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Abstract (English)

The personalized medicine is the medicine of the future. This innova-
tion is supported by the ongoing technological development that will be
crucial in this field. Several areas in the healthcare research require per-
formant technological systems, capable to elaborate huge amount of data
in reduced computational times or even in real-time. By exploiting the
High Performance Computing (HPC) technologies, researchers and scien-
tists want to reach the goal of this innovative medicine: to develop specific
and accurate diagnosis and personalized therapies for patients. To reach
these goals three main activities have to be investigated: managing a great
amount of data acquisition and analysis, designing computational models
to simulate the patient clinical status, and developing medical support sys-
tems to provide fast decisions during diagnosis or therapies. These three
aspects are strongly supported by several technological systems and devices
that, at first glance, could appear different and disconnected. However, in
this new innovative medicine, they will be in some way connected. As far
as the data are concerned, today people are immersed in technology and,
each of us is able to produce a huge amount of heterogeneous data. Part
of these is characterized by a great medical potential that could facilitate
the delineation of the patient health condition. Let’s consider, as example,
the information that we can produce using smartphones and smartwatches:
these devices are even capable to monitor the heart electric activity that
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could be shared with the medical team. Part of these heterogeneous data
could be integrated in our medical record facilitating clinical decisions. To
ensure this process, in addition to the data acquisition devices, techno-
logical systems able to organize, analyse and share these information are
needed. Furthermore, they should guarantee a fast or real-time data us-
ability. In this contest the HPC systems will surely have a high importance
and, in particular, the ones characterized by multicore and manycore pro-
cessors, capable to spread the computational workload on different cores of
the device in order to reduce the elaboration times. These technological so-
lutions are crucial also in the computational modelling, second aspect cited
above and very important in the personalized medicine. Several research
groups and a lot of projects funded in the medical area, aim to implement
models able to realistically reproduce the human organs behavior in or-
der to develop their simulators. They are called digital twins and allow
to reproduce the organ activity of a specific patient in order to study the
disease progression or a new therapy. Patient data will be the inputs of
these models which will predict her/his condition, avoiding invasive and
expensive exams. The technological support that a realistic organ simu-
lator requires is significant from the computational point of view. HPC
supports this research field where complex equations systems have to be
solved as fast as possible. For this reason, devices as Graphics Processing
Units (GPUs), Field Programmable Gate Arrays (FPGAs), multicore de-
vices or even supercomputers are needed to sustain such a computational
load and to guarantee fast or real-time simulations. As an example in this
research field, the development of a cerebellar simulator exploiting HPC
technologies will be described in the second chapter of this thesis. It will be
possible to understand the complexity of the realistic mathematical models
that will justify such a technological choice to reach reduced elaboration
times, aiming at real-time. This work is within the european Human Brain
Project that aims to run a complete simulation of the human brain, exploit-
ing models which can realistically reproduce its physiological behavior.
Finally, these technologies have a crucial role in the medical support system
development. Most of the times in medicine, especially during surgeries, it
is very important that a support system provides a real-time answer. More-
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over, the fact that this answer is the result of the elaboration of a complex
mathematical problem, makes HPC system essential also in this field. If
environments such as surgeries are considered, it is more plausible that
the computation is performed by local desktop systems, such as multi-GPU
systems, able to elaborate the data directly acquired during the surgery.
The third chapter of this thesis describes the development of a brain cancer
detection system, exploiting the GPU technology. This support system,
developed as part of the HypErspectraL Imaging Cancer Detection (HE-
LICoiD) project, performs a real-time elaboration of the brain hyperspec-
tral images, acquired during surgery, to provide a classification map which
highlights the tumor tissue in the image. In this way the neurosurgeon is
facilitated in the tissue resection. In this field, the GPU technology has
been crucial to provide a real-time elaboration that a processor was not
able to provide.
Finally, it is possible to assert that in most of the fields of the personalized
medicine, HPC technologies will have a crucial role since they consist in the
elaboration of a great amount of data in reduced times, aiming to provide
specific diagnosis and therapies for the patient. In this context, this thesis
describes examples where these technologies are crucial for the develoment
of cerebellar computational models and of support system for the brain
cancer detection.
In Chapter 1 the use of HPC technologies in medicine is described. Further-
more, the parallel technologies exploited during the work will be presented.
Chapter 2 presents the HPC technologies relevance in the development of
algorithms, based on realistic models, to reproduce the cerebellar granu-
lar layer neuronal activity. This work is within the Human Brain Project
and it has been realized in the Custom Computing Programmable System
laboratory (University of Pavia), in collaboration with IRCCS Istituto Neu-
rologico Nazionale C. Mondino (Pavia) and the Brain Connectivity Center
(Pavia).
Chapter 3 presents a HPC solution to the brain cancer detection system
presented above. This work has been performed at the University of Las
Palmas de Gran Canaria (ULPGC) and it is part of the HELICoiD project.
Finally, chapter 4 describes the overall conclusions of the work.
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Abstract (Italian)

La medicina personalizzata è la medicina del futuro. E questo cambia-
mento è supportato dal continuo sviluppo tecnologico che gioca un ruolo
fondamentale. Diversi ambiti della ricerca medica richiedono ormai in modo
imprescindibile sistemi tecnologici ad alte prestazioni, capaci di elaborare
grandi quantità di dati in tempi ridotti o persino in real-time. Ed è pro-
prio sfruttando questa tecnologia chiamata High Performance Computing
(HPC) che ricercatori e scenziati possono raggiungere l’obiettivo della me-
dicina moderna: sviluppare diagnosi specifiche ed accurate per pazienti e
delineare terapie altamente personalizzate. Per raggiungere questi scopi,
una grande quantità di dati deve essere acquisita ed analizzata, adeguati
modelli computazionali devono essere sviluppati ed utilizzati per simulare
la condizione clinica del paziente e sistemi di supporto per medici devono
essere implementati per fornire risposte rapide in fase di diagnosi e tera-
pia. Questi tre aspetti sono fortemente legati a diversi dispositivi e sistemi
tecnologici che possono sembrare lontani ma, che nella medicina del fu-
turo, saranno in qualche modo connessi. Per quanto riguarda i dati, ad
oggi siamo immersi nella tecnologia e, quindi, ognuno di noi è in grado di
produrre una gran quantità di dati eterogenei. Di questi, molti hanno un
grosso potenziale in ambito medico che potrebbe agevolare la definizione
della condizione di salute del paziente. Si pensi, ad esempio, a tutta l’in-
formazione che siamo capaci di produrre sfruttando i nostri smartphone o
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smartwach: questi dispositivi sono in grado, ormai, di monitorare persi-
no l’attività elettrica del cuore che potrebbe essere condivisa con il nostro
medico curante. Una selezione di questi dati eterogenei può arricchire la
nostra cartella clinica agevolando possibili decisioni mediche. Per garantire
tutto ciò, oltre alla tecnologia che acquisisce questi dati, vi è necessità di
sistemi tecnologici in grado di organizzare, analizzare e condividere que-
sta grande quantità di informazione e che possano garantire una fruibilità
real-time. Sicuramente in questo contesto una grande rilevanza l’avranno
sistemi HPC ed, in particolare, quelli caratterizzati da processori multicore
e manycore che permettono di suddividere il carico computazionale su di-
versi core del dispositivo per ridurre i tempi di elaborazione. Sono proprio
queste soluzioni tecnologiche che sono fondamentali nello sviluppo di model-
li computazionali, secondo aspetto citato prima di elevatissima importanza
nella medicina personalizzata. L’obiettivo di molti gruppi di ricerca e di
molti dei grandi progetti finanziati in abito medico, è quello di sviluppare
modelli che riproducano in modo realistico il comportamento di organi in
modo da crearne veri e propri simulatori. Questi vengono definiti digital
twins, ossia gemelli digitali di organi che permettano di simulare la condi-
zione di un organo di uno specifico paziente per studiarne il decorso di una
malattia o una nuova specifica terapia. I dati relativi al paziente saranno
forniti come input a questi modelli che prediranno la condizione del pazien-
te evitando test invasivi e dispendiosi. Il supporto tecnologico che richiede
un simulatore realistico di un organo è molto grande in termini di potenza
computazionale. Le tecnologie HPC supportano questo ambito della ricerca
dove modelli caratterizzati da complessi sistemi di equazioni devono essere
risolti il più velocemente possibile. Ed è per questo che i modelli com-
putazionali richiedono quelle tecnologie come Graphics Processing Units
(GPUs), Field Programmable Gate Arrays (FPGAs), dispositivi multicore
o persino supercomputer che possano sostenere un tale peso computazio-
nale e garantire simulazioni real-time. In questo contesto, verrà presentato
lo sviluppo di simulatore di cervelletto su tecnologie ad alte prestazioni nel
secondo capitolo di questa tesi. Sarà possibile apprezzare la complessità
dei modelli matematici realistici che giustificano tale scelta tecnologica per
ottenere simulazioni a ridotto tempo di elaborazione, mirando al real-time.

vi



Tale lavoro è inserito nel progetto europeo Human Brain Project che mira a
compiere una simulazione completa del cervello umano sfruttando modelli
che ne sappiano riprodurre i comportamenti fisiologici in modo realistico.
Infine, le tecnologie ad alte prestazioni hanno un ruolo fondamentale anche
nello sviluppo di sistemi di supporto per i medici. Molte volte in medicina,
specialmente in sede di intervento operatorio, è di cruciale importanza che
un sistema di supporto fornisca una risposta in tempo reale. Ma il fatto che
questa risposta sia il frutto di elaborazione di un complesso problema com-
putazionale fa s̀ı che sistemi HPC vengano sfruttati. Se si ha a che fare con
contesti come inteventi operatori, è più plausibile che il calcolo debba essere
sostenuto da sistemi desktop locali, come ad esempio sistemi multi-GPU,
che possano elaborare il dato acquisito direttamente in sala operatoria. Un
altro capitolo di questa tesi riguarderà proprio lo sviluppo su tecnologia
GPU di un sistema di individuazione del cancro al cervello. Questo sistema
di supporto, sviluppato nell’ambito del progetto HypErspectraL Imaging
Cancer Detection (HELICoiD), elabora in tempo reale immagini iperspet-
trali del cervello, acquisite durante un intervento operatorio, per fornire una
mappa di classificazione che individui il tessuto cancerogeno nell’immagine
in modo che il medico possa asportarlo con accuratezza. In questo contesto,
la tecnologia GPU è stata fondamentale per una risposta in tempo reale che
un processore non era in grado di fornire.
Quindi è possibile dire che in ogni ambito della medicina personalizzata le
tecnologie HPC avranno un ruolo fondamentale perchè essa si baserà sull’e-
laborazione di una grande quantità di dati in tempi ridotti, con l’obiettivo
di fornire diagnosi e terapie specifiche per il paziente. In questo contesto,
il lavoro presentato fornisce un esempio di come queste tecnologie siano es-
senziali nello sviluppo di modelli computazionali cerebellari e di un sistema
di detenzione di cancro cerebrale. Nel Capitolo 1 viene introdotto l’uso
di tecnologie HPC in medicina e vengono presentate le tecnologie parallele
utilizzate durante i progetti descritti.
Il Capitolo 2 descrive l’importanza dell’uso di tecnologie HPC nello svilup-
po di algoritmi, basati su modelli realistici, per la riproduzione dell’attività
neuronale dello strato granulare del cervelletto. Questo lavoro è stato svi-
luppato all’interno del progetto europeo Human Brain Project presso il
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laboratorio Custom Computing Programmable System (Università di Pa-
via), in collaborazione con IRCCS Istituto Neurologico Nazionale C. Mon-
dino (Pavia) e il Brain Connectivity Center (Pavia).
Il Capitolo 3 presenta, invece, una soluzione HPC per il sistema di identifi-
cazione di tumore cerebrale citato prima. Questo lavoro è stato sviluppato
presso l’Universidad de Las Palmas de Gran Canaria (ULPGC) ed è parte
del progetto HELICoiD.
Infine, il Capitolo 4 presenterà le conclusioni generali del lavoro.
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Chapter 1
High Performance
Computing in medicine

Nowadays people’s life is completely filled with technology. Everyday
a person can produce, share and collect a huge amount of heterogeneous
data thanks to technological devices that people can even wear. One of the
main challenges of these days is to integrate these data to improve people’s
quality of life. This challenge has been accepted by the healthcare and
the medical community with the intempt to exploit these data to define an
innovative way of medicine, called personalized or precision medicine. The
idea is to collect genetic information, electronic health records (EHRs),
medical imaging and computational modelling to generate very accurate
diagnosis, to determine the best therapy for a specific patient and to prevent
her/him from possible future diseases. Furthermore, considering that in
most of these cases the data acquisition and elaboration have to be real-
time compliant, it is clear that to carry out a plan so ambitious, a complex
and efficient technological support is needed. High Perfomance Computing
(HPC) plays a crucial role in this innovative field since it provides the means
to efficiently collect, analyse and share data in order to improve the quality
of the medical decisions and to facilitate the researchers’ work.
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1. HPC in medicine

1.1 Introduction

The High Performance Computing (HPC) is transforming the tradi-
tional medicine into precision medicine which is moving from a one-size-
fits-all clincal approach to a faster, more efficient model of patient-centric
research [1]. In fact, this innovative way of medicine aims to generate very
accurate diagnosis and to select personalized therapies for a specific patient.
The innovation which is the basis of this transformation is the growing data
collection which is facilitated by the ongoing technological development. In
the medical area, the challenge is to find a way to collect, organize and
share data in order to exploit them in a constructive way as well as provide
a new approach to medical research. In this innovative context, the compu-
tational modelling plays a crucial role since it is entering in every aspects of
medicine and biology. Indeed, several research groups are studying organs
in order to develop models that realistically reproduce their behaviours and
functionalities so they can help researchers to better understand how they
work. In fact, simulation allows to explore a procedure or an innovative
technique in a virtual environment and analyse its consequences instead
of studying them in vivo, for example trying some invasive and expensive
exams or therapy directly on the patient [1]. It also helps clinicians and
researchers in the reconstruction of the patients’ anatomy providing more
knowledge on his disease progression and the prediction of the biological
response as well. In addition, simulating an organ or a biological system
can lead to the choice of the best drug, device or surgery for a specific
patient [2]. For these reasons, the attention of the scientific community is
so high on these aspects that some of the most important projects aim at
building realistic simulators of human organs. The Living Heart Project [2],
for example, created a 3D realistic simulation of a human heart. The virtual
model behaves like a real organ allowing scientists to study new patholo-
gies and test new therapies, trying to reduce incorrect diagnosis or out-
comes. Furthermore, a simulator allows patients to better understand the
surgery or the therapy that they will face and it provides surgeons with
a tool for a more realistic study and preparation of the operation. These
aims have been reached thanks to the developed virtual reality environment
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A

B

Figure 1.1: The Living Heart Project. A scientist is exploring the surgery scenario

(A) and and the heart (B) thanks to the virtual reality [2].

which reproduces the human body (Figure 1.1.A) in a surgery scene and the
heart (Figure 1.1.B). Another important project which follows this research
philosopy is the Human Brain Project whose aim is to provide a complete
simulation of the human brain [3]. Several european research groups are
studying different parts of the brain, at different levels of organization, in
order to reach a complete knowledge of this organ. Their aim is to de-
velop models that reproduce neurons functionalities in order to study new
drugs, therapies, diseases and avoid invasive tests and experiments. These
projects are working for the development of the so-called digital twin [4]: in
the new personalized medicine the duplicate of a patients’ organ will have
a crucial role allowing doctors to explore the organ behaviour and increase
the personalization of treatments, making better data-driven care decisions
and preventing medical complications before they may occur [1]. The sim-
ulation is a powerful tool to integrate the knowledge and the experience
of researchers and professionists in order to understand the single patient
condition. Sometimes doctors have an indication of what the problem is
and the research of the specific problem can be very difficult, expensive and
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invasive. Another main aspect that characterized these projects is the data
sharing: researchers want to make available models, tests, experiments in
order to rapidly increase the knowledge of these complex organs so as po-
tentially improve and save people’s lives.
The genetic information could be also added to the computational modelling
since they could provide useful data about the patient genomic profile: for
example, if a patient is predisposed to a disease and lives in an area of the
country where other people showed this pathology, maybe it could be useful
to plan a primary prevention before any evidence of developing appears.
Another interesting information that could be integrated consists of all the
data that are generated by medical devices, medical support systems and
personal devices. All these data will be included in the routine medical care
and will allow an easier data sharing between patient and medical team,
providing a more accurate and always updated patient knowledge. Con-
sider, for example, the amount of data that a smartphone or a smartwatch
can provide nowadays: the ability of understanding if the user is sleeping,
walking, running and to evaluate the heart rate during these actions. If it
is considered that the most recent smartwatches can acquire even an ECG
signal and send it to the user’s medical team, it is clear that everyday a
person can produce heterogeneous and useful data that, if well managed,
could provide an always updated information to add to the medical records.
This new way of making medicine leads researchers to deal with a range
of issues such as the need of defining a standard protocol to organize and
store data in order to facilitate the information sharing. Furthermore, it is
crucial to evaluate ethical aspects to protect the patients’ privacy.
The realisation of this huge innovative system is possible only if two leading
factors are considered: a fast data availability and a technological infras-
tructure. Several tasks shown in Figure 1.2 required a fast data elaboration
and in most cases a real-time execution. The computational modelling pre-
sented above requires technologies capable of elaborating complex equations
systems which reproduce the cells or biological structures functionalities.
Furthermore, if it is considered that those systems has to be solved several
times on the base of the cells number simulated, it is clear that the com-
putational load is very heavy. For this reason, these simulations require
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Medical support systems

Wearable systems

By Aaron E. Darling, István Miklós, Mark A. Ragan [CC BY 2.5
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via Wikimedia Commons

https://www.picfair.com/pics/05732884-brain-neural-networkCredit: Human Connectome Project

Credit: The living heart ptoject

Bioinformatic systems

Credit: The living heart ptoject

Medical imagingComputational modelling

Medical Team

HPC Technologies

Figure 1.2: Data collection and sharing in the personalized medicine.
The research groups which develop computational models, medical imaging devices, medical sup-

port systems and bioinformatic systems require the HPC technologies to reach fast elaborations

or solutions managing complex models or systems. The medical team can access the results of

the researchers’ activity, together with the health data acquired from the wearable system.

technologies capable to perform complex computations as fast as possible,
trying to satisfy the real-time constraints.
The Graphics Processing Units (GPUs) are widely used in the computa-
tional modelling field, since their architecture, characterized by thousands
of cores, allows to spread the workload among these processors which work
in parallel. Sometimes, researchers exploits multi-GPU systems or even
supercomputers in order to increase the number of available cores, trying
to further reduce the elaboration time. An example of neuronal modelling
which exploits single-GPU and multi-GPU systems, part of the Human
Brain Project, will be presented in the second chapter of this thesis, where
it will be possible to appreciate how this technology can significantly reduce
the computational time of the simulations.
These medical systems which support the doctors during a surgery provid-
ing them help in the diagnosis or in the medical decision need to satisfy the
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real-time constraint. For example, the HELICoiD project [5] has developed
a system which provides a support to neurosurgeons for the brain cancer
detection. This system is capable to classify in real-time a brain hyperspec-
tral image providing a classification map of that part of the organ where
the tumor is accurately delineated. Also in this case the GPU technology
is exploited for real-time elaboration.
In addition, applications concerning the medical imaging, as the magnetic
resonance imaging (MRI) [6] [7] and the computed tomography (CT) [8] [9]
image reconstruction algorithms, need to elaborate images in short times
or even in real-time and for this reason, also in these cases, the GPU tech-
nology is used. Nowadays several research groups, for example the ones
working in the fields cited above (also shown in Figure 1.2), exploit HPC
technology using PC-desktop solutions, as single or multi-GPUs systems,
or supercomputers, characterized by a huge number of processors or made
up of GPUs or of programmable logic devices. The innovative person-
alized medicine aims to collect heterogeneous information as well as the
health records acquired from wearable devices. In this way the medical
team could benefit from several types of data to make accurate diagnosis
and therapies and to reach all the goals described before. In this new per-
spective of work, a suitable technological infrastructures able to collect all
these data should be developed. Some research group has already started
following this information sharing phylosophy. For example, in the Human
Brain Project, an infrastructure made up of six platforms [10] is developed
with the aim of sharing research results. If this phylosophy will be followed
by an increasing number of scientists, there should be also a suitable use
of techology systems that will allow researchers to upload their results in
servers and share data. Furthermore, the medical team or scientists could
download and use them for diagnosis, therapies or research.
The scientific community is very focused on this issue that companies as
Medtronic or IBM work on this aspect trying to find the best technological
solution. Medtronic [11] [12], for example, declares that the current techno-
logic system used to share data is disconnected and do not facilitate users
to obtain data that they need. This problem leads to another issue which
is the unusable information: in [13] authors assert that healthcare is los-
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ing $300B per year in untapped data integration. Companies as Medtronic
think that blockchain might be the solution. The idea is to spread the work-
load providing a decentralized system where a huge amount of technological
blocks can share, verify, analyse data and freely transfer them in complete
safety. IBM [14] is also exploiting blockchain as a solution to faster access
data, facilitating better collaboration and overcoming problems as the data
security, thanks to the cryptography, and standardization. Whatever will
be the best solution to collect and share data in the most efficient way,
HPC technology will surely have a crucial role in the personalized medicine
of the future. And this future is not so far away.

1.2 Parallel Technologies

The number of medical applications that rely on the power of more than
a single processor is increasing. Often in healthcare providing a fast or even
real-time response is crucial. This aspect leads to the evaluation of efficient
technologies able to manage huge amount of data in reduced computational
times. The use of the HPC and, in particular, of the parallel technologies
allows to overcome this issue making several processors available where the
workload can be splitted. As a consequence, a different way of program-
ming is exploited in order to transform a sequential in parallel application,
where different threads collaborate to rapidly end the elaboration. Two
philosophies are adopted to exploit the parallel technologies. In the multi-
core strategy, the processor elaborates both the serial and the parallel parts
of the code. The former are executed by a thread while the latter by sev-
eral threads created by the operative system and assigned to the different
cores. In this type of solutions each core has to run several threads, in the
manycore philosophy the idea is that each core has to manage one thread,
since the these technologies host hundreds or thousands of cores.

1.2.1 OpenMP

Concerning the multicore strategy, the Application Programming Inter-
face (API) OpenMP is a parallel programming model for shared memory
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multiprocessors which provides a wide set of directives and strategies for
the parallelization of loops and program sections [15] [16]. It supports For-
tran, C and C++ languages.
OpenMP implements the multithreading strategy (Figure 1.3) where a mas-
ter thread executes the sequential code until a parallel region is generated.
In this point, several threads (slave threads) are created on the base of the
tasks that have to be completed. To use OpenMP in a C or C++ code the
omp.h library has to be included. The definition of a parallel region, shown
in Figure 1.3, is implemented through the #pragma directive. If the loop
iterations have to be parallelized, this directive is placed before the loop as
shown in the following code:

1 #pragma omp p a r a l l e l f o r
2 f o r ( i n t i = 0 ; i < n i t e r ; i++) {
3 . . .
4 }

In this way a group of iterations is executed by a thread generated in cor-
respondence of the parallel region creation. The number of slave threads
can be set by the user exploiting the omp set num threads function. Fur-
thermore, when the parallel region is created, is important to define which

Figure 1.3: Multithreading OpenMP [17].
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variables are shared among threads or which are private to a single thread.
The manner in which iterations of a parallel loop are assigned to a thread
is called schedule. OpenMP supports different schedulers [18]:

� static: the iterations are divided into chunk of size chunk-size. The
operative system divides the loop iterations as equal as possible in
the case the iterations number is not evenly divisible by the threads
number. The chunks are distributed among threads in a circular
order.

� dynamic: each thread executes a chunk of iterations and then requests
other chunks until they are available. There is not a particular order
in the chunk distribution. Furthermore, the chunk-size assumes the
value one, if it is not explicitly specified.

� guided: it works as the dynamic scheduling but the chunk-size is dif-
ferent since it is proportional to the number of unassigned iterations
divided by the number of threads. In this way the chunk-size de-
creases. If the chunk-size is not set, its value is one.

� auto: the scheduling to apply is chosen by the compiler.

� runtime: the OMP schedule environment variable specifies which one
of the three loop-scheduling types should be used.

OpenMP is also used to distribute different tasks to different threads. The
section construct is a way to implement this aspect. The following code
contains the instructions to generate three sections, each one assigned to a
thread which executes the task.

1 #pragma omp p a r a l l e l
2 {
3 #pragma omp s e c t i o n s
4 {
5 #pragma omp s e c t i o n
6 {
7 // task 1
8 }
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9 #pragma omp s e c t i o n
10 {
11 // task 2
12 }
13 #pragma omp s e c t i o n
14 {
15 // task 3
16 }
17 . . .
18 }
19 }

All the sections are independent and their tasks are computed simulta-
neously.

1.2.2 Graphics Processing Units

CPU vs GPU architecures

Concerning the manycore philosophy, the Graphics Processing Units
(GPUs) are the flagship devices for parallel high performance computing.
They are born as graphic accelerators but researchers and scientists rapidly
began to use their intrinsic parallel architecture for general purpose com-
puting [19]. Figure 1.4 shows the evolution of the peak double precision
floating-point operations per second (FLOPS) on GPU architectures ver-
sus the CPU ones. This graph is not a real performance comparison since
it does not necesserarily represent the application speed, but it is possible
to appreciate how much the performance gap is grew up during the years.
This difference has led developers to exploit the GPUs to execute the most
computationally intensive parts of their programs. The reason of this gap
is the different architectures that these devices present (Figure 1.5). The
CPU architecture maximizes the sequential programs performance. It is
characterized by a refined control unit which allows to execute in parallel
the instructions of a specific thread by maintaining a sequential aspect.
The big cache memories allow to reduce the latency accessing to data and
instructions memories. Another difference is the backward compatibility
which is crucial in the CPUs since they have to be compliant with several
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Figure 1.4: Peak double precision FLOPS. The graph shows the performances of

the GPU and CPU architectures. From 2014 the two lines are dotted because they are trend

previsions.

Figure 1.5: CPU and GPU architectures [20].

operative systems, applications and I/O systems. GPUs do not have to sat-
isfy this requirement so restrictively, in fact their memory model is simpler.
For this reason, the GPUs developer could increase the bandwith making
these devices faster in the memory comunication than the CPUs. The most
of the chip area is dedicated to the ALU to maximize the computational
throughput. This make the control unit and the cache memories smaller
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than the CPU ones (Figure 1.5). This architecture allows some threads to
elaborate data while others are performing memory accesses. Furthermore,
the GPUs are characterized by several small caches that allow to increase
the memory bandwidth. Despite the GPUs are exploited to optimized the
computation performances, there are some tasks that are more efficient if
run by the CPU. For this reason, the most of applications uses the CPU for
the sequential part of the code and the GPUs for the most intensive parts.
Moreover, it is possible to exploit the parallelism in both devices using,
on the CPU, the OpenMP paradigm for the parallel parts which involve a
small amount of data.
In November 2006 NVIDIA presented a new typology of GPU based on G80
architecture which unified the graphic with the general purpose computing.
From that moment, NVIDIA invested in the architectures development pro-
ducing about a new version per year. The general philosophy of the different
GPUs generations is to equip the devices with hundreds of cores organized
in the so-called streaming multiprocessors (SMs). All the cores of the SM
share the on-chip memory, called shared memory, the registers and spe-

Figure 1.6: Peak memory bandwidth. The graph shows the memory bandwidth of

the GPU and CPU devices. From 2014 the two lines are dotted because they are trend previsions.
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Figure 1.7: Streaming Multiprocessor scheme in the Kepler architecture
[21].

cial purpose resources such as the Special Function Units (SFUs) which
perform trascendental instructions (Figure 1.7). Figure 1.8 shows the en-
tire architecture of the Kepler version. The GPU architecture is built by
adding several SMs on the same chip area. The presented Kepler GPU is
equipped with 15 SMs and is connected to the CPU through PCI Express.
GPU architectures are characterized by two types of memories. The global
memory can be accessed by a thread independently from its block. It is
used to exchange data between host and device through suitable CUDA
functions. Since it takes long time to access this memory, due to the low
access bandwidth, an efficient strategy has to be developed during the data
transfers between GPU and CPU. The on-chip memories, shared memory
and registers, have a low access latency and a high access bandwidth. In
particular, registers are private to each threads while shared memory are
private to all the threads of a block. The usage of the on-chip memories
allows to reduce the high cost of accessing the global memory.
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Figure 1.8: Kepler architecture scheme [21].

Compute Device Unified Architecture

Compute Device Unified Architecture (CUDA) is a parallel computing
platform and programming model developed by NVIDIA for general com-
puting on GPUs [19]. The system for the CUDA programmer is made
up of an host, typically a CPU, interacting with one or more devices (the
GPUs) used to speed up the computationally intensive parts of the code.
The source code of a CUDA program contains both the parts related to
the host and the devices, which are written in the same language (C/C++
or Fortran). Furthermore, the device parts are extended with the CUDA
functions and instructions to be executed on the GPU. Each function per-
formed by parallel threads on the device is called kernel. The CUDA pro-
gram execution starts from the host that will invoke a kernel. At this point,
the device generates a great number of threads to exploit the parallelism.
Threads are organized in blocks which, in turn, constitute a grid. When all
the threads in a grid end the execution, this continues on the host since
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Figure 1.9: CUDA code execution [20].

another kernel is called. When a kernel ends it is important to transfer
its results from the device to the host memory and to release the GPU
memory. An example of CUDA code execution is shown in Figure 1.9. As
already said, when a kernel is invoked, the execution passes from the host
to the device. Here a series of tasks has to be performed. First of all, to
allocate the memory on the device the function cudaMalloc is used by the
host. This function has the following prototype:

cudaError t cudaMalloc (void** devPtr, size t size)

where devPtr is the pointer address and size the size in byte of the element
to be allocated. cudaError t is the function output that reports the presence
of an error. Once allocated the memory, it is possible to transfer elements
from host to device using the cudaMemcpy function:

cudaError t cudaMemcpy (void* dst, const void* src, size t count, enum

CudaMemcpyKind kind)

where dst and src are the destination and the source memory addresses,
respectively. count is the size in byte of the element to copy and kind de-
fines the type of transfer, identifying the source and the destination. The
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Figure 1.10: Threads, blocks and grid organization [20].

transfer direction can be host-host (cudaMemcpyHostToHost), host-device
(cudaMemcpyHostToDevice, device-host (cudaMemcpyDeviceToHost) and
device-device (cudaMemcpyDeviceToDevice). Typically when a kernel is
invoked data are copied from host to device and, at the end of the kernel
computation, data are copied from device to host. Once the device is ini-
tialized, the number of threads and blocks of the kernel have to be defined.
CUDA provides variables to uniquely identify a block inside a grid using
three-dimensional coordinates: blockIdx.x, blockIdx.y and blockIdx.z. In the
same way a thread can be defined in a block using the threadIdx.x, threa-
dIdx.y and threadIdx.z variables. It is possible to use only two dimensions
in the thread identification, as shown in Figure 1.10. Furthermore, it is
mandatory that all that blocks have the same number of threads. Finally,
the variables blockDim and gridDim represent the blocks and grid dimen-
sion. In the two-dimensional case, the single thread can be identified as
follows:

i = blockIdx.y ∗ blockDim.y + threadIdex.y (1.1)

j = blockIdx.x ∗ blockDim.x+ threadIdex.x (1.2)
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Figure 1.11: Automatic scalability [22].

If only one index has to be used to define a thread, it is computed as:

index = i ∗ gridDim.x ∗ blockDim.x+ j (1.3)

Moreover, it is possible to synchronize the activity of all the threads in
a block using the syncthreads function. In this way, all the threads that
reach the barrier wait the others inside the block before continuing the
execution. Since the synchronization has effect only inside the block, the
system can execute the blocks in a random order. For example, Figure
1.11 shows how the same code can be executed in different ways in two
boards equipped with a different number of cores. This advantage is called
automatic scalability.

At this point of the program execution on the device, it is possible to
invoke the kernel specifying the grid and the block dimensions, indicated
with grid and block in the following:

kernel <<<dim3 grid, dim3 block>>>(arg1, arg2, ...)

where arg1 and arg2 are the function parameters. Once a kernel is invoked,
each SM can manage up to 16 blocks on the base of its resources. In order
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to be executed, each block assigned to a SM is split into groups of 32
consecutive threads, called warps.
Once the kernel execution is completed, the result can be transferred from
device to host exploit cudaMemcpy function presented above, where kind
is cudaMemcpyDeviceToHost. At the end of the device code execution, the
GPU memory has to be released invoking the cudaFree function:

cudaError t cudaFree(void* devPtr)

where devPtr is the device memory pointer to deallocate.
Once the host invokes a kernel, it can wait the results from the device and
only then continues the program execution, or it can continue the execu-
tion immediately after the GPU function call. In the first case, there is
a synchronization between the host and the device activity while, in the
second, the two executions are asynchronous. In this last case, the kernel
launches can be overlapped with the host function calls. Since the cud-
aMemcpy is a synchronous function, CUDA provides a tool to exploit the
concurrency that is the ability to perform the CUDA kernel, the memory
transfers and the host operations simultaneously. In this case, the function
used to asynchronously transfer data from host to device, and viceversa,
is the cudaMemcpyAsync. This function requires that the host memory
is allocated through the cudaMallocHost function. In order to perform
concurrency, CUDA provides the streams which allow CUDA operations,
assigned to different streams, to be executed concurrently and be over-
lapped. For example, it is possible to overlap memory transfers with device
or host execution, increasing the performances. Whenever the host, during
its execution, needs the GPU computation results a cudaDeviceSynchronize
function has to be called in order to block the host until the CUDA kernel is
completed and the results transferred. Figure 1.12 shows a Serial execution
where a memory transfer from host to device, a kernel and another memory
transfer from device to host are sequentially performed. Using the streams
it is possible to overlap transfers and kernel execution.
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Serial

4-way concurrency

Figure 1.12: Stream usage. In the serial execution, memory transfers and kernel are

computed sequentially. Using the streams it is possible to overlap these tasks [23].

CUDA Program Compilation

To compile a C-CUDA code, CUDA provides the nvcc compiler. In
Figure 1.13 it is possible to see how this compiler works. The host code is
compiled by a standard compiler such as gcc or cl while the device code is
assigned to assembly form called Parallel Thread eXecution (PTX) and/or
binary form. To indicate the GPU architecture to the compiler, the param-
eter compute capability is set. It is made up of two numbers which indicate
the architecture and the version, respectively. The compute capability val-
ues of the systems used in this work will be presented below.

NVIDIA GPUDirect

As previously said, several medical applications search solutions to com-
plex scientific and mathematical problems that are heavy from the compu-
tational point of view. They require platforms that delivers the highest
throughput and lowest latency possible. In these cases of intensive work-
load, the multi-GPU systems are used exploiting the GPUDirect [24], which
allows devices to read and write CUDA host and device memory, avoiding
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Figure 1.13: nvcc compiler [22].

unnecessary memory copies. In 2011 the GPUDirect Peer to Peer has been
released: it allows to transfer data, to direct load and store access between
GPUs on the same PCI Express root complex. Moreover, in 2013 the GPU
Direct RDMA enables third party PCI Express devices to directly access
to GPUs bypassing the CPU host memory, increasing the application per-
formances. Figure 1.14 shows a direct Peer to Peer access and transfer
between GPUs connected by the same PCI Express. In order to perform a
peer to peer memory access, the GPU has to be characterized by a compute
capability starting from 2.0. This access must be enabled between two de-
vices by calling the cudaDeviceEnablePeerAccess function, as shown in this
example [22]:

1 cudaSetDevice (0 ) ;
2 f l o a t * p0 ;
3 s i z e t s i z e = 1024 * s i z e o f ( f l o a t ) ;
4 cudaMalloc(&p0 , s i z e ) ;
5 MyKernel<<<1000, 128>>>(p0 ) ;
6 cudaSetDevice (1 ) ;
7 cudaDeviceEnablePeerAccess (0 , 0) ;
8 MyKernel<<<1000, 128>>>(p0 ) ;

The first instruction sets the device 0 as the current device. In this device
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Figure 1.14: GPUDirect access and transfer [24].

the element p0, whose dimension is size, is allocated through the cudaMal-
loc function. Then MyKernel is invoked always in the same device. At this
point, the cudaSetDevice sets the device 1 as current and the peer to peer
access with device 0 is enabled. The kernel MyKernel is now launched on
the device 1 and it can access the device 0 memory at address p0.
The memory copies can be performed between two different devices exploit-
ing the cudaMemcpyPeer or the cudaMemcpyPeerAsync functions. The
following code shows an example.

1 cudaSetDevice (0 ) ;
2 f l o a t * p0 ;
3 s i z e t s i z e = 1024 * s i z e o f ( f l o a t ) ;
4 cudaMalloc(&p0 , s i z e ) ;
5 cudaSetDevice (1 ) ;
6 f l o a t * p1 ;
7 cudaMalloc(&p1 , s i z e ) ;
8 cudaSetDevice (0 ) ;
9 MyKernel<<<1000, 128>>>(p0 ) ;

10 cudaSetDevice (1 ) ;
11 cudaMemcpyPeer (p1 , 1 , p0 , 0 , s i z e ) ;
12 MyKernel<<<1000, 128>>>(p1 ) ;
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In this case p0 and p1 are allocated on the device 0 and on the device 1,
respectively. Once MyKernel is completed on the device 0, the execution
passes on the device 1 where the cudaMemcpyPeer function is called to copy
the element p0 (from device 0 memory) to the element p1 (in the device 1
memory). At the end, the last kernel is launched on the device 1. This copy
is performed by an implicit NULL stream but if an asynchronous copy has
to be executed, a stream has to be created on the device 1 and the function
to call is:

1 . . .
2 cudaSetDevice (1 ) ;
3 cudaMemcpyPeerAsync (p1 , 1 , p0 , 0 , s i z e , mystream ) ;
4 . . .

Test systems

As for the applications presented in the following chapters, the tests are
carried out on two different systems whose characteristics are shown in the
Table 1.1.

The System 1 is equipped with two NVIDIA Tesla K40 GPU, whose
architecture is the Kepler (compute capability 3.5). Each board presents
the features described in Table 1.1 [25]. This board is optimized for scientific
computation therefore it does not present a graphical output. The second
system (System 2) is equipped with a NVIDIA GTX1060 GPU which is
based on the Pascal architecture (compute capability 6.0) [26]. This is a
more recent GPU with a graphical output port.

System 1 System 2
Intel i7 3770 ITesla K40 Intel i7 6700 GTX 1060

Cores number 4 2,880 4 1,152
RAM [GB] 8 12 32 3

Working frequency [GHz] 3.40 0.875 3.40 1.5

Table 1.1: Systems features.
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Chapter 2
A realistic cerebellar
granular layer simulator on
parallel technologies

The knowledge of the physiological principles which underlie the brain
function and that let the human being to learn, act and remember is one of
the main challenges addressed to neuroscientists and engineers. The inter-
est in this challenge is raised up with the ongoing technological innovation
and neurological discoveries which make the scientist goals very ambitious.
One of these goals is the development of a model capable of accurately sim-
ulating the brain behaviour. A model which reproduces the brain activity
in a realistic way is heavy from the computational point of view if the dif-
ferent types of neurons and synapses and their complex dynamic properties
are considered. Due to this computational complexity, the scientists need
to perform their simulations exploiting the HPC technologies in order to
decrease the computational times, trying to reach the real-time constraint.
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2.1 Introduction

The interest in the understanding the human brain and its function-
alities has been raised up significantly that the scientific community has
promulgated several projects in order to promote the research in this field.
In particular, the aim of the Human Brain Project (HBP) is to extend
the brain knowledge to help the brain disorders diagnosis, to elaborate
new therapies and to facilitate the design of new brain-inspired technolo-
gies [27]. HBP has been selected as European Commission Future and
Emerging Technologies Flagship that involves a consortium of 112 part-
ners and 24 European countries. It started in October 2013. HBP aims
to create a wide collaboration between all the partners so that they can
share their results in order to facilitate the research progress. In fact, one
of the main problem in the neurophysiology field is the fragmentation of
the brain research and the data that it produces [28]. For this reason,
an integrated system of ICT-based research platforms has been developed
in order to contain data belonging to several research groups and part-
ners. Each group deals with the study and the understanding of different
parts and aspects of the brain since another project goal is to reach a com-
plete brain knowledge considering several levels of organisation, starting
from the protein level to the entire body passing through the chromosomes,
synapses, cells, microcircuits, brain regions, brain (Figure 2.1). Having a
complete brain knowledge means that if a particular phenomenon occurs
in one of the levels, it is possible to trace it back in the others in order
to study its effects. A deep brain understanding and the development of
new neuronal models with the ability to reproduce its complex function
could have positive effects in different research fields: neuroscientists will
be able to discover and study new mechanisms and behaviours, as well as
conduct investigations that due to their invasiveness today are regarded as
impossible. From the medical point of view, it will be possible to discover
new diseases diagnosis and therapies. A brain simulator will allow to study
innovative drug treatments and their effects on different brain organisation
levels. Furthermore, a brain simulator will allow researchers to identificate
the biological signatures of the neurological deseases promoting new in silico
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Figure 2.1: Different organisation levels in the brain study. The image

shows different levels of organisation of the brain, covering nine orders of magnitude [28].

experiments to study the causes and effects of these pathologies. Finally, a
deep brain understanding will promote the development of innovative tech-
nologies whose architectures will be inspired by the neurons elaboration,
learning and cognitive capabilities and will achieve high-energy efficiency
and fault tolerance [27]. The understanding of how the human brain works,
the development and the simulation of complex neuronal models and the
data collection demand more than a standard computer. This need of HPC
technologies and, in particular, of supercomputers has meant that one of
the six platforms of the HBP infrastructure (called High Performance An-
alytics & Computing Platform) is dedicated to provide some of the most
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powerful computers in the world to scientists in order to facilitate their
research. The other platforms are: Neuroinformatics which collects and
integrates neuroscience data, Medical Informatics which collects medical
data, Neuromorphic Computing for the hardware implementation of the
brain functions, Neurorobotics which provides researchers with a virtual
or real body in which to simulate the developed brain models and analyse
the effects (i.e., the movement control), the stimulus reaction and how the
robot learns in the virtual environment. Finally, the platform related to
the development of the neuronal models based on the brain circuits and
functions is called Brain Simulation [3]. The University of Pavia team is
involved in this platform with the goal of developing a realistic cerebellum
simulator. A part of this group works in the development of the math-
ematical models of different cerebellar neurons and, then, of the network
that integrates these cells. Once the models are completed, another part
of the group analyses them and studies an efficient way to exploit them on
high performance computing technologies. The same work flow has been
followed in the next paragraphs: at first a mention of the cerebellum phys-
iology is provided. Then, the mathematical models of the cerebellar cells
are presented in order to better understand the algorithms developed to
reproduce the neuronal behaviours. The first aim of the work has been to
evaluate the algorithms perfomances in order to study and develop the most
efficient version for each cell. The second part of this chapter is related to
the design and the simulation of the granular layer of the cerebellar cortex
exploiting HPC technologies.

2.2 Physiology of the cerebellar cortex

2.2.1 The cerebellum and the cerebellar cortex

The cerebellum is the part of the brain whose main function is to cali-
brate and control the voluntary and involuntary actions of the human body.
Several parts of the encephalon and of the sense organs send to the cerebel-
lum signals concerning the planned movements. The cerebellum is able to
compare these different signals and to regulate the strengh and the direc-
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Figure 2.2: Cerebellar cortex. Different types of neurons in the cerebellar cortex [29].

tions of the body movements whenever they are different from the planned
actions. It can remember the movements and correct the ones performed in
an incorrect way. It has a main role in the correct posture and equilibrium
control. This work is focused on the function of the cerebellar cortex which
covers the cerebellum surface. It is made up of five types of neurons (Purk-
inje, granular, Golgi, stellate and basket cells) which are displaced in three
different layers: the granular layer, the Purkinje layer and the molecular
layer. The neurons dendrites and axons are linked through the excitatory
and inhibitory synapses, creating a circuit (Figure 2.2) [29]. The mossy
fibers are one of the cerebellar cortex inputs. They come from the pontine
nuclei and synapse on the granule cells which are in the granular layer. This
is the largest type of neurons in the human brain and the signals that they
generate go through the Purkinje layer and end in the molecular one, where
the dendritic trees of the Purkinje cells are displaced. The granule axon
has a particular shape since, when it reaches the molecular layer, it forms a
T-shaped branches in order to relay its excitatory signal into the Purkinje
dendrites. In fact, the Purkinje cells have their body in the Purkinje layer
but, as previously said, their dendritic trees are in the molecular layer. The
Purkinje cells also receive the signals of the inferior olive through the climb-
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Figure 2.3: Functional module of the cerebellar cortex. Excitatory and

inhibitory connections between the Purkinje, Golgi and granular cells [29].

ing fibers, while their output reaches the deep cerebellar nuclei, as shown in
Figure 2.3. This is the only output of the cerebellar cortex and it consists in
an inhibitory signal. The deep cerebellar nuclei receive also excitatory in-
puts from the mossy and climbing fibers. The molecular layer contains also
the dendritic trees of the Golgi cells, whose body is placed in the granular
layer. These cells receive the inputs from the granular cells (through their
ascending axon and parallel fibers) and provide an inhibitory output, to
the granules, which may limit the granule excitatory inputs to the Purkinje
cells. This circuit, illustrated in Figure 2.3, is the main function module of
the cerebellum where it is repeated several times. The modulation of the
signals through these circuits provides the real-time control of the move-
ments that the body performs and it underlies the motor learning taking
into account the long-term changes [29].
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2.2.2 The action potential

Neurons can communicate with each other through the exchange of
electrical signals whose generation and trasmission are due to the selective
permeability of their membranes to several types of ions. The permeability
of the membrane is due to the presence of the ion channels which allow
specific ions (Na+, Ca2+, K+ and Cl-) to cross it in the direction of their
concentration gradient [29]. In fact, the membrane is characterized by dif-
ferent concentrations of specific iones on its sides. These properties allow
the genesis of electrical signals called action potentials or spikes. At rest,
the membrane is characterized by a resting membrane potential, typically
from -40 to -90 mV on the base of the neuron typology. The action poten-
tial can be generated when a current crosses the membrane modifying its
resting potential. In normal conditions, this stimulus is due to the synap-
tic activity, which allows neurons to communicate, while in the laboratory
it can be generated connecting a microelectrode to a battery. There is
an hyperpolarization if the injected current decreases the potential values.
Otherwise, if the injected current increases the resting membrane poten-
tial values there is a depolarization. If these values overcome a threshold
potential an action potential occurs. The spike is the neuron answer to a
stimulus and it is a fast (about 1 ms) change from negative to positive in
the transmembrane potential [29]. The spike amplitude is not proportional
to the injected current intensity used to evoke it: this is a all-or-none phe-
nomenon where the action potential fully occurs or not at all. Figure 2.4.A
shows two microelectrodes introduced in a neuron body to stimulate the cell
and record the membrane potential variation. Figure 2.4.B presents these
potential variations due to different current stimuli. Analyzing the Figure
2.4.B it can be noticed that when a current is not injected, the membrane
potential reaches the resting value. When a negative current is injected, the
potential decreases while, when the current is positive, the potential can
increase its value staying under the threshold or overcoming the threshold
and generating the action potential. If the current amplitude or duration
are increased, multiple action potentials occur reaching always the same
maximum value (∼40 mV).
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A B

Figure 2.4: Action potentials in a neuronal cell. A) Two micrelectrodes are

introduced in the neuron body: the former to stimulate it, the latter to record the membrane

potential variations. B) The membrane potential variation due to different current stimuli [29].

At rest, i.e. in a condition of electrochemical equilibrium, the value of the
membrane potential is called equilibrium potential computed through the
Nernst equation (Equation 2.1):

Ex =
RT

zF
ln

[X]e
[X]i

(2.1)

where Ex is the equilibrium potential for any ion X, R is the gas constant,
T is the absolute temperature (in degrees on the Kelvin scale), z is the va-
lence of the permeant ion and F is the Faraday constant [29]. [X]e and [X]i
are the ionic concentrations at the two sides of the membrane. The Gold-
man equation (Equation 2.2) computes the membrane potential taking into
account the permeabilities of the ions that are able to cross the membrane.

Vm =
RT

zF
ln
PK [K+]e + PNa[Na

+]e + PCl[Cl
−]i

PK [K+]i + PNa[Na+]i + PCl[Cl−]e
(2.2)

As the permeability of the ion (Px) changes, also the membrane potential
varies and, if it reaches the threshold, an action potential occurs. The potas-
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sium permeability (PK) determines the resting membrane potential, in fact
these ionic channels are opened at rest condition. The sodium permeability
increases when there is a depolarization which reaches the threshold. In
this case, the sodium ions enter in the neuron, further increasing the po-
tential value which reaches the ENa potential. Then, the sodium channels
are inactivated while the potassium ones are slowly activated, allowing the
potassium leakage outside the membrane. At this point the potential de-
creases (repolarization) until it reaches the EK value. A short refractory
period occurs where the potential decreases more than EK and the neuron
is insensitive to the stimuli. At the end, the hyperpolarization closes the
potassium channels and the potential reaches the resting value [29].

2.2.3 The synapse and the receptors

The communication between neurons, and then the signal trasmission,
is performed in the synapses, which are elements that link the axon of the
presynaptic neuron to the dendrite or the body of the postsynaptic one.
The mechanism that underlies the signals trasmission defines the type of
synapse that can be electrical or chemical. The former has the presynaptic
and postsynaptic membranes very close and linked through the gap juctions
where the current can flow. The latter (Figure 2.5) has the presynaptic neu-
ron separated from the postsynaptic one by a synaptic cleft where the signal
trasmission is performed by the neurotransmitters contained in the synap-
tic vesicles (Figure 2.5.1) in the presynaptic neuron. When the presynaptic
neuron is stimulated by an action potential (Figure 2.5.2), the membrane
potential increases and causing voltage-gated Ca2+ channels opening (Fig-
ure 2.5.3). A Ca2+ ions flow inward is generated (Figure 2.5.4). The in-
creased amount of Ca2+ ions in the presynaptic terminal causes the fusion
of the membrane with the vesicles (Figure 2.5.5) and the neurotransmitter
molecules release in the synaptic cleft (Figure 2.5.6). These molecules reach
and bind with receptors displaced in the postsynaptic membrane (Figure
2.5.7). This connection causes the conformation of the receptors ionic chan-
nels that can turn in a open, close or desensitized state. If the channels are
open (Figure 2.5.8), the ions start flowing through the ionic channels gener-
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Figure 2.5: Chemical synapse. Events that occur in a chemical synapse when a signal

is transmitted [29].

ating ionic flows that can depolarize or hyperpolarize the postsynaptic neu-
ron potential (Figure 2.5.9): in the first case, the postsynaptic potential is
excitatory while in the second case it is inhibitory. At the end, the retrieval
of the vesicular membrane from the plasma membrane is performed (Figure
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Figure 2.6: Chemical synapses in the granuar layer of the cerebellar
cortex. Golgi cells, granular cells and mossy fibers make synapses in the glomerulus. [30].

2.5.10). The most common neurotransmitter in the cerebellum is the glu-
tammate and the main receptors of this molecule are the NMDA, activated
by the molecule N-Methyl-D-aspartate (NMDA), and the AMPA, whose ag-
onist molecule is the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
(AMPA). Most of the neurons are characterized by both these receptors
which allow the flow of the sodium, potassium (and also calcium for the
NMDA) ions. These receptors cause the excitatory postsynaptic poten-
tials with a different timing: the NMDA receptor is slower since at first its
channel is blocked by the magnesium (Mg2+) ion. The principal inhibitory
receptor is the gamma-Aminobutyric acid (GABA) which is made up of
two different subunits and allows the chloride (Cl-) ions to flow inside the
membrane causing the neuron inhibition [29].
Concerning the cerebellar cortex, Figure 2.6 shows (in red) the excitatory
synapses between mossy fibers and granular cells and (in light blue) the
inhibitory synapses between Golgi and granule cells. These synapses are
performed in a particular structure, called glomerulus, which hosts the Golgi
cell axon that ihnibits the granular cells dendrites (through the GABAergic
synapses) and the mossy fiber terminal which excites the granules dendrites
(through the glutamatergic synapses) (Figure 2.6).
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Figure 2.7: Different neuronal models. Each model is characterized by a biological

plausibility and an implementational cost [31].

2.3 Neuronal models: state of the art

In literature, several neuronal models more or less realistic are present.
Their biological plausibility is discussed by author of [31] on the base of
the behaviors that they can reproduce. The more functionalities a model
can reproduce the more it is complex. In Figure 2.7 different models are
shown on the base of their biological plausibility (i.e. the number of features
that they are able to replicate) and the implementation cost. As it will be
discussed at the end of the paragraph, the ability of a model to reproduce a
high amount of mechanisms implies a higher number of equations and so a
higher computational complexity. In Figure 2.7 the red circles indicate some
of the most used models which are explained in the following paragraphs.

2.3.1 Leaky Integrate-and-Fire model

The Leaky Integrate-and Fire (LIF) is one of the simplest and, for this
reason, most used models in computational neuroscience. It is character-
ized by only one differential equation (Equation 2.3) which gives a simple
relation between the membrane potential v, the synaptic current and, even-
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tually, an injected current I.

Cm
dv

dt
= −v(t) +RI(t) (2.3)

The equation is characterized by a capacitor Cm and a resistor R. When
the membrane potential v reaches a threshold vth, it is instantaneously set
to the resting membrane potential vr and it will mantain this value for
a small period called refractory period. Then, a new membrane potential
evaluation restarts as in Equation 2.3. This model is not able to reproduce
complex and very important behaviors such as the spike latency and it has
a fixed threshold. For these reasons, its biological plausibility is very low.
Despite this, it is very fast if the computational time is considered. It is
used in those applications that do not require a high level of realism but
which need only to know if a neuron has generated a spike or not [31].

2.3.2 Izhikevich model

The Izhikevich model is more realistic than the LIF one and it is char-
acterized by the following differential equations:{

dv
dt = 0.04v2 + 5v + 140− u+ I
du
dt = a(bv − u)

where v is the potential membrane, the variable u considers the membrane
recovery caused by the inactivation of Na+ ionic current and the activation
of K+ ionic current, I is the total current and a and b are suitable constants.
Once the spike has occurred, the model resets the variables v and u as
described in the following system:

if v ≥ 30 mV then

{
v = c

u = u+ d

where 30 mV is the peak value of the action potential, while c and d are
suitable costants. This model increases the level of biological plausibility
compared to the LIF since it has not a fixed threshold and it is able to
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Figure 2.8: The Hodgkin and Huxley model. Circuital model of the cellular

membrane [32].

reproduce different neurons behaviours. Nevertheless, it does not describe
all the physiological mechanisms of a neuron because it considers only the
membrane potential variations.

2.3.3 Hodgkin-Huxley model

The Hodgkin and Huxley (HH) model [32] is one of the most important
models due to the physiological realism that it reproduces. It is able to
describe the ionic channel dynamics and how the membrane permeability
depends on the membrane potential. It allows the study of aspects related
to the synaptic integration and it is able to exhibit the complete mean-
ingful neuronal behavior [33]. Hodgkin and Huxley described the cellular
membrane as a capacitor Cm since it keeps the ions separated on its sides
(Figure 2.8). The resistors stand for the ionic channels, contained in the
membrane, that allow the ions crossing. The voltage generators represent
the active transport mechanisms that characterized the cellular activity.
The current I that flows through the membrane is described as (Equation
2.4):

I = Cm
dVm
dt

+ Iion (2.4)
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where Vm is the membrane potential and Iion is the sum of the ionic cur-
rents. In this model the Na+ and the K+ channels dynamics are described.
Furthermore, a leakage current IL that represents the ionic fluxes in always-
opened channels is included. For these reasons the term Iion in Equation
2.4 is the sum of these three contributions (Equation 2.5):

Iion = INa + IK + IL (2.5)

Each ionic current is defined as the product between the channel conduc-
tance gion and the difference between the membrane potential Vm and the
equilibrium potential of the specific ion Eion, as shown in Equation 2.6.

Iion = gion(Vm − Eion) (2.6)

The ionic channels are characterized by the presence of particles, called
gating particles, whose position allows the channel opening or closure. The
HH model can reproduce their dynamic computing the channel conductance
as follows (Equation 2.7):

gion = gion ∗ xzion ∗ ykion (2.7)

where gion is the maximum conductance of the channel, xion and yion are
the state variables of the gating particles. They are the probabilities that
the gating particles occupy a certain position in the membrane. z and
k represent the number of activation and inactivation particles for each
channel [33]. The sodium channel has three activation particles m and one
inactivation particle h while the potassium channel has four gating particles
n. Their conductances are computed as in Equation 2.8 and Equation 2.9.

gNa = gNa ∗m3 ∗ h (2.8)

gK = gK ∗ n4 (2.9)

If the potassium conductance is considered, the variation of the gating
particle n over the time is described by the following first-order reaction
between open and closed state:

(1-n)
αn

βn
n
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where αn and βn are rate variables which depend on the potential. This
reaction is described by the Equation 2.10:

dn

dt
= αn(1− n)− βnn (2.10)

Assuming that:

n∞ =
αn

αn + βn
(2.11)

τn =
1

αn + βn
(2.12)

it is possible to rewrite Equation 2.10 as in Equation 2.13:

n(t) = n∞ − (n∞ − n) · e−
t
τn (2.13)

The same considerations can be done for the sodium channel and for its
gating particles m and h. Finally, after the gating particles definition, it is
possible to conclude that the Equation 2.4 can be rewritten as follows:

I = Cm
dVm
dt

+ gK ∗ n4(Vm − VK) + gNa ∗m3 ∗ h(Vm − VNa) + gL(Vm − VL)

(2.14)
As explained in this paragraph, the HH model is characterized by a higher
amount of differential equations than the previous models. This character-
istic allows, on one side, to reproduce the neuronal behavior with a high
level of realism. On the other side, it increases the implementation cost
and the simulation time. The choice of the model to use depends on the
final application. In this work, a more complex version of the HH model
is chosen since the goal is to reach a level of realism as high as possible.
The inevitable consequence of the increased computational cost is managed
exploiting the HPC technologies in order to reduce the execution time.

2.4 Neuronal models of the granule and the Golgi
cell

The models used to reproduce the behavior of the Golgi and the gran-
ular soma are based on the HH but they present a higher number of ionic
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channels. In Figure 2.8 it is possible to notice that each ionic channel
is represented by a branch of the circuit characterized by a resistor and
a voltage generator in series. In this new model a single channel can be
represented by several branches in parallel since each branch reproduces a
specific channel dynamic.

2.4.1 The granular cell model

Concerning the soma of the granular cell, the model has been improved,
as described in [34], to take into account some particular mechanisms re-
lated to ions. The sodium channel, for instance, is represented by three
currents: a fast Na+ current (INa-f), a persistent Na+ current (INa-p) and
a resurgent Na+ current (INa-r). The potassium channel is represented by
five currents which reproduce different dynamics: a current for rectified
delayed channels (IK-V), a current depending on intracellular calcium con-
centration (IK-Ca), a current for inward rectified channels (IK-IR), a current
for type-A channels (IK-A) and a current for slow kinetic channels (IK-slow).
The Nernst potential of the sodium and of the potassium channels are con-
stant during the neuronal activity evaluation. The calcium channel present
in the granule is characterized by a variable intracellular calcium concen-
tration [27]. The Ca2+ dynamic is described by the following differential
equation (Equation 2.15):

d[Ca2+]

dt
=
−ICa
2FAd

− (βCa([Ca
2+]− [Ca2+]0)) (2.15)

where d is the depth of the vesicle linked to the cellular membrane, whose
area is indicated with A. βCa determines the calcium ions leakage from the
cell, F is the Faraday costant, [Ca2+]0 is the calcium concentration at rest.
Equation 2.15 allows to compute the updated [Ca2+] value and to evaluate
a new Nernst potential ECa as described in Equation 2.1. The kinetic of
these ionic channels is described using the HH model and the gating particle
mechanism described above. Each channel is characterized by a different
number of activation and inactivation particles.
In this channel dynamic the temperature has an important role since it de-
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Figure 2.9: Granular cell representation. The model of the granule considers the

cellular soma and four excitatory and four inhibitory synapses.

termines the speed at which the particles modify the channel conformation.
For this reason, the variable Q∆T is considered in the simulation and it is
computed as follows:

Q∆T = Q
Tsim−Tesp

10
10 (2.16)

where Tsim is the temperature set in the simulation and Tesp is the one
of the reference experiment [34]. The granule cell activity is reproduced
by a mono-compartmental model (Figure 2.9) which provides a cellular
soma reproduction through the ionic channels dynamics and the equations
presented in this paragraph. The granules communicate with the other
cells through the synapses that, in this work, are directly linked to the
cellular soma, without taking into account axons and dendrites. Despite
this approximation, this model is able to reproduce the cell behavior in a
realistic way, as discussed in the following paragraphs. A typical behavior
of the granule cell is shown in Figure 2.10 where the soma is stimulated
with three different current injections: the first (10 pA) causes a potential
increase but its value does not reach the threshold and, for this reason,
the spikes do not occur. The next current injections (16 and 22 pA) excite
the cell enough to reach potential values over the threshold, so the action
potential are generated. It is important to notice that as far as the current
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Figure 2.10: Granular cell behaviors. Three different current injection excite the

granular cell. Graph generated with the NEURON simulator. On the x-axis the time expressed

in ms and on the y-axis the potential is expressed in mV.

amplitude increases the spike frequency grows up, as already explained in
Paragraph 2.2.2. According to the registrations reported in [35], at rest the
granular cells do not show a background activity, so they generate spikes
only if stimulated. The graph in Figure 2.10 is generated with the NEURON
simulator [36] which is a typical software used for the neuron reconstruction
and simulation and whose results are considered as golden reference for this
work.

2.4.2 The Golgi cell model

Golgi cells are inhibitory inter-neurons that can elaborate and transmit
signals in the granular layer of the cerebellum [33]. Unlike the granules,
at rest Golgi cells show a background activity generating action potentials
with a frequency of 6 Hz [35]. This normal low-frequency pacemaking, that
the Golgi cell shows when it is not stimulated, is represented in Figure
2.11.A. When the cell is stimulated by a current, it increases the spike fre-
quency as shown in Figure 2.11.B. The Golgi cell shows also two further
behaviors. For example, if it is stimulated by a -180 pA current, it stops
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A B

C D

Figure 2.11: Golgi cell behaviors. A) Low frequency pacemaking; B) High frequency

spike discharge after a current injection; C) Rebound excitation after a current injection of -180

pA; D) Phase reset of 6 Golgi cells after a current injection of 200 pA [33].

firing and, after a pause, it restarts with higher frequency. This behavior is
called rebound excitation and it is shown in Figure 2.11.C. Finally, in Figure
2.11.D the phase reset is presented. An input of 200 pA allows six Golgi
cells to restart spiking in phase without taking into account the preceding
phase [33].
Also for the Golgi cell, the model adopted to reproduce its activity is an ex-
tended HH model version. The ionic currents that characterized the soma,
in this model, and that can reproduce the regular pacemaking of the cell
(Figure 2.11.A) are the sodium persistent current (INa-p), the h current
(Ih), the SK-type small conductance calcium-dependent potassium current
(IK-AHP) and the slow M-like potassium current (IK-SLOW). These currents
together with the sodium resurgent current (INa-r) and the A-current (IK-A)
regulate the response frequency and delay [37]. The action potential gen-
eration is also due to the sodium transient current (INa-t) and K+ current
(IK-V). In this model also three currents which depend to the Ca2+ in-
tracellular concentration are considered: IK-C and ICa-HVA are involved in

42



2.5. Neuronal models of the chemical synapse

C4C1 C33C2

O1 O2

Figure 2.12: Markov gating scheme of the SK-type calcium dependent
potassium channel [33].

the fast phase of a spike, which is present after the hyperpolarization, and
the ICa-LVA improves the rebound depolarization [33]. The rebound excita-
tion, shown in Figure 2.11.C, is caused by the currents ICa-LVA and Ih. All
these currents are described by the gating particles model explained before.
Instead, the IK-AHP current is simulated with a Markov gating scheme char-
acterized by six states: C1, C2, C3 and C4 are the closed states while O1

and O2 are the open states (Figure 2.12). In this case the ionic conductance
is computed considering the sum of the open states, as shown in Equation
2.17:

gK−AHP = gK−AHP ∗ (O1 +O2) (2.17)

where gK-AHP is the maximum conductance of the channel. The Golgi cell
is reproduced by a multi-compartment model which considers the soma,
dendrites and axon (Figure 2.13). The soma (in red in Figure 2.13) is
a sphere and contains all the ionic channels shown before. Dendrites (in
green) and axon (in blue) lack channels and consist of resistors providing
connections between adjacent compartments. For this reason, they show
passive properties. Soma is also connected to a micropipette for signals
recording [33] [37].

2.5 Neuronal models of the chemical synapse

The granules and the Golgi cells can be stimulated by a current injection
in the soma or through the synaptic current generated in the neurons com-
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Figure 2.13: Multi-compartment model.

munication. To compute the synaptic current it is important to provide a
model that reproduces the presynaptic and the postsynaptic dynamics, al-
ready described in Paragraph 2.2.3. The presynaptic dynamic is reproduced
with a three-state kinetic scheme [38] where X is the amount of neurotrans-
mitter available for the release (which is included in the vesicles), Y is the
amount of released neurotransmitter and Z is the neurotransmitter recov-
ered in the presynaptic terminal. The transactions between the states are
defined by first-order kinetic reactions which are described by the following
differential equation system:

dX
dt = Z

τR
− P ∗X ∗ δ(t− tspike)

dY
dt = − Y

τ1
+ P ∗X ∗ δ(t− tspike)

dZ
dt = Y

τ1
− Z

τR
dP
dt = − P

τF
+ p(1− P ) ∗ δ(t− tspike)

where τR is a constant which describes the neurotransmitter recovery time,
τ1 is the inactivation constant, τF is the constant of the synaptic facilitation,
which occurs when two or more potentials reach the presynaptic terminal
in a very short range of time generating a transient increase of the synaptic
strenght [29]. P is the release probability, p its initial value and δ the Dirac
delta function. The excitatory and inhibitory action potentials occur in the
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presynaptic terminal with different frequencies depending on the neuron
typology. As the presynaptic terminals are activated, the neurotransmitter
is released and this amount is given by the sum of two terms: an impulsive
and a diffusive term (Equation 2.18).

[T ] = [T ]P + [T ]D (2.18)

where [T] is the total amount of the released neurotransmitter, [T]P is the
synaptic impulse and [T]D is the diffusive component which follows the
impulsive one. In particular, the release of neurotransmitter represented
with [T]P reaches the AMPA and the subunit α1 of the GABA-A receptors,
which are located in front of the synaptic cleft, so in front of the released
site. The neurotransmitter molecules described by the diffusive compo-
nent reach the NMDA and the subunit α6 of the GABA-A receptors. The
glutammate and GABA concentrations depend on the distance r from the
released site. They are computed as follows:

[Glut]d =
M

4hπDeff t
e

−r2
4Deff t (2.19)

[GABA]d =
M

4hπDeff t
e

−r2
4Deff t (2.20)

where M is the number of released molecules, Deff is the effective diffusion
coefficient and h is the vescicle depth [38]. The link between the neurotrans-
mitter and the postsynaptic receptors activates the kinetic scheme which
are characterized by first-order reactions. The current which flows through
the receptors channels is computed as in Equation 2.21.

Ireceptor = greceptor ∗ (Vm − Vrev,receptor) ∗O(T ) (2.21)

where greceptor is the maximum conductance of the receptor channel, Vm the
membrane potential and Vrev,receptor is the ionic reversal potential. O(T)
is the kinetic scheme open state which depends on the neurotransmitter
concentration [38]. Each receptor current is considered in the Equation 2.4
to update the membrane potential value.
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Figure 2.14: AMPA kinetic scheme. 3-state kinetic scheme: C, D and O are the

closed, open and desensitized state respectively.

The kinetic scheme of the AMPA receptor (Figure 2.14) presents three
states: the open state O, the closed state C and the desensitized state D. In
order to take into account the temperature, all the kinetic costants (r1, r2,
r5, r6) are multiplied by the temperature factor computed in Equation 2.16,
while only r1 and r6 are multiplied by the neurotransmitter concentration
[38]. The kinetic scheme of the NMDA receptor (Figure 2.15) presents
five states, three of which are closed states (C0, C1 and C2), one is the
open state O and D is the desensitized state. The general equation for
the computation of the receptor current, shown before (Equation 2.20), is
slightly modified in the case of the NMDA. In fact, the receptor channel is
initially blocked by the magnesium (Mg2+) and this has to be considered
in the current computation which is defined as follows (Equation 2.22):

INMDA = gNMDA ∗ (Vm − Vrev,NMDA) ∗O(T ) ∗B (2.22)

O

D

Rb*T

Ru
C0 C2C1

Rb*T

Ru Rc

Ro

Rr RdRate

Figure 2.15: NMDA kinetic scheme. 5-state kinetic scheme: C0, C1 and C2, D and

O are the closed, open and desensitized state respectively.
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where O(T) is the open state and B is computed as follows:

B =
1

1 + e−
Vm−V0

k

(2.23)

where V0 is -20 mV and k is 13 mV [38]. The GABA kinetic scheme is more
complex than the previous one and it is made up of eight kinetic states,
two of which are the open ones (OA1 and OA2). In this case, the current
is computed as shown in Equation 2.24, considering the sum of the open
states.

IGABA = gGABA ∗ (Vm − Vrev,GABA) ∗ (OA1(T ) +OA2(T )) (2.24)

Finally, it is possible to conclude that the cellular current can be computed
considering both the synaptic (Iions) and the ionic (Isynapses) currents as
follows (Equation 2.25):

I = Cm
dVm
dt

+ Iions + Isynapses (2.25)

2.6 Golgi and granular cell simulators

At first, the Golgi and granular cells models have been developed by
the Neurophysiology laboratory of the University of Pavia exploiting the

DA1

C

OA1

r2 d2

OA2

CA1 CA2

DA2

DA2f
r3

r1 d1

2koff

kon*T

b1 a1 b2 a2

2kon*T

koff

d3

d1d2*T

r1r2

Figure 2.16: GABA kinetic scheme. 8-state kinetic scheme: C, CA1 and CA2 are

the closed states, DA1, DA2 and DA2f are the desensitized states and OA1 and OA2 the open

states.
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Python language since these codes are used in the NEURON simulator.
NEURON allows to reproduce the activity of a single cell or of a neuronal
network considering also the cell morphology. A negative aspect which
characterized this software is the amount of time which takes to run a
simulation. As said before, the computational complexity of these realis-
tic models demands a performant technology capable of reproducing the
neuron activities with a reduced elaboration time attempting to reach the
real-time simulation. As previously explained, this task is very difficult
to achieve due to a range of aspects such as the models complexity, the
number of neurons that characterizes the simulation (about 100 billion in
the human brain [39]) as well as all the hardware characteristics that a
technology must be provided in order to perform these heavy simulations
(i.e. power supply, computation power, memory size). The first phase of
the work involved the development of the algorithm in C language in order
to have a serial reference and a first version to exploit parallel technologies
easily. This phase does not correspond to a simple algorithm translation
from the NEURON files to C language, but requires the development of
entire code parts (as the differential equations system resolution), intrinsic
in NEURON. Once completed the granular and Golgi cells serial codes, a
first parallel version of the models has been implemented exploiting the
OpenMP 2.0 API. The aim of these parallel codes is only to evaluate a first
parallelization using a multicore approach, exploiting the processor cores
in parallel. Therefore, the OpenMP solution exploits simply directives and
is not as optimized as the manycore version, written in CUDA C language,
which exploits the GPU technology. Even the Field Programmable Gate
Array (FPGA) technology has been evaluated in this work. In fact, a cir-
cuital model of the granule soma has been designed in order to evaluate
the performance of this technology. The circuital model [27], developed
with Quartus Prime, has been deployed on an Altera Stratix V FPGA [40].
The simulation carried on this device concerned 3 s of cellular activity of a
single granule, considering three different current injections (10, 16, 22 pA
as shown in Figure 2.10) and not taking into account the synapses. The
simulation satisfied the real-time constraint but the main issue was that all
the logic elements available on the board were used only for one cellular
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soma. Since the main goal of this work is to simulate the granular layer
network, it is clear that a single FPGA is not enough for this workload. For
this reason, in the following paragraphs, the parallel versions for the GPU
technology of the Golgi and granule cells, also included in the granular layer
network, will be presented in detail.

2.6.1 Multi-compartmental Golgi cell simulators

The serial algorithm

As previously said, the serial code was the first algorithm implemented.
Its development started from the algorithm designed for the NEURON sim-
ulator but has been completely rewritten according to the models presented
above, providing the solutions to their differential equations. For each Golgi
cell, the algorithm evaluates its synaptic and cellular activity, the current
contribution and, at the end, updates the membrane potential. The main
flow of the algorithm is shown in Figure 2.17. The First phase concerns
the parameters initialization. In particular, all the variables related to the
Golgi cell are stored in a structure, called Golgi cell. It contains two other
structures (one for the excitatory and one for the inhibitory synapse), the
membrane potential v, the synaptic current i syn, the ionic channel current
and conductance i ion and g respectively, all the gating particles of each
ionic channel, and the Nernst potential related to the two different calcium
channels go eca1 and go eca2. In particular, the two currents are computed
as described in the previous paragraphs. The two structures which repre-
sent the synapses contain all the parameters related to the presynaptic and
postsynaptic terminals models described in Paragraph 2.5.

1 s t r u c t Go l g i Ce l l {
2 s t r u c t goc syn ecc syn ecc [N SYN EXC ] ;
3 s t r u c t go c syn in i b syn in i b [ N SYN IN ] ;
4 f l o a t v ; //Membrane po t e n t i a l [mV]
5 f l o a t i s yn ; // Synaptic cur rent
6 f l o a t i i o n ; // I on i c channel cur rent
7 f l o a t g ion ; // I on i c channel conductance
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8 f l o a t a l l the gat ing p a r t i c l e s o f each i o n i c channel ;
9 f l o a t go eca1 ; //Nernst Ca po t en t i a l (1 )

10 f l o a t go eca2 ; //Nernst Ca po t en t i a l (2 )
11 } ;

Each synaptic structure has an array, called spike queue, which contains all
the instants of time in which spikes occur in the presynaptic sites during the
simulation. In fact, it is important to highlight that in this phase of the work

First phase
Parameters initialization

Second phase
Computations of the conductances and the currents of the
receptors channels (Synaptic Activity)

Third phase
Computations of the conductances and the currents of the 
ionic channels (Cellular Activity)

START

END

Fourth phase
Sum currents and conductances

Fifth phase
Update membrane potential

t<TF

false

true

n<ngoc

true

false

Figure 2.17: Main flow of the Golgi cell algorithm [33].
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the cells are independent and they do not communicate. For this reason,
the signal exchange is reproduced generating the spikes in the initialization
phase through Spike Train Generator function. It creates a spikes queue
simulating the signals that reach the Golgi cell during its neuronal activity
in a network. It is possible to set a range of time in which the function has to
generate the action potentials. Furthermore, the frequency with which the
spikes occur has to be set: the value is chosen on the base of the typology
of the neuron connected to the Golgi cell. The number of spike queues
generated for each cell is equal to the number of synapes simulated. Once
the synaptic and cell structures are declared, the dynamic allocation of the
Golgi structure is performed through a malloc function and the amount
of memory reserved for this allocation depends on the number of Golgi
cells (n goc) that the user wants to simulate. After the First phase, the
algorithm proceeds with a for loop which iterates on the number of cells
(n goc) and, then, with the evaluation of the synaptic and cellular activity
of the n-th Golgi. The pseudo-code of this part is shown in Algorithm 1 [33].

1 for n← 1 to n goc do
2 for t← 1 to TF do
3 for e← 1 to syn ecc do
4 if spike then
5 compute glutamate concentration
6 remove the spike from the queue

7 end

8 end
9 for i← 1 to syn inib do

10 if spike then
11 compute GABA concentration
12 remove the spike from the queue

13 end

14 end
15 compute INMDA, IAMPA, IGABA and i syn
16 compute the ionic currents and their sum i ion
17 check if there are some injected currents in the soma
18 update the membrane potential

19 end

20 end

Algorithm 1: Evaluation of the synaptic and cellular activity.
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The neuronal activity of each cell lasts TF time steps and the discretiza-
tion step is 0.025 ms according to the value set in the NEURON software.
The evaluation of the synaptic activity (Second phase) starts computing
the amount of neurotransmitter released by the presynaptic terminal that
reaches the postsynaptic neuron. In particular, for each excitatory (lines 3-
8) and inhibitory (lines 9-14) synapses, the spike queue is evaluated and, if a
spike occurs in the presynaptic terminal, the differential equations system,
presented in Paragraph 2.5, is solved and the amount of released neuro-
transmitter is computed as in Equation 2.18. When this amount is known,
the NMDA, AMPA and GABA receptors currents can be computed by solv-
ing their kinetic schemes and determining the open state of each scheme
(as shown in Paragraph 2.5). Then, they are accumulated in the variable
i syn which is in the Golgi structure (line 15). This term will be used in the
final membrane potential update. The Third phase consists in the cellular
activity evaluation. The value of the gating particles of each ionic channel
is updated and, then, the channel conductances and currents are computed
and their values are summed and stored in the variables g ion and i ion
(lines 16-17). As an example, the code related to the computation of the
potassium current and conductance is shown:

1 void computeKConductanceCurrent ( f l o a t v , f l o a t e , f l o a t * iK ,
f l o a t *gK) {

2 f l o a t an , bn , tau n , n i n f ;
3 ratePotass ium (v,&tau n , &n i n f ) ;
4 an=n i n f / tau n ;
5 bn=1/tau n ;
6 computeN(&n , an , bn) ;
7 (*gK)= gkbar Q10*n*n*n*n ;
8 (* iK )=(*gK) *(v−e ) ;
9 }

At first, the ratePotassium function (line 3) computes the variables τn and
n∞ (in the code tau n and n inf) as shown in Equation 2.11 and Equation
2.12, respectively. Then, an and bn (lines 4-5) are calculated in order to
compute the gating particle n value through the function computeN (line
6), which solves the Equation 2.13. Finally, the conductance gK and the
current iK are computed (lines 7-8) as described in Equations 2.9 and 2.6 re-
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spectively. Then, the algorithm proceeds checking if some injected currents
are present and, in this case, they are considered in the potential update.
At the end, the synaptic, the ionic channels and, eventually, the injected
currents are considered in the membrane potential update (Algorithm 1 -
line 19) [33].

The parallel algorithms

As previoulsy said, in this phase of the work, all the Golgi cells are inde-
pendent. This aspect is crucial in the development of the parallel versions
of the Golgi cells algorithm since their neuronal activity can be evaluated at
the same time. Concerning the first parallel solution, a multicore strategy
has been chosen exploiting the OpenMP API. The CPU threads evaluates
the activity of different Golgi simultaneously, reducing the computational
time of the simulation. As for the manycore solution, GPUs are the flagship
devices for parallel high performance computing on a desktop. In this case,
thousands of cores compute in parallel the neuronal activity of the cells.
Figure 2.18 shows the Golgi cell algorithm where, in red, the parallelized
part is highlighted. The iterations of the first for loop, which represent the
Golgi cells, are executed in parallel.
Concerning the first OpenMP implementation [33], the idea is that each
thread computes the last four phases of the algorithm in Figure 2.18, for
a group of cells. Since the number of Golgi cells simulated is n goc and
the simulations are carried out on an Intel i7 with eight logical cores, each
thread will evaluate the activity of a number of cells equal to n goc/8.
The #pragma statement allows to generate a parallel region where each
thread manages a group of iterations of the for loop. In the case of the
first OpenMP version (Figure 2.19.A), the loop #pragma statement is in-
troduced before the for loop which iterates on the cells number:

1 #pragma omp p a r a l l e l f o r shared ( g o l g i c e l l ) p r i va t e ( p r i va t e
v a r i a b l e s ) schedu le ( s t a t i c )

2 f o r ( j = 0 ; j < n goc ; j++) {
3 f o r ( t = 0 ; t < TF; t++) {
4 . . .
5 }

53



2. A realistic cerebellar granular layer simulator on parallel technologies

6 }

The variable golgi cell is the array of structures presented above and it is
defined shared so that it is visible by each thread of the parallel region.
The variables declared as private are the ones referred to the synaptic and
cellular activities and that are hidden from the other threads. The schedule
clause indicates the scheduling policy which will be discussed later. The
main difference between this first OpenMP version with the second one is
the point where the parallel region is generated. Figure 2.19 shows the
comparison between these two codes. In the first case, the parallel region

First phase
Parameters initialization

Second phase
Computations of the conductances and the currents of the 
receptors channels (Synaptic Activity)

Third phase
Computations of the conductances and the currents of the 
ionic channels (Cellular Activity)

START

END

Fourth phase
Sum currents and conductances

Fifth phase
Update membrane potential

t<TF

false

true

n<ngoc

true

false

Figure 2.18: Main flow of the Golgi parallel algorithm. The figure shows the

main steps of the Golgi algorithm. In the red box there is the part of the code that is parallelized.
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Figure 2.19: Comparison between two OpenMP versions. A) First OpenMP

version [33]; B) Second OpenMP version.

has been generated before the for loop related to the cells (Figure 2.19.A):
for this reason, as previously said, each thread computes the activity of
a group of Golgi cells. In the second case (Figure 2.19.B), the two loops
are swapped and the parallel region is generated after the for loop related
to the simulation time. This means that each thread computes a single
discretization step (ti) of the activity for all the cells. In this case the two
for loops are developed as follows:

1 f o r ( t = 0 ; t < TF; t++) {
2 #pragma omp p a r a l l e l f o r shared ( g o l g i c e l l ) p r i va t e ( p r i va t e

v a r i a b l e s ) schedu le ( s t a t i c )
3 f o r ( j = 0 ; j < n goc ; j++) {
4 . . .
5 }
6 }

At the end, a variant of this last version has been developed in order to
reduce the parallelization overhead. In this case the for loop related to the
time of the simulation has been replaced with a while loop. The parallel
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region is generated before the while loop, as shown in the following code:

1 #pragma omp p a r a l l e l f o r shared ( g o l g i c e l l ) p r i va t e ( p r i va t e
v a r i a b l e s )

2 whi le ( t < TF) {
3 #pragma omp f o r schedu le ( s t a t i c )
4 f o r ( j = 0 ; j < n goc ; j++) {
5 . . .
6 }
7 }

The main difference is that in the second OpenMP version the parallel re-
gion is generated during each iteration of the for loop. In the third version,
this region is created once before the while loop. In the following paragraph,
the results of these three multicore versions will be discussed, evaluating
different scheduling types (static, dynamic, guided and runtime).
To exploit the manycore phylosophy and the GPU technology, a Golgi al-
gorithm version written in CUDA C language has been developed. Figure
2.20 shows the main flow of the parallel algorithm. The flow starts on the
host where the parameters initialization of the First phase is performed.
Unlike the serial code, this version includes a further step which concerns
the data packing in arrays that have to be transferred on the device. This
phase is crucial to reach high performance and to reduce the computational
times. In fact, if not properly managed, the data transfer could be the bot-
tleneck of the process. In order to prevent this potential slow-down, all the
data related to the cells have been stored at contiguous memory addresses
trying to minimize the bus activations during the transfer. The idea is
to create a 1D array and to join the data according to their physiological
meaning. For example, considering the spike queues presented above, the
adopted strategy in the data packaging is shown in Figure 2.21.

It is important to consider that, in this case, the word synapse is not
referred to a single connection between two neurons. Here it indicates the
totality of the connections that a Golgi cell makes on the basis of where
the connections are located. In fact, the Golgi cells present two excitatory
synapses that represent the connections that they make in their apical and
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Figure 2.20: CUDA parallel algorithm [33].

basal dendrites and a synapse which represents the inhibitory connections.
So, it is possible to say that in this model the Golgi cell is characterized
by three synapses (two excitatory and one inhibitory) while always keeping
in mind that the element synapse includes hundreds of connections that a
Golgi cell performs in the reality.
As said before, in the model each synapse is characterized by a spike queue.
In order to transfer all the spikes related to all the cells synapses, the
strategy is to create an array which contains all these data organized so
as for each cell, the spikes related to the excitatory synapses (in green in
Figure 2.21) are firstly stored, followed by the ones related to the inhibitory
one (in red) [33]. This strategy, illustrated for the spike queues, has been
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Figure 2.21: Data packing. All the data are stored at contiguous memory addresses to

improve the performance. This figure shows the case of the spike queues packaging [33].

followed for all the data transfers from host to device. Once the data have
been transferred and stored in the device global memory, they have to be
copied in the shared memory so that they can be quickly accessed by all
the threads in the block. The block dimension is set as a multiple of 32,
according to the warp dimension, in order to optimize the scheduling carried
out by the NVIDIA Giga Thread scheduler [33]. For this reason, each block
contains all the data related to the Golgi cells whose activity is evaluated
by the threads in that block.
After storing all the data in the blocks local memory, the computation can
start. A kernel (represented in the light blue dotted box in Figure 2.20) is
generated with a grid dimension defined according to Equation 2.26.

dimgrid =
n goc

nthreads
(2.26)

where n goc is the number of Golgi cells and nthreads is the number of
threads that are in one block of the grid. In this case, this number is set
to 32. If the remainder of Equation 2.26 is not equal to zero, dimgrid is
incremented by one. Since the kernel evaluates simultanously the activity
of different cells, the first for loop presented in the previous versions is
not necessary. Each thread of the kernel evaluates the complete neuronal
activity of the Golgi cell, starting from the Second phase which concerns
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the synaptic activity described above. Once the receptors currents have
been computed, the cellular activity evaluation can start (Third phase).
As described above, all the gating particles values are updated in order to
compute the ionic channels conductances and currents. Then, the algorithm
evaluates if some injected current stimulates the cell. If so, this term will be
considered with the other currents in the Fifth phase, where the membrane
potential is updated. For each cell, all the updated membrane potential
are stored in the global memory at contiguos addresses in order to follow
the previously explained strategy. In fact, these values are then transferred
from the device to the host where the final results are written.
A second CUDA parallel version has been developed in order to both exploit
a multi-GPU system and to analyse the scalability on multiple devices. The
idea is to divide the evaluation of the neuronal activity of the cells into two
groups, each one performed by a GPU, as shown in Figure 2.22. In this way,
each device has to evaluate the neuronal activity of n goc/2 cells. After the
parameters initialization, the data packing is performed by storing the data
into two 1D arrays, one for each GPU. In Figure 2.22, the data transferred
from host to device 0 are indicated with a green dotted arrow, while those
sent to device 1 with the red one. The data transfers on the two devices
are performed calling the function cudaMemcpyAsync using streams, which
allow to call the GPU functions in an asynchronous and non-blocking way,
so that the two devices can work in parallel. It is important to underline
that, even if a multi-GPU system is used, in this case the GPUDirect tool
is not needed since the two devices do not have to communicate. At the
beginning, the workload is separated and the computation performed on
the device 0 is independent from the one managed by the device 1. After
the data transfers, the kernels are executed one on each GPU, always using
streams. The phases contained in each kernel are the same described above
for the single-GPU code. Once the neuronal evaluation of all the cells
finishes, the results are transferred from the devices to the host.

59



2. A realistic cerebellar granular layer simulator on parallel technologies

HOST DEVICE 1

First phase
Parameters initialization

Vector packaging

Second phase
Computations of the conductances and 
the currents of the receptors channels 
(Synaptic Activity)

Third phase
Computations of the conductances and 
the currents of the ionic channels 
(Cellular Activity)

START

END

Fourth phase
Sum currents and 
conductances

Fifth phase
Update membrane 
potential

t<TF

true

false

DATA TRANSFER

Kernel end
DATA TRANSFER

DEVICE 0

Second phase
Computations of the conductances and 
the currents of the receptors channels 
(Synaptic Activity)

Third phase
Computations of the conductances and 
the currents of the ionic channels 
(Cellular Activity)

Fourth phase
Sum currents and 
conductances

Fifth phase
Update membrane 
potential

t<TF

true

false

DATA TRANSFER 

Kernel end
DATA TRANSFER

Figure 2.22: Golgi algorithm for multi-GPU system.

Results

The Golgi cell multicores and manycores codes have been tested on
System 1 and System 2 presented above. In particular, the multi-GPU
code is also tested using both the GPUs of System 1. All the codes have
been compiled using Microsoft Visual Studio 2015 environment and the
nv140 compiler. Concerning CUDA GPU version, the environment used
is the 8.0. Microsoft Visual Studio C compiler supports the OpenMP 2.0
paradigms. OpenMP support has been enabled using the flag /openmp.
The computational times presented in this paragraph are the average of five
executions and they refer to simulations of 3 s of neuronal activity either
in vivo (from 0 to 1,500 ms) and in vitro (from 1,500 to 3,000 ms). This
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2.6. Golgi and granular cell simulators

Cell number Serial - System 1 [s] Serial - System 2 [s]

1 0.22 0.20
5 0.87 0.70
10 1.68 1.36
50 8.25 6.58
100 16.23 13.12
500 81.29 65.95
1,000 163.21 130.33
5,000 811.13 648.67
10,000 1,636.16 1,306.96
25,000 4,051.93 3,251.67
50,000 8,101.58 6,644.69
100,000 16,321.40 13,035.67
200,000 32,863.56 30,086.51
400,000 66,406.62 51,793.64

Table 2.1: Computational times of the serial algorithm. These computational

times concerns the serial algorithm executed on the System 1 (equipped with a Intel i7 3770, 4

cores, 8 GB RAM and 3.40 GHz of working frequency) and on the System 2 (equipped with a

Intel i7 6700, 4 cores, 32 GB RAM and 3.40 GHz of working frequency).

means that in the first half of the simulation the synaptic activity is present
while in the second part there are only current injections without synaptic
activity. The computational times of the serial algorithm are shown in
Table 2.1.

As it is possible to see in Table 2.1, the evaluation of the activity of
400,000 cells takes respectively about 18 and 14 hours if System 1 or System
2 are considered. This result confirms that the simulation of the neuronal
activity of a huge amount of cells, described by a very complex models,
takes a lot of time. The final simulation of the granular layer network
will contain a higher number of cells and, for this reason, it is crucial to
exploit HPC technologies in order to increase the performances. Another
analysis that can be done is that the processor of System 2 is more efficient
than System 1 one. The reason is the different architecture of the two
processors. In particular, System 1 is equipped with a processor based on
Intel 3rd generation Core architecture (Ivy Bridge) while System 2 features
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2. A realistic cerebellar granular layer simulator on parallel technologies

a device based on Intel 6th generation Core architecture (Skylake).
Table 2.2 and Table 2.3 show the computational times of the three

OpenMP algorithms exploiting System 1 and System 2. Both the systems
are characterized by a processor with 4 physical and 8 logic cores. Each
code presents four versions where the scheduling type changes (static, dy-
namic, guided and runtime). As described before, the first OpenMP version
performs in parallel the neuronal activity evaluation, generating a parallel
section before the for loop which iterates on the cells number. The second
version computes each discretization step of the activity simultaneously
for all the cells. The third version follows the same strategy with the ex-
ception of the parallel region that is not generated at each iteration but
only once. What is important to notice in these tables is that the mul-
ticore strategy provides a speed-up when compared to the serial version.
In particular, if the three algorithms are considered, the OpenMP - Ver-
sion 1 with the guided scheduling achieves the best results both considering
System 1 and System 2. This version introduces a lower parallelization
overhead than the other two: in fact, in OpenMP - Version 2 the paral-
lel region is generated during each iteration, while the OpenMP - Version
3 presents nested pragmas and the Microsoft compiler is less efficient in
the code generation. Table 2.4 shows the computational times related to
the single-GPU CUDA version performed on System 1 (equipped with the
Tesla K40) and on System 2 (equipped with the GTX1060). Moreover, the
table presents the multi-GPU results considering the simulation carried on
the two Tesla K40 board contained in System 1 but also on one node of
the CINECA supercomputer named Galileo [41]. Each node of Galileo is
equipped with two GPU NVIDIA K80 [42] characterized by 4992 CUDA
cores with a dual-GPU design, 24 GB of GDDR5 memory and 480 GB/s
memory bandwidth.

Analyzing results in Table 2.4 it is clear that the manycore solution is
the best performing since it significantly reduces the computational times of
the serial and multicore solutions. The simulation of the neuronal activity
of 400,000 cells on System 1 takes about 28 minutes instead of about 18
hours of the serial code and about 4 hours of OpenMP - Version 1. It
is also important to observe that System 2 provides good results in the
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2.6. Golgi and granular cell simulators

Single GPU Multi GPU
Cell number CUDA - System 1 [s] CUDA - System 2 [s] CUDA - System 1 [s] CUDA - Galileo (CINECA) [s]

1 8.36 5.24 - -
5 8.45 5.24 8.39 -
10 8.54 5.27 8.41 -
50 8.88 5.28 8.84 -
100 8.86 5.31 8.81 7.57
500 8.32 5.62 8.72 7.18
1,000 8.08 5.83 8.16 7.14
5,000 24.40 24.68 15.69 6.81
10,000 47.97 88.26 24.28 13.12
25,000 108.94 107.53 54.91 19.89
50,000 209.46 - 108.67 45.61
100,000 411.14 - 209.25 83.29
200,000 816.23 - 410.73 159.63
400,000 1,675.70 - 898.55 313.10

Table 2.4: Computational times of the single-GPU CUDA algorithm.

System 1 Cineca System 2

Cell number
OpenMP

Version 1 [s]
CUDA

Single GPU [s]
CUDA

Multi GPU [s]
CUDA

Galileo [s]
OpenMP

Version 1 [s]
CUDA

Single GPU [s]

1 0.88 0.03 - - 0.86 0.04
5 3.22 0.10 0.10 - 2.12 0.13
10 2.67 0.19 0.20 - 2.77 0.26
50 4.38 0.93 0.93 - 3.76 1.25
100 4.45 1.84 1.84 2.14 3.88 2.47
500 4.71 9.77 9.32 11.32 4.12 11.73
1,000 4.74 20.20 20.00 22.86 3.89 22.35
5,000 4.66 33.24 51.70 119.11 4.13 26.28
10,000 4.77 34.11 67.39 124.70 3.98 14.81
25,000 4.88 37.19 73.79 203.72 4.30 30.24
50,000 4.71 38.68 74.55 177.63 4.07 -
100,000 4.94 39.70 78.00 195.96 4.11 -
200,000 4.83 40.23 79.95 205.87 4.65 -
400,000 4.84 39.63 73.90 212.09 4.02 -

Table 2.5: Speed-up System 1, Galileo (Cineca) and System 2

execution of the CUDA code but it is not able to simulate the activity of
a number of cells higher than 25,000. This is due to the limited amount of
memory of this GTX 1060 board. The performances further grow up if the
multi-GPU algorithm is considered. The simulation of 400,000 cells takes
about 15 minutes in case of System 1 and only 313.10 s considering the
Galileo supercomputer. As it is possible to see from the table, tests with
low number of cells are not executed since the multi-GPU systems increase
their performance with a great amount of neurons to simulate. Finally, to
facilitate the comparison of the results, Table 2.5 shows the speed-up of
OpenMP - Version 1 (with guided scheduling), of the single GPU and, for
System 1, of the multi-GPU algorithms with respect to the serial code.
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2. A realistic cerebellar granular layer simulator on parallel technologies

As previously said, the multicore solution provides reduced computa-
tional times compared to the serial version, both considering System 1 and
System 2. This first parallelization allows to reach a speed-up equal to
4.94×. If the manycore solution is considered, the computational times are
further reduced, obtaining speed-up that reach 40.23× for the single-GPU
algorithm and 79.95× for the multi-GPU (System 1). Moreover, if the sim-
ulation performed on the supercomputer Galileo is considered, the speed-up
reaches 212.09×. Analyzing these results, it is clear that to achieve a real-
time simulation, considering these complex mathematical models, a huge
computing power is needed. In this context, the multi-GPU systems are an
efficient technology to significantly reduce the elaboration times.
At the end, it is crucial to observe that the serial and the developed parallel
algorithms can correctly reproduce the Golgi cell behaviors presented above.
In particular, Figure 2.23.A shows the natural pacemaking that the Golgi
cell presents at rest. If the cell is stimulated with two current injections, it
increases the frequency in the spikes generation: Figure 2.23.B shows the
response to a 100 pA current injected from 1,000 to 2,000 ms and to a 200
pA current injected from 2,000 to 3,000 ms. As said before, as the current
amplitude increases, also the frequency of the spikes occurrency grows up.
These algorithms are even able to reproduce the rebound excitation (Figure
2.23.C) and the phase reset (Figure 2.23.D) described above. In particular,
the phase reset has been simulated considering six cells firing at different
phases: after a specific injection the cell starts to spike simultaneously.

2.6.2 Mono-compartmental granular cell simulators

1 The serial and parallel versions of the granule have been previously
implemented by the author of this PhD work during her master thesis. In
this paragraph a short explanation of this algorithm is given since it will

1The contents of this paragraph are published in Florimbi G., Torti E.,
Masoli S., D’Angelo E., Danese G. and Leporati F., ”The human brain
project: parallel technologies for biologically accurate simulation of granule cells”,
https://doi.org/10.1016/j.micpro.2016.05.015, Creative Commons CC-BY-NC- ND li-
cense, Microprocessors and Microsystems, 2016.
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2.6. Golgi and granular cell simulators

A B

C D

Figure 2.23: Golgi cells behaviors. These graphs have been generated with the

developed simulator. A) Natural pacemaking of the Golgi cell; B) Golgi cell response to two

different current injections; C) rebound excitation; D) phase reset.

be included in the granular layer network, presented below.

The serial algorithm

The mainflow of the serial algorithm which reproduces the granule cell
model is shown in Figure 2.24. In the algorithm implementation, the same
strategy used for the Golgi cell has been used. In fact, it is possible to
notice that the phases that characterized the algorithm are the same. The
main differences are the typology of ionic channels present in the cellular
soma and the number of synapses. The First phase concerns the param-
eters initialization and sets the variables which describe the synapses and
the granules behaviour. Furthermore, in this phase, conductances are mul-
tiplied by a corrective factor which represents temperature effects. The flow
proceeds with a loop which describes each granule cellular activity. This
iteration continues until t<TF where t is simulation time and TF is the last
instant of the cellular activity. The first phase of this cycle is made up of
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First phase
Parameters initialization

Second phase
Computations of the conductances and the currents of the 
receptors channels (Synaptic Activity)

Third phase
Computations of the conductances and the currents of the 
ionic channels (Cellular Activity)

START

END

Fourth phase
Sum currents and conductances

Fifth phase
Update membrane potential

t<TF

false

true

n<ngrc

true

false

Figure 2.24: Main flow of the granular cell algorithm.

the following steps, that compute:

1. the glutamate amount released by the presynaptic terminal;

2. kinetics states of the AMPA and NMDA channels;

3. conductances and currents of these receptors;

4. the GABA amount released by the presynaptic terminal;

5. kinetics states of the GABA channels;

6. conductances and currents of this receptor.
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Finally, all the excitatory and inhibitory synaptic currents are computed
as described in Equations 2.20, 2.22 and 2.24 respectively. The successive
step (Third phase) is characterized by the computation of the conductances
and currents of the ionic channels, presented in Paragraph 2.4.1, described
by the gating particles model. All the ionic and leakage currents and con-
ductances are summed and stored in suitable variables. The Fourth phase
consists in the sum of the synaptic and ionic conductances and currents
computed at the previous steps. At the end (Fifth phase), the membrane
potential is updated as in Equation 2.25. This algorithm allows to per-
form two different simulations: the first one, called in vitro, shows how the
neuron reacts to a current injection in the soma, without taking into ac-
count synaptic activity. The variable which describes the injected current
amplitude is added to the other currents. In this kind of simulation the
synaptic current is of course forced to 0 pA (no synaptic activity in Second
phase). On the other hand, an in vivo simulation should be performed, to
understand how the neuron reacts to spikes generated by the presynaptic
terminal while there is no current injection.

The parallel algorithms

The loop iterations present in Figure 2.24 and describing the cellular
activity of each granule are independent. For this reason, it is possible to
execute these iterations simultaneously using the multicore and manycore
strategies described above. Here again, as for the Golgi parallel algorithms,
the part of the flow that can be parallelized is the one inside the first
for loop which iterates on the number of cells. Concerning the multicore
strategy, the OpenMP 2.0 API has been exploited. Also for the granule
code, each thread calculates the cell activity of a granules group. The
algorithm has been modified introducing suitable #pragma statements and
specifying which variables are private or shared regards to the other threads.
This implementation is tested on an Intel i7 processor with four physical
cores (eight logical cores), therefore each thread computes the cell activity
of N CEL/8 granules, where N CEL is the number of simulated granules.
As previously said, to achieve further acceleration, the algorithm has been

69
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developed in CUDA C exploiting the GPU technology. Also in this case
the idea is to execute the loop iterations in parallel: each thread calculates
the activity of each granule simultaneously. Also for the CUDA algorithm
development, the strategy adopted is the same used in the Golgi code. The
GPU parallel execution can be resumed in these three main phases:

1. device memory allocation and variable transfer from host to device;

2. kernel execution;

3. results transfer from device to host and device memory deallocation.

In particular, as the GPU is initialized and once the data are transferred
from host to device, a unique kernel is launched. The kernel contains all the
phases inside the time loop presented in Figure 2.24. In fact, each thread
evaluates the neuronal activity of a single granule cell. At the end of the
computation, the membrane potential values are transferred from device
to host. The memory transfers from host to device and viceversa are time
consuming processes that have to be properly managed. All the transferred
data are stored in 1D array consecutive locations allowing a considerable
gain of time.
Also in the case of the granular cell model, a multi-GPU algorithm has
been developed following the same strategy described for the Golgi cells.
The workload has been divided among two devices. For this reason, at
the beginning of the computation, the host transfers data both to device 0
and device 1 and the flow proceeds as shown in Figure 2.22 for the Golgi
algorithm.

Results

The serial, OpenMP and CUDA versions have been executed on System
1, already presented in Paragraph 1.2.2. Also in this case the multi-GPU
algorithm has been tested also on the Galileo supercomputer. The sim-
ulated cell activity lasts 3 s: in the first half there is a current injection
(without synaptic activity) while in the remaining one there is only synap-
tic activity. Simulations have been conducted with an increasing granule
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2.6. Golgi and granular cell simulators

# Granules Serial [s] OpenMP [s]
System 1

Single GPU [s]
System 1

Multi GPU [s]
Galileo

Multi GPU [s]

1 0.34 0.36 10.11 - -
5 1.71 1.00 10.15 - -
10 3.34 2.06 10.17 - -
50 16.70 8.97 18.75 - -
100 33.54 16.54 18.77 - -
500 167.11 83.95 36.85 - -

1,000 334.15 175.99 55.55 31.79 14.74
5,000 1,646.17 837.12 205.04 94.55 14.78
10,000 3,243.43 1,684.89 393.76 177.43 28.79
25,000 8,813.9 4,266.81 975.40 429.37 71.92
50,000 16,225.42 7,902.71 1,949.47 846.56 153.09
100,000 32,620.71 16,505.73 3,892.24 1665.51 288.95
200,000 65,282.04 30,524.79 7,778.74 3318.40 564.44
400,000 129,894.74 67,268.86 15,580.25 6645.82 1126.59

Table 2.6: Granular cells serial and parallel algorithms results. The table

presents the computational times obained with the execution of the serial, OpenMP and CUDA

codes. The times are expressed in seconds and refers to a cellular activity evaluation of 3 s.

number, from 1 to 400,000, and an increasing synapse number, from 8 to
3,200,000 (8 synapses for each granule). Serial and OpenMP execution
times are lower than the CUDA ones for simulations of a few granules. If
the simulated cells number grows up, GPU is the best solution as it can be
seen in Table 2.6, where the multi-GPU computational times are also pre-
sented. It is important to highlight that the evaluation of 400,000 granules
activity takes about 36 hours if the serial code is considered. This time is
considerably reduced if the CUDA code for a single GPU is used: it takes
about 8 hours. A further reduction of the elaboration times is obtained
with the multi-GPU systems: in fact, System 1 takes less than 2 hours and
the Cineca supercomputer takes about 18 minutes. Notice that System 1 is
equipped with a total of 5760 cores, while one node in the Galileo systems
contains a total amount of 11,520 cores. This computational power allows
to reach the speed-up shown in Table 2.7. These values prove that the GPU
is an efficient technology to perform this kind of simulation, providing great
speed-up especially if the multi-GPU systems are considered. For example,
as for 400,000 neurons, the speed-up reaches 19.67× and 115.65× if Sys-
tem 1 and Galileo are used. As the number of simulated cells increases the
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# Granules OpenMP [s]
System 1

Single GPU [s]
System 1

Multi GPU [s]
Galileo

Multi GPU [s]

1 0.93 0.03 - -
5 2.00 0.17 - -
10 1.62 0.33 - -
50 1.86 0.89 - -
100 2.03 1.79 - -
500 1.99 4.53 - -

1,000 1.89 6.01 10.51 11.38
5,000 1.97 8.03 17.40 22.67
10,000 1.92 8.24 18.28 111.38
25,000 1.91 8.39 19.06 112.66
50,000 2.05 8.32 19.16 113.79
100,000 1.98 8.38 19.58 105.99
200,000 2.14 8.39 19.67 112.89
400,000 1.93 8.34 19.54 115.65

Table 2.7: Granular cells serial and parallel algorithms speed-up. The

table presents the speed-up obained comparing the OpenMP and CUDA codes with the serial

algorithm.

speed-up calculated between the serial code and the GPU versions grows
up until it becomes constant because sequential code parts prevail on the
parallel ones. Higher GPU performances are due to massive parallelism of
the algorithm and also to the optimization of variables transfer described
before.
This type of simulation is very useful for two main reasons: to have a par-
allel version of the algorithm, which will be included in the network and
to evaluate in parallel the neuronal activity of a huge amount of cells that
could be stimulated by different physiological protocols (injected currents
profiles). Finally, Figure 2.25 shows that also these algorithms are able to
correctly reproduce the cellular response to three different current injec-
tions. The first current (10 pA) is under threshold and, for this reason, the
granule does not generate spikes. The other two currents (16 and 22 pA)
excite the cell that shows the action potentials with an increased frequency
due to the increased current amplitude.
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Figure 2.25: Granule cell simulation results. The cell is stimulated by three

different current injection (10, 16, 22 pA). In this case a cellular activity evaluation of 6 seconds

has been performed to compare the results with the reference graph shown in Figure 2.10.

2.7 The cerebellar granular layer network

In the first part of the work, presented in the previous paragraphs, the
granules and Golgi cells simulators have been developed. This phase was
crucial to evaluate an efficient technology capable of significantly reducing
the elaboration times of the serial algorithms. Moreover, the parallel al-
gorithms developed in this step will be used in the granular layer network
described in this paragraph. As presented in Paragraph 2.2, the cerebellar
granular layer hosts the granule and Golgi cells which connect their den-
drites and axons in structures called glomeruli, reached also by the mossy
fibers [35]. The aim of this phase of the work is to create a granular layer
reproduction, considering the connection rules to realistically link neurons,
including the granule and Golgi simulators described above. The develop-
ment of this neuronal network consists in two main phases:

� network design;

� neuronal network actvity simulation.
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2. A realistic cerebellar granular layer simulator on parallel technologies

Figure 2.26: Cerebellar neuronal network. The Figure on the left shown the

cerebellar cortex, that is made up of three layers: the granular (GC), the Purkinje (PC) and the

molecular (ML) layer, represented in the central image. On the right it is possible to see the

model which riproduces these three layers.

The network design phase consists in placing different type of neurons as
realistically as possible in a 3D space, taking into account their cellular
morphology. Moreover, in this step the neurons connection has been im-
plemented following defined rules which try to reproduce the biological in-
teractions that occur between different cells. Once the elements are placed
and connected, their neuronal activity is simulated exploting the cellular
simulators (neuronal network actvity simulation phase).
Also in this case, at first the serial algorithm of the network design and of
the activity simulation has been developed in C language. Then, a parallel
version of the simulation part has been implemented to exploit the GPU
technology.

2.7.1 Network design

The granular layer network structure has been generated following de-
tailed anatomical and functional information. It is important to highlight
that the basic idea followed in the network development has been to con-
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2.7. The cerebellar granular layer network

Dimension [µm]

LENGHT 600
HEIGHT 150
DEPTH 1200

Table 2.8: Volume size.

struct a non-fixed structure. This means that even though the network is
defined by specific structural and connection rules it is still possible to mod-
ify its size and to change the dimension of several physiological elements
(such as soma, dendrites, axons). In fact, the aim is to build a paramet-
ric network which can reproduce different configurations only by changing
the variables values. The volume that will be reproduced in this work is
characterized by the dimensions presented in Table 2.8. As previously said,
the user can change these values and test new configurations. To the best
of the author knowledge, this network configuration includes anatomical
details and parameters values that are the most relevant in the literature.
The advantage of considering a non-fixed structure is also crucial in or-
der to change the network configuration when new anatomical details or
values will be discovered. On the other hand, this flexibility should be in-
tended only in terms of parameters variability rather than inserting new
constraints.
The network design phase and, therefore, its serial algorithm, consists of
three main steps:

� compute the elements number;

� displace the elements in a 3D space;

� connect the elements.

First of all, the number of granules, Golgi cells and glomeruli has to be
computed considering their density in a volume. In this particular simu-
lation, the used density values are the ones indicated in [35] and referred
to a rat but, as said before, the user could change these values if new data
will be provided. Table 2.9 shows the density values and the number of ele-
ments that this volume can host. The number of cells has been obtained by
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dividing the elements density by the considered volume. Once the elements
number has been computed, the flow proceeds with the dynamic allocation
of the arrays which contain the Golgi cells, granules and glomeruli coor-
dinates and all the connection schemes, that will be discussed later. The
arrays c glo, c goc and c grc contains the elements coordinates and they
are allocated through the malloc function as follows:

1 c g l o=( f l o a t *) mal loc ( (N COORD* n g lo ) * s i z e o f ( f l o a t ) ) ;
2 c g r c=( f l o a t *) mal loc ( (N COORD* n grc ) * s i z e o f ( f l o a t ) ) ;
3 c goc=( f l o a t *) mal loc ( (N COORD*n goc ) * s i z e o f ( f l o a t ) ) ;

where N COORD is the number of coordinates and n glo, n goc and n grc
are the number of glomeruli, Golgi cells and granules respectively. The first
version of the elements displacement algorithm placed the neurons and the
glomeruli in a random way while considering all the converge/divergence
constraints that the elements present. This first solution was inefficient
since it has not been capable of inserting all the granule cells, due to their
great density value. For this reason a second version has been implemented.
It inserts the elements in a partially random way following a specific tech-
nique which divides the volume in layers and starts by placing firstly the
Golgi cells, followed by granules and glomeruli.
Along the z-axis the volume is divided in layers: the user can choose the
number of layers. In this case this number is set to five as shown in Fig-
ure 2.27. Each layer will contain a number of Golgi cells computed as in
Equations 2.27:

n goc z =
n goc

n layers z
(2.27)

At this point, if the remainder of the division is zero, each layer (indicated
with the red arrow in Figure 2.27) has to be filled with n goc z Golgi cells.
Otherwise, the algorithm redistributes the amount of missing cells com-

Element Density [1/mm3] Number

Golgi 9000 972
Granule 4×106 194400

Glomerulus 3×105 32399

Table 2.9: Elements in the network.
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Figure 2.27: z-layers in the Golgi cells displacement. The volume is divided

in layers in which the Golgi cells will be placed.

puting how many z-layers has to contain a number of Golgi cells equal to
n goc z+1 (indicated with n goc z1). At this point, each z-layer (i.e., x-y
plane) is divided in cells which have a rectangular parallelepiped shape and
whose length and depth are determined on the base of the soma diameter.
In this case, in fact, the cellular soma is represented by a sphere and, in
the case of Golgi cell, its diameter is equal to 15 µm [43]. As example,
Figure 2.28 presents only the parallelepipeds that fill the first z-layer. The

z

x
y

z1

Figure 2.28: Rectangular parallelepipeds in the x-y plane. Each z-layer is

divided in rows along the y-axis where rectangular parallelepipeds are placed to host the cells.
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algorithm begins to place the Golgi cells starting from the blue row of par-
allelepipeds and scanning all the y-rows until the red one is reached. Also in
this case, the algorithm computes how many cells has to put in each y-row:
if the number of cells to put in this z-layer was n goc z, the computation is
described by Equation 2.28; otherwise, the Equation 2.29 is used.

n goc y =
n goc z

n row y
(2.28)

n goc y1 =
n goc z1

n row y
(2.29)

In these Equations, n row y is the number of rows present in each z-layer,
that in Figure 2.28 is set to 7 as example. Also in this case, the algorithm
evaluates if the remainders are zero and, if not, it will displace n goc y cells
in row y goc rows and n goc y+1 cells in row y goc1 rows (in the case of
n goc y to be displaced in a z-layer). The same line of reasoning is followed
if n goc y1 cells have to be placed and the remainder of Equation 2.29 is
not zero. Once determined how many Golgi cells has to be placed in each y-
row, the algorithm starts the displacement following some rules in order to
respect some biological constraints. To better analyze how the algorithm
acts, Figure 2.29 shows all the steps to fill a x-y plane (z-layer). Figure
2.29.A shows a top view of the x-y plane considered before. Each rectangle
represents the top face of the parallelepipeds shown before. It is important
to highlight that the number of parallelepipeds present in the x-axis de-
pends on their size that, in turn, depends on the cellular soma diameter, as
previously said. The algorithm begins placing the cells starting from the y1
layer (light blue color). In this specific example, the algorithm has to place
three cells in each y-row. The column x1 and x13 are inhibited from the
cells displacement since the correspondent space is dedicated to the basal
dendrites of the Golgi cells, in case the algorithm will place these neurons
in boxes x2 and x12. This space is considered only along the x-axis (and
not along the y-one) where the Golgi cell projects its basal dendrites. The
space for the apical dendrites is not considered in the granular layer design
since they ascend to the molecular layer [43]. In the y1 row, the algorithm
can place the three cells starting from the box x2 to the x12, so it has eleven
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A B

C D

E F

x1 x2 x3 x4 x5 x6 x7          x8         x9         x10       x11        x12        x13 x1 x2 x3 x4 x5 x6 x7          x8         x9         x10       x11        x12        x13

x1 x2 x3 x4 x5 x6 x7          x8         x9         x10       x11        x12        x13 x1 x2 x3 x4 x5 x6 x7          x8         x9         x10       x11        x12        x13

x1 x2 x3 x4 x5 x6 x7          x8         x9         x10       x11        x12        x13 x1 x2 x3 x4 x5 x6 x7          x8         x9         x10       x11        x12        x13

Figure 2.29: Steps to place the Golgi cells in a x-y plane. A) Top view of a

x-y plane; B) the algorithm considers three sectors to place three cells in the first row; C) one

cell is placed and the space for the dendrites is left; D)-E) the second and third cells are placed;

F) all the cells are inserted in the first z-layer.

boxes in which place the elements. These boxes are divided in three sectors
(Figure 2.29.B) where the algorithm randomly inserts a cell: this division
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ℎ𝑧2

ℎ𝑧1

Figure 2.30: Golgi cells into the parallelepiped.

is necessary to avoid that the first element get placed in the lasts boxes of
the row. In fact, in this case, it would not have enough space to place the
other two cells. Following this technique, the first element is placed in the
first area (in this case boxes x2-x5), for example in box x2 (Figure 2.29.C).
Once the cell is placed, the algorithm inhibits the following two boxes (in-
dicated with the red cross) leaving space for the dendrites. Then, the free
boxes start from x5 to x12 so this space can be used for the remaining two
cells. In this case, two sectors are generated, each containing four boxes
(Figure 2.29.D). The second cell is inserted in x6, and x7 and x8 are left
for the dendrites. Finally, when the third cell is placed (Figure 2.29.E), the
first row y1 is completed. In the same way, the algorithm continues to fill
the x-y plane placing three cells per row. Figure 2.29.F shows the entire z1
layer, with all the cells inserted.
The technique just explained assigns the x and y coordinates to each cell.
Let’s consider the Figure 2.30 in order to understand how the cell is placed
in the parallelepiped and to analyze how the algorithm establishes the z
coordinate. The height of the parallelepiped is higher than the soma di-
ameter so that the z coordinate is randomly selected inside the box. For
example, in Figure 2.30, the coordinate is chosen in the range hz1 and hz2,
which are the minimum and the maximum height of the first z-layer (z1). In
this way, all the Golgi cells inside a layer are not placed at the same height.
This technique, just explained for the first z-layer, is applied throughout the
volume and, at the end, all the Golgi cells are placed. Figure 2.31.A is a
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Figure 2.31: Golgi cells displacement. A) Golgi displacement schema; B) Algorithm

result.

schema of the Golgi cells displacement while Figure 2.31.B is the algorithm
result.
The pseudo-code related to the technique just explained is shown in Algo-

rithm 2. In line 1 the algorithm evaluates if all the z-layers are characterized
by the same number of Golgi cells or not. If not (so the remainder of Equa-
tion 2.27 is not zero), two for loops have to be executed. The former starts
in line 2 and fills Zlayermid layers with n goc z cells; the latter (line 16) fills
the remaining layers with n goc z1 cells. Inside each for loop the xy-layers
are filled with elements. In line 3, the remainder of the Equation 2.28 is
evaluated. If it is different from zero, in the yth-xy-plane, a number of rows
equal to XYlayermid has to be filled with n goc y Golgi cells (for loop in
lines 4-6); while the remaining rows (for loop in lines 7-9) are filled with
n goc y+1 elements. If the if condition in line 3 indicates that all the rows
inside a xy-plane have the same number of cells, they are all filled with
n goc y cells (for loop in lines 11-13). The same reasoning is applied in
the for loop of lines 16-29 where n goc z1 cells have to be placed: in this
case the number of elements to consider in each xy-plane is n goc y1, if
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1 if z-layers with different number of cells then
2 for z ← 1 to Zlayermid do
3 if xy-plane with different number of cells then
4 for y ← 1 to XY layermid do
5 generate coordinate Golgi cells;
6 end
7 for y ← XY layermid to XY layertot do
8 generate coordinate Golgi cells;
9 end

10 else
11 for y ← 1 to XY layertot do
12 generate coordinate Golgi cells;
13 end

14 end

15 end
16 for z ← Zlayermid + 1 to Zlayertot do
17 if xy-plane with different number of cells then
18 for y ← 1 to XY layermid do
19 generate coordinate Golgi cells;
20 end
21 for y ← XY layermid to XY layertot do
22 generate coordinate Golgi cells;
23 end

24 else
25 for y ← 1 to XY layertot do
26 generate coordinate Golgi cells;
27 end

28 end

29 end

30 else
31 for z ← 1 to Zlayertot do
32 ...
33 end

34 end

Algorithm 2: Golgi displacement pseudocode.

82



2.7. The cerebellar granular layer network

1 INPUT: n goc row, y, z.
2 for j ← 1 to n goc row do
3 if count = 0 then
4 min=border;
5 else
6 min=border+box;
7 end
8 max=(count+1)*(boxes free/ n goc row);
9 box=rand()%(max-min+1)+min;

10 coo x= (((box+1)+box)*diam goc)/2;
11 coo y= (((y+1)+y)*diam goc)/2;
12 coo z= z rand* (z max-z min+1)+z min;
13 count++;
14 store the coordinates in the c goc array;
15 marked as occupied the cubes related to this parallelepiped;

16 end
17 OUTPUT: c goc.

Algorithm 3: Golgi coordinates generation.

the remainder of Equation 2.29 is zero; otherwise, the amount is equal to
n goc y1+1. Finally, if the first if condition in line 1 is false, all the z-layers
have to be filled with the same number of the Golgi cell (for loop in lines
31-33). The code of this loop is not shown since it is the same presented
in lines 3-14. The Algorithm 3 shows the pseudo-code of the function gen-
erateCoordinateGoc which is called when every row, inside a xy plane, has
to be filled. This function receives as input the height z of the layer, the
depth y of the row inside the z-layer and the number of cells to displace in
this row (n goc row). A for loop which iterates on n goc row starts in line
2 and ends in line 16. For each cell, at first the algorithm computes the
minimum and the maximum value of the sector in which the cell could be
placed. If the algorithm is evaluating the first cell, the minimum is equal to
the border dimension; otherwise, it is given by the border added to the box
which has been selected for the previous cell. The maximum is computed
on the base of the previous selected cell, as said before (Figure 2.29). In line
9 the box is selected in the just defined range. At this point is possible to
compute the x coordinate (line 10) as the center of the selected box, which
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Figure 2.32: Glomeruli and granules cubes.

has a side equals to diam goc, and the y coordinate (line 11), always in the
center of the box, but determined by the depth of the current row. Then,
the z-coordinate is computed as shown in Figure 2.30. The counter is now
updated and these coordinates are stored in the c goc array. Finally, the
algorithm marks as occupied the cubes which are inside the parallelepiped
of the Golgi just selected.
Once the Golgi cells are placed, the algorithm has to insert in the volume
the glomeruli and the granules. Both are represented by spheres with a
diameter equal to 5µm. The strategy adopted to place the glomeruli and
the granules is the same of the Golgi cells. In this case, each Golgi paral-
lelepiped is filled by several cubes (Figure 2.32), with side equals to 5µm,
where the glomeruli and granules will be inserted. During the glomeruli and
granules displacement, a further constraint is added to avoid that these el-
ements are placed where the Golgi cells are. When the algorithm has to
insert a glomerulus (or a granule), it has to check if the red parallelepiped
is already occupied by a Golgi or if it is in the borders, which are inhibited
from the displacement, as said before. For this reason, the algorithm has
three possible alternatives:

1. the parallelepiped is empty, so it is possible to insert the elements
(Figure 2.33.A);

2. the parallelepiped already hosts a Golgi cell, so it is not possible to
insert the elements (Figure 2.33.B);
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3. the parallelepiped corresponds to the border space, so it is not possible
to insert the elements (Figure 2.33.C).

It is important to underline that, if a Golgi occupies a parallelepiped, the
cubes inside are inhibited from the displacement in order to leave space
for the Golgi dendrites. As explained in Algorithm 3, while the algorithm
displaces the Golgi cells, it also marks as occupied all the cubes inside its
parallelepiped, so that they would not be considered during the glomeruli
and granules displacement. As said before, the strategy to fill the volume
with glomeruli and granules is the same of the Golgi cells and shown in
Algorithms 2 and 3: taking into account how many elements to put in each
layer and in each row, it starts from the z1 layers and places all the cells be-
ginning from the blue rows until the red one. At first, the algorithm inserts
the glomeruli and, after having marked these boxes as occupied, places the
granules. The result is shown in Figure 2.34. At the end of this phase, the
c goc, c glo and c grc arrays are filled with the elements coordinates.
The last step of the design network phase is the connection schemes devel-
opment. They are linear matrices which contain the information of how
neurons, glomeruli and mossy fibers are connected following convergence/-
divergence rules. The aim of the network is to reproduce the feedforward
and feedback loops: in the first case, the mossy fibers excite the granules
and Golgi dendrites and these latter inhibit granules; in the second case,
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Figure 2.33: Glomeruli and granules displacement.
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the mossy fibers excite the granules and, then, the parallel fibers excite the
Golgi cells which latter inhibit the granules [44]. The connection schemes
generated to reproduce these loops are between:

� granular cells and glomeruli (link GrcGlo);

� Golgi cells axon and glomeruli (link GocGlo);

� Golgi cells basal dendrites and glomeruli (goc dend basal glom);

� mossy fibers and glomeruli (link MossyGlo);

� granule (ascending axon and parallel fibers) and Golgi cells
(asc axon cluster, pf goc links);

� Golgi cells and Golgi cells (gap junction).

Granules - glomeruli connection

According to [35] and [44], the convergence rate between glomeruli and
granular cells is 4:1, which means that 3-5 short granule dendrites are con-

Figure 2.34: Golgi, granules and glomeruli displacement. This image shows

the displacement results. In blue there are the Golgi cells, in red the granules and in green the

glomeruli.
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2.7. The cerebellar granular layer network

nected to the same number of glomeruli. The dendrites could not reach
glomeruli farther than 40 µm, while the mean of dendritic length is 13.6
µm. Moreover, the granule must project its dendrites to four different
glomeruli [35]. The function that develops this connection is generateLink-
GloGrc and receives as input the granules and glomeruli coordinates and
an array counter glom, which takes into account the number of free position
in each glomerulus. Each glomerulus has about 50 places available for the
connection with the granules dendrites, since the divergence rule between
a glomerulus and granule dendrites is 1:53 [44]. The aim of this function
is to find, for each granule, the four closest glomeruli. The pseudo-code of
this function is presented in Algorithm 4. The code starts with the decla-

1 INPUT: c glo, c grc, *counter glom;
2 ind dis structure declaration and initialization;
3 for i← 1 to n grc do
4 for j ← 1 to n glo do
5 if counter glom[j]!=0 then
6 compute the distance between i and j;
7 if distance <= distance max dendrite then
8 if distance < last element in the dist array (structure) then
9 store distance in the last position of the dist array;

10 store index of the glomerulus in the last position of the
index array;

11 sort the dist elements;

12 end

13 end

14 end

15 end
16 decrease the number of free positions in the glomeruli just linked to the

granules;
17 end
18 store the connections in the link GrcGlo arrays.
19 OUTPUT: link GrcGlo.

Algorithm 4: Granule - glomeruli connection.

ration of the structure ind dis which is made up of two arrays, each with
four positions: dist contains the distances between the elements and the
index the glomeruli indexes. In lines 3-4 two for loops start: the former
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Figure 2.35: link GrcGlo array.

iterates on the granules number and the latter on the glomeruli. If the
j-th glomerulus has at least one place available for the connection (line 5),
the Euclidean distance between the i-th granule and the j-th glomerulus
is computed. If this distance is lower than the maximum dendrite length
(i.e., 40 µm) (line 7), it can be considered for the connection. Moreover,
if this distance is lower than the one stored in the last position of the dist
array (line 8), it is overwritten in the same position of the dist array and
also the glomerulus index j is stored in the index array (lines 9-10). The
dist elements are, then, sorted in ascending order, keeping track of the cor-
respondent indexes. When four glomeruli have been selected for a granule,
the counter which takes into account the free position in the correspondent
glomeruli is decreased. At the end, the connections are stored in the linear
matrix link GrcGlo, which presents the elements as shown in Figure 2.35.
This array contains a number of elements equal to the number of connec-
tions per each granule (that is four) multiplied by the granules number. For
each granule, the indexes of the four connected glomeruli are stored.

Golgi (axon) - glomeruli connection

The Golgi axons are placed in the granular layer spreading longitudi-
nally. They enter in the glomeruli to inhibit the granule cells. The con-
vergence rate between the glomeruli and the Golgi cell is 50:1 [35] [44]. In
this case, a crucial rule has to be followed: a Golgi axon can enter only in
glomeruli without granule cells in common. In this way a granule cell is
not inhibited twice by the same Golgi cell. The function that generates this
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2.7. The cerebellar granular layer network

connection is called generateLinkGloGocAxon. It generates the connection
in the same way seen in Algorithm 4, with a further step. It compares the
Golgi cells and the glomeruli: if their distances are less than 150 µm (the
mean of the axon length), the value is considered for a possible connec-
tion. At this point, if the distance constraint is satisfied, the algorithm has
two choices: 1) if it is evaluating the first glomerulus for that Golgi cell,
the glomerulus index is stored; 2) otherwise, it has to check if the selected
glomerulus hosts some dendrites belonging to granules which, in turn, are
hosted in glomeruli already selected for that Golgi cell. If this check is
passed, the glomerulus index is stored for that Golgi cell. The array which
contains all the Golgi axons - glomeruli connection is link GocGlo, and fol-
lows the same strategy described in Figure 2.35: for each Golgi cell, the
related glomeruli indexes are stored.

Golgi (basal dendrites) - glomeruli connection

The Golgi basal dendrites spread around the soma. They reach the
glomeruli where they make excitatory synapses with the mossy fibers. The
number of glomeruli that the basal dendrites of a single Golgi can reach is
computed as follows:

n glo per dend =
n glo

n goc
(2.30)

Since the basal dendrites are placed in the bottom part of the Golgi soma,
the algorithm checks the glomeruli which are characterized by a z coordinate
which is lower than the Golgi one. Moreover, since the basal dendrites
spread along the x axis (as said before in the Golgi displacement), the
algorithm searches the glomeruli in an elliptic cylinder, that is a cylinder
with an elliptical cross section. In this case the major axis is determined by
the maximum length of a basal dendrite, while the minor axis is obtained
by the NEURON simulator settings. The Golgi soma is in the center of the
top elliptical face of the cylinder. In this case, the function that generates
the connections is called generateLinkGloGocBasalDendrite and compares
the Golgi cells with glomeruli. If a glomerulus is inside the elliptic cylinder,
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GOLGI CELL

GLOMERULI
Front view Lateral view

Figure 2.36: Golgi basal dendrites - glomeruli connections. The image shows

in blue the Golgi soma and, in green, the glomeruli connected to the Golgi cell through the basal

dendrites.

built as just explained around the Golgi soma, its index is stored in a
suitable array, called goc dend basal glom. In Figure 2.36 it is possible to
see the glomeruli chosen by the algorithm for a specific Golgi cell.

Mossy fibers - glomeruli connection

The main input to the cerebellum comes through mossy fibers, which
enter in the granular layer and branch longitudinally generating numerous
rosettes, i.e. clusters of glomeruli [44]. In order to reproduce this input, at
first the number of mossy fibers that reaches this portion of the network
has been computed as the ratio between the number of glomeruli and the
number of ramifications that a mossy shows. Once the number of mossy is
known, the algorithm starts to link them to glomeruli: since they branches
along the x-axis, the volume is divided in sectors (as shown in Figure 2.37)
and each group of mossy fibers reaches one of this sectors. To link a mossy
fiber to a glomerulus, the algorithm firstly sorts all the glomeruli in ascend-
ing order accordingly to their y coordinate. Then, it defines the sectors
whose minimum and maximum are represented by the glomeruli with the
lowest and the highest y and x coordinates, respectively. Inside a sector, a
defined number of mossy fibers (three in Figure 2.37) choose the glomeruli
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Figure 2.37: Golgi basal dendrites - glomeruli connections. The image shows

in blue the Golgi soma and, in green, the glomeruli connected to the Golgi cell through the basal

dendrites.

in a random way. At the end, all the connections are stored in the lin-
ear matrix link MossyGlo which contains the glomeruli indexes for all the
mossy fibers.

Granule (ascending axon and parallel fibers) - Golgi cells connec-
tions

The granules axons cross vertically the cerebellar purkinje layer, which
contains the Purkinje soma, and reach the molecular layer where it branches
into parallel fibers which run trasversally, i.e., along the y axis. Even if this
work aims to reproduce the granular layer, it is important to take into
account these connection schemes in order to reproduce the feedback and
feedfarward loops, simulating all the connections between neurons. It has
been observed that granule cells form their connections through parallel
fibers but also along the ascending axon, so the part of axon which pass
through the purkinje layer before branching [43]. Moreover, work in [44]
reports that the convergence rate between ascending axon and Golgi cell
is 400:1 and between parallel fiber and Golgi cells is 1000:1. Firstly, the
algorithm computes the connections between the ascending axons and the
Golgi cells. The idea is to create a cluster which surrounds the Golgi cell,
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Figure 2.38: Granular ascending axon - Golgi connection. The image shows

in blue the Golgi soma and, in red, the granules. The elliptic cylinder in light red is the space

where the granules are selected for the connections. The red dotted lines represent the acending

axon while the blue dotted lines are the Golgi apical dendrites. In the orange box the algorithm

result is shown: the red spheres are the granules selected for the Golgi cells in blue.

where the algorithm can choose granule cells to link. The building of this
cluster is shown in Figure 2.38. The blue sphere is the Golgi soma and
around it the elliptic cylinder cluster (in red) is built. The major axis of
the ellipse is defined by the maximum length of the apical dendrites, while
the minor is given by their depth. For each Golgi, the algorithm selects 400
granules inside this cluster (red cylinder) avoiding the blue cylinder which
is the area under the Golgi soma, where is less possible to have connections.
The algorithm, thus, randomly selects a granule and checks if it is inside the
red cylinder. If yes, its index is stored in the linear matrix asc axon cluster
which contains all the granules indexes per each Golgi cell. As far as the
parallel fibers are concerned, the algorithm evaluates two connection ty-
pologies: the distal and local parallel fibers. The Algorithm 5 presents how
the code computes these connections. The inputs of the algorithm are the
number of distal and local connections (n connectionL, n connectionD) and
the granules and Golgi coordinates. In line 2 a for loop, which iterates on
the Golgi cells, starts. The algorithm evaluates z dend tree which is the
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1 INPUTS: n connectionL, n connectionD, c grc, c goc;
2 for i← 1 to n goc do
3 compute z dend tree, the maximum height of the apical dendritic tree;
4 for j ← 1 to n grc do
5 if counter local=num connectionL then
6 if j-th grc is inside the ellips then
7 if z coord + aa height <= z dend tree then
8 store grc index and computes the time;
9 counter local++;

10 end

11 end

12 end
13 if counter distal=num connectionD then
14 if j-th grc is inside the parallelepiped then
15 store grc index and computes the time;
16 counter distal++;

17 end

18 end

19 end

20 end
21 OUTPUT: pf goc links.

Algorithm 5: Parallel fibers - Golgi connection.

maximum height of the apical dendritic tree (line 3). It is important to
know this data in order to understand if the parallel fibers will cross the
dendritic tree, and do the connection, or not. Then the granules are evalu-
ated (line 4): at first the algorithm checks if all the local connections have
been performed (line 5). If not, it evaluates if the j-th granule is inside an
ellipse built around the Golgi cell (line 6), presented below. If yes, the al-
gorithm computes if the parallel fiber crosses the Golgi dendritic tree (line
7): this means that it has to check if the sum of the z-coordinate of the
j-th granule and its ascending axon is lower then z dend tree. If yes, the
connection is generated. Then, the algorithm continues searching the distal
connections with the same strategy (lines 13-18). The main difference is
that in this case it is checked if the granule is inside a parallelepiped and
not an ellipse, as shown below. It is important to underline that, in the
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case of the parallel fibers connection, are stored both the granules indexes
and also the time that the signal takes to start from the granule, to pass
through ascending axon and parallel fiber and reach the Golgi dendrite.
The time is computed by dividing the covered distance by the signal ve-
locity. In this phase of the work, the distance value is approximate and
it is given by the sum of the ascending axon length and the distance be-
tween the Golgi and granule soma. This is an approximation because in
this case these two terms are considered as straight lines while in nature
they are not. A more realistic distance computation will be included in
the future. Moreover, since the divergence rate between parallel fiber and
Golgi is 1:1.9 [44], a parallel fiber is connected twice to a granule. For this
reason two instants of time are stored, representing both the connections.
During the time computation a random term is inserted in order to rep-
resent the two connections at two different points along the parallel fiber.
Figure 2.39 shows the ellipse and the parallelepiped used to compute the
local and distal connections. Finally, it is important to notice that if the
simulated volume is too small to find distal parallel fibers the algorithm
will automatically select only the local parallel fibers for the connections.

Golgi cells - Golgi cells through gap juctions

Golgi cells are connected through gap-junctions present in the apical
dendrites [44] [43], as shown in Figure 2.40.

In this case the algorithm, for each Golgi cell, selects the two closest
Golgi cells to perform the gap junction. When the dendritic tree mor-
phology will be inserted in the model, a more realistic connection will be
studied.
Once the connection scheme have been generated, the network activity can
be simulated.

2.7.2 Granular layer simulators

In this phase of the work, it is possible to simulate the network activ-
ity using the neuronal simulators and the connection schemes presented in
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Figure 2.39: Parallel fibers - Golgi connections. A) Scheme that shows the

connection between a parallel fiber (red dotted line) and a Golgi cell apical dendrite, inside the

dendrtitic tree (in light blue); B) granules selection for the local and distal connections; C) link

between a parallel fiber and a Golgi generated by the model.

this chapter. In fact, once the Golgi and granule cells activities are repro-
duced, their outputs can be correctly exchanged between the granular layer
elements on the base of the connections.

The serial algorithm

Figure 2.41 shows the flow of the network serial algorithm. The First
phase of the algorithm consists in the connection schemes reading. More-
over, some schemes have been joined in order to facilitate the signal ex-
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Figure 2.40: Golgi connections through gap junctions. The image shows the

connection of Golgi cells through gap junctions (indicated by = ) in the apical dendrites. In the

image GoC are the Golgi cells, pf the parallel fibers, GrC the granule cells and mf the mossy

fibers [43].

change during the activity simulation. For example, mossy fibers excite
granules in the glomeruli. For this reason, the scheme link MossyGlo,
containing the mossy - glomeruli connections, has been joined with the
scheme link GrcGlo, containing the granule-glomeruli connections. The
new scheme is called link mossy grc which directly link the mossy fibers
to the granule cells. During the Second phase the granule and Golgi cells
parameters are declared and initialized, as previously described. The Third
phase concerns the computation of the spikes queues produced by the mossy
fibers. In fact, through the SpikeTrainGenerator function, presented above,
a spike queue for each mossy is created. Then, these spikes are stored in the
spike queue arrays contained in the synapses of the Golgi and granule cells
connected to those mossy. Then, the algorithm can start the network activ-
ity computation. What it is important to notice is that: while the cellular
simulators analysed, for each cell, its whole activity, the network simulator
has to evaluate the same instant of time for all the cells. The reason is that
in the first case the cells were independent, so the algorithm could com-
pute the entire activity of a cell and then analyse the following one. Now
neurons have to communicate so, after evaluating a single instant time of a
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Figure 2.41: Granular layer network - serial algorithm.

cell, the generated signal is transmitted to the connected element. For this
reason, the first for loop iterates on the time of the simulation. Then, the
t-th instant of time of the Golgi cell activity is evaluated as shown before:
the algorithm analyses the synaptic and cellular activity, sums all the cur-
rents and updates the membrane potential (Fourth - Seventh phases GOC).

97



2. A realistic cerebellar granular layer simulator on parallel technologies

Moreover, it evaluates if an action potential has occurred and, if so, sends
this signal to the granules connected to the specific Golgi (Eighth phase
GOC), according to the connection schemes. In particular, here there is
the inhibitory connection between the Golgi axons and the granule den-
drites which is performed in the glomeruli. For these reason the connection
schemes link GocGlo and link GrcGlo are used. Once the t-th instant of
all the Golgi cells has been computed, the algorithm evaluates the same
instant of time of all the granules. Then, the granules activity is analysed,
as described above (Fourth - Seventh phases GRC) and, if a granule gen-
erated a spike, it will be sent to the Golgi cells linked through ascending
axons or parallel fibers (Eighth phase GRC). In this case the connection
schemes asc axon cluster and pf goc links are used to correctly send the
signals. As the granules computation ends, the algorithm evaluates the
following instant of time.

The parallel algorithm

The parallel algorithm (Figure 2.42) starts on the host where the first
three phases, already explained for the serial version, are performed. As in
the previous parallel codes, also in this case the data have to be prepared
before the transfers (Vector packaging in the Second phase). The network
activity computation begins on the host where a for loop, which iterates
on the time steps, is performed. In the Fourth phase the algorithm analy-
ses if the first element of each mossy fibers spikes queue is lower than the
current time, i.e. the t-th step. The evaluation of all the mossy queues
is performed by a for loop which is parallelized using the OpenMP API,
exploiting the #pragma statement. To notify that the mossy fibers has
generated a spike to be considered in this step, a new strategy has been
developed. Two arrays called goc spike and grc spike are allocated. They
contain integers variables and their sizes are equal to the number of Golgi
and granules cells, respectively. Let consider, for example, the mossy fiber
with index 10, which generates a spike in the current time step. This mossy
fiber excites the granule 200 and the Golgi 300: in this case, the 200-th el-
ement of the grc spike array and the 300-th element of the goc spike array
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Figure 2.42: Granular layer network - parallel algorithm.

are set to 1. These arrays are re-initialized and updated at each for loop
iteration. Moreover, they are transferred from host to device in order to
be evaluated during the Golgi and granules synaptic activity computation.
The algorithm proceeds evaluating if some cells are stimulated by injected
currents: if yes, the current amplitude is trasferred from host to device.
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At this point, the host launches a kernel which computes the current time
step of the Golgi cells activity. This phase is performed by a kernel since
the threads evaluates the Golgi cells activity in parallel: in fact, each time
step of the neuronal activity is independent from the one of the other cells.
The Golgi cell activity code is the same presented in the parallel simulator
above. As the Sixth phase is completed, an array containing the membrane
potential of all the Golgi cells is transferred from device to host. Here,
these potentials are evaluated (Seventh phase) and, if a Golgi has gener-
ated a spike, the connected granule cell has to consider it in its activity. For
this reason, in the grc spikeINIB array (whose size is equal to the granules
number), the flag corresponding to the granule cell, linked to the specific
Golgi, is set to 1. This array is transferred to the device, where a kernel
computes the granule cells activity in the current step time (Eight phase).
An array containing all the granules membrane potential is transferred from
device to host. Here (Ninth phase), the algorithm evaluates if the granule
cells generated a spike. If yes, the Golgi cells linked to the specific granule
(through ascending axon and parallel fibers) has to be notified. The modal-
ity is the same used before: if a Golgi is stimulated by the granule input,
its flag in the array goc times spikeAPIC (whose size is equal to Golgi cells
number) is set to 1. This array is then transferred to the device to start
the computation of a new time step.

2.8 Results

In this chapter, the development of the granular layer network has been
presented. At first, the Golgi and granular cell simulators have been im-
plemented evaluating different technologies and programming strategies.
As described before, in order to realistically reproduce the neuronal func-
tionalities, complex models have been used in the algorithms development.
Among the technologies evaluated, the best performing is the GPU which
significantly decreases the elaboration times of the serial code and of the
multicore solution. The neuronal simulators have been included in the
granular layer network development. This phase of the work consisted in
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two main steps: the network design and simulation. The aim was to re-
produce a cerebellar volume with dimensions 600×150×1200 µm, which
are the values indicated by the Neurophysiology laboratory of the Univer-
sity of Pavia. In fact, this network configuration can reproduce the granular
layer functionalities, allowing the physiological validation. The algorithm is
able to place 972/972 Golgi cells, 194,333/194,400 granules, 32,399/32,399
glomeruli and 1080 mossy fibers and to connect these elements in about 13
minutes (758.691 s), exploiting the CPU present in System 1. Moreover, the
serial version of the network simulation takes about 35 hours (125,056.78 s)
in reproducing 3 s of neuronal activity, if the same system is used. It is clear
that this huge amount of cells, which communicate each others, demands a
more powerful technology in order to reduce the computational time of the
network activity reproduction. For this reason, the parallel version has been
developed and tested using the Tesla K40 GPU of System 1. In this case,
3 s of the network activity are reproduced in about 7.5 hours (27,100.52
s) obtaining a significant reduction in the elaboration time. Once more,
the GPU device provides a faster result that reflects the efficiency of this
technology in the computational modelling problems.
Despite this important result, some aspects have to be highlighted: these
times are far from the real-time simulation which, probably, could be reached
only using very powerful supercomputers. Anyway, in this thesis it has been
demonstrated how the multi-GPU systems could help in the computational
time reduction. Therefore, one of the first future works will be the par-
allel algorithm development to exploit both the Tesla K40 GPUs present
in System 1 and also the Galileo supercomputer resources. Moreover, it
could be interesting to evaluate how the computational time varies when
the network dimensions increase, even if this will not modify the signifi-
cance of the model implementation. Even if the network dimensions used
in this work are enough to reproduce the main behaviours of the granular
layer, a bigger network will represent a further step into reproducing the
whole cerebellum. Evidently, the use of supercomputers will be mandatory
in the simulation of very large networks both for memory occupancy and
computational power demand.
Concerning the neuronal activity, this network can reproduce the physio-
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logical cellular behaviors when Golgi and granules cells are stimulated by
current injections. The next functionalities and characteristics to be vali-
dated are the center surround organization, high-pass filtering in responses
to spike bursts and the coherent oscillations in response to diffuse random
activity [35]. Finally, a more detailed neuron morphology will be intro-
duced.
At the state of the art, several neuronal networks have been developed.
The main difference with the one presented in this work, is the mathe-
matical models used in the neurons description. During this thesis, it has
been explained the importance to choose the suitable model for the ap-
plication goals. The aim of this work was to build a cerebellar network
capable of realistically reproducing the granular layer behavior. For this
reason, the used models were very complex and heavy to solve. In [45],
for example, authors developed an event- and time-driven spiking neural
network simulator for an hybrid CPU-GPU platform. It consists of a very
dense granular layer and a Purkinje layer with a small number of cells. In
this work, neurons are reproduced using LIF models and characterization
tables (computed offline) which contain the dynamic of each cell. Authors
test several configurations varying parameters as the cells number and the
integration steps. The best result obtained is the simulation of 3 million
neurons and 274 million synapses using 32 GB CPU RAM and 1.28 GB
GPU RAM. Reproducing 10 s of neuronal activity takes 987.44 s. This
result can not be directly compared to the elaboration times obtained in
this work for two main reasons: the most important is the different model
chosen and the other is related to the integration step. It is clear that in
this thesis the LIF model could not be considered due to the aim of the
work, widely explained. As far as concerned the integration step, the one
used in [45] varies from 0.1 to 1 ms which is higher than the one used in
this work, which is 0.025 ms. This characteristic significantly increases the
computational time since the model equations have to be solved a greater
number of times.
Another interesting work, which reproduces the cat cerebellum network
containing more than a billion spiking neurons, is described in [46]. Au-
thors used 1280 PEZY-SC processors to elaborate in real-time 1 second of
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neuronal activity, with an integration step of 1 ms. Also in this case, cells
are described by LIF models and the connectivity rules are not updated.
Moreover, the synapses are characterized only by the AMPA receptors. Fi-
nally, this work presents several different aspects which do not allow a fair
comparison.
Authors in [47] provides a tool able to build, visualize and analyze network
models in 3D space. The network design is capable of reproducing very re-
alistic and complex neuron morphologies and the mathematical models are
based on the Hodgkin and Huxley one. Nevertheless, they run simulations
of up to only 5,000 neurons on a single-processor machine, which take 1-2
hours for 4 seconds of activity. In this case, even if the morphology included
in this work is very detailed, the simulation part is not so efficient as the
one proposed in this work. The computational time of this elaboration is
not very fast if the number of reproduced cells is considered.
On the other hand, the cerebellar granular layer network developed in [35] is
the one considered as reference of the present work. In fact, these networks
present the same mathematical models (even if their models are written for
the NEURON simulator) and connection rules. The main difference con-
cerns the cellular morphology and the elements displacement. In this case,
the cellular soma is represented by a point (and not sphere) and this means
that two soma can be overlapped, aspect that is not realistic. Moreover,
during the cells displacement, the algorithm does not take into account the
minimum distances between cells. In this case, they create a network inside
a 3D space (i.e., a cube with 100 µm edge length) and which includes 315
mossy fibers and 4,393 neurons (4,096 granules, 27 Golgi cells and 270 bas-
ket and stellate cells). The reproduction of 3 s neuronal activity requires
about 20 h on a Pentium-5 dual-core and 30 minutes using 80 CPUs on the
CASPUR parallel cluster.
It is possible to conclude that the granular layer simulator described in this
work is characterized by a high level of realism due to the mathematical
model and the connection rules used. Moreover, the use of HPC tech-
nologies has allowed to significantly reduce the computational time of the
cellular activity reproduction of a great number of neurons.
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Chapter 3
Single and multi-GPU
processing for brain cancer
detection exploiting
hyperspectral imaging

Several causes make the brain cancer identification a challenging task
for neurosurgeons during the medical operation. The surgeons’ naked eye
sometimes is not enough to accurately delineate the tumor location and
extension. For this reason, a support system which provides a real-time
accurated cancer delimitation is essential in order to improve the surgery
success.
The system described in the following paragraphs meets these requirements
exploiting a non-invasive technique suitable for medical diagnosis: the hy-
perspectral images.
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3.1 Introduction

The surgery, together with the radiotherapy and the chemiotherapy, is
one of the most efficient treatment solutions for the brain tumor. The main
issue in the brain cancer identification is its diffusion and infiltration in
the surrounding healthy tissues that make its individuation a difficult task
for the surgeons’ naked eye. It is crucial, thought, an extreme accuracy
and precision in the cancer resection [48] [49]. As a matter of fact, the
majority of tumour recurrences are often linked to the presence of cancer-
ous regions unintentionally left during the surgery. On the other side, it
is also very important to not over-resect the brain tissue in order to not
remove the healthy brain parts to not cause permanent neurological deficts
in the patient [50]. Today several support systems help the neurosurgeons
in the tumor localization but they still present some limits that preclude
the obtaining of a highly accurate identification. The neuro-navigation,
for example, is highly influenced by the brain shift and the tumor changes
during the resection that prevent an accurated delineation of the cancer
borders [51]. To overcome this kind of problem the intra-operative Mag-
netic Resonance Imaging has been adopted even if it is very expensive, it
has poor resolution and it significantly increases the surgery duration [52].
Finally, the 5-aminolevulinic (5-ALA) fluorescent tumor markers are able
to identify high grade tumors even if they are not very accurate in the
margins delimitations [53]. To overcome these limitations, a label-free,
non-ionizing, non-contact and non-invasive technique as the Hyperspectral
Imaging (HSI) is adopted. It is a form of imaging spectroscopy that pro-
duces a three-dimensional image whose pixels are characterized by spectral
information of the acquired scene. This cube contains the reflectance values
of the brain surface, so the fraction of incident electromagnetic radiation
upon a surface that is reflected. This value changes according to the wave-
length distribution of the incident radiation. The hyperspectral images
provide more information than the RGB ones since they are characterized
by a large number of contiguous and narrow spectral bands over a wide
spectral range. The characteristic that makes the HSI a valid solution for
the brain identification is that it provides the pixels spectral signature that
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can identify the type of tissues. In fact, the spectral signature is given by the
variation of the reflectance and emittance values of the tissue with respect to
the wavelengths. These values depend on the tissue chemical composition,
on its physiological behaviour and on its temperature. Since the healthy
and the cancerous tissues have different physiological characteristics, they
also have different spectral signatures. A system able to discriminate the
spectral signatures of the tissues present in the captured scene could be an
useful support system for the neurosurgeons [54]. A crucial specification
that the system has to satisfy is a real-time elaboration in order to not
slow down the medical operation. Due to the heavy computations that the
system has to perform, the use of the High Performance Computing (HPC)
is mandatory to achieve real-time compliancy. The development of this sys-
tem is part of the HELICoiD (HyperEspectraL Imaging Cancer Detection)
European project funded by the Research Executive Agency (REA). It is
led by the Universidad de Las Palmas de Gran Canaria (ULPGC) and in-
volves four univerisites, two universities hospital and three leading industry
partners. Therefore, the HELICoiD brain cancer detection system goal is to
support neurosurgeons during the tumor resection, providing a map of the
brain where different tissues are displayed with different colors. In this way,
the surgeons are facilitated in the cancer individuation and delimitation.

3.2 State of the art of hyperspectral imaging in
medicine

Originally the hyperspectral images were used in remote-sensing in mil-
itary area. As the years go by, they become very useful in different fields
such as in the geological, archaeological and aerospace ones. They were
used only by few companies and research insitutes since the hyperspectral
cameras and the computational systems were very expensive. The recent
technological progress has allowed a more widespread use of the hyperspec-
tral images also in other fields, such as medicine and, in particular, cancer
detection. The fact that each material or tissue differently reacts to the
incident radiation on his surface, on the base of its molecular structure, can
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Figure 3.1: Comparison between an hyperspectral cube and a RGB
image. The image shows the main differences between the hyperspectral and the RGB images.

In particular, it is possible to notice the continuous reflectance curve of a pixel of the hyperspectral

image (on the left) and the discrete intensity curve of a pixel of the RGB image (on the right) [54].

be exploited in the discrimination between healthy and tumor tissue. In
an hyperspectral image, this reaction is visible in the pixel electromagnetic
spectrum which provides detailed information about the material typology
of the corresponding area that the pixel is representing. The hyperspec-
tral image, also called hypercube, is a three-dimensional dataset of a two-
dimensional image on each wavelength [54]. It is characterized by a number
of bands higher than the standard RGB images, since they have only three
bands (one for the red channel, one for the green and one for the blue).
The hyperspectral images are characterized by hundreds of bands per pixel
and this issue allows to have a spectral signature of each pixel with the
refelctance value in each band. In Figure 3.1, it is possible to notice the
differences between these two kinds of images and, in particular, the com-
parison between the reflectance curve (or spectral signature) provided by
the hypercube and the RGB intensity curve [54]. As said before, recently
the HSI is often used in screening, detection and diagnosis of several dis-
eases such as heart and circulatory pathologies, retinal diseases, diabetic
foot, shock and different types of cancer. The reason why this technique is
exploited especially in the cancer detection is that the biochemical and mor-
fological changes associated with lesions modify the optical characteristics
of a tissue, such as the absorption, scattering and the fluorescence. These
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variations provide valuable diagnostic information useful in the diagnosis
and detection phases. Another technique used in this field is the optical
spectroscopy but the HSI is able to capture more extended images and pro-
vides more accurate results in the detecting cervix, breast [55], skin [56],
ovaries [57], prostate [58], tongue [59] and brain cancer. The main differ-
ences between these cases of study are the acquisition system setup, the
nature of the samples (in-vivo, ex-vivo, in-vitro), the studied disease [48]
and the adopted classification algorithms [54]. In the HELICoiD project
the disease under study is the glioblastoma, a malignant tumor affecting the
nervous system which usually occurs in the adult patients. Nowadays the
brain cancers are among the most common tumors and their incidence is
about 3.4 per 100,000 subjects. The glioma is the tumor which affects the
glial cells of the brain and it is one of the most common form of brain can-
cer. It represents the 30-50% of the primary brain tumors and in the 85% of
these cases this tumor occurs in the form of glioblastoma, which is locally
very aggressive, in most cases unicentric and rarely metastasizing. This
type of glioma is also characterized by a fast-growing invasiveness [60] [61].
Traditional diagnosis of this type of tumors are provided by the information
generated by the excisional biopsy, which consists in a surgical cut to re-
sect the tissue from the living body, followed by histology or citology. This
diagnostic methodology is very invasive with potential side effects due to
the over-resection of the tissue (removing also healthy tissue) or due to the
fact that some cancerous parts can be left in the patient. Moreover, this
methodology is not a real-time diagnosis since the tissue samples have to
be analyzed in the laboratory [61]. The system, developed in this project
and optimized in this work, tries to overcome these limitations.

3.3 The hyperspectral cameras and the images ac-
quisition for the database

As previoulsy said, the HELICoiD brain cancer detection system pro-
vides a brain map where the tumor is hilighted in order to help the neuro-
surgeon to resect it. An overview of the complete system is shown in Figure
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3.2. The system is made up of an Acquisition Scanning Platform, which cap-
tures the hyperspectral image, a Data Pre-processing System where the HS
cube is pre-processed following the modalities explained below, a Processing
Sub-system Platform where the pre-processed image is classifyed exploiting
different classification algorithms. Furthermore, an User Interface is pro-
vided. The hyperspectral acquisition system (Figure 3.3.A) [63] [64] is com-
posed of two cameras: the Visual and Near Infra-Red (VNIR) and the Near
Infra-Red (NIR). The camera used in the study is the Hyperspec® VNIR
A-Series, provided by the Headwall Photonics Inc. (Massachusetts, USA).
This camera covers the spectral range from 400 to 1000 nm (visible and
near infrared frequency), capturing 826 spectral bands, with a spectral res-
olution of 2-3 nm and a pixel dispersion of 0.74 nm. This device integrates
a Silicon CCD detector array with a minimum frame rate of 90 fps, where
the frame in this case is a line of 1004 pixels and 826 spectral bands [48].
This camera exploits the push broom technique in the image acquisition: at
first, the 2-D matrix of the camera captures the complete spectral dimen-
sion of the first image spatial dimension of a scene. Once the acquisition is
completed, the camera field of view (FOV) relative to the scene is shifted so
that the second spatial dimension can be acquired. Usually, to perform the
push broom scanning technique, the sensors array is moved. For this rea-
son, the camera is shifted using a stepper motor connected to the processing

User Interface

Acquisition Scanning Platform

Illumination System
Hyperspec® VNIR Camera
Hyperspec® NIR Camera

Core Software

Processing Sub-system 
Platform

Classification
algorithms

Data Pre-processing system

Figure 3.2: HELICoiD system overview [62].
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system through a RS-232 port. The Acquisition Scanning Platform con-
tains also an illumination device (Quartz Tungsten Halogen (QTH) lamp)
capable of emitting cold light in the range between 400 and 2200 nm. This
kind of lamps generates high temperatures that could cause damages to the
patient. To preserve the brain surface from these temperatures, the lamp is
connected to the cold light emitter through an optical fiber [63]. In Figure
3.3.B the hyperspectral acquisition system is shown while capturing a brain
image during a neurosurgery routine at the University Hospital Doctor Ne-
grin of Las Palmas de Gran Canaria (Spain) [63]. In this work, a set of five
in-vivo brain surface hyperspectral images has been acquired during four
neurosugeries taken place in the University Hospital Doctor Negrin of Las
Palmas de Gran Canaria. The four patients presented a grade IV glioblas-
toma tumor confirmed by histopathology. The study protocol and consent
procedures were approved by the Comité Ético de Investigación Cĺınica-
Comité de Ética en la Investigación (CEIC/CEI) of University Hospital
Doctor Negrin and written informed consent was obtained from all sub-
jects [63]. A standard procedure has been followed in order to acquire the

A B

Figure 3.3: Hyperspectral acquisition system. A) Schematic diagram of the

acquisition system. B) The acquisition system capturing an hyperspectral image during a neu-

rosurgery at the University Hospital Doctor Negrin of Las Palmas de Gran Canaria (Spain) [63].
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images. During the surgery, after the craniotomy and the dura resection,
the operating surgeon places some rubber ring markers in some points that
he has already identified as healthy or cancerous tissue. The identification
is based on information provided by the neuronavigator from an MRI scan
(Magnetic Resonance Image). The image acquisition takes place while the
markers are in situ. The scenes can be captured in different stages during
a surgery on the base of the tumor location: if it is a superficial cancer
the HS cube can be captured immediately after the dura resection. If the
tumor is in a deeper position, the image is acquired during the actual tumor
resection. Once the camera has acquired the image, some tissue samples
inside the markers placed in the tumor area are resected and sent to the
pathologists to obtain the specific histopathological diagnosis (grade and
type of tumor). Markers on healthy tissue are placed only as reference for
the labelling process since it is not ethic to remove normal tissue for the
biopsy causing damages to the patient. The histopathological information
provided by the biopsy and the surgeons knowledge are used to label the
acquired HS cubes and generate a gold standard dataset for the supervised
classification phase of the brain cancer detection system [48]. In order to
label the whole HS cube it has been used a tool designed in Matlab and
based on the Spectral Angle Mapper (SAM). The SAM classification com-
pares the spectra of the image pixels with a well-known spectrum obtained
from a reference pixel [48]. After the medical operation, the surgeon uses
this tool to generate the gold standard map related to the images. The aim
is to assign to each pixel one of these: healty tissue, tumor tissue, hyper-
vascularized tissue and background. The HS cube taken during the surgery
is the input of the tool: the user can watch the correspondent RGB image
and select the reference pixel in the position where the biopsy has been
done (within the ring marker for the tumor class) or far enough from the
cancer where the surgeon is confident that the area corresponds to the other
classes. On the base of the SAM measurement, the tool shows the most
similar pixels to the selected reference one. The user can set a threshold to
vary the tolerance which is at the base of the pixel selection. Once the user
considers that all the pixels displayed belong to a single class, those pixels
are labelled with that class value. In Figure 3.4 it can be noticed how this
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Figure 3.4: HELICoiD Labelling Tool A) RGB imge of the HS cube; B) Pixels that

belong to the hypervascularized class; C) Gold standard map of the HS cube [48].

tool works. On the left (Figure 3.4.A), there is the RGB image related to
the HS cube under study. In the middle (Figure 3.4.B), the pixels with a
spectral angle whose value is less than 0.08° with respect to the reference
pixel (that, in this case, belongs to the blood vessel -hypervascularized tis-
sue class) are displayed. On the right, Figure 3.4.C shows the gold standard
map of the HS cube where the green color refers to the healthy tissue, the
red to the tumor, the blue to the hypervascularized tissue and the black to
the background. A total of 44,555 spectral signatures have been labelled
exploiting this tool. Table 3.1 provides information about the five images
which belong to the dataset used in this work.

3.4 Brain cancer detection system

The system developed in the HELICoiD project performs a hybrid clas-
sification of the hyperspectral image acquired during the surgery. Figure
3.5 shows an overview of the system [48]. At first, the image is stored as
a raw file that is pre-processed in order to homogenize the spectral signa-
ture of each pixel. The pre-processed image is the input of the two main
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In-vivo Brain HSI Cube

Pre-processing

KMeans 
Clustering

Unsupervised 
Segmentation Map

PCA

SVM 
Classification

One Band Representation

SVM Probabilities

+ KNN 
Filtering

Spatial/Spectral 
Supervised Classification 

Map

+ Majority 
Voting

Figure 3.5: Algorithms present in the brain cancer detection system.
The HSI cube is the input of the system. It is pre-processed and sent to the supervised (Principal

Component Analysis, Support Vector Machine and K-Nearest Neighbors) and unsupervised (K-

means) classification branches of the system. The results of these two flows are combined with

the Majority Voting algorithm. The output is the classification maps which displays the classes

with different colors.

parts of the system: one performs a spatial-spectral supervised classifica-
tion while the other accomplishes an unsupervised clustering segmentation.

Image ID #Pixel
Dimensions

(Width × Height × Bands)

P1C1 251,532 548×459×826
P1C2 264,408 552×479×826
P2C1 219,232 496×442×826
P3C1 185,368 493×376×826
P4C1 124,691 329×379×826

Table 3.1: HS brain cancer image database. The table presents the image ID,

the number of pixels and the initial number of bands [63].
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Concerning the supervised classification, the Principal Component Analy-
sis (PCA) computes a one-band representation of the HS cube, while the
Support Vector Machine (SVM) performs a pixel-wise classification and
generates a probability map. The K-Nearest Neighbors (KNN) algorithm
is used as a filter to integrate the PCA and the SVM outputs in order to
improve the results of the spectral classification by adding spatial domain
information [63]. As for the unsupervised stage of the system, it is based
on the K-means algorithm which creates a segmentation map where the
boundaries of the different tissues displayed in the image are well delin-
eated. The Majority Voting algorithm combines these two main parts of
the system whose output is the result of a hybrid classification. In the fol-
lowing paragraphs, a more detailed description of the algorithms shown in
Figure 3.5 and of their implementations are introduced. In particular, more
emphasis will be put in the PCA, SVM and KNN algorithms since their
serial and parallel implementations were developed in this work, while the
Pre-processing and K-means versions have been developed in other thesis.
Concerning the Majority Voting (MV), the new system developed in this
work will contain the same version already present in the original system. It
is important to highlight that the original serial version of the brain cancer
detection system had some parts written in C language and other which
exploits the OpenCV library [65]. The first aim of this work is to develop a
version of the complete system in C language in order to have an optimized
serial version which will also be the basis for the parallel implementation
written both in C and in CUDA language to exploit the GPU technology.
For this reason, the first step of the work is the serial version development
of each algorithm. Figure 3.6 shows the flow of the serial version of the
complete system. It is worth noting that all the algorithms are executed in
a sequential way, even if the spatial spectral classification part of the system
(PCA+SVM+KNN) could be executed simultaneously with the K-means
part (Figure 3.5), since they are independent. Once the serial version is
completed, an analysis of the performances of the algorithm steps is per-
formed. This evaluation allows to understand which are the heaviest parts
from the computational point of view and if these steps can be executed in
parallel. At this point, one or more parallel versions of each algorithm are
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Figure 3.6: Serial flow of the brain cancer detection system. The image

shows the sequential flow of the serial code.

developed. Both the serial and parallel results of each algorithm are com-
pared in order to select the best version which will be part of the complete
system. The results shown in the following paragraphs are obtained using
System 1 and System 2 already described in Paragraph 1.2.2.

3.4.1 Pre-Processing

The algorithm and the serial version

The captured image could present significant signal variations due to
a non-uniform illumination of the brain surface. The pre-processing al-
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Figure 3.7: Raw and calibrated spectral signatures of the grade IV
glioblastoma tumor tissue. A) Raw spectral signature of a grade IV glioblastoma

tumour tissue; B) Result of the image calibration. [48]

gorithm aims to correct these differences and to homogenize the spectral
signatures of the labelled samples obtained from the in-vivo hyperspectral
data-cubes [62]. The pre-processing chain is made up of three main steps:
the image calibration, the band reduction and the data normalization. To
correct the signal variations of the input data, in the calibration phase a
white and dark images are acquired in the same operation theatre and with
the same illumination conditions where the HS cube will be captured. The
white image is obtained using a white standard reference tile while the
black one keeping the shutter camera closed. The calibrated image (CI in
Equation 3.1) is computed as follows:

CI = 100
RI −DR
WR−DR

(3.1)

where RI is the input image, WI and DI are the white and dark images [62].
Figure 3.7 shows the raw (A) and the calibrated (B) spectral signature of
the grade IV glioblastoma tumor tissue. Once the image is calibrated a
dimension reduction is performed. The aim is not to consider those bands
that contain high noise. In fact, in the bands ranges 0÷55 and 750÷826 the
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Figure 3.8: Normalized spectral signature of the grade IV glioblastoma
tumor tissue [48].

camera sensor is underperforming thus these bands do not give useful infor-
mation. Furthermore, it has been observed that consecutive bands provide
redundant information and this is due to the extremely high spectral res-
olution [48] [62]. For this reason, the reflectance value of seven contiguous
bands are averaged every five bands: the reduced HS cube is characterized
by 128 bands [61]. This reduction allows to save computational time and
memory due to the limited number of data to process. The last phase of
the pre-processing chain is the data normalization which is needed to avoid
high radiation intensity differences between the pixels captured at different
heights. This fact could produce a classification based on the brightness of
the pixel without really taking into account its spectral signature. For this
reason a normalization of the pixels brightness is needed without modifying
the spectral signature. Figure 3.8 shows the result of this phase. Finally,
a further noise filtering could be introduced in the system in the second
phase. It is the first stage of the hyperspectral signal identification by min-
imum error (HySime) algorithm called Hyperspectral Noise Estimation [48].
In this work this noise filtering is not considered but it is an option that the
user can include in the final system configuration, as it will be explained in
Paragraph 3.7.
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Figure 3.9: Flow of the Pre-processing parallel code.

The parallel version

The parallel version of the pre-processing algorithm has been developed
in the master thesis work cited above. The flow of the parallel code (Fig-
ure 3.9) starts on the host where the input image and the white and dark
images are read and stored. These data are then transferred to the de-
vice where the pre-processing chain can start with the calibration (Second
phase). It is important to highlight that the data transfer from host to
device is managed using the CUDA streams [23] which allow to overlap the
data transfers and the operations performed on the device. In this case, a
number of streams equal to the rows of the matrices is created. Each stream
manages the transfer of a row and the computation of the calibrated im-
age is performed exploiting the cuBLAS library (NVIDIA) which includes
highly optimized linear algebra routines [66]. Once the row transfer is com-
pleted, the cuBLAS function can start the computation without waiting
the transfer of the following row. In this way, the computational time is
reduced compared to a serial elaboration. Once the image is calibrated, the
following two phases can start. In particular, a custom kernel performs the
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normalization while the band reduction is done sending to this kernel only
the final bands that have to be considered. In this way, the Third and the
Fourth Phase are performed together. At the end, the pre-processed image
is transferred to the host.

3.4.2 Principal Component Analysis

The algorithm and the serial version

Despite being characterized by a large amount of data, even after the
reduction obtained with the previous step, the HS image dimensionality can
be decreased even more through the Principal Component Analysis (PCA).
This technique converts the original data into a subspace with smaller di-
mensions, and selects and accumulates the most important information in
the first bands [67]. PCA reduces those data computing the covariance ma-
trix of the HS cube and its eigenvector decomposition. Then the image is
projected into the sub-space described by these eigenvectors and, at the end,
the principal components or bands are selected. The serial implementation
of the PCA algorithm is organized in six steps (Figure 3.10) [67]: after the
variables declaration and initialization (First phase), the algorithm com-
putes the transpose of the input matrix YNxM , where N is the number of
pixels and M is the number of bands (Part A). The second step (Part B)
continues to compute the average of the elements present in each row of
Y T . Then, each average is removed from each element of the correspond-
ing band (i.e. the row of the matrix Y T ) (Second phase). The covariance
matrix CMxM is then computed as the product between the matrix XMxN

(Third phase), output of the second step, and its transpose (Equation 3.2).

CMxM = XT ·X (3.2)

In the next step the eigenvectors E, associated to the covariance matrix C,
are extracted exploiting the Jacobi method (Fourth phase). This method
has been selected because it is a fast algorithm capable of extracting the
eigenvectors while computing the input matrix eigenvalues [67]. The fifth
step (Fifth phase) performs the projection of the image Y onto the set of
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First phase
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from each band

Third phase
Covariance matrix
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Input: 
YNxM → Hyperspectral image

Algorithm Second Phase:
1 Compute YT = Y-1  (Part A)
2 for m:=1 to M do (Part B)
3       compute the average of the elements in each

row of YT

4 end for
5 for m:=1 to M do
6       computing XNxM matrix removing the average

from each element in the row of YT

7 end for

Algorithm Third Phase: 
8 CMxM= XT⋅X
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Algorithm Fifth Phase: 
9  Q = Y⋅ P
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Q’
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Figure 3.10: Steps of the PCA algorithm.

the extracted eigenvectors (Equation 3.3).

Q = Y · E (3.3)

Finally, the first P principal components are selected in order to obtain
a matrix with reduced dimension N×P (Sixth phase). In this work, the
output consists in an array whose dimension is N×1, since the number of
principal components selected is one.
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The parallel versions

As said in the previous paragraph, the goal of the PCA algorithm is to
further reduce the number of bands of the pre-processed HS cube, which
represents the input. In this case, the output is an array since the num-
ber of principal component is one. The first analysis conducted aimed to
understand which steps were heavy from the computational point of view.
Then, they were studied in order to understand which was the more ef-
ficient technique to develop their parallel version. Considering the steps
presented in Figure 3.10, the most consuming part is the covariance ma-
trix computation that takes more than the 70% of the total time of the
serial execution. In the development of the first parallel version (P1), two
options have been evaluated: the former executes only the Third phase on
the GPU and leaves all the other steps on the host, since they are faster
than the covariance matrix computation. The latter parallelizes also the
other phases trying to reduce their computational time since the conducted
analysis showed that also those operations can be parallelized. Another
aspect that has to be taken into account is the number of data transfers
that, in these two cases, is the same. If only the Third phase has to be
performed on the GPU there will be a memory transfer between the Second
phase and the Third phase (from host to device) and another transfer after
the covariance matrix computation (from device to host). If all the steps
are computed on the device there will be an initial memory transfer (from
host to device) at the beginning of the computation and another one (from
device to host) at the end. This second solution is characterized by data
transfers with lower sizes than the first option: in fact, in both cases the
transfer from host to device has a size equals to M×N×dimfloat, where M
is the number of bands, N the number of pixels and dimfloat is the size of a
float, i.e. 4 bytes. The transfer from device to host has different dimensions
in the two options: in the first case is M×M×dimfloat while, in the second
case, is N×P×dimfloat, where P is the number of principal components,
that in this work is set equal to 1. For these reasons, the second option has
been selected for the first parallel version P1. The flow of the first parallel
version is shown in Figure 3.11. The code starts from the host where the
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Figure 3.11: First version of the PCA parallel code.

variables declaration and initialization are performed (First phase). As it
can be seen in the figure, the Second phase is divided in two parts: Part A
is sequentially performed by the CPU and concerns the computation of the
transpose of the input matrix (YT ). After the GPU memory initialization,
this new matrix is transferred from the host to the device memory where
Part B starts. In this step two main operations are performed: the average
computation of each row of the matrix Y T and the subtraction of these
averages from each elements of the corresponding rows. The first task is
evaluated exploiting the highly optimized function cublasDasum that be-
longs to the cuBLAS library [66]. It must be noticed that the data transfer
from host to device is managed using streams. In this case, a number of
streams equal to the number of bands (i.e. the number of rows of the ma-
trix) is created. Each stream manages the row transfer and the average
computation of its elements through the cublasDasum function. Once the
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transfer is completed, the cublasDasum function can start without waiting
for the next transfer. In this way, the computational time is saved. After
that all the averages are computed, they are subtracted from each element
of the related row. This computation is performed by a custom kernel. Also
in this case, each stream manages the call of the kernel which removes the
average from each element simultaneously. This kernel is characterized by
a grid whose dimension is computed according to Equation 3.4:

dimgrid =
N

nthreads
(3.4)

where N is the number of pixels present in the image and nthreads is the
number of threads that are in one block of the grid. In this case, this num-
ber is set to 32 according to the definition of warp provided by NVIDIA. If
the remainder of Equation 3.4 is not equal to zero, dimgrid is incremented
by one. The output of the Second phase is the matrix XMxN where M is
the number of bands and N the number of pixels. X represents the Third
phase input where the covariance matrix C is computed as described in
Equation 3.2. This step exploits another function of the cuBLAS library,
cublasDgemm, which allows to compute the product between two matri-
ces. The end of the Third phase is characterized by another custom kernel
which simultaneously divides each element of the covariance matrix C by
the number of pixels. The Fourth phase extracts the eigenvectors of the
covariance matrix which is the output of the previous step. As previoulsy
said, the Jacobi method has been selected for the eigenvectors computation.
A suitable function of the cuSOLVER library [68] (developed by NVIDIA)
has been employed to compute the eigenvalues and the eigenvectors in or-
der to exploit the intrinsic parallelism of the Jacobi method. In order to
use this routine, called syevj, some variables and arrays have to be declared
and initialized. These variables, together with the covariance matrix, are
the inputs of the function which returns the sorted eigenvectors matrix.
In the case of the parallel code, the Fifth phase and the Sixth phase are
performed together: the projection of the original image into the eigenvec-
tors is performed by a cuBLAS function and the inputs of this routine are
only the eigenvectors related to the principal components that have to be
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selected. It is important to highlight that if the number of principal compo-
nents to select is equal to one, the projection (already described in Equation
3.3) is a product between a matrix (the original image) and a vector (the
eigenvectors). In this case the chosen cuBLAS function is cublasDgemv. If
the number of principal components to select is higher than one, the pro-
jection is the result of a matrix-matrix product and it is performed by a
cublasDgemm. In this way, the result of this computation has already been
reduced because its dimension is equal to N×P, where N is the number of
pixels and P the number of principal components selected. At the end, the
result is transferred to the host. Analyzing the performance of this paral-
lel version, it is possible to notice that the Fourth phase takes longer than
the corresponding step in the serial code. For this reason, another parallel
version of the code has been developed in order to evaluate if moving the
eigenvectors computation on the host is more efficient even with the incre-
mented number of needed transfers. The flow of the second parallel version
of the PCA is shown in Figure 3.12. In this new version, the covariance
matrix is transferred from the device to the host after its computation in
the Third phase. On the host side, the Jacobi method is performed to find
the eigenvectors of the covariance matrix (Fourth phase). The principal
components P selection, which constituted the Sixth phase of the previous
version, is moved to the host. In fact, only the eigenvectors related to these
components are copied from the host to the device in order to reduce the
transfer time and the memory occupancy. At this point the projections
are computed as described in the previous parallel version, exploiting the
cuBLAS functions. Finally, the PCA result is transferred from the device
to the host.

PCA results

In this paragraph, the results of the executions of the serial and parallel
PCA codes are presented. Table 3.2 shows the processing times related to
the serial and the two parallel versions. In particular, the times related
to the single phases of the algorithm are shown in order to understand
which are the heaviest parts of the algorithm and how their execution time
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HOST DEVICE

First phase
Variables declaration and 
initialization

Second phase (Part A)
Compute YT 

Second phase (Part B)
Removing the average from 
each band

Third phase
Covariance matrix
computation

Fourth phase
Eigenvectors E 
computation

Sixth phase
Reduction to P principal
components

START

Fifth phase
Projections

END

DATA TRANSFER

DATA TRANSFER

DATA TRANSFER

DATA TRANSFER

Figure 3.12: Second version of the PCA parallel code.

changes in the different versions. These tests have been carried out on the
System 1 presented above exploiting one of the two boards for the parallel
code executions. Concerning the elaboration times of the serial versions, it
is possible to notice that the covariance matrix computation is the heaviest
part of the execution (Third phase). The percentage of time dedicated to
this step is higher than 74% in all the executions and it reaches the 82.38%
if the P4C1 image is considered. For this reason, this step is the one that
has to be parallelized. It can be also noticed that both in the serial and
in the parallel execution, the time is proportional to the pixels number. In
fact, as this number increases, the computations and the memory transfers
(in the parallel codes) are heavier. As said in the previous paragraph, the
strategy adopted in the developing of the first parallel version (P1 in Table
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Image
ID

Version

Time
First
phase
and

Second
phase -
Part A

Time
Second
phase -
Part B

Time
Third
phase

Time
Fourth
phase

Time
Fifth
phase

Time
Sixt
phase

Total
Time

P1C1 S 0.29 (12.94%) 0.07 (2.91%) 1.83 (80.75%) 0.01 (0.26%) 0.07 (3.13%) 0 2.271
P1 0.58 (56.12%) 0.05 (4.63%) 0.02 (2.31%) 0.13 (12.82%) 0.001 (0.096%) 0 1.037
P2 0.56 (58.41%) 0.05 (5.02%) 0.02 (2.51%) 0.01 (0.73%) 0.002 (0.21%) 0 0.957

P1C2 S 0.32 (12.15%) 0.07 (2.58%) 1.95 (74.03%) 0.01 (0.19%) 0.29 (11.05%) 0 2.634
P1 0.50 (46.48%) 0.05 (4.63%) 0.03 (2.31%) 0.13 (12.31%) 0.001 (0.09%) 0 1.08
P2 0.58 (59.67%) 0.05 (5.02%) 0.03 (2.56%) 0.01 (0.51%) 0.002 (0.20%) 0 0.977

P2C1 S 0.25 (12.61%) 0.06 (2.83%) 1.60 (80.88%) 0.003 (0.15%) 0.06 (3.13%) 0 1.982
P1 0.51 (51.67%) 0.04 (4.16%) 0.02 (2.03%) 0.13 (13.50%) 0.001 (0.10%) 0 0.985
P2 0.45 (57.67%) 0.04 (5.24%) 0.02 (2.56%) 0.004 (0.51%) 0.001 (0.13%) 0 0.782

P3C1 S 0.21 (12.37%) 0.05 (2.88%) 1.35 (80.96%) 0.003 (0.18%) 0.05 (3.00%) 0 1.665
P1 0.45 (50.22%) 0.04 (3.87%) 0.02 (1.88%) 0.13 (14.71%) 0.001 (0.11%) 0 0.904
P2 0.39 (55.35%) 0.04 (4.93%) 0.02 (2.39%) 0.004 (0.56%) 0.002 (0.28%) 0 0.71

P4C1 S 0.13 (11.44%) 0.03 (2.91%) 0.91 (82.38%) 0.003 (0.27%) 0.03 (2.81%) 0 1.101
P1 0.37 (51.74%) 0.02 (3.35%) 0.01 (1.67%) 0.13 (17.71%) 0.001 (0.14%) 0 0.717
P2 0.34 (54.20%) 0.03 (4.04%) 0.01 (1.94%) 0.004 (0.65%) 0.001 (0.16%) 0 0.618

Table 3.2: PCA results. The table shows the computational times related to the serial

(S), the first parallel (P1) and the second parallel (P2) versions execution exploiting the System

1. Concerning the parallel code, only one GPU board present in the system has been used. For

each version, the times of the single phases and of the entire execution are presented. The times

are the average of five executions and are expressed in seconds [s].

3.2) is to perform all the steps, except the first one, on the device as al-
ready presented in Figure 3.11. Analyzing the results of the P1 versions, it
is possible to notice that the time of the Third phase is considerably reduced
since it reaches 0.02 s and 0.03 s in the cases of the P1C1 and P1C2 im-
ages, which corresponds to about 2.30% of the entire computational time.
Concerning the other steps, their times are lower than the serial version
with two exceptions: the First phase-Second phase - Part A and the Fourth
phase. The former, performed on host (see Figure 3.11), contains all the
variables declaration and initialization, a suitable data packaging for an
efficient data transfer and the Part A of the Second Phase is the input
matrix transposition. This last step is left on the host since it is equally
well-performing. The Fourth phase concerns the eigenvector computation,
which is performed by a cuSOLVER function, as explained before. In this
case, over the 90% of this phase time is related to the variables declaration
and initialization used to exploit the cuSOLVER function (which takes the
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Image ID Version Speed-up

P1C1 P1 2.19
P2 2.37

P1C2 P1 2.44
P2 2.70

P2C1 P1 2.01
P2 2.53

P3C1 P1 1.84
P2 2.35

P4C1 P1 1.54
P2 1.78

Table 3.3: PCA speed-up (System 1). The two parallel version P1 and P2 are

compared with the serial version S and the speed-up are computed as the ratio between the

serial and the parallel computational time.

∼5% of the time to compute the eigenvectors). As said in the previous
paragraph, the second parallel version (P2) has been developed in order to
decrease the time of the Fourth phase: the idea was to perform the eigenvec-
tor computation on the host and to continue the execution on the device.
Even if the number of transfers in P2 is higher than in P1, the total time
of the computation is lower because there is a substantial difference in the
times related to the two different eigenvector computations. It is possible
to highlight that the time of all the other steps does not present significant
differences from P1 and P2. Furthermore, it is possible to notice that the
Fourth phase time in S and P2 is almost the same since in both cases this
step is performed on the host. The faster times of the P2 version high-
lights that, in this case, the eigenvectors computation with the cuSOLVER
function is heavier than a higher number of data transfers. Considering
the P2 version, the biggest database image (P1C2 with 264,408 pixels) is
processed in less than one second (0.977 s) compared to the 2.634 s of the
serial version. Table 3.3 presents the speed-up of the two parallel versions
P1 and P2 compared to the serial one S. These speed-up show that the P2
version obtains the higher values considering all the images of the database.
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Image
ID

Version

Time
First
phase
and

Second
phase -
Part A

Time
Second
phase -
Part B

Time
Third
phase

Time
Fourth
phase

Time
Fifth
phase

Time
Sixt
phase

Total
Time

P1C1 S 0.31 (10.77%) 0.07 (2.58%) 2.35 (82.80%) 0.003 (0.11%) 0.05 (1.91%) 0 2.832
P1 0.73 (51.7%) 0.03 (2.19%) 0.08 (5.60%) 0.28 (20.04%) 0.002 (0.14%) 0 1.412
P2 0.66 (57.77%) 0.03 (2.62%) 0.08 (6.89%) 0.01 (0.44%) 0.002 (0.18%) 0 1.146

P1C2 S 0.32 (10.56%) 0.08 (2.78%) 2.45 (82.17%) 0.003 (0.10%) 0.073 (2.48%) 0 2.983
P1 0.73 (50.45%) 0.03 (2.20%) 0.08 (10.77%) 0.22 (15.21%) 0.002 (0.14%) 0 1.453
P2 0.64 (51.16%) 0.03 (2.39%) 0.08 (6.31%) 0.004 (0.32%) 0.002 (0.16%) 0 1.253

P2C1 S 0.28 (11.02%) 0.07 (2.68%) 2.05 (84.43%) 0.002 (0.08%) 0.06 (2.48%) 0 2.422
P1 0.68 (47.32%) 0.03 (1.96%) 0.07 (5.21%) 0.24 (17.74%) 0.002 (0.15%) 0 1.325
P2 0.55 (52.08%) 0.03 (2.46%) 0.07 (6.52%) 0.003 (0.28%) 0.002 (0.19%) 0 1.058

P3C1 S 0.25 (12.21%) 0.05 (2.56%) 1.68 (82.77%) 0.002 (0.09%) 0.42 (20.68%) 0 2.031
P1 0.51 (38.16%) 0.02 (1.48%) 0.06 (4.31%) 0.23 (17.08%) 0.001 (0.07%) 0 1.347
P2 0.53 (54.33%) 0.02 (2.35%) 0.06 (5.91%) 0.002 (0.20%) 0.002 (0.20%) 0 0.981

P4C1 S 0.15 (10.64%) 0.04 (2.55%) 1.12 (81.71%) 0.003 (0.22%) 0.03 (1.97%) 0 1.372
P1 0.43 (38.50%) 0.02 (1.34%) 0.04 (3.48%) 0.20 (18.00%) 0.001 (0.09%) 0 1.122
P2 0.43 (50.35%) 0.02 (1.761%) 0.04 (4.58%) 0.004 (0.47%) 0.001 (0.12%) 0 0.852

Table 3.4: PCA results. The table shows the computational times related to the serial

(S), the first parallel (P1) and the second parallel (P2) versions execution exploiting the System

2. For each version, the times of the single phases and of the entire execution are presented. The

times are the average of five executions and are expressed in seconds [s].

These three versions are also executed exploiting the System 2. The previ-
ous analysis can be also done in this case and the same conclusions can be
drawn. The serial results are slightly higher than the previous ones but it
is possible to notice that the covariance matrix computation Third phase is
still the heaviest execution part. Concerning the P1 and P2 versions, the
First phase and Second phase-Part A is slower than the respective value of
the serial execution: this step is performed on the host in all the versions
but, in the parallel versions, it contains also the data preparation for the
transfer. The speed-up obtained with the parallel versions are shown in
Table 3.5. From Table 3.5 stands out that even in this case the P2 version
is the fastest one. Compared with the P2 results obtained with System 1
(Table 3.2), the ones obtained with System 2 are slower. In fact, it is impor-
tant to consider that the Tesla K40 is equipped with a number of cores that
is almost twice the GTX1060 one. Furthermore, the Tesla K40 is connected
to the CPU through a PCI Express 3.0, while the GTX1060 is connected
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Image ID Version speed-up

P1C1 P1 2.01
P2 2.47

P1C2 P1 2.05
P2 2.38

P2C1 P1 1.83
P2 2.29

P3C1 P1 1.51
P2 2.07

P4C1 P1 1.22
P2 1.61

Table 3.5: PCA speed-up (System 2). These speed-ups are obtained using the

second system. These values are the ratio of the serial and parallel computational times.

through a PCI Express 2.0: this means that in the first system the data
transfers are faster. Finally, exploiting the NVIDIA Visual Profiler it is
possible to evaluate the percentage of the computational time dedicated
to the data transfer that, in this case, is equal to the 0.90%. This value
highlights that the data preparation performed in First phase is efficient.
To graphically analyze the PCA results, Figure 3.13 shows the one-band
representation of the image P2C1 when the PCA algorithm is applied. It
is possible to notice the spatial representation of the most relevant spectral
information after the data dimensionality reduction.

3.4.3 Support Vector Machine

The algorithm and the serial version

The Support Vector Machine (SVM) is a machine learning technique
which computes the probability of a pixel to belong to each class under
study. The highest probability corresponds to the class assigned to the
pixel. In this system, the output of the SVM classifier is not the label that
represents the class but a probability map which contains the probabilities
of each pixel to belong to the four classes. This output will be one of the
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Figure 3.13: PCA result. The image on the left (Image ID=P2C1) is the input of the

algorithm, so the HS cube acquired during the neurosurgical operation. The image on the right

is the one band representation of the input.

inputs of the KNN algorithm, which is the following step. This classifier
was selected for the brain cancer detection system because it provides good
performance for this kind of data and in the present experiment conditions:
limited training dataset and real-time constraint [48] [69]. The SVM algo-
rithm is composed of two main parts: training and prediction. Since the
SVM performs a supervised classification, a labelled dataset is needed in
order to train the model which will be used in the prediction phase. This
dataset is developed following the procedure explained in Paragraph 3.3:
the neurosurgeons and the pathologists, on the base of their knowledge,
experience, of the biopsy results and of the output of the SAM algorithm,
assign a label to some of the pixels. Since it is impossible to know the
spectral signatures, the labels, of each HS cube pixel, there are two ways to
evaluate the performance of the generated model. Concerning the labelled
pixels, it is possible to use standard metrics, as sensitivity and specificity,
to evaluate the accuracy of the model when it has to predict new data.
Regarding the whole HS cube, not entirely labelled, the performance of
the supervised model can only be estimated through a visual evaluation of
expert neurosurgeons [48]. The training phase of the SVM classifier is de-
veloped using MATLAB, exploiting the LIBSVM library. It is not present
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in this thesis since it is considered an offline step of the system: the idea is
to generate the supervised model and, then, to send it as an input to the
prediction part of the algorithm. The SVM algorithm faces a multiclass
problem with a one-against-one or binary strategy: each pair of classes are
evaluated in order to find the best hyperplane that separates their elements
in the space. The number of binary evaluations, and so the number of the
computed linear hyperplanes, depends on the number of classes considered
in the classification, as shown in Equation 3.5.

nhp =
nclass ∗ (nclass − 1)

2
(3.5)

In this work the number of hyperplanes nhp is six since the number of classes
nclass is four. Each hyperplane generated in the training phase is associated
to a w vector which is computed as the sum of the support vectors, each
of them modified by the Lagrange multiplier and the class value. The w
vector is described by Equation 3.6:

w =
∑
i∈S

αij · vj · xi (3.6)

where xi represents a set of support vectors selected among the training set
S as the closest samples of their class to the binary hyperplane, yi is the
class of each support vector and αi is the Lagrange multiplier associated
to a sample [69]. The linear discriminant function f(x) associated to each
binary classifier is shown in Equation 3.7:

f(x) = w · x+ b (3.7)

where x is the sample that has to be classified and b is the bias of the hy-
perplane that separates the two classes. The serial SVM classification algo-
rithm [69] is characterized by three main phases: the variables declaration
and initialization, the binary probability computation and the multiclass
probability computation (Figure 3.14). The SVM prediction algorithm in-
puts are: the sample to classify (x), the matrix W which contains all the
w-vectors (wij), B the matrix of biasses (bij), Sa and Sb which are param-
eters of the sigmoid function and the HS cube. The indexes i and j refers
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First phase
Variables declaration and 
initialization

Second phase
Binary probability
computation

Third phase
Multiclass probability
computation

Inputs: 
x → sample to classify
W = [w12, w13, …, wnm] → w-vectors
B = [b12, b13, …, bnm] → bias
Sa = [Sa12, Sa13, …, Sanm] → sigmoid parameters a
Sb = [Sb12, Sb13, …, Sbnm] → sigmoid parameters b

Algorithm Second Phase:
1  for i=1 to nclass-1 do
2 for j=i+1 to nclass do
3            Stage 1: 𝑑𝑖𝑗 = 𝑤𝑖𝑗 ∙ 𝑥 + 𝑏𝑖𝑗

4            Stage 2.1: 𝑃𝑖𝑗 =
1

1+𝑒
(𝑑𝑖𝑗∗𝑆𝑎𝑖𝑗+𝑆𝑏𝑖𝑗)

5            Stage 2.2: 𝑃𝑗𝑖 = 1 − 𝑃𝑖𝑗
6 end
7  end

Algorithm Third Phase: 

8 Stage 3.1 𝑃𝑐1 = ⋯ = 𝑃𝑐𝑛 =
1

𝑛𝑐𝑙𝑎𝑠𝑠

9 for i=1 to nclass do

10       Stage 3.2: 𝑄𝑖𝑖 = σ𝑗≠𝑖
𝑛𝑐𝑙𝑎𝑠𝑠𝑃𝑗𝑖

2

11       Stage 3.3: 𝑄𝑖𝑗 = 𝑄𝑗𝑖 = −𝑃𝑖𝑗 ∗ 𝑃𝑗𝑖
12       Stage 3.4: 𝑄𝑝𝑖 = σ𝑗=1

𝑛𝑐𝑙𝑎𝑠𝑠𝑄𝑖𝑗 ∗ 𝑝𝑐𝑗
13   end

14   Stage 3.5: 𝑝𝑇𝑄𝑝 = σ𝑖=1
𝑛𝑐𝑙𝑎𝑠𝑠𝑄𝑝𝑖 ∗ 𝑝𝑐𝑖

15 for iterations=1 to 100 do
16       if ∀ 𝑖 ∈ 𝑛𝑐𝑙𝑎𝑠𝑠 | 𝑄𝑝𝑖 − 𝑝𝑇𝑄𝑝 < 𝑒𝑝𝑠𝑖𝑙𝑜𝑛; 𝒃𝒓𝒆𝒂𝒌
17       for i=1 to nclass do

18             Stage 3.6: 𝑑𝑖𝑓𝑓 =
−𝑄𝑝𝑖+𝑝

𝑇𝑄𝑝

𝑄𝑖𝑖

19 Stage 3.7: 𝑃𝑐𝑖 = 𝑃𝑐𝑖 + 𝑑𝑖𝑓𝑓

20 Stage 3.8: 𝑝𝑇𝑄𝑝 =
𝑝𝑇𝑄𝑝+𝑑𝑖𝑓𝑓∗(𝑑𝑖𝑓𝑓∗𝑄𝑖𝑖+2∗𝑄𝑝𝑖)

(1+𝑑𝑖𝑓𝑓)2

21             for j=1 to nclass do

22                  Stage 3.9: 𝑄𝑝𝑗 =
𝑄𝑝𝑗+𝑑𝑖𝑓𝑓∗𝑄𝑖𝑗

1+𝑑𝑖𝑓𝑓

23                  Stage 3.10: 𝑃𝑐𝑗 =
𝑃𝑐𝑗

1+𝑑𝑖𝑓𝑓

24             end
25 end
26 end

Output:

Pc = [Pc1, Pc2, …, Pcn] → class probability

START

END

Figure 3.14: SVM serial algorithm.

to the classes of each binary classifier [69]. In Figure 3.14, the Stage 1 of
the algorithm (line 3) computes the distance (dij) of the sample x from the
hyperplane applying the discriminant function described in Equation 3.7.
The second stage (lines 4-5) estimates the probabilities of the sample to
belong to the two classes under study. In particular, Stage 2.1 computes
the probability of the sample, associated to one of the classes, through a
sigmoid function to the relative distance. Stage 2.2 computes the probabil-
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ity of the sample to belong to the other class of the classifier. These first
steps are executed a number of times equal to the number of hyperplanes.
Stage 3 computes the multiclass probabilities combining the binary prob-
abilities generated in the previous stages. At first, the class probabilities
are initialized with the same value (line 8). Stage 3.2 and Stage 3.3 (lines
10-11) compute the matrix Q which is obtained from the binary probabil-
ities calculated before. The steps from Stage 3.4 to Stage 3.10 (lines 12 –
23) aim to compute the multiclass probabilities: the for loop (lines 15 –
26) iteratively refines the values of the probabilities of a pixel associated to
a class. The value of each probability is incrementally modified as long as
the difference with the value of the previous iteration is under a threshold
or if the maximum error (epsilon) is reached. When one of these two cases
is verified, the multiclass probabilities of the sample are computed. Both
the threshold and the error are set by the user and, for this reason, they
are two algorithm inputs. The SVM output consists of a probability map
containing the multiclass probabilities of all the samples, that are the pixels
of the HS image. It is important to highlight that all the steps shown in
Figure 3.14 are computed independently for each sample: this will be an
essential aspect in the develop a pixel-wise classification.

The parallel version

Even if the analysis conducted on the serial SVM results (presented in
the following paragraph) proves that it is a very optimized algorithm since
its computational time is very low, a parallel version of this algorithm has
been developed anyway. The reason is that a parallel version of this classifier
could be very useful in the development of the complete system by avoiding
some data transfers. In fact, if the complete system will perform the PCA
and the KNN on the device, performing even the SVM on GPU could be
more efficient thanks to the fewer I/O transfers from the host to the device
and viceversa. The fact that the multiclass probability computation is
independent for each sample eases the development of the parallel version of
the SVM algorithm. In Figure 3.15 the main steps of the code are presented.
The flow starts on the host where the inputs reading and the variables
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HOST DEVICE

First phase
Variables declaration and 
initialization

Second phase

Compute 𝑑𝑖𝑗 (Stage 1)

Second phase
Binary probability
computation
(Stage 2.1 –Stage 2.2)

Third phase
Multiclass probability
computation

START

END

DATA TRANSFER

DATA TRANSFER

Figure 3.15: Parallel version of the SVM algorithm.

declaration and initialization are performed. Furthermore, in this phase all
the data are organized to be transferred from host to device. In particular,
all the outputs of the SVM training phase (which is offline and not present
in this work) are stored in a linear matrix in order to perform a fast and
efficient transfer. When the GPU memory is initialized and the data are
transferred, the computation can start. It is important to notice that in
this parallel version the Second phase of the algorithm is split in two steps.
In particular, the computation of the distance between the sample and the
hyperplane (Stage 1) is separated from the binary probability computation
(Stage 2.1 and Stage 2.2). In fact, the distance computation in the Stage
1 is performed by applying the Equation 3.7 which can be solved by the
cublasSgemm function of the cuBLAS library. The inputs of this function
are a matrix, made up of the w vectors of all the pixels, and the input
image. At this point, since both the remaining part of the Second phase
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and the Third phase can be pixel-wise parallelized, it is possible to create a
custom kernel that simultaneously computes the binary and the multiclass
probabilities for each pixel. Even in this case the kernel is characterized by
a grid whose dimension is:

dimgrid =
N

nthreads
(3.8)

where N is the number of pixels of the image and nthreads is the number of
threads that are in each block of the grid. As said before, this number is set
to 32 and if the remainder of Equation 3.8 is not equal to zero, dimgrid is
unitary incremented. This kernel starts with the binary probabilities com-
putation (Stage 2.1 and Stage 2.2) and then continues with the multiclass
probabilities (Third phase) as described in the Algorithm Second Phase and
in Algorithm Third Phase in Figure 3.14. These updated probabilities are
stored in a probability map which is transferred from the device to the host.

SVM results

The values reported in Table 3.6, in the column Time, confirm that
the serial version is well performing and, sometimes, is even faster than
the parallel code. Notice that the time effectively dedicated to the SVM
computation is significantly decreased in the parallel version compared to
the serial one. In the column Effective Computational Time, the times
relative only to the computation of the algorithm are presented. These
values demonstrate that the parallelization of the Second phase and Third
phase allow to decrease the computational time. In fact, consider that only
the creation of the handle, used in the cuBLAS function, takes over the
28% of the entire time. Nevertheless, in the complete system development,
the handle will be created only once for all the algorithms.

Analyzing only the time of the SVM computation, the parallel version
takes only 0.009 s compared to the serial version which, instead, takes 0.233
s, if the biggest image in the database is considered (P1C2). In this case,
the speed-up between the serial and the parallel SVM effective times is
equal to 25.8x. For this reason, the parallel SVM will be also evaluated
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Image ID Version Time
Effective Com-
putational
Time

Speed-up

P1C1 S 0.275 0.228
P 0.302 0.009 0.91x

P1C2 S 0.277 0.233
P 0.297 0.009 0.93x

P2C1 S 0.226 0.193
P 0.315 0.008 0.72x

P3C1 S 0.193 0.164
P 0.292 0.007 0.66x

P4C1 S 0.132 0.108
P 0.308 0.005 0.43x

Table 3.6: SVM results. These results are obtained with the System 1. The parallel

code has been run using only one GPU of the system.

in the complete system developing in order to save time once the cuBLAS
variables declaration is performed for all the algorithms. Also in this case,
the algorithm has been executed on System 2. In Table 3.7 all the results
are presented.

The same considerations can be applied to this case since the times
of the serial versions are faster than the parallel ones. Despite the serial
version being the best performer, if the analysis is focused only on the SVM
algorithm computation, it is clear that the parallel version is significantly
faster than the serial one. Also in this case, most of the computational
time is dedicated to the handle creation (from about the 36% to the 41%
considering all the images) while the percentage of time dedicated to the
data transfer is very low (from about the 3% to the 6%). Concerning the
classification results, it is important to notice that there are no differences
in the values, and therefore all the versions classify all the pixels with the
same labels. The classification results of the SVM algorithm are shown in
Figure 3.16. The tumor area is represented with the red color, the green
area is related to the healthy tissue, the blue indicates the hypervascularized
tissue and the background is shown in black.

In order to evaluate the SVM classification results the sensitivity, the
specificity and the accuracy metrics are used [48]. The sensitivity is the pro-
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Image ID Version Time
Effective Com-
putational
Time

Speed-up

P1C1 S 0.34 0.276
P 0.481 0.007 0.71x

P1C2 S 0.311 0.309
P 0.467 0.007 0.67x

P2C1 S 0.261 0.235
P 0.481 0.006 0.54x

P3C1 S 0.263 0.203
P 0.465 0.005 0.55x

P4C1 S 0.149 0.137
P 0.432 0.004 0.34x

Table 3.7: SVM results. These results are obtained with the System 2.

portion of the actual positives that are correctly identified by the classifiers.
Equation 3.9 shows that it is computed as the ratio between the true pos-
itive (TP) and the sum of the true positive and false negative (FN), where
true positive means the number of real positive correctly classified, while

Figure 3.16: Classification results of the SVM algorithm. The image on

the left (Image ID=P2C1) is the input of the algorithm, so the HS cube acquired during the

neurosurgical operation. The image on the right is the classification map computed classifying the

input with the SVM algorithm. (Red: tumor area; green: healthy tissue; blue: hypervascularized

tissue; black: background).

138



3.4. Brain cancer detection system

the false negative is the number of negative samples classified as positive.

sensitivity =
TP

TP + FN
(3.9)

The specificity is the proportion of actual negative that the classifier
correctly recognizes as negative. It is the ratio between the true negative
(TN), i.e. the number of negative samples that the classifier correctly eval-
uates, and the sum of true negative and false positive (FP), that is the
number of samples wrongly classified as positive (Equation 3.10).

specificity =
TN

TN + FP
(3.10)

Finally the accuracy is the ability of the classifier to correctly assign the
class of a sample of unseen data. It is defined as follows:

accuracy =
TP + TN

TP + FP + TN + FN
(3.11)

First of all these metrics are computed providing as input the labelled
samples to the classifier. Once the classifier is trained it is used to clas-
sify new data, in this case the whole HS cube. At the end, the results are
evaluated by neurosurgeons in order to establish if the SVM algorithm well
distinguishes the different types of tissue [48]. The values of sensitivity,
specificity and accuracy of the SVM classifier are reported in [48] where
also the original HELICoiD system is presented. Since the SVM classifier,
described in this work, provides the same classification results of the ref-
erence system, the same values of sensitivity, specificity and accuracy are
reached. In particular, considering all the images, the accuracy values are
over 99%, and the sensitivity and specificity are higher than 97% and they
reach 100% in the most of cases [48].

3.4.4 K-Nearest Neighbors

1

1The contents of this paragraph are published in Florimbi G., Fabelo H., Torti
E., Lazcano R., Madroñal D., Ortega S., Salvador R., Leporati F., Danese G.,
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The algorithm and the serial version

Recent uses of the KNN algorithm show that it is not restricted to a
classifier role but it can also be used as a filtering technique [63] [70]. In this
work, this algorithm improves the results of the spectral classification by
adding spatial information. In this scope, the KNN filter receives as input
the probability map Pc generated by the SVM classifier and the one-band
representation I of the HS image, generated using the PCA. Considering
each pixel of the HS image, the KNN performs a nearest neighbors searching
step and a filtering step. Concerning the first part, the nearest neighbors
of a pixel are searched in a feature space which contains the pixel values
and the spatial coordinates (Equation 3.12).

F (q) = (I(q), λ · l(q), λ · h(q)) (3.12)

where I(q) is the normalized pixel value of the one-band representation and
l(q) and h(q) refer to the normalized coordinates of pixel q. The parameter
λ controls the balance between the pixel value and the spatial coordinates.
For example, the spatial information is not considered when λ is equal to
zero. Otherwise, if this value is higher than zero, more influence is given to
the local neighborhood [70]. The process of finding the K nearest neighbors
for each pixel involves the computation of its distance from the other pixels
present in the image. The Euclidean distance (Equation 3.13) is one of the
metrics used in this work to evaluate the distance of a generic pixel located
at (r, c) coordinates, to another located at (i, j):

d(I(rc), I(ij)) =
√

(Irc − Iij)2 + (r − i)2 + (c− j)2 (3.13)

where Irc and Iij are the normalized pixel values of the one-band represen-
tation array I at row r and column c, and at row i and column j respectively.
In this work the Manhattan metric is also considered to compute distances.

Báez-Quevedo A., Callicó G.M., Juárez E., Sanz C. and Sarmiento R., ”Accelerat-
ing the K-Nearest Neighbors Filtering Algorithm to Optimize the Real-Time Classifica-
tion of Human Brain Tumor in Hyperspectral Images”, doi:10.3390/s18072314, License:
http://creativecommons.org/licenses/by/4.0/, Sensors, 2018.
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Concerning the parameters presented in Equation 3.12, the distance is de-
fined as:

d(I(rc), I(ij)) = |Irc − Iij |+ |r − i|+ |c− j| (3.14)

For each pixel, the K nearest neighbors are selected after that the distances
have been sorted. Once the neighbors selection is over, the filtering step can
start. Taking into account the probability map Pc by the SVM classifier, a
set of new optimized probabilities for each pixel is computed as shown in
Equation 3.15.

O(q) =

∑
Pc(s)

K
, s ∈ wq (3.15)

For each pixel, the algorithm computes a number of probabilities O equal
to the number of SVM classes nclass, that is four in this work. In Equation
3.15, wq indicates the nearest neighbors of the pixel q, s is the index related
to each neighbor and K is the number of neighbors searched for each pixel
[63]. The last step consists of assigning a label to each q corresponding to
the highest value among the four optimized probabilities O computed for
each pixel. In this way a new classification map is computed. It is important
to highlight that the K nearest neighbors selection is the most consuming
part of the code from the computational point of view. For this reason, an
optimization is introduced in order to save memory and execution time [63].
Instead of searching the neighbors within the entire image, the selection is
done inside a search window, a region that surrounds the pixel. In this way
the number of distance computations considerably decreases: in fact, if the
entire image is considered, the algorithm computes N-1 distances for each
pixel, where N is the number of pixels. The choice of introducing a smaller
area where to find the neighbors can be done because of the value of the
parameter λ that is set for this work. Authors of [48] performed an analysis
of the values of the parameters λ and K which represent the importance
given to the neighborhood of the pixel and the number of nearest neighbors
that have to be selected for each pixel, respectively. They concluded that
small values of λ and K do not allow to represent the real distribution
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Figure 3.17: Different window sizes. The window dimension depends on the pixel

location inside the image.

of the tissues. On the other hand, high values of these parameters tend
to over-smooth the classes. The final values chosen are K=40 and λ=1.
This value of λ gives high importance to the local neighborhood. For this
reason, the probability to find neighbors near the pixel is higher than the
probability to find smaller distances in further zones of the image. Several
analysis were performed looking for a window dimension which produces
the same results as searching the neighbors in the whole image. The search
window selected as reference is characterized by a number of rows (WSize)
of the image equal to 14 and by a number of pixels equal to 14 rows×total
number of columns. The window surrounds the pixel in a symmetric way
so that half part of the area is evaluated over the pixel and the other half
below it (Figure 3.17) [63]. The pixels placed near the borders are treated
separately compared to the pixels in the centre of the image. To maintain
a spatial coherence, the pixels present in the top part have a window with
smaller dimension at first, so as not to search further than WSize/2 down in
the image. This way, the dimension increases with each further pixel being
processed until a steady state is reached. This happens when the number
of pixels above the one being processed reaches WSize/2 and it is kept
until an analogous situation happens in the lower zone of the image. The
main steps of the serial version of the KNN algorithm are shown in Figure
3.18. After the declaration and the initialization of the variables (First
phase), the algorithm computes the distances between each pixel and the
ones present in the respective windows (Algorithm Second Phase, lines 2 -
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First phase
Variables declaration 
and initialization

Second phase
K nearest neighbors 
searching

Third phase
Filtering

Inputs: 
I = [I1, …, IN ]→ PCA output
Pc = [Pc11, …, PcNxn_class] → SVM output

Algorithm Second Phase:
1 for q:=1 to pixels_in_the_image do
2          for j:=1 to pixels_in_the_window do
3 compute the distance between q and j
4 end for
5          sort the array containing the distances
6          select the K nearest neighbors
7          update the window border for the next pixel
8 end for

Algorithm Third Phase: 
9 for q:=1 to pixels_in_the_image do
10       for c:=1 to svm_classes do
11 for k:=1 to K do 
12                     sum the SVM probabilities
13 end for
14            divide each probabilty for K
15       end for
16       select the highest probability
17       assign the label to the pixel
18 end for

START

END

Figure 3.18: Main steps of the KNN serial flow.

4). The distances are computed using the metric shown in Equation 3.13 or
in Equation 3.14 and stored in an array which is sorted in ascending order
(line 5). In this way, the pixels related to the first K elements (distances)
in the array are the K selected neighbors (line 6). At the end of this Second
phase, the window parameters are updated for the computations related to
the next pixel (line 7). Once the pixel neighbors are selected, the Third
Phase can start. The goal of this algorithm is to assign a label to each pixel
considering the probability map generated by the SVM classifier. For each
pixel, the algorithm computes a number of probabilities O(q) (Equation
3.15) equal to the number of classes. In particular, for each class, it sums
the probabilities of the neighbors and, then, it divides the results by K
(Algorithm Third Phase, lines 10-15). After computing the four optimized
probabilities for each pixel, the algorithm assigns the label corresponding
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HOST DEVICE

First phase
Variables declaration and 
initialization

Second phase (Part A)
Computing the window
sizes

Third phase
Filtering

START

END

Second phase (Part B)
K nearest neighbors 
searching

DATA TRANSFER

DATA TRANSFER

Figure 3.19: KNN parallel version.

to the highest probability that the pixel has to belong to the class (lines
16-17).

The parallel version

The basic idea followed in the development of the parallel version is
that each CUDA core has to assign a label to each pixel simultaneously.
The flow starts on the host with the declaration and initialization of all the
variables (First phase in Figure 3.19). The main difference between this
First phase and the corresponding one of the serial code is that, in this
parallel implementation, the number of arrays, structures and variables
allocations is decreased in order to save memory. After the First phase, the
algorithm transfers to the device the one-band representation generated
by the PCA algorithm and the probability maps generated by the SVM
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classifier. The flow proceeds with the resources allocation on the device.
The first step of the KNN filtering algorithm on the GPU device concerns
the execution of a kernel that evaluates the borders and the size of the
windows in parallel through the pixels (Second phase (Part A)). Contrary
to the serial code execution, where the parameters related to the window
dimensions are updated at the end of the neighbors selection for each pixel,
in the parallel version the algorithm needs to know these variables before
starting the KNN filtering computation. In fact, in the following steps, it
is important to copy the PCA and SVM data (already transferred to the
device) from the global to the local memory of the GPU, shared by the
threads within a block. For this reason, each thread copies the part of
the data (delimited by the window parameters) needed in the computation.
Then, the results are copied to the global memory only at the end of the
kernel execution. This step is crucial to decrease the execution time since
the accesses to the global memory are very slow. In the Second phase (Part
B) each thread evaluates the K nearest neighbors of a pixel in parallel.
First, the PCA data required by each block are copied from global to the
local memory. Then, each thread of the block declares an array called
neighbors distances, whose dimension is equal to the number of K neighbors,
which is set to 40 in this work. This array is initialized with large values
and will contain the 40 lowest distances computed between the pixels. The
implementation goes on computing the distance between pixel i, represented
by the thread, and all the pixels within its window. If the distance between
the pixel i and a pixel j inside the window is smaller or equal to the last
element of the neighbors distances array, this distance will be stored in the
last position of the array. It is important to highlight that this if statement
is always verified considering the first 40 pixels in the window (i.e., the first
40 for loop iterations). Once the first 40 iterations are executed, in the
last position of the array there will be a real distance (not the initialization
value) and it will be the highest value among those already present in the
array. This is verified because every time that a new distance is stored in the
array, the algorithm calls a sort function in order to sort the elements of the
array in an ascending order, keeping track of their indexes. The K indexes
of the selected neighbors are the output of the kernel and will be copied to
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

2 5 9 10 14 18 19 22 24 26 30 33 36 38 42 43 49 52 55 59 60 62 63 67 69 70 72 75 78 80 82 83 85 89 90 92 94 96 97 98

A

The new distance is di,j=61 and the algorithm has to evaluate the if condition:B

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

2 5 9 10 14 18 19 22 24 26 30 33 36 38 42 43 49 52 55 59 60 62 63 67 69 70 72 75 78 80 82 83 85 89 90 92 94 96 97 98

C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

2 5 9 10 14 18 19 22 24 26 30 33 36 38 42 43 49 52 55 59 60 61 62 63 67 69 70 72 75 78 80 82 83 85 89 90 92 94 96 97

After 40 iterations the sorted array is:

Since di,j=61 is smaller than 98, this distance is stored in the last position of the array:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

2 5 9 10 14 18 19 22 24 26 30 33 36 38 42 43 49 52 55 59 60 62 63 67 69 70 72 75 78 80 82 83 85 89 90 92 94 96 97 61

D New sorting of the array:

Figure 3.20: KNN searching new distance evaluation example.

the global memory. Figure 3.20 shows an example of the evaluation of a
new distance by the KNN searching algorithm. After the first 40 iterations,
the array contains 40 distances stored in ascending order (Figure 3.20.A).
When a new distance is computed (in this example its value is 61), it is
compared with the last element of the array, in this case located in position
39 and whose value is 98 (Figure 3.20.B). Since the new distance is lower
than 98, it is stored in the last position of the array (Figure 3.20.C). At
this point, the array is sorted again (Figure 3.20.D). Due to the reduced
dimension of the array to be sorted, the sort function implemented in this
work is the shell sort algorithm. After computing all the neighbors for all
the pixels, the Third phase step of the KNN algorithm starts. In this phase,
the KNN filtering is computed by every thread of each block. First, each
thread copies the SVM probabilities of their corresponding neighbors from
the global to the local memory. The pseudo-code of the Third Phase is
presented in Algorithm 6.
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1 transfer the SVM data from the global to the local memory
2 declare and initialize the variables max probability and label
3 for class← 1 to svm class do
4 initialize temporary probability to zero
5 for k ← 1 to K do
6 compute temporary probability
7 if class = 1 then
8 max probability=temporary probability
9 label=class

10 else
11 if temporary probability > max probability then
12 max probability=temporary probability
13 label=class

14 end

15 end

16 end

17 end

Algorithm 6: Third Phase pseudocode.

For each class, the algorithm computes the temporary probability value
of each pixel, which is the sum of the SVM probabilities of all the neighbors
of the reference pixel (lines 3-6). If the algorithm is executing the first
iteration of the first for loop (i.e., if it is considering the first class), the
variable max probability assumes the value of temporary probability variable
and the index of the class is stored in label (lines 7-10). In the following
iterations, after computing the temporary probability, its value is stored only
if it is higher than the max probability value (which represents the highest
probability value of the previous classes). In this case, the index of the
class is also stored (lines 11-14). At the end of the for loop that iterates on
the number of classes, the algorithm selects the pixel label corresponding
to the highest probabilities sum among the four classes. It is worth noting
that the algorithm immediately evaluates if the sum of probabilities could
be the highest among the classes or not. This fact means that some arrays
declared in the serial version can be replaced with a few variables, thus
saving memory. At the end of this phase, the label of the pixel, which is
the output of this step, is stored in the global memory. Also in this case, for
each kernel, the block dimension is equal to 32. As said before, this choice
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is related to the warp dimension defined by the CUDA framework. Once
the KNN algorithm execution ends on the GPU device, an array containing
the labels of all the pixels is transferred from the GPU device to the CPU
host. At this point, the memory can be released.

KNN results

This paragraph presents the results of the KNN-based filtering algo-
rithm analyzing the computational times of the serial and the parallel ver-
sions. Furthermore, these times will be analized considering the evaluation
of different window sizes and of different metrics to compute the distances.
As said in the previous paragraphs, an important optimization is introduced
in the serial and parallel implementations concerning the computation of
the distances between pixels inside a window and not within the entire
image. Reducing the space where the algorithm evaluates the distances
ensures a significant decrease of the computational time, as shown in Table
3.8. In particular, the table provides the execution times for all the images,
considering both the cases in which the neighbors are searched within the
entire image (EI) and within a window of 14 rows (WSize14). The speed-up
obtained with the optimization has been also included. In addition, this
table shows the total number of pixels of each image and the number of
pixels inside the smallest and the biggest window in the WSize14 imple-
mentation. The times refer to tests where the Euclidean distance has been
considered. The simulations of the serial code have been carried out on the
Intel i7 processor which belongs to the System 1.

Data presented in Table 3.8 show that this optimization allows a huge
decrease in the execution times. For example, considering the biggest image
of the dataset, P1C2, the time of the implementation for the entire image is
19,135.58 s (about 5 h and 30 min). On the contrary, considering a window
of 14 rows, this time decreases to 509.16 s (about 8 min). The reason of
this huge time difference is that, when the algorithm has to consider the
entire image, it needs to compute a number of distances equal to (264,408 –
1) for each pixel, where 264,408 is the number of pixels of the P1C2 image.
However, with the window technique, the algorithm computes a number of
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Image ID #Pixels EI Time [s]
WSize14
Time [s]

Speed-up
Min WSize14

[#Pixels]
Max WSize14

[#Pixels]

P1C1 251,532 17,173.74 503.89 34.08x 3,836 7,672
P1C2 264,408 19,135.58 509.16 37.58x 3,864 7,728
P2C1 219,232 15,630.77 374.67 41.72x 3,472 6,944
P3C1 185,368 9788.58 322.86 30.32x 3,451 6,902
P4C1 124,691 4015.89 139.30 28.83x 2,303 4,606

Table 3.8: KNN results considering both the entire image and the ref-
erence window. Execution times of the serial code considering as search space both the

entire image (EI Time) and a window with 14 rows (WSize14 Time).

distances that, for the same image, varies from (3,864 – 1) to (7,728 – 1),
where 3,864 and 7,728 are the numbers of pixels inside the windows with
the minimum and the maximum sizes, respectively (depending whether the
pixel is in the borders or in the center of the image). It is important to
highlight that the highest speed-up is achieved analyzing the image P2C1,
since it has a number of pixel which is an integer multiple of 2, allowing
better use of the CPU resources and faster memory accesses. Concerning
the classification results, notice that there are no differences in the results,
and therefore all the pixels are classified with the same labels, using either
the entire image or a window. Considering this significant result, the com-
putational time variations are evaluated when the window size is reduced.
Furthermore, since the main goal of the work is to reach the real-time ex-
ecution, a parallel version of the algorithm has been developed in CUDA
language to exploit the GPU technology. Table 3.9 shows the execution
times of the serial and parallel implementations characterized by window
sizes that vary from 14 to 2 with decrements of 2. In addition, the speed-
up between the serial and the parallel codes (executed onto the Tesla K40
GPU) are presented.

The reduction of the window size supposes a decrease in the execution
times because the algorithm has to compute a lower number of distances.
For example, considering the P1C2 image, the time varies from 509.16 s (∼8
min) to 62.36 s (∼1 min) in the serial versions of WSize14 and WSize2, re-
spectively. If the parallel implementation of the same image is considered,
the times present a further decrease. In fact, for the same image the paral-
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Image ID Version
WSize14
Time [s]

WSize12
Time [s]

WSize10
Time [s]

WSize8
Time [s]

WSize6
Time [s]

WSize4
Time [s]

WSize2
Time [s]

P1C1 Serial 503.89 406.32 383.71 262.00 221.71 118.25 59.08
CUDA 12.83 11.49 6.23 5.52 3.85 2.29 1.22

speed-up 39.25x 35.33x 61.59x 47.42x 57.52x 51.44x 48.10x
P1C2 Serial 509.16 424.22 408.52 276.06 235.76 125.34 62.36

CUDA 13.53 12.09 6.47 5.73 3.99 2.39 1.26
speed-up 37.62x 35.08x 63.07x 48.11x 59.04x 52.31x 49.15x

P2C1 Serial 374.67 315.73 302.54 239.58 151.23 95.02 47.06
CUDA 10.55 5.70 5.18 3.62 2.67 1.70 1.03

speed-up 35.51x 55.39x 58.30x 66.18x 56.58x 55.76x 45.62x
P3C1 Serial 322.86 263.40 254.30 202.56 122.16 78.47 39.97

CUDA 9.00 4.92 4.45 3.15 2.30 1.51 0.92
speed-up 35.85x 53.46x 57.06x 64.17x 52.92x 51.80x 43.16x

P4C1 Serial 139.30 118.94 115.07 90.81 55.29 35.84 18.11
CUDA 3.21 2.34 2.16 1.63 1.12 0.83 0.60

speed-up 43.38x 50.63x 53.23x 55.61x 49.01x 42.82x 30.13x

Table 3.9: KNN results considering different window sizes. Execution time

results of the serial and parallel implementations using the Euclidean distance employing different

window sizes.

lel version of WSize14 is ∼37× times faster than the serial version, taking
only 13.53 s instead of ∼8 min. At the same time, the parallel execution of
WSize2 takes only 1.26 s instead of ∼1 min (the speed-up is ∼49×). Con-
cerning all the images in the reference implementation WSize14, the speed-
up are always higher than 35× and, in the best case (P4C1), it reaches 43×.
If we consider all the other versions, with the decreased windows sizes, the
parallel code shows even higher speed-up. For example, considering the
P1C2 image and the window size WSize10, the parallel code takes 6.48 s
while the serial version takes 408.52 s (∼6 min), obtaining a speed-up of
∼63×. Nevertheless, it is necessary to examine these times and speed-up
also taking into account the classification results. It is very important to
consider if, when reducing the window size, there are pixels classified with
different labels compared to the reference version (WSize14). Table 3.10
shows the number of misclassified pixels between the reference result and
other window sizes. Additionally, the difference percentage is shown. Con-
sidering the first three windows sizes (WSize12, WSize10, WSize8) for all
the images, the number of pixels classified with different labels is very low,
taking into account the final application of the system. In fact, the highest
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Image ID #Pixels WSize12 WSize10 WSize8 WSize6 WSize4 WSize2

P1C1 251,532 0 (0.000%) 0 (0.000%) 65 (0.026%) 3,672 (1.460%) 9,096 (3.616%) 20,476 (8.141%)
P1C2 264,408 0 (0.000%) 1 (0.000%) 60 (0.023%) 2,845 (1.076%) 7,705 (2.914%) 22,054 (8.341%)
P2C1 219,232 0 (0.000%) 4 (0.002%) 65 (0.030%) 2,606 (1.189%) 6,532 (2.979%) 18,015 (8.217%)
P3C1 185,368 0 (0.000%) 1 (0.000%) 49 (0.026%) 2,273 (1.226%) 5,604 (3.023%) 13,981 (7.542%)
P4C1 124,691 3 (0.002%) 7 (0.005%) 71 (0.057%) 1,498 (1.201%) 3,733 (2.933%) 10,089 (8.091%)

Table 3.10: Classification differences. Number of pixels with different classifica-

tion results using the Euclidean distance between the different computed windows sizes and the

reference one (WSize14). The table shows also the difference percentages.

percentage of different pixels is 0.057%, and it is related to the P4C1 image,
which, in the WSize8 version, presents 71 different pixels on a total amount
of 124,691 pixels. Concerning the other three windows sizes, the highest
percentage of different pixels for window WSize6 is 1.46% considering the
P1C1 image (3,672 different pixels on 251,532). For the window WSize4,
the percentage of different pixels is 3.62%, referred also to the P1C1 image
(9,096 different pixels on 251,532) and for WSize2, the highest percentage
is ∼8.341%, considering the biggest image of the database, P1C2 (22,054
different pixels on 264,408). At this point, there is a further evaluation that
can be made considering that this algorithm is part of a system whose main
goal is to discriminate between tumor and healthy tissue. The classification
is made between four classes that are normal tissue, tumor tissue, hypervas-
cularized tissue and background [48]. From the surgical and medical point
of view, it is clear that a wrong discrimination between tumor and healthy
tissue has much greater and transcendental relevance than just a misclassi-
fication issue between tumor and any other classes (hypervascularized and
background) or between healthy, hypervascularized and background classes.
It is possible to re-evaluate again the results of Table 3.10, considering that,
in the different WSize executions, only a low percentage of different pixel
labels are exchanged between tumor and normal tissue. Figure 3.21 shows
the percentage of pixels that are misclassified between tumor and healthy
tissues, tumor and hypervascularized tissues and tumor and background,
respectively, considering all the windows sizes for each image compared to
the reference version. In addition, the graph presents the classification dif-
ferences between healthy, hypervascularized and background classes (called
Others). As it can be seen in Figure 3.21, only in the case of the P3C1 im-
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Figure 3.21: KNN classification results. Percentage of pixels that have been mis-

classified using the Euclidean distance between tumor and healthy tissues (blue), tumor and

hypervascularized tissues (orange), tumor tissue and background (gray) and the other misclassi-

fications between healthy, hypervascularized and background (yellow). The results were obtained

per each window size implementations compared to the WSize14 for each image of the dataset.

age using the WSize8, the algorithm misclassifies approximately 2% of the
pixels (1 out of 49 pixels), exchanging the labels between tumor and healthy
tissues. In all the other implementations of WSize8, the classification differ-
ences do not involve the tumor class. Furthermore, in the versions related
to the three smallest windows (WSize6, WSize4, WSize2), the percentage
of the pixels exchanged between these two classes is lower than the percent-
ages of pixels exchanged between the other classes. For example, for the
biggest image of the database (P1C2), in the WSize6 implementation, the
classification difference between tumor and healthy tissue represents 2.43%
out of 2,845 different pixels. Considering the same image in the WSize4 and
in the WSize2 implementations, this percentage is 2.60% out of 7,705 pixels
and 1.89% out of 22,054 pixels, respectively. The highest percentage of dif-
ferences between these two classes is found in the WSize6 version regarding
the P1C1 image, where it is around 3.57% out of 3,672 pixels. According to
these data, it is clear that the algorithm can correctly distinguish the tumor
from the healthy tissue, while it makes more errors in separating the tumor
from the hypervascularized tissue. The highest percentages of misclassified
pixels between the tumor and the hypervascularized classes reach 26.28%
of the total number of different pixels (P3C1 image, WSize4 version). In
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P1C1 P1C2 P2C1 P3C1 P4C1

Distance Type EI WSize14 EI WSize14 EI WSize14 EI WSize14 EI WSize14

Euclidean [s] 17,173.75 503.89 19,135.58 509.17 15,630.77 374.67 9,788.58 322.87 4,015.89 139.30
Manhattan [s] 7,222.13 190.02 7,683.44 202.42 4,735.87 146.93 3,382.84 121.37 1,807.91 55.91

Speed-up 2.38x 2.65x 2.49x 2.51x 3.3x 2.55x 2.89x 2.66x 2.22x 2.49x
1.33% 0.99% 1.03% 1.10% 1.06%

Table 3.11: Comparison between the Euclidean and the Manhattan
metrics. Comparison of the execution times of the serial versions obtained employing the

Euclidean and Manhattan distances with the entire image (EI) and the WSize14. The table also

presents the classification differences between the Euclidean and Manhattan implementations.

fact, according to what it is said in [48], these two classes referred to tissues
with similar spectral signatures that can produce some misclassifications.
On the other hand, the spectral signatures of tumor and healthy tissues
present remarkable differences that allow the algorithm to distinguish these
two classes in the classification.
Another technique adopted to further reduce the execution time of the dis-
tances computation is the use of the Manhattan metric (Equation 3.14)
instead of the Euclidean one. Table 3.11 compares the times of the serial
code using both the entire image (EI) and the reference window (WSize14),
applying both the Euclidean and the Manhattan distances. The speed-up
obtained using the Manhattan distance and the percentages of pixels that
are different in the results are also presented in this table. A further reduc-
tion of the execution time is obtained using the Manhattan metric in the
distance computations (Table 3.11). In fact, for the biggest image of the
database (P1C2), the time is reduced from ∼5 h (19,135.58 s) using the Eu-
clidean distance to ∼2 h (7,683.44 s) in the case of using the entire image.
If the neighbors are searched within the window (for the same image), the
time decreases to ∼3 min (202.42 s) using the Manhattan distance. Con-
cerning all the images, it is possible to reach speed-up from 2.22× to 3.33×,
considering the versions with the entire image, and from 2.49× to 2.66×
in the WSize14 executions. Comparing the implementations that exploit
the Manhattan distance and the ones that use the Euclidean metric, the
number of pixels classified with different labels is quite low: the highest
percentage of different pixels is 1.33% in the P1C1 image. Furthermore,
consider that there are no differences in the classification results comparing
the entire image and the WSize14 versions, using the Manhattan distance.
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Image ID Version
WSize14
Time [s]

WSize12
Time [s]

WSize10
Time [s]

WSize8
Time [s]

WSize6
Time [s]

WSize4
Time [s]

WSize2
Time [s]

P1C1 Serial 190.02 192.19 158.15 129.54 81.61 54.14 28.70
CUDA 7.63 7.07 5.04 4.62 3.38 2.04 1.18

Speed-up 24.90x 27.15x 31.34x 27.99x 24.09x 26.47x 24.13x
P1C2 Serial 202.41 204.65 169.23 138.12 84.98 57.51 29.75

CUDA 8.01 7.40 5.21 4.84 3.51 2.09 1.22
Speed-up 25.26x 27.64x 32.48x 28.52x 24.20x 27.45x 24.28x

P2C1 Serial 146.92 152.20 125.60 102.94 63.90 42.57 21.81
CUDA 6.44 4.58 4.27 3.16 2.34 1.52 1.00

Speed-up 22.81x 33.20x 29.35x 32.50x 27.25x 27.86x 21.66x
P3C1 Serial 121.37 126.98 104.79 86.83 55.09 36.24 18.54

CUDA 5.57 4.03 3.76 2.79 2.04 1.37 0.90
Speed-up 21.75x 31.47x 27.86x 31.11x 26.88x 26.42x 20.54x

P4C1 Serial 55.91 58.06 42.62 39.42 24.39 16.62 8.66
CUDA 2.81 2.12 1.98 1.49 1.04 0.80 0.60

Speed-up 19.87x 27.27x 21.46x 26.46x 23.31x 20.59x 11.42x

Table 3.12: KNN results considering different window sizes. Execution

time results of the serial and parallel implementations using the Manhattan distance and using

different window sizes.

At this point, it is interesting to evaluate how the execution times can be
reduced changing the size of the windows using the Manhattan metric in
the distances computation. The results shown in Table 3.12 confirm that
decreasing the number of distance computations, i.e. the variations of the
window sizes, allows further reductions of the computational time. The
lowest execution times are obtained exploiting the GPU technology that
can run the parallel algorithm taking ∼8 s (compared to ∼3 min) if the
biggest image (P1C2) with the WSize14 version is considered. The speed-
up obtained using this device and the optimizations introduced in the code
are significant and they can reach up to 33.2× (P2C1– WSize12). For some
images and for some window dimensions, the algorithm takes only a few
seconds, but what is even more important to consider is the number of pix-
els that are misclassified when the window size decreases (Table 3.13). As
it can be seen in the results shown in Table 3.13, WSizes12 and WSizes10
present a reduced number of different pixels compared to the other imple-
mentations. Analyzing the Euclidean distance results presented in Table
3.10, this consideration can be made for the first three tests (WSizes12,
WSizes10 and WSizes8) but, in this case, the number of different pixels in
WSizes8 is higher than the first two versions. Despite this, it is important
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Image ID #Pixels WSize12 WSize10 WSize8 WSize6 WSize4 WSize2

P1C1 251,532 2 (0.001%) 65 (0.026%) 1,832 (0.728%) 4,507 (1.792%) 8,889 (3.534%) 19,783 (7.865%)
P1C2 264,408 3 (0.001%) 56 (0.021%) 1,483 (0.561%) 3,891 (1.471%) 7,839 (2.965%) 21,714 (8.812%)
P2C1 219,232 3 (0.001%) 44 (0.020%) 1,320 (0.602%) 3,483 (1.589%) 6,743 (3.075%) 17,653 (8.052%)
P3C1 185,368 2 (0.001%) 48 (0.026%) 1,033 (0.557%) 2,825 (1.524%) 5,474 (2.953%) 13,436 (7.248%)
P4C1 124,691 2 (0.001%) 35 (0.028%) 599 (0.560%) 2,014 (1.615%) 3,831 (3.072%) 9,613 (7.709%)

Table 3.13: Classification differences. Number of pixels with different classification

results using the Manhattan distance between the computed window sizes and the WSize14

Manhattan.

to highlight that the classification differences shown in Table 3.13 are not
very relevant for the final application of the system. In this application,
a solution with a good compromise between real-time execution and clas-
sification accuracy of the results has to be selected. In addition, it is also
important to evaluate the percentage of different pixels that are misclassi-
fied between tumor and healthy tissues and between tumor and the other
classes. Figure 3.22 shows the percentage of pixels that are misclassified
using the Manhattan metric between the different classes. In this figure, it
is possible to notice that the algorithm misclassifies more pixels between tu-
mor and hypervascularized classes than between tumor and healthy classes.
In fact, the highest percentage of pixels misclassified is 30.77% related to the
P1C1 image with WSize10, where the algorithm exchanges the labels of 20
pixels (between tumor and hypervascularized tissue) out of a total amount
of 65 different pixels compared to the reference version WSize14 (Table
3.13). Concerning the comparison between tumor and healthy classes, the
number of pixels with an exchanged label is very low: the worst case is
always the P1C1 image (WSize8), where 66 out of 1832 different pixels are
misclassified, being a 3.60% of pixels.

Once presented all the results, it is important to select the suitable
version for this application that is the option that offers a good compromise
between an accurate classification and a fast execution. For this reason,
these results should be graphically analized in order to visually appreciate
the classification of the image. In Figure 3.23, the KNN filtered maps
obtained from the P2C1 image and the binary maps are shown, where the
differences between the evaluated window size version and the reference
version are highlighted.
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Figure 3.22: KNN classification results. Percentage of pixels that have been mis-

classified using the Euclidean distance between tumor and healthy tissues (blue), tumor and

hypervascularized tissues (orange), tumor tissue and background (gray) and the other misclassi-

fications between healthy, hypervascularized and background (yellow). The results were obtained

per each window size implementations compared to the WSize14 for each image of the dataset.

As described in Table 3.10, by using the window sizes WSize12, WSize10
and WSize8, the number of different pixels was lower than those obtained
using the WSize6, WSize4 and WSize2, compared with the reference test
(WSize14). Despite this, it is possible to see that also the WSize8 and

Figure 3.23: KNN classification results. Results of the KNN filtering algorithm

obtained from the P2C1 image using the Euclidean distance. The first row shows the filtered clas-

sification maps generated using different window sizes. The second row presents the binary maps

where the pixel differences between the current generated map and the reference one (WSize14)

are shown. In addition, the percentage of differences and the execution time results are detailed.
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the WSize6 KNN filtered maps do not present relevant dissimilarities. In
fact, it is important to remember that the main goal of these maps is to
delineate the tumor area, in order to provide the surgeons with a guidance
tool during the tumor resection. In this context, it is clear that the number
of different pixels in WSize8 and WSize6 versions are not so significant for
the final application of the system, since the surgeon always resects a se-
curity margin around the tumor tissue. As said before, this algorithm well
discriminates the tumor from the healthy tissue and this consideration can
also be seen in the KNN filtered maps, where the area related to the tu-
mor tissue (red) remains roughly the same in the implementations WSize6,
WSize8, WSize10 and WSize12 compared to the WSize14 one. Consider-
ing the WSize4 and the WSize2 versions, it is possible to appreciate that
the margins of the tumor are not as evident and well defined as in the
other images, confirming what has been said in the previous paragraphs
while analyzing the classification results. The binary maps, presented in
the second row of the Figure 3.23, show the pixel differences between all
the window size versions and the reference implementation (WSize14). In
particular, by analyzing the binary maps of WSize4 and WSize2, it is pos-
sible to identify several differences compared to WSize14. For this reason,
these two versions should not be chosen for the final solution. However, in
the binary maps of WSize6 and WSize8, there are few differences, and they
are barely appreciated analyzing the KNN filtered maps. Considering the
computational times of these two parallel versions, WSize8 takes ∼3.62 s
to filter the P2C1 image, while the WSize6 implementation is executed in
∼2.67 s. For the biggest image of the database (P1C2), the WSize6 im-
plementation allows to save ∼2 s when compared to the WSize8 version.
According to these results, the WSize8 version has been selected as the
best solution, giving priority to the classification accuracy but considering
also its fast implementation. On the contrary, the WSize6 implementation
has been chosen as the fastest implementation with acceptable accuracy
results. Similarly, the same evaluation can be done considering the imple-
mentations that exploit the Manhattan metric for the computation of the
distances. The first row of the Figure 3.24 presents the KNN filtered maps
of the P2C1 image. The second row presents the binary maps to evalu-
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Figure 3.24: KNN classification results. Results of the KNN filtering algorithm

obtained from the P2C1 image using the Manhattan distance. The first row shows the filtered

classification maps generated using different window sizes. The second row presents the bi-

nary maps where the pixel differences between the current generated map and the reference one

(WSize14) are shown. In addition, the percentage of differences and the execution time results

are detailed.

ate the differences between the developed versions when compared to the
WSize14 implementation. According to the data presented in Table 3.13, it
is possible to notice that the KNN filtered maps of the WSize12 and of the
WSize10 versions are pratically identical to the WSize14 map. Also their
binary maps show that these implementations offer the highest accuracy
but the slowest execution times. From the version WSize8 to the version
WSize2 the number of misclassified pixels drastically increases. Focusing on
the WSize4 and WSize2 maps, it is possible to notice that the border of the
tumor are not well delineated. In fact, also their binary maps show a high
amount of different pixels. Even if they are the fastest implementations,
they can not be chosen for this application. Concerning the WSize6 and the
WSize8 filtered and binary maps, the classification differences are not so
evident, especially taking into account the tumor tissue area. As presented
before, the WSize8 version has the highest accuracy but the execution time
is slower than the WSize6 version (the former exhibits 3.16 s and the latter
2.34 s). Also in this case, the best solution is chosen on the basis of the
degree of accuracy and the time constraints that the application requires.
Once selected the best versions both in the Euclidean and the Manhattan
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Figure 3.25: Comparison between the best solutions. Results comparison of

the KNN filtered maps from the P2C1 image using both the Manhattan and Euclidean distances.

The first row shows the filtered classification maps generated using different window sizes and

distance metrics. The second row presents the binary maps where the pixel differences between

the current generated map and the reference one (WSize14-Euclidean) are shown. In addition,

the percentage of differences and the execution time results are detailed.

implementations, it is important to visually compare their classification re-
sults with the KNN filtered map of the WSize14 Euclidean version. This
is considered the reference because it does not present classification dif-
ferences with the original version, which considered the entire image. For
this reason, Figure 3.25 shows the comparison of the KNN filtered and
binary maps between the reference and the WSize8 and WSize6 versions,
cosidering both the Euclidean and the Manhattan metrics. In Figure 3.25
is possible to notice that in all the obtained KNN filtered maps, the bound-
aries of the tumor area are accurately defined. The solutions where the
results are more similar to the reference implementation are the WSize8
– Euclidean and WSize8 – Manhattan versions, which differ 0.029% and
0.978% respectively, compared to the WSize14 – Euclidean reference. The
versions characterized by a window with 6 rows are less accurate than the
previous ones, but they are faster. Concerning the computational times, the
parallel execution of the reference solution is executed in ∼10.55 s, while
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Figure 3.26: Comparison between the best solutions. Figure of metric com-

puted comparing (A) the Euclidean versions WSize8, WSize6, WSize4 and WSize2 with the

reference WSize14-Euclidean, (B) the Manhattan versions WSize8, WSize6, WSize4 and WSize2

with the reference WSize14 – Euclidean.

the WSize8 – Euclidean and WSize8 – Manhattan versions are executed in
3.62 and 3.16 s, respectively. The WSize6 – Euclidean and the WSize6 –
Manhattan implementations require 2.67 and 2.34 s, respectively. Finally,
a figure of merit (FoM in Equation 3.16), which relates the execution time
(t) and the classification results (err), was considered to select the best
solution that offers the highest value:

FoM =
1

t× err
(3.16)

The version WSize8 – Euclidean is chosen as the best solution since it
presents the highest value of FoM (Figure 3.26). The results obtained in this
analysis show that, for the proposed final application, the implementation
characterized by a search window of 8 rows using Euclidean distance is the
best solution. This version performs the classification of the considered
images in less than 6 s, with speed-up up to 102.5× and 4317.9× compared
with the WSize14 – Euclidean and the entire image versions, respectively.
This version will be used in the complete system.
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Figure 3.27: Spatial-spectral supervised classification system. The PCA,

SVM and KNN algorithms represents the Spatial-spectral classification system which is the part

of the complete system which performs a supervised classification.

3.4.5 Spatial-spectral supervised classification

As already said at the beginning of the paragraph 3.4, the Princi-
pal Component Analysis, the Support Vector Machine and the K Nearest
Neighbors consitute the Spatial-spectral supervised classification system (in
the red frame in Figure 3.27) which is the main part of the brain cancer
detection system. As described before, different versions of each algorithm
have been developed. They have been also included in the design of differ-
ent versions of the Spatial-spectral classification system in order to find the
most efficent solution. First of all a Serial Version of the Spatial-spectral
supervised classification system has been developed. It is characterized by
the sequential execution of all the algorithms in cascade on the CPU.
The first parallel code implementation is presented in Figure 3.28. As it
is possible to see in the figure, the flow starts on the host where the input
data are read and stored in suitable variables. These inputs are the HS
image and all the variables related to the pre-processing and the different
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Figure 3.28: SSC – Version 1. First version of the Spatial-spectral supervised classifi-

cation system. The pre-processing and all the algorithms are excuted in cascade on the GPU.

algorithms. All these data are transferred from the host to the device as
the pre-processing phase starts. In the previous paragraphs, it has been
explained that both in the pre-processing and in the PCA computation the
data transfer has been performed using streams. In this case, streams are
exploited only at the beginning of the flow, when the HS cube, the white and
the dark images still have to be transferred for the calibration step. Once
the pre-processing is completed, the data needed by the PCA are already
stored in the GPU global memory. In this first Spatial-spectral classifica-
tion system parallel implementation (which will be referred in the following
as SSC – Version 1), the most performant version of each algorithm has
been introduced in the flow. It must be noticed that the fastest version of
each algorithm is the one executed on GPU. For this reason, most of the
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execution flow is on the device, with the exception for the input reading,
the declaration and the initialization of the variables as well as the memory
release that takes place in the final part of the algorithm. Moreover, the
host performs the eigenvectors computation since it is the fastest in provid-
ing this step result, as previously described in Paragraph 3.4.2. In this first
solution, the SVM parallel code has been included even if the serial one
is also well performing, as described in the Paragraph 3.4.3. This choise
is justified by the fact that there is a unique handle declaration, which is
used by different algorithms. In this case, the effective time of the paral-
lel SVM computation is lower than the serial version. The code on device
starts with the pre-processing step, whose output serves as input of both
the PCA and the SVM, which are executed in cascade. Then, outputs are
sent to the KNN which is the last step of the GPU flow. Finally, an array
containing the pixels labels is transferred from device to host. The aim of
the next three versions (referred in the following as SSC – Version 2.1, SSC
– Version 2.2 and SSC – Version 2.3) is to overlap some phases of the flow
in an effort to save computational time. It must be noticed that the SVM
and the PCA are two algorithms that can be computed simultaneously.
Therefore, the idea is to perform the SVM on the host while some parts of
the PCA are executed on the device. Figure 3.29 presents the flow of these
three versions. The initial part of the flow is the same for all the versions:
the input reading, the variable declaration and initialization are performed
on the host. Then, as the data are transferred on the device, the computa-
tion begins with the pre-processing phase. Once the input matrix has been
pre-processed, the PCA and the SVM can be performed. It is important
to underline that CUDA allows to overlap a kernel execution on the device
with a host function, if they are called consecutively [23]. In the case of
Version 2.1, the SVM is the part performed on the host since it showed good
performance in the serial execution. Therefore, the idea is to overlap the
SVM with the covariance matrix computation (Third Phase of the PCA).
In this version, the eigenvectors computation is on the device exploiting the
suitable cuSOLVER function described in the paragraph 3.4.2 [68]. As the
SVM and the PCA – Third Phase are executed, the SVM output is trans-
ferred on the device and the flows continues with the last PCA functions
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Figure 3.29: SSC – Version 2. These three versions differ from the parts of the flow that

are overlapped. In the Version 2.1, the Third Phase of the PCA and the SVM are overlapped. In

the Version 2.2, the idea is to execute the Fourth Phase of the PCA and the SVM simultaneously.

In the last option, Version 2.3, the aim is to perform the SVM and the Fourth Phase of the PCA

together with the Third Phase of the PCA.
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and, then, with the KNN. Figure 3.30 is generated through the NVIDIA
Visual Profiler and shows the overlap of these two parts: the green box
surrounds the SVM bar which is performed on the host while the red boxes
surround the PCA phases. It is possible to notice that the Third Phase of
the PCA algorithm is executed on the device together with the SVM on the
host. Considering again the Figure 3.29, instead of the Version 2.1, another
option of the flow is to overlap the eigenvector computation, i.e. the Fourth
Phase of the PCA, with the SVM (Version 2.2). Also in this case the eigen-
vectors are computed on the device while the SVM on the host. The idea
is to evaluate if it is more convenient to overlap the SVM with the Third
Phase (as in the case of the Version 2.1) or with the Fourth Phase of the
PCA (Version 2.2). Analyzing the timeline generated by the Visual Profiler,
in this case there is no overlap since the cuSOLVER function, exploited in
the eigenvectors parallel computation, needs the host to call some intrinsic
cudamemcpy functions, i.e. the ones that allow data transfer from host to
device and viceversa. For this reason, Version 2.2 times will be not consid-
ered in the results analysis. The third developed option (Version 2.3) is the
one that aims to overlap the SVM and the covariance matrix computation
(Third Phase of the PCA), as already presented in Version 2.1. But, in this
case, the eigenvectors computation is performed on the host, as in the best
performing PCA version. At the end of the PCA and SVM computation,
performed by one of these versions, the KNN can be executed. At the end,
the result is transferred from device to host where the memory is released.

Figure 3.30: SSC – Version 2.1 timeline. This graph shows the timeline generated

with the NVIDIA Visual Profiler.
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Figure 3.31: SSC – Version 2.4. After the pre-processing computation, two sections

are generated in order to execute the SVM and the PCA in parallel.

As it is possible to see in Figure 3.29, in the Version 2.3 the SVM and the
Fourth Phase of the PCA are sequentially executed.
In Version 2.4 a different approach has been introduced. Figure 3.31 shows
that the flows starts again from the host with the input reading. Once read,
the data are transferred to the device for the pre-processing computation.
The pre-processed image is stored in the GPU memory but it is also trans-
ferred to the CPU. In this version two sections are generated and each one
is managed by a CPU thread. The idea is that while the thread 0 manages
the serial SVM computation in Section 0, the thread 1 manages the PCA
computation in the Section 1 which is performed both on device and on
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host. In fact, the OpenMP API [15] allows to distribute the work among
different threads, each one bounded to a parallel region called section [15].
The directive to generate these two parallel regions is described in the Al-
gorithm 7.

1 #pragma omp parallel sections
2 {
3 #pragma omp section
4 {
5 In this section the thread 0 manages the SVM computation.
6 }
7 #pragma omp section
8 {
9 In this section the thread 1 manages the PCA computation.

10 }
11 }
Algorithm 7: Sections generation through the OpenMP directives.

After the SVM and the PCA ended, their outputs are sent to the KNN.
At this point, the two sections end and, on the host, the computation is
managed by only one thread (master thread). The flows continue with the
KNN algorithm on the device. At the end, the result is transferred from
device to host, as said before. The main difference between this version
and the Version 2.3 is that in this case the SVM and the PCA are executed
in parallel while, in the previuos code, only the Third Phase of the PCA
and the SVM were performed simultaneously. The reason is that, in the
previous case, the CPU thread had to manage the host/device transfers and
viceversa, to execute the PCA both on CPU and on GPU, and moreover,
it had to manage the SVM on the host.
The last developed version (Version 3) performs a double computation of the
pre-processing phase, one on the host and the other on the device (Figure
3.32). Unlike the previous versions, in this case the idea is to duplicate the
pre-processing step in order to have the pre-processed image both on host
and on device, avoiding its transfer from device to host. As said in Para-
graph 3.4.1, the pre-processing algorithm is made up of two main phases:
the calibration and the normalization. This version has been developed so
that the CPU-calibration and the CPU-normalization are overlapped with
the GPU-calibration and GPU-normalization, respectively. Analyzing the
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Figure 3.32: SSC – Version 3. In this version a double pre-processing computation is

performed.

timeline generated by the NVIDIA Visual Profiler it is clear that only the
two calibrations are overlapped since, during the normalization, the host is
managing also other computation tasks that do not allow a simultaneous
execution. Table 3.14 shows the computational times of all these versions
performed on the System 1 described before. The results presented in Ta-
ble 3.14, show that the parallel versions allow to save time compared to the
serial code. The serial Spatial-spectral system takes about five minutes to
classify the biggest image of the database (P1C2) while the fastest parallel
execution takes about 22 s. It must be noticed that all the parallel versions
take almost the same time to classify the images and there is not a version
that is significantly faster than the others. It is clear though that Version
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Computational time [s]
Image ID Pixels Serial SSC-Version 1 SSC-Version 2.1 SSC-Version 2.3 SSC-Version 2.4 SSC-Version 3

P1C1 251,532 281.48 21.27 21.46 22.42 21.40 23.98
P1C2 264,408 296.99 22.06 22.26 22.52 22.64 25.35
P2C1 219,232 222.67 17.48 18.09 17.74 17.61 19.95
P3C1 184,875 188.16 14.87 15.31 15.08 15.15 16.97
P4C1 124,033 85.17 7.08 7.26 7.06 7.05 8.33

Table 3.14: Results of the Spatial-spectral supervised classification sys-
tem. The table shows the computational times of the SSC versions. The results correspond to

the average of three executions. The times are expressed in seconds.

1 is the fastest one. This result highlights that, in this case, it is better to
perform all the algorithms in cascade on the GPU rather than to increase
the transfers number (from host to device and viceversa) in order to split
the work between host and device. In this case, the simultaneous execution
of algorithms (as the SVM and some phases of the PCA for the Versions
2.1-2.3 and the SVM and the PCA for the Version 2.4) is not convenient.
As a matter of fact, performing the SVM on the GPU in cascade with the
others algorithms proves to be a faster solution compared with the dis-
tribution of the algorithms between host and device due to the increased
number of needed data transfers. Furthermore, it can be concluded that it
is not convenient to duplicate the pre-processing phase (one performed on
GPU and one on CPU) as done in Version 3, since the serial pre-processing
computation takes more time than the pre-processed image transfer from
the device to the host. The times presented in Table 3.14 refers to the
system which contains the KNN reference version, i.e. the one character-
ized by WSize14. Table 3.15 presents a comparison between the serial code
and the SSC-Version 1 (SSC-Version 1 (WSize14) in Table 3.15) results,
both considering the reference KNN, and the SSC-Version 1 times obtained
considering the KNN algorithm best solution characterized by WSize8 and
where the distances between pixels are computed exploiting the Euclidean
metric, as described before. Also in this case it is possible to save compu-
tational time considering the best KNN solution of reference one. Both the
parallel versions are faster than the serial code, with a speed-up that can
be up to 22x.
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Computational time [s] Speed-up

Image ID Pixels Serial
SSC-Version 1

WSize14
SSC-Version 1

WSize8
Serial/Version 1 - WSize14 Serial/Version 1 - WSize8

P1C1 251,532 281.48 21.27 13.07 13.23x 21.54x
P1C2 264,408 296.99 22.06 13.89 13.46x 21.38x
P2C1 219,232 222.67 17.48 10.19 12.74x 21.85x
P3C1 184,875 188.16 14.87 8.92 12.65x 21.09x
P4C1 124,033 85.17 7.08 5.31 12.03x 16.04x

Table 3.15: Comparison between the Spatial-spectral classification ver-
sions characterized by different KNN algorithms. The table shows the com-

putational times of two different Spatial-spectral classification system versions: the former is

characterized the reference KNN algorithm, the latter considers the KNN version chosen pre-

viuosly as the best solution (WSize8). The serial code is characterized by the reference KNN

version. Also the speed-up between these two parallel implementations and the serial code are

shown. The times correspond to the average of three executions and are expressed in seconds.

3.4.6 K-means

The algorithm and the serial version

The K-means algorithm performs an unsupervised classification since
a labelled dataset is not needed. The algorithm generates groups, called
clusters, separating tissues and materials present in the hypercube, on the
base of their spectral similarity. Each cluster centroid represents a spectra
of a particular material present in the image. The number of clusters is one
of the algorithm inputs. The serial K-means flow is shown in Figure 3.33.
The inputs are the pre-processed image Y, the centroids number KC , the
threshold error (min error) and the maximum iteration number (max iter),
used as stopping criteria. The First phase of the algorithm consists of the
random initialization of the KC centroids. Furthermore, an array called
previous centroids is initialized to 0. Finally, the iteration number n iter
is set to 0 and the actual error is initialized to a huge value. The flow
continues with a while loop. If the loop condition shown in Figure 3.33 is
satisfied, the second phase can start. The distances between the pixels and
the centroids are computed exploiting the Spectral Angle (SA) metric, as
shown in Equation 3.17:

θ(x, y) = cos−1(

∑M
h=1 xhyh

(
∑M

h=1 x
2
h)1/2(

∑M
h=1 y

2
h)1/2

) (3.17)
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First phase
Variables declaration and 
initialization

Second phase
Distance computation and 
clusters assignment

Third phase

cluster_centroids update
actual_error and n_iter update

START

actual_error > min_error
&

n_iter < max_iter

true

END

false

Figure 3.33: K-means serial flow.

where M is the number of bands, x and y are the spectral vectors and xh
and yh represent the response of the h-th band of x and y respectively. The
label assigned to each pixel corresponds to the cluster which has the cen-
troid with the minimum value of SA. At this moment, the centroids used
in the distance computation are stored in the previous centroids array. The
Third phase consists in the centroids update computing the barycenter of
each group. The variation between the actual and the previous centroids is
evaluated in order to update the actual error variable. This variation repre-
sents how much the centroids changed and, for this reason, the actual error
is used as stopping criteria. At the end, the n iter variable is updated to
control the iterations number that the algorithm is performing. Unlike the
other algorithms presented before, this classifier has not a fixed number
of steps. In fact, the computation of new barycenters continues until the
loop condition is false, that is when the difference between the centroids
of two consecutive iterations is smaller than a fixed threshold (min error)
or when a maximum number of iterations is reached (max iter) [48]. The
output is a segmentation map showing different clusters characterized by
several colours. In this system, this classifier is used in order to delineate
the boundaries of the different spectral area present in the image which
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should be identified by a specialist.

The parallel version

During a master thesis held in the Custom Computing Programmable
System laboratory (University of Pavia), in collaboration with the IUMA
(ULPGC), three CUDA versions of this algorithm have been developed. In
Figure 3.34 the flow of the most performing is shown. The First phase is
performed on the host and, then, the pre-processed image is transferred
to the device. On the host the while-loop condition is evaluated and, if it
is true, the array which contains the clusters centroids is transferred from
host to device. Here, a custom kernel performs the distances computation.
This kernel is characterized by a 2-dimensional grid whose rows refer to
the pixels and the columns to the clusters. In this way, each thread com-
putes the distances between a pixel and all the centroids. The distances

First phase
Variables declaration and 
initialization

Second phase
Distance computation and 
clusters assignment

Third phase

cluster_centroids update
centroids variation update

START

actual_error > min_error
&

n_iter < max_iter

true

END

false

DATA TRANSFER

HOST DEVICE

Third phase
actual_error and n_iter
update DATA TRANSFER

DATA TRANSFER

Figure 3.34: K-means parallel flow.
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Computational time [s] speed-up

Image ID Pixels # of iterations Serial
CUDA

System 1
CUDA

System 2
Serial/CUDA System 1 Serial/CUDA System 2

P1C1 251,532 13 214.52 3.99 2.41 53.76x 89.01x
P1C2 264,408 25 465.61 7.45 3.16 62.48x 147.31x
P2C1 219,232 10 151.50 2.96 2.02 51.18x 75.00x
P3C1 184,875 13 162.37 2.97 1.94 54.67x 83.70x
P4C1 124,033 32 272.20 4.52 2.37 60.22x 114.85x

Table 3.16: Comparison between the K-means serial and CUDA ver-
sions. The table shows the computational times and the speed-up of the serial and parallel

codes obtained exploiting the System 1 (considering only one Tesla K40) and the System 2. Also

the iterations number of each execution is presented. The computational times are expressed in

seconds.

are stored in a N×KC array where N is the pixels number and KC is the
clusters number. The second step of the Second phase is the cluster as-
signment: each thread of the kernel findMinimum searches the minimum
distance between the pixel and a centroid and assigns to the pixel the label
of the correspondent cluster. This kernel performs a pixel-wise computa-
tion. The cluster centroids update, in the Third phase, is computed by a
simple kernel where the i-th thread manages the update of the i-th centroid.
Once the update is completed, the variation between the previous and the
actual centroids is evaluated exploiting the cublasSasum routine (CUBLAS
library). This value is transferred on the host to compute the actual error
and the iteration number, n iter, is incremented.

K-means results

The K-means serial and parallel versions have been tested exploiting
both the System 1 and the System 2 described before. Table 3.16 shows
the computational times and the obtained speed-up. An analysis has been
conducted to estimate the value of the error, the maximum number of
iterations and the number of clusters in order to have the best performance
in the classification results and in the computational times. The number
of clusters KC is set to 24, the maximum number of iterations max iter is
50 and the minimum error min err is 10−3. The presented results highlight
that the parallel versions provide a significant speed-up. In the case of the
biggest image of the database, P1C2, the CUDA version takes 7.45 s on
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the System 1 and only 3.16 s on the System 2 instead of about 8 minutes
(465.61 s) for the serial code. What it is important to notice is that this
algorithm is faster if the System 2, equipped with the NVIDIA GTX1060
GPU, is used. Despite the GPU of the System 1 (Tesla K40) optimized for
scientific computations, this algorithm performs better on a more recent
architecture whose CUDA cores work at a higher frequency than the Tesla
ones. Finally, to graphically observe the classification results, Figure 3.35
shows the map generated by the K-means algorithm where each cluster
is represented with a different colour. This kind of clustering allows to
delineate with high accuracy the boundaries of some biological structures
such as blood vassels, materials like the ring markers and different tissues.
Even if the clusters have not an histological meaning, the region of interest
is well delimited. This result is consistent with the main goal of the system
that is to delineate the tumor area with high accuracy.

3.4.7 Majority Voting

The brain detection system presented in this work performs a hybrid
classification: as explained in the previous paragraphs, it is characterized

Figure 3.35: K-means classification map. This image shows the classification result

of the image P2C1. The number of clusters present in the image is 24, each one represented by

a color randomly selected.
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by a supervised and unsupervised learning methods. The first one provides
a classification map in which each pixel belongs to a class: this map is ob-
tained exploiting the diagnosis information provided by the neurosurgeons
and medical doctors. Even if this kind of output assigns a label to each
pixel, it does not provide an accurate delineation of the tumor area. On the
other hand, the unsupervised classification provides a good association of
homogeneous areas in the image, even if the clusters that it generates are
meaningless. These two approaches are computed independently but their
results have to be merged in order to exploit their advantages and to obtain
a final classification map. The Majority Voting is the approach selected to
join these outputs, already used by authors of [71]. Figure 3.36 [48] shows
an example of the Majority Voting technique. In this example, the un-
supervised classification map delimitates the borders of each cluster area,
but each cluster does not present a semantic meaning. On the other hand,
the supervised map shows four different classes, each one represented by a
specific colour and with a defined meaning. The two maps are merged to
obtain the final hybrid result which shows each pixel belonging to a specific
group, assigned on the base of the class of the supervised classification, also
taking into account the clusters obtained by the unsupervised classification
map (that delimitates the border of each cluster area) [48].

3.5 Parallel versions of the complete system

In the previous paragraphs the serial and the parallel versions of all
the algorithms that belong to the brain cancer detection system have been
presented. The aim of this paragraph is to explain how the best solutions
of these algorithms have been merged exploiting the single-GPU and the
multi-GPU architectures in order to obtain the most efficient version of the
system. The goal is to reach a real-time classification that, in this particular
case, is defined by a threshold of 1 minute, that is the time that the camera
takes to capture the hyperspectral image. In the previous paragraph the
complete serial system flow has been shown. The Figure 3.37 summarises
the detection system serial flow (black lines), highlighting the inputs and
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Figure 3.36: Majority Voting. [48]

the outputs paths (dotted lines) and graphically showing the classification
output of each algorithm. What is represented in Figure 3.37 is the starting
point for a parallel system development. The first parallel version designed
exploits a single-GPU system and it is characterized by the execution of all
the algorithms in cascade on the device (Figure 3.38). The flow starts on
the host where the input image and the other variables are declared and
initialized. There are two types of inputs: on one side there are the inputs
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START

PARAMETERS DECLARATION 
AND INITIALIZATION

PRE-PROCESSING

PRINCIPAL COMPONENT 
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Figure 3.37: Serial flow of the brain cancer detection system. The image

shows the flow of the serial code (black arrows), the input/output flow (dotted lines) and the

graphic output of each algorithm.
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read from the user interface. As it will be explained in the Paragraph 3.7,
the user can set some parameters such as the number of neighbors K, the
metric used in the distance computation, the WSize concerning the KNN
algorithm, the maximum iterations number, the error and the number of
clusters KC concerning the K-means. The interface provides the default
value of these variables (determined on the basis of the analysis presented
before) but the user can choose to modify these values. The image and all
these variables are read and stored in the CPU memory and transferred
on the device for the computation. The other type of input is the one
that is independent from the user: in fact, the white and dark calibration
matrices and the variables belonging to the SVM model generated by the
SVM training phase are also read, stored and transferred to the device.
Once the data transfer is completed, the GPU parameters and variables are
declared. For example, in this step the handle used in the cuBLAS routines
and the streams used in the pre-processing are created. Furthermore, the
grids and blocks dimension of the kernels are defined. Once that the GPU
initialization is completed, the pre-processing can start. As explained in
the Paragraph 3.4.1, the white and dark matrices and the input image
are transferred exploiting CUDA streams. Once the image is calibrated
and normalized (pre-processing phase), the pre-processed image is stored
in the GPU memory and it is transferred to the host since it is used for
the clusters initialization (K-means algorithm) performed on the CPU. The
flow continues with the PCA algorithm which loads the pre-processed image
from the GPU global memory. It is important to underline the difference
with what explained in Paragraph 3.4.2. If the PCA algorithm is considered
alone, the pre-processed image is an input read by the host and transferred
on the device using streams. In the case of the complete system (and also
in the Spatial-spectral classification system seen above), the pre-processed
image is already on the GPU memory since the pre-processing step has
been performed on the device. For this reason, considering the complete
system, in the PCA there is no need to transfer the image. The PCA version
included in this system is the one chosen as the best solution characterized
by the eigenvectors computation on the host. The PCA output is the one-
band representation of the hyperspectral-image which is stored in the global
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Figure 3.38: Complete system parallel version on single-GPU technol-
ogy. First parallel version of the complete system. The image shows the flow of the parallel

code (black arrows), the data transfers (dotted lines) host/device and viceversa and also between

the algorithms.
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memory in order to be used in the KNN algorithm. The pre-processed
image is also a SVM algorithm input which is completely performed on the
device. The probability map generated by the SVM classifier is also stored
in the GPU global memory because it will be used in the filtering part of
the KNN algorithm. The first kernel of the KNN algorithm needs the PCA
one-band representation to compute the distances between the pixels in the
neighbors selection phase. Once this step is concluded, the filtering kernel
starts computing the optimized probability that a pixel has to belong to a
class, taking into account the SVM probability map. The KNN output is
an array containing the label of the class assigned to each pixel. The flow
continues with the K-means algorithm, performed on device, whose inputs
are the pre-processed image and the cluster centroids, which have been
computed on the host during the Clusters initialization phase. Finally, the
KNN and the K-means outputs are transferred to the host for the Majority
Voting computation. The RGB image, i.e. the system output, is shown to
the user through the user interface (Paragraph 3.7). As it will be presented
in the next paragraph, this single-GPU version of the complete system
classifies the hyperspectral image even in less than half a minute, satisfying
the real-time constraint. To further reduce the computational time obtained
with the single-GPU code, several multi-GPU versions have been developed.
Analyzing the flows of the codes presented above, there are parts that could
be executed simultaneously. For this reason, the idea is to perform these
parts on different GPUs that work in parallel. In order to manage two
boards in parallel, two sections (generated with the OpenMP API) are
created: each one is characterized by a CPU-thread which manages the
memory initialization, the variables declaration, the kernels launch and the
transfers of each board. The flow of the first Complete System multi-GPU
parallel version (CS - multi1) is shown in Figure 3.39. As in the previous
version, the variables declaration and initialization is performed on the
host. The inputs are transferred on one of the two boards (in this case the
Device 0) where the pre-processing is performed. The pre-processed image
is stored in the global memory of the GPU 0 and it is also transferred
both on the host, for the Clusters initialization in the K-means, and on
the other device (Device 1), for the K-means computation on GPU. This
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Figure 3.39: First complete system parallel version on multi-GPU tech-
nology (CS - multi1). The image shows the flow of the parallel code (black arrows), the

data transfers (dotted lines) host/device and viceversa and also between the algorithms.
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transfer between devices is possible thanks to the GPUDirect technology,
as explained in Paragraph 1.2.2 in Chapter 1. In order to copy data from
the memory of one device to the other, the first step consists in enabling the
current GPU (in the case of the pre-processed image transfer is the GPU
0) to access addresses of the GPU 1. The function that allows this task
is the cudaDeviceEnablePeerAccess whose input is the destination device
index, that in this case is the GPU 1. As the access is enabled, the function
that allows to copy data from Device 0 memory to Device 1 memory is the
cudaMemcpyPeerAsync, whose parameters are:

� the destination device pointer dev preprocessedImage gpu1, i.e. the
linear matrix in which the pre-processed image will be stored;

� the destination source that in this case is the GPU 1;

� the source device pointer dev preprocessedImage gpu0, i.e. the linear
matrix that has to be copied on the GPU 1;

� the source device, i.e. the GPU 0;

� the size of the data that has to be copied that in this case is
N×M×dimfloat, where N is the number of pixels, M the number of
bands and dimfloat is the size of a float expressed in byte;

� the stream identifier.

Once the pre-processed image is transferred on the host and on the other
device, a parallel section is opened exploiting the OpenMP directives shown
in the Algorithm 8.
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1 #pragma omp parallel sections
2 {
3 #pragma omp section
4 {
5 In this section the thread 0 manages the GPU 0 and performs the PCA,

SVM and KNN.
6 }
7 #pragma omp section
8 {
9 In this section the thread 1 manages the GPU 1 and performs the K-means.

10 }
11 }
Algorithm 8: Sections generation through the OpenMP directives.

The execution is divided into two sections each one assigned to a differ-
ent thread. As said before, each GPU is associated to a thread through the
function cudaSetDevice. In this way the thread 0 (Section 0) manages the
Device 0 and thread 1 (Section 1) manages the Device 1. The CPU-threads
work in parallel to compute simultaneously the different algorithms present
in the two sections. On the one hand, the thread 0 manages the PCA, SVM
and KNN computation in the same way described for the single-GPU code:
the PCA is performed on the GPU 0, except for the eigenvector computa-
tion that is executed on the host. Also the SVM is performed on the GPU
0 and its output, together with the PCA output, is sent to the KNN, which
is also executed on the device. The KNN output is transferred on the host
through a memcpy function managed by the thread 0. On the other hand,
the thread 1 computes the K-means Clusters initialization on the host, then
it transfers the clusters centroids on the GPU 1 where the other steps of the
K-means are computed. At the end, the output is transferred on the host.
At this point the parallel section is closed and the computation is managed
only by one thread. The Majority Voting is performed on the host and the
new classified image is plotted. Another multi-GPU system version (CS -
multi2) has been developed. It differs from the (CS - multi1) from the point
where the parallel section is generated. As it is possible to see in Figure
3.40, the Reading data step is always performed on the host. After this
phase, the parallel section is created in the same way described in Algo-
rithm 8. The main difference is that, since the pre-processing computation
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is performed in both the devices, each GPU requires the initial data. For
this reason there is a double-transfer of the initial data, one managed by
the thread 0 for the Section 0, the other by the thread 1 for the Section 1.
The code in each Section can be executed in parallel: each thread manages
the data transfer to its device where the pre-processing phase can start.
After this step, in Section 0, the PCA, SVM and KNN are computed as
explained before. In Section 1, the pre-processed image is transferred from
the Device 1 to the host in order to compute the first part of the K-means.
Then the computation continues on the device as described above. In this
case there is no need of a GPU-GPU transfer since each device computes
a pre-processing phase, so the pre-processed image is already stored in the
global memory of each GPU. These last two versions performed on the
multi-GPU system allow to further reduce the computational times of the
brain cancer detection system as it is analyzed in the following paragraph.

3.6 Results

The development of an optimized version of the brain cancer detection
system has required several steps and analysis before reaching a very effi-
cient and performing version capable of satisfying the real-time constraint
that, in this work, is set to one minute. As described in the previous
paragraphs, the first step of the work has been the development of the opti-
mized versions of the algorithms that characterized the HELICoiD system.
Several strategies and implementations have been described above but, ac-
cording to the results shown before, it is possible to conclude that the GPU
technology together with an efficient design of the algorithm codes allows
to reach high speed-up and to save computational time. Right after the
choice of the best solution for each algorithm, it has been studied the most
efficient way to link all these versions together in order to develop a highly
optimized brain cancer detection system, exploiting both the single and
the multi-GPU technologies. Table 3.17 shows the comparison between the
computational times of the three complete system parallel versions and the
serial one, presenting also the obtaining speed-up.
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Figure 3.40: Second complete system parallel version on multi-GPU
technology (CS - multi2). The image shows the flow of the parallel code (black arrows),

the data transfers (dotted lines) host/device and viceversa and also between the algorithms.
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3. Single and multi-GPU processing for brain cancer detection

Computational time [s] Speed-up
Image ID Pixels Serial version CS - single CS - multi1 CS - multi2 Serial/CS-single Serial/CS-multi1 Serial/CS-multi2

P1C1 251,532 600.22 25.66 21.26 21.38 23.39x 28.23x 28.07x
P1C2 264,408 719.31 27.66 22.53 22.38 26.00x 31.92x 32.13x
P2C1 219,232 459.74 20.99 17.66 17.86 21.90x 26.03x 25.74x
P3C1 184,875 387.43 18.64 15.67 15.17 20.78x 25.54x 25.53x
P4C1 124,033 301.17 9.37 7.27 7.17 32.09x 41.41x 42.03x

Table 3.17: Comparison between the serial and the parallel versions of
the complete system. The table shows the computational times and the speed-up of the

serial and parallel codes obtained exploiting the System 1, considering only one Tesla K40 in

the CS- single code and both the boards in the CS - multi1 and CS - multi2 versions. The

computational times are expressed in seconds.

An analysis of the results shown in Table 3.17 reveals that all the parallel
versions classify the hyperspectral image in less than one minute, meeting
the real-time constraint. Despite the single-GPU version allows a signif-
icant reduction of the computational times of the serial code, the fastest
parallel solutions are the one that exploit the multi-GPU technology. It is
possible to notice that the multi-GPU versions allow to save up to about 5
s compared to the code which exploits only one GPU. The reason is that
the K-means can be performed together with the other algorithms, handing
the two computations to two different GPUs simultaneously. If the biggest
image of the database (P1C2) is considered, the multi-GPU versions take
respectively 22.53 s and 22.38 s for the image classification (obtaining speed-
up equal to 31.92× and 32.13× respectively), compared to the 27.66 s of
the single-GPU version and the 719.31 s (about 12 minutes) of the serial
code. The highest speed-ups are obtained with the P4C1 image classifica-
tion reaching also the 42.03×. As it can be noticed from the Table 3.17, the
two multi-GPU versions results are not very different. This means that, for
this type of system, performing two pre-processing steps (one in each GPU)
takes almost the same time than computing only one pre-processing and
transferring the pre-processed image through a GPU-GPU data transfer.
In fact, as it will be possible to see later, the data transfers are not so heavy
in the execution. The results shown in Table 3.17 refer to those codes that
include the KNN algorithm reference version, which performs the neighbors
selection in a searching window characterized by 14 rows (WSize14) and ex-
ploits the Euclidean metric in the distance computations. In the Paragraph
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3.6. Results

Computational time [s] speed-up
Image ID Pixels Serial version CS - single CS - multi1 CS - multi2 Serial/CS-single Serial/CS-multi1 Serial/CS-multi2

P1C1 251,532 600.22 17.95 13.45 13.54 33.43x 44.63x 44.33x
P1C2 264,408 719.31 19.49 14.22 14.23 36.91x 50.58x 50.54x
P2C1 219,232 459.74 14.01 11.34 10.53 32.81x 40.55x 43.66x
P3C1 184,875 387.43 12.02 8.99 9.57 32.23x 43.19x 40.46x
P4C1 124,033 301.17 7.79 6.41 6.40 38.66x 46.98x 47.09x

Table 3.18: Comparison between the serial code and the parallel ver-
sions of the complete system, characterized by the KNN with WSize8.
The table shows the computational times and the speed-up of the serial and parallel codes ob-

tained exploiting the System 1, considering only one Tesla K40 in the CS- single code and both

the boards in the CS - multi1 and CS - multi2 versions. The serial version presents the KNN

reference version while the parallel codes present the KNN characterized by WSize8. The com-

putational times are expressed in seconds.

3.4.4 we concluded that the version WSize8, whose searching window has 8
rows, and that computes the distance using the Euclidean metric, is a very
efficient option to be considered for its computational time and classifica-
tion results. For this reason, Table 3.18 shows the reference serial version
compared with the parallel codes characterized by the KNN algorithm with
WSize8. The KNN version with WSize8 has provided a further reduction of
the image classification computational times. With these new versions it is
possible to classify the biggest image of the database (P1C2) in only 14.22
s if the fastest parallel version is considered. Concerning the Single-GPU
version, the highest speed-up is obtained in the P4C1 image evaluation and
it is 38.66×. With regards to the multi-GPU versions, the highest speed-up
refers to the P1C2 image classification reaching the 50.58×.
The graphs A) and B) (Figure 3.41) show the timelines of the CS- multi1

code considering the KNN - WSize14 (A) and the KNN - WSize8 (B),
both exploiting the Euclidean metric in the distance computations. These
graphs are the representation of the data generated by the NVIDIA Visual
Profiler. Each bar represents a task that can be a transfer or a function
performed by thread 0 (red), thread 1 (green), GPU 0 (orange) and GPU
1 (light blue). The longest task which is performed by the thread 0 is the
image upload, that is the hyperspectral image reading, while it is impor-
tant to highlight that all the data transfers (cudamemcpy) are very fast and
sometimes negligible. This aspect underlines that the data have been pre-
pared in an efficient way for the transfer so that the most of the execution
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Figure 3.41: Timelines of the CS-multi1 version considering both
WSize14 and WSize8 KNN algorithms. A) Timeline of the CS-multi1 version

considering the KNN - WSize14. B) Timeline of the CS-multi1 version considering the KNN -

WSize8. C-D) Graphs that indicate the percentages of the transfers, of the functions and kernels

and of the image upload for each thread and GPU, considering the CS-multi1 version with the

KNN - WSize14 (C) and the KNN - WSize8 (D).
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is dedicated to the algorithms computation. Concerning the algorithms, it
has been explained previously how their computation is managed by differ-
ent threads or GPUs simultaneously. This is the reason why, analyzing the
graphs, it can be noticed that, after the pre-processing computation, where
a parallel section was generated, the red and orange bars are overlapped to
the green and light blue ones. Considering both the graphs A) and B), it
is interesting to observe how the result changes if the KNN with different
WSize is considered. Focusing only on the KNN orange bar and on the
K-means light blue bar, it is possible to notice that in the version with the
KNN - WSize14 (A) is the KNN that prevails on the computational time
of the entire execution. But, if the window size is reduced (or if the Man-
hattan metric is chosen), also the KNN computational time decreases and
the K-means becomes more and more significant in the computational time
of the entire system. The graphs C) and D) (Figure 3.41), show the time
percentages dedicated to the transfers, the kernel and functions execution
and the image upload that each GPU thread has to manage. The upload
image percentage is related only to the thread 0 (the highest red columns
in graphs C) and D)) and in the case of the KNN - WSize14 is 29.22%
while in the case of the KNN - WSize8 it reaches the 44.25%. This is a
very significant data if it is considered that, in this last case, almost half
execution is dedicated to the input reading instead of the computation. It
is important to underline, though, that it is a temporary condition since
the image is read from a file. The data will be transferred directly from
the camera when it will be connected to the system. Considering the other
tasks performed by the thread 0, it can be noticed that the percentages
related to the transfers and the functions are very low: for example, the
percentage of all the transfers performed by the thread 0 is 0.85% in C)
and 1.24% in D). The thread 0 manages the GPU 0 (orange columns) which
dedicates the most of the execution to the computation of the kernels and,
in particular, to the KNN algorithm. Also in this case the transfers per-
centages are almost zero and the data related to the image upload is not
present since it is performed by the thread 0. The thread 1 and the GPU 1
perform the K-means computation and, also in this cases (green and light
blue columns), the most relevant data are the one related to the kernels

189



3. Single and multi-GPU processing for brain cancer detection

and functions computations. The main difference between the C) and D)
graphs is the orange column which refers to the kernels computation. Pass-
ing from the KNN - WSize14 to the KNN - WSize8, the duration of all the
tasks remains almost the same (as it can be seen in graphs A) and B)) but
the time of KNN algorithm, and so its percentage on the total execution,
decreases. In graph D) (as explained for the graph B)) it can be noticed
that the percentages of the kernels performed by the GPUs (orange and
light blue columns) present more similar values than the previous case. In
particular, in the graph C) the time percentage dedicated to the kernels
computation by the GPU 0 is 60.16%, while the one dedicated to the ker-
nels by the GPU 1 is 20.93%. In the graph D) these percentages are 40.08%
and 32.13% respectively.
After that the computational results have been discussed, it is important
to graphically analyze the classification results. As described in Paragraph
3.4.7, the last step of the complete system was the combination of the
clustering map, generated by the K-means algorithm, with the supervised
classification map, obtained with the KNN algorithm. On one side there
is a map whose clusters have not histological meaning but they show well
delineated borders; on the other side there is a classified image whose pixels
are shown with four colors which represent a specific tissue (or background).
The Majority Voting has combined these two different maps, with different
information, in order to improve the final classification result. In Figure 3.42
two different ways to represent the final classification map are shown. In
particular, it presents the comparison between the P2C1 classification maps
obtained by the CS- multi1 version considering both the KNN - WSize14
(images A and B) and the KNN - WSize8 (images C and D). Two methods
have been exploited to represent the brain cancer detection system output.
Figure A) and C) are generated considering the maximum majority class
of the supervised classification map to each cluster of the K-means map.
For example, if the maximum class present in a cluster is the tumor, the
cluster RGB color will be R=1, G=0, B=0 (values expressed in percent-
age). These two maps provide a more accurate result compared to the map
generated by the KNN algorithm because the borders of each class, and
so of each tissue, are better delineated. Despite this, it should be noticed
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3.6. Results

A B

C D

Figure 3.42: Classification result of the image P2C1. A) - B) Classification

maps obtained with the CS- multi1 version considering the KNN - WSize14 with and without

different tonalities. C) - D) Classification maps obtained with the CS- multi1 version considering

the KNN - WSize8 with and without different tonalities. The red colour identifies the tumor area,

the green the healthy tissue, the blue the hypervascularized tissue and the black the background.

that if in a cluster there is a high presence of another class (which is not
the maximum class) the information related to this new class is not shown
in these maps. For this reason another way to represent the classification
map has been adopted. It is called Three Maximum Density (TMD) and it
consists of mixing the colors of the classes present into a cluster taking into
account the three maximum MV probability values [48]. For example, if
the probability to find the hypervascularized tissue in a cluster is 70%, the
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3. Single and multi-GPU processing for brain cancer detection

probability of tumor is 20% and of healthy tissue is 10%, the class assigned
to the cluster is the hypervascularized one but the RGB color cluster will be
R=0.2, G=0.1, B=0.7. Figure 3.42 B) and D) shows the classification maps
generated with the TMD method. This technique allows to show different
tissues present in a cluster providing more information than the maps gen-
erated taking into account only the cluster maximum class. The images A)
and B) show the classification map (without and with different tonalities)
generated by the CS- multi1 version considering the KNN - WSize14. In
Paragraph 17, it has been explained that the KNN classification results are
the same if the entire image or a window with 14 rows are used as search-
ing window in the neighbors selection. At this point it can be concluded
that also the classification results of the CS- multi1 version with the KNN
- WSize14 are the same than the ones of the original HELICoiD system
which considered the entire image as searching window, and whose classifi-
cation maps are validated by specialists and neurosurgeons. The images C)
and D) refer to the CS- multi1 version considering the KNN with WSize8
and the Euclidean metric in the distance computation. In Paragraph 17,
it has been explained that the classification difference percentage of the
WSize8 version compared to the reference one is of 0.029%. In fact, ana-
lyzing the KNN filtered maps (Figure 3.25) of these two versions, very few
differences can be appreciated by the naked-eye. Also considering the com-
parison between the maps A) - C), and between the maps B) - D) (Figure
3.42) few differences can be noticed, especially if the tumor area is consid-
ered. For this reason, it can be concluded that the multi-GPU version of
the complete system which considers the KNN algorithm with WSize8 and
the Euclidean metric, is a very good solution for the hyperspectral image
classification since it provides an accurate classification map in real-time.

3.7 User Interface

Part of the work of another master thesis developed in the ULPGC in
collaboration with the Custom Computing Programmable System labora-
tory (University of Pavia) consisted in the development of a user interface
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3.7. User Interface

of the brain cancer detection system. The aim of this paragraph is to
briefly illustrate how the system is presented to the neurosurgeons in order
to give a more complete description. Figure 3.43 shows the main windows
of the interface. Figure 3.43.A presents the main window of the program:
in the top-left side there are three buttons (to load the image, to change
the parameters and to start the classification) and a drop-down list, which
shows the types of computation that the user can choose on the base of
the technology that he wants to exploit. In this case (Figure 3.43.B, yellow
arrow) the user can select a serial computation performed by a CPU, a
multi-core execution or a parallel computation performed by a single or a
multi-GPU technology. The green arrow indicates the parameters button.
If it is pressed, the window shown in Figure 3.43.C is opened. This window
presents all the parameters of the different algorithms described above with
the default values. The user can choose to change these parameters and try
new system configurations. Once the new system configuration has been
chosen, the user can upload the image (Figure 3.43.D) and press the button
Process to start the computation. At the end, the final result will be shown
as in Figure 3.43.F.
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A B

C D

E F

Figure 3.43: User interface. A) Main window. B) Selection of the computation type

and the parameters. C) Parameters window. D) Image upload. E) Window before the image

processing. F) Final window with the classification map.
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Chapter 4
Overall conclusions

Several aspects in the personalized medicine of the future require very
powerful technologies able to elaborate huge amount of data in less time
as possible or even in real-time. The work described in this thesis demon-
strates the crucial role that HPC technologies have in two medical cases of
study: the computational modelling and the support system development.
The design of the cerebellar granular layer simulator belongs to the first
research field. This work is part of the european Human Brain Project
which aims at performing a complete simulation of the human brain. This
task will bring several benefits such as a deeper brain knowledge which
will allow to develop specific diseases diagnosis, personalized treatments
and discover new pathologies and non-invasive therapies. A wide brain un-
derstanding will also provide a novel architecture philosophy for hardware
devices: scientists develop innovative neuromorphic and neurorobotic sys-
tems based on neurons activity and brain elaboration capabilities. These
systems will use the same basic principles of computation and the same
cognitive architecture as the brain does. The University of Pavia is fo-
cused on the cerebellum developing complex mathematical models capable
of reproducing its functionalities and behaviors in a realistic way. Since
these models are heavy from the computational point of view, the use of
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HPC technologies is crucial to reduce the elaboration times, aiming at the
real-time simulation. During this work, several technologies and paradigms
have been evaluated concluding that GPU is the best performing for this
application. This work is focused on the development of a realistic granu-
lar layer simulator, which is part of the cerebellar cortex. The first phase
of the work dealt with the reproduction of the Golgi and granule cells ac-
tivities, developing realistic simulators of these cells exploiting the single-
and multi-GPU systems. This technology allowed to significantly reduce
the serial elaboration time. For example, the reproduction of 3 seconds of
neuronal activity of 400,000 Golgi cells takes about 18 hours considering
the serial algorithm. This time is reduced to about 28 minutes exploiting
one GPU board and reaches about 15 minutes and only 313.10 seconds if
multi-GPU systems are considered.
The Golgi and granule cells simulators are able to correctly reproduce the
neuronal behaviors. During the second phase of the work the granular layer
network has been developed following two main steps: the network design
and its simulation. The former concerned the computation of the elements
to insert in a 3D space, their displacement and their connection following
detailed and realistic rules. The latter dealt with the reproduction of the
network activity exploiting the Golgi and granular cell simulators. The al-
gorithm which reproduces the network behavior is developed to exploit the
GPU device. Also in this case, this technology has provided a faster result
compared to the serial version. The activity (3 seconds) of a network made
up of 194,333 granules, 972 Golgi, 32,399 glomeruli and 1,080 mossy fibers
takes about 35 hours considering the serial code and 7.5 hours considering
the parallel solution, using one GPU board. Despite this result is very sig-
nificant, the first future work will be the network simulation on multi-GPU
systems. Moreover, other cerebellar behaviors and functionalities have to
be reproduced and validated. Finally, the Purkinje and molecular layers al-
gorithms will be developed to have a complete cerebellar cortex simulator.
The results obtained in this work are very important because they demon-
strate how GPU technology can significantly reduce the elaboration time
in this kind of applications, where complex models have to be solved as
fast as possible. It is also true that the project goal is the real-time simu-
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lation that will probably be achieved only using powerful supercomputers
and manycore solutions, due to the complex mathematical task. Therefore,
this thesis has demonstrated that the parallelization approach is the right
way to follow to satisfy the real-time constraint.

The second case of study concerned the use of the HPC technologies in
the development of a real-time version of a brain cancer detection system.
This work, part of the HELICoiD project, has been carried out at the IUMA
laboratory of the Universidad de Las Palmas de Gran Canaria, which is the
project leader. This system acquires an hyperspectral image of the pa-
tient’s brain and classifies it in order to display in real-time a map where
the tumor parts are distinguished from the healthy tissue. During a neu-
rosurgery, the doctor has to resect the cancer from the brain with an high
level of precision since over-resection can cause important demages and, on
the other side, leaving tumor tissue in the brain can cause recurrence. For
these reasons, the system requires an high accuracy in the cancer delin-
eation and a real-time classification to provide a fast help to the surgeon.
Once acquired, the hyperspectral image is pre-processed and sent to the
classification system which is made up of two main branches concerning
the supervised and unsupervised classification. In the former the PCA and
the SVM are performed and their outputs are sent to the KNN which pro-
vides the result of the supervised branch. The unsupervised classification
dealt with the K-Means. At the end, the Major Voting technique joins the
two results to develop the final classification map. The work described in
this thesis focused on the development of a parallel version of this system in
order to exploit the GPU technology to reach the real-time elaboration. In
this specific application the real-time constraint has been set to 1 minute.
The best parallel version of the algorithm is able to classify the biggest
image of the database in about 14 seconds. This result demonstrates that
the goal has been achieved but, in the future, this elaboration time has
to be further reduced in order to classify hyperspectral video in real-time.
For this reason, new techniques to optimized the code will be developed in
order to exploit multi-GPU systems that, as shown in this work, are able
to provide fast results.
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4. Overall conclusions

These two cases of study demonstrated that HPC technologies and, in par-
ticular, GPUs play a crucial role in medical applications, where a great
amount of data has to be elaborated as fast as possible. Nowadays, the
healthcare and medical research require increasingly data to perform a more
precise and personalized medicine for a specific patient. And in this context,
HPC technologies will be essential.
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Press, 2011.

[18] “OpenMP Loop Scheduling.” https://software.intel.com/en-us/

articles/openmp-loop-scheduling.

[19] “NVIDIA GPU.” https://developer.nvidia.com/.

[20] D. B. Kirk, W. W. Hwu, Programming Massively Parallel Processors.
A Hands on Approach. Morgan Kaufmann, 2010.

[21] “NVIDIA GeForce GTX 680 Whitepaper.” https://www.nvidia.

in/content/PDF/product-specifications/GeForce_GTX_680_

Whitepaper_FINAL.pdf.

[22] NVIDIA Corporation, “NVIDIA CUDA C programming guide,” 2018.

[23] NVIDIA, “Streams and Concurrency.” https://

developer.download.nvidia.com/CUDA/training/

StreamsAndConcurrencyWebinar.pdf.

[24] NVIDIA Corporation, “GPU Direct.” https://developer.nvidia.

com/gpudirect.

[25] NVIDIA, “Tesla K40 Board Specification.”
https://www.nvidia.com/content/PDF/kepler/

Tesla-K40-Active-Board-Spec-BD-06949-001_v03.pdf.

[26] NVIDIA, “GTX1060 Board Specification.” https://www.nvidia.it/

geforce/products/10series/geforce-gtx-1060/.

201



BIBLIOGRAPHY

[27] G. Florimbi, E. Torti, S. Masoli, E. D’Angelo, G. Danese, and F. Lep-
orati, “The human brain project: parallel technologies for biologically
accurate simulation of granule cells,” Microprocessors and Microsys-
tems, vol. 47, pp. 303–313, 2016.

[28] “Human Brain Project - Report.” https://ec.europa.eu/research/
participants/portal/doc/call/h2020/fetflag-1-2014/

1595110-6pilots-hbp-publicreport_en.pdf.

[29] P. Dale, “Neuroscience (Third edition),” 2004.

[30] L. Mapelli, S. Solinas, and E. D’Angelo, “Integration and regulation of
glomerular inhibition in the cerebellar granular layer circuit,” Frontiers
in cellular neuroscience, vol. 8, p. 55, 2014.

[31] E. M. Izhikevich, “Which model to use for cortical spiking neurons?,”
IEEE transactions on neural networks, vol. 15, no. 5, pp. 1063–1070,
2004.

[32] A. L. Hodgkin and A. F. Huxley, “A quantitative description of mem-
brane current and its application to conduction and excitation in
nerve,” The Journal of physiology, vol. 117, no. 4, pp. 500–544, 1952.

[33] G. Florimbi, E. Torti, G. Danese, and F. Leporati, “High performant
simulations of cerebellar Golgi cells activity,” in 25th Euromicro Inter-
national Conference on Parallel, Distributed and Network-based Pro-
cessing (PDP), 2017, pp. 527–534, IEEE, 2017.

[34] E. D’Angelo, T. Nieus, A. Maffei, S. Armano, P. Rossi, V. Taglietti,
A. Fontana, and G. Naldi, “Theta-frequency bursting and resonance in
cerebellar granule cells: experimental evidence and modeling of a slow
K+-dependent mechanism,” Journal of Neuroscience, vol. 21, no. 3,
pp. 759–770, 2001.

[35] S. Solinas, T. Nieus, and E. D’Angelo, “A realistic large-scale model of
the cerebellum granular layer predicts circuit spatio-temporal filtering
properties,” Frontiers in cellular neuroscience, vol. 4, p. 12, 2010.

202



BIBLIOGRAPHY

[36] “Neuron.” https://www.neuron.yale.edu/neuron/.

[37] S. Solinas, L. Forti, E. Cesana, J. Mapelli, E. De Schutter, and
E. D’Angelo, “Computational reconstruction of pacemaking and intrin-
sic electroresponsiveness in cerebellar Golgi cells,” Frontiers in cellular
neuroscience, vol. 1, p. 2, 2007.

[38] T. Nieus, E. Sola, J. Mapelli, E. Saftenku, P. Rossi, and E. D’Angelo,
“LTP regulates burst initiation and frequency at mossy fiber–granule
cell synapses of rat cerebellum: experimental observations and theo-
retical predictions,” Journal of neurophysiology, vol. 95, no. 2, pp. 686–
699, 2006.

[39] S. Herculano-Houzel, “The human brain in numbers: a linearly scaled-
up primate brain,” Frontiers in human neuroscience, vol. 3, p. 31,
2009.

[40] “Stratix V Altera FPGA.” https://www.intel.com/content/www/

us/en/products/programmable/fpga/stratix-v.html.

[41] “Galileo (CINECA).” http://www.hpc.cineca.it/hardware/

galileo.

[42] “NVIDIA Tesla K80.” https://www.nvidia.com/en-us/

data-center/tesla-k80/.

[43] E. D’Angelo, S. Solinas, J. Mapelli, D. Gandolfi, L. Mapelli, and
F. Prestori, “The cerebellar Golgi cell and spatiotemporal organization
of granular layer activity,” Frontiers in neural circuits, vol. 7, p. 93,
2013.

[44] E. D’Angelo, A. Antonietti, S. Casali, C. Casellato, J. A. Garrido,
N. R. Luque, L. Mapelli, S. Masoli, A. Pedrocchi, F. Prestori, et al.,
“Modeling the cerebellar microcircuit: New strategies for a long-
standing issue,”Frontiers in cellular neuroscience, vol. 10, p. 176, 2016.

203



BIBLIOGRAPHY

[45] F. Naveros, N. R. Luque, J. A. Garrido, R. R. Carrillo, M. Anguita,
and E. Ros, “A Spiking Neural Simulator Integrating Event-Driven
and Time-Driven Computation Schemes Using Parallel CPU-GPU Co-
Processing: A Case Study.,” IEEE Trans. Neural Netw. Learning Syst.,
vol. 26, no. 7, pp. 1567–1574, 2015.

[46] T. Yamazaki, J. Igarashi, J. Makino, and T. Ebisuzaki, “Real-time
simulation of a cat-scale artificial cerebellum on PEZY-SC processors,”
The International Journal of High Performance Computing Applica-
tions, p. 1094342017710705, 2017.

[47] P. Gleeson, V. Steuber, and R. A. Silver, “neuroConstruct: a tool for
modeling networks of neurons in 3D space,” Neuron, vol. 54, no. 2,
pp. 219–235, 2007.

[48] H. Fabelo, S. Ortega, D. Ravi, B. R. Kiran, C. Sosa, D. Bulters, G. M.
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E. Juárez, C. Sanz, and R. Sarmiento, “Accelerating the K-Nearest
Neighbors Filtering Algorithm to Optimize the Real-Time Classifica-
tion of Human Brain Tumor in Hyperspectral Images,”Sensors, vol. 18,
no. 7, p. 2314, 2018.

[64] H. Fabelo, S. Ortega, R. Lazcano, D. Madroñal, G. M Callicó,
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