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“Alcune volte vinci, tutte le volte impari.”
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UNIVERSITY OF PAVIA

Abstract
Advanced patient-specific modeling and analysis of complex aortic

structures by means of Isogeometric Analysis

by Margherita CODA

Isogeometric Analysis (IgA) is an approach steadily consolidating in the field
of computational mechanics and based on high-continuity functions, gener-
ally used in computer graphics for generating and representing curves and
surfaces. The ultimate goal of this doctoral research, is the creation of a set
of computational tools based on IgA to provide support to vascular surgeons
during the pre-operative planning phase. In particular, one of the major in-
novations of our work is the use of IgA for structural isogeometric analysis
performed on healthy and pathological thoracic aortas as well as the use of a
particular type of knot vectors, essential ingredients of IgA, for the construc-
tion and analysis of the patient-specific models.
In Chapter 2, pathologies of the aorta will be described in deep in order to
understand which are the current medical needs. Subsequently, a review of
the computational tools mostly used in cardiovascular biomechanics will be
provided.
Chapter 3 focuses on describing IgA basic ingredients. In particular, a de-
tailed explanation of B-splines, NURBS and T-splines basis functions will be
provided. Particular attention will be given to the so-called (and so far not
extensively used in the IgA community) "unclamped" concept, for the con-
struction of closed and periodic curves and surfaces. The unclamped concept
is the key for the creation of a semi-automatic pipeline for the generation and
analysis of reliable patient-specific isogeometric models of Thoracic Aortic
Aneurysms, starting from DICOM images. The pipeline that will be pre-
sented in Chapter 4 is tested on a bigger cohort of patients, belonging to the
"iCardioCloud project", a database of CFD studies on patients with thoracic
aortic diseases. The ultimate goal of the pipeline is the identification of pa-
tients potentially at risk of aneurysm enlargement and rupture.
A more advanced pipeline based on the T-spline technology for the gener-
ation of complex bifurcated aortic geometries characterized by an arbitrary
topology will be approached in Chapter 5. This framework was born as an
attempt to overcome the limitation of the rigid tensor-product structure of
B-splines and NURBS basis functions, applied to the creation of branched
geometries.
Two real-life applications of NURBS-based IgA to 3D frictionless contact prob-
lems between stent devices (for Carotid Artery Stenting - CAS) and deformable
surfaces undergoing large deformations will be described in Chapter 6. Per-
formance comparison between IgA and linear (h-FEA) and higher-order FEA
(p-FEA) with respect to solution accuracy and computational efficiency will
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be shown.
Based on the presented analysis framework, real clinical problems, studied
in collaborations with physicians from IRCCS Policlinico San Donato will be
approached in Chapter 7. In particular, the application on a case study of
thoracic aorta showing a retrograde type A dissection will be presented to-
gether with a new algorithm for the application of the real patient-specific
pressure distribution derived from CFD analyses on the control points of the
Isogeometric model representing the thoracic aorta, to check how the stress
distribution at the vessel wall changes with respect to the application of a
constant pressure value.
We conclude that we are able to provide physicians with computational tools
based on IgA to be used in the pre-operative planning phase and in clinical
practice, for reliably simulating big cohorts of patients in a relatively short
time, and extracting both single-patient and population-based results.
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Chapter 1

Introduction

1.1 Aim of this doctoral research

Modern clinical practice for the treatment of cardiovascular diseases is mainly
based on the implant of minimally invasive endoprosthesis. To be more ef-
fective this requires continuous technological improvements with respects
to surgical procedures, planning techniques and device design. In order to
achieve a particular patient morphology, it is becoming more and more im-
portant in the clinical world to provide physicians an opportunity to simu-
late the best combination of procedure strategies and medical devices prior to
surgical intervention. The ultimate goal of the present research is the creation
of a set of computational tools to provide support and “predictive medicine”
to vascular surgeons during the pre-operative planning phase. The main area
of this work is the establishment of healthy and pathologic thoracic aorta. A
focus on stent devices both for TEVAR (Thoracic Endovascular Aortic Re-
pair) and for CAS (Carotid Artery Stenting) is also considered. The work has
been developed in collaboration with physicians from IRCCS Policlinico San
Donato, San Donato M.se, Milano, Italy.

The development of predictive tools requires a good knowledge of the phys-
iology and pathophysiology of the affected portion of the aorta, as well as
a mix of expertise in computational mechanics and constitutive modeling.
In particular, a viable constitutive model for the aortic wall is extremely im-
portant to predict the non-linear behavior of the thoracic aorta. The same
applies to behavior of stent devices, for which computational tools can con-
tribute to designing the “ideal” combination of clinical requirements, as well
as to model related procedures like stent crimping and deployment.

To achieve the above goal, a set of proper computational techniques is manda-
tory to provide an accurate geometric description of the domain, high-continuity
of the stress field, reduced computational costs and information to be in-
cluded in the decision time-line of the clinical routine. These requirements
match the key features of Isogeometric Analysis (IgA), a computational ap-
proach based on high-continuity functions and steadily consolidating in the
field of computational mechanics. An initial motivation behind IgA was a de-
sire to fill the gap between the finite element analysis (FEA) community and
the computer aided design (CAD) community. The basic idea is to develop
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a computational framework in which the traditional FEA basis functions are
replaced by those employed in CAD systems. This implies the ability to de-
scribe exactly the computational domain geometry throughout the analysis
process, including at the same time, the chance to tune basis functions conti-
nuity. All the frameworks that will be proposed here aim at providing a basis
for developing accurate and efficient predictive tools that can help clinical re-
searchers.

1.2 Organization

The thesis is organized as follow:

• Chapter 2: Thoracic Aortic Diseases.

This Chapter builds the bases for describing the aorta, its most common
diseases and complications related to aging: Thoracic Aortic Aneurysms
(TAA) and Thoracic Aortic Dissections (TAD). Current surgical options
are analyzed in depth. Then, an overview of the main criteria to assess
aneurysm rupture potential will be given along with a review of the
computational tools used in biomechanics to investigate TAA trends of
enlargement and rupture using computer models.

• Chapter 3: Isogeometric Analysis basic concepts.

This Chapter covers the basics of B-splines, NURBS and T-splines for
use in computational analysis. Special attention is focused on the con-
cept of unclamped knot vectors as well as on construction of analysis-
suitable geometries.

• Chapter 4: Patient-specific geometrical modeling of thoracic aortic
aneurysms.

This Chapter illustrates in detail all the steps required for the creation
of patient-specific Isogeometric unclamped geometries of TAA's start-
ing from medical (DICOM) images. All the additions used in this doc-
toral research for the simulations are presented together with results of
structural inflation simulations performed on analysis suitable geome-
tries. The final goal of the chapter is demonstrating that we are able
to provide physicians with a consistent and objective decision making
tool to improve the surgery planning operation-phase. The work per-
formed takes into account that computational simulations should be
accurate but also characterized by reduced computational costs to keep
pace with the clinical time-line. The identification of patients poten-
tially at risk of aneurysm enlargement and rapture is a rationale behind
this chapter. A special focus on the patient-specific concept is given.
The results of the above development are implemented in an extended
version of the finite element program FEAP (Taylor, 2017) which is de-
noted as IgA-FEAP.

• Chapter 5: Patient-specific modeling of bifurcated geometries.
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This Chapter provides specifics for a second option of advanced mesh
generation. The developments are directed at creating patient-specific
bifurcated aortic geometries characterized by complex and arbitrary
topology. To achieve this goal we use a T-spline technology. In particu-
lar, the steps to obtain patient-specific analysis-suitable T-meshes start-
ing from medical DICOM images are developed. Some results of pre-
liminary structural inflation simulations are run in IgA-FEAP on these
geometries. The focus is application-oriented, always taking into ac-
count the needs of the clinical routine time-line.

• Chapter 6: Towards an accurate simulation of complex contact inter-
actions in biomechanics problems using IgA.

The basic idea behind IgA is to provide a smooth basis able to describe
exactly the computational domain geometry throughout the analysis
process, including, at the same time, the ability to control the basis func-
tion continuity. These peculiar features have been applied with bene-
fits on many critical aspects of FEA, including also contact mechanics.
This Chapter focuses on real-life applications of NURBS-based IgA to
3D frictionless contact problems between stent devices and deformable
surfaces, undergoing large deformations.

• Chapter 7: Collaborations with IRCCS Policlinico San Donato.

This Chapter presents some examples of collaboration with physicians
from IRCCS Policlinico San Donato. In particular, three studies are
presented: the rationale behind each study is given together with all
the additions we made in IgA-FEAP and in the previously mentioned
pipelines in order to be able to answer physicians requests.

• Chapter 8: Conclusions and future developments.

This Chapter presents final conclusions of the doctoral research. More-
over, further research developments also are outlined.
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Chapter 2

Thoracic Aortic Disease

2.1 Aneurysm: origin, complications and treatment

2.1.1 The normal aorta

The aorta is the ultimate conduit, carrying, in an average lifetime, almost 200
million liters of blood to the body (Erbel et al., 2015). As depicted in Figure
2.1, it is divided by the diaphragm into the thoracic (ascending, arch and
descending) and abdominal aorta.

Figure 2.1 Segments of the aorta. rPA = right pulmonary
artery. Reproduced from (Erbel et al., 2015)
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The aortic wall is composed histologically of three layer (Erbel et al., 2015): a
thin inner tunica intima lined by the endothelium; a thick tunica media char-
acterized by concentric sheets of elastic and collagen fibers with the border
zone of the lamina elastica interna and externa, as well as smooth muscle
cells; and the outer tunica adventitia containing mainly collagen, vasa va-
sorum and lymphatic vessels. These layers are shown in a transversal cut
in Figure 2.2. In addition to the conduit function, the aorta plays an im-
portant role in the control of systemic vascular resistance and heart rate, via
pressure-responsive receptors located in the ascending aorta and aortic arch.
An increase in aortic pressure results in a decrease in heart rate and systemic
vascular resistance, whereas a decrease in aortic pressure results in an in-
crease in heart rate and systemic vascular resistance. Through its elasticity,
the aorta has the role of a ‘second pump’ (Windkessel function) during dias-
tole, which is of utmost importance-not only for coronary perfusion.

Figure 2.2 Axial section of the aorta showing its layers: intima,
media and adventitia. Reproduced from www.deltagen.com.

In healthy adults, aortic diameters do not usually exceed 40 mm and taper
gradually downstream. They are variably influenced by several factors in-
cluding age, gender, body size and blood pressure (Lam et al., 2010). In this
regard, the rate of radial expansion is about 0.9 mm in men and 0.7 mm in
women for each decade of life (Vriz et al., 2013). This slow but progressive
aortic dilation over mid-to-late adulthood is thought to be a consequence of
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ageing, related to a higher collagen-to-elastin ratio, along with increased stiff-
ness and pulse pressure (Braverman, Thompson, and Sanchez, 2012; Kälsch
et al., 2013).

2.1.2 Origin, prognosis and complications of TAA and TAD

Also with ageing, the aortic wall might become pathologically remodeled,
and two of the most common aortic syndromes are: Thoracic Aortic Aneurysms
(TAA) and Thoracic Aortic Dissection (TAD). In this work we focus exten-
sively on Thoracic Aortic Aneurysms but a brief introduction on Thoracic
Aortic Dissection will be also given.

Thoracic Aortic Aneurysm

By definition, an aneurysm is an enlargement of more than 50% of the nor-
mal diameter of the aortic lumen (Johnston et al., 1991). It constitutes the
second most frequent disease of the aorta after atherosclerosis and, depend-
ing on its location, is divided into TAA (in the thoracic aorta) or "AAA",
acronym for Abdominal Aortic Aneurysm (in the abdominal aorta). Causes
and origin of TAA are not completely clear besides congenital pathologies
such as Marfan syndrome and bicuspid aortic valve (BAV). The aneurysmal
thoracic aorta grows in an indolent manner, increasing by about 1 mm each
year (Chau and Elefteriades, 2013). When a certain size is reached, the risk of
rupture, dissection, and death increases dramatically. Since it is a commonly
“silent” pathology (Kuzmik, Sang, and Elefteriades, 2012), many TAAs are
not diagnosed until such complications occur (Elefteriades, 2002; Kuzmik,
Sang, and Elefteriades, 2012; Goldfinger et al., 2014). Usually, the diagnosis
is made following imaging, performed either for other investigative reasons
or for screening purposes. TAA is less frequently revealed by clinical signs
of compression, chest pain, aortic valve murmur, or during a complication.
In general, patients undergo contrast enhanced CT scans which can visualize
thorax vasculature. If an enlargement is seen, the whole aorta tends to be re-
constructed and measured in order to isolate the extent of the disease. Figure
2.3 shows a CT slice of a normal aorta and of an aneurysmatic case, together
with their 3D reconstruction.

Initial diameter and female sex constitute the primary independent risk fac-
tors associated with TAA catastrophic rupture (Brown and Powell, 1999).
However, decision to treat TAA is based on many variables such as famil-
ial history, rate of growth, location within the arch and, naturally, the gen-
eral condition of the patient. The principal risk derived from an aneurysm
is its rupture with a consequent internal bleeding. Depending on the loca-
tion of the TAA (ascending aorta, arch or descending aorta), prognosis is
known to be different since they are associated with diverse growth rates (Er-
bel et al., 2015). In a first stage, medical therapy constitutes an appropriate
step to reduce shear stress on the diseased segment of the aorta by reducing
blood pressure and cardiac contractility. As a reminder, the shear induced by
blood in the wall of the vessel is known to be responsible for the initiation
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Figure 2.3 CT scans of thoracic aortas (depicted in red color).
A: healthy aorta. B: TAA, note the enlargement in the

descending portion with its surrounding thrombus (yellow
highlighted area).

of the atherosclerosis (Ku et al., 1985). Both its magnitude and its oscilla-
tory nature account for endothelial damage. For more information regarding
shear stress and its role in atherosclerosis, the interested reader is referred
to (Malek, Alper, and Izumo, 1999). A large number of patients with aortic
diseases have co-morbidities such as coronary artery disease, chronic kidney
disease, diabetes mellitus, dyslipidaemia, hypertension, etc. Therefore treat-
ment and prevention strategies must be similar to those indicated for these
diseases. In chronic conditions, blood pressure should be controlled below
140/90 mmHg, with lifestyle changes and use of antihypertensive drugs, if
necessary. An ideal treatment would be the one that reverses the formation
of an aneurysm, even though this is still an open issue.

Thoracic Aortic Dissection

Thoracic Aortic Dissection (TAD) is a member of the so-called acute aortic
syndromes. It is defined as the disruption of the medial layer provoked by
intramural bleeding, resulting in separation of the aortic wall layers and sub-
sequent formation of a True Lumen (TL) and a False Lumen (FL) with or
without communication. In most cases, an intimal tear is the initiating condi-
tion, resulting in tracking of the blood in a dissection plane within the media.
This process is followed either by an aortic rupture in the case of adventitial
disruption or by a reentering into the aortic lumen through a second intimal
tear. The dissection can be either antegrade or retrograde (Criado, 2011).

The Stanford classification, as shown in Figure 2.4, takes into account the ex-
tent of dissection, rather than the location of the entry tear. The propagation
can also affect side branches. Complications include tamponade, aortic valve



2.1. Aneurysm: origin, complications and treatment 9

Figure 2.4 Stanford classification of TAD. If the ascending
aorta is involved, dissection is defined as Type A. Otherwise, is

defined as Type B.

regurgitation, and proximal or distal malperfusion syndromes. The inflam-
matory response to thrombus in the media is likely to initiate further necro-
sis and apoptosis of smooth muscle cells and degeneration of elastic tissue,
which potentiates the risk of medial rupture. Opposedly to TAA, abrupt on-
set of severe chest and/or back pain is the most typical feature of TAD. The
pain may be sharp, ripping, tearing, knife-like, and typically different from
other causes of chest pain; the abruptness of its onset is the most specific
characteristic. Anterior chest pain is more commonly associated with Type A
TAD, whereas patients with Type B dissection present more frequently with
pain in the back or abdomen. The pain may migrate from its point of origin
to other sites, following the dissection path as it extends through the aorta.
Following CT scan to confirm diagnosis, the main determinant whether to
conduct surgery is the extent of the disease and organ ischaemia. Type A
dissection usually involves disruption of the wall in the aortic branches of
the arch which feed the brain. In this case, surgery is conducted immedi-
ately. Patients with acute Type A dissection suffer double the mortality of
individuals presenting with Type B dissection: 25% and 12%, respectively
(Moro, Hayashi, and Sogawa, 1999). In the case of type B dissection, the
contrast enhanced scan shows whether the arteries supplying blood to the
kidneys, liver and intestine initiate at the TL or the FL. In the first case, the
patient is recommended medical therapy as described earlier for TAA. In the
later, surgery is planned in order to restablish blood flow to peripheral or-
gans. Besides end-organ ischaemia, complications associated with TAD are
aortic valve regurgitation with the subsequent development of congestive
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heart failure, myocardial ischaemia or infarction and the development of a
post-dissecting aneurysm. When a patient presents no further risk, medical
therapy is conducted and follow-up scans are scheduled yearly. It may also
be the case in which TAD has no symptoms for years and it is first diagnosed
in its chronic phase. Chronicity of aortic dissection is suggested by CT imag-
ing characteristics: thickened, immobile intimal flap, presence of thrombus
in the FL, or aneurysms of the thoracic aorta, mostly developed in the dis-
tal aortic arch. In symptomatic patients, signs of (contained) rupture such as
mediastinal haematoma or pleural effusion may be present. Figure 2.5 shows
a typical diagnosis CT for TAD. Notably, in the acute case both the TL and FL
are permeable to the contrast medium whereas the chronic case has a fully
clotted FL.

Figure 2.5 Axial CT slices of acute (A) and chronic (B) TAD in
the descending aorta.

2.1.3 Current treatment options: open surgery and TEVAR

Currently, there are different treatment options based on the location of the
disease.

Open aortic repair

If the aneurysm is located in the ascending aorta, the main principle of surgery
is that of preventing the risk of dissection or rupture by restoring the normal
dimension of the portion. A tubular graft is placed under a short period
of aortic clamping, with the distal anastomosis just below the aortic arch.
Surgical mortality for isolated elective replacement of the ascending aorta
(including the aortic root) ranges from 1.6 – 4.8% and is dependent largely
on age and other well-known cardiovascular risk factors at the time of op-
eration (Kallenbach et al., 2013). Mortality rates for elective ascending/arch
repair remain low (Perreas et al., 2012; Achneck et al., 2007). In the case of the
arch reconstruction, risk of surgery has been also significantly reduced. In-
novative arch prostheses, including branching for supra-aortic vessel recon-
nection, have made the timing of arch reconstruction more predictable. This
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is the case for the majority of reconstructions, including acute and chronic
dissection, requiring total arch replacement and arrest times from 40 to 60
minutes. Various extents and variants of aortic rerouting (left subclavian,
left common carotid and finally brachiocephalic trunk, autologous vs. al-
loplastic) might also be used. Nowadays, many arch replacements are re-
operations for dilated aneurysms after Type A dissection following limited
ascending aorta replacement or proximal arch repair performed in emer-
gency (Erbel et al., 2015). The surgical approach to the descending aorta is
a left thoracotomy between the fourth and seventh intercostal spaces, de-
pending on the extension of the aortic pathology. Usually the section to be
operated is by-passed and a centrifugal pump is used. Since there are no
important vessels emerging from this portion, the procedure is much safer.
Again, the diseased part is replaced with an arterial graft.

TEVAR

Thoracic Endovascular Aortic Repair aims at excluding an aortic lesion (i.e.
aneurysm or FL after dissection) from the circulation by the implantation of
a membrane-covered stent-graft across the lesion, in order to prevent further
enlargement and ultimate aortic rupture. It is usually associated with rela-
tively low perioperative morbidity and mortality rates (Goodney et al., 2011;
Gopaldas et al., 2010; Sachs et al., 2010). Careful planning is of utmost impor-
tance for a successful TEVAR procedure. Contrast- enhanced CT represents
the imaging modality of choice for planning TEVAR, taking slices from the
proximal supra-aortic branches down to the femoral arteries. The diameter
and length of the healthy proximal and distal landing zone (LZ) are evalu-
ated to assess the feasibility of TEVAR, along with assessment of the length
of the lesion and its relationship to side branches and the iliofemoral access
route. Device producers’ criteria vary for the LZ characteristics but in av-
erage the healthy neck should be of at least 2 cm. In TAA, the stent-graft
diameter should exceed the reference aortic diameter at the landing zones by
at least 10 to 15% (Kicska and Litt, 2009). This concept is named oversizing
and aims at increasing device mechanical stability. In patients with Type B
dissection, the stent-graft is implanted across the proximal entry tear to ob-
struct blood flow into the FL, depressurize the FL, and induce a process of
aortic remodeling with shrinkage of the FL and enlargement of the TL. In
contrast to TAA, almost no oversizing of the stent-graft is applied. In situa-
tions involving important aortic side branches (mostly when the lesion is in
the arch), TEVAR is often preceded by limited surgical revascularization of
these branches. Another option is a surgical de-branching or the use of fen-
estrated and branched endografts or the ‘chimney technique’. An alternative
may be a single, branched stent-graft. Figure 2.6 shows a fenestrated and a
branched stent-graft together with a scheme of the chimney technique.

TEVAR is performed by retrograde transarterial advancement of a delivery
device carrying the collapsed self-expandable stent-graft as shown in Fig-
ure 2.7. Arterial access is obtained either surgically or by the percutaneous
approach, using suture-mediated access site closure. From the contralateral
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(a)

(b)

Figure 2.6 (a) Fenestrated and a branched devices for arch
endovascular replacement. (b) The chimney procedure, all the
supraortic vessels are rerouted from the proximal ascending

aorta. Reproduced from (Kuratani, 2014)

femoral side or from a brachial or radial access, a pigtail catheter is advanced
for angiography. The stent-graft is delivered over a stiff guide wire. In dis-
sections, it may be challenging to navigate the guide wire into a narrow
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TL, which is essential for stent-graft placement. When the target position
is reached, the blood pressure is reduced either pharmacologically or using
rapid right ventricular pacing to avoid downstream displacement, and the
stent-graft is then deployed. Completion angiography is performed to detect
any proximal Type I endoleak (an insufficient proximal seal), which usually
mandates immediate treatment.

As already introduced, current guidelines for TEVAR use length, size and
angulation of the proximal and distal landing zones to determine suitability
for endograft deployment (Erbel et al., 2015). Hovewer, these criteria do not
take into account the local hemodynamic environment in the aorta. The key
aspect for endograft stability is secure sealing in the landing zones. Secure
sealing depends on frictional stability between the endograft and the aortic
wall in the proximal and distal sealing zones to counteract the hemodynamic
Displacement Forces (DFs) that act on the surface of the endograft with ev-
ery heartbeat. Factors that influence this frictional stability are landing zone
length and angulation, and the contact condition of the endograft and the
aortic wall (Altnji, Bou-Said, and Walter-Le Berre, 2015). Therefore, correct
endograft sizing and local landing zone anatomy are crucial factors to secure
frictional stability in the landing zones. Factors that influence the hemody-
namic DFs are less evident, making them hard to predict in individual cases.
Thanks to the advances in computer science, Computational Fluid Dynamics
(CFD) can be used to calculate hemodynamics DFs in patient-specific models
of the aorta. For a more detailed review on the current available literature on
DFs acting on endografts after deployment on the thoracic and abdominal
aorta, please see (Bakel et al., 2017).

Figure 2.7 Deployment of a stent-graft for TEVAR. A
catheter-guided wire reaches the aneurysmatic section and the

the stent-graft is deployed. Reproduced from
http://www.aorta.ca/treatment/tevar/.

TEVAR complications

Surgical complications
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In TEVAR, vascular complications at the puncture site, as well as aortic and
neurological complications, and/or endoleaks have been reported. Ideally,
access site complications may be avoided by careful pre-procedural plan-
ning. Paraparesis/paraplegia and stroke rates range between 0.8–1.9% and
2.1–3.5%, respectively, and appear lower than those for open surgery (Ben-
Shlomo et al., 2014). Mostly along the descending aorta, small vessels named
vertebral arteries supplying blood to the spinal cord might be covered with
the endoprosthesis fabric, causing stroke. Retrograde dissection of the as-
cending aorta after TEVAR is reported in 1.3% of patients (Eggebrecht et al.,
2008).

Long term complications

Endoleak describes perfusion of the excluded aortic pathology and occurs
both in thoracic and abdominal (T)EVAR. Different types of endoleaks are
illustrated in Figure 2.8.

Type I and Type III are regarded as treatment failures and warrant further
treatment to prevent the continuing risk of rupture, while Type II endoleaks
are normally managed conservatively by a ‘wait-and-watch’ strategy to de-
tect aneurysmal expansion, except for supra-aortic arteries. Endoleaks Types
IV and V are indirect and have a benign course. In particular, in Type IV
endoleaks, blood can escape into the aneurysm sac through stent material.
This type of endoleak is now rare as a result of improved stent prostheses.
In endoleaks of Type V, checkups reveal an increase in aneurysm diameter,
but no contrast substance can be detected outside the stent prosthesis. This is
thought to be caused by a remaining increase in pressure following endovas-
cular aneurysm repair. Treatment is required in case of aneurysm expansion.
It is important to note that plain chest radiography can be useful as an ad-
junct to detect material fatigue of the stent-graft and to follow ‘stent-graft’
and ‘no stent-graft’-induced changes in width, length and angulation of the
thoracic aorta. Stent-graft migration is another complication related to the
wrong apposition of the device to the arterial wall, which can happen dur-
ing surgery and in a long-term basis. Usually, prostheses migrate proximally
to the heart opposedly to the direction of blood flow. Device migration can
cause type I endoleak, damage the arterial wall or obstruct peripheral ves-
sels. Figure 2.9 shows a post-TEVAR patient with a successful surgery that
presented proximal migration after 14 months of surgery.

Complete details on TEVAR planning, complications and clinical outcomes
can be found in (Grabenwöger et al., 2012) and (Fillinger et al., 2010).

2.2 Biomechanics of the TAA

As we have already stated in subsection 2.1.2, since TAA is a commonly
"silent” pathology (Kuzmik, Sang, and Elefteriades, 2012), many TAAs are
not diagnosed until complications like rupture, dissection and death occur
(Elefteriades, 2002; Kuzmik, Sang, and Elefteriades, 2012; Goldfinger et al.,
2014). Therefore, there is an increasing need for parameters and markers to
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Figure 2.8 Types of endoleak. Classification is based on the
anatomical origin of the re-perfusion. Reproduced from (Erbel

et al., 2015).

be used in diagnosing and monitoring TAA so as to prevent natural compli-
cations of this disease. Therefore, especially in recent years, many biomedical
engineers are trying to understand and explain TAA behaviours and trends
of enlargement and rupture using computer models (Shang et al., 2013b;
Pasta et al., 2013; Akai et al., 2015). Modern computational techniques can
be conveniently applied to TAA modeling, a very interesting but challenging
research activity that may lead to the development of some diagnostic and
objective decision-making tools for preoperative-planning.
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Figure 2.9 Patient showing distal endograft migration. Left:
CT after surgery. Right: 14 month follow up.

2.2.1 Main criteria to assess rupture potential

As reported in the literature, current widespread clinical thinking is that TAA
rupture is best predicted by monitoring its maximum diameter (Davies et al.,
2002). Specifically, in case of asymptomatic aneurysms (symptomatic ones
should be resected regardless the size), the risk of rupture is higher when
the aneurysm diameter reaches 5.5 cm for the ascending aorta and 6.5 cm for
the descending aorta (Elefteriades, 2002; Fillinger et al., 2003). The previous
assessment is still under discussion (Fillinger, 2007), since smaller aneurysms
also rupture not infrequently (Elefteriades and Farkas, 2010), which undoubt-
edly questions the “maximum diameter criterion” to evaluate TAA severity.
Many (Coady et al., 1997; Azadani et al., 2013) point to the Law of Laplace
(Choke et al., 2005) as the theoretical basis for using the “maximum diameter
criterion” for TAA rupture potential prediction. This “law” asserts that the
stress in the TAA wall is proportional to its diameter (see Figure 2.10).

However, its use to predict TAA rupture potential is inaccurate (Vorp, Ragha-
van, and Webster, 1998a; Polzer and Gasser, 2015) for two reasons. On one
hand, the TAA wall geometry is not a simple cylinder or sphere with a single
radius of curvature, for which the Law of Laplace is valid; the TAA wall has
a complex shape with both major and minor wall curvatures. The use of only
the maximum diameter to predict wall stress in TAA does not take into ac-
count the fundamental contributions of local complex wall surface shapes
(Vorp, 2007), e.g. profile, tortuosity and asymmetry. On the other hand,



2.2. Biomechanics of the TAA 17

Figure 2.10 The Law of Laplace computes the stress acting on
the wall (H) based on the blood pressure (P), radius of the

chamber (r) and the vascular wall thickness (T).

wall stress alone is not sufficient to predict TAA rupture. Material failure, in-
cluding that accompanying TAA rupture, occurs when the mechanical stress
acting on the material exceeds its wall strength. So, the greater is the ratio
between stress and strength for a particular aneurysm, the greater is the like-
lihood of rupture. Several studies (Fillinger et al., 2002; Fillinger et al., 2003;
Venkatasubramaniam et al., 2004; Heng et al., 2008; Li et al., 2010), mainly
conducted on AAAs, by means of Finite Element Analysis (FEA) techniques
have demonstrated the superiority of computational wall stress evaluation
over the “maximum diameter criterion”. In fact, the maximum stress found
anywhere on a particular aortic wall, i.e., the Peak Wall Stress - PWS (Shang
et al., 2013b) has been found to estimate the risk of rupture more reliably than
the maximum diameter itself (Fillinger et al., 2002; Venkatasubramaniam et
al., 2004; Heng et al., 2008). Peak wall stress has been shown in AAAs to be
associated with rupture (Fillinger et al., 2003) and aneurysm growth (Li et al.,
2010).
As stated by (Martufi et al., 2016), there are sparse applications of numeric
simulation techniques to the study of TAAs (Wisneski et al., 2014; Krishnan
et al., 2015; Martin, Sun, and Elefteriades, 2015). Hovewer, in the work of
(Shang et al., 2013b), PWS in TAAs has been found to correlate closely with
observed aneurysmal growth rates.

2.2.2 Biomechanics by means of IgA

In order for the numerical simulations in aortic aneurysms to be accurate
and effective, they usually require a precise reconstruction of the aneurysm
geometry, realistic material properties for the arterial wall, inclusion of other
aneurysm components (e.g., intraluminal thrombus and wall calcifications),
highly accurate and continuous description of the stress field, and reduced
computational costs to keep the pace with the clinical routine timeline. All
these requirements match the key features of Isogeometric Analysis (Hughes,
Cottrell, and Bazilevs, 2005), a computational approach steadily consolidat-
ing in the field of computational mechanics and based on high-continuity
functions (e.g., Non Uniform Rational B-Splines - NURBS) generally used
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in computer graphics for generating and representing curves and surfaces.
Therefore, in the present doctoral dissertation we propose new IgA-based
modeling and analysis frameworks for the simulation and investigation of
wall stress distribution on patient-specific aortic models directly derived from
medical images. IgA has already been used in the field of cardiovascular
biomechanics as an accurate and cost-effective alternative to classical isopara-
metric Finite Element Analysis, mainly applied to the study of endovascular
stenting (Auricchio et al., 2015), aortic valve closure (Morganti et al., 2015),
and structural dynamics simulations of a bioprosthetic heart valve (Kiendl
et al., 2015). Moreover, it has been employed for constructing patient-specific
models for hemodynamics (Zhang et al., 2007) and for FSI simulations, in
particular on bioprosthetic and patient-specific aortic valves (Hsu et al., 2015;
Xu et al., 2018). One of the major innovation of our work is the use of IgA
for structural isogeometric analysis of thoracoabdominal aneurysms as well
as the use of a particular type of knot vectors, essential ingredients of IgA,
along the circumferential direction of the isogeometric patient-specific aortic
model with the aim to further (and significantly) improve the description of
the stress field. Specifically, these particular type of knot vectors are called
“unclamped” or “closed”, to be distinguished from the commonly adopted
“clamped” or “open” ones. Unclamped knot vectors allow for the creation of
periodic surfaces and solids and, in the context of structural IgA of tube-like
domains, may guarantee a fully continuous stress field.
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Chapter 3

Isogeometric Analysis
Fundamentals

3.1 Introduction

IgA is an emergent and cutting-edge technology that tightly connects com-
puter aided design (CAD) and FEA, hence opening the door for integrated
design-through-analysis frameworks (Cottrell, Hughes, and Bazilevs, 2009;
Hughes, Cottrell, and Bazilevs, 2005). The central idea of IgA is to leverage,
as a basis for analysis, the smooth basis functions used to define the CAD ge-
ometry. Therefore, for properly constituted CAD models, isogeometric meth-
ods may bypass the mesh generation and refinement steps of classic FEA,
which rendered an approximation of the original CAD geometry and may
represent up to 80% of the required time to perform the analysis of complex
engineering designs or scientific models. CAD descriptions which are suit-
able for analysis are called analysis-suitable geometries (ASG). The higher-
order smooth ASG bases that are used in IgA have been shown to produce
superior results when compared to standard C0 discretizations. The advan-
tages of IgA have been demonstrated in a wide variety of fields of science
and engineering, including structural analysis (Casquero et al., 2017; Cottrell
et al., 2006; De Lorenzis et al., 2011; Kiendl et al., 2009), fluids (Bazilevs and
Akkerman, 2010; Bazilevs et al., 2007; Bazilevs et al., 2010a), fluid-structure
interaction (Bazilevs et al., 2008; Bueno et al., 2015; Casquero, Bona-Casas,
and Gomez, 2015; Casquero et al., 2016), fracture and damage (Borden et
al., 2012; Verhoosel et al., 2011b; Verhoosel et al., 2011a), phase-field analysis
(Borden et al., 2012; Gómez et al., 2008; Gomez et al., 2010), shape optimiza-
tion (Wall, Frenzel, and Cyron, 2008), electromagnetics (Buffa, Sangalli, and
Vázquez, 2010), and biomedicine (Bazilevs et al., 2006; Bazilevs et al., 2009;
Hsu et al., 2015; Vilanova, Colominas, and Gomez, 2013; Vilanova, Colomi-
nas, and Gomez, 2014; Xu, Vilanova, and Gomez, 2016). Additionally, several
research groups have been actively developing powerful software packages
for IgA, such as GeoPDEs (Falco, Reali, and Vázquez, 2011), igatools (Pauletti
et al., 2015), PetIGA (Dalcin et al., 2016).

B-splines and NURBS (Farin and Farin, 2002; Piegl and Tiller, 1997; Rogers,
2000) were the first functional spaces employed to perform IgA and they
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are still extensively used nowadays. They are ubiquitous in CAD and can
be easily handled to perform analysis. In particular, isogeometric methods
based on these functional spaces are geometrically exact, provide enhanced
accuracy per degree of freedom, and enable higher global continuity (Cp-1

for spline spaces with polynomial degree p) (Akkerman et al., 2008; Cottrell,
Hughes, and Bazilevs, 2009). Methodologies such as Bèzier extraction (Bor-
den et al., 2011; Scott et al., 2011) simplify the implementation of isogeometric
basis function technology into existing finite element frameworks.

Standard Galerkin discretizations and Gaussian quadrature are commonly
used in IgA (Cottrell, Hughes, and Bazilevs, 2009). Recent developments
have provided promising quadrature strategies to improve the efficiency of
isogeometric methods (Auricchio et al., 2012; Calabro, Sangalli, and Tani,
2017; Hughes, Reali, and Sangalli, 2010). However, there are alternative
numerical methods that are compatible with IgA, such as collocation, least-
square FEA, and meshless methods (Cottrell, Hughes, and Bazilevs, 2009).
Another important property of IgA that has been recently proven is that
Galerkin solutions can be obtained with only one evaluation per degree of
freedom using the concept of variational collocation (Gomez and De Loren-
zis, 2016).

Other ASG descriptions have been proposed, such as hierarchical B-splines
(D’Angella et al., 2018) and locally refined splines (LR splines) to accom-
modate local adaptivity in IgA (extremely useful to address those problems
whose solution presents highly localized features that call for a finer mesh,
while coarser elements can be used elsewhere), and T-splines, a generaliza-
tion of NURBS that are locally refinable and capable of modeling complicated
designs as a single, watertight geometry. Analysis-suitable T-splines are a
subset of T-splines with the same mathematical properties as NURBS.

In the following sections, the fundamentals of B-splines, NURBS and T-splines
will be illustrated.

3.2 B-splines

3.2.1 Knot vectors and B-spline basis

The B-spline parametric space is local to patches rather than elements. Patches
play the role of subdomains within which element types and material models
are assumed to be uniform. A knot vector in one dimension is a sequence
in ascending order of parameter values, written as Ξ = {ξ1, ξ2, ..., ξn+p+1},
where ξA is the Ath knot, A is the knot index,A = 1, 2, ..., n + p + 1, p is
the order of the B-spline basis, and n is the number of basis functions which
comprise the B-spline. Given a knot vector Ξ, the B-spline basis functions are
defined recursively by the Cox-de Boor recursion formula, starting with the
zeroth order basis function (p = 0) given by:
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N0
A(ξ) =

{
1 if ξA ≤ ξ < ξA+1,
0 otherwise

(3.1)

For p = 1,2,3,... the basis functions are defined by using the Cox-de Boor
recursion formula:

Np
A(ξ) =

ξ − ξA

ξA+p − ξA
Np−1

A (ξ) +
ξA+p+1 − ξ

ξA+p+1 − ξA+1
Np−1

A+1(ξ) (3.2)

B-splines are characterized by the following properties:

• Partition of unity

n

∑
A=1

NA,p(ξ) = 1 with ξ ∈ [ξ1, ξn+p+1] (3.3)

• Pointwise non-negativity

NA,p(ξ) ≥ 0 with A = 1, 2, ..., n (3.4)

• Linear independence

n

∑
A=1

cANA,p = 0⇔ cA = 0, A = 1, 2, n (3.5)

• Compact support

{ξ|NA,p(ξ) > 0} ⊂ [ξA, ξA+p+1] (3.6)

• Control of continuity. If ξA has multiplicity k (i.e., ξA = ξA+1 = ... =
ξA+k+1), then the basis functions are Cp−k-continuous at ξA. When k =
p, the basis is C0 and interpolatory at the location.

All these features are useful in a finite element context. The first four proper-
ties we mentioned above ensure a well conditioned and sparse stiffness ma-
trix. The last property allows continuity to be reduced to better resolve steep
gradients, while the higher continuity leads to superior accuracy per DOF
compared with C0-continuous bases. Additionally, B-splines can be used to
build a basis that spans the same space as classical p-version finite elements
(i.e., a basis of order p that is C0 across element boundaries). This is the Bern-
stein basis (Lorentz, 2012). The mathematical properties we introduced (par-
tition of unity, non-negativity, convex hull property, linear independence),
contributes to the definition of the "analysis-suitable" concept.

In particular, by "analysis-suitable" we mean the exact representation of the
geometry due to the smooth geometric basis functions with efficient mathe-
matical properties. "Smooth" refers to the Cl inter-element continuity, with
0 ≤ l < p, and p is the polynomial order.
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3.2.2 B-splines curves

B-spline curves in Rds are constructed by taking a linear combination of B-
splines basis functions, where ds is the spatial dimension. The coefficients of
the basis functions are referred to as controlpoints, which are the analogous
to the nodal coordinates in the finite element analysis. Piecewise linear inter-
polation of the control points gives the so called control polygon. Generally,
control points are not interpolated by B-spline curves. Given n basis func-
tions, N = {NA,p}n

A=1 and the corresponding control points P = {PA}n
A=1, a

piecewise-polynomial B-spline curve is given by:

C(ξ) =
n

∑
A=1

NA,p(ξ)PA (3.7)

Important properties of the B-splines can be summarized as follow:

• They have continuous derivatives of order p − 1 in the absence of re-
peated knots or control points.

• The number of continuous derivatives by k is decreased by repeating a
knot or control point k times.

• An affine transformation of a B-spline curve is obtained by applying
the transformation to the control points. This property is referred to as
affine covariance.

A multivariate B-spline basis is defined from a tensor product of univariate
B-spline bases (Farin and Farin, 2002; Piegl and Tiller, 1997; Rogers, 2000).
The properties of multivariate B-spline basis functions follow from the corre-
sponding properties of their univariate counterparts. B-spline surfaces and
solids can be built using a bivariate or trivariate spline basis in Eq.3.2.2, re-
spectively. In particular, given three knot vectors Ξ1 = {ξ1, ξ2, ..., ξn+p+1},
Ξ2 = {η1, η2, ..., ηm+q+1}, Ξ3 = {ζ1, ζ2, ..., ζl+r+1}, (one for each direction),
and their associate univariate B-spline basis functions Ni,p(ξ), Mj,q(η), and
Ll,r(ζ), B-spline basis functions for surfaces and volumes are defined by the
tensor product of the univariate B-spline basis functions. In two dimensions,
the surface B-spline basis functions are defined as:

Rp,q
A (ξ, η) =

n

∑
i=1

m

∑
j=1

Ni,p(ξ)Mj,q(η)Pi,j (3.8)

In three dimensions, the volume B-spline basis functions are defined as:

Rp,q,r
A (ξ, η, ζ) =

n

∑
i=1

m

∑
j=1

l

∑
k=1

Ni,p(ξ)Mj,q(η)Lk,r(ζ)Pi,j,k (3.9)
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For a detailed review on splines, the interested reader is referred to (Farin
and Farin, 2002; Piegl and Tiller, 1997; Rogers, 2000).

3.2.3 Clamped and unclamped knot vectors

A knot vector Ξ can be “clamped” (or “open”) or “unclamped” (or “closed”);
the term refers to whether or not the first and last knot values are repeated
with multiplicity equal to p + 1, i.e., polynomial degree of the spline plus
one. A knot vector can be uniform or non uniform with reference to the knot
spacing. To be uniform and unclamped, only the “internal” knot spans must
be of equal length. Some examples of knot vectors are:

• clamped, uniform:
{0 0 0 0 1 2 3 4 4 4 4}
{-0.5 -0.5 -0.5 1 2.5 4 4 4}

• clamped, nonuniform:
{0 0 0 2 3 6 7 7 7}
{0 0 0 0 1 2 2 3 4 5 5 5 5}

• unclamped, uniform:
{-3 -2 -1 0 1 2 3 4 5}
{0 1 2 3 4 5 6 7 8 9 10 11}

• unclamped, nonuniform:
{0 0 1 2 3 4}
{-2 -1 0 4 5 6 7}

Clamped knot vectors generate B-splines basis functions enjoying the Kro-
necker delta property at the extremes of a patch. This means that the values
of the B-splines basis functions at the extreme of the patch is equal to 1. This
is different in the case of unclamped knot vectors. As a matter of fact, un-
clamped, uniform B-splines basis functions are all translates of one another,
without enjoying at the extremes of a patch the Kronecker delta property,
even if still maintaining the partition of unity one. Unclamped is mathemat-
ically equivalent to periodic, uniform, and these knot vectors can be used to
construct closed curves and surfaces or to maintain greater that C0 continuity
between patches. This is obtained by setting the coordinates of the start and
end p control points to the same values. For this case, the beginning and end-
ing overlapped knot spacings must be equal. On the other hand, clamped
is synonymous with non-periodic. Hence, these knot vectors can be used to
define open curves and surfaces, both uniform and non-uniform.

To give some simple examples of the unclamped concept, we first consider
a quadratic clamped and unclamped B-spline curve (see Figure 3.1) and a
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clamped and an unclamped B-spline circular cubic ring (see Figure 3.2). Fig-
ure 3.1 would like to show how, if a clamped knot vector is used, the start and
end points of the curve coincide with control points (Figure 3.1a), whereas
this does not happen in the case of unclamped knot vectors. Figure 3.2 (left)
shows the control polygon and ring (which is not a perfect circle since all
the control weights are unity) of the curve constructed using a clamped knot
vector (i.e., [0 0 0 0 1 2 3 4 5 6 7 8 8 8 8]). The red marked control point is
a location that can only be C0. The right figure shows the same ring built
using an unclamped knot vector (i.e., [0 1 2 3 4 5 6 7 8 9 10 11 12 13 14). The
red marked portion denotes control-points that are overlapped to preserve
continuity. Figure 3.3 shows the spline functions for each of clamped and
unclamped knots. There are eleven (11) functions for each form; hovewer,
due to the overlap of the control points, three (3) of the functions are in fact con-
tinuations of one another as the number indicate.

Both curves in the parametric space are geometrically continuous; the one in
Figure 3.2a shows the presence of a C0 line, whereas the one in Figure 3.2b
is closed with Cp−1 continuity and no C0 lines are present. This is strictly
connected with the fact that the first and last points of the curve coincide with
control points in the case of the clamped B-spline curve (Figure 3.2a) whereas
this does not happen in the unclamped B-spline curve case (Figure 3.2b). P
control points are wrapped around at the end. In this example, p = three (3);
hence, three (3) control points, P9 = P1, P10 = P2, P11 = P3 are wrapped around
at the end (see Figure 3.2b). In Appendix A the reader may find the data
necessary to build in the Finite Element Analysis Program (FEAP) (Taylor,
2017), used in this work for the simulations, the clamped and unclamped
ring shown in Figure 3.2.

(a) Clamped quadratic curve defined on
the knot vector [-1 -1 -1 0 1 2 3 3 3].

(b) Unclamped quadratic curve defined
on the knot vector [-3 -2 -1 0 1 2 3 4 5].

Figure 3.1 (a) Clamped curve. (b) Result of unclamping the
quadratic curve in (a). Note how the start and end points of

the curve coincide with control points in the case of the
clamped curve (a) and how they do not coincide with control

points in the case of the unclamped curve (b).
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(a) Clamped circular ring (b) Unclamped circular ring.

Figure 3.2 Close B-spline ring using clamped and unclamped
knot vector. The red control point of (a) is C0 and the red

overlap of (b) maintains the C2 continuity of the cubic curve.

(a) Clamped circular curve.

(b) Unclamped circular curve.

Figure 3.3 Close ring B-splines for clamped and unclamped
knot vector respectively.

One clarification has to be done: the fact that, in the case of an unclamped
curve, the first and last p control points have to be coincident is an analysis-
suitable requirement we adopted in FEAP. This requirement, in other words,
means that the control polygon as well as the final curve have to be closed
and the first and last p control points must have the same unknowns (as in
Figure 3.2b). As can be read in (Piegl and Tiller, 1997), unclamping with no
wraparound of the control points is also possible. This is because, if we start
from a clamped knot vector, unclamping is essentially a knot-removal oper-
ation. One is free to choose the new 2p new end knots rather arbitrarily and
the position of the control points depends on the knots. We adopted the al-
gorithm presented in (Piegl and Tiller, 1997) which produces wraparound of



26 Chapter 3. Isogeometric Analysis Fundamentals

p control points in case the clamped curve is closed with Cp−1 continuity. For
an example of unclamping of the closed clamped cubic ring shown in Figure
3.5 starting from different knot vectors, see Figure 3.6. The extension to sur-
faces of all these concepts is straightforward. For an example of unclamping
a degree (2,2) surface (i.e., bi-quadratic), please see Figure 3.4.

(a) Original clamped surface. (b) Unclamping in the u direction.

(c) Unclamping in the v direction. (d) Unclamping in both direction.

Figure 3.4 Examples of unclamping a degree (2,2) surface in
different directions.

The introduction of unclamped knot vectors in FEAP required a small mod-
ification in the routine reponsible of the Bèzier extraction operation (Borden
et al., 2011), used in this software for the calculation of Isogeometric objects.
In particular, the construction of B-spline basis functions using the Cox-de
Boor formula described above may become time-consuming for high-degree
functions. Therefore, the alternative is to use Bèzier extraction to relate the
B-spline functions in each non-zero interval to Bernstein polynomials. For
each knot interval a (p+1) x (p+1) matrix Ce may be described so that:
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Bi,p(ξ) = Ce
ijbj,p(ξ) (3.10)

where bj,p are Bernstein polynomials. Use of Bèzier extraction greatly sim-
plifies the construction of shape functions once the extraction matrices Ce are
known.

Together with unclamped knot vectors, we introduced in FEAP two other
types of knot vectors: LCLAmped knot vectors, which are clamped at the
start values and unclamped at the end values and RCLAmped which are
unclamped at the start value and clamped at the end value. For an example
of FEAP input file regarding the use of different types of knot vectors and
some additional details regarding unclamping, please see Appendix A.

Figure 3.5 Clamped cubic circular ring defined on the uniform
knot vector [3 3 3 3 4 5 6 7 8 8 8 8].

With B-splines, both clamped and unclamped, it is possible to perform refine-
ment operation. In general, IgA refinement techniques slightly differ from
their FEA counterparts. First, B-splines basis can be enriched while leaving
the underlying geometry and its parameterization intact. Moreover, besides
control over the element size and the order of the basis, IgA allows to con-
trol the continuity of the basis as well. The three IgA refinement techniques,
i.e., h,p and k refinement are briefly presented and compared, when available,
with their FEA counterpart.

• h-refinement, i.e., the knot insertion: this technique is the most intu-
itive one to enrich the B-spline basis. In knot insertion, the knot spans
are divided into smaller ones by inserting new knots, without chang-
ing the B-spline curve geometrically or parametrically. For each knot
inserted, an additional control point is inserted too. Also knot values
already present in the knot vector may be repeated, increasing their
multiplicity and reducing the continuity at that knot location. The knot
multiplicity cannot be increased beyond the order of the spline and out-
side the interval of definition of the knot vector. Insertion of new knot
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(a) Unclamped version of (exactly)
the same ring of Figure 3.5. The

ring uses the uniform knot vector [0
0.5 2.3 3 4 5 6 7 8 8.7 10.5 11].

(b) Unclamped version of (exactly)
the same ring of Figure 3.5. The ring
uses the non-uniform knot vector [0 1

2 3 4 5 6 7 8 9 10 11].

Figure 3.6 Examples of unclamping the clamped closed ring of
Figure 3.5 with different knot vectors. (a) unclamping with no

wraparoud; (c) unclamping with wraparound.

Figure 3.7 IgA refinement techniques: h,p and k refinement.

values clearly has similarities with the classical h-refinement strategy
in FEA. It differs, hovewer, in the lower number of new functions that
are created, as well as in the continuity of the basis across the newly
created element boundaries.

• p-refinement, i.e., the order elevation: this refinement type involves
rising the polynomial order of the basis functions used to represent the
geometry. When order p is increased, knot multiplicity k must be in-
creased too, in order to preserve the original Cp−k continuity at knot
locations. After performing order elevation, the location of the con-
trol points change, but the elevated curve is geometrically and para-
metrically identical to the original curve. Order elevation has many
similarities with the classical p-refinement strategy in FEA. The major
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difference is that p-refinement always begins with a basis that is C0 ev-
erywhere, whereas order elevation is compatible with any combination
of continuities that exist in the original B-spline curve.

• k-refinement: while knot insertion and degree elevation find similari-
ties with traditional FEA refinement techniques, IgA offers additional
possibilities. In particular, k-refinement, i.e., a sort of high continuity h
refinement, is available. Starting from the fact that h and p-refinement
techniques do not commute, two possible situations can happen: if a
unique knot ξi is inserted between two distinct knot values in a B-spline
curve of order p, the basis will be Cp−1 at that knot location. If the order
is then elevated to q, the multiplicity of every distinct knot value (in-
cluding the knot just inserted) is increased so that discontinuities of the
basis are preserved. In such a process, the basis is still Cp−1 at ξi, even if
the polynomial order is now q. This process is defined as hp-refinement.
On the other hand, if the B-spline basis is first elevated from order p to
order q and then the knot ξi is inserted, the resulting basis will be Cq−1

at this knot location. This process is defined as k-refinement and there
is no analogous technique in standard FEA.

For an example of knot insertion performed on the unclamped curve shown
in Figure 3.2, please see Figure 3.8. In particular, starting from the curve
defined on the unclamped knot vector [0 1 2 3 4 5 6 7 8 9 10 11 12 13 14] (3.8a),
by inserting the knot at location 3.5 we obtain the new knot vector [0 1 2 3 3.25
4 5 6 7 8 9 10 11 11.25 12 13] on which we define the new refined curve (3.8b).
Please note how the curves are geometrically and parametrically equal and
how the addition of the new knot value produces a change at the end of the
knot vector: this change is fundamental to ensure wraparound of p control
points and it is a consequence of the algorithm presented in (Piegl and Tiller,
1997) we decided to adopt in this work.

The refinement techniques just described are valid not only for clamped and
unclamped B-splines, but also for NURBS and they are implemented in an in-
house Matlab code based on the NURBS toolbox (Falco, Reali, and Vázquez,
2011; Spink, 2014) and a set of routines implementing the algorithms in-
cluded in (Piegl and Tiller, 1997), as well as in FEAP. For our purposes, they
have been modified in order to be able to work with unclamped knot vectors.
They have been extensively used in this thesis work.

For an example of the previously described k-refinement operation performed
on an unclamped along u cylindric surface, please see Figure 3.9.

In order to get a set of reliable finite element meshes (starting from an idea
by Dr. Mauro Ferraro, explained in his thesis work), we performed a set
of fictitious knot insertions in order to subdivide each knot span into n dis-
tinct subdivisions, so that the continuity at that knot location becomes C0.
Each fictitious knot location in the parametric space, defined as evaluation
point, has a mapped counterpart in the physical space. This information can
be used to build an equivalent finite element mesh with the mapped evalua-
tion points as nodal coordinates and element connections derived from the
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(a) Original unclamped circular curve. (b) Refined unclamped circular curve.

(c) Unclamped B-Spline ring defined on the knot vector [0 1 2 3 4 5 6 7 8 9 10 11 12
13 14].

(d) Unclamped B-Spline ring defined on the knot vector [0 1 2 3 3.25 4 5 6 7 8 9 10 11
11.25 12 13].

Figure 3.8 Unclamped closed ring before (3.8a) and after
refinement (3.8b) and their correspondent B-spline basis

functions.
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(a) (b)

Figure 3.9 (a) Control polygon of a not-refined cylindric
surface. (b) Control polygon of the same cylindric surface, but
k-refined. In particular the order of the spline has been raised
from p = 1 to q = 2 only along v, whereas knot insertion has

been performed along u & v. Moreover, note how the original
(a) and the elevated (b) surfaces are parametrically and

geometrically equal.

tensor-product structure of the NURBS geometry. We remark that given the
adopted 8-node brick shape functions, only C0 continuity is enforced at the
evaluation points location in the FEA model. We modified this strategy in
order to be able to create FEM meshes starting from their unclamped coun-
terparts. In particular, given an unclamped IgA mesh, its clamped counter-
part is retrieved and then transformed to a FEA mesh. For an example of
FEA mesh derived from the IgA clamped surface depicted in Figure 3.4a,
see Figure 3.10. The knots vectors along u and v for the IgA surface in Fig-
ure 3.10a are both equal to [0 0 0 0.3333 0.6667 1 1 1], with C1 continuity in
the internal knots, whereas for the FEA surface in Figure 3.10b, the knots
vectors along u and v are both equal to [0 0 0.3333 0.6667 1 1] with C0 con-
tinuity in the internal knots. What the reader has to keep in mind is that,
in case an analysis has to be solved in FEAP using the IgA and FEA meshes
shown in Figure 3.10 (or some examples obtained using the same strategy),
for both meshes the IgA solver will be used (in the second case is the IgA
C0 solver). If the "real" FEA solver should be employed, we introduced in
FEAP two commands that allow the user to create both a linear and a higher-
order (quadratic) mesh, given its clamped/unclamped IgA counterpart in
input. These commands, respectively "O_FE <QUADratic,LINEar>", output
quadratic order elements (bricks with 27 nodes) and linear order elements
(brick with 8 nodes) for a mesh that can be 1,2,3 dimensional. This command
has to be input in iterative mode.

In this work, the knot vectors types employed to obtain the patient-specific
vascular surface model of TAA we are interested in are: an unclamped knot
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(a) Clamped quadratic-quadratic IgA
surface.

(b) Linear FEA mesh derived from its IgA
counterpart.

Figure 3.10 Example of FEA mesh obtained from its IgA
counterpart.

vector along the parametric u direction and a clamped one along the para-
metric v direction. The choice of different types of knot vectors along differ-
ent parametric directions will be explained in Chapter 4.

3.2.4 Non-uniform rational B-splines (NURBS)

Given a knot vector Ξ = {ξ1, ξ2, ..., ξn+p+1}, a set of rational basis functions
R = {RA,p}n

A=1, and a set of control points P = {P}n
A=1, a NURBS can be

defined as:

C(ξ) =
n

∑
A=1

RA,p(ξ)PA (3.11)

where NURBS basis functions are defined as:

Ra,p(ξ) =
NA,p(ξ)wA

W(ξ)

=
NA,p(ξ)wA

∑n
B=1 NB,p(ξ)wB

(3.12)

A rational cruve in Rn can be obtained by projective transformations of B-
spline curves in the projective space Pn. This means that if PA is a control
point of a NURBS curve, the corresponding control point in the projective
space is P̃A = {wAPA, wA}T. Therefore, given a NURBS curve defined in Rn

by Equation 3.2.4, the corresponding B-spline curve defined in Pn is:
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C(ξ) =
n

∑
A=1

RA,p(ξ)P̃A (3.13)

In this way, the algorithms operating on B-splines can be applied to NURBS.
By selecting appropriate values for the wA permits the description of many
different types of curves, including polynomials and circular arches. For the
special case in which wA = constant, A = 1, 2, ...n, the NURBS basis reduces
to the B-spline one. For simple geometries, the weights can be defined ana-
lytically (Piegl and Tiller, 1997), whereas for complex geometries they can be
obtained from CAD packages such as Rhino (Rhinoceros: NURBS modeling for
Windows.).

3.2.5 NURBS surfaces and solids

A mapping Ã is now introduced between the tensor product space and the
global indexing of the basis functions and control points in order to maintain
the following single-index notation for T-splines, that will be introduced later
on. Let i = 1, 2, ..., n, j = 1, 2, ..., m, and k = 1, 2, ..., l. The mapping Ã is then
defined as follows:

Ã(i, j) = m(i− 1) + 1

Ã(i, j, k) = (lxm)(i− 1) + l(j− 1) + k
(3.14)

Given three knot vectors Ξ1 = {ξ1, ξ2, ..., ξn+p+1}, Ξ2 = {η1, η2, ..., ηm+q+1},
Ξ3 = {ζ1, ζ2, ..., ζl+r+1}, (one for each direction), and their associate univari-
ate B-spline basis functions Ni,p(ξ), Mj,q(η), and Ll,r(ζ), NURBS basis func-
tions for surfaces and volumes are defined by the tensor product of the uni-
variate B-spline basis functions. In two dimensions, the surface NURBS basis
functions are defined as:

Rp,q
A (ξ, η) =

Ni,p(ξ)Mj,q(η)wA

∑n
î=1 ∑m

ĵ=1 Nî,p(ξ)M ĵ,q(η)wÂ
(3.15)

where A = Ã(i, j) and Â = Ã(î, ĵ). In three dimensions, the volume NURBS
basis functions are defined as:

Rp,q,r
A (ξ, η, ζ) =

Ni,p(ξ)Mj,q(η)Lk,r(ζ)wA

∑n
î=1 ∑m

ĵ=1 ∑l
k̂=1 Nî,p(ξ)M ĵ,q(η)Lk̂,r(ζ)wÂ

(3.16)

Given a control mesh {PA}, where A = 1, 2, ..., (nxm) for surfaces and A =
1, 2, ..., (nxmxl) for volumes, a NURBS surface is defined as:
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S(ξ, η) =
nxm

∑
A=1

Rp,q
A (ξ, η)PA (3.17)

and a NURBS volume is defined as:

V(ξ, η, ζ) =
nxmxl

∑
A=1

Rp,q,r
A (ξ, η, ζ)PA (3.18)

For an example of NURBS surface and its corresponding control net, please
see Figure 3.11. For a most extensive review on rational splines, the interested
reader is referred to (Farin and Farin, 2002; Piegl and Tiller, 1997; Rogers,
2000).

3.2.6 Limitations of NURBS-based IgA

As a design tool, a multivariate NURBS discretization, does not provide a
natural possibility for local mesh refinement, due to the rigid tensor prod-
uct structure. In the context of refinement, adding new control points to a
NURBS surface means adding entire rows or columns of control points to
maintain the tensor product surface. This implies that:

• A large percentage of NURBS control points contain no geometric in-
formation, but they are only needed to satisfy topological constraints.

• NURBS refinement is global and not local, since knot lines must extend
through the entire domain.

• Complex geometry of arbitrary shape can only be represented by mul-
tiple NURBS patches which are generally discontinuous across patch
boundaries.

NURBS-based deficiencies have a negative impact on analysis:

• A large percentage of DOF are needed to satisfy topological constraints
only;

• Resolution of local features is prohibitively expensive, since all refine-
ment propagates globally.

• For multi-patch domains inconsistencies at patch boundaries lead to C0

continuity at the interface or, sometimes, gaps and overlaps between
patches. This lack of watertightness destroys the analysis-suitable na-
ture of the discretization.

3.2.7 The unstructured T-mesh

A valid alternative in the literature, especially for local refinement in IgA, is
represented by T-splines. They are an enhancement of NURBS surfaces that
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(a)

(b)

Figure 3.11 Toroidal geometry: (a) surface, (b) and its control
net.

allow the presence of T-junction control points, and the removal of superflu-
ous control points in a mesh. At present, bi-cubic T-spline surface modeling
has reached sufficient maturity, for which watertight parameterizations of
surfaces can be built for geometrically and topologically complex engineer-
ing designs that can be used directly as finite element meshes in structural
analyses of many 3D solids eliminating gaps and overlaps of NURBS patches.

The T-spline technology is based on the definition of a control grid named
T-mesh. For surfaces, a T-mesh is a polygonal mesh and we will refer to its
constituent polygons as elements or faces. Each element is a quadrilateral
whose edges are permitted to contain T-junctions - vertices that are analo-
gous to hanging nodes on finite elements. To each vertex in the T-mesh, a
control point, PA ∈ Rds , ds = 2, 3 and a control weight wA ∈ R, where the
index i denotes a global control point number, can be assigned. The valence
of a vertex is the number of edges that touch the vertex. An extraordinary
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point is an interior vertex that is not a T-junction and whose valence does
not equal four. The spoke edges that come from the extraordinary points are
G1 continuous while the remaining edge interfaces of the one-ring of Bèzier
patches surrounding the extraordinary point are C1 continuous with neigh-
boring patches. When generating real world T-spline models, the presence
of extraordinary points in the T-mesh can not be avoided. For T-splines, knot
intervals represent the method to assign and retrieve parameter information
to and from the T-mesh since no origin is required. To each vertex, A, of the
T-mesh, a set of local knot interval vectors, M Ξ = {M Ξi

A}ds
i=1 is assigned, from

which the corresponding set of local knot vectors, ΞA = {Ξi
A}ds

i=1 can be de-
rived. After defining the sets of local knot vectors ΞA, a local basis function
domain, Ω̂A ⊂ Rds can be defined, over which a single T-spline basis function
is identified. The local basis function domain for ds = 2 is defined as follows:

Ω̂A = Ω̂1
A ⊗ Ω̂2

A (3.19)

where Ω̂1
A ⊂ R. Each local basis function domain carries a coordinate system

(ξA, ηA), named as the basis coordinate system. Using the knot coordinate
system, an explicit formula for a T-spline surface can be written as follows:

P(ξ, η) = (x(ξ, η), y(ξ, η), z(ξ, η), w(ξ, η)) =
n

∑
A=1

PANA(ξ, η) (3.20)

where PA = (xA, yA, zA, wA) are control points in P4 with weights wA, and
Cartesian coordinates 1

wA
(xA, yA, zA). The Cartesian coordinates of points on

the surfaces are given as:

∑n
A=1(xA, yA, zA)NA(ξ, η)

∑n
A=1 wANA(ξ, η)

(3.21)

The local basis functions in equation 3.2.7, NA(ξ, η), can be expressed as the
tensor product of the univariate basis functions as:

NA(ξ, η) = N(ξ)N(η) (3.22)

where N(ξ) and N(η) are the cubic B-spline basis functions associated with
the knot vectors Ξ1

A and Ξ2
A respectively. The univariate basis functions in

Equation 3.2.7 can be rewritten in a compact way as:
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NA(ξA|ΞA) =
ds

∏
i=1

Ni
A(ξ

i
A|Ξi

A) (3.23)

The T-spline equation is very similar to the equation for a tensor-product ra-
tional B-spline surface. The difference between them is based on how the
knot vectors Ξ1

A and Ξ2
A are determined for each function NA(ξ, η). For T-

splines, knot vectors Ξ1
A and Ξ2

A are inferred from the T-mesh neighborhood
of PA, based on the following rule: if A is not adjacent to an extraordinary
point, NA is comprised of a 4x4 grid of polynomials. Otherwise the polyno-
mials comprising NA do not form a 4x4 grid but rather un unstructured grid
of polynomials. A T-spline element Ωe ⊂ Rds is defined as the region in the
physical space which is bounded by knot lines, i.e. lines of reduced continu-
ity in the T-spline basis. The basis functions defined in the T-spline element
are C∞. Over each element domain exist a set of non-zero T-spline basis func-
tions which are in one-to-one correspondence with the T-mesh control points
and are indexed by the global control point numbers. The local basis function
number a, and the element number e, are directly mapped through the IEN
array to the corresponding global control point number A. In other words
A = IEN(a,e). Differently from NURBS basis functions where all the elements
support exactly (p + 1)dp basis functions, a variable number of T-spline basis
functions can be supported by each element of the mesh. For more details
regarding T-splines, the reader is referred to (Scott et al., 2013).

In this work, T-splines from finite element point of view are developed utiliz-
ing Bèzier extraction (Borden et al., 2011). This provide a finite element rep-
resentation of T-splines, and facilitates the incorporation into existing finite
element programs like FEAP. The idea is to extract a linear transformation
which maps the Bernstein polynomial basis on Bèzier elements, to the global
T-spline basis as follows:

Ne(ξ̃) = CeB(ξ̃) (3.24)

where ξ̃ ∈ Ω̃ is a coordinate in a standard Bèzier parent element domain,
Ne(ξ̃) = {Ne

a(ξ̃)}n
a=1 is a vector of T-spline basis functions which are non-

zero over the Bèzier element e, B(ξ̃) = {Bi(ξ̃)}m
i=1 is the vector of tensor

product Bernstein polynomial basis functions defining Bèzier element e, and
Ce ∈ Rnxm is the element extraction operator, defined through the coeffi-
cients, ce

a,i, as follows:

Ce =


ce

1,1 ce
1,2 · · · ce

1,m
ce

2,1 ce
2,2 · · · ce

2,n
...

... . . . ...
ce

n,1 ce
n,2 · · · ce

n,m

 (3.25)
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Moreover, the use of the linear operator allows us to standardize the form
of the element basis on the parent domain. The transponse of the extraction
operator maps the control points of the global T-spline to the control points
of the Bernstein polynomials. This provide a finite element representation of
T-splines, and facilitates the incorporation of T-splines into existing finite el-
ement programs. Only the shape function subroutine needs to be modified,
as it has been done in our case. All the other aspects of the finite element
program remain the same. Moreover, Bèzier extraction is automatic and can
be applied to any T-spline regardless of the topological complexity or the
polynomial degree. In particular, it represents an elegant treatment for T-
junctions and extraordinary points. For T-spline, the computation of the ele-
ment extraction operators has been performed in (Scott et al., 2011). Roughly,
the extraction algorithm for T-spline is based on the following main steps:

• Infer the T-spline basis from the T-mesh.

• Refine the T-mesh.

• For a T-spline basis function determine the Bèzier elements which are
in its support.

• For a T-spline basis function perform Bèzier extraction.

• The last two steps are repeated for each T-spline basis function.

For more details regarding how Bèzier extraction works with T-spline, please
see (Scott et al., 2011). In FEAP, the data input is provided by an output
from the refinement program developed at the University of Texas by Mike
Scott, and included as an extension of the T-splines plug-in (T-Splines, Inc.)
for Rhino (Rhinoceros: NURBS modeling for Windows.). For more details, the
interested reader is referred to Chapter 5.

3.2.8 Conclusion

In this Chapter we introduced the basic concepts of B-splines, NURBS and
T-splines, which we are going to use as basis for both modeling and analysis
in the following chapters. Particular attention has been given to the so-called
(and so far not extensively used in the IgA community) "unclamped" con-
cept, for the construction of closed and periodic curves and surfaces. The
unclamped concept is the key for the creation of a semi-automatic pipeline
for the generation and analysis of reliable patient-specific isogeometric mod-
els of Thoracic Aortic Aneurysms, starting from DICOM images, that will
be described in details in Chapter 4. In the field of cardio-vascular mod-
eling like ours, a NURBS-based cylindrical parameterization of the arteries
will be straightforward due to their inherent tubular structure. Despite this,
we decided not to adopt a NURBS-based but a B-spline based cylindrical
approximation for our geometries even if we know that B-splines are not ca-
pable of representing conic sections. We made this choice because, as will be
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explained in Chapter 4, we do not need a perfect circle to create the patient-
specific TAA geometries we are interested in and this is linked to the map-
ping operation we use to obtain them. In Chapter 5 we will first expand
the pipeline introduced in Chapter 4 for the creation of multipatch NURBS
branched geometries characterized by a tree-like shape, and subsequently
we will adopt T-spline basis functions, via Rhino Autodesk T-spline plug-in,
in order to create more complex, patient-specific geometries of aortic arter-
ies, characterized by arbitrary topology. Moreover, we are going to use a
NURBS-based discretization to investigate in Chapter 6 frictionless contact
interactions between stent devices and deformable surfaces.
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Chapter 4

Patient-specific geometrical
modeling of thoracic aortic
aneurysms

4.1 Introduction

4.1.1 The patient-specific concept in biomechanics

Patient-specific modeling is a relatively new paradigm in medical planning
that employs computational tools on anatomical and physiological data to
individualize patient-care. It can help optimizing surgical procedures and
improving diagnosis and treatment of a number of common illnesses. To
fulfill this task, image-based patient-specific modeling techniques have been
used to study various organs and tissue dynamics including the heart, the
brain, bones, teeth, kidneys, tumors, lungs and cardiovascular systems (Tay-
lor and Figueroa, 2009). Patient-specific cardiovascular modeling (PSCVM)
has enjoyed a great deal of attention from researchers since some pioneering
works (Taylor, Hughes, and Zarins, 1998; Taylor, Hughes, and Zarins, 1996)
and still remains an active field of study (Antiga et al., 2008; Taylor and Stein-
man, 2010; Kim et al., 2010). PSCVM makes possible the detection of thoracic
and abdominal as well as cerebral aneurysms (Doyle et al., 2009). It usually
involves three fundamental steps: (1) image processing, (2) analysis suitable
model generation, and (3) analysis (see Figure 4.1).

In details, first the scanned images are segmented and classified into mean-
ingful regions to extract the geometry of the object of interest. Next, an analy-
sis suitable solid geometrical model is generated from the segmented images.
As can be read in (Neal and Kerckhoffs, 2009), tipically, solid models are con-
structed by (a) extracting a set of points (a contour) approximating the inner
and outer arterial wall boundaries of a vessel on an offset stack of segmented
two dimensional (2D) image slices, (b) interpolating the contour with a curve,
(c) lofting a surface through the interpolated curves, (d) joining the surfaces
to create a network and (e) meshing the bounded surfaces to define the ob-
ject of interest. Finally, a finite element or a finite-element-based IgA scheme
is adopted to solve the equations that control the phenomenon under study.
As already said, among the existing finite-element patient-specific analysis
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Figure 4.1 Flowchart depicting the main steps in a typical
patient-specific vascular modeling pipeline: 1) Image

processing, 2) Analysis suitable model generation and 3)
Analysis.

techniques, Isogeometric Analysis (IgA) has gained significant popularity in
the recent years. Before IgA was conceived, performing finite element anal-
ysis on a computer-aided designed (CAD) object required the creation of an
analysis suitable mesh that could only approximate the original object ex-
tracted from medical images. This reduce the accuracy of the final solution
and, for large objects, creating an analysis suitable mesh can take a design
team a few weeks or more to complete, consuming up to 80% of the total
analysis time (Hughes, Cottrell, and Bazilevs, 2005). In an attempt to circum-
vent the generation process and its unnecessary geometry approximations
altogether, IgA employs the same basis functions for approximating the so-
lution space as the ones used in representing the geometry in CAD softwares.
Within this isoparametric framework ideally, the analysis suitable model be-
comes equivalent to the CAD model. Therefore, IgA has the unique advan-
tage of performing analysis on exact geometries, even for the coarsest mesh.
Moreover, the IgA approach can take advantage of extensive CAD software
functionalities in producing geometric models and corresponding geometric
information. Once a geometric model is created in CAD, also a traditional
FE mesh can be constructed if desired. Given all these reasons, we decided
to use IgA for the construction and analysis of our patient-specific models of
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TAA and for the approximation of the equations under study. This part of
the work has been done in collaboration with Dr. Elena Faggiano.

4.1.2 Aim of the chapter

In this Chapter, our new procedure to obtain an analysis-suitable B-spline
representation of the thoracic aorta from medical (DICOM) images is illus-
trated and applied to patient-specific cases of TAA (see Figure 4.21). One
consideration has to be done: in this section our interest is focused only on
the aneurysm and on explaining the details of our innovative pipeline to cre-
ate analysis-suitable IgA models. This novel framework is straightforward
and capable of recreating a trustworthy geometry, i.e., characterized by a
very small distance from the original surface extracted from medical images
by means of segmentation operation. We would like to demonstrate how the
creation of a patient-specific IgA-suitable model of TAA can be done quasi
automatically by performing a limited number of relatively easy steps, once
the Computed-Tomography (CT) images have been acquired, preprocessed,
and segmented. We will also show how the total time (measured in minutes)
that is required to perform all these passages is very short, once the object of
interest has been acquired from CT images by means of a segmentation pro-
cess, which usually takes 20 minutes to complete if performed by an expert
user (see Table 4.1). Up to this point, the presence of the supra-aortic vessels
is neglected, but it will be introduced in our models in the following chap-
ter. The main steps of our pipeline include post-processing of a triangulated
TAA surface mesh obtained from segmented 3D imaging data (Section 4.2),
extraction of a set of points (contours) approximating the inner and outer ar-
terial wall boundaries by solving the Laplace problem along it (Section 4.3),
construction of the spline surfaces by means of a B-spline mapping operation
of a primitive unclamped B-spline geometry onto a target-image based sur-
face, and finally creating solid splines from the spline surfaces (Section 4.3).
Please see Figure 4.2 for a summary of the passages we just underlined.

4.2 Triangulated Surface Mesh Post-Processing

Computed-Tomography (CT) is the investigation choice for the urgent eval-
uation of patients with acute aortic syndromes (Hartnell, 2001). It represents
an efficient tool for thoracic aortic aneurysms reconstruction; as a matter of
fact, the aortic lumen can be highlighted by means of a contrast agent (Erbel
et al., 2015). The first step in our framework consists of the reconstruction
of the three-dimensional (3D) inner lumen surface of the TAA from patient-
specific CT data by means of a gradient-based 3D level sets segmentation
method (Fedkiw and Osher, 2002) implemented in VMTK (Vascular Model-
ing Toolkit) software suite (Antiga and Steinman, 2006) and employing the
Fast Marching Method (Piccinelli et al., 2009; Antiga et al., 2008) as initial-
ization type. In short, this method enables you to select a vascular segment
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Figure 4.2 Flowchart depicting the main steps in our
patient-specific (cardio)vascular modeling pipeline: 1) Image

processing, 2) Analysis suitable model generation and 3)
Analysis.

comprised between two points automatically ignoring side branches, no pa-
rameters involved. Segmenting a complex vascular tract becomes equal to se-
lect the endpoints of a branch, letting level set by attracted to gradient peaks.
This operation has to be repeated for all the branches, which, in the end, have
to be merged in a single model. The result is a triangulated surface mesh of
the segmented TAA. Please see Figure 4.3 for an example of application of
level sets segmentation method on a vascular tract (Antiga et al., 2008).

Since the obtained triangulated surface may contain geometric features and
degeneracies that may prohibit downstream processes, it is first smoothed
using VMTK to avoid artifactual bumps that can affect wall stress local dis-
tribution, and cropped in Paraview (Ahrens, Geveci, and Law, 2005) in order
to focus only on the aneurysm site and to remove the presence of the supra-
aortic branches. Subsequently, the holes created by removing the supra-
aortic branches are carefully capped by means of an in-house VTK-based
Python code (that is part of the work of Dr. Elena Faggiano) that permits
to manually delineate a region on the triangulated surface, eliminate and cap
it. For an example of how this code works, please see Figure 4.5.
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Figure 4.3 Example of segmentation of an abdominal aorta
from CT images. (a) Interactive initialization of a branch

through the specification of two seed points (depicted in red
color), one within the suprarenal aorta and the other within

the right renal artery; (b) result of segmentation after level set
evolution.

Figure 4.4 Example of segmentation of a thoracic aorta from
CT images. Interactive initialization of the main vascular tract
through the specification of two seed points (depicted in red

color).

Finally, a remeshing step is carried out semi-automatically using VMTK. In
performing all the previous operations, care must be taken not to distort,
smooth or remove important characteristics and attributes found in the raw
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Figure 4.5 Example of removing and capping the supra-aortic
branches of a patient-specific TA. (a) Original TA. (b) Manual
selection of the branch that has to be removed. (c) Removal of

only one branch. (d) Complete removal and subsequent
capping of the branches.

data. This is mainly carried out visually at the discretion of the user, although
VMTK do offer valuable metrics as feedback when applying various opera-
tions. The smoothed and cropped version of the 3D inner lumen serves as an
input object for all the subsequent steps.

4.3 Conduction-based method to get cross-sections
of points

Next, we describe a new procedure we developed to build a B-spline un-
clamped representation of the TAA inner lumen surface from the “clean” tri-
angulated surface mesh we obtained in the previous step. In particular, what
we need to perform this task are cross-sections of points defined on the tri-
angulated mesh. These cross-sections of points have to satisfy two important
criteria:

1. two cross-sections of points cannot intersect;

2. each cross-section of points has to be orthogonal to the vessel wall.

The robust solution we conceived and implemented to produce cross-sections
of points with these characteristics is solving the Laplace’s equation in the
TAA vessel with Dirichlet boundary conditions at the tube ends (i.e. the two
open boundaries). This strategy corresponds to a steady thermal conduction
problem with temperature t = 0 at the vessel inlet and t = 1 at the ves-
sel outlet. Laplace’s equation is a very well conditioned equation; therefore,
virtually any reasonable mesh/discretization may be good for the task, also
because in this step we are more focused on satisfying the non-intersection
and orthogonality criteria than accuracy. Hence, we employ finite-element
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for the conduction problem. Specifically, first we identify the boundaries of
our tube-like triangulated base mesh and assign them temperature values
(t = 0 at the vessel inlet and t = 1 at the vessel outlet). Then, we construct
an harmonic function over the base mesh using the temperature we just set
as boundary condition. Next, we spline-interpolate the boundary at t = 1
with a number of points defined by the user and we perform steepest gra-
dient descent from boundary with t = 1 downward to temperature t = 0,
along diffused temperature values. Once t is known, we extract and spline-
interpolate with a user-defined number of points all the isolines for a mono-
tonically increasing sequence of temperatures 0 < t1 < t2 < ... < tm = 1.
These operations will produce a set of cross-sections of points that satisfy the
desired non-intersecting and orthogonality conditions. Each cross-section of
points has to be closed and the starting points of each section have to be
aligned (see Figure 4.6, last image). If sections of points are not closed and
their first points not aligned, the final IgA model can be distorted after map-
ping operation. The ti can be chosen such that each cross-section of points
has the desired separation in the Euclidean space. Please see Figure 4.6 and
Figure 4.7 for a clarification of the aforementioned operations.

Figure 4.6 Example on a test case of the "conduction-based"
method we use to get cross-sections of points. (a) Triangulated

base mesh. (b) Perform harmonic mapping using the
temperature as boundary conditions (i.e., diffuse the

temperature). (c) Spline interpolation of the boundary at t = 1
with a number of points specified by the user (black points).

Perform steepest gradient descent from boundary with
temperature t=1 downward to temperature t=0, along diffused

temperature values. (d) Spline-interpolation of isolines for
monotonically increasing temperature values. Starting points
for each cross-section have to be aligned to avoid unpleasant

effects in the final IgA model.
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Figure 4.7 Example on a patient-specific case of the
"conduction-based" method we use to get cross-sections of

points. (a) Triangulated patient-specific base mesh. (b)
Perform harmonic mapping using the temperature as

boundary conditions (i.e., diffuse the temperature). (c) Spline
interpolation of the boundary at t = 1 with a number of points
specified by the user (black points). Perform steepest gradient

descent from boundary with temperature t=1 downward to
temperature t=0, along diffused temperature values. (d)

Spline-interpolation of isolines for monotonically increasing
temperature values. Starting points for each cross-section have

to be aligned to avoid unpleasant effects in the final
patient-specific IgA model.

The proposed algorithm was further extended in order to perform a sort of
"local refinement" of the sections of points in the zones of the geometry that
show a higher value of surface curvature. For an example of application of
this concept on a test case, please see Figure 4.8.

By using this "conduction-based" algorithm, we completely removed any op-
erational dependency on the centerline. As a matter of fact, according to the
experience we gained prior to the adoption of this method for the creation
of ordered sections of points, the creation of sections along the centerline do
not always satisfy the non-intersection and orthogonality criteria described
above. In particular, this occurs where the geometry is really angulated. De-
pendency on the centerline is a very well known issue in templates-based
method too (Urick et al., 2017). This concept will be better described once
introduced the mapping operation in the following section.
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Figure 4.8 Example of the application on a test case of the
conduction based method including "local refinement" of the

sections of points in the regions on the surface that show
higher curvature. In particular, the harmonic mapping result

obtained using the temperature as boundary condition is
shown.

4.4 From cross-sections of points to an IgA-suitable
unclamped surface model

In order to obtain the IgA patient-specific solid model of the TAA starting
from a set of ordered sections of points, the mapping procedure performed
in (Morganti et al., 2015) has been adopted and modified to make possible the
use of unclamped knot vectors along the parametric u direction of the model.
Hence, in this work, the knot vector types employed to obtain patient-specific
TAA surface models of both the inner lumen and outer aortic wall surfaces
are: unclamped knot vector along the parametric u direction and clamped
one along the parametric v direction. Please see Figure 4.9 for a clarification
on the parametric directions we employed.

As in (Morganti et al., 2015), the main idea behind the mapping procedure
is to map a basic primitive B-spline geometry (e.g., a cylinder) onto a target
image-based surface. In particular, the best position of the Ncp control points
of the primitive surface is determined by means of a least square algorithm
in order to represent the target surface evaluated at a sufficient number of Ns
sampling points. In other words, this means that Ns > Ncp = m× n.

In details, a generic NURBS in R3 can be described with the following rela-
tion:
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Figure 4.9 Parametric directions adopted in the construction of
each patient-specific IgA geometry.

S(u, v) =
∑i ∑j Ni,p(u)Mj,q(v)Bi,jwi,j

∑i ∑j Ni,p(u)Mj,q(v)wi,j
(4.1)

where Bi,j and wi,j represent the i,j-th control points coordinates and weights,
respectively, and Nj,q and Mi,p are the i-th, j-th shape functions of order p
and q respectively, related to each parametric direction, u, v. For more de-
tails regarding NURBS, the reader is referred to Chapter 3, Section 3.2.4. By
assuming constant weights and by performing some simple algebraic manip-
ulations, Equation (4.4) can be rearranged in order to get the matricial form
that reads:

Sr
T = C ∗ Br

vec (4.2)

where Sr
T represents the r-th cartesian nodal component of the sampling points

belonging to the target surface, Br
vec is the r-th Cartesian component of the

control points of the reference surface ordered in vectorial form, whereas C
roughly contains the products between shape functions values in both para-
metric directions. It can be observed that Equation 4.4 represents a linear
system that can be solved in a least-square sense to obtain the r-th compo-
nent of the mapped control points, i.e., the control points of the IgA-suitable
patient-specific TAA surface model. Since we are using an unclamped knot
vector along u, we are solving the linear system just taking into account all
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the control points except for those that are overlapping. This means that we
are condensing some unknown DOF and recasting the original Eq. 4.4 set
in terms of fewer unknowns. Once the system is solved and thus the con-
trol points coordinates of the IgA patient-specific TAA surface model have
been found, coordinates are also assigned to the overlapping p control points
along u, according to which control point they are wrapped around with in
the original reference geometry. All the previous operations are performed
in an in-house Matlab (MATLAB, 2018) code based on the NURBS toolbox
(Falco, Reali, and Vázquez, 2011; Spink, 2014) and a set of routines imple-
menting the algorithms included in (Piegl and Tiller, 1997).

The idea is illustrated in Figure 4.10 by mapping an unclamped along u B-
spline cylinder onto a TAA surface mesh. We decide to use a B-spline cylin-
der due to the inherent tubular structure of the arteries. Even if we know
that B-splines are not capable of representing conic sections, we decided not
to use a NURBS-based cylindrical parameterization of the arteries to create
the patient-specific TAA geometries. First because in equation (4.4) all the
weights are constant and thus the NURBS basis "naturally" reduces to the B-
spline one. Second, because we do not need a perfect circle over which to con-
struct a cylinder if then the position of the control points has to be moved due
to the mapping operation to match the reference surface. The cylinder sur-
face is obtained by sweeping the unclamped ring (Figure 4.10a) introduced
in Chapter 3 over a vertical distance h (Figure 4.10b). The mesh is refined by
knot insertion along both parametric directions (Figure 4.10c) as described in
Chapter 3, to obtain a reproduction of the thoracic aortic aneurysm as close
as possible to the one extracted from medical images (Figures 4.10d & 4.10e).
For a summary of all the passages we perform starting from the TAA inner
lumen triangulated surface mesh extracted from medical images to get its
IgA representation, please see Figure 4.11.

This procedure was originally tested with clamped knot vectors along the
u direction of each model and then modified to be able to work with un-
clamped ones. The reason why we decided to change the knot vector type
along u can be seen in Figure 4.12: the main drawback of using a clamped
knot vector along the circumferential direction is the presence of the unphys-
ical C0 line(s) that crosses the model vertically and causes discontinuity of
the stress field (as we are going to point out in one of the following sections).
In this Figure, both IgA models have the same number of DOF and spline
degree along the two parametric directions. This C0 line is exactly the evo-
lution of the blue dot that can be seen in Figure 4.12 in the clamped closed
ring control polygon case, if such a ring is extruded vertically. Accordingly
to the clamped knot vector used to define the clamped closed ring, the num-
ber of C0 lines in the final IgA model may be different. As an example, if the
clamped closed ring is defined on the clamped knot vector [0 0 0 0.25 0.25 0.5
0.5 0.75 0.75 1 1 1], with p = 2 and number of control points equal to nine (9),
the final number of C0 lines in the geometrical model will be four (4). On the
other hand, if the clamped knot vector is [0 0 0 0.34 0.34 0.67 0.67 1 1 1], with
p = 2 and number of control points equal to seven (7), the final number of C0



52 Chapter 4. Patient-specific geometrical modeling of thoracic aortic
aneurysms

(a) Unclamped B-spline
close ring.

(b) Sweeping over a
vertical distance h.

(c) Refine the mesh via
k-refinement operation.

(d) Post-mapping unclamped
IgA result.

(e) ParaView version of the result
obtained in Matlab.

Figure 4.10 Mapping procedure example on a patient-specific
case. In Figure 4.10b, 4.10c and 4.10d, models are shown with

their associated control polygon.

lines will be three (3).

Some clarifications have to be done: the first one is that, in order to obtain a
reliable (i.e., close to the one extracted from medical images) IgA representa-
tion of the patient-specific TAA, the B-spline primitive cylinder used as ref-
erence geometry in the mapping operation just described, has to be properly
refined along both parametric directions using the k-refinement algorithm
described in Chapter 3. As already said, the k-refinement approach allows
one to elevate the polynomial order and, at the same time, to increase the
smoothness of the basis functions, which also means that it is based on two
operations, i.e., degree elevation followed by knot insertion, that cannot com-
mute. If the B-spline primitive cylinder is not properly refined, the mapping
error, computed in terms of point-wise distance (measured in [mm]) between
the original surface extracted from medical images by means of segmentation
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Figure 4.11 Summary of the main steps we perform to get the
patient-specific unclamped surface model of TAA starting

from the triangulated mesh extracted from medical images.

method and the one obtained via mapping algorithm, just increases. There-
fore, since we are interested in getting the most accurate IgA model possible,
after testing our code, we can say that by "properly refined" we mean: start-
ing from the B-spline reference cylinder shown in Figure 4.10b, with knot
vector along parametric u direction equal to [0 1 2 3 4 5 6 7 8 9 10 11 12 13 14],
knot vector along parametric v direction equal to [0 0 1 1], polynomial de-
gree p = 3 along parametric u direction and polynomial degree q = 1 along
parametric v direction, we first perform degree elevation along parametric
v direction, so that q = 2 and then knot insertion along u and v paramet-
ric directions, with the following indices for the refinement: nx = 6 and
ny =(number of ordered sections of points along parametric v direction)−5.
These two indices mean that the new knot values that are actually inserted
in both knot vectors, always within their interval of definition and for each
knot spans (for references, see Chapter 3 and (Piegl and Tiller, 1997)) are 6
along u and (number of ordered sections of points along parametric v direc-
tion) - 5, along v. The result is the refined cylinder depicted in Figure 4.10c.
These are the refinement indices used for all the patient-specific geometries
we mapped in this thesis work.

As a second clarification, as already specified in Section 4.3, each cross-section
of points has to be closed and the starting points of each section have to be
aligned (see Figure 4.6, last image). If sections of points are not closed and
their first points not aligned, the final IgA model can be distorted after map-
ping operation (see Figure 4.13).

In Figure 4.15, using a function (vmtksurfacedistance) available inside VMTK
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Figure 4.12 Difference in results in the mapping operation if a
clamped (top view) or an unclamped (bottom view) knot
vector is used along the circumferential direction of each
patient-specific model. The blue arrow helps to focus the

attention of the unphysical C0 line(s) that crosses the model
vertically if a clamped knot vector is used along u.

software suite, we calculated the point-wise minimum distance [mm] be-
tween the (clipped and capped) original surface extracted from medical im-
ages and three other input surfaces: the first one obtained using the old ver-
sion of the mapping algorithm, i.e., the one that uses clamped knot vectors
along u, v and w (in this case, for the circumferential direction, we use the
clamped knot vector [0 0 0 0.34 0.34 0.67 0.67 1 1 1], which means that the
final IgA patient-specific model shows 3 C0 lines along u); the second one
obtained using the new version of the mapping algorithm, i.e., the one that
employs an unclamped knot vector along u, and clamped ones along v and
w; a third one using always unclamped knot vectors along u but with the "lo-
cal refinement" of the sections of points addition where the curvature of the
surface is higher. The original branched patient-specific surface from which
these models have been obtained is depicted in Figure 4.14.

In this image we can see how the method we described so far is really able
to create a trustworthy geometry in terms of point-wise distance computed
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Figure 4.13 Example on a test case of what can happen after
mapping operation if starting points of the sections are not

aligned.

between the IgA mapped and the original surface extracted from medical im-
ages. For example, in the last image, we are committing a maximum point-
wise error of 0.9972 10−1 mm. This means that if the real geometry is approx-
imatively 35 cm long, we are committing an error of approximatively 0.3%
over the entire surface.

Before adopting the "conduction-based" method described in the previous
Section 4.3, the ordered sections of points to be used as input for the IgA
mapping operation (originally performed with clamped knot vectors along
each parametric direction) were computed along the centerline of the model
under study by means of a function (vmtkcenterlinesections) included in
VMTK software suite. As already pointed out, the creation of sections along
the centerline do not always satisfy the non-intersection and orthogonality
criteria we, instead, strictly require. Not satisfying these criteria can result in
really distorted IgA geometries after mapping operation, especially in those
cases where the target geometry is very angulated (e.g., the one shown in
Figure 4.14). In order to convince the reader about the importance and effec-
tiveness of our "conduction-based" method, we will show some initial results
we got while working with sections of points computed on the centerline
(Figure 4.16) of the patient-specific model shown in Figure 4.14. As an early
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Figure 4.14 Original branched patient-specific surface used to
test the "local refinement" capability addition to the

"conduction-based" method, after clipping and capping
operations performed using the VTK-based Python code

described in Section 4.2.

attempt, we also tried to work on a strategy to "adjust and fix" these inter-
secting sections. Nonetheless, we, on purpose, are not providing specific de-
tails of this "adjust and fix" strategy, because this attempt resulted in mapped
IgA geometries with a much higher point-wise distance from the original
surface extracted from DICOM images than the one shown in Figure 4.15,
which absolutely justified the adoption of the "conduction-based" method
to obtain more reliable and trustworthy IgA geometries. For a comparison
of mapping operation (with clamped knot vector along u and v parametric
directions) primitive results obtained using cross-sections of points got with
the "conduction-based" method and with intersecting cross-sections of points
computed along the centerline, please see Figure 4.17.

4.5 From an IgA unclamped surface model to an
IgA solid model.

Once the IgA representation of the inner lumen surface has been obtained,
we normally extrude of a radius-dependent thickness the 3D inner lumen
surface extracted from DICOM images (see 4.2), in order to obtain the 3D
representation of the outer arterial wall surface. The code we use for the nor-
mal extrusion is vmtkboundarylayer.py, included in VMTK software suite
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Figure 4.15 Example of application on the patient-specific case
depicted in Figure 4.14 of the "conduction-based" method with

the "local refinement" addition in the regions on the surface
that show higher curvature. Distance [mm] with respect to the
(clipped and capped) original surface extracted from medical
images is shown in three cases: IgA model constructed using

clamped knot vectors along all the parametric directions (left),
IgA model constructed using unclamped knot vectors along

the circumferential direction of the model (middle), IgA model
obtained using unclamped knot vectors along the

circumferential direction of the model and "local refinement"
in the zones with higher curvature of the surface, while

performing the conduction-based method to get the ordered
section of points (right).

(Faggiano, Formaggia, and Antiga, 2013). It allows for the generation of pris-
matic (or tethraedral) boundary layers along surface normals. In details, it
first computes outward normals and then creates prisms or tethraedra by
warping surface triangles of a constant amount. It gives you the normally
extruded outer surface too and this is what we are interested in for the down-
stream operations. There is also the possibility of computing a scalar quan-
tity on the surface (e.g., proportional to the local radius, a scalar quantity
computed in VMTK on the centerline of the model) and use it as local thick-
ness. This is what we decided to perform and code in a in-house VTK-based
Python code, with specific attention to the aneurysm site, where the thick-
ness should be higher since the local radius is higher. We do not want the
arterial wall to be thicker at the aneurysm location since it has been proved
in literature to be thinner than the rest of the arterial wall (Raut et al., 2013).
As a matter of fact, differently from (Raghavan et al., 2000; Fillinger et al.,
2002; Fillinger et al., 2003), we did not make the assumption of a uniform
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Figure 4.16 Some of the sections computed along the
centerline of the capped and cropped version of the model
shown in Figure 4.14 are intersecting because of how the

algorithm we adopted to compute sections of points along the
centerline (vmtkcenterlinesections) actually works.

wall thickness, since it may not be adequate when attempting to characterize
the response of the aneurysm (Morris et al., 2004).

Once we obtain the 3D outer arterial wall surface by means of normal ex-
trusion operation, we have to get its IgA representation too. Therefore, the
"conduction-based" algorithm described in section 4.3, needs to be applied to
the normally-extruded 3D outer arterial wall surface. Before doing this, the
"conduction-based" algorithm needs to be slightly modified, because we re-
quire the cross-sections of points not only to satisfy the desired non-intersecting
and orthogonality conditions (see section 4.3) but also to be correspondent
along the thickness with the cross-sections of points that belong to the 3D
inner lumen surface. In case they do not correspond, distortions may occur
in the final solid IgA model. In order to create cross-sections of points on the
3D outer arterial wall surface correspondent to the ones lying on the 3D inner
lumen surface, we identify on the 3D outer wall surface mesh the points that
are closest (in a nearest neighbor sense) to the ones on the 3D inner lumen
surface mesh from which we start performing steepest gradient descent op-
eration (black dots in Figure 4.11c). Once identified these points, we perform
steepest gradient descent and all the subsequent steps on the 3D outer arte-
rial wall surface as previously described to get cross-sections of points (see
section 4.3). Mapping operation is then performed using the newly obtained
cross-sections of points to get the correspondent 3D IgA representation of the
outer wall surface.
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Figure 4.17 Comparison between the original mapping
operation (i.e., the one employing clamped knot vectors along

u and v parametric directions) result using cross-sections of
points obtained with the "conduction-based" method (left
figure) and cross-sections of points computed along the

centerline of the model (right figure). This picture wants to
demonstrate how the unsuitability of the approach that

computes cross-sections of points along the centerline was
evident since the very beginning of the work, besides the use
of clamped knot vector along u and v parametric directions.

Hence, in order to create a 3D solid model for the TAA from the IgA B-
spline inner lumen and outer arterial wall surfaces generated above, a linear
clamped B-spline is then introduced in Matlab between them. This opera-
tion corresponds to specify a control net in the three coordinate directions
along with a trivariate knot vector set to generate the B-spline solid model.
In particular, this is possible because we impose the control points of the in-
ner and outer arterial walls to correspond along w, i.e., the thickness. Each
cross-section of control points (holding v constant) contains the same num-
ber of circumferential control points, where the first and last p control points
coincide. Along w, it is possible to perform IgA k-refinement operation, i.e.,
degree elevation followed by knot insertion. Any choice of degree and knot
complexity can be introduced in the three coordinate directions in order to
capture desired geometric details and to provide higher order of continuity
for more accurate solutions. As a matter of fact, the 3D IgA models we use
for the simulation are of degree 3 (three) along the circumferential direction
u and of degree two (2) along the longitudinal direction v and the thickness
w (see Figure 4.20).



60 Chapter 4. Patient-specific geometrical modeling of thoracic aortic
aneurysms

4.6 Thoracic Aortic Geometry

The proposed computational framework is benchmarked with 10 CT scans of
patients affected by thoracoabdominal aneurysms available at IRCCS Poli-
clinico San Donato, San Donato M.se, Milan, Italy (see Figure 4.21). Other
types of aneurysms, e.g., those secondary to connective tissue disorders, in-
fectious diseases, as well as aneurysms with concomitant aortic dissections
are excluded. Patients enrolled in the study do not represent an homoge-
neous population from the point of view of age, sex, diameter and location
of the aneurysm.

4.7 Analysis Setup

In this sections, all the ingredients employed to run isogeometric structural
simulations on patient-specific TAAs models are illustrated. The ultimate
goal of these simulations is to check the von Mises stress quantity at the ves-
sel wall in order to identify patients potentially at risk of aneurysm rupture.
Inflation simulations are performed for each one of the patients in Figure 4.21
using a finite element program, FEAP (Taylor, 2017), and its IgA embedded
module. We would like to remark that our work aims at evaluating the per-
formance of IgA applied to patient-specific modeling and analysis of TAAs.
Therefore, the quantitative comparison of numerical and experimental re-
sults is beyond the scope of this study. In particular, a quantitative compari-
son requires further investigation in terms of material parameters calibration
from experimental data and analysis of experimental boundary conditions.

Given the refinement techniques for IgA presented in Chapter 3, the basic
primitive unclamped along u cylinder (see Figure 4.10b) used as reference
geometry in the mapping operation described in Section 4.4 has been refined
using IgA k-refinement algorithm, with the same combination of subdivi-
sion indexes and the same polynomial degrees along the two main paramet-
ric directions (see Figure 4.10c) for all the studied geometries. k-refinement
technique has been also applied to each one of the patient-specific TAA solid
models (see Section 4.5) along the thickness (see Figure 4.20), with the same
subdivision indexes and polynomial degree for all the geometries.

4.7.1 Material Properties

The arterial wall is modeled using the hyperelastic, isotropic, nearly incom-
pressible material model described in (Raghavan and Vorp, 2000). The strain
energy function W for this model may be expressed as follows:

W = C1 (IB − 3− 2 log(J)) + C2(IB − 3)2 + U(J) (4.3)

U(J) = λ ∗
[

1
4

(
J2 − 1

)
− 1

2 log(J)
]

(4.4)
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where the constants C1 and C2 represent material parameters for the arterial
wall and IB is the first invariant of the left Cauchy-Green tensor B (IB = tr
(B)). U(J) is a volumetric term with J equal to the determinant of the defor-
mation gradient and λ the first Lamè parameter, empirically set to 1000 MPa,
to enforce near incompressibility. Population mean values taken from (Shang
et al., 2013a) of C1 = 0.174 MPa and C2 = 1.881 MPa are adopted in this work.
More information about this constitutive model and its formulation in FEAP
are given in Appendix B.

4.7.2 Numerical simulations

The blood pressure within the TAA acts on its inner wall surface. Therefore,
the average blood pressure in a single cardiac cycle (i.e., MAP = Mean Ar-
terial Pressure), previously computed by means of Computational Fluid Dy-
namics (CFD) simulations, is numerically applied as uniformly distributed in-
ternal forces acting outwardly on the TAA wall. In particular, in the CFD sim-
ulations, the vessel wall is considered as rigid, and RCR boundary-conditions
are applied and calibrated in a patient-specific way as extensively detailed in
(Romarowski et al., 2018). This method incorporates the real cuff-pressure of
the patient and the real flow distribution among the boundaries of the aorta.
Since for three cases the MAP from CFD simulations was not available, the
mean value of the MAP for the other seven cases (101.3 mmHg) was applied.
Contact with adjacent structures, including the spine and other organs was
not considered. The shear stress induced by blood flow was neglected in this
study (Raghavan et al., 2000), although the effects of blood flow have been
shown to reduce wall stress by 10% in uniformly thick-walled ideal mod-
els and by up to 30% in variable wall thickness models of abdominal aortic
aneurysms (Scotti et al., 2005). The aorta was translationally fixed at the prox-
imal and distal ends (see yellow dots in Figure 4.22b), whereas generalized
Robin Boundary Conditions were used to represent the viscoelastic behavior
of the tissues surrounding the thoracic aorta (Moireau et al., 2012). They re-
quire the definition of two parameters: ks and cs, dependent on space and,
possibly, on time (see Figure 4.22b). They are used to model an elastic and
viscoelastic response of the external tissue (e.g., the spine). In the present
work, no time-dependent parameters were employed and just the elasticity
term ks was taken into account, with ks= 10MPa as proposed in (Moireau et
al., 2012).

Since we are dealing with three-dimensional geometries reconstructed from
medical images, they represent a configuration under “in-vivo” loading, such
as blood pressure. The most common approach in simulations is to neglect
the pre-deformation of the object of interest under “in-vivo” loads and to
assume the obtained configuration as stress-free. This is a over-simplified
approach that can lead to unphysically large deformation and strains. There-
fore, the evaluation of a stress state correspondent to a given spatial con-
figuration (the three-dimensional geometry extracted from medical images)
under known external loads (blood pressure) is necessary (Gee et al., 2009).
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Hence, prestress analysis, based on the method proposed in (Bols et al., 2013),
is performed to retrieve the zero-pressure geometry. In particular, after get-
ting the patient-specific IgA solid model of TAA, we solve for the zero-pressure
geometry by iteratively updating the nodal coordinates towards the unknown
unloaded configuration, using a fixed-point algorithm. All that is required in
this method is an update of the nodal coordinates: therefore, it allows for
a straightforward implementation in combination with the structural solver
FEAP adopted in this work. Once the Zero-Pressure ("Z-P" in Figures 4.23b
and 4.23d) geometry is obtained, then, the arterial pressure present in dias-
tole at the moment of imaging (i.e., 80 mmHg) is applied, to fully recover the
“in-vivo” measured geometry, restoring at the same time its stress state. The
zero-pressure geometry found for each patient is used as the initial config-
uration. For an example of application of this method on both a test and a
patient-specific case, please see Figure 4.23. This code was originally writ-
ten for clamped geometries and subsequently adapted for unclamped ones.
For the boundary conditions used in the simulations, the control points at
the ending cross sections are only allowed to move in a radial direction, as
specified in (Bols et al., 2013). Hence:

{
Uθ = 0
Uz = 0

(4.5)

The artery wall behavior is modeled using the Vorp material model, with the
same parameters specified in Section 4.7.1.

Subsequently, the von Mises stress at the vessel wall can be computed to
identify patients potentially at risk of aneurysm enlargement and rupture. A
summary of the simulation details is provided:

• Type of Analysis: IgA Inflation simulations. Radial expansion under
a normally applied internal load. Such a load is defined with respect
to the outward normal to the internal surface of the vessel, in the de-
formed configuration.

• Aneurysm Type: Thoraco-Abdominal Aneurysms. Ten different aneurysms
have been studied.

• Boundary Conditions: Robin Type. Used to simulate the presence of
the surrounding organs. Only the elasticity term is considered. Spring
stiffness: ks = 10MPa.

• Pressure: Patient-specific values derived from CFD analyses have been
used for all the cases except that for three of them (lack of data).

• Thickness: Proportional to the local radius. Particular attention in the
presence of the aneurysm.

• Constitutive model for the arterial wall: Non-linear, hyperelastic for-
mulation derived from (Raghavan and Vorp, 2000). Arterial wall is
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assumed to be hyperelastic, omogeneous and isotropic. Constitutive
parameters: C1 = 0.174MPa, C2 = 1.88MPa.

4.7.3 Surface extraction operator in FEAP

Before showing the results of the inflation simulations we run using the in-
gredients described above, in this subsection we are going to briefly explain
how we are extracting in IgA-FEAP, starting from NURBS patches, the sur-
faces or segments of surfaces on which to apply the pressure field or the
Robin boundary conditions. This may be achieved by using a new solution
command, "N_EXtract", we introduced in IgA-FEAP. It employs extraction
operators to get the IgA surfaces on which to apply loads or boundary con-
ditions. This command should be issued in an interactive mode of solutions.
This means that, to initiate the extraction in IgA-FEAP, it is necessary to first
display a plot of the problem in graphics mode. For two dimensional prob-
lem, this can be achieved by giving the command:

PLOT MESH

then followed by:

N_EXtract

The program will then display each one of the boundary segments for each
NURBS patch and the user may choose to output a file or reject it. For three
dimensional problems, the graphics commands are the following:

PLOT PERSpective
PLOT HIDE
PLOT MESH

then followed by:

N_EXtract

After completing the selection, a set of text files containing all the information
regarding the surface segment extractions will be created. In order to be used,
another text file "Bxxx_m", with xxx being the characters (3:5) of the IgA-
FEAP input file name, should be added to the mesh part of the input file by
means of the INCLude command. The "Bxxx_m" file contains the list of files
for each surface segment extractions. For more information regarding this
command, the interested reader is referred to Taylor, 2017.
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By using this command, it is possible to extract the outer arterial surface on
which to apply Robin boundary conditions used to simulate the organs sur-
rounding the thoracic aorta. We are going to provide an example of IgA-
FEAP input data for the Robin boundary conditions as well. We remind
the reader that, at present, no time-dependent parameters are employed and
just the elasticity term ks is taken into account. The input data for the Robin
boundary conditions in IgA-FEAP are:

MATErial ma
Robin 5

e l a s t i c ks value
NURBs <option > q1 q2
p l o t <option > on/ o f f
! Blank record

where "ma" is the material number, q1 and q2, the number of quadrature
points in the 1 and 2 directions. The plot command can be activated or de-
activated. We recommend the reader to switch this command to off when
solving an analysis.

4.8 Results

We now present the results obtained from implicit nonlinear isogeometric
analyses using the model described in the previous sections. In particular,
the von Mises stress distribution on the TAA of each studied patient is plot-
ted and observed to easily represent and interpret the computational stress
analysis results (Martin, Sun, and Elefteriades, 2015; Gasser, 2016).

In order to better understand the effect that the use of clamped or unclamped
knot vectors along the parametric u (circumferential) direction have on patient-
specific TAA stress analysis results (as anticipated in section 4.4), the differ-
ence between the von Mises stress distribution in just one clamped and un-
clamped patient-specific study model is shown in Figure 4.24. In detail, the
main drawback of using clamped B-splines along the circumferential direc-
tion is the discontinuity of the stress field along the unphysical C0 line that
crosses the model vertically (see Figure 4.24). This C0 line is exactly the evo-
lution of the blue dot of Figure 3.2a, if such a ring is extruded vertically over
a certain height.

The von Mises stress distribution for each unclamped patient-specific case in
Figure 4.21 is depicted in Figure 4.25.

It can be observed that the von Mises stress has complex distributions with
large regional variations. The sites of von Mises stress peaks coincide in
the majority of the cases and they are localized in correspondence of the
aneurysm neck, while they reduce across the entire surface of the TAA. More-
over, wall stress peaks are located at inflection points, as previously reported
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in idealized models of abdominal aortic aneurysms, both numerically (Vorp,
Raghavan, and Webster, 1998b; Callanan, Morris, and McGloughlin, 2004;
Scotti et al., 2005) and experimentally (Morris et al., 2004). Note that with
an inflection point we mean a point on the TAA surface where the local
TAA shape changes from convex to concave (Vorp, Raghavan, and Webster,
1998b).

Despite the small patient population studied, following what Raghavan and
colleagues stated for AAAs in (Raghavan et al., 2000), according to clinical
thinking, patients with highest TAA diameters would be thought as being at
greater risk for rupture. Such patients in this work are:

• Case 001. TAA diameter = 6.817 cm. MAP = 101.64 mmHg (from CFD).

• Case 003. TAA diameter = 6.789 cm. MAP = 101.57 mmHg (from CFD).

• Case 004. TAA diameter = 7.871 cm. MAP = 100.9 mmHg (from CFD).

• Case 009. TAA diameter = 7.345 cm. MAP = 101.3 mmHg (mean of the
patient-specific pressure values obtained from CFD).

Case
Definition of

computational domain
[min]

Computational
IgA Geometry Construction

[min]

FEAP Analysis
CPU time

[min]
001 1.61 1.51 30
002 1.9 1.56 36
003 1.45 1.14 26
004 6.23 1.57 65
005 5.02 1.62 35
006 3.51 0.76 32
007 2.11 1.57 36
008 0.96 1.57 30
009 6.57 1.2 29
010 3.36 1.08 35

Table 4.1 Summary of the time required to perform the
operations previously described in Section 4.3, 4.4 and 4.5, to

derive the 3D IgA solid geometry for each one of the 10
patient-specific cases under study. In particular, in the column

“Definition of computational domain”, the time required to
perform steps described in Section 4.3 is indicated, without

taking into account the time for the segmentation process and
triangulated surface mesh post-processing (see Section 4.2),

which usually takes 20 minutes if performed by an expert user.
The column “Computational geometry” shows the time

required to fulfill steps described in Sections 4.4 and 4.5. Once
obtained the stress-free configuration, each derived model is

inflated with pressure. The time required to run such
structural simulations in IgA-FEAP is listed in column “FEAP

CPU time”.
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Therefore, Patient 4 and 9 should have greater risk of rupture among all the
patients and among the patients with highest diameter in the study. How-
ever, our computational stress analysis reveals that the von Mises wall stress
peak for the TAA of Patients 004 and 009, is comparable with those of the
other patients. Hence, there is a disagreement between conventional think-
ing and the results of the present study. This can be attributed to the fact that
both the shape and a non-uniform and non-constant wall thickness along
the TAA are taken into account in our analyses to assess rupture potential,
differently from the clinical practice.

Regarding the use of IgA as computational framework instead of FEA, In-
drakusuma and colleagues in (Indrakusuma et al., 2016), states that FEA is
frequently applied in the field of computational biomechanics of pathologi-
cal arteries, but the methodology has not been standardized and its technical
limitations have been only marginally improved. IgA can help overcoming
FEA limitations from many viewpoints, as already stated in the Introduction
and demonstrated by other works from our group (Auricchio et al., 2015;
Morganti et al., 2015). One of the benefit of its use is the computational time
required for each stress analysis. CPU time employed by IgA-FEAP for the
analysis is reported in Table 4.1, together with the time required for the cre-
ation of the isogeometric solid model of each studied subject, once the cor-
responding CAD representation has been obtained. Each stress analysis has
been run on a 3,7 GHz Quad-Core Desktop Computer using just one CPU
and the external Pardiso solver (https://www.pardiso-project.org/), its duration
varying from approximatively 25 to 36 minutes, with just one model taking
more than this time. The number of degrees of freedom employed for each
studied patient-specific model to reach these results is around fifty thousand.

This concept can also be reinforced by looking at the comparison between
the computational cost that is required to go from the surface extracted from
medical images to the results of the stress analysis, with both IgA and linear
FEA ("h-FEA"; see Figure 4.26). The h-FEA meshes we used for the com-
parison have been obtained from their IgA counterparts, employing the re-
finement technique described in Chapter 3. In particular, the h-FEA mesh is
recovered by means of iterative knot insertion operation performed on the
correspondent highly regular IgA mesh previously described. The compar-
ison of the performances between IgA and h-FEA is made on a per-degree-
of-freedom basis with respect to the strain energy of the model. Focusing on
the last block, it can be seen that in order to have h-FEA results comparable
to IgA ones, on a strain energy basis, more than 30 hours of computational
time are required. In terms of degrees of freedom, the h-FEM mesh requires
almost three times the number of DOFs of the IgA one. This concept entails
and justifies the results shown in Figure 4.26. It is important to clarify that
in all the analyses we presented, both h-FEM and IgA, since the adopted ma-
terial is nearly incompressible, the three-field mixed formulation described
in (Taylor, 2011) is used. Moreover, the analyses are performed as a finite
deformation problem.
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4.9 Conclusions

This study focus on isogeometric structural simulations of patient-specific
unclamped TAA models. In particular, we have demonstrated how creat-
ing a patient-specific IgA-suitable model of TAA can be done almost auto-
matically by performing a limited number of relatively easy steps, once CT
images have been acquired, preprocessed, and segmented. The "conduction-
based" method we conceived and use to obtain in an easy way cross-sections
of points to be given in input to the mapping algorithm is really straightfor-
ward and capable of creating cross-sections of points that are not intersecting
and orthogonal to the vessel wall, completely removing any operational de-
pendency on the centerline. Our final goal is the identification of patients
potentially at risk of TAA enlargement and rupture. We certainly know that
to fulfill this task and, thus, give the physicians a consistent and objective
decision-making tool to improve the surgery planning operation-phase in
the context of thoracic aneurysms rupture risk, other ingredients (e.g., supra-
aortic carotid branches and iliac arteries, a TAA-suitable constitutive model,
inclusion of the intraluminal thrombus, use of patient-specific variable pres-
sure distributions derived from CFD analyses) need to be considered in our
pipeline. However, we think that our simulation models and analysis set-
tings already represent a good compromise between computational time and
accuracy, sufficient to reach the main goal of this study. It is also clear that
the proposed framework can represent a promising and adequate starting
point for the development of the aforementioned decision-making tool to be
used in real-time by physicians (instead of the current use of the largest TAA
diameter criterion) to decide whether is worth operating a patient or not.

For the work done in this Chapter, I strongly acknowledge Ph.D. Elena Fag-
giano: with her great expertise in patient-specific 3D geometrical model-
ing, she made possible the development of most of the pipeline described
in this chapter, always supporting, helping and introducing me to the fan-
tastic world of VTK-based Python programming for geometrical modeling.
Without her help, this part of the thesis would have been impossible to be
performed alone.
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(a) . (b)

(c) . (d)

Figure 4.18 (a) Cross-section of points of the 3D inner lumen
surface plus source points for the steepest gradient descent

operation (black points). (b) Normal extrude of a
radius-dependent thickness the 3D inner lumen surface to get

the 3D outer arterial wall surface. (c) Correspondent
cross-sections of points between the inner and outer 3D

surfaces (top view). (d) Solid model obtained imposing a
linear clamped B-splines between the 3D IgA representations

of the inner lumen and outer aortic wall.
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(a) 3D inner lumen quad
mesh of the patient

specific TAA.

(b) 3D outer arterial wall
surface of the patient

specific TAA.

(c) TAA solid model
superimposed to the 3D
inner lumen quad mesh.

Figure 4.19 Construction of the solid model (c) starting from
the 3D inner lumen (a) and outer arterial wall (b) surfaces for a
patient specific case. The 3D inner lumen surface is depicted as

a quadrilateral mesh (a - Paraview version) just to highlight
the difference with the outer arterial wall surface (b - Paraview

version) and the solid final model (c - Paraview version).

Figure 4.20 Parametric directions adopted in the construction
of each patient-specific IgA solid model. P=3 is adopted along
the circumferential parametric direction u. Q=2 and R=2 are
adopted along the longitudinal parametric direction v and

along the thickness, respectively.
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Figure
4.21

Thoracoabdom
inalaneurysm

s
considered

in
the

study.
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(a)

(b)

Figure 4.22 a) Key ingredients for IgA TAA Inflation
simulations. b) Boundary conditions and model domain.
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(a) Original geometry. (b) Z-P geometry.

(c) Original geometry. (d) Z-P geometry.

Figure 4.23 Zero-pressure geometries obtained using the
method proposed in (Bols et al., 2013). Application on a test -
images (a) and (b) - and on a patient-specific case images (c)

and (d)).
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Figure 4.24 Difference between a clamped (left) and an
unclamped (right) patient-specific geometry in terms of von
Mises stress distribution. Discontinuity in the stress field can
be seen in the figure on the left and it is also highlighted by a

black arrow.
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Figure 4.25 Results in terms of von Mises stress ([MPa]) at the
vessel wall obtained from IgA-FEAP inflation simulations. In
all cases, blue represents the lowest stress magnitute, and red

the highest stress magnitude.

Figure 4.26 From medical images to analysis: comparison
between how much time is required to perform each operation

of the pipeline presented in Sections 4.2, 4.3, 4.4 and 4.5 and
introduced in Figure 7.3 in case of IgA (top) and FEA (bottom).

The names “Definition of computational domain” and
“Computational IgA/FEM geometry”, are linked to the labels

of the columns of Table 4.1.
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Chapter 5

Patient-specific modeling of
bifurcated geometries

5.1 Introduction

In the previous Chapter, we described the pipeline we created to obtain the
most suitable patient-specific IgA representation of the aneurysmatic tho-
racic aorta, starting from medical images. As we already pointed out, the
geometries we presented in Figure 4.21 are not provided with supra-aortic
branches, because the mapping algorithm we use to get the IgA TAA model
starting from sections of points and a cylindric reference surface, at present,
does not work for branched geometries but only for single-patch tube-like
ones. Not taking into account the presence of supra-aortic branches in the in-
flation simulations on TAA we showed in the previous Chapter, presumably
means that we are neglecting important constitutive parts of the aorta that
may affect the distribution of the von Mises stress at the vessel wall when
looking for patients potentially at risk of aneurysm enlargement and rup-
ture. For this reason, in this Chapter we are going to show how the pipeline
we created can be extended for the creation of a particular type of branched
geometries, characterized by a "Y" shape (e.g., carotid artery). This part of
the work has been done in collaboration with Dr. John Eric Dufour.

Since in this thesis work, we are mostly dealing with thoracic aortas (TA)
and not with "Y"-shaped arterial networks, a new framework based on the
T-spline technology for the creation of any kinds of branched geometries will
be introduced.

5.2 Preliminary branched geometries

The first, natural attempt we made in order to get IgA branched geometries
was obtained expanding the pipeline we presented in Chapter 4. In particu-
lar, as a preliminary hypothesis, we made the assumption that the vascular
segment of interest has a tree-like topology, i.e., one inlet and several outlets.
This is quite a strong assumption, which in general holds true for arterial seg-
ments like carotid artery, and not so much for the thoracic aorta. Therefore,
in the following, our attention will be focused on a patient-specific carotid
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artery geometry, to show our main idea. It relies on the skeleton (i.e., the cen-
terlines of the branches) to create a multi-patch NURBS mesh close enough
to the one extracted from medical images. The centerline of the artery is ob-
tained by means of a routine implemented in VMTK. Once the skeleton is
obtained, the centerline has to be divided into polylines between nodes (i.e.,
its main constituent) like in a graph structure, and the vascular segment has
to be splitted into its constitutive branches. This is obtained by using two
other routines included in VMTK.

Figure 5.1 Example of branch splitting on a patient-specific
carotid artery geometry. Original carotid artery (left). Carotid

artery splitted into its main constitutive branches (right).

Focusing on the centerline of an artery, it may have a really complicated
structure; each polyline can be easily classified into three (3) different cat-
egories by simply looking at the connectivity of the graph (see Figure 5.2):

• Starting line

• Middle line

• Ending line

Moreover, the graph can always be separated into two (2) and only two (2)
subgraphs when looking at a node (this is true for all the nodes except for
the starting and ending ones). This means that three-way branching is not
possible with this strategy. This also means that each node will always have
a starting line (i.e. the branch from which it comes from on the graph) and
two branches (left and right). This shape is commonly called a "Y". If exists
at least one branch and the graph can be divided into two subgraphs, then it
is possible to represent it as a succession of "Y-shaped" structures.

At this stage, each branch of the arterial network (see Figure 5.1, right) is
topologically equivalent to a cylinder and, consequently, can be mapped onto
a rectangular parametric space. For each branch of the arterial network, the
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Figure 5.2 Example of a skeleton of an artery turned into a
graph. A’s represents the connecting nodes and the polylines

are the arteries’ centerlines.

"AngularMetric" array has to be computed in the circumferential direction
by means of a function contained in VMTK software suite. It represents the
periodic circumferential coordinate of mesh points around the centerline. It
spans the interval (−π,+π). In the longitudinal direction of each branch, a
parameterization is also generated using the harmonic mapping method pre-
sented in Chapter 4, section 4.3. In particular, a Laplacian partial differential
equation is solved on each branch surface, by using "temperature" variable
as boundary condition. See Figure 5.3a for an example of application on a
carotid artery patient-specific case. The output of this last operation are sec-
tions of points for each branch (see Figure5.3b).

The sections of points belonging to each branch have to be ordered according
to some criteria, in order to facilitate the subsequent mapping operation, nec-
essary to obtain the correspondent IgA representation of the carotid artery.
The "AngularMetric" map was used to perform the task: for each branch sec-
tions, the points have to be ordered with respect to ascending values of the
"AngularMetric" array. The first point of each section is the one with the low-
est value of the "AngularMetric" array. In order to obtain a good result in this
step, the triangulated branched mesh in input should be carefully refined.
Moreover, the higher the number of sections and points per section, the bet-
ter is the final result in terms of ordering of the points. See Figure 5.4 for
the result we obtained on the patient-specific carotid artery geometry under
study.

Once obtained the sections of points for each branch, the mapping algorithm
introduced in Chapter 4, section 4.4 can be used to create the IgA model of
the aortic network. In details, the sections of points belonging to each branch
are uploaded in an in-house Matlab code. According to the total number
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(a) (b)

Figure 5.3 (a) Example on a carotid artery patient-specific case
of the circumferential map that takes into account the position
of each point on the surface mesh, parameterized with respect
to the centerline. It spans the interval (−π,+π). (b) Sections of
points for each branch obtained using the harmonic mapping

methods we presented in Chapter 4.

Figure 5.4 Ordered (according to the "AngularMetric" array)
sections of points for each branch.

of branches of the arterial network, a "Y" template made of a succession of
conforming cylindrical patches with connected control points is created by
means of another in-house Matlab code. To the control points belonging to
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each cylindrical patch a global (to the all "Y" shape) and a local (to the sin-
gle cylindrical patch) numbering scheme has to be given: connecting nodes
should have the same global number. An example of two possible multi-
patch NURBS "Y" templates, that can be created using our in-house Matlab
code, can be found in Figure 5.5. Please note how more complicated "Y" tem-
plates, like the one in Figure 5.5b, are made up of multiple "Y"s, according to
the topology of the original arterial network. This code for the creation of the
multi-patch NURBS "Y" template is automatic and allows the user to create a
network of conforming cylindrical NURBS patches just inserting the number
of desired cylindrical patches and the radius for each cylinder.

(a) (b)

Figure 5.5 (a) Example of NURBS "Y" basic template (1 "Y")
and its control polygon. (b) Example of NURBS "Y" template

with 3 "Y"s and its control polygon.

Recalling what we said in Chapter 4, section 4.4, in order to perform the map-
ping operation to create an IgA object, we need ordered sections of points
and a reference surface. Given the sections of points we obtained for each
branch of the arterial network, the reference surface is the "Y" template just
described. In particular, there should be a one to one correspondence be-
tween the sections of points for a branch and its correspondent cylindrical
NURBS patch on the "Y" template.

Not only sections of points for each branch have to be ordered circumfer-
entially according to the "AngularMetric" array, but also longitudinally, ac-
cordingly to the orientation of the longitudinal direction for each NURBS
patch. In details, the first section of points for each branch should be located
where the longitudinal parametric coordinate v of its correspondent cylindri-
cal NURBS patch is equal to zero (0). If not ordered in this way, unpleasant
effects may occur later while combining the NURBS patches after mapping
operation. For a clarification on this concept, please see Figure 5.6.

Subsequently, for each branch of the arterial network, the local matrix of
shape functions has to be constructed, as described in Chapter 4, section 4.4.
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COMPLETE VASCULAR 
SEGMENT 

VASCULAR SEGMENT 
SPLIT INTO ITS 
CONSTITUTIVE 

BRANCHES

1. vmtkbranchextractor 
2. vmtkbranchclipper

Figure 5.6 Sections of points for each branch has to be ordered
accordingly to the orientation of the longitudinal direction of
each patch. The position of the first section of points for each
branch in (a) should coincide with v = 0 in the correspondent

cylindrical patch in (b).

This matrix is local to the single branch. Hence, given a branch, it takes
into account all the sections of points for this branch and its correspondent
NURBS cylindrical patch in the "Y" template, but not the presence of coinci-
dent control points between cylindrical patches.

Then, using the global indexing scheme obtained before, and thus, taking
into account the control points in common with other cylindrical patches, N,
the global shape functions matrix of the full Y-shape skeleton (i.e., with all
the branches) can be assembled, starting from the local ones. This passage is
very important because it means that the connectivity between the branches
is hidden in the shape function operator N and no further linking between
control points is required later on. Doing so, a single physical point is only
solved once. The construction of this N matrix is a little more costly than
just evaluating shape functions, since columns should be added/removed or
simply manipulated, according to the global indexing scheme. In any case,
it can still be handled automatically since the whole connectivity between
control points is known as soon as the skeleton is known.

At this point, the global problem Br = N ∗ dPr
vec (rearranged in matricial

form) represents a linear system that can be solved in a least square fashion,
with N being the global shape functions matrix of the whole Y-shape skele-
ton, roughly containing the product between shape functions values in both
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parametric directions for the full Y-shape skeleton, Br the rth Cartesian com-
ponent of the sampling points, and dPr

vec being a set of unknown, i.e. the rth

Cartesian component of the coordinates of the mapped IgA object ordered in
vectorial form. Once obtained the "global" control points coordinates, they
have to be rearranged using the local indexing scheme previously obtained
and assigned to each local mapped surface. For an example of two mapped
carotid arteries using the method we just described, please see Figure 5.7.

The use of clamped knot vectors for the creation of the multi-patch NURBS
"Y" template is evident in Figure 5.7, because of the presence of the C0 lines
that cross each branch longitudinally. It is also very evident where the three
(3) branches join together, creating an extraordinary point at the intersection.

In the previous section, we presented our first attempt in creating patient-
specific branched geometries. The described algorithm is valid only for "Y"
shaped geometries and thus it is limited to a certain type of arterial networks.
It can be for sure improved, requiring a little bit of more coding. For example,
the radius of each cylindrical NURBS patch can be image-driven obtained in-
stead of being input by the user; the creation of the "Y" template is now based
on how many branches compose the patient-specific arterial network. By in-
serting the number of desired branches and the radius, the code automati-
cally creates the "Y" template. It may be different: in particular, the centerline
can be used to create a succession of cylindrical NURBS patches of arbitrary
diameter. Starting from the top of the skeleton and going down, patches can
be recursively created and the connection between patches easily determined
by looking at the connection at a node. In this way, each path on the skeleton
must then be followed. Subsequently, each patch can be then connected to its
neighbor leading to a succession of conforming patches centerline-based.

5.3 Patient-specific complete model of TAA using
T-spline

As a flexible and efficient alternative, we are going to present a new pipeline
for the creation of complex patient-specific branched IgA geometries that re-
lies on the T-spline technology. The first attempt we made in order to create
IgA branched geometries was limited to arterial network characterized by a
tree-like topology, i.e., one inlet and several outlets. This assumption is quite
strong because in general holds true for some arterial segments like carotid
arteries, but not, for example, for the thoracic aorta. Our work mostly deals
with thoracic aortas; hence, a new automatic framework able to reproduce
in a straightforward way complex aortic artery geometries starting from DI-
COM images was required. In the following, the new T-spline based pipeline
will be introduced, together with some IgA-FEAP results of inflation simula-
tions performed on these geometries.

As already pointed out in Chapter 3, T-splines were introduced in the CAD
community as a generalization and extension of NURBS allowing for local
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refinement and coarsening, and representation of geometry of arbitrary topo-
logical genus. T-splines have been applied successfully in the context of IgA
(Bazilevs et al., 2010b; Dörfel, Jüttler, and Simeon, 2010; Bazilevs, Hsu, and
Scott, 2012; Schillinger et al., 2012; Scott et al., 2013; Dimitri et al., 2014) and
have been further improved to meet the demands of analysis (Li et al., 2012;
Scott et al., 2012; Veiga et al., 2012; Li and Scott, 2014; Evans et al., 2015). Some
attempts to construct trivariate solid T-splines can be found in (Wang et al.,
2011; Escobar et al., 2011; Wang et al., 2012; Zhang, Wang, and Hughes, 2012;
Zhang, Wang, and Hughes, 2013; Wang et al., 2013; Liu et al., 2014; Liu et al.,
2015). In general, T-splines are a powerful technology for creating surfaces
in CAD softwares. They are compatible with the traditional CAD NURBS
technology and offer improvements in flexibility, editability and ease-of-use.
T-splines help overcoming the limitations of the rigid tensor product struc-
ture of B-splines and NURBS.

In this thesis Rhino CAD software ver. 5 SR14 64-bit (Rhinoceros: NURBS mod-
eling for Windows.) is used together with the embedded Autodesk T-spline
plug-in (Autodesk T-Splines Plug-in for Rhino. T-Splines, Inc.), for the creation
of patient-specific analysis suitable T-spline models of aortic arteries. We
chose Rhino because it gives designers a variety of functions that are required
to build complex, multi-patch NURBS surfaces as well as to create and ma-
nipulate T-spline surfaces. This is an important enhancement allowing one
to move away from a fairly restrictive NURBS-patch-based geometry design
to a completely unstructured, watertight surface definition while respecting
all the constraints imposed by analysis. The plug-in is still distributed but
not maintained. Figures 5.8a and 5.8b show a snapshot of the Rhino CAD
modeling software interface, with the T-spline plug-in integrated. This Fig-
ure also shows a first example of a patient-specific model of thoracic aorta
represented using T-spline technology.

T-spline surfaces may be created from scratch inside the T-spline plug-in for
Rhino. For an example, see Figure 5.9. This T-spline surface has been created
starting from a primitive surface (a torus) then modified. T-spline primitives
can be created with axial or radial symmetry (radial, in this specific case).
When a T-spline has symmetry enabled, the isocurves on the symmetry bor-
ders are highlighted to show the symmetry boundaries. In Figure 5.9, they
are highlighted in green.

Another way to create T-spline smooth surfaces is to convert T-spline from a
mesh. Not all the meshes are good candidates for conversion. There is only
one type of mesh that is well suited for conversion to T-spline and it is the
quadrilateral-based ("quad-based") ".obj" mesh, mainly composed of four-
sided polygons and usually created by means of digital content applications
like Blender (Blender - a 3D modeling and rendering package, http://www.
blender.org), Autodesk Maya (https://www.autodesk.eu/products/maya/
overview), etc. It is still good to have some triangles and n-sided faces (with
n equal to 5,6), but the mesh should be under 10,000 to 100,000 faces, de-
pending on the power of the computer and how many triangles are in the
mesh. Stereolithography file (".stl") meshes cannot be directly converted to

http://www.blender.org
http://www.blender.org
https://www.autodesk.eu/products/maya/overview
https://www.autodesk.eu/products/maya/overview
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T-spline because they are too finely refined; the risk in performing a direct
conversion from a ".stl" meshes to a T-spline object is running out of memory.
Given a quad-based mesh, the correspondent T-spline mesh can be created
by pushing the "T-spline converter" button available in the T-spline plug-in
for Rhino. After the conversion is done, the mesh still looks faceted as before,
even though it is a different object (if its properties are checked). In particular,
all the T-spline surfaces that will be illustrated in this thesis are bicubic.

In our case, the starting point of the pipeline is the triangulated surface mesh
of the aortic artery extracted from DICOM images, with the same modali-
ties described in Chapter 4, Section 4.2 but without the need of cutting and
capping the supra-aortic branches this time. This mesh is in ".stl" format.
Therefore, it has to be converted into a quad-based ".obj" mesh and this
can be done using Autodesk ReCap Photo software (https://www.autodesk.
com/products/recap/overview), that allows the user to import the ".stl" file,
manipulate the model and export it out at quad-based ".obj", deciding at
the same time how many faces the model should be composed of (between
10,000 and 100,000). Performing a transformation between a ".stl" into a ".obj"
file essentially means performing a nodes reduction operation while chang-
ing, at the same time, the shape of the element (from triangulated to quadri-
lateral elements). For an example of transformation between ".stl" and ".obj"
file of a patient-specific TA case, please see Figure 5.10.

Other more complicated examples of patient-specific T-meshes created by
converting an ".stl" file into a ".obj" file and then the ".obj" file into a T-mesh
are shown in Figure 5.11. Figure 5.11a shows an example of TA (with just
the supra-aortic branches) provided us by doctors from IRCCS Policlinico
San Donato, San Donato M.se, Milan, Italy, whereas Figure 5.11b shows an
example of the complete aorta, from the ascending aorta to the iliac artery,
given us by prof. A. Kamensky, from University of Nebraska Medical Center.

Once converted, it is possible to manage the number of faces of the T-spline
mesh. This is achieved by the "tsSubdivide" command, that splits a single T-
spline face into multiple faces. This command provides the simplest way to
add more details to a T-spline model. There are two modes: simple and exact.
"tsSubdivide-Simple", allows you to selected the face(s) to be splitted and
provides more control points in that region, without adding or changing any
other control points to the model. "tsSubdivide-Exact" allows the user to add
more details without changing the surface shape. To achieve this, in some
areas of the surface, such as near extraordinary points, the tool needs to shift
existing control points in order to maintain the surface shape. The T-spline
mesh that can be seen in Figure 5.11a, is obtained with the "tsSubdivide-
Exact" command. When generating real world T-spline models, the presence
of extraordinary points in the T-mesh can not be avoided, as we already said
in Chapter 3. For an example of extraordinary points on the patient-specific
T-mesh shown in Figure 5.11a, see Figure 5.12.

Once the design of a T-spline is complete, the model can be saved as an

https://www.autodesk.com/products/recap/overview
https://www.autodesk.com/products/recap/overview
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analysis-suitable model automatically, without the need for mesh genera-
tion or geometry clean-up steps. It is possible to export T-splines for use
in standard IgA simulations as well as collocation and boundary elements
simulations. The ".iga" file format is the file extension in Rhino that permits
the export of T-spline analysis model file. This file format is the one accepted
by IgA-FEAP for loading the T-spline object. For more information regard-
ing all the fields that compose this file, please see (Scott et al., 2014). Once the
T-mesh has been imported in IgA-FEAP, note the fine mesh locations around
extraordinary points (not avoidable - Figure 5.13).

We made IgA-FEAP able to perform the calculation of isogeometric objects
represented by T-spline utilizing Bèzier extraction (Scott et al., 2011). This
provides a finite element representation of T-splines, and facilitates the in-
corporation into existing finite element programs. In short, the solution is
obtained using an extraction operator form in which the element shape func-
tions are expressed in terms of the shape functions given as:

Ne = CeRe (5.1)

where Re are Bèzier representation of NURBS, Ce is the element extraction
operator and Ne are the T-spline shape function. For more details regarding
Bèzier extraction with T-splines, the reader is referred to Chapter 3 and (Scott
et al., 2011). Only surface data is provided and thus analyses are restricted
to bodies that are represented by surfaces (e.g., 2-d solid bodies, membranes
and shells). In this thesis work, we are using shells for the analyses. At
present, in IgA-FEAP, only the Kirchhoff-Love thin-shell element is available.
For more details regarding the isogeometric formulation of the Kirchhoff-
Love thin shell element, please see (Kiendl et al., 2009).

Following the analysis details described in Chapter 4, Section 4.7.2, using
the T-meshes created by means of the Autodesk T-spline plug-in exported
in ".iga" format to IgA-FEAP, we run preliminary inflation simulations on
patient-specific arteries of different types. Up to now, the linear elastic the-
ory is adopted (i.e., small strains and small displacement); in particular, the
constitutive model adopted for the simulations is the linear elastic one with
parameters derived from literature (Nathan et al., 2011), with E = 3 MPa
and ν = 0.46. Generalized Robin Boundary Conditions were used to repre-
sent the viscoelastic behavior of the tissues surrounding the aorta (Moireau
et al., 2012). Just the elasticity term ks was taken into account, with ks= 10MPa
as proposed in (Moireau et al., 2012). An internal pressure of 120mmHg was
imposed. Constant thickness value equal to 0.1 mm is used for the thin-shell
elements.

The von Mises stress distribution at the vessel wall is checked. Simulations
were performed using 1 CPU and the external Pardiso solver (https://www.
pardiso-project.org/) on a Intel(R) Core(TM) i7-3537U laptop computer.
Some simulations results can be seen in Figures 5.14, 5.15, 5.16.

https://www.pardiso-project.org/
https://www.pardiso-project.org/
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Mesh label DOF number CPU time [mins]
CA-1 6,102 5.074
CA-2 31,434 14.53
TA-1 32,604 15.89
A-1 32,622 16.01

Table 5.1 CPU time for the inflation simulations whose results
are shown in Figures 5.14, 5.15, 5.16.

The presented results are just preliminary: we were mainly interested in find-
ing a straightforward way to create complete and complex patient-specific
geometries starting from a mesh derived from DICOM images, without the
need of cutting and capping arterial branches that may have an important
impact on the von Mises stress distribution at the vessel wall, as demon-
strated by (Nathan et al., 2011). This pipeline takes from 20 to 30 minutes to
complete, depending on the computer (without taking into account the seg-
mentation time that, if performed by an expert user, usually takes around 20
minutes). Moreover, we were interested in making IgA-FEAP able to work
smoothly with T-meshes. In its previous versions (v. 8.4), IgA-FEAP was
already able to work with simple T-spline meshes but some features within
the Autodesk T-spline plug-in were modified, together with the format of
the export file. Therefore a big work has been done in order to permit IgA-
FEAP to properly work with T-splines objects, starting from memory allo-
cation problems to the capability to plot them properly. CPU time for the
inflation simulations we run on the geometries in Figures 5.14, 5.15, 5.16, are
shown in Table 5.1. Having now the opportunity to run analyses in a really
short time with T-splines-based patient-specific models like the one shown
in Figure 5.11b, is a big achievement in terms of IgA-FEAP capabilities.

5.3.1 Conclusion

In this Chapter, we described two methodologies to obtain patient-specific
IgA geometries with branches. The first one is multi-patch-NURBS based
and is suitable for arterial networks with a tree-like topology whereas the
second one is T-spline based (via the Autodesk T-splines plug-in embedded
in Rhino) and is suitable for any type of arterial network. Both frameworks
can be for sure extended and improved. In particular, focusing on the second
one, at present, just linear-elastic T-splines-based inflation simulations can
be performed in IgA-FEAP and prestress analyses on T-splines geometries
are not executed. Moreover, the adoption of a variable thickness throughout
the aorta for the thin-shells elements should be taken into account together
with the development and use of a volumetric T-spline model for the aorta.
Nevertheless, this framework shows promising results in terms of CPU time
and accuracy. Therefore, with the proper extensions, e.g, prestressed geom-
etry, inclusion of a patient-specific constitutive model for the aorta, variable
shell thickness according to the different portion of the aorta, inclusion of
the intraluminal thrombus, etc., it may represent a more suitable tool than
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the one presented in Chapter 4 to be used real-time by physicians during the
preoperative planning operations phase.
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(a) First example of carotid artery mapping. Left:
original geometry. Right: mapped IgA geometry.

(b) Second example of carotid artery
mapping. Left: original geometry. Right:

mapped IgA geometry.

Figure 5.7 Examples of IgA mapping of two patient-specific
carotid arteries.
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(a) Rhino CAD modeling software with the T-spline plug-in integrated.

(b) First example of T-mesh in Rhino CAD modeling software. Detailed object
properties may be displayed using "what" command.
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Figure 5.9 Example of T-spline surface created from scratch
inside the T-spline plug-in for Rhino.

(a) (b)

Figure 5.10 Examples of transformation of a ".stl" file (a) into a
quad-based ".obj" file (b) using the Autodesk ReCap Photo

software.
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(a) (b)

Figure 5.11 Examples of patient-specific T-meshes created by
converting an ".stl" file into a ".obj" file and then the ".obj" file

into a T-mesh.
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Figure 5.12 Example of extraordinary points on the T-mesh
shown in Figure 5.11a (Rhino view).

Figure 5.13 Fine mesh location around extraordinary points in
IgA-FEAP for the patient-specific model depicted in Figure

5.11a.
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Figure 5.14 von Mises stress results on two examples of
pathological carotid arteries (CA-1 & CA-2) T-spline meshes.
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Figure 5.15 von Mises stress result on a patient-specific TA
T-spline mesh (TA-1).

Figure 5.16 von Mises stress result on a complete
patient-specific aorta T-spline mesh (A-1).
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Chapter 6

Towards an accurate simulation of
complex contact interactions in
biomechanics problems using IgA

Contact problems are an hot topic in computational biomechanics, where an
accurate and robust contact representation is essential to evaluate many im-
portant biomedical device features to accurately simulate a wide variety of
surgical procedures for pre-operative planning. In this context, IgA can pro-
vide a reliable tool to exactly represent the contact surfaces, also taking ad-
vantage of its higher regularity with respect to traditional FEA. This Chap-
ter aims at showing some applications of frictionless contact interactions be-
tween stent devices and deformable surfaces, in the context of Carotid Artery
Stenting (CAS). In particular, following the PhD thesis work by Dr. Mauro
Ferraro, we are going to apply the robust IgA contact framework he set up to
the evaluation in IgA-FEAP of contact forces between a complex geometry,
i.e., a stent, and a deformable surface like a catheter or an artery, resorting to
a reduced number of DOFs with respect to classical FEA.

Since this thesis is mainly focused on thoracic aortic aneurysms, we would
like to remind that CAS is a minimally-invasive procedure widely employed
for the treatment of artherosclerosis of carotid arteries. In particular, the CAS
procedure restores the physiological blood flow by means of expansion of a
metallic endoprothesis, i.e., the stent, which is driven to the target lesion by
means of an endoluminal path. Nowadays, CAS is considered a cost-effective
alternative to the traditional open surgery approach, leading to minimal hos-
pitalization and reduced social and economic costs (Roffi and Mathias, 2013;
Brott et al., 2010). Nevertheless, it is important to remark that stent delivery
is in general a complex procedure, since the stent needs to accommodate the
tortuous path from the incision to the lesion location, avoiding straightening
the carotid artery in order to limit vessel injuries. Stent design plays a cru-
cial role in determining the mechanical properties of the device. Therefore,
since experimental tests are often not applicable due to the high costs of pro-
totype manufacturing, and because experimentally reproducing the realistic
working conditions can be difficult, modern computational methods, mainly
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based on FEA (Conti et al., 2011; Grogan, Leen, and McHugh, 2012; Auric-
chio et al., 2011; Kleinstreuer et al., 2008; Mortier et al., 2010), are used also in
this case as a tool to simulate clinical procedures for pre-operative planning.

6.1 Contact problems in vascular biomechanics

Computational contact mechanics principles are widely employed in vascu-
lar biomechanics to numerically reproduce important experimental bench-
marks (e.g. stent radial strength evaluation) and, more in general, to simu-
late the interaction between a cardiovascular device and a biological struc-
ture, which represents one of the most important sources of nonlinearity in
structural biomechanics and the most important in terms of extrapolation
of clinical relevant information for surgical preoperative planning. By "cou-
pling" the pipeline we described in Chapter 4 and the contact framework by
Dr. M. Ferraro, another step toward real-life applications in cardiovascular
biomechanics using IgA can be made.

The goal of this section is to provide the reader with some basic concepts
of computational contact mechanics, justifying at the same time the need of
IgA to better represent and solve contact problems, and to show in action
a multi-patch double-side contact driver (i.e., both cylinder-stent and stent-
vessel) applied to crimping and deployment on a patient-specific vessel.

The following specification should be made: in this Chapter, the type of knot
vectors employed along all the parametric directions of the solid NURBS-
based models under investigations are clamped knot vectors. The use of un-
clamped knot vectors in this type of applications has not been investigated
yet and will be the object of future studies.

6.1.1 Basic concepts in computational contact mechanics

The typical contact boundary value problem involves two deformable bodies
undergoing finite deformations. The most common approach identifies two
basic entities, i.e., a slave body Bs and a master body Bm (see Figure 6.1).

If contact occurs during deformation, it is possible to identify the contact
surface Γc. This boundary value problem is inherently non-linear, since the
contact condition introduces additional kinematics constraints to prevent the
compenetration of the two bodies. The discrete counterpart of contact bound-
ary value problems employed FEA for many years (Wriggers and Nacken-
horst, 2006). Along the boundary Γc of the two bodies, different contact mod-
els can be introduced. In the simulations we are going to present, we focused
on the simplest model, i.e., frictionless contact, in which the only non-zero
component of the contact traction is normal to the contact surfaces.

Contact pairs are the basic entities in computational contact mechanics. These
are couples of points (one for the slave body and one for the master body)
where the contact constraint is locally enforced. For FEA contact problems,
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(a) (b)

Figure 6.1 2D contact problem. (a) no contact; (b) contact state.

the most implemented approach to define the contact pairs is the node-to
segment (NTS) algorithm, where each contact pair is defined by a node com-
ing from the slave surface and its projection on the master surface (Figure 6.2).
In general, the projection not necessarily coincides with a node.

Figure 6.2 Node To Surface (NTS) contact.

Given the intrinsic C0 continuity along the inter element FEA nodes and the
lack of smoothness in the geometric description of the contact surfaces, it
may occur that the computation of the projection of the slave node to the
master segment is not unique (Figure 6.3 - Left). Moreover, it is also possible
that the projection is not unique and, at the same time, it is not located in
the interior of the master segments (Figure 6.3 - Right). For this reason, IgA,
a discretization technique able to guarantee higher order continuity along
the elements, could provide an ideal framework to overcome these issues in
terms of surface smoothness.

The NTS approach cannot be naturally extended to IgA because of the non-
interpolatory nature of the control points: to overcome this limitation, the
NTS approach has been first replaced by the Knot-to-Segment (KTS) one
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Figure 6.3 Not uniqueness of the master projection. Left: two
projection on the master side. Right: no projection on the

master side.

proposed by (Temizer, Wriggers, and Hughes, 2011), where the contact con-
straint is not imposed on the slave nodes but at the Gauss points belonging
to each slave contact surface (see Figure 6.4).

Figure 6.4 Knot-to-segment contact: the Gauss points on the
slave surface are highlighted as x.

This first formulation of the KTS approach has been modified because it led
to an over-constrained problem induced by the discrepancy between the to-
tal number of degrees of freedom of the contact surfaces and the number
of contact pairs, i.e., the number of Gauss points. The new mortar-based
KTS formulation proposed by (Temizer, Wriggers, and Hughes, 2011) and
(De Lorenzis et al., 2011) relaxed the over-constrained KTS one, exhibiting at
the same time superior results over the classic KTS and NTS approaches.

A contact driver reproducing the mortar-KTS algorithm proposed by (De
Lorenzis et al., 2011) for NURBS discretization and by (Dimitri et al., 2014)
for T-spline discretization is implemented in the embedded IgA package for
FEAP. For a more extensive description of each block of the IgA-FEAP con-
tact driver, the reader is referred to the thesis work by Dr. M. Ferraro.

Once the pairs are established, the gap g determines which nodes are in con-
tact. The entity g is defined as:
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g = [xs − xm] · nc (6.1)

where xs and xm are the slave node and its master projection location in
the deformed configuration, nc the outward normal evaluated in the pro-
jection point. If g > 0 there is no contact, while if g < 0 compenetration
may occur. Given the total energy of the system Π, a proper contact contri-
bution Πc should be taken into account when contact occurs. Several tech-
niques have been developed and three big families can be roughly identified:
Lagrangian Multiplier functional form, Augmented Lagrangian functional
form and Penalty functional form (Wriggers and Nackenhorst, 2006). In the
simulations we are going to present, the contact constraint is regularized with
a penalty method for which holds:

Πc = Π(u) =
∫

γc
εg2dγ, (6.2)

where ε is an user-defined penalty coefficient. By expressing Πc in this way,
the final gap is not zero and so, some compenetrations can occur, depending
on the value of the parameter ε (high values of ε reduce the final gap). The
main advantage of this method is that is does not require any other additional
degrees of freedom. The principal drawback is that there is no general rule
to identify a proper value of ε; it should not be extremely high, because this
may lead to ill-conditioned problems. The contact constraint in IgA-FEAP
can also be regularized with the augmented Uszawa algorithm (Wriggers
and Nackenhorst, 2006), instead with the penalty one. In this way, a sensitive
increase of gap accuracy can be achieved (see Dr. M. Ferraro’s work).

6.1.2 Stent crimping simulations

In the following, the IgA contact driver we just cited is tested with some real-
life application examples, including stent geometries, real artery models and
inelastic constitutive models. In particular, as a first study, we are interested
in evaluating the performance of different discretization strategies, i.e., IgA,
linear FEA (h-FEA) and higher order FEA (p-FEA), applied to the study of
stent crimping on one ring of a real-life stent.

Linear discretization represents a de facto standard for the numerical evalua-
tion of the stent mechanical features (Carnelli et al., 2011; Petrini et al., 2004;
Petrini et al., 2005), while the employment of higher order elements allows an
accurate representation of the stent geometry combined with better approx-
imation properties with respect to linear FEA. Stent crimping represents the
step before stent deployment and activation of the contact between stent and
vessel. The quantitative comparison between numerical and experimental
results is beyond the scope of this study: a quantitative comparison requires
further investigations in terms of material parameters calibration from ex-
perimental data and analysis of experimental boundary conditions.
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The stent model used in these simulations resembles one ring of the commer-
cially available Bard ViVEXX Carotid Stent (C. R. Bard Angiomed GmbH &
Co., Germany) used in clinical practice. This stent is a straight, self-expanding
open-cell design laser-cut from a low-profile nitinol tube (Rebelo, Fu, and
Lawrenchuk, 2009; Thériault et al., 2006). Since no data were available from
the manufacturer, the main geometrical features of this device are derived
from high-resolution micro-CT scans of the stent in the delivery system (Conti
et al., 2011). In brief, the steps required to generate the stent model are the
following (Ferraro et al., 2015):

• A planar CAD geometry that corresponds to the stent unfolded config-
uration is generated in Rhino v. 4.0 SR8 (Rhinoceros: NURBS modeling
for Windows.). Subsequently, a 2D CAD surface is generated for each
NURBS patch.

• The NURBS data (i.e., control points, knots and weights) are exported
as text (.txt) files by mean of an in-house code developed in Visual Basic
Scripting.

• The NURBS surface structure is extruded and rolled by means of an
in-house Matlab code, leading to the final stent in open configuration.

• Each patch composing the trivariate NURBS structure is finally exported
in a suitable format for the solver FEAP. The control points at the con-
forming interface between the two adjacent patches are tied in order to
obtain the IgA stent.

The stent structure is regular and it is always composed of two patch fami-
lies, i.e., the linker and the ring patches. The total number of NURBS patches
for the stent is 18. The material model originally proposed by Souza (Souza,
Mamiya, and Zouain, 1998) and implemented in FEAP in the version pro-
posed by (Auricchio and Petrini, 2004) has been considered for the stent. The
hypothesis of large displacements and rotations, but small strains (as typ-
ically induced in many biomedical applications (Petrini et al., 2005)) is as-
sumed. In Table 6.1 all the parameters used for the simulations are summa-
rized. For further details regarding this constitutive law, the reader should
refer to (Souza, Mamiya, and Zouain, 1998; Auricchio and Petrini, 2004) and
Dr. Ferraro‘s work.

The crimper is the catheter and it is composed by one cylindrical NURBS
patch and it is modeled as a rigid body with Neohookean material (E =
250000MPa, ν = 0.3). The stent and its cylindrical crimper are depicted in
Figure 6.5.

The boundary conditions employed in the simulations include displacement
conditions on the crimper to impose the radius reduction, and the minimal
stent constraints to avoid rigid body motions. In particular, the crimper ra-
dius is reduced from 4.8 mm to 1.8 mm. The contact constraint is regularized
using the penalty method and the penalty coefficient ε has been set to 104.
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Souza material parameters
E Elastic modulus 53000 MPa
ν Poisson’s ratio 0.33
h Linear hardening parameter 1000 MPa
β Stress-temperature relation parameter 6.1 MPa/K

T_0 Reference temperature 243 K
R Physiological pressure 100 MPa

ε_L Maximum transformation strain norm 5.6%

Table 6.1 Parameters values used for the stent in the contact
simulations.

Figure 6.5 Stent model in undeformed configuration with its
cylindrical crimper.

For the IgA case we used cubic-quadratic-quadratic elements (for circumfer-
ential, longitudinal and thickness directions, respectively) for the stent and
quadratic-quadratic-quadratic elements for the crimper. Moreover, we con-
sidered 4 meshes: in all 4, the number of DOFs for the stent has been kept
fixed and equal to 35,829 DOFs, whereas we performed knot-insertion on the
crimper so to have a "Coarse" (refinement indices along u, v and w = [5, 5,
0]), "Medium" (refinement indices along u, v and w = [10, 10, 0]), "Refined"
(refinement indices along u, v and w = [15, 15, 0]) and "Most Refined" (re-
finement indices along u, v and w = [20, 20, 0]) mesh, with increasing num-
ber of DOFs. Both the h-FEM and p-FEM meshes are recovered by iterative
knot insertion performed on the highly regular 4 NURBS meshes just de-
scribed, resorting to 12 meshes in total. Consequently, the number of DOFs
of the stent have been kept fixed also in the p-FEA (57,105 DOFs) and h-FEA
(54,975 DOFs) meshes. For the p-FEA, we employ cubic-quadratic-quadratic
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elements. In particular, the p-FEA polynomial orders are obtained by con-
struction of the 2D NURBS surface for circumferential and longitudinal di-
rections, while the thickness polynomial orders, linear by construction, has
been raised to quadratic in order to have the fully high-order p-FEA mesh.

The contour plot for the displacement solution obtained with the most-refined
crimper mesh is depicted in Figure 6.8.

Figure 6.6 Stent crimping test: radial displacement contour
plot.

We are interested in comparing the performances, on a per-degree-of-freedom
basis, with respect to the stent resultant radial reaction force quantity ([N]),
between IgA, p-FEA and h-FEA, in reproducing the stent crimping non-
linear phenomenum, when a particular stent design is used. The resultant
of the radial reaction force is obtained as the sum of the reaction force contri-
butions in the radial direction of the stent. Moreover, we would like to check
if different refinements of the crimper (i.e., the catheter) may have an impact
on the stent radial reaction force quantity. For this reason, the radial reaction
force at different values (10) of the stent Z coordinate [mm] has been com-
puted and depicted in Figure 6.6, for each one of the 4 meshes belonging to
the different considered discretization methods.

The data concerning resultant reaction force values and number of DOFs for
each discretization method, are reported in Table 6.2.

Focusing on the IgA results, we can say that there is no need to use the most
refined mesh (labeled as "IgA-4") for the crimper in order to catch the behav-
ior of the stent radial reaction force during stent crimping test. With almost
10 thousands degrees of freedom for the crimper, we are able to describe how
the stent radial reaction force is changing along the stent Z coordinate. Fo-
cusing on the comparison between IgA and p-FEA and h-FEA, we can see
that p-FEA presents a better performance with respect to h-FEA on a degree
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Figure 6.7 Stent Z coordinate.

Figure 6.8 Stent crimping test results. Radial reaction force
([N]) taken at different values of the stent Z coordinate for

different discretization techniques and for different refinement
of the crimper mesh.

of freedom basis, as shown also in (Ferraro et al., 2015). For p-FEA, in or-
der to obtain a result similar to the one obtained with the "IgA-3" mesh in
terms of radial reaction force, more than three (3) times the number of DOFs
is required (see pFEM-3 mesh), with a gain of over one order of magnitude
in DOF number for IgA. h-FEA shows different behaviors with different re-
finements, which may be related to some spurious stress concentrations that
may lead to an erroneous reproduction of the crimping deformation path.
Not only the results are very different from the IgA and p-FEA ones, but they
also seem to diverge while increasing the number of DOFs for the crimper.
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Figure 6.9 Comparison of the performances on a
per-degree-of-freedom basis, between IgA, p-FEA and h-FEA
with respect to the resultant reaction force quantity ([N]) in

reproducing the stent crimping non-linear effect, using a
particular stent design.
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Mesh Label DOFs Crimper Resultant reaction force
value ([N])

IgA-coarse 243 11.0987
IgA-medium 1,575 7.7456
IgA-refined 9,945 7.7361

IgA-most refined 36,000 7.7430
FEM-coarse 8,796 133.4788

FEM-medium 33,771 58.0043
FEM-refined 59,409 6.0630

FEM-most refined 132,309 16.2720
pFEM-coarse 243 16.8113

pFEM-medium 4,059 11.4319
pFEM-refined 33,759 7.7997

pFEM-most refined 59,649 8.0754

Table 6.2 Table summarizing for each mesh for each
discretization method the value of the radial resultant reaction
force obtained in the non linear stent crimping simulations, as

well as the number of DOFs of the crimper.

One clarification should be done: as can be seen from the results reported in
Table 6.2, both IgA and p-FEA meshes seem to level off when a certain num-
ber of DOFs is reached. Further investigations are needed to understand the
reason of this behavior.

Therefore, for this study, we demonstrated the capability of IgA to reproduce
nonlinear local effects with a reduced number of DOFs with respect to classi-
cal FEA and p-FEA. It is remarkable to observe how low-regularity and low-
interpolation order in FEA basis functions can lead to a reduced capability of
catching the physics of the problem under investigation.

6.1.3 Stent implant simulation

As a second study, the interaction between a stent and a patient-specific ves-
sel model is investigated, always by means of the contact-driver available
in IgA-FEAP. In particular, we performed a two-step simulation procedure
(Conti et al., 2011; Auricchio et al., 2011; Conti et al., 2009).

In the first step, starting from a straight configuration, the catheter is gradu-
ally crimped leading to the stent deformation; the contact between the stent
and the vessel is deactivated in this step. As before, the crimper radius is re-
duced from 4.8 mm to 1.8 mm. The minimal constraints to avoid rigid body
motions are applied to the stent. Subsequently, from the crimped configura-
tion, the catheter is re-enlarged and consequently the stent expands against
the vessel wall (see Figure 6.11 for analysis setup specification).
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Figure 6.10 Stent implant results from (Conti et al., 2011;
Auricchio et al., 2011; Conti et al., 2009)

Figure 6.11 Analysis setup specification for stent implant
simulation.

The contact between the stent and the vessel is activated in this step. Also
in this second study, the stent represents a portion of the commercially avail-
able Bard ViVEXX Carotid Stent and it is composed of two patch families, i.e.,
the linker and the ring patches. The total number of NURBS patches for the
stent is 18 as in the previous case. We employed cubic-quadratic-quadratic
elements (for circumferential, longitudinal and thickness directions, respec-
tively) for the stent, quadratic-quadratic-quadratic elements for the catheter
and cubic-quadratic-quadratic elements for the patient-specific artery. The
stent is modeled as a Souza model (Souza, Mamiya, and Zouain, 1998), with
the same parameters values employed for the crimping simulation previ-
ously described (see Table 6.1). The artery and the catheter are modeled with
a Neohookean model using experimental parameters. In particular, for the
catheter, E = 70000000 MPa, ν = 0.3 and for the aorta E = 5 MPa, ν = 0.3.
The patient-specific model for the artery is obtained by means of the clamped
version of the mapping algorithm described in Chapter 4, starting from DI-
COM images (see Figure 6.12). The 3D geometry of the patient-specific artery
and of the stent in its unloaded configuration is depicted in Figure 6.13a and
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6.13b, respectively. In Figures 6.13c and 6.13d the stent deformed configura-
tion after crimping and the stent deformed configuration after deployment
are shown.

Figure 6.12 Patient-specific vessel modeling for the stent
implant simulation.

We analyzed the results we obtained focusing on the following points: the
vessel injury induced by the stent deployment (by evaluating the von Mises
stress distribution in the tissue (Auricchio et al., 2011)) and convergence rate
of IgA with respect to the deformation energy of the artery. In Figure 6.14
the von Mises stress distribution in post-stenting vessel can be seen and it
is higher where the stent is perfectly in contact with the vessel. Figure 6.15
shows the von Mises stress distribution along the stent structure: it is not
symmetric due to the vessel shape and it is higher where the stent structure
is in contact with the vessel inner wall.

We are also interested in the performances of IgA to reproduce the stent-
deployment non-linear phenomenon. For this reason, we considered five
(5) IgA meshes; for each mesh, the number of DOFs of the stent and of the
crimper has been kept fixed, whereas the number of DOFs of the patient-
specific artery has been progressively increased. Artery deformation energy
[Nmm] for each one of the 5 meshes, together with the one of the "IgA-
overkill" mesh, i.e. the one that shows the finest artery mesh, is depicted in
Figure 6.16a, with respect to the analyses simulation times [s]. Artery defor-
mation energy convergence plot with respect to DOFs is reported in Figure
6.16b. Finally the data concerning deformation energy values at the last time
step of the analysis and numerical errors evaluated with respect to the defor-
mation energy of the "IgA-overkill" mesh at the last time step of the analysis,
are reported for each one of the considered five (5) IgA meshes in Table 6.3.

We were also interested in comparing the performances, on a per-degree-of-
freedom basis between IgA and linear FEA with respect to the artery defor-
mation energy [Nmm]. The linear FEA (h-FEA) meshes were obtained by
iterative knot insertion performed on the highly regular five NURBS meshes
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(a) (b)

(c) (d)

Figure 6.13 Stent deployment test: (a) vessel model; (b) stent
model; (c) Deformed configuration after crimping; (d)

Deformed configuration after deployment.

previously described, so to have five low-order NURBS meshes character-
ized by C0 continuity everywhere. Therefore, the same contact simulations
we performed in IgA-FEAP on the high-order, highly regular NURBS meshes
were also run in IgA-FEAP on the low-order NURBS meshes with C0 conti-
nuity everywhere. The results we obtained on the low-order NURBS meshes
in terms of artery deformation energy versus simulation times (Figure 6.18)
demonstrate how these low-order meshes are far from converging to the
same artery deformation energy value of the high-order corresponding ones.
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Figure 6.14 Von Mises stress distribution [MPa] in the
post-stenting vessel.

Figure 6.15 Von Mises stress distribution [MPa] in the stent
structure.

In order to investigate this behavior and to see if the artery deformation en-
ergy value of the low-order meshes tends to the IgA converged one, the num-
ber of DOFs of the artery should be further increased. This operation cannot
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Figure 6.16 (a) Artery deformation energy [Nmm]plot for each
one of the considered five (5) meshes with respect to

simulation time [s]. In each mesh, the number of degrees of
freedom of the artery has been progressively increased.

"IgA-overkill" is the mesh that shows the finest artery model.
(b) Artery deformation energy [Nmm] with respect to the

artery DOFs.
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Figure 6.17 Numerical errors evaluated with respect to the
deformation energy of the "IgA-overkill" mesh at the last

time-step of the analysis are plot against DOFs (a) and CPU
time (b).
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Mesh Label DOFs Error CPU-time [h]
IgA-1 1347 39.7119% 1.05
IgA-2 4917 19.4512% 1.30
IgA-3 15765 6.2717% 2.69
IgA-4 32757 1.8663% 5.67
IgA-5 85173 0.9988% 12.56

IgA-overkill 323733 - 27.74

Table 6.3 Analysis of stent deployment: relative errors are
evaluated with respect to the finest IgA simulation, i.e.

"IgA-overkill" mesh.

Figure 6.18 Deformation energy [Nmm] versus simulation
time [s] for IgA and the corresponding h-FEA meshes. The

results demonstrate how h-FEA low order meshes are far from
converging to the same artery deformation energy of the

high-order corresponding ones. For this reason, to investigate
the issue, we suggest increasing the number of DOFs of the

artery as well as running the same contact analyses in another
finite element solver like Abaqus.

be done in (IgA-)FEAP over a certain limit due to memory bound problems.
For this reason, we thought appropriate to run the same contact simulations
in the finite element solver Abaqus/Explicit (v. 6.11 Dassault Systemes, Prov-
idence, RI, USA), without resorting to memory bound problem. In the first
attempt we made, the analyses were not converging. We think that they were
not converging because the number of degrees of freedom of the stent is way
larger than the one of the artery, probably causing problems in the slave-
master local contact search. However, this statement has not been confirmed
yet.

6.2 Conclusion

In this Chapter we applied a robust IgA contact framework to the evaluation
in IgA-FEAP of contact forces between a complex geometry, i.e., a stent, and
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a deformable surface like a catheter or an artery, resorting to a reduced num-
ber of DOFs with respect to classical FEA. Our numerical results suggest that
the employment of IgA allows one to accurately represent the computational
domain and to obtain a better approximation of the solution with a reduced
number of degrees of freedom with respect to h-FEA and p-FEA. p-FEA fol-
lows the same IgA solution trends but, in order to obtain comparable results
in terms of resultant of the radial force measure, the number of degrees of
freedom has to be increased. It is evident that IgA, with its high-order and
high-regularity basis functions, presents a superior capability to reproduce
non-linear effects with respect to linear and high-order FEA.
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Chapter 7

Patient-specific application of the
developed methodologies

7.1 Collaboration with IRCCS Policlinico San Do-
nato

This thesis work was born in strong collaboration with the medical research
hospital IRCCS Policlinico San Donato, San Donato M.se, Milan, Italy in
the context of the iCardioCloud project, which aimed at creating a cloud
platform in which doctors can interact with engineers in order to develop
new tools for improving endovascular surgery. To achieve this, biomedical
technologies associated with imaging and numerical simulations, have to be
placed inside the medical decision process. The final goal of the project was
to build a Computational Fluid Dynamics (CFD) database of simulations in
patients with thoracic aortic diseases. In particular, the project was focused
on two main pathologies, TAA and TAD, explained in Chapter 2. When a
patient is diagnosed with thoracic aortic disease, informed consent is first
asked for enrollment in the study. Subsequently, the following studies are
performed: Contrast Enhanced CT of the thorax, Phase Contrast - Magnetic
Resonance Imaging, Clinical History. The project moved as a strong collab-
oration between the University of Pavia and IRCCS Policlinico San Donato,
together with the participation of the Department of Mathematics and Com-
puter Science of Emory University, USA. One of the pillars of the iCardio-
Cloud philosophy was to facilitate the exchange of medical data. In general,
technical details are difficult to understand for physicians and so protocols
should be as simple as possible. Therefore, the iCardioCloud platform re-
lies on a cloud-based repository in which only significant and straightfor-
ward information is available. Up to now, 21 patients have been enrolled
in the study. For more information regarding the iCardioCloud project, the
reader is referred to the thesis work by Dr. R. M. Romarowski, available at:
http://www-2.unipv.it/compmech/phd_diss.html.

In the following sections, three studies mainly based on the pipeline we in-
troduced in Chapter 4 and conducted in collaboration with physicians from
Policlinico San Donato, will be illustrated in details. Other studies, e.g., the

http://www-2.unipv.it/compmech/phd_diss.html
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Figure 7.1 Joint collaboration between doctors from IRCCS
Policlinico San Donato (MI) and biomedical engineers from

University of Pavia (CompMech Group - DICAR).

Figure 7.2 iCardioCloud philosophy. Interaction between
doctors end engineers is based on a shared cloud technology

for exchanging data.

one based on the framework exploiting the T-spline technology, are still a
work in progress and therefore they will not be described.

7.2 Patient-specific isogeometric structural analy-
ses on TAAs

The first study we are going to speak about started with the acquisition of ten
(10) of the twenty-one (21) Contrast Enhanced CT of the thorax available in
the iCardioCloud database, in order to develop and benchmark the pipeline
we described in Chapter 4. See Figure 7.4 and Figure 7.3 for a summary
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of the main idea and concepts contained in this pipeline. We would like to
remark that the patients we selected are affected only by thoraco-abdominal
aneurysms (no TAD) and do not represent an homogeneous population from
the point of view of age, sex, diameter and location of the aneurysm. The ul-
timate aim was trying to provide them of a trustworthy decision-making tool
to be used real-time to decide whether a patient with TAA is worth operating
or not, instead of the current use of the largest TAA diameter criterion.

Figure 7.3 From medical images to analysis: flowchart
summarizing the steps required to obtain a complete

patient-specific unclamped TAA solid model.

Figure 7.4 From medical images to analysis: example of
application on a patient-specific case of the previously

introduced flowchart. Colors around each box are related to
their corresponding block in Figure 7.3.
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Starting from the fact that physicians from IRCCS Policlinico San Donato
were already familiar with the concept of FE-based CFD analyses due to the
shared iCardioCloud project, the main goal of this study, was first to intro-
duce them to a new computational framework, the Isogeometric Analysis,
based on a different and smoother representation of the surfaces under in-
vestigation with respect to traditional FEA and able to run simulations in a
quicker way than FEA. Therefore, since they were used to the CFD compu-
tational times, once the results presented in Chapter 4, Table ??, were shown
to them, the possibility of running (in future) real-time simulations in the
hospital during the pre-operative planning phase started to grow as an idea.

Moreover, not only we introduce them to the use of IgA in biomechanics, but
also to the von Mises stress distribution at the vessel wall as a quantity that
can be used to easily represent and interpret the computational stress analy-
sis results (Martin, Sun, and Elefteriades, 2015; Gasser, 2016) we got on TAAs
and also as a quantity they could not get with CFD analyses. In particular, the
maximum value of stress found anywhere on a particular aortic wall, i.e., the
Peak Wall Stress - PWS (Shang et al., 2013b) was also presented them as an
alternative to the "maximum diameter criterion" to decide whether a patient
with an aneurysm is worth operating or not (Fillinger et al., 2002; Fillinger et
al., 2003; Venkatasubramaniam et al., 2004; Heng et al., 2008; Li et al., 2010).
In Chapter 4, for each one of the 10 patients affected by thoraco-abdominal
aneurysm, we considered the maximum value of the von Mises stress at the
aortic wall as PWS.

Once the aforementioned pipeline was ready to be tested on patient-specific
geometries, by means of all the results shown in Chapter 4 (see Section 4.8,
Figure 4.25 and Table ??), we demonstrated the physicians how creating a
patient-specific IgA-suitable model of TAA can be done almost automatically
by performing a limited number of relatively easy steps in a short time, once
the CT images have been acquired, preprocessed, and segmented. Further-
more, given that our final goal is the identification of patients potentially
at risk of TAA enlargement and rupture, we showed them how the pro-
posed framework may represent a promising and adequate starting point
for the development of the aforementioned decision-making tool to improve
the surgery planning operation-phase, even if other ingredients (e.g., supra-
aortic carotid branches and iliac arteries, a TAA-suitable constitutive model,
inclusion of the intraluminal thrombus, use of a variable pressure distribu-
tion) still need to be considered.

7.3 Case study on Retrograde Type A dissection

This second study developed as another application of the pipeline described
in Chapter 4 and relies in part on the new Modified Arch Landing Areas
Nomenclature (MALAN) (Marrocco-Trischitta et al., 2017) and the concept
of Displacement Forces (DFs - for details see Chapter 2) that act on the sur-
face of the endograft with every heartbeat. For extended references see (Bakel
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et al., 2017), (Marrocco-Trischitta et al., 2018) and Chapter 5 of Dr. R.M. Ro-
marowski’s thesis. In particular, after specifically studying the effect of land-
ing zone angulation on DFs magnitude, the group of Dr. M. M. Marrocco-
Trischitta at IRCCS Policlinico San Donato, found that larger DFs magnitude
occur at systolic peak of the cardiac cycle (Figueroa et al., 2009; Fung et al.,
2008; Wang and Li, 2011) and in landing zones with increased angulation.
For the direction, the same group analyzed the orientation of the DF vector
in various aortic arch configurations and landing zones, founding that the
direction of the DF vector is mostly cranial and related to the angulation and
position of the landing zones. Please see Figure 7.5 for a clarification on these
concept. These data on DFs are yet to be published.

(a) (b)

Figure 7.5 (a) Displacement forces projected in the different
proximal landing zones for TEVAR in a Type 2 aortic arch

according to the new MALAN classification
(Marrocco-Trischitta et al., 2017). Both magnitude and

direction of the displacement forces change significantly
between adjacent landing zones. (b) Displacement forces

mapped in the proximal landing zones for TEVAR per Type of
Arch. Displacement forces in zone 3 of Type I arches have

smaller magnitude compared to those in zone 3 of Type II and
III arches. Both pictures are taken from (Bakel et al., 2017)

For this case study, the subject under investigation is a 61-years-old male
with previous EVAR who presented at IRCCS Policlinico San Donato for fur-
ther endovascular treatment. Pre-operative CT showed a 59 mm aneurysmal
dilation starting after the origin of the Left Subclavian Artery (LSA). TEVAR
was performed by deploying two Medtronic Valiant stent-grafts (Medtronic,
Santa Rosa, CA, USA) after the revascularization of the LSA. Under general
anesthesia, the devices (46-46-150 mm and 42-42-150 mm) were successfully
deployed showing total exclusion of the aneurysm by intraoperative angiog-
raphy. No postoperative complications were reported and the control CT
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showed no signs of endoleak. The patient came back after surgery complain-
ing of chest pain. The CT angiographic control showed evidence of bleeding
from the proximal section of the endoprothesis near the left common carotid
artery. Thus, an immediate arch replacement with the reimplantation of the
supraortic vessels was performed because the patient developed a retrograde
type A dissection.

CTA processing, based on 3D multiplanar reconstruction, was performed
with 3Mensio Vascular software 8.1® (3MensioMedicalImagingB.V.,Bilthoven,
theNetherlands), which provides specific functions for automatic measure-
ments. The angulation of the proximal landing zones was measured as de-
scribed in detail in (Marrocco-Trischitta et al., 2017). Briefly, the angle be-
tween the flow axis of each proximal landing zone and the body of the lesion
in Zone 2 (or the hypothetical lesion in Zones 0 and 1) to treat, analogous to
the β angle as defined in the Society for Vascular Surgery reporting standards
for EVAR (Chaikof et al., 2002), was determined. For this purpose, the cen-
ter lumen line "tangent angle" function was employed, which calculates the
angle between tangent lines drawn for any two points along the center lu-
men line. The pre-operative CT mesh was segmented with VMTK software
suite and thus, the surface of the aorta was extracted. Furthermore, from
the image stack showing bleeding in the arch, both the vessel lumen and the
stent-graft wires were segmented. Figure 7.6 shows the 3D reconstructions
in both cases.

Figure 7.6 3D reconstruction of the vessel lumen (a) and the
stent-graft wires for the patient under study.

3Mensio Medical Imaging B.V., Bilthoven, the Netherlands
3Mensio Medical Imaging B.V., Bilthoven, the Netherlands
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The hypothesis behind this study was that the combined effect of hemody-
namic Displacement Forces (DFs) and wall stress concentration promotes ret-
rograde type A dissection after TEVAR.

CFD as well as IgA structural analyses have been performed on both the pre-
and post-TEVAR geometry. With CFD, DFs were calculated whereas with
IgA structural analysis, von Mises stress at the vessel wall was computed.

CFD simulations require both the definition of the computational domain
(i.e. mesh) following the aortic geometry and a set of boundary conditions.
A volume mesh composed by tetrahedral elements was created from the pre-
operative surface. No patient-specific haemodynamic data were available
to tune the boundary conditions (for more details regarding the method to
tune boundary conditions for CFD analysis using patient-specific data, see
the thesis work by Dr. Romarowski). Hence, inflow and outflow parameters
were extracted as follows: a flow waveform representing a cardiac output of
4.88 L/min was used as input, and on the outflow sections, three element
Windkessel circuits were attached to mimic the compliance and resistance of
the distal vasculature in a reliable way (Romarowski et al., 2018). Finally, a
null velocity on the luminal surface was prescribed under the hypothesis of
a rigid arterial wall. CFD simulations were performed by using the LifeV
software suite (Bertagna et al., 2017) for solving the incompressible Navier-
Stokes equations, assuming a constant fluid viscosity. Six cardiac cycles were
simulated for each case to ensure the convergence of velocity and pressure
fields. DFs were calculated by integrating the wall pressure and the wall
shear stress (WSS) at systolic peak along the aortic wall in each MALAN area
(Marrocco-Trischitta et al., 2017) using the Paraview software v5.3.0 (Kitware
Inc., France). Consistently with previous reports, the contribution of the WSS
was found to be negligible (Romarowski et al., 2018).

One clarification has to be done: this part of the work has been performed by
engineering experts at IRCCS Policlinico San Donato and carefully explained
to us, in charge of computing the von Mises stress at the vessel wall on the
pre and post-TEVAR geometries in IgA-FEAP.

7.3.1 Results obtained on the pre- and post-TEVAR geometry

The CFD analysis performed on the pre-TEVAR geometry to calculate the
DFs shows how the direction of the DF in correspondence of where the le-
sion developed is completely perpendicular to the arch curvature due to the
angulation of the aortic arch whereas the DF magnitude does not have any
interesting value. The von Mises stress at the vessel wall does not show any
particular concentration area on the surface. These results are illustrated in
Figure 7.7.

In the post-TEVAR geometry, a retrograde Type A dissection developed (see
Figure 7.8, yellow circle).

Despite all these data, the causes that led to rupture after TEVAR have still
to be determined. Nonetheless, in the following section, we are going to
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(a) (b)

Figure 7.7 (a) DF on the pre-TEVAR geometry computed by
means of CFD analysis. (b) von Mises stress result computed

on the pre-TEVAR geometry by means of the pipeline
described in Chapter 4.

(a) (b)

Figure 7.8 (a) DF on the post-TEVAR geometry computed by
means of CFD analysis. (b) CT-scan showing the retrograde

Type A dissection.



7.3. Case study on Retrograde Type A dissection 123

explain the procedure we adopted in order to run the isogeometric structural
simulations on this thoracic aorta case with a stent-graft in place.

The IgA model of the TA under study was created using the framework de-
scribed in Chapter 4. No supra-aortic branches were considered in the recon-
structed model. The IgA mesh is quadratic along each direction. Clamped
knot vectors are used along the longitudinal direction and the thickness,
whereas an unclamped one is used along the circumferential direction of the
IgA model. For the stent, instead of constructing its IgA counterpart with
the procedure shown in Chapter 6, we mapped it as a cylinder. In details,
we knew where the stent landed thanks to the representation shown in Fig-
ure 7.9 provided to us by researchers from IRCCS Policlinico San Donato and
obtained by means of an in-house VTK-based Python code starting from the
post-TEVAR CT scan. In particular, the zone depicted in grey is the zone
where the stent landed. The other two zones (blue and red respectively) rep-
resent the native aorta.

Figure 7.9 Zone subdivision performed on the patient-specific
model shown in Figure 7.6. The zone depicted in grey

represents the zone where the stent landed. The other two
zones represent the native aorta.

Starting from this information, we isolated in Paraview the grey part of the
model representing the stent using the threshold filter. Subsequently, we per-
formed two mapping operations using the algorithm described in Chapter 4,
Section 4.4: one to obtain the patient-specific solid IgA model of the entire
TA shown in Figure 7.6, and another one to obtain just the portion of the
aorta mimicking where the stent landed (i.e., the grey part). This is a sur-
face. These two B-spline representations (i.e., solid IgA model for the entire
aorta and surface IgA model for just the portion of the aorta mimicking the
stent) were then exported in a suitable format for the solver FEAP and tied
together, in order to merge coincident control points, and thus forcing them
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to have the same node number. Once in FEAP, using the extraction operator
we described in Chapter 4, Section 4.7.3, we extract the following surfaces
and segments of surfaces:

• Complete inner vessel surface of the solid model on which to apply an
internal pressure of 120 mmHg (from literature);

• Complete outer vessel surface of the solid model on which to apply
generalized Robin Boundary Conditions to simulate the presence of the
surrounding organs (see Chapter 4, 4.7.2);

• The inner portion of the surface representing the stent.

For the solid model, we employed the nearly-incompressible Vorp constitu-
tive model with parameters derived from literature (Shang et al., 2013a) (see
Chapter 4 and Appendix B). The portion of the model mimicking the stent-
graft is modelled using membrane elements with non-linear formulation, with
properties obtained by means of a Representative Volume Element (RVE).
The thickness of the membrane elements has been experimentally set to 0.1
mm.

An RVE is the smallest volume over which a measurement can be made that
will yield a value that is representative of the whole. We used an RVE be-
cause the stent is a "periodic" object made of equal and repeated cells, and
because we were looking for a material that represents the effect of the stent-
graft on the aorta once in place and not just the properties of the stent-graft
(like the ones simulated in Chapter 6). In Abaqus/Standard solver ver. 6.11
(Dassault Systémes, Johnson, RI, USA) we constructed the geometry of the
first Medtronic Valiant stent-graft (46-46-150 mm) deployed in the patient
under study. To be precise, a planar CAD geometry corresponding to the
stent in unfolded configuration was generated in Abaqus, together with its
mesh. Then, through appropriate geometrical transformations performed by
an in-house Matlab code, the planar mesh was rolled leading to the stent final
configuration. Subsequently, using a new command we introduced in FEAP,
named "aba2feap" which permits to automatically convert an Abaqus ".inp"
input file (containing all the geometrical, assembly and mesh details for the
construction of the object under study) into a FEAP one, just one quarter
of a cell stent has been imported to FEAP and this constitutes our RVE. See
Figure 7.10a for an example of application of the aforementioned command
"aba2feap" and Figure 7.10b for the quarter of cell stent we imported in FEAP.

Once imported the elementary cell in FEAP (in the main finite element pro-
gram and not in the IgA embedded module), the average properties to be as-
signed to all the surface representing the stent are computed from the RVE.
The basic process in FEAP is carried out by a Hill-Mandel average (Geers,
Kouznetsova, and Brekelmans, 2001; Kouznetsova, Brekelmans, and Baai-
jens, 2001; Zienkiewicz and Taylor, 2005). For this case, the RVE has been
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(a) (b)

Figure 7.10 (a) Example of application of the "aba2feap"
command. The Medtronic Valiant stent (46-46-150 mm) was

first created in Abaqus and then imported in FEAP for testing
the conversion code. (b) Quarter of cell of the same stent-graft
mesh used for obtaining the properties of the RVE to employ

in the simulations.

subjected to periodic boundary conditions, whereas the boundaries are sub-
jected to a deformation gradient. The analysis is performed as a finite defor-
mation problem. In this way, from the homogenized stress and the associ-
ated tangent array, E = 7.5e04 MPa can be computed and assigned to all the
surface representing the stent modeled as a Saint-Venant Kirchhoff material,
with Poisson modulus experimentally set to ν = 0.

The results of the IgA inflation simulations we obtained by means of this
set-up can be seen in Figure 7.11b.

The von Mises stress scales for both results (Figure 7.11a) have been set to the
values obtained in the pre-TEVAR case, just for comparison between the two.
From an engineering point of view, this result seems quite obvious: given
two coupled tubes with distributed constant pressure inside and different
stiffness values (the portion resembling the stent has a higher stiffness value
than the native aorta one), at the interface of the two tubes the deformation is
different and the "local" solution depends on the properties of the two tubes.
To understand that everything was correct, we run another test analysis on
a bent pipe with the same specifications and material properties than the
patient-specific case just described (without setting the von Mises scale equal
to the pre-TEVAR one) and the results, on a von Mises stress base, agree with
the ones obtained in the patient-specific geometry case (see Figure 7.12).

We certainly know that these results are just preliminary and they cannot pro-
vide an answer regarding which is the real cause of the rupture after TEVAR.
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(a) (b)

Figure 7.11 (a) von Mises stress distribution pre-TEVAR and
(b) von Mises stress distribution post-TEVAR using

homogeneized properties for the surface representing the
stent.

Figure 7.12 Comparison, on a von Mises stress base, between a
test case geometry (a) and the patient-specific case under
study, in order to understand if the results we showed in
Figure 7.11 were correct. Results between the test and the

patient-specific case agree. Results agree also between Figure
7.11b and (b) because they present the same von Mises stress

pattern at the vessel wall. Von Mises stress values are different
because the ones in Figure 7.11b have been rescaled to the von

Mises stress values obtained in the pre-TEVAR case.

Further analyses have to be run in accordance with physicians and engineer-
ing experts from IRCCS Policlinico San Donato in order to understand the
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real reason of the rupture. In any case, they represented an interesting case-
study to test the pipeline we introduced in Chapter 4 as well as to test and
introduce some new routines in FEAP and IgA-FEAP. As a matter of fact, as
late development, we introduce another command in IgA-FEAP in order to
avoid mapping the inner portion of the TA surface representing the stent or,
more in general, to avoid performing mapping operation every time the stent
landing position is changed. In particular, within the same Matlab code we
usually use to perform mapping operation and starting from the represen-
tation shown in Figure 7.9, we simply obtain the knot values indices along
the longitudinal (i.e., "v") parametric direction of the complete TA IgA inner
surface model between which the stent is lying. These indices are used by
the new IgA-FEAP command:

K_SP

KNOT k k_min k_max

with k indicating the knot vector number in the longitudinal direction of the
TA complete inner surface model, in order to activate the stent material prop-
erties (obtained in this case by means of a RVE) in the knot vector interval
comprised between k_min and k_max. By simply changing the values of
k_min and k_max, different landing zones scenarios can be taken into ac-
count for the analysis.

7.4 Application of the patient-specific pressure dis-
tribution obtained from CFD analyses

Another algorithm that was born from the collaboration with the physicians,
is the one that permits to apply a variable pressure derived from FE-based
CFD analyses to the control points of an IgA mesh. This algorithm was born
because, from CFD analyses, we certainly know that the pressure distribu-
tion inside a TA is not constant (see Dr. R.M. Romarowski thesis and Figure
7.13 for the pressure distribution inside the patient considered in the prece-
dent study and depicted in Figure 7.6). As we said in Chapter 4, Section
4.7.2, in our simulations we are employing the average blood pressure in a sin-
gle cardiac cycle (i.e., MAP = Mean Arterial Pressure) previously computed
by means of CFD analysis. Hence, we are employing a constant distributed
pressure throughout the aorta. Therefore, in order to check if applying the
real patient-specific pressure distribution obtained from CFD analyses on a
TA, the distribution of the von Mises stress at the vessel wall changes, a in-
house Matlab algorithm was created in order to perform this task. This al-
gorithm has just been tested on a cylinder with a random pressure distribu-
tion, simulating the one hypothetically derived from CFD analyses. Hence,
the results we have are just preliminary and they still have to be applied on
patient-specific TA geometries, in order to check if and how the von Mises
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stress distribution changes by applying the patient-specific pressure distri-
bution on the control points of the IgA patient-specific model.

Figure 7.13 Patient-specific pressure distribution taken at
systole and computed by means of CFD analyses on the

patient shown in Figure 7.6).

7.4.1 Algorithm details

The algorithm we are going to show is very similar to the one used for obtain-
ing the patient-specific IgA geometry starting from sections of points and a
reference geometry (see Chapter 4, Section 4.4). One of the output of the CFD
analyses that are run at IRCCS Policlinico San Donato on patient-specific TA
geometries is a file containing the pressure values for each FE nodes in the
CFD mesh. The pressure values for each FE nodes has to be imported (in
vectorial form) in Matlab together with the ".stl" (i.e., triangulated) file of the
patient-specific geometry representing the aortic vessel, extracted from DI-
COM images and its B-splines based unclamped representation. The ".stl"
mesh in Matlab will be represented as a structure containing two fields: a
matrix containing for each vertex its coordinate in the 3D space and another
matrix containing the faces, i.e., each row represents a triangle and contains
the indexes numbers for each vertex.

The total number of nodes in the FE mesh, is N_FEM = (nfem_x * nfem_y),
whereas the total number of control points in the IgA one is N_CP = (ncp_x *
ncp_y). As for the mapping algorithm presented before, the number of nodes
in the FE mesh should be sufficiently higher than the number of nodes in the
IgA one. In particular, N_FEM > N_CP. The algorithm is as follows:
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• Consider the FE ".stl" mesh and, for each triangle, look for unique nodes
(i.e., look for N_PT unique nodes).

• Assign a global index number to each one of the N_PT unique nodes
just obtained.

• Allocate C, sparse matrix of basis functions, with dimensions of C being
C = [N_PT ∗ N_CP];

• For the ith node belonging to the N_PT unique nodes:

– Perform nearest-neighbour algorithm to look for its closest IgA
control points.

– Once obtained the closest IgA control point, compute its B-spline
basis functions along the parametric directions u and v and the
product between them. The result containing the product is a vec-
tor.

– Set C(i,:) equal to the vector containing the product between basis
functions.

– Consider the pressure value of the ith FEM node.

• Solve S = C \ B by means of a least square approximation (via the QR
algorithm), where S is the [N_CP x 1] vector containing the pressure
values to be applied to each control point in the IgA mesh, C the [N_PT
x N_CP] matrix that contains the products between shape functions in
both parametric directions and B the [N_PT x 1] pressure vector con-
taining the pressure values for each unique FEM nodes.

The [N_CP x 1] vector containing the pressure values for each IgA control
point has to be exported (as a .txt file) in a format suitable for the IgA-FEAP
solver. In particular, the .txt file should start with the header "temp=Pressure",
followed by

N_node G_in P_v

where N_node is the control point index number, G_in the increment to the
next node, and V_node the pressure value for each control point. We would
like to remark that for overlapped control points the pressure values should
not be repeated. An example of this input file is provided below:

feap * *
32 24 3 3 3 16 0

MATErial 1
SOLID elmt 0 0 0 0
ELAStic I s o t r o p i c 3 3 .000000 e−01
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NURBs, , 3 2 2

MATErial 2
press elmt 0 0 0 0
nodel
nurb quad 3 2
p l o t o f f

MATErial 3
Robin 5 0 0 0 0
e l a s t i c ks 10
nurb quad 3 2
p l o t o f f

*AUTO numbering

NURBs ALL 32
1 0 −1.207000E+02 −5.000000E+01 0 .000000E+00 1 .000000E+00
2 0 −1.307000E+02 −6.000000E+01 0 .000000E+00 1 .000000E+00
3 0 −5.000000E+01 −1.207000E+02 0 .000000E+00 1 .000000E+00
4 0 −6.000000E+01 −1.307000E+02 0 .000000E+00 1 .000000E+00
5 0 5 .000000E+01 −1.207000E+02 0 .000000E+00 1 .000000E+00
6 0 6 .000000E+01 −1.307000E+02 0 .000000E+00 1 .000000E+00
7 0 1 .207000E+02 −5.000000E+01 0 .000000E+00 1 .000000E+00
8 0 1 .307000E+02 −6.000000E+01 0 .000000E+00 1 .000000E+00
9 0 1 .207000E+02 5 .000000E+01 0 .000000E+00 1 .000000E+00
10 0 1 .307000E+02 6 .000000E+01 0 .000000E+00 1 .000000E+00
11 0 5 .000000E+01 1 .207000E+02 0 .000000E+00 1 .000000E+00
12 0 6 .000000E+01 1 .307000E+02 0 .000000E+00 1 .000000E+00
13 0 −5.000000E+01 1 .207000E+02 0 .000000E+00 1 .000000E+00
14 0 −6.000000E+01 1 .307000E+02 0 .000000E+00 1 .000000E+00
15 0 −1.207000E+02 5 .000000E+01 0 .000000E+00 1 .000000E+00
16 0 −1.307000E+02 6 .000000E+01 0 .000000E+00 1 .000000E+00
17 0 −1.207000E+02 −5.000000E+01 5 .000000E+02 1 .000000E+00
18 0 −1.307000E+02 −6.000000E+01 5 .000000E+02 1 .000000E+00
19 0 −5.000000E+01 −1.207000E+02 5 .000000E+02 1 .000000E+00
20 0 −6.000000E+01 −1.307000E+02 5 .000000E+02 1 .000000E+00
21 0 5 .000000E+01 −1.207000E+02 5 .000000E+02 1 .000000E+00
22 0 6 .000000E+01 −1.307000E+02 5 .000000E+02 1 .000000E+00
23 0 1 .207000E+02 −5.000000E+01 5 .000000E+02 1 .000000E+00
24 0 1 .307000E+02 −6.000000E+01 5 .000000E+02 1 .000000E+00
25 0 1 .207000E+02 5 .000000E+01 5 .000000E+02 1 .000000E+00
26 0 1 .307000E+02 6 .000000E+01 5 .000000E+02 1 .000000E+00
27 0 5 .000000E+01 1 .207000E+02 5 .000000E+02 1 .000000E+00
28 0 6 .000000E+01 1 .307000E+02 5 .000000E+02 1 .000000E+00
29 0 −5.000000E+01 1 .207000E+02 5 .000000E+02 1 .000000E+00
30 0 −6.000000E+01 1 .307000E+02 5 .000000E+02 1 .000000E+00
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31 0 −1.207000E+02 5 .000000E+01 5 .000000E+02 1 .000000E+00
32 0 −1.307000E+02 6 .000000E+01 5 .000000E+02 1 .000000E+00

ELEMents NODES= 16 MATE= 1
1 0 1 1 2 3 4 5 6 7 8 17 18 19
20 21
22 23 24
2 0 1 3 4 5 6 7 8 9 10 19 20 21
22 23
24 25 26
3 0 1 5 6 7 8 9 10 11 12 21 22 23
24 25
26 27 28
4 0 1 7 8 9 10 11 12 13 14 23 24 25
26 27
28 29 30
5 0 1 9 10 11 12 13 14 15 16 25 26 27
28 29
30 31 32
6 0 1 11 12 13 14 15 16 1 2 27 28 29
30 31
32 17 18
7 0 1 13 14 15 16 1 2 3 4 29 30 31
32 17
18 19 20
8 0 1 15 16 1 2 3 4 5 6 31 32 17
18 19
20 21 22

ENURBs
1 1 2 3
2 501 2 3
3 1001 2 3
4 1501 2 3
5 2001 2 3
6 2501 2 3
7 3001 2 3
8 3501 2 3

ELEMents NODES= 8 MATE= 2
1 0 2 1 3 5 7 17 19 21 23
2 0 2 3 5 7 9 19 21 23 25
3 0 2 5 7 9 11 21 23 25 27
4 0 2 7 9 11 13 23 25 27 29
5 0 2 9 11 13 15 25 27 29 31
6 0 2 11 13 15 1 27 29 31 17
7 0 2 13 15 1 3 29 31 17 19
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8 0 2 15 1 3 5 31 17 19 21

ENURBs
1 4 5 0
2 504 5 0
3 1004 5 0
4 1504 5 0
5 2004 5 0
6 2504 5 0
7 3004 5 0
8 3504 5 0

ELEMents NODES=8 MATE=3
1 0 3 2 4 6 8 18 20 22 24
2 0 3 4 6 8 10 20 22 24 26
3 0 3 6 8 10 12 22 24 26 28
4 0 3 8 10 12 14 24 26 28 30
5 0 3 10 12 14 16 26 28 30 32
6 0 3 12 14 16 2 28 30 32 18
7 0 3 14 16 2 4 30 32 18 20
8 0 3 16 2 4 6 32 18 20 22

ENURBs
1 6 7 0
2 506 7 0
3 1006 7 0
4 1506 7 0
5 2006 7 0
6 2506 7 0
7 3006 7 0
8 3506 7 0

KNOTs_outm
Unclamp 1 15 3 0.00000000E+00 1.00000000E+00
2.00000000E+00 3.00000000E+00 4.00000000E+00 5.00000000E+00
6.00000000E+00 7.00000000E+00 8.00000000E+00 9.00000000E+00
1.00000000E+01 1.10000000E+01
1.20000000E+01 1.30000000E+01 1.40000000E+01
Clamped 2 4 0.00000000E+00 0.00000000E+00 1.00000000E+00
1.00000000E+00
Clamped 3 4 0.00000000E+00 0.00000000E+00 1.00000000E+00
1.00000000E+00
Unclamp 4 15 3 0.00000000E+00 1.00000000E+00
2.00000000E+00 3.00000000E+00 4.00000000E+00 5.00000000E+00
6.00000000E+00 7.00000000E+00 8.00000000E+00 9.00000000E+00
1.00000000E+01 1.10000000E+01
1.20000000E+01 1.30000000E+01 1.40000000E+01
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Clamped 5 4 0.00000000E+00 0.00000000E+00 1.00000000E+00
1.00000000E+00
Unclamp 6 15 3 0.00000000E+00 1.00000000E+00
2.00000000E+00 3.00000000E+00 4.00000000E+00 5.00000000E+00
6.00000000E+00 7.00000000E+00 8.00000000E+00 9.00000000E+00
1.00000000E+01 1.10000000E+01
1.20000000E+01 1.30000000E+01 1.40000000E+01
Clamped 7 4 0.00000000E+00 0.00000000E+00 1.00000000E+00
1.00000000E+00

Include Npress

END mesh

TIE

INTEractive

STOP

with the "Npress" input pressure file being:

temp = Pressures
1 0 0 .0157310
3 0 0 .0159600
5 0 0 .0157310
7 0 0 .0159600
9 0 0 .0157310
11 0 0 .0159600
13 0 0 .0157310
15 0 0 .0159600
17 0 0 .0157310
19 0 0 .0159600
21 0 0 .0157310
23 0 0 .0159600
25 0 0 .0157310
27 0 0 .0159600
29 0 0 .0157310
31 0 0 .0159600

the pressure is expressed in MPa. To test the code, we consider a simple
solid cylinder, modeled with a linear elastic model, with generalized Robin
Boundary Conditions applied to its external surface, and a constant pressure
equal to 125 mmHg applied to its inner surface. In order to obtain a variable
distribution for the pressure for each unique FE nodes, in Matlab we create
a [N_PT*1] vector with all the pressure values equal to 125 mmHg. Then we
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applied to each one of them a random rumor so that the final pressure distri-
bution is experimentally limited between 118 and 125 mmHg. Subsequently,
we run the algorithm we just described in order to find the pressure to be
assigned to each control point. The results are shown in Figure 7.14.

(a) Longitudinal view.

(b) Circumferential view.

Figure 7.14 Longitudinal and circumferential view of the
results obtained using a variable pressure applied to the
control points of the IgA mesh (Left) and a constant one

(Right).

As already said, these are just preliminary results obtained on a simple solid
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model: therefore, the application of the algorithm on a more complicated
case like a patient-specific TA geometry would provide more insights on the
effectiveness of the algorithm and on its possible use to understand if vari-
able pressure distributions taken from CFD analyses may be useful to better
describe how von Mises stress is distributed in patient-specific thoracic aor-
tas.
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Chapter 8

Final remarks

In the recent years, the employment of in silico (i.e., computational) methods
in the medical routine and in the medical device sector has become an im-
portant tool for both manufacturers and clinical researchers. From an experi-
mental point of view, computational tools allow to simulate and investigate,
prior to the intervention and to device manufacturing, different scenarios.
In particular, numerical tools employed in the field of "predictive medicine"
help simulating different "what-if" clinical scenarios, trying to tailor the best
combination of procedure strategies and medical devices for a specific pa-
tient morphology. From the industrial point of view, computational tools
help investigating different experimental scenarios including design modifi-
cations, new materials, and working conditions that otherwise are difficult
(or even impossible) to be reproduced.

From a practical point of view, in order to be reliable in the clinical and indus-
trial practice, these methodologies need to fulfill some requirements such as:
i) accurate geometric representation of the computational model with respect
to the real one and its components; ii) reliable description of the material be-
havior of the model and its involved components; iii) appropriate reproduc-
tion of the real working conditions within the computational model.

In this context, Finite Element Analysis is widely employed as a reliable and
accurate tool to reproduce the goals described above. FEA is, at present,
a widely employed and well assessed simulation tool, but it presents some
limitations that can affect both the geometrical accuracy of the domain under
investigation and the regularity of the approximated solution. In particu-
lar, FEA low-order and low-regularity basis functions used to discretize the
continuum domain do not permit, in general, to accurately represent com-
plex geometries unless extremely fine meshes are adopted. At the same time,
FEA basis functions do not allow, in general, to properly approximate the
solution without resorting to a high number of degrees of freedom.

Given this, Isogeometric Analysis has been recently proposed as an exact-
geometry, cost-effective alternative to classical FEA. The idea of IgA is that
NURBS basis functions used for geometry representation in CAD can be
used for both geometry description and analysis in an isoparametric fashion.
Moreover, the high-regularity provided by the IgA shape functions extends
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the benefits provided by this innovative method to all the boundary value
problems where high-continuity is required and plays a prominent role.

The doctoral research described in this dissertation can be collocated within
this framework because we aimed at employing innovative computational
mechanics techniques to provide support to vascular surgeons during the
pre-operative decision making process. In particular, the present doctoral re-
search can be subdivided as follows: i) study and implementation of routines
based on a particular type of knot vectors (i.e., unclamped knot vectors), key
ingredient of Isogeometric Analysis; ii) set-up of an innovative IgA-based
computational framework for the evaluation of the aneurysm risk of rupture
in thoracic aortas; iii) extension of the proposed IgA computational frame-
work for the creation of complex arterial networks characterized by arbitrary
topology; iv) frictionless contact modeling and simulations for stent implant
procedures including performance comparison between IgA and FEA with
respect to solution accuracy and computational efficiency; v) application of
the introduced frameworks to problems proposed to us by physicians from
IRCCS Policlinico San Donato, San Donato M.se, Milan, Italy, whom this doc-
toral work has been done in collaboration with.

Accordingly, we first investigated the peculiar aspects of unclamped (i.e.,
closed, periodic) knot vectors for the construction of analysis-suitable closed
curves and surfaces characterized by higher than C0 continuity. Unclamped
knot vectors are not widely used in the IgA community, whereas clamped
(i.e., open, non periodic) ones are the most commonly employed in all IgA
applications. Therefore, the use of unclamped knot vectors required the mod-
ification of some pre-existing routines based on clamped knot vectors as well
as the implementation of some new ones within the research Finite Element
Analysis Program (FEAP) (Taylor, 2017) and Matlab NURBS toolbox (MAT-
LAB, 2018; Falco, Reali, and Vázquez, 2011; Spink, 2014) . Unclamped B-
splines have been successfully used as a basis for modeling and analysis in
a first study in the context of predictive medicine aimed at i) developing a
semi-automatic pipeline for the creation of patient-specific IgA-suitable ge-
ometries of Thoracic Aortic Aneurysms derived from DICOM images, com-
pletely removing any operational dependency on the centerline of the model;
ii) implementing additional routines in IgA-FEAP in order to make the struc-
tural inflation simulations on TAAs more complete (in particular, the Vorp
material model to be used for modeling the arterial wall (Raghavan and Vorp,
2000), and generalized Robin boundary conditions (Moireau et al., 2012) to
take into account the presence of the surrounding organs); iii) testing the
proposed complete framework (from IgA modeling to analysis) on multiple
patient-specific TAA models in order to confirm its effectiveness for the de-
scription of the aneurysm enlargement and rupture risk phenomena. The
results demonstrated how creating a patient-specific IgA-suitable model of
TAA can be done almost automatically by performing a limited number of
relatively easy steps, once the DICOM images have been acquired, prepro-
cessed, and segmented. Not only this pipeline contains most of the ingre-
dients that allow numerical simulations in aortic aneurysms to be accurate
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and effective (e.g, precise reconstruction of the aneurysm geometry, realistic
material properties for the arterial wall, high continuity description of the
stress field) but also the overall (from IgA modeling to analysis) computa-
tional costs proved to be able to keep the pace with the clinical routine time-
line. The final goal of the pipeline is the identification of patients potentially
at risk of TAA enlargement and rupture. We certainly know that to fulfill
this task and, thus, give the physicians a consistent and objective decision-
making tool to improve the surgery planning operation-phase, other ingre-
dients (e.g., supra-aortic carotid branches and iliac arteries, a TAA-suitable
constitutive model, inclusion of the intraluminal thrombus, use of a variable
pressure distribution) need to be considered. However, we think that our
simulation models and analysis settings already represent a good compro-
mise between computational time and accuracy and is sufficient to reach the
main goal of this study.

Starting from this pipeline, we moved towards the creation of another one
based on the T-spline technology for the creation of patient-specific aortic ge-
ometries characterized by complex and arbitrary topology. The need to create
this "new" pipeline was born because with the "old" one, the presence of the
supra-aortic branches in the TAAs models was neglected. The algorithm we
adopted to get the patient-specific unclamped IgA models of the TAA does
not work for branched geometries but only for single-patch tube-like ones
without bifurcations. Since neglecting the supra-aortic branches presumably
means neglecting important constitutive parts of the aorta that may affect the
study of the risk of enlargement and rupture of an aneurysm, we introduced
another semi-automatic framework able to create patient-specific geometries
in a very short time and in a limited number of passages that can be per-
formed also by a non expert user. They involve the use of the Autodesk T-
splines plug-in for Rhino for the creation of the T-spline object starting from
the triangulated (".stl") mesh extracted from medical images. A big effort in
this part of the work has been done in order to make IgA-FEAP able to work
properly with T-meshes characterized by a high number of DOFs. In its pre-
vious versions (v. 8.4), IgA-FEAP was already able to work with simple T-
spline meshes but some features of the Autodesk T-spline plug-in were mod-
ified, together with the format of the T-meshes export file. Therefore work
has been done in order to permit IgA-FEAP to properly work with T-splines
objects characterized by a high-number of DOFs, starting from memory allo-
cation problems to the capability of plotting and exporting them properly. All
the additional routines we added, while working with the previous pipeline
to make simulations on TAAs more complete, have been adapted to T-splines
objects as well. Moreover, a step towards the use of an advanced mesh gen-
eration method that avoids the tensor product limitations of B-splines and
NURBS has been made. We got preliminary and promising results from in-
flation simulations aimed at investigating the distribution of the von Mises
stress quantity at the vessel wall. At present, simulations on aortic models
are run using a linear constitutive model for the aortic artery, and only sur-
face data can be provided, meaning that analyses are restricted to bodies that
are represented by surfaces (e.g., 2-d solid bodies, membranes and shells). In
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this thesis work, we employed shells for the analyses. At present, in IgA-
FEAP, only the Kirchhoff-Love thin-shell element is available. We adopted it
with constant shell thickness along the aortic artery.

Subsequently, we investigated the IgA benefits over linear (h-FEA) and higher
order FEA (p-FEA) studying two examples of frictionless contact interactions
in order to numerically reproduce stent crimping and stent deployment in
the context of Carotid Artery Stenting (CAS) pre-operative planning. In par-
ticular, we focused on the application of NURBS-based isogeometric analysis
to 3D frictionless contact problems between deformable bodies undergoing
large deformations. Starting from the framework and the contact driver im-
plemented in the IgA package for FEAP by Dr. Mauro Ferraro, based on
the work of (De Lorenzis et al., 2011), we first reviewed the basics of com-
putational contact mechanics and then we performed some numerical tests
including stent geometry and non linear constitutive models to simulate the
double-sided contact typical of stent implant simulations. The results con-
firm the capability of the proposed framework to reproduce complex real life
problems with reduced DOF number with respect to linear and high-order
FEA.

Finally, all the aforementioned pipelines have been applied to problems pre-
sented to us by physicians from IRCCS Policlinico San Donato. In particular,
besides the application of the first framework we mentioned to 10 patient-
specific cases belonging to the iCardioCloud project, whose goal was creat-
ing a cloud platform in which doctors can interact with engineers in order
to develop new tools for improving endovascular surgery, this pipeline was
also applied to a case study on Retrograde Type A dissection, aimed at un-
derstanding why the patient developed a Retrograde Type A dissection after
TEVAR operation. This study was very beneficial because it permitted us to
enrich FEAP of other capabilities, like a non-linear isogeometric model for
the membrane element, the use of a Representative Volume Element (RVE)
to infer the properties to be given the stent present in the simulations, the cre-
ation of a new command for the automatic conversion of Abaqus input files
into FEAP ones, allowing the user to create a complex geometry in Abaqus
and perform the analysis in FEAP. Finally we had the opportunity to create
a command for the automatic conversion of any clamped/unclamped IgA
mesh into its FE counterpart, both linear and quadratic. Moreover, since
the cause of the rupture is still not clear, both from the CFD and the struc-
tural viewpoint, another algorithm for the application of the variable pres-
sure field obtained from CFD analyses on the control points of an IgA mesh
has been introduced. In particular, the rationale behind this algorithm was
applying the real patient-specific pressure distribution obtained from CFD
analyses on the control points of the isogoemetric model representing the TA
to check if the distribution of the von Mises stress at the vessel wall changes
with respect to the application of a constant distributed pressure value. At
present, the algorithm has only been tested on a cylinder case. In all the
three aforementioned collaborations, results are still preliminary but seem
very promising in helping physicians to move the diagnosis to the treatment
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by means of computational tools.

8.1 Future developments

In this doctoral research we created a set of tools to run accurate and effec-
tive numerical simulations on healthy and aneurysmatic aortic arteries, with
reduced computational costs to keep the pace with the clinical routine time-
line. From the computational viewpoint, we confirm the huge impact that
IgA can provide with this topic, both in terms of geometrical representations
and cost-effective accuracy. Our results can be the first step for several de-
velopments, both in terms of technological improvement and other further
applications.

In the following, the main future developments for the present work are sum-
marized.

• The use of patient-specific parameters derived from experimental tests
for the constitutive models of the aortic wall, the inclusion of intralu-
minal thrombus, the use of a patient-specific pressure distribution ob-
tained from CFD analyses together with the use of the T-splines tech-
nology for geometric modeling of the aortic aneurysm, may represent a
big step forward for the study of TAA risk of enlargement and rupture.

• At present, IgA-FEAP analyses with T-splines are restricted to bodies
that are represented only by surfaces (e.g., 2-d solid bodies, membranes
and shells). Modeling and analysis based on volumetric T-splines should
be introduced and applied to patient-specific aortic geometries.

• Even if the IgA results are a good compromise between computational
time and accuracy and they showed improved efficiency and accuracy
with respect to linear and higher order FEA in the case of the friction-
less contact simulations, it is important to remark the following aspects:
i) the current IgA-FEAP package does not include parallel implemen-
tation; ii) the performed IgA analysis employed the classical FEA p+1
Gauss quadrature which is not exactly the most efficient choice, given
the large support of NURBS shape function. Advancements have been
already done in this sense (Hughes, Reali, and Sangalli, 2010; Auricchio
et al., 2012; Calabro, Sangalli, and Tani, 2017), but they have not been
implemented in FEAP yet.

• The results of this doctoral research coupled with the technological im-
provements in the CAD-world could provide a promising framework
for different applications. Thus, one future development may be the
creation of an integrated CAD-IgA software for patient-specific model-
ing to be used in the clinical reality.
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Appendix A

FEAP NURBS patch input

The following Appendix is presented to give some examples of FEAP input
files that show different KNOT vector specifications. In particular, the input
files to obtain some of the examples presented in Chapter 2 are provided.
For more details, the reader is referred to FEAP isogeometric manual (Taylor,
2017). For a complete understanding of the input data that will be presented,
please take into account the following commands:

• NPATch: should include the list of control points index to define the
patch. It is possible to specify the patch for a line, a surface or a solid.

• NURBs: should include the control point data for the patch.

• KNOTs: should include the knot vectors specifications for the patch.

A NURBS patch has to be specified using the minimum number of control
points, order of the knot vectors and connectivity between the control points.
The description may be subsequently refined within the isogeometric FEAP
module, employing the refinement algorithms described in Chapter 2.

Currently, four types of knot vectors may be used in FEAP to construct NURBS
patches: CLAMped (open) knot vectors; UNCLamped knot vectors; LCLAmped
knot vectors which is clamped at the start values and unclamped at the end
values and RCLAmped which is unclamped at the start values and clamped
at the end values. As already described in Chapter 2, clamped (open) knot
vectors are interpolatory at the end control point whereas unclamped knot
vectors are not interpolatory at the end control point unless the knot vector
is repeated to give a C0 point. In general, one would like to adopt unclamped
knot vectors to create closed surfaces and/or to maintain greater than C0 con-
tinuity between patches.

CLAMped (open) knot vectors

Open knot vectors are specified using the following records:

KNOTs
CLAMp n1 lknot1 ( vk1 ( i ) , i =1 , lknot1 )
CLAMp n2 lknot2 ( vk2 ( i ) , i =1 , lknot2 )
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. . .
! Terminate with blank record

where n1 is the knot number, lknot1 is the length of the knot vector and vk1(i)
is the list of open knot values. Clamped (open) knot vectors must begin and
end with repeated values and the number of repeated values should be equal
to the order of the knot vector + 1. The IgA-FEAP data for the knot and
control points of the clamped ring shown in Figure 3.2a is given by:

NURBS
1 0 −45.1167 −108.9167 1 .0000
2 0 −16.6667 −120.7000 1 .0000
3 0 50 .0000 −120.7000 1 .0000
4 0 120 .7000 −50.0000 1 .0000
5 0 120 .7000 50 .0000 1 .0000
6 0 50 .0000 120 .7000 1 .0000
7 0 −50.0000 120 .7000 1 .0000
8 0 −120.7000 50 .0000 1 .0000
9 0 −120.7000 −50.0000 1 .0000
10 0 −73.5667 −97.1333 1 .0000
11 0 −45.1167 −108.9167 1 .0000

knots
clamped 1 15 3 3 3 3 4 5 6 7 8 9 10 11 11

11 11 ! l i m i t of 16 items/records

npatch
l i n e 1 11 1
1 2 3 4 5 6 7 8 9 10 11

UNCLamped (periodic) knot vectors

An unclamped knot vector is specified in FEAP using the following input
form:

KNOTs
UNCLamp n1 lknot1 order1 ( vk1 ( i ) , i =1 , lknot1 )
UNCLamp n2 lknot2 order2 ( vk2 ( i ) , i =1 , lknot2 )

. . .
! Terminate with blank record

The mixed types may be specified as:
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KNOTs
LCLAmp n1 lknot1 order1 ( vk1 ( i ) , i =1 , lknot1 )
RCLAmp n2 lknot2 order2 ( vk2 ( i ) , i =1 , lknot2 )

For an LCLAmp type knot vector, the initial values of the vk(i) must be re-
peated for i = 1, .., order1 + 1 times and vice-versa for the RCLAmp type,
where the last order2 + 1 values of the vk2(i) must be the same. In the case
of unclamped, lclamped or rclamped knot vectors, the order field record has
to be specified since the knot vector values are not repeated at the beginning
and at the end of the vk1(i) sequence, as in the case of clamped knot vectors.

The FEAP input data for the unclamped closed ring shown in Figure 3.2b is
given by:

NURBS
1 0 −120.7 −50.0 1 . 0
2 0 −50.0 −120.7 1 . 0
3 0 5 0 . 0 −120.7 1 . 0
4 0 120 .7 −50.0 1 . 0
5 0 120 .7 5 0 . 0 1 . 0
6 0 5 0 . 0 120 .7 1 . 0
7 0 −50.0 120 .7 1 . 0
8 0 −120.7 5 0 . 0 1 . 0
9 0 −120.7 −50.0 1 . 0
10 0 −50.0 −120.7 1 . 0
11 0 5 0 . 0 −120.7 1 . 0

knots
unclamped 1 15 3 0 1 2 3 4 5 6 7 8 9 10 11

12 13 14 ! l i m i t of 16 items/records

npatch
l i n e 1 11 1
1 2 3 4 5 6 7 8 9 10 11

Mix knot vectors types

It is also possible to mix knot vectors types within the same KNOTs groups,
i.e., some may be open while others may be unclamped. An example of input
data for a closed cylindric surface which shows an unclamped knot vector
along the circumferential direction and a clamped one along the longitudinal
direction is given by:
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NURBS
1 0 −0.0027 −0.9985 0 . 0 1 . 0
2 0 0 .9484 −0.3105 0 . 0 1 . 0
3 0 0 .5881 0 .8058 0 . 0 1 . 0
4 0 −0.5848 0 .8085 0 . 0 1 . 0
5 0 −0.9508 −0.3068 0 . 0 1 . 0
6 0 −0.0027 −0.9985 0 . 0 1 . 0
7 0 0 .9484 −0.3105 0 . 0 1 . 0
8 0 0 .5881 0 .8058 0 . 0 1 . 0
9 0 −0.0027 −0.9985 1 . 0 1 . 0

10 0 0 .9484 −0.3105 1 . 0 1 . 0
11 0 0 .5881 0 .8058 1 . 0 1 . 0
12 0 −0.5848 0 .8085 1 . 0 1 . 0
13 0 −0.9508 −0.3068 1 . 0 1 . 0
14 0 −0.0027 −0.9985 1 . 0 1 . 0
15 0 0 .9484 −0.3105 1 . 0 1 . 0
16 0 0 .5881 0 .8058 1 . 0 1 . 0

knots
unclamped 1 12 3 0 1 2 3 4 5 6 7 8 9 10 11
clamped 2 4 0 0 1 1

npatch
s u r f 1 2 8 2 1

1 9
2 10
3 11
4 12
5 13
6 14
7 15
8 16

If the reader is interested in unclamping a n-piece circle with (2n+1) CPs (i.e.
a circle composed of n circular arches), where the last point P2n coincides
with P0, we suggest the use of the strategy presented in (Lu, 2009), in alterna-
tive to the one described in (Piegl and Tiller, 1997) and adopted by us in this
thesis. As a matter of fact, if we consider the quadratic full circles shown in
Figure A.1, the one on top (left) being composed of 4 C0 lines (i.e., four piece
circle) and the one on bottom (left) of 3 C0 lines (i.e., three piece circle), by un-
clamping them using the algorithm in (Piegl and Tiller, 1997), their control
polygons do not wrap around. This is because the circles are only C0 contin-
uous in the homogeneous space. The result of the unclamping operation is
that the number of C0 lines is just decreased by one (1) in the final unclamped
circle.
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Figure A.1 Examples of unclamping of a n-piece circle with
(2n+1) CPs using the strategy described in Chapter 2. The

resulting control polygons do not wrap around (see Figures
TOP and BOTTOM, RIGHT) because the circles are only C0

continuous in the homogeneous space. The result of the
unclamping is that the number of C0 lines is just decreased by

one (1) in the final unclamped circle.

The use of the strategy proposed in (Lu, 2009), only valid for n-piece circle
with (2n+1) CPs, permits to perfectly unclamp these circles eliminating all
junctions points by setting Qi = P2i−1 with i = 1,2,...,n and by re-defining
the basis functions in a specific way. The final results show how, by using
this algorithm, the total number of control points in the final circle is de-
creased, together with the number of B-splines basis functions. For an ex-
ample of application, please see Figures A.2a and A.2b. All that has been
said for unclamped B-splines basis functions in Chapter 2, still holds for this
algorithm too. In particular, unclamped, uniform B-splines basis functions
are all translates of one another, without enjoying at the extremes of a patch
the Kronecker delta property, even if still maintaining the partition of unity
one. One of the main differences between the strategy in (Piegl and Tiller,
1997) and the one in (Lu, 2009) is that in the second case the B-splines basis
functions are redefined in a specific way and their number is decreased with
respect to the clamped case. The same, of course, holds for the control point
number. This does not happen in the algorithm of (Piegl and Tiller, 1997)
because the B-splines basis functions and control points number is kept fixed
between the clamped and unclamped model.
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(a) Unclamping a circle composed of 3 circular arches.

(b) Unclamping a circle composed of 4 circular arches.

Figure A.2 Example of unclamping two n-piece circles by
eliminating all junction points (RIGHT, BOTTOM). The
difference between the original (RIGHT,TOP) and final

(RIGHT, BOTTOM) B-splines basis functions is also showed.
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Implementation of the Vorp
constitutive model in FEAP

The stored energy function for the Raghavan-Vorp model (Raghavan and
Vorp, 2000) we implemented in FEAP for the inflation simulations of TAAs
may be expressed as:

W = C1 (IB − 3− 2 log(J)) + C2(IB − 3)2 + U(J) (B.1)

U(J) = λ ∗
[

1
4

(
J2 − 1

)
− 1

2 log(J)
]

(B.2)

with U(J) being the volumetric term that exists in four models in the current
version of FEAP. By replacing IB with ĪB = J−

2
3 IB a similar model for the

carbon-black filled rubber developed by O.H. Yeoh (Yeoh, 1990) can be de-
rived. Also this constitutive model is available in FEAP.

The second Piola-Kirchhoff stress can be obtained from the stored energy
function W using:

SI J = 2
∂W
∂CI J

= 2α[δI J − C−1
I J ] + 4β(IB − 3)δI J (B.3)

and the associated tangent moduli:

CI JKL = 4
∂2W

∂CI J∂CKL
= 2

∂SI J

∂CKL
(B.4)

= −4α
∂C−1

I J

∂CKL
+ 8βδI JδKL (B.5)

The derivative of the inverse of CI J can be expressed in a symmetric form as:
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∂CI J
−1

∂CKL
= −1

2
(C−1

IK C−1
JL + C−1

IL C−1
JK ) (B.6)

which gives:

CI JKL = 2α(C−1
IK C−1

JL + C−1
IL C−1

JK ) + 8βδI JδKL (B.7)

These results may be pushed to the current configuration to define the Kirch-
hoff stress using:

τij = FiISI J FjJ (B.8)

cijkl = FiI FjJCI JKLFkKFlL (B.9)

By applying this to B and B yields:

τij = 2α(bij − δij) + 4β(IB − 3)bij (B.10)

cijkl = 2α(δikδjl + δilδjk) + 8βbijbkl (B.11)

bij is the left Cauchy-Green tensor. The Cauchy stress and its tangent are then
deduced from:

σij =
1
J

τij (B.12)

cijkl =
1
J

cijkl (B.13)

In order to program it into a finite element framework, which is given in
matrix form, the tangent:

dτij = cijkldεkl (B.14)

is then introduced in matrix form as:
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dσ = Ddε (B.15)

where the stress and its incremental form are given as vectors with 6 compo-
nents:

σ =
[
σ11 σ22 σ33 σ12 σ23 σ31

]T (B.16)

dε =
[
dε11 dε22 dε33 dε12 dε23 dε31

]T (B.17)

with dγij = 2dεij. Details on the transformation from 9 to 6 components can
be found in (Zienkiewicz and Taylor, 2005). The final result for the tangent
for the Cauchy stress is given by:

D =
2α

J


2

2
2

1
1

1

+
8β

J
bbT (B.18)

where:

b =
[
b11 b22 b33

√
2b12

√
2b23

√
2b31

]
(B.19)

Two options are now available for the input data in FEAP:

ucon vorp
lambda , , value

alpha , , value

beta , , value

where "lambda" stands for the first Lamè parameter and "alpha" and "beta"
stand for the constants C1 and C2 described in Chapter 3. Alternatively, the
Young modulus E, the Poisson modulus ν and the "beta" constant (i.e., C2)
can be input:
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ucon vorp
E , nu , beta

From the values of E and ν, the routine computes "lambda" and "alpha" from:

lambda = nu * E/(1+nu ) /( 1 −2*nu )
alpha = E/(1+nu ) * 4

An example of data for the element type and material property for the Vorp
model in FEAP isogeometric module can be given as:

PARAmeters
l a = 1000

MATErial 1
SOLID elmt 0 0 0 0 0
NURBS, , 3 3 3
MIXEd
FINIte VOLUme 1
UCON VORP
ELAStic LAMBda l a
ELAStic ALPHa 0 .174
ELAStic BETA 1.881

These are the data we used in this work for the inflation simulations of patient-
specific TAAs. The material representing the aortic wall is nearly incompress-
ible; consequently the mixed formulation described in (Taylor, 2011) is used.
All the analyses are performed as a finite deformation problem. Values for
the constants C1 and C2 are taken from literature (see Chapter 3).
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T-splines input files for FEAP

In this appendix we are going to provide an example of FEAP input file to
run inflation simulations on a T-splines-based object created by means of the
Autodesk T-spline plug-in (Autodesk T-Splines Plug-in for Rhino. T-Splines,
Inc.) embedded in Rhino (Rhinoceros: NURBS modeling for Windows.). The
T-spline object has to be saved and exported from Rhino in the ".iga" file
format. Only surface data can be provided and thus analyses are restricted
to bodies that are represented by surfaces (e.g., 2-d solid bodies, membranes
and shells). In this thesis work, we are using shells for the analyses. Up
to now, in IgA-FEAP, only the Kirchhoff-Love thin-shell element is available.
For more details regarding the isogeometric formulation of this shell element,
please see (Kiendl et al., 2009).

An example of FEAP input file structure for T-spline is the following:

feap * * t e s t on IGA pat ient−s p e c i f i c T−Spl ine f i l e
0 0 0 3 3 0

MATErial 1
user 24

e l a s t i c i s o t r o p i c 3 0 . 4 6
t s p l i n e , ,−1 ,−1 ! Force auto−pick or order
t h i c k n e s s s h e l l 0 . 1

MATErial 2
press , , 1

load , , 0 .01596
t s p l i n e , ,−1 ,−1 ! Force auto−pick or order
p l o t o f f

MATErial 3
robin , , 1

e l a s t i c ks 10
t s p l i n e , ,−1 ,−1 ! Force auto−pick or order
p l o t o f f
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! Load the T−s p l i n e o b j e c t
t−s p l i n e part= t _ s p l i n e _ f i l e

p l o t i n t s = 1 <1−7> ! Number of subdivis ion
m a t e r i a l model 1
f i l e = t e s t . iga

end ! End of data input

i n t e ! I n t e r a c t i v e s o l u t i o n commands

stop ! End of data f i l e

In this input file we are loading the "test.iga" input file created by means
of Autodesk T-spline plug-in for Rhino. Inside "test.iga" all the information
required to build the bicubic T-spline mesh shown in Figure C.1 are provided.
For a clarification regarding all the fields contained in the ".iga" input file, the
reader is referred to (Scott et al., 2014).

Figure C.1 Example of bicubic T-mesh created in Rhino and
imported in FEAP.

We are using the thin-shell element ("User 24") to represent the T-spline sur-
face object, with constant thickness equal to 0.1 mm. The constitutive model
("MATErial 1") adopted for this simulation is the linear elastic one, with
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parameters from literature (E = 3MPa, ν = 0.46). A constant distributed
pressure ("MATErial 2") equal to 120 mmHg (i.e. 0.01596 MPa) is internally
applied. With T-spline we also introduced the possibility to use a "variable
nodal" pressure, as described in Chapter 7. In this case the input for the pres-
sure should be as follows:

MATErial 2
pressure , , 1
nodel ! Use " v a r i a b l e nodal " pressure
t s p l i n e , ,−1 ,−1
p l o t o f f

temp=Pressures ! Pressure values
1 1 1 . 0
25 0 1 . 0

In particular, "nodel" is the command that tells FEAP to use "variable nodal"
pressure, instead of a constant distributed one. A file containing the pressure
values for each T-spline control point should be included and should be pro-
vided with the header "temp=Pressure". This file can be directly written in
the FEAP input file (as in the example) or simply included using FEAP IN-
CLude command. Generalized Robin Boundary Conditions ("MATErial 3")
are set to simulate the presence of the organs surrounding the thoracic aorta.
Just the elasticity term ks is taken into account, with ks= 10 MPa, as proposed
in (Moireau et al., 2012). This structure has been used for all the simulations
whose results have been shown in Chapter 4. Once solved the problem, we
would like to check the von Mises stress distribution at the vessel wall. This
can be achieved in plot mode, by issuing the command "stre„16" for the von
Mises force or "stre„17" for the von Mises moment. The von Mises force for
the T-spline mesh depicted in Figure C.1, is shown in Figure C.2.
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Figure C.2 von Mises stress result on the patient-specific TA
T-spline mesh shown in Figure C.1.
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