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Abstract

This Thesis presents a Voice Activity Detection (VAD) system, entirely implemented
in the analog domain with a 180-nm CMOS technology. The circuit features a current
consumption of 0.9 µA from a 1.8-V supply voltage. The VAD system is composed of three
main blocks: a preamplifier, a signal energy computation block, and a VAD decision block.
The audio signal coming from the microphone is amplified and filtered by a preamplifier
that features a variable gain ranging from −12 dB to +12 dB with 6-dB steps and a
bandpass transfer function with poles at 300 Hz and 6.8 kHz. The preamplifier has been
implemented both with continuous-time resistors to allow large decoupling capacitors at
the input, where the gain is set by the resistance ratio, and with switched resistors to
reduce the chip area, where the gain is set by capacitance ratio. The second block of the
circuit computes the audio signal energy in the analog domain, exploiting the transistor
quadratic current-voltage relation to square the signal and integrating the resulting current
with a resettable capacitance. The final block produces the VAD signal. In this block the
computed signal energy is used for two different purposes: determine the background noise
level and the energy average. The noise level is constantly updated and compared with
the averaged energy to provide the VAD signal. The measurement results on an integrated
prototype demonstrate that the analog VAD can achieve performances comparable with
state-of-the-art digital implementations, but with much lower power consumption.
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Introduction

Voice Activity Detection (VAD), also known as Speech Activity Detection or Speech
Detection, is the identification of the presence or absence of human speech in an audio signal.
Generally, VAD is a pre-processing wake-up mechanism used to enable and disable the signal
processing interface at appropriate times, avoiding unnecessary coding or transmission of
silence packets and saving on computation and network bandwidth. This mechanism can be
adopted for different purposes, such as automatic speech recognition, speaker verification,
speech enhancement, voice operation switch, voice over internet protocol, etc. [6–9]. The
main challenges in these applications, where the audio acquisition channel has to be always
on, are the power consumption, the poor signal-to-noise ratio (SNR), and the wide amplitude
variation of speech and non-speech signals. There are many techniques to detect human
voice. Most of them consist of feature extraction and classification algorithms, that can be
implemented either in the analog or in the digital domain. The analysis of the audio signal
features provides an indication on speech presence or absence. The algorithms commonly
used can be based on time-based and frequency-based approaches [5]. Typically, the audio
signal is processed over non-overlapping frames with a duration between 10 ms and 20 ms.
A VAD algorithm should feature the following characteristics:

– Low power consumption: as an always-on and real-time application, the VAD algo-
rithm complexity and power consumption must be low;

– Adaptability: the ability to handle non-stationary background noise variations im-
proves robustness;

– Decision rule: a physical property of the incoming audio signal frames is used to
detect the presence or absence of speech and give consistent and accurate judgement
in classification.

This Thesis, which describes a VAD system entirely implemented in the analog domain, is
organized as follows. Chapter 1 covers in a general way and with just introductory purposes
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some of the most commonly used VAD algorithms available in the literature, highlighting
the decision rule and the final purpose of each solution. Chapter 2, then, describes a
preliminary study of the microphone preamplifier, which represents the first circuit block
in any VAD system. Two solutions to implement capless (without external decoupling
capacitor) preamplifiers, based on off-transistors and switched resistors, respectively, have
been designed, integrated, and tested. The proposed analog VAD circuit is then described in
detail in Chapter 3. All of the blocks required for implementing the VAD system are analyzed,
reporting all of the design details and the simulation results. Finally, Chapter 4 reports
all of the experimental results achieved from the prototype integrated in a 180-nm CMOS
technology. The obtained performances are compared with the state-of-the-art [10–14].



Chapter 1

VAD Techniques

Voice Activity Detection (VAD) algorithms usually have as input the audio stream to
be processed and as output a digital signal, which flags the presence (1) or absence (0) of
voice. The first processing step required for VAD is the extraction and evaluation of signal
features, which identify the presence of voice over background noise or other interfering
signals. However, for practical applications the feature selection has to take in account
limited hardware and latency constraints, which means limited power, area, and time to
get the desired information from an audio frame. Once some distinctive features have been
identified, in the second and last processing step, a detection rule is applied to the extracted
feature, leading to the final VAD signal. In the literature there are several techniques
that have been developed for implementing VAD, which can be classified in the following
categories:

– Zero crossing methods;
– Energy-based methods;
– Linear prediction methods;
– Single-frequency filtering methods
– Neural network methods.

A general description of these methods will be provided in the following of this chapter.

1.1 Zero Crossing Methods

The Zero Crossing Rate (ZCR) method [15] is based on the detection of number of
changes of sign in the audio signal amplitude during the analyzed frame. For each frame n,

3



4 CHAPTER 1. VAD TECHNIQUES

it is possible to define the function Z(n) as:

Z(n) =
M∑
m=1

| sign[x(m)]− sign[x(m− 1)]|
2 (1.1)

where x(·) is the audio signal, M is the number of samples per frame and sign(·) is the sign
function, defined as follow:

sign(x) =

 1 for x ≥ 0;

−1 for x < 0.
(1.2)

The ZCR method uses the frequency features of the signal to build the VAD decision rule,
based on the assumption that voice components are located at low frequencies and noise
components at high frequencies. If the number of zero crossings Z(n) is low, the segment
analyzed is classified as voice, whereas if it is high it is classified as noise.

1.2 Energy-Based Methods

The most popular and widely used techniques in speech detection are energy-based
[16–18], since they are easy to implement and requires low computational complexity.
Generally, the energy of voiced speech segments is higher compared to unvoiced segments
and, as for ZCR methods, voiced speech has most of its energy in the lower frequencies.
There are different ways to represent the energy of a signal:

E(n) =
K∑
k=1

log[x2(k, n)], E(n) =
K∑
k=1

x2(k, n), E(n) =
K∑
k=1
|x2(k, n)|, (1.3)

where K is the total number of samples per frame, n is the current frame, and x(·) is the
audio signal. The first equation on the left represents the logarithmic short-term energy, the
second equation represents the squared short-term energy, and the third equation represents
the absolute short-term energy. All of these are full-band energy examples. Sometimes
windowing can be applied to attenuate unwanted frequency components [19]:

E(n) =
∞∑

k=−∞
x(k) · h(n− k) (1.4)

h(n) =

0.54− 0.46 · cos
( 2πn
N − 1

)
0 ≤ n ≤ N − 1

0 otherwise
(1.5)
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where, for example, the hamming window h(·) is used. The calculated energy of the
incoming signal is compared with a threshold value, that can be fixed or adaptable to
background noise variations, to decide if the incoming frame is voiced or unvoiced. An
example where the threshold value is updated continuously can be found in [18]:

Eth_new = Eth_old · (1− α) + Enew · α; (1.6)

where Eth_new is the updated threshold value, Eth_old is the previous threshold value, Enew
is the energy of the current frame and α has a value between 0 and 1.

1.3 Linear Prediction Methods

Linear prediction (LP) algorithms [20–22] are generally used for speech recognition,
speaker recognition, speech coding, speech synthesis, and speaker verification. As suggested
by the name, this technique aims to estimate the current signal value x(n) with a linear
combination of past events:

x̃(n) =
K∑
k=1

βk · x(n− k) (1.7)

where K is the total number of samples per frame, n is the current frame, and βk are the
predictor coefficients, obtained minimizing the mean square error of the prediction error:

e(n) = x(n)− x̃(n). (1.8)

LP methods have been extensively used in speech detection, for example with the well
known coherence function defined as:

Cxe(n, f) = Pxe(n, f)√
Pxe(n, f) · Pee(n, f)

(1.9)

where Pee(n, f) is the spectral density of e(n) and Pxe(n, f) is the inter-signal spectral
density between x(n) and e(n).

Figure 1.1 shows the block diagram of a VAD system where the averaged coherence
function is used. The coherence function output amplitude can have a value close to one in
case of a purely noise signal, close to zero if the signal contains speech, and a middle value
for unvoiced signals. Finally, a thresholding decision rule is implemented:

|Cxe(n, f)| ≥ th ⇒ noise

|Cxe(n, f)| < th ⇒ speech
(1.10)

where th is the threshold adopted.
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Figure 1.1: VAD based on the coherence function

1.4 Single-Frequency Filtering Methods

The single frequency filtering (SFF) [23] method is based on the assumption that
noise energy is equally distributed over frequency, while speech energy has a non-uniform
distribution. Therefore, the SNR of the speech signal is higher at certain frequencies
compared to other frequency regions. Defining S(f) as the signal amplitude and N(f) as
the noise amplitude as a function of frequency, the SNR can be computed as follows:

SNRa =
fL∫
f0

S2(f)
N2(f)df, SNRb =

L−1∑
i=0

∫ fi+1
fi

S2(f)df∫ fi+1
fi

N2(f)df
,

SNRc =
∫ fL
f0 S2(f)df∫ fL
fo
N2(f)df

,

(1.11)

where (fi, fi−1) are L non overlapping frequency intervals. The following inequality holds:

SNRa ≥ SNRb ≥ SNRc. (1.12)

In [24] a VAD system based on SFF is presented, where the input signal is sampled at
frequency fs and its differenced discrete time version x(n) = s(n)− s(n− 1) is multiplied
by a complex sinusoid:

xk(n) = x(n) · ejwkn, (1.13)

in which wk = 2πfk/fs is the normalized frequency. After this multiplication the differenced
signal is processed with a single-pole filter with the following transfer function:

H(z) = 1
1 + rz−1 . (1.14)

The pole is located on the real negative axis at a distance from the origin equal to half of
the sampling frequency. The magnitude of the signal yk(n) coming from the filter is given
by:

mk(n) =
√
y2
kr(n) + y2

ki(n), (1.15)
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where ykr is the real part and yki is the imaginary part of yk(n) = −ryk(n− 1) + xk(n) and
mk(n) can be seen as the magnitude of the signal xk(n) filtered at the desired frequency
fk = fs/2− fk.

The distribution of the noise power across frequencies generally is uniform, but, for
non-stationary noise, the power is not uniformly distributed. Weighting the signal at each
frequency with the floor value is a way to compensate the non-stationary noise effect.
Assuming that in the first part of each signal frame speech is not present, the mean of the
magnitude of this portion is used to compute the normalized weight wk at each frequency
fk:

wk =
1
µk

N∑
p=1

1
µp

, (1.16)

where N is the total number of channels. The compensation is achieved multiplying the
magnitude mk(n) with the weighting coefficient wk at each frequency. The energy of the
signal at each instance can be approximated through the mean µ(n) of the square of the
weighted component magnitudes across frequency, which is higher for speech than for noise
when a speech signal is present. Another quantity that exhibits the same behavior is the
standard deviation σ(n) of the square of the weighted component envelopes computed
across frequency. To highlight the contrast between speech and non-speech regions the
following combination of µ(n) and σ(n) can be used:

δ(n) = M

√
|σ2(n)− µ2(n)|. (1.17)

The decision on speech presence or absence is based on the comparison between a threshold
θ(n) and temporally smoothed δ(n) values. The threshold is defined as follows:

θ = µθ + 3σθ, (1.18)

and is updated on every utterance to keep track of background noise changes. To determine
the smoothing window size lw, the dynamic range ρ based on the signal energy is computed
on each frame m of 300 ms length:

ρ = 10 · log10

maxm(Em)
minm(Em)

 ⇒


lw = 400ms ρ < 30,
lw = 300ms 300 ≤ ρ ≤ 40,
lw = 200ms ρ > 40.

(1.19)
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Once the window size is obtained, the averaged value of δ(n) can be determined and
compared with the threshold:

d(n) = 1, for δ(n) > θ (presence of speech)

d(n) = 0, for δ(n) ≤ θ (absence of speech)
(1.20)

This decision algorithm can be smoothed counting the number of times per frame in which
d(n) is equal to one. Calling df (n) the percentage of ones in the window, if df (n) is higher
than a threshold η, the frame contains speech, otherwise it is classified as a non-speech
frame. Making a comparison between this method and adaptive multi-rate (AMR) methods,
the length of the frames processed has to be lowered to 10 ms.

1.5 Neural Network Methods

Neural networks in general can be defined as structures built to emulate human brain
activity. The input signal fed to the network goes through different layers that simulate
neural connections. These sophisticated predictive models are composed of an input layer,
a certain number of hidden layers, depending on the complexity and precision of the
prediction, and an output layer which provides the desired result. An important and
desirable characteristic of neural networks for VAD is the ability to classify unstructured
data based on its features in the frequency or time domain. Widely used in neural networks
is the sigmoid function:

S(x) = 1
1 + e−x

(1.21)

due to its shape and properties.
In [1] Neural Networks are used as base classifier of a multi-resolution stacking (MRS)

learning framework, whose operation principle is highlighted in Figure 1.2. As can be seen,
the training process of a building block is based on the previous building block predictions
ŷ and on the input acoustic feature xm. In this way, even if the number of building blocks
is increased, the informations carried by the original features will not be lost and ŷ will add
information improving performance. The hard decision ȳm is the final prediction:

ȳm =

 1 ŷS,1,m ≥ δ,

0 otherwise
(1.22)

where ŷS,1,m is the output of a MRS of S building blocks related to the input xm and δ is a
decision threshold which can assume values from 0 to 1. The dynamic neural network used
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Figure 1.2: Multi-resolution stacking VAD [1]
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Figure 1.3: Recurrent neural network VAD [2]

in this paper can be described as follows:

y = h0
(
h(L)

(
...h(l)

(
h(1)

(
x(0)

))))
; (1.23)

where L denotes the number of hidden layers, h0(·) is the final layer, h(l)(·) denotes a group
of non-linear mapping functions and x(0) represents the input features. A rectified linear
function is used for the hidden layers (y = max(0, x)) to better handle local patterns, while
the sigmoid function is used for the output layer.

A recurrent neural network is presented in [2], where each node combines the inputs
with a quadratic polynomial function:

v(x) = f(xT ·WQ · x+ wTL · x+ wB); (1.24)

where v(x) is the output node, WQ and xL represent the sparse triangular upper matrix
containing the quadratic weights and the vector containing the linear weights, respectively,
while wB is a bias. As shown in Figure 1.3 the input of each node at time-step T is a
combination of the previous node output in the same time-step T and in time-step T − 1,
which will be more useful in the evaluation due to their high correlation and to provide
temporal continuity. Output and Pre-output use a hyperbolic tangent non-linearity instead
of the quadratic polynomial function.

In [3] the input signal is processed as shown in Figure 1.4 to obtain its modulation
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Figure 1.4: Modulation frequency feature extraction VAD [3]

frequency features, which will be sent to the neural network (NN) evaluator where the
difference between the last two layers is used to determine the presence or absence of speech.

Figure 1.5 shows the neural network implemented in [4]. In this paper the nodes of the
hidden layer and output layer use the sigmoid activation function and all the layers are
connected through weights. The output of the j-th hidden layer node related to the p-th
input pattern can be expressed as follow:

hp,j = S
(
bj +

n∑
i=0

wj,i · xp,i
)
; (1.25)

where S(·) is the sigmoid function, wj,i are the weights related to the j-th hidden layer and
the i-th input node and bj is the bias of the related neuron. From this we can evaluate the
output of the neural network:

yp,k = S
(
bk +

m∑
j=0

wk,j · xp,j
)
; (1.26)
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Figure 1.5: Feed-forward neural network VAD [4]

where wk,j are the weights related to the j-th hidden node and k-th output node and bk is
the bias of the k-th output node. The output target vector has three different configurations:

– [1 0 0] voiced input signal;
– [0 1 0] unvoiced input signal;
– [0 0 1] silence.



Chapter 2

Microphone Preamplifiers

In order to implement any of the VAD algorithms described in Chapter 1, as the
very first step, it is necessary to read-out the audio signal detected by a microphone.
Therefore, the implementation of microphone preamplifiers is a fundamental prerequisite for
realizing a VAD system. The different features of microphones, such as common-mode (CM)
voltage, single ended or differential output signal, and output signal amplitude, should not
affect the preamplifier and, hence, the VAD system performance. Common-mode voltage
differences can be overcome with a low-frequency ac coupling between the microphone and
the preamplifier, generally implemented with a bulky and expensive external capacitor. A
cheaper solution could be the implementation of a so called capless (no external capacitor)
preamplifier [25, 26]. Flat frequency response is required in the audio band from 20 Hz
to 20 kHz, leading to a low-frequency high-pass pole lower than 1 Hz. The variability of
the microphone output signal amplitude can be tackled with a programmable gain in the
amplifier, to provide the optimal signal amplitude to the following blocks in the signal
processing chain.

The block diagram of a single-ended inverting preamplifier is shown in Figure 2.1. In
this implementation the gain is set by the ratio CI/CF , while the low frequency pole is
implemented by the feedback capacitance CF and resistance RF . To achieve a pole frequency
lower than 1 Hz, even with a capacitance of 80 pF, RF has to be in the range of hundreds of
MΩ, a prohibitive value for conventional integrated resistors. Two solutions have, therefore,
been investigated to achieve such high resistance value and maintain a dc feedback path in
the preamplifier: a switched resistor and a transistor in the off state.

13
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Table 2.1: Preamplifier gain and pole frequency programmability

fHP [Hz] @ MF
CI [pF] CF [pF] G [dB]

100 200 300 400
4 2 1.3 1 40 80 −6
8 4 2.7 2 40 40 0
8 4 2.7 2 80 40 6
8 4 2.7 2 160 40 12
16 8 5.4 4 160 20 18

2.1 Switched-Resistor Preamplifier

The switched-resistor solution is illustrated in Figure 2.2, where RSW is connected in
feedback during phase φ1 and to a reference voltage Vb in phase φ2. This type of operation
results in an equivalent resistance value of:

RFeq = RSW ·
SL + SR
SR

(2.1)

that with RSW = 5 MΩ and nominal values for SL and SR of 9950 ns and 50 ns, respectively,
provides an equivalent resistance value of 1 GΩ. The multiplication factor L = (SL+SR)/SR
can be programmed from 100 to 400 with steps of 100, so that RFeq can vary from 0.5 GΩ
to 2 GΩ with steps of 0.5 GΩ. Table 2.1 reports the values of the digital programmable
capacitances to set the gain G from −6 dB to +18 dB with steps of 6 dB and the high-pass
pole frequency fHP for each value of L in every gain configuration.

The design of the switches is not critical for this preamplifier, since the switch in series
to RSW has a negligible on-resistance compared to RSW itself, while the switches used for
programming the variable capacitances are all connected to the preamplifier virtual ground,
which exhibits negligible voltage swing. Since switches and capacitors are not an issue,
the linearity of this preamplifier is limited by the closed-loop performance. To reduce the
distortion coming from variation of the operational amplifier (opamp) closed-loop gain,
RSW is connected to the reference voltage VB during phase φ1.

In terms of noise performance the preamplifier is dominated by the opamp noise amplified
by the factor 1 + CI/CF . The feedback resistance contribution is negligible, considering
that its noise is never sampled on the feedback capacitance, since the time constant of the
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Figure 2.3: Off-transistor preamplifier

corresponding pole is much larger than SR under any operating conditions.

2.2 Off-Transistor Preamplifier

Figure 2.3 shows the implementation of the preamplifier with an off-transistor MB

as feedback resistance. Transistor MB is an NMOS device biased to guarantee VGS = 0,
designed with a channel width W = 10 µm and a channel length L = 2 µm. In this
configuration, an extremely large impedance is achieved, providing a feedback loop always
closed at dc. However, large negative signals at the preamplifier output could turn on MB,
reducing its impedance. In order to prevent this effect, a resistive divider composed by
R1 and R2 has been introduced with an attenuation factor R2/(R1 +R2) = 1/1000, thus
guaranteeing that the voltage across MB is always much smaller than its threshold voltage
and, hence, MB is actually off over the whole output signal swing.

From simulations, the equivalent feedback resistance turns out to be RF = 7 GΩ,
achieving the required low-frequency high-pass pole (fHP < 1 Hz). The gain programmability
is the same as in the switched-resistor implementation, with the same array of variable
capacitances reported in Table 2.1.

Also for the off-transistor preamplifier the noise performance is dominated by the opamp
noise amplified by the factor 1 + CI/CF . The noise contributions coming from MB, R1,
and R2 are filtered out due to the extremely low value of the corresponding pole frequency
fHP . This value of fHP leads also to high linearity, since the distortion contributions from
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Figure 2.4: Microphotograph of the test chip containing both preamplifiers

MB are also filtered.

2.3 Measurement Results

The two preamplifiers have been implemented in a standard 0.18-µm CMOS technology
operating with a 1.8-V power supply voltage. The chip microphotograph is shown in
Figure 2.4. There is no significant difference in area occupation (0.40 mm2 each) between
the switched-resistor and the off-transistor preamplifier, since the area is mainly dominated
by the variable capacitances. The power consumption is 230 µW for both preamplifiers,
since the opamp is the only active component.

Figure 2.5 shows the measured frequency response of the two preamplifiers in all of the
gain configurations reported in Table 2.1. Both exhibit a cut-off frequency of the high-pass
pole below 10 Hz. The larger feedback resistance implemented with the off-transistor results
in a lower cut-off frequency than in the switched-resistor case (L = 200). A lower cut-off
frequency ensures a larger safety margin for the high sensitivity to PVT variations of the
off-transistor solution. The low-pass cut-off frequency is fixed by the opamp unity gain
bandwidth and can be optimized based on the application requirements.

Linearity has been measured in terms of THD for an input tone at 5 kHz with −2 dBFS
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Figure 2.5: Frequency response of both preamplifiers in all of the gain configurations

amplitude. Figure 2.6 shows the achieved THD for both pre-amplifiers under these conditions
as a function of the gain configuration. Both solutions achieve the target THD < −100 dB.
The switched-resistor preamplifier achieves better linearity for all gain configurations. A
more accurate measurement has been performed in both cases in a 0-dB gain configuration
and for maximum capacitance values (CI = CF = 160 pF) with a −1 dBFS, 1-kHz input
signal, achieving the results shown in Figure 2.7.

In terms of noise, the off-transistor preamplifier achieves slightly better performance than
the switched-resistor preamplifier, as shown in Figure 2.8. However, with both solutions
the input-referred noise (IIRN ) remains under −100 dBV.

Finally, Figure 2.9 shows the simulations that have been carried out over temperature
for the off-transistor in the range from −20◦ C to 100◦ C to verify the behavior of the
high-pass cut-off frequency. The pole frequency varies over three orders of magnitude, but
it never exceeds 20 Hz.
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Figure 2.7: Spectrum of both preamplifiers for a 1-kHz,−1 dBFS input signal in 0-dB gain
configuration
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Figure 2.8: Input-referred noise of both preamplifiers in all of the gain configurations
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Figure 2.9: Simulated variations over PVT of the off-transistor preamplifier frequency response in
0-dB gain configuration



Chapter 3

Analog VAD Circuit

Most of the VAD techniques described in Chapter 1 are implemented in the digital
domain, thus requiring the analog audio signal processing chain (SPC), including the A/D
converter to be always operational. In order to reduce power, it would be much more
efficient to implement the VAD circuit in the analog domain, thus allowing most of the
blocks of the SPC to be maintained in power-down mode until the VAD circuit detects in
the input signal coming from the microphone the presence of voice, as shown in Figure 3.1.
Then, when voice is detected, the main part of the SPC is turned on, as shown in Figure 3.2.

Generally, the audio SPC is composed of a preamplifier stage with different gain
configurations to provide the correct signal amplitude for the following A/D converter
(ADC) and a digital signal processing unit, that performs more complex analysis on the
incoming signal.

The idea behind this work is to implement a low-power solution that perform the signal

Figure 3.1: Signal processing chain in the absence of voice

21
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Figure 3.2: Signal processing chain in the presence of voice

(a) (b)

Figure 3.3: Typical audio input signal (a) and zoom over a frame of 16 ms (b)

processing algorithm for VAD with a completely analog circuit, where each processing stage
extracts more complex information than the previous.

As discussed in Chapter 1, the most common VAD algorithms, typically implemented
in the digital domain, are based on the evaluation of the energy E(i) carried by the input
signal x(t) in a time frame of 16 ms (Figure 3.3)

E(i) =
∫
|x(t)|2dt (3.1)

and on the assumption that, considering a long period of time, there are more unvoiced
frames than voiced frames. This means that the energy evaluated for each frame can be
considered as the environment background noise, which defines the noise level (NL) that
will be used in the algorithm. The NL has to be updated at the end of every frame, making
a comparison between the energy E(i) of the current frame i and the noise level NL(i− 1)
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of the previous frame:

NL(0) = Initial Value

if E(i) > NL(i− 1)

NL(i) = β1 ·NL(i− 1) + (1− β1) · E(i) (3.2)

else

NL(i) = β2 ·NL(i− 1) + (1− β2) · E(i) (3.3)

where β1 and β2 are coefficients varying from 0.95 to 0.995 with steps of 0.005. As can be
observed in (3.2) and (3.3), the noise level tracks the energy with a faster rate for βi values
close to 0.95 and with a slower rate for βi values close to 0.995, always keeping into account
the noise reference value of the previous frame, to avoid sharp variations in the presence of
sudden changes in the energy carried by the signal.

It is then possible to compare the signal-to-noise ratio (SNR), defined as

SNR(i) = E(i)−NL(i)
NL(i) (3.4)

with a speech threshold (thSP ), to determine the presence or absence of speech in the audio
signal (SNR ≥ thSP in the presence of voice and SNR < thSP in the absence of voice),
leading to:

E(i)−NL(i)
NL(i) ≥ thSP (3.5)

The value of thSP ranges from 0.1 to 5 with steps of 0.2. Since the division is not a
straigth-forward operation to implement in the analog domain, (3.5) has been modified as
follows:

E(i) ≥ NL(i) · (1 + thSP )
E(i)

1 + thSP
≥ NL(i) (3.6)

In this way the quantity 1/(1 + thSP ) is always lower than one ([0.17:0.91]) and a simple
energy averaging can be implemented.

Inside the analog VAD circuit of Figure 3.1, whose block diagram is shown in Figure 3.4,
the audio signal coming from the microphone is processed by four stages. The first stage is
a programmable-gain amplifier (PGA) that performs band-pass filtering and provides the
correct amplitude and dc biasing for the second stage (see Chapter 2), where the square
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Figure 3.4: Block diagram of the analog VAD circuit

of the signal and a voltage to current conversion is performed. The output current of the
square block is integrated through a resettable capacitance (current to voltage conversion)
achieving the computation of the audio signal energy E(i). At this point the processing
chain is divided in two paths, one concerning the evaluation and update of NL and the
other performing E(i) averaging. In the last stage a dynamic latched comparator provides
the VAD signal depending on the values of E(i) and NL(i).

3.1 Programmable-Gain Amplifier

The PGA is realized with a two stage fully-differential operational amplifier topology
(Figure 3.5) with a common-mode feedback (CMF) circuit to set the output common-mode
voltage (vcm) at the correct value for biasing the following stage. Two large 10-MΩ resistors,
implemented with long-channel NMOS transistors, are used to determine the common-mode
voltage vb_cm from the preamplifier output voltages von and vop, while transistor M13
closes the CMF loop generating the gate voltage for transistors M4 and M5. The total
current consumption of this block is 300 nA, subdivided as follows:

– 50 nA in the first stage;
– 50 nA in the CMF circuit;
– 200 nA in the second stage.

With a supply voltage of 1.8 V, this leads to a power consumption of 540 nW.
The input signal of the PGA can be unbalanced differential (one PGA input is ac coupled

to the signal source ground terminal) or balanced differential, in both cases the PGA is
intended to be ac coupled to the microphone source with internal variable capacitors, as
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Figure 3.5: Schematic of the Miller opamp

shown in Figure 3.6 (see Chapter 2).

The gain of the PGA ranges from −12 dB to +12 dB with steps of 6 dB and it is set
by the ratio of feedback resistance RF over input resistance RI . The choice of setting the
transfer function gain with a resistance ratio and not with a capacitance ratio has been made
to reduce the chip area, taking in account that MIM (metal-insulator-metal) capacitors
will be used and in the layout they can be placed on top of resistors implemented with
polysilicon. The PGA has a band-pass transfer function with a bandwidth of interest for
VAD between 300 Hz and 6.8 kHz, to filter out unwanted high or low frequency components
from the audio signal. The low frequency pole is achieved through the input RC network,
while the high frequency pole is determined by the feedback RC network. The values of the
components used are reported in Table 3.1. The feedback capacitance CF in the higher gain
configurations is constant. The reason for this decision comes from post-layout simulations,
where picking was observed in the transfer function close to the high-frequency pole due
to the parasitics capacitance of the resitors. The poly-resistor model, indeed, is shown in
Figure 3.7, where CP are the parasitic capacitances, RC are the contact resistances, while
the series of RM is the designed resistance.

In spite of the use of MIM capacitors over poly-resistor, the PGA passive components
occupy a large amount of area. To further reduce the area, the feedback resistance RF
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Figure 3.6: Feedback network around the PGA

Table 3.1: Gain programmability of the PGA (conventional resistor)

Gain [dB] CI [pF] CF [pF] RI [MΩ] RF [MΩ]
12 80 1.9 6.5 26
6 48 1.9 10.83 21.67
0 32 1.9 16.25 16.25
−6 24 2.72 21.67 10.83
−12 20 4.48 26 6.5

Figure 3.7: Poly-resistor model
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Table 3.2: Gain programmability of the PGA (switched resistor)

Gain [dB] CI [pF] CF [pF] RI [MΩ] RF [MΩ] RF_SW [MΩ]
12 16 4 1.46 2.18 133.8
6 16 8 1.46 1.09 66.9
0 8 8 2.93 1.09 66.9
−6 8 16 2.93 0.55 33.4
−12 4 16 5.85 0.55 33.4

(a) (b)

Figure 3.8: Switched-resistor implementation (a) and clock signals (b)

can be implemented with an off transistor or with a switched resistor, as discussed in
Chapter 2. We decided to adopt the switched-resistor solution (Figure 3.8), due to the
small bandwidth of interest and to the large variation over temperature of the off-transistor
equivalent resistance, that would introduce a large variability of the pole frequency. The
gain configurations for the switched-resistor solution are summarized in Table 3.2, where
a substantial reduction of capacitance and resistance can be observed: from 84.48 pF to
32 pF capacitance per branch and from 32.5 MΩ to 6.4 MΩ resistance per branch. The
equivalent value of the switched resistance RF_SW depends on the clock period and the
duty cycle:

RF_SW = RF ·
SH + SL
SH

; (3.7)

where SH is the phase where switch SW is closed and RF is connected to the PGA output,
while during phase SL SW is open and RF disconnected from the PGA output. Phase SH
has been implemented with half period of the input clock at 3.068 MHz and the switching
period is 10 µs, leading to a multiplication factor (SH + SL)/SH approximately equal to 61.

The open-loop gain and phase without and with load connected to the PGA outputs
are reported in Figure 3.9 and Figure 3.10, respectively. The load consists of the feedback
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Figure 3.9: Simulated pen-loop gain and phase of the PGA with no load

Figure 3.10: Simulated open-loop gain and phase of the PGA with load
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Figure 3.11: Circuit used to verify the PGA stability in transient conditions

and input RC networks connected between PGA outputs and ground in the highest gain
configuration. The PGA has a dc open-loop gain of 58 dB with 100 kHz unity-gain
bandwidth, a phase margin of 89◦ and gain margin of 30 dB in the configuration with no
load and a phase margin of 104◦ and gain margin of 34 dB in the configuration with load
applied.

To further check the stability of the PGA, 100-nA common-mode and differential current
pulses whit pulse width of 10 ms have been injected at the output nodes, as shown in
Figure 3.11, monitoring von and vop for oscillations. The results, shown in Figure 3.12 and
Figure 3.13, confirm that no oscillations occur.

3.2 Signal Energy Computation

In order to implement the VAD algorithm it is necessary to compute the energy of the
signal. In this section will be explained how the energy carried by the signal has been
extrapolated. According to (3.1) and Figure 3.4, the energy computation is the sequence of
two operations:

– Calculation of the signal square;
– Integration of the result of the audio frame (16 ms).

Implementing the square operation in the analog domain is not a straight-forward task. A
possible solution is to exploit the quadratic relation between current and voltage in a MOS
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(a)

(b)

(c)

Figure 3.12: Transient simulation to verify stability with common-mode current pulses applied at
the output of the PGA
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(a)

(b)

(c)

Figure 3.13: Transient simulation to verify stability with differential current pulses applied at the
output of the PGA
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Figure 3.14: Basic idea for implementing the square operation [5]

transistor:
ID = k ·

(
|VG| − |VS| − |Vth|

)2
(3.8)

where ID is the drain current current, k is the constant related to mobility, oxide capacitance,
and transistor dimensions, VG, VS, and Vth are the gate, source, and threshold voltages,
respectively.

The signal can be applied at the source or at the gate of the transistor that has to
perform the square, keeping the other voltages constant. An implementation of this idea,
described in [5], is shown in Figure 3.14, where the input signal V in is applied to the
source of either an NMOS and a PMOS transistor (M1 and M2), while their gates are
connected to a fixed reference voltage vref . When the input signal is larger than the
reference (V in > vref), M2 performs the square and the resulting current is collected by
the output transistor M5 through the current mirrors. On the other hand, if the input
signal is lower than the reference (V in < vref), M1 performs the square and the resulting
current is again delivered to M5.

The solution adopted in this work, whose schematic is shown in Figure 3.15, is based on
the same principle. In this case, the square is implemented through the a couple of NMOS
transistors, whose sources are connected to ground, while their gates are connected to PGA
differential output. The dc common-mode output voltage of the PGA has been designed
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Figure 3.15: Adopted circuit for implementing the square operation

to track the NMOS transistor threshold voltage variations, thus avoiding large variations
of the transistor current. Indeed, in order to achieve low power consumption, which is a
fundamental requirement for this circuit, the static current consumption has to be as low
as possible. Therefore, the input transistors have been designed with large L and small W
leading to a total current consumption of 18 nA. The voltage of the common-mode comes
from a transistor diode connected, in this way the pseudo differential pair behaves as a
current mirror which current variations are mainly determined by the signal coming from
the preamplifier.

The operation of the signal squarer is illustrated in Figure 3.16, where the square of a
differential input ramp signal centered around the PGA output common-mode voltage is
computed and converted from differential to signle-ended. Figure 3.16 shows both the ideal
squared waveform and the waveform obtained with the implemented circuit.

The next step to obtain the audio signal energy is the integration of the output current
of the squarer circuit, achieved through the resettable integrator shown in Figure 3.17,
which implements the function:

Vout_int =
tf∫
ti

Iout_squarer
CINT

dt; (3.9)

where Vout_int is the integrator output voltage that represents the signal energy. The
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Figure 3.16: Squarer output current and ideal square waveform overlapped (top) obtained with a
ramp input signal (bottom) implemented with a DC sweep.
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Figure 3.17: Resettable integrator

integration capacitance (CINT ) and period are programmable. The possible values of CINT
are 10 pF, 20 pF, or 40 pF, while the integration period can be of 8 ms, 16 ms, or 32 ms.
Using (3.9) it is possible to estimate the voltage swing required for Vout_int. For example, a
sinusoidal current Iout_squarer with 1-nA amplitude at 1 kHz with an integration period of
16 ms and an integrating capacitance of 20 pF leads to an integrator output variation of
400 mV:

Vout_int = 1 nA
20 pF

0.016∫
0

sin2(2πt · f1 kHz)dt = 0.4 V (3.10)

Figure 3.18 represents the integrator output when the squarer inputs are biased at the
preamplifier common-mode level and no other signal is applied. The final integration value
is about 60 mV, which corresponds to an input current of 2.4 pA (integrator period of
16 ms and CINT = 40 pF).

The integrator amplifier, with a load of 40 pF, features a dc open-loop gain of 60 dB
with 2.2-kHz unity gain bandwidth, as shown in Figure 3.19.

Figure 3.20 shows the biasing circuit for the PGA, the squarer, and the integrator. This
circuit generates the biasing current for the PGA (ibias_preamp), the PGA common-mode
voltage reference (vbias_cm_preamp), that tracks the variations of the NMOS transistor
threshold voltage, and the biasing current for the integrator (ibias_int).

The overall schematic of PGA, squarer, and integrator is summarized in Figure 3.21.
The output of this circuit represents the energy of the audio signal.
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Figure 3.18: Integrator output offset

Figure 3.19: Integrator open-loop gain and phase with 40-pF load
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Figure 3.20: Biasing circuit for the PGA, the squarer, and the integrator

Figure 3.21: Overall schematic of PGA, squarer, and integrator
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Figure 3.22: Schematic of the circuit used for VAD generation

3.3 Energy Averaging and Noise Level Computation

The energy of the audio signal obtained at the output of the circuit shown in Figure 3.21
has now to be processed to obtain the final VAD output, according to (3.2), (3.3), and (3.6).
The schematic of the circuit used for realizing these functions is shown in Figure 3.22.

The integrator output Vout_int enters into two parallel paths, one devoted to the averaging
of the energy and the other to the evaluation of the noise level NL, which represent the
inputs of the comparator used to produce the final VAD signal. Before going through the
functional description of this circuit, referring to Figure 3.22, some quantities have to be
defined:

– E(i) is the energy of the input signal evaluated over integration period i and given by
Vout_int;

– NL(i) is the noise level in integration period i stored on the fixed capacitance CNL;
– C_β1 and C_β2 are the variable capacitances used to update the noise level;
– SW_comp11 and SW_comp12 are the switches that select with which capacitance
(C_β1 or C_β2) the noise level has to be updated;

– Cratio1 is the fixed capacitance where the energy E(i) is stored;
– Cratio2 is the variable capacitance used to average the energy E(i);
– SWRESET is the switch used to reset the integrating capacitance and average the
energy;
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(a)

(b)

Figure 3.23: NL update circuit during the integration period (a) and during the update period
with C_β1 (b)

– SW_NRESET is the switch used to reset Cratio2;
– SW11 is the switch that sets the integration period.

As stated previously, the noise level is a measurement of the background noise and it has
to be updated every integration period with a fraction of the energy E(i). The algorithm
used to update NL is described by (3.2) and (3.3), which are implemented by the bottom
part of the circuit shown in Figure 3.22. During the integration time both C_β1 and C_β2

are connected to the integrator output, while on CNL is held the noise level value from the
previous integration period (Figure 3.23a), leading to the following charge distribution:

QNL(0) = E(i) · (C_β1 + C_β2) +NL(i− 1) · CNL (3.11)

At the end of the integration time switches SW11 are opened and, depending on the
comparison between E(i) and NL(i− 1), one between SW_comp11 and SW_comp12 is
closed to obtain the updated value of NL(i). In particular, switch SW_comp11 is closed
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Table 3.3: Possible values of C_β1 and C_β2

β 0.95 0.955 0.96 0.965 0.97 0.975 0.98 0.985 0.99 0.995
C_βi [pF] 0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05

when the new noise level has to be increased (Figure 3.23b), while SW_comp12 is closed
when the new noise level has to be decreased:

E(i) > NL(i− 1)

QNL(1) = NL(i) · (CNL + C_β1) + E(i) · C_β2

NL(i) · (CNL + C_β1) = E(i) · C_β1 +NL(i− 1) · CNL

NL(i) = E(i) · C_β1

C_β1 + CNL
+NL(i− 1) · CNL

CNL + C_β1
(3.12)

E(i) ≤ NL(i− 1)

QNL(1) = NL(i) · (CNL + C_β2) + E(i) · C_β1

NL(i) · (CNL + C_β2) = E(i) · C_β1 +NL(i− 1) · CNL

NL(i) = E(i) · C_β2

C_β2 + CNL
+NL(i− 1) · CNL

CNL + C_β2
(3.13)

From (3.12) and (3.13) it is easy to extrapolated that:

β1 = CNL
CNL + C_β1

β2 = CNL
CNL + C_β2

(3.14)

Knowing that the minimum capacitance that can be implemented in the adopted technology
is 50 fF and that the range of values for β1 and β2 is [0.95:0.005:0.995], CNL has been
implemented with a value of 10 pF, while C_β1 and C_β2 are two identical arrays of ten
capacitors with unit value of 50 fF, as summarized in Table 3.3.

Energy averaging is performed by the upper part of the circuit shown in Figure 3.22,
based on the following equation:

Eavg(i) = E(i) · 1
1 + thSP

(3.15)

where E(i) is the energy stored on Cratio1 during the integration period and thSP is a
coefficient ranging from 0.1 to 5 with steps of 0.2. In the first phase SW11 and SW_NRESET



3.3. ENERGY AVERAGING AND NOISE LEVEL COMPUTATION 41

(a)

(b)

Figure 3.24: Energy averaging circuit during the integration period (a) and during VAD decision
(b)

are closed, as shown in Figure 3.24a, and charge distribution occurs according to:

Qavg(0) = Vout_int · Cratio1 + VREF_INT · Cratio2 (3.16)

After the comparator decision to select the C_βi capacitance to use, SW_NRESET is
opened and SWRESET is closed to perform the averaging with the variable capacitance
Cratio2, according to:

Qavg(1) = VF · (Cratio1 + Cratio2) (3.17)

From (3.16) and (3.17) it is possible to evaluate the output voltage of the averaging circuit:

VF = Vout_int ·
Cratio1

Cratio1 + Cratio2
+ VREF_INT ·

Cratio2
Cratio1 + Cratio2

(3.18)

In (3.18) it seems that also VREF_INT , which is the staring point of the integration, is
averaged, thus introducing an offset that varies depending on the selected value of Cratio2.
However, actually, Vout_int can be split in two components:

Vout_int = Vint + VREF_INT (3.19)
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where VREF_INT is constant, while Vint is the effective energy of the input signal. Therefore,
(3.18) can be re-written as:

VF = Vint ·
Cratio1

Cratio1 + Cratio2
+ VREF_INT (3.20)

Comparing (3.15) and (3.20), we obtain:

Cratio1
Cratio1 + Cratio2

= 1
1 + thSP

(3.21)

Table 3.4 summarizes the values available for the variable capacitance Cratio2 for Cratio1 =

Table 3.4: Possible values of Cratio2

1
1+thSP

0.91 0.88 0.85 0.82 0.79 0.76 0.72 0.69
Cratio2 [pF] 0.5 0.69 0.89 0.1.12 1.36 1.62 1.9 2.2

1
1+thSP

0.66 0.63 0.6 0.57 0.54 0.51 0.48 0.45
Cratio2 [pF] 2.54 2.91 3.31 3.76 4.26 4.82 5.45 6.17

1
1+thSP

0.42 0.39 0.35 0.32 0.29 0.26 0.23 0.2 0.17
Cratio2 [pF] 7 7.96 9.08 10.42 12.05 14.05 16.58 19.9 24.41

5 pF. The programmability step is not fixed as for C_β1 and C_β2, but changes to obtain
a constant step in the ratio given by (3.21).

Figure 3.25 summarizes the circuit clock phases at the end of the integration period.
Switches SW11 and SW_N11 (SW_N11 = SW11) determine the integration period. The
circuit configuration during the integration period is shown in Figure 3.26a, where Cratio1,
C_β1, and C_β2 are charged with the integrator output voltage, Cratio2 is reset to VREF_INT ,
and CNL holds the noise level from the previous period NL(i − 1). At the end of the
integration period switches SW11 are opened Figure 3.26 and the comparator takes the first
decision (clk_comp), comparing the energy obtained E(i) with NL(i− 1). The comparator
is then reset, capacitance Cratio2 is connected to Cratio1, and one between SW_comp11 and
SW_comp12 is closed, according to:

E(i) > NL(i− 1) =⇒ SW_comp11

E(i) ≤ NL(i− 1) =⇒ SW_comp12
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Figure 3.25: Clock phases: integrator capacitance reset (a), evaluation phase (b), selection between
SW_comp11 and SW_comp12 (c), comparator clock (d), VAD decision (e)
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(a)

(b)

Figure 3.26: Circuit configuration during the integration period (a) and during the first comparison
(b)
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Figure 3.27: Circuit configuration during the second comparison

Figure 3.28: Dynamic-latch comparator
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At this point, the second comparison takes place (VAD decision) with the circuit configura-
tion shown in Figure 3.27, producing the VAD signal.

The dynamic-latch comparator schematic is shown in Figure 3.28. The input signals
Vinp and Vinn are connected to Cratio1 and CNL, respectively. The clock clk driving the
comparator is clk_comp in Figure 3.25. Throughout the integration period and the reset
period between the two comparisons outn and outp are connected to the supply voltage
and the comparator is turned off. This solution has been chosen to reduce the power
consumption. Indeed, considering the integration period of 16 ms, the average current
consumption of this block is of the order of 0.2 nA, leading to a power consumption of
0.36 nW. Figure 3.29 reports the results of 100 montecarlo simulations of the comparator
offset, featuring a mean value of 361 µV and a standard deviation of 1 mV.

Figure 3.29: Comparator offset over 100 Montecarlo simulations



Chapter 4

Measurement Results

The proposed VAD system has been implemented with a 180-nm CMOS technology. In
order to verify the performance achieved by the circuit realized both with continuous-time
(CT) and switched (SW) resistors, a test-chip has been fabricated with four versions of the
circuit:

– CT resistor with analog buffer;
– CT resistor without analog buffer;
– SW resistor with analog buffer;
– SW resistor without analog buffer.

The circuits with analog buffer have intermediate test points to detect the correct operation
of the circuit. In particular, it is possible to verify:

– Integration period clock (SW11);
– Comparator clock (clk_comp);
– Noise level decision clock (clk_nl);
– Integration capacitance reset clock (SWRESET );
– VAD decision clock (clk_vad).
Figure 4.2 shows a microphotograph of the test chip. The area of the circuit implemented

with continuous-time resistors is 0.19 mm2, whereas the area of the circuit implemented
with switched resistors is 0.14 mm2.

Figure 4.3 shows the measured waveforms of the clock phases obtained from the test-chip,
starting from a 3.068-MHz master clock. The decision phase has a pulse width of 100 µs
and all the other waveforms are in line with the simulations (Figure 3.25).

The characterization of the VAD circuit has been performed with an audio file 18-minute

47
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Figure 4.1: Microphotograph of the test chip
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Figure 4.2: Test chip layout detail: CT resistor (above) and SW resistor (bottom)
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Figure 4.3: Measured clock phases

long (Figure 4.4), that has different types of noise and voice sources. This file has been
provided to the circuit through the audio output of a computer. The inputs for the audio
signal on the test chip are common for all of the circuit versions. The current reference of
200 nA has been implemented with a 9-MΩ resistance connected between the 1.8-V supply
voltage and the drain of a diode-connected NMOS transistor. Each circuit version has a
separate input for the current, in order to allow the activation of only one version at a
time. The 3.068-MHz master clock is provided through a function generator, while the
power-supply voltage and the integrator reference voltage VREF_INT = 0.5 V are provided
through an external voltage generator. These are all the analog inputs of the test-chip. In
order to write the programming register to select the desired preamplifier gain, integration
period, integration capacitance, C_β1 value, C_β2 value, and Cratio2 value, an I2C interface
has been used.

The configuration of the programmable parameter used for the measurements (unless
differently specified) is the following:

– Gain = 12 dB
– Integration period = 16 ms;
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Table 4.1: Measured VAD errors with Gain = 12 dB, Integration Period = 16 ms, Integration
Capacitance = 40 pF, β1 = 0.95, β2 = 0.995, and thSP = 0.42

Topology Total Errors [%] FP [%] FN [%]
CT Resistor 0.7037 0.3111 0.3926
SW Resistor 0.7925 0.4681 0.3244
Ideal Model with Noise 0.2615 0.0712 0.1903

– Integration capacitance = 40 pF;
– C_β1 = 0.5 pF =⇒ β1 = 0.95;
– C_β2 = 0.05 pF =⇒ β1 = 0.995;
– Cratio2 = 7 pF =⇒ thSP = 0.42.
A comparison has been made between the measured results of the two circuit versions

obtained with the input signal of Figure 4.4, which contains 67500 voice events and
background noise, and the output of an ideal model, implemented in Matlab, with as input
the same audio file. The achieved results are reported in Figure 4.5a for the CT-resistor
configuration and in Figure 4.5b for the SW-resistor configuration. Table 4.1 summarizes
the errors determined as follows:

– Total Errors = (# of errors/# of decisions) · 100;
– False Positive (FP) = (# of FP/# of decisions) · 100;
– False Negative (FN) = (# of FN/# of decisions) · 100.

False positive errors occur when there is no voice in the signal and a VAD is made, whereas
false negative errors occur when there is voice in the signal and no VAD is made, the total
number of errors is the sum of false positive and false negative errors. In Table 4.2 the
performances of the proposed circuit are compared with the state-of-the-art.

Finally, Table 4.3, Table 4.4, and Table 4.5 report the measurement results obtained
with different setup configurations. The achieved performances are substantially similar,
independently of the setup, confirming the robustness of the proposed solution.
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Figure 4.5: Errors in the VAD signal with respect to the ideal model for the CT-resistor circuit
(a) and the SW-resistor circuit (b)
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Table 4.3: Measured VAD errors with Gain = 12 dB, Integration Period = 16 ms, Integration
Capacitance = 40 pF, β1 = 0.99, β2 = 0.95, and thSP = 0.69

Topology Total Errors [%] FP [%] FN [%]
CT Resistor 0.4859 0.2563 0.2296
SW Resistor 0.6415 0.4519 0.1896
Ideal Model with Noise 0.2615 0.0712 0.1903

Table 4.4: Measured VAD errors with Gain = 6 dB, Integration Period = 16 ms, Integration
Capacitance = 20 pF, β1 = 0.99, β2 = 0.95, and thSP = 0.57

Topology Total Errors [%] FP [%] FN [%]
CT Resistor 0.36 0.0785 0.2815
SW Resistor 0.7141 0.4104 0.3037
Ideal Model with Noise 0.2615 0.0712 0.1903

Table 4.5: Measured VAD errors with Gain = 0 dB, Integration Period = 16 ms, Integration
Capacitance = 10 pF, β1 = 0.99, β2 = 0.95, and thSP = 0.82 for the CT-resistor circuit and
thSP = 0.85 for the SW-resistor circuit

Topology Total Errors [%] FP [%] FN [%]
CT Resistor 0.4607 0.1022 0.3585
SW Resistor 0.7245 0.3793 0.3452
Ideal Model with Noise 0.2615 0.0712 0.1903





Conclusions

In this Thesis a fully-analog voice activity detection system implemented in 180-nm
CMOS technology, which achieves a current consumption of 0.9 µA with a supply voltage
of 1.8 V, has been presented. The circuit is composed of three main blocks: a preamplifier,
a signal energy computation circuit and decision-making circuit. The preamplifier reads-out
the signal coming from the microphone with a variable gain ranging from −12 dB to +12 dB
with steps of 6 dB and a bandpass transfer function with poles at 300 Hz and 6.8 kHz. This
block has been designed with continuous-time resistors and with switched resistors. The
total area is 0.19 mm2 for the circuit with the continuous-time resistors and 0.14 mm2 for
the circuit with switched resistors. The second block performs the computation of the signal
energy taking advantage of the MOS transistor quadratic current-voltage characteristic to
square the signal, which is then integrated over a resettable capacitance. Finally, the third
block produces the voice activity detection signal, by comparing the signal energy with the
noise level, which is updated after every audio frame. The most significant measurement
results are reported in Table 4.6. The proposed fully analog voice activity detection system
achieves performance comparable or superior to state-of-the-art digital solutions with a very
low power consumption and small area. Moreover, in spite of the analog implementation,
the circuit is quite robust against parameter variations.

Table 4.6: Measured results

Topology Total Errors [%] FP [%] FN [%]
CT Resistor 0.7037 0.3111 0.3926
SW resistor 0.7925 0.4681 0.3244
Ideal Model with Noise 0.2615 0.0712 0.1903
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