
Article

Parallel K-means Clustering for Brain Cancer
Detection using Hyperspectral Images

Emanuele Torti 1 *, Giordana Florimbi 1 , Francesca Castelli 1, Samuel Ortega 2 , Himar
Fabelo 2 , Gustavo Marrero Callicó 2, Margarita Marrero-Martin 2 and Francesco Leporati 1

1 Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia I-27100, Italy;
emanuele.torti@unipv.it (E.T.), giordana.florimbi01@ateneopv.it (G.F.), francesca.castelli02@ateneopv.it (F.C.),
francesco.leporati@unipv.it (F.L.)

2 Institute for Applied Microelectronics (IUMA), University of Las Palmas de Gran Canaria (ULPGC), 35017
Las Palmas de Gran Canaria, Spain; sortega@iuma.ulpgc.es (S.O.), hfabelo@iuma.ulpgc.es (H.F.),
gustavo@iuma.ulpgc.es (G.M.C.), margarita.martin@ulpgc.es (M.M.)

* Correspondence: emanuele.torti@unipv.it; Tel.: +39-0382-985678

Version October 8, 2018 submitted to Electronics

Abstract: The precise delineation of brain cancer is a crucial task during surgery. There are several1

techniques employed during surgical procedures to guide neurosurgeons in the tumor resection.2

However, hyperspectral imaging (HSI) is a promising non-invasive and non-ionizing imaging3

technique that could improve and complement the currently used methods. The HypErspectraL4

Imaging Cancer Detection (HELICoiD) European project has addressed the development of a5

methodology for tumor tissue detection and delineation exploiting HSI techniques. This paper6

describes the development of the K-means clustering algorithm on different parallel architectures,7

in order to provide real-time processing during surgical procedures. This algorithm will generate8

an unsupervised segmentation map that, combined wiht a supervised classification map, will offer9

guidance to the neurosurgeon during the tumor resection task. We present parallel K-means clustering10

based on OpenMP, CUDA and OpenCL paradigms. These algorithms have been validated through11

an in-vivo hyperspectral human brain image database.. Experimental results show that the CUDA12

version is capable of achieving a speed-up of ~ 150 x with respect to a sequential processing.13

Keywords: Graphics Processing Units (GPUs); CUDA; OpenMP; OpenCL; K-means; Brain cancer14

detection; Hyperspectral imaging; Unsupervised clustering15

1. Introduction16

One of the most diffused types of cancer is the brain tumor, which has an estimated incidence of17

3.4 per 100000 subjects [1]. There are different types of brain tumors; the most common one concerns18

the glial cells of the brain and is called glioma. It accounts from the 30 % to the 50 % of the cases. In19

particular, in the 85 % of these cases, it is a malignant tumor called glioblastoma. Moreover, these kind20

of gliomas are characterized by fast-growing invasiveness, which is locally very aggressive, in most21

cases unicentric and rarely metastasizing [2].22

Typically, the first diagnosis is performed through the Magnetic Resonance Imaging (MRI) and23

the Computed Tomography (CT). Those techniques are capable to highlight possible lesions. However,24

it is not always possible to use them, since they can, for example, make interference with pacemakers25

or other implantable devices. Moreover, the certainty of the diagnosis only comes from the histological26

and pathological analyses, which require samples of the tissue. In order to obtain this tissue, an27

excisional biopsy is necessary, which consists in the removal of tissue from the living body through28

surgical cutting. It is important to notice that all those approaches have some disadvantages; in29

Submitted to Electronics, pages 1 – 17 www.mdpi.com/journal/electronics

http://www.mdpi.com
https://orcid.org/0000-0001-8437-8227
https://orcid.org/0000-0003-1062-3044
https://orcid.org/0000-0002-7519-954X
https://orcid.org/0000-0002-9794-490X
http://www.mdpi.com/journal/electronics

Version October 8, 2018 submitted to Electronics 2 of 17

Pre-processing PCA

SVM

K-means

KNN

Majority voting
HELICoiD

map

In vivo HS cube

 acquisition

Figure 1. Hyperspectral brain cancer detection algorithm proposed in [3].

particular they are not capable of providing a real-time response and, most important, they are30

invasive and/or ionizing.31

The clinical practice for brain cancers is the tumor resection, which can cure the lowest grade32

tumors and prolongs the life of the patient in the most aggressive cases. The main issue about this33

approach is the inaccuracy of the human eye in distinguishing between healthy tissue and cancer.34

This is because the cancer often infiltrates and diffuses into the surrounding healthy tissue and this is35

particularly critical for brain cancers. As a consequence, the surgeon can unintentionally left behind36

tumor tissue during a surgery routine potentially causing tumor recurrence. On the other hand, if the37

surgeon removes too much healthy tissue, a permanent disability to the patient can be provoked [4].38

The HELICoiD European project aims at providing to the surgeon a system which can accurately39

discriminate between tumor and healthy tissue in real-time during surgery routines [5,6]. Traditional40

imaging techniques feature a low grade of sensitivity and often cannot clearly determine the tumor41

region and its boundaries. Therefore, the HELICoiD project exploits Hyperspectral Imaging (HSI)42

techniques in order to solve this critical issue. Hyperspectral images (HS) can be acquired over a43

wide range of the electromagnetic spectrum, from visible to near-infrared frequencies and beyond.44

Hyperspectral sensors acquire the so-called HS cube where the spatial information are in the x-axis45

and in the y-axis, while the spectral information is in the z-axis. Thus, a single hyperspectral pixel46

can be seen as a mono-dimensional vector, which contains the spectral response across the different47

wavelengths. Moreover, it is important to notice that the spectral information is strictly correlated48

with the chemical composition of the specific material. It is possible to say that each hyperspectral49

pixel contains the so-called spectral signature of a certain substance. Thus, different substances can be50

distinguished by properly analyzing those images [7].51

A previous study [3,5] proposed a processing chain for hyperspectral image analysis acquired52

during brain surgery. The framework developed in this work is depicted in Fig. 1.53

First, the acquired HS cube is pre-processed in order to perform a radiometric calibration, reduce54

the noise and the dimensionality of the HS image and normalize it. After this preparatory step, the55

image is given as input to three different algorithms: the Principal Component Analysis (PCA), the56

Support Vector Machine (SVM) and the K-means. The outputs of the first two serve as inputs for the57

k-nearest neighbor (KNN) filter. The result of this filter is combined with the output produced by the58

K-means through a majority voting method. This allows to obtain the final classification map. Whilst59

the PCA, the SVM and the KNN filter are executed through a fixed number of steps, the K-means60

algorithm iterates until a certain condition is satisfied. In order to provide the real-time classification61

during surgery, parallel computing is required, since the computational load of the algorithms is62

extremely high. Parts of this framework have been already developed in parallel, in particular the63

SVM [8] and the KNN filtering [9] have been recently proposed in the literature. Those works target64

Graphics Processing Units (GPUs) technology since the considered algorithms have an intrinsically65

parallel structure. Moreover, GPUs are going to be more and more used for real-time image processing66

[10–12], together with other scientific applications related to simulation and modeling or machine67

learning in biomedical applications [13,14].68

Version October 8, 2018 submitted to Electronics 3 of 17

In this paper, we present the parallelization of the K-means algorithm on different parallel69

architectures in order to evaluate which one is more suitable for real-time processing. In particular, we70

consider multi-core CPUs through the OpenMP API and the GPU tehcnology using NVIDIA CUDA71

framework. We also propose OpenCL based implementations in order to address code portability.72

In other words, the work performed allows identifying the best suitable parallel approach73

between one that could be more appealing since it requires low programming effort and another74

one more efficient but also more demanding in terms of optimisation and tuning. A tool that allows75

intra-architectures portability (OpenCL) was also considered but due to its lower performance it is not76

competitive with the other two approaches.77

The paper is organized as follows: Section 2 describes the K-means algorithm for hyperspectral78

images, while Section 3 details the different parallel versions. Section 4 contains the experimental79

results and their discussion, making comparisons between the different approaches described in this80

paper. Section 5 concludes the papers and addresses some possible future research lines.81

2. K-means algorithm for hyperspectral images82

As already said, the K-means algorithm, unlike the other ones of the hyperspectral brain cancer83

detection algorithm, is not performed through a fixed number of steps. It performs an unsupervised84

learning since no previous knowledge of the data is needed. The algorithm separates the input data85

into K different clusters with a K value fixed a priori. Data are grouped together on the basis of86

feature similarity. The first step of the algorithm is the definition of K centroids, one for each cluster.87

Using those centroids, a first grouping is performed on the basis of the distance of each point to the88

centroids. A point is associate to the cluster represented by the nearest centroid. At this moment,89

each k centroid is updated as the baricenter of the group it represents. This process iterates until the90

difference between the centroids of two consecutive iterations are smaller than a fixed threshold or if91

the maximum number of iteration is reached.92

The pseudo-code of the K-means algorithm is shown in Alg. 1, where Y indicates an hyperspectral93

image made up of N pixels and L bands. Therefore, the hyperspectral image can be seen as an NxL94

matrix. The number of clusters to produce is determined by K, the threshold error by min_error and the95

maximum number of iterations by max_iter. The K-means algorithm produces as a results a KxL array96

containing the centroids, which will be referred as cluster_centroids in Alg. 1 and an N-dimensional97

array containing the label of the cluster assigned to each pixel. This array is denoted by assigned_cluster.98

In Alg. 1, lines 1 and 2 contain the initialization of the variables. In particular, cluster_centroids99

is initialized with K different hyperspectral pixels pseudo-randomly chosen from the input image Y.100

The variable actual_error is initialized with a huge value in order to ensure that the main loop of the101

algorithm (from line 5 to 17) is performed at least one time. Inside this main loop there are two for102

loops that iterate over the number of pixels N and the number of clusters K (lines from 6 to 12). For103

each pixel, a temporary array centroid_distances is set to 0, used for storing the distances between the104

considered hyperspectral pixel and the centroids. The distance metric used for hyperspectral pixels is105

usually the Spectral Angle (SA) which is defined as:106

SA = θ(x, y) = cos−1

 ∑L
h=1 xhyh(

∑L
h=1 x2

h

)1/2 (
∑L

h=1 y2
h

)1/2

 (1)

where x and y are the spectral vectors and xh and yh represent the response of the h-th band of x107

and y respectively, being L the number of bands.108

The label assigned to the i-th pixel corresponds to the group represented by the centroid with the109

minimum SA value, as shown in line 11. This phase is repeated for each pixel.110

After these steps, the centroids used for the SAs computation are stored in the previous_centroids111

array. Successively, the centroids are updated by computing the barycenter of each group that is112

computing the mean value, for each band, of the pixels belonging to the group. Using the updated113

Version October 8, 2018 submitted to Electronics 4 of 17

Algorithm 1 K-means
Input: Y, K, min_error, max_iter

1: Pseudo-random initialization of cluster_centroids

2: Initialize previous_centroids at 0 . previous_centroids is an K x L array

3: n_iter← 0 . initialize the iteration counter to 0

4: Initialize actual_error with a huge value

5: while actual_error > min_error and n_iter < max_iter do
6: for i:=1 to N do
7: Initialize centroid_distances to 0 . centroid_distances is a K-dimensional array

8: for j:=1 to K do
9: centroid_distancej ← distance between the j-th centroid and the i-th pixel

10: end for
11: assigend_clusteri ← index of min centroid_distance

12: end for
13: previous_centroids← cluster_centroids

14: update cluster_centroids

15: actual_error← ∑K
i=1 ∑L

j=1|previous_centroidsi,j−cluster_centroidsi,j|
K·L

16: n_iter← n_iter+ 1

17: end while

Output: assigned_cluster, cluster_centroids

centroids and the previous ones, it is possible to evaluate the variation from the previous iteration. It114

represents how much the centroids have changed and it can be used as a stopping criteria when these115

variations become small (line 15). The last step of the while loop is the increment of the n_iter variable,116

used for controlling the maximum number of iterations performed by the algorithm.117

The next section describes the serial and the parallel versions of this algorithm that we developed118

using different parallel approaches, together with a code profiling carried out in order to identify the119

heaviest code parts from the computational point of view.120

3. Parallel K-means implementations121

First, we developed a serial version of the K-mean algorithm written in C code. It serves both as122

reference for validating the results of the parallel implementations and for performing a careful code123

profiling needed to identify the most complex code parts. The numerical representation used is the124

IEEE-754 floating-point single precision.125

3.1. Serial code profiling126

The code profiling was performed using a dataset formed by real HS images and assuming127

K = 24, min_error = 10−3 and max_iter = 50. This K value was stablished during the development of128

the HS brain cancer algorithm presented in [3]. Using this configuration, the execution of the algorithm129

never reached the maximum number of iterations. The characteristics of the dataset are shown in Table130

1.131

The profiling highlighted that the heaviest code parts are the computation of distances, which are132

evaluated between each hyperspectral pixel and each centroid. In the considered cases, the for loops of133

lines 6-12 (Alg. 1) take from 94 to 98 % of the time for the smallest and the biggest image, respectively.134

Notice that these computations can be performed in parallel, since there is no dependency between the135

evaluations needed by a single pixel and the others.136

Version October 8, 2018 submitted to Electronics 5 of 17

Table 1. Dataset characteristics

Image ID # of rows # of columns Total # of pixels # of bands Size (MB)

Image 1 329 379 124,691 128 60.88
Image 2 493 376 185,368 128 90.51
Image 3 402 472 189,744 128 92.65
Image 4 496 442 219,232 128 107.05
Image 5 548 459 251,532 128 122.82
Image 6 552 479 264,408 128 129.11

3.2. OpenMP algorithms137

OpenMP1 is a parallel programming framework capable of exploiting multi-core architectures. It138

is based on a set of simple #pragma statements used for code annotations that indicates to the compiler139

which parts should be parallelized. An example is the #pragma omp parallel for statement, which140

generates a set of parallel threads and assigns to each one a group of iterations. It is also possible141

to indicate to the compiler which variables should be shared among the threads and which ones142

are private through the shared and private clauses, respectively. Finally, it is possible to choose the143

scheduling algorithm to use through the schedule option. The supported scheduling algorithms are144

static, dynamic and guided. In the first case, the number of iterations are equally or as equal as possible145

subdivided among the threads. Thus, each thread performs the same number of iterations. The dynamic146

scheduling uses the internal work queue to give a chunk-sized block of loop iterations to each thread.147

When a thread finishes, it retrieves the next block of loop iterations from the top of the work queue.148

The default value of the chunk size is 1, but it is possible to change it by a proper command. Finally,149

the guided scheduling is similar to the dynamic one, but the chunk size starts from a big value and then150

decreases in order to manage load imbalance between different iterations.151

We developed two different OpenMP versions of the K-means algorithm. The first one parallelizes152

the for loop which iterates over the hyperspectral pixels (line 6, Alg. 1). In this way, at each iteration of153

the main while loop, a set of parallel threads are generated and each one computes the SA between a154

certain group of pixels and the centroids. All the other operations are performed in a serial way. The155

shared arrays are the cluster_centroids and the input image Y, while all the other variables are private.156

In this version, the parallel region is created and destroyed at each iteration of the main while loop.157

Concerning the second implementation, the majority of the operations are performed in parallel.158

The operations that continue to be performed sequentially are the actual_error computation and the159

increment of n_iter, at lines 15 and 16 of Alg. 1, respectively. A barrier must be placed after the160

actual_error computation, in order to prevent the other threads to evaluate the while condition with161

an inconsistent old value. In this case, also the centroid_distance is declared as shared. Notice that, in162

this version, the parallel region is created and destroyed only once, at the beginning and at the end of163

the main while loop. However, in this case, it is necessary to introduce a barrier in order to ensure the164

correct execution of the program.165

3.3. CUDA algorithms166

CUDA2 is a parallel programming framework developed by NVIDIA to exploit GPU computing167

power. In this framework, the GPU, also called device, is seen as a parallel co-processor, with separated168

address space with respect to the CPU, also called host. The execution of a CUDA program always169

begins from the host, using a serial thread. When it is necessary to perform a parallel operation, the170

host allocates memory on the GPU and transfers the data to that memory. Those two operations171

1 https://www.openmp.org/
2 https://developer.nvidia.com/cuda-zone

https://www.openmp.org/
https://developer.nvidia.com/cuda-zone

Version October 8, 2018 submitted to Electronics 6 of 17

CPU GPU

START

END

Algorithm

initialization

actual_error > min_error

and

n_iter < max_iter

False

Copy Y to

the GPU
CudaMemcpy Y

Copy cluster_centroids

to the GPU
CudaMemcpy cluster_centroids

Compute distances

distances_array Copy results to the CPUCudaMemcpy

Compute minimum

for each pixel

Update cluster_centroids

and assigned_cluster

True

Update actual_error and n_iter

Figure 2. Schematization of the first GPU implementation. The operations are in white boxes, while
data are in yellow boxes.

are performed through the cudaFree and cudaMemcpy routines. At this point, the GPU generates172

thousands of parallel threads, which cooperate in order to perform the desired computation. The173

function performed by the GPU is called kernel. When the kernel execution ends, the CPU retrieves the174

results from the GPU memory through memory transfer (cudaMemcpy routine). The GPU memory is175

then deallocated by the cudaFree routine. The execution proceeds then in a serial way.176

The threads generated by the GPU are grouped into blocks, which form the grid. The blocks can be177

mono-dimensional, bi-dimensional or three-dimensional and the number of threads within a block can178

be chosen by the programmer.179

The typical bottleneck of GPU applications is represented by memory transfers. Therefore, it is180

necessary to properly manage them in order to achieve the best performance.181

In this work, we present three different parallel versions of the K-means algorithm. The first182

one is based on the parallelization of the distance computation. In this case, the thread performs the183

computation of the distance between the assigned pixel and the K centroids. This kernel takes as inputs184

the hyperspectral image Y and the K centroids stored in the cluster_centroids variable. It produces as185

output a NxK array which contains the distances between each pixel and each centroid. In particular,186

the i-th row and the j-th column of this array store the distance between the i-th pixel and the j-th187

centroid. Therefore, it is necessary to add a supplementary temporary array (NxK) with respect to the188

serial implementation. The schematization of this implementation is shown in Fig. 2.189

The hyperspectral image Y is copied to the GPU memory only once, before the beginning of190

the main while loop. This has been done since the image is not modified by the algorithm. At every191

iteration, the only data transferred to the GPU is the matrix containing the centroids, that is used,192

together with the image, to compute the distances, stored in a temporary matrix (distances_array in Fig.193

Version October 8, 2018 submitted to Electronics 7 of 17

2). Data are sent back to the host, which computes the minimum distance for each pixel (i.e. each row194

of this matrix) and then updates the centroids and computes the error in order to evaluate convergence.195

The second CUDA version has been developed in order to avoid the limit of the amount of196

data transferred during each iteration of the main while loop. Therefore, the minimum distance197

computations, the centroids update and the error evaluation have been performed on the GPU side.198

Since the distances are stored in an NxK array, the kernel used to find the index of the minimum199

distance is executed by N threads. The i-th thread performs a for loop in order to evaluate the minimum200

distance of the i-th centroid. In other words, this task has been parallelized by assigning to each thread201

the computation of the minimum distance for one pixel. The index of the minimum distance is stored202

in the assigned_cluster array, which contains the classification obtained at the current iteration of203

the main loop. The update of the centroids has been performed by a simple kernel where the i-th204

thread computes the update of the i-th centroid. Concerning the error evaluation, it is possible to use205

the highly optimized routines offered by the CUBLAS library. In particular, it is possible to use the206

cublasSasum routine, which calculates the sum of the absolute values stored in the input array. Before207

activating this kernel the element-wise difference between the values stored in the actual_centroids208

and previous_centroids arrays must be computed. This is done by a kernel in which a single thread209

computes the difference between two elements. The sum computed by the cublasSasum routine is210

returned to the host, which performs the final division needed for error evaluation and increments the211

number of iteration. The schematization of this CUDA version is shown in Fig. 3.212

It is important to notice that, in this version, only a single precision floating-point value is213

transferred at each iteration of the main loop. However, an additional data transfer at the end of the214

main loop must be performed, since it is necessary to retrieve the assigned_cluster that contains the215

hyperspectral pixel classification.216

The last CUDA version developed in this work exploits the dynamic parallelism introduced by217

CUDA 6.0. This allows to use a thread inside a kernel in order to generate a grid which executes218

another kernel. In the proposed case, it is possible to take advantage of dynamic parallelism by moving219

the main while loop inside the kernel. In other words, this version is made up of a single kernel220

executed on the GPU by a single thread, which manages the activation of the kernels already described221

for the second CUDA version. In this case, the only memory transfers are performed before (the222

hyperspectral image Y) and after the main loop (the classified pixels assigned_cluster). However, it is223

worth noting that the activation of a kernel from another kernel requires a launching overhead, which224

will be discussed in Section 4.225

3.4. OpenCL algorithms226

OpenCL3 is a parallel programming framework maintained by the Khronos Group which227

addresses the issue of portability between devices from different vendors. It assumes a model similar228

to CUDA, with the difference that the blocks are called working groups and the threads are called229

working items. The computing platforms that can be programmed using OpenCL range from multi-core230

CPUs to many-core GPU and finally to FPGAs. Similarly to CUDA, this paradigm assumes that the231

computing platform is made up of a serial processor, called host, and one or more parallel devices. At232

the beginning of an OpenCL application, it is important to correctly initialize the execution context.233

This has the effect of pointing out to the OpenCL environment which devices will be used in the case234

that there are more than one OpenCL compatible boards installed on the same machine. Data that235

must be processed by the devices are stored into buffers, which can be of different types, depending236

on the targeting devices of the implementation. In particular, considering a generic GPU as a device,237

a buffer is a portion of the device memory where data are copied from the host memory. On the238

other hand, if we consider as a device a multi-core CPU or an integrated GPU which shared the RAM239

3 https://www.khronos.org/opencl/

https://www.khronos.org/opencl/

Version October 8, 2018 submitted to Electronics 8 of 17

CPU GPU

START

END

Algorithm

initialization

actual_error > min_error

and

n_iter < max_iter

False

Copy Y to

the GPU
CudaMemcpy Y

Compute distances

assigned_cluster

CudaMemcpy

Update cluster_centroids

and assigned_cluster

True

Update n_iter

Find minimum

sum

actual_error = sum/(K*L)

Copy assigned_custer

from the GPU

CudaMemcpy

Compute sum

Figure 3. Schematization of the second GPU implementation. The operations are in white boxes, while
data are in yellow boxes.

Version October 8, 2018 submitted to Electronics 9 of 17

0 4 8 12 16 20 24 28
110

120

130

140

150

160

170

0 2 4 6 8 10 12 14 16
125

130

135

140

145

150

155

160

Number of threads Number of threads

P
ro

c
e
s
s
in

g
 t

im
e
 [

s
]

P
ro

c
e
s
s
in

g
 t

im
e
 [

s
]

0 4 8 12 16 20 24 28 0 2 4 8 106 12 14 16
110

120

130

140

150

160

170

125

130

135

140

145

150

155

160
a b

Figure 4. Processing time for Image 6 with respect to the number of threads for the first (a) and for the
second (b) OpenMP version.

memory with the host, the buffer is only a reference to the RAM portion where data are stored. Notice240

that, in this last case, there will be no data transfers between host and device since the RAM address241

space is shared. An important difference when compared with CUDA is the absence of dynamic242

parallelism, thus, it is not possible to activate a kernel from another one. Therefore, we only developed243

two versions based on OpenCL. The first one performs the parallel computation of the distances on244

the device while the other operations are performed on the host. The second version performs all245

the operations inside the main while loop on the device, as we implemented in the second CUDA246

version already described. However, it is not possible to exploit the CUBLAS library, since it is strictly247

correlated with the adoption of NVIDIA devices. Therefore, we exploit the clBLAS library which is248

very similar to CUBLAS. In particular, we use the clblasSasum routine which performs the summation249

of all the elements stored in a given array. All the other operations have been performed as described250

for the second CUDA version.251

4. Experimental results and discussion252

All the parallel implementations have been tested with the hyperspectral dataset already used253

for serial code profiling and shown in Table 1. The images have been employed both to evaluate the254

processing times of the different versions and to validate the results. All the parallel versions have255

obtained the same results than the serial one when removing the random initialization. In other words,256

if the serial and the parallel versions have the same initialization, they perform the same number of257

iterations and produce the same outputs.258

4.1. OpenMP performance evaluation259

First, for each OpenMP implementation, several tests have been conducted in order to establish260

the optimal number of threads to be generated, using the biggest image (Image 6). These tests have261

been performed on an Intel i7 6700 processor working at 3.40 GHz equipped with 32 GB of RAM. The262

codes have been compiled with the vc140 compiler, using compilation options to indicate the target263

architecutre (i.e. x64 processor) and to maximize the processing speed. The processing times have264

been measured through the omp_get_wtime routine. The obtained results are shown in Fig. 4.265

It is important to highlight that the experiments have been conducted with the same initialization,266

and they provide the same number of iterations and the same classification results. For the first267

OpenMP implementation, we measured the processing time from 4 to 28 threads. We did not test the268

application with more threads since the processing time begins to significantly grow after 28 threads.269

By analyzing Fig. 4a, it is possible to see that the optimal number of threads for the first OpenMP270

version is 16. These measures have also been performed for the second OpenMP version, but in this271

Version October 8, 2018 submitted to Electronics 10 of 17

Table 2. Comparison between the serial and the OpenMP versions of the algorithm. The speed-up is
reported between brackets.

Image ID # of iterations Serial [s] OpenMPv1 [s] OpenMPv2 [s]

Image 1 32 272.20 73.18 (3.72x) 75.88 (3.59x)
Image 2 13 162.37 44.42 (3.65x) 45.80 (3.55x)
Image 3 23 289.64 77.81 (3.72x) 81.35 (3.56x)
Image 4 10 151.50 40.98 (3.70x) 43.42 (3.49x)
Image 5 13 214.52 59.00 (3.64x) 63.09 (3.40x)
Image 6 25 465.51 118.31 (3.93x) 136.99 (3.40x)

Table 3. Comparison between the serial and the CUDA versions of the algorithm on a Tesla K40 GPU.
The speed-up is reported between brackets.

Image ID # of iterations Serial [s] CUDAv1 [s] CUDAv2 [s] CUDAv3 [s]

Image 1 32 272.20 87.48 (3.11x) 4.52 (60.22x) 4.87 (55.89x)
Image 2 13 162.37 54.51 (2.98x) 2.97 (54.67x) 3.34 (48.61x)
Image 3 23 289.64 100.67 (2.88x) 4.99 (58.04x) 5.12 (56.57x)
Image 4 10 151.50 56.41 (2.69x) 2.96 (51.18x) 3.47 (43.66x)
Image 5 13 214.52 79.74 (2.69x) 3.99 (53.76x) 4.14 (51.82x)
Image 6 25 465.51 159.77 (2.91x) 7.45 (62.48x) 7.83 (59.45x)

case the maximum number of threads tested was 12 since the processing times begins to grow. In this272

case, as highlighted by Fig. 4b, the optimal number of threads is 8.273

After establishing the optimal number of threads, we tested the two OpenMP versions on the274

entire dataset presented in Table 1. In order to allow a direct comparison between the serial and the275

parallel versions, we initialized the algorithm with the same values for a given image. The obtained276

results, together with the speed-up values, are reported in Table 2, where OpenMPv1 indicates the first277

version (the parallelization of the distance metric computation), while OpenMPv2 indicates the second278

one (the whole main loop parallelized). Those results, together with the others obtained by the CUDA279

and OpenCL versions, will be discussed in Section 4.4.280

4.2. CUDA performance evaluation281

The three CUDA versions have been compiled using the NVIDIA nvcc compiler, which is part of282

the CUDA 9.0 environment. Compilation options have been chosen in order to maximize the execution283

speed. The tests have been conducted using two different GPUs. The first one is a NVIDIA Tesla284

K40 GPU equipped with 2880 CUDA cores working at 750 MHz and with 12 GB of DDR5 RAM. It is285

based on the Kepler architecture that does not have a graphical output port since it is optimized for286

scientific computations. The second GPU is a NVIDIA GTX 1060 equipped with 1152 CUDA cores287

working at 1.75 GHz and with 3 GB of DDR5 RAM. This GPU is more recent than the first one and it is288

based on the Pascal architecture, having a graphical output port. In order to take full advantage of the289

specific architecture of each GPU, we indicate to the compiler which is the target micro-architecture.290

Specifically, we used the options sm_35 and compute_35 for the Tesla K40 GPU and the options sm_60291

and compute_60 for the GTX 1060, where the values 35 and 60 represent the Kepler and the Pascal292

architecture, respectively. The results obtained using the Tesla K40 GPU are reported in Table 3, while293

the results obtained by the GTX 1060 GPU are reported in Table 4.294

In both tables, CUDAv1 indicates the version where only the distance computation is computed295

on the GPU, CUDAv2 indicates the version where all the operations are performed in parallel and,296

finally, CUDAv3 indicates the version exploiting dynamic parallelism.297

Concerning the GPU implementation, we also conducted a profiling using the NVIDIA Visual298

Profiler. This tool allows to profile the code execution on GPU together with memory transfers, in299

order to evaluate the efficiency of the implementation. Figure 5 shows the results obtained by profiling300

Version October 8, 2018 submitted to Electronics 11 of 17

Table 4. Comparison between the serial and the CUDA versions of the algorithm on a GTX 1060 GPU.
The speed-up is reported between brackets.

Image ID # of iterations Serial [s] CUDAv1 [s] CUDAv2 [s] CUDAv3 [s]

Image 1 32 272.20 80.84 (3.37x) 2.37 (114.85x) 4.21 (64.66x)
Image 2 13 162.37 44.54 (3.65x) 1.94 (83.70x) 2.93 (55.42x)
Image 3 23 289.64 98.61 (2.94x) 2.66 (108.89x) 2.96 (97.85x)
Image 4 10 151.50 52.47 (2.89x) 2.02 (75.00x) 3.25 (46.62x)
Image 5 13 214.52 75.00 (2.86x) 2.41 (89.01x) 3.48 (61.64x)
Image 6 25 465.61 147.50 (3.16x) 3.16 (147.34x) 3.69 (126.18x)

99%

1%

Memory transfers

GPU computation

77%

22.5%

0.4% 0.1%

Compute distances

Centroids and cluster update

Find minimum
Compute sum

58% 42%

Memory transfers

GPU computation

a) CUDAv1 b) CUDAv2

Figure 5. Profiling of GPU versions on the NVIDIA GTX 1060 board for the CUDA v1 (a) and CUDA
v2 (b) versions.

the Image 1 (the most demanding one) processing on the GTX 1060 with the CUDAv1 (a) and CUDAv2301

(b) codes. Concerning the CUDAv2, in Fig 5b the different kernels executions percentage on the GPU302

are detailed. Profiling of CUDAv3 is not shown since it is very similar to CUDAv2 as well as the code303

profiling on the NVIDIA Tesla K40 GPU.304

4.3. OpenCL performance evaluation305

OpenCL codes have been compiled using vendor-specific compilers. In particular, the OpenCL306

version without memory transfers have been tested on an Intel i7 6700 processor working at 3.40 GHz,307

equipped with 32 GB of RAM and on an Intel HD Graphics 530 integrated GPU with 16 cores working308

at 350 MHz. The integrated board shares the RAM with the CPU. Concerning the OpenCL version309

which performs memory transfers, it has been tested on the NVIDIA GTX 1060 GPU. Results obtained310

by the OpenCL versions are reported in Table 5.311

Table 5. Comparison between the serial and the OpenCL versions of the algorithm. The speed-up is
reported between brackets.

Image ID # of iterations Serial [s] Intel i7 [s] Intel HD 530 [s] GTX 1060 [s]

Image 1 32 272.20 74.13 (3.67x) 183.96 (1.48x) 57.61 (4.72x)
Image 2 13 162.37 44.32 (3.66x) 114.24 (1.42x) 35.61 (4.56x)
Image 3 23 289.64 79.52 (3.64x) 203.62 (1.42x) 63.75 (4.54x)
Image 4 10 151.50 40.52 (3.74x) 113.82 (1.33x) 35.36 (4.28x)
Image 5 13 214.52 59.92 (3.58x) 156.56 (1.37x) 47.03 (4.56x)
Image 6 25 465.51 121.59 (3.83x) 312.68 (1.49x) 93.65 (4.97x)

Version October 8, 2018 submitted to Electronics 12 of 17

4.4. Comparisons and Discussion312

The OpenMP version that offers the better results is the one where only the distance evaluations313

are processed in parallel. In this version, a parallel region is created and then destroyed at every314

iteration of the main loop, while in the second version the parallel region is created only once before315

the beginning of the main loop and is destroyed after the end of the main loop. However, the second316

version requires synchronization barriers between the threads, since there are operations that should317

be performed sequentially in order to obtain correct results. As an example, the increment of the318

number of iterations and the check of the conditions for repeating or not the main loop should be319

performed by a single thread. This is a critical issue since the advantage of creating and destroying the320

parallel region only once is thwarted by the synchronization bottleneck. The result analysis shows that321

the processing times are very similar, but the processor manages better the first version (OpenMPv1).322

Moreover, the speed-up values of the two versions are similar. Finally, it is important to highlight323

that the considered processor is equipped with 4 physical cores and the obtained speed-up is always324

greater than 3.5x. This means that the parallelization efficiency is close to the theoretical value.325

Concerning the CUDA versions, by analyzing Tables 3 and 4, it is possible to observe that, for326

both GPU boards, the first CUDA version (CUDAv1) performs worst than the OpenMP ones. The327

reason is highlighted in Fig. 5a, where the profiling results show that the memory transfers take about328

42% of the time and only the remaining 58% is used for the computation. This is the typical bottleneck329

of GPU computing since the memory transfers are performed by the PCI-express external bus. The330

second CUDA version (CUDAv2) is not affected by this issue since the amount of data transferred331

at each main iteration is significantly lower than in the previous case. It is possible to parameterize332

the amount of transferred data at each iteration for this two version. In the first case (CUDAv1),333

the data transferred is the distance_array matrix, which is made up of NxK elements represented in334

single precision floating-point arithmetic, while in the second case (CUDAv2) only one single precision335

floating-point value is copied back to the host. In the third case (CUDAv3), when dynamic parallelism336

is used, there are no data transfers inside the main loop. Therefore the third CUDA version is the337

one which transfers the minimum possible amount of data, but it does not perform better than the338

second version. This is because the dynamic parallelism produces an overhead due to the GPU switch339

between the main kernel and the subroutine kernel. This overhead affects every sub-kernel activation.340

In this specific case, four different sub-kernels are activated at every iteration. This overhead is not341

negligible and, as it can be seen form the results of Tables 3 and 4, it takes longer than the copy of a342

single float value from device to host. In other words, the time needed by the GPU to manage the343

generation of four sub-kernels (CUDAv3) is comparable with the time taken by a single value copy344

from the host to the device memory (CUDAv2). Finally, for all the CUDA versions, the GTX 1060 board345

performs better than the Tesla K40, even if the last board is optimized for scientific computations. This346

is because the first board is equipped with a more recent architecture which has better CUDA cores347

working at a higher frequency than the Tesla GPU.348

The analysis of the OpenCL versions highlight that, considering the Intel i7, the processing times349

are close to the OpenMP ones. For what concerns the Intel HD 530 integrated GPU, the performance is350

very poor and the speed-ups are negligible. This is probably due to the low-end integrated GPU with351

a working frequency of 350 MHz and only 16 parallel processing elements. Therefore, it is not possible352

to obtain a significant speed-up compared to the serial version. Comparing the OpenCL version and353

the CUDA versions running on the GTX 1060 GPU, it is possible to notice that the OpenCL version354

performs better than the CUDAv1, but is significantly slower than the other two CUDA versions. These355

CUDA versions (CUDAv2 and CUDAv3) employ highly optimized routines, which exploits all the356

hardware features of a GPU. Moreover, the CUDA versions have been compiled using compilation357

options in order to produce an executable code which fully exploits the specific target architecture.358

This is not possible in OpenCL since it targets portability between different devices as main feature.359

We also performed a comparative study between the three best performing versions of the three360

considered technologies in order to characterize how the speed-up varies with respect to the number361

Version October 8, 2018 submitted to Electronics 13 of 17

0 5 10 15 20 25 30 35 40 45 50

Number of clusters

100

101

102

103

P
ro

ce
ss

in
g

tim
es

 [s
]

OpenMPv1
CUDAv2
OpenCL GTX 1060

Figure 6. Speed-ups achieved by the three best parallel implementation (one for each evaluated parallel
technology) with respect to the number of clusters.

of clusters. In particular, we performed experiments using Image 6 and K values variying from 2362

to 50. The speed-ups of the OpenMP, CUDA and OpenCL best versions with respect to the serial363

implementation are shown in Fig. 6 using a semi-logarithmic scale. It is possible to see that the CUDA364

version has a speed-up that ranges from 10x to ~ 150 x and from 12 clusters on it becomes nearly365

constant. On the other hand, the solutions based on a multi-core processor have speed-ups that are366

close to 4x.367

In the literature, there are different works about parallel K-means.368

Baramkar et al. [15] perfomed a review of different parallel GPU based K-means, but the considered369

works where focused only on general classification, without considering high data dimensionality,370

which is the case explored in our work. Therefore it is hard to perform direct comparisons with these371

works, which achieve very different speed-ups ranging from 11x to 220x.372

Zechner et al. [16] proposed a parallel implementation of this algorithm using both CPU and GPU.373

In particular, the GPU was only employed for distance computation, while centroids update was left374

to the CPU. They classified an artificial dataset with two-dimensional elements ranging from 500 to375

500, 000. The maximum speed-up achieved was 14x, lower than the one obtained in our work. This376

is because the optimization proposed in [16] is only valid for low-dimensional data and cannot be377

employed for classifying high-dimensional data like hyperspectral images.378

A similar approach is shown in [17,18], with the difference that also the clusters update has379

been performed on the GPU. However, between the distance computation and centroids update they380

performed host computation for updating each pixel label. This choice leads to a maximum speed-up381

of 60 in both works, lower than our one, since we moved all the computation on the device side.382

In [19], a GPU based K-means algorithm is proposed, with a distance computation that is evaluated383

through a simple Cartesian distance. Under this assumption, they classify 1, 000, 000 pixels with 32384

features in 1.15 s. In our case, the bigger image has 264, 408 pixels, the features (i.e. the bands) are 128385

and it is processed in ~ 3.56 s. Moreover, the distance metric that we adopt (the spectral angle) is more386

complex than the one proposed in [19].387

Baydoun et al. [20] developed a parallel K-means for RGB images classification. They adopted as388

metric a simple Cartesian distance and they parallelize only this computation, achieving a maximum389

speed-up of ~ 25x. In this case, the metric and the data dimensionality are very different compared to390

this work.391

In [21], the K-means algorithm was modified in order to further reduce the distance computation.392

The speed-up varies from 4x to 386x, but also, in this case, it is not possible to perform a direct393

comparison since there are not sufficient details about the dataset composition. Finally, in [22], the394

K-means algorithm was developed on GPU with the Cartesian distance. They adopt a modern GPU395

with 1536 CUDA cores obtaining a maximum speed-up of 88x, which is very similar to our results.396

Version October 8, 2018 submitted to Electronics 14 of 17

Table 6. Comparison between the proposed work and the literature.

Paper Maximum image size Data dimensionality Technology Speed-up

[15] 2,000,000 8 GPU NVIDIA GTX 280 220
[16] 500,000 2 GPU NVIDIA 9600 GT 14
[17] 1,000,000 2 GPU NVIDIA 8800 GTX 60
[18] 15,052,800 3 4 x GPU NVIDIA GTX 750Ti 60
[19] 1,000,000 32 GPU NVIDIA GTX 280 N. A.
[20] 16,777,216 3 GPU NVIDIA Tesla C2050 25
[21] 245,057 4 GPU NVIDIA GeForce 210 386
[22] 500,000 16 GPU NVIDIA Quadro K5000 88
[23] N. A. N. A. GPU NVIDIA GTX 1080 18.5
[24] 20,000 10 2 x AMD Opteron quad-core 8
[24] 65,536 10 GPU NVIDIA Tesla 2050 60
[24] 17,692 9 Mitrion MVP FPGA Simulator N. A.
Our work 264,408 128 GPU NVIDIA GTX 1060 126

Lutz et al. [23] proposed a parallel K-means implementation using an NVIDIA GTX 1080 GPU.397

They perfomed only experiments producing four groups and no further details are given in the paper398

about the dataset. They achieved a maximum speed-up of 18.5x which is nearly an order of magnitude399

smaller than the one of our implementation.400

A comparative analysis similar to the one we conducted is reported in [24]. Authors exploited401

GPUs, OpenMP, Message Passing Interface (MPI) and Field Programmable Gate Arrays (FPGAs).402

However, also in this case, they considered only a dataset made up of 10-dimensional points, therefore403

the computational complexity of the distance computation is lower than our one. On the other hand,404

the results were not as good as our ones, since the maximum GPU speed-up achieved is ~ 60x. They405

also demonstrated that the speed-up could reach a value up to 200x if the number of clusters to produce406

was significantly increased (i.e. more than 2000 clusters), but a study of how this speed-up varied also407

with respect to the data dimensionality were not carryed out. Concerning OpenMP, the classification408

of 20, 000 10-dimensionality points took ~ 3 s. Our smallest image is 6 times bigger than this one and409

with a dimensionality 18 times grater than the one considered. Keeping this in mind, the performance410

of our best OpenMP version is quite similar to this one. Finally, concerning the FPGA implementation,411

experiments were reported only with a 17, 692 9-dimensionality dataset. Classification time is ~ 100412

ms, but, as stated in the paper, the FPGA resources, expecially memory banks, were not enough to413

process bigger datasets.414

The comparison between our work and the literature is summarized in Table 6.415

5. Conclusion416

In this paper, we presented different parallel implementations of the K-means algorithm for417

hyperspectral medical image clustering. In particular, we evaluated multi-core CPUs and many-core418

GPUs through the OpenMP and CUDA frameworks, respectively. Moreover, we also addressed the419

problem of code portability by developing OpenCL based versions. We performed experiments with a420

dataset made-up of in-vivo hyperspectral human brain images. Those experiments validated the results421

of all the proposed parallel implementations. Among them, CUDA achieved the better performance,422

outperforming OpenMP implementations. The cost of the better performance is the parallelization423

effort, which is significantly greater when working with CUDA. In fact, the development of the CUDA424

versions required the development of custom kernels and ad-hoc memory transfer management,425

while OpenMP only required code annotations with suitable pragmas. Code portability has also been426

addressed with OpenCL. However, this technology is not yet competitive with OpenMP or CUDA,427

achieving the worst results among the developed parallel applications. Moreover, OpenCL guarantees428

portability among different devices, but, for obtaining the best perfomance from a given device, it is429

necessary to tune the code with respect to specific hardware features. The comparison of the proposed430

Version October 8, 2018 submitted to Electronics 15 of 17

implementations shows that the best one is based on CUDA and executed on the GTX 1060 board,431

achieving a maximum speed up of ~ 125x. In particular, the best CUDA version performs all the432

computations on the GPU without exploiting dynamic parallelism.433

We also made comparisons with other recent works in the literature, that only in one case achieved434

results comparable but not better than ours, except for the FPGA solution proposed in [24]. However,435

FPGA memory constraint does not allow to process images with more than 17, 692 pixels. This limits436

the use of this technology and, in particular, it makes FPGAs not suitable for our target application.437

Summarizing, the proposed work confirms that the GPU technology is the best solution for these438

class of problems, even when considering a data dimensionality bigger than the ones considered439

before. It also highlights that the GPU algorithm has a good scalability with respect to the number440

of clusters (K). Moreover, when considering high data dimensionality, the parallelization of the441

distance computation is not enough, since also the centroids update and the error computation can442

be parallelized. This ensures a suplementary speed-up. Finally, the technological evolution of GPUs443

offers increasing computing power at relatively low cost. In our case, a consumer GPU sold at about444

$200 outperforms a more expensive Tesla K40 GPU (~$5,000) of a previous generation, but optimized445

for scientific computations.446

Future research will be focused on integrating this parallel algorithm in more complicated447

classification frameworks, such as the one proposed in [3,6].448

Author Contributions: E.T. performed the GPU implementations, the algorithms optimizations, designed and449

performed experiments and wrote the manuscript. G.F. designed experiments and edited the manuscript. F.C.450

performed the GPU implementations and experiments. S.O., H.F. performed the serial algorithm implementation451

and edited the manuscript. G.M.C., M.M., F.L. supervised the project and edited the manuscript.452

Funding: This work has been supported in part by the Canary Islands Government through the ACIISI (Canarian453

Agency for Research, Innovation and the Information Society), ITHACA project “Hyperspectral Identification of454

Brain Tumors” under Grant Agreement ProID2017010164 and it has been partially supported also by the Spanish455

Government and European Union (FEDER funds) as part of support program in the context of Distributed HW/SW456

Platform for Intelligent Processing of Heterogeneous Sensor Data in Large Open Areas Surveillance Applications457

(PLATINO) project, under contract TEC2017-86722-C4-1-R. Additionally, this work has been supported in part by458

the 2016 PhD Training Program for Research Staff of the University of Las Palmas de Gran Canaria.459

Acknowledgments: The authors would like to thank NVIDIA Corporation for the donation of the NVIDIA Tesla460

K40 GPU used for this research.461

Conflicts of Interest: The authors declare no conflict of interest.462

References463

1. Ferlay, J., Soerjomataram, I., Ervik, M., Dikshit, R., Eser, S., Mathers, C., Rebelo, M., Parkin, D. M., Forman,464

D., Bray, F., Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11, 2013.465

2. Louis, D. N., Perry, A., Reifenberger, G., von Deimling, A., Figarella-Branger, D. C., Webster, K., Ohgaki,466

H., Wiestler, O. D., Kleihues, P., Ellison, D. W., The 2016 World Health Organization Classification of467

Tumors of the Central Nervous System: a summary. Acta Neuropathologica 2016, 131(6), 803-820, doi:468

10.1007/s00401-016-1545-1.469

3. Fabelo, H., Ortega, S., Ravi, D., Kiran, B. R., Sosa, C., Bulters, D., Callicó, G. M., Bulstrode, H., Szolna,470

A., Pineiro, J. F., Kabwama, S., Madronal, D., Lazcano, R., J-O’Shanahan, A., Bisshopp, S., Hernández, M.,471

Báez, A., Yang, G.-Z., Stanciulescu, B., Salvador, R., Juárez, E., Sarmiento, R., Spatio-spectral classification472

of hyperspectral images for brain cancer detection during surgical operations. PLoS One 2018, 13, 1–27,473

doi:10.1371/journal.pone.0193721.474

4. Sanai, M., Berger, M. S., Operative techniques for gliomas and the value of extent of resection.475

Neurotherapeutics 2009, 6 (3), 478-486, doi: 10.1016/j.nurt.2009.04.005.476

5. Fabelo, H., Ortega, S., Kabwama, S., Callicó, G. M., Bulters, D., Szolna, A., Pineiro, J. F., Sarmiento, R.,477

HELICoiD project: a new use of hyperspectral imaging for brain cancer detection in real-time during478

neurosurgical operations. Proceedings of SPIE-The International Society for Optical Engineering 2016, 12, 9860 -479

9860, doi: 10.1117/12.2223075.480

Version October 8, 2018 submitted to Electronics 16 of 17

6. Fabelo, H., Ortega, S., Lazcano, R., Madronal, D., Callicó, G. M., Juárez, E., Salvador, R., Bulters, D., Bulstrode,481

H., Szolna, A., Pineiro, J. F., Sosa, C., J. O’Shanahan, A., Bisshopp, S., Hernández, M., Morera, J., Ravi, D.,482

Kiran, B. R., Vega, A., Báez-Quevedo, A., Yang, G.-Z., Stanciulescu, B., Sarmiento, R. An intraoperative483

visualization system using hyperspectral imaging to aid in brain tumor delineation. Sensors 2018, 18, 430,484

doi:10.3390/s18020430.485

7. Chang C-I. Hyperspectral data processing: algorithm design and analysis. John Wiley & Sons, 2013,486

978-0-471-69056-6.487

8. Torti, E., Fontanella, A., Florimbi, G., Leporati, F., Fabelo, H., Ortega, S., Callicó, G. M., Acceleration of brain488

cancer detection algorithms during surgery procedures using GPUs. Microprocessors and Microsystems 2018,489

61, 171-178, doi: 10.1016/j.micpro.2018.06.005.490

9. Florimbi, G., Fabelo, H., Torti, E., Lazcano, R., Madronal, D., Ortega, S., Salvador, R., Leporati, F., Danese G.,491

Báez-Quevedo, A., Callicó, G. M., Juárez, E., Sanz, C., Sarmiento, R., Accelerating the K-Nearest Neighbors492

Filtering Algorithm to Optimize the Real-Time Classification of Human Brain Tumor in Hyperspectral493

Images. Sensors 2018, 18(7), 2314, doi:10.3390/s18072314.494

10. Fontanella, A., Marenzi, E., Torti, E., Danese, G., Plaza, A., Leporati, F., A suite of parallel algorithms for495

efficient band selection from hyperspectral images. Journal of Real-Time Image Processing 2018, 1-17, doi:496

10.1007/s11554-018-0765-0.497

11. Marenzi, E., Carrus, A., Danese, G., Leporati, F., Callicó, G. M., Efficient Parallelization of Motion Estimation498

for Super-Resolution. 25th Euromicro International Conference on Parallel, Distributed and Network-Based499

Processing 2017, St. Petersburg (Russian Federation) 6-8 March 2017, 274-277, doi: 10.1109/PDP.2017.64.500

12. Lopez-Fandino, J., Heras, D. B., Arguello, F., Dalla Mura, M., GPU Framework for Change Detection501

in Multitemporal Hyperspectral Images. International Journal of Parallel Programming 2017, 1-21, doi:502

10.1007/s10766-017-0547-5.503

13. Florimbi, G., Torti, E., Danese, G., Leporati, F., High Performant Simulations of Cerebellar Golgi Cells504

Activity. 25th Euromicro International Conference on Parallel, Distributed and Network-Based Processing 2017, St.505

Petersburg (Russian Federation) 6-8 March 2017, 527-534, doi: 10.1109/PDP.2017.91.506

14. Feng, X., Jin, H., Zheng, R., Zhu, L., Dai, W., Accelerating Smith-Waterman Alignment of Species-Based507

Protein Sequences on GPU. International Journal of Parallel Programming 2015, 43 (3), 359-380, doi:508

10.1007/s10766-013-0284-3.509

15. Baramkar, P. P., Kulkarni, D. B., Review for K-Means On Graphics Processing Units (GPU). International510

Journal of Engineering Research & Technology 2014, 3 (6), 1911-1914.511

16. Zechner, M., Granitzer, M., K-Means on the Graphics Processor: Design and Experimental512

Analysis. International Journal On Advances in Systems and Measurements 2009, 2 (2&3), 224-235, doi:513

10.1016/j.jcss.2012.05.004.514

17. Hong-tao, B., Li-li, H., Dan-tong, O., Zhan-shan, L., He, L., K-Means on Commodity GPUs with CUDA. WRI515

World Congress on Computer Science and Information Engineering 2009, Los Angeles (USA), 31 March-2 April516

2009, 651-655, doi: 10.1109/CSIE.2009.491.517

18. Fakhi, H., Bouattane, O., Youssfi, M. , Hassan, O., New optimized GPU version of the k-means algorithm for518

large-sized image segmentation. Intelligent Systems and Computer Vision 2017, Fez (Morocco), 17-19 April519

2017, 1-6, doi: 10.1109/ISACV.2017.8054924.520

19. Li, Y., Zhao, K., Chu, X., Liu, J., Speeding up k-Means algorithm by GPUs. Journal of Computer and System521

Sciences 2013, 79(2), 216-229, doi: 10.1016/j.jcss.2012.05.004.522

20. Baydoun, M., Dawi, M., Ghaziri, H., Enhanced parallel implementation of the K-Means clustering algorithm.523

3rd International Conference on Advances in Computational Tools for Engineering Applications (ACTEA) 2016,524

Beirut (Lebanon) 13-15 July 2016, 7-11, doi: 10.1109/ACTEA.2016.7560102.525

21. Saveetha, V., Sophia, S., Optimal Tabu K-Means Clustering Using Massively Parallel Architecture. Journal of526

Circuits, Systems and Computers 2018, In press, doi: 10.1142/S0218126618501992.527

22. Cuomo, S., De Angelis, V., Farina, G., Marcellino, L., Toraldo, G., A GPU-accelerated parallel K-means528

algorithm. Computers & Electrical Engineering 2017, 1-13, doi: 10.1016/j.compeleceng.2017.12.002.529

23. Lutz, C, Bress, S., Rabl, T., Zeuch, S., Markl, V., Efficient k-means on GPUs. 14th International Workshop on Data530

Management on New Hardware 2018, Huston (USA), 11 June 2018, Article No. 3, doi: 10.1145/3211922.3211925.531

Version October 8, 2018 submitted to Electronics 17 of 17

24. Yang, L., Chiu, S. C., Liao, W. K., Thomas, M. A., High Performance Data Clustering: A Comparative532

Analysis of Performance for GPU, RASC, MPI, and OpenMP Implementations. The Journal of supercomputing533

2014, 70(1), 284-300, doi: 10.1007/s11227-013-0906-y.534

c© 2018 by the authors. Submitted to Electronics for possible open access publication535

under the terms and conditions of the Creative Commons Attribution (CC BY) license536

(http://creativecommons.org/licenses/by/4.0/).537

http://creativecommons.org/licenses/by/4.0/.

	Introduction
	K-means algorithm for hyperspectral images
	Parallel K-means implementations
	Serial code profiling
	OpenMP algorithms
	CUDA algorithms
	OpenCL algorithms

	Experimental results and discussion
	OpenMP performance evaluation
	CUDA performance evaluation
	OpenCL performance evaluation
	Comparisons and Discussion

	Conclusion
	References

