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Chapter 0
Introduction

In the last years, a lot of research e↵ort has been devoted to exploit the
field of quantum information, for the many advantages that can be gained
by applying the laws of quantum mechanics. This has led to a tremendous
development of quantum technologies, that have moved from experiments on
the foundation of quantum physics to being extensively studied in applied
research.

Quantum technologies exploit quantum properties of physical systems, such
as superposition and entanglement, in order to obtain unprecedented perfor-
mances. In the last decade, a number of quantum technologies start-up com-
panies were founded. Besides, even large companies, such as Google [1], IBM
[2], Intel [3], Microsoft [4] and Toshiba [5], have started to consider quan-
tum technologies an interesting field for investments. Moreover, very recently,
even governments have started large funding programs in this attractive field,
such as the Chinese program, in which a satellite has been recently launched
for experiments on quantum communication [6], and the European flagship in
quantum technologies, a long-term (10 years) and large-scale (about 1 billion
of euros) program for taking Europe at the forefront of the research in quantum
technolgies [7, 8].

The European flagship is divided in four major topics: quantum computa-
tion, which exploits the quantum nature of a system to perform fast calcula-
tions and tasks that are not possible to execute on current classical processors;
quantum communication, where quantum properties, such as entanglement,
are used to secure data transmission; quantum simulation, that employs quan-
tum systems to perform quantum mechanical simulations; and quantum sens-
ing and metrology, where an enhancement on the performance of measurements
is achieved by exploiting quantum systems.

In quantum technologies, the fundamental unit of information is called
quantum bit (or qubit), from the classical bit formalized by C. Shannon in
1948 [9]. A qubit is defined by a microscopic system, that could be a photon,
an atom, a nuclear spin and so on. Conversely to a classical bit, that can
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0. Introduction

assume only two values (either 0 or 1), the qubit is defined by any linear
combination of the states chosen as basis. This means that the qubit is in a
superposition of the basis states [10]. Moreover, another property of quantum
systems widely exploited in quantum technologies is that of entanglement, that
happens when a quantum system made by more than one component cannot
be separated in the single elements and has to be described as a whole [11].
From these considerations the first big di↵erence between classical bits and
qubits is that n entangled qubits are equivalent to 2n bits [12], from which the
advantage of quantum computation over classical processing comes.

In the last years, many systems have been used to implement the qubit, such
as trapped atoms or ions [13], superconductors [14], quantum dots [15], nuclear
spins [16] and photons [17]. In particular, even if superconducting circuits seem
to overcome the other solutions when dealing with quantum computing appli-
cations, photons seem to be the best candidate for quantum communication
[18] protocols. This is mainly due to their long coherence length, low noise and
ease of implementation and manipulation with components that work at room
temperature. A well-known application of quantum communication is made
of quantum key distribution (QKD) protocols, that use a quantum-encrypted
secret key to securely transmit data along a public channel. The first exam-
ple of such protocols was developed by Bennett and Brassard in 1984 and it
is called BB84 protocol [19]. So, the availability of the currently-employed
telecommunication channel made of the fiber-optic network connecting cities
all over the world, is another big advantage of photonics, for light is already
employed in telecommunications.

In order to realize quantum applications in photonics, nonclassical states of
light, that is radiation that cannot be described by the classical electromagnetic
theory, have to be generated. Usually, the quantum states of interest are either
single-photon states or entangled photon states.

Single-photon sources should emit on demand states where only one single
photon is present. This is usually achieved through deterministic atomic-like
sources, such as quantum dots, trapped ions etc. However, even the proba-
bilistic emission of photon pairs can be used to produce single-photon states
through the heralding method. Here, one photon is revealed, thus signaling
the presence of the other photon that is then a single-photon state. In the last
years, di↵erent devices have been exploited to prove the emission of heralded
single photons, such as PPLN waveguides [20], silicon-based photonic crystals
[21], silicon microring resonators [22] and hydex microring resonators [23].

Entangle-photon states, whose states cannot be described separately, are
made of at least two photons among which nonlocal correlations exist and can
be usually encoded in di↵erent degrees of freedom, such as polarization [24, 25],
path [26] and phase [27, 28]. A variety of experiments showed the production of
entangled-photon states,the first employing atomic radiative cascades [29] and
BBO crystals [24]. After these first works, more practical sources able to emit
photons with higher intensity and integration-compatible were proposed, for
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example AlGaAs waveguides [30] and silicon integrated devices [31, 25, 32, 33].

In order to translate quantum technologies into real applications, the com-
ponents has to be scalable, compact and compatible with the integration on
an electronic chip. In the last decades, due to the growing interest in integra-
tion of photonic structures, the silicon platform has become one of the leading
technologies. In fact, silicon structures are cheap and easy to fabricate and
can be densely integrated on a chip, due to their compatibility to the CMOS
fabrication process employed by the microelectronic industry. Moreover, the
foundry services already utilized in microelectronics can be exploited for the
fabrication of silicon photonic chips and multi-project wafers (MPW) shuttle
runs are available to reduce the production costs. In the microelectronics envi-
ronment this is well represented by the MOSIS service [34], whereas in silicon
photonics this services are o↵ered from organizations, such as the A⇤STAR In-
stitute of Micorelectronics in Singapore and IMEC and CEA-LETI in Europe
[35].

Another interesting property of the silicon platform is the availability of
high-quality silicon-on-insulator (SOI) wafers, ideal for the creation of pla-
nar waveguide circuits. SOI wafers are usually made of a 220-nm-thick silicon
guiding layer on top of a 2-µm-thick silicon oxide substrate. The photonic com-
ponents are then realized through lithography and etching on the guiding layer.
Moreover, due to the high index contrast between silicon and the cladding ma-
terial (silicon oxide or air), strong optical confinement can be achieved in the
SOI platform and, as a consequence, a high-integration level can be reached
[36].

Many linear and nonlinear optical components can be created on the SOI
basis, and all of them can be derived from a simple waveguide, that constitutes
the building block of integrated photonic circuits. In SOI-based waveguides,
light is confined through total internal reflection (TIR) in a very small (<1
µm2) core region. An example of structure derived from the waveguide is the
Bragg waveguide (BW), that is obtained by periodically shrinking the width
of the waveguide in order to get an e↵ective change of the refractive index.
This is the silicon photonic integrated version of a distributed Bragg reflector
(DBR) and it is mainly employed as integrated filter [37]. Moreover, due to
the strong confinement in SOI-based waveguides, small bending radii can be
designed without radiation losses. This, make the construction of very small
ring resonators (about 10-µm radius) possible. Microring resonators are made
of a channel waveguide looped-back onto itself to follow a circular path, coupled
to a bus waveguide needed to couple light in and out of the resonator, and can
have di↵erent applications, such as filters, sensors, modulators and photon
sources [38].

In particular, in this thesis we will explore the capabilities of BWs and
microring resonators to emit photon pairs. Since silicon is a centrosymmetric
material, only the third-order nonlinearity can be used to generate pairs of
photons and the process responsible for that is four-wave mixing (FWM) [39,
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0. Introduction

40, 41]. FWM can be seen as a four-photon elastic scattering in which two
pump photons are converted into idler and signal photons. This e↵ect has
been observed in optical fibers [42] and waveguides [43], but it is in microring
resonators that can achieve very high generation rates, up to 106�108 Hz (see
chapter 3) [44, 45, 46].

The aim of this work is to study silicon integrated nonlinear optical compo-
nents and characterize their ability of emitting entangled photons. In particu-
lar, our research contributes to the final goal of designing a silicon integrated
source of nonclassical states of light, where the source, filtering and multi-
plexing stages are all integrated on the same chip [37]. So, this work will be
focused on assessing the e�cacy of integrated filters on spectrally clean the
generated photon pairs and studying a way to overcome the lack of laser emis-
sion in silicon. Beside the main theme of silicon integrated devices and their
applications, we will also treat an aside interesting topic related to quantum
computation, that is the emulation of quantum gates by using classical waves.
This obviously comes at the price of losing the exponential advantage of true
quantum computation.

In the first chapter, we will give a general introduction to the generation of
nonclassical states of light in photonics. Starting from the comparison between
bit and qubit, we will point out how the employment of quantum mechanics can
take real advantage over classical systems. At this purpose we will describe the
main areas of research in quantum technologies: quantum computing, quan-
tum metrology and sensing and quantum communication. Then, since this
work mainly deals with integrated silicon photonic devices, we will explain the
important role played by the silicon platform in quantum photonics applica-
tions. After that, we will introduce the topic of nonlinear optics, focusing in
particular on the FWM process and outline how it works on some devices, that
will be used in the next chapters. Finally, we will report on the possible kinds
of sources of quantum states of light.

In the second chapter, we will start addressing the first problem of silicon
photonics, that is the possible pollution of the generated quantum states due to
the on-chip filtering of the pump. In fact, even if di↵erent devices are employed
for filtering light on a chip, such as microring resonators, Bragg waveguides and
cascaded interferometers, they have all a common feature: they are made of
hundreds of microns of silicon waveguide and can potentially generate photon
pairs themselves. This generated photons have usually spectral and temporal
correlations that di↵er form those of the photons emitted by the real source
and, thus, in case of quantum applications, can pollute the quantum state
at the output. At this purpose, we will perform a FWM experiment on an
integrated Bragg waveguide in order to determine the generation rate and
spectral correlations of the photons emitted by the filter. Our experiment will
be also supported by a theoretical model of the studied integrated structure.

In the third chapter, we will address the more complex topic of the dif-
ficulty of achieving lasing in silicon, due to its indirect bandgap. This is of
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fundamental importance in order to construct an integrated silicon photonic
source and bring the employment of silicon devices towards the mass produc-
tion. Even if, in the last years, di↵erent systems have been studied to find a
way to achieve laser emission in silicon, such as stimulated Raman scattering,
rare-earth doping and III-V compounds, a solution has not yet been found. We
will then describe a way of overcoming this obstacle by building a fiber-loop
cavity with the source of light (microring resonator) inside it. The choice of
constructing a fiber-loop cavity is mainly due to the fact that fiber lasers are a
well-known and widely employed technology in the field of telecommunication,
whereas the decision of using a microring resonator comes form their excellent
qualities as light sources and their design that, in the add-drop configuration,
is well-suited for being closed in a loop. We will report on the two performed
experiments on the built cavity. In the first measurement, we will employ
a ring with a relatively low quality factor and carry out a stimulated FWM
experiment, followed by the determination of the joint spectral density of the
idler and signal photons. Then, we will insert in the cavity a microring res-
onator characterized by a higher quality factor and observe spontaneous FWM
emission in the self-pumping geometry. We will conclude this experiment with
a coincidence measurement on the emitted photons in the self-pumping regime.

The fourth chapter will be dedicated to a topic that goes beyond the central
theme of the thesis. However, the found results could be of potential interest
as testbeds and teaching purpose in the field of quantum computing. The
starting point comes form the fact that the propagation of a single particle
in a linear network is equivalent to the propagation of a classical wave in
the same network, as long as probabilities at individual outputs are detected
and no correlations are measured. So, after introducing the most common
quantum computing algorithms, we will report on a method that can be used
to implement quantum gate operations on a classical wave network. Obviously,
this usually comes at the price of losing the exponential advantage of employing
a true quantum machine. We will implement the Bernstein-Vazirani (BV)
algorithm in a three-qubit configuration on an electronic circuit with discrete
electronic components and show that the advantage over classical digital logic
is still retained, even if in a fully classical implementation. Moreover, we will
perform a second experiment aimed at showing that in the special case of
the BV algorithm, where qubits are never entangled, the resources can scale
linearly with the number of qubits.

Finally, in the fifth and last chapter, conclusions and perspectives will be
presented.

Concluding, in this thesis, novel contributions have been brought to the
field of integrated photonics and they have already been published by peer
reviewed papers, of which the author of this thesis is the first author. The first
main achievement has been obtained through the nonlinear characterization
of a silicon integrated Bragg waveguide filter. Here, it has been proved that
Bragg waveguides present better performance than other filter designs, having
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0. Introduction

low spontaneous FWM emission. This work, described in chapter 2, have been
reported in a paper published by Optics Letters in 2018 [47]. The second main
achievement of this work has been the observation of FWM emission in a self-
pumping geometry. Here, the external tunable laser acting as optical pump
in FWM experiments has been removed, thus eliminating the saturation of
the generated idler intensity at high pump powers. Consequently, very high
FWM generation rates can be reached. The stimulated FWM experiment
performed in a self-pumping geometry and the relative joint spectral density
measurement, that can be found in chapter 3 (Sec. 3.1), have been described
in a paper published by Applied Physics Letters in 2018 [48].
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Chapter 1
Nonclassical states of light in
silicon photonics

Nowadays, much importance is given to the field of quantum information,
since it could bring many advantages in di↵erent areas, from quantum compu-
tation, to quantum communication and quantum metrology. These are only
few examples of quantum information applications and di↵erent systems have
been studied for actual implementations. In our work we will be mainly inter-
ested in light-based applications, so we will treat the generation of nonclassical
states of light, that are modes of the electromagnetic field that cannot be in-
cluded within the classical electrodynamics formalism.

The first chapter wants to introduce the reader to the subject of nonclassical
states of light, focusing in particular on integrated silicon photonics. So, we will
start with a brief review on the main technologies developed in the quantum
field, focusing in particular on the use of photons as carriers of information.
Next, we will discuss the importance of silicon photonics. First, we will describe
the nonlinear process responsible of photon pairs generation in silicon, that
is four-wave mixing. Then, we will analyze the building blocks of photonic
integrated circuits, in particular describing the structures we will consider in
the next chapters, that are waveguides, the distributed Bragg reflector and
microring resonators. Finally, we will explain how we can use photonic circuits
as photon sources, and generate both entangled- and single-photon states.

1.1 From bits to qubits

In 1948, C. Shannon formalized how to quantify information in what he
called bits, or binary digits [9]. The Shannon’s bit became the fundamental
unit of information and it was soon implemented in technological devices.

A classical bit is usually a macroscopic system (for example a memory
element) and can be described by one or more continuous parameters (e.g.
voltages). Within the range of these parameters, two well-separated regions
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1. Nonclassical states of light in silicon photonics

are chosen to represent 0 and 1. Then, a memory of n bits can have 2n logical
states: starting from a string of zeros of length n, all the combinations are
spanned till a n-string made of ones. Classical computers not only store data,
but they also manipulate them, and a sequence of boolean operations (e.g.,
NOT and AND) acting on the bits is su�cient to realize any deterministic
transformation.

In contrast, the fundamental unit for quantum information is called qubit,
or quantum bit. A qubit is defined by a microscopic system, such as an atom, a
photon, a nuclear spin and so on. The |0i and |1i (in the Dirac notation) states
are now represented by a fixed pair of distinguishable states of the qubit. For
example, if the photon polarization is considered to implement the qubit, then
|0i and |1i could be represented by the horizontal and vertical polarizations:

|0i = $ and |1i = l .

A big di↵erence compared to the classical bit is that a qubit can also assume
all the intermediate states between |0i and |1i, that is called superposition and
is represented by a complex linear combination of the basis state [49]:

| i = ↵|0i+ �|1i, (1.1)

where ↵ and � are the complex amplitudes for |0i and |1i, respectively. For
photons, | i-like state are represented by other possible polarizations (such as
circular or diagonal). Moreover, in classical computation it is possible to know
if a bit is in the 0 or 1 state, but in quantum mechanics we can only speak
about probabilities. So,the probabilities of measuring the state |0i or |1i is
given by |↵|2 and |�|2, respectively, and

|↵|2 + |�|2 = 1. (1.2)

Eq. (1.1) represents a qubit that can be associated to a two-level quantum
system, such as the spin of an electron or the polarization of a photon, and
described by a point on a sphere, that is called Bloch sphere. In fact, since Eq.
(1.2) holds, the expression in Eq. (1.1) can be written as:

| i = ei�

cos

✓
✓

2

◆
|0i+ ei' cos

✓
✓

2

◆
|1i

�
, (1.3)

where �, � and ✓ are real numbers. Since the factor ei� has no observable
e↵ects, the state can be expressed as [10]:

| i = cos

✓
✓

2

◆
|0i+ ei' cos

✓
✓

2

◆
|1i, (1.4)

in which ' and ✓ describe a point on a three-dimensional sphere with unitary
radius. This is represented in Fig. 1.1.
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1.1. From bits to qubits

Figure 1.1: Bloch sphere [10].

Generally, a string of n classical bits can be combined in 2n boolean states,
whereas a string on n qubits can exists in any state of the form [12]:

| i =
11...1X

x=00...0

cx|xi, (1.5)

in which cx are the complex amplitudes associated with the states |xi andP
x |cx|2 = 1. So, a quantum state made of n qubits is represented by a

complex vector | i of unit length in a 2n-dimension Hilbert space. Thus, in
the classical case, the number of parameters grows linearly with the size of the
system, whereas the Hilbert space has an exponentially-large dimensionality.

The state represented in Eq. (1.1) can be described by a single vector in
the Hilbert space and is then a pure state, i.e. a state that is exactly known.
In general, for mixed state the density operator (or density matrix) has to be
introduced:

⇢ =
X
i

Pi| iih i|, (1.6)

where
P

i Pi = 1 and Tr (⇢) < 1. In the case of a pure state, the density
matrix reduces to ⇢ = | ih | and Tr (⇢) = 1. More information about the
principles lying at the basis of quantum information and computation can be
found in [10] and are outside the scope of this thesis.

Another interesting property introduced when dealing with quantum me-
chanics is entanglement. For example, let us consider a system made of two
states | 1i and | 2i. Then, the Hilbert space describing the combined physical
system is given by the tensor product of the Hilbert spaces of the single states:

H = H1 ⌦H2. (1.7)

Now, if the two states | 1i and | 2i are prepared independently and kept
isolated, then each state form a closed system and the combined state can be
written as [11]:

| i = | 1i ⌦ | 2i = | 1i| 2i. (1.8)
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1. Nonclassical states of light in silicon photonics

A state | i of the form (1.8) is said to be a separable state, for the two states
| 1i and | 2i can be treated independently. This case is similar to a classical
system, that can be decomposed in each single state it is made of and each
state can be described separately.

However, in general, a quantum state of the form (1.1) cannot be written as
in Eq. (1.8). In fact, if the states | 1i and | 2i are allowed to interact, then the
closed system consists in both | 1i and | 2i together. In the two-qubit system
we are considering, this means that the composite state | i is a vector in a
four-dimensional Hilbert space given by Eq. (1.7), where H1 and H2 are two-
dimensional Hilbert spaces, respectively. From these considerations, a first big
di↵erence between quantum and classical systems can be found: n entangled
qubits are equivalent to 2n classical bits. Hence, the “famous” exponential
advantage gained by using a quantum machine instead of classical computers.

Furthermore, in electronics, Boolean functions are implemented in logic
gates (e.g. NOT, AND, OR etc.) that perform operations on one or more
binary inputs and generate a single binary output. In the same way, logic
gates, which can perform operations on quantum states, are needed in quantum
computation. Then, entanglement plays a role even in the case of quantum
gates. In fact, in the same way a two-qubit state cannot be separated in the
product of its single-qubit states, there are two.qubit gates that act nontrivially
on both qubits and cannot be separated in the tensor product of single-qubit
gates. Obviously, these considerations are still valid for higher-dimensionality
Hilbert spaces. An important example of this kind of gates is given by the
quantum controlled-not (CNOT) gate, that can be represented as [10]:

UCNOT =

2664
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

3775 . (1.9)

The CNOT is a maximally entangling two-qubit gate and is the equivalent of
the classical XOR (exclusive-OR) gate [10, 50]. The CNOT is a very interesting
gate, since with single-qubit gates is the prototype for all the other possible
gates [10]. Other common gates are the Hadamard (H), Pauli-X (�x), Pauli-Y
(�y), Pauli-Z (�z) and phase gates.

It is important to notice, that there are three classes of quantum algorithms
which provide an advantage over known classical algorithms [10, 50].
The first class consists of algorithms based upon quantum versions of the
Fourier transform, such as the Shor’s algorithms. To perform the fast Fourier
transform through classical logic would require n2n steps to transform 2n num-
bers, whereas on a quantum machine the same operation would require only
about n2 steps, having an exponential saving.
The second class is identified in quantum search algorithms, in which given N
elements in a database and no prior knowledge about them, an element which
satisfies a particular property wants to be found. Classically, about N opera-
tions are needed, whereas quantum search algorithms would solve the problem
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1.1. From bits to qubits

in
p
N steps, having a quadratic speedup over classical logic.

Finally, the third class consists in quantum simulation. Quantum computers
are obvious candidates for the simulation of quantum mechanical systems, that
is di�cult to perform on classical computers. This because classical comput-
ers, to describe a general quantum system, would need a number of complex
numbers that grows exponentially with the size of the system, rather then
linearly as occurs for classical systems. So, if a quantum system is composed
of n di↵erent elements, storing the information of such a state on a classical
computer would require cn bits of memory (c is a constant which depends on
the properties of the system being simulated and on the accuracy of the sim-
ulation). However, on a quantum computer the simulation would require only
kn qubits (k is again a constant depending on the properties of the simulated
system). So, quantum machines would e�ciently perform simulations of quan-
tum mechanical systems that are believed not to be e�ciently performed on a
classical computer.

In this thesis, we do not intend to give an exhaustive description of the
quantum algorithms, that can be found in [10] and [11]. However, in chapter
4, we will give an overview some of the most important quantum algorithms.

Another very important property that it is worth to be mentioned and
derives from entanglement is that the unities of information carried by two
entangled qubits cannot be separated. So, any perturbation on the first qubit,
will influence the behavior of the second qubit, even at large distances [51, 52].
This is a very important feature for quantum information, as we will show in
the next sections.

Concluding, in entanglement the strength of quantum information process-
ing over its classical counterpart can be found.

1.1.1 Quantum technologies

Nowadays, many research areas, such as computation, metrology and com-
munication, are experiencing big improvements because of the application of
quantum laws, and in each field disparate quantum technologies are studied to
look for the best solution. In the following, the most important applications
will be presented.

Quantum computing

Quantum computing is that part of the field of quantum information that
exploits quantum mechanical phenomena, such as superposition and entan-
glement, to perform operations on data and tasks that would not be possible
by employing a classical machine. Before describing the di↵erent technologies
employed for implementing quantum computers, it is useful to give the hard-
ware requirement a quantum information processor should have [53]. First of
all, the quantum system has to be initialized in a well-defined state. Second,
arbitrary unitary operators have to be available and used to bring the initial
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1. Nonclassical states of light in silicon photonics

state into an arbitrary entangled state. Third, the measurement of qubits has
to be performed with high quantum e�ciency. Fourth, long decoherence time,
larger than the gate operation time, are needed.

Unfortunately, these hardware requirements rule out most of the known
physical systems, such as conventional solid-state devices already in use for
classical information. Then, in order to find good candidates for quantum
information processors, one has to look at the fields of atomic physics and
quantum optics. Here, we will give an overview of the main strategies used
for the physical implementation of a quantum information processors. An
exhaustive treatment can be found in [10, 54] and lies beyond the scope of this
thesis.

One of the possible way of implementing quantum information processing
is by using trapped atoms or ions in which the angular momentum of the atom
is used to create qubits. Atoms or atom ions are confined in free space with
nanometer precision by using appropriate electric fields from nearby electrodes
[55] and laser pulses are employed to implement quantum gate operations.
Trapped atoms or ions show long coherence time for small systems and low
noise level [56]. However, for larger system qubits can interact by phonon
mediated coupling. This, along with current di�culty in preparing the atoms
in the initial state are among the major drawbacks of this technology [57, 13].

A second option for quantum information applications consists in quantum
dots and dopants in solids. Indeed, the di�culty of cooling and trapping
single atoms in vacuum can be overcome if atoms are part of a solid-state
matrix. So, impurities or semiconductor nanostructures behave as “artificial
atoms” and can bind to one or more electrons (or holes) and form a localized
potential with discrete energy levels. There are di↵erent ways for realizing
quantum dots. Some exaples are: group III-V semiconductors [58], spin-free
group-IV semiconductors [15], single impurities (such as phosphorus atom)
[59] and nitrogen-vacancy centers in diamond [60, 61]. Even if the issue of
the deterministic placement of the dots in the surrounding material has been
overcome either by using deterministic fabrication techniques or by employing
site-controlled quantum dots, the very low working temperature required from
these systems still remains the biggest obstacle in the applications. Moreover,
apart from nitrogen-vacancy centers that show long coherence times, usually
the exchange interaction in these systems is short-range (being a spin-spin
coupling) leading to decoherence on large scales [54].

Another possible implementation of a quantum information processor can
be found in superconductors. Indeed, at low temperature, in superconductors
electrons bind into Cooper pairs, forming a state with zero-resistance current
and a well-defined phase. So, superconducting circuits would not su↵er from
decoherence coming from resistive losses. Moreover, in superconducting cir-
cuits, macroscopic quantities, such as inductances, capacitances and so on,
can be controlled in order to change the potential for the quantum variables
of the Cooper-pair condensate, thus allowing the creation of qubits. Usually,
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superconducting circuits are made of an LC circuit with a Josephson junction,
that is a thin insulating layer separating sections of a superconductor. In this
technology, qubits can be implemented in three di↵erent ways: charge [14],
flux [62] and phase [63]. The biggest advantage of this technology is that it
resemble the classical high-speed integrated circuits and can thus be fabricated
by using the existing technology, encoding qubits in ordinary electrical circuit
design [64]. However, like for quantum dots, one big issue is that it requires
cryogenic temperatures in order to operate, that results in a very expensive
technology. Moreover, they have to overcome the big challenge given by the
decoherence due to the macroscopic nature of the produced qubits, that involve
the collective phenomena of a large number of conduction electrons [54].

Even nuclear magnetic resonance (NMR) has been considered for the im-
plementation of a quantum information processor [16, 65]. Because of the rapid
molecular motion, nuclei maintain their spin orientation for many seconds, a
time comparable to the coherence time in trapped atoms. In NMR, nuclear
spins are identified by their Larmor frequency and by using radio-frequency
pulses it is possible to manipulate di↵erent nuclei, thus generating one-qubit
gates. Then, two-qubit gates are created from the indirect coupling mediated
through molecular electrons [66, 67]. However, to date, no NMR technique has
overcome the di�culties in initializing and scaling up the system.

Finally, many other systems, all exhibiting quantum coherence, have been
proposed. Some examples are: small polar molecules instead of single atoms
or ions [68], carbon-based nanomaterials, such as fullerene [69], nanotubes
[70] and graphene [71], low-decoherence environment on the surface of liquid
helium [72], molecular magnets [73] and so on [54]. However, even if many
options are available, the use of superconductors as quantum processors seems
the best choice. In fact, very recently, some results have been obtained by big
companies such as Intel, where a 49-qubit superconducting circuit has been
realized [74], IBM, that fabricated a 50-qubit chip [75], and Google, that in
2018 has announced a 72-qubit superconducting circuit [76].

A very important sub-field of quantum computation is quantum simulation,
that exploits quantum systems in order to mimic other quantum systems. In
fact, big challenges are met by classical computers when quantum systems have
to be simulated, for the number of parameters and operations needed for the
simulation increase exponentially with the system size. Thus, approximation
methods are currently employed. Nevertheless, approximations are not always
available or they su↵er from some limitations and implementing quantum sim-
ulations still remains a hard task [77]. Nowadays, di↵erent architectures are
used to implement quantum simulators of a determined physical system, such
as superconducting circuits [78], trapped ions [79, 80], NMR [81] and single
photons [82, 83, 84, 85].

Even if no one of the mentioned systems seem to overcome the others, it is
worth to mention the role of photonics, due to the low-noise and long coherence
time and length of photons. Qubit states could be encoded naturally in the
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polarization of the photon and a single-qubit gate could be realized with linear
optical components. Moreover, photons are easy to manipulate and individu-
ally addressed and moved with high precision by working at room temperature.
This are important features for the simulation of complex and nonlocal many-
body interactions, even if they imply a challenge in the implementation of
two-qubit gates, due to the low-interaction among photons.

Recently, di↵erent results have been obtained in the field. For example,
photons have been employed to calculate the energy spectrum of the hydrogen
molecule to a precision of twenty bits [86] and to simulate frustrated spin sys-
tems [87]. Moreover, a very important work by S. Aaronson and A. Arkhipov
showed that the simulating the propagation af a photon in a linear network
made of beam splitters is a computationally di�cult task for classical com-
puters even for few tens of photons [88], for it would occur in an exponential
overhead in time and resources. This has been called the boson-sampling prob-
lem [89] and many experiments have then implemented to show that it can be
e�ciently treated on quantum simulators [90, 91, 92, 93, 94, 95]. However,
the big problem of scalability remains and only few-photon systems have been
experimented.

Quantum metrology

Quantum metrology is the field that studies measurements and discrimina-
tion procedures that gain some kind of advantage in precision, e�ciency, ease of
implementation, by introducing the laws of quantum mechanics [96]. In fact,
a general measurement is a↵ected by both systematic and statistical errors.
While the former are repeatable errors due to either damaged or wrongly-used
instruments or wrong experiment design and cannot be reduced, the latter
can be either accidental or fundamental-limit-related errors. Statistic errors
can be decreased by repeating the measurement and averaging the outcome
result. These errors scales as 1/

p
N (Gaussian), where N is the number of re-

sources (e.g. repetitions, particles etc.). This is usually referred to as standard
quantum limit (SQL) and is related to measurement procedures which do not
exploit the quantum nature of the investigated system. Quantum metrology
explores exactly the SQL bound and the strategies that could be used to beat
it, and it is currently exploited in di↵erent fields, the most important being the
estimation of a quantum phase, the measurement of either a quantum state or
a process and quantum imaging [97].

The measurement of an optical phase with an interferometer is the typical
example of application of quantum metrology. In fact, in a classical experiment
the precision on the measurement is given by 1/

p
N , where now N stands for

the number of detected photons, but in principle it is possible to reach the
Heisemberg limit 1/N when employing quantum resources [98]. This can be
achieved through the use of entangled photons [99], squeezed states (i.e. states
having a standard deviation below that one of the ground state of the operators
composing them) or NOON states (i.e. multiphoton entangled states) [96]. So,
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in this area of quantum metrology, the field of photonics plays a crucial role.

Quantum states carry unity of quantum information and, in order to study
a determined quantum process, quantum states need to be prepared, controlled
and measured. So, it is important to find ways to precisely measure both the
quantum state and the quantum process. Currently, the most used method
for measuring a quantum state is the quantum state tomography (QST) of
maximum likelihood estimation, which is based on the fact that a single qubit
can be determined by taking four projection measurements [100]. Even in this
case, QST can help enhancing the precision of the measurement to 1/N , where
N represents the number of measurement trials [97]. Conversely, in order to
identify an unknown quantum dynamical process, quantum process tomogra-
phy (QPT) is needed [97]. One possible way for QPT is to use the known
quantum states to probe a quantum process and employ QST to understand
how the process works [101, 102, 103]. The first approach used date back to
1996 (standard QPT) [101]. Here, an ensemble of quantum states is prepared
and sent through the process. Then, the states at the output are identified
through QST. However, this is an indirect technique, since it requires QST
to reconstruct the quantum process. However, other direct methods, such as
the direct characterization of quantum dynamics (DCQD), can be employed to
provide a full characterization of quantum systems without the need of QST
[103]. Now, the advances in quantum technologies allow to prepare states with
a growing number of qubits and research is needed to reduce the measurement
bases and time for data analysis processes [104, 105].

Quantum imaging is a very interesting sub-field of quantum metrology. It
exploits quantum properties, such as entanglement, in order to image objects
with much more resolution than what obtained through quantum optics. So,
through quantum imaging the classical Rayleigh di↵raction limit can be over-
come. Quantum ghost imaging and quantum lithography are two possible
applications of quantum imaging.

In ghost imaging entangled photons are generated through a nonlinear pro-
cess. The two generated photons are then separated through a beam splitter.
The signal photons, after passing the object to be imaged, are collected on a
spatially non-resolving bucket detector, whereas the idler photons reach a spa-
tially resolving detector, i.e. a CCD camera. Then the image is constructed by
taking the coincidence between the signal on the bucket detector and the idler
on the CCD. The term ghost, is due to the fact that the image is built without
obtaining any spatially-resolved image information from the object [106, 107].
In the first implementation of ghost imaging, position-momentum entangled
photons were employed [106, 108]. However, later on, it was demonstrated
that ghost imaging can also be performed by considering classical light, be-
cause only spatial (i.e. classical) correlation between the beams was required
[109, 110, 111]. Still, it was also proved that twin beams have stronger cor-
relation than two coherent states [112], so twin entangled beams can detect
a weaker absorption, thus improving the sensitivity of the measurement, even
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beyond the SQL imposed by the shot noise [113, 114]. Finally, a recent exper-
iment used the induced coherence between entangled photons generated from
two independent sources in order to image an object with photons that do not
interact with it [115].

Quantum lithography can help solving an issue encountered by classical
optical lithography, that is used to transfer a geometric pattern from a mask
to a photoresist (see Sec. 2.1 and 3.1.1), with a resolution of the order of the
wavelength of the used light. Usually, in order to obtain a better resolution,
the fringe separation has to be decreased, and light at shorter wavelength has
to be employed. However, in this way, the photon energy is increased, till it
reaches a value at which the object could be damaged. Then, the employment
of entangled states can overcome this problem. For example, by introduc-
ing N -photon entangled states (NOON states) the resolution can go down to
�/2N , that is a factor of N below the classical Rayleigh di↵raction limit [116].
However, until now only quantum lithography with N = 2 has been realized
due to current technology limitations [117]. So, even in quantum imaging,
photonics seems the best candidate for real applications.

Quantum sensing is another possible subfield of quantum metrology. Here,
quantum mechanical systems are employed as sensors for di↵erent physical
quantities, such as time, frequency, electric and magnetic fields, temperature
and so on. Many di↵erent systems have been studied to implement quantum
sensors depending on which external parameter the sensor responds to. For
example, spin-based systems are mainly employed as sensors for magnetic fields
[118], whereas trapped ions are used when dealing with electrical fields [119].
Usually, a quantum sensor has to respond when a wanted signal is triggered,
but it also has not to be a↵ected by unwanted noise. These requirements define
a very important feature of quantum sensors, that is their intrinsic sensitivity.
Di↵erent strategies have been employed to make this value the lowest possible
[120].

Quantum communication

Quantum communication refers to the art of transferring a quantum state
from one place to another by using quantum mechanics to guarantee secure
communication (quantum cryptography). The basis of quantum cryptography
lies in quantum mechanics rules that can be summarized by the no-cloning
theorem, that states that it is impossible to create an identical copy of a
quantum state [121]. Usually, in quantum communication a sender, called
Alice, and a receiver, named Bob, want to share secrete information through a
public channel. Then, they have to face the problem of a possible eavesdropper,
called Eve, that could intercept their message without being noticed. Let
us now restrict to the example of quantum key distribution (QKD), that is
one possible application of the broad quantum information field. In QKD,
Alice and Bob produce a shared random secret key, that is used to encrypt
and decrypt messages. The quantum properties of the qubit are exploited for
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the key transmission, whereas the message can be sent by the usual classical
channel.

The first QKD protocol date back to 1984 and is due to C.H. Bennet
and G. Brassard, hence the name BB84 [19]. The protocol was implemented
by using photon polarization, but other properties of any quantum objects,
such as the spin of an electron, can be used. In BB84 Alice and Bob have two
possible basis to choose: either horizontal and vertical polarization (|0�i, |90�i)
or diagonal polarization (|� 45�i, |+ 45�i). Alice will pick up one of the two
basis and send the message and Bob will randomly choose one of the two
basis to read it. Every time Alice and Bob will select di↵erent basis, they
will obtained uncorrelated measurements. At this point, both Alice and Bob
declare through a public channel which basis they took for each qubit of a
fraction of the original message. They can thus discard the qubits for which
they used di↵erent basis. The remaining bits will then form the sifted key,
that has an error of about 50% since they will choose half of the times the
same basis. Let us now consider the case where an eavesdropper intercept the
message coming from Alice and resend it to Bob after having measured the
polarization through one of the two possible basis (intercept-resend strategy).
Eve will use the same basis of Alice about 50% of the times and Bob will
choose half of the times Eve’s basis. So, finally, the error on the sifted key will
decrease to 25% and Alice and Bob will be able to detect the presence of Eve.
They will thus discard the process before the key is established.

Another version of the BB84 protocol based on entangled photons was
proposed in 1991 by A.K. Ekert [122]. In the past years (and till now) many
new protocols based the BB84 and Ekert ideas were proposed in order to
optimize their implementation and we refer the interested reader to [123, 18].

As we have seen, many di↵erent technologies have been explored for imple-
menting quantum information technologies. However, in the last ten/fifteen
years, great attention has been given to photonics [98, 123, 17]. Indeed, re-
alizing qubits by using photons characteristics, such as polarization, is very
interesting due to their long coherence times. Moreover, photons seem to be
the natural choice for quantum communication, as they can travel long dis-
tances through either atmosphere or optical fibers with very low environmental
noise level. However, one major drawback of this technology is given by the
need of interactions between photons for universal multi-qubit control. Indeed,
these interactions require optical nonlinearities stronger than those available
in conventional nonlinear media and cavity quantum electrodynamics (QED)
was employed to increase the atom-photon interaction [124]. However, in 2001,
Knill, Laflamme and Milburn proved that scalable quantum computing is pos-
sible by using only single-photon sources and detectors, and linear optical
circuits (KLM scheme) [125]. Their scheme is based on quantum interference
with the use of auxiliary photons at beam splitters and single-photon detection
to induce interactions non-deterministically.

In the last years, the advances made in the nonlinear optics field have made
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possible to generate both single- and entangled-photon states through nonlin-
ear parametric processes. In fact, when a strong pump laser field is injected
into a nonlinear medium, a photon pair could be generated by the nonlinear
process, and the two photons could be either in an entangled or in a single pho-
ton state. Another big advantage of photonics is that the components of the
system used in the laboratory, such as beam splitters, mirrors, phase shifters
and so on, can be easily integrated on a chip, that is a key property for moving
a technology into the industry world [126, 127]. Ideally, all the steps needed
for quantum experiments would be integrated on a single chip [128], even if
the major issues of integrating both single-photon detectors and a laser source
have to be solved. For sure, the ability of integrating the source of nonclassical
states of light and the needed filters is already a big step forward over the use
of bulk optical setups [37]. Regardless of the technology used for building pho-
tonic chips and the approaches used for photons sources and detectors, losses
remain a significant challenge for this kind of technology and are comparable
to the decoherence issue in solid-state qubits. Usually, integrated waveguides
have losses of about 0.1 dB cm�1 and current photonic circuits use about 1 cm
per logic gate [129, 130].

Because of the development of photonic technologies and due to the need
of transferring quantum states over long distances, di↵erent experiments have
been performed in the field of quantum communication and distributed quan-
tum networks. In this framework, great importance is given to the distribution
of entangled particles over large distances. The obtained results are essential
not only for quantum communication protocols [122], but also for quantum
teleportation [131, 132] and quantum networks [133]. However, usually, this
kind of experiments is limited by the noise of the single-photon detectors and
the absorption along the quantum channel, that is usually an optical fiber
[134].

Di↵erent ways have been studied to overcome this problem, for example
by dividing a long distance in small parts and employing quantum repeaters.
Nevertheless, the realization of such a technology is experimentally challenging
[135, 136]. Another option is given by connecting a Earth-orbit satellite to a
ground station, thus employing free space as linking channel [137, 138]. Global
QKD is then obtained by exchanging quantum keys between the satellite and
various ground stations, thus enabling the use of secret keys between two ran-
dom ground stations [139]. In this way, in principle, it would be possible to
transfer quantum states among very distant location on the Earth, even if
they are separated by thousands of kilometers. In fact, the traveling photons
would experiment turbulence and losses in the 10 km of the atmosphere closest
to the Earth. Then the transmission is almost in vacuum with zero absorp-
tion and decoherence. At this purpose, many experiments have been carried
out. Free-space distribution of entangled photons was first demonstrated over
a distance of 600 m [140] and 13 km [141]. Triggered single photons were
transmitted over a one-link free-space channel of 144 km [142] and quantum
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teleportation over 16 km in free space was achieved in 2010 [143]. Then, in
2012 the group of J.-W. Pan experimentally proved the quantum teleportation
of independent qubits over a one-link free-space channel of 97 km [144]. In the
same experiment, the distribution of entangled photons over a two-link channel
was achieved with an almost 102-km-long separation of the two photons. Few
months later, this record was broken by the Austrian group of A. Zeilinger
[145]. In this experiment, quantum states were successfully transmitted over a
distance of 143 km, between the two Canary Islands of La Palma and Tenerife.
Finally, very recently, the satellite Micius was launched from Jiuquan in China
to an altitude of about 500 km. This satellite is dedicated to quantum science
experiments [6]. Three ground stations located in Delingha, Nanshan and Li-
jiang (Gaomeigu Observatory) were chosen for the experiment. The physical
distances of the ground stations are 1203 km (Delingha-Lijiang) and 1120 km
(Delingha-Nanshan), whereas the separation between the satellite and each
ground station goes from 500 km to 2000 km. In the experiment, a periodi-
cally poled KTiOPO4 crystal, inside a Sagnac interferometer, was pumped by
a CW laser diode with a central wavelength of 405 nm and linewidth of about
160 MHz. The pump is split by a polarizing beam splitter in order to pass
through the crystal both in clockwise and anticlockwise directions, simultane-
ously. In turn, down-converted photon pairs in polarization-entangled states
are generated at a wavelength of about 810 nm. In the experiment, the group
of J.-W. Pan proved entanglement through a Bell test, between two photons
at a distance of 1203 km [6]. This experiment has been a real breakthrough
for QKD and quantum teleportation and paves the way to new quantum com-
munication and quantum optics experiment at distances that were, until now,
inaccessible on the ground.

In this thesis we will focus in particular on integrated sources of entangled
photons for quantum applications. Since we will mainly deal with photon-
ics, our results can be framed in the context of quantum communication and
metrology. Many di↵erent platforms are currently used for producing chips
employed for quantum photonics applications.

For example, gallium arsenide (GaAs) allows for the fabrication of low-loss
waveguides. Light can be confined in tight regions due to the high refractive
index of this material, allowing for the production of compact circuits and
devices. Due to its large electro-optic e↵ect, GaAs is a very promising platform
for single photons fast routing and manipulation. Moreover, two ways can be
used to emit single photons in this material. First, taking advantage of its high
�(2) nonlinearity, spontneous parametric down conversion in waveguides can be
exploited [146]. Second, on-demand nonclassical light sources, that are single
quantum dots (QDs), can be directly integrated in nanophotonic structures
[147, 148]. Finally, even single-photon detectors on GaAs waveguides have
been demonstrated [149], making GaAs waveguides circuits very promising
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for the construction of quantum photonic integrated circuits. For a complete
review on GaAs integrated quantum photonics we refer the reader to [150].

Another possible platform for building integrated photonic circuits is sil-
icon nitride (Si3N4). Here, circuits based on Si3N4 waveguides can directly
incorporate GaAs nanophotonic devices containing self-assembled QDs. Then,
the passive Si3N4 waveguide-based circuit can be used for distribution, low-loss
routing and interference of light across the chip [151]. Moreover, even Si3N4

microring resonators can be directly used as on-chip sources of light [152].
Another appealing platform for quantum photonics is diamond. In fact,

diamond is host to di↵erent color centers [153] that can be individually in-
tegrated through ion implantation. In particular, the negatively charged NV
centers are very interesting for implementing the qubit in quantum applications
due to their spin readout, ease of manipulation and long coherence time. Usu-
ally, NV centers require the use of cavity quantum electrodynamics (CQED),
where the single-photon spontaneous emission rate can be controlled through a
photonic cavity that enhances the interaction strength between the NV center
and the single optical mode. Particularly, among the employed photonic cav-
ities, it is important to mention photonic crystal cavities, which provide very
strong enhancement because of their small volumes. Moreover, they have al-
ready been widely studied in the context of light-matter interaction with QDs
[154].

Finally, even silicon-based photonic circuits play a crucial role in the con-
struction of integrated sources of quantum states of light. The main advantage
of the silicon platform is the production of systems that are easily reproducible
by industrial processes. This is the reason why in this work we will focus on
silicon-based photonic systems, as it will be described in detail in the next
section.

1.2 Silicon photonics

As already explained in Sec. 1.1.1, photonics is a very promising field
for the production of nonclassical states of light needed for many quantum
applications. However, in order to translate quantum technologies into real
applications, the features of compactness, scalability and compatibility with
the integration on an electronic chip are required. For this reason, in the last
decades the necessity of integrating photonic structures on a chip has become
of pivotal importance.

Silicon photonics has then turned into one of the leading technological
solutions for the production of integrated-photonic circuits not only for the
development of quantum applications. Indeed, the interest in silicon photonics
has grown for solving some technological problems such as high performance
computing, optical communications (telecom/datacom), optical sensors, and
on-chip optical interconnects.

The reasons why silicon has overcome other platforms are that chips made
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of this material are cheap, easy to fabricate and can be densely integrated.
This is mainly due to the compatibility to the traditional complementary
metal-oxide-semiconductor (CMOS) fabrication process that dominated the
microelectronic industry in the last 40 over years. Indeed, the field of silicon
photonics has benefited from the billions of dollars invested in the CMOS fab-
rication, allowing for a high level of integration. With this technology, devices
that modulate, detect, route and filter light can all be co-located on the same
wafer and built using the same tools.

In order to lower the fabrication costs and making them available even
at the small scale, the foundry services already in use for the development of
microelectronic circuits plays a crucial role. In the fabs, once a silicon photonic
model is in place, multi-project wafers (MPW) shuttle runs can be organized
to reduce overheads associated with chip fabrication through the sharing of
photomask and wafer processing costs. In the electronics industry, this is well
illustrated by MOSIS [34], an organization that provides MPW services from
various commercial semiconductor foundries for electronic circuit design and
innovation. Indeed, even for silicon photonics, a number of institute around the
world are o↵ering foundry services in order to lower the fabrication costs. These
services are o↵ered, for example, by the A⇤STAR Institute of Microelectronics
(IME) in Singapore, AIM Photonics [155] in the USA and, in Europe, by IMEC
and CEA-LETI [35].

Another motivation on the choice of silicon for the production of photonic
circuits, is the availability of high-quality silicon-on-insulator (SOI) wafers,
that is an ideal platform for creating planar waveguide circuits. SOI wafers
usually consist of about either 220-nm-thick or 300-nm-thick silicon guiding
layer on top of a silicon oxide substrate of about 2 µm of thickness. All the
components of the photonic circuit are realized on the top of the guiding layer
through lithography and etching processes, as it will be described in detail in
the next chapters for each sample used.

The strong optical confinement o↵ered by the high index contrast between
silicon (nSi = 3.48 at 1550 nm) and its oxide (usually, nSiO2 = 1.44 at 1550 nm)
or air (n = 1), that constitute the cladding, makes it possible to scale photonic
devices to the hundreds of nanometer level, allowing for a high-integration level.
Indeed, in the case of a silicon core embedded in silica, the high refractive index
contrast, which we define as �n ⌘ ncore � nclad ⇡ 2, allows a total internal
reflection with a very large incident angle of 60� [36].

Besides the above arguments in favor of silicon photonics, it is also worth to
mention that silicon has also excellent material properties that are important
in photonic devices. Indeed, silicon has high thermal conductivity, high optical
damage threshold and high third-order optical nonlinearities. However, it is
also important to mention that the main limiting factor in silicon devices when
high powers applications are needed is the onset of the TPA process. Moreover,
silicon is an excellent material in the midwave IR spectrum (1.3 to 1.55 µm),
having a low-loss window extending from 1.1 µm to nearly 7 µm, as shown in
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Figure 1.2: Linear absorption in silicon. Silicon has a low-loss window ex-
tending from 1.1 µm to nearly 7 µm, making it an excellent material in the
midwave IR spectrum.

Fig. 1.2 [156].

In this section we will first describe the nonlinear process through which it
is possible to generate photons in silicon, that is the four-wave mixing process.
Then, we will describe in details the main photonic structures that can be
integrated on a chip. We will focus on waveguides, distributed Bragg reflectors
(or Bragg waveguides) and microring resonators, since they will be the leading
subject of this thesis.

1.2.1 Nonlinear optics

Nonlinear susceptibility

The field of nonlinear optics studies phenomena that occur as a consequence
of the modification of the optical properties of a material system by the pres-
ence of su�ciently intense light (laser light). The word nonlinear means that
the optical phenomena occur when the response of a material system to an ap-
plied optical field depends in a nonlinear manner on the strength of the optical
field.

In order to describe optical nonlinearities it is necessary to consider the de-
pendence of the polarization vector P (!) of a material system on the strength
E (!) of an applied optical field that propagates in the medium.
In usual linear optics, the induced polarization P (!) depends linearly on the
electric field strength E (!) and we can write:

P (!) = ✏0� (!)E (!) , (1.10)

where ✏0 is the permittivity of vacuum and � is the linear susceptibility.
However, in any real atomic system, the electric field propagating in the

medium induces a polarization that is not exactly proportional to the field
strength. So, in nonlinear optics, if the electric field E (!) is su�ciently small
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and assuming that the medium response is instantaneous, Eq. (1.10) can be
generalized to the following expression:

Pi = ✏0

 X
j

�
(1)
ij Ej +

X
jk

�
(2)
ijkEjEk +

X
jkl

�
(3)
ijklEjEkEl + . . .

!
, (1.11)

where ✏0 is always the vacuum dielectric constant as for Eq. (1.10), and �
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fourth rank and the indexes i, j, k, l represent the components along a generic
axis. The nonlinear optical susceptibilities observe the following symmetry
relations:

�ijk = �ikj, �ijkl = �i[kjl], (1.12)

where [kjl] indicates any permutation of the indexes k, j, l.
The nonlinear components in Eq. (1.11) decrease quickly, and higher-order
terms can be neglected. Indeed, we can write [39]:�����P (n+1)

i

P
(n)
i

����� ⇡
����� EEat

�����, (1.13)

where Eat is the characteristic atomic field strength, that is usually of the order
of 1010 Vm�1. Now, considering a field E ⇠ 105 Vm�1, it can be seen that the
high-order terms in Eq. (1.11) are very weak, since each term is roughly five
orders of magnitudes smaller that the previous one [40].

In Eq. (1.11), the term �(1) gives the linear response of the dielectric
medium and is the linear susceptibility of Eq. (1.10): the model can be re-
duced to that of the harmonic oscillator and the polarization is proportional
to the intensity of the electric field.
The following terms in Eq. (1.11) are important when the intensity of the
incident beam is such that the electrons in the medium start to feel the anhar-
monicity of the potential. In particular, in �(2), the polarization is proportional
to the square of the electric field. The second-order nonlinearity is responsible
for many e↵ects. For example, second-harmonic generation (SHG), in which
two photons at the same frequency interact with the nonlinear medium and
generate a photon with twice the energy of the initial pair. Parametric down-
conversion (PDC), where one photon is converted into two photons of lower
energy. Optical parametric amplification (OPA), in which two photons enter
the the nonlinear medium and one of them is amplified at the output through
the creation of a second photon. Sum- and di↵erence-frequency generation
(SFG and DFG), where two pump photons generate another photon with the
sum or di↵erence of the energies of the pump beams. The second-order nonlin-
earity is di↵erent from zero only in noncentrosymmetric crystals (i.e. crystals
with no inversion symmetry). In fact, for symmetry reasons, in centrosymmet-
ric media, a change in the sign of the electric field would produce a change in
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1. Nonclassical states of light in silicon photonics

the sign of the polarization. So, from Eq. (1.11), it should be:

�
(2)
ijkEjEk = ��

(2)
ijk (�Ej) (�Ek) , (1.14)

that can be satisfied only when �
(2)
ijk = 0. This is the case of silicon, that crys-

tallizes in a centrosymmetric diamond cubic structure and thus not producing
second-order nonlinear optical interactions.
The �(3) term becomes then the first useful nonlinear component in centrosym-
metric crystals and is responsible for many phenomena. Few examples are:
third-harmonic generation (THG), in which three photons are destroyed, cre-
ating a single photon at three times the frequency of the input laser beam,
optical Kerr e↵ect, that can be described as a modification of the refractive
index of the nonlinear medium due to a high-intensity light beam propagat-
ing in the system, four-wave mixing (FWM), in which two pump photons are
annihilated in the medium and two other photons are created following the
energy-conservation law.
For a more detailed description of the nonlinear properties of a medium we
refer to [39, 40, 41].

General third-order nonlinear optical process

In the experiments described throughout this work, we will deal only with
processes related to �(3). So, following the arguments in [40], let us now focus
on a generic third-order nonlinear process.
Consider the simple case in which the applied field is monochromatic and is
given by the following expression:

E (t) = E! cos (!t) . (1.15)

From Eq. (1.11), the third-order contribution to the polarization is given
by:

P(3) (t) = ✏0�
(3)E3 (t) . (1.16)

Since cos3 (!t) = 1
4
cos (3!t) + 3

4
cos (!t), Eq. (1.16) can be written as:

P(3) (t) =
1

4
✏0�

(3)E3
! cos (3!t) +

3

4
✏0�

(3)E3
! cos (!t) . (1.17)

The first term in Eq. (1.17) describe the THG process, in which three
photons at a frequency ! are annihilated to create a photon at frequency 3!.
Instead, the second part of the equation describes a nonlinear contribution to
the polarization at the frequency of the incident radiation !. This term leads
to a nonlinear contribution to the refractive index experienced by a wave at
frequency ! and we can write:

n = n0 + n2I, (1.18)
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where I = 1
2
n0✏0cE

2
! is the intensity of the incident field, n0 is the linear (or

low-intensity) refractive index and n2 is an optical constant that characterizes
the strength of the nonlinearity and is given by:

n2 =
3

2n2
0✏0c

�(3). (1.19)

The constant n2 is usually referred to as Kerr coe�cient and is due to the
optical Kerr e↵ect.

As explained above, silicon has a diamond cubic crystal structure and does
not have the second-order nonlinearity. However, it has a large third-order
nonlinearity with respect to other materials. Indeed, silicon exhibits a Kerr
coe�cient that is 102 bigger than silica glass at the telecommunication wave-
lengths, being n2,Si = 4.5⇥10�14 cm2 W�1 [157] and n2,SiO2 = 2.2⇥10�16 cm2

W�1 [158] at 1.55 µm, allowing e�cient nonlinear interaction at relatively low
power. For this reason, few-centimeters-long SOI-based waveguides are exten-
sively studied for processes based on the third-order nonlinear susceptibility,
among which THG [159, 160] and FWM [161, 162, 44, 46] can be found.

However, there are two major drawbacks for silicon waveguides. First, even
if larger than in other materials, the Kerr coe�cient for systems that exhibit
the third-order nonlinearity is still quite low and of the order of n2 ⇠ 10�14

cm2W�1, requiring the adoption of smart strategies in order to confine the
field and thus enhancing the light-matter interaction [157]. Second, silicon
nonlinear processes su↵er from the presence of the undesired TPA e↵ect [163],
consisting in the creation of a free electron-hole couple due to the absorption
of two photons exceeding half of the band-gap energy Eg = 1.2 eV, that in
silicon corresponds to a wavelength of about 1.1 µm.
The two-photon transition in an indirect gap material, such as silicon, is
phonon mediated. The TPA e↵ect leads to changes in the refractive index
and susceptibility of the material, due to free-carriers absorption by the elec-
trons promoted in the conduction band, and represents the nonlinear losses.
Thus, if we write the complex dielectric function as ✏ (!) = ↵ + i�, the TPA
process represents the imaginary part of ✏ (!), whereas the Kerr e↵ect (and
thus n2) is described by the real dispersive part of ✏ (!) [164].

Four-wave mixing

We will now focus on one of the possible third-order nonlinear e↵ects ob-
served in silicon, that is FWM. This process will be the main theme of this
thesis.
So, let us now consider again Eq. (1.11). This expression can couple fields
with di↵erent amplitudes and frequencies. For the case of interest, we can con-
sider only the third term of the Taylor expansion (1.11) that we report here
for convenience:

P
(3)
i = ✏0

X
jkl

�
(3)
ijklEjEkEl. (1.20)
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1. Nonclassical states of light in silicon photonics

Figure 1.3: Stimulated four-wave mixing (FWM) process. Two pump photons
and a signal photon at energies ~!p and ~!s, respectively, enter the nonlinear
medium. The signal photon is not directly involved in the transition and is
found again at the output, whereas the two pump photons are converted in an
idler (~!i) and signal (~!s) photon pair. (a) Schematic view of the stimulated
FWM process. (b) Energy diagram of the stimulated FWM process.

From Eq. (1.20), we can observe that four fields with di↵erent frequencies can
interact each other. One particular case, the degenerate FWM (DFWM), con-
sists in the situation where two of the incoming fields have the same frequency.
So, the polarization oscillates at a frequency 2!2 � !3 and we can write:

P (2!2 � !3) / �(3)E2
!2
E!3 . (1.21)

In Fig. 1.3, a representation of the DFWM, called stimulated FWM in this
case, is given. Here, three incoming fields, two of them called pump and at a
frequency !p and the other one called signal at a frequency !s propagate in the
nonlinear medium. These waves couple to the �(3) term in the susceptibility
and generate a new wave, called idler at a frequency !i. So, Eq. (1.21) can be
written as:

P (!i) / �(3)E2
!p
E!s . (1.22)

In the FWM process energy and momentum are conserved:

2!p = !i + !s, (1.23)

2kp = ki + ks. (1.24)

The DFWM, as defined above, will be considered from now on in this work.
As shown in Fig. 1.4, the FWM process can also be seen as a four-photon

nonlinear scattering initiated by vacuum fluctuations. In the interaction, two
incoming fields (pump) at a frequency !p are converted in a photon pair (idler
and signal) at a frequency !i and !s, respectively. In this case we talk about
spontaneous FWM (SFWM), since the incoming field at !s is no longer present.
As in a general quantum system (e.g. an atom or a molecule) stimulated
emission is the classical counterpart of spontaneous emission [165], the same
happens for FWM. Indeed, while the stimulated FWM process can be described
in a classical way, SFWM requires a fully quantum theory in order to be
understood.
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Figure 1.4: Spontaneous four-wave mixing (SFWM) process. It can be seen as
a four-particle scattering, where two pump photons at energy ~!p are converted
in an idler (~!i) and signal (~!s) photons. (a) Schematic view of the SFWM
process. (b) Energy diagram of the SFWM process.

DFWM is part of a class of processes defined as parametric processes, in
which the initial and final quantum-mechanical states of the system are iden-
tical. This means that, in a parametric process population can be removed
from the ground state only for those brief intervals of time when it resides
in a virtual level (�t ⇠ ~�E, where �E is the energy di↵erence between the
virtual level and the nearest real level). Conversely, processes that do involve
the transfer of population from one real level to another are known as non-
parametric processes.
Parametric processes can always be described by a real susceptibility and the
photon energy is always conserved, whereas nonparametric processes are de-
scribed by a complex susceptibility and energy need not be conserved because
it can be transferred to or from the medium.

As a simple example to discriminate between parametric and nonparametric
processes, we can consider the case of the linear index of refraction. Its real part
describes a response that occurs as a consequence of parametric processes. The
imaginary part, instead, occurs as a consequence of nonparametric processes,
since it describes the absorption of radiation, which results from the transfer
of population from the atomic ground state to an excited state.

1.2.2 Silicon photonic devices

In this section we will describe the main photonic structures we will use for
the experiments of this work, that are silicon waveguides, distributed Bragg
reflectors (DBRs) or Bragg waveguides (BWs) and microring resonators. We
will also describe the FWM process for each structure.

Waveguides

The first structure is worth describing is the silicon waveguide. This is the
building block of integrated photonic circuits, since many structures can be
derived from a simple waveguide.
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1. Nonclassical states of light in silicon photonics

Figure 1.5: (a) Cross-sectional view of a silicon wire waveguide. (b) Optical
intensity distribution along the horizontal and vertical directions of a typical
silicon wire waveguide.

So far, two main types of silicon waveguides have been considered in inte-
grated photonic circuits: rib waveguides, which have core dimensions of a few
micrometers [166, 167] and wire (or ridge) waveguides, with core dimensions
of several hundreds of nanometers [168, 169, 170, 171]. Silicon wire waveg-
uides are especially promising because their ultra-small core dimensions and
micrometer bending sections match the dimensions of electronic circuits, being
very suited for electronic-photonic convergence.

In SOI-based waveguides, light is channeled through transverse and lateral
confinement in a silicon core (nSi = 3.48 at 1550 nm) surrounded by a silicon
oxide (usually silica) bottom cladding (nSiO2 = 1.44 at 1550 nm) and a low
index top cladding (usually, silica or air). A scheme of a silicon photonic wire
waveguide is shown in Fig. 1.5, with its optical intensity distribution along the
horizontal and vertical directions [36].

The core dimension should be determined so that a single-mode condition
(for one polarization at a wavelength of 1550 nm) is fulfilled. Moreover, the
high index contrast between the core and the cladding gives rise to very strong
confinement which enables light-guiding in bends with very small radii without
radiation losses. In order to accomplish the single-mode condition with a high
refractive index contrast, the waveguide’s cross section must be reduced, to
the submicrometer scale. In particular, the waveguide’s dimensions have to
be of the order of (�/ncore)

2, where � is the wavelength of light in vacuum
and ncore is the refractive index of the waveguide core. With the current SOI
technology it possible to fabricate wire waveguides in which light is confined
in a region of area below 1 µm2. The common dimensions for a silicon wire
waveguide, for very high index contrasts (e.g. silicon to air or silicon to silica),
is between 400 nm and 500 nm in width and with an height between 200 nm
and 250 nm when operating at telecom wavelengths (between 1.3 µm and 1.6
µm) [169, 172, 173, 174].
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Figure 1.6: (a) SEM image of a typical silicon wire waveguide 400-nm wide
[36]. (b) Cross-sectional view of the TE-mode profile propagating in a 450-nm
wide and 220-nm tall silicon wire waveguide embedded in silica. The e↵ective
index determined the simulation is neff = 2.43 [38].

A SEM image of a typical silicon wire waveguide is presented in Fig. 1.6 (a)
[36], along with the cross-sectional view of the transverse electric (TE) mode
profile propagating in a 450-nm wide and 220-nm tall silicon wire waveguide
embedded in silica (b) [38].

In order to analyze the guided modes of a silicon wire waveguide, di↵erent
numerical methods can be used, such as the finite di↵erence method (FDM)
[175], finite element method (FEM) [176] and film mode matching method
(FMM) [177]. In Fig. 1.7, the calculated (FMM) e↵ective indexes neff of
guided modes for IR light at a wavelength of 1550 nm as a function of the core
width are shown for two di↵erent core thicknesses (200 nm in (a) and 300 nm
in (b)). Ex and Ey represent the TE-like and transverse magnetic (TM)-like
modes, respectively. As can be promptly seen from Fig. 1.7, in the case of a
200-nm-thick waveguide, the single-mode condtion is fulfilled for a core width
less then 460 nm for TE-like propagating mode. This explain the common
dimensions of silicon wire waveguide as mentioned above.

In silicon wire waveguides the large index contrast causes the waveguide
dispersion to dominate over intrinsic material dispersion. So, the e↵ective
index of the propagating mode will depend on the wavelength, that means that
pulses of light at distinct wavelengths will travel at di↵erent velocities along the
wire waveguide. In particular, in crystalline silicon at the telecom wavelengths
(⇠1.55 µm) the index of refraction increases for decreasing wavelength (@neff

@� <
0) and one can speak about normal dispersion. However, due to high modal
confinement in SOI waveguides, the waveguide dispersion can counteract the
e↵ect of the normal material dispersion and allow the waveguide to operate in
an anomalous regime [178].

For photon energies below the band gap (⇠1.1 eV), the intrinsic loss in
silicon is very low. Then, the propagation loss of silicon wire waveguides are
mainly due to scattering caused by the surface roughness of the core [179] and
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Figure 1.7: Dependence of the e↵ective indexes of a silicon wire waveguide on
the core width for a core thickness of (a) 200 nm and (b) 300 nm, at 1550 nm.
Ex and Ey stand for the TE-like and TM-like modes, respectively.

can go down to 2-3 dB cm�1 for air cladding and less then 2 dB cm�1 when the
cladding is made of silicon oxide [38]. Propagation losses of 0.4 dB cm�1 in the
C-band has been demonstrated in [171] by using high-resolution lithography
technology to fabricate the waveguide. The strongest e↵ect of scattering losses
is considered to be due to the sidewall roughness and it is unavoidable because
of the lithography fabrication process [38].
Another source of loss can be the substrate leakage, that is light can be cou-
pled to radiative modes in the substrate. These leakages decrease exponentially
with the thickness of the bottom cladding and, for a usual 2-µm-thick bottom
cladding layer, they are negligible for the TE-like mode and of the order of
0.001 dB cm�1 for the TM-like mode [38].
Because of the high refractive index contrast in SOI-based wire waveguides, it
is possible to make very sharp bends, up to a radius of 3 µm, with still low
radiations. However, the waveguide bending could influence both substrate
leakage and scattering losses. In a 500-nm-wide SOI waveguide, bending losses
are measured to be 0.01 dB/90� for a 4.5-µm bend, up to 0.071 dB/90� for a ra-
dius of 1 µm [180]. Moreover, it is worth to mention that at high bending radii
(< 5 µm) the dominant contribution to the losses is due to the mismatch losses
at the straight-bend transition. This is particular important when dealing with
recetrack resonators. Indeed, transition losses are responsible for higher round-
trip losses in racetrack resonators compared to microring resonators.
Finally, for high powers, the contribution of TPA and free-carrier absorption
can add to the nonlinear absorption [38].

Di↵erent devices can be realized starting from a simple silicon wire waveg-
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uides, such as Y-branches, directional couplers, distributed Bragg reflectors,
devices to couple light in and out of a waveguide, microring resonators and so
on. We will give here an overview of the main elements we will use in the next
chapters.

One of the major problems of silicon photonic integrate circuits is to couple
light between a single-mode optical fiber and a sub-micron waveguide on a chip.
In this sense it is very important to reduce the coupling losses as much as
possible in order to perform measurements that involve small signals. Because
of the strong confinement of the guided mode in the waveguide core, that
is few-nanometers thick, there is a large mismatch between the mode of the
waveguide and the mode of the single-mode fiber. As it will be detailed in
Sec. 2.1 and Sec. 3.1.1, when the sample we used in the experiments will be
thoroughly described, there are two main strategies to solve the problem of
coupling light in and out of a chip: edge couplers and grating couplers.
In order to obtain edge coupling the highly confined mode (mode diameter
< 1 µm) of the waveguide has to be broadened, so it can be supported by
an external optical fiber (mode diameter of about 10 µm) and, vice versa, the
optical fiber mode has to be shrunk to fit the waveguide mode. On the fiber
side this can be done by using lensed optical fibers, whereas on the waveguide
edge an adiabatic taper can be used. With this coupling method the fiber-
to-waveguide insertion loss can reach 1 dB at the telecom wavelengths [181].
Unfortunately, this method is very sensitive to alignment and forces to couple
light at the chip edges only.

Grating couplers are made by expanding the width of one side of the wire
waveguide and etching a grating that di↵racts light out of the plane into a
fiber placed in the vertical direction, almost orthogonal to the chip. The losses
of the grating couplers we will use are around 3 dB each grating, even if
lower insertion loss values have been measured [182, 183]. The advantage of
grating couplers is that they can be placed anywhere on the chip, they do not
require the polishing of the facets and they facilitate the alignment process.
However, the main drawback that can be meet in some applications is the
limited bandwidth (few tens of nanometers) of grating couplers.

Even distributed Bragg reflectors and microring resonators can be obtained
starting from a wire waveguide, and will be described in detail later in this
section.

Let us now outline the FWM process in a SOI wire waveguide. Consider
again Fig. 1.3, where two pump photons at a frequency !p and a signal photon
at a frequency !s propagate in the waveguide. Because of the �(3) nonlinearity,
an idler photon at a frequency !i = 2!p � !s is generated. The energy and
momentum are conserved and Eqs. (1.23), (1.24) still hold. Since part of the
optical power injected into the waveguide is found at the output at the idler
frequency, DFWM is in general considered as a frequency-conversion experi-
ment. This implies that the pump is much more intense than the signal and
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idler fields:
|Ep| � |Es| � |Ei|, (1.25)

where Ej = Aj exp [i (kjz � !jt)], with j = p, s, i, are field propagating in the
z direction with polarization orthogonal to the propagation direction. Then,
induced e↵ects as the depletion of the pump and self-phase modulation and
cross-phase modulation of the generated idler and signal beams can be ne-
glected. By ignoring phonon-induced nonlinearities due to Raman scattering
e↵ects, the fields Ep, Es and Ei satisfy the following equations [39, 164]:

@Ap (z)

@z
=

⇣
j�p � ↵p

2

⌘
Ap (z) , (1.26)

@As (z)

@z
=

⇣
j�s � ↵s

2

⌘
As (z) + �A2

p (z)A
⇤
i (z) , (1.27)

@Ai (z)

@z
=

⇣
j�i � ↵i

2

⌘
Ai (z) + i�A2

p (z)A
⇤
s (z) , (1.28)

where Ap (z), As (z) and Ai (z) are the complex amplitudes for the pump, sig-
nal and idler propagating fields, respectively; �p, �s and �i are the longitudinal
propagation constants of the waveguide mode at each frequency; ↵p, ↵s and
↵i are the propagation loss coe�cients and � is the waveguide nonlinear co-
e�cient, which gives the strength of the interaction between the pump and
signal fields in order to generate the idler and is a linear function of the real
part of the third-order nonlinear susceptibility. In deriving Eqs. (1.26)-(1.28),
we have disregarded all the terms related to the imaginary part of the third-
order nonlinear susceptibility. We also assumed to be in the CW or quasi-CW
regime and to have a su�ciently low pump power so e↵ects of TPA-generated
free carriers will not a↵ect the FWM generation e�ciency [164]. The last term
in Eqs.(1.27) and (1.28) describe the FWM interaction: both the idler and
signal fields depend quadratically on the pump amplitude and linearly on the
signal and idler fields, respectively. Finally, Pp = |Ap|2, thus it is proportional
to the intensity of the pump beam.

From Eqs. (1.26), (1.27) and (1.28), the phase mismatch of the interacting
waves can be written as:

�k = 2kp � ks � ki. (1.29)

Let us finally remark that the energy-conservation law given in Eqs. (1.23),
(1.24), requires that two pump photons annihilate in order to create an idler-
signal pair. So, as depicted in Fig. 1.3, the signal field in only needed for
stimulating the interaction, but it is not directly involved in the transition. A
measurement of FWM in a silicon wire waveguide can be found in [184].

Distributed Bragg Reflectors

The distributed Bragg reflector (DBR) or Bragg mirror is a structure made
of multilayer-stack of alternating materials with di↵erent refractive index (high
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Figure 1.8: (a) Distributed Bragg reflector (DBR). It is a structure formed
from multiple layers of alternating materials with varying refractive index. If
the incident light has a wavelength close to four times the optical thickness
of the layers, constructive interference occurs on the reflected light and the
structure acts like a high-quality reflector. The range of wavelengths that are
reflected are called photonic stopband. (b) Bragg waveguide (BW). It is a DBR
integrated on a silicon chip. It is made by periodically varying the width of a
ridge waveguide, that results in a periodic variation of the e↵ective refractive
index of the waveguide.

and low), as shown in Fig. 1.8 (a). As can be seen from the figure, on each
layer interface, a part of the incident light is reflected. The reflected light gets
a phase of 180� only when it passes from the low-index (nL) medium to the
high-index (nH) one. Then, the relative phase di↵erence of all reflected beams
is either zero or a multiple of 360� and constructive interference occurs. So,
the intensity of the transmitted light decreases during its travel through the
DBR structure, whereas the reflected light intensity increases at each layer
(considering the absorption of each layer negligible).

If the refractive indexes and geometrical thicknesses of the layers are chosen
so that the optical thicknesses of each layer are �/4, where � is the center
wavelength of the DBR, we can then write:

tH =
�

4nH
and tL =

�

4nL
, (1.30)

where tH and tL indicates, respectively, the geometrical thicknesses of the high-
and low-index films.

If we have an odd number of layers, i.e. N layers with a high refractive
index nH and (N � 1) low-index (nL) films (as shown in Fig. 1.8 (a)), then the
reflectance R2N�1 of the quarter-wave stack at the DBR central wavelength is
given by:

R =
1� Y

1 + Y
, (1.31)
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where Y is the admittance of the (2N � 1)-quarter-wave stack, and is defined
as:

Y =

✓
nL

nH

◆2N
nS

n2
H

, (1.32)

in which nH and nL are the refractive indexes of the high- and low-index films,
respectively, nS is the refractive index of the substrate and (2N + 1) is the
number of layers in the structure.
If the number (2N + 1) of films is large enough and the absorption can be
neglected, the expression of the reflectance given in Eq. (1.31) can be approx-
imated as:

R ⇡ 1� 4Y = 1� 4

✓
nL

nH

◆2N
nS

n2
H

. (1.33)

Moreover, since the transmittance is T = 1�R, we can write:

T ⇡ 4Y = 4

✓
nL

nH

◆2N
nS

n2
H

. (1.34)

If we now take the the natural logarithm of both members of Eq. (1.34),
we have:

ln (T ) = ln

✓
4nS

n2
H

◆
� 2N ln

✓
nH

nL

◆
. (1.35)

The refractive index contrast of the layers is �n = nH � nL, then Eq. (1.35)
becomes:

ln (T )� ln

✓
4nS

n2
H

◆
= �2N ln

✓
1 +

�n

nL

◆
. (1.36)

By using the series expansion

ln (1 + x) =

✓
1 + x+

x2

2
+ . . .

◆
, (1.37)

Eq. (1.36) simplifies to:

ln

 
T
4nS

n2
H

!
⇡ �2N

�n

nL
. (1.38)

For most practical case, nL can be approximated to n̄ = nH+nL

2
and we have

that:

T =
4nS

n2
H

e�2N �n
n̄ . (1.39)

So, the transmittance results to be:

T / e�2N �n
n̄ . (1.40)

Form Eq. (1.40), we see that the transmittance decrease exponentially with N ,
where (2N + 1) is the number of layers in the DBR structure. So, not many
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layers are required to have very low transmission of light through the DBR.
For instance, if we take �n/n̄ ⇠ 10�3, it is:

T / e�2N10�3
, (1.41)

and we get a ⇠3 dB attenuation when 2N10�3 = 1, that means N = 500. Since
we chose the �/4 condition, we have that the period of the DBR structure is
⇤ = �

2n̄ . If we consider for the central wavelength of the DBR IR light at
� = 1550 nm and n̄ = 1.5, then we get a 3 dB attenuation for a DBR length
of 250 µm. So, with a structure long few millimeters we can get almost total
rejection of light at the chosen wavelength.

It is also worth to calculate the bandwidth of the rejected frequencies in a
DBR. It can be shown [185, 186] that:

�⌫ = ⌫0
4

⇡
arcsin

�����nH � nL

nH + nL

�����. (1.42)

by using the series expansion

arcsin (x) = x+
x3

6
+ . . . , (1.43)

Eq. (1.42) can be written as:

�⌫ = ⌫0
4

⇡

�����nH � nL

nH + nL

����� = ⌫0
4

⇡

������n

n̄

�����. (1.44)

So, for a central frequency ⌫0 = 2 ⇥ 1014 Hz (corresponding to a wavelength
�0 = 1.5 µm) and �n/n̄ = 10�3 we get �⌫ ' 250 Ghz, that is a typical
bandwidth value for integrated filters. Moreover, it is worth to notice that in
the presence of chromatic dispersion, in Eq. (1.44) the average e↵ective index
n̄ should be changed with the group index ng.

The DBR structure described above can be integrated on a photonic chip.
This can be done by periodically shrinking the width of a silicon wire wave-
guide, that results in an e↵ective change of the refractive index. This new
structure can also be called Bragg waveguide (BW). A schematic of this struc-
ture is shown in Fig. 1.8 (b). An example of this structure, used for the FWM
experiment on a DBR, will be described in Sec. 2.1.

Since the BW is derived from a silicon wire waveguide, we can extend the
discussion about FWM in integrated silicon wire waveguides to BWs.

Microring resonators

A cavity which forces light to circulate along the same predetermined path
is usually defined as ring resonator. In free space, it is possible to obtain a ring

35
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Figure 1.9: Schematic representation of a microring resonator in a (a) usual
configuration, coupled to a single wire waveguide, and (b) in the add-drop
configuration, in which two wire waveguides are coupled to the cavity. The
scheme is not in scale and the gap between the ring and the waveguide was
made big in order to show the coupling coe�cients. ⌧ and ⌧ 0 are the coe�cients
that take into account the transmission along the waveguide and ring resonator,
respectively. � and �0 are the cross-coupling coe�cients and represent the light
transmission from the waveguide to the ring and vice versa. Ain represents the
amplitude of the incoming field and Aout, A0

out are the amplitudes of the output
fields in the through and drop port, respectively.

resonator by using three mirrors oriented in such a way that a beam of light can
circulate along the triangle defined by the mirrors. In integrated optics a ring
resonator consists of a wire waveguide looped back on itself to form a circular
path (as schematically depicted in Fig. 1.9 (a)). As for waveguides, light is con-
fined in the ring resonator through total internal reflection (TIR). Moreover,
light traveling in the loop builds up in intensity at each round-trip because of
constructive interference. Usually, for building an integrated ring resonator,
small bend radii (around 10 µm) are required. This is only possible by using
waveguides with a high refractive index contrast, which allows for strong con-
finement. For this reason SOI-based waveguides are the most promising and
di↵use starting point for building microring resonators. Indeed, silicon wire
waveguides can reach bend radii of about 5 µm, that allows the production
of very compact microring resonators, in contrast with other materials where
ring have to be much larger [38]. Usually, the term ring resonator refers to
a circular resonator, whereas the term recetrack resonator is employed when
the shape is elongated with a straight section along one direction (usually the
coupling direction).

When the optical path length of the ring resonator is an integer multiple
of the wavelength of the guided mode, constructive interference arises in the
cavity and a resonance occurs. This can be expressed as [41]:

m�0 = 2⇡Rneff with m 2 N, (1.45)

where �0 is the wavelength of the guided mode, R is the ring radius and neff

is the e↵ective refractive index of the mode propagating in the waveguide.
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Thus, as shown in Fig. 1.10, ring resonators support evenly spaced multiple
resonances, whose separation is defined as free spectral range (FSR):

FSR =
�2
0

ngL
, (1.46)

where L = 2⇡R is the round-trip length and ng is the group index that takes
into account the dispersion of the waveguide and is defined as:

ng = neff � �0
@neff

@�
. (1.47)

The group index and the corresponding group velocity vg = c/ng describe the
velocity of the envelope of the pulse propagating in the waveguide. The above
equations show that the photonic properties of a ring resonators depend only
on its circumference L and on the e↵ective index neff of the traveling mode.
In particular, the separation of the resonances depends on the inverse of the
ring radius, since FSR / 1/R.

A ring resonator as a standalone device only becomes useful when a cou-
pling mechanism is used to access the loop, in order to input/output light from
the cavity. The most used coupling mechanism is the codirectional evanescent
coupling to a straight wire waveguide, as shown in Fig. 1.9 (a). In this config-
uration, the evanescent tails of the waveguide and ring resonator guided modes
overlap and light can be coupled from the waveguide to the ring and vice versa.
The amplitudes of the output field Aout and of the input field Ain are related
through the following expression:

Aout =
n
⌧ + ��0e�i�

h
1 + ⌧ 0e�i� +

�
⌧ 0e�i�

�2
+ . . .

io
Ain, (1.48)

where ⌧ and ⌧ 0 are the coupling coe�cients that describe the transmission
along the waveguide and the ring, respectively, � and �0 are the cross-coupling
coe�cients that represent the transmission of light from the waveguide to the
ring and from the ring to the waveguide, respectively, and

� =
2⇡neffL

�0

= kL (1.49)

is the phase shift acquired by light after one round-trip. In Eq. (1.48), the
first term in the curly brackets describes the transmission along the waveguide
only, whereas the other terms represent the interaction between the ring and
the waveguide. Now, since the ring and the waveguide have same cross-section
and refractive index, we can write:

�0 = �⇤ and ⌧ 0 = �⌧ ⇤. (1.50)

If we assume the losses are negligible in the coupling region, then we can write:

|�|2 + |⌧ |2 = 1. (1.51)
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So, by using the above expressions and by summing all the terms in Eq. (1.48),
we obtain the ratio of the transmitted field to the incident field [41, 187]:

Aout

Ain
=

⌧ � ae�i�

1� a⌧ ⇤e�i�
, (1.52)

where a = exp (�↵L/2) is a term taking into account the attenuation of the
amplitude of the guided mode due to bending or scattering losses in the ring
described by the coe�cient ↵.
If we now take the absolute square of Eq. (1.52) we obtain the transmission
of the ring resonator:

T =

�����Aout

Ain

�����
2

=
a2 + ⌧ 2 � 2a⌧ cos (�)

1 + a2⌧ 2 � 2a⌧ cos (�)
. (1.53)

From the above expression we can see that for ideal cavities with no losses
(a ⇡ 1), the transmission is T = 1 for each phase shift �. Moreover, when the
phase shift acquired by light after one round-trip is an integer multiple of 2⇡
(� = 2⇡m with m 2 N), that is at the resonance condition, Eq. (1.53) reduces
to:

T =
(a� ⌧)2

(1� a⌧)2
. (1.54)

Eq. (1.54) shows that in the case ⌧ = a, that is called the critical coupling
condition, the transmission goes down to zero. This happens when the cross-
coupling coe�cient equals the the propagation losses inside the cavity and
|�|2 = 1� |a|2. Thus, at the critical coupling condition all the power coupled
into the ring resonator is dissipated inside the ring and light-matter interac-
tion is maximized [41, 38]. When ⌧ < a the ring resonator is said to be in
overcoupling, whereas when ⌧ > a the system is undercoupled. In real sys-
tems, all these di↵erent coupling situations can be controlled by changing the
distance between the ring resonator and the coupled waveguide. Since in criti-
cal coupling light-matter interaction in the ring resonator is maximized, when
performing FWM experiments it is preferred to be in this condition in order
to obtain the maximum generation e�ciency inside the ring.

An example of ring resonator spectrum is given in Fig. 1.10. As already
mentioned, the spectrum is characterized by evenly spaced dips, called reso-
nances, from which the main features of the cavity can be obtained.
The full width at half maximum (FWHM) of a resonance is given by [38]:

FWHM =
(1� a⌧)�2

0

⇡ngL
p
a⌧

, (1.55)

and is basically given by the resonance bandwidth in the frequency domain
�!. From the FWHM it possible to derive an important property of a ring
resonator, that is the finesse F , defined as:

F =
FSR

FWHM
, (1.56)
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Figure 1.10: Transmission spectrum of a ring resonator (solid line) as a function
of the phase shift �. In the case of the add-drop configuration the solid line
represents the transmission at the through port, whereas the dashed line is the
transmission at the drop port. The resonances occurs when � = 2⇡m, with
m 2 N. FSR stands for free spectral range.

that is a measure of the sharpness of the resonances relative to their spacing.
The finesse can be though as the number of round-trips made by light in the
ring resonator before its energy is reduced to 1/e of the initial energy, within
a factor of 2⇡.
Another important feature of a ring resonator is its quality factor, that helps
us understanding how much the resonator is good in trapping light, thus deter-
mining the enhancing properties of a given resonator. For a general resonator,
the quality factor Q of a resonance !0 is defined as the ratio of the energy
stored to the the energy dissipated per optical cycle, that is:

Q = !0
energy stored

power loss
. (1.57)

Both finesse and quality factor are related to the number of round-trips light
can made in the resonator before escaping it through internal loss and the
coupled waveguide. The finesse and quality factor can also be written as a
function of the physical parameters of a ring resonator as [38]:

F =
⇡
p
a⌧

1� a⌧
, (1.58)

Q =
⇡ngL

p
a⌧

�0 (1� a⌧)
. (1.59)

As it can be seen from the above expressions, the finesse and Q-factor of a ring
resonator are determined by the resonator losses only and are independent on
the resonator length.

Since the transmission spectrum of ring resonators represents resonances
that can be fitted by a Lorentzian curve, we can write:

T (!) / �

(! � !0)
2 + �2

, (1.60)
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where � is the FWHM of the Lorentzian shape and represents the coe�cient
describing the energy-loss rate due to all losses. If E0 is the initial energy, on
the one hand, we can write the stored energy at a certain time t as:

Estored = E0 exp (��t) . (1.61)

On the other hand, the energy that is lost is :

Elost = E0 [1� exp (��t)] . (1.62)

The power lost is then given by:

Plost = �E0 exp (��t) , (1.63)

being the derivative of the energy lost per optical cycle. Then, the Q-factor
can be written as:

Q =
!0

�
, (1.64)

and is proportional to the inverse of the resonance bandwidth �!. By con-
verting Eq. (1.64) in the wavelength domain, we notice that the Q-factor can
be directly derived from the experiment through the following expression:

Q =
�0

��
. (1.65)

Indeed, a simple Lorentzian fit to the resonance is required in order to extrap-
olate both the central wavelength �0 and the resonance linewidth �!.
From Eq. (1.64), it is possible to obtain another expression for the Q-factor,
that is:

Q = 2⇡�tp⌫0, (1.66)

where ⌫0 = 2⇡!0 is the central frequency of the given resonance and �tp is the
photon dwelling time in the cavity.

Finally, we would like to distinguish between the terms unloaded and loaded
Q-factor. The first term refers to a ring resonator not coupled to a waveguide.
Once the resonator is coupled to a waveguide, additional losses are introduced
to the cavity and the Q factor will decrease. This is called the loaded Q-factor.
The definition of loaded Q-factor is given by [41]:

Qunloaded =
2⇡neff

�0↵
, (1.67)

where we have assumed that for small values of �, the energy-loss coe�cient
can be written as � = ↵c/neff since the losses are mainly due to photon
scattering from impurities and bending losses.

As seen from the above expression, the quality factor of a ring resonator
can be maximized by decreasing the propagation loss ↵. This is a crucial step
in practical realizations of ring resonators. Moreover, from Eq. (1.59) it seems
that high Q-factors can be obtained by increasing the ring radius. However,
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this is strongly related to propagation loss, since a longer circumference implies
higher losses. For example, considering propagation losses of 2.7 dB cm�1, that
correspond to silicon wire waveguides produced through the standard imec
fabrication process, the highest reachable Q-factor is about 1.42 ·105 for a ring
resonator with L ⇡ 10 mm [38]. However, since the finesse is proportional to
the FSR and the is inversely proportional to L, large lengths would decrease in
turn the finesse. So, having a ring resonator with low losses and high quality
factor requires an accurate balance of all the e↵ects above described.

Let us now briefly describe another possible configuration for a microring
resonator, that is called add-drop ring resonator. In this case the ring is cou-
pled to two waveguides, as shown in Fig. 1.9 (b). The first report of this
configuration is given in [188]. Usually, the port named input is used to enter
light in the system and the add port is needed in case one wants to add an ad-
ditional pulse to the system. On the through and drop ports light is collected.
As in the case of an all-pass ring resonator, constructive interference arises
when the optical path length of the add-drop resonator is an integer multiple
of the guided mode wavelength, so Eq. (1.45) still holds. Then, the spectra
at the through and drop ports still presents evenly spaced multiple resonances
with a Lorentzian shape and their separation is given from the FSR as ex-
pressed in Eq. (1.46). Usually, the light out of resonance is transmitted to the
through port, whereas the light corresponding to the resonances is transmitted
to the drop port. Then the spectrum looks like the one shown in Fig. 1.10,
where the solid line represents the light collected at the through channel and
the dashed line the spectrum found at the drop channel. So, at the through
port, the spectrum is represented by equally spaced Lorentzian dips, whereas
at the drop port the spectrum presents Lorentzian peaks when the resonance
occurs.

The mechanism to couple light in and out of an add-drop resonator is
still the codirectional evanescent coupling, but now the configuration is the
one given in Fig. 1.9 (b), with two regions where the coupling occurs. The
⌧ coe�cients still represent the transmission either along the waveguide or
the ring resonator, whereas the � coe�cients still stands for the cross-coupling
coe�cients between the waveguide and the ring and vice versa. The amplitudes
of the input field Ain and of the output fields Aout and A0

out are still related
and the transmission of the ring resonator is now given by [38]:

T =

�����Aout

Ain

�����
2

=
a2⌧ 22 + ⌧ 21 � 2a⌧1⌧2 cos (�)

1 + a2⌧ 21 ⌧
2
2 � 2a⌧1⌧2 cos (�)

, (1.68)

in the case of the through port, and

T 0 =

�����A0
out

Ain

�����
2

=
(1� ⌧ 21 ) (1� ⌧ 22 ) a

1 + a2⌧ 21 ⌧
2
2 � 2a⌧1⌧2 cos (�)

, (1.69)
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for the drop port. At the resonance condition � = 2⇡m, the above expressions
reduce to:

T =
(a⌧2 � ⌧1)

2

(1� a⌧1⌧2)
2 , (1.70)

T 0 =
(1� ⌧ 21 ) (1� ⌧ 22 ) a

( �a⌧1⌧2)
2 . (1.71)

From the above expressions it is clear that in case of negligible losses (i.e.
a ⇡ 1), the critical coupling condition is found for ⌧1 = ⌧2, so the two coupling
regions have to be symmetric. However, in the case the losses cannot be
neglected, then the critical coupling occurs at a = ⌧1/⌧2.

We can still define the same figures of merit of an all-pass ring resonator,
but some changes are needed. The FWHM is now described by [38]:

FWHM =
(1� a⌧1⌧2)�2

0

⇡ngL
p
a⌧1⌧2

, (1.72)

whereas the finesse and Q-factor can be now be expressed as [38]:

F =
⇡
p
a⌧1⌧2

1� a⌧1⌧2
, (1.73)

Q =
⇡ngL

p
a⌧1⌧2

�0 (a⌧1⌧2)
. (1.74)

The expressions (1.64)-(1.66) for the Q-factor are still valid in the add-drop
configuration.

Usually, in order to define the Q factor of a ring, the resonator have to be
excited till a certain level in order to consider the rate of power decay. So,
in order to get high-Q resonances, coupling losses and round trip losses have
to be small. For this reason, an all-pass resonator (Fig. 1.9 (a)) will always
exhibit a higher Q-factor than an add-drop resonator (Fig. 1.9 (b)) with the
same geometric parameters. Indeed, two coupling regions will always make
coupling losses bigger than in an all-pass ring resonator.

As for all-pass ring resonators, in order to obtain a high-Q add-drop res-
onator, the round-trip length and the losses have to be carefully balanced. It
has been found that the state-of-the art value of the Q-factor for a ring res-
onator in the add-drop configuration would be 1.36 ·105 for a round-trip length
of about 13 mm [38].

Ring resonators, both in the all-pass and in the add-drop configurations,
are suitable for a variety of applications. We will give just a brief overview of
their utilization and a more accurate description can be found in [38].

Since only selected wavelengths are at resonance with the ring resonator,
a first application is the one of a spectral filter. This is extremely useful for
telecommunication and data communication purposes, in order to multiplex or
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demultiplex wavelength division multiplexing (WDM) signals [174, 189, 190,
191]. The WDM technique is used to combine multiple optical signals onto a
single optical fiber by using di↵erent wavelengths of the laser light, thus in-
creasing the capacity of an optical transmission system. For example, cascaded
add-drop ring resonators are very suitable for this purpose [192]. Moreover, an
application of add-drop ring resonators as filters can be found in [37], where
they have been used to divide and route to a second chip the signal and idler
photons generated in an all-pass ring resonator.

Another useful application for ring resonators resides in sensing. Indeed,
the position and shape of the resonances in the ring spectrum depend on the
optical round-trip length of the ring and on the accumulated losses. So, ring
resonators can be sensitive to a variety of e↵ects, such as temperature varia-
tions and physical deformation or compositional changes of both the core and
the cladding of the waveguide. Essentially, a shift in the resonance position is
caused by a change of the e↵ective index neff of the propagating mode.
The sensing application of ring resonators is particularly interesting in the
biosensing field. Indeed, in medical diagnostic, drug development, environ-
mental monitoring and food quality control there is an increasing demand
for biosensors that can specifically detect selected compounds or molecules.
However, the technological development of such biosensors is very challeng-
ing, for it requires to react to the presence of few-nanometers-large particles,
that can have low concentrations and are found in fluids which contain many
other molecules at a higher concentration. At the same time, SOI-based mi-
croring resonators can be good candidate for biosensing, for they are highly
manufacturable resonators with transmission spectra depending on the ring’s
environment, they can be made with large Q-factors and low insertion loss and
they are very compact, allowing to build a single sensor with many rings to
perform simultaneous measurements on di↵erent molecules. Finally, since they
are compatible with the CMOS fabrication process, they can be made cheap.
A recent application for biosensing is the realization of microring resonators
made of porous silicon [193].

Compact microring resonators are also very interesting to realize optical
delay lines or bu↵ers in photonic integrated circuits [194, 195, 196]. Indeed,
ring resonator can store the optical signal before releasing it due to the fact
that close to the resonance the dispersion is high and the traveling mode has a
large group delay. While the group delays generated by a single resonator are
too small for practical applications, many rings can be cascaded to increase the
group delay in two main configurations: a SCISSOR made of all-pass filters
and a coupled resonator optical waveguide (CROW) [194, 197].

Microring resonators can even be used in an active configuration, as an
electrically actuated device, such as electro-optic modulators [38]. When the
microring is employed as a modulator, the resonator is tuned to an operat-
ing wavelength chosen to be on the slope of the resonance peak. Then, a
modulation on the optical length of the microring resonator would result in a
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resonance shift and in a related change of the transmission/reflection of the
cavity. Usually, microring resonators at the critical coupling condition are em-
ployed for this kind of applications. In fact, the strong deep in the microring
spectrum allows for a large modulation depth with a relatively small shift of
the microring’s resonance. Moreover, the more the resonance is steep, the
more the modulation is e�cient. So, microrings with high Q-factor and finesse
are needed. However, in high-Q microrings, light is trapped in the resonator
for a long time, limiting the modulation speed of the microring. So, usually,
microrings with a Q-factor of 5000� 25000 are used [38].

Another possible application for microring resonators is the one of wave-
length routers or switches [198]. This is very important for setting up the signal
path within a photonic network, that is exploited by using active or passive
components. When active switches are employed, the state of the switch is
reconfigurable, and the signal paths can be dynamically set. On the other
hand, when passive components are employed, the signal path is set by the
wavelength of the optical signal injected the input of the network according to
resonances of the switches met along the path.

Finally, microring resonators are also very interesting for the production of
optical frequency combs [199, 200, 201]. In microrings, combs are usually gen-
erated by injecting a CW laser in the resonator and using the nonlinear optical
process of parametric frequency conversion, such as FWM. Being first used for
the realization of optical clocks and precision spectroscopy, frequency combs
are now widely used in many di↵erent areas, such as remote sensing, astro-
nomical spectrograph calibration and precision distance measurement [199].
Moreover, recently, have been also considered for the generation of multiple
states of nonclassical light [202].

Four-wave mixing in microring resonators

As already mentioned, the silicon Kerr coe�cient is 102 bigger than the
one of silica glass at the telecommunication wavelengths [157, 158]. So, silicon
has a large third-order nonlinearity compared to other materials. Moreover, in
silicon wire waveguides the propagating mode is confined in a small core region
of the order of several hundreds of nanometers. For these reasons, FWM can
be achieved in a few-centimeters-long silicon waveguide with a detectable idler
flux.

Silicon microring resonators are resonant structures due to their looped
shape and can thus further improve light-matter interaction in the structure,
allowing very small footprints (radii of the order of 10 µm). The first exper-
iment of enhanced stimulated FWM on semiconductors microring resonators
was performed by Absil et al. in 2000 by using GaAs/AlGaAs structures [203].
The repetition of this experiment on SOI-based microring resonators has then
been performed in 2008 in an experiment by Turner et al. [44]. So, let us now
consider the stimulated FWM process in a silicon microring resonator as the
one depicted in Fig. 1.9 (a). We assume the system to be at the critical cou-
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pling condition (⌧ = a). As shown in Fig. 1.3, in order to observe stimulated
FWM in a ring resonator, a strong CW pump laser at a frequency !p and
with a power Pp and a CW signal laser defined by a frequency !s and a power
Ps ⌧ Pp are injected into the system. Then an idler wave at a frequency !i

and with a power Pi is stimulated by the presence of a signal laser in the ring
resonator. We can now solve the coupled wave equations (1.26)-(1.28) and by
considering the relation between the amplitudes of the output and input fields
(Aout and Ain) given in Eq. (1.52), the FWM conversion e�ciency ⌘ can be
written as [203]:

⌘ =
Pi

Ps
= (�LPp)

2 |F (k) |8. (1.75)

From the above expression, the power of the generated idler can be derived:

Pi = (�L)2 |F (k) |8PsP
2
p , (1.76)

where � = n2!0
cAeff

is the wire waveguide nonlinear parameter, !0 is the central

frequency of the resonance, c is the speed of light in vacuum, Aeff is the
e↵ective mode area and F (k) is the field enhancement, that is assumed to
have the same expression for pump, signal and idler:

F (k) =

����� �

1� a⌧e(ikL)

�����. (1.77)

The field enhancement depends on the coe�cients ⌧ and �, that express the
transmission along the waveguide and the cross-coupling between the wave-
guide and the ring, respectively, and on the propagation losses given by a. At
the resonance frequency, k = k0 and the field enhancement reaches its max-
imum value F0 = F (k0). So, in order to observe FWM in a ring resonator
the pump and signal frequencies have to be tuned to the microring resonances.
Consequently, the energy-momentum conservation law expressed in Eqs. (1.23)
and (1.24) is automatically verified since the idler photon will be generated at
a resonance frequency given by !i = 2!p � !s.

In order to understand the improvement in FWM e�ciency obtained by
using a resonant structure, such as a microring resonator, instead of a straight
waveguide, we can compare Eq. (1.76) to the idler power generated in a wire
waveguide:

Pi,ring

Pi,waveguide
=

✓
Lring

Lwaveguide

◆2

F 8
0 . (1.78)

From the above expression, it is clear that the gain in FWM experiments
that employ microring resonators instead of straight waveguides goes as the
eighth power of the field enhancement. This turns in a powerful increase in
the frequency conversion e�ciency and in the power of the generated idler.

Now, consider the expression given in Eq. (1.59), that at the critical cou-
pling condition gives:

Q =
⇡ngL⌧

�0 (1� ⌧)2
. (1.79)
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Considering that |�|2 + |⌧ |2 = 1 and �0 = 2⇡/k0, the expression above can be
written as:

Q =
k0Lng

2

p
(1� �2)

�2
. (1.80)

Assuming � ⌧ 1, the quality factor results to be:

Q ' k0Lng

2�2
. (1.81)

Thus, we can get a relation between the on-resonance field enhancement F0

and the Q-factor at the critical coupling condition:

F0 =

����� �

1� ⌧ 2

����� = 1

�
=

s
2Q

k0Lng
. (1.82)

The above discussion refers to an ideal case, in which waveguide propagation
losses are neglected, indeed choosing � ⌧ 1 implies a ⇡ 1. However, in general,
the experimental quality factor, determined by the resonance linewidth, have
to be considered. So, by substituting Eq. (1.82) in Eq. (1.76) we get:

Pi,ST = (�2⇡R)2
✓

Qvg
!p⇡R

◆4

PsP
2
p , (1.83)

that allows to predict the generated idler power as a function of the pump
and signal powers, in the limit of the undepleted pump approximation [44].
In finding Eq. (1.83) we have assumed the Q-factors of the pump, signal and
idler resonances to be similar, and thus, !p ⇠ !s ⇠ !i. From Eq. (1.83), it is
clear that the the idler power Pi scales linearly with the signal power Ps and
quadratically in the pump power Pp. Moreover, the conversion e�ciency scales
as Q4/R2. Finally, we would like to stress that the idler power given in Eq.
(1.83), can be calculated from the microring parameters, for � is the waveguide
nonlinearity coe�cient, Q is the resonances Q-factor, R is the radius of the
ring, !p is the pump frequency and vg the group velocity of the traveling mode.

As we have just discussed, in the stimulated FWM experiments, besides a
pump laser, a signal laser is injected into the system in order to produce the
idler field. However, as can be seen from Fig. 1.3, the signal photon does not
contribute to the energy transfer in the process. Indeed, as already mentioned
in the section dedicated to four-wave mixing, the third-order nonlinearity se-
lection rules and the conservation of energy do not require the presence of
the signal photon. Thus, the FWM, now called spontaneous four-wave mixing
(SFWM), can be initiated by vacuum fluctuations and seen as a four-photon
scattering in which two pump photons annihilate, producing a photon pair
(idler and signal), as illustrated in Fig. 1.4. SFWM in a CW regime in a
silicon waveguide and in a microring resonator was first exploited by Clem-
men et al. in [45]. SFWM is particularly interesting for quantum technology
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applications, for it can be employed to generate correlated photon-pairs. As
already mentioned, SFWM does not have a classical explanation and a fully
quantum description is required. A detailed description of the process can be
found in [204] and [205] and lies outside the scope of this thesis. We report
here only the main results in [204], in which, from the third-order Hamiltonian
describing the waveguide, the ring and the coupling between them, the theory
for SFWM is presented.

As in [204], let us now name the pump resonance order as Np. Then, if
one photon is generated through SFWM near a wavelength associated with a
resonance order N on one side of the pump, the other photon will be generated
at a wavelength associated with a resonance order N̄ = 2Np �N on the other
side of the pump. From a classical calculation in the undepleted pump and
signal approximation, the idler power, generated for a CW input pump power
PNp near resonance Np and CW input signal power PN near resonance N , can
be expressed as:

PN̄ =
�
�PNpL

�2 |FN |2|FN̄ |2|FNp |4PN , (1.84)

where FN represents the field enhancement of the given resonance. The above
expression agrees with Eq. (1.76) in the limit of no loss and weak coupling.
Finally, by assuming that N and N̄ are very close to Np, thus having !Np ⇡
!N ⇡ !N̄ ⌘ !0, in the weak coupling (� ⇡ 1) approximation and at the
resonance condition, we can write [204]:

PN̄ =
�
�PNpL

�2 |F0|6~!0v

2L
, (1.85)

where F0 in the on-resonance field enhancement, as defined in Eq. (1.82). If
we compare the last expression we found with Eq. (1.84), we notice that the
factor

⇣ =
~!0v

2L|F0|2 (1.86)

is the quantum analogous of the classical seed power typical of stimulated
FWM in SFWM calculations.

By inserting Eq. (1.82) in Eq. (1.85), we get the generated idler power in
the SFWM process [46]:

Pi,SP = (�2⇡R)2
✓

Qvg
!p⇡R

◆3 ~!pvg
4⇡R

P 2
p . (1.87)

So, we see that the generated idler power depends on the square of the injected
pump power. As in the case of stimulated FWM, the idler power can be pre-
dicted from the ring resonator parameters, such as its radius R, the resonances
quality factor Q, the waveguide nonlinear parameter �, the group velocity of
the traveling mode vg, and from the pump frequency !p. Now, the conversion
e�ciency scales as Q3/R2.
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We can now compare the generated idler powers for the stimulated and spon-
taneous FWM experiments as following [46]:

Pi,SP

Pi,ST
=

1

4Q

~!2
p

Ps
. (1.88)

The above expression is independent from the ring size, but it is related
uniquely to the resonances Q-factor, to the power of the signal injected in
the stimulated FWM experiment and on a characteristic energy ~!2

p, that is
connected to the pump wavelength. For example, if we choose �p = 1.5 µm
(i.e. in the telecom band), we get ~!2

p ⇡ 1 mW.
SFWM experiments on silicon microring resonators have shown that the

generated photons are correlated [206] and that can be time-energy entangled
[27]. More recently, it has also been proved that a microring resonator can be
driven to produce either nearly-uncorrelated or time-energy entangled photon
pairs depending on the spectral properties of the pump (either pulsed or CW,
respectively) [207]. All these results are very important for quantum informa-
tion processing, since applications require the employment both of entangled
and single photons.

1.3 Sources of quantum states of light

As already explained at the beginning of this chapter, the generation of non-
classical states of light is of pivotal importance in many quantum technology
applications. In particular, photonics has turned out to be a very interesting
platform in the implementation of quantum experiments. In photonics, quan-
tum states of light are generated through nonlinear parametric processes. In
fact, if an intense pump laser is injected in a nonlinear medium, then a pair
of photons can be generated with a certain probability. The two generated
photons could be either in an entangled state or uncorrelated photons.

In nonlinear optics, the spontaneous nonlinear parametric processes re-
sponsible of generating photon pairs are either spontaneous parametric down-
conversion (SPDC) or spontaneous four-wave mixing (SFWM), depending on
the kind of nonlinearity of the generating material. In fact, on the one hand,
in media which present second-order nonlinearities (�(2)) one pump photon is
annihilated to produce two photons, called idler and signal. On the other hand,
materials which exhibit a third-order nonlinearity (such as silicon, as already
explained in Sec. 1.2.1), will generate a photon pair from the injection of two
pump photons. The two described nonlinear processes have a classical coun-
terpart, namely di↵erence-frequency generation (DFG) and stimulated FWM,
respectively.

The main di↵erence between SPDC and SFWM lies in the frequency of
the generated idler and signal photons. Indeed, the energy-momentum con-
servation law requires that the two photons produced through SPDC are at
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1.3. Sources of quantum states of light

frequencies that are symmetrically spaced around half of the pump field fre-
quency, whereas in SFWM they have to be symmetrically located with respect
the pump frequency. So, in SFWM, the pump, idler and signal frequencies
can be all very similar. This, even if useful for satisfying phase-matching con-
ditions, creates some di�culties in filtering out the pump field in order to
separate the idler and signal photons.

Since both SPDC and SFWM can generate either entangled or uncorrelated
photons, that are the key states of interest for quantum applications, we will
report on them below.
Finally we will conclude this section describing the joint spectral density (JSD)
technique, a useful method that can be used to discriminate between entangled
and uncorrelated photons.

1.3.1 Entangled photons sources

Both for SPDC and for SFWM, entanglement between the idler and signal
photons comes from the combination of the energy-momentum conservation
law with vacuum fluctuations. Di↵erent degrees of freedom can be chosen to
generate entanglement, depending on the initial configuration of the conversion
process. For example, many quantum algorithms rely on polarization, path,
time and energy entanglement.

As explained in Sec. 1.1, in general, a quantum state, for example made
of two particles, is said to be entangled if it cannot be separated in the states
describing the single particles and implies nonlocal correlations between mea-
surements performed when the particles are well-separated.
So, when dealing with nonlinear parametric processes, in order to have the
production of entangled photons, the idler and signal have to be at least in a
two-mode state. For example, if we consider the SPDC process, we can have
that the two generated photons have always the same polarization (Type I
SPDC) and the final state (1.8) can be written as:

| i = |His|Hii, (1.89)

where the states | 1i and | 2i are now represented by the polarization states
|His and |Hii, respectively. This state is a separable state and, thus, it is not
useful for the production of entangled photons. However, in type II SPDC the
generated idler and signal would have orthogonal polarizations and the final
state would be:

| i = |His|V ii + |V is|Hii, (1.90)

thus obtaining an entangled state, for the states |His and |Hii cannot be
treated independently [208].

Usually, two main methods can be used to experimentally prove entangle-
ment: the firs one is based on the violation of a Heisenberg-like inequality for
the inferred variances, whereas the second one consists in verifying the viola-
tion of Bell’s inequalities [209]. Since the majority of experimental works refer
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to the second approach, we will focus on it, and we will refer the reader to
[210, 211, 212, 213] for more information on the first method. However, we
do not intend to give an exhaustive description of the theory behind Bell’s in-
equalities, that can be found in [52] and we will report only few results. Bell’s
inequalities are a condition that has to be verified in order to prove entangle-
ment and they also prove the nonlocal realism of quantum mechanics. Since
SPDC and SFWM generate states that are typically maximally entangled,
then the violation of Bell’s inequalities is a proof of entanglement [214]. An
operative definition of Bell’s inequalities can be found in [215] and it consists
in a coincidence measurement between the two arms A and B of a bipartite
entangled state for di↵erent detectors settings. Let us consider the case of
polarization entanglement (that will be described in the next paragraph). The
expression to be violated for entangled states is [216]:

S ⌘ |E (a, b)� E (a, b0) |+ |E (a0, b) + E (a0, b0) |  2, (1.91)

where a and a0 represent the possible settings for the arm A (e.g. the idler
photon) and b and b0 are the settings for the arm B (e.g. the signal photon).
The above expression is called CHSH (Clauser-Horne-Shimony-Holt) inequal-
ity for polarization entangled states. Since we are dealing with polarization
entanglement, the possible settings correspond to which angle the polarizers
are positioned in front of the detectors, then Eq. (1.91) can be written as:

E (a, b) =
⇠ (a, b) + ⇠ (a+ 90�, b+ 90�)� ⇠ (a, b+ 90�)� ⇠ (a+ 90�, b)

⇠ (a, b) + ⇠ (a+ 90�, b+ 90�) + ⇠ (a, b+ 90�) + ⇠ (a+ 90�, b)
.

(1.92)
In the above expression, ⇠ (a, b) represents the number of coincides measured
when the idler polarizer is set to a and the signal polarizer is chosen to be in
the b configuration. Then, the maximum violation of the CHSH inequality is
found for a = 0�, a0 = 45�, b = 22.5� and b0 = 67.5� [208].

The example above was referred to the case of polarization entanglement.
However, di↵erent Bell’s inequalities can be exploited to prove other entangle-
ment degrees of freedom. For example, in the case of time-energy entanglement
a useful relation was found by Franson [217], as it will be described later in
this section.

A great number of experiments have investigated the production of entan-
gled states of photons. The first ones made use of atomic radiative cascades
[29] and, later on, the entangled states were produced in nonlinear birifringent
dielectric crystals, such as BBO (beta-barium borate) crystals [24]. All the
experiments performed on those crystals exploited the second-order nonlinear-
ity �(2), thus producing photon pairs through SPDC. After these pioneering
experiments, more practical sources capable of producing photon pairs with
higher intensity were investigated. For example, SPDC has been study in
periodically-poled lithium niobate (PPLN) waveguides [218, 219] and SFWM
has been investigated in dispersion shifted fibers (DSFs) [220].
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1.3. Sources of quantum states of light

Unfortunately, all the described sources present many disadvantages. For ex-
ample, PPLN waveguides show group velocity mismatch [221], whereas DSFs
produce noise photons through spontaneous Raman scattering, thus requiring
a cooling apparatus [222]. Another major drawback of these sources is the big
di�culty encountered in meeting applications requirement, since they are not
suited for the integration on a chip.

So, a solution to the integration problem was found in integrated waveg-
uides. For example, recently, polarization-entangled photons have been gen-
erated via SPCD in AlGaAs waveguides [30]. Moreover, as already discussed
in Sec. 1.1.1, silicon is a very interesting material for the generation of en-
tangled photons in few-centimeters-long waveguides that are compatible with
the CMOS fabrication process, and many experiments have been already been
performed on this topic [31, 223, 25, 32, 33].

As extensively explained in Sec. 1.2.2, another way of generating photon
pairs in silicon is by employing structures able to enhance light-matter inter-
action compared to straight waveguides, i.e. microring resonators. The first
results of photon pairs production in a CW regime in a microring resonator
were reported by Clemmen et al. in [45] and they were followed by other
works, such as in [224]. The first step needed after having proved photon pairs
emission from microring resonators, has been the verification of the concurrent
emission of idler and signal. This has been studied by Azzini et al. in [206].
Finally, the emission of both time-energy [27] and time-bin [28] entangled pho-
tons from microring resonators have been shown.
More recently, even alternative silicon-compatible materials have been explored
and the generation of entangled photon states has been proved both in hydex
[202] and silicon nitride [225] ring resonators.

We will now analyze the di↵erent degrees of freedom used to generate a
state made of entangled photons.

Polarization encoding

Polarization encoding is probably the simplest way of proving the violation
of the Bell’s inequality, as shown in Eq. (1.92). For this reason, polarization
entanglement was the first to be used on the first sources based on atomic
cascades [29].

In this kind of encoding, the computational basis is given by the two pos-
sible polarization states: horizontal |Hi and vertical |V i. So, the general
entangled state (1.1) can be expressed as:

| i = ↵|Hi+ �|V i. (1.93)

Practically, the waveplate (WP), that is a birefringent device responsible
of introducing a phase delay between two light beams orthogonally polarized
passing through it, is the optical device employed to implement single-qubit
gates. Two kinds of WPs are most used: the half waveplate (HWP) and the
quarter waveplate (QWP). The former changes the polarization direction of
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a linearly polarized photon, whereas the latter turns linear into circular po-
larization. Even polarizing beam splitters (PBS), which select two di↵erent
paths for horizontal and vertical polarization, are useful devices for generating
polarization encoded qubits. Many experiments have been carried out ex-
ploiting polarization entangled photons generated from di↵erent sources, from
BBO crystals, to AlGaAs integrated waveguides and an integrated silicon chip
[24, 30, 25].

Even if of easy implementation, polarization encoding su↵ers from decoher-
ence in optical fibers over long distances (bigger than few kilometers). Nowa-
days, optical fibers have improved a lot than one or two decades ago. However,
even if now birefringence is very small and does not a↵ect the telecom indus-
try, it is still a big problem for quantum communication, for the smallest bir-
ifringence possible would always a↵ect the polarization-entangled state [123].
Indeed, states that are either parallel or orthogonal to the stress or asymme-
try that causes birefringence, would propagate with di↵erent phase velocities,
changing the overall polarization state of the light traveling in the fiber.

Phase encoding

As for polarization, even the phase of photons is a good choice for single-
qubits encoding. Usually, the phase of photons can be measured through
interferometric techniques. Indeed, in the case of a balanced interferometer,
i.e. when the photon coherence time is much smaller than the optical path
di↵erence between the two arms of the interferometer, single photons act as
coherent light. If we now label the two output ports of the interferometer as
|p1i and |p2i we can write the general state (1.1) of a photon coming out the
interferometer as:

| i = 1p
2

�
c1|p1i+ ei�c2|p2i

�
, (1.94)

where we have used |p1i and |p2i as the computational basis and the two-level
quantum system is represented by varying the phase di↵erence � between the
two arms of the interferometer. c1 and c2 are constants that depend on the
splitting ratio of the first beam splitter composing the interferometer. For
example, both polarization and phase encoding can be used to implement the
BB84 protocol [18]. In the case of polarization encoding Alice can send a
qubit in the (|Hi, |V i) basis and Bob will randomly choose either |Hi or |V i
to perform the measurement, whereas if phase is chosen for the encoding,
then Alice Has two possible basis for sendig qubits, that are �1 =

�
0, ⇡

2

�
and �2 =

�
⇡, 3

2
⇡
�
and Bob will choose one of them to detect the arriving

photons. Usually, phase encoding is implemented in two methods. The first
one, proposed by Franson [217], consists in using two interferometers and a CW
pump laser. This configuration is mostly used to reveal time-energy entangled
photons [27]. The second method, proposed by Brendel [226], is a modification
of the Franson technique and uses three interferometers and a pulsed pump
laser. This design allows to detect time-bin entangled photons.
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(a)

(b)

(c)

(d)

A B

Figure 1.11: (a) Scheme of the Franson method, consisting in two unbalanced
interferometers. The signal photon enters the A interferometer, whereas the
idler photon the B apparatus. (b) Depending on which arm of the interfer-
ometer the photon will travel (short-short, long-long, long-short, short-long),
three coincidences peaks will arise. (c) Due to the indistinguishability of the
short-short and long-long cases, by varyingthe interferometer’s relative phase,
the central peak will exhibit an interference pattern. (d) The interference pat-
tern of the central peak violates the Bell’s inequality, proving the time-energy
entanglement of the generated photons [27].
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Let us focus now on the case of energy-time entanglement and consider the
situation depicted in Fig. 1.11 (a), where a source emits photons at the same
time. The kind of process responsible for the generation of photon pairs is not
relevant at the moment (it could be SPDC, SFWM etc.), but it is important
that energy is conserved in order to have correlation between the signal and
idler emitted photons due to the long coherence time of the pump laser [227,
228, 229, 27]. Then, as shown in Fig. 1.11 (a), the two generated photons
are separated and sent to two identical unbalanced interferometers, called A
for “Alice” and B for “Bob”. The output from the two interferometers is then
sent to single photon detectors and detected in coincidence, i.e. recording the
detection time at the end of B with respect to the arrival time at the end of A.
There are four possible combinations of paths: both photons travel along either
the long arm (|lA, lBi) or the short arm (|sA, sBi), the photon in A takes the
long path and the photon in B the short path (|lA, sBi) and, vice versa, in A
the photon follows the short arm and in B the long one (|sA, lBi). Since we are
dealing with equally unbalanced interferometers, the short-short and long-long
cases are indistinguishable and will result in a single coincidence peak. Thus,
the resulting spectrum is made of three peaks, as shown in Fig. 1.11 (b), where
the first one corresponds to the case where the photon has followed the long
arm in A and the short arm in B, and vice versa for the last peak. The second
peak corresponds to the short-short and long-long indistinguishable cases and
can be expressed as:

| i = 1p
2

�|sA, sBi+ ei'|lA, lBi
�
, (1.95)

where ' = �A + �B is the phase di↵erence given by the sum of the optical
phase di↵erence between the two paths of the A and B interferometers.

Since |lA, lBi and |sA, sBi are indistinguishable, from quantum mechanics
rules we can find the probability of detecting such a state, that is given by
the squared modulus of the sum of the individual amplitudes. Then, as it can
be seen from Fig. 1.11 (c) and (d), by varying the relative phase between the
short and long arms in the A interferometer �A and in the B interferometer
�B, an interference in the coincidence rate of the central peak Rcentral will be
observed [217]:

Rcentral =
1

4
V cos2 (�A + �B) , (1.96)

where V is the visibility of the two-photon interference and a value V > 1p
2
im-

plies the violation of Bell’s inequality and prove the energy-time entanglement
of the measured state [230].

It is worth to say that time-energy entanglement is very interesting for
quantum information processing applications, for it can be easily implemented
on integrated devices ([27]) and su↵ers of less information loss over long dis-
tances.

If we now consider a Franson-like setup, as the one presented in Fig. 1.11
(a), and consider a pulsed pump laser as source of the photon pairs, we get
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Figure 1.12: Schematic representation of the setup used to generate time-bin
entangled photons [123].

time-bin entanglement [226]. Usually, the short pump laser is injected into an
unbalanced interferometer. Now, the path length di↵erence has to be bigger
than the coherence length of the pulse. So, two time bins, or time intervals, are
created at the output of the interferometer. The time intervals are large as the
pump pulse and their time separation is given by the unbalance between the
interferometer arms. Each pulse can then generate a photon pair in the first or
second time slot. This is true if we assume the pump laser power to be low, thus
having a low probability of pair-emission. In this way it possible neglecting
the cases in which a pair is produced in both pulses or two pairs are produced
in one pulse. At this point, as schematically shown in Fig. 1.12, the two
generated photons are separated and sent to two interferometers, labeled as A
and B. If the the A and B interferometers are matched to the first one within
the coherence length of the pump pulse, both at the A and B outputs, three
time intervals will be detected when looking at the arrival times of the photons.
As depicted in the figure, the first time bin corresponds to the case in which
the pump photon has traveled through the short arm of the first interferometer
and the generated photon in the short arm of A. We can label this case as
|sip|siA, where p and A stand for pump and A-interferometer photon. The
third peak is due to when both the pump and generated photons go through
the long path and the state will be labeled as |lip|liA. The central bin, as in
the case of time-energy entanglement, is due to the two indistinguishable cases
corresponding to the pump passing in the short arm of the first interferometer
and the generated photon in the long arm of the A-interferometer (|sip|liA)
and vice versa (|lip|siA). Obviously, the same discussion is valid for the B-
interferometer, as reported in Fig. 1.12 [123].
In the degenerate case one of the two photons carry a phase acquired when
traveling in the long arm of an interferometer. Then, the two states at the end
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of the A and B interferometers can be written as:

| i1 = |sip + ei�J |liJ , (1.97)

| i2 = |siJ + ei�p |lip, (1.98)

where J = A,B. If we now define

|sip + |siJ = |0i, (1.99)

|lip + |liJ = |1i, (1.100)

the final state can be written as:

| i = 1p
2

�|0i+ ei✓|1i� , (1.101)

where ✓ = �p,�J .
Following [231], it can be useful to introduce the notation |n1, n2, n3iJ ,

where n1 photons are in the first time bin, n2 photons are in the second time
bin and n3 photons are in the last time bin and J = A,B. Now, if the di↵er-
ence in the arrival times at the A and B detectors are measured, the resulting
spectrum will be something similar to the one depicted in Fig. 1.13, in which
three di↵erent peaks are present. The two satellite peaks correspond to distin-
guishable events and can be neglected by choosing a su�ciently small window
around the central peak. Three di↵erent events are related to the central
peak and they are characterized by the fact that the photons take the same
path in the A and B interferometers: |1, 0, 0iA|1, 0, 0iB, |0, 0, 1iA|0, 0, 1iB and
|0, 1, 0iA|0, 1, 0iB. On the one hand, the first two cases are again distinguish-
able, since they correspond to a photon created in the first (second) time bin
that passes through the short (long) arm of A and B. On the other hand, in
the third case two combinations are possible: the photon is created in the first
time bin and passes then through the long arms of A and B, acquiring the
relative phases �A and �B, respectively, or the photon is created in the second
time bin, acquires a phase �p and then travels through A and B short arms.
Since it is not possible to distinguish between these last two combinations,
for it is impossible to distinguish which path the photon have chosen, inter-
ference is observed as in the case of the Franson experiment. Thus, time-bin
entanglement can be proved.

Path encoding

A third way in which a single qubit could be encoded is by considering
the path variable. Path encoding can be implemented by a beam splitter
(BS), where the photon can take two di↵erent paths and the qubit is defined
according to which one is chosen. This kind of encoding seems to be a good
candidate for on-chip integration and will probably play an important role in
future quantum technology applications.
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Figure 1.13: Time histogram of the di↵erence in the arrival times at the A and
B detectors [231]. As for the time-energy entanglement, three di↵erent peaks
are present.

Usually, in an integrated chip, multiple photon paths can be represented by
di↵erent on-chip waveguides, and two waveguides only are needed to generate
path-entangled states So, in the simplest case of two input wire waveguides,
the qubit could be assumed to be |0i if the photon is in the upper waveguide
and |1i if it is in the lower waveguide, and the computational basis will be
(|0i, |1i). Then, the general qubit can be written as an arbitrary superposition
of the two elements of the basis:

| i = ↵|0i+ �|1i. (1.102)

This state can be obtained in integrated optics through the use of directional
couplers, that are the analogous of BSs on an integrated photonic chip [26].
Phase shifter are then used to control the phase between the two optical paths
and, thus, manipulate the state of the path-entangled qubit [130, 232].

Finally, it is worth to mention that the generation of path-entangled states
in waveguides is very tolerant to significant losses. Indeed, in order to de-
stroy entanglement one would need very strong losses, capable of preventing
the coupling between the two waveguides [233]. Another advantage is that
a polarization encoded qubit can be translated into a path encoded qubit by
employing a polarizing BS and a HWP [234].
In the last chapter of this thesis we will use path encoding to show a way of
implementing quantum logic through the use of classical waves on a simple
electronic circuit.

1.3.2 Heralded single-photon sources

Many quantum information processing applications require the production
of single-photon states, i.e. a state where one and only one photon is present.
In general, in quantum optics, an ideal single-photon source should be e�-
cient, have a high photon generation rate, emit indistinguishable photons in
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a pure Fock state, emit photons on demand, the probability of emitting more
than one photon per pulse should be zero and avoid loss of coherence and
indistinguishability.

Single-photon sources are divided in two classes, depending on whether the
photons can be produced on demand or at an unknown time. The former are
called deterministic sources, the latter probabilistic sources [208].
In general, for quantum computation applications, deterministic sources are
preferable and they are produced, for example, by trapped atoms, quantum
dots or color centers. As concerning photonics, the easiest way to produce a
single photon state one could think of is to use highly attenuated laser pulses.
In fact, the photon distribution of a laser follows the Poissonian distribution
and the amount of multi-photon generation probability scales linearly with
the mean photon number. So, if the mean photon number is very small,
then the multi-photon generation probability approaches a single-photon state.
However, the e�ciency of generating photons scales again linearly with the
mean photon number, thus making this method very ine�cient. Moreover,
the probability of finding more than one photon per time interval cannot be
neglected. So, a widely-used alternative is to consider probabilistic sources of
single-photon states.

In spontaneous parametric processes, such as SPDC and SFWM, photons
are always emitted in pairs and they are time correlated. In this scheme, the
single-photon states are obtained through a process called heralding, where
photon pairs are separated in order to get single photons. In the heralding
process, one photon (the herald) is revealed, thus signaling the presence of
the other photon (the heralded). However, this approach is limited by loss
and multiple pair generation. In fact, when a photon in a pair is not detected,
either no heralding occurs (thus the single photon state is no longer acceptable)
or an empty state is revealed.

In the last year emission of heralded single photons has been proved in
di↵erent devices: PPLN waveguides [20], silicon-based photonic crystals [21],
silicon microresonators [22] and hydex microring resonators [23].
Usually, the state generated through either SPDC or SFWM can be expressed
in the following way [165]:

| i =
1X
n=0

cn|nis|nii, (1.103)

where |ni is an n-photon state, with n 2 I, i and s stand for idler and signal
respectively and cn are complex coe�cients, with |cn|2 being the probability of
finding exactly n photons in the idler and n photons in the signal. In order to
get single photon states from Eq. (1.103), the pump intensity should be low.
A typically used rule of thumb is to maintain an average below 0.1 signal/idler
pairs either per pump pulse or per pump coherence time depending on one is
working in either a pulsed or CW regime, respectively [208].

When dealing with heralded single photon sources, it is very important
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Figure 1.14: (a) g(2) (⌧) function at zero time delay as a function of the mean
number of photons. For quantum states g(2) (0) can go below unity. (b) g(2) (⌧)
as a function of the relative arrival time for a single-photon source.

to experimentally prove that the heralded photon is actually a single photon
state, i.e. a Fock state with n = 1. Usually, this can be done by a triple
coincidence measurement, where the photons of a pair are divided by sending
one of them (the herald) to the detector and the other one (the heralded) to
a Hanbury-Brown andTwiss (HBT) interferometer [235]. Then, the intensity
correlations at the output ports of the interferometer are measured through the
second-order coherence, called the g(2) (⌧) function, that describes the photon
statistics of a field and can be expressed as [165, 236]:

g(2) (⌧) =
hI (t) I (t+ ⌧)i

I2
, (1.104)

where I (t) is the field intensity at the time t. Classically, the g(2) (⌧) function
at zero delay is:

g
(2)
classical (0) � 1, (1.105)

where the equal sign holds for coherent states and the > sign for thermal light.
However, in a quantum description, the field is described by an operator and
the function at zero delay can go below one. In particular, for number states
(such as Fock states), the g(2) (⌧) function at zero delay can be expressed as:

g(2)n (0) = 1� 1

n
, (1.106)

where n is the number of photons in the state. The plot of g(2) (0) for di↵erent
cases is shown in Fig. 1.14 (a). So, for a single photon source it must be:

g
(2)
n=1 (0) = 0. (1.107)

So, in the HBT experiment, when the herald is detected and if the heralded
photon is in a single photon state, then the probability of measuring a coin-
cidence event at the output ports of the interferometer should be zero. Thus,
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1. Nonclassical states of light in silicon photonics

the number of coincidences at the output ports of the interferometer as a func-
tion of the relative arrival time of the photons ⌧ , will have a dip at ⌧ = 0, as
depicted in Fig. 1.14 (b). In practical single photon sources g(2) (0) has to be
less then 0.5 to confirm the presence of a single-photon state [208].

Many quantum information applications require the interference of one or
more photons, thus needing the single photons to be in a pure state to get
high visibility. In order to herald photons in a pure state unentangled photons
are desired [237]. Di↵erent techniques are available to measure the purity of
a single-photon state. For example, the density matrix of the state ⇢̂ can be
used to assess the purity of the state (Tr (⇢̂2) = 1) [238, 239]. However, this
is a complicated experiment, since for a D-dimensional quantum system made
of n photons D2n di↵erent projection measurements are needed to determine
the trace [100]. Alternatively, in order to demonstrate the purity of the single-
photon state, the source has to be proved to be single mode [208]. Usually, a
measurement of the correlations of signal and idler for a specific variable gives
the number of modes. An example of this measurement will be described in
detail in the next section and consists in determining the joint spectral density
(JSD) to show the signal-idler correlations in the frequency domain. If a source
is single-mode, than the emitted photons will be uncorrelated (as shown in Fig.
1.15 (a)), whereas a multi-mode source will be characterized by by correlated
photons (see Fig. 1.15 (b)).

Along with purity, single photon sources are also characterized by the
heralding probability (or heralding fidelity). This parameter indicates the prob-
ability of detecting the heralded photon once the herald photon is revealed and
is defined as [240, 241]:

⌘heralding =
CC � CA

CH⌘detector
, (1.108)

where CC is the coincidence counts rate, CA represents accidental rate, CH

stands for the single photon rate in the herald arm and ⌘detector is the detection
e�ciency.

Finally, one last parameter should be considered to understand how well
the source generates photon pairs. It is called the coincidence-to-accidental
ratio (CAR) and can be used for both single and entangled photons sources.
A formal definition of the CAR is given by [224]:

CAR =

R +⌧coh/2

�⌧coh/2
g
(2)
si (t) dtR T1+⌧coh/2

T1�⌧coh/2
g
(2)
si (t) dt

, (1.109)

which basically gives the ratio between the sum of all coincidences in the
coincidence peak and the sum of the coincidences in a temporal window of the
same size of the peak far away from the peak.
From an experimental point of view, the CAR is defined as the ratio between
the coincidence counts rate CC and the accidental rate CA [45, 22]:

CAR =
CC

CA
. (1.110)

60



1.3. Sources of quantum states of light

Some processes, such as multiple-pair generation, noise in the detectors and
losses can a↵ect the CAR value [242]. However, if competing processes to
the generation process can be neglected then the CAR can be directly related
to the probability of emitting multiple pairs [243] and, consequently to the
goodness of a source in generating single-photon states.

1.3.3 Deterministic sources of photons

As mentioned above, deterministic sources should in principle generate sin-
gle and indistinguishable photons on demand and, usually, they are desired for
quantum computing and quantum communication applications. Many systems
have been studied to this purpose and most of them are“single emitters”quan-
tum systems, i.e. systems made of two levels prepared in a excited state in
which de-excitation occurs with the consequent emission of a single photon
[244].

The main strategies used to emit single photons on demand are trapped
ions (or molecules or atoms) [245, 246], quantum dots [247, 248] and color
centers [249, 250, 251]. Even if all these methods are very promising, they still
have some drawbacks. First of all they su↵er from losses, that can degrade
their deterministic nature and produce a probabilistic-like behavior [208, 244].
Moreover, it is very di�cult to create identical emitters [208], even if many
techniques are now available for erasing the frequency mismatch, like e-field
tuning [252], strain tuning [253, 254] and temperature tuning [255].

Besides, in this work we are interested in the on-chip generation of photons,
not only for the advantages gained in the actual realization of such devices,
but also for the always growing need of cheap devices. Obviously, generation
of photons through nonlinear processes is intrinsically random and is usually
governed by a Poissonian statistic. So, the single-photon generation probabil-
ity is limited to less than 25% [256]. Thus, the heralding process can increase
this probability without degrading the quality of the source by using active
multiplexing technique [208, 21, 257, 258, 259], showing high indistinguishabil-
ity [260]. Photon multiplexing can be implemented both in space [21, 257, 258]
and time [259, 260]. However, the path implementation requires many devices
for each photon source and thus is of di�cult scalability. Conversely, in the
temporal implementation only one source is required, thus making it much
more e�cient. However, till now, low single-photon generation e�ciency has
been measured after multiplexing and the overall loss is a very important factor
to be considered in order not to degrade the fidelity of the source [208].

1.3.4 Joint spectral density technique

A way of discriminating between the generation of entangled or uncorre-
lated photons is given by the joint spectral density (JSD) technique. As already
mentioned in Sec. 1.2, SFWM can only be described in the framework of quan-
tum mechanics, whereas stimulated FWM does have a classical explanation.
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1. Nonclassical states of light in silicon photonics

This is somehow the same situation of spontaneous and stimulated emission,
that are linked through the Einstein’s equations [165]. In general, perform-
ing measurements of spontaneous emission is much more complicated than
using stimulated emission. Indeed, classical-generated fields are stronger than
spontaneous-generated ones. The Einstein’s relations are the starting point
for the JSD technique. A full derivation of the analogous of the Einstein’s
equations in the case of stimulated and spontaneous FWM can be found in
[261] and [262] and will not be reported in detail in this thesis.

Let us consider the state

|!s,!ii = â† (!s) â
† (!i) |0i, (1.111)

which is composed by two photons at the frequency !s and !i and where â†

describes the creation operator. If we consider a parametric process as SPDC
or SFWM and following [263], we can write the final state of the generated
photon pairs as:

| i =
ZZ

d!sd!i f (!s,!i) |!s,!ii. (1.112)

In writing the above expression we have neglected the vacuum contribution
and considered photons with the same linear polarization. In Eq. (1.112),
the term f (!s,!i) is the joint spectral amplitude (JSA) of the two emitted
photons. The JSD is then defined as the squared modulus of the JSA:

�!s!i
= |f (!s,!i) |2, (1.113)

and allows to recover information about the correlation properties of the gen-
erated idler and signal photons [264].

Traditionally, the determination of the JSD follows a statistical approach,
based on coincidence measurements. However, in experiment dealing with the
spontaneous emission from microring resonators, the determination of the JSD
is particularly complicated due to the narrow generation bandwidth of such
devices. Thus, determining the JSD would translate in a time-consuming (due
to the low generation rate of SFWM) and low-resolution experiment [265, 266].
The solution to the problem is found in the stimulation emission tomography
(SET) idea [261]. By performing a stimulated-emission-based measurement,
the signal to detect will be much larger than that found in a coincidence
measurement. This, in turn, results in an enormous improvement in the speed
and signal-to-noise ratio of the experiment. In fact, the number of photon
pairs emitted in the stimulated process is proportional to the number that
would be emitted in the spontaneous process, and the proportionality constant
approximately equal to the average number of photons in the stimulating seed,
that can be written as [261]:

hn!i
iA!s

hn!i
n!si

⇡ |A!s |2, (1.114)
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1.3. Sources of quantum states of light

Figure 1.15: Normalized joint spectral density (JSD) of the idler and signal
photons in the case of (a) uncorrelated and (b) correlated photons [208]. The
JSD basically gives the frequency of the idler (y-axis) as a function of the
frequency of the signal (x-axis) and vice versa.

where hn!i
iA!s

is the average number of idler photons at a frequency !i stim-
ulated by a signal seed at a frequency !s, hn!i

n!si is the average number of
photon pairs that would be produced through SFWM and |A!s |2 is the aver-
age number of photons within the signal coherence time. Many experiments
have been carried out exploiting the JSD technique, by using waveguides [262],
optical fibers [264], BBO crystals [267] and microring resonators [207].

In particular, in the case of FWM in microring resonators, the assessment
made by Helt et al. on the possibility of controlling the spectral correlation
of the generated photon pairs by tuning properly the spectral properties of
the exciting pump [204], has been proved [207]. So, in principle, microring
resonators can generate pairs of photons ranging from nearly uncorrelated to
highly correlated depending on the laser pump properties, as shown in Fig.
1.15. From the figure, it can be seen that in the case of uncorrelated (a) gen-
erated photons, the JSD would have a circular shape and no information on
the idler energy can be inferred from the signal energy (and vice versa). On
the contrary, in case the photons emitted in the spontaneous process would
be energy-entangled (Fig. 1.15 (b)), the JSD would be closely peaked to the
antidiagonal and for each signal frequency a single idler frequency can be in-
ferred from the energy-momentum conservation law. Indeed, in the case of a
narrow pump laser, which have a long coherence time, the energy-momentum
conservation law implies strong energy correlation between the idler and signal
photons. Conversely, when a broader laser, with a shorter coherence time, is
employed the energy conservation constrain the energies of the emitted pho-
tons to be in an interval spanning the pump spectrum. Thus, the generated
photons will have low energy correlation.
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Chapter 2
FWM in a silicon integrated
Bragg waveguide

This thesis is mainly focused on the study of silicon integrated nonlinear
optical components, ridge waveguides and microring resonators in particular,
with the aim of characterizing their ability to emit pairs of entangled photons.
In fact, as explained in Sec. 1.2.2, silicon ridge waveguides and microring
resonators are very good sources for nonclassical states of light [46, 27, 268,
224, 22, 208]. In silicon, photons pairs are created by the spontaneous four-
wave mixing (SFWM) process (see Sec. 1.2.1), a third-order nonlinear e↵ect in
which two pump photons are converted in two other photons at higher (idler)
and lower (signal) frequency than the pump light. In the process, energy and
momentum are conserved [46], and the emitted pairs can be in a time-energy
entangled state [27].

An important aspect we want to study in our work is the e�cacy of inte-
grated filters to spectrally clean the generated photon pairs. Besides that, we
also want to examine the e↵ect of the filters on the correlations between the
emitted photons.

Despite the large field enhancement that can be achieved in silicon ridge
waveguides and microring resonators, the e�ciency of SFWM is relatively low,
with the average number of photon pairs generated being typically 9-10 orders
of magnitude smaller than that of the pump photons. Thus, the simultaneous
integration of the source with the detection stage on the same chip requires the
development of an optical filter capable of 100 dB of pump rejection. This is
particularly challenging, for all the frequencies of interest are in the same spec-
tral region, with the signal and idler frequencies symmetrically spaced around
the pump. Recent progresses in the integration of such a filter in a silicon chip
have been reported exploiting three main strategies: coupled ring resonators
[269], Bragg waveguides [37] and cascaded interferometers [270]. However, all
these approaches rely on optical elements composed of hundreds of microns
of silicon waveguide, which are potential sources of unwanted photon pairs
whose spectral and temporal correlations are usually di↵erent from those of
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2. FWM in a silicon integrated Bragg waveguide

the photons emitted by the actual source. For instance, in the case of heralded
single-photon sources, these parasitic photons could lower the purity of the
heralded single-photon state, thus reducing dramatically the performance of
the entire device. However, the purity of the heralded state is of central impor-
tance for most quantum information protocols, in which one envisions a large
number of multiplexed integrated sources [21, 271, 260] for application in linear
optical quantum computation and simulation [83, 125, 272, 91, 92, 93, 273].

In this chapter, we then investigate the generation rate and spectral cor-
relations of parasitic photon pairs generated by SFWM in a Bragg waveguide
(BW). Our experimental approach exploits the connection between sponta-
neous and stimulated four-wave mixing (FWM) [261] and is supported by a
theoretical quantum model of pair generation in the integrated structure. First,
we will illustrate the fabrication process of our sample, that has been produced
in a fab through the standard CMOS procedure. Then, after describing the ex-
perimental setup we used, we will report on the characterization of the sample.
After that, we will give the details on the performed FWM experiment and
the obtained results are then compared to a theoretical model of our device.
This work shows the importance of BWs as filters for integrated photonic cir-
cuits, in particular for quantum applications when high extinction rates of the
optical pump are required. Moreover, this experiment tackle for the first time
the problem caused by the emission of photons through FWM in integrated
filters. This in fact would pollute the quantum state at the output that should
be used for quantum applications.

2.1 Fabrication of the sample

The system used in our experiment was fabricated in the framework of the
OpSIS project (Optoelectronic Systems Integration in Silicon [274, 275]), a
consortium between the University of Delaware and the institute of microelec-
tronics in Singapore (A⇤STAR Institute of Microelectronics). The sample is
fabricated in a CMOS-compatible industrial process (see Fig. 2.1) applied to
a 8-in silicon-on-insulator (SOI) wafer from SOITEC. The SOI wafer is made
of di↵erent layers: a bulk silicon substrate is covered by a layer of buried oxide
(BOX) of 2 µm thickness, on top of which there is a 220-nm-thick epitaxial
boron-doped silicon layer [276, 277, 278, 37]. The refractive index contrast be-
tween silicon (nSi = 3.48 at 1550 nm) and the the silicon oxide (nSiO2 = 1.44
at 1550 nm) is quite high, and this brings to strong light confinement in the
thin silicon layer because of the total internal reflection (TIR) process. This is
the fundamental mechanism that allows to construct all the photonics devices
in use.

The fabrication process consists in di↵erent steps, based on the fact that
silicon dioxide may be grown on the silicon substrate and then selectively re-
moved from designated areas though photolithographic and etching techniques.
The process is depicted in Fig. 2.1. First of all, a layer of silicon oxide (SiO2)
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2.1. Fabrication of the sample

Figure 2.1: Sample fabrication process and components on the chip. The bulk
silicon substrate is covered by a 2-µm-thick buried oxide (BOX) layer, on top
of which there is a boron-doped silicon layer of 220 nm. The top of the sample
is covered with a 2-µm oxide cladding. Three etching steps of di↵erent depth
define the structures on the sample: 60 nm, 130 nm and 220 nm for grating
couplers, rib waveguides and ridge waveguides, respectively. For simplicity, in
the figure we depict a single dry-etching step that goes down to three di↵erent
depths. In the actual process, after the first etching step the photoresist and
mask are applied again to impress the desired structures. The same is done
after the second etching step. The image is not in scale.
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is grown on the SOI wafer. Then, the sample is coated with a photoresist, and
exposed to UV radiation at 248 nm through a mask of the designed layout.
After these processes, the circuit is drawn on the wafer. The next step is the
development, and consists in removing the regions that have been illuminated
by the UV photolithography procedure. Finally, the anisotropic dry etching
process is used to obtain the structures in the silicon layer. Grating couplers
are defined by the first etching step down to 60 nm, whereas rib waveguides
are realized through the second etching step to a depth of 130 nm. A final
etch step down to the buried oxide is used to pattern the 500-nm-wide by
220-nm-tall ridge waveguides designed to be single mode in the 1500-1600-nm
wavelength range. The top of the sample is then covered with a 2-µm oxide
cladding in order to protect the photonic structures on the chip. Eventually,
in order to activate dopants, a rapid thermal anneal (RTA) of 1030 �C for 5
seconds is performed. Studies on the transmission properties of the sample
give measured losses for the ridge and rib waveguides of 0.27 ± 0.06 dB/cm
and 1.5± 0.6 dB/cm, respectively [277].

Grating couplers

One of the biggest challenges of silicon photonics is coupling light between a
single-mode optical fiber and a sub-micron silicon waveguide on a chip. Because
the waveguide core layer is only few hundreds-nm-thick and the guided mode is
strongly confined in that core, there is a large mismatch between the mode of
a waveguide and the one of a single-mode fiber. Among the di↵erent strategies
studied in order to couple light in and out of the sample, edge coupling and
the use of grating couplers seem to be the best solution for many applications.

Through edge coupling, light is coupled in and out of a waveguide by means
of a tapered lensed fiber put in correspondence of one side of the waveguide,
few microns from the side of the chip. Even if low insertion losses (< 1 dB)
have been proved for this kind of coupling [279, 280, 281], the method is very
sensitive to alignment and forces to couple light at the edges of the sample
only [282].

The other approach used for light coupling, adopted in our sample, is the
utilization of grating couplers. They are constructed by expanding the width of
the side of the on-chip waveguide and etching a grating that di↵racts light out
of plane into a fiber placed approximately normal to the surface (see Fig. 2.2).
In our case, the etching step down to 60 nm is giving the desired structure.
Grating couplers have many advantages over edge coupling. In fact, they
can be produced in a CMOS-compatible process (as edge couplers do) and no
post-processing is required. They can be placed everywhere across the chip
(not only at the edges), not requiring the polishing of the facets and enabling
e�cient wafer-scale testing. Finally, they facilitate the process of alignment
to the chip [282, 283]. However, they have two major drawbacks, that are
substrate and mode-mismatch losses. Substrate losses are usually around 35-
45 % of the total optical power. They are caused by a power leakage in the
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Figure 2.2: Layout (a) and cross-section (b) of the grating coupler (GC) used
in our experimet. The device is a 60-nm shallow-etched, nonuniform GC fab-
ricated on a 220-nm layer of silicon on top of a SOI wafer.

silicon substrate instead of an upwards propagation towards the optical fiber,
due to gratings being nearly symmetrical in vertical direction. Mode-mismatch
losses are, instead, due to the fact that the grating and the fiber have di↵erent
shape of the mode: exponential and Gaussian respectively. In our sample,
mode-mismatch losses are reduced by using nonuniform gratings with spatially
varying parameters to adjust the shape of the scattered mode to the mode of
the fiber [283]. The grating couplers we use have a mode-field diameter of
about 10.5 µm, giving a stable optical coupling. The measured insertion losses
for the optimized device are 3.1 dB for a peak wavelength of about 1550 nm
abd a 1.5 dB bandwidth of ⇡ 50 nm [284]. The layout and cross-section of the
grating coupler used in our experiment are shown in Fig. 2.2.

In our chip layout, di↵erent grating couplers corresponding to one photonic
structure are aligned in the vertical direction and separated by a distance of
127 µm (see Fig. 2.6). This makes possible for us using one single array of
fibers, whose cores are separated by 127 µm, to couple light into and out of
the sample.

Bragg waveguide

As explained in Sec. 1.2.2, a distributed Bragg reflector (DBR) is a periodic
structure formed from alternating two dielectric layers with di↵erent refractive
index. The DBR can be used to achieve nearly total reflection within a range
of frequencies. In integrated photonics, a DBR is obtained by periodically nar-
rowing the width of a waveguide, resulting in an e↵ective change of refractive
index. From now on, we call this kind of structure Bragg waveguide (BW).

In our sample (see Fig. 2.6), the BW is made of a channel waveguide and
designed to achieve high reflectivity in a 1-2 nm wide stopband centered around
�0 = 1545 nm and high transmission outside this range. The layered structure
is obtained by periodically shrinking the waveguide width from 500 nm down
to 440 nm, with period ⇤ = �0/2neff = 320 nm and e↵ctive refractive index
neff ' 2.4, where the value of neff has been assumed to be compatible with
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the BW central wavelength �0. The duty cycle of the structure is 50% and the
number of periods is N = 2000. Measurements of the device obtained from
a previous run, exhibited a 20-25 dB extinction ratio for the chosen N . An
optical image of the sample is shown in Fig. 2.6, however the BW structure is
too small to be observed.

It is important to stress that the actual modulation of the waveguide width
is not a sharp-cornered variation but a rounded one. This is due to the fact
that the geometric parameters describing the BW are smaller than the di↵rac-
tion limit of the beam used in the UV photolithography process. Being fabri-
cated well below the resolution limit, the employed BW is far from the ideal
case. Moreover, no post-production characterization of the sample has been
performed and a SEM image of the device is not available. So, the actual pa-
rameters describing the BW could be di↵erent from the designed ones for an
ideal device. Thus, the simulation described in the following sections gives only
approximate information on the used device. Moreover, since the device has
been fabricated below the resolution limit of the UV photolithography process,
no apodization of the BW has been considered in the simulation.

2.2 Four-wave mixing experiment

In this section we will outline the experimental work needed to complete
the measurement. First of all, we will describe the experimental setup we used.
Then, we will report on the linear characterization of the sample. Finally, we
will explain in detail how we performed the measurement.

2.2.1 Experimental setup

As schematically represented in Fig. 2.3, in order to have a very precise
control on the alignment process, the sample is pasted on an aluminum support,
which is then fixed on a multiple stage, allowing the translation along the x,
y, z directions and the in-plane rotation.

Another important feature for the alignment is to provide a good image of
the sample. So, a particular microscope, built in our laboratory for a previous
experiment and mounted on a translating stage, is used to have a top-view
of the chip. In order to be able to align the fiber array above the sample, we
could not bring the objective of the microscope close to the sample surface. The
microscope is then built using a Barlow lens in order to satisfy this requirement.
The magnified image is then focused on a visible CCD camera and sent to a
screen where the sample can be observed. The total magnification of the sample
obtained on the screen is of about 200⇥. Finally, another CCD camera is used
to observe the system sample-fiber array from the side. This component is
essential for monitoring the distance of the fiber array from the sample during
the alignment process.
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Figure 2.3: Scheme of the experimental setup used for the alignment process.
The image is not in scale.

Figure 2.4: Fiber array-grating coupler angle mode matching. # is the mode
angle, �polish is the angle at which the fiber array is polished, �incl represents
the inclination of the array, and '1 and '2 are the angles in the Snell’s law.
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As already mentioned in Section 2.1, the cores of the optical fibers in the
fiber array are evenly spaced of 127 µm and this is the same distance of grating
couplers on the sample. So, we are able to simultaneously couple up to 8 fibers
to the chip. The fiber array, used to couple light in and out of the sample,
is mounted on a holder having six degrees of freedom (a three-axis rotating
stage and a three-axis piezoelectric translator). This is necessary, in order to
fine-tune the position of the fibers over the chip that have to be at a distance of
few microns to minimize the coupling to the fiber array of backscattered light
due to nearby gratings. In our setup, the mode angle (see Fig. 2.2) is # = 17�

[283] and the angle at which the fiber array is polished is �polish = 14.5�. If
we now want to calculate the correct inclination of the fiber array compared
to the vertical direction, we have to consider the Snell’s law:

n1 sin'1 = n2 sin'2, (2.1)

where n1 = 1.44 is the refractive index of silica, n2 = 1 is the refractive index
of air and '1 and '2 are the angles formed by the incident and refracted beam
compared to the perpendicular to the air-fiber array interface, respectively, as
shown in Fig. 2.4. From the figure it can be seen that:

'1 = �polish,

'2 = #+ �polish � �incl, (2.2)

and Eq. (2.1) becomes:

n1 sin�polish = sin (#+ �polish � �incl) . (2.3)

Thus, in order to optimize the coupling at a wavelength of about 1.55 µm, the
fiber array has to be tilted compared to the normal to the surface of the chip
of an angle �incl of:

�incl = #+ �polish � arcsin (n1 sin�polish) ⇡ 10�. (2.4)

Since the refractive index n1 depends on the wavelength �, it is possible to
optimize the coupling of the fiber array at a di↵erent wavelength by simply
varying the inclination angle �incl.

2.2.2 Characterization of the sample

We first obtained a rough alignment to the chip by injecting light from
a superluminescent broadband diode (Thorlabs SLD1550P-A1 combined to a
Newport Model 6000 controller) and collecting the output light on a spectrom-
eter (Acton Spectra Pro 2500i) equipped with a liquid nitrogen CCD camera
(Acton InGaAs OMA V). However, the maximum spectral resolution we had
from this measurement is 67 pm. So, in order to have a better scan of the
spectrum of the light coming out of the chip, we used a di↵erent configura-
tion. In fact, the linear characterization of the BW, is performed by scanning
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Figure 2.5: Transmission spectrum of the Bragg waveguide around the stop-
band. The black points are the experimental values, whereas the dashed red
line represents the calculation done by using a transfer matrix method.

a monochromatic tunable CW infrared laser (Santec TSL-510) over the de-
sired wavelengths to excite the system and collecting the output light on an
InGaAs detector (Newport 918D-IG-OD3) connected to a high dynamic-range
power meter (Newport 1936-C). The spectrum was then reconstructed through
a Labview software and the resolution is now improved to 2 pm.

The high resolution transmission spectrum of the BW we obtained is shown
in Fig. 2.5. The coupling losses at the central wavelength have been estimated
to be 5 dB for each grating coupler [37], and the total insertion losses of the
sample were measured to be about 11 dB. As shown in the inset of Fig. 2.6, the
total length of the waveguide is 1.6 mm, of which the BW takes 640 µm. The
spectrum shows a strong reflection around � = 1544.8 nm, with a rejection of
about 20 dB at the center of the stopband and more than 10 dB rejection over
a 1 nm bandwidth.

In Fig. 2.5 we also show a transmission spectrum calculated using a
transfer matrix method and assuming an e↵ective refractive index of the 440
nm-wide waveguide neff = 2.414, with an e↵ective refractive index contrast
�neff = 3.4985 · 10�3 with respect to the 500 nm-wide waveguide, which can
be calculated using the relation [41]:

4
⇣
1 +

�neff

neff

⌘�2N

= 10�↵(dB)/10, (2.5)

where ↵ is the rejection in dB. In Fig. 2.5, an asymmetry in the BW ex-

73



2. FWM in a silicon integrated Bragg waveguide

Figure 2.6: Schematic view of the experimental setup used to study four-wave
mixing in the Bragg waveguide (BW). BPF stands for band-pass filter and
BS for beam splitter. An optical image of the sample used is shown as an
inset. The signal wavelength was kept fixed to 1560 nm, whereas the pump
wavelength was scanned from 1541.9 nm to 1550 nm in order to probe the
FWM process inside the Bragg waveguide stopband.

perimental spectrum can be observed. The main cause for this asymmetry is
radiation loss, probably due to the disorder created by the fabrication below
the resolution limit in the structure.

2.2.3 Stimulated four-wave mixing

After having characterized the BW on our sample, we proceed with the
FWM experiment. As already described in Sec. 1.2.1, FWM is a third-order
nonlinear process in which two pump photons are converted in a photon pair
(idler and signal photons at a higher and lower frequency than the pump laser,
respectively). Energy and momentum are conserved during the process.

The experimental setup we used is represented in Fig. 2.6. Since, in a
CW pumping scheme, the SFWM process is too faint to be observed experi-
mentally in a BW, we then studied stimulated FWM. Stimulated FWM has
been experimentally investigated by coupling two CW infrared lasers at the
pump and the signal frequencies. We fixed the signal laser (Santec TSL-210)
at a wavelength of 1560 nm and let the pump laser (Santec TSL-510) scan the
wavelength range 1541.9-1550 nm, to probe the FWM process across the BW
stopband. Before being injected into the chip, the pump and the signal lasers
have been spectrally filtered by means of a 50-dB band-pass filter, to clean
out the amplified spontaneous emission (ASE). In fact, the power of the idler
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2.2. Four-wave mixing experiment

generated through FWM is much weaker than the injected pump and signal
powers and the ASE from the two lasers had to be filtered in order to isolate
the idler photons. Finally, the pump and signal lasers were combined on a
90:10 polarization maintaining fiber beam splitter (BS) before being injected
into the sample through a fiber array, as described in Section 2.2.1. The opti-
cal powers coupled to the sample were estimated to be 1.29 ± 0, .06 mW and
1.23 ± 0.06 mW for the pump and signal, respectively. Band-pass filters are
then used at the output of the sample to suppress the residual pump and signal
fields. The idler output was then sent to a spectrometer (Acton Spectra Pro
2500i) and collected by a liquid-nitrogen-cooled CCD camera (Acton InGaAs
OMA V).

The band of the used band pass filters is limited to ⇠5 nm, whereas we
scanned the pump through �� ⇡ 8 nm, that translates in an idler bandwidth
of �� ⇡ 16 nm. So, we divided the idler generation and pump bandwidths in
five steps of about 4 nm and 2 nm, respectively. For each step we collected
all the spectra of the generated idler and combined them together in order to
obtain one single FWM spectrum, as shown in Fig. 2.7 (a). The results will
be discussed in the next section.

Results

The result of the experiment is shown in Fig. 2.7 (a). On the y-axis the
measured CCD intensity is plotted against the wavelength range of the pump
laser. From the measured CCD intensity we then calculated the idler genera-
tion rate inside the BW, obtained after calibrating the CCD response against
a high-sensitivity power meter and compensating for the transmission of the
output filters. In Fig. 2.7 (b) we report the estimated internal generation rate
of idler photons as a function of the pump wavelength, per mW2 of coupled
pump power. The strong suppression of FWM corresponds to the BW stop-
band. In Fig. 2.8 we also show one of the FWM spectra obtained during the
measurement. In particular, this spectrum corresponds to a pump wavelength
of �p = 1545.6 nm, and an acquisition time of the CCD camera of 0.3 seconds.
In the figure, the pump and signal positions are indicated by the green and
red arrows, respectively. It can be seen that the pump and signal lasers are
completely suppressed by the band-pass filters in our setup.

As already mentioned, the SFWM process associated with the stimulated
process is too faint to be observed experimentally in a BW. However, the
two processes can be related in a simple way. In particular, the spontaneous
emission rate Pi,spont can be directly connected to the stimulated emission rate
Pi,stim via the relation [261]:

Pi,spont = ~!i�!
Pi,stim

Ps
, (2.6)

where Ps is the coupled signal power and �! is the emission bandwidth.
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Figure 2.7: (a) CCD intensity measured during the experiment as a function of
the pump wavelength. (b) Idler generation rate per mW2 inside the chip (left
y-axis) as a function of the pump wavelength. On the right y-axis we report
also the inferred generation rate per mW2 for the SFWM process.
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Figure 2.8: One spectrum of the idler photons for �p = 1545.6 nm and �s =
1560 nm (acquisition time of 0.3 seconds).
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2.3. Theoretical model

Since we are interested in filtering photon pairs generated from ring res-
onators, which usually emit in a narrow bandwidth, we can give an estimation
for filtering in actual samples. So, if we consider �! = 2⇡ ⇥ 10 GHz, that
is a typical value for integrated sources, resonant or post-filtered, we obtain a
quality factor Q ⇡ 20000 at � ⇠ 1550 nm. This is a reasonable quality factor
for common light sources, that typically yield generation rates larger than 1
MHz in a 10 GHz bandwidth [208, 207].

We report the expected spontaneous emission rate from the BW on the
right y-axis of Fig. 2.7 (b), where we notice that the average rate of photon
pairs generated at the bottom of the stopband is 5 Hz (see also the experimental
result in Fig. 2.9). Since our BW already provides 20 dB of pump rejection,
we expect this figure to be very close to the total generation rate observable
in a longer structure as well. This generation rate per mW2 is at least 5
orders of magnitude smaller than what e�cient silicon integrated sources can
produce, thus ruling out any hypothesis of spurious contributions introduced
by the filter, even for the most demanding schemes where many sources are
multiplexed [21, 83, 91, 92, 93, 260, 271].

It is important to stress that, in order to discriminate the generation rate
of the BW from the amount of idler generated in the waveguide before the
BW in Fig. 2.7 (a), we also measured the stimulated FWM emission from
a waveguide on our chip. We then scaled the result to the actual waveguide
length before the BW by considering that FWM emission in waveguides goes
as 1/L2, where L is the length of the waveguide. We found a background of
about 20% at the bottom of the BW stopband due to FWM emission from
the waveguide before the BW. This value is not enough to change the order of
magnitude of the idler generation rate in the BW.

Finally, it is important to notice that when the injected wavelength ap-
proaches the BW band edges, the grating reflection reduces and the grating is
no more reflecting. So, in ideal BWs, when the pump is propagating at the
wavelengths corresponding to the band edges, the group delay is maximum
and, being in a slow-light regime, an enhancement in the idler generation is
expected. However, in our experiment, we dealt with a very long BW (640
µm) with a very small e↵ective index contrast (�neff ⇠ 10�3). Moreover, the
fabrication below the UV photolithography resolution limit produced disorder
in the employed structure. For these reasons, the slow-light e↵ect is not present
in our device and we do not observe field enhancement at the BW band edges
in Fig. 2.7.

2.3 Theoretical model

Our experimental work is then compared to a theoretical model based on
a full quantum description of the filter, which also allows to investigate the
spectral properties of the generated pairs. In Fig 2.9, we show the theoretical
prediction for the pair generation rate as a function of the refractive index
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Figure 2.9: Pair generation rate in the Bragg waveguide as a function of the
index contrast.

contrast when the BW is modeled using the same parameters adopted for the
transmission spectrum, together with the experimental result from our sample.

The results are obtained by means of numerical simulations of the structure
based on coupled mode theory [41], the asymptotic-fields method [285] and the
backward Heisenberg picture approach [286]. In our computation, we assume
a fixed 20 dB extinction rate for the BW and, given a specific e↵ective index
contrast, we adjust the number of periods of the BW using Eq. (2.5). Since
the probability to generate a photon pair by SFWM in the BW is very low, we
are working in the undepleted pump approximation, so that the state of the
frequency-converted photons is given by

| i = |vaci+ � |IIi+ · · · , (2.7)

where the ellipses refers to higher order terms, which can be neglected in our
case, |�|2 is the pair generation probability, and |IIi is the normalized two-
photon state

|IIi = 1p
2

Z
d!1d!2�(!1,!2)a

†
!1a

†
!2 |vaci, (2.8)

where �(!1,!2) is the biphoton wave function (BWF) and a†!i is the creation
operator of a photon with frequency !i. In our simulation, we assume a wave-
guide nonlinear parameter � = 200 m-1W-1, which is typical of silicon nanowires
[46], and modify the e↵ective index of the BW corrugations by �neff over the
baseline value neff of the unperturbed waveguide. The pump central wave-
length 1544.8 nm corresponds to the center of the stopband. We take a 1 ns
top-hat temporal profile [287] to guarantee that the SFWM generation rate
converges to its CW limit. The theoretical trend reported in Fig. 2.9 refers to
the pair generation rate per 1 mW of coupled pump power when the idler and
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Figure 2.10: Comparison between the JSD of the photon pairs generated by
SFWM in (a) a 20 dB Bragg waveguide, and (b) a side-coupled microring
resonator.

signal photons are collected in a spectral interval 2⇡ ⇥ 10 GHz wide around
1560.05 nm and 1529.94 nm, respectively. Since the generated idler power is
proportional to the square of the waveguide length and the BW length is in-
versely proportional to the index contrast �neff at a target extinction ratio,
we expect PI / (�neff )�2, which is well verified by our simulations. In Fig.
2.9 we also report the experimental result, which is in good agreement with
the theoretical prediction. The figure reports the calculated generation rates
for two cases: the measured 20 dB rejection filter, and a 100-dB rejection filter
as would be required for a complete pump suppression. Notice that the pair
generation rate is almost identical, the di↵erence between the two cases being
much smaller than the experimental error bar. Indeed, most of the generation
occurs in the first part of the BW, as the pump power decays exponentially
within the BW. Therefore, increasing the length would not significantly alter
the number of generated pairs.

Another relevant aspect of integrated filters is the characterization of the
spectral quantum correlations of the photon pairs generated by SFWM in the
filter itself. In Fig. 2.10 we show the joint spectral density (JSD, the square
modulus of the BWF) of the frequency-converted photons generated in the
BW, along with that of photon pairs that would be generated by a source of
heralded single photon states based on SFWM, represented by an integrated
microring resonator. In this scheme, when the pump duration is comparable
or shorter than the photon dwelling time in the resonator, one can obtain the
generation of nearly uncorrelated photon pairs, a key requirement for heralding
single photons in a pure quantum state [288].

For our comparison, we consider a 15 µm-radius side-coupled microring
resonator, composed of a SOI ridge waveguide. We assume that all the reso-
nances involved in the SFWM process (�P = 1534.55 nm, �S = 1544.27 nm,
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2. FWM in a silicon integrated Bragg waveguide

and �I = 1524.94 nm) have a quality factor Q = 40000, which corresponds
to a dwelling time ⌧d = 33 ps. Accordingly, we shape the pump pulse with
a Gaussian profile with such temporal width. The resulting JSD, reported in
Fig. 2.10(b), is approximately circular, which is characteristic of nearly un-
correlated photon pairs. In Fig. 2.10(a) we report the JSD of the photons
pairs in our filter. In this case, as expected, we observe the generation of
highly anti-correlated photons pairs, a typical feature of straight waveguides.
In both cases, the waveguide nonlinear parameter, pump power and waveguide
dispersion are assumed identical. In particular, for a 1 mW pump power and
a nonlinear waveguide parameter � = 200 W-1m-1, we calculate a generation
probability per pulse in the microring |�Ring|2 = 1.0427 · 10�3, which compares
favorably to the same figure in the BW |�BW |2 = 1.5366 · 10�11.

2.4 Conclusions

In this chapter we investigated the FWM mechanism in a silicon integrated
Bragg waveguide. Since the SFWM process is too faint to be observed in our
structure, we first performed a stimulated FWM experiment. We then related
the obtained stimulated emission rate to the spontaneous emission rate through
Eq. 2.6, that we report here for convenience:

Pi,spont = ~!i�!
Pi,stim

Ps
. (2.9)

We found that the average rate of photon pairs generated at the bottom of
the BW stopband through the SFWM process is about 5 Hz. Our structure
provides 20 dB of pump rejection, so we expect that our result can be very
close to the total generation rate observable in longer BWs as well. We then
compare our result to the theoretical value calculated by means of a full quan-
tum model of the filter, which also allows to investigate the spectral properties
of the generated pairs. We find a good agreement between theory and experi-
ment, confirming that stimulated FWM is a valuable approach to characterize
the nonlinear response of an integrated filter. Moreover, since e�cient silicon
integrated sources can produce photon pairs in the MHz range, our result is at
least 5 orders of magnitude smaller than that. Thus, filtering through a BW
structure will not pollute the quantum state at the output.

We want to stress that BWs are among the most promising for on-chip
pump filtering, as they do not require to be actively tuned. Besides, our sample
was realized in a silicon photonics fab by using a CMOS compatible process,
meaning these filters are widely accessible for general photonics applications.
These features, combined with the results of our experiment, show that BW
filters are ideal structures to provide large pump extinction while avoiding
spurious nonlinear processes that may decrease the fidelity of on-chip generated
quantum states. So, BWs can be considered the best candidate for on-chip
filtering of the pump in quantum applications.
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However, a comment on losses when dealing with long devices is needed.
In fact, an 80-dB on-chip rejection of the pump by using a BW has already
been proved by N.C. Harris et al. in 2014 [37]. In this work, BW losses
were estimated to be 3�5 dB. However, longer BWs are needed to achieve the
desired 100-dB-rejection filter and losses of about 4�6 dB are then expected.
This value has to be decreased for using BWs for actual applications in the
field of quantum technology. So, future research is still needed to optimize the
filtering of the optical pump on a single chip.
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Chapter 3
Photon pairs generation in a
self-pumping geometry

In the previous chapter, we have addressed a potential issue met by silicon
photonics when dealing with integrated filters, for they could potentially pol-
lute the quantum state produced on a chip.
Now, we want to assess another relevant problem for silicon photonics, that
is the integration of the pump laser on a silicon chip. Achieving laser emis-
sion in silicon is a long-sought goal, due to the 1.12-eV indirect bandgap of
this material, that makes the electron-hole recombination a low-probability
phonon-mediated process. Thus, it turns out that silicon is a poor light emit-
ter [289, 290].

In the last years, many di↵erent systems have been studied to find a way to
achieve laser emission in silicon and that can be compatible with the current
microelectronic and optical communication technologies [289, 290, 291]. Some
examples are stimulated Raman scattering (SRS) [292], rare-earth doping [293],
the use of epitaxial III-V materials [294] and hybrid laser technologies [295,
296]. There are several requirements such a laser source should meet to be
used as pump for silicon based sources of photon pairs [291]. For example, the
source has to be connected with the fiber-optic network in use, so it should
emit around either 1.31 µm or 1.55 µm.

Moreover, due to the need of compact sizes and high integration density,
lasing should be achieved through electrical pumping. The potential laser
should have su�cient output power with high power e�ciency and low energy
cost-per-bit in data transmission. Last but not the least, the used technology
has to be compatible with the CMOS fabrication process, in order to allow for
a mass production of the device.

The first idea of using SRS in silicon waveguides to construct silicon am-
plifiers and lasers was suggested in 2002 [297]. Spontaneous Raman scattering
(RS) occurs when an incident beam is absorbed by the medium and two di↵er-
ent radiations are produced at lower (Stokes RS) and higher (anti-Stokes RS)
frequencies of the incident light. Conversely, when Stokes photons (signal) are
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3. Photon pairs generation in a self-pumping geometry

injected in the material together with the original beam (pump), other Stokes
photons are generated and amplification is possible. The process is now called
SRS. The first silicon Raman laser was proposed in 2004 [298]. However this
technology su↵ers from a major drawback: the free carrier absorption (FCA)
process produces optical losses that prevent a net gain in a silicon waveguide
[167]. Another issue is related to the required high pump powers in Raman
lasers [299], that produce losses through the two-photon absorption (TPA)
mechanism. Even if solutions to these two major problems have been studied
and Raman lasers can act as an excellent light sources in a very large of wave-
lengths, they still cannot be applied to silicon photonics due to their intrinsic
optical-pumping mechanism.

Another possible proposed way of solving the light-emission problem in
silicon is by using rare-earth doped optical fibers. Usually, the most common
dopant in use is erbium, due to its ability to emit light at around 1.55 µm
[300]. However, silicon is not suited for hosting erbium and only little emission
can be achieved at room temperature. A way of solving the problem has
been found in trying to optimize devices geometries and doping distributions,
for example as in silicon nanocrystals formed in silicon rich oxide [289, 301].
However, di�culties in the fabrication and integration processes, material gain
and energy transfer e�ciency are met due to the small sizes and high electrical
pumping requirements [290, 291].

Despite its indirect bandgap, even germanium is an attractive choice for
making lasers on silicon. This is possible due to the the direct bandgap at 0.8
eV that it exhibits close to the indirect bandgap at 0.66 eV. Due to this par-
ticular band structure, germanium can be engineered to emit at the telecom
wavelengths around 1.55 µm [302]. The first demonstration of laser emis-
sion at around 1.52-1.62 µm in a germanium on silicon CW laser at room
temperature was performed at MIT in 2010 [303]. Due to some features of
germanium light sources, such as an emission e�ciency that increases with
temperature and the large gain spectrum, they are competitive candidates for
silicon-compatible on-chip lasers. The first electrically pumped germanium
laser was successfully demonstrated in 2012 [304], but two major issues of high
threshold and low emission e�ciency were found. Another big problem to be
solved is the narrowing of the bandgap with a consequent redshift of the emit-
ted light to wavelengths far beyond the desired 1.55 µm due to the process
used for modifying the germanium band structure [291].

Also III-V compounds, such as GaAs and InP, with direct bandgap and
interesting photonic properties can be used to achieve lasing through electrical
pumping in the silicon platform. In this technology the major drawback is due
to the big mismatch between the lattice constants and the thermal expansion
coe�cients of silicon and III-V materials. The result is the presence of many
defects at the interface that causes large power losses, with the consequent
impossibility of growing III-V materials on top of SOI. This is also due to the
relatively high temperature needed for the growth that can damage the devices
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previously integrated on silicon [290]. Di↵erent strategies have been studied to
reduce the growth temperature, such as the bottom-up self-organized growth
technique used for producing on-chip InGaAs nanopillar lasers [305, 306], that
is even CMOS-compatible. However, this technology has to be further devel-
oped in order to obtain fully functional devices [291].

Finally, another option for building lasers on top of silicon is the newly
developed field of hybrid lasers, which combines di↵erent materials instead of
one single material grown on silicon. Often, hybrid lasers are made on di↵erent
substrate (such as germanium or silica) other than silicon, and they are trans-
ferred on the silicon substrate at a later stage [307]. The first demonstration of
electrically pumped hybrid silicon laser was performed in 2006 [307]. However,
improvements on the emission e�ciency through the study of the best combi-
nation of materials into hybrid lasers and on an easier wafer bonding process
are still needed [308]. In this direction, even new structures, such as ring or
disk geometries [309], can also be explored. However, the major drawbacks of
this technology lie in still low light confinement, high modal losses and high
thermal impedance in these devices [290].

Despite all the studied strategies, the di�culty of integrating sources of
light in the silicon platform still remains one of the major obstacle in silicon
photonics [289, 290, 291]. In particular, one of the biggest issues is to build a
fully CMOS-compatible integrated tunable laser. So, in this chapter, we will
introduce a method for building a fiber-based silicon integrated source of light,
without the need of an external tunable laser acting as optical pump. Moreover,
in our proposed geometry, the laser frequency is automatically tuned to the
pump frequency.

The choice of implementing a fiber-loop laser is that this technology has
been widely employed in telecommunication applications since a long time
[310]. Deriving from the Raman fiber lasers, where an optical fiber is used as
gain medium and the amplification of light is due to the stimulated Raman
scattering process, fiber lasers are made of an optical fiber doped with rare-
earth elements (such as erbium, ytterbium and so on) that acts as gain medium
[310, 311, 312, 313]. The extensive use of the fiber lasers in fiber-optic networks
is due to the many advantages this technology can provide [314, 315]. First of
all, since no bulk components are present in the cavity, they do not need any
kind of alignment. Hence, they are very stable both in wavelength and output
power. Moreover, light is already coupled to an optical fiber, thus making
the delivery of light out of the laser into the fiber-optic network very simple
and the output power can be quite high, for the active region (fiber) can be
very long. Second, they are particularly simple to use, for they are usually
connected to a user-friendly graphical interface. Third, they have a low cost
of ownership, for they have low power consumption, require little maintenance
and have long lifetime. Besides, because of the waveguiding properties of the
optical fibers, the problems of the optical beam related to the cavity alignment
being sensitive to temperature and mechanical vibrations are no longer present.
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Thus, fiber lasers have a high optical quality. Finally, they can be very robust
and compact in size compared to other lasers (for example gas lasers), due to
the fact that the fiber can be coiled in order to reduce the occupied space.

All the listed features make the use of a fiber-based laser the optimal choice
for our needs. In fact, our samples are made for being coupled to an optical
fiber through grating couplers, thus avoiding unnecessary steps to guide light
into the gain medium, that is composed by a doped fiber. Moreover, due to the
high losses present in our system, we need a very robust and stable architecture
in order to build a lasing cavity.

To address the problem, the photonic structure we used as light source is
the microring resonator. In fact, these devices are among the most promising
sources of nonclassical states of light for use in quantum technologies [208] and
a comprehensive description of this device can be found in Sec 1.2.2. As already
explained, silicon microring resonators are microscopic devices integrated on a
silicon chip that have been shown to be e�cient for on-chip optical nonlineari-
ties. Di↵erent e↵ects can be achieved through low-power optical nonlinearities
in silicon integrated devices, such as all-optical switching [316], optical bista-
bility [317] and four-wave mixing (FWM) [44]. In particular, we will focus
on FWM, that has been shown to be greatly enhanced by the light confine-
ment in microring resonators and can reach high photon pairs production,
until the MHz rate [206, 45]. So, microring resonators can act as microscopic,
integrated sources of entangled photons [27, 37, 28]. However, as already men-
tioned above, a big issue still to be solved to facilitate the widespread adoption
of microring resonators as quantum optical sources and for the on-chip gener-
ation of frequency combs [318, 23] is the need for an external tunable optical
pump. In fact, as already showed in Sec. 1.2.2, silicon microrings are reso-
nant structures and their spectrum is characterized by discrete sharp spectral
resonances. The pump laser is usually tuned to a resonance’s frequency. How-
ever, the occurrence of thermal or power fluctuations causes spectral changes
in the ring resonances, that could even be few hundreds of times the resonance
linewidth [319, 320]. Thus, the need of a tunable, or even actively tuned, pump
is of pivotal importance in FWM experiments. In particular, the importance
of a tunable source comes out when dealing with either microring resonators
with high quality factors [321] or high pumping powers [46].

The requirement of an expensive and cumbersome external tunable laser
acting as optical pump crashes with the need of developing economic devices,
that should be quick and easy to operate. So, in this chapter we will show that
it is possible to relax the requirement of an external tunable pump by demon-
strating that FWM can be achieved in a silicon microring resonator by using a
self-pumping geometry [322]. The idea behind this experiment is to insert the
microring resonator inside an fiber-loop cavity including an external amplifier.
In this geometry gain is spectrally filtered by the microring resonances and
lasing can be achieved with enough power to measure FWM emission. More-
over, in the proposed geometry the lasing frequency is automatically tuned to
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the pump frequency and follows any shift in the microring’s resonances. This
e↵ect, in turn, allows to eliminate the saturation e↵ect, usually seen in stan-
dard FWM experiments [206], and reach very high FWM generation rates, up
to 108 Hz.

So, this chapter is focused on the study of the FWM process in a self-
pumping regime and is mainly divided in two parts.
The first section is devoted to the study of the stimulated FWM process on a
microring resonator with a relatively low quality factor. Here, after illustrating
the fabrication process of the sample, we will describe the stimulated FWM
measurement. Finally, we will report on the joint spectral density (JSD) ex-
periment carried out in the self-pumping geometry.
The second section is dedicated to the analysis of the spontaneous FWM
(SFWM) process on a microring resonator with a high quality factor. We
will first give some information on the sample and then we will address the
SFWM experiment carried out in our laboratory. Finally, we will report on
the coincidence measurement performed in this self-pumping geometry.

3.1 Stimulated four-wave mixing

In this section we will describe how it is possible to perform the stimulated
FWM experiment in a silicon microring resonator by using a self-pumping
scheme instead of an external laser. First of all, we will illustrate the fabrica-
tion process of the used sample. We will then report on the idea behind the
experiment, that is to insert a microring resonator in an external-loop cavity
with a fibered semiconductor amplifier as a source of gain. The microring res-
onator will then act as a filter, providing lasing in one of its resonances. The
last step of the experiment will be the study of the correlations between signal
and idler generated in ths SFWM process. We will do that by using a JSD
measurement.

3.1.1 Fabrication of the sample

The sample used for the stimulated FWM experiment is part of a project
developed in collaboration with the INtegrated Photonic TEchnologies Center
(INPHOTEC) in Pisa. The sample fabrication is CMOS-compatible and is
applied to a standard 6-inch silicon-on-insulator (SOI) wafer. The SOI wafer
is a layered structure, made of a 3-µm-layer of buried oxide (BOX) on top
of a 675-µm silicon substrate, coated with a 220-nm-thick layer of crystalline
silicon (nSi = 3.48 at 1550 nm). As already explained in Sec. 2.1, the strong
light confinement in the silicon layer is due to the high refractive index contrast
between silicon and its oxide (TIR).

The fabrication process used for our sample can be summarized in di↵erent
steps, as depicted in Fig. 3.1. A positive e-beam resist is spin-coated on
the top of the SOI wafer. When exposed to an electron-beam (e-beam), the
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3. Photon pairs generation in a self-pumping geometry

Figure 3.1: Sample fabrication process and components designed on the chip.
A 3-µm-layer of buried oxide (BOX) is on top of a 675-µm silicon substrate
and then covered with a 220-nm-thick layer of silicon. The top of the sample
is coated with silicon dioxide cladding. For simplicity, a single dry-etching
step that provides the two structures with di↵erent depth (70 nm and 220
nm for grating couplers and ridge waveguides, respectively) is represented. In
the actual process, between the two etchings the e-beam resist is deposited
again and the chip undergo e-beam lithography another time to impress the
waveguide structure. The image is not in scale.
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3.1. Stimulated four-wave mixing

Figure 3.2: (a) Design of the used grating coupler. (b) Optical image of the
grating coupler on the chip.

resist solubility will increase. Thus, by using an e-beam lithography process
thorough the application of a mask, the designed structures are impressed on
the resist. At this point a first shallow-dry-etching step down to 70 nm is
performed to obtain grating couplers (GCs) and the remaining non-impressed
resist is removed from the surface. The process is then repeated in order to
perform a second dry-etching step to get the ridge waveguides. The surface
is coated again with the e-beam resist and impressed by e-beam lithography
though a mask. The second etching step down to 220 nm is then performed to
obtain the desired structures. The non-impressed resist is removed. Finally, a
silicon dioxide layer is deposited through a plasma enhanced chemical vapor
deposition (PECVD) technique.
The designed chip is completely passive, so no metal deposition nor dopant
implantation is required.

Grating couplers

As already extensively explained in the part relative to grating couplers
(GCs) in Sec. 2.1, coupling light between a single mode fiber and a sub-
micron waveguide on the chip is a challenging task. The main strategies used
for coupling light in and out of the sample are either edge coupling or the
design of GCs. As in the sample employed in Chapter 2, our choice for light
coupling is the adoption of grating couplers. For the advantages of GCs over
edge coupling the reader should refer to Sec. 2.1.

The structures on our chip are standard GCs designed and tested at IN-
PHOTEC and they have a similar layout of the GCs used in the FWM ex-
periment on the Bragg Waveguide (see Sec. 2.1). The GCs on our sample are
now obtained by expanding the width of the waveguide on one of its sides and
etching a grating down 70 nm, as shown in Fig. 3.1. In Fig. 3.2 (a) and (b) the
design and optical image of the used GCs are shown, respectively. In Fig. 3.2
(a) the di↵erent colors represent the etching steps required to obtain the GC:
white surfaces occur where no etching is required (220-nm-thick silicon layer),
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3. Photon pairs generation in a self-pumping geometry

pink stands for full-etched zones and blue shows areas where shallow-etching
is performed (150-nm-thick silicon layer).

The GCs in this sample are single-polarization focusing (TE mode) opti-
mized for a 0.48-µm-wide waveguide. The di↵raction angle is about 10� and
the central wavelength is 1550 nm, with a 3-dB bandwidth of 70 nm. Previous
measurements indicate insertion losses of 5 dB at 1550 nm.

As in Sec. 2.1, there are di↵erent GCs associated to one photonic structure
on the chip. These GCs are all aligned in the vertical direction and etched at
a distance of 127 µm, that is the gap among the fibers on the fiber array used
for light coupling.

Ridge waveguides

As already described in detail in Sec. 1.2.2, the fundamental element used
to build photonic circuits is a straight waveguide. The high refractive index
contrast between silicon waveguides (nSi = 3.48 at 1550 nm) and the material
that surrounds it (in our case, silicon dioxide, nSiO2 = 1.44 at 1550 nm) makes
light confinement possible because of TIR.

The ridge waveguide on the chip used for our experiment is 220-nm tall
and 480-nm wide and is designed to be single-mode in the bandwidth 1550-
1600 nm. Losses on similar structures fabricated at INPHOTEC have been
estimated to be 3 dB/cm.

Microring resonator

As detailed in Sec. 1.2.2, a microring resonator consists in a ridge wave-
guide looped back onto itself to form a closed path (the so called all-pass con-
figuration). Input and output coupling to the microring resonator is obtained
through the co-directional evanescent coupling between the ring and a bus
waveguide. In microring resonators light confinement is achieved through TIR
(as for common waveguides), whereas constructive interference makes them to
behave like a resonator. Microring resonators can also be used in a di↵erent
architecture, that is the add-drop configuration. The di↵erence with respect to
an all-pass ring resonator is due to the fact that now the microring is coupled
to two waveguides. As already explained in Sec. 1.2.2, the term ring resonator
usually refers to a circular ring, whereas racetrack resonator is usually used
when the ring shape is elongated and has a straight section in one direction
(typically the coupling direction).

For our experiment, we need to use a microring in the add-drop configura-
tion. This because the measurement requires to have one port (the GC labeled
as input in Fig. 3.3 (a)) for coupling light into the ring, one port (the GC la-
beled as drop in Fig. 3.3 (a)) to close the ring inside a fiber loop and a third
port (the GC labeled as through in Fig. 3.3 (a)) to observe the FWM emission
from the ring resonator. Among the di↵erent add-drop ring resonators on the
chip, we need to chose a good compromise between a high quality factor (Q)
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3.1. Stimulated four-wave mixing

Figure 3.3: (a) Layout of the designed add-drop ring resonator. The ring radius
is 10 µm. (b) Optical image of the add-drop ring resonator.

and a relatively big free-spectral range (FSR). In fact, a small separation in
the ring’s resonances would make the cavity to lase at di↵erent wavelengths,
instead of one.

So, the resonator we use to perform our experiment is a racetrack in which
the radius of the rounded part is 10 µm, that results in a FSR of 7.5 nm. The
straight section is 3-µm long and the gap between the bus waveguide and the
resonator is of 0.17 µm. The measured quality factor factor is of about 3000.
An optical image of the structure is shown in Fig. 3.3. The characterization
of the microring resonator is reported in Sec. 3.1.2 (see Fig. 3.13).

3.1.2 Experiment

In this section we will outline the stimulated FWM experiment carried out
on our sample. First, we will give the details of the linear characterization of
the used sample. We will then report on the design of the built cavity and
its characterization. Finally, we will describe the stimulated FWM and JSD
measurements we performed and comment on the obtained results.

Characterization of the sample

The building block of the built cavity is made out of the racetrack resonator
described in Sec. 3.1.1. So, we first perform the linear characterization of this
structure, that consists in measuring the transmission spectra of the resonances
and then fitting them by using a Lorentzian function.
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Figure 3.4: Transmission spectra of the (a) through and (b) drop ports of the
add-drop ring resonator used in the cavity. The resolution of the spectra is
50 pm. I, P and S stand for the idler, pump and signal resonances used in
the stimulated FWM experiment. These resonances are shown in (c)-(e) with
a resolution of 2 pm. The black line represents the experimental spectrum,
whereas the dotted red line is the Lorentzian fit of the selected resonance.
From (a) and (c)-(e), it can be seen that the microring resonances go down
to below 5% of transmission. This means that the add-drop ring resonator is
close to the critical coupling condition.
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Figure 3.5: Transmission spectra of the (a) through and (b) drop ports of the
add-drop ring resonator used in the cavity. The resolution of the spectra is 50
pm. I, P and S stand, respectively, for the idler, pump and signal resonances
chosen for the SFWM experiment.

As already descrubed in Sec. 2.2.1, to precisely control the alignment
process, the sample is pasted on an aluminum support. This support is fixed
on a multiple stage, allowing the translation along the three spatial directions
and the in-plane rotation. The image of the sample is provided by the same
microscope used in Sec. 2.2.1. This is mounted on a translating stage and
gives a top-view of the chip. The magnified image is then focused on a visible
CCD camera and sent to a screen where the sample can be observed.
As in Sec. 2.2.1, another CCD camera is employed to have a side view of the
sample and monitor the distance of the fiber array from the chip.
As already mentioned, a fiber array in which the fibers’ cores are evenly spaced
of 127 µm is utilized. This distance is the same separation of grating couplers
on the sample. The fiber array is also mounted on a holder having six degrees
of freedom: a three-axis rotating stage and a three-axis piezoelectric translator.

A rough alignment to the chip is first obtained by injecting light from
a superluminescent broadband diode (Thorlabs SLD1550P-A1 combined to a
Newport Model 6000 controller) and collecting the output light on a spectrom-
eter (Acton Spectra Pro 2500i) equipped with a liquid-nitrogen-cooled CCD
camera (Acton InGaAs OMA V). The resolution of the output spectrum is of
67 pm.
We then get a more accurate spectrum of the light coming out of the chip by
scanning a monochromatic tunable CW infrared laser (Santec TSL-510) over
the desired wavelength and collecting the output on a InGaAs detector (New-
port 918D-IG-OD3) connected to a high-dynamic-range power meter (Newport
1936-C). A Labview software reconstructs the output spectrum and the resolu-
tion can now go down to 2 pm. In Fig. 3.4 the 50-pm-resolution transmission
spectra of the through (a) and drop (b) ports are shown. In Fig. 3.5 (a)
and (b) the corresponding spectra in dB are also given. I, P and S stand for
idler, pump and signal respectively and indicate the resonances chosen for the
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3. Photon pairs generation in a self-pumping geometry

FWM experiment. The bell-shape of the spectra is due to the response of the
grating couplers, that modulate the intensity transmitted by the sample. We
estimated the insertion losses for each grating coupler to be of about 3.6 dB.

In Fig. 3.4 (c)-(e) a high-resolution (2 pm) spectrum (black line) of the
single resonances used for the FWM experiment is given along with their
Lorentzian fit (dotted red line). The quality factor can be calculated from
the fit by using the relation (1.65), that we recall here:

Q =
�0

��
, (3.1)

where �0 is the central wavelength of the resonance and �� is the linewidth
of the resonance as obtained from the fit.
The resonances of our racetrack resonator have a linewidth of the order of
about 500�600 pm, resulting in a measured quality factor of several thousands
(Q=2500�3000), with a free spectral range (FSR) of 7.5 nm. As it can be seen
from the figure, the resonances go down to below 5% of transmission, meaning
that the ring resonator is close to the critical coupling condition.

Lasing cavity design

As already mentioned, given the persisting di�culty of achieving optical
gain in silicon, the idea is to take advantage of an external source of gain and
build a closed-loop cavity with the source of entangled photons inside the loop.
By using this geometry, we are able to get rid of the external laser used for
pumping the system in the FWM experiment.

The scheme of the cavity we built is shown in Fig. 3.6. The add-drop
configuration of the resonator is necessary to insert the microring in a loop.
So, the source of gain is a Booster Optical Amplifier (Thorlabs BOA1004P)
connected to a controller (Thorlabs ITC4005) and with a small signal gain of
up to 30 dB. The cavity is closed on the input and drop ports of the racetrack
resonator. Input and output coupling with the silicon chip is obtained through
the use of grating couplers, as already detailed in Sec. 2.1. The add-drop
resonator basically acts, inside the cavity, as a band-pass filter (BPF) for each
resonance. In our experiment, a single resonance (�p = 1555.87 nm) was
selected for lasing by restricting the cavity transmission using an external BPF
at the amplifier output. This external filter also serves to reduce amplified
spontaneous emission (ASE) from the BOA to a level lower than the generated
FWM experiments. In order to obtain the BOA background noise suppression,
we cascaded three BPFs for a total rejection of more than 150 dB in the idler
generation band. An isolator is also inserted right after the BOA in order to
prevent reflected light to go back to the amplifier. A second BPF, identical
to the previous one, tuned to the pump resonance was used at the sample
output to further improve the rejection of frequencies other than the lasing
mode before amplification. The laser power inside the cavity was monitored
using a 99:1 polarization maintaining beam splitter (BS2) before the amplifier.
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3.1. Stimulated four-wave mixing

Figure 3.6: Scheme of the cavity. The idea is to insert the microring res-
onator inside an external fiber-loop cavity including an amplifier in order to
provide gain. BPF stands for band-pass filter, BS for beam splitter, PM for
power meter and BOA for booster optical amplifier. BS1 is a 50:50 polariza-
tion maintaining beam splitter, whereas BS2 is a 99:1 polarization maintaining
beam splitter, with the 1% port connected to the PM. A schematic view of the
add-drop ring resonator used is shown as an inset. The scheme is not in scale.

The 50:50 polarization maintaining beam splitter labeled as BS1 in Fig. 3.6 is
needed to perform the stimulated FWM experiment only.

Lasing cavity characterization

Before characterizing the cavity behavior, we perform some calculations in
order to estimate the lasing threshold [323].

A laser cavity reaches the lasing threshold when the sum of all losses ex-
perienced by light in one round trip of the cavity is exactly balanced by the
optical gain of the laser medium. This can be written as:

GthTtotToc = 1, (3.2)

where Gth = egth is the saturated gain of the amplifying medium, Ttot is the
total transmission of the optical elements in the cavity (except for the transmis-
sion of BS2, from which the output light is collected) and Toc is the transmission
of the cavity output coupler. In our setup, this last value is given by the 99:1
beam splitter (BS2), where 99% of the power, corresponding to Toc, is trans-
mitted inside the cavity and 1% of the radiation, defined by 1�Toc, is collected
at the output on a InGaAs detector (Newport 918D-IG-OD3) connected to a
high-dynamic-range power meter (Newport 1936-C). The transmission of the
output coupler has been measured to be Toc = �0.05 dB ' 98.85%.

The total losses for one loop, excluding the BOA, are directly measured
in the cavity to be Ttot = �18 dB ' 1.58%. This is simply done by open-
ing the cavity and excluding the BOA. We inject light in the isolator from a
monochromatic tunable CW infrared laser (Santec TSL-510) and collect the

95



3. Photon pairs generation in a self-pumping geometry

100 200 300 400 500 600
0

2

4

6

8

 

 

g 
= 

ln
(G

)

BOA Current (mA)
Figure 3.7: Gain characterization of the BOA as a function of the BOA current.
The laser power injected in the BOA is Pin = 34µW at a wavelength of 1550
nm. The black points are the experimental data. The expected threshold
current corresponding to the threshold gain estimated in Eq. 3.3 is Ith ' 83
mA.

output light at the 99% port of BS2 on a InGaAs detector (Newport 918D-
IG-OD3) connected to a high-dynamic-range power meter (Newport 1936-C).
The measured losses are distributed among the components in the cavity in
the following way: the coupling losses are 3.6 dB for each grating coupler, the
BPFs losses are estimated to be 3.5 dB for each filter, the losses due to BS1 are
3 dB, whereas the isolator and BS2 losses are 0.3 dB and 0.5 dB, respectively.
The microring round-trip loss is estimated to be ↵L ⇡ 0.02 dB, where ↵ = 3
dB/cm and L = 2⇡R ⇡ 74.8 µm. So, we have:

ln (Gth) = gth = � ln (TtotToc) ' 4.2. (3.3)

In Fig. 3.7 we show the measurement done in order to characterize the
BOA gain. We inject light from a monochromatic tunable CW infrared laser
(Santec TSL-510) into the BOA. The laser power is set to Pin = 0.34 µW at
a wavelength of 1550 nm. We vary the BOA driving current from 30 mA to
600 mA and we collect the output light on a InGaAs detector (Newport 918D-
IG-OD3) connected to a high-dynamic-range power meter (Newport 1936-C)
right after the isolator. The gain is then calculated by dividing the measured
output power by the input power Pin. We obtain the estimated threshold gain
gth = 4.2 for a current Ith ' 83 mA. So, this value is the expected threshold
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Figure 3.8: Lasing curve of the cavity. The black circles are the experimental
values, whereas the dashed red line shows the linear fit corresponding to Eq.
(3.4).

current for our laser cavity.

We now characterize the cavity behavior by finding the lasing curve of the
built cavity. So, we close the cavity as in Fig. 3.6 and by varying the BOA
driving current, we collect the cavity output light from the 1% port of BS2 on a
InGaAs detector (Newport 918D-IG-OD3) connected to a high-dynamic-range
power meter (Newport 1936-C). The lasing curve of the cavity is shown in Fig.
3.8 as a function of the BOA current. On the y-axis the optical power estimated
at the drop port of the microring resonator is reported. It is calculated from
the measured power at the 1% port of BS2, and compensating for both BPF
and coupling losses. This gives an estimated error on the y-axis of 10%, as
it can be seen from the figure. A clear threshold behavior is observed around
a current Ith = 90 mA. This value is in agreement with the theoretical value
found in Fig. 3.7. Indeed, the lasing threshold corresponds to a current where
the BOA small signal gain is 20 dB, close to the inverse of the measured losses.

In Fig. 3.8, it is also reported the linear fit (dashed red line) of the charac-
teristic curve of the cavity according to the following equation:

Pout (I) = Psat (kI � gth)
Gth

Gth � 1
Ttot (1� Toc) , (3.4)
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Figure 3.9: Block diagram of the built laser cavity.

where Pout is the optical power read at the output of the 1% port of BS2, I
is the BOA current, Psat is saturation power, Gth = egth is the saturated gain
of the amplifying medium, g0 = kI with k constant and g0 small signal gain
(that is the gained obtained when the input signal is so weak that no gain
saturation occurs), Ttot is the total transmission of the optical elements in the
cavity (except for BS2 transmission) and Toc is the transmission internal to the
racetrack resonator, that we call “output coupler”.

The output power as a function of the BOA driving current as expressed in
Eq. (3.4) can be easily derived following the Rigrod model [324, 325]. Consider
the block diagram shown in Fig. 3.9, the gain for unit of length gl in the active
medium depends on the small signal gain for unit of length g0l and from the
ratio I(z)

Isat
, where I (z) is the e↵ective current circulating in the cavity and Isat

is the saturation intensity. In particular, we can write:

gl =
g0l

1 + I(z)
Isat

. (3.5)

The amplification intensity follows the equation:

dI (z)

dz
= glI (z) =

g0l

1 + I(z)
Isat

I (z) . (3.6)

By separating the variables and integrating, we obtain:Z I2

I1

✓
1

I
+

1

Isat

◆
dI =

Z l

0

g0ldz, (3.7)
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that gives:

ln

✓
I1
I2

◆
+

I2 � I1
Isat

= g0. (3.8)

This equation can be written as:

I2 � I1
Isat

= g0 + ln (TtotToc) , (3.9)

that is
I2 � I1
Isat

= g0 � gth. (3.10)

Now, substituting intensities with powers (P = IA, where A is the area of the
laser mode) and considering that I2 = GthI1 and Iout = I2Ttot (1� Toc), we can
find the expression for the output power as a function of the small signal gain
g0:

Pout = Psat (g0 � gth)
Gth

Gth � 1
Ttot (1� Toc) . (3.11)

Since the small signal gain is proportional to the BOA driving current (g0 =
kI), from Eq. (3.11) we find Eq. (3.4).

From Fig. 3.8 it can be seen that the experimental points deviate from
the linear fit for high BOA current. This might be due to the onset of the
two-photon absorption (TPA) process in the microring resonator when high
power is stored inside it, but a more accurate study on this e↵ect is needed.

Stimulated FWM

Given the low quality factor of the present racetrack resonator, spontaneous
FWM was too weak to be observed. We performed instead the stimulated
FWM experiment. As explained in Sec. 1.2.1, FWM is a third-order nonlinear
process in which two pump photons interact in the medium, producing a pho-
ton pair (idler and signal). In the stimulated FWM process, besides the pump
photons, a seed laser (signal) is used to stimulate the system, thus producing
an idler photon at a frequency given by the energy-momentum conservation
law.

The experimental apparatus is shown in Fig. 3.10. We connected to the
cavity the components inside the dashed red rectangles. The experiment con-
sisted in resonantly exciting a resonance (signal) of the microring at a wave-
length of 1563.45 nm thus producing a stimulated idler beam at a wavelength
of 1548.39 nm. In Fig. 3.4 the resonances used for the FWM experiment are
displayed. For the signal photon, we used an external monochromatic tunable
CW infrared laser (Santec TSL-510) that is coupled with the ring cavity using
a 50:50 BS just before the sample. The signal laser is completely suppressed
by the BPF placed before the BOA so that it has no loop gain. Moreover,
this laser is spectrally cleaned before being injected into the cavity by means
of a tunable band-pass filter (Santec OTF-350) in order to remove spurious
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3. Photon pairs generation in a self-pumping geometry

Figure 3.10: Scheme of the experimental apparatus used for the stimulated
FWM experiment. The elements inside the dashed red rectangles are connected
to the cavity for the experiment only (see Fig. 3.6). An external tunable
CW infrared laser is connected to the cavity through a 50:50 polarization
maintaining beam splitter (BS1). The idler photons are finally collected on a
spectrometer equipped with a CCD camera. BPF stands for band-pass filter,
PM for power meter and BOA for booster optical amplifier. BS2 is a 99:1
polarization maintaining beam splitter, with the 1% port connected to the
PM. The scheme is not in scale.

ASE photons from the amplifier. The idler photons are finally collected on a
spectrometer (Acton Spectra pro 2500i) equipped with a liquid-nitrogen cooled
CCD camera (Acton InGaAs OMA V).

The conversion e�ciencies of the stimulated FWM process are shown in
Fig. 3.11 (a) and (b). The idler generation rate is proportional to the square
of the lasing power (a) and grows linearly with the signal power (b) inside the
microring resonator, proving its parametric origin. In fact, this is what we
expect from the theory (see Sec. 1.2.1). In Fig. 3.11 (c) an example of FWM
spectrum corresponding to a pump power coupled inside the ring of 1.87 mW
and a coupled signal power of 130 µW is also shown.

JSD measurement

As already explained in Sec. 1.3.4, the classical FWM intensity can be used
to directly assess the spectral correlations between the signal-idler photons
that would be emitted in the spontaneous parametric process [207]. Indeed,
the linewidth of the ring resonances is of the order of several tens of GHz and
is much larger that the spacing of the modes of the laser-loop cavity, which
is several meters in length. This means that the pump laser could encompass
many lasing modes and span the whole linewidth. However, the emission of
time-entangled photons requires a pump linewidth smaller than that of signal
and idler photons [204] and this might not be the case in the used self-pumping
geometry. On the other hand, gain narrowing is expected to occur within the
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Figure 3.11: (a) and (b) show the stimulated FWM generation rate. The
idler generation rate is proportional to the square of the lasing power (a) and
grows linearly with the signal power (b) inside the microring resonator. In (a)
the signal power coupled to the sample is 130 µW, whereas in (b) the BOA
current is fixed at 250 mA. Dashed red lines corresponding to the correct slope
required by the stimulated FWM process are added to the graphs. (c) One
idler spectrum taken for coupled pump and signal powers of 1.87 mW and 130
µW respectively.

relatively large bandwidth of the microring resonance, solving the problem of
having a laser line narrower than the signal and idler resonances.

The idler-signal correlation curve can be directly assessed via a JSD mea-
surement [268, 261, 207, 264, 262, 326], that basically gives the idler wavelength
as a function of the signal wavelength and vice versa. As already described
in Sec. 1.3.4, the JSD measurement on spontaneously generated photon pairs
is done through a coincidence measurement: for each point in the signal reso-
nance, all the wavelengths of the idler resonance have to be recorded. The main
issue of this method is that the procedure requires a lot of time. However, the
JSD measurement can be more e�ciently performed by using the stimulated
FWM process [261, 207]. Now, the e↵ect is stimulated by scanning a seed laser
over the wavelength range of the signal resonance. The spectral resolution on
the signal resonance is given by the scanning step of the seed laser.

The setup used for the JSD measurement is the same of Fig. 3.10. This can
be done because of the relatively big resonance width. We still used as seed
laser a monochromatic tunable CW infrared laser (Santec TSL-510), and we
acquired FWM spectra on a spectrometer (Acton Spectra pro 2500i) equipped
with a liquid-nitrogen CCD camera (Acton InGaAs OMA V) by varying the
signal wavelength from 1560 nm to 1566 nm in steps of 10 pm. This gives
the resolution on the signal resonance. The spectral resolution on the idler
resonance is given by the receiving spectrometer and is 67 pm. During the
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3. Photon pairs generation in a self-pumping geometry

Figure 3.12: Idler-signal correlation measurement as a function of the wave-
lengths corresponding to the idler and signal resonances. The measured in-
tensity is closely peaked around the antidiagonal, showing clear energy-time
correlations. The spectral resolution on the idler resonance is given by the
receiving spectrometer and is 67 pm.
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measurement, the BOA current was kept fix to 200 mA, whereas the optical
power of the signal inside the ring resonator was 250 µW . The correlation
measurements are shown in Fig. 3.12 as a function of the signal and idler
resonances’ relative wavelengths. The measured intensity is closely peaked
around the anti-diagonal, showing clear correlations between the signal and
idler’s energies. This proves that, at least with the current microring quality
factor, signal-idler photon pairs emitted in the spontaneous process would be
entangled.

3.2 Spontaneous four-wave mixing

In this section we will report on the SFWM experiment carried out on a
silicon microring resonator without the need of an external pump laser. First
of all, we will give the details on the sample we used, provided by PoliFAB at
Politecnico di Milano. We will then describe the components the cavity is made
of and show that we are able to achieve lasing in silicon, with the only use of
an external amplifier. Finally we will describe the SFWM experiment carried
out on the system and the consequent coicidence measurement performed on
the generated idler and signal photons.

3.2.1 Sample

The system used for the SFWM experiment has been designed at Politec-
nico di Milano by the Photonic Devices Group and fabricated through a process
very similar to Sec. 2.1.

As usual, the fundamental unit of the photonic circuit is a ridge waveguide,
which has a cross-sectional area of 220 ⇥ 500 nm2. The coupling of light
between waveguides on the chip and external optical fibers is obtained through
the use of grating couplers, as already detailed in Sec. 2.1 and Sec. 3.1.1. Even
in this sample, many grating couplers are associated to one photonic structure
on the chip and are aligned along the vertical direction. They are etched at a
distance of 127 µm, that is the same gap among the fibers on the used fiber
array.

As for the stimulated FWM experiment (Sec 3.1.1), we used a racetrack
resonator in the add-drop configuration in order to perform the measurement.
The resonator rounded part has a radius of 10 µm and a 2-µm-long straight
section, thus giving a measured FSR of 8.6 nm. The gap between the bus
waveguide and the recetrack is of 0.2 µm and the measured quality factor is
Q ⇠ 20000.

3.2.2 Experiment

In this section we will report on the SFWM experiment performed on a
silicon microring resonator without the need of an external laser acting as a
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3. Photon pairs generation in a self-pumping geometry

pump. We will first show the linear characterization of the add-drop racetrack
resonator. We will then describe how the cavity is built and give its character-
ization. Finally, we will detail the SFWM and coincidence measurements and
comment the results.

Characterization of the sample

As for Sec. 3.1, a racetrack resonator in the add-drop configuration (see
Sec. 1.2.2) is the building block of the laser cavity. We first are interested in
the characterization of this structure. The procedure we used is the same of
Sec. 3.1, so we are not repeating it here.

The results of the characterization are shown in Fig. 3.13 (a)-(e). In 3.13
(a) and (b) a 50-pm-resolution transmission spectra of the through and drop
ports is displayed, respectively. In Fig. 3.14 (a) and (b) the transmission
spectra in dB corresponding to the through and drop ports are also given. I, P
and S represent the resonances chosen for the SFWM experiment and stand for
idler, pump and signal, respectively. The grating couplers used to couple light
modulate the intensity transmitted by the sample, giving the usual bell-shape
for the transmission spectra. We estimated the insertion losses to be about 3.6
dB for each grating coupler.

A high-resolution spectrum (2 pm) of the resonances chosen for the FWM
experiment, represented by the black line, is reported in Fig. 3.13 (c)-(e).
The dotted red line is the Lorentzian fit to the resonance. We then calculated
the quality factor directly from the fit via the relation (1.65). The resonance
linewidth is now of the order of ⇠80 pm, giving a quality factor of Q⇠ 20000,
with a FSR of 8.6 nm. Moreover, we estimated the photon coherence time
from the relation (1.66), that we report here for convenience:

Q = 2⇡�tp⌫0, (3.12)

where ⌫0 is the central frequency of the resonance and �tp is the photon
dwelling time. Then, the estimated quality factor results in a photon lifetime
of the order of ⇠16 ps.

As it can be seen from Fig. 3.13 (c) and (d), the resonances go down to
1% of transmission, meaning that the ring resonator is at the critical coupling
condition. The signal resonance in Fig. 3.13 (e) is a bit larger and less deep
than the idler and pump resonances because it is actually composed by two
distinct deeps and the showed Lorentzian fit is the convolution of the two
di↵erent fits. The splitting of the resonance is produced by the two di↵erent
propagation directions (clockwise and counter-clockwise) of light inside the
microring resonator due to waveguide roughness. It has been already proved
that the splitting of the resonance in a microring resonator does not influence
the FWM process [46, 206]. In Fig. 3.15 we show the two Lorentzian fits
corresponding to the two di↵erent peaks in the idler resonance (dotted blue and
green lines, respectively). The dotted red line is the result of the convolution
of the two Lorentzian curves and perfectly fits the idler resonance.
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Figure 3.13: Transmission spectra of the (a) through and (b) drop ports of the
add-drop ring resonator used in the cavity. The resolution of the spectra is 50
pm. I, P and S stand, respectively, for the idler, pump and signal resonances
chosen for the SFWM experiment. These resonances are shown in the spectra
(c)-(e) with a resolution of 2 pm. The black line represents the experimental
data, whereas the dotted red line is the Lorentzian fit of the resonance. From
(a), (c) and (d), it can be seen that the microring resonances go down to
below 1% of transmission, meaning that the add-drop ring resonator is at
critical coupling condition. (e) The signal resonance goes down to 5% of the
transmission because is composed by two deeps, that is it a splitted resonance.
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Figure 3.14: Transmission spectra of the (a) through and (b) drop ports of the
add-drop ring resonator used in the cavity. The resolution of the spectra is 50
pm. I, P and S stand, respectively, for the idler, pump and signal resonances
chosen for the SFWM experiment.
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Figure 3.15: Transmission spectrum of the idler resonance (resolution of 2 pm).
The dotted blue and green lines represent the Lorentzian fit of the two peaks
inside the idler resonance. The dotted red line is the convolution of the two
fits.
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3.2. Spontaneous four-wave mixing

Figure 3.16: Scheme of the cavity built for the SFWM experiment. BPF
stands for band-pass filter, PM for power meter and BOA for booster optical
amplifier. BS1 is a 99:1 polarization maintaining beam splitter, with the 1%
port connected to the PM. A schematic view of the add-drop ring resonator
used is shown as an inset. With respect to the cavity used for the stimulated
FWM experiment (Fig. 3.6), we removed the 50:50 beam splitter at the sample
input. The scheme is not in scale.

Lasing cavity design

The design of the cavity is shown in Fig. 3.16. The scheme is basically the
same of Sec. 3.1. However, we removed the 50:50 polarization maintaining BS,
since no more necessary for the SFWM experiment. The source of gain is the
same of Sec. 3.1, that is a Booster Optical Amplifier (Thorlabs BOA1004P)
connected to a controller (Thorlabs ITC4005) and with a small signal gain of
up to 30 dB. The cavity is closed on the input and drop ports of the racetrack
resonator and the input/output coupling to the chip is obtained through grat-
ing couplers. As in the cavity of Sec. 3.1, the add-drop racetrack resonator
acts inside the cavity as a BPF for each resonance.

For the experiment we selected a single resonance at a wavelength �p =
1556.29 nm for lasing. This was done by restricting the transmission of the
cavity by using an external BPF at the BOA output. The filter is made of four
cascaded BPFs positioned in such a way to have a transmission band of about
4 nm around the lasing wavelength. This filter has a total noise suppression of
more than 200 dB in the idler and signal generation bands. So, it also reduces
the ASE emission from the amplifier to a level lower than the generated FWM
experiments. We always need an isolator at the BOA output in order to prevent
reflected light to go back to the amplifier. A tunable band-pass filter (Santec
OTF-350), centered at the lasing wavelength and with a transmission band of
about 4 nm, was inserted at the sample output to further improve the rejection
of frequencies other than the lasing mode before amplification. Finally, as in
Sec. 3.1, the cavity laser power was monitored through a 99:1 polarization
maintaining BS (BS1).
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Figure 3.17: Lasing curve of the cavity. The black circles are the experimental
values, whereas the dashed red line shows the linear fit corresponding to Eq.
(3.4), that it is still valid in the present case.

Lasing cavity characterization

The cavity characterization made in Sec. 3.1 can be easily extended to the
cavity of Fig. 3.16. We do not report here all the calculations, for the details
the reader is referred to Sec. 3.1. Even if we removed the 50:50 BS in the cavity,
the total measured losses for one loop, excluding the BOA, did not change with
respect the cavity shown in Fig. 3.6. This happens because of the tunable BPF
used to filter the laser wavelength at the output of the sample, that has more
losses than the standard BFFs employed. So, Ttot = �18 dB ' 1.58%. The
measurement of the losses has been performed as in Sec. 3.1 and, now, they
are distributed among the cavity components as follows: coupling losses due to
each grating coupler are estimated to be 3.6 dB, the standard BPF losses are
3.5 dB, the tunable BPF is assumed to have 6.5-dB losses, whereas the isolator
and 99:1 BS associated losses are 0.3 dB and 0.5 dB, respectively. Since it is
assumed Toc = �0.05 dB ' 98.85%, as in Sec. 3.1, we can write Eq. (3.3),
which we report here fo convenience:

ln (Gth) = gth = � ln (TtotToc) ' 4.2. (3.13)

So, Fig. 3.7 is till valid and we obtain an estimated current threshold for
Ith ' 83 mA.
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3.2. Spontaneous four-wave mixing

As in the cavity characterization in Sec. 3.1, we can now find the cavity
lasing curve (the measurement has been performed as in Sec. 3.1): by varying
the BOA driving current, we collected the output light from the 1% port of BS1

(see Fig. 3.16) on a InGaAs detector (Newport 918D-IG-OD3) connected to
a high-dynamic-range power meter (Newport 1936-C). Now, the lasing curve
of the cavity is shown in Fig. 3.17. On the y-axis we report the optical power
estimated at the drop port of the microring resonator, as a function of the
amplifier driving current. As in Sec. 3.1, the power in the drop channel is not
a direct measurement, but it was inferred from the measured power at the 1%
port of BS1 by compensating for the losses due to coupling and the tunable
BPF. Even in this case, a clear threshold behavior is observed around a current
Ith = 85 mA and this value is in agreement with the theoretical value found
in Fig. 3.7.

Following the calculations of Sec. 3.1, we can still arrive to Eq. (3.4), that
we report here for convenience:

Pout (I) = Psat (kI � gth)
Gth

Gth � 1
Ttot (1� Toc) . (3.14)

The fit corresponding to this equation is also reported in Fig. 3.17 (dashed red
line).

In Fig. 3.8 the experimental points deviate from the linear fit at relatively
low powers at the drop port of the racetrack resonator. The divergence from
the fit is now clearer than in the cavity built with the low-Q microring resonator
(see Fig. 3.8). In fact, the high Q-factor of the present resonator makes the
onset of the TPA process possible at lower power injected in the microring.
However, an accurate study on the TPA process in this kind of cavities is
needed to give quantitative results.

Spontaneous FWM

Given the relatively high quality factor of the available microring resonator,
we were able to observe the SFWM process. As detailed in Sec. 1.2.1, SFWM
is a third-order nonlinear process in which two pump photons are converted
into an idler-signal photons pair. During the process energy and momentum
are conserved. Usually, the pump photons are coupled to the nonlinear medium
through the use of an external laser. We will now describe a way of obtaining
SFWM without the need of an external optical pump.

The experimental apparatus used for the experiment is shown in Fig. 3.18.
We basically connected to the cavity depicted in Fig. 3.16 the components
inside the dashed red rectangle. At this stage, the separation of the idler and
signal photons with their consequent collection is performed. Conversely to
standard SFWM experiments, the pump laser is now taken from the built
cavity (see Fig. 3.16) and has a wavelength �p = 1556.29 nm. In this way
two photons at �i = 1547.67 nm (idler) and �s = 1564.97 nm (signal) are
produced. In Fig. 3.13 the resonances chosen for the experiment are shown.
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3. Photon pairs generation in a self-pumping geometry

Figure 3.18: Scheme of the experimental apparatus used for the SFWM ex-
periment. The elements inside the dashed red rectangle are connected to the
cavity for the experiment only (see Fig. 3.16). The idler and signal photons
are separated through a 50:50 polarization maintaining beam splitter (BS2)
and then collected on a spectrometer equipped with a CCD camera. BPF
stands for band-pass filter, PM for power meter and BOA for booster optical
amplifier. BS1 is a 99:1 polarization maintaining beam splitter, with the 1%
port connected to the PM. The scheme is not in scale.

We connected a 50:50 polarization maintaining BS (BS2) at the sample output,
at the through port of the add-drop microring resonator. At the BS output,
we placed two BPFs with more than 150 dB rejection (they are actually three
cascaded BPFs) tuned to the idler and signal wavelength, respectively. Finally,
the idler and signal photons were collected on a spectrometer (Acton Spectra
pro 2500i) equipped with a liquid-nitrogen cooled CCD camera (Acton InGaAs
OMA V).

The idler and signal estimated generation rates are shown in Fig. 3.19 (a)
as a function of the coupled pump power. The coupled pump power is the
estimated power at the drop channel of the racetrack resonator and has been
calculated from the measured power at the 1% port of BS1 (labeled as PM in
Fig. 3.18) and compensating for the BPF and coupling losses. The conversion
e�ciencies are evaluated by calibrating the response of the CCD camera using
a power meter with a pW sensitivity and then integrating the emission peaks
for the idler and signal resonances. From Fig. 3.19, it can be seen that the
generation rates are proportional to the square of the pump power (dashed
grey line), a clear sign of the SFWM process (see Sec. 1.2.1). Moreover, in
Fig. 3.19 (b) one SFWM spectrum for a coupled pump power of 1.7 mW
is given. The position of the pump is represented by the green arrow. The
two generated SFWM peaks at the idler (left) and signal (right) resonances,
respectively, can be seen.

We want to notice that in standard SFWM experiments on microring res-
onators with an external laser acting as optical pump, at high pump powers
the curve departs from the quadratic dependence and tends to saturate below
the quadratic trend. This is due to the thermo-optic e↵ect induced by the TPA
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Figure 3.19: (a) SFWM generation rates. Both the idler (blue triangles) and
signal (red squares) generation rates are proportional to the square of the
lasing power inside the ring resonator. A dashed grey line corresponding to
the correct (quadratic) slope required by the SFWM process is added to the
graph. (b) SFWM spectrum for a coupled pump power of 1.7 mW. The green
arrow indicates the wavelength of the pump. The two peaks are the generated
SFWM peaks at the idler (left) and signal (right) resonances, respectively.

process, so the microring’s resonances slightly redshift with increasing pump
power and take the pump laser “out of resonance” reducing then the intensity
of the emitted photons. This e↵ect can be observed above an emission rate of
106 � 107 Hz [206]. However, by using the self-pumping geometry and closing
the microring resonator in a fiber-loop cavity, we erased this e↵ect, as shown
in Fig. 3.19 and the pump laser “follows” the resonances’ shift. We want to
stress that, in order to eliminate the TPA thermo-optic e↵ect, the BPFs inside
and outside the cavity have to be tuned properly, in order to have a su�ciently
wide band and thus accommodate the power shift.

Coincidence measurement

Since we have verified the occurrence of SFWM, we can now look at the
correlated emission of photon pairs. This can be done through a coincidence
measurement, in which the relative arrival times of the idler and signal photons
are statistically analyzed.

The setup used for the coincidence measurement is shown in Fig. 3.20. It
is basically the same apparatus of Fig. 3.18, but here the output from the two
BPFs relative to the idler and signal photons is sent to two superconducting
single photon detectors (SSPDs). The SSPDs are mounted in a refrigerating
unit inside a liquid-helium dewar at 1.7 K and are biased in order to have dark
counts of the order of 100 Hz. The detection e�ciencies of the SSPDs are 4%
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3. Photon pairs generation in a self-pumping geometry

Figure 3.20: Experimental apparatus used for the measurement of the coin-
cidences of the signal and idler photons. PM stands for power meter, BS for
beam splitter, BPF for band-pass filter, FPC for fiber polarization controller,
SSPD for superconducting single photon detector.

and 1%, respectively, and the time response of each detector is 65 ps. This is a
much better time response than usually-employed InGaAs avalanche photodi-
odes (' few ns). Moreover, InGaAs avalanche photodiodes usually have much
higher dark counts rates, of the order of 104-105 Hz.
We also needed to insert two fiber polarization controllers (FPCs) before each
SSPD in order to maximize the single photon detection rate. A Picoquant
Hydraharp event timer is used at the output of the SSPDs to correlate the
detectors’ signals. The event timer records a stream of events on a computer
and the data are then analyzed through a C script. In Fig. 3.21 (a) a coin-
cidence histogram for a coupled pump power of 1.5 mW is shown. The curve
was taken with an integration time of 5 minutes. The resolution on the x-axis
is given by the response time of the SSPDs and is 65 ps. This value also limits
the width of the peak. From Fig. 3.21 (a) a clear coincidence peak can be seen
over a constant background due to accidental events, proving the concurrent
emission of the signal and idler photons produced in the SFWM process.
In Fig. 3.21 (b) the coincidence rate as a function of the coupled pump power
is shown. The black dots in the figure are determined by integrating all the
points in the coincidence peak and subtracting for the background. As ex-
pected, the coincidence rate is proportional to the square of the coupled pump
power (dashed red line). In fact, the number of coincidences is proportional
to the photon-pairs emission rate and this has a quadratic dependence on the
pump power, as already shown in Fig. 3.19.

A very important figure of merit for the evaluation of the performance of
a source of correlated photons is the coincidence-to-accidental ratio (CAR)
[206, 243, 327]. The CAR, as already explained in Sec 1.3.2, is defined as the
ratio between the number of time-correlated photons in the coincidence peak
and the average number of accidental photons in the background in the same
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Figure 3.21: (a) Coincidence histogram for a coupled pump power of 1.5 mW.
(b) Coincidence rate as a function of the coupled pump power. The dashed
red line is a guide to the eye proportional to the square of the pump power, as
required by SFWM. (c) Coincidence-to-accidental ratio (CAR) as a function
of the coupled pump power.
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time window, as expressed by Eq. (1.110) [45, 22]:

CAR =
CC

CA
=

1

��t
, (3.15)

where with CC we indicated the number of correlated photons in the peak,
CA stands for the number of accidentals, � is the generation e�ciency and
�t is the detector time-window. The relation (1.110) is valid only in the
case of equal losses and detection e�ciency for both the idler and the signal
photons. Moreover, the expression holds as far as the coherence time of the
emitted photons (that depends on the quality factor of the microring resonator)
is smaller than the time window, that is given by the time response of the
detectors.
In our case we calculated the CAR by integrating the number of coincidences
within the peak and dividing by the sum of accidental counts in the background
over the same time window. The result is shown in Fig. 3.21 (c) as a function of
the coupled pump power. The maximum measured value of the CAR is 52±5
at a coupled pump power of 0.4 mW, allowing a high-fidelity preparation of
either entangled photon pairs or heralded single photons. We measured the
CAR for high generation rates compared to usual FWM experiments. For
example, if we compare the CAR value measured by Azzini et al. in 2012
[206] at our generation rate we find agreement between the two measurement.
Then, the measured CAR is comparable to the highest CAR measured for cm-
long silicon waveguides [328], it is about ten times the value reported the first
experiments on microring resonators [45] and it is twenty-five times the one
reported for a coupled-resonator optical waveguide [22]. However, the CAR
we measured is probably a↵ected by the old SSPDs we used, which have lower
e�ciency and higher dark counts than expected.
As expected, the CAR decreases as the inverse of the coincidence rate [243] and
quadratically with the pump power. Since at low pump powers the generation
rate becomes comparable to the dark counts rate, the accidentals are then
overestimated, thus decreasing the value of the CAR. This can be seen from
the graph, where at low pump pump power the dependence of the CAR on the
pump power deviates from the quadratic slope.
Moreover, there are some e↵ects that a↵ect the value of the CAR we measured.
First of all, it is important to notice that the CAR could be influenced by
the time resolution of the SSPDs (65 pm) which is of the same order of the
coherence time of the generated photons, that we calculated to be '16 ps.
Another e↵ect that could a↵ect the CAR value is the unbalance between the
idler and signal detection e�ciency.

3.3 Discussion

In this chapter, we have proved that FWM can be achieved in a silicon
integrated microring resonator without the need of an external laser acting
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as optical pump by closing the microring in a fiber-loop cavity including an
amplifier.

As regarding the first section (Sec. 3.1), given the low quality factor of the
used microring resonator, we have performed the stimulated FWM experiment
in a self-pumping geometry. We have seen that in order to have a potentially
usable emission rate (> MHz) for the spontaneous process, a ring resonator
with a quality factor exceeding 10000 is needed. We then performed a JSD
measurement. The obtained result is a strong indication that the emitted
photons would be entangled, even if a definitive proof will consist in a Franson
experiment [27, 227] performed under self-pumping conditions.

In the second section (Sec. 3.2), we were able to carry out the SFWM
experiment without the need of an external pump laser. This has been pos-
sible because the quality factor of the employed microring resonator was of
the order of 20000. We then performed a coincidence measurement, proving
the concurrent emission of the idler and signal photons in the explored self-
pumping geometry. The fact that the pairs are emitted simultaneously can
be exploited to achieve time-energy entanglement between the signal and idler
beams. As for the result obtained in Sec. 3.1, the verification of the emission
of entangled photons rely on a Franson experiment as described in [27, 227].

The results obtained from the stimulated and spontaneous FWM experi-
ments are an important step towards the realization of a silicon-based source of
entangled photons that does not require an external tunable pump. Moreover,
it is important to notice that the described cavity geometry allowed to reach
very high generation rates, up to 108 Hz. This was possible due to the fact
that in our experiment the lasing frequency is automatically tuned to the pump
frequency and follows any shift in the microring’s resonances, eliminating the
saturation e↵ect, usually observed at around 106 � 107 Hz in standard FWM
experiments. Thus, ideally, the more the Q-factor of the microring would be
high, the more the spontaneous FWM generation rate would also increase.
So, having a Q-factor of the order of 105 would theoretically allow to further
improve the idler generation rate. However, an experimental study on cavities
with high-Q add-drop resonators would be required to give quantitative results
on the best Q-factor that could be used. In fact, the more the Q-factor grows,
the more the TPA e↵ect appears at low powers injected into the ring. This
would result in a further bending of the lasing curve presented in Fig. 3.8 and
Fig. 3.17, thus giving, probably, a limit on the employed Q-factor. Moreover,
an accurate study on the laser linewidth of the cavity should be made to give
an esteem on the best Q-factor. In fact, increasing the Q-factor value would
introduce noise in the cavity, thus broadening the laser linewidth till a value
at which the emitted photons would no more be entangled.

Another interesting possible output for the system described in this chap-
ter would be to have a separable state, in order to produce single photons via
heralding [22]. In order to achieve this, the laser linewidth should be compara-
ble to the linewidth of the ring resonator’s mode [261]. This can be obtained
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by inserting a modulator inside the cavity to broaden the laser emission. In
the case of a ring resonator with a quality factor of 40000, this corresponds
to a linewidth of about 5 GHz, a frequency easily achievable with state of
the art fiber modulators. In such a scheme one should achieve a state purity
comparable to the limit for optical pumping [204].

In addition, a recently very active research direction is the possibility
to achieve emission of quantum states of light of more than two photons
[202, 329, 330, 331]. Our self-pumping system can reach enough CW power
inside the ring resonator to achieve a multiphoton emission regime. Indeed,
a power of 5 mW inside a ring resonator of Q⇠10000 is su�cient to have an
emission rate of multiple pairs exceeding 105 Hz inside the ring [206, 243].
Furthermore, multiple photon emission can be obtained by building the laser
cavity so to achieve pulsed laser emission. Pulsing in fiber loop cavities has
been already accomplished using several di↵erent geometries [332, 333], which
could be directly ported to our approach.

Finally, we would like to notice that the self-pumping scheme presented in
this chapter could be adopted even in the case of an all-pass ring resonator, by
closing the cavity on the input port of the microring and using backscattered
light. In this configuration, the backscattering at the input port would have the
same spectrum found at the drop port of an add-drop resonator and can thus
be used to achieve lasing in a fiber-loop cavity. In fact, the backscattering from
an all-pass resonator depends on the coupling factor and in it has been showed
it can even reach �5 dB [334], being su�cient to produce laser emission.
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Chapter 4
Implementation of the
Bernstein-Vazirani algorithm
using classical waves

In the previous chapters we tackled two major problems in the realization of
silicon integrated photonic chips. In the present chapter, we want to show that
silicon quantum photonics could also be considered for the on-chip photonic-
based emulation of quantum algorithms, even if retaining its classical behavior.
This platform could be very useful for educational purposes to learn about
quantum algorithms.

In general, quantum computing refers to a large number of di↵erent systems
and protocols aimed at e�cient calculations exploiting quantum mechanical ef-
fects [10]. Nowadays, quantum computing protocols are actively investigated
in both the academic and industrial environment, as they could be used to solve
problems that require exponentially increasing resources when approached us-
ing a classical computer. As already discussed in chapter 1, very diverse phys-
ical systems have been employed to obtain quantum computation, including
superconducting circuits [335], trapped ions [336], and photons [232]. Latterly,
systems exceeding ten qubits have been demonstrated [337]. An important
complement to quantum computation is the ability to emulate quantum com-
puters, even if ine�ciently, on classical platforms, as such systems could be
used as convenient testbeds for protocols to be later run on actual quantum
computers.

It is important to notice that all quantum computing protocols can be
realized by propagating a single particle in a linear network [338]. This has
been experimentally demonstrated by using photons propagating in bench-
top [339] or fiber-based [340] optical networks. A similar approach, based on
distributing a photon between multiple energy resonances, has been recently
used to amplify the number of qubits in optical systems [202].

In this chapter, we will experimentally prove that the propagation of a
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4. Implementation of the Bernstein-Vazirani algorithm using classical waves

single particle in a linear network is equivalent to the propagation of a clas-
sical wave in the same network, as long as one is interested only in detection
probabilities at individual outputs, and no correlations are measured. This
means that, at the price of an exponential increase of resources, any quantum
information protocol can be realized in a classical wave network. In order to
illustrate this point, we will consider the Bernstein-Vazirani (BV) algorithm
[341] in a three-qubit configuration and implement it in an analog electronic
circuit, which is arguably the most readily available wave system.

So, we will start the chapter with an introduction to the most common
quantum computing algorithms, that will be useful for our experiment. We
will then describe the experiment carried out to implement the three-qubit
BV algorithm. Furthermore, we will discuss the role of entanglement in the
exponential scaling of the used resources, and show that the BV protocol can
be implemented classically with an e�cient (i.e. linear) use of resources, while
still retaining its advantage over classical digital computation. Finally, in the
last section, we will conclude by giving some considerations on the practical
usefulness of this approach.

4.1 An introduction to quantum algorithms

In Sec. 1.1 we introduced the concept of qubit and briefly described the
CNOT gate, that is the equivalent of the XOR classical gate. In the present
section we would like to extend the previous discussion to the most common
quantum gates and algorithms, for some of them will be considered in the
proposed BV implementation (Sec. 4.2).

We will start the section by describing single-qubit gates. Then, by consid-
ering the classical-quantum parallelism, we will introduce multiple-qubit gates
and the most used quantum algorithms. In this section, we will treat just
a small part of the vast field of quantum computation. To have a complete
picture of the topic, we refer the reader to [10] and [11].

Single-qubit gates

As for classical computers that are made of electrical circuits in which logic
gates are implemented, quantum computers are built from quantum circuits
that use quantum gates to manipulate the information. As first example, let
us consider the NOT gate, that is the only possible non-trivial single-bit gate
and interchanges the 0 state in the 1 state, and vice versa. Then, a quantum
analogous of this classical gate should bring the state |0i into |1i, and vice
versa. The quantum NOT is a linear gate, that means that the state

↵|0i+ �|1i, (4.1)

is changed in
↵|1i+ �|0i, (4.2)
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and can be written in a matrix form as:

X ⌘

0 1
1 0

�
. (4.3)

So, in general, single-qubit gates can be represented by 2 ⇥ 2 matrices.
Since for any quantum state like Eq. (4.1) it has to be |↵|2 + |�|2 = 1, then
the matrix U describing the quantum gate has to be unitary, i.e. U †U = I,
where U † is the adjoint of U and I is the identity matrix (2 ⇥ 2). Moreover,
conversely to the classical case, many di↵erent single-qubit gates are possible.
Two of them, which is worth to mention, are the Z gate, which leaves |0i
unchanged and brings |1i in �|1i, defined as:

Z ⌘

1 0
0 �1

�
, (4.4)

and the Hadamard gate, that is written as:

H ⌘ 1p
2


1 1
1 �1

�
. (4.5)

The Hadamard gate takes the state |0i in 1p
2
(|0i+ |1i), whereas |1i is switched

to 1p
2
(|0i � |1i). Moreover, applying two Hadamard gates to a state does not

change it, since H2 = I.
The Hadamard gate is one of the most important and used quantum gates.

Let us recall the Bloch sphere representation in Fig. 1.1. In general, gates
acting on a single qubit are represented by rotations and reflections on the
sphere. In particular, the Hadamard gate is obtained by a first rotation of 90�

about the y axis, followed by a second rotation of 180� about the x axis.
An interesting property is that an arbitrary single-qubit unitary gate can be

decomposed as the product of general rotations, a gate describing the rotation
about the z axis and a global phase shift in the following way:

V =

24cos � ✓
2

� � sin
�
✓
2

�
sin

�
✓
2

�
cos

�
✓
2

�
3524e�i'/2 0

0 ei'/2

35 ei�, (4.6)

where ✓, ' and � are real numbers. Moreover, it can be proven that any
number of qubits can be generated by a finite universal set of gates [10].

Multiple-qubit gates

In classical logic, examples of multiple-bit gates are given by the AND,
OR, XOR, NAND and NOR gates and a very important property is that any
function of bits can be computed by composing NAND gates only. So, the
NAND gate is a universal gate.

The most important multi-qubit quantum gate is given by the CNOT gate,
that has been already introduced in Sec. 1.1. Its circuit representation is given

119



4. Implementation of the Bernstein-Vazirani algorithm using classical waves

in Fig. 4.1 (a): there are two input qubits, called the control qubit (top line)
and target qubit (bottom line). The CNOT gate action is the same as the
XOR classical gate: when the control qubit is |0i, the target qubit remains
unchanged; whereas it is flipped when the control qubit is |1i. Its matrix
representation is given by Eq. (1.9), that we report here for convenience:

UCNOT =

2664
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

3775 . (4.7)

It can easily be shown that UCNOT is a unitary matrix and U †
CNOTUCNOT = I.

A useful generalization of the CNOT gate to a three-qubit configuration
is given by the To↵oli (or CCNOT) gate. The circuit representation of this
gate is presented in Fig. 4.1 (b), where the two control qubits (top and middle
line) and the target qubit (bottom line) are shown. The two control qubits
are una↵ected by the action of the gate, whereas the target qubit is flipped
whenever both the control qubits are |1i. The To↵oli gate can be represented
by an 8⇥ 8 unitary matrix with the following form:

UT =

266666666664

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

377777777775
. (4.8)

There are many other interesting multiple-qubit quantum gates. However,
it can be proven that any multiple-qubit quantum gate can be decomposed in
a CNOT and single-qubit gates [10]. Moreover, the To↵oli gate can be used to
simulate the classical NAND gate, thus making the simulation of any function
of bits in a classical circuit possible. So, an arbitrary classical circuit can be
simulated by an equivalent quantum circuit.

Quantum algorithms

Let us now move to the most important quantum algorithms and start with
one of the simplest algorithms that shows that by employing quantum circuits,
some advantage can be gained over classical information. So, let us introduce
the Deutsch’s algorithm [342].

Let us consider a binary function of the form:

f (x) : {0, 1} 7! {0, 1}, (4.9)
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4.1. An introduction to quantum algorithms

Figure 4.1: Quantum circuit representation of the (a) CNOT and (b) To↵oli
gates.The symbol � is the addition modulo two, that means that the control
qubit(s) and the target qubit are XOR-ed and the result is stored in the target
qubit.

f0 f1 f2 f3
f (0) 0 0 1 1
f (1) 0 1 0 1

Table 4.1: Possible values for the function f (x) : {0, 1} 7! {0, 1}.

and a unitary transformation Uf associated to f (x), that is called oracle and
acts as:

Uf |xi|yi = |xi|y � f (x)i, (4.10)

where � represents the addition modulo two (i.e. y and f (x) are XOR-ed). Uf

is a“black box”that we assume we can run without knowing its implementation
details. So, the only way to extract information about the function (4.9)
computed by the device is to give some input x 2 {0, 1} and look at the
output f (x) 2 {0, 1}. In Table 4.1 the four possible functions of the type (4.9)
are shown. It is clear, two kind of functions are present: f0 and f3 are constant
functions, whereas f1 and f2 are balanced functions (i.e. 0 and 1 appear the
same number of times). In order to solve the problem classically, both f (0)
and f (1) have to be determined and compared to check whether f (0) = f (1)
or not. This requires two calls to the oracle Uf .

The Deutsch algorithm aims to determine whether the function f (x) is
constant or balanced in a single call to Uf (or in a single evaluation of f (x)).
The idea is to consider as input state (or register) to Uf the quantum state
given by:

| i = ↵|0i+ �|1i, (4.11)

and to expect Uf to return a superposition of the two possible outputs f (0)
and f (1). The circuit representing the Deutsch’s algorithm is shown in Fig.
4.2 (a) and it can be divided in four computation stages, as following. At the
beginning of the circuit the state | 1i = |0i|1i is present. Then, two Hadamard
gates are applied to both qubits, giving the state:

| 2i = H|0iH|1i = |+i|�i, (4.12)

where |+i = 1p
2
(|0i+ |1i) and |�i = 1p

2
(|0i � |1i). After that, the oracle Uf

is applied, and the output state is | 3i = Uf |+i|�i. Finally, a Hadamard gate
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Figure 4.2: Quantum circuit representation of the (a) Deutsch and (b) Deutsch-
Jozsa algorithms. H represents the Hadamard gate, Uf is the unitary operator
associated to the binary function f (x) (see text) and the rectangle with the
arrow stands for the measurement on the selected qubit.

is applied to the first qubit giving the state | 4i, and a measurement on the
first qubit is then performed.

Now, let us consider the case of applying Uf to a input state of the form
|xi|�i, with x 2 {0, 1}. It holds:

Uf |xi|�i = 1p
2
(Uf |xi|0i � Uf |xi|1i) = 1p

2
(|xi|f (x)i � |xi|1� f (x)i)

= |xi ⌦ 1p
2
(|f (x)i � |1� f (x)i) . (4.13)

Two cases can now be considered: either f (x) = 0 or f (x) = 1. In the former
case, Eq. (4.13) reduces to the following expression:

| i = |xi ⌦ 1p
2
(|0i � |1i) = |xi|�i. (4.14)

On the contrary, when f (x) = 1, Eq. (4.13) gives:

| i = |xi ⌦ 1p
2
(|1i � |0i) = �|xi|�i. (4.15)

Eq. (4.14) and (4.15) can be summarized as:

| i = Uf |xi|�i = (�1)f(x) |xi|�i. (4.16)

The above calculation can be easily transferred to the Deutsch’s algorithm,
since the state after the implementation of Uf is:

| 3i = Uf |+i|�i = 1p
2
(Uf |0i|�i+ Uf |1i|�i) . (4.17)
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By applying Eq. (4.16), | 3i can be written as:

| 3i = 1p
2

h
(�1)f(0) |0i|�i � (�1)f(1) |1i|�i

i
. (4.18)

We can now distinguish between the two cases when f (x) is constant or bal-
anced. If f (x) is constant, then f (0) = f (1) and Eq. (4.18) becomes:

| 3i = (�1)f(0) |+i|�i. (4.19)

Considering that H|+i = |0i and by applying the Hadamard gate to the first
qubit, we get:

| 4i = (�1)f(0) |0i|�i, (4.20)

and the measurement on the first qubit gives as result 0. Conversely, when the
function f (x) is balanced it is f (0) 6= f (1) and Eq. (4.18) can be written as:

| 3i = ± 1p
2
(|0i|�i � |1i|�i) = ±|�i|�i. (4.21)

Since H|�i = |1i, by applying the Hadamard gate to the first qubit we obtain:

| 4i = ±|1i|�i, (4.22)

which gives an outcome of 1 on the measurement on the first qubit.
So, we proved that if the function f (x) is constant, a measurement on the

first qubit would output a value of 0, whereas in the case of a balanced function
f (x), the result would be a value of 1. Thus, just a single query to the oracle
Uf is required to determine whether the function f (x) is either constant or
balanced.

A generalization of the Deutsch’s algorithm to n-bit functions is provided
by the Deutsch-Jozsa algorithm [343]. Now the function f (x) is:

f (x) : {0, 1}n 7! {0, 1}. (4.23)

As for in the Deutsch algorithm, the function f (x) is either constant or bal-
anced and the Deutsch-Jozsa algorithm aims to determine which is the case.
The oracle Uf is implemented in the same way as Eq. (4.10), where now x
is a n-bit string. The quantum circuit representation of the Deutsch-Jozsa
algorithm is shown in Fig. 4.2 (b): each line stands for a qubit and the first
n qubits are initialized to |0i, whereas the last one is set to |1i. Since the
Deutsch-Jozsa algorithm is the direct generalization of the Deutsch algorithm,
it can be proved that it only needs one query to the oracle Uf to determine
whether the function f (x) is either constant or balanced.

As already done for the proof of the Deutsch’s algorithm, we divide the
Deutsch-Jozsa algorithm in four stages. The initial state is:

| 1i = |0i⌦n|1i. (4.24)
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Then, a Hadamard gate is applied to each qubit of the initial register and the
resulting state can be written as [10]:

| 2i = |+i⌦n|1i = 1p
2n

X
x2{0,1}n

|xi|�i, (4.25)

where, as before, we have considered |+i = 1p
2
(|0i+ |1i) and |�i = 1p

2
(|0i � |1i).

The next step consists in implementing the action of the oracle Uf , that gives:

| 3i = 1p
2n

X
x2{0,1}n

(�1)f(x) |xi|�i. (4.26)

Finally, a Hadamard gate is applied to the first n qubits. By considering that:

H⌦n|xi =
nO

i=1

|0i+ (�1)xi |1ip
2

=
1p
2n

X
z2{0,1}n

(�1)x·z |zi, (4.27)

the final state | 4i can be written as [10]:

| 4i = 1p
2n

X
x2{0,1}n

(�1)f(x) H⌦n|xi|�i

=
1

2n

X
z2{0,1}n

X
x2{0,1}n

(�1)f(x)+x·z |zi|�i, (4.28)

where x · z represent the bitwise inner product of the n-strings x and z. Then
a measurement on the first n qubits is performed and the two cases of f (x)
constant and balanced can be separately analyzed.

If f (x) is constant, the term (�1)f(x) can be factorized and Eq. (4.28) can
be written as:

| 4i = (�1)f(x)
X

z2{0,1}n

0@ 1

2n

X
x2{0,1}n

(�1)x·z

1A |zi|�i. (4.29)

The amplitude on |zi = |0 · · · 0i is:
1

2n

X
x2{0,1}n

(�1)x·|0···0i = 1, (4.30)

thus the state |0i⌦n|�i has amplitude 1 and | 4i = (�1)f(x) |0i⌦n|�i. So, if
f (x) constant, a measurement on the first n qubits would give |0 · · · 0i.
In the case of a balanced function f (x), the term (�1)f(x) cannot be factorized.
However, by considering the amplitude on the state |zi = |0 · · · 0i, it holds:

1

2n

X
x2{0,1}n

(�1)f(x)+x·|0···0i =
1

2n

X
x2{0,1}n

(�1)f(x) . (4.31)
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In the sum, for half of the terms it is f (x) = 0, whereas for the remaining
half it is f (x) = 1 and the sum in Eq. (4.31) becomes zero. Thus, since the
amplitude on |zi = |0 · · · 0i cancels out, the outcome of the measurement on
the first n qubits cannot be |0 · · · 0i.

So, summarizing, if the output of measurement is |0i⌦n, then the function
f (x) is a constant function. Conversely, any other n-bit measurement result,
would give a balanced function f (x). As for the Deutsch’s algorithm only one
single query to the oracle Uf is needed to discriminate between a constant or
balanced function f (x).

Let us now consider a restriction of the Deutsch-Jozsa algorithm, the
Bernstein-Vazirani (BV) algorithm [341]. This is the test algorithm imple-
mented on an electronic circuit in Sec. 4.2.

As for the Deutsch-Jozsa algorithm, the function to be considered is:

f (x) : {0, 1}n 7! {0, 1}, (4.32)

where, now,:
f (x) = a · x+ b, (4.33)

with a 2 {0, 1}n and b 2 {0, 1}. The task of the BV algorithm is to determine
a and b in two calls (one for a and one for b). Conversely, trying to find a
and b by employing a classical algorithm would require (n+ 1) queries to the
oracle, one to determine b and n to determine a.

The quantum circuit needed for the implementation of the BV algorithm
is the same of Fig. 4.2 (b). As the classical case, one query to the oracle is
needed to find b and this is done in the same way as in the classical algorithm,
that is by determining f (x) for x = 0. Then, in order to find a, the algorithm
can still be divided in four stages. The initial state is prepared as in Eq. (4.24),
with the first n qubits in the |0i state and the last qubit set as |1i. Then a
Hadamard gate is applied to each initial qubit, giving a state | 2i as the one
described by Eq. (4.25). After that, the oracle Uf is implemented, and the
state | 3i of Eq. (4.26) becomes now:

| 3i = (�1)bp
2n

X
x2{0,1}n

(�1)a·x |xi|�i. (4.34)

Finally, after applying a Hadamard gate on the first n qubits, Eq. (4.28)
becomes:

| 4i = (�1)b

2n

X
z2{0,1}n

X
x2{0,1}n

(�1)a·x+x·z |zi|�i

=
(�1)b

2n

X
z2{0,1}n

X
x2{0,1}n

(�1)(a� z)·x |zi|�i. (4.35)
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In the above expression, it can be:

1

2n

X
x2{0,1}n

(�1)(a� z)·x =

⇢
1 if z = a
0 otherwise

(4.36)

and Eq. (4.35) becomes:

| 4i = (�1)b
X

a2{0,1}n
|ai|�i, (4.37)

and a is thus determined.
So, the BV algorithm allows to find a and b in two queries to the oracle

Uf , instead of the (n+ 1) calls required classically. In the BV algorithm, it
is always possible to choose b = 0 without loss of generality. In this case,
solving the problem through a classical algorithm would require n queries to
the oracle, whereas the BV algorithm would bring to a solution in one single
call.

In the next section we will introduce the BV algorithm as a test to show
that any quantum information protocol can be realized on a simple electronic
circuit. While this “classical” implementation would in general su↵er from the
loss of the exponential advantage provided by quantum mechanics, we will
show that the BV algorithm is a special case, for it does not require the qubits
to be entangled [344]. Thus, the BV algorithm can be e�ciently implemented
on a system that employs classical waves and the number of resources would
increase linearly with the number of emulated qubits.

4.2 Experiment

In this section we will first present the model behind the experiment. We
will then describe how the circuit has been built and discuss the results of the
experiment.

4.2.1 The model

Let us consider a system like the one depicted in Fig. 4.3, in which lines
stand for guides for bosonic particles. Each guide represents one state of a basis
for the n-qubit Hilbert space, where an emulated n-qubit state is described by
a single boson particle being in a proper superposition in 2n guides. These
are connected in a network of linear components, schematically represented
by the white rectangle U , which describes any linear transformation of an
initial state. This can be realized by a proper combination of simple units
[345], like those shown in Fig. 4.3 (b)-(d): phase shifters (Fig. 4.3 (b)), i.e.
elements that change the phase of a wave; mixers (Fig. 4.3 (c)), e.g. devices
outputting the coherent sum and the coherent di↵erence of their inputs; and
finally crossings (Fig. 4.3 (d)), i.e. points in which guides exchange positions
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Figure 4.3: (a) Schematic representation of the fundamental components of the
considered system. Lines represent guides and the rectangle a linear network
mathematically described by the unitary transformation U. (b) A phase shifter,
(c) a mixer, (d) two guides swapping place.

(or, if more convenient, are just relabeled). For instance, in the case of an
optical implementation, one can take a photon as the boson particle, while the
guides could be optical fibers, with mixers obtained by using a combination of
phase shifters and beam splitters. It can be shown that this platform would
allow the implementation of all the operations needed for quantum information
processing.

In general, the input/output relations for a bosonic field propagating in
any linear network with m inputs and m outputs can be described by an m-
dimensional unitary matrix U so that [345, 346, 347]:

âout,j =
mX
i=1

Uj,iâin,i, â†in,i =
mX
j=1

Uj,iâ
†
out,j, (4.38)

where â†in,i and âin,i are, respectively, the creation and annihilation operators

for a boson at the i-th input of the system, â†out,j and âout,j are the creation
and annihilation operators for a boson at the system j-th output, respectively.
Thus, for a single particle input state in the i-th channel, the output state can
be written as:

|'outi =
mX
j=1

Uj,iâ
†
out,j|vaci, (4.39)

where |vaci is the vacuum state. Finally, the probability of finding the particle
at the j-th output is given by:

Iij = h'out|â†out,j âout,j|'outi = |Uj,i|2. (4.40)
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This is the only relevant quantity in this approach, for Iij is the probability of
finding the n-quibt system in the state associated with the j-th guide.

Iij can also be found without the need for a single particle as the network
input. So, in particular, let us consider the case of a coherent state as the
input in the i-th channel [165]:

|'ini = |↵ii = exp


↵â†i �

|↵|2
2

�
|vaci, (4.41)

where |↵|2 is the average number of particles. Given the input/output relations
expressed in Eq. (4.38), the output state becomes:

|'outi = exp

"
↵

mX
j=1

Uj,iâ
†
out,j �

|↵|2
2

#
|vaci, (4.42)

which can be written as

|'outi =
mY
j=1

exp


�j â

†
out,j �

|�j|2
2

�
|vaci, (4.43)

where �j ⌘ Uj,i↵ and
P

j Uj,i = 1. The average number of photons at the j-th
output is then:

Iij = h'out|â†out,j âout,j|'outi = |�j|2 = Iji|↵|2, (4.44)

which is proportional to the probability Iij of finding the single particle exiting
the j-th guide when entering in the i-th guide. The proportionality factor is
simply the average number of particle |↵|2 in the input state.

Coherent states with large number of particles, that is when |↵|2 � 1,
are those that best approximate classical waves. In this context, the propa-
gation of a classical wave in a linear network yields equivalent results as the
single particle, thus suggesting that the operation of quantum gates might be
emulated in a fully classical system. However, this approach requires an expo-
nentially increasing amount of resources, for 2n guides are needed to describe
n qubits, voiding any exponential advantage arising from the implementation
of a quantum algorithm. Nonetheless, these results are useful in the view of
the emulation of quantum gates and algorithms. From now on, in this chapter,
we can then refer to classical waves propagating in the system, and thus using
the word intensity instead of (average) number of particles or probability of
finding a particle.

Because of the simplicity and availability of analog electronics, we imple-
mented the BV algorithm by using electronic waves to emulate a quantum
circuit. The description of the circuit used will be given in the next section.
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Figure 4.4: Schematic representation of the fundamental unit of the built cir-
cuit, the mixer device: the input voltages are fed to two operational amplifiers
(OP1 and OP2), in the standard non-inverting and inverting configuration. Va

and Vb are the input voltages. OP1 gives the sum of Va and Vb, whereas OP2

their di↵erence. The resistors R1, R2, R3 and R4 are tuned in order to have
V+ = Va+Vbp

2
and V� = Va�Vbp

2
.

4.2.2 Circuit realization

In the experiment, the BV protocol has been implemented in an electronic
circuit built with discrete electronic components, that have to emulate the
components of the quantum circuit in Fig. 4.2 (b). The circuit has been de-
signed by using the EAGLE PCB software and the sample has been fabricated
by a standard chemical etching process on a printed circuit board (PCB) at
the Department of Electronics at the University of Pavia.

The basic element of the circuit is called mixer [348] and a schematic is
shown in Fig. 4.4. This is a fundamental element, since a combination of
di↵erent mixers is used to prepare the initial state in a superposition as the one
created by the first Hadamard gates in Fig. 4.2 (b). The mixer input voltages
Va and Vb are fed to two operational amplifiers (TL082), OP1 and OP2, the
first in a non-inverting configuration. The output of the mixer consists in
the coherent sum V+ = (Va + Vb)/

p
2 and di↵erence V� = (Va � Vb)/

p
2 of the

input voltages. The operations of sum and di↵erence are due to the operational
amplifiers, whereas the factor 1p

2
at the output is obtained by tuning properly

four trimmers of an overall value of RT = 3.3 k⌦. The trimmers are adjusted in
order to fix the resistors values to 2R1 = RT ,

p
2R2 = RT ,

�p
2 + 1

�
R3 = RT

and
�p

2 + 1
�
R4 = RT . In Fig. 4.5 (a) and (b) the designed mixer along with

its PCB are given.

The characterization of the mixer device is shown in Fig. 4.5 (c) and (d).
In Fig. 4.5 (c), by entering in Va with a sinusoidal signal of f = 1 kHz and
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4. Implementation of the Bernstein-Vazirani algorithm using classical waves

Figure 4.5: (a) Layout of the elementary component of the circuit, the mixer.
Given two input signals Va and Vb, the mixer will give their sum (V+) and
their di↵erence (V-), divided by a factor

p
2. (b) Image of the elementary unit

of the circuit. (c) Result of the measurement of V+ and V- when Va receives a
sinusoidal signal of f = 1 kHz and Vpp = 4 V and Vb is connected to ground.
(d) Result of the measurement of V+ and V- when Va is connected to ground
and Vb receives a sinusoidal signal of f = 1 kHz and Vpp = 4 V.
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Vpp = 4 V and connecting Vb to ground, the output voltages on V+ and V- are
measured. As expected, the measurement on both V+ (green) and V- (blue)
gives the result Vap

2
. So, in this case, both V+ and V� have the same amplitude

and the same phase. In Fig. 4.5 (d) the opposite situation is presented. Va is
connected to ground, whereas the sinusoidal signal enters in Vb. The results
are now V+ = Vbp

2
(green) and V� = �Vbp

2
(blue) and the two output signals have

same amplitude and opposite phase.
The final circuit used to implement the BV algorithm is then built by

combining many mixers together, as shown in Fig. 4.6 in the particular con-
figuration of a single CNOT between the first and third qubit. In the figure,
starting from left, a first board host three Hadamard gates, H1, H2 and H3 on
the first, second and third qubit, respectively. The Hadamard operations are
performed by a combination of mixers with the relative crossing of wires at the
end of the circuit. A single circuit with two output wires for H1, two basic ele-
ments with four crossing wires for H2 and four mixers with eight output wires
for H3. In between the two boards, the implementation of the function U is
simply given by exchanging the eight available wires exiting from H3. Finally,
on the board on the right two other Hadamard operations are performed on
the first (H1) and second (H2) qubits, as shown in Fig. 4.2 (b). At the right
side of the second board, the output voltages are connected to eight LEDs (one
for each qubit) that represent the measurement.
The details of the performed measurements will be presented in the next sec-
tion.

4.2.3 Measurements

As already mentioned, in our experiment, the BV algorithm [341] has been
chosen as a test for the emulation of quantum gates by using electronic waves.
As explained in Sec. 4.1, the aim of the BV algorithm is to determine a when
binary functions of the form f(x) = a · x (we chose to be b = 0), with both a
and x binary vectors of length n, are considered. This is achieved in a single
call, instead of the n calls required when using classical digital computation,
by exploiting superpositions of qubits.

In the first set of measurements, the BV algorithm in a three-qubit config-
uration (corresponding to 8 independent voltage wires) has been successfully
emulated. The algorithm has been validated for all the four possible combi-
nations of the vector a, i.e. a = (0, 0) , (0, 1) , (1, 0) , (1, 1). This can be
obtained by appropriately exchanging the wires in between the two boards in
the circuit of Fig. 4.6. Here, the initial Hadamard gates prepare the qubits in
a superposition of all possible input strings x, and the function is weighted on
the superposition.

The measurements are taken by supplying the two boards in Fig. 4.6 with
a voltage of ±15 V. The input signal used is a sine wave of frequency f = 1 kHz
and amplitude Vpp = 10 V. The result of the measurement is read as output
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4. Implementation of the Bernstein-Vazirani algorithm using classical waves

Figure 4.6: Image of the entire circuit (see also Fig. 4.2), in the particular con-
figuration when the function Uf corresponds to a CNOT operation between
the first and third qubit. H stands for the Hadamard operation. Before im-
plementing the function Uf , three Hadamard operations are performed on q1,
q2 and q3. They are H1, H2 and H3, respectively. After the implementation of
the function Uf a Hadamard on q1 (H1) and then a Hadamard on q2 (H2) are
performed. Finally, the LEDs on the right of the circuit represent the output
of the measurement.
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voltages and can be directly seen through the LEDs that are emitting light. All
the possible results of the experiment are shown in Fig. 4.7-4.10. In the figures,
(a) gives the schematic view of the quantum circuit and (b) is the sketch of
the built electronic circuit corresponding to (a): the mixer is represented by
a rectangle, where a and b stand for Va and Vb, respectively, and + and �
represent V+ and V-, respectively. In (c) the result of the experiment, i. e. the
voltages measured across all the eight outputs is presented in a graph. The
channels with high output voltage correspond to the two guides for which the
first two qubits give the correct answer for the vector a. Finally, (d) shows the
same result as (c), visualized through the LEDs that are emitting light.

In Fig. 4.7, the function Uf implemented is the identity, so the wires be-
tween the two boards are not exchanged. As expected, the voltages are high
only for the wires in which the first and second qubit (q1 and q2) correspond
to the correct value of a, that is a = (0, 0). This can also be verified by eye
through the LEDs. Infact, the lights are on for |q3q2q1i = |000i, |100i.
In Fig. 4.8 the unitary transformation corresponding to the function Uf is im-
plemented using a single CNOT gate between the second (q2) and the target
qubit (q3). This is achieved in our scheme by exchanging the third wire with
the seventh, and the fourth wire with the eighth. In this case, the voltages are
high only for the wires in which q1 and q2 correspond to a = (0, 1) and the
LEDs’ lights are on, as expected, for |q3q2q1i = |010i, |110i.
In Fig. 4.9 the function Uf is represented by a single CNOT between the
first and third qubit, obtained in the circuit by exchanging the second wire
with the sixth, and the fourth wire with the eighth. As expected, the wires
with high output voltages correspond to q1 = 1 and q2 = 0, that is the cor-
rect value of a, that is a = (1, 0). In this case, the LEDs’ lights are on for
|q3q2q1i = |001i, |101i.
Finally, in Fig. 4.10 the unitary transformation is implemented through a
combination of the two previously described CNOT gates. This time the volt-
ages are high for q1 = 1 and q2 = 1, that give the correct value of a, namely
a = (1, 1). As expected, the lights are on for |q3q2q1i = |011i, |111i.

Linear scaling demonstration

As shown and discussed in the previous section, 2n waveguides are needed
to emulate n qubits as in general the Hilbert space of the system has dimension
2n. However, the BV algorithm is a special case among quantum algorithms,
in which the qubits are never entangled [344]. The Hilbert spaces of the qubits
remain therefore independent and the BV algorithm can e�ciently be imple-
mented by exploiting a system that uses classical waves. This is the experiment
described in this section. We used two waveguides to implement each qubit
and Hadamard transformations are obtained by applying a single mixer to
the two waveguides. The unitary transformation representing the function Uf

is implemented by “marking” the relevant qubits with a ⇡ phase shift on the
second waveguide for all the elements of the vector a equal to one.
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This implementation is carried out using the same circuitry employed for
the experiments described in the previous section. The measurements are taken
by supplying the two boards in Fig. 4.6 with a voltage of ±15 V. The con-
figuration of the circuit is now given by using only the third raw of mixers in
the first board (used to enter the input signal) and the first raw of the second
board. The eight wires let us emulate up to four qubits. The input signal used
is a sine wave of frequency f = 1 kHz and amplitude Vpp = 3.5 V and enters
in each upper waveguide (0). The result of the measurement is read as output
voltages at the V+ and V- pins of the first raw of mixers in the second board.
Each mixer represents a single qubit.
The ⇡ phase shift on the desired waveguide is obtained thorugh inverting cir-
cuits, as the one shown in Fig. 4.11. They are made of an operational amplifier
(LM741) and its four resistors of the same value (R = 3 k⌦). They are em-
ployed in between the two boards in order to invert the signal, when required.
In Fig. 4.12-4.27 the results of the experiment are shown. In the figures, in
(a) the schematic view of the quantum circuit is shown, whereas (b) is the
sketch of the electronic circuit where the phase shift on the desired waveguide
is marked with ⇡. Finally, (c)-(f) represents the results for each qubit. The
upper waveguide, labeled as 0 is represented by a black line, whereas the green
line stands for the lower waveguide 1. From Fig. 4.12-4.27, as expected, the
signal remains high on the upper waveguide when no inversion occurs. On
the contrary, when the waveguide is marked with a phase shift, the measured
output voltage is high on the lower waveguide.

The experiment can be run for one, two, three, four etc. emulated qubits by
using two, four, six and eight and so on wires respectively. This clearly shows
that, in the case of the BV algorithm, the relation between emulated qubits
and the components used in the classical system can be linear. Furthermore,
the advantage of this algorithm with respect to classical digital logic is still
fulfilled, even in this fully classical implementation. The problem is solved
in a single call instead of n calls because the function is still weighted over
a superposition of all possible inputs. In contrast to entanglement, such a
superposition is achievable with classical waves.

So, the measurement just described proves that the big advantage of quan-
tum information over its classical counterpart lies in the property of entan-
glement, as already mentioned in Sec. 1.1. In fact, as it is clear from our
experiment, any quantum protocol that does not require the qubits to be en-
tangled (or with limited-entanglement) can be emulated by a classical system,
such as electronic waves. In this case, even if dealing with a classical sys-
tem, a speed-up over classical digital logic is still observed and the resources
would scale linearly with the number of emulated qubits. Obviously, our im-
plementation would not give the same result when dealing with protocols that
operate with entangled qubits. In this last case, the dominance of quantum
computation over classical computation would result.
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4.3 Conclusions

In this chapter a way of implementing quantum algorithms by using clas-
sical waves has been shown in the special case of the BV algorithm.

We used top-of-the-shelf, analog electronics components due to their avail-
ability and ease of implementation, giving an easy reproducibility of the present
method. However, a lot more complexity can be gained by using integrated
microelectronic circuits. The latest generation of commercial Central Process-
ing Units (CPUs) contain a number of transistor features of the order of 1010

and hundreds or thousand of such units can be operated in parallel in exist-
ing Graphic Processing Units (GPUs). So, in such systems, general quantum
algorithms could be emulated up to at least 30 qubits in a cheap and reliable
way. This would in turn constitute an important testbed where quantum al-
gorithms can be developed and tested before being run on actual quantum
computers. In the case of quantum algorithms with no or limited [349] entan-
glement, quantum logic with thousands of qubits can probably be emulated in
systems with CPU or GPU level of complexity. This is particularly interest-
ing for quantum search algorithms, that have already been shown can be run,
although not e�ciently, with limited entanglement [338, 350].

The method described in this chapter could also be interesting for teaching
purposes. In fact, the ability of building physical systems capable of running
quantum logical protocols using cheap and intuitive components is a key fea-
ture for their use in education. This, in turn, could become of primary interest
as quantum technologies become more widespread, for a new class of “quan-
tum engineers” will have to be formed in higher education institutions. So,
the experiment we carried out can act as an important teaching support in
laboratory classes.

Finally, the system we described also sheds light on the importance of
entanglement [351] as the discriminating factor for the exponential advantage
that quantum information processing systems can have over their classical
counterparts.
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Figure 4.7: (a) Sketch of the quantum circuit when the function Uf is the
identity. (b) Scheme of electronic circuit corresponding to (a): a and b stand
for the input pins, where we enter in a (|100i) with a sinusoidal signal of
f = 1 kHz and Vpp = 10 V, whereas b (|101i) is connected to ground. All
the remaining a and b pins are connected to ground. + and � stand for the
outputs (sum and di↵erence of a and b) of the elementary units of the circuit.
Since Uf = a · x is the identity, then a = (0, 0). (c) Signals measured at the
end of the circuit. The voltage is high only when |q3q2q1i are |000i and |100i,
that are the correct values for q1 and q2 in order to correspond to a. (d) LEDs
at the end of circuit of circuit implementing the BV protocol. The lights are
on, as expected, when |q3q2q1i are |000i and |100i, respectively.
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Figure 4.8: (a) Sketch of the quantum circuit when the function Uf is the
CNOT operation between the second and third qubit. (b) Scheme of electronic
circuit corresponding to (a): a and b stand for the input pins, where we enter
in a (|100i) with a sinusoidal signal of f = 1 kHz and Vpp = 10 V, whereas b
(|101i) is connected to ground. All the remaining a and b pins are connected
to ground. + and � stand for the outputs (sum and di↵erence of a and b) of
the elementary units of the circuit. Since Uf = a · x is the CNOT operation
between q2 and q3, then a = (0, 1). (c) Signals measured at the end of the
circuit. The voltage is high only when |q3q2q1i are |010i and |110i, that are the
correct values for q1 and q2 in order to correspond to a. (d) LEDs at the end
of the circuit implementing the BV protocol. The lights are on, as expected,
when |q3q2q1i are |010i and |110i, respectively.
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Figure 4.9: (a) Sketch of the quantum circuit when the function Uf is the
CNOT operation between the first and third qubit. (b) Scheme of electronic
circuit corresponding to (a): a and b stand for the input pins, where we enter
in a (|100i) with a sinusoidal signal of f = 1 kHz and Vpp = 10 V, whereas b
(|101i) is connected to ground. All the remaining a and b pins are connected
to ground. + and � stand for the outputs (sum and di↵erence of a and b) of
the elementary units of the circuit. Since Uf = a · x is the CNOT operation
between q1 and q3, then a = (1, 0). (b) Signals measured at the end of the
circuit. The voltage is high only when |q3q2q1i are |001i and |101i, that are the
correct values for q1 and q2 in order to correspond to a. (c) LEDs at the end
of the circuit implementing the BV protocol. The lights are on, as expected,
when |q3q2q1i are |001i and |101i, respectively.
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Figure 4.10: (a) Sketch of the quantum circuit when the function Uf is com-
posed by a first CNOT operation between the second and third qubit followed
by a second CNOT operation between the first and third qubit. (b) Scheme
of electronic circuit corresponding to (a): a and b stand for the input pins,
where we enter in a (|100i) with a sinusoidal signal of f = 1 kHz and Vpp = 10
V, whereas b (|101i) is connected to ground. All the remaining a and b pins
are connected to ground. + and � stand for the outputs (sum and di↵erence
of a and b) of the elementary units of the circuit. Since Uf = a · x is the
double CNOT operation between q2 and q3 and q1 and q3, respectively, then
a = (1, 1). (c) Signals measured at the end of the circuit. The voltage is high
only when |q3q2q1i are |011i and |111i, that are the correct values for q1 and q2
in order to correspond to a. (d) LEDs at the end of the circuit implementing
the BV protocol. The lights are on, as expected, when |q3q2q1i are |011i and
|111i, respectively.
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Figure 4.11: Scheme of the inverting circuit used. The operational amplifier
gives the di↵erence between the ground and a signal Vx. So, the input signal
Vx is inverted. The four resistors are chosen to be of the same value (R = 3
k⌦) in order to have a factor 1 multiplying �Vx at the output.
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Figure 4.12: (a) Sketch of the general quantum circuit. (b) Scheme of electronic
circuit corresponding to (a): a and b stand for the input pins, where we enter in
a with a sinusoidal signal of f = 1 kHz and Vpp = 3.5 V, whereas b is connected
to ground. + and� stand for the outputs (sum and di↵erence of a and b) of the
elementary units of the circuit. In this case, the identity, where no inversion of
the signal occurs, is shown. (c)-(f) Measurements done at the + and � ports
of the second stage of elementary units of the circuit, corresponding to the
second Hadamard operation. The black line represents the upper waveguide
(0), whereas the green line stands for the lower waveguide (1). Since in this
case |q1q2q3q4i = |0000i, the voltage is high in the upper waveguide for each
one of the four qubits, as expected.
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Figure 4.13: (a) Sketch of the general quantum circuit. (b) Scheme of electronic
circuit corresponding to (a): a and b stand for the input pins, where we enter
in a with a sinusoidal signal of f = 1 kHz and Vpp = 3.5 V, whereas b is
connected to ground. + and � stand for the outputs (sum and di↵erence of a
and b) of the elementary units of the circuit. In this case, the circuit with only
one inversion on q4 is shown. (c)-(f) Measurements done at the + and � ports
of the second stage of elementary units of the circuit, corresponding to the
second Hadamard operation. The black line represents the upper waveguide
(0), whereas the green line stands for the lower waveguide (1). As expected,
the voltage is high in the upper waveguide for the first three qubits, whereas for
q4 the voltage is high for the lower waveguide, for the case |q1q2q3q4i = |0001i
is here considered.
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Figure 4.14: (a) Sketch of the general quantum circuit. (b) Scheme of electronic
circuit corresponding to (a): a and b stand for the input pins, where we enter
in a with a sinusoidal signal of f = 1 kHz and Vpp = 3.5 V, whereas b is
connected to ground. + and � stand for the outputs (sum and di↵erence of a
and b) of the elementary units of the circuit. In this case, the circuit with only
one inversion on q3 is shown. (c)-(f) Measurements done at the + and � ports
of the second stage of elementary units of the circuit, corresponding to the
second Hadamard operation. The black line represents the upper waveguide
(0), whereas the green line stands for the lower waveguide (1). Since in this
case |q1q2q3q4i = |0010i, then the voltage is high in the upper waveguide for
q1, q2 and q4, whereas for q3 the voltage is high for the lower waveguide, as
expected.
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Figure 4.15: (a) Sketch of the general quantum circuit. (b) Scheme of electronic
circuit corresponding to (a): a and b stand for the input pins, where we enter
in a with a sinusoidal signal of f = 1 kHz and Vpp = 3.5 V, whereas b is
connected to ground. + and � stand for the outputs (sum and di↵erence of a
and b) of the elementary units of the circuit. In this case, the circuit with only
one inversion on q2 is shown. (c)-(f) Measurements done at the + and � ports
of the second stage of elementary units of the circuit, corresponding to the
second Hadamard operation. The black line represents the upper waveguide
(0), whereas the green line stands for the lower waveguide (1). Since in this
case |q1q2q3q4i = |0100i, the voltage is high in the upper waveguide for q1, q3
and q4, whereas for q2 the voltage is high for the lower waveguide, as expected.
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Figure 4.16: (a) Sketch of the general quantum circuit. (b) Scheme of electronic
circuit corresponding to (a): a and b stand for the input pins, where we enter
in a with a sinusoidal signal of f = 1 kHz and Vpp = 3.5 V, whereas b is
connected to ground. + and � stand for the outputs (sum and di↵erence of a
and b) of the elementary units of the circuit. In this case, the circuit with only
one inversion on q1 is shown. (c)-(f) Measurements done at the + and � ports
of the second stage of elementary units of the circuit, corresponding to the
second Hadamard operation. The black line represents the upper waveguide
(0), whereas the green line stands for the lower waveguide (1). As expected,
the voltage is high in the upper waveguide for q2, q3 and q4, whereas for q1 the
voltage is high for the lower waveguide, for in this case |q1q2q3q4i = |1000i.
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Figure 4.17: (a) Sketch of the general quantum circuit. (b) Scheme of electronic
circuit corresponding to (a): a and b stand for the input pins, where we enter
in a with a sinusoidal signal of f = 1 kHz and Vpp = 3.5 V, whereas b is
connected to ground. + and � stand for the outputs (sum and di↵erence of
a and b) of the elementary units of the circuit. In this case, the circuit with
two inversions on q3 and q4 respectively is shown. (c)-(f) Measurements done
at the + and � ports of the second stage of elementary units of the circuit,
corresponding to the second Hadamard operation. The black line represents
the upper waveguide (0), whereas the green line stands for the lower waveguide
(1). Since |q1q2q3q4i = |0011i, as expected, the voltage is high in the upper
waveguide for q1 and q2, whereas for q3 and q4 the voltage is high for the lower
waveguide.
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Figure 4.18: (a) Sketch of the general quantum circuit. (b) Scheme of electronic
circuit corresponding to (a): a and b stand for the input pins, where we enter
in a with a sinusoidal signal of f = 1 kHz and Vpp = 3.5 V, whereas b is
connected to ground. + and � stand for the outputs (sum and di↵erence of
a and b) of the elementary units of the circuit. In this case, the circuit with
two inversions on q2 and q3 respectively is shown. (c)-(f) Measurements done
at the + and � ports of the second stage of elementary units of the circuit,
corresponding to the second Hadamard operation. The black line represents
the upper waveguide (0), whereas the green line stands for the lower waveguide
(1). Since |q1q2q3q4i = |0110i ,as expected, the voltage is high in the upper
waveguide for q1 and q4, whereas for q2 and q3 the voltage is high for the lower
waveguide.
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Figure 4.19: (a) Sketch of the general quantum circuit. (b) Scheme of electronic
circuit corresponding to (a): a and b stand for the input pins, where we enter
in a with a sinusoidal signal of f = 1 kHz and Vpp = 3.5 V, whereas b is
connected to ground. + and � stand for the outputs (sum and di↵erence of
a and b) of the elementary units of the circuit. In this case, the circuit with
two inversions on q1 and q2 respectively is shown. (c)-(f) Measurements done
at the + and � ports of the second stage of elementary units of the circuit,
corresponding to the second Hadamard operation. The black line represents
the upper waveguide (0), whereas the green line stands for the lower waveguide
(1). In this case |q1q2q3q4i = |1100i, thus, as expected, the voltage is high in
the upper waveguide for q3 and q4, whereas for q1 and q2 the voltage is high
for the lower waveguide.
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Figure 4.20: (a) Sketch of the general quantum circuit. (b) Scheme of electronic
circuit corresponding to (a): a and b stand for the input pins, where we enter
in a with a sinusoidal signal of f = 1 kHz and Vpp = 3.5 V, whereas b is
connected to ground. + and � stand for the outputs (sum and di↵erence of
a and b) of the elementary units of the circuit. In this case, the circuit with
two inversions on q2 and q4 respectively is shown. (c)-(f) Measurements done
at the + and � ports of the second stage of elementary units of the circuit,
corresponding to the second Hadamard operation. The black line represents
the upper waveguide (0), whereas the green line stands for the lower waveguide
(1). In this case, the voltage is high in the upper waveguide for q1 and q3,
whereas for q2 and q4 the voltage is high for the lower waveguide, as it should
be for |q1q2q3q4i = |0101i.
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Figure 4.21: (a) Sketch of the general quantum circuit. (b) Scheme of electronic
circuit corresponding to (a): a and b stand for the input pins, where we enter
in a with a sinusoidal signal of f = 1 kHz and Vpp = 3.5 V, whereas b is
connected to ground. + and � stand for the outputs (sum and di↵erence of
a and b) of the elementary units of the circuit. In this case, the circuit with
two inversions on q1 and q4 respectively is shown. (c)-(f) Measurements done
at the + and � ports of the second stage of elementary units of the circuit,
corresponding to the second Hadamard operation. The black line represents
the upper waveguide (0), whereas the green line stands for the lower waveguide
(1). Since in this case |q1q2q3q4i = |1001i, as expected, the voltage is high in
the upper waveguide for q2 and q3, whereas for q1 and q4 the voltage is high
for the lower waveguide.
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Figure 4.22: (a) Sketch of the general quantum circuit. (b) Scheme of electronic
circuit corresponding to (a): a and b stand for the input pins, where we enter
in a with a sinusoidal signal of f = 1 kHz and Vpp = 3.5 V, whereas b is
connected to ground. + and � stand for the outputs (sum and di↵erence of
a and b) of the elementary units of the circuit. In this case, the circuit with
two inversions on q1 and q3 respectively is shown. (c)-(f) Measurements done
at the + and � ports of the second stage of elementary units of the circuit,
corresponding to the second Hadamard operation. The black line represents
the upper waveguide (0), whereas the green line stands for the lower waveguide
(1). As expected, the voltage is high in the upper waveguide for q2 and q4,
whereas for q1 and q3 the voltage is high for the lower waveguide, for the case
|q1q2q3q4i = |1010i is here considered.
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Figure 4.23: (a) Sketch of the general quantum circuit. (b) Scheme of electronic
circuit corresponding to (a): a and b stand for the input pins, where we enter
in a with a sinusoidal signal of f = 1 kHz and Vpp = 3.5 V, whereas b is
connected to ground. + and � stand for the outputs (sum and di↵erence of a
and b) of the elementary units of the circuit. In this case, the circuit with three
inversions on q2, q3 and q4, respectively, is shown. (c)-(f) Measurements done
at the + and � ports of the second stage of elementary units of the circuit,
corresponding to the second Hadamard operation. The black line represents
the upper waveguide (0), whereas the green line stands for the lower waveguide
(1). As expected, the voltage is high in the upper waveguide for q1, whereas
for q2, q3 and q4 the voltage is high for the lower waveguide, giving as result
|q1q2q3q4i = |0111i.
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Figure 4.24: (a) Sketch of the general quantum circuit. (b) Scheme of electronic
circuit corresponding to (a): a and b stand for the input pins, where we enter in
a with a sinusoidal signal of f = 1 kHz and Vpp = 3.5 V, whereas b is connected
to ground. + and� stand for the outputs (sum and di↵erence of a and b) of the
elementary units of the circuit. In this case, the circuit with three inversions on
q1, q2 and q3 respectively is shown. (c)-(f) Measurements done at the + and �
ports of the second stage of elementary units of the circuit, corresponding to the
second Hadamard operation. The black line represents the upper waveguide
(0), whereas the green line stands for the lower waveguide (1). As expected,
the voltage is high in the upper waveguide for q4, whereas for q1, q2 and q3 the
voltage is high for the lower waveguide, thus |q1q2q3q4i = |1110i.
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Figure 4.25: (a) Sketch of the general quantum circuit. (b) Scheme of electronic
circuit corresponding to (a): a and b stand for the input pins, where we enter in
a with a sinusoidal signal of f = 1 kHz and Vpp = 3.5 V, whereas b is connected
to ground. + and� stand for the outputs (sum and di↵erence of a and b) of the
elementary units of the circuit. In this case, the circuit with three inversions on
q1, q3 and q4 respectively is shown. (c)-(f) Measurements done at the + and �
ports of the second stage of elementary units of the circuit, corresponding to the
second Hadamard operation. The black line represents the upper waveguide
(0), whereas the green line stands for the lower waveguide (1). As expected,
the voltage is high in the upper waveguide for q2, whereas for q1, q3 and q4 the
voltage is high for the lower waveguide, obtaining |q1q2q3q4i = |1011i.
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Figure 4.26: (a) Sketch of the general quantum circuit. (b) Scheme of electronic
circuit corresponding to (a): a and b stand for the input pins, where we enter
in a with a sinusoidal signal of f = 1 kHz and Vpp = 3.5 V, whereas b is
connected to ground. + and � stand for the outputs (sum and di↵erence of a
and b) of the elementary units of the circuit. In this case, the circuit with three
inversions on q1, q2 and q4 respectively is shown. (c)-(f) Measurements done
at the + and � ports of the second stage of elementary units of the circuit,
corresponding to the second Hadamard operation. The black line represents
the upper waveguide (0), whereas the green line stands for the lower waveguide
(1). As expected, the voltage is high in the upper waveguide for q3, whereas
for q1, q2 and q4 the voltage is high for the lower waveguide. So, in this case,
|q1q2q3q4i = |1101i
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Figure 4.27: (a) Sketch of the general quantum circuit. (b) Scheme of electronic
circuit corresponding to (a): a and b stand for the input pins, where we enter
in a with a sinusoidal signal of f = 1 kHz and Vpp = 3.5 V, whereas b is
connected to ground. + and � stand for the outputs (sum and di↵erence of a
and b) of the elementary units of the circuit. In this case, the circuit with the
inversion on each one of the four qubits is shown. (c)-(f) Measurements done
at the + and � ports of the second stage of elementary units of the circuit,
corresponding to the second Hadamard operation. The black line represents
the upper waveguide (0), whereas the green line stands for the lower waveguide
(1). As expected, the voltage is high in the lower waveguide for each one of
the qubits and |q1q2q3q4i = |1111i.
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Chapter 5
Conclusions and perspectives

In this thesis we treated two di↵erent major topics. Indeed, the first chap-
ters are devoted to the study of two still open problems in the field of integrated
photonics. In particular, in the second chapter, we first tackled the issue of the
e�cacy of integrated filters in spectrally cleaning the generated photon pairs.
In the third chapter we then moved to the big issue of the lack of laser emis-
sion in silicon, thus complicating the fabrication of a silicon-integrated source
of light. All the experiment described in the these two chapters deal with the
four-wave mixing (FWM) process. Conversely, the fourth and last chapter is
related to the broad field of quantum computation, providing an alternative
way of implementing quantum algorithms by using classical waves, although at
the price of forfeiting the exponential advantage of true quantum computation.

In the second chapter we studied the issue of spurious photon pairs emission
in integrated filters. Indeed, silicon ridge waveguides and microring resonators
are very good sources of nonclassical states of light. However, despite the big
field enhancement that can be achieved in such devices, the intensity of the
spontaneous FWM emission is relatively low, being 9-10 orders of magnitude
smaller than that of the pump photons. So, in order to spectrally clean the
emitted photon pairs, integrated filters with a rejection capability of 100 dB
are required. This is particularly challenging, for in FWM the emitted photons
frequencies are symmetrically located around the pump frequency.

Di↵erent strategies have been employed to integrate a filter with the desired
features, for example by coupling many ring resonators, cascading interferom-
eters and integrating Bragg mirrors onto a silicon waveguide (Bragg waveg-
uides). However, all the listed elements are made of several microns of silicon
waveguide, that could potentially generate unwanted photon pairs with di↵er-
ent spectral and temporal correlations than the pairs emitted from the actual
source. These parasitic photon pairs could be responsible of the pollution of the
quantum state at the output, voiding the possibility of implementing quantum
information protocols that use spontaneous FWM to generate photons.

So, we performed a stimulated FWM experiment on a Bragg waveguide

157



5. Conclusions and perspectives

and studied the correlation properties of the photons that would be emitted in
the spontaneous process. Our experimental work is supported by a theoretical
model based on a quantum description of the filter.

The sample used for the measurement was fabricated in a CMOS-compatible
fabrication process by periodically shrinking the width of a ridge waveguide,
for a total Bragg waveguide length of 640 µm. In order to perform the exper-
iment, we injected two lasers into the sample tuned at the pump and signal
frequency, being the pump beam much more intense than the signal beam.
We scanned the pump frequency across the Bragg waveguide stopband and
observed the resonances due to generation of the idler photon. We then corre-
lated the measured stimulated emission rate to the spontaneous emission rate
that would have been obtained through spontaneous FWM and we found that
the average rate of photon pairs generated at the bottom of the stopband is
of few hertz. This result is also confirmed by the performed simulations. The
Bragg waveguide used provides a 20-dB-rejection of the pump frequencies, but
we expect to find similar results for longer structures (that provide higher re-
jection) as well. The found generation rate per mW2 is at least five order of
magnitudes smaller than that of the most e�cient silicon sources, thus rul-
ing out the possibility of the introduction of spurious photon pairs due to the
presence of the filter.

So, the experiment described in chapter 2 sets Bragg waveguides as the
best candidates for on-chip filtering of the optical pump for quantum applica-
tions. Moreover, Bragg waveguides are produced through a CMOS-compatible
process, a very important feature for the widespread adoption of these devices
as filters in silicon integrated chips.

In the third chapter, we wanted to address the major drawback of silicon
photonics, that is the lack of lasing in silicon. In fact, silicon has an indirect
bandgap of 1.12 eV and the electron-hole recombination is a phonon-mediated
process with low probability of occurrence. Turns out that silicon is a poor
light emitter.

Even if in the last years many systems, including stimulated Raman scat-
tering, rare-earth doped waveguides, III-V compounds and hybrid laser tech-
nologies, have been studied to find a solution to this problem, laser emission
in silicon still remains an unsolved problem. In fact, many di�culties are
encountered when developing new technologies, for they have to emit at the
telecommunication wavelengths in order to be connected to the fiber-optic net-
work, they have to be compact in size and allow for a high level of integration
on a chip, they have to be compatible with the CMOS fabrication process,
their fabrication process cannot damage the integrated components on the sil-
icon chip, they should have enough output power with high power e�ciency
and low energy cost-per-bit in data transmission.

However, an interesting way of bypassing the need of an external laser
acting as optical pump in silicon, is to engineer a fiber-based cavity with the
silicon integrated source of light inside it. The silicon structure we chose for
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the experiment is the microring resonator, for its ability of emitting photon
pairs through the FWM process. In the experiment one resonance of the ring
is selected as pump and lasing frequency. Then the ring is closed in a fiber-loop
cavity with an external amplifier in order to provide gain, and laser emission
can be achieved with su�cient power in order to observe FWM emission. We
chose the add-drop configuration for the microring resonator, so the cavity
could be closed on the input and drop ports and FWM emission could be
observed in the output port. We performed two distinct experiments.

In the first measurement we employed a silicon microring resonator with a
relatively low quality factor (Q ⇠ 3000) and proved that lasing can be achieved
in the built cavity. Because of the low quality factor of the microring, we were
able to observe only stimulated FWM emission in the self-pumping geometry.
Then, we performed a JSD measurement, that showed strong correlations be-
tween the emitted photons, thus suggesting that the photons emitted through
spontaneous FWM would be time-energy entangled.

In a second experiment, a silicon microring resonator with a higher quality
factor has been used (Q ⇠ 20000). The fiber-loop cavity design was the same
as in the previous measurement and lasing was still observed. This time we
were able to observe spontaneous FWM in the self-pumping scheme and, con-
sequently, perform a coincidence measurement on the emitted photons, that
showed a strong coincidence peak. So, even in the self-pumping geometry, the
idler and signal photons are emitted at the same time. This is the first step
towards the demonstration of time-energy entanglement between the idler and
signal photons emitted through spontaneous FWM.

However, for both of the experiments a definitive proof of the emission of
the entangled photons will consist in showing the violation of Bell’s inequalities
through a Franson experiment. Nevertheless, the results obtained are a very
important step forward for the photonics field, where the realization of a silicon-
based source of entangled photons that does not require an external optical
pump is of central importance for industrial applications. Moreover, further
applications other than the generation of entangled-photon states, like heralded
single photon states and multiple-photon states emission, can be exploited by
using the described geometry. Finally, a compelling direction that could be
taken would be to extend the presented lasing cavity geometry to an all-pass
microring resonator by exploiting the backscattered light at the input port of
the resonator.

In the final chapter we explored a di↵erent way of employing silicon-based
chips that can be applied to the quantum computation field, in particular for
educational purposes. Thus, we introduced a way to perform on-chip photonic-
based emulation of quantum algorithms, even if loosing the advantage of a
real quantum computer. The starting point for our experiment is that all
quantum computing protocols can be realized by propagating a single particle
in a linear network, and the propagation of a single particle in a linear network
is equivalent to the propagation of a classical wave in the same network. This
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statement is true as long as one is interested only in detection probabilities
at individual outputs, and no correlations are measured. So, any quantum
information protocol can be realized in a classical wave network. Obviously,
in this case, the number of resources needed increases exponentially with the
number of emulated qubits.

In order to prove this point, we considered the Bernstein-Vazirani algorithm
in a three-qubit configuration. This algorithm considers functions of the type
f (x) = a·x, where a and x are n-bit strings, and aims to determine a in a single
call instead of the n classical queries needed when using a classical algorithm.
In the experiment we implemented the Bernstein-Vazirani algorithm in an
analog electronic circuit, which is arguably the most readily available wave
system. The electronic circuit used in the experiment has been developed and
fabricated in a standard chemical etching process on a printed circuit board at
the Department of Electronics at the University of Pavia. We performed two
sets of measurements.

First, the Bernstein-Vazirani algorithm in a three-qubit configuration has
been successfully emulated by validating all the four possible combinations
of the vector a. So, any quantum information protocol can be realized in a
classical-wave network, such as an electronic circuit. Obviously, the price to
pay is an exponential increase of the employed resources, thus voiding the
advantage gained by using a quantum machine.

In a second experiment, we showed that in the special case of the Bernstein-
Vazirani algorithm, the relation between emulated qubits and the components
used in the classical system can be linear, still retaining its advantage over
a fully classical implementation. This is possible because in the Bernstein-
Vazirani algorithm the qubits are never entangled, and the Hilbert spaces of
the qubits remain therefore independent. In the measurements we were able
to emulate up to four qubits by employing eight wires, but more complex
circuits can be built by using microelectronic circuits. Indeed, the number
of transistors in the latest-generation commercial Central Processing Units
(CPUs) can reach up to 1010 units and hundreds, or even thousands, of them
can be operated in parallel in existing Graphic Processing Units (GPUs). So,
we expect that at least 30 qubits could be emulated in such systems in a cheap
and reliable way.

Our implementation could be used as a testbed, where quantum algorithms
can be developed and tested before being run on actual quantum computers,
lowering thus the costs related to the time spent on a quantum machine. More-
over, quantum algorithms with no or limited entanglement could be emulated
in systems with CPU or GPU level of complexity. The described method
could also be of potential interest for teaching purposes, for a new class of
“quantum engineers” will have to be formed as quantum technologies will be-
come of common use. Finally, the performed experiment also shed light on the
importance of entanglement in quantum applications. In fact, we have exper-
imentally proved that entanglement is the responsible factor for the exponen-
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tial advantage of quantum information processing systems over their classical
counterparts.

A natural continuation of the work we presented in the last chapter would
be to extend our results to the quantum search algorithms. At this purpose,
some proposals have already been suggested, as, for example, in the case of
the Grover’s algorithm. This algorithm aims to find an item with a particular
property among a database of N elements. By using classical computation,
in average N/2 items have to checked (N in the worst case). However, doing
the same operation on a quantum computer would require

p
N steps, thus

having a quadratic speed-up over classical logic [10, 11]. Even in this case,
the algorithm could be implemented by using classical waves in an electronic
circuit as we described in our method.

As regarding chapters 2 and 3 dedicated to photonics, our work has the
final goal of building a silicon integrated source of nonclassical states of light.
To this purpose, in this thesis we addressed two major issues met when trying
to integrate photon sources on a silicon chip: filtering the generated photons
without introducing additional spurious photon pairs and pumping the source
without the use of an external laser.

The next needed step would be to connect the performed research and build
a source of photons that does not need an external laser acting as a pump, with
on-chip-integrated filtering and multiplexing stages. The filtering and multi-
plexing of generated photons on a silicon chip has already been demonstrated
by N.C. Harris et al. in 2014 [37]. Moreover, in the self-pumping scheme we
presented, we obtained a very high SFWM internal generation rate, up to 100
MHz. This is due to the self pumping geometry that makes the laser emission
to remain tuned to the pump resonance even at high pump powers, eliminating
the saturation e↵ect encountered when using an external pump [46]. So, being
able to pump at high powers, results in higher generation rates. Consequently,
another possible line of research to be pursued is trying to reduce as much as
possible the chip coupling losses, in order to extract a number of photon pairs
close to the internal generation rate.

The achievements obtained in this thesis can be easily included in the
framework of the European Flagship in Quantum Technologies, started in 2018.
In particular, the research performed in this work, with the next required
steps, could be of potential interest for the long-term goal of creating a fast
(>100 Mbps) and secure quantum internet connection network in Europe in
order to run QKD protocols [8], where integrated photonic solutions will be of
crucial importance. At this purpose, extracting the on-chip generated photon
pairs with low losses and having high on-chip generation rates are steps of
fundamental relevance.
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A. Zeilinger, “Experimental interference of independent photons,” Phys.
Rev. Lett., vol. 96, p. 240502, 2006.

181



BIBLIOGRAPHY

[222] H. Takesue and Y. Noguchi, “Implementation of quantum state tomogra-
phy for time-bin entangled photon pairs,”Opt. Express, vol. 17, p. 10976,
2009.

[223] K.-i. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe,
K. Yamada, Y. Tokura, and S.-i. Itabashi, “Generation of high-purity en-
tangled photon pairs using silicon wire waveguide,”Opt. Express, vol. 16,
no. 25, pp. 20368–20373, 2008.

[224] E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H.
Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida,
N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair
generation in a silicon micro-ring resonator with reverse bias enhance-
ment,”Opt. Express, vol. 21, no. 23, pp. 27826–27834, 2013.

[225] S. Ramelow, A. Farsi, S. Clemmen, D. Orquiza, K. Luke, M. Lipson,
and A. L. Gaeta, “Silicon-Nitride Platform for Narrowband Entangled
Photon Generation,” arXiv preprint arXiv:1508.04358, 2015.

[226] J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time
entangled twin-photon source for quantum communication,” Phys. Rev.
Lett., vol. 82, pp. 2594–2597, 1999.

[227] J. D. Franson, “Two-photon interferometry over large distances,” Phys.
Rev. A, vol. 44, pp. 4552–4555, 1991.

[228] Z. Y. Ou, X. Y. Zou, L. J. Wang, and L. Mandel,“Observation of nonlocal
interference in separated photon channels,” Phys. Rev. Lett., vol. 65,
pp. 321–324, 1990.

[229] P. G. Kwiat, W. A. Vareka, C. K. Hong, H. Nathel, and R. Y. Chiao,
“Correlated two-photon interference in a dual-beam Michelson interfer-
ometer,” Phys. Rev. A, vol. 41, pp. 2910–2913, 1990.
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[262] A. Eckstein, G. Boucher, A. Lemâıtre, P. Filloux, I. Favero, G. Leo,
J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral charac-
terization of two photon states via classical measurements,” Laser and
Photonics Reviews, vol. 8, no. 5, pp. L76–L80, 2014.

[263] K. Garay-Palmett, H. J. McGuinness, O. Cohen, J. S. Lundeen,
R. Rangel-Rojo, A. B. U’Ren, M. G. Raymer, C. J. McKinstrie, S. Radic,
and I. A. Walmsley, “Photon pair-state preparation with tailored spectral
properties by spontaneous four-wave mixing in photonic-crystal fiber,”
Opt. Express, vol. 15, no. 22, pp. 14870–14886, 2007.

[264] B. Fang, O. Cohen, M. Liscidini, J. E. Sipe, and V. O. Lorenz, “Fast and
highly resolved capture of the joint spectral density of photon pairs,”
Optica, vol. 1, no. 5, pp. 281–284, 2014.

[265] B. J. Smith, P. Mahou, O. Cohen, J. S. Lundeen, and I. A. Walms-
ley, “Photon pair generation in birefringent optical fibers,”Opt. Express,
vol. 17, no. 26, pp. 23589–23602, 2009.

[266] M. Avenhaus, A. Eckstein, P. J. Mosley, and C. Silberhorn, “Fiber-
assisted single-photon spectrograph,”Opt. Lett., vol. 34, no. 18, pp. 2873–
2875, 2009.

[267] L. Rozema, C. Wang, D. H. Mahler, A. Hayat, A. M. Steinberg, J. E.
Sipe, and M. Liscidini, “Characterizing an entangled-photon source with
classical detectors and measurements,”Optica, vol. 2, no. 5, pp. 430–433,
2015.

185



BIBLIOGRAPHY

[268] J. W. Silverstone, R. Santagati, D. Bonneau, M. J. Strain, M. Sorel,
J. L. O’Brien, and M. G. Thompson, “Qubit entanglement between ring-
resonator photon-pair sources on a silicon chip,” Nature Communica-
tions, vol. 6, p. 7948, 2015.

[269] J. R. Ong, R. Kumar, and S. Mookherjea, “Silicon microring-based wave-
length converter with integrated pump and signal suppression,” Opt.
Lett., vol. 39, no. 15, pp. 4439–4441, 2014.

[270] M. Piekarek, D. Bonneau, S. Miki, T. Yamashita, M. Fujiwara,
M. Sasaki, H. Terai, M. G. Tanner, C. M. Natarajan, R. H. Hadfield,
J. L. O’Brien, and M. G. Thompson, “High-extinction ratio integrated
photonic filters for silicon quantum photonics,”Opt. Lett., vol. 42, no. 4,
pp. 815–818, 2017.

[271] C. Xiong, T. D. Vo, M. J. Collins, J. Li, T. F. Krauss, M. J. Steel, A. S.
Clark, and B. J. Eggleton, “Bidirectional multiplexing of heralded single
photons from a silicon chip,” Opt. Lett., vol. 38, no. 23, pp. 5176–5179,
2013.

[272] A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Scia-
rrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates
for polarization qubits,”Nature Communications, vol. 2, no. 1, 2011.

[273] N. C. Harris, G. R. Steinbrecher, M. Prabhu, Y. Lahini, J. Mower,
D. Bunandar, C. Chen, F. N. C. Wong, T. Baehr-Jones, M. Hochberg,
S. Lloyd, and D. Englund, “Quantum transport simulations in a pro-
grammable nanophotonic processor,”Nature Photonics, vol. 11, pp. 447–
452, 2017.

[274] K. Bourzac, “Photonic chips made easier,”Nature, vol. 483, p. 388, 2012.

[275] Y. Zhang, T. Baehr-Jones, R. Ding, T. Pinguet, Z. Xuan, and
M. Hochberg, “Silicon multi-project wafer platforms for optoelectronic
system integration,” in The 9th International Conference on Group IV
Photonics (GFP), pp. 63–65, 2012.

[276] T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. C.
Harris, J. Li, L. He, M. Gould, Y. Zhang, A. E.-J. Lim, T.-Y. Liow,
S. Hwee-Gee Teo, G.-Q. Lo, and M. Hochberg, “A 25 Gb/s silicon pho-
tonics platform,” arXiv preprint arXiv:1203.0767, 2012.

[277] C. Galland, A. Novack, Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Q. Li,
Y. Yang, Y. M. Ma, Y. Zhang, K. Padmaraju, K. Bergmen, A. E.-J. Lim,
G.-Q. Lo, and M. Hochberg, “A CMOS-compatible silicon photonic plat-
form for high-speed integrated opto-electronics,” Proceedings of SPIE,
vol. 8767, 2013.

186



BIBLIOGRAPHY

[278] A. Novack, Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Q. Li, Y. Yang,
Y. Ma, Y. Zhang, K. Padmaraju, K. Bergmen, A. E.-J. Lim, G.-Q. Lo,
and M. Hochberg, “A 30 GHz silicon photonic platform,” 2013.

[279] T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low
loss mode size converter from 0.3 /spl mu/m square Si wire waveguides
to singlemode fibres,”Electronics Letters, vol. 38, no. 25, pp. 1669–1670,
2002.

[280] S. J. McNab, N. Moll, and Y. A. Vlasov, “Ultra-low loss photonic in-
tegrated circuit with membrane-type photonic crystal waveguides,”Opt.
Express, vol. 11, no. 22, pp. 2927–2939, 2003.

[281] M. Pu, L. Liu, H. Ou, K. Yvind, and J. M. Hvam,“Ultra-low-loss inverted
taper coupler for silicon-on-insulator ridge waveguide,” Optics Commu-
nications, vol. 283, no. 19, pp. 3678–3682, 2010.

[282] D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout,
P. Bienstman, and R. Baets, “Grating couplers for coupling between op-
tical fibers and nanophotonic waveguides,” Japanese Journal of Applied
Physics, vol. 45, no. 8R, p. 6071, 2006.

[283] L. He, Y. Liu, C. Galland, A. E. J. Lim, G.-Q. Lo, T. Baehr-Jones,
and M. Hochberg, “A High-E�ciency Nonuniform Grating Coupler Re-
alized With 248-nm Optical Lithography,”Photonics Technology Letters,
IEEE, vol. 25, no. 14, pp. 1358–1361, 2013.

[284] Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Y. Yang, Y. Ma, Y. Zhang,
A. E.-J. Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, and M. Hochberg,
“30GHz silicon platform for photonics system,” Optical Interconnects
Conference, OI 2013, vol. 1, pp. 27–28, 2013.

[285] M. Liscidini, L. G. Helt, and J. E. Sipe, “Asymptotic fields for a hamil-
tonian treatment of nonlinear electromagnetic phenomena,”Physical Re-
view A, vol. 85, no. 1, p. 013833, 2012.

[286] Z. Yang, M. Liscidini, and J. E. Sipe, “Spontaneous parametric down-
conversion in waveguides: a backward Heisenberg picture approach,”
Physical Review A, vol. 77, no. 3, p. 033808, 2008.

[287] T. Onodera, M. Liscidini, J. E. Sipe, and L. G. Helt, “Parametric fluores-
cence in a sequence of resonators: An analogy with Dicke superradiance,”
Physical Review A, vol. 93, no. 4, p. 043837, 2016.

[288] Z. Vernon, M. Menotti, C. C. Tison, J. A. Steidle, M. L. Fanto, P. M.
Thomas, S. F. Preble, A. M. Smith, P. M. Alsing, M. Liscidini, and J. E.
Sipe, “Truly unentangled photon pairs without spectral filtering,” Opt.
Lett., vol. 42, no. 18, pp. 3638–3641, 2017.

187



BIBLIOGRAPHY

[289] L. Pavesi, “A review of the various e↵orts to a silicon laser,” 2003.

[290] Z. Fang, Q. Y. Chen, and C. Z. Zhao, “A review of recent progress in
lasers on silicon,”Optics & Laser Technology, vol. 46, pp. 103–110, 2013.

[291] Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon pho-
tonics,” Light: Science & Applications, vol. 4, p. e358, 2015.

[292] O. Boyraz and B. Jalali, “Demonstration of a silicon Raman laser,”Opt.
Express, vol. 12, no. 21, pp. 5269–5273, 2004.

[293] A. J. Kenyon, “Erbium in silicon,” Semiconductor Science and Technol-
ogy, vol. 20, no. 12, p. R65, 2005.

[294] M. Bulsara, “Optical interconnects promised by III-V on-silicon integra-
tion,” Solid State Technology, vol. 47, pp. 22–25, 2004.

[295] G. Roelkens, D. Van Thourhout, R. Baets, R. Nötzel, and M. Smit,
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