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Introduction

Motivation

The notion of Schur index has been introduced by Schur in 1905. Let χ be

the character of an irreducible complex representation R of a �nite group G.

Let F be any algebraic number �eld. We denote by F (χ) the �eld extension

of F obtained adjoining χ(g) for all g ∈ G. Let K be any �eld extension of

F (χ) such that 1) R can be realized over K and 2) K has minimal degree

over F (χ) with respect to this property. This minimal degree |K : F (χ)| is
denoted by sF (χ) . The computation of the Schur index has been studied by

many authors in the 20th century, some references are [15], [11] [12], [31], [32].

Our interest in this topic arises from the investigation of computational

aspects of representation theory. The problem of the construction of a rep-

resentation of a �nite group G a�ording a given character χ ∈ Irr(G) has

no trivial solution but can be approached in some di�erent ways. One pos-

sibility is to simplify the complexity of the problem by �rst constructing

a rational representation a�ording the character sQ(χ)GalSumQ(χ) (where

GalSumQ(G) denotes the sum of the irreducible characters of G that are

Galois conjugated to χ in the extension Q(χ)/Q) and then decompose such

a rational representation into absolutely irreducible components in order to

�nd a suitable representation a�ording the given character. The complex-

ity of this strategy increases as the Schur index grows. In particular when

sQ(χ) is greater than 2 no general ways to apply such strategies are known.

In order to study this situation we decided to �nd some small examples to

work on. This motivated us to focus our attention on the construction of
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irreducible characters with Schur index greater than 2.

A classical example of a group with irreducible characters of Schur index 3,

studied also by Lam in [22], is

G = 〈a, b | a7, b9, ab = a2〉.

This group can by obtained as a semidirect product of two cyclic groups

of order 7 and 9, respectively. We decided to investigate whether such a

structure can be generalized to obtain other examples of characters with

Schur index greather than 2.

Outline

Let p and q be two odd primes such that p ≡ 1 mod qm for some positive

integer m, where qm is the maximal power of q w.r.t. this property. In

this thesis we study metacyclic groups of the form G ∼= Cp oϕ Cqk for some

integer k, where the action of Cqk on Cp depends on a parameter l such

that |ϕ(Cqk)| = ql. From our analysis it arises that any irreducible character

of these groups is either linear or it is obtained by induction to G from a

faithful character of the abelian subgroup Cp × Z(G) of G, which has index

ql. As a consequence, non linear characters of G have degree ql.

Classical results help us to bound the possible values that the Schur index

of these non linear character may attain. Let χ ∈ Irr(G) such that χ(1) = ql

then sQ(χ)
∣∣χ(1) [19, 10.2], sQ(χ)2

∣∣|G| [10], sQ(χ)χ(1)
∣∣|G| [11].

Let ψ ∈ Irr(Cp×Z(G)) be such that χ = ψG. Then there is a representation

R of G over Q(ψ) a�ording χ. We ask if there exists any sub�eld K of Q(ψ)

with |K : Q(χ)| = sQ(χ) such that there is a K-representation of G similar

to R.

In [17] and [13] a method to �nd a minimal �eld for a representation is

described. If X ∈ GLql(Q(ψ)) such that X−1R(g)X = R(g)σ for some

σ ∈ Gal(Q(ψ)/Q) and for all g ∈ G, then XXτ ..Xτq
l−1

= µIql for some µ

contained in the sub�eld K of Q(ψ) �xed by σ. The representation R is

similar to a K-representation if and only if the norm equation NQ(ψ)/K(θ) =

µ has a solution. Algebraic number theory provides a way of determinate

whether this norm equation is solvable. In our case, the �eld extension

Q(ψ)/K is a cyclic extension, thus we can use the Hasse Norm Theorem
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[26, VI,4.5] and move our problem from global to local norm equations. In

particular, the problem to determinate for which sub�elds K of Q(ψ) the

norm equation is solvable is reduced to the problem to understand when a

unique local norm equation has solution. In this thesis we prove for which

�elds the norm equation is solvable. This allow us to conclude that, in the

family of groups we have studied, a stronger bound for the Schur index holds,

that is sQ(χ)
∣∣qk−m.

In the last chapter of the thesis we discuss the problem of the construction

of an absolutely irreducible module a�ording a given character in the case

of Schur index equal 2 and 3. In the �rst case the problem is reduced to the

one of �nding a singular element in a quaternion algebra and it can be solved

using algorithms due to A. Steel [30] and J. Voight [33]. The situation is

more complicated when the Schur index is equal 3 because Dickson algebras

are involved and it is necessary to solve an homogeneous quadratic equation

in eight variables over a number �eld.
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Notation

N : the set {1, 2, 3, ..}

IrrF (G) : the set of irreducible characters of a group G over a �eld F

Irr(G) : the set of irreducible characters of a group G over C

HomFG(M,N) : the group of homorphisms from an FG-module M to N

EndFG(M) : HomFG(M,M)

F (χ) : F ({χ(g) : g ∈ G})

GalSumF (χ) : the sum of characters Galois conjugate to χ in F (χ)/F

sF (χ) : the Schur index of χ ∈ Irr(G) over a �eld F

OF : the ring of algebraic integers of a number �eld F

K/F : K is a �eld extension of F

Gal(K/F ) : the Galois group of K/F , when K/F is a Galois extension

Fix(σ) : the sub�eld of K �xed by the subgroup of Gal(K/F ) gene-

rated by σ

e(w/v) : the rami�cation index of a prime ideal w above v

Fv : the residue �eld OF /v

O∗v : the group of units of Ov

Uv : the subgroup of principal units of O∗v

ζn : a primitive nth-root of unity



Chapter 1

Preliminaries

In this chapter we introduce some basic de�nitions and results about repre-

sentation theory which will be strongly used in the rest of the thesis. For

those who are familiar with the topic this chapter may be useful in order to

�x the notation. For a more complete overview of the topic see [3], [7], [18]

and [19].

1.1 Representations, Modules and Characters

De�nition 1.1.1. Let G be a group and let F be a �eld. A representation

of G over F (or F -representation) is an homomorphism R : G −→ GLn(F ),

where n is said to be the degree of R.

Representations are a very strong tool in group theory because they al-

low to deal with groups in a concrete way and to study group's proprieties

through them.

De�nition 1.1.2. Let G be a �nite group, F be a �eld and R be an

F -representation of G. The map χ : G −→ F de�ed by χ(g) = Tr(R(g)) is

the character of G a�orded by R.

It is possible that di�erent F -representations a�ord the same character,

in particular two F -representations R and S of degree n a�ord the same char-

acter if and only if they are similar, that is there exists a matrix P ∈ GLn(F )

such that PR(g) = S(g)P for all g ∈ G.

We denote by FG the group algebra of G over the �eld F . For every

F -representation R of G of degree n it is possible to construct an FG-module

5
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considering the n-dimensional row vector space M over F where the action

of G over M is de�ned by g · m = R(g)m for every m ∈ M and g ∈ G.

Extending linearly this action to FG we get an FG-module. On the other

hand, let M be an n-dimensional FG-module and choose a basis B of M .

For every g ∈ G it possible to de�ne an homomorphism ·g : M −→ M such

that ·g(m) = g · m for every m ∈ M . As a consequence, for every g ∈ G
there is a matrix Rg ∈ GLn(F ) associated to ·g with respect to the basis

B. Then R : G −→ GLn(F ) de�ned by R(g) = Rg is a F -representation

of G. A classical result in representation theory says that there is a 1-to-1

correspondence between F -representations of G and FG-modules, given by

the shown correspondence.

De�nition 1.1.3. Let R be a F -representation of G. It is said to be irre-

ducible if and only if its associated FG-moduleM is irreducible, i.e. its only

submodules are 0 and M . If so, also the character a�orded by R is said to

be an irreducible character.

We denote by IrrF (G) the set of all irreducible characters a�orded by an

F -representation of G and by Irr(G) the set IrrC(G). It is a classical result

that |Irr(G)| is equal to the number of conjugacy classes of G.

Let M and N be FG-modules. We denote by HomFG(M,N) the set of

all linear transformation ϕ : M −→ N such that ϕ(x ·m) = x · ϕ(m) for all

x ∈ FG and m ∈ M . We also denote by EndFG(M) = HomFG(M,M) and

we call it endomorphism algebra of M , EndFG(M) is an F -algebra.

Lemma 1.1.1. (Schur) LetM and N be irreducible FG-modules. IfM 6∼= N

then HomFG(M,N) = 0, while HomFG(M,M) = EndFG(M) is a division

algebra.

Theorem 1.1.1. (Maschke) Let G be a �nite group and F be �eld such that

its characteristic does not divide the order of G. Then every FG-module is

completely reducible (i.e. it is isomorphic to the direct sum of irreducible

FG-modules).

LetM be an FG-module, where F is a characteristic zero �eld. Then, by

Maschke theorem, M ∼= M1⊕M2⊕ ..⊕Mt for some irreducible FG-modules

M1,M2, ..,Mt. It may also happen that some of these irreducible compo-

nents are isomorphic within each other, so it is also possible to write M as
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the direct sum of FG-modulesH1⊕H2⊕..⊕Ht′ , where each of theHi compo-

nents is isomorphic to the direct sum of irreducible isomorphic FG-modules.

Such modules Hi are called homogeneous components of M .

Among the FG-modules there is a particular one: FG itself, it is called

the regular module. If the characteristic of F is not a divisor of |G| then, by
Maschke theorem, it is a completely reducible module. When an algebra A

satis�es the property of being completely irreducible as a module, like FG

does, than the algebra is said to be semisimple. It is also possible to say

something more about the irreducible components of FG:

Proposition 1.1.1. Let G be a �nite group and F a �eld such that its char-

acteristic does not divide |G|. Every irreducible FG-module is isomorphic to

a submodule of the regular module FG.

1.2 Splitting Fields and Character Fields

If R is an F -representation of degree n of a group G and E is a �eld ex-

tension of F then R(g) ∈ GLn(F ) ⊆ GLn(E), hence R can be seen as an

E-representation. In this case we denote it by RE . If R is an irreducible

representation then RE may not be irreducible.

De�nition 1.2.1. Let R be an irreducible F -representation of a group G.

If RE is an irreducible representation for every �eld extension E of F then

R is said to be absolutely irreducible.

De�nition 1.2.2. A �eld E is said to be a splitting �eld for G if every

irreducible representation of G over E is absolutely irreducible.

Splitting �elds for a �nite groupG are far from being unique. Considering

representations over a splitting �eld is a guarantee that irreducibility will

not be lost if we extend our working �eld. As a consequence, if E is a

characteristic zero splitting �eld for G then IrrE(G) ⊆ Irr(G). But also

something stronger is true:

Proposition 1.2.1 (9.11 in [19]). Let E ⊆ C be a sub�eld containing Q.
It is a splitting �eld for G if and only if every χ ∈ Irr(G) is a�orded by a

E-representation of G.
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As a consequence, if E is a characteristic zero splitting �eld for G then

IrrE(G) = Irr(G) and every irreducible C-representation of G is similar to

an (absolutely) irreducible E-representation. It follows that, when we are

interested in studying representations of a �nite group G over the complex

number �eld, we can restrict our working �eld to any splitting �eld for G

without loosing any information.

De�nition 1.2.3. Let G be a �nite group, E a splitting �eld for G, F a

sub�eld of E and χ ∈ IrrE(G). The minimal sub�eld of E containing F and

χ(g) for all g ∈ G is said to be the character �eld of χ over F and it is

denoted by F (χ).

When the �eld F in the previous de�nition is the �eld of rational numbers

Q we refer to Q(χ) simply as the character �eld of χ. In this case F (χ)

is always a sub�eld of the complex number �eld independently from the

splitting �eld E.

The character �eld over some �eld F of a character χ is a �nite degree

extension of F , because of the �niteness ofG. We need to pay attention about

the fact that in general it is not true that there exists an F (χ)-representation

of G which a�ords the character χ. If a �eld extension K of F is such

that there exists a K-representation of G a�ording χ then it must satisfy

F (χ) ⊆ K. Moreover, since we are dealing with �nite groups we can say

that there is an extension of F of �nite degree with such a property.

De�nition 1.2.4. Let E be a splitting �eld for G, F a sub�eld of E and

χ ∈ IrrE(G). A �eld K such that F (χ) ⊆ K ⊆ E is a minimal �eld for χ

over F if there exists a K-representation of G a�ording χ and K has minimal

degree over F for such a property.

When the �eld F is the rational number �eld we refer to a minimal �eld

of χ over Q simply as a minimal number �eld of χ. As we noted above

a minimal �eld K of χ over F is a �nite degree extension of F (χ), hence

|K : F (χ)| = s for some integer s. We would like to have some information

about the degree s, some kind of measure of how much one should extend

the character �eld to construct a representation which a�ord χ.

Let E be a splitting �eld of a group G containing F as a sub�eld.

Let R be an E-representation of G of degree n and character χ such that

R(g) ∈ GLn(F ) for all g ∈ G, where F is not necessary a minimal �eld for
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χ over F . If R is irreducible as E-representation then it is irreducible also

as F -representation. As a consequence χ ∈ IrrF (G). Minimal number �elds

of characters over any �eld are not unique and there are no standard way to

choose one or another.

1.3 Galois conjugation

Starting from an irreducible character χ ∈ IrrE(G) over a splitting �eld E

of G it is possible to construct other irreducible characters of G.

Proposition 1.3.1 (9.16 in [19]). Let χ ∈ IrrE(G) and let F be a sub�eld

of the splitting �eld E such that F (χ) = F . For every τ ∈ Aut(F ) it holds

χτ ∈ IrrE(G).

The Galois group Gal(F (χ)/F ) is an abelian �nite group because F (χ)

is contained in a cyclotomic extension of F thus, by Webber-Kronecker The-

orem, it is an abelian extension of F .

Considering the implications of the previous proposition, it is natural to

de�ne an equivalence relation on the set IrrE(χ).

De�nition 1.3.1. Let E be a splitting �eld for G and F be a sub�eld of

E. Two irreducible characters χ, ψ ∈ IrrE(G) are Galois conjugated over F

if F (χ) = F (ψ) and there exists τ ∈ Gal(F (χ)/F )) such that χτ = ψ.

We denote by GalOrbF (χ) the equivalence class of χ and by GalSumF (χ)

the sum of all the characters contained in GalOrbF (χ).

Proposition 1.3.2 (9.17 in [19]). Let E be a splitting �eld for G and let F

be a sub�eld of E. Then |GalOrb(χ)| = |F (χ) : F |.



Chapter 2

The Schur Index

In 1905 Schur studied the problem that appear considering representations

over any �eld. What he found out is that a special number appears when

dealing with these �elds.

The aim of this chapter is to introduce the notion of Schur index, introduced

by Schur, and to discuss some important results that concern it. In this

chapter G will always denote a �nite group.

2.1 Schur Index

LetE be a splitting �eld for a groupG and letM be an irreducibleEG-module

of dimension d. For any sub�eld F of E such that |E : F | <∞ it is possible

to construct an FG-module M ′ in this way: let e1, e2, .., en be a basis of E

over F and m1,m2, ..,md be a basis ofM over E, thenM ′ is the FG-module

generated as F -space by e1m1, .., e1md, .., enm1, .., enmd.

If we consider representations R and S a�orded by M and M ′ respectively

then we have degS = dimM ′ = nd = n dimM = n degR.

Example 2.1.1. Let Q8 = 〈a, b | a2 = b2, ab = a−1〉 be the quaternion

group and let R : G −→ GL2(Q(i)) given by R(a) =

(
i 0

0 i

)
and R(b) =(

0 1

−1 0

)
. Let M be the Q(i)G-module associated to R and m1,m2 be a

basis for M over Q(i). Then M ′ is the QG-module generated by the basis

m1,m2,m1i,m2i and the corresponding representation is S : G −→ GL4(Q)

such that S(a) =

 0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0

 and S(b) =

 0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0

. Both R

10



2.1 Schur Index 11

and S are irreducible. Let E = Q(ε) with ε2 = 1. Then M ′ ⊗Q E is a

EG-module. Notice that S(a) − εI4 is a zero divisor, hence M ′ ⊗Q E is

reducible.

In order to simplify the notation we denote M ′ by M , specifying when

it is viewed as an FG-module or an EG-module.

Lemma 2.1.1. [19, 9.18] Let E be a splitting �eld for a group G and F ⊆ E
be a sub�eld of E such that |E : F | = n < ∞. Let M be an irreducible

EG-module, R and S its corresponding representations over E and F , re-

spectively, χ the character a�orded by R. Then

1. S ∼= ρ⊕ ...⊕ ρ where ρ is an irreducible F -representation and R is the

unique (up to isomorphism) constituent of ρE;

2. if F (χ) = F then nχ is the character a�orded by S.

As an immediate consequence, for any irreducible F -representation ρ

such that R is an irreducible constituent of ρE , it holds that deg ρ divides

n degR.

Lemma 2.1.2. [19, 9.20] Let E be a splitting �eld for a group G and F ⊆
E be a sub�eld of E (not necessary of �nite degree), R an irreducible E-

representation of G a�ording χ. Then

1. there exists an irreducible F -representation ρ such that R is the unique

(up to isomorphism) constituent of ρE;

2. the character a�orded by ρ is sχ for some integer s. If |E : F | < ∞
then s is a divisor of |E : F |.

From Lemma 2.1.2 it follows that for any irreducible E-representation

R we can always �nd an irreducible F -representation ρ such that ρE ∼=
R⊕ ...⊕R and the multiplicity of R as a constituent of ρE does not depend

on the choice of ρ. So we are enticed to give the following de�nition:

De�nition 2.1.1. Let E be a splitting �eld for G, F be a sub�eld of E

and χ ∈ IrrE(G). Let R be an irreducible E-representation of G a�ording

χ and let ρ be an irreducible F -representation such that R is an irreducible

component of ρE . The multiplicity of R in ρE is called Schur index of χ over

F and it is denoted by sF (χ).
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From Lemma 2.1.2 we can also prove the following theorem:

Theorem 2.1.1. [19, 9.21] Let E be splitting �eld for G and F be a sub�eld

of E. Let ρ be an irreducible F -representation of G. Then

1. the irreducible constituents of ρE all occur with equal multiplicity s;

2. if E has prime characteristic then s = 1;

3. let {χi} ⊆ IrrE(G) be the set of characters a�orded by the irreducible

constituents of ρE. It holds {χi} = GalOrbF (χ), for some χ ∈ IrrE(G);

4. the irreducible constituents of ρF (χi) occur all with multiplicity 1;

5. if ρ̃ is any irreducible constituent of ρF (χi) then ρ̃E has a unique irre-

ducible constituent, which has multiplicity 1.

From 2. in the previous theorem it follows that Schur indices in prime

characteristic are not interesting. For this reason, from now on, we will focus

our attention on the characteristic zero case.

Important properties about Schur indices are given by:

Proposition 2.1.1. [19, 10.2,10.17] Let F be a sub�eld of C and χ ∈ Irr(G).

Then

1. sF (χ) = sF (χ)(χ);

2. sF (χ) is the smallest integer s such that sχ ∈ IrrF (χ)(G);

3. sF (χ)GalSumF (χ) is a character a�orded by an irreducible F -representation

of G;

4. there exists a �eld E such that F (χ) ⊆ E ⊆ C with |E : F (χ)| = sF (χ)

and such that χ is a�orded by an irreducible E-representation of G.

In literature assertion 2. of the previous proposition is often used as def-

inition for the Schur index. It has been used by Frobenius for the �rst time

and it is completely equivalent to the one we use.

Particularly interesting for us is the last part of the proposition. It gives

us a "measure" of how far one has to move from the character �eld of a
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given character to have a �eld big enough to construct a representation of G

which a�ords the given character. Hence, a minimal �eld K for a character

χ ∈ Irr(G) over a �eld F must satisfy |K : F (χ)| ≤ sF (χ). On the other

hand sF (χ) is the smallest integer such that there exists a representation of

G over F (χ) a�ording sF (χ)χ so, by Lemma 2.1.2, we have that |K : F (χ)|
is a multiple of sF (χ). This allow us to conclude that a minimal �eld for

χ over F must have exactly degree sF (χ) over F (χ). In general, obviously,

this is not a su�cient condition.

2.2 Index of Algebras

Every algebra A is an A-module itself with the action given by the multi-

plication. Such an A-module is called regular. An algebra A is said to be

semisimple if it is completely reducible as A-module.

A classical result due to Wedderburn asserts that:

Theorem 2.2.1. (Wedderburn) [27, Theorem 3.5] Let A be a �nite dimen-

sion semisimple algebra over the �eld F . Then A ∼= Mm1(Di)⊕...⊕Mmt(Dt)

for some positive integers m1, ..,mt and some division algebras D1, .., Dt over

F .

Let F be any �eld. A central simple algebra over F is an F -algebra A

without non-trivial two-side ideals and with center Z(A) = F .

As a corollary of Wedderburn's Theorem we have:

Theorem 2.2.2. Let A be a central simple algebra over the �eld F . Then

there exist a division algebra D with center Z(D) = F and a positive integer

n such that A ∼= Mn(D).

Let A and B be central simple algebras over a �eld F . They are said to

be Brauer equivalent if and only if there exists a division algebra D over F

and two positive integers n and m such that A ∼= Mn(D) and B ∼= Mm(D).

Denote by B(F ) the set of all the equivalence classes of Brauer equivalent

central simple algebras over F . For any �eld F , B(F ) form an abelian

group, named Brauer group, with respect to multiplication induced by the

tensor product. Each element of the Brauer group can be identi�ed with

the division algebra over F that realizes the equivalence, that is the division

algebra announced in Wedderburn's theorem.
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Theorem 2.2.3. (Corollary 13.1a in [27]) Let A be a central simple algebra

over the �eld F . Then there exists a positive integer s such that dimF A = s2

and for any extension �eld K of F contained in A, |K : F | is a divisor of s.

The integer s is said to be the degree of A over F and it is denoted by

deg(A). Let A be a central simple algebra over F and D be the division

algebra that satis�es Wedderburn's theorem (or equivalently the division al-

gebra Brauer equivalent to A). Since division algebras are central simple

algebras over their center, then the previous theorem holds also for D, if

considered as an algebra over its center Z(D). The positive integer s such

that dimZ(D)(D) = s2 is called the Schur index of the central simple algebra

A, and it is usually denote by ind(A). Notice that the Schur index of central

simple algebras is invariant under Brauer equivalence, because it depends

only on the division algebra D and not on the representative element of the

equivalence class of the Brauer group.

How is the de�nition of Schur index of a central simple algebra related

to the one of Schur index of an absolutely irreducible character of a �nite

group G? In the remaining part of this section we will give an answer to this

question.

When the hypotheses of Maschke's theorem are satis�ed it is possible,

from the decomposition of a module in its irreducible components, to know

the structure of the endomorphism algebra of the module, using Wedder-

burn's theorem.

Theorem 2.2.4. [3, 1.3.4] Let G be �nite group and F be a characteristic

zero �eld. LetM be an FG-module, H1, ..,Ht be its homogeneous components

and S1, .., St be irreducible FG-modules such that each Hi
∼= miSi for some

positive integer mi. Then, for every i = 1, .., t, Di = EndFG(Si) is a division

algebra, EndFG(Hi) ∼= Mmi(D) and EndFG(M) ∼= ⊕ti=1Mmi(Di).

Let H1, ..,Ht be the homogeneous components of the regular module,

S1, .., St be its irreducible components such that Hi = miSi for some positive

integermi. Then FG ∼= Mm1(D1)⊕...⊕Mmt(Dt) where for each 1 ≤ i ≤ t we
have Di = EndFG(Si). Let M be an irreducible FG-module, by Proposition

1.1.1 it is isomorphic to Si for some i, and Di = EndFG(M). We refer to
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Mmi(Di) as the matrix algebra associated to M (or equivalently to Hi) in

the Wedderburn decomposition of FG.

Proposition 2.2.1. [18, 37.2,37.3] Let G be a �nite group and E a split-

ting �eld for G. Then EG ∼= ⊕ti=1Mmi(E) and EndEG(M) = E for every

(absolutely) irreducible EG-module M .

Let E be a splitting �eld of G and F a sub�eld of E. Let M be an

irreducible EG-module with character χ. We have seen in Proposition 2.1.1

that sF (χ)GalSum(χ) is the character a�orded by an irreducible FG-module

N . Let Mm(D) be the matrix algebra associated to N in the Wedderburn

decomposition of FG. Notice that this process does not depend on the choice

of N (every irreducible FG-module a�ording sF (χ)GalSum(χ) is isomorphic

to N so it is associated to the same matrix algebra as N is). As a conse-

quence we can associate to each absolutely irreducible EG-module a matrix

algebra in the Wedderburn decomposition of EG and a matrix algebra in

the Wedderburn decomposition of FG, both in a unique way.

Another way to look at this association is to think about the representa-

tion R associated to the EG-module M as a homomorphism from EG onto

Mχ(1)(E). Since EG ∼= FG ⊗F E ∼= ⊕ti=1Mmi(Di) ⊗F E, as a consequence

each R(Mmi(Di)) 6= 0 if and only if Mmi(Di)⊗F E ∼= Mχ(1)(E) and such a

condition is satis�ed for exactly one i.

Theorem 2.2.5. [18, 38.15] Let G be a �nite group, F any characteristic

zero �eld and E a splitting �eld for G, containing F . Let R be an absolutely

irreducible E-representation of G with EG-module M and character χ. Let

Mm(D) be the matrix algebra in the Wedderburn decomposition of FG such

that R(Mm(D)) 6= 0, where m is a positive integer and D is a division algebra

over F . Then Z(Mm(D)) ∼= Z(D) ∼= F (χ) and sF (χ) =
√

dimZ(D)(D) =

ind(D).

If we consider an irreducible F -representation ρ in the statement of the

previous theorem then for each of its absolute irreducible components (that

are the irreducible components of ρE) the theorem can be applied and in

this case the division algebra D announced in the statement of the theorem

is EndFG(ρ). Note that this implies that the Schur indices of conjugate

characters are equal, and we already know this to be true.
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De�nition 2.2.1. Let A be a central simple algebra over F . A �eld exten-

sion K of F is said to be a splitting �eld for A if A ⊗F K ∼= Mn(K) where

n = degA.

A splitting �eldK for a central simple algebra A is far from being unique,

for example any �eld extension of a splitting �eld for A is a splitting �eld.

Moreover it is not necessarily contained in A. If we consider a �eld extension

K of F contained in A we have that |K : F | is a divisor of degA by Theorem

2.2.3. We say that K is a strictly maximal sub�eld of A if |K : F | = degA.

Theorem 2.2.6. Let A be a central simple algebra over F and K be a �eld

extension of F such that |K : F | = degA. Then K is a splitting �eld for A if

and only if K is isomorphic to a strictly maximal sub�eld of A as F -algebra.

LetH be an irreducible F (χ)G-module a�ording sF (χ)χ. The correspon-

dence between Schur indices of absolutely irreducible characters and Schur

indices of algebras allows us to conclude that EndF (χ)G(H) is a division alge-

bra over its center Z ∼= F (χ) and ind(EndF (χ)G(H)) = sF (χ). The following

diagram summarizes the situation:

EndF (χ)G(H)

K

F (χ)

sF (χ)

sF (χ)

where K is a splitting �eld for the algebra EndF (χ)G(H). Moreover,

EndK(H ⊗F (χ) K) ∼= EndF (χ)G(H)⊗F (χ) K ∼= MsF (χ)(K).

If sF (χ) 6= 1 the matrix algebra MsF (χ)(K) is not a division algebra, hence

HK = H ⊗F (χ) K is a reducible KG-module and its irreducible components

areKG-modules a�ording χ. This proves that a splitting �eld for the algebra

EndF (χ)G(H) is such that there exists an irreducible K-representation of G

a�ording character χ. In particular when K has degree sF (χ) (that is the

case when K is isomorphic to a strictly maximal sub�eld of EndF (χ)G(H))

then it is a minimal �eld for χ over F .
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2.3 Important properties

The aim of this section is to create a brief survey about results concerning

the Schur index. Most of these results are consequences of deep results in

number theory, their proofs does not give us additional tools useful for our

purpose so we do not describe them.

Lemma 2.3.1. [19, 10.2] Let G be a �nite group and F be any sub�eld of

C. For every χ ∈ Irr(G) it holds sF (χ) divides χ(1).

Even if this lemma is not particularly di�cult to prove, it is a very strong

bound for the possible values that the index can assume.

A trivial consequence is that any linear character has trivial Schur index.

However, this is obvious because any linear character is a�orded by a 1-

dimensional representation over the character �eld itself.

Proposition 2.3.1. (Feit) [11] Let G be a �nite group and F be any sub�eld

of C. For every χ ∈ Irr(G) it holds sF (χ)χ(1) divides |G|.

We now introduce as a corollary of this two results a theorem of Fein and

Yamada that has been proved before Feit's result.

Theorem 2.3.1. (Fein-Yamada) [10] Let G be a �nite group and F be any

sub�eld of C. For every χ ∈ Irr(G) it holds sF (χ)2 divides |G|.

If we are interested in understanding whether and when some integer can

occur as a Schur index of a character of some �nite group then the following

theorem gives us the answer.

Theorem 2.3.2. (Brauer) [4] For every integer s ∈ N>0 there exists a �nite

group G and a �eld F such that s = sF (χ) for some χ ∈ Irr(G).

So every integer can occur as a Schur index. Anyway, many results shows

that most of the times Schur indices have values 1 or 2. The construction of

examples of characters with Schur index greater then 2 is not a trivial prob-

lem and it has been solved by Brauer in his paper using metacyclic groups.

A special situation of what he has shown can be seen by the following:

Proposition 2.3.2. [19, 10.16] Let p and s be prime integers such that the

maximal power of p dividing s− 1 is 1. Let G = H o T where H is a cyclic

group of order sp, T 5 G and |G| = ps2. Then there exists χ ∈ Irr(G) such

that sQ(χ) = s.
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A very strong result of Benard and Schacher gives us information about

the character �eld starting from the Schur index.

Theorem 2.3.3. ([2]) Let G be a �nite group, χ ∈ Irr(G) and F a charac-

teristic zero �eld. Then in F (χ) there is a primitive sF (χ)-root of unity.

Since the Schur index tells us how much we need to extend the character

�eld to obtain a �eld big enough to construct the representation related to

the character, it also gives us some information about the splitting �elds of

the group. An important result in this direction is the Brauer's theorem on

splitting �elds:

Theorem 2.3.4. [19, 10.3] Let G be a �nite �eld of exponent n and let ζn

be a primitive nth-root of unity. Then Q(ζn) is a splitting �eld for G.

Schur indices are also related to norm equations. A very strong connec-

tion between these two mathematical objects has been observed by Springer

(in a seminar with Cohen), it was picked up by Glasby and Howlett in [17]

(as well as by Plesken and Brückner). In [13], Fieker showed that it ac-

tually works over number �elds. Before going into the details we need to

introduce some notation. Given a matrix X with entries in a �eld K and

an automorphism σ ∈ Aut(K), we denote by Xσ the matrix obtained by

applying σ to each entry of X. Moreover we de�ne a norm function as

N(X) = XXσXσ2
..Xσs−1

, where s is the order of σ.

Given a representation R of a group G over a number �eld K and an au-

tomorphism σ ∈ Aut(K), if there exists a matrix X ∈ GLn(K) such that

X−1R(g)X = R(g)σ for all g ∈ G then N(X) is a scalar matrix, hence

N(x) = µIn for some µ ∈ Fix(σ).

Using the matrix version of Hilbert's Theorem 90 it is possible to prove the

following:

Theorem 2.3.5. [13, Theorem 3] Let R be a representation of a �nite group

G over a number �eld K. Let σ ∈ Aut(K) and F = Fix(σ). Suppose that

there exists a matrix X ∈ GLn(K) such that X−1R(g)X = R(g)σ for all

g ∈ G and let µ be such that N(X) = µIn. Then R is equivalent to an

F -representation of G if and only if there exists some x ∈ K such that

NK/F (x) = µ.

This result can be used as a tool to calculate the Schur index of a given

character. When we have an absolutely irreducible representation over a �eld
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K which a�ords the character χ, if we are able to �nd the minimal degree

extension F of the character �eld of χ contained in K such that Theorem

2.3.5 is satis�ed, then we can say that sQ(χ) ≤ |F : Q(χ)|. Anyway we

need to pay attention to the fact that equality may not hold. Indeed, it may

happen that no minimal �eld for χ is contained in a given splitting �eld. An

example for this can be found in [18].

Example 2.3.1. Let Q8 be the quaternion group. A �eld K is a splitting

�eld for Q8 if and only if there exist a, b ∈ K such that a2 + b2 = −1. Let

p be a prime and r ≥ 1 such that 2r + 1 = ps for some s ∈ N. Let ζp

be a primitive pth-root of unity and Q(ζp). From 1 = ζ2r+1
p follows that

ζ−1
p = ζ2r

p , so ζp is a square in K thus ζmp as well, for every m ∈ N. It holds

0 =

(
p−1∑
i=0

ζip

) s−i∑
j=0

ζipp

 =

2r∑
i=0

ζip = ζ−1
p +

2r−1∑
i=0

ζip = ζ−1
p +

r−1∏
i=0

(1 + ζ2i

p ),

thus −1 = ζp
∏r−1
i=0 (1 + ζ2i

p ). Since the product of the sum of two squares is

a sum of two squares and 1 + ζ2i
p is a sum of two squares for every i, then∏r−1

i=0 (1 + ζ2i
p ) is the sum of two squares. Hence, Q(ζp) is a splitting �eld for

Q8. In Irr(Q8) there is a unique character χ such that χ(1) = sQ(χ) = 2 and

Q(χ) = Q. The splitting �eld Q(ζp) is not a minimal �eld for χ. Is there

any sub�eld of Q(ζp) which is minimal for χ? Choose p to be a multiple of

4. Let n,m ∈ N such that p− 1 = 2nm with n ≥ 2 and m odd. Since Q(ζp)

is a cyclic extension of Q, there exists a unique maximal sub�eld K of Q(ζp)

such that |Q(χ) : K| = m. Let M be an irreducible QG-module a�ording
sQ(χ)χ, then dimQ EndQG(M) = 4. Let D = EndKG(MK). If K is not a

splitting �eld for EndQG(M) then D is a division algebra ([16, 1.1.7]). Since

Q(ζp) is a splitting �eld for Q8, we have

D ⊗K Q(ζp) ∼= EndQ(ζ)G(MQ(ζp)) ∼= M2(Q(ζp)).

By Lemma 2.1.2 the degree |Q(ζp) : K| = m is even, which is a contradiction.

Thus K is a splitting �eld for Q8. Let F be the unique maximal sub�eld of

K, then |K : F | = 2. Since K ⊆ R so it can not be a splitting �eld for Q8.

As a conclusion there are no minimal �elds for χ contained in the splitting

�eld Q(ζp).

In [14], Fieker present an algorithm to �nd a minimal �eld K for an irre-
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ducible character χ starting from a representation over some �eld E. Using

Galois cohomology the algorithm is able to �nd a �eld K with the desired

properties also if E does not contain it.

When K is a cyclic Galois extension of Q(χ) and we want to �nd the

minimal degree over the character �eld of a sub�eld of K that a�ords a rep-

resentation of character χ, the number of needed checks is minimal because

for every integer divisor of the degree of K over the character �eld we have

a unique �eld and the related automorphism in the Galois group is easy to

compute.



Chapter 3

Some Algebraic Number

Theory

The aim of this chapter is to introduce algebraic number theory in order

to present some tools that will be used in the remaining of the thesis. In

particular we are interested in discussing solvability of norm equations over

number �eld. General references for this chapter are [23], [26] and [21].

3.1 Rami�cation Theory

Let F be an algebraic number �eld, i.e. a �nite extension of the rational �eld

Q. The ring of algebraic integers of F is denoted by OF and it is de�ned by

OF = {z ∈ F | ∃f 6= 0 ∈ Z[x] monic such that f(z) = 0},

it is a Dedekind domain ([24, Theorem 14]) and hence every ideal of OF

factorizes in a unique way as product of prime ideals of OF . Let K/F be a

�nite extension of F and let v be a non-zero prime ideal of OF , then vOK is

an ideal of OK and it has a unique factorization

vOK = we11 w
e2
2 ...w

eg
g

where w1, w2, .., wg are distinct prime ideals of OK and g, e1, e2, .., eg are

positive integers. Prime ideals w1, w2, .., wg are said to lie above v and they

satisfy wi ∩ OF = v. Integers ei are usually denoted as ei = e(wi/v) and

are called rami�cation indices of wi over v. In a Dedekind domain every

non-zero prime ideal is a maximal ideal, thus we can de�ne two �nite �elds

21



3.1 Rami�cation Theory 22

OK/wi and OF /v, both with the same characteristic p, where p is a prime

number such that pZ = v ∩Z = wi ∩Z. These �elds are called residue �elds

and are denoted by Fwi and Fv, respectively. The �eld Fwi is an extension

of Fv, so we de�ne the residue degree f(wi/v) as the �eld extension degree

[Fwi : Fv]. By [24, Theorem 21], the following relation is always satis�ed

g∑
i=1

f(wi/v)e(wi/v) = [K : F ].

The ideal v is said to be unrami�ed in K/F if e(wi/v) = 1 for all i, otherwise

it is said to be rami�ed. If e(wi/v) = [K : F ] for some i then v is said to

be totally rami�ed in K/F . Note that if e(wi/v) = [K : F ] for one i, then

v has a unique prime ideal of OK lying above it. If vOK is a prime ideal

in OK then v is inert in K/F and it is said to split completely in K/F if

g = [K : F ].

If K/F is a Galois extension then the Galois group permutes the ideals

wi transitively (see Proposition 5.11 in [23]). As a consequence e(w1/v) =

e(w2/v) = .. = e(wg/v) and f(w1/v) = f(w2/v) = .. = f(wg/v). Hence

the prime ideals of OK lying above v are all equivalent from the rami�cation

point of view, so we just need to study one of them, say w, to understand

what happens in general. We de�ne

Gw = {σ ∈ Gal(K/F ) s.t. σ(w) = w}

the stabilizer of w under the action of the Galois group. This group is

called decomposition group of w. It induces an action on Fw that �xes

Fv, thus there is a natural homomorphism from φ : Gw −→ Gal(Fw/Fv).
Moreover this homomorphism is surjective (Proposition 5.11 in [23]), its

kernel is called the inertia subgroup and it is denoted by Tw. Note that

[Gw : Tw] = |Gal(Fw/Fv)| = f(w/v) and |Tw| = e(w/v). We call decomposi-

tion �eld and inertia �eld the sub�elds ofK �xed byGw and Tw, respectively.

If v is unrami�ed in K/F then the inertia group is trivial and φ is an isomor-

phism. Since Fw/Fv is a �nite extension of �nite �elds, then its Galois group
is cyclic and it is generated by the Frobenius automorphism ϕp : Fw −→ Fw
such that ϕ(x) = x|Fv |. As a consequence also Gw is cyclic and it is gen-

erated by φ−1(ϕp). Such a generator is denoted by σ(w,K/F ), it is called
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Frobenius automorphism at w and it satis�es

ασ(w,K/F ) ≡ α|Fv | mod w ∀α ∈ OK .

If the Galois group Gal(K/F ) is abelian then the decomposition group Gw

is the same for all prime ideals w of OK lying above v. Hence, for unrami�ed

primes the Frobenius element of primes above v depends only on v and it is

called Artin automorphism for v.

Proposition 3.1.1. (Layer Theorem) [5, 1.3] Let K/F be an abelian ex-

tension of number �elds. Let v be a prime ideal of OF and w a prime ideal

of OK lying above v. Then v splits completely in Fix(Gw)/F , the primes of

Fix(Gw) above v are inerts in Fix(Tw)/Fix(Gw) and they totally ramify in

K/Fix(Tw).

A particular example of abelian Galois extensions are the cyclotomic

extensions of the rational �eld.

Proposition 3.1.2. [5, 1.8] Let ζm be a primitive mth-root of unity and K

be a sub�eld of the cyclotomic �eld Q(ζm). Let H be the subgroup of (Z/mZ)∗

such that H ∼= Gal(Q(ζm)/K). A prime p not dividing m splits completely

in K/Q if and only if p ≡ h mod m for some h ∈ H.

3.2 Completions

An absolute value on a �eld F is a map ν : F −→ R such that

1. ν(x) ≥ 0 for all x ∈ F and ν(x) = 0 if and only if x = 0;

2. ν(xy) = ν(x)ν(y) for all x, y ∈ F ;

3. ν(x+ y) ≤ ν(x) + ν(y) for all x, y ∈ F .

If the stronger condition ν(x + y) ≤ max(ν(x), ν(y)) is satis�ed for all

x, y ∈ F then the absolute value is said to be non-Archimedean, otherwise it

is said to be Archimedean.

Every absolute value de�nes a distance on F given by d(x, y) = ν(y − x),

thus we can see F as a metric space. Two absolute values are said to be

equivalent if they de�ne the same topology on F . If ν1 and ν2 are equivalent

absolute values of F then there exists λ ∈ F such that ν1(x) = ν2(x)λ for
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all x ∈ F . A place is a class of equivalent absolute values. A metric space F

is complete if every Cauchy sequence converges in F . The completion of an

algebraic number �eld F with respect to an absolute value ν is obtained as

the quotient of the ring of Cauchy sequences in F by the maximal ideal of

all the sequences converging to 0. The completion is denoted by Fν . It is a

�eld complete with respect to the topology induced by ν, it is unique up to

isomorphism and the �eld F is dense in Fν .

Let v be a prime ideal of OF for an algebraic number �eld F . For every

x ∈ F ∗ we have that xOF is a fractional ideal of OF and, since OF is a

Dedekind domain, xOF has a unique factorization into prime ideals. Let

xOF = vαvα1
1 ..vαtt be such a factorization, where v1, .., vt are di�erent prime

ideals of OF (di�erent also from v) and α, α1, .., αt ∈ Z. We denote by

ordv(x) the integer αi and we de�ne ordv(0) = ∞. Then ordv is a map

F −→ Z ∪ {∞} and it is said to be a discrete valuation on F . For any real

number 0 < c < 1 we can de�ne a map νv : F −→ R as

νv(x) =

{
cordv(x) if x 6= 0

0 if x = 0.

The map νv is a non-Archimedean absolute value of F for every choice of

c in the interval (0, 1). Moreover the induced topology is independent of c

because all the absolute values are equivalent. At same time, if v1 and v2 are

two di�erent prime ideals of OF then νv1 and νv2 are not equivalent. Usually

the real number c is chosen to be equal to 1
p where p is the prime number such

that v ∩ Z = pZ. Every non-Archimedean absolute value of F is equivalent

to νv for some prime ideal v of OF . For this reason we will usually denote

the completion of F with respect to a non-Archimedean absolute value by

Fv, where v is the prime ideal of OF that realizes the equivalence. Let

Ov = {x ∈ Fv s.t. νv(x) ≤ 1},

this a local ring contained in Fv and it is called the valuation ring of v. Let

Pv be its unique maximal ideal, that is Pv = {x ∈ Fv s.t. νv(x) < 1}. The
�eld Ov/Pv is isomorphic to the residue �eld Fv ([26, II,4.3]).

Proposition 3.2.1. [26, II,4.4] Let R be a set of distinct representatives

of Ov/Pv in Ov such that 0 ∈ R and let π ∈ v − v2. Every element 0 6=
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x ∈ Fv may be written as x = πmε for some integer m ∈ Z and some

ε ∈ O∗v = Ov − Pv (i.e. units of Ov) and it admits a unique representation

as a convergent sequence x =
∑∞

i=m aiπ
i where ai ∈ R.

Such a convergent sequence is called v-adic expansion of x. The prime

element π is called uniformizer in Fv and it is such that Pv = πOv. As a

consequence of the previous proposition we have F ∗v = 〈π〉O∗v.

Every embedding of an algebraic number �eld F into the real and com-

plex number �elds R and C induces an Archimedean absolute value of F

(obtained simply by the composition of the embedding with the usual abso-

lute value on R or the usual norm on C). Di�erent real embeddings induce
non-equivalent Archimedean absolute values of F . Two di�erent complex

embeddings induce equivalent absolute values of F if and only if they are

obtained by conjugation one from the other. Moreover, a real and a com-

plex embedding induce non-equivalent absolute values ([23, 1.2]). Every

Archimedean absolute value of F is equivalent to the absolute value induced

by some embedding of F into R or C. The completion of F with respect to

an Archimedean absolute value is R if the embedding is real and is C if the

embedding is complex (see Ostrowski Theorem [26, 4.2]).

Let v be a prime ideal of OF and K/F a �eld extension. Consider the

factorization of vOK = we11 ..w
eg
g . The absolute values νw1 , .., νwg are pairwise

non-equivalent in K and their restriction to F induce the same topology on

F as νv. Moreover, every completion Kwi is a �nite extension of Fv.

At the same time, every �nite extension �eld of Fv is the completion of a

�nite extension K/F with respect to νw for some prime ideal w of OK lying

above v [26, 8.1,8.2].

Let K/F be a �eld extension, v be a prime ideal of OF and w a prime

ideal of OK above v. The unique prime ideal Pv of Ov generates an ideal

PvOw which has a unique factorization as Pew where e is a non-negative

integer called local rami�cation index denoted by e = e(Pw/Pv). It holds

e(Pw/Pv) = e(w/v), f(Pw/Pv) = f(w/v) and, for a �xed v, we have∑
w above v

[Kw : Fv] = [K : F ]
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by [23, 8.3]. Similarly to the number �eld case, we say that Pv is rami�ed in

Kw/Fv if e 6= 1, it is unrami�ed in Kw/Fv if e = 1 and it is totally rami�ed

in Kw/Fv if e = [Kw : Fv].

3.3 Norm equations

Let K/F be a Galois extension of number �elds and let v and w be prime

ideals of OF and OK respectively, such that w lies above v. Let p be the

characteristic of the residue �elds Fv and Fw and NK/F : K −→ F be the

norm of the extension K/F , i.e. NK/F (x) =
∏
σ∈Gal(K/F ) x

σ for all x ∈ K.

Exactly in the same way we can de�ne the norm of the extension Kw/Fv.

Solving a norm equation means �nding an element θ ∈ K such thatNK/F (θ) =

λ, for some �xed λ ∈ F . Understanding if a norm equation has a solution

and, eventually, �nding one is a problem with no general solution. However

things are easier in the case of cyclic extensions, thanks to a well known

theorem:

Theorem 3.3.1. (Hasse Norm Theorem - VI, 4.5 in [26]) Let K/F be a

cyclic extension of number �elds. An element λ ∈ K∗ is a norm in K/F if

and only if it is a norm in the completion Kw/Fv, for every prime ideals w

of OK and v of OF , such that w lies above v.

Let πw be an uniformizer in Kw, then K
∗
w = 〈πw〉O∗w. Thus

NKw/Fv(K
∗
w) = 〈NKw/Fv(πw)〉NKw/Fv(O

∗
w).

In order to understand if a local norm equation has solution, we need to

determine NKw/Fv(K
∗
w). It is not obvious how to do it in general, but there

are some easy situations that we can handle.

Let Uw = 1+Pw be the subgroup of O∗w of principal units of Ow. Consider

the following sequence

0 −→ Uw
i−→ O∗w

ϕ−→ O∗w/Uw −→ 0,

where i is the inclusion map and ϕ is the canonical quotient map. This is

an exact sequence. The quotient O∗w/Uw is isomorphic to F∗w. By [20, 2.3]

O∗w contains a cyclic subgroup of order |F∗w| = |Fw| − 1. Thus there exists a
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primitive |F∗w|th-root of unity ζ|F∗w| in O∗w and O∗w = 〈ζ|F∗w|〉Uw.

Since we assume K/F to be a cyclic extension, it is also an abelian

extension, therefore [O∗v : NKw/Fv(O
∗
w)] = e(w/v), see Corollary of Theorem

3 in [23, XI, �4]. Equivalently,

e(w/v) =[O∗v : NKw/Fv(O
∗
w)] =

=[〈ζ|F∗v |〉Uv : NFw/Fv(〈ζ|F∗w|〉)NKw/Fv(Uw)] =

=[Uv : NKw/Fv(Uw)],

where the last equality is due to the surjectivity of the norm of �nite

�elds.

If v is unrami�ed in K/F then Pw = Pv, so πw is an uniformizer of Fv.

In particular πw ∈ Fv and NKw/Fv(πw) = π
[Kw:Fv ]
v = π

f(w/v)
v , where the

last equality is an easy consequence of e(w/v)f(w/v) = [Kw : Fv] in the

unrami�ed case. As a consequence

NKw/Fv(K
∗
w) = 〈πf(w/v)

v 〉O∗v = {πkvx s.t. k ∈ f(w/v)Z and x ∈ O∗v}.

In particular if λ ∈ O∗v, then it is a local norm of some elements of Kw (more

details in Proposition 9.8 in [21]).

If v is rami�ed in K/F then some more work is needed to determine

NKw/Fv(K
∗
w). If we suppose v to be totally rami�ed in K/F then we have

f(w/v) = 1 and |Fw| = |Fv|, so ζ|F∗w| ∈ O∗v. Its norm is

NKw/Fv(ζ|F∗w|) = ζ
[Kw:Fv ]
|F∗w|

= ζ
e(w/v)
|F∗w|

= ζ
[K:F ]
|F∗w|

.

As Uv is a pro-p group (see Section 2.2 in [20]) and NKw/Fv(Uw) is a �nite

index subgroup of Uv then [Uv : NKw/Fv(Uw)] is a power of p. With the

additional hypothesis of v to be tamely totally rami�ed in K/F (i.e. p -
e(w/v)) then it must beNKw/Fv(Uw) = Uv, otherwise Uv/NKw/Fv(Uw) would

contain an element with order a power of p this is a contradiction to the

statement [Uv : NKw/Fv(Uw)] = e(w/v). In conclusion we can characterize
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the image of the norm for tamely totally rami�ed extensions as

NKw/Fv(K
∗
w) = 〈NKw/Fv(πw), ζ

e(w/v)
|F∗w|

〉Uv.

If v is an in�nite prime then Fv = C or Fv = R. If Fv = C then it must

be Kw = C and trivially NKw/Fv(Kw) = Fv = C. In a similar way if both

Fv and Kw are the �eld of real numbers then NKw/Fv(Kw) = Fv = R. It

may also happen that Fv = R and Kw = C. In this case NKw/Fv(Kw) = R+
0 ,

where R+
0 denotes the set of non-negative real numbers.

Here we have decided to discuss only some special cases when we can

determine NKw/Fv(Kw) because in these cases we can have an explicit de-

scription of the image of the norm. In [1], Acciaro and Klüners gave an

explicit algorithm to test whether a local norm equation is solvable or not

in every situation. By their algorithm and using the Hasse Norm Theorem

they are able to decide whether a (global) norm equation has a solution.

In the next chapter we will determine a bound for the Schur index of some

characters. To do it we will need to determine whether some norm equations

have a solution or not. As we will see, in the �eld extensions that we will

meet, every �nite prime ideal is unrami�ed or tamely totally rami�ed. For

this reason in this thesis it would be enough to deal with the cases treated

in this section to solve the norm equation that we will encounter.



Chapter 4

Schur Indices of

Characters of some

Metacyclic Groups

In 1930 Brauer proved that every integer can occur as Schur index of some

irreducible character of some �nite group. Nevertheless, the most frequent

situation is to have Schur indices equal to 1 and 2. We are now interested

in understanding in which situations Schur indices greater than 2 may occur.

4.1 Groups of order 9p

Let G be a �nite group and consider χ ∈ Irr(G). We know from Proposition

2.3.1 and Theorem 2.3.1 that sQ(χ) divides the degree of χ and sQ(χ)2 di-

vides |G|. If we are interested in characters with Schur index 3 we need |G|
to be a multiple of 9 as a necessary condition.

As a �rst example we focus on groups of order 9p, with p > 3 a prime

number. We denote by nq(G) the number of q-Sylow subgroups of G for

every prime number q.

Lemma 4.1.1. Let G be a �nite group of order 9p for some odd prime p > 3.

Then G = P o T with |P | = p and T ∈ Syl3(G).

Proof. By Sylow Theorems we have four conditions on n3 and np: n3 ≡ 1

mod 3, n3

∣∣p, np ≡ 1 mod p and np
∣∣9. The last condition implies np equal

29
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1, 3 or 9. If np is 3 or 9 then p must be 2, because of the third condition.

Since p is odd, p > 3, then np
∣∣9. Since np ≡ 1 mod p, then we have np = 1.

Let P be the normal subgroup of G of order p and T be one of the 3-Sylow

subgroups of G. It is su�cient to notice that G = TP and T ∩ P = {1} to
get the conclusion.

Lemma 4.1.2. Let G be a �nite group of order 9p for some prime p > 3. If

G is non-abelian then n3(G) = p and p ≡ 1 mod 3.

Proof. By Sylow theorems we have n3 = 1 or n3 = p. Suppose n3 = 1 then

G is abelian, otherwise n3 = p, thus p ≡ 1 mod 3.

We are interested only in non-abelian groups, since abelian groups have

only linear characters and trivial Schur indices.

Corollary 4.1.1. Let G be a group of order 9p for some prime p such that

there exists χ ∈ Irr(G) with sQ(χ) = 3. Then p ≡ 1 mod 3 and G = T nϕP

with T ∈ Syl3(G), n3(G) = p and ϕ : T −→ Aut(P ) non-trivial.

From now on we suppose G to be a �nite group of order 9p, for some

prime number p, such that there exists χ ∈ Irr(G) with sQ(χ) = 3. Our

aim is to characterize the structure of G, with special attention to its center

Z(G). The previous Corollary tells us that p = |G : NG(T )|, where NG(T )

is the normalizer of T in G. At the same time T ≤ NG(T ) and |G : T | = p,

hence T = NG(T ). The center Z(G) is a subgroup of NG(T ) = T , but it

can not be T itself otherwise T would be normal in G, which is not the case.

Hence |Z| = 1 or |Z| = 3.

Consider the automorphism of the semidirect product ϕ : T −→ Aut(P ).

As P is cyclic of order p then Aut(P ) ∼= Cp−1, hence it has only cyclic sub-

groups. The image of ϕ is a cyclic subgroup of Aut(P ) of order that divides

|T | = 9. We can notice that T is either T ∼= C9 or T ∼= C3×C3. We analyse

the two cases separately. If T ∼= C9 then ϕ(T ) is isomorphic to C9 or to C3

(recall that we are excluding the case where ϕ is trivial). In the �rst situ-

ation we have the additional condition p ≡ 1 mod 9. If T ∼= C3 × C3 then

|ϕ(T )| 6= 9 (because C3 × C3 is not cyclic and ϕ(T ) is). Hence ϕ(T ) ∼= C3.

We can summarise the possible presentation of non-abelian groups of

order 9p with p ≡ 1 mod 3 a prime number as:
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1. C9 n Cp = 〈a, b | ap, b9, ab = ar〉 with op(r) = 3, then Z = 〈b3〉;

2. C9 n Cp = 〈a, b | ap, b9, ab = ar〉 with op(r) = 9, so Z = {1};

3. (C3 × C3) n Cp = 〈a, b, c | ap, b3, c3, ab = ar, ac = a, bc = b〉 with
op(r) = 3, so Z = 〈c〉.

We start our analysis from groups isomorphic to type 2. Recall that the

condition on op(r) needs p ≡ 1 mod 9 to be satis�ed. These groups are

Frobenius groups with Frobenius complement the 3-Sylow subgroup T and

kernel the normal p-Sylow subgroup P . As a consequence of the Brauer's

permutation lemma ([18, 18.5, 18.7]) we have

|Irr(G)| = |Irr(T )|+ |Irr(P )| − 1

|T |
= 9 +

p− 1

9
.

In particular irreducible characters of G are either irreducible characters of

T , thus linear, or induced by non-trivial characters in Irr(P ) (characters

conjugated by elements of T induce the same character on G). If there is

any character in Irr(G) with non-trivial Schur index it has to arise from the

second case. Let λ ∈ IrrP , λ 6= 1. Since λ is linear it is the character of a

1-dimensional K-representation of P , for some �eld extension K of Q(ζp),

where ζp is a p
th-root of unity. Let K = Q(ζp) and let π : P −→ GL1(K)

be an irreducible K-representation of P of character λ with π(a) = ζp. The

representation R of G induced by π is a degree 9 representation such that

R(a) =



ζp 0 0 · · · 0

0 ζrp 0 · · · 0

0 0 ζr
2

p · · · 0
...

...
. . . 0

0 0 0 · · · ζr
8

p


R(b) =


0 · · · 0 1

1 · · · 0 0
...

. . .
...

...

0 · · · 1 0



Notice that G = PT , so every g ∈ G can be written as g = aibj for some

i ∈ Z/pZ and some j ∈ Z/9Z, hence R(g) is a matrix of the form:

R(g) =

(
0 A

B 0

)

with A a diagonal j × j matrix and B a diagonal (9 − j) × (9 − j) matrix.
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As a consequence χ(aibj) = Tr(R(aibj)) = 0 for j 6≡ 0 mod p and

χ(ai) = Tr(R(ai)) = Tr


ζip 0 · · · 0

0 ζirp · · · 0
...

...
. . . 0

0 0 · · · ζir
8

p

 =
8∑
j=0

ζir
j

p = TrK/F (ζip)

where TrK/F denotes the �eld trace of the cyclotomic extension K = Q(ζp)

over its sub�eld F �xed by the automorphism σ ∈ Gal(K/Q) such that

σ(ζp) = ζrp . Obviously Q(χ) ⊆ F . Let 〈r〉 ≤ (Z/nZ)∗ and t1, t2, .., tm be

a transversal of 〈r〉 in (Z/nZ)∗, where m = p−1
9 . For each k = 1, ..,m

and each i, j ∈ tk〈r〉 the values of the diagonal on R(aj) are just a shift

permutation of the elements on the diagonal of R(ai), hence the value of

the character χ(ai) depends only on the coset to which i belongs. This

means that Q(χ) = Q({
∑8

j=0 ζ
tir

j

p }i=1,..,m). It is very easy to verify that

{
∑8

j=0 ζ
tir

j

p }i=1,..,m are linearly independent over Q: let a1, .., am ∈ Q be

such that

0 =

m∑
i=1

ai

8∑
j=0

ζtir
j

p =

m∑
i=1

8∑
j=0

aiζ
tir

j

p ,

then ai = 0 for all i, because {ζtirjp }i,j is a basis of Q(ζp) over Q. As a

consequence |Q(χ) : Q| = m and Q(χ) = F .

Denote by Rσ the K- representation of G obtained applying σ to each entry

of R(g) for every g ∈ G.

Rσ(a) =


ζrp 0 · · · 0

0 ζr
2

p · · · 0
...

...
. . . 0

0 0 · · · ζp

 Rσ(b) = R(b).

It is easy to verify that R(b)−1R(a)R(b) = Rσ(a) and, more in general,

R(b)−1R(g)R(b) = Rσ(g) for every g ∈ G. Consider the norm function

NK/F : K −→ F , that sends x 7→ xxσxσ
2
..xσ

8
for each x ∈ K. We can

extend such a norm to a map NK/F : GL8(K) −→ GL8(F ) by applying

NK/F to each entry of the matrices. We have NK/F (R(b)) = R(b)9 = I9.

By Theorem 2.3.5, there exists a representation equivalent to R over Q(χ) if

and only if there exists some elements in K with �eld norm equal 1. In this
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case it is trivial to �nd a solution for the equation, for example NK/F (1) = 1.

This allows us to conclude that we can write a representation equivalent to

R over Q(χ), hence sQ(χ) = 1.

This shows that groups of type 2 a�ords only characters with trivial

Schur index. Hence, to �nd some characters of Schur index three, we focus

our attention on groups isomorphic to groups of type 1 or 3. These two

kind of groups have some properties in common that allow us to prove the

following:

Proposition 4.1.1. Let G be a �nite group of order 9p for some prime

number p ≡ 1 mod 3, such that there exists χ ∈ Irr(G) with sQ(χ) = 3. Let

Z = Z(G) be the center of G. Then

1. |Z| = 3;

2. χ(1) = 3;

3. χ is faithful;

4. every subgroup of G of order 3p is cyclic.

Proof. The �rst statement is a direct consequence of the classi�cation of

non-abelian groups of order 9p and of what we have noticed about groups of

type 2.

Let P be the normal p-Sylow subgroup of G, we have PZ / G. Hence, by

Itô's Theorem ([19, 6.15]), χ(1) divides |G : PZ|. The condition sQ(χ) = 3

implies χ(1) = 3.

By [18, 38.18] G/ kerχ has a �xed point free representation over Q(χ). Since

P is cyclic of order p and G = T n P for some 3-Sylow subgroup T of

G, then the derived group G′ = P . It is contained in kerχ if and only if

χ ∈ Irr(G/G′), thus linear, which is not the case. Hence G′∩kerχ = P∩kerχ

is trivial. Suppose Z ≤ kerχ, then χ ∈ Irr(G/Z) and sQ(χ)2
∣∣|G/Z| = 3p,

that is not true under our hypothesis. Hence Z∩kerχ = 1. As a consequence

G/ kerχ has a subgroup isomorphic to C3 n Cp. Let R be a �xed point

free representation of G/ kerχ over some vector space V , R is a faithful

representation. If G/ kerχ ∼= C3 n Cp then it acts point-�xed-freely over

V and it has order 3p. By Burnside's lemma [18, 16.11] G/ kerχ is cyclic

and kerχ is a normal subgroup of G of order 3, so χ ∈ Irr(G/ kerχ), hence

it is linear with trivial Schur index. This contradicts our hypothesis hence
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kerχ = 1.

Let H ≤ G be a subgroup of G of order 3p, by Burnside's lemma it is

cyclic.

If we consider the group G = 〈a, b, c | ap, b3, c3, ab = ar, ac = a〉, with
op(r) = 3 then it has a subgroup generated by a and b which is not cyclic

of order 3p. By the previous proposition, such a group can not have any

irreducible character of Schur Index 3.

In conclusion, groups of order 9p, with p a odd prime, need to be isomorphic

to 〈a, b | ap, b9, ab = ar〉 with op(r) = 3 to a�ord characters of non-trivial

Schur index.

With the help of aMagma code, we constructed some example of groups

of order 9p, letting p vary between the primes such that p ≡ 1 mod 3.

Consequences of experiments for p = 7 ,19, 109, 163, 487 can be found in

the tables in Appendix B for k = 2. In particular what is interesting to

notice is that the only case where we can �nd characters of Schur index 3

is when p = 7. Further experiments (not reported in the table), shows that

we can �nd non-trivial Schur indices only when p 6≡ 1 mod 9. Try to �nd a

reason for this behaviour has been the starting point for our considerations

about Schur indices of absolutely irreducible characters of metacyclic groups.

4.2 Metacyclic Groups of order qkp

In the previous section we have found some very strong necessary conditions

for a group of order 9p, where p is an appropriate odd prime, to have some

characters of Schur index 3. The aim of this section is to study a more

general situation in order to understand whether 3 plays a special role.

Proposition 4.2.1. Let G = 〈a, b | ap, bqk , ab = ar〉 with op(r) = qk, k ≥ 2,

q, p odd primes such that p ≡ 1 mod qk. Then sQ(χ) = 1 for all χ ∈ Irr(G).

Proof. Let P and T be the subgroups of G generated by a and b respectively,

P is a normal subgroup of G of order p and |T | = qk. The center of G is

trivial. The group G is a Frobenius group with respect to the complement

T and with kernel P . By [18, 18.7] G has |Irr(T )| linear characters with P
contained in their kernel and |Irr(P )|−1

|T | characters induced on G by non-trivial



4.2 Metacyclic Groups of order qkp 35

character in Irr(P ). Moreover T acts on Irr(P ) by conjugation, that is

λb(a) = λ(ab
−1

) = λ(ar
−1

) = λ(a)r
−1
.

Suppose now that 1 6= λ ∈ Irr(P ). Let ρ = indGP (λ) be the representation of

G induced by λ. Then ρ : G −→ GLqk(Q(λ)) with Q(λ) = Q(ζp) and ζp a

primitive pth-root of unity.

ρ(a) =


ζp 0 · · · 0

0 ζrp · · · 0
...

...
. . . 0

0 0 · · · ζr
qk−1

p

 ρ(b) =


0 · · · 0 1

1 · · · 0 0
...

. . .
...

...

0 · · · 1 0

 .

Consider X = ρ(b). It is such that ρ(a)X = Xρ(a)σ and ρ(b)X = Xρ(b)σ

where σ ∈ Gal(Q(λ)/Q) such that σ(λ(a)) = λ(a)r. We denote by Xσi the

matrix obtained by applying the automorphism σi to each entry of X. Since

X ·Xσ ·..·Xσq
k−1

= 1·Iqk and the �eld normNQ(λ)/Q(1) = 1 then by Theorem

2.3.5 there exists a representation of G over Fix(σ), the sub�eld of Q(λ) �xed

by σ, similar to ρ, thus with character χ. In particular |Q(λ) : Fix(σ)| = qk

and Fix(σ) = Q(χ). As a consequence sQ(χ) = 1.

Now we introduce a new parameter related to the action of a q-Sylow

subgroup of G on the normal p-subgroup. Let G = 〈a, b | ap, bqk , ab = ar〉
with op(r) = ql, k ≥ 2, q, p odd primes such that p ≡ 1 mod q and 1 ≤ l ≤ k.
It is necessary for these parameters to satisfy another condition for G to be

well de�ned: let m ∈ N such that qm is the maximal power of q dividing

p− 1. It must be 1 ≤ l ≤ m, because 〈r〉 ≤ (Z/pZ)∗, thus ql | p− 1.

Let P and T be subgroups of G generated by a and b respectively, then

P ∼= Cp, T ∼= Cqk and G = P oϕ T where ϕ varies according to l. Let

Z = Z(G) be the center of the group G. Then Z = 〈bql〉, hence it is a cyclic
group of order qk−l.

De�nition 4.2.1. Let G be a �nite group, H be a subgroup of G and

λ ∈ Irr(H). For every g ∈ G, denote by λg the class function λg : H −→ C
de�ned by λg(x) = λ(gx

−1
), for all x ∈ H. By [19, 6.1], λg ∈ Irr(H). Then

IG(λ) = {g ∈ G s.t. λg = λ} is the inertia group of λ in G.

Corollary 4.2.1. Let G = 〈a, b | ap, bqk , ab = ar〉 with op(r) = ql, k ≥ 2,

q, p odd primes such that m ≥ 1 is the maximal power of q dividing p − 1
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and 1 ≤ l ≤ min(k,m). Let P = 〈a〉 and Z = Z(G). Then the inertia group

of λ in G is IG(λ) = PZ for every 1 6= λ ∈ Irr(P ).

Proof. Since P is a cyclic group of order p then its character table is easy to

compute. It contains the trivial character and p−1 characters {λi} such that
λi(a) = ζip for i = 1, .., p−1, where ζp is primitive p

th-root of unity. Moreover

P E IG(λi) and Z E IG(λi). Suppose b
j ∈ IG(λi) for some 1 ≤ j < qk, then

λb
j

i (a) = λi(a). Hence

ζip = λi(a) = λb
j

i (a) = λi(a
b−j ) = λi(a

r−j ) = λi(a)r
−j

= ζir
−j

p ,

as a consequence ir−j ≡ i mod p. Since (i, p) = 1 then op(r)
∣∣j and bj ∈ Z,

hence IG(λ) = PZ.

Since the inertia group in G of every character in Irr(P ) has been deter-

mined, we can make some deductions also on Irr(G). In particular, in the

following proposition, we are able to determine the degrees of the character

table of G.

Proposition 4.2.2. Let G = 〈a, b | ap, bqk , ab = ar〉 with op(r) = ql, k ≥ 2,

q, p odd primes such that m ≥ 1 is the maximal power of q dividing p−1 and

1 ≤ l ≤ min(k,m). Then G has exactly qk linear characters, (p − 1)qk−2l

characters of degree ql and no other character.

Proof. Let P = 〈a〉 and let χ ∈ Irr(G). By Cli�ord's theorem we have

χP = e
∑t

i=1 λi where λ = λ1, .., λt ∈ Irr(P ) are conjugate.

If λ = 1 then χP = e · 1. Hence P ≤ kerχ, so χ ∈ Irr(G/P ). The quotient

G/P is isomorphic to T , which is a cyclic group so it a�ords only linear

characters. Hence χ is linear.

If λ 6= 1 then, by the previous lemma, the inertia group of λ in G is

IG(λ) = PZ and t = |G : IG(λ)| = ql. Since λ is linear then χ(1) = χP (1) =

eql. Consider λPZ and let {ψi}i ⊆ Irr(PZ) be its irreducible components.

Hence λPZ =
∑
eiψi for some positive integers ei and (ψi)P = eiλ. Since

both P and PZ are abelian, then ψi and λ are both linear. As a consequence

ei = 1 for all i and |PZ : P | = qk−l. By Gallagher's theorem ([19, Cor6.17])

λPZ =
∑

β∈Irr(Z) ψ1β =
∑qk−l

i=1 ψi and λ
G =

∑qk−l

i=1 ψGi . Since χ is an irre-

ducible constituent of λG then χ = ψGi for exactly one i ∈ {1, .., qk−l} ([19,
Thm 6.11]), let ψ be such a character. Therefore χ(1) = |G : PZ|ψ(1) = ql

and e = 1.
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Linear characters of G are in one-to-one correspondence with the irreducible

characters of the abelian group G/P , so they are qk in total. Each non-linear

character of G is obtained by induction from an irreducible non-trivial char-

acter of PZ such that its restriction to P is a faithful character of P , these

are (p − 1)qk−l. Two irreducible characters of PZ conjugated in G induce

the same irreducible character of G. Hence exactly ql di�erent characters

of Irr(PZ) induce the same character of G, thus the number of non-linear

characters of G is (p− 1)qk−2l.

An additional con�rmation that these are all the absolutely irreducible char-

acters of G is given by

|G| =
∑

χ∈Irr(G)

χ(1)2 = qk + (p− 1)qk−2lq2l = pqk.

We are interested in determining which are the Schur indices of the char-

acters of groups we are dealing with. The conditions about the degrees of

these characters, that we have found in the previous proposition, are very

strong. Obviously the qk linear characters have trivial Schur indices, but

what about the others (p− 1)qk−2l non-linear characters?

The bound of Lemma 2.3.1 tells us that the Schur index of a character is a

divisor of its degree. Hence, in our situation, the Schur index of a non-linear

character χ is a power of q, say sQ(χ) = qt for some non-negative integer

t ≤ l. While, by Proposition 2.3.1, we have that sQ(χ)χ(1)
∣∣|G|, so t ≤ k− l.

It is possible to summarize these two bounds by 0 ≤ t ≤ min(l, k − l).

In order to have some more precise information about the Schur indices

of these characters we decided to compute some examples (see Appendix

B). From our analysis it turns out that an additional condition is satis�ed:

t ≤ max(0, k −m). This bound is stronger then the previous one because

k − l ≥ max(0, k −m), by de�nition of parameters k, l and m.

Conjecture 4.2.1. Let G = 〈a, b | ap, bqk , ab = ar〉 with op(r) = ql, k ≥ 2,

q, p odd primes such that qm ≥ 1 is the maximal power of q dividing p − 1

and 1 ≤ l ≤ min(k,m). Then, for all χ ∈ Irr(G), it holds sQ(χ) = qt where

t ≤ min(l,max(0, k −m)).
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Moreover, for every integer t such that 0 ≤ t ≤ min(l,max(0, k −m)), there

exists χ ∈ Irr(G) such that sQ(χ) = qt.

A �rst attempt in order to prove the conjecture may be to use the same

method used to prove Proposition 4.2.1. Using the information given by

Proposition 4.2.2 we have that G has at least qk characters with trivial

Schur index, because they are linear. What is an open question is what are

the Schur indices of the (p−1)qk−2l characters of degree ql. As we have seen

in the proof of Proposition 4.2.2 these non-linear characters are obtained by

induction on G from the irreducible characters of PZ with faithful restriction

on P .

Let χ ∈ Irr(G) and ψ ∈ Irr(PZ) be such that χ = ψG. In order to

determine the Schur index of these characters by looking for the degree over

Q(χ) of the minimal sub�eld of Q(ψ) a�ording a representation of character

χ, we have to convince ourself that there is a minimal �eld for χ contained

in Q(ψ). To do it we adapt the proof of [8, Theorem(b)] to our situation.

Let D be the division algebra central over Q(χ) associated to χ. For ev-

ery prime ideal v of OQ(χ) we can de�ne by mv the v-local index of D, i.e.

mv = ind(D ⊗Q(χ) Q(χ)v). By [35, Proposition 1], D is similar to a crossed

product algebra. Checking the details of Yamada's proof we can see that

such an algebra is (Q(ψ)/Q(χ), β) where β is a cocycle whose values are 1

and ζqk−l . As a consequence mv = 1 for all the primes not above q and

all the unrami�ed primes in Q(ψ)/Q(χ). The �eld Q(ψ) = Q(ζpqh) where

ζpqh is a primitive (pqh)th-root of unity for some h ∈ Z such that pqh is the

exponent of PZ, while Q(ψG) is a sub�eld such that |Q(ψ) : Q(ψG)| = ql

and ζp
pqh
∈ Q(ψG). If v is a prime ideal of OQ(χ) lying above p and w a prime

ideal of OQ(ψ) above v, by [24, Therem 26] it holds e(w/p) = ϕ(p) = p − 1.

This means that primes above p ramify totally in Q(ψ)/Q(ψG). Since sQ(χ)

is a power of q, then we have mv = sQ(χ) if v is above p and mv = 1 oth-

erwise. For the Global Splitting Criterior [28], a �eld K is a splitting �eld

for D if and only if mv

∣∣[Kw : Q(χ)v] for all prime ideals v, w of OQ(χ) and

OK , respectively with w
∣∣v. As a consequence K is a splitting �eld for D if

and only if sQ(χ)
∣∣[Kw : Q(χ)v] for v, w above p. However we have seen that

primes above p totally ramify in Q(ψ)/Q(χ) and also in K/Q(χ) for every

�eld Q(χ) ⊆ K ⊆ Q(ψ), hence [Kw : Q(χ)v] = [K : Q(χ)]. Since Q(ψ)/Q(χ)

is cyclic, there must be a �eld K of the desired degree. Thus we can look

for minimal �elds for χ inside Q(ψ).
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In the next proposition we prove that the value of the Schur indices of χ

and ϕ strongly depends on the their kernel.

Proposition 4.2.3. Let ψ,ϕ ∈ Irr(PZ) such that the restrictions of ψ and

ϕ to P are faithful characters of P . It holds ψG, ϕG ∈ Irr(G) and if | kerψ| =
| kerϕ| then sQ(ψG) = sQ(ϕG).

Proof. Let ψ ∈ Irr(PZ) be such that its restrictions to P is a faithful char-

acter, then kerψ ⊆ Z. Let | kerψ| = qδ, for some 0 ≤ δ ≤ l, then kerψ is

generated by bq
k−δ

. It holds that ψ(a) is a primitive pth-root of unity and 1 =

ψ(bq
k−δ

) = ψ(bq
l
)q
k−l−δ

, hence ψ(bq
l
) is a primitive (qk−l−δ)th-root of unity.

The subgroup PZ of G is generated by a and bq
l
, hence Q(ψ) = Q(ζpqk−l−δ).

Since ψ is linear we can consider it as a representation over a 1-dimensional

vector space and calculate the induced representation. Let R be such a

representation, thus R : G −→ GLql(Q(ψ)) and

R(a) =


ψ(a) 0 · · · 0

0 ψ(a)r · · · 0
...

...
. . . 0

0 0 · · · ψ(a)r
ql−1

 R(b) =


0 · · · 0 ψ(bq

l
)

1 · · · 0 0
...

. . .
...

...

0 · · · 1 0

 .

Let σ ∈ Gal
(
Q(ψ)/Q(ψG)

)
be such that σ (ψ(a)) = σ (ψ(a)r) and ψ

(
bq
l
)

is �xed by σ, then o(σ) = ql. The character �eld of R is

Q(ψG) =Q
(

Tr(R(ai))i=1,..,p−1, ψ(bq
l
)
)

=

=Q
(

TrQ(ψ)/Fix(σ)(ψ(a)i)i=1,..,p−1, ψ(bq
l
)
)
⊆ Fix(σ).

and it is a sub�eld of Q(ψ) of degree |Q(ψ) : Q(ψG)| = ql, hence Q(ψG) =

Fix(σ). To �nd sQ(ψG) we should �nd a sub�eld K of Q(ψ) minimal with

respect to the property of existence of a K-representation of G similar to R.

Let K be a sub�eld of Q(ψ) and let t ∈ N be such that |K : Q(ψG)| = qt,

then Fix(τ) = K where τ = σq
t
. From the Galois correspondence we have
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Q(ψ)

K

Q(ψG)

ql−t

qt

1

〈τ〉

〈σ〉 ⊆ Gal(Q(ψ)/Q(ψG))

ql−t

qt

The automorphism τ acts on ψ(a) as bq
t
acts on a.

Let X = R(bq
t
) ∈ GLql(Q(ψ)) then

X−1R(a)X = R(bq
t
)−1R(a)R(bq

t
) = R(ab

qt

) = R(a)r
qt

= R(a)τ

X−1R(b)X = R(bq
t
)−1R(b)R(bq

t
) = R(bb

qt

) = R(b) = R(b)τ .

Using the notation of Theorem 2.3.5 we have

N(X) = XXτ ...Xτq
l−t−1

= R(bq
l
)q
l−t

= R(bq
l
) = ψ(bq

l
)Iql ,

thus there exists a K-representation of G similar to R if and only if there

exists θ ∈ Q(ψ) such that NQ(ψ)/K(θ) = ψ(bq
l
).

Let ϕ ∈ Irr(PZ) be another character di�erent from ψ such that its restric-

tion to P is faithful and | kerϕ| = qδ. Similarly to what happens for ψ, we

have sQ(ϕ) = qt for t the minimal integer such that there exists a sub�eld K

of Q(ϕG) that satis�es |K : Q(ϕG)| = qt and such that NQ(ϕ)/K(θ) = ϕ(bq
l
)

has a solution θ ∈ Q(ϕ). Since ϕ(bq
l
) is a primitive (qk−l−δ)th-root of unity,

then Q(ψ) = Q(ϕ) and Q(ψG) = Q(ϕG). Possibly ψ(bq
l
) and ϕ(bq

l
) are

two di�erent (qk−l−δ)th-roots of unity, anyway there exists a positive in-

teger i such that ϕ(bq
l
) = ψ(bq

l
)i. If there exists θ ∈ Q(ψ) such that

NQ(ψ)/K(θ) = ψ(bq
l
) then

ϕ(bq
l
) =ψ(bb

l
)i =

(
NQ(ψ)/K(θ)

)i
=

 ∏
σ∈Gal(Q(ψ)/K)

θσ

i

=

=

 ∏
σ∈Gal(Q(ψ)/K)

(θi)σ

 = NQ(ψ)/K(θi).

As a consequence, the two norm equations are both solvable or not solvable.

Thus sQ(ψG) = sQ(ϕG).
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Let G = 〈a, b|ap, bqk , ab = ar〉 with op(r) = ql and let ψ ∈ Irr(PZ) with

faithful restriction on the normal subgroup P . The character ψ is constant

on the cosets of kerψ in PZ. The class function ψ̄ on PZ/ kerψ de�ned

by ψ̄(g kerψ) = ψ(g) is an irreducible faithful character of PZ/ kerψ. In

the proof of Proposition 4.2.3 we have seen that kerψ ≤ Z. Let δ ∈ Z be

such that | kerψ| = qδ. The group G/ kerψ contains PZ/ kerψ as a sub-

group and it has the same metacyclic structure of the groups we are study-

ing. In particular G/ kerψ ∼= 〈a, b̄|ap, b̄qk−δ , ab̄ = ar〉 with op(r) = ql. The

character ψG ∈ Irr(G) corresponds to ψ̄(G/ kerψ) ∈ Irr(G/ kerψ) and thus

sQ(ψG) = sQ(ψ̄(G/ kerψ)). This means that, in order to understand which

values the Schur indices can assume in our groups it is enough to study the

Schur index of characters induced by faithful characters of PZ.

Summing up what we have said previously we have that, in order to

determine the Schur indices of the absolutely irreducible characters of G we

have to determine the Schur indices of characters ψG such that ψ ∈ Irr(PZ)

and ψP ∈ Irr(P ) is faithful. We need to �nd the minimal non-negative

integer t such that the norm equation

NQ(ψ)/Fix(τ)(θ) = ψ(bq
l
)

has a solution θ ∈ Q(ψ), where τ ∈ Gal(Q(ψ)/Q(ψG)) has order ql−t.

Solving norm equations is in general a di�cult problem. However, in this

particular situation, we are in a special case for two main reasons. First, we

are not interested in �nding a solution to the equation but just in under-

standing whether it has a solution or not. Moreover Q(ψ)/Q(ψG) is a cyclic

extension, thus we can use Hasse Norm Theorem (Theorem 3.3.1) which as-

serts that there is a solution to the norm equation if and only if there is a

local solution everywhere.

In the following analysis we assume k > l. We just remember that, for

the case k = l, we have already found the behaviour of the Schur indices in

Proposition 4.2.1.

Passing from global to local norm di�erent behaviour can arise depending
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on the rami�cation index of the prime ideal at which we are considering

the completion. For this reason, we are now interested in �nding which

prime ideals of Fix(τ) ramify in Q(ψ)/Fix(τ). Since the Galois extension

Q(ψ)/Q(ψG) is cyclic there exists a unique τ ∈ Gal(Q(ψ)/Q(ψG)) such that

|Fix(τ) : Q(ψG)| = qt. For this reason to every integer 0 ≤ t ≤ l corresponds
a unique �eld Q(ψG) ⊆ K ⊆ Q(ψ) with |K : Q(ψG)| = qt. We summarize

the �elds involved in our discussion by the following schema:

•

•

•

•

•

•

•

•

Q

Q(ζqk−l)

Q(ψG)

K

Q(ψ)

Q(ζp)

Q(ζp + ..+ ζr
ql−1

p )

ϕ(qk−l)

ql−t

qt

p−1
ql

where ψ is assumed to be a faithful character of PZ and hence ψ(bq
l
) = ζqk−l ,

a primitive (qk−l)th-root of unity.

Let v be a prime ideal of OK , the ring of algebraic integers in K, and let

w be a prime ideal of OQ(ψ) lying above v.

Since Q(ψ) is a cyclotomic extension of Q of order pqk−l thus, by Corollary

10.4 in [26], the only primes that rami�es in Q(ψ)/Q are p and q. As a

consequence e (w/v) = 1 if v does not lie above p or q.

If v lies above q let β = w ∩ OQ(ζ
qk−l )

, then by [24, Theorem 26] it holds

e(β/q) = e(w/q) = ϕ(qk−l), hence

e (w/β) =
e(w/q)

e(β/q)
= 1,

thus, also e (w/v) = 1.

If v lies above p let β = w ∩ OQ(qk−l), then by [24, Theorem 26] it holds

e(w/p) = ϕ(p) = p− 1, hence

e (w/β) =
e(w/p)

e(β/p)
= e(w/p) = p− 1,
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this means that e (w/v) = ql−t and v is totally rami�es in Q(ψ)/K. More-

over p does not divide the rami�cation index, hence v is tamely rami�ed in

Q(ψ)/K. For more details about the computation of rami�cation indices in

cyclotomic extensions see [6].

According to Section 2.3, if Q(ψ)w is an unrami�ed extension of Kv, then

every unit of Ov is the norm of a unit in Q(ψ)w.

In our case ζqk−l is invertible in Ov, thus the local norm equation at every

unrami�ed prime v has a solution.

If v is an in�nite prime of K then Kv = C because K can not be embedded

into the real numbers. As a consequence also Q(ψ)w = C, hence we are

considering the trivial norm NC/C. Any element of C is the norm of itself,

thus also in the in�nite case the local norm has a solution.

The only remaining case is when v rami�es in Q(ψ)/K, that is when v lies

above p. In this case v totally rami�es in Q(ψ)/K and, since e (w/v) = ql−t

and p - e (w/v), then Q(ψ)β/Kv is a totally tamely rami�ed extension, where

β = w ∩ OQ(ζ
qk−l )

.

As a consequence

NQ(ψ)w/Kv((Q(ψ)w)∗) = 〈NQ(ψ)w/Kv(π), ζq
l−t

pf(v/p)−1
〉UKv ,

where π is the uniformizer of OKv and UKv = 1 + πOKv . Since f(v/β) = 1

then the residue �eld of Q(ψ)w is isomorphic to the residue �eld of Kv and

f (v/p) = f (β/p). Our aim is now to determine the residue degree f(β/v).

By Proposition 3.1.2 we have that p splits completely in Q(ζqk−l)/Q if and

only if p ≡ 1 mod qk−l. This mean that we have to distinguish two di�erent

cases:

• if k − l ≤ m then p ≡ 1 mod qk−l. Here f(β/p) = 1 and the residue

�eld of Q(ζqk−l)β is isomorphic to the residue �eld of Qp. The local

norm equation has a solution if and only if

ζqk−l ∈ NQ(ψ)w/Kv((Q(ψ)w)∗)⇔ qk−l | p− 1

ql−t

⇔ k − l ≤ m− l − t

⇔ t ≥ k −m.

The norm equation has a solution exactly for every t ≥ k − m, in

particular the minimal non-negative integer such that the equation
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has a solution is equal to max(0, k −m).

• if k− l ≥ m then l ≤ k−m, in particular the minimal non-negative in-

teger such that the equation has a solution is less or equal to max(0, k−
m).

This allow us to conclude the proof of the �rst part of Conjecture 4.2.1 that

we can now announce as a proposition

Proposition 4.2.4. Let G = 〈a, b | ap, bqk , ab = ar〉 with op(r) = ql, k ≥ 2,

q, p odd primes such that m ≥ 1 is the maximal power of q dividing p−1 and

1 ≤ l ≤ min(k,m). Then, for all χ ∈ Irr(G) there exists a positive integer

t ≤ min(l,max(0, k −m)) such that sQ(χ) = qt.

Proof. By Proposition 4.2.2 G has qk linear characters with trivial Schur

index and (p − 1)qk−2l characters of degree ql. Let χ ∈ Irr(G) have degree

ql. By Proposition 2.3.1 sQ(χ) = qt for some integer 0 ≤ t ≤ l. Let P be

the subgroup of G generated by a and its center Z. Then χ = ψG for some

ψ ∈ Irr(PZ) and it can be seen as a faithful character in Irr(G/ kerψ). It

holds

G/ kerψ ∼= 〈a, b̄|ap, b̄q
k−δ

, ab̄ = al〉 with op(r) = ql.

Let ψ̄ be the character corresponding to ψ in PZ/ kerψ. From Theorem

2.3.5, t is the minimal non-negative integer such that there exists a sub�eld

K of Q(ψ̄) containing Q(ψ̄G) with |K : Q(ψ̄G)| = qt such that there exists a

solution to the norm equation

NQ(ψ̄)/K(θ) = ψ̄(bq
l
).

Let δ ∈ N be such that | kerψ| = qδ. If k − δ − l ≤ m then such a minimal t

is max(0, k − δ −m), which is trivially less than or equal to max(0, k −m).

If k− δ − l > m then we can not determine the minimal t but we know it is

at most l.

Let δ ∈ N be such that | kerψ| = qδ. From the proof of Proposition 4.2.4

we can see that, if k − δ − l ≤ m then the Schur index can be calculated

explicitly. In particular, a group G as in the statement of Proposition 4.2.4

with the additional condition on the parameters k − l ≤ m has qk linear

characters with trivial Schur indices and ∆δ(p−1)
ql

characters of degree ql and
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Schur index qmax(0,k−m−δ), where ∆k−l = 1 and for δ 6= k − l

∆δ =|{ψ ∈ Irr(Z) s.t. | kerψ| = qδ}| =

=|i = 0, .., qk−l − 1 s.t. vq(i) = δ| =

=qk−l−δ−1(q − 1).

This allow us to �nd explicit formulas for determine how many irreducible

characters of G have a given Schur index. In particular the number of charac-

ter of trivial Schur index is obtained as the sum of the number of linear char-

acters and all of the characters of degree ql such that max(0, k−m− δ) = 0.

As a consequence

∣∣{χ ∈ Irr(G) s.t. sQ(χ) = 1}
∣∣ = qk +

p− 1

ql
+

k−l−1∑
δ=k−m

(p− 1)(q − 1)qk−2l−δ−1.

The number of character with Schur index qk−m−δ is (p− 1)(q − 1)qk−2l−δ−1.

Hence, if k −m > 0 then for a �xed 0 < t ≤ k −m it holds

∣∣{χ ∈ Irr(G) s.t. sQ(χ) = qt}
∣∣ = (p− 1)(q − 1)qt−2l+m−1.

Note that, for every 0 ≤ t ≤ max(0, k−m) the integer (p−1)(q−1)qt−2l+m−1

is non-negative, hence the Schur index assumes every value in the range

[0,max(0, k −m)].

4.3 Metacyclic Groups of order a multiple of a prime

In this section we prove a last generalization of the situation studied previ-

ously in this chapter by considering the semidirect product between a nor-

mal cyclic group P of prime order p and any other cyclic group K of order

k coprime with p. In order to avoid P oϕ K to a be a direct product we

want ϕ(K) to be a non-trivial subgroup of Aut(P ). This condition can

be seen well if we express P oϕ K by �nite group presentation. Thus, let

G = 〈a, b | ap, bk, ab = ar〉 where op(r) = l, for some integer l > 1 such that

l
∣∣(k, p − 1), where by (k, p − 1) we denote the greatest common divisor be-

tween k and p− 1. Let P be the p-Sylow subgroup of G and K be the cyclic

subgroup of G generated by b. The center Z = 〈bl〉.
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Proposition 4.3.1. Let λ ∈ Irr(P ). Then

IG(λ) =

{
G λ = 1

PZ λ 6= 1

Proof. Let λ ∈ Irr(P ) be non-trivial, then λ(a) = ζp for some primitive p
th-

root of unity ζp. Let 0 ≤ i ≤ k − 1. If bi ∈ IG(λ) then λb
i
(a) = λ(a). This

means that ζr
−i
p = ζp and r−i ≡ 0 mod p. As a consequence op(r)

∣∣i, so
IG(λ) ∩K = Z. Since P / IG(λ) and Z / IG(λ), we have IG(λ) = PZ.

Let χ ∈ Irr(G) be any irreducible character of G. Combining Cli�ord's

theorem and Proposition 4.3.1 we have χP = χ(1) · 1 or χP = e ·
∑l

i=1 λi for

some non-trivial conjugated characters λ1, .., λl ∈ Irr(P ) and some positive

integer e. In the �rst case P is a subgroup of kerχ, hence χ ∈ Irr(G/P ) and

it is linear because G/P is cyclic. In the second case we have IG(λi) = PZ.

Let λ = λ1, then λ
PZ =

∑
eiψi for some ψi ∈ Irr(PZ) and some positive

integers ei. Since (ψi)P = eiλ then ei = 1. Using Gallagher's theorem we

can conclude that λPZ =
∑kl−1

i=1 ψi, hence χP =
∑l

i=1 λi. . As a consequence

χ = ψGi for some component ψi of λ
PZ and χ(1) = |G : PZ| = l.

Proposition 4.3.2. Let ψ,ϕ ∈ Irr(PZ) be such that kerψ = kerϕ ≤ Z.

Then the degree over Q(ψG) of the minimal �eld for ψG contained in Q(ψ)

is equal to the degree over Q(ϕG) of the minimal �eld for ϕG contained in

Q(ϕ).

Proof. The center Z is a cyclic group generated by bl. Let δ ∈ Z be such that

kerψ = kerϕ = 〈blδ〉. Then ψ(bl) = ζδ where ζδ is some primitive δ
th-root

of unity. Without loss of generality we can consider 1 ≤ δ ≤ kl−1.

Let R : G −→ GLl(Q(ψ)) be the representation induced by ψ (seen as a one

dimensional representation) over G. Then R a�ords character ψG and it is

given by

R(a) =


ψ(a) 0 · · · 0

0 ψ(a)r · · · 0
...

...
. . . 0

0 0 · · · ψ(a)r
l−1

 R(b) =


0 · · · 0 ψ(bl)

1 · · · 0 0
...

. . .
...

...

0 · · · 1 0

 .
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The character �eld Q(ψG) corresponds to Q(Tr(R(a)), ψ(bl)). Notice that

Q(ψ)/Q(ψG) is a cyclic extension of degree l thus, for every integer 0 ≤ t ≤ l
there is a unique �eldKt such thatQ(ψG) ⊆ Kt ⊆ Q(ψ) and |Kt : Q(ψG)| = t.

Let X = R(bt) and τ ∈ Gal(Q(ψ)/Q(ψG)) be such that Fix(τ) = Kt. We

have R(g)X = XR(g)τ for all g ∈ G and NQ(ψ)/K(X) = ψ(bl)Il. By The-

orem 2.3.5 the representation R is equivalent to a representation over K if

and only if the norm equation NQ(ψ)/Kt(θ) = ψ(bl) has a solution. Let t

be the minimum integer such that the norm equation has a solution. Ex-

actly in the same way we can consider the representation induced by ϕ.

Also ϕ(bl) is a primitive δth-root of unity, hence ϕ(bl) = ζiδ for some integer

i and Q(ψ) = Q(ϕ). The degree over Q(ϕG) of the minimal �eld for ϕG

contained in Q(ϕ) is the minimum integer t such that the norm equation

NQ(ϕ)/Kt = ϕ(bl) has a solution. The conclusion comes from the observation

that the �rst norm equation is solvable if and only if the second equation is

solvable too.

Proposition 4.3.3. Let χ ∈ Irr(G) such that χ(1) = l. Let ψ ∈ Irr(PZ) be

such that χ = ψG and | kerψ| = δ for some δ | kl−1. Let s be the degree over

Q(χ) of the minimal �eld for χ contained in Q(ψ). Then

1. if k
lδ | p− 1 then s | k

(k,p−1) ;

2. if k
lδ - p− 1 then for all prime q such that vq

(
k

(k,p−1)

)
> vq(l) it holds

vq(s) < vq

(
k

(k−p−1)

)
.

Proof. The value of s is the minimum integer t such that the norm equation

NQ(ψ)/Kt(θ) = ζ has a solution, where ζ is a primitive
(
k
lδ

)th
-root of unity and

Kt is the unique �eld such that Q(ψG) ⊆ Kt ⊆ Q(ψ) and |K : Q(ψG)| = t.

We use Hasse Theorem 3.3.1 to verify the resolvability of the norm equation.

Let v be any prime ideal of OKt lying above a prime q in Z and w be a

prime ideal of OQ(ψ) lying above v. If q - p klδ then e(w/v) = 1. If q | klδ , let
β = w ∩ OQ(ζ).Since p does not divide k, the rami�cation index e(w/β) =

ϕ( klδ ) = e(β/q), hence e(w/β) = 1. If q = p then e(w/β) = p − 1 and

e(w/v) = l
t . Moreover (p, p − 1) = 1, therefore β rami�es tamely totally in

Q(ψ)/Q(ζ).

As a consequence ζ is a norm in Q(ψ)/Kt if and only if it is a local norm

for every completion at primes over p. Let v and w be prime ideals of OQ(ψ)

and Kt respectively, lying above p, and Lw, Ktv be their completion. The
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extension Lw/Ktv is a totally rami�ed extension, hence the residue �eld of

Lw is isomorphic to the one ofKtv, while the residue �eld ofKtv is isomorphic

to the one of Q(ζ)β . In order to determine the residue �eld of Q(ζ)β we need

to determine f(β/p).

If k
lδ | p− 1 then, by Proposition 3.1.2 we have f(β/p) = 1. Thus

NLw/Ktv(L
∗
w) = 〈πt, ζ

l
t
p−1〉UKtv

where πt is the uniformizer of OKtv and UKtv is the group of units of Ktv.

As a consequence,

ζ is a norm in Lw/Ktv ⇔
k

lδ
| t(p− 1)

l

⇔ k | tδ(p− 1)

⇔ k

(p, k − 1)
| tδ.

The minimum integer t that satis�es the condition is t = k
(k,p−1)

1
( k
(k,p−1)

,δ)
.

If k
lδ - p − 1 then f(β/p) > 1. Let q be any prime number. If we suppose

vq

(
k

(k,p−1)

)
> vq(l) then, by sQ(χ) | χ(1), follows

vq(s) ≤ vq(l) < vq

(
k

(k, p− 1)

)
.

We remark that a prime q that satis�es the condition vq

(
k

(k,p−1)

)
> vq(l)

always exists because the condition k
lδ - p − 1 is equivalent to k

(k,p−1) - lδ.
Hence, there exists at least one prime number q such that

vq

(
k

(k, p− 1)

)
> vq(l) + vq(δ) ≥ vq(l).



Chapter 5

Construction of

Irreducible Modules with

assigned Character

One of the �rst questions to deal with when approaching the problem of

constructing a representation of a �nite group G a�ording a given character

χ, is about which �eld is needed to realize the representation.

Let χ ∈ Irr(G), we can see χ as a class function on C and look for a repre-

sentation of G over C of degree n = χ(1) a�ording χ. From a computational

point of view, and more in general in algebra, working with the complex

number �eld may be very di�cult because every complex number must be

approximated in computations. Moreover, the construction of a representa-

tion a�ording a given character is a di�cult problem because there are many

degrees of freedom in the construction due to the fact that given a represen-

tation a�ording χ all the similar representations, obtained by conjugation

with any invertible matrix, is again a representation a�ording χ.

5.1 The splitting strategy

The goal of this section is to discuss the problem of the construction of an

irreducible representation starting from its character. We have already in-

troduced the main de�nitions and results needed to face this problem.

Let G be a �nite group and χ ∈ Irr(G) be an absolutely irreducible char-

acter of G. The idea is to reduce the complexity of �nding a representation

49
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over the complex number �eld to �nding a representation of G over some

smaller �eld. We now describe a possible strategy to approach this problem.

Any detail and computational aspect will be discussed later.

Let F be any �eld such that F ⊆ C. In Proposition 2.1.1 we have seen

that ψ = sF (χ)GalSumF (χ) is the character a�orded by an irreducible

F -representation of G. Hence, there exists an irreducible FG-module af-

fording character ψ. We now suppose to be able to �nd an irreducible FG-

module M satisfying such a condition. Let K be a minimal �eld for the

character χ containing F . Then F (χ) ⊆ K ⊆ C and |K : F (χ)| = sF (χ).

Once we have a splitting �eld we can extend the scalar �eld of M to K by

tensor product. We denote the KG-module M ⊗F K by MK . Since K is a

minimal �eld for χ and χ is an irreducible constituent of ψ then some of the

irreducible constituents of MK a�ords character χ. Our problem now is to

�nd a suitable irreducible component of MK .

We can illustrate our strategy with the following schema:

χ ∈ Irr(G)

↙ ↘

ψ = sF (χ)GalSumF (χ)

↓

M FG-module ←→ ψ

F (χ) ⊆ C, |F (χ) : F | = t

↓

K ⊇ F (χ)

|K : F (χ)| = sF (χ)

↘ ↙

MK = M ⊗F K KG-module

↓

Decomposition of MK =
⊕t

i=1

⊕sF (χ)
j=1 Si

In particular, by construction of character ψ, the decomposition of MK is

well known:

MK ∼= S1 ⊕ ...⊕ S1︸ ︷︷ ︸⊕ S2 ⊕ ...⊕ S2︸ ︷︷ ︸⊕ . . .⊕ St ⊕ ...⊕ St︸ ︷︷ ︸
H1 ⊕ H2 ⊕ . . .⊕ Ht
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where Si denote the absolutely irreducible components of MK and Hi are

irreducible F (χ)G-modules, hence HK
i are the homogeneous components of

MK .

From the theoretical point of view this approach will produce the desired

result. From the computational point of view not every aspect is clear. We

now follow the steps of the procedure in order to understand if the algorithm

is reasonable or not.

5.2 Computational aspects

Let χ ∈ Irr(G) be an irreducible character of a �nite group G and F be a

number �eld. To calculate the character ψ we need to have a good way to

determine both sF (χ) and GalSumF (χ). The calculation of the Schur index

of a given character in Magma uses an algorithm due to Gabi Nebe and

Bill Unger [32] and extended by Claus Fieker to the calculation of Schur

indices over number �elds. The calculation of GalSumF (χ) is very easy.

As a consequence the computation of ψ is not a di�cult problem. The

same holds for the determination of F (χ): it is immediate once χ is given.

Computational problems arise when we want to determine an FG-module

of character ψ. As we have already said, the problem of the construction of

a representation starting from its character is very di�cult and, if we were

able to do it in general, we would have solved our problem without any other

discussion. In general this problem does not have a good algorithm to be

solved. In [30] Allan Kenneth Steel introduced a new algorithm for F = Q
named IrreducibleRationalRepresentations (it is used in Magma when the

function IrreducibleModules is called with the rational �eld as input �eld).

This algorithm takes as input a list of characters in IrrQ(G) (possibly the

entire list for rational characters) and gives as output a list of QG-modules
a�ording characters of the input list. The idea behind this algorithm is

to create a queue of virtual representations of G sorted by degree, starting

with smallest representations. These representations can be constructed as

permutation representations, representations induced by representations of

subgroups or tensor product of two representations. Following the sort of

the queue each QG-module is decomposed into irreducible modules and non-
isomorphic modules a�ording characters in the input list are given as output.
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New representations are added to the queue until a rational module is found

for each input character. In general this algorithm can be very slow and

it needs a lot of memory, but for groups reasonably large it can be useful.

We remark that this algorithm works only for F = Q, which is the most

interesting case.

Once we have the irreducible FG-module M a�ording character ψ we

can divide the problem of �nding its absolutely irreducible components in

two steps: �rst we �nd the homogeneous components of MK and then we

split them in absolutely irreducible modules. Homogeneous components of

MK correspond to irreducible components of MF (χ). To �nd them we do

not need to determine the minimal �eld K.

Algorithms for �nding the homogeneous components of an FG-module are

known. From Theorem 2.2.4 and 2.2.5 we have

Z(EndFG(M)) ∼=
⊕

χ̄∈GalOrbF (χ)

F (χ̄).

Let α ∈ Z(EndFG(M)) and f be the minimal polynomial of α over F . Then

f is irreducible in F [x] and it splits completely in F (χ)[x]. Hence

f =

t∏
i=1

(x− αi) for some αi ∈ F (χ).

As a consequence (α − αiI) are singular elements of EndF (χ)G(MF (χ)) for

each 1 ≤ i ≤ t. Thus ker(α− αiI) is a proper submodule of MF (χ) for each

i. Iterating this procedure on the found submodules, we get all the homoge-

neous components ofMF (χ), in particular they are irreducible F (χ)-modules

a�ording characters of the form sF (χ)χ̄, where χ̄ ∈ Irr(G) is an absolutely ir-

reducible character conjugate to χ and exactly one of them a�ords character

sF (χ)χ. Let H be such an irreducible F (χ)G-module. It follows that

HK ∼= S ⊕ S ⊕ ...⊕ S︸ ︷︷ ︸
sF (χ)

with S an absolutely irreducible component of H. A complete and improved

version of this algorithm for rational modules is HomogeneousComponents

in [30]. In order to apply the algorithm for splitting modules into homoge-
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neous components over any number �eld F and with the aim of interrupting

our computations when an irreducible F (χ)G-module of character sF (χ) is

found, we used the following code for our computations:

Homogeneous_Component:= func t i on (M, ch i )

s :=SchurIndex ( ch i ) ;

Z:=CentreOfEndomorphismRing (M) ;

d:=Dimension (Z ) ;

B:=Bas i s (Z ) ;

f o r b in B do

f :=MinimalPolynomial (b ) ;

i f ( I s I r r e d u c i b l e ( f ) and Degree ( f ) eq d) then

return M;

end i f ;

Fac:= Fac to r i z a t i on ( f ) ;

k:=#Fac ;

i f ( k gt 1) then

CompOmo: = [ ] ;

f o r i in [ 1 . . k ] do

e :=Evaluate (Fac [ i ] [ 1 ] ^ Fac [ i ] [ 2 ] , b ) ;

S:=sub<M| Image ( e )>;

L:=$$ (S , ch i ) ;

i f Character (L) eq s ∗ ch i then

return L ;

end i f ;

end f o r ;

end i f ;

end f o r ;

r e turn M;

end func t i on ;

At this point, the aim is to �nd the absolutely irreducible components of

the F (χ)G-module a�ording character sF (χ)χ. In this case we can not use

the same technique used for splitting M because Z(EndF (χ)G(H)) ∼= F (χ)

and the minimal polynomial of each element of the center is a degree one

polynomial in F (χ). LetK be any splitting �eld of χ, then we can summarize

the algebras involved in the splitting process by:
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EndFG(M)

K

F (χ)

F

sF (χ)

sF (χ)

t

EndF (χ)G(H)

K

F (χ)

sF (χ)

sF (χ)

EndKG(S) ∼= K

Anyway the idea of �nding a proper submodule of H looking for singular

elements in EndF (χ)G(H) is still valid, we just need to focus our attention

out of the center.

In the particular case of sF (χ) = 1 the problem is trivial because F (χ)

is also a minimal �eld for χ over F and the F (χ)G-module H found above

is already the wanted output. This means that the described algorithm can

successfully be used for �nding a representation of G a�ording a given char-

acter χ ∈ Irr(G) when sF (χ) = 1. Moreover, the representation given by the

algorithms is over a minimal �eld of χ.

If sF (χ) = 2 then EndF (χ)G(H) is a division algebra over F (χ) of degree

4. By Proposition 1.2.1 in [16] the algebra EndF (χ)G(H) is isomorphic to

a generalized quaternion division algebra. To �nd such a quaternion alge-

bra and an isomorphism from the endomorphism algebra to it we use an

algorithm implemented in Magma and due to John Voight ([33]), named

IsQuaternionAlgebra. Let a, b ∈ F (χ) be such that EndF (χ)G(H) is isomor-

phic to 〈1, i, j, ij〉F (χ) with i
2 = a and j2 = b. By Proposition 1.3.2 in [16]

the conic equation ax2 + by2 = z2 has only the zero solution over F (χ) and

it has at least one non-trivial solution over K for every splitting �eld K

of EndF (χ)G(H). We can use this fact to determine a splitting �eld K for

EndF (χ)G(H) considering a quadratic extension of F (χ) such that the equa-

tion has a non-zero solution on it. Let K = F (χ)(
√
a) as Proposition 1.2.3

in [16] suggests (but other choices can be made). Since

EndKG(H ⊗F (χ) K) ∼= EndF(χ)G(H)⊗F (χ) K ∼= MsF (χ)(K),
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every element e ∈ EndKG(H ⊗F (χ) K) correspondent by the previous iso-

morphism to a singular matrix is a singular endomorphism of HK and ker e

is a submodule of HK . In particular, EndF(χ)G(H)⊗F (χ)K is isomorphic to

〈1, i, j, ij〉K . We may look for elements e in the quaternion algebra such

that e2 = 0. Let e = t + xi + yj + zij for some t, x, y, z ∈ K, then

0 = e2 = t2 + 2txi + 2tyj + 2tzij + x2a + y2b − z2ab. Hence the coordi-

nates of e must satisfy {
t = 0

x2a+ y2b− z2ab = 0.

Since we have chosen K to be F (χ)(
√
a) then (0,

√
a, 1) ∈ K3 is a solution

for the second equation in the system. Thus the element corresponding to

e =
√
aj + ij in EndF(χ)G(H)⊗F (χ) K is singular element and its kernel is a

proper submodule of HK . Schur index equal 2 implies HK is the sum of two

absolutely irreducible modules, hence the submodule that we have found is

exactly the module we were looking for.

The followingMagma code allow us to construct absolutely irreducible mod-

ules over minimal �elds a�ording a given character of Schur index less then

3 using the procedure described above:

ConstructModule := func t i on (G, ch i )

i r r s := I r r educ ib l eModu l e s (G, Rat iona l s ( ) ) ;

F:=CharacterF ie ld ( ch i ) ;

s :=SchurIndex ( ch i ) ;

p s i :=0;

f o r x in Galo i sOrb i t ( ch i ) do

p s i+:=s ∗x ;
end f o r ;

modules :=[M: M in i r r s | Dimension (M) eq p s i ( 1 ) ] ;

modules :=[M: M in modules | Character (M) eq p s i ] ;

M:=ChangeRing (modules [ 1 ] , F ) ;

i f s eq 1 then

return Homogeneous_Component (M, ch i ) ;

e l i f s eq 2 then

H:=Homogeneous_Component (M, ch i ) ;

E:=EndomorphismRing (H) ;
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_,Q,_:= IsQuaternionAlgebra (E) ;

K:=ext<F| MinimalPolynomial (Q.2) >;

HK:=ChangeRing (H,K) ;

EK:=EndomorphismRing (HK) ;

_,QK, phi := IsQuaternionAlgebra (EK) ;

e := Inve r s e ( phi ) (K.1∗QK.3+QK.2∗QK. 3 ) ;

S:=sub<HK| Image ( e )>;

re turn S ;

e l s e e r r o r ' ' Schur index gra the r than 2 ' ' ;

end i f ;

end func t i on ;

5.3 Schur Index equal 3

Things are more complicated when sF (χ) > 2 because the endomorphism

algebra has a more complicated structure and the splitting �eld is no more a

quadratic extension of the character �eld. As a consequence of Albert-Hasse-

Brauer-Noether Theorem (see section 18.4 in [27]) we have the following:

Theorem 5.3.1. (Theorem 18.6 in [27]) Let A be a central simple algebra

over a number �eld F , then A is a cyclic algebra (i.e. there is a strictly

maximal sub�eld K of A such that K is a cyclic extension of F ).

Hence, under our hypothesis, EndF(χ)G(H) is a cyclic algebra. The struc-

ture of a cyclic algebra is somehow a generalization of a quaternion algebra

for dimension greater than 4.

Proposition 5.3.1. (Proposition 15.1 a in [27]) Let A be a cyclic algebra

over F , K be a strictly maximal sub�eld of A and Gal(K/F ) = 〈σ〉, with
o(σ) = n. Then there exists an invertible element µ ∈ A such that

1. A = ⊕nj=1u
jK;

2. xµ = xσ for all x ∈ K;

3. µn = a ∈ F ∗.

Finding a �eld K and elements u and a in EndF(χ)G(H) that realize the

cyclic algebra is not a trivial problem. In order to lighten our notation,
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from now on we denote simply by s = sF (χ), the degree of the algebra

EndF(χ)G(H). To �nd a �eld K with the desired properties we may look for

an element α ∈ EndF(χ)G(H) such that its minimal polynomial over F (χ)

is of the form xs − b, for some b ∈ F (χ). Let K be a splitting �eld for

xs − b over F (χ) and let β be a primitive element of the �eld extension

K/F (χ). The Benard-Schacher Theorem (2.3.3) asserts that F (χ) contains

a primitive sth-root of unity ζs, thus let σ be the automorphism of K such

that σ(β) = ζsβ and σ(x) = x for all x ∈ F (χ). Then Gal(K/F (χ)) = 〈σ〉.
The �eld K is a normal extension of F (χ), thus xs − b splits completely

on K as

xs − b =

s∏
i=1

(x− βζis).

For each i we have that ker
(
α− βζis

)
is a proper submodule of HK . If the

obtained module is not irreducible we can apply this procedure again until we

have an absolutely irreducible module a�ording character χ. Let us remark

that until now we have not used the fact that EndF(χ)G(H) is a cyclic algebra.

What is still di�cult to do is to �nd an α ∈ EndF(χ)G(H) with minimal

polynomial of the form xs−b over F (χ). We face this problem for the case of

s = 3. Let α ∈ EndF(χ)G(H). Since dimF (χ)H = 3χ(1) then EndF(χ)G(H)

can be considered as a subalgebra of M3χ(1)(F (χ)). Let m(x) and p(x) be

respectively the minimal polynomial of α over F (χ) and the characteristic

polynomial of α. Since EndF(χ)G(H) has degree 3 then degm is equal to 1

or 3. The minimal polynomial is linear if and only if α is a scalar matrix. To

avoid this situation we consider only non-scalar elements of EndF(χ)G(H).

Hence, we suppose, degm = 3, while deg p = 3χ(1). The polynomial m is

the minimal polynomial of three di�erent elements in EndF(χ)G(H), that are

α, ζ3α and ζ2
3α. Let K be a splitting �eld for m and λ1, λ2, λ3 ∈ K be the

three di�erent roots of m. The minimal and the characteristic polynomial

of α have the same roots, thus λ1, λ2, λ3 are eigenvalues of α. The algebraic

multiplicity ma(λi) of λi is such that χ(1) ≤ ma(λi) (because the geometric

multiplicity of λi is χ(1), the dimension of the absolutely irreducible com-

ponents of H). On the other hand
∑3

i=1ma(λi) = 9, hence ma(λi) = 3 for

each i. This implies p(x) = m(x)χ(1).
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We now consider the matrix

Λ =

λ1 0 0

0 λ2 0

0 0 λ3

 .

Its characteristic polynomial coincides with m(x) and it can be determined

by Newton's identities as

m(x) =x3 − Tr(Λ)x2 +
1

2

(
Tr(Λ)2 − Tr(Λ2)

)
x−

− 1

6

(
Tr(Λ)3 + 2Tr(Λ3)− 3Tr(Λ)Tr(Λ2)

)
.

The minimal polynomial m is of the desired form if the coe�cients of

terms of degree 1 and 2 are zero.{
−Tr(Λ) = 0
1
2

(
Tr(Λ)2 − Tr(Λ2)

)
= 0

→

{
Tr(Λ) = 0

Tr(Λ2) = 0.

As we have said the eigenvalues of α are λ1, λ2 and λ3, each with multi-

plicity χ(1). This means that Tr(α) = χ(1)Tr(Λ) and Tr(α2) = χ(1)Tr(Λ2).

This allow us to conclude that, in order to �nd elements of EndF(χ)G(H)

with minimal polynomial of the form x3− b, we have to �nd an element such

that {
Tr(α) = 0

Tr(α2) = 0.

LetB = {ω1, ω2, .., ω9} be a basis of EndF(χ)G(H) over F (χ) and {Γki,j}1≤i,j,k≤9

be the set of structure constants of EndF(χ)G(H) with respect to B (that is

ωiωj =
∑

k Γki,jωk). Then an element α ∈ EndF(χ)G(H) is a linear combi-

nation of the basis, thus α =
∑9

i=1 αiωi for some coe�cients αi ∈ F (χ).

Hence,

Tr(α) =

9∑
i=1

αiTr(ωi),
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and

Tr(α2) =Tr(
9∑
i=1

9∑
j=1

αiαjωiωj) =

=Tr(

9∑
i=1

9∑
j=1

αiαj

9∑
k=1

Γki,jωk) =

=
9∑
i=1

9∑
j=1

9∑
k=1

αiαjΓ
k
i,jTr(ωk).

Conditions on the �rst and the second trace of α can be written as{∑9
i=1 αiTr(ωi) = 0∑9
i=1

∑9
j=1

∑9
k=1 αiαjΓ

k
i,jTr(ωk) = 0,

(5.1)

so the problem now is to solve a system of equations in 9 variables α1, .., α9

in F (χ). The �rst equation is linear, the second one is quadratic. Not ev-

ery element of the basis can have trace zero. We can suppose w1 = 1 so

Tr(w1) 6= 0, thus we have α1 = Tr(ω1)−1
∑9

i=2 αiTr(ωi). Our aim is now to

�nd a solution to the quadratic equation in 8 variables obtained by substi-

tuting α1 as found in
∑9

i=1

∑9
j=1

∑9
k=1 αiαjΓ

k
i,jTr(ωk) = 0.

As a �rst attempt we may try to use a probabilistic approach. Un-

fortunately the probability to pick randomly an element in EndF(χ)G(H)

such that it is a solution of system 5.1 is zero. In order to prove that,

recall that EndF(χ)G(H) is a cyclic algebra and ζ3 ∈ F (χ), thus there ex-

ists a cyclic extension K of F (χ) contained in EndF(χ)G(H) and a basis

{1, α, α2} of K over F (χ). Let b ∈ F (χ) be such that α3 = b. The Ga-

lois group of K over F (χ) is generated by the automorphism that sends

α to ζ3α. Moreover there exists an invertible element µ ∈ EndF(χ)G(H)

such that EndF(χ)G(H) = K ⊕ µK ⊕ µ2K and αµ = ζ3µα. Let a ∈ F (χ)

be such that µ3 = a. A basis of EndF(χ)G(H) over F (χ) is given by

B = {1, α, α2, µ, µα, µα2, µ2, µ2α, µ2α2}. We can calculate the product of

each element of the basis:
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1 α α2 µ µα µα2 µ2 µ2α µ2α2

1 1 α α2 µ µα µα2 µ2 µ2α µ2α2

α α α2 b ζ3µα ζ3µα
2 ζ3bµ ζ23µα ζ23µ

2α2 ζ23bµ
2

α2 α2 b bα ζ23µα
2 ζ23bµ ζ23bµα ζ2µ

2α2 ζ3bµ
2 ζ3bµ

2α

µ µ µα µα2 µ2 µ2α µ2α2 a aα aα2

µα µα µα2 bµ ζ3µ
2α ζ3µ

2α2 ζ3bµ
2 ζ23aα ζ23aα

2 ζ23ab

µα2 µα2 bµ bµα ζ23µ
2α2 ζ23bµ

2 ζ23bµ
2α ζ3aα

2 ζ3ab ζ3abα

µ2 µ2 µ2α µ2α2 a aα aα2 aµ aµα aµα2

µ2α µ2α µ2α2 bµ2 ζ3aα ζ3aα
2 ζ3ab ζ23aµα ζ23aµα

2 ζ23abµ

µ2α2 µ2α2 bµ2 bµ2α ζ23aα
2 ζ23ab ζ23abα ζ3aµα

2 ζ3abµ ζ3abµα

The trace of all the elements of B is zero, with 1 as unique exception.

Indeed, by construction Tr(α) = Tr(µ) = 0 and consequently also Tr(α2) =

Tr(µ2) = 0. If we consider µα then we have

Tr(µα) = Tr(αµ) = Tr(ζ3µα) = ζ3Tr(µα).

It follows that Tr(µα) = 0. Exactly in the same way we can prove that

Tr(µα2) = Tr(µ2α) = Tr(µ2α2) = 0.

Looking at system 5.1 for the basis B chosen above, we have{
α1Tr(1) = 0∑9

i=1

∑9
j=1 αiαjΓ

1
i,jTr(α) = 0

where the numbering of coe�cients α1, .., α9 ∈ F (χ) corresponds to the

numbering used to list the elements of B. From the table of product it is

easy to calculate the structure constants {Γki,j} of EndF (χ)G(H). This allow

us to conclude that{
α1 = 0

b α2α3 + a α4α7 + ζ2
3ab α5α9 + ζ3ab α6α8 = 0.

From a computational point of view we can not solve this conic equation

because we do not know the actual values of a and b. However we can note

that the anisotropic space of the conic has dimension not greater than 8 over

F (χ), while the dimension EndF (χ)G(H) over F (χ) is 9. This shows that a

probabilistic approach is not useful.

Solving quadratic equations can be very hard from a computational point
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of view. There are various methods in literature. One of the main works

in this �eld is [29] of Denis Simon. Here, a possible approach is introduced

for quadratic equations over Q, using a generalized LLL-algorithm to reduce

the quadratic form. Such an algorithm is implemented in Magma when

HasRationalPoints is called for a conic de�ned over the rationals. Let q be

a positive de�ned quadratic form over Zn. Let Q = (bi · bj) ∈ Mn(R) be its

symmetric Gram matrix according to a basis b1, .., bn, where · denotes the
scalar product. Then detQ 6= 0 and q(x) = XtQX, where X is the array

of integer coe�cients of x respect to b1, .., bn. Simon's approach consist in

applying LLL-reduction on the basis b1, .., bn of Zn in order to obtain a LLL-
reduced basis. Such a procedure may either end when an element b∗i such

that b∗i · b∗i = 0 is found (in such a case the algorithm �nishes returning a

zero of q) or it �nds a reduced basis.

The major limit of this technique is that the LLL-reduction can be applied

only when the quadratic form is de�ned over the rationals. However, in [25]

LLL-reduction is generalized also to Euclidean rings, giving the chance to

extend Simon's approach also to quadratic equations de�ned over imaginary

quadratic �elds.

This may be helpful for our purpose since the quadratic equations we are

dealing with are de�ned over �eld extensions of Q(ζ3), because of Benard-

Schacher Theorem.
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Experimental Data

In order to understand the behaviour of the Schur index of absolutely irre-

ducible characters of the metacyclic groups studied in the previous chapters,

we have analysed some example using Magma. We collected the results of

our experiments in the tables contained in this Appendix. The output of

these experiments helped us to conjecture the bound proved in Proposition

4.2.4. Because of the high computational cost of the created example we

have not been able to complete the table via computation. However, the

proof of Proposition 4.2.4 is constructive in some cases thus we used these

argumentations to complete the table when the cost of the computation was

too high (indicated with ∗ in the table).

Let p, q be two odd prime number such that p ≡ 1 mod qm for some integer

m ≥ 1 and let G := 〈a, b | ap, bqk , ab = ar〉 where op(r) = ql for some integer

l satisfying 0 ≤ l ≤ k. In the next tables q is equal 3, while p is taken

equal to 7, 19, 109, 163, 487, i.e. the smallest primes such that the parameter

m assumes value 1, 2, 3, 4 and 5 respectively. The value of the parameter

m is explicitly expressed in the table, even if it strictly related to p. The

�rst table reports the degrees of the irreducible characters of the analysed

groups. The second one reports their Schur indices. Chosen a column for k

and a row for p (or equivalently m) and l, at the intersection between them

is reported a list of numbers. The �rst number in the line corresponds to the

number of characters in Irr(G) of trivial degree (resp. Schur index) when G

is constructed with the chosen parameters k, p, l. The value of parameter r

is omitted. The second number represents the number of character in Irr(G)

of degree (resp. Schur index) 3, the third is the number of character of degree

(resp. Schur index) 9, and so on.
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m
p

l
k

=
1

k
=

2
k

=
3

k
=

4
k

=
5

1
7

1
3

2
6

9
−

2
7

18
−

−
81

54
−

−
−

24
3

16
2

−
−

−
−

2
19

1
3

6
9

1
8
−

2
7

54
−

−
81

16
2

−
−

−
24

3
48

6
−

−
−

−
2

9
−

2
2
7

−
6

−
81

−
18

−
−

24
3

−
54

−
−

−
3

1
0
9

1
3

3
6

9
1
0
8
−

2
7

32
4

−
−

81
97

2
−

−
−

24
3

29
16

−
−

−
−

2
9
−

1
2

2
7

−
36

−
81

−
10

8
−

−
24

3
−

32
4

−
−

−
3

2
7

−
−

27
81

−
−

12
−

24
3

−
−

36
−

−
4

1
6
3

1
3

5
4

9
1
6
2
−

2
7

48
6

−
−

81
14

58
−

−
−

24
3
∗

43
74
∗

−
−

−
−

2
9
−

1
8

2
7

−
54

−
81

−
16

2
−

−
24

3
∗

−
48

6∗
−

−
−

3
2
7

−
−

6
81

−
−

18
−

24
3

−
−

54
−

−
4

81
−

−
−

2
24

3
−

−
−

6
−

5
4
8
7

1
3

16
2

9
4
8
6
−

27
∗

14
58
∗
−

−
81
∗

43
74
∗

−
−

−
24

3
∗

13
12

2
∗

−
−

−
−

2
9
−

5
4

2
7

−
16

2
−

81
∗

−
48

6
∗
−

−
24

3
∗

−
14

58
∗
−

−
−

3
2
7

−
−

18
81

−
−

54
−

24
3

−
−

16
2
−

−
4

81
−

−
−

6
24

3
−

−
−

18
−

5
24

3
−

−
−

−
2

Table A.1: Degrees of irreducible characters of metacyclic groups.
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m
p

l
k

=
1

k
=

2
k

=
3

k
=

4
k

=
5

1
7

1
5

−
11

4
−

29
16

−
−

83
52

−
−
−

24
5

16
0

−
−
−
−

2
19

1
9

−
27

−
−

45
36

−
−

99
14

4
−

−
−

26
1

46
8

−
−
−
−

2
11

−
−

29
4
−
−

83
4

12
−
−

24
5

4
48

−
−
−

3
1
0
9

1
39

−
1
17

−
−

35
1

−
−
−

40
5
∗

64
8
∗
−

−
−

−
−
−
−

2
21

−
−

63
−

−
−

11
7

72
−

−
−

27
9

72
21

6
−
−
−

3
31

−
−
−

85
8

−
−
−

24
7

8
24

−
−
−

4
1
6
3

1
57

−
1
71

−
−

51
3

−
−
−

15
39
∗

−
−

−
−

17
01
∗

29
16
∗
−

−
−
−

2
27

−
−

81
−

−
−

24
3

−
−

−
−

40
5

32
4

−
−
−
−

3
33

−
−
−

99
−

−
−
−

26
1

36
−

−
−
−

4
83

−
−

−
−

24
5

4
−

−
−
−

5
4
8
7

1
1
6
5
−

4
95

−
−

14
85
∗
−

−
−

44
55
∗

−
−

−
−

13
36

5∗
−

−
−
−
−

2
63

−
−

18
9

−
−
−

56
7
∗

−
−

−
−

17
01
∗

−
−

−
−
−

3
45

−
−
−

13
5

−
−

−
−

40
5

−
−

−
−
−

4
87

−
−

−
−

26
1

−
−

−
−
−

5
24

5
−

−
−
−
−

Table A.2: Schur indices of irreducible characters of metacyclic groups
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