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Introduction

Manipulation of light has been a dream of scientists almost since the first
discoveries related to light. However, it is only in the last 50 years that this
dream has started to become a reality. In particular, the development of tech-
niques capable of shaping matter at the nano-scale has offered possibilities
to control light-matter interaction like never before.

Thus, the branch of Photonics, defined as “the physical science of light
generation, detection, and manipulation through emission, transmission, mod-
ulation, signal processing, switching, amplification, and sensing” has been
born. The potential of Photonics is almost endless, and spans from the sim-
plest applications, such as telecommunication or sensing, to more complex or
exotic ones, such as Quantum Optics or Secure Quantum Communication.

Many materials have been proposed as a valid Photonic platform, but
none has the appeal of Silicon, leading element of the electronic industry.
Indeed, using a common platform for both Photonics and Electronics has
obvious advantages, such as a ready and mature technology for realization of
Photonic components, along with the possibility of an easy opto-electronic
integration. The aim of this particular branch of Photonics, called Silicon
Photonics, is the realization of Photonic Integrated Circuits (PICs), following
the same route traced by electronic industry years ago. The main field in
which Silicon Photonics is expected to have an impact is telecommunication,
in particular for mid-and short-range. Optical interconnects have indeed the
potential to take over electronic connections for intra- and inter-chip data
communications.

To hit this target, however, a careful design of photonic components is
needed. Since prototyping costs in Photonics are typically quite high (cur-
rent foundries can deliver low-cost production only for very high volumes),
physical simulation of Photonics devices has taken over a key role in the de-
sign flow. In fact, many techniques have been developed over the years for
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INTRODUCTION

both optical and electrical simulation, thus providing a rapid and efficient
way of improving the designs before fabrication of the actual devices.

In this thesis, some of those techniques are used to simulate the optical
properties of photonic devices, with the double aim of better understand-
ing the physical mechanisms involved and of improving the performances.
In particular, this thesis focuses on some possible photonic applications of
grating structures, trying to use the well understood physics of periodic pat-
terned media and Photonic Crystals to solve real-word problems, especially
ones related to optical communication.

The main targeted applications are grating-couplers and slow-light in
grating waveguides. In fact, grating-couplers provide efficient light-coupling
in and out of a PIC and better understanding of their working principle or
improved design strategies could lead to a reduction of the connection losses
in optical communication. Slow light, instead, seems to be a viable route to
enhance light-matter interaction in electro-optical modulators, allowing for
a reduction of energy consumption of transmitting devices.

This thesis is composed by four chapters and four appendices:

Chapter One: An overview (without claim of completeness) on the current
status of Silicon Photonics. Some of the basic structures, along with the
most common applications, are presented. Additional space is reserved
for discussion on the physics of light propagation in periodic media and
on the numerical methods employed in this thesis.

Chapter Two: A numerical study on the properties of Silicon-On-Insulator
grating-couplers, with particular attention on the physical mechanisms
underlying their bandwidth.

Chapter Three: A feasibility study on a grating-to-grating approach for
light coupling between two chips belonging to two different platforms,
namely conventional Silicon-On-Insulator and an Indium Phosphide
based one.

Chapter Four: A study of slow-light performance of silicon grating waveg-
uides: slow-light bandwidth and insertion losses.

Appendices: Theory and details on the numerical methods employed, in
particular Aperiodic-Fourier Modal Method (A-FMM) and Particle
Swarm Optimization (PSO). Details on the grating-couplers coupling
efficiency and bandwidth optimization procedure are also given.
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Chapter 1
Integrated Photonics

Photonics is the science of light creation, manipulation, and detection at the
nano-scale. The shaping of matter at the nano-scale offered by modern tech-
nology has generated interesting questions on what happens to light-matter
interaction when the latter can be modeled on a scale comparable with the
wavelength of the light. Thus, the way has been opened to a whole new
range of phenomena and possible applications regarding light. In particular
the possibility of using silicon as base material, leveraging on the solid tech-
nological background developed for electronic industry, has gained special
attention in the past years, leading to the creation of an entire new field:
Silicon Photonics.

This chapter is structured as follows. The first section will give an
overview of current state of Silicon Photonics. The second section will provide
insight on the physics of light propagation in periodic structures, a key topic
of photonics. The third section will present some of the numerical methods
used to solve Maxwell equations within arbitrary geometry, a fundamental
step in the design of photonic devices.

1.1 Overview on Silicon Photonics

In the past years silicon has often appeared as the ideal candidate for Pho-
tonic applications in general, and for the realization of Photonic Integrated
Circuit (PICs) in particular. Silicon Photonics could indeed take advantage
of all the techniques developed for the electronic industry, and consequently
benefit from an easier opto-electronic integration with respect to other ma-
terials.

The most important platform in electronics, and thus the starting point of
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CHAPTER 1. INTEGRATED PHOTONICS

Silicon Photonics, is the Complementary Metal-Oxide-Semiconductor (CMOS).
In this platform a thin layer of silicon (few hundreds of nanometers) is em-
bedded between two sheets of oxide. The thin silicon layer can then be
doped and patterned to create electronic circuits, and the top oxide can be
opened, allowing metal contacts to reach the silicon. Usually the full CMOS
structure is built on a silicon substrate, for both mechanical support and
thermal dissipation. This kind of vertical structure is ideal for the build-
ing of Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs), on
which all current electronics is based.

Nevertheless, the features of the CMOS scheme are well suited also for
some applications in Photonics. Since both silicon (Si) and silicon oxide
(SiO2) are transparent at typical telecom wavelengths (1.31 µm or 1.55 µm)
and their refractive indexes are quite different (typically around 3.44 and
1.44 for Si and SiO2, respectively), efficient waveguiding of light inside the
very same silicon layer used for electronics is easily obtained. Moreover, due
to its centro-symmetric crystalline structure, χ2 non-linearities are very weak
in silicon (only the surface contribution remains), so quite high power inside
the waveguides can be reached before unwanted nonlinear phenomena, such
as Two Photon Absorption (TPA) or Second Harmonic Generation (SHG),
take place.

However, using silicon as optical material is not without drawbacks. The
main one is that, due to its indirect bad-gap, silicon is a poor light emit-
ter. Thus, silicon based PICs need some sort of external light source or the
integration with other materials able to provide the necessary gain for an
integrated light source — See Lasers in Par. 1.1.4.

Another big problem of silicon is that, always due to its centro-symmetric
nature, the linear electro-optical (Pockels) effect is absent, and can only be
obtained by inserting strain. Thus, it is impossible to realize efficient electro-
optical modulators so common in other platforms. However, a promising
solution has been found in the Plasma Dispersion Effect — See Modulators
in Par. 1.1.4.

Thus, Silicon Photonics has been proposed as a valid alternative for many
applications in recent years, both in scientific research and commercial appli-
cations. This chapter will provide first a very brief summary of past history
of Silicon Photonics, then the actual state and future challenges will be dis-
cussed, together with an overview of passive and active components nowadays
available.
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1.1. OVERVIEW ON SILICON PHOTONICS

1.1.1 Brief history

Envisions of an optical “super-chip” able to reproduce any components avail-
able in an optical laboratory have been around since early seventies [1]. Those
dreams have somewhat collapsed under the blows of reality, since still nowa-
days no “super-chip” containing all the ingredients for a complete integrated
Photonics platform — light production, manipulation and detection — has
been demonstrated.

Nevertheless, much has been achieved over the years. Research during
the eighties and the nineties established the basic building blocks of mod-
ern Silicon Photonics. It is during this period that the basic concepts of
waveguides, modulators and detectors were established.

Regarding the waveguides, after first explorative studies on the possibility
of obtaining waveguides both in doped silicon [2, 3] and Silicon-On-Insulator
[4], research focused mainly on reducing propagation losses [5, 6, 7], which
were mainly determined by the material type and quality, and by surface
roughness. Only later, in the nineties, the focus shifted on the shrinking of
waveguides towards the modern single mode operation [8, 9, 10].

In the same period the basics of optical signal modulation in silicon were
developed. The seminal work by Richard Soref [11] demonstrated that index
modulation in silicon can be achieved by Plasma Dispersion effect, namely the
change of index of refraction by effect of free carrier density. A first demon-
stration of a phase modulator based on this effect quickly appeared [12].
With the inclusion of such device inside a Mach-Zehnder interferomenter,
the modern silicon optical modulators have been born [13]. Mach-Zehnder
modulators based on the thermo-optic effect have also been proposed [14],
but soon abandoned due to their low speed. Later research on modulators fo-
cused on increasing modulation speed and decreasing the energy consumption
per bit, culminating in 2004 with the first realization of a 10 GHz modulator
[15].

Regarding photo-detectors, first devices begun to appear in the mid-
eighties at AT&T Bell Laboratories. They were based on the implantation
of germanium in silicon, which at sufficient concentration can lower the band
edge up to telecom wavelength [16, 17, 18]. Such structures were realized
using a Si-SixGe1–x super-lattice [19], and a Quantum Efficiency of 40% was
measured. The first CMOS compatible device was proposed in the early
nineties [20], albeit with a very low QE at telecom wavelength. Successful
research managed to improve both quantum efficiency and response time
[21, 22, 23].

Although the long dreamed photonic “super-chip” is still far away, con-
siderable progress has been made over 40 years of research. For additional
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CHAPTER 1. INTEGRATED PHOTONICS

(a) Traffic through data centers. (b) Market value of optical interconnects.

Figure 1.1: Some estimation on the future of Silicon Photonics for optical
interconnects. Data taken from [28] and [29].

information on early research in Silicon Photonics see the works from G.T.
Reed [24] and R. Soref [25].

1.1.2 Actual state and future challenges

Silicon Photonics nowadays is somewhat in the middle of the transition from
research to mature technology. Although not all the desired features can
be obtained on a single photonic chip, realities that leverage on existing
technology to offer small industries and start-ups easy access to photonic
foundries, allowing for rapid R&D, began to appear [26, 27]. The aims of
these partnerships is to bridge the so called “Valley of Death”, namely to help
industries to make the jump from prototyping to a small volume fabrication.

The main targeted applications for Photonics right now are telecommu-
nication, sensing, and especially optical interconnection, which is the main
driver behind current Photonics R&D. The term optical interconnects usu-
ally refers to the substitution of electrical connections on any scale, from
long distance communication (where optical fibers have been the dominant
technology since the 90s), through mid-range applications, such as inside
data-center and super-computers (where optical interconnects have begun to
affirm in the late 2000), down to intra-chip communication (still domain of
electrical interconnects).

Indeed, optical interconnects do not possess any physical constraint on
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1.1. OVERVIEW ON SILICON PHOTONICS

the bit-rate, as electrical ones do [30]. Thus, optical interconnects, especially
Silicon Photonics based ones, are seen as the only technology able to meet
the growing demand of bandwidth. Silicon Photonics will be particularly
beneficial to data centers, which will see a dramatic increase in traffic [29], es-
pecially within the single data center, and will probably be the major drivers
of the optical interconnects market in the near future [28, 31]. Research on
optical interconnects in the next years will probably focus on reducing the
energy consumption, which, although greater speed can be delivered, is now
higher than the typical 1 pJ per bit needed by electrical interconnection.

As an additional possible application of Photonics in the future, it would
be impossible not to mention Quantum Technologies. Although still a tech-
nology confined in research laboratories, with few exceptions such as true
random number generator [32], Photonics has shown great potential as a
platform for Quantum Technologies [33], especially in the areas of Quantum
communication, metrology, and sensing.

1.1.3 Passive components

Waveguides

In optics, waveguides are defined as structures that guide electromagnetic
radiation, allowing the propagation of light in selected directions with min-
imal energy loss and forbidding the propagation along other directions. At
near infrared frequencies, which are the region of interest for Silicon Photon-
ics, two ways of providing light confinement exist: Total Internal Reflection
(TIR) and Photonic Band Gap (PBG).

Total Internal Reflection (TIR) takes place when a light ray is propagat-
ing beyond the limiting angle in a high index dielectric and cannot escape
it. This is the simplest and most efficient way of confining light in actual
fabricated structures. Thus, Total Internal Reflection is employed in the to-
tality of commercially available Silicon Photonics devices. The most common
type of 1D-waveguide in SOI platform is the so called rib (sometimes ridge)
waveguide — see Fig 1.2.

The main source of loss in this type of waveguide is Rayleigh scattering
from surface roughness. With current fabrication techniques propagation
loss varies greatly. It can range from the order of 2.5 dB/cm available at
commercially available foundries as EuroPractice [34] to the more or less
1 dB/cm accepted as industry standard [35], while record losses as low as
0.026 dB/cm have been reported in the research literature for multi-mode
waveguides [36].

Instead, the Photonic Band Gap (PBG) approach is based on the fact
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CHAPTER 1. INTEGRATED PHOTONICS
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Figure 1.2: Sketch and features of a typical rib waveguide — h=310 nm,
t=150 nm, W=400 nm. Normally the terms “ridge” refers to fully etched
(t=0) waveguides.
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1.1. OVERVIEW ON SILICON PHOTONICS

(a) Sketch of typical structure of a
W1 waveguide.
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waveguide built out of a ε = 12 dielectric
slab suspended in air.

Figure 1.3: Sketch and features of a typical W1 PhC-Slab waveguide.

that regions of energy in which light propagation is forbidden (indeed, a
Photonic Band Gap) can appear in periodically patterned structures. Such
phenomenon can be used for the realization of very efficient mirrors, and thus
waveguides. Numerous ways of creating waveguides by this approach have
been proposed over the years. The most prominent one is without doubt the
W1 waveguide in Photonic Crystals Slabs, in which a PBG in the horizontal
direction is joined to TIR in the vertical direction to realize 1D waveguides.
Although it is a very interesting solution, allowing for the integration of typi-
cal features of Photonics Chrystals, such as slow-light [37], this technology is
not mature enough for mainstream commercial applications. The main rea-
son, besides the more complex fabrication, is disordered induced loss [38, 39]
which, even with the best performing fabrication techniques, gives a total
loss at least an order of magnitude greater than in TIR based waveguides
[40].

Bragg gratings

Bragg gratings are probably the easiest way to bring all the features of peri-
odic structures and Photonic Crystals to integrated Silicon Photonics. Typi-
cal realizations of Bragg gratings are based on periodic etching in a 2D silicon
slabs or width modulation in silicon nanowires — see Fig. 1.4.

Typically in a Bragg grating three different regimes, corresponding to
different scales of wavelength compared to the period Λ of the grating, can
be identified — see Fig. 1.5. At lower energies (λ >≈ 2Λ) there is the so
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CHAPTER 1. INTEGRATED PHOTONICS

(a) 1D waveguide — 1D
grating

(b) 2D waveguide — 1D
grating

(c) 2D waveguide — 2D
grating

Figure 1.4: Three possible configurations of Bragg gratings in Silicon Pho-
tonics.

Figure 1.5: Typical band dispersion of a 1D Bragg grating. The three relevant
regimes — sub-wavelength, Bragg reflection and radiation — and relevant
energy regions are enlightened. Image reported from [41].

called sub-wavelength regime. In this region light can freely propagate in
the grating as in a bulk material (or a waveguide composed of bulk material,
in this case), but the dispersion is modified. At intermediate energy (λ ≈
2Λ) usually sits the band gap, a region in which propagation of light inside
the grating is forbidden and any light externally incident on the grating is
scattered back. At higher energies (λ <≈ 2Λ), and above the light line of the
low index material, there is the radiation regime. In this regime guided light
propagation is allowed in the grating, but the guided mode is coupled to the
continuous of radiative modes by first (or more) order diffraction. Thus, the
guided mode inside the grating has a finite lifetime after which almost all
the light is scattered away. For details on the reason of such rich behavior
see Sec. 1.2: Physics of Periodic Structures; here the focus will be on some
of the possible applications of these three different regimes.

The sub-wavelength regime is very powerful in all the platforms in which
only few materials (and thus, only few values of the refractive index) are

10



1.1. OVERVIEW ON SILICON PHOTONICS

available, such as Silicon Photonics. This because a sub-wavelength periodi-
cally patterned medium can be treated as an effective uniform material with
an effective index dependent on the patterning. Thus, sub-wavelength pat-
tering can, in particular conditions, be equivalent to changing the material
properties. Moreover, this effective medium is generally anisotropic [42, 43]
and can be tailored to tweak TE and TM properties differently and indepen-
dently. Sub-wavelength structures were first proposed to address the problem
of fiber-to-chip light coupling, where were used, in an edge-coupling scheme,
to adapt the effective index between an optical fiber and a standard inte-
grated silicon waveguide [44]. Since then, their application field has expanded
dramatically, contributing to almost every topic in Silicon Photonics: waveg-
uides [45] and waveguide-crossing [46], grating-couplers [47, 48, 49], waveg-
uide lenses [50, 51], in-plane light routing [52], (de)multiplexers [53], mode
converters [54], optical [55] and electrical [56] modulators, multi-mode inter-
ferometers [57, 58] and polarization splitters [59]. For a complete overview
on the use of sub-wavelength structures see: Robert Halir et al. “Waveg-
uide sub-wavelength structures: a review of principles and applications” [41]
and Robert Halir et al. “Subwavelength-grating metamaterial structures for
silicon photonic devices” [60].

Devices based on the concept of Photonic Band Gap are essential to Sil-
icon Photonics, and gratings are indeed the easiest way to insert totally or
partially reflective mirrors inside integrated circuits, thus providing a basic
building block for cavities and Photonic Crystals based structures. For ex-
ample, the PBG available in a triangular lattice of holes [61] has enabled the
development of W1 waveguides and all the related physics and applications.
More important, 1D grating mirrors are the basis for many laser cavities
[62, 63]. In addition, fancier applications are possible, such as temperature
[64] or biological [65] sensors.

Regarding operation in the radiation regime, although it seems it would
only insert losses and should be avoided, it can indeed be a desirable feature
when the aim is to couple light in and out of the planar chip through the
vertical direction. Such devices, called grating-couplers, have stimulated a
great deal of research in the past twenty years, focusing in particular in
decreasing insertion loss and increasing operational bandwidth. Grating-
couplers exist in both 1D [66] and 2D [67, 68] versions, the former being
able to couple only one polarization and the latter being suitable for both.
While the simplest configuration is the uniform one [69], variants have been
developed to address particular problems. Chirped or apodized gratings
[70, 71, 72] can be realized to improve the insertion loss over the uniform
ones, while focusing gratings [73, 74] can be employed to reduce the total
footprint of the component, or both strategies can be used together [75].

11



CHAPTER 1. INTEGRATED PHOTONICS

Moreover, it is important to notice that each working regime of a Bragg
grating does not exclude the others. On the contrary, they can be joined to-
gether to obtain additional freedom and functionalities, such as sub-wavelength
grating-couplers, where sub-wavelength patterning is used in a 1D grating to
finely tune the index of the material [47, 76].

Chapter 2 and 3 of this thesis will be devoted to 1D grating-couplers.
The former will focus on Fiber-to-Chip coupling, analyzing the mechanisms
behind the bandwidth composition and the trade-off between bandwidth and
insertion loss. The later will focus on the co-design of silicon and indium
phosphide grating-couplers for chip-to-chip coupling in a hybrid integration
scheme.

Cavities

Optical cavities or resonators are structures that are able to trap light for a
certain amount of time. Two main figures of merit for an optical resonator
exist: the quality factor Q and the mode volume V. The Q-factor is related
to the time it takes for the field inside the resonator to decay. It can be
calculated as 2π times the ratio between the energy stored in the cavity and
the energy loss per cycle (in the absence of a forcing field), or equivalently,
as the ratio between the frequency of the resonance and its spectral width
(intended as Full-Width-Half-Maximum). The mode volume V gives an indi-
cation on how much the cavity mode is extended in real space. It is usually
defined as the inverse of the maximum of the field (once the mode is correctly
normalized) and it is related to the Purcell factor [77].

Many ways have been proposed to realize cavities in SOI platform, based
on either TIR, PBG or both. Typical TIR-based cavities in Silicon Photonics
are based either on ring resonators [78] or Whispering Gallery Modes (WGM)
in microdisks [79, 80, 81]. These types of cavities usually exhibit a very
high Q-factor, at the price of fairly large mode volumes. Many applications
have been demonstrated using these resonators, such as lasers [82], sensors
[83, 84], modulators [85], switches [86, 87], routers [88, 89], and nonlinear
optical devices [90, 91].

Regarding PBG confinement, two major classes of cavities can be identi-
fied [92]: nano-beam cavities and PhC Slab ones. Both these types can reach
very high Q-factors together with small (on the order of few cubic wave-
lengths) mode volumes. The main drawbacks are their complexity, both in
fabrication and design, and the quite high sensitivity to fabrication errors
and disorder [93].

Nano-beam cavities are usually based on a periodic modulation of a 1D
TIR-based waveguide. The simplest approach is to use PBG to create mirrors
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1.1. OVERVIEW ON SILICON PHOTONICS

to build a Fabry-Perot cavity [94] or using a more gentle confinement by the
mode-gap modulation approach [95].

In PhC Slabs, instead, the easiest way to create a cavity is simply to
insert a defect in the periodic lattice. The most prominent examples includes
H- [96, 97] and L-cavities [98, 99], namely one ore more holes missing or
displaced from a triangular lattice of holes etched in a silicon slab. Different
types of cavities have however been proposed and tested, such as Fabry-Perot
heterostructures [100], mode-gap modulation [101] or effective bi-chromatic
potential [102].

Multiplexers and de-multiplexers

The use of Wavelength Division Multiplexing (WDM) as the main road to
increase bandwidth in current Silicon Photonics for optical interconnects has
generated a high demand for multiplexers and de-multiplexers. Those are
components able to combine signals at different wavelengths from different
physical input channels in a single physical output channel, and vice versa.

Many solutions to this problem have been explored over the years. Early
integrated structures simply translated some common schemes of discrete
optics, such as Echelle gratings, i.e. gratings working at a very high (tens
of even hundreds) diffraction order [103]. The advantage of using such a
high diffraction order lies mainly in the enhancement of the resolving power,
thus allowing a finer channel spacing, but at the price of a reduced Free
Spectral Range (the difference in wavelength between two consecutive orders
diffracted at the same angle), which ultimately limits the wavelength span in
which the multiplexer can operate. The first SOI-based device employed a
reflection-grating in the Rowland configuration [104]. This solution suffered
from several drawbacks, mainly in term of losses (around 10 dB) and of
physical footprint (on mm scale).

To solve such problems, a different approach has been proposed: Arrayed
Waveguide Grating (AWG) [105] — see Fig. 1.6a. Simply stated, an AWG is
composed of two Free Propagation Regions (FPR) connected by an array of
waveguides of different length, which are designed to give a 2πm (m is the
order of the grating) phase shift between each other at the central wavelength
of the component. The input and output waveguides are connected to the
two FPRs. The operating principle is as follow: when a signal at the central
wavelength arrives in the first FPR, it diverges and is split between the
arrayed waveguides; since each waveguide has a 2π multiple phase shift with
respect to each other, the phase distribution at the input of the array is
exactly reconstructed at the output; the light is so re-focused in the central
position of the second FPR; when the input signal is at a different wavelength,
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(a) Arrayed-Waveguide Grating (AWG).
Figure reproduced from [105].
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Figure 1.6: Two possible configuration of a (de)multiplexing device.

a wavelength dependent phase shift is applied between each waveguide at
the end of the array, causing the light to be focused in a different position; if
output waveguides are properly placed at the end of the second FPR, the de-
multiplexing action take place. Consequently, the multiplexing is obtained
by operating the device in the reverse direction. The chosen order of an AWG
grating usually varies between 20 and 50, leading to different trade-offs in
the multiplexer behavior [106, 107].

Great performances have been demonstrated by AWG-based devices [108,
109, 110], such that they nowadays constitute the de-facto standard for WDM
applications. However, research has never stopped, and recent developments
have provided AWG (de)multiplexers with additional features, such as ather-
mal operation [111], compatibility with Mode Division Multiplexing (MDM)
[112] and reconfigurable add-drop [113].

More recently, a viable alternative to AWG has been found in sidewall
grating waveguides — see Fig. 1.6b. In this approach, a grating is etched in
the side of a conventional ridge waveguide, in such a way to radiate power
outside the waveguide from the side. The waveguide is curved, thus radiation
of different wavelengths is focused in different points of the Rowland circle,
where the collecting waveguides are placed [53, 114]. The main advantage of
this approach is the compactness, since it can be fitted in a fraction of the
space of conventional AWG.
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Figure 1.7: Typical workflow of wafer bonding process.

1.1.4 Active components

Lasers

The realization of light sources and amplifiers is probably the most important
feature in Silicon Photonics, but at the same time its greater challenge. Due
to the indirect nature of the bandgap in silicon [115], obtaining electrically
pumped gain is quite a difficult task. Early solutions to this problem were the
packaging of external lasers together with the PIC. More recently, great effort
was placed in the research for integrated light sources. Three main lines of
research can be identified: direct lasing of silicon, epitaxial integration, and
hybrid integration.

Regarding silicon, two main ways to reach lasing exist: enhancement of
radiative processes due to exciton confinement and stimulated Raman scat-
tering. Exciton confinement can be achieved by nano-structuring the ma-
terial, for example in porous silicon [116, 117], silicon nano-crystals [118] or
periodically patterned structures [119, 120]. The problem with this approach,
besides the difficult fabrication, is that it requires low temperatures to work.
Stimulated Raman scattering takes advantage of the gain which is created at
the Stokes lines when silicon is pumped with a laser [120, 121]. Their perfor-
mances can be quite high [122], and can access virtually any wavelength, but,
requiring an additional pump laser, do not resolve the problem of integrating
a light source.

The most promising approach nowadays is to join silicon with other gain
materials, such as III-V compounds, relying on either epitaxial or hybrid in-
tegration. Epitaxial integration consist in the direct grow of a gain material
on silicon substrate, which can be difficult given the great lattice and thermal
coefficient mismatch usually involved [123]. Numerous solutions have been
proposed, based either on GaAs [124] or on GaSb [125]. However, perfor-
mance level and reliability are still a problem to be solved, especially taking
into account the high costs involved.

To overcome the intrinsic problem of monolithic integration, many schemes
of hybrid integration have been studied, the most important being wafer
bonding [126] and transfer printing [127]. The wafer bonding technique —
see Fig. 1.7 — consists in the bonding of an unprocessed III-V wafer to a
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Figure 1.8: Typical work-flow of transfer-printing process.

previously worked SOI wafer, both directly or with the addition of a “glue”
material. The additional layer is then processed to create the lasing devices
and the control electronics. This kind of approach allows for great versatil-
ity, since many structures, such as micro-disks (both single [128] and array
[129]), rings [130], Fabry-Perot [131, 132] and Distributed Feedback lasers
[62] can be realized. However, it presents also some disadvantages: wafer
bonding usually requires very careful polishing of the surfaces, and, since the
processing of the III-V wafer takes place after bonding to silicon, it can result
in considerable material wastage in case of any error in the fabrication.

On the contrary, transfer printing — see Fig. 1.8 — allows for the trans-
portation of individual devices between two wafers. The material wastage
is greatly reduced, since SOI and III-V devices can be built and tested sep-
arately, and then only the good performing ones are selected to be joined.
While a little less versatile than wafer bonding, transfer printing has proven
successful in a wide range of materials and structures. For examples, Fabry-
Perot lasers have been demonstrated in GaAs [133, 134] and InP [135, 136].
The main drawback of this approach is the sub-µm alignment needed in the
transfer process.

In the prospect of hybrid integration, chapter 3 of this thesis will be
devoted to a feasibility study of light coupling between SOI and InP platforms
via a grating-to-grating coupling scheme. The aim is to open the way towards
hybrid integration with conventional flip-chip technology, at lower cost than
both wafer bonding and transfer printing.

For a comprehensive review of current status of lasing in silicon see: D.
Liang & J. Bowers “Recent progress in laser on silicon” [137].

Modulators

Another class of key active elements needed in the Silicon Photonics toolkit
is the one of electro-optical modulators. These devices are responsible for
the modulation of an optical signal using an electrical driver, a key feature
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Figure 1.9: Three possible implementations of the Plasma Dispersion Effect
in silicon using a p-n junction: (a) carrier-accumulation, (b) carrier-injection
and (c) carrier-depletion. Figure reproduced from [143].

for the realization of optical interconnects.

Typical modulators, either integrated or not, rely on some kind of electro-
optic effect, which causes an electric field to modify either the real (eletro-
refraction) or the imaginary (electro-absorption) part of the refractive index
of a material. The most common effects are Pockels, Kerr or Franz–Keldysh.
Unfortunately those approaches are unfeasible in silicon, since the relevant
effects are quite weak [11] compared to other materials (such as III-V com-
pounds). Nevertheless, attempts to relay on such phenomena have been
made. For example, it has been demonstrated that, by introducing strain in
the silicon, usually by adding a small layer of silicon nitride on top of a silicon
waveguide [138], linear Pockels effect can be induced [139]. This has even led
to the realization of working modulators [140], but this approach is not the
most suitable for commercial integrated applications, both for the high volt-
ages (≈ 30 V) required and the poor scaling in frequency [141]. Therefore,
the two main options practically available in silicon are thermal modulation
and plasma dispersion effect.

The first effect is based on the change of refractive index as a function of
temperature. This effect is quite huge in silicon, due to the large thermo-optic
coefficient, but suffers from several major drawbacks: (i) the modulation
speed is too low to meet the performance expectation of optical interconnects;
(ii) the energy consumption can be quite high, and (iii) the operation in
environments with huge thermal fluctuations can be quite challenging [142].

The second effect is the modification of the refractive index as a function
of carrier density, and it is currently the most employed. It is usually real-
ized with the aid of a p-n junction inside the waveguide, and it is commonly
found in one of three possible implementations: carrier-accumulation, carrier-
injection and carrier-depletion — see Fig 1.9. The carrier-accumulation ap-
proach requires a thin insulating layer inside the p-n junction, to effectively
turn the junction into a capacitor. The index modulation takes place by
charging or discharging the capacitor. This method was the basis for the
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first realized modulator operating at Gigahertz rates [15]. While being quite
effective, it suffers from difficult fabrication and high optical loss. In the
carrier-injection configuration a region of intrinsic silicon, where the waveg-
uide is built, is placed inside the junction. Forward-biasing the junction
injects electrons and holes into the intrinsic region, providing the index mod-
ulation. This solution is quite effective and exhibits low optical loss, how-
ever the speed is limited by the carrier lifetime in the intrinsic region. The
carrier-depletion approach requires the realization of the p-n junction inside
the waveguide. Thus, a depletion region is created, whose amplitude can be
varied by changing the applied voltage in reverse-bias configuration. This
solution ensures high modulation speed and low optical loss, but the magni-
tude of the modulation is quite low compared to the other two approaches
operating at the same voltage.

Beyond the type of index modulation, electro-optic modulators can be
further divided into two classes based on their working principle: the ones
based on resonating cavities and the ones based on Mach-Zehnder (MZ) in-
terferometers, both with their advantages and disadvantages. Cavity based
modulators — see Fig 1.10a — use the cavity resonance to insert a narrow
feature in the spectral response of the component. By modulation of the in-
dex in the region of the cavity a shift in the resonance is achieved, allowing the
device to work as a switch. The main advantage of this solution is compact-
ness, since resonant cavities can be made very small inside PICs. However,
they are characterized by a very narrow working bandwidth (fractions of
nm), so their versatility is compromised. The majority of resonant modula-
tors proposed over the years are based on ring resonators [85, 144, 145, 146],
but also other solutions have been proposed, such as nano-beam [147, 148]
or PhC-slabs [149] based cavities.

Instead, in Mach-Zehnder modulators the index modulation is applied to
one, or both, the arms composing the interferometer — see Fig. 1.10b —
to change the intensity ratio between the two outputs of the Mach-Zehnder.
Consequently, this allows for a very fast and broadband modulation [150, 151,
152, 153], although at the price of a bigger footprint than cavity modulators
(usually millimeter long arms are needed).

More recently, attempts have been made to join the best of both ap-
proaches, by using slow-light features to enhance light matter interaction in
Mach-Zehnder modulators. Since the phase shift provided by one arm is, at
constant index modulation and length, proportional to the group index of
the waveguide, the aim is to leverage on the high group index that can be
obtained in periodically patterned structures. The main drawbacks in this
case are a more complex fabrication and a reduction of the optical band-
width with respect to conventional MZ, although not as much as in resonant
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Figure 1.10: Sketch and working principle of the two most common configu-
rations of a silicon electro-optical modulator.

devices. In this direction, solutions has been proposed based either on W1
waveguides in PhC Slabs [154, 155, 156] or corrugated waveguides [157, 158]
(also called grating waveguides). Chapter 4 of this thesis will be devoted to
the optimization of slow-light properties of silicon grating waveguides for this
kind of application. For a detailed survey of current status of electro-optical
modulators see G.T. Reed et al. “Silicon optical modulators” [143].

Photodetectors

The last fundamental building block for Silicon Photonics is an efficient de-
tector. The realization of photo-detectors in silicon has been thwarted by the
same problem afflicting the light sources. A few attempts have been made to
realize photo-detectors based only on silicon, by using defects to push the ab-
sorption edge inside the band gap down to useful frequencies [159]. However,
this approach has not generated much interest in recent years.

The most promising approaches for practical realization of detectors in
Silicon Photonics are basically two: hybrid integration of III-V compounds
and monolithic integration of germanium. The hybrid integration of III-V
compounds, usually by direct or adhesive wafer bonding, was probably the
first technique to deliver high performances [160]. Many solutions have been
proposed over the years, based either on direct [131], evanescent [161] or
vertical [162] coupling schemes.

The monolithic integration of germanium is based on direct epitaxial
growth of germanium on silicon wafers. Careful optimization of the growth
techniques has allowed to solve the 4.2% lattice mismatch problem. Fur-
thermore, current techniques rely on the difference in thermal expansion be-
tween silicon and germanium to insert tensile strain in the latter, enhancing
its optical properties [163]. Several high-performance and possibly CMOS-
compatible solutions have been demonstrated during the years [164, 165, 166],
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making the monolithic integration of Ge a viable route for the future of photo-
detection in silicon.

In the field of photo-detectors for applications in Silicon Photonics a
special mention is reserved for the ContactLess Integrated Photonic Probes
(CLIPPs). They rely on a capacitive measurement of the change in conduc-
tance of the silicon waveguide, induced by sub-gap absorption mechanisms
such as Surface-State Absorption [167]. In this way a fast and non invasive
measure of the light intensity inside the waveguide is achieved, opening the
way to real time monitoring of PICs and feedback mechanisms [168, 169].

1.2 Physics of periodic structures

In this section a small summary of the electromagnetic properties of periodic
structures is reported, following the one given in the book “Photonic Crystals:
Molding the Flow of light” [170].

1.2.1 Maxwell Equations as eigenvalue problem

The starting point of every discussion on classical electromagnetism are of
course Maxwell equations [171]:

∇ ·D = ρ (1.1a)

∇ ·B = 0 (1.1b)

∇× E +
∂B

∂t
= 0 (1.1c)

∇×H− ∂D

∂t
= J. (1.1d)

The material is then specified through its constitutive relations:

D = D(E) (1.2a)

B = B(H) (1.2b)

which allow to solve Maxwell Equation to get full electromagnetic behavior.
The constitutive relations 1.2 can in general be very complex. For the

sake of simplicity the present treatment will be restricted to nonmagnetic,
linear and isotropic material, where the constitutive relations can be simply
specified:

D = εε0E (1.3a)

B = µ0H (1.3b)
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where ε0 = 8.854 · 10−12 F m−1 and µ0 = 4π · 10−7 H m−1 are the vacuum
permittivity and permeability, respectively. The quantity ε is the relative di-
electric constant, it is a property of the material and can depend on frequency
and position.

In trying to solve the Maxwell equations the easiest route is to apply the
separation of variables, namely to write the electric and magnetic fields as
a product of two functions, one dependent on space only, the other on time
only. Moreover, due to linearity of Maxwell equations, it is possible to look
only at solutions harmonic in time:

E = E(r)e−iωt (1.4a)

H = H(r)e−iωt, (1.4b)

since any general solution can then be built with a proper linear combination
of harmonic solutions.

Inserting 1.3 and 1.4 inside 1.1, with the additional condition of no free
charges nor currents, gives the Maxwell equations for the harmonic fields:

∇ · E(r) = 0 (1.5a)

∇ ·H(r) = 0 (1.5b)

∇× E(r) + iµ0ωH(r) = 0 (1.5c)

∇×H(r)− iεε0ωE(r) = 0. (1.5d)

Furthermore, the two equations containing the curl can be combined in
the following way:

∇×
(

1

ε(r)
∇×H(r)

)
=
(ω
c

)2

H(r) (1.6)

where the fact that c = 1/
√
ε0µ0 = 299792458 m s−1 (the speed of light in

vacuum) has been used.
Equation 1.6, which together with the divergence conditions is equivalent

to the Maxwell equations, is sometimes called the master equation. It can
be easily seen that the master equation assumes the form of an eigenvalue
problem for the operator:

Θ(·) = ∇×
(

1

ε(r)
∇× ·

)
. (1.7)

Moreover, the operator Θ is Hermitian with respect to the inner product:

〈F|G〉 =

∫
F∗(r)G(r)dr, (1.8)
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since it can be proven that:

〈F|ΘG〉 = 〈ΘF|G〉 (1.9)

provided either one of the following conditions are satisfied: (I) the fields
vanish at the boundary of the integration region or (II) the fields satisfy
periodic boundary conditions in the integration domain. In addition, the
definition of the inner product of Eq. 1.8 provides a very convenient way to fix
the normalization of the modes. Since every solution of Eq 1.6 multiplied by
a constant is still a solution, it is possible to identify each class of equivalent
solutions by its normalized element, defined from an arbitrary solution F′ as:

F =
F′√
〈F|F〉

(1.10)

The possibility to recast Maxwell equations as an hermitian eigenvalue
problem is indeed remarkable. It promptly draws a parallelism with quantum
mechanics, allowing well known techniques, such as the variational principle
or perturbation theory, to be easily applied to electromagnetic problems.
Moreover, a great variety of numerical methods have been developed to solve
the Schrödinger equation whose application to electromagnetic problems is,
in this framework, straightforward.

1.2.2 Discrete translational symmetry

Expressing Maxwell equations in the form of an eigenvalue problem has a
very notable consequence: it allows for a very convenient treatment of the
system’s symmetries. Indeed, it is known from quantum mechanics that if two
operators commute with each other, they can be simultaneously diagonalized
on the same basis. For two operator Â and B̂ to commute it is sufficient that
the commutator operator [Â, B̂] = ÂB̂−B̂Â is the same as the null operator.

Therefore, if the master equation’s operator Θ̂ commutes with some sym-
metry operator Ô, whose spectrum is usually known, it is possible to extract
useful information on the spectrum of Θ̂ from the one of Ô, or even use the
eigenvalues of Ô to label the solutions to the electromagnetic problem.

More notable symmetries that are usually employed for this scope are in-
version symmetries, mirror symmetries, and translational symmetries. The
most relevant for the scope of this thesis is translational symmetry, and in
particular discrete translational symmetry, which is the fundamental sym-
metry defining a Photonic Crystals.

Discrete translational symmetry takes place when the dielectric constant
profile is invariant under translation by an infinite set of specified vectors
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{R}. This set can be generated by linear combination, using integer coeffi-
cients, of a finite set of linearly independent vectors {ai} (in number equal
to the dimension in which the periodicity extends). The entire collection of
{R} is called the Bravais lattice and the related {ai} are called the primitive
vectors, and together they define the periodicity of the lattice.

In this framework, it is useful, before solving the electromagnetic problem,
to find the spectrum of all the translation operators {T̂R} corresponding to
the vectors {R}. To do this, let’s first apply the translation operator T̂R to
the simple plane wave eiq·r:

T̂Re
iq·r = eiq·Reiq·r. (1.11)

So the plane wave eiq·r is an eigenfunction of the operator T̂R with eigenvalue
eiq·R. It is now worth noting that a different plane wave eiq

′·r is also an
eigenfunction of T̂R with the same eigenvalue provided that (q− q′) ·R is a
multiple of 2π.

It can be demonstrated that an infinite set of vectors {k} for which k·R =
2πn for every vector in {R} does exist. This set is called reciprocal lattice,
and can be generated, as the direct lattice, by linear combinations with
integer coefficient of a set of reciprocal primitive vectors {bi}, which can be
generated from the direct primitive vectors by enforcing ai · bj = 2πδij.

It is now possible to construct the general eigenfunction of the operators
{T̂R} by summing all plane waves whose wavevectors differ by a reciprocal
lattice element:

φq(r) =
∑
k

cq(k)ei(q+k)·r = eiq·r
∑
k

cq(k)eik·r = eiq·ruq(r), (1.12)

where uq(r) is a function with the same periodicity of the direct lattice and
q is called the Bloch vector, and it is related to the eigenvalues with respect
to the translation operators {T̂R}, which is eiq·R. Since every Bloch vector
which differs by an element of the reciprocal lattice represents the same set
of eigenvalues, it is always possible to choose the Bloch vector of minimum
modulus. The collection of such Bloch vectors is called the Brillouin zone
and it is sufficient to represent the full spectrum of the solutions.

At this point the exploitation of symmetry is complete, and it is time to
solve the electromagnetic problem. To do this it is sufficient to insert the
Bloch function 1.12 inside the master equation 1.6:

Θ̂φq(r) =
ω(q)

c
φq(r) (1.13a)

∇×
(

1

ε(r)
∇× eiq·ruq(r)

)
=
ω(q)

c
eiq·ruq(r) (1.13b)
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Figure 1.11: Example of photonic bands for different dimension. The dielec-
tric in all three cases is assumed uniform with ε = 13. Photonic Band Gaps
are enlightened in orange. Bands reproduced from [170].

(iq +∇)×
[

1

ε(r)
(iq +∇)× uq(r)

]
=
ω(q)

c
uq(r) (1.13c)

Θ̂quq(r) =
ω(q)

c
uq(r). (1.13d)

In this way, the hard eigenproblem of the master equation is reduced to
a collection of independent and simpler eigenproblems, one for every q in
the first Brillouin zone. This conclusion is known as Bloch theorem in solid
state physics, while for this application is usually referred as Bloch-Floquet
theorem.

In the most common situations the eigenproblem for each q can be solved
to find a (possibly infinite) collection of discrete modes, which are continuous
with respect to q since Θ̂q depend continuously on q. This is the origin of
the so called Photonic Bands (regions of energy in which propagation of light
inside the periodic structure is permitted) and Photonic Band Gap (regions
in which is forbidden) — see Fig. 1.11 for some examples of bands.

1.2.3 Photonic Crystal Slabs

A particularly interesting class of periodic structures are the so called Pho-
tonic Crystal Slabs [172]. They are composed of a periodically patterned
slab of a high index material, acting as the core of a waveguide, embedded
in a low index material. It is possible to apply the Bloch theorem to such a
structure to obtain the spectrum of modes as a function of the Bloch vector
in the plane. Such spectrum is more complex than in standard periodic struc-
tures, since it usually features both a discrete and continuous part. Indeed,
the spectrum is discrete in the region of the kω plane where propagating
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Figure 1.12: Qualitative sketch of typical bandstructure of PhC Slab. True
and quasi-guided modes regions are enlightened in orange and blue, respec-
tively.

waves can exist in the core but not in the cladding (ck/ncore < ω < ck/nclad)
and continuous where propagating waves exist in both core and cladding
(ω > ck/ncladdng). The separation between these regions is the straight line
ω = ck/nclad, called cladding light line.

The discrete modes under the light line are confined to the slab. Further-
more, they ideally propagate without loss, and their possible decay is only
due to extrinsic losses, such as disorder or Rayleigh scattering.

The continuous spectrum is mainly composed by radiative modes, namely
modes which are not confined to the slab. However, confined modes can
extend themselves in the region of continuous spectrum, due to the folding
of photonic bands inside the first Brillouin zone. When this happens, the
confined modes survive as quasi-guided modes, namely they are broadened
by the interaction with radiative modes and acquire a finite lifetime, after
which all the energy in the quasi-guided mode is radiated away from the
waveguide.

Each region of energy can be used for different applications. True guided
modes can be used to tailor light dispersion [173] or create sub-wavelength
materials [41].

Quasi-guided modes, although their finite lifetime seems to imply large
propagation loss, are quite useful too. They have in fact the unique capacity
to couple light between guided and radiative modes. In case of an infinite
structure this coupling can be see as a Fano resonance in the transmission
and reflection of vertically incident light [174]. If the patterning is truncated
some light can survive in the unpatterned waveguide, and a grating coupler
in its simplest form is eventually built.
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Figure 1.13: Representation of the Yee cell for 2D-FDTD — both polariza-
tions: TM (a) and TE (b) — and 3D-FDTD (c).

Moreover, the ability to create a band gap in a planar structure is very
interesting. Creating a complete bandgap is quite trickier than in conven-
tional Photonic Crystals, but by using the right geometry and optimizing it
is possible [61, 175]. In particular, once a band gap is in place, inserting a
defect is an easy way to create a waveguide [176] or a cavity [98].

1.3 Numerical Methods

The great majority of the simulation during the research work for this thesis
was performed with either of two numerical methods: the Finite-Difference-
Time-Domain method and two formulations of the Scattering-Matrix method:
Rigorous-Coupled-Wave-Analysis (RCWA) and Aperiodic-Fourier Modal
Method (AFMM).

For the FDTD method a commercial software, Lumerical FDTD Solu-
tions, was used. On the contrary, regarding the Scattering Matrix, in-house
implementations were employed for both formulations: a FORTRAN code
for RCWA and a python 2.7 code (which I developed during my PhD) for
the A-FMM.

1.3.1 FDTD

The Finite-Difference-Time-Domain (FDTD) method is a numerical proce-
dure to solve Maxwell equations first devised by Kane S. Yee [177] in 1966.
The method is based on a discretization of the curl Maxwell equations in the
time-space domain, which is used to get the complete time evolution of the
electromagnetic field once the initial condition is known [178].
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The discretization of the physical fields in time and space takes place
over two grids, for electric and magnetic fields, staggered in both space and
time — see Fig. 1.13. This structure in the discretization, named Yee’s grid,
has more than one advantage. Indeed, by using the central difference in
the finite-difference expression of the derivatives and a leap-frog algorithm
for updating the fields, both precision and stability of the method can be
improved. Moreover, once the Maxwell equations containing the divergences
are satisfied by the initial condition, this is automatically preserved by the
grid’s structure during the time evolution.

The main advantage of the FDTD method lies in its versatility. Solving
the Maxwell equations in the time-space domain gives complete freedom on
the structure, which can be neither periodic nor symmetric, and on the pos-
sible sources. Moreover, due to the time domain nature, only one simulation
is required to get the broadband response of the structure.

On the drawback side, the FDTD method tends to be computationally
expansive and to require post processing of the simulation data to obtain the
desired information, such as coupling efficiencies, Q-factors, bandstructures,
etc.

During this thesis the FDTD method is used as the main instrument in
the research on grating-couplers, mainly due to his versatility and ease of use
compared to other methods.

1.3.2 RCWA

Rigorous Coupled Wave Analysis (RCWA) is a frequency domain method
based on the Scattering Matrix approach.

The RCWA was developed in his original formulation by D. M. Whittaker
and I. S. Culshaw [179] in 1999, to calculate reflection, transmission and
even emission from a periodically patterned multilayer. The method was
then extended to asymmetric unit cell and birefringent media by M. Liscidini
[180], who is also the author of the FORTRAN implementation used for some
of the calculations in this thesis.

This method can be used to solve Maxwell equations in any structure,
provided it can be represented as a multilayer. Inside each layer, the dielec-
tric constant along the stacking direction (let’s call it z) has to be uniform.
Variation of the dielectric constant in the plane perpendicular to the stacking
direction (the xy) plane is instead permitted, as long as it is periodic on the
same Bravais lattice for every layer. Although these constraints could seem a
little restrictive, the class of structures that can be analyzed is quite big. Full
3D structures in fact can be analyzed performing a staircase approximation
along a specified direction [181], and then checking the convergence with the
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Layer 0 Layer 1 Layer N-1 Layer NLayer i

SM

Figure 1.14: scattering matrix

number of slices in the approximation.
The basic working principle is as follows. Firstly, the fields in each layer

(for now assumed infinite in the z direction) are expressed as a sum of forward
and backward propagating plane waves (expansion on a Fourier basis). Sec-
ondly, the boundary conditions are applied to each interface, linking together
the fields between adjacent layers. The output of the code is the scattering
matrix S, a matrix that connects the Fourier expansion of the fields outgoing
from the structure to the one of the incoming fields:[

uN
d0

]
= S

[
u0

dN

]
=

[
S11 S12

S21 S22

] [
u0

dN

]
(1.14)

where ui and di are the coefficient of the Fourier expansion in the ith layer
for the forward and backward propagating waves.

If a total of M elements of the Fourier expansion are retained, each ui
and di is a 2M vector (the factor 2 account for the two different polarization
states) and the scattering matrix S is a 4M × 4M matrix.

Once the scattering matrix of a system is known, information such as
reflection, transmission and diffraction in the open orders can be extracted.
Since the scattering matrix gives the coupling coefficient between the input
and output Fourier modes, getting such information is just a matter of taking
the correct element in the scattering matrix and normalizing it with the ratio
between the Poynting vectors of the selected modes.

During this thesis, the RCWA method is mainly employed in the research
on grating couplers, in particular regarding the problem of the bandwidth.

1.3.3 A-FMM

The Aperiodic-Fourier Modal (A-FMM) method is conceptually similar to
the RCWA but, thanks to the addition of a coordinate transformation in the
unit cell, the periodicity condition in the xy plane is no longer required. Thus,
the treatment of aperiodic structures, such as rib or grating waveguides, is
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possible. A more detailed description of this method will be given, since I
spent part of my PhD implementing a Python version of this method.

The A-FMM has its roots in the classical modal method for crossed grat-
ings, firstly devised by L. Li [182] in 1997. The method was then updated by
J.P. Hugonin and P. Lalanne [183] with the inclusion of a coordinate trans-
formation. The role of the coordinate transformation is to map the entire R
space (R2 for 3D calculation) to the finite computational cell. In this way,
the computational cell can contain an arbitrary dielectric constant distribu-
tion, which can still be treated with Fourier Methods but without crosstalk
between adjacent cells. For more details on the theory beyond the coordinate
transformation see App. A.

The procedure involved in the A-FMM is basically the same of the RCWA,
and can be summarized as:

1. Divide the system in N layers.

2. Solve the Maxwell equations in each layer, assuming homogeneity in
the staking (z) direction and expanding the filed on a Fourier basis.

3. Using the solution found in 2, calculate the propagation matrix in each
layer and the scattering matrix of each interface.

4. Using the recursion algorithm for the scattering matrix, calculate the
scattering matrix of the full structure.

5. Obtain the desired quantities by post-processing of the scattering ma-
trix.

A brief summary of every step will now be reported. Firstly, it is necessary
to expand the fields in each layer as a sum over pseudo-Fourier basis :

Φ(x, y, z) =
∑
n,m

= Φn,m(z) exp

{
i(kx +

2πn

Lx
)x+ i(ky +

2πm

Ly
)y

}
(1.15)

where Φ is a generic component of the electromagnetic fields, kx, ky are the
components of the wavector along the x, y direction. The values Lx and Ly
are the dimensions of the computational cell. Due to the coordinate trans-
formation they lack a physical meaning, but their values are still important
in the definition of the basis for the pseudo-Fourier expansion, and remain
as computational parameters.

Once the expansion is established, it can be inserted in the Maxwell
equations to get the solutions inside the single layer. After this substitution
and a little manipulation it is possible to write:
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− i

k0

∂

∂z

[
Ex
Ey

]
=

[
K̄xε

−1K̄y 1− K̄xε
−1K̄x

K̄yε
−1K̄y − 1 −K̄yε

−1K̄x

] [
Hx

Hy

]
= F

[
Hx

Hy

]
(1.16a)

− i

k0

∂

∂z

[
Hx

Hy

]
=

[
−K̄xK̄y K̄x

2 − εy,x
εx,y − K̄y

2
K̄xK̄y

] [
Ex
Ey

]
= G

[
Ex
Ey

]
(1.16b)

where Ex, Ey, Hx, Hy are the vectors containing the Fourier expansion coef-
ficients of the respective field, and k0 = ω/c is the vacuum wavevector of the
radiation. The matrices ε, εx,y and εy,x are built with the Fourier transform of
the dielectric function in the computational cell — see ref. [182] and App. A
for further details. The matrix K̄x is built as:

K̄x = FxKx, (1.17)

where Kx is simply the matrix containing the wavevectors of the Fourier ex-
pansion (Kx(g, g

′) = (kx+gx)δgg′) and Fx is built from the Fourier coefficient
of the derivative of the function used for the coordinate transformation —
see App A for details. The matrix Fy is built in an analogous way.

A further summary of Eq. 1.16a and 1.16b is desirable. Focusing on
solutions of Φ which have a z dependence in the form eiγz it is possible to
write:

FG

[
Ex
Ey

]
=
γ2

k2
0

[
Ex
Ey

]
, (1.18)

which takes the form of an eigenvalue problem concerning only the electric
field components. The eigenvalues γ2/k2

0 are related to the propagation con-
stant along z of the eigenmodes of the layer, while the eigenvectors give the
electric field profile of the modes. Since for every eigenvalue two solutions
for γ are possible — forward and backward propagating — only the solution
satisfying Re(γ) + Im(γ) > 0 will be considered and labeled with subscript
q.

Defining the vector E = [ExEy]
T and the matrix Ẽ containing as columns

the eigenvectors of Eq. 1.18, the corresponding matrix H̃ for the magnetic
field can be expressed as:

H̃ =
k0

γ
Ẽ (1.19)

which contains the Fourier coefficients relative to the magnetic field of the
eigenmodes.

At this point it is possible, after the definition of the vectors u and d,
containing, respectively, the amplitude of the forward and backward propa-
gating modes inside the layer, to write the Fourier coefficients of the fields
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at an arbitrary value z as a function of u and d:[
E
H

]
z

=

[
Ẽ Ẽ

H̃ −H̃

] [
u
d

]
z

. (1.20)

Currently, a method of connecting the vectors u and d at different z values
(both in the same layer or in different ones) is still lacking. In the following,
the scattering matrix for both cases will be built.

The easiest case is when the two values of z are in the same layer. In
this condition, the values of u and d at z and z′ are simply linked with a
propagation scattering matrix:[

u′

d

]
=

[
exp[iΓ(z − z′) 0

0 exp[iΓ(z − z′)]

] [
u
d′

]
(1.21)

where Γ is simply the matrix with the propagation constants of the modes γ
on the diagonal.

When the two z values lie in different layers the calculations are a bit
more complex. However, is it possible to demonstrate that the scattering
matrix of a single interface between two layers can be written as (normal
variables refer to the first layer, the primed to the second):[

S11 S12

S21 S22

]
=

[
T+ − T−T−1

+ T− T−T
−1
+

−T−1
+ T− T−1

+

]
, (1.22)

where T± is defined as:

T± =
1

2

(
Ẽ ′
−1
Ẽ ± H̃ ′−1

H̃
)
. (1.23)

Now that both propagation and interface scattering matrices are defined,
in order to connect the u and d vectors at different z values all that is
needed is a recursion algorithm to join together two matrices, allowing the
scattering matrix of the complete system to be built up piece by piece. In
details, the recursion algorithm joining to scattering matrices S and s in the
total scattering matrix ST is:

ST11 = s11(1− S12s21)−1S11 (1.24a)

ST12 = s12 + s11(1− S12s21)−1S12s22 (1.24b)

ST21 = S21 + S22(1− s21S12)−1s21S11 (1.24c)

ST22 = S22(1− s21S12)−1s22 (1.24d)
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It is worth noting that this relation, together with the fact that no diverging
exponential appears in the propagation matrix 1.21, ensures the numerical
stability of the S-matrix, at variance with other schemes (i.e. T-matrix).

Once the scattering matrix of the entire system is known, information
such a coupling strength between one input mode and one output mode are
easily calculated. As an example, the fraction of power scattered from a
mode m to a mode n can be calculated as:

Pn
Pm

= |S(n,m)|2 Pn
Pm

, (1.25)

where S(n,m) is the relevant S-matrix element and the quantity Pi is the
z-component of the Poyting vector referring to the i mode. This component
can be calculated as:

P =
1

2
Re
[
ET
xH

∗
y − ET

y H
∗
x

]
, (1.26)

where Ex, Ey, Hx and Hy are the vectors of the Fourier components of the
mode under consideration.

Speaking of the Poynting vector, it is also possible to calculate the total
Poynting vector as a function of z. This is a little more complex than before
(where only the Poyting vector relative to a single mode was calculated)
since now all modes (forward and backward propagating), together with their
interference, have to be considered. In the end, the total Poyting vector PTOTz

can be expressed as:

PTOTz =
1

2
Re

{[
u d

]
z

[
P̃ −P̃
P̃ −P̃

] [
u∗

d∗

]
z

}
(1.27)

where P̃ is a matrix whose elements are defined as:

P̃nn′ =
∑
k

[
Ẽx(k, n)H̃∗y (k, n′)− Ẽy(k, n)H̃∗x(k, n′)

]
. (1.28)

However, the practical use of Eq. 1.27 to get the total Poyting vector
requires the calculation of uz and dz, namely the vectors containing the co-
efficients of the forward and backward propagating modes at z. In order to
do that, two S-matrices have to be built. The first S is the matrix linking
the beginning of the structure to the desired z coordinate, while the second
S ′ links this z coordinate to the end of the structure. Once those S-matrices
are known, the vectors uz and dz can be calculated from the input vector u
and d′ as:

uz = (1− S12S
′
21)
−1

(S11u+ S12d
′) (1.29a)
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dz = (1− S ′21S12)
−1

(S ′21u+ S ′22d
′) . (1.29b)

One last, but very important, application of the scattering matrix is the
calculation of the photonic bands in periodic structures. This can be done
by solving a generalized eigenvalue problem derived from the S-matrix of the
unit cell. The eigenvalue problem is obtained by imposing Bloch boundary
conditions on the fields at the two side of the structure:[

u′

d′

]
= eikΛ

[
u
d

]
(1.30)

where k and Λ are the Bloch vector and the period along the z direction,
respectively. Inserting the Bloch boundary condition in the definition of the
scattering matrix (Eq. 1.14) easily yields:[

S11 0
S21 −1

] [
u
d

]
= eikΛ

[
1 −S12

0 −S22

] [
u
d

]
, (1.31)

which can be solved to obtain the Bloch vector k for given frequency.
The Aperiodic Fourier Modal Method is the main instrument for the

research on slow-light in silicon grating waveguides, both for calculation of
photonic bands and transmission through finite size structures.
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Chapter 2
Grating-Couplers: lineshape and
bandwidth

2.1 Introduction

One of the major problems Silicon Photonics has encountered, and still faces
today, is the connection of an Integrated Photonic Circuit to the external
world. This is a complex task, in general involving both optical and electri-
cal connections, along with thermal management, and goes by the name of
Photonic Packaging [184]. On the optical side, the coupling of light between
an integrated waveguide and an optical fiber, the preferred medium for mid-
and long-distance communication, has posed a substantial challenge.

The reason of such difficulty is mainly due to the large mode mismatch
between the two types of waveguides. Silicon integrated waveguides are in-
deed, thanks to the high index contrast typically available, very efficient in
confining light to lateral dimensions comparable to the wavelength (few hun-
dreds of nanometers). On the contrary, the low refractive index contrast
available in optical fibers makes the core of even a single-mode fiber quite
large, with a diameter of the order of 10 µm.

This mismatch causes high losses every time a direct connection between
the two systems is attempted. To solve this problem many solutions have
been proposed, but almost all can be classified as either edge-coupling or
grating-coupling.

2.1.1 Edge-coupling

Edge-coupling is the natural evolution of direct butt-coupling. The idea be-
hind edge-coupling is to place some sort of interposer between the optical
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Figure 2.1: Representation of the typical structure of an edge-coupler in SOI
platform. Image reproduced from [184].

fiber (or some other source, such as a laser) and the integrated silicon waveg-
uide. The role of this interposer — see Fig. 2.1 — is to gradually adjust the
effective index and the size of the mode between the fiber and the waveguide.

Several solutions have been proposed over the years. The most straight-
forward is the realization of an inverted taper in the silicon waveguide. In-
deed, as the width of the integrated waveguide is reduced, so are the effective
index of the mode and its localization, yielding a wider mode with a profile
which is similar to the one of an optical fiber. Since it is difficult to fully
compensate the modal mismatch relying only on the inverse taper, it is often
embedded in a spot-size converter [185], made either of SiON or some organic
polymer, which makes the transition even more gradual by adding an extra
step. Further improvements can be achieved by shrinking the mode at the
fiber side, thus reducing the size mismatch, for example by employing lensed
or High Numerical-Aperture optical fibers [186]. Overall, this solution can
indeed deliver impressing performances, both for fiber-to-chip [187, 188, 189]
and laser-to-chip coupling [190].

Another viable way it is to employ sub-wavelength structures. In this
framework, the index of the mode is adapted not by shrinking the waveguide,
but by modifying the pitch and duty cycle of a sub-wavelength patterned
waveguide, which thus acts as a normal waveguide with a tunable index
[44, 114]. This solution allows for a finer control of the modal index and
mitigate the minimal feature size problem. Done properly, it can achieve very
high coupling efficiency (>90%), along with very high bandwidth (>100 nm)
and polarization insensitive operation [191].

The main drawbacks of edge-coupling are the complexity of the fabri-
cation, which requires extra thin-features [192] and a possible extra step for
the realization of the spot converter, together with the higher post-processing
cost, in particular for the dicing and polishing of the chip’s edge. Moreover,
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alignment tolerance is usually sub-µm [193] and, due to placement of the
coupling element one the edge, wafer-scale testing is not possible.

Thus, all these features make edge-coupling a non-ideal solution to the
fiber-to-chip problem in Silicon Photonics, although it has demonstrated to
be a valid candidate for some commercial applications, such a direct laser-
to-fiber coupling [186], and for research purposes.

2.1.2 Grating-coupling

Grating-coupling takes a completely different approach. A grating-coupler
consists in a simple diffraction grating etched in a planar waveguide. In this
way, light incident on the chip almost vertically can be coherently scattered
inside the waveguide. Grating-couplers offer some practical improvement
over edge-couplers. They are usually easier to fabricate since, although some-
times additional deposition of poly-silicon is required, they can usually be
built with a single etching step [194]. Moreover, since they couple light that
arrive vertically on the chip, they can be placed anywhere, adding a great
deal of flexibility to the design of the circuit, which now does not require
any expansive polishing of the edges. In addition, they usually exhibit more
relaxed alignment tolerances, up to 5 µm, and passive alignment can be easily
employed.

All these interesting features usually result in lower performances than
edge-couplers. The problem is not so much on maximum coupling efficiency,
although careful optimization is needed to bring grating-coupler’s efficiency
to acceptable levels. Instead, the spectral bandwidth can be the real bottle-
neck. Indeed, since grating-couplers are based on a resonant phenomenon,
their bandwidth is intrinsically limited, usually of the order of 30-40 nm when
operating at telecom wavelengths. Moreover, simpler 1D grating-couplers are
polarization sensitive, and can efficiently couple only one polarization, which
is usually designed to be the TE polarization of the waveguide. This is not a
problem for out-coupling, when the polarization of light coming from the PIC
is fixed, but it is a problem for in-coupling, since polarization of light from
the fiber is usually not well defined. Polarization insensitive couplers, which
couple the different polarizations either to two different TE waveguides [67]
or to TE and TM modes in the same waveguide [68], do exist, but requires
2D patterning and their performance is usually lower than 1D counterparts.

In this chapter a numerical analysis of the grating-couplers’ performances
will be presented, with particular attention to the problem of the bandwidth
and its relation with the intrinsic width of the photonic mode inside the
grating. In addition, a simultaneous optimization of coupling efficiency and
bandwidth will be performed. All grating-couplers here are considered in the
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Figure 2.2: Sketch of the structure of an uniform grating coupler. All relevant
parameter are defined, except for the duty cycle DC=w/P and the Mode
Field Diameter, namely two times the σ of the Gaussian Mode used as fiber
excitation.

standard SOI platform with 220 nm waveguide thickness and operating at
the standard telecom wavelength of 1.55 µm.

2.2 The physics of grating-couplers

One dimensional grating-couplers are simply composed by a series of grooves
etched inside a silicon planar wavequide in the chip. They are usually around
10-15 µm long, to match the 10.4 µm Mode Field Diameter (MFD) of commer-
cial single-mode optical-fibers at the standard telecom wavelength of 1.55 µm.
The silicon waveguide is usually embedded in silica (SiO2) and all is sup-
ported by a Si substrate. The simplest grating-coupler — see Fig. 2.2 —
is composed by a uniform grating, and it is defined by a limited set of pa-
rameters: the waveguide thickness Twave, the period of the grating P, the
etching depth Etch, the duty cycle DC (the ratio between the etched part
and the period), and the thickness of the bottom oxide Tbox. In principle
one must consider also the thickness of the top oxide above the grating. This
will be discarded here both for simplicity and because it has usually the same
index of refraction of the optical fiber and of the epoxy glue used to make
the connection, so in all practical calculations can be assumed semi-infinite.
The fiber mode can be assumed to be a Gaussian Beam coming from above
the waveguide with an angle θ. The width of such Gaussian is summarized
in the Mode Field Diameter (MFD), namely the width at which the field is
reduced to 1/e of the maximum value.

There are mainly two pictures in which to understand the operation of a
grating-coupler: the theory of diffraction gratings and the theory of Photonic
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Crystal Slabs.
The theory of diffraction gratings states that, when light is incident on a

periodic patterned structure, the coherent scattering of every element gives
rise, besides the standard transmitted and reflected wave, to additional scat-
tered waves. The angular distribution of such waves is determined only by
the period of the grating, and can be calculated by applying the condition of
momentum conservation in the direction parallel to the grating. The parallel
wavevector of the mth diffraction order km‖ is related to the parallel incident

wavevector kinc‖ by:

km‖ = kinc‖ +
2π

Λ
m (2.1)

where Λ is the period of the grating. The order is open when waves of
such wavevector can propagate in the outside medium, namely km‖ < 2π/λn,
otherwise it is closed and no light can scatter in that order — see Fig. 2.3.
While the position of the orders does not depend on the particular geometry
of the grating, how the light divides itself in the different orders does, and
a complete calculation of the scattering from a periodic structure usually
requires dedicated numerical methods (such a RCWA).

Coupling inside the waveguide is possible when the parallel wavevector
of one diffraction order (usually m = +1) coincides with the wavevector
of the guided mode inside the grating. Since the wavevector of the guided
mode can be written as k0neff , where neff is the effective phase index of the
guided mode and k0 is the vacuum wavevector, Eq. 2.1 can be rewritten in
the classical Bragg condition for grating-couplers:

k0neff = k0nt sin(θ) +
2π

Λ
(2.2)

where nt and θ are the refractive index of the top oxide and the angle of
incidence of the light, respectively. This equation can be used, once the
effective index of the waveguide is somehow known, to relate the period and
the coupling angle of the grating.

In this framework, coupling of light to an infinite grating is ideally possible
only with no bandwidth. This because Eq. 2.2, at fixed angle, can be satisfied
only at one single wavelength. The coupling bandwidth here arises as a
finite size effect. A finite size excitation, in fact, contains multiple parallel
wavevectors even when restricted to a single wavelength. In this way, Eq. 2.2
can be satisfied at different kinc‖ for different wavelengths, and as long as there

is power in the corresponding kinc‖ mode, some of it can be coupled inside the
grating.

To calculate the k-spread, let’s start with a Gaussian excitation at a fixed
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Figure 2.3: Graphical representation of the diffraction orders of a generic
grating.

frequency and at normal incidence with the normalized field amplitude:

E(x) =
1√√
πσ

e−
x2

2σ2 , (2.3)

where the normalization factor is chosen to normalize the total power, namely:∫ ∞
−∞

E2(x)dx = 1. (2.4)

From Eq. 2.3 it is possible to extract the k amplitude by simply applying a
Fourier transform:

Ẽ(k) =
1√
2π

∫ ∞
−∞

E(x)e−ikxdx, (2.5)

which, after some manipulation, leads to:

Ẽ(k) =

√
σ√
π
e−

k2σ2

2 . (2.6)

It is worth noting that the total power is preserved when going from the
position space to the wavevector space, as it is straightforward to show that:∫ ∞

−∞
Ẽ2(k)dk = 1 (2.7)
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Then, generalizing to multiple frequencies and arbitrary incidence (basically
selecting a specific kinc = kinc(ω)), the k-spectrum of the exciting field can
be written as:

Ẽ(k, ω) =

√
σ√
π
e−

(kinc(ω)−k)2σ2
2 . (2.8)

However, a more complete discussion must resort to the full theory of
Photonic Crystals Slabs [170]. In this framework, the grating-coupler action
can be understood in terms of coupling between a radiative mode (the in-
cident light) and a quasi-guided mode of the grating waveguide [174]. In
this picture, the photonic bands inside the waveguide are folded inside the
first Brillouin zone by the periodic patterning, so the energy and wavevector
conservation can be satisfied without the addition of any wavevector — see
Fig. 2.4.

At this point, the Gaussian contribution to the bandwidth can be calcu-
lated geometrically in a simple way. Indeed, a k-spread in the excitation can
be translated in a ω-spread simply by:

∆ω =
∂ω

∂k
∆k =

c

ng
∆k (2.9)

where ng is the group index of the waveguide. At this point, remembering
that with the notation of Eq. 2.3 MFD=2

√
2σ, it is possible to derive the

Gaussian contribution to the bandwidth in the form:

σω
ω

=

√
2λ

πngMFD
(2.10)

where both sides have been defined as dimensionless quantities. From this
equation it is possible to show that the Gaussian contribution to the band-
width depends more on the excitation than on the grating, and is inversely
proportional to the Mode Field Diameter of the fiber mode.

Moreover, in this framework another contribution to the bandwidth can
be seen. The photonic mode inside the waveguide has indeed an intrinsic
width given by the fact that, as a quasi-guided mode, it has a finite lifetime.
The final bandwidth of a grating coupler is thus composed by the interplay
of these two factors. The first part of the chapter will be devoted to the
numerical analysis of such interplay.

Some studies can be found in the literature on the bandwidth of grating-
couplers [195]. However, a systematic study on how the two different contri-
butions concur in the formation of the bandwidth has not, to my knowledge,
been reported.
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(a) Sketch of the band structure leading
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Figure 2.4: Sketch of bandstructure of a grating-coupler and k-spreading of
the incident beam.

2.2.1 Results from coupling spectra

Here, the FDTD method is used to simulate the coupling spectra of uniform
grating-couplers with different sets of parameters. The aim is to shed new
light on the mechanism behind the bandwidth formation, by using the MFD
as a control parameter in order to change the relative strengths of the two
physical contributions to the bandwidth. The hope is thus to isolate each
single contribution by analyzing the coupling spectrum. In particular, the
DC values of 25%, 50%, and 75% are analyzed, together with various etching
depths — from 20 nm to full etch with 20 nm interval — while the Tbox is
kept fixed at 2 µm for simplicity. Each parameter configuration is analyzed
for a MFD range from 10 to 150 µm, and the ratio between the Fiber Offset
FIB and the MFD is kept constant at 0.47. The angle of incidence θ is 10◦

and the central wavelength is 1.55 µm.

Some of the raw data obtained by this sweep are reported in Fig. 2.5,
where coupling efficiency and Full-Width-Half-Maximum (or 3-dB band-
width) are reported as a function of MFD for some of the analyzed con-
figurations. A few general properties and trends can be noted.

First of all, regarding the behavior of coupling efficiency, it can be seen
that the absolute maximum is similar between the configurations, just above
50%. However, this maximum is achieved at different MFD values for differ-
ent combinations of parameters. In particular, the stronger the scattering-
strength — which is increased by increasing etching depth or moving the
DC toward 50% — the lower the optimal MFD. This can be intuitively ex-
plained by considering that increasing the scattering-strength reduces the
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distance light can travel inside the grating before being scattered away, i.e.
the mean free path of the radiation. Light which is injected inside the grat-
ing at a distance from the edge greater than this mean free path is doomed
to be scattered away before reaching the waveguide and to be lost. Thus,
extending the MFD beyond a certain limit forcefully decreases the coupling
efficiency, as it increases the portion of light which cannot be collected.

Regarding the FWHM, a quite general and simple trend emerges. In
particular, the FWHM monotonically decreases on increasing MFD, till it
reaches a saturation value, different for each configuration. The decrease of
the bandwidth is expected by the finite size effect, but the saturation effect
indicates that some other mechanism — the intrinsic width of the guided
mode, as shown below — is relevant here.

Another indication that the bandwidth is the product of the interplay of
at least two factors comes from the analysis of the coupling spectra. The
shape of the coupling does indeed show an evolution as the MFD increase.
For small MFD, i.e. till the maximum in CE, the spectrum can be fitted quite
well with a Gaussian. For large MFD, i.e. after bandwidth saturation, the
spectrum is well fitted by a Lorentzian. In the intermediate region, neither
Gaussian neither Lorentzian are able to fit well the spectrum, and a Voigt
lineshape, which is a convolution between the two, is needed for a correct
reproduction of the obtained results.

The fitting procedure is carried out with a Python script. For the Gaus-
sian and Lorentzian fits the conventional normalized forms are taken:

G(x,A, σ, x0) =
A√
2πσ

e−
(x−x0)

2

2σ2 (2.11a)

L(x,A,Γ, x0) =
AΓ

π[(x− x0)2 + Γ2]
(2.11b)

while the Voigt function is expressed by use of the Feeddeva function w(x)
available as scipy.special.wofz:

V (A, σ,Γ, x0) =
A√
2πσ

Re

[
w

(
x− x0 + iΓ√

2σ

)]
(2.12)

Some results of this fitting procedure are reported in Fig. 2.6 and 2.7 —
fitting parameters are reported in Tab. 2.1 and 2.2 — where the spectral
evolution is evident. The interpretation is that at smaller MFD the finite
size effect dominates, thus giving a Gaussian spectrum. Moving to larger
MFD, the finite size effect gradually vanish, giving a Voigt function when
the two contributions are of almost equal magnitude, and then leaving only
the intrinsic Lorentzian width of the photonic mode once the MFD is large
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Figure 2.5: Representation of coupling efficiency (CE — left) and Full-Width-
Half-Maximum (FWHM — right) for uniform grating-couplers with different
combinations of parameters.
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DC Etch MFD Gauss Fit Lorentz Fit

DC Etch MFD A σ x0 A Γ x0

25 80 10 1.84e-2 1.42e-2 8.00e-1 2.33e-2 1.33e-2 8.00e-1
25 80 50 2.60e-3 4.69e-3 7.99e-1 3.36e-3 4.39e-3 7.99e-1
25 80 150 5.02e-4 4.49e-3 7.99e-1 6.53e-4 4.18e-3 7.99e-1
50 40 10 1.29e-2 1.35e-2 8.00e-1 1.64e-2 1.26e-2 7.99e-1
50 40 40 4.97e-3 3.98e-3 7.99e-1 6.33e-3 3.72e-3 7.99e-1
50 40 150 7.10e-4 2.19e-3 7.99e-1 9.24e-4 2.09e-3 7.99e-1

Table 2.1: Parameter of the Gaussian and Lorentzian fits for the data shown
in Fig. 2.6 and 2.7. The parameters are defined in Eq. 2.11a and 2.11b.

DC Etch MFD Voigt Fit

DC Etch MFD A Γ σ x0

25 80 10 1.84e-2 5.54e-6 1.42e-2 8.00e-1
25 80 50 3.00e-3 2.34e-3 3.14e-3 7.99e-1
25 80 150 6.41e-4 3.89e-3 1.10e-3 7.99e-1
50 40 10 1.28e-2 3.42e-4 1.37e-2 8.00e-1
50 40 40 5.21e-3 6.70e-4 3.59e-3 7.99e-1
50 40 150 8.27e-4 1.16e-3 1.44e-3 7.99e-1

Table 2.2: Parameter of the Voigt fits for the data shown in Fig. 2.6 and 2.7.
The parameters are defined in Eq. 2.12.

enough. A more quantitative analysis will be given after the calculation of
the intrinsic width, in Sec. 2.2.3.

2.2.2 Results for intrinsic width

As already stated, when a guided photonic mode in a periodic structure
is folded back in the first Brillouin zone by the action of the periodicity,
it can end up in the region of the kω plane above the cladding light line,
where the radiative modes exist. In such condition, the guided mode is not
destroyed, but it is modified by the interaction with the continuum, both
being broadened in energy and acquiring a finite lifetime.

The signature of such a mode can be seen in reflection/transmission ex-
periments as the appearance of a Fano resonance, due to the interference
between the direct response of the structure and the one mediated by the
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Figure 2.6: Coupling spectra for different MFD relative to the structure with
DC=25% and Etch=80 nm.
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Figure 2.7: Coupling spectra for different MFD relative to the structure with
DC=50% and Etch=40 nm.
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resonating mode. By looking at the width of such a resonance it is possible
to measure the width of the intrinsic photonic mode.

Thus, Rigorous Coupled Wave Analysis is employed for the calculation of
such transmission and reflection spectra. The spectra are calculated under
the condition of plane wave illumination, TE polarized (s-polarization) and
incident at 10◦ from the upper cladding. The obtained transmission spectra
are then fitted with the following Fano lineshape:

F (x,B,A, q, γ, x0) = B + A

[
q + 2(x−x0)

Γ

]2

1 +
[

2(x−x0)
Γ

]2 (2.13)

where B represents the background contribution, A is a scale factor, q is a
parameter giving the shape of the resonance, and x0,Γ are the position and
Half-Width-Half-Maximum of the resonance, respectively.

The Fano fit of Eq. 2.13 assumes a constant background as a function
of energy. This is not the case here, since the Fano resonance adds on a
background which has an energy dependence. To remove the effect of dis-
persion of the background two calculations are performed: one using the full
structure and one in which the patterned part is substituted with an uniform
medium with average dielectric constant. By subtracting the two spectra it
is possible to extract the response assuming a flat background, and then the
fit can be carried out.

This procedure is illustrated in Fig. 2.8, where the quality of the fit can
be seen. It was carried out for the same structures analyzed in the previous
section, and a comparison between the two is proposed in the next section.

2.2.3 Comparison

At this point, a comparison between the two methods is possible. The FDTD
simulation is able to give both the Gaussian finite size contribution and the
Lorentzian intrinsic one, which will be assumed to be the σ and Γ of the
Voigt fit, respectively. The RCWA calculation is able to give the intrinsic
contribution directly as the Γ of the Fano fit, and the Gaussian contribution
can be obtained through Eq. 2.10 once the ng is extracted.

The results of this procedure are shown in Fig. 2.9, where both contri-
butions calculated with the two methods are plotted as a function of MFD.
The Gaussian contribution is calculated assuming an effective index of 2.77,
calculated by the Bragg condition of Eq. 2.2. This is not strictly exact, but
since this region of energy is far away from the band edge, where the group
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Figure 2.8: Procedure for the fitting of Fano lineshape in the transmission
spectrum. Parameters of structure are DC=50% and Etch=40 nm.
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Figure 2.9: Comparison between the FDTD and RCWA calculations of
the different contributions to the bandwidth for the structure defined by
DC=25% and Etch=80 nm.

index greatly diverges from the phase index, this approach can be assumed
to yield a valid approximation.

Regarding the intrinsic contribution, it can be seen that the Lorentzian
contribution to the Voigt monotonically increases with the MFD, till satura-
tion to the value of the width of the Fano lineshape provided by RCWA. This
behavior can be explained with the fact that at least a few periods must be
present in the slab before it is possible to speak of a quasi-guided photonic
mode.

Concluding this section, it is possible to say that the interplay of finite
size effect and photonic modes in the formation of grating-couplers band-
width has been analyzed. Both effects have confirmed to be present in the
bandwidth formation. Proof have been offered also by the shape of the cou-
pling spectra, which evolve from a Gaussian for smaller MFDs (where the
finite effect dominates) to a Lorentzian for bigger MFDs (where the intrinsic
width dominated), passing through a Voigt lineshape for MFDs in the middle
(where both contribution have similar magnitude). Both finite size effect and
intrinsic width have been calculated with two different numerical methods,
FDTD and RCWA, showing a good agreement.

Moreover, such analysis has exposed the fact that conventional grating-
couplers operate in a regime in which the bandwidth is mainly dominated by
the finite size effect, and that a good way of increasing such bandwidth cold
be to move to smaller gratings and MFDs, possibly by employing lensed or
high numerical-aperture fibers, which are commercially available.
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2.3 Simultaneous optimization of couping ef-

ficiency and bandwidth

2.3.1 Overview

A great deal of research in the past years has been devoted to improving the
performances of grating-couplers. The main concern has been the increase
of coupling efficiency, since it is known as the main problem to overcome
to successfully bring Silicon Photonics to the market. Losses in a grating-
coupler could be seen as arising from mainly two mechanisms: non-optimal
directionality and mode mismatch. Here both mechanisms will be discussed
from the perspective of the grating-coupler working as out-coupler, and time-
reversal symmetry will be invoked to extend the conclusion here drawn to
the in-coupling case.

Directionality is the ability of a grating-coupler to scatter light out of the
waveguide only in the desired direction, and it is defined as the ratio of the
power emitted in the right direction over the total emitted power. A grating-
coupler which is symmetric in the vertical direction (fully etched, with no
silicon substrate and semi-infinite cladding) would have a directionality of
50%, since light would be equally split. Breaking the vertical symmetry, for
example with partial etching or by introducing a silicon substrate (practically
always present in real devices), allows for the redistribution of light and an
increase of emission in the desired direction.

First studies on grating-couplers [66] focused on the vertical structure —
waveguide thickness, etching depth and bottom oxide thickness — then avail-
able. In this way the directionality was more or less kept fixed. Shortly after,
also thanks to more refined fabrication techniques, for example the possibility
of adding poly-silicon [196], structures with modified vertical profiles begun
to appear. By careful optimization of the vertical structure, a reduction of
insertion loss up to 3-4 dB has been achieved for both 1D [69, 197] and 2D
[67, 198].

One straightforward way to increase the directionality is to put a mirror in
place of the substrate. This approach is able to bring the directionality almost
to 100%, since any light scattered towards the substrate is reflected back, but
usually at the cost of a substantial increase in fabrication complexity. Indeed,
the mirror is usually placed under the grating either by substrate removal
and metal deposition [199], a well-performing but hardly CMOS compatible
solution, or by the realization of a Distributed Bragg Reflector (DBR) [200],
which is CMOS compatible but still of difficult realization.

However, changing the vertical structure is not the only method to im-
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Emission ProfileIdeal Fiber
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(a) The emission profile of an uniform
grating results in a poor overlap with an
ideal fiber mode.
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(b) By mean of apodization the emis-
sion profile can be changed, improving
the overlap.

Figure 2.10: Mode overlap with and without apodization.

prove the directionality. Indeed, it can be changed also modifying the hori-
zontal structure of the grating. For example, by changing the phase relation
between adjacent scattering sites it is possible to create constructive inter-
ference for light scattering in one direction and destructive in the opposite.
This kind of phase manipulation usually requires a sort of double grating,
realized either with two juxtaposed and shifted gratings [201, 202] or by a
double etch approach [49, 203]. This is a valid solution, since it decouples the
problem of directionality from the vertical structure surrounding the grating,
which is often fixed by foundries to values not always optimal for coupling
purposes. The main disadvantage is that it requires multiple etching steps,
which can be expensive to realize.

Besides directionality, the main other way to reduce insertion losses in
grating-couplers is to reduce the mode mismatch between the optical fiber
mode (usually assumed Gaussian) and the mode emitted by the grating. In
standard uniform gratings the emission profile is a simple decaying exponen-
tial — see Fig. 2.10a — which yields poor mode overlap with the fiber mode.
This geometrical mismatch limits the coupling efficiency to a maximum value
of about 80%. To go beyond this value it is essential to abandon uniform
gratings and to adapt the scattering strength along the grating to recover an
output mode as similar as possible to a Gaussian [66] — see Fig. 2.10b. This
technique is called apodization. Various procedures have been implemented
over the years to design good apodized grating-couplers, going from semi-
analytical approaches[71, 204, 205] to numerical optimization, for example
with mutative [70, 206], genetic [196, 207, 208] or particles swarm algorithms
[208, 209].

More sophisticated apodization techniques resort to more complex struc-
tures to improve the design freedom and reach better performance. For
example, by using particular etching procedures, it is possible to vary the
etching depth of each groove (thinner grooves are etched less). This allows
an even larger decrease of scattering strength in the first part of the grating,
leading to a better mode matching [210]. Another solution is to employ sub-
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wavelength structures, allowing for the tuning of the effective index of the
material in addition to the geometrical properties [209, 211, 212].

Such approaches can reach very high performances, but usually at the
expense of a long and complex optimization procedure. Moreover, optimal
mode matching usually requires shrinking the first few teeth of the grating
to very small values, down to few tens of nanometers in width. Current fab-
rication techniques, based on lithography, have limited resolution and have a
minimum size in the features that can be handled. In order of increasing cost,
it goes from around 200-300 nm of UV lithography, to 100 nm of standard
deep UV (λ = 193 nm), to around 40-50 nm of e-beam lithography, which is
however a serial process and cannot reach the high volumes of UV. Although
these constraints are nowadays being relaxed, for example with the devel-
opment of deep-UV immersion lithography [213], they have to taken into
account at the design stage, thus resulting in a forcefully diminished mode
matching with respect to the ideal case.

In almost all the cases reported above, the main focus of the research was
to reduce the insertion loss as much as possible, while little attention had
been given to the bandwidth, which always remained in the common range
around 30-40 nm (measured at -1dB from the maximum coupling).

Some studies on how to increment the bandwidth of grating-couplers
have been performed in the past years, based on a few different methods.
An efficient one is to lower the refractive index of the waveguide, both using
materials other than silicon, such a silicon nitride [214, 215], or employing a
sub-wavelength patterning [216]. Possible other solutions are the use of fibers
with a smaller MFD [201, 217] or the zero-order approach [48]. All these
approaches can indeed deliver an almost threefold increase over typical 1-dB
bandwidths, ranging from 80-90 nm for conventional (first-order) gratings up
to almost 130 nm for the zero-order one, while retaining an insertion loss
lower than a few dB. However, a simultaneous CE-bandwidth apodization
procedure for conventional grating couplers has never, to my knowledge, been
reported.

2.3.2 Optimization procedure

In this section, the procedure of apodization is extended, optimizing the
width and position of each groove of the grating using a multi-objective al-
gorithm, in such a way that a simultaneous optimization of both coupling
efficiency and bandwidth is carried out. Multi-Objective optimization takes a
different approach to the problem than standard Single-Objective optimiza-
tion. In Multi-Objective optimization, in fact, two ore more performance
measures, each expressed by a different fitness function, have to be taken
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into account. In these conditions, it is almost never the case of all the func-
tions to be simultaneously maximized by the same structure. Indeed, in the
most common situation, such as the CE-bandwidth problem here analyzed,
the increasing of a fitness function causes the decreasing of at least one other.
Consequently, the same of concepts of “best” and “better” cannot be applied
anymore, and new definitions are needed.

Thus, the notion of “better” is replaced by the notion of “dominance”: a
solution x is said to dominate the solution y when:

fi(x) ≥ fi(y)∀i and ∃j : fj(x) > fj(y), (2.14)

namely a dominating solution is strictly better on at least one fitness func-
tion while being no worse in all the others. With such definition, the “best”
solution can be defined as one which is not dominated by any other solu-
tion. It is clear that with this definition it is almost impossible to indicate
a single solution as the global best. Instead, an ensemble of non dominated
solutions should be identified for each problem, which together form the
so-called Pareto front. Moving along this front gives solutions with differ-
ent trade-offs between the different fitness functions. The aim of a Multi-
Objective optimization is thus to find such front, usually by employing an
iterative procedure which approximates the Pareto front better and better
after each iteration, until final convergence occurs.

All optimizations in this chapter, both single- and multi-objective, are
carried on with variations of the Particle Swarm Optimization algorithm
[218], developed for heuristic optimization by taking inspiration from the
behavior of swarms of bees looking for the higher flower-density point in a
field — see Appendix C for a complete description of the method.

During this work, the multi-objective apodization procedure will be ap-
plied to grating-couplers employing as excitation Gaussian Modes with dif-
ferent MFD, achievable in practice with lensed or high numerical-aperture
optical fibers. The chosen value, beyond the standard 10.4 µm, are 8.0,6.0,
and 4.0 µm. The goal is to take advantage of the finite size contribution to the
bandwidth to achieve better performances. As in the previous sections, each
grating-coupler is simulated using the FDTD method available through the
commercial software Lumerical FDTD Solutions. Moreover, the same script-
ing language available from the software is employed for the implementation
of the PSO algorithms, both single- and multi-objective.

In order to apply the multi-objective apodization procedure, it is impor-
tant to choose a good starting point in terms of general parameters of the
grating. To this end, a two step optimization procedure is employed to ensure
a starting point for the Multi-Objective optimization with a good coupling
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efficiency. In the first step a single objective PSO algorithm is employed to
optimize the uniform grating for the maximum coupling efficiency. The pa-
rameters available to the algorithm at this point are only four: the etching
depth Etch, the duty cycle DC, the bottom oxide thickness Tbox, and the
fiber offset FIB (the distance of the center of the fiber from the first tooth of
the grating). The period of the grating is still tuned to give the maximum
coupling efficiency at λ =1.55 µm.

Then, the knowledge of the best uniform grating for each MFD is em-
ployed as starting point for the second single-objective PSO, which is de-
signed to optimize the coupling efficiency of a linearly chirped grating. Ap-
plying a linear chirp to a grating coupler amounts, in general, to varying
the duty cycle along the grating in a linear way from a starting DC0 to a
maximum DCmax in a distance Lchirp, namely:

DC(x) =

{
DC0 + x(DCmax −DC0)/Lchirp for x < Lchirp
DCmax for x > Lchirp

(2.15)

which can be thought as a simple apodization procedure. The parameters
available to the optimization are thus DC0, DCmax, Lchirp, Etch, Tbox, and
FIB. At this point the period is still tuned and constant along the grating.

After that, the Multi-Objective PSO algorithm can be applied. The free
parameters of the optimization at this point are the widths and the positions
of each groove in the grating, which are varied around the widths and posi-
tions obtained in the previous step. While in the preliminary optimizations
the gratings are always tuned to the right operational wavelength , during
the Multi-Objective PSO this is no more enforced. Instead, it is left to the
definition of the search space of the optimization to generate structures which
keep the targeted wavelength (1.55 µm) inside the 1dB bandwidth. This con-
straint is then verified a posteriori and found to be satisfied.

In practice, to better ensure convergence of the Multi-Objective opti-
mization in the high CE part of the Pareto front, a prior dedicated Single-
Objective optimization with the same free parameters of the Multi-Objective
one is run and the obtained knowledge is inserted as a starting point for the
Multi-Objective optimization. This procedure is carried out only for the
three smaller values of MFD, since the apodized structure with best cou-
pling efficiency for the standard 10.4 µm is assumed known from literature
[70].

All Single-Objective PSOs are run with 10 agents and 150 iterations,
which is usually more than enough to get convergence. The Multi-Objective
PSO, due to its greater complexity, since it requires the much slower con-
vergence of a set of structures, is instead run with 20 agents and 1000 iter-
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MFD CE BW DC0 DCmax Lchirp Etch Tbox FIB Per. (av.)
(µm) (%) (nm) (%) (%) (µm) (nm) (µm) (µm) (nm)

4 56.7 89 10 35 2.13 150 2.10 2.48 684
6 60.1 67 10 40 4.97 120 2.02 3.68 662
8 61.6 54 10 40 4.98 100 2.00 4.19 644

10.4 — — — — — 100 2.00 7.50 634

Table 2.3: Final parameters after the double stage optimization of the linearly
chirped gratings. The values of Etch, Tbox and FIB are also the ones used for
the Multi-Objective optimization. A few values in the last row are missing
since no chirped structure is optimized and the reported values are taken
directly from [70].

ations, thus exploring a total of 20K structures (with the exception of the
MFD=10.4 µm, which is instead run for 1500 iterations).

2.3.3 Main results and discussion

The results of the preliminary optimizations (research of the linearly chirped
grating with maximum CE) are reported in table 2.3. It is evident that for
the optimized linearly chirped structures the CE increases and the bandwidth
decreases on increasing the MFD. This is expected: increasing the MFD also
increases the number of grooves in the grating, thus making the adjustment of
scattering-strength along the grating more gradual and less coarse, allowing
for a more efficient mode matching, while at the same time reducing the finite-
size contribution to the bandwidth. Moreover, it is worth noting that, while
the thickness of the bottom oxide remains almost constant (the condition
for constructive interference in the upward direction is more or less the same
independently on MFD), the etching depth has to increase on decreasing
MFD, since the scattering-strength has to be raised in the shorter gratings.

This intermediate step gives the general parameters (Etch,Tbox, and
FIB) for the Multi-Objective optimization, as well as defining the param-
eter space for the algorithm. After the MO-PSO is run to the end, the
resulting Pareto fronts are the ones reported in Fig. 2.11. As already stated,
those fronts represent the ultimate trade-off between coupling efficiency and
bandwidth, at least relative to the parameter space here explored. It is thus
evident from the data that such trade-off does exist, and that different forms
of the trade-off can be reached through multi-objective apodization.

As a function of decreasing MFD, a general increase in bandwidth and
decrease in Coupling Efficiency can be seen. This is essentially the same
behavior observed for the linearly chirped gratings, and is expected for the
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Figure 2.11: Representation of the obtained Pareto fronts for each value of
MDF.

same reason. From these data, it is apparent that the target bandwidth of
100 nm cannot be reached with standard (MFD=10.4 µm) optical fibers. It
can however be reached employing smaller fibers (both lensed or high nu-
merical aperture ones), and Coupling Efficiencies up to 36%, 46%, and 53%
can be obtained for MFD equal to 8,6, and 4 µm, respectively. This shows
that, by combination of smaller-than-normal MFDs and dedicated optimiza-
tion 3dB insertion loss can be reached together with 100 nm bandwidth. It
is worth noting that the overall performances of such grating-couplers are
somehow inferior to other solutions presented in literature, which are able
to demonstrate ≈ 100 nm 1dB bandwidth with sub-decibel insertion losses.
However, it is fair to say that such increase in performance is obtained at
the price of more complex structures, requiring for example a double grating
[201, 217], sub-wavelength pattering [216], or the addition of a prims placed
at a very precise angle above the grating [48].

For the complete results of the optimization see Supplementary Materials
of [219], where all the geometrical parameters (including grooves’ widths and
positions) of each solution on the Pareto fronts are reported.

2.3.4 Tolerance analysis

To give robustness to this analysis, which involve quite complicated struc-
tures, in the absence of experimental realizations, a campaign of numerical
simulations devoted to analyzing the tolerance to variations has been per-
formed. Such tolerance analysis is divided in two parts: in the first part
attention is placed on the effect of variation of etching depth, while the sec-
ond one is dedicated to random variations in the widths and positions of the
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Figure 2.12: Etch depth tolerance analysis for 4 structures from the four
different Pareto fronts. The vertical line represent the design etch depth.

grooves.

Etching depth

Finely controlling the etching depth of a typical fabrication run can be quite
challenging. In fact, every time the etching depth is changed, an almost
total re-optimization of the etching procedure is required. Thus, variation of
the etching depth from the nominal design, however usually contained in the
±10 nm, can happen. Since this type of effect tends to affect all the grooves
at the same extent, the tolerance analysis regarding the etching depth is
performed with a sweep on the Etch parameter (with 1 nm steps) for some
selected structures on the Pareto front. During these simulation the FDTD
mesh in the region of the grating was chosen with a vertical maximum step
of 1 nm, to be able to appreciate even the smallest changes.

It is evident that the tolerance to etching depth variation is quite good.
In fact, all investigated structures show a window of 10-15 nm where the
coupling efficiency is fairly constant, although not always centered at the
design etching. This is mainly because the etching depth is chosen as the
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one of the linearly chirped grating with maximum CE, which may not always
be the optimal one for every structure on the front. Moreover, during the
preliminary Single-Objective optimizations the minimal variation permitted
to the etching depth is 10 nm, so the more subtle features here presented
could be missed. However, given such premises, it is possible to conclude
that these designs are quite robust with respect to etching depth variations.

Disorder

The other source of deviation from the design in fabrication phase could come
from the mask, which usually causes errors in the definition and placing of
the grooves. While the errors in the positions are usually uncorrelated, the
errors in the widths can be, since they are normally the results of under-
or over-etching, which tends to uniformly decrease or increase the groove’s
width, respectively. Taking this into account, a sort of Monte Carlo analysis
on the structures on the Pareto fronts is performed. It starts from a structure
on the fronts and, by applying random variations to the width and position
of each groove (extracted from a ±10 nm uniform distribution), generates a
new grating which is then analyzed. The procedure is repeated, generating
20 different structures for each grating on the Pareto fronts. The coupling
efficiency and bandwidth of each obtained structure is reported in Fig. 2.13
for all four values of MFD. It can be seen that the spreading of performances
around the Pareto fronts is quite limited, suggesting a good tolerance to this
kind of disorder.

It can also be noticed that this Monte Carlo procedure also generated very
few structures above the Pareto fronts. The number of the points above can
be interpreted as a measure of the state of convergence of the algorithm. In
fact, this is the reason why the MO-PSO for the 10.4 µm MFD was performed
with 1500 iterations: the tolerance analysis on the 1000 iterations Pareto
front showed poorer convergence.

Although complete convergence cannot be seen in all the Pareto fronts,
the deviation above the front is definitely inside the variation expected from
fabrication errors. For this reason, theoretical improvements on this scale
would be difficult to translate in actual improvements of the real structure,
and the convergence seems thus to be sufficient for the scope of this work.

2.4 Conclusions

In this chapter, a theoretical study of the problem of bandwidth in grating-
couplers has been presented, focusing on standard SOI platform with a silicon
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Figure 2.13: Disorder tolerance analysis for the four different Pareto fronts.

thickness of 220 nm operating at standard telecom wavelength of 1.55 µm.
Through a campaign of numerical simulations, both FDTD and RWCA, the
mechanisms beyond the bandwidth formation have been investigated. In
particular, two processes behind the bandwidth formation have been found.
The first one is a finite size contribution, of Gaussian nature, decreasing in
strength as the extension of the exciting mode increase. The second one is
coming from the intrinsic width of the photonic mode inside the grating, it
has a Lorentzian nature and does not depend on the excitation. By varying
the diameter of the Gaussian Mode used as a source it is possible to modify
the relative strengths of these two components. In the typical operational
condition of grating-couplers, with an MFD around 10 µm, the finite-size
Gaussian contribution usually dominates, suggesting that to increase the
bandwidth it would suffice to move to smaller MFD.

In addition, a multi-objective numerical optimization of grating-couplers
with various values of MFD has been performed, with the goal of simulta-
neously optimizing Coupling Efficiency and bandwidth. Through this pro-
cedure, widths and positions of each groove in the grating can be optimized
to explore the better trade-off between coupling efficiency and bandwidth.
It is shown that combining suitable optimization with smaller-than-standard
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MFD, great increase in bandwidth can be achieved. In detail, the target
100 nm can be achieved with 36%, 46%, and 53% CE using a MFD equal to
8,6, and 4 µm, respectively. Further improvement of performance could be
achieved by the use of a thicker silicon layer (e.q. 300 nm).
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Chapter 3
Grating-Couplers: PIC-to-PIC

3.1 Introduction

Although born in the context of fiber-to-chip light coupling — see Fig. 3.1a,
more recently grating-couplers have been proposed as valid candidates also
for other applications. In particular, applications such as inter-layer or inter-
chip coupling have been explored, since they can greatly benefit from the
efficient out of plane coupling grating-couplers are able to provide.

A notable feature, but also a drawback, of current photonic and electronic
technology is that every circuit is basically a 2D device. Both photonic and
electronic circuits are indeed patterned on two dimensional slabs of materials,
thus limiting the placement freedom and the density of components. The
straightforward solution, namely going to a full 3D technology, is not of
easy realization. A solution compatible with current technology could be the
realization of multiple 2D layers inside the same chip, but it would require an
efficient way to couple light between layers. Since the distance between the
layers has to be large enough to avoid cross-talk, direct adiabatic coupling is
practically out of question, and a system composed of two grating-couplers
(one in each layer) seems a valid solution [220, 221].

The same grating-to-grating approach can be useful even for light cou-
pling between two different chips stacked on top of each other [222], for
example using flip-chip technology [223] — see Fig. 3.1b. This approach
could provide a cost-efficient and compact way to connect together one or
more different photonic chips.

Designing grating-couplers for this grating-to-grating application is not
without challenge. In fact, if two uniform grating-couplers were employed,
the modal mismatch would be even worse than in the fiber-to-grating case.
Apodization — see Fig. 3.2 — is thus a crucial step of the design [224].
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(a) Fiber-to-chip coupling. (b) Chip-to-chip coupling.

Figure 3.1: Two possible applications of grating-couplers.

Lower Grating
Emission Profile

Upper Grating
Emission Profile

(a) Non apodized.

Upper Grating
Emission Profile

Lower Grating
Emission Profile

(b) Apodized.

Figure 3.2: Role of the apodization on the modal mismatch in the case of
grating-to-grating coupling.
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The great majority of the studies on grating-to-grating coupling have been
carried on considering a couple of identical gratings, or a least within the same
materials and vertical structures. This greatly simplify the design process,
since after the mode matching procedure has been performed, the angular
dispersion of the emission as a function of wavelength is automatically taken
into account. In fact, if the Bragg condition:

kneff = kinc‖ +
2π

Λ
(3.1)

is satisfied for one grating, it is automatically satisfied by the other. As
a consequence, the typical bandwidth of a grating-to-grating connection is
fairly wide, featuring 1dB bandwidth up to 100 nm or more.

A few attempts have been made to design inter-layer coupling when dif-
ferent materials are involved, for example coupling between Si and SiN layers
[225], where the problem of the tuning between the two gratings is solved
though a numerical optimization based on a Genetic-Algorithm, which si-
multaneously optimizes the parameters of both gratings. Due to the huge
parameter space involved, such optimizations are often quite expensive, and
the physics involved in the process could be missed.

In this chapter, the same grating-to-grating approach is used to solve
the problem of light coupling between two chips of different platforms, in
particular the conventional SOI and an InP based platform. Realizing effi-
cient and cost-effective light coupling between SOI and a III-V semiconductor
platform could open interesting possibilities, allowing for the integration of
typical III-V features, such as gain for the realization of lasers and ampli-
fiers, in silicon. Such connection is usually made by different approaches, such
as wafer-bonding or transfer printing, which suffer from serious drawbacks,
such as considerable material wastage (wafer-bonding) or sub-µm alignment
(transfer printing). A successful grating-to-grating coupling scheme could
overcome these problems by switching to the easier technology of flip-chip
[226].

The gratings are considered to work at the standard telecom wavelength
λ =1.55 µm. The following of the chapter will contain a description of the
platforms, the gratings design, and discussion of the results.

3.2 Grating-couplers design

3.2.1 The platforms

The platforms available for this chapter, namely standard SOI and an InP-
based platform, are the ones shown in Fig. 3.3.
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Material Refractive Index

Si 3.44
SiO2 1.44
InP 3.17

Fe– InP Q(1.3) 3.36
Fe– InP Q(1.06) 3.26

Table 3.1: Refractive indexes of the materials involved.

Regarding the InP platform, the one available at Fraunhofer Heinrich-
Hertz-Institute (HHI) [227] is taken as a model — see Fig 3.3b. Light is
guided inside a 250 nm layer composed of a Fe doped InP, embedded in pure
InP. A 100 nm thick layer of doped InP with different Fe concentration is
embedded 1180 nm under the waveguide, and the whole structure rests on
an InP substrate. The InP layer composing the top cladding is 1.6 µm thick.
The etching depth is variable, as well as the etching direction, which can be
chosen to have an arbitrary angle β with respect to the vertical direction.
The layers composition and thickness are fixed by the foundry for various
reasons, and will not be optimized during this work.

On the contrary, due to the greater number of standards and of foundries,
more freedom is assumed for the SOI platform. Basically, the only constraint
is the 220 nm thick waveguide layer. All the other vertical parameters, such
as top and bottom oxide thickness, are taken as free. Moreover, two different
configurations will the explored: a conventional one with the grating defined
by etching, and one in which the grating is defined by silicon teeth added
on top of the waveguide. Since the teeth of the second solution could be
realized with deposition and subsequent etching of poly-silicon, this second
solution could provide a viable route to the realization of grating-couplers
with tailored scattering-strength, without requiring the re-adjustment of the
etching process each time.

Regarding the horizontal geometry, almost complete freedom is assumed.
The gratings are apodized, and the parameters of the optimization are set
to keep the minimum feature size around 50 nm.

3.2.2 The scattering strength problem

Since this InP platform has never, to my knowledge, been optimized for
grating-coupling, a more detailed study is needed before entering the core of
the optimization. In particular, the relatively low index contrast available
greatly limits the maximum achievable scattering-strength. To prove that, a
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(b) Indium phosphide platform.

Figure 3.3: Graphical representation of the structure of both platform here
involved. Whenever a number is indicated, that parameter is kept fixed
throughout the whole chapter. Refractive indexes are reported in Tab. 3.1.

quick sweep over the parameters of the uniform grating is performed. A good
combination of parameters giving scattering-strength close to maximum is:
full-etching, filling-fraction F (ratio between etched part and period) of 0.45,
blaze angle β = 45◦ and a period of 516 nm.

The scattering performance of this configuration is then carefully stud-
ied. An analysis of how the light entering the grating from the waveguide
is distributed across the 4 relevant channels — upward, downward, back-
ward, and forward emission — as a function of grating’s length is reported in
Fig. 3.4. The low scattering-strength is clearly evident, as the forward prop-
agation is attenuated with a rate of 0.06 dB/µm, which is at least one order
of magnitude lower than typical scattering-strength in SOI. The upward and
downward emission obviously increase as the length is incremented, showing
a directionality (ratio between the upward emission over the total out-of-
plane emission) of about 70%. Given such values, to obtain a useful upward
scattering the grating has to be made quite long, up to 150 µm, where only
10% of the light remain in the forward direction.

A favorable feature is that the backward emission is very low, below 30
dB. This is less than the rule-of-thumb value of 25 dB usually assumed as
safety limit when operating near back-reflection sensitive devices, such as
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Figure 3.4: Distribution of light between the four available output channels.

lasers or amplifiers [228].
This analysis suggests that the best way to obtain relevant performances

from a InP grating is to resort to longer-than-normal grating-couplers. This
is not a problem here, since the dimension of the radiative mode is not fixed
from some external constraint (such as the dimension of an optical fiber),
but rather decided by the other grating. The downside of this approach is
that the length and scattering-strength of the InP grating would have to
be matched by the Si one, requiring both gratings to be optimized for joint
operation.

3.2.3 Optimization procedure and results

When dealing with the optimization of two coupled systems, two possibilities
arise: optimize the two sub-systems together as a joint one or optimize the
two sub-systems separately using some constraints which could guarantee a
good behavior when the sub-systems are joined. In this case, a joint optimiza-
tion would greatly add to the complexity of separated single grating-coupler
optimizations, since the problem of tuning the periods of both gratings to
emit/adsorb the same frequency at the same angle cannot be easy handled
by a numerical optimization. Moreover, such a procedure tends to overlook
the details of the physics involved.

Thus, in this chapter the latter approach is adopted. For each length
L, the gratings are optimized as in-couplers using as excitation a Gaussian
mode with a MFD equal to L. The gratings are tuned by forcing the emission
at 14.4◦ (in air) to be the central operational wavelength of 1.55 µm, with
a tolerance of 1 nm. This angle is chosen because it is a common one in
fiber-to-chip setups, although in this case probably a wide range of angles
(as long as it is different from 0) could be chosen, with minimal effect on the
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Figure 3.5: Graphical representation of the double optimization approach
and example of coupling spectra — Etched Si and InP, L=100 µm.

performance. The hope is that optimizing the gratings on the same emission
profile, at the same emission angle and the same wavelength, would ensure
a good coupling when the gratings are coupled together — see Fig. 3.5.

The main advantage of this approach lies in the fact that two simple
optimizations are carried out, instead of a single complex one. Moreover,
this split approach allows for the realization of building blocks which can
then be replaced as needed, for example using the same InP grating for both
SOI configurations.

Each grating is optimized by employing the design rule developed by
Marchetti et al. [71], in combination with a single-objective Particle Swarm
Optimization. In detail, the design rule allows for a representation of the
apodized grating dependent only on a small set of parameters, which are
numerically optimized using the PSO algorithm.

The design rule [71], along with a few modifications, will be here recalled.
It starts from a simple linearly chirped grating, namely a grating in which
the filling fraction is adjusted as a function of the position x along the grating
as:

F (x) = min(F0 +Rx, Fmax) (3.2)

where F0 and R are the starting filling fraction and the apodization coeffi-
cient, respectively. The quantity Fmax, namely the maximum filling fraction,
is here inserted for reasons of numerical stability because of the longer-than-
normal gratings. It indeed forbids the filling fraction to grow indefinitely,
which could cause some problems during the PSO algorithm. Moreover, the
grating is not uniform, but rather adjusted along x by simply inverting the
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Bragg condition (Eq. 3.1):

Λ(x) = α
λ

neff (x)− sin(θ)
(3.3)

where Λ(x) is the variable period of the grating and λ, θ are the wavelength
and angle of incidence (in air) of the incoming radiation. The effective index
neff is a function of x through its dependence on the filling-fraction:

neff (F ) = Fne + (1− F )nw (3.4)

where nw and ne are the effective phase indexes of a uniform slab waveguide
with the thickness of the waveguide and of the etched or added part, respec-
tively. The factor α inserted in Eq. 3.3, absent in the original formulation, is
there to force the grating to be tuned to the desired wavelength (λ=1.55 µm
at 14.4◦), compensating for the fact that Eq. 3.4 for calculating the effective
index is only an, however good, approximation. The factor α is chosen by
an iterative procedure to keep the grating emission tuned at 1.55 µm within
a certain tolerance, which is assumed to be 5 nm during the PSO and 1 nm
on the final structure.

Employing such rule greatly simplifies the design flow. Each grating can
now be modeled with a small number of parameters, which can be easily
handled by a numerical optimization. For the InP grating-coupler the pa-
rameters are: the starting filling-factor F0, the apodization coefficient R, the
maximum filling-factor Fmax and the blaze angle β. Although in principle the
technology could allow for variable etching, full-etch is chosen to maximize
the scattering-strength and simplify the optimization. As stated before, the
parameters regarding the layer thicknesses are kept fixed.

Regarding the Si grating, more parameters are needed. In addition to
F0, R, and Fmax, with the same meaning as the InP case, there are the
vertical parameters: the top and bottom oxide thicknesses Tbox and Ttop,
and, depending on the configuration, the etching depth Etch or the thickness
of the added poly-silicon Add.

The optimization procedure is carried out for different values of length,
namely 15,25,50,100, and 150 µm. Greater lengths are not explored since the
expected improvements are not important enough to justify the additional
computational effort, which, since the FDTD method is used, scales linearly
with the length. Each PSO optimization is run with 10 agents and 150
iteration on a nine-core desktop workstation, with computational time going
from a few hours to about a day for the optimization of a single structure,
depending on the length.
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L F0 Fmax R β 100(α− 1)
(µm) (m−1) (deg.)

15 0.38 1.0 5387 49 -0.741
25 0.37 0.55 5020 51 -0.756
50 0.39 0.44 4753 50 -0.674
100 0.36 0.42 2449 54 -0.725
150 0.36 0.40 1375 57 -0.775

Table 3.2: Optimized parameters for the InP gratings.

L Etch F0 Fmax R Tbox Ttop 100(α− 1)
(µm) (nm) (m−1) (µm) (µm)

15 110 0.1 1.0 27500 2.00 0.72 0.00[71]
25 85 0.1 0.59 9925 1.97 0.21 0.417
50 53 0.1 0.47 6552 1.95 0.24 0.052
100 35 0.1 0.53 4276 1.93 0.25 -0.035
150 30 0.1 0.55 2198 1.93 0.25 -0.024

Table 3.3: Optimized parameters for the Si etched gratings.

L Add F0 Fmax R Tbox Ttop 100(α− 1)
(µm) (nm) (m−1) (µm) (µm)

25 100 0.12 0.61 9893 1.84 0.36 0.120
50 70 0.10 0.62 5861 1.86 0.32 0.017
100 37 0.10 0.58 4561 1.88 0.29 -0.124
150 30 0.10 0.53 2917 1.89 0.29 -0.064

Table 3.4: Optimized parameters for the Si added gratings.
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SOI Platform

InP Platform

Off
D 25 μm

Figure 3.6: Structure of the grating-to-grating simulation.

After the optimization is complete, two of the resulting gratings are placed
one above each other — see Fig. 3.6 — at a distance D of 25 µm, compat-
ible with flip-chip technology. The optimal value of the offset between the
gratings, Off, is then identified through a sweep, which also provides the
alignment tolerance.

A summary of the results of the optimizations can be seen in Fig. 3.7,
where insertion loss and 1dB bandwidth are plotted as a function of grating
length. It is evident, in both cases, that increasing the length of the gratings
leads to a decrease in both insertion loss and bandwidth. The decrease
in insertion loss is expected and mainly due to the increase of the total
scattering-power of the InP grating, which allows it to scatter/capture a
greater fraction of the light. The decrease of bandwidth is also expected, due
to the decrease of the finite size contribution — see Chapter 2 — which, due
to the non perfect matching of the dispersions in the two gratings, plays a
role here.

The parameters of the optimal structures are reported in tables 3.2 (InP),
3.3 (Si etched), and 3.4 (Si added). Analyzing the trends in the optimal pa-
rameters can indeed give useful information. In the InP part it can be seen
that the optimal parameters are more or less the same. This is in agree-
ment with the fact that, given the sub-optimal scattering-strength of the
InP platform, the optimal configuration is always the one which maximizes
the scattering-strength, and the total scattering-power increases on increas-
ing length.

On the Si side, the opposite is true. The high scattering-strength reach-
able allows even a short grating to have a sufficient total scattering-power.
Thus, when increasing the length, the total scattering power has to be con-
stant, which requires a reduction of the scattering-strength. This is the
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Figure 3.7: Performance summary of the grating-to-grating coupling for both
configurations. Operation in both direction has been simulated, showing very
similar behavior.

reason why both the optimal etching depth and the optimal thickness of the
added silicon layer decrease on increasing length.

The minimum of insertion loss is obtained for a small value of the offset
Off, between 3 and 5 µm for every configuration. The tolerance on this pa-
rameter is however quite relaxed, starting from a 5 µm alignment tolerance
for the shorter gratings and increasing as length increase.

With all these adjustments, an insertion loss of 2.8 dB and 3.2 dB can be
reached for the etched and added grating, respectively —see Fig. 3.8. More-
over, the 1dB bandwidth, although much smaller than SOI-to-SOI grating-
to-grating coupling, is still around 30 nm, a value comparable with typical
fiber-to-grating coupling.

Considering all this, the performances are enough to justify the investi-
gation of this kind of approach as a viable route to efficient and cost-effective
light coupling between SOI and InP-based platforms.

3.3 Far-field analysis

Useful information on the performance trends in Fig. 3.7 can be extracted
by looking at the emission profiles of the gratings in the far-field. In fact,
assuming that the emission of a grating-coupler coincides with the profile it
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Figure 3.8: Coupling spectra for the best performing case (L=150 µm) of the
two coupling configurations here studied. Performances in both directions
(Si-to-InP and InP-to-Si) are reported.

can accept as input, coupling between the gratings can take place only when
the two far-field profiles overlap.

In the case of two identical gratings, once the mode matching is ade-
quately addressed, the superposition of the far-filed profiles is automatically
guaranteed, and almost no finite size effect is visible. This is the reason for
the very broadband spectrum experimentally observed [223].

When the two gratings are different, the two far-field profiles do not
coincide, and so finite size effects are relevant. For example, in Fig. 3.9 two
far-field profiles are plotted for the case of the InP/etched Si coupling and
for two different values of the length (25 and 150 µm). It is evident that
for the 25 µm long gratings both InP and Si far-field profiles are very broad
in angle, thus the overlap region spans all the interesting wavelengths and
justifies the broadband behavior. Instead, in the 150 µm long gratings the
far-field profiles are much narrower, thus reducing the overlap region and
consequently the bandwidth.

In addition, this kind of analysis could also provide some insight on fabri-
cation and alignment tolerances. In particular, errors in the fabrication or in
the alignment could determine a small tilt or shift of the far field curve. Due
to their very broad profiles, the shorter grating would be quite robust to this
kind of errors, since a pretty large deviation would be required to disrupt the
overlap. The situation is not the same for the longer grating, whose narrower
peaks cause greater sensitivity to small changes. From Fig. 3.9 a tolerance
of about 1◦ on the emission can be estimated.
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3.4 Conclusion

In conclusion, this chapter provides a feasibility study through FDTD simu-
lations of the application of a grating-to-grating approach to the problem of
light coupling between Photonic Integrated Circuits of different platforms.
In particular, standard SOI and an InP-based platform have been chosen.
It has been shown that, due to the limited scattering-strength available in
the InP platform, the most straightforward solution to decrease insertion
loss is to employ longer-than-normal grating-couplers, which also requires
the re-thinking of the SOI grating. By combination of a design rule for
apodization and numerical optimization trough PSO algorithm, InP and Si
grating-couplers of different lengths have been co-designed, showing that in-
sertion losses of around 3 dB are possible with usable bandwidth. This study
could open the way to the use of flip-chip technology for optical connection
between different platforms, allowing for easy and cost-effective hybrid inte-
gration.
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Chapter 4
Slow-light

4.1 Introduction

4.1.1 Slow-light: basic facts

Light propagation, once the constitutive relations are specified, is fully de-
termined by Maxwell equations. For solutions in the form of traveling waves,
almost all the important information can be summarized in the so-called dis-
persion relation, namely the relation between the frequency and wavevector
of the wave:

ω = ω(k) (4.1)

Starting from this relation, two different velocities (and related indexes) can
be defined:

vp =
ω

k
np =

c

vp
(4.2a)

vg =
∂ω

∂k
ng =

c

vg
(4.2b)

which are called phase velocity (4.2a) and group velocity (4.2b). Their mean-
ing is different: the phase velocity describes the speed at which local maxima
or minima of the field travel through space, while the group velocity gives
the speed of the general envelope of the field, and is usually regarded as the
speed at which information coded in light can travel. In uniform and non-
dispersive media, such as vacuum, these speeds are the same, but in general
no direct relation exists between the two. Indeed, phase and group velocities
can be equal, different in values, or even with opposite sign.

Thus, when speaking of slow-light, it is of paramount importance to clar-
ify which velocity is being referred to. In the most used definition, slow-light
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refers to a situation in which the group velocity is made very low (or equiv-
alently the group index is made very high).

Early attempts to finely controlling light dispersion have relied on com-
plex material properties and techniques, such as Electromagnetically Induced
Transparency (EIT) [229], coherent population oscillations [230], and even
Bose-Einstein condensates [231]. Typically, these setups are quite complex
to realize, especially Bose-Einstein condensates, which require nano-Kelvin
temperatures.

More recently, the advent of nano-photonics has opened the way to sys-
tems in which slow-light features can arise only by the geometrical properties
of the structure, even in the presence of non dispersive materials [232]. Even
within this particular application, Silicon Photonics has offered itself as an
ideal platform, both due to its physical properties and its mature level of
technology.

Slow-light has indeed the potential to bring great benefits to typical Pho-
tonic Integrated Circuits, being able both to provide new functionalities or
to improve on existing ones. Slow-light can in fact provide a field enhance-
ment effect similar to the one found in cavities, but retaining all the features
of a traveling wave [233]. This enhancement in light matter interaction can
be exploited in many fields, such as non-linear optics [234, 235], sensing
applications [236, 237], and electro-optical modulators [154, 156, 158, 238].
Possibilities of using slow-light for the realization of all-optical buffers and
memories have also been investigated [239].

When dealing with slow-light in integrated circuits, various figures of
merit have to be taken into consideration. The main concerns are off course
maximum group index, operational bandwidth, and the Group Velocity Dis-
persion (GVD). The first two figures of merit are usually summarized in their
product, called group-bandwidth product or GBP. This because usually slow-
light is based on some sort of resonant mechanism, and thus reaching very
high group index is not a problem in itself, but usually happens at the ex-
pense of bandwidth. Thus, the GBP is a good indicator of the performance of
a slow-light device. Almost as important is the GVD, namely the derivative
of the group index as a function of frequency. Since this value is directly pro-
portional to the amount of distortion suffered by a signal traveling through
the slow-light device, it is important to keep GVD as low as possible. Other
important figures of merit are of course the amount of losses, the ease of
fabrication of the structure, the coupling losses to a conventional waveguide
and the total footprint of the device.

Many ways to generate slow-light in nano-photonics have been explored
over the years. The first one is without doubt band-edge slow-light, which
relies on the fact that band dispersion in a periodic patterned structure,
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whenever a band gap exists, has to arrive flat at the edges of the gap [240].
One simple way to realize that, while retaining waveguiding along one dimen-
sion, is to use the fundamental band of a grating waveguide [241, 242]. This
approach is not so optimal for GBP and GVD, but is surely the simplest,
and it provide quite low losses.

Another approach is to tailor the waveguide parameters to obtain slow-
light features away from the band gap, for example by using non-fundamental
bands in grating waveguides [243], slotted or holey waveguides [244, 245], or
W1 waveguides in PhC Slabs [37, 246, 247, 248]. This approach can indeed
deliver high GBP and low GVD, but usually with the drawback of a much
more complex design or fabrication and increased losses, especially due to
disorder.

Still, another approach is the one of Coupled Resonator Optical Waveg-
uides (CROWs) [249], where the slow-light effect can arise, in a sort of thigh-
binging model, from the interaction between many cavities. Early solutions
were based on micro-ring [250] or micro-disk [251] resonators, but other con-
figurations are possible, such as nano-beam [252] or PhC Slab based [253]
resonators. In the last class, in particular, a great variety of structures has
been proposed, such as simple defect cavities [254, 255], L3 cavities [256, 257],
and waveguide-coupled cavities [258]. These solutions can indeed deliver im-
pressive performance when considering GBP and GVD, but usually at the
price of more complex fabrication and higher losses. In addition, the flexibil-
ity of PhC Slabs allows for other approaches, such as the all-optical analog
of the EIT [259] or adiabatic bandwidth compression [259].

4.1.2 Silicon grating waveguides

This chapter of the thesis is devoted to the analysis of slow-light arising
from the band-edge effect in silicon grating waveguides. Although better
approaches in terms of performance have been proved, grating waveguides
remain the best approach in terms of fabrication ease, and the most suited to
be integrated in current high-volume photonic technology. Moreover, due to
the operation below the cladding light line, the relevant loss mechanisms are
only the extrinsic ones, such as disorder induced loss or Rayleigh scattering,
which are technology dependent and are expected to go down as technology
improves.

The research here presented is carried out in the framework of the Eu-
ropean Project COSMICC — CmOs Solutions for Mid-board Integrated
transceivers with breakthrough Connectivity at ultra-low Cost. The main
aim of this project is the realization of low-cost and energy-efficient integrated
transceivers. At this scope, slow-light devices could be used to enhance the
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Figure 4.1: Graphical representation of the structure and geometrical pa-
rameters of the silicon grating waveguide analyzed in this chapter. The only
fixed parameter is the silicon thickness s=310 nm.

modulation effect in integrated silicon phase shifter, leading to more compact
and efficient integrated Mach-Zehnder modulators.

For the structure under examination — see Fig. 4.1 — the platform avail-
able at STMicroelectronics [260, 261], partner of the COSMICC project, will
be assumed as a guide. The features of the platform are a 310 nm thick sili-
con layer (s=310 nm) with the possibility of two etching depths, of 160 and
260 nm (thus, t=150 or 50 nm, respectively). Consequently, with the excep-
tion of the silicon thickness s, all other parameters will be varied during the
analysis. The period a is chosen different for each structure, in order to keep
the lower band edge at the standard telecom wavelength of 1.3 µm.

The study is carried out using the High Performance Computing resources
granted by CINECA under the ISCRA initiative, in the framework of two
projects: SlowWave and TapeSlow. The calculations here presented have
required a total of about 60000 CPU hours.

The chapter is organized as follows: in the first part the slow-light perfor-
mance as a function of the geometrical parameters is analyzed, while in the
second the problem of the coupling of light to/from conventional waveguide
is discussed.
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4.2. NUMERICAL METHOD AND BAND CALCULATION

4.2 Numerical method and band calculation

The numerical calculations are performed using the Aperiodic-Fourier-Modal-
Method [183], a frequency-domain method based on the scattering matrix
method [182, 262], with a modification allowing for the treatment of aperiodic
systems — see Sec. 1.3.3 and Appendix A and B for a complete description
of the method.

Since this is a frequency based method, direct calculation of the photonic
bands, especially in the region of high group index near the band edge, would
require a very fine grid of energy points, up to hundreds for each structure.
Even recurring to High-Performance-Computing (HPC), the computational
effort of such direct approach would be too heavy and time-consuming.

Thus, taking inspiration from [241], a simple analytical expression of the
photonic band near the band edge is used to fit the dispersion curve calculated
only in a few energy points. This allows for a reduction of the computational
effort by at least one order of magnitude. The more this analytical expression
is close to the actual dispersion curves, the less error is introduced in this
step. For this reason, the simple quadratic model presented in [241], although
quite good, is improved in favor of an expression derived from perturbation
theory.

In the following, the derivation of such analytical expression is discussed,
followed by an example showing the goodness of such approach.

4.2.1 Fitting function from perturbation theory

The derivation here presented, which takes inspiration from the Nearly-Free
Electron model in Solid State Physics [263], is based on the perturbation of
free-space propagation with a dielectric constant variation ∆ε(r) containing
only one Fourier component.

It starts from the master equation (Eq. 1.6) for the magnetic field, which
is here recalled:

∇×
(

1

ε
∇×H

)
=
ω2

c2
H (4.3)

From this starting point, by employing 2D approximation (propagation only
in the xy plane), focusing only on H, or TE, modes (even modes with respect
to the xy mirror symmetry), and defining η = 1/ε, it is possible to write for
the Hz component of the magnetic field the following equation:

− ∂x (η∂xHz)− ∂y (η∂yHz) =
ω2

c2
Hz, (4.4)
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which, by expanding the magnetic field on pseudo-Fourier basis :

Hz(k) =
∑
G

ck+Ge
i(k+G)·r, (4.5)

can be rewritten as:∑
G′

[
(k + G) · (k + G′)η(G−G′)− ω2

c2
δGG′

]
ck+G′ = 0. (4.6)

At this point, the term η(G − G′) is split in a background uniform index
plus a small perturbation ∆η:

η(G−G′) = η0δGG′ + ∆η(G−G′), (4.7)

so that Eq. 4.6 can be rewritten:[
(k + G)2 − ω2

c2

]
ck+G +

∑
G′

(k + G) · (k + G′)∆η(G−G′)ck+G′ = 0. (4.8)

Now, if ∆η is set to 0, all equations decouple and all that is left is:

ω(k + G) = c
√
η0|k + G| = c

n
|k + G| (4.9)

which is just the empty lattice approximation, or an alternative way to see
the standard linear dispersion of electromagnetic waves in a uniform medium.

The interesting physics is obtained when ∆η different from 0 are allowed.
In particular, if the problem is reduced to 1D (only vectors along x are per-
mitted) and in the expansion of ∆η only the fundamental Fourier component
G = −2π/a is retained (where a is the period of the perturbation), Eq. 4.8
can be cast in matrix form:∣∣∣∣ η0k

2 − ω2

c2
k(k +G)∆η(G)

k(k +G)∆η(G) η0(k +G)2 − ω2

c2

∣∣∣∣ = 0, (4.10)

whose analytical solution leads to:

ω2

c2
=
η0[k2 + (k +G)2]±

√
η2

0[k2 + (k +G)2]2 + 4[k(k +G)]2∆η2(G)

2
.

(4.11)
By inserting G = −2π/a and defining U = ∆η(G)/η0 and n =

√
1/η0, it can

be expressed as:

ω2

c2
=
k2 +

(
2π
a

)
±
√[

k2 −
(

2π
a
− k
)2
]2

+ 4k2
(

2π
a
− k
)2
U2

2n2
. (4.12)
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By redefining in terms of the adimensional distance from the band edge
(k = π/a(1− δ)) and adimensional frequency (Ω = ωa/2πc), Eq. 4.12 can be
rewritten as:

Ω2 =
1 + δ2 ±

√
4δ2 + (1− δ2)2U2

4n2
. (4.13)

At this point it is worth recalling that the unperturbed starting point should
be a ridge waveguide, and not the free space. The easiest way of including
that is to insert another parameter which allows for the shifting in energy of
the center of the band gap. Thus, choosing the minus sign for the solution,
since the interest lies in the lower band, the fitting formula becomes:

Ω(δ,Ω0, n, U) =

[
Ω2

0 +
δ2 −

√
4δ2 + (1− δ2)2U2

4n2

] 1
2

. (4.14)

This gives an analytical expression of the lower photonic band near the band
edge, which is then used for the fitting of the numerically calculated bands.

4.2.2 Numerical calculation and fit testing

In this section, a discussion on the validity of the fitting procedure is pre-
sented. An example of the results obtained by direct calculation of the band-
structure of a grating waveguide is reported in Fig. 4.2a. As can be seen, the
full band map is quite complex and complicated by spurious solutions due
to the use of a supercell, but the interesting band, namely the lowest band
near the band edge, is quite easy to isolate from the others.

Once the fundamental band is isolated, the fitting procedure can be car-
ried out. As an example, in Fig. 4.2b a fit of the fundamental band using only
few energy point is presented. It is evident that the agreement between the
fitting procedure and the direct calculation is quite good. This is indeed re-
markable, since the very coarse grid used for the calculation does not always
provide an energy point near the band-edge, and nevertheless the dispersion
in the slow-light region is reproduced by the fit with great accuracy.

Moreover, this fitting procedure shows enough precision to capture the
difference in the bandstructure and in the group index when different struc-
tures are examined, as it is shown in Fig. 4.3. Thus, this procedure allows for
the analysis of the slow-light performances of a broad space of parameters,
which would be prohibitive otherwise.
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Figure 4.2: Full bandstructure and fit for the configuration with parameters
W1 =400 nm, W2 =400 nm, d2/a = 0.5, t =150 nm, and a =213 nm.
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Figure 4.4: Visualization of the slow-light bandwidth (ng > 20) as a function
of W1 and W2.

4.3 Results

Once a valid method for the calculation of the bandstructure is available,
what is missing is a quick way to compare the performances of different
structures. To this scope, the definition of one or more figures of merit,
allowing to capture the slow-light performances with only a few numbers, is
of great importance. Maximum group index is not a good figure of merit in
this case, since it diverges at the band edge. A valid figure of merit is instead
found in the slow-light bandwidth, namely the width of the region in which
the group index is higher than a certain target value.

By using this new figure of merit, general trends in the slow-light per-
formances as a function of geometrical parameters can be easily visualized.
For example, in Fig. 4.4 the slow-light bandwidth (ng > 20) as a function of
W1 and W2 is reported, for t and d2/a fixed at 150 nm and 0.5, respectively.
As can be seen, it is possible to affect the slow-light bandwidth by properly
tuning the geometrical parameters. In particular, the slow-light bandwidth
can be increased form ≈0.2 nm of the standard structure [242] known in
literature, up to almost 1 nm.

A few things can now be noted: first, the absolute value of the slow-light
bandwidth. Although it can be increased using the right geometrical param-
eters, it remains always very small, no greater than 1 nm. Thus, it seems that
grating waveguides are not the most suitable candidates for obtaining very
high group index. A more realistic use of these structures would probably
be to settle for a moderately high group index, such as 10, while retaining a

85



CHAPTER 4. SLOW-LIGHT

 0

 2

 4

 6

 8

 10

 12

 0.4  0.5  0.6  0.7

B
W

 (
n
g
>

1
0

) 
(n

m
)

d2/a

t= 150 nm, W2= 800 nm 

W1= 400 nm
W1= 300 nm
W1= 200 nm
W1= 100 nm

W1= 0 nm

 0.4  0.5  0.6  0.7
d2/a

t= 100 nm, W2= 800 nm 

 0.4  0.5  0.6  0.7
d2/a

t= 50 nm, W2= 800 nm 

Figure 4.5: Representation of the slow-light bandwidth (ng > 10) as a func-
tion of d2/a for different values of W1 and t.

more meaningful bandwidth, at least of a few nm.

Second, it is worth noting that the general trend in the slow-light band-
width as a function of W1 and W2 is quite simple: it increase monotonically
on decreasing W1 and increasing W2. A a consequence, the best structures in
term of slow-light bandwidth are the ones in which W1 = 0, namely a lattice
of trenches. However, it is important to notice that even structures with a
W1 different from 0 can express good performance, almost at the level of the
lattice of trenches, provided W1 is kept sufficiently small (≈< 100 nm).

Keeping these consideration in mind, the analysis is expanded to other
geometrical parameters, such as the Si thickness in the cladding region t and
the ratio d2/a. Some of the results obtained are reported in Fig. 4.5 and 4.6.

As can be seen, the slow-light bandwidth in not much affected by the
ratio d2/a. In fact, for the sets of parameters analyzed, the bandwidth-d2/a
curves are nearly flat, with a maximum between 0.5 and 0.6.

The effect of the cladding silicon thickness t is, instead, much more pro-
nounced, as its reduction produces a great increase in the slow-light band-
width, up to a value of almost 10 nm for t =50 nm. Full etched configu-
rations are not explored, although they would probably yield even better
performances, since they would not permit electrical contact to be realized,
impairing one of the targeted application of such structures, namely phase
shifters for electro-optical modulators.

For details on all the simulated structures, see Supplementary Materials
of [264], where the fit parameters representing the photonic bands through
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Figure 4.6: Representation of the slow-light bandwidth (ng > 10) as a func-
tion of W1 and W2 for different values of t and d2/a = 0.5.
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Eq.4.14 and the related periods are reported for every analyzed waveguide
(for a total of 37 638 different parameter configurations).

In conclusion, in this section it has been shown that by changing the
geometrical parameters of grating waveguides it is possible to increase the
slow-light bandwidth to values higher than the ones reported until now for
silicon grating waveguides [242]. As a general guideline, the slow-light band-
width seems to be proportional to the effective index contrast between the
thin and thick sections of the waveguide, which can be increased by shrinking
the internal width W1 or the cladding Si thickness t.

4.4 Adiabatic taper

4.4.1 The problem of light coupling

Although obtaining the best possible slow-light performances is an interest-
ing theoretical topic, in view of device applications, they are only a part of
a more complex system, and the problem of light coupling from a conven-
tional rib waveguide has to be taken into account. Due to the high index
and modal mismatch between conventional and slow-light waveguides, direct
butt-coupling between the two could lead to significant back-reflection and
scattering losses.

Thus, a dedicated device is required to bridge the gap between conven-
tional and slow-light waveguides. This is usually done by an adiabatic taper
(simple [242] or optimized [241, 265]), a sub-wavelength taper [114], or a ded-
icated mode converter [266] (usually employed for coupling to bands other
than the fundamental one).

All these approaches, with the exception of the mode converter and, if
done properly [191], of the sub-wavelength taper, require a sort of continuous
adaptation of the geometry from a conventional rib waveguide to a grating
one. Unfortunately, all current fabrication techniques have to deal with a
minimum feature size problem, thus making a continuous adaptation to the
best performing grating waveguide, i.e. the trenches one, not practically pos-
sible. However, by carefully looking at Fig. 4.6, it is possible to notice that
only a small drop in slow-light bandwidth is expected when taking a value
of W1 which is not zero, but just high enough to be compatible with fabri-
cation. Thus, in the following, a deeply corrugated waveguide (W1=100 nm
and W2=800 nm) will be taken as the ideal candidate for slow-light applica-
tions, since it features good performance and compatibility with all current
lithographic techniques.

The design of a suitable structure for light coupling from conventional
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Figure 4.7: Sketch of the structure of a simple Blackman taper for standard
and deeply corrugated waveguides.

to slow-light waveguides can still be addressed with the A-FMM method.
Such method, in fact, allows for the calculation of the transmission and
reflection spectra of a finite length of slow-light waveguide, surrounded by
an arbitrary coupling structure. However, such calculations can be quite
heavy, especially if the coupling structure requires many different layers to
be correctly reproduced. Indeed, the calculation of a single transmission
spectrum through a structure composed of hundreds of layers can take up to
1000 CPU hours. Consequently, numerical optimization of the coupler, which
would require many evaluations of the transmission, is almost impossible,
thus ruling out solutions based on optimized tapers or mode converters. For
this reason, the only solutions analyzed in this thesis are the simple adiabatic
taper and the subwavelength one.

4.4.2 Simple adiabatic taper

In this section the simpler solution for the taper will be analyzed, taking
inspiration from [242], where the adiabatic taper is designed by gradually
turning on the periodic patterning using a simple Blackman function. This
solution is proven to work with low group index waveguide (W1 =400 nm,
W2 =800 nm, and t =150 nm — see Fig. 4.7a), and now its use for deeply
corrugated waveguides — see Fig. 4.7b — will be analyzed.

To do this, A-FMM is employed to calculate the transmission through a
finite length of slow-light waveguide, joined at both ends to conventional rib
waveguides by two tapered sections of variable length. The results of such
calculations, showing the transmission through a 128 period long grating

89



CHAPTER 4. SLOW-LIGHT

 -5

 -4

 -3

 -2

 -1

  0

1.295 1.300 1.305 1.310 1.315 1.320 1.325 1.330

Tr
a
n
sm

is
si

o
n
 (

d
B

)

λ (µm)

  0

  5

 10

 15

 20

 25

 30
G

ro
u
p
 I
n
d
e
x

W1=100 nm
W1=400 nm

 -5

 -4

 -3

 -2

 -1

  0

 0  5 10 15 20 25 30

Tr
a
n
sm

is
si

o
n
 (

d
B

)

Group Index

Figure 4.8: Representation of the transmission as a function of wavelength
and group index. For completeness, the group index as a function of wave-
length is also reported.

waveguide between two 150 periods long tapers, are reported in Fig. 4.8 for
two values of W1: 400 and 100 nm. The period is kept constant throughout
the structure, equal to the one of the slow-light section, namely 213 and
218 nm for W1 equal to 400 and 100 nm, respectively. Such calculations
show that a 150 period long taper (≈30 µm) is more than enough to give
high transmission, and that the reduction of W1 from 400 to 100 nm does
not significantly alter the performance of the taper. On the contrary, this
allows the structure to keep high transmission up to a greater value of ng.
Indeed, the transmission remain better than 1 dB up to a ng value of ≈ 15
for W1 =400 nm, which increases to ≈ 25 for W1 =100 nm.

At this point, it is time to consider the effect of the Si thickness in the
cladding region t, in order to design an adiabatic taper for the more con-
venient thicknesses t =100 nm and t =50 nm. The same strategy has been
followed, and the transmission through a slow-light line consisting of 256
periods, connected using Blackman tapers of variable lengths, is reported in
Fig. 4.9 for two different values of t, namely 100 and 50 nm (W1 =100 nm,
W2 =800 nm, and a=226 and 234 nm for t=100 and 50 nm, respectively). It
is quickly evident that the taper performances are much worse than in the
t =150 nm case. For t =100 nm, to obtain useful transmission up to near the
band edge tapers between 300 and 400 period long (≈80 µm) are needed. For
t =50 nm, even a 1000 period long taper (although only the transmission up
to a 500 period long taper is reported) is not enough to keep the transmission
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at acceptable levels.
Moreover, in particular for the t =50 nm case, the behavior of the trans-

mission as a function of wavelength is not trivial at all, as it features very
finely spaced oscillations, modulated by an envelope which also oscillates, but
at at a much slower rate. The rapid oscillations are easily explained, since
they are compatible with Fabry-Perot oscillations of the entire delay line.
Proof is offered by Fig. 4.10, in the fact that the rapid oscillations become
denser and denser as the length of the slow-light section is increased.

Another interesting feature of Fig. 4.9 is how the envelope of the transmis-
sion does not seem to depend on the length of the line, marking it as a feature
of the taper alone. To understand the reason of the envelope oscillations, it
is important to recall that reflections inside such a taper arise mainly due to
contra-directional coupling between the two contra-propagating modes [267].
By this argument, oscillations in the reflection should show a dependence as
sin2(∆βL/2), where ∆β is the average difference in wavevector between the
two contra-propagating modes, and L is the length of the taper.

Moreover, this behavior does not drastically change by changing the func-
tion defining the adiabatic taper, unless a proper optimization is carried out
[265]. For example, in Fig. 4.11 the transmission is plotted as a function of
the taper length, but using a linear function for the taper profile, instead of a
Blackman function, and basically the same behavior of Fig. 4.9 can be seen.

Thus, the simple solution of the adiabatic taper has demonstrated good
transmission near the band edge, provided the group index is not too high.
Indeed, by moving to a more performing grating waveguide, characterized by
a deeper etch, this solution quickly looses effectiveness.

4.4.3 Sub-wavelength taper

This section will be devoted to the analysis of the sub-wavelength taper. This
solution employs a very fine patterning of the dielectric function to make the
resulting structure behave as an uniform medium. Such approach has al-
ready been proven useful for light-coupling between waveguides with quite
different characteristics, mainly in terms of modal index and size. Most no-
table examples include fiber-to-chip edge-couplers [44, 191] and Multi-Mode-
Interferometers [58].

The adaptation of this concept to the slow-light waveguide of this thesis
leads to the design of a kind of double-step taper — see Fig. 4.12. The
first section is the proper sub-wavelength taper, where the geometry of the
waveguide is linearly adapted from a conventional rib to a deeply corrugated
waveguide. In this section the period is held constant, but it is smaller than
the one needed for the slow-light waveguide. This pushes the band edge to
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Figure 4.9: Transmission through a 256 long slow-light waveguide for different
values of t and lengths of the tapers, measured in the number of periods T.
Fixed parameters areW1 =100 nm andW2 =800 nm. The tapers are designed
using a Blackman function.
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ent values of t and lengths of the tapers, measured in the number of periods
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Etched to t=50 nm

Un-Etched

T1 T2

Un-Etched

Figure 4.12: Sketch of the subwavelegnth taper for the case of the high group
index waveguide (W1=100 nm, W2=800 nm, t=50 nm). The variation of the
period is exaggerated for better visibility.

higher energies, forcing the waveguide to work in the sub-wavelength regime.
In such regime, the waveguide behaves as if it were made of a single uniform
material, and thus the optical properties of the mode are less sensitive to the
details of the underlying geometry. Thus, it is possible for the light to be
coupled from a standard waveguide to a deeply corrugated one (not in the
slow-light regime) without incurring in great reflections.

In the second part of the taper the real adaptation to the slow-light
waveguide takes place. In fact, in this section the transversal geometry of
the wavelength is not modified, but the period is linearly adjusted to the one
of the desired slow-light waveguide. The hope is to keep reflection low also
in the second part, which is only responsible for the gradual modification of
the group index, since the geometry of both the waveguide and, at least in
part, of the optical mode have already been adjusted by the first part.

This solution has been analyzed only for the slow-light waveguide with
deeper etch (t=50 nm), since it is for this configuration that the simple adia-
batic taper does not work. The period of the sub-wavelength taper is taken
to be 220 nm, which is a small enough value to move the band-edge up to
a wavelength of around 1.24 µm, sufficiently far to keep low reflection in the
first part of the taper. The period in then linearly varied in the second part
up to 234 nm, the target value for the slow-light waveguide.

For these calculations, the same setup as the previous section has been
followed. The transmission through a 256-period long slow-light waveguide
for different lengths of the sections of the taper (measured in number of
periods T1 and T2) has been calculated, and it is plotted in Fig. 4.13. It is
promptly evident that this solution yields greatly improved performance in
terms of transmission, although some reflection near the band edge is still
present. As a matter of fact, the reflection seems to be much more dependent
on the length of the second part than on the one of the first. Indeed, it can be
seen from the figure that doubling the length of the first section (from 50 to
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Figure 4.13: Transmission through a 256 long slow-light waveguide with high
group index (t=50 nm). The transmission is plotted for different lengths of
the taper’s sections (expressed in number of periods).
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100 periods), while keeping the length of the second part constant, improves
the transmission only marginally.

In conclusion, it has been proven that the sub-wavelength approach has
the potential to realize a good connection between conventional and slow-
light waveguides, since, even in this simple case, it can deliver losses in the
transmission lower than 1dB in a wide range of wavelengths, excluding 1 or
2 nm in the proximity of the band edge. Furthermore, it is worth noting
that this design is still not optimized, and that by suitable optimization an
improvement of performance could be expected. Indeed, such an approach
could even be viable for coupling light in the marginally more performant
trenches waveguide.

4.5 Conclusion

In conclusion, the slow-light performances of silicon grating waveguides have
been theoretically analyzed. It has been shown that, by carefully optimiz-
ing the geometrical parameters, an almost tenfold increase in the slow-light
bandwidth (≈10 nm for group index ng > 10) can be obtained with respect
to structures known in the literature [242]. The best performing waveguide
in term of slow-light bandwidth has turned out to be the lattice of trenches,
namely all the structures in which W1 = 0.

In addition, the problem of light coupling from conventional rib to a
deeply corrugated waveguide in the slow-light regime has been addressed.
Two solutions have been analyzed: a simple adiabatic taper and a double step
sub-wavelength taper. The first solution has proven valid only for the slow-
light waveguide with lower group index (namely the t=150 nm one), being
able to keep high transmission with a relatively short taper (150 periods, ≈
30 µm). However, the same solution is not viable for the slow-light waveguide
with higher group index, i.e., t=50 nm. Indeed, even a very long taper (1000
periods, ≈ 250 µm) is unable to keep the transmission at acceptable levels.

Thus, a more complex solution, based on a double step taper, was ana-
lyzed. In this approach, the first part of the taper is used to perform the
adaptation of the geometry of the waveguide in the sub-wavelength regime,
using a smaller period than the one required for the slow-light effect to arise.
Then, in the second part, the period is gradually increased until slow-light is
reached. This solution is indeed able to limit transmission losses, even with a
relatively short taper (between 25 and 100 µm). Suitable optimization of this
approach could lead to improved performance, and even solve the problem
of light-coupling to the lattice of trenches.
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Recent advances in nano-photnics have enabled the development of light
manipulation techniques that were unthinkable only a few decades ago. In
particular, the silicon industry, relying on all the technology developed for
the shaping of matter at the nano-scale, has provided an ideal platform for
these new photonic applications, to the point that Silicon Photonics is now
a vibrant and rapidly growing field.

The great freedom and the relative high cost of prototyping, typical of
such technology, has stimulated the creation of theoretical design strategies,
which often involve simulations of the physics underlying such components.
The simulation part is nowadays a key component of the design flow if pho-
tonics, as it allows for a rapid and cheap exploration of a broad parameters
spaces, which would not be feasible in practice.

In this thesis, a theoretical study of grating structures for Silicon Pho-
tonics has been performed. Specific targeted application have been grating-
couplers for fiber-to-chip (second chapter) and chip-to-chip (third chapter)
light coupling, and grating waveguides for slow-light applications (fourth
chapter).

In the second chapter, in particular, a theoretical study of fiber-to-chip
grating-couplers has been performed, posing special attention to the inter-
play between coupling efficiency and bandwidth. Through a combination of
FDTD and RCWA calculations, the role of the interaction between grating
and excitation on the formation of the bandwidth has been analyzed.

Indeed, it has been shown that the bandwidth is made up of two contri-
butions. The first one, of Gaussian shape, comes from the finite dimension
of the fiber mode used as excitation, and becomes smaller as the mode di-
mension increases. The second one comes from the intrinsic width of the
photonic mode inside the grating, it has a Lorentzian lineshape and it does
not depend on the fiber mode. Confirmation of such interplay comes also
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from the fit of the coupling spectra, which start as Gaussian for small fiber
mode, then evolve to Voigt and Lorentzian as the mode dimension increases.

In addition, a multi-objective numerical optimization has been employed
to apodize the grating-couplers for simultaneous optimization of coupling
efficiency and bandwidth, for different dimensions of the fiber mode. It has
been shown that, by a combination of apodization and smaller-than-standard
excitation spots (reachable using high numerical-aperture or lensed fibers),
coupling bandwidth up to 100 nm can be reached with an insertion loss lower
than 3 dB.

In the third chapter, a feasibility study of the light coupling between
two different chips using a grating-to-grating approach has been presented.
The selected chips have been chosen to come from two different platforms,
namely conventional Silicon-On-Insulator (SOI) and a III-V, i.e., InP. Due
to the low scattering-strength available in the InP platform, gratings longer
than the standard 12-15 µm have to be employed, to allow an efficient light
extraction and insertion at the InP chip.

Thus, a co-optimization of SOI and InP grating-couplers has been per-
formed through FDTD simulations and a Particle Swarm Optimization al-
gorithm. It has been shown that, by employing 150 µm long gratings with
matching scattering-strengths, insertion losses as low as 3 dB are possible.

In the fourth chapter, band-edge slow-light properties of silicon grating
waveguides have been analyzed. Taking as figure of merit the slow-light
bandwidth, namely the width of the region in which the group index of the
waveguide is greater than 10, it has been shown that the slow-light perfor-
mance can be increased by careful optimization of the geometrical parame-
ters. In particular, an almost tenfold increase (from 1 nm to almost 10 nm)
over structures known in the literature is possible by increasing the modula-
tion strength (by making the thin section of the waveguide thinner) and by
decreasing the silicon thickness in the cladding region. In terms of slow-light
bandwidth, the best performing structure is thus identified in the lattice of
trenches.

Then, the problem of light coupling from conventional waveguides is also
studied. It is shown that, for conventional silicon thickness in the cladding
(150 nm), a simple and compact (≈30 µm) adiabatic taper is enough to get
high transmission. However, the same solution does not scale well when
the cladding thickness is reduced, since even a quite long (≈250 µm) taper
fails to keep the transmission at acceptable values for a thickness of 50 nm.
Thus, a more complex solution, based on a double taper with sub-wavelength
structures, is proposed. It is shown that this second approach offers a viable
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solution to the light-coupling problem, even if some optimization may still
be needed.

Further studies are possible on all the analyzed topics. For the part on
grating-couplers, refining the optimization procedure, for example by em-
ploying the Multi-Objective procedure right from the beginning, could lead
to an increase in performances. It is the part on slow-light, however, which
offers the greatest appeal. Indeed, the next logical step would be to further
improve the sub-wavelength taper for coupling to slow-light, maybe address-
ing also the lattice of trenches. After that, joining optical and electrical
simulations would allow for the design of a slow-light phase shifter, to be
employed in slow-light Mach-Zehnder silicon electro-optical modulator.
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Appendix A
Coordinate transformation for A-FMM

In this appendix, the formalism leading from the conventional Fourier Modal
Method for crossed gratings [182] to the Aperiodic-Fourier Modal Method
[183], through the addition of the coordinate transformation, is recalled. First
of all, it is important to define the proprieties of this transformation. For the
purpose of A-FMM, it is indeed crucial to choose a transformation which is
able, by mapping the finite computational cell to the entire R2, to completely
eliminate crosstalk between adjacent replicas of the structure under consid-
eration. For simplicity only transformations involving one coordinate will be
addressed, since it is always possible to build the entire 2D transformation
by combining two independent 1D ones.

By indicating with x the coordinate in the physical R space and by x′

the coordinate in the computational space (the interval [−dx/2, dx/2]), the
coordinate transformation is uniquely identified by a function:

x = f(x′)

(
−dx

2
,
dx
2

)
→ R (A.1)

which is at least C1 and satisfy the conditions:

lim
x→±dx/2

= ±∞ (A.2)

In the following, the formalism leading to the eigenvalue problem of
Eq. 1.16 will be discussed, followed by a brief description of the specific
functions used for the coordinate transformation.

A.1 The eigenvalue problem

In order to apply the concept of the coordinate transformation to the for-
malism presented in ref. [182], all that is needed is to write Maxwell equations
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in the physical space, then apply the coordinate transformation followed by
the Fourier transform in the computational coordinate space. In order to in-
sert the coordinate transform in Maxwell equations it is sufficient to modify
the derivative operation along the coordinate which is transformed using the
chain rule:

∂

∂x
→ ∂x′

∂x

∂

∂x′
(A.3)

The function ∂x′

∂x
, which will be indicated as f̃(x′), is easily calculated invoking

the theorem of the derivative of the inverse function:

f̃(x′) =
1

f ′(x′)
(A.4)

where f ′ is simply the derivative of f .
In the following, the formalism leading from Maxwell equations to Eq.

1.16 will be recalled. The treatment is, with the necessary modifications, the
same as in ref. [182].

In addition, in order to make the dissertation self-contained, the Laurent’s
rules for the correct Fourier factorization [268] will be reported here. It is
indeed known that 1D-periodic functions can be represented an a sum over
their Fourier components :

f(x) =
∑
n

fne
iknx (A.5)

where fn is the Fourier coefficient relative to the vector kn of the reciprocal
lattice. One important notice: since the aim of this theory are numerical
calculations, all the summations here proposed are always taken on a finite
set. When a continuous function h can be seen as the product of two contin-
uous function f and g, the Fourier coefficients of h can be calculated from
the ones of f and g using the standard Laurent’s rule:

hn =
∑
m

fnmgm (A.6)

where the matrix element fnm is the Fourier coefficient of f relative to the
vector kn−km. However, when the function h is continuous, but f and g are
not — a situation which is often found in electromagnetic problems for D, ε
and E — Eq. A.6 is no longer accurate. Indeed, the correct equation to be
used — called inverse Laurent rule — becomes:

hn =
∑
m

[
1

f

]−1

nm

gm (A.7)
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where the matrix [1/f ]−1 is the inverse of the matrix constructed with the
Fourier coefficients of the inverse if f .

Now that all the premises are set, the problem of deriving Eq. 1.16 can be
tackled. The starting point is, as usual, the set of Maxwell equations, which
can be rewritten:

∂yE
z − ∂zEy = ik0H

x (A.8a)

∂zE
x − ∂xEz = ik0H

y (A.8b)

∂xE
y − ∂yEx = ik0H

z (A.8c)

∂yH
z − ∂zHy = −ik0εE

x (A.8d)

∂zH
x − ∂xHz = −ik0εE

y (A.8e)

∂xH
y − ∂yHx = −ik0εE

z (A.8f)

where k0 = ω/c is the vacuum wavevector and nonmagnetic materials are
assumed (µ = 1). The components are indicated with a superscript to leave
space as subscript for the labeling of the Fourier coefficients. When applying
the coordinate transformation, Eqs. A.8 take the form:

f̃y∂yE
z − ∂zEy = ik0H

x (A.9a)

∂zE
x − f̃x∂xEz = ik0H

y (A.9b)

f̃x∂xE
y − f̃y∂yEx = ik0H

z (A.9c)

f̃y∂yH
z − ∂zHy = −ik0εE

x (A.9d)

∂zH
x − f̃x∂xHz = −ik0εE

y (A.9e)

f̃x∂xH
y − f̃y∂yHx = −ik0εE

z. (A.9f)

To Fourier transform Eqs. A.9a,A.9b and A.9f the standard Laurent rule
can be applied, leading to:∑

m

if̃ ynmk
y
mE

z
m − ∂zEy

n = ik0H
x
n (A.10a)

∂zE
x
n −

∑
m

if̃xnmk
x
mE

z
m = ik0H

y
n (A.10b)

∑
m

i
(
f̃xnmk

x
mE

y
m − f̃ ynmkymEx

m

)
= −ik0

∑
j

εnjE
z
j . (A.10c)

Eq A.10c can be inverted by multiplying for ε−1
ln /i and summing over n:

∑
n

ε−1
ln

[∑
m

(
f̃xnmk

x
mE

y
m − f̃ ynmkymEx

m

)]
= −k0

∑
nj

ε−1
ln εnjE

z
j , (A.11)
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which since
∑

n ε
−1
ln εnj = δlj can be rewritten:∑
nm

ε−1
ln

(
f̃xnmk

x
mE

y
m − f̃ ynmkymEx

m

)
= −k0E

z
l . (A.12)

When inserted in Eq A.10a and A.10b and after dividing by ik0, Eq.A.12
gives:

− i

k0

∂zE
y
n = −Hx

n −
1

k2
0

∑
mjk

f̃ ynmk
y
mε
−1
mj

(
f̃xjkk

x
kH

y
k − f̃

y
jkk

y
kH

x
k

)
(A.13a)

− i

k0

∂zE
x
n = Hy

n −
1

k2
0

∑
mjk

f̃xnmk
x
mε
−1
mj

(
f̃xjkk

x
kH

y
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y
jkk

y
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x
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)
, (A.13b)

which, defining the matrices Kx(n,m) = kxn/k0δnm (and the same for Ky),
can be recast in matrix form:

− i

k0

∂

∂z

[
Ex
Ey

]
=

[
FxKxε

−1FyKy 1− FxKxε
−1FxKx

FyKyε
−1FyKy − 1 −FyKyε

−1FxKx

] [
Hx

Hy

]
,

(A.14)
and thus Eq. 1.16a is demonstrated.

The difficulties arise when trying to demonstrate Eq. 1.16b, since it can
involve discontinuous functions with concurrent jumps. To better clarify this
part, a little change in notation has to be introduced. In all the previous
treatment the Fourier transform was always made in both x and y directions
at the same time. Since this is not true anymore for the following discussion,
the summation index n indicating the different components of the Fourier
expansion will be split in two indexes: a normal n indicating Fourier trans-
formation along x and a primed index n′ indicating transformation along y.
Every summation involving the entire Fourier space will now be expressed
by two indexes, for example:∑

m

f̃xnmk
x
mE

y
m →

∑
mm′

f̃xnn′mm′k
x
mm′E

y
mm′ . (A.15)

When only the normal or primed index is present, the Fourier transform is
intended only along the specified axis.

With this new notation, the Fourier transform of Eq A.9c, which can be
performed with the standard Laurent rule without particular problems, takes
the form:∑

mm′

i
(
f̃xnn′mm′k

x
mm′E

y
mm′ − f̃

y
nn′mm′k

y
mm′E

x
mm′

)
= ik0H

z
nn′ . (A.16)
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A.1. THE EIGENVALUE PROBLEM

To correctly Fourier transform Eq. A.9d and A.9e, it is necessary to use
the inverse Laurent rule [268]. Focusing firstly on A.9d it is important to
note that the product εEx is continuous is x, and can thus be transformed
in this coordinate as follows:∑

m

if̃xnmk
x
mH

z
m − ∂zHy

m = −ik0

∑
j

[
1

ε

]−1

nj

Ex
j , (A.17)

where everything in this equation is still an explicit function of y. However,
since Ex

j is continuous in y for every j, the Fourier transform along this axis
can be performed with the conventional Laurent rule, leading to:

∑
mm′

if̃ ynn′mm′k
y
mm′H

z
mm′ − ∂H

y
nn′ = ik0

∑
jj′

[
1

ε

]−1

nj,n′j′
Ex
jj′ , (A.18)

which, by multiplying for i/k0 and substituting Hz form A.9c, can be written
as:

− i

k0

Hy
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∑
jj′

[
1

ε

]−1

nj,n′j′
Ex
jj′+

+
1

k2
0

∑
mm′ll′

f̃ ynn′mm′k
y
mm′

(
f̃xmm′ll′k

x
ll′E

y
ll′ − f̃

y
mm′ll′k

y
ll′E

x
ll′

)
.

(A.19)

The same procedure can be followed for Eq. A.9e, with the difference
that the Fourier transformation with the inverse rule has to be taken along
y:

∂zH
x
n′ −

∑
m′

if̃xn′m′k
x
m′H

z
m′ = −ik0

∑
j′

[
1

ε

]−1

n′j′
Ey
j′ (A.20)

and then with the conventional rule along x

∂zH
x
nn′ −

∑
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x
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z
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∑
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[
1

ε
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n′j′,nj

Ey
jj′ . (A.21)

This leads, after multiplication for −i/k0 and substitution of Hz, to:
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(A.22)
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Figure A.1: Representation of (a) the real coordinate transformation and (b)
corresponding f̃ function.

A little simplification in the notation at this point is useful. Since Eqs. A.19
and A.22 only involve summation over coupled primed and unprimed indexes,
it is possible to go back to the notation with only one subscript (nn′ → n),
which allows the simple definition of the matrices:

εx,y(n,m) =

[
1

ε

]−1

nm,n′m′
εy,x(n,m) =

[
1

ε

]−1

n′m′,nm

. (A.23)

With these simplification Eq.s A.19 and A.22 can be cast in simple matrix
form:

− i

k0

∂z

[
Hx

Hy

]
=

[
−FxKxFyKy (FxKx)

2 − εy,x
εx,y − (FyKy)

2 FxKxFyKy

]
=

[
Ex
Ey

]
, (A.24)

which is the same as Eq. 1.16b. Together with Eq. A.14, this equation forms
the base of the eigenvalue problem to be solved in each layer.

A.2 Function for coordinate transformation

The first function proposed for the coordinate transformation is a purely
real one — see Fig. A.1 — which is defined as follow:

f(x′) =

{
x′ for |x′| < e/2
x′

|x′|

[
e
2

+ d−e
π

tan
(
π |x

′|−e/2
d−e

)]
for e/2 < |x′| < d/2

(A.25)

where d, e are the widths of the computational cell and of the unmapped
region, respectively.

Its role is just to eliminate crosstalk between adjacent replicas of the
structure, allowing for the treatment of isolated structures in space. This
kind of transformation does not implement the outgoing wave condition at
the border of the computational cell, so it is suitable for calculation only
when scattering in the xy plane is negligible.
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A.2. FUNCTION FOR COORDINATE TRANSFORMATION

The Fourier coefficient of the function f̃ needed for the implementation
can be calculated as:

f̃n = δ0n − (−1)n
q

2d

[
sinc

(nq
d

)
+

1

2
sinc

(nq
d
− 1
)

+
1

2
sinc

(nq
d

+ 1
)]

,

(A.26)
where q = d − e is the width of the mapped portion of the computational
cell.

In order to allow the treatment of all the situations in which the scat-
tering is important, a different function has been proposed [269]. The idea
behind this new transformation is to map the computational cell to a complex
plane. By suitable choice of this complex mapping, it is possible to obtain
a behavior similar to a Perfectly Matched Layer (PML) boundary condition
at the border of the computational cell. In this way all waves propagating
towards infinity are absorbed in the region of PML, the radiation modes can
be expanded on Fourier basis inside the computational cell, thus allowing for
the correct handling of the out-of-cell scattering.

A particularly simple function which provide adsorbing boundary condi-
tion, and that can be though as an extension of Eq. A.25 is the following:

f(x′) = x′ for |x′| < e/2 (A.27a)

f(x) =
x′

|x′|

(
e

2
+

d− e
π(1− γ)

{
tan

(
π
|x′| − e/2
d− e

)
−

− γ√
1− γ

atan

[√
1− γ tan

(
π
|x′| − e/2
d− e

)]})
for e/2 < |x′| < d/2

(A.27b)

which leads to a f̃ expressed by the fourier coefficients:

f̃n = δn −
q

2d
(−1)n

[(
1 +

γ

4

)
sinc

(nq
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)
+

1

2
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(nq
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+

+
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2
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(nq
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− γ

8
sinc

(nq
d
− 2
)
− γ

8
sinc

(nq
d

+ 2
)] (A.28)

where e, q and d have the same meaning of the real coordinate transformation
and γ is a complex parameter which is assumed equal to 1/(1− i).
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Appendix B
Poynting vector in A-FMM

A useful feature of A-FMM is the possibility to calculate the z component of
the Poyting vector. This is crucial for correct calculation of both reflectance
and transmittance, and of the energy flow inside the structure under arbitrary
excitation. The starting point for the calculation is the definition of the time-
averaged Poyting vector for harmonic fields:

P(x) =
1

2
E(x)×H∗(x) (B.1)

where all the space dependence is indicated in x = (x, y, z). The flux of the
real part of this vector over a surface represents the total energy flux across
that surface, averaged over one period of oscillation of the radiation. The
imaginary part of the Poyting vector can be related to stored power, and it
is present only in certain cases (standing waves, resonators, etc...). It will be
ignored in the present discussion, which only deals with the energy flux.

For the purpose of A-FMM, only the z component to the Poynting vector
is needed. It can be calculated as:

Pz(x) =
1

2

[
Ex(x)H∗y (x)− Ey(x)H∗x(x)

]
(B.2)

and can be used to calculate the total energy flux through the computational
cell at position z:

Φ(z) =

∫
C

Pz(x, y, z)dΩ (B.3)

where C indicates the domain of the xy computational cell, and dΩ = dxdy.

This flux can assume two different forms, whether only the flux related
to a single mode or the total energy flow is calculated.
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APPENDIX B. POYNTING VECTOR IN A-FMM

B.1 Energy flux of a single mode

The energy related to a single mode is of paramount importance for the
correct calculation of the transmittance and reflectance. Although the cou-
pling coefficients between incoming and outgoing modes are given by the
square modulus of the elements of the scattering matrix, to get the right
fraction of energy coupled from one mode to another it is necessary to take
into account, in addition to the coupling coefficient, also the total power
carried by each mode — see 1.25.

To calculate this quantity the field in Eq. B.3 will be assumed to come
from only one mode (whose coefficient is assumed to be 1). The first term
under the integral sign thus becomes:

Ex(x)H∗y (x) =
∑
kk′

Ẽx(n, k)H̃∗y (n, k′)ei[(kx−k
′
x)x+(ky−k′y)y], (B.4)

where n is the mode of which the Poyting vector is calculated. This equation,
granted that: ∫

C

ei[(kx−k
′
x)x+(ky−k′y)y]dΩ = LxLyδkk′ (B.5)

since k and k′ are reciprocal lattice vectors, can be integrated into:∫
C

Ex(x)H∗y (x)dΩ = LxLy
∑
k

Ẽx(n, k)H̃∗y (n, k) (B.6)

and an analogous expression for the second term.
Consequently, the total energy flux P associated with a single mode can

be expressed as:

P =
LxLy

2

∑
k

Ẽx(n, k)H̃∗y (n, k)− Ẽy(n, k)H̃∗x(n, k), (B.7)

whose real part is, apart from the normalization factor (which is unimportant,
since only ratios are considered), equivalent to Eq. 1.26.

B.2 Total energy flux

The calculation of the total energy flux inside the structure as a function
of z under arbitrary excitation is a little more complex. It is however a desir-
able feature, since it can be employed to calculate the total energy balance
of the structure and the absorption layer by layer.
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B.2. TOTAL ENERGY FLUX

In order to calculate the energy flux, the expression of the fields as a
function of z is needed. Both electric and magnetic fields are indeed composed
by a full superposition of all forward and backward propagating modes:

E =
∑
n,k

(un + dn)Ẽ(n, k)ei(kxx+kyy) (B.8a)

H =
∑
n,k

(un − dn)H̃(n, k)ei(kxx+kyy). (B.8b)

The total z-component of the Poynting vector is still expressed by Eq.
B.1. In the following only the term involving Ex and Hy will be expanded,
since the other term, containing Ey and Hx is fully analogous. Thus, ex-
panding using Eq. B.8, it is possible to write:

Ex(x)H∗y (x) =
∑
nn′,kk′

(un+dn)(un′−dn′)∗Ẽx(n, k)H̃∗y (n′, k′)ei[(kx−k
′
x)x+(ky−k′y)y].

(B.9)
Then, by remembering Eq. B.5, it is possible to integrate over the cross
section, thus obtaining:∫

C

Ex(x)H∗y (x)dΩ = LxLy
∑
nn′,k

(un+dn)(un′−dn′)∗Ẽx(n, k)H̃∗y (n′, k). (B.10)

At this point, once written the analogous of Eq. B.10 for the second term in
Eq. B.1, it is possible to write a general expression for z-component of the
Poyting vector as:

Pz =
1

2
Re

[∑
nn′

(un + dn)(un′ − dn′)∗P̃nn′
]
, (B.11)

which is the same expression as Eq. 1.28, provided that:

P̃nn′ =
∑
k

[
Ẽx(k, n)H̃∗y (k, n′)− Ẽy(k, n)H̃∗x(k, n′)

]
(B.12)
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Appendix C
Particle Swarm Optimization

Optimization algorithms are employed almost everywhere in current design
problems. Normally, such problems have to be formulated in terms of a
fitness function, namely a function, dependent on some optimization param-
eters, which is able to assign a number to the validity of a particular solution,
identified by a specific combination of parameters. Thus, finding the opti-
mal solution is usually equivalent to find the maximum or minimum of the
corresponding fitness function.

Particle Swarm Optimization (PSO) is one exponent of the class of heuris-
tic optimization algorithms [270, 271]. The denomination “heuristic” is as-
signed to those optimization algorithms which, although no guarantee of
convergence to the optimal solution is provided, are usually able to find an
approximate optimal solution in less time than classical optimization algo-
rithms.

Usually this kind of algorithms takes inspiration from the natural world.
Major exponents of this class are Genetic Algorithms (GA) [272], Tabu
Search (TS) [273], Simulated Annealing (SA) [274], Ant Colony Optimization
(ACO) [275] and the PSO itself.

The PSO algorithm had been first proposed in 1995 by R. Eberhart and
J. Kennedy [218], taking inspiration from the behavior of a swarm of bees in
search of the point of highest flower-density in a field. Since then, PSO has
stimulated a great deal of research, either applying the standard method to
different optimizations, focusing on a better understanding of the method,
or generalizing the method to extend its domain of application.

PSO algorithms have been successfully applied to many problems. Par-
ticularly relevant for this thesis are electromagnetic problems, such as grating
couplers [208], horn antennas [276], antennas arrays [277] and absorbers [278].

Standard particle swarm optimization is only able to deal with real val-
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APPENDIX C. PARTICLE SWARM OPTIMIZATION

ued parameters and one single fitness function. Many extensions have been
proposed over the years, such as binary valued PSO [279, 280] and multi-
objective PSO [281, 282].

In this appendix the standard PSO algorithm will be recalled, together
with its Pareto-front based Multi-Objective implementation used in Chapter
2.

C.1 Standard Single-Objective PSO

Standard single objective Particle Swarm Optimization deals with the
maximization (or minimization) of a single multi parameter function f : A→
R where A is usually a certain closed subspace of Rn. In real life problems
the subspace A is the space of parameters available for the optimization and
the function f is the “fitness function”, a real valued function expressing the
goodness of a solution.

At the core of the PSO is the concept of swarm, which is simply a col-
lection of agents with some shared information between them. Each agent
has a position x (representing a single trial solution) in the space A and it is
able to move in it with velocity v. The optimization is then carried out by
an iterative procedure which at each iteration evaluates the fitness function
in the position of each agent, then moves the agents taking into account the
accumulated knowledge of the parameter space.

This knowledge consists basically in two positions for each agent: the
personal best pb and the global best gb. The personal best is different for each
agent and stores the position with the maximum fitness function ever found
by that particular agent. The global best stores the position of maximum
fitness function ever found by the entire swarm, and it is basically the only
mean of communication between the agents.

The algorithm for updating the positions of the agents is a sort of fictitious
dynamics in which each agent is dragged towards his pb and gb using a kind
of harmonic potential with random strength:

vi(t+1) = wvi(t) + ccαc(p
i
b − xi(t)) + csαs(g

i
b − xi(t)) (C.1a)

xi(t+1) = xi(t) + vi(t+1). (C.1b)

In these equations, w, cc and cc are coefficients which can be tweaked to
balance the optimization, while αc and αs are random numbers extracted,
at each iteration step, from a uniform distribution between 0 and 1. The
coefficients cc and cs are usually numbers between 1.0 and 2.0 called cognitive
and social rates, respectively, and regulate the relative strengths of the pb
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C.1. STANDARD SINGLE-OBJECTIVE PSO

(a) Adsorbing. (b) Reflecting. (c) Invisible.

Figure C.1: Different type of boundary conditions for PSO.

and gb pulls. The other coefficient, w, is called inertial weight, it is usually
between 0.1 and 0.9 and regulates how resilient the agents are to the pb and
gb pulls. It is furthermore usual practice to set a maximum speed of the
agents in each direction, in order to prevent the agents from traveling the
full length of the allowed space in one single iteration.

The tweaking of these coefficients can greatly impact the performance of
the algorithm, in particular by changing the balance between exploration,
the tendency to explore unknown territories of the parameter space, and
exploitation, the tendency to focus on local optima to better identify the
best local position. The balance is delicate: too much exploration could lead
to the missing of the fine features of the fitness function landscape, while
too much exploitation could cause the algorithm to remain stuck in a local
optimum, missing the more interesting global one. In general, high w and cs
tends to favor exploration, while high cc favors exploitation.

Studies exists in literature which address this problem [283], and differ-
ent strategies to improve convergence have been proposed. One simple and
effective strategy is to adjust the value of the inertial weight during the opti-
mization: a high w is chosen at the beginning of the algorithm, thus favoring
exploration, then the inertial wight is gradually reduced, moving the balance
in favor of exploitation.

Typical PSO algorithms are usually run with a few agents (up to a few
tens) for a fixed number of iteration, then the value of gb is taken as the
result of the optimization. The optimization can however be stopped before
if all the agents have converged in the same position, a situation in which no
further improvement can be expected.

Beyond the fundamental core of the algorithm, in the PSO a way has
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APPENDIX C. PARTICLE SWARM OPTIMIZATION

to be found to keep the agents in the region of parameters relevant to the
problem, so boundary conditions have to be implemented. Three main kinds
of boundary conditions — see Fig. C.1 — exist: absorbing, reflecting and
invisible. In the absorbing and reflecting boundary condition the agent is not
allowed to leave the investigation domain. When an agent hits a boundary in
one direction, it is immediately retaken inside, while his velocity component
perpendicular to the boundary is either set to 0 (absorbing) or flip in sign
(reflecting). On the contrary, in the invisible boundary conditions, the agent
is free to move outside the investigation domain, but the fitness function is
not evaluated, and consequently pb not updated, until the agent returns to
the domain.

C.2 Pareto Front Multi-Objective PSO

Extending standard optimization, Multi-Objective (MO) optimization
can handle problems in which more than one fitness function, often nega-
tively correlated, are considered. The extension of optimization procedures
to multi-objective problems is not a straightforward one, since key concepts
of optimization, such as the existence of a unique best solution, are lost and
the very notion of “better” has to be redefined.

A way to solve these problems is to recur to the concept of Pareto dom-
inance and Pareto Front. The concept of Pareto dominance substitutes the
concept of “better.” By definition, when dealing with a set of fitness func-
tions fj, a solution x is said to dominate over a solution y if:

fj(x) ≥ fj(y)∀j and ∃i : fi(x) > fi(y) (C.2)

If, chosen two solution x and y, neither of them dominates the other, it
is impossible to identify a better one between the two. In fact, they simply
express different trade-offs between the fitness functions. In this framework,
the single optimal solution of standard optimization is substituted with the
ensemble of solutions that are no worse than any other, or more precisely that
are non-dominated. This collection is called a Pareto front. It is important
to notice that the knowledge of the complete Pareto front of an optimization
problem defines the boundary of the problem and gives complete information
about every possible trade-off.

Multi-Objective optimizations algorithms that derive from iterative single-
objective procedures, such as MO-PSO, usually keep an archive of some of
the un-dominated solution found and update them at every iteration. In this
thesis the MO-PSO devised by Tripathi et al. [281] is used, and it will be
briefly illustrated here.
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C.2. PARETO FRONT MULTI-OBJECTIVE PSO

Indeed, three main changes to the standard PSO algorithm are made:
the choice of the coefficients, the updating of pb, and the archive in place
of gb. The updating of pb is the most straightforward: at the beginning
of the algorithm pb is set as the starting position for each agent, then it is
updated only if the new position dominates over the old pb. The choice of the
coefficient of eq. C.1a is peculiar. Instead of selecting fixed coefficients or even
a fixed strategy, each agent has his own set of coefficients which is updated
with the PSO algorithm itself. The idea is that in this way the coefficients
should converge to the most effective ones for the particular problem under
examination. The most profound change, however, is the introduction of an
external archive in place of the gb. At each iteration, in fact, a temporary
archive of the non dominated solutions is generated. To prevent the archive to
become excessively long the solutions in the archive are ranked in decreasing
order with respect to the d function:

d(xi) = min
j 6=i

[∑
m

|fm(xf )− fm(xi)|

]
(C.3)

where i, j run over the solutions in the temporary archive and m over the
fitness functions. This d function measure the distance of each solution from
his nearest neighbour. Then at each iteration only a maximum number of
solutions is retained. Keeping the solutions with highest d value ensures
the maximum variety possible in the temporary archive. The value of gb
for the evolution in eq. C.1a is then randomized at each iteration from the
archive using roulette wheel selection over the function d. Given enough
iterations the temporary archive should converge to the true Pareto front,
thus providing the complete solution to the optimization problem.
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Appendix D
Details on grating-couplers CE and
BW optimization

In this appendix, details on the procedure for the simultaneous optimiza-
tion of coupling efficiency and bandwidth of grating-couplers are reported.
However, a little disclaimer is needed: due to a series of unfortunate events
(a mixture of failing hard drives and hacker attacks) all intermediate data
regarding the optimizations in chapter 2, which led to the publication of the
APL paper [219], have been lost. Thus, to better clarify the procedure and
illustrate also the intermediate steps, the calculations have been redone for
the MFD=8 µm case, and the results are now reported here.

The optimization procedure is divided in three parts, each containing a
single PSO run with different aims:

1. A single-objective optimization aimed at finding the linearly chirped
design showing maximum CE.

2. Starting from the results of the previous point, a single objective op-
timization aimed at finding the apodized grating showing maximum
CE.

3. Including the knowledge obtained at the previous step, the multi-
objective optimization treating simultaneously CE and bandwidth.

In the following, all three steps will be discussed.

D.1 Linear chirp Max CE

The first step in the procedure is to find the linearly chirped grating
providing the maximum coupling efficiency possible. To do this, a standard
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APPENDIX D. DETAILS ON GRATING-COUPLERS CE AND BW
OPTIMIZATION

Parameter Unit Min. Max Max Speed Optimal Value

Etch nm 0 220 50 110
DC0 % 10 70 30 10

DCMax % 40 80 20 50
Lchirp µm 0.5 10 3 9.2
Tbox µm 1.5 2.5 0.5 2.01
FIB µm 2.0 10.0 4.0 4.71

Table D.1: Parameters of the SO-PSO for the linearly chirped grating. Both
definition of the search space and results of the optimization are reported.

single-objective PSO is employed. Taking Fig. 2.2 as reference, the only fixed
parameter of the structure is the thickness of the waveguide Twave, chosen
to be the standard of 220 nm. The indexes of the materials are assumed
constant, namely 3.44 and 1.44 for Si and SiO2, respectively. The fiber mode
is modeled as a Gaussian source with a MFD of 8 µm placed 2 µm above the
waveguide, inside the top cladding. This assumes that the fiber is joined
to the chip using an epoxy featuring the same refractive index of the oxide,
thus eliminating the problem of reflection at the chip interface. The angle of
incidence θ is fixed at 10◦.

The variable parameters, which are subjected to the optimization, are a
total of six. Still taking Fig. 2.2 as reference, they are: the etching depth
Etch, the starting duty cycle DC0, the maximum duty cycle DCmax, the
chirp length Lchirp, the thickness of the bottom oxide Tbox, and the distance
of the center of the fiber from the starting of the grating FIB. The exact
values defining the boundary of the search space for each parameter are
reported in Tab. D.1.

The period P is kept constant along the grating, and it is tuned for each
structure in such a way to keep the wavelength of maximum coupling inside a
10 nm window centered around λ=1.55 µm. The duty cycle is instead varied
along the grating, following:

DC(x) =

{
DC0 + x(DCmax −DC0)/Lchirp for x < Lchirp

DCmax for x > Lchirp
(D.1)

The standard single-objective PSO algorithm is run for 150 iterations
using 10 agents. The full procedure takes a few hours on a standard quad-
core desktop workstation. Some of the data regarding the evolution of the
swarm throughout the algorithm are presented in Fig. D.1. At the end of the
optimization it is found that 8 out of 10 agents have converged to the same
solution (behaving as agent 1 in Fig. D.1b), while 2 have not (they behave
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Figure D.1: Evolution of some of the data during the swarm. (a) CE of the
temporary global maximum. (b) CE of the Pbest solution (dark blue) and
of actual position (light blue) of some of the agent in the swarm.

as agent 3). However, in such convergence state it is unlikable that a second
run could result in better performance, thus the parameters stored as the
global best — see Tab. D.1 — are taken as the result of the optimization,
and the procedure is carried on to the next step.

D.2 Apodized Max CE

The aim of the second PSO is to maximize the coupling efficiency even
further, by applying a full apodization. Indeed, the positions and the widths
of each groove in the grating are now optimized as independent variables. All
the others parameters (Etch, Tbox,FIB) are kept fixed to the values obtained
at the previous step. By indicating with P the period of the optimized
linearly chirped design (623 nm in this case), the parameters’ search space
is such defined: the position of each groove can vary in a P/2 wide window
centered at the position of the groove of a uniform grating of period P, with
a maximum speed of P/4; the width of each groove can vary between 50 nm
(set as the minimum feature size) and P/2, with a maximum speed of P/5.
One of the agents is set to start in the position which correspond to the
linearly chirped configuration found in the previous step, while the positions
of the others are randomly generated.

In contrast to the previous section, no active tuning is applied to the
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Figure D.2: Data regarding the PSO run for the apodized grating for best
coupling efficiency.

grating in order to keep the maximum transmission locked at λ=1.55 µm.
It is assumed that the search space is small enough to prevent significant
deviations of the coupling wavelength.

The aim of this part is only to refine the optimization done at the previous
step, and only a marginal improvement can be expected. In fact, as can be
seen from Fig. D.2a, an improvement in Coupling Efficiency of about 3% from
the linearly chirped design can be obtained by a full numerical apodization.

To be fair, this step of the optimization would not be needed in theory,
since it would be covered by the multi-objective optimization of the next step.
However, it is reasonable to expect the convergence of the multi-objective
optimization to be quite critical for the very edge of the Pareto front, where
the solution with maximum CE is located. Thus, it has been chosen to
optimize for maximum CE using a dedicated optimization and then include
such knowledge as a starting point in the Multi-Objective PSO, in order to
improve convergence in the high-CE region.

D.3 Apodized CE and BW

In this section the true multi-objective optimization is presented. The
definition of the search space is absolutely the same as the previous step. To
ensure a good convergence at the high-CE edge of the Pareto front, knowledge
of the maximum-CE apodized solution in included as a starting point of one
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Figure D.3: Some data about the MO-PSO for simultaneous optimization of
Coupling Efficiency and Bandwidth.

of the agents. The starting positions of all the other agents are randomly
chosen.

Due to its greater complexity, the MO-PSO algorithm is run for a much
longer time, namely for 1000 iterations and using 20 agents, thus exploring
a total of 20K configurations. In physical time, this translate into a couple
of days on a standard quad-core desktop workstation.

The result of the optimization is reported in Fig. D.3a, where the new
Pareto front for the MFD=8 µm is plotted. Bandwidth and coupling effi-
ciency of every structure analyzed during the optimization are also reported,
to help the reader visualize the Pareto front as a true boundary to the reach-
able performances, and thus the expression of the ultimate trade-off. Some
examples of this trade-off are reported in Fig. D.3b, where the spectra of
selected structures along the front, corresponding to target bandwidths, are
shown. It is evident the capability of this design process to find solutions
showing enhanced bandwidth and an almost flat spectrum across the band-
width of interest.

It is worth remarking that the new Pareto front is a little different from
the one presented in the main text. This is indeed expected, since the very
nature of the PSO is not fully deterministic and could lead to slightly different
results. Overall, the new Pareto front is broader, featuring solutions up to a
bandwidth of 150 nm, and it is in general a little better, showing an average
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of 1-2% higher coupling efficiency for the same bandwidth. However, the
trend and also the values are quite close, so the two results can be considered
quite in agreement with each other.
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lithically grown on silicon substrate, emitting at 1.55 μm at room tem-
perature,” IEEE Photonics Technology Letters, vol. 22, no. 8, pp. 553–
555, 2010.

[126] G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bow-
ers, “Iii-v/silicon photonics for on-chip and intra-chip optical intercon-
nects,” Laser & Photonics Reviews, vol. 4, no. 6, pp. 751–779, 2010.

[127] B. Corbett, R. Loi, W. Zhou, D. Liu, and Z. Ma, “Transfer print tech-
niques for heterogeneous integration of photonic components,” Progress
in Quantum Electronics, vol. 52, pp. 1–17, 2017.

[128] J. Van Campenhout, P. Rojo-Romeo, P. Regreny, C. Seassal,
D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J.-M. Fedeli, C. La-
gahe, and R. Baets, “Electrically pumped inp-based microdisk lasers
integrated with a nanophotonic silicon-on-insulator waveguide circuit,”
Optics Express, vol. 15, no. 11, pp. 6744–6749, 2007.

[129] J. Van Campenhout, L. Liu, P. R. Romeo, D. Van Thourhout,
C. Seassal, P. Regreny, L. Di Cioccio, J.-M. Fedeli, and R. Baets, “A
compact soi-integrated multiwavelength laser source based on cascaded
inp microdisks,” IEEE Photonics Technology Letters, vol. 20, no. 16,
pp. 1345–1347, 2008.

[130] A. W. Fang, B. R. Koch, K.-G. Gan, H. Park, R. Jones, O. Cohen,
M. J. Paniccia, D. J. Blumenthal, and J. E. Bowers, “A racetrack
mode-locked silicon evanescent laser,” Optics Express, vol. 16, no. 2,
pp. 1393–1398, 2008.

[131] G. Roelkens, D. Van Thourhout, R. Baets, R. Nötzel, and M. Smit,
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[283] M. R. Rapaić and Ž. Kanović, “Time-varying pso–convergence analysis,
convergence-related parameterization and new parameter adjustment
schemes,” Information Processing Letters, vol. 109, no. 11, pp. 548–552,
2009.

156



List of Publications

Journal Papers

• Passoni M., Gerace D., Carroll L., Andreani L.C.
“Grating couplers in silicon-on-insulator: The role of photonic guided
resonances on lineshape and bandwidth”
Applied Physics Letters. 2017 Jan 23; 110(4):041107.
DOI:10.1063/1.4974992

• Passoni M., Gerace D., O’Faolain L., Andreani L.C.
“Optimizing band-edge slow light in silicon-on-insulator waveguide grat-
ings”
Optics Express. 2018 Apr 2; 26(7):8470-8.
DOI:10.1364/OE.26.008470

• Passoni M., Floris F., Hwang H.Y.,Zagaglia L., Carroll L., Andreani
LC., O’Brien P.
“Co-optimizing grating couplers for hybrid integration of InP and SOI
photonic platforms ”
AIP Advances. 2018 Sep 14; 8:095109.
DOI:10.1063/1.5046164

• Fieramosca A., De Marco L., Passoni M, Polimeno L., Rizzo A., Rosa
B., Cruciani G., Dominici L., De Giorgi M., Gigli G., Andreani L.C.,
Gerace D., Ballarini D., Sanvitto D.
“Tunable out-of-plane excitons in 2D single crystal perovskites”
ACS Photonics. 2018 Sep 11; 5.10:4179-4185.
DOI:10.1021/acsphotonics.8b00984

157



LIST OF PUBLICATIONS

Conference Papers

• Andreani L.C., Gerace D., Passoni M., Bozzola A., Carroll L.
“Optimizing grating couplers for silicon photonics”
2016 18th International Conference on Transparent Optical Networks
(ICTON). IEEE, 2016.
DOI:10.1109/ICTON.2016.7550565

• Passoni M., Andreani L.C., Gerace D., O’Faolain L., Andreani L.C.
“Slow Light in Waveguide Gratings on Silicon-on-Insulator Platform”
2018 20th International Conference on Transparent Optical Networks
(ICTON). IEEE, 2018.
DOI:10.1109/ICTON.2018.8473888

158



Acknowledgements

First of all, I would like to acknowledge my supervisors, Prof. Lucio Clau-
dio Andreani and Prof. Dario Gerace, for all the support and the precious
teaching they offered me in this years.

Afterward, I would like to thanks Dr. Lee Carroll, for giving me the
opportunity to spend three month as an intern at Tyndall National Institute
in Cork. In addition, my gratitude goes to Dr. Francesco Floris and Luca
Zagaglia, for their presence and support during such forming experience.

Heartfelt thanks to Prof. Pavel Cheben and Prof. Eric Cassan for having
referred my thesis, providing constructive criticisms and useful advices.

Special thanks to my family, which has always been there for me, even in
the most difficult moments.

Moreover, I would like to acknowledge Dr. Angelo Bozzola for teaching me
the basis of Lumerical FDTD solutions, Prof. Marco Liscidini, for providing
me with his FORTRAN implementation of the RCWA method, and Dr.
Francisco Soares, at Faunhofer Heinrich Hertz Institute, for details on the
available InP platform.

Furthermore, heartfelt thanks go to Antonio Fincato, at STMicroelec-
tronics, and Dr. William Whelan-Curtin, at Cork Institute of Technology,
for the many useful discussions ad suggestions.

In addition, CINECA is gladly acknowledge for the granting of High Per-
formance Computing resources under the ISCRA initiative.

In the end, I would like to thanks all my friends and colleagues, who
helped me in this experience.

159


	Introduction
	Integrated Photonics
	Overview on Silicon Photonics
	Brief history
	Actual state and future challenges
	Passive components
	Active components

	Physics of periodic structures
	Maxwell Equations as eigenvalue problem
	Discrete translational symmetry
	Photonic Crystal Slabs

	Numerical Methods
	FDTD
	RCWA
	A-FMM


	Grating-Couplers: lineshape and bandwidth
	Introduction
	Edge-coupling
	Grating-coupling

	The physics of grating-couplers
	Results from coupling spectra
	Results for intrinsic width
	Comparison

	Simultaneous optimization of couping efficiency and bandwidth
	Overview
	Optimization procedure
	Main results and discussion
	Tolerance analysis

	Conclusions

	Grating-Couplers: PIC-to-PIC
	Introduction
	Grating-couplers design
	The platforms
	The scattering strength problem
	Optimization procedure and results

	Far-field analysis
	Conclusion

	Slow-light
	Introduction
	Slow-light: basic facts
	Silicon grating waveguides

	Numerical method and band calculation
	Fitting function from perturbation theory
	Numerical calculation and fit testing

	Results
	Adiabatic taper
	The problem of light coupling
	Simple adiabatic taper
	Sub-wavelength taper

	Conclusion

	Conclusions
	Coordinate transformation for A-FMM
	Poynting vector in A-FMM
	Particle Swarm Optimization
	Details on grating-couplers CE and BW optimization
	Bibliography
	List of Publications

