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Abstract (English)

In the last decade, Synthetic Biology is gaining an increasingly im-
portant role in the scientific community and dedicated research cen-
ters are rising all over the world. This discipline, which lies between
life science and engineering, introduced the principles of abstraction,
modularity and standardization in the biology world; nowadays, the
application of these engineering principles is allowing the design of
complex biological systems to program living cells, realizing all sorts
of desired function in many fields, from agriculture to health. These
systems consist of DNA sequences, rationally combined to program the
genetic instructions for cell behavior customization. This is possible
assuming that each part behaves as a biological “brick” for the design
of complex genetic programs through functional building blocks; each
DNA module undergoes an extensive characterization in order to pro-
vide documentation on its functioning enabling the rational design of
complex circuits on the basis of the information available for each in-
dividual sub-part composing the whole system.
Mathematical modeling accompanies all the design procedure as a tool
to describe the behavior of each single genetic module, in a bottom-
up fashion that should allow the prediction of more complex systems
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obtained by the interconnection of pre-characterized parts. However,
many unpredictability sources hamper the ideally rational design of
those synthetic genetic devices, mainly due to the tangled context-
dependency behavior of those parts once placed into an intrinsically
complex biological living system.
Among others, the finite amount of translational resources in prokary-
otic cells leads to an effect called metabolic burden, as a result of which
hidden interactions between protein synthesis rates arise, leading to
unexpected counterintuitive behaviors.
To face this issue in rational design of synthetic genetic circuits hosted
by bacterial cells, two actions have been proposed in this study: firstly,
a recently proposed mathematical modeling solution that included a
description of the metabolic load exerted by the expression of recom-
binant genes have been applied on a case study, highlighting its worth
of use and working boundaries; second, a CRISPR interference-based
architecture have been developed to be used as an alternative to high
resource usage transcriptional protein regulators, studying the under-
lying mechanism in several circuital configurations and optimizing each
forming part in order to achieve the desired specifications.
In Chapter 1, an introduction on synthetic biology is presented; ra-
tional design paradigm and hurdle given by metabolic burden are de-
scribed and the role of mathematical modeling discussed. In the second
part, a brief overview on CRISPR technology and the overall aim of
the study are reported.
In Chapter 2, a case study evaluating the use of mathematical mod-
eling to properly include metabolic burden in rational design of a set
of transcriptional regulator cascades is reported. Firstly, the circuits
and expected behavior are introduced, along with the discussion about
experimental data, dissenting from what initially predicted. Secondly,
the comparison between the use of a classical Hill equation-based
model and an improved version that explicitly consider the transla-
tional load exerted by the expression of recombinant genes is reported.
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In Chapter 3, the design and deep characterization of a BioBrickTM -
compatible CRISPR interference-based repression set of modules is
shown; expression optimization of the molecular players is reported
and its usability as a low-burden alternative is demonstrated with ex-
perimental data and mathematical modeling. Working boundaries,
peculiar aspects and rooms for improvements are then highlighted.
In Chapter 4, preliminary studies aimed to improve the CRISPR inter-
ference system are reported and some of its context-dependencies are
highlighted. Effects on repression efficiency due to alteration in the
sequence of the RNA molecules addressing the CRISPR machinery to
the desired target are discussed; evaluation of problems and opportu-
nities related to the expression of more of this RNA guides are then
highlighted. Lastly, an example of behavior of the system in presence
of a competitor transcriptional regulator is reported.
In Chapter 5 the overall conclusions of this thesis work are drawn.
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Abstract (Italian)

Nell’ultimo decennio, la Biologia Sintetica sta assumendo un ruolo
sempre più importante nella comunità scientifica e numerosi centri de-
dicati stanno sorgendo in tutto il mondo. Questa disciplina, a cavallo
tra ingegneria e scienze della vita, ha introdotto i principi d’astrazio-
ne, modularità e standardizzazione nel mondo della biologia; oggigior-
no, l’applicazione di questi principi ingegneristici sta consentendo la
progettazione di sistemi biologici standardizzati per programmare cel-
lule viventi, implementando le più varie funzionalità in molti campi,
dall’agricoltura alla sanità. Questi sistemi consistono in sequenze di
DNA, combinate razionalmente componendo istruzioni genetiche per
personalizzare il comportamento della cellula. Questo è possibile solo
assumendo che ogni parte si comporti come un “mattoncino” biologi-
co per la progettazione di programmi genetici complessi; ogni parte è
sottoposta ad un esteso processo di caratterizzazione, al fine di fornire
una documentazione che permetta la progettazione razionale di circui-
ti complessi a partire dalle informazioni base disponibili su ogni sua
sotto-parte costituente l’intero sistema.
La modellizzazione matematica accompagna le procedure di progetta-
zione in quanto strumento utile a descrivere il comportamento di ogni
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singolo modulo genetico, secondo un approccio bottom-up, consenten-
do successivamente la predizione di sistemi più complessi ottenuti in-
terconnettendo parti precedentemente caratterizzate. Tuttavia, molte
fonti di impredicibilità ostacolano la progettazione razionale ideale di
questi sistemi, principalmente a causa degli intricati comportamenti
contesto-dipendenti che tali parti dimostrano una volta poste all’in-
terno di un sistema vivente intrinsecamente complesso.
Tra queste, il limitato ammontare di risorse trascrizionali nella cellula
procariote porta ad un effetto chiamato “fardello metabolico”, a cau-
sa del quale emergono interazioni nascoste tra i livelli di sintesi delle
proteine espresse, causando comportamenti inattesi o controintuitivi.
Per affrontare questo problema nella progettazione razionale di circuiti
genetici sintetici ospitati da cellula batteriche, in questo lavoro di tesi
sono state proposte due azioni:

1. Su un caso di studio, è stata adottata una soluzione recente-
mente pubblicata basata sull’impiego di modelli matematici che
includano una descrizione del carico metabolico esercitato dal-
l’espressione di geni ricombinanti, evidenziandone l’utilità ed i
limiti;

2. è stata sviluppata un’architettura genetica basata sulla CRISPR
interference, pensata come alternativa all’impiego di regolato-
ri trascrizionali ad alto carico metabolico. Sono stati studiati
meccanismo sottostante con diverse configurazioni circuitali ed
ottimizzazione di ogni parte costituente il sistema, in modo da
sottostare alle specifiche richieste.

Nel Capitolo 1, viene presentata un’introduzione sulla biologia sinteti-
ca; vengono descritti progettazione razionale ed il problema del carico
metabolico, assieme alla discussione del ruolo della modellizzazione
matematica. Nella seconda parte, sono riportate una breve panorami-
ca sulla tecnologia CRISPR e lo scopo generale dello studio.
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Nel Capitolo 2, è riportato un caso di studio relativo alla valutazione
dell’impiego di modelli matematici per includere il carico metaboli-
co nella progettazione razionale di un insieme di cascate di regolatori
trascrizionali. Inizialmente, vengono introdotti il circuiti e la risposta
attesa, assieme alla discussione relativa ai dati sperimentali. Succes-
sivamente viene riportato un confronto tra un modello classico basato
su equazioni di Hill ed una sua versione arricchita dalla descrizione
matematica del carico esercitato dall’espressione dei geni ricombinan-
ti.
Nel Capitolo 3, sono mostrate la progettazione e la caratterizzazione
di un insieme di moduli di repressione BioBrickTM compatibili ba-
sati sulla CRISPR interference; ne viene riportata l’ottimizzazione
dell’espressione degli attori molecolari e ne viene dimostrata l’efficienza
come alternativa a basso carico metabolico attraverso dati sperimen-
tali e modellizzazione matematica.
Nel Capitolo 4, sono riportati degli studi preliminari atti al migliora-
mento di sistemi bastati su CRISPR interference e ne vengono evi-
denziate le sue dipendenze contestuali. Vengono studiati gli effet-
ti sull’efficenza di repressione causati dall’alterazione della sequen-
za delle molecole di RNA pilotanti il macchinario molecolare al sito
desiderato; vengono inoltre valutati problemi ed opportunità relativi
all’espressione di più d’una di queste guide ribonucleoditiche. Infine,
viene riportato un esempio del comportamento del sistema in presenza
ti un regolatore trascrizionale competitivo.
Nel Capitolo 5 sono riportate le conclusioni di questo lavoro.
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Chapter 1
Background

1.1 Synthetic Biology

The knowledge around DNA structure and manipulation achieved
in the last century have resulted in an exponential growth of advanced
biotechnologies and genetic engineering [1, 2], giving way to the di-
vergence of many fields. Despite some notable exceptions [3, 4], how
DNA - a molecule composed by nucleotides encoding all the informa-
tion necessary to the development and functioning of living cells - is
decoded and used in all the known living cells is described by the the
central dogma of molecular biology [5]: DNA coding sequences, called
genes, are transcribed in RNA molecules, that are in turn translated
in proteins by ribosomes. DNA molecules can also undergo replication
processes that allow the propagation of the information to the progeny.
Synthetic biology is a recent framework based on engineering and
molecular biology. Although several branches and various applica-
tions as well as laboratories all around the world arose from the works
of the pioneers in synthetic biology, the leitmotiv driving the studies
in synthetic biology could be briefly described as did in [6]:
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1. Background

Synthetic biology aims to design and engineer biologically
based parts, novel devices and systems as well as redesign-
ing existing, natural biological systems.

Through this simple sentence, all the fundamental aims of synthetic
biology are explained: from implementing new biological systems by
using synthetic molecules, to rearrange pre-existing biological entities
in new structures implementing functionalities in living systems; the
former chases to deeply understand and model mechanisms standing
at the very basement of life, the latter to find smart and innovative
solutions to solve specific problems by using an approach based on
living microscopic tools.

1.1.1 Rational design

The interdisciplinary field of synthetic biology has allowed scien-
tists to tackle biological problems with an engineering mindset. Differ-
ently from biotechnology and genetic engineering, in synthetic biology
the rational design - a fashion that rises from the engineering related
concepts of abstractions, standardization, modeling and engineering
cycle - is indeed the common and shared approach adopted to imple-
ment novel living systems [6, 7, 8].
Working with living systems such as microorganisms is not trivial,
since they are composed of biological elements (molecules) interacting
and interfering with each other, possibly altering their behavior. Cells
are also able to grow and evolve, features that could further affect the
output of a system; in particular, the output of a system can be de-
pendent on variations in growth rate of the cell population, leading to
the impossibility of complying the design specifications [9, 10]. More-
over, evolution could lead further problems in systems stability when
the predicted behavior of a biological system is unpreserved in time
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1.1. Synthetic Biology

due to unexpected mutations of one or more components. To work in
a biological context means also to interact with organisms that nat-
urally react to environmental changes such as temperature and pH,
being therefore active elements rather than passive chassis.
It comes obvious that the adoption of a rational approach to assem-
ble and test novel systems is a key challenge, but is becoming of high
importance with the increasing complexity in the design of synthetic
biological systems.
Guidelines and sets of key rules to design biological systems with ro-
bust and predictable behavior, defining proper working conditions and
reliability boundaries, need therefore to be drawn up. Under this lens,
despite the differences in the context of application, this subject can be
considered analogous to the others engineering fields such as electric
and computer engineering [11]. The design process of a new genetic
device in synthetic biology follows the engineering cycle (Figure 1.1):

1. definition of system specifications;

2. design of the system in accordance with the specification and
development of a mathematical model describing the system be-
havior to predict its output;

3. physical implementation of the system (using suitable standard-
ized and pre-characterized parts);

4. test and validation to verify the compliance of the system with
the specifications;

5. in case of not, restart.

The engineering concepts of abstraction and modularity in synthetic
biology allow the definition of a hierarchy of parts and devices, based
on intrinsic complexity and interface possibilities with each other [12,
7], enabling the design of complex systems with predictable behavior
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Figure 1.1: Engineering cycle. Design process starts with the system specifications
definition, followed by the development of a mathematical model of the system to describe its
behavior; subsequently, the choice of parts and connections are taken. Once assembled, the
system undergoes to test and validation steps to understand whether it is complaint with the
initial design specifications, or not. If not, modifications on the basis of the obtained results are
applied, restarting the cycle [6].
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1.1. Synthetic Biology

by interconnection of basic parts, knowing the quantitative charac-
teristics of each single sub-module [13, 14]. Under the hypothesis of
modularity, the integrity of the properties of a module should be en-
sured [15], allowing the prediction of the behavior in a complex system
just by knowing the transfer function of each single, simplified, part
composing it.
To manage the complexity of these systems and increase their pre-
dictability, mathematical modeling is probably the best instrument,
allowing the description of arbitrarily complex systems by using a lim-
ited amount of parameters. However, even if it is possible to define so-
phisticated models to be solvable exploiting the computational power
of a moderns computer, it is worth noting that the intrinsic complexity
of biological systems is still a major issue in the modeling step [16].
Not only mathematical models could be defined before physically as-
sembling of a system to predict its output and evaluate its compliance
with the design specification; models can indeed be used during the
engineering cycle to predict how a system could react to disturbances
or variations on the behavior of some of its composing parts, avoid-
ing trial-and-error experiments [17]. In particular, differences between
model predictions and experimental data could highlight inaccuracy in
previous hypothesis on biological systems and, through that, explain
possible unexpected behaviors of synthetic devices [6].
A successful example of rational design in synthetic biology is reported
in Appendix A, where the implementation of a synthetic close-loop
controller circuit for the regulation of an extracellular molecule based
on quorum sensing is proposed. Nonetheless, a number of unpre-
dictability sources may affect the behavior of a system, as discussed in
the following section. Potentially, deviation between expected and ob-
served behavior can increase for higher complexity circuits and current
models are still far from being able to include all the possible effects
arisen from biological complexity. Despite several studies aimed to
elicit this variability and hypothesize or demonstrate its sources, some
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modeling [18, 19] or design [20, 21, 22] solutions have also been pro-
posed; as always, further efforts are still needed to be spent in this
direction.

1.1.2 Unpredictability sources

The predictability of the designed circuits is a central issue in syn-
thetic biology, since only in a predictable framework biological systems
can be constructed from the bottom-up. Mathematical models can
support the design process, enabling the rational engineering of com-
plex systems and avoiding trial and error approaches [23, 24, 25]. Al-
though standardized approaches for the characterization of parts have
been recently proposed, the intrinsic complexity of biological compo-
nents currently limits the predictability of parts function when they
are re-used in different contexts [26, 27].
The major unpredictability sources for biological components are con-
text dependent and cell-to-cell variability, cross-talk, evolutionary sta-
bility, retro-activity and cell burden [28, 26]. Efforts towards the
reproducible characterization of parts function include standardized
measurement approaches for transcriptional activity [29] and biophys-
ical models for the quantification of ribosome binding sites (RBSs)
strength [18, 30] or transcriptional terminators efficiency [31, 32]. The
study of simplified model systems can help to elucidate the feasibility
boundaries of the bottom-up design approach in biological engineering.
Within this framework, different studies used mathematical models to
study the superposition of the effects of multiple independent gene ex-
pression cassettes [33], context-dependent variability of individual or
interconnected devices [34, 13, 35] retroactivity effects due to the inter-
connection of biological modules which share common resources [15]
and prediction of quantitative behaviour of logic functions [36, 37, 38]
or feed-forward circuits [39]. High-throughput studies have also been
carried out to evaluate the variation of parts activity in a large num-
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ber of diverse expression systems, showing the variations expected for
promoters, RBSs and genes with different codon composition [40, 41].
Efforts towards the improvement of biological components modular-
ity have recently been carried out by proposing insulated promoters
[42, 20], a bicistronic design for gene expression cassettes that makes
RBS efficiency more predictable [43], a device for timescale separa-
tion to mitigate retroactivity [44] and ribozyme-based insulators at
5’-UTR [21]. Recent works have also proposed methods to guide bio-
logical engineers in parts selection, via statistical analyses to evaluate
promoter and RBS collections [45], and a computer-aided design tool
for the choice of logic devices to construct reliable functions [46]. In
the latter study, devices are selected via model-based approach from
the knowledge of their transfer function, also considering the mini-
mization of cell burden and failure rate caused by the multiple use of
the same part in a circuit.

1.2 Metabolic Burden in Rational Design

One of the main factors leading to unpredictable behavior of syn-
thetic circuits is cell burden [47]. The unnatural load caused by het-
erologously expressed genes can lead to transcriptional and transla-
tional resources depletion, exerting important global effects on the
functioning of the designed circuit [47, 48]. Synthetic circuit designs
aimed to reduce the metabolic load for the cell have been reported
[49, 50, 51, 52], in which systems with superior protein yield or func-
tions were obtained. Experimental and in-silico methods have also
been recently proposed to analyze cell burden in synthetic circuits
[51, 53, 19, 54]. The use of a constitutive expression cassette for a re-
porter gene, integrated in the bacterial chromosome, has been adopted
as a real-time and in vivo burden monitor, to indirectly quantify the
cellular resources limitation via microplate assay [51]. This method-
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ology was demonstrated to be more sensitive than growth rate mea-
surement for burden quantification. Other works have used the same
approach, with the constitutive cassette assembled in plasmid, to study
cell burden via modelling frameworks based on electronic engineering
[54] and microeconomics [19]. Different mathematical models have
been proposed for the analysis of protein expression in a limited re-
sources context [53, 55, 56]. Such recently proposed models have been
useful to identify the expression systems behaviors occurring when re-
sources are limiting and cannot be trivially explained via simple Hill
function-based activation/repression models [57]. However, such bur-
den models still have shortcomings, e.g., they are unable to explain
the possible separation of cellular resource pools among chromosome
and plasmids (as suggested by Gyorgy et al. [19]) and the relation-
ship between cell growth rate and resource pools is still lacking in such
models, although it has been included in one recent study on dynamics
of protein expression [58]. While most of the literature studies ana-
lyzed cell burden in non-interacting gene expression systems, a recent
in-silico study indicated that burden can largely affect the quantita-
tive function of interconnected circuits, in which non-trivial activation
and repression functions may emerge [53]. Such previously unexpected
behavior was confirmed by recent in vivo experiments involving a sim-
ple gene regulatory network, tested with two diverse regulatory gene
RBSs and circuit copy numbers [59]. In the same work, an interac-
tion graph-based theoretical framework was proposed to describe the
effective interactions occurring among network modules, and eventu-
ally guide the design of circuits with different topologies [59]. The
works mentioned above demonstrate the need of further steps towards
the testing of a rigorous bottom-up approach in the design of inter-
connected synthetic circuits and they also highlight that cell burden
is an important feature to be modeled in order to describe otherwise
unpredictable outputs.
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1.3 CRISPR/Cas9 system

1.3.1 Mechanism and first usages

Up until recently, the function of Clustered Regularly Interspaced
Short Palindromic Repeats (CRISPR) and their CRISPR-associated
proteins (Cas) remained unknown. The former were firstly mapped
in bacterial genomes because of their particular structures: short se-
quences (protospacers) separated by identical palindromic DNA spac-
ers, altogether known as a CRISPR array. More recent studies re-
vealed that those particular DNA structures are the hallmark of bac-
terial adaptive immunity against viral infections caused by bacterio-
phages [60, 61, 62]; several orthologous versions of this biological ma-
chinery have been found in almost 40% of Bacteria and 90% of Archea
[63]. In Streptococcus pyogenes, the first and most studied Bacteria
naturally expressing the CRISPR system, when a bacteriophage in-
jects its genome into a host bacterial cell, the immune system produces
a pool of Cas proteins that form a complex able to recognize a proto-
spacer adjacent motif (PAM) sequence in the exogenous genome; from
the phage DNA, a protospacer sequence of 20 nucleotides, adjacent
to the PAM, is then excised and finally integrated into the CRISPR
array. From this point on, the bacterial cell is said to be immune to
the specific type of phage which protospacer sequence have been ac-
quired: if the cell progeny is re-infected by the same kind of phage,
the CRISPR array - containing, amongst others, the spacer relative to
the infecting phage - is transcribed (pre CRISPR RNA or pre-crRNA)
and spliced into several CRISPR RNAs (crRNAs) (one for each ac-
quired spacer) along with the synthesis of another Cas protein called
Cas9. This enzyme has nuclease activity and associates with the a
linker RNA called trans-activating-CRISPR-RNA (tracr-RNA) that
binds its 5′ side to the non-complementary part of the crRNA and
the 3′ side to Cas9, thus forming a RNA structure called guide RNA
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(gRNA) and linking it to the enzyme. Cas9 nuclease can be therefore
guided to the foreign phage DNA thanks to the gRNA with which is
complexed, as described in Figure 1.2. Thus, the phage genome is
degraded, thus halting replication and infection.

It is worth to notice that again, the gRNA:Cas9 complex is able

Figure 1.2: Bacterial Immunization. When a bacteriophage infects a bacterial
cell, CRISPR-associated proteins locate a PAM sequence in the phage genome, excise a frag-
ment of DNA (protospacer) and integrate that fragment into the CRISPR array in the bacterial
genome. Subsequent infection with the same bacteriophage activates an immune response that
ends with phage genome degradation.

to bind only DNA sequences that are adjacent to a PAM site, which
recognition by one of the Cas9 domains is the first mandatory step nec-
essary for the formation of a stable DNA:gRNA:Cas9 complex [64].
Inspired by the naturally occurring system, groups have isolated the
Streptococcus pyogenes Cas9 protein and have created a chimeric ver-
sion of the gRNA-tracrRNA pair of RNAs by linking the two via a loop
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1.3. CRISPR/Cas9 system

of 4 nucleotides [65]. In this way it has become possible to achieve pre-
cise DNA strand breaks by simply expressing a single protein along
with single RNA molecule for desired target, virtually addressing ev-
ery possible 20 nucleotide sequence on a DNA molecule adjacent to a
PAM sequence (see Figure 1.3).

Figure 1.3: sgRNA design. Qi et al. [65] have created a single guide RNA by
linking the guide RNA and tracr RNA via a tetraloop . This has allowed for easy and cheap
design and synthesis of CRISPR/Cas systems applied for a variety of purposes. The creation of a
sgRNA leads to reduced degrees of freedom when designing the complementary RNA strand for
Cas targeting, resulting in a simpler, more basic method with less room for error and variation.

Before the CRISPR/Cas system was used as a means of genetic mod-
ification, other different sequence specific nucleases (SSNs) were de-
veloped and patented by different groups. The first to be discovered
were meganucleases, that have the ability to recognize specific 18-23
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nucleotide sequences and produce double strand breaks at specific loci
[66]. However they proved too large and complex for efficient ma-
nipulation of the guiding sequence. Next, zinc-finger domains were
discovered to bind DNA through conserved protein motifs, where ev-
ery zinc finger has the ability to recognize 3 sequential nucleotides [67].
These zinc-finger domains were exploited for the DNA recognition abil-
ity, and fused to a FokI domain with nuclease activity, resulting in a
multi-domain protein with the ability to find and cleave specific se-
quences, known as zinc-finger nucleases (ZFNs)[66]. A more recent
targeting mechanism was discovered in plants, who possess transcrip-
tion activator-like effector (TALE) proteins. Similarly to zinc fingers,
they are composed of highly conserved domains that are able to rec-
ognize only one nucleotide. These TALE domains are subsequently
fused to a FokI domain with nuclease ability resulting in a sequence
specific nuclease - TALEN -, whose domains are able to recognize one
nucleotide at a time [68, 69]. TALENs and ZFNs both rely on protein
engineering and protein-DNA interactions for recognition; neverthe-
less, the repetitive nature of the conserved domains makes it more
difficult to assemble a functional SSN, since the cleavage domain of
FokI effects a double-strand break only upon dimerization of two sub-
units located on the two complementary strands of the double helix;
therefore two proteins are necessarily expressed in the desired cell to
induce the DNA modification, with consequent problems in both de-
livery and metabolic load due to the size of the encoding genes.
The CRISPR revolution was pioneered by Jennifer Doudna among oth-
ers, who thought to exploit the targeting mechanism of the CRISPR/Cas
system for the purpose of gene editing, and developed a more facile
method for generating a functional gRNA (see Figure 1.3) [65]. This
has allowed for a boom in genetic modification experiments, since
CRISPR-based SSN became widely available and easy to assemble.
The main advantage of CRISPR/Cas based targeting is the bypass
of the complex protein engineering required to manufacture ZFNs or
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TALENs, both of which are protein based, because Cas proteins are
guided by none other than a guide RNA that associates with the Cas
protein and directs it to the specific sequence; the mechanism of pair-
ing between the CRISPR:Cas complex and the target DNA relies solely
on DNA-RNA complementarity, and consequently, designing guides
has proven to be simpler, faster, and cheaper.
However, the knowledge on DNA repair mechanisms of cells allowed
us to exploit the cell ability to drive homologous recombination in re-
sponse to DNA damage. As such, techniques emerged for targeted
mutagenesis of host cells by providing template DNA fragments in
combination with SSN that upon DNA cleavage activate DNA repair
enzymes and augment the probability of correct homology-directed re-
pair of the gene locus. Through this technology, scientists are able to
insert or exchange segments of coding DNA with unprecedentedly high
precision, as well as produce functional knock-outs via inducing non
homologous end joining (in cells where this kind of repair is present),
where small indels alter the reading frame in the coding sequences of a
target gene. These targeted mutagenesis can affect protein expression
and in turn cell fate [70, 71, 72].

1.3.2 Catalytically inactive Cas9: CRISPR inter-
ference and derivatives

Modifications of the original CRISPR/Cas system emerged to serve
as transcriptional regulators of genes. The dead Cas9 (dCas9) engi-
neered protein for the targeted repression of genes, lacking nuclease
catalytic activity due to single nucleotide deletions in its two cleaving
domains, has been developed in [65]. This system, known as CRISPR
interference - CRISPRi, exploits targeting via gRNAs to achieve gene
silencing by steric occupancy to elongation or even binding of RNA-
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polymerases (see Figure 1.4). Further, CRISPR/dCas9 were also fused

Figure 1.4: Transcription initiation block by CRISPR/dCas9
complex. As a means of silencing gene expression, sgRNA have to be designed comple-
mentary to promoter regions of reporter genes. The binding of the interference complex to
the promoter region prevents transcription initiation by sterically hindering the recruitment of
polymerase to the promoter.

to transcription activators, that ultimately lead to an increase in gene
expression [73] despite this system so far have been developed mainly
or eukariotic cells. Other studies fused dCas9 to domains recruiting
chromatin remodeling proteins such as histone acetylases/deactylases,
histone methylases, DNA methyl transferases, all of which either re-
press or enhance gene expression without altering the sequence of DNA
[74]. Moreover, sequence-specificity of these systems implies potent se-
lection methods of specific gene sequences in a large pool cells with dif-
ferent genomes, to be applied ultimately to complex bacterial ecosys-
tems such as the human microbiome [75, 76]. A group of scientists
have been able to select and kill only pathogenic bacteria present in
complex bacterial ecosystems by employing a phage vector carrying
a CRISPR/Cas system directed at specific sequences in pathogenic
bacteria known as virulence genes. Studies are still ongoing, but it
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demonstrates the powerful ability of SSNs to be used as a selection
tool for the targeted elimination of specific bacterial species. Another
application of this system, in which studies were performed in vivo,
involves the use of a viral vector containing a combination of guide
RNAs targeting retroviral LTRs and structural genes to achieve the
efficient excision of pro-viral DNA from infected host cells [77], pro-
viding a viable method for the cure of diseases that until this day only
have no remedy, such as AIDS and herpes. These systems rely on
the multiplexing of gRNA to target several sequences while maintain-
ing expression of the same single Cas protein; desired repression of
multiple target genes with transcription factors requires complex sys-
tems and many cellular resources rendering it impractical. A recently
developed CRISPR imaging system fuses GFP proteins to dCas9 for
the visualization of several loci in the genome; this system, called
CRISPR-Tag, allows an in-depth look at the effect of spatial-temporal
organization of genes [78].

1.4 Project Idea and bigger picture

In this study, firstly, synthetic transcriptional cascades in Escherichia
coli obtained upon interconnection of different inducible and repress-
ible devices were analyzed. To elucidate the reliability of currently
available mathematical models applied to this circuit collection, the
predictive power of a widely used Hill function model and of one of
the recently proposed models that considers cell burden due to re-
source limitation were tested. Specifically, the latter considers Hill
functions to describe specific interactions among circuit elements to-
gether with cell burden that modulates protein expression. The fea-
sibility boundaries of a bottom-up approach are elucidated, together
with the importance of taking into account cell burden in quantitative
predictions.
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To expand the possibilities in rational design of genetic circuits bearing
a notable amount of cellular burden, a CRISPRi-based model system
has been implemented in BioBrickTM standard and deeply character-
ized, highlighting its working range and drawing up an usage blueprint.
The flexibility of gRNA design allows to target almost any desired se-
quence, granted the presence of an adjacent PAM motif required for
system function, whereas transcription factors have affinity towards
a single or few sequence(s) of preference. Nonetheless, sgRNAs are
macromolecules that do not undergo the translation process, which is
known as the main source of metabolic load (thus the net load is given
by dCas9 expression only). Once the circuit is designed, a mutagenesis
is sufficient to introduce the desired sgRNA sequence, in order to cus-
tomize the regulatory machinery by changing target and specifically
tuning the transcription of the desired genes.
In the last part of this work, CRISPRi-based circuits are adopted in
the design of synthetic circuits of increasing complexity. In particular,
different aspects of high interest for the use of sgRNAs in circuit de-
sign are touched: use of protein repressors and sgRNAs to implement
double regulation, use of sgRNAs as low-burden alternative of protein
repressors, tuning the efficiency of sgRNA repression, and competition
effects among different sgRNAs expressed in the same cell.
Taken together, the investigations reported in this thesis are expected
to improve our design capability of synthetic circuits by providing
means of taking into account and decrease cell burden. The main tool
used is based on CRISPRi, for which a thorough characterization is
provided in different contexts, highlighting advantages and limits. A
mixture of in silico and in vivo studies is adopted to reach the described
goals.
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Chapter 2
Metabolic Burden Modeling using
transcriptional cascades as case
study1

In this study, synthetic transcriptional cascades in Escherichia coli
obtained upon interconnection of different inducible and repressible de-
vices, were analyzed. To elucidate the reliability of currently available
mathematical models applied to this circuit collection, it was aimed
to test the predictive power of a widely used Hill function model and
of one of the recently proposed models that considers cell burden due
to resource limitation. Specifically, the latter considers Hill functions
to describe specific interactions among circuit elements together with
cell burden that modulates protein expression. These models are de-
scribed in 2.1 and will be referred to as no-burden model (NBM) and
burden model (BM), respectively. The study presented in this work

1This chapter has been taken and re-adapted from the article “Re-using bio-
logical devices: a model-aided analysis of interconnected transcriptional cascades
designed from the bottom-up ”[79]
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2. Metabolic Burden modelling

elucidates the feasibility boundaries of a bottom-up approach and the
importance of taking into account cell burden in quantitative predic-
tions.

2.1 In-vivo characterization

2.1.1 Circuits description

The circuits analyzed in this study are described in Figure 2.1.
Their design is based on the widely used lux, tet and lac systems el-
ements, and the RFP and GFP reporter genes (see Table B.1 for a
description of all the basic parts used). The circuits topology imple-
ments transcriptional cascades [20, 80] composed by an HSL-inducible
or -repressible input block upstream of NOT gate blocks (none, one
or two) connected in series. Finally, an RFP expression device is as-
sembled downstream of the cascade to serve as detectable circuit out-
put. All of them have been assembled in the low-copy pSB4C5 vector
[81]. Input blocks include a constitutively expressed luxR gene with
a strong RBS (BBa B0030 or BBa B0034) under the control of the
PR, PLtetO1 or PLlacO1 promoter [82], and the wild-type inducible Plux
promoter [83] or the strongest member of a synthetic repressible pro-
moter library [84], herein called PluxRep, downstream. The NOT gates
include the tetR or lacI repressor gene, with a weak RBS (BBa B0031),
and their cognate repressible promoter PLtetO1 or PLlacO1, respectively,
downstream [85]. The tetR and lacI genes both have an LVA fast-
degradation tag for the translated protein [86].

One- to three-block cascades have been studied by using different
combinations of these devices. A collection of the same circuits has
also been constructed with a reporter expression cassette downstream,
composed by a GFP expression system driven by a constitutive pro-
moter (BBa J23100). This additional gene expression cassette will be
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2.1. In-vivo characterization

Figure 2.1: Collection of circuits analyzed in this study. All of
them are available with an RFP expression system downstream of the output promoter (indicated
in the text with the r suffix), and also with a GFP expression cassette driven by a constitutive
promoter downstream (indicated in the text with the rg suffix, meaning that both RFP and
GFP can be measured to quantify circuit output and cell burden, respectively). Curved green
arrows represent promoters; straight violet arrows indicate coding sequences; red hexagons rep-
resent transcriptional terminators; ovals represent RBSs (BBa B0030 yellow; BBa B0034 orange;
BBa B0031 blue); circle represents HSL. Activation and repression are indicated as thin arrows.
Block color is consistent among the circuits
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referred to as Monitor cassette, and it will be adopted to quantify cell
burden, as previously carried out [51, 19, 54].
The described circuits were divided into training and test sets (see Fig-
ure 2.1). In particular, the X1, X2, X3 and Xrep configurations have
been used as specific measurement system constructs for the charac-
terization of input blocks, whereas X2T and X3L have been used to
characterize individual NOT gates. The ones to characterize input
blocks include the input device with RFP downstream. The ones to
characterize NOT gates include a pre-characterized input device up-
stream, in order to tune the expression of tetR and lacI genes over a
range of levels, and RFP downstream to measure the NOT gate block
output. In the context of a bottom-up approach, the characterization
of the circuits above was used to predict the behavior of the test set
circuits, which are composed by different combinations of the charac-
terized blocks.
The used input devices provide homogeneous transcriptional output
with no bimodal distribution of gene expression [37, 84, 87]. For this
reason, the network topology used for the circuits in this work provides
unimodal outputs at all the cascade levels.

2.1.2 Circuits characterization

Fluorescence and absorbance of recombinant bacteria incubated in
a microplate reader were measured over time as previously described
[13, 87, 84]. Briefly, bacteria from a glycerol stock were streaked on
a selective LB agar plate. After 16− to 20 − h incubation at 37℃,
1ml of selective M9 was inoculated with a single colony. For strains
expressing a repressor in absence of HSL, the inducer was added at
this step, at a proper concentration, to allow them to reach a steady-
state of intracellular proteins, and to avoid long dynamics due to re-
pressor proteins degradation and dilution during the microplate assay.
After 21 − h incubation at 37℃, 220rpm, in an orbital shaker, cul-
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2.1. In-vivo characterization

tures were 100 fold diluted in a final volume of 200µl in a 96-well
microplate. HSL (2µl) was added when required, to reach the desired
final concentration. Cultures were not placed in the external wells of
the plate to avoid intensive evaporation during incubation. The mi-
croplate was incubated with lid in the Infinite F200 microplate reader
(Tecan) and it was assayed via kinetic cycle: 15s linear shaking (3mm
amplitude), 5s wait, absorbance (600nm) measurement, fluorescence
measurements, 5min sampling time. RFP and GFP fluorescence was
measured with a gain of 80 with the 535/620nm and 485/540nm filter
pairs, respectively. Control wells were always included, as described
in the following Data processing Section 2.1.3, to measure the back-
ground of absorbance and fluorescence, and to provide internal control
references for relative activity calculations. At least three biological
replicates, starting from different colonies, were assayed for each strain.

2.1.3 Data processing

Data analysis and related graphs were carried out via Microsoft Ex-
cel and Matlab R2007b or R2017b (MathWorks, Natick, MA). Pair-
wise correlations and corresponding p-values, as well as correlation
matrices, were computed via the Matlab corr function. Linear regres-
sions were carried out via the Matlab regress function.
Raw absorbance and red fluorescence time series were blanked by back-
ground subtraction as previously reported [13, 88] to obtain OD600

and RFP time series. Sterile medium and a non-fluorescent TOP10
culture were used as absorbance and red fluorescence background, re-
spectively. Since a significant cell density-dependent autofluorescence
was previously reported for GFP measurements with the adopted ex-
perimental setup [89], green fluorescence was blanked via a different
procedure: for each GFP-expressing strain, a control strain with iden-
tical circuit and HSL concentration, but without GFP expression cas-
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sette, was considered. The raw green (auto)fluorescence (GFPauto) vs
OD600 characteristic (at least two biological replicates) was fitted via
an exponential regression:

GFPauto(t) = eq+m·OD600(t) (2.1)

This curve was used to estimate the green fluorescence background of
a target culture, given its OD600 at each time point. The GFPauto
value was subtracted from the raw fluorescence of the target culture
to obtain a signal proportional to the GFP level in the whole culture.
Fluorescent protein synthesis rate per cell (Scell) was computed for
each culture and fluorescent protein as:

Scell =
dF

dt
· 1

OD600

(2.2)

where F is the RFP or GFP fluorescence level in the whole culture; it
was then averaged over the exponential growth phase (0.05 < OD600 <
0.18) [84]. The obtained values were divided by the average Scell of
a reference culture, constitutively producing RFP or GFP with the
same expression system under the control of the BBa J23101 pro-
moter, yielding Scell,norm. Reference cultures for RFP and GFP have
the BBa J107029 and BBa K173001 expression cassettes, respectively.
When the growth rates of target strain and reference cultures are simi-
lar, Scell,norm is equivalent to the Relative Promoter Unit (RPU) value.
A strain only including the Monitor cassette was also considered (herein
called Monitor culture) to estimate the GFP level without the cell load
caused by the circuits. In this strain, a BBa B0015 transcriptional
terminator was assembled upstream of the Monitor cassette to enable
GFP measurements with the BBa J23100 promoter in the same sur-
rounding context of all the circuits, in which this terminator is always
present upstream of the Monitor cassette.
Growth rate was computed via linear regression of ln(OD600) vs time
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characteristic in the 0.05 < OD600 < 0.18 window [84, 89].
The inclusion of specific control strains without Monitor cassette in dif-
ferent conditions for target strain autofluorescence estimation was nec-
essary because such background value was found to be not only OD600-
dependent, but also growth rate-dependent (see Figures B.8,B.22), and
strains bearing circuits with or without Monitor have similar growth
rates (see Figure B.4). The background of the GFP reference cul-
ture and the Monitor culture was estimated using the RFP reference
culture as control.

2.2 Models description

2.2.1 Mathematical description: No-burden model
(NBM)

Models including Hill functions were used to describe activation
and repression of proteins expression in the analyzed circuits. Intracel-
lular protein levels were modeled via dynamic equations as previously
performed in many works [38, 21, 46], assuming the steady-state of all
the intracellular species in exponentially growing cells, and assuming
no metabolic burden affecting the cells.
The level of a repressor protein (Pj) in the NOT gate blocks is com-
puted as:

Pj =
1

µ+ γ
· Sj (2.3)

where γ is the protein degradation rate due to the LVA tag, µ is
the cell growth rate, which depends on recombinant strain and HSL
concentration, and Sj is the Pj synthesis rate per cell, defined as:

Sj = δj +
αj

1 +
Kj

Ij

±ηj (2.4)
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2. Metabolic Burden modelling

where δ, α, K and η are the Hill equation parameters that characterize
the upstream regulated promoter; in particular, δ is the basic expres-
sion rate in the off-state, δ + α is the maximum expression rate, K is
the input (I) level corresponding to 50% of the expression rate range,
and η is the Hill coefficient (positive if the upstream promoter is in-
ducible, negative if repressible); finally, I is the function input, which
can be a per-cell protein level (if the NOT gate has another NOT gate
block upstream) or HSL concentration (if the upstream block is an
input block). Growth rate is assumed to affect protein dilution rate
due to cell doubling, but not all the other processes (e.g., transcription
and translation).
The immature (i.e., non-fluorescent) reporter protein per-cell level (R)
is computed as:

R =
1

µ+ a
· Sj (2.5)

where a is the fluorescent protein maturation rate and the other sym-
bols have the same meaning as above. Finally, the mature reporter
protein synthesis rate per cell (Scell,norm), which is the measured out-
put of the circuits, is computed as [29]:

Scell,norm,RFP = a ·R (2.6)

Scell,norm,RFP is expressed as arbitrary units of RFP (AUR, if con-
sidering circuit output) per cell per time (AURcell

−1min−1). RFP
per cell concentration is assumed to be proportional to its respective
arbitrary units. To support the predictable interconnection of biolog-
ical devices, inputs and outputs of all the circuit blocks need to be
expressed with the same units [38]. To this aim, the regulated pro-
moter of all the blocks is characterized in AURcell

−1min−1 units and
the intracellular levels of all the proteins of the network can be ex-
pressed as AURcell

−1. The basic underlying assumptions are that a
promoter is able to drive any downstream-connected gene to the same
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activity-dependent expression level [21], and the resulting protein level
is assumed to be proportional to the gene expression level [29]. Such
assumptions enable to model and re-use different biological devices
by expressing their activities in comparable units [38], in absence of
context-dependent variation of parts function [90].

2.2.2 Modeling in a limited resource context: Bur-
den model (BM)

In a limited resource context, RNA polymerase and ribosome intra-
cellular levels have also to be taken into account. In order to include
this aspect in the mathematical description of the systems, the model
proposed in the work by Qian et al. [53] was adopted and integrated
in the previously described No-burden model - NBM. While the full
model derivation procedure and assumptions are described in the work
by Qian et al. [53], from a structural point of view the only differ-
ence between the BM and the standard model based on Hill equation
(NBM) is the presence of a denominator (D) that affects all the pro-
tein synthesis rates. Referring to Eq. 2.4, the protein synthesis rate
term becomes:

Sj =
Smax,j
D

(2.7)

Smax,j = δj +
αj

1 + (
Kj

Ij
)±ηj

(2.8)

D = 1 +
M∑
k=1

Jk · Smax,k (2.9)

where M is the number of expressed proteins in the cell, Smax,k is the
maximum achievable synthesis rate of the k-th expressed protein, and
Jk is the related resource usage parameter, representing a measure of
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the burden caused by the k-th protein. This denominator includes not
only the effect of the genes in the synthetic network, but also the ones
of the organism. The sum of the organism gene contributions to the
burden (z) can be assumed to be a constant circuit- and induction-
independent term:

z =
C∑
k=1

Jk · Smax,k (2.10)

where C is the number of expressed organism genes. The denominator
D can be re-written as:

D = 1 + z +
Y∑
k=1

Jk · Smax,k (2.11)

where Y = M−C is the number of proteins expressed in the synthetic
circuit. Being (1 + z) a constant term, D can be rescaled by dividing
each term by (1 + z) to obtain D̂:

D̂ = 1 +
Y∑
k=1

Jk · Ŝmax,k (2.12)

where Ŝmax,k are the maximum achievable synthesis rates rescaled by
(1 + z). In this case, all the synthesis rates and intracellular protein
levels in the model are rescaled by this term. For this reason, the
Pj, Smax,j and Sj in the BM can be interpreted as the protein level,
maximum synthesis rate and actual synthesis rate relative to the en-
dogenous resource usage term, 1 + z, without affecting their units or
the functionality of the model. In the BM, the Hill equation repre-
sents the maximum achievable synthesis rate (Eq. 2.7-2.8) and has a
different interpretation compared to the NBM, in which it represents
the actual synthesis rate (Eq. 2.4). Since all the circuits analyzed
with the BM contain the Monitor cassette, the constant contribution
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of GFP expression was included among the organism genes (although
GFP expression was found to have a negligible contribution to cell
burden, as described in Section 2.3) without affecting the meaning of
the described quantities.
The resource usage terms, J , are expressed in (AU−1

R cell min) units.

However, the contribution to D̂ of non-regulated proteins in the cir-
cuits (i.e., LuxR in the input blocks) is herein expressed by the dimen-
sionless constant term Σ = J · Ŝ.
Differently from the NBM, GFP expression is also modeled to enable
the quantification of cell burden. The intracellular level (G) of imma-
ture GFP is computed as:

G =
1

µ+ aG
· Sm
D̂

(2.13)

where a G is GFP maturation rate, Sm is the synthesis rate in the Mon-
itor cassette (expressed as arbitrary units of GFP - AUGcell

−1min−1),
and the other symbols have the same meaning as above.
Analogously to the RFP output, the Monitor cassette output is de-
scribed as:

Scell,norm,GFP = aG ·G (2.14)

In addition to the NBM assumptions, RNA polymerase and ribosome
levels were further assumed to being not affected by cell growth rate,
and that cell burden and growth rate do not considerably affect the
transfer function of input devices due to LuxR protein level variation
[54]. The inclusion of these two phenomena would require a model
relating growth rate and RNA polymerase/ribosome levels, and the
explicit modelling of LuxR production and binding with HSL via a
mechanistic model, such as the one proposed by Carbonell-Ballestero
et al. [91]. Both interventions are beyond the scope of this work and
can be topic of additional modeling studies.
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2.3 Application of the models

2.3.1 Data overview

Cascade output level at steady-state was measured as a function
of HSL for all the circuits via RFP analysis (see Figure B.1). Consid-
ering circuits without Monitor, their RFP output span a wide range
of values (> 640 fold), with all the circuits showing a relevant output
variation as a function of HSL concentration, from 3 fold (XrepTLr) to
141 fold (X1r). The growth rate of these recombinant strains span a
2.5 fold range (see Figure B.2). The quantitative behavior of individ-
ual devices was consistent with previously published characterization
data (see Appendix B) [13, 84, 87, 91, 92, 93].
According to the inducible or repressible behavior of the constructed
circuits that can be inferred from the individual blocks, all the 1-
and 2-block circuits showed the expected logic behavior. However,
only two of the four 3-block circuits (X1LTr and XrepLTr) showed
the expected logic output trend: the X1TLr and XrepTLr circuits,
in which the output should be an increasing and decreasing function
of HSL, respectively, showed a clear decreasing output (X1TLr), and
an increasing and then decreasing (XrepTLr) output. Cell resource
limitation may give rise to such qualitatively unpredictable behavior,
in which the logic activation and repression rules were affected by hid-
den interactions caused by cell burden [53]. For this reason, analysis
of circuits in presence of a burden measurement system was carried
out.
Considering circuits with Monitor cassette, GFP was analyzed (see
Figure B.3), in addition to RFP and growth rate (see Figures B.1-
B.2), and used to indirectly measure cell burden. The RFP output
and growth rate are highly similar to the ones of the circuits without
Monitor, suggesting that the Monitor itself does not provide relevant
burden to the cell (correlation value of 0.99 and 0.83, respectively, see
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Figure B.4).
In presence of a monitor cassette, a strong correlation between growth
rate and GFP was previously observed, caused by growth rate decrease
in presence of cell burden [51]. By contrast, here a statistically sig-
nificant but very low correlation (0.27) was observed (see Figure B.5).
Considering individual circuits, only three of them (X2Trg, X1Trg
and X1TLrg) showed a statistically significant growth rate-GFP cor-
relation (see Table B.2 and Figure B.6), with the 0.41, 0.72 and 0.84
values, respectively. These constructs have in common a highly ex-
pressed tetR repressor, while in the other circuits its transcription is
driven by weaker promoters. Consistently, these three circuits are also
characterized by the lowest GFP levels among the tested circuits (see
Figure B.3). Such data suggest that a correlation between growth
rate and GFP can be detected only in the circuits causing the highest
cell burden, while in other recombinant strains no significant growth
rate-GFP correlation could be seen, even though GFP and growth
rate showed large variations and GFP exhibits a clear HSL-dependent
trend.
In previous studies of circuits including single non-interconnected ex-
pression cassettes, RFP and GFP also showed strong correlation be-
cause Monitor levels decrease when the expression of a second protein
is triggered, due to resource allocation [19, 54]. The same negative
strong correlation can be seen here for the four input devices (see Ta-
ble B.2 and Figure B.7). This trend cannot be observed for the other
circuits, which include the regulated expression of different proteins,
whose expression, together with the one of RFP, may provide a burden
for the cell and give rise to complex RFP-GFP relationships.
The illustrated inter-relationships among RFP, GFP and growth rate
confirm the usefulness of a burden monitor to measure cellular capac-
ity instead of typically used growth rate measures. In fact, the output
of a monitor cassette can not only provide an early cellular burden sig-
nal that precedes a growth rate decrease in dynamic experiments, as
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previously described [51], but also a more sensitive measure of cellular
capacity, demonstrated by the clear RFP-GFP negative trend for the
input devices (see Figure B.7), not reflected by growth rate changes
(see Figures B.1-B.3).

2.3.2 Model fitting and analysis

Matlab R2007b was adopted for model fitting and analysis. Fit-
ting was performed using the weighted least squares method via the
lsqnonlin function. For each data point at a given HSL concentration,

the weight of the i-th squared residual was set to wi =
1

σ2
i

, where σi is

the standard deviation of all the biological replicates at the given HSL
concentration. Biological replicates showed a relatively low variability
in terms of growth rate (average CV of 12%, with a range of 1−36%);
for this reason, the growth rate of recombinant strains was set to the
average growth rate value at a given HSL concentration.
Unless differently stated, the NBM and BM were fitted sequentially:
in the NBM, the Hill parameters of the four input blocks were first
learned individually; then, the Hill parameters of the two NOT gates
were learned individually, by setting the Hill parameters of their in-
put devices to the values estimated in the first learning step. In the
BM, the four input blocks were first simultaneously fitted to estimate
the respective Hill parameters and the burden-related parameters, i.e.,
JRFP , ΣXλ , ΣXlac and ΣXtet; then, the Hill parameters of the two
NOT gates, as well as their burden-related parameters, Jtet and Jlac,
were learned individually as before, by setting the other parameters
to the previously estimated values.
Implicit equations, commonly occurring in the BM due to the pres-
ence of protein levels on the left and right hand side (see Eqs. 2.4,
2.7-2.9), were solved using a custom Matlab script implementing the
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fixed point method.
The NBM and BM were also fitted by using the data of all the circuits,
and their parameters were all simultaneously estimated. In this case,
the two models were compared via the Likelihood Ratio (LR) test, in
which the log-likelihood value was computed as:

LL = −(
√

2π
N∑
i

σi +
1

2

N∑
i

r2
i ) (2.15)

considering RFP data, where N is the number of data points and r2
i is

the i-th weighted squared residual, assuming that experimental data
are affected by uncorrelated Gaussian error with standard deviation
σ.
Unless differently indicated, fixed values were used for the follow-
ing parameters in all the fitting and simulation procedures: λtet =
0.0173min−1 [86], λlac = 0.0533min−1 [94], a = 0.0167min−1 [45] and
a G = 0.0462min−1 [45].
A Monte Carlo approach was adopted to estimate parameter uncer-
tainty and to propagate it throughout the model fitting procedure.
For each model fitting step, 10, 000 synthetic datasets were created by
adding Gaussian noise (with zero mean and variance σ2

i ) to the model
prediction computed with the estimated parameters [84]. Negative
data were set to zero. The fitting procedure was carried out for each
dataset and a distribution of estimated parameters was obtained. In
the stepwise procedure, parameter sets were randomly extracted from
the previously obtained distribution instead of fixing them during the
NOT gates model identification step, to properly propagate the un-
certainty of parameter estimation to the downstream learning steps.
Univariate sensitivity analysis (i.e., performed on a single Hill param-
eter - δ, α, K or η - for all the blocks of a circuit) was carried out
by following the Monte Carlo method illustrated above, but replacing
the target parameter distribution with a Gaussian distribution with
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the same mean and CV= 25%. This variability was set to impose that
the 95% confidence intervals of parameters (p) are 0.5× p and 1.5× p,
which are reasonable context-dependent variability values seen in other
studies (although larger variability can be observed in distribution tails
[40]). Multivariate sensitivity analysis (i.e., performed on all the four
Hill parameters in all the blocks) was carried out analogously, except
that the Hill parameters were extracted from a multivariate Gaussian
distribution, taking into account the correlation between parameter
estimates.
Monte Carlo model simulations, aimed to predict the test set circuits
output, were carried out by extracting parameter sets from the esti-
mated distributions. Predictions were performed by fixing the growth
rates to the experimentally measured values.

2.3.3 Circuit predictability with no-burden model

The data from the training set circuits were fitted with the NBM
(see Section 2.1). A prediction performance summary is reported from
a Boolean logic and a quantitative point of view (see Figure 2.2(b)
and 2.3(a), respectively). The logic behavior of all the circuits is ac-
curately captured for all the training set circuits (Figure 2.2(a)) and
for all except two test set circuits: X1TLr and XrepTLr showed an
unexpectedly non-increasing and non-decreasing HSL-dependent out-
put, anticipated above, that was not predicted by the model (see Fig-
ure 2.2(b)). The overall quantitative predictions on test set circuits
showed a 0.88 correlation coefficient (see Figure 2.3(a)).
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(a) TRAINING SET: No-burden model.

(b) TRAINING SET: Burden model.

(c) TEST SET: No-burden model.

(d) TEST SET: Burden model.

Figure 2.2: Overall prediction performance by the two models
analyzed in this work. a-d) Logic behavior of the circuits in terms of RFP output
level in vivo (yellow bars) and in silico (cyan bars) in absence of HSL and at the maximum
HSL concentration tested. Results are shown for training set (a-b) and test set circuits (c-d),
considering NBM (a,c) and BM (b,d). Red squares surrounding the sub-panels indicate a circuit
configuration with unexpected in vivo behavior. Red edges in the in silico-predicted output bars
indicate that the model is not able to predict the observed logic behavior of the circuit. Yellow
bars represent the average output value and error bars represent the 95% confidence intervals
of the mean; cyan bars the median predicted value and error bars represent the 95% confidence
intervals calculated via Monte Carlo simulations.
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(a) Steady state: No-burden model. (b) Steady state: Burden model.

Figure 2.3: Measured output of the circuits at all the HSL
concentrations tested in this work plotted against the values
predicted by the NBM (a) and BM (b). Red and blue points repre-

sent RFP and GFP output, and are expressed as AUR cell−1 min−1 and AUG cell−1 min−1,
respectively. Asterisks correspond to the data of the two circuits showing unexpected in vivo
behavior, while circles correspond to the data of all the other test set circuits. The solid line
is the bisector line. Each point represents the average value of the in vivo measured condition,
versus the median value of the corresponding model prediction.

The NBM fits the training set data accurately (see Figure B.9),
and the estimated parameter values showed a relatively contained un-
certainty (see Table 2.1).
Test set data could be accurately predicted by the identified model
in the X1Tr, X1Lr, XrepTr and X1LTr constructs (see Figure 2.4).
The XrepLr and XrepLTr showed qualitatively correct predictions, but
they underestimated the experimental data at maximum output level
by up to 2 fold (see Figures 2.2 and 2.4). On the other hand, as
expected, the two remaining circuits (X1TLr and XrepTLr) did not
show a correct prediction even qualitatively: a simple Hill function-
based model is not able to describe their observed HSL-dependent
RFP output (see Figure 2.4).
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Table 2.1: Parameter description and estimated values.

Parameter Units Estimated value Estimated value Estimated value
-=dimensionless (NBM, training set) (BM, training set) (BM, global fitting)

αX1 AUR cell−1 min−1 14.63(3%) 36.17(7%) 24.33(4%)
KX1 nM 4.16(9%) 5.39(9%) 6.71(6%)
ηX1 - 1.42(3%) 1.51(2%) 1.19(2%)
δX1 AUR cell−1 min−1 0.14(3%) 0.16(3%) 0.2(2%)
αX2 AUR cell−1 min−1 9.06(1%) 26.76(3%) 20.36(3%)
KX2 nM 15.06(7%) 17.26(6%) 31.39(7%)
ηX2 - 1.24(3%) 1.25(3%) 0.97(2%)
δX2 AUR cell−1 min−1 0.14(2%) 0.26(5%) 0.18(5%)
αX3 AUR cell−1 min−1 15.81(3%) 36.9(5%) 35.67(5%)
KX3 nM 4.37(16%) 7.64(17%) 8.9(14%)
ηX3 - 1.45(6%) 1.41(6%) 1.34(6%)
δX3 AUR cell−1 min−1 0.16(5%) 0.18(3%) 0.19(2%)
αXrep AUR cell−1 min−1 2.85(1%) 4.6(4%) 8.22(2%)
KXrep nM 6.67(12%) 5.26(11%) 1.86(5%)
ηXrep - 1.32(12%) 1.21(9%) 0.86(2%)
δXrep AUR cell−1 min−1 0.13(17%) 0.22(14%) 0.09(15%)
αT AUR cell−1 min−1 3.1(1%) 3.45(3%) 4.56(2%)
KT AUR cell−1 6.47(5%) 15.6(7%) 6.92(2%)
ηT - 1.59(7%) 8.28(31%) 2.57(2%)
δT AUR cell−1 min−1 0.03(19%) 0.22(3%) 0.21(2%)
αL AUR cell−1 min−1 0.63(6%) 0.56(9%) 0.76(2%)
KL AUR cell−1 56.39(17%) 52.13(22%) 34.92(2%)
ηL - 1.91(16%) 1.93(42%) 1.93(3%)
δL AUR cell−1 min−1 0.11(26%) 0.22(19%) 0.22(3%)

ΣXλ - NA∗ 0.2(8%) 0.36(2%)
ΣXlac - NA 1(6%) 0.56(2%)
ΣXtet - NA 0.07(23%) 0.12(11%)
JRFP AU−1

R cell min NA 0.04(3%) 0.04(3%)
Jter AU−1

R cell min NA 0.07(15%) 0.31(2%)
Jlac AU−1

R cell min NA 0.01(13%) 0.01(7%)
Sm AU−1

G cell−1 min−1 NA 1.75(2%) 1.75(2%)
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Figure 2.4: NBM prediction of the measured HSL-dependent
output in all the test set circuits without Monitor cassette.
Circles represent the average measured value and error bars represent the 95% confidence intervals
of the mean. Solid line represents the median predicted output of the model calculated via
Monte Carlo simulations for each HSL concentration tested. Dashed dark red lines are the 95%
confidence bands of the output distribution. Dashed light red lines are the 95% confidence bands
of the output distribution calculated after multivariate sensitivity analysis.

To consider the effect of parameter uncertainty on the output pre-
diction, uncertainty was propagated via Monte Carlo approach during
the fitting and simulation procedure (see Appendix B). In the training
set, the resulting confidence bands of circuit outputs were very narrow,
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demonstrating a low uncertainty in model output, given the distribu-
tion of the estimated parameters (see Figure B.9). In the test set,
the uncertainty of parameter values does not considerably affect many
of the circuits: only XrepTr and XrepLTr show relevant confidence
bands around the central tendency value (see Figure 2.4). Steep and
sensitive genetic switches, i.e., biological devices in which the trans-
fer function shows a steep response and starts increasing (or decreas-
ing) for very low values of its input, have been proved to promote
high-entity noise propagation throughout cascades of interconnected
devices [95, 96]. As a consequence, in the latter situation the output
curve is sensitive to small variations of parameters and activity of the
input block. In the analyzed circuits, the tetR-based block is a highly
sensitive switch, since even a small activity of the upstream block can
result in an output value that is significantly lower than its maximum.
This is demonstrated by the PLtetO1 output that, in presence of an up-
stream block in the off-state, is considerably lower than in absence of it
(see Figure B.10). Conversely, the lacI-based block exhibits a similar
output value in presence or absence of an upstream device in the off-
state (see Figure B.10). The described situation may explain the large
output uncertainty of XrepTr and XrepLTr for high RFP levels (see
Figure 2.4). To confirm this effect on variability, univariate sensitivity
analysis was carried out on the δ parameters of all the used devices,
considering plausible variability range values for such parameters (see
Section 2.1). Results showed that a relatively small variation of the
basic activity of promoters was sufficient to cause high variability in
the output curves in all the devices containing PLtetO1 as output pro-
moter (X1Tr, X2Tr, XrepTr, X1LTr and XrepLTr, see Figure B.11).
The results described above suggest that the robustness of the quan-
titative behavior of the analyzed circuits can be low in some cases,
due to relevant output variations in response to small variations of
the parameters. Univariate sensitivity analysis was also carried out
on the other three parameters of the Hill equation describing the de-
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vices transfer functions, α, K and η, to understand their effect on
circuit outputs. The results, reported in Figures B.12-B.14, showed
that a variation of K and η could explain the experimental output of
XrepLTr within confidence bands, but not the one of XrepLr, while
the variation of α is able to capture the output of both XrepLTr and
XrepLr. On the other hand, as expected, the parameter variations ap-
plied during sensitivity analysis could not describe the experimental
output of X1TLr and XrepTLr, even by allowing the variation of all
the four Hill function parameters (see Section 2.1 and Figure 2.4).
Evolutionary instability issues, such as mutations occurring in the
genes or regulatory parts of the circuits, may cause alterations in their
output [97]. To evaluate if the output trend of X1TLr and XrepTLr
was due to such alterations, phenotypic and genetic stability was as-
sayed via specific experiments (see Figure B.20). The on- and off-state
output of both circuits were found to be reversible, i.e., cultures could
reproducibly change RFP output level from low to high upon induc-
tion or de-induction, depending on the circuit (Figure B.20). Only
X1TLr showed stability mutants occurring at high HSL concentra-
tions (10µM), but not at intermediate ones, although the RFP output
decreases also in presence of 10nM of HSL (Figure B.20). As antici-
pated above (and confirmed later in this work), tetR gene expression
represents a burden for the cell, compared to the other proteins in the
circuit, and this may explain the observed, yet low, instability occur-
ring at high TetR protein synthesis levels. The XrepTLr circuit, on the
other hand, did not show mutants. The output reversibility and the
reduced presence of stability mutants only in one circuit and condition
suggest that the unexpected RFP output is not due to evolutionary in-
stability. Another issue might be enzymatic queuing, in which protein
degradation complexes become a limiting resource and causes a slower
degradation of all the proteins including the same specific degradation
tag [98]. Although the X1TLr and XrepTLr circuits both include two
proteins (TetR and LacI) with the same fast-degradation tag, simple
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in silico simulations showed that queuing effect could not explain the
observed RFP output (see Figure B.21).
In summary, the NBM is able to successfully fit the experimental data
from the training set and, by applying small variations to some of the
model parameters, to quantitatively predict the output of all the set
circuits with expected logic behavior. On the other hand, the output
of the two test set circuits that show unexpected behavior was not
captured by the NBM in any of the in-silico experiments.
The experimental data of RFP output coming from the circuit col-
lection with the Monitor cassette was also fitted with the NBM and
analogous conclusions can be drawn (see Figure B.15).

2.3.4 Circuit predictability with the Burden Model

Among the available models describing circuits output considering
cell burden [53, 55, 56], the one proposed by Qian et al. [53] (see Sec-
tion 2.1),that was also adopted in other works [19, 54], was selected.
This model includes a low number of burden-related parameters, i.e.,
one for each gene in the circuit, while the other models, although suc-
cessful in the in-silico study of different situations [51, 55, 56], required
the estimation or assumption of a larger number of parameters. The
model by Qian et al. can be integrated into a simple Hill function
model by introducing a protein synthesis-dependent factor, which has
a global negative effect on the protein expression of all the circuit.
The weight of each protein synthesis term quantifies the contribution
of each circuit module to the global cell load, and has been previously
used as a mechanistic model-derived lumped parameter measuring re-
source usage [53].
Analogously to what was performed for the NBM, the data from the
training set circuits were fitted with the BM, by considering both RFP
and GFP, representing the circuit output and the burden measures,
respectively, and the output of test set circuits was finally predicted
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2. Metabolic Burden modelling

(see Figure 2.2(d) and 2.3(b) for an overview of the logic and quanti-
tative prediction performance).
Among the training (see Figure 2.2(b)) and test set circuits (see Figure
2.2(d), only XrepTLr shows a non-correct logic behavior prediction,
while all the other circuit configurations could be captured. In partic-
ular, it is worth noting that the BM is able to predict the output of
X1TLr, which could not be predicted by the NBM.
The training set data were fitted by the BM with reasonable accu-
racy (see Figures B.16-B.17). In particular, the model showed excel-
lent quantitative accordance with RFP experimental data (see Figure
B.16), as it was observed above for the NBM; GFP data were all well
fitted by the BM, except Xreprg and X3Lrg, for which the model
showed a slightly lower descriptive capability to capture the measured
data than for the other circuits (see Figure B.17).
The estimated parameter values showed significant deviations from
the ones obtained via NBM (see Table 2.1). The most remarkable dif-
ferences can be observed for the α parameter values of almost all the
devices. These values are, in general, higher when estimated via the
BM. This trend was expected, since in a limited cell resources frame-
work the devices are globally burdened, and the estimated α values are
linked to the maximum achievable activity, which may not be reached
in any of the tested conditions [53]. For instance, the X1rg device
shows a 2.5 fold difference in the α values between NBM and BM,
meaning that the observed activity at full induction reached by the
Plux promoter in this device is much lower than maximum attainable
one, which was 2.5 fold higher, due to the high RFP expression rate in
this induction condition. A lower fold change is observed for devices
characterized by lower activity in the on-state (e.g., Xreprg), since the
α values estimated via the NBM are close to the maximum attainable
ones, estimated by the BM. In addition to the Hill-related parame-
ters, the BM includes resource usage parameters for each gene in the
circuit [53]. The estimated values of the LuxR protein contribution

40



i
i

i
i

i
i

i
i

2.3. Application of the models

to cell burden (ΣXλ, Σlac and Σtet, corresponding to the expression
systems driven by PR, PLlacO1 and PLtetO1, respectively) showed
that LuxR expression alone in the input devices causes cell burden
and decreases circuit output by up to 50%, with the cassette driven
by PLlacO1 giving the highest burden and the one driven by PLtetO1

giving the lowest one (see Table 2.1). This effect can be observed in
the GFP output curves of the four input blocks in absence of HSL (see
Figure B.17). In these four circuits in this condition, RFP expression
is negligible and the only protein having a significant contribution to
cell burden is LuxR; as a result, GFP output level is inversely cor-
related with the corresponding Σ value. This result was unexpected,
since PLlacO1 has a lower activity than PLtetO1 in the used chassis, and
a lower burden value for it was expected (given identical RBSs up-
stream of luxR gene). The estimated resource usage parameter values
of RFP, TetR and LacI proteins (JRFP , Jtet and Jlac, respectively)
enable to conclude that, with the used RBSs, TetR expression causes
the highest cell load, while LacI the lowest one. Such values can be
useful to evaluate the working boundaries in the bottom-up design of
reduced-burden circuits, as demonstrated previously via different ap-
proaches [51].
Quantitative prediction results on the RFP output of test set circuits
showed that the overall performance of the BM (correlation coeffi-
cient of 0.87, see Figure 2.3(b)) is analogous to the one of the NBM.
Considering individual circuits, X1Lrg, XrepLTrg and X1TLrg showed
a good prediction with data consistent with the confidence bands of
the model (see Figure 2.5). Importantly, X1TLrg was one of the two
circuits whose output could not be correctly predicted by the NBM;
the other circuit (XrepTLrg), however, still behaved unpredictably. A
slight over- (X1Trg and XrepTrg) or under-estimation (XrepLrg) of the
experimental data maximum output level was observed for three cir-
cuits, with an error up to 1.4 fold. The predicted output of X1LTrg
showed a slightly anticipated switch point and an over-elongation at
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intermediate HSL concentrations that is not observed in experimental
data. Considering the Monitor output of the same circuits (see Figure
2.6), GFP showed an overall over-estimation of the experimental data,
with a lower prediction performance than RFP (0.71 correlation coeffi-
cient, see Figure 2.3(b)), suggesting that additional modelling work is
needed to improve the predictive capability of burden-related models.
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Figure 2.5: BM prediction of the measured HSL-dependent
RFP output in all the test set circuits with Monitor cassette.
Circles represent the average measured value and error bars represent the 95% confidence intervals
of the mean. Solid line represents the median predicted output of the model calculated via
Monte Carlo simulations for each HSL concentration tested. Dashed dark red lines are the 95%
confidence bands of the output distribution. Dashed light red lines are the 95% confidence bands
of the output distribution calculated after multivariate sensitivity analysis
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Figure 2.6: BM prediction of the measured HSL-dependent
GFP output in all the test set circuits with Monitor cassette.
Circles represent the average measured value and error bars represent the 95% confidence intervals
of the mean. Solid line represents the median predicted output of the model calculated via Monte
Carlo simulations for each HSL concentration tested. Dashed dark green lines are the 95%
confidence bands of the output distribution. Dashed light green lines are the 95% confidence
bands of the output distribution calculated after multivariate sensitivity analysis
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As it was carried out for the NBM, sensitivity analysis was per-
formed. Results are shown for a multivariate sensitivity analysis (see
Figures 2.5,2.6). As expected, confidence bands are higher than for the
NBM, since the BM has more parameters that can vary in a multivari-
ate fashion. Results showed that all the RFP data can be explained by
confidence bands, except XrepTLrg, leading to analogous conclusions
drawn for the NBM: parameter variations of plausible entity can cap-
ture all the experimental data except for circuits showing qualitatively
inconsistent predictions.
In summary, the BM does not improve the quantitative prediction
performances of the analyzed circuits with expected behavior, over
the NBM. However, it correctly predicted the output of one of the two
circuits with unexpected output behavior, not predicted by the NBM,
and, in addition, enabled the estimation of burden-related parameters
that support the rational design of synthetic circuits.

2.3.5 Model fitting using all the available experi-
mental data

The BM was also identified by using all the available data of the
training and test sets, in order to demonstrate the descriptive capa-
bility of the model to simultaneously fit all configurations, considering
both RFP and GFP data as before (Figures B.18-B.19). The NBM
was used to fit the RFP experimental data as a term of comparison,
but its descriptive capability was significantly worse than the one of
the BM (Figure B.18). Model comparison demonstrated a significantly
higher fitting performance for the BM (LR test, p-value < 0.05). The
parameter estimates resulting from the BM fitting are reported in Tab
2.1. Their values confirm the conclusions about burden contribution
levels for all the circuit proteins, since the Σ and J parameters have
the same ranking as before, despite a large variation was observed for
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some of them (e.g., Jtet which was > 4 fold higher than before).
Fitting results in Figures B.18-B.19 show that the output of some
configurations are over- or under-estimated up to 1.5 and 2.1 fold for
RFP and GFP, respectively, although the outputs of all circuits is
qualitatively captured. Parts activity variation upon interconnection,
an open problem in synthetic circuit design, can explain the observed
changes between individual configurations. Specifically, despite cell
burden modeling can explain some unexpected phenomena in bottom-
up designed circuits, other context-dependent effects still have to be
quantitatively elucidated, e.g., promoter transcription variation caused
by diverse flanking DNA sequences in different configurations [20].
The obtained results suggest that the modeling of cell burden signifi-
cantly improves circuit output description capability, but the context-
dependent behavior of the assembled devices must be taken into ac-
count in future studies to predict new designed configurations more
accurately.

2.3.6 Fixing non-functional cascades via rational
design

To further demonstrate the usefulness of BM in the rational de-
sign of circuits, new variants of the two cascades with unexpected be-
havior were designed and constructed to correct their HSL-dependent
logic function. Based on the estimated resource usage parameters via
BM (see Table 2.1), tetR was identified as the gene causing the high-
est load among the three regulated modules. For this reason, X1TLr
and XrepTLr were mutagenized to decrease the translation efficiency
of tetR, obtaining X1TwLr and XrepTwLr (Figure 2.8). Analogously,
the training set circuit X2Tr was mutated, obtaining X2Twr, to enable
the learning of the new tet-based NOT gate transfer function (Figure
2.7). The use of a weaker RBS (BBa B0033 instead of BBa B0031) up-
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stream of tetR successfully modified the individual NOT gate transfer
function (Figure 2.8(a)), resulting in a less sensitive switch, as indi-
cated by the KT parameter that increased by 10 fold. Cascades with
this modified tet-based NOT gate are expected to exert a lower cell
load than their previous design when TetR protein is over-expressed,
thereby restoring the correct functioning of the interconnected gates.
Experimental results showed that this RBS change yielded circuits
with expected increasing (X1TwLr) and decreasing (XrepTwLr) be-
havior as a function of HSL (Figures 2.8(b)-2.8(c)). In addition, con-
sidering all the HSL concentrations tested, the new circuits had about
2 fold higher growth rate than the previous ones (data not shown).
The RFP output of the realized circuits was also accurately predicted
by the NBM, using the same training set as above (see Figure 2.1)
except X2Twr that was used instead of X2Tr (Figures 2.8(b)-2.8(c)).
This result demonstrated that, after the attenuation of the main bur-
den source, the two circuits with previously unexpected behavior could
be not only fixed in terms of qualitative behavior, but also their quan-
titative HSL-dependent output could be successfully captured via tra-
ditional NBM.

47



i
i

i
i

i
i

i
i

2. Metabolic Burden modelling

Figure 2.7: Re-designed circuit variants schema, without Mon-
itor cassette. All of them are available with an RFP expression system downstream of the
output promoter (indicated in the text with the r suffix). Symbols are described in Figure 2.1,
except white ovals that represent a weak RBS (BBa B0033), used in these circuits to decrease
tetR expression.
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(a) (b)

(c)

Figure 2.8: Analysis via NBM of the measured HSL-dependent
output in the re-designed circuit variants, without Monitor
cassette. b-c) Prediction of the test set circuit X1TwLr and XrepTwLr, respectively. In
panels a-c, circles represent the average measured value and error bars represent the 95% con-
fidence intervals of the mean. Solid line represents the median output of the model calculated
via Monte Carlo simulations for each HSL concentration tested. Dashed dark red lines are the
95% confidence bands of the output distribution. Dashed light red lines are the 95% confidence
bands of the output distribution calculated after multivariate sensitivity analysis.
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Chapter 3
Engineering low-burden synthetic
circuits via CRISPRi

In the previous chapter, a mathematical approach to handle metabolic
burden in rational design was presented, as well as its application to
identify and replace components with high resource usage. To in-
crease the probability of obtaining a working synthetic circuit meet-
ing the design specifications, a novel toolbox for rational design of
synthetic genetic circuits with reduced metabolic load, based on the
CRISPR-interference mechanism, is here proposed instead. The con-
structed and tested devices aim to exploit the reduced translational
demand of the CRISPR\dCas9 system as an alternative to repress
promoter transcriptional activity, allowing to both avoid the usage of
resource-demanding transcriptional regulators and expand the pool of
repressible promoters to possibly every DNA region bound by an RNA
polymerase (encoding a PAM sequence).
Strain, cloning protocols and reagents used, as well as circuit charac-
terization and data processing procedures are mostly the same as the
ones described in Appendix B.1. Exceptions included GFP analysis,
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inducers, microscopic assays, sgRNA1 design and mutagenesis proto-
cols; their description along with additional materials and methods are
reported in Appendix C), along with a list of the circuits and parts
used in this study with relative names and BioBrickTM identifiers (see
Table C.1). In this chapter, a deep characterization of CRISPRi de-
vices is provided by first investigating a suitable expression level for
dCas9 (Section 3.1), then by selecting proper expression systems for
the sgRNAs (Section 3.2), by characterizing the sgRNAs repression ca-
pability in different contexts (Section 3.3) and finally by studying the
interplay between sgRNA repression and promoter strength (Section
3.4).

3.1 dCas9 expression cassette

3.1.1 dCas9 toxicity

For the interference system to be feasible, a threshold in dCas9 ex-
pression level needed to be found, avoiding detrimental effects to cell
growth; this means that its expression should not have a high trans-
lational demand and the synthesized protein itself should not be toxic
to the cell. An HSL-inducible dCas9 expression cassette was therefore
assembled downstream the GFP-based capacity monitor described in
Section 2.1.1 (namely AEdCas9, see Table C.1 and Figure 3.1), and
growth and GFP expression were compared to a control strain that
contained solely the capacity monitor as exogenous DNA, named A37.
To achieve a strong transcription rate of the DNA downstream its
transcription start site (TSS), the Plux promoter required binding of
LuxR protein that was under constitutive expression, and which it-
self needed activation by an exogenous inducer, HSL. In this way, the

1As of now, tracr is intended as the entire sgRNA, excluding the complementary
20 nucleotides called gRNA.
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3.1. dCas9 expression cassette

addition of HSL was necessary and sufficient to bind and activate the
LuxR protein and promote transcription from the inducible promoter.

(a) Circuits schema.

(b) Growth rate and GFP expression comparison.

Figure 3.1: Toxicity measurements of dCas9 expression. a.
A capacity monitor (A37) expressed GFP alone indicating the maximum possible expression
level. AEdCas9 expresses dCas9 under the Plux promoter, which is activated upon binding of
LuxR:HSL. b. The x-axis represents the HSL induction proportional to the amount of dCas9
inside the cell. Data are reported as mean values over at least 3 biological replicates while error
bars (line width for A37) represent the 95% confidence intervals of the mean.

A decrease in growth rate and GFP expression with increasing expres-
sion of dCas9 can be seen starting from an induction level between 0.1
and 1nM of HSL. The decrease in fitness was assumed to be a result
of cellular resource limitation, while a certain level of toxicity could be
deduced by the decreased growth rate compared to A37, even with a
leakiness of dCas9 production (i.e., without HSL induction).
To determine whether the burden imposed from our constructs also
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lead to toxic effects for the cell, like changes in cell morphology, images
of:

• a no burden strain (the host strain TOP10);

• a control construct used to measure maximal reporter gene ex-
pression with a constitutive expression level of dCas9 close to the
threshold found as described above (AYgPtet+J116dCas+J119H);

• the maximally induced dCas9 cassette (AEdCas9 - 100nMHSL);

were taken and compared.
Microscope images showed that indeed high expression of dCas9 re-
sults in a change in morphology of the cells, from rod-shaped to fil-
amentous. This is in accordance with data recently published in lit-
erature [99], which also concludes that high level expression of dCas9
causes abnormal morphological changes in E.coli. A construct ex-
pressing dCas9 through an optimized constitutive expression cassette
(described above) showed very few filamentous cells surrounded by
colonies of rod-shaped bacteria, resulting in a phenotype almost iden-
tical to the control strain and thus showing that a non-toxic synthesis
rate was reached (see Figure 3.2).

It was confirmed that dCas9 is toxic to the cell when expressed at
high concentrations, affecting growth rate, expression levels (related to
available cellular resources for translation), and morphology. However,
there was a window of inductions that shown negligible toxic effects
and in which the inhibition of transcription capability could still be
studied.

3.1.2 Repression efficiency

Once the potential toxicity of dCas9 was characterized, its efficacy
at repressing target reporter genes depending on the amount of pro-
tein and guide needed to be evaluated. Despite in [46] a similar study
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(a) TOP10. (b) AEdCas9 full induction.

(c) AYgPtet+J116dCas+J119H.

Figure 3.2: Microscopic Images of E.coli Strains. Images were taken
using the Leica bright field microscope using the 100x/1.25 oil immersion objective representing
a no burden a. and high burden b. strain, and subsequently compared to a strain constitutively
expressing dCas9 in a optimized amount c to visualize the burden imposed.
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was conceived, no standard units to express promoter strength were
used nor constitutive optimal dCas9 expression cassette were eventu-
ally obtained, hampering the re-usage of those results for this study.
Six new constructs were combinatorially built on that aim, by combin-
ing upstream of the dCas9 expression cassette described above three
different constitutive promoters - with graded strengths but identical
transcription start sites at +1 (giving rise to identical transcripts) -
with two different sgRNAs: gPtet and gPlac (see Figure 3.3).

Figure 3.3: CRISPRi with inducible dCas9 and constitutive
sgRNA configuration. General configurations of the CRISPRi systems with in-
ducible dCas9 and constitutive sgRNA expression cassettes; in the sgRNA expression cassette,
xx stands for 16/00/19 which are the codes of the promoters used in this study.

Guides were designed to target the previously described PLtetO1 and
PLlacO1 promoters respectively, which were assembled on co-transformed
plasmids in medium or high copy, driving the expression of an RFP
reporter gene. As negative controls, the same system with switched
sgRNAs were used (i.e., gPtet to target PLlacO1 and vice versa); due
to the orthogonality of the two sgRNA binding sites, the response was
supposed to be indicative of the maximum possible expression of RFP
in the absence of a complementary sgRNA, but with the same proteins
and sgRNAs amounts synthesized in the cell. Through these circuits,
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it was possible to monitor growth rate, GFP, and RFP expression in a
single time course; growth rate and GFP signal were considered as rep-
resentative of cellular burden and general cell status, while RFP was
dependent to the repression capability of the sgRNA:dCas9 complex.
The choice of the constitutive promoters with different strengths (such
that BBa J23116<BBa J23100<BBa J23119, [84]) allowed to study
the effect of increasing guide expression for several levels of dCas9 in
the cell, which was tuned by varying the concentration of HSL in the
medium, as before.

Inducible dCas - PLtetO1 medium copy target

Firstly, a significant decrease in RFP output, was observed even at
no induction of dCas9, indicating the high repression efficiency by the
CRISPRi complex. This was hypothesized to be a result of the tran-
scriptional/translational leakage of the HSL-based expression cassette
system driving the expression of dCas9, resulting in a basal unavoid-
able synthesis of the protein (see Figure 3.4). Nonetheless, an increase

Figure 3.4: HSL-inducible dCas9 expression system targeting
medium copy PLtetO1. Growth rate, GFP and RFP expression of the construct. Lines
in blue, green, violet and red represent respectively weak, medium, strong sgRNA expression and
control. On the x-axis, the HSL induction proportional to the amount of dCas9 in the cell. The
relative amount of the sgRNA, constitutively expressed, depends on the number in the name of
the circuit, namely 116 < 100 < 119; the control circuit bore a non-targeting sgRNA (gPlac)
driven by the medium strength promoter BBa J23100. Data are reported as mean values over at
least 3 biological replicates while error bars represent the 95% confidence intervals of the mean.

of RFP repression was observed for increasing HSL concentrations (re-
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lated to dCas9 level) and strength of constitutive promoter (related
to sgRNA level). However, repression was so strong that, on a lin-
ear y-axis scale, all three constructs exhibited almost no RFP signal
(data not shown). Switching the scale to logarithmic, the expected
conservation of repression capability in terms of strengths ranking of
the different sgRNA-driving promoters was confirmed for several levels
of dCas9 in the cell.
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In other words, the strongest promoters BBa J23100 and BBa J23119
showed the lowest RFP expression, while BBa J23116 (the weakest)
showed the highest expression of RFP. This confirmed the hypothe-
sis that availability of both dCas9 and gRNA affected the strength of
repression.

Inducible dCas - PLlacO1 medium copy target

For the PLlacO1 driven target in medium copy (namely, E52), the
trend were confirmed and strengthened, being the ranking repression
exactly the same of the strength of the three constitutive promoters
used (Figure 3.5). However, in this case, the difference between con-

Figure 3.5: HSL-inducible dCas9 expression system targeting
medium copy PLlacO1. Growth rate, GFP and RFP expression of the construct. Lines
in blue, green, violet and red represent respectively weak, medium, strong sgRNA expression and
control. On the x-axis, the HSL induction proportional to the amount of dCas9 in the cell. The
relative amount of the sgRNA, constitutively expressed, depends on the number in the name of
the circuit, namely 116 < 100 < 119; the control circuit bore a non-targeting sgRNA (gPtet)
driven by the medium strength promoter BBa J23100. Data are reported as mean values over at
least 3 biological replicates while error bars represent the 95% confidence intervals of the mean.

trol and non induced functional strains was less marked (despite the
needs to plot RFP data again in log-scale); this added to our knowl-
edge that guide sequence, and thus energy required for DNA:RNA
heteroduplex formation, also played a role in the repression capability
of the CRISPRi complex, which needed to be taken into account in the
design of possible circuitry. Nonetheless, for dCas9 levels correspon-
dent to HSL inductions higher than 0.5 - 1nM, it was observed that
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growth rate decreased and the RFP increased. This fits with what
observed in the previous Section 3.1.1 where both GFP and growth
rate measurements started to decrease around the same threshold.
The GFP expression of AEd116gPlac targeting E52 was informative
of the relation between burden and gene expression. Very low consti-
tutive guide expression by the BBa J23116 promoter, allowed us to
observe the burden imposed by RFP expression with increasing re-
pression. At no induction, RFP expression was sufficiently high to
affect GFP expression, however when the lux promoter was half ac-
tivated ([HSL] = 1 ÷ 2µM), RFP reached a minimum value while
GFP reached a maximum value. This suggested that indeed the sys-
tem set up was capable of conceptualizing burden as well as repression
efficiency.

Inducible dCas - PLtetO1 high copy target

To better understand the CRISPRi system in more cases and with
data observable on a wider, more comprehensive scale, target reporter
genes were also placed in high copy vectors; these system were de-
signed to produce larger quantities of RFP and therefore to impose a
more observable burden in terms of growth rate and GFP expression
levels (Figure 3.6). The control of PLtetO1 in high copy (I13521) gen-
erated an RFP output of around 20RPU , and as expected the lowest
GFP signal of the group.
GFP expression exhibited a slight increase at half induction of dCas9,
partially attributed to the decrease in RFP expression. In other words
the burden imposed by RFP expression was relieved by the CRISPRi
complex, allowing increased GFP expression. However, further induc-
tion of dCas9 resulted again in the characteristic decrease of GFP
expression and growth rate due to the high metabolic load of the
dCas9 protein. At maximum induction of 5nM , a complete repression
of the the two constructs that bore the intermediate (BBa J23100)
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Figure 3.6: HSL-inducible dCas9 expression system targeting
high copy PLtetO1. Growth rate, GFP and RFP expression of the constructs. Lines in
blue, green, violet and red represent respectively weak, medium, strong sgRNA expression and
control. On the x-axis, the HSL induction proportional to the amount of dCas9 in the cell. The
relative amount of the sgRNA, constitutively expressed, depends on the number in the name of
the circuit, namely 116 < 100 < 119; the control circuit bore a non-targeting sgRNA (gPlac)
driven by the medium strength promoter BBa J23100. Data are reported as mean values over at
least 3 biological replicates while error bars represent the 95% confidence intervals of the mean.

and strong (BBa J23119) promoters upstream the sgRNA was was
observed, while for the weak promoter BBa (J23116) complete repres-
sion was not attained, even if the decreasing trend suggested that a
higher dCas9 induction could lead to complete repression (in absence
of possible toxic effects). The absence of an increasing RFP level for
inductions higher than 1nM that was seen in medium copy target cir-
cuits could be explained though the general high burden cell state and
therefore with a possible variation in RFP protein expression.

Inducible dCas - PLlacO1 high copy target

Testing the the system with the reporter gene RFP driven by
PLlacO1 in high copy plasmid (A33) as CRISPRi target (Figure 3.7),
more conclusions could be drawn due to the higher strength of the
PLlacO1 compared to PLtetO1: the negative control for this system
reached a maximum value of approximately 25RPU , against the 20RPU
achieved by PLtetO1.
Growth rate followed the general trend of the other circuits described
above, confirming the toxicity that high dCas9 expression imposed on
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3. Engineering low-burden synthetic circuits via CRISPRi

Figure 3.7: HSL-inducible dCas9 expression system targeting
medium copy PLlacO1. Growth rate, GFP and RFP expression of the construct. Lines
in blue, green, violet and red represent respectively weak, medium, strong sgRNA expression and
control. On the x-axis, the HSL induction proportional to the amount of dCas9 in the cell. The
relative amount of the sgRNA, constitutively expressed, depends on the number in the name of
the circuit, namely 116 < 100 < 119; the control circuit bore a non-targeting sgRNA (gPtet)
driven by the medium strength promoter BBa J23100. Data are reported as mean values over at
least 3 biological replicates while error bars represent the 95% confidence intervals of the mean.

the cells. As expected, GFP at zero induction is below the one ob-
served with the medium copy target (see Figure 3.5); its expression
increased steadily with increasing induction of dCas9, and reached a
maximum value at an induction of [HSL] = 0.5nM for all, which cor-
responded to a high enough repression of the RFP target. Although
expression of RFP was repressed and led to an increase in GFP signal
output, the high expression of dCas9 still caused an imbalance in cel-
lular growth and synthesis (GFP signal decreased together with RFP
and growth rate for inductions higher than 0.5nM of HSL). Again, for
RFP expression, promoter strength that drove the sgRNA determined
repression efficacy, as depicted in the graph showing RFP signal out-
put. Moreover, in this case RFP levels of the functional constructs
corresponding to a zero induction of HSL were closer to the maximum
output generated by the control; they then decreased substantially in
a small range if dCas9 induction, and finally reached full repression for
sgRNAs driven by BBa J23100 and BBa J23119, while BBa J23116
driven guide attained a 10x decrease in RFP expression.

From the data gathered in these experiments, it could be firstly con-
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3.2. sgRNA expression cassette design

cluded that the CRISPRi system was functional and efficient even for
low expression levels of dCas9. Also, a higher efficiency was shown
from PLtetO1 sgRNA in repressing its target promoter compared to the
PLlacO1-gPlac sgRNA pair.
It is worth to notice that through these experiments, a range of induc-
tions in which dCas9 expression level showed a great efficiency without
excessively affecting GFP signal and growth rate (namely 0.2÷0.5nM
HSL) were highlighted. However, the system was very sensitive to HSL
variations with a range of inductions to achieve strong repression with-
out burden effect that was too small to be useful in rational design of
complex circuits in a tunable manner.
A new dCas9 expression cassette was therefore conceived by comparing
data obtained in Figure 3.1 with expression potentials of the three con-
stitutive promoters (BBa J23116, BBa J23100, BBa J23119) in low
copy (pSB4C5) and medium copy (pSB3K3) vectors [data not shown].
The combination of BBa J23116 and medium copy plasmid to express
dCas9 gene (namely J116dCas, dCas9 constitutive expression cassette
in Figure 3.13) was expected to lead a strong enough constitutive ex-
pression to fully repress a promoter in a high copy plasmid, without
negatively affect growth rate or overload the cell (also confirmed by
cell morphology imaging - see Figure 3.2).

3.2 sgRNA expression cassette design

Once the dCas9 expression level was fixed at a minimum effective
concentration, tunable and modular expression cassettes to be used as
genetic knobs - acting on the amount of sgRNA expressed in the cell -
were necessary to obtain a regulated sgRNA production device. Two
different logic systems were chosen to effect the expression of sgRNAs
upon the addition of an inducer. The first system, M12 Inv (Figure
3.8), expressing RFP and bearing the capacity monitor always in a
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low copy plasmid vector (pSB4C5), was based on the luciferase quo-
rum sensing network of Vibrio fischeri, analogously to the one used to
induce dCas9 in Section 3.1.1. Growth rate and GFP expression re-
mained stable with increasing inductions with HSL; however, a slight
decrease in both signals at highest inductions was observable. This
might be explained by the increasing expression of RFP, which reached
burdensome levels at [HSL] = 5nM , corresponding to the concentra-
tion at which both growth rate and GFP signal started decreasing.
RFP expression ranged from zero to 9 RPU and started to give a
readable output at 0.5nM HSL concentration.
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3.2. sgRNA expression cassette design

(a) Circuit schema.

(b) Growth rate, GFP and RFP expression of the construct..

Figure 3.8: LuxR:HSL inducible promoter characterization. a)
The systems express an RFP to characterize the synthesis rate of the HSL system driving its
transcription, along with the usual GRP monitor cassette. b) The x-axis represents HSL induc-
tor concentration. LuxR protein was activated by the exogenous molecule HSL. Subsequently,
the activated transcription regulator was able to bind operator regions of the Plux and recruit
polymerases for transcription. The expression levels of downstream genes is thus dependent on
the concentration of HSL present in the cell. Data are reported as mean values over at least 3
biological replicates while error bars represent the 95% confidence intervals of the mean.

The second inducible system, named AY, assembled on a low copy
plasmid as well, affected the expression of the downstream DNA rely-
ing on parts isolated from the E.coli Lac operon. In specific, the Lac
operon repressor, LacI, was under constitutive expression and kept
transcription levels of the PLlacO1 promoter very low. LacI was also
able to bind an exogenous regulator, IPTG, which changed its confor-
mation and relieved repression on PLlacO1 thus allowing downstream
gene transcription (see Figure 3.9).
The maximum RFP signal output PLlacO1 was 4RPU , a value that was
low enough that growth rate and GFP expression were unaffected;
both remained constant for the all inductions of IPTG. RFP signal
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(a) Circuit schema.

(b) Growth rate, GFP and RFP expression of the construct..

Figure 3.9: IPTG-inducible promoter characterization. a)The sys-
tems express an RFP to characterize the synthesis rate of the LacI system driving its tran-
scription, along with the usual GRP monitor cassette. b) On the x-axis, IPTG induction is
proportional to the amount of RFP inside the cell. Data are reported as mean values over at
least 3 biological replicates while error bars represent the 95% confidence intervals of the mean.

output shown a readable output at IPTG concentrations above 1µM ;
compared to M12 Inv, the increase in RFP output was sharper and
reached the maximum of around 3.7RPU at an IPTG induction of
30µM .
This suggests a higher Hill coefficient in the transfer function of the
circuit. The data obtained from these constructs showed that both
systems are functional at the used copy numbers and expression levels
of regulatory genes. Moreover, the promoters are able to drive the
downstream gene over a wide range of transcriptional levels, which,
in case of RFP, do not lead to high metabolic burden. However, as
discussed in the following two sections, additional data are needed to
consider the two systems as reliable “knobs”for sgRNAs.
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3.2.1 Flow cytometry analysis of IPTG-induced
system

Luciferase quorum sensing parts were known to result in the uni-
modal behavior of transformed cells [84], therefore these parts were
used with confidence in the efforts of building the corresponding sgRNA
inducible device.
Lactose operon parts, on the other hand, offered a few more hurdles to
face in circuit and experiment design: lactose requires the expression
of Lac permease - a gene naturally included in TOP10 strain genome -
to enter the cell and activate the system [100], leading to bimodal be-
haviour of cell population (i.e., fully induced and not induced without
graded response). This problem was bypassed using IPTG, a lactose
derivative that was able to diffuse across the plasma membrane in E.
coli [101] (see Section C.2).
The hypothesis was confirmed through single cell analysis of bacte-
rial populations bearing the IPTG-inducible GFP expression cassette
Y35+Y3 (see Figure 3.10(a)), which consisted of the constitutive ex-
pression of LacI protein targeting PLlacO1 driving GFP expression
(GFP expression cassette is in a medium copy plasmid); therefore,
upon IPTG addition, repression on the Lac promoter was relieved and
a GFP signal was recovered; those cells were cultured in media repre-
senting non-induced, half-activated and fully-activated device configu-
rations. Differently from the construct previously illustrated in Figure
3.9, Y35-Y3 is activated at lower IPTG concentrations, most probably
due to the different copy number of the Plac promoter compared to
the LacI expression cassette, which thus exerts a weaker repression.
Population-based characterization in microplate reader experiments
is reported in Figure 3.10(b) for comparison. As expected, in flow
cytometric analyses it was noticed the increase of mean GFP values
recorded with increasing IPTG concentration, confirming the dose-
response curve in Figure 3.10(b) and implying a well-tunable system;
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the majority of cells in the population responded in a unimodal fash-
ion. However, it is worth noting that a slow IPTG-dependent acti-
vation dynamics has been observed: a representative experiment is
reported in Figure 3.10(b), in which a culture was analyzed over time
after induction with 5µM of IPTG, and a different fluorescence dis-
tribution was detected between 2h and 4h after inducer addition (cor-
responding to t = 2 and t = 4). For this reason, all the experiments
involving IPTG were carried out by adding the inducer to the medium
since pre-inoculum, to avoid the slow induction dynamics, and to rely
on a tunable system giving a homogeneous cell behavior.
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(a) Circuit schema.

(b) Response of the system.

Figure 3.10: Flow Cytometer analysis of IPTG-inducible de-
vice. a) The configuration of the system is depicted. b) On the top left, microplate reader
experiments of the circuit at different inductions indicated the GFP expression potential of the
promoter in medium copy. The two boxes on its right are a representative experiment of the
slow dynamics of the lac system constructed. t = 2 and t = 4 represents the numbers of hours
the bacterial populations were cultured with the inducer before sample analysis. In the four
boxes on the bottom of the figure, to better understand the behavior of the newly constructed
IPTG-inducible cassette, flow cytometric analysis of bacterial populations induced with diverse
IPTG concentrations are reported, showing that the population behaved in a unimodal fashion.
There existed however a small population of cells that exhibited different GFP signal output
than the rest, indicating that the lower stability of the system at intermediate concentrations of
IPTG. Data on flow cytometer were acquired for at least 100,000 events. Cells were gated based
on SSC vs FSC readings to eliminate outliers and improve signal output. Data of microplate
reader experiment are reported as mean values over at least 3 biological replicates while error
bars represent the 95% confidence intervals of the mean.
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3.2.2 TSS Optimization

CRISPRi complex is guided by the sgRNA whose binding with
desired DNA depends on its sequence complementarity to the target;
hence, the presence of nucleotides downstream the promoter transcrip-
tion start site driving the expression of the sgRNA (i.e., TSS> +1)
can result in elongation and insertions of mismatching nucleotides of
the desired 20 nucleotide annealing sequence of the sgRNA. Therefore,
promoter driving sgRNA expression needed to be optimize to exclude
possible undesired effects.
The most probable start sites of both of the chosen promoters were
identified from the literature [40, 102]: for Plux, the TSS fell upstream
three adenine nucleotides, while for PLlacO1, only one adenine was
present downstream the TSS. This meant that the sgRNA transcribed
from these promoters would include mismatches at the 5′ end of the
sgRNA (i.e., an extra adenine to compose a 21 nucleotide guide in the
case of gPlac, and 3 extra adenines added to the 5′ end of gPlux).
From other investigations on the effect of mismatches on sgRNA:DNA
complementarity [64, 103, 104], it was known that while the effect of
a single additional nucleotide to the 5′ end of a sgRNA is marginal,
three additional nucleotides showed result in a substantial effect on
the specificity and efficacy of a sgRNA. To that end, the mutagenesis
of promoters driving sgRNA expression were carried out, to remove
any nucleotide(s) that were initially part of the promoter but situated
beyond the TSS. The two novel inducible devices obtained (AE with
Plux−3A promoter and AY-A with Plac−A), specifically implemented
for sgRNA transcription, were subsequently compared to their origi-
nal template (M12 Inv and AY respectively) by expressing the same
mRNA encoding a strong RBS with RFP coding sequence used as re-
porter gene; this for a better understanding of the effect caused by
these deletions.
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HSL-inducible sgRNA expression cassette

Plux cassette was mutagenized starting from M12 Inv to obtain the
Plux−3A promoter of AE strain: the two promoters exhibited similar
growth rates and GFP expression for concentrations lower than 10nM ;
for higher concentrations, GFP expression for AE was higher than for
M12 Inv, along with a lower RFP expression. In fact, the deletion of
three adenine nucleotides downstream the Plux TSS showed a 3-fold
decrease in maximum RFP expression achievable (see Figure 3.11, cir-
cuit schema is the same as Figure 3.8(a) except for the Plux promoter
switched to Plux−3A). While RT-pcr experiments are still ongoing to
evaluate variations in transcriptional efficiency fo the mutagenized pro-
moter, the dependence of this behavior is still uncertain since it could
be addressed both by an altered promoter strength or a decreased ef-
ficiency of the RBS.

Figure 3.11: Lux promoter mutagenized for optimal sgRNA ex-
pression. M12 Inv and AE are quasi-identical constructs that differ solely by the presence
or absence of three adenine nucleotides downstream the Plux transcription start site. Measure-
ments of growth rate, GFP, and RFP are shown. The x-axis represent HSL induction and is
proportional to the amount of RFP inside the cell. Data are reported as mean values over at
least 3 biological replicates while error bars represent the 95% confidence intervals of the mean.
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IPTG-inducible sgRNA expression cassette

Similarly, deletion of the single nucleotide downstream the PLlacO1

TSS had an effect on its strength, however it was less relevant than
that of Plux. It was found that the modified promoter (Plac−A) of strain
AY-A becomes responsive at a higher induction of IPTG, and reaches
a maximum of 3RPU compared to 3.7RPU generated by the unmod-
ified promoter of strain AY. The trend of the response curve was well
conserved, but the deletion seemed to have an effect on the growth
rate of the strain, resulted lower than the non-mutagenized strain (see
Figure 3.12, circuit schema is the same as Figure 3.9(a) except for the
PLlacO1 promoter switched to Plac−A).

Figure 3.12: PLlacO1 mutagenized for optimal sgRNA expres-
sion.AY and AY-A differ only for an extraneous nucleotide after the TSS of PLlacO1, which
has been mutagenized via PCR to obtain the new synthetic promoter named Plac−A). Measure-
ments of growth rate, GFP, and RFP extrapolated from data obtained are shown. On the x-axis,
increasing IPTG inductions determine higher amounts of RFP inside the cell. Data are reported
as mean values over at least 3 biological replicates while error bars represent the 95% confidence
intervals of the mean.

Considering the overall wide tunability ranges of expression and rel-
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3.3. Characterization of inducible sgRNA systems

ative induction obtained, the two novel systems resulted suitable for
sgRNA expression; however, while the modified Plux−3A promoter (from
AE) was the only HSL-inducible device used for express the guides,
both IPTG-inducible ones (PLlacO1 and Plac−A) were used in the fol-
lowing studies due to the minor change in sgRNA expression (only one
additional nucleotide).
The AE and AY-A promoters implemented in the study have been up-
loaded to the Registry of Standard Biological Parts as BBa J107202
and BBa J107203, respectively.

3.3 Characterization of inducible sgRNA

systems

Once an optimized dCas9 and two different sgRNA expression de-
vices were developed, the general standardized CRISPRi-based repres-
sion device architecture was conceived. The system, as reported in
Figure 3.13 was implemented, composed by the following common
modules:

• constitutive GFP in low copy plasmid, acting as burden monitor
as illustrated above;

• inducible sgRNA expression cassette in low copy plasmid com-
posed by a constitutive promoter Pconst driving the expression
of a protein (cI) that can bind an exogenous inducer (Isg) and
whose active complex (cI:Isg) tunes the strength of the down-
stream promoter (Psg), thereby regulating the transcription rate
of the sgRNA;

• constitutive dCas9 expression cassette in medium copy plasmid;
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• constitutive target promoter driving the expression of RFP in
medium or high copy plasmid that can be bound and repress by
dCas9:sgRNA complex.

Again, for each configuration characterized, a control circuit bearing
an orthogonal non-targeting sgRNA under the same expression system
was built and tested.

Figure 3.13: CRISPRi model system schema. The system is composed of:
constitutive GFP burden monitor in low copy plasmid, an inducible sgRNA expression cassette
in low copy plasmid, a constitutive dCas9 expression cassette in medium copy plasmid and a
constitutive target promoter driving the expression of RFP in medium or high copy plasmid.
Control circuits: bear an sgRNA specifically targeting an orthogonal promoter under the
same expression system.
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3.3.1 Constitutive dCas9 expression: MC targets

In relation to the schema reported in Figure 3.13, in the following
experiments Pλ was used as Pconst, LuxR as cI, HSL as Ig, Plux−3A as
Psg and both PLtetO1 and PLlacO1 as Ptarget in medium copy plasmid.

PLtetO1 medium copy target analysis

The optimized HSL-inducible cassette that drove the transcription
of the sgRNA targeting PLtetO1 co-transformed with the target gene
in medium copy displayed almost no RFP expression even at no in-
duction (see Figure 3.14). A logarithmic scale applied on the y-axis
showed approximately a 100-fold decrease in RFP at no induction up
to a 1000-fold decrease in expression at HSL induction of 1nM .

Figure 3.14: AEgPtet co-transformed with medium copy tar-
get and constitutive dCas9. The growth rate, GFP and RFP expression of the
constructs are shown. The x-axis represents the HSL induction proportional to the amount of
sgRNA transcribed inside the cell. The control (in red) bore a sgRNA targeting PLlacO1, absent
in the system. Data are reported as mean values over at least 3 biological replicates while error
bars represent the 95% confidence intervals of the mean.

Although the medium copy PLtetO1 driven RFP target imposed a small
burden onto bacterial cells, the integration of a functional CRISPRi
system exhibited an improved growth rate and GFP expression profile
in comparison to a control expressing a non-specific guide probably
due to RFP expression shut down.
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PLlacO1 medium copy target analysis

The system bearing an HSL-driven sgRNA targeting PLlacO1 driv-
ing RFP in medium copy showed to be less strong, with an RFP value
of around 3.5RPU at no induction to be compared to a signal output
of 12RPU for the negative control. However, small HSL inductions
(< 1nM) were sufficient to saturate the repression, corroborating the
high efficiency of CRISPRi (Figure 3.15).

Figure 3.15: AEgPlac co-transformed with medium copy target
and constitutive dCas9. The measurements obtained for growth rate, GFP and
RFP. The x-axis represents the HSL induction that is proportional to the amount of sgRNA
present in the cell. The control (in red) bore the sgRNA targeting PLtetO1, absent in the circuit.
Data are reported as mean values over at least 3 biological replicates while error bars represent
the 95% confidence intervals of the mean.

In consideration of the efficiency and functionality of the system, it
was decided to test the system with targets in high copy vectors, in
an effort towards confirming and elucidating the actual repression ca-
pability of the studied systems.
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3.3.2 Constitutive dCas9 expression: HC targets

As before, in relation to the schema reported in Figure 3.13, in the
following experiments Pλ was used as Pconst, LuxR as cI, HSL as Ig
and both PLtetO1 and PLlacO1 as Ptarget, but now in high copy plasmid.

PLtetO1 high copy target analysis

The system contained by the strain AEgPtet+HC shown in Figure
3.16 confirmed the improved GFP expression profile of the functional
system versus the control, due to a higher RFP expression in the
latter. However, growth rate was negatively affected by the increasing
inductions of HSL in both AEgPtet+HC and control; the study of this
aspect is beyond the scope of this study, despite a deeper investigation
on this behavior will be addressed in future works.

Figure 3.16: High copy PLtetO1 target with HSL-inducible
sgRNA and constitutive dCas9. Signal output of growth rate, GFP and RFP.
On the x-axis, HSL induction was proportional to the amount of sgRNA transcribed. The control
(in red) bore a non-targeting sgRNA (PLlacO1). Data are reported as mean values over at least
3 biological replicates while error bars represent the 95% confidence intervals of the mean.

RFP expression shown a behavior similar to the medium copy target
one, which resulted in the complete repression of the system at low
inductions of HSL; in fact, although fold repression was lower at no
induction, the signal disappeared at inductions above 1nM .
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PLlacO1 high copy target analysis.

The system implemented in the strain AEgPlac+HC (see Figure
3.17) was the first to exhibit no repression, compared to control, when
not induced with HSL, a feature contributing to the success of a finely
tunable repression system.

Figure 3.17: High copy PLlacO1 driven target with HSL-
inducible sgRNA and constitutive dCas9. Signal output of the constructs
at diverse HSL inductions. The x-axis represents the concentration of HSL induction that is pro-
portional to the amount of sgRNA in the cell. The control (in red) bore a sgRNA targeting
PLtetO1 promoter that was not present in the circuit. Data are reported as mean values over at
least 3 biological replicates while error bars represent the 95% confidence intervals of the mean.

Both functional strain and control displayed the same RFP value at
zero induction (18RPU), which remained constant for the control and
decreased readily for the AEgPlac+HC and reached the minimum
value with an HSL induction of 1nM . GFP levels were initially low
for both constructs, owing to the high burden of RFP expression in
high copy, but increased substantially when RFP expression was si-
lenced by the CRISPRi complex. Growth rate on the other hand was
more variable with relevant error bars, but the trend of the two graphs
followed a similar pattern to other constructs where the functional sys-
tem’s growth rate exceeded that of the control and remained higher
for all inductions of HSL (excluding the no induction value).
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3.3.3 IPTG-driven sgRNA: PLtetO1 target analysis

As further investigation to test whether an improved repression
curve could be achieved in a different circuit configuration, the IPTG-
based inducible sgRNA expression cassette described in Section 3.2
was adopted to express sgRNA targeting PLtetO1 in medium and high
copy. In relation to the schema in Figure 3.13, J23118 was here used as
Pconst, LacI as cI, IPTG as Ig, both PLlacO1 and its optimized version
Plac−A as Psg and lastly PLtetO1 as Ptarget in medium and high copy
plasmids.

IPTG-driven sgRNA: PLtetO1 on medium copy target

In the former case, AYgPtet+dCasE62 was tested alongside AY-
AgPtet+MC, representing the non-optimized and optimized promoter
respectively, driving the expression of the sgRNA for PLtetO1 target.
Since the non-optimized and optimized versions of the IPTG-inducible
system showed similar (though non-identical) dose-response curves,
an analogous repression curve in the tested system was expected, be-
ing the additional nucleotide downstream of TSS in non-optimized
promoter negligible in terms of repression capability [105]. From a
more detailed analysis regarding promoter optimization effects on the
specific guide sequence of the guide targeting PLtetO1 promoter and
the target sequence itself (refer to Table C.4), the problem was clar-
ified. During the preparation of the optimized promoter, an adenine
nucleotide after the TSS that would have been part of the sgRNA
targeting the promoter, was removed; however, looking at the pro-
moter and modified sgRNA sequences, it was found that the extrane-
ous adenine nucleotide was complementary to the promoter sequence,
which resulted in a 21 nucleotide perfectly annealing guide. On the
other hand, the optimized promoter transcribed a sgRNA of 20 nu-
cleotides that was perfectly complementary as well, but of shorter
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Figure 3.18: Medium copy PLtetO1 target with IPTG-inducible
sgRNA and constitutive dCas9 cassettes. Signal output of the constructs
at diverse IPTG inductions. The optimized construct (in green) presented as AY-AgPtet con-
tained the optimized PLlacO1 with the deletion of the single adenine nucleotide present after
the TSS. The x-axis indicates the concentration of IPTG, which is dependent on the amount of
sgRNA inside the cell. The control (in red) bore sgRNA targeting PLuxRep absent in the circuit.
Data are reported as mean values over at least 3 biological replicates while error bars represent
the 95% confidence intervals of the mean.

length. Consistently with the dose-response curves of IPTG-inducible
systems (Figure 3.9), it was observed that the sgRNA repression ca-
pability was slightly higher for the optimized system. Despite the
additional nucleotide is not expected to change guide efficiency, addi-
tional studies are needed to confirm it by decoupling inducible pro-
moter transcriptional activity and repression capability as a function
of guide length, despite systematic studies are available in literature in
different systems [65]. Looking at the growth rate, the optimized con-
struct exhibited a significant decrease, similar to the construct used
to characterized the optimized promoter expression potential (Figure
3.12); the reason of this unexpected behavior is still under investiga-
tion. GFP expression on the other hand behaved as expected, with
both constructs expressing higher levels of the reporter gene in com-
parison to the control. However, the GFP output of the optimized
construct behave as the control for low inductions and then increased
to levels similar to the non-optimized construct with increasing IPTG
inductions, along with a decreased expression of RFP. Again, both
constructs achieved maximal RFP repression at IPTG inductions of
5µM , whereas the negative control had an average RFP output of
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around 10RPU .

IPTG-driven sgRNA: PLtetO1 on high copy target

Trends observed for the medium copy version were confirmed for
constructs co-transformed with high copy target plasmid, despite growth
rate of the optimized promoter construct AY-AgPtet+HC was lower
than both control and non-optimized construct AYgPtet+HC.

Figure 3.19: High copy PLtetO1 target with IPTG-inducible
sgRNA and constitutive dCas9. Signal output of the constructs at diverse
IPTG concentrations. The x-axis represents the concentration of IPTG that is proportional to
the amount of sgRNA transcribed in the cell. The control (in red) bore a sgRNA targeting
PLuxRep absent in the circuit while the optimize one is reported in green. Data are reported as
mean values over at least 3 biological replicates while error bars represent the 95% confidence
intervals of the mean.

GFP expression for AYgPtet+HC remained higher than the control,
slightly increasing at the highest IPTG concentrations. Similarly, the
optimized construct AY-AgPtet+HC (see Figure 3.19) had a GFP sig-
nal similar to the control at low IPTG concentrations, but increased
significantly with IPTG concentrations greater than 1µM , reaching
the expression levels of the non-optimized construct. RFP expression
was similar as in the previous case in which the target was in medium-
copy plasmid. The weaker repression obtained from the optimized
construct allowed an initial RFP signal output equal to the control,
similarly to AEgPlac+HC seen in Figure 3.17. AYgPtet+HC instead
resulted in reduced initial RFP output. The two constructs exhibited
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an overall similar trend, with AY-AgPtet+HC RFP values higher than
AYgPtet+HC for several of the initial IPTG concentration points, and
reached a minimal RFP output at the same concentration of 5µM .

3.3.4 CRISPRi Mathematical model

Despite several models have been proposed for describing CRISPR/Cas9
mechanism via both empirical a mechanistic approaches [106, 105, 104,
64], those results are still not completely accepted or validated enough
to be directly used as golden standards in rational design.
While a mechanistic analysis of the system developed is beyond the
aim of this study, here a empirical approach has been adopted to pre-
liminary describe the system, aiming to obtain a proof-of-concept char-
acterization and a feasibility evaluation of the implemented circuitry
to be used as a low burden module for gene regulation. The mathe-
matical model used was an adapted version of Equations 2.7-2.14 in
which sgRNAs were considered as promoter repressor in a steady state
system.
It is worth to notice that, under the hypotheses of overabundance
of dCas9 in the cell, it is possible to neglect the description of the
dCas9:sgRNA relative components amount and binding dynamics, avoid-
ing the detailed description that would lead to the usage of a grater
amount of parameters and equations.
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In general, under the same assumptions described in Section 2.2.1
and 2.2.2, the output at steady-state of the system in Figure 3.13 can
be described by the following set of equations:

Scell,norm,GFP =
aG

aG + µ
· Sx
D

(3.1)

sgRNA = δsg +
αsg

1 +

(
Ksg

[Isg]

)ηsg (3.2)

Scell,norm,RFP =
aR

aR + µ
·

δPtarget +
αPtarget

1 +
[sgRNA]

KPtarget


D

(3.3)

D = 1 + ΣcIsg + ΣHC + JRFP ·

δPtarget +
αPtarget

1 +
[sgRNA]

KPtarget

 (3.4)

In this model:

• aR and aG are maturation rates of RFP and GFP respectively;

• µ is the cell growth rate of the from which mature reporter pro-
tein dilution is dependent;

• Sx is the constitutive expression rate of immature GFP reporter
protein of burden monitor cassette;

• δ,α,K,η are parameters of Hill or Michaelis Menten (η = 1)
functions used to describe transcriptional activities of regulated
promoters;
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• sgRNA amount is described by a Hill function without matura-
tion neither degradation terms since the molecule does not need
to be translated into a functional protein and being its degra-
dation rate (assumed the same for each sgRNA) faster than cell
division [107];

• Isg is the inducer (i.e., HSL or IPTG) of the regulated promoters
driving sgRNA expression;

• cIsg is the overabundant constitutively expressed transcriptional
co-factor activated by the inducer Isg;

• Ptarget is the target promoter;

• Michaelis Menten functions were used to describe RFP synthesis
rate, being dCas9:sgRNA complex repressing target promoters
transcriptional activity and acting on a single binding site;

• D is the same denominator described in Section 2.2.2, adapted
with proper terms2 to describe the system including its structural
differences from the ones described in chapter 2;

• ΣcI is the burden contribution given by the expression of tran-
scriptional co-factors used in sgRNA constitutive expression cas-
sette;

• ΣHC , which is set to zero when the target promoter is in medium
copy number, describes the burden contribution given by the
presence of 3 plasmids in the cells (i.e., High copy target cases);

2All the configurations tested and modeled in this work bore the same genetic
structure and were implemented in the same host strain in presence of the usual
GFP-based burden monitor, hence normalization steps as described in Equations
2.9-2.12 were still valid.
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3.3. Characterization of inducible sgRNA systems

• JRFP is the burden contribution given by the expression of RFP
used in target cassettes.

It is worth to notice that circuits bearing the dCas9 constitutive ex-
pression cassette unexpectedly showed a higher GFP level compared
to cultures bearing the burden monitor alone (see Figure 3.20).

Figure 3.20: Effects of co-transformed plasmids and dCas9 ex-
pression on GFP monitor level. In the boxplot, GFP output of circuits bearing
burden monitor in low copy co-transformed with an empty medium copy plasmid, burden monitor
in low copy co-transformed with constitutive dCas9 expression cassette in medium copy plasmid,
burden monitor in low copy co-transformed with an empty high copy plasmid, burden monitor in
low copy co-transformed with two empty plasmids (medium and high copy respectively), burden
monitor in low copy co-transformed with constitutive dCas9 expression cassette in medium copy
and an empty high copy plasmid and only the burden monitor in low copy plasmid are shown in
RPU.

The use of the same baseline immature GFP expression level Sm from
Section 2.1.3 for all the circuits would therefore impose the usage of a
hypothetic negative burden term for those strains bearing a dCas9 ex-
pression cassette in medium copy plasmid; however, being a negative
contribution not biologically meaningful, the immature GFP synthesis
rate Sx of a strain bearing the burden monitor and dCas9 expression
cassettes was chosen as baseline instead of Sm value since the mod-
eled circuits were all implemented with the same 2-plasmid architec-
ture (except for gRNA expression cassette characterization circuits for
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which Sm was kept). Clearly, while this interesting and unexpected
behavior of the system needs deeper investigations, this aspect was be-
yond the scope of the study, aiming to firstly find a general evidence
of its worth of usage. It is worth to notice that, comparing the value
of Sm in Table 2.1 with the one reported in Table C.2 the value of the
parameter is different, due to the use of a slightly varied architecture
of the monitor cassettes used in the two studies: in Chapter 3 the
GFP expression device was placed downstream the tested circuits and
therefore the chosen reference encoded a terminator upstream the con-
stitutive promoter; in this Chapter, the monitor cassette were always
placed as first transcriptional element of the plasmid, so the reference
strain did not bear the terminators upstream the expression cassette
as described in Section 2.1.3.
Once the base GFP level for circuits bearing the constitutive dCas9
expression cassette in medium copy plasmid along with the GFP mon-
itor in low copy was fixed, it was possible to analytically calculate the
metabolic contribution exerted by the maintenance of a high copy plas-
mid, namely JHC . Being the GFP signal for a circuit bearing dCas9
expression cassette, burden monitor and an empty high copy plasmid
given by:

Scell,norm,GFP =
aG

aG + µ
· Sx

1 + ΣHC

(3.5)

the evaluation of ΣHC is feasible.
A summary of the fitted parameters and constants appearing in this
model is reported in Appendix (see Table C.2); all the fitting steps and
approaches adopted were performed by using the Matlab (Matworks)
lsqnonlin routine with residuals weighted on experimental standard
deviations.
Under this assumptions, several approaches have been evaluated to
validate the applicability of the model. In all the figures shown be-
low, where three dashed lines are shown in RFP and GFP graphs, a
sensitivity analysis on δx parameters has been performed multiplying
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by 0.5 and 1.5 the estimated value; this because data showed a huge
repression effect in presence of a leaky repressor concentration (i.e., for
zero induction of sgRNAs, systems were already repressed) and small
variation on evaluation of this parameter provided sensitive effects in
the overall system response prediction.

1. One step Global Fitting: A global fitting on all the data
was performed to find a parameter set including the available
information by adopting both the model described above (Bur-
den model) and a No Burden version neglecting the D term of
Equations 3.1 and 3.3.

2. Two-step Global Fitting: A two-step fitting procedure was
performed to evaluate the feasibility of a modular approach:
firstly, sgRNA expression cassettes parameters were estimated
along with burden contribution of transcriptional factors included
in their architecture; then, repression systems in both medium
and high copy of the three combination of sgRNA expression
cassette-target promoter pairs were fitted, given the value of the
parameters estimated in the first step. Both steps were per-
formed with and without burden contribution, as before. In
this analysis, the JRFP chosen value was the one derived in the
Global fitting procedure with burden model; since neither the
HSL-based optimized promoter Plux−3a nor PLlacO1 were strong
enough to provide a working condition in which RFP expression
were high enough to properly display a variation in GFP, the fit-
ting procedure would have been affected, leading to poor-quality
estimates. It is worth to notice, however, that the JRFP value
used in this study was different from the one reported in Table
2.1 (i.e 0.021 in the former case, 0.04 in the latter); despite the
model structure adopted in the two studies as well as hosts and
most of the biological parts used were the same, this difference
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could probably be addressed to the hidden effects of copy num-
ber variations and co-transformation of different plasmids in the
same cell. In fact, while the pool of strains used to estimate
parameters in the study of Chapter 3 included circuits borne
only on low copy plasmids, this study relies on modules encoded
in 2- or 3-plasmid architectures. This point is not trivial and
further investigations on copy number variation of circuits with
“multi-plasmid architecture”effects on gene expression are still
ongoing.

3. Two-step approach with Training set and Test set for
prediction: Lastly, given the fitting results of the first step of
the previous analysis (i.e., characterization of the two sgRNA
expression cassette and therefore guide amount dependency on
induction and burden contribution of LacI and LuxR protein at
their constitutive expression rate) the experiments used in the
second step of the fitting were divided into a training and a test
set: the former, including HSL-driven gPlac and IPTG-driven
gPtet targeting promoters in medium and high copy, was used
to fit all the parameters of the system (after sgRNA cassette
characterization of the first fitting step); the latter, including
HSL-driven gPtet targeting systems in medium and high copy,
was used as testbed to evaluate the predictive power of the model
given a relatively small amount of data. Again, both versions of
the model (i.e., with and without burden description) were used.

Figures relative to the former procedures are reported in Appendix
section C.7.
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3.3.5 Overall observations

Observing the global fitting, both Burden and No Burden models
seemed to be able to properly describe the system; this is true, at least,
when the sensitivity analysis is included, highlighting the expected
uncertainty on δ parameters and therefore the importance of deeply
understand how and why leaky expression of sgRNAs exerts such a
strong repression in the system. Considering the repression curves
and in particular α and k parameters, a stronger efficiency of gPtet
regard to gPlac can be seen; while this result was not unexpected, it
highlights the necessity in rational design of synthetic genetic circuits
of a full characterization of each designed guide, waiting for a func-
tional and applicable model to quantitatively predict guide efficiencies
to be developed.
Moving to the two step fitting analysis, the overall fitting results were
slightly worse, as expected being the dataset to fit the sgRNA ex-
pression functions smaller. However, parameter estimation were quite
reliable regard to Global Fitting versions of burden and no burden
models adopted. Moreover, while GFP signal were not completely
caught in case of the Burden Model, RFPs are still well described
in both cases. Also, predictions obtained appeared overall successful:
small but appreciable differences could be observed just for gPtet re-
pressing systems (compare Figures C.9(a)/C.14(a) - C.10(a)/C.15(a)
- C.9(b)/C.14(b) - C.10(b)/C.15(b) - C.9(c)/C.16(a) - C.9(c)/C.16(a)
for Burden model and C.12(a)/C.17(a) - C.13(a)/C.18(a) - C.12(b)/C.17(b)
- C.13(b)/C.18(b) - C.12(c)/C.19(a) - C.12(c)/C.19(a) for No Burden
model.)
Considering all the data obtained in Table C.2, none of the parameter
sets showed clear evidence of effects of copy number variation in target
cassette. More precisely, it was expected that ratios between α and k
parameters of sgRNA related repression curves on medium and high
copy number target cassette (E62-A33 for gPlac and E52-I13521 for
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gPtet respectively) were liked to ratios between relative plasmid copy
number (∼ 5 [84]; however, this was not the case.
Most importantly, while the usage of burden model allowed the de-
scription of two signals at once (i.e., GFP and RFP) supporting the
results achieved in Chapter 3, the fact that all the tested systems were
also explained by a model that did not take into account any load
contribution, evidenced the lack of excessive resource demand exerted
by these modules, supporting the aimed worth of this study.

3.4 Dependence on promoter strength: PluxRep
library analysis

After sgRNA repression capability dependences was studied as a
function of its sequence and level, a system to characterize repression
dependence on target promoter strength using the same sgRNA se-
quence was implemented. On that direction, a sgRNA (gPluxH) able
to target a library of promoters created by mutagenizing the −10 box
from the same HSL:LuxR-repressible promoter - created by our lab
in a previous study [84] - was designed. The sgRNA gPluxH (see
Table C.4 in Appendix) was able to anneal to all −35 boxes of the
promoters leading to their repression and were expressed through an
IPTG-inducible cassette (AY) (see Figure 3.21). Promoters were cho-
sen according to their transcriptional strengths, in particular:

• BBa J107100 (named J119H or more generally with the inter-
changeable term PluxRep) was the strongest and used as template
to create the library via PCR mutagenesis;

• BBa J107111 (named P122) was an intermediate-high strength
promoter

90



i
i

i
i

i
i

i
i

3.4. Dependence on promoter strength

• BBa J107101 (named P2) was a weak-intermediate promoter;

• BBa J107105 (named P44) a weak promoter.

Since their sequences differed only at the level of the −10 box, this al-
lowed the study of the repression a single guide can have on promoters
with different strengths.

Figure 3.21: Schema of CRISPRi repressing system on PluxRep
promoter library. The system configuration is presented. Target promoters were iden-
tical excluding the −10 box that was mutagenized to obtain promoters of different strengths such
that BBa J107100>BBa J107111>BBa J107101>BBa J107105.
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3.4.1 PluxRep library with MC target

When the target promoters were in medium copy plasmids (see
Figure 3.22), all constructs maintained a stable growth rate over the
range of IPTG concentrations tested; a rather stable growth rate and
GFP expression over the range of IPTG concentrations. RFP expres-
sion was minimal for all promoters. However, considering a logarithmic
y-axis scale, it was possible to notice that the level of RFP expressed
was conserved in terms of the ranking of promoter strengths [84].

Figure 3.22: IPTG-inducible sgRNA and constitutive dCas9
repressing medium copy PluxRep promoter library. Measurements of
growth rate, GFP and RFP expression of the transformed strains. Lines in blue, green, violet,
cyan and red represent, respectively 119H, P122, P2, P44 members of the library - in descendant
strength order - and control. The x-axis represents the concentration of IPTG in micromolar
and was proportional to the amount of sgRNA in the cell. The control bore a sgRNA targeting
PLtetO1 that was absent in the circuit. Data are reported as mean values over at least 3 biological
replicates while error bars represent the 95% confidence intervals of the mean.

3.4.2 PluxRep library with HC target

To increase the range of RFP expression and to better study the
system with different configurations, the medium copy vector carrying
the target promoters were substituted with high copy vectors, leading
to a higher expression level of RFP (see Figure 3.23).
The high copy targets did indeed show increased RFP measurements,
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compared with medium copy ones, that was accompanied by a de-
crease in growth rate (see Figure 3.20 B). In particular, the promoters
showed ranking consistent with Figure 3.22 and their relative expres-
sion (compared with negative control) was consistent with the original
publication previously illustrating their strength, with the J119H pro-
moter being the strongest one. At high IPTG concentrations, RFP
becomes strongly repressed. This means that gPluxH in the tested
condition can exert a high repression strength and range as a func-
tion of IPTG (corresponding to the amount of sgRNA transcribed),
leading to well tunable RFP levels. Nonetheless, RFP expression from
AYgPluxH+J119H showed slightly lower level than the control (which
includes the same setup, but with a non-specific sgRNA), meaning
that the basic activity of PLlacO1 in the off state (i.e., without IPTG)
was sufficient to exert a relevant repression.
The respective descending order of promoter strengths were measured
to have RFP values of 6.1RPU, 4.6RPU, 2.1RPU, and 0.6RPU, re-
spectively.

Figure 3.23: IPTG-inducible sgRNA and constitutive dCas9
repressing high copy PluxRep promoter library. Measurements of growth
rate, GFP and RFP expression of the transformed strains. Lines in blue, green, violet, cyan and
red represent, respectively 119H, P122, P2, P44 members of the library - in descendant strength
order - and control. The x-axis represents the concentration of IPTG in micromolar and was
proportional to the amount of sgRNA in the cell. The control bore a sgRNA targeting PLtetO1

that was absent in the circuit. Data are reported as mean values over at least 3 biological
replicates while error bars represent the 95% confidence intervals of the mean.
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To find a possible transcriptional strength-dependent sgRNA-mediated
repression pattern among the tested constructs, their RFP expression
were normalized to the expression level reached at no IPTG concentra-
tion and the maximum RPU reached by each curve (see Figure 3.24).

Figure 3.24: IPTG-inducible sgRNA and constitutive dCas9
repressing high copy PluxRep promoter library.RFP expression of the
transformed strains normalized to values obtained at no IPTG concentration (left box) and to
the maximum RFP level achieved by each curve (right box). Lines in cyan, red, green and violet
represent, respectively 119H, P122, P2, P44 members of the library, in descendant strength
order. Data are reported as mean values over at least 3 biological replicates while error bars
represent the 95% confidence intervals of the mean.

The normalized expression showed no relevant change in repression
function shape among the four promoters, thereby suggesting that
transcriptional strength does not play a role in sgRNA efficiency in
terms of percent activity repression. On the other hand, as expected,
absolute RFP expression depends on promoter strength when targets
are both in medium- and high-copy context and in both non-repressed
and repressed state (see Figure 3.22 and 3.23). Specifically, the nor-
malized curves showed similar IPTG concentration leading to half-
maximum repression and slope. Growth rate and GFP expression did
not show relevant IPTG-dependent and promoter strength-dependent
variation, except for the control strain, in which GFP is lower than the
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other tested constructs, consistently with the highest RFP expression
shown by the control due to its non-repressed condition.
Taken together, the results suggested that the characterization of sgR-
NAs in one context can be used to quantify their repression strength,
which can be generalized to other target promoters with the same
sgRNA binding region. Despite results showed that no percent repres-
sion difference can be seen, they again showed that repression strength
is highly dependent from the specific sgRNA: the ones designed to re-
press PLtetO1 and PluxRep showed higher repression strength the one
targeting PLlacO1.
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Chapter 4
Further investigations

This chapter contains preliminary results regarding some improve-
ments to the works described in the previous chapter; strains, cloning
procedures, biological parts used to implement new synthetic circuits,
materials and methods are the same as the ones used and described
in Section 2.1 and Appendix C.

4.1 CRISPRi-Transcription Factor inter-

ference

Considering the possible applications of CRISPRi repression sys-
tems in the construction of complex synthetic circuits, further investi-
gations were performed to see how the sgRNA:dCas9 complex would
behave in the presence of transcriptional regulator competing for the
same promoter to be bound. To that end, a circuit bearing:

• a constitutive expression cassette synthesizing a transcriptional
regulator (TF, specific for the sgRNA-targeted promoter) that
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could be inhibited or activated by a specific inducer supple-
mented to the medium;

• an inducible sgRNA expression cassette tuned by an inducer or-
thogonal to the one used for the TF to be regulated and targeting
the same promoter;

• a constitutive dCas9 expression cassette in medium copy plas-
mid;

• a module expressing an RFP driven by the promoter targeted
by both dCas9:sgRNA complex and TF, assembled in high copy
plasmid.

was built and tested starting from the circuits described in the previ-
ous chapter.
This systems was therefore tunable through 2 different inducers, one
tuning the expression of sgRNA while the other regulating the repres-
sion exerted by the transcription regulator. The LuxR protein (that
binds HSL) was used as a competitive repressor of PluxRep BBa J107100;
experiments were set up to achieve different levels of repression by
varying the concentration of HSL depending on the amount of active
LuxR:HSL complex while expression of sgRNA was under the control
of another supplemented inducer - IPTG - whose amount was depen-
dent to the sgRNA:dCas9 complex repressing the target promoter (see
Figure 4.1). Control circuits bore a sgRNA targeting PLtetO1, absent
in the circuit, tested at the zero and (100nM) concentration of HSL
to activate LuxR protein.
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(a) Circuit schema.

(b) Growth rate, GFP and RFP expression .

Figure 4.1: Competition between LuxR protein and
sgRNA:dCas9 complex for repression of J119H. a) The system
setup described composed by an inducible sgRNA and constitutive dCas9 form a complex that
competes with LuxR transcription factor for the repression of the BBa J100107 driving RFP
expression. Both the activated LuxR:HSL and dCas9:sgRNA complexes acted to repress target
promoter and downstream gene expression. b. The x-axis represents IPTG induction that de-
termines the amount of sgRNA present and thus the level of repression by the CRISPRi system.
Curves in blue, violet, cyan and orange represent 0nM , 0.5nM ,5nM and 50nM of HSL induction
respectively, while green and red curves represent zero and full induced (50nM HSL) controls.
The amount of activated LuxR protein depends to the concentration of HSL supplemented to the
medium, given in the legend. The control bore a sgRNA targeting PLtetO1 absent in the circuit,
tested at zero and (100nM) induction of HSL to activate LuxR protein. Data are reported as
mean values over at least 3 biological replicates while error bars represent the 95% confidence
intervals of the mean.
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An analysis of the strain bearing PluxRep with the illustrated setup
showed that RFP expression can be successfully repressed by either
IPTG (driving gPluxH) or HSL (which activates LuxR that acts as a
repressor) (Figure 4.1). In particular, the control strain (containing a
non-specific sgRNA instead of gPluxH) had RFP level of about 10 and
2 RPU without HSL and with 100 nM of HSL, respectively, demon-
strating a successful 5-fold transcription factor-mediated repression.
Only by expressing gPluxH, J119H promoter activity becomes com-
pletely repressed for all the added HSL concentrations. This result
suggests that the repression effect of sgRNA is stronger that the one
exerted via protein repressor. The repression curves in presence of
different HSL concentrations showed an IPTG-dependent maximum
activity and switch point. Specifically, an increase of IPTG concen-
tration results into lower RFP expression, as expected by the gPluxH-
mediated repression, and into higher IPTG concentration correspond-
ing to RFP drop. This effect may be due to the lower gPluxH effi-
ciency in presence of a protein complex (LuxR:HSL) which binds to the
promoter region and their binding sites overlap. Considering growth
rates and GFP signals, they showed a low variation; the strain with
the most repressed RFP output (maximum HSL) showed the highest
growth rate and GFP signal as expected.
Although the results of these sets of experiments were informative of
the behavior that a CRISPRi complex can have inside the cell when it
encountered a transcription regulator, the high metabolic load of the
circuit lead to a scarcity of data available for definitive conclusions to
be drawn. Inasmuch, further studies are needed involving other sys-
tem configurations using different type transcriptional regulators (for
example one that promotes gene expression) in order to elucidate and
eventually model interactions among the CRISPRi complex and com-
petitive transcription regulators.
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4.2 Approaches to improve CRISPRi tun-

ability and repression range1

4.2.1 Altered sgRNAs

In literature [65, 104, 103] many examples of relationship between
alteration in sgRNA affinity (due to mismatches or altered lengths of
the annealing region of the guide) and repression strength have been re-
ported. An exploitation of this effect was thought to be useful to tune
the repression capability of the CRISPRi device systems described in
the previous chapter; by changing the 20 nucleotides composing the
annealing region of the sgRNA, a decrease of the already proven high
efficiency of the system (i.e., obtaining a null repression for very low
synthesis of the sgRNA) and a widening of the induction range of the
expression module has been sought. This improvement is necessary to
use the developed system in rational design of those synthetic genetic
circuits where a fine modulation of an already low signal without other
possible regulation systems is required. As a preliminary investigation
of the worth of this approach, one of the previously described circuits
showing a very high efficiency was chosen as model circuit to work on;
the same circuit of Figure 3.21, with J119H target in medium copy
plasmid, were taken and the sgRNA encoded in its sequence (gPluxH,
targeting the promoter PluxRep) mutagenized to obtain several versions
as described in Figure 4.2.

1Part of this study (Section 4.2.2) has been started and carried out at the Del
Vecchio Laboratory - Massachusetts Institute of Technology (Cambridge,MA) and
is still ongoing. Details of the building blocks of this work are reported in [108].
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Figure 4.2: Design of sgRNAs containing curtailments, elon-
gations and mismatches. sgRNAs can be mutagenized in order to change their
structure by curtain or mismatching elongations of their 5’ or including mismatches in the an-
nealing region.

For the construction of the strains, AYgPluxH was used as tem-
plate and then mutagenized by combining primers RV Plac-A, RV Plac
and modified versions of FW gPluxH tracr with curtailments, elonga-
tions and mutations2 on the first 20bp of the sgRNA (again, following
the same protocol described in the former chapters) in order to obtain
the desired gRNA sequence, reported in Table 4.1. Control strains
always bore a non-targeting sgRNA (namely gPtet) as did for the
characterization of PluxRep library in Section 3.4.

2Point mutations choices were initially designed by using a python script based
on [64], kindly provided by Prof. H.M. Salis (Penn State University). The tool
was supposed to predict the relative decrease in strength of altered sgRNAs, com-
pared with a perfectly matching 20-nt guide. While its reliability on independent
datasets, different from the ones used as training sets, is beyond the scope of this
work, the tool was used as starting point to obtain suggestions about designing
mutations with diverse repression effects.
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Table 4.1: List of altered gRNAs with relative sequences and
feature. Annealing region of the sgRNAs obtained via PCR mutagenesis using gPLuxH as
primer. Deleted bases are reported in red while substituted mismatching (MM) nucleotides are
in blue; annealing adenines at 5′ obtained by conserving the adenine after TSS of PLlacO1 of the
template (i.e., by using RV Plac primer instead of RV Plac-A) are underlined.

Name gRNA Sequence Modification at/from 5′

gPluxH TGACACCTGTAGGATCGTAC Original 20bp annealing guide
D1 TGACACCTGTAGGATCGTAC Curtailed with 1 deletion
D4 ATGACACCTGTAGGATCGTAC Curtailed with 4 deletions
D5 TGACACCTGTAGGATCGTAC Curtailed with 4 deletions
E3 TCATGACACCTGTAGGATCGTAC Elongated with 3 MM inserts
E6 ATCTCATGACACCTGTAGGATCGTAC Elongated with 6 MM inserts
E11 ATAGGATCTCATGACACCTGTAGGATCGTAC Elongated with 11 MM inserts

SM1 TGACACCTGTAGGATGGTAC Mutated with 1 MM at the 16th

SM2 TGACACCTGTAGTATCGTAC Mutated with 1 MM at the 13th

DM TGACACCTCTAGTATCGTAC Mutated with 1 MM at 13th and 10th

Looking at the results reported in Figure 4.3, some interesting ob-
servation could be drawn. First, looking at the RFP, it was clear that
elongation with mismatching nucleotides does not affect repression ef-
ficiency while deletions and mismatches allow higher improvements in
repression tunability, both in terms of maximum RPU achievable and
induction range. GFP signals, on the other side are quite stable for
most of the constructs, with conserved ranking, except for the DM
(double mismatch) strain. The same conclusions can be drawn for
growth rates, stable for all the constructs except for the mismatching
ones, where the stronger modifications (SM1 and DM2 respectively)
shown a very low growth rate.
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Figure 4.3: Behaviour of gPluxH sgRNA containing curtail-
ments, elongations and mismatches. Upper raw represent RFP data thus
repression achieved by system expressing sgRNA dependently on the IPTG concentrations, cen-
tral raw is GFP which is in turn dependent to the cellular metabolic load, bottom raw shows
Growth rates of the constructs tested in this study. Data are grouped by type of modification
per column: curtailments (D1, D4, D5) in the first column, elongations (E3, E6, E11) in the
central one and mismatches (SM1, SM2, DM) on the right. The brown curves in all the diagrams
represents control strains, bearing a non-targeting sgRNA.
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Overall, despite some of the modifications applied to the sgRNA
sequence led to significant widening of repression ranges (e.g., D5 and
DM, see Figure 4.4), none of the tested sgRNA allowed to completely
unblock the repression exerted by the CRISPRi complex on the target
promoter for un-induced systems.

Figure 4.4: Repression efficiency comparison between several
modification approaches. Data relative to minimum (zero IPTG induction) and
maximum (full induction) repression of PluxRep achieved by the tested guides are reported;
percentage of repression are obtained normalizing the RFP minimum and maximum values of
Figure 4.3 on a control strain bearing a non-targeting sgRNA. Each pair of columns represent
one single type of modification made on the initial gPluxH sgRNA, reported in the bar diagram
as “+”.

105



i
i

i
i

i
i

i
i

4. Further investigations

Deletions seemed to achieve the first rank in terms of efficiency
and linearity of the modification effects; however, it is worth to no-
tice that curtailing the annealing sequence implies a decrease in guide
specificity, thus possibly leading to unwanted and hard to predict off-
target effects. Mismatches also provided a sensible effect on repression
strength tunability; still, the variation on the affinity of the sgRNA
due to mismatch, thus repression strength is hard to predict and sev-
eral trial-and-error experiment could be necessary to possible obtain
an eventually optimal guide. With the used tool, for example, while
a quantitatively predicted efficiency of the mutations in terms of effi-
ciency decrease was provided, this output was not con confirmed by
experimental data. The software outcomes relied on a biophysical
model estimated the mutation-induced variation in Gibson’s Free en-
ergy (∆∆G) and were calculated using parameter sets derived from
two different datasets: in vitro and all data. SM1 analysis gave a
value of 0.23 using the in vitro database and 0.2185 using the all data
one, SM2 gave a 0.7461 with the in vitro and 1.4727 with the all data
and DM2 gave the highest energies with scores of 1.286 and 1.472 for
in vitro and all data, respectively. However, the mutation applied on
gPluxH to obtain SM2 showed to be less effective than the one used
for SM1 and anyways not comparable with DM2 results.
Nonetheless, the sgRNA showing the wider repression tunability (DM)
does not allow a full repression of the system on the other hand.
While this approach seems to reserve promising perspectives, the lack
of an effective rational to predictably design guides as well as the high
nonlinearity in sgRNA sequence modification and repression alteration
are however still harsh hurdles to overcome for properly exploiting this
approach without an accurate computational tool to select suitable
guide mutations.
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4.2.2 CRISPRi competition

As an alternative approach to optimize the repression range of
CRISPRi systems, as well as to study the feasibility of using more
than one guide sharing the same pool of dCas9 in a genetic circuit, a
study on CRISPRi competition has been carried out.
Combining the parts used in Section 3.3.2 (i.e., HSL inducible sgRNA
with constitutive dCas9 expression cassette and PLtetO1 target in high
copy plasmid) with the constitutive sgRNA expression cassette ex-
ploited in Section 3.1.2, six new constructs were combinatorially as-
sembled and tested (see Figures 4.5(a) and 4.6(a)): three of them drove
the gPtet targeting guide transcription via HSL-inducible sgRNA ex-
pression system along with the synthesis of a competitive non-targeting
gPlac guide through 3 kind of constitutive expression cassette with
different strength (namely J23116<J23100<J23119); the others, did
the opposite (i.e., constitutive targeting sgRNA expression with HSL-
inducible competitor guide). All the circuits bore the usual GFP
metabolic burden monitor in low copy plasmid, constitutive dCas9 ex-
pression cassette in medium copy plasmid and PLtetO1 driving RFP ex-
pression in a target module carried by a high copy plasmid. While the
response in absence of a competitor was studied in the previous chap-
ter, a variation in the response of the system was expected in presence
of a competitor. In particular, no variations in GFP and maximum
RFP reachable were expected since the addition of the constitutive
sgRNA expression cassettes does not load the circuits with further
proteins to be translated nor should directly alter other protein levels.
All the experiments were performed along with two control strains:
the first one bearing (apart for dCas9 and target expression cassettes)
only a HSL-inducible sgRNA expression device encoding the target-
ing gPtet guide; in the second one, bearing the same HSL-inducible
cassette in which the sgRNA were substituted with the orthogonal
non targeting gPlac (“only targeting”and “only competitor”controls,
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see Figures 4.5(b) and 4.6(b) respectively).

Inducible targeting sgRNA and constitutive competitor

The effect of competition is clearly observed (Figure 4.5). While
the only targeting control shows an early decrease in RFP signal, the
response of circuits expressing competitor sgRNAs showed decrease for
higher HSL concentrations in a trend overall conserving the strength
of the constitutive promoter driving their transcription. On the other
hand, both GFP and Growth rate signals were very noisy; growth rate
in particular showed a remarkable decrease for high HSL concentra-
tions, so further conclusions cannot be drawn in absence of further
data.
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(a) Circuits schema.

(b) Growth rate GFP and RFP expression comparison.

Figure 4.5: CRISPRi competition with constitutive competi-
tor expression. a) The system configuration depicted by a genetic circuit in which
a HSL-inducible targeting sgRNA and a constitutive competitor expression cassettes synthesize
two guides competing for the same pool of free dCas9 proteins. In the constitutive competitor
sgRNA expression cassette, xx stands for 16/00/19 which are the codes of the promoters used
in this study, listed following increasing strengths. b) The graphs of growth rate, GFP and
RFP expression are shown.The yellow “only targeting”curve represents a circuit bearing only
the HSL-inducible targeting sgRNA expression cassette without competitor while the blue “only
competitor”one represents a circuit with only an HSL-inducible sgRNA expression cassette but
with the competitor guide coded in the sgRNA. The x-axis indicated the induction of HSL that
is dependent on the amount of targeting sgRNA in the cell. Data are reported as mean values
over at least 3 biological replicates while error bars represent the 95% confidence intervals of the
mean.
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Constitutive targeting sgRNA and inducible competitor

(a) Circuits schema.

(b) Growth rate GFP and RFP expression comparison.

Figure 4.6: CRISPRi competition with inducible competitor
expression. a) The system configuration depicted by a genetic circuit in which a consti-
tutive targeting sgRNA and a HSL-inducible competitor sgRNA expression cassettes synthesize
two guides competing for the same pool of free dCas9 proteins. In the constitutive targeting
sgRNA expression cassette, xx stands for 16/00/19 which are the codes of the promoters used in
this study, listed following increasing strengths. b) The graphs of growth rate, GFP and RFP
expression are shown.The blue “only competitor”one represents the circuit with only the com-
petitor HSL-inducible sgRNA expression cassette without targeting guides. The x-axis indicated
the induction of HSL that is dependent on the amount of targeting sgRNA in the cell. Data are
reported as mean values over at least 3 biological replicates while error bars represent the 95%
confidence intervals of the mean.
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In this configuration, the effect of dCas9 sharing is less explicit
but still conserved (Figure 4.6); the RFP signal was completely re-
pressed when targeting sgRNA was expressed under the two stronger
constitutive promoters J23100 and J23119. The leaky expression of
the specific sgRNA was enough to halve the repression exerted by the
targeting sgRNA, when the expression of competitor was driven by
the weak J23116; moreover, the system in this configuration reached a
completely un-repressed state for high HSL concentrations hence high
level of competitor. Curiously, while noise of growth rate and GFP
signals is reduced compared with what seen for the circuit with in-
verted sgRNA expression cassettes, the unexpected ranking of GFP
signal denied again a deeper interpretation of the results, as well as
the again marked decrease in growth rate.
Overall, the finite amount of dCas9 inside a bacterial cell was proved
to be an aspect that needs to be taken into account in design of genetic
circuits. Despite these results need to be reinforced with more case
studies and an appropriate mathematical analysis (ongoing), the fea-
sibility of using sgRNA competition as a degree of freedom to tune the
efficiency of CRISPRi system, as well as the unavoidable necessity of
a formal description of this aspect to use CRISPRi system in rational
design of synthetic genetic circuits, has been highlighted.
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Double knob circuitry

In order to thicken the grid of combinatorial concentrations of sgR-
NAs, a “double knob”version of the CRISPRi competition model were
developed, by expressing both of the guides under the two inducible
sgRNA expression cassette described in Section 3.2.2. The circuit, as
reported in Figure 4.7(a) bore a HSL-inducible cassette to express the
targeting guide and an IPTG-inducible one to express the competi-
tor. Since the guides used in the previous works had a possible target
in the parts composing this circuit (i.e., gPtet used to repress the
target, gPlac could repress the competitor expression, gPluxH could
repress the targeting sgRNA expression due to the high homology
between Plux and PluxRep), a new sgRNA to be used as orthogonal
competitor was developed; this guide, called gPT7 with sequence 5’-
TACTAGAGAAAGAGGAGAAA-3’, was obtained by taking the se-
quence targeting a T7-phage family promoter, with no homologies
with E. coli genome nor with any of the promoters used to build the
circuits. Such system was supposed to provide RFP responses with
higher switch points (i.e., higher HSL induction needed to fully repress
the system) for increasing IPTG inductions, due to the competition
effect exerted by the competitor guide when synthesize in amounts
high enough to saturate the free dCas9 protein pool. Despite the ex-
pected behavior was observed for increasing IPTG inductions in terms
of HSL needed to achieve a strong repression, a monotonically decreas-
ing trend of maximum RFP synthesis rate was observed for increasing
IPTG concentrations with low HSL in the media, while the competitor
guide increases RFP repression for small amounts of targeting sgRNA.
GFP on the other hand maintained the slightly increasing trend cor-
respondent to a decrease in RFP expression and an overall reduced
level due to the expression of 3 plasmids and 4 expression cassettes.
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(a) Circuits schema.

(b) Growth rate GFP and RFP expression comparison.

Figure 4.7: CRISPRi competitor with double inducible sys-
tem. a) The system configuration, showing the two sgRNA expression devices driving the
transcription of two competitive guides sharing the same pool of dCas9 protein. b) The graphs
of growth rate, GFP and RFP expression are shown. Curves colors represent different IPTG
induction and thus different amounts of competitor sgRNA. The x-axis indicated the induction
of HSL that determines the amount of targeting sgRNA in the cell. Data are reported as mean
values over at least 3 biological replicates while error bars represent the 95% confidence intervals
of the mean.
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In order to evaluate how the competitor guide affects the system re-
sponse without any other sgRNA expressed in the cell, a strain bearing
only the competitor, constitutive dCas9 and the PLtetO1-driven RFP
target expression cassettes was tested at different IPTG concentrations
(see Figure 4.8). From this analysis it was clear that the competitor

Figure 4.8: Effects of competitor expression on RFP expres-
sion. The graphs of growth rate, GFP and RFP expression are shown. The schema of the
circuit is the same as above but lacking of the HSL inducible sgRNA expression cassette. The
x-axis indicated the induction of IPTG that determines the amount of theoretically non-targeting
sgRNA in the cell. Data are reported as mean values over at least 3 biological replicates while
error bars represent the 95% confidence intervals of the mean.

guide was indeed able to exert a certain repression on the target pro-
moter: in presence of a leakage of the targeting sgRNA (HSL=0nM in
Figure 4.7) in the double knob version of the circuit, competitor pro-
vided a repression leading to a RFP from 6RPU (at IPTG=0µM) to
3RPU (at IPTG=50µM); the repression given by solely the competi-
tor sgRNA led from an almost un-repressed state when non induced
(as did the control bearing gPluxH in Figure 3.19 in an almost iden-
tical configuration except for non-targeting sgRNA used3) to 4RPU
for IPTG=50µM . Moreover, while the synergistic effect of the two
guides could be seen in the decreasing of the maximum synthesis rate

3In this study, the already proved non-targeting gPluxH sgRNA could not be
used due to its affinity with Plux−A driving the expression of the targeting guide
in the double knob configuration.
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of the two strains at different IPTG concentrations and no HSL, a
sort of competitive effect can be seen looking at the switch points of
the curves that increase as the IPTG concentration thus competitive
sgRNA concentration rises.
The reason of the unexpected efficiency of gPT7 was found aligning
its sequence against the whole plasmid. Indeed, during the design of
the competitor sgRNA, the sequence were checked to lead no-off tar-
get effects just on the host genome and other promoters bore by the
plasmids composing the circuits; however, 12 nucleotides at the 3′ part
of the sgRNA annealing part were found complementary to a region -
upstream a previously unnoticed PAM sequence - covering the junc-
tion scar and part of the RBS downstream the PLtetO1 target promoter
driving the expression of the RFP. As shown in [65], CRISPRi exerted
on a non promoter region is less effective but still functional despite
the severe decrease in efficiency due to the remaining mismatching nu-
cleotides at the 5’ of the sgRNA.

Overall, despite the double knob circuitry led to results not looked
for, all the experiments carried out in both single and double knob
configurations of the CRISPRi competition model circuits led to the
evidence of a hidden regulation layer that must be taken into account
and possibly exploited in rational design of synthetic genetic circuits
expressing more than one sgRNA and a limited amount of dCas9 en-
zyme, confirming the hypothesis introduced in [108]. Moreover, even
if more experiments must be performed (e.g., by using a proper non-
targeting guide in the double knob configuration) this work lays the
foundations for further and deeper investigations about yet unexplored
dCas9 sharing mechanism and CRISPRi repression efficiency control
via multiple sgRNA competition effects.
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Chapter 5
Discussion and conclusions

The bottom-up characterization of genetic devices is essential for
the interpretation and forward engineering of complex genetic cir-
cuitry. Although obstacles still exists, the currently persisting un-
predictability sources are being tackled by different groups. On that
point, metabolic burden resulting from the expression of recombinant
proteins in bacterial cells is still one of the major issue hampering a
successful rational design os synthetic circuits.
In this work, a model explicitly including parameters describing the
load from each synthesized gene has been evaluated and tested on
a case study obtaining overall good results: while a quantitatively
prediction of all the tested circuits has not be completly achieved
and further improvements needs to be done to improve the metabolic
load monitoring system, the use of the model allowed to predict cir-
cuits whose behavior could not be described otherwise, due to an high
metabolic load in the cell. Discussions below highlight the worth, ne-
cessity and feasibility of modeling metabolic load in synthetic biology.
Since the mathematical description of transcriptional load highlight
the working boundaries of a design circuit but does not provide an
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actual solution to overcome its effects, a CRISPR interference based
system has been developed and characterized in many versions, as a
design alternative to overcome the hampering effect due to metabolic
burden. Despite improvements to widen the tunability of the sys-
tem are still ongoing, the desired overall little load has already been
achieved; the promising results discussed above, include also a rein-
forcement of the observed “low-burden trend” obtained by exploiting
the same mathematical model studied adopted before.

Metabolic burden study. In the first part of this work, re-
cently proposed in vivo and in-silico methodological approaches have
been adopted to face the long-standing issue of biological devices pre-
dictability for the rational design of synthetic circuits. Namely, a re-
porter expression cassette was used to quantify cell load and a mathe-
matical model, which explicitly describes global burden-related effects
on protein synthesis levels, was adopted for predictions. A set of ad-
hoc constructed genetic circuits implementing transcriptional cascades
was used as a testbed by following a rigorous bottom-up design pro-
cess, including the learning of individual modules function (using a
training set) and the evaluation of model predictions on a previously
unseen circuit collection (using a test set).
It is worth to notice that despite other mathematical models could
explain a similar behavior by including hidden regulations and feed-
backs, it is hardly unlikely that the response of the systems came from
other mechanisms (see Appendix B.8).
From a qualitative point of view, considering the inducible/repressible
behavior of the circuits, the used model systems collection included
circuits exhibiting expected HSL-dependent trend and a small set of
configurations showing apparently unexpected outputs. The circuits
spanned a wide range of RFP levels, corresponding to circuit output,
and also showed diverse growth rates and GFP levels, indicating a
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variation of cell burden for different circuits and HSL inducer concen-
trations. Such statistics suggest that the considered collection includes
sufficient variations in the observed variables to test the model descrip-
tive and predictive capabilities.
A model-free correlation analysis of the measured data showed a strong
negative correlation between GFP and RFP levels in the 1-block cir-
cuits, including only the input module with RFP downstream. This
was expected, since high RFP expressions cause an increase of cell bur-
den [19, 54]. Circuits with more than one block, on the other hand,
did not show such trend, since the entity of cell load is expected to
be not only RFP-dependent, but also function of the expression of
the other circuit-borne proteins. On the other hand, the previously
observed strong correlation between GFP (expressed via chromoso-
mal constitutive cassette) and growth rate [51] was not observed in
our data, which showed a weak correlation. This difference could be
due to several factors, discussed below. By analyzing only the cir-
cuits exhibiting the lowest GFP values (corresponding to higher cell
burden), their correlation with growth rate is relevant, while for the
others it is non-significant. Circuits exhibiting a lower cell burden
did not show a relevant variation in growth rate, but a clear HSL-
dependent GFP trend could be observed. These results suggest that
a GFP-growth rate correlation can be only observed if the circuits are
affected by a relevant cell burden, and that the use of a constitutively
expressed reporter protein has a clear superior performance, in terms
of sensitivity, over the traditional use of growth rate for cell burden
monitoring. Moreover, in this work we analyzed a different genetic
context (Monitor cassette placed in plasmid instead of chromosome),
and used different experimental protocols (HSL addition and growth
to reach the steady-state of intracellular species) and data analysis
methods (growth rates computed over the whole exponential growth
phase, and GFP computed as fluorescent protein synthesis rate per
cell) than the previous work [51].
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Two models were compared in this work: NBM and BM. While the
former uses RFP and growth rate data, the latter also uses GFP to
eventually estimate and exploit the burden-related resource usage pa-
rameters. Both models were able to accurately fit the data of the
training set and their overall quantitative prediction capability was
comparable. Nonetheless, the BM allows to predict the output trend
of one non-functional circuit exhibiting an unexpected output which
could not be predicted by the NBM. Indeed, the behavior of this cir-
cuit can be successfully explained only by modelling cell load.
However, another circuit exhibiting an unexpected output trend could
not be predicted even by the BM.
It is worth noting that the two circuits with unexpected logic behavior
analyzed in this study are not robust logic gates, since the difference
predicted by both the NBM and BM between on-state and off-state is
very low. In fact, despite the transfer functions of all the devices have
a wide induction range (see Figs.B.9,B.10), their output range may not
be entirely spanned in the interconnected configurations. In these two
circuits, the transcriptional input provided to the lac-based NOT gate
is predicted to exert a detectable but not tight repression on PLlacO1,
thereby covering a small part of its available output range. Moreover,
the on-state has a transcriptional output activity comparable with a
medium-strength promoter and the off-state has a high basic activity.
While software tools able to guide the design of robust functions have
been proposed [46], the design of robust gates was beyond the scope
of this work: we limited our study to the analysis and predictability of
the qualitative and quantitative output observed from the interconnec-
tion of pre-characterized modules. The previously proposed software
system also considers cell load by identifying the part configurations
in which a relevant impairment of cell growth was observed. The BM
used in our study could be a further support in the rational engineer-
ing of genetic circuits, also from the knowledge of the resource usage
of all the involved proteins (see below).
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The NBM and BM were also systematically compared in terms of de-
scriptive capabilities. To carry out this task, all the available data
were considered and fitted with the NBM and BM. The BM captures
circuits output with higher accuracy than the NBM, which is unable
to capture the experimental output exhibited by some of the circuits
even qualitatively. An over- or under-estimation of RFP and GFP
outputs, up to 1.5 and 2.1 fold, respectively, were still present; such
fold change values are reasonably contained, and comparable to other
studies focused on predictability [13, 40, 84]. Context-dependent vari-
ability might cause such variation. Previous studies proposed a linear
model-based method to score the quality of part collection members,
relying on the characterization of their activity in different genetic
constructs [45]. Analogously, because of context-dependent variability
of parts, the BM may be unable to explain all the variation observed
in the experimental data, and the same devices measured in different
context can show diverse activity. In case of simultaneous fitting, the
estimated parameter values represent the average values that best de-
scribe parts behavior considering all the circuits. On the other hand, if
a parameter value is estimated on a single training set circuit, it repre-
sents the specific value of the analyzed one. In the training set circuits
used in this study, all the model parameters have been estimated con-
sidering a single circuit, except the burden-related parameters, which
were the result of a simultaneous fitting considering all the circuits
including the protein causing resource usage.
The fitting of the training set data by the BM enabled to estimate
resource usage parameters for the proteins involved in the cascades.
With the used RBSs, TetR was found to cause more cell load than LacI
(i.e., the other repressor used) and RFP. This resource usage ranking
was confirmed through the parameter estimation results of the simul-
taneous fitting of all the available data (not only training set circuits)
by the BM. The contribution of LuxR to cell load was estimated as a
non-dimensional parameter lumping the product of resource usage pa-
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rameter and maximum LuxR synthesis rate per cell, since, differently
from the other circuit proteins, the latter was not estimated in this
study. For this reason, in the present work the resource usage of LuxR
cannot be directly compared with the other considered proteins.
Based on the resource usage estimation via BM, we finally fixed the
two circuits with unexpected behaviour by decreasing the translation
of the gene causing the main load to the cell. To this aim, a 10 fold
decrease in TetR translation efficiency successfully restored a correct
function for both circuits, and the NBM was able to accurately predict
the observed output. The obtained results demonstrate the usefulness
of BM in the identification of the modules causing excessive cell load
and the successful utilization of resource usage knowledge to drive the
rational re-design of predictable circuits.
Based on the cell burden measurements and modeling, in both a
bottom-up and global fitting fashion, and on the subsequent study
of low-burden variants, we enabled to confirm that the unexpected
behavior of the X1TL and XrepTL configurations was due to TetR
over-expression, which caused excessive cell load. Despite tetR ex-
pression affects the two circuits by breaking their logic behavior, it is
worth noting that cell burden also affects other circuits without break-
ing their function. In particular, according to GFP measurements and
BM predictions, TetR exerts a high load in the X2T and X1T con-
figurations, even higher than in XrepTL. However, this affect is not
visible, since the high-load condition persists when the circuit output
is low, thereby masking any burden-induced effects on the expected
logic function of these circuits.
Taken together, our results showed that the use of the BM has advan-
tages over using the NBM, in terms of predictability of some configura-
tions in bottom-up approach, descriptive power of circuit and Monitor
output, estimation of load-corrected transfer function parameters and
estimation of the resource usage parameters, which can support the
rational design of circuits with predictable function.
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However, several steps still need to be carried out to improve the pre-
dictability of models like the ones used in this study. For instance,
here the growth rate was fixed in the model for each circuit and HSL
concentration, without any effort to predict it from the specific cir-
cuits used. The knowledge of growth rate could affect protein dilution,
and recombinant strains with different dilution rates may exhibit di-
verse quantitative circuit behaviors. The growth rate prediction task is
hampered by its poor predictability as a function of GFP value by the
Monitor. In addition, cell growth rate may have a relationship with
the amount of resource pools (which are assumed to be constant in the
BM used in this study). New models considering this aspect could give
significant benefits in the description and prediction of experimental
data from synthetic circuits, as well as improve the understanding of
biological systems features.
Overall, this results show the outcome achieved via bottom-up design
process considering limited cell resources and demonstrate the need of
further efforts to improve models for biological engineering, to disclose
hidden interactions among biological systems elements.

CRISPRi toolbox development. In the second approach pre-
sented in this work, different investigations focused on the common
goal of facilitating the use of CRISPRi to build novel customized gene
regulatory networks with low cell load for the host were provided.
Specifically, the first investigation was aimed at finding a low-toxicity
high-efficiency trade-off for the constitutive expression of dCas9, to
obtain an optimized fully functional minimal burden dCas9 expres-
sion cassette. The results showed that a low transcription rate on a
medium-copy plasmid, which is co-transformed in engineered bacteria
in all the quantitative experiments done in this work, was success-
ful. After the optimization of dCas9 expression, a number of synthetic
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circuits in which sgRNAs were expressed by inducible promoters to
target RFP expression by binding to its upstream promoter were built
and characterized. Among the carried out tests, three sgRNAs (tar-
geting PLtetO1, PLlacO1 and PluxRep promoters), expressed by Plux or
PLlacO1 (which required optimization before being used as effective
expression knobs), with target promoters in medium- or high-copy
plasmid, showed to be all functional in terms of repression. As ex-
pected, the target copy number plays a role in the output curves by
showing tighter repression by sgRNAs when target is in medium-copy
compared to high-copy in which the tunability range of repression was
higher. The CRISPRi system is more flexible in the choice of target
than other specific protein transcription factors. It is worth noting
that, despite all the tested sgRNAs designed in this work are actually
repressors, the repression efficiency strongly depends on the sequence,
e.g., the sgRNA designed to target PLtetO1 exerts a much stronger re-
pression than the one targeting PLlacO1. In some cases, repression was
so strong that the output showed very low RFP expression for any
sgRNA level. This means that the basic activity of inducible promot-
ers driving sgRNAs was sufficient to produce sgRNA levels with good
repression capabilities. A constitutive GFP expression cassette was
used as a proxy for cell load, as recently described by other groups.
GFP data showed that no relevant burden affects the cells upon sgRNA
expression. Importantly, metabolic load was much lower than the one
observed in some repression systems based on widely used protein re-
pressors (e.g., TetR), thereby suggesting that the use of CRISPRi in
synthetic circuits as a low-burden alternative to transcription factors
can be successful.
These results were confirmed by the mathematical analysis of the
system: by applying an adapted version of Burden and No Burden
models introduced in the previous part of the manuscript, the overall
negligibility of the load exerted by the CRISPRi repression device to
describe the system were proven. Interestingly, three other features
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have been highlighted via mathematical modeling: firstly, to obtain
a omni-functional model, deeper investigation are needed to describe
sequence-dependent repression strength for guides; second, predicting
copy number variation effects (e.g. copy number-dependent parame-
ter variations) is still a major issue to be formally faced, developing
a model that explicitly and mechanistically take into account this as-
pect. Lastly, since parameters describing GFP burden monitor base
level and RFP load contribution showed a strong context dependency,
a deeper investigation on this aspect or the development of a more
reliable measurement system is still needed. To better understand
the possibly occurring interplay between CRISPRi system and com-
monly found genetic circuit designs, we studied the effects on sgRNA
repression capability as a function of transcriptional activity of target
promoter. It resulted that fold repression caused by sgRNA was not
dependent from promoter strength: a sgRNA targeting a small library
of promoters having graded activity but sharing the same core region
(in which the guide RNA binds) showed reasonably similar repres-
sion curves. This result enables the predictable re-use of previously
designed sgRNAs to target different promoters sharing a conserved
sequence. In general, despite no relevant cell burden was detected in
the sgRNA-based circuits, some of the systems showed slight GFP and
growth rate drops which were not expected. Similar effects are still un-
der study by many groups and their full understanding is expected to
improve the predictability of bottom-up designed biological systems.
Having seen that the constitutive expression of dCas9 was effective in
this configuration, further decreasing its expression could allow for a
larger range of RFP values.
Taken together, these results suggested that further works are needed
to rationalize sgRNA design with a desired repression strength, and
that CRISPRi can be successfully used to design low-burden solutions.
In this direction, possible methods relying on the competition between
orthogonal sgRNAs sharing the same pool of dCas9 to be bound with
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5. Discussion and conclusions

- assuming that it was a limited resource able to be depleted - and on
altering the affinity of sgRNAs, changing their length or introducing
mismatches into the complementary sequence, were explored.
In the former case, curtailments of guides and mismatching guides
provided interesting preliminary results, showing relevant widening of
tunability; however, whether the use of shorter guides could lead to
undesired off target effects due to the decrease in sgRNA specificity, to
relate mismatches number and position in the annealing region with
a desired repression decrease is still a major issue. While more exper-
iments are needed to sough for a rational design of mismatches, many
in-silico approaches have been published in literature based on ma-
chine learning or biophysical models [103, 109, 64] and a deeper study
of the available algorithms could plot a course to standardly exploit
this method in rational design.
For what concern CRISPRi competition, results are very encouraging,
since they showed the possibility of using such method to indirectly
alter the repression efficiency of sgRNAs, despite this method is ex-
pected to globally affect all the guides of a circuit. Moreover, the study
of the mechanism per se paves the way to a better understanding of
the behavior of an ever more used despite not completely yet known
molecular tool. On that point, experiments with a weaker dCas9 ex-
pression cassettes are under study as well as a double knob systems
expressing a truly orthogonal competitor guide. It is worth to notice
that a double knob configuration is hardly going to be a ready to use
module for rational design of synthetic genetic circuits with reduced
metabolic load, being the usage of two different sgRNA expression
cassette too much resource demanding for the related transcriptional
regulators as inputs.
Lastly, we found that transcriptional protein repressors and sgRNAs,
targeting overlapped regions on a promoter of interest, can be simulta-
neously used to exert repression. In general, sgRNA-based repression
was much stronger than the protein-based one, although a tuning of
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repressor expression should be done to confirm this point. The shape
of the sgRNA-dependent repression curves was affected by the protein
repressor in a level-dependent fashion: target expression did not only
show a decrease (expected for the expression of two repressors) but
also a change in sensitivity (lower for higher levels of protein repres-
sor) in terms of sgRNA level causing expression drop. Despite addi-
tional experiments should be carried out for other expression systems
to confirm this conclusion (currently evaluated on the PluxRep-based
system), the results suggest that the two repressors compete for the
shared binding site and this effect should be taken into account when
engineering new synthetic circuits.
In an effort to further facilitate CRISPRi-based circuits and enhance
the reproducibility of our work in the synthetic biology community,
the essential elements of the circuits (dCas9 expression cassette, tracr
sequence, and mutagenized inducible devices) were cloned to con-
form with the BioBrickTM standard, used by labs worldwide inter-
ested in synthetic biology, and have been submitted to the open-source
MIT Registry of Standard Biological Parts as standardized and pre-
characterized genetic tools, now available to any lab interested in tran-
scribing gRNAs to build novel CRISPRi circuits.
Further studies are still needed to fully elucidate and characterize the
system behavior: more mathematical modeling investigations aimed
at predicting the behavior of genetic circuits in all the implemented
configurations and case studies can be of support to increase knowl-
edge on the behavior of the devices herein developed. Noticeably,
this work has offered an enrichment to the synthetic biology commu-
nity, providing two new standardized synthetic genetic devices, a huge
amount of data to characterize a system not yet in place and inspiring
applications for a variety of purposes, such as the induced silencing of
a gene to observe for a change in phenotype without having to create
a deletion strain.
Despite investigations of CRISPRi systems in organisms other than
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5. Discussion and conclusions

E. coli fall out of the scope of this study, the results of this work will
greatly facilitate the future use of CRISPR/dCas9 as customizable and
low-burden transcriptional regulators in synthetic circuits and complex
metabolic pathways.
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Appendix A
Successful rational design example:
Synthetic close-loop controller1

A.1 Introduction

Feedback control is ubiquitous throughout nature [111]. Living
systems exploit different control strategies to adapt and survive in
changing environments, e.g., by enabling disturbance rejection to en-
vironmental fluctuations or by generating population heterogeneity
[112]. Likewise, synthetic biology can take advantage from nature-
and also engineering-inspired control strategies to implement novel
customized functions in living systems, thereby boosting the reach-
able complexity of synthetic circuits design [113, 114]. Experimental
and theoretical studies on negative feedback regulators were performed
in both in vitro and in vivo settings. Control schemes were imple-
mented at different levels (transcriptional [115], translational [116], or

1This chapter is taken from the article “A synthetic close-loop controller circuit
for the regulation of an extracellular molecule by engineered bacteria ”[110]
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A. Synthetic close-loop controller

via biochemical reactions [117]) in different chassis, from bacteria to
mammalian host cells. Previous circuits realized in vitro exploited the
advantages of negative feedback to achieve automatic regulation of
gene expression and adaptive control of complex metabolic pathways
[118]. Noise reduction [119, 120], noise spectra shaping [121], and rise
time decrease in the dynamic response of gene networks [122] have
also been reported. Gene expression close-loop control was used to
automatically regulate the expression of a target protein to minimize
the formation of unwanted inclusion bodies in Escherichia coli [52],
regulate the density of a bacterial population by dynamically control-
ling the expression of a killer gene [123], implement RNA-based con-
trollers to maintain target protein levels in mammalian cells [124, 125],
and also implement a negative feedback RNA circuit in vitro [126].
Metabolic pathways for the biosynthesis of lycopene [127], fatty acids
[128, 129, 130], 3-hydroxypropionic acid [131] and the bioconversion of
lignin constituents [50] were improved by using toxic or accumulating
intermediates, cellular stress-related molecules and nutrient availabil-
ity as control signals. Negative feedback architectures have also been
fundamental in the realization of gene expression oscillators [132, 133],
genetic memories [132, 134] and biological device insulation [114], via
disparate circuit designs.
Given a biological system, e.g., a gene regulatory network or metabolic
pathway, it is possible to implement an in vivo feedback control of
one or more target molecules by following the modular structure of
a feedback-regulated system based on automatic control theory [127].
The requirements to implement such strategy in synthetic circuits are:
i) a biosensing element, e.g., a transcriptional regulator protein, that
is able to measure a proper signal such as the output molecule or
an intermediate reaction product, ii) a regulator, e.g., a regulated pro-
moter, that converts the biosensor output into a transcriptional signal,
and iii) an actuator, e.g., an enzyme or another transcriptional regu-
lator, that directly (via enzymatic reactions) or indirectly (via genetic

130



i
i

i
i

i
i

i
i

A.1. Introduction

regulation of pathways) affects the target molecule according to the
transcriptional signal from the regulator. While this work is focused
on in vivo implementation of a feedback circuit, it is worth mentioning
that ex vivo strategies have also been proposed for yeasts and mam-
malian cells [135, 136, 137]. In these cases, the (fluorescent) target
molecule sensing is carried out via microscopy or flow cytometry and
the regulation logic is implemented via external controller, which is
able to close the loop by driving the injection of inducer molecules
that serve as actuators. Such strategy can complement the in-cell im-
plementation by enabling the study of different control algorithms, to
tackle the intrinsic complexity and nonlinearity of in vivo regulation,
and to avoid extensive genetic modifications to realize the feedback
circuit [114].
Despite numerous recent studies on negative feedback in synthetic bi-
ology, two key challenges still persist, which currently hamper our
ability to implement complex control systems. First, the availability
of biosensors with features meeting design specifications (e.g., activity
range, switch point, and induction stability) can be limited, thereby
requiring significant efforts towards the search, de-novo construction,
optimization and testing of candidate biosensing elements that can
be successfully connected in the close-loop circuit. These aspects are
extensively discussed in recent works [138, 139, 140] and will not be
herein addressed. Second, the bottom-up design of accurately pre-
dictable systems is a major issue in biological engineering, leading to
time-consuming trial-and-error steps during the construction of the
desired circuits [23]. This rational design approach has been rigor-
ously tested in a small number of studies, mainly involving synthetic
circuits with relatively simple architectures. In case of more complex
feedback-regulated circuit implementation, this issue is undeniable,
since the successful realization of automatic control schemes requires
the screening of different candidates [52, 128]. Mathematical modeling
has been used to support the early design steps of synthetic circuits,
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A. Synthetic close-loop controller

as well as to guide possible debugging steps and capture the final cir-
cuit behavior [92, 141]. Models have also been used to study feedback
control schemes and properties in a number of works [142]. However, a
rigorous model-based engineering-inspired bottom-up design strategy
for synthetic controllers is still a challenge.
In this work, we address this key issue by testing a bottom-up approach
to design a synthetic close-loop controller in engineered Escherichia
coli, aimed to automatically regulate the concentration of an extracel-
lular molecule, N-(3-oxohexanoyl)-L-homoserine lactone (HSL) [143].
After a preliminary selection of genetic parts and model-based circuit
design, we individually characterized all the genetic circuit subsys-
tems and fully identified a mathematical model of the complete close-
loop circuit. We finally tested the full circuit to demonstrate the pre-
dictability of the behavior of the system and to evaluate the robustness
of the designed architecture, compared to a related open-loop scheme,
i.e., a circuit including an HSL production module without feedback
control.

A.2 Close-loop circuit design

Circuit description

The circuit was designed by re-wiring genetic elements of the quo-
rum sensing and quenching mechanisms of Vibrio fischerii (luxI and
luxR genes, and the cognate Plux promoter) and Bacillus sp. 240B1
(aiiA gene), respectively [133, 143, 144, 145].
The luxI gene, encoding an HSL synthase enzyme (LuxI), was placed
under the control of the synthetic PLtetO1 promoter, to obtain an
HSL production cassette that can be triggered by anhydrotetracy-
cline (ATc) (see Figure A.1). The selected host strain, MG1655-Z1,
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A.2. Close-loop circuit design

bears a TetR repressor expression cassette in the genome and enables
PLtetO1 induction via ATc [88]. HSL is a small, non-toxic molecule that
freely diffuses through bacterial cell membranes, and intracellular and
extracellular concentrations are thereby assumed to be equal. The de-
scribed system implements an open-loop HSL production system.

To implement a negative feedback regulation of HSL, a sensor-
regulator-actuator set is needed. The constitutively produced tran-
scriptional regulator LuxR, encoded by the luxR gene, binds HSL and
the formed complex can induce the Plux promoter transcriptional ac-
tivity in an HSL-dependent fashion [13, 79]. The PLlacO1 promoter
drives the constitutive expression of luxR. Although this promoter
is repressed in MG1655-Z1, due to the genomic presence of an over-
expression cassette of the cognate LacI repressor, the basic activity
of PLlacO1 in the repressed state is not null and was used to express
luxR [13]. The aiiA gene, encoding a lactonase enzyme (AiiA) and
placed under the control of Plux, is able to degrade HSL, thereby clos-
ing the loop and enabling HSL concentration control. Following the
biology-electronics analogy proposed by Farmer et al. [127], in this ar-
chitecture LuxR acts as HSL biosensing interface. On the other hand,
Plux acts as the circuit regulator, since it receives the information from
HSL-bound LuxR as input and provides a transcriptional signal, driv-
ing the actuator, AiiA, as output. The ribosome binding sites (RBSs)
of luxI and aiiA were selected among a list of experimentally screened
candidates to maximize HSL production and degradation rates, re-
spectively (for details, refer to A.6).
As it is observed in many existing biological elements, the transfer
function of one or more modules is nonlinear, thereby making the sys-
tem quantitative behavior non-trivially predictable without the help
of mathematical modeling.
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A. Synthetic close-loop controller

(a) Synthetic circuit implementing the close-loop con-
troller in E. coli.

(b) Control engineering-inspired block diagram equivalent
to the synthetic circuit.

Figure A.1: Close loop genetic controller schema. a Curved thick
arrows: promoters; ovals: RBSs; straight thick arrows: genes; hexagons: transcriptional termi-
nators; dark diamonds: proteins; small circles: aTc; triangles: HSL; thin arrows: activation or
HSL biosynthesis; thin truncated arrows: repression or HSL degradation
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A.2. Close-loop circuit design

Mathematical model of close-loop controller

A continuous culture mode (turbidostat) was adopted to main-
tain cells in exponential growth phase at a target density. The fol-
lowing ordinary differential equation (ODE) model was used to de-
scribe the close-loop controller system in cells cultured in a turbidostat
(Eqs.A.1,A.2,A.3,A.4).

dX

dt
= µ ·X −D ·X (A.1)

dL

dt
= αtet ·

(
δtet +

1− δtet

1 +

(
Ktet

T

)ηtet
)
− (µ+ γ) · L (A.2)

dA

dt
= αlux ·

(
δlux +

1− δlux

1 +

(
Klux

H

)ηlux
)
− (µ+ γ) · A (A.3)

dH

dt
=

βL

1 +

(
κL
L

)nL ·X −
(

βA

1 +

(
κA
A

)nA ·X +D + γH)

)
·H

(A.4)

with initial conditions: L(t0) =
δtet · αtet
µ+ γ

, A(t0) =
δlux · αlux
µ+ γ

,

H(t0) = 0 and X(t0) = X0, set according to the initial OD mea-
surement.
The L and A species represent the intracellular levels of the LuxI and
AiiA enzymes, respectively, expressed as arbitrary units per cell (AU),
defined in section A.3. Transcription process was not explicitly mod-
eled. Inducer-dependent synthesis rate dynamics was assumed to be
negligible compared to the other described dynamic processes; this
assumption was confirmed in this work (section A.4). Equations for
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A. Synthetic close-loop controller

LuxR dynamics were not included, since it is constitutively produced
at constant level [133]. X represents cell density, expressed as OD
(see section A.3), H represents the intracellular and extracellular con-
centration of HSL (assumed to be identical), expressed as nM , and
T represents ATc, expressed as ng/ml. The model includes 18 pa-
rameters, summarized in A.1, 16 of which were estimated in this work
using data coming from several ad-hoc experiments on individual parts
(see section A.3 and A.3), and the other 2 were fixed to known values
from literature. Hill equations were used to describe activation trans-
fer functions of promoters and the downstream protein synthesis: α
represent the maximum protein synthesis rate per cell at full induc-
tion, K represents the inducer value at which the synthesis rate is 50%
of the maximum one, η is the Hill coefficient and α · δ represents the
basic synthesis rate in the off state. The activity of HSL-modifying en-
zymes is described analogously, via theβ, κ and n parameters, without
considering basic activity. Cells were assumed to grow in exponential
phase at rate µ and diluted with rate D in turbidostat: when D = µ,
a constant cell density is maintained. Enzymes were assumed to be
degraded with first-order kinetics at the same rate, γ, due to the LVA
degradation tag (used to engineer fast degradation of the tagged pro-
teins) present in both LuxI and AiiA, and were also assumed to be
diluted at rate µ due to cell division. In addition to enzymatic contri-
butions, H was assumed to be washed at rate D and to spontaneously
degrade at rate γH .

Model analysis

A preliminary analysis was carried out to evaluate the steady-state
in close-loop (Eqs.A.1,A.2,A.3,A.4) and open-loop (Eqs.A.1,A.2,A.3,A.4
with αlux = 0) configurations, and to find which parameters had a con-
siderable impact. For amenability reasons, mathematical analysis was
carried out assuming, without any loss of generality, that all the Hill
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Table A.1: Model parameters. Parameter values used for preliminary simulations
(Preliminary value) are provided with the references used to retrieve plausible values. Parameter
values estimated in this work (Estimated value) are provided with the coefficient of variation
(CV) of the estimate in brackets. aFrom previous experiments in our laboratory, in some cases
in different strain, medium or vector backbone (data not shown). bEstimated in each turbidostat
experiment as piecewise constant time course, as described in section A.3. cAccording to previ-
ous experiments (http://2011.igem.org/Team:UNIPV-Pavia/Parts/Characterized). dEstimated
in one-plasmid context; parameter values estimated in co-transformed context, and used in the
final model simulations, are: αlux = 2.92 (4%), δlux = 0.027 (6%), Klux = 474.1 (12%),
ηlux = 0.98 (8%). eFixed. fNo literature value available: κL was arbitrarily set to obtain
maximum HSL biosynthesis rate for 100ng/ml of ATc, and κA was selected considering that
the steady-state level range of AiiA is 20 − 60AU , spanning a wide range of κA values (0.01 to
500AU).

Symbol Description Units Preliminary Estimated
value value

µ Cell growth rate min−1 0.01a 0.0126
D Cell dilution rate min−1 0.01 Variableb

αtet Maximum LuxI synthesis rate per cell
regulated by PLtetO1

AU min−1 0.8c 0.78 (5%)

δtet Relative basic activity of PLtetO1 − 0.03c 0.022 (6%)
Ktet Concentration of aTc corresponding

to half-maximum induction value of
PLtetO1

ng/ml 9c 3.15 (9%)

ηtet Hill coefficient of PLtetO1 activation
function

− 4c 3.99 (11%)

αlux Maximum AiiA synthesis rate per cell
regulated by Plux

AU min−1 11.2 [13] 4.99 (4%)d

δlux Relative basic activity of Plux − 0.014 [13] 0.016 (6%)d

Klux Concentration of HSL corresponding
to half-maximum induction value of
Plux

nM 714.2 [13] 194.01 (17%)d

ηlux Hill coefficient of Plux activation func-
tion

− 0.85 [13] 1.01 (6%)d

γ LuxI and AiiA degradation rate min−1 0.0173 [79] 0.0173e

βL Maximum LuxI enzymatic activity nM OD−1 min−1 12 [92] 6.83 (4%)
κL Concentration of LuxI corresponding

to half-maximum enzymatic activity
AU 1f 6.74 (14%)

nL Hill coefficient of LuxI enzymatic ac-
tivity function

− 1 [133] 3.51 (7%)

βA Maximum AiiA enzymatic activity OD−1 min−1 0.1a 0.33 (9%)
κA Concentration of AiiA corresponding

to half-maximum enzymatic activity
AU 0.01, 50, 500f 18.7 (> 100%)

nA Hill coefficient of AiiA enzymatic ac-
tivity function

− 1 [133] 9.7 (> 100%)

γH Spontaneous HSL degradation rate in
M9pH6

min−1 0.0002 [88] 0.0002e
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functions of enzyme activities and AiiA synthesis rate have an n or η
value of 1, their K or κ value is much higher than the specific inducer
or enzyme level (thereby working in the linear region of the functions)
and by neglecting the basic activity of the Plux promoter (δlux = 0).
Finally, the LuxI synthesis rate was assumed to be maximal (αtet) un-
der these hypotheses. HSL reaches a unique steady-state (H̄) in both
configurations (open- and close-loop), as reported in Eqs.A.5,A.6.

¯Hopen =
Z ·X
µ

(A.5)

¯Hclose =
−µ+

√
µ2 + 4 ·X2 · Y · Z
2 ·X · Y

(A.6)

where Y =
βA · αlux

Klux · κA · (µ+ γ)
and Z =

βL · αtet
κL · (µ+ γ)

. In the open-

loop configuration, H̄ is a linear function of cell density, directly pro-
portional to LuxI expression and enzymatic activity (Eq. A.5). On
the other hand, the circuit leads to an asymptotically saturating X-
dependent trend (Equation A.6), which is null for X = 0 (Equation
A.8) and reaches a steady-state concentration that is independent from
X for high cell density values (Equation A.8). By comparing H̄open

and H̄close expressions, it is possible to verify that H̄open > H̄close for
any X > 0 (Equation A.9).

lim
X→0

−µ+
√
µ2 + 4 ·X2 · Y · Z
2 ·X · Y

= 0 (A.7)

lim
X→∞

−µ+
√
µ2 + 4 ·X2 · Y · Z
2 ·X · Y

=

√
Z√
Y

(A.8)

µ4 + 4 · µ2 ·X2 · U < µ4 + 4 · µ2 ·X2 · U + 4 ·X4 · U2 (A.9)
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where U = Y ·Z. This behavior reflects the robustness of close-loop
configuration, in which the output does not change upon variations of
cell density, for sufficiently high values of X with saturation trend
determined by the value of the other parameters. Moreover, as ex-
pected, the steady-state value of HSL increases for increasing values
of Z (linked to LuxI enzymatic activity and expression strength) and
decreases for increasing values of Y (linked to AiiA enzymatic activity
and expression strength).
By using biologically plausible values for all the model parameters (see
Table A.1), preliminary simulations via Eqs. A.1,A.2,A.3,A.4 showed
the cell density-dependent steady-state trend of HSL in response to
a saturating amount (100ng/ml) of ATc (see Figure A.2(a)). As an-
ticipated above, the X − H̄ characteristic saturates at different densi-
ties depending on the parameter values (shown in FigureA.2(a) as an
example by varying κA), as expected from Equation A.8, thereby af-
fecting the close-loop configuration robustness over density variation.
The target cell density set via turbidostat affects the close-loop circuit
dynamics: while the open-loop reaches a steady-state with identical
dynamics for every density, only dependent on HSL washout (see Fig-
ure A.2(b)), in close-loop circuit low densities correspond to higher rise
time, comparable to the one of open-loop in the same conditions. Fi-
nally, to investigate the properties of the designed system, disturbance
rejection capability was studied in response to an HSL pulse (i.e., in-
jection at a given time point). After pulse application, the close-loop
circuit enabled faster return to the steady-state than the open-loop
configuration (see Figure A.2(c)) for different pulse amplitudes (data
not shown). This dynamics is density-dependent, with faster response
at higher densities (see Figure A.2(d)).
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(a) (b)

(c) (d)

Figure A.2: Preliminary simulations.a. Simulated HSL (H) at steady-state
as a function of cell density (X) maintained in the turbidostat, for the open- and close-loop
(for different values of KA) systems. b. Simulated time courses of HSL in open- and close-loop
circuits for different X values. c Simulated time course of HSL for X = 0.2 in response to an
injection of HSL 500nM at t = 0, acting as a disturbance on the system output; dashed lines
represent the steady-state levels and solid lines represent the response to the HSL pulse; d the
time to reach the steady-state (within a 2−nM tolerance) after the application of the disturbance
impulse (panel (c)) as a function of the maintained cell density (dots represent the simulated
conditions and dashed lines are interpolation lines). In all the panels, grey and black curves
indicate open- and close-loop circuits, respectively.

140



i
i

i
i

i
i

i
i

A.3. Materials and Methods

A.3 Materials and Methods

Strains, plasmids and growth media

The MG1655-Z1 strain [146] was used as host in all the experiments
shown in this work. It was transformed via heat shock to obtain recom-
binant strains. All the tested strains are listed in Figure A.3, explicitly
describing the incorporated plasmids. The M9 medium supplemented
with casamino acids, thiamine and glycerol was used in all the quan-
titative tests. Differently from its standard formulation [13], the pH
of medium was adjusted to 6.0 to limit HSL degradation, occurring
at higher pH values [88]. This modified medium will be referred to
as M9pH6. DNA assembly was carried out as previously reported,
via BioBrickTM Standard Assembly and standard molecular biology
procedures using available parts in the MIT Registry Distributions
2008-2011 [147]. Plasmids are available in the Registry of Standard
Biological Parts with codes indicated in Figure A.3. Details on their
construction are present in the individual online Registry pages of the
parts and in A.6.

Promoter characterization

Promoters were characterized using fluorescent reporter protein-
based assays. Test constructs included the promoter under study and
a red fluorescent protein (RFP) expression system assembled down-
stream. A characterization experiment was carried out for each used
promoter-RBS-plasmid set, analyzing at least three biological repli-
cates. Steady-state dose-response experiments and data analysis were
carried out as previously described [79, 84] to obtain cell growth rate
and RFP synthesis rate per cell (Scell, in AU min−1) in exponential
phase, as a function of inducer concentration. The ConstRFP-MC
(with the J107029 construct) strain was used as reference for Scell nor-
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Figure A.3: List of engineered strains tested in this study. Circuit
description used the same symbols of Figure A.1. BioBrick codes are relative to the DNA inserts,
while vector backbones are reported in brackets. The BBa and pSB prefixes are omitted for
inserts and vector backbones, respectively. Low- (pSB4C5) and medium- (pSB3K3) copy vectors
were used. Pconst represents a constitutive promoter: the (BBa )J23101, J23105, J23106, J23110,
J23116, J23118, I14032 promoters were used; for this reason, ConstRFP-MC, ConstAct-MC and
OL1-ConstRFP indicate a set of strains instead of a single one. Strains are grouped by model
parameters estimated using these circuits (some of them were only used as test set).
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malization in all the experiments, to provide highly reproducible mea-
surement units among the experiments and also in different studies.
Detailed measurement protocols and analysis procedures are available
in A.6. Assuming highly stable RFP protein (i.e., µ is much faster
than its degradation rate), the following ODE model describes the
dynamics of RFP production in exponential phase (Eqs.A.9-A.10).

dI

dt
= α ·

(
δ +

1− δ

1 +

(
K

q

)η
)
− (m+ µ) · I (A.10)

dR

dt
= m · I − µ ·R (A.11)

where q is the inducer (ATc or HSL) concentration, I and R are
the intracellular levels of immature (non-fluorescent) and mature (flu-
orescent) protein (in AU), m is the fluorochrome first-order matura-
tion rate (0.0167min ∗ −1 [43]), and the other symbols have the same
meaning as in section A.2. Assuming the steady-state of intracellu-
lar species and defining, as previously described [29, 93], the average
RFP synthesis rate per cell in exponential phase as Scell = m · I (i.e.,
the synthesis term of Equation A.11), its expression can be written as
(Equation A.12):

Scell =
m

m+ µ
· α ·

(
δ +

1− δ

1 +

(
K

q

)η
)

(A.12)

The α, δ, K and η parameters were estimated by fitting experimental
(Scell)data with Equation A.12. Such parameters describe the syn-
thesis rate of the protein encoded by the gene downstream of the
promoter, resulting from both transcription and translation processes.
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Assuming that: i) the Hill function is dependent on transcriptional
regulation, ii) translation accounts only for a scale factor, and iii) bi-
ological parts are modular components, i.e., their behavior does not
change upon interconnection in a different circuit, then the same Hill
function is proportional to the synthesis rate of a different protein
encoded by a gene downstream of the same promoter. According to
these assumptions, RFP levels (in AU) can be used to approximate
the intracellular level of any protein produced via the same expression
system.
Constitutive promoters were characterized analogously, with the ex-
ception that only the α parameter was measured, while δ, K and η
were fixed to zero.

Enzyme characterization

HSL production (for LuxI) and degradation (for AiiA) assays were
used to estimate enzyme activities. The two genes were assembled
downstream of quantitatively characterized constitutive or inducible
promoters, obtaining a set of test constructs with the same RBS-
plasmid pair as the one used in the final system for luxI and aiiA.
Colonies of recombinant strains bearing such constructs (see Figure
A.2) were grown as for promoter characterization experiments to ob-
tain a saturated culture; then it was 100-fold diluted into a 5 − ml
culture in 15 − ml tube, and grown under the same conditions as
above. When required, after 1− h growth, enzyme expression was in-
duced via different amounts of ATc. HSL measurements started after
1 additional hour (t = 0), in which enzyme level could reach an intra-
cellular steady-state. If not differently indicated, 100nM of HSL were
added in AiiA assays at t = 0 and HSL was measured via whole-cell
biosensor at different time points, as reported in [88], with the excep-
tion that biosensor circuit was assembled into different plasmids, with
the same antibiotic resistance(s) as the measured culture.
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The following models were used to describe LuxI- and AiiA-dependent
HSL dynamics (Equation A.13 and Equation A.14, respectively):

dH

dt
= k̂L ·X − γH ·H, H(t0) = H0 (A.13)

dH

dt
= −(k̂A ·X + γH) ·H, H(t0) = H0 (A.14)

while cell growth was described by Equation A.1 with D = 0, since
experiments were carried out in batch mode. The k̂L and k̂A param-
eters represent the per-cell HSL biosynthesis and degradation rates
in the tested conditions. Cell density and HSL were simultaneously
fitted with the equations above, estimating k̂L or k̂A, µ, X0 and H0

(see section A.6 for examples of fitted data). The resulting k̂L and
k̂A values were used to estimate the enzyme level-activity relations by
fitting Eqs.A.15-A.16:

k̂L =
βL

1 +

(
κL
L̄

)ηL (A.15)

k̂A =
βA

1 +

(
κA
Ā

)ηA (A.16)

where L̄ and Ā are the predicted steady-state levels of LuxI and AiiA
when their expression is driven by PLtetO1 in the OL1 and ConstAct-
MC for LuxI and AiiA, respectively.

Simulation and fitting procedures

All the simulations and fittings were performed via MathWorks
Matlab R2007b. The ode23s solver was used to compute ODE so-
lutions. The weighted least squares algorithm, implemented via the
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lsqnonlin routine, was used for parameter estimation. Residual weights
were set as in [79].

Turbidostat experiments

Recombinant cells were inoculated and grown overnight as for pro-
moter characterization experiments. Cells were then 100-fold diluted
into a 20 to 40ml volume (V ) of medium in a 0.4-liter vessel, incu-
bated with a Minifor (Lambda) bioreactor at high agitation speed (10
units). The reactor, routinely sterilized according to manufacturer
instructions, was equipped with temperature/pH and oxygen probes.
Temperature was maintained at 37℃. Growth was continued until the
culture reached a target OD, then the continuous mode started: a
PRECIFLOW (Lambda) peristaltic pump was activated to provide
sterile medium from a reservoir to the culture, with input flux (F )
set to a suitable value for diluting cells at rate equal to their growth:
F = D · V and D = µ. An overflow canula, connected with another
peristaltic pump, maintained a constant volume in the vessel by elim-
inating the excess culture. The canula was placed at proper level to
maintain a target culture volume, calibrated before each experiment.
Samples were withdrawn to measure OD and HSL as described in
section A.3. Unless differently stated, induction was carried out at
the beginning of turbidostat mode by adding 100ng/ml of ATc into
both vessel and reservoir. The choice of this ATc concentration is dis-
cussed below (section A.4). In the described setup, small changes of
canula position could result in relevant V changes. For this reason,
the adjustment of F (initially set by considering the initial V ) was
carried out during experiments, according to X time course variations
and assuming a constant µ. Based on Equation A.1, the D parameter
was eventually estimated as piecewise constant function in each time
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interval between the i-th and (i+ 1)-th samplings (Equation A.17).

D(ti) = µ− X(ti+1)−X(ti)

(ti+1 − ti) ·X(ti)
(A.17)

Disturbance rejection experiments were carried out analogously,
except that cells were 50-fold diluted instead of 100-fold, and ATc
was immediately added. HSL (i.e., the disturbance) was added to the
culture during turbidostat mode.

A.4 Results

Individual parts characterization

As first step of a bottom-up design process, promoters and en-
zymes were individually characterized in ad-hoc constructed biologi-
cal measurement systems, i.e., assemblies between promoter and re-
porter gene (for promoter characterization) and between previously
characterized promoter and enzyme-encoding gene (for enzyme char-
acterization). The fitted curves of steady-state inducer-activity func-
tion of the promoters included in the close-loop circuit (see Figures
A.4(a)-A.4(b)) and the enzyme level-activity characteristics (see Fig-
ures A.4(c)-A.4(d)) are reported in Figure A.4. On the other hand,
data of the promoters used as inputs for AiiA characterization (see
Figure A.2) are reported in A.6. All the experimental data were well-
fitted by the used models. Almost all parameters were estimated with
low uncertainty and with values consistent with the ones available
in literature, measured in different strains or conditions (see Table
A.1). Promoters and enzymes activities can be successfully tuned
from nearly null values to maximal ones by regulating the cognate
inducer concentration and enzyme expression, respectively, thereby
demonstrating that the input signals are all suitable to exhaustively
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characterize the parts. It is worth noting that, differently from the
initial assumptions, the n values of the enzyme level-activity relations
(Eqs.15-16) are much higher than 1 (although nA estimate is affected
by high uncertainty), thereby resulting in highly nonlinear, switch-like,
activation functions (see Table A.1).

Interconnected subcircuits characterization

Given a strain and a growth condition, it is known that parame-
ters related with biological parts function can change upon intercon-
nections or simply reusing the parts in different circuits [23, 79, 148].
This situation is often referred to as context-dependent variability, and
may hamper the predictable and modular composition of synthetic cir-
cuits. For this reason, before proceeding with a predictability analysis
using the values estimated in section A.3, the robustness of some cru-
cial parameter estimates was tested in additional in vivo experiments.
First, the HSL biosynthesis capability of LuxI was tested in the OL1-
SensRegRFP strain, bearing two plasmids with HSL production mod-
ule and biosensor with RFP, respectively. HSL production capability
in batch and turbidostat experiments was consistent with OL1 model
simulations (see Figure A.5(a)). These results demonstrated that the
LuxI module function is maintained in a larger circuit similar to CL1.
Second, the copy number (CN) of the medium-copy vector in co-
transformed context was compared with the copy number maintained
in the one-plasmid context. The CNs were found to be identical (see
Figure A.5(b)). Taken together, the results of Figure A.5(a)-A.5(b)
demonstrated that the two used vectors maintain a stable CN in all
the tested conditions. Third, as in the first case, the Plux activity was
tested in a co-transformed context with the OL1-SensRegRFP strain,
which includes a more complex circuit than SensRegRFP-MC, used in
section A.3 to individually characterize Plux. Results showed an about
2-fold lower Plux activity in OL1-SensRegRFP than SensRegRFP-MC,
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(a) SensRegRFP-MC (b) TetRFP-LC

(c) OL1 (d) ConstAct

Figure A.4: Fitting of steady-state transfer functions of the
individual devices of close-loop circuit.a. Plux promoter. b. PLtetO1

promoter. c LuxI enzyme. d AiiA enzyme. In all the panels, circles represent experimental data,
error bars represent standard errors of the mean and solid lines represent model fitting
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and a higher Klux (see Table A.1 and Figure A.5(c)). Since the vec-
tor CNs were found to be unaffected in co-transformed context, such
differences could be due to burden effects significantly affecting the
resulting Plux activation curve. By over-expressing LuxR via IPTG
addition in both strains, the measured transfer function also con-
firmed the results above (see section A.6). The observed difference
in parameter values between one- and two-plasmid contexts is consis-
tent with context-dependent activity changes observed in other studies
[13, 79, 84]. However, it highlights the need of characterizing individ-
ual components in more than one context, as similar as possible to
the final one, to find robust parameter estimates to properly simulate
the final system. To further confirm that the Plux activity difference
observed between the two tested contexts also persists using aiiA as
downstream gene (i.e., the one used in the final system), two simi-
lar circuits were tested in batch mode: SensRegAct-MC and CL1 (in
absence of ATc induction), both including a Plux-regulated AiiA ex-
pression in one- and two-plasmid context, respectively, as before. Such
strains are expected to implement HSL sensing, regulation and degra-
dation (see Figure A.2 and upper part of Figure reffig:CL1a) with-
out HSL biosynthesis. The simulated HSL degradation time courses,
obtained using the specific Plux parameters in one- and two-plasmid
contexts (see Table A.1), were consistent with the measured data, de-
picting a systematically lower HSL degradation for CL1, compatible
with the weaker Plux activity in this context (see section A.6). For the
described reasons, the αlux, δlux, Klux and ηlux values in co-transformed
context were used as Hill function parameters of Plux.
Finally, RFP synthesis rate time course in OL1-SensRegRFP upon
ATc induction was also used to indirectly evaluate if HSL dynamics,
including biosynthesis and self-induction of Plux in the same culture,
could be captured by the model. Results showed that measured fluo-
rescence values were in reasonable agreement with the simulated pro-
files (see section A.6).
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(a) HSL production for OL1-
SensRegRFP

(b) RFP assay for CN stabilitty as-
sessment

(c) OL1-SensRegRFP

Figure A.5: Analysis of interconnected subcircuits. a. Characteri-
zation of HSL biosynthesis of OL1-SensRegRFP: Hend (i.e., HSL concentration at the end of a
turbidostat experiment) and enzymatic activity in batch experiment were measured and com-
pared with the prediction of the model, which was trained on OL1. b. Fluorescence assays on the
ConstRFP-MC library (one-plasmid context) and on the OL1-ConstRFP library (two-plasmid
context); similar RFP values between one- and two-plasmid contexts mean similar CN; circles
represent data points, error bars represent standard errors of the mean and solid line represents
the bisector. c Fitting of steady-state transfer function of Plux promoter in a two-plasmid context
(OL1-SensRegRFP); circles represent experimental data, error bars represent standard errors of
the mean and solid line represents model fitting.
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Analysis of the final system in turbidostat

Simulations of the fully identified model of Eqs.A.1-A.4 showed
that CL1 has a predicted cell density-HSL profile varying less than
1.5-fold for 0.1 < X < 0.35, while OL1 showed a 3.5-fold change (see
Figure A.6(a)). By replacing the Plux-related parameter values with
the values estimated previously in one-plasmid context (see section
A.4), simulations showed a significantly different trend, with 3-fold
lower steady-state level (see Figure A.6(a)), confirming the impor-
tance of reliable estimation of such parameters. The HSL steady-state
and time course (Figs.A.6(a)-A.6(b)) confirm the conclusions drawn
in section A.2 about cell density-dependent features of the close-loop
circuit. In addition, the time-course simulations showed that damped
oscillations arose with the estimated parameter set for X > 0.1 (see
Figure A.6(b)). Note that OL1 and CL1 start showing a different
behavior for X > 0.1 (see Figure reffig:CL6a). A univariate sensi-
tivity analysis, reported in A.6 for small variations of the parameters
involved in feedback control, highlights that the switch point of AiiA
enzymatic activity has major impact on HSL output, that the AiiA
maximum activity is never reached at steady-state, and that such pa-
rameter plays a minor role in the HSL steady-state regulation.

As the final step, the constructed system was tested and the data
were used as validation set to assess the predictability of the identi-
fied model. A set of 12 turbidostat experiments, with different cell
densities, were carried out for CL1, while OL1 was used as control in
other 11 experiments. Average cell densities in the range 0.05 − 0.35
were maintained (see section A.6). Data and predictions of all the
experiments are available in A.6. A global overview of the predic-
tion capability of the model is shown in Figure reffig:CL6c-A.6(d),
in which the predicted and measured HSL values are compared for
the CL1 and OL1 circuit, respectively. In particular, predictions are
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(a) Steady-state
prediction

(b) Time course
prediction

(c) OL1

(d) CL1 (e) OL1 - X = 0.1 (f) CL1 - X = 0.1

(g) OL1 - X =
0.25

(h) CL1 - X =
0.25

Figure A.6: Prediction of open-loop and close-loop circuits be-
havior.a. Simulation of steady-state HSL; the curves of OL1 and CL1 simulated using the
parameters of SensRegRFP-MC values (herein indicated as CL1*) are also shown. b. Simulation
of OL1 and CL1 dynamics; the arrow indicates increasing cell density X , from 0.025 to 0.35
with step 0.025. c-d Overall model prediction performance for OL1 c and CL1 d in turbidostat
experiments; dots represent experimental data and solid line represents the identity line. e-h
HSL data (circles) and model predictions (solid line) for different experiments of OL1 and CL1
in turbidostat at different cell densities X ; the typical values of X are reported in the titles.
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characterized by high correlation coefficients (0.87 for CL1, 0.91 for
OL1). Two representative experiments for each circuit (Experiment
#3 and #8 for OL1; Experiment #4 and #10 for CL1, see Section
A.6 for experiment numbering and description) are reported in Figures
A.6(e)-A.6(h). The time course is well predicted by the mathemati-
cal model in both CL1 and OL1. As expected, CL1 and OL1 show
comparable HSL control behavior at low cell density (about 0.1), in
which HSL reaches a level of about 50nM (see Figure A.6(e)-A.6(f)).
At higher cell density (0.25), OL1 showed a final HSL concentration
of 153nM (see Figure A.6(g)), whereas CL1 showed robust control of
HSL level, with a superelongation also predicted by the model not ex-
ceeding 87nM , and a steady-state value of 72 nM (see Figure A.6(h)).
Cell density-dependent fluctuations of HSL were observed in many
experiments, due to target molecule washing at non-constant rates
(D 6= µ) during D adjustment in turbidostat mode. In addition, os-
cillations not correlated with OD fluctuations were observed in CL1
experiments at high cell densities (e.g., see Figure A.6(h)) as predicted
by the model.
Finally, the capability of the close-loop circuit to reject disturbances
on HSL output was tested in additional turbidostat experiments at
very similar cell densities (X = 0.23 ± 0.03, see Figure A.7(a)). Dis-
turbances were applied as HSL injections, and the experimental vs
predicted time courses were compared for both CL1 and OL1 (see
Figure A.7(b)). Model predictions were consistent with experimental
measurements, thereby confirming the robust disturbance rejection
properties of the close-loop design, as predicted by model simulations.
It is worth noting that the implemented close-loop circuit has two
means of tuning HSL level: ATc and IPTG can be used to regu-
late LuxI and LuxR synthesis rates, respectively, thereby changing
HSL production process and sensor transfer function. The turbidostat
tests carried out in this work only included a saturating amount of ATc
(100ng/ml) without IPTG. This condition represents an optimal sit-
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uation to yield high-quality experimental measurements of HSL, since
LuxI synthesis rate is in a robust full-induction state, not affected by
small ATc variations (see Figure A.4(b)), and HSL steady-state level
is maximized (while lower ATc and higher IPTG concentrations are
expected to give lower HSL levels). Circuit predictability, robustness
against cell density variation and disturbance rejection features, on
which this study is focused, have been successfully demonstrated in
the tested condition, while a systematic analysis of CL1 with different
inducer concentrations is beyond the scope of this work.

A.5 Conclusion

In this work, we showed the bottom-up design, from individual
parts, of a close-loop control circuit (CL1). The comparison between
simulations and in vivo data in different scenarios showed not only
that the model-based bottom-up approach was successful in accurately
predicting HSL output of CL1, but also that the designed close-loop
scheme has the expected properties of robustness against cell density
variation and disturbance rejection on the output. Nonetheless, a num-
ber of limitations, also faced in this work, still affect the execution of
such task and are herein discussed. The composition of a predictable
biological system is affected by context-dependent variability, as it was
observed for the Plux-based sensor/regulator module (i.e., the device
showing major activity variation). Despite the other circuit modules
did not show relevant activity variation when re-used in higher-order
circuits, the accurate prediction of the final system behavior required
the measurement of Plux in more than one context, which is an im-
portant aspect for future bottom-up designed circuits. The cell load
caused by heterologous gene networks was not explicitly modeled in
this work; the extensive characterization of cell resource usage by in-
dividual parts may further improve their re-use in complex circuits,
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(a) Cellularconcentration.

(b) HSLlevel.

Figure A.7: Model prediction of disturbance rejection on HSL
output. a Measured X time course in CL1 and OL1. b. Data and prediction of HSL time
course after HSL disturbance injection (t = 0) when the system was at steady-state. Circles
represent data points, dashed lines represent the predicted steady-state considering average X
and D values, solid lines in panel a. represent linear interpolation and in panel b. represent model
simulations. Error bars represent standard errors of the mean of two independent replicates.
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thereby avoiding multiple characterization steps. Apart from intrinsic
function variation of individual parts, the design of close-loop circuits
is also hampered by the significant differences between circuit mod-
ules in biology and control theory; in fact, despite preliminary efforts
have been carried out to abstract sensor, regulator and actuator mod-
ules in living systems, their proper tuning, e.g., design of regulators
with intended dynamic properties, still represents a challenge that will
require further theoretical work. Taken together, the described lim-
itations currently prevent the definition of detailed design guidelines
for close-loop circuits from the bottom-up and their solution will rep-
resent a milestone in the fields of synthetic biology and control theory
applied to biological engineering.
Finally, the feedback control scheme implemented in this work could
be improved by engineering faster response dynamics and more energy-
saving control strategies, as proposed in A.6.
Even if the implemented circuit relied on well-studied quorum sens-
ing/quenching network elements, thereby enabling the study of a sim-
plified model system, the demonstration of the bottom-up design of
a robust control strategy for an extracellular molecule represents an
important achievement in synthetic biology.
It is worth noting that different designed circuit may present different
critical issues, e.g., non-modeled crosstalk among circuit components
or excessive toxicity for the cell of a specific molecule. However, we
believe that the experience gained in this study can be applied, with
reasonable generalization, to decrease trial-and-error steps in close-
loop systems design, by following the engineering-inspired strategy
used in this work: i) define control theory blocks (process, sensor,
regulator, actuator) using biological components; ii) characterize in-
dividual candidate parts, in proper biological measurement systems,
in more than one context; iii) estimate the parameters of the mathe-
matical models able to describe the function of each individual part;
iv) use the parametrized models to predict the final interconnected
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system. The used strategy may benefit many industrial applications
involving engineered cell factories implementing robust extracellular
control of relevant molecules, such as fuels, drugs, cosmetics or key
intermediates of the respective pathways.

A.6 Supplementary Notes

Supporting methods

Cloning

The E. coli TOP10 strain (Invitrogen) was used for the in vivo
amplification of plasmids. TOP10 were transformed by heat-shock ac-
cording to manufacturer’s instructions and transformed strains were
grown in L-broth (LB: sodium chloride 10g/l, tryptone 10g/l, yeast
extract 5g/l) at 37℃. Long-term glycerol stocks, routinely stored at
−80℃, were prepared by mixing 750µl of a saturated culture with
250µl of glycerol 80%. All the circuits used in this study were as-
sembled from existing Registry parts according to the BioBrickTM

Standard Assembly procedure and a number of standard molecular
biology methods: plasmids were extracted from saturated 5−ml cul-
tures (grown in LB at 37℃, 220rpm) through the NucleoSpin Plasmid
kit (Macherey-Nagel); DNA was digested as appropriate, with the
EcoRI/XbaI/SpeI/PstI enzymes, and the fragments of interest were
extracted from 1% agarose gel by NucleoSpin Extract II kit (Macherey-
Nagel) before proceeding with ligation. As a result, each part used in
this work is compliant to the BioBrickTM Standard. Consequently,
every junction between assembled parts has the TACTAG sequence if
the downstream part is a coding sequence, otherwise the sequence is
TACTAGAG. All the DNA-modifying enzymes were purchased from
Roche Diagnostics. The DNA of all the constructed parts was screened
via diagnostic digest/electrophoresis, and was sequence-verified via the
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BMR Genomics DNA analysis service (Padova, Italy). The vector
backbones used in the studied circuits were pSB4C5 and pSB3K3 from
the MIT Registry, enabling the maintenance of the assembled genetic
circuits at low (3 to 7) and medium (15 to 40), respectively, with val-
ues in brackets depending on the used strain. Antibiotics were always
used to maintain the incorporated plasmids, according to their selec-
tion marker: chloramphenicol (12.5mg/l) and kanamycin (20mg/l).

Fluorescence and growth assays

For steady-state characterization of promoters, long-term glycerol
stocks were streaked on LB agar plates supplemented with the proper
antibiotic(s), to isolate single colonies, considered as biological repli-
cates. Plates were incubated overnight at 37℃, then 0.5 ml of selective
M9pH6 (M9 salts - #M6030, Sigma Aldrich - 11.28g/l, thiamine hy-
drochloride 1mM , MgSO4 2mM , CaCl2 0.1mM , casamino acids 0.2%,
glycerol 0.4%, pH adjusted to 6.0 via HCl addition) were inoculated
with single colonies and incubated overnight in 2−ml tubes at 37℃,
220rpm. Cultures were 100-fold diluted in 1ml of selective M9pH6 in
15−ml tubes, grown for 1−h and subsequently induced with a proper
amount of ATc or HSL to reach the desired concentrations (when ex-
plicitly indicated, isopropyl-β-D-1-thiogalactopyranoside - IPTG - was
also added at the final concentration of 500µM). After 1−h growth in
the same conditions as above, 200µl were transferred into a 96-well mi-
croplate. Cultures were assayed via the Infinite F200 microplate reader
(Tecan), programmed with the i-control (Tecan) software to perform
a kinetic cycle as follows: linear shaking (3 − mm amplitude, 15s),
wait (5s), absorbance measurement (600nm), red fluorescence mea-
surement (excitation at 535nm, emission at 620nm, gain=50), repeat
cycle every 5min. In every microplate experiment, 200µl of M9pH6
and a non-fluorescent MG1655-Z1 culture were included in triplicate to
enable the estimation of absorbance and fluorescence backgrounds, re-
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spectively. Finally, the ConstRFP-MC strain with the J107029 insert,
including a constitutive RFP expression cassette under the control of
the J23101 constitutive promoter, herein named REF culture, was also
included in triplicate to enable Scell computation.
For dynamic experiments on OL1-SensRegRFP, a similar procedure
was followed, with the following exceptions: the 00-fold dilution was
directly carried out in 200µl of M9pH6 in the 96-well microplate, the
inducer (100ng/ml for aTc) was added to the microplate wells when
the culture reached an OD of about 0.02, M9pH6 was supplemented
with IPTG (500µM).
HSL (#K3007, Sigma Aldrich) was dissolved in deionized water to pre-
pare a 2mM stock. IPTG (#I1284, Sigma Aldrich) and aTc (#631310,
Clontech) were purchased as ready-made 200mM and 2mg/ml stocks,
respectively. The three inducers were routinely stored at −20℃.
Absorbance and fluorescence background signals were subtracted from
raw absorbance and fluorescence over time (t), to obtain cell den-
sity (X, expressed as optical density - OD - proportional to the per-
well cell count) and RFP (R, expressed as arbitrary units of raw
RFP - AUR - proportional to the per-well number of fluorescent pro-
teins). A signal proportional to RFP synthesis rate per cell (Srawcell ,
expressed as AUR OD−1 min−1) was computed over time in the ex-
ponential growth phase (EGP, identified via visual inspection, typi-
cally 0.02 < OD < 0.14 in microplate experiments) for each culture as
the numeric time derivative of fluorescence, divided by the mean cell
density (Equation A.18):

Srawcell,i =
Ri −Ri−1

ti − ti−1

· 2

Xi +Xi−1

, ∀i ∈ EGP (A.18)

The Srawcell time series of the REF strain replicates (Srawcell,REF ) were aver-

aged over the EGP and the mean value (Srawcell,REF ) among the replicates

was computed. Srawcell,REF was used to normalize the Srawcell,REF values for
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all the other cultures, obtaining the Scell time series, expressed as
AU min−1 (Equation A.19):

Scell,i =
Srawcell,i

Srawcell,REF,i

(A.19)

In steady-state experiments, the computed Scell time series were aver-
aged over time in the EGP, as described above, to obtain Scell.
Growth rate (µ) was computed as the slope of the regression line of the
log(X(t)) time series in the EGP. The microplate reader was also used
to measure cell density at specific time points in cultures growing in
15-ml tubes or turbidostat, as described above without programming
kinetic cycles. In this case, sterile M9pH6 was always included as ab-
sorbance background, which was subtracted from the raw measured
values of the culture under study to obtain X.

Enzyme assays

Data from representative experiments of HSL biosynthesis and
degradation are shown in the figure below (see Figure A.8). Three
to four samples (OD and HSL) were measured over time in the expo-
nential phase.

Supporting results

RBS selection for luxI and aiiA

While host strain, promoters and enzyme coding sequences were
selected to meet the functional requirements of the designed circuit
in terms of regulation, as described in section A.2, ribosome binding
sites (RBSs) still needed to be selected to enable efficient translation of
LuxI and AiiA. Translation efficiency is known to be highly RBS- and
coding sequence-dependent [116] and, despite computational tools are
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(a) (b)

(c) (d)

Figure A.8: Example of data from HSL production (a,c) and
degradation (b,d) assays. Panels a. and b. show growth curves. Panels c and
d show HSL time courses. These data come from an HSL production assay in which OL1 was
induced with 100ng/ml of ATc, while in the HSL degradation assay the ConstAct-MC construct
with the J23101 constitutive promoter was used
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Table A.2: RBS selection for luxI and aiiA. HSL concentration (nM) after
4−h from aTc (100ng/ml) addition. Values are relative to single replicates assayed as described
in section A.3.200nM of HSL were added at t = 0 for experiments with aiiA.

RBS BBa B0030 BBa B0031 BBa B0032 BBa B0034
-=dimensionless (NBM, training set) (BM, training set) (BM, global fitting)

luxI 20 2 0 18
aiiA 171 22 169 0

available to support its prediction, their accuracy is currently limited
[23]. For this reason, we chose the RBSs for LuxI and AiiA transla-
tion according to preliminary HSL production and degradation assays,
respectively. Three popular RBSs from the Registry were assembled
upstream of luxI and aiiA, under the regulation of PLtetO1 in a low-
and medium-copy plasmid, respectively (see Table A.2). Some of the
recombinant strains showed no HSL production for LuxI or HSL degra-
dation for AiiA (see Table A.2), despite cell growth was comparable
(data not shown). There was no consistency between the luxI and aiiA
results in terms of RBS efficiency, e.g., BBa B0030 corresponded to
the lowest activity for AiiA and the strongest for LuxI, and vice-versa
for BBa B0031, confirming the relevant context-dependency of RBSs.
The BBa B0030 and BBa B0034 RBSs were finally selected to enable
efficient translation of LuxI and AiiA, respectively.

Characterization of the promoters used in the measurement
circuits

Experimental data are shown for all the promoter-RBS-plasmid
sets used to drive the expression of aiiA that are not present in the
final close-loop circuit. (see Figure A.9).

163



i
i

i
i

i
i

i
i

A. Synthetic close-loop controller

Figure A.9: Characterization of the constitutive promoters
used to drive aiiA. Bars represent the average of at least three independent repli-
cates and error bars represent standard errors of the mean.
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Additional data and modeling on interconnected subcircuits

Plux transfer function in presence of over-expressed LuxR
The Plux promoter activity in the SensRegRFP-MC and OL1-SensRegRFP
strains was also characterized in presence of IPTG (500µM) to over-
express the cognate LuxR transcriptional activator. Fluorescence as-
say results are shown in Figure A.10 with the fitted curves.

Results showed that the maximum activity is lower in co-transformed
strain (as it was observed in absence of IPTG), but, in contrast with
the experiments without IPTG, the half-maximum concentration value
is comparable (see parameters in the Figure A.10 caption). It is known
that cell load, caused by heterologous circuits (e.g., an additional ex-
pression plasmid in the cells) can decrease protein expression, con-
sistent with the lower maximum activity in OL1-SensRegRFP com-
pared with SensRegRFP-MC. Cell load globally affects the expression
of all proteins, including LuxR, which is responsible of Plux activation.
When there is an excess of LuxR in the cells, the activation curve
is expected to be stably maintained upon variations of LuxR; other-
wise, small variations of LuxR may lead to changes in transfer function
shape, namely, a decrease of LuxR can decrease the sensitivity of the
switch by increasing the half-maximum concentration value and also
by further decreasing the maximum activity [57]. Since without IPTG
LuxR is expressed at very low levels, the change of αlux and Klux val-
ues is fully compatible with cell burden, occurring on both LuxR and
RFP in presence of an additional plasmid in OL1-SensRegRFP. De-
spite recent methodologies to study cell load via fluorimetric assays
have been proposed, an extensive characterization is beyond the scope
of this work.

HSL degradation by Plux-driven aiiA in one- and two-plasmid
contexts SensRegAct-MC and CL1 (in absence of ATc induction)
were characterized to confirm that Plux activity changes in presence of
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Figure A.10: Fitting of SensRegRFP-MC and OL1-
SensRegRFP in presence of IPTG to over-express LuxR. Data
points represent the average of at least three independent replicates and error bars represent stan-
dard errors of the mean. Estimated parameters were: αlux = 10.65(5%), δlux = 0.014 (12%),
Klux = 0.77 (5%), ηlux=1.54 (5%) for SensRegRFP-MC; αlux = 7.47 (1%), δlux = 0.067 (8%),
Klux = 0.81 (6%), ηlux = 1.14 (6%) for OL1SensRegRFP. Coefficient of variation is reported in
brackets.
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an additional plasmid, also when the inducible gene is aiiA. Different
experiments were carried out in batch mode by adding HSL at t = 0
and then monitoring HSL degradation over time (see Figs.A.11-A.11
for the results of individual tests). The equations below (Eqs.A.20-
A.21) with parameters in Table A.1 were used to simulate the exper-
imentally measured curves (see Figures A.11-A.12), considering that
SensRegAct-MC and CL1 had a different parameter set (αlux, δlux,
Klux, ηlux, see Table A.1) to describe Plux activity.

dA

dt
= αlux ·

(
δlux +

1− δlux

1 +

(
Klux

H

)ηlux
)
− (µ+ γ) · A, A(t0) =

αlux · δlux
µ+ γ

(A.20)

dh

dt
= −

(
βA

1 +

(
κA
A

)nA ·X +D + γH

)
·H, H(t0) = H0 (A.21)

where symbols have the same meaning as sections above. For each
experiment, H0 was fixed to the measured value and the cell concen-
tration time course was fitted via exponential model (Equation A.1
for D = 0).

Prediction results (also summarized in Figure A.13) showed that
the identified models successfully describe the experimental time se-
ries, and CL1 (in absence of ATc induction) had an overall higher
HSL concentration at the end of experiment than SensRegAct-MC, as
expected, since the former has a lower Plux activity that can lead to
lower HSL degradation.

Model simulations in presence of additional dynamic pro-
cesses To assess the assumptions about kinetic processes involved
in the designed system, i.e., that per-cell protein dynamics are gov-
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Figure A.11: Time course experiments for SensRegAct-MC.
Circles represent the measured HSL concentration and solid lines represent model predictions.

Figure A.12: Time course experiments for CL1 without ATc.
Circles represent the measured HSL concentration and solid lines represent model predictions.
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Figure A.13: Measured vs predicted HSL concentration in
time course experiments of SensRegAct-MC and CL1 with-
out ATc.
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erned by their inducer-dependent synthesis rate and their degrada-
tion/dilution rate with no other dynamic process, the OL1-SensRegRFP
sub-circuit was adopted. In particular, a time course experiment was
carried out by measuring RFP after the induction of HSL production
module via ATc, and in presence of 500µM IPTG. In this experi-
ment, every dynamic process occurring in the cells, from ATc addition
to RFP maturation, plays a role in determining RFP synthesis rate
per cell time course. This test enables to understand if the modeled
processes (i.e., enzymes degradation, HSL production, Plux induction
by HSL and RFP maturation) are sufficient to accurately describe
the experimental data, or the inclusion of additional kinetic processes,
e.g., in protein synthesis rate activation, is necessary. Simulation of
the identified model in Eqs.A.22-A.25 (derived from Eqs.A.1-A.4 and
Eqs.A.10-A.12) confirmed that experimental time course is captured
with sufficient accuracy by considering only the dynamic processes in-
cluded in this model (see Figure A.14). Despite not all the RFP profile
was perfectly captured (e.g., the observed RFP synthesis rate supere-
longation is not described by the model), simulations were considered
to be reasonably accurate in capturing RFP activation, without adding
equations and parameters to the model.
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dX

dt
= µ ·X, X(t0) = X0 (A.22)

dL

dt
= αtet ·

(
δtet +

1− δtet

1 +

(
Ktet
T

)ηtet
)
− (µ+ γ) · L,

L(t0) =
αtet · δtet
(µ+ γ)

(A.23)

dH

dt
=

βL

1 +

(
κL
L

)nL ·X − γH ·H, H(t0) = 0 (A.24)

dScell
dt

= m · αlux ·

(
δlux +

1− δlux

1 +

(
Klux
H

)ηlux
)
− (µ+m) · Scell,

Scell(t0) =
m · αlux · δlux

µ+m
(A.25)

In Eqs.A.22-A.25, X0 was set to the experimentally measured cell
density at t = 0.

Moreover, to confirm that additional dynamic processes are not
crucial to be included, the final close-loop system was also simulated by
considering a dynamics in the enzyme synthesis rate per cell (Eqs.A.26-
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Figure A.14: Time course experiment of OL1-SensRegRFP in
response to ATc addition (100ng/ml at t = 0). Circles represent the
average of three independent measurements, error bars represent standard errors of the mean
and solid line represents model simulation.

172



i
i

i
i

i
i

i
i

A.6. Supplementary Notes

A.31).

dX

dt
= µ ·X −D ·X, X(t0) = X0 (A.26)

dSL
dt

= rtet · αtet ·

(
δtet +

1− δtet

1 +

(
Ktet

T

)ηtet
)
− rtet · SL,

SL(t0) = αtet · δtet (A.27)

dSA
dt

= rlux · αlux ·

(
δlux +

1− δlux

1 +

(
Klux

H

)ηlux
)
− rlux · SA,

SL(t0) = αlux · δlux (A.28)

dL

dt
= SL − (µ+ γ) · L, L(t0) =

αtet · δtet
(µ+ γ)

(A.29)

dA

dt
= SA − (µ+ γ) · A, L(t0) =

αlux · δlux
(µ+ γ)

(A.30)

dH

dt
=

βL

1 +

(
κL
L

)nL ·X −
(

βA

1 +

(
κA
A

)nA ·X+D + γH

)
·H,

H(t0) = 0 (A.31)

In this model, S represent the protein synthesis rates per cell

(AU min−1) of LuxI (SL) and AiiA (SA);
1

r
represent the time con-

stants of protein synthesis rates dynamics. The r parameters were
fixed to 0.1min−1 (i.e., 7min of half-induction time) to run the model
with a worst-case time constant value [93]. The other symbols have
the same meaning as in the main text. Results showed that the sim-
ulation of the Eqs.1-4 (main text) and Eqs.S5-S8 models did not lead
to relevant differences in experimental time course predictions (see
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Figure A.15). Finally, prediction performances, in terms of correla-
tion (see section A.4), of CL1 and OL1 did not improve by using the
model in Eqs.A.26-A.31 for different values of r (data not shown).
Taken together, the described results suggested that the behavior of
the designed circuit did not change by including an additional dynamic
process on the protein synthesis rates per cell.

Figure A.15: Predicted time course of HSL in turbidostat at
X = 0.2 for OL1 and CL1. Simulated using the model described in the main text
and the model including protein synthesis rate dynamics with rtet = rlux = 0.1min−1.

Sensitivity analysis of the identified model

A sensitivity analysis was carried out on the 7 parameters involved
in close-loop regulation, i.e., the Hill function parameters describing
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the behavior of sensor, regulator and actuator. Univariate analysis was
performed by investigating the effect on steady-state HSL output level
(HSS) for small variations of the parameter (10%), given the values
of all the other parameters. In particular, for each i-th parameter
pi under study, sensitivity indexes Si were computed as described in
Equation A.32 to yield a dimensionless value.

Si =
∆HSS/HSS

∆pi/pi
(A.32)

Results of sensitivity analysis are reported in Figure A.16 for X =
0.2. At this cell density value, the sensor/regulator/actuator set is ac-
tively involved in HSL control, while for X values lower than 0.1 their
contribution is small and the system works as an open-loop circuit (see
section A.2). For this reason, the impact of the studied parameters
for X < 0.1 is negligible and results in sensitivity indexes close to zero
(data not shown). The indexes computed in Figure A.16 show that
many parameters have relevant impact on output level: among the
parameter set describing the actuator transfer function (i.e., βA, κA,
nA), variation of κA has the largest impact. These effects are explained
by the shape of the transfer function of AiiA (see Figure A.4(d)), in
which the estimated value of the Hill coefficient is very large and small
variations do not lead to large HSS changes; similarly, βA variations
do not significantly alter HSS since the AiiA never reaches intracel-
lular levels higher than κA (see Figure A.17), thereby motivating the
low importance of βA. It is worth noting that, despite only a small
part of the AiiA transfer function is spanned at the steady-state, the
full AiiA activity range is spanned transiently before reaching the HSS

equilibrium value due to H and A oscillations, and during H distur-
bance rejection in which AiiA becomes over-expressed in response to
HSL levels above HSS. As expected, even small changes of κA alter
the HSS value, since a change in the half-maximum activity of the
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AiiA switch can tune the intracellular level at which enzymatic ac-
tivity starts increasing. Concerning the parameter set describing the
sensor/regulator joint transfer function (i.e., αlux, δlux, Klux, ηlux), all
of them except δlux have sensitivity index above 0.5, thereby demon-
strating their important impact on HSS upon small variations. Such
impact is indirectly explained by the large impact of κA, illustrated
above: a change in the Plux transfer function shape results in a varia-
tion of AiiA level, thereby affecting the HSL-dependent AiiA activity
which is eventually responsible of HSL degradation.

Figure A.16: Sensitivity indexes for the parameters involved
in close-loop control for X = 0.2.
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Figure A.17: Simulated steady-state level of intracellular AiiA
(ASS) for different values of X.

177



i
i

i
i

i
i

i
i

A. Synthetic close-loop controller

HSL time courses in turbidostat

The full experimental dataset of chemostat experiments for CL1
and OL1 is herein shown, in terms of cell density and HSL measure-
ments, as well as the predicted HSL profiles (see Figures A.18-A.22).

Figure A.18: Cell density time courses in turbidostat experi-
ments of OL1. Circles represent measured X values.

Supporting conclusions

Alternative designs of close-loop circuits for HSL control

Although the in-depth analysis of alternative close-loop design schemes
is beyond the scope of this work, it is worth mentioning that HSL
regulation could be achieved via other strategies. In an effort to con-
struct a circuit for protein production at predictable mean and vari-
ance, Vignoni et al. [115] proposed a different design in which luxI
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Figure A.19: HSL time courses in turbidostat experiments of
OL1. Circles represent measured HSL values and solid line represents model prediction.

was expressed by an HSL-repressible promoter, thereby closing the
loop at transcriptional level. Intuitively, disturbance rejection upon
HSL injections could not be efficiently exerted in such design, since
no HSL degradation module was present, and the regulation affected
HSL production only. A more complex design mixing the one proposed
in [115] and the one of our work could be possible, with the advan-
tage of producing HSL only when necessary, thereby exerting a double
control (transcriptional and enzymatic) on the HSL biosynthesis mod-
ule, thereby potentially implementing a faster dynamics in reaching
the steady-state than open-loop design, and eventually decreasing the
cellular energy demand. However, the fine tuning of additional parts
would be necessary and simulations revealed that such tuning is crucial
to avoid dead-zones in HSL control (data not shown).
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Figure A.20: Cell density time courses in turbidostat experi-
ments of CL1. Circles represent measured X values.
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Figure A.21: HSL time courses in turbidostat experiments of
CL1. Circles represent measured HSL values and solid line represents model prediction.
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Figure A.22: Summary of cell density values distribution in all
the turbidostat experiments of OL1 and CL1. Boxplots are sorted by
mean value of cell density. The experiments are labeled with the O and C prefixes for OL1 and
CL1, respectively.
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Supplementary information for
Chapter 2

B.1 Strains, reagents and cloning

The E. coli TOP10 (Invitrogen) strain was used as a host for
cloning and quantitative assays. The strain was transformed by heat
shock at 42 ℃, according to manufacturer’s instructions. LB medium
was used during plasmid propagation. Antibiotics were always added
to maintain plasmids in recombinant strains: ampicillin (100mg/l),
kanamycin (50mg/l) or chloramphenicol (12.5mg/l). Long-term bac-
terial stocks were prepared for all the engineered strains by mixing
750µl of a saturated culture with 250µl of 80% glycerol, and stored at
−80℃.
All the plasmids used in this study were constructed through BioBrickTM

Standard Assembly [147] and conventional molecular biology tech-
niques. As a result, standard DNA junctions (TACTAG upstream
of coding sequences, TACTAGAG otherwise) are present between as-
sembled parts. The BioBrickTM basic or composite parts used for
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DNA assembly were retrieved from the MIT Registry 2008-2011 DNA
Distribution [102], except PluxRep, which was constructed in a previous
study [84], and the weak BBa B0033 RBS that was placed upstream
of tetR gene via mutagenic PCR, replacing BBa B0031.
DNA purification kits (Macherey-Nagel), restriction enzymes and T4
DNA ligase (Roche), Phusion Hot Start II PCR kit and T4 polynu-
cleotide kinase (Thermo Scientific) were used according to manufac-
turer’s instructions. Plasmids were sequenced via the BMR Genomics
DNA analysis service (Padova, Italy). Oligonucleotides for muta-
genesis (REV LUXWT: 5’-tttattcgactataacaaaccattttcttgcg-3’, REV
LUXREP: 5’-gctagcattatacctgtacgatcctacaggtg-3’, FWD Tet33: 5’-
tactagagtcacacaggactactagatgtccagattagataaaagtaaag-3’) were obtained
from Metabion International AG.
M9 supplemented medium (11.28g/l M9 salts, 1mM thiamine hy-
drochloride, 2mMMgSO4, 0.1mMCaCl2, 0.2% casamino acids and
0.4% glycerol) was used in quantitative experiments. HSL (#K3007,
Sigma Aldrich) was dissolved in deionized water to prepare a 2mM
stock, stored at −20℃.

B.2 Data overview

The maximum output value and switch point of the input devices
with Plux and PluxRep (X1r, X2r, X3r and Xrepr) is consistent with
previous studies where similar circuits were characterized [13, 84, 87,
91, 92, 93]. Among these studies, a circuit analogous to X3r, in the
same plasmid, gave a maximum activity value of 8 RPU [87] and the
half-maximum value was at ∼ 2nM HSL [87, 93]. A different study
with a circuit identical to X2r, however, reported a lower maximum
activity (4 RPU) and a much higher switch point (> 700nM) than
observed here [13]. All the mentioned studies were carried out in dif-
ferent E. coli strains, which might explain the observed quantitative
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differences. In particular, in the latter case [13], the strain constitu-
tively over-expressed LacI, resulting in a low LuxR production which
can affect the static transfer function by lowering its maximum value
and increasing the switch point [91]. The characterization of X1r was
also available from a previous study [93] in TOP10, but in a high-copy
vector and in non-standard units, yielding a switch point (∼ 1nM of
HSL) comparable to the one in the present work. Analogously, PluxRep
showed a consistent behavior with the previously reported characteri-
zation [84].
Among the 2−block cascades, the TetR-based NOT gate characteri-
zation showed a higher maximum activity than previously reported in
a different strain, but the input level, in terms of RPU, that causes
a half-maximum response was highly consistent [13]. The LacI-based
NOT gate was not characterized previously in a circuit with this RBS.
As expected, the maximum value of PLlacO1 was much lower than pre-
viously reported in the same strain (∼ 6 RPU) or a different one (∼ 2.5
RPU) [13], since it was always characterized in presence of the gra-
tuitous inducer isopropyl β-D-1-thiogalactopyranoside (IPTG), which
binds the endogenously expressed LacI repressor of PLlacO1. In the
strain used in this study, LacI is constitutively expressed at low level,
resulting in a relatively low output for PLlacO1 (∼ 0.5 RPU).
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Figure B.1: RFP output data for the cascade circuits tested
in this work (training and test set) as a function of HSL
concentration. Circles represent the average measured values, while error bars represent
the 95% confidence intervals of the mean. Magenta and blue colours correspond to the RFP
output of circuits without (r suffix) and with (rg suffix) Monitor cassette, respectively.
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Figure B.2: Growth rate data for the cascade circuits tested
in this work (training and test set) as a function of HSL
concentration. Circles represent the average measured values, while error bars represent
the 95% confidence intervals of the mean. Magenta and blue colours correspond to the growth
rate of circuits without (r suffix) and with (rg suffix) Monitor cassette, respectively.
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Figure B.3: GFP output data for the cascade circuits with
Monitor cassette tested in this work (training and test set)
as a function of HSL concentration. Circles represent the average measured
values, while error bars represent the 95% confidence intervals of the mean.
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(a) (b)

Figure B.4: Comparison plots between strains without and
with Monitor cassette. Growth rate a) and RFP b) at all the tested HSL
concentrations for all the circuits (training and test set). Circles represent the average values,
while solid line represents the bisector line.
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Figure B.5: Correlation between GFP and growth rate in all
the strains (training and test set) with the Monitor cassette
at all the tested HSL concentrations. Circles represent the individual
values in all the biological replicates, while solid line represents the regression line.
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Figure B.6: Correlation between GFP and growth rate for each
strain with the Monitor cassette at all the tested HSL con-
centrations. Circles represent the individually measured values in all the biological
replicates.
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Figure B.7: Correlation between GFP and RFP for each strain
with the Monitor cassette at all the tested HSL concentra-
tions. Correlation between GFP and RFP for each strain with the Monitor cassette at
all the tested HSL concentrations. Circles represent the individually measured values in all the
biological replicates.
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Figure B.8: OD600, raw GFP and raw RFP values measured in
culture, supernatant and pellet of three strains. TOP10 (black;
non-fluorescent), X2Tr (red; expressing RFP) and XrepTr (blue; containing RFP, not expressed)
were inoculated as described in the Section B.1; the 100-fold dilution was carried out in a final
volume of 6ml in 50ml tubes and the cultures were incubated in the same conditions as before
until they reached an OD600 of about 0.05. Then, they were sampled every 2 hours. At each
sampling time, absorbance, GFP and RFP were measured for 200µl of culture; then, 1 ml was
withdrawn, transferred into a 1.5−ml tube and centrifuged (13, 000 rpm, 2 min). Absorbance,
GFP and RFP were measured in the supernatant (200µl). Finally, supernatant was discarded,
pellet was resuspended with 1ml of fresh medium and absorbance, GFP and RFP were measured
(200µl). Green data points and dotted line represent the raw GFP of the medium without cells.
All the measurements were carried out with the Infinite F200 reader (Tecan), as described in the
Section 2.1. The reported data show that the raw GFP autofluorescence is due to the supernatant
(see raw GFP in culture and supernatant), not to the cell pellet (see raw GFP in the resuspended
pellet), although it increases during cell growth. On the other hand, red fluorescence is due to
cell RFP expressing cells in the pellet.
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B.3 Additional fittings and sensitivity anal-

ysis

Figure B.9: NBM fitting of the measured HSL-dependent out-
put in all the training set circuits without Monitor cassette.
Circles represent the average measured value and error bars represent the 95% confidence inter-
vals of the mean. Solid line represents the median predicted output of the model calculated via
Monte Carlo simulations for each HSL concentration tested. Dashed dark red lines are the 95%
confidence bands of the output distribution. Dashed light red lines are the 95% confidence bands
of the output distribution calculated after multivariate sensitivity analysis.
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Figure B.10: Comparison of the two NOT gate characteristics
as a function of the predicted per cell concentration of the
TetR or LacI repressor in presence of Monitor module. Circles
represent the average measured value and error bars represent the 95% confidence intervals of the
mean. Solid line represents the median predicted output of the model calculated via Monte Carlo
simulations for each HSL concentration tested. Dashed dark red lines are the 95% confidence
bands of the output distribution. Dashed light red lines are the 95% confidence bands of the
output distribution calculated after multivariate sensitivity analysis. The TetR and LacI values in
the x-axes were computed as the nominal (i.e., without Monte Carlo approach) values predicted
by the model. The data points showed for TetR or LacI=0 were obtained by measuring the
output of constructs similar to X2Tr(g) and X3Lr(g) but without their input block, and were
used in the fitting procedure. This genetic context enables to measure the activity of PLtetO1

and PLlacO1 in absence of their cognate repressor, which cannot be removed in the X2Tr(g) and
X3Lr(g) circuits due to the basic activity of promoters in the X2 and X3 input blocks.
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Figure B.11: Univariate sensitivity analysis of the NBM by
applying a variation on the δ parameter of the Hill functions.
Panels show fitting (X1r, X2r, X3r, Xrepr, X2Tr and X3Lr circuits) and predictions (remaining
circuits) of the measured HSL-dependent output in all the training and test set circuits without
Monitor cassette. Circles represent the average measured value and error bars represent the 95%
confidence intervals of the mean. Solid line represents the median predicted output of the model
calculated via Monte Carlo simulations for each HSL concentration tested. Dashed dark red
lines are the 95% confidence bands of the output distribution. Dashed light red lines are the 95%
confidence bands of the output distribution calculated after univariate sensitivity analysis.
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Figure B.12: Univariate sensitivity analysis of the NBM by
applying a variation on the α parameter of the Hill functions.
Panels show fitting (X1r, X2r, X3r, Xrepr, X2Tr and X3Lr circuits) and predictions (remaining
circuits) of the measured HSL-dependent output in all the training and test set circuits without
Monitor cassette. Circles represent the average measured value and error bars represent the 95%
confidence intervals of the mean. Solid line represents the median predicted output of the model
calculated via Monte Carlo simulations for each HSL concentration tested. Dashed dark red
lines are the 95% confidence bands of the output distribution. Dashed light red lines are the 95%
confidence bands of the output distribution calculated after univariate sensitivity analysis.
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Figure B.13: Univariate sensitivity analysis of the NBM by
applying a variation on the K parameter of the Hill functions.
Panels show fitting (X1r, X2r, X3r, Xrepr, X2Tr and X3Lr circuits) and predictions (remaining
circuits) of the measured HSL-dependent output in all the training and test set circuits without
Monitor cassette. Circles represent the average measured value and error bars represent the 95%
confidence intervals of the mean. Solid line represents the median predicted output of the model
calculated via Monte Carlo simulations for each HSL concentration tested. Dashed dark red
lines are the 95% confidence bands of the output distribution. Dashed light red lines are the 95%
confidence bands of the output distribution calculated after univariate sensitivity analysis.
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Figure B.14: Univariate sensitivity analysis of the NBM by
applying a variation on the η parameter of the Hill functions.
Panels show fitting (X1r, X2r, X3r, Xrepr, X2Tr and X3Lr circuits) and predictions (remaining
circuits) of the measured HSL-dependent output in all the training and test set circuits without
Monitor cassette. Circles represent the average measured value and error bars represent the 95%
confidence intervals of the mean. Solid line represents the median predicted output of the model
calculated via Monte Carlo simulations for each HSL concentration tested. Dashed dark red
lines are the 95% confidence bands of the output distribution. Dashed light red lines are the 95%
confidence bands of the output distribution calculated after univariate sensitivity analysis.
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Figure B.15: Fitting and prediction results for the NBM
learned and simulated against RFP data of the circuits with
the Monitor cassette. Panels show fitting (X1r, X2r, X3r, Xrepr, X2Tr and X3Lr
circuits) and predictions (remaining ones) of the measured HSL-dependent output in all the train-
ing and test set circuits. Circles represent the average measured value and error bars represent
the 95% confidence intervals of the mean. Solid line represents the median predicted output of
the model calculated via Monte Carlo simulations for each HSL concentration tested. Dashed
dark red lines are the 95% confidence bands of the output distribution. Dashed light red lines
are the 95% confidence bands of the output distribution calculated after multivariate sensitivity
analysis.
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Figure B.16: BM fitting of the measured HSL-dependent RFP
output in all the training set circuits with Monitor cassette.
Circles represent the average measured value and error bars represent the 95% confidence intervals
of the mean. Solid line represents the median predicted output of the model calculated via
Monte Carlo simulations for each HSL concentration tested. Dashed dark red lines are the 95%
confidence bands of the output distribution. Dashed light red lines are the 95% confidence bands
of the output distribution calculated after multivariate sensitivity analysis.
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Figure B.17: BM fitting of the measured HSL-dependent GFP
output in all the training set circuits with Monitor cassette.
Circles represent the average measured value and error bars represent the 95% confidence intervals
of the mean. Solid line represents the median predicted output of the model calculated via Monte
Carlo simulations for each HSL concentration tested. Dashed dark green lines are the 95%
confidence bands of the output distribution. Dashed light green lines are the 95% confidence
bands of the output distribution calculated after multivariate sensitivity analysis.
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Figure B.18: Results of fitting using all the available data
(training and test set) using NBM and BM: RFP data. Fitting
of the measured HSL-dependent RFP output in all the circuits with Monitor cassette. Circles
represent the average measured value and error bars represent the 95% confidence intervals of
the mean. Solid lines represent the median predicted output of the NBM (magenta) and BM
(blue) calculated via Monte Carlo simulations for each HSL concentration tested.
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Figure B.19: Results of fitting using all the available data
(training and test set) using BM: GFP data. Fitting of the measured
HSL-dependent GFP output in all the circuits with Monitor cassette. Circles represent the av-
erage measured value and error bars represent the 95% confidence intervals of the mean. Solid
lines represent the median predicted output of the BM calculated via Monte Carlo simulations
for each HSL concentration tested.
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B.4 Evolutionary stability analysis

(a) RFP restoring test.

(b) Electrophoresis.

Figure B.20: Evolutionary stability of the X1TLr and XrepTLr
circuits. a) Phenotypic stability of strains with X1TLr and XrepTLr. Strains were tested
at three different HSL concentrations (test#1), reported in the x-axis, and then re-inoculated and
tested in a growth medium without HSL (X1TLr) or with 10, 000nM of HSL (XrepTLr) (test#2).
In this experiment, we evaluated if the strains could restore the RFP output observed at zero
(X1TLr) or full induction (XrepTLr), corresponding to conditions in which the expression of
TetR is repressed, after an experiment carried out at different HSL concentrations. Data points
represent the mean of three biological replicates and error bars represent the 95% confidence
intervals of the mean. b) Genetic stability of the two strains. Electrophoresis results (ethidium
bromide staining) are shown for all the tested strains and HSL concentrations after the experiment
above. A description of the GeneRuler 1Kb DNA ladder (Thermo Scientific) is also provided
(adapted from the user guide of product #SM0312, Thermo Scientific). The mutation found in
the second replicate of X1TLr (previously tested with 10, 000nM of HSL) is reported.
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Protocol for Panel a. Cultures were tested in microplate reader as
previously described, with HSL concentrations of 0, 10 and 10, 000nM
(X1TLr) or 0, 1 and 10, 000nM (XrepTLr). At the end of the test (18-h
growth in microplate reader), all the X1TLr cultures were centrifuged,
the supernatant was removed and the pellet was resuspended with
200µl of fresh selective medium without HSL. This washing step was
performed to remove HSL from the induced X1TLr cultures. Five
hundred µl of M9 were inoculated with 5µl of the X1TLr (washed)
or XrepTLr cultures in 2 − ml tubes. HSL (final concentration of
10, 000nM) was added to the XrepTLr cultures. All the cultures were
incubated overnight at 37℃, 220 rpm, and then they were tested again
in the microplate reader in absence of HSL (X1TLr) or with 10, 000nM
of HSL (XrepTLr).

Results from Panel a. All the strains showed stable behaviour,
since the RFP output in test#2 is comparable to the RFP output
in test#1 for HSL= 0 (X1TLr) or 10, 000nM (XrepTLr), suggesting
that HSL-dependent RFP changes in test#1 were not due to stability
mutants.

Protocol for Panel b. In parallel with the inoculation of the 500−
µl cultures, 2µl of the X1TLr (washed) or XrepTLr cultures were used
to inoculate 10ml of selective medium in 50 − ml tubes. Cultures
were grown overnight at 37℃, 220 rpm. Plasmid DNA was purified,
digested with EcoRI-PstI and ran on 1% agarose gel. The second and
first biological replicates of X1TLr and XrepTLr, respectively, were se-
quenced with primers C0062VF (5́-GAATGTTTAGCGTGGGCATG-

3)́ and VR (5́-ATTACCGCCTTTGAGTGAGC-3)́.

Results from Panel b. From electrophoresis screening, all the
constructs showed the correct bands, corresponding to vector back-
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bone (3.2Kbp) and insert (4.1Kbp); however, X1TLr cultures grown
in test#1 with HSL= 10, 000 and 10nM also showed bands of unex-
pected size. From sequencing results, only the X1TLr culture grown
in test#1 with 10, 000nM of HSL showed DNA alterations, in a small
portion of the population (according to the chromatogram), while the
other sequenced plasmids did not show detectable mutations with the
used primers. The observed mutation was a deletion of all the circuit
after the luxR gene and before the transcriptional terminator of the
RFP gene.
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B.5 Degradation tag sensitivity analysis

Figure B.21: Simulation of X1TLr and XrepTLr with the NBM
for different values of λtet and λlac parameters. Data are reported
(circles and error bars represent the 95% confidence intervals of the mean) and the simulated
RFP output is shown (solid line). The parameters of the NBM reported in Table B.1 were used
for the simulations. The λtet and λlac parameter values were set at the nominal ones (see Section
2.1) or they were decreased by 100-fold (marked as low) to qualitatively evaluate the effect of
enzymatic queuing, which might cause slower TetR and LacI degradation, since they share the
same LVA tag.
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B.6 GFP autofluorescence analysis

(a)

(b)

(c)

Figure B.22: Raw GFP autofluorescence dependence on OD600
and cell growth rate. a) OD600 vs raw GFP characteristic of two strains showing
fast (relative to the whole circuit collection) growth (X2Tr and Xrepr; black and red diamonds,
respectively) and two strains showing slow growth (XrepTr and XrepTLr; magenta and blue
squares, respectively) without HSL. They are reported, as single biological replicate, as an exam-
ple to highlight distinct characteristics, dependently on growth rate. Curves like the ones shown
here were fitted (with exponential regression), estimating m and q parameters (see Section 2.1)
to obtain the autofluorescence background of the circuits. b-c) The m and q parameters for all
the circuits in all the conditions are plotted against growth rate values. The m parameter (in
b) shows a significant growth rate-dependent trend, as expected from Panel a, while the growth
rate-dependent trend of the q parameter c is not statistically significant (confidence intervals of
the slope include zero).
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B.7 Tables of parts and parameters data

Table B.1: Parts used in this study.

Name BioBrick code
Plux BBa R0062
PluxRep BBa J107100
PR BBa R0051
PLlacO1 BBa R0011
PLtetO1 BBa R0040
Constitutive promoter of the Monitor cassette BBa J23100
Reference constitutive promoter BBa J23101
Strong RBS BBa B0030
Weak RBS BBa B0031
Medium RBS used in the Monitor cassette BBa B0032
Weak RBS used to decrease tetR translation BBa B0033
Strong RBS BBa B0034
Double transcriptional terminator BBa B0015
Synthetic transcriptional terminator BBa B1006
LuxR coding sequence BBa C0062
LacI coding sequence BBa C0012
TetR coding sequence BBa C0040
mRFP1 coding sequence BBa E1010
GFPmut3b coding sequence BBa E0040
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Table B.2: Statistics on circuits bearing the burden monitor.
Statistically significant correlation coefficients are reported in bold. Correlation coefficients with
opposite sign than expected are reported as < 0 and > 0 for growth rate vs GFP and RFP vs
GFP, respectively.

Circuit Growth rate vs GFP RFP vs GFP
X1rg < 0 −0.68
X2rg 0.02 −0.8
X3rg < 0 −0.9
Xreprg < 0 −0.8
X2Trg 0.41 > 0
X3Lrg < 0 > 0
X1Lrg < 0 > 0
X1Trg 0.72 > 0
XrepLrg < 0 −0.23
XrepTrg < 0 > 0
X1LTrg < 0 > 0
X1TLrg 0.84 > 0
XrepLTrg < 0 > 0
XrepTLrg < 0 > 0
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B.8 Evidence of metabolic burden using

a different monitor cassette

To confirm that the decrease of monitor output was not due to
crosstalk or unwanted gene regulations, we tested a further control
circuit with a different monitor system, in which both promoter and
reporter were varied, compared with the J23100-GFP monitor. The
test construct was composed by two modules born on the same low
copy plasmid and tested in the same conditions as the other circuits:

• An X1 HSL-inducible expression cassette (Figure 2.1)driving the
expression of TetR protein (loading module);

• A PLlacO1 promoter used to constitutively express RFP (mon-
itor module)

A decrease in the RFP signal for increasing values of HSL induction -
proportional to TetR protein synthesis - was still observable (see Fig-
ure B.23).
Hence, the metabolic burden due to over-expression of a high-demanding

protein synthesis module arose again despite the use of a different mon-
itor system, reducing the probability of biases in the study given from
further hidden interactions between the parts used.
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Figure B.23: Effect of metabolic burden with a different mon-
itor system. Variation in constitutive RFP synthesis rate (on y axes) for increasing TetR
expression levels proportional to HSL concentration (on x axes). Stars represent the average
measured value and error bars represent the 95% confidence intervals of the mean.
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Appendix C
Supplementary information for
Chapter 3

C.1 List of constructs and estimated pa-

rameters

Table C.1: Table of constructs. The table shows the BioBrickTM codes for the
constructs built in the study following the proper order of parts. Those in bold were conceived,
standardized via PCR amplification and deposited in the Registry of Standard Biological Parts
by ourselves during this work.

Name Construct Purpose

dCas9 BBa J107200 Nuclease null Sp.Cas9 protein
from Addgene plasmid #44249

tracr BBa J107201 tracr RNA with tetraloop for
Sp.dCas9 from Addgene plasmid
#44251

A37 BBa J23100 + BBa B0032 + Bba E0040 +
BBa B0015 + pSB4C5

GFP-based metabolic burden
monitor

Continue in the next page . . .
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. . . continue from the previous page

Name Construct Purpose

AEdCas9 A37 + BBa R0051 + BBa B0030 +
BBa C0062 + BBa B1006 + BBa R0062
+ BBa J107200 + pSB4C5

LuxR-driven dCas9 inducible cas-
sette for toxicity measurement

M12 Inv A37 + BBa R0051 + BBa B0030 +
BBa C0062 + BBa B1006 + BBa R0062
+ BBa B0034 + BBa E1010 + BBa B0015 +
pSB4C5

LuxR-driven RFP inducible cas-
sette for toxicity comparison with
monitor

AEd116gPtet AEdCas9 + BBa J23116 + gPtet +
BBa J107201 + pSB4C5

dCas9 efficiency characterization
on tetR target promoter - low
sgRNA

AEd100gPtet AEdCas9 + BBa J23100 + gPtet +
BBa J107201 + pSB4C5

dCas9 efficiency characterization
on tetR target promoter - medium
sgRNA

AEd119gPtet AEdCas9 + BBa J23119 + gPtet +
BBa J107201 + pSB4C5

dCas9 efficiency characterization
on tetR target promoter - high
sgRNA

AEd116gPlac AEdCas9 + BBa J23116 + gPlac +
BBa J107201 + pSB4C5

dCas9 efficiency characterization
on lacI target promoter - low
sgRNA

AEd100gPlac AEdCas9 + BBa J23100 + gPlac +
BBa J107201 + pSB4C5

dCas9 efficiency characterization
on lacI target promoter - medium
sgRNA

AEd119gPlac AEdCas9 + BBa J23119 + gPlac +
BBa J107201 + pSB4C5

dCas9 efficiency characterization
on lacI target promoter - high
sgRNA

E62 BBa R0040 + BBa B0034 + BBa E1010 +
BBa B0015 + pSB3K3

tetR target promoter in medium
copy

I13521 BBa R0040 + BBa B0034 + BBa E1010 +
BBa B0015 + pSB1A2

tetR target promoter in high copy

E52 BBa R0011 + BBa B0034 + BBa E1010 +
BBa B0015 + pSB3K3

LacI target promoter in medium
copy

A33 BBa R0011 + BBa B0034 + BBa E1010 +
BBa B0015 + pSB1A2

LacI target promoter in high copy

J116dCas BBa J23116 + BBa J107200 + pSB3K3 Constitutive dCas9 expression
cassette in medium copy

E20 BBa R0051 + BBa B0030 + BBa C0062 +
BBa B1006 + BBa R0062 + BBa B0034 +
BBa E1010 + BBa B0015 + pSB4C5

Template for optimized Lux-
inducible guide expression cas-
sette

AEtracr A37 + BBa R0051 + BBa B0030 +
BBa C0062 + BBa B1006 + BBa J107202 +
BBa B0034 + BBa E1010 + BBa B0015 +
BBa J107201 + pSB4C5

Template for guide mutagenesis in
LuxR expression cassette

Continue in the next page . . .
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. . . continue from the previous page

Name Construct Purpose

AE-3A A37 + BBa R0051 + BBa B0030 +
BBa C0062 + BBa B1006 + BBa J107202
+ BBa B0034 + BBa E1010 + BBa B0015 +
pSB4C5

Optimized LuxR-inducible ex-
pression cassette characterization

AYA A37 + BBa J23118 + BBa B0034 +
BBa C0012 + BBa B0015 + BBa R0011
+ BBa B0034 + BBa E1010 + BBa B0015 +
pSB4C5

LacI-inducible expression cassette
characterization

AYAtracr A37 + BBa J23118 + BBa B0034 +
BBa C0012 + BBa B0015 + BBa R0011
+ BBa B0034 + BBa E1010 + BBa B0015 +
BBa J107201+pSB4C5

Template for guide mutagenesis in
LacI-inducible expression cassette

AY-A A37 + BBa J23118 + BBa B0034 +
BBa C0012 + BBa B0015 + BBa J107203
+ BBa B0034 + BBa E1010 + BBa B0015 +
pSB4C5

Mutagenized LacI-inducible guide
expression cassette characteriza-
tion

AEgPtet A37 + BBa R0051 + BBa B0030 +
BBa C0062 + BBa B1006 + BBa J107202 +
gPtet + BBa J107201 + pSB4C5

LuxR-inducible guide cassette for
repression characterization

AEgPlac A37 + BBa R0051 + BBa B0030 +
BBa C0062 + BBa B1006 + BBa J107202 +
gPlac + BBa J107201 + pSB4C5

LuxR-inducible guide cassette for
repression characterization

AYgPtet A37 + BBa J23118 + BBa B0034 +
BBa C0012 + BBa B0015 + BBa R0011
+ gPtet + BBa J107201 + pSB4C5

LacI-inducible guide cassette for
repression characterization

AY-AgPtet A37 + BBa J23118 + BBa B0034 +
BBa C0012 + BBa B0015 + BBa J107202
+ gPtet + BBa J107201 + pSB4C5

Mutagenized LacI-inducible tet
guide for repression characteriza-
tion

AYgPluxH A37 + BBa J23118 + BBa B0034 +
BBa C0012 + BBa B0015 + BBa R0011
+ gPluxH + BBa J107201 + pSB4C5

LacI-inducible guide cassette for
repression characterization

dCasE62 BBa J23116 + BBa J107200 + BBa R0040 +
BBa B0034 + BBa E1010 + BBa B0015 +
Psb3k3

Constitutive dCas9 and tet target
promoter in medium copy

dCasE52 BBa J23116 + BBa J107200 + BBa R0011 +
BBa B0034 + BBa E1010 + BBa B0015 +
pSB3K3

Constitutive dCas9 and lac target
promoter in medium copy

dCasJ119H BBa J23116 + BBa J107200 + BBa J107100
+ BBa B0034 + BBa E1010 + BBa B0015 +
pSB3K3

Constitutive dCas9 and PluxRep
target promoter J119H or
PluxRep in medium copy

dCasP122 BBa J23116 + BBa J107200 + BBa J107111
+ BBa B0034 + BBa E1010 + BBa B0015 +
pSB3K3

Constitutive dCas9 and PluxRep
target promoter #122 in medium
copy

Continue in the next page . . .
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. . . continue from the previous page

Name Construct Purpose

dCasP2 BBa J23116 + BBa J107200 + BBa J107101
+ BBa B0034 + BBa E1010 + BBa B0015 +
pSB3K3

Constitutive dCas9 and PluxRep
target promoter #2 in medium
copy

dCasP44 BBa J23116 + BBa J107200 + BBa J107105
+ BBa B0034 + BBa E1010 + BBa B0015 +
pSB3K3

Constitutive dCas9 and PluxRep
target promoter #44 in medium
copy

J119H BBa J107100 + BBa B0034 + BBa E1010 +
BBa B0015 + pSB1A2

PluxRep target promoter J119H
in high copy

P122 BBa J107111 + BBa B0034 + BBa E1010 +
BBa B0015 + pSB1A2

PluxRep target promoter #122 in
high copy

P2 BBa J107101 + BBa B0034 + BBa E1010 +
BBa B0015 + pSB1A2

PluxRep target promoter #2 in
high copy

P44 BBa J107105 + BBa B0034 + BBa E1010 +
BBa B0015 + pSB1A2

PluxRep target promoter #44 in
high copy

AYgPluxH22 AYgPluxH + Bba R0051 + Bba B0030 +
Bba C0062 + Bba B0015 + pSB4C5

LuxR competition experiments

AEgPlacY35 AEgPlac + BBa J23118 + BBa B0034 +
BBa C0012 + BBa B0015 + pSB4C5

LacI competition experiments

. . . end of the table.
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C.2 Materials and reagents

Inducers

• N-(3-Oxohexanoyl)-L-homoserine lactone (HSL): pur-
chased from Sigma Aldrich (K3007), it binds and activates LuxR
protein thus affecting Lux promoter transcriptional activity. HSL
is dissolved in deionized water and conserved at −20℃C at
200mM . Its small size allows it to freely diffuse across the plasma
membrane;

• Isopropyl β-D-thiogalactopyranoside (IPTG): purchased
from Sigma Aldrich (I1284), ready made solution of concentra-
tion 2mM conserved at −20℃. It is a non-metabolizable analog
of galactose, able to bind LacI, thus relieving repression on the
lac promoter. It is different from lactose in inducing expression
of PLlacO1 because it is also capable of diffusing freely across the
lipid bilayer at a basal level that permits a graded response from
a bacterial population.

Antibiotics

• Chloramphenicol (Cm): Resistance to this antibiotic was
used as a marker for selection of all bacteria transformed with
circuits implemented on the low copy plasmid vector pSB4C5
(LC). Conserved at −20℃C 34mg/ml and used at a final con-
centration of 12.5µg/ml;

• Kanamycin (Kan): Resistance to this antibiotic was used as
a selection marker for constructs in the medium copy plasmid
vector pSB3K3 (MC). Conserved at −20℃C 50mg/ml and used
at a final concentration of 25µg/ml;
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• Ampicillin (Amp): Resistance to this antibiotic was used as a
selection marker for constructs in the high copy plasmid vector
pSB1A2 (HC). Conserved at −20℃C 100mg/ml and used at
concentration 100µg/ml.

C.3 Cloning

Mutagenesis

Mutagenesis with divergent primers was adopted to customize gR-
NAs and to delete nucleotides after the transcription start sites of the
used promoters, when indicated. For gRNA sequence insertion, tailed
40 nucleotide primers were used such that 20 nucleotides composed
the gRNA sequence and the other 20 nucleotides annealed the 5′ end
of non annealing part of the sgRNAs. Deletion mutations were ob-
tained via amplification of the desired part of the plasmid, excluding
the nucleotides that needed to be deleted. The experimental protocol
was as follows:

• Template plasmid DNA was purified as in B.1; the Phusion
Hot Start Flex II was used according to manufacturer protocol;
primer pairs used in the study are listed in Table C.3.

• The PCR cycle was run and followed by Dpn1 (Roche) digestion
of the methylated template DNA; primer annealing temperature
was calculated on the free online tool offered by New England
Biolabs with parameters set as the standard for Phusion poly-
merases;

• PCR products were separated in a 1% agarose gel and extracted
and purified as in B.1;
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• Blunt-end DNA fragments were phosphorylated by Polynucleotide
Kinase (PNK - New England Biolabs) and ligated by T4 ligase;
a 20µL reaction mix was composed of:

– A maximum of 50ng of DNA brought to a volume of 17µL
with deionized water;

– 2µL of ligase buffer;

– 1µL of PNK;

The reaction was allowed to proceed at 37℃for 20 minutes, then
1µL of ligase was added to the reaction mix and incubated for
16h at 16℃;

Finally, PNK and T4 Ligase were deactivated at 75℃for 10 minutes,
and the same protocol for transformation and stock preparation de-
scribed in B.1 was employed.

Table C.3: Table of primers. Primers used in the study are listed and their purpose
is stated.

Template Primer Pair Sequence (5’ - 3’) Aim Product

Addgene
FW ribcasterm XbaI TCGCGGCCGCTTCTA

GAGAAAGAGGAGAAA
GGATCTATGG

Conversion of dCas9
and its RBS into the
BioBrickTM format

BBa J107200

#44249 RV dCas9 SP CGGTTTCTTCCTGCA
GCGGCCGCTACTAGT
ATATAAACFCAGAAA
GGCCCA

Addgene
FW tracr XbaI TCGCGGCCGCTTCTA

GAGGTTTTAGAGCTA
GAAATAGCAAG

Conversion of tracrRNA
and its terminator into
the BioBrickTM format

BBa J107201

#44251 RV tracr suffix GTTTCTTCCTGCAGC
GGCCGCTACTAGTAA
GTTCACCGACAAACA
AC

E20
FW RFP-34 TACTAGAGAAAGAGG

AGAAATACTAGATGG
CTTCCTCCGAAG

Remove three Adenine
nucleotides located after
the TSS

E20-3A

Continue in the next page . . .
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. . . continue from the previous page

Template Primer Pair Sequence (5’ - 3’) Aim Product

RV Plux-3A ATTCGACTATAACAA
ACCATTTTCTTGCGT
AAACCTGTAC

AEtracr
FW gPtet tracr TGTCAATCTCTATCA

CTGATGTTTTAGAGC
TAGAAATAGC

Insert Tet guide RNA
and remove RFP

AEgPtet

RV Plux-3A ATTCGACTATAACAA
ACCATTTTCTTGCGT
AAACCTGTAC

AEtracr
FW gPlac tracr ATAACAATTGACATT

GTGAGGTTTTAGAGC
TAGAAATAGC

Insert Lac guide RNA
and remove RFP

aEgPlac

RV gPlux-3A ATTCGACTATAACAA
ACCATTTTCTTGCGT
AAACCTGTAC

AYAtracr
FW gPtet tracr TGTCAATCTCTATCA

CTGATGTTTTAGAGC
TAGAAATAGC

Insert Tet guide RNA
and remove RFP

AYgPtet

RV Plac TGTGCTCAGTATCTT
GTTATCCGCTC

AYAtracr
FW gPluxH tracr TGACACCTGTAGGAT

CGTACGTTTTAGAGC
TAGAAATAGC

Insert LuxH guide RNA
and remove RFP

AYgPluxH

RV Plac TGTGCTCAGTATCT
TGTTATCCGCTC

AYA
FW RFP-34 TACTAGAGAAAGAGG

AGAAATACTAGATGG
CTTCCTCCGAAG

Remove one Adenine
nucleotide located after
the TSS

AY-A

RV Plac-A GTGCTCAGTATCTTG
TTATCCGCTCA

16S RNA
FW 16S GAATGCCACGGTGAA

TACGTT
Amplification of refer-
ence gene for RT-qPCR

NA

RV 16S CACAAAGTGGTAAGC
GCCCT

RFP
FW qRFP GAAAGACGGTGGTCA

CTACG
Amplification of target
gene for RT-qPCR

NA

RV qRFP TTGTGGGAGGTGATG
TCCA

Vector
VF2 TGCCACCTGACGTCT

AAGAA
Sequencing of inserts
from extremities in-
wards

NA

VR ATTACCGCCTTTGAG
TGAGC

Continue in the next page . . .
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. . . continue from the previous page

Template Primer Pair Sequence (5’ - 3’) Aim Product

LuxR VF C0062 GAATGTTTAGCGTGG
GCATG

Sequencing downstream
HSL-inducible cassette

NA

LacI VF seq LacI GCTTGCTGCAACTCT
CTCAG

Sequencing downstream
IPTG-inducible cassette

NA

. . . end of the table.

Amplification and standardization of CRISPRi el-
ements

To facilitate all the assemblies carried out in this work and to sup-
port the re-use of constructed parts in future works, the two main el-
ements of the CRISPRi system (i.e. dCas9 and tracrRNA) were PCR
amplified from Addgene plasmids #44249 and #44251 with the con-
vergent primer pairs FW ribcas XbaI, RV dCas9 SP and FW tracr XbaI,
RV tracr suffix, respectively, to convert them into the BioBrickTM for-
mat. Resulting sequences were digested and ligated in the BioBrick-
compliant pSB3K3 plasmid, with the protocol described in section B.1.
The two resulting standardized sequences were submitted to the Reg-
istry of Standard Biological Parts as BBa J107200 and BBa J107201.

sgRNA Design

All guide RNAs were designed on the on-line platform Benchling,
using the S. Pyogenes PAM sequence NGG. Promoter regions of re-
porter genes were targeted via CRISPR:dCas9 complex as a means to
block transcription initiation and thus reporter gene expression. The
variable region of sgRNAs consisted exclusively of 20 base pairs com-
plementary to the promoter region, specifically annealing to at least
one nucleotide of the -35 box, while the constant region comprised
the gRNA linker and tracrRNA with its own terminator. The list of
designed sgRNAs is reported in Table C.4.
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Table C.4: List of gRNAs and relative targets. The sequences of
gRNAs concieved for the repression of target promoters are listed, as well as their respective
binding locations on the target promoter. All gRNAs were designed to block the −35 box of
the promoter to inhibit polymerase binding. Red nucleotides represent gRNA target, red bold
−35Box, black bold PAM sequence, green −10Box

Target gRNA Sequence Promoter Sequence
Promoter

Plac ATAACAATTGACATTGTGAG

+ strand;
AATTGTGAGCGGATAACAA
TTGACATTGTGAGCGGATA
ACAAGATACTGAGCACA

Ptet TGTCAATCTCTATCACTGAT

- strand;
GTGCTCAGTATCTCTATCAC
TGATAGGGATGTCAATCTCT
ATCACTGATAGGGA

PluxRep TGACACCTGTAGGATCGTAC

J119H; + strand;
TTGACACCTGTAGGATCGTAC
AGGTATAATGCTAGC
Promoter #122; + strand;
TTGACACCTGTAGGATCGTAC
AGGTACTATGCTAGC
Promoter #2 ; + strand;
TTGACACCTGTAGGATCGTAC
AGGTACAGTGCTAGC
Promoter #44 ; + strand;
TTGACACCTGTAGGATCGTAC
AGGTACTGTGCTAGC
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C.4 Microscopic Images

The Leica DMLS Type 020-518.500 bright field microscope was
used to take images of bacterial cells for morphological analysis. Bac-
teria were magnified with the 100x/1.25 oil immersion objective, and
static pictures were taken using the Nikon COOLPIX 4500 digital cam-
era. For sample preparation, the following protocol was employed:

• Long term bacterial stocks were streaked on selective LB agar
plates;

• colonies were used to inoculate 500µL of M9 medium supple-
mented with the appropriate antibiotic(s) - when indicated, HSL
at the 100nM concentration was added - and incubated for 16hrs
at 220rpm, 37℃;

• 20µL of culture were fixed on a glass slide by heating over a
bunsen burner;

• Fixed cells were stained for 90s with a 0.5% Safranin solution
diluted in deionized water;

• The staining solution was washed away with an adequate amount
of running tap water and left 10 minutes to air dry under a fume
hood;

• The slide was mounted with a cover slip with 60µL of EUKITT
mounting medium and left to solidify under a fume hood;
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C.5 Flow Cytometry

Single cell analysis of transformed strains was performed on the
Partec CyFlow Space flow-cytometer equipped with an argon ion laser.
Excitation was carried out via a 50mW 488nm laser and fluorescence
emission was collected in FL1. At least 100, 000 events were collected
and stored for each sample. A non-fluorescent TOP10 culture was al-
ways included to measure the background fluorescence. Data obtained
were analyzed through FloMax software. For sample preparation, the
following protocol was followed:

• Glycerol stocks were streaked on LB agar plates supplemented
with the appropriate antibiotic(s) and incubated at 37℃for 16hrs;

• Single colonies were picked and inoculated 1mL of selective M9
medium with the IPTG inductions of 0, 1 or 50µM , corre-
sponding to the fully repressed, half-activated and fully activated
configurations, respectively, and incubated at 37℃, 220rpm for
16hrs;

• Grown cultures were diluted 1 : 100 in 2mL of selective M9
medium with the same IPTG concentration and allowed to grow
for 2− 3hrs;

• Finally cells were diluted 1 : 5 in sterile PBS1X and used for
flow-cytometer analysis;
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C.6 Blanking of the auto-fluorescence in

the GFP signal

Since auto-fluorescence in the emission spectra of GFP is strongly
dependent from OD600 in bacterial cultures growing in M9 media, an
instrument-dependent procedure to properly blank the signal has been
developed, given the growth rate of a culture µ and its OD600 time
course.
Previous studies showed a monotonic increasing behavior of the GFP
respect to the optical density that can be described via an exponential
curve [89]; however, the shape of those curves (i.e. the parameters
describing the exponential growth phase) depends also on the growth
rate of the culture; in chapter 2, to overcome this dependency, each
genetic circuit designed were implemented and tested in 2 different
versions, with and without GFP monitor, assuming that the growth
rates of the pair was the same. This approach, despite its robustness,
is particularly time consuming due to the double amount of efforts in
cloning and testing each condition.
Given the general exponential Equation 2.1 describing the auto fluo-
rescence, a relation between the two parameters q and m - describing
the linear relation between ln(OD600) and GFP auto-fluorescence level
- and the growth rate µ of the culture - the most immediate parameter
that differs between two genetic circuits implemented in the same host
and tested in the same experimental condition - was sought. Towards
this, all the non-GFP-expressing circuits tested in chapter 2 were con-
sidered, fitting auto-fluorescence signals with the equation C.3 and
computing a linear regression between each parameter of the function
-q and m - and the growth rates of the culture (see Fig C.1). A linear
dependence between the parameters and growth rate was determined,
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(a) q parameter over growth rate µ. (b) m parameter over growth rate µ.

Figure C.1: Linear regression of q(µ) and m(µ). Dependence of the m
and q parameters used in equation 2.1, function of the growth rate µ

described by the following equations:

q(µ) = qq +mq · µ (C.1)

m(µ) = qm +mm · µ (C.2)

From here on, under the assumption of adopting same strain, instru-
ment and testing conditions, it is possible to determine the auto-
fluorescence signal of a liquid culture at a certain OD600 time point
just by evaluating the overall growth rate, as follows:

GFPauto(t) = e(qq+mq ·µ)+(qm+mm·µ)·OD600(t) (C.3)

229



i
i

i
i

i
i

i
i

C. Supplementary information for Chapter 3

C.7 Fitting and prediction from Section

3.3.4
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(a) HSL-inducible sgRNA expression cassette (AE).
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(b) IPTG-inducible sgRNA expression cassette (AY).

Figure C.2: Burden model: Global fitting of sgRNA expression
cassettes. Interpolation of Growth rate and fitting of fluorescent protein signals for a.
optimized HSL-inducible (AE) and b. IPTG-inducible (AY) expression cassettes. Amount of
sgRNA in the cell depends on the inducer concentration, reported on the x-axis. Dashed lines
represent the functional system while dotted ones are controls. Data are reported as mean values
over at least 3 biological replicates while error bars represent the 95% confidence intervals of the
mean.
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(a) IPTG-driven gPtet on MC target (E52).
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(b) HSL-driven gPlac on MC target (E62).
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(c) HSL-driven gPtet on MC target (E52).

Figure C.3: Burden model: Global fitting of MC targets. Inter-
polation of Growth rate and fitting of fluorescent protein signals of sgRNAs repression exerted
on MC targets. Amount of sgRNA in the cell depends on the inducer concentration, reported
on the x-axis. Dashed lines represent the functional system while dotted ones are controls. Data
are reported as mean values over at least 3 biological replicates while error bars represent the
95% confidence intervals of the mean.
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(a) IPTG-driven gPtet on HC target (I13521).
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(b) HSL-driven gPlac on HC target (A33).
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(c) HSL-driven gPtet on HC target (I13521).

Figure C.4: Burden model: Global fitting of HC targets. In-
terpolation of Growth rate and fitting of fluorescent protein signals. Amount of sgRNA in the
cell depends on the inducer concentration, reported on the x-axis. Dashed lines represent the
functional system while dotted ones are controls. Data are reported as mean values over at least
3 biological replicates while error bars represent the 95% confidence intervals of the mean.
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(a) HSL-inducible sgRNA expression cassette (AE).
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(b) IPTG-inducible sgRNA expression cassette (AY).

Figure C.5: No Burden model: Global fitting of sgRNA ex-
pression cassettes. Interpolation of Growth rate and fitting of fluorescent protein
signals for a. optimized HSL-inducible (AE) and b. IPTG-inducible (AY) expression cassettes.
Amount of sgRNA in the cell depends on the inducer concentration, reported on the x-axis.
Dashed lines represent the functional system while dotted ones are controls. Data are reported
as mean values over at least 3 biological replicates while error bars represent the 95% confidence
intervals of the mean.
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(a) IPTG-driven gPtet on MC target (E52).

HSL [nM]

0 100 102

m
in

-1

0

0.005

0.01

0.015
Growth rate

HSL [nM]

0 100 102

R
P

U

0

0.5

1

1.5

2
GFP

HSL [nM]

0 100 102

R
P

U

-5

0

5

10

15

20
RFP

//// //

(b) HSL-driven gPlac on MC target (E62).
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(c) HSL-driven gPtet on MC target (E52).

Figure C.6: No Burden model: Global fitting of MC targets.
Interpolation of Growth rate and fitting of fluorescent protein signals of sgRNAs repression
exerted on MC targets. Amount of sgRNA in the cell depends on the inducer concentration,
reported on the x-axis. Dashed lines represent the functional system while dotted ones are
controls. Data are reported as mean values over at least 3 biological replicates while error bars
represent the 95% confidence intervals of the mean.
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(a) IPTG-driven gPtet on HC target (I13521).
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(b) HSL-driven gPlac on HC target (A33).
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(c) HSL-driven gPtet on HC target (I13521).

Figure C.7: No Burden model: Global fitting of HC targets.
Interpolation of Growth rate and fitting of fluorescent protein signals. Amount of sgRNA in the
cell depends on the inducer concentration, reported on the x-axis. Dashed lines represent the
functional system while dotted ones are controls. Data are reported as mean values over at least
3 biological replicates while error bars represent the 95% confidence intervals of the mean.
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(a) HSL-inducible sgRNA expression cassette (AE).
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(b) IPTG-inducible sgRNA expression cassette (AY).

Figure C.8: Burden model: fitting of sgRNA expression cas-
settes. Interpolation of Growth rate and fitting of fluorescent protein signals for a. optimized
HSL-inducible (AE) and b. IPTG-inducible (AY) expression cassettes. Amount of sgRNA in
the cell depends on the inducer concentration, reported on the x-axis. Dashed lines represent the
functional system while dotted ones are controls. Data are reported as mean values over at least
3 biological replicates while error bars represent the 95% confidence intervals of the mean.
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(a) IPTG-driven gPtet on MC target (E52).
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(b) HSL-driven gPlac on MC target (E62).
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(c) HSL-driven gPtet on MC target (E52).

Figure C.9: Burden model: fitting w/o predictions of MC tar-
gets. Interpolation of Growth rate and fitting of fluorescent protein signals. Amount of sgRNA
in the cell depends on the inducer concentration, reported on the x-axis. Dashed lines represent
the functional system while dotted ones are controls. Data are reported as mean values over at
least 3 biological replicates while error bars represent the 95% confidence intervals of the mean.
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(a) IPTG-driven gPtet on HC target (I13521).
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(b) HSL-driven gPlac on HC target (A33).
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(c) HSL-driven gPtet on HC target (I13521).

Figure C.10: Burden model: fitting w/o predictions of HC
targets. Interpolation of Growth rate and fitting of fluorescent protein signals. Amount of
sgRNA in the cell depends on the inducer concentration, reported on the x-axis. Dashed lines
represent the functional system while dotted ones are controls. Data are reported as mean values
over at least 3 biological replicates while error bars represent the 95% confidence intervals of the
mean.
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(a) HSL-inducible sgRNA expression cassette.
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(b) IPTG-inducible sgRNA expression cassette.

Figure C.11: No Burden model: fitting of sgRNA expression
cassettes. Interpolation of Growth rate and fitting of fluorescent protein signals for a.
optimized HSL-inducible (AE) and b. IPTG-inducible (AY) expression cassettes. Amount of
sgRNA in the cell depends on the inducer concentration, reported on the x-axis. Dashed lines
represent the functional system while dotted ones are controls. Data are reported as mean values
over at least 3 biological replicates while error bars represent the 95% confidence intervals of the
mean.
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(a) IPTG-driven gPtet on MC target (E52).
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(b) HSL-driven gPlac on MC target (E62).
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(c) HSL-driven gPtet on MC target (E52).

Figure C.12: No Burden model: fitting w/o predictions of MC
targets. Interpolation of Growth rate and fitting of fluorescent protein signals. Amount of
sgRNA in the cell depends on the inducer concentration, reported on the x-axis. Dashed lines
represent the functional system while dotted ones are controls. Data are reported as mean values
over at least 3 biological replicates while error bars represent the 95% confidence intervals of the
mean.
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(a) IPTG-driven gPtet on HC target (I13521).
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(b) HSL-driven gPlac on HC target (A33.
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(c) HSL-driven gPtet on HC target (I13521).

Figure C.13: No Burden model: fitting w/o predictions of HC
targets. Interpolation of Growth rate and fitting of fluorescent protein signals. Amount of
sgRNA in the cell depends on the inducer concentration, reported on the x-axis. Dashed lines
represent the functional system while dotted ones are controls. Data are reported as mean values
over at least 3 biological replicates while error bars represent the 95% confidence intervals of the
mean.
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Two-step with Training set and Test set for predic-
tion

The first step is shared with the previous approach, sgRNA expres-
sion cassettes fittings are reported in Figures C.8 and C.11.
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(a) IPTG-driven gPtet on MC target (E52).
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(b) HSL-driven gPlac on MC target (E62).

Figure C.14: Burden model: fitting w/ predictions of MC tar-
gets. Interpolation of Growth rate and fitting of fluorescent protein signals. Amount of sgRNA
in the cell depends on the inducer concentration, reported on the x-axis. Dashed lines represent
the functional system while dotted ones are controls. Data are reported as mean values over at
least 3 biological replicates while error bars represent the 95% confidence intervals of the mean.
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(a) IPTG-driven gPtet on HC target (I13521).
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(b) HSL-driven gPlac on HC target (A33).

Figure C.15: Burden model: fitting w/ predictions of HC tar-
gets. Interpolation of Growth rate and fitting of fluorescent protein signals. Amount of sgRNA
in the cell depends on the inducer concentration, reported on the x-axis. Dashed lines represent
the functional system while dotted ones are controls. Data are reported as mean values over at
least 3 biological replicates while error bars represent the 95% confidence intervals of the mean.
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(a) HSL-driven gPtet on MC target (E52).
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(b) HSL-driven gPtet on HC target (I13521).

Figure C.16: Burden model: predictions of HSL-driven gPtet.
Interpolation of Growth rate and prediction of fluorescent protein signals. a. MC target, b. HC
target. Amount of sgRNA in the cell depends on the inducer concentration, reported on the
x-axis. Dashed lines represent the functional system while dotted ones are controls. Data are
reported as mean values over at least 3 biological replicates while error bars represent the 95%
confidence intervals of the mean.
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(a) IPTG-driven gPtet on MC target (E52).
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(b) HSL-driven gPlac on MC target (E62).

Figure C.17: No Burden model: fitting w/ predictions of MC
targets. Interpolation of Growth rate and fitting of fluorescent protein signals. Amount of
sgRNA in the cell depends on the inducer concentration, reported on the x-axis. Dashed lines
represent the functional system while dotted ones are controls. Data are reported as mean values
over at least 3 biological replicates while error bars represent the 95% confidence intervals of the
mean.
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(a) IPTG-driven gPtet on HC target (I13521).
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(b) HSL-driven gPlac on HC target (A33).

Figure C.18: No Burden model: fitting w/ predictions of HC
targets. Interpolation of Growth rate and fitting of fluorescent protein signals. Amount of
sgRNA in the cell depends on the inducer concentration, reported on the x-axis. Dashed lines
represent the functional system while dotted ones are controls. Data are reported as mean values
over at least 3 biological replicates while error bars represent the 95% confidence intervals of the
mean.
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(a) HSL-driven gPtet on MC target (E52).
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(b) HSL-driven gPtet on HC target (I13521).

Figure C.19: No Burden model: predictions of HSL-driven
gPtet Interpolation of Growth rate and prediction of fluorescent protein signals. Amount of
sgRNA in the cell depends on the inducer concentration, reported on the x-axis. Dashed lines
represent the functional system while dotted ones are controls. Data are reported as mean values
over at least 3 biological replicates while error bars represent the 95% confidence intervals of the
mean.
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