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Abstract (English)

The anticancer drug development process is characterized by the
highest attrition rates in the clinical setting, primarily due to adverse
efficacy and safety results. Preclinical animal models, characterized
by a questionable predictive value of the effects to be expected in
human patients, and an inadequate predictive paradigm of preclinical
to clinical translation, lacking of quantitative reasoning, may be likely
causes of this. Pharmacometric models, able to extract, synthesize
and quantitatively integrate preclinical information, could support the
transfer of the preclinical results to the clinical setting.

Within the paradigm of the Model-Informed Drug Discovery and
Development (a quantitative framework for prediction and extrapola-
tion focused on knowledge and inference generated from integrated
models of candidate drugs, mechanism and disease level data and
aimed at improving the quality, efficiency and cost effectiveness of
decision-making), my thesis deals with the development, implementa-
tion and analysis of new mathematical modeling approaches to exploit
data routinely generated in the preclinical phases of anticancer drug
development process. In all the described research activities it can
be recognized the importance of PK/PD modeling in better charac-
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terizing, understanding and predicting PK/PD behaviour of oncology
agents.

The focus of this work is a mathematical modeling of interactions
between tumor and host organism during anticancer drug treatments
in preclinical experiments. To this aim, a tumor-in-host modeling ap-
proach is proposed on the basis of a set of tumor-host interaction rules
taken from the Dynamic Energy Budget (DEB) theory. This approach,
suitably adapted to several experimental contexts, is able to integrate
the different aspects characterizing the in vivo tumor growth studies:
the drug cytotoxic or cytostatic activity on the tumor, the potentially
onset of cachexia due to the treatment, the effect of the tumor on
the host (cancer-related cachexia and/or anorexia) and, viceversa, the
influence of the host condition on tumor dynamics.

In particular, a tumor-in-host DEB-based model describing the
cachexia onset and tumor growth inhibition (TGI) after the adminis-
tration of cell-killing agents to laboratory animals has been developed,
mathematically analysed and, subsequently, applied on a etoposide
experiment in Wistar rats. The cytostatic anticancer effect of angio-
genesis inhibitors in xenograft mice has also been modeled within the
tumor-in-host DEB-based framework. This DEB-TGI anti-angiogenic
model has proved to be extremely useful to describe and understand
the complexities of an hypoxia-triggered resistance to bevacizumab.
Finally, starting from the previous developed TGI models, a tumor-in-
host approach to analyse combination experiments and assess possible
drug-drug interaction between anti-angiogenic and chemotherapeutic
agents is proposed.
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Abstract (Italian)

Il processo di sviluppo di un nuovo farmaco oncologico é caratte-
rizzato da un elevatissimo numero di fallimenti, principalmente dovuti
alla scarsa efficacia o eccessiva tossicitá riscontrata durante le fasi di
sperimentazione clinica. Tra le possibili cause di questo fenomeno vi
sono l’utilizzo di modelli animali poco rappresentativi delle condizio-
ni osservabili in soggetti oncologici e la mancanza di un paradigma
di traslazione dal contesto preclinico a quello clinico sufficientemente
predittivo. L’utilizzo di modelli farmacometrici, capaci di estrapola-
re, sintetizzare e integrare quantitativamente le informazioni raccol-
te durante la sperimentazione preclinica, puó essere un promettente
tentativo di rispondere a queste problematiche.

Inserendosi nell’ambito dell’uso della modellistica matematica a
supporto del processo di sviluppo di nuovi farmaci antitumorali, questa
tesi si concentra sulla costruzione, implementazione ed analisi di nuovi
approcci matematici per l’analisi di dati sperimentali tradizionalmente
ottenuti durante le fasi di sviluppo preclinico.

Focus specifico di questo lavoro é la modellizzazione delle intera-
zioni tra tumore e organismo ospitante durante la somministrazione di
trattamenti antitumorali resa possibile dall’utilizzo di un set di leggi di
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bilancio energetico fornite dalla Dynamic Energy Budget (DEB) theo-
ry. L’approccio proposto, opportunatamente declinato in diversi con-
testi sperimetali, é capace di tenere simultaneamente in considerazione
i differenti aspetti che caratterizzano gli studi di crescita tumorale in
vivo: l’effetto citotossico o citostatico della terapia antitumorale sulle
cellule tumorali, l’eventuale insorgere di fenomeni di cachexia come
conseguenza del trattamento o del tumore stesso infine, l’influenza che
la condizione dell’organismo ha sulla crescita tumorale.

Piú nel dettaglio, é stato sviluppato ed analizzato dal punto di vi-
sta matematico un modello di interazione tumore-organismo capace
di descrivere sia l’effetto inibitorio sulla crescita tumorale di un trat-
tamento citotossico, sia il suo effetto tossico sull’organismo ospitante.
Tale modello é stato, in particolare, adottato per analizzare dati spe-
rimentali circa l’effetto del farmaco etoposide su ratti Wistar. É stato
inoltre sviluppato un secondo modello, sempre basato sulle interazioni
energetiche di tumore e orgamismo, per descrivere l’effetto citostati-
co di un trattamento anti-angiogenico. L’approccio meccanicistico alla
base del modello proposto ha permesso di tenere in considerazioni l’in-
sorgere di fenomeni di resistenza mediata dalla condizione di ipossia
tumorale in seguito a trattamenti prolungati di bevacizumab. Infine,
utilizzando i modelli di inibizione di crescita tumorale precedentemente
sviluppati, é stato proposto un nuovo approccio per analizzare esperi-
menti di combinazione e riconoscere eventuali interazioni tra farmaci
anti-angiogenici e chemioterapici.
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Chapter 1
Introduction

In the past decades, the pharmaceutical industry has seen the in-
creasing application of Modeling and Simulation (M&S) in the drug
Research and Development (R&D) process. This shift from empiric
to Model-Informed Drug Discovery and Development (MID3) has re-
ceived also the support of the regulatory authorities that identified
the adoption of mathematical and statical approaches as a strategic
solution to the productivity crisis of the pharmaceutical R&D [1, 2].

Indeed, developing and bringing a new drug to the market is an
extremely long and expensive process, characterized by high attri-
tion rates. The reasons why drug compounds undergo attrition have
changed over time [3, 4]. Even if, in the early ninety, adverse Phar-
macokinetic (PK) and bioavailability results were the most relevant
causes of drug failures, from 2000 the impact of these factors had sig-
nificantly reduced shifting the temporal attrition profiles to the later
clinical stages. Nowadays, the high failure rates are primarily due
to inadequate efficacy and/or safety in phases II and III, and this
is the most important determinant of overall drug development cost
[5, 6, 7, 8]. Interestingly, a significant cost reduction (even larger than
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50%) could be achieved by a shift in attrition from Phase III to Phase
II [9]. In particular, lack of efficacy contributes more significantly
into these therapeutic area, as oncology, in which preclinical animal
models seem to be less efficient of predicting what happen in human
patients. This finding demonstrates the need to develop a more pre-
dictive paradigm of preclinical to clinical translation [3].

This thesis deals with the development and application of a new
modeling approach for better exploiting data routinely generated in
the preclinical phase of anticancer drug development process. In par-
ticular, different mathematical models that, based to the Dynamic
Energy Budget (DEB) theory, are able to describe and predict the
inhibition of the tumor-in-host growth and the cachexia onset are pre-
sented here and evaluated on experimental data of xenograft rodents.

1.1 Drug Discovery and Development

Drug research and development is a long, complicated and expen-
sive process, that is aimed at taking the path from understanding
a disease to bringing a safe and effective new treatment to patients.
Each drug has to be effective in achieving the defined therapeutic tar-
get as well as appropriately described in terms of side effects, dosage
form, facility of administration and costs. Recent studies report that
the cost of bringing a new drug to the market exceeds $2500 million
[10] with an average duration of about 13 years [3]. Therefore, phar-
maceutical companies are continuously involved in the optimization
of this process, predicting in advance compounds with high probabil-
ity of failure, while making the development of the most promising
candidate drugs faster and more effective.

As shown in Fig. 1.1, the drug development process, from basic
discovery to commercialization, can be divided in several phases [11].

The discovery phase is composed by different steps. After a suf-
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1.1. Drug Discovery and Development

Figure 1.1: Drug discovery and development process.

ficient understanding of the considered disease and of the causes un-
derlying the pathological condition, a molecular target (receptor, en-
zyme, protein or hormone) which is biomedical relevant, i.e. associ-
ated with a therapeutic response, is identified and selected (Target
identification). Molecules showing affinity for the target, called hits,
are searched within a huge number of compounds, both collected in
commercially available chemical libraries or synthesized by the drug
companies themselves. The aim is to find a few promising molecules
(hits), that, acting on the selected target, may alter the disease pro-
gression and become a drug. Preliminary test are performed in living
cells or via computational models to assess Absorption, Distribution,
Metabolism, Excretion (ADME) and toxicological properties of each
hit (Hit to Lead). The leads that survive the initial screening are,
then, optimized or structurally modified to make them more effective
and safe (Lead optimization). Identified one or more optimized com-
pounds, further in vitro and in vivo tests are carried out to assess
pharmaceutical and PK properties, such as solubility, permeability,
metabolic stability and affinity for plasma proteins.

Optimized leads, having all the appropriate required properties on
the basis of in vitro and/or in silico assays (New Molecular Entiti-
ties (NME)), are, then, evaluated in vivo in relevant animal models
for a formal characterization of the pharmaco-toxicological profiles pre-
ceding the clinical phase (Preclinical Phase). These compounds are
administered to a small number of animals (usually rodents and/or
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other animal species, like dogs and rabbits) to assess their in vivo PK,
Pharmacodynamic (PD) and safety and to identify the conditions (in
terms of exposure and duration of the exposure), that achieve the best
compromise between pharmacological and toxicological effects. The
main objective of this research phase is to insure that the subsequent
study in humans will be performed without risk for the participants;
therefore it is aiming to characterize formally safety and tolerability
and their relationship with the systemic exposure to the drug.

The preclinical phase is followed by the clinical development. The
First-In-Human (FIH) studies (Phase I) are safety designed (in terms
of starting and maximal achievable doses) and a small number of sub-
jects (healthy volunteers or, in cases such as for oncology drugs, pa-
tients) are usually enrolled. The objective is the evaluation of the
safety, ADME and preliminary PD properties with a particular in-
terest for dose-response or exposure-response relationships in human
and, therefore, for the safe dose range. In these studies conducted
on patients, also preliminary information about efficay can be gath-
ered. Afterwards, in Phase II trials the candidate drug effectiveness
is assessed in about few dozens to few hundreds of patients. Possible
short-term side effects and risks associated with the drug are analyzed
and the optimal dosing regimens are identified to be tested in the con-
firmatory Phase III trials. In the last step of the clinical phase, Phase
III, the drug candidate is studied in a larger number (from hundreds
to thousands) of patients to generate data to demonstrate the superi-
ority of the candidate drug compared to the current standard of care.
Additional safety data are collected to allow a better definition of the
risk/benefit balance. Variability of the PK can also be studied in the
target patient population.

Even after approval and its launch on the market (Phase IV), the
research on a new medicine continues and the entire population as-
suming it is monitored (pharmaco-vigilance) to evaluate the long-term
safety and the effectiveness on special subgroups of patients.
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As previously described, PK and PK/PD evaluations are performed
along the whole drug discovery-development continuum to elicit knowl-
edge on the new drug and streamline its clinical evaluation. The dis-
covered knowledge can be used to synthesize new data or new knowl-
edge, or to supplement existing data in a learn-confirm paradigm [12].

1.2 Modeling and Simulation (M&S) to

support drug R&D

Modeling and Simulation (M&S) are widely applied to core busi-
ness activities across a broad range of industries. Despite a rela-
tively late adoption, the pharmaceutical industry continues to grow
its utilization of M&S across a diverse range of applications. The
greater spread of M&S led to the M&S joint workshop of the Euro-
pean Medicines Agency (EMA)/ European Federation of Pharmaceu-
tical Industries and Associations (EFPIA) that, in 2011, assembled
scientists from the pharmaceutical industry, academia and regulatory
authorities to consider the (then) current and future role of M&S in
drug development and regulatory assessment [2, 13, 14, 15, 16]. On
that occasion, the term Model Informed Drug Discovery and Develop-
ment (MID3) has been introduced to define a “quantitative framework
for prediction and extrapolation, centered on knowledge and inference
generated from integrated models of compound, mechanism and dis-
ease level data and aimed at improving the quality, efficiency and cost
effectiveness of decision making”.

The concepts underpin MID3 are not new. In the 1992, Peck et
al. stressed the importance of integrating PK, PD and toxicokinetic
principles in drug development [17]. Afterwards, in the 1997, Sheiner
introducing the learn-confirm paradigm, emphasized the importance
of adopting model-based methods [18].
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1. Chapt. 1

The need for MID3 application has been popularized by industry
analysts and well recognized by many others as a solution to the pro-
ductivity decline [19, 20, 11, 21]. In addition, these approaches were
identified as a strategic component for the Critical Path Initiative of
the Food and Drug Administration (FDA) [1] and the current Innova-
tive Medicines Initiative (IMI), particularly the Drug Disease Model
Resources (DDMoRe). Moreover, various summaries have confirmed
the MID3 value to improve R&D efficiency reducing the budget for the
experimental trials and increasing the success rates [22, 23, 24, 25].

MID3 covers the whole spectrum of the drug development pro-
cess viewed as an iteration of learning and confirming activities [18]
that contribute to increase the knowledge of the NME, the biological
systems, the targeted medical indication, as well as molecules within
a therapeutic class [20]. This learn-confirm paradigm is the central
tenet of the MID3 approach that can be summarized into the follow-
ing steps: knowledge gathering, model construction and simulation
(Fig. 1.2). The first one is the collection of all the available informa-
tion: assumptions, prior information and experimental data obtained
from biology, toxicology, ADME and efficacy studies. Starting from
the available knowledge, models are built and validated with the aim
of capturing the causal relationship between disease state, prognostic
factors, drug characteristics, safety and efficacy outcomes from vir-
tual studies. Finally, the developed models can be used to simulate
outcomes helping to answer questions about dose selection and study
design and to represent dose-response and time-response behaviour. It
is implicit that this quantitative framework is iterative in nature: in-
consistencies between predictions and subsequent observations trigger
further model development or assumption refinement and, potentially,
new studies to be designed and performed; any new modification in-
troduced into the framework can be, then, evaluated, “confirmed”, or
at least assessed in terms of their impact on the resultant inferences.

The value of MID3 approaches in enabling model-informed decision-
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1.2. Modeling and Simulation (M&S) to support drug R&D

Figure 1.2: Model-Informed Drug Discovery and Development (MID3) paradigm.

making is evidenced by the variety of application across drug discovery,
development, commercialization, and life-cycle management.

In the early discovery, MID3 can contribute to the target iden-
tification and validation through in silico approaches that integrate
experimental data from multiple sources, increasing, thus, the confi-
dence in the role of the target in the disease or in the mechanistic
understanding of target modulation.

Model-informed approaches can enable the quantitative assessment
of PK, desired (PD) and undesired (safety) effects of novel compounds
to support the preclinical selection of drug candidates for the subse-
quent clinical development based on increased confidence in the pro-
jected efficacious dose and regimen before the FIH dose.

In the characterization and prediction of human ADME and PK
variability multiple modeling approaches can be applied. These meth-
ods help to identify significant covariates that determine expected
exposure and the possible need for dose adjustment in specific sub-
populations. Further, the use of In Vivo - In Vitro Correlation (IVIVC)
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1. Chapt. 1

models can avoid bioequivalence studies in specific situations defined
in the FDA guidelines for scale-up and post-approval changes (see Ap-
pendix A for an example of IVIVC model).

Model-informed study design optimization is, also, applicable to
increase the efficiency and reduce costs of trials during different phases
of drug discovery and development.

Characterization of benefit and risk is an ongoing process that oc-
curs all along the compound development path. MID3 approaches can
be used to predict clinical outcome measures based on modeling of
preclinical and early clinical data, to optimize a dosing strategy, esti-
mate a therapeutic window by integrating related safety and efficacy
endpoints, provide de-risking alternative development approaches, and
support the selection of optimal candidate compounds.

Further relevant applications concern the selection of appropriate
doses and schedules which provide optimal treatment benefit for the
majority of patients during the later clinical trials, as well as the def-
inition of label recommendations including the cases of drug combi-
nations and special population (e.g., pedriatic, renally or hepatically
impaired, elderly, obese, subgroups) during the approval phase.

In summary, the wide variety of the previously presented applica-
tions exemplifies how MID3 can be applied across R&D to increase the
confidence in the compound, mechanism or disease rationales; provide
support to internal go/no-go decisions, dose finding, dose adjustments
for patient subgroups; support labelling, benefit-risk, and increasing
confidence in next-stage investment.

1.3 MID3 applied to oncology

Over the past decade, a large number of novel anticancer drugs
have been developed and many are now used into routine clinical prac-
tice. However, the discovery of new anticancer drugs remains a highly
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challenging endeavour. The attrition rates clearly reflect the level of
loss of candidate drugs during their preclinical and clinical develop-
ment: less than 5% of NME evaluated in FIH studies are able to enter
the market [3]. The likelihood of approval for oncology drugs is lower
than for those in any other disease area [8]. Numerous solutions have
been proposed to tackle the issue of attrition in the oncology field
by many authors; one of these consists in the optimization of the in
vivo preclinical experiments performed to select promising compounds
based on a suitable antitumor activity and a manageable tolerability
profile and to anticipate with good accuracy the systemic exposure or
the dose that will provide initial signs of efficacy [26, 27].

1.3.1 In Vivo Tumor Growth Experiments: the
xenograft models

The development of murine models for human cancer studies dates
back to the late 1940s [28]. These animal models are used both to
investigate factors involved in tumor transformation, invasion and
metastasis, and to examine response to anticancer therapy. Xenografts
of human tumors are the most popular preclinical models used to eval-
uate the anticancer activity of new compounds [29, 30, 31, 32]. Despite
discussions about their predictive power for the actual human response
to the treatment [30, 27], xenograft models still play a major role in
cancer drug development due to their high ability in predicting clini-
cal efficacy combined with relative easy and low cost implementation
[33, 34].

During these experiments, fragments of about 20-30mg of tumor,
coming from human cell lines, are implanted subcutaneously (s.c.) in
immunodeficient rodents (mice or rats). When the animals show a
palpable tumor mass of approximately 100-200 mm3 (in general one
week after the inoculation), they are selected, randomized and divided
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in two or more groups each including several individuals. After the
randomization the experiment starts: some groups are treated with a
vehicle (control groups), others with anticancer compounds (treated
groups) following predefined protocols. All the animals (controls and
treateds) are usually clinically evaluated daily and weighted usually
twice a week. Tumor dimensions (length and width (mm)) are mea-
sured by calliper, typically from once a day to every 4 days, and tumor
mass (mg) calculated as:

weight = ρtr
length · width2

2
(1.1)

approximating tumor shape with the ellipsoid generated by the rota-
tion of a semi-ellipse around its larger axis (length) and assuming unit
density (ρtr = 1 mg/mm3).

Drug administrations can differ for dosages, duration of treatment,
schedule (number and time of administrations), way of administration
(Intravenous (i.v.) or Intra-Peritoneal (i.p.)) and administration profile
(bolus or infusion).

To compare the anticancer activity of different compounds or of
different dosages/schedules of the same compound, the distances be-
tween the different tumor weight profiles at specific weight (Tumor
Growth Delay (TGD)) or time (Tumor Growth Inhibition (TGI)) are
measured. Unfortunately, these efficacy metrics can depend on exper-
imental conditions and, thus, a certain number of experiments have
to be performed to obtain a valuable estimate of the drug activity. In
addition, the extrapolation to human of these results is difficult. For
this reason, an approach based on mathematical modeling is neces-
sary to obtain experiment-independent model parameters which can
be quantitatively linked with clinically relevant endpoints [33].
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1.3.2 Current mathematical models of in vivo Tu-
mor Growth Inhibition

Pharmacometric models represent one of the most comprehen-
sive tools for summarizing and integrating information obtained in
the often sparse, limited and not-optimally designed experiments per-
formed in the early phases of oncology drug discovery [35]. In partic-
ular, several PK-PD models have been proposed to describe TGI ob-
served during xenograft experiments after both single agent and com-
bination therapies. Hereafter, some of the mathematical approaches
published in the recent literature are introduced while several re-
views are available for a more comprehensive picture on this topic
[35, 36, 33, 37, 38, 39].

One of the currently most popular PK-PD TGI models is the model
proposed by Simeoni et al., also called cell distribution model [40]. It
describes the unperturbed tumor growth in the control group through
an exponential phase followed by a linear one. In the perturbed tumor
growth model (treated animals), it is assumed that, due to the drug
cytotoxic effect, a fraction of cancer cells becomes not-proliferating and
enter a transit compartmental system that leads to cell death. Drug
activity on tumor growth is proportional to both drug concentration
and weight of proliferating cells, via the constant, k2 that represents
the drug antitumor potency. The separation between tumor and drug-
related parameters introduced by this model is a likely factor of its
success. Moreover, a significant correlation has been found between
this potency parameter and the systemic exposures of ten marketed
drugs administered in the clinical practice indicating its translational
applicability [41].

In some xenograft experiments a further slowdown of tumor growth
is observed after the linear phase. In these cases, a more traditional
Gompertz model may be more suited for describing the plateau reached
by the tumor in the unperturbed group [39]. Another popular model
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is the signal distribution model proposed by Lobo et al. [42]. Here, the
drug acts on a receptor which initiates a signal transduction cascade
whose final product is a modulation of the killing effect against tumor
cell. Additional complexities were added to the basic cell or signal
distribution models on an ad hoc basis: Stuyckens et al. modified the
Simeoni TGI model to account for the development of resistance to
antitumor therapy [43]; Pigatto et al. to account for the schedule-
dependent effect of etoposide on TGI in rats [44].

Other popular PK-PD models were developed to consider the activ-
ity of anti-angiogenic compounds. Hanfeldt et al. adopted a Gomperzt
model in which tumor growth is limited by a carrying capacity vari-
able (defined as the maximal sustainable tumor size due to the input
of oxygen and nutrients) inhibited by the effect of the anti-angiogenic
therapy. The concept of carrying capacity has been employed and
modified in many recent papers [45, 46, 47]. In particular, Ribba et
al. used four ordinary differential equations to describe the tempo-
ral changes of non-hypoxic, hypoxic and necrotic tissues within tumor
while the carrying capacity concept was adopted to account for the
angiogenesis process [47]. When dealing with anti-angiogenic therapy,
another potential alternative is proposed in the work of Rocchetti et al.
[48]. Here the exponential+linear tumor growth of the Simeoni model
is adopted to describe unperturbed group, while an inhibitory Emax
function is used to account for the tumoristatic effect of bevacizumab.

Several mathematical models were, also, developed to investigate
the effect of combination therapy, a situation that is very common
in anticancer treatments. Koch et al. described the antitumor ef-
fect of anticancer compounds given alone or in combination in in vivo
xenograft models [49]. The starting point was the Simeoni TGI model
[40] with minor modifications; the combined administration of two an-
ticancer compounds was described through an interaction term that
account for the nature of the drug-drug interaction (antagonistic, ad-
ditive, or synergistic effects). This approach was also used by Li et al.
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to model the schedule-dependent interaction of the combined admin-
istration of erlotinib and gemcitabine [50].

Always based on the Simeoni TGI model, Rocchetti et al. proposed
an additivity model able to predict the TGI followed the administra-
tion of anticancer compounds in combination under the assumption
of a PD null interaction [51]. When two drugs are given in combi-
nation, it is assumed that cells hit by one agent can also be hit by
the other one as well, thus, 16 possible states of tumor cells are repre-
sented by a 4 x 4 mortality matrix. Then, by comparing the predicted
curves with the actual tumor weight data, possible departures from
additivity can be ascertained. Starting from this work, Terranova et
al. [52] developed a combination model accounting for the drug-drug
interactions through an interaction term γ that can be equal to, less
than, or greater than 1, respectively, in case of additive, antagonistic,
or synergistic combinations.

Further modeling approaches have been proposed to analyse exper-
iments involving combinations of anti-angiogenic and cytotoxic com-
pounds. The Simeoni TGI and Rocchetti TGI models were used to
evaluate data from combination experiments in which bevacizumab
was given with a Polo-like kinase 1 (PLK1) inhibitor [48]. In this
case, a weak antagonistic effect between the two compounds was ob-
served and modeled via an inhibitory function, parametrized with be-
vacizumab concentration, applied on the potency parameter k2. In
their work [46], Wilson and coworkers analyzed tumor diameters data
following the combined administration of the cytotoxic agent irinote-
can and the anti-angiogenic compound sunitinib using a model based
on the carrying capacity concept. The authors concluded that the two
drugs showed a weak synergism.

The approaches presented in the previous paragraphs underline
the paramount importance of mathematical models in summarizing
and integrating the diverse and often sparse observations collected in
the typically xenograft experiments that are performed to characterize

13



1. Chapt. 1

anticancer compounds. They can provide objective and quantitative
criteria for ranking candidate drugs and, when properly qualified, can
also be efficiently used to predict, via simulations, the outcome of con-
ditions not experimentally tested. Eventually, modeling approaches
enable the extrapolation from preclinical to human setting that, differ-
ently, may be difficult or unsuccessful. Indeed, simple metrics of activ-
ity (e.g. in vivo percentage of TGI) are too much linked to the specific
experimental conditions to be extended and translated directly to the
clinics. Only experiment-invariant parameters, derived from models
characterized by some mechanistic grounds (that allow the definition
of drug-related and system-related parameters) and able to describe
in quantitative manner uncertainty and inter-subject variability, have
the best chances to be applicable in a translational exercise. However,
some issues and gaps are still present in the modeling framework of
tumor growth inhibition and need some further considerations.

All the TGI model currently reported in literature described tumor
as an independent entity that does not interact with the host organ-
ism. Actually, host features, such as cell proliferation rates, caloric
intake, metabolism and energetic conditions, significantly influence tu-
mor growth [53]. At the same time, tumor growth can have relevant
implications for host physiology. In particular, severe loss of body
weight (cachexia) and reduced food intake (anorexia) frequently affect
tumor bearing animals during tumor progression [54, 55, 56, 57]. More-
over, cachexia and anorexia are common sides effect of many type of
anticancer agents already observable during preclinical xenograft stud-
ies. Despite this, mathematical models able to describe the physiolog-
ical interactions between the tumor and the body host (tumor-in-host
models) generally do not foresee the action of anticancer treatments
on the tumor, and this appears too complex to be directly applied in
the preclinical setting [58, 59].

The lack of an adequate mathematical framework accounting for
both the tumor-host interactions and the PD effects of anticancer
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therapy leads to relevant consequences. On one side, even if signif-
icant Body Weight Loss (BWL) is reported as a sensitive endpoint for
xenograft experiments [60], the impact of cachexia mediated by tumor
and/or drug treatment is usually assessed only by visual inspection
of body weight curves in control and treated animals. This limits the
possibility to deeper investigate and separate cancer anorexia-cachexia
from the possible effects and complications of anticancer therapy on
the host body weights [56]. On the other side, mathematical ap-
proaches, that neglect the mutual influence between tumor and host,
may provide bias interpretation of TGI, not disentangling and inte-
grating all the factor that affected tumor dynamics.

Thus, the mathematical modeling of tumor and host interactions
and of the consequent cachexia onset during an anticancer drug treat-
ment is still one of the open issues of the MID3 in the oncology pre-
clinical setting.

1.4 Thesis Overview

Following the above considerations, the aim of this thesis is to in-
vestigate the potential MID3 applications of a tumor-in-host approach
in the preclinical oncology R&D. This investigation, starting from the
work of Van Leeuwen et al. [58, 59], adopts the Dynamic Energy Bud-
get (DEB) theory as general framework to describe the host physiol-
ogy. Different PK-PD models describing the tumor-in-host growth in-
hibition and cachexia onset observed in different preclinical xenograft
experiments have been developed and are, here, presented as follows.

In Chapter 2, a DEB-TGI model able to describe the tumor and
host body weight dynamics followed cytotoxic anticancer treatment in
xenograft mice is introduced and mathematically analyzed. Model as-
sumptions and some biologically relevant considerations derived from
the mathematical analysis are widely discussed.
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In Chapter 3, the tumor-in-host growth inhibition model, previ-
ously developed for mice xenograft experiments, is adapted and ap-
plied to evaluate the etoposide effect on Wistar rats. Model structure
has been selected and assessed through a naÃ¯ve average data ap-
proach, then, a population model has been developed on individual
data through a non-linear mixed effect (NLME) approach. Due to the
unusually reach experimental design and the availability of information
about etoposide intra-tumoral concentration, the model capabilities in
describing and distinguishing all the factors characterizing the in vivo
tumor studies are investigated and exploited.

In Chapter 4, a DEB-TGI model accounting for the cytostatic ef-
fect of anti-angiogenic therapy is proposed and evaluated on xenograft
mice experiments involving two marketed compounds (bevacizumab
and cetuximab) and several tumor cell lines. Furthermore, to account
for the decrease of bevacizumab efficacy for prolonged treatment, the
arising of an hypoxia-mediated resistance has been hypothesized, mod-
eled and tested on DU145 tumor cell line.

In Chapter 5, starting from the DEB-TGI models previously de-
veloped for anti-angiogenic and cytotoxic treatments, a tumor-in-host
approach to analyse combination experiments is proposed. A tumor-
in-host growth inhibition model able to predict the response of tumor
and host organism to a combined treatment of anti-angiogenic and
cytotoxic drugs in case of additivity of the effects is developed and
applied to an illustrative example.

An overall conclusion is reported in Chapter 6.
Finally, in Appendix A a population modeling approach to estab-

lish a level-A IVIVC between the in vitro release of two batches of
Progesterone vaginal rings, a dosage form designed for the continuous
delivery in vivo, and the corresponding serum profiles observed dur-
ing clinical studies, is presented as example of IVIVC modeling. The
model is also used to estimate the expected in vivo relative bioavail-
ability of two batches tested in vitro.
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Chapter 2
A DEB-based approach to
model tumor-in-host growth
kinetics following cytotoxic
anticancer treatment 1

One of the main assumptions underlying the use of xenograft mod-
els is that human cancers xenografted into immunocompromised ani-
mals closely reflect the human condition. Nevertheless, mathematical
models used to describe data on in vivo tumor growth and its inhi-
bition followed an anticancer treatment often neglect the interactions
between tumor and host [30].

To cope this gap, a tumor-in-host model has been proposed by van
Leeuwen et al. [59]. Based on the Dynamic Energy Budget (DEB)
theory, this mathematical model is able to explore and describe the
implications of the various tumor-host energetic interactions.

1The content of this chapter is partially published in [61].
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Starting from the Dutch work and the Simeoni TGI model [40], a
new tumor-in-host DEB-TGI model accounting, also, for the pharma-
cological effect of cytotoxic anticancer treatments in xenograft mice is
proposed here. This new model is able to describe in a unique frame-
work the different aspects characterizing the in vivo tumor growth
studies: the drug cytotoxic activity on the tumor, the onset of cachexia
due to the treatment, the effect of the tumor on the host and, vicev-
ersa, the influence of the host condition on tumor dynamics. Average
data coming from several preclinical experiments involving xenograft
mice were successfully analysed with this DEB-TGI model [61] that
was able to quantify the antitumor effect of the treatment and, at the
same time, to provide a quantitative measurement of its effect on the
host growth. In addition, the contributions to cachexia attributable
to the drug (drug-related cachexia) and to the tumor (tumor-related
cachexia) were dissected in the model.

In this Chapter, the tumor-in-host DEB-TGI model and the as-
sumptions on which it is based are introduced and thoroughly ana-
lyzed. In particular, a mathematical analysis is presented and bio-
logically relevant conclusions are discussed with the support of model
simulations.

2.1 Unperturbed Tumor-free DEB-based

growth

The DEB theory, whose complete and exhaustive formulation can
be found in [62, 63, 64], constitutes a general framework that de-
scribes host physiology by providing quantitative expressions for the
fundamental physiological characteristics and processes, such as food
consumption, body growth, metabolic rate and ageing. A reduced for-
mulation of this theory is, hereafter, presented and adopted to model
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the physiology of the host organism.

2.1.1 Model formulation and assumptions

The main model assumption, as reported in [59], is that the host
body consists of two components: the reserve compounds and the
structural biomass. The first pool represents the stored energy, com-
ing from assimilation and essential to carry out the somatic processes,
that is growth and maintenance, and the reproductive processes, devel-
opment and reproduction [58]. The relationship between the structural
biomass, conceived as volume and denoted by V (t), and the amount of
reserves, E(t), is represented by the utilization rate Ut(t). This is the
rate at which the energy mobilized from reserves is made available for
physiological processes (Fig. 2.1) and it is described by the equation

Ut(t) =
E(t)

V (t)

(
νV (t)2/3 − dV (t)

dt

)
(2.1)

where ν = {Am}/[Em] is the energy conductance with {Am} = AmV
−2/3

1∞
the surface-specific maximum assimilation rate, Am the maximum as-
similation rate, V1∞ the ad libitum asymptotic maximum structural
volume and [Em] the maximum reserve density for unit of volume
[59, 58].

As in [63], it is assumed that the assimilation rate is given by
A(t) = ρAm for a given fraction ρ (called food-supply coefficient) of
ad libitum food consumption.

From Fig. 2.1, it derives that the amount of reserves E(t) is gov-
erned by dE(t)/dt = A(t)−Ut(t). Then, given the expressions of Ut(t)
and A(t), and defined the scaled energy density e(t) = E(t)/[Em]V (t),
we can obtain

de(t)

dt
= ν

(
%V

2/3
1∞

V (t)
− e(t)

V (t)1/3

)
(2.2)
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Figure 2.1: Energy fluxes, according to the DEB theory. Food is conceived as material that bears
energy. Part of this energy is taken up via blood and delivered to the reserves. Energy required
to carry out the various physiological processes is, then, obtained from these reserves. (Source
[61])

with initial condition e(t0) = e0. The presence of the food-supply
coefficient ρ in the equation indicates that the food intake directly
influences the energy density.

The DEB-theory assumes that somatic (growth and maintenance)
and reproductive (development and reproduction) processes take place
in parallel. Thus, in accordance with this so-called k-rule, only a fixed
fraction k of the available energy is spent for the first. Therefore, the
energy available for growing for unit of time, G(t), is

G(t) = kUt(t)−M(t) (2.3)

where M(t) represents the maintenance cost amount per time unit.
Note that an organism has to give maintenance priority over growth
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to stay alive; consequently, increase in size ceases when all the energy
available for maintenance and growth is spent on maintenance only.
Therefore, maintenance costs determines the ultimate size that an
organism can reach.

As in [63], it is reasonably assumed that the growth and mainte-
nance costs per unit of structural volume are constant. Thus, the cost
of griwth per time unit, G(t), turn to be proportional to the instant
variation of structural volume, while the energy used for maintenance,
M(t), to the structural volume (Eqs. 2.4 and 2.5):

G(t) = [G]
dV (t)

dt
(2.4)

M(t) = [M ]V (t) (2.5)

where the constants [G] and [M ] represent the instant cost of growth
and maintenance, respectively.

Combining Eqs. 2.3-2.5, the dynamics of structural biomass can be
described as

dV (t)

dt
=
kUt(t)− [M ]V (t)

[G]
=
νe(t)V (t)2/3 − gmV (t)

g + e(t)
(2.6)

with initial condition V (t0) = V0, where g = [G]/k[Em] is the energy-
investment ratio and m = [M ]/[G] the maintenance-growth rate ratio,
that can be expressed as

m =
ν

V
1/3

1∞ g
. (2.7)

The actual body weight, W (t), is the sum of the two body compart-
ments (structural biomass and reserves): W (t) = WV (t) + WE(t) =
dV V (t) + dEE(t)/rE, where the coefficients dV and dE represent the
specific weight of structural biomass and reserves, respectively, and rE
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is defined as the amount of reserves for a unit of volume. As in [58],
the expression of host body weight can be rewritten as

W (t) = dV (1 + ξe(t))V (t), (2.8)

where ξ is a dimensionless parameter representing the scaled reserve
specific weight and is defined by

ξ =
dE
dV

[Em]

rE
. (2.9)

From Eq. 2.8, it can be derived that the initial body weight W (t0) =
W0 is related to the initial volume V0 through

V0 =
W0

dV (1 + e0ξ)
. (2.10)

Thus, the Tumor-free DEB-based individual model is described by
the following system of differential equations (Sys. 2.11) and by the
parameters summarized in the host-related section of Tab. 2.1.



de(t)

dt
= ν

(
%V

2/3
1∞

V (t)
− e(t)

V (t)1/3

)
dV (t)

dt
=
νe(t)V (t)2/3 − gmV (t)

g + e(t)

W (t) = dV (1 + ξe(t))V (t)

(2.11)

with e(t0) = e0 and V (t0) = V0.

2.1.2 Model analysis

In this section the dynamic system (Sys. 2.11) describing the un-
perturbed tumor-free growth of the host organism is mathematically
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analyzed. In particular, we search for the possible equilibrium points
and study their stability (all the proofs of the following propositions
are reported in the Supplementary Material of Chapter 2).

Proposition 1: The Tumor-free DEB-based model (Sys. 2.11)
admits a unique equilibrium point P = (ē, V̄ ) = (ρ1/3, ρV1∞).

Remark 1: Note that (ē, V̄ ) = (0, 0) is not an admissible point
because V (t) must to be greater than 0 for each time instant.

Proposition 2: The equilibrium point P is globally asymptoti-
cally stable.

Remark 2, asymptotic maximum host body weight: From
the stability of the equilibrium point P and Eq. 2.8 that defines W (t)
it follows that, as t → +∞, the body weight of the host organism
W (t) tends to Wρ∞ = dV (1 + ξρ1/3)ρV1∞ for any initial condition in
R2

+.

Note that the presence of the food-supply coefficient ρ in the ex-
pressions of the asymptotic maximum values of both structural biomass,
Vρ∞ = ρV1∞, and host body weight, Wρ∞, implicates that the food-
intake directly influences their values.

2.2 Unperturbed Tumor-in-host DEB-

based growth

Host features such as cell proliferation rates, caloric intake, meta-
bolism and energetic conditions, significantly influence the potential
tumor growth. At the same time, tumor growth can have relevant
implications on the host physiology [53]; indeed, loss of body weight
(cachexia) and reduced food intake (anorexia) are widespread syn-
dromes during cancer progression [56].
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With the aim of modeling the mutual dependence of tumor and
host, the DEB framework has been expanded to also take into account
the tumor growth in vivo. The starting point is the tumor-in-host
model proposed by Van Leuween et al. [59] that has been modified to
allow an S-shaped saturation pattern of tumor growth.

2.2.1 Model formulation and assumptions

Tumor cells, as all the other cells, have to obtain nutrients from
the host to survive (maintenance) and proliferate (growth). Due to
their less differentiation, tumor cells may be characterized by lower
growth and maintenance costs and, thus, proliferate faster than nor-
mal cells. Moreover, tumor cells may become gluttonous, taking all
the available energy at the expense of normal cells. Following these
considerations, it is assumed that at each instant a fraction ku(t) of
the energy available for the somatic processes is used by tumor cells
(Fig. 2.2).

In particular, in accordance with [59], ku(t) is defined as a function
of tumor volume, Vu(t),

ku(t) =
µuVu(t)

V (t) + µuVu(t)
(2.12)

where µu is the coefficient of gluttony. From Eq. 2.12, it follows that
the amount of energy assigned to the tumor or to the host biomass
depends on their corresponding volumes (Vu(t) and V (t)), whilst the
parameter µu determines the weights of the two components for unit
of volume. In particular, if µu = 1, the energy demand of a tumor cell
is the same of an average normal cell; if µu > 1, tumor cells are more
successful in extracting nutrients from blood than normal cells. For
this reason, the parameter µu can be considered as a measurement of
tumor aggressiveness. The energy rate balance represented by Eq. 2.3
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2.2. Unperturbed Tumor-in-host DEB-based growth

Figure 2.2: Tumor-bearing individual: energy-allocation rules within the DEB framework. Source
[61]

is, then, modified as

G(t) = k(1− ku(t))Ut(t)−M(t) . (2.13)

Consequently, the dynamics of the structural volume in a tumor-
bearing individual is described by

dV (t)

dt
=

(1− ku(t))νe(t)V (t)2/3 − gmV (t)

g + (1− ku(t))e(t)
(2.14)

with initial condition V (t0) = V0. Similarly, the energy rate available
for tumor growth, Gu(t), can be written as

Gu(t) = kku(t)Ut(t)−Mu(t)

being Mu(t) the energy rate necessary for tumor cell maintenance. By
defining the tumor growth energy-investment ratio, gu = [Gu]/k[Em],
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2. Chapt. 2

and the maintenance-growth rate coefficient, mu = [Mu]/[Gu], where
the constants [Gu] and [Mu] represent, respectively, the instant cost of
tumor growth and maintenance tumor, dynamics can be described as

dVu(t)

dt
=

(νV (t)2/3 +mV (t))gku(t)e(t)

ggu + (1− ku(t))gue(t)
−muVu(t) (2.15)

with initial condition Vu(t0) = Vu0 . As the tumor exploits the host
resources destined to physiological processes, the maximum size for
the host volume, Vρ∞, has to be adjusted to take into account its
dependence on tumor size:

Vρ∞(t) = ρ
V (t)

Vu(t) + V (t)
V1∞.

Thus, the equation for the scaled reserve density (Eq. 2.2) becomes

de(t)

dt
=

ν

V 1/3(t)

(
%
( V1∞

Vu(t) + V (t)

)2/3

− e(t)
)

(2.16)

with initial condition e(t0) = e0. Eqs. 2.14-2.16 specify the changes in
size of both tumor and host as long as the organism disposes energy
enough to carry out normal physiological processes and, in particular,
to sustain growth costs (dV/dt ≥ 0). Indeed, if the available energy
is not sufficient to satisfy the demand, the host starts degrading its
structural biomass to survive and, at the same time, to satisfy the
tumor energy demand. The cachexia-related degradation of structural
biomass is a thermodynamic process with an efficiency coefficient ω;
therefore, for dV/dt < 0, the energy rate balances for host and tumor
can be written as

G(t) = (1− ku(t))(kUt(t) + S(t))− [M ]V (t) = 0 (2.17)

Gu(t) = ku(t)(kUt(t) + S(t))− [Mu]Vu(t) (2.18)
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2.2. Unperturbed Tumor-in-host DEB-based growth

where S(t) is the rate at which the energy is obtained from the degra-
dation of structural biomass2, described by

S(t) = −ω[G]
dV (t)

dt
. (2.19)

From Eqs. 2.17-2.19, for t ≥ td (with td the time instant at which
the degradation process starts) the loss of structural biomass and the
increase in tumor size are given by

dV (t)

dt
=

(1− ku(t))νe(t)V 2/3(t)− gmV (t)

(1− ku(t))(e(t) + ωg)

dVu(t)

dt
=
mgku(t)V (t)

gu(1− ku(t))
−muVu(t) =

(
mgµu
gu
−mu

)
Vu(t)

with initial conditions V (td) = Vd and Vu(td) = Vud .
If the tumor growth is not hindered by drug treatment, host con-

tinues to consume biomass with an increasing degradation rate until
a time instant, tdMax

, when a maximum threshold, δVMax
, is reached

[61].
Finally, the tumor weight, Wu(t), can be computed as Wu(t) =

dVuVu(t), where dVu is the specific weight of tumor mass.
The unperturbed tumor-in-host model is, thus, described by the

three systems Sys. 2.20-2.22 and by the host-related, tumor-related
and cachexia-related parameters of Tab. 2.1.

2Note that the amount of energy per time unit (energy rate) is proportional to
the tissue degradation rate, and it has a positive value (dV/dt < 0).
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• Case
dV

dt
≥ 0 (growing of structural biomass)



de(t)

dt
=

ν

V 1/3(t)

(
ρ

(
V1∞

Vu(t) + V (t)

)2/3

− e(t)
)

dV (t)

dt
=

(1− ku(t))νe(t)V 2/3(t)− gmV (t)

g + (1− ku(t))e(t)
dVu(t)

dt
=

(νV 2/3(t) +mV (t))gku(t)e(t)

ggu + (1− ku(t))gue(t)
−muVu(t)

ku(t) =
µuVu(t)

V (t) + µuVu(t)

W (t) = dV (1 + ξe(t))V (t)

Wu(t) = dV uVu(t)

(2.20)

with e(t0) = e0, V (t0) = V0 and Vu(t0) = Vu0

• Case −δVMax
≤ dV

dt
< 0 (degradation of structural biomass)

Only equations relative to dV
dt

and dVu
dt

differ from Sys. 2.20:
dV (t)

dt
=

(1− ku(t))νe(t)V 2/3(t)− gmV (t)

(1− ku(t))(e(t) + ωg)

dVu(t)

dt
=

(
mgµu
gu
−mu

)
Vu(t)

(2.21)
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2.2. Unperturbed Tumor-in-host DEB-based growth

• Case
dV

dt
< −δVMax

(degradation of structural biomass at the

maximum rate)

Only equations relative to dV
dt

and dVu
dt

differ from Sys. 2.20:


dV (t)

dt
= −δVMax

dVu(t)

dt
=
ku(t)

gu

(
e(t)νV (t)2/3 + δVMax

(e(t) + ωg)

)
−muVu(t)

(2.22)

2.2.2 Model analysis: exponential tumor growth
rate

As already done for the Tumor-free model, in this section a math-
ematical analysis of the tumor-in-host DEB-based model properties
(Sys. 2.20-2.22) is presented. In particular, we search for the possible
equilibrium points of the system and study their stability through lin-
earization. Furthermore, biologically relevant considerations on tumor
dynamics are derived from the linearized model. All the proofs of the
following propositions are reported in the Supplementary Material of
Chapter 2.

For reasons of readability, we rewrote the Sys. 2.20-2.22 in a more
compact and useful way, simply recalling Eq. 2.12 for ku(t) and Eq. 2.7
for m:
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de(t)

dt
=

ν

V 1/3(t)

(
ρ

(
V1∞

Vu(t) + V (t)

)2/3

− e(t)
)

dV (t)

dt
= FV (e, V, Vu)

dVu(t)

dt
= FVu(e, V, Vu)

(2.23)

where

FV (e, V, Vu) =



V
[
νe(t)V (t)2/3 − gm(µuVu(t) + V (t))

]
g(µuVu(t) + V (t)) + e(t)V (t)

Case A

V
[
νe(t)V (t)2/3 − gm(µuVu(t) + V (t))

]
gω + e(t)

Case B

−δVMax
Case C

(2.24)

FVu(e, V, Vu) =



[ (
νV (t)2/3 +mV (t)

)
ge(t)µu

ggu(µuVu(t) + V (t)) + gue(t)V (t)
−mu

]
Vu(t) Case A(

mgµu
gu
−mu

)
Vu(t) Case B[

µu
(
e(t)νV (t)2/3 + δVMax

(e+ ωg)
)

gu(µuVu(t) + V (t))
−mu

]
Vu(t) Case C

(2.25)
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2.2. Unperturbed Tumor-in-host DEB-based growth

with the Cases A, B and B determined by the conditions

Case A: µuVu(t) ≤ V (t)2/3e(t)V
1/3

1∞ − V (t) (2.26)

Case B: V (t)2/3e(t)V
1/3

1∞ − V (t) < µuVu(t) ≤ V (t)2/3e(t)V
1/3

1∞ +

−V (t) + V
1/3

1∞ δVMax
(e(t) + ωg)ν (2.27)

Case C: µuVu(t) > V (t)2/3e(t)V
1/3

1∞ − V (t) +

+V
1/3

1∞ δVMax
(e(t) + ωg)ν (2.28)

Steady state analysis

Proposition 3: Introduced the secondary parameter

λ̃0 =
mgµu
gu
−mu , (2.29)

the dynamic systems Sys. 2.20-2.22 predict different behaviours based
on the value of λ̃0. In particular,

• if λ̃0 6= 0, the only equilibrium point is P1 = (ē1, V̄1, V̄u1) =
(ρ1/3, ρV1∞, 0);

• if λ̃0 = 0, there are infinite equilibrium points Pi = (ēi, V̄i, V̄ui)i>1

with

ēi = ρ

(
V1∞

V̄ui + V̄i

)2/3

,

µuV̄ui + V̄i = ρV1∞

(
V̄i

V̄ui + V̄i

)2/3

.

Remark 3, spontaneous tumor regression: Note that in P1

the tumor is eradicated and the equilibrium states for the host en-
ergy and biomass coincide with that of the equilibrium point P of the
Tumor-free model (Proposition 1, Section 2.1.2).
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Stability analysis

Proposition 4: The equilibrium point P1 is unstable if λ̃0 > 0
and locally asymptotically stable if λ̃0 < 0.

Remark 4, exponential tumor growth rate λ̃0: From the lin-
earized system, reported in the Supplementary Material of Chapter
2, it follows that, if the tumor mass is sufficiently small and the con-
ditions of Case A are satisfied (early phase of tumor development),
the tumor growth is independent from the structural biomass and the
energy reserves and it can be approximated by an exponential growth
with a constant rate given by the parameter λ̃0 (Eq. 2.29). Note that
the same exponential rate characterizes tumor growth also during the
second phase (Eq. 2.25, Case B). Furthermore, the exponential tumor
growth rate λ̃0 is strictly linked to the tumor and host cell characteris-
tics. In particular, the maintenance and growth costs of both normal
and tumor cells along with tumor gluttony play a central role in these
early phases of tumor growth.

Remark 5: For initial conditions that guarantees the asymptoti-
cally stability of P1, the body weight of the host organism W (t) tends
to the asymptotic maximum value Wρ∞ already found for the Tumor-
free model (Remark 2) when t→ +∞.

Model simulations

From the previous results, it follows that, in the early phases of
its development, tumor dynamics are governed by the value of λ̃0.
In particular, the relationship λ̃0 = 0 marks the bifurcation between
tumor growing (λ̃0 > 0) and spontaneous tumor dying off (λ̃0 < 0).

Fig. 2.3 shows model predictions of tumor and host dynamics for
different values of parameters and initial conditions. Data of xenograft
mice (15-30 g of body weight) are used as reference.

32



2.2. Unperturbed Tumor-in-host DEB-based growth

More in details, for λ̃0 > 0 (red curves) tumor grows exponentially
with a rate dependent on the λ̃0 value (i.e. on the values of model
parameters m, g, µu, gu and mu). Consequently, the host starts con-
suming biomass with an increasing degradation rate until the time
instant tdMax

when the maximum threshold is reached. Thus, from
the Sys. 2.22 it follows that, for t > tdMax

, the time course of biomass
is described by

V (t) = V (tdMax
)− δVMax

(t− tdMax
) . (2.30)

Eq. 2.30 means that V (t) continues decreasing until a theoretical in-
stant tV=0 when V (t) has reached the 0.

For λ̃0 < 0 tumor decreases exponentially and the system tends
to P1 (black solid curves). Note that, in this case, the body weight
of the host organism, W (t) tends again to its asymptotic maximum
value, Wρ∞. However, for initial conditions (not biologically relevant)
in which tumor mass is extremely big in comparison of host volume,
the structural biomass V (t) reaches the theoretical bound 0 before the
system can reach the equilibrium point P1 (black dashed curves).
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Figure 2.3: Model predictions performed with λ̃0 = 0.46 > 0, δVMax
= 0.2, Vu0 = 0.03g,

e0 = 1.1, W0 = 27g and ρb = 1 (red lines), λ̃0 = −0.0073 < 0, δVMax
= 0.2, Vu0 = 2.5g,

e0 = 1.3, W0 = 18g and ρb = 1 (black solid lines), λ̃0 = −0.0073 < 0, δVMax
= 0.2, Vu0 = 19g,

e0 = 1.8, W0 = 18g and ρb = 0.75 (black dashed lines). Note that host death can occur before
the lowest body weight values are actually reached.

From a biological point of view the theoretical bound V (t) = 0
(or more generally body weight lower than 10-12 g) is not realistically
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reachable because the host death will occur before this limit is actually
reached. In particular, according to the recommendations of the in-
ternational guidelines for the the welfare and use of animals in cancer
research, a 20% of weight loss can be considered as reasonable bound
for host death.

As a consequence of the previous considerations, it follows that the
globally stability for P1 is not guaranteed even if λ0 < 0.

2.3 Tumor-in-host growth under cytotoxic

drug treatments

The unperturbed Tumor-in-host model presented in the previous
section has been integrated with the assumptions of the Simeoni TGI
model [40] to describe the effect of an administered anticancer drug.
The undesired drug effects on the host body weight are also been
considered.

2.3.1 Model formulation and assumptions

Cytotoxic drugs are assumed to exert two effects: an inhibitory
effect on the tumor cell proliferation and a toxic effect on the host body
weight due to a reduction of the energy input (assimilation process).

Drug cytotoxic effect on tumor growth: cell kill hypothesis

Drug action on tumor is modeled hypothesizing that a portion of
proliferating cells, Vu1, becomes non-proliferating due to the anticancer
treatment and goes to death through three stages of damage, Vu2, Vu3,
Vu4. This cytotoxic activity is assumed proportional to the drug con-
centration, c(t), and to the proliferating cells through a parameter, k2,
representing the drug potency. Furthermore, only tumor proliferating
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2.3. Tumor-in-host growth under cytotoxic drug treatments

cells are supposed able to exploit host resources; thus, the volume of
the proliferating cells, Vu1, replaces the whole tumor volume, Vu, in all
the energetic balances.

Drug effect on host organism: drug-related cachexia

Drug effect on host body weight is modeled hypothesizing that,
during days of treatment, side effects, like weakening and lack of ap-
petite or limited assimilation, lead to a temporally decrease of energy
intake (drug-related anorexia), followed, eventually, by a loss of struc-
tural biomass (drug-related cachexia). The temporary inhibitory effect
on the assimilation rate due to the drug is described by a standard Imax
model:

ρ(t) = ρb

(
1− c(t)

IC50 + c(t)

)
(2.31)

where ρb represents the basal food-supply coefficient, with values be-
tween 0 and 1, and IC50 denotes the drug concentration producing
the 50% of the maximal caloric restriction due the drug side effects.
Note that the assumption of a time-dependent food-supply coefficient,
Eq. 2.31, has an impact on the tumor growth dynamics as well.

In summary, the model for the tumor-bearing treated animals, of
which a schematic representation is showed in Fig. 2.4, is described by
the following three systems of differential equations (Sys. 2.32-2.34)
and by all the parameters reported in Tab. 2.1.
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Table 2.1: Structural parameters of the DEB-TGI model.

Parameter Dimension Description

Host-related parameters

ν L/T Energy conductance
ρb - Basal food-supply coefficient
V1∞ L3 Maximum structural volume
g - Growth energy-investment ratio
m 1/T Maintenance-growth rate ratio
ξ - Scaled reserve specific weight
dV W/L3 Specific weight of structural biomass

Tumor-related parameters

µu - Coefficient of gluttony
gu - Tumor growth energy-investment ratio
mu 1/T Tumor maintenance-growth rate ratio
dV u W/L3 Specific weight of tumor

Cachexia-related parameters

ω - Thermodynamic extraction efficiency coefficient
δVMax

L3/T Maximum degradation rate

Drug-related parameters

k1 1/T First-order rate constant of transit
k2 CONC/T Drug potency
IC50 CONC Half maximal inhibitory concentration
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2.3. Tumor-in-host growth under cytotoxic drug treatments

• Case
dV

dt
≥ 0 (growing of structural biomass)



de(t)

dt
=

ν

V 1/3(t)

(
ρ(t)

(
V1∞

Vu1(t) + V (t)

)2/3

− e(t)
)

dV (t)

dt
=

(1− ku(t))νe(t)V 2/3(t)− gmV (t)

g + (1− ku(t))e(t)
dVu1(t)

dt
=

(νV 2/3(t) +mV (t))gku(t)e(t)

ggu + (1− ku(t))gue(t)
−muVu1(t)− k2c(t)Vu1(t)

dVu2(t)

dt
= k2c(t)Vu1(t)− k1Vu2(t)

dVu3(t)

dt
= k1Vu2(t)− k1Vu3(t)

dVu4(t)

dt
= k1Vu3(t)− k1Vu4(t)

ρ(t) = ρb

(
1− c(t)

IC50 + c(t)

)
ku(t) =

µuVu1(t)

V (t) + µuVu1(t)

W (t) = dV (1 + ξe(t))V (t)

Wu(t) = dV u(Vu1(t) + Vu2(t) + Vu3(t) + Vu4(t))

(2.32)

with e(t0) = e0, V (t0) = V0, Vu1(t0) = Vu10 and Vu2(t0) = Vu3(t0) =
Vu4(t0) = 0.

• Case −δVMax
≤ dV

dt
< 0 (degradation of structural biomass)
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Only equations relative to dV
dt

and dVu1
dt

differ from the Sys. 2.32:
dV (t)

dt
=

(1− ku(t))νe(t)V 2/3(t)− gmV (t)

(1− ku(t))(e(t) + ωg)

dVu1(t)

dt
=

(
mgµu
gu
−mu

)
Vu1(t)− k2c(t)Vu1(t)

(2.33)

• Case
dV

dt
≤ −δVMax

(degradation of structural biomass at the

maximum rate)

Only equations relative to dV
dt

and dVu1
dt

differ from the Sys. 2.32:
dV (t)

dt
= −δVMax

dVu1(t)

dt
=
ku(t)

gu

(
e(t)νV (t)2/3 + δVMax

(e(t) + ωg)

)
−muVu1(t)+

−k2c(t)Vu1(t)
(2.34)

Figure 2.4: Schematic representation of the Tumor-in-host DEB-TGI model.

2.3.2 Model analysis: the concentration threshold
for tumor eradication

In this section the dynamic systems Sys. 2.32-2.34 describing the
perturbed tumor-in-host growth is analyzed in the biologically rele-
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2.3. Tumor-in-host growth under cytotoxic drug treatments

vant case λ̃0 > 0 (i.e. condition for which the model predicts tumor
growth in absence of therapy). In particular, following the works of
Magni et al. [65] and D’Onofrio et al. [66], we search for the pos-
sible equilibrium points and study their stability supposing that the
drug is administered through an infusion yielding a (steady-state) con-
stant concentration c(t) = c̄. Then, we obtain the minimum constant
concentration, ct, necessary for asymptotic tumor eradication. For
reasons of readability, the proofs of all the propositions are reported
in the Supplementary Material of Chapter 2.

The systems (2.32)-(2.34) can be rewritten more compactly as



de(t)

dt
=

ν

V 1/3(t)

(
ρ(c̄)

(
V1∞

Vu1(t) + V (t)

)2/3

− e(t)
)

dV (t)

dt
= FV (e, V, Vu1)

dVu1(t)

dt
= FVu1(e, V, Vu1)− k2c̄Vu1(t)

dVu2(t)

dt
= k2c̄Vu1(t)− k1Vu2(t)

dVu3(t)

dt
= k1Vu2(t)− k1Vu3(t)

dVu4(t)

dt
= k1Vu3(t)− k1Vu4(t)

ρ(c̄) = ρb

(
1− c̄

IC50 + c̄

)
W (t) = dV (1 + ξe(t))V (t)

Wu(t) = dV u(Vu1(t) + Vu2(t) + Vu3(t) + Vu4(t))

(2.35)

with FV (e, V, Vu1) and FVu(e, V, Vu1) defined by Sys. 2.24 and Sys. 2.25,
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respectively, where the volume of the proliferating cells, Vu1, replaces
the whole tumor volume, Vu, in all the relationships.

Steady state analysis

Proposition 5: Suppose λ̃0 > 0 and that the anticancer drug
is administered through an infusion yielding a (steady-state) constant
concentration, c(t) = c̄. The equilibrium points of the dynamic system
Sys. 2.35 are the following:

• if c̄ 6= λ̃0/k2, the only equilibrium point is Pc,1 =
(
ēc,1, V̄c,1, V̄u1c,1 ,

V̄u2c,1 , V̄u3c,1 , V̄u4c,1

)
=
(
ρ(c̄)1/3, ρ(c̄)V1∞, 0, 0, 0, 0

)
;

• if c̄ = λ̃0/k2, the infinite equilibrium points Pc,i =
(
ēc,i, V̄c,i, V̄u1c,i ,

V̄u2c,i , V̄u3c,i , V̄u4c,i

)
i>1

are defined by the relationships

ēc,i = ρ(c̄)

(
V1∞

V̄u1c,i + V̄c,i

)2/3

(2.36)

µuV̄u1c,i + V̄c,i = ρ(c̄)V1∞

(
V̄c,i

V̄u1c,i + V̄c,i

)2/3

(2.37)

V̄u2c,1 = V̄u3c,1 = V̄u4c,1 =
λ̃0

k2

V̄u1c,1 (2.38)

Remark 6, tumor eradication: Note that in Pc,1 the tumor is
eradicated and the equilibrium states for the host energy and biomass
coincide with those of the tumor-free asymptotic condition (equilib-
rium point P introduced in the Proposition 1, Section 2.1.2).

Local Stability analysis

Proposition 6: The equilibrium point Pc,1 is unstable if c̄ < λ̃0/k2

and locally asymptotically stable if c̄ > λ̃0/k2.
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2.3. Tumor-in-host growth under cytotoxic drug treatments

Remark 7, concentration threshold for tumor eradication:
From Propositions 5 and 6, it follows immediately that, if c̄ > λ̃0/k2,
tumor eradication is admissible by the model. Conversely, if c̄ < λ̃0/k2,
tumor will not be eradicated because the equilibrium point Pc,1, pre-
dicting tumor eradication, is never stable. Thus, we can define

ct =
λ̃0

k2

(2.39)

as the concentration threshold for tumor eradication, that is the con-
centration level necessary (but not sufficient) to guarantee the eradi-
cation of the tumor mass.
This parameter, that depends on the tumor exponential growth rate
λ̃0 (and, thus, on the tumor and host cell characteristics m, g, µu, mu

and gu) and on the drug potency k2, together with the drug clearance,
can help choosing an efficacious daily dosage. To make an exam-
ple, letting CL [ml/kg/h] denote the drug clearance, the daily dose D
[ng/kg] corresponding to the threshold concentration ct [ng/ml] will
be D = 24CLct.

Remark 8, score of the drug-related cachexia: For initial
conditions that guarantees the asymptotically stability of the equilib-
rium point Pc,1, the body weight of the host organism W (t) tends to
Wρ(c̄)∞ = dV (1 + ξρ(c̄)1/3)ρ(c̄)V1∞ when t→ +∞.
Note that the inhibition of the food-supply coefficient, ρ, linked to the
concentration level c̄, results in a reduction of the asymptotic maxi-
mum weight, Wρ(c̄)∞, reachable by the host organism. In particular, if
the drug is ideally administered via a constant infusion, the reduction
of the asymptotic maximum value of the host body weight depends
only on the concentration level, c̄, and on the drug-related parameter
IC50. To make an example, Fig. 2.5 shows the asymptotic trends of
host body and tumor weight predicted by the model when the drug
is administered at a constant concentration c̄ > ct able to guarantee
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2. Chapt. 2

tumor eradication (asymptotically stability of Pc,1) for different values
of IC50.
From the previous considerations, the ratio Wρ(c̄)∞/Wρ∞ can be con-
sidered as a cachexia score for the concentration level c̄ of a drug
characterized by the toxicity parameter IC50 .
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Figure 2.5: Asymptotic dynamics of host body and tumor weight predicted by the model under
the assumption of a constant concentration c̄ > ct that guarantees tumor eradication and varying
IC50 value in the range 0.5 − 14.5 ng/ml. Simulations performed with λ̃0 = 4.6, δVMax

= 0.3,
k2 = 0.05ml/ngday (ct = 9.2ng/ml), c̄ = 9.5ng/ml, k1 = 0.1 1/day, Vu0 = 0.05g, e0 = 1.3,
W0 = 30g and ρb = 0.75. Note that host death can occur before the lowest body weight values
are actually reached.

Model simulations

From the previous results, it follows that the DEB-TGI model pre-
dicts different tumor-host behaviours depending on the drug concen-
tration level c̄. In particular, the relationship c̄ = λ̃0/k2 marks the
bifurcation between tumor eradication and animal death. However,
c̄ > λ̃0/k2 is a condition only necessary, and not sufficient for tumor
eradication.

Fig. 2.6 shows the different scenarios predicted by the model by
varying the concentration levels c̄ and the initial conditions. More
in details, for concentration levels under the concentration threshold,
c̄ < ct, after an initial response phase, tumor re-starts growing and
model predicts animal death, V (t)→ 0 (red curves).
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2.3. Tumor-in-host growth under cytotoxic drug treatments

For concentration levels beyond the concentration threshold, c̄ >
ct, tumor may be completely eradicated and host may reach its tumor-
free asymptotic condition, Wρ(c̄)∞ (black solid profiles). However, V (t)
may reach its bound V (t) = 0 before the solution will converge to the
equilibrium point Pc,1.

Moreover, from a biological point of view, time taken to completely
eradicate the tumor may not be compatible with the host survival.
Indeed, for initial conditions in which tumor mass is extremely big
in comparison of host volume, host death will be occur before tumor
eradication (black dashed profiles).

From these considerations, it follows that the globally stability of
the equilibrium point Pc,1, predicting tumor eradication, is not guar-
anteed even if the concentration level is greater than the concentration
threshols ct. Thus, Pc,1 is only locally asymptotically stable and its
attraction basin depends on parameter values.
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Figure 2.6: Model predictions performed with λ̃0 = 0.46 > 0, δVMax
= 0.3, ρb = 0.75, Vu0 = 0.03

g, k1 = 0.1 1/day, k2 = 0.05 ml/ngday (ct = 9.2 ng/ml), IC50 = 0.5 ng/ml for all the simulations
and with e0 = 1.3, W0 = 30 g and c̄ = 6ng/ml from day 10 (red lines), e0 = 1.3, W0 = 30 g and
c̄ = 9.5 ng/ml from day 10 (black solid lines), e0 = 1.8, W0 = 20 g and c̄ = 9.5 ng/ml from day
20 (black dashed lines). Note that host death can occur before the lowest body weight values are
actually reached.
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2.4 Discussion: advantages of the tumor-

in-host modeling approach

The Tumor-in-host TGI model presented in this Chapter is based
on mechanistic and physiological hypothesis provided by the DEB the-
ory and characterized by parameters with a precise biological meaning.
For this reasons, results followed from the previous mathematical anal-
ysis suggest some further considerations. More in details, similarities,
differences and advantages of the DEB-TGI model in respect to the
Simeoni TGI model are discussed in the following sections.

2.4.1 A mechanistic justification for the exponen-
tial tumor growth rate

From the mathematical analysis of the unperturbed model, fully
derived from theoretical considerations/assumptions, it follows that, in
the early phases of tumor development, tumor growth is approximately
exponential and governed by a rate, λ̃0 (Eq. 2.29), strictly linked to
the tumor and host cell characteristics (Section 2.2.2).

This founding is in accordance with the hypothesis of the empiri-
cal Simeoni model that, based on experimental evidence, supposes an
exponential + linear tumor growth. The relationship between the em-
pirical parameter λ0 and the physiologically-based parameter λ̃0 was
confirmed, also, by comparable estimates obtained on experimental
data of xenograft mice [61]. Moreover, from the simulation analy-
sis reported in [61], the empirical switch point between the exponen-
tial and the linear phase of the Simeoni model seems to be linked
to the third phase of the DEB-based model (degradation of structural
biomass with maximum rate). Indeed, the change in tumor growth dy-
namics modelled by the Simeoni model always occurs when the tumor
slows down its growth while the host degrades its structural biomass

44



2.4. Discussion: advantages of the tumor-in-host modeling approach

at the maximum rate, and the energy demand remains unfulfilled.
Thus, the model here presented, based on the description of the

energetic interactions between tumor and host, can provide a mecha-
nistic explanation to the empirical tumor growth curve introduced by
the Simeoni model and observed in huge numbers of xenograft exper-
iments.

Moreover, the presence of species-dependent physiological parame-
ters would allow, from a theoretical point of view, the translation from
one species to another. It would be sufficient estimating the growth
parameters of the specific species and applying the identification strat-
egy described in [61] to analyse tumor weight data. Interestingly, an
exponential growth (constant increase of tumor volume on a logarith-
mic scale in relation to time) has been observed for several types of
human malignancies [67].

Thus, an interesting open point is how the Tumor-in-host DEB-
TGI model could be applied and used as an efficient translational tool
from animal to human studies of anticancer drug activity.

2.4.2 Unbiased estimates of cell killing drug effect

As the Simeoni TGI model, the DEB-based perturbed model pre-
sented in the Section 2.3 is able to quantify the drug effect on tumor
growth providing a quantitative measurement of its cytotoxic activity.
In particular, the drug efficacy parameters (k1 and k2) maintain the
same meaning providing similar efficacy metrics.

However, the tumor-in-host approach provides a better interpre-
tation of tumor growth inhibition dynamics. Indeed, it is able to
disentangle the direct effect of the drug on tumor cells from the slow-
down in tumor growth due to the depletion of host energies, possibly
occurring during cancer progression and after the administration of
anticancer treatment. Conversely, current modeling approaches, not
accounting for host features, explain tumor growth inhibition only as
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a consequence of the direct cytotoxic effect of the drug. This could
lead to an overestimation of the drug efficacy parameters, such as the
potency parameter k2 in the Simeoni TGI model.

Actually, comparing the estimates of the parameter k2 obtained by
the DEB-TGI model [61], k2,DEB, with those available for the Sime-
oni TGI model [41], k2,Sim, this bias seems to be confirmed (k2,Sim >
k2,DEB), although its entity is very limited. However, it is worth to
note that the experimental studies analyzed in [61, 41] were essen-
tially focused on the efficacy assessment and that their administration
schedules and dose levels were selected within a range of acceptable
tolerability. Nevertheless, in presence of more severe toxicities the
overestimation of drug efficacy could be more relevant.

To further investigate this aspect, from a theoretical point of view,
borderline cases were analysed through a simulation approach. The
tumor-in-host DEB-TGI model (Sys. 2.32-2.34) identified on data col-
lected during a xenograft study on paclitaxel (Exp. a analyzed in [61])
was used as starting point to assess the tumor inhibition response after
administration of several (simulated) drugs, differing from each other
for efficacy and/or toxicity.

In particular, by varying the values of parameters related to drug
potency (k2,DEB) and drug toxicity on host body weight (IC50), and
keeping fixed all the other model parameter to the value reported in
[61] for Exp. a, the tumor time-course after an administration following
the same dose and schedule of Exp. a (30 mg/kg i.v. q4dx3 from day 8)
was simulated. Then, the drug-related parameters (k1,Sim and k2,Sim)
of the Simeoni TGI model were estimated on these simulated data,
while the tumor-related parameters (λ0, λ1 and W0) were fixed to the
estimates obtained from experimental data of the control group of
Exp. a.

In particular, starting from values of k2,DEB and IC50 of the DEB-
TGI model close to the estimates obtained for paclitaxel (k2,DEB =
6.5e-4 ml/ngday and IC50 = 0.461 ng/ml), simulations were per-
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2.4. Discussion: advantages of the tumor-in-host modeling approach

formed increasing drug toxicity (IC50 =5e-1, 1e-1, 1e-2, 1e-3, 1e-4,1e-5
ng/ml) and decreasing drug potency (k2,DEB=6.5e-4, 1e-4,1e-5, 1e-
6,1e-7 ml/ngday). The estimated values of the k2,Sim parameter of
the Simeoni TGI model, normalized by the k2,DEB, are reported in
Fig. 2.7.

Ic50
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Figure 2.7: Estimates of the parameter k2,Sim [ml/ngday] of the Simeoni TGI model on tumor
weight data simulated by the DEB-TGI model varying the values of k2,DEB and IC50 and keeping
fix all the other model parameters to the estimates reported in [61] for Exp. a, normalized by
the k2,DEB .

The comparison of drugs characterized by the same cytotoxic po-
tency (i.e., data simulated by DEB-TGI with the same k2,DEB value,
rows in Fig. 2.7) indicates that the Simeoni TGI model estimates a
higher efficacy for drugs with higher toxicity (i.e., simulations per-
formed with lower IC50, columns in Fig. 2.7).

As extreme situations, we can compare the k2,Sim value obtained
by identifying the Simeoni TGI model on the dataset simulated with
k2,DEB = 6.5e-4 ml/ngday and IC50 = 5e-1 ng/ml (highest cytotoxic
effect on tumor cells and lowest toxic effect on host body weight) to the
value obtained for the drug simulated with k2,DEB = 1e-7 ml/ngday
and IC50 = 1e-5 ng/ml (lowest cytotoxic effect on tumor cells and
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2. Chapt. 2

highest toxic effect on host body weight). The Simeoni TGI model
provided almost the same estimates of drug efficacy (k2,Sim) for these
two quite different simulated drugs. Fig. 2.8 shows the simulated data
and the predictions of the Simeoni TGI model in the two considered
scenarios.

0

1

2

3

4

0 10 20 30 40
Time (days)

T
u

m
o

r 
w

e
ig

h
t 

(g
)

0

1

2

3

4

0 10 20 30 40
Time (days)

T
u

m
o

r 
w

e
ig

h
t 

(g
)

Figure 2.8: Identification of Simeoni TGI model on simulated data: tumor weight profiles ob-
tained identifying the Simeoni TGI model on data simulated with DEB-TGI model by using
parameter values of the Exp.a, k2,DEB=6.5e-4 ml/ngday and IC50= 5e-1 ng/mL (left panel) or
k2,DEB= 1e-7 mL/ngday and IC50= 1e-5 ng/mL (right panel).

In summary, this simulation analysis showed that, at least from
a theoretical point of view, not including host feature and in partic-
ular the cachexia phenomena in the modelling approach could lead
to a biased estimation of the cytotoxic drug potency. However, from
the experience collected on real experimental data, this bias seems to
be not so relevant in presence of acceptable toxicity and efficacy, as
usually happen in the real typical studies done for drug development.

2.4.3 Necessary condition for tumor eradication

Following the work of Magni et al. [65] for the Simeoni TGI model,
a stability analysis of the DEB-based perturbed growth model was con-
ducted under the assumption that drug is administered through an
infusion yielding a (steady-state) constant concentration, i.e. c(t) = c̄.
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2.4. Discussion: advantages of the tumor-in-host modeling approach

The mathematical analysis, reported in Section 2.3.2, partially con-
firmed the results obtained by Magni et al.. In particular, a con-
centration threshold, ct, beyond which tumor can be asymptotically
eradicated was found. Nevertheless, these results require two further
considerations.

First, similarly to the Simeoni TGI model, the concentration thresh-
old ct (Eq. 2.39), depends on the tumor exponential growth rate, λ̃0,
and on the drug potency, k2,DEB. However, the exponential growth
rate of the DEB-based model is not an empirical parameter but is in-
herently linked to the tumor and host cell characteristics (Eq. 2.29).
Moreover, as discussed in the Section 2.4.2, the estimate of drug po-
tency provided by the DEB-TGI model is purified by the tumor slow-
down due to the depletion of host energies. Thus, because k2,DEB

provides a more representative measurement of the cytotoxic drug ac-
tivity, from a theoretical point of a view the concentration threshold
predicted by the tumor-in-host DEB-TGI model could be a more re-
alistic efficacy metrics.

Furthermore, if the drug is administered via a constant infusion
with a concentration level beyond the threshold ct, the Simeoni TGI
model predicts complete tumor eradication starting from any possible
initial condition. Differently, for the DEB-TGI model, the condition
c̄ > ct is only necessary and not sufficient to guarantee tumor eradica-
tion because host death could occur before tumor will be completely
eradicated. This result, following from the tumor-in-host approach
and more representative of the experimental in vivo studies, could
help to identify anticancer drug concentration levels effective and, at
the same time, compatible with the survival of the host organism. In
particular, utility curves could be developed exploited the DEB-TGI
model that, considering the drug effect on the host body weight as a
toxicity of the anticancer treatment, allows a risk/benefit assessment
between tumor eradication and host survival to a negative energetic
balance.
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2.4.4 Experimental protocol design based on
cachexia phenomena

The tumor-in-host DEB-TGI model simultaneously describes both
the tumor growth inhibition followed drug administration and its un-
desired effect on the normal animal growth. For these reasons, it could
be extremely useful for a protocol design based on considerations about
drug efficacy as well as drug toxicity on animal body weight (even if
body weight decreasing is not the only toxicity sign and also other el-
ements, not considered in this modelling approach, actually influence
the experimental design).

In fact, once the model has been identified on data generated dur-
ing standard preclinical studies, the concentration threshold for tumor
eradication, ct, and, thus, an ideally efficacious daily dosage, D, can
be calculated. Based on this daily dose, one can consider different ad-
ministration protocols, theoretically ensuring tumor regression, and,
using the model, predict the expected degree of cachexia for each of
them.

The advantages of knowing in advance the effect of the anticancer
treatment on host conditions are manifold. First, significant body
weight loss (BWL > 20%) were indicated as ethical criteria for animal
sacrifice by the international guidelines for animal care and euthana-
sia. Second, preventing high cachexia degree could help to avoid biased
situations in which tumor regression is imputable not only to the an-
ticancer drug effect but also to the degradation of host conditions,
resulting in an uncorrected evaluation of drug efficacy (see Section
2.4.2).

Starting from the Exp. a on paclitaxel analyzed in [61], we show, as
an example, a possible evaluation of different administration protocols.

First of all, from experimental data, a theoretical concentration
threshold of about 720 ng/ml was identified and, considering the pa-
clitaxel clearance in mice, an efficacious daily dosage of about 12.2
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2.4. Discussion: advantages of the tumor-in-host modeling approach

mg/kgday was computed. Then, the DEB-TGI model was used to
find the maximum dose causing a BWL below the 20% of the initial
animal body weight: supposing an initial weight of 25 g, a bound of
20 g was found. Adopting the same administration schedule of Exp.
a (q3dx4 starting from day 8), tumor and host body weight responses
after a bolus administration of 48.8, 60, 70, and 80 mg/kg were sim-
ulated. As can be seen from the first panels in Fig. 2.9 (Panels A)),
all the considered dose levels lead to a tumor regression without rele-
vant differences in terms of toxic effect on host body weight suggesting
that, in absence of other toxic effects, a higher level than the minimum
efficacious daily dosage could be consider eligible for experimental as-
sessment.

A second possible scenario considered different administration pro-
tocols characterized by the same total dose. In particular, a total dose
of 146.4 mg/kg over 12 days was simulated by varying the adminis-
tration protocol (12.2 mg/kg q1dx12, 24.4 mg/kg q2dx6, 36.6 mg/kg
q3dx4 and 48.8 mg/kg q4dx3). The tumor and host body weight re-
sponses are reported in the lower panels of Fig. 2.9 (Panels B)). As you
can seen, only the last protocol respected the toxicity bound of 20%
BWL suggesting that q4dx3 is the preferable administration protocol
in terms of cachexia degree.
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Figure 2.9: Simulated host body and tumor weight response following the paclitaxel treatment
with the different administration protocols (Black curves). Horizontal red line indicate the toxi-
city limit of 20% BWl
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Chapter 3
A population Tumor-in-host
DEB-based TGI model for
etoposide effects on Wistar
rats 1

Traditional PK-PD models generally used to analyse preclinical
data of tumor growth inhibition suffer of some gaps. As already dis-
cussed in the previous chapter, they are commonly based on an empir-
ical approach that allows to describe only a part of the several aspects
characterizing the in vivo tumor growth studies. In particular, the
mutual influence of tumor and host physiology, as well as the possible
toxic effect of anticancer treatment on the host organism is usually
neglected. Moreover, the anticancer drug effect is generally driven
by plasma concentration that, in case of relevant differences in tumor
tissue penetration, could not represent a good surrogate of the phar-

1The content of this chapter is partially published.
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macologically active concentration [68, 69, 70]. Finally, experiments
not optimally designed and, thus, poorly informative make difficult
the development and application of more mechanistic models.

In this chapter, the DEB-TGI model previously introduced in Chap-
ter 2 was adapted to analyse average and individual data relative to
the etoposide effects on Wistar rats. The unusual experimental design,
including control groups used for measuring animal weight changes in
both treated and untreated animals without tumors, and the availabil-
ity of information about intratumoral concentration allowed to fully
exploit model capabilities of describing and distinguishing all the dy-
namics characterizing the in vivo tumor studies.

3.1 Background

In a recent work, Pigatto et al. applied the well-known Sime-
oni TGI model to investigate the PK/PD relationship between to-
tal plasma, free interstitial tumor etoposide concentrations and tumor
growth dynamics [44]. In this study, the activity of etoposide, a topoi-
somerase II inhibitor used for treating hematopoietic malignancies and
different solid tumors, was evaluated on Walker-256 (W256) tumor line
implanted in Wistar rats.

The considered experiment was characterized by an unusual design.
Differently from the typical preclinical studies, in which tumor-bearing
animals are randomized in control and treated groups, two additional
experimental arms were here included: a tumor-free untreated group
and a tumor-free treated group of healthy animals treated with placebo
or etoposide, respectively. However in [44], data collected within these
two arms, as well as host body weights of both tumor-bearing rats,
were not included in the modeling efforts.

Experimental results showed a significant antitumor activity of
etoposide. In particular, drug effect exhibit a relevant dependence on
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3.2. Experimental setting

the administration protocol: the 8-day treatment with 5 mg/kg · day
presented greater tumor growth inhibition compared to the 4-day
treatment with 10 mg/kg · day. Becouse the original Simeoni TGI
model resulted inadequate to describe the schedule-dependence of the
etoposide effect, an empirical inhibitory Emax function was introduced
on the k2 parameter to account for this phenomenon (Simeoni TGI-
Emax model) [44].

Furthermore, the availability of information about intratumoral
concentration allowed to comparatively evaluate the PK/PD relation-
ship between total plasma and free-interstitial tumor concentration
to tumor growth kinetics. Results suggested that, in this case, free
intratumoral concentration could be a better surrogate for the active
concentration exhibiting a cytotoxic effect on tumor cells.

A population tumor-in-host DEB-TGI model able to describe tu-
mor and host body weight data collected in the etoposide study on
Wistar rats was developed and presented in this chapter. The tumor-
in-host approach allowed to better exploit and distinguish the differ-
ent factors highlighted by the unusual experimental design of this in
vivo tumor study. Moreover, the potential advantages arising by the
use of the free intratumor concentration as PK input for modeling
the cytotoxic drug effect was, also, evaluated in the more mechanistic
framework provided by the DEB approach. Finally, the applicability
of the model to a target species (rat) different from xenograft mice, in
which it was originally developed, was demonstrated.

3.2 Experimental setting

3.2.1 Compound

An etoposide solution, similar to the commercial injectable for-
mulation administered in humans [71, 72], was used for the in vivo
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antitumor assessment.

3.2.2 Animals, cell lines and in vivo tumor growth
experiments

Thirty-eight male Wistar rats (150-200 g, 5-6 weeks of age) were
obtained from the Center for Reproduction and Experimentation of
Laboratory Animals (CREAL/UFRGS - Porto Alegre, Brazil) and re-
ceived food and water ad libitum. Animal procedures were approved
by UFRGS Ethical Committee on Animal Use (CEUA/UFRGS, pro-
tocol number 22302) and were conducted under standard conditions
according the Brazilian law [73] and the guideline on experimental
animal care and use [74].

Walker-256 (W256), a rat breast carcinoma cell line syngeneic to
Wistar rats, were used to obtain tumor-bearing animals.

The thirty-eight animals were randomized in the following five
arms: tumor-free untreated arm (n=4), tumor-free treated arm (n=3),
tumor-bearing untreated arm (n=10) and two tumor-bearing treated
arms subjected to two different administration schedules (n=10 and
n=11).

For the tumor-bearing arms, the experimental setting is the same
described in the Section 1.3.1. In particular, 2 × 107 viable cells were
inoculated s.c. and, after about 5 days since inoculation, animals
showed a palpable tumor volume of 1 cm3 in average. Etoposide was
administrated i.v. to the treated animals as follows: bolus of 10 mg/kg
once daily for 4 days (n = 10) or 5mg/kg once daily for 8 days (n =
11) in the tumor-bearing treated groups; bolus of 10 mg/kg once daily
for 4 days in the tumor-free treated group. In order to maintain ceteris
paribus condition, vehicle was administered to the two control groups
(untreated tumor-bearing/tumor-free animals). Rats were clinically
evaluated and weighted daily for 30 days after the inoculation time.
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3.3. Modeling approach

Animals with a tumor diameter higher than 4 cm, 20% weight loss
compared to baseline weight or inability to eat/drink water were sac-
rificed before the end of the experiment according to the international
guidelines [75].

The collected data were partially analysed in [44]: only average and
individual tumor weights were modeled, whereas data related to rat
body weights (including those collected in the two tumor-free groups)
are unpublished.

3.3 Modeling approach

3.3.1 PK models for etoposide: total plasma and
free peripheral tumor concentration

Etoposide PK in W256 tumor-bearing Wistar rats

The PK of etoposide in W256 tumor-bearing Wistar rats was pre-
viously investigated in plasma and tumor tissues [76]. A population
PK model (popPK), simultaneously describing etoposide concentra-
tion in plasma and free concentrations in two regions of the tumor
(called centre and periphery), was proposed by Pigatto et al. [76].
The model consists of four compartments with a saturable distribu-
tion from plasma to tumor compartments and a first-order elimination.
The volume of plasma compartment is a function of body weight. A
schematic representation of the model structure and the mathematical
equations are reported in the Supplementary Material to Chapter 3.

Because PK and PD data were collected in independent studies
involving a different number of animals, inter-individual variability
affecting PK parameters was not considered in the identification of
the PK-PD model [77]. Therefore, total plasma and free peripheral
tumor drug concentration-time profiles were simulated in the tumor-
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bearing groups by fixing the values for the model parameters reported
in Tab. 3.1. The volume of plasma compartment was computed from
the animal body weight. The simulated profiles are reported in the
Supplementary Material to Chapter 3 for both the total plasma and
the free peripheral tumor concentration in the tumor-bearing groups

Etoposide PK in tumor-free Wistar rats

No ad-hoc PK studies were performed in healthy animals. How-
ever, the main etoposide plasma PK parameters (AUC, CL and t1/2)
obtained for W256 tumor-bearing rats [76] were similar to those re-
ported in the literature for healthy animals [78, 79]. Based on this
evidence, a classical PK model (three-compartment model), built re-
analysing only plasma etoposide concentration data collected in W256
tumor-bearing Wistar rats, was used to obtain etoposide plasma pro-
files in tumor-free rats . The central compartment volume was modeled
as a function of the animal body weight through a covariate model.

Analogously to the tumor-bearing case, the inter-individual vari-
ability affecting PK parameters was not considered in the identification
of the PK-PD model. Then, the total plasma concentration profiles in
tumor-free rats were simulated by fixing the values for the model pa-
rameters reported in Tab. 3.1. The volume of the central compartment
was computed from the animal body weight. The simulated profiles
in the tumor-free group are reported in the Supplementary Material
to Chapter 3.

3.3.2 PD model structure

The tumor-in-host DEB-based TGI model introduced in Chapter
2 was adopted as starting point to describe tumor and host growth in
response to etoposide treatment. The model structure was revised to
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3.3. Modeling approach

Table 3.1: Parameter values of the etoposide PK models.

Parameter Tumor-free groups Tumor-bearing groups
[Dimensions]

V1 [L] 0.161 0.171
β [−] 0.561 0.581
k10 [1/day] 36.24 30.48
k12 [1/day] 12.38 68.64
k21 [1/day] 9.99 69.12
k13 [1/day] 81.12 -
k31 [1/day] 93.6 95.76
k41 [1/day] - 5.18
V3 [L] - 0.112
V4 [L] - 2.99
Vmax [µg/day] - 21.77
km [µg/day] - 5.12
Fp [-] - 0.155

account for etoposide-specific behaviours and to describe tumor-free
treated animals as explained hereafter.

Tumor-bearing animals

The unperturbed Tumor-in-host model (Sys. 2.20-2.22) was used
to describe tumor and host dynamics observed in the tumor-bearing
group. Since, in this, study the decreases of rat (net) body weight in
presence of big tumor masses was not completely justified by tumor
energy request, it was hypothesized that big tumor masses can lead to
symptoms, like lack of appetite or limited assimilation, get aggravated
with tumor progression (tumor-related anorexia). Thus, the food-
supply coefficient ρ was described as a function of tumor volume to
account for the energy intake reduction linked to tumor progression.
Then:

ρ(t) = ρb

(
1− Vu(t)

IVu50 + Vu(t)

)
(3.1)

where ρb represents the food-supply coefficient in absence of tumor
masses (with values between 0 and 1) and IVu50 is the tumor volume
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producing a 50% reduction of the energy intake.
The Tumor-in-host DEB-TGI model (Sys. 2.32-2.34) was adopted

to describe etoposide activity on tumor-bearing treated animals. As
discussed in Section 2.3.1, the drug effect on host body weight is mod-
eled hypothesizing that side effects of treatment lead to a temporally
decrease of energy intake, followed by a loss of structural biomass
(drug-related cachexia). Otherwise, in this case, a sigmoidal Imax
model resulted more appropriate to describe etoposide toxic effect on
assimilation rate. Moreover, data showed a delay between the end
of the treatment and the regrowing of the rat body weight. Because
this trend was evident in all the three treated groups and, in partic-
ular, in the tumor-free treated arm, we conclude that the prolonged
body weight decrease is independent from tumor-host interaction and
imputable only to drug dynamics. Thus, an effect compartment was
included in the model and the effect compartment concentration, CEff ,
was used to drive the energy intake inhibition. Therefore, the food-
supply coefficient ρ(t) in the treated groups was defined as:

ρ(t) = ρb

(
1− Vu1(t)

IVu50 + Vu1(t)

)
·
(

1− CEff (t)
η

ICη
Eff50

+ CEff (t)η

)
(3.2)

where ICEff50 denotes the effect compartment concentration produc-
ing a 50% reduction of the energy intake and η is the Hill coefficient.

Tumor-free animals

The unperturbed tumor-free growth was described by the Sys. 2.11.
However, the Tumor-free model has to be modified to account for the
drug effect on the body weight growth in treated tumor-free animals
(Sys. 3.3-3.5). An inhibition of the energy intake was introduced to
describe body weight loss occuring during the treatment period and
the days immediately after. Consequently, since host energy resources
could be insufficient to fully satisfy the energy needs, the degradation
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3.3. Modeling approach

of the structural biomass (drug-related cachexia) was allowed also in
absence of any tumor masses to cover the maintenance costs.

• Case
dV

dt
≥ 0 (growth of structural biomass)



de(t)

dt
= ν

(
%(t)V

2/3
1∞

V (t)
− e(t)

V (t)1/3

)
dV (t)

dt
=
νe(t)V (t)2/3 − gmV (t)

g + e(t)

dCEff (t)

dt
= kEff

(
CPlasma(t)− CEff (t)

)
ρ(t) = ρb

(
1− CEff (t)

η

ICη
Eff50

+ CEff (t)η

)
W (t) = dV (1 + ξe(t))V (t)

(3.3)

with e(t0) = e0 and V (t0) = V0

where CPlasma(t) is the total plasma concentration of the drug and
CEff (t) the effect-site concentration.

• Case −δVMax
≤ dV

dt
< 0 (degradation of structural biomass)

Only the equation relative to dV
dt

differs from Sys. 3.3 as

dV (t)

dt
=
νe(t)V (t)2/3 − gmV (t)

g + e(t)
(3.4)

• Case
dV

dt
< −δVMax

(degradation of structural biomass at the

maximum rate)

Only the equation relative to dV
dt

differs from Sys. 3.3 as

dV (t)

dt
= −δVMax

. (3.5)
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3.3.3 Data analysis

PK and PD models were implemented in Monolix (version 2016R1)
[80]. Goodness Of Fit (GOF) plots were performed in R (Version 3.4.4)
on the graphic data exported from Monolix.

Total plasma and free peripheral tumor concentration-time profiles
of etoposide were simulated by the PK models reported in Section
3.3.1. Model fitting was performed simultaneously on tumor and rat
net body weight data collected in all the five experimental arms. The
quantification limit for the tumor diameter was set to 3mm (the min-
imum value appreciable with the calliper), corresponding to a tumor
volume of 0.01 g. Therefore, in the following analysis, tumor measure-
ments below the quantification limit (BQL) were coded as left censored
data (30% of the total tumor measurement), while the correspondent
body weights were considered as net body weights.

As a first step, the model structure was defined and assessed on
average data adopting a näıve average data approach, a strategy fre-
quently adopted in preclinical TGI modeling. Then, as second step,
individual data were directly taken into account through a Non Liner
Mixef Effect (NLME) approach [81] .

Different from [61], the presence of also a tumor-free untreated arm
allowed to identify all the model parameters, host-related (g, ν, V1∞,
ξ, ρb), tumor-related (µu, gu, mu, IVu50), cachexia-related (δVmax) and
drug-related (k1, k2, ICEff50 , kEff ), in a single step. The parameter
m was derived by Eq. 2.7; the thermodynamic efficiency coefficient
ω was fixed to 0.75; the density of structural biomass, dV , and of
tumor volume, dVu , were fixed to 1 g/cm3. The Hill coefficient η was
fixed to a value sufficiently high to make steep the inhibitory response
curve (η = 50). The initial time instant, t0, was set to the inoculation
day; the initial conditions (e0, W0 and Vu0) were estimated from data
together with the other model parameters. Finally, initial value of
structural biomass, V0, was derived from Eq. 2.10.
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3.4. Results

In the preliminary analysis on the average data, the model was
identified fixing the food-supply coefficient ρb to 1. Because, at the
begin of the experiment, average rat body weights showed a relevant
inter-group variability (CV% upper than 20%), a log-normally dis-
tributed random effect was added on W0 parameter.

In the NLME approach, inter-individual variability was assigned
only on the initial conditions of energy, host body weight and volume
of inoculated tumor cells (i.e., e0, W0 and Vu10). Individual model
parameters (Pi) were supposed to be log-normally distributed (Pi =
θ exp(ηi) where θ is the typical population value and η a normally
distributed random effect with zero mean and variance ω2). The food-
supply coefficient ρb, that takes value in [0, 1], was re-parametrized as
ρb = 1/(1+Rb) with Rb in [0,+∞]. A log-normally distributed random
effect was added on Rb to take into account inter-individual variability
affecting the assimilation process. A first preliminary data analysis
showed a significant difference (in average) between the initial weight
of the tumor-bearing and the tumor-free animals. Thus, to improve
model performance, a categorical covariate tumor-free/tumor-bearing
was added on the typical value of W0 parameter.

The residual error model was supposed proportional to the square
root of the predicted values (i.e. body or tumor weights), thus y =
f + b

√
fε where y is the measurement, f the predicted value, b a

coefficient and ε a standardized random variable normally distributed.

GOFs, estimated precision, AIC and BIC values were the main
criteria used to evaluate the adequacy of the model.

3.4 Results

Model structure was defined and assessed first on average data and,
then, the model was implemented and evaluated in the population
context.

63
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3.4.1 Evaluation of the model structure on aver-
age data

First of all, the PK/PD relationships between plasma or free tumor
drug concentration and tumor growth kinetics were comparatively in-
vestigated on average data. To this aim, the model was identified on
the average data using both CPlasma and CT,Periphery as driver for the
etoposide cytotoxic effect on tumor cells. Fitting results are shown in
Fig. 3.1.

The dynamics of net body weight are excellent described in all the
arms using both plasma and tumor concentrations. Comparing the
tumor-free and the tumor-bearing untreated groups (Fig. 3.1, panels
1a vs 3a), it can be appreciated the huge impact of tumor progression
on host (tumor-related chachexia): tumor-free animals growth almost
100g (one third of body weight) more than tumor-bearing animals.
Furthermore, body weight profiles of the three treated groups (Fig. 3.1,
panels 2a, 4a and 5a) show sharp decreases during the treatment pe-
riod and the days immediately after its suspension. More in details,
the comparison of the two tumor-free groups (untreated vs treated,
Fig. 3.1, panels 1a and 2a) allows to evaluated the etoposide direct
effect (drug related-cachexia). Conversely, body weight decreases in
the two tumor-bearing treated groups (Fig. 3.1, panels 4a and 5a)
are attributable to both drug effect on food assimilation and tumor
mass progression: about 40g (22% of body weight) is the maximum
weight loss in the 10 mg/kg-4 day arm and about 29g (15% of body
weight) in the 5 mg/kg-8 day arm that appears to be the less impact-
ing administration schedule. The goodness of the simultaneous fitting
highlights the excellent model capability of describing, distinguishing
and separating all the dynamics shown in the body weight data. First,
due to the set of energy balance rules on which it is based, the model
is able to describe host body growth and its slowdown in presence of
tumor masses (panels 1a and 3a). Second, the inhibition of the en-
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ergy intake driven by the effect compartment concentration enables
the model to well explain the delayed body weight loss in tumor-free
treated animals, attributable only to the etoposide toxic effect (panel
2a). In this way, also the simultaneous contributions of tumor-related
and drug-related cachexia shown by the tumor-bearing treated groups
(panels 4a and 5a) are correctly described and separated.

For what concerns the tumor dynamics, the unperturbed growth in
the untreated arm (Fig. 3.1, panel 3b) is always well described. Con-
versely, results obtained on the tumor weight in the treated groups
(Fig. 3.1, panels 4b and 5b) require a more extensive comment. The
experimental regrowth curves show that the 8-days treatment with
5 mg/kg·day presents greater tumor growth inhibition (regrowth ob-
served after 21.4 ± 1.1 day) compared with the 4-day treatment with
10 mg/kg·day (regrowth observed after 16.8 ± 0.8 day). Because the
total administered dose (40 mg/kg) and the respective AUC are the
same, it was supposed that etoposide has a schedule-dependent anti-
tumor effect [44]. Even if the overall tumor growth inhibition is always
sufficiently well described, when the cytotoxic activity is driven by the
total plasma concentration (dashed lines in Fig. 3.1), the model is not
able to fully capture the differences of the etoposide effects in the two
different schedules. To support this, separated fittings in which one
of the two tumor-bearing treated groups was keeping out (results not
shown) were performed and different estimates for the parameter k2

were provided: 7.17 mL/µg · day excluding the 5 mg/kg-8 day group
and 8.7 mL/µg·day excluding 10 mg/kg-4 day group. Contrariwise, us-
ing free interstitial tumor concentration (solid lines in Fig. 3.1), tumor
response is excellently described in both 5 and 10 mg/kg arms. Thus,
intratumoral concentration seems correlate better with the etoposide
inhibitory effect than total plasma concentration. Also AIC and BIC
(1001.15 vs 940.97 and 993.73 vs 933.55 for plasma and tumor concen-
tration, respectively) model selection criteria confirm the preference
in using tumor concentration than plasma concentration.
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Figure 3.1: Plots with average observed (black dots), left censored (red dots) and model-fitted
(lines) body weight and tumor growth curves in the five arms. In treated arms, model predictions
considering interstitial free tumor or total plasma concentration as driver for the cytotoxic effect
are reported with solid and dashed lines, respectively.
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3.4.2 Population model on individual data

Once the model structure was assessed on the average data, a pop-
ulation model was developed as described in Section 3.3.3. Fitting
results as well as model selection criteria confirmed previous find-
ings: AIC was 8396.06 vs 8307.41 and BIC was 8435.38 vs 8346.71
for plasma and tumor concentration, respectively. Thus, intratumoral
concentration was definitely selected as driver for etoposide cytotoxic
effect. Individual fit plots are shown in Figs. 3.2 and 3.3, while the
population parameter estimates are reported in Tab. 3.2 together with
inter-individual and residual variability.
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Figure 3.2: Plots with individual observed (black dots), left censored (red dots) and model-fitted
rat body weight and tumor growth curves in the tumor-free arms. Individual and population
model predictions are reported with solid and dashed lines, respectively.

The model is able to simultaneously grasp all the dynamics shown
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Figure 3.3: Plots with individual observed (black dots), left censored (red dots) and model-fitted
rat body weight and tumor growth curves in the tumor-bearing treated arms. Individual and
population model predictions are reported with solid and dashed lines, respectively.

by the five experimental arms: body weight growth in the tumor-
free untreated animals, its slowdown in presence of tumor masses and
body weight decreases due to the etoposide toxicity both in the tumor-
bearing and tumor-free groups. Also tumor dynamics in the untreated
and treated animals are adequately fitted by the model that is able
to take into account schedule-dependence of the etoposide inhibitory
effect. Moreover, individual predictions showed how, despite the inter-
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individual variability was considered only for the initial conditions of
the host (W0, e0), the inoculated tumor mass (Vu10) and the assim-
ilation process (Rb), the experimental variability was appropriately
described.

Table 3.2: Parameter estimates for the population DEB-TGI model.

Population parameters

Parameter Typical values, Inter-individual variability,
[Dimensions] θ [RSE%] ω [RSE%]

ν [cm/day] 0.284 [3] -
V1∞ [cm3] 436 [5] -
g [−] 6.99 [14] -
ξ [−] 0.765 [3] -
ρb [−] 0.9408 [NA] 0.2165 [NA]
W0 [g] 191 [3] 0.0869 [12]
β [−] -0.178 [21] -
e0 [−] 1.46 [6] 0.246 [14]
µu [−] 30.9 [5] -
gu [−] 3.14 [3] -
mu [1/day] 0.0005 [23] -
IVu50 [cm3] 95.4 [33] -
Vu10 [cm3] 0.0234 [13] 0.949 [18]
δVMax

[cm3/day] 0.953 [8] -
k1 [1/day] 1.86 [4] -
k2 [mL/µg · day] 24.1 [4] -
keff [1/day] 0.671 [2] -
ICEff50 [µg/ml] 0.101 [2] -

Residual variability

b (W) 0.557 [2] -
b (Wu) 0.729 [3] -

Individual parameters are given by Pi = θ exp(ηi) with θ the typical value and η a random
effect normally distributed with zero mean and standard deviation ω(P ). ρb and ω (ρb) were
computed by approximation from estimates of Rb = 0.0629 (26%) and ω (Rb)= 1.22 (14%).

From Tab. 3.2 it can be observed that all the parameters were
identified with good precision (RSE ≤ 33%). It is worth to note that
estimates of the host-related parameters are in good agreement with
the values obtained by van Leeuwen [59].

69



3. Chapt. 3

GOF plots, presented in Fig. 3.4, illustrate that the proposed pop-
ulation DEB-TGI model adequately described the collected experi-
mental data. In Fig. 3.4, the weighted residuals are shown. Finally,
VPCs (Fig. 3.5) confirm that the final model effectively explained the
observed tumor and host body weights.
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Figure 3.4: On the left, goodness-of-fit plots for the rat body weight (upper panels) and for the
tumor weight (lower panels): solid and dashed lines indicate identity line and linear regression
fit, respectively. On the right, residual plots for the rat body weight (upper panels) and for the
tumor weight (lower panels): black dots are the data, red dots represent the left censored data.

3.5 Discussion

Starting from the tumor-in-host model presented in Chapter 2,
a new population PK/PD model of cachexia onset and tumor growth
inhibition following etoposide treatment in Wistar rats was developed.
The excellent results allowed to affirm that, even if the DEB-based
modeling approach was initially proposed to describe mice data, due
to the use of species-dependent parameters, it resulted applicable also
in experiments involving rat as target species.
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Figure 3.5: VPC plots stratified by group based on 1000 simulated replicates of the original data.
The solid and dashed lines show the 10th, 50th and 90th percentiles of observed and simulated
data, respectively; the shaded areas represent the 90% confidence interval for the corresponding
model predicted percentile. The left censored data are indicated by the red dots.

More in details, the PK/PD model structure described in Chap-
ter 2 was revised as follows. The assimilation process was supposed
to be affected by two different and independent inhibition phenomena
(Eq. 3.2): a reduction of food intake directly linked to tumor progres-
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3. Chapt. 3

sion (tumor-related anorexia) and an energy inhibition due to the effect
of etoposide treatment on the host (drug-related anorexia). In partic-
ular, a sigmoidal Imax model and an effect compartment for the drug
plasma concentration were used to model the delay between the end
of the treatment and the rat body weight regrowth (Eq. 3.2). Finally,
both plasma and free peripheral tumor concentration were tested as
driver for the etoposide cytotoxic effect on tumor cells (Section 3.4.1).

The adoption of a population technique allowed, for the first time,
to describe individual behaviours accounting for and characterizing
the heterogeneity of tumor-host interactions.

The resulting model was able to simultaneously describe the in-
dividual host body and tumor growth dynamics observed in tumor-
bearing animals both for the treated and the control groups. At the
same time, it was able to characterize body weight dynamics in tumor-
free rats and the decreases following etoposide administration. Thus,
the tumor-in-host growth, its inhibition after anticancer treatment, as
well as the cachexia onset were taken into account by the model that
was also able to discern body growth alterations due to the effect of tu-
mor progression (tumor-related cachexia) from that of drug treatment
(drug-related cachexia).

The unusual experimental design here adopted is worthy of fur-
ther considerations. Indeed, developing a good experimental setting
is of paramount importance because poorly designed experiments re-
sult in poorly supported conclusions [31]. In particular, defining the
proper control groups could be extremely useful to consider all the
possible factors that influence a correct estimation of the anticancer
drug efficacy. For example, the presence of the two groups of tumor-
free animals (treated with both placebo or etoposide) highlighted rele-
vant dynamics often overlooked during preclinical studies. First of all,
comparing the time course of the host body weight in the untreated
tumor-free and tumor-bearing arms, the huge impact of the tumor
progression on the animal condition (tumor-related cachexia) resulted
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3.5. Discussion

clear: tumor-bearing rats reached weights one third lower than tumor-
free animals. This evidence underlines the key role that tumor-host
energetic interactions seems to play in the in vivo tumor growth. Sec-
ondly, even if all the treated animals showed significant body weight
losses due to the etoposide administration, only in the tumor-free arm
this ‘toxic’ effect was purified from the influence that tumor had on
the host growth (drug-related cachexia). Only the presence of the two
tumor-free groups allowed to properly identify and discern the alter-
ation of host assimilation attributable to the tumor progression and
to the drug treatment. It is important to keep in mind that the selec-
tion of a suitable experimental design able to separately capture the
several dynamics influencing in vivo tumor growth experiments and
the availability of a model able to describe and discern each of them
is crucial to obtain unbiased estimates of the anticancer efficacy of the
drug and avoid confounding factors (see Section 2.4.2).

The good precision of the parameter estimates further confirmed
that data coming from well designed experiments provide benefits in
terms of parameter estimation and can contribute to solve the identifi-
ability issues encountering in [61]. Moreover, the population approach,
providing estimates of both the typical values and the inter-individual
variability, allows, for the first time, to describe the tumor-host inter-
actions on an individual level.

Finally, even if the use of plasma concentration is at the heart
of traditional PK/PD models, plasma pharmacokinetics may not be
sufficiently informative about the target site (active) concentrations.
Indeed, the presence of necrotic areas, heterogeneous blood flow, high
cell density and interstitial pressure may limit a homogeneous and ade-
quate drug penetration into the tumor tissues [82]. In the specific case
of etoposide, the PK study conducted by Pigatto et al. highlighted
a higher penetration of the drug in the tumor periphery than in the
central region and a saturable diffusion from plasma to tumor [76]. In
this work, the use of free interstitial tumor concentration made the
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3. Chapt. 3

model able to catch the schedule-dependence of etoposide inhibitory
effect on tumor growth, differently from [44] in which an empirical
Emax model had to be added on k2 parameter.

Thus, we can conclude that only a mechanistic modeling approach,
based on tumor-host energetic interactions, combined with the use of
free intratumoral concentrations, could explain all the dynamics char-
acterizing in vivo tumor studies and so provide a better understanding
of the PK/PD relationships.
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Chapter 4
A DEB-based modeling
approach to anti-tumor
activity and progressive
resistance after
anti-angiogenic therapy

Angiogenesis inhibitors are widely used for the treatment of cancer.
The first marketed anti-angiogenic drug was bevacizumab (Avastin)
but, later on, several different compounds entered the market of an-
ticancer drugs. Differently from cytotoxic agents, angiogenesis in-
hibitors are not supposed to cause tumor cell death but to block
oxygen and nutrient supplies to tumor cells decreasing, thus, their
proliferation rate. For this reason, the DEB-TGI model presented in
Chapter 2, basing on a direct cell kill hypothesis, is not applicable to
anti-angiogenic therapies.
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4. Chapt. 4

In this Chapter, a new DEB-based anti-angiogenic model describ-
ing the tumor growth modulation following cytostatic therapy is pro-
posed and evaluated on xenograft experiments.

4.1 Background: the anticancer effect of

the angiogenesis inhibitors

Angiogenesis, the development of new capillary blood vessels, plays
a key role in the growth and progression of solid tumors [83]. Indeed,
like normal tissues, tumor cells need an adequate supply of oxygen,
metabolites and an effective way to remove waste products [84]. Tu-
mors can actually cause this blood supply to form by giving off chem-
ical signals that stimulate angiogenesis or by inducing nearby normal
cells to produce pro-angiogenic molecules. Thanks to this dense vascu-
lar network, tumors ensure the amount of energy needed to proliferate.
In a great number of cases, especially in advanced stages of cancer, the
homoeostatic control of energy and protein balance is so compromised
in favour of tumor to result in a dramatic loss of host body weight,
attributable to the decreases of both skeletal muscle (biomass) and
adipose tissue (energy reserve). In particular, depletion of skeletal
muscle is a key component of cancer-associated cachexia and is respon-
sible for increased chemotherapy toxicity, complications from cancer
surgery, poor quality of life and mortality [56, 57].

In 1971, for the first time, Folkman proposed that anti-angiogenesis
might be an efficacious anticancer strategy [85]. On the basis of this
pioneering hypothesis, tumor angiogenesis became the focus of an ex-
tensive investigation that led to identify a wide variety of factors pro-
moting tumor angiogenesis such as epidermal growth factor (EGF),
transforming growth factor (TGF) and tumor necrosis factor (TNF)
[86]. Among these numerous pro-angiogenic molecules, the most rele-
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vant role is played by vascular endothelial growth factor (VEGF) [87].
Because tumors can not grow beyond a certain size or spread with-

out an adequate blood supply, scientists have developed drugs called
angiogenesis inhibitors, which block tumor angiogenesis. The goal of
these compounds, also called anti-angiogenic agents, is not to directly
hit tumor cells but to prevent or slow their growth by starving them
or their needed blood supply. Angiogenesis inhibitors can interfere in
different ways with the blood vessel growth process. Some of them are
monoclonal antibodies that specifically recognize and bind to VEGFs
preventing, so, their activation by receptors. Others directly bind to
VEGF receptors as well as to other receptors on the surface of en-
dothelial cells or to other proteins in the downstream signalling path-
ways, blocking their activities. Others again are immunomodulatory
agents that stimulate or suppress the immune system that also have
anti-angiogenic properties.

On February 2004, the U.S. FDA approved the first anti-angiogenic
agent, bevacizumab (Avastin), a monoclonal antibody targeting the
VEGFs, for the treatment of advanced colorectal cancer [88, 89]. Since
then, an array of anti-angiogenic inhibitors were developed, tested in
clinical trials and many of them got approved for the treatment of mul-
tiple cancers, alone or in combination with other cytotoxic/chemotherapy
drugs [90, 91]. Despite the demonstrable efficacy of anti-angiogenesis
targeted therapies in preclinical models and the increasing number of
successful translations to clinic, a few major concerns remain in the
anti-angiogenic approach for cancer treatment. Indeed, the introduc-
tion of anti-angiogenic therapy in clinic showed only limit transitory
benefits and tumor responses much less significant than those expected
from preclinical setting.

Mathematical models specially when based on physiological hy-
pothesis and innovative data analysis approaches, could be extremely
valuable for the preclinical efficacy assessment and its translation to
clinics. Several models, employing a number of different techniques,
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4. Chapt. 4

have been developed to describe tumor growth and its inhibition fol-
lowing the administration of anti-angiogenic agents given alone or in
combination with cytotoxic drugs [48, 92, 93, 94, 95, 47, 46, 96]. De-
spite many of them have been successfully applied to analyse preclini-
cal xenograft experiments involving anti-angiogenic target therapy, the
tumor is always modeled as an independent entity and its interaction
with the host organism is neglected.

The goal of angiogenesis inhibitors is to reduce the energy supply
to tumor promoting the restoration of the energetic balance between
tumor and host with the primary consequence of modulating tumor
growth and secondary of improving cachexia condition. Hence, the
tumor-in-host DEB-based model, directly accounting for the tumor-
host energetic interaction, could provide a reasonable framework to
describe tumor modulation followed anti-angiogenic therapy. However,
the DEB-TGI model recently developed and presented in Chapter 2,
based on a cell kill hypothesis, should not be, in principle, adequate
to capture the specific mode of action of anti-angiogenic agents.

In this Chapter, the DEB-based approach has been adopted to
describe the tumor growth modulation due to the cytostatic effect of
anti-angiogenesis. In particular, a new tumor-in-host TGI model is
here proposed and applied to analyse tumor and host body growth
data collected during xenograft experiments involving bevacizumab (a
known VEGF signalling inhibitor) and cetuximab (Erbitux), a mon-
oclonal antibody biding the EGF receptors (EGFRs) involved in tu-
mor angiogenesis. The integration of a hypoxia-triggered resistance
mechanism accounted for the decreased efficacy during prolonged and
enabled the model to predict the response to different administration
schedules.
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4.2. Anti-angiogenic experiments

4.2 Anti-angiogenic experiments

4.2.1 Compounds

Bevacizumab (Avastin), a humanized anti-VEGF monoclonal an-
tibody, and cetuximab (Erbitux), an IgG1 anti-EGFR monoclonal an-
tibody, were used for the in vivo anti-tumor assessments.

4.2.2 Animals, tumor cell lines and in vivo tumor
growth experiments

Fourteen female CD1 athymic Nu/Nu mice (6 weeks of age, 22-31g
of weight), and one hundred and eleven male Balb athymic Nu/Nu
mice (5-6 weeks of age, 21-36g of weight) were obtained from Harlan,
S. Pietro al Natisone, Italy.

DU145 and Colo-205 cell lines were obtained from American Type
Culture Collection (ATCC), HT29 cell line from European Collection
of Cell Cultures (ECACC) and MX1 cell line from Cell Lines Service
(CLS).

For all the studies, the experimental setting is the same described
in Section. 1.3.1, in accordance with the best practices and ethic prin-
ciples.

4.2.3 Treatments

The information about drug treatments are summerized in Tab. 4.1.
In total eight different experiments involving 125 xenograft mice, four
different tumor cell lines and two anticancer agents were considered.
In particular, tumor weight data collected in the experiments a, b, f
and g were already partially analyzed in [48], whereas the others are
unpublished.
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Table 4.1: Analyzed xenograft experiments.

Cell line Mice Compounds Dose Route N. of mice Days of administration

Experiment a DU145 male Bulb Nu/nu (6 weeks) bevacizumab
10 mg/kg i.p. 11 q4dx6 in days 5,9,13,17,21,25

20 mg/kg i.p. 11 q4dx6 in days 5,9,13,17,21,25

Experiment b DU145 male Bulb Nu/nu (7 weeks) bevacixumab 20 mg/kg i.p. 8 q4dx6 in days 9,13,17,21,25,29

Experiment c DU145 male Bulb Nu/nu (7 weeks) bevacixumab 20 mg/kg i.p. 8 q4dx6 in days 6,10,13,17,20,24

Experiment d DU145 male Bulb Nu/nu (7 weeks) bevacixumab 20 mg/kg i.p. 8 q4dx4 in days 8,12,16,20

Experiment e DU145 male Bulb Nu/nu (7 weeks) bevacixumab 20 mg/kg i.p. 8 q4dx3 in days 9,13,17

Experiment f HT29 male Bulb Nu/nu (8 weeks) bevacixumab 20 mg/kg i.p. 7 q4dx4 in days 8,12,16,20

Experiment g MX1 female CD1 Nu/nu (7 weeks) bevacixumab 20 mg/kg i.p. 7 q4dx4 in days 7,11,15,19

Experiment h Colo-205 male Bulb Nu/nu (6 weeks) cetuximab 1 mg/kg i.p. 8 q4dx6 in days 7,11,14,18,21,25

4.3 Modeling approach

4.3.1 PK modeling

A one-compartment model with first-order absorption and elimi-
nation was used to generate average plasma concentration profiles for
both the drugs. In particular, for bevacizumab, due both s.c. and
i.p. administrations resulted to be characterized by complete bioavail-
ability in mouse [97], mean PK parameters (ka=2.69 1/day, ke=0.115
1/day and V=0.119 L/kg) reported in literature for s.c. administration
were used [98]. For cetuximab, the mean PK parameters (ka=10.344
1/day, ke=0.36 1/day and V=0.094 L/kg) estimated by Luo et al. for
i.v. or i.p. administration in mice were used [99].

4.3.2 PD model stucture

The Tumor-in-host DEB-based model presented in Section. 2.2 was
adopted to describe tumor and host growth in the untreated animals.
Differently from the previous experimental setting in which the phar-
macological effects of cytotoxic compounds were modeled through the
inclusion of a mortality chain, here the effect of cytostatic treatments
had to be considered.
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4.3. Modeling approach

Unperturbed tumor-in-host model

The tumor and host growth in the untreated group are modeled by
the Sys. 2.20-2.22. As already assessed on rat data (Chapter 3), it is
hypothesized that animals suffer from inappetence get aggravated with
tumor progression. Thus, to account for the energy reduction linked
to the presence of tumor masses (tumor-related anorexia), Eq. 3.1 is
used to define the food-supply coefficient ρ.

Tumor-in-host DEB-TGI anti-angiogenic Model

Angiogenesis inhibitors are not supposed to directly cause tumor
cell death (cytotoxic effect) but only to block tumor cell proliferation
(cytostatic effect). Indeed, because blood flow provides the oxygen
and nutrients that tumor mass needs to continue growing, energetic
resources available to tumor strongly depend on its vascularization
network. Moreover, independently from their specific mode of action
and target molecules, the goal of angiogenesis inhibitors is to cut tumor
blood supply off and, so, to deprive cancer cells of nutrients.

Thus, in case of anti-angiogenic treatment, the model hypothesizes
that the reduction of tumor vascularization leads to an alteration of
the energy partition between tumor and host with the specific aim of
inhibit the energy frow to tumor. As the energy distribution is driven
by the fraction ku(t), drug effect was implemented as an inhibitory
Imax functionon ku(t):

ku(t) =
µuVu(t)

V (t) + µuVu(t)

(
1− Emaxc(t)

IC50 + c(t)

)
(4.1)

where IC50 represents the drug concentration exerting the 50% of the
maximal inhibitory effect, Emax. As expected, in absence of treatment,
the partition function, ku(t), coincides with that of the untreated an-
imals, Eq. 2.12.
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In accordance with experimental data, none direct drug effect on
the host organism is included. Indeed, the angiogenesis inhibitors
here considered has been reported to not directly interact with host
cells because they bind only to human VEGF or EGFR produced by
tumor cells and not to mice VEGF and EGFR [98, 100]. Differently,
considering species in which the anti-angiogenic agents are expected
to be pharmacologically active (for example the cynomolgous monkey
for bevacizumab [101]), some drug effects may be considered in the
model.

4.3.3 Data analysis

PK/PD models were implemented in Monolix (version 2016R1)
[80]. GOF plots were performed in R (Version 3.4.4) on graphic data
exported from Monolix.

Plasma concentration-time profiles of bevacizumab and cetuximab
were simulated using the PK models reported in Section. 4.3.1. Plots
of the obtained plasma concentration profiles are reported in the Sup-
plementary Material of Chapter 4.

For each experiment, tumor and mice net body weight data of
control and treated groups were analysed simultaneously. First, the
model structure was assessed on average data, then, a NLME approach
was adopted allowing to describe both typical behaviour and inter-
individual variability.

In this case, the absence of tumor-free animals did not allow to
identify all the parameters simultaneously. Thus, host-related param-
eters (g, ν, V1∞, ξ, m, dV ) were kept fixed to estimates obtained from
male and female mice growth data. For each experiment, values of the
physiological parameters are reported in the Supplementary material
of Chapter 4. In particular, for the studies involving Bulb Nu/nu mice
the estimates already obtained in [61] were used. Differently, for Exp
g, involving CD1 Nu/nu mice, new values were obtained.
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In accordance with the general way to describe xenograft exper-
iments, the inoculation day was considered as initial time instant,
t0. Thus, the initial condition for energy reserve, e0, was determined
through simulations considering mice age at the beginning of the ex-
periment (values reported in the Supplementary Material of Chapter
4). Differently, W0 and Vu0 were estimated during model identifica-
tion, while initial value of structural biomass, V0, was derived from
Eq. 2.10.

Furthermore, the thermodynamic efficiency coefficient, ω, was fixed
to 0.75 and the density of tumor volume, dVu , to 1 g/cm.

Tumor-related (µu, gu, mu), cachexia-related (δVmax , IVu50) and
drug-related parameters (Emax, IC50) were identified on mice and tu-
mor weight data of control and treated arms for each experiment.
After a preliminary model evaluation, the parameter Emax was fixed
to 1 because the inclusion of its estimation in the identification step
did not provide any relevant improvement in the model predicting
capabilities.

To develop the NLME model, inter-individual variability was added
on the initial conditions of host body weight and volume of inoculated
tumor cells (W0 and Vu0), on the half maximal inhibitory concentration
(IC50) and on the food-supply coefficient (ρb). Individual parameters
Pi were supposed to be log-normally distributed. Moreover, the food-
supply coefficient, ρb, was re-parametrized in terms of Rb and a log-
normally distributed random effect was added on Rb.

The residual error model was supposed proportional to the square
root of the predicted values (i.e. body or tumor weights), thus y =
f + b

√
fε where y is the measurement, f the predicted value, b a

coefficient and ε a standardized random variable normally distributed.
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4.4 Results

As in Chapter 3, model structure was defined and assessed first on
average data and, then, the model was implemented and evaluated in
the population context.

4.4.1 Average Data

For each experiments, the proposed model was simultaneously iden-
tified on average data of control and treated groups. Initially, the esti-
mation of Emax was including in the identification step; however, this
led to high uncertainty of parameter estimates without any relevant
improvement in the model predicting capabilities.

For bevacizumab, results related to Exps d, f and g, involving three
different tumor cell lines (DU145, HT29 and MX1) treated with the
same schedule (20mg/kg q4dx4), were reported in Fig. 4.1 as repre-
sentative examples. The time profile of the energy fraction ku(t) and
of the assimilation coefficient ρ(t) are reported for the control and the
treated groups. Results for the remaining experiments, performed on
DU145 cell line treated with a different number of bulus, are summa-
rized in the Supplementary Material of Chapter 4.

The goodness of fits highlighted model capability to adequately
describe the collected experimental data. In particular, tumor growth
and its modulation following anti-angiogenic treatment was well fitted
by the model that describes the drug effect as a reduction of tumor
energy-supply (Eq. 4.1) without hypothesizes any direct killing ef-
fects. Furthermore, thanks to the set of energy balance rules on which
the model is based, also the dynamics of mice body weight were well
described in both the placebo and bevacizumab groups. In particular,
comparing treated and control arms, it can be appreciated model ca-
pabilities to grasp the slowdown of the host body growth due to the
tumor progression in control animals (tumor-related cachexia) and the
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positive effect (lower body weight decrease) observed in treated ani-
mals due to the bevacizumab activity on tumor growth.
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Figure 4.1: Plots with average observed (symbols) and model-fitted (lines) mice body weight and
tumor growth curves obtained in the Exps. c, f and g for the placebo (black) and bevacizumab
(blue) arms. Profiles of energy fraction ku (vertical lines mark the tδVMax

and DT represents

the time delay between treated and control arms) and of assimilation coefficient ρ (for Exp f,
treated and control groups overlapped) are reported.

For cetuximab, a comparison of plasma concentration and tumor
dynamics in the treated arm showed a delay between the drug profile
in plasma and the inhibition of tumor growth. Thus, an effect com-
partment was introduced and the effect-site concentration was used
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to drive the inhibitory drug action. In this way, the model was able
to adequately describe tumor and host dynamics following cetuximab
administration Fig. 4.2. Also AIC (48.43 vs 40.67) and BIC (34.06 vs
26.3) criteria confirmed the advantage of introducing a delayed effect.
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Figure 4.2: Plots with average observed (symbols) and model-fitted (lines) mice body weight and
tumor growth curves obtained in the Exps. h for the placebo (black) and cetuximab (dark green)
arms.

4.4.2 Population model on individual Data

Once the model structure was assessed on average data, a popu-
lation approach was developed as reported in Section. 3.3.3. As an
example, fitting results obtained for Exp. c are shown in Fig. 4.3,
while all the other experiments are reported in Supplementary Mate-
rial of Chapter 4. The obtained estimates of population parameters
are presented in Tab. 4.2 together with inter-individual and residual
variability.

The model was able to simultaneously grasp all the dynamics
showed by experimental data: tumor growth and its slowdown af-
ter anti-angiogenic treatment as well as body weight decreases due
to tumor-related cachexia were well described. Moreover, individual
predictions showed how, despite inter-individual variability was con-
sidered only for few parameters, the experimental variability was ap-
propriately described.
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Table 4.2: Parameter estimates for the population DEB-TGI anti-angiogenic model.

Parameter Exp a Exp b Exp c Exp d Exp e Exp f Exp g Exp h
[Dimensions] (RSE%) (RSE%) (RSE%) (RSE%) (RSE%) (RSE%) (RSE%) (RSE%)

Typical values

W0 26 23.2 28.1 27.7 27 34.2 27.1 30.7
[g] (2%) (3%) (2%) (2%) (2%) (3%) (3%) (2%)

ρb* 0.997 0.986 0.993 0.997 0.986 0.892 0.954 0.803
[−] (NA) (NA) (NA) (NA) (NA) (NA) (NA) (NA)

Vu0 0.01 0.015 0.017 0.023 0.022 0.0405 0.055 0.05
[cm3] (14%) (15%) (16%) (11%) (13%) (16%) (12%) (20%)

µu 7.58 7.09 7.93 7.93 6.5 5.62 5.71 5.62
[−] (3%) (3%) (4%) (3%) (5%) (94%) (4%) (44%)

gu 13.34 13.83 13.58 13.79 12.37 12.16 14.36 10.29
[−] (0%) (0%) (1%) (1%) (6%) (99%) (2%) (39%)

mu 0.014 0.017 0.015 0.016 0.0132 0.021 0.012 0.014
[1/day] (7%) (0%) (4%) (3%) (11%) (99%) (0%) (43%)

IVu50** 10.1 - 11 12.1 12.8 2.96 - 1.75
[cm3] (2%) (10%) (5%) (17%) (64%) (32%)

δVMax
0.016 0.016 0.013 0.011 0.016 0.083 0.01 0.112

[cm3/day] (1%) (2%) (2%) (3%) (6%) (35%) (105%) (8%)

IC50 3.29 2.22 2.76 1.31 0.966 4.12 1.74 0.072
[µM ] (19%) (9%) (23%) (17%) (13%) (34%) (21%) (40%)

kEff - - - - - - - 0.061
[1/day] (52%)

Inter-individual variability

ω (W0) 0.097 0.095 0.091 0.089 0.061 0.081 0.117 0.043
(16%) (20%) (19%) (19%) (23%) (21%) (20%) (24%)

ω (ρb)* 0.004 0.152 0.769 0.464 0.55 0.183 0.175 0.978
(NA) (NA) (NA) (NA) (NA) (NA) (NA) (NA)

ω (Vu10) 0.433 0.419 0.435 0.212 0.36 0.328 0.289 0.415
(20%) (21%) (22%) (33%) (22%) (23%) (29%) (23%)

ω (IC50) 0.515 0.21 0.597 0.452 0.342 0.406 0.462 0.596
(27%) (30%) (27%) (26%) (29%) (52%) (28%) (46%)

Residual variability

b (W) 0.199 0.179 0.186 0.166 0.235 0.256 0.182 0.21
(6%) (7%) (7%) (6%) (7%) (7%) (6%) (6%)

b (Wu) 0.223 0.152 0.179 0.221 0.173 0.115 0.158 0.187
(6%) (7%) (7%) (6%) (7%) (7%) (6%) (7%)

Individual parameter are given by Pi = θ exp(ηi) with θ the typical value and η a random effect
normally distributed with zero mean and standard deviation ω(P ). *Values of ρb and ω(ρb)
were approximated from estimates of Rb and ω (Rb) reported in Supplementary Material of

Chap.4. **In Exps b and f the estimates for IVu50were so high that its inhibitory effect can be
considered negligible. Thus, in these cases, ρ was set equal to the tumor-free constant ρb.
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Figure 4.3: Individual fit plots for control and treated arms of Exp. c: black dots are the observed
data, solid and dashed lines the individual and population model predictions, respectively.

From Tab. 4.2 it can be observed that model parameters were iden-
tified with good precision with a few exceptions for few parameters of
experiment f that is characterized by a low number of subject and
sampling times. Estimates of tumor-related and cachexia-related pa-
rameters are consistent among experiments a-e involving the same
tumor cell line, DU145. Of interest, the values of IC50 increase with
the duration of anti-angiogenic treatment. Furthermore, GOF plots
(Fig. 4.4) show that the proposed population DEB-TGI model ade-
quately described the collected experimental data; weighted residuals
are randomly distributed around zero indicating the absence of model
bias and, finally, VPCs confirm that the individual observed tumor
and host body weights were effectively explained.
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Figure 4.4: Panels A: VPC plots stratified by group (500 replicates of the dataset), dashed
lines show the 10th, 50th and 90th percentiles of observed data, shaded areas represent the 90%
confidence interval for the corresponding model predicted percentile, empty dots are individual
observed data. Panels B: GOF plots for mice body (left panels) and tumor weight (right panels);
solid and dashed lines indicate identity line and linear regression fit, respectively. Panels C:
residual plots for mice body (left panels) and tumor weight (right panels).

4.4.3 Model Predictive Power

To further assess the predictive power of the proposed DEB-TGI
anti-angiogenic model, data observed in Exp. a, in which bevacizumab
was administered at 10 mg/kg or 20 mg/kg, were considered. Model
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4. Chapt. 4

parameters were first identified on data relative to the placebo and to
the lowest dose level (see Tab. 4.2 and fit plots reported in the Supple-
mentary Material of Chapter 4) and, then, used (combined with the
correspondent PK profile) to predict tumor and host dynamics in the
20 mg/kg arm. The agreement between predictions and observations,
both considering average and individual data (Fig. 4.5), confirmed the
predictive capabilities of the model and its potential use to correctly
simulate new arms.

0

10

20

30

40

0 10 20 30 40
Time(day)

M
ic

e
 b

o
d

y
 w

e
ig

h
t(

g
)

0

2

4

6

0 10 20 30 40
Time(day)

T
u

m
o

r 
w

e
ig

h
t(

g
)

Arm

Control

BVZ 20mg/Kg

0

10

20

30

40

0 10 20 30 40
Time (day)

M
ic

e 
bo

dy
 w

ei
gh

t (
g)

0

2

4

6

8

0 10 20 30 40
Time (day)

Tu
m

or
 w

ei
gh

t (
g)

Figure 4.5: Model predicted mice body weight and tumor growth profiles relative to 20mg/kg
bevacizumab arm of Exp. a. Average data on the left and individual data on the right (dashed
lines show the 10th, 50th and 90th percentiles of observed data, shaded areas represent the 90%
confidence interval for the corresponding model predicted percentile, empty dots are individual
observed data).

4.5 Modeling resistance development to

bevacizumab on DU145 cell line

Previous results show how the proposed DEB-based TGI model ex-
cellent describe the activity of anti-angiogenesis inhibitors in xenograft
mice. In particular, anticancer drug activity is modeled by an inhibi-
tion function parametrized using IC50 which value encloses informa-
tion about compound potency. Indeed, we can consider 1/IC50 as an
indicator of the average potency of drug treatment.
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4.5. Modeling resistance development to bevacizumab on DU145 cell line

In this section, the mechanistic approach at the basis of the anti-
angiogenic TGI model is exploited to investigate and formulate real-
istic hypothesis about the development of resistance to bevacizumab
in DU145 tumor cell line. Even if the lack of adequate experimental
information did not allow an extensive investigation, literature data
confirmed the plausibility of the obtained results.

4.5.1 Evidence from experimental data and model
results

The availability of experiments in which different durations of be-
vacizumab therapy were tested on tumor cell line DU145 (Exps. a-e)
provided the opportunity for some further considerations. Indeed,
experimental data showed that doubling the length of bevacizumab
treatment (from 20mg/kg q4dx3 to q4dx6) did not result into greater
tumor growth inhibition. From the comparison of the average tumor
profiles (Fig. 4.6), it is evident that the unperturbed tumor growth
in the placebo groups are almost super-imposable and effected by a
very low inter-experiment variability. Furthermore, despite the num-
ber of bolus varying from 3 to 6, no significant differences in the overall
inhibitory effect is shown by the treated arms.
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Figure 4.6: Spaghetti plots of the average mice body and tumor weight for Exps. a-e, involving
tumor cell line DU145.

According to experimental data, obtained values for the tumor-
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related parameters did not differ significantly between the studies on
DU145 cell line. Moreover, the model estimates of the the average
bevacizumab potency, 1/IC50, decrease with the increasing of therapy
duration (see Tab. 4.2).

To assess that the discrepancies in the IC50 estimates actually re-
flect a difference of the overall potency between the different adminis-
tration protocols, tumor weight profiles of the Exp. b were simulated
using parameter estimates obtained on the appropriate experimental
data and the IC50 values of Exps. d and e (Fig. 4.7). As can be appre-
ciated, model predicts an over-estimation of the inhibitory effect on
tumor weight when drug potency estimated on q4dx4 or q4dx3 beva-
cizumab experiments was used to simulate tumor response to q4dx6
bolus of bevacizumab.
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Figure 4.7: Model simulations of the average tumor weight for Exp. b performed using parameters
obtained on Exp. b (solid lines) and changing the IC50 value to the estimates obtained on Exp. d
(dashed lines) and and Exp. e (dotted lines). Red vertical line marks the third administered bolus.

4.5.2 Adaptive resistance arising: the hypoxia hy-
pothesis

From the previous considerations, we supposed that, efficacy of
prolonged anti-angiogenic administration was prejudiced by the aris-
ing of some resistance mechanisms. Literature data confirmed the
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4.5. Modeling resistance development to bevacizumab on DU145 cell line

plausibility of this hypothesis: apparent resistance to angiogenesis in-
hibitors was deeply described both in clinical and preclinical settings
[102, 103, 104, 105, 106, 107, 108, 109]. In particular, the development
of non-responsiveness to an initially efficacious anti-VEGF therapeutic
regimen was clearly documented in xenograft models [110, 111, 109].
Current experimental evidence suggests that tumors can adapt to the
presence of VEGF-target agents acquiring different adaptive mecha-
nisms to functionally evade the therapeutic blockade of angiogenesis
[102, 106, 110, 112, 107]: activation and/or up-regulation of alternative
pro-angiogenic signalling pathways within the tumor, recruitment of
bone marrow-derived pro-angiogenic cells and increased pericyte cov-
erage of tumor vasculature. Activation of alternative pro-angiogenic
signalling, independent from VEGF, was revealed in pancreatic cancer
mouse model [110]: after an initial response phase (10-14 days), tu-
mors started regrowing and the typically dense tumor vasculature was
restored. Notably, the VEGF-blockade persist during all the study and
tumors had regions of acute hypoxia, a known inducer of angiogenic
responses in a wide variety of cancer types [113, 109].

Based on these information, we supposed that during the longer
anti-angiogenic therapy, the aggravated tumor hypoxia, combined with
the persistent VEGF-blockade, triggered a VEGF-independent tumor
re-vascularization and, led to a consequence lower effectiveness of be-
vacizumab therapy.

4.5.3 Model of hypoxia-triggered resistance

It was hypothesized that the aggravation of tumor hypoxia over a
critical threshold H̄ triggered a VEGF-independent tumor re-vascularization
and, consequently, led to a lower effectiveness of bevacizumab therapy.
From a modeling point of view, first, the expected hypoxia condition
imputable to the VEGF-blockade, H, was defined as:
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H(t) =

∫
µuVu(t)

µuVu(t) + V (t)

EmaxC(t)

IC50 + C(t)
dt∫

µuVu(t)

µuVu(t) + V (t)
dt

, (4.2)

that is the ratio between the energy not absorbed by the tumor due to
drug effect (in the hypothesis of a VEGF-dependent tumor angiogen-
esis) and the energy absorbable in absence of anti-angiogenic therapy.
Then, when H(t) exceeds a critical threshold H̄, the maximum effect
of the VEGF-blockade induced by bevacizumab is reduced. Thus, in
Eq.4.1 the Emax parameter is redefined as:

EmaxInhib(t) =

{
Emax if H(t) ≤ H̄

Emaxe
kH(H̄−H(t)) if H(t) > H̄.

(4.3)

and consequently

ku(t) =
µuVu(t)

V (t) + µuVu(t)

(
1− EmaxInhibc(t)

IC50 + c(t)

)
. (4.4)

4.5.4 Data analysis and results

The hypoxia-triggered resistance model was evaluated on the Ex-
periments b, d and e in which 20 mg/kg bolus of bevacizumab were
administered q4dx6, q4dx4 and q4dx3, respectively, from day 8 or 9
since the inoculation.

First of all, average data were simultaneously identified with the
DEB-TGI anti-angiogenic model: estimates for host-related and tumor-
related parameters matched those of separated fittings and a common
value of IC50 was found to be 1.31 µM. However, the profiles of tu-
mor weight in treated arms (blue curves in Fig. 4.8) showed a slight
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4.5. Modeling resistance development to bevacizumab on DU145 cell line

over-estimation of the inhibitory effect in Exp. b (with the longest
treatment period) and a under-estimation in Exp. e (with the shorter
treatment period).

Then, the DEB-TGI anti-angiogenic model integrated with the
hypoxia-mediated resistance description was identified against the same
set of experiments. The inclusion of the hypoxia-triggered resistance
mechanism made enable the model to describe the decreasing efficacy
of prolonged bevacizumab therapy (red profiles in Fig. 4.8). Also AIC
(200.79 vs 215.54) and BIC (215.54 vs 213.45) model selection criteria
confirmed this evidence.
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Figure 4.8: Plots with average observed (symbols) and model-fitted (lines) mice body weight and
tumor growth curves obtained in Exps. b, d and e for the placebo and the bevacizumab treated
arms. Model predictions obtained including or not the hypoxia-mediated resistance model are
reported in red and blue, respectively.
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Once the resistance model was assessed on average data, a popu-
lation model was developed to analyse individual data. In particular,
log-normally distributed random effects were included on parameters
W0, Vu0, Rb and IC50. However, adding inter-individual variability
on the drug potency parameter led to unreasonable estimates, so it
was removed from the model. Moreover, to account for the differences
between experiments, a categorical covariate “Experiment” was added
on the typical value of W0, Vu0.

The obtained parameter estimates and VPC plots are reported in
Tab. 4.3 and in Fig. 4.9, while the other diagnostic plots are included
in the Supplementary Material of Chapter 4.
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Figure 4.9: VPC plots stratified by group and experiment (500 replicates of the dataset): dashed
lines show the 10th, 50th and 90th percentiles of observed data, shaded areas represent the 90%
confidence interval for the corresponding model predicted percentile, empty dots are individual
observed data.

The obtained results show that, with the integration of a hypoxia-
mediated resistance mechanism, the model was able to capture the
decreased efficacy affecting prolonged therapy. In agreement with
literature data, in which a response phase of 10-14 days was docu-
mented [102], the hypoxia condition remains below the threshold H̄
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(EMax = 1) for a period of about 11 days. Accordingly, the estimated
IC50 value, 0.95 µM , resulted very closed to that previously observed
in Exp e characterized by the shortest treatment of bevacizumab. Fur-
thermore, the model was able to account for inter-individual variability
showed by treated tumors without the need of random effect on IC50

parameter. This could mean that a modulation of drug efficacy on
the basis of hypoxia condition is able, alone, to catch inter-individual
variability of tumor response to anti-angiogenic treatment.

Table 4.3: Parameter estimates for the hypoxia-triggered resistance DEB-TGI model.

Population parameters

Parameter Typical values, Inter-individual variability,
[Dimensions] θ [RSE%] ω [RSE%]

W0 (Exp e) [g] 25.7 [3] 0.109 [11]
βW0 (Exp b) [−] 0.054 [40] -
βW0

(Exp d) [−] -0.101 [74] -
e0 [−] 1.27 [fixed] -
ρb [−] 0.993 [NA] 0.002 [NA]
Vu10 (Exp e) [cm3] 0.021 [18] 0.283 [96]
βVu10

(Exp b) [−] 0.534 [38] -
βVu10 (Exp d) [−] 0.034 [>100] -
µu [−] 6.33 [3] -
gu [−] 13.34 [1] -
mu [1/day] 0.013 [4] -
IVu50 [cm3] 16.3 [12] -
δVMax

[cm3/day] 0.014 [73] -
IC50 [µM ] 0.95 [1] -
kH [−] 2.49 [21] -
H̄ [−] 0.371 [9] -

Residual variability

b (W) 0.2 [4] -
c (W) 0.5 [fixed] -
b (Wu) 0.237 [4] -
c (Wu) 0.5 [fixed] -

Individual parameters are given by Pi = θ exp(ηi) with θ the typical value and η a random
effect normally distributed with zero mean and standard deviation ω(P ). ρb and ω (ρb) were
computed by approximation from estimates of Rb = 0.007 (37%) and ω (Rb) =0.286 (96%).

Once established, the hypoxia-triggered resistance model can be
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used also as a tool for exploring the expected tumor and host re-
sponses to different administration protocols accounting for the resis-
tance effect. In particular, continuous or intermittent schedules, whose
convenience is still under debate in literature, can be evaluated. For
example, considering the DU145 cell line, tumor-in-host response at
20mg/kg bolus q4dx6, or q4dx3 for two cycles, or q4dx2 for three
cycles, were simulated and reported in Fig. 4.10. In panel A, the com-
parison of the tumor profiles predicted by the model with or without
hypoxia provides a clear view of the negative effect of hypoxia in case of
continuous repeated administration. In panel B, a positive indication
towards the use of the intermittent schedules seems to be present.
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Figure 4.10: Panel A: tumor and mice net body weight predicted by the model with (solid blue
line) or without (dashed blue line) the hypoxia-resistance mechanism following the administration
of 20mg/kg bolus q4dx6; black line showing control group. Panel B: tumor and mice net body
weight predicted by the hypoxia-resistance model after the administration of 20mg/kg bolus
q4dx6 (blue), q4dx3 for two cycles (green), or q4dx2 for three cycles (magenta).

Finally, the hypoxia-triggered resistance model was evaluated also
on literature data relative to patient-derived CRC xenograft mice
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treated with bevacizumab [108]. In this experiment the antiangio-
genic agent was administered twice-a-week at 5mg/kg for a treatment
period of 30 days, 50 days, 30 days followed by 20 days without treat-
ment, 70 days or 70 days-treatment with a drug-break period between
day 30 and 50. The tumor-related parameters were estimated from
the experimental data whilst the hypoxia-triggered resistance model
here developed on DU-145 cell line was used to predict CRC tumor
response to bevacizumab treatment. As documented by model sim-
ulations reported in the Supplementary Material of Chapter 4, our
DEB-TGI model integrated with the hypoxia-resistance mechanism
was able to adequately predict tumor response at the different admin-
istration schedules, showing its good potentialities as prediction tool
of bevacizumab anticancer effects.

4.6 Discussion

In this work, a new PK/PD model of tumor growth inhibition
following anti-angiogenic treatment in xenograft mice was developed
on the basis of the tumor-in-host DEB-based approach described in
Chapter 2.

The proposed model was successfully tested on eight preclinical
experiments performed for the in vivo anti-tumor assessment of two
marked agents: the anti-VEGF monoclonal antibody bevacizumab,
tested on three different tumor cell lines, and cetuximab, an anti-
EGFR monoclonal antibody studied on Colo-125 tumor line. Results
highlighted the good model capability in describing and predicting
the dynamics of both tumor and host net body weight in control and
treated xenograft mice after the administration of anti-angiogenesis in-
hibitors. Differently from other standard PK/PD models completely
focused on the evaluation of the antitumor efficacy [48, 46, 94, 95], the
present approach, thanks to its physiological hypothesis, provides ad-
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ditional information on various animal clinical outcomes such as body
weight, energy-intake and assimilation (anorexia), tumor-host energy
distribution and degradation process of structural biomass (cachexia).

More in details, PK models were obtained from literature [98, 99]
and used to simulate plasma concentration profiles. The unperturbed
tumor-in-host growth was described through the tumor-in-host model
presented in Section. 2.2 with the integration of the food supply reduc-
tion, directly linked to tumor progression (Eq. 3.1), to model the neg-
ative influence that tumor growth itself exerts on host energy intake
(tumor-related anorexia). In particular, the parameter IVu50 could
provide a quantitative measure of tumor-related anorexia and could
be extremely useful to compare its severity among different tumor
cell lines, anticancer drugs or anti-cachectic compounds. For exam-
ple, comparing the three tumor cell lines involved in Exps a-g, all
the experiments on DU145 cell line showed IVu50 higher than 10 cm3

(10.1-12.8 cm3 or higher for exp. b) corresponding to a 10% reduction
of the energy supply in presence of tumor volumes of around 1.5 cm3.
Interestingly, a different behaviour was observed in the other two cell
line, MX1 and HT29. In the first case, no significant host body weight
decrease followed tumor growth and, accordingly, the estimate of IVu50
was so high to result unidentifiable. On opposite, for HT29 tumor cell
line, IVu50 was about 3 cm3, providing a strong energy reduction of
about 35% for a tumor mass of 1.5g. The strong body weight losses
observed in the control animals of experiment f (more than 15% of
BW in a three week period) confirmed the severity of this effect and
suggested a possible higher impact of tumor-related anorexia in case
of a gastric line, as HT29, in comparison of other lines [56, 57].

In addition to the inhibition of host assimilation due to tumor pro-
gression, the mechanistic approach of the model allows to extrapolate
also the time course of energy distribution within the tumor-host sys-
tem (Fig. 4.1). This is governed by the ku(t) function that, at any time
instant, represents the fraction of energy exploited to the host by the
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tumor. From Eq.2.12 it follows that the amount of energy assigned
to the tumor or to the host biomass depends on their corresponding
volumes (Vu and V ), whilst the parameter µu determines the weights
of the two components for unit of volume. For this reason, the pa-
rameter µu can be considered a measurement of tumor aggressiveness,
understood to mean capabilities of sustaining tumor vascularization
and, thus, growth. Considering all the experiments here analyzed, µu
values in the 5.62-7.93 range were observed, thus, for body mass vol-
ume of 30 cm3 and tumor volume of 1.5 cm3, about 25-35% of the
available energy is delivered to the tumor instead of the expected 5%
if µu = 1.

The contribution of both tumor-related anorexia and tumor-host
energy distribution determined the tumor impact on host body weight.
For its evaluation, the product of the assimilation coefficient, ρ(t), and
the fraction 1-ku(t) could be extremely useful.

In case of anti-angiogenic treatment, the drug activity limits the
energy delivery to the tumor and, thus, counteracts the energetic un-
balance between tumor and host. Coherently, the Eq.2.12 for the ku(t)
fraction was modified adding a Imax inhibitory function, parametrized
in terms of IC50 (Eq.4.1) that provides a measurement of drug po-
tency. For example, IC50 estimates for bevacizumab are different for
the three tumor cell lines; this variable magnitudine of inhibition de-
pends on the human/mouse VEGF ratio that could varying with tu-
mor line [89]. Interestingly, the ranking obtained for Exps. b, f and g,
involving the three lines DU145, HT29 and MX1, is the same of that
obtained with the Rocchetti model [48].

In addition to the information provided by the IC50 parameter esti-
mates, further considerations about the drug potency can be obtained
considering the biomass degradation process. In particular, the time
tVMax

, at which this process reaches its maximum rate, δVMax
, repre-

sents a meaningful index of cachexia severity. Hence, the time delay,
∆tVMax

, observed between treated and control groups provides an addi-
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tional quantitative measure of the drug activity on energy distribution
(see Fig. 4.1).

As a further consideration, we can observed that in the beva-
cizumab treated groups the PD effect of the drug was directly linked
to plasma concentration levels. This means that there is not delay
between drug kinetics in plasma and its effect on tumor vasculariza-
tion. Otherwise, based on the biology of tumor angiogenesis, some
delay might be expected as the formation of the micro-vessel network
requires time. For bevacizumab the inclusion of a delay in the model
was not necessary, possibly because its very slow disposition (the half-
life in mice is almost one week) may represent the overall rate-limiting
step. Conversely, for cetuximab a delay compartment was needed;
this difference could be due to the faster disposition of cetuximab or
to an actual delay between plasma concentration dynamics and the
inhibition of tumoral EGFR, as documented in [99].

Furthermore, results obtained on DU145 tumor cell line highlighted
a decrease of bevacizumab efficacy for prolonged treatments, phenom-
ena widely documented both in preclinical and clinical setting. Even if
the lack of adequate experimental information did not allow further in-
vestigations, based on literature data the arising of an adaptive evasive
resistance was hypothesized. More in details, we supposed that promi-
nent vessel pruning and excessive inhibition of new vessel growth by
bevacizumab treatment induced tumor hypoxia. The hypoxia condi-
tion, up-regulating alternative pro-angiogenic signalling pathways, led
to a VEGF-independent re-vascularization. Thus, a hypoxia-triggered
resistance model was developed and integrated in the DEB-TGI anti-
angiogenic model, allowing to describe the decreased efficacy of pro-
longed bevacizumab therapies. Moreover, the modulation of the in-
hibitory drug effect on the basis of the hypoxia condition allowed to
catch inter-individual variability of tumor response to the treatment.

In summary, the tumor-in-host DEB-based framework was extended
to account for the effect of anti-angiogenic treatments. Its mechanis-
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tic approach, based on a set of energetic tumor-host interaction rules,
not only allowed to excellent describe the activity of anti-angiogenesis
inhibitors in xenograft mice but also to investigate and formulate re-
alistic hypothesis on the complexities of resistance to bevacizumab.
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Chapter 5
Testing additivity of
combined anti-angiogenics
with chemotherapy: a tumor
-in-host modeling approach

Angiogenesis inhibitors, due to their specific mode of action, are
particularly suited for combination with different anticancer therapies,
such as chemotherapy and radiotherapy. For this reason, already in
the preclinical setting, specific combination experiments are performed
in order to evaluate if a concomitant therapy of chemotherapeutics
and antiangiogenics show an enhanced antitumor activity. However,
the efficacy of these combinations is variable and apparently, strongly
dependent on the administration schedule. In this scenario, the appli-
cation of model-based methodologies able to evaluate in vivo PD drug-
drug interactions could be extremely relevant to recognize synergisms
or antagonisms and to understand the dynamic interactions between
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tumor progression, anti-angiogenesis inhibitors and chemotherapeutic
drugs.

Starting from the DEB-TGI models previously developed for anti-
angiogenic and cytotoxic agents given as monotherapy, a new tumor-
in-host approach to analyse combination experiments is proposed. A
xenograft study concerning the administration of bevacizumab in com-
bination with NMS-937H, a Polo-Like Kinase 1 (PLK1) inhibitor, is
analyzed as illustrative example.

5.1 Combinations of anti-angiogenics with

chemotherapy

The use of combination therapies (administration of two or more
different drugs) has become a widely adopted strategy in the can-
cer treatment, thanks to its advantages over single agent adminis-
trations. Indeed, drug cocktails can provide a more flexible therapy,
characterized by a better response and a reduced toxicity, due to the
possibility of attacking the tumor through different biological path-
ways at the same time. In particular, as antiangiogenics are generally
cytostatic rather than cytoreductive, combinations involving conven-
tional cytotoxic or targeted chemotherapies may be useful to maximize
the therapeutic activity. As a consequence, interactions between anti-
angiogenic drugs and anticancer agents inducing tumor cell kill have
been often evaluated in many preclinical and clinical studies raising a
considerable debate about their possible advantages [114].

Several studies have suggested that combining anti-angiogenic drugs,
such as the anti-VEGF antibody bevacizumab, with chemotherapy
may result in synergistic antitumor activity. One likely mechanism un-
derlying this synergism is the functional normalization of the chaotic
tumor vasculature following the anti-angiogenic therapy that is tran-
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sient and can potentiate the activity of coadministered chemotherapies
[115, 116]. In addition, the activity of anti-angiogenic drugs can be
enhanced by cytotoxic treatments. For example, chemotherapy can
augment the sensitivity of tumor blood vessels to VEGF inhibition,
which leads to increased antitumor effect in the combination therapy
setting [117].

In contrast to the normalization hypothesis and the expected in-
crease in the delivery of chemotherapy to tumor, it has also been re-
ported that chronic angiogenesis inhibition leads to an increased vas-
cular damage and to a subsequent decrease in cytotoxic drug exposure.

Schedule of administration could be the key factor of these conflict-
ing results [118, 115]. Antiangiogenic therapy may initially normalize
the abnormal tumor blood vessels, thereby improving delivery of oxy-
gen and chemotherapy. However, this window of opportunity, wherein
cytotoxic agents will have maximal access to cancer cells, is only tran-
sitory. Thus, suboptimal scheduling of administration may lead to
antagonism between cytotoxic and anti-angiogenic therapies. Alter-
nately, in some cases, the strong and independent antitumor effects of
the anti-angiogenic drugs can more than compensate for the decrease
in cytotoxic drug exposure, leading to an increased overall antitumor
activity [118].

In this scenario, already the simple qualitative classification of the
drug interactions in the three groups, synergistic, additive or antago-
nistic, is not easily and largely discussed. Finding the most effective
drug cocktails and optimizing doses and schedules in combination reg-
imens are more challenging tasks. How mathematical modeling can
address these issues is not an new question and different modeling
approaches have been proposed to quantify and predict the impact
of anti-angiogenesis combined with chemotherapy on tumor growth
dynamics [48, 46, 119, 120].

An interesting approach is that proposed by Rocchetti et al. in [51]
for combinations of two or more cytotoxic agents and, then, adapted
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for the administration of bevacizumab combined with chemotherapy
[48]. Indeed, starting from an additive model in absence of drug-drug
interaction was proposed and used to assess the nature of drug combi-
nation. In particular, the simulations obtained by the no-interaction
model are compared with the experimental data of the combination
therapy; the validity of the zero-interaction hypothesis is, then, evalu-
ated by visual assessment and a statistical test. Therefore, the model
is able to predict the tumor growth inhibition in case of an additive
effect, whereas any synergistic or antagonistic behaviours are derived
from departures of the experimental data from the predictions and can
be, then, easily integrated in a combination model [48].

In this Chapter, adopting the same strategy proposed by Rocchetti
et al. [51], the tumor-in-host DEB-based approach previously devel-
oped was extended and applied to the more complex framework of the
preclinical combination studies. An illustrative example of its appli-
cation of a real case study is, also, presented.

5.2 Modeling approach to combination ex-

periments

5.2.1 Model structures

The Tumor-in-host DEB-TGI models for the single agent
arms

Tumor and host body growth in the untreated group are described
by the Tumor-in-host DEB-based model introduced in Chapter 2 (panel
A in Fig. 5.1). The model is characterized by the Sys. 2.20-2.22 with
the addition of the Eq. 3.1 to account, also, for the aggravation of
tumor-related cachexia during cancer progressions.

For what concerns animals treated with angiogenesis inhibitors,
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assuming a reduced vascularization and, then, a reduced nutrient sup-
ply to the tumor, the anti-angiogenic action is implemented as an
inhibitory effect on the energy fraction ku(t) appropriated by the tu-
mor to the host (panel B in Fig. 5.1). The anti-angiogenic DEB-TGI
model developed in Chapter 4, is, thus, adopted to describe the single
agent arms treated with an anti-angiogenic drug.

Finally, the Tumor-in-host DEB-TGI model characterized by the
Sys. 2.32 -2.34 is used to describe tumor and host body dynamics in
the single agent chemotherapy arms (panel C in Fig. 5.1). As already
discussed in Chapter 2, tumor cells hit by the drug enter in the transit
compartments leading to cell death; moreover, an inhibited assimila-
tion due to the toxic drug-effect characterizes the treatment period.

The no-interaction Tumor-in-host DEB-TGI combination model

In a combination therapy, when an agent inducing tumor cell kill
(either a standard cytotoxic or a targeted therapy) is given together
with an anti-angiogenic compound, the simplest modeling assump-
tion is that the two drugs do not interact. Under this hypothesis,
the tumor-in-host growth inhibition in the combination arms can be
described by a joint model that incorporates both the previously in-
troduced DEB-TGI anti-angiogenic model and DEB-TGI cytotoxic
model. The resulted no-interaction model (panel D in Fig. 5.1) is de-
scribed by the following systems of differential equations in which the
suffix ‘Cit’ refers to the agent inducing tumor cell kill and ‘Angio’ to
the angiogenesis inhibitors.

• Case
dV

dt
≥ 0 (growth of structural biomass)
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de(t)

dt
=

ν

V 1/3(t)

(
ρ(t)

(
V1∞

Vu1(t) + V (t)

)2/3

− e(t)
)

dV (t)

dt
=

(1− ku(t))νe(t)V 2/3(t)− gmV (t)

g + (1− ku(t))e(t)
dVu1(t)

dt
=

(νV 2/3(t) +mV (t))gku(t)e(t)

ggu + (1− ku(t))gue(t)
− (mu − k2cCit(t))Vu1(t)

dVu2(t)

dt
= k2cCit(t)Vu1(t)− k1Vu2(t)

dVu3(t)

dt
= k1Vu2(t)− k1Vu3(t)

dVu4(t)

dt
= k1Vu3(t)− k1Vu4(t)

ρ(t) = ρb

(
1− Vu1(t)

IVu50 + Vu1(t)

)(
1− cCit(t)

IC50,Cit + cCit(t)

)
ku(t) =

µuVu1

V (t) + µuVu1

(
1− EmaxcAngio(t)

IC50,Angio + cAngio(t)

)
W (t) = dV (1 + ξe(t))V (t)

Wu(t) = dV u(Vu1(t) + Vu2(t) + Vu3(t) + Vu4(t))

(5.1)

with e(t0) = e0, V (t0) = V0, Vu1(t0) = Vu10 and Vu2(t0) = Vu3(t0) =
Vu4(t0) = 0.

• Case −δVMax
≤ dV

dt
< 0 (degradation of structural biomass)
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Only equations relative to dV
dt

and dVu1
dt

differ from the Sys. 5.1:
dV (t)

dt
=

(1− ku(t))νe(t)V 2/3(t)− gmV (t)

(1− ku(t))(e(t) + ωg)

dVu1(t)

dt
=

(
mgµu
gu
−mu

)
Vu1(t)− k2cCit(t)Vu1(t)

(5.2)

• Case
dV

dt
≤ −δVMax

(degradation of structural biomass at the

maximum rate)

Only equations relative to dV
dt

and dVu1
dt

differ from the Sys. 5.1:
dV (t)

dt
= −δVMax

dVu1(t)

dt
=
ku(t)

gu

(
e(t)νV (t)2/3 + δVMax

(e(t) + ωg)

)
−muVu1(t)+

−k2cCit(t)Vu1(t)
(5.3)

5.2.2 Data analysis

All the steps necessary to analyse a combination experiment, in-
cluding both the estimation of model parameters against single agent
arms and the computation of the expected tumor and host body
growth curves for the combination arms, can be carried out in Monolix
(version 2016R1) [80] and R (Version 3.4.4).

The population approach and the data analysis of the individual
tumor and host body weights is developed in accordance with proce-
dures described in Section 4.3.3. Thus, inter-individual variability is
considered only for the initial conditions of structural biomass and vol-
ume of inoculated tumor cells, the effect of the anti-angiogenic agent

111



5. Chapt. 5

and the assimilation process. In particular, log-normally distributed
random effects are added on the parameters W0, Vu0, IC50,Angio and
Rb.

5.2.3 Assessing additivity of the effects

The procedure to assess the additivity of chemotherapy adminis-
tered in combination with an anti-angiogenesis inhibitor within the
Tumor-in-host DEB-based framework, is the following.

• PK of the two drugs are obtained from single agent studies or
taken from the literature. Assuming no PK interactions, the PK
parameters obtained in the single agent studies can be used to
describe the plasma concentrations cCit(t) and cAngio(t), also, in
the combination arms. The hypothesis of no PK interactions,
that is sensitive due to the different elimination pathways of the
two compounds, can be eventually removed if an appropriate PK
study highlights the presence of some PK interaction effects.

• The parameters of the DEB-TGI models (host-related, tumor-
related, cachexia-related and single agent drug-related parame-
ters) are estimated from the specific single agent arms included in
the combination study or from the available single agent studies.
In particular, the typical values and the inter-individual param-
eters are derived through a non-linear mixed effect approach.
Under the assumption of a PD null interaction, model parame-
ters, in particular those relative to the drug activities, preserve
in combination the same values of those derived in single agent
regimens.

• The plasma profiles cCit(t) and cAngio(t) are used as inputs in
the Tumor-in-host DEB-TGI additive model, together with the
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previously derived PD parameters, in order to compute the pre-
dicted tumor and host body growth curves in the combination
study under the hypothesis of no PD interactions between the
two drugs. In particular, thanks to the population approach,
both the typical behaviour and the inter-individual variability of
the tumor-in-host dynamics are predicted.

• A first visual assessment is obtained by the comparison of the ob-
served and predicted individual tumor and host body weights.
In particular, the analysis of tumor profiles allow an immedi-
ate evaluation of the anti-tumor effect of the drug combination:
experimental tumor weights lying below, above or close to the
Predicted Tumor Growth Curves (PTGCs) indicate a synergic,
antagonistic or additive interaction, respectively.

• In addition, a statistical evaluation based on the Normalised
Prediction Distribution Errors (npde) can be performed. In-
deed, metrics for external model evaluation [121, 122, 123] can
be used to test the additivity of the anticancer drug effects. More
precisely, in absence of PD drug interactions, the DEB-TGI ad-
ditive model should adequately describe the experimental tumor
weights collected in the combination arms (H0 hypothesis). If H0

holds, the npde realtive to tumor weights should follow a normal
distribution, N (0, 1) [123]: a t-test and a Fisher test for vari-
ance can be, respectively, used to verify whether the mean and
the variance significantly differ from the expected. The ‘npde’
package for R can be used to compute and analyse npde [124].
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A) Tumor-in-host DEB-based model for control group

B) Tumor-in-host anti-angiogenic DEB-TGI model

C) Tumor-in-host cell-kill DEB-TGI model

D) Tumor-in-host no-interaction DEB-TGI combination model

Figure 5.1: Schematic representation of the no-interaction tumor-in-host DEB-TGI model.
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5.3 Application to experimental data

In order to illustrate the use of the proposed approach, the analysis
of a typical combination experiment is here discussed. The study is one
of those routinely performed within several drug development projects
in Nerviano Medical Sciences (NMS) labs using human carcinoma cell
lines on xenograft mice. Note that, in this context, experimental data
are not used to validate the model that acts as reference, providing
the expected tumor-in-host growth inhibition assuming no interaction
between drugs.

The considered experiment concerns the administration of beva-
cizumab in combination with two different dosages of NMS-P937 [125],
an orally available specific PLK1 inhibitor with antitumor activity in
solid and hematological malignancies, synthesized by NMS and, at
that time, under preclinical assessment.

5.3.1 The experimental combination study

Forty-two male Balb athymic Nu/Nu mice (5 weeks of age, 26-36g
of weight) were obtained from Harlan, S. Pietro al Natisone, Italy, and
HT29 cell line from European Collection of Cell Cultures (ECACC).
The experimental setting is the same described in Section 1.3.1, in
accordance with the best practices and ethic principles.

HT29 tumor-bearing mice were divided in six groups (each of them
composed by 7 animals) and treated with bevacizumab, two differ-
ent dosages of NMS-P937 or combinations of NMS-P937 with beva-
cizumab. NMS-P937 was given Orally (o.s.) at the dose level of 45 or
60 mg/kg on days 9, 10, 11, 13, 14, 15, 17, 18, and 19. Bevacizumab
(20 mg/kg) was given i.p. four times, every 4 days, from day 8. In the
combination arms, the two compounds were administered at the same
dose levels and schedules of the correspondent single agent arms. A
control group, in which mice received vehicle, was also included in the
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experiment. All the information about the treated arms are summa-
rized in Tab. 5.1.

Table 5.1: Information about the combination experiment.

Arm Compounds Dose Route Units Days of administration

a1 bevacizumab 20 mg/kg i.p. 7 in days 8,12,16,20

a2 NMS-937H 45 mg/kg o.s. 7 in days 9,10,11,13,14,15,17,18,19

a3 NMS-937H 60 mg/kg o.s. 7 in days 9,10,11,13,14,15,17,18,19

a4
bevacizumab 20 mg/kg i.p. 7 in days 8,12,16,20

NMS-937H 45 mg/kg o.s. 7 in days 9,10,11,13,14,15,17,18,19

a5
bevacizumab 20 mg/kg i.p. 7 in days 8,12,16,20

NMS-937H 60 mg/kg o.s. 7 in days 9,10,11,13,14,15,17,18,19

In particular, average tumor weight data of controls and treated
arms a1, a3, and a5 were already analyzed in [48], whereas the others
are unpublished.

5.3.2 PK models

Average pharmacokinetic profiles (plasma concentrations) were gen-
erated using mean PK parameters reported in literature. In particular,
for bevacizumab the one-compartment open model with first-order ab-
sorption already adopted in Chapter 4 were used (see Section 4.3.1 for
the parameter values). The NMS-937H plasma profiles were gener-
ated using a two-compartment open model with first order absorp-
tion and elimination and the mean parameter values reported in [48]:
V1/F=2.13 L/kg, k01= 18.8 1/day, k10=49.2/day, k12=141.1 1/day,
k21=10.4 1/day. Simulation of plasma concentration profile for single
agent treated arms a1-a3 are reported in the Supplementary Material
of Chapter 5.

Based on the absence of overlap between the elimination path-
ways of the two compounds, no relevant PK drug-drug interaction
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was expected. Indeed, bevacizumab exposure is not altered signifi-
cantly when used in combination with many standard therapies [97].
For this reason, parameters values obtained after the single-agent ad-
ministrations were also used to generate the PK profiles of the two
drugs the combination arms.

5.3.3 Identification of the single agent models

The DEB-TGI models were fitted simultaneously against the indi-
vidual data of tumor and host body weight collected in the controls
and the single agent treated groups (arms a1-a3). Following the strat-
egy proposed in Section 4.3.3, host-related parameters (g, ν, V1∞, ξ, m,
dV , e0) were kept fixed to estimates obtained from male mice growth
data (same values adopted for Exp. f analyzed in Chapter 4, table
in the Supplementary Material of Chapter 4). Conversely, model pa-
rameters relative to the tumor (µu, gu, mu, IVu50), to the cachexia
process (δVmax) and to the drugs action (IC50,Angio, k1, k2, IC50,Cit)
were estimated from experimental data coming from the single drug
administrations. Fitting was performed in Monolix supposing a resid-
ual error model proportional to the square root of the predictive values,
body or tumor weights (y = f + b

√
fε).

The estimated parameters (typical values, inter-individual and resid-
ual parameters) are reported in Tab. 5.2. In Fig. 5.2, a model sim-
ulations (performed with the typical parameter values) are compared
to the average data of tumor and host body weight in controls and
single agents treated arms. There is good agreement between the data
and simulations, leading us to believe that the population DEB-TGI
model well captured the dynamics associated with bevacizumab and
NMS-937H treatments. Only, tumor re-growth in the 60 mg/kg NMS-
937H, arm a3, is slightly over-estimated. Further model diagnostics
(individual fit plots, residual and GOF plots) are reported in the Sup-
plementary Material of Chapter 5. Here, VPC plots are, also, reported
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in Fig. 5.3.

Table 5.2: Parameter estimates obtained on controls and single agents arms.

Population parameters

Parameter Typical values, Inter-individual variability,
[Dimensions] θ [RSE%] ω [RSE%]

W0 [g] 33.6 [3] 0.065 [15]
e0 [−] 1.22 [fixed] -
ρb [−] 0.867 [NA] 0.278 [NA]
Vu10 [cm3] 0.04 [22] 0.378 [16]
µu [−] 5.55 [47] -
gu [−] 11.55 [48] -
mu [1/day] 0.026 [43] -
IVu50 [cm3] 4.15 [44] -
δVMax

[cm3/day] 0.047 [30] -
IC50,Angio [µM ] 4.62 [29] 0.341 [90]
k1 [1/day] 0.911 [18] -
k2 [1/µMday] 0.171 [29] -
IC50,Cit [µM ] 1.63 [39] -

Residual variability

b (W) 0.239 [4] -
b (Wu) 0.12 [5] -

Individual parameters are given by Pi = θ exp(ηi) with θ the typical value and η a random
effect normally distributed with zero mean and standard deviation ω(P ). ρb and ω (ρb) were
computed by approximation from estimates of Rb = 0.154 (31%) and ω (Rb) =1.02 (15%).
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Figure 5.2: Single agent arms: Plots with average observed data (symbols) and model simulations
using typical parameters (lines) relative to mice body and tumor weights obtained in controls
and single agent arms. Vertical bars pm represents standard error.
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Control arm Bevacizumab 10 mg/kg
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Figure 5.3: Single agent arms: VPC plots stratified by group (1000 replicates of the dataset) rel-
ative to placebo and the single agent arms; dashed lines show the 10th, 50th and 90th percentiles
of observed data, shaded areas represent the 90% confidence interval for the corresponding model
predicted percentile, empty dots are individual observed data.

5.3.4 Assessment of the additivity of the effects

To assess possible interactions between the two drugs, the predicted
tumor and host body weight curves of the combination arms a4 and a5

were generated by the additive DEB-TGI model (Sys. 5.1-5.3) and the
correspondent drug concentration profiles (Fig. 5.4). In particular, in
Fig. 5.5 the predicted tumor and host body weight curves assuming
additivity of the effects and using the typical values of parameters are
over-imposed to the observed average data of the combination arms.
Further, Fig. 5.6 shows the external VPC plots obtained simulating
1000 replicates of the dataset.

From the visual assessments, data of the combination arms seem
not show significant departures from additivity hypotheses for what
concerns both host body cachexia and tumor growth inhibition. Only
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treated arm a5, relative to the combination of bevacizumab with NMS-
937H at dose level 60 mg/kg could indicate a slight antagonism in
the anticancer effect. However, this phenomena is probably only a
consequence of the over-estimated tumor re-growth in the NMS-937H
single agent arm a3.

Focusing the attention on antitumor effect, the absence of signifi-
cant departures from the expected tumor growth inhibition assuming
no drug interactions, was confirmed by the statistical analysis. Npde
relative to tumor weights were computed and analyzed in R and the
obtained p-values for the two statistical tests are reported in Tab. 5.3
for both the combination arms. Here, the H0 hypothesis is that the
additive model adequately describes the individual tumor weight data
in the combination arms (that is, absence of PD drug-drug interac-
tion). Thus, from the obtained p-values there is no evidence to reject
the additive hypothesis.
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Figure 5.4: Combination arms: Plasma concentration profiles in the treated arm a4 and a5.

Table 5.3: p-values for the statistical tests performed on npde.

Arm T-test Fisher test

a1 0.546 0.681

a2 0.343 0.958
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Figure 5.5: Combination arms: Plots with average observed data (symbols) and model predic-
tion using typical parameters (lines) relative to mice body and tumor weights obtained in the
combination arms. Vertical bars pm represents standard error.
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Figure 5.6: VPC plots stratified by group (1000 replicates of the dataset) relative to the com-
bination arms; dashed lines show the 10th, 50th and 90th percentiles of observed data, shaded
areas represent the 90% confidence interval for the corresponding model predicted percentile,
empty dots are individual observed data.

5.4 Discussion

Given the extensive use of combination therapies in the treatment
of cancer, the Tumor-in-host DEB-based approach was extended and
adapted to the more complex framework of the combination experi-
ments. Due to their paramount importance in the clinical practise, the
focus of this Chapter was placed on anti-angiogenic and chemother-
apeutic agents. Thus, starting from the DEB-TGI models previ-
ously presented and following the method proposed by Rocchetti et
al. [51, 48], a new tumor-in-host modeling approach to evaluate the
effects of angiogenesis inhibitors given in combination with cytotoxic
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agents was developed.
In particular, a tumor-in-host growth inhibition model able to pre-

dict the response of tumor and host organism to a combined treatment
of anti-angiogenic and cytotoxic compounds in case of additivity of
the effects (no-interaction hypothesis) was developed. The DEB-TGI
models introduced in Chapters 2 and 4 for the anticancer activity of
cell-killing agents and angiogenesis inhibitors are adopted as references
to describe drug effects in monotherapy regimens. Single agent exper-
iments can be used to obtain estimate of the model parameters, even
if, controls and single agent arms of the same experiment have to be
prefer to assess drug effects. Then, based on these estimates, the no-
interaction DEB-TGI model was used to predict the expected tumor
and host body growth profiles in the combination experiment assum-
ing no drug-drug interactions. By comparing the predicted curves with
actual observed data, the presence of possible interactions and their
nature can be easily ascertained by visual inspection. In addition to
this qualitative evaluation, a statistical test based on the analysis of
npde relative to tumor weight data, was, also, developed.

The proposed modeling approach would like to be an alternative
efficacious tool to overcome the complex and discussed problem of the
evaluation of drug combinations by exploiting simulations. In order to
illustrate its application within the industrial drug discovery process,
a real case study has, also, been presented and discussed.

The considered experiment concerns the combination of the anti-
VEGF bevacizumab with two different dosages of the PLK1 inhibitor
NMS-937H. From the obtained results, no significant differences from
the expected effect under the no-interaction hypothesis were found un-
der both efficacy (TGI) and safety (cachexia onset) profiles. However,
an incremental tumor growth inhibition due to bevacizumab coad-
ministration was evident from tumor weight profiles, highlighting the
advantage of using the combination therapy in comparison with the
single-agent therapies.
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5.4. Discussion

The combined effects of bevacizumab and NMS-937H were, also,
evaluated by Rocchetti et al. in [48]. In that case, the authors found
that the combination of bevacizumab and NMS-P937, administered at
dose level 60 mg/kg, produced an effect lower than that expected from
the Simeoni TGI and Rocchetti TGI models under the no-interaction
hypothesis. As a consequence, a model, able to capture this less than
additive effect, was developed, including an interaction term: a stan-
dard inhibitory function linked the bevacizumab concentration was
added on the parameter describing the NMS-P937 potency (k2,inhibited).

The conflicting results are worth of further considerations. In both
the works, first the concept of additive effect was defined through the
development of a theoretical no-interaction model. Then drug com-
bination were classified as synergistic or antagonistic on the basis of
departures of observed data from the predictions expected by the no-
interaction model. However, the two no-interaction models defining
additivity were built using different references for describing the drug
activity in the monotherapy regimes. As a consequence, also the clas-
sification of drug interactions in the three groups, synergistic, additive
or antagonist, may be different. More in details, in [48] the starting
points were the Simeoni TGI and Rocchetti TGI models, while, in this
Chapter, the additive model was developed on the basis of the more
mechanistic framework provided by the DEB theory.

Interestingly, the new approach did not found relevant differences
from the expected effect under the additive hypothesis as if its more
mechanistic framework, based on the tumor-host energetic interac-
tions, was able, alone, to take into account drug activity in the combi-
nation regimens. This trend seems to be confirmed by the analysis of
further xenograft experiments (here not presented) in which the effect
of bevacizumab combined with other cytotoxic agents was tested. Ob-
viously, this hypothesis has to be further evaluated on a larger number
of experimental cases. However, if it will be confirmed, the tumor-in-
host DEB-based framework may provide an effective instrument not
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only to classify the nature of combination but also to predict the effect
of chemotherapy coadministered with anti-angiogenic agents.
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Chapter 6
Overall conclusions

Oncology has one of the poorest records for investigational drugs in
clinical development with hight attrition rates primarily due to adverse
efficacy and safety results in Phase II and III. A likely cause underlying
this relevant number of failures is a preclinical drug assessment based
on animal models slightly representative of the human condition and
the lack of an adequate predictive paradigm of preclinical to clinical
translation.

Pharmacometric models could be useful tools to extract, synthesize
and integrate information obtained in the often inadequate in vivo
preclinical experiments, supporting, thus, the transfer of the preclinical
results to the clinical setting.

My thesis deals with different M&S applications in the preclinical
development of anticancer drugs, highlighting the advantages coming
from the development of statistical-mathematical approaches, based
on PK/PD models in better characterizing, understanding and pre-
dicting PK/PD behaviour of oncology agents.

The actual purpose of this work is a mathematical modeling of in-
teractions between tumor and host organism during anticancer drug
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treatments in preclinical studies. To this aim, a tumor-in-host growth
model based on a set of tumor-host interaction rules taken from the
Dynamic Energy Budget (DEB) theory was developed and applied to
analyse different experiments typically performed during the preclini-
cal development of an anticancer drug.

First, a PK/PD model of cachexia onset and tumor growth inhibi-
tion (TGI) after anticancer administration was proposed integrating
the DEB based tumor-in-growth model with a set of TGI equations
derived from the Simeoni TGI model (Chapter 2). This new model is
able to describe in a unique framework the different aspects character-
izing the in vivo tumor growth studies: the drug cytotoxic activity on
the tumor, the onset of cachexia due to the treatment, the effect of the
tumor on the host and, viceversa, the influence of the host condition
on tumor dynamics. Moreover, the tumor-in-host DEB-TGI model
is able to quantify the antitumor effect of the treatment and, at the
same time, to provide a quantitative measurement of its effect on the
host growth. In addition, the contributions to cachexia attributable
to the drug (drug-related cachexia) and to the tumor (tumor-related
cachexia) are separated by the model. A further advantage of this
tumor-in-host modeling approach is the opportunity to disentangle
the direct drug effect on the tumor cells from the slowdown in tu-
mor growth due to the depletion of the host energies, avoiding, in this
way, an overestimation of the actual antitumor drug efficacy. Biologi-
cally relevant considerations were, also, derived from a mathematical
analysis of the model: tumor dynamics are characterized by an early
exponential growth phase similar to that of the Simeoni TGI model
and often observed in experimental setting. Moreover, the minimum
constant concentration necessary for the asymptotic tumor eradication
was, also, mathematically obtained.

The tumor-in-host DEB-based model, initially developed on aver-
age data of xenograft mice, was adapted to analyse individual data
of a preclinical study performed for the assessment of etoposide ef-
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fects on Wistar rats (Chapetr 3). Due to the use of species-dependent
physiological parameters the model resulted applicable also in an ex-
perimental contest involving a different target species (rats), while the
population approach, based on non-linear mixed effect techniques, al-
lowed to describe for the first time the tumor-host interactions on a
individual level. The unusual design of the study, characterized by
the presence of tumor-free animals treated or not with etoposide, al-
lowed to completely exploit the model capabilities in describing and
discerning all the dynamics concerning tumor-host interactions and,
in particular, cachexia onset. The comprehensive experimental de-
sign, also, helped to solve identifiability issues previously found [61].
Finally, the PK/PD relationship between plasma of free-intratumoral
etoposide concentration and tumor growth kinetics was comparatively
investigated. In particular, only the use of the free-interstitial tu-
mor concentration, accounting for the non-linear drug perfusion in
the tumor tissue, enabled the DEB-TGI model to catch the schedule-
dependence of the etoposide inhibitory effect on tumor growth and
proved to be a better surrogate for the active concentration exhibiting
a cytotoxic effect on tumor cells.

Angiogenesis inhibitors are widely used in the anticancer treatment
with the goal of cutting off tumor blood vessels and, so, blocking the
proliferation of cancer cells that are deprived of the oxygen and nu-
trients supply. Thanks to the set of energy balance rules provided
by the DEB theory, the tumor-in-host approach, already used to de-
scribe the cell-kill activity of cytotoxic agents, was easily adapted to
account for the cytostatic effect of angiogenesis inhibitors (Chapter
4). In particular, the tumor growth modulation observed after an
anti-angiogenic treatment is adequately modeled as the consequence
of an inhibited energy supply to the tumor that follows the reduc-
tion of tumor vascularization. Moreover, the mechanistic approach
on which the anti-angiogenic DEB-TGI model is based allowed to in-
vestigate and formulate realistic hypothesis about the development of
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resistance to bevacizumab in DU145 tumor cell line. Starting from
literature evidences, a hypoxia-triggered resistance model was devel-
oped and integrated in the DEB-TGI anti-angiogenic model, allowing
to describe the decreased efficacy of prolonged bevacizumab therapies.

Within the drugs co-administration framework, recognizing possi-
ble pharmacodymamic drug-drug interactions represents a fundamen-
tal step for the definition and the optimization of new useful com-
bination therapy for the cancer treatment. For this reason, starting
from the work of Rocchetti et al [51], a strategy for assessing addi-
tivity of anti-angiogenic and chemotherapeutic agents given in in vivo
combination studies is proposed, also, for the tumor-in-host DEB-
based framework. The developed approach is based on the definition
of a population no-interaction tumor-in-host DEB-TGI model able to
predict the expected tumor and host response to a combination ther-
apy assuming the absence of drug-drug interactions. A case study
involving bevacizumab and NMS-937H was analysed, showing how in
this case the no-interaction model is able to adequately describe also
tumor-in-host dynamics in the combination experiments.

In summary, the proposed models want to provide new valid tools
for exploiting data routinely generated in the preclinical phases of an-
ticancer drug development process. The advantages of the developed
tumor-in-host approach are manifold. Indeed, with the DEB frame-
work, for the first time, both tumor and host body responses to an
anticancer drug treatment can be simultaneously described allowing
to take into account relevant dynamics that can potentially affect an
unbiased estimate of the anticancer drug efficacy. Between these of-
ten undervalued dynamics, a key role is played by the cachexia onset
both induced by tumor progression and anticancer drug treatment. In
particular, the clinical relevance of the tumor-associated cachexia led
to an increasing interest in developing a clear alignment of the ani-
mal models with the intended clinical entity in order to facilitate the
translation of cachexia research [56, 57]. Furthermore, drug-related
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cachexia could be considered an efficacious preclinical endpoints for
the toxic effect of the anticancer therapy and its appropriate mod-
eling assessment could help to select the most promising compounds
and administration schedules able to show an adequate efficacy and a
tolerable toxicity.

The tumor-in-host models, due to the solid mechanistic approach
provided by the DEB theory, not only showed excellent capabilities in
describing, summarizing and predicting preclinical experimental data
but also provided useful instruments to investigate and formulate re-
alistic hypothesis on the complex dynamics characterizing the the
tumor-in-host in vivo preclinical studies. Finally, even if the model
has been originally developed on mouse model, the use of species-
dependent physiological parameters allowed the translation from one
species to another. Interestingly, the DEB-based model predicts an ex-
ponential tumor growth that has been observed also in several types
of human malignancies. These findings, although preliminary, encour-
age to deeper investigate the applicability of the model as an efficient
translational tool from animal to human studies of anticancer drug
activity.

The results presented in the previous chapters showed that the
tumor-in-host modeling approach, due to the mechanistic basis taken
from the DEB theory, provides a framework flexible and general enough
to be applicable to different preclinical settings.
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Appendix A
Supplementary Material to
Chapter 2

A.1 Proofs of propositions

Proposition 1:
By zeroing the state derivatives in the Sys. 2.11, it follows that the
equilibrium states ē and V̄ have to satisfy the relationships

0 = ν

(
%V

2/3
1∞

V̄
− ē

V̄ 1/3

)
with V̄ > 0 (A.1)

0 =
νēV̄ 2/3 − gmV̄

g + ē
. (A.2)

Eq. A.1 implies that

ē = ρ(V1∞/V̄ )2/3 (A.3)
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and replacing Eq. A.3 and Eq. 2.7 (for m) in Eq. A.2, it follows that

V̄ =
νρV

2/3
1∞

gm
= ρV1∞ . (A.4)

Finally, from Eqs. A.4 and A.3, we obtain ē = ρ1/3.

Proposition 2:
To study its asymptomatically stability, we have linearized the Sys. 2.11
in a neighborhood of the equilibrium point P = (ē, V̄ ) = (ρ1/3, ρV1∞),
computing the Jacobian matrix and evaluating it in P :

J1 =


−ν

ρ1/3V
1/3

1∞

−2ν

3ρV
4/3
1∞

νρ2/3V
2/3

1∞
g + ρ1/3

−ν
3V

1/3
1∞ (g + ρ1/3)

 .

Note that, for biologically relevant values of parameters (ρ > 0,
ν > 0, g > 0 and V1∞ > 0), the trace of J1 is always negative while
its determinant always positive. Thus, the eigenvalues of J1 are both
negative and the equilibrium point P is asymptotically stable.

Proposition 3:
By zeroing the state derivative in the Sys. 2.23, it follows that the
equilibrium points (ē, V̄ , V̄u) have to satisfy the relationships:

0 =
ν

V̄ 1/3

(
ρ

(
V1∞

V̄ + V̄u

)2/3

− ē
)

(A.5)

0 = FV (ē, V̄ , V̄u) (A.6)

0 = FVu(ē, V̄ , V̄u) . (A.7)

Eq. A.5 implies

ē = ρ

(
V1∞

V̄ + V̄u

)2/3

. (A.8)
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Depending on V̄ and V̄u, three cases are possible (Cases A, B and C).
Case A: From the Sys. 2.24, Eq. A.6 implies

νēV̄ 2/3 − gm
(
µuV̄u + V̄

)
= 0 . (A.9)

Replacing the expression of ē (Eq. A.8), Eq. A.9 becomes

V̄ + µuV̄u = ρV1∞

(
V̄

V̄u + V̄

)2/3

, (A.10)

that in particular meets the equality in the conditions of Case A
(Eq. 2.26).
From the Sys. 2.25, Eq. A.7 implies[ (

νV̄ 2/3 +mV̄
)
gēµu

ggu
(
µuV̄u + V̄

)
+ guēV̄

−mu

]
V̄u = 0 . (A.11)

Now two cases are possible.
If V̄u = 0, Eq. A.11 is automatically satisfied and from Eqs. A.8 and
A.10 it follows that V̄ = ρV1∞ and ē = ρ1/3.
If V̄u 6= 0, recalling the expression of ē (Eq. A.8), the Eq. A.10 im-

plies that µuV̄u + V̄ = V̄ 2/3V
1/3

1∞ ē. Thus, replacing it in Eq. A.11 and
recalling the expression of m (Eq. 2.7), the Eq. A.11 becomes

mgµu
gu
−mu = 0 , (A.12)

that is satisfied if and only if λ̃0 = 0.
Case B: From the Sys. 2.24, again Eq. A.6 implies νēV̄ 2/3 −

gm(µuV̄u + V̄ ) = 0 and replacing the expression of ē (Eq. A.8), we
refind Eq. A.10. Nevertheless, it does not satisfy the conditions of
Case B (Eq. 2.27), thus there is not admissible solutions.

Case C: From the Sys. 2.24, Eq. A.6 becomes −δVMax
= 0, that is

never eligible from a biologically point of view.
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In summary, if λ̃0 6= 0, the system admits a unique equilibrium
point (ē, V̄ , V̄u) = (ρ1/3, ρV1∞, 0); if λ̃0 = 0 there are infinite equilib-
rium points that have to satisfy Eqs. A.8 and A.10.

Proposition 4:
Because in P1 the conditions of Case A are satisfied, the system is
characterized by the equations:



de(t)

dt
=

ν

V 1/3(t)

(
ρ

(
V1∞

Vu(t) + V (t)

)2/3

− e(t)
)

dV (t)

dt
=
V
[
νe(t)V (t)2/3 − gm(µuVu(t) + V (t))

]
g(µuVu(t) + V (t)) + e(t)V (t)

dVu(t)

dt
=

[ (
νV (t)2/3 +mV (t)

)
ge(t)µu

ggu(µuVu(t) + V (t)) + gue(t)V (t)
−mu

]
Vu(t)

(A.13)

Thus, to study its asymptomatically stability, we have linearized the
Sys. A.13 in a neighborhood of the equilibrium point P1, computing
the Jacobian matrix and evaluating it in P1:

J2 =



−ν
ρ1/3V

1/3
1∞

−2ν
3ρV

4/3
1∞

−2ν
3ρV

4/3
1∞

νρ2/3V
2/3
1∞

g + ρ1/3
−ν

3V
1/3
1∞ (g + ρ1/3)

−µuν
V

1/3
1∞ (g + ρ1/3)

0 0
νµu

V
1/3
1∞ gu

−mu


.

Because the 2x2 principal sub-matrix of J2 coincides with the matrix
J1 which eigenvalues are always negative (for biologically relevant val-
ues of parameters), the stability of P1 is determined only by the value

of (νµu)/(V
1/3

1∞ gu)−mu that, recalling Eq. 2.7, we can re-write as λ̃0.
Thus, P1 is locally asymptotically stable if λ̃0 < 0, unstable if λ̃0 > 0.
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Proposition 5:
By zeroing the state derivative in Sys. 2.35, it follows that the equilib-
rium points (ē, V̄ , V̄u1, V̄u2, V̄u3, V̄u4) have to satisfy the relationships:

0 =
ν

V̄ 1/3

(
ρ(c̄)

(
V1∞

V̄ + V̄u1

)2/3

− ē
)

(A.14)

0 = FV (ē, V̄ , V̄u1) (A.15)

0 = FVu(ē, V̄ , V̄u1)− k2c̄V̄u1 . (A.16)

0 = k2c̄V̄u1 − k1V̄u2 . (A.17)

0 = k1(V̄u2 − V̄u3) . (A.18)

0 = k1(V̄u3 − V̄u4) . (A.19)

Eq. A.14 implies

ē = ρ(c̄)

(
V1∞

V̄ + V̄u1

)2/3

. (A.20)

Eqs. A.17-A.19 imply

V̄u2 = V̄u3 = V̄u4 =
k2c̄

k1

V̄u1 . (A.21)

Depending on V̄ and V̄u, three cases are possible (Cases A, B and C).
Case A: From the Sys. 2.24, Eq. A.15 implies

νēV̄ 2/3 − gm
(
µuV̄u1 + V̄

)
= 0 . (A.22)

Replacing the expression of ē (Eq. A.20), Eq. A.22 becomes

V̄ + µuV̄u1 = ρ(c̄)V1∞

(
V̄

V̄u1 + V̄

)2/3

, (A.23)

that in particular meets the equality in the conditions of Case A
(Eq. 2.26).
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From the Sys. 2.25, Eq. A.16 implies

[ (
νV̄ 2/3 +mV̄

)
gēµu

ggu
(
µuV̄u1 + V̄

)
+ guēV̄

−mu

]
V̄u1 = 0 . (A.24)

Now two cases are possible.
If V̄u1 = 0, Eq. A.24 is automatically satisfied and from Eqs. A.20,A.21
and A.23 it follows that ē = ρ1/3, V̄ = ρV1∞ and V̄u2 = V̄u3 = V̄u4 = 0.
If V̄u1 6= 0, recalling the expression of ē (Eq. A.20), the Eq. A.23

implies that µuV̄u1 + V̄ = V̄ 2/3V
1/3

1∞ ē. Thus, replacing it in Eq. A.24
and recalling the expression of m (Eq. 2.7), it follows

mgµu
gu
−mu − k2c̄ = λ̃0 − k2c̄ = 0 , (A.25)

that, because λ̃0 > 0, is satisfied if and only if c̄ = λ̃0/k2.

Case B: From the Sys. 2.24, again Eq. A.15 implies νēV̄ 2/3 −
gm(µuV̄u1 + V̄ ) = 0 and replacing the expression of ē (Eq. A.20), we
refind Eq. A.23. Nevertheless, it does not satisfy the conditions of
Case B (Eq. 2.27), thus there is not admissible solutions.

Case C: From the Sys. 2.24, Eq. A.15 becomes −δVMax
= 0, that

is never eligible from a biologically point of view.

In summary, if c̄ 6= λ̃0/k2, the system admits a unique equilib-
rium point (ē, V̄ , V̄u1, V̄u2, V̄u3, V̄u4) = (ρ(c̄)1/3, ρ(c̄)V1∞, 0, 0, 0, 0); if c̄ =
λ̃0/k2 there are infinite equilibrium points that have to satisfy Eqs. A.20,
A.21 and A.23.

Proposition 6:
Because in Pc,1 the conditions of Case A are satisfied, the system is
characterized by the equations:
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de(t)

dt
=

ν

V 1/3(t)

(
ρ(c̄)

(
V1∞

Vu1(t) + V (t)

)2/3

− e(t)
)

dV (t)

dt
=
V
[
νe(t)V (t)2/3 − gm(µuVu1(t) + V (t))

]
g(µuVu1(t) + V (t)) + e(t)V (t)

dVu1(t)

dt
=

[ (
νV (t)2/3 +mV (t)

)
ge(t)µu

ggu(µuVu1(t) + V (t)) + gue(t)V (t)
−mu − k2c̄

]
Vu1(t)

dVu2(t)

dt
= k2c̄Vu1(t)− k1Vu2(t)

dVu3(t)

dt
= k1Vu2(t)− k1Vu3(t)

dVu4(t)

dt
= k1Vu3(t)− k1Vu4(t)

(A.26)

Thus, to study its asymptomatically stability, we have linearized the
Sys. A.26 in a neighborhood of the equilibrium point Pc,1. The Jaco-
bian matrix evaluated in Pc,1 is given by

J3 =



−ν
ρ(c̄)1/3V

1/3
1∞

−2ν

3ρ(c̄)V
4/3
1∞

−2ν

3ρ(c̄)V
4/3
1∞

0 0 0

νρ(c̄)2/3V
2/3
1∞

g + ρ(c̄)1/3
−ν

3V
1/3
1∞ (g + ρ(c̄)1/3)

−µuν
V

1/3
1∞ (g + ρ(c̄)1/3)

0 0 0

0 0 λ̃0 − k2c̄ 0 0 0
0 0 k2c̄ −k1 0 0
0 0 0 0 −k1 0
0 0 0 0 0 −k1


.

Because the 2x2 principal sub-matrix of J3 coincides with the ma-
trix J1 which eigenvalues are always negative (for biologically relevant
values of parameters) and k1 > 0, the stability of Pc,1 is determined
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only by the sign of λ̃0 − k2c̄. Thus, because λ̃0 > 0, Pc,1 is locally
asymptotically stable if c̄ < λ̃0/k2, unstable if c̄ > λ̃0/k2.
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B.1 PK models of etoposide in Wistar

rats

PK model of etoposide in W256 tumor-bearing Wis-
tar rats

The four-compartment model reported in [76] was used to simulate
the etoposide concentration-time profiles in plasma (CPlasma) and in
two tumor regions (CT,Periphery and CT,Center) in the tumor-bearing
animals. The model structure is reported in Fig. ??. The system of
equations describing the model is

139



B. Supplementary Material to Chapter 3



dA1(t)

dt
= A2k21 + A3k31 + A4k41 − A1(k10 + k12)+

−
(

VmaxA1

V1km + A1

)
−
(

VmaxA1

V1km + A1

)
dA2(t)

dt
= A1k12 − A2k21

dA3(t)

dt
=

(
VmaxA1

V1km + A1

)
− A3k31

dA4(t)

dt
=

(
VmaxA1

V1km + A1

)
− A4k41

CPlasma(t) =
A1(t)

V1

CT,Periphery(t) =
A3(t)

V3

CT,Center(t) =

(
A3(t)

V3

Fp

)
+

(
A4(t)

V4

(1− Fp)
)

(B.1)

where A1, A2, A3 and A4 are the drug amounts in the central (plasma),
peripheral (tissues other than the tumor), periphery of the tumor and
center of the tumor compartments, respectively; k10 is the elimination
micro-constant rate from the central compartment and k12, k21, k31

and k41 are the distribution micro-constant rates between compart-
ments; V1 represents the volume of the central compartment and V3

and V4 are the volume of the tumor periphery and tumor centre com-
partments, respectively; Vmax is the maximum distribution rate; km is
the Michaelis-Menten constant; Fp is the fraction of the centre region
with viable cells similar to these of the periphery of the tumor.
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A covariate model was included on V1:

V1 = 0.171

(
BW

0.290

)0.581

(B.2)

where 0.171 is the (population) volume of the central compartment
estimated by the popPK model; 0.581 is the exponential scaling factor
empirically estimated from data; BW is the animal individual body
weight (kg); and 0.290 is the mean body weight (kg) of the PK group.

The simulated total plasma and free peripheral tumor drug concen-
tration -time profiles are reported in Fig. ??. A comparison of plasma
and tumour concentration profiles after a single-bolus administration
is shown Fig. ??.

Schematic representation of the etoposide popPK model in W256 tumor-bearing Wistar rats as
reportes [76].

PK model of Etoposide in tumor-free Wistar rats

A classical three-compartment model, identified on plasma etopo-
side concentration data collected in W256 tumor-bearing Wistar rats,
was used to simulate etoposide plasma cocentration in tumor-free ani-
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Simulated total plasma (panels A) and free peripheral tumor (panels B) drug concentration
profiles in tumor-bearing rats.
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Simulated total plasma (solid line) and free peripheral tumor (dashed line) drug concentration
profile after a single-bolus administration in tumor-bearing rats.

mals 1 . The volume of central (plasma) compartment (V) was modeled

1No ad-hoc PK studies were performed in healthy animals. However, the main
etoposide plasma PK parameters (AUC, CL and t1/2) obtained for W256 tumor-
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as a function of the animal body weight (BW) through the following
covariate model:

V = V1

(
BW

0.290

)β
(B.3)

where V1 is the (population) volume of the central compartment; β
is the exponential scaling factor; BW is the animal individual body
weight (kg); and 0.290 is the mean body weight (kg) of the PK group.

The simulated total plasma drug concentration-time profile is re-
ported in Fig. ??.
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Simulated total plasma concentration-time profiles in the tumor-free rats.

bearing rats [76] were similar to those reported in the literature for healthy animals
[78, 79].
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C.1 DEB-based model of data relative to

tumor-free CD1 athymic Nu/nu mice

The following growth chart relative to CD1 athymic Nu/Nu mice,
published by Harlan Laboratories Sprague Dawley, Inc. (HSD), was
analyzed to obtain suitable values for the host-related parameters for
Exp g. To this aim, the average body weight data of female mice from
3 to 12 weeks old were considered.

Following the identification strategy proposed in [61], the host-
related parameters (ν, g, and V1∞) of the tumor-free individual model
(Eq. 2.11) were estimated by fitting the tumor-free DEB-based model
against average body weight data of female mice. Thus, the fraction
of food consumption, ρ, was fixed to 1 according to indications of ad
libitum food feeding [59]; the parameter m was derived by Eq. 2.7
and the specific weight of structural biomass dV was fixed to 1 g/cm3.
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Growth chart of CD1 athymic Nu/Hu mice selected for the identification of the host-related
parameters. Mean values (dots) and standard deviations (bars) are shown for male and female
mice.

Assuming that the body fat reflects the energy reserves, the param-
eter ξ was approximated with the product of the fat density and the
body fat percentage and fixed to 0.184. Finally, by choosing the mice
birth as initial time, the initial value of mice weight (W0) and of en-
ergy reserve (e0) were fixed to 1 g and 0, respectively, while the initial
volume of structural biomass (V0) was calculated Eq. 2.10. The iden-
tification of the Tumor-free DEB-based model Sys.2.11 was performed
by supposing a proportional (to predictive values) error model.

The obtained estimates for the model and the residual error pa-
rameter (denoted as b) as well as the body weight predictions together
with the experimental data are reported in the following.

The value of the energy reserves at the inoculation day (e0) was,
determined by simulating the tumor-free DEB-based model: 1.354 was
found for 7 week-old female mice.
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Physiological parameter estimates (RSEs between brackets) of the Tumor-free DEB-based model
identified on female CD1 mice.

g ν V1∞ b
- [cm/week] [cm3] -

15.4 7.27 27.1 0.0813
(7%) (38%) (17%) (22%)
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Body weight predictions, obtained by the tumor-free DEB-based model, are shown together with
experimental data (mean values) relative to female CD1 mice.

C.2 Tables with parameter values

For each experiments, the tumor-in-host antiangiogenic DEB-TGI
model was identified fixed the following host-related parameters.
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Host-related parameter values

g ν V1∞ ξ m e0
- [cm/day] [cm3] - [1/day] -

Experiment a-h 15 1.260 31.2 0.212 0.027 1.345
(male Bulb mice 6-week old)

Experiment b-c-d-e 15 1.260 31.2 0.212 0.027 1.267
(male Bulb mice 7-week old)

Experiment f 15 1.260 31.2 0.212 0.027 1.22
(male Bulb mice 8-week old)

Experiment g 15.4 1.039 27.1 0.184 0.022 1.354
(female CD1 7-week old)

For each experiments, values of ρb and ω(ρb) were approximated
from the following estimates of Rb and ω (Rb).

Estimates of typical values and sd for parameter Rb .

Parameter Exp a Exp b Exp c Exp d Exp e Exp f Exp g Exp h
[Dimensions] RSE% RSE% RSE% RSE% RSE% RSE% RSE% RSE%

Rb 0.003 0.014 0.007 0.003 0.015 0.121 0.048 0.246
- (> 100%) (50%) (73%) (94%) (68%) (48%) (46%) (50%)

ω (Rb) 0.793 1.57 2.18 2.25 1.93 0.927 1.23 1.4
- (51%) (23%) (23%) (26%) (25%) (25%) (26%) (20%)
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C.3 Plasma concentration profiles
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Plasma concentration profiles for Exps. a-h.
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C.4 Diagnostic plots

Diagnostic plots for experiment a
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Average data: plots with average observed (symbols) and model-fitted (lines) mice body weight
and tumor growth curves obtained in Exp. a for the placebo (light black) and 10 mg/kg beva-
cizumab (blue) arms.
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Individual data: VPC plots stratified by group (500 replicates of the dataset) relative to placebo
and 10 mg/kg bevacizumab arms; dashed lines show the 10th, 50th and 90th percentiles of
observed data, shaded areas represent the 90% confidence interval for the corresponding model
predicted percentile, empty dots are individual observed data.
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Individual data: GOF plots for mice body (left panels) and tumor weight (right panels) relative
to placebo and 10 mg/kg BVZ arms; solid and dashed lines indicate identity line and linear
regression fit, respectively.

-3

-2

-1

0

1

2

3

0 5 10 15 20 25 30 35 40
Time (day)

W
ei

gh
te

d 
R

es
id

ua
ls

 (M
ic

e 
bo

dy
 w

ei
gh

t)

-3

-2

-1

0

1

2

3

20 25 30 35
Ind. Pred. - Mice body weight (g)

W
ei

gh
te

d 
R

es
id

ua
ls

 (M
ic

e 
bo

dy
 w

ei
gh

t)

-4

-3

-2

-1

0

1

2

3

4

0 5 10 15 20 25 30 35 40
Time (day)

W
ei

gh
te

d 
R

es
id

ua
ls

 (T
um

or
 w

ei
gh

t)

-4

-3

-2

-1

0

1

2

3

4

0 2 4 6
Ind. Pred. - Tumor weight (g)

W
ei

gh
te

d 
R

es
id

ua
ls

 (T
um

or
 w

ei
gh

t)

Individual data: residual plots for mice body (left panels) and tumor weight (right panels).
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Control arm Bevacizumab 10 mg/kg

9 10 11

5 6 7 8

1 2 3 4

0 10 20 30 40 0 10 20 30 40 0 10 20 30 40

0 10 20 30 40

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

Time (days)

M
ic

e
 b

o
d

y
 w

e
ig

h
t 

(g
)

20 21 22

16 17 18 19

12 13 14 15

0 10 20 30 40 0 10 20 30 40 0 10 20 30 40

0 10 20 30 40

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

Time (days)

M
ic

e
 b

o
d

y
 w

e
ig

h
t 

(g
)

9 10 11

5 6 7 8

1 2 3 4

0 10 20 30 40 0 10 20 30 40 0 10 20 30 40

0 10 20 30 40

0

2

4

6

0

2

4

6

0

2

4

6

Time (days)

T
u

m
o

r 
w

e
ig

h
t 

(g
)

20 21 22

16 17 18 19

12 13 14 15

0 10 20 30 40 0 10 20 30 40 0 10 20 30 40

0 10 20 30 40

0

2

4

6

0

2

4

6

0

2

4

6

Time (days)

T
u

m
o

r 
w

e
ig

h
t 

(g
)

Individual data: individual fit plots for placebo (left panels) and 10 mg/kg bevacizumab treated
(right panels) arms of Exp a; black dots represent observed data, solid and dashed lines individual
and population model predictions, respectively.
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Diagnostic plots for experiment b
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Average data: plots with average observed (symbols) and model-fitted (lines) mice body weight
and tumor growth curves obtained in Exp b for the placebo (black) and bevacizumab (blue)
arms.
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Individual data: VPC plots stratified by group (500 replicates of the dataset); dashed lines show
the 10th, 50th and 90th percentiles of observed data, shaded areas represent the 90% confidence
interval for the corresponding model predicted percentile, empty dots are individual observed
data.
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Individual data: goodness-of-fit plots for mice body (left panels) and tumor weight (right panels);
solid and dashed lines indicate identity line and linear regression fit, respectively.
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Individual data: residual plots for mice body (left panels) and tumor weight (right panels).
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Individual data: individual fit plots for control (left panels) and treated (right panels) arm; black
dots represent observed data, solid and dashed lines individual and population model predictions,
respectively.
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Diagnostic plots for experiment c
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Average data: plots with average observed (symbols) and model-fitted (lines) mice body weight
and tumor growth curves obtained in Exp c for the placebo (black) and bevacizumab (blue) arms.
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Diagnostic plots for experiment d
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and tumor growth curves obtained in Exp d for the placebo (black) and bevacizumab (blue)
arms.
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Individual data: VPC plots stratified by group (500 replicates of the dataset); dashed lines show
the 10th, 50th and 90th percentiles of observed data, shaded areas represent the 90% confidence
interval for the corresponding model predicted percentile, empty dots are individual observed
data.
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solid and dashed lines indicate identity line and linear regression fit, respectively.

156



C.4. Diagnostic plots

-4

-2

0

2

4

0 10 20 30 40 50
Time (day)

W
ei

gh
te

d 
R

es
id

ua
ls

 (M
ic

e 
bo

dy
 w

ei
gh

t)

-4

-2

0

2

4

20 25 30 35
Ind. Pred. - Mice body weight (g)

W
ei

gh
te

d 
R

es
id

ua
ls

 (M
ic

e 
bo

dy
 w

ei
gh

t)

-4

-2

0

2

4

0 10 20 30 40 50
Time (day)

W
ei

gh
te

d 
R

es
id

ua
ls

 (T
um

or
 w

ei
gh

t)

-4

-2

0

2

4

0 2 4 6
Ind. Pred. - Tumor weight (g)

W
ei

gh
te

d 
R

es
id

ua
ls

 (T
um

or
 w

ei
gh

t)

Individual data: residual plots for mice body (left panels) and tumor weight (right panels).
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Individual data: individual fit plots for control (left panels) and treated (right panels) arm; black
dots represent observed data, solid and dashed lines individual and population model predictions,
respectively.
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Diagnostic plots for experiment e
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and tumor growth curves obtained in Exp e for the placebo (black) and bevacizumab (blue) arms.
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Individual data: VPC plots stratified by group (500 replicates of the dataset); dashed lines show
the 10th, 50th and 90th percentiles of observed data, shaded areas represent the 90% confidence
interval for the corresponding model predicted percentile, empty dots are individual observed
data.
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Individual data: goodness-of-fit plots for mice body (left panels) and tumor weight (right panels);
solid and dashed lines indicate identity line and linear regression fit, respectively.

158



C.4. Diagnostic plots

-4

-2

0

2

4

0 10 20 30 40
Time (day)

W
ei

gh
te

d 
R

es
id

ua
ls

 (M
ic

e 
bo

dy
 w

ei
gh

t)

-4

-2

0

2

4

25 30
Ind. Pred. - Mice body weight (g)

W
ei

gh
te

d 
R

es
id

ua
ls

 (M
ic

e 
bo

dy
 w

ei
gh

t)

-2

-1

0

1

2

0 10 20 30 40
Time (day)

W
ei

gh
te

d 
R

es
id

ua
ls

 (T
um

or
 w

ei
gh

t)

-2

-1

0

1

2

0 2 4 6
Ind. Pred. - Tumor weight (g)

W
ei

gh
te

d 
R

es
id

ua
ls

 (T
um

or
 w

ei
gh

t)

Individual data: residual plots for mice body (left panels) and tumor weight (right panels).

Control arm Bevacizumab 20 mg/kg
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Individual data: individual fit plots for control (left panels) and treated (right panels) arm; black
dots represent observed data, solid and dashed lines individual and population model predictions,
respectively.
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Diagnostic plots for experiment f
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Individual data: VPC plots stratified by group (500 replicates of the dataset); dashed lines show
the 10th, 50th and 90th percentiles of observed data, shaded areas represent the 90% confidence
interval for the corresponding model predicted percentile, empty dots are individual observed
data.
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Individual data: goodness-of-fit plots for mice body (left panels) and tumor weight (right panels);
solid and dashed lines indicate identity line and linear regression fit, respectively.
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Individual data: residual plots for mice body (left panels) and tumor weight (right panels).
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Control arm Bevacizumab 20 mg/kg
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Individual data: individual fit plots for control (left panels) and treated (right panels) arm; black
dots represent observed data, solid and dashed lines individual and population model predictions,
respectively.
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Diagnostic plots for experiment g

Control arm Bevacizumab 20 mg/kg
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Individual data: VPC plots stratified by group (500 replicates of the dataset); dashed lines show
the 10th, 50th and 90th percentiles of observed data, shaded areas represent the 90% confidence
interval for the corresponding model predicted percentile, empty dots are individual observed
data.
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Individual data: goodness-of-fit plots for mice body (left panels) and tumor weight (right pan-
els);solid and dashed lines indicate identity line and linear regression fit, respectively.
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Individual data: residual plots for mice body (left panels) and tumor weight (right panels).
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Control arm Bevacizumab 20 mg/kg
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Individual data: individual fit plots for control (left panels) and treated (right panels) arm; black
dots represent observed data, solid and dashed lines individual and population model predictions,
respectively.
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Diagnostic plots for experiment h

Control arm Cetuximab 1 mg/kg
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Individual data: VPC plots stratified by group (500 replicates of the dataset); dashed lines show
the 10th, 50th and 90th percentiles of observed data, shaded areas represent the 90% confidence
interval for the corresponding model predicted percentile, empty dots are individual observed
data.
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Individual data: goodness-of-fit plots for mice body (left panels) and tumor weight (right panels);
solid and dashed lines indicate identity line and linear regression fit, respectively.
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Individual data: residual plots for mice body (left panels) and tumor weight (right panels).
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C.4. Diagnostic plots

Control arm Cetuximab 1 mg/kg
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Individual data: individual fit plots for control (left panels) and treated (right panels) arm; black
dots represent observed data, solid and dashed lines individual and population model predictions,
respectively.
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Hypoxia-triggered resistance model: effect of be-
vacizumab on tumor cell line DU145
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Individual data: goodness-of-fit plots for mice body (left panels) and tumor weight (right panels);
solid and dashed lines indicate identity line and linear regression fit, respectively.
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Individual data: residual plots for mice body (left panels) and tumor weight (right panels).
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C.4. Diagnostic plots
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Individual data: individual fit plots for control (left panels) and treated (right panels) arms of
Exps b, d and e; black dots are the observed data, solid and dashed lines the individual and
population model predictions, respectively.
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Hypoxia-triggered resistance model: effect of be-
vacizumab on tumor cell line CRC
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Observed and model predicted tumor weight relative to patient-derived CRC xenograft mice
treated with placebo (black) or bevacizumab for 30 days (blue), 50 days (red), 30 days followed
by 20 days-break (light green), 70 days (dark green) or 70 days with a 20 days-break between
day 30 and 50 (grey).
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Supplementary Material to
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D.1 Plasma concentration profiles
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Single agent arms: Plasma concentration profiles in the treated arm a1 relative to bevacizumab
and a2,a3 relative to NMS-937H.
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D.2 Diagnostic plots for single agent arms
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Single agent arms: individual fit plots for controls and single agent treated arms relative to be-
vacizumab end NMS-937H; black dots represent observed data, solid and dashed lines individual
and population model predictions, respectively.
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Single agent arms: GOF plots for mice body (left panels) and tumor weight (right panels) relative
to controls and single agent treated arms; solid and dashed lines indicate identity line and linear
regression fit, respectively.
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Single agent arms: residual plots for mice body (left panels) and tumor weight (right panels)
relative to controls and single agent treated arms.
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Appendix E
IVIVC model for the in
silico bioequivalence of a
long-acting release
formulation of Progesterone

Health authorities carefully evaluate any change in the batch man-
ufacturing process of a drug before and after regulatory approval. In
absence of an adequate level A in vitro-in vivo correlation (IVIVC),
an in vivo bioequivalence study is frequently required [126], increasing
drug development costs and time to market.

This work proposes a population modeling approach to establish a
level A IVIVC between the in vitro release of two batches of Proges-
terone Vaginal Rings (PVRs), a dosage form designed for the contin-
uous delivery in vivo, and the corresponding serum profiles observed
during clinical studies. Estimates of the expected in vivo relative
bioavailability of two tested batches can also be obtained from the
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E. Second Appendix

model here proposed.

E.1 Experimental data

E.1.1 In vitro data

In vitro data included time courses from 24 hours up to 408 hours of
the amount of released Progesterone in vitro for two batches of rings
(reference batch A and test batch B) manufactured by Italfarmaco
S.p.A.. In particular, data at 125, 375, 750, 1500 mg dose levels were
available for batch A, only 375 mg data for batch B.

Individual in vitro profiles for each dose level of the batch A rings
are plotted in Fig. E.1. As you can see, apart from the highest dose
level where a minimal variability appears, at all the other doses, the
individual profiles overlap almost perfectly.
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Figure E.1: Individual in vitro profiles of the accumulated released Progesterone for all dose
levels of batch A rings.

E.1.2 In vivo data

In vivo serum level profiles of progesterone were collected during
two clinical studies conducted on batch A (46 subjects).

In the first study (Study 1), 30 healthy volunteers were treated
with leuprolin acetate (Ginecrin Depot 3.75 mg, AbbVie Spain), a
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E.1. Experimental data

GnRH agonist, to suppress all endogenous progesterone and estradiol
production. Endometrial proliferation was induced with B-estradiol
patches (Estradot 75 µg/day, Novartis Farmaceutica) and, after that,
PVRs charged with three different dose levels (375, 750, 1500 mg) were
inserted to induce endometrial transformation (see Tab. E.1). For PK
analysis, serum progesterone was measured at 0.5h, 1h, 2h, 3h, 4h, 6h,
8h, 12h, 18h, 24h, 36h, 48h, 72h, 96h, 120h, 144h, 168h, 216h, 264h,
312h, 380h and 408 hours post-dosing.

The second clinical study (Study 2), performed on PVRs charged
with 125 or 375 mg of progesterone, involved other 16 healthy volun-
teers (see Tab. E.1). The experimental procedure and the sampling
time schedule for the PK analysis were the same of Study I.

Table E.1: Information about the progesterone clinical studies.

Clinical study Dose level [mg] N. of subject

Study 1 375 10

Study 1 750 10

Study 1 1500 10

Study 2 125 8

Study 2 350 8

GnRH agonist treatment produces an almost complete suppression
of endogenous production. Before ring insertion, median baseline pro-
gesterone serum concentration was 0.387 ng/ml (range 0 - 0.84 ng/ml).
This compares with expected values of 5 - 50 ng/ml in women during
mid-cycle. In order to more accurately assess the serum progesterone
concentrations produced after ring insertion, all values were corrected
by subtracting their respective baseline values.

For each subject, after ring removal the amount of progesterone
still present in the rings was measured. By subtracting this quantity
from the dose, the total amount of progesterone released within the
observation period was assessed.

175



E. Second Appendix

E.2 Model structure and identification

The model was developed and, subsequently, identified on individ-
ual in vitro and in vivo data of batch A rings.

E.2.1 In vitro release model

For all the doses (125, 375, 750, 1500 mg), in vitro progesterone
profiles appeared be well described by an immediate release followed
by two release phases (a faster and a slower one). Thus the follow-
ing equation was used to represent the accumulated release profile of
progesterone in vitro :

PV itro(t) = P0 + A(1− e−αt) +B(1− e−βt) (E.1)

where the model parameters are P0 [mg], A [mg], α [1/h], β [1/h], and
B=DOSE-A-P0 [mg]. As can be seen in Fig. E.1, the individual pro-
files overlaped almost perfectly resulting in a very low inter-individual
variability (the average percent coefficient of variation, %CV, is less
than 4% for each dose). For this reason, for each dose level, a unique
curve was estimated using a pooled data approach. Parameter esti-
mation was performed using the FOCE method in NONMEM. The
release curves so obtained were able to accurately describe all profiles
observed at the different doses with parameter Coefficient of Varia-
tion (CV) values always below 5% (see Tab. E.2). For doses 750 and
1500 mg, the lack of observations in the first 24 hours hampered the
estimation of the immediate release parameter P0, that was therefore
kept fixed at the value 9.45 mg, estimated for the 375 mg dose. The
fitted accumulated release data are plotted in Fig. E.2, while for each
dose level, the GOF plots are reported in Fig. E.3
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E.2. Model structure and identification

Table E.2: Parameter estimates for the in vitro progesterone release model.

Parameters
1500 mg 750 mg 375 mg 125 mg

Estimate [CV%] Estimate [CV%] Estimate [CV%] Estimate [CV%]

P0 9.5 [fix] 9.5 [fix] 9.5 [2] 6.62 [5]

A 318 [1] 130 [1] 59.1 [1] 26.1 [3]

B = DOSE−A− P0 1172.55 [-] 610.55 [-] 306.45 [-] 92.28 [-]

α 0.0656 [3] 0.0721 [1] 0.0846 [1] 0.0843 [4]

β 0.0033 [0] 0.00361 [1] 0.0059 [0] 0.013 [1]

Error (sd) 10.5 [5] 6.55 [10] 2.84 [2] 1.13 [16]
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Figure E.2: Plot with the observed individual in vitro data and fitted accumulated release profiles
for all the dose levels of batch A rings.
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Figure E.3: GOF plots of the estimated PV itro model .

E.2.2 IVIVC Progesterone ring model

Differently from the in vitro situation where, within each experi-
ment, the observed release curves of progesterone were almost super-
imposable, the in vivo serum profiles of progesterone showed a certain

177



E. Second Appendix

degree of both intra- and inter-subject variability. Hence, the need
for a population approach including these variabilities as part of the
in vivo model. Since the number of subjects treated within each dose
level was very limited (see Tab. E.1), instead of developing a single
population model for any specific dose level, the in vivo data coming
from all the dose levels were considered simultaneously.

A possible approach for building up a Level A IVIVC is model
the relationship between in vitro dissolution and in vivo serum con-
centration. To this aim, one of the key questions to be addressed is
the definition, if present, of a connection between the dynamics of the
release processes in vivo and in vitro. For this reason, the in vivo
model describing the release of progesterone from the rings into the
vagina and the passage into the body should have as input function
the output of the in vitro release model. This would allow predicting
the entire in vivo time course of progesterone from the in vitro data
and, in case of changes in the vitro release (including possible different
formulation processes), permit to derive the corresponding alterations
in the serum profile.

In vivo release model

From a first data analysis, it was evident that, although the ob-
servation times of the in vivo studies were slightly longer (three days
more) compared to the in vitro experiments, the amount of proges-
terone released in vivo within the observation period of the studies
was definitely smaller than that in vitro (see Tab. E.3 and Fig. E.4).
For all the doses, the differences were considered possibly due to the
the limited solubility of progesterone (approximately 12 ng/ml in wa-
ter; 4 ng/ml in simulated vaginal fluid) in the finite volume of vaginal
fluid (constant volume of 0.5-075 ml, [127]).

Comparing the in vitro release to the that observed in vivo, it ap-
pears that release undergoes an inhibition whose extent increases with
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E.2. Model structure and identification

Table E.3: Information about the average progesterone released in vitro and in vivo.

Dose [mg]
Average Progesterone released [mg]

In vitro (15 days) In vivo (18 days)

125 mg 114 84.8

375 mg 346.4 117.82

750 mg 582.04 119.3

1500 mg 1129.62 121
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Figure E.4: Comparison of the amount of progesterone released in vitro (black dots) and in vivo
(blue dots).

the dose, probably due to the limited solubility of progesterone in the
finite volume of vaginal fluid. This effect can be taken into account
introducing a dose dependent delay of the release rate in comparison
to the in vitro situation. Thus, an inhibition function, a standard Imax
inhibitory function, was added on rate terms of the in vitro accumu-
lated release model PV itro:

PV ivo(t) = P0 + A(1− e−αt(1/(1+γ))) +B(1− e−βt(1/(1+γ))) (E.2)

where P0 [mg], A [mg], α [1/h], β [1/h], and B=DOSE-A-P0 [mg]
are the same of the in vitro model and the non-negative parameter
γ = γ(D) depends on the dose (D).

For each dose level, an estimate of γ was found imposing the fol-
lowing equality with the average amount of released progesterone mea-
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sured at 408 hours (18 days):

PV ivo(408h) = P0 +A(1−e−α408(1/(1+γ)))+B(1−e−β408(1/(1+γ))) (E.3)

where the parameters are PV ivo(408h) is the sample mean of the in vivo
accumulated release at 408 hours. The equation was solved using the
uniroot() R-function. Estimated values for γ are reported in Tab. E.4
and displayed in Fig. 4.2.

Table E.4: Estimates for the γ parameter.

Dose [mg] γ [-]

125 mg 5.437
375 mg 11.643
750 mg 29.219
1500 mg 77.601

In order to describe how γ depends on the dose, a second-order
polynomial model was used:

γ(D) = c0 + c1D + c2D
2 (E.4)

whose parameters were estimated by ordinary least squares (sd be-
tween brackets): c0 = 2.1163(1.5829), c1 = 0.0204(5.1802E-5) and
c2 = 2.0E-5(3.0089E-6).

IVIVC population model

The PK model for the serum concentration of progesterone is schemat-
ically represented in Fig. E.5, where the in vivo release rate RV ivo(t)
is the derivative of the accumulated release PV ivo(t), that is:

RV ivo(t) = Aα(1/(1 + γ))e−αt(1/(1+γ)) +Bβ(1/(1 + γ))e−βt(1/(1+γ)) .
(E.5)
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The serum concentration of progesterone and the amount of pro-
gesterone released in vivo were simultaneously modeled using a two-
compartment model with two first-order absorptions rates (one for the
immediate release P0, Ka,P0 , and one for the two exponential phases,
P0, Ka,V ) and a first-order elimination from the central compartment.
The parameters of the model are reported in Tab. E.5.

Figure E.5: Schematic representation of the IVIVC P-ring model

Table E.5: Structural parameters of the IVIVC P-ring model.

Parameter Dimension Description

P0 mg Immediate in vitro release
A mg Fraction of fast in vitro release
B mg Fraction of slow in vitro release
α 1/h Fast in vitro release rate
β 1/h Slow in vitro release rate
γ − In vivo inhibition factor, defined as γ = c0 + c1D + c2D2

c0 c1 c2 − Polynomial coefficient of the γ function
Ka,V 1/h Absorption rate constant
Ka,P0

1/h Absorption rate constant for P0

Kel 1/h Elimination rate constant from the central compartment
V/F L Volume of distribution
K12 1/h Transfer rate constant from central to peripheral compartment
K21 1/h Transfer rate constant from peripheral to central compartment

Inter-individual variability in the model parameters was assumed
to be log-normally distributed, e.g. for Ka,V = POPKa,V e

ETAKa,V

where POPKa,V is the typical value for the population (mean value)
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and ETAKa,V is an inter-individual random effect that follows a zero-
mean normal distribution with variance OMEGAKa,V . Random ef-
fects were first considered for all the PK model parameters. However,
the high value of the CV for the parameter OMEGAKa,V suggests
that it may not be significantly different from zero. Furthermore, the
individual estimates obtained for Ka,V (not reported) showed a very
small inter-subject variability with a CV less than 3%. So, it may be
convenient to considered the alternative model where all individuals
share the same Ka,V (OMEGAKa,V = 0). Finally, the individual pa-
rameter γ was modeled as γ = c0 + c1D+ c2D

2eETAγ , where ETAγ is
normal distributed with mean 0 and variance OMEGAγ.

Inter-study variability was not included in the model. Separate
residual error models were used for the serum concentration and the
amount of progesterone released in vivo; an additive error model was
chosen for both the cases.

Data of serum concentration and amount of released progesterone
from in vivo studies at dose levels 125, 375, 750 and 1500 mg were
used to identify the typical values of the model parameters together
with their variance. The estimation was performed using the SAEM
method in NONMEM. For each dose level, the parameters P0, A, B, α
and β were kept fixed to the estimates obtained from the in vitro data
(see Tab. E.2), while the coefficients c0, c1 and c2 of the γ function
were fixed to their least squares estimates (see Section E.2.2).

Limited values of CV assessed that population parameters were
identified with good precision. In Figs. E.6 and E.7, the observed
and model predicted serum concentration profiles of progesterone are
plotted for dose level 125, 375, 750 and 1500 mg respectively while
the correspondent GOF plots and residual error plots are displayed in
Fig. Fig. E.8, stratified on dose level. Note that the individual and
population predicted values are in good agreement with the observed
serum concentrations, apart from a slight underestimation of higher
observed serum concentrations during the first hours. Additionally,
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Table E.6: Parameter estimates for the IVIVC P-ring model.

Population parameters

Parameter Typical values, Inter-individual variance,
[Dimensions] POP [CV%] OMEGA [CV%]

γ [−] - 0.0579 [12]
Ka,V [1/h] 0.1990 [24] -
Ka,P0

[1/h] 0.7180 [16] 0.2770 [17]
Kel [1/h] 0.0241 [5] 0.0092 [64]
V [L] 3450 [9] 0.0596 [22]
K12 [1/h] 0.0259 [19] 0.1570 [45]
K21 [1/h] 0.0264[59] 3.8600 [28]

Residual variability (Variance)

V ARY 1 0.2040 [2] -
V ARY 2 0.0002 [71] -

Individual parameters are given by Pi = POPP exp(ETAP,i) with POPP the typical value and
ETAP a random effect normally distributed with zero mean and variance OMEGAP .

residual error plots for serum concentration of progesterone show a
symmetric distribution around zero and no systematic residual trends.

In Fig. E.9 the model predictions of the amount of released pro-
gesterone are reported together with the observations.

VPCs were used to assess the predictive performance of the in vivo
model. For each dose 500 individuals were simulated using the model
parameter estimates reported in Tab. E.6 with the $SIM ONLYSIMU-
LATION option of NONMEM. The median, 5th and 95th percentiles
were chosen for building up the 90% prediction intervals to compare
with the observed data. See Fig. E.10 for serum concentrations of
progesterone and Fig. E.11 for AUC(0-t).
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Figure E.6: Individual (blues lines) and population (red lines) fitted serum concentration profiles
of progesterone at dose levels 125 and 375 mg together with observations (black dots).

E.3 Assessment of the Level A IVIVC

E.3.1 Internal predictability

To establish the validity of the Level A IVIVC, the predictive per-
formance of the IVIVC P-ring model was assessed. As recommended
in the FDA guideline [126], the internal predictability was evaluated
considering the model predictions of the serum concentration of pro-
gesterone (see Section E.2) and the Prediction Errors (PE)c for AUC
and Cmax. The average absolute percent prediction error (%PE) and
the %PE for each dose are reported in Tab. E.7 for AUC(0-t) at various
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Figure E.7: Individual (blues lines) and population (red lines) fitted serum concentration profiles
of progesterone at dose levels 750 and 1500 mg together with observations (black dots).
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Figure E.8: Diagnostic plots for the progesterone serum concentration stratified on dose levels:
the goodness of fit and the residual error plots are reported in the upper and lower panels,
respectively.

185



E. Second Appendix

50

0 148 288 432
Time (hours)

 P
ro

g
e

s
te

ro
n

e
 (

m
g

)

Dose = 125 mg

50

100

150

0 148 288 432
Time (hours)

 P
ro

g
e

s
te

ro
n

e
 (

m
g

)

Dose = 375 mg

50

100

150

0 148 288 432
Time (hours)

 P
ro

g
e

s
te

ro
n

e
 (

m
g

)

Dose = 750 mg

50

100

150

0 148 288 432
Time (hours)

 P
ro

g
e

s
te

ro
n

e
 (

m
g

)

Dose = 1500 mg

Figure E.9: Amount of progesterone released at the end of the observation period (black dots)
together with the corresponding individual (blue lines) and population (red lines) values predicted
by the model.
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Figure E.10: VPC plots for the the progesterone serum concentration stratified on dose levels.
Simulations of the IVIVC model with 90% confidence interval (grey areas) are shown together
with progesterone serum concentration data (visual predictive check) for each considered dose
levels. The dashed lines show the theoretical median (read) and the experimental median (blue).
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Figure E.11: VPC plots for the the progesterone serum concentration stratified on dose levels.
Simulations of the IVIVC model with 90% confidence interval (grey areas) are shown together
with progesterone serum concentration data (visual predictive check) for each considered dose
levels. The dashed lines show the theoretical median (read) and the experimental median (blue).

sampling times and Cmax.

As one can see from Tab. E.7, the average %PE for AUC(0-408h)
is less than 2% for each dose. Furthermore, the %PE for AUC(0-
t) at various sampling times is always less than 7% with an average
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Table E.7: %PE for AUC(0-t) and Cmax of Progesterone serum concentrations.

Average %PE

Dose AUC(0-t) Cmax

[mg] 24h 48h 72h 96h 120h 144h 168h 216h 264h 312h 360h 408h

125 mg 4.53 4.08 3.95 3.72 2.56 1.82 1.51 1.51 1.87 2.19 1.89 1.46 15.57

375 mg 4.54 3.28 4.26 4.39 3.14 2.19 2.02 1.96 1.80 1.61 2.10 1.89 4.56

750 mg 6.12 5.58 3.66 3.57 3.06 3.52 3.68 2.48 1.93 1.78 1.77 1.59 17.36

1500 mg 3.98 1.88 5.04 5.67 3.79 2.49 2.77 2.68 2.38 1.79 1.74 1.53 1.53

Mean 4.79 3.71 4.30 4.34 3.14 2.51 2.50 2.16 1.99 1.85 1.87 1.61 16.41

value under 5%. The average %PE for Cmax is less than 17%; in this
case the higher errors are due to the variability of the data. Indeed,
as can be calculated from the in vivo serum concentration data, the
coefficient of variation for the observed Tmax is higher than 75%.

E.3.2 External predictability

Although the number of available cases was limited, in addition
to the internal predictability, an attempt for assessing the external
predictability of the model was performed. To this aim, the IVIVC
P-ring model was identified only on the data relative to the doses
125mg, 750mg and 1500mg while data at 375mg were considered as
external dataset. The estimates for coefficient of the γ function are
c0 = 2.4846, c1 = 0.0212 and c2 = 2E − 05, while the other model
parameters are reported Tab. E.8. The differences in the estimated
values from the ones previous obtained (Fig. 4.1 and Table 4.5) are
due to the reduced number of individuals including in the population
on which the model has been identified (28 subjects compared to the
previous 46 subjects).

VPC plots were used to assess the predictive performance of the
model when confronted with the external dataset at dose 375mg. To
this aim, 500 individuals were simulated using the model parameter
estimates (Tab. E.8) with the $SIM ONLYSIMULATION option of
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Table E.8: Parameter estimates for the IVIVC P-ring model on the internal dataset (125mg,
750mg and 1500mg dose levels).

Population parameters

Parameter Typical values, Inter-individual variance,
[Dimensions] POP [CV%] OMEGA [CV%]

γ [−] - 0.0592 [19]
Ka,V [1/h] 0.4430[5] -
Ka,P0

[1/h] 0.8370 [25] 0.2870 [28]
Kel [1/h] 0.0221 [10] 0.014 [84]
V [L] 3880[11] 0.0561 [28]
K12 [1/h] 0.195 [62] 0.2480 [95]
K21 [1/h] 0.0703[155] 6.7000 [66]

Residual variability (Variance)

V ARY 1 0.2140 [3] -
V ARY 2 0.000004 [3] -

NONMEM. The median, 5th and 95th percentiles, to construct the
90% prediction interval for the simulated data, were plotted and com-
pared to the observed serum concentrations of progesterone and to
the observed AUC(0-t) Fig. E.12. The absolute %PE are reported in
Tab. E.9 for the average AUC(0-t) at the latest four sampling times
(264, 312, 360 and 408 hours) and for Cmax. As can be seen the %PE
for AUC is always less than 10% and less than 3% at the end of the
experiment. Furthermore, the %PE for the average Cmax is less than
6%.

Table E.9: %PE for average AUC(0-t) and Cmax of Progesterone serum concentrations.

Average %PE

AUC(0-t) Cmax

264h 312h 360h 408h

7.36 3.75 3.75 2.95 5.52
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Figure E.12: External VPC plots. Simulations of progesterone serum concentrations (on the left)
and amount of released progesterone (on the right) at dose level 375mg performed by the IVIVC
P-ring model identified on data relative to doses 125, 750 and 1500mg. The 90% prediction
intervals (grey areas), the theoretical median (red dashed line) and the experimental median
(blue dashed line) are shown together with the experimental data.

E.4 Model based assessment of the in vivo

bioequivalence

In addition to the standard Level A IVIVC procedure, the popu-
lation approach here developed allows to perform simulation studies
providing estimates of the relative in vivo bioavailability (F=AUCtest/
AUCref) of any new batch tested in vitro in comparison to a reference
one.

The proposed in silico approach for the assessment of the in vivo
bioequivalence is based on the following steps:

• Identification of the in vitro model on the in vitro data of the
reference batch;

• Identification of the in vitro model on the in vitro data of the
test batch;

• Identification of the IVIVC P-ring model on the in vivo data
(serum concentration and amount of released progesterone) of
the reference batch;
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• Simulation of a 500 subject population using the IVIVC P-ring
model for the reference batch;

• Simulation of 500 subject population using the IVIVC P-ring
model for the test batch using the model parameters identified on
reference batch data a part of the in vitro parameters identified
on the in vitro data of the test batch;

• Comparison of the AUC and Cmax of the two batches using the
80-125% bioequivalence criteria.

Note that, In absence of specific information, the intra-individual
variability is supposed to be equal to the inter-individual variability,
simulating two different population for batch A and B. This is a conser-
vative assumption because the intra-variability is in general expected
to be lower than the inter-variability.

Batch A and B at 375 mg level dose were used as reference and test
batch in order to illustrate the in silico approach proposed. In partic-
ular, a first 500 subject population (500 serum progesterone profiles)
were generated with the IVIVC P-ring model previously identified on
in vivo data of batch A (see Section BLABLA); then, an other subject
population (500 serum progesterone profiles) were obtained for batch
B using the same model parameters apart the in vitro parameters
that were re-estimated from its in vitro release dataset (P0=17.1mg,
A=77.2mg, B=DOSE-A-P0=280.7mg, α=0.0647 1/h and β = 0.00515
1/h). The AUC values of the two populations were compared with the
80-125% criteria; in particular, the in vivo relative bioavailability was
directly obtained, F=0.913 with 90%CI = [0.878, 0.948].

E.5 Discussion

The objective of this work was the development of a mathemati-
cal model able to establish an adequate level A IVIVC in agreement
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with the FDA Guidance for Industry ( see [1]). This guideline makes
specific reference to “Extended Release (ER) Oral Dosage Forms”; al-
though here the model is applied to vaginal rings ER formulations, in
absence of IVIVC guidelines for ER forms other than oral, the general
rules presented in this guideline were considered applicable also in this
context. In particular, it is mentioned that“whatever the method used
to establish a Level A IVIVC, the model should predict the entire in
vivo time course from the in vitro data” and, in the following, it is
stated that independently from the methodology adopted “A correla-
tion should predict in vivo performance accurately and consistently.
Once this relationship has been achieved, in vitro dissolution can be
used confidently as a surrogate for in vivo bioequivalence of ER drug
products in the situations described below [...]”.

In this study different in vitro release rates obtained at 125, 375,
750 and 1500mg dose levels were considered. At each dose level the
observed progesterone release profiles of the tested rings exhibited bi-
exponential decays that overlapped almost perfectly. Hence, within
each dose level all the in vitro release time courses were pooled to-
gether and fitted by a biexponential model without taking into ac-
count inter-individual variability. The curves so obtained were able
to describe very well the cumulative release of the in vitro data with
very precise parameter estimates (CV < 5%). These release functions
were then considered as in vitro input rates for the in vivo part of
the model. Differently from the in vitro data, the serum progesterone
levels showed different profiles among the subjects with a significant
intra- and inter-individual variability, thus suggesting the use of a
population approach. A comparison of the in vitro and the in vivo
accumulated release at the end of the experiments gave evidence of
a decreased release rate in vivo compared to that in vitro. The ra-
tio of in vivo to in vitro accumulated release was dose-dependent and
decreased with the dose. This non-linear behaviour was very well
described by a suitable inhibition function characterized by a dose-
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dependent parameter γ. By combining the in vitro release with the
inhibition function, for any specific dose the appropriate in vivo input
rate could be computed for the in vivo model. The in vivo model in-
corporates two absorption mechanisms, one (Ka,P0) for the immediate
progesterone release and the other (Ka,V ) for the remaining part of
the release. A two compartment model was assumed for progesterone
kinetic in serum. The simultaneous fitting of the in vivo parameters
yielded very satisfactory results at all doses in terms of both residuals
and visual predictive checks. The goodness of fit observed comparing
the predicted and observed curves and the very low %PE (percent
prediction error) relative to the AUCs confirmed the validity of the
model. At any sampling time the average (across all subjects and
doses) %PE on AUC(0-t) was less than 5% (Table 4.6). At the latest
times (t>144h) the %PE was less than 3% for each dose. A higher er-
ror was observed for Cmax whose percent error on average was 16.4%.
This was somehow expected in view of the marked variability in the
individual serum profiles, with observed Tmax values in the range 3-
408 hours. Such a Cmax %PE below 20% was taken as satisfactory
even if the guideline mentions a %PE in the 10-20% range as incon-
clusive. In fact, it has to be considered that this kind of formulation
is somehow atypical with respect to guidelines for oral administration.

To further confirm the predictive capability of the model an exter-
nal validation was set up. The data at dose 375mg were left apart as
test dataset and the population in vivo model was reestimated using
only data at doses 125, 750 and 1500mg. Then, using the in vitro
model derived from the 375mg data to simulate the in vitro release
rate, the obtained population model was used to simulate the serum
profile of 500 distinct individuals. Validation was performed by means
of visual predictive checks (VPCs), the error on the average AUC(0-t)
and the error on the average Cmax. In particular, all the subjects
fell within the 90% intervals of the VPCs and the %PE on AUCs and
Cmax were all below 10%.
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Finally, hypothesizing the validity of the Level A IVIVC, a model-
based approach for the assessment of in vivo bioequivalence was pro-
posed as an alternative to the standard procedure based on the in vitro
dissolution.
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evaluation in nonlinear mixed effect models, with applications to

212



BIBLIOGRAPHY

pharmacokinetics. Journal de la Société Française de Statistique,
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