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Introduction

There are two main protagonists of this thesis: subdivision schemes and wavelet frames.
On the one hand, subdivision schemes are iterative methods for generating curves and
surfaces, widely used in CAGD and animation (see e.g. [10, (2, 57, 63]). On the
other hand we have wavelets and wavelet frames, from the seminal works of Daubechies,
Meyer, Ron, Shen and many others [16, 20} 24 50}, 55, [56], which are families of functions
that provide methods for useful decompositions of the elements of application related
function spaces such as LQ(Rd). These two topics are deeply related since both methods
are entwined with the concept of refinable functions, i.e. functions [y ]rez satisfying a
refinement equation of the type

[orlkez = P [0r(2:)]kez (0.1)

for some bi-infinite real-valued matrix P. In particular, subdivision schemes generate
refinable functions which build the foundation for wavelet frame constructions.

One of the major open issue in the realm of subdivision nowadays is to understand
how to construct schemes that produce C? surfaces in settings with arbitrary topology.
In particular, the crucial case is when the initial mesh used for the subdivision process
features one or more extraordinary vertices, i.e. vertices with a number of incoming
edges different from 6 for triangular meshes or 4 for quadrilateral meshes. Since the
subdivision schemes useful for applications are local, the standard approach would be
to try to tune locally a known regular scheme around an extraordinary vertex, in such a
way that the resulting surface is globally C2. Not having a clue on how to do this tuning
process properly, the consequential step is to go deeper into the smoothness analysis
for more insight. In this direction, results were obtained exploiting spectral analysis,
e.g. [52 B4l 162 [63], however without achieving a full understanding of the smoothness
phenomena. The initial idea behind this work was to follow the same direction through
a different path, i.e. applying another method for the analysis of the global subdivision
smoothness. In the regular (shift-invariant) setting, other methods have been used
successfully for this task, such as Fourier techniques, the Joint Spectral Radius approach
[0l 25] and wavelet analysis [20, 50]. The first two of them do not naturally extend to
the case of extraordinary vertices since they rely on the shift-invariance of the mesh. We
choose instead to focus on the latter, the wavelet analysis. To test the availability of this
path, we focused on the easiest non-regular setting, as done in [29], i.e. we considered
univariate schemes over a semi-regular initial mesh given by

ty = —th U {0} v hrN, hg, h, € (07 OO) (02)



Introduction

In the regular case, wavelet analysis rely on the characterization of Besov spaces
B, ,(R) provided by Lemarié and Meyer [47] in their follow-up on the results by Frazier
and Jawerth [35].

Theorem 0.1 ([50], Section 6.10). Let s > 0 and 1 < p,q < 0. Assume
{or=00(-—k) + keZ} o {v, =202 (27" k) : keZ,jeN} < C(R)

15 a compactly supported orthogonal wavelet system with v vanishing moments.
Then, for r € (0, min(s,v)),

B;’q(R) = { Z apdr + Z Z bikVik - {ak}rez € (P(Z), {Qj(T+%_%) H{bj,/f}kEZHZP }jeN € E‘I(Z)} .

keZ jeN kezZ

To be able to apply Theorem [0.1], i.e. to extract the smoothness of a given function f
from the decay of its coefficients

{ak = <f, ¢k> ke Z} and {bj7k = <f, ¢j,k> . ] € N, ke Z}, (03)

one must first compute these inner products. In the context of subdivision, the analytic
expressions neither of the analysed function f nor of the functions ¢y, 1, are usually
known. However, in the regular setting, the desired inner products can be computed
explicitly (or numerically) using results of [44]. Unfortunately, in the semi-regular case
the exact same strategy does not work. The questions naturally arising at this point
are the following. Can we construct function systems that mimic the properties of
orthogonal wavelets in the semi-regular setting? Can we characterize at least B, ,.(R)
similarly to Theorem And will we be able to compute the inner products in ?
In this work we are able to answer all these questions affirmatively.

The natural choice to generalize wavelets are wavelet tight frames. These families
of functions are similar to wavelets since they are also based on refinable functions
® = [¢r]rez and retain the underlying multi-resolution structure, i.e. there exists a
sequence of bi-infinite matrices {Q,} en such that

U, = 272 QI ¢(27)), jeN. (0.4)

On the other hand wavelet tight frames are more flexible than wavelets, not requiring
either orthogonality or linear independence. The property which is kept is the perfect
reconstruction property for L*(R), i.e.

=200k + D) D e Vi fe LA(R). (0.5)

keZ jeN keZ

The choice of tight frames over more general systems, such as dual frames (see e.g.
[23, 130, [31], 137, 38, [42] ), is due to the easier applicability of the former which use the same
functions in ((0.5)) both for the computation of the coefficients and for the reconstruction

of f.
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In the stationary regular setting, i.e. when the subdivision rules are shift-invariant and
do not change between the iterations, the so-called Unitary Extension Principle (UEP)
[55, 56] and Oblique Extension Principle (OEP) from [16], 24] are used for constructions
of wavelet tight frames with one or more vanishing moments. UEP and OEP are based on
Fourier techniques and on factorizations of trigonometric polynomials. A generalization
of the UEP procedure for nonstationary regular schemes, when the subdivision rules can
change from one iteration to the other, was presented in [40]. A general setting that also
covers the semi-regular case is the one proposed in [14], [I5] where matrix formulations of
the UEP and OEP is given and examples of wavelet tight frames based on non-uniform
B-spline schemes are presented.

We construct wavelet tight frames with n vanishing moments from the semi-regular
Dubuc-Deslauriers 2n-point subdivision schemes and, to meet this goal, we also present
the convergence analysis of such semi-regular schemes. The family of Dubuc-Deslauriers
2n-point schemes was introduced in [27] in the regular case and extended to meshes of
the type in [62]. Our convergence analysis of this family uses the local eigenvalue
analysis [52], [63]. Our construction of the corresponding wavelet tight frames on the
regular part of the mesh uses the UEP and is based on the well known (see e.g [51]) link
between Dubuc-Deslauriers and Daubechies refinable functions [20]. The interpolation
and polynomial generation (up to degree 2n — 1) properties of the corresponding subdi-
vision schemes ensure n vanishing moments for the framelets. On the irregular part of
the mesh, in a neighborhood of ty(0), we apply the matrix factorization technique from
[14, [15]. Similarly to [8], instead of factorizing a certain global positive semi-definite
matrix, we used the regular framelets to reduce the process to the factorization of a fi-
nite positive semi-definite matrix involving an appropriate approximation of the inverse
Gramian matrix, which guarantees n vanishing moments of the framelets. However, the
existence of the underlying refinable functions is ensured only for certain values of h,./hy.

The advantage of our construction is in its simplicity. Indeed, with our UEP based
construction we obtain regular framelets with n vanishing moments without endeav-
ouring into more tedious computations required in general by the OEP. Furthermore,
compared to the B-spline based wavelet tight frames in [I6] (the only other semi-regular
wavelet tight frame in the literature) whose filters have size (number of non-zero coeffi-
cients) 3n — 1, the corresponding filters obtained from the Dubuc-Deslauriers 2n-point
framelets are of size 2n + 1. The disadvantage occurs on the irregular part of the mesh,
where our filters have possibly larger supports.

Using our wavelet tight frames we are able to estimate the regularity of other semi-
regular subdivision schemes. Our method relies on a new characterization of Holder-
Zygmund spaces, B}, ,(R), r > 0. It generalizes successful wavelet frame methods
[9, 10, 1T, 20, [43], 50, (3], 58] from the regular to the semi-regular and even to the irregular
setting. In comparison to the method in [21], our approach yields numerical estimates for
the optimal Holder-Zygmund regularity of a refinable function given just the refinement
equation without requiring any ad hoc norm estimates for the corresponding subdivision
scheme. Our numerical estimates turn out to be optimal in all considered cases and
require fewer computational steps than the standard linear regression method.
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We provide a generalization of Theorem for function systems
]::{¢k . kEZ}U{%’,k cjeN, keZ}cLQ(R)

satisfying properties —. These requirements express conditions about the local-
ized properties of the framelets v, ;. They also guarantee a quasi-uniform behaviour of
the system over R, even if no shift-invariance is required as for orthogonal wavelets. Our
main result states the following:

Theorem 0.2. Let s > 0 and v € N. Assume F < C*(R) satisfies assumptions ({3.2))-
(3.7) with v vanishing moments. Then, for r € (0, min(s,v)),

By, () = {EWHZZ@,W Aarhez € (@), {2009 [{bridrecle }jeNef‘“(Z)}.

keZ JeN keZ

The setting described by assumptions — includes some cases not addressed
in the results of Frazier and Jawerth [35] or of Cordero and Gréchenig in [18]. The
results of [35] require that the elements of F in the decomposition of B ,(R) are linked
to dyadic intervals. The results in [I8] impose the so-called localization property which
implies that the system F is semi-orthogonal (in particular, non-redundant).

On the other hand, one could view assumptions — to be somehow restrictive,
since they were designed to fit wavelet tight frames F constructed using results of [15],
such as the one constructed here from the Dubuc-Deslauriers 2n-point schemes. For

function families F satisfying (0.4), assumptions (3.3)-(3.7) reflect properties of the
matrices {Q,}jen: (3.3) controls the support of the columns of Q;, (3.4) controls the

slantedness of Q; and — are linked to eigenproperties of Q.

Nevertheless, the spirit of assumptions - merges with the spirit of atoms and
molecules in [35] and compactly supported orthogonal wavelet systems, for which -
are also satisfied. These similarities are also visible in the structure of the proofs
of Propositions [3.5] and

For the sake of completeness, we point out that our setting includes some of the
wavelet frames considered in [41] for which a characterization of the spaces Bj;,(R),
r € R, is given. However, those frames are shift-invariant, i.e. holds with block
2-slanted {Q;}jen. The approach in [4I] applies Fourier techniques that are not feasible
in our case, due to the lack of shift-invariance. The lack of shift-invariance makes also
the techniques in [3] inapplicable in our case.

To exploit Theorem for the smoothness estimates we provide the tools to compute
the frame coefficients of the expansion given by the perfect reconstruction property
for the refinable functions arising from semi-regular subdivision. The main ingredient
is the computation of the cross-Gramian matrix between the refinable functions of the
wavelet tight frame considered for the analysis and the refinable functions given by
the semi-regular scheme one wants to analyse. To do so we exploit the result in [44]
(proven in the regular case) to adjust the idea sketched for B-spline in [48] in the case of
generic semi-regular schemes. Furthermore, we show how to compute moments of semi-
regular refinable functions, thus, extending results in [I9] to the semi-regular setting.
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These algorithms are crucial for both the construction of the semi-regular wavelet tight
frames and the application of Theorem to the smoothness estimates of semi-regular
subdivision.

The organization of the thesis mirrors the steps followed during the three year period of
the doctoral programme. In Chapter [T, we introduce subdivision schemes, highlighting,
in Section the similarities and differences between the regular and the semi-regular
case. Then in Section we extend the methods in [19] 44] 48] and compute moments
(Section and (cross-)Gramian matrices (Section in the semi-regular setting.
These methods are fundamental for both the construction and the application of our
wavelet tight frames.

Chapter [2is devoted to the construction of suitable semi-regular wavelet tight frames,
see also [60]. We start with the known tools for the construction of wavelet tight frames
in the regular case, namely the Unitary and Oblique Extension Principles and their
extension in matrix form to a general formulation that includes the semi-regular setting
(Section . A first detailed example based on cubic B-spline is provided in Section
2.1.1l It shows the difficulties arising in the semi-regular case when using the OEP.
Next, in Section[2.2], we introduce the family of Dubuc-Deslauriers 2n-point interpolatory
schemes on which our frame construction is based, providing their convergence analysis.
Consequently we define the corresponding scaling functions. Our wavelet tight frame
construction is presented in Section [2.2.1] followed by examples for n = 1,2 in Section
2.2.2, which illustrate our theoretical results.

At last, in Chapter |3| we discuss the extension of Theorem and its application to
the approximation of the smoothness of semi-regular subdivision [7]. In Section [3.1.1]
the proof of Theorem [0.2]is split into two cases: Theorem [3.4]treats the case r € (0, 0)\N
and, in Section [3.1.2] Theorem provides the proof of Theorem for r € N. We
would like to emphasize that the results in Sections|3.1.1/and [3.1.2| hold in regular, semi-
regular and irregular cases. The proofs in Sections|(3.1.1|and [3.1.2| are reminiscent of the
continuous wavelet transform techniques in [20,[50] and references therein. In Section[3.2]
we illustrate our results with several examples. There the underlying semi-regular setting
becomes crucial. In particular, we use wavelet tight frames constructed in Section 2.2 to
approximate the Holder-Zygmund regularity of semi-regular subdivision schemes based
on B-splines, the family of Dubuc-Deslauriers subdivision schemes and interpolatory
radial basis functions based subdivision. Semi-regular B-spline and Dubuc-Deslauriers
schemes were introduced, e.g in [21), 62, 63]. The construction of semi-regular RBF's
based schemes is our generalization of [45] [46] to the semi-regular case. The numerical
computations have been done in MATLAB 2018a on a Windows 10 (x64) laptop (CPU:
Intel Core i7-7700HQ 2.80 GHz, RAM: 16 GB).




Notation

Vectors and Matrices

We use bold letters and numbers to indicate numerical vectors and matrices, whereas
lowercase letters denote vectors and capital letters matrices. Depending on the context,
1 can indicate both a vector or a matrix whose components are equal to 1. All vectors
are column vectors and their size, as well as the sizes of matrices, are specified when
not clear from the context. Moreover, sometimes all the finite vectors and matrices are
extended to bi-infinite vectors and matrices padded with zeros. For clarity the element
at position (0,0) is framed in a box.

Vectors and matrices are interpreted as functions of their indices, i.e. v(—3) refers
to the component of v at position —3. We use the MatLab notation for matrices, i.e.
M(—3 : 3,:) indicates the submatrix of M consisting of all the rows with indices between
—3 and 3.

The support of a vector v is defined by

supp(v) = [a,0] n Z,
where
a = max{keZ : v(m) = 0, Vm<k},
b =min{keZ : v(m) =0, Vm>k}.

We use the notation [y ]rez to indicate the vector of basic limit functions of a conver-
gent subdivision scheme and ®, = [ ¢ox |rez the vector of scaling functions obtained
from [¢k|kez after a proper renormalization. These vectors are functions from R to ¢(Z)
and all the operations involving them, such as integration or differentiation, are done
componentwise. Similarly, for two sets of indices or real numbers A and B we define

A+ B ={a+b:acA beB}.

Function and Sequence Spaces

We use the standard notation for the function spaces C*(R), s € Ny, the Holder spaces

Oy + h) — FO(p
C’(R) = {feCe(R) . sup P+ ) = f() < oo},

z,heR |h|a




Notation

for s =0+ a, € Ny, a € (0,1), with @ denoting the ¢-th derivative of f, the Zygmund
class

AB) = { iR R ¢ s WEE DT S )

z,heR |h|

the Lebesgue spaces LP(R), 1 < p < o0, and for sequence spaces (#(Z), 1 < p < 0.
Besov spaces B, ,(R), e.g in [50], are defined, for 1 < p,q < o, r € (0,2), by

By (R) = { fe L'(R) : |

B;,q = “{2ijI[)T]+1(f’ Qij)}jeNHm < 0O } s
with the p-th modulus of continuity of order n € N

wy (f,2) = sup [AR(S, )]

|h|<z

and the difference operator of order n € N and step h > 0
n n -
Aty = X ()t ),
(=0

The special case p = ¢ = o reduces to

C"(R) n L®(R), if r € (0,0)\N,
Bgc,oo(R) =
{feCHR)n L*R) : f*YVeA(R)}, ifreN.

The corresponding sequence spaces £, ., 7 € (0,0), are defined, for 1 < p < o and
1 < g < oo, by

o i(rrl_1 1/q
G, ={@b)eZx Nx2): |(@b)lg, = (lalf, + 22D bubenls) "}
j=1

and, for 1 < p < o and ¢ = ©, by

. 11
o = { (@) € Zx (NxZ) - (@), = mas {Jals,, sup 252 by )uezls, } |
j€



1 Subdivision Schemes

Subdivision schemes are iterative refining processes that starting from a coarse set of
initial data (control points) produce functions, curves or surfaces. The local nature of
subdivision schemes and the simplicity of their implementation made them a standard
tool in Computer Aided Geometric Design (CAGD), computer graphics and animation.
In this work, we consider only univariate, binary subdivision, i.e. one-dimensional sub-
division processes that double the number of control points at each iteration. We focus
on the construction of the so-called basic limit functions of such subdivision schemes.
The importance of these limit functions is twofold: on one hand they characterize the
behaviour of the scheme, so that one can analyze a scheme via its basic limit functions,
while, on the other hand, they are excellent candidates for the construction of wavelet
tight frames in Chapter [2 In return, wavelet tight frames are the tools we will use for
the analysis of subdivision in Chapter [3]

We start this chapter with a short excursus into subdivision. The selection and order
of facts about subdivision and subdivision properties aims to show the similarities and
the differences between regular and semi-regular settings and at presenting the basic
tools needed for handling the topics treated in this thesis. For the proofs of well known
results, the reader is referred to [5, [10L 52, [63].

1.1 Regular vs. Semi-Regular

Both regular and semi-regular subdivision processes we are interested in fall in the
following category.

Definition 1.1. Let P be a bi-infinite matrix with compactly supported columns. It
defines a stationary subdivision operator

P UZ)? — (Z)
(t,f) — (u,g)
by
u(2k) = t(k)
, kel (1.1)
w2k 1) = t(k)+;(k+1)
and
g = Pf. (1.2)
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Starting with an initial mesh tqy of the form

hek, if k <0,
to(k) = 0, ifk=0, (1.3)
hok, ifk >0,

for some hy, h, € (0,00), and a vector of initial data fy € ¢(Z), the iterative application
of the subdivision operator P to the couple (to,fy), i.e.

(tj,fj) = P(tjfl,fjfl) = Pj(t0>f0>7 jEN7

is called subdivision scheme. The matrix P is called subdivision matrixz. If hy = h,., then
the mesh t is called regular, otherwise it is called semi-regular.

Remark 1.2. The assumption on the compact support of the columns of the subdivision
matrix P is natural for applications. Moreover, this assumption ensures the locality
of the subdivision process, in the sense that each element of f only influences a finite
number of values of g. <&

Every subdivision scheme satisfying Definition [1.1] over a regular initial mesh t, is
called regular. On the other hand, we call a scheme semi-regular if, after a finite number
of subdivision steps, it can be described locally by schemes satisfying Definition [L.1]
In general, semi-regular schemes can be non-stationary, i.e. the subdivision matrix P
depends on j, and be defined over more general initial meshes tq, but, as observed in
[62], it suffices to consider the schemes satisfying Definition over semi-regular meshes
to to get the full picture.

Remark 1.3. In contrast to a regular mesh, a semi-regular mesh is non-shift-invariant.
Indeed, for a regular mesh ty there exists h > 0 such that, for every k € Z, to — hk =
to(- — k). This is not the case for any semi-regular mesh to with h, # h,.. &

Once we have the sequence of vector-tuples {(t;,f;)} en, we consider the sequence of
piecewise linear functions {Fj}jeN,' where F; interpolate the values f; over the mesh t;,
ie., for x € [t;(k),t;(k+1)] =277hlk,k+ 1], ke Z,
(z—t;(k) ) (£i(k+1) —£(k))

(tj(k+1)—t;(k))

The convergence of the subdivision process then is defined as follows.

Fy(z) =

+ £(k). (1.4)

Definition 1.4. A subdivision scheme satisfying Definition [1.1]is said to be convergent
if and only if, for every initial data f, € £*°(Z), there exists a limit function F € C°(R)
such that

lim [F'— Fjlo = 0

]‘)m
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and F' # 0 for at least one set of initial data fy € ¢*(Z)\{0}. Moreover, if the limit
function F' belongs to C"(R), r > 0, for any initial data, the scheme is said to be C" and
r is referred as the smoothness of the scheme.

A very basic example of convergent subdivision scheme is the following.

Example 1.5 (Linear B-spline, part I). Consider the subdivision matrix

1 _
1
1/2 1/2
P -
1/2 1/2
1
! 12

and an initial regular or semi-regular mesh tq. Then, for f; € (*(Z), from (1.2)) and
(1.4), we have, for every j € N, k € Z,

Fy(t;(2k)) = £;2k) = £1(k) = Fa(t-i(k) = Fjoa(t;(2F))

and

£,_1(k) + £_1(k + 1)
2

Fi(t;(2k+1)) = £;(2k+1) =

_ Fia(ta(k) + 53’1('31'1(/“ 1) _ Fy_i(t;(2k + 1)).

Since F; and F;_; are piecewise linear interpolants on the meshes t; and t;_;, respec-
tively, and they coincide on the finer mesh, we have F; = F;_;. Thus, F; = F € C°(R)
and the scheme converges. The resulting limit function F' belongs to C*(R) when
fo = c € R. For general fy € (*(R), however, F' is a bounded piecewise linear function
over equispaced knots which is known to be only Lipschitz-continuous, thus, the corre-
sponding scheme is C'7¢, ¢ > 0. This is the simplest example of a convergent subdivision
scheme called linear B-spline scheme since it produces piecewise linear functions. A

Convergence is one of the fundamental properties of subdivision. Without convergence
subdivision schemes are very less appealing for visual applications, such as CAGD. More-
over, since this work aims to study the smoothness of convergent subdivision, in what
follows we will often omit the word “convergent” by taking it for granted. When talking
about graphic design a good trade off between high smoothness and fast implementation
is the goal to achieve. The typical aim for the smoothness in applications is C? smooth-
ness. In graphics, for example, the human eye struggles to distinguish C? curves and
surfaces from the more regular ones. With this link to graphics in mind, it is natural
to refer to j as the resolution level, since all the functions F; approximate the smooth

10



1 Subdivision Schemes

function F' better and better on finer meshes as j grows. This fact is also the reason
why they are called subdivision schemes.

Equations and imply that the schemes we consider are linear. Since the
action of a subdivision operator in Definition on the mesh is only a dyadic cut, the
subdivision process is characterized by the subdivision matrix P.

Subdivision Matrix

In the regular case, a subdivision matrix P is a 2-slanted matrix, i.e. there exists a
compactly supported vector p such that

P(k,m) = p(k—2m), k,meZ. (1.5)
Definition 1.6. The vector p in ([1.5)) is called mask of the scheme defined by P.

Thus, the subdivision step in ([1.2)) in the regular case coincides with the convolution
g(k) = > pk—2m)f(m), keZ (1.6)
meZ

In the case of a semi-regular scheme instead there exist two compactly supported
vectors p, and p, such that

(i) ke(P) < k.(P)—1, where
ke(P) = max(supp(p¢)) and k.(P) = min(supp(p,));
(ii) for every m € Z, (1.7)

pg( m + 2 (k‘g(P) — k) ) for £ < k’g(P),
P(m,k) =
po(m + 2 (k(P)—k)) for k> k(P).

The vectors p, and p, are referred, respectively, as left and right reqular masks of the
scheme defined by P. The submatrix of P given by

Py == P E(P)+1: k. (P)—1), (1.8)

is called irreqular part of P.

The first difference between the two settings is the structure of the subdivision matrix
P. The semi-regular case allows for a finite number of different consequent columns. The
first and the last of such columns, which can be different, are repeated in a 2-slanted
fashion as in the regular case. The regular case is a special case of the semi-regular one,
where P is 2-slanted and k;(P), k,.(P) are chosen such that

supp(p) = { =k (P), ..., —ke(P) }.

11
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Since in Example 1.5 we have a 2-slanted subdivision matrix P that works both in the
regular and semi-regular setting, it is natural to ask if this higher generality is necessary.
In general, the transition from the regular to the semi-regular setting is not so smooth.
Indeed, if F' is the limit function of a regular convergent subdivision scheme with the
subdivision matrix P over the regular initial mesh Z which is obtained from the initial
values fy, then attaching the values P7 fy, j € N, to the refined meshes t;, obtained from
a semi-regular initial mesh ty, we obtain the limit function G that satisfies

F(x/he), ifz<0,
G(z) =
F(z/h,), ifz=0.

Hence, if F € C"(R), n € N, then, for every k € N, k < n,

hk F®(x/hy), if x <0,
GW(z) = (1.9)
ot F®(z/h,), if x>0,

and G is unlikely to be continuous at 0 for h, # h,. To prevent this loss of smoothness,
we must allow modifications to the columns of the subdivision matrix that influence the
limit functions at 0.

Usually, dealing with P can be difficult since it is a bi-infinite matrix. Luckily, some
properties can be studied on a finite section of P.

Definition 1.7. The finite square section of the subdivision matrix P defined by
P = P(k(P): k. (P), k(P): k,(P)), (1.10)
is called inwvariant neighborhood matriz of the scheme.

Remark 1.8. The dimension of the invariant neighbourhood matrix is &, (P) — k(P) + 1
which in the regular case coincides with |supp(p)|. Moreover, in the regular case, P does
not depend on the indexing of the mask p. Indeed, the diagonal of Pis always the flipped
mask p and the off-diagonal elements are uniquely determined by the 2-slantedness of
P. <&

Via the invariant neighbourhood matrix P we can analyse the right-spectrum of the
subdivision matrix P.

Proposition 1.9 ([63]). Consider a subdivision matriz P and its corresponding in-
variant neighborhood matriz P. Then there is a one-to-one correspondence between the
right-eigenvectors of P and P. In addition, P and P have the same right-eigenvalues.

Proof. On one hand, due to (1.7)), for every k, m € Z such that m > k,.(P) and k < k,.(P)
or m < ke(P) and k > k,(P),
P(k,m) = 0. (1.11)

12
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Thus, for every bi-infinite vector v,

o

(P v)(k(P) : k,(P)) = P v(ke(P) : k,(P)).

In particular, this holds for every right-eigenvector v of P with respect to a right-
eigenvalue A € C, which leads to

P v(k(P) : k. (P)) = Av(ke(P): k. (P)).

On the other hand, with the same argument as in ((1.11)), P contains all the non-zero di-
agonal elements of P. Thus, if v is a right-eigenvector of P with respect to an eigenvalue
A € C, we have that, for

P(k(P) = 1,k(P) : k. (P)) v

> =

P(kT(P) + 17 kZ<P) : kr(P)) v

> =

P(ky(P) —1:k(P)+ 1,k(P) —1: k. (P)+ 1) vl = \v.

Thus, we extended uniquely v to v%¥ to a right-eigenvector of P(ky(P) — 1 : k. (P) +
1, ke(P)—1: k.(P)+1). This procedure can be repeated indefinitely yielding a bi-infinite
eigenvector of P and, thus, the claim. O]

Remark 1.10. Since P is a finite matrix, its left and right-eigenvalues are the same. This
is not true for bi-infinite matrices such as P. Proposition gives information only
about the right-eigenvalues of P. &

From the subdivision matrix P of a scheme one can easily read a well known necessary
condition for convergence.

Theorem 1.11 ([B]). Consider a convergent subdivision scheme with subdivision matrix
P and let {\;}_,, I € N, be the right-eigenvalues of P with

Aol = M| = .0 = A
Then,
(i) 1 = X > |M];
(ii) P1 = 1.

In particular, in the regular case, a consequence of (ii) are the so-called sum rules, i.e.

Y pk) = > pk+1) = 1. (1.12)

keZ keZ

In the semi-regular case, ((1.7)) implies that (1.12)) holds for both regular masks p, and
p-. This gives a constraint on the support of the columns of P;,.,. which must be a subset

13
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of the set
{ ko(P) — [supp(pe)| + 3, ..., k(P) + [supp(p,)| — 3 }.

Example 1.12 (Linear B-spline, part II). From the subdivision matrix P in Example
[1.5] it is easy to check that the corresponding mask and invariant neighbourhood matrix
are respectively

1, ifk=0, 0 1/2 1/2
p(k) = { 1/2, ifke{-1,1}, and P = 1 . (1.13)
0, otherwise. 1/2 1/2

The eigenvalues of P are 1 with multiplicity one and 1/2 with multiplicity two, with
corresponding eigenvectors

1 1 0
Vi = 1 s V1/271 = 0 and V1/272 = 0
1 0 1

By Proposition P has the same right-eigenvalues of P and the corresponding right-
eigenvectors of P can be obtained by extending vy, vi/2; and vy/25. In particular, the
right-eigenvector of P corresponding to the eigenvalue 1 is the bi-infinite vector of all

ones 1. To extend vy to an eigenvector of P, following Proposition , we want to
find

a
vl = Vi/2.1
b
such that
0 1
1/2 1/2 1
1 v — §V(1)
1/2 1/2

10
This leads to a = 2 and b = 0. If we repeat this process indefinitely we get

—k, for k <0,
v(w)(k) =
0, for k> 0.
The extension of vy/95 is done in the same way. A

Basic Limit Functions

As already pointed out, by Definition convergent subdivision schemes produce dif-
ferent limit functions based on the initial set of data. Among those functions there is a
function family of special interest.

14
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Definition 1.13. Consider a convergent subdivision scheme. Its limit functions [ |rez <
C°(R), where ¢y, is obtained via the subdivision process from the initial data

e®(m) = G, melZ,
are called basic limit functions

In the regular case, the global 2-slanted structure of the subdivision matrix P leads
to the following result.

Proposition 1.14 ([5]). Consider a convergent reqular subdivision scheme over the mesh
to = hZ, h > 0. Let £y, go € ((Z) such that, for some k* € Z, go(k) = fo(k — k%), k € Z.
Then G = F(- — hk™), where F' and G denote the limit function obtained applying the
subdivision scheme to the initial data £y and gg, respectively.

Proposition is a shift-invariance property of regular subdivision, in the sense that
any shift of the initial data results in the shift of the limit functions. In particular, it
means that the basic limit functions are actually the shifts of a single function, i.e.

@k(l‘) = ¢o(x—hk)7 reR, kelZ,

where h is the stepsize of the underlying regular mesh.
In the semi-regular case, instead, we only have that

(Pk;g(P)< T + hz (l{?g(P) — k)) ) for k < k‘g(P)
op(r) = , zeR, (1.14)
or.ey(x + hy (k,(P)—k)) for k= k. (P)

while nothing of the kind can be said about the functions ¢ for k(P) < k < k,.(P),
leaving us with k,.(P) — k,(P) + 1 different basic limit functions. This lack of shift-
invariance around tg is one of the most significant difference between the regular and
the semi-regular settings.

Remark 1.15. A global scaling of the initial mesh amounts to a uniform scale of all the
basic limit functions, i.e. if we change the initial mesh from t, to htg, for some h > 0,
the basic limit functions will change from ¢y, to @g(-/h), for every k € Z. &

The importance of the basic limit functions, from the subdivision point of view, resides
in the following fundamental result.

Theorem 1.16 ([5]). Consider a convergent subdivision scheme with basic limit func-
tions [k lkez. Then, for every initial data £y € (7(Z), the corresponding limit function
F satisfies

F(z) = ), fo(k) or(z), zeR. (1.15)

keZ

In particular, the scheme is C", r > 0, if and only if [¢x|kez < C"(R).

15
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The basic limit functions of a scheme have the ability to describe all the limit functions
that the scheme is able to produce. Thus, the study of a scheme can be reduced to the
study of its basic limit functions.

From the point of view of the basic limit functions, the necessary condition for the
convergence of a scheme stated in Theorem [I.11] is translated into the following result,
which states that the basic limit functions of a convergent scheme form a partition of
unity. In particular, a convergent scheme is able to produce constant polynomials.

Theorem 1.17 ([10]). Consider a convergent subdivision scheme with basic limit func-
tions o € C°(R). Then, for every x € R,

1" [on(@)lkez = ) enlz) = 1. (1.16)
keZ

Definition 1.18. A subdivision scheme on the initial mesh ty, with basic limit functions
[0k |kez, 1s said to generate polynomials of degree n € Ny, if for every polynomial 7 of
degree at most n there exists a bi-infinite vector ¢ such that

n(z) = ) ck) pi(z) = " [on(@)lkez, zeR.

keZ
If, for every k € Z, c(k) = m(to(k)), then the scheme is said to reproduce polynomials
of degree n.
Refinement Equation

Another fundamental aspect about the basic limit functions of a convergent scheme, is
that they satisfy a very useful equation called refinement equation, which is one of the
key ingredient for our frame construction later on. This is a relation that links the basic
limit functions to their dilated versions.

Theorem 1.19 ([63]). Consider a convergent subdivision scheme with subdivision matric
P and basic limit function [¢r|kez. Then

[ok(@)]kez = P [0r(20)]kez, z€R. (1.17)

In particular, in the reqular case, over the initial mesh to = hZ, h > 0,

po(r) = > p(k) o2z — hk), z€R, (1.18)
keZ

where p is the mask of the scheme.

Example 1.20 (Linear B-spline, part III). Example shows that the linear B-spline
scheme produces piecewise linear functions interpolating the initial data f € ¢(Z) over
to = hZ, h > 0. Thus, the basic limit function of the scheme is

wo(z) = (1= [z|/R)X[-nn (). (1.19)
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It is easy to see that (L.15) and (L.18) hold. In particular, see Figure [L.1]

1 1
wo(x) = §g00(2x+h) + po(2z) + §<p0(2x—h), reR. (1.20)

If we consider the semi-regular initial mesh ty as in (1.3)), with hg, A, > 0, then the

1 T T 1
0.75 [ 1 0.75

051 1 051

025 4 025 \
. . . 0

0
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

Figure 1.1: The basic limit function g of the linear B-spline scheme on the mesh ty = Z
on the left and its decomposition as in the refinement equation ([1.20]), with
h=1.

corresponding basic limit functions are
(1 = [z — hek|/he) Xnyr-1k111(2), if k<0,
or(z) = (1 +2/he) X[=n01(x) + (L—x/hy) X0 (x), ifk=0, zeR. (1.21)

(1= |2 = hokl/B) X prvsny(@), it k>0,

Thus, Proposition [1.14{ no longer holds and we have three different basic limit functions
instead of one (see e.g. Figurewith he = 1 and h, = 2). Here the refinement equation
holds in its matrix form but not as in . Again the basic limit functions form
a partition of unity ([1.16|) and the scheme reproduces polynomials of degree 1. Since
the subdivision matrix P is the same as in the regular case, see Example [L.5] all the
eigenproperties of P are kept. Moreover, we observe that at 0 the basic limit functions
are still C'™¢, € > 0. A

Now that we introduced all the necessary tools, we would like to take a step back
and prove Theorem to point out a specific fact about the invariant neighbourhood
matrix and the structure of semi-regular subdivision matrices.

Proof of Theorem[1.11 For the sake of simplicity we only consider the regular case.
Let supp(p) = {a,...,b}, and, for k € Z, {fj(k)}jeN the piecewise linear functions

that interpolate P’ e, e(k)(m) = Ogm, over the mesh t; = 277t approximating ¢y
We consider the invariant neighborhood matrix P. By Proposition , studying the
right-spectrum of P and the spectrum of P is equivalent. Due to Definition

| (t50m)) | — Pie®(-b:—a), jeN, kel (1.22)
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0.75 N

0.25 1

0
-2 -1 0 2 4
Figure 1.2: The basic limit functions ¢_1, ¢o and ¢, of the linear B-spline scheme on
the semi-regular mesh with A, = 1 and h, = 2.

Since the scheme is convergent, the left-hand side of converges, for j — o0, to
vx(0)1, for every k € Z. Now, if we suppose |\g| < 1, (1.22)) implies po(—hk) = ¢r(0) =0
for every k € Z. But in this case, from the refinement equation (1.18) we also get, for
x =hm/2, meZ,

po(hm/2) = > p(k) @o((m—k)h) = 0.

keZ

Repeating this argument it is easy to check that ¢g(z) = 0 for every z € {277 hk} jen rez
which is a dense set in R. At this point, the continuity of g implies pg = 0 which is
against the hypotesis of convergence. On the other hand, if we suppose |A\g| > 1, with
eigenvector vy € Rt {0}, we have

. b—a+1
P’ ( Z v(k) e(kb1)>
k=1

% = lim H PJVH ~ lim
J—0 00 J—00
o0

b—a+1
Z v(k) pr—p-1(0) 1 < 0,
k=1

09]

which is a contradiction. The only case left then is |\g| = 1. Supposing A\g # 1 implies
that the limit for j — oo of X} does not exist which means that, for vo € R®7**1\{0} an
eigenvector associated to Ao, also the limit of P/ v = A}, v does not exist and this is
again in contrast with

b—a+1
lim PIv = > v(k) ¢r-1(0) 1. (1.23)
I=® k=1

This leaves us with \g = 1 and the same argument as (|1.23)) shows that it can only
have algebraic multiplicity one with associated eigenspace generated by 1. In particular,

18
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since P contains all the non-zero elements of the rows —b, ..., —a of P (1.11)), P1 =1
implies (7). In particular, from (1.5,

1= P1(m) = > pm-2k) = > pk), mel

keZ k=m mod 2
]

From ((1.22) and its limit for j — o0 we see how P encodes the information about
the basic limit functions around 0. Indeed, the only basic limit functions that can not
vanish at 0 are the one with index k between 1 — b and —a — 1, since the supports of
¢_q and @_, start and end at 0 respectively. As for P, due to and , its
columns are exactly the ones in common with P which refer to the basic limit functions
having 0 inside their support.

We now focus on the regular case, where we exploit the refinement equation to evaluate
the basic limit function .

Proposition 1.21 ([3]). Let ¢y be the basic limit function of a regqular convergent sub-
division scheme over the initial mesh to = hZ, h > 0, with the subdivision matriz P and
the mask p, supp(p) = {a,...,b}. Then,

[po(=Nk)|kez = P [po(—hk)]pez.
In particular, po(—hk) =0 for k < —b or k = —a, and

b

[eo(—hk)li=b..ma = P” [0o(=hE)]jecp..ma  with > @o(hk) = 1. (1.24)
k=a

Moreover, for every j e N, m € Z,
[po(27h(m — 27k))lkez. = (PT) [po(h(m — k)]rez. (1.25)

We can get more insight about ¢ looking at the refinement equation ((1.18) again
from a different angle. The structure of (1.18]) suggests to pass to the Fourier side.

Theorem 1.22 ([10]). Let p € ((Z) be a compactly supported mask. If there ezists
wo € LY(R) satisfying the refinement equation associated to p (I.18), for some h > 0,
then

Po(w) = plhw/2) Go(w/2), weR,

where @q is the Fourier transform of pg, i.e.

Po(w) = J wo(x) e 2 dy. we R,
R
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and p(w) is the trigonometric polynomial
plw) == = 2 p(k) e 27, (1.26)

In particular, if p is the mask of a convergent subdivision scheme, we have

1 + 6727”'0.2

plw) = Tp[l](w)> (1.27)

where ptY(w) is a trigonometric polynomial with p(0) = 1.

Definition 1.23. Consider a regular subdivision scheme with compactly supported mask
p. The trigonometric polynomial p(w) associated with p in (1.26)) is called symbol of
the scheme.

Remark 1.24. A consequence of and Proposition is that, given a mask p, all
the subdivision schemes associated to shifts of p are equivalent. This implies that the
symbol p(w) of a scheme is unique up to a factor e >"*“ ke Z. O

Every manipulation requiring the symbol of a scheme can only be exploited in the
regular case, due to the shift-invariance of the basic limit functions. In the semi-regular
case, the lack of shift-invariance does not allow for a meaningful extension of the concept
of symbol.

Example 1.25 (Linear B-spline, part IV). From ([1.26) one has

1+e—27riw 1+e27riw 1+€—27riw

- - 1]
5 5 5 pH(w)

1

plw) = Ze !

o 1 .
2miw + = 4 _62mw

as in Theorem [1.22] but also

p(w) = (+) ~ (cos(nw)?, weR.

In particular, the symbol of the linear B-spline scheme has a double zero at w = 1/2.
Moreover, from the analytic expression of ¢q ([1.19)), it is easy to check

D golw—hk) =1 and )] hkgo(z—hk) = v, zeR,

keZ keZ
which means, by the linearity of the subdivision process, that the linear B-spline scheme
reproduces polynomials of degree 1. A

Remark 1.26. The multiplicity of the zero at w = 1/2 of the symbol p(w) and the degree
of the polynomial generation of the associated scheme are intrinsically linked. Indeed, a
regular scheme generates polynomials of degree n € Ny if and only if

1 4 ¢~ 2miw\ "Hl .
s = (FE5) )
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where pl"l(w) is a trigonometric polynomial such that p™(0) = 1 (see e.g. [10]). &

Via symbol manipulations one can also produce new subdivision schemes from the
known ones.

Proposition 1.27 ([10]). Consider two convergent reqular subdivision schemes over the
same regqular mesh to = hZ, h > 0. If po € C"(R), m > 0, and {;, € C"(R), n > 0,
are the basic limit functions of the two schemes associated to the symbols p(w) and z(w)
with compactly supported masks p and z, respectively, then the symbol

gw) = pw) z(w), weR, (1.28)

defines a convergent subdivision scheme over the same initial mesh to with basic limit
function given by

Yo(z) = JR vo(y) CGolx —y) dy, xeR.

Moreover, ~ € C&x(mm)(R).

Remark 1.28. In terms of the masks, equation ((1.28]) for g(w) = ke 2R is a
» €q g g

keZ
convolution

g(k) = >, p(m)z(k—m), kel

meZ

&

Remark 1.29. Due to the smoothing property of the convolution, Proposition [1.27| works
even if one of the functions is a non-continuous solution of a refinement equation, e.g.
the indicator function x[o ) ¢ C°(R), h > 0, which satisfies

X[0.n) () = Xon2(T) + Xpzn(®) = Xon(27) + xon 2z —h), zeR,
and, on the Fourier side,

R R ) 1+ e—27riw
X (w) = plhw/2) Xop(w/2)  with  p(w) = —y  WE R.
&
Remark 1.30. The basic limit function = in Proposition has a wider support than
each of g or (y. Indeed, if

supp(p) = {a .., b} and supp(z) = {e .., d},
then supp(g) = {a+c¢, ..., b+d}. By Theorem .16}

|supp(10)| = h(|supp(g)| —1) = h(b+d—a—c) = [supp(po)| + [supp(Co)l-

&

We illustrate the result of Proposition [1.27] on the following example.
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Example 1.31 (Cubic B-spline, part I). We choose the symbols in Proposition to
be both the one associated to the linear B-spline scheme in Examples 1.12] and
[1.25] Then, by Proposition [1.27, we obtain the product symbol

1 —2miw 1 1 2miw ?
plw) = (Ze +§+16 >

. . 3 1, . 1 .
_ = —4miw ——2miw et — 2miw — Amiw
= ( 166 + 46 + 3 + 46 + 1 66 >

Thus, we have

1/8

1/2

3/4 1/8 1/8 3/4 1/8

12 1)2 1/2 1/2

P - 1/8 1/8 and P = 1/8 3/4 1/8 . (1.29)
12 1/2 12 1/2
18 3/4 1/8 3/4 1/8
1/2
| /8 |

The cigenvalues of P are 1, 1/2, 1/4, 1/8 and 1/8 with corresponding cigenvectors

1 -1 1 1 0
1 12 2/11 0 0
vi = |1]|, vip = O, vig = | =1/11|, vis1 = [0, vizo = |0
1 1/2 2/11 0 0
1 1 1 0 1

These vectors can be extended uniquely to eigenvectors of P as in Proposition 1.9, e.g.
for vy/2,

1) ¢
1
12 = | V12

b

A%
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such that -~ _
0 1/2 1/2
1/8 3/4 1/8
1/2 1/2
1
1/8 3/4 1/8 Vig = 5 Vi
1/2 1/2
1/8 3/4 1/8
| 1/2 1/2 0]

which leads to a = —3/2 and b = 3/2. We can then repeat the process to add a further

component on the top and on the bottom of VS;, considering the square submatrix of

P obtained by P this time adding two rows and two columns on each sides.

The basic limit function ¢, (Figure for the initial mesh Z), is the convolution of
the hat function (|1.19) with itself and is a piecewise cubic polynomial. Moreover, the
scheme is C*"¢(R), € > 0, and generates cubic polynomials. A

0.75

05 N

0.25 - N

O Il Il Il
-2 -1 0 1 2
Figure 1.3: The basic limit function ¢y of the regular cubic B-spline scheme over the
initial mesh to = Z.

Before we proceed with some computational aspect about subdivision, it is worthwhile
to fully review the cubic B-spline scheme of Example [I.31] in a semi-regular setting.

Example 1.32 (Cubic B-spline, part II). Consider the cubic B-spline scheme, Example
1.31} The regular basic limit function in Figure|l.3|is a piecewise cubic polynomial with
C? junctions and it is increasing (decreasing) at * = —1 (x = 1). Thus, if we use the
regular subdivision matrix over a semi-regular mesh with h, # h,., due to ,
we end up with ¢_; and ¢; to be not C'. However, given a semi-regular mesh t, one can
compute via knot insertion, e.g. with the Oslo algorithm [I7], the matrix that describes
the cubic B-splines on ty as a linear combination of the cubic B-splines on t;. This is
indeed the semi-regular subdivision matrix for the cubic B-spline scheme. For example,

23



1 Subdivision Schemes

if we consider the initial semi-regular mesh with h, = 1 and h, = 2, we obtain

S ]
1/2
3/4 1/3
1/2 12
1/8 3/4  1/8
/2 1/2
1/8 25/32  3/32
5/8  3/8
P = 5/24 [29/40] 1/15 <
35 2/5
3/20 29/40 1/8
1/2 1/2
1/8 3/4 1/8
1/2 1/2
1/8 3/4
1/2
| /8 |

with the corresponding invariant neighbourhood matrix

1/8 25/32  3/32

5/8  3/8
P = 5/24 29/40  1/15
35  2/5

3/20 29/40 1/8

The subdivision matrix P has now three irregular columns which correspond to the three
irregular basic limit functions that have 0 in the interior of their supports. Figure [1.4]
shows the five basic limit functions ¢_,...,¢2 around 0, the first and the last ones being
the regular ones, with ¢y = ¢_5(-/2 — 4), while ¢_1, ¢y and p; are the irregular ones,
which are not shifts of any other basic limit functions. The eigenvalues of P are 1, 1/2,
1/4, 1/8 and 1/8, the same as in the regular case (Example [L.31)), but with different
corresponding eigenvectors

1 ~1/2 1/4 1 0
1 14 1/22 0 0
vi= (1|, vip = | 12|, vig = [=1/22|, visa = |O], visse = |0
1 1/2 2/11 0 0
1 1 1 0 1
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05

0

Figure 1.4: The basic limit functions ¢ _s,...,¢oo of the semi-regular cubic B-spline scheme
over the initial semi-regular mesh ty, with hy, = 1 and h, = 2.

1.2 Computing Moments and Inner Products

In this section, we present algorithms for the computation of two fundamental quantities
for the construction and for the application of wavelet tight frames. These two quantities
are the moments and the (cross-)Gramian matrices.

Definition 1.33. Let f : R — R. The quantity
J z® f(z) de, aeNy (1.30)
R

is called the (a + 1)-th moment of f.

Definition 1.34. Consider two families of functions F = [ fi|xez and G = [gx|xez. The
matrix
G - [ J Fu(@) gm() da (1.31)
R k,mez
is called the cross-Gramian matriz between F and G. If the two families coincide, G is
called the Gramian matrix of F.

In this section, the families F and G of basic limit functions of subdivision schemes are
built from both regular and semi-regular subdivision. We start with the computation
of the moments, using the work of Dahmen and Micchelli [19] for the regular case and
a simple generalization of their argument to deal with the semi-regular one. Then we
proceed by computing inner products between refinable functions. For the regular case
we use an idea of Kunoth [44], while for the semi-regular case we exploit a method
suggested by Lounsbery [48], proving its viability.

1.2.1 Moments of Limit Functions

We start with the simplest case. Let ¢y be the basic limit function of a convergent
regular subdivision scheme over the initial mesh to, = hZ, h > 0. In particular it is
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continuous, compactly supported and it satisfies the refinement equation (|1.18]) with
respect to a compactly supported mask p € ¢(Z) that satisfies the sum rule ((1.12)).

Proposition 1.35 ([19]). For every a € N, we have

| a5 ¥ @) [ o el an

0<fB<a R

where

ca(B) = (g) g;;p@g(hkw—ﬂ 0<B<a.

Proof. Using the refinement equation (1.18]) and the fact that the sequence p is com-
pactly supported we have

J % po(z) do = Z p(k) f % po(2x — hk) dx.
R keZ R
After the substitution y = 2x — hk, using the binomial formula we get

JR 2 go(x) do = 211+a > p(k) f (y + hk)™ wo(y) dy

keZ R

e 2 20 [ el (g) y? (W2 dy

keZ R 0<B<

Now, changing the order of the sums and the integral and recalling the definition of
co(B), we arrive at

1
f 2% po(@) dz = 5o > calB) J v’ eoly) dy
R 0<B<a R

Since, by (1.12)),
cala) = > p(k) = 2,

keZ

we can bring all the term with § = « on the left-hand side and get

O-%)Lﬂm@mzﬁazcmijmma

0<B<a R

Thus the claim follows. 0

Remark 1.36. From the moments of ¢y, one can easily compute the moments of its shifts.
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Indeed, for every o € Ny, y € R,

[eat-ni - [worawe - ¥ (50 [ o aw .

In particular we have

| wwterar = | uto) as

fR % pp(x) de = Z (a) (hk)>=F JR 2P po(x) de, kelZ.

0<B<a 5

and

Moreover, for A > 0,

1
f % pr(Ax) de = o J % gi(z) do (1.32)
R R

&

Proposition [1.35] together with Remark [1.36], tells us that, if we know the value of
the integral of ¢y, all the moments of all the basic limit functions can be computed in
a recursive fashion. However, as we already observed in Remark the refinement
equation alone does not give any information about the integral of 5. With the
following result we compute the integral of all compactly supported limit functions that
a regular scheme can generate. As a consequence, we have that the integral of ¢ is very
easy to compute and depends only on the stepsize h of the initial mesh t.

Proposition 1.37. Consider a regular convergent subdivision scheme over the initial
mesh to = hZ, h > 0, with mask p € {(Z), subdivision matriz P and basic limit function
wo. If f € C°(R) is the limit function obtained by the subdivision scheme starting with
the compactly supported data £y € (*(Z), then

JR ) de = hY fo(h). (1.33)

In particular,

JR wo(z) dr = h. (1.34)

Proof. Let {f;};en be the piecewise linear functions interpolating the data f; = P’ f,
over the mesh t; = 277ty = 277hZ. Due to the convergence of the scheme we have
lim | f — fj|« = 0. Now, for every j € N, being f; piecewise linear over the mesh t;, we
j—o0
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have

fa) e = Y DGEDELEGEED) @ ) )

R keZ

h
= 21]Zf )+ fi(k+1) = f;(k)

keZ 2 7 keZ
k€Z meZ meZ
= h Y fo(k) < o,
keZ

where we used ([1.6) and ((1.12)). Thus, by uniform convergence, we have

[REEERS CEER W

keZ

In particular, since g is obtained by the initial data e = [dox]rez, we get (T.34).

Remark 1.38. If one is able to compute every moment of every basic limit function oy,
k € Z, then one can compute all the inner products between every polynomial 7 and
every limit function f. Indeed, if

= 2 o and  f(x) = Z fo(k) or(),

keZ

for some f € ¢(Z), then

(m, f) = J Zﬂax D fo(k) gr(x) doe = ). fo(k) Y] m JRxo‘gok(x)dx.

keZ keZ a=0

=

Remark 1.39. Proposition [1.35| can be generalized in a straightforward way to higher
dimensional refinable functions with general diagonal dilation, i.e. if ¢y € C°(R?), d € N,
with

wo(x) = Z p(k) po(Az — Hk), zeR?

kezd
for some A, H € GL4(R), with A diagonal, 1mir<1d(A(m, m)) > 1, and some multi-vector
sm<
p with
Y, plk) = det(A),

kezd
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we have that, for every multi-index o = (avy, ..., aq) € NO\{0},
1
% o(z) de = - caﬁfxﬁgoxdx
fRd o) det(A) (diag(A)> — 1) 0;@ (8) R o(®)
where
o' _
colB) = (ﬂ) S pk) (HE™, 0<5<a,
kezd
d d
¢ = H zom ol = Z (o
m=1 m=1

and 0 < f < a meaning that, componentwise, all the components of 5 are not greater
than the components of «, with at least one component strictly lesser. Moreover, Remark
still holds. Proposition [1.37]is more tricky to extend to higher dimensions. With
d = 2, if we consider a diagonal dilation matrix A € GLy(R), with max A(m,m) > 1,

)

an initial set of regular knots is of the form

9 ) hi hgcos(6; cos(fy) sin(6s

bo = HZ" with H = [ 0 hy cosE@lﬂ l— sing%g 0055023 ’

where 6; is the angle between the two main axes, 6, the angle describing the rotation
of the system and hq, hy > 0 the sizes of the intervals between two consecutive knots on
each main axis. Indeed, we have that, for every j € N, the knots of t; = A7t belong
to tj11, and, as in Remark , for every k € Z*, to — Hk = to(- — k). In contrast with
the univariate case, with these knots we can have different quadrilateral and triangular
meshes. This creates different sequences of approximants to the limit function and in
general one should prove analogous of for each of these choices. In the bivariate
case, however, is not hard to prove that the integral of a limit function f obtained
starting from the compactly supported data f, € £(Z?) satisfies

L@ f(z) dx = hy hy sin(6;) 2 fo(k),

keZ?2

independently from the considered mesh. &

When dealing with semi-regular schemes, due to , we realize that we already
know all the moments of most of the basic limit functions. Indeed, if we consider a
semi-regular scheme over the initial mesh ty in , he, h, > 0, with the subdivision
matrix P, the left and right regular masks py, p,, and k,(P), k.(P) in (L.7), then the
basic limit functions @y, k < ky(P) are also basic limit functions of the regular scheme
defined by the mask p, over the mesh h,Z, and similarly for ¢, £ = k.(P) and p,.
Thus, we only need to compute the moments of ¢y, ko(P) < k < k,.(P) and to do so we
can exploit the knowledge of the moments of the other regular basic limit functions of
the same subdivision scheme.
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Proposition 1.40. For every o = 0,

P’ “ T o d:c]kez = 2lta HR o (2) dx]kez. (1.35)

In particular, for every a € N,

A, [ J % pp(x) dx] = b, (1.36)
R ke(P)<k<k,(P)

where

b, = 2 + Z JR % () do Py (k, )T

k<ko(P) k>k, (P

and the matrix
A, = 2T — Pi(ko(P) +1: k. (P) —1,:)"

18 1nwvertible.

Proof. Since the columns of P are compactly supported, we can multiply the refinement
equation (|1.17)) by z“ and integrate componentwise, thus obtaining

HR = oxl2) dmLGZ = P* “R = i (22) deEZ, veR.

Then the substitution y = 2z on the right-hand side leads to (|1.35)). Moreover, due to
(1.7)), if we select on both sides of (|1.35]) the rows with indeces between ky(P) and k,.(P)

we obtain

it [ J % or(z) dx] = P!, { f % op(z) da:} :
R ke(P)<k<k,(P) R keZ

Isolating the contribution of the (v + 1)-th moments of ¢y, ko(P) < k < k.(P), on the
left-hand side we get to the linear system in . Now, we observe that P,..(k,(P)+1

k.(P) — 1,:) is the submatrix of P obtained by eliminating the first and the last rows
and columns of P. Since the first and last columns of P are two of its eigenvectors of

the form .
P(;,1) = lP(l’l)] and
0
0

P(; b (P) = k(P) + 1) = {15(;%(13) — ke(P) + 1,k (P) — ke(P) + 1)

the spectrum of Py, (ke(P) + 1 : k,(P) — 1,:) is contained in the spectrum of P and in
particular the dominant eigenvalue of P;..(k/(P) + 1 : k.(P) — 1,:) does not exceed 1
(Theorem and Proposition . This is sufficient to guarantee the invertibility of
the matrix A, for every a € Ny. O

30



1 Subdivision Schemes

Remark 1.41. Even if the right-spectrum of a semi-regular subdivision matrix P is dis-
crete (Proposition , its left-spectrum contains at least the interval [2,0). It also
contains 1 due to Proposition [1.21] &

1.2.2 Gramian and Cross-Gramian Matrices

Let us start considering a simple example of two regular convergent subdivision schemes
over the same regular mesh ty = hZ, h > 0, with the basic limit functions {@g}kez,
{Ck }kez, compactly supported masks p, z, subdivision matrices P, Z and symbols p(w),
z(w), respectively. The main tools for computing the cross-Gramian matrix

G(k,m) = JR or(x) (u(x) de, k, meZ, (1.37)

are given in Propositions and [1.21}]

Proposition 1.42. The cross-Gramian matriz G in (1.37)) is a band-limited Toeplitz
matriz. Moreover, G(k,0) = vo(hk), k € Z, where

Yo(w) = plhw/2) z(hw/2) Yp(w/2), weR. (1.38)

Proof. We start by observing that, for every k, m € Z,

Glm) = | wnl) o) da

JR

= [R wo(x — hk) (o(x — hm) dx

wo(y — h(k —m)) Go(y) dy = G(k—m,0).

I
= >

Thus, G is a Toeplitz matrix. Now, consider 1y = @o(—-). It is easy to see that nq
satisfies the refinement equation on the Fourier side (1.26]) with respect to the symbol

P(w). Thus, by Proposition , we get
G(k,0) = J wo(x — hk) (o(x) doz = J no(hk — ) (o(z) dv = v(hk), keZ,
R R

with vy satisfying (|1.38]). ]

Proposition shifts the problem of computing the entries of G to the problem of
evaluating a certain basic limit function vy at the knots of the initial mesh tq = hZ,
h > 0, and we already know how to do it by Proposition [1.21}

Remark 1.43 ([51]). When (o = o, 7o is the so-called autocorrelation function of gy.
In this case, we have that g(w) = |p(w)[?, a real symmetric non-negative trigonomet-
ric polynomial and so the mask g is symmetric. Moreover, v = [pol3. If i’s are
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orthonomal, then

0(0) = 1 and (k) = j gol2)go(x — hk) dz = 0, ke Z\{0},

and so the scheme associated to 7y is an interpolatory scheme. The converse is also
true. S

Suppose now that the schemes at hand are semi-regular over the same semi-regular
mesh t( in with Ay, h, > 0. We already know most of the entries of the correspond-
ing cross-Gramian matrix G from the regular case, since, far from 0 we are still working
with regular subdivision. The situation we have to deal with is the following:

G - i i }n<P>

n(Z)

where the green (light) area represents the values that we already know from the regular
case and the blue (dark) area represents the unknown entries of G, where

nP) = k(P) — k((P) — 1 and n(Z) = k(Z) — k(Z) — 1,

are the numbers of the irregular basic limit functions of the two schemes respectively.
The size of the blue area of course depends on the size of the supports of the irregular
basic limit functions of the two schemes. Since they also have compact support, see
Proposition [I.9) the number of unknown entries of G is bounded by

(n(P) + n(Z) + [supp(pe)| + |supp(pr)| + |supp(z)| + [supp(z,)| — 11)*.

As we will see in a moment the number of unknowns is not relevant. It is crucial that
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there are finitely many of them. The other ingredient of the method in Proposition [1.44
is the following relation, already observed in [48]. Using the refinement equation (|1.17)
for both schemes we obtain

G = | el er [Gn(@)] ey do

JR

= ( P” [0x(22) rez [(n(27)] s Z da (1.39)

JR

1
= -P'GZ
2
This relation yields a linear system of equations for the unknown entries of G. We prove

that the knowledge of the regular entries of G determines the unknown entries uniquely.

Proposition 1.44. The finite system of linear equations obtained from ((1.39) is uniquely
solvable for the irreqular entries of G.

Proof. Seeking a contradiction, suppose there is another bi-infinite matrix F such that
F differs from G only on the irregular part and

F-.PFz
2
We then consider the matrix A = G —F =# 0. By the linearity of the matrix
multiplication
1 1
A:G—F=§PT(G—F)Z=§PTAZ. (1.40)

Let n, < min(k(P), ke(Z)) < max(k,(P), k.(Z)) < ny such that G = G(ny : na,ny : no)
contains all the irregular entries of G. If we consider analogously A, P and Z, we have
that A contains all the non-zero elements of A and, since, as in Proposition , P and
Z contain all the non-zero elements of the corresponding rows of P and Z, respectively.
We get an equivalent finite version of , namely,

~ 1
A==
2

PT A Z. (1.41)
Now, if A # 0, there exist k,m € N such that ﬁ(k,m) # 0. Consider the vectors e®)
and e™ of the canonical basis. From (T.41)), we have

~ ~ 1 ~ . ~ o~
0 # A(k,m) = (e®)T Ae™ = Y3 (eI (PHT A Z7 e™ |

o

Now, P and Z have P and Z respectively, as submatrices on their diagonals, see Propo-
sition and Proposition Thus, P and Z share the spectral properties of P and Z,
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respectively. In particular P and Z both have dominant eigenvalue 1 with multiplicity
one. So there exist 0 < C(P),C(Z) < o such that

[(e™)" (BTY| < C(P)

, j7eN.
[(Zy ™| < C(Z)
This means that
0 < ‘(e(k))T A e(m)‘ < o (e(k))T (PHT A (Z) el™m
< L cP) @A — 0
h 2j Jj—+0
which leads to a contradiction. O
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2 Wavelet Tight Frames

The concept of a frame was introduced by Duffin and Schaeffer in the fifties [28] as
a generalization of the idea of a basis of an inner product vector space. In the last
twenty years, frames, in particular wavelet frames, found a place in a wide spectrum of
applications such as audio, image and surface compression, edge detection, inpainting,
approximation of PDE solutions. Frames are flexible and efficient in implementations.
The idea behind a wavelet frame is an efficient representation of the functions of an inner
product vector space that splits the functions in a way convenient for their analysis and
other manipulations.

Definition 2.1. Let V be an inner product vector space with the norm | - | and F =
{;}jer € V with the index set I at most countable. F is a frame for V if and only if

span(]:)H.” =V and there exists 0 < A < B < oo such that

AIFIP < X 1CH w0 P < BIfIP, feVv.

jel
If A = B the frame is said to be tight.

Remark 2.2. If a frame F is tight, then w.lo.g. A = B = 1. Indeed, F/vA is still a
tight frame for which the Parseval’s equality holds

Moreover, in this case we have the so called perfect reconstruction property, i.e.

_ [ANEOR

gel

2

= |fI?, feV. (2.1)

where the equality is intended in the norm | - ||. &

Of course, orthonormal bases are frames, and in particular tight frames, but the notion
of a frame allows for weaker assumptions on the elements of F which for example can
be linearly dependent, see Example [2.3]

Example 2.3. Let V = R? and consider the set
B 1 | -1/2 B —1/2
R LR NI W IR W S
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Then, for every x = [z, 7] € R?,

[Ca, )P + [z, B P+ [(a, )7 =

2 2 2 2
3 3 3
= 535% ) > = §H$H2
Thus, F is a tight frame for R?. A

The linear dependence of the frame elements introduces redundancy which, even if
not always nice in theory, is very useful in applications. It adds robustness to noise when
the information about a function is encoded via its frame coefficients, i.e. the values
{{f, )} jer. Since in applications most of the functions/signals are compactly supported
and bounded, it is very convenient to see them as elements of LQ(Rd)7 d € N, which is
a Hilbert space and, in particular, an inner product vector space. We again focus on
the univariate case d = 1. On one hand, the concept of a frame is very general. On the
other hand, we would like to have some exploitable structure both for the construction
of frames and for their application. The most convenient way to this goal is via the

so-called multi-resolution analysis. We use here the general definition introduced by
Chui, He and Stockler in [14], [15].

Definition 2.4. A family {V;};en, of closed subspaces of L*(R) is said to be a multi-
resolution analysis for L*(R) if the following conditions are satisfied.

(i) Vi1V, forall jeN,; (increasing subspaces)
T

(ii) U V; - L*(R); (completessness in L*(R))
JeNg

(ili) there exist families of functions ®¢ = [¢x|kez and ®; = [ x]kez, j € N, such that

span((I)j)L =V, JjeNy,

and, for every jeN, ¢;_; = P]T_lq)j, for some matrix P;_;
(iv) there exists a vector cg such that ¢} @y = 1.

The index j is called resolution level.

Definition 2.5. Consider a multi-resolution analysis in Definition If there exists a
family of matrices {Q;} en such that the set F = ®qu {¥; = Q]Tq)j}jeN is a tight frame
for L*(R), then F is called wavelet tight frame. The elements of ®, are called scaling
functions and the elements of ¥; framelets (wavelets if F is orthonormal). Furthermore,
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F is said to be C*, s > 0, if all its elements belong to C*(R) and to have v € N vanishing
moments if, for every j € N, k € Z,

JR 2 Yip(r)de = 0, ae{0,...,0—1} (2.3)

The smoothness and the number of vanishing moments of F will be crucial in Chapter
. Roughly speaking, if a function f € L*(R) is regular, then locally it can be approxi-
mated by a high degree polynomial. Thus, if the wavelet tight frame has a high number
of vanishing moments, the frame coefficients of f with respect to the framelets will be
negligible. This fact means, on one hand, that one can approximate signals threshold-
ing the frame coefficients and, on the other hand, that from the decay of the frame
coefficients of f one can extract the information about the smoothness of f.

The simplest example of such a function system is the so called Haar system [30],
which is orthonormal. The Haar system in its simplicity is not so desirable since it lacks
both smoothness and vanishing moments. For other interesting wavelet tight frames with
nicer properties one had to wait until the seminal works of Daubechies, Meyer, Mallat
and others at the end of the eighties (see e.g. [20} [49]) and what came afterwards.

Example 2.6 (Haar system). Consider a set of non-trivial intervals {I = [ag, ar+1)}rez
with disjointed interiors and that form a partition of R. For every interval, we consider

the function ¢y (x) = xr,(x)/+/|Ix]. Of course,

Z VI de(x) = 1, zeR

keZ
We then consider the dyadic cuts of the intervals {Ij} ez namely {I; ; }rez, closed on the

left and open on the right, such that

Ii = Lok o lLioksr, o0 ligesr] = 0 and |1k = [[1ok+1] =

I

[l
2

and the corresponding indicator functions ¢1 = xr, ,(7)/4/|I1x|. Iterating this process,
we obtain {®;};ey, such that

q)j, ]EN

Moreover, the closed subspaces {V; = span(@)H‘”LQ }jen, form a multi-resolution analysis

for L*(R). Indeed for every k € Z, U V; contains all the simple functions defined on
JeNo
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all dyadic subintervals of Ij, which are dense in L*(I},). Let

_ T

»

1 .
J \/—5 1 i, J€eN.

It is easy to see that F = @y U {¥;};en is an orthonormal set. Moreover, since for every
JEN,

Il L2

)II'HL2

= span(®o U {Vu}l,y)  — L*(R),

J—©

V; = span(®;_; v ¥;

the orthonormality of F, implies that F is a wavelet tight frame for L*(R). In partic-
ular, the elements of F are not continuous and F has only one vanishing moment. In
particular, we observe that, when I, = [k,k + 1), k € Z, we obtain a shift-invariant
system with ¢ = ¢o(- — k), where

~ 1 +6—27r2'w ~

Po(w) = — do(w/2), weR.

A

Whenever, for every j € No, P, = Py, Q; = Qq and ¢; = 2j/2¢)0(2j-), in Definition
and [2.5] we have that

Dy = 22 (PHT do(27:) and W, = 272Q; ®o(27.) = 207Dy (2771 (2.4)

At this point the first of these two equations should remind us of the refinement equation
(1.17). Indeed, a good candidate for the set of scaling functions is the set of basic limit
functions of a subdivision scheme, after a proper renormalization.

Remark 2.7. The role of the framelets ¥; is to describe the features needed to pass from
resolution level j — 1 to resolution level j. Indeed, for f € L*(R), due to (2.2) we have
that the sequence

fo = (f, ‘130>Tq)0 SIS

fi = fioi + (070 eV, jeN,

converges to f in || z2. Moreover, due to Definition [2.4] (iii) and (iv), it is always possible
to ensure that the framelets have at least one vanishing moment. Thus, Definition [2.5
is consistent. &

In the regular case, where the underlying structure is shift-invariant, we can use
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powerful tools from the literature, namely the Unitary Extension Principle |55, [56] and
the Oblique Extension Principle [10, 24], to construct wavelet tight frames, see Section
[2.1] These constructions, in our case, are based on the symbols of convergent subdivision
shcemes. In the semi-regular case, due to the lack of shift invariance, those tools are not
available in the same form. Indeed, we leave the Fourier domain and use the general
framework provided in [14] [15], where the construction method works directly on the
matrices involved. After reviewing these methods, we present a first example of semi-
regular wavelet tight frame with two vanishing moments based on the cubic B-spline
scheme, see Section [2.1.1] This example illustrates the difficulties of the OEP type
construction. In Section [2.2] we propose a family of semi-regular wavelet tight frames

based on the Dubuc-Deslauriers interpolatory schemes whose construction overcomes
those difficulties and is UEP-based.

2.1 The Unitary and Oblique Extension Principles: from
Symbols to Matrices

We start with the regular case. Consider a convergent regular subdivision scheme over
the initial mesh ty = hZ, h > 0, with the basic limit functions [¢r = @o(- — hk)]kez,
the compactly supported mask p, the symbol p(w) and the subdivision matrix P. To
transform our basic limit functions into the scaling functions we need to renormalize
them in the following way. We define

B = [oiiez = D2 [pilsez. D(kim) = Lﬁ’““) dr, k=mo (g

0, otherwise.

Moreover, from ([2.4) using (1.17) we get

22 Pf B(2:) = B = DTV [prlkez = DTV PT [04(2)]kez
(2.6)
Dfl/Q PT D1/2 [Sok(Q)]kEZ _ D71/2 PT D1/2 @0(2)

Thus, Py = 272DY2PD 2. In particular, in the regular case, from Section we
know that D(k, k) = h, so Py = 27V*P. Next we would like is to find a matrix Q, such
that

F = ® u {0 = 27Qf &y(27)} (2.7)

jeN
is a wavelet tight frame for L*(R). It would be also preferable that the shift-invariant
structure is kept also with respect to the framelets. In particular, we would like that

E—
Y1 p(z) = Y1, (SC — hTm) , fork=m mod M,
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for some M € N. This is reflected on the Q; in the following way:
Qi(k,n+m—1) = 272 qu(k—2j), kneZ m=1,....M

for some vectors q,,, m = 1,..., M. Asking the 1,; to be compactly supported then
means that the vectors {q,,}}_, must be compactly supported. The following result
characterizes all the wavelet tight frames that have this form.

Theorem 2.8 (Oblique Extension Principle (OEP), [16, 24]). The set F in (2.7)) is a
wavelet tight frame with v € N vanishing moments if and only if there exists

$(2w) pw)p(w) + G (W)gm (W) = s(w),
{ " a.e., (2.8)
$(20) p@—12) + 3 gn(@)gm@ =13 = 0,
for .
Gm(w) = 5 Z Am(k) e 2™ m=1,..., M,
keZ
and

1_6—27riw v (o]
Gm(w) = — gt (w), m=1,..., M,

.....

The Unitary Extension Principle (UEP) [55, [56] is a particular case of the OEP when
s(w) = 1. In general, this restriction yields wavelet tight frames with at most one
vanishing moment, except for special cases. On the other hand, the UEP is much easier
to handle. For instance, this simpe and interesting result holds.

Theorem 2.9. Let p(w) and z(w) be the symbols of convergent regular subdivision

.....

and v = min{v,, v, }.

Proof. The proof simply follows by multiplying the systems arising from ([2.8]) for p(w)
and for z(w), term by term. O
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Remark 2.10. The strategy of Theorem in general is not valid for the OEP case,
when s(w) # 1. A counterexample is presented in Remark [2.22 &

Theorem can be used for example to obtain explicit algebraic expressions for
framelets with 1 vanishing moment for the family of B-spline schemes, since the B-spline
symbols are powers of (14 e >™@)/2, which is the symbol associated to the regular Haar
system, see Example [2.6, This is an alternative, more straightforward way for obtaining
the framelets in [§] in the regular case.

Example 2.11 (Cubic B-spline, part III). As we saw in Example [1.31] the symbol
associated to the cubic B-spline scheme is

1+ —2miw \ 4
p(w) = (GT> ) MGR,

up to a unitary factor, see Remark . In particular, p(w) is the fourth power of the
Haar symbol. It is easy to see that the Haar symbol also satisfies with s(w) = 1,
v = 1 and one trigonometric polynomial ¢;(w) = (1 — e>™)/2. We can use Theorem
three times ending up essentially with the following four trigonometric polynomials,

4 1— —2miw \ M 1 —27iw \ 4—m
G = ) (RS ) ) meta
m 2 2

In the end, the corresponding vectors are

—1/4 1/8 —1/4 [ 1/8]

-1/2 0 1/2 —~1/2

q = 0, a2 = V6 |-1/4], q3s = O, s = 3/4
1/2 0 ~1/2 ~1/2

1/4 1/8 1/4 | 1/8)

A

Before diving into the semi-regular case, let us take a look at the UEP conditions from
a different angle. First of all, we can interpret a symbol p(w) as the scalar product of
two particular vectors

[e—QWikw]keZ p. (29)

N | —

1 )
pw) = 5 ), plw) e ™™ =
keZ
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m- Thus, we write

.....

f

2 = pwpW) + Y Gn(w)gm®)
[6727rikw]£ez ( ppT + [(311, L. 7qu] I:qh - 7q]w]T ) [ezmkw]kela

0 = plwplw—1/2) + Z G (W)@ (w — 1/2)

[Q_Qﬂikw];{ez < ppT + [(Ib s 7qM] [(h? s 7QM]T ) [(_1>k€2ﬂikw]k627

N | —

\

where we multiplied by 2 both equations in and set s(w) = 1. Now we observe that
pp’ /2 is one of the elements of the rank-1 expansion of POP , and the same holds for

[a1,- . qu][as, .-, an]?/2 and Q,QT. In particular, if

T
BO = ppT + [qla"‘)qM] [qla"‘7qM] ) (210)
we have that
D Bo(- —2k,- —2k) =Py Pj + Q Qf. (2.11)
keZ

Moreover, from the first UEP condition we have that the sum of each of the diagonals
of By gives one of the coefficients of the polynomial 2, i.e.

Y Bo(k,k) = 2 and ) Bo(kk+m) = 0, meZ\{0}. (2.12)

keZ keZ

The second UEP condition implies that on each diagonal of By the sum of the elements
at odd positions is the same as the sum of the elements at even positions, i.e.,

> Bo(2k,2k) = > Bo(2k + 1,2k + 1),
keZ keZ
(2.13)

> Bo(2k,2k +m) = > Bo(2k + 1,2k + 14+ m), me Z\{0}.

keZ keZ

Due to (2.12)), the first identity in (2.13) must be equal to 1, while the second identity
(2.13) must be always 0. Thus, (2.10)) becomes

I =P, P +Q Q. (2.14)

Thus, in the regular case, finding solutions to the UEP conditions is equivalent to find
a block 2-slanted symmetric factorization of the matrix I — PoPp.
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Remark 2.12. Due to (2.14)), a necessary condition for the costruction of a wavelet tight
frame in the regular case is that I — PoP{ is a positive semi-definite matrix. &

We can go deeper from (2.14)). If we multiply both sides in ([2.14) by ®;(z)" from the
left and by ®;(y) from the right and use (2.4]), we obatin

Ci(x)" @i(y) = ()" Po Py @5(y) + j(2)" Qi Qf (y) o)
2.15
= Q)j_l(x>T (I)j—l(y) + \IJ]'(.’E)T \I/](y), T,y € R.

The quantity ®;(x)” ®;(y) is a kernel which defines a projection from L*(R) onto the
element of the associated multi-resolution analysis V;, i.e

K; : L*R)

N CLYCIEors (210
This point of view does not depend on symbols or masks, but only on the family of func-
tions and matrix refinement relation between them. Indeed, under suitable assumptions,
this approach can be extended to include the semi-regular case and even the irregular
one. The more general OEP conditions can also be incorporated. This is the essence of
the works [I4] [T5] that we are going to briefly review, focusing on the key points needed
for our further construction.

In the general case, we consider a family of vectors of refinable functions {®,},en,
that defines a multi-resolution analysis in Definition [2.4] To proceed we need this family
to satisfy the following assumptions. Assumption [1| requires uniform behaviour for the
functions defining the multi-resolution analysis, even if the setting is not shift-invariant.

Assumption 1. For every j € Np,

(a) ®; is a Riesz basis for V;, i.e. there exist 0 < A; < B; < o0 such that

Ap |7 < |ojf 7. < Bj ||, Ve (Z).
(b) ®; is uniformly bounded, i.e. sup |¢; /L < 0.
keZ

(c) ®; is strictly local, i.e. sup |supp(¢;r)| < o and there exists m; < o such that,
keZ

for every index set Z < Z with |Z| > m;,

ﬂ supp(¢ji) = .

keZ

(d) lim sup |supp(¢;r)| = O.
J20 kez
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Remark 2.13. Conditions (b) and (c) of Assumption [l imply that, for every j € N, the
family ®; is a Bessel sequence, i.e., there exists a constant Cz; > 0 such that

DKL P < Cny

keZ

iz fe L*(R).

Indeed, for every f € L*(R),

Z [ f, i ))? < (supH(kaHLoo 2 J ()] da,

keZ kez Ysupp(¢jk)

where sup |¢; x|z is bounded due to (b) and the sum is bounded by C(m;)|f]3, for
keZ

some C(m;) > 0, due to (c). &

The second assumption is a condition on the Gramian matrices
G, = J ®;(z) ®j(z)" dz, jeN.
R
Assumption 2. There exists v € N such that, for every j € Ny,
f % ®,(z) G;l Qi(y) = y*, yeR, ae{0,...,v—1}
R

Remark 2.14. Assumption [2| is linked to the degree of the polynomial space that the
functions ®; are able to span. Indeed, a necessary condition for Assumption [2] is that
there exist vectors {c;q}a_, such that

cfa Q;(x) = 2%, zekR

In particular, if we denote by m;, the vector of the (a 4+ 1)-th moment of ®;, then
G;'mj, = ¢ja. (2.17)

&

The last assumption is related, roughly speaking, to the primitives of the functions ®;
and, together with Assumption [2] is the one closely related to the vanishing moments of
the resulting wavelet tight frame.

Assum tlon 3. There exists w € N such that there exists a family of scaling func-
tions {®; } jen, that generates a multi-resolution analysis in Definition H where CIJE vl
satisfies Assumptlon [1 and the following conditions, for every j € Nj.

(a) for every k € Z, CI>£._"’] < H*(R), where H" denotes the Sobolev spaces of square
integrable functions with w square integrable weak derivatives.
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(b) f €V, has w vanishing moments if and only if there exists f € (*(Z) such that

dv .
flz) = €7 dx—m@E. Wz), zeR

Moreover, f decays exponentially if f does.

As we will see in the following constructions, Assumptions are easily satisfied in
real applications.

We are now able to state the fundamental result of Chui, He, Stockler which characterizes
wavelet tight frames in a generic setting.

Theorem 2.15 ([15]). Under Assumption 1, a set of bi-infinite matrices {Q;}jen defines

a wavelet tight frame in Definition if and only if there exists a set of bi-infinite
symmetric semi-positive definite matrices {S;}jen such that:

(i) for every j € Ny, there exists C; > 0 such that

f(@) @5(2)" S; @;(y) fy) dudy < Cj|fl72, fe L*(R);

RQ

(ii) for every f e L*(R),

f(x) ®i(x)" 8; ;(y) f(y) du dy e | £172:

RQ

(iii) for every j € N,
Sj — Pj—l Sj—l P?—l = Qj Qf

Moreover, if Assumptions[d and[3 are satisfied with v = w € N, then the corresponding

wavelet tight frame has v vanishing moments if and only if, for every j € Ny, the matrix
S; satisfies

(a) |Sjlemr < o;

(b) 3C > 0,7 > 2v + 1:

C

| ()" S; @5(y) | < i o

x,y € R;

(c) J}R z* ®;(x)" (G;'=8;) ®;(y) de = 0, ae, ae{0,...,0—1}

z —t v—1
(d) J y* J )i ;)" (G;1=8;) @;(y) dt dy = 0 a.e., a€{0,...,v—1}.
R —0o0 (U - 1)! !
Remark 2.16. If one desires a wavelet tight frame with compactly supported elements,

due to Theorem [2.15] (iii), the matrices {Q;} ey must have compactly supported columns,
which means S; must be bandlimited, for every j € N. &
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Remark 2.17. Condition (d) in Theorem [2.15] is implied by condition (c) if one can
exchange the order of integration. This, however, is not always the case, see e.g. Example
2.11] On the other hand, for our construction in the semi-regular, which is based on a
local modification of S;, (d) will be implied by (c) trivially. &

Remark 2.18. In the regular case, when s(w) in (2.8)) is a symmetric polynomial, the
resulting matrices S; are equal to the Toeplitz matrix obtained from the coefficients of
s(w). <&

Theorem basically gives us the roadmap for the construction of a wavelet tight
frame:

1%: choose a suitable multi-resolution analysis satisfying Assumptions , and ;
2" find a suitable set of matrices {S;};cz satisfying Theorem
37 take the square root of the matrices S; — Pj,lsj,lP]T_l.

We already have good candidates for the 1% step - the renormalized basic limit functions
of subdivision schemes. We still need to check the properties required by Assumptions
[, 2] and [, which we will do case by case when needed. For the second step, Theorem
itself already gives us a clue on how to choose the matrices S;. Indeed, if we are
able to choose S; such that

Sj m;, = Cja, 046{0,...,2}—1},

then Remark guarantees that hypothesis (¢) of Theorem holds. Moreover,
working in the semi-regular setting is advantageous since S; = Sy, j € N, and additionally
we restrict the search to bandlimited matrices. In general, it is quite hard to factorize a
semi-positive definite bi-infinite matrix, even if it is bandlimited and consists of positive
semi-definite blocks . The factorization requires the solution of several quadratic
systems. Thus, it is better to exploit the properties of the considered system case by
case.

With a general strategy at hand, we focus on the regular and semi-regular cases.
In both cases we start from a convergent subdivision scheme with continuous basic
limit functions [¢g|rez, which satisfy the refinement equation with respect to a
subdivision matrix P. First of all we still need to justify the renormalization . In
the regular UEP case, we saw that it is always possible and it works just fine, translating
the condition s(w) =1 in on the polynomial side to the condition Sy =TI in (2.11])
on the matrix side. No doubt then that this is the natural renormalization one wants for
defining the scaling function. However, a question arises: is this renormalization always
possible? The answer to this question is yes if and only if we can prove that for the
considered semi-regular convergent scheme we have

f op(x) de > 0, kelZ. (2.18)
R
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This unfortunately is not the case (a counterexample can be found in Section m,
n = 2). On the other hand, cases where the condition fails are of no interest
for us because of Assumption [3] Indeed, if we are able to construct a wavelet tight
frame with one vanishing moment, since the frame elements are linear combination of
the scaling functions, Assumption [3] implies that there exists a convergent subdivision
scheme with basic limit functions whose derivatives are linear combinations of the basic
limit functions of the scheme considered to construct the scaling functions. As observed
in [22], this is true if and only if there exists a monotone sequence b € ¢(Z) such that

bT A — %bTAP and  b(k + 1) — b(k) — (Jf on(x) do, keZ,  (219)
R

for some constant C' # 0, where

(=)™ i e — 1 <m <k,
A(k,m) =

0, otherwise.

This requires that all the integrals of ¢, must be w.l.o.g. strictly positive. Thus, if a
wavelet tight frame can be constructed via Theorem [2.15] starting from a convergent
subdivision scheme, the integrals of its basic limit functions must be positive in order
to perform the renormalization . Due to Proposition we are able to compute
those integrals.

Assumption [I] conditions (b), (c¢) and (d) are rather easy to check both in the regular
and the semi-regular settings. The Riesz basis condition (a) is trickier to prove in general,
but for the regular setting we have the following sufficient condition ensuring (b).

Proposition 2.19. Let Gg be the Gramian matriz of ®¢ = [dor = Poo(- — hk)]kez,
h > 0. If there exist 0 < Ag < By < o0 such that

Ay < glw) = Z Go(0, k) e 2™ < By, weR, (2.20)

keZ

then ®q is a Riesz basis for Vo with bounds Ay and By.

Proof. Let f € (*(Z) and consider f = ®!f. Since the Fourier transform is a linear

isometry on L*(R), we have
| Fera - |
R R

Z f —27rhkw

keZ

|£1Z: dw

> £(k) doslw

keZ

dw.
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Since the function F'(w Z f(k) e 2™ is periodic with period 1/h, we can split R
keZ
into U[k, k + 1)/h and obtain
keZ
) (k+1)/h , )
e = X [ el IP@)P do
kez JE/h
(2.21)
1/h ~ k 2
- [ 1R S [ (w3
0
keZ

Now, focusing on the internal sum, we observe that
~ K\ | k
2 ®0,0 (CU—E) = éﬁboo(W——) ¢00(W—E)

keZ
_ J ¢00 —27rwv w de’ f ¢00 27rzy( ) dy
kez YR

We can then rearrange the order of integration and substitute z = 2z + y to get

o)

keZ

2

e 2ma(em $o0(z +y) ¢oo(y) dy d
%J}R J 002’ Y) Po,0 Yy az

- D)

keZ

where

T) = JR boo(x +y) booly) dy, zeR.

Finally, due to the Poisson summation formula (see e.g. [64]),

5o

keZ

2

= h Z Yo (hk’) 627rihkw

keZ

= h > Go(0,k) e = hg(w).
keZ

Thus, from (2.21), by hypothesis,

1/h 1/h
hA, J F)2do < |f]% < hBof F(w)]? dw.
0 0
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To conclude the proof, we observe that

1/h

1/h |
L |F(Ww)] dw = 2 f(k) f(m)f e 2mihw(k—m) g

k,meZ 0
1
— lElE

]

Remark 2.20. Proposition [2.19]is equivalent to a property of the so-called bracket product
[00.0, Po.0], see [39] and references therein. &

In the regular case then, we only need to compute the Gramian matrix of ®( using the
results in Section and then compute the bounds for the trigonometric polynomial
in (2.20). For the other levels j € N, ¢; = 2j/2<I>0(2j-) and we get for free the Riesz
property, since

T2, = , £k d
|72 fRZ 65(2) E(R)? da

keZ

ZQJ'J
R

In the semi-regular setting, we use Proposition [2.19)to check that the regular schemes on
the left and on the right of to(0) satisfy Assumption|l} Additionaly we need to guarantee
that the overall resulting semi-regular scheme satisfies Assumption [I} In particular, the
linear independence of the basic limit functions is enough to guarantee the Riesz basis
property for the whole family of scaling functions.

, (2.22)

Y, bon(@a) £(k)| dr = [DFF|7..

keZ

Proposition 2.21. Let &, be the vector of the scaling functions of a semi-reqular multi-
resolution analysis with the corresponding left and right reqular schemes which induce
multi-resolution analysis satisfying Assumption [l If ®q is linearly independent, then it
1s a Riesz basis for V.

Proof. Let By, B, > 0 be the Riesz upper bounds for the left and right regular multi-
resolution analysis, respectively. Then, for every f € (*(7Z),

2

|o5E7: = oo+ D, o+ £(k)bo.x
k<ki(P)  ke(P)<k<kr (P k=k.(P) L2
< (B + 72+ B | [f]%.
(Be+ s, lonalis + B ) [
The lower estimate follows directly from the linear independence of ®,. O
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We proceed further with the cubic B-spline scheme in Examples [1.31] [1.32 and [2.11}
Using Theorem [2.15] we are searching for a wavelet tight frame with two vanishing
moients.

2.1.1 A First Example from Cubic B-spline
Regular Case

We consider the initial regular mesh to = hZ, h > 0. In Example the regular cubic
B-spline scheme produces piecewise cubic basic limit functions ¢}, = @o(-—hk) € C*~(R),
€ > 0, that satisfy a refinement equation with respect to the subdivision matrix
in (1.29). By Proposition , the integrals of ¢, are equal to h for all k € Z. Thus,
the renormalized scaling functions are ¢ = ¢/ V'h, k € Z. To compute the Gramian

matrix of the scaling functions in ®(, we compute the Gramian matrix of the basic limit
functions via Proposition and then rescale. Indeed,

Gy = JR Bo(z) Bo(2)" dr = % fR [on(@) kez [on(2)]Ey do = %G.

The matrix G is a banded Toeplitz matrix and it is defined by the vector g obtained as
a solution of

[ 1/16  7/16  7/16 1/16
1/128  7/32 35/64 7/32 1/128
1/16  7/16 7/16 1/16
1/128  7/32 35/64 7/32 1/128 g

1/16  7/16 7/16 1/16
1/128  7/32 35/64 7/32 1/128
/16 7/16  7/16 1/16 |

Il

g, (2.23)

with the sum of the elements of g equal to h. The entries of the matrix in (2.23]) are
obtained from the coefficients of the square of the symbol in Example The solution
we seek has sum of the elements equal to h, which leads to the unique vector

g = h [1/5040 1/42 397/1680 151/315 397/1680 1/42 1/5040]" .

Thus, to prove the Riesz basis property, due to Proposition [2.19] we have to find bounds
for the function
151 397

1
g(w) = s s cos(2mw) + 31 cos(4drmw) +

R.
5550 cos(6rw), weE

The function g is periodic of period 1 and it satisfies

LU g(é) < gw) < g(0) = L
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Thus, the scaling functions ®, form a Riesz basis for the closure of their span V. Then,
by ([2-22)), our system @, satisfies Assumption [I] (a). Conditions (b), (¢) and (d) of
Assumption [1] are trivially satisfied.

The partition of unity property implies that, for every j € N|

h . .
;)" 23—\2 1= ®22)" Vi1 = [p(P2)]fz 1 = 1, z€R,

and we have

vh

C; = —
7,0 2]/2

1 and mj, = f ®;(z) de = 29/ J Oy(27z) dv = ﬂ
R R 2i/2
satisfying . This is coherent with the tight frame construction (with one vanishing
moment) in Example where S; = I. To get one more vanishing moment, however,
we need to check Assumptions 2| and |3 for v = w = 2 and then choose a suitable Sy to
apply Theorem [2.15]
Assumption [3| follows directly from and it is a well known property of B-splines
see e.g. [26]). To check Assumption [2] with v = 2, we observe that, from Example
, the right-eigenspace of P related to the eigenvalue 1/2 can be extended uniquely,
as in Proposition [1.9] to the corresponding right-eigenspace of P with respect to the
same eigenvalue. The resulting right-eigenspace of P is formed by the samples of all the
polynomials of the form Az, A € R\{0}. In particular, [hk]kez is a right-eigenvector of P
and we have, for every j € Ny,

Vh

3 -
227

vh 1

®j(2)" —5 [z = @o(P2)" o [Klker = [or(22)]icz 55 [kleer =z, zeR.

Thus, Assumption [2] is satisfied with v = 2 and, moreover, we get

Vvh .
Cj71 = Tg [k]kEZ and mj,1 = Gj Cj,17 VS No.
2

In particular, we get m;; = c;1, j € No. Unfortunately, even if the choice of Sy = I fits
into hypothesis (a), (b) and (c) of Theorem [2.15] it fails to meet (d) for @ = 1. Roughly
speaking Sy is not a good enough approximation of G;'. Indeed, as observed in [I3] in
the regular case, to get v vanishing moments from the OEP one has to choose s
such that

s(w) = gw)™ = OW™), w — 0,

with g(w) as in (2.20)). One way to do that is to choose s(w) to be the Taylor polynomial
of degree 2v — 1 of g '(w) at w = 0. Then we can easily construct the matrices S; in
Remark [2.18] Since 0 < g(w) < 1 is real, we can exploit the Taylor expansion of the
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function 1/(1 — z) at 0 to get

1
1= (1-g(w))

= D (1—gw)y, w—0

J€No

glw)™ =

where the factor (1 — g(w))’ adds a polynomial term of lowest degree j, since g(0) = 1.
Thus, we can easily choose s(w) such that

2u—1

Z (1-gw))y = sw) + OW*), w — 0.

J=0

In our case,

3 2
, 2
-gw)y = 1+ 2 4 oy
i=0 s
5 2 (27w)? 4
- 2 _Z2(1-
3 3< 2 ) 0w
2
= g e cos(2mw) + O(w")
_ 1 —2miw § o 1 2miw 4
= 5 € + 3 5 € + O(w?), w 0,
so we can choose ~ ~
—1/3
5/3 —1/3
S; = -1/3 [5/3| —1/3
13 5/3
—1/3

Remark 2.22. If we apply the same procedure for the linear B-spline scheme, see Exam-
ples 1.12] [1.20] and [1.25], to get two vanishing moments we obtain

1 . 4 1,
Sl(LU) _ 66—27rzw + g . 662mw7 weR.

If Theorem [2.9] could be applied to the OEP, then we should have

siw)? = sw) + Ow?'), w — 0,
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but
2 —4miw —27miw 1 2miw —4miw
s1(w)” — s(w) = — 366 e + - — g¢ 266
1 2 4
= —95~ —(2mw)® + O(w"), w — 0

<&

Hence, we proceed differently. Having P; = P/ V2 as in (2.6), with P in Example
1.31} to get the matrices Q;, we need to factorize

R, =S; - P;1S;.. P, =8 — 5 PSoP.
The resulting matrix is the following
I 1/384 ]
1/96
7/384  1/96  1/384
1/48  1/24  1/96
—7/128  1/48  7/384  1/96  1/384
—-59/96  —1/8  1/48  1/24  1/96
79/64 —59/96 —7/128  1/48  7/384  1/96  1/384
—59/96 4/3 —59/96  —1/8  1/48  1/24  1/96
—7/128 —59/96  79/64 —59/96 —7/128  1/48  7/384
R; 1/48  —1/8 —59/96 ~59/96  —1/8  1/48
7/384  1/48 —7/128 —59/96  79/64 —59/96 —7/128
1/96  1/24  1/48  —1/8 —59/96 4/3 —59/96
1/384  1/96  7/384  1/48 —7/128 —59/96  79/64
1/96  1/24  1/48  —1/8 —59/96
1/384  1/96  7/384  1/48 —7/128
1/96  1/24  1/48
1/384  1/96  7/384
1/96
i 1/384 |

To get the frame elements, we factorize R; = QjQ;F. Since we want to keep the shift-

invariant structure and to have compactly supported framelets, we are searching first
for a blocking decomposition of R; as in , i.e. we want to find a finite positive
semi-definite block B such that

R, = )| B(-—2k,- — 2k),

k€eZ

and then factorize B to obtain the vectors q,,. From the structure of R; we deduce
that the smallest B possible must belong to R™*7. Since the Fejér-Riesz Theorem states

33



2 Wavelet Tight Frames

that the OEP conditions ([2.8)) can always be satisfied with two polynomials q;, go, then
there exists a rank-2 B that does what we seek. This leads to a quadratic system in
the unknown entries of q; and .. This system is already very complex for MatLab.
Nevertheless, one of the possible solutions is shown in Figure [2.1}

[—0.1134 —0.6343
—0.4535  1.0460
0.8658 —0.2263 5
[qi, a2 ] = | —0.0554 —0.1484 ' 0
—0.1287 —0.0371 °
—0.0919 0
| —0.0230 0

- -0.4 -0.6

Figure 2.1: Two possible generators for the cubic B-spline regular wavelet tight frame
over the initial mesh Z.

If we take a look back to the structure of R; we can try to infer more dependency to
simplify the quadratic system. First we observe that the upper right and lower left 2 x 2
corners in red (for the interpretation of the references to color, the reader is referred to
the pdf version of this manuscript) should belong to only one block B(- — 2k, - — 2k).
Moreover, the numbers in blue, in magenta and cyan are sum of the entries of two,
three and four consecutive blocks, respectively. Since we cannot have q,, with only one
element (the corresponding framelet would be a multiple of a scaling function which has
no vanishing moments), we can guess

R; = Y By(-—2k,-—2k) + Bs(-—2k,- — 2k) + By(- — 2k, — 2k),
k7

with B,, € R"*" being rank-1 blocks. Moreover, due to the bi-symmetry of R; we
suppose

B: = q1q], Bs = q2q;, B3 = qsq3,
with symmetric {Qu, }m=123. This simplifies enormously the resulting quadratic system

and leads to a unique solution with symmetric generators, Figure The price for our
assumptions is that only one generator has a small support.

Semi-regular Case

Consider now the initial semi-regular mesh tq in with hy = 1 and h, = 2. Similarly
to Example [1.32] we get a subdivision matrix P that differs from the regular one over
three columns, w.l.o.g. k¢(P) = —2 and k,.(P) = 2. Thus, we have three irregular basic
limit functions. To construct the wavelet tight frame, first of all we need to renormalize

the basic limit functions and the subdivision matrix as in (2.5)) and (2.6). To do so we
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[q17 q2, Q3] = 0 0

V6/48  £/22/48  +/39/18] .
V6/12  V/22/12 —+/39/9 ” :
5v6/144 —5v/22/24  1/39/18
—5V6/18  V/22/12 0

5vV6/144  \/22/48 0
V6/12 0 0 .
V6/48 0 0

Figure 2.2: Three possible symmetric generators for the cubic B-spline regular wavelet
tight frame over the initial mesh Z.

compute the integrals of the basic limit functions {¢}rez. From the regular case, we
already know that
1, if k < k(P),

fR pr(x) do =

2, if k= k.(P).

To compute the missing integrals we rely on Proposition [1.40l Thus,

1

1/8 1 ! ] ]

1/2 1 f v_1(z) dz

5/8  3/8 R
5/24 29/40 1/15 J wo(x)de | = 2 J wo(x) dz |,
3/5  2/5 R

3/20 29/40 fcm(x) dx

1/2 R 9 f o1(x) do

| 1/8 9 - -
2

which leads to
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Thus,
1/8
1/2
3/4  /5/20
12 /5/5
1/8 5v5/16  /6/32
X 5/8 1/30/16
7 V30/24 [29/40|  /42/105
: V42/10 2/5
V3/5 29v/14/140 1/8
V14/7 1/2
V14/28 3/4
1/2
1/8

The next step is to find suitable matrices S;. Due to what we know from the regular
case and the symmetry of S; we are in the following situation

5/3 —1/3
-1/3
Sj = : ’ Si’/‘r : : ;
-1/3
-1/3 5/3
with S;,» € R>*® symmetric. At this point, any S; such that
Sj m;, = Cjo, « = 0, 1, (224)

and S;—P;_;S j,lP;{l is positive semi-definite, is fine because the problem of exchanging
integrals in Theorem appears only at the boundaries and we only changed locally a
finite number of compactly supported scaling functions and a finite section of S;. Due
to the renormalization we have

mi, = co = [.... 1, V5/2, v6/2, VT2, V2, .|, jeNo

Similarly to the regular case, the vector c;; of the coefficients that generates the mono-
mial z belongs to the right-eigenspace of P associated to the eigenvalue 1/2. In partic-
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ular, see Example [1.32

( k, k< -2,
YT k=1
-9 2’ )
3 -1 3
cju =2 DB =27 0 V6 jeNo
2 6’
4
. \/?7 k:]-u
| 2V2k, k>2,

To compute m;; we use again Proposition [1.40, From the regular case, together with
(1.32), we have
k, if k<k/(P)= -2,

J wp(z) de =
R Ak, ifk>k(P)=2,
thus,
_ e
1/8 1 -3 ] ]
1/2 -2 f r@_q1(z)de
25/32  3/32 J x o 1(r) dz R
5/8  3/8 R
5/24 29/40 1/15 f T @o(x)de| = 4 J x @o(z) dx |,
3/5  2/5 R R
3/20 29/40 J p1(z) do
1/2 R N I JR z p1(z) dx_
! 1/8 12
16 |

which leads to

9
_ - -1 S _
| eon@ar = 1 [ s - G | ca@a - 3
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Therefore,
( k, k< -2,
2
_Lg’ k=1,
5
m;(k) = 2727 < ﬁé, k=0,
10
—Hﬁ, k=1,
10
L 2V2k, k=2

If, similarly to the regular case, we suppose S;.. to be tridiagonal, then the condition
(2.24) yields a unique solution

[ 29/18  —/5/9 ]
—V/5/9 14/9 —/30/18

Sirr = —+/30/18 27/16| —59v/42/1008 :
—594/42/1008 2683/1512 —20/14/189
—201/14/189 46/27 |

which leads to a positive semi-definite S, —Pj_lsj_lP]T_l. Indeed, the changes in P; and
S; affect the columns of R; with indices —6 to 6, Figure 2.3} If we subtract the regular
blocks we found before, e.g. in Figure 2.2] from both sides until we eliminate all the
entries which did not change from the regular to the semi-regular case, we end up with
the 13 x 13 block Ry, in Figure 2.4l R, is positive semi-definite and can be factorized
as Q»Q7.,. in different ways. For example, we can use the eigenvalue decomposition,
Figure . This way we obtain nine frame elements around to(0) which all have support
in [—3,6]. This choice however spoils completely the blocking structure still visible in
R,.». Another possible choice to preserve this block structure is to use a Cholesky-like
factorization. This is what have been done in Figure [2.6, Here the Cholesky algorithm
has been applied alternatively from the left and from the right side, not to promote
either of the directions approaching to(0). This approach results in a much sparser Q;,,
and in framelets with much shorter support. In Figure one can observe also that
the framelets obtained this way have a more uniform behaviour and are less oscillating
than the ones in Figure [2.5, The same process can be done starting from the regular
framelets in 2.1, with similar results. This example shows that already in a fairly simple
case the matrices involved are messy and difficult to handle. Studying the whole process
with respect to the initial mesh parameters hy, h, then becomes a nightmare, apart from
very special cases. In the next section, we will construct a family of wavelet tight frames
for which a lot of the steps presented here are much simpler. The trade-off is a toll with
respect to the possible choices of hy, and h,.
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384
48

T18
59
796
2845
2304
353
576

61
1152

11
576

353
576

198
144

175
288

19

144

384
ks
96
A T
384 96 384
11 1
48 24 96
61 11 1 5v 516
1152 576 72 1152 3456
175 19 1 5v/5 56
288 144 288 288 864
7159 443 151 55 976 V7 V2
5760 720 2304 1152 17280 240 480
M3 39 5V5 V6 N V2
720 720 576 72 1080 60 120
151 329 184583 18361V5 547916 89+ +/T 2814/2 59v/2 59v/2
2304 576 147456 73728 1548288 7168 21504 10752 43008
5V5  5V5 183615 44899 76295+/30 181435 194/10 59+/10 59+/10
1152 72 73728 36864 774144 10752 3584 5376 21504
976 V6 54791V6  76295v/30  [51511840]  1117199v42  94597v3  14765V3  23725V3
17280 1080 1548288 774144 2560 10160640 5080320 508032 2032128
N4 VT 897 181435 1117199v/42 83249 7325314 955114 128514
240 60 7168 10752 10160640 60480 423360 42336 169344
V2 V2 2814/2 194/10  94597V3 7325314 517087 1711 7853
480 120 21504 3584 5080320 423360 423360 2646 169344
59+/2 59+/10 14765+/3 95514 1711 13823 12979
10752 5376 508032 42336 2646 10584 21168
59v2 59v/10 23725v/3 1285+/14 7853 12979 52055
43008 21504 2032128 169344 169344 21168 42336
24/3 2¢/14 205 179 1871
567 189 6048 1512 3024
V3 V14 65 17 337
1134 378 3024 756 6048
1 1 1
96 24 48
N 1 T
384 96 384
1
96
€
384

Figure 2.3: The

24/3
567

Qx/ﬁ
189

205
6048

17
1512

1871
3024

27
216

13
216

columns of R; that differ from the regular case.

29

337
6048
_13
216
4265
3456

_59




2 Wavelet Tight Frames

zer 801 459 95 1208 8LE Vel
1 1 g @ 4 AT [
801 k& 8.8 L1 99 681 495
1 1 g e €2 VINC g e
TIST 8L 8FFOS 9e€TY TLOV8 PrE6OT 821208 F0S1Z 800V
g g €28 1€€ 1079 PI/MGRET £/NGTLET 0L/6S T/M6S
9gL 68T 9SETV 26¢ 286 9ggTy Z£0809 988 z8L0T
@ @ 16¢ Lve 6901 P1/MC6 £/MGOLVT 0T/ M6S 2/M6S
F20g 99  TLOV8  TEET 089112 09£€27 0Z£080 78GE F0S1Z
€2 €2 1079 6901 167067 VINESTEL £/ML6ST6 0T/M6T TMISe
8LE 68T VWE6OT  9EETV  09EETH 08709 0P909TOT  2GL0T 89TL
PN PLAG PIAGSGL FLACSE  PIAESTEL 672€8 TV M66ILITT GEMST L/M68
PETT 19  SGIZE0Z  ¢EO80S  0TEOS0S  OF909TOT [ 099zr90¥ VPIPLL  88T8YCT
M gMT gNGTLET  EMCOLVT §MLESYE  TB/MGBILITT 6VRTTSTS | 08/MG6TIL  9/MT6LYS
Y0STZ 98¢ 78GE geL0T PPIPLL 7989€ 8TLEL
0T/ N6S 0L/ M6S 0L/6T GEMST 0£/AG629L 66877 SMT9E8T
8007 zeL0T P0S1Z 89TL 88T8VST 8TLEL  9SPLVT
2/M6¢ [ TMIse L/M68 9M6LYS S/MT9ERT 661781
uas 09 080T _ el _ 93
I LN 9N gNG e
08y ore 08¢L1 gsTt V0ET
I LN 9N L6 gNg 191
798 887 88C
9 e gie 11
96¥e 98 98
9 G GG 11

oet
N
0
A
080T
9N
e
s

o8
age

0L
€396

a9
116

443
1

osy
o
ore
L

08TLT
9N L6
zarl

Mg

V0ET
191

oV

116

0798
TLG0T

vos
LTS

967 €
L0T

798
9NG
88T
gAg
88¢
T

jads
T

L
L1g

aev
(514

8eLT
62€

o8
T

967 €

L0T

8TLT
62€

¢c169
616

The remainder part R;,, of R; once the regular blocks are subtracted.

Figure 2.4

60



2 Wavelet Tight Frames

[ —0.0068 —0.0411 0.0395 —0.0580 0.0799 —0.1228 0.2294  0.2075  0.0956

0.0504  0.3056 —0.2687 0.3645 —0.4198 0.3503 —0.2792 —0.0481 0.0509

—0.1399 —0.7702 0.5243 —0.4412 0.2929 0.0171 —-0.2003 —0.1212 0.0191

0.2198  0.9527 —0.2021 —0.2285 0.4223 —0.2789 —0.0090 —0.1354 —0.0074

—0.2441 -0.6365 —0.6252 0.5174 -0.0646 -0.2979 0.1377 —0.1150 -0.0277

0.4285 0.1531  0.8435 0.1903 —0.4615 —0.0239 0.2088 —0.0622 —0.0461

Qirr —0.8627 0.1755 —0.2397 -0.5319 -0.1743 0.3067  0.1541  0.0248 —0.0566

0.9804 —0.3061 —0.3794 —-0.0930 0.2726  0.2852  0.0060  0.1007 —0.0559

—0.5258 0.1894  0.3966  0.6212  0.4387  0.0001 —0.1479 0.1318 —0.0409

0.0748 —0.0327 —0.1107 —0.3454 —0.4655 —0.4447 -0.2495 0.1216 —0.0199

0.0231  —0.0088 —0.0209 —0.0370 —0.0243 0.0274  0.0584 —0.0697 0.0506

0.0035 —0.0005 0.0055 0.0395 0.0737  0.1108  0.0966 —0.0801 0.0445

| 0.0009 —0.0001 0.0014 0.0099 0.0184 0.0277  0.0242 —-0.0200 0.0111
0.5 1 1
0 0 0
-0.5 -1 -1

-5 0 5 10 -5 0 5 10 -5 5 10
1 0.5 0.5
-1 -0.5 -0.5

-5 0 5 10 -5 0 5 10 -5 5 10
0.5 0.2 0.2

0 0 0 M

-0.5 -0.2 -0.2

-5 0 5 10 -5 0 5 10 -5 5 10

Figure 2.5: The result of the eigenvalue decomposition of R;.. and the corresponding

framelets.
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0.3646
—0.5222  0.6405
0.0849 —0.8650 0.6841
0.0048  0.0147 —0.9067 0.7080
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Qirr 0.0097  0.0301  0.0569  0.0498 —0.0983 —-1.0817 0.2167 0.1817  0.0317
0.0161  0.0829  0.2662  0.4673 —1.0085 0.1436  0.2057
0.0043  0.0222 0.5521 —0.8709 0.1581
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Figure 2.6: The result of the alternating application of the Cholesky factorization of R,
and the corresponding framelets.
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2.2 Semi-regular Dubuc-Deslauriers Wavelet Tight
Frames

In this section, we present the work published in [60]. The aim is to provide an easy
strategy to construct a semi-regular family of wavelet tight frames with a high number
of vanishing moments. The starting point for this construction is the family of Dubuc-
Deslauriers subdivision schemes, introduced in [27] in the regular case and extended to
the semi-regular setting in [62]. These schemes are interpolatory, i.e. their basic limit
functions {¢y }rez satisfy

er(to(m)) = Okm, k,meZ, (2.25)

where t is the initial mesh in . Moreover, the Dubuc-Deslauriers family depends on
a parameter n € N, that describes the polynomial generation of each scheme. Indeed, the
Dubuc-Deslauriers schemes can be constructed as solutions of the following interpolation
problems, which already incorporates the semi-regular setting.

Definition 2.23. Let n € N and t; a semi-regular initial mesh in (|1.3]). The subdivision
matrix P defining the Dubuc-Deslauriers 2n-point scheme over t is the unique bi-infinite
matrix satisfying the following conditions:

1. P(2k,k) =1, ke Z,

2. the entries P, = [P(2k +1,m) : m=k—n+1,...,k +n], ke Z, satisfy

1 to(k—m+1) --- to(k—n+1)2”_1
2n—1

o A N _ [, tok+n <to(2k+1)>2n71
1 tg(k+n) to(k+n)2n—1

3. all other entries of P are equal to zero.

Remark 2.24. Definition [2.23]is well posed since the linear systems in part 2. of Definition
[2.23 are uniquely solvable due to t being monotonically increasing. Moreover, for every
ke Z,

supp(P(:, k) = {2k —2n+1,...,2k+2n — 1}

which means that the columns of P have support of length 4n — 1 and that the eventual
basic limit functions have

supp(¢r) = [to(2k —2n 4+ 1),t0(2k 4+ 2n — 1)]. (2.26)

<&

Here we present a proof, for any mesh tg, with arbitrary hy, h,. € (0,00), of the con-
vergence of these schemes in the semi-regular setting.

Proposition 2.25. Let n € N and P be the subdivision matrix constructed in 1.-3. over
the semi-reqular mesh to. Then
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(i) 1 is a simple eigenvalue of P associated to the right eigenvector 1 and all other
eigenvalues of P are less than 1 in absolute value;

(ii) the subdivision scheme with the subdivision matriz P converges.

Proof. Part (i): Let n € N and Z = {1 — 2n,...,2n — 1}. By Proposition [L.9] all non-
zero eigenvalues of P are uniquely determined by the eigenvalues of its finite section, the
square matrix P = (P(m, k))mkez- By construction, due to 2., P1 = 1. We show next,
that A € C\{0,1} with Pv = Av, v € C*~3\{0}, must satisfy |A\| < 1. The proof is by
contradiction, we assume that |A| > 1. Note first that P(0,0) = 1 and by step 3. of the
construction above, we get v(0) = A v(0), thus, v(0) = 0. Step 1. of the construction
forces v(k) = X v(2k) for k,2k € Z. To determine the odd entries of v, let m € 7

be odd and consider the polynomial interpolation problem with the pairwise distinct

m+1 m+ 1
—n,...,n+

knots to(k) and values v(k) for j € . This interpolation

problem possesses a unique solution, possibly complex-valued, interpolation polynomial
7 € Ily,_1. Therefore, by the interpolation property of P, we have

t()(m)

A7 (to(m) = Av(m) = (15 v> (m) = W(T>
[terating we obtain

lim [A]" |7 (to(m))| = lim

r—00 7—00

to(m
T ( O; )>‘ = |r(0)] = [v(0)] = 0, (2.27)
which leads to a contradiction: for |A\| = 1, we have v(m) = w(to(m)) = 0 or, for
|A| > 1, the identity is violated. It is left to show that A = 1 is simple. The proof
is by contradiction. w.l.o.g. we assume that 1 has an algebraic multiplicity 2. Note that
§TP = 67, where 6(0) = 1 and its other entries are equal to zero and define A = P—147.
Then A has a simple eigenvalue 1 with A v = v, v # 0. By construction v(0) = 0, thus
Av = Pv. Following a similar argument as above we arrive at the contradiction v = 0.
Part (i7): To prove the convergence of the scheme, due to |27, [62], it suffices to prove
the continuity of the basic limit functions at 0, i.e.

£;(0) = £5(1)] — 0, and [£;(0) —£;(=1)] — 0 (2.28)

Jj—0 Jj—
for f; = P’ e k € Z. Equivalently, we show that

£0) — £;(1)] = |[[0,...,0,[1],~1,0,...,0] P7e® | >0

and, similarly, for the other difference in ([2.28). The claim follows then by part (1),
together with steps 1. and 3. of the construction, which imply that P7 e®) — e(k)(O) 1.
[

Due to 1. these schemes preserves at each level all the data computed at the previous
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levels. In particular, for every initial data f; € ¢(Z),
f](Qk’) = (Pf]_l) (k’), ] € N, ke Z,

and this is sufficient to guarantee . The odd entries of each finer level instead are
computed using linear combinations of the 2n neighbouring points. Moreover, condition
2. of Definition [2.23] implies that the constructed schemes reproduces polynomials of
degree 2n — 1, see Definition [1.18

Remark 2.26. A subdivision scheme over the initial mesh ty that reproduces polynomials
of degree v € N has a subdivision matrix P that satisfies, for every polynomial 7 € IL,
of degree v,

n(t;) = Pw(t;—y), kelZ.

<&

The convergence and the interpolation property imply that the functions {¢y : k€ Z}
are linearly independent and, thus, the representation

2 = Y to(k)* gr(z), reR, ae{0,....2n— 1}, (2.29)

keZ

is unique. If we suppose that the integrals of {y.}rez are positive, the corresponding
scaling functions ®; = [¢;x : k € Z] in (2.5) inherit the polynomial reproduction

property in (2.29) and we have

2% = OT(2) Cjay Cja = 27 ¥ DVt5, ae{0,...,2n—1}. (2.30)
Furthermore, in the semi-regular case, we have ky(P) = 1 — 2n and £.(P) = 2n — 1,
which means the presence of 4n — 3 irregular basic limit functions corresponding to the
indices

Zivr = {2—2n,...,2n—2}. (2.31)

We denote with ®, and ®, the vectors of scaling functions over the regular meshes
ty = hyZ and t, = h,Z respectively, and thus

I, =1,, and I.® =1, &, (2.32)
where
1, ifm=k<2-—2n, 1, fm=k>2n-2
I,(m, k) = and L.(m,k) =
0, otherwise, 0, otherwise.

The choice of the Dubuc-Deslauriers schemes is due to the fact that they are one of
the special cases in which the frames constructed via the UEP conditions, with
s(w) = 1, achieve naturally more than one vanishing moment, and this can be exploited
to simplify the construction in the semi-regular case.
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2.2.1 Wavelet Tight Frames Construction

We present the construction of the wavelet tight frames based on the Dubuc-Deslauriers
2n-point schemes as we did for the cubic B-spline scheme in Section [2.1.1] starting with
the regular case, where we will exploit Theorem and then passing to the semi-regular
case with an ad hoc construction. Unfortunately, as it will be shown in Section [2.2.2]
the construction is not possible for every choice of hy, h, > 0, but the larger n is the
smaller the interval which the ratio h,/h, can belong, see Section case n > 2.

Regular Case

The construction in the regular case is based on another family of schemes leading to
the Daubechies 2n-tap wavelet systems (see e.g. [20]), which form orthonormal basis for
L*(R). In particular, for n € N, the Daubechies 2n-tap schemes are characterized by the
unique symbol d(w) with coefficients d supported on {1 —2n, ..., 0} which satisfies
with s(w) =1 and

Gaw) = qw) = e 2Dy —1/2) and v=n, neN. (2.33)

Daubechies wavelets are closely connected to the Dubuc-Deslauriers subdivision schemes.
Indeed, see [51], the symbol p(w) of the Dubuc-Deslauriers 2n-point scheme satisfies

plw) = dw) dw), weR. (2.34)

The identity (2.34)), together with Theorem leads to our construction of Dubuc-

Deslauriers wavelet tight frames for the regular case.

Proposition 2.27. Let n € N and d(w) and p(w) be the symbols of the Daubechies
2n-tap scheme and the Dubuc-Deslauriers 2n-point scheme, respectively. Then

aw) = V22 q(w) d(w —1/2)
w € R,
pw) = dw—-1/2)dw-1/2),

define a wavelet tight frame with n vanishing moments for p(w) in Theorem .

Proof. Note that the convergence of the subdivision associated to d(w) implies the con-
vergence of the subdivision associated to d(w). Thus, applying Theoremto d(w)
and d(w), due to (2.34), we obtain a wavelet tight frame for p(w) = d(w)d(w) with n
vanishing moments with the polynomials

dw) qa(w), dw)qa(w), and ga(w) ga(w).

To reduce the number of frame generators we take a closer look to the structure of these
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framelets. Indeed, the UEP identities, (2.8) with s(w) =1, and (2.33) yield

1 = (d(w) dw) + qd(w)m> (md(w) + qu(w))

() d@)) (dlw) d@) + V2 dw) al@) (V2 de) @) + (ae) 1) (2:) ),

0 = (d) T 17D + au) o= 17 ) (T dlo—1/2) + 2] oo~ 1/2) ) (2.35)

(dw) @) (=120 dw=172)) + (au(w) @) (aa(w = 1/2) @l —172))

+ () 2] (dw=1/2) @ —1/2)) + dw) @) d - 1/2) glw - 1/2).

From ([2.33)), we have

qa(w) dlw —1/2) = qu(w) dw—1/2), weR.

Moreover, the periodicity of the symbols implies

dw) qa(w —1/2) = d(w) qa(w —1/2), weR.

Next, we rewrite the last term of the second identity in ([2.35))

@) aa(w) dw = 1/2) gl = 1/2) = d(w) @) (A - 1/2) Glw—1/2)), weR,

obtaining ¢;(w) = v/2d(w)qa(w) and ¢2(w) = ga(w)qa(w). The claim follows by ([2.33). O

Remark 2.28. This construction leads to the same result as in [I2, Section 3.1.2], but in
a more straightforward way. <&

An important consequence of Proposition [2.27]is that from the matrix point of view
S; = I gives n vanishing moments in Theorem . Similarly to the construction in
Section [2.1.1]in the semi-regular case, we exploit the regular wavelet tight frame and the
fact that S; = I to isolate the irregular part of the matrix in Theorem [2.15] (iii).

Semi-regular Case

Let n € N, we consider the semi-regular Dubuc-Deslauriers 2n-point scheme over the
semi-regular initial mesh tq in (1.3) with hy, h, > 0. To apply Theorem , we need
to check first Assumptions [I} [2] and Assumption [I] follows from Proposition [2.21
due to the linear independence of the scaling functions guaranteed by the interpolation
property . Assumption [2| is a direct consequence of the polynomial reproduction
and the third one is satisfied, as long as the integrals of the basic limit functions
are positive, due to (2.19) and [22].

The next step, for the construction of the wavelet tight frames is the choice of the
matrices {S;} en, j € N. A natural choice, at least to get one vanishing moment, should
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2 Wavelet Tight Frames

be S; = 1. After all, we always have c¢;o = m,, 7 € Ny. Unfortunately, already for the
4-point scheme: the matrix I — PjPJT is not positive semi-definite. The idea is to change
the matrix S; locally nearby the irregular scaling functions, i.e. we have the following
situation

Sj = o Sirr

with S;,, € RU=3x42=3) " Gince in the regular case we obtain n vanishing moments, S;,.,.
must be chosen to maintain this property. To achieve this goal, since S; must satisfy
([2.17), we need to know the vectors ¢;, and m;,, for every o € {0,...,2n — 1}. This
is not difficult thanks to the polynomial reproduction property and Proposition
[[.40, Since outside S;.., the matrices S; are diagonal, there is no interaction between
regular and irregular entries. The idea, roughly speaking, is to choose S;,, such that it is
the minimal block that achieves to get the desired number of vanishing moments.

Algorithm 1:
1. Define the (4n — 3) x n matrix

C = [ [cjo®)lrez, | - | [Cmn1(B)kez,, |

2. Compute the QR factorization C = OU with orthogonal O € RU»=3)>*(n=3) gnd

upper triangular U e RU4"=3*,

3. Define S; =1 and, if hy # h,, modify
Sirr = [S;(k,m)]kmez,, = O O7, (2.36)

where

6 = [ [O(kv 1>]k€Iirr ‘ ‘ [O(k7n)]k61irr ]

We notice that Algorithm 1, when h, # h,., generates a matrix S;.. which is not full
rank and this is a significant downside for some applications, e.g. signal compression.
Nonetheless, for analysis of subdivision smoothness we only need the decomposition part
of the corresponding wavelet tight frame algorithm and the matrices S; constructed via
Algorithm 1 define a family of kernels ®;(z)"'S;®;(y) with the desired approximation
properties.
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2 Wavelet Tight Frames

Proposition 2.29. Let S; be defined by Algorithm 1. Then, for all f € L*(R),

(1) 3¢; >0 . fla) @5(x)" 8; @5(y) fly) dudy < Cj|f]ze,

(@) | flz) @i(2)" 8; 5(y) fy) dvdy —> |flF2e J — 0.

RZ

Proof. Part (i): Since ®; = 29/2®(27.), we only need to prove the claim for j = 0.
Recall that the regular elements in ®( are the elements of &, and ®,. in . For such
regular families of scaling functions Theorem [2.15] with S = T implies the existence of
Cy > 0 and C, > 0, respectively, such that, for all f e L*(R),

max{ @) ()" Pe(y) f(y) d dy, @ ®,.(2)" @,(y) fly) dz dy } <

< max{Cy, G} | fl72-
Decompose the bi-infinite identity I = I, + I;.. + I, with

1, j<1-2n,

N 1, j>2n-—1,
L(j.7) = { 0, otherwise,

and L.(j,j) = { 0, otherwise.

Then, for all f € L*(R), by (2.36) and the Cauchy-Schwarz inequality, we have

f(x) ®o(x)" So oly) f(y) dz dy =

R2

- f(ZL‘) ‘I)(I)OT (Ié + Iirr SO Iirr + Ir ) ‘1)(?})0 f(y) dx dy

2n—2 2n—2

wox(Co G IS+ Y] O 86| [| 1) ooyt a

Jj=2-2n k=2-2n

N

[ éneto) st dy\

N

((max(CeCr) + (an—=3) 180l g ool ) 11
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Part (ii): Using again I = I, + I, + I, and (2.26), for every f e L*(R), we get

2 2

0
< Hf X(-e00) = 2 f f(z) @p(272)" y(27) da
L2 —o

'f - [ o @7 s 0,0 ds

L2

2
+

QjJ f(l’) (I)(Qjm)T Iirr SO Iirr (I)(Qj') dx
R

L2

2

+ \f Yo =2 | @) 0.0 0,27 da
L2

= Y T Yir + Vr

The indices of the non-zero elements of I, Sy I, belong to the set Z;,.. x Z;,., in (2.31]),
thus,

U supp(¢ox) =: [a,b], —00 <a <b< 0.
kEIirr

The continuity of ®; and the Cauchy-Schwarz inequality yield

o= 2%
/Y’LT‘T’ [a,b]
27

with the constant C' = (b — a)?|®” I, So Ly ®|3.. Thus, i goes to zero as j goes
to co. Moreover, since fx(—w,0) and fXx(o,0) belong to L*(R), by the argument from the
regular case, both v, and 7, go to zero as j goes to o0.

2

J[a,b] f(.f) q)O(Qj,I‘)T Iirr S Iir'r q)o(QJy) dx dy < C ||inQ([a’.b]>

27

27

]

Examples in Section and numerical evidence for n = 3, ..., 8 with different hy, h, >
0 (defining the mesh tg) lead to the following conjecture.

Conjecture 2.30. Let S; be defined by Algorithm 1, P; and D as in (2.6) for the
Dubuc-Deslauriers 2n-point scheme and p, q1 and qs as in Proposition [2.27.

(1) For
R;=S; — P, S;; P (2.37)

j—b
and By, k ¢ L., with entries
2
Bi(t,u) = pp’(t—2k,u—2k) + > quan(t—2ku—2k), tuel, (2.38)
m=1

the matrix
R, =R; — = >, By (2.39)

s positive semi-definite.
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(17) For all € {0,...,n—1}, S; satisfy (2.24).

Remark 2.31. Note that the requirement that R, is positive semi-definite is stronger
than the positive semi-definiteness of R;. Moreover, we get explicit

Qj = [ c Qmin(L‘M)fl Qirr Qmax(IiM)Jrl R ]

with Ry = Qi QL. and B, = Q,Q;, for k ¢ T, &

Apart from the examples in Section and numerical evidence for n = 3,...,8,
there are other facts that support Conjecture [2.30] First of all, in the regular case,
the construction in Algorithm 1 reduces to the standard UEP construction. Indeed,
even if we modify S;,, as in Algorithm 1 step 3, since in the regular case m;, = c;,
a€{0,...,n—1}, it is easy to check that Conjecture (i) and (ii) are satisfied. Secondly,
in the semi-regular case, reduces to an identity for certain finite matrices. For
a=0,...,n—1, define

M; = [ [mjo(k)lkez,,, | - | My 1(k)]kez,, ]

and
Then the irregular part of (2.24) becomes S;.,M; = C;, which implies

M! C; = MT'S,,, M.

Thus, for (2.24) to hold the matrix MJT C; must be symmetric. Indeed, for every
0, fe{0,..n—1}, by (230, we get

0 = 2°®] ¢cj5—cj, D;a”

[0k (@) |hez,., [Ci8(F)lkez,, — [Cia(k)]ier,,, [2°6ju(@)]kez,.

+ 3 (k) 2°0ju(@) — cjalk)r’dsn(z)), zeR.
k¢ZLirr

Integrating both sides of the above identity and using the fact that m;,(k) = c;.(k)
for € {0,...,n — 1}, k ¢ Z,,,, we obtain

(MTC))(ev, B) — (M]C;) (B, ) =
= [myo ()., [€js(K)lker,, — [Cialk)]ter,,. [y 5(k)lkez,,,
=0, «ap€e{0,...,n—1}

We strongly believe that part (i) of Conjecture is due to some special, intriguing
property of the Dubuc-Deslauriers schemes.
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2 Wavelet Tight Frames

Remark 2.32. If one chooses . < n columns of O in , then the corresponding
matrix S would generate a wavelet tight frame with 7 vanishing moments. Since it is
not possible to get more than n vanishing moments in the regular case, the choice . = n
is optimal in the semi-regular case. <&

2.2.2 Examples

We present two simple examples illustrating the construction in Section forn =1
and n = 2, respectively. The small bandwidth of the corresponding subdivision matrices
P allows for exact computations in terms of the mesh parameter h,, h, > 0. Without
loss of generality, after a suitable renormalization, we consider the semi-regular mesh t,
with Ay = 1 and h, = h, h > 0. In the case n = 1, the Dubuc-Deslauriers 2-point scheme
corresponds to the linear B-spline scheme, Examples [I.5] [[.12] [[.20] and [1.25] The case
n = 2, is more interesting and involved due to the high complexity of the entries of
the corresponding matrices. For these two examples we are able to prove both parts of
Conjecture [2.30]

For the interested reader, the irregular filters Q;,.. for n = 2,3,4,5 and for several
values of h, > 0 are available in [59)].

Case n = 1: linear B-spline scheme

In the regular case, i.e. hy = h, = 1, the linear B-spline scheme is defined by the mask

[p(k) k‘=—1,0,1]=[% 1 %]T

By Proposition [2.27, with [d(k) : k=—1,0]=[1 1 ], we get

1 T
[ai(k) : k=-1,0,1] = 7 [1 0 -1],
[qo(k) : k=-1,0,1] = % [-12 -1]".

In the semi-regular case, the subdivision matrix P does not depend on h and is the 2-
slanted matrix with columns determined by p. The corresponding basic limit functions

are the ones defined in ([1.21), Example [1.20, Thus, the entries of D in (2.6 are well
defined for every h > 0 and, the first moments of the scaling functions satisfy

T
m;, = D'?1 = l 11 # Vh Vh ] = Cjo-
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The Algorithm 1 computes S;,,, = 1, thus, by (2.30)), part (ii) of Conjecture is true.
Moreover, by (2.39)), we get

2h +1 V2 Vh o]
4h+1)  4vh+1  4(h+1)
o V2 1 V2h — 0. OoF
Rzr'r - _4\/m 5 _4\/m - errQirra
R W2k h+2
| 4(h+1) 4Vh+1 4(h +1)
with )
1 V2h
ovh+1l 2vR+1
Qirr = ? 0
vh V2
| 2vA+I 2vA+1 |

Therefore, part (i) of Conjecture is also true.

Case n = 2: Dubuc-Deslauriers 4-point scheme

For n = 2, which is also a special case of the family of schemes constructed in I}, 2], due
to Definition [2.23], we obtain the regular columns of P as shifts of the regular mask

1
[p(k) : k=-3...3] = 5z [~1 0916 90 -1]"

and the five irregular columns of P are given by

- ~1/16 .
0
9/16 ~1/16
1 0
9/16 9/16 —1/16
0 1 0
2h + 1 3(2h+1)  3(2h+1) 3
16(h +2) 8(h+ 1) 16h “8h(h+ 1)(h +2)
[P(m, k)] -r<m<r = 0 ! 0
keLirr 3h3 3(h +2) 3(h +2) h+2
T 82h+ 1)(h+1) 16 8(h+1)  16(2h+1)
0 1 0
~1/16 9/16 9/16
0 1
~1/16 9/16
0
i ~1/16
Proposition with
1
[d(k) : k=-3.....00 = [ 1+v3 3++3 3-3 1-v31",
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yields
2
[qu(k) : k=-3,...,3] = 1—*2 [V3-=2 0 6-+3 0 —6-+3 0 v3+2]",
1 T
[az(k) : k=-3,...,3] = G [T 0 -9 16 -9 0 1] .

Applying Proposition in the regular part of the mesh, we obtain mgo(k) = 1,
k < —2, and mq (k) = V'h, k > 2, and, by Proposition , we get

1 3\? 479 (7—2h)(h +2)
ms0(~2) ::'Jfﬁ(h—ﬁ) R

mo,o(o) = <h ;h1)3’ mo,o(l) = \/(7h — 21)5(5h - 1)

122 3\° 479
d 9) = A (- .
and - mo,(2) 120k ( 244) " 585600

The expressions for mgo(—1) and mg (1) imply that D in (2.6]) is positive definite if
27
72
other h. Moreover, for the second moment we have

and only if A € . Thus, the frame construction in Section [2.2| is not valid for

mo, (k) =k, k<-2, and mgy(k)=kVh, k>2,
and in the irregular part
[mo,l(k)]kz— ..... 2 =

—3h2 4+ Th — 1205 (h + 2)(4h? — 14h + 35)

h3
. 1 .
diag([mo,o(k)]x=—2...2) [ 500 ; o S

600h ' 75h ' 600h

(h+ 1)(h — 1)(31h% + 40h + 31)  (2h + 1)(35h% — 14h +4) 1205k — Th? + 3h — 1}

Next, we construct S; to check the validity of Conjecture 2.30[ The entries of S;.,
depend in an intricate way on the parameter h, thus, we work with S;,, instead, where,
for

5(h+1) 37(h2 — 1) 5(h + 1)3(431h2 + 938h + 431)

e e 7% ’

74



2 Wavelet Tight Frames

we have
Sirp = O%y diag([moo(k)]x=—2,. 2) Sirr diag([myoo(k)]k=—2...2)-
with
Sirr = (@B +7) [A1) (M, k)] aemper + ® [(totg)(m, k)] ocmper — o®B [(18] + tol")(m, k)], oy

60R2+88h+32 60h2+51h+9 60h2+14h—14 23h2—9h—14 —14h*—-32h—14
60h2+51h+9 60h®+14h+16 60R*>—23h+23 23R —16h+23 —14h*>—9h +23
60h%+14h—14 60h>—23h+23 60h*—60h+60 23h*—23h+60 —14h%+14h+ 60
23h* —9h—14 23> —16h+23 23h>—23h+60 16h*>+14h+60 9h®+51h+60
—14h2 —32h—14 —14h>—9h+23 —14h*+14h+60 9h®+51h+60 32h%+88h +60

Note that part (i) of Conjecture is equivalent to the system

_ 25(h +1)°
48

~

Sirr diag([moo(k)]k=—2,.2) [Moo(k)]ke—2..2 = a7 [1(k)]ke—2. 2

~

Sirr diag([moo(k)]k=—2,.2) [Mo1(k)]ke—2.. 2 = a7 [to(k)]k=2,. 2

of polynomial equations, whose validity we checked with the help of MATLAB symbolic

27
tool. Due to a,y > 0 for h € (5, 5), part (i) of Conjecture [2.30| is equivalent to

checking that N
R, = avh diag(mgo) ™' Ry, diag(mgp) ™"

is positive semi-definite. The renormalization leads to ﬁm with polynomial entries and
allows for symbolic manipulations. Indeed, this way, the generalized Sylvester criterion,

~ 27
confirms that R, is positive semi-definite for h € (?, 5) In Figure one can see
the framelets corresponding to a possible factorization of R with h = 2.
Remark 2.33. The value 2/7 ~ 0.2857 resembles the corresponding critical value in
[33, B4] computed for the irregular knot insertion for the 4-point scheme. Below this
critical value the scheme loses smoothness. This fact makes the restriction on the range
of the stepsize h less surprising in this case. &

Case n > 2

Unfortunately for n = 3 it is already too difficult to compute the moments with respect
to the mesh parameter h, as for n = 1,2. However we approximated, with accuracy 107,
the critical value he.;; which defines the interval (h_., heni¢) available for h to construct
a wavelet tight frame from the Dubuc-Deslauriers 2n-point scheme.
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hcrit
2.622482436768618
2.359070119036101
2.234640490839382
2.164064886283900
2.119382199894698
2.089127660655424

O~ O UL W3

From this table, we guess that h..;; goes to 2 for n going to co, which means that
seeking for more vanishing moments this way requires to pay a toll on the flexibility of
the initial mesh.

Different n e {1,...,8} and h € [1, heriy — 10°) have been considered. In the following
table are listed the minimum eigenvalues of R, for some choices of n and h, computed
with the command min(eig(double(-))) of MATLAB.

(1,h) 473 5/3 2
3 | —2.6741e — 16 | —2.0526¢ — 16 | —2.0990¢ — 16
4 | —3.3300e — 16 | —3.8006¢ — 16 | —3.1009¢ — 16
5 | —8.4996¢ — 13 | —8.4977¢ — 13 | —8.4999¢ — 13
6 | —5.3231le — 13 | —5.3221e — 13 | —5.3187¢ — 13
7 | —2.0486e — 12 | —2.0435¢ — 12 | —2.0390¢ — 12
8 | —2.3581le — 12 | —2.357le — 12 | —2.3566¢ — 12

For n = 3, we still have the explicit algebraic expression of the Daubechies symbol
and, thus, of the regular columns of Q;. Moreover, for fixed h > 0, we can compute
algebraically the matrix S;,.., which satisfies , and, thus, we have the precise explicit
expression for R;.., which can be proved to be positive semi-definite by the Silvester
criterion. For n = 4, we lose the algebraic expression of the Daubechies symbol, thus,
the regular columns of Q; are just approximations of the ones given by Proposition
[2.27 Thus, we can only have an approximate expression of Ry, even if S;,,. can be
still computed exactly. For n > 5, also the computation of S;,,. is approximate because
the symbolic expressions involved are too long and complicated to be managed by a
standard computer. These are the reasons why there is a drop in precision in the above
table for n = 5. After a proper thresholding, the Q.. obtained from R,;,.. by singular
value decomposition has proved to be performing good for applications in Chapter
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o5 | 0.5 R 05 os| |,
\ ; \
| / I\ A
0| | /""'/\- — 0 L VAN e 0 — 0 I‘ f ——
% \/ ! NV I
05| | -05 N -05 -0.5 Il
V
1t | 1 1 1
15 15 15 15
5 0 5 10 15 5 0 5 10 15 5 0 5 10 15 5 0 5 10 15
0.5 0.5 0.5 0.5
0 " V‘I ;o 01 f S — o 0
\ / W
05 i 05 05 05
1 1 1 1
15 15 15 15
5 0 5 10 15 5 0 5 10 15 5 0 5 10 15 5 0 5 10 15

0.0000 0.0000 —0.0000 0.0311 0.0009 0.0481 —0.0048 —0.0037
—0.0000 —0.0000 —0.0000 0.0000 0.0000 0.0000 0.0000 —0.0000
—0.0000 —0.0000 0.0000 —0.2085 0.0029 —0.5363 0.0452 0.0005

0.7656 0.2646 —0.1091 0.3036  —0.0790 0.0978 0.0404 0.0008
—0.0000 —0.0000 0.0000 —0.8142 —0.0832 0.2487 0.0301 0.0007
—0.4246 0.2412  —0.0333 0.2374 —0.0390 0.0757 0.0231 0.0007
—0.2950 0.1101 0.0041 0.1827 —0.0170 0.0578 0.0130 0.0005
Qirr = —0.3055 0.0064 0.0552 0.2222 0.0012 0.0696 0.0076 0.0007
—0.0647 —0.3271 0.1672 0.1482 0.0578 0.0446 —0.0161 0.0005

0.2038 —0.6632 0.2752 0.0547 0.1147 0.0134 —0.0406 0.0003
—0.0000 0.0000 —0.7972 —0.0663 0.2687 —0.0219 —0.0766 0.0001

0.0863 0.5593 0.4887 —0.1329 0.2274 —0.0491 —0.0893 —0.0001
—0.0000 0.0000 —0.0765 —0.0034 —0.7045 —0.0610 —0.0364 —0.0003

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
—0.0000 0.0000 —0.0109 —0.0015 0.1847 0.0201 0.1492 —0.0008

Figure 2.7: Irregular framelets for the Dubuc-Deslauriers 4-point scheme with h = 2
corresponding, from left to right, to the columns of a possible factorization
of Rirr = Qir'r i

arr”
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3 Regularity Analysis via Wavelet
Tight Frames

This last chapter is devoted to the results in [7]. The goal is to develop theoretic tools
(based on the wavelet tight frames constructed in Chapter [2)) for the analysis of the
smoothness of semi-regular subdivision schemes.

Since their appearance, wavelet systems became of crucial importance in several ap-
plications. One of them, which is of special interest to us, is the wavelet based charac-
terization of the Besov spaces B ,(R), 1 < p,q < o, 7 > 0, and, in particular, of the
Holder-Zygmund spaces, for p = ¢ = 0.

Theorem 3.1 ([50], Section 6.10). Let s € (0,00) and 1 < p,q < 0. Assume
{op=do(- — k) : keZ} u{pjp =202 (277" —k) : keZ,jeN}cC(R)

15 a compactly supported orthogonal wavelet system with v vanishing moments. Then,
for r € (0, min(s,v)),

B (R) = { Mase+ DD biatin + {arkez € 6,(2), {Qj(wr%_%) {6k rezly, }jeN € eq(Z)}.

keZ jeN keZ

Due to the perfect reconstruction property (2.2)), Theorem basically asserts that
if we have the information about the decay of the coefficients {ay = {f,¢r) : k € Z}
and {bjx = {f,jry : j € N, k € Z} of a function f € L*(R), we can determine the
smoothness of f. To do that however one must first compute those inner products. In the
regular case we are able to do that by Proposition [1.42] However, orthogonal wavelet
systems are not suitable for the semi-regular setting and we can not use Proposition
in this case. Proposition is applicable to wavelet tight frames constructed in
Chapter 2l A question then arises naturally: can we extend Theorem to the semi-
regular wavelet tight frames? The answer is yes and we prove it in what follows. We
actually do more, providing a generalization of Theorem [3.1] in the case p = ¢ = o0, for
the wider class of function systems

F={¢kik€Z}U{¢j,k:jEN7kEZ} (31)

with the following properties
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(I) F forms a (Parseval/normalized) tight frame for L*(R), i.e.

= Z fs r)por + Z Z {fobjny) Yims | € LP(R); (32)

keZ JeN keZ
(IT) there exists a constant Cj,y,, > 0 such that

Sup{| Supp(¢k>|} < Csupp7
keZ

(3.3)

iug{lsupp(wj,k)l} < Cogp 27, jeN;
(S

(III) there exists a constant Cr > 0 such that for every bounded interval K < R the

sets
To(K) = {keZ : supp(dp) n K # I},

I''(K) = {keZ : supp(jp) n K # &}, jeN,

satisfy
0] < Cr(@|K[+1), j=0; (34)

(IV) F has v € N vanishing moments, i.e.
J 2" Pip(x)der = 0, nef{0,...,v—1}, jeN, keZ, (3.5)
R

and there exists a sequence of points {z;; : j € N, k € Z} such that, for every
0 <7 < v, there exists a constant C,,,, > 0 such that

sup f \z|" | e(x + xjp)|de < Cymp 2_j(’"+%>; (3.6)
R

keZ

(V) FcC*(R), s >0, and for every 0 < r < s there exists a constant C,,, > 0 such
that
sup{|grler} < Comyr,
keZ

(3.7)
sup{|tjallert < Camnr 2072) jeN.
keZ

Remark 3.2. Note that (3.6]) is implied by conditions (II) and (V) for 0 < r < s. Indeed,
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choosing x; to be the midpoint of supp(¢;x), j € N, k € Z, we get
, supp(¥i)|\" o,
[ e tosste + ziolde < Cona () 202 supi()

Cr+1 Cs

supp ~'sm,0 2—j(r+%) .
27‘

We state the assumptions (II) and (V) separately to emphasize their duality, which
becomes even more evident in the statements of Propositions and in Section
3.1.1] Indeed, Theorems and require 0 < r < min(s,v), where the value of s
or v affects only one of the inclusions in either Proposition or in Proposition [3.6]
Moreover, stating (IV) and (V) separately, we can easily generalize our results to the
case of dual frames with the analysis frame satisfying (II) and (IV) and the synthesis
frame satisfying (III) and (V). &

Properties (II)-(V) on one hand leave freedom to the tight frame to behave differently
at different places along R, while on the other hand they still require a sort of uniform
behaviour of the frame elements with respect to the length of the supports, the density
of the elements along R levelwise, the vanishing moments and the smoothness. These
restrictions, however, are not such a big deal, since for most wavelet tight frames used
in applications, including the ones constructed in Chapter 2, they are easily satisfied.
Indeed, (II) and (III) follow from Assumption|[]] (c) and (d) together with (2.7), since the
columns of Q; have uniformly bounded support. The structure of Q; and are also
responsible for (IV) and (V), once the considered system with v vanishing moments has
been constructed from a C* subdivision scheme. Our main result, Theorem reads as
follows.

Theorem 3.3. Let s > 0 and v € N. Assume F < C*(R) satisfies assumptions (1)-(V)
with v vanishing moments. Then, for r € (0, min(s,v)),

B, (R) = { Dlarde + D> binthin 1 {artrez € Lo (Z), {gjm%) 1{batrezll,, }jGN S ew(Z)}.

keZ jeN keZ

This chapter is organized as follows. In Section |3.1| we give the proof of Theorem
dividing it into two parts: Theorem [3.4] in Section [3.1.1], gives the proof of Theorem
in the case r € (0,00)\N and Theorem [3.9] in Section [3.1.2} provides the proof for
r € N. We would like to emphasize that the results in Sections|3.1.1]and |3.1.2|are true in
regular, semi-regular and even irregular cases. Theorem [3.3]implies the norm equivalence
between Besov spaces B, ,,(R) and the sequence spaces (7, ., r € (0,0), see Remark
3.10. The proofs in Sections [3.1.1] and [3.1.2] are reminiscent of the continuous wavelet
transform techniques in [20, 50] and references therein. In Section [3.2] we illustrate our
results with several examples. In particular, we use the wavelet tight frames constructed
in Chapter 2] to approximate the Holder-Zygmund regularity of semi-regular subdivision

schemes based on B-splines, the family of Dubuc-Deslauriers subdivision schemes and
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interpolatory radial basis functions (RBFs) based subdivision.The construction of semi-
regular RBF's based schemes is a generalization of [45] 46] to the semi-regular case. We
would like to point out that such semi-regular schemes could be used for blending curve
pieces with different properties.

3.1 Characterization of Holder-Zygmund Spaces
B, .(R) via Tight Frames

3.1.1 The Case r € (0,00)\N

In this section, in Theorem we characterize the Holder spaces Bl (R) = C"(R) n
L*(R) for r € (0,90)\N in terms of the function system F in (3.1)). The proof of Theo-
rem follows after Propositions and [3.6] that stress the duality between conditions
(IV) and (V). Proposition [3.5, provides the inclusion ” 2 under assumptions (III), (V)
and 7 € (0,min(s,1)). Whereas Proposition yields the other inclusion "< “ under
assumptions (I), (IT), (IV) and r € (0,1). The proof of Theorem then extends the
argument of Propositions[3.5 and [3.6] to the case r > 1, r ¢ N. Our results show that the
continuous wavelet transform techniques from [20] [50] and references therein are almost
directly applicable in the irregular setting.

Theorem 3.4. Let s € (0,0) and v € N. Assume F satisfies (1)-(V) with v vanishing
moments. Then, for r € (0, min(s,v))\N,

{ Zakqﬁk + Z Z b] kwgk : a b E ggooo wz’th a = {ak}kez, b = {bj,k}jeN,keZ} .

keZ jeN keZ
We start by proving the following result.

Proposition 3.5. Let s > 0. Assume F satisfies (111) and (V).
Then, for r € (0, min(s, 1)),

{ Zakgbk + Z Z b] kwgk : CL b 6 [;ooo wz’th a = {ak}kE% b = {bj,k}jeN,keZ} .

keZ jeN kez

Proof. We consider f(x) = fo(z) + g(z), x € R, where

fol) = D ap dr(z) and g(z) = > > b Vjulx (3.8)

keZ JeN keZ

with finite
Ca —sup{]ak|} and G : —sup2j( )sup{|bj7k\}. (3.9)
keZ

]E

Since on every open bounded interval in R the sum defining f, is finite due to (III), we
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have fo € C*(R) < C"(R) due to r < s. Moreover, by (III) and (V), we obtain
HfO||L°O < Ca CI‘ Csm,O < 00. (310)
Analogously, since r > 0, we have

lgle < Cy Cr Camo Y, 277 < o0, (3.11)

jeN

thus, f € L(R). Let 2, h € R. By (3.9), we get

(gl +h) = gle) | < D3 25 by | [4yulz +h) — i) |

jeN kez

23(7‘-‘:-
< Gl Y D [ in(a +h) — (@) | -

jeN | | keZ

Since there exists J € Z such that

277 < |n| < 277!

Y

we have
lgl@+h) — gl@)| < Cylh" Y 223 |y i@+ h) — Yiu(a) |
jeN keZ
= Gn[" (A + B),
where

Z Ui S | a4+ ) — ip(e) | and

keZ
(3.12)

B = Y Ui N (e h) — i) |
j=J

keZ

If J <1, A = 0. Otherwise, for every ¢ > 0 with » < r + ¢ < min(s, 1), due to (V) we
have

| Yip(z+h) — Yjp(x) | < Comrie 2j(r+e+%) W) < Camrie 9(i=J)(r+e) 9j/2 gr+e :
and, by (III), the sum in A over k has at most

Uiz +h)| + Tj(2)| < 2Cr
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non-zero elements. Thus,

J-1 J—1
A < 2r+€+1 Cl" CSm,T‘+€ 2 (276)0]7].) < 4 CF Csm,rJre Z (276)j- (313)
j=1 j=1

Therefore, since € > 0, A is bounded. To conclude the proof, we observe that, by (V),

e}
, 1
—r\j—J __
B < 2 C[‘ Csm,O jzgj (2 )j = 2 C[‘ Csm,O m

Thus [g(z +h) — g(x)|/|h]" is uniformly bounded in = and h, which leads to g € B, ,.(R)
and f € By, ,(R) with | f|s;, . < C|(a,b)|e, , for some constant C' > 0. O

Next, we give a proof of Proposition [3.6]

Proposition 3.6. Assume F < C°(R) with uniformly bounded {¢y, : k € Z} satisfies
(1), (II) and (1V) with 1 vanishing moment. Then, for r e (0,1),

BZO’OO(R) = { Z akgbk + Z Z bj,k'(/)j,k . ((l, b) € Ego,oo with a = {ak}kez, b= {bj,k}jeN,keZ} .

keZ JjeN keZ

Proof. Consider f € B, ,(R) n L*(R). We choose a representative of f in (3.2) with
coefficients aj, = (f, ¢x) and b, = {f,¥;x). On one hand, due to (II) and the uniform
boundedness of ®, there exists Cy > 0 such that

| < Cp |floo, k€ Z. (3.14)

On the other hand, with z;; as in (IV), we can exploit the vanishing moment of the
tight frame and the regularity of f to get

sl = \ [ @) vsate) as

fR (fl2) = flzjr) ) Yju(z) do

N

I£l55.. f v — 2" ()] do (3.15)
R

i 1
= 1l f ol [yl + 2| de < 2904 Co [l
R

For a general f € B, ,(R) the claim follows by a density argument. Thus, there exists
a constant C' > 0 such that | f|s; . = C[(a, )|, .- O

Remark 3.7. In Proposition there is no need for the tight frame to be more than
continuous: only the vanishing moment matters. The same phenomenon happens for the
inclusion € in Theorem - the number of vanishing moments being the key ingredient
for its proof. On the other hand, the regularity of the wavelet tight frame F plays the
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key role both in Proposition [3.5] and in the proof of the inclusion 2 in Theorem [3.4]
This explains the duality between assumptions (IV) and (V). &

We are now ready to complete the proof of Theorem [3.4]

Proof of Theorem[3.4]. For the case r € (0, 1) see Propositionsand . Let r = n+a,
with n € N and a € (0,1).

1% step, proof of “2”: similarly to Proposition we define constants C, and C}, as
in (3.9) and make use of the estimates in (3.10)) and to conclude that f e L*(R).
The next step is to show the existence of the n-th derivative g™ of ¢ in (3.8). This
follows by uniform convergence since, for every x € R and 0 < £ < n < r, by (V), we
have

DN b v (@)

jeN keZ

¢ o
< D bl [52(2)] < Gy Cr Cag D) 277070 < op,

jeN keZ jeN

The same argument as in Proposition leads to ¢ € C*(R) and, thus, f € C"(R).
2" step, proof of “” resembles [43]: similarly to Proposition , we consider f €

B, .(R)n L*(R) and the uniform bound for [(f, ¢;)| is obtained as in (3.14)). Exploiting
the first n vanishing moments of the tight frame we have

] = f £(2) by(e) de

)

=l o0 (o
= JR < f(z) = f2jn) — Z %(l‘ - $j,k)£ ) V() do

where the x;; are as in (IV). Using the property of the Taylor expansion of f centered
in ;5 with the Lagrange remainder term, we have that, for every x € R, there exists a
measurable {(z) € R, with [{(z) — x| < |z — x|, such that

) (& (
[ i)l < ’ JR #@ —2ik)" Vix(z) dx

Now we can exploit 7 4+ 1 vanishing moments, the Holder regularity o of f™ and (IV)
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to get
1
Kol < | | (PO = @) ) (0= )" vale) da
1£" g, o n
< + J §(@) = @jul™ |2 — zj0]" [ (2)] da
n! R
(3.16)
1f ™83, \
< Ve [ ol st o
n! R
Hf HBoooc r —i(r 1 Cvmﬂ’ Hf(n)HBgcoo
S T JR I [y + 20| dy < 27903) n
Thus, the claim follows. m

Remark 3.8. If s e Nand v > s in Theorem [3.4] then the wavelet tight frame F does not
need to belong to C*(R). It suffices to have F < C*"(R) with the (s — 1)-st derivatives
of its elements being Lipschitz-continuous. &

3.1.2 The Case r e N

It is well known [50] that the Holder spaces with integer Holder exponents cannot be
characterized via either a wavelet or a wavelet tight frame system F . Indeed, if r = 1,
the estimate does not follow from (3.9). Thus, similarly to Theorem , the
natural spaces in this context are the Hélder-Zygmund spaces B, ,(R) for r € N. This
section is devoted to the proof of the wavelet tight frame characterization of such spaces,

see Theorem The results of Theorems [3.4] and [3.9] yield Theorem [3.3]

Theorem 3.9. Let s > 0 and v € N. Assume F < C*(R) satisfies (I)-(V) with v
vanishing moments. Then, for 0 <r < min(s,v), r € N,

Bgo,w( ) = { Z%% +22b]k%k : (a,0) eé’;m with a = {ay}rez, b= {bj,k}jeN,keZ}-

keZ JeN keZ

The significant case is when r = 1, since for all other integers one usually argues
similarly to the proof of Theorem [3.4] In the case r = 1, for the inclusion 2 we use the
argument similar to the one in Proposition [3.5l On the other hand, for the inclusion <,
we cannot exploit the vanishing moments as done in (3.15)). To circumvent this problem,
inspired by [68], we consider an auxiliary orthogonal wavelet system which satisfies the
assumptions of Theorem . This way we get a convenient expansion for f € By, ,(R)
and make use of the wavelet characterization of By ,(R) for a € (r,s)\N in Theorem

B4

Proof. We only prove the claim for r = 1 < min(s,v). In this case B}, ,,(R) = A(R) n
L*(R). The general case follows using an argument similar to the one in the proof of
Theorem [3.4]

85



3 Regularity Analysis via Wavelet Tight Frames

1% step, proof of “2”: similarly to Proposition we define constants C, and C}, as
in (3.9) and make use of the estimates in (3.10) and (3.11)) to conclude that f € L*(R).
Let x € R. It suffices to consider A > 0. Then, for » = 1, we obtain
[ gz +h) = 2g(x) + gz —h)| <
< DD bkl [l +h) = 2¢5(x) + (e —h) |
jeN keZ

_i3
< Cyh Z 27

jeN h

Dl ikl +h) = 2¢4(x) + Yiulz—h) |
keZ
Since there exists J € Z such that

- —J+1
27/ < h < 277
we have

lg(z+h) = 2g(z) + glz—h)| <

keZ

< Gl Y 25N [dgala + h) — 24u(0) + vule — 1) |
jeN

To estimate | g(z + h) — 2 g(z) + g(x — h) |, we consider

J—1
A = Z 9J=i3
i=1

J

Dl ik +h) = 2¢5(x) + Yin(z—h) |
keZ
and

o0
B = Z 2/
j=J

i3 Z | Ye(z+h) — 2¢k(2) + Yju(z—h) |
keZ

nix(z) € [v — h,z] such that

If J] <1, A = 0. Otherwise, since the tight frame F belongs to C*(R), s > 1, we
use the mean value theorem twice for every framelet and find &4 (z) € [z,x + h] and

| Yje(z+h) — 29¢%(x) + Yjr(x—h) |

| Yju(x +h) — Yje(z) — (Yin(x) — Yl —h)) |
ho| (&) — o) (nin(x)) |-
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Now, for e > 0 with r =1 <1 + € < s, using (V) we get
| Vik(x +h) — 2¢(x) + (e —h) | =
= Comnre 23 h | () — minla) |
< Coniie oi (e+3)+e pl+e < Clomise 9i—=T)(14e)+4+1+2¢
Moreover, the sum in A over k£ has at most
Uiz +h)| + [i(z —h)| + [I(x)] < 3Cr

non-zero summands and, thus, we get

J—1
A < Cp Csm,lJre 9l+2¢ g Z (27€)J*j.

J=1

Since € > 0, A is bounded. To conclude the proof, we observe that

a0
B < CF C’sm70 3 Z 2J_j = 6CF Csm,()-
j=J

Thus, g € B}, ,(R) and, therefore, f € B}, ,(R) with | £l ., < Cl(a,b)]g, , for some
constant C' > 0.

2" step, proof of “C”: similarly to Propositionwe only consider f € A(R)nL*(R).
The uniform bound for |(f, ¢x)| is obtained similarly to (3.14)). To obtain the bound for
[ f, k)], we let ® U {Us}sen < C*(R) be an auxiliary compactly supported orthogonal
wavelet system with v vanishing moments (e.g. Daubechies 2n-tap wavelets [20] with
large enough n € N). d U {\T/g}geN satisfies the assumptions of Theorem and fulfills
(D)-(V), with appropriate fj and 5’3upp > 0, C~’1~ > 0, CN’Umm > 0 and CN’SWM > 0. Then,
from (3.2), we have f(z) = fo(z) + §(z), z € R, where

fo(x) = X3 {fr0m) dm(@) and @) = D7 D {fs o) Gem(2).

meZ LeN meZ

Thus, for every j € N and k € Z, we get

il < [Chos )| + 20 D KF B [Kltms 0]

leN meZ

Let a € (1,s)\N. Since both tight frames belong to C*(R) = C*(R), the function fo,
which is locally the finite sum of C*-functions, belongs to C*(R), and, by Theorem ,
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there exists C; > 0, such that

sup|<fo,wjk>| Cy 27 i(a+3) < O 2_]%, jeN.

Moreover, by Theorem [3.1] and due to f € A(R), there exists Cy > 0 such that

sup {f, Demd] < C227% | reN.
me.

Thus,
Kf bl < C127% + Gy Z 27 Z KDt i)
LeN meZ
\ i
= C’1 2_j5 + CQ (Z £7 Z |<¢K7717w]k>| + Z 2- 27 Z |<1/)Z7mwjk>|> (317)
=1 meZ meZ

= 1275 + Gy (A + B).
The sums in (3.17) over m have at most
Fe(supp(ei))| < Cr (2 Jsupp(ye)| + 1) < Cr (Coupp 27 + 1)

non-zero summands. When ¢ < j, by assumption (V) for Jg’m and (3.16]) with f = @,m,
due to Theorem we have

|<¢Z m> wj k>| vm [ 27 j(onr%) HQZZ,mHCO‘ < Cvm,a é,’sm,a 2(5—]’)(04-&-%)7

uniformly in m and k. Thus, substituting ¢ = j — ¢, we obtain

A < CpaC Z 273 2-(0+3) (0, 27 4 1)
~ o~ P , 3.18
— Cona O G 2798 S 27000 (0 27 4 1) (3.18)
=1
< 052793,

for some C'5 > 0, due to the fact that o > 1.
On the other hand, when ¢ > j, using (II) and (V), we get

|<¢Z m» % k>| smO C’sm ,0 2(]+Z)/2 min (Osuppz_ja 6;supp2_€) = C'4 20_4)/2
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uniformly in m and k. Thus, after the substitution ¢ = £ — j, we obtain

wlw

o
B < 04 él" Z 2—4 (Osupp 2€—j L1 ) 2(j—f)/2
=i

(3.19)
~ .3 © .3
= CyCr272 ) 27 (Capyp 2™ + 1) < C5 2702
m=0

for some constant C5 > 0. Combining (3.17)), (3.18) and (3.19) we finally get
Sp[(f. 50l < (Cr+Coly+CrCs) 275, jeN.
€

Thus, the claim follows, i.e., there exists a constant C' > 0 such that |f|z >

Cl(a,b)e, ,,- O
Remark 3.10. The norm equivalence between the Besov norm | - [z,  and || - [|e, .,
r € (0,0), is a consequence of Theorem [3.3] and the Open Mapping Theorem. &

3.2 Approximation of the Optimal Holder-Zygmund
Exponent

In this section, we show how to apply Theorem for estimating the Holder-Zygmund
regularity of a semi-regular subdivision scheme from the decay of the frame coefficients
of its basic limit functions with respect to a given tight frame F satisfying (I)-(V) for
some s > 0 and v € N. In Section [3.2.1] in a general irregular setting, we discuss
how to obtain such regularity estimates using the result of Theorem [3.3] In Section
3.2.2] we describe how to compute the frame coefficients in the semi-regular case using
Proposition [I.44] Lastly, in Section [3.2.3] we illustrate our results with examples of
semi-regular schemes such as B-spline, Dubuc-Deslauriers subdivision and interpolatory
schemes based on radial basis functions. The latter example in the regular setting
reduces to the construction in [45].

3.2.1 Two Methods for the Estimation of the Optimal
Holder-Zygmund Exponent

Definition 3.11. Let f € L*(R). We call optimal Hélder-Zygmund (smoothness) expo-
nent of f the real number

r(f) = sup{r>0: feB (R}
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Assume that r(f) € (0, min(s,v)) and that we are given
v = sup [(fiip)l, jeN
keZ

By Theorem [3.3] for every e > 0, there exists a constant C, > 0 such that, for every
JEN,

v < €270 =et3) e <r( f)—e+ %) — logy(C.) < —logy(7;).  (3.20)
From we infer that searching for r(f) is equivalent to searching for the largest
slope of a line lying under the set of points {(j, —logy(7;))}en. With this interpretation
in mind, the natural approach (see e.g. [20]) to approximate r(f) is to compute the real-
valued sequence {r,(f)}nen, where r,(f) — 1/2 is the slope of the regression line for the
points {(j, —logy(7;))}72{. This method is robust, i.e. for larger n the contributions of
the levels j > n become less significant, thus, the difference between r,,(f) and 7,41 (f) is
small and we are able to estimate the overall distribution of {(j, —logy(7;))}en. However,
examples in Subsection illustrate that the convergence of {r,(f)}.en towards r(f)
is very slow. One of the main reasons for such a behavior is the value of the unknown
C., which can be significant, e.g when f ¢ B;ﬁ@o (R).

An alternative approach for estimating the Holder-Zygmund exponent is given by the
following Proposition.

Proposition 3.12. Let r(f) be the optimal Holder-Zygmund exponent of f € C°(R). If

1
0<r*(f) = lim 10g2< Tn ) — — < min(s,v),

n—a Tn+1 2

then r*(f) =r(f).

Proof. We first prove that r*(f) < r(f) and then, by contradiction, that 7*(f) = r(f).
Let € > 0. We consider the series

S(r*(f) — ) = i P N=ers) o (3.21)

By the assumption, we obtain

2(n+1)(r*(f)—e+§)

T+l or*(N—etd qjpy Pt
Yn n—=0  Yn

li =27°. 3.22

n1—I>rolo 2n(r*(f)—e+%) ( )
Thus, by the ratio test, the series S(r*(f) — €) in (3.21]) converges for every e > 0.
Consequently, the non-negative summands of S(r*(f) — €) are uniformly bounded, i.e.

there exists C. > 0 such that
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Therefore, by Definition [3.11| and by (3.20), r*(f) < r(f).
On the other hand, by (3.20)), if 7*(f) < r(f), then there exists 6 > 0 and a constant
C's > 0 such that

vy < 2 (WD) e,

Therefore, similarly to (3.22)), we obtain that the series S(r*(f) + 6/2) diverges and at
the same time is bounded from above by

o0 o0
S(r*(f) +6/2) Z i 0+543) 4y < o5 Y 2702

j=1
Thus, due to this contradiction, r*(f) = r(f). O

The advantage of the approach in Proposition is that it eliminates the effect of
the constant C. in (3.20]). Even though the existence of 7*(f) is not guaranteed and the
elements of the sequence

n 1
r:(f):10g2<ﬁ)/ ) _57 nENa

Tn+1

can oscillate wildly, our numerical experiments in Subsection |3.2.3| provide examples
which illustrate the cases when {7 (f)}nen converges to r(f) rapidly. The convergence
in these examples is much faster than that of the linear regression method.

Remark 3.13. The series in ([3.21f) with € = 0 becomes

" = H [20D {1 ) b Lo }

JjeN 01

This norm appears in the characterization of B (R) in Theorem and corresponds
to (a,b) € £, ,, 7 € (0,00). Even if the case p = o0 and ¢ = 1 is not covered by Theorem
, this observation is consistent with B, . (R) < B (R)for ¢ < g <&

3.2.2 Computation of Frame Coefficients

Conditions (I)-(V) do not require the semi-regularity of the mesh and all the above
results hold even in the irregular case. To use the presented results in practice, however,
we need an efficient method for computing the frame coefficients

{ar = (f, dr)tren and  {bjx = {f, Vjk)}jeN ez

If F asin is a wavelet tight frame obtained from a convergent subdivision scheme
with subdivision matrix P and basic limit functions {¢y}rez as in Chapter [2[ and the
function f we want to analyse is a limit function of another convergent semi-regular
subdivision scheme with subdivision matrix Z and basic limit functions {(;}xez, we can
do it in a rather simple way exploiting Proposition and the following result.
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Proposition 3.14. For every j e N, i, k € Z, we have < (i, jm > = C;(k,m), where
C, = 29 (@) G D g,

with the cross-Gramian G = [{Ci,Pm))kmez, D as in (2.6) and Q; are the matrices
defining the wavelet tight frame in (2.7)).

Proof. Applying (2.7)), the substitution y = 2/, (I.17) and (2.5)), we get

| G w0)" de = 27 | [Golhez Bo(2a)" do Q,
= 2792 JR [G:(277y) kez Po(y)" dy Q;
_ il (zi)T j [Ge(1)]hez Do(y)” dy Q,

— 2 ()T f (G lhez [om ()]s dy D2 Q

— 272 (z))" G D2 Q.
O

In practice then, given a wavelet frame, we only need to compute the cross-Gramian
matrix G and then we can obtain the frame coefficients of {(;}rez just by matrix mul-
tiplication. The only thing one has to be careful about is to cut properly the matrices
at each step, since the products in Proposition are between bi-infinite matrices.

3.2.3 Numerical Estimates

For simplicity of presentation, in this subsection we choose hy = 1 and h, = 2 for
the initial semi-regular mesh t . The wavelet tight frames used for our numerical
experiments are the ones constructed in Section from the Dubuc-Deslauriers 2n-
point subdivision schemes. We present an application of the methods in Section (3.2.1
to four cases: the quadratic B-spline scheme, the Dubuc-Deslauriers 4-point scheme and
the semi-regular version of two interpolatory schemes based on radial basis functions.
The optimal Holder-Zygmund exponents of semi-regular B-splines schemes and Dubuc-
Deslauriers 4-point scheme are known. These examples are used as a benchmark to test
our theoretical results.

Example 3.15. The quadratic B-spline scheme generates basic limit functions which
are piecewise polynomials of degree two, supported between four consecutive knots of
tg. The corresponding subdivision matrix Z is constructed to satisfy these conditions.
There are k,.(Z) — k¢(Z) — 1 = 2 irregular functions whose supports contain the point
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t(0) = 0 and it is well known that these functions are C* ¢(R), ¢ > 0, thus their optimal
exponent is equal to 2.

In Figure [3.1] we give the estimates of the optimal Holder-Zygmund exponents by
both the linear regression method and by the method in Proposition [3.12] For the
analysis we used the semi-regular tight wavelet frame constructed from the limits of the
semi-regular Dubuc-Deslauriers 6-point subdivision scheme. This toy example already
illustrates that the method proposed in Proposition reaches the optimal exponent
in few steps, while the linear regression method converges much slower. A

Example 3.16. The scheme considered here is the one obtained in Definition with
n = 2. In this case, there are 5 irregular basic limit functions depicted in Figure [3.2]
Due to results in [21], it is well known that the optimal exponent of all these irregular
functions is equal to 2. Again, the method in Proposition remarkably outperforms
the linear regression method.

A

Radial basis functions based interpolatory schemes

Using techniques similar to the ones in Definition[2.23] we extend the subdivision schemes
[45],146] based on radial basis functions to the semi-regular setting. Let L € N. We require
that the subdivision matrix Z satisfies Z(2i, k) = 9, for i, k € Z. To determine the other
entries of the 2-slanted matrix Z whose columns are centered at Z(2k, k), k € Z and have
support length at most 4L — 1, we proceed as follows. We first choose a radial basis
function g(x) = g(|z|), = € R, which is conditionally positive definite of order n € N, i.e.,
for every set of pairwise distinct points {z;}*, < R and coefficients {¢;}, = R, N € N,
there exists a polynomial 7 of degree at most 1 — 1 such that

N

Z ¢ m(x;) =0

i=1

and the function ¢ satisfies

N N
Z Z ¢i ek g(x; —xy) = 0.
i=1 k=1

The next step is to choose the order m € {n,...,2L} of polynomial reproduction and,
for every set of 2L consecutive points to(k — L + 1), ..., to(k + L), k € Z, of the mesh
to in (1.3), solve the linear system of equations
A B u r
- (3.23)
BT o \% S

with
{A(,j) = g(to(k — L +1i) —to(k— L +7)) }ij=1,.2,
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{B(i,7) = tolk— L+’ Yisi or, j=1..m5
{r(i) = gz —to(k — L+1)) bizio, {s(j) = 23" }j=1..m and
xp = (to(k) +to(k+1))/2.

Lastly, the vector u contains the entries of the (2k + 1)-th row of Z associated to the
columns k — L + 1 to k + L. For the interested reader, a MATLAB function for the
generation of semi-regular RBFs-based interpolatory schemes is available at [61].

Remark 3.17. (i) Determining the rows of Z by solving the linear systems for
k € 7Z guarantees the polynomial reproduction of degree at most m — 1. Indeed, the
condition BT u = s forces Z to map samples over to of a polynomial of degree at most
m — 1 onto sample over the finer knots ty/2 of the same polynomial.

(i) If m = 2L, the system of equations BY u = s coincides with the one defining
the Dubuc-Deslauriers 2L-point scheme in Definition [2.23] In this case, the system
B” u = s has a unique solution, which makes the presence of A, i.e. of the radial basis
function g obsolete.

(77i) In general, if m < 2L, the structure of the irregular basic limit functions around
to(0) reflects the transition (blending) between the two (one on the left and one on
the right of to(0)) subdivision schemes of different regularity, see Example [3.18 This
depends on the properties of the chosen underlying radial basis function g. For example,
the blending produces no visible effect if g is homogeneous, i.e. g(Az) = |A|g(x), A € R.
In this case, for A > 0, the linear system of equations

A0 A B I 0 I 0 u AL O r
= (3.24)
0 L| [BY” o] |0 L/A| |0 AL7'| |V 0 L| [s

.....

for the mesh Aty. The structure of the linear system in implies that u is
the same as the one determined by (3.23).

(17v) The argument in (7i7) with L = I shows that the subdivision matrix obtained this
way does not depend on the normalization of the radial basis function g, i.e. all functions
Ag, A > 0, lead to the same subdivision scheme. &

Example 3.18. We consider the radial basis function introduced by M. Buhmann in
4]

122%log |z| — 212* + 32/x* — 122% + 1, if|z| <1,

g(a) = (3.25)
0, otherwise,

and choose L = 2 and m = 1. The resulting irregular functions (_», ..., (s are shown
in Figure . The structure of (; illustrates the blending effect (described in Remark
part (7iz)) of two different subdivision schemes meeting at to(0). Figure also
presents the estimates of the optimal Holder-Zygmund exponents of (_o,...,(s. These
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exponents are determined using the tight wavelet frame based on the Dubuc-Deslauriers
4-point subdivision scheme (see Example |3.16]). We again observe the phenomenon that
the method in Proposition [3.12] converges faster than the linear regression. A

Example 3.19. Another radial basis function that we consider is the polyharmonic
function g(z) = |z|, * € R. The corresponding irregular part of the interpolatory
subdivision matrix Z is determined for L = 2 and m = 3, see Figure 3.4 Note that the
regular part of the subdivision matrix Z (see the first and the last columns corresponding
to the regular parts of the mesh) coincides with the subdivision matrix of the regular
Dubuc-Deslauriers 4-point scheme. Due to the observation in Remark part (7i),
the absence of the blending effect is due to our choice of a homogeneous function g. We
would like to emphasise that the resulting subdivision scheme around t(0) is not the
semi-regular Dubuc-Deslauriers 4-point scheme, compare with Figure 3.2 Indeed, the
polynomial reproduction around to(0) is of one degree lower. We also lose regularity
(the Dubuc-Deslauriers 4-point scheme is C*~¢, ¢ > 0) but overall the irregular limit
functions on Figure have a more uniform behavior than those in Figure 3.2l We
again observe that the method in Proposition [3.12]yields better estimates for the optimal
Holder-Zygmund exponent, see tables on Figure [3.4] A

To conclude, we tested this method for a large number of other semi-regular families
of subdivision schemes (i.e. B-splines, Dubuc-Deslauriers and interpolatory schemes
based on (inverse) multi-quadrics, gaussians, Wendland’s functions, Wu'’s functions,
Buhmann’s functions, polyharmonic functions and Euclid’s hat functions [32]) obtaining
similar results.
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1/4 08}
3/4
3/4 1/4 ol
1/4 3/4
5/6 1/6 04l
1/3 2/3
3/4 1/4 02t
1/4 3/4
3/4 0 ‘ ! ‘
1/4 2 1 0 2 4
n | ra(C2) | ra(C1) n T::(gkg(Z)Jrl) TZ(CIW(Z)+2)
11-0.9004 | 0.8333 1 -0.9004 0.8333
2 1-0.0362 | 0.5235 2 0.8280 0.2136
3| 0.6611 | 0.9355 3 2.0000 2.0001
4| 1.0683 | 1.2308 4 2.0000 2.0000
5| 1.3178 | 1.4250 5 2.0000 2.0000
Figure 3.1: Semi-regular quadratic B-spline functions on the mesh to with A, = 1

and h, = 2 analyzed with the semi-regular Dubuc-Deslauriers 6-point tight
wavelet frame. Top row: part of the subdivision matrix Z that corresponds
to the non-shift-invariant refinable functions around t((0) and the graphs of
these functions (o and (_;. Middle row: estimates of the optimal Hélder-
Zygmund exponents of (_5 and (_; via linear regression (on the left) via
the method in Proposition (on the right). Bottom row: graphs of the
estimates of the Holder-Zygmund exponents.
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[—1/16 T
0
9/16 —1/16
1 0
9/16  9/16 —1/16
0 1 0
~1/16  9/16  9/16 —1/16
0 1 0
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0 1 0
~1/5  3/4  1/2 —1/20
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L —1/16]
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5 | 1.9360 | 1.5117 | 1.6052 | 1.9587 | 2.3596 5 | 1.9764 | 1.9883 | 2.0064 | 2.0489 | 2.1474
6 | 1.9516 | 1.6266 | 1.7032 | 2.0022 | 2.3239 6 | 1.9792 | 1.9897 | 1.9984 | 2.0131 | 2.0013
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8 | 1.9683 | 1.7614 | 1.8148 | 2.0286 | 2.2436 8 | 1.9954 | 1.9977 | 1.9999 | 2.0041 | 2.0001
9 | 1.9734 | 1.8030 | 1.8484 | 2.0310 | 2.2108 9 | 1.9979 | 1.9989 | 2.0000 | 2.0022 | 2.0000
10| 1.9774 | 1.8346 | 1.8736 | 2.0310 | 2.1833 10| 1.9989 | 1.9995 | 2.0000 | 2.0011 | 2.0000
11 | 1.9805 | 1.8592 | 1.8929 | 2.0298 | 2.1604 11 ] 1.9995 | 1.9997 | 2.0000 | 2.0005 | 2.0000
12| 1.9830 | 1.8786 | 1.9082 | 2.0281 | 2.1413 12 ] 1.9997 | 1.9999 | 2.0000 | 2.0003 | 2.0000
13| 1.9851 | 1.8944 | 1.9204 | 2.0262 | 2.1252 13 ] 1.9999 | 1.9999 | 2.0000 | 2.0001 | 2.0000
14| 1.9868 | 1.9072 | 1.9303 | 2.0244 | 2.1116 141 1.9999 | 2.0000 | 2.0000 | 2.0001 | 2.0000
15 1.9882 | 1.9179 | 1.9385 | 2.0226 | 2.1001 15| 2.0000 | 2.0000 | 2.0000 | 2.0000 | 2.0000
16 | 1.9895 | 1.9268 | 1.9453 | 2.0209 | 2.0902 16 | 2.0000 | 2.0000 | 2.0000 | 2.0000 | 2.0000
0 5 10 15 0 (015 0 C 0 5 10 15 O/ 5 10 15 0 5 10 15
— /; = A
1 1 1 1

5 10 15 5 10 15 5 10 15 5 10 15
n n n n

Figure 3.2: Semi-regular Dubuc-Deslauriers 4-point limit functions on the mesh to with hy, = 1 and

h, = 2 analyzed via the semi-regular Dubuc-Deslauriers 6-point tight wavelet frame.
Top row: part of the subdivision matrix Z that corresponds to the non-shift-invariant
refinable functions around to(0) and the graphs of these functions (_o, ..., (2. Middle row:
estimates of the optimal Holder-Zygmund exponents of (_o,...,(s via linear regression
(on the left) via the method in Proposition (on the right). Bottom row: graphs of
the estimates of the Holder-Zygmund exponents.
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Figure 3.3: Semi-regular interpolatory subdivision scheme based on g in (38.25), L = 2, m = 1, on
the mesh tg with hy = 1 and h,, = 2 analyzed via the semi-regular Dubuc-Deslauriers
4-point tight wavelet frame. Top row: part of the subdivision matrix Z that corresponds
to the non-shift-invariant refinable functions around t((0) and the graphs of these func-
tions (_o,...,(3. Middle row: estimates of the optimal Holder-Zygmund exponents of
C_2,...,(y via linear regression (on the left) via the method in Proposition (on the
right). Bottom row: graphs of the estimates of the Holder-Zygmund exponents.

98



3 Regularity Analysis via Wavelet Tight Frames

[ —1/16

0

9/16  —1/16

1 0

9/16  9/16 —1/16

0 1 0

—~1/16 9/16  9/16 —1/16

0 1 0
—~1/24 19/36 13/24 —1/36
0 1 0
—-1/9  7/12 1118 —1/12
0 1 0
~1/16  9/16  9/16 —1/16
0 1 0
—~1/16 9/16  9/16
0 1 Il Il Il Il Il Il Il Il Il
—-1/16  9/16 5 4 3 2 1 0 2 4 6 8 10
0

i ~1/16 |

ra(C=2) | mn(Co1) | TalGo) | mal(G) | a(C2) ra(Ce2) | mn(Cr) | ralGo) | (&) | ra(Ge)

-0.0163 | -0.5174 | -0.3984 | -0.5637 | 1.4525
1.8110 | 0.6301 | 0.2509 | 0.5646 | 1.5324
2.3259 | 0.9516 | 0.7115 | 1.0643 | 1.6848
2.1635 | 1.1421 | 1.0006 | 1.3048 | 1.7340
2.0346 | 1.2779 | 1.1895 | 1.4400 | 1.7552
1.9538 | 1.3766 | 1.3178 | 1.5230 | 1.7640
1.9029 | 1.4495 | 1.4081 | 1.5777 | 1.7677
1.8695 | 1.5043 | 1.4740 | 1.6155 | 1.7692
1.8466 | 1.5463 | 1.5232 | 1.6429 | 1.7696
10| 1.8303 | 1.5791 | 1.5610 | 1.6633 | 1.7695

-0.0163 | -0.5174 | -0.3984 | -0.5637 | 1.4525
3.6383 | 1.7777 | 0.9002 | 1.6929 | 1.6124
29182 | 1.3190 | 1.5699 | 1.8541 | 2.0135
0.9991 | 1.5830 | 1.6965 | 1.7672 | 1.7787
1.5859 | 1.7110 | 1.7445 | 1.7700 | 1.7838
1.7467 | 1.7568 | 1.7642 | 1.7665
1.7468 | 1.7580 | 1.7612 | 1.7638 | 1.7649
1.7580 | 1.7615 | 1.7625 | 1.7633 | 1.7636
1.7615 | 1.7626 | 1.7630 | 1.7632 | 1.7633
1.7626 | 1.7630 | 1.7631 | 1.7632 | 1.7632

© 0O C AW S
S 00 uo otk w3
=
BN
=
o
S

11 | 1.8183 | 1.6050 | 1.5906 | 1.6789 | 1.7693 11 | 1.7630 | 1.7631 | 1.7632 | 1.7632 | 1.7632
12 | 1.8092 | 1.6260 | 1.6141 | 1.6911 | 1.7689 12 | 1.7631 | 1.7632 | 1.7632 | 1.7632 | 1.7632
13 | 1.8022 | 1.6430 | 1.6332 | 1.7008 | 1.7685 13| 1.7632 | 1.7632 | 1.7632 | 1.7632 | 1.7632
14 | 1.7967 | 1.6571 | 1.6488 | 1.7087 | 1.7681 14 | 1.7632 | 1.7632 | 1.7632 | 1.7632 | 1.7632
15| 1.7922 | 1.6689 | 1.6618 | 1.7152 | 1.7677 15| 1.7632 | 1.7632 | 1.7632 | 1.7632 | 1.7632
16 | 1.7886 | 1.6788 | 1.6727 | 1.7206 | 1.7674 16 | 1.7632 | 1.7632 | 1.7632 | 1.7632 | 1.7632
) 5 ) 3 3 3
2 2 2
) 1K 1ﬁ f
1 1 1
T 1w s % s 1 15 % 5 10 1 T 1w s % s 1 15 ° 5 10 1
R ) 3 3
| —
1F’ 1 2[ 2/¥
1 1
0 0 0

5 10 15 5 10 15 5 10 15 5 10 15
n n n n

Figure 3.4: Semi-regular interpolatory scheme based on the polyharmonic function g(x) = |z|, L = 2
and m = 3 on the mesh tg with hy = 1, h, = 2 analyzed with the semi-regular Dubuc-
Deslauriers 6-point scheme. Top row: part of the subdivision matrix Z that corresponds
to the non-shift-invariant refinable functions around t((0) and the graphs of these func-
tions (_o,...,(3. Middle row: estimates of the optimal Holder-Zygmund exponents of
C_2,...,(y via linear regression (on the left) via the method in Proposition (on the
right). Bottom row: graphs of the estimates of the Holder-Zygmund exponents.
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Conclusions

We presented a new characterization of the Holder-Zygmund spaces via irregular families
of tight frames, in particular the one developed from semi-regular subdivision schemes.
We provided the tools for the computation of the moments and the (Cross-)Gramian
matrices involving basic limit functions of such semi-regular schemes. This opened up
the possibility for estimating the regularity of any semi-regular scheme via the decay
of the frame coefficients of its basic limit functions. For the analysis we constructed
wavelet tight frames associated with the Dubuc-Deslauriers family of semi-regular inter-
polatory subdivision schemes. We presented their convergence analysis, to the choice of
a suitable approximation of the corresponding Gramian matrix. This UEP construction
was developed to overcome the difficulties arising in the OEP semi-regular setting and
its simplicity may also have a strength in other practical applications.

The results presented here can be generalized in a straightforward way to tensor
products of semi-regular schemes in the bivariate case. This could be the first step
towards the analysis of the bivariate subdivision in presence of extraordinary vertices.
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