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Abstract

In the last years Additive Manufacturing (AM) or 3D printing has conquered a relevant role
among the newest enabling technologies of the fourth industrial revolution. 3D printing allows
to realize parts made of different materials without any geometrical constraint. This charac-
teristic is unique in the world of industrial production and it has renewed the classical concept
of mechanical design allowing to produce the optimized components reducing the weight and
maximizing the stiffness. Moreover, additive manufacturing allows to reduce production waste
and energy consumption.

Most diffused Additive Manufacturing technologies are Powder Bed Fusion (PBF) and
Fused Deposition Modeling (FDM). The first technology is based on the powder bed technol-
ogy, in which the powder (metal or ceramics) are spread on the building plate and sintered
trough a heat source. The second one, instead, employs a fused filament (generally plastic)
which is deposited trough an extruder on the building plate. The cooling process of the fused
filaments and the consequent bonding among the fibers, give rise to the solid component. This
technologies allow to realize optimized components merging the last scientific founding with
the uniqueness of the artisan productions. The possibility to realize customized components
with a high rate of technology without a real production chain makes 3D printing one of the
main performers of the fourth industrial revolution. Nevertheless a lot 3D printing technolo-
gies are already patented, the usage of 3D printing is not diffused on large scale yet, and the
processes itself are affected by some difficulties given by the complexity of the physical phe-
nomena. The practical experience suggest that a correct setting of printing process parameters
allow to improve the results of the print; although, at now, the experimentation process is
very expensive due to the high costs of the materials. A solution to avoid this inconvenience
is the possibility to simulate the printing process to predict the effects of printing parameters
variation on final components shape.

In the present thesis we will focus on the simulation of of 3D printing processes. The
dissemination is organized in two parts: the former is dedicated to Powder Bed Fusion, the
latter to Fused Deposition Modeling. For both the technologies we propose a wide ranging
discussion on the mechanical properties of the used materials and on the physical problems of
the specific technology. We analyze in detail the simulation approaches present in literature
and, for each technology, we have developed an appropriate computational method.

The simulation approaches for Powder Bed Fusion can be distinguished according to the
scale level of the simulation. Powder level simulations are focused on the study of the in-
teraction between the laser beam and the powder and on the study of the thermo-dynamic
evolution of the melt pool. From a literature review it merged that the only computational
method able to simulate these aspects of Powder Bed Fusion is the Lattice Boltzmann method.
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Once derived the Boltzmann equation from the kinetic theory of gases and after having ex-
plained its close relationship with the Navier-Stokes-Fourier equations, we have derived the
Lattice Boltzmann method and we have used it to solve some interesting thermo-fluid dy-
namic problems strictly related to the powder bed technology. Finally, we have developed a
finite element method (FEM) based on sequential element activation to simulate powder layer
deposition and the interaction between the heat source and the powder. With this approach
we have investigated the influence of the printing parameters on a microscopic titan domain;
then we have used this method to simulate a real component.

The second part of this thesis is dedicated to the simulation of the Fused Deposition Model-
ing. In this case we have developed a FEM method based on the sequential element activation
to simulate the deposition of the fused filament following the instructions contained in the
GCode file used for the printing process. With this approach we have simulated the printing
of two plastic components and we have compared the numerical results with experimental
measurements obtained trough a high precision laser scanner.



Sommario

Negli ultimi anni la manifattura additiva, o stampa 3D, si è ritagliata un ruolo di rilievo tra le
nuove tecnologie abilitanti della quarta rivoluzione industriale. La stampa 3D consente di re-
alizzare oggetti di vario materiale senza alcun vincolo geometrico. Questa caratteristica, unica
nell’ambito delle produzioni industriali, ha rivoluzionato il concetto classico di progettazione
meccanica permettendo di progettare l’oggetto in maniera ottimizzata, riducendone la massa
o massimizzandone la rigidezza. Inoltre, la manifattura additiva consente di ridurre al minimo
gli scarti di lavorazione e il consumo di energia.

Le tecnologie additive maggiormente diffuse sono la Powder Bed Fusion (PBF) e il Fused
Deposition Modeling (FDM). La prima è basata sulla tecnologia a letto di polvere, in cui le
polveri (metalliche o ceramiche) vengono dapprima stese sul piano di costruzione strato per
strato e, in seguito, sinterizzate in maniera selettiva. La seconda invece utilizza un filamento
fuso (tipicamente plastico) depositato, tramite un estrusore, sul piatto di costruzione. Il raf-
freddamento dei filamenti fusi e il conseguente bonding tra le fibre, danno vita al componente
solido. Queste due tecnologie consentono di realizzare componenti ottimizzati e personalizzati
coniugando gli ultimi ritrovati scientifici e tecnici con l’unicità tipica delle produzioni arti-
gianali. Proprio la possibilità di realizzare componenti specifici ad alta tecnologia senza la
necessità di realizzare una vera e propria catena produttiva, rendono la stampa 3D uno degli
attori principali della quarta rivoluzione industriale. Nonostante molti tecnologie di stampa
siano già patentate, l’utilizzo della stampa 3D non è ancora diffusa su larga scala e i processi
stessi sono interessati da alcune difficoltà dovute alle complessità dei fenomeni fisici interessati.
L’esperienza pratica suggerisce come un corretto settaggio dei parametri di stampa permette
di migliorare i risultati finali delle stampe; tuttavia, in questa fase, la sperimentazione è molto
onerosa in termini economici per via del costo dei materiali. Una soluzione per ovviare a questo
inconveniente è rappresentata dalla possibilità di simulare il processo di stampa e predirre gli
effetti dei parametri di stampa sui componenti finali.

Nella presente tesi ci occuperemo della simulazione dei processi di stampa 3D. La dis-
sertazione è organizzata in due parti: la prima dedicata al Powder Bed Fusion e la seconda
dedicata al Fused Deposition Modeling. Per entrambe le tecnologie proponiamo un excurcsus
ad ampio raggio focalizzato sulle caratteristiche meccaniche dei materiali utilizzati e sui prob-
lemi fisici coinvolti nei processi. I fenomeni fisici sono analizzati in dettaglio insieme con le
metodologie di simulazione presenti in letteratura. In seguito, per ogni tecnologia abbiamo
sviluppato un metodo di simulazione appropriato.

Nel caso della Powder Bed Fusion il problema della simulazione del processo può essere
affrontato a livello particellare o a livello del componente. Le simulazioni particellari si fo-
calizzano sullo studio dell’interazione tra il laser e le polveri microscopiche e sullo studio

III



IV

dell’evoluzione termofluido dinamica della pozza di fusione. Da ricerche di letteratura è emerso
che l’unico metodo computazionale capace di simulare questi processi con risultati apprezz-
abili è il Lattice Boltzmann Method, basato sulla discretizzazione dell’equazione di Boltzmann.
Dopo aver derivato l’equazione di Boltzmann della teoeria cinetica dei gas e aver spiegato il
suo legame con le equazioni di Navier-Stokes-Fourier, abbiamo derivato il Lattice Boltzmann
Method e lo abbiamo impiegato per risolvere alcuni interessanti problemi termo-fluido dinam-
ici strettamente correlati alla fusione a letto di polvere. In secondo luogo, abbiamo sviluppato
un metodo ad elementi finiti (FEM), basato sull’attivazione sequenziale degli elementi per
simulare la deposizione degli strati di polvere e il passaggio della fonte di calore. Con questo
metodo abbiamo studiato l’influenza dei paramteri di stampa sulla stampa di una parte mi-
croscopica di titanio; in seguito utilizzando una soluzione approssimata, abbiamo sfruttato il
metodo per simulare un componente di grandezza reale.

La seconda parte di questa tesi è dedicata alla simulazione del processo di stampa Fused De-
position Modeling. In questo caso, abbiamo sviluppato un metodo FEM basato sull’attivazione
sequenziale degli elementi per simulare la deposizione del filamento fuso seguendo le istruzioni
contenute nel Gcode utilizzato per la stampa. Con questo approccio abbiamo simulato la
stampa di due modelli plastici differenti per geometria e abbiamo confrontato i risultati ot-
tenuti con misure sperimentali effettuate con un laser scanner 3D ad alta precisione.
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Chapter 1

Additive Manufacturing, an overview

Additive manufacturing (AM) technology (also indicated as 3D printing) is defined by the
American Society for Testing and Materials (ASTM) as the process of joining materials to make
objects from 3D model data, usually layer upon layer, as opposed to subtractive manufacturing
methodologies, such as traditional machining [ASTM, 2012].

Although AM is a relatively new technology, since 1984, when the first stereolitographic
3D printer was produced, a lot of new processes and new applications have been proposed. In
Figure 1.1 a brief time-line history of AM including the main innovations proposed by various
companies among the years is shown.

1984: birth of 
Stereolitography 

(SLA)

1986: first 
patented 3D 

printer

1989: Stratasys 
commercialize 
the first Fused 

Deposition 
Modeling (FDM) 

printer

1992: 3D 
Systems 

commercialize 
the first SLA 

machine

2002: Arcam 
commercialize 

the first Electron 
Beam Melting 

(EBM) machine

2001: EOS 
commercialize 

the first 
Selective Laser 
Sintering (SLS) 
powder based 

machine

1995: 
Fraunhofer 

Institute 
develops the 
first Selective 
Laser Melting 

(SLM) machine

2007: Arcam 
produce the first 

CE-certified 
orthopedic 

implant

2010: Organovo 
produces the 

first 3D printed 
human blood 

vessel

2013: First 3D 
printed robotic 
human heart 

2016: Mass 
production of 3D 

printed engine 
parts

Figure 1.1: Time-line history of AM technology.

In a very first time, AM was used with the only purpose to create single prototypes
of the desired component, moved to a massive production thanks to traditional production
chains. In the beginning, the main disadvantage of AM was the high production costs that
discouraged a massive usage of 3D printing in industrial contest [Lipson and Kurman, 2013].
Although, thanks to the new developments, in recent years, 3D printing has become cheaper
and economically sustainable larger class of industries. Nowadays, AM is considered one of
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the most important enabling technologies of the 4th industrial revolution [Economist, 2016].
The principal characteristics of AM are:

• possibility to manage very complex shapes, like, for example, lattice structures, im-
possible to produce with milling processes and casting optimized components [Mueller,
2012];

• possibility to produce components without assembling procedures, since the production
process is continuous and the part is produced in one shot;

• no needs of components stocking, since the part is directly produced using the desired
material;

• the reduced waste of material in comparison with classic milling process [Atzeni and
Salmi, 2012];

• a very low consumption of energy in front of the traditional processes that makes AM
a "so called" green technology [Ahn et al., 2013].

For this reasons, 3D printing is used for a wide range of industrial applications; ranging
from (Figure 1.2) mechanical parts and consumer products, as well as to biomedical implants
[Cotteleer and Joyce, 2014; Auricchio and Marconi, 2016].

Figure 1.2: Principal fields of application of 3d printing [Cotteleer and Joyce, 2014]

The increasing interest of the industries in AM technologies is confirmed by the flux of
money that is actually invested in the 3D printing supply chain. In Figure 1.3 we show the
growth rate of AM in the years 2016-2018 and the estimated growth rate for the four-year
period 2018-2022 [Wohlers Associates, 2017]. From 2016 to 2022 it has been estimated a
worldwide growth of AM from 6.1 up to 26.2 billion $. United States of America have almost
a half of all the industrial AM machines (46.3 %), followed by Israel (26.2 %) and Europe
(18.8%).

A significant growth has been appreciated, in last years, also in AM material market. In
Figure 1.4 we show a 15-year history of photo-polymers sales for AM and a 8-year history of
laser-sintered polymers sales.
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Figure 1.3: Growth rate of AM in the years 2016-2018 and estimated growth rate
for the four-year period 2018-2022 [Wohlers Associates, 2017]

We may appreciate how, in both cases, there has been a significant sales growth especially
in the past six years meaning that the production of parts trough AM is on constant growing.

Figure 1.4: Growth rate of photo-polymers and laser-sintered polymers sales market
in different time periods [Wohlers Associates, 2017].

A significant growth rate is also deserved in metal powder market (Figure 1.5). In partic-
ular between 2014 and 2016 the sales of AM powders almost tripled.

Figure 1.5: Growth rate of metal powder sales market [Wohlers Associates, 2017].
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These data show that AM industry is in constant growth and support the prediction of a
global economic impact of AM up to 550 billion $/year in 2025 [Economist, 2016].

1.1 Additive Manufacturing processes

The working principle of a generic 3D printing process is detailed in Figure 1.6.

Figure 1.6: General working principle of a 3D printing machine

The production process starts from a CAD file with the geometry of the desired compo-
nent; from the CAD file a triangular mesh of the external surface is generated and saved in
sterolitographic (STL) format. The STL file is used by a specific slicing software to virtually
slice the model and to define all the informations needed to perform the printing process.
The slicing process consists in dividing the object into horizontal layers, then for each layer
the printing path is defined. Those informations are collected into a procedural file, called
GCODE file, which manages the printing. Finally, the object is ready to be printed with the
desired technology and material. The GCODE file format varies according to the specific AM
technology and contains also the instructions to manage the environmental variables, like the
chamber and the build plate temperature, the ventilation power, etc.

Using the GCODE file, the printing process is performed and the desired object is gener-
ated. Then a controlled cooling process is performed before the part can be detached from
the building plate. In case of metal 3D printing, in many cases, specific heat post processing
treatments are also performed before part detaching from the building plate to relax possible
internal stresses.

AM technologies are usually distinguished according to the adopted material supply and
aggregation way. Currently the most diffused AM technologies are the Powder Bed Fusion
(PBF) and the Fused Deposition Modeling (FDM). In PBF powder layers are deposited on a
building plate and the powder are selectively melted by a heat source following a predefined
path. This technology is commonly used to produce complex shape metallic parts used in
various structural applications, for example in mechanical and biomedical fields. In FDM,
instead, a semi-molten plastic filament is extruded and deposited layer by layer on a building
plate. In the first times this technology was adopted only to produce non structural parts,
but just prototypes. However, in the last years, thanks to the development of new and better
performing materials, it has been adopted also to produce functional parts.

In Table 1.1 [Rombouts, 2006] we list for each technology the most significant process
parameters and the processed materials for each technology.
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Supply Process Lay-out Layer
Creation
Technique

Phase
Change

Materials

L
I
Q
U
I
D

Stereo-
lithogra-

phy

Liquid resin
in a vat

Liquid layer
deposition

Photo-
polymerization

Acrylates,
epoxies,
filled

Fused
Deposition
Modeling

Material
melted in a

nozzle

Continuous
extrusion

and
deposition

Solidification
by cooling

Polymer,
wax,

polymers,
metals

Ink jet
printing

Droplets of
molten
material

Drop on
demand

deposition

Solidification
by cooling

Polymers,
wax

P
O
W
D
E
R

Three-
dimensional
printing

Binder and
powder in

bed

Layer of
powder and
drop on
demand

deposition

No phase
change

Ceramics,
metals,
polymers

with binder

Powder
Bed Fusion

Powder in
bed

Layer of
powder

Melting and
resolidifica-

tion

Metals with
binder,
metals,
ceramics

Laser
cladding

Powder
delivery
through
nozzle

Continuous
injection of
powder

Laser
melting and
solidification
by cooling

Metals

S
O
L
I
D

Laminated
object

manufac-
turing

Feeding,
cutting and
binding of
sheets

Deposition
of sheet
material

No phase
change

Polymer
(foam),

composites,
metals,
ceramics

G
A
S

Selective
laser

chemical
vapor

deposition

Gas flow in
laser

Condensation
of gas

Forming
solid

material
from gas by
chemical
reaction

Metals,
ceramics

Table 1.1: Additive Manufacturing processes. In light blue AM technologies ana-
lyzed in this thesis.

In Figure 1.7, two examples of parts produced with SLM are represented: a bike frame (a)
and an artificial sternum (b). The bike frame is an example of optimized mechanical compo-
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nent which allows consistent material savings without decreasing the strength and the stiffness
of the final part. Even if it could be possible to produce this part with traditional machining,
it would require a large amount of working time for the milling procedure and a consistent
waste of material. The artificial sternum, as well as human prostheses in general, represents an
example of patient-tailored production, which is one of the peculiarities of additive processes.
With AM in fact it is possible to produce directly patient specific prosthesis without the need
of post the need operations.

(a) Bike frame (b) Artificial sternum and ribs

Figure 1.7: Example of 3D printed functional parts produced with SLM technology.

In Figure 1.8 two examples of parts produced with SLM are shown: a sprocket (a) and a
human organ (b). The sprocket is a functional part that is usually produced with traditional
machining, although with AM it is possible to produce only few components for specific
applications without needing a production chain. The human organ, instead represents one of
the most interesting applications of FDM: the reproduction of patient-specific human organs
useful for the preparation of the surgery [Auricchio and Marconi, 2016].

(a) Sprockets (b) Human organ

Figure 1.8: Examples of 3D printed FDM parts. a) and b) Metallic parts realized
with SLM. c) and d) Plastic parts realized with FDM.

1.2 Aim of the thesis

In previous sections we have described the potential of AM technology in the fourth industrial
revolution, although what has slowed down a massive diffusion of AM until now are the
relative high production costs, both in terms of AM machines and materials. Moreover, it is
clear that the quality of AM parts is strictly connected to the adopted printing parameters,
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therefore studying the influence of those parameters is mandatory to respect the geometrical
and mechanical production constraints. Since the costs of AM technologies and materials
(especially metal powder) are still high, investigating the influence of printing parameters
only by experimental tests is not sustainable. In this respect, developing numerical tools
able to predict process failures like part distortions or fractures helps to improve the printing
process allowing consistent costs savings.

In the last years the great challenge in AM industry was to develop computational tools
able to simulate AM processes in reasonable time and using reasonable computational efforts.

The aim of this doctoral thesis is to analyze in detail two of the most diffused AM technolo-
gies, Selective Laser Melting (SLM) and Fused Deposition Modeling (FDM), and to develop
numerical tools and frameworks able to simulate these processes at different scale levels.

SLM is a very complex multi-physic process which involves several phenomena including
thermo-fluid dynamics and phase change. In this thesis we investigate the Lattice Boltzmann
method (LBM), which is, to the author’s knowledge, the most important method able to
predict the melt pool evolution and the micro-scale characteristics of SLM parts. We also
adopt a finite element procedure, based on sequential element activation, which is used to
simulate the layer by layer process with the aim of investigating the effects of several printing
parameters on temperature and residual stress distributions on SLM produced parts.

In the second part of this doctoral thesis we focus on the FDM printing process. In par-
ticular, we develop a finite element simulation framework, again based on sequential element
activation, to simulate the printing process of FDM components, following the informations
contained in real GCode files. Two simple benchmarks are simulated and the predicted dis-
placements are validated trough comparison with experimental tests.

Finally, we discuss the limits of this approach and we underline that, nevertheless these
limits, the proposed simulation framework is able to give consistent results in FDM parts
distortion prediction.

1.3 Organization of the dissertation

The dissertation is organized as follows:

• Chapter 2 : Powder Bed Fusion. In this chapter we describe the physical aspects of PBF
and for each aspect we propose a literature review of both experimental investigations
and simulation techniques. Moreover in a specific section we focus on the characteristics
of the powder used in PBF and on the comparison of mechanical characteristics of
traditional machined and PBFed parts. Finally we describe the principal simulation
approaches underlying strengths and weaknesses for each of them;

• Chapter 3 : The Lattice Boltzmann method. In this chapter starting from the kinetic
theory of gases, we derive the Boltzmann equation and we demonstrate how this equation
is an alternative way to describe at the micro-mesoscopic scale the thermo-fluid dynamic
problem which is classically described at the macro-scale by the Navier-Stokes equations.
Then we derive the lattice Boltzmann method and we prove that is mathematically
consistent to solve the Boltzmann equation;
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• Chapter 4 : Applications of the Lattice Boltzmann method. In this chapter we apply
the Lattice Boltzmann method to solve some simple thermo-fluid dynamic problems.
For each problem we show the adopted algorithm and we validate the results trough a
comparison with literature results and reference solutions.

• Chapter 5 : Finite element simulation of Powder Bed Fusion. In this chapter we adopt
the finite element method to set up a sequential element activation scheme to simulate
the powder bed deposition and the heat source interaction with powder. We use this
method to investigate the effects of several process parameters on thermal and residual
stress distribution on a very small portion of domain. Finally with an homogenization
approach we simulate the entire SLM process of a small component;

• Chapter 6 : Fusion Deposition Modeling. In this chapter we describe the physical as-
pects of FDM and for each aspect we propose a literature review of both experimental
investigations and simulation techniques. Moreover, in a specific section we focus on the
characteristics of the plastic filaments used in FDM and on the comparison of mechani-
cal characteristics of traditional prototyped and FDMed parts. Finally we describe the
principal simulation approaches underlying strengths and weaknesses for each of them;

• Chapter 7 : Finite element simulation of Fused Deposition Modeling. In this chapter
we adopt the finite element method to set up a sequential element activation scheme to
simulate the filament deposition in FDM. With this approach we simulate the printing
process of two FDM parts using the informations contained in the GCode file; we validate
the results trough a comparison with experimental test.

• Chapter 8 : Conclusions, final considerations, perspectives and on-going works.



Chapter 2

Powder Bed Fusion

The Powder Bed Fusion (PBF) is a group of AM technologies used to realize metallic or
ceramic parts starting from a bed of powder lying on an horizontal plate. Figure 2.1 shows
the working principle of a PBF machine.

Figure 2.1: Working principle of a generic Powder Bed Fusion printer.

The PBF printing process can be summarized in the following steps:

I. Powder feed supply: the powder is moved from a storage tank next to the building
plate. In the example shown in Figure 2.1 the feed system consists of a moving piston,
but various feeding solution are available on the market;

II. Preheating: the powder are preheated to a fixed temperature, according to the selected
process and the considered material;

III. Powder deposition: the powder is transported on the building plate. The leveling
roller moves the powder on the building plate so to obtain a layer of the desired thickness;

9
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IV. Melting process: a heat source is used to selectively melt the powder following the
path defined during the the slicing process (see Figure 1.6 in Section 1);

V. Plate movement: the building plate is moved down and the process restarts from
point II until the final shape of the component is obtined;

VI. Powder removal: at the end of the printing process the exceeding powder is stored in
the tank and can be used for another print;

VII. Part removal: once the part reaches the ambient temperature it is possible to remove
it from the building plate;

PBF technologies can be distinguished by the adopted heat source: the Selective Laser
Melting uses a YAG or CO2 laser beam [S.Bremen et al., 2012], while the Electron Beam
Melting (EBM) adopts an electron gun to melt the powder Murr et al. [2012]. In general
a SLM machine needs a preheat treatment of the powder with a specific system, while in
EBM the preheating is realized with the electron gun. On the other hand, EBM processes are
performed in a vacuum chamber preventing the usage of non electrical conductive materials.
Another PBF process is the Selective Laser Sintering (SLS) which differs from SLM because
the powder are sintered and not completely melted [Agarwala et al., 1995].

2.1 Process parameters of Powder Bed Fusion printers

From 1995, when the SLM process was proposed for the first time at the Fraunhofer Institute
at Achen (Germany), a lot of companies producing PBF 3D printers born. There are several
brands producing SLM or SLS machine, for example: 3DSystems, Stratasys, EOS, Renishaw
etc., but there is just one company, Arcam, producing EBM printers.

The most important characteristics of PBF printers are listed below:

• Heat power: the power of the heat source is the principal parameter characterizing
a PBF machine. Laser beam can vary from 100 to 1000 W, instead the electron gun
can reach a 3000 W power. High heat power is suggested to melt materials with a
high melting temperature (e.g. Ti6Al4V), but, in general, a 200 - 400 W heat source is
enough the melt a wide range of metals (Steel, Aluminum, Nichel etc.);

• Laser spot: in SLM machines the laser spot can be fixed or variable. In general the
range of laser spot varies from 50 to 500 µm. Increasing the laser spot can speed up the
printing process but at the same time the produced surface energy decreases inhibiting,
in some cases, the complete melting of the powder;

• Number of heat sources: commonly, PBF machines adopt one heat source, but in
the last years some companies developed machines with 2 or 4 heat sources. If the heat
sources can work simultaneously the total process time can be significantly reduced;

• Laser wavelength: in SLM machines the laser beam, in most of cases has a fixed
wavelength of 1070 nm and, with this setup, it is not possible to melt some type of powder
(e.g. coopper). Although there are some machines which adopt variable wavelength laser
beams to treat a larger range of materials;
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• Scan velocity: the scan velocity is a variable parameter depending on the consumer
choice. With high scan velocities, keeping constant any other parameter (laser power,
spot and wavelength), it is possible to speed up the printing process but at the same
time, the specific surface power decreases triggering a partial powder melting;

• Working volume: it is a fixed characteristic of any 3D printer. It depends on the
chamber volume and on the range of heat source movement on the building plate. An
higher chamber volume allows the construction of bigger components, but at the same
time involves a higher consumption of the inert gas filling the chamber;

• Layer thickness: the layer thickness ia a variable parameter ranging, in most of cases
from 20 to 200 µm. A higher layer thickness speeds up the printing process but at the
same time it may trigger problems to melt the deeper powder;

• Materials: the range of the materials that it is possible to treat with a specific machine
depends, principally, from the laser characteristics. The possibility to work with a larger
range of materials increases the versatility of a machine;

• Resolution accuracy: the resolution accuracy is a very sensitive parameter depending
on laser characteristics, material and layer thickness. In general it can range from 1 to 50
µm. A high accuracy is mandatory to achieve better results terms of surface roughness
and in highly detailed parts;

• Build envelope capacity: it ranges, in most of cases, from 5 to 50 cm3/h and it is
inversely proportional to the resolution accuracy and directly proportional to the scan
velocity. It is possible to increase the printed volume rate renouncing to the geometry
precision of the part and admitting the possibility of partial powder melting;

• Multiple material: in most of cases a PBF printer dose not allow a material change
without a deep cleaning of the chamber and the feeding tank: this operation takes from
4 to 6 hours. Although there are some machines that allows a rapid change between
different powder type by adopting two feeding tanks and physically dividing the build-
ing plate. On the other hand this solution decreases the physical space for the model
construction;

• Inert gas consumption: in SLM machines, the printing process is performed in an
isolated chamber filled of an inert gas, in general Argon. The gas consumption can range
from 30 to 300 l/h; in addition at the start of the printing process the chamber needs
to be filled of inert gas: bigger working volumes imply a higher quantity of inert gas;

In summary, we can state that most of the process parameters are related one to another
and there is not an objective way to valuate the printer performances, but the optimal solution
depends in any case on the characteristics of the component we have to print.

2.2 Powder for Powder Bed Fusion

In the last years, many types of powder have been used to produce PBFed parts and many
experimentation have been conduced to characterize the mechanical behavior of the parts.
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The most common powder adopted for PBF are:

• Aluminum alloys: e.g. AlSi12 and AlSi10 used to produce mechanical components
for aerospace and automotive industry. It’s main features are the high ratio between
strength and weight and the good thermal properties that make it suitable for the
realization of parts like heat exchangers. The mechanical properties of a 3D printed
part produced with aluminum alloy AlSi12 are listed in Table 2.1. Data distributed by
3DSystems®;

Mechanical Property End of printing process After stress relief

— [MPa] [MPa]

Young’s Modulus 70 103 ± 5 65 103 ± 5
Ultimate strength 470 ± 30 340 ± 30
Yield Strength 290 ± 20 220 ± 20

Elongation at break 8 ± 2 10 ± 2

Table 2.1: Mechanical properties of a AlSi12 3D printed part before and after stress
relief.

• Stainless Steel alloys: e.g. 316L, with a very low carbon rate, suitable for mechanical
applications in aggressive environment, it grants good mechanical properties at room
temperature and also at cryogenic temperatures; 17-4PH, used for various mechanical
applications, it shows good mechanical properties at temperatures up to 300°C, it is
suitable also for applications in slightly aggressive environment. The mechanical prop-
erties of a 3D printed part produced with stainless steel alloy 316L are listed in Table
2.2. Data distributed by 3DSystems®;

Mechanical Property After stress relief After full anneal

— [MPa] [MPa]

Young’s Modulus 180 103 ± 15 180 103 ± 5
Ultimate strength 660 ± 20 610 ± 30
Yield Strength 530 ± 20 370 ± 30

Elongation at break 39 ± 5 51 ± 5

Table 2.2: Mechanical properties of a 316L steel 3D printed part after stress relief
and after full anneal.

• Titanium based alloys: e.g Ti6Al4V with different rate of iron and oxygen contents.
Composites with low contents of oxygen (TiGr23) increase the ductility of the part, but
are accompanied with a slight reduction of the strength. They are used in biomedical
applications like surgical implants and orthodontic appliances, which require a good
fatigue strength. Composites with a higher content of oxygen increase the strength of
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the part, slightly reducing the ductility. They are used for medical tools and devices in
general. The mechanical properties of a 3D printed part produced with titanium alloy
TiGr23 are listed in Table 2.3. Data distributed by 3DSystems®;

Mechanical Property After stress relief After isostatic pressure treatment

— [MPa] [MPa]

Young’s Modulus 118 103 ± 4 115± 8
Ultimate strength 1160 ± 20 980 ± 30
Yield Strength 1060 ± 30 890 ± 50

Elongation at break 10 ± 2 14 ± 2

Table 2.3: Mechanical properties of a TiGr23 3D printed part after stress relief and
after isostatic pressure treatment.

• Chromium based alloys: e.g. CoCrF75 that allows to obtain parts with very high
strength and hardness, particularly indicated for wear and part that requires high me-
chanical performances at high temperatures, furthermore this material forms a protec-
tive film around the part that prevents corrosive effects. Another Chromium alloy is the
CoCr which allows to obtain parts with a good elasticity and a high corrosion resistance.
It is suitable to produce parts that operate with high temperatures and in aggressive
environment. The mechanical properties of a 3D printed part produced with chromium
alloy CoCrF75 are listed in Table 2.4. Data distributed by 3DSystems®;

Mechanical Property After anneal After isostatic pressure treatment

— [MPa] [MPa]

Young’s Modulus 225 103 ± 5 225± 5
Ultimate strength 1030 ± 70 1020 ± 70
Yield Strength 540 ± 30 510 ± 30

Elongation at break 29 ± 6 29 ± 6

Table 2.4: Mechanical properties of a CoCrF75 3D printed part after anneal and
after isostatic pressure treatment.

• Nichel based alloys: e.g. Ni625 which is widely used in mechanic, aerospace and
chemical industry for its high strength and the very high corrosion resistance. Ni718 is
characterized by the presence of small fraction of Mo that allow to obtain a good fatigue
resistance in manufactured parts and good mechanical properties at very temperatures
(up to 700°C). Moreover Ni625 and Ni718 show excellent cryogenic properties, therefore
this alloy is often used to produce parts that work in extreme conditions and aggressive
environments. The mechanical properties of a 3D printed part produced with niche
based alloy Ni718 are listed in Table 2.5. Data distributed by 3DSystems®;
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Mechanical Property End of printing process After stress relief

— [MPa] [MPa]

Young’s Modulus — —
Ultimate strength 930 ± 20 1020 ± 70
Yield Strength 660 ± 20 850 ± 30

Elongation at break 36 ± 2 31 ± 2

Table 2.5: Mechanical properties of a Ni718 3D printed part at the end of printing
process and after stress relief.

The above mentioned properties must be considered with caution because they refers to
parts produced via 3D printing with non specified process parameters. However in literature,
several studies have been proposed aiming to characterize the dependence of the mechanical
properties on process parameters and to compare the characteristic of 3D printed parts with
the characteristics of traditionally manufactured parts.

Siddique et al. [2015] studied the influence of SLM process parameters on AlSi12 parts; in
particular they have investigated the micro-structure and the mechanical properties of SLMed
components. In Figure 2.2, stress strain curves obtained trough tensile tests on specimens
realized with different energy density are represented [Siddique et al., 2015]. The energy
density is given by the ratio between the laser energy and the laser spot. We can appreciate, in
particular, how, with a higher energy density the ultimate tensile strength and the elongation
at break significantly increase. Finally we can observe that the ductility of part realized with
high energy density is higher than the ductility of parts realized with low energy density.

Figure 2.2: Stress strain curves obtained trough tensile tests on AlSi12 specimens
realized with different energy density [Siddique et al., 2015].

Prashanth et al. [2014] investigated the stress strain curves of AlSi12 parts produced with
SLM and with casting processes. Figure 2.3 shows the true-stress/true-strain curves obtained
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with different manufacturing process. The part produced with SLM shows a higher ultimate
tensile stress and a lower elongation at break than the part produced with a classic manufac-
turing process.

Figure 2.3: Stress strain curves obtained trough tensile tests on AlSi12 specimens
realized with different manufacturing technology [Prashanth et al., 2014].

Furthermore, they also investigated the effects of the heat treatment on the part produced
with SLM. The results, proposed in Figure 2.4 (a), show the stress-strain curves obtained with
heat treatments performed at different temperatures; in Figure 2.4 (b), yield strength, tensile
strength and fracture strain obtained with different annealing temperatures are displaced for
both parts produced with SLM and casting process. We can observe how the heat treatment
reduces the strength of the both SLMed and casted parts, while the fracture strain (i.e., the
elongation at break) is significantly increased after the heat treatment.

Figure 2.4: Stress strain curves obtained trough tensile tests on AlSi12 SLMed parts
annealed at different temperatures (a). Variation of mechanical properties with the
annealing temperature on SLMed and casted parts [Prashanth et al., 2014].

Song et al. [2014] studied the effects of printing parameters on a SLMed femoral component
produced with CoCrMo. In particular they experimented the effects of various combinations
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of laser power and scan velocity on the relative density of the part. They concluded that the
energy rate assuring the highest energy density is around 0.35 J/s (see Fig. 2.5 from Song
et al. [2014]).

Figure 2.5: Variation of the relative density with increasing energy density on a
femoral SLMed component realized with CoCrMo [Song et al., 2014].

Takaichi et al. [2013] studied the mechanical properties of CoCrMo parts produced with
SLM printing process. In particular they investigated the effects of several laser power and
laser spot combinations on the results of uniaxial tensile tests.

Figure 2.6: Stress-strain curves of CoCrMo parts produced with SLM printing
process adopting different process parameters (a-e) and with traditional casting
process (f)[Takaichi et al., 2013].

The results shown in Figure 2.6 reveal a very similar behavior of the stress-strain curves
realized with various combinations of laser power and laser spot (a)-(e). Nevertheless, we
can observe that the specimens realized with the highest energy densities (a,b) show higher
ductility in comparison with the specimens realized with lower energy density. Finally, com-
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paring the results of the SLMed specimens with the stress-strain curve of a casted component
(f), we can appreciate how the SLMed specimens reveal a higher tensile strength with every
combination of parameters; moreover, the specimens realized with the highest energy density
(a,b) have an elongation at break very similar to the casted component. In conclusion, we can
state that, according to the proposed results, the SLM parts have better mechanical properties
than the part realized with a traditional manufacturing process.

Vrancken et al. [2012] studied the micro structural and the mechanical properties of
Ti6Al4V parts realized with SLM printing process and they underlined the importance of
the heat treatment, in order to improve the mechanical properties of SLMed components. In
Figure 2.7 we can observe the stress-strain curves of parts realized with SLM, compared with
the stress-strain curves of parts produced with a reference Ti6Al4V material.

Figure 2.7: Stress-strain curves of CoCrMo parts produced SLM printing process
adopting different process parameters (a-e). Stress-strain curve of a CoCrMo part
realized with a traditional casting process [Vrancken et al., 2012].

We can observe that the specimens have a very similar Young’s Modulus. The results of
the tensile test, reveals that the SLMed parts have a higher yield stress, although they have a
significant lower elongation at break, in comparison with te parts produced with a reference
material.

The authors also investigated the effects of the heat treatment on the yield stress and
the fracture strain of SLMed and casted parts. The heat treatment consistently reduces the
fracture strain on SLMed parts, while the opposite effect is detected on casted parts. The
heat treatment has almost no influence on the yield stress on SLMed parts, while the yield
stress is consistently reduced after heat treatment on the casted parts.

Another very interesting study on Ti6Al4V parts produced with SLM printing process, has
been proposed by Simonelli et al. [2014] who studied the influence of part orientation, during
the printing, on the final mechanical properties. They concluded that the ductility of the parts
is strongly influenced by the orientation; moreover, the directionality of the microstructure
influences cracks formation. Figure 2.8 shows the results of tensile tests conduced on specimens
built with different orientations. The specimens are analyzed at the end of the printing process
(a) and after heat treatment (b). The results show a high ductility difference among specimens
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realized with different orientation.

Figure 2.8: Stress-strain curves of Ti6Al4V parts produced with SLM printing
process, with different built orientations. (a) Tensile tests results at the end of
the printing process; (b) tensile tests results after heat treatment [Simonelli et al.,
2014].

Jia and Gu [2014] studied the micro-structural properties of Ni718 parts produced via
SLM. They studied the effects of the laser energy density on the relative density of the parts.
They concluded that increasing the energy density allows to obtain a higher density of the
part.

Figure 2.9: Variation of the relative density with the energy density on Ni718 parts
produced via SLM [Jia and Gu, 2014].

Zhang et al. [2015] analyzed the mechanical properties of Ni718 parts produced via SLM;
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moreover they investigated the effects of different heat treatments on the produced parts. The
results shown in Figure 2.10 reveal a different effect of the heat treatment in comparison with
the other alloys previously analyzed.

Figure 2.10: Tensile test results on SLMed Ni718 parts at the end of the printing
process and after different heat treatments processes (SA and HSA) [Zhang et al.,
2015].

In this case, in fact, both the SA and the HSA heat treatment produce a increasing of the
yield strength but, also, a consistent decreasing of the elongation at break; therefore the heat
treatment significantly reduces the ductility of the part.

Wang et al. [2012] investigated the microstructure of Ni718 parts produced via SLM.
They underline that the micro-hardness of the specimens is, basically, directional independent.
Furthermore they focus on the importance of the heat treatment in order to obtain the best
mechanical properties. In specific they detect an average micro-hardness of 365 Hv in SLMed
parts and of 470 Hv on heat treated SLMed parts.

2.3 Physical aspects of Powder Bed Fusion

From a physical point of view the Powder Bed Fusion (PBF) is a very complex process which
involves several thermo-fluid dynamic phenomena. When the heat source scans the powder
layer, very high thermal gradients rise leading the powder to the melting point. The melted
powder give rise to the so-called melting pool which moves among the solid particles reaching
the equilibrium state and exchanging heat both with the solid particles and with the surround-
ing environment. When the melt pool temperature drops down, the fused material solidifies.
This double phase change and the melt pool evolution are the most complex aspects in PBF
processes as detailed in Kruth et al. [2007]. Figure 2.11 shows the most important aspects
influencing the melt pool evolution:
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Figure 2.11: Physical phenomena rising during a Selective Laser Melting process.
In light blu the principal physical aspects; in black the secondary physical effects.

where we have indicated with light blue the most important phenomena and aspects, while
in black are listed the secondary ones.

The dynamics of the melt pool has a great impact on the porosity and on the surface
roughness of the final part [Yadroitsev et al., 2010] furthermore, the fast cooling process may
trigger a segregation between melted and solidified powder [Thijs et al., 2010]. Finally, high
temperature gradients lead to the formation of residual stresses, which could significantly
affect the mechanical properties of the component [Mercelis and Kruth, 2006].

In the following sections we will discuss in detail the principal and the secondary aspects
acting in the PBF process.

2.3.1 Heat source

The heat source is a very important aspect in PBF processes, in fact the intensity of the energy
distribution produced by a laser or an electron beam is fundamental in order to achieve a full
melting of the powder.

The energy surface distribution of a beam, in general can be represented by a Gaussian
distribution [Andrews and Phillips, 2005]:

I(x, t) =
P√
2πσ

exp

(
−(x− vt)2

2σ2

)
(2.1)

where I is the power density in a generic point x = {x, y} of the heated surface at time t;
v = {vx, vy} is the velocity of the beam on the building plate, P is the power of the beam and
σ is the standard deviation of the beam. The power of the beam is given by [Ammer et al.,
2014a]:

P = V · I (2.2)
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where V is the voltage and I is the current. Figure 2.12 shows the typical beam Gaussian
distribution:

Figure 2.12: Typical Gaussian distribution of a laser or an electron beam.

The characteristics of the Gaussian distribution describe the laser setup; in particular the
beam power P influences the maximum intensity of the Gaussian distribution, and the beam
spot influences the standard deviation of the energy distribution.

2.3.2 Heat interaction with metal powder bed

When the powder bed is heated by a laser or an electron beam, the beam energy is converted in
thermal energy by the absorption phenomena [Markl and Körner, 2016]. The heat conduction
in absorption phenomena is governed by the following equation:

ρ
∂(cpT )

∂t
= ∇ · (k∇T ) + αI(x, t) (2.3)

where: x = {x, y, z}, ρ is the density, cp is the specific heat, k is the thermal conductivity and
α is the absorptance, i.e the fraction of the beam energy absorbed per unit of time.

The first solution to the absorption problem of a heat source in metals was proposed by
Rosenthal [1941] who developed a mathematical model to describe the heat absorption during
welding and applied this model to the case of a quasi-stationary heat source [Rosenthal, 1946]:

T (x) =
q

2πk
exp
(V x

2λ

)
K0

(V ·R
2λ

)
(2.4)

where q is the heat source, λ is the thermal diffusivity, K0 is the Bessel function and with

R =
√
x2 + y2 + z2

Eq. 2.4 is able to predict, with good approximation the temperature distribution at a large
distance from the heat source, but it is not well suited to represent the energy absorption in
PBF processes since it does not takes into account the latent heat and the phase change.

The first solution taking into account also the melting process was proposed by Cline and
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Anthony [1977]. With an analogous model, Brockmann et al. [2003] investigated the thermal
distribution generated by a laser heat source on moving thin metal foils. Kou et al. [1981]
studied the effects of a moving laser beam on a semi-infinite substrate, taking into account
both the effects of the latent heat and the melting/solidification process. Finally, in literature
we can find a lot of works investigating the effects of laser and scanning parameters. In
particular we recall: Cheng and Lin [2000] how developed an analytical model to evaluate
the thermal distribution in the laser forming of metal sheets, investigating the effects of the
laser spot, the scanning velocity and the sheet thickness; and Pinkerton and Li [2004], who
proposed a model to estimate the melt pool dimensions with the variation of the parameters
process.

Absorptance and thermal conductivity

In Eq. 2.3 there are two parameters that play a key role the definition of the interaction be-
tween the heat source and the powders: (i) the absorptance α and (ii) the thermal conductivity
k.

In pure metals, the absorptance coefficient is highly dependent on the temperature as
shown by Prokhorov [2018]. In Figure 2.13 we show the variation of the absorptance with
the temperature for several metal alloys. The absorptance is increasing with the temperature;
in particular, in correspondence of the melting point, where it amplifies of a factor of 1-2.
Moreover, it has been proved that fast growing thermal gradients lead to the instability of
the melt pool may triggering an anomalous increasing of the absorptance [Debroy and David,
1995].
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Figure 2.13: Variation of the absorptance with the temperature [Prokhorov, 2018].

The thermal conductivity k relates the heat exchanged across a surface to the perpendic-
ular thermal gradient (Fourier’s law). In dense materials, in general, k decreases with the
temperature [Bergman et al., 2011], however, in PBF the powder bed contains a lot of pores
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among the particles and almost all the parts produced with PBF processes are affected from
the residual porosity ϕ [Bland and Aboulkhair, 2015]. The porosity has a significant influ-
ence on the thermal conductivity [Vafai, 2015]. The first model which tries to predict thermal
conductivity k in a group of randomly packed perfect spheres was proposed by Maxwell [1873]:

kp
ks

=

(1− 2ϕ
1− ks/kg
2 + ks/kg

1 + ϕ
1− ks/kg
2 + ks/kg

)
(2.5)

with:
kp
ks

=
1 + 2ϕ

1− ϕ
for

ks
kg
→∞ (2.6)

where kp is the thermal conductivity of the packed porous media, ks is the thermal conductivity
of the solid dense material, kg is the thermal conductivity of the gas phase and ϕ is the ratio
between the gas volume and the total volume of the domain. we remark that Eq. 2.5 is valid
in the limit of low ϕ, but in PBF process the coefficient ϕ can range from 30 to 60 %. The
constraint of Eq. 2.6, instead is valid for PBF processes, in fact the ratio ks/kg varies from
700 to 1000 which is commonly considered the infinity limit for this problem [Luikov et al.,
1968]. Chiew and Glandt [1983] adapted Eq. 2.5 in order to extend the validity range from
30-60 % to 15% < ϕ < 85%. Similar numerical methods, to valuate the thermal conductivity
in regular packed powder distributions at room temperature, were proposed by Yinping and
Xingang [1995] and Kou et al. [1994], however they omit to include the effects of convective
and radiative flows. Although, during PBF process the high temperature gradients and the
radiative effects influence the thermal conductivity. Tolochko et al. [2003] evaluated k as
follows:

k = kc + kr (2.7)

where kc is the contact thermal conductivity and kr is the radiative thermal conductivity
which can be evaluated as follows [Zeldovich and Raizer, 2012]:

kr =
16LKbT

3

3
(2.8)

where L is the mean photon free path between scattering events and Kb is the Stefan-
Boltzmann constant.

Heat absorption models

The energy absorption process has a great impact on the melting process and, in consequence,
on the final quality of the PBFed part [Klassen et al., 2014]. Eq. 2.1 describes the energy
distribution of a heat source on the surface of the powder bed, but it does not give any
information on the variation of the energy density with depth.

In dense materials, the power density of a beam penetrating a layer of thickness z varies,
in depth, according to the well-known Beer-Lambert law [Swinehart, 1962]:

dI

dz
= −αI(x, y) (2.9)
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Although, Eq. 2.9 has two strong limitations: (i) it is valid only for dense materials and (ii)
it does not consider any effect of heat diffraction. In PBF process the heat is absorbed by the
particle due to multiple reflections [Tolochko et al., 2000] and the thermal energy is distributed
among the particles according to the density and the reflectivity [Gusarov and Kruth, 2005].
Wang et al. [2002] developed a ray tracing model to simulate the energy absorption in sparse
particles distribution, and validated experimentally the results. Gusarov and Kruth [2005],
instead, proposed to solve the heat radiation equation to evaluate the energy absorption in
metallic powders and proposed an interesting comparison with the results obtained through
the ray tracing model, showing a good agreement between the predictions of the two methods.
Gusarov and Smurov [2010] developed a coupled heat radiation - heat transfer model to analyze
the absorption process in SLM and to study the effects of thermal distribution on the melt
pool shape. Drouin et al. [2007] set up a framework based on the Monte Carlo method able
to predict the energy absorption during EBM processes. Furthermore Klassen et al. [2014]
studied the energy absorption in EBM processes with a semi-empirical approach.

2.3.3 Solid-liquid phase change

The phase change is a very complex problem which describes the change of the state of the
material. During solid-liquid phase change a certain amount of energy, referred as latent heat
Ls is needed to win the forces that maintain the material at the solid state. The latent
heat represents the enthalpy difference between solid and liquid state. In pure material, the
solid-liquid phase change takes place at a fixed temperature called melting temperature Tm,
in composites materials, instead, the phase change happens on a temperature interval Tl -
Ts, namely, the liquid temperature and the solid temperature. The former process is called
isothermal phase change, the latter is called non-isothermal phase change.

Figure 2.14: Enthalpy variation on temperature during isothermal (a) and non-
isothermal (b) phase change processes [Sani, 2017].

In literature the methods adopted to describe the phase change process can be divided in
three groups, according on the way they treats the boundary between the solid and the liquid
part of the domain:
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• Front tracking methods;

• Fixed domain methods;

• Hybrid approaches.

Front tracking methods divide the domain in two portions: the solid portion and
the liquid portion coupled with a moving boundary describing the phase change front. This
methods are very accurate since they evaluate directly the phase change front moving at every
time step as well as the temperature gradient across the interface; on the other hand they are
very expensive from a computational point of view and they need a starting solution.

Figure 2.15: Front tracking phase change approach [Sani, 2017].

In figure 2.15, we show the equations implemented in the front tracking method. Two
independent heat equations are used to describe the temperature evolution in the solid Ωs

and the liquid Ωl part of the domain:

cplρl
∂Tl
∂t

= ∇ · (kl∇Tl)

cpsρs
∂Ts
∂t

= ∇ · (ks∇Ts)
(2.10)

where kl and ks are the thermal conductivities of the liquid and the solid parts, respectively
and cpl and cps are the specific heats of the liquid and the solid parts, respectively.

At the interface Γsl a specific balance condition must be satisfied; this condition, describing
the thermal gradient between the solid and the liquid material, is known as Stefan condition
and it is usually written as:

ks
∂Ts
∂n
− kl

∂Tl
∂n

= Lsρ
dΓsl
dt

, x = Γsl(t) (2.11)

where Γsl is the solid-liquid interface.

Fixed domain methods consider a single domain, governed by a single heat equation,
therefore it is not necessary to impose specific conditions at the interface but the Stefan
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condition is implicitly taken into account in the heat equation which is written as follows:

cpρ
∂T

∂t
+ ρL

∂Γsl
∂t

= ∇ · (k∇T ) (2.12)

where Γsl is the solid liquid interface.

Figure 2.16: Fixed domain phase change approach [Sani, 2017].

There are three alternative methods to describe the solid liquid phase change on a fixed
domain:

• Enthalpy method;

• Equivalent heat capacity method;

• Temperature transforming method.

The enthalpy method is the most common technique. It consists in writing the heat equa-
tion in terms of the enthalpy:

ρ
∂H

∂t
= ∇ · (k∇T ) (2.13)

where the enthalpy H(T ) varies with the temperature according to the selected phase
change process. For example, if we consider the non-isothermal phase change, typical of metal
alloys, the enthalpy is written as follows:

H(T ) =


∫ Ts
T0
cps(T )dT, T < Ts∫ Ts

T0
cps(T )dT +

∫ Tl
Ts

∂Ls
∂T

dT, Ts ≤ T ≤ Tl∫ Ts
T0
cps(T )dT + Ls +

∫ T
Tl
cpl(T )dT, T > Tl

(2.14)

Comini et al. [1974] used the enthalpy method to solve the heat conduction-convection
problem with phase change in a finite element scheme. Chatterjee and Chakraborty [2005],
instead, adopted the enthalpy method to describe the solid liquid phase change within a single
component, single phase lattice Boltzmann method.
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The equivalent heat capacity method consists in writing the heat equation in function of
the specific heat:

ρcp
∂T

∂t
= ∇ · (k∇T ) (2.15)

In this approach the specific heat cp(T ) varies with the temperature and the latent heat is
converted into an equivalent heat capacity. Considering a non-isothermal phase change, the
specific heat is given by:

cp(T ) =


cps, T ≤ Ts
Ls

Tl−Ts +
cps+cpl

2 , Ts ≤ T ≤ Tl
cpl, T > Tl

(2.16)

Eshraghi and Felicelli [2012] included the equivalent heat capacity model in their single-
phase single component lattice Boltzmann framework to evaluate the solid liquid phase change
in a representative material.

The temperature transforming method was introduced for the first time by Cao et al.
[1989]. It is a kind of combination between the previous methods. The heat equation is given
by:

ρ
∂cpT

∂t
= ∇ · (k∇T )− ρ∂f

∂t
(2.17)

where cp is given by:

cp(T ) =


cps, T < Ts
Ls

Tl−Ts +
cps+cpl

2 , Ts ≤ T ≤ Tl
cpl, T > Tl

(2.18)

and the function f(T ) is given by:

f(T ) =


cps(Tl − Ts), T < Ts
Ls
2 +

cps+cpl
2 (Tl − Ts), Ts ≤ T ≤ Tl

cpl(Tl − Ts) + Ls, T > Tl

(2.19)

We observe that, when the ∂f/∂t = 0 and cp is independent from the position, the heat
capacity model can be recovered. This method is not very diffused and in literature as been
applied few times due to instability problems. D. Celentano et al. [1994] developed a finite
element method to analyze phase change problems with the temperature transforming model.
This approach was adopted also by Chen and Zhang [2005] who developed a finite volume
scheme to analyze the phase change in selective laser sintering process.

2.3.4 Powder bed generation

As stressed by Wang et al. [2002] the energy absorption is dependent not only on the thermal
properties of the material (conductivity and absorptance) and on the heat source, but also on
the powder bed distribution. When the roller deposits the powder on the building plate, they
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naturally moves reaching the stability condition; this means that the powder are not regularly
displaced on the building plate. The particle position distribution can influence the absorption
process promoting multiple reflection processes and causing the modification of the melted zone
[Markl and Körner, 2016]. Moreover the powder distribution can influence the local porosity
of the part. With this premise is clear that a correct simulation of powder distribution on the

Figure 2.17: Powder packing with different powder size [Shi and Zhang, 2006].

building plate is mandatory to study correctly the melting/solidification process. In literature
there are many models aiming to reproduce the powder distribution. Shi and Zhang [2006]
developed a numerical model based on dropping and rolling rules to simulate the loose packing
process of spherical particles moving under gravity force (Fig. 2.17). This work relies on the so-
called rain drop model developed by Meakin and Jullien [1987]. The particle packing problem
can be faced also with the discrete element (DE) method [Ammer et al., 2014a]. This method
simplifies the packing problem neglecting cohesive and frictional forces, but it is very efficient
in terms of computational times and it is able to reproduce correctly the relative density in
powder bed deposition process. Finally, Zohdi [2014] developed a computational framework
for additive particle deposition including inter-particle contact forces, adhesive bonding forces
and electromagnetic forces which play an important rule in the interaction among very small
particles (< 10 µm).

2.3.5 Melting process and melt pool dynamics

Melting and solidification are the core of PBF processes. During the melting process the solid
powder come to liquid state and moves among the other solid particles exchanging heat trough
convection and conduction, furthermore part of the heat is dissipated trough the radiation with
the surrounding environment. Heat exchange generates a very fast cooling effect leading to
the formation of the bulk material.

The fused material is commonly known with the name of melt pool. The evolution of the
melt pool is a typical thermo-fluid dynamic problem which is governed by the well-known
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Navier-Stokes equations:

∂ρ

∂t
+∇ · (ρv) = 0

∂v

∂t
+ v ·∇v = −1

ρ
∇P + ν∇2v + g

(2.20)

and by the heat energy conservation equation:

∂E

∂t
+∇ · (vE) = ∇ · (k∇E) + αI(x, t) (2.21)

where g is the gravity and E is the the thermal energy which is given by:

E =

∫ T

0
ρCp∆T + ρ∆H (2.22)

Eq. 2.20 and Eq. 2.21 describe the so called Navier-Stokes-Fourier fluid.
The melt pool movement is principally driven by wetting, capillarity and Marangoni forces;

furthermore, specially in EBM process, high power heat source can cause the partial evapo-
ration of the powder. In the next sections we discuss in detail about this topics.

Wetting

The wetting is the spreading behavior of a liquid on a solid surface. When a liquid comes in
contact with a smooth surface, in presence of a vapor phase, at the equilibrium state, the liquid
forms an angle called contact angle which depends on the physical and chemical properties
of the liquid and the solid surface. The contact angle is described by the Young’s equation
[Fowkes, 1964]:

cos θc =
σSG − σSL

σLG
(2.23)

which relates the surface tensions between the three phases: solid, liquid and gas and where
σsg, σsl, σgl are the surface tension between solid-gas, solid-liquid and gas-liquid

Figure 2.18: Equilibrium contact angle in wetting on a smooth surface.

Eq. 7.5 is well suited to represent the wetting on smooth and regular surfaces, but fails in
describing wetting on rough surfaces and in dynamic situations. More accurate wetting models,
like Young-Duprè model [Schrader, 1995] or Cassie-Wenzel model [Bormashenko et al., 2007]
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allow to study the droplet spreading on rough surfaces. Furthermore Hoffman [1975] studied
the wetting problem in dynamic conditions and derived that the apparent contact angle θa in
dynamic wetting is given by:

θa = 3

√
ηV

C1σgl
+ θ3c (2.24)

where apparent remarks the dynamic nature of the wetting angle, η is the dynamic viscosity,
C1=̃0.013 is a constant of the model and θc is the static wetting angle and V is the velocity
of the contact line between the phases.

In melt pool dynamics, the dynamic wetting rises spontaneously and its behavior can be
controlled trough the Ohnesorge number O of the fluid:

O =
η

√
σglρrd

(2.25)

where rd is the radius of the droplet. In specific when O >> 1 the dynamic wetting is governed
by the viscous forces and when O << 1 the dynamic wetting is governed by the inertial forces
[Schiaffino and Sonin, 1997a] and the contact line velocity V can be expressed as follows:

V =
σgl
η

with O >> 1

V =

√
σgl
ρrd

with O << 1
(2.26)

We can appreciate how the wetting angle is dependent from the dynamic viscosity η that
in metal decreases with the temperature according to the following formula:

η = η0 exp
Q

RT
(2.27)

where η0 is the viscosity at the ambient temperature, Q is the activation energy for flow and
R is the universal gas constant [German, 1990].

The importance to have a good wetting behavior has been remarked by German [1984]
who pointed out that in metallurgic applications a good wetting reduces the local porosity
improving the mechanical properties of the component.

Several simulation frameworks have been proposed to investigate the wetting problem.
Pasandideh-Fard et al. [1996] faced the simulation of a three dimensional droplet spreading
on a smooth surface with the volume of fluid method. Raiskinmäki et al. [2000] used the
lattice Boltzmann (LB) method to study the wetting of three dimensional droplets spreading
on smooth and rough surfaces; in this work the multiphase approach developed by Shan and
Chen [1993] is employed. Huang et al. [2007], using the Shan and Chen [1993] (LB) method,
investigated the adhesion force between a liquid droplet and a smooth surface and developed
a systematic approach to evaluate the contact angle. Attar and Körner [2009] developed a free
surface lattice Boltzmann scheme, to simulate the droplet wetting problem. In this method
the free surface movement is tracked with the volume of fluid approach. Moreover, Attar and
Körner [2011] improved the previous framework including heat exchange, solid-liquid phase
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change and wetting on rough surfaces. This method was adopted by Scharowsky et al. [2012]
to simulate the powder wetting during EBM process. The results have been experimentally
validated with a high speed camera monitoring the melt pool evolution during the printing
process (Fig 2.19).

Figure 2.19: Liquid droplet wetting on rough surface after the solid-liquid phase
change. Coupled thermo-fluid dynamic simulation carried out using the free surface
lattice Boltzmann method [Scharowsky et al., 2012].

Capillarity

The capillarity is the capability of a liquid to move in narrow spaces in opposition to external
volume forces (e.g. gravity). Capillarity occurs due to the surface tension, generated by
intermolecular forces, and the adhesion force between the fluid and the solid surfaces. During
PBF process, capillarity naturally rise when the melt pool moves among the solid particles
and it is often accompanied by instability problems.

The instability of liquid cylinder, free to move in space, occurs when the length of the
cylinder L is greater than 2πr and the cylinder is perturbed with a wavelength λr greater than
2πr. When the cylinder is immersed in the gravity field, the stability condition is governed
by the Bond (Bo) number:

Bo =
ρgr

σlv
(2.28)

which expresses the ratio between the gravity forces and the surface tension. As remarked
by Coriell et al. [1977], when the Bo number increases the stability limit L/r decreases,
furthermore it has been proved that the liquid cylinder direction has a great impact on the
stability conditions, in fact, when the filament is oriented in parallel direction to the gravity
field, is less stable than when the filament is perpendicular to the gravity field [Bezdenejnykh
et al., 1999].

Rayleigh [1892] proposed the solution of the dynamic instability of cylinder free in space
and stated that the maximal growth rate Gr (until the cylinder break) of a sinusoidal pertur-
bation in space is given by:



2.3. Physical aspects of Powder Bed Fusion 32

Gr = 0.3433

√
σlv
ρr3

(2.29)

and it occurs for a wavelength of λr = 2.8694πr. Eq. 2.29 is usually known as Rayleigh
instability and it is valid for low viscosity fluids.

Figure 2.20: Example of Rayleigh instability on fluid water cylinder parallel to
gravity direction.

Chandrasekar [1970] investigated the capillary instability for high viscosity fluids and
pointed out that the viscosity influences the cylinder break up and the size of the generated
droplets, and proposed an interesting study on the instability of liquid ferrous cylinder.

Schiaffino and Sonin [1997b] proposed an interesting study on molten liquid cylinders
bounded with solid surfaces, concluding that the instability of the cylinder depends on the
boundary conditions of the moving contact line. Roy and Schwartz [1999] extended the pre-
vious work to the investigation of a liquid cylinder instability on solid surfaces with various
shapes, concluding that the stability limit depends on the surface geometry.

Baer et al. [2000] used the finite element method to develop a free surface scheme to
simulate capillary rise near the corners of solid surfaces. Raiskinmäki et al. [2002] used the
lattice Boltzmann method to simulate the capillary rise in thin pipes. Ahrenholz et al. [2008]
instead adopted the multiphase Shan and Chen [1993] LB method to investigate the capillary
rise in porous media. Capillary rise and depression in pipes with different diameters has
been investigated also by Attar and Körner [2009] adopting a free-surface lattice Boltzmann
method. Finally Ammer et al. [2014a] included the capillary effect evaluation in a complex
simulation framework to simulate the thermo fluid dynamic motion of the melt pool.

Gusarov et al. [2007] applied the FV method to investigate the capillary instability in
SLMed steel parts production. They studied the process with fixed laser power and varying
the scan speed. They concluded that reducing the scan speed increases the stability of the
melt pool. The simulation results are in accordance with experimental tests.

Zäh and Lutzmann [2010] used the finite element method to investigate the capillarity
stability conditions in EBM. The authors studied the influence of different scan speeds and
laser powers on the capillary instability: in particular they established a relationship between
the printing parameters and the critical limit L/r which leads to melt pool fragmentation.
Cheng and Chou [2013] studied the correlation between the critical limit L/r and the melt
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pool area generated during an EBM process. In specific they investigated the influence of
various combinations of process parameters on both the melt pool area and the instability
limit.

Figure 2.21: Simulation of capillary rise and depression in pipes of different size,
performed with a free surface lattice Boltzmann-method [Attar and Körner, 2009].

Gibbs-Marangoni effect/convection

TheGibbs-Marangoni effect, also known as Benard-Marangoni convection is a thermo-capillary
phenomena of fluid mass transfer between an interface due to a difference of surface tension.
Keene [1988] pointed out that in liquid metal alloys, the surface tension decrease with the
temperature, so during the melting process the Gibbs-Marangoni effect rise between hotter
and colder zones of the melt pool.

Figure 2.22: Example of Gibbs-Marangoni effect rising due to the temperature
gradient between the melt pool zones.

The strength of this thermo-capillarity effect is controlled by the Marangoni number Ma:

Ma =
∂σLV
∂T

∂T

∂s

L

2ηδ
(2.30)

where: ∂σLV /∂T is the surface tension gradient, ∂T/∂s is the surface thermal gradient, L is
the characteristic length of the melt pool and δ the thermal diffusivity.

In PBF processes, Gibbs-Marangoni convection affects both the temperature distribution
in the melt pool and the melt pool shape itself [Chan et al., 1987]. Several works in literature
face the problem of the Marangoni forces estimation in laser welding processes. Chan et al.
[1988] demonstrated that the Marangoni convection leads to an increment of the melt pool
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thickness which cannot be caught with the solution of the heat conduction equation (Eq.
2.3). Robert and Debroy [2001], instead, proposed a relationship among Ma numbers and
the other non dimensional number governing a thermo-fluid dynamic problems: the Peclet’s
number (Pe) and the Prandtl number (Pr).

Qiu et al. [2015] set up a finite volume simulation to study the melt pool dynamics in
SLM processes. They underlined that Marangoni forces are the main responsible of melt pool
instabilities which lead to the formation of imperfections on the final part. Jamshidinia et al.
[2013] developed a coupled finite element/finite volume method to investigate the melt pool
dynamics, including thermo and fluid dynamics effects and the Marangoni forces estimation.

Vaporization

Vaporization (or evaporation) can occur in PBF process when the powder bed is heated by a
high power heat source. When including the liquid/vapor phase change in the thermo-fluid
dynamic problem, the energy in Eq. 2.21 is given by:

E =

∫ T

0
ρCp∆T + ρ∆Hs + ρ∆Hv (2.31)

where the latent enthalpy ∆Hv(T ) of vaporization is defined as follows:

∆Hv(T ) =


Lv, T > Tg,

Lv ·
T − Tl
Tg − Tl

, Tl < T < Tg,

0, T < Tl

(2.32)

where Lv is the latent heat of liquid-vapor phase change, Tg is the temperature just above the
vaporization point and Tl is the temperature just below the vaporization point.

Figure 2.23: Experimental results of weight loss in 308 (1) and 309 (2) stainless
steel obtained with a special long time extended welding process [Block-Bolten and
Eagar, 1984].

The vaporization in PBF process can lead to the formation of a spurious pressure above the
melting pool, furthermore the vapor phase can modify the heat absorption process. Boublík
et al. [1973] proposed a relationship to estimate the spurious pressure in the temperature range
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of the vaporization temperature Tv and the critic temperature Tcr:

P ∗ = P0 exp
(−Lv(T − Tv)

RTTv

)
(2.33)

where Tv can be defined as (Tg − Tl)/2.
Starting from Eq. 2.33, Geiger and Poirier [1994] evaluated the evaporation rate as follows:

Ja =
λap
∗
aC

5
a

ρ
√

2πMwRT
(2.34)

where: γa is the activity coefficient of the component, p∗a is the vapor pressure of the component
at the current temperature, Ca is the volumetric concentration of the solute at the surface
and Mv is the molar weight.

Eq. 2.33 is well suited in case of a low vaporization rate, but it is not able to predict strong
vaporization behaviors. Anisimov [1996] developed the first theoretical model to predict the
vaporization during laser sintering processes and studied the relation between the vacuum
temperature and the evaporation rate. Knight [1979] developed a theoretical model to simulate
rapid surface vaporization at the ambient temperature. Allmen and Blatter [2013] stressed
the importance of the vapor pressure on the melt pool suggesting that the vapor pressure acts
as a piston on the melt pool, pushing out the liquid from the pool. The authors investigate
the influence of the laser spot, the liquid layer thickness and the vapor pressure on the melt
pool ejection rate.

Allmen and Blatter [2013] investigated the influence of the vapor plume above the melt
pool on the heat absorption rate. They underlined that the vapor cloud surrounding the melt
pool modifies the incident wavefront of the heat source, furthermore when a high power heat
source crosses the vapor plume, part of the vapor can condensate in sub-micro-metric droplets
which can absorb, scatter and reflect a significant portion of the incident power input.

Gürtler et al. [2013] adopted the finite volume (FV) method to investigate melt pool dy-
namics in SLM process, including vaporization effects. Shan and Chen [1994] developed a
multicomponent multiphase lattice Boltzmann scheme to simulate liquid-vapor phase tran-
sition. This method was adopted by Gong and Cheng [2012] to develop a multiphase heat
transfer model with liquid-vapor phase change. The method is used to simulate bubble growing
and detachment from a heated smooth surface.

Figure 2.24: On the left: bubble growing from a heated surface. On the right:
velocity field after bubble detaching from the heated surface.
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Loh et al. [2015] developed a FE element method to investigate the evaporation rate
in single lines of aluminum alloy realized with SLM technology with different scan speeds
and laser powers. This model is able to predict the strong evaporation rate that affects the
aluminum parts production; furthermore the simulation results are successfully compared to
the experimental tests.

2.3.6 Porosity

Porosity is a big issue in PBF processes, in fact a high percentage of pores in bulk material
can affect the mechanical behavior of the final component, reducing the material strength,
and the fatigue resistance [Aboulkhair et al., 2014]. Porosity depends on several parameters
of the printing process; in particular from: powder size and distribution, heat source power,
scan velocity and scan direction [Aboulkhair et al., 2014].

Figure 2.25: Effect of hatch spacing on part porosity [Aboulkhair et al., 2014].

From the practical experience it merges that porosity is an important problem in producing
aluminum parts. One of the main causes of porosity in aluminum parts is the oxidation which
can occur during the melting process on top and lateral sides of the melt pool; the contact
among two oxide films generates the pores. [Louvis et al., 2011]. The oxidation of a generic
metal is given by the following red-ox reaction:

xM +O2 ←→MxO2 (2.35)

Louvis et al. [2011] pointed out that in order to obtain a 100% density in SLM aluminum
parts, the oxide film must be break up during the melting process. Aboulkhair et al. [2014]
studied the influence of scan velocity and scan strategy on pores formation. They conclude
that metallurgical pores principally rise at low scanning speeds when small gas particles are
trapped into the melt pool; keyhole pores, instead rise at high scanning speeds when the rapid
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cooling effect does not allow the melt pool to fill the underlying cavities. They also investigate
the influence of hatch spacing in scan strategy on the resulting porosity, concluding that small
hatch spacing allows to reduce part porosity, as we can appreciate in Fig. 2.27. Osakada and
Shiomi [2006] stressed that high scan speeds trigger a balling effect on the top surface on the
melt pool. An excessive balling effect increase the roughness of top surface, favoring keyhole
pores formation.

Gürtler et al. [2013] included in their finite volume method the spurious pressure to evaluate
keyhole pores formation. Bauereiß et al. [2014] adopted the lattice Boltzmann method to
simulate PBF process varying the heat source power. The simulations show that with low
laser power the insufficient melt pool depth and the wetting behavior give rise to a significant
porosity in the part. The simulation results have been validated trough experimental tests.

2.3.7 Surface roughness

The surface roughness is a peculiarity of parts created with PBF processes and depends on the
presence of semi-molten powder of the surface of the bulk layer. In most of cases the surface
roughness is an undesired effect that affects the final aspect and the mechanical properties of
the parts; furthermore it is source of crack initialization [Cansizoglu et al., 2008]. In few cases,
instead, the surface roughness is useful; a typical example are the mechanical implants where
the surface roughness favors the contact between the mechanical part and the human bones
[Rombouts et al., 2005].

The surface roughness is strongly dependent on the printing process parameters, in partic-
ular on the laser/electron beam characteristics. Gürtler et al. [2014] developed a finite volume
method to investigate melt pool dynamics in SLM printing of aluminum parts and they study
the effects of different powder size distributions on part porosity and surface roughness. They
conclude that small size particles distribution are useful to reduce the surface roughness. Qiu
et al. [2015] adopted the finite volume method to investigate melt pool dynamics in SLM parts
production. The authors remark the importance of melt pool stability in order to reduce the
surface roughness.

Figure 2.26: Surface profile/roughness of a surface inclined of 65 °C [Strano et al.,
2013].

Strano et al. [2013] developed a mathematical model, based on experimental results, to
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describe the variation of the surface roughness in function of the sloping angle.
Jamshidinia et al. [2013], instead, adopted the finite element method to investigate the

effects of different hatch spacing on surface roughness in EBM. They conclude that, with the
considered hatch spacings, no significant interactions between melting lines rise during the
scan process, while a significant temperature difference is recovered after the cooling process.
Finally they conclude that with sparser hatch spacings low temperatures on top layer surface
are obtained, reducing the surface roughness. The results are validated trough experimental
tests [Jamshidinia and Kovacevic, 2014].

Figure 2.27: Surface roughness obtained with a hatch spacing of 500 µm [Jamshi-
dinia and Kovacevic, 2014].

2.3.8 Residual stresses and cracking problems

During melting/solidification process high thermal gradients rise, leading to the formation
of residual stresses. When the temperature increases, the material expands and the material
strength decreases. The material expansion is bounded by the solid powder and once it reaches
the yield stress a plastic deformation begins. When the heat source moves away from the melt
pool, the melting powder starts to cool down triggering stress formation in the solidified
material. Mercelis and Kruth [2006] called this stresses residual stresses.

Residual stress formation is strongly influenced by the temperature distribution during
the printing process and by the physical constraints imposed by the support structures. In
general, residual stresses can lead to high part deformations both during the printing process
and after the supports removal when the residual stresses start relaxing. Fig. 2.28 shows an
example of part detachment from the support structure due to the high stresses rising during
the print.

Figure 2.28: Example of part detachment from the building plate due to residual
stresses.
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Furthermore, when residual stresses exceed the material ultimate strength, some cracking
problems can rise in the printed parts. Fig. 2.28 shows a typical example of cracks induced
by residual stresses on a SLMed Stainless Steel part.

Figure 2.29: Example of crack in 3D printed part induced by residual stresses
accumulation.

Mercelis and Kruth [2006] developed one of the first mathematical models to predict resid-
ual stresses in SLM parts. In this model many assumptions are taken into account: room
temperature is kept constant and stresses are assumed to be constant layer by layer, but in
spite of this simplifications the model is able to predict qualitatively good the residual stresses
distributions.

Li et al. [2004] developed a coupled thermo mechanical finite element method, neglecting
hydrodynamics effects, to investigate the dependence of residual stresses on the melt pool
dynamics. Finally they relate the residual stress distributions to occurrence of the cracks
detected in experimental tests. Dai and L. Shaw [2006] developed a thermo mechanical finite
element method to study the SLM production of multi material dental implants of nickel and
porcelain. They underlined how in multi material components the residual stresses are caused
by both thermal gradients and difference between the expansion coefficients of the considered
materials; in fact, because of the strong difference between the expansion coefficients of nickel
and porcelain, high residual stresses arise at the interface between the two materials triggering
cracks formation in the component.

Papadakis et al. [2014] investigated the residual stresses on a cantilever beam produced
with SLM. They developed a uncoupled thermo mechanical finite element method, including
several simplifications; the strongest ones are the homogenization of three physical layers into
one layer of elements and the instantaneous application of thermal load. Nevertheless, their
model is able to predict with a 25 % error the vertical part displacements.

Many other similar finite element schemes have been proposed in last years to predict resid-
ual stress distribution and parts distortions; among the other we recall the models proposed
by Krol et al. [2013], Zaeh and Branner [2010] and Keller et al. [2013].

In most of these works the heat source is homogenized, the element layers correspond to
several physical layers and, in some cases the scan path is not taken into account. Nevertheless,
such approximations allow to predict qualitatively good stress paths and part displacements.
Although, in order to predict with accuracy the stress distribution and the cracks formation it
is mandatory to calculate the temperature distribution and thus to include in the calculation
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the correct scan path [Seidel et al., 2014].

Figure 2.30: On the left: vertical displacements before and after support removal,
evaluated with a thermo mechanical finite element model. On the right: experi-
mental results after support cutting [Papadakis et al., 2014].

Li et al. [2017] developed a very accurate finite element method, to study residual stresses
and part distortions in a cantilever beam produced with SLM. To reduce the computational
demand they homogenize eight physical layers into one element layer, instead they follow
correctly the scan path and they model the heat source.

Afazov et al. [2017] developed a coupled analytical - FEM model to predict part distortions
in SLM processes. An analytical thermal model is developed to evaluate thermal functions that
are then used to perform the mechanical analysis. The results are compared with experimental
measurements showing a very good agreement with the experimental data. Furthermore,
according to the authors, the results are obtained reducing the computational time from
many days to few hours.

Figure 2.31: Distortion prediction in SLM part obtained with a coupled analytical
- FEM model [Afazov et al., 2017].
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Cracks formation

As previously discussed a high accumulation of residual stresses can lead to cracks formation.
Weisman [1976] studied hot cracks formation in welding process. From this point of view
welding is very similar to SLM/EBM processes because hot cracks appear when the semi-
molten material is not able to accumulate the strains induced by the shrinkage effect caused
by the very fast cooling effect. The zones more subjected to hot cracking problems are the
boundaries and the interfaces of the parts [Cieslak, 2002]. Furthermore it has been proved that
a narrow melting-solidification temperature range reduces cracks formation. Finally Borland
[1960] pointed out that the presence of gases like sulfur can favor hot cracks formation in
iron-based materials.

Cieslak [2002] studied the formation of cold cracks after the solidification process. This
type of cracks usually reveals after days or weeks from the part production.

Carter et al. [2014] studied the influence of the adopted laser scan strategy on the cracking
behavior of nickel part produced with SLM. They proved that a back-and-forth scan strategy
produce a more homogeneous structure characterized by regular grains which reduces the
cracking occurrence.

Cracking problems can also arise from fatigue. Walker et al. [2017] evaluated fatigue
cracks propagation in SLMed parts produced without heat treatment. The experiments are
conducted considering different scan strategies and load magnitudes. Finally the cracks prop-
agation is related to the porosity of the parts and the difference between the crack propagation
in SLM parts and traditional manufacturing parts is investigated.

Siddique et al. [2017] investigated the effects of build plate temperature and post processing
heat treatment on fatigue resistance, concluding that those parameters have a significant
influence on the it. Furthermore the experimental results show that local imperfections and
micro-structure can significantly increase fatigue cracks propagation.

2.4 Numerical simulations of Powder Bed Fusion

In previous sections we have briefly discussed about the physical aspects rising during AM
processes and how they have been faced from a computational point of view. The simulation
approaches can be divided in two big class according to the scale they face the problem:

• Powder level simulations

• Continuum level simulations

2.4.1 Powder level simulations

Powder level simulations try to solve the simulation of PBF processes at the microscopic level,
typical of the powder. In general powder level simulations are adopted to investigate small
portions of domain (hundreds of microns) and to study the effects of process parameters on
melt pool dynamics. Furthermore they are adopted to investigate the local effects, like surface
roughness and porosity, which can affect the mechanical properties of the part.

At the author knowledge, the only method which is able to solve such complicated problem
is the framework proposed by Attar and Körner [2011]. This is the first model able to simulate
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the solid-liquid phase change of the powder and to follow simultaneously the thermo-dynamic
evolution of the melt pool. The algorithm proposed in this work is based on a free surface
[Thürey et al., 2005], multi distribution [He et al., 1998] lattice Boltzmann method (LBM)
and it is adopted to solve the melting/solidification problem in a 2D domain. This model is
able to treat wetting, surface tension, phase-change and heat conduction-convection. They
used this method to investigate melt pool evolution and balling effect during a single line
scanning on a stochastic powder bed. The authors concluded that the arrangement of melt
pool strongly influence balls formation and, consequently, relative density. Körner et al. [2013]
used the simulation framework proposed by [Attar and Körner, 2011] to simulate the formation
of a single layer of solidified material. The rain drop model is used to simulate the powder
deposition. They investigated the influence of beam properties and layer thickness on the
final quality of the wall. They concluded that the stochastic allocation of the powder strongly
influence the wall quality, furthermore they pointed out that low scan velocities increase the
final density of the part, but at the same time they increase melt pool instability and, thus,
the surface roughness of the part.

Figure 2.32: Simulation of wall construction using a free surface multi distribution
lattice Boltzmann method [Körner et al., 2013].

Ammer et al. [2014a] extended this approach to three dimensions and proposed a complete
simulation framework of the entire PBF process, including powder bed generation, heat source
modeling and heat absorption/interaction with powder.

Figure 2.33: 3D simulation of EBM in a stochastic powder bed distribution [Ammer
et al., 2014a].



2.4. Numerical simulations of Powder Bed Fusion 43

In this method the free surface is modeled with the volume of fluid approach, which allows
to evaluate the porosity as the fraction of gas trapped between the solid layer. With this
method Ammer et al. [2014b] investigated a real case study which has been validated with an
experimental test [Juechter et al., 2014].

A similar approach is adopted by Markl et al. [2015] to investigate the influence of process
parameters on the melt pool generated by an electron beam on a single layer of powder. In
this work the authors studied the influence of three process parameters on the final porosity:
(i) beam power, (ii) beam spot and (iii) scan velocity. With a constant electron beam power
and a constant scan velocity, the decreasing of the beam area leads to an augment of the local
porosity; furthermore they show that duplicating the electron beam power, keeping constant
the beam area and the scan velocities, the porosity of the part increase. This simulation
approach was adopted by Markl et al. [2016] to simulate a multilayer powder bed constituted
of twenty layers. The results show the presence of un-molten powder on the top of the melt
pool, in particular, we notice that keeping constant the laser power and the scan velocity, the
decreasing of the beam area leads to an increment of the surface roughness. In fact, higher
energy density increases the instability of the melt pool, and according to Qiu et al. [2015],
also the surface roughness. This simulation takes into account also the Marangoni convective
flows and the evaporation.

Figure 2.34: Influence of the energy density and scan speed on the local porosity
in a 3D domain of multiple powder layers [Markl et al., 2016].

King et al. [2015], instead, adopted a coupled finite element/finite volume method to
investigate a multilayer SLM process, although this model has some limitations: they used
a continuous absorption model instead of developing a ray tracing model for heat absorption
in a stochastic powder bed, moreover they do not take into account the Marangoni forces,
evaporation and heat radiation. Their results show that with a higher scan speed and a
higher laser power a severe balling effect occurs, due to the increasing capillary instability
of the melt pool. Furthermore they investigate the effects of different scan strategies with
constant laser power and scan velocity. The results show that a discontinuous track does not
present a severe balling effect, but nevertheless it does not allow to avoid the fragmentation
of the melt pool. In conclusion we can also notice that the results are in agreement with the
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results shown by Markl et al. [2016].

Figure 2.35: Effect of laser power and scan velocity change [King et al., 2015].

In conclusion, the powder level simulations allow to investigate with accuracy the dynamics
of the melt pool and the local effects of the printing process parameters on the bulk material.
Although, to solve the powder level simulations, very fine computational meshes are needed.
In general the element size must be of an order of magnitude lower than the powder diameter.
For example let’s suppose to simulate a 1mm3 of domain with layers of 40 µm; considering a
cubic element mesh of 4 µm size we would need around 16 millions of elements. So, from a
computational point of view, powder level simulations are very expensive and can be performed
only with HPC computational efforts. By fact until now it is not possible to simulate at the
powder level the printing process of an entire part even using supercomputers.

2.4.2 Continuum level simulations

Continuum level simulations are, in most of cases, used to study the PBF process at the scale
of the component, in this case they can be referred as macroscopic simulations. Although,
sometimes they are used also to investigate the local effects of the heat source on the powder
bed. In this last case the can be considered a kind of microscopic simulation.

The main purpose of this approach is to evaluate the residual stresses rising on the com-
ponent during the printing process and to evaluate the part distortions. All the macroscopic
simulation approaches adopt the strong approximation to consider the powder bed as a con-
tinuous domain. Furthermore, in most of cases, they do not simulate the fluid dynamic effects,
omitting the surface movement representation and neglecting wetting and surface tension ef-
fects.

The adopted meshing strategy and the time resolutions are dependent on the desired
precision level of the simulation: with very fine meshes (µm) and very small time steps µs it is
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possible to study the local interaction between the heat source and the material and to follow
exactly the scan strategy. Although in this case it is possible to simulate only small portions
of domain (cm3) like in microscopic simulations, in fact in this case the typical element size
is equal to the powder layer thickness.

To simulate an entire component, although, it is not possible to adopt a fine meshing
strategy, but, coarser meshing strategies are needed. In general the typical element size varies
between 2 and 50 times the layer height. This approach does not allow to simulate the
effects of volumetric heat sources and to follow correctly the scan path, although it allows to
obtain a global valuation of stress distribution and component deformations, with reasonable
computational efforts.

Matsumoto et al. [2002] developed a finite element method to investigate thermal and
residual stresses distribution on a single layer of powder. An uncoupled approach is adopted:
first the thermal analysis is carried out, then the results of the thermal analysis are used as
forcing term for the mechanical analysis. In this work the domain is assumed to be continuous
and heat conduction and radiation are taken into account for the thermal analysis, while a
thermo elastic constitutive model is adopted for the mechanical analysis.

Hussein et al. [2013] developed a thermo mechanical finite element method in which the
scan strategy is taken into account, furthermore the heat source is modeled as a Gaussian
distribution and the heat conduction with the base plate is taken into account. They conclude
that the highest temperature gradient is found at the start of the printing process, while the
melt pool length increases with higher scan speeds. Furthermore the authors stress the fact
that the simulation is able to predict the zone that are more affected by distortions and needs
particular support structures in order to obtain the desired geometry.

Figure 2.36: Finite element simulation SLM process of a single layer of powder
which is treated as a continuum domain. Simulation approach includes the heat
source modeling and the base plate [Hussein et al., 2013].
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Foroozmehr et al. [2016] used the finite element method to investigate melt pool sizes
during SLM process. Not only the spatial energy distribution of the laser beam, but also
the beam penetration depth is taken into account. The results of the study are validated
with experimental tests showing that, after a brief unstable behavior at the beginning of the
first scan line, melt pool sizes stabilize and similar melt pool shapes are recovered for the
subsequent scan lines.

Li et al. [2017] developed a temperature thread multi-scale model to study an equivalent
body heat flux to be applied on the hatch layer and substitute the classic micro-scale heat
source treatment. With this approach they reduce the computational demand allowing to
simulate, layer by layer, a whole component. Finally they simulate the part detachment from
the building plate and they compare the numerical distortions with the experimental results.

Figure 2.37: Comparison between the predicted part distortions and the experi-
mental measurements of a cantilever beam produced with SLM [Li et al., 2017].

2.4.3 Multi scale approaches

Multi scale approaches aim to connect the microscopic world to the macroscopic one. In
particular they try to include the information given by the powder level simulation into the
microscopic simulations in order to calculate residual stresses and part distortions.

In recent years some multi scale models have been proposed; although at the state of the
art is no available any multi scale model which includes the results of a powder bed analysis
in a continuum scale simulation, but all the models are based on continuous approaches in
which some micro-structural aspects are included in the macroscopic simulation framework.

Li et al. [2016a] developed a multi scale model, based on the finite element method, in
which they integrate a micro scale laser scan model, a meso scale layer hatch model, and a
macro scale part model. In the micro scale laser model the authors calculate an equivalent
heat source from the energy distribution of a heat flux on scanning a layer of powder material
(which is assumed to be continuous); then this equivalent heat source is included in a layer
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hatch model to estimate residual stresses, and finally, the calculated residual stress field is
applied to the macroscopic part, following the scan direction, in order to predict the global
residual stress field. The simulation framework has been validated trough the comparison with
experimental data. This method is able to predict with good accuracy the part distortions
with a consistent saving of computational times [Li et al., 2016b].

Figure 2.38: Comparison between the predicted part distortions and the experi-
mental measurements of a plate beam produced with SLM and simulated with a
multi scale simulation. [Li et al., 2016a].

Yan et al. [2015] developed a multi-scale, FEM based, approach, to simulate the electron
beam interaction with the powder. The distribution of the absorbed energy is modeled using
Monte Carlo simulations in front of the classical Gaussian and double ellipsoidal models. The
simulation scheme is adopted to investigate the interaction between a single powder layer and
the electron beam, concluding that this model is able to predict some typical phenomena, like
eruption and explosion, that usually can be described only with a pure powder level simulation.
Although this study is lack of an experimental validation.

Seidel and Zaeh [2018] proposed a multi scale approach in which a very accurate modeling
of the heat source interaction with the powder bed is performed. The heat source absorption
in the plane is estimated using the Rosenthal Equation (Eq. 2.4), while the melt pool depth is
evaluated trough experimental tests. The results are used to solve the temperature distribution
of a single layer model; then a control volume scheme is developed to simulate the build-up of
the entire part.

Li et al. [2018] pointed out that the prediction of the residual stresses in SLM parts is
extremely expensive, from a computational point of view, when using a coupled thermo-
mechanical FEM simulation. Moreover the authors underlined that multi-scale predictive
models are necessary to reduce the computational costs and they also pointed out that scalable
simulation models must be able to take into account the influence of scan strategy on residual
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stresses and this is hard to obtain with a multi-layer approach in which an equivalent heat
source is used. They developed a scalable predictive model based on a micro scale study of
heat source interaction and meso scale hatch model where also the scan strategy is taken into
account. Finally a macro scale analysis based on the concept of block layers is used to build
up the part. The developed method has been used to predict the residual stresses in SLMed
parts and the results have been validated with experimental measurements.

Figure 2.39: Predicted and experimentally measured vertical residual stresses on a
SLMed part simulated with a multi scale approach and with different numbers of
macro layers [Li et al., 2018].

2.4.4 Commercial Codes for Additive Manufacturing Simulations

The continuum level simulations and the multi scale simulations of AM are based on the
assumption of a continuum domain and, in general, they are performed using commercial
softwares. In literature the most frequently used commercial softwares are:

• Abaqus (Simulia, USA);

• COMSOL Multiphysics (COMSOL, Inc., USA);

• ANSYS (ANSYS, Inc., USA);

Abaqus is a well know finite element code that since 2016 started the development of a
tool dedicated to PBF simulations in which, two simulation approaches are proposed:

• Microscopic in which a very fine meshing strategy (equal or less than the layer thickness)
is adopted and the heat source can be modeled to study the interaction with the powder
bed, taking into account the scan strategy;
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• Macroscopic in which a coarser meshing strategy (element layer representing several
physical layers) and the heat source can be modeled to study the interaction with the
powder bed, taking into account the scan strategy.

In both cases the analysis is solved using an uncoupled thermo-mechanical approach in
which the results of the thermal analysis are used as forcing term in the mechanical analysis.

Next to this classic finite element codes, new softwares dedicated to AM simulation have
been proposed in the last years. In particular we refer to:

• DIGIMAT AM (ExStream Engineering - MSC, Belgium);

• Virfac iAM (GeonX, Belgium);

• 3D Experience AM (Dassault Systemes, France);

Digimat AM is a tool developed by ExStream Engineering which allows to simulate various
AM processes, including SLM and SLS. The simulation is divided in two steps:

1. A preprocessing step where several representative volume elements of material are printed,
using a fully thermo-mechanical coupled analysis to identify the warpage behavior of the
printed material as a function of the process parameters;

2. A structural job, where material is deposited layer-by-layer and then cooled down once
the full part is built.

The warpage behavior of the representative volume is studied using the Inherent Strain
Method. The software allows the definition of several printing process parameters, including
the chamber temperature, the laser power, the scan spacing, the scan speed and the recoating
time. Although, when the author write, the software is able to perform simulations just with
a thermo-elastic constitutive model and no plastic or viscous characteristics can be taken
into account. Thanks to the usage of the Inherent Strain Method and the layer-by-layer
construction, the software is very fast and allows a consistent time saving in face of the classic
FEM approach.

Virfac iAM is a multi-physic multi-scale software dedicated to SLM process simulation.
The simulation framework is similar to the one proposed by Li et al. [2018], although at the
state of the art, only the macroscopic layer-by-layer construction is available and the simulation
of the build-up model is performed with the Inherent Strain Method. At the author knowledge,
the micro and the meso-structural tools will use the lattice Boltzmann Method. One of the
best characteristics of this software is the possibility to perform parallel computations with a
super fast GPU acceleration tool. This feature allows to obtain very low computational times
even on a simple desktop computer.

2.5 Conclusions

In this chapter, we have studied the physical effects rising in Powder Bed Fusion process and
we have investigated the possible computational solutions to simulate PBF process.
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PBF is a very complex process which involves several physical phenomena including wetting
and phase change. In the first part of this chapter we have analyzed in detail each phenomena,
focusing on the physical aspects and on the common experimental approaches; furthermore,
we have proposed a brief literature review of each phenomena, focusing both on experimental
studies and on computational approaches.

In the second part of this chapter we have focused on numerical simulations of Powder
Bed Fusion. Simulation approaches can be divided into two big classes: powder level and
continuum simulations; although in last years multiscale approaches which try to include
microscale results into a macroscopic framework have been developed. We have analyzed
advantages and disadvantages of each simulation approach, leaving applications of micro and
macroscopic simulations to the next chapters.



Chapter 3

The Lattice Boltzmann Method

The Boltzmann Equation can be derived from the kinetic theory of gases (KTG). Heceforth,
in the next sections, starting from the kinetic theory of gases and following step by step
Boltzmann’s work, we will derive the Boltzmann Equation.

3.1 The Kinetic Theory of Gases

In the molecular theory of matter a general volume of gases is a system with a very large
number of particles moving in an irregular way. If we consider particles as mass points and
assume to deal with N particles, the classical Newton’s equations, governing the motion of the
i-th particle (with i = 1,. . . , N) can be written as:

ẋi = ξi, ξ̇i = Fi → ẍi = Fi (3.1)

where xi is the space position vector of the i-th particle, ξi is the velocity, and Fi denotes the
force acting upon the i-th particle divided by the mass particle.

For a generic system of N particles, solving the time evolution problem means to know
the position and the velocity (xi, ξi) for each particle at each time step: this involves the
resolution of 6N first-order differential equations (Eq. 3.1) with 6N unknowns. In order to
simplify the notation it is common, and very useful, to introduce the 6N -dimensional Phase
Space with the generic element z represented as follows:

z =

{
X
Ξ

}
(3.2)

where X is a 3N dimensional space containing the N three-dimensional vectors xi, and Ξ is a
3N dimensional space containing the N three-dimensional vectors ξi. It is possible to represent
the time evolution of z as follows:

Z = ż =
dz

dt
with Z =

{
Ẋ
Ξ̇

}
(3.3)

where Ẋ is a 3N dimensional space containing the N three-dimensional vectors ξi, and Ξ̇ is a
3N dimensional space containing the N three-dimensional vectors Fi.

51
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Solving such a large system is an impossible task as shown by Borel [1914]. To get over the
hump, we renounce to compute the analytical solution of Eq. 3.3 and we use a probabilistic
approach. In fact, it is possible to introduce a probability density function, P (z, t), represent-
ing the probability to find each particle (of the N particle system) in a certain position with
a certain velocity at time t. Considering a region D of the phase space, the probability to find
the state z inside this region is given by:

Prob(z ∈ D) =

∫
D
P (z, t)dz (3.4)

In a similar way, we can define P0(z) = P (z, 0) as the probability density function representing
the probability to find, at time t = 0, each particle (of the N particle system) in a certain
position with a certain velocity. Under specific regularity conditions [Cercignani, 1969], we
can substitute the discrete mass distribution in Eq. 3.3, with a continuous mass distribution
whose density is proportional to the probability density function P . Then, applying the mass
conservation principle to Eq. 3.3, we obtain:

dP

dt
=
∂P

∂t
+∇ · (PZ) = 0 (3.5)

where (∇ · ) is the classical divergence operator. Equation 3.5 is commonly known as Liouville
equation (LE). The second addend of Eq. 3.5 can be written as follows:

∇ · (PZ) = Z · (∇P ) + P (∇ ·Z) (3.6)

where the divergence of Z can be written in terms of the physical variables, as following:

∇ ·Z =
N∑
i=1

(
∂

∂xi
· ξi +

∂

∂ξi
·Fi
)

(3.7)

Now, if we assume xi and ξi to be independent variables and we consider the force per
unit mass to be velocity independent (i.e. (∂/∂ξi) ·F i = 0), it is straightforward to write:
∇ ·Z = 0. The second assumption is physically consistent if we assume to deal with a system
of particles not immersed in a magnetic field (i.e. no Lorentz Force is acting on the particles).
With those considerations, inserting Eq. 3.6 in Eq. 3.5, we can write the Liouville’s equation
in such a way:

∂P

∂t
+Z ·

∂P

∂z
= 0 (3.8)

or, in terms of the physical variables xi and ξi:

∂P

∂t
+

N∑
i=1

ξi ·
∂P

∂xi
+

N∑
i=1

Fi ·
∂P

∂ξi
= 0 (3.9)

Finally, if there is no force acting on the particles, we can write a simplified version of Eq. 3.9
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as follows:

∂P

∂t
+

N∑
i=1

ξi ·
∂P

∂xi
= 0 (3.10)

It is possible to demonstrate that Eq. 3.9 represents an alternative way to write Eq. 3.3 for
a continuous system, containing, not only the informations about a given motion, but also on
the motion close to the latter [Cercignani, 1969]. Another important point is that, if the initial
data are given with certainty, P0 is a Dirac Delta function and the evolution distribution P
is, likewise, a Dirac Delta function: in this case the center of the Delta function is the exact
solution of the equation of motion (Eq. 3.3).

Let us consider, now, the probability density function P for a system of N particles:

P (z, t) = P (x1, ξ1, . . . ,xN , ξN , t) (3.11)

As stressed by Cercignani [1972], and by Boltzmann himself, it is not possible to adopt Liouville
equation for practical purposes due to the enormous number of unknowns (∼= 1020). In order
to have a more manageable equation, we need, so, to reduce the numbers of unknowns in
function P .
Following Boltzmann’s work, we write the evolution equation for just one particle distribution,
P (1), and not for the entire system of N particles. We define P (1) as the probability to find a
particle with certain position and certain velocity, whatever is the state of the other particles.
P (1) is expressed as follows:

P (1)(x1, ξ1, t) =

∫
CN−1×R3N−3

P (x1, ξ1,x2, ξ2, . . . ,xN , ξN , t)dx2dξ2 . . . dxNdξN (3.12)

where CN−1 is the region of the physical space covered by N − 1 positions of the N − 1

particles. R3N−3 is, instead, the velocity axis covered by the 3N − 3 velocity components of
the N − 1 particles. In absence of collisions, P (1) must satisfy Eq. 3.10, so we can write:

dP (1)

dt
=
∂P (1)

∂t
+

N∑
i=1

ξi ·
∂P (1)

∂xi
= 0 (3.13)

In this way the problem is written in seven unknowns (three positions xi, three velocities ξi
and the time t).

Accordingly, approaching the one particle problem from a probabilistic point of view is
quite simple. However, as suggested by Boltzmann, the problem gets much more complex
if we intend to write the dynamic of a particle considering the possibility of collision with
a second particle. We assume, for simplicity, that the particles have the same dimensions
(diameter σ); the probability of a collision depends on the probability to find another particle
at the distance of diameter from the considered one. We need, so, another probability density
P (2) = P (2)(x1, ξ1,x2, ξ2, t) which states the probability to find particle 1 in position x1 with
velocity ξ1 and particle 2 in position x2 with velocity ξ2 at time t. Similarly to P (1), we can



3.1. The Kinetic Theory of Gases 54

evaluate P (2) as follows:

P (2)(x1, ξ1,x2, ξ2, t) =

∫
CN−2×R3N−6

P (x1, ξ1,x2, ξ2, . . . ,xN , ξN , t)dx3dξ3 . . . dxNdξN

(3.14)

where CN−2 × R3N−6 is easily defined as an expansion of the integral domain in Eq. 3.12.
In order to define the evolution equation of this system of two particles, we have to investigate
what happens during the collision between the particles. Fig 3.1 represents the collision
between particle 1 and particle 2: ξ′1 − ξ′2 is the difference between particle velocities coming
closer before collision, while ξ1 − ξ2 is the difference between particle velocities moving away
after collision.

Figure 3.1: Incoming and outgoing velocity difference between colliding particles.

For sake of simplicity, we introduce the following quantities:

v = ξ1 − ξ2 and v′ = v − 2n(n ·v) (3.15)

To evaluate the effects of the collisions between the particles, we refer to Fig. 3.2. Let us
consider a point, x1, on the sphere surface, we define σn as the vector joining the center of
the sphere x2 and the point x1. We consider, also, an area dS (green area around x1) defined
as dS = σ2dn, where dn is the area of an element on the surface of the sphere around n. On
dS we can construct a cylinder containing the particles hitting dS in the time t + dt. The
height of that cylinder is defined as |v1 ·n|dt.

Figure 3.2: Probability of collision between particles.
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We introduce the probability, P c, of collision between the particle 1 and the particle 2
in the elements of volume: (x1,x1 + dx1),(ξ1, ξ1 + dξ1),(x2,x2 + dx2),(ξ2, ξ2 + dξ2). P c is
expressed as follows:

P c = P (2)(x1,x2, ξ1, ξ2, t)dx1dξ1dξ2 × σ2dn|v1 ·n|dt (3.16)

Now, if we want to evaluate the probability of collision, P cf , between particle 1 and 2 when the
position (x2) and the velocity (ξ2) of the particle 2 are fixed, we need to integrate Eq.3.16 on
ξ1. During this operation it is convenient to discern between two situations as shown in Fig.
3.3. When the particles are coming closer, according to the definition of vector n, the quantity
v1n is negative, while, when the particles are moving away after collision v1n is positive.

Figure 3.3: Height of the cylinder before and after collision of the two particles.

Finally, after some mathematical computations the P cf is expressed as: P cf = G− L with:

G = (N − 1)σ2
∫
R3

∫
B+

P (2)(x1ξ1,x1 + σn, ξ2, t)|(ξ2 − ξ1) ·n|dξ1dn

L = (N − 1)σ2
∫
R3

∫
B−
P (2)(x1ξ1,x1 + σn, ξ2, t)|(ξ2 − ξ1) ·n|dξ1dn

(3.17)

where B+ is the part of domain containing the particles coming closer after collision; B−,
instead, is the part of domain containing the particles moving away after collision. L and
G can be viewed, respectively, as loss and earning terms in the sense that Ldx1dξ1dt is the
total number of attended particles with position between [x1;x1 + dx1] and velocity between
[ξ1; ξ1 + dξ1] which exit from those intervals due to collisions. Gdx1dξ1dt is the analogous
number of particles entering the same intervals.
Finally, inserting Eq. 3.17 in Eq. 3.13 and considering P (2) in place of P (1), we can write the
evolution equation for a system of two particles including the possibility of collisions:

dP (2)

dt
=
∂P (2)

∂t
+

N∑
i=1

ξi ·
∂P (2)

∂ξi
= G− L (3.18)
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3.2 The Boltzmann Equation

As remarked by Boltzmann, Eq .3.18 is by far to be eligible for practical purposes. In fact,
the probability to find a particle P (1) with certain position and velocity still involves the
probability P (2) (Eq. 3.17), which is very complicated to evaluate. To simplify the problem,
Boltzmann introduced some hypotheses:

• The evolution equation (Eq. 3.18) is valid in the Boltzmann-Grad limit, namely when
the number of particles N → ∞ and the diameter σ → 0. Under these conditions the
product Nσ2 remains finite [Cercignani, 1972]. This hypothesis is clearly consistent, in
fact, considering, for example a small domain of gas we have: N ∼= 1020 and σ ∼= 10−10m;

• The collision between two particles is a quite rare event [Cercignani, 1972] in fact the
volume occupied by the N particles is Nσ3 ∼= 10−10m3;

• If the collision between two particles is a rare event, it is reasonable to consider the
probability to find particle 1 in position x1 with velocity ξ1 and the probability to find
particle 2 in position x2 with velocity ξ2 at time t, stochastically independent (i.e. the
correlation coefficient between the probability density functions is 0). This hypothesis is
commonly known as Molecular Caos or Stosszahlanstaz. Applying the Molecular Caos
to P (2) we finally obtain:

P (2)(x1, ξ1,x2, ξ2, t) = P (1)(x1, ξ1, t)P
(1)(x2, ξ2, t) (3.19)

Now, by inserting Eq. 3.19 into Eq. 3.17 and applying the Boltzmann-Grad limit, terms G
and L can be written as follows:

G = Nσ2
∫
B+

∫
R3

P (1)(x1, ξ
′
1, t)P

(1)(x1, ξ
′
2, t)|(ξ2 − ξ1) ·n|dξ2dn

L = Nσ2
∫
B−

∫
R3

P (1)(x1, ξ1, t)P
(1)(x1, ξ2, t)|(ξ2 − ξ1) ·n|dξ2dn

(3.20)

where N is the number of particles, σ is the diameter of a particle, ξ′1 and ξ′2 are the particle
velocities before the collision and ξ1 and ξ2 are the velocities after collision. By inserting Eq.
3.20 in Eq. 3.18 we obtain the first formulation of the Boltzmann Equation:

∂P (1)

∂t
+ ξ1 ·

∂P (1)

∂x1
= Nσ2

∫
B

∫
R3

[P (1)(x1, ξ
′
1, t)P

(1)(x1, ξ
′
2, t)+

−P (1)(x1, ξ1, t)P
(1)(x1, ξ2, t)]|(ξ2 − ξ1) ·n|dξ2dn

(3.21)

where the left side of the Eq. 3.21 has been written in its extended formulation. Eq. 3.21 is,
by fact, the evolution equation for the probability density function of one particle.

Next step of Boltzmann’s work was to formulate an evolution equation for a system con-
taining s particles. We define P (s) as the probability to find particle 1 in position x1 with
velocity ξ1, particle 2 in position x2 with velocity ξ2 and particle s in position xs with velocity
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ξs at time t. P (s) is expressed as follows:

P (s)(x1, ξ1,x2, ξ2, . . . ,xs, ξs, t) =

∫
Cs×R3s

P (x1, ξ1,x2, ξ2, . . . ,xN , ξN , t)
N∏

j=s+1

dxjdξj

(3.22)

Now, inserting Eq. 3.22 in Eq. 3.9 and integrating on variable xj (s+ 1 < j < N) we found
the following expression:

∂P (s)

∂t
+

s∑
i=1

∫
CN−s×R3N−3s

ξi ·
∂P

∂xi

N∏
j=s+1

dxjξj +

N∑
k=s+1

∫
CN−s×R3N−3s

ξk ·
∂P

∂xk

N∏
j=s+1

dxjξj = 0

(3.23)

where s is the number of particles satisfying the condition |xi− ξi| < σ (i=1,. . . ,N, i 6= j) and
following Cercignani [1997], we separate the particles i < s from the particles i > s. Assuming
P to be regular we can rewrite the second addend of Eq. 3.23 as follows:∫

ξi ·
∂P

∂xi

N∏
j=s+1

dxjξj = ξi ·
∂P (s)

∂xi
−

N∑
k=s+1

∫
P (s+1)ξi ·nikdσikdξk (3.24)

where nik is the outgoing normal to the sphere |xi−xk| = σ; dσik is an infinitesimal element
of that sphere and P s+1 is the distribution function for s+ 1 particles with argument (xj ,ξj)
(j = 1, 2, . . . , s, k).
The third addend of Eq. 3.23 can be rewritten by using the Gauss Lemma [Tang, 1972] as
follows: ∫

ξk ·
∂P

∂xk

N∏
j=s+1

dxjξj =

s∑
i=1

∫
P (s+1)ξk ·nikdσikdξk+

N∑
i=s+1(i 6=k)

∫
P (s+2)ξk ·nikdσikdξkdxidξi +

∫
P (s+1)ξk ·nkdSkdξk

(3.25)

where dSk is the infinitesimal element of the boundary surface in the tridimensional subspace
described by xk and nk is the outgoing normal that surface. In both Eqs. 3.24 and 3.25 we
have omitted, for simplicity, the domain on the integral which is clearly the same as the one
in Eq. 3.23. So, inserting Eq. 3.24 and 3.25 in Eq. 3.23 we obtain:

∂P (s)

∂t
+

s∑
i=1

ξi ·
∂P (s)

∂ξi
=

s∑
i=1

N∑
k=s+1

∫
P (s+1)vik ·nikdσikdξk+

1

2

N∑
i=s+1(i 6=k)

∫
P (s+2)

∫
P (s+2)vik ·nkidσikdξkdxidξi

(3.26)

where vik = ξi - ξk is the relative velocity between the ith and the kth particle and nki = −nik.
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It is possible to demonstrate [Cercignani et al., 2013] that the last integral in Eq. 3.26 is
equal to 0 and the value of the first integral is the same whatever is the value of the k index
[Cercignani, 1972], so it is common in literature to use ∗ in place of k. After some mathematical
computations [Cercignani, 1997] we can rewrite Eq. 3.26 as follows:

∂P (s)

∂t
+

s∑
i=1

ξi ·
∂P (s)

∂xi
= (N − s)σ2

s∑
i=1

∫
B+

∫
R3

(P (s+1)′ |vi ·ni|dnidξ∗−

s∑
i=1

∫
B−

∫
R3

P (s+1)|vi ·ni|)dnidξ∗

(3.27)

where the apex ′ is used to indicate quantities before particles collision; ξi and ξ∗ in P (s+1)′

are substituted with:

ξ′i = ξi − ni(ni ·vi) and ξ′∗ = ξ∗ − n∗(n∗ ·v∗)

Finally we can turn the two integrals in Eq. 3.27 into one integral, extended to the whole
domain, by changing ni in n′i. We can also suppress index i in ni by substituting x∗ with:

x∗ = xi − σn

Eq. 3.27 can be, so, rewritten as follows:

∂P (s)

∂t
+

s∑
i=1

ξi ·
∂P (s)

∂xi
= (N − s)σ2

s∑
i=1

∫
B

∫
R3

(P (s+1)′ − P (s+1))|vi ·n|dndξ∗ (3.28)

This system of equations is commonly known as BBGKY Hierarchy [Bogoliubov, 1946].
Applying the Boltzmann-Grad limit it is, finally, possible to write the evolution equation for
a system of s particles as follows:

∂P (s)

∂t
+

s∑
i=1

ξi ·
∂P (s)

∂xi
= Nσ2

s∑
i=1

∫
B

∫
R3

(P (s+1)′ − P (s+1))|vi ·n|dndξ∗ (3.29)

This system of equations is known as Boltzmann Hierarchy. We have two questions to answer
now:

• Is this system of equations representing the evolution of a Boltzmann Gas?

• Which is the relation between the Boltzmann Hierarchy (Eq. 3.29) and the Boltzmann
Equation (Eq. 3.21)?

As remarked by Cercignani [1972], the Boltzmann Hierarchy does not describe a priori the
evolution of a Boltzmann Gas, in fact only under under some special hypothesis on the initial
data, it turns to be eligible for this purpose, as discussed by [Spohn, 1984].
If we assume the Molecular Caos Hypothesis to be valid for the initial data:

P (s)(x1, ξ1,x2, ξ2, . . . ,xs, ξs, 0) =
N∏
j=1

P (1)(xs, ξs, 0)
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As remarked by Cercignani [1972],[Cercignani, 1975],[Cercignani, 1988], if the Boltzmann
Equation is satisfied for the initial data P (1)(xs, ξs, 0), then it admits at least a solution:
P (1)(xs, ξs, t). If this happens, a solution of the Boltzmann Hierarchy is corresponding at the
initial data:

P (s)(x1, ξ1,x2, ξ2, . . . ,xs, ξs, t) =

N∏
j=1

P (1)(xs, ξs, t)

so the Molecular Caos Hypothesis is not in contradiction with the Boltzmann-Grad limit;
in other words, Molecular Caos Hypothesis is still valid for a system of s particles and the
Boltzmann Equation is justified.
With this considerations, we can easily remove the index (1) from Eq. 3.21 and, finally write
it as follows:

∂P

∂t
+ ξ ·

∂P

∂x
= Nσ2

∫
B

∫
R3

(P ′P ′∗ − PP∗)|v ·n|dndξ∗ (3.30)

3.2.1 A more physical interpretation of the Boltzmann Equation

Following Boltzmann’s work, we can introduce a new unknown f defined as:

f = NmP = MP (3.31)

where N is the total number of particles, m is the mass of a single particle and M is the total
mass of the system. By imposing the first axiom of probability we have:∫

B

∫
R3

Pdxdξ = 1 →
∫
B

∫
R3

fdxdξ = M (3.32)

P is a numerical density distribution, while f is a mass density distribution, so, at every time,
the integral of the distribution f must recover the total mass of the system.
Introducing Eq. 3.32 into Eq. 3.30 the Boltzmann Equation can be written in its most popular
form:

∂f

∂t
+ ξ ·

∂f

∂x
= Q(f, f) (3.33)

The right-hand side of the equation is commonly known as Collision Operator:

Q(f, f) =
σ2

m

∫
(f ′f ′∗ − ff∗)|v ·n|dndξ∗ (3.34)

where f∗ = f(ξ∗), f ′∗ = f(ξ′∗) and f ′ = f(ξ′). The form Q(f, f) is adopted to remark the
quadratic form of the collision operator. For sake of generality, the Boltzmann Equation can
be written including also a forcing term:

∂f

∂t
+ ξ ·

∂f

∂x
+ F ·

∂f

∂ξ
= Q(f, f) (3.35)
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3.2.2 Solution of the Boltzmann Equation

From the mathematical point of view, the Boltzmann Equation 3.35 is an integro-partial-
differential equation. It should be clear that the principal obstacle in order to solve Eq. 3.33
is the evaluation of the Collision Operator.

The Collision Invariants

Our goal is, now, to investigate some elementary properties of the collision operator Q(f, f).
We introduce a test function ϕ(ξ) and we study the integral:∫

R3

Q(f, f)ϕ(ξ)dξ =

∫
R3

∫
R3

∫
B

(f ′f ′∗ − ff∗)ϕ(ξ)|v ·n|dndξdξ∗ (3.36)

where ϕ and f are functions for which it is possible to change the integration order. With some
mathematical manipulations [Grad, 1961] it is possible to rewrite Eq. 3.36 in three different
ways: ∫

R3

Q(f, f)ϕ(ξ)dξ =
σ2

m

∫
R3

∫
R3

∫
B

(f ′f ′∗ − ff∗)ϕ(ξ∗)|v ·n|dndξdξ∗∫
R3

Q(f, f)ϕ(ξ)dξ =
σ2

m

∫
R3

∫
R3

∫
B

(ff∗ − f ′f ′∗)ϕ(ξ′)|v ·n|dndξdξ∗∫
R3

Q(f, f)ϕ(ξ)dξ =
σ2

m

∫
R3

∫
R3

∫
B

(ff∗ − f ′f ′∗)ϕ(ξ′∗)|v ·n|dndξdξ∗

(3.37)

Summing Eq. 3.36 with Eq. 3.37 and averaging the results we obtain:∫
R3

Q(f, f)ϕ(ξ)dξ =
σ2

4m

∫
R3

∫
R3

∫
B

(f ′f ′∗ − ff∗)(ϕ+ ϕ∗ − ϕ′ − ϕ′∗)|v ·n|dndξdξ∗ (3.38)

The integral of the first member gives the variation of the mean value of the function ϕ for
time unit, caused by the collisions. It is very interesting to notice that, whatever is f , the
integral in Eq. 3.38 is equal to zero if it is verified the following relation:

ϕ+ ϕ∗ = ϕ′ + ϕ′∗ (3.39)

These functions (ϕ) are commonly known as Collision invariants. The solution of Eq. 3.39 was
found by Boltzmann himself, who supposed ϕ to be two times derivable gave to the collision
invariants the following expression:

ϕ(ξ) = a+ b · ξ + c|ξ|2 (3.40)

where the scalars a, c and the vector b are constant. In literature many other authors tried
to find different solutions of Eq. 3.39, including Grad [1961] and Carleman [1957], finally
Cercignani [1990] demonstrated the analytical correctness and the uniqueness of the solution
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proposed by Boltzmann. So if ϕ(ξ) has the form of Eq. 3.40 we obtain the following relation:∫
R3

Q(f, f)ϕ(ξ)dξ = 0 (3.41)

This expression states that the integral of the Collision term multiplied for the Collision
invariants comes to zero for every value of distribution function f .

Stationary solution of the Boltzmann Equation

The next step of Boltzmann’s work was to study the stationary solution of the Eq. 3.35, which
is given by:

∂f

∂t
+ ξ ·

∂f

∂x
+ F ·

∂f

∂ξ
= 0 (3.42)

so to prove that exist positive functions f which satisfy the following equality:

Q(f, f) =
σ2

m

∫
(f ′f ′∗ − ff∗)|v ·n|dndξ∗ = 0 (3.43)

Considering Eq. 3.38, and assuming ϕ = log f , we can write the following expression:∫
log fQ(f, f)dξ =

σ2

4m

∫
(f ′f ′∗ − ff∗) log(

ff∗
f ′f ′∗

)|v ·n|dndξdξ∗ (3.44)

With simple computations we can write Eq. 3.44 as following:∫
log fQ(f, f)dξ =

σ2

4m

∫
f ′f ′∗(1−K) logK|v ·n|dndξdξ∗ with K =

ff∗
f ′f ′∗

(3.45)

It is possible to demonstrate that for any K ≥ 0 it holds valid the following relation:

(1−K) logK ≤ 0 (3.46)

and thus, considering that f ′f ′∗ is positive by definition, Eq. 3.45 can be rewritten as follows:

log fQ(f, f)dξ ≤ 0 (3.47)

which is known as Boltzmann inequality. Finally, it is easy to show that Eq. 3.46 vanishes
only if K = 1 and thus when:

ff∗ = f ′f ′∗ (3.48)

which is, just, another form to write Eq. 3.39, therefore substituting ϕ = log f in Eq. 3.40 we
obtain:

f(ξ) = exp(a+ b · ξ + c|ξ|2) (3.49)

Eq. 3.49 has the form of a Maxwellian distribution and represents the equilibrium solution
of the Boltzmann equation. Furthermore we have demonstrated that this solution is unique.
We note that in order to obtain functions f integrable in all the domain, it is necessary that
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c is negative, furthermore, we can assume c = −η and b = 2ηv where v is another constant
vector. Finally we can rewrite Eq. 3.49 as follows:

f(ξ) = G exp[−η + (ξ − v)2] (3.50)

where G is a constant depending on a, η,v. The constant vector v can be viewed as a
macroscopic velocity which changes the reference frame with a kind of rigid motion.

3.2.3 The stationary solution: Maxwellian distributions

The last step to derive the stationary solution of Boltzmann equation is to calculate the
coefficients of the Maxwellian distributions (Eq. 3.49). We consider Eq. 3.35:

∂f

∂t
+ ξ ·

∂f

∂x
+ F ·

∂f

∂ξ
= 0 (3.51)

and the stationary solution (Eq. 3.49) which can be written as follows:

log f = a+ b · ξ + cξ2 = a+ blξl + cξ2 (3.52)

Inserting Eq. 3.52 in Eq. 3.51 we obtain:

∂a

∂t
+ ξl

∂bl
∂t

+ ξ2
∂c

∂t
+ ξi

∂a

∂xi
+ ξiξl

∂bl
∂xi

+ ξ2ξi
∂c

∂xi
+ Fibi + 2cFiξi = 0 (3.53)

and collecting the terms of the various powers of ξ we obtain:(
∂a

∂t
+Fibi

)
+

(
∂bl
∂t

+
∂a

∂xi
+2cFi

)
ξl+

(
∂c

∂t
δij+

1

2

(
∂bl
∂xi

+
∂bi
∂xl

))
ξiξl+

(
∂c

∂xi

)
ξ2 = 0 (3.54)

then, we can equate the each term to zero:(
∂a

∂t
+ Fibi

)
= 0 (3.55)

(
∂bl
∂t

+
∂a

∂xi
+ 2cFi

)
= 0 (3.56)

(
∂c

∂t
δij +

1

2

(
∂bl
∂xi

+
∂bi
∂xl

))
= 0 (3.57)

(
∂c

∂xi

)
= 0 (3.58)

and finally, after some mathematical manipulation, Eq. 3.57 becomes:

∂2bj
∂xi∂xl

= 0 (3.59)
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meaning that the second spatial derivatives of the term bj are equal to zero, then bj can be
expressed as following:

bj = ηj(t) + βik(t)xk (3.60)

Now, inserting Eq. 3.60 in Eq. 3.57, we obtain:

βil = −dc
dt
δil + ωil(t) with ωil = −ωli (3.61)

then inserting Eq. 3.60 and Eq. 3.61 in Eq. 3.56 we obtain:

dηl
dt
− d2c

dt2
xl +

dwlk
dt

xk +
∂η

∂xl
+ 2cFl = 0 (3.62)

and finally with some manipulations we can express the forcing term as following:

Fl = − 1

2c

dωlj
dt

xj −
∂φ

∂xl
(3.63)

which means that the external force is dependent on a conservative term described by the
potential function φ = φ(t,x) and a non conservative term dependent on the antisymmetric
tensor ωlj . Inserting Eq. 3.63 in Eq. 3.62 we obtain:

η = 2cφ(t,x) +
1

2

d2c

dt2
x2 − dηl

dt
xl + γ(t) (3.64)

where γ(t) is the integration constant. Now, inserting Eq. 3.64 and Eq. 3.60 in Eq. 3.55 we
obtain:

2c
∂φ

∂t
+ 2φ

dc

dt
− ∂φ

∂xi
bi = −1

2

d3c

dt3
x2 +

d2ηl
dt2

xl −
dγ

dt
+

1

2c

dωij
dt

xjbi (3.65)

Considering, now, Eq. 3.63, assuming φ = φ(x), it is easy to show that ωlj is constant and so
Eq. 3.65 can be rewritten as follows:

2φ
dc

dt
− ∂φ

∂xi
bi = −1

2

d3c

dt3
x2 +

d2ηl
dt2

xl −
dγ

dt
(3.66)

Assuming φ to be four times differentiable in time, with some mathematical manipulations,
we can rewrite Eq. 3.66 as follows:

5
∂2φ

∂xk∂xm∂xn

dc

dt
− ∂3φ

∂xi∂xk∂xm
ωin −

∂3φ

∂xi∂xk∂xl
ωim

− ∂3φ

∂xi∂xm∂xn
ωik −

∂4φ

∂xi∂xk∂xm∂xn

(
ηi −

dc

dt
xi + ωilxl

)
= 0

(3.67)

which describes a system of ten equations in seven unknown: dc/dt, ωik , ωim, ωin and αi.
Following Cercignani [1988], it is possible to show that η is related to c and γ by the following
relation:

η = 2cφ(x) + γ (3.68)



3.2. The Boltzmann Equation 64

thus including Eq. 3.68 in Eq. 3.50, the Maxwellian distribution can written as follows:

f(ξ) = exp(2cφ(x) + γ + cφ2) = exp

(
γ − ξ2

2RT
− φ(x)

RT

)
(3.69)

with:
T = − 1

2Rc

where T is the temperature of the system. The last issue is now to give an expression to the
potential function φ(x). We consider a potential function vanishing at the third derivative
defined as:

φ(x) = Akxk +
1

2
Bkmxkxm (3.70)

Then, inserting Eq. 3.70 in Eq. 3.65, we can rewrite Eq. 3.65 as follows:(
Aiηi −

dγ

dt

)
+

(
2Ai

dc

dt
−Akωki −Bkiηk −

d2ηi
dt2

)
xk

+

(
2Bkm

dc

dt
− 1

2
(Bkiωim +Bmiωil) +

d3c

2dt3
δkm

)
xkxm = 0

(3.71)

so with an analogue procedure to the one adopted for Eq. 3.53, we can derive the following
equalities:

Aiηi =
dγ

dt
(3.72)

2Ai
dc

dt
−Akωki −Bkiηk =

d2ηi
dt2

(3.73)

2Bkm
dc

dt
− 1

2
(Bkiωim +Bmiωil) = − d3c

2dt3
δkm (3.74)

Eqs. 3.72, 3.73, 3.74 represent a system of ten equations in eight unknowns: ηi, ωim, γ, c.
This system has non trivial solution in case that Bki = Bδki is isotropic. Considering this
condition, Eq. 3.74 can be written as follows:

2B
dc

dt
+

d3c

2dt3
= 0 (3.75)

which is a classical differential equation, with constant coefficients, whose solution is given by:

c = c0 + c1 sin(2
√
Bt) + c2 cos(2

√
Bt) (3.76)

where c0, c1, c2 constant coefficients. Inserting Eq. 3.75 in equation Eq. 3.73 and considering
the isotropicity of B we obtain:

d2ηi
dt2

+Bηi = 2Ai
dc

dt
−Akωki = −2Ai

3B

(d3c
dt3

+B
dc

dt

)
−Akwki (3.77)



3.2. The Boltzmann Equation 65

that is a differential equation with constant coefficients, whose solution is given by:

ηi = −2Aidc

3Bdt
− Akωki

3
+ c3 sin(2

√
Bt) + c4 cos(2

√
Bt) (3.78)

where c3 and c4 are constant coefficients. Finally, Eq. 3.72 can be rewritten as follows:

dγ

dt
= Aiηi =

Ai
B

(
−d

2ηi
dt2

+ 2Ai
dc

dt

)
(3.79)

which a simple first order differential equation with constant coefficients. The solution of Eq.
3.79 is given by:

γ = −Ai
B

dηi
dt

+
2AiAic

B
+ c5 (3.80)

In conclusion, when c1 = 0, c2 = 0, c3 = 0 and c4 = 0, with some mathematical computations
of Eqs. 3.52, 3.60, 3.64 we obtain the final expression of the Maxwellian distribution:

f(ξ) = exp(γ + η · ξ + ωjkxkξk + cξ2)

f(ξ) = exp(γ)(2πRT )−
3
2 exp

[
−(ξ − v)2

2RT

]
(3.81)

where the term exp(γ) is the density. Eq. 3.81 is also known as equilibrium distribution
function because it satisfies Eq. 3.42 and finally it can be rearranged in its most popular
form:

feq(ξ) =
ρ√

(2πRT )
3 exp

[
−(ξ − v)2

2RT

]
(3.82)

The H-theorem, the irreversibility and the second law of the thermodynamics.

The H-theorem is of basic importance in Boltzmann theory, because it states the irreversibility
of the Boltzmann Equation.

To derive the H-theorem, proposed by Boltzmann [1870] itself, we introduce a new operator
H which is, at the end, the integral on velocity of the quantity f log f and is defined as follows:

H =

∫
R3

f log fdξ (3.83)

considering Eq. 3.33, by multiplying each side by f log f and integrating on ξ we can rewrite
Boltzmann equation as follows:

∂H

∂t
+

∂

∂x
·J = S (3.84)

where:

J =

∫
R3

ξf log fdξ

S = Nσ2
∫
R3

log fQ(f, f)dξ

(3.85)
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The Boltzmann inequality (Eq. 3.47) implies that S is always ≤ 0 and becomes equal to zeros
if and only if f is a Maxwellian distribution. Carleman [1933] demonstrated that the time
derivative of H is never positive and it is equal to 0 if and only if f is a Maxwellian distri-
bution. Since H is lower bounded (from the equilibrium value), it decreases until it reaches
the equilibrium state where f has the form of a Maxwellian distribution, so the Equilibrium
solution is unique.

If the solutions are spatially homogeneous (i.e. H is not depending from x), Eq. 3.84 can
be rewritten as follows:

∂H

∂t
= S ≤ 0 (3.86)

Eq. 3.86 is known as H-Theorem and states that H is a not increasing function in time.
In other words, Eq. 3.86 shows that Boltzmann equation has the feature of the irresistibility.

From the microscopic point of view, H-Theorem can be interpreted as the likelihood of a
microscopic state, in the sense that it is a measure of the information contained in f decreas-
ing with time since the Boltzmann Equation describes an evolution toward more likely states
[Cercignani, 1988].

From a macroscopic point of view, instead, H-theorem can be viewed as an alternative
form to express the Clausius-Duhem inequality [Gurtin and Williams, 1966] which is, by fact,
another way to express the second law of thermodynamics. Finally, according to this principle,
H is related to the entropy S by the following relation:

∆H = −∆S

R
(3.87)

where ∆S is the entropy variation, ∆H is the variation of H function and R is the universal
gas constant.

3.3 Boltzmann Equation: a Bridge from the Micro- to the
Macroscopic description

One of the most interesting characteristics of BE is possibility to move from a microscopic
to a macroscopic point of view. Now our goal is to recover macroscopic quantities from the
distribution function f . In order to have a complete macroscopic description of the fluid, we
need to evaluate the following quantities:

• density: ρ;

• mass Flow: %i;

• momentum: ωi;

• momentum flow: Ωij ;

• energy density: ψii;

• energy flow: Ψi;



3.3. Boltzmann Equation: a Bridge from the Micro- to the Macroscopic description 67

Evaluating macroscopic density ρ is quite a simple task. ρ = ρ(x, t) is the integral f in the
one-particle phase space, so, it is straightforward to recover that:

ρ(x, t) =

∫
f(x, ξ, t)dξ (3.88)

The macroscopic velocity v is given by the average of the molecular velocity:

v =

∫
ξf(x, ξ, t)dξ∫
f(x, ξ, t)dξ

(3.89)

So considering Eq. 3.88 we can easily write also the momentum ωl as follows:

ωl = ρv =

∫
ξifdξ (3.90)

To evaluate the mass flow %i we consider that every particle has its own velocity ξ, so we
can calculate the velocity deviation (usually called peculiar velocity) from the macroscopic
velocity:

c = ξ − v (3.91)

By inserting Eq. 3.91 in Eq. 3.90 and considering Eq. 3.88 we write mass flow as follows:

%i =

∫
cifdξ =

∫
ξifdξ − vi

∫
fdξ = ρvi − ρvi = 0 (3.92)

Eq. 3.92 states that the mass flow in i-th direction is equal to zero. In order to evaluate
the momentum flow Ωij , instead, we have to consider the flow of the i-th component on j-th
direction:

Ωij =

∫
ξiξjfdξ (3.93)

By applying Eq. 3.91 to Eq. 3.93 we can easily rewrite the momentum flow as follows:

Ωij =

∫
ξiξjfdξ = ρvlvk +

∫
cicjfdξ (3.94)

where the momentum flow has been decomposed in a macroscopic (first addend) and a micro-
scopic (second addend) part. The microscopic part is a hidden momentum flow caused by the
random motion of the particles. It is possible to prove that the second addend of Eq. 3.94 is
the only contribution to the gas stress tensor which is defined as follows [Cercignani, 1988]:

pij =

∫
cicjfdξ (3.95)

The evaluation of the energy density ψii is straightforward with the application of the kinetic
energy definition:

ψii =
1

2

∫
ξ2fdξ =

1

2
ρv2 +

1

2

∫
c2fdξ (3.96)
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The first term of the right hand side of Eq. 3.96 represents the macroscopic kinetic energy,
while the second term is known as internal energy. It is convenient to define the internal
energy for mass unit e:

ρe =

∫
cicifdξ (3.97)

Looking to Eq. 3.97, it is interesting to note that ρe is equal to the trace of plk, so the isotropic
part of the stress tensor is written as follows:

p =
2

A
ρe (3.98)

Finally, applying Boyle’s Law : p = ρRT we can write the gas energy in following form:

e =
A

2
RT (3.99)

where A is the dimension of stress tensor and assumes the values 3, 5 and 7 in case of mono- bi-
or polyatomic gases. The last quantity we want to investigate is the energy flow Ψii, defined
as:

Ψi =
1

2

∫
ξiξ

2fdξ (3.100)

By inserting Eq. 3.91 in Eq. 3.100 and doing some manipulations we obtain:

Ψi =
1

2

∫
ξiξ

2fdξ = vi

(
1

2
ρv2 + e

)
+ vipij +

1

2

∫
cic

2fdξ (3.101)

where the first addend is the energy flow caused by the macroscopic convection, the second
one is the work of stress for time unit and the last addend is a non-convective energy flow,
following Cercignani [1975] interpretation.

3.3.1 The Boltzmann Equation and the Conservation Equations

Let us consider, for sake of generality, Eq. 3.35, multiplying every term for ϕ(ξ), integrating
on ξ, and considering the property of the Collision invariants (Eq. 3.41), we can write the
following equation:

∂

∂t

∫
ϕkfdξ +

∂

∂xi

∫
ξiϕkfdξ + Fi

∫
ϕk

∂

∂ξi
dξ = 0 (3.102)

where k = 0, 1, 2, 3, 4 indicates the collision invariant and Fi can be taken out from the
integration operation if we assume the external force independent from the velocity. Eq.
3.102 has been written using index notation to make more clear the following computations.

In order to recover the conservation equations we need to calculate the three integrals
substituting successively the five collision invariants (we omit the entire calculation). Then,
considering the macroscopic quantities: density (Eq.3.88), momentum (Eq.3.90), momentum
flow, (Eq.3.93), internal energy, (Eq.3.97) and energy flow, (Eq.3.101) it is possible to recover
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the Conservation Equations:

∂ρ

∂t
+

∂

∂xi
(ρvi) = 0

∂

∂t
(ρvi) +

∂

∂xi
(ρvivj + pij) = ρFj

∂

∂t

[
ρ

(
1

2
v2 + e

)]
+

∂

∂xi

[
ρvi

(
1

2
v2 + e

)
+ pijvj + qi

]
= ρFivi

(3.103)

where qi is the heat flux vector [Cercignani, 1988]. The first equation is the well known Mass
Conservation equation. The last two equations, instead, worth a particular discussion. The
terms pij and qi, in fact need to be characterized; in other words we need to find some relations
(on the basic of experiments) in order to relate pij and qi with the physical quantities ρ, v
and e. If we consider qi = 0, no heat flux is considered and so the problem is a pure fluid
dynamic problem and we can derive two different Constituive Models:

• with: pij = pδij the Euler fluid model is recovered;

• with: pij = pδij − µ
(
∂vi
∂xj

+
∂

∂xi

)
− λ∂vl

∂xl
δij the Navier-Stokes fluid model is obtained.

Where µ and λ are the viscosity coefficients. Finally if we use as heat flux model the Fourier’s
Law :

qi = −k ∂T
∂xj

coupled with the Navier-Stokes fluid model, we obtain the Navier-Stokes-Fourier fluid (NSF),
where k is the heat conduction coefficient.

It is clear that this considerations are not needed if we want to solve the Boltzmann equa-
tion because all the macroscopic informations are contained in distribution f . The advantage
to solve the macroscopic equations in place of the Boltzmann equation is that macroscopic
equations have five functions in four variables, while the BE has one function of seven un-
knowns.

It is important to stress the fact that those equations have been recovered by neglecting the
collision operator, thanks to the property of the collision invariants. The problem of turning
from a microscopic to a macroscopic representation, in non trivial situations (i.e., when the
collision operator is not zero), by fact, has not been already analytically resolved.

3.3.2 The Bhatnagar-Gross-Krook approximation of the collision operator

The main obstacle for the resolution of the Boltzmann equation in general cases is represented
by the complicated form of the collision operator Q(f, f). To overcome this problem, the
idea is to replace the collision operator Q(f, f) with an approximated form P (f) which has
to verify two important conditions [Cercignani, 1997]:

• The validity of Eq. 3.41, assuring that the derivation of the macroscopic models in the
stationary case is still valid: ∫

ϕ(ξ)P (f)dξ = 0 (3.104)
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• The validity of the Boltzmann inequality (Eq. 3.47), in order to guarantee that the
solution of the Boltzmann Equation is still unique and the equilibrium solution has a
Maxwellian form: ∫

log fP (f)dξ ≤ 0 (3.105)
The simplest way to approximate the collision integral was proposed by Bhatnagar, Gross

and Krook and it is commonly known as BGK operator. This operator replace the collision
term with an operator which is proportional to the difference between a Maxwellian distribu-
tion fm(ξ) and the distribution function f(ξ):

P (f) =
fm(ξ)− f(ξ)

Λ
(3.106)

where Λ is a contact scalar. Eq. 3.106 is known as BGK collision term. Inserting Eq. 3.106
in Eq. 3.104, we obtain: ∫

ϕi(ξ)fm(ξ)dξ =

∫
ϕi(ξ)f(ξ)dξ (3.107)

which means that, independently from the position x and the time t, fm(ξ) is equal to the
density. In analogous way, inserting Eq. 3.106 in Eq. 3.105 we can rewrite Eq. 3.105 as
follows: ∫

log fP (f)dξ =
1

Λ

∫
fm(ξ)

(
1− f(ξ)

fm(ξ)

)
log

f(ξ)

fm(ξ)
dξ (3.108)

It is very interesting to notice that the BGK collision operator, from a mathematical point
of view, is much more complicated than the classic collision operator Q(f, f), in fact, the
Maxwellian distribution fm is defined as the following functional:

fm = fm(v(f(x, ξ, t)), ρ(f(x, ξ, t)), T (f(x, ξ, t))) (3.109)

Otherwise Q(f, f) is simply a quadratic function of f . So the natural question is: how this
approximation can simplify the problem? In the next section we will show that using the
BGK we can recover the constitutive equations for different fluid phase, and, in particular
we will show how this approximation can be used to recover the Navier-Stokes equations in a
general case.

3.3.3 The perturbation method and the Linearized Boltzmann equation

In this section we derive the linearized Lattice Boltzmann equation which will be used in the
following section as starting point in the derivation of the constitutive equations. One of the
most common strategies to linearize an equation is to apply the so called perturbation method.
Here we consider the power series expansion of f in ε which is defined as follows:

f =

∞∑
n=0

εnfn (3.110)
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where n is the power. Applying Eq. 3.110 to the collision operator Q(f, f) we obtain:

f =
∞∑
n=0

εnQn (3.111)

where the coefficients of the power series Qn are expressed as follows:

Qn =
n∑
l=0

Q(fl, fn−l) (3.112)

In literature many perturbation methods have been proposed among the years; most of this
are based on the initial assumption that the zero-th term of the power expansion f0 must
represent a Maxwellian distribution fm. It follows that:

Q(f0, f0) = 0 (3.113)

Furthermore, we can write Eq. 3.110 as follows:

f = f0 +
∞∑
n=1

εnfn (3.114)

thus, Eq. 3.112 can be rewritten as follows:

Qn = 2Q(f0, fn) +
n−1∑
l=1

Q(fl, fn−l) (3.115)

where the first term of Eq. 3.115 can be viewed as a linear operator, since the zero-th term
f0 acts on the n-th term fn of the expansion. It is common to rewrite Eq. 3.115 considering
the following relations:

fn = f0hn and f0Sn =

n−1∑
l=1

Q(fl, fn−l) (3.116)

where the unknowns turn from fn to hn. Applying the relations 3.116 to Eq. 3.115 we obtain:

Qn = 2Q(f0, f
eqhn) + feqSn (3.117)

In conclusion, considering the new operator Jhn = 2Q(f0, f0hn)/f0, we can write Eq. 3.117
as follows:

Qn = f0Jhn + f0Sn (3.118)

which is commonly known as linearized collision operator. Applying, now Eqs. 3.110, 3.115
to Eq. 3.33 we can rewrite the Boltzmann equation as follows:

ε0

(
∂f0
∂t

+ ξ ·
∂f0
∂x

)
+
∞∑
n=1

εn

(
∂fn
∂t

+ ξ ·
∂fn
∂x

)
= ε0Q(f0, fn) +

∞∑
n=1

εn
n−1∑
l=1

Q(fl, fn−l) (3.119)
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then, with simple computations we split Eq. 3.119 into two equations: the first describing the
equilibirum state and the second describing little deviations from the equilibrium state:

∂f0
∂t

+ ξ ·
∂f0
∂x

= Q(feq, feq) = 0

∂fn
∂t

+ ξ ·
∂fn
∂x

=
n−1∑
l=1

Q(fl, fn−l)
(3.120)

Accordingly, Introducing Eq. 3.116 in Eq. 3.120 we obtain:

∂hn
∂t

+ ξ ·
∂hn
∂x

= Jhn + Sn (3.121)

where the term Sn is defined as follows:

S1 = 0 for n = 1;

Sn =

∑n−1
l=1 Q(f0hl, f0hn−l)

f0
for n > 1;

(3.122)

Eq. 3.121 represents a series of equation in which the difference from an equation to the
previous one is given by the term Sn. Finally, considering n = 1, we obtain:

∂h

∂t
+ ξ ·

∂h

∂x
= Jh (3.123)

where Eq. 3.123 represents the linearized Boltzmann equation. The main advantage of this
formulation is the linear behavior of the equation, but the collision term still remains very
complicated since it is already an integro-differential operator.

3.3.4 The dimensionless Boltzmann equation

In this section we study the order of magnitude of the terms of Boltzmann equation. We
assume L0 to be the characteristic length, t0 the characteristic time, T0 the characteristic
temperature and ρ0 the characteristic density of the problem. We can write the following
dimensionless quantities:

x∗ =
x

L0
, t∗ =

t

t0
, ξ∗ =

L0

t0
ξ, F ∗ =

t0
2

L0
F , f∗ =

L0
3

ρ0t03
f (3.124)

Thus, the Boltzmann equation (Eq. 3.35) can be rewritten in non dimensional terms, as
follows:

∂f∗

∂t∗
+ ξ∗ ·

∂f∗

∂x∗
+ F ∗ ·

∂f∗

∂ξ∗
=

1

Kn
Q(f∗, f∗) (3.125)

where Kn is the Knudsen number which describe the ratio between the mean free path of a
particle lf and characteristic length of the problem:

Kn =
lf
L0

(3.126)
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In a certain sense the Knudsen number describes the state of aggregation of the molecules, in
fact, when Kn→∞ the particles are free to move, i.e the gas is very rarefied, otherwise when
Kn→ 0 the gas is very dense similar in liquid state. Finally when Kn is a finite number we
talk of transient state. In this thesis we focus on Kn→ 0, i.e. on very dense fluids which are
basically at the liquid state.

3.3.5 From Boltzmann equation to Navier-Stokes equations: the Chapman-
Enskog expansion

With the background delineated in the previous sections, we are now ready to describe the
procedure that leads to recover the Navier-Stokes equations from the Boltzmann equation in
its general configuration.

As we have shown in Section 3.3.3, to obtain a more manageable formulation of the Boltz-
mann equation, it is convenient to introduce some approximation, in order to linearize the
equation; furthermore the classic approximation scheme relies on the perturbation method.
Hilbert [1906] proposed to adopt a power series expansion of the function f and, following
the procedure shown in Section 3.3.3 and assuming ε = Kn→ 0, we re-write the Boltzmann
equation in function of the unknown hn:

∂f0hn
∂t

+ ξ ·
∂f0hn
∂t

= Jf0hn+1 + Sn+1 (3.127)

where Sn+1 is defined by the Eq. and the Eq. 3.116 has been introduced.
Eq. 3.127 represent a system of equations in hn unknowns, furthermore it can be proved

[Cercignani, 1988] that the unknown hn can be expressed as a linear combination of the
five collision invariants ϕ(ξ); furthermore it is possible to show that the source term in the
(n+ 1)-th step is given by:

Πn+1 =

∂f0hn
∂t

+ ξ ·
∂f0hn
∂t

− Sn+1

f0
(3.128)

which means that the source term is calculated using the previous step solutions. Moreover
applying the orthogonality conditions [Cercignani, 2000] of the collision invariants, we can
rewrite Eq. 3.127 as follows: ∫

ϕk(ξ)

(
∂fn
∂t

+ ξ ·
∂fn
∂t

)
ξ = 0 (3.129)

We observe that both fn and ϕ are dependent on ξ, so we can invert the order of integration
and derivation an finally write Eq. 3.129 as follows:

∂ρkn
∂t

+∇ · jkn = 0 with k = 0, 1, 2, 3, 4 (3.130)

where
ρkn =

∫
ϕkfndξ and jk =

∫
ξϕkfndξ (3.131)
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Accordingly, introducing the relations derived in Section 3.3, we can write ρk as follows:

ρk =


ρ

ρvi
ρ(12v

2 + e)

 with i = 1, 2, 3 (3.132)

while jk can be written as follows:

jk =


ρvi

ρvivj + pij
ρvi(

1
2v

2 + e) + pij + qj

 with i = 1, 2, 3 and j = 1, 2, 3 (3.133)

it is possible to show, with some computations, that the constitutive equations (Eqs. 3.103),
can rearranged, in terms of ρk and jk, as follows:

∂ρk

∂t
+∇ · jk = 0 with k = 0, 1, 2, 3, 4 (3.134)

We observe that Eq. 3.130 is the expansion of Eq. 3.134, so we are going to think that Eq.
3.130 represents an alternative form to write the constitutive equations. To better explain
this concept, we can rewrite Eq. 3.134 as following:

Ek(ρα) = Sk (3.135)

where Sk is given by:

Sk =


0

− ∂

∂xj
(pij − pδij)

− ∂

∂xj
(pijvj − pvi + qi)

 (3.136)

and Ek is the so-called Euler operator which is constructed such that Ek(ρα) = 0 give the
exact solution the inviscid fluid equations, called also. Euler equations. What Hilbert did was
to expand ρα, in Eq. 3.135, into a series of power of ε as following:

Ek(ρα) = Ek(ρα0 ) +

∞∑
n=1

εnEkα(ραn) +

∞∑
n=2

εnEkn(ραn) (3.137)

It is possible to prove [Cercignani, 1988] that the expansion of Eq. 3.137 is able to represent
the inviscid fluid equations, but contains also some additive terms (last two addend of Eq.
3.137) which made it suitable to solve only certain problems imposing suitable initial data and
boundary conditions. Finally we can conclude that the Hilbert expansion fails in giving valid
solutions for the Boltzmann equation for given initial data and boundary value problems and,
thus, it is not able to reproduce the Navier-Stokes-Fourier constitutive equations (Eq. 3.103).

A solution of this problem was provided by Chapman and Enskog who proposed [Chapman
and Cowling, 1970] to expand the Boltzmann equation itself and not the solutions, like in
Hilbert expansion; or in other words, to expand Sk and leave unexpanded ρα, such that:
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Ek(ρα) =
∞∑
n=1

εn(Skn) = Sk(ρα) (3.138)

With some computations on the space derivatives on term Ek, we can rewrite Eq. 3.138 as
follows:

∂ρα

∂t
= Dα(ρβ) with: Dα =

∞∑
n=0

εnD(n)
α (3.139)

where Dα is a non-linear operator. Chapman and Cowling [1970] pointed out that this ex-
pansion needs to maintain the results obtained with the Hilbert expansion, i.e., that f are
functionals of ρβ . Applying the chain derivation rule, we can write the time derivative of f is
given by:

∂f

∂t
=
∞∑
l=0

∂f

∂(∇lρβ)

∂(∇lρβ)

∂t
(3.140)

and thus, we can rewrite Eq. 3.139 as following:

∂

∂t
∇lρβ = ∇lDα(ρβ) (3.141)

where ∇l denotes the n−th order spatial derivatives. Now, according with the Chapman-
Enskog method, we have to expand f without expanding ρβ , which means that, when f is
regarded as function of x, ξ, t, it is not expanded, although, when f is regarded as functional
of ρβ , it is expanded in series of ε, according to Eq. 3.110. In consequence, we can expand
Eq. 3.127 as follows:

l−1∑
l=0

∂lf0hn−l
∂t

+ ξ ·
∂f0hn
∂t

= Jf0hn+1 + Sn+1 with n = 0, 1, 2, . . . (3.142)

and of course it must hold that Q0 = 0 meaning that the f0 is a Maxwellian distribution to
ensure the stationary solution. Furthermore, it must hold also the collision invariant property:∫

ϕβfndξ (3.143)

Now, regarding fn both as function of ξ and functional of ρβ , and assuming the orthogonality
conditions of ϕ [Cercignani, 2000], we can rewrite Eq. 3.142 as follows:

∂

ρβ
∂t+∇ ·

∫
ξϕβfdξ = 0 with β = 0, 1, 2, 3, 4 (3.144)

where ρβ is left unexpanded, in the Chapman-Enskog philosophy; moreover we can approxi-
mate the integral of fn as follows:

∂ρβ

∂t
+∇ ·

∫
ξϕβ

N∑
n=0

εnfndξ = 0 with β = 0, 1, 2, 3, 4 (3.145)
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which is the final result of the Chapman-Enskog expansion.
Now, looking to Eq. 3.130 and to Eq. 3.145, we can notice that the main difference

between the Hilbert expansion and the Chapman-Enskog Expansion is that in the former,
higher oder solutions are dependent on the previous solution, while in the latter, to obtain
higher order solutions, we need to solve a completely new set of equations.

When n = 0, f0 is a Maxwellian distribution, thus it is straightforward to see that we
recover Eq. 3.136 and the contribution to the stress tensor is given by:

pij = pδij (3.146)

In order to find the Navier-Stokes equations, instead, we have to write the solution for
n = 1, thus considering the first two terms of the Chapman-Enskog Expansion. It is finally
possible to show that the first two terms of the Chapman-Enskog expansion gives the following
contribution to the stress and heat flux tensor [Cercignani, 1988]:

pij = pδij − µ
(
∂vi
∂xj

+
∂vj
∂xi

)
− λ∂vl

∂xl
δij

qi = −k ∂T
∂xj

(3.147)

Furthermore it is possible to show that λ = 2/3µ and in consequence a Prandtl number
Pr = 2/3. This results is very important, in fact it is possible to prove that both the general
solution of the Boltzmann equation and the experimental tests show that for non Maxwellian
molecules the Prandtl number is close to 2/3.

In conclusion we have demonstrated that with a suitable expansion of certain terms of
the Boltzmann equation, it is possible to recover the macroscopic description of the Navier-
Stokes-Fourier viscous fluid.

3.3.6 Higher-order Chapman-Enskog expansion: Burnett and Super-Burnett
equations

In the previous Section, we have shown that applying the Chapman-Enskog to the Boltz-
mann equation, it is possible to recover the Navier-Stokes-Fourier macroscopic description of
a viscous fluid. Nevertheless, the Chapman-Enskog expansion has some shortcomings. In
particular, we notice that if we write the solution of Eq. 3.145 for n > 1, we do not recover a
more accurate description of a viscous fluid, but we recover the different equations. In specific,
we know that the with n = 2 we recover the so-called Burnett equations and with n = 3 we
recover the so-called Super-Burnett equations [Agarwal et al., 2001].

It is not object of this thesis to study the Burnett and the Super-Burnett equations. We
just limit to briefly describe their applications and physical background.

Physically speaking, the Burnett and the Super-Burnett equations are used to describe
micro-flows or fluid-dynamics problems at the low pressure conditions (high flights). These
flows are associated to Knudsen numbers higher than 0.05, which are not precisely consis-
tent with the assumption made in Section 3.3.5, so those equations are describing a non full
dense fluid. Furthermore, many authors, including Struchtrup [2005], pointed out that those
equations are very unstable, and in general the solution blows up in time.
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Cercignani [1975] showed that in order to neglect higher order terms of Chapman Enskog
expansion, it is possible to split the time derivative of f instead of applying the perturbation
method, in this way, basically, Eq. 3.145 is truncated to the first order and only the Navier-
Stokes equations are recovered.

3.3.7 Considerations about the Navier-Stokes equations and Boltzmann
equation

In the previous sections, we have demonstrated that it is possible to derive the Navier-Stokes
equations from the Boltzmann equations. In the present Section, we look to those equations,
trying to give them a more physical interpretation.

First of all we rewrite the Boltzmann equation and the momentum conservation of a
Navier-Stokes fluid, in their normalized formulation:

∂f∗

∂t∗
+ ξ∗ ·

∂f∗

∂x∗
=

1

Kn
Q(f∗, f∗)

∂v∗

∂t
+ v∗ ·

∂v∗

∂x∗
=

1

Re

3∑
i=1

∂2v∗i
∂x∗i

2
− ∂P ∗

∂x∗

(3.148)

where, in both the equations we have neglected the forcing term. The left hand side is
the same for Boltzmann and Navier-Stokes equation, except for that the microscopic velocity
ξ∗ is replaced by the macroscopic velocity v∗. The left hand sides describe the convection
between the particles, while the right hand sides describe the diffusion (or collision) among
the particles. From a pure mathematical point of view, the convective term is hyperbolic,
while the diffusive term is parabolic.

The Knudsen number Kn and the Reynold number Re are the two parameters which
govern the non dimensional equations. It is possible to show that these non dimensional
numbers are related as follows:

Kn =
Ma

Re
(3.149)

where Ma is the Mach number. It is important to underline that in order to have incompress-
ible flows, Ma must not exceed the value of 0.3.

3.3.8 Final overview on the Boltzmann equation and its applications

In the previous sections we have derived the Boltzmann equation starting from the Newton
particles dynamic and following step by step Boltzmann’s work. We have illustrated some
important properties of the Boltzmann equation, like the H − theorem and its relation to
the second law of thermodynamics. Finally we have discussed about the possibility to pass
from the microscopic (particle level) to the macroscopic (continuous level) description of a
fluid. Introducing some approximations (i.e., the linear collision operator and the perturba-
tion method), we have demonstrated how it is possible to derive the Navier-Stokes-Fourier
equations, starting from the Boltzmann equation.
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The Boltzmann equation represents, thus a bridge between the microscopic word (Newton’s
law and Liouville’s theorem) and the macroscopic word (Navier-Stokes-Fourier equations), in
fact the Boltzmann equation conserves the essential characteristics of particle dynamics, but,
at the same time the probabilistic approach allows to recover the conservation equations at
the macro-scale. For this reason, in literature, it is quite common to refer to the Boltzmann
equation as a mesoscopic approach to solve thermo-fluid-dynamic problems.

To make easier the comprehension of the discussed historical workflow, we highlight in
Fig. 3.4 the fundamental equations describing the evolution of a particle system at different
scale levels.

NEWTON EQUATIONS (NE) (Eq. 3.1)

LIOUVILLE EQUATION (LE) (Eq. 3.8)

• Phase Space 

representation (Eq. 3.2)

• Probabilistic approach   

(Eq. 3.4)

• Assumption of the 

Boltzmann-Grad limit

• Molecular Caos hypothesis 

(Eq. 3.19)

BOLTZMANN EQUATION (BE) (Eq. 3.35)

• BGK approximation term 

(Eq. 3.106)

• Chapman-Enskog

expansion (1917)

• Integration in the phase 

space

NAVIER-STOKES-FOURIER EQUATIONS (NSF)  

(Eq. 3.205 --- Eq. 215)

FROM NEWTON EQUATIONS TO NAVIER-STOKES-

FOURIER EQUATIONS

MICRO
SCALE

MESO
SCALE

MACRO
SCALE

1687

1838

1872

1841

Derived from (BE) in 

1968

Figure 3.4: From Newton equation to Navier-Stokes-Fourier equations: basic steps.
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3.4 From the Boltzmann Equation to the Lattice Boltzmann
Method

In the previous sections, we have demonstrated that the Boltzmann equation can be success-
fully adopted to describe the evolution of a Navier-Stokes-Fourier fluid, thus it can be used to
solve thermo-fluid dynamic problems.

The main complication in the resolution of the Boltzmann equation is represented by
the complicated form of the collision operator Q(f, f). We have shown that the analytic
expression of the collision operator can be substituted by an approximated operator which
is more manageable. Nevertheless, the solution of the Boltzmann equation remains still very
complicated.

The first solution scheme for the Boltzmann equation was proposed by McNamara and
Zanetti [1988] who developed, the so-called Lattice Boltzmann method. The Lattice Boltzmann
method (LBM) takes it origins from the Lattice Gas Automata (LGA) method [Frisch et al.,
1986]. The basic idea of LGA is that it is possible to describe the Navier-Stokes fluid on a
simplified regular domain considering simplified dynamics and assuring mass and momentum
conservation. LGA has been developed in the middle of seventies and then they have been used
until the eighties, without a real theoretical background. The idea behind the development of
LGA was to build up a computational framework easy and manageable to solve fluid dynamics
problems with the available computational efforts.

The basic idea of LGA was to discretize the space with a lattice structure and to describe
the fluid as an amount of particles which can move with certain velocities along fixed directions,
colliding with other particles. Although, LGA shaw several problem; first of all in this method
the equilibrium distribution was represented the by the Dyrac-Fermi distribution and not by
the Maxwellian distribution, leading to a violation of the Galilean invariance [Wolf-Gladrow,
2004]. Furthermore, in LGA, the velocity is dependent on the velocity and, in general, the
method suffers of instability problems.

To solve all this issues, McNamara and Zanetti [1988] proposed to substitute the Dyrac-
Fermi distribution with the Maxwellian distribution, and proposed the first Lattice Boltzmann
method.

3.4.1 Brief chronology of the Lattice Boltzmann method

Nevertheless LBM is a quite new computational method, in about twenty years of life, it has
been successfully applied to face different thermo-fluid dynamic problems.

At the beginning of the 90s, the LB method was tested on fluid dynamic problems with
an analytical solution [McNamara and Zanetti, 1988], then Shan and Chen [1993] developed
the first LB method to simulate multiphase and multicomponent flows. However, only in 1997
He and Luo [1997a] demonstrated that the LB equation can be directly derived from the BE,
giving a solid theoretical background to the corresponding computational method.

In early 2000s, the LB method was used to simulate particle-fluid suspensions [Ladd and
Verberg, 2001] and incompressible flows through porous media [Guo and Zhao, 2002]. Teixeira
et al. [2000] and Palmer and Rector [2000] proposed two different lattice schemes to face ther-
mal problems, while Yu et al. [2003] extended the application of LB method to incompressible
flows with high Re number. Chatterjee and Chakraborty [2005] adopted the LB method to
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investigate the solid-liquid phase change and Körner et al. [2005] developed a free surface LB
scheme for modelling foaming. Geller et al. [2006] proposed an interesting comparison among
various CFD tools, concluding that the LB method is particularly suitable to face problems
with very complex geometries and boundary conditions; moreover Zheng et al. [2006] proposed
a LB scheme to simulate multiphase flows with high density ratio. Attar and Körner [2011]
adopted for the first time the LB method to investigate melt pool dynamics in EBM processes,
including powder melting/solidification process and free surface evolution of the melt pool.
Gong and Cheng [2012] used the LB method to simulate liquid-vapour phase change for high
density ratio fluid mixtures; finally Huang et al. [2013] proposed an innovative LB scheme to
face solid-liquid phase change problems.

From this review, it is interesting to notice that until 1997, the Lattice Boltzmann method
was used without a real theoretical background, which was given right in that year by He and
Luo [1997b].

The procedure to derive the lattice Boltzmann method from the Boltzmann equation can
be resumed in the following steps:

• The derivation of an evolution equation discretized in time, the so-called lattice Boltz-
mann equation;

• the application of a quadrature formula to approximate the integration in momentum
space;

• the calculation of a proper discrete equilibrium distribution function which allows to
reproduce exactly the macroscopic quantities.

In the following section, following the work of He and Luo [1997b] we will show how LBM
can be rigorously derived by the Boltzmann equation.

3.4.2 From the Boltzmann Equation to the Lattice Boltzmann Equation

To derive the Lattice Boltzmann equation we start from the classic formulation of the Boltz-
mann equation neglecting the forcing term (Eq. 3.33):

∂f

∂t
+ ξ ·

∂f

∂x
= Q(f, f) (3.150)

now, we replace the collision term Q(f, f) with the BGK approximation and we can rewrite
the Boltzmann equation as follows:

∂f

∂t
+ ξ ·

∂f

∂x
=
feq(x, ξ, t)− f(x, ξ, t)

τ
(3.151)

From the pure mathematical point of view, Eq. 3.151 is an ordinary difference equation (ODE).
To solve Eq. 3.151, we apply the well know chain derivation rule and, thus, we rewrite Eq.
3.151 as following:

df

dt
+

1

τ
f =

1

τ
feq (3.152)
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where the d is the total derivative operator. Eq. 3.152 is a first order differential linear equation
with constant coefficients [Coddington, 2012]. The solution for this type of equations is well
known and can be expressed as:

f(t+δt) = f(x+ξδt, ξ, t+τt) = exp−
δt
τ f(x, ξ, t)+

1

τ
exp−

δt
τ

∫ δt

0
exp

δt′
τ feq(x+ξδt′, ξ, t+t′)dt′

(3.153)
Applying Taylor expansion around term δt= 0 and truncating it at the first order we obtain
the following equalities:

exp−
δt
τ = 1− 1

τ
δt+O(δt2) (3.154)

1

τ
exp−

δt
τ

∫ δt

0
exp

δt′
τ feq(x+ ξδt′, ξ, t+ t′)dt′ =

1

τ
feq(x, ξ, t)δt+O(δt2) (3.155)

Inserting the two expansions (Eqs. 3.154, 3.155) in Eq. 3.153 we obtain the final expression
of the lattice Boltzmann equation:

f(x+ ξδt, ξ, t+ δt)− f(x, ξ, t) = −1

τ
(f(x, ξ, t)− feq(x, ξ, t)) +O(δt2) (3.156)

where τ is called relaxation time.
An analogous procedure is applied to expand the equilibrium distribution function (Eq.

3.82), which can be rewritten as follows:

feq(ξ) =
ρ√

(2πRT )
3 exp

[
− ξ2

2RT

]
exp

[
− v2

2RT
+
ξ ·v
RT

]
(3.157)

we perform the Taylor expansion on the term u/
√
RT around u/

√
RT = 0. This procedure is

usually called low Mach number expasion because in an ideal gas the sound speed cs is given
by:

cs =
√
ζRT (3.158)

where ζ is the ratio between the isobaric and the isochoric specific heats. Thus, being the Mach
number the ratio between the macroscopic velocity and the sound speed, it is proportional
to u/

√
RT . Finally, applying the low Mach number expansion, we obtain the expanded

formulation of the equilibrium term:

feq(ξ, t) =
ρ√

(2πRT )
3 exp

[
− ξ2

2RT

][
1 +

ξ ·v
RT

+
(ξ ·v)2

2(RT )2
− v2

2RT

]
+O(Ma3) (3.159)

3.4.3 The integration in the momentum space

As discussed in Section 3.3, the macroscopic quantities can be recovered through the zero-
th, first and second momentum of distribution functions f . Following He and Luo [1997b]
procedure, to recover the lattice Boltzmann method we need to apply a quadrature formula
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to solve the generic momentum:

Mk =

∫
ξlxξ

m
y ξ

n
z f(x, ξ, t)dξ (3.160)

where k = l +m+ n. The generic quadrature formula can be written as follows:

Mk =

∫
ξlxξ

m
y ξ

n
z f(x, ξ, t)dξ =

p∑
i=1

wiξ
l
xξ
m
y ξ

n
z f(x, ξi, t) (3.161)

where the velocity space ξ is now discretized in a set of discrete velocities ξi The choice of
the correct quadrature formula is of crucial importance in the discretization procedure. As
pointed out by Cercignani [1975], the Chapman-Enskog expansion of the Boltzmann equation,
leading to the Navier-Stokes equations, is basically a expansion of f in the first two orders
f0 = feq and f1; moreover He and Luo [1997b] underlined that the quadrature formula must
be able to compute exactly the macroscopic quantities, so it must hold that:

ρ(x, t) =

∫
f(x, ξ, t)dξ =

p∑
i=1

wif(x, ξi, t)

v =

∫
ξf(x, ξ, t)dξ

ρ(x, t)
=

∑p
i=1wiξf(x, ξi, t)

ρ(x, t)

e =

∫
cjcjf(x, ξ, t)dξ

ρ(x, t)
=

∑p
i=1wicjcjf(x, ξi, t)dξ

ρ(x, t)

(3.162)

The problem now is: how to chose the quadrature formula? We remark that, in order to
reproduce correctly the momentum, the generic quadrature formula must be such that:∫

φ(ξ)g(x, ξ, t)dξ =

p∑
j=1

wjφ(ξi)g(x, ξj , t)dξ (3.163)

where φ(ξ) is a generic polynomial function and g(x, ξ, t) is a generic distribution function.
Thus, applying such quadrature scheme to the equilibrium distribution function (Eq. 3.159),
we obtain:∫

φ(ξ)feq(x, ξ, t)dξ =

p∑
j=1

wjφ(ξ)
ρ√

(2πRT )
3 exp

[
− ξ2

2RT

][
1 +

ξ ·v
RT

+
(ξ ·v)2

2(RT )2
− v2

2RT

]
(3.164)

From a pure mathematical point of view, Eq. 3.164 has the following form:∫
exp−ξ

2

φ(ξ)dξ (3.165)

so the argument of the integral has the form of a Gaussian distribution, therefore, the integral
can be computed numerically using the Gauss-Hermite quadrature formula. and, in particular,
we are able to reproduce exactly integrals as proposed in Eq. 3.165.
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Figure 3.5: LB schemes in two and three dimensions. On the left, the bi-dimensional
D2Q9 model with its 9 velocities. On the right, the three-dimensional D3Q19
scheme with its 19 velocities.

The usage of the quadrature formulas leads to discretize the velocity space. It is usual,
in literature, to identify the discrete set of velocity with the denomination: DmQn where m
indicates the space dimension and n indicates the number of the velocities. Classical schemes
are D2Q5, D2Q9, D3Q19 and D3Q27. In Figure 3.5 we show the D2Q9 and the D3Q19 lattice
schemes, which are the most adopted LBM schemes in 2D and 3D, respectively.

In the following section we will apply the Gaussian quadrature formula to derive the D2Q9
lattice scheme and the associated discrete equilibrium distribution function.

3.4.4 Velocity and equilibrium distribution discretization

Let us suppose to work in a 2D space and to discretize the square lattice mesh as indicated in
Figure 3.5 (left). Working in a Cartesian space, we can define the polynomial function φ(ξ)

as follows:
φ(ξ)l,m = ξlxξ

m
y (3.166)

where ξx and ξy are the Cartesian components of the velocity ξ. Inserting Eq. 3.166 in Eq.
3.164 we obtain:∫

φ(ξ)l,mf
eq(ξ)dξ =

ρ

π
(
√

2RT )l+m

[(
1− v2

2RT

)
ZlZm +

√
2(vxZl+1Zm + vyZlZm+1)√

RT

+
v2xZl+2Zm + 2vxvyZl+1Zm+1 + v2yZlZm+2

RT

]
(3.167)

where Zl is given by:

Zl =

∫ +∞

−∞
exp−

ξ2

2RT
ξl√
2RT

dξ (3.168)

Eq. 3.168 represents the l−th order moment of the function exp−
ξ2

2RT that, in this contest,
assumes the function of a weight function. Thus, applying the quadrature formula (Eq. 3.163)
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to Eq. 3.168, we can approximate the integral as follows:

Zl =

p∑
j=1

wj
ξlj√
2RT

(3.169)

In this case, the optimal quadrature solution is obtained for p = 3. The abscissas of the
quadrature formula are:

ξ1 = −
√

3

2

1√
2RT

, ξ2 = 0, ξ3 = +

√
3

2

1√
2RT

(3.170)

and the weights are:

w1 =

√
π

6
, w2 =

2
√
π

3
, w3 =

√
π

6
(3.171)

So, introducing Eqs. 3.169, 3.170, 3.171 in Eq. 3.167 we obtain:∫
φ(ξ)l,mf

eq(ξ)dξ =
ρ

π

3∑
l,m=1

wlwmφ(ξ)l,m

[
1 +

(ξl,m ·v)

RT
+

(ξl,m ·v)2

2R2T 2
− (v)2

2RT

]
(3.172)

Therefore, the equilibrium distribution functions are given by:

feql,m =
ρwlwm
π

[
1 +

(ξl,m ·v)

RT
+

(ξl,m ·v)2

2R2T 2
− (v)2

2RT

]
(3.173)

where ξl,m is the discrete set of velocities given by the quadrature formula. Then, considering
the gas sound speed given by the low Mach number expansion (Eq. 3.158) and assuming
ζ = 1, we can write the lattice sound speed as following:

cs =
√
RT (3.174)

and thus rewrite Eq. 3.173 as follows:

feqi = ωi

[
1 +

(ei ·v)

c2s
+

(ei ·v)2

2c4s
− (v)2

2c2s

]
, with i = 1, 2, . . . , 9 (3.175)

where ea is the common name, used in literature to call the discrete set of velocities given by
ξl,m with the combination of indexes l = 1 : 3 and m = 1 : 3; ea are defined as:

ei =


e1,3 = (±1, 0)c

e2,4 = (0,±1)c

e5,6,7,8 = (±1,±1)c

e9 = (0, 0)c

(3.176)
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which correspond to the scheme proposed in Fig. 3.5 (left). The weights, instead, are straight-
forward defined as:

ωi =
wlwm
π

=


ω1,2,3,4 = 1/9

ω5,6,7,8 = 1/36

ω9 = 4/9

(3.177)

The variable c can be viewed as a speed of light [He and Luo, 1997b] of the system and it is
given by the following relation:

c =
√

3cs =
√

3RT (3.178)

Moreover, since c is by fact a scalar velocity, it can be defined as:

c =
δx

δt
(3.179)

where δx is the lattice typical dimension and δt is the minimum time increment for the solution
of the LBM. In literature, δx and δt are known as lattice units. It is also very common to
assume δx = 1 and δt = 1. Accordingly, c = 1 and Eq. 3.178 can be rewritten as follows:

cs =
c√
3

=
1√
3

(3.180)

In consequence, Eq. 3.173 can be rewritten as follows:

feqi = ωi

[
1 +

3(ei ·v)

c2
+

9(ei ·v)2

2c4
− 3(v)2

2c2

]
, with i = 1, 2, . . . , 9 (3.181)

Applying the same space discretization to the Eq. 3.156, we can write the discrete lattice
Boltzmann equation:

fi(x+ eiδt, t+ δt) = fi(x, t)−
1

τ

[
fi(x, t)− feqi (x, t)

]
with i = 1, . . . , n (3.182)

To solve Eq. 3.182, it is usual to split the solution in two steps: the streaming step:

fsi (x+ eiδt, t+ δt) = fi(x, t) (3.183)

and the collision step:

fi(x+eiδt, t+δt) = fsi (x+eiδt, t+δt)− 1

τ

[
fsi (x+eiδt, t+δt)−feqi (x+eiδt, t+δt)

]
(3.184)
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where the equilibrium term is given by Eq. 3.181 and the macroscopic equations are given by:

ρ = ρ(x, t) =

n∑
i=1

fi

v = v(x, t) =
1

ρ

n∑
i=1

eifi

e = e(x, t) =
1

2ρ

n∑
i=1

(ei − v)2fi

(3.185)

Finally, we underline that, in order to assure the stability of the method, the macroscopic
velocity v must remain always below the cs. This limit, as matter of fact, is given by the low
Mach number expansion adopted to evaluate the equilibrium term.

3.5 The lattice Boltzmann method and the conservation equa-
tions

In the previous sections we have mathematically derived the lattice Boltzmann method from
the Boltzmann equation. The natural question is: with the lattice Boltzmann method it
is possible to reproduce correctly the macroscopic behavior of a thermo-dynamic fluid? In
order to prove that form the lattice Boltzmann method it is possible to recover the we apply
the Chapman-Enskog expansion to the discrete Boltzmann equation in order to recover the
Navier-Stokes equations and the heat advection diffusion equation.

3.5.1 From lattice Boltzmann equation to Navier-Stokes equations

In this section we introduce some important aspects to better characterize the lattice Boltz-
mann equation.

In Eq. 3.179 we have introduced the assumption c = 1 which implies that LBM is char-
acterized by a convective scaling, meaning that δt = δx. This procedure can be viewed as a
kind of normalization and δt is related to the Knudsen number (Kn). In specific, it possible
to demonstrate [Kuzmin, 2010] that Kn = τ , meaning that relaxation time is the scale pa-
rameter which governs the lattice Boltzmann equation. Accordingly, if we want to recover the
conservation equations for a dense fluid, we need to perform the Chapman-Enskog expansion
in the limit τ → 0, to be consistent with the considerations explained in Section 3.3.4.

Eq. 3.182 does not include the forcing term. External forces contribution can be taken
into account as follows:

fi(x+eiδt, t+δt) = fi(x, t)−
1

τ

[
fi(x, t)−feqi (x, t)

]
+δtFi, with i = 1, 2, . . . , 9 (3.186)

where δtFi is an additional term which takes into account the contribution of external forces
acting on the computational domain, for example the gravitational field. The contribution
of the external forces is taken into account as a external momentum, thus the macroscopic
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velocity v is calculated as follows:

v = v(x, t) =
1

ρ

n∑
i=1

eifi +
mF δT

ρ
(3.187)

where m is a constant to be determined. According to Ladd and Verberg [2001], the forcing
term can be expanded in series of power as follows:

Fi = ωi

[
A +

3(ei ·B)

c2
+

9(ei ·C)2

2c4
− 3(C)2

2c2

]
, with i = 1, 2, . . . , 9 (3.188)

where A, B, C are constant coefficients which can be derived imposing that the moments of Fi
satisfy the desired constitutive equations (in our case of study, the hydrodynamic equations).
The zero-th, first, and second moments of Fi are defined as follows:

n∑
i=1

Fi = A

n∑
i=1

eiFi = B

n∑
i=1

eieiFi =
CT + C

2
+
c2AI

3

(3.189)

In conclusion, we can state that in LBM the forcing term is strictly dependent on the consti-
tutive equations we want to satisfy [Guo et al., 2002a].

The Chapman Enskog expansion

The Chapman-Enskog expansion of the lattice Boltzmann equation (Eq. 3.186) is based on
the expansion in series of powers of both the discrete distribution functions fi and the time t:

fi =
∞∑
n=1

εnf
(n)
i

t =

∞∑
n=1

εnt(n)

(3.190)

We observe that the series of power is dependent on the coefficient ε = Kn which tends to 0
like in the Chapman-Enskog expansion of the Boltzmann equation.

Expanding in Taylor series the right hand side of Eq. 3.186 and applying the expan-
sion procedure to Eq. 3.186, with some mathematical computations we obtain the following
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equations [Guo et al., 2002a]:

f
(0)
i = feqi

∂f
(0)
i

∂t(1)
+ ei

∂f
(0)
i

∂x(1)
= − 1

τδt
f
(1)
i + εFi

∂f
(0)
i

∂t(2)
+

(
1− 1

2τ

)(
∂f

(1)
i

∂t(1)
+ ei

∂f
(1)
i

∂x(1)

)
= − 1

τδt
f
(2)
i −

δt

2

(
∂εFi
∂t(1)

+ ei
∂εFi
∂x(1)

) (3.191)

with:
∂

∂t
= ε

∂

∂t(1)
+ ε2

∂

∂t(2)
,

∂

∂x
= ε

∂

∂x(1)
+ ε2

∂

∂x(2)
(3.192)

Considering the moments of the Eqs. 3.191 on t1 = εt, inserting Eq. 3.188, and taking into
account the definition of the macroscopic quantities (Eq. 3.185), we obtain:

∂ρ

∂t(1)
+∇(1) · (ρv) = A(1)

∂ρv

∂t(1)
+∇(1) · Π(0) =

(
n+

m

τ

)
B(1)

n

(3.193)

where n and m are constants to be determined given by:

A = εA(1), B = εB(1) (3.194)

while Π
(0)
αβ =

∑
i eiαeiβf

(0)
i is the zero-th order momentum flux tensor. If we assume A(1) = 0

and (n+m/τ) = 1 we recover the Euler equations which describe the dynamics of a inviscid
fluid, that in the continuous case correspond to the Eqs. 3.136. This result is in accordance
with the one obtained applying the Hilbert expansion to the Boltzmann equation. Moreover,
the first order momentum flux can be calculated as follows:

Π
(1)
αβ = −τδt

[
(vαF(1)β + vβF(1)α) + c2sρ(∇(1)αvβ +∇(1)βvα)− 1

2

(
C(1)αβ +C(1)βα

)]
(3.195)

where: F(1) is given by:
F = εF(1) (3.196)

Martys et al. [1998] pointed out that if we assume C = 2vF(1), with some computations, the
momentum flux can be re-conducted to the expression of the stress tensor of the Navier-Stokes
equations (Eq. 3.147):

p(1)αβ = pδαβ − µ
(
∇(1)αvβ +∇(1)βvα

)
(3.197)

where µ is the kinematic viscosity and it is given by: µ = c2sτδt. However, in LBM method,
the lattice discretization induces some modifications on viscosity and forcing term, so, in order
to avoid instabilities, it is convenient to introduce some corrections on the viscosity definition.
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We consider the second order moments of Eqs. 3.191 on t2 = ε2t and we obtain:

∂ρ∂t(2) = δt

(
m− 1

2

)
∇(1) ·F(1)

∂(ρv)

∂t(2)
= δt

(
m− 1

2

)
∂F(1)

∂t(1)
+∇(1) ·p(1)

(3.198)

where the stress tensor is defined as follows:

p(1)αβ = −

(
τ − 1

2

)
c2sδtρ

(
∇(1)αvβ +∇(1)βvα

)
+

δt

[(
τ − 1

2

)(
vαF(1)β + vβF(1)α

)
− τ

2

(
C(1)αβ + C(1)βα

)] (3.199)

Looking to Eq. 3.199, we notice that it contains, basically, the Eq. 3.195 with an additional
term. Those additional terms can be condensed, to recover Eq. 3.197, by assuming the
following equality:

µ =

(
τ − 1

2

)
c2sδt, C =

(
1− 1

2τ

)
2vF (3.200)

Moreover, we can appreciate how, in Eqs. 3.198, space and time partial derivatives on the
right had sides cause unexpected second order effects on density and momentum distributions.
In order to avoid those effects, m must be assumed equal to 1/2 and, in consequence, the
macroscopic velocity (Eq. 3.187) can be calculated as follows:

v = v(x, t) =
1

ρ

n∑
i=1

eifi +
FδT
2ρ

(3.201)

where F is the external forcing term. Finally the external forcing term is given by:

Fi =

(
1− 1

2τ

)
ωi

[
3(ei − v)

c2
+

9(ei ·v)

c4
ei

]
·F (3.202)

Finally, inserting Eq. 3.201 and Eq. 3.200 in Eq. 3.193, doing some computations on the
stress tensor, we can recover the Navier-Stokes equations, written as follows:

∂ρ

∂t
+∇ · ρv = 0

∂ρv

∂t
+∇ · (ρvv) = −∇p+ µ∇ · [ρ(∇v +∇Tv)] + F

(3.203)

3.5.2 From lattice Boltzmann equation to Energy conservation equation

The above described procedure to derive the Navier-Stokes equations from the lattice Boltz-
mann equation, deals with the first two moments of the distribution functions fi, meaning
that the last of the Eqs. 3.185 is not taken into account; in fact, from the macroscopic point
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of view, we have not recovered the complete description of a Navier-Stokes-Fourier fluid but
only mass and momentum conservation equations.

In order to describe the thermal evolution of the fluid, we consider a new distribution
function g defined as follows:

g =
(ξ − v)2

2
f (3.204)

thus that the integral of g on the velocity space returns exactly the internal energy (Eq. 3.97).
Following He et al. [1998], we can introduce Eq. 3.204 in Eq. 3.151, with some computations,
we can rewrite the Boltzmann equation as follows:

∂g

∂t
+ ξ ·

∂g

∂ξ
=
geq(x, ξ, t)− g(x, ξ, t)

τT
− fq (3.205)

where f is the distribution function usually adopted to describe the fluid-dynamic problem,
while q is defined as follows:

q = f(ξ − v) ·

[
∂v

∂t
+ ξ ·

∂v

∂x

]
(3.206)

and the equilibrium distribution function geq(x, ξ, t) is given by:

geq(ξ) =
ρ(ξ − v)

2
√

(2πRT )
3 exp

[
−(ξ − v)2

2RT

]
(3.207)

In conclusion, Eq. 3.151 and Eq. 3.205 with the associated equilibrium distributions, Eq.
3.207 and Eq. 3.82, give rise to a system of equations describing the fluid dynamic evolution
of a thermal flow.

Applying to Eq. 3.205 a discretization procedure similar to the one proposed in Sec-
tion 3.4.2, we can derive the discretized lattice Boltzmann equation describing the thermal
evolution:

gi(x+ eiδt, t+ δt) = gi(x, t)−
δt

τT + 0.5δt

[
gi(x, t)− geqi (x, t)

]
− τT
τT + 0.5δt

fi(x, t)qi(x, t)δt

with i = 1, . . . , n

(3.208)

and the associated discrete equilibrium term can be discretized as follows:

geqi = ρeωi

[
3

2
+

3(ei ·v)

2c2
+

9(ei ·v)2

2c4
− 3(v)2

2c2

]
, with i = 1, 2, . . . , 4

geqi = ρeωi

[
3 +

6(ei ·v)

c2
+

9(ei ·v)2

2c4
− 3(v)2

2c2

]
, with i = 5, 6, . . . , 8

geqi = ρeωi

[
3(v)2

2c2

]
, with i = 9

(3.209)
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Eq. 3.208 and Eq. 3.209 are usually referred as thermal lattice Boltzmann method (TLBM).
For sake of completeness, we remark that this solution is not unique, in fact it is possible
to adopt directly the temperature as macroscopic unknown (instead of the internal energy);
furthermore, different solutions have been proposed to evaluate the equilibrium distribution
functions.

The Chapman-Enskong expansion

Like for the fluid dynamic case, also for the thermo-fluid-dynamic problem we have to demon-
strate that from the thermal lattice Boltzmann method it is possible to recover the macroscopic
description of a thermal fluid, i.e., the heat advection-diffusion equation.

The Chapman-Enskog expansion of the lattice Boltzmann equation (Eq. 3.208 ) is based
on the expansion in series of powers of both the discrete distribution functions gi and the time
t:

gi =

∞∑
n=1

εng
(n)
i

t =
∞∑
n=1

εnt(n)

(3.210)

We observe that the series of power is dependent on the coefficient ε = Kn which tends to 0
like in the Chapman-Enskog expansion of the Boltzmann equation. The first order Chapman-
Enskog expansion of Eq. 3.208 is given by:

∂g
(0)
i

∂t(1)
+ ei

∂g
(0)
i

∂x(1)
= − 1

τT
g
(1)
i − f

(0)
i qi (3.211)

Then, considering that g(0) = geq and taking into account the definition of the distribution
function g (Eq. 3.204), we can rewrite Eq. 3.211 in terms of the macroscopic quantities as
follows:

∂ρe

∂t(1)
+∇(1) · (ρev) = −p∇(1) ·v (3.212)

obtaining the Euler energy equation (last of the Eqs. 3.136). The second term of the right
hand side of Eq. 3.212 represents the convective term and is dependent on the equilibrium
term g(0) which is related, by definition (Eq. 3.204) to the internal energy. The left hand
side of Eq. 3.212 represents the diffusive term and is dependent on the equilibrium term f (0)

which is related to the pressure compression work.
Applying the second order Chapman Enskog expansion, instead, we obtain:

∂g
(0)
i

∂t(2)
+
∂g

(1)
i

∂t(1)
+ ei

∂g
(1)
i

∂x(1)
= − 1

τT
g
(2)
i + τ

[
∂f

(0)
i

∂t(1)
+∇ · (eif

(0)
i )

]
(3.213)

Finally, inserting Eq. 3.211 in Eq. 3.213, and integrating on the velocity space, we obtain:

∂ρe

∂t(2)
−∇(1) · (ρk∇e) = ρµ(∇(1)v +∇T

(1)v) : ∇(1)v (3.214)
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where k is the thermal conductivity. The second term of the left hand side of Eq. 3.214
represents the convective term, describing the heat convection; this term is generated from
the second and the third term of the left hand side of Eq. 3.213 and it is dependent on the non
equilibrium term g(1) which is related, by definition (Eq. 3.204) to the internal energy. The
right hand side of Eq. 3.214 represents the diffusive term, describing the heat diffusion. This
contribution derives from the second term of the right hand side of Eq. 3.213 and depends on
the non equilibrium term f (1) which is related, by definition (Eq. 3.185) to the density.

Then combining Eq. 3.214 with Eq. 3.212, we obtain:

∂ρe

∂t
+∇ · (ρve) = ρµ(∇v +∇Tv) : ∇v − p∇ ·v (3.215)

Eq. 3.215 is the macroscopic energy conservation equation, thus the description of a
Navier-Stokes-Fourier fluid is complete.

3.6 Final considerations about the Boltzmann Equation and
the lattice Boltzmann method

In this chapter we have presented the lattice Boltzmann method which is used to solve numer-
ically the Boltzmann equation under certain hypotheses. We have demonstrated that LBM
can be analytically derived from the Boltzmann equation. Moreover we have demonstrated
that the macroscopic equations governing a thermo-fluid dynamic flow (Navier-Stokes-Fourier
equations) can be obtained directly from the Boltzmann equation using the Chapman-Enskog
expansion. This expansion procedure has been adopted also to show that the lattice Boltz-
mann equation is consistent with the discrete formulation of the macroscopic description of a
Navier-Stokes-Fourier fluid.

In previous sections it merged that the lattice Boltzmann method is, by fact a kinetic
particle-based approach which conserves the essential information of particle dynamics, nec-
essary to recover the conservation equations at the macroscale; in this respect, the lattice
Boltzmann method, as well as the Boltzmann equation itself, represents a bridge between the
micro- and the macroscopic world and therefore is usually referred as mesoscopic.

In Figure 3.6 we have resumed the principal results obtained in this chapter, underling the
principal steps to obtain the lattice Boltzmann method. In particular we observe that, even
if the first lattice Boltzmann scheme was introduced in 1988 [McNamara and Zanetti, 1988],
it was mathematically demonstrated only in 1997 [He and Luo, 1997a].
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LATTICE BOLTZMANN EQUATION (Eq. 3.156 – Eq. 3.159)

• BGK approximation (Eq. 3.151)

• Taylor expansion in time (Eq. 3.154, 

3.155)

• ODE resolution

• Low Mach number expansion (Eq. 

3.158)

• Integration in the momentum space 

(Eq. 3.163)

• Velocity and equilibrium distribution 

discretization (Eq. 3.166)

FROM BOLTZMANN EQUATION TO 

LATTICE BOLTZMANN METHOD

BOLTZMANN EQUATION (Eq. 3.35)

LATTICE BOLTZMANN METHOD (Eq. 3.181, 182, 183, 184)

Streaming

Collision

1872

1997

1997

Figure 3.6: From the Boltzmann equation to the lattice Boltzmann method: basic
steps.

3.6.1 Why use the lattice Boltzmann method for Powder Bed Fusion sim-
ulation

As discussed in Chapter 2, powder bed fusion process can be viewed as a thermo-fluid-dynamic
problem. In literature, during the years several approaches have been proposed to face thermo-
fluid dynamic problems.

In computational fluid dynamics (CFD) the classical methods to solve a fluid dynamic
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problem can be divided according to (i) the type of grid, (ii) how the domain is discretized,
(iii) how the Navier-Stokes equations are treated to face the turbulence simulation:

• Type of grid:

– Structured grid;

– Unstructured grid;

• Domain discretization techniques:

– Finite volume method (FV);

– Finite element method (FEM);

– Finite difference method (FD);

• Turbulence resolution:

– Direct Numerical Simulation (DNS);

– Reynolds-averaged Navier–Stokes (RANS);

– Large eddy simulation (LES);

This classical resolution techniques require an integration on a discrete space and in general
are very expensive in terms of computational times. The lattice Boltzmann method is a full
explicit method that is solved on a structured grid without needing of integration operations.
Those characteristics make the lattice Boltzmann method suitable to be run on massively
parallel architectures, thus it is particularly suitable for problems which require a large amount
of memory, for example the simulation of powder melting in PBF. The lattice Boltzmann
method has been successfully used to simulate multiphase, multicomponent and free surface
flows with complex geometries thanks to the ease imposition of the boundary conditions.
Those characteristics make the LBM indicated to simulated flows trough porous media. This
occurrence is typical of the powder bed fusion in which the melted particles move among the
solid particles. Moreover, with the lattice Boltzmann method it is almost easy to incorporate
the thermal treatment in the fluid description, so it is possible to manage with problems
in which the the fluid motion is accompanied with the heat exchange among the fluid and
with the boundaries. Finally, LBM has been successfully used also to simulate phase change
problems. The liquid-gas transition has been faced in many works, while, at the state of the
art, only few models dealing with the solid liquid phase change are available.

3.6.2 Conclusions

In this chapter we have studied in detail the Lattice Boltzmann method which takes origins
from the Boltzmann equation.

In the first part of the chapter, starting from the kinetic theory of gases we have derived the
Boltzmann equation; then we have discussed the mathematical peculiarities of this equation,
focusing on the difficult treatment of the collision term. Secondly, we have demonstrated that,
applying the perturbation method, it is possible to derive, from the Boltzmann equation, the
Navier-Stokes-Fourier equations.
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In the second part of this chapter we have introduced the Lattice Boltzmann method, an
explicit computational scheme which can be used to solve the Boltzmann equation and we
have demonstrated that this approach can be used to solve the both the Navier-Stokes and
the advection-diffusion equation.

In the next chapter we will use the lattice Boltzmann method to solve some simple thermo-
fluid dynamic problems.



Chapter 4

Applications of the Lattice Boltzmann
method

In this chapter we propose some examples of application of the lattice Boltzmann method. In
particular we start with simple fluid and thermo dynamic problems, then we move to more
complicate multiphase and free surface problems. Finally we propose an example of solid
liquid phase change transition.

4.1 Single phase flows

In this section we focus on the LBGK method to solve single-phase flows at low Re numbers
and on the corresponding algorithm, reported in Figure 4.1. In particular, we test the proposed
algorithm on a reference benchmark CDF solution, i.e. the Lid-Driven-Cavity (LDC) problem,
Burggraf [1966]; in this problem a square cavity is filled with fluid and a constant horizontal
velocity is imposed on the upper side of the domain.

The first step of our algorithm consists in converting the dimensional quantities into lattice
units. As discussed in previous chapter, the LB method relies on a discrete domain called
lattice. Each lattice scheme is defined by a time resolution ∆t and a space resolution ∆x

which can be defined in any set of units (e.g. SI), although in literature almost all the works
are realized in lattice units which are a fictitious unit system scaled such that ∆t = 1 and
∆x = 1. The conversion procedure is not unique. In this work we adopt the scheme proposed
by Krüger et al. [2017] based on the Law of Similarity which states that two incompressible
flow systems are fluid-dynamically similar if they have the same Re number and the same
geometry. In single phase flow problems Re number can be expressed as follows:

Re =
L′V ′

ν ′
=
LV

ν
(4.1)

where L′ is the typical scale of the physical problem, V ′ is the typical velocity of the physical
problem and ν ′ is the physical viscosity. In LDC the scale of the problem is given by the
cavity dimension, while ν ′ is depending on the chosen fluid; furthermore from L′ and V ′ we
can easily define the typical time scale T ′ = L′/V ′. Once defined the grid resolution Nx x Nx

96
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Figure 4.1: LBGK algorithm. The scheme consist of two loops. A main loop over
time and a secondary loop over lattice cells. The bounce back rule is adopted for
no-slip boundaries and the Zou-He model [Zou and He, 1997] is used to impose
constant velocity on the top boundary.

we can evaluate the physical grid spacing as:

∆′x =
L′

Nx
(4.2)

and we can define a conversion factor for length as follows:

Cx =
∆x′

∆x
=
L′

L
(4.3)

from which it is simple to derive that : L = Nx. The definition of V and ν is not straightforward
because, in LB method, to avoid instability problems we must ensure that V < cs and the
relaxation time τ is not to close to 0.5 [Krüger et al., 2017]. Once defined a proper value for
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τ we can derive the kinematic lattice viscosity as follows [Frisch et al., 1986]:

ν = cs
2
(
τ − 1

2

)
(4.4)

Now, considering the physical dimensions of the viscosity we can write the following relation:

ν ′

ν
= Cν =

Cx
2

Ct
, → Ct =

Cx
2

Cν
(4.5)

where Cν is the viscosity conversion factor and Ct is the time conversion factor. Finally we
can derive the lattice velocity V as follows:

V =
V ′

CV
, → V = V ′

Ct
Cx

(4.6)

where CV is the conversion factor for the velocity. Moreover, knowing Ct we can derive the
physical time step as ∆′t = Ct∆t and calculate the number of iterations needed to cover the
desired time interval. If the resulting lattice velocity V is not consistent with the method
constraints, as first step we try to change the relaxation time τ , alternatively, we can change
the lattice grid resolution Nx.

We notice also that the density in LB method is a pure scaling parameter, that does not
affect the stability of the method, so it is possible to adopt the any desired value of ρ; although,
to be consistent with the previously assumptions, it is common to assume ρ = 1, and to define
a conversion factor as follows:

Cρ =
ρ′

ρ
(4.7)

where ρ′ is the physical density.
Once performed the parameters conversion, the distribution functions fi are initialized,

at the equilibrium state through Eq. 3.175 and the iterative process starts. The algorithm
consists of two loops: a main loop over the time and a loop over the cells.

During the streaming step we impose the boundary conditions; in particular we implement
the Dirichlet boundary conditions proposed by Zou and He [1997] to impose the fixed velocity
on the upper side of the domain, while we apply the simple bounce-back scheme to perform
no-slip boundaries on the other sides:

fsir(x+ ei∆t, t+ ∆t) = fi(x, t) (4.8)

where subscript index ir denotes the opposite direction to the considered velocity ei, such
that: eir = −ei.

After the streaming step we evaluate the density ρ and the velocity v trough Eq.3.185,
then the equilibrium distributions can be computed and finally the collision among particle
distributions takes place (Eq. 3.184).

Figure 4.2 shows the simulation results of the LDC problem. We have solved the Lid
Driven Cavity problem for three Re numbers: Re = 100, Re = 400 and Re = 1000. The
cavity of length L = 1 m is filled with water with kinematic viscosity ν = 10−6 m2/s and the
lattice grid dimensions are: 300 x 300.



4.1. Single phase flows 99

The first three plots represent the velocity distribution (L2 norm) of the steady state
solution for various Re numbers. The results have been validated through a comparison with
the solution proposed by Ghia et al. [1982] which is commonly considered a reference solution
for this kind of problem. The normalized horizontal and vertical velocity components (u and
v-velocity) along the line of vertical and horizontal symmetry have been compared with the
reference solution. We observe a good agreement between the solution obtained with the
LBGK simulation and the one proposed by Ghia et al. [1982].

Re = 100 Re = 400 Re = 1000

Re = 100 Re = 400 Re = 1000

Re = 100 Re = 400 Re = 1000

Normalized u-velocity along horizontal line at x/L = 0.5

Normalized v-velocity along vertical line at y/L = 0.5

Velocity distribution in the Lid-driven-cavity

Figure 4.2: LDC problem performed with different Re numbers. The normalized
horizontal and vertical velocity components in the middle of the domain are com-
pared with the solution proposed by Ghia et al. [1982], showing a good agreement
for the considered Reynolds number.
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4.2 Thermal Lattice Boltzmann method

As above mentioned, the LB method is well suited also to describe the thermal flows. In
literature, the main thermal Lattice Boltzmann (TLB) methods are the multi-distribution
method [Palmer and Rector, 2000] and the multi-speed method [Teixeira et al., 2000], but the
latter method was proved by McNamara et al. [1995] to suffer of instability problems.

In the following, we adopt the multi-distribution approach proposed by Guo et al. [2002b]
to set up a TLB method for incompressible fluids and we test it on a conventional benchmark
i.e., the Rayleigh-Benard convection. In this problem a rectangular cavity is filled with fluid
and a temperature difference is applied between upper and bottom boundaries to give rise to
a convective flow.

In multi-distribution approach two sets of distribution functions, namely f and g, are
taken into account: f is the distribution used to study the fluid-dynamic problem, while g is
adopted to study the thermo-dynamic problem. The discrete evolution equations governing a
thermo-fluid dynamic problem are:

fi(x+ ei∆t, t+ ∆t) = fi(x, t)−
1

τ

[
fi(x, t)− feqi (x, t)

]
with i = 1, . . . , n

gi(x+ ei∆t, t+ ∆t) = gi(x, t)−
1

τF

[
gi(x, t)− geqi (x, t)

]
with i = 1, . . . , n

(4.9)

where τ and τF are the relaxation times for the fluid and the thermal problem respectively.
An effective numerical solution of Eq. 4.9 can be provided splitting the solution process into
a streaming and a collision step.

The streaming step is defined as follows:

gsi (x+ ei∆t, t+ ∆t) = gi(x, t)

f si (x+ ei∆t, t+ ∆t) = fi(x, t)
(4.10)

where the particle distributions in position x at time t are streamed to position (x + ei∆t)

after a time step ∆t. At the end of the streaming, the macroscopic quantities are obtained as
follows:

ρ = ρ(x, t) =

n∑
i=1

fsi , v = v(x, t) =
1

ρ

n∑
i=1

eif
s
i , T = T (x, t) =

n∑
i=1

gsi (x, t) (4.11)

Henceforth the equilibrium distributions are evaluated as follows [Guo et al., 2002b]:

feqi = wiρ

[
1 +

ei ·v
cs2

− v2

2cs2
+

(ei ·v)2

2cs4

]

geqi = wiT

[
1 +

ei ·v
cs2

] (4.12)
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Finally, the post collision distribution functions are given by:

fi(x+ ei∆t, t+ ∆t) = fsi (x+ ei∆t, t+ ∆t)− 1

τ

[
fsi (x+ ei∆t, t+ ∆t)− feqi (x+ ei∆t, t+ ∆t)

]
gi(x+ ei∆t, t+ ∆t) = gsi (x+ ei∆t, t+ ∆t)− 1

τF

[
gsi (x+ ei∆t, t+ ∆t− geqi (x+ ei∆t, t+ ∆t)

]
(4.13)

The coupling between mass-momentum conservation and advection-diffusion, when consid-
ering buoyancy driven flows, can be performed by introducing the so-called Boussinesq ap-
proximation [Boussinesq, 1903]. This approximation states that density variations, caused by
temperature gradients, are taken into account only when they are multiplied by the gravity.
Considering Eq. 3.103, we can expand the body force term F as:

F = ρg (4.14)

where g denotes the gravity acceleration. Applying the Boussinesq approximation, we can
rewrite Eq. 4.14 as follows:

F = ρg − ραg(T − T0) (4.15)

where α is the coefficient of thermal expansion and T0 is the average fluid temperature. The
first constant term of Eq. 4.15 can be condensed into the pressure term of Eq. 3.103, so we
can rewrite the NS equations as follows:

∇ ·v = 0

∂v

∂t
+ (v ·∇)v − ν∇2v = −1

ρ
∇p− αg(T − T0)

(4.16)

The buoyancy force (Eq. 4.15) can be included in the TLB method by adding a forcing term
F to Eq. 3.156:

f(x+ ξ∆t, ξ, t+ ∆t) = f(x, ξ, t)− 1

τ

[
f(x, ξ, t)− feq(x, ξ, t)

]
+ F (4.17)

Henceforth, following an analogue procedure to the one proposed by He et al. [1998], we can
write the discrete forcing term as follows:

Fi = ραωi

[eig
c2s

]
(T − T0) (4.18)

which is included in the algorithm as an addend of the right hand side of the collision process
among fi particle distributions:

fi(x+ ei∆t, t+ ∆t) = fsi (x+ ei∆t, t+ ∆t)− 1

τ

[
fsi (x+ ei∆t, t+ ∆t)− feqi (x+ ei∆t, t+ ∆t)

]
+ Fi

gi(x+ ei∆t, t+ ∆t) = gsi (x+ ei∆t, t+ ∆t)− 1

τF

[
gsi (x+ ei∆t, t+ ∆t− geqi (x+ ei∆t, t+ ∆t)

]
(4.19)

The adopted TLB algorithm is proposed in Figure 4.3. The conversion procedure between
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real quantities and lattice quantities is similar to the one presented in Section 4.1 and it is
based on two non dimensional numbers describing a convective flow: the Prandtl (Pr) number
and the Rayleigh (Ra) number. Pr number describes the ratio between kinematic viscosity
and thermal diffusivity:

Pr =
ν ′

k′
(4.20)

while Ra number states if the heat is primarily transferred by conduction or convection:

Ra =
g′α∆T ′L′3

ν ′k′
(4.21)

where apex ′ indicates the physical quantities. Combining in different manners Eq. 4.20 with
Eq. 4.21 we obtain:

PrRa =
α′∆T ′g′L′3

k′2
and

Ra

Pr
=
α′∆T ′g′L′3

ν ′2
(4.22)

Considering that the non dimensional groups PrRa and Ra/Pr have to remain unchanged
during the conversion between physical and lattice quantities, we can write the following
relations:

PrRa =
α′∆T ′g′L′3

k′2
=
α∆TgL3

k2

Ra

Pr
=
α′∆T ′g′L′3

ν ′2
=
α∆TgL3

ν2

(4.23)

The conversion factor for length is defined as proposed in Section. 4.1, then following the
procedure proposed by Latt [2008] we can evaluate ν and k as follows:

ν =

√
Pr

Ra

Ct

Cx
2 and ν =

√
1

PrRa

Ct

Cx
2 (4.24)

we notice that the conversion factor for temperature does not appear in Eq. 4.24, this is
justified by the adimensional nature of the coefficient α∆t. In general the choice of conversion
factor for the temperature does not affect the solution since the advection-diffusion equation
is linearly dependent from the temperature [Latt, 2008].

Finally, the relaxation times can be derived as follows:

τ =
ν

cs2
+

1

2

τF =
k

cs2
+

1

2

(4.25)

If the relaxation times are close to 0.5, as stressed in Section 4.1, the algorithm becomes
unstable; in this case we need to modify Ct, changing the physical time step, or in second
choice we can change the lattice scheme resolution.

The core of the algorithm is basically the LBGK method which is performed on fi and
gi distributions. At the beginning of the simulation fi and gi distributions are initialized at
the equilibrium state trough (Eq. 4.12), then at each time step a loop over all the cells is
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performed.
During the streaming step we impose the boundary conditions. For the fluid-dynamic

problem we adopt no-slip boundaries on the upper and the bottom sides, while periodic
boundaries are adopted for left and right sides:

fsi (x+ S, t+ ∆t) = fi(x, t) (4.26)

where S is the distance between the periodic boundaries of the domain. For the thermo-
dynamic problem, we adopt periodic boundaries for left and right sides, while a fixed temper-
ature is imposed on upper and bottom sides of the domain. The fixed temperature can be
easily imposed with Dirichlet boundaries as shown in [Liu et al., 2010].
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Figure 4.3: TLB algorithm, based on the multi-distribution approach. DFs repre-
sents the distributions of the fluid-dynamic problem; GFs represents the distribu-
tions for the thermo-dynamic problem. The bounce back rule is adopted to impose
no-slip boundary conditions. Dirichlet boundary [Liu et al., 2010] conditions have
been implemented to impose fixed temperature on the upper and the bottom sides
of the domain.

Figure 4.4 shows the steady state solution of the Rayleigh-Benard convection in a 2:1
rectangular cavity. We adopt Pr = 1, which is a typical value for air or gases in general,
and we study the effects of Ra numbers variation on simulation results. We consider three
Ra numbers: Ra = 104, Ra = 5 · 104 and Ra = 105. The temperature results are normalized
with the formula (T −Tl)/∆T proposed by He et al. [1998]; the velocity results are normalized
on the maximum velocity.

Temperature distribution in the cavity
Ra = 10,000 Ra = 50,000 Ra = 100,000

Ra = 10,000 Ra = 50,000 Ra = 100,000

Ra = 50,000 Ra = 100,000

Temperature isolines

Velocity isolines

Ra = 10,000

Figure 4.4: Steady state solution of the Rayleigh-Benard convection obtained with
Pr = 1 and varying Ra numbers.
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Figure 4.5: Variation of the Nu number in fuction of the Ra number. The results
are compared with the solution proposed by Clever and Busse [1974].

We validate the results of the Rayleigh-Benard convection through a comparison with the
solution proposed by Clever and Busse [1974] which is considered a reference solution for
this problem. The results are expressed in terms of the Nusselt Nu number, which describes
the ratio between the convective heat transfer and the conductive heat transfer. In lattice
quantities Nu can be expressed as follows [Kao and Yang, 2007]:

Nu = 1 +
〈vy ·T 〉H
k · ∆T

(4.27)

where 〈〉 are the Macaulay brackets and H is the height of cavity.

4.3 Multiphase flows

Multiphase fluids or mixture of immiscible fluids are very interesting problems for mechanical
applications, including the PBF process. In this section we present the Shan and Chen [1993]
method for single component multi-phase flows. In this method a so called pseudopotential
function ψ(x, t) is introduced to simulate the interaction among neighboring particle distri-
butions. The great innovation of Shan and Chen [1994] method consists in the possibility to
simulate phase segregation without the necessity of any method to track the surface between
different phases [Fyta et al., 2006].

Shan and Chen [1993] method is used to face the classical problem of a droplet wetting
on a smooth surface: this problem is very interesting for several applications and it has been
successfully studied by many authors; for example [Raiskinmäki et al., 2000] adopted the Shan
and Chen [1993] method to simulate droplets spreading on smooth and rough surfaces.

The original Shan and Chen [1993] method is based on the LBGK method presented,
except for the definition of the macroscopic velocity which is given by:

vsh = v +
F

2ρ
(4.28)

where the velocity v is obtained with Eq. 3.185 and F = F (x, t) is a force acting on the fluid
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which is obtained from the contribution of three type of forces [Huang et al., 2009]:

F (x, t) = F int(x, t) + F ads(x, t) + F est(x, t) (4.29)

where F int(x, t) is the particle to particle interaction force defined as [Shan and Chen, 1994]:

F int(x, t) = −Gψ(x)
∑
i

wiψ(x+ ei∆t, t)ei (4.30)

F ads(x, t) is the adhesion force between gas or liquid phase and the solid walls, defined as
follows [Benzi et al., 2006]:

F ads(x, t) = −Gψ(x)
∑
i

wiψ(ρw)s(x+ ei∆t, t)ei (4.31)

and F est(x, t) is a generic forcing term. In Eqs. 4.30 and 4.31, G is a parameter that controls
the strength of interaction and adhesion force, ψ is the pseudopotential function and ρw is
a fictitious density assigned to the solid interfaces [Benzi et al., 2006]; finally, s is a boolean
function which is equal to one if the position x+ ei∆t is employed by a solid particle, while
it is equal to zero if it is employed by a fluid particle.

The definition of the pseudopotential function is a crucial point in the method setup; in
this work we adopt the following formulation [He and Doolen, 2002]:

ψ(x, t) =

√
2(p− ρcs2)

Gc2s
(4.32)

where p is the pressure evaluated with the introduction of an Equation of State (EOS). The
most common EOS are [Yuan and Schaefer, 2006]:

• the Van der Walls (VdW) [der Waals, 1873] EOS, defined as follows:

p =
ρRT

1− bρ
− aρ2 (4.33)

• the Redlich-Kwong (R-K) [Redlich and Kwong, 1949] EOS, defined as follows

p =
ρRT

1− bρ
− aρ2√

T (1 + bρ)
(4.34)

• the Carnahan-Starling (C-S) [Carnahan and Starling, 1969] EOS, defined as follows:

p = ρRT
1 + c+ c2 − c3

(1− c)3
− aρ2 with c =

bρ

4
(4.35)

where a and b are the constants of the model. In Eqs. 4.33, 4.34, 4.35 the first addend of the
right hand side represents the repulsive term between phases, while the second addend is the
attractive term.

The algorithm adopted to face the droplet wetting problem is presented in Fig. 4.6. The
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first step of our algorithm consists in the initialization of the density distribution in the domain.
During the streaming step, as usual, we impose the boundary conditions. The bounce back
rule is adopted to simulate non-slip boundaries on top and bottom sides of the domain, while
periodic boundaries are imposed on the vertical walls.

The proposed algorithm is used to study the wetting of droplets on a smooth surface.
When fluid and vapor phases come in contact with a solid wall the capillary forces leads to
the thermo-dynamic equilibrium between phases. At the state of the equilibrium a typical
angle between fluid phases and the solid wall is observed. This angle is usually known as
contact angle and it is described by the Young’s equation:

cos(θeq) =
σSG − σSL

σLG
(4.36)

where σ is the surface tension between solid (S), liquid (L) and gas (G) phase. Benzi et al.
[2006] showed that in Shan and Chen [1993] method the contact angle can be adjusted by
changing the density of the solid wall ρw in Eq. 4.31.
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Figure 4.6: Pseudopotential LB algorithm, based on Shan and Chen [1993] model.
The bounce back rule is used for no-slip boundaries. The Redlich-Kwong EOS is
adopted to describe the state of matter and He and Doolen [2002] formulation is
used to describe the pseudopotential function.

In Figure 4.7 an example of droplet wetting is presented. This case study has been carried
out adopting the R-K EOS, with the parameters proposed by Huang et al. [2009]. Analogous
parameters for the VdW and the C-S EOS have been proposed by Yuan and Schaefer [2006].
As detailed in Benzi et al. [2006], the parameter ρw in Eq. 4.31 can be used to vary manage
the contact angle. In particular in R-K EOS when ρw varies between the vapor and the liquid
density, the contact angle varies from 180° to 0°.

Droplet wetting on a smooth surface

LXLY

LZ

LXLY

LZ

LXLY

LZ

LXLY

LZ

LXLY

LZ

LXLY

LZ
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t = 0 s t = teq/2 t = teq
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𝜌𝑤 = 3.0

𝜌𝑤 = 5.0

Figure 4.7: Droplet wetting on a smooth surface performed using the multiphase
Shan and Chen [1993] LB scheme, using the R-K EOS. Different contact angles
obtained by varying the solid wall density ρw.

We evaluate the equilibrium contact angle θeq on the XZ plane; we underline that this
choice does not influence anyway the results since the problem is radial symmetric. The
obtained equilibrium contact angles are summarized in Table 4.1.
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ρw θeq

2 153.3°
3 77.2°
5 14.6°

Table 4.1: Contact angle between the droplet and the bottom wall.

The results are very similar to the ones obtained by Huang et al. [2009] in the bi-
dimensional case.

In Figure 4.8 we show an example of two droplets wetting on a smooth surface. This
example has been carried out adopting the parameters proposed by Huang et al. [2009]. We
can appreciate how, during the wetting process, cohesion force develops between the two
droplets as well as the adhesion force of the droplets with the bottom wall.

Figure 4.8: Droplet wetting on a smooth surface performed using the multiphase
Shan and Chen [1993] LB scheme, using the R-K EOS.

4.3.1 Thermal multiphase flows

In this section we propose an example of thermal multiphase fluid flow. The algorithm is
based on the Shan and Chen [1993] pseudopotential lattice Boltzmann method (see Figure 4.6),
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while the thermal problem has been included using the multi-distribution lattice Boltzmann
approach proposed by Guo et al. [2002b] (see Figure 4.3).

In Figure we show an example of droplet wetting on a smooth surface. In this example
we adopt the R-K EOS and the density of the bottom wall has been kept equal to 5.0.
Periodic boundaries has been imposed on the vertical walls, while no-slip boundaries have
been adopted on bottom and top walls. Higher temperature is imposed and maintained
constant on the bottom wall. Lower temperature is imposed and maintained constant on the
top wall. Periodic thermal boundaries are adopted on the vertical walls. Colored isolines
represent the temperature which is normalized with the formula (T − Tl)/∆T proposed by
He et al. [1998]. Higher temperature is equal to 100°C; lower temperature is equal to 25°C.
During the wetting process we observe that higher temperature is found in correspondence of
the zones of the domain with higher temperature and thermal conductivity. Furthermore we
notice that the contact angle is smaller than in the case of a non-thermal flow. This result is
in accordance with the experimental results shown by Ruijter et al. [1998].

Figure 4.9: Droplet wetting on a smooth surface performed using the multiphase
Shan and Chen [1993] LB scheme, using the R-K EOS. Temperature difference is
imposed between bottom and top wall.

4.4 Free surface flows

In this section we present the LB free surface model proposed by Thürey et al. [2005]. The
classical multiphase multicomponent LB methods query the computation of liquid and gas
phase; in free surface LB schemes, instead, the gas phase is neglected and only the liquid
phase evolution is calculated, reducing the computational costs. To simulate free surface
flows, the lattice domain is divided among three parts: liquid cells, interface cells and gas
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cells. Interface cells form a closed boundary around the liquid cells, so that no liquid cell is
directly in contact with a gas cell. Initial density and mass are assigned to liquid and interface
cells while gas cells have no mass and no density. In consequence, gas cells have no distribution
functions and they are not considered during calculations. In liquid cells the mass is equal
to the density, while in interface cells the mass is lower than the density. To discern liquid,
interface and gas cells it is convenient to introduce a new variable called liquid fraction given
by:

ε(x, t) =
m(x, t)

ρ(x, t)
→


ε = 1 → Liquid cell
0 < ε < 1 → Interface cell
ε = 0 → Gas cell

(4.37)

where m(x, t) is the mass contained in the cell at position x at time t and ε is the liquid
fraction. Figure 4.10 shows an example of cells initialization. Both liquid and interface cells
have the same density. The liquid fraction is equal to the fraction of cell filled by the liquid
and it can be easily estimated by approximating the real boundary with straight adjacent
lines. The precision of this procedure is dependent from the lattice mesh resolution.

Liquid cell

Interface cell

Gas cell

Real droplet 

boundary

Intersection 

point

Approximated 

boundary

Filled part of 

the cell

Figure 4.10: Example of cell initialization and procedure to calculate the liquid
fraction on the interface cells.

The interface movement is tracked by the calculation of the mass exchange between ad-
jacent cells, similarly to VOF (volume of fluid) method. The probability density functions
correspond to a certain number of particles allocated at each cell, so the mass exchange can
be performed directly at the streaming step. Only liquid and interface cells can exchange mass
one to each other, no mass exchange between interface and gas cells is allowed. The mass ex-
change between liquid cells or between an interface and a liquid cell is basically described by
the difference between in-coming and out-coming distribution functions:

∆ms
i (x, t) = fir(x− ei∆t, t−∆t)− fi(x, t−∆t) (4.38)

where apex s has been used to stress the fact that mass exchange is computed while streaming
step takes place. The mass exchange among two interface cells has to take into account the
average fluid fraction which represents the area of fluid interface between two cells:

∆ms
i (x, t) = fir(x− ei∆t, t−∆t)− fi(x, t−∆t)

[
ε(x− ei∆t, t−∆t) + ε(x, t−∆t)

]
2

(4.39)
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In Figure 4.11 the mass exchange process among adiacent cells is presented in a D2Q9 lattice
scheme. It is important to underline that Eqs. 4.38 and 4.40 are completely symmetric and

cc
Considered cell

Neighboring cells

Mass exchange 

LIQUID-INTERFACE

Mass exchange 

INTERFACE-INTERFACE

Real interface

Figure 4.11: Mass exchange process among an interface cell and the neighboring
liquid and interface cells.

therefore mass is automatically conserved in the whole domain:

ms(x, t) = m(x, t−∆t) +
∑
i

∆ms
i (x, t) (4.40)

As above mentioned, Eq. 4.38 is valid for liquid/interface and liquid/liquid mass exchange,
although, it is possible to simplify calculations considering that in liquid cells the mass is equal
to the density and so the streaming of particle distributions among liquid cells represents the
mass exchange. With this considerations it is possible to calculate only the mass exchange
between liquid/interface and interface/interface cells; however it is necessary to identify the
next-to-interface liquid cells.

An important relevant point in free surface flows, is how to impose boundary conditions
on the interface. The streaming process between an interface and an empty cell, in fact,
cannot be directly computed because in empty cells the particle distributions are not defined
and they need to be reconstructed. Following the approach proposed by Körner [2008], the
reconstructed distribution functions are given by:

fsi (x, t) = feqir (pE ,v) + feqi (pE ,v)− fi(x, t−∆t) (4.41)

where the equilibrium distributions are calculated with Eq. 4.12 and pE is the external pressure
surrounding the interface layer. The external pressure is defined as follows:

pE =
1

3
ρE − kσ (4.42)

where k is the curvature of the interface and σ is surface energy. Eq. 4.41 is used not only
to reconstruct the distribution functions coming from the empty cells, but also to reconstruct
the distribution functions coming from the directions defined by:

n · eir > 0 (4.43)

where n is the normal at the interface in the considered cell. This correction is adopted
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to prevent the asymmetry rising on the interface because of the number of the unknown
incoming distributions is, generally smaller than the known ones [Körner et al., 2005]. Figure
4.12 shows the streaming process on an interface cell. To state which distribution functions

BEFORE STREAMING

cc

Considered cell

Neighboring cells

Real interface

Normal to interface

Incoming DFs

Reconstructed DFs

AFTER STREAMING

Not considered DFs

cc

Figure 4.12: Example streaming process on an interface cell. Black arrows rep-
resent the known distribution functions incoming from liquid cells. Red arrows
represent the reconstructed distribution functions coming from neighboring inter-
face and empty cells.

need to be reconstructed it is necessary to calculate the normal in the considered interface
cell. In literature there are several methods to perform the normal calculation; the simplest
one is to define n as a kind of average of the liquid fraction of the neighboring cells [Thürey
et al., 2005]:

n(xk,l) =
1

2

[
ε(xk+1,l)− ε(xk−1,l)
ε(xk,l+1)− ε(xk,l−1)

]
(4.44)

where (k, l) are the coordinates of the considered cell. A more accurate scheme has been
proposed by Thies [2005]. In this scheme, the template sphere method is adopted to evaluate
both the normal at the interface and the curvature. The normal at the interface is calculated
taking into account the first two layers of neighboring cells (25 cells) and can be evaluated
through the following formula:

ñ(xk,l) =

2∑
s=−2

2∑
r=−2

(1− ε(xk+s,l+r))
xk+s,l+r
|xk+s,l+r|

n(xk,l) =
ñ(xk,l)

|ñ(xk,l)|

(4.45)

After streaming, the collision can take place for both interface and liquid cells. The inclusion
of volume forces (e.g. gravity) is performed like in VOF, weighting the force with the liquid
fraction:

fi(x, t) = fsi (x, t)− 1

τ

[
fsi (x, t)− feqi (x, t)

]
+ ε(x)wiρ(x, t)ei · g (4.46)

At the end of the loop over all cells, it is necessary to check if the liquid fraction of the interface
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cells is still between 0 and 1; otherwise cell conversion is performed as follows:

ε(x, t) =
ms(x, t)

ρ(x, t)
> 1 → cell filled

ε(x, t) =
ms(x, t)

ρ(x, t)
< 1 → cell emptied

(4.47)

The conversion of the cells is a very delicate step of the algorithm because it allows the
interface movement and because during cells conversion the mass must be conserved and no
liquid cell has to be in contact with gas cell (i.e. the interface has to be closed around the
liquid cells). For definition, in liquid cells the mass must be equal to the density, while in
empty cells the mass has to be equal to zero, however, normally, a mass excess rise during
the conversion process. The part of mass exceeding the density in filled cells and the negative
mass in emptied ones must be distributed among the surrounding interface and liquid cells.
The simplest way to reallocate exceeding and negative mass is to divide it equally among the
cells, but this approach can be source of instability. A more accurate solution [Thürey et al.,
2005] is to redistribute the mass among surrounding cells, according to the normal direction:

m(x+ ei) = m(x+ ei) +mex ϕi
ϕtotal

(4.48)

where ϕi is given by:

ϕi =

{
n · ei if n · ei > 0

0 if n · ei ≤ 0
for filled cells

ϕi =

{
−n · ei if n · ei < 0

0 if n · ei ≥ 0
for emptied cells

(4.49)

and ϕtotal is the sum of ϕi. During cells conversion, many problems may rise. More details
about those topics are provided by Thürey et al. [2005] and Körner et al. [2005]. In Figure
4.15 the adopted free surface LB algorithm is presented.

With the proposed algorithm we simulate the dynamic wetting of a droplet on a smooth
surface. In case of dynamic wetting, Young’s equation can be rewritten as follows:

Fx = σSG − σSL − σLG cos(θdyn) (4.50)

Figure 4.13: Contact angle in dynamic conditions.
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Inserting Eq. 4.50 in Eq. 4.36, we obtain:

Fx = σLG cos(θdyn)− σLG cos(θeq) (4.51)

meaning that force Fx vanishes when θdyn = θeq. In order to describe a dynamic wetting
condition we need to take into account the wetting force Fx. In this work we follow the
procedure proposed by Attar and Körner [2009].
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Figure 4.14: Free surface LB algorithm, based on [Thürey et al., 2005] model. Mass
exchange is calculated only for interface and fluid neighboring cells. Classic bounce
back scheme is adopted to simulate no slip boundaries.

In Figure we show the results of a dynamic droplet wetting on smooth surface. In this sim-
ulation gravity is considered and it is equal to 0.00005 lu/tu2 (where dimensions are expressed
in lattice units); surface tension is kept equal to 0.002 mu/tu2.
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Figure 4.15: Dynamic wetting of a droplet on a smooth surface.

We can observe that the dynamic nature of the contact angle is evident during the droplet
spreading on the smooth surface.

4.5 Phase change

A crucial point in the simulation of the PBF process is the phase change treatment. There are
basically two approaches to simulate the solid-liquid phase-change: the phase-field method and
the enthalpy-based method. Miller and Succi [2002] proposed a phase-field based LB method
to simulate the crystal growth from the melt pool. This method uses a chemical variable to
define melting and solidification of the particles. In enthalpy-based method, instead, the solid-
liquid interface is traced by using the total entropy variation. Chakraborty and Chatterjee
[2007] proposed an enthalpy-based LB method for solid-liquid phase change in convective flows.
Because of the non linear behavior of the latent heat, the enthalpy-based LB methods need,
generally, an iteration step to solve the AD equation. In this work we adopt the enthalpy-
based LB model proposed by Huang et al. [2013]. This approach allows to avoid iteration
steps [Chatterjee, 2009] or to solve a system of equations at each lattice cell [Eshraghi and
Felicelli, 2012], to track the solid-liquid interface.

In phase change problems a heat source causes the melting of the material. The heat
source can be described as follows:

Φ = −∂(ρLslψ)

∂t
(4.52)

where Lsl is the latent heat of solid-liquid phase change and ψ is the liquid fraction. Advection
diffusion equation can be rewritten as follows:

∂(ρH)

∂t
+∇ · (ρcpTv) = ∇ · (k∇T ) (4.53)

where H is the total enthalpy defined as:

H = cpT + ψLsl (4.54)

The phase-change LB method is a natural extension of the TLB model presented in Section
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4.2; however, it is convenient to use the enthalpy in place of the temperature because the
temperature is not continuously differentiable in time [Alexiades, 1992]. The change of variable
is stressed by the usage of hi in place of gi and Eq. 4.9 is rewritten as follows:

hi(x+ ei∆t, t+ ∆t) = hi(x, t)−
1

τF

[
hi(x, t)− heqi (x, t)

]
+ Φi i = 1, . . . , n (4.55)

The macroscopic enthalpy of each cell is given by:

H =
n∑
i

hi (4.56)

and the equilibrium distributions are written as follows:h
eq
i = H − cpT + wicpT

(
1− v2

2c2s

)
i = a0

heqi = wiρ
[
1 + ei ·v

cs2
− v2

2cs2
+ (ei ·v)2

2cs4

]
i 6= a0

(4.57)

where a0 is the i-th direction associated to the zero velocity. The temperature is derived from
the enthalpy as follows:

T =


H/cp T < Ts

Ts + H−Hs
Hl−Hs (Tl − Ts) Ts ≤ T ≤ Tl

Tl + (H −Hl)/cp T > Tl

(4.58)

where Ts is the solidus temperature, Tl is the liquidus temperature, Hs andHl are the enthalpy
values related to the solid and the liquidus temperature respectively. The limit Ts ≤ T ≤
Tl physically means that the phase-change happens at a constant temperature Tm which is
called melting temperature. With the above described procedure, the phase change can be
obtained without performing any iteration step. The last obstacle to face is the description
of the moving boundary. We adopt the immersed moving boundary scheme proposed by
Noble and Torczynski [1998] which was verified by Strack and Cook [2007] to be accurate and
computationally efficient. The solid-liquid interface is tracked with the liquid fraction. The
liquid fraction varies from 0 (solid) to 1 (liquid). The lattice cells in which 0 < ψ < 1 represent
the moving boundary. To track the boundary movement, the collision term of fluid-dynamic
distributions is modified to take into account the liquid fraction:

fi(x, t) = f si (x, t)− 1−B
τ

[
f si (x, t)− feqi (x, t)

]
+ Fi +BΩi (4.59)

where Fi is the forcing term and B is defined as follows:

B =
(1− ψ)(τF − 0.5)

ψ + τF − 0.5
(4.60)

The additive collision term Ωi is given by:

Ωi = fsir(x, t)− f
s
i (x, t) + feqi (ρ,vs)− feqir (ρ,v) (4.61)
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where vs is the velocity of the solid part. A typical problem to test the phase-change problem
is the melting by convection in a cavity under a constant heat flux. The algorithm adopted
to solve the problem is presented in Figure 4.17 . To ensure the stability of the method, for
fluid and thermal boundary conditions, we adopt the non-equilibrium extrapolation scheme
proposed by Zhao-Li et al. [2002]: the no-slip boundaries are decomposed into an equilibrium
term and a non equilibrium term:

fsi (x, t) = feqi (x, t) + fneqi (x, t)

hsi (x, t) = heqi (x, t) + hneqi (x, t)
(4.62)

where feqi and heqi distributions are derived trough Eq. 4.57, while fneqi and hneqi are obtained
via extrapolation from the neighboring cells [Huang et al., 2013]. In figure 4.17 the solid-liquid
phase change LB algorithm is presented. The proposed algorithm is used to investigate the
melting process in a square cavity. The boundary conditions of the problem are presented in
Figure 4.16. A high temperature (Thigh) is imposed on the right side of the domain, while
a low temperature (Tlow) is maintained on the left side of the domain. Upper and bottom
sides are assumed to be adiabatic [Tang et al., 2005]. In solid-liquid phase change three non
dimensional parameters are considered: Pr, Ra and the Stefan (Ste) number which is defined
as follows:

Ste =
cp(Thigh − Tm)

Lsl
(4.63)

where Tm is the melting temperature of the considered material. In our simulation we have
adopted Ra = 1.0E4, Pr = 0.01 and Ste = 0.01. This simulation has been performed on a
150 x 150 lu grid. The temperature has been normalized with the following formula:

T ∗ =
T − Tm

Thigh − Tm
(4.64)

where Thigh is the imposed temperature on the left wall of the domain. In analogous
manner the time can be normalized with the Fourier (Fo) number which is defined as follows:

Fo =
k · t
Ly

(4.65)
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Figure 4.16: Solid-Liquid phase-change
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Figure 4.16 refers to the melting process at Fo = 30.
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Figure 4.17: Solid-Liquid phase-change LB algorithm, based on Shan and Chen
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4.6 Conclusion and perspectives

In this section we have adopted the lattice Boltzmann method to solve some interesting
thermo-fluid dynamic problems. First we have solved two classic problems, i.e., the lid driven
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cavity and the Rayleigh-Benard convection, then we moved to more complicated problems
such as multiphase and free-surface flows. Finally we studied the melting problem of a single
component fluid. The treated problems are very interesting from AM point of view because
both wetting, temperature evolution, and phase change occur during powder melting. The
next step of our research will be to include the phase change algorithm within the multiphase
and the free surface algorithm so to be able to simulate the thermo-fluid dynamic evolution
of droplet melting in PBF process.



Chapter 5

Finite Element Simulation of Powder
Bed Fusion

The lattice Boltzmann simulations of PBF are a very powerful instrument to investigate the
melt pool evolution and the effects of the printing parameters on the stability of the melt pool
and on the microscopic properties of the material. Although, as discussed in Section 2.4.2,
they are not a reasonable choice in order to simulate an entire component, because they would
require huge computational efforts.

To overcome this obstacle, many authors adopted the finite element method (FEM) to
simulate the PBF process at different scale of analysis. Nevertheless FEM approach has the
strong simplification to assume the powder bed as a continuum domain and to neglect the melt
pool dynamics, it is a very good solution to simulate entire structural components; moreover,
FE analysis can be adopted also to investigate the local interactions between the heat source
and the powder bed.

5.1 Simulation approach

In this Section, using Abaqus, we develop a FE framework to simulate the PBF process at the
powder and at the component scale level. As briefly mentioned in Section 2.4.4, since 2016
Abaqus started to develop a tool for SLM process simulation. This tool is in a very embryonic
state, without documentation and without a graphic interface. The simulation of SLM process
can be performed trough an uncoupled approach: first a thermal analysis is carried out to
evaluate the time evolution of the temperature field, then the results are used as input for a
mechanical analysis to evaluate stress distribution and deformations. In order to respect the
physical process, two basic ingredients are needed:

• Simulation of the powder bed deposition trough sequential element activation;

• Simulation of the heat source movement on activated elements to reproduce the laser
scan path.

In our simulation approach, we divide the input data into three input groups:

• Event Series. In SLM we define two event series: powder deposition and laser scan
simulation;

121
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• Parameter Table. Here we define the needed input parameters associated to each
event series;

• Table Collection. Here we assign the values to each previously defined parameter.

In Figure 5.1 we show the Abaqus code used to define the necessary input data.

* EVENT SERIES TYPE, Fields=1,  NAME=Roller_On_And_Off, "On and off",    Unitless

* EVENT SERIES TYPE, Fields=1,  NAME=Power_Magnitude,   "Power", ML2T03

*EVENT SERIES, Name=Roller_Motion,  Type=Roller_On_And_Off,  Time=Total,    input=Roller.inp 

*EVENT SERIES, Name=Laser_Path, Type=Power_Magnitude, Time=Total,    input=Power.inp

EVENT SERIES

Number of fields contained in this Event Series Type of information and measure unit

* PARAMETER TABLE TYPE,  NAME=Roller_Specs, PARAMETERS = 2

STRING, "Roller Event Series"

FLOAT,  "Roller Heigth"

* PARAMETER TABLE TYPE,  NAME=Laser_Specs, PARAMETERS = 6

STRING, "Laser Event Series"

FLOAT, "Laser Spot radius"

FLOAT, "Penetration Depth"

STRING, "Intensity Distr" 

STRING, "Depth Decay"

FLOAT, "Ellipse Factor"

PARAMETER TABLES

Input files associated to 

each Even Series

“Type” must recall the name of the Event Series type, 

to read correctly the data of the input files

Number of variables 

contained in this table

Type of variable Quantity associated to the variable

TABLES COLLECTION

* TABLE COLLECTION, NAME=Material_Input   

* PARAMETER TABLE,  TYPE=Roller_Specs

Roller_Motion, 

0.05

* TABLE COLLECTION, NAME=Energy_Input

* PARAMETER TABLE,  TYPE=Laser_Specs

Laser_Path,

0.06,

0.10,

Goldak3Param or Gaussian_Distribution,

Exponential_Decay, 

1.0

“Type” must recall the name of the Parameter Table type, 

to read correctly the data of the input variables

The string recalls the Event Series associated file 

Value associated to the corresponding variable defined in the associated parameter table

Figure 5.1: Example of the Abaqus code necessary to define the input data for the
SLM simulation.

The Event Series reproduce the physical events during the printing process. In case of
SLM, we need two event series: Roller_Motion in which we define the roller movements on the
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building plate and we sequentially activate the elements to reproduce the powder deposition;
and the Laser_Path in which we define the laser path of the layer of elements representing
the powder layer.

The Parameter Tables collect all the necessary parameters to perform both the sequential
element activation and the heat source interaction with the elements. We define two differ-
ent tables: the former contains the variables necessary to perform the Roller_Motion; the
latter contains all the variables needed to model the laser heat source and to simulate the
Laser_Path.

The Table Collection is used to assign, to each variable contained in the parameter table,
the corresponding value. The input argument can be a floating number or a string; in this
last case, the string can be the name of the associated event series or a particular string to
activate predefined plugin functions.

In the next sections we analyze in detail each event series following the real printing pro-
cess.

5.1.1 Roller_Motion event series and sequential element activation

The sequential element activation reproduces the powder deposition on the building plate. Its
definition must be in accordance with the physical printing process. As shown in Figure 2.1,
usually the powder is deposited on the building plate by a roller which moves along X or Y
direction. In our simulation approach the roller replaced by a marching rectangle which moves
following a predefined path. When the center of an element falls within the ideal volume
covered by the marching rectangle, then the element is activated.

In order to simulate a real printing process, the typical element height must be equal (or
a sub-multiple) to the powder layer height: in this case we refer to this meshing strategy as
fine. Although, this kind of meshing strategy is not so far eligible to simulate an entire SLmed
part, in fact, as discussed in Section 2.4.2, the computational costs strongly increase. In oder
to simulate an entire SLMed functional component, it is usual to assume the typical element
height as a multiple (10 to 50 times) of the powder layer height: in this case we refer to this
meshing strategy as coarse. The element activation process remains basically the same in both
cases, but the heat source modeling is significantly different, as discussed in Section 5.1.2.

To make easier the comprehension of the element activation process, we consider a very
simple benchmark of a cube with size 10 mm centered on a square building plate of size 100
mm, we aim to simulate with a coarse meshing strategy (Figure 5.2)
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Figure 5.2: Example of a simple cubic component used to explain the sequential
activation procedure.

We consider the roller moving on Y direction, moreover we assume the base of the of the
marching rectangle to be infinite, while the rectangle height (roller height) is equal to the
typical element height (0.5 mm). Accordingly, the Roller.inp file, containing the instructions
to perform the sequential element activation is arranged as in Table 5.1.

T X Y Z Roller ON/OFF
[s] [mm] [mm] [mm] —

0.000 0 -50 0.5 1
10.000 0 +50 0.5 0

16.394 0 -50 1.0 1
26.394 0 +50 1.0 0
. . . . . . . . . . . . . . .

Table 5.1: Scheme of the input file for the sequential element activation. Roller
ON/OFF is a bit function which states if the marching rectangle starts to move (1)
or it is stopped (0).

The sequential element activation is shown in Figure 5.3.
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t = 4.5 s t = 4.75 s(a) (b) t = 5.00 s (c)

t = 5.25 s (d) t = 5.50 s (d) t = 328 s (e)

Marching 
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Figure 5.3: Example of sequential element activation on a simple geometry.

We observe that there is a gap between the final time instant of the first powder deposition
and the beginning of the second powder deposition. During this period the laser selectively
melts the powder. The laser scan simulation is performed trough another event series.

5.1.2 Laser_path event series and laser scan strategy

The thermal force strategy must follow exactly the real laser path. On the market there are
basically two types of lasers used in for the SLM printing process: (i) pulsed lasers and (ii)

continuum lasers. The former melts the powder trough a series of high frequency impulses,
the latter melts the powder trough a continuum laser track. In our simulation, the laser path
is taken into account trough the input file Laser.inp. This file contains the coordinates of
the laser heat source and the heat source power at each time step. A common sequence of
instructions to manage the heat source movement is presented in Table 5.2.

T X Y Z Laser Power
[s] [mm] [mm] [mm] [W]

10.001 5 5 0.25 400
10.003 4.95 5 0.25 0
10.009 4.95 4.95 0.25 400
10.014 4.90 4.95 0.25 0
. . . . . . . . . . . . . . .

Table 5.2: Scheme of the input file for the heat source movement.
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This case simulates a pulsed laser heat source strategy, in fact the laser power is shifted
in an alternate way from on to off status; this condition can be easily adapted to simulate
continuous laser heat sources. In Fig. 5.4, we show an idealized example of a simple scan
strategy.

Figure 5.4: Example of an idealized scan strategy starting at the end of the depo-
sition process (Figure 5.3 (d)).

In Section 5.1.1, we have discussed about the possibility of using a fine and a coarse
meshing strategy. The adopted meshing strategy influences not only the sequential element
activation, but also the Laser.inp file. In case of a fine mesh, each activated layer of elements
corresponds to a physical layer of powder, therefore there is a perfect alternation of deposition
and heat source movement. In case of a coarse mesh, instead, since a layer of elements
corresponds to several layers of powder, after each deposition step we have to repeat several
times the heat source movement on the deposited layer to simulate the correct number of scan
paths.

5.1.3 Roller_motion & Laser_path files generation

The previous section showed that the correct definition of Roller.inp and Laser.inp files is
fundamental to simulate with high fidelity the SLM process. The instructions of the real
printing process are usually contained in a file referred as G-Code. This files contains all
the information about the laser path, but also many other informations like the chamber
temperature, the building plate temperature, and all the parameters to manage the chamber
inertization.

Actually, we have not at our disposal slicing softwares dedicated to SLM solutions, therefore
we consider the slicing softwares commonly used for FDM printers. In this case the path
contained in the G-Code file represents the filament deposition path and, for our application,
we assume it to be the laser path on the powder bed. We remark that this choice is not fully
consistent with the real printing process because the real laser path is typically very scattered,
while the deposition process in FDM printers is more continuous.

The information needed to describe the laser path are:

• Laser position at each time step;
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• Layer thickness;

• Laser power;

• Deposition process time.

The needed informations are directly extracted from the G-Code by means of a Matlab
script. In correspondence of the end of each layer, a time gap is imposed to take into account
the deposition process. In Figure 5.5 we show an example of the G-code file rielaborated
trough our Matlab code

Figure 5.5: Example of a G-code file rielaborated with our Matlab script to generate
the input files for SLM printing process simulation.

In Figure 5.6 we show part of the instructions of Roller.inp and Laser.inp input files
generated from the rielaboration of the G-Code (Figure 5.5) by means of the Matlab file.
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[T] [X] [Y]         [Z]    [On/Off]

0.00000,     0.000,   -11.700,     0.040, 1

3.00000,     0.000,    11.700,     0.040, 0

5.54988,     0.000,   -11.700,     0.080, 1

8.58880,     0.000,    11.700,     0.080, 0

11.12129,    0.000,   -11.700,     0.120, 1

14.16116,    0.000,    11.700,     0.120, 0

Roller.inp

[T] [X] [Y]         [Z]    [Power]

3.00000,   -39.084,    -9.084,     0.040, 2.000E+05

3.00690,   -25.292,    -9.084,     0.040, 2.000E+05

3.00953,   -20.990,    -6.029,     0.040, 2.000E+05

…………………, …………………,    …………………,    ……………, ………………………,

5.54966,    38.362,    -8.754,     0.040, 2.000E+05

5.54980,    38.633,    -8.754,     0.040, 2.000E+05

5.54988,    38.754,    -8.633,     0.040, 0.000E+00

Laser.inp
Continuous 
Laser 

Time gap between two 
deposition processes

Figure 5.6: Roller.inp and Laser.inp input files rielaborated from the G-Code (Fig-
ure 5.5) by means of the Matlab code.

5.1.4 General simulation framework

In previous Sections we have described the working principle of Abaqus AM plugin for SLM
process simulation. In this Section we explain the general simulation framework we have
developed to simulated the SLM process of real components (Figure 5.7).

Figure 5.7: General framework adopted for SLM process simulation.

First, a model of the part is realized through a CAD software, then a triangular mesh of the
external surface is generated (STL file) and used as input for the slicing software (e.g., Slic3r
or KISSlicer). The G-Code file is rielaborated by means of the Matlab file; then Roller.inp
and Laser.inp files are generated. Those files are used to perform the SLM process simulation
of the part. The finite element simulation of SLM is splitted in two parts:
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• Thermal Analysis. Used to evaluate the temperature field evolution during the sequential
element activation and the heat source movement;

• Mechanical Analysis. The temperature field is used as input for the mechanical analysis
and residual stress field evolution and part distortions are evaluated.

In the following Section we describe in detail the thermal and the mechanical analysis.

5.1.5 Thermal analysis

In SLM process the laser beam heats the powder bed exchanging heat and melting the powder;
the absorbed heat is then dissipated trough convection and radiation with the surrounding
gas. The problem can be described by the well known heat conduction-convection equation:

ρc
∂T

∂t
= ∇ · (k∇T ) + q (5.1)

where ρ = ρ(T ) is the material density, c = c(T ) is the specific heat capacity, k = k(T ) is
the thermal conductivity, q is the heat source, and t is the time. The SLM printing process
takes place in a chamber filled of an inert gas at constant temperature; moreover the deposited
powder are usually preheated to facilitate the melting process. The initial condition of the
problem is given by:

T (x, 0) = Tp x ∈ Dp (5.2a)

T (x, 0) = Tc x ∈ Dc (5.2b)

where x = (x, y, z) is the position, Dp is the powder packing, Dc is the building chamber, while
Tp and Tc are the powder preheating temperature and the chamber temperature, respectively.
To avoid part detachments during the printing process it is usual to adopt a fixed temperature
(higher than the chamber temperature) on the building plate Dp; to simulate this occurrence
we impose the following Dirichlet boundary condition:

T (x, t) = Tp x ∈ Dp (5.3)

where Dp is the building plate and Tp is the imposed building plate temperature. The Neu-
mann boundary conditions of the problem are defined as follows [Schoinochoritis et al., 2017]:

k
∂T

∂n
+ qc + qr = 0 x ∈ S(t) (5.4)

where n is the vector normal to the surface, S(t) is the external surface (changing during
element activation), while qc and qr are the heat fluxes due to convection and radiation,
respectively, defined as:

qc = h(T − Tc) (5.5a)

qr = Kb(T
4 − T 4

c )ε (5.5b)

where h = h(T ) is the heat transfer coefficient, Kb represents the Stefan-Boltzmann constant,
and ε is the emissivity.
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A very important aspect in the thermal analysis is, for sure, the laser beam modeling. In
the next section we illustrate the adopted laser beam model.

Laser beam and phase change model

The most adopted laser beam model is the Gaussian model. It assumes a symmetrical energy
distribution in which the maximum irradiance is in correspondence of the center of the beam,
then it vanishes in exponential way. The irradiance of a Gaussian beam is given by:

I(r) = I0 exp−Ccr
2

(5.6)

where I0 is the maximum irradiance, Cc is the contraction coefficient and r2 = x2 + y2 is the
distance of a point (x, y) from the center of the beam. The radius R of the laser beam is the
distance where I(R) = I0 exp−2; therefore, in this case, Cc = 2R2. Accordingly, Eq. 5.6 can
be rewritten as follows:

I(r) = I0 exp−
2r2

R2 (5.7)

Figure 5.8: Laser beam: Gaussian distribution model.

The laser beam power is given by:

P = 2π

∫ +∞

0
I(r)dr (5.8)

Finally, inserting Eq. 5.7 in Eq. 5.8, we can derive the maximum irradiance in function of the
laser beam power:

I0 =
2P

πR2
(5.9)

and consequently, Eq. 5.7 can be rewritten as follows:

I(r) =
2P

πR2
exp−

2r2

R2 (5.10)

Eq.5.10 allows to predict the distribution of the laser power on the powder surface; although
only a portion of this power is absorbed by the powder, part of the power, instead, is reflected,
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as discussed in Section 2.3.2. To take into account only the absorbed laser power, Dai and
L.Shaw [2005] multiplied the right hand side of Eq. 5.10 for the absorption coefficient α:

I(r) =
2Pα

πR2
exp−

2r2

R2 (5.11)

Finally, Roberts [2012] integrated the Gaussian irradiance on the beam radius R and
obtained an equivalent heat flux for Eq. 5.11:

q = 0.864
Pα

πR2
(5.12)

Another solution for modeling the laser beam was proposed by Goldak et al. [1984] who
modeled the laser beam as a Gaussian distribution over an ellipsoid with semi-axes a, b, c
in which the maximum irradiance I0 is located in the center of the ellipse and the irradiance
I(r) falls to 0.05I0 in coeespondence of the ellipsoidal surface. The spatial heat source of the
so-called Goldak distribution is defined as follows:

q(x, y, z) =
6
√

6αP

π
√
πabc

exp−3
(
x2

a2
+ y2

b2
+ z2

c2

)
(5.13)

In this thesis we have adopted the Goldak model (Eq. 5.13) to describe the laser heat
source, and we have assumed the eccentricity equal to 1.05.

The last aspect we need to treat is the solid liquid phase change in our simulation frame-
work. In this thesis we have adopted the equivalent heat capacity model described in Section
2.3.3.

5.1.6 Mechanical analysis

In this work we face the simulation of parts realized with Ti6Al4V, which is a metal alloy
that exhibits a typical thermo-plastic behavior. In the incremental theory of plasticity, when
assuming a small strain regime, it is usual to introduce the following additive decomposition:

ε = εe + εp + εT (5.14)

where ε is the total strain, while εe, εp and εT are the elastic, plastic and thermal strain
components, respectively, defined in Voigt notation as follows.

εe = D−1σ, with D = − ν
E

(1⊗ 1) +
1 + ν

E
I

εp = λσdev

εT = α(T − T0)1

(5.15)

where σ is the stress (expressed in Voigt notation), E = E(T ) is the Young’s modulus, ν
is the Poisson’s ratio, α = α(T ) is the thermal expansion coefficient, I is the identity, 1 =
{1, 1, 1, 0, 0, 0}T, and σdev represents the deviatoric part of the stress tensor:

σdev = σ − 1

3
tr(σ)1 (5.16)
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λ is the plastic flow factor defined as follows:

λ = 0 if σvm < σp

λ > 0 if σvm > σp
(5.17)

where σp = σp(T ) is the yield stress and σvm is the effective Von Mises stress defined as
follows:

σvm =

√
3

2
(σdev)Tσdev (5.18)

5.1.7 Material properties

In this thesis we consider SLMed Ti6Al4v parts. As discussed in Section 2.2, titanium com-
posites are indicated for medical applications due to their bio-compatibility and their good
mechanical properties. The melting process significantly affects the physical and the mechan-
ical properties of the re-solidified material.

Physical properties of Ti6Al4V

In Table 5.3 we show the temperature dependence of the physical properties of Ti6Al4V
powder [Fu and Guo, 2014].

Temperature Density Specific Heat Thermal Conductivity
[Kg/m3] [J/(Kg · °C)] [W/(m · °C)]

20 2652 546 0.20
100 2735 562 1.24
500 3150 641 6.43
1000 3670 651 12.91
1600 4189 750 19.40
1650 4189 759 28.30
1660 4189 831 32.10
1900 4189 831 33.50
2800 4189 831 33.50

Table 5.3: Thermal properties of Ti6Al4V powder with increasing temperature.

In Table 5.4 we report the physical properties commons to the material at powder and
solid state [Fu and Guo, 2014].

Solidus Temperature (Ts) 1605 °C
Liquidus Temperature (Tl) 1650 °C
Latent Heat of fusion (Ls) 285 kJ/Kg

Table 5.4: Thermal properties of Ti6Al4V powder with increasing temperature.
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In Table 5.5 we show the temperature dependence of the physical properties of Ti6Al4V
solid alloy [Mills, 2002].

Temperature Density Specific Heat Thermal Conductivity
[Kg/m3] [J/(Kg · °C)] [W/(m · °C)]

20 4420 546 7.00
100 4406 562 7.45
500 4350 641 12.60
1000 4282 651 19.30
1600 4198 750 27.00
1650 4189 759 28.40
1660 3920 831 33.40
1900 3750 831 34.60
2800 3138 831 34.60

Table 5.5: Thermal properties of Ti6Al4V solid alloy with increasing temperature.

The last physical parameters needed for the simulation are the emissivity ε and the absorp-
tion coefficient α. The measurement of the emissivity is affected by a high rate of uncertainty.
In this study we assume a constant value of emissivity ε = 0.33 [Hagqvist et al., 2013], both for
the powder and for the solid alloy. The absorption coefficient is dependent on the wavelength
λ of the laser beam; according to Tolochko et al. [2000], with λ = 1070µm (Nd:YAG laser
adopted in almost all SLM printers) the absorption coefficient of Ti6Al4V is the same for the
material at the powder and at the solid state: α = 0.77. Finally the heat convection coefficient
(or film coefficient) is estimated equal to 27 W/(m2C), considering a low flow rate (30 l/h) of
Argon in the build chamber.

Mechanical properties of Ti6Al4V

In Table 5.6 we show the temperature dependence of the mechanical properties of Ti6Al4V
solid alloy [Mills, 2002].

Temperature Young’s modulus Yield stress Expansion coefficient
[GPa] [MPa] [10−6/°C]

25 114 1061 8.2
100 109 934 9.2
200 100 743 9.9
315 93 668 10.5
430 84 616 11.0
540 57 478 11.4
1650 0.1 1 20.1
2800 0.1 1 20.1

Table 5.6: Mechanical properties of Ti6Al4V solid alloy with increasing tempera-
ture.
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5.2 Simulation results

In this Section we use the described simulation framework to reproduce the SLM process
of simple geometry components. In the following section, we investigate the effects several
printing process on thermal and residual stresses fields, using a fine meshing strategy. In
Section 5.2.2, we adopt a coarse meshing strategy to simulate entire SLMed parts.

5.2.1 Fine mesh simulations

In Figure 5.9 we show the investigated model and the adopted meshing strategy. The model is
a simple square base parallelepiped with base dimensions 1 x 1 mm. The model is constituted
of 2 layers of powder of 50 µm. We adopt a cubic meshing strategy with element size equal
to 25 µm, such that the physical layer is represented of two elements in height.

a) b)

Figure 5.9: Parallelepiped part: a) geometry, b) meshing strategy.

In Fig. 5.10 we show the laser scan path used for each layer. The printing process starts
with the external perimeters, then it proceeds with the infill.

a) b)

First layer deposition

Second layer deposition

First Laser scan

Second Laser scan

c) d)

Infill
Perimeters

Infill
Perimeters

Figure 5.10: Simulation scheme adopted for the parallelepiped model.

In the following sections, we investigate the effects of (i) laser parameters, (ii) scan strategy,
and (iii) printer variables on temperature and residual stress fields. In Table 5.7 we report
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in detail the values of the investigated parameters, compatible with a commercial 3D metal
printer.

Parameter Value 1 Value 2 Value 3

L
A
S
E
R

Power 100 W 200 W 400 W

Radius
textddddddd

50 µm 75 µm 100 µm

S
C
A
N

Overlap 20 % 50 % 80 %

Velocity
text

2 m/s 4 m/s 6 m/s

P
R
I
N
T
E
R

Build plate
tempera-

ture

textddddddd
25 °C

textddddddd
200 °C

textddddddd
400 °C

Chamber
tempera-

ture

textddddddd
25 °C

textddddddd
200 °C

textddddddd
400 °C

Table 5.7: Adopted simulation parameters for the fine mesh analyses of the paral-
lelepiped geometry.

We investigate the influence of each simulation parameter, assuming for any other param-
eter the medium value (Value 2 ).

Power

In Figure 5.11, we show the results of the simulation obtained varying the laser power and
keeping all other parameters with Value 2 (see Table 5.7) . In particular we show the tem-
perature distribution at an instant of the laser scan and the residual stresses at the end of
the cooling process. In dark red we underline the melt pool generated by the moving heat
source. We notice that with a 100 W laser heat source it is not possible to melt the powder
on the external perimeters of the part because the temperature does not reach the melting
temperature (Tm = 1625°C). Also the residual stress field distribution is significantly affected
by the laser power. In particular we notice that with 400 W heat source the residual stresses
are higher but also more homogeneous than the stresses obtained with 100 W and 200 W laser
powers. This effect can be justified by that with 400 W laser power the bottom layer is par-
tially remelted during the laser scanning of the top layer, moreover melt pool dimensions are
higher than the one obtained with other laser powers, therefore, adjacent scanning lines have
a higher remelting rate than with other laser powers. The partial remelting of zones of the
model can be viewed as a kind of heat treatment that allows to obtain a more homogeneous
cooling rate and, in consequence, a more homogeneous stress field distribution.
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Nodal      [°C]
Temperature

Von Mises 
Stress [MPa]

Max:
967 MPa 

Max:
1061 MPa 

POWER   100 W

Max:
825 MPa 

POWER   200 W POWER   400 W

Max:
3198 °C

Max:
1950 °C

Max:
1167 °C

POWER   100 W POWER   200 W POWER   400 W

Figure 5.11: Temperature and residual stress distribution obtained with different
laser powers.

Radius

In Figure 5.12, we show the results obtained with different spot radius and keeping all other
parameters with Value 2 (see Table 5.7). In particular we show the temperature distribution
at an instant of the laser scan and the residual stresses at the end of the cooling process. In
dark red we underline the melt pool generated by the moving heat source. We observe that
with 100µm spot radius it is not possible to melt the powder on the external perimeters of
the part because the temperature does not reach the melting temperature (Tm = 1625°C).

Nodal      [°C]
Temperature

Von Mises 
Stress [MPa]

Max:
717 MPa 

RADIUS   50 mm

Max:
1061 MPa 

RADIUS   75 mm RADIUS   100 mm

Max:
1523 °C

Max:
1950 °C

Max:
2776 °C

RADIUS   50 mm RADIUS   75 mm RADIUS   100 mm

Max:
967 MPa 

Figure 5.12: Temperature and residual stress distribution obtained with different
spot radius.

Looking at residual stresses, we observe that the stress paths obtained with the following
laser power and spot sets are very similar:

• 200 W — 50 µm (Figure 5.12) and 400 W — 75 µm (Figure 5.11)
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• 200 W — 100 µm (Figure 5.12) and 100 W — 75 µm (Figure 5.11)

In particular in Figure 5.13 we have displaced the temperature evolution of the point P
positioned in the middle of the internal infill. We observe 3 peaks in the temperature field:
these peaks are given by the three next-near laser scan lines (Perimeter 1, Perimeter 2, Infill).
We appreciate that, with Perimeter 1, the point P comes to liquid state only when the laser
power and the laser spot are assumed to be 400 W and 75 µm respectively, instead during
the other scan lines point P is melted with both the laser parameters combinations. In this
case the adopted overlap rate (50%) among the subsequent scan lines causes the subsequent
remelting of the point P.

With this sets of parameters the obtained laser energy density is very similar (10 % dif-
ference) and, in consequence, also the temperature evolution of a specific point P is similar.
Since residual stresses rise in consequence of the shrinkage induced by the cooling effect, we
can state that residual stresses are strictly dependent of the laser energy density.
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Figure 5.13: Temperature evolution in a specific point of the domain (P), with
different laser power and spot.

These results allow to conclude that in order to correctly characterize the SLM process
it is convenient to talk about of laser energy density and not of laser power and beam spot
independently one of each other. Furthermore we have shown that the higher energy density
allows to obtain a more regular residual stress field distribution.
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Overlap

In Figure 5.14, we show the results obtained with different scan velocities and keeping all other
parameters with Value 2 (see Table 5.7). In particular we show the temperature distribution
at an instant of the laser scan and the residual stresses at the end of the cooling process. In
dark red we underline the melt pool generated by the moving heat source. In this case, we
displace the temperature distribution at the start of the infill scan path, thus to investigate
the effect of the overlap between adjacent scan lines.

Nodal      [°C]
Temperature

Von Mises 
Stress [MPa]

Max:
1061 MPa 

OVERLAP 20%

Max:
943 MPa 

Max:
3418 °C

Max:
2891 °C

Max:
2443 °C

Max:
967 MPa 

OVERLAP 50% OVERLAP 80%

OVERLAP 20% OVERLAP 50% OVERLAP 80%

Figure 5.14: Temperature and residual stress distribution obtained with different
scan overlaps among adjacent scan lines.

We observe that the overlap among adjacent scan lines significantly affects the temperature,
the dimensions and the shape of the melt pool. In particular with a higher overlap we observe
that melt pool dimensions increase, but at the same time, melt pool has not the typical
comet’s tail shape, but it is more similar to a rectangle with rounded angles. Also the melt
pool temperature is significantly affected by the overlap choice and, of course, higher overlap
rate leads to higher vacuum temperatures. Looking at the residual stress path distribution,
we appreciate that a higher overlap allows to obtain a more regular stress distribution, but, at
the same time, the values of the stresses are higher due to the higher thermal gradients rising
during the melting process.

In particular, in Figure 5.15 we show the temperature evolution of point P adopting two
different overlap rates. We observe that the overlap has (of course) a significant impact after
the first laser scan path. With 50% overlap rate, higher temperatures are reached due to scan
lines Perimeter 2 and Infill 1. Instead with a 20% overlap rate, lower temperatures are reached
during the scanning process and, in specific, the melting process takes place only during the
scan line Perimeter 2.
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Figure 5.15: Temperature evolution in a specific point of the domain (P), with
different overlap ratio.

Velocity

In Figure 5.16, we show the results obtained with different scan velocities and keeping all other
parameters with Value 2 (see Table 5.7). In particular we show the temperature distribution
at an instant of the laser scan and the residual stresses at the end of the cooling process. In
dark red we underline the melt pool generated by the moving heat source. We observe that
with scan velocity 6 m/s it is not possible to melt the powder on the external perimeters of
the part because the temperature does not reach the melting temperature (Tm = 1625°C).
Furthermore we can appreciate that reducing the scan velocity the laser heat source stands
for more time on the same zone of the model and, therefore, melt pool dimensions extend.
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Nodal      [°C]
Temperature

Von Mises 
Stress [MPa]

Max:
856 MPa 

VELOCITY   2 m/s

Max:
1061 MPa 

VELOCITY   4 m/s VELOCITY   6 m/s

Max:
1426 °C

Max:
1950 °C

Max:
3270 °C

Max:
967 MPa 

VELOCITY   2 m/s VELOCITY   4 m/s VELOCITY   6 m/s

Figure 5.16: Temperature and residual stress distribution obtained with different
scan velocities.

The scan velocity influences the energy rate: a lower scan velocity increases the energy
rate and, in consequence, the thermal gradients generated during the melting process. We
observe that higher energy rate produces higher residual stresses on the part after the cooling
process. Finally we can conclude that increasing the scan velocity is a good strategy to speed
up the printing process, provided that the adopted velocity is able to assure enough energy
rate to perform the melting process.

Build Plate temperature

In Figure 5.17, we show the results obtained with different building plate temperatures and
keeping all other parameters with Value 2 (see Table 5.7). In particular we show the temper-
ature distribution at an instant of the laser scan and the residual stresses at the end of the
cooling process. In dark red we underline the melt pool generated by the moving heat source.
We observe that the building plate temperature has a significant impact on the temperature
field results; in fact, since the part is very thin, it assumes the temperature of the building
plate and it is not much influenced by the ambient temperature.
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Nodal      [°C]
Temperature

Von Mises 
Stress [MPa]

Max:
798 MPa 

PLATE TEMP.      25°C

Max:
1061 MPa 

Max:
2104 °C

Max:
1950 °C

Max:
1825 °C

Max:
967 MPa 

PLATE TEMP.      200°C PLATE TEMP.      400°C

PLATE TEMP.      25°C PLATE TEMP.      200°C PLATE TEMP.      400°C

Figure 5.17: Temperature and residual stress distribution obtained with different
building plate temperatures temperatures.

On the contrary, looking at residual stresses, we observe that there is significant difference
among the three cases. In particular we notice that, at the end of the cooling process, the
part printed with the building plate at the ambient temperature (25 °C) is almost completely
yielded, while when the building plate is maintained at 400 °C, no yielding appears on the
part.

Chamber temperature

In Figure 5.18, we show the results obtained with different chamber temperatures and keeping
all other parameters with Value 2 (see Table 5.7). In particular we show the temperature
distribution at an instant of the laser scan and the residual stresses at the end of the cooling
process. In dark red we underline the melt pool generated by the moving heat source.

Nodal      [°C]
Temperature

Von Mises 
Stress [MPa]

Max:
899 MPa 

CHAMB. TEMP.      25°C

Max:
1001 MPa 

Max:
1978 °C

Max:
1950 °C

Max:
1934 °C

Max:
967 MPa 

CHAMB. TEMP.      200°C CHAMB. TEMP.      400°C

CHAMB. TEMP.      25°C CHAMB. TEMP.      200°C CHAMB. TEMP.      400°C

Figure 5.18: Temperature and residual stress distribution obtained with different
chamber temperatures.
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We observe that the ambient temperature has not a significant impact on the temperature
field results; in fact, since the part is very thin, its temperature is almost equal to the building
plate temperature (200 °C). Looking at the residual stresses, we observe that the stress field
distributions are almost the same among the three cases. This fact is completely justified
by the similar melt pool dimensions and maximum temperatures reached during the melting
process.

Finally, the results obtained in this section and in the previous section, confirm that in
models with a very small height (lower than 1 mm), the build plate temperature influences
the residual stress field distribution much more than the chamber temperature. In particular,
a high build plate temperature allows to significantly reduce residual stresses after the cooling
process.

Conclusions

In this Section we have analyzed the effects of SLM process parameters variation on the
temperature and the residual stresses distribution on a small Ti6Al4V part. According to
this results, we can conclude that laser and scan parameters effects must be evaluated in
terms of the energy density rate dispensed during the SLM process. In general, we have
demonstrated that with higher energy density rate, melt pool dimensions increase as well as
melt pool temperature. This condition leads to the formation of higher residual stresses, but,
also, of a more uniform stress path distribution.

On the other hand, the printer parameters effects must be considered in relation with the
adopted geometry. In particular we have proved that in very thin geometries, residual stress
after the cooling process are influenced by the build plate temperature much more than by the
chamber temperature. Higher build plate and chamber temperatures allow to obtain lower
values of residual stresses after the cooling process, due to the lower thermal gradients rising
during the process.

5.2.2 Coarse mesh simulations

In Fig. 5.19 we show the investigated geometry. The model represents a simple bridge which
is a classical benchmark test in AM prototyping. Bridge dimensions are typical of a part
produced with a commercial AM printer. The part is produced with 100 µm layers of Ti6Al4V
powder.

Figure 5.19: Bridge like model.
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To simulate the part following correctly the printing process would mean to adopted, at
least, cubic elements with size 100 µm. With this meshing criterion we would obtain more
than 2 million elements and the computational costs would exponentially grow. For this reason
we adopt a coarse meshing strategy. In specific we assume the element height equal to 0.8
mm; in such way each layer of elements represents 8 physical layers.

In Figure 5.20 we show the laser path adopted for the pillars and the deck of the bridge. We
remark that the real SLS process of the bridge requires support structure among the pillars.
In this example, we neglect the support structures, but we apply proper boundary conditions
to simulate the clamping effect of the support structures on the bridge.

Figure 5.20: Adopted laser paths for the pillars and deck of the bridge (schematic).

In this example the laser power has been assumed equal to 400 W and the laser spot equal
to 75 µm.

Figure 5.21: Temperature field distribution at the end of the printing process (a)
and after the cooling process (b).



5.2. Simulation results 144

In Figure 5.21 we show the temperature fields at the end of the printing process (a) (0.5
s after the laser power has been shut down) and after the cooling process (b). The cooling
process has been simulated adopting the cooling curve of a commercial 3D printer; in this case
the part reaches the ambient temperature almost after 5000 s.

In Figure 5.22, we show the stress field at the end of the printing process (a) (0.5 s after
the laser power has been shut down) and after the cooling process (b).

Figure 5.22: Stress field distribution at the end of the printing process (a) and after
the cooling process (b).

We can appreciate how the cooling process leads to a significant increase of the residual
stresses, due to the shrinkage effect. In addiction, we observe that the highest residual stresses
are concentrated in correspondence of the clamps imposed on the model, on the bottom of
the pillars and on the bottom of the deck between the pillars.

The real detaching process of a SLMed part from the building plate is physically performed
removing the support structures. In this work, since we have not simulated the support
structures, we remove the constraints applied to the bridge except on the bottom of one
pillar. In Figure 5.23 we show the constraints applied on the structure for the printing process
simulation (a) and the constraints adopted to simulate the part detaching (b).

Figure 5.23: Constraints adopted to simulate support structures during the printing
process (a) and during the part detachment process (b).
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In Figure 5.24 we displace the stress path at the end of the cooling process and after the
detachment process. We observe that the maximum stress is consistently reduced after the
detaching of the bridge from the building plate. The stress relief is given by the release of the
elastic energy.

Figure 5.24: Stress field distribution at the end of the cooling process (a) and after
the detachment process (b).

In Figure 5.25 we show the Z-axis displacements at the end of the cooling process and
after the part detachment from the building plate.

Figure 5.25: Z-axis displacement field at the end of the cooling process (a) and
after the detachment process (b).

The maximum Z-axis displacement is about 2.3 mm in correspondence of point A.



Chapter 6

Fused Deposition Modeling

Fusion Deposition Modeling (FDM), also known as Fused filament fabrication (FFF) is a AM
technology patented by Stratasys in 1992 to realized plastic parts starting from a plastic solid
filament. Figure 6.1 shows the working principle of a generic FDM machine.

Figure 6.1: Working scheme of a generic Fused Deposition Modeling printer.

The FDM printing process can be summarized in the following steps:

I. Filament Supply: a spool of filament is positioned on a particular support and the
filament is inserted in the extrusion head;

II. Filament Extrusion: the filament is moved by drive wheels into the nozzle, then it is
heated until it reaches the semi-molten state and extruded with the desired shape and
dimensions;

III. Filament Deposition: the filament is deposited layer by layer on the building plate
by the nozzle which moves on the building plate at a constant height;
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IV. Nozzle Upward Movement: when a layer is constructed, the nozzle moves upward
of a height corresponding to the physical layer height and the process restarts from step
III;

V. Part Removal: once the part reaches the ambient temperature it is possible to remove
it from the building plate.

6.1 Process parameters of Fused Deposition Modeling printers

FDM patent expired in 2012. From that time, a lot of companies producing FDM 3D printers
born and the cost of FDM machines consistently decreased. Among the others the leading
companies in this sector are: Stratasys, 3DStystems, HP. The most important characteristics
of commercial FDM printers are listed below:

• Extrusion dimensions: common nozzles usually extrude the filament with an ellip-
soidal shape. Bead height dimensions range from 0.1 to 1 mm, bead width can vary form
0.1 to 2 mm. Lower bead dimensions allow to obtain a higher detail precision during
the print, although, the printing process becomes slower;

• Maximum extruder temperature: extrusion temperature usually ranges from 200°C
to 600°C. Higher extrusion temperature allow to treat a lager range of polymers;

• Number of the nozzles: desktop printers have just one nozzle, professional printers,
instead, adopt multiple nozzles to change material during the same printing process and
allow a faster part production;

• Working volume: this is a fixed characteristic of each printer. A higher working
volume allows to produce larger models. The dimensions can vary from 10 centimeters
up to 3 or 4 meters.

• Chamber temperature: in desktop printers the chamber temperature is the ambient
temperature, in professional 3D printers, the chamber temperature can be increased
up to 150-200°C; this solution is adopted to reduce residual stresses arising during the
printing process.

• Building plate temperature: in desktop printers the building plate temperature is
kept at ambient temperature, in professional 3D printers, the building plate temperature
can be increased up to 250°C; this solution is adopted to increase the adhesion force
between the building plate and the part.

6.2 Polymers used in Fused Deposition Modeling

In the last years many types of polymers have been adopted to produce FDM parts, and many
experimentations have been conduced to test parts produced with FDM.

The most common polymers adopted for in FDM printing are:
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• Acrilonitrile Butadiene Stirene (ABS): can be used to produce prototypes for de-
sign verification and functional performance testing. It’s main features are good strength
and tenacity at low temperatures, good electrical resistance and good shock resistance.
The mechanical properties of a commercial ABS filament, at the ambient temperature,
are listed in Table 6.1. Data are distributed by Stratasys®.

Mechanical Property Value

Young’s Modulus 2600-3000 [MPa]
Tensile Yield Strength 55-60 [MPa]
Flexural Modulus 1700-2200 [MPa]
Flexural Strength 65-75 [MPa]
Elongation at break 25-40% [MPa]

Table 6.1: Mechanical properties of a commercial ABS filament.

• PolyCarbonite (PC): can be used for several applications in industry including: ex-
ternal aircraft windows, flak jackets and safety protections. It’s main features are high
resistance to chemically aggressive environments, good mechanical properties at high
temperatures and high toughness. The mechanical properties of a commercial PC fil-
ament, at the ambient temperature, are listed in Table 6.2. Data are distributed by
Stratasys®.

Mechanical Property Value

Young’s Modulus 1944-1958 [MPa]
Tensile Yield Strength 30-40 [MPa]
Flexural Modulus 1800-2006 [MPa]
Flexural Strength 68-89 [MPa]
Elongation at break 4.8-2.5%

Table 6.2: Mechanical properties of a commercial PC filament.

• PolyLactic Acid (PLA): can be used for several applications in industry including:
plastic shopping bags and part of domestic appliances, but it is suitable to produce
functional components. It’s main features are good tensile resistance and ease processing
in injection and fused deposition modeling. The mechanical properties of a commercial
PLA filament, at the ambient temperature, are listed in Table 6.3. Data are distributed
by Stratasys®.
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Mechanical Property Value

Young’s Modulus 2539-3039 [MPa]
Tensile Yield Strength 26-45[MPa]
Flexural Modulus 2470-2930 [MPa]
Flexural Strength 45-84 [MPa]
Elongation at break 1-2.5%

Table 6.3: Mechanical properties of a commercial PLA filament.

• ULTEM: can be used for many applications in medical, electronic/electric, microwave,
automotive, and aircraft industries. It’s main features are a high tensile resistance at
ambient temperature and good tensile resistance at high temperatures, high dielectric
strength and stability, and a very high heat resistance. The mechanical properties of a
commercial ULTEM filament, at the ambient temperature, are listed in Table 6.4. Data
are distributed by Stratasys®.

Mechanical Property Value

Young’s Modulus 2150-2270 [MPa]
Tensile Yield Strength 47-33 [MPa]
Flexural Modulus 2050-2300 [MPa]
Flexural Strength 68-112 [MPa]
Elongation at break 2.2-5.8%

Table 6.4: Mechanical properties of a commercial ULTEM filament.

• PolyEtherEtherKetone (PEEK): can be used for many applications in medical,
electronic/electrical, microwave, automotive, and aircraft industries. It’s main features
are a high tensile resistance at ambient temperature and high ductility rate, moreover,
it is resistant to aggressive environments. The mechanical properties of a commercial
PEEK filament, at the ambient temperature are listed in Table 6.5. Data are distributed
by Victrex®.

Mechanical Property Value

Young’s Modulus 4000 [MPa]
Tensile Yield Strength 98 [MPa]
Flexural Modulus 3800 [MPa]
Flexural Strength 125 [MPa]
Elongation at break 45%

Table 6.5: Mechanical properties of a commercial PEEK filament.

In literature, several studies have been proposed aiming to characterize the mechanical
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properties dependence on the process parameters and to compare the characteristics of 3D
printed parts with the characteristics of parts produced with traditional manufacturing.

Several studies have been conducted to estimate the mechanical properties of FDMed parts
produced with different printing parameters.

One of the most investigated parameters is the infill raster angle. Ziemian et al. [2012]
investigated the effects of different raster orientations on tensile and ultimate yield strength,
concluding that the maximum values are obtained with 0/90 and 45/45 raster angles, both
with tensile and flexural tests. Cantrell et al. [2017] carried out analogous experiments on
PC FDMed components, concluding that tensile strength is not significantly influenced by
the raster orientation, while the maximum shear strength is obtained with +45/-45 raster
orientation (Figure 6.2)

Figure 6.2: Tensile (a) and shear (b) stress-strain curves of FDMed PC parts pro-
duced with different raster orientations [Cantrell et al., 2017].

Letcher and Waytashek [2014] demonstrated that the raster orientation has a significant
influence on PLA specimens response to 3-points bending test, where the 0° raster orientation
allows to obtain the higher flexural strength. A similar result has been obtained by Rahman
et al. [2015] for FDMed PEEK components.

Figure 6.3: Ultimate tensile stress variation with the total part thickness. Different
layer thickness are considered [Rankouhi et al., 2016].

Another parameter that have been widely investigated in literature is the layer thickness.
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Rankouhi et al. [2016] proved that ABS parts produced with a layer thickness of 0.2 mm show
a higher ultimated tensile strength and stiffness in comparison with parts realized with layer
thickness equal to 0.4 mm (Figure 6.3).

As previously discussed, some industrial applications require good mechanical properties
of plastic parts even at extreme temperatures. Many studies focused on the evaluation of
the mechanical properties of FDMed parts in extreme environmental conditions. Weiss et al.
[2015] conducted a very accurate study to evaluate both thermal and mechanical properties
of FDMed ABS specimens at cryogenic temperatures (Figure 6.4).

Figure 6.4: Tensile stress (a) and compressive stress (b) strain curves of FMDed
ABS parts at different cryogenic temperatures [Weiss et al., 2015].

Another parameter which is often investigated in FDM printing process is the build direc-
tion of the parts. Bagsik et al. [2010] studied the stress strain curves obtained trough tensile
tests on FDMed ULTEM parts.

Figure 6.5: Stress strain curves obtained trough tensile tests on FDMed ULTEM
parts produced with different build orientations [Bagsik et al., 2010].
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They concluded that the build orientation has a great impact on the mechanical properties
of the part, in particular on the Young’s Modulus and on the elongation at break (Figure 6.5).

6.3 Physical aspects of Fused Deposition Modeling

Within FDM technology, the filament is first heated to a semi-molten state and then extruded,
while the nozzle moves following a predefined printing path. After deposition, the thermal en-
ergy is dissipated through conduction (within and between the filaments) as well as convection
and radiation (both between the filament and the external environment). The heating and
the subsequent cooling processes, leading the semi-molten filament to re-assume a solid state,
are characterized by high thermal gradients inducing residual stresses on the printed compo-
nent [Zein et al., 2002]. These stresses produce part distortions, either during the printing
process itself and after the component removal from the building plate [Bellehumeur et al.,
2004]. Figure 6.6 shows the most important aspects influencing the fused deposition modeling
process:

Figure 6.6: Physical phenomena rising during the Fused Deposition Modeling pro-
cess. In light blue the principal physical effects; in black the secondary physical
effects.

Thermal gradients strongly influence the quality of the produced parts together with other
several printing parameters, like extrusion temperature, chamber temperature, nozzle velocity,
and extruded filament dimensions. Most important, it has been experimentally proved that
such parameters can affect not only the shape [Wittbrodt and Pearce, 2015] and the dimensions
[Lieneke et al., 2016] of the printed part, but also its mechanical properties [Ziemian et al.,
2012], including the yielding strength and the strain at failure [Alaimo et al., 2017].

In the following section we will describe the principal physical phenomena involved in FDM
process.

6.3.1 Heat conduction-convection-radiation

Differently from PBF process, in FDM the material is deposited on the building plate at a
high temperature corresponding to the extrusion temperature. When the filament is extruded
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it starts a cooling process which leads the filament to the solid state. During this process the
filament exchanges heat trough:

• conduction due to the temperature gradient rising inside the filament;

• convection between the filament and the surrounding environment;

• radiation of the thermal energy

Heat conduction-convection-radiation can be described by the following equation:

ρc
T

t
= ∇ · (k∇T ) + qc + qr (6.1)

where qc represents the convective term and qr represents the radiation term, which are de-
scribed as follows:

qc = h(T − Tc)
qr = Kb(T

4 − T 4
c )ε

(6.2)

in which Kb is the Stefan-Boltzmann constant and ε is the emissivity.

6.3.2 Phase Change

The phase change in plastic polymers is a very complicate process that is dependent on the
molecular structure of the material [Tadokoro, 1979]. According to their molecular structure,
plastic polymers can be divided into two classes:

• Crystalline polymers: characterized by a regular and periodic molecular structure at
the solid state;

• Amorphous polymers: characterized by an irregular molecular structure at the solid
state;

The degree of crystalline order, usually referred as χ, states if a polymer has a crystalline (χ ≈
1) or an amorphous (χ ≈ 0) molecular structure. Crystalline polymers are characterized by
higher density and higher stiffness than amorphous polymers; moreover, crystalline polymers
can be oriented in space in order to obtain specific mechanical properties in a specific direction.
This procedure gives to crystalline polymers a high rate of anisotropy.

In plastic polymers two types of phase change may occur, according to the molecular
structure of the polymers:

• Melting. It is a typical process of crystalline polymers that occurs when, at a certain
temperature, called melting temperature Tm, the ordered molecular chains drop into a
liquid disordered state. In this process a large amount of energy is needed to win the
internal forces which order the molecular structure. This process is the same that occurs
in metal phase change;
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• Glass transition. It is a typical process of amorphous polymers in which the temper-
ature increasing simply increase the molecular disorder. This process is characterized
by a typical temperature referred as glass transition Tg. Below the glass transition
temperature, the amorphous polymers have a glassy behavior; over the glass transition
temperature, they show a rubbery behavior.

In figure 6.7 we show the different phase change processes for crystalline and amorphous
polymers.

T

H(T)

T

H(T)Crystalline Polymer Amorphous Polymer

Melting process

Tm

Glass transition process

Tg

Figure 6.7: On the left, the melting process typical of crystalline polymers; on the
right, the glass transition process typical of amorphous polymers.

We observe that, differently from the melting process, in glass transition process no latent
heat is needed to perform the phase change.

6.3.3 Bonding

Bonding is the tendency of semi-molten fibers to get in contact one to each other due to
the cohesion force rising between them at high temperatures. Bonding is a very important
phenomenon in FDM printing process because a good bonding rate between the deposited
filaments is mandatory to obtain good mechanical properties on the final parts [Gurrala and
Regalla, 2014].

In FDM technology we can discern between two types of bonding:

• Intra-layer bonding: generated between the deposited filaments of the same layer
(see Figure 6.8). The intra-layer bonding forms a typical neck between the bounded
filaments and the resulting dimensions of the bounded filaments are smaller then the
nominal ones.

• Inter-layer bonding: generated between subsequent deposited layers (see Figure 6.9).
The inter-layer bonding forms a typical neck between the filaments of adjacent layers,
therefore the height of a package of two layers is smaller than the nominal one.

Bellehumeur et al. [2004] pointed out that the bonding quality among polymer filaments
in the FDM process determines the integrity and mechanical properties of resultant prototypes
and they developed a Newtonian sintering model to quantitatively predict the bonding quality
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Intra-layer bonding

Before Bonding

After Bonding

L1

L2

Figure 6.8: Intra-layer bonding in FDM printing process (rielaborated from [Gur-
rala and Regalla, 2014]).

Inter-layer bonding

Before Bonding

After Bonding H2

H1

Figure 6.9: Inter-layer bonding in FDM printing process (rielaborated from [Gurrala
and Regalla, 2014]).

of the part. They concluded that the bonding rate between the filaments is strongly dependent
on chamber temperature and on cooling time of the deposited filaments. Figure 6.10 (a) shows
the variation of neck radius with the time in isothermal conditions, obtained with different
extrusion temperatures. Figure 6.10 (b) shows the variation of the neck radius with the
time in non isothermal conditions. In both cases the experimental results are compared with
the predictions of the Newtonian sintering model, showing a good agreement between the
experimental results and the analytic model.

6.3.4 Adhesion

Adhesion is a chemical-physical phenomenon rising between two chemically different materials.
In FDM printing, the adhesion force origins between the building plate (which is usually
made with Ultem) and the deposited filaments. The development of enough adhesion force is
mandatory to maintain the part attached to the building plate. In Figure 6.11 we represent a
typical case of part detachment from the building plate.

A common and well known solution to avoid part detachments from the building plate
consists of increasing the build plate temperature, but, this solution can be adopted only in
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(a) (b)

Figure 6.10: Variation of the radius deck in isothermal (a) and in non-isothermal
(b) conditions [Bellehumeur et al., 2004].

Figure 6.11: Part detachment from the building plate during FDM printing process.
Detachment occurs due to the not enough adhesion force.

certain professional 3D printers. Another possible way to solve the problem is to spray special
lacquers on the building plate to increase artificially the adhesion force.

In literature the adhesion in FDM process has been investigated by few authors, in par-
ticular in combination with textiles.

Pei et al. [2015] investigated the adhesion of ABS, Nylon, and PLA FDMed parts, printed
directly onto textiles. Natural (cotton and wool) plastic (light polyester) textile have been
considered in this study, concluding that PLA has the overall best adhesion.

A similar study was conducted by Sabantina et al. [2015] who used a high temperature
after treatment to increase the adhesion force between PLA and the considered textile. This
studies proposes interesting experiments with different textiles and FDM printing parameters,
although they do not evaluate directly the adhesion force.

Sanatgar et al. [2017] adopted the standard SS-EN ISO11339:2010 procedure to evaluate
the adhesion force of PLA and nano-composites parts during FDM printing process. They
concluded that the adhesion force is highly influenced by the printing process parameters like
the extrusion temperature and the build plate temperature as shown in Figure 6.12.
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Figure 6.12: Variation of the adhesion force with extrusion temperature (a), build
plate temperature (b) and build plate fabric type (c) [Sanatgar et al., 2017].

6.4 Numerical Simulation of Fused Deposition Modeling

The simulation approaches of FDM process can be divided into two categories:

• Filament level simulations

• Part level simulations

in the following sections we briefly describe each simulation approach.

6.4.1 Filament level simulations

Filament level simulations aim to predict phenomena rising at the filament level such as
bonding and adhesion. As previously discussed, there are 2 types of bonding phenomena:
bonding between filaments and bonding between layers.

Gurrala and Regalla [2014] proposed a mathematical model to describe the radius of the
neck between two bounded filaments. The authors proved experimentally that neck sizes are
time dependent and with the developed mathematical model were able to predict the evolution
of the neck radius during the bonding process, as shown in Figure 6.13.
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Figure 6.13: Neck radius variation with time during the bonding process between
two FDMed deposited filaments [Gurrala and Regalla, 2014].

Coogan and Kazmer [2017] proposed a diffusion-controlled healing model for predicting
bond strength between layers in FDM process. This model has been used to predict the bond
strength in ABS specimens printed with different printing conditions and the results have been
validated trough experimental test.

Xia et al. [2017] adopted a mathematical model for direct multiphase flow simulations and
used the finite volume method to simulate three dimensional filament deposition including
bonding.

Figure 6.14: Temperature evolution between bounded filaments deposited at differ-
ent extrusion temperatures (a) 215°C, (b) 295°C, and (c) 375°C [Xia et al., 2017].

The method is lack of residual stresses evaluation and has not been applied to simulate real
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three dimensional components, although it considers the real shape of the deposited filament
and it is able to predict with accuracy the temperature evolution within and between the
filaments. Figure 6.14 shows the temperature evolution between bounded filaments deposited
at different extrusion temperatures.

6.4.2 Part level simulations

Part level simulations aim to predict the evolution of stress and distortions field during the
printing process. In particular one of the major tasks of part level simulation is to predict the
distortions of the printed model from the design model, so to preventively change the printing
parameters in order to avoid part distortions.

Zhang and Chou [2006] proposed the first three dimensional model to simulate FDMed
components production. In this work the finite element method is adopted and a sequential el-
ement activation is performed to simulate the deposition process. This work has been followed
by Zhang and Chou [2008] to simulate the FDM printing process varying layer thickness, scan
speed and extrusion temperature. The results have been validated trough a comparison with
experimental tests showing good agreement with experimental data (see Figure 6.15).

Figure 6.15: Real FDMed part distortions compared with simulation predictions.
Every specimen has been realized with different printing parameter [Zhang and
Chou, 2008].

In the following section we will adopt a model similar to the one proposed by Zhang and
Chou [2006] to simulate real FDMed components starting from the informations contained in
the G-Code file.



Chapter 7

Finite element simulation of Fused
Deposition Modeling

In the previous chapter we have discussed about the computational approaches usually adopted
for the FDM printing process simulation. Filament level simulations investigate local effects
rising during the printing process. In particular they are adopted to simulate the intra and
inter layer bonding and the adhesion force generated between the part and the building plate.
Although, filament level simulations are very expensive in terms of computational costs and
required memory and they cannot be used to simulate entire FDMed parts.

On the contrary, part level simulations are not accurate as filament level simulations are.
They do not consider the real shape of the filaments and they neglect bonding and they assume
a perfect adhesion between the part and building plate. Although, part level simulations have
reduced computational costs and they allow to simulate entire FDMed components.

The overall framework of FDM process is shown in Fig. 7.1 (left side). First, a model of
the part is realized through a CAD software, then a triangular mesh of the external surface
is generated (STL file) and used as input for the slicing software (e.g., Slic3r or KISSlicer) to
define all the parameters necessary to perform the printing process: the filament deposition
path, the deposition velocities, the extrusion temperature, and the environmental variables.
All these information are stored in a file, usually referred as GCode. This file is used both to
realize the printing process and to perform the simulation of the part.

Relying on the information in the GCode, we set up a finite element analysis (FEA) in
Abaqus (v. 2017 Simulia, Dassault Systemés) Courter et al. [2017] based on a sequential ele-
ment activation scheme to simulate the entire printing process. The analysis is divided in two
steps. A thermal analysis, solving the heat equation, is performed to evaluate the time-spatial
temperature field evolution during the sequential element activation process. Subsequently,
the resulting temperature field is adopted as forcing term in a mechanical analysis, used to
evaluate residual stresses and part distortions (see Fig. 7.1 right side).

7.1 Sequential element activation

During the FDM printing process, the nozzle deposits a semi-molten filament following a
predefined path contained in the GCode file. As an example, in Fig. 7.2 we show a sequence

160



7.1. Sequential element activation 161

Mechanical            Analysis

Deformed                PartFinal                Part

FINITE ELEMENT

ANALYSIS

CAD        Model

STL          File

GCode File

Thermal AnalysisFDM Printer PRINTING PROCESS

PRODUCTION SIMULATION

Figure 7.1: Overall framework of the FDM printing process. In the central part,
the virtual calculation of the GCode file from a 3D CAD model of the component.
On the left, the physical printing process; on the right, the simulation process.
The GCode information are used both to perform the physical printing and the
simulation of the part

of standard instructions extracted from a GCode file realized with KiSSlicer.

; BEGIN_LAYER_OBJECT Z=7.40

; 'Perimeter Path', 0.6 [feed mm/s], 33.2 [head mm/s]

G1 X109.57 Y88.14 E9.0562 F9000

G1 X109.57 Y88.13 E9.0563 F1992

G1 X109.57 Y71.38 E9.3716

G1 X109.60 Y71.34 E9.3725

G1 X112.40 Y71.34 E9.4251

.. ....... ...... .......

Figure 7.2: Sequence of standard instructions contained in a GCode file realized
with KISSlicer

The three necessary information, included in the GCode and needed to perform the se-
quential element activation, are: (i) the nozzle position, (ii) the nozzle velocity, and (iii) the
cross sectional dimensions of the extruded filament.
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t X Y Z Extruded filament area
[s] [mm] [mm] [mm] [mm2]

1351.68 109.57 88.14 7.40 0.10
1315.69 109.57 88.13 7.40 0.10
1332.44 109.57 71.38 7.40 0.10
1332.49 109.60 71.34 7.40 0.10
1335.29 112.40 71.34 7.40 0.10
. . . . . . . . . . . . . . .

Table 7.1: Scheme of the input file for the sequential element activation. X, Y, Z
are the coordinates of the filament centerline at time T. Extruded filament area
represents the cross-sectional area of the extruded filament, which drops to zero in
correspondence of the travel movements

We extract these information from the GCode file by means of an in-house Matlab code
that directly write a suitable input file for the finite element analysis, as reported in Tab.
7.1. Columns X, Y, and Z describe the position of the centerline of the extruded filament at
time t, while the last column contains the cross sectional area. The deposition path defined in
the GCode file is, usually, not completely continuous, since the nozzle, in some cases, moves
on the building plate without depositing material; such movements are usually referred as
travel movements. To be fully consistent with the GCode file, during the sequential element
activation, we assume the area of the filament equal to zero in correspondence of the travel
movements.

The cross section of the extruded filament is typically characterized by a rectangular
shape with round corners, resembling an ellipsoidal shape. For simplicity, we consider the
cross section to be rectangular with dimensions equal to the ellipse axes.
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Figure 7.3: Element activation process. The extruded filament section (cyan el-
lipse) is substituted by the circumscribed marching rectangle (blue rectangle). The
rectangle moves following the filament centerline (red line). When the center of
an element (green point) falls into the volume described by the marching rectan-
gle, then the element is activated (green element). Gray points correspond to the
centroids of the non-activated elements (gray elements)

To realize the sequential element activation, a marching rectangle, representing the fila-
ment cross section, is imagined to move following the filament centerline contained in the
GCode file (filament centerline coincident with marching rectangle center): if the center of an
element falls within the ideal volume described by the marching rectangle, then the element
is activated. Figure 7.3 shows the element activation process for a single layer of elements.

Remark. To respect the physics of the problem, it is necessary to adopt a meshing strategy
in which the element height is equal to the height of the extruded filament (physical layer
height) or to a sub-multiple of such height; furthermore it is convenient, but not mandatory,
to keep the element width equal or a sub-multiple of the width of the extruded filament. With
this precautions we ensure that the activated elements exactly match the dimensions of the
extruded filament. This topic will be discussed more in detail in Section 7.6.

7.2 Thermal analysis

During the FDM process the filament is extruded at temperature Tf and it is deposited on
the building plate Dp having temperature Tp. The building chamber Dc is kept at constant
temperature Tc. Due to temperature gradients, the filaments exchange thermal energy with
both the previously deposited material and with the surrounding air in the chamber.

The time spatial evolution of the temperature field T (x, t) is governed by the well-known
heat equation Hussein et al. [2013]:

ρcṪ = ∇ · (k∇T ) + q (7.1)
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where ρ = ρ(T ) is the material density, c = c(T ) is the specific heat capacity, k = k(T ) is the
thermal conductivity, q is the internal heat source, and t is the time. The initial conditions of
the problem are given by Schoinochoritis et al. [2017]:

T (x, 0) = Tf x ∈ Df (7.2a)T (x, 0) = Tc x ∈ Dc (7.2b)

where x = (x, y, z) is the position, Df is the extruded deposited material, Dc is the building
chamber, while Tf and Tc are the extrusion and the chamber temperature, respectively. On
the building plate Dp we impose the following Dirichlet boundary condition:

T (x, t) = Tp x ∈ Dp (7.3)

where Dp is the building plate and Tp is the imposed building plate temperature. The Neu-
mann boundary conditions of the problem are defined as follows Schoinochoritis et al. [2017]:

k
∂T

∂n
+ qc + qr = 0 x ∈ S(t) (7.4)

where S(t) is the external surface of the body (changing during element activation) and n
is the vector normal to the surface of the body, while qc and qr are the heat fluxes due to
convection and radiation, respectively, defined as:

qc = h(T − Tc) (7.5a)qr = Kb(T
4 − T 4

c )ε (7.5b)

where h = h(T ) is the heat transfer coefficient, Kb represents the Stefan-Boltzmann constant,
and ε is the emissivity.

7.3 Mechanical analysis and material properties

In this paper we face the simulation of parts realized with a ABS filament, which is an
amorphous polymer that exhibits a typical thermo-plastic behavior Tiganis et al. [2002]. In
the incremental theory of plasticity, assuming a small strain regime, it is standard to introduce
the following additive decomposition:

ε = εe + εp + εT (7.6)

where ε is the total strain, while εe, εp and εT are the elastic, plastic and thermal strain
components, respectively, defined in Voigt notation as follows.

εe = D−1σ, with D = − ν
E

(1⊗ 1) +
1 + ν

E
I

εp = λσdev

εT = α(T − T0)1

(7.7)

where σ is the stress (expressed in Voigt notation), E = E(T ) is the Young’s modulus, ν
is the Poisson’s ratio, α = α(T ) is the thermal expansion coefficient, I is the identity, 1 =
{1, 1, 1, 0, 0, 0}T, and σdev represents the deviatoric part of the stress tensor:
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σdev = σ − 1

3
tr(σ)1 (7.8)

λ is the plastic flow factor defined as follows:

λ = 0 if σvm < σp

λ > 0 if σvm > σp
(7.9)

where σp = σp(T ) is the yield stress and σvm is the effective Von Mises stress defined as
follows:

σvm =

√
3

2
(σdev)Tσdev (7.10)

At the ambient temperature (Ta = 25 ◦C) the adopted material properties, correspond to
a commercial ABS filament (see Table 7.2).

Property V alue Property V alue

Density 1040 Kg/m3 Thermal expansion coefficient 9 · 10−5 ◦C−1

Young modulus 1826 MPa Specific heat 1290 J/(◦C ·Kg)
Poisson ratio 0.32 Thermal conductivity 0.15 W/(◦C ·m)
Yield stress 25 MPa Glass transition temperature 95◦C

Table 7.2: Mechanical and thermal properties of the commercial ABS filament at
the ambient temperature

In amorphous polymers the glass transition temperature, usually indicated as Tg, marks
the transition from the glassy to the rubbery mechanical behavior of the material. This
process, usually referred as glass transition, is different from the melting process, because
it does not involve a transition from a ordered to a disordered molecular structure. The
melting process, typical of crystalline polymers, occurs when the ordered polymer chains fall
out of their crystalline structure giving rise to a disordered liquid; instead the glass transition
process, typical of amorphous polymers, simply indicates an increasing disorder associated
to the molecular structure, since at the solid state the molecular chains are not arranged in
an ordered crystalline structure. Accordingly, the glass transition temperature Tg influences
the thermal properties of amorphous polymers. In Fig. 7.4 we show the variation of thermal
conductivity and specific heat with temperature in the commercial ABS filament.
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Figure 7.4: Variation of thermal conductivity and specific heat with temperature
in the commercial ABS filament. [Rheology Testing And Consultancy, 2004]. Tg
represents the glass transition temperature

Furthermore the glass transition temperature Tg has a great impact on the mechanical
properties of the ABS filament; in fact, above this temperature the Young’s modulus and the
yield stress drop down to values close to zero Song et al. [2012]; Armillotta et al. [2018]. Figure
7.5 shows the variation of the Young’s modulus with the temperature for the considered ABS
filament Song et al. [2012].
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Figure 7.5: Variation of the Young’s modulus with the temperature in the commer-
cial ABS filament Song et al. [2012]. Tg represents the glass transition temperature

Following Richeton et al. [2005, 2006] the variation of the yield stress in amorphous poly-
mers can be described by the following cooperative model:



σp = σp0 −mT +
2KbT

V
sinh−1

ε̇

ε̇0 exp

(
−∆HB

KbT

) for T < Tg

σp =
2KbT

V
sinh−1

ε̇

ε̇0 exp

(
−∆HB

KbT

)
exp

(
cg1(T − Tg) ln 10

cg2 + T − Tg

) for T ≥ Tg
(7.11)
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where σp0 is the yield stress at the absolute zero temperature, V is an arbitrary activation
volume, ∆HB is the activation energy, ε0 is a constant pre-exponenial strain, and cg1 and c

g
2 are

the coefficients of the Williams-Landel-Ferry (WLF) time-temperature superposition. Evalu-
ating all the parameters in Eq. 7.11 is not a simple task and, in addiction, no experimental
data are available in literature for ABS. However, a review of the studies dealing with the
yield stress temperature dependency of amorphous polymers shows that: (i) below the glass
transition temperature the yield stress linearly decreases with slope m Rault [1998] and (ii)

above the glass transition temperature the yield stress can be assumed almost constant with
a value close to zero Armillotta et al. [2018]. Accordingly, for the considered ABS we assume
a yield stress variation with temperature as shown in Fig. 7.6, where m = 0.24 and σp = 1

MPa Armillotta et al. [2018], for T > 100◦C.
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Figure 7.6: Variation of the tensile yield stress with the temperature in the com-
mercial ABS filament Richeton et al. [2006]; Armillotta et al. [2018]. Tg represents
the glass transition temperature and m represents the slope of the linear part

Remark 1: Eq. 7.11 was proposed by Richeton et. al. Richeton et al. [2005] to describe
the variation of the compressive yield stress with the temperature. However, in the present
study, we assume that the same functional relation is also valid for the tensile yield stress.

Remark 2: The filament as-deployed can be considered homogeneous and isotropic (Ro-
dríguez et al. [2003], Alaimo et al. [2017]) but the geometrical structure at a sub-millimeter
scale, resulting from the deposition process, implies, at the macro-scale, an overall mechanical
anisotropy. In particular, several works (Ning et al. [2017], Liao et al. [2018], Ryder et al.
[2018]) showed that both yielding stress and Young’s modulus vary with fiber orientation and
filament cross-sectional dimensions. Assuming an orthotropic, transversely isotropic behav-
ior, such a dependence with fiber orientation is usually more evident when observing yielding
stress at macro-scale (up to 30% in transverse direction compared to fiber orientation). As
concerns the Young’s modulus, the decrease in stiffness is usually less pronounced, resulting in
variation up to 15% in transverse direction compared to fiber orientation. Such data refer to
tensile tests performed on ABS unidirectional specimens at ambient temperature. To capture
the 3D-printed part anisotropy, it should be used a extremely fine mesh (element dimensions
much smaller than the filament cross section) able to accurately represent the microstructure.
In the present work we neglected the anisotropy, but as confirmed by the obtained results,
this assumption can be considered acceptable.
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7.4 Part detachment procedure

During the printing process, residual stresses arise due to the constrained progressive cooling of
the body still under construction, in response to the temperature decreasing from the extrusion
temperature Tf to the chamber temperature Tc. Similarly, during the cooling transient after
the printing process, residual stresses increase since the temperature goes from the chamber
temperature Tc to the ambient temperature Ta. Residual stresses tend to induce a warping
deformation that is usually prevented by the adhesion between the part and the building plate.
However, if residual stresses are high enough, they can cause part detachment, since the warp
tendency is not be balanced by the adhesion force.

Accordingly, a crucial point for a complete characterization of the process is the evalu-
ation of the adhesion force. This task can be very complicated because the adhesion force
is influenced by local imperfections, impurities, and a non uniform temperature distribution
of the building plate, as well as by the chemical properties and the dimensions of the fila-
ment. A widely adopted method to prevent the part detachment is to introduce, between the
building plate and the part to be realized, a support structure usually referred as raft. Raft
basically consists of 4-6 filament layers, the first of which is characterized by a filament of
relatively large dimensions. Typical values of the first raft layer height and width are 0.6 and
1.8 mm, respectively. The dimensions of this layer increase the adhesion force, thus avoiding
component detachment.

When a part is printed on the raft, no detachment usually occurs during the printing or
the cooling process. In this case, in the proposed model we simulate the part as constrained
in correspondence of the supports and, at the end of the cooling process, we remove all the
constraints, allowing the part to reach its final deformed configuration.

Instead, when a part is printed without pre-printing the raft, detachments can occur, most
of the times during the cooling process. In this case, neglecting the adhesion force evaluation,
in the proposed model we consider the part as constrained during all the printing and the
cooling process, then adopting a reverse engineering approach, we remove the constraints only
in correspondence of the detachment points of the part.

7.5 Simulated geometries

In this study we simulate the FDM printing process of two parts, shown in Fig. 7.7: a planar
spring (a) and a bridge model (b). In particular we observe that the planar spring and the
bridge model have comparable dimension on the XY plane, while the planar spring presents
a reduced dimension along Z-axis.

The first model is printed without raft, thus the adhesion force plays an important role,
while the second model is printed using support structures (needed for geometry) and raft as
usually done in long printing processes (≥ 3 hours).
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0.95 mm

40 mm

65 mm
25 mm

17.5 mm

102.5 mm

(a) (b)

Figure 7.7: Geometry of the planar spring (a) and bridge model (b)

For sake of completeness, we report in Tab. 7.3 the adopted printing process parameters.

Geometry Tf Tp Tc Infill Raft Supports
[◦C] [◦C] [◦C] [%]

Planar spring 240 90 45 100 No No
Bridge 240 120 45 30 Yes Yes

Table 7.3: Printing process parameters adopted for the planar spring and bridge
model

The 3D printer used for the present study is a 3NTR A4v3 Win. The machine is equipped
with three extruders, which can be heated up to 410 ◦C, through a ceramic heating component;
a nozzle of 0.4 mm of diameter is used. The bed temperature can reach 120 ◦C, while the
heated chamber can reach 85 ◦C. Figure 7.8 shows the part orientation with respect to the
printing bed.

(a) (b)

Figure 7.8: Layout of the printed parts with respect to the building plate; (a) planar
spring, (b) bridge.

7.6 Sensitivity analysis on simulation parameters

The FDM numerical analyses are mainly influenced by (i) the time step ∆t, (ii) the meshing
strategy, and (iii) the adopted constitutive model. We now focus on the planar spring problem
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(Fig. 7.7(a)) and we investigate the influence of the parameters listed above on the simulation
results, adopting the ranges discussed in the following:

1. Time step. The printing process has been simulated with the time steps listed in Tab.
7.4:

∆t1 ∆t2 ∆t3 ∆t4 ∆t5 ∆t6 ∆t7 ∆t8 ∆t9
Value [s] 8 4 2 1 0.5 0.25 0.125 0.0625 0.03125

Table 7.4: Time steps adopted for the planar spring simulation

2. Meshing strategy. As previously discussed, in order to correctly reproduce the printing
process, it is necessary that the typical element height is equal to a sub-multiple of the
filament height. Accordingly, to be fully consistent with the real process, the element
width should be equal or a sub-multiple of the filament width, but in some cases this
meshing strategy can lead to finite element models with a very large number of elements
(≥ 106), which requires very strong computational resources. For this reason we also
investigate meshing strategies consistent with the height but not with the width of
the deposited filament. In this work we use a square base mesh with variable height.
Denoting with ly the filament width and with hy the filament height (i.e., the element
height), we report the adopted meshing strategies in Table 7.5:

Meshing strategy Height Width
M-1 hy 4ly
M-2 hy 2ly
M-3 hy ly
M-4 hy ly/2
M-5 hy/2 ly/2

Table 7.5: Meshing strategies adopted for the planar spring simulation. In red, the
meshing strategies consistent only with the filament height. In blue, the meshing
strategies fully consistent with filament dimensions

3. Constitutive model. ABS properties needed for numerical simulations can be divided
in two groups: (i) physical properties, including density, heat coefficient, specific heat
and expansion coefficient; (ii) mechanical properties, including Young’s modulus and
yielding stress; all those properties are temperature dependent. We always consider
the dependency of the physical properties on the temperature and we investigate the
effect of neglecting, or including, also the dependency of the mechanical properties on
the temperature. Accordingly, in Tab. 6 we report the combinations of the adopted
constitutive models with the temperature dependence of the ABS mechanical properties.



7.7. Validation 171

Constitutive model Physical properties Young’s modulus Yield stress
Linear elastic - 1 (LE1) Variable Constant (Ta) -
Linear elastic - 2 (LE2) Variable Variable (Fig. 7.5) -
Elasto plastic - 1 (EP1) Variable Variable (Fig. 7.5) Constant (Ta)
Elasto plastic - 2 (EP2) Variable Variable (Fig. 7.5) Variable (Fig. 7.6)

Table 7.6: Constitutive models adopted for the considered ABS filament. For each
constitutive model we remark the temperature dependence of the physical and the
mechanical properties. Ta represents the ambient temperature

7.7 Validation

To validate the developed numerical framework, we compare the Z-axis displacements obtained
from the simulation to the ones obtained from experimental measurements. The reference
value for z-axis displacements has been assumed as the theoretical one from the CAD model.
In particular, for the planar spring we consider the experimental results of four samples, while
for the bridge model we consider two experimental tests, but, due to the high repeatability of
the printing, we compare the numerical prediction with just one experimental measurement.
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S-9
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S-11
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B-12
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B-1

B-3

B-5
B-6

B-8
B-9

B-10
B-11

(a) (b)

Figure 7.9: Test points for the evaluation of the error between simulation results
and experimental measurements

For each model we evaluate the numerical errors in specific test points. Figure 7.9 shows
the test points for both the planar spring (a) and the bridge model (b).

The error evaluation is slightly different between the two models. For the planar spring,
in each test point, we consider the Z-axis displacements measured on each sample uiz and we
calculate the average Z-axis displacement umz . For the bridge model, instead, in each test
point we consider the Z-axis displacement uz measured on a single sample. Then, we evaluate
the point-wise Z-axis displacement errors. For the planar spring we calculate the difference
between the average of the experimental measurement and the simulation displacement umz −
uhz , then we estimate the relative error (umz − uhz )/umz . For the bridge model the procedure is
very similar, except that umz is replaced by uz.

Finally, we estimate the global displacement error for each model calculating the coefficient



7.8. Results and discussion 172

of variation CV of the obtained data:

CV =
SD

µ
, with: SD =

√∑
N (u∗z − uhz )2

N
, and µ =

∑
N u
∗
z

N
(7.12)

where SD is the standard deviation, µ is the arithmetic mean, N is the number of the test
points, and u∗z correspond to umz for the planar spring and to uz for the bridge model.

7.8 Results and discussion

7.8.1 Sensitivity analysis on simulation parameters

In this section we show the influence of the simulation parameters on the thermal and me-
chanical analysis results of the planar spring model. All the simulations have been carried out
on a Intel Core i7-6700 CPU 3.4 GHz machine, using 16GB of Ram and 4 CPUs.

7.8.2 Time step

We study the time step influence on simulation results considering the meshing strategy M-3
and the constitutive law EP2. Figure 7.10 shows the temperature and the Von Mises stress
fields during the sequential element activation and at the end of the printing process, respec-
tively. In particular, we show the results obtained with the largest (∆t1) and the smallest
(∆t9) time steps. The element activation temperature should be equal to the extrusion tem-
perature Tf (see Tab. 7.3). We note that the adopted time step strongly influences the
activation temperature: in fact, using the time step ∆t9, the activation temperature is close
to Tf , while with the time step ∆t1 the activation temperature is less than Tf/2.

Dt1 = 8 sec Dt9 = 0.03125 sec

Nodal Temperature [°C]

238.7°C110.4°C

Time Step

Von Mises Stress [MPa]

Max:
12.38 MPa 

Max:
11.67 MPa 

Figure 7.10: Results of the thermal and the mechanical analysis obtained with the
smallest (∆t1) and the largest (∆t9) time steps. The time step choice has a signifi-
cant influence on the element activation temperature, while it has less influence on
the mechanical analyses results
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On the contrary, looking at the residual stress results, we appreciate a low difference
between the residual Von Mises stress obtained with time step ∆t1 and with time step ∆t9;
in both cases the stress distribution looks almost coincident, except on the corners of the
model where the time step ∆t9 allows to predict a stress gradient that is not well predicted
with the time step ∆t1. In Fig. 7.11 we show the detailed variation of the element activation
temperature and the residual stresses for increasing time steps. The activation temperature
difference is justified observing that the average cooling rate of an ABS filament, during a
standard FDM printing process, is close to 25 ◦C/s Bellehumeur et al. [2004], thus to capture
a temperature variation of 1 ◦C, it is necessary a time step lower than 0.04 s. Consequently,
adopting higher time steps, it does not allow to correctly capture the temperature field time
evolution during the deposition process.
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Figure 7.11: (a): decreasing of the activation temperature with increasing time
steps. (b): Von Mises stress (σvm) and stress tensor components (σij) variation
with time step.

Finally, in Fig. 7.12 we show the dependency of the computational time on the time step
for both the thermal and the mechanical analysis. We appreciate how the computational
time of the mechanical analysis carried out with the time step ∆t9 is 9 times higher than the
computational time obtained with time step ∆t1.
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Figure 7.12: Computational times variation (CPU time) with the time step. A
significant increase in computational times is observed, in particular, for the me-
chanical analysis when ∆t is lower than 1 s.

According to this results, we can conclude that: (i) a small enough time step is mandatory
to evaluate the temperature distribution during the printing process; (ii) the residual stress
field at the end of the printing process is not significantly influenced by the adopted time step;
(iii) the computational time is strongly influenced by the time step choice, in particular with
regard to the mechanical analyses with time steps below ∆t4.

7.8.3 Meshing strategy

We study the influence of the meshing strategy on simulation results with the constitutive law
EP2 and with the time step ∆t5. Figure 7.13(a) shows the layers of the sliced model, while
Figs. 7.13(b)-(f) show the adopted meshing strategies. The filament height (i.e., the layer
height) hy is equal to 0.35 mm for the first layer and to 0.2 mm for the other layers, while the
filament width is equal to 0.5 mm for each layer.

PHYSICAL LAYERS 

MESHING STRATEGY   M-4

Elements: 65400 Elements: 131200

0.35 mm
0.2 mm
0.2 mm
0.2 mm

MESHING STRATEGY   M-3

Elements: 16400

MESHING STRATEGY   M-1 MESHING STRATEGY   M-2

Elements: 1300

MESHING STRATEGY   M-5

Elements: 4100
(a) (b) (c)

(d) (e) (f)

Figure 7.13: Adopted meshing strategies for the planar spring simulation, according
to Tab. 7.5

In Fig. 7.14 we show the results of the thermal and the mechanical analyses obtained
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with the considered meshing strategies. In particular, we show the temperature during the
sequential element activation and the residual stresses at the end of the printing process. With
the meshing strategies M-3 and M-5, we obtain very similar results both in terms of element
activation temperature and in terms of maximum Von Mises stress; furthermore, the stress
field distribution is very similar for the two cases. Meshing strategy M-1, instead, presents
local modifications of the stress path in correspondence of the corners of the planar spring,
in comparison with meshing strategies M-3/5. Looking, in specific, at the bottom corner
of the model, we observe that the stress gradient obtained with the meshing strategy M-1
is significantly lower from the one obtained with the meshing strategies M-3 and M-5. In
particular, the Von Mises stress difference between points A and B is equal to 0.67 MPa with
mesh M-1, to 4.02 MPa with mesh M-3, and to 4.13 MPa with mesh M-5. This discrepancy can
be justified considering that the meshing strategy M-1 has a base dimension that is four times
the filament width; instead meshes M-3 and M-5 are fully consistent with filament dimensions.

Nodal      [°C]
Temperature MESHING STRATEGY   M-3

180.7°C

Von Mises 
Stress [MPa]

Max:
11.67 MPa 

181.9°C

MESHING STRATEGY   M-5

MESHING STRATEGY   M-3 MESHING STRATEGY   M-5

Max:
11.83 MPa 

MESHING STRATEGY   M-1

MESHING STRATEGY   M-1

173.4°C

Max:
11.15 MPa 

A

B

A

B

A

B

Figure 7.14: Temperature and Von Mises stress distribution obtained varying the
meshing strategy. Significantly different activation temperature is observed for
meshing strategies M-1 and M-3/5. Local modifications of the stress path can be
observed at the corners of the model, between meshing strategies M-1 and M-3/5

Finally, in Fig. 7.15 we show the dependence of the computational times on the number of
elements for both the thermal and the mechanical analyses. We observe that the computational
times have almost a linear behavior while increasing the number of elements.
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Figure 7.15: Computational times variation (CPU time) with increasing number of
elements. We appreciate a linear behavior of the computational times both for the
thermal and the mechanical analysis

In summary, the choice of the meshing strategy is not univocal. We have shown that a
finer meshing strategy, fully consistent with the filament dimensions, allows to predict with
more accuracy stress gradients, although the computational demand strongly increases. We
suggest to use a finer meshing strategy for small models which require lower computational
costs and in which the local effect can significantly affect the deformed shape of the part.
On the other hand, in large models, where the local effects are negligible in comparison with
the global dimensions of the part, we suggest to adopt a coarser meshing strategy to contain
computational costs.

7.8.4 Constitutive model

We study the influence of the constitutive model on simulation results with the meshing
strategy M-3 and with the time step ∆t5. Since the adopted physical properties are the same
for all the constitutive models, no variation is observed among the thermal analysis results.
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Von Mises Stress [MPa]

Von Mises Stress [MPa]

LINEAR ELASTIC – 1     (LE1) LINEAR ELASTIC – 1     (LE2)

ELASTO PLASTIC – 1     (EP1)

Max:
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Max:
11.85 MPa 

ELASTO PLASTIC – 2 (EP2)       

Figure 7.16: Von Mises stress at the end of the printing process obtained varying
the constitutive model. (a, b): yielding surface is not defined. (c): yielding surface
is not dependent on the temperature. (d): yielding surface is dependent on the
temperature. More details about the constitutive models are specified in Table 6

In Fig. 7.16 we show the Von Mises stress fields obtained at the end of the printing process.
Since the cooling process has not yet taken place, building plate and chamber temperature
are defined as in Tab. 7.3.

As discussed in Section 7.3 (see Fig. 7.6), for a given temperature the Von Mises stress
must not exceed the corresponding yield stress. The results of the analyses confirm that the
constitutive models LE1 (a), LE2 (b) and EP1 (c) do not allow to obtain physically acceptable
values of the residual stresses. The only constitutive model that allows to achieve physically
acceptable residual stresses is the elasto plastic model EP2 with the yielding stress dependent
on the temperature (d).

7.9 Validation

In the present section we compare the displacements, obtained with our simulation scheme,
with the displacements obtained trough experimental tests. The samples have been measured
with a high precision laser scanner (Julight S.r.l.), with spatial and vertical resolution of 200
nm.

According to the results shown in Section 7.8.1, we have adopted a thermo-elasto-plastic
constitutive law for both models, but different meshing strategies and time steps. The planar
spring, compared to the filament dimensions, is a relatively small model in which the local
effects can significantly affect the final results, therefore we have adopted meshing strategy
M-4 and time step ∆t6. Compared to the filament dimensions, the bridge is a relatively large
model and the local effects are negligible, therefore we have adopted meshing strategy M-2
with time step ∆t3.
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7.10 Planar spring

Figure 7.17 shows a samples of the planar spring after the detachment from the building plate;
in particular we notice the warpage effect at the corners of the structure. Figure 7.18 shows
the vertical displacements of the upper surface of the four samples, obtained through the
experimental measurements.

(a) (b)

Figure 7.17: Planar spring model after the detachment from the building plate.
Warpage effect is appreciable at the corners of the component

We observe how the deformed shapes of the four samples are similar; in particular the high-
est displacements are found in correspondence of corner A where the printing process starts.
Furthermore on the sides along X direction the samples show a very similar displacements
path.

[mm] [mm]

[mm]

A A

A

SAMPLE 1 SAMPLE 2

SAMPLE 3
[mm]ASAMPLE 4

Figure 7.18: Experimental measurements of the vertical displacements of the upper
surface of the planar spring. Four different samples have been considered

Since the part has been printed without raft, in order to simulate the part detachment
from the building plate, we need to identify the points of the samples which remain attached
at the building plate at the end of the cooling process. Knowing that the samples height is
equal to 0.95 mm (see Fig. 7.7(a)), it is sufficient to find the points of the upper surface with
Z coordinate equal to 0.95 mm.
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SAMPLE 1 SAMPLE 2

SAMPLE 3

ATTACHED POINTS DETACHED POINTS

SAMPLE 4

Figure 7.19: In blue, the points that remain attached to the building plate at the
end of the cooling process. In red, the points detached from the building plate at
the end of the cooling process

Figure 7.19 shows the points that remain attached to the building plate (blue points)
and the points which are detached from the building plate (red points). We notice that the
distributions are very similar for the four samples.

During the simulation of the printing process, we impose Dirichlet boundary conditions
setting all the displacements components to zero on the bottom nodes of the planar spring;
then, according with the results shown in Fig. 7.19, to simulate the part detachment after
the cooling process, we remove the constraints on the bottom nodes in correspondence to the
(experimentally observed) detached points. Since the detached points are not precisely the
same among the four samples, we assume a point to be detached if it is detached at least twice
on the four samples.

We underline that, in general, the physical points do not match the mesh nodes, so in
order to state which nodes have to be detached at the end of the cooling process, we need to
interpolate the measured points with the mesh nodes. We consider for each node a square
influence area with size equal to ly (i.e., the base size of the element) and centered in the node.
Then, we consider the points that belong to the influence area: if the number of the detached
points is grater than the number of the attached ones, the node is assumed to be detached.

In Fig. 7.20 we show the simulation results in terms of residual stresses at the end of the
printing process (a), at the end of the cooling process (b) and after the part detachment from
the building plate (c).
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Von Mises Stress [MPa] END OF COOLING PROCESS (b)

Tp: 90°C
Tc: 45°C
Pc: ON

(a) (b) Tp: 25°C
Tc: 25°C
Pc: ON

(c) Tp: 25°C
Tc: 25°C
Pc: OFF

Tp: Plate temperature
Tc: Chamber temperature
Pc: Plate constraints

LEGEND:

END OF PRINTING PROCESS

AFTER PART DETACHMENT

(a)

(c)Von Mises Stress [MPa] 

Figure 7.20: Von Mises stress at significant time instants of the simulation. Residual
stresses increase during the cooling process due to the shrinking effect. Residual
stresses are, finally, relaxed after the constraints removal

We observe a consistent increase of the residual stresses between the end of the printing
process and the end of the cooling process. This effect arises due to the constraints applied on
the bottom of the model that does not allow the planar shrinking of the part. After removing
the constraints corresponding to the detached nodes, we can appreciate the relaxation of the
residual stresses due to the release of the elastic strain energy.

Figure 7.21 shows the simulated Z axis displacements at the end of the printing process
(a), at the end of the cooling process (b) and after the part detachment from the building
plate (c), respectively. We appreciate how the model exhibits a shrinking effect during the
cooling process and how, after part detachment, the deformed shape is qualitatively similar
to the experimental results proposed in Fig. 7.18. In particular we can observe that the
maximum displacement is in correspondence of corner A; furthermore we appreciate the same
displacement path on the sides along X direction.
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Z - Displacements [mm] END OF PRINTING PROCESS END OF COOLING PROCESS

AFTER PART DETACHMENTZ - Displacements [mm] 

A

(b)

Tp: 90°C
Tc: 45°C
Pc: ON

(a) (b) Tp: 25°C
Tc: 25°C
Pc: ON

(c) Tp: 25°C
Tc: 25°C
Pc: OFF

Tp: Plate temperature
Tc: Chamber temperature
Pc: Plate constraints

LEGEND:

(a)
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Figure 7.21: Z axis displacements at significant time instants of the simulation.
Displacements at the end of both printing and cooling process are of an order of
magnitude lower than the displacements after part detachment

Finally, we observe that the displacements after constraints removal are of an order of
magnitude greater than the displacements during printing and cooling process.

Test Point u1z u2z u3z u4z umz uhz umz − uhz
(umz − uhz )

umz
[µm] [µm] [µm] [µm] [µm] [µm] [µm] [%]

S-1 315 254 331 397 324 376 -52 -16.0
S-2 226 219 245 231 230 269 -39 -16.8
S-3 305 251 329 243 282 382 -100 -35.5
S-4 412 353 337 393 374 348 26 6.9
S-5 323 273 302 293 298 268 30 10.0
S-6 341 263 412 387 351 372 -21 -6.1
S-7 242 201 315 145 226 296 -70 -31.1
S-8 351 248 298 367 316 412 -96 -30.4
S-9 214 227 302 295 260 256 4 1.3
S-10 234 241 206 332 253 422 -169 -66.5
S-11 424 553 622 578 544 508 36 6.7

Table 7.7: Experimental and numerical values of Z axis displacements on the planar
spring test points. The errors are calculated between the average of the experimen-
tal results umz and simulation results uhz (measured in µm)

In Tab. 7.7 we report the Z axis displacements of the four samples in the test points.
We compare the experimental displacements with the numerical ones and we evaluate the
point-wise errors.

We can observe that the highest point-wise error is found in correspondence of point S-
10 (see Fig. 7.9) where the simulation overestimate the experimental displacement of about
66.5%. In test points S-3, S-7, and S-8 the error is around 30%, while in the other test points
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is always below 20%.
Finally, from the results of Tab. 7.7, we obtain the following coefficient of variation:

CV = 23.5%

Looking at the point-wise errors we notice that the larger errors are caused by an over-
estimation of the displacements. The source of this error must be sought in the adopted
detachment procedure (see Section 7.4). The real detaching process occurs when the stresses
exceed the adhesion force, thus part of the strain energy is spent to break the constraint gen-
erated by the adhesion force. In the simulated detachment process, instead, no dissipation of
strain energy occurs since constraints are simply removed in correspondence of the detached
points and, therefore, the numerical displacements exceed the experimental ones. Finally,
another possible source of error may consists in a non-perfect matching between the physical
detached points and the finite element detached nodes.

7.11 Bridge model

The bridge model is significantly different from the planar spring, since, even if the base sizes
are comparable, the height of the bridge is an order of magnitude larger than the planar spring
height. The bridge has been printed using rafts; furthermore the printing process involves two
important issues:

o The infill path of the model is 30%, meaning that not all the elements will be activated
during the simulation;

o The printing process needs support structures among the pillars. In the proposed frame-
work we assume that, during the printing and the cooling process, the component is
perfectly attached to the supports; as a consequence we do not simulate the printing
process of the support structures, but we, simply, replace them with perfect clamps in
correspondence of the bottom parts of the deck among the pillars (which would be in
contact with the support structures). Besides leading to a much faster simulation, this
approach is consistent with the physical process because the last layers of the supports
are larger than the underlying layers and larger than the bridge deck; moreover in these
layers the adopted filament dimensions are larger than in the other layers. This solution
increases the stiffness of the supports, favoring the clamping of the bridge deck with the
support structures.

Figure 7.22 shows the sample before and after the supports removal. At the end of the cool-
ing process the bridge is perfectly attached to the support structures; after support removal,
the bridge shows a remarkable warpage. Furthermore, we observe an anomalous indentation
between the top of the external pillars and the deck of the bridge. The physical supports
removal can be considered an instantaneous process, therefore our simulated detaching proce-
dure (Section 7.4) is fully consistent with the physics of the problem.
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BRIDGE BEFORE SUPPORTS REMOVAL

BRIDGE AFTER SUPPORTS REMOVAL

Raft

Support
structures

Anomalous
indentation

Anomalous
indentation

Figure 7.22: Bridge model before and after the supports removal. A warpage effect
is clearly evident on the upper surface of the model after support removal

We observe that the deformed structure is symmetric with respect to both X-Z and Y-Z
plane; moreover, when the bridge is positioned on a horizontal planar surface, only the two
central pillars touch the planar surface, while the other pillars result detached. During the
simulation of the printing process, we impose Dirichlet boundary conditions setting all the
displacements components to zero on the bottom nodes; then, during the detachment simu-
lation we have removed all the constraints except on the two central pillars. We remark that
this assumption does not affect in any way the final deformed shape of the model, which could
also be obtained with other constraint configurations and imposing a rigid motion. In Figure
7.23 we show the results of the experimental measurements of the bridge.

1.55 mm
101.16 mm

104.89 mm
(a)

(b)

Figure 7.23: Experimental measurements of the bridge model. (a): XZ surface of
the model; (b) detail of the upper surface of the model

We present the XZ surface (a) and a detail of X-axis and Z-axis displacements of the
upper surface of the bridge (b). In Fig. 7.24 we show the simulation results in terms of
residual stresses at the end of the printing process (a), at the end of the cooling process (b),
and after the supports removal (c). During the cooling process residual stresses significantly
increase due to the shrinking effect and the presence of the constraints. After support removal
from the building plate, the residual stresses partially relax and part deformation takes place.
Furthermore, we can appreciate how the highest stresses are located in correspondence of the
interface between the pillars and the deck.
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Von Mises Stress [MPa] END OF PRINTING PROCESS END OF COOLING PROCESS

AFTER SUPPORTS REMOVALVon Mises Stress [MPa] 
Tp: 120°C
Tc: 45°C
Pc: ON

(a) (b) Tp: 25°C
Tc: 25°C
Pc: ON

(c) Tp: 25°C
Tc: 25°C
Pc: OFF

Tp: Plate temperature
Tc: Chamber temperature
Pc: Plate constraints

LEGEND:

(b)(a)

(c)

Figure 7.24: Von Mises stress at significant time instants of the simulation. Residual
stresses increase during the cooling process due to the shrinking effect. Residual
stresses are, finally, relaxed after the constraints removal

Figure 7.25 shows the numerical Z axis displacements at the end of the printing process
(a), at the end of the cooling process (b), and after the supports removal (c). Looking at the
displacements, we appreciate a slight shrinking effect after the cooling process and we notice
that the deformed shape after support removal is qualitatively similar to the experimental one.
Furthermore, we observe that the simulation is able to predict also the anomalous indentation
between the external pillars and the deck.

Z - Displacements [mm] END OF PRINTING PROCESS END OF COOLING PROCESS

AFTER SUPPORTS REMOVALZ - Displacements [mm] 
Tp: 120°C
Tc: 45°C
Pc: ON

(a) (b) Tp: 25°C
Tc: 25°C
Pc: ON

(c) Tp: 25°C
Tc: 25°C
Pc: OFF

Tp: Plate temperature
Tc: Chamber temperature
Pc: Plate constraints

LEGEND:

(b)(a)

(c)

Figure 7.25: Z axis displacements at significant time instants of the simulation. A
shrinking effect is detected during the cooling process and the indentation between
the external pillars and the deck of the bridge is evident in the simulation

Fig. 7.26 shows the anomalous indentation in correspondence of the interface between the
external pillars and the deck of the bridge.
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SIMULATION PREDICTIONREAL BRIDGE MODEL

Figure 7.26: Detail of the indentation between the top of the external pillars and
the deck of the bridge. The simulation is able to predict this anomalous effect

As first quantitative comparison between simulation and experimental results, we study
the characteristics of the upper surface of the bridge after support removal. In Fig. 7.27 we
show the X-axis (a) and the Z-axis (b) displacements of XZ surface of the bridge. To analyze
the upper surface of the part, we consider the Z-axis displacements in correspondence of the
center and the X-axis shortening.

X - Displacements [mm] AFTER SUPPORTS REMOVAL

Z - Displacements [mm] 

101.25 mm

1.64 mm
105.34 mm

AFTER SUPPORTS REMOVAL

(a)

(b)

Figure 7.27: X axis and Z axis displacements of the XZ surface of the bridge

The relative displacement error between numerical and experimental measurements is equal
to 5.9%. X-axis shortening is calculated starting from the nominal length of the bridge which
is equal to 102.5 mm (see Fig. 7.7b)). The relative shortening error between numerical and
experimental measurements is equal to 6.7%. An analogous procedure is adopted to evaluate
the X-axis elongation of the bottom surface of the bridge. In this case, the relative error
between numerical and experimental measurements is equal to 18.8%.

In Table 7.8 we report the Z axis displacements of the considered the test points. The
experimental displacements are compared with the numerical ones and the point-wise errors
are calculated. All the errors are below 20% and in all the points the simulation overestimate
the numerical displacements. Furthermore it is interesting to notice that the errors of the
bottom surface test points B-1:B-6 (see Fig. 7.9) are higher than 10%, while the errors of the
top surface test points B-7:B12 are lower than 10%.
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Test Point uz uhz uz − uhz
(uz − uhz )

uz
[µm] [µm] [µm] [%]

B-1 1824 2074 -250 -13.7
B-2 961 1143 -182 -18.9
B-3 553 650 -97 -17.5
B-4 548 639 -91 -16.6
B-5 984 1136 -152 -15.4
B-6 1831 2023 -192 -10.5
B-7 1417 1469 -52 -3.7
B-8 851 874 -23 -2.7
B-9 409 437 -28 -6.8
B-10 413 427 -14 -3.4
B-11 841 855 14 -1.7
B-12 1402 1444 -42 -3.0

Table 7.8: Experimental and numerical measurements of Z axis displacements on
bridge model test points. The errors are calculated between the experimental results
uz and simulation results uhz (measured in µm)

Finally, we obtain the following coefficient of variation:

CV = 12.2%

The global simulation error is lower than the one obtained for the planar spring. This
result was expected considering that the detaching procedure, in this case, is more repeatable
and thus, more consistent with the physical one.

7.12 Conclusions

In this work, using the commercial software Abaqus, we have developed a FEA framework to
simulate the Fused Deposition Modeling process. The simulation framework has been analyzed
in detail, with a particular focus on the sequential element activation scheme; furthermore,
we have investigated the influence of the simulation parameters on the results of the analysis.
We concluded that:

o The time step has a large influence on the the local temperature distribution during the
printing process, while it has a minor influence on the mechanical analysis results;

o The meshing strategy is important to reproduce the real printing process. A finer mesh-
ing strategy is suggested in case of small models to investigate local effects, while a
coarser meshing strategy is recommended in case of large models in which the local
effects are negligible, where small and large refers to the dimensions of the models in
comparison with the filament dimensions;

o The constitutive model must be calibrated with accuracy. In particular, temperature
dependency of Young’s modulus and yield stress limit must be taken into account in
order to obtain physically acceptable results.
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With the proposed framework we have simulated two case studies: a planar spring and
a bridge model, studying and adopting, for the simulation parameters, a suitable trade-off
between computational time and results accuracy. According to the real printing process, two
different detachment procedures have been considered and the limitations of each model have
been discussed in detail. We have validated the simulation outcomes through a comparison
with experimental tests. We are able to capture correctly the deformed shape of the models,
furthermore, 23% and 12% vertical displacement errors have been detected for the planar
spring and the bridge model, respectively. These errors can be justified by the adopted simpli-
fied modeling assumptions but also by measurement errors. We showed that the temperature
dependency of some physical properties of the extruded filament, as the yielding stress and
Young’s modulus, must be considered to obtain physically acceptable results and cannot be
neglected when performing FDM process simulations.

7.13 Limitations

The major limitation of this study lies in the execution of numerical simulations without
considering any type of adhesion model between the first layer and the building plate. The
introduction of any type of adhesion model requires the execution of complex experimental
tests, carried out at different temperatures, to measure the adhesion force between the plate
and the filament. The procedure proposed in the present work is able to capture the deformed
shape of the printed component and obtain an acceptable agreement with experimental data.



Chapter 8

Final remarks

In this thesis we developed simulation frameworks able to reproduce the two widely diffused
3D printing processes: Powder Bed Fusion (PBF) and Fused Deposition Modeling (FDM).

The first part of this work is dedicated to PBF. We have analyzed the physical aspects
involved within this very complex technology; in particular we have focused on phase-change
modeling and thermo-fluid dynamic evolution of the melt pool, which influences shape and
mechanical properties of the final part. From a literature review it resulted that there are
two levels to simulate PBF process: the powder level and the continuum level; advantages
and disadvantages of each technology have been discussed in detail. In this thesis we have
investigated both simulation approaches.

On one side, Powder level simulations aim to predict melt pool evolution and stability
during the printing process. The only method which has revealed capabilities of simulating
such complex processes is the lattice Boltzmann method (LBM). Starting from the kinetic the-
ory of gases we derived the Boltzmann equation and, finally, the lattice Boltzmann scheme;
moreover we have proved that LBM mathematically represents a non conventional method to
solve Navier-Stokes and Advection-Diffusion equations. We have adopted the lattice Boltz-
mann method to solve some interesting thermo-fluid-dynamic problems, including droplet
wetting at variable temperatures and solid-liquid phase change. The next step of our work
will be to include the phase change within the thermo-fluid dynamic models so to reproduce
the entire melting process.

On the other side, continuum level simulations are used to predict temperature distribu-
tions, residual stresses and deformations of the final part. In this work we have set up a finite
element scheme based on sequential element activation in which the laser scan path is accu-
rately taken into account as well as the laser power distribution. We have used a finite element
commercial software to simulate the heat source interaction with a domain constituted of two
layers of powder. In particular we have studied the influence of several process parameters on
temperature and residual stress distributions, showing that these distributions are dependent
on laser energy density. Finally, using a coarsest meshing strategy, we have simulated an entire
part produced with SLM and evaluated the displacements after detachment from the building
plate.

The second part of this thesis has been dedicated to Fused Deposition Modeling (FDM). We
have analyzed the physical aspects involved within this technology with particular attention to
the bonding phenomena occurring between the filaments and the adhesion force between the
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plastic filaments and the building plate. Like for PBF, also in case of FDM, the process can be
simulated at the filament/fiber level and at the component level. In this work we have adopted
uncoupled thermo-mechanical finite element analysis, based on sequential element activation,
to reproduce with high fidelity FDM printing process starting from the information contained
in the G-Code file. The simulations have been validated trough a comparison between the
numerical displacements and those obtained trough experimental tests. Next step of our work
will be to include the adhesion force in simulation.

In conclusion in this thesis we have studied in detail the critical aspects of PBF and FDM
from a computational mechanics point of view; moreover we have set up a practical, even
if approximated framework to predict residual stress and displacement fields in 3D printed
parts. In case of SLM the predicted displacements revealed to be consistent with the order of
magnitude of literature results. In case of FDM, instead, the comparison with the experimental
data revealed the method to be able to predict the displacements with good accuracy.
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