distance, shows that these functionals are monotonically nonincreasing in time, and
can be coupled to furnish convergence without rate in α-Hellinger distance and consequently in L1. A
challenging problem which remains open is to be able to quantify the rate of decay of the solution with
respect to the L1-norm.
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Introduction
As briefly introduced above, the word Econophysics arises from the merge between Economics and
Physics. Unexpectedly, its fields off application are various and not only related to Economics. Histori-
cally speaking, economical phenomena have been the first to be investigated by Econophysics. However,
in the last three decades new econophysical models have been developed for human phenomena, such
as opinion formation and knowledge development. One of the first work in this field was presented by
S.Galam et al. in 1982 [52], which used the word Sociophysics in this context. In this work, they describe
the use of physics techniques in the explanation of collective behaviour of worker in a plant, which is
based on the analysis of a discomfort function. The model is characterized by the presence of a critical
point in which the system can go from an "individual phase" to a "collective phase". The collective phase
is split into two regions, a "work state" and a "strike state". Near to the critical point, either changes
in the parameters or a perturbation of the system can cause relevant changes in the state of the plant.
The authors in [52] individuated the existence of metastable states of equilibruim. Indipendently from
its real possibility of application, this model presents an intresting approach. Starting from this first
paper, in the last three decades Galam produced a huge number of works in the field of Sociophysics.
I refer to [51] and its reference. In [51], the author underlines the connections between works that are
related to very different problems, such as political and social issues. Furthermore, he underlines how
the study of sociophysics models leads to develop new results in statistical mechanics. Despite of its field
of application, we can consider Sociophysics as a branch of Econophysics.
Fokker-Plack equation plays an important role also in the application of Econophysics to social sciences.
In this context, it is possible to recall, as examples, opinion formation and knowledge development mod-
els. A Fokker-Planck description of opinion formation is in [88]. In this model, the opinion of an agent is a
compactly supported variable, i.e. v ∈ [−1, 1]. In [88], the author assumes that it is not possible to cross
the boundaries of the domain. Fokker-Planck equation arises from the balance between the compromise
effects and the tendency to conserve an opinion, that is higher if the opinion is more extreme. Due to
this assumption, the diffusion terms depends on the absolute value of the opinion. The most important
goals of this work are to obtain a closed form for the evolution of the moments and to show a rigorous
proof of the validity of limit procedure to obtain a Fokker-Planck equation in a compact support. This
work represents an important starting point for the analysis of the model when the domain is bounded
(see also Section 6.4 for its use).
Among the problems of interest of Econophysics, we can include the rating system of competitive sports,
such as chess or football. In this field, one of the most important models is the Elo Model, introduced
by Arpad Elo in 1950 for chess players [44]. The next chapter is the transposition of a paper that I
wrote toghether with Professor B.Düring and Dr. Marie-Therese Wolfram [40]. In this work there is a
generalization of of the Elo Model. In section 6.2, I will add a brief presentation of the work of Junca
and Jabin [58], that represents the first rigorous mathematical analysis of the Elo Model.
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Chapter 6

On a Kinetic Elo rating model for
players with dynamical strength

6.1 Introduction
In 1950 the Hungarian physicist Arpad Elo developed a rating system to calculate the relative skill level
of players in competitor versus competitor games, see [44]. The Elo rating system was initially used in
chess competitions, but was quickly adopted by the US Chess Federation as well as the World Chess
Federation, and the National Football Foundation. In June 2018, FIFA announced switching their world
football ranking to an Elo system, following two years of reviews and studies of different alternatives.
The Elo rating system assigns each player a rating, which is updated according to the wins and losses as
well as the difference of the ratings. It is hoped that the rating converges to the relative strength level
and is a valid measure of the player’s skills. However, assigning an initial rating to a new player is a
delicate issue, since it is not clear how an inaccurate initial rating influences the latter performance. Elo
himself tried to validate the model using computational experiments, while Glickman used statistical
techniques to understand the dynamics [54]. The first rigorous proof of convergence of the ratings to the
individual strength was presented by Junca and Jabin in [58], who introduced a continuous version of
the Elo rating system. In this continuous model every player is characterised by its intrinsic strength ρ
and their rating R. The intrinsic strength is fixed in time. If two players with rating Ri and Rj meet in
a game, their ratings after the game, R∗i and R∗j are given by

R∗i = Ri +K(Sij − b(Ri −Rj)), (6.1a)
R∗j = Rj +K(−Sij − b(Rj −Ri)). (6.1b)

In (6.1) the random variable Sij is the score result of the game, it takes the value 1 if player i wins and
the value −1 if player j wins. The mean score (i.e. expected value of Sij) is assumed to be equal to
b(ρi − ρj), hence the result of each game depends on the difference of the player’s intrinsic strengths.
The rating of each player in- or decreases proportionally with the outcome of the game, relative to the
predicted mean score b(Ri − Rj). The speed of the adjustment is controlled by the constant parameter
K. The function b is chosen in such a way that extreme differences are moderated; a typical choice is

b(z) = tanh(cz), (6.2)

where c is a suitably chosen positive constant. This choice weighs the impact of the outcome with respect
to the relative rating. If a player with a high rating wins a game against a player with a low rating, the
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players’ ratings change little. However, if the player with the low rating wins against a the highly rated
player, the ratings are strongly adjusted.

Junca and Jabin proposed the following equation to describe the evolution of the distribution of
players f = f(r,R, t) with respect to their strengths and ratings

∂tf(ρ, r, t) + ∂r(a(f)f) = 0 with a(f) =

∫
R2

w(r − r′)(b(ρ− ρ′)− b(r − r′))f(t, r′, ρ′)dρ′dr′. (6.3)

This equation describes a more general setup than in the microscopic equations. Here two players only
interact according to the interaction rate function w, which depends on the difference of their ratings.
The function w is assumed to be an even and nonnegative. Junca and Jabin analysed the long time
behaviour of solutions to (6.3). They proved that in the case w = 1, a so-called ‘all-play-all’ tournament,
the ratings converge exponentially fast to the intrinsic strength. In the case of local interactions, that
is individuals only play if their ratings are close, the ratings may not converge to the intrinsic strength
and the rating fails to give a fair representation of the player’s strength distribution.

Rather recently Krupp [64] proposed an extension of the model by Jabin and Junca [58]. In her
model not only the rating, but also the intrinsic strength changes as players continuously compete in
games. In particular, she assumes that the intrinsic strength ρ changes in every game according to

ρ∗i = ρi + ZijK̃, (6.4a)

ρ∗j = ρj + ZijK̃, (6.4b)

where K̃ is a positive constant and Zij takes the value z1 ∈ N and z2 ∈ N depending on which player
wins. If z1 < z2 the looser benefits more from the game, while if z1 > z2 the winner learns more. If
z1 = z2 both learn the same. The corresponding equation for the distribution of the players f = f(r, ρ, t)
with respect to their strength and rating reads as

∂tf(r, ρ, t) + ∂r(a(f)f) + ∂ρ(c(f)f) = 0, (6.5)

where

a(f) =

∫
R2

w(r − r′)[b(ρ− ρ′)− b(r − r′)]f(r′, ρ′, t)dρ′dr′

and

c(f) =

∫
R2

w(r − r′)[z1

2
(b(ρ− ρ′) + 1)− z2

2
(b(r − r′)− 1)]f(r′, ρ′, t)dρ′dr′.

Krupp analysed the qualitative behaviour of solutions to (6.5). Due to the continuous increase in strength,
the ratings increase in time. Therefore, an appropriately shifted problem was studied, in which the ratings
converged exponentially fast to the intrinsic strength in the case w = 1.

In this paper we propose a more general approach to describe how a player’s strength changes in
encounters. We assume that individuals benefit from every game and increase their strength because
of these interactions. However, the extent of the benefit depends on several factors – first, players with
a lower ratings benefit more. Second, the stronger the opponent, the more a win pushes the intrinsic
strength. Furthermore, the individual performance changes due to small fluctuations, accounting for
variations in the mental strength or personal fitness on a day. Based on the microscopic interaction laws
we derive the corresponding kinetic Boltzmann type and limiting Fokker-Planck equations and analyse
their behaviour. In the case of no diffusion we can show that the strength and ratings of the appropriately
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shifted PDE converge, while we observe the formation of non-measure valued steady states in the case
of diffusion. We illustrate our analytic results with numerical simulations of the kinetic as well as the
limiting Fokker-Planck equation. The simulations give important insights into the dynamics, especially
in situations where we are not able to proof rigorous results.

The proposed interaction laws are a first step to develop and analyse more complicated rating models
with dynamic strength. The next developments of the model should include losses in the player’s strength
to ensure that the strength stays within certain bounds.

The kinetic description of the Elo rating system gave novel insights into the qualitative behaviour
of solutions. In the last decades kinetic models have been used successfully to describe the behaviour
of large multiagent systems in socio-economic applications. In all these applications interactions among
individuals are modeled as ‘collisions’, in which agents exchange goods [34, 36, 21], wealth [41, 38, 11, 33],
opinion [88, 18, 37, 75, 2, 43] or knowledge [77, 22]. For a general overview on interacting multi-agent
systems and kinetic equations we refer to the book of Pareschi and Toscani [76].

This paper is organised as follows. We introduce a generalization of the kinetic Elo model with
variable intrinsic strength due to learning in Section 6.3. In Section 6.4 we derive the corresponding
Fokker-Planck type equation as the quasi-invariant limit of the Boltzmann type model. Convergence
towards steady states of a suitable shifted Fokker-Planck model is analysed in Section 6.5. We conclude
by presenting various numerical simulations of the Boltzmann and the Fokker-Planck type equation in
Section 6.6.

6.2 Previous result on Elo model

The first rigouros result on Elo model was obtained by P.E. Jabin and S.Junca in 2014 [58]. In this work,
the authors assume that each player i has a constant intrinsic strength ρi. A rating system is valid if,
after a certain number of matches, his ranking Ri converges (or is close enough) in some sense to the
strength. The authors of [58] considered two different cases:

(i) "All meet all case", in which every match between two players is possible;

(ii) "Local interactions", in which a match between two players is allowed only if their rankings are
close enough.

In the case (i), the function w(ρ), that appears in (6.3), is strictly positive for each ρ ∈ R and for
simplicity we can assume without loss of generality w ≡ 1. The case (ii) is characterized by a choice of
a compactly supported w(·), as, for example,

w > 0 on (−1, 1), w(ρ) = 0 ∀|ρ| ≥ 1.

The derivation of the model in [58] is different from the limit procedure of Chapters 4 and 5 and it is
beyond the scope of this section.
A first analysis in [58] shows some properties of the solution of (6.3), such as mass and mean preservation.
Among these, the preservation of the average value of ranking is equivalent to the invariance with respect
to traslation. This result allows to normalize these invariants,∫

R2

f(ρ, r, t)dρdr = 1,∫
R2

ρf(ρ, r, t)dρdr =

∫
R2

rf(ρ, r, t)dρdr = 0.
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In order to study the convergence towards the equilibrium, the authors in [58] introduced the family of
entropies

Eφ(t) =

∫
R2

φ(ρ− r)f(ρ, r, t)dρdr,

where φ is a convex function. By direct computation, due to the symmetry of b(·), the previous functional
decays in time if φ ∈ C1(R), i.e.

d

dt
Eφ(t) ≤ 0, ∀φ ∈ C1(R). (6.6)

It is useful to underline that the rate of decay depends on the choice of the function w(·). Anyway,
inequality (6.6) allows to prove a uniform control in time of the compact support of the solution.

Corollary 28. [58] If f0(ρ, r) is compactly supported in [−α, α]×[−β, β], then for all t, (ρ, r) 7→ f(ρ, r, t)
is compactly supported in [−α, α]× [β − 2α, β + 2α].

Among all possible choices of φ(·), the most relevant for further analysis is φ(ρ− r) = (ρ− r)2, which
allows to define the Energy E(t) as

E(t) =

∫
R2

(ρ− r)2f(ρ, r, t)dρdr.

Results on "All meet all" case.
The aim of the authors in [58] was to prove that with the choice w > 0 the solution converge exponentially
to a steady state of the form f∞(ρ, r) = h(ρ)δ(ρ − r). Let us assume that w(·) is smooth enough, i.e.
w ∈ C(R) ∩ L∞(R), and f0(ρ, r) is compactly supported. Let us indicate with K the uniformly support
obtained in corollary 28. Due to hypotesis on w(·), infK w ≥ w > 0. By direct computation, it results

d

dt
E(t) = −

∫
R4

(r − r′ + ρ− ρ′)(b(ρ− ρ′)− b(r − r′))f ′fdρ′dr′dρdr,

where f = f(ρ, r, t) and f ′ = f(ρ′, r′, t). Since b is non decreasing and due to the assumption on w, we
obtain

d

dt
E(t) ≤ −Cw

∫
R2

|ρ− r|2f(ρ, r, t)dρdr.

The following results follows from the previous computation by using Gronwall’s inequality.

Proposition 29. [58] If f0(ρ, r) is compactly supported and w is positive everywhere then the energy
associated to the solution of (6.3) decays exponentially

E(t) ≤ E(0)exp{−2Cwt},

where C depends on the support of f0 and w depends on the support of f0 and the function w(·).

Propostion 29 implies that, for t→ +∞, f(ρ, r, t)→ f∞(ρ, r) and the support of f∞ is the diagonal
ρ = r. Hence, the steady state could be written as

f∞(ρ, r) = h(ρ)δ(ρ− r).

Furthermore, the total intrinsic strength is preserved, i.e.∫
R
f(ρ, r, t)dr =

∫
R
f0(ρ, r)dr,
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and this equality is valid also in the limit t→ +∞. So, the unique possibility is that

h(ρ) =

∫
R
f0(ρ, r)dr.

The steady state is unique and well identified. The authors also computed directly the rate of convergence
to equilibrium state in the norm W−1,1, defined as

‖f‖W−1,1 = sup
‖φ‖W1,∞≤1

∫
R2

φ(ρ, r)f(ρ, r)dρdr,

and they estabilished an exponential rate that depends on energy decay

‖f − f∞‖W−1,1 ≤
√
E(t).

All previous results suggest that the rating of each player in the Elo system can precisely describe his
strength. However, the exponential rate of convergence indicates that a good estimation is achieved in a
short time.

Result on "Local interactions" case.
In the case of "Local interactions", an entropy or energy argument does not perform well as in the "All
meet all" case, properly because in this case infK w ≥ w > 0. Hence, the convergence to an equilibrium
along the diagonal is obtained with a very different strategy. The details of the proof are beyond the
scopes of this section, thus I will report only a sketch. The authors of [58] assumed that the interaction
function is regular enough, i.e. w ∈ C2(R2). They also assumed that f0 is compactly supported and
indicated with Rρ ×Rr the uniform support of the solution. Their analysis starts with the study of the
properties of the set Ω ⊂M1(Rρ×Rr) of all the (weak*-)limit of a certain sequence of measures. Firstly,
the authors proved that each element f of the set Ω is a sum of probability measures, supported in a
line of the plane ρ− r, i.e.

f(ρ, r) =

n∑
i=1

δ(r − (ρ+ ci))hi(ρ), ∀f ∈ Ω.

Furthermore, in each strip Rρ × (r − 1, r + 1) there is at most one i such that the previous equivalence
holds. Secondly, the authors proved that, for this function, the entropy is constant in time, i.e.

d

dt
Eφ(t) = 0, ∀f ∈ Ω,∀φ ∈ C2(R) convex.

It also implies that ∫
R
f(ρ+ r, r)dρ = g∞(r).

These results identify the structure of the limit probability measure of set Ω. Furthermore, the support
of the possible g∞(r), that depends on the initial data, is an attractive set for the total mass. In other
words, the mass at time t > T is concentrated along a tubular neighborhood of all the diagonals. The
uniqueness of the element f ∈ Ω completes the proof. We can summarize the results in the following

Theorem 3. [58] Assume that w ∈ C2(R) and that f0(ρ, r) is compactly supported then there exists
distinct constants c1, . . . , cn and M1(R) measures h1, . . . , hn with disjoint supports s.t.

f(ρ, r, t)→
n∑
i=1

hi(ρ)δ(r − ρ− ci) in weak-* M1(R2), as t→ +∞.
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Thus, the authors in [58] concluded that, in the "Local interactions" case, if two players interact then
they must have the same constant ci. Moreover, the Elo system does not perform well if there is a gap
in the initial distribution, that means that a group of players is isolated.

6.3 An Elo model with learning

In this section we introduce an Elo model, in which the rating and the intrinsic strength of the players
change in time. The dynamics are driven by similar microscopic binary interactions as in the original
model by Jabin and Junca [58] and Krupp [64]. We state the specific microscopic interaction rules in
each encounter and derive the corresponding limiting Fokker-Planck equation.

6.3.1 Kinetic model

We follow the notation introduced in Section 6.1 and denote the individual strength by ρ and the rating
by R. If two players with ratings Ri and Rj meet, their ratings and strength after the game are given
by:

R∗i = Ri + γ(Sij − b(Ri −Rj)), (6.7a)
R∗j = Rj + γ(−Sij − b(Rj −Ri)), (6.7b)

ρ∗i = ρi + γh(ρj − ρi) + η, (6.7c)
ρ∗j = ρj + γh(ρi − ρj) + η̃. (6.7d)

The interaction rules are motivated by the following considerations: player ratings change with the
outcome of each game (as in the original model (6.1) proposed by Jabin and Junca [58]). The random
variable Sij corresponds to the score of the match and depends on the difference in strength of the two
players. We assume that Sij takes the values ±1 with an expectation 〈Sij〉 = b(ρi − ρj). Note that one
could also assume that Sij is continuous, for example Sij ∈ [−1,+1]. The constant parameter γ > 0
controls the speed of adjustment.

The variables η and η̃ are independent identically distributed random variables with mean zero and
variance σ2 which model small fluctuations due to day-linked performance in the mental strength or
personal fitness.

The function h describes the learning mechanism. We assume that h takes the following form,

h(ρj − ρi) =
[
αh1(ρj − ρi) + βh2(ρj − ρi)

]
. (6.8)

The function h1 corresponds to the increase in knowledge or skills because of interactions. We assume
that each player learns in a game, however players with a lower strength benefit more. A possible choice
for h1, which we shall use throughout this paper, is

h1(ρj − ρi) = 1 + b(ρj − ρi), (6.9)

where b is given by (6.2). Note that b is an odd function. Since h1 is positive, both players are able to
learn and improve in each game, to an extent which depends on the difference in strengths, with a player
with lower strength benefiting more.

The second function, h2, models a change of strength due to gain or loss of self-confidence due to
winning or being defeated in a game. We assume that the loss of the stronger player is the same as
the gain for the weaker one. Hence, we choose h2(ρj − ρi) = Sij l(ρj − ρi) to be an odd, regular,
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Figure 6.1: Possible choices of h1 and h2.

bounded function which is vanishing at infinity, where the function l corresponds to the net change of
self-confidence. A possible choice which we adopt in the following corresponds to

h2(ρj − ρi) = Sij [1− tanh2(ρj − ρi)]. (6.10)

Note that the expectation for the learning function function is given by

〈h(ρj − ρi)〉 =
[
αh1(ρj − ρi) +β〈h2(ρj − ρi)〉

]
=
[
αh1(ρj − ρi) +βb(ρi− ρj)(1− tanh2(ρj − ρi))

]
. (6.11)

Figure 6.1 shows the function h1, 〈h2〉 and 〈h〉 for the particular choice of α = β = 0.1 and c = 1. If
α > β players always improve in strength. In this case the strength and subsequently the rating will
always increase in time. We see that, as in the original Elo model, the choices of interaction rules and
the function b(·) preserve the total value of the rating pointwise and in mean, that is

〈R∗i +R∗j 〉 = Ri +Rj .

The evolution of the total strength depends on the choices of the function h1 and h2. Note that the
function h2 does not affect the total strength since

〈ρ∗j + ρ∗j 〉 − (ρj + ρj) = 2γα.

We see that that the proposed interaction rules result in a net increase of the total knowledge in every
interactions. Therefore, we expect to see on overall increase in strength for all times.

Now we are able to state the evolution equation for the distribution of players fε = fε(ρ,R, t) with
respect to their rating R and intrinsic strength ρ. The evolution of fε can be described by the following
Boltzmann type equation which can be obtained by standard methods of kinetic theory:

d

dt

∫
Ω

φ(ρi, Rj)fε(ρi, Ri, t)dRidρi =
1

2

〈∫
Ω

∫
Ω

(
φ(ρ∗i , R

∗
j ) + φ(ρ∗j , R

∗
j )− φ(ρi, Ri)− φ(ρj , Rj)

)
×w(Ri −Rj)fε(ρi, Ri, t)fε(ρj , Rj , t) dRjdρjdRidρi

〉
,

(6.12)
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where φ(·) is a (smooth) test function, with support supp(φ) ⊆ Ω. The function w(·) corresponds to the
interaction rate function which depends on the difference of the ratings. If w ≡ 1 we consider a so-called
all-play-all game. If w has compact support, we consider a so-called Swiss-system tournament, where
only subsets of players compete with each other. Possible choices for w are

w(Ri −Rj) = e
log 2

1+(ρj−ρi)2 − 1 or w(Ri −Rj) = χ{|Ri−Rj |≤c}. (6.13)

where χ denotes the indicator function.
In the following we shall analyse (6.12) as well as different asymptotic limits of it. The presented

analysis is based on the following assumptions:

(A1) Let Ω = R2 or a bounded Lipschitz domain Ω ⊂ R2.

(A2) Let f0 ∈ H1(Ω) with f0 ≥ 0 and compact support. Furthermore we assume that it has mean value
zero, and bounded moments up to order two. Hence∫

Ω

f0(ρ,R) dρdR = 1,

∫
Ω

Rf0(ρ,R) dρdR = 0, and
∫

Ω

ρf0(ρ,R) dρdR = 0.

(A3) The random variables η, η̃ in (6.7) have the same distribution, zero mean, 〈η〉 = 0, and variance
σ2
η.

(A4) Let the interaction rate function w be an even non-negative function with w ∈ C2(Ω) ∩ L∞(Ω).

The kinetic Elo model can be formulated on the whole space as well as on a bounded domain. In
reality, the Elo ratings of top chess players vary between 2000 to 3000, which provides evidence for the
assumption of a bounded domain Ω. However, sometimes it is easier to study the dynamics of models
on the whole space, i.e. without boundary effects. We will generally work on the bounded domain, and
clearly state where we deviate from this assumption, e.g. when we study the asymptotic behaviour of
moments. The second assumption states the necessary regularity assumptions on the initial data, which
we shall use in the analysis of the moments and the existence proof. We assume that the interaction rate
function among individuals is symmetric and bounded from above which implies the last assumption.

6.3.2 Analysis of the moments

We start by studying basic properties of the Boltzmann type equation (6.12) such as mass conserva-
tion and the evolution of the first and second moments with respect to the strength and the ratings.
Throughout this section we consider the problem in the whole space.

Conservation of mass:

Setting φ(ρi, Ri) = 1 in the equation (6.12) we see that

d

dt

∫
R2

fε(ρi,R, t) dRdρ = 0.

Therefore, the total mass is conserved, that is∫
R2

fε(R, ρ, t) dRdρ = 1, for all times t ≥ 0. (6.14)
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Moments with respect to the rating.

The s-th moment, for s ∈ N, with respect to Ri is defined as

mRi(t) =

∫
R2

Rifε(ρi, Ri, t) dRidρi and Ms,Ri(t) =

∫
R2

Ri
sfε(ρi, Ri, t) dRidρi,

where mRi(t) = M1,Ri . We choose φ(ρi, Ri) = Ri. Due to (A2) and the symmetry of b(·) we obtain

d

dt
mRi(t) =

1

2
γ

∫
R4

fε(ρi, Ri, t)fε(ρj , Rj , t)×

× (b(ρi − ρj)− b(Ri −Rj) + b(ρj − ρi)− b(Rj −Ri))w(Ri −Rj) dRjdρjdRidρi = 0.

Hence the mean value w.r.t. the rating is preserved in time and therefore

mRi(t) = 0, for all times t ≥ 0.

The evolution of the second moment can be obtained by setting φ(ρi, Ri) = Ri
2. We see that

d

dt
M2,Ri(t) =

1

2

∫
R4

fε(ρi, Ri, t)fε(ρj , Rj , t)w(Ri −Rj)×

×
[
γ2

((
b(ρi − ρj)− b(Ri −Rj)

)2
+
(
b(ρj − ρi)− b(Rj −Ri)

)2)
+ 2γ

(
Ri(b(ρi − ρj)− b(Ri −Rj)) +Rj(b(ρj − ρi)− b(Rj −Ri))

)]
dRjdρjdRidρi.

The second term in the integral is non-positive and we obtain the bound

d

dt
M2,Ri(t) ≤ 4γ2‖b‖2∞.

Hence, the second moment grows at most linearly and remains bounded for finite times. Note that the
integral is negative for γ small enough, which implies a decreasing second moment.

Moments with respect to the strength

The moments with respect to strength are defined in an analogous way, that is

mρi(t) =

∫
R2

ρif(ρi, Ri, t) dRidρi and Ms,ρi(t) =

∫
R2

ρi
sf(ρi, Ri, t) dRidρi,

for s ∈ N and using again mρi(t) = M1,ρi . Since (A2) holds, we see that for φ(ρi, Ri) = ρi, we have

d

dt
mρi(t) =

1

2
γ

∫
R4

fε(ρi, Ri, t)fε(ρj , Rj , t)w(Ri −Rj)[〈h(ρj − ρi) + h(ρi − ρj)〉] dρjdRjdρidRi.

Therefore,

−γ‖〈h〉‖∞ ≤
d

dt
mρi(t) ≤

1

2
γ

∫
R4

2‖〈h〉‖∞fε(ρi, Ri, t)fε(ρj , Rj , t)dρjdRjdρidRi ≤ γ‖〈h〉‖∞, (6.15)
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which implies that the mean value is bounded for all times t ∈ [0, T ] and that |mρi(t)| grows at most
linearly in time if h(·) is bounded. If we consider the specific interaction rules (6.9)-(6.13), we obtain

d

dt
mρi(t) = γα

∫
R4

w(Ri −Rj)fε(ρi, Ri, t)fε(ρj , Rj , t)dρjdRjdρidRi ≤ γα,

with equality holding in the “all-play-all” case w = 1. The evolution of the second moment M2,ρi can be
computed by setting φ(ρi, Ri) = ρi

2. We see that

d

dt
M2,ρi(t) =

1

2

∫
R4

(
γ2[〈h(ρj − ρi)2〉+ 〈h(ρi − ρj)2〉] + 2γ[ρi〈h(ρj − ρi)〉+ ρj〈h(ρi − ρj)〉]

+ 2σ2(γ)
)
w(Ri −Rj)fε(ρi, Ri, t)fε(ρj , Rj , t) dρjdRjdρidRi

≤γ2‖〈h2〉‖∞ + σ2(γ) + 4γ|mρi(t)|.

(6.16)

If h(·) is bounded the second moment grows at most at polynomial rate. Since the second moment of f0

is bounded (see assumption (A2)), it remains finite for all times t ∈ [0, T ].

6.4 The Fokker-Planck limit
In the last section we analysed the evolution of moments to the Boltzmann type equation (6.12). However,
it is often more useful to study the dynamics of simplified models (generally of Fokker-Planck type), which
can be derived in particular asymptotic limits. These asymptotics provide a good approximation of the
stationary profiles of the kinetic equation. In what follows we consider the so-called quasi-invariant limit,
in which diffusion and the outcome of the game influence the long-time dynamics. More specifically, we
consider the limit

γ → 0, ση → 0 such that
σ2
η

γ
=: σ2 is kept fixed.

In Appendix 7 we derive the following Fokker-Planck limit: The differential form of (7.4) is given by
(writing t instead of τ)

∂f(ρ,R, t)

∂t
= − ∂

∂R
(a[f ]f(ρ,R, t))− ∂

∂ρ
(c[f ]f(ρ,R, t)) +

σ2

2
d[f ]

∂2

∂ρ2
f(ρ,R, t) in Ω× (0, T ), (6.17)

where

a[f ] = a[f ](ρ,R, t) =

∫
R2

w(R−Rj)(b(ρ− ρj)− b(R−Rj))f(ρj , Rj , t) dρjdRj ,

c[f ] = c[f ](ρ,R, t) =

∫
R2

w(R−Rj)
(
αh1(ρj − ρ) + β〈h2(ρj − ρ)〉

)
f(ρj , Rj , t) dρjdRj ,

d[f ] = d[f ](R, t) =

∫
R2

w(R−Rj)f(ρj , Rj , t) dρjdRj .

We consider equation (6.17) with initial datum f0 satisfying assumption (A2) in the following. Note that
(6.17) includes the nonlocal operator a[f ], corresponding to the change of the ratings, similar as in the
Fokker-Planck equations (6.3) and (6.5) obtained in [58] and [64], respectively. The nonlocal operator
c[f ] in the transport terms corresponds to the change of the individual strengths while the operator d[f ]
describes the fluctuations of the individual strength due to encounters.



6.4. THE FOKKER-PLANCK LIMIT 77

6.4.1 Qualitative properties of the Fokker-Planck equation

We continue by discussing qualitative properties of the Fokker-Planck equation (6.17). We shall see that
several properties, which we observed for the Boltzmann type equation (6.12), can be transferred.

Conservation of mass and positivity of solution: Due to mass conservation and (A2) we have that∫
R2

f(ρ,R, t) dρdR =

∫
R2

f0(ρ,R) dρdR = 1 for all t ≥ 0.

Using similar arguments as in [86], we can directly prove that the Fokker-Planck equation maintains
the positivity of the solution. Let vm(t̃) = (ρm(t), Rm(t)) denote the point in which one assumes that f
reaches its minimum, which is obtained at time t̃. Clearly, if at certain time t̃ ≥ 0 the function equals
zero, i.e. f(ρ,R, t̃) = 0, this point is a stationary point or a local minimum, hence

∂

∂R
f(vm, t̃) = 0,

∂

∂ρ
f(vm, t̃) = 0,

∂2

∂R2
f(vm, t̃) ≥ 0,

∂2

∂ρ2
f(vm, t̃) ≥ 0.

Evaluating (6.17) in (vm, t̃) gives

∂

∂t
f(vm, t̃) =f(vm, t̃)

(
− ∂

∂R
a[f ](vm, t̃)−

∂

∂ρ
c[f ](vm, t̃)

)
− a[f ](vm, t̃)

∂

∂R
f(vm, t̃)− c[f ](vm, t̃)

∂

∂r
f(vm, t̃) +

σ2

2
(vm, t̃)d[f ]

∂2

∂ρ2

(
f(vm, t̃)

)
≥ 0,

which implies that the function f is non-decreasing in time and cannot assume negative values.

Evolution of the moments: We now consider the evolution of the moments of the solution of (6.17)
using the interaction rules (6.9) and (6.10). Similar calculations as in Section 6.3.2 confirm the expected
behaviour —due to the continuous increase in strength in each game the system does not converge to a
steady state and therefore the respective mean of the solution is non-decreasing in time. Summarising
the results, we have

∂

∂t

∫
R2

Rf(ρ,R, t) dRdρ = 0 (6.18)

∂

∂t

∫
R2

ρf(ρ,R, t) dRdρ = α

∫
R2

c[f ]f(ρ,R, t) dRdρ

= α

∫
R4

w(R−Rj)f(ρ,R, t)f(ρj , Rj , t) dρjdRjdρdR.

(6.19)

The previous results confirm that due to the continuous increase in strength in each game, rating
and skills tend to become increasingly distant from each other. Therefore, we adopt an idea by Krupp
[64] and study the evolution of a suitably shifted problem instead. We define

g(ρ,R, t) = f(ρ+H(ρ,R, t), R, t), (6.20)

where the scaling function H is given by

∂H(ρ,R, t)

∂t
=

∫
R2

αw(R−Rj)f(ρj , Rj , t) dρjdRj = αd[f ]. (6.21)
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This scaling ensures that the mean value is preserved in time. The corresponding evolution equation for
g(ρ,R, t) is given by

∂g(ρ,R, t)

∂t
= − ∂

∂R
(a[g]g(ρ,R, t))− ∂

∂ρ
(c̃[g]g(ρ,R, t)) +

σ2

2
d[g]

∂2

∂ρ2
g(ρ,R, t),

where
c̃[g] = c̃[g](ρ,R, t) =

∫
R2

(
αb(ρj − ρ) + β〈h2(ρj − ρ)〉

)
w(R−Rj)g(ρj , Rj , t) dρjdRj .

Now, the mean value of g(ρ,R, t) is constant w.r.t. both R and ρ and we can normalize∫
R2

Rg(ρ,R, t) dρdR = 0, and
∫
R2

ρg(ρ,R, t) dρdR = 0.

In a general setting it is not possible to compute scaling function explicitly. However, in ‘all-meet-all’
tournaments, that is w(R −Rj) = 1, and in case of the specific interaction rules (6.9)-(6.10), we obtain
that

H(ρ,R, t) = αt.

Therefore, in the rest of this paper, we consider the following problem on a bounded domain Ω ⊂ R2,
with no-flux boundary condition

∂g(ρ,R, t)

∂t
= − ∂

∂R
(a[g]g(ρ,R, t))− ∂

∂ρ
(c̃[g]g(ρ,R, t)) +

σ2

2
d[g]

∂2

∂ρ2
g(ρ,R, t) in Ω× (0, T ), (6.22a)

∂

∂ν
g = 0 on ∂Ω, (6.22b)

g(ρ,R, 0) = g0(ρ,R) in Ω. (6.22c)

Note that the existence of solutions to (6.22a) on the whole domain is more involved, since we would
need to proof that the solution decays sufficiently as R and ρ tend to infinity. Therefore, we consider the
equation on a bounded domain only.

6.4.2 Analysis of the Fokker-Planck equation

In the section we prove existence of weak solutions to (6.22). The main result reads as follows.

Theorem 4. Let (A1) be satisfied, g0 ∈ H1(Ω) and 0 ≤ g0 ≤ M0 for some M0 > 0 and assume h1,
〈h2〉, b ∈ L∞(Ω) ∩C2(Ω). Then there exists a weak solution g ∈ L2(0, T ;H1(Ω)) ∩H1(0, T ;H−1(Ω)) to
(6.22a)–(6.22c), satisfying 0 ≤ g ≤ M0e

λt for all (ρ,R) ∈ Ω, t > 0, with a constant λ > 0 depending on
the functions h1, 〈h2〉, b and w.

The presented existence proof was adapted from a similar argument for a nonlinear Fokker-Planck
equation describing the dynamics of agents in an economic market, see [36]. However, equation (6.22a)
has an additional nonlinearity in the derivative w.r.t. the rating R. We divide the proof in several steps
for the ease of presentation. In Step 0 we regularize the non-linear Fokker Planck equation (6.22a) by
adding a Laplace operator with small diffusivity µ ≥ 0. We linearise the equation in Step 1 and show
existence of a unique solution for this problem. In Step 2 we derive the necessary L∞ estimates to
use Leray-Schauder’s fixed point theorem and show existence of solutions to the nonlinear regularised
problem. In Step 3 we present additional H1 estimates, which allow us to pass to the limit µ → 0 in
Step 4.
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Proof. Step 0: the regularised problem. For M > 0, let us denote by gM = max{0,min{g,M}} and
define

KM [g] =

∫
Ω

[αh1(ρj − ρ) + β〈h2(ρj − ρ)〉]w(R−Rj)gM (ρj , Rj , t) dρjdRj ,

LM [g] =

∫
Ω

[b(ρ− ρj)− b(R−Rj)]w(R−Rj)gM (ρj , Rj) dρjdRj .

Next we consider the regularised non linear problem for 0 < µ < 1,

∂

∂t
gµ = − ∂

∂R
(LM [gµ]gµ(ρ,R, t))− ∂

∂ρ
(KM [gµ]gµ(ρ,R, t))

+
σ2

2
d[gµ]

∂2

∂ρ2
(gµ(ρ,R, t)) + µ∆(gµ(ρ,R, t)) in Ω× (0, T ),

(6.23a)

with boundary and initial conditions given by

∂

∂ν
gµ = 0 on ∂Ω, and gµ(ρ,R, 0) = g0 on Ω. (6.23b)

The weak formulation of (6.23) is given by∫ T

0

〈 ∂
∂t
gµ, v

〉
dt =

∫ T

0

∫
Ω

(
LM [gµ]gµ

∂

∂R
v+KM [gµ]gµ

∂

∂ρ
v− σ

2

2
d[gµ]

∂

∂ρ
gµ

∂

∂ρ
v−µ ∂

∂R
gµ

∂

∂R
v

)
dRdρdt,

(6.24)
where 〈·, ·〉 is the dual product between H1(Ω) and H−1(Ω) and v ∈ H1(Ω).

Step 1: solution of the linearised regularised problem. Next we want to apply Leray-Schauder’s fixed
point theorem. Let g̃ ∈ L2(0, T ;L2(Ω)), θ ∈ [0, 1] and g+ = max(g, 0). We introduce the operators
A : H1(Ω)×H1(Ω)→ R and F : H1(Ω)→ R:

A(gµ, v) =

∫
Ω

µ

(
∂

∂R
gµ

∂

∂R
v +

∂

∂ρ
gµ

∂

∂ρ
v

)
dRdρ, (6.25)

F (v) = θ

∫
Ω

(
LM [g̃]g̃+ ∂

∂R
v +KM [g̃]g̃+ ∂

∂ρ
v − σ2

2
d[g̃]

∂

∂ρ
g̃+ ∂

∂ρ
v

)
dRdρ. (6.26)

The operator A(·, ·) is bilinear and continuous on H1(Ω)×H1(Ω). The quantities |KM [g̃]| and |LM [g̃]|
are bounded (because of the assumption made on h1, 〈h2〉 and b), therefore F is continuous in H1(Ω).
Because of Poincaré’s inequality, for some constant C1 and C2

A(gµ, gµ) = µ

∫
Ω

(∣∣∣ ∂
∂ρ
gµ

∣∣∣2 +
∣∣∣ ∂
∂R

gµ

∣∣∣2) dRdρ ≥ C1µ‖gµ‖H1(Ω) − C2‖gµ‖2.

By corollary 23.26 in [94] (see Appendix for details), there exists a unique solution gµ ∈ L2(0, T ;H1(Ω))∩
H1(0, T ;H−1(Ω)) to 〈 ∂

∂t
gµ, v

〉
+A(gµ, v) = F (v), t > 0, gµ(0) = θg0. (6.27)

This defines the fixed-point operator T : L2(0, T ;L2(Ω))× [0, 1]→ L2(0, T ;L2(Ω)), (g̃, θ) 7→ T (g̃, θ) = gµ,
where gµ solves (6.27). This operator satisfies T (g̃, 0) = 0. Standard arguments, including Galerkin’s
method and estimates on ‖ ∂∂tgµ‖L2(0,T ;H−1(Ω)), show that the operator T is continuous (with constants
depending on the regularisation parameter µ). The operator is also compact, because L2(0, T ;H1(Ω))∩
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H1(0, T ;H−1(Ω)) is compactly embedded in L2(0, T ;L2(Ω)), see [82]. In order to apply the fixed-point
theorem of Leray-Schauder, we need to show uniform estimates.

Step 2: uniform L∞ bound & existence of a fixed point. We start by proving upper and lower bounds
for the function gµ. Let gµ be a fixed point of T (·, θ), i.e. gµ solves (6.27) with g̃ = gµ, and θ ∈ [0, 1].
For a lower bound, choosing v = g−µ = min{0, gµ} ∈ L2(0, T ;H1(Ω)) as test function in (6.27) and
integrating in time, we obtain

d

dt
‖g−µ ‖2L2(Ω) = −2A(gµ, g

−
µ ) ≤ −C1‖g−µ ‖22 ≤ 0.

This shows that if gµ(0)− = 0, then gµ(t)− = 0 for all t > 0. Hence, in all previous computations and in
(6.25)-(6.26), we can replace g+

µ with gµ.
Now we show an upper bound. Let g∗ = (gµ −M)+, where M = M0e

λt, for some λ > 0 to be
determined below. We choose v = g∗ ∈ L2(0, T ;H1(Ω)) as test function in (6.24). By assumption,
g0 ≤M0, i.e. g∗(0) = (g0 −M0)+ = 0. We note that ∂

∂tM = λM and 1
2
∂
∂ρ (g2

∗) = (gµ −M) ∂∂ρg∗. Then

1

2

∫
Ω

g∗(t)
2 dRdρ =

∫ t

0

[
−λ
∫

Ω

Mg∗ dRdρ−A(gµ, g∗) + F (g∗)

]
ds

=

∫ t

0

σ2

2

∫
Ω

d[gµ]
∂

∂ρ
((gµ −M) +M)

∂

∂ρ
g∗ dRdρ− µ

∫
Ω

|∇g∗|2 dRdρ+ θ(I + J) ds

≤
∫ t

0

θ(I + J) ds,

where I =
∫

Ω
LM [gµ]gµ

∂
∂Rg∗ dRdρ and J =

∫
Ω
KM [gµ]gµ

∂
∂ρg∗ dRdρ. Let us consider I and J separately:

I =

∫
Ω

LM [gµ](gµ −M)
∂

∂R
g∗ dRdρ+

∫
Ω

LM [gµ]M
∂

∂R
g∗ dRdρ

= −1

2

∫
Ω

∂

∂R
[LM [gµ]]g2

∗ dRdρ−
∫

Ω

∂

∂R
[LM [gµ]]Mg∗ dRdρ

J =

∫
Ω

KM [gµ](gµ −M)
∂

∂ρ
g∗ dRdρ+

∫
Ω

LM [gµ]M
∂

∂ρ
g∗ dRdρ

= −1

2

∫
Ω

∂

∂ρ
[KM [gµ]]g2

∗ dRdρ−
∫

Ω

∂

∂ρ
[KM [gµ]]Mg∗ dRdρ.

The assumptions on h1, 〈h2〉 and b ensure that ∂
∂R [LM [gµ]] and ∂

∂ρ [KM [gµ]] are bounded. Hence

1

2

∫
Ω

g2
∗ dRdρ =

∫
Ω

( ∂
∂t
g∗

)
g∗ dRdρ

≤ C(LM [gµ],KM [gµ])

∫
Ω

g2
∗ dRdρ+ (C(LM [gµ],KM [gµ])− λ)

∫
Ω

Mg∗ dRdρ.

Choosing λ large enough and using Gronwall’s lemma, we obtain∫
Ω

g∗(t)
2 dRdρ ≤

∫
Ω

g∗(0)2 exp[2C(LM [gµ],KM [gµ])t] dRdρ = 0.

Therefore g∗(t) = 0 for all t > 0, which implies gµ(t) ≤M for all t > 0. This allows us to replace LM [gµ]
with a[gµ] and KM [gµ] with c̃[gµ] in (6.24). The uniform L∞ bound provides the necessary bound for
the fixed-point operator in L2(0, T ;L2(Ω)). This implies existence of a weak solution to (6.24).
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Step 3: uniform H1 bound. Our aim is to derive an H1 bound which is independent of µ. Choosing
v = gµ in (6.24) with t instead of T , we obtain

1

2

d

dt

∫
Ω

gµ(t)2 dRdρ =

∫
Ω

a[gµ]gµ
∂

∂R
gµ dRdρ+

∫
Ω

c̃[gµ]gµ
∂

∂ρ
g dRdρ

−
∫

Ω

(σ2

2
d[gµ] + µ

)∣∣∣ ∂
∂ρ
gµ

∣∣∣2 dRdρ− µ∫
Ω

∣∣∣ ∂
∂R

gµ

∣∣∣2 dRdρ
= −1

2

∫
Ω

∂

∂R
a[gµ]g2

µ dRdρ−
1

2

∫
Ω

∂

∂ρ
c̃[gµ]g2

µ dRdρ−
∫

Ω

(σ2

2
d[gµ] + µ

)∣∣∣ ∂
∂ρ
gµ

∣∣∣2 dRdρ
− µ

∫
Ω

∣∣∣ ∂
∂R

gµ

∣∣∣2 dRdρ.
Because of the assumptions on h1, 〈h2〉 and b we have that

∣∣∣− 1
2

(
∂
∂Ra[gµ] + ∂

∂ρ c̃[gµ]
)∣∣∣ < C. Therefore,

we can rewrite the above estimate as

1

2

∫
Ω

gµ(t)2 dRdρ+

∫ t

0

[ ∫
Ω

(σ2

2
d[gµ] + µ

)∣∣∣ ∂
∂ρ
gµ

∣∣∣2 dRdρ+ µ

∫
Ω

∣∣∣ ∂
∂R

gµ

∣∣∣2 dRdρ]ds
≤ C

∫ t

0

∫
Ω

gµ(t)2 dRdρdt+
1

2

∫
Ω

g(0)2 dRdρ.

(6.28)

Using Gronwall’s lemma, the previous estimate guarantees (independent by µ) estimates for gµ(t), i.e.

‖gµ‖L∞(0,T ;L2(Ω)) ≤ C.

However, this does not ensure an (independent of µ) estimate for ∂
∂Rgµ and ∂

∂ρgµ. In order to obtain it,
we differentiate (6.23a) with respect to R and ρ in the sense of distributions. This gives us estimates for
y := ∂

∂Rgµ and z := ∂
∂ρgµ. We obtain

∂

∂t
y = − ∂

∂R

(
d[gµ]gµ + a[gµ]y

)
− ∂

∂ρ
(c̃[gµ]y) +

σ2

2

∂2

∂ρ2
y + γ

∂2

∂R2
y in Ω× (0, T ). (6.29)

Due to no-flux boundary condition (6.22b), equation (6.29) is complemented with

∂

∂νR
y(ρ,R, t) = 0 on ∂Ω,

where νR is the component w.r.t. variable R of the normal vector ν to Ω. Furthermore y(ρ,R, 0) =
∂
∂Rg0(ρ,R). Choosing v ∈ L2(0, T ;H1

0 (Ω)) and setting d′[gµ] = ∂
∂Rd[gµ], c̃R[gµ] = ∂

∂R c̃[gµ] and aR[gµ] =
∂
∂Ra[gµ], we obtain the weak formulation of equation (6.29):∫ T

0

〈 ∂
∂t
y, v
〉
ds =

∫ T

0

∫
Ω

(
aR[gµ]gµ

∂

∂R
v + a[gµ]y

∂

∂R
v + c̃R[gµ]gµ

∂

∂ρ
v + c̃[gµ]y

∂

∂ρ
v

− σ2

2

∂

∂ρ

(
d′[gµ]gµ + d[gµ]y

) ∂
∂ρ
v − µ

( ∂
∂ρ
y
∂

∂ρ
v +

∂

∂R
y
∂

∂R
v
))

dRdρds. (6.30)

We introduce the operators

By(y, v) =

∫
Ω

−a[gµ]y
∂

∂R
v − c̃[gµ]y

∂

∂ρ
v +

σ2

2
d[gµ]

∂

∂ρ
y
∂

∂ρ
v + µ

( ∂
∂ρ
y
∂

∂ρ
v +

∂

∂R
y
∂

∂R
v
)
dRdρ

Gy(v) =

∫
Ω

c̃R[gµ]gµ
∂

∂ρ
v + aR[gµ]gµ

∂

∂R
v − σ2

2
d′[gµ]

∂

∂ρ
gµ

∂

∂ρ
v dRdρ.
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Both operators By : L2(0, T ;H1
0 (Ω)) × L2(0, T ;H1

0 (Ω)) → R and Gy : L2(0, T ;H1
0 (Ω)) → R are linear

and continuous. Garding’s inequality implies

By(y, y) =

∫
Ω

µ|∇y|2 dRdρ+
1

2

∫
Ω

(c̃R[gµ] + aR[gµ])y2dρdR+
σ2

2

∫
Ω

d[gµ]
∣∣∣ ∂
∂ρ
y
∣∣∣2 dRdρ

≥ µ‖y‖2H1(Ω) −
(
µ+

1

2
‖a[gµ]‖∞ +

1

2
‖c̃[gµ]‖∞

)
‖y‖22.

Then corollary 23.26 in [94] gives existence of a unique solution y ∈ L2(0, T ;H1
0 (Ω))∩H1(0, T ;H−1(Ω))

to 〈 ∂
∂t
y, v
〉

+By(y, v) = Gy(v), t > 0, y(0) = y0. (6.31)

Choosing v = y in (6.30), we obtain (using Young’s and Gardin’s inequality)

1

2

d

dt

∫
Ω

y(t)2 dRdρ = −By(y, y) +Gy(y)

≤− µ‖y‖2H1(Ω) + C‖y‖22 +
1

2

(
‖ ∂

2

∂R2
a[gµ]‖∞ + ‖ ∂

∂ρ

( ∂

∂R
c̃[gµ]

)
‖∞
)∫

Ω

g2
µ + y2 +

∣∣∣ ∂
∂ρ
gµ

∣∣∣2 dRdρ
− σ2

2

∫
Ω

d′[gµ]
∂

∂ρ
gµ

∂

∂ρ
y dRdρ.

Considering the last integral, we calculate

−σ
2

2

∫
Ω

d′[gµ]
∂

∂ρ
gµ

∂

∂ρ
y dRdρ = −σ

2

2

∫
Ω

d′[gµ]
∂

∂ρ
gµ

∂

∂ρ

( ∂

∂R
gµ

)
dRdρ

=
σ2

2

∫
Ω

∂

∂R
d′[gµ]

∣∣∣ ∂
∂ρ
gµ

∣∣∣2 dRdρ+
σ2

2

∫
Ω

d′[gµ]
∂

∂R

( ∂
∂ρ
gµ

) ∂
∂ρ
gµ dRdρ,

and therefore,

−σ
2

2

∫
Ω

d′[gµ]
∂

∂ρ
gµ

∂

∂ρ
y dRdρ =

σ2

4

∫
Ω

∂

∂R
d′[gµ]

∣∣∣ ∂
∂ρ
gµ

∣∣∣2 dRdρ.
This gives us the following estimate for ‖y‖L2(Ω) (with a constant depending on a[gµ], c̃[gµ] and their
derivatives) ∫

Ω

y(t)2 dRdρ ≤
∫

Ω

h(0)2 dRdρ+ C

∫ t

0

∫
Ω

y2 + g2
µ +

∣∣∣ ∂
∂ρ
gµ

∣∣∣2 dRdρds. (6.32)

We use similar arguments for z = ∂
∂ρgµ. For a suitable C, which depends on a[gµ], c̃[gµ], d[gµ] and

their derivatives (but not on µ), we obtain an estimate for the L2 norm of z:∫
Ω

z(t)2 dRdρ ≤
∫

Ω

h(0)2 dRdρ+ C

∫ t

0

∫
Ω

z2 + g2
µ +

∣∣∣ ∂
∂R

gµ

∣∣∣2 dRdρds. (6.33)

We add (6.28), (6.32) and (6.33) to obtain∫
Ω

gµ(ρ,R, t)2 + y(ρ,R, t)2 + z(ρ,R, t)2 dRdρ+
σ2

2

∫ t

0

∫
Ω

z(ρ,R, s)2 dRdρds

≤ C
∫ t

0

∫
Ω

y(ρ,R, s)2 +gµ(ρ,R, s)2 +z(ρ,R, s)2 dRdρds+

∫
Ω

g(ρ,R, 0)2 +y(ρ,R, 0)2 +z(ρ,R, 0)2 dRdρ,

(6.34)
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where C does not depend on µ. Using Gronwall’s lemma gives the following estimates (independent of
µ)

‖gµ‖L∞(0,T ;L2(Ω)) ≤ C, ‖ ∂
∂ρ
gµ‖L∞(0,T ;L2(Ω)) ≤ C, ‖ ∂

∂R
gµ‖L∞(0,T ;L2(Ω)) ≤ C. (6.35)

Step 4: The limit µ → 0. Let gµ solution of (6.23a)-(6.23b) with L[gµ] = a[gµ] and K[gµ] = c̃[gµ]. We
can estimate ‖ ∂∂tgµ‖L2(0,T ;H−1(Ω)), using the norm of operators ‖ ∂∂tgµ‖H−1(Ω) = sup‖v‖H1(Ω)=1 |〈 ∂∂tgµ, v〉|.

For a suitable C ≥ (‖ ∂
∂Ra[g]‖∞)

1
2 + (‖ ∂∂ρ c̃[g]‖∞)

1
2 + σ2

2 + 1, we obtain

∣∣∣〈 ∂
∂t
gµ, v

〉∣∣∣ ≤ ‖a[gµ]‖∞
∫

Ω

(
g2
µ +

∣∣∣ ∂
∂R

v
∣∣∣2) dRdρ+ ‖c̃[gµ]‖∞

∫
Ω

(
g2
µ +

∣∣∣ ∂
∂ρ
v
∣∣∣2) dRdρ

+
σ2

2
‖d[gµ]‖∞

∫
Ω

∣∣∣ ∂
∂ρ
gµ

∣∣∣2 +
∣∣∣ ∂
∂ρ
v
∣∣∣2 dRdρ+ µ

∫
Ω

|∇gµ|2 + |∇v|2 dRdρ

≤ C(‖gµ‖H1(Ω))‖v‖H1(Ω).

This implies

‖ ∂
∂t
gµ‖L2(0,T ;H−1(Ω)) ≤ C and

∫ T

0

‖gµ‖2H1(Ω)dt = C‖gµ‖L2(0,T ;H1(Ω)) ≤ C, (6.36)

where C does not depend on µ. Estimates (6.35) and (6.36) allow us to apply Aubin-Lions lemma and
conclude the existence of a subsequence of (gµ) such that for µ→ 0,

gµ → g strongly in L2(0, T ;L2(Ω)),

gµ ⇀ g weakly in L2(0, T ;H1(Ω)),

∂

∂t
gµ ⇀

∂

∂t
g weakly in L2(0, T ;H−1(Ω)).

Furthermore, by direct computation, we obtain

‖c̃[g]g − c̃[gµ]gµ‖L2(0,T ;L2(Ω)) ≤ ‖c̃[g](g − gµ)‖L2(0,T ;L2(Ω)) + ‖(c̃[g]− c̃[gµ])gµ‖L2(0,T ;L2(Ω)).

The first term on the right side of the previous inequality goes to 0 when µ→ 0 because c̃[gµ] is bounded
and gµ → g strongly in L2(0, T ;L2(Ω)). Using Cauchy-Schwartz’s inequality and that the domain Ω is
bounded, yields

‖(c̃[g]− c̃[gµ])gµ‖L1(0,T ;L1(Ω)) =

∫ T

0

∫
Ω

∣∣∣∣ ∫
Ω

(
αh1(ρj − ρ) + β〈h2(ρj − ρ)〉

)
×

× w(R−Rj)
(
g(ρj , Rj , t)− gµ(ρj , Rj , t)dρjdRj

)∣∣∣∣gµ(ρ,R, t)dρdRdt

≤C
∫ T

0

(∫
Ω

g(ρj , Rj , t)− gµ(ρj , Rj , t)dρjdRj

)(∫
Ω

gµ(ρ,R, t)dρdR

)
dt

≤C|Ω| 12 ‖gµ − g‖2L2(0,T ;L2(Ω)).

The constant is bounded from above by the L∞-norm of h and w, hence this term goes to 0 as µ→ 0.
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Since c[gµ]gµ is bounded, convergence holds in Lp for all p < ∞. The same argument holds for the
difference ‖a[gµ]gµ − a[g]g‖L2(0,T ;L2(Ω)). So, we have shown that

c̃[gµ]gµ → c̃[g]g strongly in L2(0, T ;L2(Ω)),

a[gµ]gµ → a[g]g strongly in L2(0, T ;L2(Ω)).

Therefore, we can pass to the limit µ→ 0 in the equation (6.24) and obtain for all v ∈ L2(0, T ;H1(Ω))∫ T

0

〈 ∂
∂t
g, v
〉
dt =

∫ T

0

∫
Ω

a[g]g
∂

∂R
v + c̃[g]g

∂

∂ρ
v − σ2

2

∂

∂ρ
g
∂

∂ρ
v dRdρdt. (6.37)

This completes the proof.

6.5 Long time behaviour of ratings and strength

In this section we study possible steady states of the proposed Elo model and discuss the convergence
of the ratings to the strength. We recall that Junca and Jabin [58] showed that the ratings of players
converge to their intrinsic strength in the case w = 1. This corresponds to the concentration of mass
along the diagonal. In our model the intrinsic strength is continuously increasing in time. Hence, to be
able to identify steady states, we consider the shifted Fokker-Planck equation (6.22a). Throughout this
section we consider the problem in the whole space.

Since the diffusion part in (6.22a) is singular, the equation is degenerate parabolic. Degenerate
Fokker-Planck equations frequently, despite their lack of coercivity, exhibit exponential convergence to
equilibrium, a behaviour which has been referred to by Villani as hypocoercivity in [93]. For subsequent
research on hypercoercity in linear Fokker-Planck equations, see [3, 1]. Since (6.22a) is a nonlinear,
nonlocal Fokker-Planck equation these results do not apply here, but it is conceivable that generalisations
of this approach can be used in studying the decay to equilibrium for (6.22a), which is however beyond
the scope of the present paper. In the following, we present some results on the longterm behaviour of
solutions to (6.22a).

Due to normalisation of the mean value, the only point in which the formation of a steady state is
possible are R0 = 0 and ρ0 = 0. Let us assume that we have measure valued steady state in (0, 0), that
is g∞(ρ,R) = δ(ρ)δ(R). Then direct computations using the weak form of (6.22a) give

0 =
∂

∂ρ
(φ(ρ0, R0))[αb(0) + β〈h2〉(0)] +

σ2

2
w(0)

∂2

∂ρ2
(φ(ρ0, R0)) =

σ2

2
w(0)

∂2

∂ρ2
(φ(ρ0, R0)).

This equation is not satisfied for all test functions φ. Therefore, we investigate the possibility of having
more complex steady states, which have a similar form as the one identified by Junca and Jabin. Let us
assume that g∞ is of the form

g∞(ρ,R) = δ(ρ)g̃(R), (6.38)

or alternatively
g∞(ρ,R) = δ(R)g̃(ρ), (6.39)

where g̃(·) in both cases is not a δ−Dirac.
By direct computation in weak form of (6.22a) with φ(ρ,R) = ρ2 and φ(ρ,R) = R2 respectively, we
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compute the following expressions for the second moments of the density function g(ρ,R, t):

d

dt
Mg,2,ρ(t) =

σ2

2

∫
R4

w(R−Rj)g(ρ,R, t)g(ρj , Rj , t) dRjdρidRdρ

−
∫
R4

(ρj − ρ)
[
αb(ρj − ρ) + β〈h2(ρj − ρ)〉

]
w(R−Rj)g(ρ,R, t)g(ρj , Rj , t) dRjdρidRdρ,

(6.40)

d

dt
Mg,2,R(t) =

∫
R4

2R(b(ρ− ρj)− b(R−Rj))w(R−Rj)g(ρ,R, t)g(ρj , Rj , t) dRjdρjdRdρ. (6.41)

The analysis of the second moment w.r.t. ρ leads us to conclude that the diffusion prevents the formation
of a steady state as in (6.38) if w = 1. Indeed, in this case, the first integral in (6.40) equals σ2. If
at certain time t > 0, ρ ' ρj or g(ρ,R, t) = δ(ρ − ρ0)g̃(R, t), the integral becomes small or vanishes
(anyhow smaller than σ2) and then d

dtM2,ρi(t) ≥ 0 .Thus, we can conclude that the diffusion prevents
the accumulation of the mass in in ρ = 0. For a general choice of w, the long time behaviour of solutions
is less clear.
Conversely, the second moment w.r.t. R is decreasing. Due to the symmetry of the functions b and w,
we can rewrite (6.41) as

d

dt
Mg,2,R(t) = −

∫
R4

(R−Rj)b(R−Rj)w(R−Rj)g(ρ,R, t)g(ρj , Rj , t) dRjdρjdRdρ ≤ 0.

This inequality does not contradict the assumption of a steady state of form (6.39).
In order to evaluate if, with the scaling (6.21), the rating converges to the intrinsic strength, let us

define the energy

E2(t) =

∫
R2

(ρ−R)2g(ρ,R, t) dρdR. (6.42)

We are interested in the evolution of E2 and compute
d

dt
E2(t) =− 2

∫
R4

(ρ−R)w(R−Rj)b(R−Rj)g(ρ,R, t)g(ρj , Rj , t) dρjdRjdρdR

+ 2

∫
R4

(ρ−R)w(R−Rj)b(ρ− ρj)g(ρ,R, t)g(ρj , Rj , t) dρjdRjdρdR

+ 2α

∫
R4

(ρ−R)w(R−Rj)b(ρ− ρj)g(ρ,R, t)g(ρj , Rj , t) dρjdRjdρdR

+ 2β

∫
R4

(ρ−R)w(R−Rj)〈h2(ρ− ρj)〉g(ρ,R, t)g(ρj , Rj , t) dρjdRjdρdR

+ σ2

∫
R2

d[g]g(ρ,R, t) dρdR.

(6.43)

For general functions w it is not possible to determine the signs of the respective integrals. Therefore,
we consider the case w = 1 only. For all odd functions b(·) (the same holds true for 〈h2(ρ− ρj)〉) we are
able to show that∫

R4

ρb(ρj − ρ)g(ρ,R, t)g(ρj , Rj , t) dρjdRjdρdR

=
1

2

∫
R4

ρ(b(ρj − ρ)− b(ρ− ρj))g(ρ,R, t)g(ρj , Rj , t) dρjdRjdρdR

= −1

2

∫
R4

(ρj − ρ)b(ρj − ρ)g(ρ,R, t)g(ρj , Rj , t) dρjdRjdρdR

≤ 0,
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and
∫

Ω2 ρb(R−Rj)g(ρ,R, t)g(ρj , Rj , t) dρjdRjdρdR = 0. In this case we can rewrite the equation (6.43)
as

d

dt
E2(t) = −

∫
R4

(R−Rj)b(R−Rj)g(ρ,R, t)g(ρj , Rj , t) dρjdRjdρdR

−
∫
R4

(ρ− ρj)b(ρ− ρj)g(ρ,R, t)g(ρj , Rj , t) dρjdRjdρdR

− α
∫
R4

(ρ− ρj)b(ρ− ρj)g(ρ,R, t)g(ρj , Rj , t) dρjdRjdρdR

− 2β

∫
R4

(ρ− ρj)〈h2(ρ− ρj)〉g(ρ,R, t)g(ρj , Rj , t) dρjdRjdρdR

+ σ2.

(6.44)

Again we would like to know if a concentration of mass along the diagonal is possible. Let us assume
that at certain time the solution is g(ρ,R, t) = δ(ρ−R)g̃)(ρ,R, t). Insert this claim in (6.44), we obtain

d

dt
E2(t) = σ2 > 0.

It shows that the diffusion counteracts the accumulation of the mass along the diagonal. On the other
hand, the four integrals in (6.44) are strictly negative. Hence if σ2 is small enough, the distance between
rating and intrinsic strength becomes small, and the diffusive term can be controlled. This indicates
concentration of the mass in a certain neighbourhood of the diagonal in the long run.

6.6 Numerical simulations
In this section we discuss the numerical discretisation of the Boltzmann equation (6.12) and the shifted
Fokker-Planck equation (6.22a). We initialise the distribution of players with respect to their strength
and rating with values from the unit interval and consider appropriately shifted interaction rules to
ensure that the distribution remains inside the unit square for all times t > 0.

6.6.1 Monte Carlo simulations of the Boltzmann equation
We use the classical Monte Carlo method to compute a series of realisations of the Boltzmann equation
(6.12). In the direct Monte Carlo method, also known as Bird’s scheme, pairs of players are randomly
and non-exclusively selected for two-player games. The outcome of the game is determined by (6.7).
Note that we consider the following shifted interaction rules for the ratings, to ensure that ρ ∈ [0, 1] and
R ∈ [0, 1]:

ρ∗i = ρi + γh̃(ρj − ρi)w(Ri −Rj) + η (6.45a)

ρ∗j = ρj + γh̃(ρi − ρj)w(Ri −Rj) + η̃, (6.45b)

where h̃ = b(ρj − ρi). The microscopic interactions are simulated as follows: the outcome of the game
Sij is the realisation of a discrete distribution function, which takes the value {−1, 1} with probability
{b(ρi−ρj), 1−b(ρi−ρj)}. The random variables η are generated such that they assume values η = ±0.025
with equal probability, the parameter γ is set to 0.05. Further information on Monte Carlo methods for
Boltzmann type equations can be found in [76].

In each simulation we consider N = 5000 players and compute the steady state distribution by
performing 108 time steps. The result is then averaged over another 105 time steps. We performM = 10
realizations and compute the density from the averaged steady states.
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6.6.2 Finite volume discretisation and simulations of the nonlinear Fokker-
Planck equation

The solver for the Fokker-Planck equation is based on a Strang splitting and an upwind finite volume
scheme. We recall that we discretise the shifted Fokker-Planck equation (6.22a), which allows us to
perform simulations on a bounded domain. Because of the splitting we consider the interactions in the
rating and the strength variable separately. We define two operators, which correspond to

(S1): Interaction step in the strength variable R:

∂g∗

∂t
(ρ,R, t) = − ∂

∂ρ
(c[g̃]g∗(ρ,R, t)) +

σ2

2
d[g̃]

∂2

∂ρ2
(g∗(ρ,R, t))

subject to the initial condition g∗(ρ,R, t) = g̃(ρ,R, t). Note that we compute the interaction
integrals using g̃, which corresponds to the solution at the previous time step in the full splitting
scheme.

(S2): Interaction step in the rating variable ρ:

∂g�

∂t
(ρ,R, t) = − ∂

∂R
(a[g∗]g�(ρ,R, t))

We approximate all integrals, which appear in the interaction coefficients using the trapezoidal rule.
Let ĝk denote the solution at time tk = k∆t, where ∆t corresponds to the time step size. Then the

Strang splitting results in the scheme

ĝk+1(ρ,R) = S2

(
ĝ∗,k+1,

∆t

2

)
◦ S1

(
ĝ�,k+ 1

2 ,∆t
)
◦ S2

(
ĝk,

∆t

2

)
,

where the superscripts denote the solutions of g∗ and g� at the discrete time steps tk+1 = (k+ 1)∆t and
tk+ 1

2 = (k+ 1
2 )∆t. We use a conservative upwind finite volume discretisation to discretise the respective

operators. The corresponding explicit-in-time upwind finite volume methods is given by

ĝn+1
j = ĝnj + λ1(ĉj+ 1

2
− ĉj− 1

2
) + λ2(d̂j+ 1

2
− d̂j− 1

2
),

where ĉ is the upwind flux and the diffusive flux is given d̂j+ 1
2

= D(ĝj+1)ĝj+1−D(ĝj)ĝj . Here λ1 = ∆t/∆x

and λ2 = ∆t/∆x2.

6.6.3 Computational experiments

All micro- and macroscopic simulations are performed on the domain [0, 1]× [0, 1] with no-flux boundary
conditions. In the case of a general interaction function, the interaction rate function w(ri − rj) is a
piecewise constant function given by

w(z) =

{
1 if |z| ≤ 0.1

0 otherwise.
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All-play-all tournaments:

We start by investigating the long time behaviour of the Elo model with w = 1, α = 0.1 and β = 0
in (6.8). Hence players have the same probability to play against each another independent of their
respective ratings. We have seen in Section 6.5 that we expect a measure valued solution in the case
of no diffusion. However, we can not show convergence of solutions to a measure valued steady state
if stochastic fluctuations influence the intrinsic strength. In the following we compare computed steady
states of the Boltzmann as well as the Fokker-Planck equation in the case of diffusion and no diffusion. We
start with a uniform distribution of agents in the micro- as well as the macroscopic situation. Figure 6.2
as well as Figure 6.3 confirm the expected formation of a Delta Dirac at the center of mass in the case
of no diffusion. If the individual strength is also influenced by stochastic fluctuations, the steady state is
smoothed out with respect to the rating as well. The resulting steady states are Gaussian like profiles in
the micro- as well as macroscopic simulations, see Figures 6.2 and 6.3. Figure 6.3 also shows the decay
of the energy E2 in time.

(a) Steady state – no diffusion (b) Steady state (top view) – no diffusion

(c) Steady state – diffusion ν = 0.025 (d) Steady state (top view) – diffusion ν = 0.025

Figure 6.2: Computational steady state of the Boltzmann model for w = 1 in the case of no diffusion,
η = η̄ = 0, and small diffusion in the strength η = η̄ = 0.025.
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(a) Steady state (top view) – no diffusion (b) Steady state (top view) – with diffusion
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(c) Energy decay in the case of no diffusion
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(d) Energy decay in the case of diffusion

Figure 6.3: Computational steady state of the Fokker-Planck model and energy decay for w = 1 in the
case of no and little diffusion strength.

Swiss-system tournaments

Assigning initial ratings to players in the Elo rating is a delicate issue, since inaccurate initial ratings
may influence the ability of the rating to converge to a ‘good’ rating of players reflecting their intrinsic
strengths. We illustrate this by studying the following situation of a Swiss-system tournament.

In a Swiss-system tournament players are paired using a set of rules, which ensure that only play-
ers with a similar rating compete. We set the interaction rate function to w(z) = χ{|z|≤0.1} – hence
individuals only play against each other, if the difference between their ratings is small.

We consider two groups of players with different strength and rating levels as initial distribution.
The first group is underrated, that is all players have rating R = 0.2 but their strength is distributed
as ρ ∈ N(0.75, 0.1). The second group is overrated, with rating R = 0.9 and a uniform distribution in
strength. We use this initial configuration in two computational experiments.

In the first, we choose the learning parameters α = 0.1 and β = 0. We see that the two groups
remain separated due to their different ratings in this case, see Figure 6.4. However, players compete
within their own group and since β = 0 the overall rating improves. In the overrated group the strongest
players accumulate at the highest possible rating, while the underrated group forms a diagonal pattern.
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Here the underrated players evolve to the maximum possible rating level.
In the second experiment, using the same initial configuration, but α = 0.1 and β = 0.05 the steady

state profile looks totally different. In this setting stronger players loose strength, when loosing against
a weaker opponent. Therefore, the ratings of the overrated group decrease, while the ratings of the
underrated group increases. After a while the two groups merge, accumulating on a diagonal which
underestimates the intrinsic strength of players by approximately 0.1, see Figure 6.5.

These examples show the importance of the initial ratings as well as the influence of the adapted
learning mechanism.

Figure 6.4: Computed stationary profiles in a Swiss-system tournament in case of two initially separated
groups (one underrated with high strength but low rating and one overrated with variable strength but
rating 0.9). Due to the limited interaction between the groups and the chosen learning mechanism, they
remain separated.

Figure 6.5: Computed stationary profiles in a Swiss-system tournament in case of two initially separated
groups (one underrated with high strength but low rating and one overrated with variable strength but
rating 0.9). Despite the limited interaction between the groups, the adapted learning mechanism leads
to convergence of the ratings to a slightly shifted diagonal.
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Figure 6.6: Computed stationary profile in a foul play where the first player has an unfair advantage
in each game. We observe that the ratings and strength all players except the first one converge. The
cheating player (indicated by a star) ends up with a higher rating than it is supposed to have.

Foul play

Finally, we consider a series of games, in which one player, without loss of generality the first one, is
playing unfairly, e.g. through cheating, doping or bribing of referees. This means that the outcome
of every game which involves this player is biased in his/her favor. In particular we assume that the
probability of winning is increased by a factor b̃ for player 1 and decreased by b̃ for the other contestant.
Figure 6.6 shows the stationary profile in the case of a uniform initial distribution of agents, α = 0.1,
β = 0, w = 1 and b̃ = 0.2. The star indicates the position of the unfair first player. While the distribution
of players with respect to their ratings and their strengths accumulates along the diagonal, we see that
the first player is rated higher than implied by their strength.
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Chapter 7

Appendix

Derivation of the Fokker-Planck equation

In this section we derive the limiting Fokker-Planck equation in the case γ → 0, ση → 0 such that
σ2
η/γ =: σ2 is kept fixed. Based on the interaction rules (6.7), which define the outcome of a game, we

compute the expected values of the following quantities:

〈(R∗i −Ri)〉 = γ(b(ρi − ρj)− b(Ri −Rj))
〈((R∗i −Ri)2)〉 = γ2(b(ρi − ρj)− b(Ri −Rj))2;

〈(ρ∗i − ρi)〉 = γ(αh1(ρj − ρi) + β〈h2(ρj − ρi)〉)

〈(ρ∗i − ρi)2〉 = γ2 (αh1(ρj − ρi) + β〈h2(ρj − ρi)〉)2
+ σ2

η

〈(ρ∗i − ρi)(R∗i −Ri)〉 = γ2(αh1(ρj − ρi) + β〈h2(ρj − ρi)〉)(b(ρi − ρj)− b(Ri −Rj)).

Using Taylor expansion of φ(ρ∗i , R
∗
i ) up to order two around (ρi, Ri), we obtain

〈φ(ρ∗i , R
∗
i )− φ(ρi, Ri)〉

= 〈R∗i −Ri〉
∂

∂Ri
φ(ρi, Ri) + 〈ρ∗i − ρi〉

∂

∂ρi
φ(ρi, Rj)

+
1

2

[
〈(R∗i −Ri)2〉 ∂

2

∂R2
i

φ(ρi, Ri) + 〈(ρ∗i − ρi)2〉 ∂
2

∂ρ2
i

φ(ρi, Ri) + 2〈(ρ∗i − ρi)(R∗i −Ri)〉
∂2

∂ρi∂Ri
φ(ρi, Ri)

]
+ Rγ(φ, ρ∗i , R

∗
i , ρi, Ri, τ),

where the remainder term Rγ is given by

Rγ =

(
ρ∗i − ρi
R∗i −Ri

)T ( ∂2

∂ρ2
i
φ(ρi, Ri)− ∂2

∂ρ2
i
φ(ρi, Ri)

∂2

∂ρi∂Ri
φ(ρi, Ri)− ∂2

∂ρi∂Ri
φ(ρi, Ri)

∂2

∂ρi∂Ri
φ(ρi, Ri)− ∂2

∂ρi∂Ri
φ(ρi, Ri)

∂2

∂R2
i
φ(ρi, Ri)− ∂2

∂R2
i
φ(ρi, Ri)

)(
ρ∗i − ρi
R∗i −Ri

)
,

for some 0 ≤ θ1, θ2 ≤ 1 with ρi and Ri defined as

ρi = θ1ρi + (1− θ1)ρ∗i and Ri = θ2Ri + (1− θ2)R∗i .
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Next we rescale time as τ = γt and insert the expansion in (6.12). This yields

d

dτ

∫
R2

φ(ρi, Rj)fε(ρi, Ri, τ)dRidρi =
1

2γ

∫
R2

R̃γ(φ, ρ∗i , R
∗
i , ρi, Ri, τ)fε(ρi, Ri, τ)dRidρi

+

∫
R4

[
∂

∂Ri
φ(ρi, Rj)(b(ρi − ρj)− b(Ri −Rj)) +

∂

∂ρi
φ(ρi, Rj)(αh1(ρj − ρi) + β〈h2(ρj − ρi)〉)

+
σ2
η

2γ

∂2

∂ρ2
i

φ(ρi, Rj)

]
w(Ri −Rj)fε(ρi, Ri, τ)fε(ρj , Rj , τ)dRjdρjdRidρi,

(7.1)

where

R̃γ(φ, ρ∗i , R
∗
i , ρi, Ri, τ) = γ2

∫
R2

∂2

∂R2
i

φ(ρi, Ri)(b(ρi − ρj)− b(Ri −Rj))2w(Ri −Rj)fε(ρj , Rj , τ)dRjdρj

+ γ2

∫
R2

∂2

∂ρ2
i

φ(ρi, Ri)
(
αh1(ρj − ρi) + β〈h2(ρj − ρi)〉

)2
w(Ri −Rj)fε(ρj , Rj , τ)dRjdρj

+ 2γ2

∫
R2

∂

∂ρi∂Ri
φ(ρi, Ri)(b(ρi − ρj)− b(Ri −Rj))

(
αh1(ρj − ρi) + β〈h2(ρj − ρi)〉

)
w(Ri −Rj)fε(ρj , Rj , τ)dRjdρj

+

∫
R2

Rγw(Ri −Rj)fε(ρj , Rj , τ)dRjdρj .

Next we show that the remainder 1
2γ

∫
R2 R̃γ(φ, ρ∗i , R

∗
i , ρi, Ri, τ)fε(ρi, Ri, τ)dRidρi vanishes for γ → 0.

Let us assume that φ(ρi, Ri) belongs to the space C2+δ(R2) = {h : R2 → R, ‖Dζh‖δ < +∞}, where
0 < δ ≤ 1, ζ is a multi-index with |ζ| ≤ 2 and the seminorm ‖ · ‖δ is the usual Hölder seminorm

‖f‖δ = sup
x,y∈R2

|f(x)− f(y)|
|x− y|δ

.

With this choice of φ(ρi, Ri), all the terms wich contain ∂2

∂ρ2
i
φ and ∂2

∂R2
i
φ vanish using the same arguments

as in [88, 31]. Hence, we focus on the mixed derivative ∂2

∂ρi∂Ri
φ(ρi, Ri). Since φ(ρi, Ri) ∈ C2+δ(R2) and

‖(ρi, Ri)− (ρi, Ri)‖ ≤ ‖(ρ∗i , R∗i )− (ρi, Ri)‖, we have∣∣∣∣ ∂2

∂ρi∂Ri
φ(ρi, Ri)−

∂2

∂ρi∂Ri
φ(ρi, Ri)

∣∣∣∣ ≤ ‖φ‖2+δ‖(ρ∗i , R∗i )− (ρi, Ri)‖δ.

Furthermore, due to (6.2), (6.9) and (6.10),

‖(ρ∗i , R∗i )− (ρi, Ri)‖ =
[
γ2 (αh1(ρj − ρi) + β〈h2(ρj − ρi)〉)2

+ γ2 (b(ρi − ρj)− b(Ri −Rj))2
] 1

2 ≤ Cγ.

Using the previous inequalities we estimate the mixed term as

1

2γ

∣∣∣∣∣
∫
R4

(
∂2φ(ρi, Ri)

∂ρi∂Ri
− ∂2φ(ρi, Ri)

∂ρi∂Ri

)∥∥∥∥(ρiRi
)
−
(
ρi
Ri

)∥∥∥∥2

w(Ri −Rj)fε(ρj , Rj , τ)fε(ρi, Ri, τ) dRidρidRjdρj

∣∣∣∣∣
≤ 1

2γ

∫
R4

‖φ‖2+δ‖(ρ∗i , R∗i )− (ρi, Ri)‖δ‖(ρ∗i , R∗i )− (ρi, Ri)‖2fε(ρj , Rj , τ)fε(ρi, Ri, τ) dRidρidRjdρj

≤ 1

2γ

∫
R4

Cδ‖φ‖2+δγ
2+δfε(ρj , Rj , τ)fε(ρi, Ri, τ) dRidρidRjdρj ≤

Cδ

2
‖φ‖2+δγ

1+δ.
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Hence the remainder term converges to 0 as γ → 0. Therefore, the density fε(ρi, Ri, τ) converges to
f(ρi, Ri, τ) which solves

d

dτ

∫
R2

φ(ρi, Rj)f(ρi, Ri, τ)dRidρi =∫
R2

f(ρi, Ri, τ)

{
∂

∂Ri
φ(ρi, Rj)

[ ∫
R2

w(Ri −Rj)(b(ρi − ρj)− b(Ri −Rj))f(ρj , Rj , τ)dρjdRj

]
+

∂

∂ρi
φ(ρi, Rj)

[ ∫
R2

w(Ri −Rj)
(
αh1(ρj − ρi) + β〈h2(ρj − ρi)〉

)
f(ρj , Rj , τ)dρjdRj

]
+
σ2

2

∂2

∂ρ2
i

φ(ρi, Rj)

[ ∫
R2

w(Ri −Rj)f(ρj , Rj , τ)dρjdRj

]}
dRidρi. (7.2)

It remains to show that under suitable boundary conditions equation (7.2) gives the desired weak for-
mulation of the Fokker Planck equation. We split the boundary terms BT into the different parts BTi,
i = 1, 2, 3 that arises respectively from each integral. They are given by

B1 =

∫
R

[
f(ρi, Ri, τ)φ(ρi, Ri)

(∫
R2

w(Ri −Rj)(b(ρi − ρj)− b(Ri −Rj))f(ρj , Rj , τ)dRjdρj

)]Ri=+∞

Ri=−∞
dρi

B2 =

∫
R

[
f(ρi, Ri, τ)φ(ρi, Ri)

(∫
R2

w(Ri −Rj)(αh1(ρj − ρi) + β〈h2(ρj − ρi)〉)f(ρj , Rj , τ)dRjdρj

)]ρi=+∞

ρi=−∞
dRi

B3 =
σ2

2

∫
R

[
∂

∂ρi
φ(ρi, Ri)f(ρi, Ri, τ)

(∫
R2

w(Ri −Rj)f(ρj , Rj , τ)dρjdRj

)
− φ(ρi, Ri)

∂

∂ρi

[
f(ρi, Ri, τ)

(∫
R2

w(Ri −Rj)f(ρj , Rj , τ)dρjdRj

)]]ρi=+∞

ρi=−∞
dRi.

These three terms are zero, if the following boundary conditions are satisfied:

lim
|Ri|→+∞

f(ρi, Ri, τ) = 0, lim
|ρi|→+∞

f(ρi, Ri, τ) = 0, lim
|ρi|→+∞

∂

∂ρi
f(ρi, Ri, τ) = 0. (7.3)

These boundary condition are guaranteed for the Boltzmann equation fε(ρi, Ri, τ) by mass conservation
and the upper and lower bounds on the mean, see (6.15). Therefore, (7.2) is the weak form of the
Fokker-Planck equation

d

dτ

∫
R2

φ(ρi, Ri)f(ρi, Ri, τ)dRidρi =∫
R2

φ(ρi, Ri)

{
− ∂

∂Ri

[
f(ρi, Ri, τ)

∫
R2

w(Ri −Rj)(b(ρi − ρj)− b(Ri −Rj))f(ρj , Rj)dρjdRj

]
− ∂

∂ρi

[
f(ρi, Ri, τ)

∫
R2

w(Ri −Rj)
(
αh1(ρj − ρi) + β〈h2(ρj − ρi)〉

)
f(ρj , Rj)dρjdRj

]
+
σ2

2

[ ∫
R2

w(Ri −Rj)f(ρj , Rj , τ)dρjdRj

]
∂2

∂ρ2
i

[
f(ρi, Ri, τ)

]}
dρidRi. (7.4)

Some tools on Parabolic PDE
In this Section there are some results on existence and regularity of solution of Parabolic PDE, in
particular some appplications of Galerkin method that are used in chapter 6.4.
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Let "V ⊂ H ⊂ V ∗" be an evolution triple. The model of parabolic PDE is

∂

∂t
(u(t), v)H + a(u(t), v) = 〈b(t), v〉V , (7.5a)

u(0) = u0 ∈ H, (7.5b)

u ∈W 1
2 (0, T ;V,H), (7.5c)

where (7.5a) is valid for all v ∈ V and almost all t ∈ (0, T ). Observe that the map a does not depend on
time.

Theorem 30. [94] We make the following assumptions:

(H1) V ⊆ H ⊆ V ′ is an evolution triple with dimV = ∞, 0 < T < ∞. The spaces V and H are real
H-spaces.

(H2) The mapping a : V × V → R is bilinear, bounded, and strongly positive. Moreover. we are given
u0 ∈ H and b ∈ L2(0, T ;V ∗).

(H3) {w1, w2, . . . } is a basis in V , and (un0) is a sequence from H with

un,0 → u0 in H as n→ +∞

where
un,0 ∈ span{w1, . . . , wn} for all n.

If the assumptions (H1), (H2), (H3) hold, then,

(a) Existence and uniqueness. The equation (7.5a)-(7.5c) has exactly one solution u.

(b) Continuous dependence on the data. The map

(u0, b) 7→ u

is linear and continuous from H × L2(0, T ;V ∗) to W l
2(0, T ;V,H), i.e., there is a constant D > 0

such that
‖u‖W l

2
≤ D(‖u0‖H + ‖b‖L2(0,T ;V ∗)),

for all u0 ∈ H and b ∈ L2(0, T ;V ∗).

(c) Convergence of the Galerkin method. For all n = 1, 2, . . . the Galerkin equation has exactly one
solution un ∈ W l

2(0, T ;V,H). The sequence (un) converges as n → +∞ to the solution of [?]-[?]
in the following sense

un → u in L2(0, T ;V ) (7.6a)
max0≤t≤T ‖un(t)− u(t)‖H → 0. (7.6b)

The equation (7.5a)-(7.5c) is equivalent to the following operator equation [94]

u′(t) +Au(t) = b(t) for almost all t ∈ (0, T ) (7.7a)
u(0) = u0 ∈ H. (7.7b)
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Here, the operator A : V → V ∗ is linear, continuous, and strongly monotone with

〈Au, v〉V = a(u, v) for all u, v ∈ V.

The theorem 30 is true for a problem with A that does not depend on time. The generalization is the
following problem 7.8a. We now replace the orignal problem with

∂

∂t
(u(t), v)H + a(u(t), v, t) = 〈b(t), v〉V , 〉V , (7.8a)

u(0) = u0, (7.8b)

u ∈W 1
2 (0, T ;V,H), (7.8c)

where (7.8a) is valid for all v ∈ V and almost all t ∈ (0, T ). Observe that the operator a depends on
time.

Corollary 31. ([94]) Suppose that (H1), (H2∗), (H3) hold true, where
(H2)* For all t ∈]0, T [, the mapping

a(·, ·, t) : V × V → R
is bilinear, bounded and satisfies the abstract Gardin inequality, where the constant are independent of
time t. That is, there exist constant C, c > 0 and d ≥ 0, such that

|a(u, v, t)| ≤ C‖u‖V ‖v‖V ,

|a(u, u)| ≥ c‖u‖2V − d‖u‖2H ,
for all u, v ∈ V and t ∈]0, T [.
Moreover, the function

t 7→ a(u, v, t)

is measurable on ]0, T [ for all u, v ∈ V .
We are give u0 ∈ H and b ∈ L2(0, T ;V ′). Then all the assertions of Theorem 30 are also valide for
equation (7.8a)-(7.8c).
Moreover (7.8a)-(7.8c) is equivalent to the following operator equation

u′(t) +A(t)u(t) = b(t) for almost all t ∈ (0, T ) (7.9a)
u(0) = u0 ∈ H, (7.9b)

where the operator A(t) : V → V ∗ is defined by

〈A(t)u, v〉V = a(u, v; t) for all u, v ∈ V.

Acknowledgments
The authors thank Martin Burger for the useful discussion during the Warwick EPSRC symposium
workshop on ‘Emerging PDE models in socio-eoconomic sciences’.

Funding
BD has been supported by the Leverhulme Trust research project grant ‘Novel discretisations for higher-
order nonlinear PDE’ (RPG-2015-69). Part of this research was carried out during a three-month visit
of the second author to the University of Sussex, enabled through financial support by the University of
Pavia. MTW acknowledges partial support from the Austrian Academy of Sciences via the New Frontier’s
grant NST 0001 and the EPSRC by the grant EP/P01240X/1.



98 CHAPTER 7. APPENDIX



Bibliography

[1] F. Achleitner, A. Arnold, and D. Stürzer. Large-time behavior in non-symmetric Fokker-Planck
equations. Riv. Mat. Univ. Parma, 6:1–68, 2015.

[2] G. Albi, L. Pareschi, and M. Zanella. Boltzmann-type control of opinion consensus through leaders.
Phil. Trans. R. Soc. A, 372, 2014.

[3] A. Arnold and J. Erb. Sharp entropy decay for hypocoercive and non-symmetric Fokker-Planck
equations with linear drift. arXiv preprint arXiv:1409.5425, 2014.

[4] A. Arnold, P. Markowich, G. Toscani, and Unterreiter. A. On convex Sobolev inequalities and the
rate of convergence to equilibrium for Fokker-Planck type equations. Communications in Partial
Differential Equations, 26(1-2):43–100, 2001.

[5] L. Bachelier. Théorie de la spéculation. Annales scientifiques de l’École Normale Supérieure, 17:21–
86, 1900.

[6] L. Baringhaus and R. Grübel. On a class of characterization problems for random convex combina-
tions. Annals of the Institute of Statistical Mathematics, 49(3):555–567, 1997.

[7] F. Bassetti, L. Ladelli, and D. Matthes. Central limit theorem for a class of one-dimensional kinetic
equations. Probability Theory and Related Fields, 150(1):77–109, 2011.

[8] F. Bassetti and E. Perversi. Speed of convergence to equilibrium in Wasserstein metrics for Kac-like
kinetic equations. Electron. J. Probab., 18:1–35, 2013.

[9] F. Bassetti and G. Toscani. Explicit equilibria in a kinetic model of gambling. Physical review. E,
Statistical, nonlinear, and soft matter physics, 81:066115, 06 2010.

[10] F. Bassetti and G. Toscani. Explicit equilibria in bilinear kinetic models for socio-economic inter-
actions. ESAIM: Proc. and Surveys, 47:1–16, 2014.

[11] N. Bellomo, M.A. Herrero, and A. Tosin. On the dynamics of social conflicts: looking for the Black
Swan. Kinet. Relat. Models, 6:459–479, 2013.

[12] S. Bentes. Econophysics: A new discipline. arXiv.org, Quantitative Finance Papers, 06 2010.

[13] M. Bisi. Some kinetic models for a market economy. Bollettino dell’Unione Matematica Italiana,
10(1):143–158, 2017.

[14] M. Bisi, G. Spiga, and G. Toscani. Kinetic models of conservative economies with wealth redistri-
bution. Communications in Mathematical Sciences, 7(4):901–916, 2009.

99



100 BIBLIOGRAPHY

[15] F. Black and M. Scholes. The Pricing of Options and Corporate Liabilities. Journal of Political
Economy, 81(3):637–654, 1973.

[16] L. Boltzmann. Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen.
Vieweg+Teubner Verlag, Wiesbaden, 1970.

[17] J.-P. Bouchaud and M. Mezard. Wealth condensation in a simple model of economy. Physica A,
282:536–545, feb 2000.

[18] L. Boudin, R. Monaco, and F. Salvarani. Kinetic model for multidimensional opinion formation.
Phys. Rev. E, 81:036109, 2010.

[19] A. Bressan. Lecture notes for a summer course given at S.I.S.S.A. 2015.

[20] Z. Burda, J Jurkiewicz, and M. Nowak. Is Econophysics a solid science? Acta Physica Polonica B,
34, 02 2003.

[21] M. Burger, L. Caffarelli, P.A. Markowich, and M.-T. Wolfram. On a Boltzmann-type price forma-
tion model. Proc. R. Soc. A., 469:20130126, 2013.

[22] M. Burger, A. Lorz, and M.-T. Wolfram. On a Boltzmann mean field model for knowledge growth.
SIAM J. Appl. Math., 76(5):1799–1818, 2016.

[23] M. J. Cáceres and G. Toscani. Kinetic approach to long time behavior of linearized fast diffusion
equations. Journal of Statistical Physics, 128:883–925, 2007.

[24] J. Carrillo and G. Toscani. Contractive probability metrics and asymptotic behavior of dissipative
kinetic equations. Rivista di Matematica della Universitá di Parma. Serie 7, 6:75–198, 2007.

[25] C. Cercignani, R. Illner, and M. Pulvirenti. The Mathematical Theory of Dilute Gases. Springer,
1994.

[26] A. Chakraborti. Distributions of money in models of market economy. International Journal of
Modern Physics C, 13(10):1315–1321, 2002.

[27] A. Chakraborti and B. K. Chakrabarti. Statistical mechanics of money: how saving propensity affects
its distributions. Eur. Phys., 17:167–170, 2000.

[28] A. Chakraborti, I. Muni Toke, M. Patriarca, and F. Abergel. Econophysics: Empirical facts and
agent-based models. ArXiv e-prints, sep 2009.

[29] A. Chatterjee, B. K. Chakrabarti, and R. B. Stinchcombe. Master equation for a kinetic model of a
trading market and its analytic solution. Phys. Rev. E, 72:026126, Aug 2005.

[30] H. Chernoff. A note on an inequality involving the Normal Distribution. The Annals of Probability,
9(3):533–535, 1981.

[31] S. Cordier, L. Pareschi, , and C. Piatecki. Mesoscopic modelling of financial markets. J. Stat.
Phys., 134:161–184, 2009.

[32] S. Cordier, L. Pareschi, and G. Toscani. On a kinetic model for a simple market economy. Journal
of Statistical Physics, 120:253–277, 2005.

[33] P. Degond, J.-G. Liu, and C. Ringhofer. Evolution of wealth in a nonconservative economy driven
by local Nash equilibria. Phil. Trans. R. Soc. A, 372, 2014.



BIBLIOGRAPHY 101

[34] M. Delitala and T. Lorenzi. A mathematical model for value estimation with public information and
herding. Kinet. Relat. Models, 7:29–44, 2014.

[35] A. Dragulescu and V.M. Yakovenko. Statistical mechanics of money. Eur. Phys., 2000.

[36] B. Düring, A. Jüngel, and L. Trussardi. A kinetic equation for economic value estimation with
irrationality and herding. Kinet. Relat. Models, 10:239–261, 2017.

[37] B. Düring, P.A. Markowich, J.F. Pietschmann, and M.-T. Wolfram. Boltzmann and Fokker-Planck
equations modelling opinion formation in the presence of strong leaders. Proc. R. Soc. A, 465:3687–
3708, 2009.

[38] B. Düring, D. Matthes, and G. Toscani. Kinetic equations modelling wealth redistribution: A
comparison of approaches. Phys. Rev. E, 78, 2008.

[39] B. Düring, D. Matthes, and G. Toscani. A Boltzmann-type approach to the formation of wealth
distribution curves. (Notes of the Porto Ercole School, June 2008). Rivista di Matematica della
Universitá di Parma. Serie 8 (0035-6298), 1:199–261, 2009.

[40] B. Düring, M. Torregrossa, and M.-T. Wolfram. On a kinetic Elo rating model for players with
dynamical strength. ArXiv e-prints, June 2018.

[41] B. Düring and G. Toscani. Hydrodynamics from kinetic models of conservative economies. Physica
A: Statistical Mechanics and its Applications, 384(2):493 – 506, 2007.

[42] B. Düring and G. Toscani. International and domestic trading and wealth distribution. Communi-
cations in Mathematical Sciences, 6:1043–1058, 2008.

[43] B. Düring and M.-T. Wolfram. Opinion dynamics: inhomogeneous Boltzmann-type equations mod-
elling opinion leadership and political segregation. Proc. R. Soc. Lond. A, 471, 2015.

[44] A.E. Elo. The rating of chess players, past and present. ISHI Press International, 1978.

[45] L.C. Evans. Partial Differential Equations. Graduate studies in mathematics. American Mathemat-
ical Society, 2010.

[46] W. Feller. Two singular diffusion problems. The Annals of Mathematics, 54(1):173–182, 1951.

[47] W. Feller. An introduction to probability theory and its applications., volume I. John Wiley &
Sons Inc., 1968.

[48] A. D. Fokker. Die mittlere energie rotierender elektrischer dipole im strahlungsfeld . Ann d. Physik,
1914.

[49] G. Furioli, A. Pulvirenti, E. Terraneo, and G. Toscani. Fokker-Planck equations in the modeling of
socio-economic phenomena. Mathematical Models and Methods in Applied Sciences, 27, 06 2016.

[50] G. Gabetta, G. Toscani, and B. Wennberg. Metrics for probability distributions and the trend to
equilibrium for solutions of the Boltzmann equation. Journal of Statistical Physics, 81(5):901–934,
1995.

[51] S. Galam. Sociophysics: A review of Galam models. International Journal of Modern Physics C,
19, 2008.



102 BIBLIOGRAPHY

[52] S. Galam, Y. Gefen, and Y. Shapir. Sociophysics: A new approach of sociological collective be-
haviour. I. Mean behaviour description of a strike. The Journal of Mathematical Sociology, 9(1):1–
13, 1982.

[53] J. W. Gibbs. Elementary Principles in Statistical Mechanics: Developed with Especial Reference
to the Rational Foundation of Thermodynamics. Cambridge Library Collection - Mathematics.
Cambridge University Press, 2010.

[54] M.E. Glickman and A.C. Jones. Rating the chess rating system. Chance, 12:21–28, 1999.

[55] A. Golan. Information and Entropy. Econometrics-Editor’s view. Journal of Econometrics, 107(1):1
– 15, 2002. Information and Entropy Econometrics.

[56] R. Graham and A. Schenzle. Carleman imbedding of multiplicative stochastic processes. Phys. Rev.,
1982.

[57] R. Illner and H. Neunzert. Global existence for two-velocity models of the Boltzmann equation.
Mathematical Methods in the Applied Sciences, 1(2):187–193, 1979.

[58] P.-E. Jabin and S. Junca. A Continuous Model For Ratings. SIAM Journal on Applied Mathemat-
ics., 75(2):420–442, 2015.

[59] O. Johnson and A. Barron. Fisher information inequalities and the central limit theorem. Proba-
bility Theory and Related Fields, 129(3):391–409, 2004.

[60] G. Katriel. Directed random market: The equilibrium distribution. Acta Appl. Math., 139:95–103,
2015.

[61] S. Keen. Standing on the toes of pygmies: Why Econophysics must be careful of the economic
foundations on which it builds. Physica A: Statistical Mechanics and its Applications, 324(1):108
– 116, 2003. Proceedings of the International Econophysics Conference.

[62] C.A. Klaassen. On an inequality of Chernoff. The Annals of Probability, 13(3):966–974, 1985.

[63] A.N. Kolmogorov. Entropy per unit time as a metric invariant of automorphisms. Doklady Akademii
Nauk SSSR, 1959.

[64] K. Krupp. Kinetische modelle für die rangeinstufung von spielern. Master thesis, 2016.

[65] C. Le Bris and P.-L. Lions. Existence and uniqueness of solutions to Fokker-Planck type equations
with irregular coefficients. Communications in Partial Differential Equations, 33(7):1272–1317,
2008.

[66] J. Lin. Divergence measures based on the Shannon entropy. IEEE Trans. Inf. Theo., 37:145–151,
1991.

[67] E. Majorana. Il valore delle leggi statistiche nella fisica e nelle scienze sociali. Scientia, 36(71):58,
1942.

[68] E. Majorana and R. N. Mantegna. The value of statistical laws in physics and social sciences.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

[69] B. Mandelbrot. Variables et processus stochastiques de Pareto-Levy, et la repartition des revenus.
C.R. Acad. Sc. Paris, 1959.



BIBLIOGRAPHY 103

[70] B. Mandelbrot. The Pareto-Levy law and the distribution of income. International Economic Review,
1(2):79–106, 1960.

[71] B. B. Mandelbrot. The variation of certain speculative prices. Springer New York, New York, NY,
1997.

[72] R. N. Mantegna and H. E. Stanley. An Introduction to Econophysics: Correlations and Complexity
in Finance. Cambridge University Press, New York, NY, USA, 2000.

[73] D. Matthes, A. Juengel, and G. Toscani. Convex Sobolev inequalities derived from entropy dissipa-
tion. Arch. Rat. Mech. Anal., 199(2):563–596, 2011.

[74] D. Matthes and G. Toscani. On steady distributions of kinetic models of conservative economies.
Journal of Statistical Physics, 130(6):1087–1117, 2008.

[75] S. Motsch and E. Tadmor. Heterophilious dynamics enhances consensus. SIAM Rev.,
56:577âĂŞ621, 2014.

[76] L. Pareschi and G. Toscani. Interacting multiagent systems. Kinetic equations & Monte Carlo
methods. Oxford University Press, Oxford, 2013.

[77] L. Pareschi and G. Toscani. Wealth distribution and collective knowledge. A Boltzmann approach.
Phil. Trans. R. Soc. A, 372:20130396, 2014.

[78] V. Pareto. Cours d’Économie Politique. 1897.

[79] M. Planck. Über einen Satz der Statistischen Dynamik und seine Erweiterung in der Quantentheorie
Sitzung der physikalisch. Mathematischen Klass, 1917.

[80] C. Risken and T. Frank. The Fokker-Planck equation. Methods of solution and applications.
Springer, 1996.

[81] C. E. Shannon and W. Weaver. A Mathematical Theory of Communication. University of Illinois
Press, Champaign, IL, USA, 1963.

[82] J. Simon. Compact sets in the space Lp(0, T ;B). Annali di Matematica Pura ed Applicata, 146:65–
96, 1986.

[83] F. Slanina. Inelastically scattering particles and wealth distribution in an open economy. Phys. Rev.
E, 69:046102, Apr 2004.

[84] H.E. Stanley, V. Afanasyev, L.A.N. Amaral, S.V. Buldyrev, A.L. Goldberger, S. Havlin,
H. Leschhorn, P. Maass, R.N. Mantegna, C.-K. Peng, P.A. Prince, M.A. Salinger, M.H.R. Stan-
ley, and G.M. Viswanathan. Anomalous fluctuations in the dynamics of complex systems: from dna
and physiology to econophysics. Physica A: Statistical Mechanics and its Applications, 224(1):302
– 321, 1996. Dynamics of Complex Systems.

[85] M. Torregrossa and G. Toscani. On a Fokker-Planck equation for wealth distribution. Kinet. Relat.
Models, 11(2):337–355, 2018.

[86] M. Torregrossa and G. Toscani. Wealth distribution in presence of debts. A Fokker-Planck descrip-
tion. Commun. Math. Sci, 16(2):537–560, 2018.



104 BIBLIOGRAPHY

[87] G. Toscani. Entropy production and the rate of convergence to equilibrium for the Fokker-Planck
equation. Quarterly of Applied Mathematics, 57:521–541, 1999.

[88] G. Toscani. Kinetic models of opinion formation. Commun. Math. Sci, 4(3):481–496, 2006.

[89] G. Toscani and C. Villani. Probability Metrics and Uniqueness of the solution to the Boltzmann
Equation for a Maxwell Gas. Journal of Statistical Physics, 94(3):619–637, 1999.

[90] C. Tsallis, F. Baldovin, R. Cerbino, and P. Pierobon. Introduction to Nonextensive Statistical
Mechanics and Thermodynamics. eprint arXiv:cond-mat/0309093, September 2003.

[91] V.V. Uchaikin and V.M. Zolotarev. Chance and Stability: Stable Distributions and their Applica-
tions. Modern Probability and Statistics. De Gruyter, 2011.

[92] G. L. Vasconcelos. A guided walk down Wall Street: an introduction to Econophysics. Brazilian
Journal of Physics, 34:1039 – 1065, 09 2004.

[93] C. Villani. Hypocoercivity. Memoirs of the American Mathematical Society, 202, 2009.

[94] E. Zeidler. Non linear functional analysis and application, volume II A. Springer, 1990.

[95] V.M. Zolotarev. Metric distances in spaces of random variables and their distributions. Math.
USSR-Sb, 30:373–401, 1976.


