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Introduction

Manipulation of light has been a dream of scientists almost since the first
discoveries related to light. However, it is only in the last 50 years that this
dream has started to become a reality. In particular, the development of tech-
niques capable of shaping matter at the nano-scale has offered possibilities
to control light-matter interaction like never before.

Thus, the branch of Photonics, defined as “the physical science of light
generation, detection, and manipulation through emission, transmission, mod-
ulation, signal processing, switching, amplification, and sensing” has been
born. The potential of Photonics is almost endless, and spans from the sim-
plest applications, such as telecommunication or sensing, to more complex or
exotic ones, such as Quantum Optics or Secure Quantum Communication.

Many materials have been proposed as a valid Photonic platform, but
none has the appeal of Silicon, leading element of the electronic industry.
Indeed, using a common platform for both Photonics and Electronics has
obvious advantages, such as a ready and mature technology for realization of
Photonic components, along with the possibility of an easy opto-electronic
integration. The aim of this particular branch of Photonics, called Silicon
Photonics, is the realization of Photonic Integrated Circuits (PICs), following
the same route traced by electronic industry years ago. The main field in
which Silicon Photonics is expected to have an impact is telecommunication,
in particular for mid-and short-range. Optical interconnects have indeed the
potential to take over electronic connections for intra- and inter-chip data
communications.

To hit this target, however, a careful design of photonic components is
needed. Since prototyping costs in Photonics are typically quite high (cur-
rent foundries can deliver low-cost production only for very high volumes),
physical simulation of Photonics devices has taken over a key role in the de-
sign flow. In fact, many techniques have been developed over the years for
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both optical and electrical simulation, thus providing a rapid and efficient
way of improving the designs before fabrication of the actual devices.

In this thesis, some of those techniques are used to simulate the optical
properties of photonic devices, with the double aim of better understand-
ing the physical mechanisms involved and of improving the performances.
In particular, this thesis focuses on some possible photonic applications of
grating structures, trying to use the well understood physics of periodic pat-
terned media and Photonic Crystals to solve real-word problems, especially
ones related to optical communication.

The main targeted applications are grating-couplers and slow-light in
grating waveguides. In fact, grating-couplers provide efficient light-coupling
in and out of a PIC and better understanding of their working principle or
improved design strategies could lead to a reduction of the connection losses
in optical communication. Slow light, instead, seems to be a viable route to
enhance light-matter interaction in electro-optical modulators, allowing for
a reduction of energy consumption of transmitting devices.

This thesis is composed by four chapters and four appendices:

Chapter One: An overview (without claim of completeness) on the current
status of Silicon Photonics. Some of the basic structures, along with the
most common applications, are presented. Additional space is reserved
for discussion on the physics of light propagation in periodic media and
on the numerical methods employed in this thesis.

Chapter Two: A numerical study on the properties of Silicon-On-Insulator
grating-couplers, with particular attention on the physical mechanisms
underlying their bandwidth.

Chapter Three: A feasibility study on a grating-to-grating approach for
light coupling between two chips belonging to two different platforms,
namely conventional Silicon-On-Insulator and an Indium Phosphide
based one.

Chapter Four: A study of slow-light performance of silicon grating waveg-
uides: slow-light bandwidth and insertion losses.

Appendices: Theory and details on the numerical methods employed, in
particular Aperiodic-Fourier Modal Method (A-FMM) and Particle
Swarm Optimization (PSO). Details on the grating-couplers coupling
efficiency and bandwidth optimization procedure are also given.



Chapter

Integrated Photonics

Photonics is the science of light creation, manipulation, and detection at the
nano-scale. The shaping of matter at the nano-scale offered by modern tech-
nology has generated interesting questions on what happens to light-matter
interaction when the latter can be modeled on a scale comparable with the
wavelength of the light. Thus, the way has been opened to a whole new
range of phenomena and possible applications regarding light. In particular
the possibility of using silicon as base material, leveraging on the solid tech-
nological background developed for electronic industry, has gained special
attention in the past years, leading to the creation of an entire new field:
Silicon Photonics.

This chapter is structured as follows. The first section will give an
overview of current state of Silicon Photonics. The second section will provide
insight on the physics of light propagation in periodic structures, a key topic
of photonics. The third section will present some of the numerical methods
used to solve Maxwell equations within arbitrary geometry, a fundamental
step in the design of photonic devices.

1.1 Overview on Silicon Photonics

In the past years silicon has often appeared as the ideal candidate for Pho-
tonic applications in general, and for the realization of Photonic Integrated
Circuit (PICs) in particular. Silicon Photonics could indeed take advantage
of all the techniques developed for the electronic industry, and consequently
benefit from an easier opto-electronic integration with respect to other ma-
terials.

The most important platform in electronics, and thus the starting point of
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Silicon Photonics, is the Complementary Metal-Oxide-Semiconductor (CMOS).
In this platform a thin layer of silicon (few hundreds of nanometers) is em-
bedded between two sheets of oxide. The thin silicon layer can then be
doped and patterned to create electronic circuits, and the top oxide can be
opened, allowing metal contacts to reach the silicon. Usually the full CMOS
structure is built on a silicon substrate, for both mechanical support and
thermal dissipation. This kind of vertical structure is ideal for the build-
ing of Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETSs), on
which all current electronics is based.

Nevertheless, the features of the CMOS scheme are well suited also for
some applications in Photonics. Since both silicon (Si) and silicon oxide
(SiO9) are transparent at typical telecom wavelengths (1.31pum or 1.55um)
and their refractive indexes are quite different (typically around 3.44 and
1.44 for Si and SiOs, respectively), efficient waveguiding of light inside the
very same silicon layer used for electronics is easily obtained. Moreover, due
to its centro-symmetric crystalline structure, x? non-linearities are very weak
in silicon (only the surface contribution remains), so quite high power inside
the waveguides can be reached before unwanted nonlinear phenomena, such
as Two Photon Absorption (TPA) or Second Harmonic Generation (SHG),
take place.

However, using silicon as optical material is not without drawbacks. The
main one is that, due to its indirect bad-gap, silicon is a poor light emit-
ter. Thus, silicon based PICs need some sort of external light source or the
integration with other materials able to provide the necessary gain for an
integrated light source — See Lasers in Par. [1.1.4

Another big problem of silicon is that, always due to its centro-symmetric
nature, the linear electro-optical (Pockels) effect is absent, and can only be
obtained by inserting strain. Thus, it is impossible to realize efficient electro-
optical modulators so common in other platforms. However, a promising
solution has been found in the Plasma Dispersion Effect — See Modulators

in Par. [LL.1.4

Thus, Silicon Photonics has been proposed as a valid alternative for many
applications in recent years, both in scientific research and commercial appli-
cations. This chapter will provide first a very brief summary of past history
of Silicon Photonics, then the actual state and future challenges will be dis-
cussed, together with an overview of passive and active components nowadays
available.
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1.1.1 Brief history

Envisions of an optical “super-chip” able to reproduce any components avail-
able in an optical laboratory have been around since early seventies [I]. Those
dreams have somewhat collapsed under the blows of reality, since still nowa-
days no “super-chip” containing all the ingredients for a complete integrated
Photonics platform — light production, manipulation and detection — has
been demonstrated.

Nevertheless, much has been achieved over the years. Research during
the eighties and the nineties established the basic building blocks of mod-
ern Silicon Photonics. It is during this period that the basic concepts of
waveguides, modulators and detectors were established.

Regarding the waveguides, after first explorative studies on the possibility
of obtaining waveguides both in doped silicon [2, 3] and Silicon-On-Insulator
[4], research focused mainly on reducing propagation losses [5l [6, [7], which
were mainly determined by the material type and quality, and by surface
roughness. Only later, in the nineties, the focus shifted on the shrinking of
waveguides towards the modern single mode operation [, 9] [10].

In the same period the basics of optical signal modulation in silicon were
developed. The seminal work by Richard Soref [11] demonstrated that index
modulation in silicon can be achieved by Plasma Dispersion effect, namely the
change of index of refraction by effect of free carrier density. A first demon-
stration of a phase modulator based on this effect quickly appeared [12].
With the inclusion of such device inside a Mach-Zehnder interferomenter,
the modern silicon optical modulators have been born [I3]. Mach-Zehnder
modulators based on the thermo-optic effect have also been proposed [14],
but soon abandoned due to their low speed. Later research on modulators fo-
cused on increasing modulation speed and decreasing the energy consumption
per bit, culminating in 2004 with the first realization of a 10 GHz modulator
[15].

Regarding photo-detectors, first devices begun to appear in the mid-
eighties at AT&T Bell Laboratories. They were based on the implantation
of germanium in silicon, which at sufficient concentration can lower the band
edge up to telecom wavelength [16] 17, 18]. Such structures were realized
using a Si-Si, Ge;_, super-lattice [19], and a Quantum Efficiency of 40% was
measured. The first CMOS compatible device was proposed in the early
nineties [20], albeit with a very low QE at telecom wavelength. Successful
research managed to improve both quantum efficiency and response time
[21], 22, 23].

Although the long dreamed photonic “super-chip” is still far away, con-
siderable progress has been made over 40 years of research. For additional



CHAPTER 1. INTEGRATED PHOTONICS

25 800

— Others
o ] HPC _—
N 700 |- Data Centers .
ﬁ I Telecom/Datacom
= 600 |- m N -
o
= 4
8 o L i
° g 500
3
) ) 2 2 B 2 o 400 1
%) %) 2, 2) 2} 2}
2 s % Yo < \—?2 Z
~ 2 300 [ i
g 14.9% =
2 .97
'2 Data center 200 - 7
S 71.5% to User
5 | within
£ | Data center 100 - a
7]
°
£
D 2 2 D D D ..
£ R % %5 %0 0> %5 %0 R R, R %5 %
(a) Traffic through data centers. (b) Market value of optical interconnects.

Figure 1.1: Some estimation on the future of Silicon Photonics for optical
interconnects. Data taken from [28] and [29].

information on early research in Silicon Photonics see the works from G.T.

Reed [24] and R. Soref [25].

1.1.2 Actual state and future challenges

Silicon Photonics nowadays is somewhat in the middle of the transition from
research to mature technology. Although not all the desired features can
be obtained on a single photonic chip, realities that leverage on existing
technology to offer small industries and start-ups easy access to photonic
foundries, allowing for rapid R&D, began to appear [20, 27]. The aims of
these partnerships is to bridge the so called “Valley of Death”, namely to help
industries to make the jump from prototyping to a small volume fabrication.

The main targeted applications for Photonics right now are telecommu-
nication, sensing, and especially optical interconnection, which is the main
driver behind current Photonics R&D. The term optical interconnects usu-
ally refers to the substitution of electrical connections on any scale, from
long distance communication (where optical fibers have been the dominant
technology since the 90s), through mid-range applications, such as inside
data-center and super-computers (where optical interconnects have begun to
affirm in the late 2000), down to intra-chip communication (still domain of
electrical interconnects).

Indeed, optical interconnects do not possess any physical constraint on

6
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the bit-rate, as electrical ones do [30]. Thus, optical interconnects, especially
Silicon Photonics based ones, are seen as the only technology able to meet
the growing demand of bandwidth. Silicon Photonics will be particularly
beneficial to data centers, which will see a dramatic increase in traffic [29], es-
pecially within the single data center, and will probably be the major drivers
of the optical interconnects market in the near future [28, 31]. Research on
optical interconnects in the next years will probably focus on reducing the
energy consumption, which, although greater speed can be delivered, is now
higher than the typical 1 pJ per bit needed by electrical interconnection.

As an additional possible application of Photonics in the future, it would
be impossible not to mention Quantum Technologies. Although still a tech-
nology confined in research laboratories, with few exceptions such as true
random number generator [32], Photonics has shown great potential as a
platform for Quantum Technologies [33], especially in the areas of Quantum
communication, metrology, and sensing.

1.1.3 Passive components
Waveguides

In optics, waveguides are defined as structures that guide electromagnetic
radiation, allowing the propagation of light in selected directions with min-
imal energy loss and forbidding the propagation along other directions. At
near infrared frequencies, which are the region of interest for Silicon Photon-
ics, two ways of providing light confinement exist: Total Internal Reflection
(TIR) and Photonic Band Gap (PBG).

Total Internal Reflection (TIR) takes place when a light ray is propagat-
ing beyond the limiting angle in a high index dielectric and cannot escape
it. This is the simplest and most efficient way of confining light in actual
fabricated structures. Thus, Total Internal Reflection is employed in the to-
tality of commercially available Silicon Photonics devices. The most common
type of 1D-waveguide in SOI platform is the so called rib (sometimes ridge)
waveguide — see Fig[1.2]

The main source of loss in this type of waveguide is Rayleigh scattering
from surface roughness. With current fabrication techniques propagation
loss varies greatly. It can range from the order of 2.5 dB/cm available at
commercially available foundries as EuroPractice [34] to the more or less
1 dB/cm accepted as industry standard [35], while record losses as low as
0.026 dB/cm have been reported in the research literature for multi-mode
waveguides [36].

Instead, the Photonic Band Gap (PBG) approach is based on the fact

7
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Figure 1.2: Sketch and features of a typical rib waveguide — h=310nm,
t=150nm, W=400nm. Normally the terms “ridge” refers to fully etched
(t=0) waveguides.
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Figure 1.3: Sketch and features of a typical W1 PhC-Slab waveguide.

that regions of energy in which light propagation is forbidden (indeed, a
Photonic Band Gap) can appear in periodically patterned structures. Such
phenomenon can be used for the realization of very efficient mirrors, and thus
waveguides. Numerous ways of creating waveguides by this approach have
been proposed over the years. The most prominent one is without doubt the
W1 waveguide in Photonic Crystals Slabs, in which a PBG in the horizontal
direction is joined to TIR in the vertical direction to realize 1D waveguides.
Although it is a very interesting solution, allowing for the integration of typi-
cal features of Photonics Chrystals, such as slow-light [37], this technology is
not mature enough for mainstream commercial applications. The main rea-
son, besides the more complex fabrication, is disordered induced loss [38] 39]
which, even with the best performing fabrication techniques, gives a total
loss at least an order of magnitude greater than in TIR based waveguides

[40].

Bragg gratings

Bragg gratings are probably the easiest way to bring all the features of peri-
odic structures and Photonic Crystals to integrated Silicon Photonics. Typi-
cal realizations of Bragg gratings are based on periodic etching in a 2D silicon
slabs or width modulation in silicon nanowires — see Fig. [I.4]

Typically in a Bragg grating three different regimes, corresponding to
different scales of wavelength compared to the period A of the grating, can
be identified — see Fig. [L.5l At lower energies (A >~ 2A) there is the so

9
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(a) 1D waveguide — 1D (b) 2D waveguide — 1D (c) 2D waveguide — 2D
grating grating grating

Figure 1.4: Three possible configurations of Bragg gratings in Silicon Pho-
tonics.

A Radiation

Bragg P
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Figure 1.5: Typical band dispersion of a 1D Bragg grating. The three relevant
regimes — sub-wavelength, Bragg reflection and radiation — and relevant
energy regions are enlightened. Image reported from [41].

called sub-wavelength regime. In this region light can freely propagate in
the grating as in a bulk material (or a waveguide composed of bulk material,
in this case), but the dispersion is modified. At intermediate energy (A =~
2A) usually sits the band gap, a region in which propagation of light inside
the grating is forbidden and any light externally incident on the grating is
scattered back. At higher energies (A <~ 2A), and above the light line of the
low index material, there is the radiation regime. In this regime guided light
propagation is allowed in the grating, but the guided mode is coupled to the
continuous of radiative modes by first (or more) order diffraction. Thus, the
guided mode inside the grating has a finite lifetime after which almost all
the light is scattered away. For details on the reason of such rich behavior
see Sec. Physics of Periodic Structures; here the focus will be on some
of the possible applications of these three different regimes.

The sub-wavelength regime is very powerful in all the platforms in which
only few materials (and thus, only few values of the refractive index) are

10
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available, such as Silicon Photonics. This because a sub-wavelength periodi-
cally patterned medium can be treated as an effective uniform material with
an effective index dependent on the patterning. Thus, sub-wavelength pat-
tering can, in particular conditions, be equivalent to changing the material
properties. Moreover, this effective medium is generally anisotropic [42], 43]
and can be tailored to tweak TE and TM properties differently and indepen-
dently. Sub-wavelength structures were first proposed to address the problem
of fiber-to-chip light coupling, where were used, in an edge-coupling scheme,
to adapt the effective index between an optical fiber and a standard inte-
grated silicon waveguide [44]. Since then, their application field has expanded
dramatically, contributing to almost every topic in Silicon Photonics: waveg-
uides [45] and waveguide-crossing [46], grating-couplers [47, 48, 49], waveg-
uide lenses [50} [51], in-plane light routing [52], (de)multiplexers [53], mode
converters [54], optical [55] and electrical [56] modulators, multi-mode inter-
ferometers [57, 58] and polarization splitters [59]. For a complete overview
on the use of sub-wavelength structures see: Robert Halir et al. “Waveg-
uide sub-wavelength structures: a review of principles and applications” [41]
and Robert Halir et al. “Subwavelength-grating metamaterial structures for
silicon photonic devices” [60].

Devices based on the concept of Photonic Band Gap are essential to Sil-
icon Photonics, and gratings are indeed the easiest way to insert totally or
partially reflective mirrors inside integrated circuits, thus providing a basic
building block for cavities and Photonic Crystals based structures. For ex-
ample, the PBG available in a triangular lattice of holes [61] has enabled the
development of W1 waveguides and all the related physics and applications.
More important, 1D grating mirrors are the basis for many laser cavities
[62, 63]. In addition, fancier applications are possible, such as temperature
[64] or biological [65] sensors.

Regarding operation in the radiation regime, although it seems it would
only insert losses and should be avoided, it can indeed be a desirable feature
when the aim is to couple light in and out of the planar chip through the
vertical direction. Such devices, called grating-couplers, have stimulated a
great deal of research in the past twenty years, focusing in particular in
decreasing insertion loss and increasing operational bandwidth. Grating-
couplers exist in both 1D [66] and 2D [67, [68] versions, the former being
able to couple only one polarization and the latter being suitable for both.
While the simplest configuration is the uniform one [69], variants have been
developed to address particular problems. Chirped or apodized gratings
[70, [71, [72] can be realized to improve the insertion loss over the uniform
ones, while focusing gratings [73, [74] can be employed to reduce the total
footprint of the component, or both strategies can be used together [75].

11
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Moreover, it is important to notice that each working regime of a Bragg
grating does not exclude the others. On the contrary, they can be joined to-
gether to obtain additional freedom and functionalities, such as sub-wavelength
grating-couplers, where sub-wavelength patterning is used in a 1D grating to
finely tune the index of the material [47, [76].

Chapter [2| and [3] of this thesis will be devoted to 1D grating-couplers.
The former will focus on Fiber-to-Chip coupling, analyzing the mechanisms
behind the bandwidth composition and the trade-off between bandwidth and
insertion loss. The later will focus on the co-design of silicon and indium
phosphide grating-couplers for chip-to-chip coupling in a hybrid integration
scheme.

Cavities

Optical cavities or resonators are structures that are able to trap light for a
certain amount of time. Two main figures of merit for an optical resonator
exist: the quality factor Q and the mode volume V. The Q-factor is related
to the time it takes for the field inside the resonator to decay. It can be
calculated as 27 times the ratio between the energy stored in the cavity and
the energy loss per cycle (in the absence of a forcing field), or equivalently,
as the ratio between the frequency of the resonance and its spectral width
(intended as Full-Width-Half-Maximum). The mode volume V gives an indi-
cation on how much the cavity mode is extended in real space. It is usually
defined as the inverse of the maximum of the field (once the mode is correctly
normalized) and it is related to the Purcell factor [77].

Many ways have been proposed to realize cavities in SOI platform, based
on either TIR, PBG or both. Typical TIR-based cavities in Silicon Photonics
are based either on ring resonators [78] or Whispering Gallery Modes (WGM)
in microdisks [79, 80, RI]. These types of cavities usually exhibit a very
high Q-factor, at the price of fairly large mode volumes. Many applications
have been demonstrated using these resonators, such as lasers [82], sensors
[83, 84], modulators [85], switches [86], 87], routers [88, 9], and nonlinear
optical devices [90, [9T].

Regarding PBG confinement, two major classes of cavities can be identi-
fied [92]: nano-beam cavities and PhC Slab ones. Both these types can reach
very high Q-factors together with small (on the order of few cubic wave-
lengths) mode volumes. The main drawbacks are their complexity, both in
fabrication and design, and the quite high sensitivity to fabrication errors
and disorder [93].

Nano-beam cavities are usually based on a periodic modulation of a 1D
TIR-based waveguide. The simplest approach is to use PBG to create mirrors

12
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to build a Fabry-Perot cavity [94] or using a more gentle confinement by the
mode-gap modulation approach [95].

In PhC Slabs, instead, the easiest way to create a cavity is simply to
insert a defect in the periodic lattice. The most prominent examples includes
H- [96, O7] and L-cavities [98], 99], namely one ore more holes missing or
displaced from a triangular lattice of holes etched in a silicon slab. Different
types of cavities have however been proposed and tested, such as Fabry-Perot
heterostructures [100], mode-gap modulation [I01] or effective bi-chromatic
potential [102].

Multiplexers and de-multiplexers

The use of Wavelength Division Multiplexing (WDM) as the main road to
increase bandwidth in current Silicon Photonics for optical interconnects has
generated a high demand for multiplexers and de-multiplexers. Those are
components able to combine signals at different wavelengths from different
physical input channels in a single physical output channel, and vice versa.

Many solutions to this problem have been explored over the years. Early
integrated structures simply translated some common schemes of discrete
optics, such as Echelle gratings, i.e. gratings working at a very high (tens
of even hundreds) diffraction order [I03]. The advantage of using such a
high diffraction order lies mainly in the enhancement of the resolving power,
thus allowing a finer channel spacing, but at the price of a reduced Free
Spectral Range (the difference in wavelength between two consecutive orders
diffracted at the same angle), which ultimately limits the wavelength span in
which the multiplexer can operate. The first SOI-based device employed a
reflection-grating in the Rowland configuration [104]. This solution suffered
from several drawbacks, mainly in term of losses (around 10 dB) and of
physical footprint (on mm scale).

To solve such problems, a different approach has been proposed: Arrayed
Waveguide Grating (AWG) [105] — see Fig.[L.6a] Simply stated, an AWG is
composed of two Free Propagation Regions (FPR) connected by an array of
waveguides of different length, which are designed to give a 2rm (m is the
order of the grating) phase shift between each other at the central wavelength
of the component. The input and output waveguides are connected to the
two FPRs. The operating principle is as follow: when a signal at the central
wavelength arrives in the first FPR, it diverges and is split between the
arrayed waveguides; since each waveguide has a 27 multiple phase shift with
respect to each other, the phase distribution at the input of the array is
exactly reconstructed at the output; the light is so re-focused in the central
position of the second FPR; when the input signal is at a different wavelength,
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Figure 1.6: Two possible configuration of a (de)multiplexing device.

a wavelength dependent phase shift is applied between each waveguide at
the end of the array, causing the light to be focused in a different position; if
output waveguides are properly placed at the end of the second FPR, the de-
multiplexing action take place. Consequently, the multiplexing is obtained
by operating the device in the reverse direction. The chosen order of an AWG

grating usually varies between 20 and 50, leading to different trade-offs in
the multiplexer behavior [106] [107].

Great performances have been demonstrated by AWG-based devices [108],
109, [110], such that they nowadays constitute the de-facto standard for WDM
applications. However, research has never stopped, and recent developments
have provided AWG (de)multiplexers with additional features, such as ather-
mal operation [I11], compatibility with Mode Division Multiplexing (MDM)
[112] and reconfigurable add-drop [113].

More recently, a viable alternative to AWG has been found in sidewall
grating waveguides — see Fig. [L.6b] In this approach, a grating is etched in
the side of a conventional ridge waveguide, in such a way to radiate power
outside the waveguide from the side. The waveguide is curved, thus radiation
of different wavelengths is focused in different points of the Rowland circle,
where the collecting waveguides are placed [53, [114]. The main advantage of
this approach is the compactness, since it can be fitted in a fraction of the
space of conventional AWG.
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Figure 1.7: Typical workflow of wafer bonding process.

1.1.4 Active components
Lasers

The realization of light sources and amplifiers is probably the most important
feature in Silicon Photonics, but at the same time its greater challenge. Due
to the indirect nature of the bandgap in silicon [I15], obtaining electrically
pumped gain is quite a difficult task. Early solutions to this problem were the
packaging of external lasers together with the PIC. More recently, great effort
was placed in the research for integrated light sources. Three main lines of
research can be identified: direct lasing of silicon, epitaxial integration, and
hybrid integration.

Regarding silicon, two main ways to reach lasing exist: enhancement of
radiative processes due to exciton confinement and stimulated Raman scat-
tering. Exciton confinement can be achieved by nano-structuring the ma-
terial, for example in porous silicon [I16] [117], silicon nano-crystals [118] or
periodically patterned structures [119,[120]. The problem with this approach,
besides the difficult fabrication, is that it requires low temperatures to work.
Stimulated Raman scattering takes advantage of the gain which is created at
the Stokes lines when silicon is pumped with a laser [120, 121]. Their perfor-
mances can be quite high [122], and can access virtually any wavelength, but,
requiring an additional pump laser, do not resolve the problem of integrating
a light source.

The most promising approach nowadays is to join silicon with other gain
materials, such as I1I-V compounds, relying on either epitaxial or hybrid in-
tegration. Epitaxial integration consist in the direct grow of a gain material
on silicon substrate, which can be difficult given the great lattice and thermal
coefficient mismatch usually involved [123]. Numerous solutions have been
proposed, based either on GaAs [124] or on GaSb [125]. However, perfor-
mance level and reliability are still a problem to be solved, especially taking
into account the high costs involved.

To overcome the intrinsic problem of monolithic integration, many schemes
of hybrid integration have been studied, the most important being wafer
bonding [126] and transfer printing [127]. The wafer bonding technique —
see Fig. — consists in the bonding of an unprocessed I1I-V wafer to a
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Figure 1.8: Typical work-flow of transfer-printing process.

previously worked SOI wafer, both directly or with the addition of a “glue”
material. The additional layer is then processed to create the lasing devices
and the control electronics. This kind of approach allows for great versatil-
ity, since many structures, such as micro-disks (both single [128] and array
[129]), rings [130], Fabry-Perot [131, [132] and Distributed Feedback lasers
[62] can be realized. However, it presents also some disadvantages: wafer
bonding usually requires very careful polishing of the surfaces, and, since the
processing of the I1I-V wafer takes place after bonding to silicon, it can result
in considerable material wastage in case of any error in the fabrication.

On the contrary, transfer printing — see Fig. [1.8 — allows for the trans-
portation of individual devices between two wafers. The material wastage
is greatly reduced, since SOI and III-V devices can be built and tested sep-
arately, and then only the good performing ones are selected to be joined.
While a little less versatile than wafer bonding, transfer printing has proven
successful in a wide range of materials and structures. For examples, Fabry-
Perot lasers have been demonstrated in GaAs [133] [134] and InP [135] 136].
The main drawback of this approach is the sub-pm alignment needed in the
transfer process.

In the prospect of hybrid integration, chapter |3 of this thesis will be
devoted to a feasibility study of light coupling between SOI and InP platforms
via a grating-to-grating coupling scheme. The aim is to open the way towards
hybrid integration with conventional flip-chip technology, at lower cost than
both wafer bonding and transfer printing.

For a comprehensive review of current status of lasing in silicon see: D.
Liang & J. Bowers “Recent progress in laser on silicon” [137].

Modulators

Another class of key active elements needed in the Silicon Photonics toolkit
is the one of electro-optical modulators. These devices are responsible for
the modulation of an optical signal using an electrical driver, a key feature
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Figure 1.9: Three possible implementations of the Plasma Dispersion Effect
in silicon using a p-n junction: (a) carrier-accumulation, (b) carrier-injection
and (c) carrier-depletion. Figure reproduced from [143].

for the realization of optical interconnects.

Typical modulators, either integrated or not, rely on some kind of electro-
optic effect, which causes an electric field to modify either the real (eletro-
refraction) or the imaginary (electro-absorption) part of the refractive index
of a material. The most common effects are Pockels, Kerr or Franz—Keldysh.
Unfortunately those approaches are unfeasible in silicon, since the relevant
effects are quite weak [11] compared to other materials (such as III-V com-
pounds). Nevertheless, attempts to relay on such phenomena have been
made. For example, it has been demonstrated that, by introducing strain in
the silicon, usually by adding a small layer of silicon nitride on top of a silicon
waveguide [I38], linear Pockels effect can be induced [139]. This has even led
to the realization of working modulators [140], but this approach is not the
most suitable for commercial integrated applications, both for the high volt-
ages (~ 30V) required and the poor scaling in frequency [141]. Therefore,
the two main options practically available in silicon are thermal modulation
and plasma dispersion effect.

The first effect is based on the change of refractive index as a function of
temperature. This effect is quite huge in silicon, due to the large thermo-optic
coefficient, but suffers from several major drawbacks: (i) the modulation
speed is too low to meet the performance expectation of optical interconnects;
(ii) the energy consumption can be quite high, and (iii) the operation in
environments with huge thermal fluctuations can be quite challenging [142].

The second effect is the modification of the refractive index as a function
of carrier density, and it is currently the most employed. It is usually real-
ized with the aid of a p-n junction inside the waveguide, and it is commonly
found in one of three possible implementations: carrier-accumulation, carrier-
injection and carrier-depletion — see Fig The carrier-accumulation ap-
proach requires a thin insulating layer inside the p-n junction, to effectively
turn the junction into a capacitor. The index modulation takes place by
charging or discharging the capacitor. This method was the basis for the
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first realized modulator operating at Gigahertz rates [I5]. While being quite
effective, it suffers from difficult fabrication and high optical loss. In the
carrier-injection configuration a region of intrinsic silicon, where the waveg-
uide is built, is placed inside the junction. Forward-biasing the junction
injects electrons and holes into the intrinsic region, providing the index mod-
ulation. This solution is quite effective and exhibits low optical loss, how-
ever the speed is limited by the carrier lifetime in the intrinsic region. The
carrier-depletion approach requires the realization of the p-n junction inside
the waveguide. Thus, a depletion region is created, whose amplitude can be
varied by changing the applied voltage in reverse-bias configuration. This
solution ensures high modulation speed and low optical loss, but the magni-
tude of the modulation is quite low compared to the other two approaches
operating at the same voltage.

Beyond the type of index modulation, electro-optic modulators can be
further divided into two classes based on their working principle: the ones
based on resonating cavities and the ones based on Mach-Zehnder (MZ) in-
terferometers, both with their advantages and disadvantages. Cavity based
modulators — see Fig — use the cavity resonance to insert a narrow
feature in the spectral response of the component. By modulation of the in-
dex in the region of the cavity a shift in the resonance is achieved, allowing the
device to work as a switch. The main advantage of this solution is compact-
ness, since resonant cavities can be made very small inside PICs. However,
they are characterized by a very narrow working bandwidth (fractions of
nm), so their versatility is compromised. The majority of resonant modula-
tors proposed over the years are based on ring resonators [85, [144], [145] [146],
but also other solutions have been proposed, such as nano-beam [147, [148)]
or PhC-slabs [149] based cavities.

Instead, in Mach-Zehnder modulators the index modulation is applied to
one, or both, the arms composing the interferometer — see Fig. —
to change the intensity ratio between the two outputs of the Mach-Zehnder.
Consequently, this allows for a very fast and broadband modulation [I50} T51],
152] [153], although at the price of a bigger footprint than cavity modulators
(usually millimeter long arms are needed).

More recently, attempts have been made to join the best of both ap-
proaches, by using slow-light features to enhance light matter interaction in
Mach-Zehnder modulators. Since the phase shift provided by one arm is, at
constant index modulation and length, proportional to the group index of
the waveguide, the aim is to leverage on the high group index that can be
obtained in periodically patterned structures. The main drawbacks in this
case are a more complex fabrication and a reduction of the optical band-
width with respect to conventional MZ, although not as much as in resonant
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Figure 1.10: Sketch and working principle of the two most common configu-
rations of a silicon electro-optical modulator.

devices. In this direction, solutions has been proposed based either on W1
waveguides in PhC Slabs [154) 155, [156] or corrugated waveguides [157, [158]
(also called grating waveguides). Chapter 4| of this thesis will be devoted to
the optimization of slow-light properties of silicon grating waveguides for this
kind of application. For a detailed survey of current status of electro-optical
modulators see G.T. Reed et al. “Silicon optical modulators” [143].

Photodetectors

The last fundamental building block for Silicon Photonics is an efficient de-
tector. The realization of photo-detectors in silicon has been thwarted by the
same problem afflicting the light sources. A few attempts have been made to
realize photo-detectors based only on silicon, by using defects to push the ab-
sorption edge inside the band gap down to useful frequencies [159]. However,
this approach has not generated much interest in recent years.

The most promising approaches for practical realization of detectors in
Silicon Photonics are basically two: hybrid integration of I1I-V compounds
and monolithic integration of germanium. The hybrid integration of III-V
compounds, usually by direct or adhesive wafer bonding, was probably the
first technique to deliver high performances [I60]. Many solutions have been
proposed over the years, based either on direct [I31], evanescent [161] or
vertical [162] coupling schemes.

The monolithic integration of germanium is based on direct epitaxial
growth of germanium on silicon wafers. Careful optimization of the growth
techniques has allowed to solve the 4.2% lattice mismatch problem. Fur-
thermore, current techniques rely on the difference in thermal expansion be-
tween silicon and germanium to insert tensile strain in the latter, enhancing
its optical properties [163]. Several high-performance and possibly CMOS-
compatible solutions have been demonstrated during the years [164] 165, [166],
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making the monolithic integration of Ge a viable route for the future of photo-
detection in silicon.

In the field of photo-detectors for applications in Silicon Photonics a
special mention is reserved for the ContactLess Integrated Photonic Probes
(CLIPPs). They rely on a capacitive measurement of the change in conduc-
tance of the silicon waveguide, induced by sub-gap absorption mechanisms
such as Surface-State Absorption [I67]. In this way a fast and non invasive
measure of the light intensity inside the waveguide is achieved, opening the
way to real time monitoring of PICs and feedback mechanisms [168, 169)].

1.2 Physics of periodic structures

In this section a small summary of the electromagnetic properties of periodic
structures is reported, following the one given in the book “Photonic Crystals:
Molding the Flow of light” [170].

1.2.1 Maxwell Equations as eigenvalue problem

The starting point of every discussion on classical electromagnetism are of
course Maxwell equations [171]:

V-D=p (1.1a)
V-B=0 (1.1b)
0B
oD
H-—=1J. 1.1
V x o J (1.1d)

The material is then specified through its constitutive relations:
D =D(E) (1.2a)

B = B(H) (1.2b)

which allow to solve Maxwell Equation to get full electromagnetic behavior.
The constitutive relations [1.2 can in general be very complex. For the
sake of simplicity the present treatment will be restricted to nonmagnetic,
linear and isotropic material, where the constitutive relations can be simply

specified:
D =e5E (1.3a)

B = ;oH (1.3b)

20



1.2. PHYSICS OF PERIODIC STRUCTURES

where gy = 8.854 - 1072 Fm~! and py = 47 - 107" Hm™! are the vacuum
permittivity and permeability, respectively. The quantity ¢ is the relative di-
electric constant, it is a property of the material and can depend on frequency
and position.

In trying to solve the Maxwell equations the easiest route is to apply the
separation of variables, namely to write the electric and magnetic fields as
a product of two functions, one dependent on space only, the other on time
only. Moreover, due to linearity of Maxwell equations, it is possible to look
only at solutions harmonic in time:

E = E(r)e ™" (1.4a)
H = H(r)e ™", (1.4b)

since any general solution can then be built with a proper linear combination
of harmonic solutions.

Inserting [I.3] and [I.4] inside [I.1], with the additional condition of no free
charges nor currents, gives the Maxwell equations for the harmonic fields:

V-E(r)=0 (1.5a)
V-H(r)=0 (1.5b)
V x E(r) + ipowH(r) = 0 (1.5¢)
V x H(r) — iccqwE(r) = 0. (1.5d)

Furthermore, the two equations containing the curl can be combined in
the following way:

V x (Lv < H(r)> _ (E)ZH(r) (1.6)

e(r) c

where the fact that ¢ = 1/,/Eopo = 299792458 ms™! (the speed of light in
vacuum) has been used.

Equation 1.6, which together with the divergence conditions is equivalent
to the Maxwell equations, is sometimes called the master equation. It can
be easily seen that the master equation assumes the form of an eigenvalue
problem for the operator:

O() =V x (%V X ) : (1.7)

Moreover, the operator © is Hermitian with respect to the inner product:
(FIG) = /F*(r)G(r)dr, (1.8)
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since it can be proven that:
(FIOG) = (OF|G) (1.9)

provided either one of the following conditions are satisfied: (I) the fields
vanish at the boundary of the integration region or (II) the fields satisfy
periodic boundary conditions in the integration domain. In addition, the
definition of the inner product of Eq.[I.§ provides a very convenient way to fix
the normalization of the modes. Since every solution of Eq multiplied by
a constant is still a solution, it is possible to identify each class of equivalent
solutions by its normalized element, defined from an arbitrary solution F’ as:
/
F = B (1.10)
(F|F)

The possibility to recast Maxwell equations as an hermitian eigenvalue
problem is indeed remarkable. It promptly draws a parallelism with quantum
mechanics, allowing well known techniques, such as the variational principle
or perturbation theory, to be easily applied to electromagnetic problems.
Moreover, a great variety of numerical methods have been developed to solve
the Schrodinger equation whose application to electromagnetic problems is,
in this framework, straightforward.

1.2.2 Discrete translational symmetry

Expressing Maxwell equations in the form of an eigenvalue problem has a
very notable consequence: it allows for a very convenient treatment of the
system’s symmetries. Indeed, it is known from quantum mechanics that if two
operators commute with each other, they can be simultaneously diagonalized
on the same basis. For two operator A and B to commute it is sufficient that
the commutator operator [A, B] = AB — BA is the same as the null operator.

Therefore, if the master equation’s operator © commutes with some sym-
metry operator (5, whose spectrum is usually known, it is possible to extract
useful information on the spectrum of © from the one of O, or even use the
eigenvalues of O to label the solutions to the electromagnetic problem.

More notable symmetries that are usually employed for this scope are in-
version symmetries, mirror symmetries, and translational symmetries. The
most relevant for the scope of this thesis is translational symmetry, and in
particular discrete translational symmetry, which is the fundamental sym-
metry defining a Photonic Crystals.

Discrete translational symmetry takes place when the dielectric constant
profile is invariant under translation by an infinite set of specified vectors
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{R}. This set can be generated by linear combination, using integer coeffi-
cients, of a finite set of linearly independent vectors {a;} (in number equal
to the dimension in which the periodicity extends). The entire collection of
{R} is called the Bravais lattice and the related {a;} are called the primitive
vectors, and together they define the periodicity of the lattice.

In this framework, it is useful, before solving the electromagnetic problem,
to find the spectrum of all the translation operators {TR} corresponding to
the vectors {R}. To do this, let’s first apply the translation operator TR to
the simple plane wave e'dT:

Tre'a™ = eiaReiar, (1.11)

So the plane wave €97 is an eigenfunction of the operator Tr with eigenvalue
e @R’ Tt is now worth noting that a different plane wave 4" is also an
eigenfunction of Tr with the same eigenvalue provided that (q —q’) - R is a
multiple of 27.

It can be demonstrated that an infinite set of vectors {k} for which k-R =
27mn for every vector in {R} does exist. This set is called reciprocal lattice,
and can be generated, as the direct lattice, by linear combinations with
integer coefficient of a set of reciprocal primitive vectors {b;}, which can be
generated from the direct primitive vectors by enforcing a; - b; = 274;;.

It is now possible to construct the general eigenfunction of the operators
{Tr} by summing all plane waves whose wavevectors differ by a reciprocal
lattice element:

$q(r) = Z Cq(k)ei(q+k).r = e'ar Z Cq(k)e™™ = ' Tug(r), (1.12)
k k

where uq(r) is a function with the same periodicity of the direct lattice and
q is called the Bloch vector, and it is related to the eigenvalues with respect
to the translation operators {TR}, which is e’@®. Since every Bloch vector
which differs by an element of the reciprocal lattice represents the same set
of eigenvalues, it is always possible to choose the Bloch vector of minimum
modulus. The collection of such Bloch vectors is called the Brillouin zone
and it is sufficient to represent the full spectrum of the solutions.

At this point the exploitation of symmetry is complete, and it is time to
solve the electromagnetic problem. To do this it is sufficient to insert the
Bloch function inside the master equation

Oy (r) = “’(Cq) b (r) (1.13a)
V x (Ilr)v X eiq'ruq(r)) = @eiq'ruq(r) (1.13b)
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Figure 1.11: Example of photonic bands for different dimension. The dielec-
tric in all three cases is assumed uniform with € = 13. Photonic Band Gaps
are enlightened in orange. Bands reproduced from [I70].
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Uqg(r) (1.13c)

Oqiq(r) = @uq(r). (1.13d)

In this way, the hard eigenproblem of the master equation is reduced to
a collection of independent and simpler eigenproblems, one for every q in
the first Brillouin zone. This conclusion is known as Bloch theorem in solid
state physics, while for this application is usually referred as Bloch-Floquet
theorem.

In the most common situations the eigenproblem for each q can be solved
to find a (possibly infinite) collection of discrete modes, which are continuous
with respect to q since @q depend continuously on q. This is the origin of
the so called Photonic Bands (regions of energy in which propagation of light
inside the periodic structure is permitted) and Photonic Band Gap (regions
in which is forbidden) — see Fig. for some examples of bands.

1.2.3 Photonic Crystal Slabs

A particularly interesting class of periodic structures are the so called Pho-
tonic Crystal Slabs [I72]. They are composed of a periodically patterned
slab of a high index material, acting as the core of a waveguide, embedded
in a low index material. It is possible to apply the Bloch theorem to such a
structure to obtain the spectrum of modes as a function of the Bloch vector
in the plane. Such spectrum is more complex than in standard periodic struc-
tures, since it usually features both a discrete and continuous part. Indeed,
the spectrum is discrete in the region of the kw plane where propagating
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Figure 1.12: Qualitative sketch of typical bandstructure of PhC Slab. True
and quasi-guided modes regions are enlightened in orange and blue, respec-
tively.

waves can exist in the core but not in the cladding (ck/neore < w < ck/Neiaa)
and continuous where propagating waves exist in both core and cladding
(w > ck/Neiadang)- The separation between these regions is the straight line
w = ck /Mg, called cladding light line.

The discrete modes under the light line are confined to the slab. Further-
more, they ideally propagate without loss, and their possible decay is only
due to extrinsic losses, such as disorder or Rayleigh scattering.

The continuous spectrum is mainly composed by radiative modes, namely
modes which are not confined to the slab. However, confined modes can
extend themselves in the region of continuous spectrum, due to the folding
of photonic bands inside the first Brillouin zone. When this happens, the
confined modes survive as quasi-guided modes, namely they are broadened
by the interaction with radiative modes and acquire a finite lifetime, after
which all the energy in the quasi-guided mode is radiated away from the
waveguide.

Each region of energy can be used for different applications. True guided
modes can be used to tailor light dispersion [I73] or create sub-wavelength
materials [41].

Quasi-guided modes, although their finite lifetime seems to imply large
propagation loss, are quite useful too. They have in fact the unique capacity
to couple light between guided and radiative modes. In case of an infinite
structure this coupling can be see as a Fano resonance in the transmission
and reflection of vertically incident light [I74]. If the patterning is truncated
some light can survive in the unpatterned waveguide, and a grating coupler
in its simplest form is eventually built.
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Figure 1.13: Representation of the Yee cell for 2D-FDTD — both polariza-
tions: TM (a) and TE (b) — and 3D-FDTD (c).

Moreover, the ability to create a band gap in a planar structure is very
interesting. Creating a complete bandgap is quite trickier than in conven-
tional Photonic Crystals, but by using the right geometry and optimizing it
is possible [6I], 175]. In particular, once a band gap is in place, inserting a
defect is an easy way to create a waveguide [176] or a cavity [9§].

1.3 Numerical Methods

The great majority of the simulation during the research work for this thesis
was performed with either of two numerical methods: the Finite-Difference-
Time-Domain method and two formulations of the Scattering-Matrix method:
Rigorous-Coupled-Wave-Analysis (RCWA) and Aperiodic-Fourier Modal
Method (AFMM).

For the FDTD method a commercial software, Lumerical FDTD Solu-
tions, was used. On the contrary, regarding the Scattering Matrix, in-house
implementations were employed for both formulations: a FORTRAN code
for RCWA and a python 2.7 code (which T developed during my PhD) for
the A-FMM.

1.3.1 FDTD

The Finite-Difference-Time-Domain (FDTD) method is a numerical proce-
dure to solve Maxwell equations first devised by Kane S. Yee [I77] in 1966.
The method is based on a discretization of the curl Maxwell equations in the
time-space domain, which is used to get the complete time evolution of the
electromagnetic field once the initial condition is known [I78§].
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The discretization of the physical fields in time and space takes place
over two grids, for electric and magnetic fields, staggered in both space and
time — see Fig. This structure in the discretization, named Yee’s grid,
has more than one advantage. Indeed, by using the central difference in
the finite-difference expression of the derivatives and a leap-frog algorithm
for updating the fields, both precision and stability of the method can be
improved. Moreover, once the Maxwell equations containing the divergences
are satisfied by the initial condition, this is automatically preserved by the
grid’s structure during the time evolution.

The main advantage of the FDTD method lies in its versatility. Solving
the Maxwell equations in the time-space domain gives complete freedom on
the structure, which can be neither periodic nor symmetric, and on the pos-
sible sources. Moreover, due to the time domain nature, only one simulation
is required to get the broadband response of the structure.

On the drawback side, the FDTD method tends to be computationally
expansive and to require post processing of the simulation data to obtain the
desired information, such as coupling efficiencies, Q-factors, bandstructures,
etc.

During this thesis the FDTD method is used as the main instrument in
the research on grating-couplers, mainly due to his versatility and ease of use
compared to other methods.

1.3.2 RCWA

Rigorous Coupled Wave Analysis (RCWA) is a frequency domain method
based on the Scattering Matrix approach.

The RCWA was developed in his original formulation by D. M. Whittaker
and I. S. Culshaw [179] in 1999, to calculate reflection, transmission and
even emission from a periodically patterned multilayer. The method was
then extended to asymmetric unit cell and birefringent media by M. Liscidini
[180], who is also the author of the FORTRAN implementation used for some
of the calculations in this thesis.

This method can be used to solve Maxwell equations in any structure,
provided it can be represented as a multilayer. Inside each layer, the dielec-
tric constant along the stacking direction (let’s call it z) has to be uniform.
Variation of the dielectric constant in the plane perpendicular to the stacking
direction (the xy) plane is instead permitted, as long as it is periodic on the
same Bravais lattice for every layer. Although these constraints could seem a
little restrictive, the class of structures that can be analyzed is quite big. Full
3D structures in fact can be analyzed performing a staircase approximation
along a specified direction [I81], and then checking the convergence with the
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Figure 1.14: scattering matrix

number of slices in the approximation.

The basic working principle is as follows. Firstly, the fields in each layer
(for now assumed infinite in the z direction) are expressed as a sum of forward
and backward propagating plane waves (expansion on a Fourier basis). Sec-
ondly, the boundary conditions are applied to each interface, linking together
the fields between adjacent layers. The output of the code is the scattering
matrix S, a matrix that connects the Fourier expansion of the fields outgoing
from the structure to the one of the incoming fields:

sz [B2a] e
do dn So1 Sz2 | | dn

where u; and d; are the coefficient of the Fourier expansion in the " layer
for the forward and backward propagating waves.

If a total of M elements of the Fourier expansion are retained, each w;
and d; is a 2M vector (the factor 2 account for the two different polarization
states) and the scattering matrix S is a 4M x 4M matrix.

Once the scattering matrix of a system is known, information such as
reflection, transmission and diffraction in the open orders can be extracted.
Since the scattering matrix gives the coupling coefficient between the input
and output Fourier modes, getting such information is just a matter of taking
the correct element in the scattering matrix and normalizing it with the ratio
between the Poynting vectors of the selected modes.

During this thesis, the RCWA method is mainly employed in the research
on grating couplers, in particular regarding the problem of the bandwidth.

1.3.3 A-FMM

The Aperiodic-Fourier Modal (A-FMM) method is conceptually similar to
the RCWA but, thanks to the addition of a coordinate transformation in the
unit cell, the periodicity condition in the xy plane is no longer required. Thus,
the treatment of aperiodic structures, such as rib or grating waveguides, is

28



1.3. NUMERICAL METHODS

possible. A more detailed description of this method will be given, since I
spent part of my PhD implementing a Python version of this method.

The A-FMM has its roots in the classical modal method for crossed grat-
ings, firstly devised by L. Li [I82] in 1997. The method was then updated by
J.P. Hugonin and P. Lalanne [I83] with the inclusion of a coordinate trans-
formation. The role of the coordinate transformation is to map the entire R
space (R? for 3D calculation) to the finite computational cell. In this way,
the computational cell can contain an arbitrary dielectric constant distribu-
tion, which can still be treated with Fourier Methods but without crosstalk
between adjacent cells. For more details on the theory beyond the coordinate
transformation see App. [A]

The procedure involved in the A-FMM is basically the same of the RCWA,
and can be summarized as:

1. Divide the system in N layers.

2. Solve the Maxwell equations in each layer, assuming homogeneity in
the staking (z) direction and expanding the filed on a Fourier basis.

3. Using the solution found in 2, calculate the propagation matrix in each
layer and the scattering matrix of each interface.

4. Using the recursion algorithm for the scattering matrix, calculate the
scattering matrix of the full structure.

5. Obtain the desired quantities by post-processing of the scattering ma-

trix.

A brief summary of every step will now be reported. Firstly, it is necessary
to expand the fields in each layer as a sum over pseudo-Fourier basis :

2mn . 2mm
I Jx + i(ky + 7

wj o (s

O(z,y,2) = Z = D, (2) exp {z(kx +
n,m Y
where @ is a generic component of the electromagnetic fields, &, k, are the
components of the wavector along the x,y direction. The values L, and L,
are the dimensions of the computational cell. Due to the coordinate trans-
formation they lack a physical meaning, but their values are still important
in the definition of the basis for the pseudo-Fourier expansion, and remain
as computational parameters.
Once the expansion is established, it can be inserted in the Maxwell
equations to get the solutions inside the single layer. After this substitution
and a little manipulation it is possible to write:
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Hy
(1.16a)

5] =e[&] ww

where F,, E,, H,, H, are the vectors containing the Fourier expansion coef-
ficients of the respective field, and ky = w/c is the vacuum wavevector of the
radiation. The matrices ¢, ¢, , and €, , are built with the Fourier transform of
the dielectric function in the computational cell — see ref. [I82] and App.
for further details. The matrix K, is built as:

_j“g[ﬁa}:{ K, 'K, 1—Kﬁ4K¢}[Hw]:F{f&]

k02 | H, o K

e, [Hm } | KK, K, —ey.
oy — Ky K.K,

K, = F,K,, (1.17)

where K, is simply the matrix containing the wavevectors of the Fourier ex-
pansion (K, (g, ") = (ky+92)04y) and F} is built from the Fourier coefficient
of the derivative of the function used for the coordinate transformation —
see App [A]for details. The matrix F is built in an analogous way.

A further summary of Eq. and is desirable. Focusing on
solutions of ® which have a z dependence in the form e it is possible to

write: )
E, 7| By
FG = — 1.18
E =kl E ] (118)

which takes the form of an eigenvalue problem concerning only the electric
field components. The eigenvalues 72 /k2 are related to the propagation con-
stant along z of the eigenmodes of the layer, while the eigenvectors give the
electric field profile of the modes. Since for every eigenvalue two solutions
for v are possible — forward and backward propagating — only the solution
satisfying Re(y) + Im(v) > 0 will be considered and labeled with subscript
q.

Defining the vector E = [E,E,]” and the matrix £ containing as columns
the eigenvectors of Eq. d the corresponding matrix H for the magnetic

field can be expressed as:
S S
H=2F (1.19)
Y

which contains the Fourier coefficients relative to the magnetic field of the
eigenmodes.

At this point it is possible, after the definition of the vectors v and d,
containing, respectively, the amplitude of the forward and backward propa-
gating modes inside the layer, to write the Fourier coefficients of the fields
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at an arbitrary value z as a function of v and d:

-l ] 12

Currently, a method of connecting the vectors u and d at different z values
(both in the same layer or in different ones) is still lacking. In the following,
the scattering matrix for both cases will be built.

The easiest case is when the two values of 2z are in the same layer. In
this condition, the values of u and d at z and 2’ are simply linked with a
propagation scattering matrix:

=TT e | ]

where I" is simply the matrix with the propagation constants of the modes
on the diagonal.

When the two z values lie in different layers the calculations are a bit
more complex. However, is it possible to demonstrate that the scattering
matrix of a single interface between two layers can be written as (normal
variables refer to the first layer, the primed to the second):

(1.21)

Si1 Sia T, -T-T'T- T.T;'
= o T, (1.22)
where T is defined as:
1 =1 ~ -1 2
Ti:§<E E+H H). (1.23)

Now that both propagation and interface scattering matrices are defined,
in order to connect the u and d vectors at different z values all that is
needed is a recursion algorithm to join together two matrices, allowing the
scattering matrix of the complete system to be built up piece by piece. In
details, the recursion algorithm joining to scattering matrices S and s in the
total scattering matrix S7 is:

St = s11(1 — S12821) 'Sy (1.24a)
Sg = 519 + $11(1 — S12821) ' S12829 (1.24b)
S2T1 = So1 + Saa(1 — 891512) ' 821511 (1.24c¢)
S35 = Saa(1 — $21512) 522 (1.24d)
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It is worth noting that this relation, together with the fact that no diverging
exponential appears in the propagation matrix [1.21, ensures the numerical
stability of the S-matrix, at variance with other schemes (i.e. T-matrix).

Once the scattering matrix of the entire system is known, information
such a coupling strength between one input mode and one output mode are
easily calculated. As an example, the fraction of power scattered from a
mode m to a mode n can be calculated as:

P,

P_Z = ]S(n,m)|2£—2, (1'25>
where S(n,m) is the relevant S-matrix element and the quantity P; is the
z-component of the Poyting vector referring to the ¢ mode. This component
can be calculated as:

]‘ * *
P = gRe[E Hy— By H;], (1.26)

where E,, E,, H, and H, are the vectors of the Fourier components of the
mode under consideration.

Speaking of the Poynting vector, it is also possible to calculate the total
Poynting vector as a function of z. This is a little more complex than before
(where only the Poyting vector relative to a single mode was calculated)
since now all modes (forward and backward propagating), together with their
interference, have to be considered. In the end, the total Poyting vector PTOT
can be expressed as:

1 P P u*
Tor _ 1 - -
P, —2Re{[u d]z{P —PHCI*L} (1.27)
where P is a matrix whose elements are defined as:
Pow =3 [Ex(k,n)]:!;(k,n’) . Ey(k,n)ﬁf;(k,n')} . (1.28)
k

However, the practical use of Eq. to get the total Poyting vector
requires the calculation of u, and d., namely the vectors containing the co-
efficients of the forward and backward propagating modes at z. In order to
do that, two S-matrices have to be built. The first S is the matrix linking
the beginning of the structure to the desired z coordinate, while the second
S’ links this z coordinate to the end of the structure. Once those S-matrices
are known, the vectors u, and d, can be calculated from the input vector u
and d’ as:

u, = (1= 51255) " (S + Sod) (1.29a)
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d, = (1—55,5)"" (Su+ Shd). (1.29D)

One last, but very important, application of the scattering matrix is the
calculation of the photonic bands in periodic structures. This can be done
by solving a generalized eigenvalue problem derived from the S-matrix of the
unit cell. The eigenvalue problem is obtained by imposing Bloch boundary
conditions on the fields at the two side of the structure:

#]-(s]

where k£ and A are the Bloch vector and the period along the z direction,
respectively. Inserting the Bloch boundary condition in the definition of the
scattering matrix (Eq. [1.14]) easily yields:

S 0 U | kA I =S Uu
{Sm —1Hd}_e 0 =Sy || d ]|’ (1.31)
which can be solved to obtain the Bloch vector k for given frequency.
The Aperiodic Fourier Modal Method is the main instrument for the

research on slow-light in silicon grating waveguides, both for calculation of
photonic bands and transmission through finite size structures.
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Chapter

Grating-Couplers: lineshape and
bandwidth

2.1 Introduction

One of the major problems Silicon Photonics has encountered, and still faces
today, is the connection of an Integrated Photonic Circuit to the external
world. This is a complex task, in general involving both optical and electri-
cal connections, along with thermal management, and goes by the name of
Photonic Packaging [I84]. On the optical side, the coupling of light between
an integrated waveguide and an optical fiber, the preferred medium for mid-
and long-distance communication, has posed a substantial challenge.

The reason of such difficulty is mainly due to the large mode mismatch
between the two types of waveguides. Silicon integrated waveguides are in-
deed, thanks to the high index contrast typically available, very efficient in
confining light to lateral dimensions comparable to the wavelength (few hun-
dreds of nanometers). On the contrary, the low refractive index contrast
available in optical fibers makes the core of even a single-mode fiber quite
large, with a diameter of the order of 10 um.

This mismatch causes high losses every time a direct connection between
the two systems is attempted. To solve this problem many solutions have
been proposed, but almost all can be classified as either edge-coupling or
grating-coupling.

2.1.1 Edge-coupling

Edge-coupling is the natural evolution of direct butt-coupling. The idea be-
hind edge-coupling is to place some sort of interposer between the optical
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Figure 2.1: Representation of the typical structure of an edge-coupler in SOI
platform. Image reproduced from [184].

fiber (or some other source, such as a laser) and the integrated silicon waveg-
uide. The role of this interposer — see Fig. [2.1]— is to gradually adjust the
effective index and the size of the mode between the fiber and the waveguide.

Several solutions have been proposed over the years. The most straight-
forward is the realization of an inverted taper in the silicon waveguide. In-
deed, as the width of the integrated waveguide is reduced, so are the effective
index of the mode and its localization, yielding a wider mode with a profile
which is similar to the one of an optical fiber. Since it is difficult to fully
compensate the modal mismatch relying only on the inverse taper, it is often
embedded in a spot-size converter [I85], made either of SION or some organic
polymer, which makes the transition even more gradual by adding an extra
step. Further improvements can be achieved by shrinking the mode at the
fiber side, thus reducing the size mismatch, for example by employing lensed
or High Numerical-Aperture optical fibers [I86]. Overall, this solution can
indeed deliver impressing performances, both for fiber-to-chip [187, 188 189]
and laser-to-chip coupling [190].

Another viable way it is to employ sub-wavelength structures. In this
framework, the index of the mode is adapted not by shrinking the waveguide,
but by modifying the pitch and duty cycle of a sub-wavelength patterned
waveguide, which thus acts as a normal waveguide with a tunable index
[44, [1T4]. This solution allows for a finer control of the modal index and
mitigate the minimal feature size problem. Done properly, it can achieve very
high coupling efficiency (>90%), along with very high bandwidth (>100nm)
and polarization insensitive operation [191].

The main drawbacks of edge-coupling are the complexity of the fabri-
cation, which requires extra thin-features [192] and a possible extra step for
the realization of the spot converter, together with the higher post-processing
cost, in particular for the dicing and polishing of the chip’s edge. Moreover,
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alignment tolerance is usually sub-pm [193] and, due to placement of the
coupling element one the edge, wafer-scale testing is not possible.

Thus, all these features make edge-coupling a non-ideal solution to the
fiber-to-chip problem in Silicon Photonics, although it has demonstrated to
be a valid candidate for some commercial applications, such a direct laser-
to-fiber coupling [I86], and for research purposes.

2.1.2 Grating-coupling

Grating-coupling takes a completely different approach. A grating-coupler
consists in a simple diffraction grating etched in a planar waveguide. In this
way, light incident on the chip almost vertically can be coherently scattered
inside the waveguide. Grating-couplers offer some practical improvement
over edge-couplers. They are usually easier to fabricate since, although some-
times additional deposition of poly-silicon is required, they can usually be
built with a single etching step [194]. Moreover, since they couple light that
arrive vertically on the chip, they can be placed anywhere, adding a great
deal of flexibility to the design of the circuit, which now does not require
any expansive polishing of the edges. In addition, they usually exhibit more
relaxed alignment tolerances, up to 5 pm, and passive alignment can be easily
employed.

All these interesting features usually result in lower performances than
edge-couplers. The problem is not so much on maximum coupling efficiency,
although careful optimization is needed to bring grating-coupler’s efficiency
to acceptable levels. Instead, the spectral bandwidth can be the real bottle-
neck. Indeed, since grating-couplers are based on a resonant phenomenon,
their bandwidth is intrinsically limited, usually of the order of 30-40 nm when
operating at telecom wavelengths. Moreover, simpler 1D grating-couplers are
polarization sensitive, and can efficiently couple only one polarization, which
is usually designed to be the TE polarization of the waveguide. This is not a
problem for out-coupling, when the polarization of light coming from the PIC
is fixed, but it is a problem for in-coupling, since polarization of light from
the fiber is usually not well defined. Polarization insensitive couplers, which
couple the different polarizations either to two different TE waveguides [67]
or to TE and TM modes in the same waveguide [68], do exist, but requires
2D patterning and their performance is usually lower than 1D counterparts.

In this chapter a numerical analysis of the grating-couplers’ performances
will be presented, with particular attention to the problem of the bandwidth
and its relation with the intrinsic width of the photonic mode inside the
grating. In addition, a simultaneous optimization of coupling efficiency and
bandwidth will be performed. All grating-couplers here are considered in the
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Figure 2.2: Sketch of the structure of an uniform grating coupler. All relevant
parameter are defined, except for the duty cycle DC=w/P and the Mode

Field Diameter, namely two times the o of the Gaussian Mode used as fiber
excitation.

standard SOI platform with 220 nm waveguide thickness and operating at
the standard telecom wavelength of 1.55 pm.

2.2 The physics of grating-couplers

One dimensional grating-couplers are simply composed by a series of grooves
etched inside a silicon planar wavequide in the chip. They are usually around
10-15 pm long, to match the 10.4 pm Mode Field Diameter (MFD) of commer-
cial single-mode optical-fibers at the standard telecom wavelength of 1.55 pm.
The silicon waveguide is usually embedded in silica (SiO2) and all is sup-
ported by a Si substrate. The simplest grating-coupler — see Fig. —
is composed by a uniform grating, and it is defined by a limited set of pa-
rameters: the waveguide thickness Twave, the period of the grating P, the
etching depth Etch, the duty cycle DC (the ratio between the etched part
and the period), and the thickness of the bottom oxide Thox. In principle
one must consider also the thickness of the top oxide above the grating. This
will be discarded here both for simplicity and because it has usually the same
index of refraction of the optical fiber and of the epoxy glue used to make
the connection, so in all practical calculations can be assumed semi-infinite.
The fiber mode can be assumed to be a Gaussian Beam coming from above
the waveguide with an angle . The width of such Gaussian is summarized
in the Mode Field Diameter (MFD), namely the width at which the field is
reduced to 1/e of the maximum value.

There are mainly two pictures in which to understand the operation of a
grating-coupler: the theory of diffraction gratings and the theory of Photonic
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Crystal Slabs.

The theory of diffraction gratings states that, when light is incident on a
periodic patterned structure, the coherent scattering of every element gives
rise, besides the standard transmitted and reflected wave, to additional scat-
tered waves. The angular distribution of such waves is determined only by
the period of the grating, and can be calculated by applying the condition of
momentum conservation in the direction parallel to the grating. The parallel
wavevector of the m'* diffraction order kﬁ” is related to the parallel incident
wavevector ﬁ”c by:

, 2

=k + A (2.1)
where A is the period of the grating. The order is open when waves of
such wavevector can propagate in the outside medium, namely k;ﬁ” < 21/ An,
otherwise it is closed and no light can scatter in that order — see Fig. 2.3
While the position of the orders does not depend on the particular geometry
of the grating, how the light divides itself in the different orders does, and
a complete calculation of the scattering from a periodic structure usually
requires dedicated numerical methods (such a RCWA).

Coupling inside the waveguide is possible when the parallel wavevector
of one diffraction order (usually m = +1) coincides with the wavevector
of the guided mode inside the grating. Since the wavevector of the guided
mode can be written as kyn.ss, where n.ss is the effective phase index of the
guided mode and ky is the vacuum wavevector, Eq. can be rewritten in
the classical Bragg condition for grat