
UNIVERSITÀ DEGLI STUDI DI PAVIA 

 

Dottorato di Ricerca in 

Psicologia, Neuroscienze e Statistica Medica   

 

 

 

Identification of plasma proteins causally related to 

Multiple Sclerosis via a Mendelian Randomization 

approach: a study on multiplex families from the 

founder population of the Nuoro province (Sardinia) 

 

 

Ph.D candidate: 

Gabriele Morani 

 

Tutor: 

Prof.ssa Luisa Bernardinelli 

 

 

 

 

 

 

 

A. A. 2015-2018 – XXXI ciclo 



 

1 

 

Abstract  

Background: The pathogenesis of Multiple Sclerosis (MS) is poorly understood. A 

better understanding of the causal pathways involved in this disease is needed as 

a basis for developing new therapies. 

Objectives: With this study we try to assess the existence of causal relationships 

between a large set of candidate plasma proteins and MS. Our analysis is based 

on 20 multiplex families from the founder and genetically homogeneous 

population of the Nuoro province, Sardinia (Italy). Our aim is to improve our 

understanding of the pathophysiological bases of this disease, providing important 

candidates to be prioritized for further studies on MS and for drug discovery 

possibly leading to the improvement of the clinical conditions of the subjects 

affected by this disabling disease. 

Methods: We investigated each protein, in turn, for a possible causal effect on MS, 

taking advantage of the use of Mendelian Randomization (MR) methods to avoid 

the classical biases that affects observational studies. To overcome the limitations 

of observational studies we adopted a MR approach to the analysis, where genetic 

variants act as instrumental variables for the assessment of the putative causal 

effect. We applied different MR methods based on summary statistics: Inverse-

Variance Weighted as the main method and the Weighted Median Estimator and 

Egger regression for sensitivity analysis purpose. The data supported causality of 

a number of proteins, which we then checked via bidirectional MR analysis to 

assess potential reverse causation.  

Results: In the end, 3 proteins showed significant results with both Bonferroni and 

Benjamini-Hochberg corrections, in particular MOBP, ZMYND19 and EFCAB14. 

Following the bidirectional analysis though, ZMYND19 showed a significant result 

in the reverse-direction too, suggesting some reverse causation effect. It seems 

that, in this case, the disease itself could influence the level of this protein in 

plasma. The final and most interesting findings in the end are therefore MOBP and 

EFCAB14. 

Conclusion: Whereas MR methods are typically applied to high-level exposures, 

such as obesity and cholesterol, ours is one of the few studies that uses standard 

MR methods to identify genes that drive the disease by influencing the 

concentration of their coded proteins, applying a systematic routine of analysis on 

a very large set of candidate proteins in what seems to be a very promising and 
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useful exploratory approach. We confirmed two proteins being causally related to 

MS. The variants in the genes coding for these proteins were found statistically 

associated to MS in previous studies. 
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1. Introduction 

 

Nothing in life is to be feared, it is only to be understood. 

Now is the time to understand more, so that we may fear less.  

- Marie Curie 

 

1.1 Presenting the study 

 

Observational epidemiological studies can be subject to a variety of biases and 

have therefore to face a fundamental problem: it can be very difficult, or even 

impossible, to separate causal associations from those that arise from 

confounding or reverse causation.  

If a researcher is interested in some disease biomarkers as potential predictors of 

disease risk, it is not essential that the biomarker-disease association is causal: a 

demonstrable and consistent association of the biomarker with the disease can be 

more than sufficient in most of cases. However, if the main interest relies instead 

in the potential aetiological role of a biomarker possibly modifiable by public 

health measures or drug treatment, in assessing the impact of a medical 

intervention, in prioritizing health resources, evidence on a causal association is 

essential.  

Mendelian randomization (MR)1 is an ensemble of techniques, which have 

undergone a massive and rapid development in the last few years, in which genetic 

variants are used to help discern causal from non-causal associations between 

environmental exposures or biomarkers and disease outcomes. This is made 

possible by two intrinsic characteristics of genotype: random allocation of parental 

alleles to zygotes at meiosis, which, being independent of environmental 

exposures, reduces the potential for confounding in genetic association studies in 
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a way that resembles randomized treatment allocation in clinical trials2, and the 

invariant nature of the DNA sequence and unidirectional flow of biological 

information, from gene sequence through intermediate phenotypes to disease, 

which avoids reverse causation3. 

In last years, research has seen a huge increase in MR studies. A systematic review4 

conducted on studies published between 2004 and 2015 revealed that the 

majority have been in the fields of cardiovascular disease and diabetes (51% of 

published studies), other disease areas including cancer (10%) and mental health 

(10%) while most MR studies (86%) have been of disease biomarkers such as blood 

lipids, body mass index (BMI) or blood pressure, and 50% have used a candidate 

gene approach to identify suitable instruments. However, the ever-increasing 

number of genome-wide association studies (GWAS) is now providing a rich source 

of potential instruments for MR analysis, even though theƌe͛s still ŵuĐh disĐussioŶ 

about proper procedures to use in selecting instruments for this kind of designs5. 

We apply the approach of MR to study Multiple sclerosis (MS).  

MS is the most prevalent chronic inflammatory disease of the central nervous 

system (CNS)6. It affects more than 2 million people worldwide, and it is currently 

incurable. It causes fully or partially reversible episodes of neurologic disability, 

usually lasting days or weeks. After typically 10 to 20 years, a progressive clinical 

course develops in many of the persons affected, eventually leading to impaired 

mobility and cognition.  

Currently in the market can be found more than a dozen disease-modifying 

medications aiming at reducing the frequency of transient episodes of neurologic 

disability and the accumulation of focal white-matter lesions. Unfortunately, 

though, no medication fully prevents or reverses the progressive neurologic 

deterioration caused by the disease, but the question of whether disease-

modifying medications can delay clinical progression is controversial.  

With this study we try to assess the existence of causal relationships between a 

large set of candidate plasma proteins and MS, investigating each protein, in turn, 
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for a possible causal effect on MS, taking advantage of the use of Mendelian 

Randomization methods to avoid the classical biases that affects observational 

studies. Our analysis is based on 20 multiplex families from the founder and 

genetically homogeneous population of the Nuoro province, Sardinia (Italy), which 

constitutes an interesting choice for the mapping of complex traits, since the 

structure of isolated populations tends to attenuate the confounding effects of 

unknown population structure, to show low genetic and environmental 

heterogeneity and to offer as well simpler underlying association structure. 

Our aim is to improve our understanding of the pathophysiological bases of this 

disease, providing important candidates to be prioritized for further studies on MS 

and for drug discovery possibly leading to the improvement of the clinical 

conditions of the subjects affected by this disabling disease.  
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2. Multiple Sclerosis 

 

In examining disease, we gain wisdom about anatomy and 

physiology and biology. In examining the person with disease, we 

gain wisdom about life. 

    - Oliver Sacks 

 

Multiple Sclerosis (from here abbreviated as MS), also kŶoǁŶ as ͞disseŵiŶated 

sĐleƌosis͟, is primarily an inflammatory demyelinating disease of the CNS first 

described in 1868 by the French neurologist Jean Martin Charcot. In this disease 

the fatty myelin sheaths around the axons of the brain and spinal cord are 

damaged, leading to demyelinated plaque which consist of a well-demarcated 

hypocellular area characterized by the loss of myelin, relative preservation of 

axons, and the formation of astrocytic scars7, 8. Demyelination is the results of 

several mechanisms, including immune mediate effects by inflammation 

cytokines, macrophages or T-cells, as well as an antibody-mediated damage to the 

myelin and complement-mediated injury (Figure 1), and leads to reduction of 

conduction speed (saltatory conduction) in the affected nerve, giving rise to 

clinical symptoms and signals typical of the disease9. 
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FIGURE 1: Cascade of events possibly underlying demyelination and axonal degeneration in 

multiple sclerosis. Within the central nervous system, activated T lymphocytes release 

inflammatory cytokines, chemokines, and matrix metalloproteinases (MMPs). Moreover, T cells 

activate microglia cells/macrophages to enhance phagocytic activity, the production of cytokines, 

and the release of toxic mediators such as nitric oxide (NO), propagating demyelination and axonal 

loss. Autoantibodies (Abs) crossing the blood-brain barrier or locally produced by B cells or mast 

cells contribute to this process. Autoantigens activate the complement cascade, resulting in the 

formation of the membrane-attack complex and subsequent lysis of the target structure. CD8+ 

cells are capable of attacking the axon and oligodendrocytes directly. The combination of toxic 

signals and the disturbed axon-glia interaction pave the way for axonal degeneration. The up-

regulation of Ca2+ channels and the increased Ca2+ influx might perpetuate this process. High-

frequency signaling of neurons results in axonal degeneration, especially upon exposure to nitric 

oxide. The loss of signaling activity and trophic support might contribute to axonal degeneration in 

connected neurons as well. 10 

 

MS is an autoimmune disease11 that has a peak onset between ages 20 and 40 

years, however it may also develop in children and in addition has been reported 

in individuals aged above 60 years. MS affected women approximately twice as 

often as men12. The prevalence of MS varies considerably around the world. 

Kurtzke13 classified regions of the world according to prevalence that is highest in 
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northern Europe, southern Australia, and in the middle part of North America. The 

prevalence in the Italian population shows different rates throughout the country. 

In particular it was observed a low rate of 53 cases per 100.000 inhabitants in 

Central and South Continental Italy and a high rate of 81 cases per 100.000 in the 

northern regions14. Central Sardinia prevalence is different from that observed in 

Continental Italy, with a peak prevalence amongst individuals of 200 per 100.000, 

a rate that is among the highest in the world15.   

 

FIGURE 2: The geography of multiple sclerosis: prevalence per 100,000 population. 

 

MS is believed to develop as a result of specific interactions between 

environmental factors, genetic susceptibility and the development of a pathologic 

immune-mediated response leading to focal myelin destruction, axonal loss, and 

focal inflammatory infiltrates. In this scenario are also important the epigenetic 

modifications, that could play a role in the development and progression of the 

disease6. The prevailing theory is that the disease is triggered by environmental 

factors but only in those individuals with complex genetic risk profiles. 

The pathophysiology of MS is not fully understood yet. Investigators and clinicians 

who have studied MS agree that the immune system plays a critical role in the 
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development of lesions, especially during the acute early phases of the disease 

characterized by relapses. The main pathologic hallmark of MS is the demyelinated 

plaque, which has specific histological and immunocytological characteristics 

depending on the activity of the disease. Histologically an MS plaque is 

characterized by marked predominance of CD8+ T cells and a relative lack of CD4+ 

T cell. The most recent hypothesis is that CD8+ T cells, ɶɷ cells, natural killer cells, 

and local antigen presenting cells pass over the blood brain barrier under 

undetermined circumstances, enter the CNS and cause an immune attack resulting 

in the inflammatory lesions in CNS. Another important immunopathological 

feature is continuous synthesis of immunoglobulins in cerebrospinal fluid (CSF), in 

fact CSF IgG remain one of the most predictive immunological test for the 

diagnosis of MS9. 
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2.1 Genetic factors 

 

Evidence that the genetic factors have a substantial effect on susceptibility to 

multiple sclerosis is unequivocal. The concordance rate of 31 percent among 

monozygotic twins is approximately six times the rate among dizygotic twins (5 

percent). The absolute risk of the disease in a first-degree relative of a patient with 

multiple sclerosis is less than 5 percent; however, the risk in such relatives is 20 to 

40 times the risk in the general population. The MHC region on chromosome 6p21 

is the most important genomic area, well-known to be related to MS16, 17, but 

many other regions in other chromosomes are associated to this disabling disease. 

A genetic map of Multiple Sclerosis (as of 2014) by the International Multiple 

Sclerosis Consortium is shown in figure 3. 

 

FIGURE:3  MS Genetic Map as of 2014, IMSGC18. 

 

MS is a multigenic disease involving hundreds of genes and each gene contributes 

a fraction of the risk factor Also the severity and course of multiple sclerosis is 

https://www.google.it/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjmxq3knsnaAhUBzqQKHUFEDasQjRx6BAgAEAU&url=http://www.msdiscovery.org/news/news_briefs/14062-159-genetic-variants-now-known-be-associated-ms&psig=AOvVaw29COy521EtSZU2R9nAofUa&ust=1524327011784320
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influenced by genetic factors. Epidemiologic evidence to support this premise 

comes from studies examining the rate of concordance for measures that describe 

and quantified variations in the course of disease, including the age at onset, the 

proportion of patients in whom the disease progresses, and the extent of disability 

over time. Variants of the interleukin-1β-receptor and interleukin-1-receptor 

antagonist genes, immunoglobulin Fc receptor genes, and apolipoprotein E gene 

have been associated with the course of the disease19. 
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2.2 Environmental factors 

 

The environment also exerts a significant influence on MS susceptibility20. A 

wealth of studies strongly supports vitamin D deficiency as a key factor for MS. 

The prevalence of MS correlates with latitude and UV radiation and both vitamin 

D intake and low vitamin D levels are inversely associated with risk of MS. Possibly 

the strongest evidence for a role for vitamin D is the association of 2 genes 

involved in vitamin D biology with MS. As in other immune cell types, vitamin D 

influences development and functionality of B cells. This pleiotropic hormone 

plays an important role in B-cell homeostasis and function by decreasing cell 

proliferation, inducing apoptosis, and inhibiting plasma cell differentiation. 

Experimental infection of laboratory animals with various viruses induces 

demyelination in the CNS. The most studied viral animal model of MS is the disease 

iŶduĐed ďǇ Theileƌ͛s ŵuƌiŶe eŶĐephaloŵǇelitis ǀiƌus ;TMEVͿ, a ŵouse eŶteƌiĐ 

pathogen that belongs to the single-stranded RNA picornaviruses21. The disease 

model is chronic-progressive in susceptible mice, a striking contrast to the much-

used autoimmune EAE model. Two salient features make it the best-suited model 

for studying MS. There is evidence of an immune response to virally infected cells 

as well as autoimmune response triggered by viral infection in the CNS, both of 

which are potentially similar to MS. Epstein-Barr virus (EBV), human herpes virus 

6 (HHV-6), varicella zoster virus (VZV), and Chlamydia pneumonia are some of the 

proposed infectious agents in humans implicated in MS22. 
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2.3 Symptoms and current diagnosis of MS 

 

MS has different primary symptoms caused by the loss of myelin and also 

secondary symptoms triggered by primary MS symptoms. Early symptoms of MS 

are widely believed to result from axonal demyelination, which leads to the 

slowing or blockade of conduction. 

Most common primary symptoms include numbness and weakness in arms, leg 

and face; chronic fatigue and depression; pain at different levels; vision problems 

like blurred vision, altered depth perception or even vision loss; disturbed 

coordination like ataxia (lack of coordination) or tremor (involuntary movement 

of an arm or leg); bladder and bowel problems and cognitive impairments in 

memory, mental flexibility, attention and information processing speed. The 

regression of symptoms has been attributed to the resolution of inflammatory 

oedema and to partial remyelination. Irreversible axonal injury, gliotic scarring, 

and exhaustion of the oligodendrocyte progenitor pool may result from repeated 

episodes of disease activity and lead to progressive loss of neurologic function. 

Axonal injury may occur not only in the late phases of multiple sclerosis but also 

after early episodes of inflammatory demyelination. 

Secondary symptoms triggered by the primary ones include continuous urinary 

tract infections due to primary bladder problems or muscle deterioration due to 

loss of movement in an arm or leg. Since MS does not considerably reduce life 

expectancy, patients-which are mostly young adults-have to continue their daily 

lives suffering from these symptoms. Since MS-specific immunoassays are not 

available yet, the disease diagnosis is mainly based on the clinical history and 

laboratory investigations proving disease episodes that have affected more than 

one part of the CNS in more than one occasion and at least one month apart. 

Therefore, the diagnostic process is significantly longer than many other diseases, 

taking up to 5 years. Another difficulty concerning the diagnosis of MS is that most 

of the related clinical features are not MS-specific. Although the use of MRI scan 
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of the brain and spinal cord is the preferred diagnostic test so far enabling the 

detection of typical multiple lesions in more than 95% of patients, such kind of 

lesions may be present in people without the clinical symptoms of MS, in people 

older than 50 years or in patients of other monophasic disorders like acute 

disseminated encephalomyelitis (ADEM). Since MRI results by itself are usually not 

sufficient, additional criteria are used in the diagnosis of MS. One of them is the 

examination of the CSF by lumbar puncture, which helps to sort out other disease 

possibilities like chronic infection and vasculitis mimicking an MS appearance. In a 

CSF test, the most informative analysis is the qualitative assessment of the IgG 

pattern by using isoelectric focusing with immunoblotting and the comparison 

ǁith the patieŶt͛s IgG leǀel iŶ ďlood. Hoǁeǀeƌ, Ŷeitheƌ this test is MS-specific, since 

elevated IgG levels in CSF are also detected in patients with progressive spinal cord 

disorders caused by retroviral infections23, 24. 
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2.4 Types and treatments of MS 

 

There are several types of MS, differing in their clinical patterns of activity (Figure 

4). Relapsing-remitting MS (RRMS) is the most common form of the disease, where 

symptoms appear for several days to weeks, after which they usually resolve 

spontaneously. After tissue damage accumulates over many years, patients often 

enter the secondary progressive stage of MS (SPMS), where pre-existing 

neurologic deficits gradually worsen over time. Relapses can be seen during the 

early stages of SPMS but are uncommon as the disease further progresses. 

 

FIGURE 4: Graphical representation of the MS progression types. 

 

About 15% of patients have gradually worsening manifestations from the onset 

without clinical relapses, which defines primary progressive MS (PPMS). Patients 

with PPMS tend to be older, have fewer abnormalities on brain MRI, and generally 

respond less effectively to standard MS therapies25. Progressive relapsing MS is 

defined as gradual neurologic worsening from the onset with subsequent 

superimposed relapses. Progressive relapsing MS (and possibly a proportion of 

https://www.google.it/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwi68Y36ncnaAhVEC-wKHUABAyUQjRx6BAgAEAU&url=http://www.clevelandclinicmeded.com/medicalpubs/diseasemanagement/neurology/multiple_sclerosis/&psig=AOvVaw2lPXUX9bhKopE5-UVo-Qzj&ust=1524326783898689
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PPMS) is suspected to represent a variant of SPMS, where the initial relapses were 

unrecognized, forgotten, or clinically silent26. 

The course of MS in an individual patient is largely unpredictable. Patients who 

have a so called clinically isolated syndrome as their first event have a greater risk 

of both recurrent events and disability within a decade if changes are seen in 

clinically asymptomatic regions on MRI of the brain. The presence of oligoclonal 

bands in cerebrospinal fluid slightly increases the risk of recurrent disease27. Ten 

percent of patients do well for more than 20 years and are thus considered to have 

benign multiple sclerosis. Women and patients with predominantly sensory 

symptoms and optic neuritis have more favourable prognosis. Life expectancy may 

be shortened slightly, in rare cases, patients with fulminant disease die within 

months after the onset of MS. Suicide remains a risk, even for young patients with 

mild symptoms28. 
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2.5 Multiple sclerosis in Sardinian population 

 

Repeated epidemiological assessments of MS in the Mediterranean island of 

Sardinia have demonstrated how incidence of the disease is among the highest in 

the world, with an incidence rate of 4.2 and prevalence of 152 per 100,000 

inhabitants15. The high incidence of the disease on the island likely derives from 

the particular genetic makeup of Sardinians and from the founder effect, possibly 

underlying transmission of MS-susceptible genetic material originating from few 

common ancestors29. A recent report has demonstrated a marked increase in MS 

incidence on the island over the last three decades. In addition to the temporal 

trend of MS, an anticipation of age at onset has been reported in Sardinia over the 

past 50 years. The latter phenomena may have been influenced not only by 

stochastic and epigenetic events but also by environmental variants interacting 

with the individual genetic makeup30. 

Considering these facts, the Sardinian population has been counted as a special 

population in the context of understanding the relative contribution of 

environmental and genetic factors for the development of MS. This homogeneous 

population represents an ideal dataset31-33 for studies like the one presented here 

with the aim of identifying novel causal pathways that could help develop new 

therapeutic strategies and better understand the pathogenic aspects of the 

disease, as they may shape the development and progression of the disease 

itself15, 34. 
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3. What is ͞causality͟? A brief history 

 

Causa latet: vis est notissima. 

- Ovid 

 

3.1 The ͞Đausal͟ proďlem 

 

The very central aim of most of the studies in health, social science and economic 

research, is to learn about causal explanations of the data, i.e. to unfold cause-

effect relationships among variables and/or events.  

So, causal analysis goes one step further of standard statistical analysis, which 

consists in assessing parameters of a distribution from samples drawn of that 

distribution, inferring with the help of such parameters associations among 

variables, estimate beliefs or probabilities of past and future events. Causal 

analysis aims in fact to infer not only beliefs or probabilities under static 

conditions, but also the dynamics of beliefs under changing conditions, as changes 

induced by treatments or external interventions35. 

Understanding the world and not limiting ourselves to describe it is what causality 

is, in the end, about. 

The problem of discriminating, with a certain amount of confidence, between 

correlation and causation is therefore key in medical research as in many other 

biological and social sciences: what is the cause of a specific disease?  How does 

sŵokiŶg affeĐts soŵeoŶe͛s health? What could be the effect of a certain kind of 

treatment? Which type of interventions could be helpful in improving social issues 

like micro-criminality? Which educational programs would most benefit children 

in schools? All these kinds of questions have always been of primary interest for 
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researchers of all fields, and all of them implies some sort of causality notion and 

needs to answer questions of cause-effect relationships.  

However, how this ambitious task could be achieved has been for decades a 

matter of lively discussion.  

Especially in biostatistics and epidemiology though, cautiousness has been 

traditionally the main approach to such problematic topic, and researchers used 

to very rarely even dare to use oƌ pƌoŶouŶĐe the ǁoƌd ͞Đausal͟, stressing the 

mathematical and statistical requirements to be able to give confident and secure 

conclusions, something that ideally was only achieved by controlled experimental 

studies36.  

In addition, bringing more vagueness to the field, it must be said that there did not 

even exist any rigorous translation between the language of causality and the 

language of probability distributions37. This lack of a specific semantic and 

mathematical language to cast and derive causal questions and answers lasted for 

seǀeƌal deĐades ͚till ƌeĐeŶt years and helped ;let͛s saǇ Đaused!Ϳ to delay a more 

decisive and formal approach to the issue.  

Another reason why theƌe͛s ďeeŶ ŵuĐh ŵoƌe talks aďout associations rather than 

causes comes indeed from philosophy. In fact, even philosophers of science 

ĐouldŶ͛t ;ĐaŶ͛t) agree on what properly constitutes a ͞cause͟.  

Narrowing the view only to western philosophy, starting from Plato and more 

substantially Aristotle, with his four causes types (material cause, efficient cause, 

final cause and formal cause), going through the StoiĐ pƌiŶĐiple of ͞uŶiǀeƌsal 

ĐausatioŶ͟ straight to modern philosophers, in particular Hume with his 

formalization of the three factors characterizing causal relations (contiguity of 

cause and effect, priority in time of cause to effect and necessary connection 

between cause and effect), and their everlasting diatribe between rationalists and 

the empiricists, almost everyone has tried to disentangle the problematic issue of 

͞ĐausalitǇ͟ giǀiŶg his oǁŶ ǀieǁ aŶd opinion about the - so hot - topic38.  
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All these are just some of the aspects that contributed to the struggling history of 

causality through the ages.  
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3.2 Fisher and the Design of Experiments 

 

Coming back to contemporary life sciences and statistics though, one of the first 

and most important effort to tackle the problem of which are the essential 

elements to achieve reasonably secure causal conclusions was done in Harpenden, 

by Fisher39, 40 (and later by Yale41, 42 and others). There, at Rothamsted 

Experimental Station, one of the oldest agricultural research institutions in the 

world, were laid the foundations of the theory of experimental design, developed 

mostly in the context of agronomy studies. During those years, among others were 

highlighted some fundamental principles that would have been key for the 

consequent development of the topic: clear definition of experimental units 

(which in most of Rothamsted experiments were plots of soil) and treatments (as 

before, a specific fertilizer), assumptions of unit-treatment additivity, and in 

particular what later would be defined as conditioning on features prior to 

treatment allocation and marginalization of features between treatment and final 

outcome (the absence of what is nowadays defined noncompliance: any 

intervention between treatment allocation and response should either be 

independent of the treatment or reasonably defined as intrinsic part of it)43. 

BƌieflǇ, that͛s a simplistic example of what Fisher and the other researchers were 

studying in those days at Rothamsted:  aiming to determine whether the addition 

of a nitrogen-based fertilizer could cause an increase in the seed yield of a 

particular variety of wheat, a randomized experiment was designed in which a 

field was divided into plots of soil; to each of them was then randomly applied or 

not applied the fertilizer (the treatment variable). No further manipulations were 

then involved until harvest day, when the seed that was harvested from each plot 

was weighted accurately.  

By randomizing the treatment allocation, a sampling distribution is generated that 

allows to calculate the probability of observing a given result by chance if, in 

ƌealitǇ, theƌe is Ŷo effeĐt of the tƌeatŵeŶt.  
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The great and novel insight given by Fisher was that the process of randomization 

could ensure, up to a probability that could be calculated from the sampling 

distribution produced by the randomization, that no uncontrolled common cause 

of both the treatment and the response variables could produce a spurious 

association44. ͞Randomisation properly carried out […] ensures that the estimates 

of error will take proper care of all such causes of different growth rates, and 

relieves the experimenter from the anxiety of considering and estimating the 

magnitude of the innumerable causes by which his data may be disturbed͟40.  

It͛s however uŶŶeĐessaƌǇ to saǇ that Fisheƌ͛s ǁoƌk did Ŷot put aŶ eŶd to 

controversy and further debates; on the contrary, it was the spark that ignited a 

heated and lively discussion. 
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3.3 Development of Causal Inference Theory 

 

From then, many renown authors gave their contributions to the development of 

the topic, facing also the problem of causality in non-experimental studies. 

Cochran45, Cox46 and Cox & McCullagh47 suggested methods involving the use of 

supplementary variables to improve efficiency of estimator and the 

implementation of instrumental variables to make identifiable a causal effect of 

interest.  

Cochran48 gave also a huge contribution exploring many aspects of the analysis of 

observational studies (of which more will be said in the next chapter) and reported 

Fisher's reply to a question that he had asked him about how to make 

observational studies more likely to yield causal answers: "Make your theories 

elaborate", a quote that would have become ever-present in causality debates 

from then on.  

In 1965, Bradford Hill49 contributed to develop a theory of causal inference in 

observational studies, proposing a set of guidelines: 

1) Strength of association: a strong association is more likely to have a causal 

component than a modest association  

2) Consistency: a relationship is observed repeatedly  

3) Specificity: a factor influences specifically a particular outcome or 

population  

4) Temporality: the factor must precede the outcome it is assumed to affect 

5) Biological gradient: the outcome increases monotonically with increasing 

dose of exposure or according to a function predicted by a substantive 

theory  

6) Plausibility: the observed association can be plausibly explained by 

substantive   matter (e.g. biological) explanations  
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7) Coherence: a causal conclusion should not fundamentally contradict 

present substantive knowledge  

8) Experiment: causation is more likely if evidence is based on randomized 

experiments  

9) Analogy: for analogous exposures and outcomes an effect has already 

been shown 

Satisfaction of some or all of them would strengthen the case for causality inferred 

from observational studies. Although he did not provide a specific definition of 

͞Đausal͟, the ƌeleǀaŶĐe of this ǁoƌk has ďeeŶ huge in the epidemiological world. 

Rubin50, developed the causal notation of counterfactuals or potential outcomes, 

already introduced by Neyman in 192351. This framework had the merit to finally 

give a formalization to some intuitive approach to causality that were commonly 

used in the field. Specifically, let Yx denote the outcome for a random subject in 

the study population, if the subject would hypothetically receive exposure level x. 

Depending on what exposure level the subject actually receive, Yx may or may not 

be realized, and is referred therefore to as a potential outcome.  

Let X and Y denote for a given subject the observed exposure and outcome; if the 

subject is exposed to level X = x’ then the potential outcome Yx’ is assumed to be 

equal to the observed factual outcome Y. The link between potential and factual 

outcomes is usuallǇ ƌefeƌƌed to as ͞ĐoŶsisteŶĐǇ assuŵptioŶ͟, aŶd is foƌŵallǇ 

expressed as X = x’ → Yx’ = Y 

Thus, for a subject exposed to X = x’ all potential outcomes except Yx’ are 

unobserved, or counterfactual, echoing the fact that all the unobserved potential 

outcomes correspond to hypothetical scenarios that did not happen, that are 

͞ĐoŶtƌaƌǇ to faĐt͟, which makes those subject-specific causal effects in effects in 

general not identifiable. What can be done in such framework, though, is 

measuring an aggregate impact of the exposure over the whole study population, 

a population causal effect. In fact, the potential outcome Yx may vary across 
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different subjects, and can be treated therefore as a random variable following a 

probability distribution Pr(Yx).  

Dawid52, criticized potential outcomes for unnecessarily suggesting that Y(0) and 

Y(1) (example in the case of a binary treatment/exposure) simultaneously exist 

and therefore have a well-defiŶed joiŶt distƌiďutioŶ also arguing that the 

retrospective nature of potential outcomes is uŶsĐieŶtifiĐ aŶd uŶŶeĐessaƌǇ and 

therefore proposed a decision-theoretic causal inference framework instead. 

Though deeply different in their philosophical fundamentals (or lack of), the 

methods appear to practically suggest the same analysis, though the decision-

theoretic one allows to relax more the strong assumptions behind potential 

outcomes. 

Robins53, 54, in effect explored notions of causality in a clinical trial and 

epidemiological setting.  

Rosenbaum55 has given a searching discussion of the conceptual and 

methodological issues involved in the analysis of observational studies. 

Pearl35, with all of these authors, finally succeeded in these last decades to 

transform cause-effect relationships into objects that can be manipulated 

mathematically, formalizing fundamental concepts like confounding, setting up 

various frameworks for causal inference from both experimental and 

observational studies56, 57.  
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3.4 Independence and conditional independence  

 

Talking about formalities, it͛s tiŵe to briefly introduce some fundamental 

concepts in the theory of statistical inference: independence and conditional 

independence. 

FolloǁiŶg Daǁid͛s work58, conditional independence offers a new language for the 

expression of statistical concepts and a framework for their study, achieving a 

unification of many area of statistics which appear, at first sight, to be entirely 

unrelated. It involves two of the most basic concepts in statistics: independence 

and conditional probability.  

 Independence:  Let X and Y be random variables. We denote by p(x,y) the joint 

density of (X,Y), by p(x) the marginal density of X and by p(x|y) the conditional 

density of X given Y = y.  X⫫Y denote that X and Y are independent, so in term of 

density we have 

p(x,y) = p(x)p(y) 

p(x|y) = p(x)  

and expressing a factorization of p(x,y) we have 

p(x,y) = a(x)b(y) 

p(x|y) = a(x) 

All the above formulations of the property of X⫫Y are mathematically equivalent. 

Conditional Independence: Introducing a further variable Z, we use the notation 

X⫫Y|Z denoting that X and Y are probabilistically independent in their joint 

distribution given Z = z, for any observable value z of Z.  Again, we can deduce the 

following equivalent expressions of this property:  

p(x,y|z) = p(x|z)p(y|z)  (a) 

p(x|y,z) = p(x|z)   (a2) 
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p(x,y|z) = a(x,z)b(y,z)  (b) 

p(x|y,z) = a(x,z)   (b2) 

The content of X⫫Y|Z is probably best captured by (b2), which clarifies that the 

conditional distribution of X, given Y and Z, is in fact completely determined by the 

value of Z alone, so the value of Y provides no further useful information to predict 

the value of X.  It must be noted that the conditional independence relation X⫫Y|Z 

does not necessarily imply the marginal independence X⫫Y. Situations in which 

the two independence conditions are not both respected are common, meaning 

that two independent variables in the population, X and Y, could become 

dependent when we observe (condition on) the precise value of Z.  

Bearing these principles clear in mind can help assessing many problems in the 

framework of causal inference giving a handful approach in formalizing most of 

the causal questions and relationships among the variables under study. 
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3.5 Causal Diagrams  

 

If it͛s haŶdful appƌoaĐhes that ǁe͛ƌe lookiŶg foƌ, theŶ probably nothing can best 

graphical representations. Causal diagrams59, deriving from path analysis and 

structural equations modeling, have been informally used for long time in various 

fields of research, and in past years underwent a proper formal development also 

in epidemiologic research, giving birth to the theory of directed acyclic graphs 

(DAGs). Graphs can provide a useful starting point for identifying variables that 

must be measured and controlled to obtain unconfounded effect estimates, to 

design and program studies and projects, and they also provide a method for 

critical evaluation of traditional epidemiologic criteria for confounding. 

When investigating any causal relationship, it is necessary to start from some set 

of causal assumptions (analysis model) pertaining to causation, measurement, 

selection and probability distributions. Common statistical models require the 

introduction of many parametric assumptions, often untestable or not easy to test 

for; graphical models (also called influence diagrams, relevance diagrams, or 

causal networks), instead, allows to avoid those strong parametric assumptions 

incorporating assumptions about the web of causation not captured by 

conventional ones.  

We will here enounce some of the basic steps to follow for the creation of a causal 

graph along with the fundamental definitions and principles used in graph 

language.  

We can create a causal diagram abstracting the causal assumptions implied in a 

description of the hypothetical relationships existing among the studied variables. 

The points on the graph representing the variables are called nodes or vertices (A, 

B, C, D, E in the example below, Figure 5). Any line or arrow connecting two 

variables in the graph is called an arc or an edge.  
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Two variables in a graph are adjacent if they are directly connected by an arc (in 

the example A and C are adjacent but A and D are not). Single-headed arrows 

represent direct links from causes to effects, not mediated by other variables. For 

example, in our graph the direct effect corresponds to the arrow linking A to C, 

that is a direct effect not mediated by other variables. In the same way, the 

absence of directed arrows means absence of direct effects of a variable on 

another. 

 

 

 

 

  

 

 

 

FIGURE 5: Example of a directed causal diagram. 

 

A trail is a sequence of distinct vertices forming a path in the graph. A path through 

the graph is any unbroken route traced out along or against arrows or lines 

connecting adjacent nodes.  

A directed path from one node to another in the graph is one that can be traced 

through a sequence of single-headed arrows, always entering an arrow through 

the tail and leaving through the head; this path is also called causal path in causal 

graph. In our example the path A-C-D is directed, instead E-C-D is not.  

A variable is an ancestor or cause of another variable if there is a directed path of 

arrows leading out of the first into the second; in this case the second variable is 

A B

C

D E 
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defined a descendent of the first or affected by it. In the example A, B and C are 

ancestors of E and D and E and D are therefore descendants of A, B and C.  

A variable intercepts a path if it is in the path (but not at the ends). Variables that 

intercept directed paths are intermediates or mediators on the pathway.  

A bidirectional (two-headed) arrow, connecting two variables in a graph, is often 

used to indicate that the two variables share an ancestor (have a common cause), 

but the ancestor and their interrelations are not shown in the graph. This common 

ancestor may represent more than one variable. Non-directional dashed line 

represents relations whose source is not specified by the graph.   

A node v of a trail π is a collider in π if it is an internal node of π, and the arrows of 

π meet head-to-head at v. Let S be a subset of the graph nodes: a trail π is said to 

be blocked by S if it contains a node c such that either 

- c ϵ S and c is not a collider in π       

or  

- c and all its descendants are not in S, and c is a collider in π.  

A trail that is not blocked by S is said to be active, two subset A and B are said to 

be d-separated by S if all trails from A to B are blocked by S.  

A graph is acyclic if no directed path in the graph forms a closed loop, so it is not 

possible starting from a node and following the arrow, back to that node (it no 

contains cycle). A directed acyclic graph (DAG) represents a complete causal 

structure, in that all sources of causal dependence are explained by causal link and 

therefore all edges between pairs of nodes have a direction (arrows)60.  

Although causal diagrams provide results similar or equivalent to those obtainable 

using classical counterfactuals causal models, they seem to have a much more 

intuitive appeal, and can be very useful for identification and control of 

confounding or measurement processes. Nonetheless, even graphical approaches 

do not free us from the heavy burden of basing ourselves on solid assumptions, 

non-derivable from observational data alone.    
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3.6 Assessing causality in observational studies 

 

Although the randomised experiment is ĐoŶsideƌed the ͞gold staŶdaƌd͟ for 

making and testing causal hypothesis, it ĐaŶ͛t ďe pƌopeƌlǇ applied to ŵaŶǇ 

(perhaps most) research questions asked by biologists. The strength of the 

randomized experiment is in the fact that we do not need to physically control (or 

even care) for other causally relevant variables in order to reduce the possibility 

that the observed association is due to some unmeasured common cause in our 

sample61.  

Anyway, this kind of studies in some cases present insurmountable challenges to 

the researcher: treatments only targeting risk factors of interest may be difficult 

;oƌ eǀeŶ iŵpossiďleͿ to fiŶd, ŵaŶǇ tǇpes of tƌeatŵeŶts ĐaŶ͛t ďe randomly allocated 

due to ethical or practical reasons (think about a study on the effects of alcohol 

consumption on the risk of developing cancer), they are generally quite expensive 

and time-consuming (especially studies that involve long-termed follow-up of 

subjects). In all these scenarios, alternative approaches to assess causal 

relationships must be adopted, also relying on observational data. 

As defined by Cochran48, in an observational studǇ ͞the objective is to elucidate 

cause-and-effect relationships, or at least to investigate the relationships between 

one set of specified variables xi and a second set yi in a way that suggests or 

appraises hypotheses about ĐausatioŶ͟. 

For the most part, indeed, an observational study is a study of the associations 

between two sets of variables. Attempts to interpret these associations as causal 

or non-causal must rely heavily on information not supplied by the study, though 

some information may come from previous results. 

There are, obviously, difficulties involved. The most familiar difficulty is that the 

treated and control groups (exposed and unexposed subjects) may not be directly 

comparable, since treatments were not randomly assigned to experimental units. 
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Even after adjusting or controlling for observed covariates (i.e., measured 

characteristics prior to treatment allocation), estimates of treatment effects can 

still be biased by imbalances in unobserved covariates48, 62, 63. 

Replication of the results is always strongly recommended before making decisive 

conclusion on causality, but observational studies with different strengths and 

limitations may or may not corroborate one another.  

Even within a single observational study, though, it is often possible, to provide 

some assessment of the evidence about the causal effects of a treatment.  

To this extent, Rosenbaum64 for example suggested a couple of applicable 

methods which included covariance adjustment (subclassification, matched 

sampling or related methods used to adjust for observed covariates), checking the 

consistency of the assumption of strongly ignorable treatment assignment (in the 

absence of such consistency, we cannot safely rely on standard methods of 

adjustment to produce appropriate estimates of treatment effects), examining the 

sensitivity of estimates to assumptions about unobserved covariates (if estimates 

are relatively insensitive to plausible variations in assumptions about unobserved 

covariates, then a causal interpretation is more defensible). 

Some other useful suggestion can be found in Cochran͛s ǁoƌk48. First of all, the 

author recalls the Fisheƌ͛s hint "Make your theories elaborate", meaning that 

when constructing a causal hypothesis, as many different consequences of its 

truth as possible should be envisaged, and observational studies to discover 

whether each of these consequences is found to hold be planned in consequence.  

In addition, since most of the studies are often conducted on restricted 

populations, repetition of the study plan in different environments by different 

workers can be valuable, especially in understanding whether results can be 

extended to a broader target population. Since similar studies may be subject to 

the same biases, an approach with a different plan that escapes some of these 

biases could be highly useful. 
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In conclusion, evidence on a question that has to be decided mainly from 

observational studies will usually consist of a heterogeneous collection of results 

of varying quality, each bearing on some consequence of the causal hypothesis. 

Whenever results are contradictory, reaching a verdict surely demands much skill. 

Assessing causal relationship using observational data is therefore no trivial task, 

aŶd theƌe͛s always need for more robust approaches. Mendelian randomization, 

the one we chose to conduct our study, is one of these65. 
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3.7 Mendelian Randomization 

 

As already mentioned, assessing causality in observational studies forces to face 

many different problematic issues, relying on untestable and often implausible 

assumptions such the absence of unknown confounders and of reverse causation 

(the outcome Y itself causes changes in the exposure level X and not vice-versa). 

Confounding is often due to the existence of another cause of Y that is also 

associated with X and controlling for confounding is problematic, as often they are 

unknown or unmeasured making it impossible to account for them in the analysis. 

Mendelian Randomization (MR) framework has been properly proposed to 

address this kind of problems typical in classic epidemiology.  

MR has been defined as ͞iŶstƌuŵeŶtal ǀaƌiaďle aŶalǇsis usiŶg geŶetiĐ 

instruments͟66, and therefore it͛s useful to start presenting what is an 

instrumental variable (IV). 

An IV is a measurable quantity which happens to be associated with the exposure 

of interest, and not associated with any confounding factor nor with the outcome 

except via the hypothesized causal pathway passing through the exposure itself. 

These conditions constitute the fundamental assumptions that must be respected 

by a variable to be considered a valid instrument. Being able to identify reliable IV 

can give rise to natural experiment conditions, from which can be confidently 

inferred causal relationships.  

In MR, genetic variants, simplistically section of the genetic code that differs 

between individuals, are used in causal inference studies as Instrumental 

Variables67. That͛s because genetic variants have some particular characteristics 

that make them fits particularly well with the previous mentioned assumptions: 

genetic variants are in fact generally randomly distributed (alleles randomly 

inherited at meiosis) in the population (except in presence of non-random mating 

and selection effects, which are very rare situations)68 independently of any other 
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variables, so that subgroups of subjects bringing same variants do not differ 

systematically with respect to any of these. This makes the MR framework 

analogous to a RCT69, in particular inferring a causal effect of the exposure on the 

outcome recalls the estimation of an intention-to-treat effect in a RCT.  Moreover, 

the genetic code of each individual is already ͞set up͟ at ďiƌth, denying every 

possibility of a variant to be caused by some variable measured in mature age and 

protecting therefore from reverse-causation possibilities. 

For the MR framework to work, it is crucial though for the necessary assumptions 

of instruments validity to be respected: 

- the variant is associated with the exposure 

- the variant is not associated with any confounder of the exposure-

outcome association 

- the variant does not affect the outcome, except potentially via its 

association with the exposure 

As in all observational scenarios, almost always these assumptions are untestable, 

and researchers have to rely most on basic biological knowledge and previous 

findings.  

In terms of random variables, assuming that we have an outcome Y, function of a 

measured exposure X and unmeasured confounder U, being G our set of genetic 

variants (one or more), these three assumptions can be translated into the 

language of conditional independencies as follows: 

- G ⊭ X (G is not independent of X) 

- G ⫫ U (G is independent of U) 

- G ⫫ Y | X, U (G is independent of Y conditional on X and U) 

which corresponds to the following graph70, 71 (Figure 6): 
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FIGURE 6: Directed Acyclic Graph illustrating Instrumental Variable assumptions. 

 

The first assumption guarantees the different subgroups defined by the variant to 

have different levels of exposure, implying systemic differences between them.  

A variant which is not strongly associated with the exposure is referred to as a 

weak instrument, which differs from an invalid one to the extent that weak 

instruments can be made stronger collecting more data and still give valid 

conclusions (even if maybe with low power in detecting true causal effects).  

The second assumption reassure that all the other variables in play (observed and 

unobserved) are equally distributed among all the subgroups, making 

comparisons between them reliable.  

The last assumption, in the end, means that that are not any other pathways 

linking the variant to the outcome other than through the exposure. 

Violations of one or more of the assumptions would lead to invalid instruments 

and to biased estimates of causal effects; nonetheless reasons that could lead to 

violate them are different, ranging from biological mechanisms, like pleiotropy 

and canalization, to linkage disequilibrium, to population effects like stratification.   

We will briefly describe some of the most common: 

Pleiotropy: gene or genetic variants can have more than one independent 

phenotypic effect. When a genetic variant is associate with multiple different risk-

U 

Y X G 
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factors for the outcome, then either IV assumption 2 or 3 is violated and the 

variant is therefore invalid 

Linkage disequilibrium: ideally all loci on the genome exhibit a complete 

independence in the population (i.e. are in linkage equilibrium). Variants which 

are physically near to each other on the same chromosome though could be 

inherited together, showing correlated distributions. If some of these correlated 

variants are associated with competing risk factors, IV assumptions are violated in 

a similar way as the pleiotropy case. 

Population stratification: if a population under study can be divided into distinct 

subpopulations, for example typically when there are subgroups of different 

ethnic origin, the frequency of the genetic variants could differ substantially 

between the groups. This could lead to misinterpret an association caused from 

these differences attributing it to the genetic variant.  

Methods to face all those problematic limitations have been developed in the 

Mendelian Randomization framework, using single as well as a plurality of genetic 

variants, some of which like summary statistics methods used in this study will be 

treated more specifically in the methods section.  
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4. Materials and Methods 

 

Take a method and try it. If it fails, admit it frankly, and try 

another. But by all means, try something. 

    - Franklin D. Roosevelt 

4.1 Dataset 

4.1.1 Sample collection and genotyping 

 

MS patients were ascertained through the case register established in 1995 in the 

province of Nuoro, Sardinia. All the cases were diagnosed according to Poser 

criteria24. Twenty extended pedigrees containing from three to eleven MS patients 

were selected for the analysis. The overall structure of the selected twenty 

pedigrees includes 98 cases and 838 unaffected relatives. Of these 936 subjects, 

268 (212 controls and 56 case) have genotype data; 211 (142 controls and 69 

cases) have only protein data, while 131 (90 controls and 41 cases) had both 

protein and genotyping data. 

Genotype data were obtained using Immunochip from a previous study72, in which 

the quality control-filtered dataset included 131.497 SNPs. A pruned set of 19.121 

independent SNP (r2 < 0.20 within a windows size of 100 Kb) was obtained using 

PLINK͛s iŶdep-pairwise command and used in the MR analysis, guaranteeing no LD 

presence among the SNPs brought to the final analysis.  
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4.1.2 Measuring concentration of plasma protein 

 

Proteome in plasma has started to be studied in a high throughput manner, thanks 

to the technological development of the Human Protein Atlas (HPA) project which 

allowed to produce a large resource of polyclonal antibodies (mAbs)73 

(www.proteinatlas.org). 

The availability of an antibody array format called Suspension Bead Array (SBA), 

consisting of HPA antibodies immobilized onto microspheres in suspension, allows 

to perform plasma analysis on up to 384 proteins74, 75. 

Antibody-based procedure based on the suspension bead array technology 

enables a unique analysis of body fluids with a high multiplexing degree. Through 

a setup that profiles proteins via direct labelling of whole and unfractionated 

samples with biotin, any given target can be addressed with an antibody. For the 

technology of choice, antibodies are coupled to colour-coded magnetic beads to 

create antibody suspension bead arrays of a desired composition. With direct 

access to more than 22000 antibodies, assays can be performed in a manner yet 

unmet by any other affinity-based procedure to profile proteins in body fluids. 

Instant data acquisition from the flow cytometer, information can be directly 

uploaded for further data analysis. Measurements are performed with the 

Luminex LX200 (temperature optimization) or the Flexmap 3D instrument 

(biomarker discovery). To determine relative signal intensities from the binding of 

antibodies to their target antigens, Median Fluorescent Intensities (MFI) are 

displayed when counting at least 50 events per bead ID. The obtained data is 

processed using Probabilistic Quotient Normalization (PQN)76 over the entire data 

set to account for possible differences in sample dilution. 

A list of potentially MS related proteins had been put together by clinical 

collaborators and were available for antibody selection. For temperature 

optimization, 78 mAbs antibodies targeting 73 different proteins were utilized; 68 

antibodies were selected from suggestions by the clinical collaborators and 5 

http://www.proteinatlas.org/
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control antibodies were targeting abundant proteins in plasma and CerebroSpinal 

Fluid (CSF) and are TTHY, FIBB, APOA4, CFB and C3. One nonspecific anti-rabbit IgG 

(Jackson Immunotech) and one albumin binding protein (HisABP) were also 

employed as negative and positive controls, respectively. For the biomarker 

discovery study, 379 mAbs were included. 152 of these antibodies were selected 

from suggestions by the clinical collaborators and 176 antibodies from proteomic, 

mRNA and cDNA expression data found in the literature. 

Moreover, since new antibodies produced within the HPA project are routinely 

coupled to a 384-plex suspension bead array to profile plasma samples in a multi-

disease cohort, 56 antibodies that were identified having different relative protein 

levels in a MS cohort as compared to healthy control samples were among the 377 

selected mAbs. Four HisABP (one per bead coupling plate), one anti-rIgG and 

several control antibodies with high abundance in CSF and plasma were also 

included. In the resultant list of 377 mAbs, 337 were targeting unique proteins, all 

antibodies with a concentration >0.04 mg/ml. 

In our opinion, this selection, directly made on the basis of expert ĐliŶiĐiaŶs͛ 

opinion and literature review on the subject, constitutes an optimal starting point 

for our study, and can be reasonably considered a plausible set on which our 

causal investigation can be conducted, hopefully leading to, after the 

implementation of a rigorous and specific statistical analysis, the detection of 

interesting suggestions of new (or confirmation of already known) putative causes 

and targets of the disease. 

From now on, for clarity, readability and uniformity with the original dataset, we 

will refer to each specific antibody targeted product, the real object of sampling 

aŶd aŶalǇsis, as a siŶgle ͞pƌoteiŶ͟.    
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4.2 Selection of IVs 

 

The framework of causal inference, more specifically MR that uses genetic variants 

as IVs, is one of the approaches to tackle the problem of confounding in 

observational studies. Indeed, the association between the genetic variant and the 

disease is not subjected to confounding since the genetic variant has been 

randomized during the meiosis. Under the concept of MR, the genetic variants 

allow to assess the possible causal effect of X on Y, without requiring any 

experimental intervention on X1, 77, 78. 

To be a valid IV for the estimation of the causal effect of interest, the genetic 

variant has to satisfy three core assumption: a) to be associated with X, b) to be 

independent of Y conditional on X and on the confounders of the relationship 

between X and Y; this latter condition means that the IV affect Y only via its effect 

on X and, lastly, c) to be independent of the confounders of the relationship 

between X and Y. No pleiotropic effect of the IV on Y exists when IV satisfies 

condition b) and c). 

Only the first condition is empirically verifiable, by regressing Y on X, as the last 

two involve the unobserved and/or unknown confounders, and thus they cannot 

be tested. In general, when a genetic variant violates these assumptions is 

considered as invalid and its inclusion in the analysis may lead to biased estimates. 

A further requirement is that the IVs must be independents. In fact, one way in 

which confounding could be reintroduced into MR studies is to use IVs that are in 

strong Linkage Disequilibrium (LD). When a locus under study is in LD with another 

polymorphic locus confounding will result if both the loci are associated with the 

outcome of interest. However, using independent genetic variants, which both 

serve as proxies for the risk factor of interest makes much less plausible that 

reintroduced confounding explains the association, since it would have to be 

acting in the same way for these unlinked variants. The use of multiple genetic 
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variants working through different pathways therefore represents a way to avoid 

this kind of problem79. 

By combining the estimates of association from multiple variants into a single 

estimate of the causal effect, an assumption is made that the variants provide 

independent information. In addition, if two genetic variants are in complete LD, 

then inclusion of both variants in the model would not lead to additional 

information. In theory, variants in partial linkage equilibrium could provide 

additional information on the causal effect, and information on such variants 

could be included correctly in a summarized analysis, but highly reliable methods 

to implement that kind of information have not been developed yet. Therefore, 

variants used in a summarized analysis must be uncorrelated in order to obtain 

valid statistical inferences analyses. 

We performed two MR analysis: 1) the main analysis to assess the causal effect of 

the protein level on MS, 2) and the bidirectional MR analysis to investigate a 

possible reverse causation.  

All the analyses were performed adding sex as covariate, accounting for the 

familiar relationship between subjects and choosing a priori significance threshold 

of p<5x10-4 to identify and select significant SNPs from the two models. These 

significant signals composed different lists of IVs to be used respectively for the 

main MR analysis and for the bidirectional MR analysis. 

 

4.2.1 Protein ∼ SNPs association 

 

For the main MR analysis, we needed a sufficient number of independent SNPs to 

be used as IVs, significantly associated with the level of each candidate plasma 

protein. To this aim we fitted linear mixed-effects kinship models between each 

protein profile and each SNPs from the pruned set of independent Immunochip 

genetic variants, using coxme R package. 
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In particular, we used a function which is an implementation of linear mixed 

effeĐts ŵodels able to fit ŵodels ǁith ƌaŶdoŵ faŵilǇ effeĐts, i.e., usiŶg a kiŶship 

matrix for the correlation, called ͞lmekin͟. 

The ƌaŶdoŵ effeĐts liŶeaƌ ŵodel is: y = XȾ + Zb + ε    

b ∼ N(0, σ2A(θ))    ε = N(0, σ2)    

Here β aƌe the fiǆed aŶd b the ƌaŶdoŵ ĐoeffiĐieŶts, aŶd the ǀaƌiaŶĐe ŵatƌiǆ A of 

the ƌaŶdoŵ effeĐts depeŶds oŶ soŵe aƌďitƌaƌǇ ǀeĐtoƌ of paƌaŵeteƌs θ. Foƌ aŶǇ 

fiǆed ǀalue of θ the solutioŶ foƌ the ƌeŵaiŶiŶg paƌaŵeteƌs is ďased oŶ a QR 

decomposition80. 

For known A, this is solved as an augmented least squares problem with  

y∗ = ቀ𝑦0ቁ  X∗ = ቀ0ܺቁ Z∗ = ቀ∆ܼቁ    

where ∆͛∆ = A−1. The dummy rows of data have y = 0, X = 0 and ∆ as the predictor 

variables. With known ∆, this gives the solution to all the other parameters as an 

ordinary least squares problem, which is solved using a QR decompostion. The Z 

matrix is often sparse, so the QR computations are done using the Matrix library 

to take advantage of this. Maximization of L;θͿ ǁith ƌespeĐt to θ is aĐĐoŵplished 

with the optim() function. 

 

4.2.2 MS ∼ SNPs association 

 

For the bidirectional MR analysis to test for the presence of reverse causation, we 

need sufficient number of independent SNPs, to be used as IVs, significantly 

associated with MS. This analysis was performed using GWAF R package81, which 

allows to fit logistic regression via Generalized Estimation Equation (GEE) and to 
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test associations between a dichotomous phenotype and each SNP using an 

independence working correlation matrix, with each family acting as a cluster in 

the robust variance estimation of the genotype effects. 

Liang and Zeger82 first introduced the GEE approach to treat with correlated data.  

Consider a sample of i = 1, . . . , K independent multivariate observations Yi = (Yi1, . 

. . , Yit, . . . , Yini). Here i may represent a cluster with ni observations. 

The expectations E(Yit) = µit are related to the p dimensional regressor vector xit by 

the mean-link function g 

g(µit) = xitT Ⱦ   (1) 

Let 

VAR(Yit) = φait  (2)  

ǁheƌe φ is a ĐoŵŵoŶ sĐale paƌaŵeteƌ aŶd ait = a(µit) is a known variance function. 

Let Ri;αͿ ďe a ǁoƌkiŶg ĐoƌƌelatioŶ ŵatƌiǆ ĐoŵpletelǇ desĐƌiďed ďǇ the paƌaŵeteƌ 

ǀeĐtoƌ α of leŶgth ŵ.   

Let 

Vi = φAi1/2 Ri(Ƚ)Ai1/2  (3)  

be the corresponding working covariance matrix of Yi, where Ai is the diagonal 

matrix with entries ait. For given estimates (φ̂, Ƚ̂Ϳ of ;φ, αͿ the estiŵate Ⱦ̂ is the 

solution of the equation ∑ ∂μ೔𝑇∂β  𝑉௜−ଵሺ ௜ܻ௞௜=ଵ − μ௜ = 0ሻ  (4)  

Liang and Zeger suggest using ĐoŶsisteŶt ŵoŵeŶt estiŵates foƌ φ aŶd α. This 

Ǉields aŶ iteƌatiǀe sĐheŵe ǁhiĐh sǁitĐhes ďetǁeeŶ estiŵatiŶg β foƌ fiǆed ǀalues 

of φ̂  and Ƚ̂  aŶd estiŵatiŶg ;φ, αͿ foƌ fiǆed ǀalues of Ⱦ̂  . This scheme yields a 

ĐoŶsisteŶt estiŵate foƌ β. Moƌeoǀeƌ, K1/2(Ⱦ̂  − βͿ is asymptotically multivariate 

normally distributed with zero mean and covariance matrix ∑ =  limK→∞ ∑ ∑ ∑−ଵ଴ଵ−ଵ଴   (5)  
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where  

∑ =଴ ∑ ∂μ೔𝑇∂β  𝑉௜−ଵ௞௜=ଵ ∂μ೔∂β𝑇  ; ∑ =ଵ ∑ ∂μ೔𝑇∂β  𝑉௜−ଵ௞௜=ଵ 𝐶𝑂𝑉ሺ ௜ܻሻ𝑉௜−ଵ ∂μ೔∂β𝑇            (6)  

ReplaĐiŶg β, φ aŶd α ďǇ consistent estimates and the covariance matrix COV(Yi) by 

(Yi−µi)(Yi−µi)T in (6) yields a so called sandwich estimate Σ̂ of Σ. The estiŵate Σ̂  is a 

ĐoŶsisteŶt estiŵate of Σ eǀeŶ if the ǁoƌkiŶg ĐoƌƌelatioŶ ŵatƌiĐes Ri;αͿ aƌe 

misspecified83. 
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4.3 Mendelian Randomization and Bidirectional MR 

analysis 

 

We use the influence diagram (Figure 7) to graphically represent the general 

problem of interest, the MR approach and the assumptions. We consider X as the 

plasma protein level and Y as the binary outcome given by absence or presence of 

MS. Z1, Z2 and Zj in the graph represent the multiple uncorrelated IVs previously 

selected (see section Selection of IVs) that, under the principle of MR, allow us to 

assess the existence of a putative causal effect of X on Y. In the diagram are also 

reported the unknown and/or unobserved confounders, U, of the relationship 

between X and Y. The influence diagram takes also into account the problem of 

pleiotropy that appears when the association between the IV (in the graph 

represented by Z1) and Y is not entirely mediated by the studied X (i.e. Z1 →Y direct 

arrow). 

 

FIGURE 7: Influence diagram representation of the general problem of interest in this work. The 

arrows in the diagram represent putative cause-effect relationships, and the nodes represent 

random quantities in the problem. The red arrow represents the effect of Y on X (i.e. reverse 

causation). 

 

For the main MR causal analysis, performed for each candidate proteins, we used 

different MR methods: Inverse-Variance Weighted (IVW) as primary method for 
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the main causal analysis, MR Egger regression (MR-ER) and Weighted Median 

Estimator (WME) for the sensitivity analysis. These methods calculate the causal 

estiŵates usiŶg suŵŵaƌǇ statistiĐs oďtaiŶed fƌoŵ the ƌegƌessioŶ estiŵates βXZj of 

the effect of each IVs on the plasma protein level and from the regression 

estiŵates βYZj of the effect of each IVs on MS. 

 

4.3.1 Summary statistics methods – an overview 

 

More specifically, IVW, requires that all genetic variants respect the IV 

assumptions (discussed in previous section), thus assuming that all SNPs are valid 

instruments79. The resulting causal estimate can be interpreted as a weighted 

regression from the effect estimates of the exposure SNPs on the estimates of the 

outcome of the same SNPs (without an intercept term)84. 

MR-ER and WME methods allow to detect the causal effect of interest through the 

simultaneous use of multiple IVs, without requiring that all the instruments satisfy 

the conditions. Whereas both MR-ER and WME require the untestable assumption 

c), MR-ER allows assumption b) to be completely relaxed, and WME allows 

assumption b) to be violated by up to 50% of the instruments. 

MR-ER allows more flexibility in terms of weaker requirements than exclusion-

restriction criterion (i.e. assumption b): the instrument Z affects Y only through X) 

and is more robust to potential horizontal pleiotropy (a genetic variant that affects 

the outcome via a different biological pathway from the exposure under 

investigation); even if this result in a decrement in the power to detect causal 

effects. MR-ER method, as IVW, requires the IVs to satisfy the so-called InSIDE 

assumption, that is the direct pleiotropic effects of the genetic variants on Y have 

to be distributed independently of the genetic associations with X, in this case it 

provides a valid test of directional (unbalanced) pleiotropy, and a valid test of the 

causal null hypothesis. MR-ER uses the InSIDE to estimate the mean pleiotropic 
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effect and a causal effect adjusted for pleiotropy; the slope estimate is a consistent 

estimate of the true causal effect while the intercept is the average pleiotropic 

effect85. 

WME approach allows the IV assumptions to be violated in a more general way for 

the invalid IVs in respect of MR-ER; iŶ faĐt, ŵediaŶ‐ďased ŵethods aƌe agŶostiĐ to 

the mechanism by which the invalid IVs violate the assumptions. Consistent 

estimates would be guaranteed if some genetic variants were invalid IVs due to 

other mechanisms rather than pleiotropy (e.g. LD, population stratification, etc.)86. 

The methods discussed above are synthesized in Table 1. 

Method Assumptions: Allows: 

IVW All SNPs must be Valid 

Instruments 

InSIDE (Instrument 

Strength Independent of 

Direct Effect) 

Pleiotropy with zero 

mean across 

instruments 

/ 

WME At least 50% of SNPs 

must be Valid 

Instruments 

Population stratification, 

Pleiotropy 

MR-ER InSIDE  Directional Pleiotropy 

TABLE 1:  Assumptions to be respected and bias addressable by each method. 

 

All the analysis described above were performed in R using 

MendelianRandomization package87. 
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4.3.2 Inverse-variance weighted 

 

The causal effect of the exposure on the outcome can be estimated using the jth 

ǀaƌiaŶt as the ƌatio of the geŶe‐outĐoŵe assoĐiatioŶ (𝛤̂௝) aŶd the geŶe‐eǆposuƌe 

association estimates88 (̂ߛ௝):  

ߚ̂ =  𝛤̂ೕఊ̂ೕ   
If the IV assumptions are satisfied for genetic variant j, then Γj = Ⱦγj and the ratio 

estimate is consistent asymptotically. Furthermore, if the genetic variants are 

uncorrelated (not in linkage disequilibrium) then the ratio estimates from each 

genetic variant can be combined into an overall estimate using a formula from the 

ŵeta‐aŶalǇsis liteƌatuƌe:  

ூ௏ௐߚ̂ =  ∑ ఊ̂ೕೕ 𝜎ೋ−మఉ̂ೋ∑ ఊ̂ೕమೕ 𝜎ೋ−మ   

where σYj is the staŶdaƌd eƌƌoƌ of the geŶe‐outĐoŵe association estimate for 

variant j. This is ƌefeƌƌed to as the iŶǀeƌse‐ǀaƌiaŶĐe ǁeighted ;IVWͿ estiŵatoƌ79. 

Provided that the genetic variants are uncorrelated, the IVW estimate is 

asǇŵptotiĐallǇ eƋual to the tǁo‐stage least sƋuaƌes estiŵate ĐoŵŵoŶlǇ used ǁith 

iŶdiǀidual‐leǀel data. If all geŶetiĐ ǀaƌiaŶts satisfǇ the IV assuŵptioŶs, theŶ the IVW 

estimate is a consistent estimate of the causal effect (i.e., it converges to the true 

value as the sample size increases), as it is a weighted mean of the individual ratio 

estimates. 

 

4.3.3 Weighted median estimator 

 

The median-based methods have greater robustness to individual genetic variants 

with strongly outlying causal estimates compared with the inverse-variance 

weighted and MR-Egger methods. Formally, the simple median method gives a 
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consistent estimate of the causal effect when at least 50% of the genetic variants 

are valid instrumental variables (for the weighted median method, when 50% of 

the weight comes from valid instrumental variables). For the Simple Median 

Estimator, the estimate is obtained by calculating the ratio causal estimates from 

each genetic variant θ = ȾY/ȾX, aŶd fiŶdiŶg the ŵediaŶ estiŵate.  

With the Weighted Median Estimator, the estimate is obtained by calculating the 

ratio causal estimates and ordering the genetic variants according to the 

magnitude of their estimates, i.e. θ1 < θ2 < ... < θj.  

Then calculating the normalized inverse-variance weights for each genetic variant 

w1, w2,..., wJ, as: 

wj = 
ఉ೉ೕమ𝑠𝑒ሺఉೋሻమ ∑ ఉ೉೔మ𝑠𝑒ሺఉೊ೔ሻమ௃௜=ଵ⁄  

Then finding a k such that 

sk = ∑ 𝑤௜௞௜=ଵ < 0.5  and sk+1 = ∑ 𝑤௜௞+ଵ௜=ଵ > 0.5 

Finally, the weighted median estimate can be calculated by extrapolation as: θWME = θk + (θk+1 − θk) × 
଴.5−𝑠ೖ𝑠ೖ+భ−𝑠ೖ 

The simple median estimate is the same as the weighted median estimate when 

all the weights are equal. Standard errors for both the simple and weighted 

median methods are calculated through bootstrapping86. 

 

4.3.4 MR-Egger regression  

 

͞MR‐Eggeƌ ƌegƌessioŶ͟ appƌoaĐh to Mendelian Randomization was derived from 

a ŵethod iŶ the ŵeta‐aŶalǇsis liteƌatuƌe foƌ the assessŵeŶt of sŵall‐studǇ ďias 

;ofteŶ Đalled ͞puďliĐatioŶ ďias͟Ϳ89. This performs a weighted linear regression of 

the geŶe‐outĐoŵe ĐoeffiĐieŶts 𝛤̂௝ oŶ the geŶe‐eǆposuƌe ĐoeffiĐieŶts ̂ߛ௝:  
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𝛤̂௝  = Ⱦ0E+ȾÊߛ௝  

in which all the ̂ߛ௝ associations are orientated to be positive (the orientation of the  𝛤̂௝  associations should be altered if necessary to match the orientation of the ̂ߛ௝ 

parameters), and the weights in the regression are the inverse variances of the 

geŶe‐outĐoŵe assoĐiatioŶs ;𝜎𝑌௝−ଶ). Reorientation of the variants is performed as 

the orientation of genetic variants is arbitrary (i.e., estimates can be presented 

with reference to either the major or minor allele), and different orientations of 

genetic variants change the estimate of the intercept, as well as the sign and 

magnitude of the pleiotropic effect of the genetic variant. If there is no intercept 

teƌŵ iŶ the ƌegƌessioŶ ŵodel, theŶ the MR‐Eggeƌ slope estiŵate ̂ߚ𝐸 will equal the 

IVW estimate65. 

The value of the intercept term ̂ߚ଴𝐸  can be interpreted as an estimate of the 

average pleiotropic effect across the genetic variants85. The pleiotropic effect is 

the effect of the genetic variant on the outcome that is not mediated via the 

exposure. An intercept term that differs from zero is indicative of overall 

directional pleiotropy; that is, pleiotropic effects do not cancel out and the IVW 

estimate is biased. 

MR‐Eggeƌ ƌegƌessioŶ additioŶallǇ pƌoǀides aŶ estiŵate foƌ the tƌue Đausal effeĐt ̂ߚ𝐸  that is consistent even if all genetic variants are invalid due to violation of b), 

but under a weaker assumption known as the InSIDE (instrument strength 

independent of direct effect) assumption. If the association of the jth genetic 

variant with the outcome 𝛤௝  = ȾYj + αj  where αj is the pleiotropic (direct) effect of 

the variant, then the InSIDE assumption states that the pleiotropic effects αj must 

be distributed independently of the instrument strength parameters γj
90. 
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4.3.5 Prioritizing results 

 

One problem arises when applying all the above-mentioned MR methods on a 

large set of exposures in such an automated way: how to in some way summarize 

the (potentially different) results coming from the 3 different methods on so many 

proteins? In fact, while in single specific cases a researcher could explore in detail 

the possible causes and mechanisms that could lead to different estimates coming 

fƌoŵ diffeƌeŶt ŵethods, it͛s Ƌuite Đleaƌ that this is Ŷot possiďle iŶ a much wider 

analysis like the one we have conducted here.  

In other words, how to be able to prioritize our results basing on the most 

interesting and reliable ones? 

Trying to answer this issue, a couple of possibilities came to our minds. First, the 

more restrictive one: all 3 methods must be significative for the exposure to be 

considered causally associated with the disease. Even if this surely leads to more 

ƌeliaďle aŶd ͞seĐuƌe͟ ƌesults, it is probably a bit too restrictive, eliminating 

potential interesting findings that maybe did not end up having all significant 

estimates due to outliers or heterogeneity of IVs. 

Another way could be to prioritize the main method (IVW) above the others. This 

could make sense, but still it would be too unaware of the results coming from the 

sensitivity analysis, making them probably unnecessary. 

The third method we thought of was based on a majority principle: 2 out of 3 

significative results would be fine to consider an exposure a significative causal 

result. Though this seemed to be the best choice so far, we ended up choosing a 

slightly modified version of it, which in some way consisted in a more technical 

solution, even if simple: taking the median p-value among the 3 methods. This 

solution offeƌs a ŵoƌe ͞ statistiĐal͟ ǁaǇ to disĐƌiŵiŶate aŵoŶg the ƌesults, aŶd also 

allows, as opposed to the simple majority based one, to end up with a single 
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estimate and a single p-value to correct for multiple testing still guaranteeing for 

at least 2 out of 3 of the methods to be significant. 

Then, in the end, we ordered results on the basis of the median p-value among 

the ones resulting from the 3 different methods, and then corrected them for 

multiple testing applying both Bonferroni and Benjamini-Hochberg (BH) 

corrections. In this way we ended up with a list of our final prioritized proteins. 

 

4.3.6 Correcting for multiple comparisons 

 

WheŶ peƌfoƌŵiŶg a laƌge Ŷuŵďeƌ of statistiĐal tests, theƌe͛s Ŷo ǁaǇ to aǀoid that 

some will end up having p-values less than 0.05 (the usual significance level) purely 

by chance, even if all the null hypotheses are really true. The control of the 

increased type I error (rejecting a true null hypothesis, a "false positive" discovery), 

when testing simultaneously a family of hypotheses is a central issue in the area 

of multiple comparisons. 

If we, for example, consider a case where we have 20 hypotheses to test at a 

significance level of 0.05, the probability of observing at least one significant result 

just due to chance is   

P;at least oŶe sigŶifiĐaŶt ƌesultͿ = ϭ − P;Ŷo sigŶifiĐaŶt ƌesultsͿ = ϭ − ;ϭ − Ϭ.ϬϱͿ20 ≈ Ϭ.ϲϰ 

So, we have a 64% chance of observing at least one significant result, even if all of 

the tests are actually not significant. 

Especially in biological statistical applications, from genomics to many other 

biology-ƌelated fields, it͛s Ŷot uŶusual foƌ the Ŷuŵďeƌ of siŵultaŶeous tests to ďe 

way larger than 20, so that the probability of getting a significant result simply due 

to chance keeps raising.  

This problem has received increasing attention in the last few years and there is 

no universally accepted approach for dealing with the problem of multiple 
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comparisons; it is an area of active research, both in the mathematical details and 

broader epistemological questions. 

As for us, in this study we choose to apply two correction methods: the first one, 

Bonferroni method, is way more restrictive and aims at minimizing the numbers 

of false positives while the second one, Benjamini-Hochberg correction, is more 

liberal and powerful and aims at controlling the false discovery rates. 

However, both of the methods rely on some assumptions like that the individual 

tests are independent of each other, which is hardly true in our case. Moreover, 

our dataset was not generated in an agnostic way, but consists in a set of 

candidate proteins, selected a priori for their potential involvement in the disease 

development. For this reason, while in any case we choose to be cautious and 

more restrictive relying on those corrections methodologies in order to be able to 

draw more accurate and highly reliable conclusions, it is sure that ours has been a 

very prudent way, and that the choice of a more liberal approach could be 

debatable.  

Bonferroni 

One classical approach to deal with the multiple comparison problem is to control 

the familywise error rate. Instead of setting the critical P level for significance, or 

alpha ;αͿ, to Ϭ.Ϭϱ, a loǁeƌ ĐƌitiĐal ǀalue is used. OŶe ǀeƌǇ ĐoŵŵoŶ aŶd easǇ 

method to do this is the Bonferroni correction, named after the Italian 

mathematician Carlo Emilio Bonferroni, which sets the significance cut-off at α/n, 

where n is the number of tests. For example, in the example above, with 20 tests 

and α = 0.05, a null hypothesis is only rejected if the p-value is less than 0.0025.  

The Bonferroni correction is appropriate when a single false positive in a set of 

tests would be problematic. It is mainly useful in situations with a small number of 

multiple comparisons and few potential significant results, while with a large 

number of multiple comparisons and many that might be significant, the 

Bonferroni correction may lead to a high rate of false negatives. 
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In addition, it assumes that all tests are independent of each other. In practical 

applications, though, that is often not the case. Depending on the correlation 

structure of the tests, the Bonferroni correction could be then extremely 

conservative, leading to raise even more the rate of false negatives. 

Benjamini-Hochberg 

Therefore, in large-scale multiple testing, an alternative and preferable approach 

to familywise error rate controlling methods, is controlling instead the false 

discovery rate (FDR). This is defined as the proportion of false positives among all 

significant results. The FDR works by estimating some rejection region so that, on 

aǀeƌage, FDR < α. 

One method for controlling the false discovery rate was developed in detail by 

Yoav Benjamini and Yosef Hochberg91 and was then named after the two authors.  

Briefly, it consists in ordering the individual P values from smallest to largest. The 

smallest p-value is given a rank of i=1, then next smallest i=2, etc. Then it compares 

each individual p-value to its BH critical value, (i/n)Q, where i is the rank, n is the 

total number of tests, and Q is the false discovery rate you choose. The largest p-

value that has P<(i/n)Q is significant, and all of the p-values smaller than it are also 

significant. In the end, usually, a corrected p-value is eventually generated. If the 

BH adjusted P value is smaller than the target false discovery rate, the test is 

significant. In our case, we considered as reasonable FDR target, due to the 

exploratory nature of the study, a FDR of 0.10. 

 

4.3.7 Investigating directionality 

 

While we are interested in a putative causal effect of the level of concentration of 

a protein on the occurrence of MS, we, on the other hand, cannot completely 

exclude the coexistence of a reverse causal effect, exerted by the disease on the 
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protein concentration level. This problem of reverse causation is represented by 

the red arrow from Y to X in figure 7.  

The two directions of causality are not necessarily mutually exclusive, and both 

pathways could play a role in a potential positive feedback loop that would need 

detailed and direct study. 

This situation may create difficulties in the estimation of the magnitude of the 

causal effects and elucidating the casual direction of the relationship using 

conventional epidemiological tools is not possible. 

To face this condition, in literature some have suggested the use of a bi-directional 

approach within the framework of Mendelian Randomization92-94, a way that we 

chose to follow in this study. 

In order to analyze the potential reverse causation, we then decided to perform a 

bi-directional MR analysis for the proteins showing a significant result in the main 

causal analysis. On these proteins, we re-run the MR analysis in the opposite 

direction, thus considering the MS as exposure and protein level as outcome, 

assessing the possible causal effect of MS on plasma protein level and to this aim, 

we used the appropriate sets of IVs (i.e. the variants associated with the disease). 

Then a significant result from the first analysis will provide evidence of a causal 

effect of X on Y, and a significant result from the reverse analysis (in addition to 

the previous, with a disjoint set of independent instruments) will suggest that the 

causal relationship between X and Y cannot be totally explained in terms of X 

causing Y, pointing out instead a more complex, and hardly possible to 
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disentangle, relationship in which both the exposure and the outcome exert some 

effects on each other. 
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5. Results 

 

Ut sementem feceris, ita metes. 

- Cicero 

5.1 Selection of IVs 

 

To be able to select instruments to use in the main MR analysis, we firstly fitted 

linear mixed-effects kinship models between each protein profile and each SNPs 

from the set of uncorrelated independent Immunochip genetic variants, using the 

͞lmekin͟ fuŶĐtioŶ iŵpleŵeŶted iŶ the ͞ coxme͟ R package, which allows to include 

in the fitted models random family effects with the input of a kinship correlation 

matrix. We then estimated association between the same SNPs and a 

dichotomous phenotype such as MS, using GWAF R package, fitting logistic 

regression via Generalized Estimation Equation (GEE) using an independence 

working correlation matrix, with each family acting as a cluster in the robust 

variance estimation of the genotype effects. Even if considering each family as an 

independent cluster may not exactly reflect our dataset structure, we considered 

this approach the more reasonable trade-off between simplification and algorithm 

efficiency. 

A sample of the results obtained by these analyses is reported as example in Table 

2, showing association estimates, along with standard errors and p-values, both 

with the disease and one of the studied proteins of a subset of the analysed SNPs. 

The table shows estimated associations with a2m_hpa002265 protein and MS, for 

a sample of 25 SNPs. A similar table with the association estimates for all the 

19121 SNPs analysed has been generated for all the 377 proteins.  
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SNP 
Beta 

MS 

SE 

MS 

P-value 

MS 

Beta 

protein 

SE 

protein 

P-value 

protein 

rs1268538 0.29 0.39 0.47 0.03 0.21 0.87 

rs12691712 -0.40 0.37 0.28 -0.06 0.18 0.75 

rs12692166 -0.34 0.19 0.07 0.11 0.12 0.33 

rs12692220 -0.02 0.15 0.88 -0.07 0.13 0.56 

rs12692850 0.33 0.22 0.13 0.01 0.16 0.97 

rs12693008 0.09 0.18 0.64 -0.04 0.12 0.75 

rs12694867 0.14 0.13 0.29 -0.12 0.13 0.35 

rs12694912 -0.16 0.16 0.34 0.23 0.11 0.04 

rs12695007 0.01 0.16 0.95 -0.19 0.12 0.12 

rs12696030 0.10 0.22 0.65 -0.25 0.14 0.06 

rs12698020 0.37 0.43 0.39 -0.37 0.23 0.11 

rs1269854 -0.05 0.59 0.94 -0.42 0.56 0.45 

rs12701626 0.17 0.42 0.68 -0.25 0.27 0.35 

rs12703354 -0.66 0.43 0.12 -0.01 0.22 0.96 

rs12704637 0.02 0.19 0.92 -0.07 0.13 0.59 

rs12705390 -0.21 0.34 0.54 -0.03 0.19 0.89 

rs12706382 -0.11 0.39 0.78 0.01 0.24 0.97 

rs12706940 -0.03 0.14 0.85 0.05 0.11 0.69 

rs12709148 -0.12 0.15 0.43 0.17 0.12 0.16 

rs12710675 0.12 0.11 0.28 0.07 0.12 0.56 

rs12711517 -0.24 0.17 0.16 -0.15 0.12 0.19 

rs12712078 0.08 0.16 0.63 0.00 0.12 0.97 

rs12712691 -0.02 0.13 0.87 -0.31 0.11 0.01 

rs12712696 -0.18 0.32 0.58 -0.05 0.16 0.78 

rs12712880 0.04 0.21 0.84 -0.41 0.13 0.002 

 

TABLE 2:  Betas, standard errors and p-values for associations with MS and with a2m_hpa002265 

protein. Here shown a sample of 25 SNPs (out of the 19121 analysed). 
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For the main MR analysis, we needed to select for each protein only the variants 

significantly associated with it. Therefore, we chose an a priori significance 

threshold of p<5x10-4 to identify and select significant associated SNPs with each 

protein. 

In Table 15 in the appendix, is shown the final number of SNPs being selected as 

Instrumental Variables in this way for each protein. The protein ending up with 

the higher number of IVs was cp_hpa001834, having 43 genetic variants 

associated with a p-value<5x10-4. Proteins ending up with less than 3 variants 

couldŶ͛t ďe aŶalǇsed usiŶg the pƌeǀiouslǇ ŵeŶtioŶed MR suŵŵaƌǇ statistiĐs 

methods and were therefore excluded by the final analysis. Only three proteins 

among the whole set, ending up with a non-sufficient number of IVs, were 

excluded for this reason from the consequent MR stage: 

c1orf106kif21b_hpa027499, chgb_hpa012602 and csda_hpa034838 (see Table 3). 

For the remaining proteins, the mean number of IVs is 16.73, median is 17.  

 

Antibody ID N° of IVs 

c1orf106kif21b_hpa027499 2 

chgb_hpa012602 2 

csda_hpa034838 1 

 

TABLE 3:  Proteins ending up with less than 3 variants associated with a p-val<5x10-4 and therefore 

excluded by the consequent MR analysis.  
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5.2 Mendelian Randomization analysis 

 

In the main MR causal analyses, we applied three different MR methods, Inverse-

Variance Weighted (IVW) as primary method for the main causal analysis and MR 

Egger regression (MR-ER) and Weighted Median Estimator (WME) for the 

sensitivity analysis, on each of our proteins. In table 4-6 we show an example of 

the results obtained for a2m_hpa002265, ablm2_hpa035808 and 

ace2_hpa000288 proteins. Causal estimates are provided as logOdds Ratio per 1 

standard deviation increase along with standard errors, confidence intervals (95%) 

and uncorrected p-values. For a2m_hpa002265, only Egger Regression method 

showed significant estimates at the nominal level. Ablm2_hpa035808 and 

ace2_hpa000288 showed no significant results for any of the applied methods. 

Along the tables with results we were able to generate graphs of the obtained 

estimates thaŶks to the ͞ŵƌ_plot͟ fuŶĐtioŶ iŵpleŵeŶted iŶ the 

͞MendelianRandomization͟ package.  The function generates a scatter plot of the 

genetic associations with the protein and with the disease and compares the 

causal estimates obtained via the different MR methods applied.  

Being MR-ER fitted to the summary data when the SNP-exposure associations are 

oriented in the positive direction, in order to make it easier to interpret, the SNPs 

have been oriented before generating the plots. 

The graphs for the same 3 proteins are shown here as examples (Figures 8-10) for 

sake of space and text readability, ǁhile it͛s iŵpoƌtaŶt to note that tables and 

graphs like those presented were generated for all the 374 analysed proteins. 
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METHOD Beta SE Lower CI Upper CI P-value 

IVW -0.09 0.11 -0.30 0.11 0.37 

WME -0.17 0.15 -0.47 0.13 0.26 

MR-EGGER -0.44 0.24 -0.91 0.02 0.06 

(intercept) 0.23 0.14 -0.05 0.52 0.11 

TABLE 4:  Betas, standard errors, 95% confidence intervals and uncorrected p-values resulting from 

Inverse-variance Weighted, Weighted Median Estimator and Egger Regression methods for 

a2m_hpa002265 protein. 

 

 

FIGURE 8:  Plot of the betas of association with MS (y axis) and with the protein (x axis, positively 

oriented). Different coloured lines represent causal estimates obtained by the three different 

applied methods. Each dot is a single genetic variant.  
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METHOD Beta SE Lower CI Upper CI P-value 

IVW -0.18 0.21 -0.59 0.23 0.39 

WME -0.22 0.24 -0.70 0.25 0.36 

MR-EGGER 0.27 1.14 -1.96 2.50 0.81 

(intercept) -0.23 0.57 -1.36 0.90 0.69 

TABLE 5:  Betas, standard errors, 95% confidence intervals and uncorrected p-values resulting from 

Inverse-variance Weighted, Weighted Median Estimator and Egger Regression methods for, 

ablm2_hpa035808 protein. 

 

  

FIGURE 9:  Plot of the betas of association with MS (y axis) and with the protein (x axis, positively 

oriented). Different coloured lines represent causal estimates obtained by the three different 

applied methods. Each dot is a single genetic variant.  
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METHOD Beta SE Lower CI Upper CI P-value 

IVW 0.09 0.10 -0.10 0.28 0.37 

WME 0.13 0.12 -0.11 0.38 0.29 

MR-EGGER 0.35 0.32 -0.28 0.97 0.27 

(intercept) -0.14 0.16 -0.44 0.17 0.39 

TABLE 6:  Betas, standard errors, 95% confidence intervals and uncorrected p-values resulting from 

Inverse-variance Weighted, Weighted Median Estimator and Egger Regression methods for 

ace2_hpa000288 protein. 

 

 

FIGURE 10:  Plot of the betas of association with MS (y axis) and with the protein (x axis, positively 

oriented). Different coloured lines represent causal estimates obtained by the three different 

applied methods. Each dot is a single genetic variant.  
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5.3 Prioritizing results 

 

In order to be able to prioritize our findings among the very long list of results, we 

decided to summarise the estimates obtained for each protein taking the median 

p-value among the 3 methods. We ended up with a single estimate and a single p-

value for each protein, still guaranteeing for at least 2 out of 3 of the methods 

being significant, which we were able to order and correct for multiple testing 

using both a more restrictive Bonferroni and a more permissive Benjamini-

Hochberg correction. 

In this way we ended up with a list of our final prioritized proteins. In Table 7 we 

show a sample of the results, in particular the 40 proteins showing a significant p-

value before the correction. After correction for multiple testing, only 3 proteins 

showed significant results both with Bonferroni (adj. p-value<0.05) and BH (adj. p-

value<0.10) corrections: mobp_hpa035152 (Bonf.: 0.01 ; BH: 0.01), 

zmynd19_hpa020642 (Bonf.: 0.04 ; BH: 0.01) and kiaa0494_hpa011224 (Bonf.: 

0.04 ; BH: 0.01) (See Table 8). 

 

PROTEIN 
METH

OD 
Beta SE 

Lower 

CI 

Upper 

CI 

P-

value 
Bonf. BH 

mobp_hpa035152 IVW 0.24 0.06 0.12 0.35 3.08e-5 0.01 0.01 

zmynd19_hpa020642 WME 0.37 0.10 0.18 0.56 0.0001 0.04 0.01 

kiaa0494_hpa011224 
MR-

Egger 
-0.69 0.18 -1.05 -0.34 0.0001 0.04 0.01 

bcl6_hpa004899 WME -0.28 0.09 -0.45 -0.10 0.002 0.68 0.17 

enw1_hpa003407 WME -0.28 0.09 -0.46 -0.10 0.003 1 0.21 

gnl2_hpa027163 WME 0.45 0.16 0.14 0.75 0.004 1 0.24 
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PROTEIN 
METH

OD 
Beta SE 

Lower 

CI 

Upper 

CI 

P-

value 
Bonf. BH 

nalcn_hpa031889 WME 0.37 0.13 0.11 0.62 0.005 1 0.25 

dusp8_hpa020071 IVW -0.37 0.13 -0.63 -0.11 0.01 1 0.28 

eif3h_hpa023117 WME -0.52 0.19 -0.89 -0.14 0.01 1 0.30 

eomes_hpa028896 WME 0.42 0.16 0.11 0.74 0.01 1 0.30 

plek_hpa031838 IVW -0.17 0.06 -0.30 -0.04 0.01 1 0.30 

sh3bgrl3_hpa030848 IVW 0.18 0.07 0.04 0.31 0.01 1 0.30 

ndfip1_hpa009682 IVW 0.27 0.11 0.06 0.48 0.01 1 0.30 

tf_hpa001527 WME -0.29 0.12 -0.52 -0.06 0.01 1 0.30 

fbln1_hpa001642 WME 0.38 0.15 0.08 0.69 0.01 1 0.30 

tnfsf13_hpa004863 WME -0.27 0.11 -0.49 -0.06 0.01 1 0.30 

gfi1b_hpa007012 WME -0.44 0.18 -0.79 -0.09 0.01 1 0.30 

arhgef3_hpa034715 WME 0.20 0.08 0.04 0.36 0.02 1 0.34 

il4_hpa007714 
MR-

Egger 
0.73 0.31 0.13 1.32 0.02 1 0.34 

nos2a_hpa003871 IVW -0.23 0.10 -0.42 -0.04 0.02 1 0.34 

hyls1_hpa041210 
MR-

Egger 
-0.57 0.24 -1.04 -0.09 0.02 1 0.34 

c1qa_hpa002350 WME 0.21 0.09 0.03 0.39 0.02 1 0.36 

stx11_hpa007992 WME -0.28 0.12 -0.53 -0.04 0.02 1 0.36 

angi_hpa036018 
MR-

Egger 
0.63 0.28 0.08 1.17 0.02 1 0.36 



 

74 

 

PROTEIN 
METH

OD 
Beta SE 

Lower 

CI 

Upper 

CI 

P-

value 
Bonf. BH 

smyd2_hpa029023 
MR-

Egger 
0.73 0.32 0.09 1.37 0.02 1 0.36 

gda_hpa024099 WME 0.47 0.21 0.05 0.89 0.03 1 0.36 

il16_hpa018467 WME 0.30 0.14 0.03 0.57 0.03 1 0.36 

xpc_hpa035706 WME -0.48 0.22 -0.92 -0.05 0.03 1 0.36 

trm13_hpa028494 
MR-

Egger 
0.51 0.23 0.05 0.97 0.03 1 0.36 

pdgfb_hpa011972 IVW 0.24 0.11 0.02 0.45 0.03 1 0.36 

heatr3_hpa041990 IVW -0.18 0.08 -0.34 -0.02 0.03 1 0.36 

prickle4_hpa031240 IVW -0.23 0.11 -0.44 -0.02 0.03 1 0.36 

taf8_hpa031730 
MR-

Egger 
0.24 0.11 0.02 0.46 0.03 1 0.36 

dsg1_hpa022128 IVW 0.14 0.07 0.01 0.27 0.03 1 0.37 

slc30a7_hpa018034 
MR-

Egger 
0.94 0.45 0.05 1.82 0.04 1 0.40 

rpesp_hpa029595 IVW 0.25 0.12 0.01 0.48 0.04 1 0.40 

dlst_hpa003010 
MR-

Egger 
-0.69 0.34 -1.36 -0.03 0.04 1 0.42 

dars_hpa024079 IVW -0.20 0.10 -0.39 -0.01 0.04 1 0.42 

taf8_hpa031734 IVW -0.18 0.09 -0.36 0.00 0.04 1 0.42 

btn3a1_hpa012565 IVW 0.16 0.08 0.00 0.31 0.045 1 0.42 

TABLE 7:  MR ͞ŵediaŶ͟ methods, betas, standard errors, 95% confidence intervals and p-values 

(uncorrected, Bonferroni correction, Benjamini-Hochberg correction) of the 40 proteins showing 

significant p-values before corrections. 
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PROTEIN 
METH

OD 
Beta SE 

Lower 

CI 

Upper 

CI 

P-

value 
Bonf. BH 

mobp_hpa035152 IVW 0.24 0.06 0.12 0.35 3.08e-5 0.01 0.01 

zmynd19_hpa020642 WME 0.37 0.10 0.18 0.56 0.0001 0.04 0.01 

kiaa0494_hpa011224 
MR-

Egger 
-0.69 0.18 -1.05 -0.34 0.0001 0.04 0.01 

TABLE 8:  MR ͞ŵediaŶ͟ ŵethods, ďetas, staŶdaƌd eƌƌoƌs, 9ϱ% ĐoŶfideŶĐe iŶteƌǀals aŶd p-values 

(uncorrected, Bonferroni correction, Benjamini-Hochberg correction) of the 3 proteins showing 

significant p-values after correction for multiple testing. 

 

The protein that obtained the lowest adjusted p-value, under Bonferroni 

correction, is mobp_hpa035152.  

In Table 9 and Figure 11 the causal estimates for this protein obtained by the three 

MR methods applied are reported with SEs, Cis and unadjusted p-values. All the 

methods showed significant causal estimates, betas all pointing to a consistent 

detrimental effect of an increased level of the protein toward the disease. 

Intercept from MR-Egger method is significantly different from 0 suggesting 

potential pleiotropy among the instrumental variables. 

 

METHOD Beta SE Lower CI Upper CI P-value 

WME 0.31 0.09 0.12 0.49 0.001 

IVW 0.24 0.06 0.12 0.35 3.08e-5 

MR-EGGER 0.53 0.12 0.30 0.77 5.51e-6 

(intercept) -0.21 0.07 -0.36 -0.07 0.005 

TABLE 9:  MR methods, betas, standard errors, 95% confidence intervals and uncorrected p-values 

for mobp_hpa035152. 
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FIGURE 11:  Plot of the betas of association with MS (y axis) and with mobp_hpa035152 (x axis, 

positively oriented). Different coloured lines represent causal estimates obtained by the three 

different applied methods. Each dot is a single genetic variant.  

 

For the zmynd19_hpa020642 protein (Table 10, Figure 12) IVW and WME methods 

gave significant results and concordant causal estimates (log Odds for IVW: 0.32, 

WME: 0.37), IVW being the one with the lowest p-value overall, while MR-Egger 

method gave highly non-significant result (p-value: 0.97). 
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METHOD Beta SE Lower CI Upper CI P-value 

WME 0.37 0.10 0.18 0.56 0.0001 

IVW 0.32 0.06 0.21 0.44 2.31e-8 

MR-EGGER -0.01 0.21 -0.42 0.40 0.97 

(intercept) 0.20 0.12 -0.04 0.43 0.10 

TABLE 10:  MR methods, betas, standard errors, 95% confidence intervals and uncorrected p-values 

for zmynd19_hpa020642. 

 

 

FIGURE 12:  Plot of the betas of association with MS (y axis) and with zmynd19_hpa020642 (x axis, 

positively oriented). Different coloured lines represent causal estimates obtained by the three 

different applied methods. Each dot is a single genetic variant.  
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For kiaa0494_hpa011224 all the 3 methods showed significant p-values, IVW 

showing the lowest one, and concordant causal estimates in a protective direction: 

it seems that an increased level of the protein may cause a decreased risk of 

developing the disease (Table 11, Figure 13). The intercept from the MR-Egger 

method is significantly different from 0, too, suggesting a possible presence of 

pleiotropy among the variants. 

METHOD Beta SE Lower CI Upper CI P-value 

WME -0.32 0.10 -0.51 -0.13 0.001 

IVW -0.27 0.07 -0.41 -0.14 5.18e-9 

MR-EGGER -0.69 0.18 -1.05 -0.34 0.0001 

(intercept) 0.25 0.10 0.05 0.45 0.01 

TABLE 11:  MR methods, betas, standard errors, 95% confidence intervals and uncorrected p-values 

for kiaa0494_hpa011224. 
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FIGURE 13:  Plot of the betas of association with MS (y axis) and with kiaa0494_hpa011224 (x axis, 

positively oriented). Different coloured lines represent causal estimates obtained by the three 

different applied methods. Each dot is a single genetic variant.  
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5.4 Testing directionality 

 

For the 3 proteins that showed significant results in the main MR analysis, we then 

performed the whole set of analysis as a further test for a possible causal effect in 

the reverse direction, by using each protein level as outcome and MS as risk factor. 

Non-significant causal estimates would be regarded as a confirmation of the 

previous results, and the proteins involved would be considered reliable causal 

actors toward the disease; significant estimates instead would suggest some 

potential presence of reverse-causation loops in the pathway and would lead to 

the exclusion of the proteins involved from the causal candidates.  

Results of this analysis are reported in Table 12-14. 

 

METHOD Beta SE Lower CI Upper CI P-value 

WME 0.04 0.04 -0.03 0.11 0.31 

IVW 0.03 0.03 -0.02 0.08 0.30 

MR-EGGER 0.06 0.08 -0.09 0.22 0.44 

(intercept) -0.02 0.04 -0.11 0.07 0.65 

TABLE 12:  MR methods, betas, standard errors, 95% confidence intervals and p-values for 

mobp_hpa035152 (reverse-causation analysis). 

 

The reverse-direction analysis on mobp_hpa035152 showed no significant 

estimates for any of the applied methods (IVW p-value: 0.30, WME p-value: 0.31, 

MR-Egger p-value: 0.44), suggesting no direct effects of the disease on the protein 

levels.  

This empowers our previous results and confirms the protein as a reliable causal 

candidate for Multiple Sclerosis. 
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METHOD Beta SE Lower CI Upper CI P-value 

WME 0.10 0.04 0.03 0.18 0.01 

IVW 0.08 0.03 0.02 0.14 0.01 

MR-EGGER -0.02 0.09 -0.19 0.15 0.82 

(intercept) 0.06 0.05 -0.04 0.15 0.23 

TABLE 13:  MR methods, betas, standard errors, 95% confidence intervals and p-values for 

zmynd19_hpa020642 (reverse-causation analysis). 

 

Testing the causal pathway leading from MS to zmynd19_hpa020642 ended up in 

a significant causal estimate for 2 out of the 3 methods, IVW and WME, with WME 

ďeiŶg the ͞ŵediaŶ͟ ŵethod ǁith a p-value of 0.0074 (approximated at 0.01 in 

Table 13). Only MR-Egger showed a non-significant result. This analysis strongly 

suggests the presence of some potential reverse effect exerted by the disease 

itself on the protein levels, confusing and masquerading somehow the real 

biological pathway and making it impossible to exactly disentangle the direction 

of the relationship between the two. For this reason, this protein had to be 

removed from the list of reliable causal candidates of MS. 

 

METHOD Beta SE Lower CI Upper CI P-value 

WME -0.03 0.04 -0.10 0.04 0.45 

IVW -0.003 0.02 -0.05 0.05 0.89 

MR-EGGER -0.05 0.07 -0.20 0.09 0.49 

(intercept) 0.03 0.04 -0.05 0.11 0.49 

TABLE 14:  MR methods, betas, standard errors, 95% confidence intervals and p-values for 

kiaa0494_hpa011224 (reverse-causation analysis). 

 

The reverse-direction analysis on kiaa0494_hpa011224 showed no significant 

estimates for any of the applied methods (IVW p-value: 0.89, WME p-value: 0.45, 
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MR-Egger p-value: 0.49), suggesting no direct effects of the disease on the protein 

levels.  

This empowers our previous results and confirms the protein as a reliable causal 

candidate for Multiple Sclerosis. 
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6. Conclusions 

 

We have the duty of formulating, of summarizing, and of 

communicating our conclusions, in intelligible form, in recognition of the 

right of other free minds to utilize them in making their own decisions. 

- R. Fisher 

 

6.1 MOBP - Myelin-associated oligodendrocyte basic 

protein  

 

MOBP, or better Myelin-Associated Oligodendrocyte Basic Protein, is a protein 

encoded by the MOBP gene, which is a 62,300 bases long protein coding gene 

situated on the plus strand of chromosome 3 (Fig. 14). 

 

FIGURE 14:  MOBP Gene in genomic location: bands according to Ensembl, locations according to 

GeneLoc. 

Diseases associated with MOBP include Substance Abuse and, more interestingly 

for us, Multiple Sclerosis.  

The protein is 183 amino acids long, and its molecular function so far has been 

individuated, as reported in GeneCards website, in playing ͞a role in compacting 

or stabilizing the myelin sheath, possibly by binding the negatively charged acidic 

phospholipids of the cytoplasmic membrane͟. As it appears clearly, it therefore 

stands as a very plausible candidate for being deeply involved in the aetiology of 

this disease.  

http://www.malacards.org/card/substance_abuse
http://www.malacards.org/card/multiple_sclerosis
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From our analysis, it showed a final Odds Ratio of 1.27 (beta: 0.24) towards the 

disease from Inverse-Variance Weighted method, confirmed by a highly significant 

p-value, suggesting how an increase in the level of the protein could end up in an 

increased risk of developing the disease.  

This result could somehow confirm previous literature findings that have shown 

how MOBP region, and in particular some specific MOBP protein epitopes, is 

potentially highly relevant for T-cell reactivity against it to MS, both in mice and in 

humans, being associated with the emergence of many MS/EAE symptoms like 

intense perivascular and parenchymal infiltrations, widespread demyelination, 

axonal loss, and remarkable optic neuritis, and can be considered a primary target 

antigen in MS95, 96. From this point of view, higher levels of MOBP could lead to an 

increased pathogenic autoimmune response by the targeting autoimmune T-cells 

and induce more severe symptoms emergence.  

This seems to fit with the results from a study by Holz et al.97 in which 

Peripheral Blood Lymphocytes obtained from patients with relapsing/remitting 

multiple sclerosis mount a proliferative response to human MOBP , showing its 

association with Multiple Sclerosis.  

Our finding seems to confirm and enforce these previous studies, focusing only on 

human cohorts and adopting a statistically sophisticated method to properly 

assess a causal link between the protein and the disease, suggesting further 

specific analysis in this direction in order to better evaluate and refine the 

understanding of its role in the development of the disease and, hopefully, 

studying potential useful interventions on it. 

 

 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Holz%20A%5BAuthor%5D&cauthor=true&cauthor_uid=10623862
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6.2 KIAA0494 (EFCAB14) - EF-hand calcium-binding 

domain-containing protein 14 

 

KIAA0494, from now on EFCAB14, or better EF-Hand Calcium Binding Domain 14, 

is a protein encoded by EFCAB14, a Protein Coding gene 43,906 bases long situated 

on the minus strand of chromosome 1. (Fig. 15) 

 
FIGURE 15:  KIAA0494 Gene in genomic location: bands according to Ensembl, locations according 

to GeneLoc. 

This gene is mainly associated with calcium ion binding and metal ion binding, and 

the main phenotypes that have been associated with it are Chronic Hepatitis C 

infection, obese body mass index status and urate measurement.  

The protein is 495 amino acids long, and interestingly has not any specific 

molecular function or pathway enrichment annotations and could therefore be 

considered as a novel finding in regard to Multiple Sclerosis. On the other hand, 

though, understanding more deeply its role in the disease development and 

exploring how it could be involved in Multiple Sclerosis aetiology is everything but 

a simple task and would surely require some additional specifically planned 

studies.  

IŶ ouƌ studǇ the Odds Ratio fƌoŵ the ͞ŵediaŶ͟ ŵethod foƌ this pƌoteiŶ, which was 

MR-Egger method, resulted to be 0.50 (beta: -0.69), with a p-value of 1e-04, 

showing therefore a protective effect toward the disease. It seems in fact that an 

increased level of EFCAB14 leads to a lower risk of developing Multiple Sclerosis, 

as confirmed by the concordant results from all the methods applied.   

It is nowadays well known that Ca2+ overload is one of the main processes that 

could lead to neurons damage and death, and many studies have shown the 
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importance of this aspect eventually bringing to the emergence of the so-

called ͞Ca2+ theory of neurodegeneration” 98. The key signaling role and 

involvement of Calcium ion in many different intracellular and extracellular 

processes, from synaptic activity to cell-cell communication and adhesion, has 

been widely described and reviewed.  Especially in the brain, calcium plays a 

fundamental role in controlling the synaptic activity and memory formation, and 

properly controlled homeostasis of calcium signaling not only supports normal 

brain physiology but also maintains neuronal integrity and long-term cell survival. 

On the other hand, Calcium deregulation can lead instead to neurodegeneration 

via complex and diverse mechanisms involved in selective neuronal impairments 

and death99. Since the first evidences, it was proposed that the pharmacological 

blockade Ca2+
 overload could rescue neurons from death, and therefore 

identifying excess Ca2+ sources in neurodegenerative diseases has been and still is 

the object of great interest and attention100.   

Another interesting study as shown that increased levels of retinal calcium and 

calpain activation are early events in autoimmune optic neuritis101, which is a 

common manifestation of Multiple Sclerosis itself. 

Deregulation of brain metal ion homeostasis has also emerged as a critical 

common feature across different neurodegenerative diseases and cumulating 

evidence points to pathological changes in the neuronal balance of metal ions such 

as zinc, calcium, iron and copper in these diseases102, 103. 

TƌǇiŶg to speĐulate a ďit oǀeƌ ǁhat͛s hiddeŶ ďehiŶd ouƌ ƌesults, ǁe Đould say that 

our finding is driven by a deep involvement of EFCAB14 in the active regulation 

(and deregulation) of calcium and other metal ions and possibly in maintaining the 

homeostasis in brain cells. Its known role in calcium and metal ion binding could 

be somehow related to the regulation of these potentially   noxious elements, 

ďiŶdiŶg ͞ǁaŶdeƌiŶg͟ ioŶs iŶ eǆĐess aŶd iŶ this ǁaǇ ďloĐkiŶg theiƌ ǁaǇ toǁaƌds 

accumulation and consequent involvement in neurodegenerative processes, 

explaining the protective effect of increased levels of the protein against Multiple 

https://www.sciencedirect.com/topics/chemistry/metal-ion
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Sclerosis that we found in our study. Without further specific analysis that would 

explore molecular mechanisms in which this protein acts, though, these remain 

pure hypothesis. 
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6.3 Summing up   

 

In this study we applied a Mendelian Randomization causal inference approach, 

integrating plasma protein and genotyping data on 20 multiplex Sardinian families, 

in order to identify potential causal mechanisms between the plasma levels of a 

large set of 377 candidate proteins and MS, with the aim of exploring MS 

pathogenesis. Many genome-wide association studies (GWASs) have studied the 

association between millions of genetic variants and many outcomes, thus 

identifying many genetic signals statistically associated with many risk factors (e.g. 

obesity, biomarkers, gene expression level) that nowadays can be used to 

investigate the causal association between these risk factors and the disease of 

interest4, 104. Causal questions are, in fact, what motivate, more or less explicitly, 

the vast majority of statistical and epidemiological studies. Unfortunately, causal 

conclusion might not be warranted by the data; the causal interpretation may be 

flawed and the risk estimates may be biased, making difficult to distinguish 

between causal associations from associations that arises from confounding or 

reverse causation88.  

The approach we applied overcomes the limitations of both residual confounding, 

which can bias the relationship between risk factors and disease in observational 

studies, and reverse causation, particularly likely here since the level of plasma 

protein may be affected by the disease itself.  In this context, the use of IVW in 

association with two sensitivity analyses, i.e. MR-ER and WME, has helped to face 

these limitations and to assess robustness of causal findings to different sets of 

assumptions regarding independence of IVs and pleiotropy. We further performed 

the MR analysis in the opposite direction, in an approach usually referred to as 

bidirectional MR; this allowed us to test specific reverse causation effects in order 

to confirm or refute causal findings revealed in the first part of the analysis.  

We did this by applying a custom automated-routine, coded in R, that allowed us 

to run all the MR analyses for the whole large number of proteins we had, without 
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having to deal with each single analysis in turn, which would have been hugely 

time-expensive. 

Nonetheless, this approach presented us some other problems to tackle: how to 

manage the vast quantity of results, possibly discordant between the different MR 

methods applied, and, of course, the need to deal with multiple comparisons bias. 

To handle the first problem, we then chose to select a ͞ŵediaŶ͟ ŵethod foƌ eaĐh 

protein as described in the method section, and we then ordered and corrected 

all our results for multiple testing, both with Bonferroni and BH corrections, 

handling the second one in a quite cautious way; we preferred to have highly 

reliable results even at the cost of losing some potential interesting information 

(false negative results).  

In the end, 3 proteins showed significant results with both corrections applied, in 

particular MOBP, ZMYND19 and EFCAB14. 

Following the bidirectional analysis though, ZMYND19 showed a significant result 

in the reverse-direction too, suggesting some reverse causation effect. It seems 

that, in this case, the disease itself could influence the level of this protein in 

plasma.  

The final and most interesting findings in the end are therefore MOBP and 

EFCAB14, that we extensively treated in the previous chapters. 

Whereas MR methods are typically applied to high-level exposures, such as 

obesity and blood pressure105-107, in our study we used standard MR methods to 

identify concentration of specific plasma proteins causally related to MS.  Our 

proposed application on protein biomarkers instrumented by SNPs has the 

advantage of being the protein a close consequence of DNA sequence variations. 

We have investigated both SNPs in the encoding gene or acting in cis and SNPs in 

the distal region thus involved in gene expression regulation in trans. Even if these 

latter have an high probability to assert pleiotropic effect they allow to investigate 

the functional meaning and the effect of the statistically associated variants 

located outside the protein-coding region4. 
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We based our analysis on a restricted number of subjects belonging to pedigree 

and hence correlated, and in particular to a limited number of cases, due to the 

very structure of our starting dataset and availability of a set of plasmatic 

concentration of certain candidate proteins and Immunochip data as source of 

genotyping data to identify IVs.   

This led to some difficult choices, as the threshold choice for the selection of the 

instruments to be used in the consequent MR analyses. In the end, being our set 

of proteins already a selection of candidate ones and coming the genotyping data 

from an Immunochip array and not from a GWAS study, we chose an a priori 

significance threshold of p<5x10-4 to identify and select significant associated SNPs 

with each protein considering this one a reasonable trade-off between being more 

restrictive and having more reliable instruments at the cost of a certain loss of 

information and on the other hand being too permissive retaining more 

iŶfoƌŵatioŶ ďut keepiŶg also ŵoƌe ͞Ŷoise͟ ďƌought ďǇ uŶƌeliaďle iŶstƌuŵeŶtal 

variables.  

In addition, causal effects like the ones we are aiming to discover and highlight, 

are usually very small, and therefore single studies like ours are often 

underpowered and could miss many interesting effects due to small sample size. 

Nonetheless, some confirmatory findings along with biological plausible pathways 

make it seem that our is a very promising exploratory approach, and that such an 

approach could be useful in particular to pinpoint and prioritize risk factors of 

interest among large sets of candidates, possibly presenting them as reliable 

objects for further, more specific studies. 

Luckily, results of genome-wide association studies are increasingly made publicly 

available. Harnessing summary-level data, Mendelian randomization analyses 

then could reach sufficient statistical power to yield more precise causal effect 

estimates, so additional analysis involving more subjects and genome-wide set of 

genetic variants would be useful to further investigate the casual mechanisms 

underlying MS. This could shed even more light on MS pathogenesis and the 
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biomarkers identified will bear the potential to be used for the diagnosis, for the 

discrimination among the different forms of the disease, for the monitoring the 

disease activity and progression and for predicting therapies responses to tailor 

future therapies for each patient. 
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Appendix 

Antibody ID IVs (N°) 

cp_hpa001834 43 

c1qa_hpa002350 39 

bcl6_hpa004899 37 

trappc2l_hpa041714 36 

ilf2_hpa007484 35 

kiaa0494_hpa011224 35 

serpina3_hpa000893 35 

thap6_hpa035767 34 

aqp4_hpa014784 33 

ogt_hpa030751 33 

serpina4_hpa003607 32 

alpk2_hpa027377 31 

dsg1_hpa022128 31 

itih4_hpa001835 31 

mobp_hpa035152 31 

ngfr_hpa004765 30 

trm13_hpa028494 30 

bnip3_hpa003015 29 

Antibody ID IVs (N°) 

cyp24a1_hpa022261 29 

heatr3_hpa041990 29 

il7_hpa019590 29 

ncam2_hpa030900 29 

plek_hpa031838 29 

sh3bgrl3_hpa030848 29 

zmynd19_hpa020642 29 

ankr1_hpa038736 28 

c1qc_hpa001471 28 

copa_hpa028024 28 

c9orf46_hpa011144 27 

casp6_hpa011337 27 

enw1_hpa003407 27 

mrps15_hpa028100 27 

taf8_hpa031734 27 

triobp_hpa003747 27 

cndp1_hpa008933 26 

ptger4_hpa012756 26 
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Antibody ID IVs (N°) 

atp5i_hpa035010 25 

casp8_hpa001302 25 

clec4a_hpa007842 25 

il16_hpa018467 25 

rp3412a911_hpa019601 25 

rpa3_hpa005708 25 

saps2_hpa030656 25 

uqcrfs1_hpa041863 25 

azgp1_hpa012582 24 

casp1_hpa003056 24 

csta_hpa001031 24 

fxl18_hpa036049 24 

lphn1_hpa037974 24 

mansc1_hpa007956 24 

mapk1_hpa005700 24 

mrc1_hpa004114 24 

nucb1_hpa008176 24 

scn7a_hpa004879 24 

sh2b3_hpa005483 24 

Antibody ID IVs (N°) 

snap23_hpa001214 24 

anxa1_hpa011271 23 

bud13_hpa038341 23 

elmo1_hpa017941 23 

fbln1_hpa001612 23 

gap43_hpa013392 23 

hisabp_hisabp 23 

ict1_hpa003634 23 

ifit5_hpa037957 23 

il17re_hpa019011 23 

il22ra2_hpa030582 23 

map3k14_hpa027269 23 

osm_hpa029814 23 

rpesp_hpa029595 23 

sms_hpa029852 23 

vps11_hpa039019 23 

zbtb46_hpa013997 23 

actr6_hpa038587 22 

al1604712_hpa028612 22 
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Antibody ID IVs (N°) 

c16orf75_hpa040995 22 

c3_hpa003563 22 

c9orf150_hpa024407 22 

cryab_hpa028724 22 

ctgf_hpa031075 22 

dars_hpa024079 22 

ddah1_hpa006308 22 

dlst_hpa003010 22 

dpm3_hpa014667 22 

hspa4_hpa010023 22 

kiaa1618_hpa003347 22 

kiaa1618_hpa026790 22 

rpain_hpa031526 22 

samc_hpa026887 22 

sertad2_hpa019021 22 

snap29_hpa031823 22 

tmed9_hpa014650 22 

vim_hpa001762 22 

zfp36l1_hpa001301 22 

Antibody ID IVs (N°) 

atp5j_hpa031069 21 

cd163l1_hpa015663 21 

cfb04_hpa001817 21 

crtac1_hpa008175 21 

gas6_hpa008275 21 

gper_hpa027052 21 

mx1_hpa030917 21 

pcp4_hpa005792 21 

plau_hpa008719 21 

rars_hpa003979 21 

ren_hpa005131 21 

serpina3_hpa002560 21 

tjp1_hpa001636 21 

wdr74_hpa037795 21 

ace2_hpa000288 20 

acsl4_hpa005552 20 

agap2mettl1_hpa023474 20 

app_hpa001462 20 

arg2_hpa000663 20 
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Antibody ID IVs (N°) 

arhgef3_hpa034715 20 

bri_hpa029292 20 

c9orf103_hpa020378 20 

col15a1_hpa017915 20 

fcrl3_hpa015508 20 

hif1a_hpa001275 20 

map3k14_hpa027270 20 

nfkbiz_hpa010547 20 

snx2_hpa037400 20 

stx11_hpa007992 20 

taldo1_hpa040373 20 

tas2r60_hpa030416 20 

tf_hpa001527 20 

tpd52_hpa028427 20 

alpk2_hpa029801 19 

btn3a1_hpa012565 19 

casp10_hpa017059 19 

cd226_hpa015715 19 

cd99_hpa035304 19 

Antibody ID IVs (N°) 

cfb_hpa001832 19 

depp_hpa037819 19 

dsc2_hpa012615 19 

kif5a_hpa004469 19 

malt1_hpa003865 19 

mtl14_hpa038001 19 

ntf3_hpa032000 19 

oca2_hpa036403 19 

polr3gl_hpa027288 19 

pphln1_hpa038902 19 

rabbitigg_rigg 19 

s100a9_hpa004193 19 

slc25a39_hpa026785 19 

sod1_hpa001401 19 

spp1_hpa005562 19 

tjp1_hpa001637 19 

tnfsf14_hpa012700 19 

wdr12_hpa036389 19 

znf821_hpa036372 19 
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Antibody ID IVs (N°) 

arg1_hpa003595 18 

commd3_hpa036584 18 

ctss_hpa002988 18 

efhc2_hpa034492 18 

fbln1_hpa001613 18 

il1a_hpa030643 18 

irf8_hpa002531 18 

lpcat4_hpa030719 18 

lrg1_hpa001888 18 

morn3_hpa038709 18 

ptprz1_hpa015103 18 

serpinb2_hpa015480 18 

serpine1_hpa001539 18 

taf8_hpa031730 18 

tgm4_hpa032072 18 

agrin_hpa040090 17 

ccdc59_hpa038555 17 

chch5_hpa038263 17 

chd1l_hpa027789 17 

Antibody ID IVs (N°) 

dtx3l_hpa010570 17 

fadd_hpa001464 17 

fibb_hpa001900 17 

frs3_hpa030174 17 

gc_hpa001526 17 

il21_hpa038303 17 

irf8_hpa002267 17 

kng1_hpa001616 17 

mmp19_hpa012845 17 

mmp8_hpa021221 17 

ndfip1_hpa009682 17 

nos2a_hpa003871 17 

olig3_hpa018303 17 

pdgfa_hpa016613 17 

prex1_hpa001927 17 

serpina1_hpa000927 17 

tjp2_hpa001813 17 

tnfsf13_hpa004863 17 

triobp_hpa019769 17 
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Antibody ID IVs (N°) 

ca050_hpa030236 16 

ccdc56_hpa031966 16 

cntn1_hpa041060 16 

col6a3_hpa010080 16 

dusp8_hpa020071 16 

il7r_hpa034514 16 

immt_hpa036164 16 

lst2_hpa038175 16 

magg1_hpa030602 16 

map2_hpa008273 16 

mdh1_hpa027296 16 

mertk_hpa036196 16 

pdgfb_hpa011972 16 

psmc2_hpa019238 16 

rec8_hpa031729 16 

rpain_hpa023924 16 

sertad2_hpa020904 16 

timm10_hpa039946 16 

xpc_hpa035706 16 

Antibody ID IVs (N°) 

ywhab_hpa011212 16 

al7138907_hpa010967 15 

apex1_hpa002564 15 

azi2_hpa035258 15 

ckb_hpa001254 15 

clec16a_hpa035814 15 

cntf_hpa019654 15 

fbln1_hpa001642 15 

gimap7_hpa020266 15 

il4_hpa007714 15 

mapk1_hpa003995 15 

nrg1_hpa010964 15 

park7_hpa004190 15 

rnf141_hpa018133 15 

romo1_hpa012782 15 

sptan1_hpa007927 15 

ttc1_hpa036557 15 

ubash3b_hpa038605 15 

zdhhc18_hpa040234 15 
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Antibody ID IVs (N°) 

acyp2_hpa035301 14 

b2m_hpa006361 14 

casp3_hpa002643 14 

elov7_hpa036337 14 

erp29_hpa039363 14 

exosc10_hpa028484 14 

mitd1_hpa036162 14 

mtpn_hpa019735 14 

nalcn_hpa031889 14 

nrp1_hpa030278 14 

ppm1d_hpa022277 14 

slc30a7_hpa018034 14 

sst_hpa019472 14 

tmbim1_hpa012093 14 

tmem39a_hpa039140 14 

tnfsf14_hpa026919 14 

a2m_hpa002265 13 

calb1_hpa023099 13 

casp8_hpa005688 13 

Antibody ID IVs (N°) 

cd14_hpa002127 13 

chst12_hpa041680 13 

cst3_hpa013143 13 

gimap7_hpa020268 13 

gnl2_hpa027163 13 

kiaa0564_hpa039075 13 

smyd2_hpa029023 13 

syk_hpa001384 13 

tthy_hpa002550 13 

ywhag_hpa026918 13 

agt_hpa001557 12 

ahsg_hpa001524 12 

c1orf182_hpa028149 12 

cd71_hpa028598 12 

chd1l_hpa028670 12 

cnpase_hpa023278 12 

eomes_hpa028896 12 

gda_hpa019352 12 

hadhb_hpa037539 12 



 

99 

 

Antibody ID IVs (N°) 

il23a_hpa001554 12 

kiaa0494_hpa011938 12 

mmp25_hpa036376 12 

mycbp2_hpa039945 12 

ppp2r5d_hpa029046 12 

ptger4_hpa011226 12 

rreb1_hpa001756 12 

s100a8_hpa024372 12 

serpina1_hpa001292 12 

spag16_hpa037542 12 

tnks_hpa025690 12 

xpa_hpa030997 12 

zn343_hpa030587 12 

znf740_hpa035691 12 

aldh5a1_hpa029715 11 

cdkn1c_hpa002924 11 

chgb_hpa008759 11 

clec16a_hpa035815 11 

ctgf_hpa031074 11 

Antibody ID IVs (N°) 

dsc2_hpa011911 11 

fas_hpa027444 11 

fbln2_hpa001934 11 

gfi1b_hpa007012 11 

icam1_hpa004877 11 

klk6_hpa019525 11 

lamp2_hpa029100 11 

mag_hpa012499 11 

plat_hpa003412 11 

s100b_hpa015768 11 

sorbs2_hpa036754 11 

angi_hpa036018 10 

c1orf106kif21b_hpa027511 10 

cfi_hpa001143 10 

edn2_hpa028459 10 

mmp9_hpa001238 10 

mog_hpa021873 10 

pja2_hpa040347 10 

prickle4_hpa031240 10 
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Antibody ID IVs (N°) 

sec14l1_hpa028703 10 

symm_hpa035590 10 

tagap_hpa031000 10 

ablm2_hpa035808 9 

cflar_hpa019044 9 

dpf2_hpa020880 9 

eif3h_hpa023117 9 

grm7_hpa036659 9 

gstk1_hpa022904 9 

hpgd_hpa005679 9 

igfl1_hpa014001 9 

il22_hpa023684 9 

kcnrg_hpa001741 9 

lck_hpa003494 9 

mrps22_hpa006083 9 

nlk_hpa018192 9 

nrcam_hpa012606 9 

slc12a5cd40_hpa004942 9 

sorbs1_hpa036994 9 

Antibody ID IVs (N°) 

tfpt_hpa034958 9 

zbtb16_hpa001499 9 

alpk2_hpa027976 8 

c9_hpa029577 8 

cf081_hpa030894 8 

col15a1_hpa017913 8 

dop1_hpa027904 8 

grp78_hpa038845 8 

hladqb1_hpa013667 8 

hyls1_hpa041210 8 

ifit5_hpa037958 8 

igfl1_hpa014270 8 

lta_hpa007729 8 

mmp8_hpa022935 8 

omg_hpa012693 8 

rab11fip1_hpa024010 8 

rec8_hpa031727 8 

taf8_hpa031731 8 

ywhae_hpa008445 8 
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Antibody ID IVs (N°) 

ahsg_hpa001525 7 

cd14_hpa001887 7 

crp_hpa027396 7 

evi5_hpa027339 7 

il18_hpa003980 7 

pib5painpp5j_hpa034539 7 

s11ip_hpa036837 7 

s19a1_hpa038117 7 

sfn_hpa011105 7 

sp140_hpa006162 7 

stat4_hpa001860 7 

stat6_hpa001861 7 

ttc17_hpa038508 7 

zn300_hpa028975 7 

cnpase_hpa023338 6 

dffa_hpa019938 6 

gda_hpa024099 6 

Antibody ID IVs (N°) 

grm7_hpa015964 6 

mapk1_hpa030069 6 

metap2_hpa019095 6 

mki67_hpa000451 6 

mmel1_hpa008205 6 

mpv17l2_hpa043111 6 

znf438_hpa039843 6 

c1orf182_hpa029897 5 

ccl2_hpa019163 5 

fund1_hpa038773 5 

wdr91_hpa031520 5 

cnpase_hpa023280 4 

lif_hpa018844 4 

plg_hpa021602 4 

casp2_hpa006704 3 

il12a_hpa001886 3 

socs6_hpa035477 3 

TABLE 15:  Number of selected Instrumental Variables (IVs) for each protein (antibody ID shown) 

analysed, ordered higher to lower. 
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