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Abstract

In the general framework of Object Oriented Data Analysis, the thesis is focused on

network-valued data. The atom of the statistical analysis is a network and we have to deal with

samples of networks. Network analysis is a widely studied area, but statistical tools for the analysis

of samples of networks are almost lacking. The thesis presents some statistical tools for null

hypothesis testing on network-valued data. After a general introduction on Object Oriented Data

Analysis and in particular on network-valued data, a framework for a two-sample test for

network-valued data in the context of permutation theory is introduced. The inferential properties

of the method are studied as well (theoretically and via simulations) and an illustrative application

to a bike sharing data set is presented. A substantial application of the two-sample test on three

different data sets of brain networks is presented, together with a comparison of the results obtained

via the classical approach that statistically compares samples of brain networks by means of brain

summary measures. The data sets analyzed refer to different diseases (autism spectrum disorder and

tuberous sclerosis complex in children) and to different acquisition procedures of the data

(electroencephalography, functional Magnetic Resonance Imaging and Diffusion Compartment

Imaging). The thesis then proceeds stimulated by clinical brain questions. Once it is known that

there is a statistical significant difference between two samples, physicians may be interested in

finding out which portions of the brain network are responsible for the observed difference. A

general multiscale null-hypothesis testing for network-valued data is developed. The proposed

method allows to specify a partition of the set of the vertices and to find out in which subnetworks
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identified by the partition there is a significant difference between the two samples. The procedure

guarantees the control of the probability of at least one false rejection (the so called Family Wise

Error Rate) at level α. The inferential properties (the estimation of probability of rejection under the

alternative hypothesis and the control of the Family Wise Error Rate) are studied theoretically and

via simulations. An application on a brain networks data set is developed to find out in which

hemispheres and in which lobes there are significant differences between autistic patients and

healthy subjects. Both the (global) two-sample test and the multiscale procedure have been

implemented in an R package called nevada (NEtwork-VAlued Data Analysis), whose structure

and functions are detailed.
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A major trend in modern science is the collection of not only
larger datasets, but also more complex datasets. While mas-
sive data is a term that is currently in verywidespreaduse, data
complexity may become the larger scale, and ultimately more
important, challenge to the field of statistics.

Marron & Alonso, 2014

1
Introduction

Nowadays, the opportunity of recording data from every phenomenon, in many different
conditions and trough different acquisition procedures pushes the collection of more and more
elaborate data and open up perspectives in answering complex questions by means of data sets
where the single atom is a complex object. The formulation of statistical tools is not going hand in
hand with the increasing amount of data sets composed of complex objects. Therefore there is an
unmet need for statistical methods able to analyze these type of data sets.

The statistical framework is that of Object Oriented Data Analysis (OODA). OODA is a field of
growing interest that emerged from the seminal paper of [72]. It aims at conducting statistical
analyses of complex data that cannot be embedded in the standard Euclidean framework [see 44,
with discussion], by contrast with more traditional data sets composed of numbers or vectors of
numbers that naturally lie in a Euclidean space in which standard statistical methods can be applied.
Shapes [18], images [36, 74], manifold-valued data such as directional data [43], trees [72],
covariance matrices [19] are examples of so-called object data. Investigating the relationships
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between these complex objects requires the development of appropriate statistical tools that can be
either generalizations of existing Euclidean methods or novel non-standard approaches [see 60].

In this thesis, we focus on a specific type of object data, namely networks. A networkG = (V, E)
is a complex combinatorial object composed of a set V of nodes that can be connected or not,
according to the edge set E. In recent years, networks have indeed becomemore and more popular
in many different areas of scientific investigation, ranging frommicro-scale networks such as
protein-protein interaction networks, gene regulatory networks or cerebral networks, to
macro-scale networks such as social networks, organizational networks, mobility and transport
networks [see, for example, 48, chap. 2–5, for possible applications]. The nature of the vertices as
well as the role of the edges of the network are application-specific. From the above-cited examples,
vertices would be for instance proteins, molecular regulators, regions of the brain, users of a social
network, working roles or geographical areas. Edges can be either binary or quantitative with
corresponding networks called unweighted and weighted respectively. Binary edges usually encode
the presence or absence of a relationship between two vertices. They could be physical interaction
of proteins, molecular reactions, structural or functional connections between areas of the brain,
friendship on a social network, collaborations between people on a firm or mobility connections
between two geographical areas. Differently, quantitative edges measure the strength of the
connection between the two vertices, such as the number of structural fibers between two areas of
the brain or the amount of vehicles connecting two geographical areas for instance. Moreover, edges
can also be directional: for example, in a social network, one might use edges to connect people on
the basis of who follows who.

There is a large body of past and current literature on network analysis and its many applications.
Yet, a vast majority of that literature has put the attention on the use of a network as an efficient way
to represent and analyse data sets in which the interest is on exploring “interactions between
entities, whether those entities are individuals in a school [45], species in a food web [33], nodes on
a computer network [50], or proteins in metabolic pathways [28]. Network analysis is used to
explore the mathematical, statistical and structural properties of a set of items (nodes) and the
connections between them (edges; [46])” [4]. Consequently, the scientific effort has then been in
the development of tools for constructing, describing and modeling a single network. From the
point of view of OODA, these research goals can be framed among the so-called first generation
problems of OODA in which the effort is spent in the proper construction of object data (S. Marron,
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keynote talk at the 6th Nordic-Baltic Biometric Conference, June 19-21, 2017, Copenhagen, DK),
which, in the present case, are networks. In this work, we instead focus on the second generation
problems in OODAwhich pertains to the statistical analysis of samples of networks. In this setting,
networks are considered as the units of the statistical analysis, hence the name of network-valued
data. As a result, we have to deal with samples of networks that we model as i.i.d. realizations of
network-valued random variables. The growing amount of available network-valued data urges the
need for quantitative statistical tools to face this challenge which, at the moment, has been mostly
tackled in a purely heuristic way [64].

Only recently, some proposals have been made in this direction. The first papers on statistical
methodologies that investigate network-valued data appeared as a response to neuroimaging
problems. Specifically, in [72] and [2] the author developed a Principal Component Analysis analog
for a special type of networks coined tree-structured objects. This first OODA for trees is based on
the concept of tree lines and the underlying optimization problem is solved in a linear computation
time. A dataset of 73 vascular brain trees modeled as acyclic networks with vessels playing the role
of edges and bifurcations playing the role of vertices is analysed. More recently, in [49] has been
proposed a Principal Component Analysis approach in the space of phylogenetic trees.

When comparing samples of object data, the traditional approach pertains to transforming the
individual object data into a multivariate collections of indicators describing the original object
data. In the context of network-valued data, this translates into replacing a network by a multivariate
vector of graph summary measures such as characteristic path length, clustering coefficient,
modularity, global efficiency, betweenness centrality, degree distribution, degree centrality and so
on (see [59] for a detailed list of graph summary measures). The comparison between networks is
then framed as a classical multivariate data analysis rather than a network-valued data analysis.
Despite the high interest coming from the interpretation of these summary measures, their
dependence on the network size, the reliance of the resulting inference on the chosen measure and
the need for information about the entire structure of networks have encouraged the formulation of
newmethodologies that do not rely on summary features. The aim of this thesis is to overcome this
approach and propose a method that looks at the entire structure of every network in the data set,
without the loss of information that comes from summarization. A comparison of these approaches
is proposed on simulated data sets and on real data, as detailed in the following. The second chapter
of the thesis is devoted to the construction of a framework for a two-sample test for network-valued

3



data. A substantial application on three different data sets of brain networks is presented in the third
chapter together with a comparison of the results obtained via the classical approach that
statistically compares samples of brain networks by means of brain summary measures. Clinical
brain questions stimulate the fourth chapter. Once it is known that there is a statistical significant
difference between two samples, physicians are interested in figure out which portions of the brain
network are responsible for the observed difference. A multiscale null-hypothesis testing for
network-valued data is developed in the fourth chapter. Both the (global) two-sample test and the
multiscale procedure have been implemented in an R [56] package called nevada
(NEtwork-VAlued Data Analysis), whose structure and functions are detailed in the fifth chapter.
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In practice parametric methods reflect a modelling approach
and generally require the introduction of a set of stringent as-
sumptions, which are often quite unrealistic, unclear, and dif-
ficult to justify. In contrast, nonparametric approaches try to
keep assumptions at a lower workable level, avoiding those
that are difficult to justify or interpret, and possibly without
excessive loss of inferential efficiency.

Pesarin & Salmaso, 2010

2
A two-sample null-hypothesis testing for

network-valued data

As mentioned in the first chapter of the thesis, the comparison between samples of
networks has been framed as a classical multivariate data analysis rather than a network-valued data
analysis. The first attempt to account for the entire network structures when applying null
hypothesis significance testing procedures can be found in [63]. The authors define a first statistic
based on the Jaccard index to quantify similarity in key vertex locations between groups of networks.
Next, they propose a second statistic as the ratio between the means of Kolmogorov-Smirnov
statistics to compare the degree distributions of each vertex within and between groups.

In our opinion, the paper by [27] is a cornerstone paper moving in the direction of
network-valued data. Motivated by a problem of functional neuroimaging investigation, the authors

See [39].
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model the Human brain as a network and derive a sound asymptotic theory for parametric null
hypothesis significance testing of network-valued data represented by means of graph Laplacian
matrices. In details, they characterize the geometry of the space of graph Laplacian matrices as a
manifold with corners, generalize results from [6] to propose a Central LimitTheorem for the
Frobenius-based Fréchet mean which allow them to naturally extend classical asymptotic results
from textbooks to network-valued data analysis, including k-sample null hypothesis significance
testing. They apply the proposed approach to the 1000 Functional Connectomes Project Data Set.
Asymptotic theory unfortunately only yields approximate inference, null hypothesis significance
testing procedures lack exactness and perform in an unreliable fashion when the sample size is
small. Moreover, the proposed procedure requires the computation of the inverse of a covariance
matrix which can become very challenging from a numerical point of view when the dimensionality
of networks (number of vertices) is large, as stated by the authors themselves.

In a recent paper, [21] the authors introduce a Bayesian framework that can deal with samples of
large networks. In details, the authors propose a probabilistic generative model for a
network-valued random variable via a flexible Bayesian non-parametric approach. Dimensionality is
reduced using a finite mixture model to define the joint distribution of the edges. See also the
interesting discussion on [21] recently published on JASA. In [20] the authors further generalize
this model for allowing the generative mechanism to change across groups and develop a general
Bayesian procedure for inference and testing of group differences in the network structure.

In this chapter, a finite-sample exact and consistent permutation-based two-sample test for
making inference on distributions of network-valued data is introduced. The permutation
framework has the advantage of not relying on distributional assumptions about the underlying
generative models, which comes in handy when these models are complex and/or no simple
parametric approximation is available. Moreover, the proposed framework is very flexible: it is
indeed possible to choose (i) an appropriate matrix representation for the networks, (ii) a suitable
distance between networks and (iii) one or more test statistics for capturing relevant distributional
differences. In this thesis, a number of possible representations, distances and statistics is detalied.
It is straightforward to add more of them into the framework as well.

This chapter is organized as follows. Section 2.1 presents the statistical framework for
network-valued data. It focuses on possible matrix representations of networks for mathematical
tractability and proposes a non-exhaustive collection of distances between networks. We discuss
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possible interpretation of pairs of representations and distances as well. Next, we introduce the
concept of test statistics based on inter-point distances for carrying out null hypothesis significance
testing. We review existing test statistics based on inter-point distances and propose two new such
statistics which, when used together within the non-parametric combination framework [51, chap.
4], exhibit in three simulation settings the best performances in testing equality of distributions of
networks. We then prove exactness and consistency of the permutation-based tests associated to
the proposed statistics and the non-parametric combination approach is briefly summarized as well
for self-content. Finally, in Section 2.2 and 2.3, we report results from simulation studies and an
application to real data pertaining to the bike sharing service in Milan, respectively.

2.1 Statistical framework for network-valued data

2.1.1 Network representations

The first step of our procedure is based on a proper selection of a mathematical representation of
each network. Recall that a networkG = (V, E) consists of a set V of vertices whose connections
are defined within the edge set E. In the literature, three possible matrix representations of networks
are mostly used, namely adjacency, Laplacian and modularity matrices, each describing specific
aspects of a network.

AdjacencyMatrix. The adjacency matrix, often denoted byW, reports at entry wij the strength
of the edge between vertices i and j. Its elements must therefore be non-negative (wij ≥ 0). This is
the starting point of all matrix representations. If the network is unweighted, the strength of the
connection boils down to its presence or absence (wij = 1 if (i, j) ∈ E). If the network is undirected,
the adjacency matrix is symmetric (wij = wji). If there is no self-loop at vertex i (edge connecting
vertex iwith itself), the corresponding diagonal entry is equal to zero (wii = 0). A network is said
simple if it is both undirected and without self-loops. In this case, the adjacency matrixW has a null
diagonal and is symmetric.

LaplacianMatrix. By definition, the graph Laplacian matrix L can be derived from the
adjacency matrixW as L = D(W)−WwhereD(W) is a diagonal matrix whose diagonal elements
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are the degrees di of the corresponding vertices:

ℓij = δijdi − wij, with di =
∑
k

wik.

Thismatrix takes its name from the so-called heat equationwhich reads ∂u/∂t− α∇2u, where∇2

is the Laplacian operator. Indeed, the Laplacian matrix is nothing but the discretized version of∇2

on the set of vertices [see 48, Chapt. 6]. As a result, similar networks in their Laplacian
representation will exhibit configurations of vertices and edges that lead to similar diffusion
patterns. Moreover, the Laplacian matrix has some important properties. For example, if there are
no self-loops, its eigenvalues are all non-negative, the number of null eigenvalues matches the
number of connected components (i.e. subnetworks where any couple of vertices is connected by
paths) and the space of simple networks is in bijection with the space of Laplacian matrices.

Modularitymatrix. The third matrix representation that we discuss in this work is the
modularity matrix B, whose elements are defined as follows:

bij = wij −
didj
2m

,

where di and dj are the degrees of vertices i and j, respectively, andm = 1/2
∑

i di is the total
strength of the edges in the network. We can give a nice interpretation of the modularity matrix in
the case of unweighted networks. The element bij is the difference between the actual weight of edge
(i, j) and the expected number of edges between vertices i and j if edges were placed at random.
Hence, the presence of non-zero elements in the modularity matrix provides evidence of structure
within the network. For this reason, the modularity has been widely used for community detection
in networks [47].

The three above-mentioned representations can be straightforwardly adapted to the simpler case
of unweighted network by dichotomization. The easiest way consists in assigning 1 to edges with
non-zero weight and 0 to the others. A finer dichotimization can be performed via a user-defined
threshold above which an edge is assumed to exist.
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2.1.2 Distances between networks

Comparing distributions of networks requires a mathematical tool for quantifying how far two
networks are from each other. One of the first distances between two networks appeared in the 70’s
and is defined as the difference between their common number of vertices and the number of
vertices in the largest common induced subnetwork [75]. Then, in the 90’s, a number of statistics
emerged around the concepts of edge rotation or slide [12, 32, 76]. In essence, an edge rotation is
defined as a unit operation on a network that pertains to moving a single edge while keeping one of
its vertices fixed. Edge slides are a subset of edge rotations in which the moving vertex can only be
sent on vertices directly connected to it. Distances between two networks can then be defined as
the smallest number of such operations required to transform one network into the other. However,
such distances suffer from twomajor drawbacks: (i) they do not convey an easy interpretation and
(ii) their computation is prohibitively time consuming.

In this work we instead take advantage of the matrix representation of a network and consider
instead distances that have been recently proposed either on network matrices [14] or on
covariance matrices [19], which are not computationally intense and easily interpretable. LetG1

andG2 be two networks sharing the same set of vertices V of cardinalityN and X and Y be the
chosen matrix representation forG1 andG2, respectively. We focus on the following distances:

Hamming distance. TheHamming distance betweenG1 andG2 is defined as:

ρHA(G1,G2) =
N∑
i ̸=j

∣∣Xij − Yij
∣∣ ,

This distance takes its name after Richard Hamming who needed a way to detect errors in
systems [30]. It is easier to grasp its interpretation from unweighted networks. It basically counts
“matching errors”, i.e. edges that are present in one network but not in the other.

Frobenius distance. The Frobenius distance betweenG1 andG2 is defined as:

ρFR(G1,G2) =

 N∑
i ̸=j

(
Xij − Yij

)21/2

.

This distance is the most frequently used distance in the scientific literature as it is nothing but the
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Euclidean distance on the vectorized chosen matrix representation. Interestingly, in the case of
unweighted networks represented by the adjacency matrix, it coincides with the Hamming distance.

Spectral distance. The spectral distance betweenG1 andG2 is defined as:

ρSP(G1,G2) =

(
N∑
i=1

(
ΛX
i − ΛY

i

)2)1/2

,

where ΛX and ΛY are vectors storing the (ordered) eigenvalues of X and Y, respectively. This
distance only accounts for the eigenvalue structure of a network matrix representation, which
captures topological features only, leaving aside the eigenvectors. Under this distance, two networks
are considered equal if they differ only by a relabeling of the vertex set. Technically, the spectral
distance is defined on the classes of equivalence; otherwise it is a semi-distance since the identity of
indiscernibles does not hold in general.

Root-Euclidean distance. It is the Frobenius distance on the squared root of the network
matrices:

ρRE(G1,G2) = ρFR
(
X1/2, Y1/2

)
.

This distance can be particularly useful in the case of few large eigenvalues that could have a leverage
effect on the comparison which is greatly reduced by the square root transform. This distance is
used in the context of matrix-valued data [11, 19, 54], where it has been shown to yield high
empirical power in group comparisons. It is defined only for positive definite matrices, which,
among the representations proposed in Section 2.1.1, reduces to the Laplacian matrix.

2.1.3 Test statistics based on inter-point distances

Let G1 and G2 be two samples of networks governed by probability distributions F1 and F2,
respectively. We aim at performing the following two-sample test for equality in distributions:

H0 : F1 = F2 against H1 : F1 ̸= F2. (2.1)

LetG11, . . . ,G1n1 ∼ F1 be a sample of n1 independent and identically distributed network-valued
random variables following distribution F1 andG21, . . . ,G2n2 ∼ F2 be a sample of n2 independent
and identically distributed network-valued random variables following distribution F2. For
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conciseness, let us also introduce the compact notationGk = {Gk1, . . . ,Gknk} for k = 1, 2.
Themost frequent approach to the two-sample testing problem pertains to (i) defining a concept

of mean element for a given distribution and (ii) using some appropriate distance between the two
sample means as statistic for testing equality in distribution. Typically, the sample mean is
computed as the element that minimizes its sum of squared distances with each sample unit. It is
known as the sample Fréchet mean. This approach however presents a number of drawbacks that
are non-trivial to solve. First, the sample Fréchet mean in general metric spaces is not always a
consistent estimator of the theoretical Fréchet mean, as stated in 2013 by C. E. Ginestet
(arXiv:1204.3183v4) and it could be not unique. Next, object data are often embedded in complex
spaces into which there is no closed-form expression of the sample Fréchet mean [54]. It is possible
to circumvent this problem either by computing it numerically or by resorting to restricted sample
Fréchet means as done by [25] in the context of self-organizing maps. The first solution becomes
rapidly prohibitively time-consuming from a computational standpoint. The second solution
restricts the search for the minimum to the sample units themselves, which introduces large biases
for small sample sizes. Lastly, comparing distributions on the basis of how far their sample means
are from each other is too limited since differences in distributions might show up only in
higher-order moments.

An alternative approach, that we adopt and promote for general metric spaces, is to define
statistics using exclusively distances (denoted by ρ in the following definitions) between the pooled
observations (inter-point distances), referred to as inter-point statistics or IP-statistics for short in the
rest of the manuscript. Most of the state-of-the-art IP-statistics can be classified into two categories.

Characteristic-Based Statistics. These statistics combine inter-point distances in such a way
that they can be seen as weighted L2 distances between characteristic functions of the probability
distributions to be compared. They are known in the literature as energy statistics [68] and have
been generalized to separable Hilbert spaces [40]. The original energy statistic reads:

TSR :=
n1n2

n1 + n2

[
2

n1n2

n1,n2∑
i,j=1

ρ(G1i,G2j)−
1
n21

n1∑
i,j=1

ρ(G1i,G1j)−
1
n22

n2∑
i,j=1

ρ(G2i,G2j)

]
. (2.2)

Density-Based Statistics. These statistics combine inter-point distances in such a way to
compare the density functions of the probability distributions of within-sample and

11



between-sample inter-point distances, which has been shown to be equivalent to comparing density
functions of the two original probability distributions [41]. The easiest statistic along those lines
has been proposed by [7] and reads:

TBG :=
2∑

k=1

(nk2
)−1 nk∑

i=1
j>i

ρ(Gki,Gkj)−
1

n1n2

n1,n2∑
i,j=1

ρ(G1i,G2j)


2

. (2.3)

Other statistics that exploit the same result first interpret the matrix of inter-point distances of the
pooled sample as the adjacency matrix of a network and then design statistics based on a suitable
similarity graph derived from this network. For example, [26] uses the minimum spanning tree
while [57] uses the minimum distance non-bipartite pairing tree. [13] nicely reviews statistics
based on similarity graphs and proposes a generalized edge-count statistic TCF that is able to
identify both mean and variance differences.

Other more complex IP-statistics (not included in this work) exist in the literature [29, 35] but
require further modelling assumptions and are not easy to implement.

Inspired by the above-mentioned literature on IP-statistics and motivated by the observation that
it might be relevant to detect higher-moment differences between distributions, we hereby
introduce two novel IP-statistics, which read:

TIP−Student :=

1
n1n2

n1∑
i=1

n2∑
j=1

ρ2(G1i,G2j)−
(
σ̂21 + σ̂22

)
σ̂21
n1

+
σ̂22
n2

and

TIP−Fisher := max
(
σ̂21
σ̂22
,
σ̂22
σ̂21

)
,

(2.4)

where σ̂21 and σ̂22 are unbiased estimators of the within-sample variances given by:

σ̂21 :=
1

n1(n1 − 1)

n1∑
i=1

n1∑
j>i

ρ2(G1i,G1j) and σ̂22 :=
1

n2(n2 − 1)

n2∑
i=1

n2∑
j>i

ρ2(G2i,G2j).

The first one is a Student–like statistic in the sense that it mimics the squared Student-Welch
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statistic, which nicely captures mean differences even under unequal variances, and the second one
is a Fisher–like statistic in that it mimics Fisher variance ratio statistic and is useful in detecting
differences in variances. We use a mechanism called Non-Parametric Combination (NPC) that uses
both statistics for designing a test that captures both mean and variance differences with high
statistical power. The proposed test and the NPC are detailed in the next section.

2.1.4 The permutation framework for hypothesis testing

Given a test statistic, one can design statistical tests in either a parametric or a non-parametric
fashion. In the case of network-valued random variables, the generative probabilistic models can be
quite complex, making the parametric way almost impractical. Asymptotic results can be achieved
as in [27] but suffer from unreliability when sample sizes are small or when network sizes are large.
In this section, we instead formalize a non-parametric statistical test using permutation theory [51],
which yields exact and consistent inference with minimal distributional assumptions at the cost of
increased computational burden.

Permutation Test. Recall that we aim at designing a permutation two-sample test for equality in
distributions as specified by Eq. (2.1). Let T be a generic test statistic that grasps – with large
positive values – possible differences between F1 and F2. Assume that the distributions F1 and F2 are
continuous. This assumption guarantees that - with probability 1 - independent data observations
are all distinct. Let tobs be the value of T obtained from the observed networks. Under the null
hypothesis, networks in the two samples are exchangeable. Hence, it is possible to estimate the null
distribution of T by randomly permuting the group labels of the observed networks. For each
permutation, we obtain a value of the “permuted” test statistic, say tperm. The set of all tperm values is
called permutation distribution and defines a discrete approximation of the null distribution of the
test statistic. The total numbermt of possible permutations is equal tomt = (n1 + n2)!/n1!/n2! and
if the test is two-sided and n1 = n2, it is further divided by a factor of two. In any event, the number
of possible permutationsmt grows very fast with the sample sizes. For example, when n1 = n2 = 16,
which are not in general considered as large sample sizes, we should enumeratemt > 3 · 108

permutations, which, in fact, makes the exhaustive computation of the permutation distribution
prohibitively time-consuming. Hence, it is common practice to randomly sample a subset ofm
permutations with replacement among themt possible ones. Given a random set of permutations,
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there are different ways of estimating the p-value out of the mechanics of permutations. Themost
common approach pertains to counting the number of times the value of tperm is equal or exceed the
observed value tobs out of them sampled permutations [51]. This approach, while providing an
unbiased estimate of the p-value, fails to provide exact testing procedures in the usual sense of the
term because it does not account for the variability introduced by sampling the permutations. In
this work, we instead rely on the definition proposed by [53], which takes its roots in randomization
tests. We opt for this choice because it always provides an exact test (i.e. PH0 [p ≤ α] = α) regardless
of the sample sizes, the numberm of sampled permutations and the value of α [53]. Hence, the
choice ofm only impacts the power of the test, as expected. This p-value is computed as
follows [22, 53]:

p(T) =
1

mt + 1

mt∑
bt=0

F
(
b(T);m,

bt + 1
mt + 1

)
≃ b(T) + 1

m+ 1
−
∫ 0.5/(mt+1)

0
F(b(T);m, pt)dpt, (2.5)

where F is the cumulative probability function of the binomial distribution and b(T) is the number
of tperm greater than tobs. In practice, the exact computation via summation is performed when
mt < 10, 000. Otherwise, the integral approximation is used. This estimated p-value allows for a fair
power comparison in the simulations presented in Section 2.2. In addition to the exactness of the
test, it can be shown that a permutation test based on our new test statistics (i.e. TIP−Student and
TIP−Fisher) is consistent. The following theorems hold:

Theorem 1. Let G1 and G′
1 be two network-valued random variables following distribution F1 and G2

and G′
2 be two network-valued random variables following distribution F2. If E[ρ2(G1,G′

1)] < +∞ and
E[ρ2(G2,G′

2)] < +∞, the permutation test based on the IP-Student statistic involving Frobenius,
Spectral or Root-Euclidean distance is consistent under the alternative hypothesis of unequal means,
namely PH1 [p(TIP−Student) ≤ α] −→ 1 as n1 + n2 →∞.

Proof. In this proof we partially follow [65]. For the law of large numbers, we have that for
n = n1 + n2 →∞
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1
n1n2

n1∑
i=1

n2∑
j=1

ρ2(G1i,G2j)→ E[ρ2(G1,G2)],

1
n1(n1 − 1)

n1∑
i=1

n1∑
j>i

ρ2(G1i,G1j) =
1
2

1
n1(n1 − 1)

n1∑
i=1

n1∑
j ̸=i

ρ2(G1i,G1j)

→ 1
2
E[ρ2(G1,G′

1)],

1
n2(n2 − 1)

n2∑
i=1

n2∑
j>i

ρ2(G2i,G2j) =
1
2

1
n2(n2 − 1)

n2∑
i=1

n2∑
j ̸=i

ρ2(G2i,G2j)

→ 1
2
E[ρ2(G2,G′

2)].

Therefore, for n = n1 + n2 →∞ the numerator of TIP−Student tends to

E[ρ2(G1,G2)]−
1
2
E[ρ2(G1,G′

1)]−
1
2
E[ρ2(G2,G′

2)], (2.6)

whereG1,G′
1,G2,G′

2 are independent random variables,G1 andG′
1 are independent and identical

distributed from F1 andG2 andG′
2 are independent and identical distributed from F2. If ρ is one of

the distances between Frobenius, Spectral, and Root-Euclidean described in Subsection 2.2,
applying [67][Theorem 2], it is possible to prove that the expression in 2.6 is always non–negative
and it is equal to zero if and only if E[G1] = E[G2]. In effect, as mentioned in Section 2, the
Frobenius distance is nothing but the Euclidean distance on the vectorized matrix representation.
Also Spectral and Root-Euclidean distances can be traced back to an Euclidean distance between
vectors. Therefore [67][Theorem 2] can be applied for the three distances mentioned above,
yielding the following inequality under the alternative hypothesisH1 of unequal means:

E[ρ2(G1,G2)]−
1
2
E[ρ2(G1,G′

1)]−
1
2
E[ρ2(G2,G′

2)] > 0.

As a result, the numerator of TIP−Student tends to a strictly positive constant underH1 when
n = n1 + n2 →∞. The denominator σ̂21/n1 + σ̂22/n2 tends instead to zero (recall that for hypothesis
E[ρ2(G1,G′

1)] < +∞ and E[ρ2(G2,G′
2)] < +∞). Eventually, TIP−Student → +∞when

n = n1 + n2 →∞, and hence the permutation test based on TIP−Student is consistent for the three
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distances mentioned above.

Moreover, observing that the Hamming distance is a ℓ1 distance on the vectorized matrix
representation, one could think of following the same line of the proof for Frobenius, Spectral, and
Root-Euclidean distance. In effect, [66][Theorem 1] guarantees a similar result to that of
[67][Theorem 2], but for a general function, instead for a power of the Euclidean distance. This
general result is based on the hypothesis that the function must be of strictly negative type. It is well
known that ℓ1 metric space is of negative type but it fulfills the condition of being of strict negative
type only in a weaker sense [34] that is not sufficient for our aim. Therefore, the numerator of
TIP−Student with the Hamming distance could be zero even when E[G1] ̸= E[G2] and so the
consistency is not guaranteed in this case.

Theorem 2. Let G1 and G′
1 be two network-valued random variables following distribution F1 and G2

and G′
2 be two network-valued random variables following distribution F2. If E[ρ2(G1,G′

1)] < +∞ and
E[ρ2(G2,G′

2)] < +∞, the permutation test based on the IP-Fisher statistic is consistent under the
alternative hypothesis of unequal variances, namely PH1 [p(TIP−Fisher) ≤ α] −→ 1 as n1 + n2 →∞.

Proof. The following limits in probability underH0 andH1 hold, respectively:

TIP−Fisher(n) −→ c0 TIP−Fisher(n) −→ c1 as n = n1 + n2 →∞,

where c0 = 1 and c1 > 1. Therefore, it is immediate to prove by contradiction that there exists n̄ such
that for all n ≥ n̄

PH1 [TIP−Fisher(n) ≥ x] ≥ PH0 [TIP−Fisher(n) ≥ x] for all x

and the strict inequality holds for some x. This concludes the proof since the stochastic dominance
ofTIP−Fisher underH1 onTIP−Fisher underH0 guarantees the consistency of the permutation test [51].

Non-Parametric Combination. The IP-statistics proposed in Eq. (2.4) are designed to detect
differences in mean – forTIP−Student – and variance – forTIP−Fisher – independently. In order to make
the test sensitive to both mean and variance, we propose to combine the two statistics by means of
the Non-Parametric Combination (NPC)methodology [9, 51].
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Given a random set of B permutations, we first compute the value tobs and values tperm of the two
test statistics and concatenate them into two vectors (one for each statistic) of size B+ 1, say
TIP−Student andTIP−Fisher. We then transform these two vectors by ranking them in descending order
and dividing their ranks by B+ 1. This effectively produces two vectors πIP−Student and πIP−Fisher of
“intermediate p-values”, because, for a given permutation, the transformation boils down to a
permutation p-value in which the corresponding permuted data is taken as observed data. Next, we
combine πIP−Student and πIP−Fisher into a single vectorTIP−StudentFisher of size B+ 1, the entries of
which are then interpreted as the observed value and permuted values of a new combined statistic
TIP−StudentFisher. There are a number of possible combining functions [51]. One important property
is that large combined values should be in favor of the alternative hypothesis. In our framework, we
use Tippett’s combining function ψ(x, y) = 1−min(x, y) [70] which guarantees that the null
hypothesis is rejected when at least one of the two independent tests rejects it. The p-value of the
combined test is then computed applying Eq. (2.5) using the values inTIP−StudentFisher. The
non-parametric combination methodology yields consistent tests if the “intermediate” tests based
on the individual statistics are marginally unbiased (i.e. PH1 [p(T) ≤ α] ≥ PH0 [p(T) ≤ α] = α) and
at least one of them is consistent [see 51, chap. 4]. Specifically, we have the following result:

Corollary 1. The permutation test based on the statistics TIP−Student and TIP−Fisher combined through the
NPC methodology is consistent under the alternative hypothesis of unequal means or variances, namely
PH1 [p(TIP−StudentFisher) ≤ α] −→ 1 as n = n1 + n2 →∞.

Furthermore, the combined test is exact because the “partial” tests based on TIP−Student and
TIP−Fisher are exact [see 51, chap. 4].

2.2 Simulation studies

2.2.1 Impact of different test statistics

The goal of this simulation is to draw a comparison between the proposed IP-statistics (2.4) and the
state-of-the-art IP-statistics TSR (2.2), TBG (2.3) and TCF that we compute using a minimal
spanning tree of density 5, as suggested by the authors. For this purpose, we generate two samples
of networks with 25 vertices. Each network is generated by sampling independent and identically
distributed edge weights from a binomial distributionB(n, p). We simulate three different scenarios
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to generate distributions that differ only in their means, only in their variances or in both. The
parameters n and p of the binomial distribution are set accordingly. In details, we have:

Scenario 1: Unequal means, equal variances. The two samples are generated using an edge
weight distribution with different means such that Δ = μ1 − μ2 = 0·000, 0·125, 0·250, 0·375, 0·500
but equal variances σ21 = σ22 = 2·50.

Scenario 2: Equal means, unequal variances. The two samples are generated using an edge
weight distribution with different variances such that Δ = σ22/σ21 = 1·00, 1·05, 1·10, 1·15, 1·20 but
equal means μ1 = μ2 = 60.

Scenario 3: Unequal means, unequal variances. The two samples are generated using an edge
weight distribution with different means such that Δ = μ2 − μ1 = 0·0, 0·1, 0·2, 0·3, 0·4 and
different variances such that σ22/σ21 = 1·00, 1·05, 1·10, 1·15, 1·20.

The three scenarios are evaluated both under equal sample sizes (n1 = n2 = 20) and under
unequal sample sizes (n1 = 30 and n2 = 10). The balanced sample sizes are typical frommany
real-life data sets. The unbalanced sample sizes are representative of studies of neurological
disorders for instance. For all scenarios and statistics, we use the adjacency matrix representation
and the Frobenius distance as done in [13]. The p-value is calculated using Eq. (2.5) and the
significance level is set to α = 0·05. The comparison between statistics is drawn in terms of
statistical power, estimated as probability of rejection via Monte-Carlo simulations using a total of
100,000 replicates.

Figure 2.2.1 reports the estimated probability of rejection as the difference between the two
samples increases (Δ = 0 yields the nominal level of the test; Δ > 0 yields power estimates). First,
we can observe that the effect of unbalanced sample sizes (second row), independently from the
statistics and type of differences, almost always generates a slight loss of statistical power. The
ranking of the statistics in terms of statistical power is however identical in the balanced and
unbalanced cases. The statistics TSR and TIP−Student outperforms other statistics for detecting
mean-only differences (first column). On the other hand, they feature the worst performances for
detecting variance-only differences (second column). The reciprocal holds for the statistics TBG and
TIP−Fisher, which feature the best performances for detecting variance-only differences but are the
worst for detecting mean-only differences. Their comparison under both mean and variance
differences (third column) is less helpful because it depends on the relative magnitudes of mean and
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Figure 2.2.1: Power of the test using different test statistics: TSR (2.2) in red, TBG (2.3) in
brown, TCF in green, TIP−Student (2.4) in light blue, TIP−Fisher (2.4) in blue and TIP−StudentFisher in
pink. The largest standard error is 0·00158.

variance differences. The statistics TCF and TIP−StudentFisher lead to statistical powers that are
insensitive to the type of differences to be detected. Our combined statistic TIP−StudentFisher features
however uniformly better performances than TCF. In fact, TIP−StudentFisher is the best statistic for
detecting simultaneous mean and variance differences and always second-best for detecting
mean-only or variance-only differences.

2.2.2 Impact of representations and distances

The goal of this second simulation study is two-fold: (i) to highlight some of the properties of the
representations/distances enumerated in this work (Scenarios A, B, C) and (ii) to emphasize that it
is critical, when comparing network samples, to focus on the entire network structure and not only
on summary indicators (Scenario D). Specifically, we report simulation results pertaining to all
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three matrix representations (adjacency, Laplacian and modularity) but, for simplicity, only to two
out of the four introduced distances, namely the Frobenius and spectral distances. In effect,
simulations showed that, at equal matrix representation, the results with the Hamming and
Root-Euclidean distances were similar to those with the Frobenius distance. Similarly to the
previous simulation setting, sampled networks are composed of 25 vertices. In all simulations, we
assessed the effect of increasing sample size by generating samples S1 and S2 of sizes n1 = n2 = 4, 8,
12, 16. We designed a total of four scenarios, each with a specific aim, that we hereby describe:

Scenario A. Trivial differences: different edge strengths. The goal is to assess the
performances of our test procedures when the probabilistic generative models governing the two
samples are different but close. To this end, we defined the two samples using their edge weight
distributions. Specifically, we drew the edge weight distribution of S1 from a Poisson distribution
with mean λ = 5 and the edge weight distribution of S1 from a Poisson distribution with mean λ =
6. This yields an absolute difference of 1 between means and 0·21 between standard deviations of
edge weight distributions.

Scenario B. Non-trivial differences: different vertex labelling. The goal is to show that using
a relabelling-invariant distance such as the spectral distance to compare network samples coming
from distributions that only differ up to a relabelling of the vertices fails to detect differences while
other types of distances succeed. To this end, we drew both S1 and S2 from the stochastic block
model [31] with different preference matrices. In details, for drawing S1, we used a 3×3 block
matrix of edge probabilities with 0·8 in block 1, 0·2 in other blocks and block sizes of 12×12, 12×1,
12×12, 1×12, 1×1, 1×12, 12×12, 12×1 and 12×12, where blocks are enumerated rowwise. For
drawing S2, we also used a 3×3 block matrix of edge probabilities with same block sizes but we
input the probability of 0·8 to block 9 instead of block 1. These two stochastic blockmodels split the
vertices into high- and low-connectivity groups and the two samples differ only from a block swap.

Scenario C. Non-trivial differences: different diffusion patterns. The goal of this scenario is
to go deeper into the interpretation of the Laplacian representation. By analogy with the Laplacian
operator that plays a central role in the diffusion equation, we hypothesize that the Laplacian
representation captures differences in the way a substance can diffuse along the edges of a network.
To verify this claim, we drew S1 from the k-regular model [see 8, sec. 2.4] that generates random
networks in which all vertices have the same degree and we drew S2 from the G(n,p) Erdös-Renyi
model [23] in which every possible edge is created with the same constant probability. In details,
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each vertex in networks from S1 is connected to other 8 (out of 24) vertices while we set the
probability for drawing an edge between two arbitrary vertices in S2 to p = 1/3 such that the edge
weight distribution share the same mean in the two samples. The Laplacian structure should be key
to capture differences between the two samples because that difference lies in the diffusion patterns
induced by the networks.

Scenario D.Matrix representation versus summary indicators. The goal is to demonstrate
that using summary indicators (e.g. clustering coefficient) to compare samples of networks, which
is the most popular approach [e.g. 1], could yield less powerful test procedures with respect to using
the entire network structures. To this end, we propose to generate small-world networks
(characterized by a high clustering coefficient) in both samples and add the scale-free property
(power-law degree distribution) to networks in S2. We aim at comparing test procedures based on
either clustering coefficient (whose high value characterizes small world networks) or whole
network representations, respectively. In details, we drew S1 from theWatts & Strogatz model [73]
with starting lattice of dimension 1, size of the neighborhood within which the vertices of the lattice
will be connected equal to 4 and rewiring probability of 0·15; and we drew S2 from the
Barabási-Albert model [3] with quadratic preferential attachment and 4 edges added at each time
step.

The simulated scenarios are summarized in Table 2.2.1. Scopes, models and their parameters for
the two samples S1 and S2 are summarized. The Bernoulli rate matrices in scenario C are p1 =
matrix(c(0.8, rep(0.2, 3L)), 2L, 2L) and p2 = matrix(c(rep(0.2, 3L),
0.8), 2L, 2L).

For each scenario, we computed aMonte-Carlo estimate of the probability of rejection ofH0,
which can be interpreted as the power of the test. In all simulations, we set the significance level at
α = 0·05 and we performed a total of 100,000Monte-Carlo runs. For each run, we performed the
test with the statistic TIP−StudentFisher usingm = 1,000 permutations sampled with replacement and
we estimated the p-value according to Eq. (2.5). For a fair comparison, we used the same samples
and the same permutations for each combination of representation and distance.

Figure 2.2.2 reports the estimated power, as the sample size increases and for different
combinations of matrix representations and distances between networks. The first column of Fig.
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Table 2.2.1: Summary table of the simulated scenarios

Scenario Scope S1 S2
A Edge strengths Poisson model:

lambda = 5 lambda = 6

B Vertex relabelling Stochastic block model:
pref.matrix = p1 pref.matrix = p2

block.sizes = c(12L, 1L, 12L)

C Diffusion patterns k-regular model: Erdös-Rényi model:
k = 8L p = 1/3

D Network VS Indicators Watts & Strogatz model: Barabási-Albert model:
dim = 1L power = 2L
nei = 4L m = 4L
p = 0.15 directed = FALSE

Figure 2.2.2: Power of the test under different representations (adjacency in red, Laplacian
in green, modularity in blue), different distances (rows) and different scenarios (columns). The
dashed grey curve in Scenario D (last column) represents the statistical power achieved by con-
sidering only the clustering coefficient. The largest standard error is 0·00158.
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2.2.2 reports estimated probability of rejection for Scenario A. It reveals that the power of the test is
already close to one for sample sizes as small as n1 = n2 = 4, despite the fact that the edge weights of
the networks in the two samples are drawn from Poisson distributions with close rate parameters.
The second column in Fig. 2.2.2 reports results for Scenario B. They clearly emphasize that the
spectral distance fails to recognize differences for this particular simulated data set, independently
from the matrix representations. The spectral distance indeed focuses only on the (ordered)
eigenvalues of the matrix representation and therefore it is not sensitive to differences pertaining to
vertex relabelling. Fig. 2.2.2 displays the results for Scenario Cwhich stress the combined role of
representation and distance. First, the test fails to reject the null hypothesis with the Frobenius
distance on adjacency matrices for any sample size. This makes sense because the Frobenius
distance on the adjacency matrix focuses on differences in edge weight distributions, while samples
generated in this scenario differ in the distribution of their nodes. Next, we can see that the power is
increasing with the sample size when using the spectral distance on adjacency matrices, reaching
values close to 1 from sample sizes as small as 8. This is due to a unique property of the spectrum of
adjacency matrix for regular networks that is concentrated on the first eigenvalue equal to k. Finally,
tests based on the Laplacian representation succeed in identifying the difference between the two
samples, independently from the chosen distance. This is because the feature that discriminates the
two samples lies in the fashion a substance can flow through the network, which is exactly what the
Laplacian representation captures as shown by the R package diffusr [17] that nicely shows that
diffusion along the networks is different in the two samples. The fourth column in Fig. 2.2.2 shows
that our test is able to distinguish the two samples generated in Scenario D. The IP-StudentFisher
statistic reaches a statistical power of 1, for sample sizes as small as n1 = n2 = 4, whereas the same
test but based only on the clustering coefficient of the networks goes to 1 with a much lower
convergence rate, making it practical only for very large samples. This simulation shows that
considering the entire network in the two-sample testing problem allows to achieve a given
statistical power with much smaller samples compared to using graph summary measures.

Remark 1. One may want to use more combinations of representations and distances. This can be done
but it is necessary to correct for multiplicity, e.g. by means of Bonferroni-like methods, on the corresponding
p-values.
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2.3 Application to bike-sharing data

We chose to demonstrate the usefulness of our approach by applying it to a sharing mobility data
set, a case where the test results can be immediately interpreted. Indeed we want to quantitatively
answer the question if the sharing mobility shows differences between days of the week. Despite the
simplicity of the question, this data presents features which make the parametric approach out of
reach: the sample sizes are very small (n1 = n2 = 6) and the probabilistic generative model of the
data is likely to be a mixture distribution accounting for various environmental factors (e.g.
precipitation). In the city of Milan a bike sharing service (bikeMi, https://www.bikemi.com) is
active since 2008. Milan is divided into 88 neighbourhoods, called Nuclei di Identitá Locale (NILs,
http://dati.comune.milano.it/dataset/ds61_infogeo_nil_localizzazione_), and 263 stations are
distributed in 39 of these NILs. We are interested in studying the daily bike mobility between the
neighbourhoods of the city. Each day is associated to a mobility network which vertices represent
neighbourhoods equipped with at least one dock station and edge weights correspond to the
number of travels between two neighbourhoods. The data has been collected between January,
25th, 2016 andMarch, 6th, 2016 where each day starts at 3 a.m. and has been provided by Clear
Channel s.r.l.. Since we are interested in the mobility between neighbourhoods, we keep about
300.000 travels of 350.000, excluding travels within the same neighbourhood. In the end, we have a
data set of 42 undirected mobility networks (7 days of the week over 6 weeks) to which it is possible
to apply all representations and distances presented in the previous sections. Figure 2.3.1 shows a
glimpse at the data set by displaying the restricted sample Fréchet means of each day of the week,
using the Frobenius distance between Laplacian representations. The colours and the widths of the
edges are related to the edge weights: the wider and darker the edge, the larger its weight. We
performed pairwise comparisons between days of the week based on samples with sample size
n1 = n2 = 6. The tests have been carried out with the IP-StudentFisher statistic and under all
representations and distances discussed in Sections 2.1.1 and 2.1.2. Figure 2.3.2 shows part of the
results. In details, the Frobenius distance on adjacency matrix and the spectral distance on
Laplacian matrix are considered in the left and right panels, respectively. In the top row, we plotted a
multi-dimensional scaling representation of the 42 networks of our data set. Different colours and
shapes correspond to different days of the week. The nevada package, attached to this work,
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Figure 2.3.1: Restricted sample Fréchet means of each day of the week and, in the last thumb-
nail (bottom right), the map of the NILs of Milan with a point in the neighbourhoods having at
least one dock station.

provides a plot function that allows one to visualize multidimensional scaling projections of
samples of networks. This is a great supporting tool for picking the best pair of
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representation/distance with the scope of highlighting differences between the samples. The
second row shows the p-values of each pairwise comparison between different days of the week.
The results highlight no significant differences when comparing pairs of week days or Saturday with
Sunday. The null hypothesis is instead rejected when comparing week days against weekend days.
Results related to the other combinations of representations and distances are similar to those
reported in Fig. 2.3.2. These quantitative results are qualitatively visible in both the plots of the
entire data set in supplementary material and the multidimensional scaling plots, where there is a
separation between working days and non-working days.
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Figure 2.3.2: Results of the application to the bikeMi data set using different matrix represen-
tations and distances.
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2.4 Discussion

Tackling the two-sample testing problem from the perspective of the permutation framework
assumes as null hypothesis that the entire distribution of the two sample is the same (so that, under
such an assumption, data in the two samples are exchangeable) while the alternative hypothesis
would be that their distribution is different. The choice of the test statistic is then critical because it
makes the test sensitive to specific features of the distribution. Therefore, there is no uniformly
better statistic for testing equality in distribution but rather many statistic that look at the
distribution under different angles. We introduced two statistics which, when combined together
through the Non-Parametric Combination methodology, are sensitive to differences in the first two
moments of the distributions. A current ongoing work we are pursuing pertains to the definition of
statistics sensitive to higher-order moments of the distributions which, when NPC-combined,
could make the test sensitive to virtually all moments and thus capture all possible differences.

Starting from standard results onU–statistics, it could be possible to find the asymptotic
distributions of TIP−Student and TIP−Fisher. Besides the theoretical interest, the asymptotic
distributions might be helpful in reducing the computation time in the case of large sample sizes or
large networks. However, permutation tests implemented in our R package nevada run a single test
within seconds for sample sizes around 20 and networks with 25 nodes.

Furthermore, our proposed method relies only on inter-point distances. This means that all we
need is a metric between networks to perform two-sample testing. Hence, we believe that our
proposal could be a valid approach not only for network-valued data analysis, but, in a broader
context, for Object Oriented Data Analysis, provided that the object data used as sample unit can be
embedded into a metric space.
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It is not yet established which measures are most appropriate
for the analysis of brain networks.

Bullmore & Sporns, 2009

3
An application to brain networks data sets

The structural and functional complexity of a Human brain, captured by time series
data or by an image can be explored by means of different techniques. When one is interested in
derive some significant evidence from samples of brains, one can treat directly the time series or the
images or can construct data set where the statistical unit is a different object. In the latter case, the
first step consists in choosing the type of data to extract from the original brain data. It could be a
curve, a manifold, a network. Great efforts have been made by the statistical community to establish
statistical tools able to deal with samples composed of complex objects. A sound way of represent a
brain is by means of a network, where each vertex represents an area of the brain, while an edge can
denote either a functional or an anatomical connection.

Among the possible statistical tools that allow to investigate the structure and functions of the
Human brain, two-sample test is without any doubt a fundamental extensively used method. The

See [38].
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most common approach for two-sample test for samples of brain networks consists in (i) selecting a
measure that summarises the entire network and (ii) statistically comparing the two samples by
means of this measure. A large number of brain summary measures have been proposed in the
literature to locally and globally characterise a brain: degree, shortest path length, characteristic
path length, clustering coefficient, transitivity, efficiency, modularity, etc. Each of these measures
captures some aspects of the network (see [58] for a review on their interpretations). The use of a
global measure to compare two samples of brain networks entails several drawbacks that we here
summarise.

Choice of a summarymeasure. As mentioned above, a brain network can be characterised by a
large number of summary measures. The first issue that one has to tackle when comparing groups of
brain networks by means of summary measures pertains to the choice of the measure itself. Indeed,
as highlighted in [10], “it is not yet established which measures are most appropriate for the analysis
of brain networks”. Therefore, what often happens is that a certain number of measures are used and
then the choice of the measures to discuss is made a posteriori.

Multiple comparison. The issue of multiple comparisons is directly related to the previous
point. In fact, when considering a certain number of brain measures, it might be necessary to
correct for multiple comparisons. On the other hand, the correction may require knowing the
correlation between the considered measures, making the correction laborious.

Power of the test. Although it cannot be denied the key contribution of network analysis via
summary measures on the understanding of the structure and functions of the Human brain, on the
other hand these measures have not been specifically designed to maximise the power in group
comparisons.

Number of subjects. The considerable problem of the cost of the different acquisition
procedures is related to the previous issue. If a test is not designed for maximise the power, a
conspicuous number of patients must be involved in the study, leading to very expensive
experiments.

In this chapter we will show the potential of the two-sample test introduced in Chapter 2 when
applied to data set of brain networks in comparison with the most common approach based on
some summary measures. The ultimate goal is an early diagnosis to improve treatments. For this
purpose, we first re-generate the four simulated scenarios of Subsection 2.2.2 in the previous
chapter with the aim of exploring the estimated power of the test based on five summary measures
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and that of the test introduced in the previous chapter; then we consider three data sets previously
studied in other papers to re-study them by means of the new test. In detail, each of these data set
correspond to a different experimental modality: electroencephalography (EEG), functional MRI
(fMRI) and Diffusion Compartment Imaging (DCI). As in the simulation study, for each data set,
we propose a comparative analysis involving (i) the classical approach of comparing brain networks
via summary graph measures and (ii) the two-sample test of Chapter 2. In particular, we consider
the following graph measures: characteristic path length, global efficiency, clustering coefficient,
modularity and small-worldness.

The chapter is organized as follows. In Section 3.1 we briefly review the literature on graph
construction and analysis for brain networks. Section 3.2 contains a brief description of the
simulated data sets and the results of the simulation study. In Section 3.3 a description of the three
real data sets and the results of the inference are reported. Section 3.4 sums up the contributions of
the chapter and discuss possible broadening of perspective in treatment and diagnosis.

3.1 Reviewonconstructionandanalysisofbrainconnectivitynetworks

The twomain steps in analysis of connectomic data pertain (i) building an accurate map of the
connectome and (ii) analyzing the resulting data. The potential to revolutionize the understanding
of the brain organization by means of graph theory is critically dependent upon the validity of the
graph representation itself, that involves a non-trivial discretization of the brain into vertices and
their interconnecting edges. Moreover, the application of graph theory to brain networks data sets
poses several challenges with important implications for how results should be interpreted. In this
section we briefly review these two main steps [24].

Construction of a brain connectivity network. The construction of a brain connectivity
network involves the definition of vertices and edges able to properly represent brain substructures
and their interactions. A first attempt could consist in identifying each neuron with a vertex and a
synaptic contact with an edge. This level of resolution for the Human brain is likely unfeasible and
there is no clear evidence that it is the most meaningful for understanding structure and function of
the Human brain [24]. We here briefly summarize the state-of-the-art pertaining the definition of
vertices and edges in Human brain networks [24]:
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• Definition of vertices. Themost common strategies for vertex definition in imaging
connectomics are of four types: anatomical, functional, random, and voxel-based.
Anatomical and functional parcellations are based on a priori anatomical and functional
information, respectively. For example, in a structural brain networks the vertices correspond
to anatomically defined regions of histological, MRI or diffusion tensor imaging data; in
functional brain networks electroencephalography or multielectrode-array electrodes
identify the vertices in the network [10]. Conversely, the random parcellation strategy aims
at randomly parcellating the brain into discrete vertices of similar size, while in the
voxel-based strategy, each image voxel represents a distinct vertex [24].

• Definition of edges. The edges of a brain network are determined by the type of connectivity
measured and the method used to quantify it. There are three classes of brain connectivity:
structural, functional, and effective. Structural connectivity refers to the anatomical
connections between brain regions, derived from diffusion imaging. Functional connectivity
pertains to statistical dependencies between spatially distinct neurophysiological recordings,
such as coherence measure between two magnetoencephalography sensors. Effective
connectivity denotes the causal influence that one neural system exerts over another.
See [24] for a detailed review on algorithms, methods, and related challenges and limits of
each of these connectivity definitions.

See Figure 3.1.1 for a schematic summary of the construction of structural and functional brain
networks.

Analysis of brain connectivity network. Once a proper network representation for the brain
has been provided, mathematical tools from graph theory can be used for analyzing brain networks
data sets. At this point some issues arise, that we here briefly recall [10, 24]:

• Multiple comparisons problem. A difficult multiple comparisons problem is posed by the
possible extremely high number of pair-wise interactions between brain regions, that requires
the application of methods for controlling the family-wise error rate, such as Bonferroni
correction, or other methods that control the false discovery rate, that however perform
poorly, especially when the sample sizes are small [24].
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• Graph thresholding. Spurious or noisy brain connections have to be removed from the data
and typically a threshold is applied. As a result, this approach will produce different numbers
of edges across different individuals. A common approach to graph thresholding has involved
adaptively varying the threshold for each individual to enforce a fixed value of connection
density across all participants [24]. However, graph measures depend upon the number of
vertices and the connection density and therefore graph measures are often explored over a
range of plausible thresholds and connection densities.

• Reference graphs. As mentioned, network measures are influenced by the number of vertices,
connection density and degree distribution. Therefore, network measures are typically
benchmarked against, or normalized to, appropriate null or reference networks that share the
same basic properties. The null networks can be typically chosen among random networks,
lattice networks, small-world networks. Since each of these networks is appropriate as null
model for a particular graph measure, the choice of the null model depends on the network
measure, as well as on the connectivity measure used to derive the connectome’s edge
weights [24].

• Interpretation of topological measures. Many graph measures have been developed to study
complex systems other than the brain and have been adapted to suit neuroscientific ends.
Therefore, their use and interpretation require caution. Moreover, the extent to which each
measure provides a meaningful representation of brain function should also be considered.
Just to give two examples, path-length based measures are based on assumptions that seem to
be unrealistic, and interpretation of variations in clustering coefficient for deriving evidences
on local information-processing must account for spatial constraints on connectome
architecture [24].

See [24] for a detailed review of these issues and the methods to address them.
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An informal description of a 
network with certain 
topological features, such as 
high clustering, 
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of high-degree nodes or hubs, 
assortativity, modularity or 
hierarchy, that are not typical 
of random graphs or regular 
lattices. Most real-life networks 
are complex by this definition, 
and analysis of complex 
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An adjacency matrix indicates 
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as binary — that is, each 
element is either 1 (if there is 
an edge between nodes) or 0 
(if there is no edge). For 
undirected graphs the 
adjacency matrix is 
symmetrical.

Box 1 | Structural and functional brain networks

Structural and functional brain networks can be explored using graph theory through the following four steps (see the figure):
•	Define the network nodes. These could be defined as electroencephalography or multielectrode-array electrodes, or as 

anatomically defined regions of histological, MRI or diffusion tensor imaging data.

•	Estimate a continuous measure of association between nodes. This could be the spectral coherence or Granger causality 
measures between two magnetoencephalography sensors, or the connection probability between two regions of an 
individual diffusion tensor imaging data set, or the inter-regional correlations in cortical thickness or volume MRI 
measurements estimated in groups of subjects.

•	Generate an association matrix by compiling all pairwise associations between nodes and (usually) apply a threshold to 
each element of this matrix to produce a binary adjacency matrix or undirected graph.

•	Calculate the network parameters of interest in this graphical model of a brain network and compare them to the 
equivalent parameters of a population of random networks.

Each step entails choices that can influence the final results and must be carefully informed by the experimental question. 
At step 1, parcellation schemes can use prior anatomical criteria or be informed by the functional connectivity profiles of 
different regions. Several such parcellation schemes may be available and can affect network measures147. In most magneto-
encephalography and electroencephalography studies, network nodes are equivalent to individual electrodes or sensors, 
but networks could also be based on reconstructed anatomical sources. However, some reconstruction algorithms will 
determine the brain location of each source by minimizing the covariance between sensors, which has major effects on the 
configuration of functional networks. At step 2, a range of different coupling metrics can be estimated, including measures 
of both functional and effective connectivity. A crucial issue at step 3 is the choice of threshold used to generate an 
adjacency matrix from the association matrix: different thresholds will generate graphs of different sparsity or connection 
density, and so network properties are often explored over a range of plausible thresholds. Finally, at step 4 a large number of 
network parameters can be quantified (BOX 2). These must be compared with the (null) distribution of equivalent parameters 
estimated in random networks containing the same number of nodes and connections. Statistical testing of network 
parameters may best be conducted by permutation- or resampling-based methods of non-parametric inference given the 
lack of statistical theory concerning the distribution of most network metrics.

Most graph theoretical network studies to date have used symmetrical measures of statistical association or functional 
connectivity — such as correlations, coherence and mutual information — to construct undirected graphs. This approach 
could be generalized to consider asymmetrical measures of causal association or effective connectivity — such as Granger 
causal148,149 or dynamic causal66 model coefficients — to construct directed graphs. It is also possible to avoid the 
thresholding step (step 3) by analysing weighted graphs that contain more information than the simpler unweighted and 
undirected graphs that have been the focus of attention to date. Structural brain network image is reproduced from 
ReF. 59. Functional brain network image is reproduced, with permission, from ReF. 70 © (2006) Society for Neuroscience.
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Figure 3.1.1: Construction of structural and functional brain networks. Figure from Bullmore
and Sporns, Complex brain networks: graph theoretical analysis of structural and functional sys-
tems, Nature Review Neuroscience, 2009

3.2 Simulation study

In this section we consider the same simulated scenarios introduced in Subsection 2.2.2 of
Chapter 2, that we here briefly describe for self-content. The data sets are generated under the
alternative hypothesis and from different generating models. As for the novel test, only one
combination of representation and distance is here considered, while the classical approach is
explored via five summary measures.
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3.2.1 Description of the generated scenarios

Scenario 1. We defined the two samples drawing the edge weight distribution of the first sample
from a Poisson distribution with parameter λ = 5 and the edge weight distribution of the second
sample from a Poisson distribution with parameter λ = 6.

Scenario 2. We drew both the first and the second sample from the stochastic block model [31]
with different preference matrices. In details, for drawing the first sample, we used a 3× 3 block
matrix of edge probabilities with 0.8 in block 1, 0.2 in other blocks while for drawing the second
sample, we also used a 3× 3 block matrix of edge probabilities with same block sizes but we input
the probability of 0.8 to block 9 instead of block 1. These two stochastic block models split the
vertices into high- and low-connectivity groups and the two samples differ only from a block swap.

Scenario 3. We drew the first sample from the k-regular model [see 8, sec. 2.4] that generates
random networks in which all vertices have the same degree (k = 8) and we drew the second
sample from the Erdös-Renyi model [23] in which every possible edge is created with the same
constant probability (p = 1/3).

Scenario 4. We generated small-world networks in both samples and added the scale-free
property to networks in the second sample. In details, we drew networks in the first sample from
theWatts & Strogatz model [73] with starting lattice of dimension 1, size of the neighborhood
within which the vertices of the lattice will be connected equal to 4 and rewiring probability of 0.15;
and we drew networks in the second sample from the Barabási-Albert model [3] with quadratic
preferential attachment and 4 edges added at each time step.

In each case sampled networks are composed of 25 vertices and four increasing sample sizes are
taken into account: n1 = n2 = 4, 8, 12, 16. In all simulations, we set the significance level at α =
0.05 and we estimated the power drawing 1000 simulated data sets.

3.2.2 Results of the simulation study

Figure 3.2.1 reports the estimated power, as the sample size increases, of the test based on the
methodology proposed in Chapter 2 (using Laplacian representation and Frobenius distance) and
that of the test based on some summary measures. In all the scenarios, the performance of the novel
test is always better than that of the classical approach.
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Figure 3.2.1: Power of the test under the novel test (green), characteristic path length (pur-
ple), clustering coefficient (light blue), efficiency (orange), modularity (red) and small-worldness
(dark blue).

In detail, the top-left block (Scenario 1) of Fig. 3.2.1 reveals that the power of the novel test is
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already close to one for sample sizes as small as n1 = n2 = 4. The test based on characteristic path
length, clustering coefficient and efficiency has a similar performance as the novel test, while the
comparison based on modularity has a low-increasing power. The test that takes into account the
small-worldness has power that it is essentially at the nominal level, so it fails in finding differences.
The novel test performs very well also in the simulated data sets of Scenario 2 (top-right block of
Fig. 3.2.1) while the test based on transitivity, efficiency and modularity are essentially at the
nominal level for all the sample sizes considered. For the networks in this particular data sets,
characteristic path length is not meaningfully computed (because there could be disconnected
networks) and therefore also small-worldness (whose computing involves the characteristic path
length) does not exist. Also in the case of Scenario 3 (bottom-left block in Fig. 3.2.1), characteristic
path length and small-wordlness are not available. The novel test has high power already for sample
size equal to 4. The test based on transitivity and that based on efficiency have similar
performances: the power is pretty low for sample size n1 = n2 = 4, while it increases as the sample
size increases. The test based on modularity has instead a very low increasing power. In Scenario 4
(lbottom-right block in Fig. 3.2.1) the novel test and the test based on modularity reveals high
power for all the sample sizes. The second-best is the comparison via efficiency while the test based
on characteristic path length and transitivity has a low increasing power. For this simulated data sets
small-worldness is not available.

In addition to the fact that the novel test performs at least as or always better than the classical
approach, this simulation study shows that there is no a summary measure that is better than the
others in all the scenarios, remarking the issue of choosing which summary measure to use.

3.3 Population study

In this section we describe the three data sets analysed and the results of the inference.

3.3.1 Description of the data sets

The data sets we analyse in this chapter have been provided by the Computational Radiology
Laboratory, Boston Children’s Hospital, HarvardMedical School (Boston, MA, USA).The first
data set concerns electroencephalographic connectivity. In [52] the authors studied brain
functional networks of electroencephalographic connectivity by means of graph theory in order to

36



investigate syndromic and non-syndromic autism. In detail, the data set is composed of brain
networks with a total of 19 vertices from patients with Tuberous Sclerosis Complex (TSC for short)
(n = 29), patients with Tuberous Sclerosis Complex and Autism SpectrumDisorder (ASD+TSC
for short) (n = 14), patients with non-syndromic Autism SpectrumDisorder (ASD for short)
(n = 16) and controls (n = 13). See [52] for all the details pertaining the selection of patients, EEG
recording and the connectivity measure (i.e. coherence) used to construct the edges in the
networks. Three frequency bands have been considered: theta band, lower alpha band and upper
alpha band (see [52] for the motivations of this choice). We consider here two group comparisons:
ASD vs ASD+TSC and ASD vs controls. The second data set is derived from functional Magnetic
Resonance Imaging and it is composed of 31 patients affected by Tuberous Sclerosis Complex and
28 controls. This data set has been previously studied in [69]. Each brain network has 116 vertices
and the correlation coefficient as weights. We finally consider a DCI data set that has been analized
as part of a TSC Autism Center for Excellence Research Network (TACERN) study [61]. A total of
31 patients affected by Tuberous Sclerosis Complex were included with age between one year and
three years. 29 patients come with a score predictive of autism (for the others this score is
unknown). The brain has been divided into 134 regions and the edges have been defined by means
of different connectivity measures. We here consider Compartmental Fractional Anisotropy (cFA
for short), the volume occupied by the streamlines between two regions divided by the total volume
of the streamlines (volume ratio for short) and the variance of the fraction of free water in a
streamline where the values along the streamlines are weighted with the streamline volume (isoF for
short). We consider two different kinds of group comparison. The first one is based on the age of
the patients and we compare one-year-old patients with three-years-old patients. The second one
aims at comparing patients with respect to the score predictive of autism. In detail, we looked for
differences between patients with a low risk (score less or equal to 10) and a high risk (score greater
than 10) of autism.

3.3.2 Results of the population study

EEG connectivity data

ASD vs ASD+TSC.Table 3.3.1 contains the p-values obtained comparing ASD patients and
ASD+TSC patients in terms of graph measures. No significant differences are revealed by these
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results (except in the case of the characteristic path length in the theta band).

Theta band Lower alpha band Upper alpha band

Charact. path length 0.046 0.612 0.134
Global efficiency 0.098 0.754 0.168
Clustering coeff. 0.096 0.534 0.096
Modularity 0.678 0.093 0.347

Small-worldness 0.633 0.619 0.057

Table 3.3.1: p-values for the comparison ASD vs TSC+ASD based on five summary graph
measures.

Table 3.3.2 contains the results of the new test in the case of theta, lower alpha and upper alpha
band, where the significant p-values are in bold (the chosen level is α = 0.05). Two different matrix
representations (adjacency and laplacian) and three different distances (hamming, frobenius and
spectral) are considered. The two-sample test has been conducted looking for differences in mean
(loc), variance (scale) and in mean and variance (l+s).

Contrary to the comparison by means of summary measures, except in the case of the laplacian
representation in the lower alpha band, the results show significant differences between the two
samples under adjacency and laplacian representations and hamming and frobenius distance. On
the other hand, regardless of the matrix representation, the tests based on spectral distance lead to
non significant p-values.

ASD vs controls. Results of the group comparison based on the summary measures are reported
in Table 3.3.3.

Table 3.3.4 contains the results of the test in the case of theta band, lower alpha band and upper
alpha band. The same combinations of representations and distances and moment distributions of
the other cases are considered.

For the theta and lower alpha band, the p-values are significant under hamming and frobenius
distance, regardless of the matrix representation while under spectral distance they are not
significant. On the other hand, in the case of upper alpha band the p-values are all significant, even
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Hamming Frobenius Spectral

loc scale l+s loc scale l+s loc scale l+s

Adjacency 0.001 0.326 0.002 0.001 0.457 0.002 0.071 0.331 0.150
Laplacian 0.002 0.549 0.002 0.005 0.851 0.012 0.049 0.272 0.104

(a) Theta band

Hamming Frobenius Spectral

loc scale l+s loc scale l+s loc scale l+s

Adjacency 0.013 0.704 0.008 0.004 0.803 0.004 0.361 0.790 0.593
Laplacian 0.052 0.664 0.123 0.086 0.706 0.170 0.401 0.896 0.635

(b) Lower alpha band

Hamming Frobenius Spectral

loc scale l+s loc scale l+s loc scale l+s

Adjacency 0.001 0.386 0.002 0.001 0.454 0.004 0.114 0.758 0.207
Laplacian 0.010 0.344 0.019 0.024 0.383 0.037 0.119 0.662 0.169

(c) Upper alpha band

Table 3.3.2: p-values of the comparison between ASD and ASD+TSC.

Theta band Lower alpha band Upper alpha band

Charact. path length 0.172 0.186 0.020
Global efficiency 0.183 0.076 0.017
Clustering coeff. 0.173 0.153 0.009
Modularity 0.079 0.004 0.0554

Small-worldness 0.833 0.969 0.627

Table 3.3.3: p-values for the comparison ASD vs controls based on five summary graph mea-
sures.

under spectral distance. The latter may be related to the fact that the upper alpha band is the only
case where the three topological measures are able to detect differences in the two groups (see
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Hamming Frobenius Spectral

loc scale l+s loc scale l+s loc scale l+s

Adjacency 0.001 0.265 0.002 0.001 0.194 0.002 0.073 0.628 0.179
Laplacian 0.001 0.357 0.004 0.004 0.405 0.020 0.081 0.572 0.179

(a) Theta band

Hamming Frobenius Spectral

loc scale l+s loc scale l+s loc scale l+s

Adjacency 0.001 0.528 0.004 0.001 0.775 0.002 0.064 0.101 0.151
Laplacian 0.012 0.258 0.024 0.013 0.211 0.026 0.080 0.073 0.160

(b) Lower alpha band

Hamming Frobenius Spectral

loc scale l+s loc scale l+s loc scale l+s

Adjacency 0.001 0.375 0.002 0.001 0.647 0.002 0.003 0.076 0.005
Laplacian 0.002 0.112 0.004 0.001 0.089 0.002 0.004 0.046 0.008

(c) Upper alpha band

Table 3.3.4: p-values of the comparison between ASD and controls.

Table 3.3.3).

fMRI data

As in the previous case, we report the results of the two approaches compared in this chapter.
Table 3.3.5 contains the results of the comparison between a sample of TSC patients and a sample
of controls. The novel test [39] highlights differences between the two samples under all the
combinations of representations and distances.

On the other hand, the test based on the comparison of summary measures (see Table 3.3.6) fails
in recognise differences in three over five measures: only global efficiency and clustering coefficient
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Hamming Frobenius Spectral

loc scale l+s loc scale l+s loc scale l+s

Adjacency 0.009 0.213 0.026 0.009 0.076 0.018 0.010 0.247 0.028
Laplacian 0.021 0.706 0.032 0.030 0.824 0.044 0.016 0.352 0.043

Table 3.3.5: p-values for the comparison between TSC patients and controls for the fMRI data
set.

Charact. path length 0.109
Global efficiency 0.028
Clustering coeff. 0.012
Modularity 0.747

Small-worldness 0.396

Table 3.3.6: p-values for the comparison TSC vs controls based on five summary graph mea-
sures for the fMRI data set.

succeed in finding differences.

DCI data

1 year old vs 3 years old. In this data set the edges of the brain networks have been defined by
means of different connectivity measures. We here compare 1-year-old patients with 3-years-old
patients in the case of cFA, volume ratio and isoF. Brain networks constructed by means of the latter
connectivity measure have been compared also in terms of the predictive score of autism. The
results of the comparison between 1-year-old and 3-years-old patients are displayed in Tables 3.3.7
– 3.3.12. The sample size is 9 for both groups. In all the cases it is possible to observe that the novel
test is able to detect differences better than how it is able to do a test based on the summary
measures. In detail, in this particular case, the test based on the summary measures suffers of the
lack of the characteristic path length due to the great number of zeros in the adjacency matrices.
Therefore, the small-worldness is not available in the two samples for all the patients as well. These
two facts make impossible a comparison of the two samples based on characteristic path length and
small-worldness. Among the other summary measures, only global efficiency in the case of cFA
(p = 0.022) and clustering coefficient in the case of volume ratio (p = 0.018) succeed in finding
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differences between the two samples.

Hamming Frobenius Spectral

loc scale l+s loc scale l+s loc scale l+s

Adjacency 0.014 0.969 0.030 0.025 0.992 0.064 0.097 0.112 0.188
Laplacian 0.024 0.704 0.049 0.032 0.436 0.054 0.058 0.401 0.123

Table 3.3.7: p-values for the comparison between 1 years patients and 3 years patients for the
DCI data set with cFA.

Global efficiency 0.022
Clustering coeff. 0.056
Modularity 0.311

Table 3.3.8: p-values for the comparison between 1 years patients and 3 years patients based
on five summary graph measures for the DCI data set with cFA.

Hamming Frobenius Spectral

loc scale l+s loc scale l+s loc scale l+s

Adjacency 0.019 0.966 0.040 0.043 0.584 0.063 0.117 0.168 0.232
Laplacian 0.013 0.987 0.032 0.018 0.739 0.030 0.040 0.881 0.066

Table 3.3.9: p-values for the comparison between 1 years patients and 3 years patients for the
DCI data set with volume ratio.

Global efficiency 0.117
Clustering coeff. 0.018
Modularity 0.622

Table 3.3.10: p-values for the comparison between 1 years patients and 3 years patients based
on five summary graph measures for the DCI data set with volume ratio.
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Hamming Frobenius Spectral

loc scale l+s loc scale l+s loc scale l+s

Adjacency 0.010 0.283 0.034 0.017 0.706 0.024 0.076 0.415 0.151
Laplacian 0.001 0.670 0.008 0.009 0.411 0.014 0.007 0.089 0.010

Table 3.3.11: p-values for the comparison between 1 years patients and 3 years patients for the
DCI data set with isoF.

Global efficiency 0.475
Clustering coeff. 0.257
Modularity 0.161

Table 3.3.12: p-values for the comparison between 1 years patients and 3 years patients based
on five summary graph measures for the DCI data set with isoF.

High risk vs low risk. Also in the case of the comparison between low and high risk of autism
patients the novel test (see Table 3.3.13) detects differences where the summarymeasures don’t (see
Table 3.3.14). In detail, we consider for this comparison only the isoF connectivity measure. The
total number of high risk patients is 9, while the total number of low risk patients is 20. Obviously, as
in the 1-year-old and 3-years-old comparison, characteristic path length and small-worldness cannot
be used for testing differences. Only clustering coefficient recognised a difference (p = 0.048).

Hamming Frobenius Spectral

loc scale l+s loc scale l+s loc scale l+s

Adjacency 0.012 0.126 0.035 0.013 0.605 0.042 0.048 0.569 0.100
Laplacian 0.005 0.327 0.012 0.004 0.991 0.010 0.001 0.669 0.010

Table 3.3.13: p-values for the comparison between low risk patients and high risk patients for
the DCI data set with isoF.
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Global efficiency 0.299
Clustering coeff. 0.048
Modularity 0.103

Table 3.3.14: p-values for the comparison between low risk patients and high risk patients
based on five summary graph measures for the DCI data set with isoF.

3.4 Discussion

In this chapter we compared two different ways of conducting two-sample tests on brain networks.
We consider the classical way of summarise an entire brain network with a brain measure and then
test the vectors of this measure [10, 58]; on the other hand, we took into account the novel
two-sample test for network-valued data of the previous chapter. We consider brain networks
derived from different acquisition procedures (i.e. EEG, fMRI, DCI) and with different number of
vertices (19, 116, 134). Both the sample sizes and the criteria that define the samples are different (i.e.
the type of disease, the presence/absence of a disease, the age, the risk of autism). In all these
different cases the two-sample test for network-valued data performs better than the standard
method of comparing brain networks by means of a univariate test involving summary measures.
More over, the test allows to overcome the drawbacks explained in the introduction: the issue of
choosing which summary measure consider, multiple comparisons correction, the lack of power
and the number of subjects involved in the studies. As a result, this newmethod opens up to
possible new discoveries in the field of neuroimaging and to possible improvements in treatment
and diagnosis. The results contained in this chapter are now on the attention of some neurologists at
the Boston Children’s Hospital.
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We are able to obtain not only a global p-value, like in tradi-
tional tests, but also a p-value for each of the defined aspects or
domains. In this way, if we find a significant departure from
H0, we can investigate the nature of this departure in detail.

Brombin & Salmaso, 2009

4
Multiscale null-hypothesis testing for

network-valued data

Once it is known that there is a significant difference between two samples of
brain networks, physicians may be interested in finding out which portions of the brain are
responsible for the observed (global) difference. In many fields where the atom of the statistical
analysis is a complex data, a novel trend towards “local” inference is growing. The interest is in
looking for which features of the data show statistical significant differences between the two
samples. Besides the methodological challenge, computational issues may arise, due to the possibly
high number of tests to be performed. In the context of high dimensional data, one of the best
knownmethod is that of False Discovery Rate [5], that aims at finding which components of a
vector are statistically different between the two samples. In the Functional Data Analysis (FDA)

See [37].
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framework great attention has been put on this issue. The interest is in finding which parts of the
domain are statistically different between two sample. Themost recent proposals are those by [55]
and [71]. See [55] for a review of this topic in FDA. In the context of OODA, [9] proposed a
generalization of the nonparametric combination methodology that allows to obtain a p-value for
each of the defined aspects or domains in shape analysis. With respect to network-valued data, the
interest is in finding which edges, vertices or subnetworks are different between the two samples.
Both [27] and [20] faced the problem of finding which edges are responsible for a global difference
in the two samples. In detail, [27] took advantage of the linear decomposition of the test statistics
they introduced to represent the individual contribution of each edge, in a sound asymptotic
framework. [20] incorporated in their analyses the multiple local tests where the differences are
explored in terms of a bayesian non-parametric approach on each edge, while controlling for
multiple comparisons. Because of the modelling formulation of their procedure, the method in [20]
is suitable to be applied only to unweighted networks.

In view of the complex structure of the data we have to deal with, we propose a fully
non-parametric approach to locally compare samples of networks. Our framework allows to test
both weighted and unweighted networks defining a partition of the vertices on which testing
differences between samples. In detail, such a partition (that may be inspired by application
requests) defines intra– and inter–subnetworks of interest that consist of connectivity connections
inside each element of the partition and between elements of the partition. Themajor contributions
of this chapter are the formulation of a framework that allows to identify subnetworks that exhibit
statistical significant differences between the two samples while guaranteeing a finite-sample strong
control of the family wise error rate on the subnetworks defined by the partition of the vertices, in a
fully non-parametric approach that allows to deal with data generated by complex models.

The chapter is organized as follows. In Section 4.1 the test of hypothesis is detailed. The
mathematical framework, the related theoretical properties and two different procedures (i.e.
Complete multiscale testing procedure and Adaptive multiscale testing procedure) for local
inference for network-valued data are reported in Section 4.2. In Section 4.3 two simulation studies
are reported. Finally, we study the EEG data set in Section 4.4.
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4.1 The test of hypothesis

Let G1 and G2 be two random samples of networks of cardinality n1 and n2, respectively and suppose
that every networkG = (V, E) in the samples has the same set V ofN vertices. We are interested in
finding out which subnetworks show statistical significant differences between the two samples. For
this reason, the first step consists in identifying subnetworks of interest on which a significance null
hypothesis testing will be conducted and whose characteristics are detailed in the following.
Subnetworks are exclusively identified by means of the vertices. In detail, the key ingredient is a
partition of the set V of the vertices, i.e. a collection V = {Vi}i∈I of subsets of V such that

1. V =
∪

i∈I Vi

2. Vi ∩ Vj = ∅ ∀i ̸= j

Depending on the origin of the data set and on the research questions, the partition of the set V
of vertices may be indicated by an expert. Both the richness of the partition and the possible
coarseness/nicety of the partition’s elements can be arbitrarily chosen.

Remark 2. The possibility of choosing a partition of the vertices allows to consider also the two extreme
(and opposite) cases. If a vertex splitting is not suggested and therefore all the vertices of the set V belong to
the same element of the partition (i.e. the set V itself and so V ≡ V) this local test is reduced to the global
test of the second chapter. If each vertex of the network belongs to a different element of the partition (and,
as a result, |I| = N) the intra–subnetworks are not defined and the test of hypothesis is reduced to testing
inter–differences on every single edge, that is the most common approach.

Once a partition is selected, two different classes of subnetworks can be identifyed, that we call
intra–subnetworks and inter–subnetworks and we here describe:

intra–subnetworks. An intra–subnetworkGintra
Vi

= (Vi, Eintra
Vi

) has the set Vi as set of vertices and
the edges in E that have both endpoints in Vi as the set of edges.

inter–subnetworks. An inter–subnetworkGinter
Vi∪Vj

= (Vi ∪ Vj, Eintra
Vi∪Vj

) has the set Vi ∪ Vj as set of
vertices and the edges in E that have an endpoint in Vi and the other endpoint in Vj as the set of
edges.
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. . .

V1

V2

V3

V4

Gintra
V2

Gintra
V4

Ginter
V1∪V2

Ginter
V3∪V4

. . .

intra - subnetworks inter - subnetworks

Figure 4.1.1: An example of partition of the vertices of a network in four elements and the
corresponding Gintra

Vi
for i = 2, 4 on the left and Ginter

Vi∪Vj
for (i, j) = (1, 2) and (3, 4) on the right.

Figure 4.1.1 illustrates an example of a partition of the set of vertices of a network in four subsets.
Two intra–subnetworksGintra

V2
andGintra

V4
(over the four possible ones) and two inter–subnetworks

Ginter
V1∪V2

andGinter
V3∪V4

(over the six possible ones) are reported to clarify the definitions.
The fundamental objects on which we define our test of hypotheses are precisely these

subnetworks just defined. Indeed our aim is to conduct a null hypothesis significant testing to figure
out (i) if the global difference between the two samples is due to some subnetworks rather than
others and (ii) if the (possible) “local” differences between the two samples lie in the
intra–subnetworks or in the inter–subnetworks (and therefore to find out if an intra–difference or
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an inter–difference, or both, is present, respectively).
Coherently to these concepts, we introduce the following two families of tests of hypotheses:

intra test of hypothesis. In relation to the intra–differences, the subnetworks involved in the test
are the intra–subnetworks. Let Fi

1 and Fi
2 be the distributions that govern, in the two populations

respectively, the intra–subnetworks defined by the element Vi of the partition V . For all
i = 1, · · · , |I|we want to test the following:

Hintra,i
0 : FGVi

1 = FGVi
2 against Hintra,i

1 : FGVi
1 ̸= FGVi

2 . (4.1)

Therefore, the number of hypotheses we are interested in is |I|.
inter test of hypothesis. Switching to the “inter–differences”, we want to test hypotheses on the

the inter–subnetworks. Let Fij
1 and Fij

2 be the distributions that govern, in the two populations
respectively, the inter–subnetworks defined by the union of the elements Vi and Vj of the partition
V . For all i ̸= j = 1, · · · , |I|we want to test the following:

Hinter,ij
0 : F

GVi∪Vj
1 = F

GVi∪Vj
2 against Hinter,ij

1 : F
GVi∪Vj
1 ̸= F

GVi∪Vj
2 . (4.2)

The number of hypotheses that are tested is |I|·|I−1|
2 .

Testing this collection of hypotheses on network-valued data entails the facing of two main
difficulties. First, the number of hypotheses that are simultaneously tested could be very high and
therefore, a testing procedure able to control the probability of a Type I error is needed. The
challenge is both methodological and computational (see Section 4.2). Second, the statistical unit is
a complex object and, in particular, each single test is a test on network-valued data. This requires
the application of inferential tools for this kind of object data.

4.2 Methods

4.2.1 Mathematical framework

Besides the control on each single tested hypothesis, in this work, as in many high dimensional
application, we want to guarantee the control of the family wise error rate at a global level α, that is
P[at least one I type error] < α. Different methods assuring such a control on a family of tests have
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been proposed in the literature. One of the most flexible is the Closed Testing Procedure. This
well-knownmethodology has been introduced for the first time by [42]. With this method a null
hypothesisH0 is rejected if all the possible intersection hypotheses that involveH0 are rejected by an
α level test. This procedure guarantees that the probability of making no type I error is at least 1− α
[42]. The Closed Testing Procedure is therefore composed of an hierarchy of auxiliary hypotheses
(i.e. all the possible intersections of the null hypotheses to be tested) with the hypotheses one is
interested in at the bottom of this hierarchy. In our specific application, the latter are hypotheses on
the intra–subnetworks (see test (4.1)) and on the inter–subnetworks (see test (4.2)). At the bottom
of the hierarchy there are therefore these |I|+

(|I|
2

)
hypotheses. At this point, we need to clarify how

the intermediate hypotheses in the hierarchy are defined in the case of network-valued data. For this
purpose, we first generalize the intra–subnetworks and the inter–subnetworks (previously defined
for the elements of the partition) to subnetworks with a different set of vertices. To define these new
extended families of subnetworks we make use of the σ–algebra generated by the partition of the
vertices. Recall that a σ-algebra over a non empty set V is a family of subsets of V that includes V , is
closed under complement and is closed under countable unions. If K ⊆ P(V) (withP(V) the
power set) is a non-empty family of sets over V (i.e. a subset ofP(V)) the σ-algebra σ(K) generated
by K is the smallest σ-algebra that contains K, that is the intersection of all the σ-algebras that
contain K. If {Vi}i∈I is a finite or countable partition of V, σ({Vi}i∈I) = {

∪
j∈J Vj, J ⊆ I}.

Consider the σ-algebra generated by the partition V = {Vi}i∈I of V and fix an element A ∈ σ(V).
Hence A is the union of a certain number of subsets Vi of the partition V . Let us define a concept of
dimensionality for such an element A. We say that A ∈ σ(V) has dim d if d is the number of subsets
Vi of V whose union constitutes A and we introduce the following notation: dim(A) = d.
We can now introduce three different classes of networks that will be used to define the auxiliary
hypotheses. What is common between these three networks is the set of the vertices: given an
element A ∈ σ(V), all the vertices in A constitute the set of vertices in all the three classes of
networks and we refer to it as VA; what changes is the set of the edges. We define the following:

• for all A ∈ σ(V),Gtotal
A = (A, Etotal

A ) is the network with edges the edges in E that have the
endpoints in any of the subsets in the partitionV contained in A (i.e., in terminology of graph
theory, the subgraph induced inG by A [see 16, Chapt. 1]). See the example in the top right
of Fig. 4.2.1.
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• for all A ∈ σ(V),Gintra
A = (A, Eintra

A ) is the network with edges the edges in E that have both
endpoints in the same subset in the partition V contained in A. A network of this type
contains only the edges that do not exit each single subset Vi in A. See the example in the
bottom left of Fig. 4.2.1.

• for all A ∈ σ(V),Ginter
A = (A, Einter

A ) is the network with edges the edges in E that have the
endpoints in two different subsets in the partition V contained in A. This type of network
contains only the edges that connect vertices belonging to two different subsets Vi ̸= Vj in A.
See the example in the bottom rigth of Fig. 4.2.1.

G Gtotal
A

Gintra
A Ginter

A

Figure 4.2.1: An example of partition of the vertices of a network in four elements (first
block). In the other three blocks an element A with dimens(A) = 3 is highlighted in grey and
the corresponding Gtotal

A , Gintra
A and Ginter

A are reported. In each case, the vertices and the edges
that actually constitute the subnetworks are in black.

Remark 3. If A is an element of the partition, that is A ≡ Vi for some i = 1, · · · , |I|, Ginter
A is not defined

and Gintra
A ≡ Gtotal

A .
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Before defining the auxiliary tests of hypothesis, we need to introduce the following families of
subnetworks:

G total :=
{
Gtotal

A : A ∈ σ(V)
}

(4.3)

G intra :=
{
Gintra

A : A ∈ σ(V)
}

(4.4)

G inter :=
{
Ginter

A : A ∈ σ(V), dim(A) > 1
}
. (4.5)

The procedure we introduce in this chapter tests the null hypothesis against the alternative on all
the subnetworks in the previous families. We now define three auxiliary tests.
In the following, FA

1 and FA
2 are the distribution functions that generate in the two samples the

subnetworks in the family under scrutiny (i.e. G total, G intra, G inter).
The first auxiliary test doesn’t distinguish between the intra–differences and the inter–differences. It
tests the hypothesis on elements of the family G total to see where the differences between the two
samples are. The test is the following:

Htotal,A
0 : FGtotal

A
1 = FGtotal

A
2 against Htotal,A

1 : FGtotal
A

1 ̸= FGtotal
A

2 , (4.6)

where A is an element of σ–algebra σ(V). The corresponding p-value is ptotalA .
The second auxiliary test is focus on possible intra–differences and therefore is performed on the
elements of the family G intra:

Hintra,A
0 : FGintra

A
1 = FGintra

A
2 against Hintra,A

1 : FGintra
A

1 ̸= FGintra
A

2 , (4.7)

where A is an element of σ–algebra σ(V). The corresponding p-value is pintraA . This test is analogs of
test (4.1) for a general element of the σ–algebra σ(V) instead for the elements of the partition V .
The third “auxiliary” test puts the attention on possible inter–differences and therefore is performed
on the elements of the family G inter:

Hinter,A
0 : FGinter

A
1 = FGinter

A
2 against Hinter,A

1 : FGinter
A

1 ̸= FGinter
A

2 , (4.8)

where A is an element of σ–algebra σ(V) such that dimens(A) > 1. The corresponding p-value is
pinterA . This test is analogs of test (4.2) for a general element of the σ–algebra σ(V) instead for the
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elements of the partition V .

Remark 4. In some applications it may happen that some vertices belong to more than one element of the
subdivision of the vertices. In our approach, this is not a drawback. Indeed it is possible to redefine the
given subdivision in order to have a partition where the overlapping vertices are elements of the partition
itself and then construct the σ-algebra as usual. In detail, the σ-algebra generated by a familyB of sets
whenB is not necessarily a partition can be defined. Let beΩ a non empty set and define
B := {Bi, 1 ≤ i ≤ k <∞} ⊂ P(Ω). Then, the σ-algebra σ(B) generated byB is given by

σ(B) =
{
E : E =

∪
δ∈J

Bδ, J ⊂ {1, 2, · · · , k}
}

where for each δ = (δ1, δ2, · · · , δk), δi ∈ {0, 1}, Bδ is defined as Bδ =
∩k

i=1 Bi(δi), where Bi(0) = Bc
i

and Bi(1) = Bi, i ≥ 1.

4.2.2 Complete multiscale testing procedure

Given the general Closed Testing Procedure and the auxiliary hypotheses (4.6), (4.7) and (4.8)
(Subsection 4.2.1), we now describe what we here call Complete multiscale testing procedure. Recall
that we have two samples G1 and G2 of networks of cardinality n1 and n2, respectively and that each
network in G1 and G2 has the same set ofN vertices. Definem := 2|I|, the cardinality of the
σ–algebra σ({Vi}i∈I) = σ(V) generated by the partition {Vi}i∈I = V .
The Complete multiscale testing procedure we propose tests the null hypothesis of no differences in
the generating distributions against the alternative, on gradually smaller subnetworks defined on
the elements of the σ–algebra σ(V). The description of the procedure is the following:
∀i = |I|, |I| − 1, · · · , 2, 1 and ∀A ∈ σ(V) such that dim(A) = i perform the tests (4.6), (4.7) and
(4.8).
This procedure allows to define an adjusted p-value for the intra–subnetworks and for the
inter–subnetworks defined according to the partition of the set of vertices.
The adjusted p-value for the intra–subnetworks (test (4.1)) is defined as

pVi := max
A:Vi∈A

pintraA , ptotalA

53



whereas the adjusted p-value for the inter–subnetworks (test (4.2)) is defined as

pViVj := max
A:Vi,Vj∈A

pinterA , ptotalA

TheComplete multiscale testing procedure is summarized in Algorithm 1.

Algorithm 1Complete multiscale testing procedure
1: procedure
2: loop:
3: pAtotal ← local total two-sample test onGtotal

A
4: pAintra ← local intra two-sample testGintra

A
5: pAinter ← local inter two-sample testGinter

A
6: goto loop
7: computing of the adjusted p-values

Lemma 1. The procedureComplete multiscale testing procedure guarantees the strong control of the
family wise error rate on the following set (see (4.3), (4.4) and (4.5)):

G total ∪ G intra ∪ G inter,

that is, if G ∈ G total ∪ G intra ∪ G inter is the larger subnetwork where H0 is true,

P[∃Gintra
Vi
⊆ G : pVi ≤ α or ∃Ginter

Vi∪Vj
⊆ G : pVi∪Vj ≤ α] ≤ α,

where with the notation G1 ⊆ G2 we mean the G1 is a subnetwork of G2.

Proof. Let A be the set of vertices ofG and denote withHG
0 the hypothesis among all theHtotal,A

0 ,
Hintra,A

0 andHinter,A
0 that refers toG and pG the corresponding p-value. Thanks to the structure of the

Multiscale testing procedure, an hypothesisHintra,i
0 (Hinter,i,j

0 ) is rejected only if all the corresponding
Htotal,A

0 andHintra,A
0 (Htotal,A

0 andHinter,A
0 ) are rejected too. HG

0 corresponds to one of these
hypotheses. Each single hypothesis is tested at level α and in particular this is true forHG

0 . Therefore,
P[pVi ≤ α] ≤ P[pG ≤ α] = α (P[pVi∪Vj ≤ α] ≤ P[pG ≤ α] = α).
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Remark 5. Lemma 1 guarantees the control of the family wise error rate on the larger subnetwork G in
G total ∪ G intra ∪ G inter where the null hypothesis is true. It is clear from the proof that this type of control is
guaranteed on all the subnetworks G in G total ∪ G intra ∪ G inter where the null hypothesis is true.

Remark 6. As stated in Lemma 1, the control of the family wise error rate is guaranteed on subnetworks
belonging to the families G total, G intra and G inter. These families are induced by the partition of the vertices
suggested by the user. On the other hand, the control of the family wise error rate is not guaranteed on
subnetworks that are not included in the previous families. The type of family wise error rate control is
coherent with the initial choice of the partition.

4.2.3 Adaptive multiscale testing procedure

In the previous subsection we briefly described the well-known Closed testing procedure and we
introduced tools to adapt this method to performmultiscale null hypothesis testing on
network-valued data. Both in the Closed testing procedure and in the Complete multiscale testing
procedure, the number of hypotheses to be tested might be very high, leading to remarkable
computational costs. In addition to the possible high computational cost, we want to highlight
another possible limit. If an α level has been fixed prior to the beginning of the closed testing
procedure and if one is looking only for those null hypotheses that will be rejected by the procedure,
in many cases it can happen that lot of auxiliary hypotheses are tested uselessly. In fact, if the
procedure starts from the top of the hierarchy of the auxiliary hypotheses, at every step if an
hypothesis is not rejected, it is not necessary to test the hypotheses included in this one. Consider
for example the set of hypothesis in Figure 4.2.2. If the hypothesis are tested starting from the top of
the hierarchy and if an α level of, for example, 0.05 has been fixed, once one figures out that the
hypothesisH2,3

0 is not rejected, it is not necessary to testH2
0 andH3

0 because for sure they will not be
rejected.
We therefore propose a general alternative to the classical Closed Testing Procedure, i.e. what we
here call Adaptive Closed Testing Procedure. The peculiarity of this method consists, at each step, in
selecting the hypotheses that are suitable to be tested. Similarly to the classical Closed Testing
Procedure, an hierarchy of hypothesis is introduced, with the global hypothesis at the top. Given an
α level, if a significant difference is found at the global level, the hypothesis of the subsequent level of
the hierarchy are tested. Then the hypothesis of the third level that are contained in non-rejected
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hypothesis are not tested in the successive step and so on. An adjust p-value for each hypothesis ωβ

is therefore defined as the maximum of the set of p-values pertaining to hypothesis containing ωβ.

H1,2,3
0

H1,2
0 H1,3

0 H2,3
0

H1
0 H2

0 H3
0

p = 0,01

p = 0,02p = 0,01

p = 0,01

p = 0,2

p = 0,2

p = 0,4

H1,2,3
0

H1,2
0 H1,3

0 H2,3
0

H1
0 H2

0 H3
0

p = 0,01

p = 0,02p = 0,01

p = 0,01

p = 0,2

p = 0,2

p = 0,4

Figure 4.2.2: An example of closed testing procedure (first block) and of adaptive closed test-
ing procedure (second block). The hypothesis that are subject to be tested are in black.

As in the previous subsection, we generalize this procedure to the case of network-valued data.
Themethod we introduce here and that we call Adaptive multiscale testing procedure tests the null
hypothesis against the alternative not on all the gradually smaller subnetworks, but selecting which
of them are suitable to be tested. The aim is to avoid testing hypothesis on subnetworks on which
the test on the upper level has returned a non significant p-value. Precisely, if the test on a portion of
the network is not significant, then the hypothesis is not tested in the possible subnetworks of that
portion. This criteria is applied also to the three families of auxiliary tests defined in (4.6), (4.7)
and (4.8). In particular, if the global test returns a non significant p-value, the method doesn’t go on.
If the global–p-value is significant, the global–intra test and the global–inter test are performed. If
there is not a global–intra–difference (global–inter–difference), all the subsequent intra tests (inter
tests) are not performed. This concepts are formalized and clarified in the following paragraph.

In the description of the Adaptive multiscale testing procedure we make use of the auxiliary
tests 4.6, 4.7 and 4.8 introduced in Section 4.2. The difference with the Complete multiscale testing
procedure when referring to the auxiliary tests consists in the subnetworks involved in the tests.
After fixing an α level, as first step a global test onG ≡ Gtotal

V is required to check if the two samples
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are different. If that is the case, the method proceeds looking for the nature of the difference: it
might be due to intra–differences or inter–differences or both. Therefore, a global test onGintra

V and
onGinter

V is perfomed, i.e. the tests 4.7 and 4.8 are performed for the element in the σ–algebra with
dimension equal to |I|. The procedure now goes on only for the type of connection (i.e.
intra–connections or inter–connections) where there is a difference. In detail, if the p-value
resulting from testing (4.7) is significant (i.e. that referred to a global intra–difference), tests (4.6)
and (4.7) are performed for elements Awith dimens(A) = |I| − 1. At this point, before proceeding
to the subnetworks referring to A such that dimens(A) = |I| − 2, it is necessary to evaluate on which
subnetworks it is suitable to conduct the test. Subnetworks are constructed based on the elements
of the σ–algebra σ(V), so let’s focus on these elements to describe how to choose the subnetworks
to test. At the end of the first step, |I| tests have been performed, each based on an element A of
dimension |I| − 1 belonging to the σ–algebra σ(V). Those elements of dimension |I| − 2 that are
subsets of elements of dimension |I| − 1 for which the test on the corresponding subnetworks is not
significant, are not considered for the test in the next step. The subnetworks that are identified as
suitable to be tested are involved in tests (4.6) and (4.7). The procedure goes on in this way for all
the subsequent steps, until the hypothesis pertaining to the elements of the σ–algebra of dimension 1
(i.e. the test (4.1)) are tested. The procedure for the inter–differences is analogue to that for the
intra–differences. Similarly, if p-value resulting from testing (4.8) on the element of dimension |I|
(i.e. the global test onGinter

V ) is significant, the same steps just described, but for the auxiliary
hypotheses (4.6) and (4.8), are carried out until the hypothesis pertaining to the elements of the
σ–algebra of dimension 2 (i.e. the tests (4.2)) are tested.
The adjusted p-values for the intra– and inter–subnetworks are defined as in the case of the
Multiscale testing procedure where the subnetworks involved are only those on which the tests have
been performed:

p̃Vi := max
A:Vi∈A

pintraA , ptotalA

p̃ViVj := max
A:Vi,Vj∈A

pinterA , ptotalA

(4.9)

for theGtotal
A ,Gintra

A andGinter
A on which the test has been performed.

Algorithm 2 summarizes the Adaptive multiscale testing procedure. The word suitable used in the
algorithm stands for those elements A of the σ–algebra generated by the partition V that at each
step of the Adaptive multiscale testing procedure are identified as subsets to consider to construct
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(and then test on) the corresponding intra– and/or inter–subnetworks.

Algorithm 2Adaptive multiscale testing procedure
1: procedure
2: input level α
3: p← global two-sample test
4: if p > α then return false
5: pintra ← global intra two-sample test
6: pinter ← global inter two-sample test
7: if pintra < α then
8: loop:
9: pAtotal ← local total two-sample test onGtotal

A for suitable A
10: pAintra ← local intra two-sample testGintra

A for suitable A
11: goto loop
12: if pinter < α then
13: loop:
14: pAtotal ← local total two-sample test onGtotal

A for suitable A
15: pAinter ← local inter two-sample testGinter

A for suitable A
16: goto loop
17: computing of the adjusted p-values

Remark 7. At the same fixed α level, the Complete multiscale testing procedure and the Adaptive
multiscale testing procedure identify the same sets of significant and non significant subnetworks. If a
subnetwork is statistically different between the two samples, the p-value found with the Complete
multiscale testing procedure and that with the Adaptive multiscale testing procedure are exactly the same
(p̃Vi = pVi or p̃ViVj = pViVj); if a subnetwork is not statistically different, the p-value found with the
Complete multiscale testing procedure is larger or equal than the results obtained from the Adaptive
multiscale testing procedure (p̃Vi ≤ pVi or p̃ViVj ≤ pViVj).

Lemma 2. The Adaptive multiscale testing procedure guarantees the control of the family wise error rate
on the following set:

G total ∪ G intra ∪ G inter,
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that is, if G ∈ G total ∪ G intra ∪ G inter is the larger subnetwork where H0 is true,

P[∃Gintra
Vi
⊆ G : p̃Vi ≤ α or ∃Ginter

Vi∪Vj
⊆ G : p̃Vi∪Vj ≤ α] ≤ α,

where with the notation G1 ⊆ G2 we mean the G1 is a subnetwork of G2.

Proof. From Remark 7, it follows that, fixed an α level, p̃Vi ≤ α if and only if pVi < α and p̃ViVj ≤ α if
and only if pViVj < αThe proof now follows from that of Lemma 1.

Remark 8. As stated in the description of the Adaptive multiscale testing procedure, at the beginning it is
necessary to fix an α level and each step of the procedure depends upon the chosen level. Once the Adaptive
multiscale testing procedure has been performed at level α, if one is interested in finding significant
differences at a level α< smaller than that fixed, it is possible to simply look at the results of the α level
Adaptive multiscale testing procedure. In fact, the α< significant p-values found with the procedure at level
α are the same ones that would be obtained if the Adaptive multiscale testing procedure is carried on at
level α<. As for a level α> larger than that fixed, this is not longer true. In fact, there’s no guarantee that all
the α> significant differences resulting from the procedure at level α would be found also with the procedure
under the level α>. With the Adaptive multiscale testing procedure at level α>, p-values that are between α
and α> could indeed grow over the level α>.

We finally briefly compare the computational costs of the complete multiscale testing procedure
and the adaptive multiscale testing procedure in terms of number of performed tests. We carry on
this comparison analytically in an abstract situation, i.e. under the hypotheses that n1, n2 → +∞
and α→ 0+ and we express the costs in terms of: (i) number of (intra or inter) subnetworks where
there is a difference between the two samples and (2) cardinality of the partition of the vertices. We
consider separately the costs deriving from testing intra differences and from testing inter
differences.

Cost of intra test of hypothesis. Let us suppose that the partition V of the vertex set V is
composed of a total ofm elements and that the number of significant intra–differences is k
(i.e., k intra subnetworks exhibit a significant difference between the two samples). Varying
the dimension of the elements of the σ-algebra generated by V , we now count howmany
tests are not performed at each step of the adaptive multiscale testing procedure. For
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i = 1, · · · ,m− k, if we are considering the step of the adaptive multiscale testing procedure
where elements of the σ-algebra of dimension equal to i are tested, the number of tests that
are not performed is

(m−k
i

)
, that is the number of way of choosing i subsets Vh among the set

of non significantm− k subsets Vg. For dimension i = m− k+ 1, · · · ,m, the adaptive
multiscale testing procedure is instead based on all the possible intra test of hypothesis.
Therefore, the total number of tests that are not performed is:

m−k∑
i=1

(
m− k

i

)
= 2m−k −

(
m− k
0

)
= 2m−k − 1.

Hence, the total cost Cintra of the branch of the adaptive multiscale testing procedure
involving intra test of hypothesis is

Cintra = 2m − (2m−k − 1).

Cost of inter test of hypothesis. In the case of inter test of hypothesis is not possible to count
exactly howmany tests are (or are not) performed at each step of the procedure because the
cost might depend on the position of the inter–differences. We hence provide an estimation
of the supremum of the cost. In effect, some particular positions of inter difference can lead
to a lower computational cost. Letm be again the number of elements of the partitionV and l
the number of inter subnetworks that exhibit a difference between the two samples (that can
be up tom(m− 1)/2). For i = 1, · · · ,m, if we are considering the step of the adaptive
multiscale testing procedure where elements of the σ-algebra of dimension equal to i are
tested, the cost of each step is at most (

m− 2
i− 2

)
l,

since for a given dimension i, and for a given inter–difference, the total number of
subnetworks to be tested corresponds to the number of way of choosing i− 2 subsets Vh

amongm− 2 subsets Vg. The supremum of the total cost Cinter of the adaptive multiscale
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testing procedure is therefore given by:

Cinter ≤
m∑
i=1

(
m− 2
i− 2

)
l = l

m∑
i=1

(
m− 2
i− 2

)
.

Figure 4.2.3 shows the relative computational savings computed as the difference between the cost
of the complete procedure and that of the adaptive procedure, over the former. The fewer the
differences that are present, the greater the computational saving. These relative savings do not
depend on the number of elements of the partition of the vertices. If there are no differences
between the two samples, the saving is total. If there is only one difference between the two
samples, the adaptive multiscale testing procedure guarantees a saving of 50% in the case of intra
differences and a saving of at least 75% in the case of inter differences. If the number of differences is
two, savings of 25% and of at least 50% are guaranteed for intra and inter differences, respectively.
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case of intra differences.

Number of significant inter differences

R
el

at
iv

e 
co

m
pu

ta
tio

na
l s

av
in

g

0 1 2 3 4 5 6 7 8 9 10

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b) Relative computational savings in the
case of inter differences.

Figure 4.2.3: Relative computational savings.
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4.3 Simulation studies

The aim of this section is to explore the potential of our methodology on simulated data sets where
different levels and kinds of differences are present. In detail, the goal of this section is twofold. First
of all we focus on the identification of local differences, showing that our procedure is able to detect
in which areas of the network there are difference between the two populations, while controlling
the family wise error rate; we also show that a naive approach that does not control for multiple
testing fail in controlling the family wise error rate. Second, we generate a particular data set in order
to highlight how important it is to consider the entire network approach also in the case of local
inference instead of other summary objects that somehow summarize the entire structure of the
network and we show how this latter approach loses power. Inspired by atlases commonly used in
the clinical practise, we generate samples of networks with 68 vertices. We use a partition with four
elements and the sample sizes are n1 = n2 = 10. We used a total of 1000 replicates and an α level
equal to 0.05.

4.3.1 Identification of local differences

Simulated scenarios. In this first simulation study we simulate four different scenarios, all
characterized by the presence of specific subnetworks where there is a differences in the edge
strength distribution; what distinguishes the scenarios is which subnetworks are different between
the two populations. To generate the samples, we rely on the stochastic block model [31], that is a
useful model that allows to choose the probability of existence of an edge inside and between
pre-specified areas of the network. The parameters of this model are the partition of the vertex set
into disjoint subsets C1, · · · ,Cm and an edge probability matrix with dimensionm× mwhose
element ij is the probability of existence of an edge between vertices belonging to areaCi and to area
Cj. Therefore, the stochastic block model allows to specify the probabilities both of edges
connecting vertices inside the pre-specified blocks (if i = j) and of edges connecting vertices
belonging to different blocks (if i ̸= j). SelectingC1, · · · ,Cm = V1, · · · ,Vm, through this model we
are able to generate samples that have intra–differences and/or inter–differences in different
locations. Table 4.3.1 (where we indicate the areas with RoI, i.e. Region of Interest) describes the
four scenarios by means of a 4× 4matrix where a cross (×) in entry ij (ii) represents an
inter–difference between the two populations in the connections between area i and area j
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(intra–difference in area i); on the other hand, a checkmark (✓) stands for no differences in the
corresponding areas. As a result, in correspondence of a cross the null hypothesis is false, while it is
true in correspondence of a checkmark. In detail, the two populations have both intra– and
inter–differences. We start with a very trivial case where the differences are present in all the (four)
intra–subnetworks and in all the (six) inter–subnetworks defined by the partition (see Table 4.3.1a).
In the second and third scenario we explore separately intra– and inter–differences. The second
scenario (see Table 4.3.1b) aims at testing our Adaptive multiscale testing procedure on a simulated
data set where the differences in the two samples are located only in the intra–subnetworks; the
third scenario (see Table 4.3.1c) is instead focused on differences only in the inter–subnetworks.
Finally, we explore a more realistic scenario (see Table 4.3.1d) where the differences between the
two populations are located in some of the intra– and inter–subnetworks. The four elements of the
partition of the vertices contains 17 vertices each. In Appendix all the edge probability matrices are
reported for each scenario.

RoI 1 RoI 2 RoI 3 RoI 4

RoI 1 × × × ×
RoI 2 × × ×
RoI 3 × ×
RoI 4 ×

(a) First scenario.

RoI 1 RoI 2 RoI 3 RoI 4

RoI 1 × ✓ ✓ ✓
RoI 2 × ✓ ✓
RoI 3 × ✓
RoI 4 ×

(b) Second scenario.

RoI 1 RoI 2 RoI 3 RoI 4

RoI 1 ✓ × × ×
RoI 2 ✓ × ×
RoI 3 ✓ ×
RoI 4 ✓

(c) Third scenario.

RoI 1 RoI 2 RoI 3 RoI 4

RoI 1 ✓ ✓ × ✓
RoI 2 ✓ × ✓
RoI 3 × ×
RoI 4 ✓

(d) Fourth scenario.

Table 4.3.1: Explaining tables for the generated scenarios of the first simulation study.

Estimation of probability of rejection. Table 4.3.2 reports the estimated probability of rejection
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of the test on the four simulated scenarios just described. As in the explaining Table 4.3.1, for each
simulation we report a 4× 4 table with the estimated probability of rejection for each tested
hypothesis. The entry ij is referred to the comparison of the subnetwork identified by the areas i and
j. If i = j, the result regards a intra–subnetwork, while if i ̸= j, the result is inherent to a
inter–subnetwork. The results show that in all the generated scenarios the Adaptive multiscale
testing procedure is sensitive to the violation of the null hypothesis, regardless of the type of
difference (intra– and inter–difference) that is present between the two populations. We explore the
same scenarios also by means of a naive approach that simply tests all the null hypotheses separately
without applying any strategy to correct for multiple comparisons. In this case a total of ten null
hypotheses is tested (four intra hypotheses and six inter hypotheses). As in Table 4.3.2, Table 4.3.3
reports the estimated power for each tested hypothesis: the intra– and inter–differences are
correctly detected and under the null hypothesis the power of the test is at the nominal level. What
dramatically changes between the Adaptive multiscale testing procedure and the naive approach
that simply tests all the null hypotheses without any correction procedure, is the Family Wise Error
Rate (FWER), that is the probability of at least one false rejection. Table 4.3.4 compares the
estimated FWER committed with the Adaptive multiscale testing procedure and the naive approach
in Scenarios 2, 3 and 4. The results show that our procedure correctly controls the FWER at level α
(0.012, 0.013 and 0.005 in Scenarios 2, 3 and 4, respectively) while the naive approach that does not
control for the multiplicity fails in controlling the FWER, leading, as expected, to a probability of at
least one false rejection of 0.255, 0.180 and 0.260 in each scenario, respectively.

4.3.2 The validity of the network approach

Simulated scenarios. When locally comparing two samples of networks, one may think of
construct a partition-driven “aggregated network” starting from the original one. One way of doing
it consists in constructing a new network where the vertices of an element of the partition in the
original network boils down to a single vertex. Coherently, in the “aggregated network”, the weight
of an edge connecting vertex i and vertex jmight be defined as the mean (or the sum) of the weights
of the edges connecting the vertices belonging to area i and j of the original network. Once having
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RoI 1 RoI 2 RoI 3 RoI 4

RoI 1 1.000 1.000 1.000 1.000
RoI 2 1.000 1.000 1.000
RoI 3 1.000 1.000
RoI 4 1.000

(a) First scenario.

RoI 1 RoI 2 RoI 3 RoI 4

RoI 1 1.000 0.004 0.005 0.002
RoI 2 1.000 0.000 0.001
RoI 3 1.000 0.001
RoI 4 1.000

(b) Second scenario.

RoI 1 RoI 2 RoI 3 RoI 4

RoI 1 0.002 1.000 1.000 1.000
RoI 2 0.002 1.000 1.000
RoI 3 0.006 1.000
RoI 4 0.003

(c) Third scenario.

RoI 1 RoI 2 RoI 3 RoI 4

RoI 1 0.000 0.000 1.000 0.002
RoI 2 0.000 1.000 0.002
RoI 3 1.000 1.000
RoI 4 0.001

(d) Fourth scenario.

Table 4.3.2: Estimation of the probability of rejection with the Adaptive multiscale testing pro-
cedure on the generated data sets of the first simulation.

these two samples of “aggregated networks” one may think of testing local group differences using
the maximal partition in the Adaptive multiscale testing procedure to see if there are difference in
the connections between the given areas of the network. In this simulation we want to show that an
approach based on “aggregated networks” fails to capture the actual complexity of the network. For
this purpose, we generate two samples of networks with 68 vertices and chose a partition of four
elements (with 10, 20, 17 and 21 vertices each). The weights of the networks are given by a Poisson
distribution with parameter equal to 8 and a difference between the two samples is then introduced
in 24 edges (over the (10× 20)/2 total possible edges) connecting the first two areas identified by
the partition (so it is an inter–difference, see Table 4.3.5). In the first sample, the weight of 12 edges
is modified in a Poisson distribution with parameter equal to 5 and other 12 edges are modified
according to Poisson distribution with parameter equal to 11. In the second sample, exactly the same
edges that have been modified in the first sample are modified too. Those edges that in the first
sample were modified in a Pois(5) in the second sample are turned into a Pois(11) and vice versa.
Appendix reports the details on the edges that have been modified.
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RoI 1 RoI 2 RoI 3 RoI 4

RoI 1 1.000 1.000 1.000 1.000
RoI 2 1.000 1.000 1.000
RoI 3 1.000 1.000
RoI 4 1.000

(a) First scenario.

RoI 1 RoI 2 RoI 3 RoI 4

RoI 1 1.000 0.042 0.048 0.065
RoI 2 1.000 0.049 0.054
RoI 3 1.000 0.049
RoI 4 1.000

(b) Second scenario.

RoI 1 RoI 2 RoI 3 RoI 4

RoI 1 0.045 1.000 1.000 1.000
RoI 2 0.045 1.000 1.000
RoI 3 0.042 1.000
RoI 4 0.058

(c) Third scenario.

RoI 1 RoI 2 RoI 3 RoI 4

RoI 1 0.058 0.039 1.000 0.051
RoI 2 0.050 1.000 0.055
RoI 3 1.000 1.000
RoI 4 0.044

(d) Fourth scenario.

Table 4.3.3: Estimation of the probability of rejection with the naive approach on the gener-
ated data sets of the first simulation.

Scenario 2 Scenario 3 Scenario 4

Adaptive multiscale procedure 0.012 0.013 0.005
Naive approach 0.255 0.180 0.260

Table 4.3.4: Family wise error rate on scenarios 2, 3 and 4 of the first simulation study.

RoI 1 RoI 2 RoI 3 RoI 4

RoI 1 ✓ × ✓ ✓
RoI 2 ✓ ✓ ✓
RoI 3 ✓ ✓
RoI 4 ✓

Table 4.3.5: Explaining tables for the generated scenario of the second simulation study.
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In order to highlight the validity of our approach, we compare this two samples with the Adaptive
multiscale testing procedure in two different ways. The first one makes use of the Adaptive
multiscale testing procedure on the original network; the second one consider samples of
“aggregated networks” instead of the original networks. In detail, for each element in the two
samples, an “aggregated network” with four vertices is constructed. Each vertex corresponds to one
of the four elements of the partition and the weight of an edge between a couple of vertices is
defined as the arithmetic mean of the weights of edges connecting the vertices belonging to the two
areas of the original network. Eventually, for each replicate, from two samples of networks with 68
vertices we derive two samples of networks with 4 vertices.

Figure 4.3.1: An illustrative example of an “aggregated network”.

Estimation of probability of rejection. The results reported in Table 4.3.6 point out how
important it is to consider the entire network instead of reducing the complexity of the data to a
simpler object. From Table 4.3.6a it is possible to observe that the Adaptive multiscale testing
procedure is able to detect where there is a difference between the two samples. In the case of the
samples composed of “aggregated networks”, the power of the global test (that is the first step of the
Adaptive multiscale testing procedure) is approximately at the nominal level (0.042). Table 4.3.6b
contains the estimate of the probability of rejection of the Adaptive multiscale testing procedure in
this second case. It is clear that testing samples of “aggregated networks” instead of the original
networks leads to a method that is not able to find out differences between the two samples. As a
result, this example clearly emphasizes that an approach that takes into account of the entire
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structure of the network finds differences while an approach based on an “aggregated network” do
not. Moreover, boiling down a subset of vertices (i.e. an element Vi of the partition) to a single
vertex loses information on the intra–subnetworksGintra

Vi
(so that’s why in Table 4.3.6b there is not

the diagonal).

RoI 1 RoI 2 RoI 3 RoI 4

RoI 1 0 1 0.001 0.004
RoI 2 0.001 0.004 0.005
RoI 3 0 0.002
RoI 4 0

(a) With the entire networks.

RoI 1 RoI 2 RoI 3 RoI 4

RoI 1 0.001 0.008 0.004
RoI 2 0 0
RoI 3 0.002
RoI 4

(b) With the “aggregated networks”.

Table 4.3.6: Estimation of probability of rejection for the generated data sets of the second
part.

4.4 Analysis of autistic subjects data set

Description of the data set. We consider here one the three data sets studied in the previous
chapter, that we briefly describe for self-content. We apply our methodology to brain functional
networks of electroencephalographic (EEG) connectivity previously studied in [52]. The data has
been collected from patients with Tuberous Sclerosis Complex (TSC) (n = 29), patients with
Tuberous Sclerosis Complex and Autism SpectrumDisorder (ASD) (n = 14), patients with
non-syndromic Autism SpectrumDisorder (n = 16) and controls (n = 13). The TSC is a
multisystem, autosomal dominant disorder affecting children and adults and it results from
mutations in one of two genes, TSC1 or TSC2 [15]. Approximately 40% of patients affected by
TSC develop ASD [62]. See [52] for the details on the process of identification and diagnosis of the
patients included in the study. Each network has 19 vertices identified by the electrode locations
from the international 10-20 system of electrode placement while the edges are given by the
coherence measure (see [52] for the detail on this measure and the validity of this approach). The
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(a) Autism Spectrum Disorder patient
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(b) Tuberous Sclerosis Complex and
Autism Spectrum Disorder patient
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(c) Tuberous Sclerosis Complex patient
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(d) Control

Figure 4.4.1: Representation of brain networks of a patient with non-syndromic autism, a pa-
tient affected by tuberous sclerosis complex and autism, a patient with tuberous sclerosis com-
plex and a control.
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networks are therefore weighted with weight between 0 and 1.
Thechoice of the partitions. This specific application allows to highlight a strength of our

approach. While in some case it is possible to choose the position of the vertices through an
application-driven approach, in the case of EEG connectivity data, the electrode locations, given by
an international system of electrode positions, have not a physiological meaning and therefore the
same holds for the vertices in the networks. It is possible to overcome this limitation and give a
meaning at each vertices adopting our approach. Indeed, our procedure for local inference allows to
identify some regions of interest and conduct the test on these regions, even if the original networks
have positions of vertices without a strong meaning. In this application we initially consider two
different partitions of the set of vertices. The first one, indicated withPLR, is that into right and left
hemisphere and it practically translates into a partition of three elements, as represented in
Figure 4.4.2a. The second partition, indicated withPFT, is composed of three elements: frontal
lobe, intermediate area and temporal lobe, as represented in Figure 4.4.2b. In the third case we
consider a splitting of the vertices given by the union of the two previous partitionsPLR andPFT.
This is not an actual partition but, as stated in Remark 4, it is however possible to construct the
σ–algebra generated by it. Practically, it is as we were considering a partitionPLR−FT of nine
elements, represented by Figure 4.4.2c. In detail, the partition is composed of these elements:
{1, 2, 6}, {9}, {12, 15, 16}, {3, 7}, {10}, {13, 17}, {4, 5, 8}, {11}, {14, 18, 19}.
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(a) Partition PLR of the brain in left
hemisphere, central area and right
hemisphere
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(b) Partition PFT of the brain in
frontal lobe, intermediate area and
temporal lobe
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(c) Partition PLR−FT with nine ele-
ments.

Figure 4.4.2: The three partitions of the vertices considered in the application on EEG data
set.
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Results. We consider the Adaptive multiscale testing procedure with α level equal to 0.1 and a
number B of permutations equal to 10000. Tables 4.4.1 and 4.4.2 reports the results of the local
inference for the comparison between patients with non-syndromic ASD and patients with ASD
and TSC and between patients with non-syndromic ASD and controls. We present the results using
adjacency matrix representation and frobenius distance and theta band. Figures 4.4.3 and 4.4.4
represent the locations of significant intra–differences (light blue areas) and the locations of
inter–differences (dark blue arrows). As for the comparison between autistic patients and patients
affected both by autism and by tuberous sclerosis complex (see Table 4.4.1), there is a
correspondence between the results in the case of the partitions with three elements and that with
nine elements. In detail, the macro significant differences found in the two samples where the first
two partitions are considered (see Tables 4.4.1a and 4.4.1b) are found also when the vertices are
split in nine subgroups (see Table 4.4.1c). As for the first partition (Figure 4.4.3a), there are
intra–differences in left hemisphere, central area and right hemisphere, while the inter–differences
are between left and right hemisphere, between left hemisphere and central area and between
central area and right hemisphere. As for the second partition (Figure 4.4.3b), the intra–differences
are located in frontal and temporal lobe, while the inter–differences are between frontal lobe and
intermediate area and intermediate area and temporal lobe. With the third partition (Figure 4.4.3c),
a more detailed representation of the locations of the differences is provided. The intra–differences
are located in frontal-left area, frontal-right area and temporal-left area. The inter–differences are the
following: between frontal-left area and frontal-right area, between frontal-central area and
intermediate-right area, between frontal-left area and intermediate-right area, between
intermediate-right area and temporal-right area, between frontal-right area and intermediate-central
area, between intermediate-central area and central-temporal area, between central-temporal area
and temporal-right area, between temporal-left area and central-temporal area, between
intermediate-left area and central-temporal area and finally between intermediate-left area and
temporal-left area.

As for the comparison between autistic patients and controls (see Table 4.4.2), the macro
significant differences found in the two samples where the first two partitions are considered (see
Tables 4.4.2a and 4.4.2b) are found also when the vertices are split in nine subgroups (see
Table 4.4.2c), except in one case. As for the first partition (Figure 4.4.4a), the significant
intra–differences and inter–differences found are exactly the same found in the previous group
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comparison. As for the second partition (Figure 4.4.4b), the intra–differences are located in frontal
lobe, intermediate area and in temporal lobe, while the inter–differences are between frontal and
temporal lobe and between intermediate area and temporal lobe. The partition with nine elements
gives more information (Figure 4.4.4c), except in the case of the the intra–difference in the central
area for which it is not possible to establish where the differences are (among the connections
frontal-intermediate, the connections intermediate-temporal, the connections frontal-temporal). In
detail, the intra–differences are in frontal-left area, frontal-right area, temporal-left area and
temporal-right area. The inter–differences are the following: between frontal-left area and
frontal-right area, between frontal-left area and temporal-left area, between frontal-central area and
frontal-right area, between frontal-right area and temporal-right area, between frontal-right area and
temporal-left area, between intermediate-left area and intermediate-central area, between
intermediate-left area and temporal-left area, between intermediate-right area and temporal-left
area, between intermediate-left area and temporal-right area, between temporal-left area and
temporal-central area, between temporal-central area and temporal-right area and finally between
temporal-left area and temporal-right area. The results contained in this section, together with the
results of the previous chapter, are now on the attention of some neurologists at the Boston
Children’s Hospital.
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Left Central Right

Left < 0.001 0.002 0.002
Central 0.016 0.002
Right 0.004

(a) Left and right hemisphere. pintra =

0.0002 and pinter = 0.0006

Front. Interm. Temp.

Front. 0.002 < 0.001 ≥ 0.231
Interm. ≥ 0.169 < 0.001
Temp. 0.002

(b) Frontal and temporal lobe. pintra =

0.0002 and pinter = 0.0004

Front. Front. Front. Interm. Interm. Interm. Temp. Temp. Temp.
left centr. right left centr. right left centr. right

Front. left 0.031 ≥0.269 0.023 ≥0.181 ≥0.269 0.093 ≥0.197 ≥0.193 ≥0.269
Front. centr. ≥0.296 ≥0.181 ≥0.287 0.093 ≥0.296 ≥0.208 ≥0.287
Front. right 0.094 ≥0.112 0.067 ≥0.152 ≥0.206 ≥0.208 ≥0.112
Interm. left ≥0.309 ≥0.169 ≥0.169 0.050 0.095 ≥0.181
Interm. centr. ≥0.169 ≥0.140 0.022 ≥0.287
Interm. right ≥0.510 ≥0.152 ≥0.510 0.060
Temp. left 0.037 0.072 ≥0.187
Temp. centr. 0.060
Temp. right ≥0.309

(c) Right and left hemisphere, frontal and temporal lobe. pintra = 0.0004 and pinter = 0.0004

Table 4.4.1: Results of the Adaptive multiscale testing procedure for the comparison between
autistic patients and patients with autism and tuberous sclerosis complex.
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(a) Differences found with the parti-
tion in left hemisphere, central area
and right hemisphere.
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(b) Differences found with the parti-
tion in frontal lobe, intermediate area
and temporal lobe.
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(c) Differences found with the parti-
tion of nine elements.

Figure 4.4.3: Locations of the differences between autistic patients and patients with autism
and tuberous sclerosis complex. Light blue areas refers to those subnetworks where there is an
intra–difference between the two samples, while dark blue arrows indicate the presence of an
inter–difference.
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Left Central Right

Left < 0.001 0.003 0.001
Central 0.026 0.002
Right < 0.001

(a) Left and right hemisphere. pintra =

0.0002 and pinter = 0.0010

Front. Interm. Temp.

Front. < 0.001 ≥ 0.146 0.021
Interm. 0.010 0.003
Temp. < 0.001

(b) Frontal and temporal lobe. pintra =

0.0002 and pinter = 0.0034

Front. Front. Front. Interm. Interm. Interm. Temp. Temp. Temp.
left centr. right left centr. right left centr. right

Front. left 0.003 ≥0.172 0.005 ≥0.163 ≥0.172 ≥0.172 0.033 ≥0.110 ≥0.163
Front. centr. 0.038 ≥0.163 ≥0.172 ≥0.172 ≥0.151 ≥0.110 ≥0.163
Front. right 0.001 ≥0.209 ≥0.171 ≥0.209 0.032 ≥0.209 0.095
Interm. left ≥0.155 0.077 ≥0.209 0.006 ≥0.209 ≥0.163
Interm. centr. ≥0.172 ≥0.639 ≥0.171 ≥0.151
Interm. right ≥0.187 0.032 ≥0.219 0.085
Temp. left 0.002 0.008 0.029
Temp. centr. 0.038
Temp. right 0.006

(c) Right and left hemisphere, frontal and temporal lobe. pintra = 0.0002 and pinter =

0.0006

Table 4.4.2: Results of the local inference for the comparison between autistic patients and
controls.
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(a) Differences found with the parti-
tion in left hemisphere, central area
and right hemisphere.
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(b) Differences found with the parti-
tion in frontal lobe, intermediate area
and temporal lobe.

1 15

2

3

4

5

6

7

8

10

9

11 14

13

12

18

17

16

19

(c) Differences found with the parti-
tion of nine elements.

Figure 4.4.4: Locations of the differences between autistic patients and controls. Light blue
areas refers to those subnetworks where there is an intra–difference between the two samples,
while dark blue arrows indicate the presence of an inter–difference.

77



4.5 Discussion

The aim of this chapter is to formulate a procedure that, once it is known that there is a significant
difference between two samples, allows to find out which subnetworks are responsible for the global
observed difference. This aim opens up to theoretical and computational challenges. A possible
high number of null-hypothesis can be stated and therefore it is necessary to control the error due to
multiple comparisons; meanwhile an adaptive procedure that reduces the computational costs has
been introduced. The proposed procedure is very flexible and allows to include the expertise of the
sector specialist in the definition of the partition of the vertices.

Appendix

In this section we detail how to replicate the generated scenarios studied in Section 4.3.

Details on the generated scenarios of the first simulation study

We report the edges probability matrices used to generate the simulated scenarios in the first
simulation study (see Section 4.3.1).
Scenario 1

p1 =


0.4 0.1 0.4 0.1
0.1 0.1 0.1 0.4
0.4 0.1 0.1 0.4
0.1 0.4 0.4 0.1

 , p2 =


0.1 0.4 0.1 0.4
0.4 0.4 0.4 0.1
0.1 0.4 0.4 0.1
0.4 0.1 0.1 0.4


Scenario 2

p1 =


0.1 0.4 0.4 0.1
0.4 0.4 0.1 0.1
0.4 0.1 0.4 0.4
0.1 0.1 0.4 0.1

 , p2 =


0.4 0.4 0.4 0.1
0.4 0.1 0.1 0.1
0.4 0.1 0.1 0.4
0.1 0.1 0.4 0.4
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Scenario 3

p1 =


0.1 0.4 0.1 0.1
0.4 0.1 0.4 0.4
0.1 0.4 0.4 0.1
0.1 0.4 0.1 0.4

 , p2 =


0.1 0.1 0.4 0.4
0.1 0.1 0.1 0.1
0.4 0.1 0.4 0.4
0.4 0.1 0.4 0.4


Scenario 4

p1 =


0.1 0.4 0.1 0.4
0.4 0.4 0.1 0.4
0.1 0.1 0.4 0.4
0.4 0.4 0.4 0.4

 , p2 =


0.1 0.4 0.4 0.4
0.4 0.4 0.4 0.4
0.4 0.4 0.1 0.1
0.4 0.4 0.1 0.4


Details on the generated scenario of the second simulation study

We here specify which edges connecting vertices in the first two elements of the partition are
modified from Pois(8) to Pois(5) and Pois(11) to introduce a difference between the two samples:
First sample

• from Pois(8) to Pois(5): 1-11, 1-13, 2-12, 2-17, 2-18, 3-14, 3-19, 4-12, 4-16, 5-11, 5-15, 5-1

• from Pois(8) to Pois(11): 6-20, 7-20, 7-23, 7-27, 8-24, 8-26, 8-28, 9-21, 9-22, 9-29, 10-24,
10-25.

Second sample

• from Pois(8) to Pois(5): 6-20, 7-20, 7-23, 7-27, 8-24, 8-26, 8-28, 9-21, 9-22, 9-29, 10-24, 10-25

• from Pois(8) to Pois(11): 1-11, 1-13, 2-12, 2-17, 2-18, 3-14, 3-19, 4-12, 4-16, 5-11, 5-15, 5-1.
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5
TheRpackage nevada

The package nevada (NEtwork-VAlued Data Analysis) is an R package for the statistical analysis of
network-valued data sets. It has been developed during the Ph.D. program and it is itself a
contribution of the thesis. It is available on GitHub (https://github.com/astamm/nevada) and can
be simply installed from it. The package provides a set of matrix representations for networks so that
network-valued data can be transformed into matrix-valued data. Subsequently, a number of
distances between matrices is provided as well to quantify how far two networks are from each
other and a number of distance-based statistics is proposed for testing equality in distribution
between samples of networks using exact permutation testing procedures. The implementation is
largely made in C++ and the matrix of inter– and intra–sample distances is pre-computed, which
alleviates the computational burden often associated with permutation tests. A multiscale
null-hypothesis procedure is also implemented and the choice of matrix representation, distance
between networks and test statistics is possible as well. In details:

• the repr_*() functions return the chosen matrix representation of the input network;
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• the dist_*() functions return the chosen distance between two networks;

• the stat_*() functions return the value of the chosen test statistic;

• the test_twosample() function returns the p-value of a permutation test in which the
null hypothesis is that the two samples come from the same distribution of networks;

• the network_localtest2p() function returns intra– and inter– p-values of a multiscale
null-hypothesis testing of no differences in the distribution of networks based on a partition
of the set of vertices suggested by the user.

In the following each function is detailed.

5.1 Network Representation Functions

Description
This is a collection of functions that convert a network stored as an igraph object into a desired

matrix representation among adjacency matrix, graph laplacian or modularity matrix.
Usage
repr_adjacency(network, validate = TRUE)
repr_laplacian(network, validate = TRUE)
repr_modularity(network, validate = TRUE)

Arguments
network An igraph object.
validate A boolean specifying whether the function should check

the class of its input (default: TRUE).
Value

A numeric square matrix giving the desired network representation recorded in the object’s class.
Examples
g <- igraph::sample_smallworld(1, 25, 3, 0.05)
repr_adjacency(g)
repr_laplacian(g)
repr_modularity(g)
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5.2 Distances BetweenNetworks

Description
This is a collection of functions computing the distance between two networks.

Usage
dist_hamming(x, y, representation = "adjacency")
dist_frobenius(x, y, representation = "laplacian")
dist_spectral(x, y, representation = "laplacian")
dist_root_euclidean(x, y, representation = "laplacian")

Arguments
x An igraph object or a matrix representing an underlying network.
y An igraph object or a matrix representing an underlying network.

Should have the same number of vertices as x.
representation A string specifying the desired type of

representation, among: “adjacency” [default],
“laplacian” and “modularity”.

Value
A scalar measuring the distance between the two input networks.

Examples
g1 <- igraph::sample_gnp(20, 0.1)
g2 <- igraph::sample_gnp(20, 0.2)
dist_hamming(g1, g2, "adjacency")
dist_frobenius(g1, g2, "adjacency")
dist_spectral(g1, g2, "laplacian")
dist_root_euclidean(g1, g2, "laplacian")

5.3 Test Statistics forNetwork Populations

Description
This is a collection of functions that provide statistics for testing equality in distribution between

samples of networks.
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Usage
stat_lot(d, indices)
stat_sot(d, indices)
stat_biswas(d, indices)
stat_energy(d, indices, alpha = 1)
stat_edge_count(d, indices, type = "generalized")

Arguments
d Either a matrix of dimension (n1 + n2)(n1 + n2) containing the

distances between all the elements of the two samples put together
(for distance-based statistics) or a list of edge properties of a
similarity graph for the graph-based edge count statistics.

indices A vector of dimension n1 containing the indices of the
elements of the first sample.

alpha An integer specifying to which power elevating the Euclidean
distance of the energy-based statistic (default: 1L).

type A string specifying the version of the edge count test statistic to
be used. Choices are “original”, “generalized” [default] or
“weighted”.

Value
A scalar giving the value of the desired test statistic.

Examples
n1 <- 30L
n2 <- 10L
x <- nvd("smallworld", n1)
y <- nvd("pa", n2)
d <- dist_nvd(x, y, representation = "laplacian", distance =

"frobenius")
stat_lot(d, 1:n1)
stat_sot(d, 1:n1)
stat_biswas(d, 1:n1)
stat_energy(d, 1:n1)
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r <- repr_nvd(x, y, representation = "laplacian")
e <- edge_count_global_variables(d, n1, k = 5L)
stat_edge_count(e, 1:n1, type = "original")
stat_edge_count(e, 1:n1, type = "generalized")
stat_edge_count(e, 1:n1, type = "weighted")

5.4 Comparison ofNetworkDistributions

Description
This function carries out an hypothesis test where the null hypothesis is that the two populations

of networks share the same underlying probabilistic distribution against the alternative hypothesis
that the two populations come from different distributions. The test is performed in a
non-parametric fashion using a permutational framework in which several statistics can be used,
together with several choices of network matrix representations and distances between networks.
Usage
test_twosample(x, y, representation = "adjacency", distance =

"frobenius", statistic = "lot", B = 1000L, alpha = 0.05, test =
"exact", k = 5L)
Arguments
x An nvd object listing networks in sample 1.
y An nvd object listing networks in sample 2.
representation A string specifying the desired type of

representation, among: “adjacency” [default],
“laplacian” and “modularity”.

distance A string specifying the chosen distance for calculating the
test statistic, among: “hamming”, “frobenius” [default],
“spectral” and “root-euclidean”.

statistic A string specifying the chosen test statistic(s), among:
“lot” [default], “sot”, “biswas”, “energy”, “original”,
“generalized”, “weighted” or a combination from
c(“lot”, “sot”, “biswas”, “energy”).
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B The number of permutation or the tolerance (default: 1000L). If this
number is lower than 1, it is intended as a tolerance. Otherwise, it is
intended as the number of required permutations.

alpha The significance level (default: “0.05).
test A character string specifying if performing an exact test through

the use of Phipson-Smyth estimate of the p-value or an
approximate test through aMonte-Carlo estimate of the p-value
(default: “exact”).

k An integer specifying the density of the minimum spanning tree used
for the edge count statistics (default: 5L).

Value
A list with three components: the value of the statistic for the original two samples, the p-value of

the resulting permutation test and a numeric vector storing the values of the permuted statistics.
Examples
n <- 10L
x <- nvd("smallworld", n)
y <- nvd("pa", n)
test1 <- test_twosample(x, y, "modularity")
x <- nvd("smallworld", n)
y <- nvd("smallworld", n)
test2 <- test_twosample(x, y, "modularity")

5.5 Multiscale null hypothesis testing for networks

Description
This function carries out a local hypothesis test via a multiscale testing procedure, based on a

partition of the vertices suggested by the user. Each single null hypothesis is that the two
populations of networks share the same underlying probabilistic distribution against the alternative
hypothesis that the two populations come from different distributions. Several statistics can be
used, together with several choices of network matrix representations and distances between
networks.
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Usage
network_localtest2p <- function(x, y, location, representation =

"adjacency", distance = "frobenius", statistic = c("sot", "lot"), alpha
= 0.05, B = 1000)
Arguments
x An nvd object listing networks in sample 1.
y An nvd object listing networks in sample 2.
location A vector where entry i specifies in which element of the

partition vertex i belongs.
representation A string specifying the desired type of

representation, among: “adjacency” [default],
“laplacian” and “modularity”.

distance A string specifying the chosen distance for calculating the
test statistic, among: “hamming”, “frobenius” [default],
“spectral” and “root-euclidean”.

statistic A string specifying the chosen test statistic(s), among:
“lot”, “sot”, “biswas”, “energy”, “original”,
“generalized”, “weighted” or a combination from
c(“lot”, “sot”, “biswas”, “energy”) (default: c(“lot”,
“sot”) .

B The number of permutation or the tolerance (default: 1000L). If this
number is lower than 1, it is intended as a tolerance. Otherwise, it is
intended as the number of required permutations.

alpha The significance level (default: “0.05).
Value

A list with four components: the value of the intra global p-value, the results of the inference for
the intra–subnetworks, the value of the inter global p-value and the results of the inference for the
inter–subnetworks.
Examples

p1 <- matrix(data = c(0.1, 0.4, 0.1, 0.4, 0.4, 0.4, 0.1, 0.4, 0.1,
0.1, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4), nrow = 4, ncol = 4, byrow = TRUE)
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p2 <- matrix(data = c(0.1, 0.4, 0.4, 0.4,0.4, 0.4, 0.4, 0.4, 0.4,
0.4, 0.1, 0.1, 0.4, 0.4, 0.1, 0.4), nrow = 4, ncol = 4, byrow = TRUE)
block1 <- NULL
block2 <- NULL
for (i in 1:s) {
block1[[i]] <- as_adjacency_matrix(sample_sbm(68, p1,

c(17,17,17,17)), type = "both", sparse = FALSE)
block2[[i]] <- as_adjacency_matrix(sample_sbm(68, p2,

c(17,17,17,17)), type = "both", sparse = FALSE)
}
network_localtest2p(block1, block2, c(rep(1,17), rep(2, 17), rep(3,

17), rep(4,17)))
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6
Conclusion

Themain topic of this thesis is null-hypothesis testing for network-valued data. It starts with the
most simple null-hypothesis problem, i.e. two-sample test. Due to the complexity of the data, the
problem is tackled from the perspective of the permutation framework. The choice of the test
statistic is then critical because it makes the test sensitive to specific features of the distribution.
Therefore, there is no uniformly better statistic for testing equality in distribution but rather many
statistic that look at the distribution under different angles. We introduced two statistics which,
when combined together through the Non-Parametric Combination methodology, are sensitive to
differences in the first two moments of the distributions. Furthermore, our proposed method relies
only on inter-point distances. This means that all we need is a metric between networks to perform
two-sample testing. Hence, we believe that our proposal could be a valid approach not only for
network-valued data analysis, but, in a broader context, for Object Oriented Data Analysis,
provided that the object data used as sample unit can be embedded into a metric space.

Staying within the context of network-valued data, we explore the potential of the two-sample
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test introduced when it is applied to brain networks data sets. We compared two different ways of
conducting two-sample tests on brain networks: we consider the classical way of summarise an
entire brain network with a brain measure and then test the vectors of this measure and we took into
account the two-sample test for network-valued data. We consider brain networks derived from
different acquisition procedures (i.e. EEG, fMRI, DCI) and with different number of vertices (19,
116, 134). Both the sample sizes and the criteria that define the samples are different (i.e. the type of
disease, the presence/absence of a disease, the age, the risk of autism). In all these different cases the
two-sample test for network-valued data performs better than the standard method of comparing
brain networks by means of a univariate test involving summary measures. This newmethod opens
up to possible new discoveries in the field of neuroimaging and to possible improvements in
treatment and diagnosis.

The natural continuation of this work is the formulation of a procedure that, once it is known that
there is a significant difference between two samples, allows to find out which subnetworks are
responsible for the global observed difference. This aim opens up to theoretical and computational
challenges. A possible high number of null-hypothesis can be stated and therefore it is necessary to
control the error due to multiple comparisons; meanwhile an adaptive procedure that reduces the
computational costs has been introduced. The proposed procedure is very flexible and allows to
include the expertise of the sector specialist in the definition of the partition of the vertices.
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Appendix

6.1 Visualization of the entire bikeMi data set

Figures 6.1.1–6.1.7, represent all the networks in the data set considered in the Section 2.3 of the
second chapter. The relative positions of the vertices are coherent with the real positions of the
neighbourhoods of Milan.
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Figure 6.1.1: Networks representing the trips between NILs of Milan on Monday.
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Figure 6.1.2: Networks representing the trips between NILs of Milan on Tuesday.

92



●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

● ●
●

●●
●

● ●

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

2425

26

27

28

29

30

31

32
33

34

35
36

37

38 39

2016−01−27

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

● ●
●

●●
●

● ●

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

2425

26

27

28

29

30

31

32
33

34

35
36

37

38 39

2016−02−03

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

● ●
●

●●
●

● ●

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

2425

26

27

28

29

30

31

32
33

34

35
36

37

38 39

2016−02−10

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

● ●
●

●●
●

● ●

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

2425

26

27

28

29

30

31

32
33

34

35
36

37

38 39

2016−02−17

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

● ●
●

●●
●

● ●

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

2425

26

27

28

29

30

31

32
33

34

35
36

37

38 39

2016−02−24

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

● ●
●

●●
●

● ●

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

2425

26

27

28

29

30

31

32
33

34

35
36

37

38 39

2016−03−02

Figure 6.1.3: Networks representing the trips between NILs of Milan on Wednesday.
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Figure 6.1.4: Networks representing the trips between NILs of Milan on Thursday.
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Figure 6.1.5: Networks representing the trips between NILs of Milan on Friday.
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Figure 6.1.6: Networks representing the trips between NILs of Milan on Saturday.
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Figure 6.1.7: Networks representing the trips between NILs of Milan on Sunday.
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