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Abstract

Localization of wireless nodes in GPS-denied spaces is being applied in a number
of scenarios such as sport teams requiring positioning data for post-match analysis,
robot teams carrying out a common task in an indoor environment, among other
similar applications. These applications would usually involve a sizable number of
participating nodes making scalability a fundamental requirement of the localization
setup under the constraints of energy efficiency and position update time. Adopting
techniques that are resilient to uncertainties in the deployment region of the nodes
is important for the overall accuracy of the setup.

In this work, we focus on a range-based cooperative localization technique where
nodes are distinguished as either fixed (anchors) or mobile (tags), and are subject
to uncertainties in the environment. Cooperation here implies that the positions of
all nodes are computed simultaneously using a joint pairwise distance information
while uncertainty refers to any known condition that degrades localization accuracy.

These uncertainties are present in the form of a) missing distance measurements;
b) obstacles in the deployment region; and c) stochasticity in measurements for
cases where Radio Frequency (RF) signal strength is employed for range estimation.
The missing distances may be due to either tags being passive or tags acting as
transmitters. For this, we propose a specialized form of Multidimensional Scaling
(MDS) that tackles the problem by neglecting tag-to-tag interactions while inferring
tag positions directly from those of anchors.

Furthermore, obstacles in the deployment region force signals to travel in nonline-
of-sight (NLOS) paths often leading to a lengthening of range estimates. For this,
we develop a novel approach that reuses an intrinsic property of anchored MDS
to cooperatively estimate NLOS biases in the range estimates. The problem is
formulated as a constrained-optimization problem whose solution provides positions
with improved accuracy and can be solved by Sequential Quadratic Programming
(SQP). The approach works entirely at the application layer and is neither concerned
with the probability distribution of LOS/NLOS nor any other a priori knowledge
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about the environment. Experimental results show that position errors can be
reduced by up to 28% for a set up to 4 fixed and 3 mobile nodes.

In the final discourse relating to uncertainties, we examine lightweight filtering
techniques for smoothening Received Signal Strength (RSS) measurements to render
them more suitable for range estimation. We formulate the expected values of
range (in terms of the Cramér-Rao bound) when estimated directly from raw
measurements using an unbiased estimator and compare with range estimates
from the filtered measurements. Results show that applying a suitable filtering
technique can significantly improve the accuracy of range estimation from raw RSSI
measurements.

In the last part of this work, we present an open discussion on design considera-
tions for scalable indoor localization deployments.
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Chapter 1

Introduction

“Where in the subway are you now?”

Anon.

Recent developments in areas such as Internet of Things (IoT) and ubiqui-
tous computing are creating increasing interests in object localization where the
position of devices is required for improved interaction between the devices and
improved usability for end users [14, 15]. Indoor localization is of peculiar interest
in different application areas including guided navigation for visually impaired and
self-guided tours at museums [66], augmented reality [77], sports [28], location-aware
advertising [5], warehouse navigation [31], and indoor robot navigation [90] among
others. In sports, for example, players may be equipped with mobile wireless nodes
to enable real-time positioning capabilities for maximizing player performance by
helping coaches make better decisions via in- and post-match analysis, enabling
early detection of player injuries and assisting referees with the enforcement of
the rules of fair play. In applications related to robotics, robots may be shipped
with localization capabilities that allow real-time tracking of their location during a
remote operation in a Global Positioning System (GPS)-denied environment, say
in a tunnel, allowing remote control or easy pickup at the robot’s known location
whenever human intervention is required. In other commercial applications, objects
in storage can be fitted with passive devices (e.g. Radio-Frequency Identification
(RFID)) that can relay triggers or become activated when the objects are moved past
certain points, effectively ensuring the continuous storage of the objects in a safe
location and preventing theft. The nature and peculiarities of the specific application
dictate the form of the adopted localization system, which might vary from cheap
and low energy wireless devices to costly high-resolution camera positioning systems.

The wide interest on indoor localization is further proved by the Microsoft Indoor
Localization Competition, a yearly competition that assesses indoor localization
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2 CHAPTER 1. INTRODUCTION

Figure 1.1: Microsoft Indoor Localization Competition, CPS Week, Porto 2018.

solutions from different teams around the world highlighting the strength and
weaknesses of their various approaches and rewarding the best performances with
cash prizes [62]. The results of the yearly competitions served as a continuous
benchmark for our work considering different metrics and helped to keep track
of state of the art challenges in indoor localization. Figure 1.1 is an image of the
competition organizers and some of the teams setting up their solutions.

1.1 An Overview of Indoor Localization Systems

Indoor localization involves the estimation of location from physical properties of
the environment that change from point to point, such as RF signal intensity, RF
time of arrival, ultrasound signal intensity, ultrasound time of arrival, magnetic field
intensity and other sensory information such as visual features. The aforementioned
properties or features can be used individually or combined to improve the accuracy
of a localization system. The various technologies that enable the estimation of
location using some of the aforementioned properties are discussed in the following
sections.
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Figure 1.2: Simulated RF positioning of mobile robot using four fixed nodes on a
small soccer field.

1.1.1 Radio Frequency positioning

In the following, we enumerate and discuss the most common RF-based ranging
techniques. For context, a typical deployment of an RF positioning setup with fixed
RF nodes at four corners of a rectangular boundary and a mobile robot fitted with
RF communication capabilities is shown in fig. 1.2.

1. Received Signal Strength (RSS) decreases with distance giving an indication
of the proximity of the receiver’s antenna to the transmitter’s, allowing to
roughly estimate an approximate location for the receiver with respect to the
transmitter. The RSS path loss model expresses the mathematical relationship
between distance, power at the receiving antenna, and reference power at a
known distance from the transmitter [75]. To utilize this model, knowledge
of a channel constant which parameterizes the traveled channel is required.
This constant is known as path loss exponent. RSS is very suitable due to its
simplicity and the readily available RSS measurements from existing wireless
devices [106]. RSS measurements might express relatively high variance at long
range due to the increased likelihood of reflections, occlusions and interference
in the deployment region of the RF devices, otherwise, the variance is fairly
constant with distance [74].
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2. Time of Flight (ToF) compared to RSS is more commonly used due to its
higher localization accuracy. Since the speed of radio signals in free space is a
known constant, given the time of travel, distance can be estimated using the
standard velocity-time-distance relationship. Thus, the estimation of distance
relies on the assumption that the path traveled by the signal is entirely in free
space and that it is a straight line. However, this is not always the case, as RF
signals can be occluded or reflected by obstacles in the deployment region of
the RF nodes.

Moreover, while ToF promises high accuracy, it requires highly specialized
hardware to compute signal travel time which is usually in the order of tens of
nanoseconds for a few meters; an error of a few tens of nanoseconds will lead
to large inaccuracies in the distance estimation. ToF can be combined with
RSS for improved localization performance [32]. To further improve accuracy
by reducing effects of measurement noise, ToF can be collected for round trips
between transmitter and receiver yielding Round-Trip Time of Flight (RT-ToF).
RT-ToF is mostly suitable for cases where RF receivers are passive [92].

3. Time Difference of Arrival (TDoA) is a similar time-based measurement that
is applicable to synchronized receiving antennas. The antennas at different
positions receive the signal at different time instances and by extension dif-
ferent points in the signal phase. All the time difference equations can be
put into a system of linear equations and solved to compute the range of
the transmitter from each receiver or compute directly the position of the
transmitter. The accuracy of TDOA measurements improves with the distance
separation between the receivers because this increases the time difference
between the arrival times [33].

4. Angle of Arrival (AoA) measures the direction of travel of a signal as seen
from an antenna array [83, 52]. This direction can be determined from TDoA
measurements for the individual antennas in the antenna array. In other cases,
rotational antennas can be used and the direction that yields the maximum
signal strength is deemed the direction of line-of-sight propagation of the
signal [13]. This angle can be used to compute the location of the transmitting
device. One clever application of AoA is its use for determining the location of
a caller when antennas are geo-localized at the same base station.

The aforementioned techniques are all affiliated with range-based positioning. For
RF based range-free positioning, existing infrastructure such as Wi-Fi routers and
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beacons are used to coarsely estimate location. Wi-Fi RSS fingerprints from different
known locations are collected in a database to be used afterward with 𝑘-nearest
neighbor or a neural network for inferring the location of a new RSS measurement.

1.1.2 Ultrasound positioning

Ultrasound positioning uses properties of ultrasound – sound waves that operate
at high frequencies not audible to human hearing – for location estimation. The
techniques used are similar to those of RF: time of flight and signal strength, where
transmitters and receivers are swapped with sound emitters and microphones respec-
tively [45] and as with RF, ultrasound ToF is the more commonly used. Ultrasound
ToF positioning is however more accurate than that of RF because ultrasound
travels much more slowly, allowing the corresponding hardware to measure the time
more precisely[35], although echo effects are a major drawback. In less common
applications, ultrasound RSS can be used to provide coarse location estimates by
checking if an audio signal is audible within a range or not.

1.1.3 Magnetic positioning

Magnetic positioning systems use local variations in earth’s magnetic field to provide
localization capabilities. They are relatively easy to set up as they usually do not
require additional hardware other than magnetometers which most smart phones are
already shipped with. In recent applications, the magnetic field intensity variations
across different positions are stored to be used afterwards with new data to check the
closest match [95]. However, since these variations are influenced by large metallic
objects, the displacement of these objects might render an old database of magnetic
field intensities across the area useless; consider for example an escalator or lift
operating in the vicinity of the fingerprinted area, whose motion can significantly
change the magnetic levels in the environment of interest. To improve the signal to
noise ratio, artificial magnets with high strength can be placed at known locations
to redefine the magnetic signature of the deployment area [87].

1.1.4 Camera-based positioning

Positioning systems that use cameras rely on visual features or markers to track
object position and are known for relatively high accuracies. In the more common
use cases, a database of features at different locations in the environment is collected,
which is afterwards used to match new images from a camera to determine the
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location of the camera. An example of this is a landmarked based positioning system
for persons who are visually impaired [4].

Applications requiring higher accuracies would require more than one camera
and depend on computer vision algorithms to determine the location of tracked
objects. These objects are usually easily distinguishable from other objects in the
environment, such as players with numbered jerseys in a basketball game. The main
drawback of camera-based positioning systems is the failure of such systems under
poor visibility.

1.1.5 Inertial measurement

Inertial measurements collected from Inertial Measurement Units (IMUs) composed
of gyroscopes and accelerometers are used to update the position of an agent via dead
reckoning. The IMU device is mounted on the object of interest, so that its linear
acceleration and angular velocities are captured, and the path traveled by the object
can be approximately constructed. Most often, IMUs also include magnetometers
so the object’s heading can also be captured. Since IMUs only track motion rates,
the initial position of the object must be known before IMU measurements can be
used to determine new positions. As such, inertial measurements are seldom used
alone, and are instead used as part of more elaborate localization techniques such as
radio positioning [64], Simultaneous Localization and Mapping (SLAM) [51] or GPS
navigation [49].

1.2 Cooperative Localization

The problem of cooperative localization involves assigning each object in a given
𝑁 × 𝑁 matrix of pairwise distance measurements to 𝑁 points in a 𝑝-dimensional
metric space such that the distances between the points match as closely as possible
the distances in the given matrix. The participating nodes work together in a peer-to-
peer manner to collect measurements [74]. Thus, under cooperative localization, the
accurate localization of one node is coupled with the localization accuracy of every
other node with which the initial node shares information. Accurate localization of
one node might imply a near accurate localization of the other nodes, and a degraded
localization accuracy of a node would easily suggest a poor localization accuracy
rippling to other nodes. Each node requires a minimum of three connections with
other nodes in a 2D setup. Issues that contribute to accuracy loss are the same as
those in a non-cooperative context and are discussed briefly in section 1.3. Increasing
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Figure 1.3: Inter-node ranging between mobile and fixed nodes, intra-node ranging
between mobile nodes and the final matrix of pairwise distances.

the number of nodes in the deployment area is one way to increase the overall
accuracy in a cooperative localization setup.

A typical set up of a cooperative localization scheme where the pairwise distances
between all nodes are known is shown in fig. 1.3. From fig. 1.3, the nodes are
distinguished based on their mobility: a) fixed nodes are known as anchors; b) mobile
nodes are known as tags. The adjacency matrix in the figure is a matrix showing
the pairwise distances between all nodes in the setup. Diagonal elements – i.e.,
distance of a node from itself – are zero, while the distances between anchor nodes
𝑑𝑖𝑗 , ∀𝑖, 𝑗 ∈ [1, 4] are constant.

1.3 Open Issues in Indoor Localization

Indoor localization is an evolving field as new solutions and techniques are constantly
being developed to meet challenges of every day life that use localization in one form
or another. Nevertheless, there are existing issues that require innovation in order
to make current localization solutions more usable for real tasks in uncontrolled
environments. Some of these issues will be highlighted in the following paragraphs
and are all addressed later on in this work.

Improved accuracy of indoor localization systems can speed up adoption of
such systems in the same way GPS or similar satellite positioning technologies
have received mass adoption. While some approaches have reported centimeter and
decimeter level accuracies [96, 55], such level of accuracy is yet to be reported in
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(a) Localization exercise at Palácio da Bolsa stair-
way.

(b) 2D category first place result with 2.4m mean
error.

Figure 1.4: Microsoft Indoor Localization Competition 2018 results (see footnote 1).

most practical test scenarios. Moreover, cost intensive approaches that meet this
level of accuracy such as Laser Imaging Detection and Ranging (LIDAR) systems
might be impracticable from an economic, ergonomic and scaling point of view.

Going by the results of the 2018 Microsoft Indoor Localization competition, the
best results in the 2D and 3D categories reported average error values of 2.4𝑚 and
0.27𝑚 respectively1. A plot of the localization performance of the best result in the
2D category alongside a picture of the stairway are shown in fig. 1.4. The 3D category
had better performance as the evaluation space is a 3D one – the main stairway at
Palácio da Bolsa (see fig. 1.4a). More so, both results can be considered optimistic
as the evaluation tests were carried out in open space where some of the equipments
had a clear line of sight. Apparently, accuracy improvements in uncontrolled and
unfamiliar environments is one area that still requires a substantial amount of input.

A resilience to the effects of environmental variables, which largely relates to
accuracy, affects the stability of the performance of indoor localization systems.
Such effects are due to the dynamics of the environment which can degrade the
performance of a localization system e.g. reflection or occlusion of signals, blockade
of camera visibility, change in signature of magnetic field intensity. In this work,
we focus only on resilience to nonline-of-sight (NLOS) effects in the context of
range-based localization.

Setup time and the man hour requirements for deployment is another area which
if improved can impact significantly the adoption of indoor localization solutions.
Solutions should be easy to deploy with little technical expertise if they are to reach
and become usable by a much larger audience. A reuse of existing infrastructure

1These results are available on the competition website.

https://www.microsoft.com/en-us/research/event/microsoft-indoor-localization-competition-ipsn-2018/
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or infrastructure free solutions can also greatly reduce setup time or the technical
know-how required.

Localization systems that can work under incomplete information about the
environment are also very desirable. The more reason why approaches that require
substantial amount of information about the environment or its agents (which
might include the localization system itself) are less suitable when compared to
the alternatives e.g. building a database of RF or magnetic fingerprints in the
environment is hardly sustainable in a fast paced work place. In our work, we
consider the case where the ranging information shared between nodes required for
good cooperative localization is incomplete.

Other issues such as privacy and compliance with government regulations are
more societal than technical, and are therefore considered as issues beyond the scope
of this work.

1.4 Research Questions

With the aforementioned open issues, we present the following research questions
that this thesis is posited to address:

1. Do cooperative localization algorithms present an advantage over other classical
localization methods in the presence of uncertainties?

2. In the presence of incomplete information and NLOS effects, can cooperative
localization algorithms be reformulated to still provide accuracies within the
1𝑚 benchmark?

3. By how much are uncertainties likely to impact the performance of a localization
exercise?

4. By how much can the accuracy of ranging be improved given a collection of
statistical methods that can be applied for preprocessing?

5. What are the likely bottlenecks that can impede the scaling of our selected
cooperative localization algorithm?

With these in mind, we proceed to state quantitatively the contributions of this
thesis.
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1.5 Contributions

To tackle accuracy problems resulting from NLOS effects in the environment, we
developed a novel cooperative algorithm for mitigating these effects. The algo-
rithm, which was originally tested in an RF-based setup, is extensible to any range-
infrastructure-based localization system. This cooperative NLOS mitigation algo-
rithm was presented in the following publications:

• M. A. Koledoye, T. Facchinetti and L. Almeida,“Mitigating effects of NLOS
propagation in MDS-based localization with anchors,” IEEE International
Conference on Autonomous Robot Systems and Competitions (ICARSC),
2018, pp. 148-153.

• M.A. Koledoye, T. Facchinetti and L. Almeida, “Improved MDS-based Local-
ization with Non-line-of-sight RF links,” Special Edition, Journal of Intelligent
and Robotic Systems, 2018, Springer (under review).

Handling incomplete data, more specifically, interaction between tags, was ad-
dressed by developing a specialized form of an existing cooperative localization
algorithm that undermines such missing data. This approach has been shown to
outperform another approach that attempts to approximate/predict the missing
data. Our specialized form was presented in the following publication:

• M. A. Koledoye, T. Facchinetti and L. Almeida, “MDS-based localization
with known anchor locations and missing tag-to-tag distances,” 22nd IEEE
International Conference on Emerging Technologies and Factory Automation
(ETFA), 2017, pp. 1-4.

Later in our work, we compare ranging results of an easy-to-deploy commercial
off-the-shelf solution to a customized hardware solution that promises higher accu-
racy but not without some hardware programming expertise. Under the scope of
this comparison, we study different techniques for preprocessing RSS measurements
from commercial off-the-shelf (COTS) devices so that the measurements are more
meaningful and useful for ranging. Results of the evaluation of the studied prepro-
cessing techniques benchmarked against expected range value when estimated by an
unbiased estimator from raw RSS measurements were published in:

• M. A. Koledoye, D. De Martini, S. Rigoni and T. Facchinetti, “A Compari-
son of Received Signal Strength Indication (RSSI) Filtering Techniques for
Range-based Localization,” 23rd IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA), 2018, pp. 1-7.
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1.6 Organization of the document

The rest of the thesis is organized as follows:

• Chapter 2 opens with background information on indoor localization and
then gives an overview of related work citing relevant literature to examine
the strengths and weaknesses of existing approaches.

• Chapter 3 opens with a discussion of cooperative localization, specifically,
metric multidimensional scaling as applicable to object localization. An analyt-
ical solution to the formulated cooperative localization problem is introduced
and a specialized form is provided for cases where distance information in the
proximity matrix is incomplete. Results are validated with simulations.

• Chapter 4 expands on the analytical results in chapter 3 to accommodate
NLOS cases in a matrix of pairwise distances with incomplete information. A
constrained optimization problem is formulated whose solution yields object
positions with higher accuracy under NLOS conditions. Results are validated
with simulations and experiments.

• Chapter 5 gives a summary of lightweight RSS filtering techniques and how
the estimated range from each filtered output compares to others and to the
expected range value when estimated from raw RSS by an unbiased estimator.
Results are validated with experiments.

• Chapter 6 is an open discussion about the design of cooperative indoor
localization systems and their scalability.

• Finally, conclusions on our work are drawn in chapter 7.





Chapter 2

Background and Related Work

“Science is what we have learned about how to keep
from fooling ourselves.”

Richard Feynman

In this chapter, a background on the existing work on cooperative localization
and more generally indoor localization, alongside related work in the form of relevant
publications are discussed. The related publications cover the contribution areas
of this work (highlighted in chapter 1 section 1.5) in order to understand the state
of the art prior to our work and give more perspective on the significance of the
results of the present research. Our contributions were made at different points of
the localization stack described in section 2.1. We start with a general overview
of various indoor localization solutions in both cooperative and non cooperative
contexts. We focus on RSS and ToF techniques as those are the most applicable to
this work.

Localization systems are designed and implemented with careful consideration of
trade-offs between accuracy and ease of deployment. Accuracy largely depends on
the underlying feature exploited for location estimation, and unlike GPS, there are
various possibilities for indoor localization (see section 1.1 for an overview) most
of which are RF-based in the form of RSS, signal travel times or angle of arrival.
RSS-based localization services although relatively less accurate are widely in use due
to their relatively low deployment cost and availability of RSS values on most mobile
devices. RSS alone does not satisfy the requirements for fine-grade localization as
demonstrated by the accuracy results in [98]. Therefore, using RSS alongside other
techniques is quite common practice. For cooperative localization with RSS, [21]
proposed a combination of RSS with an Inertial Navigation System (INS), similar to
the approach in [109], where an extended Kalman filter is used to fuse both inertial
and RSS measurements; the RSS measurements are used to estimate distance/range,

13
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Figure 2.1: Mapping RSS measurement uncertainties to location uncertainties [65].

an exercise commonly referred to as access point (AP) localization.

Methods fusing RSS and ToF combine the efficiency and poor performance of RSS
measurements with the more accurate but resource-consuming ToF measurements [40,
32, 63, 72]. Further improvements in accuracy were reported in [105] as the solution
adds efficient map matching and an improved motion model to the earlier Kalman
filter approaches. On the other hand, RSS if not used directly in the localization
algorithm can be used to plot confidence regions for ToF-based (or any other
precise scheme) localization where signal strength uncertainty is mapped to location
uncertainty as described in fig. 2.1. The signal space hypervolume is computed
from the probability mass 𝛼 which is an incomplete gamma function [56]. This
hypervolume maps to an ellipsis in the location space centered on (𝑥0, 𝑦0).

Standalone applications for RSS also exist where WiFi fingerprints are collected
for known points and are used with a learning algorithm for inferring location given
new fingerprints [25, 70, 110, 60]. One disadvantage of fingerprinting is the man-
hours required to build a database of fingerprints. We performed a cursory Wi-Fi
fingerprinting exercise covering our robotics laboratory (see fig. 2.2) which overall
required a full working day. While the accuracy can go as low as 1m depending on
the granularity of the fingerprints and multiple mobile nodes can reuse one database
in a cooperative localization context, the results are only consistent for as long as
environment remains unchanged. Displacing a large object from one point to another
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Figure 2.2: Fingerprint points on floor map of the robotics lab.

in the area or human movements can degrade the performance of this localization
technique.

ToF on the other hand is much more suitable for commercial grade indoor local-
ization applications compared to RSS. Since ToF requires real time communication
between nodes, performance is necessarily dependent on the sampling rate [50]
and the underlying scheduling mechanism. Multi-hop routing used alongside Time
Division Multiple Access (TDMA) as proposed in [71] is used to improve end-to-end
to delays for large teams of collaborating robots, and can be easily extended to
cooperative localization for reducing latency and allowing for higher sampling rates.
For tracking applications, ToF can be fused with pedestrian dead reckoning (PDR)
to improve localization performance [82] where ToF measurements compensate the
divergence of PDR measurements, and PDR measurements compensate outlier ToF
measurements.

2.1 The Localization Stack

The localization stack consists of different connected components, end-to-end, that
interact to provide localization functionality. An overview of a typical localization
stack as related to our work is shown in fig. 2.3. As presented in the figure, nodes
might be distinguished into two categories based on their mobility: mobile nodes or
tags, and fixed nodes or anchors, where mobile nodes measure their positions with
reference to fixed nodes. The node labels in the figure are specified with categories
since either anchors or tags can transmit their data to a sink device where the data
is processed and plotted. An example of a setup where tags localize themselves
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Figure 2.3: The localization stack: hardware, software and GUI components.

w.r.t. anchors and then transmit to a sink is the nanoLoc localization solution [1]
which was used extensively in this work. Background work relating to the various
components of the stack are discussed in the next sections.

2.2 RF Communication in WSNs

In radio positioning, the communication environment is referred to as the channel.
The channel permits the transmission of signals between the participating nodes,
sometimes referred to as motes, in the localization scheme. While the localization
performance in a Wireless Sensor Network (WSN) depends on the number of anchor
nodes within range, it equally depends on the properties of the channel such as
channel capacity, bandwidth and the underlying modulation scheme. The choice
of various RF communication models in WSNs have been discussed extensively
in [65, 18, 6, 58]. Of the various models, the most applicable standards at the
physical and media access control (MAC) (a subset of the datalink layer) layers are
the IEEE 802.15.4 standard – designed for higher precision ranging and localization
capability, the IEEE 802.11 – the most widely used wireless computer networking
standard and other IEEE 802.15.x standards. These standards are employed in
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narrowband and UWB radios for WSNs as discussed in the following sections.

2.2.1 Narrowband Radios

Narrowband radios refer to RF radios that communicate in channels with a narrow
range of frequencies. They have long been used in applications requiring reliable
links in different environments as opposed to higher data rate applications. Since the
bandwidth required is relatively smaller and the noise floor is significantly lower, the
energy required for transmitting signals is equally small [6]. This makes narrowband
radios very suitable for low power applications. Narrowband 802.15.4 radios, for
example, can turn on their radios, transmit full packet, receive acknowledgment and
shut down all in about 5ms [65]. For IEEE 802.11 devices, the power management
scheme is managed by the MAC layer of the protocol stack and maintains power
efficiency at moderate data rates. However, the limited bandwidth of narrowband
radios increases the susceptibility of these radios to multipath effects – moving a
narrowband transceiver by a fraction of a wavelength (approx. 12cm at 2.4GHz)
will cause the receiver to perceive a supposedly new multipath environment [65].
Direct path and NLOS signals are mostly indistinguishable by the receiver due to
this limited bandwidth. This makes narrowband radios less desirable in WSNs where
nodes have fast paced dynamics.

2.2.2 UWB Radios

UWB radios utilize pulses that have very short duration that give them ultra-wide
spectrum and due to their low PSD cause very little interference with existing
narrowband systems [73]. Figure 2.4 shows a plot of PSDs of narrowband and UWB
systems. They were developed partially to improve ranging capabilities of radio
positioning and as such have the ability to provide highly accurate localization
results [108, 57]. The prevailing defining characteristic for UWB signals is that
the fractional bandwidth 𝐵𝑓 is greater than 0.2. The fractional bandwidth 𝐵𝑓 is
expressed mathematically as

𝐵𝑓 = 2 · 𝑓𝐻 − 𝑓𝐿

𝑓𝐻 + 𝑓𝐿
(2.1)

where 𝑓𝐻 and 𝑓𝐿 are the higher and lower −10dB bandwidths respectively.
Additionally, according to the US FCC rulings, a signal is classified as UWB signal
if the bandwidth is greater than or equal to 500MHz [73]. The larger bandwidth
allows for higher resistance to multipath effects [100] since direct path and multipath
signals are well spaced at the receiver and the earliest path can be the deemed the
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Figure 2.4: PSDs of narrowband and UWB signals.

direct one. More so, the higher data rates in UWB systems can allow them to scale
more quickly with regards to data exchange in cooperative networks. IEEE 802.15.4a
standards addresses the power efficiency issues with UWB radios which were a major
concern in the early adoption of UWB for WSN applications.

2.3 Localization Algorithms in WSNs

Wireless sensor networks can select from a variety of algorithms and techniques for
the localization of their component nodes depending on the architecture, use case and
required accuracy from the localization exercise. The vector of range measurements
for 𝑁 nodes 𝑟𝑁 is related to the locations 𝑋 by the following equation:

𝑟𝑁 = 𝑔(𝑋) + 𝑒 (2.2)

where 𝑒 is the vector of measurement errors and in metric spaces, the mapping
function 𝑔 : R𝑁×2 → R𝑁×𝑁 gives the Euclidean distance for a 2-dimensional space
defined for any two nodes at points 𝑝 ∈ 𝑋 and 𝑞 ∈ 𝑋:

𝑔𝑝,𝑞 =
√︁

(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2.

The task of the localization algorithm is to find an optimal set of positions �̂� that
reproduces as closely as possible the given set of range measurements 𝑟𝑁 ; an inverse
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of the expression in eq. (2.2). In a scenario where the distribution of measurement
errors 𝑓𝑒 is known, the problem can formulated as a maximum likelihood one:

�̂� = arg min
𝑋

{log 𝑓𝑒 (𝑟𝑁 − 𝑔(𝑋))} . (2.3)

However, the error distribution 𝑓𝑒 is not always known. Nonetheless, one desirable
property of localization algorithms in WSNs is that they are able to assess the
quality of the range estimates and incorporate that information in the localization
process [65]. Localization algorithms that are useful in cooperative contexts are as
follows:

1. Distance vector (DV)-hop and DV-distance [69] where messages are propagated
from fixed nodes to mobile nodes and on to other anchor nodes hop-by-hop
and the hop counts are used to determine distances between hops since anchor
to anchor distances are known. A mobile node is therefore able to estimate
its position given communication with at least three anchors. DV-distance
extends this idea by replacing hop counts with measured inter-node distances.

2. Multidimensional Scaling (MDS) [85, 84] where configuration of points are
estimated in a 2 or 3 dimensional Euclidean space given a matrix of pairwise
distances between nodes.

3. Linear programming [23] where the localization problem is formulated as a
convex optimization problem and solved using linear programming where
optimal positions minimize the convex problem.

4. Stochastic Optimization techniques such as simulated annealing [48] and basin-
hopping [94] where advanced optimization techniques are used to escape local
minimas.

In our work, we use MDS. The main motivation for this choice is due to the
extensive existing research that MDS has and its plethora of implementations –
classical MDS [59], MDS-MAP(C) and MDS-MAP(P) [85], RangeQ-MDS [61], MDS-
A [30], MDS-RFID [88] and MDS-Hybrid [2] among others. These helped gain a
wealth of a priori insight allowing to understand what parts of a novel implementation
can be tweaked to cover for uncertainties. More so, large node deployments can enjoy
from distributed computing since an implementation for running MDS in patches (a
subset of MDS-MAP) already exists. We therefore focus on strategies and techniques
for positioning under uncertainties as applicable to MDS in the rest of this section.
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2.3.1 Positioning under NLOS

The complete removal of NLOS effects and measurement noise may be impossible due
to incomplete knowledge about the environment and the nature of obstacles. However,
the removal of some amount of NLOS bias and noise from distance measurements has
been investigated under various localization contexts that use RF. The more common
NLOS mitigation techniques [11, 38, 39, 42, 43, 93, 103, 104] use the propagation
channel model or channel statistics from historical data to distinguish between line
of sight (LOS)/NLOS signals, in which NLOS ones are detected by identifying some
anomalies in the signal property with differentiated values for direct and non-direct
paths. Other methods for distinguishing NLOS signals from LOS ones examine the
fitness of the various distance measurements under a specified cost function and may
employ a priori probabilities about the distribution of NLOS-prone nodes in the
deployment area. Methods described in [97] and [102] are applicable to localization
algorithms that compute positions on a per tag basis, unlike MDS that computes all
positions jointly. The work in [102] presented comprehensive approaches where new
distances and bias values are estimated from the original distance measurements via
a minimization problem whose performance can be improved by a priori probabilities.
A Sequential Quadratic Programming (SQP) based formulation and a Maximum
Likelihood Estimation (MLE) where both introduced. Bias was estimated on a per
anchor basis with the advantage of reducing the complexity of the minimization
problem, and the disadvantage of penalizing the accuracy of NLOS bias estimation.
Moreover, the minimization problem was formulated per tag, so that a separate
minimization is performed for each tag, leading to likely scaling issues. In a similar
related work [81], the authors tune the elements of the covariance matrix 𝑅 of
a Biased Extended Kalman Filter (BEKF) with respect to NLOS identification;
matrix elements are increased if NLOS is detected or decreased otherwise. Since their
approach is used alongside trilateration, it also does not scale well. Furthermore, their
approach works considerably better for setups with a few number of NLOS distances
compared to LOS ones. When NLOS measurements are dominant, a scarcity of LOS
measurements may lead to estimation failure.

2.3.2 Missing Tags Interaction

Various solutions have been proposed for handling missing data in distance matrices
containing pairwise distances of nodes. [85, 84] run the MDS computations in multiple
patches for locally connected nodes and then build a global map from the patches.
In [26], the authors describe a solution with bounded errors that decrease at a rate
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of
√

𝑛, where 𝑛 is the number of nodes in the region of deployment. A closely related
work that uses anchors is MDS-RFID [88] which estimates the missing tag-to-tag
distances using a triangular method that takes the sum of the distances of two tags
from a given anchor as an upper bound and the difference of the distances of these
tags from the anchor as a lower bound for the missing distance. They further propose
an averaging method using all available anchors that improves the accuracy of the
recovered distances. The previous methods require a preprocessing step to recover the
missing information. The accuracy of the estimated configuration therefore depends
on the quality of this recovery. In the method we propose later in this work, we avoid
the extra computational load of reconstructing the missing data, and still provide
an accuracy that betters or matches that of the aforementioned method.

2.4 Data Preprocessing

RF signals possess noisy characteristics usually observable from signal strength
fluctuations that can degrade the accuracy of a localization exercise. Preprocessing
of the measurements can help put them in better form before they are passed on to
the localization algorithm. Location uncertainty values have been shown to decrease
due to preprocessing [101] which provides an initial lowering of the variance of the
measurements.

2.4.1 RSS Preprocessing

Methods that use RF signal strength exploit a value which is usually measured on
most devices as RSSI which corresponds to some value of RSS in dbm. This RSSI
value is an indication of the power of a received signal as it travels from transmitter
to receiver through a propagation medium.

Conventionally, RSS decays with distance and as such gives an indication of
the proximity of the receiver’s antenna to the transmitter and can therefore be
used to roughly infer an approximate distance for the receiver with respect to the
transmitter. However, unlike ToF, range estimation using RSS measurements are
less accurate since distance estimation is a secondary use of the measurements. More
so, the range information RSSI provides is asymmetrical – one may confidently infer
close proximity to a transmitter with a high RSS value, but a low value would not
necessarily imply that the transmitter is far away [12]. The limitations of RSS and
its suitability for localization have been discussed broadly in [44] while the use of
the Bluetooth technology (used partly in this work in the comparison of ranging
accuracies) for indoor localization has been discussed in [46].
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With the obvious pitfalls of RSS, it continues to remain relevant for use in
localization [47, 72, 75, 7]. This is mostly because the use of RSSI does not require
installation of additional hardware for environments that are already fitted with
RF routers. And also because localization with RSSI scales better than those
with say ToF since the setup does not require scheduling of transmission time for
nodes, and multiple receivers can read their respective RSSI values for a single
transmission simultaneously. For the aforementioned reasons, RSSI has experienced
continuous use in the indoor localization context. The most common use given large
sensor network deployments is in range-free localization where predictive models
are used to estimate the location of nodes given a set of RSSI measurements in a
database of fingerprints [99, 67, 34, 8]. In range-based localization, the raw RSSI
measurements are usually preprocessed before they are passed on to the position
estimation algorithm. In [72], for example, a moving median filter was used to
smoothen RSSI measurements before they were passed to a Kalman filter that
fuses the RSSI measurements with ToF measurements. In [24], a moving average
filter was used instead for smoothening, before measurements were used in the
range estimation algorithm the work proposed. Kalman filtering was applied in [108]
with the measure-predict-update cycle applied on RSSI measurements to eliminate
random noise and smoothen the measurements.

Although [68] gives an outline of existing filtering methods for RSSI in a general
context comprising both range-estimation and tracking, quantitative results were
not shown. The different techniques for preprocessing and filtering of RSSI for
range-based estimation have therefore not been studied in sufficient detail to the
best of our knowledge. We elaborate on select filtering methods later in this work.

Summary

This chapter highlighted related and background works in cooperative indoor localiza-
tion. Localization algorithms, localization under incomplete information, localization
under NLOS effects, RF communication and data preprocessing were reviewed in
the light of some important existing works.



Chapter 3

Localization with MDS

“An algorithm must be seen to be believed.”

Donald Knuth

MDS is a statistical method that transforms measurements of similarity (or
dissimilarity) among pairs of objects into points in a low dimensional space where
the distance between the objects are preserved [9]. MDS has been largely applied
for the visualization of data in political science, sociology and psychology and has
been alternatively referred to multidimensional similarity structure analysis [10] or
smallest space analysis [37].

In the context of indoor localization, for environments where interaction between
nodes are tightly coupled, it is often desirable to produce coherent location data
that represents the state of all the objects in the environment at a glance. For such
a cooperative localization task, MDS has proven itself a viable option. Since MDS-
based localization utilizes pairwise distance measurements, the collection of these
measurements is an important part of this localization scheme and the membership
of nodes should be kept as flexible as possible to avoid estimation failure when any
of the nodes suffer communication errors or goes offline.

This chapter introduces a formulation of MDS for localization with anchors
initially derived in [30], which we extend for scenarios with missing tag interactions.
Performance of the extended form over existing approaches is validated by simulations.
As part of the measurement collection process, we briefly discuss a technique for
managing node membership in the final part of the chapter.

3.1 Formulating Localization with MDS

Given measurements of distances among pairs of objects, localization with MDS
places each object in a 𝑃 -dimensional space (where 𝑃 is usually 2 or 3) such that

23
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the distance information in the estimated configuration matches the initial distance
measurements as closely as possible.

In order to test the goodness of the configuration, MDS uses a cost function
known as Stress 𝜎 defined on the computed configuration X as:

𝜎(X) =
∑︁

𝑖<𝑗≤𝑁

𝑤𝑖𝑗(𝛿𝑖𝑗 − 𝑑𝑖𝑗(X))2 (3.1)

𝑤𝑖𝑗 =
{︃

1, if 𝛿𝑖𝑗 is known
0, if 𝛿𝑖𝑗 is missing (3.2)

where 𝑑𝑖𝑗(X) is the distance between nodes 𝑖 and 𝑗 defined for 𝑁 nodes, 𝛿𝑖𝑗 is
the measured distance, and 𝑤𝑖𝑗 is the associated weight to distance measurement
𝑑𝑖𝑗 giving a measure of how accurate the distance is, when a measure of relative
distance accuracies or importance is known. Other weighting structures beside the
one in eq. (3.2) can be used, as long as 𝑤𝑖𝑗 ≥ 0 [9]. Usually, W – the matrix of
weights 𝑤𝑖𝑗 – is hollow, symmetric and non-negative.

3.1.1 Stress Majorization

One elegant method for solving MDS problems is stress majorization. To compute a
configuration X that preserves the distance between nodes in the distance matrix,
stress majorization proposes minimizing a convex function 𝜏 which bounds 𝜎 (the
complicated function given by eq. (3.1)) from above and touches its surface at a
point referred to as the supporting point. The minimization is done iteratively until
eq. (3.3) is satisfied after which X(𝑖) i.e. the configuration calculated at the 𝑖-th
iteration, converges to a configuration X. This iterative procedure is referred to as
Scaling by Majorizing a Complicated Function (SMACOF).

𝜎(X(𝑖−1)) − 𝜎(X(𝑖)) < 𝜖 (3.3)

To arrive at a bounded complicated function, eq. (3.1) is first expanded as follows:

𝜎(X) =
∑︁
𝑖<𝑗

𝑤𝑖𝑗𝛿2
𝑖𝑗 +

∑︁
𝑖<𝑗

𝑤𝑖𝑗𝑑𝑖𝑗(X)2 − 2 ·
∑︁

𝑖<𝑗
𝑤𝑖𝑗𝛿𝑖𝑗𝑑𝑖𝑗(X)

= 𝜂2
𝛿 + 𝜂(X)2 − 2𝜌(X).

(3.4)

From eq. (3.4), the first term 𝜂2
𝛿 is constant, while the second term 𝜂(X)2 is quadratic

and therefore convex in X. This second term is easily expressed in the form of the
configuration of points X using the matrix trace operation tr as follows:

𝜂(X)2 =
∑︁
𝑖<𝑗

𝑤𝑖𝑗𝑑𝑖𝑗(X)2

= trX′VX.

(3.5)
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where the elements 𝑣𝑖𝑗 of the matrix V are defined as:

𝑣𝑖𝑗 =
{︃

−𝑤𝑖𝑗 𝑖 ̸= 𝑗

−
∑︀𝑁

𝑗=1,𝑗 ̸=𝑖 𝑣𝑖𝑗 𝑖 = 𝑗
(3.6)

The last term −2𝜌(X) is a weighted sum of distances 𝑑𝑖𝑗(X) since 𝑤𝑖𝑗 and 𝛿𝑖𝑗 are
constants and can be rewritten more clearly as:

−2𝜌(X) = −2 ·
∑︁

𝑖<𝑗
(𝑤𝑖𝑗𝛿𝑖𝑗)𝑑𝑖𝑗(X). (3.7)

The distance 𝑑𝑖𝑗(X) is upper-bounded by first applying the Cauchy-Schwarz inequal-
ity:

(x𝑖 − x𝑗)′(z𝑖 − z𝑗) ≤ ‖x𝑖 − x𝑗‖ · ‖z𝑖 − z𝑗‖

≤ 𝑑𝑖𝑗(X)𝑑𝑖𝑗(Z)
(3.8)

where x𝑖 and x𝑗 are the 𝑖-th and 𝑗-th rows of the coordinate matrix X expressed as
vectors. Rearranging eq. (3.8), we obtain a bound on −𝑑𝑖𝑗(X):

−𝑑𝑖𝑗(X) ≤ −(x𝑖 − x𝑗)′(z𝑖 − z𝑗)
𝑑𝑖𝑗(Z) . (3.9)

Substituting the result of eq. (3.9) into eq. (3.8), we obtain:

−2𝜌(X) ≤ −2 ·
∑︁

𝑖<𝑗

𝑤𝑖𝑗𝛿𝑖𝑗

𝑑𝑖𝑗(Z)(x𝑖 − x𝑗)′(z𝑖 − z𝑗)

= −2tr X′B(Z)Z
(3.10)

so that 𝜌 is now bounded by a function which is linear in X. The matrix B(X) has
elements 𝑏𝑖𝑗 defined by:

𝑏𝑖𝑗 =

⎧⎪⎨⎪⎩
− 𝑤𝑖𝑗𝛿𝑖𝑗

𝑑𝑖𝑗(Z) 𝑑𝑖𝑗(Z) ̸= 0, 𝑖 ̸= 𝑗

0 𝑑𝑖𝑗(Z) = 0, 𝑖 ̸= 𝑗

−
∑︀𝑁

𝑗=1,𝑗 ̸=𝑖 𝑏𝑖𝑗 𝑖 = 𝑗

(3.11)

Finally, combining eq. (3.5) and eq. (3.10) and substituting into eq. (3.4), we
derive:

𝜎(X) = 𝜂2
𝛿 + tr X′VX − 2tr X′B(X)X

≤ 𝜂2
𝛿 + tr X′VX − 2tr X′B(Z)Z = 𝜏(X, Z)

(3.12)

The minimum of the majorizing function 𝜏(X, Z) can be derived analytically by
setting the derivative of 𝜏(X, Z) to zero:

∇𝜏(X, Z) = 2VX − 2B(Z)Z = 0
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yielding a solution which has been shown to decrease the stress 𝜎 monotonically [19,
59]:

X̂ = min
𝑋

𝜏(X, Z)

= V+B(Z)Z.
(3.13)

Equation (3.13) is called the Guttman transform. The Moore-Penrose pseudoin-
verse V+ is used since V is not full-rank. The iterative solution can be rewritten as
an update form of eq. (3.13), where Z is the value of X for the current iteration:

X(𝑘+1) = V+B(X(𝑘))X(𝑘). (3.14)

Equation (3.14) is usually initialized with a random configuration of points X(0)

and generates a suitable configuration of points whose euclidean distances matches
closely the matrix of distance measurements 𝛿 when eq. (3.3) is satisfied. This final
configuration of points is not unique for each 𝛿. Unique solutions can be obtained by
the adding position of fixed nodes to the initial random configuration as discussed
in section 3.1.2.

3.1.2 Stress Majorization with Fixed Anchor Positions

In section 3.1.1, the tag locations were derived by minimizing the majorizing function
𝜏 on the partial configuration of tags X𝑡 ⊂ X. With known exact values of anchor
positions X𝑎 ⊂ X, the unknown tag positions X𝑡 where derived with respect to
X𝑎 by eliminating the need for the usual roto-translation in previous worksand
improving the accuracy of tag positions. To find the value of X𝑡 that minimizes 𝜏 ,
we take the partial derivative of 𝜏 w.r.t. X𝑡:

𝜕𝜏(X, Z)
𝜕X𝑡

= 𝜕𝜂2
𝛿

𝜕X𝑡
+ 𝜕(tr X′VX)

𝜕X𝑡
− 2𝜕 (tr X′B(Z)Z)

𝜕X𝑡
(3.15)

The first term in eq. (3.15) is zero, while the other terms are more easily solvable
if the coordinate matrix X is partitioned into matrices X𝑡 and X𝑎:

X =
[︃

X𝑡

X𝑎

]︃
.

The matrices B and V are also partitioned into components that correspond to
the X matrix partitions, which are defined as follows:

V =
[︃
V11 V12
V′

12 V22

]︃
, B(Z) =

[︃
B11 B12
B′

12 B22

]︃
(3.16)

where V11, B11 ∈ R𝑚×𝑚, V12, B12 ∈ R𝑚×𝑛, and V22, B22 ∈ R𝑛×𝑛. The dimension
values 𝑚 and 𝑛 are the number of tags and anchors respectively.
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To take the derivative of the trace of the matrix products we transform to a scalar
form using index notation so that the second term in eq. (3.12) can be rewritten in
the form of column vectors x𝑖 as:

tr X′VX =
𝑃∑︁

𝑖=1
x′

(𝑖)Vx(𝑖)

=
𝑃∑︁

𝑖=1

(︁
x′

𝑡(𝑖)V11x𝑡(𝑖) + 2x′
𝑡(𝑖)V12x𝑎(𝑖) + x′

𝑎(𝑖)V22x𝑎(𝑖)
)︁

,

(3.17)

and the second term in eq. (3.15) can now be written as:

𝜕(tr X′VX)
𝜕X𝑡

= 2(V11X𝑡 + V12X𝑎) (3.18)

Similarly, the third term in eq. (3.12) can be expanded as:

tr X′B(Z)Z =
𝑃∑︁

𝑖=1
x′

(𝑖)B(Z)z(𝑖)

=
𝑃∑︁

𝑖=1

(︁
x′

𝑡(𝑖)B11z𝑡(𝑖) + 2x′
𝑡(𝑖)B12z𝑎(𝑖) + x′

𝑎(𝑖)B22z𝑎(𝑖)
)︁

,

(3.19)

and its derivative in eq. (3.15) is now also easily solvable:

𝜕(tr X′B(Z)Z)
𝜕X𝑡

= B11Z𝑡 + B12Z𝑎 (3.20)

Substituting the terms in eq. (3.18) and eq. (3.20) into eq. (3.15), and equating
to zero to find the minimum of 𝜏 , we have:

𝜕𝜏(X, Z)
𝜕X𝑡

= 2(V11X𝑡 + V12X𝑎 − B11Z𝑡 − B12Z𝑎) = 0 (3.21)

The partial support Z𝑎 ∈ Z, which is a point on 𝜏 , has a known solution X𝑎 in
𝜎, so that generally Z𝑎 ≈ X𝑎 and Z𝑎 ≈ X𝑎 if 𝜎 is convex, i.e. 𝜎 = 𝜏 . Substituting
Z𝑎 as X𝑎 and solving for X𝑡:

X𝑡 = V−1
11 (B11Z𝑡 + (B12 − V12)X𝑎) (3.22)

Finally, eq. (3.22) can be rewritten in an iterative form as:

X(𝑘+1)
𝑡 = V−1

11

(︁
B11X(𝑘)

𝑡 + (B12 − V12)X𝑎

)︁
(3.23)

where the initial guess X(0)
𝑡 is a coordinate matrix with random values.
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3.2 Handling Missing Tag Interactions

From eq. (3.23), we proceed to formulate an extended Anchored MDS (MDS-A)
approach for the case with missing tag-to-tag distances. Given a distance matrix D
(eq. (3.24)) for a setup with 𝑚 tags and 𝑛 anchors (so that 𝑚 + 𝑛 = 𝑁), and missing
within-sets (between nodes of the same type) distances for tags, the distance matrix
is again partitioned so that eq. (3.23) becomes applicable:

D =
[︃

Λ D12
D𝑇

12 D22

]︃
(3.24)

where Λ is the submatrix of missing tag-to-tag proximities, D12, D21 are anchor-to-
tag distances and D22 are anchor-to-anchor distances.

For a sufficiently large amount of iterations, as 𝑘 → ∞, we know that the support
point of the majorizing convex function is a stationary point, so that X(𝑘+1) ≈ X(𝑘).
One consequence of the convergence of eq. (3.14) is that B(X(𝑘)) tends to V:

V ≈ lim
𝑘→∞

B(X(𝑘)) (3.25)

The limit in eq. (3.25) is an equality when there is zero noise in the distance
measurements. To extend eq. (3.25) for the MDS-A solution described in eq. (3.23),
we can have X(𝑘+1)

𝑡 ≈ X(𝑘)
𝑡 , by setting (B12 − V12)X𝑎 to 0 leading to eq. (3.26).

V11 ≈ lim
𝑘→∞

B11(X(𝑘)) (3.26)

Since the tag within-sets distances are unknown, we can compute each tag
location independent of the others by making B11 a diagonal matrix, with its
diagonal elements being the sum of elements from the neighbouring B12 partition:

B11 =

⎡⎢⎢⎢⎢⎣
−
∑︀𝑛

𝑗 ̸=1 𝑏1𝑗 0 · · · 0
0 −

∑︀𝑛
𝑗 ̸=2 𝑏2𝑗 · · · 0

...
... . . .

0 0 −
∑︀𝑛

𝑗 ̸=𝑚 𝑏𝑚𝑗

⎤⎥⎥⎥⎥⎦
To avoid making assumptions about the tag within-sets distances Λ as with

MDS-RFID, the off-diagonal elements of B can only be zero if their corresponding
weights in W are 0 in conformance with eq. (3.11).

By setting the missing tag within-sets weights to 0, the weight matrix W is now
partitioned as in eq. (3.27) where 11𝑚,𝑛 is a matrix of ones with shape 𝑚 × 𝑛.

W =
[︃

0 W12
W𝑇

12 W22

]︃
=
[︃

0𝑚,𝑚 11𝑚,𝑛

11𝑇
𝑚,𝑛 11𝑛,𝑛

]︃
(3.27)



3.2. HANDLING MISSING TAG INTERACTIONS 29

The matrix V (eq. (3.28)) can now be computed in partitions from W using
eq. (3.6).

V =
[︃

𝑛I −11𝑚,𝑛

−11𝑇
𝑚,𝑛 (𝑚 + 𝑛)I − 11𝑛,𝑛

]︃
(3.28)

This way, V11 now satisfies eq. (3.26) and its inverse can be written as in eq. (3.29)
and V12 as in eq. (3.30).

V−1
11 = I/𝑛 (3.29)

V12 = −11𝑚,𝑛 (3.30)

Matrix V12 also satisfies the earlier assumption that (B12 − V12)X𝑎 = 0 at some
sufficiently large iteration number 𝑘 where B12 = −11𝑚,𝑛, since 𝛿𝑖𝑗 = 𝑑𝑖𝑗(X) for
between-sets distances when there is no noise in the measurements.

The B matrix (eq. (3.31)) is similarly partitioned as with W and V, where each
partition of B is computed as in eq. (3.11).

B =
[︃
B11 B12
B𝑇

12 B22

]︃
(3.31)

Substituting eq. (3.29) and eq. (3.30) into eq. (3.23) we arrive at a simplified
update procedure for X𝑡 that does not consider the interaction between tags:

X(𝑘+1)
𝑡 = B11X(𝑘)

𝑡 + (B12 + 11𝑚,𝑛)X𝑎

𝑛
. (3.32)

The update in eq. (3.32) is done with the SMACOF iterative process until the
convergence condition in eq. (3.3) is satisfied. The final configuration X can now be
constructed trivially:

X =
[︃

X̂𝑡

X𝑎

]︃
.

When tag interactions are missing, the anchor-tag between-sets distances can
give a full representation of the distance matrix requiring O(𝑚 × 𝑛) storage; anchor
within-sets are not required since anchor locations are fixed and tag within-sets
distance are missing. Since implementations of the SMACOF algorithm do not take
non-symmetrical matrices as input, placeholder values should be used in place of
the missing tag within-sets distances.

An implementation of our work in Python containing these details can be found
at [53], which also includes the related experiments in section 3.2.1.
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3.2.1 Experimental Results

In this section, we describe experiments comparing our results for handling missing
distances described in section 3.2 with an existing technique that estimates missing
inter-tag distances, MDS-RFID [88], and the classical MDS.

In a simulated deployment region of 30𝑚×20𝑚 area, the number of tags, anchors
and measurement noise were varied in different experiments. Noise is only added to
the between-sets distances since anchor positions are known and their within-sets
distances are not part of the measurements. The noise in the distances is modeled
as Gaussian for simplicity, as:

𝑑𝑖𝑗 = 𝑑𝑖𝑗(X) + 𝒩 (0, 𝜎2).

Figures 3.1a and 3.1b show sample runs of MDS-RFID and our specialized
MDS-A algorithms using 4 anchors, 7 tags and 𝜎 = 1. Results for classical MDS are
not shown since an extensive study has already been demonstrated in [30].

We note here that the MDS-RFID as discussed in [88] uses eigenvalue decompo-
sition (EVD) to solve the MDS problem. However, in our experiments, it has been
used with the SMACOF algorithm which allows to set the weights of the estimated
missing distances to a value that gives the lowest Root Mean Squared Error (RMSE).
This weight 𝑤𝑡(𝑖𝑗) has been found to be 0.7 by heuristics for this particular set of
experiments. The RMSE in each experiment that evaluates accuracy of the computed
configuration with respect to the original configuration is given by eq. (3.33).

𝑅𝑀𝑆𝐸 =

⎯⎸⎸⎷ 1
𝑁

𝑁∑︁
𝑖=1

‖𝑥𝑖 − �̂�𝑖‖2 (3.33)

In the following paragraphs, we describe the various experiments and their results.
Each of them have been repeated with 100 trials, taking initial guess X(0)

𝑡 of the
SMACOF algorithm for all the trials randomly.

The first experiment checks the effects of noise and number of tags (i.e., the
proportion of missing data) on the RMSE of modified MDS-A. The results were
compared with those of full connectivity, where tag within-sets data is available. In
the first case shown in Figure 3.2a, the number of anchors was kept constant at 4,
while 𝜎 was varied. In the second case shown in Figure 3.2b, 𝜎 was kept constant
while the number of tags (amount of missing data) was varied. The disparity in both
methods is not unexpected and suggests that discarding some measurements such as
non line-of-sight distances would further degrade the performance, motivating the
need to develop a more robust solution (addressed in this document in chapter 4).
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(a) MDS-RFID under missing tag-to-tag distances and 𝒩 (0, 1) measurement noise.

(b) MDS-A (extended form) under missing tag-to-tag distances and 𝒩 (0, 1) measurement
noise.

Figure 3.1: Errors in estimated positions are at least 30% lower in (b) than in (a).
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(a)

(b)

Figure 3.2: Median and IQR of RMSE with MDS-A and modified MDS-A (with
tag-to-tag distances removed). 3.2a: 𝜎 is varied from 0 to 4 in steps of 0.1 while
number of tags is 10; 3.2b: number of tags is varied from 1 to 30 while 𝜎 = 3.
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Figure 3.3a shows the median and interquartile range (IQR) of the RMSE for
classical MDS, MDS-RFID, and the specialized MDS-A when the value of 𝜎 is varied
in steps of 0.1 from 0 to 4. The RMSE increases monotonically with the error for all
three methods. Although MDS-RFID has the highest RMSE at 𝜎 = 0, it is much
more robust to increasing error than classical MDS, and the IQR of the RMSE is
more constrained. Overall, the specialized MDS-A form performs better than the
other methods.

Results for the experiment involving a variation of the number of anchors is shown
in Figure 3.3b. The 𝜎 value set at 3 allows to properly study the influence of the
number of anchors for each of the methods in high error situations. The MDS-RFID
algorithm performs better than the classical MDS and slightly better than modified
MDS-A when the number of anchors is set to 3. This can be attributed to the
optimal weights used for the recovered distances, which as stated earlier was found
by heuristics. If the weight values were 1, i.e. giving both existing and recovered
distances same weight, the specialized MDS-A form will outperform MDS-RFID.
Moreover, as the number of anchors increases, our approach takes advantage of
the available anchor information, so that its median RMSE is less than those of
MDS-RFID and classical MDS.

3.3 Dynamic Node Membership

The matrix of pairwise distances is constructed from distance measurements between
nodes for all active nodes in the deployment region by stacking each node’s set of
pairwise distances with every node along rows and columns. New nodes can be added
dynamically by stacking their pairwise distance information from every anchor to
the rows and columns of the distance matrix. An illustration of this operation is
depicted in fig. 3.4, where the number of tags 𝑚 goes from 1 to 2.

As the new node, labeled 5, comes on, the hardware stack automatically adds
the node to the list of tracked nodes and its distance information is forwarded to
the software stack alongside those of the existing nodes. In the software stack, the
new member’s vector of pairwise distances are transposed, and the original and
transposed forms are used for stacking. From fig. 3.4, we notice that the distance
between tag 4 and 5, 𝑑45 = 𝑑54, is recorded as 0 since tags do not interact with each
other. When the stacking is performed, a final 0 is automatically added to the last
diagonal position to complete the square matrix.

On a similar note, when a mobile node goes offline, its distance information gets
deleted from the rows and columns of the matrix so that the size of the distance
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(a)

(b)

Figure 3.3: Median and IQR of RMSE for MDS-RFID, classical MDS and modified
MDS-A. In 3.3a, 𝜎 is varied from 0 to 4 in steps of 0.1 while number of tags is 30,
and in 3.3b, number of anchors is varied from 3 to 8 while 𝜎 = 3.



3.3. DYNAMIC NODE MEMBERSHIP 35

Figure 3.4: Pairwise distance information of new node is padded to distance matrix
as the node comes online.

matrix shrinks and the value of 𝑚 is update with 𝑚 − 1 after the deletion.

Summary

In this chapter, we introduced MDS in the context of localization. A specialized
formulation of MDS-A was formulated, which has shown to provide better results
than existing techniques for handling missing data. We show that by decoupling the
interaction between tags, tag locations can be inferred directly from the available
anchors when tag-to-tag distances are missing. This undermines (but does not
eliminate) the effect of the missing data without making assumptions about the
relative distances between tags. Experiments demonstrate the performance of this
specialized MDS-A over MDS-RFID and classical MDS.

In the last part of the chapter, we introduced a simple technique for managing
node memberships such that node additions and removals do not interfere with the
localization algorithm.





Chapter 4

Localization in NLOS
Environments

“If we knew what it was we were doing, it would not
be called research, would it?”

Albert Einstein

In this chapter, indoor localization under so-called nonline-of-sight (NLOS)
conditions is considered. Under range-based radio positioning, the occurrence of
multipath and attenuation effects caused by obstacles, occlusions or interference
in the deployment region of radio positioning nodes contribute negatively to the
performance of indoor positioning algorithms. A physical object lying between
transmitter and receiver such that there is no clear visual line of sight between both
will cause the transmitted signal 1) to be attenuated or diffracted if the obstacle is
not completely blocking or 2) to travel a different path leading to anomalies at the
receiving end. This would often cause the RSS to be weakened or cause the ToF to
take longer, making the estimated distance to be longer than the actual length; these
anomalies are classified in this work as nonline-of-sight (NLOS) effects. Figure 4.1
gives a pictorial description of a signal not having clear line-of-sight between anchor
and tag.

The MDS with anchors approach discussed in chapter 3 is adapted for the
mitigation of NLOS bias that is presented later in this chapter. Application sce-
narios for MDS-A in NLOS environments where inter-tag interactions are missing
are not uncommon. One advantage of removing inter-tag interaction is, firstly, re-
duced architecture complexity and time required to collect all the required distance
measurements in order to build a matrix (the matrix is sparse) and secondly, the
elimination of further NLOS biases and noise that may be present in the pairwise
distances between tags. The latter has shown to be vital for the performance of our

37
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Figure 4.1: NLOS effects from physical object lying between anchor and object on
which tag is placed.

proposed NLOS mitigation scheme since tag positions only receive support from
anchor-tag distances in the localization algorithm. Examples of such deployments
can be found in:

1. localization schemes that use single/round-trip ToF between fixed and mobile
nodes,

2. localization schemes where mobile nodes read RSSI for signal transmissions
from fixed nodes or the other way around.

The mobility of nodes contributes to vulnerability to NLOS effects since objects to
which the nodes are attached can obstruct one another and proximity to walls and
large metallic objects increases signal reflection which in turn distorts the signal.
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4.1 Reasoning and Problem Formulation

In this section, we formulate an NLOS mitigation technique under the MDS scheme.
In fig. 4.2a, we show the received signal strengths from 4 nanoLoc [1] anchors
measured from a stationary nanoLoc tag. In the setup, an object is moving around
the tag at a non-constant speed and we notice how there are successive drops in
signal strength from each anchor while there is an obstruction between itself and the
stationary tag by the moving object. Even after the signals have been filtered, the
dip values present problems as the computed distances appear larger for the duration
of the occlusion. The lengthening of these computed distances can be observed in
fig. 4.2b. Using these distances directly in a cooperative localization algorithm will
lead to estimation errors in the form of sporadic jumps in tag positions. The task
therefore is to estimate the amount of bias and noise in each of the distances.

For a matrix of NLOS and noise free pairwise distances, tag positions can be
computed from those of anchors, and the anchor positions can be recomputed exactly
from those of tags by swapping anchors with tags under the specialized MDS-A
formulation. This symmetry in anchor-tag and tag-anchor estimation applies for
node deployments with at least 3 tags and 3 anchors, and a matrix of distance
measurements free of NLOS bias and measurement noise. In real life applications,
this is hardly the case, as distances are almost never accurate. Moreover, since the
aforementioned symmetry is lost, tag positions estimated from the skewed matrix
do not represent the exact tag positions. We provide an estimate on the goodness
of this skewed matrix by recomputing anchor positions from the earlier computed
tag positions, and taking the error with respect to the known anchor positions.
The error in the tentative anchor positions will be proportional to the amount of
noise and NLOS bias in the matrix of distance measurements. We derive this error
analytically and we formulate a constrained optimization problem to find bias values
that yield the least error on tentative anchor positions. Since the tag within-sets
distances are not available, the support for computation of tentative anchor positions
is provided only by anchor-tag between-sets distances, therefore making the error a
better reflection of between-sets NLOS biases and noise.

We verify the accuracy improvements of the proposed approach by experiments
which indicate significant reductions in positioning RMSE by up to 28% for a setup
of 4 anchors and 3 tags. Simulations are used to further demonstrate accuracy
improvements for deployments involving an area with larger dimensions, and higher
number of anchors and tags.
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(a) Reception power measured from a stationary tag with an obstacle moving around it.

(b) Changes in distance measurements as seen from stationary tag with obstacle moving around it.

Figure 4.2: Effects of NLOS effects on RSS and distance measurements.
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4.2 Cooperative Mitigation of NLOS Effects

As stated earlier, there exists an intrinsic symmetry in a matrix of LOS measurements
of pairwise distances which allows to compute tag locations from anchor locations
and then recompute exactly the same anchor positions from the earlier computed
tag positions. Under NLOS conditions, there is no such symmetry; anchor positions
can not be reproduced exactly from those of tags. In this section, we introduce
mathematically our heuristic for the removal of NLOS in a matrix of pairwise
distances. This heuristic is based on the knowledge of the aforementioned symmetric
property of ideal distance matrices. In the presence of NLOS effects, the symmetry
of the pairwise distance matrix is lost. However, the ensuing asymmetry allows to
mitigate NLOS effects by minimizing the error on the recomputation of anchors.

In fig. 4.3, we show how the errors on the recomputation of anchor positions
grows monotonically with increasing NLOS and measurement noise. The data for the
plots was generated from simulations where NLOS effects and measurement noise
are added to a distance matrix using the ToF error model described in [3] and tag
positions are computed relative to anchor positions using the skewed distance matrix.
The NLOS effects and noise were amplified using multiplicative factors, with a factor
of zero indicating zero NLOS effects and noise. At each simulation, we take the sum
of the errors on the tag positions and sum of the errors on the recomputation of
anchors, using the earlier computed tags as anchors. The median values and IQR
values for both error sums are plotted. The plots indicate that tag position errors
are lower bounded by the anchor position errors, so that all of the NLOS effects and
measurement noise are not completely traceable from anchor recomputation errors.
This confirms that complete removal of NLOS effects and measurement noise is not
possible, generally and under our proposed scheme in particular. We observe that
there are no errors on anchor recomputation at zero NLOS and noise.

The tentative anchors positions �̃�𝑎 are recomputed by swapping anchors with
tags in eq. (3.23), so that anchors are now recomputed from tag positions 𝑋𝑡 using
the anchor-tag between-sets distances as support. This yields a new equation of the
following form:

�̃�𝑎 = 𝐵22𝑍𝑎 + (𝐵21 + 11𝑛,𝑚)𝑋𝑡

𝑚
(4.1)

From eq. (4.1), anchors positions are directly computable from those of tags if the
number of tags 𝑚 ≥ 3, where 3 is the minimum number of fixed nodes sufficient for
the computation of unique anchor positions. We present a supplementary approach
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Figure 4.3: Correlation between position errors for tags and recomputed anchors.

in section 4.2.2 for special cases where the number of tags 𝑚 = 1 and 𝑚 = 2.
The error in the computation of the tentative anchor positions is the sum of the

displacements between each recomputed position in the tentative anchor configuration
�̃�𝑎 and its corresponding exact position in the known anchor configuration 𝑋𝑎.
This error 𝑒𝑎 is expressed mathematically as:

𝑒𝑎 =
𝑛∑︁

𝑖=1
‖�̃�𝑎(𝑖) − 𝑥𝑎(𝑖)‖ (4.2)

where �̃�𝑎(𝑖) and 𝑥𝑎(𝑖) are the tentative and known positions of the 𝑖𝑡ℎ anchor
respectively.

Since �̃�𝑎 is computed from a non-ideal matrix of distance measurements con-
taining some unknown NLOS bias and measurement noise, then the equation for
�̃�𝑎 can be rewritten as:

�̃�𝑎 = MDS(𝑋𝑡, 𝛿 + 𝑏). (4.3)

where MDS indicates the MDS algorithm as a callable procedure that takes parameters
𝑋𝑡, 𝛿, 𝑏 and returns a configuration of positions. We make no attempt to distinguish
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NLOS effects from measurement noise, so that both are estimated jointly and
cumulated in the matrix 𝑏. Henceforth, we will refer to both NLOS bias and
measurement noise as simply NLOS bias.

Equation (4.3) allows to also rewrite the error 𝑒𝑎 as function of NLOS bias in a
similar form:

𝑒𝑎 =
𝑛∑︁

𝑖=1
‖MDS(𝑋𝑡, 𝑏)(𝑖) − 𝑥𝑎(𝑖)‖ (4.4)

where the matrix of measured distances 𝛿 has been dropped since its elements are
constant.

The optimization problem for finding tag positions and NLOS bias values that
minimize error 𝑒𝑎 is now written as:

�̂�𝑡 = min
𝜃

𝑒𝑎(𝑋𝑡, 𝑏), 𝜃 = [𝑋𝑡 𝑏]𝑇 (4.5)

The tag positions 𝑋𝑡 are unconstrained since they are explicitly computed by
eq. (3.32). However, the cumulated NLOS bias 𝑏𝑖𝑗 ∈ 𝑏 are constrained so that their
corresponding values for any of the distances are finite and positive (or zero). This
condition can be formally expressed as:

𝑏𝐿 ≤ 𝑏𝑖𝑗 ≤ 𝑏𝑈 , ∀𝑏𝑖𝑗 ∈ 𝑏𝜃 (4.6a)

𝑏𝑖𝑗 = 0, ∀𝑏𝑖𝑗 ̸∈ 𝑏𝜃 (4.6b)

where 𝑏𝜃 ⊂ 𝑏 is the set of all anchor-tag between-sets biases. The lower bound
𝑏𝐿 can be set as 𝑏𝐿 = 0 for ideal distances while the upper bound 𝑏𝑈 can be
based on information regarding the geometrical layout of the deployment region, as
proposed in [102]. The values for anchor within-sets NLOS biases are set to 0 since
all anchor positions are known and their pairwise distances are ideal while those
for tag within-sets are equally set to 0 since within-sets distances for tags are not
available.

4.2.1 Deployments with at least 3 tags

When the number of tags is at least 3, i.e., 𝑚 > 3, the tentative anchor positions
can be computed by swapping anchors with tags described in eq. (4.1). The error
function 𝑒𝑎 is nonlinear with respect to 𝑏 (the partial 𝐵 matrices 𝐵21 and 𝐵22 are
updated with 𝛿 + 𝑏 instead of 𝛿), it is therefore also nonlinear with respect to the
parameter vector 𝜃.
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We propose the application of SQP to solve the constrained nonlinear problem.
Due to the complexity of the SQP algorithm and the positive semi-definiteness of
the square matrix 𝑏, we introduce a preprocessing algorithm (see algorithm 1) to
trim a constant NLOS bias from the matrix 𝑏. The algorithm mitigates a constant
NLOS bias value 𝑏𝑐 if all biases 𝑏𝑖𝑗 ∈ 𝑏𝜃 satisfy the condition |𝑏𝑖𝑗 | ≥ |𝑏𝑐|. From
algorithm 1, the bias value 𝑏𝑐 is initialized to zero and incremented with 𝑠𝑡𝑒𝑝,
repeating the computation of error 𝑒𝑎 at each iteration until it no longer decreases.
It is important to set a value of 𝑠𝑡𝑒𝑝 that is sufficiently small to allow the algorithm
to reach the minimum as close as possible, without overshooting too quickly. The
algorithm performs most effectively when all between-sets distances are affected by
approximately the same amount of NLOS bias. Otherwise, it will trim off small
measurement noise or return after the first iteration if any of the distances is unbiased.

Regarding the complexity of the SMACOF invocations applied in algorithm 1,
one of the ways we speed up the convergence of SMACOF is to initialize only the
first computation for 𝑋

(0)
𝑡 with a random array. Subsequent 𝑋

(𝑘)
𝑡 computations are

initialized with 𝑋
(0)
𝑡 or 𝑋

(𝑘−1)
𝑡 . The same applies to SMACOF computations for

�̃�
(𝑘)
𝑎 , which are initialized with 𝑋𝑎 or �̃�

(𝑘−1)
𝑎 . These initializations generally make

SMACOF converge in constant time 𝒪(1).

Algorithm 1 Trimming NLOS bias from distances
Input: 𝑋𝑎, 𝑏𝑈 , 𝑠𝑡𝑒𝑝
Output: 𝑋𝑡, 𝑏𝑐

Initialization : 𝑏𝑐 → 0
1: 𝑋

(0)
𝑡 = MDS(𝑋𝑎, 𝑏𝑐)

2: �̃�
(0)
𝑎 = MDS(𝑋(0)

𝑡 , 𝑏𝑐)
3: compute 𝑒

(0)
𝑎

4: 𝑘 → 0
5: while 𝑘 = 0 or 𝑒

(𝑘)
𝑎 < 𝑒

(𝑘−1)
𝑎 do

6: 𝑏𝑐 = 𝑏𝑐 + 𝑠𝑡𝑒𝑝
7: 𝑘 = 𝑘 + 1
8: if (𝑏𝑐 ≥ 𝑏𝑈 ) then
9: break

10: end if
11: 𝑋

(𝑘)
𝑡 = MDS(𝑋𝑎, 𝑏𝑐)

12: �̃�
(𝑘)
𝑎 = MDS(𝑋(𝑘)

𝑡 , 𝑏𝑐)
13: compute 𝑒

(𝑘)
𝑎

14: end while
15: 𝑏𝑐 = 𝑏𝑐 − 𝑠𝑡𝑒𝑝 {reverse last update}
16: �̂�𝑡 = MDS(𝑋𝑎, 𝑏𝑐)

The SQP algorithm as shown in algorithm 2 is then run on the constrained
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nonlinear problem defined by eq. (4.5) and eq. (4.6). The implementation of the
optimization algorithm makes use of Python-SciPy’s SLSQP (Sequential Least
Squares Programming) solver. The solver applies the Hans-Powell quasi-Newton
method [78] for the derivative of the Lagrangian associated with the minimization
problem in eq. (4.5) with a Broyden-Fletcher-Goldfarb-Shanno (BFGS) update.
All the elements 𝑏𝑖𝑗 of this matrix are initialized with the constant bias value 𝑏𝑐.
Afterwards, a matrix 𝑈 composed by uniformly distributed values in [0, 1) and with
the same dimensions as 𝑏𝜃 is added to 𝑏𝜃. This is done to apply small perturbations
to the initial values, which is known to provide better results than initializing all
elements with the same value. The function 𝑓𝑒 updates the value of 𝑒𝑎 at each
iteration within the SQP procedure while 𝑡𝑜𝑙 specifies the tolerance of the stopping
criterion.

Algorithm 2 NLOS bias mitigation by SQP
Input: 𝑋𝑎, 𝑏𝑐, 𝑡𝑜𝑙
Output: 𝑋𝑡, 𝑏𝜃

Initialization : 𝑏
(0)
𝜃 → 𝑏𝑐 + 𝑈 [0, 1)

1: 𝑋
(0)
𝑡 = MDS(𝑋𝑎, 𝑏

(0)
𝜃 )

2: 𝑏𝜃 = SQP(𝑓𝑒, 𝑏
(0)
𝜃 , 𝑋

(0)
𝑡 , 𝑋𝑎, 𝑡𝑜𝑙)

3: �̂�𝑡 = MDS(𝑋𝑎, 𝑏𝜃)

4.2.2 Deployments with less than 3 tags

When the number of tags is 𝑚 = 1 or 𝑚 = 2, eq. (4.1) can not be applied directly
for the computation of tentative anchor positions since at least 3 fixed nodes are
required in order to produce unique solutions.

To overcome the lack of sufficient tags, the tag configuration is padded with
some anchors from the anchor configuration so the number of tags makes up to 3.
For example, in the case there are only two tags, we pad with one anchor. To ensure
that all anchors participate in the padding and an error value can still be taken from
tentative anchor positions, we apply a modified form of the jackknifing technique
adopted in [20]. Anchors are sampled without replacements or ordering, taking 3−𝑚

anchors at each sampling step. Afterwards, the sampled anchors are added to the
tag configuration so that the number of tags plus the anchor(s) becomes equal to 3.
Tentative positions for the anchors left in the configuration after the samples have
been acquired are computed using the augmented tag configuration. This process
of sampling/jackknifing and computing of tentative positions is repeated for all
possible combinations of anchors in the anchor configuration. Errors are computed
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and stored, and all the errors are later summed into a final tentative anchor positions
error 𝑒𝑎 as described by the following equation:

𝑒𝑎 =
𝑠∑︁

𝑖=1
𝑒𝑎(𝑖)(𝑋𝑎𝑢𝑔

𝑡(𝑖) , 𝑏) (4.7)

The 𝑖𝑡ℎ augmented tag configuration 𝑋𝑎𝑢𝑔
𝑡(𝑖) is defined by:

𝑋𝑎𝑢𝑔
𝑡(𝑖) =

[︁
𝑋𝑇

𝑡 |𝑋𝑇
𝑎(𝑖)

]︁𝑇
(4.8)

where 𝑋𝑎(𝑖) is the 𝑖𝑡ℎ anchor sample(s) of size (3 − 𝑚) × 2 for 2D or (3 − 𝑚) × 3
for 3D positioning. The number 𝑠 appearing in eq. (4.7) is the number of unordered
combinations without replacement possible with the given number of anchors and
tags and is defined by:

𝑠 =
(︃

𝑛

3 − 𝑚

)︃
(4.9)

For instance, in a setup of 4 anchors and 1 tag, 6 anchor combinations are possible,
allowing for 6 different augmented tag configurations.

As with the previous scenario with at least 3 tags, NLOS biases are first trimmed
using algorithm 1 after which the final bias values are computed using algorithm 2.

4.3 Experimental Results

The experiments were performed using nanoLoc transceiver nodes in the laboratory
environment shown in fig. 4.4b. The environment was not adjusted whatsoever for
the sake of the localization exercise. This had the benefit of allowing RF interference
from the multiple wireless devices in the environment and possible occlusions and
reflections from nearby walls and objects. Data collected during the experiments
and code used to process the data and visualize the plots are available online [54].

A nanoLoc node is shown in fig. 4.4a. The nodes use RT-ToF for estimating
the ranges that are collected by the tags and sent via a base-station to a computer
where, in turn, the distance matrix is constructed and node positions are calculated.

The nanoLoc nodes are mounted on tripods, as shown in fig. 4.4b. There are 4
anchors and a varying number of tags, from 1 to 4. The tags are kept stationary and
an obstacle (shown in yellow in fig. 4.4b) is placed directly in front of anchor 3. This
obstacle causes the distances between anchor 3 and all the tags to be approximately
doubled. Variations in the tag positions in fig. 4.5b are directly explainable by small
perturbations in the distance measurements taken by the transceivers leading to
random hops within the MDS algorithm. A technique for dampening these hops
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(a) The nanoLoc node used in the experiments.

(b) Deployment of 4 anchors (blue) and 3 tags (red) with an artifical obstacle (yellow).

Figure 4.4: Localization setup in a laboratory setting.
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(a)

(b)

Figure 4.5: Positioning for 1 (a) and 3 (b) stationary nanoLoc tags with 40 data
points per tag.
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Table 4.1: Mean and variance of RMSEs for different nanoLoc tag counts.

No. of tags MDS MDS w/ NLOS mit.

mean/var. (m)

1 2.51/0.01 1.76/0.05
2 3.71/0.01 3.18/0.02
3 2.67/0.13 1.94/0.52
4 2.84/0.03 2.24/0.01

with respect to the MDS scheme has been discussed in [22]. The method takes
into account the velocity of the nodes and applies MDS over a number of distance
matrices contiguous in time. Usually, the method is applied for 2 contiguous matrices.

Table 4.1 shows the mean and variance of RMSE values for vanilla MDS and
proposed method. The RMSEs at 2 tags and 3 tags are not correlated as a different
version of the NLOS mitigation technique was applied for both scenarios, i.e.,
algorithm 1 and algorithm 2 respectively. We notice that in fig. 4.6a, around RMSE
values of 3𝑚 on the Y-axis, the NLOS bias mitigation results are occasionally slightly
worse than the original. We believe this is due to approximation errors in algorithm 1
and/or algorithm 2 and can be corrected by setting the 𝑠𝑡𝑒𝑝 in algorithm 1 to a
smaller value or reducing the tolerance value 𝑡𝑜𝑙 in algorithm 2. Decreasing the value
of these parameters to provide fractional improvements in accuracy increases the
time it will take for both algorithms to converge. The increase in RMSE in fig. 4.6a
is due to a shift of the barrier closer to anchor 3. Human movements within the
deployment region also create sudden spikes or dips. The histogram and empirical
cumulative distribution function (CDF) for the RMSEs are reported in fig. 4.6b and
fig. 4.6c.

4.3.1 Further Simulations

To verify the performance of our proposed method compared to vanilla MDS on
a larger setup, simulations were performed to allow scaling up of the number of
nodes and an expansion of the area of the deployment region. We initialize a
rectangular 35𝑚 × 25𝑚 simulated area with varying number of anchors and tags
at random positions. Distance matrices with elements 𝛿𝑖𝑗 are constructed from
the pairwise distance between all the nodes and then tag within-sets distances are
marked as unknown. The simulation ranging dynamics were modeled according to
range estimation accuracy data provided in [3, 16], where NLOS bias is reported to
approximate an exponential distribution while the measurement noise is modeled as
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(a)

(b)

(c)

Figure 4.6: a) RMSEs; b) histogram of RMSEs; and c) CDF of RMSEs for 4
nanoLoc anchors and 3 tags with ≈ 1000 runs.
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a zero mean Gaussian distribution. For ToF, the exponential distribution for NLOS
bias 𝑏𝑖𝑗 = 𝐸𝑥𝑝(𝜆) has scale 𝜆 = 0.08𝛿𝑖𝑗 and the noise 𝑛𝑖𝑗 = 𝒩 (0, 𝜎2) has a standard
deviation 𝜎 = 0.02𝛿𝑖𝑗 [3]. These values allow to inject the original distance 𝛿𝑖𝑗 with
some randomized NLOS and noise value so that the true distance 𝑑𝑖𝑗 is now related
to 𝛿𝑖𝑗 by:

𝛿𝑖𝑗 = 𝑑𝑖𝑗(𝑋) + 𝑏𝑖𝑗 + 𝑛𝑖𝑗 (4.10)

Simulations were repeated for setups of 3 to 8 anchors and 3 to 22 tags.
NLOS/noise multipliers are set in the range from 0 to 1. Anchors were placed
at the four corners and midway between the four corners of the simulated area and
tags were always initialized randomly within the rectangular bounds defined by the
anchors.

Figures 4.7a to 4.7c show the results for the simulations where nodes and ToF
dynamics were randomly initialized 500 times for each variation in the setup. The
error in the position estimates is given by the RMSE of the computed tag positions
with respect to the true tag positions. The median and IQR values for the 500 runs
at each simulation are shown in the plots. From fig. 4.7a, the positioning RMSEs
decrease as more anchors are added to the setup; tags were kept constant at 22 for
this simulation set. This is because increasing the number of anchors increases the
average magnitude of the error of tentative anchor positions, thereby allowing for a
more robust inference on NLOS biases from the error. From fig. 4.7b, the number of
anchors is kept constant at 4 while the number of tags is varied. This has the effect of
increasing RMSE as tag count increases since information is lost as only 4 tentative
anchor positions are reproduced from a relatively higher number of tags, with the
NLOS mitigation approach always having a lower median value. In fig. 4.7c, we
multiply the randomized 𝑏𝑖𝑗 and 𝑛𝑖𝑗 values by factors ranging from 0 to 1. Both the
MDS and MDS-with-NLOS-mitigation approaches produce the precise tag positions
when the multiplying factor is 0. As the factor is increased, the RMSE of our NLOS
mitigation approach grows at a rate 0.7 that of vanilla MDS.

Summary

In this chapter, we presented an NLOS mitigation technique under the MDS-A
scheme. This formed the basis for the more elaborate discussion on NLOS mitigation
using recomputed anchor positions. An ideal matrix of pairwise distances is known
to exhibit a symmetry that allows to recompute exact anchor positions from those
tags using MDS. In a NLOS environment, this symmetry does not hold so that the
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(a)

(b)

(c)

Figure 4.7: Medians and IQRs for RMSEs under a) varying number of anchors; b)
varying number of tags; and c) varying NLOS and noise multipliers.
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ensuing asymmetry can be exploited to estimate NLOS bias values for each of the
pairwise distances.

We formulated a minimization problem where the error on anchor recompu-
tation is presented as cost, and tag positions and NLOS bias are parameters to
be optimized. An algorithm for the fast and global trimming of NLOS biases was
first introduced, after which a SQP solution which computes per distance NLOS
bias values was presented. The performance improvements of the proposed NLOS
mitigation technique was validated by experiments with nanoLoc anchors and tags,
and further on with simulations allowing for larger node deployments. Generally,
results showed that positioning RMSEs can be decreased be reduced significantly
with the cooperative NLOS mitigation here presented.





Chapter 5

Ranging under RSS
Stochasticity

“In the face of ambiguity, refuse the temptation to
guess.”

Tim Peters

Range-based localization methods use range measurements to estimate the
location of participating nodes in a localization scheme. The range can be estimated
from properties that vary with distance such as time of travel of a RF signal in
ToF [50] and TDoA [29], RF signal strength as in RSS [76] and magnetic field
intensity as in magnetic field mapping [36]. Due to the ubiquity and availability of
RSS on many wireless devices, it is commonly used to provide distance estimates for
range-based localization. In most cases, the localization systems use RSS at short
range where the distance estimates are more reliable or use RSS alongside other
techniques such as ToF[72].

This is so, since RSS measurements have relatively high variance at long range and
are strongly influenced by occlusions and interference in the deployment region of the
RF devices. This chapter presents an overview of filtering techniques that can be used
to process RSS readings in order to improve the accuracy of range computation from
raw RSS with minimal computational overhead. The range estimates computed from
the filtered data are compared with expected values of the perturbed range/distance
expressed in terms of the CRLB for RSS-based distance estimation. Results show
that filtering can significantly improve the accuracy of range estimation, highlighting
the pros and cons of the presented filtering methods at different range values.

In the following sections, we introduce the RSS channel model, discuss the
various filtering methods, examine the CRLB for ranging with RSS and conclude
with experiments highlighting ranging improvements due to filtering.

55
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5.1 RSS Channel Model

To estimate range from RSSI, the channel model – a mathematical representation
of the effects of the channel as the RF signal propagates through it – is used to
express the signal level at the receiver w.r.t the distance between the transmitter and
receiver. The channel/path loss model expresses the shadow fading effect experienced
by the signal for the traveled path. The shadowing gain/loss is usually reported
as a log-normal random variable [41, 17, 75] from which the shadowing path-loss
model in eq. (5.1) is derived which gives the power 𝑃𝑖,𝑗(dBm) at the receiver and
the shadowing gain/loss 𝑆𝑖,𝑗(dBm). The average power 𝑃𝑖,𝑗(dBm) in relation to the
actual distance 𝑑𝑖,𝑗 is given by eq. (5.2).

𝑃𝑖,𝑗(dBm) = 𝑃𝑖,𝑗(dBm) + 𝑆𝑖,𝑗(dBm) (5.1)

𝑃𝑖,𝑗(dBm) = 𝑃0(dBm) − 10𝜂 log10

(︂
𝑑𝑖,𝑗

𝑑0

)︂
(5.2)

The shadow fading effects are modeled by 𝑆𝑖,𝑗(dBm) which is a random variable
with Gaussian distribution 𝒩 (0, 𝜎2

𝑠) where 𝜎𝑠 is the log-normal spread. The average
power 𝑃𝑖,𝑗(dBm) is expressed in terms of 𝑃0(dBm) and 𝑑0 which are power at and
distance from a reference point respectively. The reference power 𝑃0(dBm) is usually
taken at 𝑑0 = 1𝑚. The constant 𝜂 is the path loss exponent which is a property of
the path/channel.

The actual distance 𝑑𝑖,𝑗 between transmitter 𝑗 and receiver 𝑖 is the euclidean
distance between transmitter coordinates (𝑥𝑖, 𝑦𝑖) and receiver coordinates (𝑥𝑗 , 𝑦𝑗)
given by eq. (5.3).

𝑑𝑖,𝑗 =
√︁

(𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2 (5.3)

The perturbed distance 𝑑𝑖,𝑗 to be estimated from the lossy power measurement
can be expressed as a function of 𝑃𝑖,𝑗 as shown in eq. (5.4).

𝑑𝑖,𝑗 = 𝑑0 · 10
(︁

𝑃0−𝑃𝑖,𝑗
10𝜂

)︁
(5.4)

Henceforth, the RSS expressed in decibel-meter may be stated without adding
the SI unit dBm as in eq. (5.4). Also, RSS and RSSI will be used interchangeably.

5.2 Measurement and Filtering Techniques

In this section, we describe the procedure for the measurement of RSSI and we discuss
the various filtering techniques applied to the measurements. We only consider static
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nodes for our measurements since channel properties evolve with the dynamics of
the environment, and movements of RF nodes will require an online estimation of
the channel properties as in [72], which is not part of the scope of the proposed
discussion. More so, the variance of the measurements can easily be assumed to be
invariant for static nodes for a not too large time duration.

5.2.1 Measurement setup

Two different sets of measurements were taken for the collection of RSS data. The
first set of RSSI measurements were taken using COTS Bluetooth devices. The choice
of Bluetooth as medium of communication has been made since the devices to be
localized are moved to new fixed positions after measurements have been taken for
the required period of time for the current position. Thus, they have to be powered
with batteries, leading to a requirement of energy efficiency. The devices used in this
measurement phase are classified into three roles: tag, anchor and master, where the
master device which thus far has not been defined is now described as follows:

• Master: the master device plays the role of coordinating the group. It is a
single device that gathers all the information from the other devices thereby
acting as sink device and processing the measurement data. As a consequence of
its role, it should be equipped with a powerful CPU to carry out the necessary
computations.

For both tag and anchors, Raspberry Pi 3 devices were used, since they are equipped
with both WiFi and Bluetooth connections. As master device, instead, a Lenovo
IdeaPad Y700 laptop was used. Two of the anchor and tag devices used for collecting
our first category of RSS measurements are shown in figs. 5.1a and 5.1b while fig. 5.1c
shows an example layout for the placement of tag, anchors and the master device.

The second set of measurements were taken using two nanoLoc transceivers
where one is used as anchor and the other as tag. The RSS data for the tag device
is read on the anchor device and sent to a sink device (similar to the master device
for the COTS setup). The sink device is a desktop computer visible on the right in
the background of the setup shown in fig. 5.2, with the anchor connected via the
white serial cable.

5.2.2 Filtering techniques

In this subsection, we present the filtering methods that have been applied for
preprocessing RSS measurements so they can be usable for range estimation. Some
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(a) Anchor device. (b) Tag device.

(c) Basement with setup of tag and anchors.

Figure 5.1: (a) and (b) show anchor and tag Raspberry devices with mobile power
supplies. (c) shows a typical setup of the devices.

Figure 5.2: Anchor and tag nanoLoc transceivers mounted on tripods each set at
an height of 1.6m.
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of the presented methods may have existing modified and improved versions. However,
we limit our selection to the basic forms, which concomitantly, smoothen RSS with
relatively small computational overhead and can be used in a real time localization
context.

The independent variable is the measurement 𝑟𝑡 in a time series of RSSI samples
{𝑟𝑡|𝑡 ∈ 𝑇} at a time instance 𝑡. The state space is composed by the distance of the
tag from the anchor which is parameterized by the path loss exponent 𝜂.

Simple Moving Average

A moving average (also known as rolling mean) filter creates a new sequence of data
points by taking weighted averages of subsets of the data. The data subset is usually
of fixed length and new subsets are created by adding a new point from the original
data while excluding the oldest data point(s). A simple moving average (SMA) filter
simply assigns equal weights to all the data points. In RSSI filtering, when samples
do not share any notion of relative importance, all their weights can be considered
the same, and a simple moving average filter can be applied.

For a time series of RSSI samples {𝑟𝑡|𝑡 ∈ 𝑇}, at a given time instance 𝑡, the
output sequence of the SMA filter using a window length 𝑛 is given by eq. (5.5).

𝑟𝑠𝑚𝑎 =

⎧⎪⎪⎨⎪⎪⎩
𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑, 1 ≤ 𝑡 < 𝑛

1
𝑛

∑︀𝑛−1
𝑖=0 𝑟𝑡−𝑖, 𝑡 ≥ 𝑛

(5.5)

The SMA sequence is undefined from start up to the window length 𝑛 since the
number of points are yet not sufficient to compute an average under the specified
window length. SMA has the advantage of being relative easy to compute for
successive time instances when a previous average is available, as shown in eq. (5.6).

𝑟𝑠𝑚𝑎 = 𝑟𝑠𝑚𝑎[𝑝𝑟𝑒𝑣] + 𝑟𝑡 − 𝑟𝑡−𝑛

𝑛
. (5.6)

Exponential Moving Average

The exponential moving average (EMA) filter is another moving average filter which
unlike the SMA applies exponentially decreasing weights to old data points. The
weights decrease but never reach zero. Also, unlike the SMA which requires a few
samples of size equal the window length to be initialized, the EMA can have its
initial value set to the first RSSI value in the original stream while subsequent values
are taken by summing the previous mean multiplied by a weight and the current



60 CHAPTER 5. RANGING UNDER RSS STOCHASTICITY

value multiplied by a different weight. The weight values are between 0 and 1, and
both sum up to 1. Computation of the EMA is summarized by eq. (5.7).

𝑟𝑒𝑚𝑎 =

⎧⎪⎪⎨⎪⎪⎩
𝑟𝑡, 𝑡 = 1

𝛼𝑟𝑡 + (1 − 𝛼)𝑟𝑒𝑚𝑎,𝑝𝑟𝑒𝑣, 𝑡 > 1
(5.7)

Since EMA filters do not filter using window sizes, in order to consolidate the
idea of using a window size as with other filtering techniques, a decay parameter 𝛼

is typically set following eq. (5.8).

𝛼 = 2
𝑛 + 1 (5.8)

More so, since EMA never completely forgets old values, they are not very
applicable to environments where the dynamics are changing rapidly such as nodes
in motion where old measurement up to a certain limit are irrelevant.

Moving Median

The moving median filter similar to the moving average filter creates a new sequence
by moving a window across the original data, and taking the median of the points
captured by the window. Using a odd window size, the filter selects as output the
median from the set of points in the window, which is a member of the set. This is
not always the case for the moving average filter, since the computed average is not
necessarily a member of the data points. More so, since the moving median ‘sorts
and select’, it is less skewed by sudden spikes as compared to moving average since
the magnitude of the spike does not contribute to the final outcome of the filter.
The observation window can be centered at the sample point, so the filter output
can track more precisely the original sequence. This implies waiting for the RSSI
stream to produce 𝑛

2 more samples instead of 𝑛 samples. The computation of a new
point using moving median without centering is given by eq. (5.9).

𝑟𝑚𝑒𝑑 =

⎧⎪⎪⎨⎪⎪⎩
𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑, 1 ≤ 𝑡 < 𝑛

𝑀𝐸𝐷𝐼𝐴𝑁(𝑟𝑡−𝑛, ..., 𝑟𝑡), 𝑡 ≥ 𝑛

(5.9)

Moving Mode

The moving mode filter like the moving average and median filters creates a new
sequence of data by moving a window across the original sequence and taking the
mode from all the points captured by the window i.e. the measurement that occurs
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most frequently. From an accuracy point of view, the moving mode filter will perform
better for unimodal RSSI distributions which are more frequent in line-of-sight (LOS)
environments. However, RSS distributions aren’t always unimodal, and in cases
where the distribution of RSSI is multi-modal, the filter selects the dominant mode
with the higher frequency if one exists.

The computation of a new point using the moving mode filter is given by
eq. (5.10).

𝑟𝑚𝑜𝑑𝑒 =

⎧⎪⎪⎨⎪⎪⎩
𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑, 1 ≤ 𝑡 < 𝑛

𝑀𝑂𝐷𝐸(𝑟𝑡−𝑛, ..., 𝑟𝑡), 𝑡 ≥ 𝑛

(5.10)

The new sequence has a time shift of 𝑛 which can be reduced by applying the
centering technique discussed in section 5.2.2.

5.3 Cramér-Rao bound for RSSI range estimation

Given an estimation problem and the best possible estimator, the CRLB expresses a
lower bound for the variance of the unbiased estimates of an unknown but determinis-
tic parameter. In our case, the parameter 𝜃 to be estimated is the range 𝑑𝑖,𝑗 between
transmitter and receiver w.r.t available RSSI measurements. The CRLB is known to
be the reciprocal of the Fisher information [80] where the Fisher information 𝐼(𝜃) in
this scenario is defined by eq. (5.11).

𝐼(𝜃) = −E
[︃

𝜕2ℓ(𝜃|𝑃𝑖,𝑗)
𝜕𝜃2

]︃
(5.11)

The log likelihood function ℓ(𝜃|𝑃𝑖,𝑗) = ln 𝑓𝜃(𝑃𝑖,𝑗). Since the shadowing losses
have been described as log-normal in eq. (5.1), the measured power 𝑃𝑖,𝑗(dBm) can
therefore be described as being of Gaussian distribution 𝒩 (𝑃𝑖,𝑗 , 𝜎𝑠) so that the
probability density function 𝑓𝜃(𝑃𝑖,𝑗) at 𝑑0 = 1m is as shown in eq. (5.12).

𝑓𝜃(𝑃𝑖,𝑗) = 1√︀
2𝜋𝜎2

𝑠

· exp
{︂

− 1
2𝜎2

𝑠

(𝑃𝑖,𝑗 − 𝑃𝑖,𝑗)2
}︂

(5.12)

The log likelihood ℓ(𝜃|𝑃𝑖,𝑗) becomes:

ℓ(𝜃|𝑃𝑖,𝑗) = ln
(︃

1√︀
2𝜋𝜎2

𝑠

)︃
− 1

2𝜎2
𝑠

(𝑃𝑖,𝑗 − 𝑃𝑖,𝑗)2 (5.13)
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The second order derivative ∇2
𝜃ℓ can be taken using the chain rule for second

order derivatives:

𝜕2ℓ

𝜕𝜃2 = 𝜕2ℓ

𝜕𝑃 2
𝑖,𝑗

(︃
𝜕𝑃𝑖,𝑗

𝜕𝜃

)︃2

+ 𝜕ℓ

𝜕𝑃𝑖,𝑗

𝜕2𝑃𝑖,𝑗

𝜕𝜃2 . (5.14)

Each term in the differential equation in eq. (5.14) are easily solved:

𝜕ℓ

𝜕𝑃𝑖,𝑗
= 1

𝜎2
𝑠

(𝑃𝑖,𝑗 − 𝑃𝑖,𝑗)

𝜕2ℓ

𝜕𝑃 2
𝑖,𝑗

= − 1
𝜎2

𝑠

𝜕𝑃𝑖,𝑗

𝜕𝜃
= − 10

ln(10) · 𝑑0
𝑑𝑖,𝑗

· 𝜂

𝜕2𝑃𝑖,𝑗

𝜕𝜃2 = 10
ln(10) · 𝑑0

𝑑2
𝑖,𝑗

· 𝜂

Following eq. (5.11), the expected value of each term is taken so that the first
term becomes zero since E[𝑃𝑖,𝑗 ] = 𝑃𝑖,𝑗 and the rightmost expression in eq. (5.14)
equally becomes zero. Substituting the expected values of the rest of the differentials
into eq. (5.11), and taking the reciprocal, we have an expression the CRLB which
gives a lower bound on the ensemble variance of the range between transmitter 𝑗 and
receiver 𝑖 for unbiased range estimated from raw RSS measurements in eq. (5.15) [79].

var(𝜃) ≥ CRLB =
[︂ ln(10)

10

]︂2
· 𝜎2

𝑠

𝜂2 · 𝑑2
𝑖,𝑗 (5.15)

The value of the reference distance 𝑑0 has been taken as 1m. This CRLB
expression relies on the assumption that the environment is a LOS one and the
estimator is unbiased[65]. Again, rearranging eq. (5.12), the mean for the estimated
perturbed distance can now be expressed in terms of the CRLB as shown in eq. (5.16),
in conformity with [75].

E[𝑑𝑖,𝑗 ] = 𝑑𝑖,𝑗 · exp
{︃

1
2 · CRLB

𝑑2
𝑖,𝑗

}︃
(5.16)

The expression in eq. (5.16) is the expected value of the perturbed distance 𝑑𝑖,𝑗

when estimated by an unbiased estimator with maximal efficiency. This distance
will be compared with those obtained using eq. (5.4) and the RSSI measurements
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used for the distance estimations will be those obtained after applying the filters
discussed in section 5.2.2.

5.4 Experimental results

In this section, we describe the experiments in which RSS data was collected and
results of the filtering techniques discussed in section 5.2 are compared. As stated
earlier, two categories of dataset were collected: 1) data from a COTS device
(Raspberry Pi 3 ) anchor and tag 2) data from two nanoLoc transceivers used as
anchor and tag. The dataset for the latter had a relatively lower variance due to
the higher signal-to-noise ratio and the adopted Chirp Spread Spectrum modulation
scheme which uses a higher bandwidth (one 80MHz channel and three 22MHz
channels) with all of the bandwidth used to broadcast the signal as compared to the
former which uses Bluetooth Low Energy technology with Direct-Sequence Spread
Spectrum (40 2MHz channels).

In a LOS environment, the nanoLoc devices show unimodal distributions as
shown in fig. 5.3 whose mode/median values are significantly distinct from every
other value in the distribution. The RSSI values for the nanoLoc devices range from
0-63 and are mapped to power in dBm using a table of values provided by nanoLoc
development user guide [1]. However, this is not the case for the measurements from
the COTS devices – the Raspberry Pi 3 s – with the histograms shown in fig. 5.4.
The RSS distributions in this case do not indicate a prominent value over a period
of time and as such might require some form of filtering to make the data useful
for range estimation. The stride values of 2 to 3m between measurements for the
COTS were chosen because the distributions were not significantly distinguishable
at ranging strides of 1m.

The raw data at each range were filtered using the discussed filtering techniques
and the filtered sequences are plotted as shown fig. 5.5 using a window size of 5 and
then 15. The effect of an increased windows size is immediately evident from the
figures as fluctuations in the filtered sequence are significantly reduced.

In table 5.1, the means and variances for the raw RSSI and filtered data shown
in fig. 5.5b for a window size of 15 are summarized. The SMA has the least variance
of all the methods while moving median has the least mean value. In order to
estimate range from the RSSI and then estimate the CRLB value, the path loss
exponent 𝜂 and the log-normal spread 𝜎𝑠 are required. From table 5.1, we observe
that 𝜎𝑠 is fairly constant with range, indicating that the RSSI distribution is nearly
homoscedastic with respect to range. From the COTS devices dataset, we perform
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Figure 5.3: Histogram of RSS for nanoLoc anchor and tag at 2m (topmost), 3m,
4m and 5m apart in a LOS environment.

Figure 5.4: Histogram of RSS for COTS device anchor and tag at 2m (topmost),
5m, 7m and 10m apart in a LOS environment.
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(a) At window size 5.

(b) At window size 15.

Figure 5.5: RSS for COTS device anchor and tag at 2m, 5m, 7m and 10m apart in
a LOS environment.
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Table 5.1: Statistics for raw and filtered RSSI with sample size 100 and window
size 15.

d (m) Raw SMA EMA MMED MMOD
mean/s.d. (dBm)

2 -47.5/7.3 -47.4/1.2 -45.5/4.8 -45.5/4.8 -47.9/7.3
5 -49.9/7.0 -50.1/2.0 -49.7/2.3 -49.4/5.2 -49.4/5.7
7 -60.5/7.2 -60.5/1.0 -60.3/1.4 -56. 0/2.0 -54.7/1.8
10 -61.5/8.9 -61.4/2.2 -61.5/2.6 -60.4/1.3 -62.3/8.4

Table 5.2: CRLB and expected 𝑑𝑖,𝑗 values at window size 15.

2m 5m 7m 10m
CRLB (m2) 2.75 15.75 32.61 100.99
E[𝑑𝑖,𝑗 ] (m) 2.83 6.85 9.76 16.57

a fast estimation of the path loss exponent by fitting a linear regressor on the log
of normalized distances 10 log10 𝑑𝑖,𝑗 and average power 𝑃𝑖,𝑗(dBm) at each range in
the measurements. Distances were normalized at 𝑑0 = 1𝑚, yielding 𝜂 = 2.03 and
𝑃0 = −39.60 dBm. We compute different CRLB by eq. (5.15) for each range using
the spread value at the range and compute the expected perturbed distance value
𝑑𝑖,𝑗 by eq. (5.16) for each range. The CRLB and E[𝑑𝑖,𝑗 ] values are summarized in
table 5.2.

With 𝜂 and 𝑃0 known, range values are computed using eq. (5.4) to com-
pare estimates from the raw RSSI data with the expected value of perturbed
distance E[𝑑𝑖,𝑗 ] and the range values from the filtered RSSI data. The ranging errors
(computed distances−actual distances) for each of the methods are plotted in fig. 5.6
at window size values of 5 and 15. The error of the expected value of the perturbed
distance is plotted alongside the filtered outputs to better visualize the statistical
impact of filtering.

Empirical CDFs of the absolute value of the ranging errors for each of the filtering
methods and original measurements are shown in fig. 5.7 for window sizes 5 and 15.
From the CDF plots, we observe that at all times, all the filtering methods except the
moving mode filter perform better than the distances computed from the raw RSSI
measurements. More so, the SMA and EMA sequences do not suffer from sudden
fluctuations as with the moving median and moving mode methods. The moving
mode method has the worst performance of all three because the distributions are not
unimodal. The moving average methods – SMA and EMA – perform better at short
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(a) At window size 5.

(b) At window size 15.

Figure 5.6: Ranging errors at 2m (topmost), 5m, 7m and 10m apart at window
sizes 5 and 15.
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range since a short duration of outlier measurements do not have an overwhelming
advantage for relatively long windows. Such outlier measurements are however
likely to emerge in the moving median filter depending on their duration and size
of the window. The moving average methods are equally suitable for filtering at
small window sizes and have lower time complexity as they can be computed in
constant time 𝒪(1) as compared to moving median’s average 𝒪(𝑛) complexity (using
quickselect) and moving mode’s 𝒪(𝑛) complexity.

5.4.1 Window Tuning

In fig. 5.8, the RMSEs of the generated sequences for each filter were plotted against
different window size values starting from size 3 to size 20. From the figure, the
RMSE values decrease as the window size value increases bearing in mind that the
anchor and tag devices are static. The window size should however not be kept
extremely large since the environment and hence channel properties change with
time, and new RSSI readings may vary significantly from previous ones after a
sufficiently large time frame.

For dynamic nodes, the window size should be parameterized by the relative
speeds of the anchor and tag nodes such that the filter dynamics are always faster
than those of the nodes.

Summary

In this chapter, we presented an overview of filtering methods that can be used to
process raw RSSI data to make them more usable for the computation of range.
SMA, EMA, Moving Median and Moving Mode were the candidate filtering methods
and have been studied due to the low computational overhead required to use them
for filtering RSSI streams in real-time. The discussed filtering methods were shown
to be more applicable to data collected from COTS devices and have been studied
within the context of static nodes deployed in LOS environments. Results show
that the environment – LOS or NLOS – and participating RF nodes – COTS or
specialized hardware – strongly influence the RSSI distributions and by extension
the behavior of the filters. Filtering has shown to generally improve the accuracy of
the computed range when compared to direct computation from the raw data. The
SMA and EMA methods showed the best overall filtering performance over the set
of studied ranges: 2m, 5m, 7m and 10m. Increasing the window size (up to a certain
limit) has equally shown to provide improved ranging accuracy.
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(a) CDFs of ranging error at window size 5

(b) CDFs of ranging error at window size 15

Figure 5.7: Empirical CDFs of absolute ranging errors.



70 CHAPTER 5. RANGING UNDER RSS STOCHASTICITY

Figure 5.8: RMSEs of the filtering techniques under incrementing window sizes at
different ranges.



Chapter 6

Design of Scalable Localization
Systems

“The fantastic power and ultimate absurdity of
unchecked exponential growth.”

Geoffrey West

Scaling of localization systems has been studied in previous research to understand
the theoretical limits of performance (accuracy and efficiency mostly) of various
localization architectures and/or deployments. Design considerations addressed the
number of anchors and anchors to tags ratio [27], integrability of existing techniques
such as UWB two-way ranging (TWR) in practical scenarios such as Unmanned
Aerial Vehicle (UAV) localization [91], partitioning of large-scale measurements
into smaller and localized forms [107, 86] and reuse of low cost RF devices such as
smartphones over custom nodes [89]. In addition to these, energy requirements are
to be kept minimal as the deployment scales, which would often imply resorting
to low energy wireless technologies such as Bluetooth LE and low-power UWB.
A summary of the important considerations that we think influence our overall
cooperative localization system design: architecture, data and mobility, are discussed
in this chapter.

6.1 Architecture

The architecture of the deployment is at core of the localization system as it largely
determines the extensibility and scalability of the system. It equally influences the
constraints on communications between participating nodes and how the nodes are
orchestrated in general. In the following sections, we discuss communication and
node placement as relating to scalability.

71
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6.1.1 Communication

The communication can either be simplex or duplex. Simplex implies one class of
nodes (anchors or tags) transmit, while the other class receives. Duplex implies
both anchors and tags are transmitting and receiving, i.e. nodes are implemented
as transceivers. Defining how communication between nodes is coordinated is not
trivial and will raise the following design questions: Who transmits? Who receives?
How fast can we communicate? How many nodes can communicate per time?

Tags transmit, anchors receive

In this scenario, tags are synchronized via a global clock and transmit in turns to each
anchor. For the scheduling of the transmissions, information can be sent in a TDMA
fashion, such that each mobile node uses a predefined time slot to send its own
localization data. Otherwise, tokens can be passed from one mobile node to another
which can help reclaim unused bandwidth and eliminate TDMA synchronization
overheads but with a penalty of extra computational load for the token passing
mechanism. Either way, both approaches will degrade quickly as more nodes are
added. For TDMA scheduling, a random node would need to wait Δ𝑡 × (𝑛 − 1) time
for its own transmission window given 𝑛 tags and an average time of Δ𝑡. To resolve
this, the network can be partitioned by grouping tags with their nearest anchors
to cut down TDMA latencies. This approach would create increased complexity
through the final merging of local localization results and would require a sufficiently
larger number of anchors to ensure tags are not orphaned with less than 3 nodes at
any time.

Anchors transmit, tags receive

This is the conventional communication architecture applied in RSSI fingerprinting
and propagation model estimation approaches. In the case of fingerprinting, the
anchor nodes are can be Wi-Fi transmitters since they mostly have 100% uptime,
as localization is a secondary application to their original Internet connectivity
application. While this approach can be scaled to as many tags as possible, it
requires the tags to compute their own location using supervised learning algorithms
such as k-means or neural networks, which are computationally intensive. In the
other case where distance is computed from RSS, tags need to recompute channel
properties over time with the assumption that ground truth in the form of markers
with known locations are available so that channel properties can be correctly
estimated.
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Anchors and tags are transceivers

From our experience, this is the most suitable communication architecture as it
equally offers flexibility with the role anchors or tags play; they can transmit, receive
or do both. More so, since tag and anchor hardware is now homogeneous, the role of
any node can be swapped from anchor to tag and vice-versa. The communication is
usually organized such that anchors transmit and tags receive and re-transmit back
to anchors. In this way, the heavy processing can be done by anchors or, even better,
by a “concentrator” or “sink”, which is a sufficiently powerful machine and receives
information from all the anchors via a wired or wireless connection. Heavy processing
on nodes would be tolerable for mobile robots (although not always) but not for
tags mounted on regular objects or humans – processing would be deferred from
the tag to a more powerful device. Data sent back from the tags can easily include
RSSI, inertial measurements and any other useful information. Clock sync between
anchors may not be needed, depending on the type of processing that is done by the
sink (e.g., it should not be needed for using RSS; for ToF it is instead required). The
sync could be done by the sink once the schedule of the communications is known.

6.1.2 Node Placement

In tightly congested deployments, the probability of having occlusions increases
significantly. The ratio of NLOS to LOS measurements can therefore be roughly
described in terms of the average number of tags per unit area and the number of
anchors nodes. The more anchor nodes there are, the higher the likelihood of getting
a LOS for each tag. Therefore, accuracy can be kept fairly constant as the number of
tags increases, if the number of anchors is increased proportionally or the deployment
area is expanded. However, the latter is mostly infeasible and impractical for most
scenarios. It is also relatively much easier to add more anchors than expand the area.

Where should the anchors be placed? Placing them on the same plane as the
mobile nodes is the intuitive answer but does not provide for minimum NLOS to
LOS ratio. The anchors should be placed high above the tags such that the likelihood
of creating an occlusion between a tag and anchor by another tag is reduced. The
positions are then computed using a 3D localization algorithm; in our case, this is
easily achieved by changing the dimension 𝑃 of the MDS procedure for MDS-based
localization. An equidistant spacing of anchors is suitable for open areas where
mobile nodes can travel freely, while the addition of more anchors to areas with
crowded objects and/or fixed obstacles will be more suitable for office settings.
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6.2 Data

Collection of measurements is an important part of localization. Mixing of various
measurement sources does make for a reduction in the latency of new available
measurements. As discussed in chapter 2, solutions combining various data sources
such as RSS and ToF compensate the inaccuracy or computational cost of one
source using the complementary features of the other source. The rate at which
measurements are collected/data is collated determines the frequency with which
new location data is published.

How fast can these measurements/data be collected/collated? This question is
addressed in the following sections.

6.2.1 Generating Data

In the primary RF data sources we considered in this work – ToF and RSS, data is
generated by either sampling the RSS value of an active node in multicast mode
or pairing nodes to measure time of travel between the nodes. A node’s RSS value
can be read by a large amount of listening nodes simultaneously, although it is
impossible to pair a node with more than one node at one time to perform ToF
ranging. Hence, with RSS, measurements are collected for as fast the listening node
is able to sample. In the case of ToF, this rate depends on the slower clock speed of
the pair. To improve the rate at which measurements are collected in large networks,
all nodes can sample RSS of every other node (depending on the network interface
card), while the same partitioning principle can be applied on the large network to
allow for the more accurate ToF ranging between nodes.

6.2.2 Other onboard sensors available?

In the case IMU data or magnetic field intensity is available from sensors on the
mobile node, they can be used to complement existing data from other sources
and improve positioning accuracies. For the time between successive samples of RF
signals, these data will be used for dead-reckoning allowing for a relaxation of the
sampling time of RF signals and as a consequence, support for more nodes. A Kalman
filter can be used to fuse the data from the different sources. The fusion can be
performed on a remote device or on the tag device if it has sufficient computational
resources.
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6.3 Mobility

The likelihood of collisions between nodes or occlusion of one node by another
increases with the relative speed between the nodes. These occlusions/collisions
although transient can create temporary positioning ambiguities such as unrealistic
jumps in estimated positions. For these reasons, a study of positioning under mobility
becomes of interest as the number of nodes start to grow. Since node mobility is
generally uncontrolled (i.e. stochastic) in practical scenarios, mobility can instead be
simulated as a Gauss-Markov process to allow to test localization algorithms under
large scale deployments. An Ornstein-Uhlenbeck process (a stationary Gauss-Markov
process) can be used to simulate a Brownian motion-like mobility model. This motion
model can be instantiated independently for each simulated node using thread or
process level parallelism. The limit on the number of models that can be instantiated
(which by consequence now determines the number of nodes) will depend on the
multiprocessing capabilities of the machine on which the simulation is run.





Chapter 7

Conclusions

“Stay hungry, stay foolish.”

Steve Jobs

Indoor localization is gaining superior relevance in many applications areas.
This fact has increased research interests in the subject more recently. In this
thesis, techniques relating to the mitigation of uncertainties for cooperative indoor
localization were discussed. The motivation behind the development of this techniques
is the apparent saturation and/or huge cost implications of hardware approaches that
attempt to mitigate these same uncertainties. The addressed uncertainties include
NLOS effects in the environment, stochasticity of the signal strength of RF signals,
missing interaction between tags and management of dynamic node membership.

The introduced cooperative localization scheme uses MDS to place objects in a
configuration of points given a joint matrix of pairwise distances. We proposed a
specialised form of MDS that undermines missing data in the form of interaction
between tags. The proposed form has significantly better accuracy than classical
MDS and a slightly better accuracy than an existing method which attempts to
recover such missing distances using the shortest path information.

To tackle the effect of NLOS, we formulated a constrained-optimization problem
that exploits the intrinsic symmetry that allows to compute tag positions from
anchors’ and anchor positions from those of tags in a LOS environment. In an NLOS
environment where this symmetry is lost, we quantify the asymmetry by taking the
magnitude of the error on recomputed anchor positions. The optimization problem
is parameterized by the optimal position and the amount of NLOS bias per distance.
We described an SQP approach for solving this problem. From experimental results,
we conclude that position errors can be reduced significantly using our mitigation
technique: in a setup of 4 fixed anchors and 3 mobile nodes, a reduction of up to
28% was observed.
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To improve the performance of ranging with RSS, methods for filtering signal
strength measurements were examined for static nodes. Preprocessing in the form of
filtering had been shown in earlier research to improve ranging results. Our study
of filtering techniques further confirmed this. The considered filtering techniques
were of low computational complexity, which can be adapted into WSN solutions
without fear of significant energy requirements. The considered methods were SMA,
EMA, moving median and moving mode. We compared the range values computed
from filtered measurements with range values computed from raw measurements as
estimated from an unbiased estimator via the CRLB. SMA and EMA showed the
most promising result with the additional advantage that they can be computed in
constant time ′(1) given a value from the previous time frame.

Dynamic node membership was trivially managed by a subroutine that collects
pairwise distance information from the new node as it comes online and continuously
pads the matrix with this info. Similarly, nodes that go offline were managed the
same way; the rows and columns of the distance information corresponding to that
node are sliced off or masked.

7.1 Future Work

Using our work as a starting point, there are areas we feel can enjoy provide
further improvements. These areas are related to the common of goal of further
improving positioning accuracy for cooperative localization under uncertainties and
are considered in the following subsections.

7.1.1 Further Improvements to NLOS Mitigation

Removing NLOS bias completely is practically impossible. However, we can look
further into more ways with which to improve the current NLOS mitigation technique.
In the current approach, we only consider the magnitude of the errors of the
recomputed anchor positions disregarding the directionality of the error vectors. We
need to study the behavior of the error vectors of the recomputed anchor positions to
properly understand how their direction correlates to the per-distance NLOS biases.

More so, we currently need to solve two optimisation problems – one for computing
the position with MDS-A, and another for estimating NLOS bias effects in order to
trim from the distances. It might be possible, however, to combine both optimisation
steps into one to speed up the time required to perform the estimation of positions
and NLOS biases, although this optimization of the process would only benefit
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large scale deployments, since the current formulation of our solution is definitely
applicable to small systems.

7.1.2 RSS Filtering for Non-Static Nodes

Our study on filtering techniques involved static nodes in order to understand signal
strength variations with node mobility decoupled. No easier way to keep mobility
decoupled than keep nodes static. However, in real applications, mobile nodes are
mostly in motion and hardly ever static. Considering these, it would be of great
interest to further study the already examined filtering techniques under controlled
motion scenarios. We intuit that conditions such as node speed, acceleration, jitter
and heading with respect to a pair node will influence the variance of RSS thus
requiring a more adaptive approach to filtering, such as dynamic window sizes.

7.1.3 Simulating Motion

Integrating a suitable simulation model into our cooperative localization solution
will help to carry out simulations to support some of the aforementioned further
work proposals with simulations. This would allow to rapidly prototype localization
deployments to test conjectures without having to setup real nodes and make
exhaustive floor markings to work with mobility in real life. Such motion model
can be a stationary Gauss-Markov process, which can be implemented with a
simple Ornstein-Uhlenbeck process (discussed in chapter 6) to simulate Brownian
motion-like movements.
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