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Synthesis of the thesis  

While muscle aging and age-related sarcopenia are common in the older population 

and have huge personal and financial costs, they still have no broadly accepted clinical 

definition, consensus, diagnostic criteria or treatment guidelines. This has led to 

problems in the development of pharmacologic interventions to modify the natural 

history of this kind of muscle disorder. Indeed, a number of potential drug targets have 

been identified as a result of improved understanding of the functional and structural 

changes seen in sarcopenia at the molecular level, but at present no pharmacological 

therapies with regulatory approval are available.  

More promising research in this field has extensively explored the role of physical 

activity interventions and nutrition strategies (frequently coupled together) with 

interesting growing data. However, during aging, medical conditions often prevent 

subjects from carrying out physical activity and the need for effective nutritional 

supplements per se becomes essential. So far, on the latter point literature is still scarce 

and the present thesis has been developed based on the need for an advancement of 

knowledge.  

In the background section, mechanisms involved in the development of muscle aging 

have been summarily described to better introduce the scope of this work. Furthermore, 

a description of the current methods used to measure muscle mass and function in 
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elderly subjects has been included with the aim of explaining why the procedures we 

used to assess muscle strength, muscle power and fatigue can be effectively adopted to 

establish the effects of a nutritional supplement.  

The introduction to the thesis describes the available data on the use of nutritional 

supplements for the prevention and treatment of age-related muscle impairment and 

defines the aim of the study, oriented to evaluate the efficacy of a multi-ingredient 

supplement to counterbalance progression of muscle mass and function loss. 

In the methods paragraph we described primary and secondary outcomes measured 

in detail. Similarly to the few previous studies, our results showed that an EAA-based 

multi-ingredient supplement can promote muscle mass, strength and power, with 

positive effects on metabolic markers (vitamin D blood levels and visceral adipose 

tissue), and represent an effective strategy to prevent sarcopenia and its functional 

consequences. Conversely, muscle fatigue was not affected by the treatment. The results 

have been widely described and interpreted in the discussions paragraph. 

In conclusion, based on the results presented in this work we can consider the tested 

supplement to be very promising in offsetting the age-related decline of muscle mass 

and function and suitable for future investigations on bioavailability assessment and 

biochemical responses of combined components in the formula.  
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Abstract of the thesis  

Objective: to counteract muscle mass, muscle strength and power loss during aging, and 

to study age-related change of neuromuscular manifestation of fatigue in relation to 

nutritional supplementation. Design: randomized controlled double-blind study. Setting: 

twice-daily consumption for 12 weeks of an Essential Amino Acids (EAA)-based 

multi-ingredient nutritional supplement containing EAA, creatine, vitamin D and 

Muscle Restore Complex®. Participants: 38 healthy elderly subjects (8 male, 30 female; 

age: 68.91±4.60 years; body weight: 69.40±15.58 kg; height: 1.60±0.09 m) were 

randomized and allocated in supplement (SUPP) or placebo (PLA) group. Mean 

Measurements: vitamin D blood level; Appendicular Lean Mass (ALM); Visceral Adipose 

Tissue (VAT); Maximal Voluntary Contraction (MVC) and Peak Power (PP); myoelectric 

descriptors of fatigue: Fractal Dimension and Conduction Velocity initial values (FD iv, 

CV iv), their rates of change (FD slopes, CV slopes) and the Time to perform the Task 

(TtT). Mean Results: significant changes were found in SUPP compared to baseline: 

vitamin D (+8.73 ng/ml; p<0.001); ALM (+0.34 kg; p<0.001); VAT (-76.25 g; p<0.001); 

MVC (+0.52 kg; p<0.001); PP (+4.82 W; p<0.001). Between group analysis (SUPP Vs. PLA) 

showed improvements: vitamin D blood levels (+11,72 ng/ml; p<0.001); Legs FFM 

(+443.7 g; p<0.05); ALM (+0.53 kg; p<0.05); MVC (+1.38 kg; p<0.05); PP (+9.87 W; p<0.05). 

No statistical changes were found for FD iv, CV iv, FD and CV slopes and TtT, either 
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compared to baseline or between groups. Significant correlations between mean 

differences in SUPP group were also found. Conclusion: the study demonstrates that in 

healthy elderly subjects an EAA-based multi-ingredient nutritional supplementation of 

12 weeks is not effective to change myoelectric manifestation of fatigue and TtT failure 

but can positively affect muscle mass, muscle strength, muscle power and VAT, 

counterbalancing more than one year of age-related loss of muscle mass and strength.  

 

Keywords: essential amino acids, creatine, vitamin D, antioxidants, muscle aging, 

muscle strength, muscle power, muscle fatigue. 
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1. Background of aging 

1.1. The physiology of aging 

Aging is a dynamic biological process characterized by continuous remodeling [1] 

which depends on a complex interaction between genetic, environmental and stochastic 

factors [2]. Theories describe aging as the result of cumulative homeostatic imbalances: 

cells progressively lose their morphological specificity and the ability to function 

correctly, leading to the deterioration of tissues, organs, systems and of the organism as 

a whole. This progressive and cumulative deterioration with aging is often referred to as 

senescence. Therefore, senescence is the expression of the physiological human aging in 

which the organ reserve capacity and resistance to stressors are generally decreased, 

with differences that vary significantly between individuals. Although senescence is 

distinct from disease, it can increase the risk of developing a disease, reduce the ability 

to recover from a disease, and in general it can reduce the quality of life [3]. Advanced 

senescence can eventually turn to frailty, a more severe state of physiological 

vulnerability. Frailty is a common clinical syndrome in much older adults that carries an 

increased risk for poor health outcomes including falls, accidents, disabilities, infections, 

hospitalization, and mortality [4]. In contrast to the process of senescence, frailty is 

characterized by specific objective criteria such as generalized fatigue, weakness, and 

weight loss [3].  
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In relation to the level and severity of cellular dysfunction, senescence may be 

divided into primary or secondary aging. Primary aging involves an unavoidable decline 

of cellular structure and function independent of disease and/or environment. In this 

context, aging is inevitable. In contrast, secondary aging involves cellular deterioration 

due to preventable lifestyle and environmental exposures. Thus, secondary aging offers 

promising opportunities for interventions, especially to prevent or delay conditions of 

frailty, based on a reduction of inactivity and sedentary behavior, increase of regular 

exercise, correct nutritional intake and the use of specific dietary supplements [3].  

Although senescence can affect all tissues, organs, and physiological systems in the 

body (Figure 1), the deterioration of some specialized cell types has more profound 

effects on the physical ability to perform tasks of daily life and maintain independence. 

Among the body’s systems, combined aging of the musculoskeletal and 

cardiorespiratory systems appears to produce the most significant functional limitations. 

Indeed, as skeletal muscle function declines and cardiorespiratory capacity is impaired, 

body composition shifts toward fat accumulation, and older adults sense more fatigue 

and weakness in daily activities [3].  
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Figure 1 – Common age-related changes to body’s physiological systems. Modified from Fragala, 

2015 [1].  

 

 

In order to best perform anti-aging interventions, the causes of cellular senescence 

must be carefully studied with a particular focus on the reduction in cumulative cellular 

damages and relative homeostatic imbalances. From this point of view, theories based 

on structural damage attribute aging to molecular dysfunctions that accumulate in cells 

over time and result in their breakdown and malfunctioning. The most widely held 
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structural damage theory is the free radical theory, which is based on the oxidative cell 

hypothesis. According to this theory, the cumulative exposure to free radicals over a 

lifetime damages cells so that their functioning becomes impaired. Free radical exposure 

can result in cellular damage in the form of wear and tear, faulty reconstruction, 

mitochondrial damage and consequent impairment of sub cellular molecular trafficking 

[3]. Besides the free radical theory, one of the most recent theories on aging focuses on 

immune response, and takes into consideration the activation of subclinical, chronic 

low-grade inflammation which occurs with aging, named inflammaging [1]. Long-lived 

people, especially centenarians, seem to counter chronic subclinical inflammation 

through an anti-inflammatory response, thus called anti-inflammaging [1]. Even though 

the rate of progression of inflammaging is currently recognized as the main force 

driving aging and one of the main risk factors for clinical morbidity and mortality in the 

elderly, current knowledge on the causal agents is still incomplete and the clinical 

evaluation of inflammaging has not yet been standardized [2]. 

 

1.2. The muscle aging 

The origins of muscle decline during aging are multifactorial and include muscle 

disuse, neuropathic processes, endocrine dysfunction, chronic disease, inflammation 

and nutritional deficiencies [5] (Figure 2).  
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Figure 2 – Schematic representation of the factors involved in muscle aging. Modified from Ali et al., 
2014 [6]. 

 

 

All of these possible causes change the regulation of skeletal muscle protein 

metabolism leading to a condition of negative protein balance and resulting in a gradual 

net loss of skeletal muscle protein [7]. Muscle mass and functions are regulated by many 

factors that are susceptible to change during the aging process, including hormone 

status (i.e. insulin, growth hormone, testosterone, and IGF-1), mechanical forces (i.e. 

physical activity and exercise), and nutrition (e.g. amino acids intake) [7]. Muscle loss is 
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also frequently associated with insufficient vitamin D serum level [8] and reduction in 

resting metabolic rate (RMR) [9]. 

 

1.2.1.  Muscle mass and strength 

Progressive and generalized loss of skeletal muscle mass and strength during aging 

[5] occurs from about the fourth decade of life [10] and contributes to various negative 

health outcomes, such as metabolic disorders (i.e. insulin resistance with subcutaneous 

and visceral body fat deposition) and progression to frailty [11] with a high risk of 

physical disability, poor quality of life and death [5]. After about age 50, muscle mass 

decreases at an annual rate of about 1% [12], the cross-sectional area of skeletal muscle is 

reduced by 25–30% at age 70 (Figure 3), and muscle strength declines by about 1.5% per 

year between ages 50 and 60 and by 3% per year thereafter [12, 13].  

The decrease in muscle mass and muscle strength in elderly subjects, when 

compared with young people, is linked to the reduction in muscle fibers size, which is 

fiber-type specific. Evidence suggests that type II fibers are more vulnerable to the aging 

process (decreasing by up to 40%) than type I fibers [14, 15]. Furthermore, considering 

the subtypes of type II fibers, greater atrophy of type IIX fibers than of type IIA fibers 

has been found in older men (22%, versus 13%) and women (30% and 24%). Also 

satellite cell numbers decrease during aging, reducing muscle regeneration capacity [14, 
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15]. The loss of muscle strength, in particular in elderly men, is positively correlated 

with the loss of muscle mass, as well as the decrease of type II muscle fibers 

cross-sectional area, myonuclear and satellite cell content [16].  

 

 

 
 

Figure 3 – Changing of the cross-sectional area (magnetic resonance imaging) of a muscle (thigh) during 
aging: 25 years old on the left; 65 years old on the right.  

 

 

Although early changes in muscle mass and strength may be subtle and 

symptom-free, their age-related progression can lead to the development of a severe 

muscle decline condition defined as sarcopenia [5]. Sarcopenia (from Greek sarx or flesh + 

penia or loss) can be profoundly debilitating, impairing a person’s ability to perform 
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routine activities of daily life (e.g. getting out of a chair, walking up stairs, lifting loads) 

[5]. On average, in the absence of a disease or injury, it is estimated that 5–13% of elderly 

people aged 60–70 years are affected by sarcopenia, and the numbers increase by up to 

50% for those aged 80 or above. Sarcopenia can be considered primary (or age-related) 

when no other cause is evident but ageing itself, while sarcopenia is named secondary 

when one or more other causes (e.g. diseases, cachexia) are evident. In many older 

people, the aetiology of sarcopenia is multi-factorial so that it may not be possible to 

characterize each individual as having a primary or secondary condition. This situation 

is consistent with recognizing sarcopenia as a multi-faceted geriatric syndrome [5].  

 

1.2.1.1. Measure of muscle mass and strength 

A wide range of methods can be used to evaluate muscle mass [17]. They differ 

greatly in accuracy and precision and this determines whether the tools and assessment 

are better suited to clinical practice or research (Table 1).  

Anthropometric methods (e.g. body mass index, arm and calf circumference and 

skinfold thickness) are simple but little precise and are prone to overestimation [18]. 

Bioelectrical impedance is a popular alternative and easy to use in both research and 

clinical settings [19], despite a lack of a standardized methodology [20, 21]. 

Air-displacement plethysmography is a highly reproducible method of measuring body 
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composition, but it relies on the assumption that the density of fat mass and fat-free 

mass are the same in all patients [22].  

 

Table 1 - Techniques utilized for the assessment of muscle and fat mass. Modified from 
Cooper et al., 2013 [18]. 
 

 
Notes: DXA, Dual Energy X-ray Absorptiometry; CT, Computed Tomography; MRI, 
Magnetic Resonance Imaging. 
 

 

Three imaging techniques have been used for estimating muscle mass or lean body 

mass: Computed Tomography (CT scan), Magnetic Resonance Imaging (MRI) and Dual 

Energy X-ray Absorptiometry (DXA). CT and MRI are considered to be very precise 

imaging systems that can separate fat from other soft tissues of the body, making these 

methods gold standard for estimating muscle mass in research. However, high costs, 

limited access to equipment at some sites and concerns about radiation exposure limit 
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the use of these whole-body imaging methods for routine clinical practice [5]. DXA is a 

validated alternative method both for research and for clinical use to distinguish fat, 

bone mineral and lean tissues. This whole-body scan exposes the patient to minimal 

radiation. Muscle mass is a well-characterized end point that can easily be measured 

using DXA. Through a DXA scan it is possible to obtain the Skeletal Muscle Mass Index 

(SMI): defined as the sum of the muscle mass of the four limbs (Appendicular Lean 

Muscle Mass, ALM) divided by height squared (ALM/H2). An SMI of two standard 

deviations below the mean SMI of young male (7.26 Kg/m2) and female (5.5 kg/m2) 

reference groups was defined as the gender-specific cut point for sarcopenia [5].  

Strength can be measured isokinetically or isometrically. Isokinetic dynamometry is 

the recognized gold standard for measuring muscle strength, but its use is limited by the 

cost and availability of special equipment [18]. Conversely, isometric strength testing of 

Maximal Voluntary Contractions (MVCs) can be measured with relatively more simple 

custom-made equipment. Isometric handgrip strength is a well-validated technique test, 

which is strongly related to lower extremity muscle strength and structure (knee 

extension torque and calf cross-sectional muscle area) [5]. The handgrip is widely used 

both in clinical practice and research setting, while other isometric tests (one leg/arm) 

are better designed for investigation purposes and their use in clinical practice is limited 

by the need for special equipment and training. In our lab we adopt a validated research 
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method [23, 24] based on the use of an isometric-ergometer developed for the 

measurement of upper limb MVC (Figure 4).  

 
 

 
 

Figure 4 – Isometric ergometer for strength test on upper limb equipped with 
surface electromyography array. Picture modified from Negro et al., 2018 [24]. 
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1.2.2. Muscle power  

Alongside the loss of muscle mass and strength, it has been demonstrated that the 

decrease of functional performance in elderly people is also related to the decline of 

neuromuscular power. Muscle power (the maximum rate of work undertaken by a 

muscle per unit of time) appears to be better still at predicting functional status as it 

includes a neuromuscular component that provides information from pathways that are 

not captured by measures of muscle mass and strength [25]. Muscle power is a strong 

predictor of functional mobility and risk of falling among older adults [26]. Many 

fundamental motor tasks measured in elderly subjects reported the decline of muscle 

power, such as concentric contractions, explosive isometric contractions, and jumps and 

this has been linked to age-related impairments in neuromuscular activation [27], 

tendon stiffness [28], muscle contractile speed [29], and changes in muscle architecture 

[28]. In particular, changes in neuromuscular activation are due to a decrease in 

maximal discharge frequency of Motor Units (MUs) and in the percentage of MUs that 

exhibit doublets (i.e. a double discharge at intervals <5 ms) [30]. The reduction of MU 

firing rates seems to be related to a “fast-to-slow” remodeling of MUs, which is 

observable during aging [31]. In fact, age-related remodeling of MUs appears to involve 

denervation of type II (fast) skeletal muscle fibers with reinnervation of some, but not 

all, denervated fibers through collateral sprouting of nearby surviving motor axons 
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(usually slow twitch type). Although this mechanism allows the slow MUs to gain 

control of the population of denervated type II muscle fibers, preventing their atrophy, 

it creates very large remodeled MUs, which are able to produce fewer maximal firing 

rates, force and velocity production, contributing to the loss in muscle power [31, 32]. 

The decrease in muscle power with age is higher than the decrease in maximal strength, 

and declines are more pronounced from 70 to 90 years [33] (Figure 5). 

 

 
 

Figure 5 - Force-velocity and force-power relationships (elbow flexors) in men: elderly (70 
years old), middle-aged (50 years old), and young subjects (20 years old). Modified from Toji 
et al., 2007 [34]. 
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1.2.2.1. Measure of muscle power  

Peak skeletal muscle Power (PP) achieved during different exercise tests (e.g. leg 

press, knee extension or elbow flexion) has been validated as a reliable and functionally 

relevant outcome in older populations [25, 34]. However, as an outcome measure of 

muscle decline for use in clinical practice, muscle power is potentially limited by the 

need for expensive equipment and, furthermore, measures of PP are inappropriate for 

use in people with arthritis or other mobility problems. To overcome this, the European 

Working Group on Sarcopenia in Older People (EWGSOP) recommended a wide range 

of tests of physical performance which are useful in detecting muscle power in a clinical 

setting, including the gait speed test, 6-min walk test and the stair climb power test [5]. 

Although these tests are easy to put into practice, they only evaluate the velocity of the 

motion and do not provide information about the force produced; from this point of 

view studies that investigate the force-velocity relationship with regard to aging are 

lacking [34]. In our lab we use a submaximal multiple trials-based muscle power test 

suitable for creating a force-velocity curve and calculating the PP value in elderly 

subjects too (Figure 6).  
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Figure 6 - Muscle power assessment performed on dominant upper limb 
with MusclelabTM 4000 equipment (Ergotest Innovation A.S., Norway). 

 

 

1.2.3. Muscle fatigue  

Neuromuscular fatigue is also affected by aging. Muscle fatigue is defined as the 

“muscle’s inability to maintain an expected force” [35]. Based on this definition, many 

mechanical protocols have been proposed to investigate muscle fatigue. The Time to 

Task (TtT) failure in a prolonged submaximal isometric contraction could offer an index 

of fatigability: old adults exhibit a longer TtT failure than young adults when 
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performing a submaximal isometric contraction [36]. This unexpected phenomenon is 

known as the “fatigue paradox”: elderly subjects seem to be more fatigue resistant than 

young adults. Several factors can be attributed to this process in aged muscles: selective 

atrophy of type II fibers, slowing in the contractile properties, lower MU firing rates, 

and greater reliance on oxidative metabolism [36]. 

Muscle fatigue can be divided into central and peripheral components. Central 

fatigue originates in structures above the neuromuscular junctions from the central 

nervous system to the peripheral nerves leading to changes in MU recruitment behavior 

including decline in the MU recruitment threshold and progressive recruitment of new 

MU without change to the recruitment order [37]. Peripheral aspects of fatigue include 

local changes at the skeletal muscle level, namely metabolic acidosis and protons 

accumulation [38] that may impair sarcolemmal excitability, electromechanical coupling, 

acto-myosin myofibrillar interaction and metabolic fuelling of the myofibers.  

Fatigue can be measured by a variety of methods (Table 2). However, detection of 

central and peripheral components of fatigue [39-41] and their relative contribution 

during exercise are not particularly suitable for quantification or measurement [42]. In 

our lab we use an accurate and continuous recording of local muscle fatigue during 

tasks by evaluating myoelectric activity of a selected muscle by surface 

electromyography (sEMG). 
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  Table 2 - Methods for assessment of muscle fatigue. Modified from Cooper et al., 2013 [18]. 
 

 
Notes: MVC, Maximal Voluntary Contraction; SVC, Submaximal Voluntary Contraction; MMII, Muscle  
Mass of lower limb; MRS, Magnetic Resonance Spectroscopy. 
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1.2.3.1. Measure of myoelectric manifestations of fatigue 

Biochemical and physiological changes in muscles during fatiguing contractions are 

also reflected in properties of myoelectric signals recorded on the surface of the skin 

above the muscle(s) concerned, leading to what is commonly defined as myoelectric 

manifestations of fatigue [43]. 

sEMG can analyze the myoelectric manifestations of fatigue, mainly linked to two 

physiological exercise-related phenomena: 1) the slowing of Motor Unit Action 

Potentials (MUAPs) as they travel along muscle fibers, that is the reduction of their 

Conduction Velocity (CV) [44-46], and 2) the synchronization of MU by the central 

nervous system, which is described as a higher occurrence of simultaneous discharge of 

action potentials from various MUs to increase the force production when the whole 

MU pool is recruited [47], as observed in trained subjects [48] and in presence of central 

lesions [49]. Therefore, to assess peripheral components of fatigue, CV rate of change (i.e. 

slope) might be measured during isometric muscular tasks [50-57], whereas to evaluate 

central components of fatigue, sEMG descriptors of MU synchronization may be used. 

A sEMG descriptor of the MU synchronization level is Fractal Dimension (FD), which 

shows high reliance on MU synchronization [58, 59]. 

Changes in sEMG myoelectric manifestations of fatigue anticipate mechanical 

muscle fatigue from the beginning of the contraction [60]. Therefore, modifications of 
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sEMG highlight neuromuscular fatigue before mechanical failure: this is particularly 

suitable in the elderly population since the sEMG estimation of indices of fatigue avoids 

discomfort and danger possibly related with exhaustive efforts. 

To obtain high-quality sEMG signals, in our lab we select the biceps brachii as a 

target muscle due to the isolation of the muscle contraction, fluency of movement, and 

fibers orientation [23, 24]. A setup of the sEMG recording procedure we use is shown in 

Figure 4. 
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2. Background of countermeasures to prevent muscle aging  

To attenuate muscle aging and prevent the development of sarcopenia’s adverse 

consequences [61], current scientific and clinical approaches are based on the 

combination of regular exercise programs and proper nutrition strategies combined 

with the use of supplements. Studies in this field have extensively explored several 

types of interventions with interesting and promising data [62, 63], while alternative 

treatments based on administration of hormone preparations such as testosterone, GH, 

and estrogens are still not universally accepted and require further investigation [63]. 

 

2.1. Physical activity 

Physical activity is an important strategy to counter many of the observed 

age-related physiological declines. Overall, physical exercise participation slows 

physiological changes of aging that impair functional capacity. Studies show that 

exercise can alleviate age-related changes in body composition, promote psychological 

and cognitive well-being, reduce risks of falls, frailty and disability, and increase general 

longevity [3]. Furthermore, physical exercise is able to regulate and improve several 

aspects of aged muscle: intramuscular adipose infiltration, expression of strength and 

power, muscle fiber area and muscle quality, glucose tolerance and insulin sensitivity 

[3]. 
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2.1.1. Aerobic exercise 

Notably, Aerobic Exercise (AE) is particularly effective in improving the circulatory 

function, which typically declines with age, acting through positive effects on 

cardiovascular diastolic capacity, blood vessel elasticity and endothelial function. In 

skeletal muscle, programs of AE can increase important cellular function such as 

mitochondrial content and biogenesis, mitochondrial protein gene transcripts, muscle 

oxidative capacity and enzyme activities, muscle protein synthesis rates in type I 

myofibers [3]. Limiting mitochondrial changes in skeletal muscle during aging is an 

important recognized process in maintaining general metabolic health in elderly 

subjects [64]. Thus AE can positively regulate the expression of peroxisome proliferator 

activated receptor gamma 1 (PGC-1), particularly the alpha isoform (PGC-1α), a key 

player implicated in mitochondrial biogenesis [64]. 

 

2.1.2. Resistance exercise 

Resistance Exercise (RE) is considered the most effective strategy to offset 

sarcopenia, promoting gains in strength, power and muscle mass [65]. Regular practice 

of RE results in an increased type II muscle fiber area [65], and this is particularly 

important because, as described above, type II muscle fiber atrophy and loss 

predominates during muscle aging and development of sarcopenia. The muscle 
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anabolic effect of RE is obtained through a fiber-type specific stimulation of Muscle 

Protein Synthesis (MPS) regulated in particular by the mammalian Target of the 

Rapamycin Complex 1 and the ribosomal protein of 70-kDa S6 kinase 1 

(mTORC1-p70S6K1) pathway [65]. Over time, persistent stimulation of this pathway via 

loaded contractions and combined with adequate protein ingestion leads to lean mass 

accretion. For example, in a 16-wk training trial involving older adults between the ages 

of 65 and 75, RE increased muscle mass by 1.5 kg and overall strength by 60% [66]. 

Studies on RE in the elderly, using traditional slower movement speeds, reported 

greater increases in maximum strength compared with power [67-69]; however, by 

incorporating higher-velocity training protocols, other studies suggest that the gains in 

power may be either comparable [70-72] or greater [73] to gains in maximum 

strength/force production.  

 

2.1.3. Exercise recommendations and limitations 

In 2009 the American College of Sports Medicine (ACSM) published the physical 

activity recommendations for older adults [74]. These recommendations include various 

types of physical exercise: AE (walking or swimming), RE (lifting weights or using 

weight machines), flexibility (stretching), and neuromotor (balance exercises such as 

yoga or tai chi). However, despite the exercise benefits described, studies show that 
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physical activity participation decreases with aging both in the amount of physically 

active time and in the intensity of activities performed, especially for RE. A review from 

Franco et al. (2015) [75] shows that around 45% of people aged over 60 years do not 

meet the ACSM’s recommended level of physical activity and the proportion of those 

who do not meet the recommended guidelines increases to 75% for those aged 75 and 

over. A rapidly increasing problem to be taken into account, considering that the 

number of people aged over 65 in the world is expected to triple in the next 30 years 

[75]. 

 

2.2. Nutrition guidelines 

As a modifiable risk factor, nutrition is a potential target to improve or prevent the 

loss of physical function in older adults. In particular, consumption of dietary proteins 

(e.g. meat, fish, eggs) can act synergistically with RE to enhance the MPS response [65]. 

Proteins can also promote the rates of MPS independently of exercise, but this ability is 

blunted in older adults [63, 65]. Based on this statement, to maintain muscle mass and 

functions, elderly subjects need to have a greater protein intake compared with younger 

subjects; older people should have an average intake of protein of 1.2/g/kg/day of 

bodyweight/day [63, 65]. Furthermore, the threshold for anabolic meal intake of 

protein/amino acids must be greater in elderly subjects (i.e., 25 to 30 g of protein per 
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meal, containing approximately 2.5–2.8 g of leucine), compared with young adults [63, 

65].  

 

2.3. Dietary supplements  

Specific nutrients are of particular interest because of their demonstrated role in the 

muscular system, and have been the object of several studies, either as single 

supplements or in combination with other supplements. In particular, these include 

proteins or amino acids, especially those rich in leucine (which is the most potent 

branched-chain amino acid able to stimulate the MPS), vitamin D and creatine. The role 

of these compounds in muscle mass and function will be briefly described below, with 

the aim of better informing the reader of the thesis’s methods, results and discussion.  

 

2.3.1. Protein and amino acids 

It is known that proteins and amino acids, in particular Essential Amino Acids 

(EAA), are necessary for the maintenance of muscle health in the elderly [63, 65]. 

Compared with younger subjects, the elderly require a larger amount of protein to 

obtain the same stimulation of MPS. In fact, in older adults the ingestion of 40 g of 

protein at rest [76] and after resistance exercises [77], compared with 20 g in young 

individuals [78], was needed to maximally promote MPS (Figure 7). Similarly, data 
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show that a low dose (5 g) EAA [79] was less effective than a higher dose (15 g) of EAA 

[80] in stimulating MPS in the elderly and, more importantly, that the rates of MPS 

achieved in older adults, when ingesting 15 g of EAA, were no different than those seen 

in the young individuals.  

 

 

 
 

Figure 7 - Absolute protein dose-responses of skeletal muscle myofibrillar protein 
synthesis in older (71±1 y; n = 43) and younger (22±4 y; n = 65) men. *Significantly 
different between groups, P<0.05; FSR, Fractional Synthetic Rate [81].  
 

 

Leucine is the most potent amino acid for stimulating MPS from activation of the 

nutrient and growth factor-sensing mTORC1 and in turn, its downstream targets 
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p70S6K1, translation initiation factor 4EBP-1, and elongation factor 2 [82, 83]. There is 

general agreement that older individuals have a higher leucine threshold and that they 

would benefit from larger amounts of leucine to stimulate MPS and muscle mass, either 

within a meal or as a protein/EAAs supplement [63, 65, 84, 85]. However, despite this, in 

the studies available, the population heterogeneity, study design, and the type of 

supplements studied preclude firm conclusions. Leucine was either given as pure 

crystalline powder, or as part of essential amino acid drinks, complete medical formula, 

or whey protein, at doses ranging from 2 g/day to 17.6 g/day. In many studies positive 

effects on MPS were obtained with a leucine dosage of about 3 g/day [63, 65, 86]. 

Despite several positive findings in relation to the effect of protein and/or amino 

acids supplementation on MPS, randomized clinical trials have reported opposing 

results on muscle mass or strength [87]. Heterogeneity was evident for trials that 

differed in the studied population (healthy, frail, diabetic, or sarcopenic individuals), 

duration, and supplement forms and doses. Importantly, usual dietary protein intake 

was not measured in all of the studies, thus limiting data interpretation as to additional 

protein effect. Most of the studies available assessed the impact of a combined protein 

supplement and exercise intervention on the muscle adaptation [88] of elderly people, 

whereas only few trials analyzed the effect of EAA. 
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2.3.2. Vitamin D 

There has been growing interest in the implications of vitamin D status in the 

physical function of older adults given the high prevalence of vitamin D deficiency in 

this population [89]. The ubiquity of vitamin D receptors (VDRs) in various tissues, 

including muscles, is well recognized [90]. From its binding to VDRs, vitamin D 

mediates genomic and non-genomic effects in muscle cells; it namely promotes muscle 

contractility through calcium influx, myoblast differentiation, and the insulin sensitivity 

of muscles [91]. Large cross-sectional studies corroborate a relationship between 

insufficient level of serum 25(OH)D (<50 nmol/L) and low physical performance [91-96], 

mobility [92, 94-96], muscle strength [92, 93, 95, 96, 98, 99], and greater disability [92, 99] 

in free-living older adults. Vitamin D insufficiency has also been longitudinally 

associated with greater risks of disability [95, 100, 101], decline in physical performance 

[97, 102], and handgrip strength [103] in healthy older adults. The importance of 

considering baseline serum 25(OH)D concentrations has been emphasized, since 

individuals with vitamin D deficiency appear to be more responsive to supplementation 

[104]. Most of studies available showed that benefits are observed with vitamin D 

supplementation doses within the range of 800–2000 IU/day [87]. 
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2.3.3. Creatine 

It has been speculated that creatine supplementation could elicit gains in muscle 

mass through the activation of a number of anabolic signaling molecules. Initial studies 

investigating the role of Cr supplementation suggested that additional water retention 

in the muscle primarily contributes to the gain in mass. Differently subsequent research 

suggested that Cr supplementation increases body mass through greater muscle protein 

synthesis and therefore of the muscle fibers hypertrophy. From this point of view the 

pionieristic contribution by Volek et al. [105] is very interesting, demonstrating that a Cr 

ingestion in resistance trained males increased significantly the muscle fiber 

cross-sectional area in each of muscle fiber types observed: type I (35 % vs. 11 %), type 

IIA (36 % vs. 15 %), and type IIX (35 % vs. 6 %). Based on these findings, Willoughby 

and Rosene further examined the effects of Cr supplementation on gene and myosin 

heavy-chain protein expression of contractile filament [106, 107]. The conclusion by the 

authors indicated that increases in lean body mass are not solely attributable to greater 

water retention in the muscle, but rather to regulation of protein synthesis through a 

different gene expression of myogenic regulatory factors induced by Cr. These 

myogenic regulatory factors (e.g. MRF-4, Myf-5, Myo-D, and myogenin) act to control 

gene expression by binding to DNA and subsequently promoting muscle-specific gene 

transcription of fundamental muscular proteins such as myosin heavy chain, myosin 
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light chain, α-actinin, troponin I, and Cr kinase [108]. Furthermore, the influence of Cr 

supplementation on Satellite Cell (SC) function, based on the myonuclear domain 

theory, was explored by Olsen et al. [109] and Safdar et al. [110].  

The existing findings generally demonstrate that post-supplementation muscle 

creatine may reach similar values in younger and older individuals alike, suggesting an 

efficient response in the elderly [111]. In a meta-analysis published in 2003, 43 out of 67 

studies showed that creatine supplementation led to increased lean and/or body mass in 

young and middle-aged adults [112]. A more recent meta-analysis comprising 357 older 

adults demonstrated that creatine supplementation during resistance training can 

enhance muscle mass gain, strength, and functional performance over resistance 

training alone [113]. 

A recent meta-analysis revealed that resistance-trained young individuals 

experienced greater gains in lean body mass and muscle strength when whey proteins 

were consumed within a multi-ingredient supplement containing creatine, when 

compared to the ingestion of an iso-energetic equivalent carbohydrate or non-whey 

protein supplement [114]. Studies involving older individuals co-supplementing with 

creatine and proteins are scarce and contradictory, possessing small samples, with 

short-term follow-ups, and with heterogeneous outcomes and experimental designs 

[111]. The potential role of co-supplementation with creatine, amino acids and/ or 
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proteins in sparing muscle mass and improving functionality in older individual merits 

further investigation. Several findings suggested a dose of about 5 g/day for creatine 

ingestion to attenuate muscle mass and function decline [65]. 
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3. Introduction to the thesis   

As we discussed above, studies have evaluated the combined effects of resistance 

exercise training and dietary supplementation, suggesting a potential additional effect 

to counter muscle mass and strength loss. However, during aging, medical conditions 

often prevent subjects from carrying out physical activity and the need for effective 

supplements per se becomes essential to slow down the progression of muscle mass and 

function loss. In this direction, some authors, using a single nutritional supplement 

[115-117], have shown a beneficial effect on neuromuscular performance and muscle 

protein synthesis in older adults, independently of exercise, but others could not 

observe positive results [118, 119]. To overcome this discrepancy, which is likely to be 

related to the heterogeneity of the response to supplementation in older subjects [120], 

several trials were conducted by employing a multi-ingredient approach [120-133], 

based on the rationale that a combination of ingredients could be more effective in 

regulating multiple aging-related relevant mechanisms than the use of single 

compounds [120]. However, almost all the multi-ingredient studies included physical 

activity programs [120-130], while only few data [120, 131-133] come from protocols that 

investigated the effect of targeted nutritional supplements independently of combined 

physical intervention.  
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Therefore, in an effort to produce further advancement of knowledge regarding 

sarcopenia prevention by means of a multi-ingredient supplementation without 

physical exercise, we hypothesized that a twice-daily consumption of a mix containing 

EAA, creatine, vitamin D and Muscle Restore Complex® (MRC®: Alpha Lipoic Acid 

(ALA), Coenzyme Q10 (CoQ10), resveratrol) for 12 weeks would result in the 

improvement of primary outcomes including Fat Free Mass (FFM), Appendicular Lean 

Mass (ALM), ALM index (ALM/H2), muscle strength (Maximal Voluntary Contraction, 

MVC) and muscle power (Peak Power, PP), in non-sarcopenic well-nourished elderly 

subjects. Furthermore, since data on the possible effects of multi-ingredient 

supplementation on myoelectric descriptors of fatigue (peripheral and/or central) are 

completely lacking in aging literature, we evaluated whether the treatment can affect the 

sEMG-derived TtT failure, as a measure of endurance, and CV, FD (initial values and 

slopes), as a measure of peripheral and central myoelectric manifestations of fatigue, 

respectively, during submaximal isometric contractions (60% MVC) to exhaustion. 

Secondary outcomes we considered including vitamin D serum levels, Resting 

Metabolic Rate (RMR), Respiratory quotients of different substrates (R) and their fasting 

utilization rates (CHO%; FAT%), Fat Mass (FM) and Visceral Adipose Tissue (VAT).  

Some of the ingredients we used have been shown to independently affect aspects 

of sarcopenia in elderly and thus have a rational basis for inclusion in a mixture: as we 
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described in the previous paragraph, protein/amino acids enhance muscle anabolic 

response and MPS [134-136]; creatine improves muscle strength and power [137, 138]; 

vitamin D stimulates muscle function and reduce the risk of falls [139, 140]. For ALA, 

CoQ10 and resveratrol, although there is a bulk of references of their use to counteract 

oxidative stress and inflammation in skeletal muscle in vitro models and animal studies 

[141-145], their therapeutic potential on muscle mass, muscle functions and metabolic 

outcomes during aging in humans is not well documented and needs to be further 

clarified.  

Based on the above, the aim of this study was to evaluate the efficacy of an 

EAA-based multi-ingredient supplement on primary and secondary outcomes in the 

elderly, independently of exercise, comparing results to the few available studies and to 

increase the overall knowledge of how nutrients can affect muscle aging and 

sEMG-derived fatigue expression.  
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4. Materials and Methods  

4.1. Study design and trial organization   

A total of 50 healthy elderly individuals (aged 65-80 years) were initially identified, 

following which 38 eligible subjects were recruited in a randomized controlled design 

study and received either a multi-ingredient nutritional supplement (SUPP; 3 men and 

16 women) or a placebo (PLA; 5 men and 14 women). Recruitment phase took place 

between November 2016 and January 2017. Potential participants were contacted first by 

enrollment meetings and then involved in a one-to-one interview at our medical facility. 

All potential participants completed a medical screening in February 2017, to determine 

the inclusion/exclusion criteria of enrollment. Habits regarding diet and physical 

activity were assessed through food and physical activity diaries. 

All participants were informed of the nature and possible risks of the experimental 

procedures before their written informed consent was obtained. The study was 

conducted in accordance with the Declaration of Helsinki, and the protocol was 

approved by the Ethics Committee of the Department of Internal Medicine and Medical 

Therapy at the University of Pavia with the code 001A0012.  

The enrolled subjects ingested the supplement twice daily (two sachets) before 

lunch and dinner for 12 weeks: from the beginning of April 2017 to the end of June 2017. 

In all subjects experimental procedures and measurements were performed at the 
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baseline (March 2017) and at the end of the study (July 2017). An accurate simulation of 

the experimental procedures to measure muscle strength, muscle power and fatigue was 

performed before the baseline. The simulation was conducted to allow the volunteers to 

familiarize themselves with all the procedures and to avoid an impairment of results 

caused by a “learning effect.” Full details concerning the flow of participants through 

this study can be found in Figure 8. 

In the previous 6 months, potential participants had not participated in any 

structured high-level resistance or aerobic training; they were instructed not to begin 

any exercise program and not to change their physical activity habits (based on daily 

life) for the duration of the study. Subjects were also instructed to avoid any other 

supplements or remedies to counteract sarcopenia during the entire duration of the 

study and until the end of the measurements (July 2017). 

For each subject (SUPP and PLA) an appropriate diet plan was prepared to 

guarantee an average intake of protein of 1.2 g/kg of bodyweight/day, in accordance 

with the recommended amount of protein intake for healthy elderly people [146]. The 

equivalent amount of protein introduced by the supplement (~20 g/day) in SUPP was 

excluded from the average intake of protein recommended per day.  

 

 



PhD in Biomedical Sciences             

           44 of 90 

 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 8. Flow diagram of the study: multi-ingredient supplementation (SUPP) compared to placebo 
(PLA) in elderly subjects. The diagram indicates the total number of subjects assessed from the 
identification phase to the group allocation and the number of subjects included in the final statistical 
analysis after 12 weeks of treatment.  
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During treatment, weekly meetings based on self-report and questionnaires were 

held with the aim to ascertain compliance to treatment and to suggested nutrition and 

physical activity instructions. The study was conducted at CRIAMS-Sport Medicine 

Centre laboratory of the University of Pavia, located in Voghera.  

 

4.2. Selection of population 

Eligible subjects were aged 65 years or older. Subjects included in the study were 

not affected by acute illness, severe liver disease, heart disease, respiratory or kidney 

dysfunction, or severe dementia, and had a body weight that had been stable for 6 

months. Moreover, subjects with uncontrolled diabetes, disthyroidism and other 

endocrinopathies, neoplasia, neuromuscular conditions, as well as patients treated with 

steroids, statins or other anti-sarcopenic supplements in the 6 months before the trial 

were excluded.  

 

4.3. Sample size and random assignment 

We based our sample size calculation on the findings of Bell et al. [120] and 

considered an expected mean of 0.4 kg increase of ALM in the SUPP group, and 0 kg in 

the PLA group, with a power of 80% and a level (2-tailed) of 5%, as well as 10% attrition. 
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This gave a sample size of 40 patients (20/group). A random-blocks 1:1 random 

assignment list was prepared by a statistician.  

 

4.4. Nutritional supplement 

The supplement (a product of Laborest Italia S.r.l., Italy and manufactured by S.I.I.T. 

S.r.l., Italy) was composed of EAA, creatine, vitamin D and MRC® (ALA, CoQ10, 

resveratrol). All compounds in powder form were packaged in individual sachets and 

administrated to SUPP group. SUPP daily ingested two sachets prepared at home by 

mixing the contents of each sachet with 200 mL water and consuming as follows: first 

beverage during the morning/before lunch, and second beverage late in the 

afternoon/before dinner. The before-meal rationale for the supplement-feeding pattern 

was based on preliminary tests, targeted to avoid dislike of taste and gastrointestinal 

discomfort, which revealed that assumption of the mix during meals was generally not 

appreciated by the subjects. 

The placebo administrated to PLA was composed of maltodextrine. Compared to 

the active forms, the placebo powder was isocaloric and undistinguishable for flavor, 

color and odor. All the sachets were labeled in a blinded manner and double blindness 

was accurately maintained during each step of the experimental design. The 

composition of the supplement is described in Table 3. 
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Table 3. EAA-based multi-ingredient supplement composition. 
 

Compounds 
Mean quantity for 
single-dose/sachet 

EAA 5000  mg 
L-Leucine 1400 mg 

L-Phenylalanine 600 mg 
L-Lysine 700 mg 

L-Isoleucine 670 mg 
L-Valine 700 mg 

L-Threonine 450 mg 
L-Methionine 290 mg 
L-Tryptophan 190 mg 

Creatine (from creatine citrate) 1500  mg 
Vitamin D 1000  UI 
MRC®  

ALA  
 

300 mg 
CoQ10 50 mg 

Resveratrol 50 mg 
 

Notes: EAA, Essential Amino Acids; MRC®, Muscle Restore Complex®; ALA, Alpha Lipoic 
Acid; CoQ10, Coenzyme Q10.  

 

 
4.5. Anthropometric and body composition assessment 

Body weight and height were measured using a periodically calibrated scale 

equipped with a statimeter (SECA 700, SECA GmbH & co, Germany). Subjects were 

measured in light clothes (underwear) and without shoes, feet joined and parallel to 

each other with the head horizontally aligned to the Frankfurt plane. Body Mass Index 
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(BMI) was calculated by the ratio between body weight and the square of height in 

meters.  

Fat Free Mass (FFM), Fat Mass (FM), gynoid and android fat distribution (%) were 

measured with the use of Dual Energy X-Ray Absorptiometry (DXA) equipped with 

Lunar Prodigy DXA technology (GE Healthcare Medical Systems, USA). The in vivo 

coefficients of variations were 0.89% and 0.48% for FM and FFM, respectively [147]. 

 

4.5.1. Diagnosis of Sarcopenia 

 Appendicular Lean Mass (ALM) was taken as the sum of the fat-free soft tissue 

mass of arms plus legs and Appendicular Lean Mass index (ALM/H2) was obtained by 

dividing ALM by height squared. ALM/H2 cutoffs for men and women were then used 

to assess the condition of sarcopenia [5].  

 

4.5.2. Diagnosis of Visceral Adipose Tissue (VAT) with Core Scan 

 Diagnosis of VAT was estimated within the android region. FM data from DXA core 

Scan was transformed into X-ray computed tomography (CT) adipose tissue volume 

using a constant correction factor (0.94 g/cm3).  FM, android fat and visceral fat data 

were derived from DXA using the DXA Prodigy enCORE software (version 17; GE 

Heathcare, USA). The software automatically places a quadrilateral box, that represents 
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android region, outlined by the iliac crest and with a superior height equivalent to 20% 

of the distance from the top of the iliac crest to the base of the skull [148].  

 

4.6. Blood sample measurement (Vitamin D) 

 For the assessment of 25-hydroxyvitamin D, fasting venous blood samples were 

drawn between 8 am and 10 am. Subjects were placed in a sitting position and the 

median cubital vein was used as a selected venipuncture site. Blood handling and 

collection were carried out under strictly standardized conditions. For the quantitative 

determination of vitamin D the chemiluminescent immunoassay technology was used. 

 

4.7. Metabolic evaluation 

 Resting Metabolic Rate (RMR), Respiratory quotients of different substrates (R) and 

their fasting utilization rates (CHO%; FAT%) were measured by using a respiratory gas 

analyzer (Quark PFT, Cosmed, Italy). Ambient conditions were standardized (25 °C) 

and the analyzer was gas- and volume-calibrated each morning prior to the 

measurements, according to the recommendations stated in the manufacturer’s user 

manual. Gas exchange and metabolic variables were measured continuously using the 

breath-by-breath method. After an overnight fast, participants were instructed to lie 

down quietly for 10 min, wearing a two-way breathing mask covering their nose and 
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mouth (V2 MaskTM, Hans Rudolph Inc, USA). Thereafter, the measurement period 

started by connecting the mask to the gas analyzer and data collection continued for a 

total of 20 min.  

 

4.8. Isometric muscle strength and fatigue assessment with sEMG technique  

 sEMG recording procedure was carried out as follows: subjects’ dominant upper 

limb was fastened in a isometric-ergometer (MUC1, OT Bioelettronica, Turin, Italy) 

fitted with a load cell (CCT Transducer, linear, full scale 100 kg), in order to isolate the 

action of the biceps brachii. Participants were sitting, with the elbow at 120 degrees 

(Figure 4). 

 A 64-channel bidimensional array (10 mm IED, 8 lines, 8 columns) was positioned 

between the distal tendon and the innervation zone of the biceps brachii, with electrode 

columns parallel to the orientation of the muscle fibers in order to have a pure 

propagation of MUAPs. Biceps brachii was selected primarily to obtain high-quality 

sEMG signals due to the isolation of the muscle contraction, fluency of movement, and 

fiber orientation. The adhesive array was applied following muscle fiber leanings in 

correspondence to the muscle belly previously localized by ultrasound scan (Phillips 

CX-30). The sEMG signals were amplified (EMG-USB2+, OT Bioelettronica, Turin, Italy) 

and sampled at 2048 Hz. 
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 Following 5 min rest, two isometric Maximal Voluntary Contractions (MVCs) were 

completed, separated by 2 min rest. Two contractions were performed in order to 

consider the highest MVC value. Participants were instructed to increase the force as 

maximum as they can, and to hold it as steady as possible, for 2–3 s. Participants were 

given verbal stimulation. 

 Following 2 min rest, a low intensity sustained contraction (20% MVC) was 

performed for 90 s. 

 Following 4 min rest, subjects were asked to execute a high level sustained 

contraction (60% MVC) until exhaustion, during which they were verbally stimulated to 

keep the force level as long as possible, until the force value decreased to below 5% of 

the target [149]. At 60% of MVC, CV iv and FD iv (initial values), their slopes and the 

Time to perform the Task (TtT) were registered.  

 

4.8.1 Signal processing  

 Data were divided into 0.5 s periods and each variable was computed for each 

period. Exhaustion time was defined as the moment when force was below 5% of the 

target [23]. The regression line was computed for all the values from the beginning of 

contraction to exhaustion time. For each acquisition, the channels for the analysis were 

selected through visual inspection. The column showing the largest portion of 
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propagating channels with the biggest amplitude was selected, and the channels 

between innervation zones and tendons were selected for CV computation. FD was 

computed for each selected channel and then averaged. FD initial value was estimated 

using the box counting method. Briefly, as expressed in Gitter and Czerniecki [150], a 

grid of square boxes was used to cover the signal, and the number of boxes that the 

sEMG waveform passed through was counted. When decreasing the side of the boxes in 

a dichotomic process, the number of boxes required to cover the signal increased 

exponentially. However, by plotting the logarithm of the number of boxes counted (log 

N) vs. the logarithm of the inverse of the box size (log 1/S), the exponential relationship 

became linear. The slope of the interpolation line (estimated using the least mean 

squared procedure) is the FD. CV initial value (m/s) was estimated using a multichannel 

algorithm on double differential signals, based on the matching between signals filtered 

in the temporal and in the spatial domains [151]. CV values outside the physiological 

range (3–6 m/s) [152], were excluded from the analysis. CV and FD slopes were 

measured as rate of change (%) of CV iv and FD iv. 

 

4.9. Muscle power assessment 

 Muscle power was measured by a force-velocity device analysis (MusclelabTM 4000, 

Ergotest Innovation A.S., Norway). Participants performed 3 tests of biceps curling (3 
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sets each, to choose the best execution) with a dumbbell (Technogym S.p.A., Italy) 

loaded at 30%, 40% and 50% of the 1 Repetition Maximum (1 RM), respectively, 

connected to the device by a cable (Figure 6). A rest of 90 s between sets and 180 s 

between tests was held. Indirect 1RM tests to establish the dumbbell load (with the use 

of Brzycki’s equation) were performed one week before the muscle power assessment. A 

week was considered appropriate to exclude any individual variability in relation to the 

time required for a complete muscle recovery and to resolve the Delayed Onset Muscle 

Soreness (DOMS) that could compromise the maximum speed of muscle contraction. 

Participants were instructed to execute each contraction as fast as they could and were 

given verbal stimulation. Muscle power values registered from each test were computed 

to create a force-velocity curve. Based on this curve the peak power (PP) value was 

obtained. Muscle power assessment was performed on dominant upper limb. 

 

 4.10. Statistical analyses 

 All analyses were performed using statistical package SPSS, version 21.0 (SPSS Inc., 

USA). Descriptive statistics representing raw data for each of the three categories and 

the full sample were provided, including means, standard deviations (sd), and 

frequencies, where appropriate. After the verification of the normal distribution of the 

continuous variables, data were analyzed as descriptive statistics. We carried out a 
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paired t-tests and 95% Confidence Intervals (CI) to evaluate statistical significance on 

model parameters at baseline (supplement versus placebo). P-values <0.05 were 

considered significant. 

 Linear Mixed Model (LMM) for repeated measures [153] was applied to assess all 

differences for the variables considered (Table 5) among individuals at pre- and 

post-treatment (post-pre). These data were presented as mean differences with 95% CI.  

 Non-normally distributed data were checked by Shapiro-Wilk test and log 

transformed for parametric statistics.  

 For each outcome we fitted a LMM where age, sex, BMI and time (pre=0, post=1) 

were the explanatory variables. A random effect was used to adjust the models for 

intra-subject variability produced by two different measurements carried out on same 

patients. The time LMM parameters were interpreted as adjusted mean changes from 

baseline.  

 To compare changes between groups, a general linear regression model was fitted 

with FFM as the dependent variable, and treatment, time, and the interaction of 

treatment with time were used as independent variables.  

 A Pearson’s correlation analysis was used to assess the relationships between mean 

differences in all markers investigated.  
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5. Results    

5.1. Participants 

 38 elderly subjects were randomized: 31 completed the study and 7 dropped out 

(n=2 in SUPP: 1 for dislike of taste of the supplement drink, 1 for gastrointestinal 

discomfort probably related to supplement intake; n=5 in PLA: 3 for medical conditions 

which occurred over the course of the study, 1 who moved, 1 for hospitalization). The 

main details on participants' baseline characteristics are shown in Table 4.  

 Baseline outcomes observed showed an inadequate level of vitamin D (<30 ng/ml is 

considered insufficient) and a slightly high BMI (>24.9 kg/m2). SUPP and PLA were 

similar on all counts and this means that randomization was correctly carried out. Based 

on the score obtained from the compliance questionnaires, for the subjects that 

completed the study we reached a compliance percentage which was close to 100%. 

 

5.2. Treatment effect compared to baseline  

 The complete results for all variables considered are presented in Table 5. The main 

variations observed are described as follows. 

 Primary outcomes (FFM; ALM, ALM/H2; MVC; PP and myoelectric manifestation of 

fatigue): 1) no statistical difference was found in total FFM in either group; 2) a 

statistically significant increase in all index of sarcopenia (ALM: +0.34 kg and ALM/H2: 
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+0.12 kg/m2; p<0.001) were found in SUPP, with no changes in PLA; 3) increases of MVC 

(+0.52 kg; p<0.001) and PP (+4.82 W; p<0.001) were significantly observed in the SUPP, 

whereas the same variables showed a negative change in PLA, with a significant 

decrease registered for MVC: -0.86 kg; p<0.001; 4) no statistical changes were found for 

all sEMG descriptors of fatigue (FD iv, CV iv, FD and CV slopes) and TtT. 

 Secondary outcomes (vitamin D blood levels; RMR, R, CHO%, FAT%; FM and 

VAT): 1) we measured a significant increase of vitamin D levels in SUPP (+8.73 ng/ml; 

p<0.001) with a negative change in PLA (-2.98 ng/ml; p<0.001) (Figure 9); 2) a statistically 

significant increase was observed for fasting FAT oxidation rate (+12%; p<0.001), 

whereas no other changes of fasting metabolic markers (RMR, R, CHO%) were 

measured; 3) no changes were found for FM absolute values or FM gynoid or android 

distribution (FM%) in either group, but we highlighted a statistical decrease of VAT 

(-76.25 g; p<0.001) in SUPP. 

 

5.3. Treatment effect between groups   

 The results of intergroup analysis (PLA vs. SUPP) are shown in Table 5. The 

variables that showed significant changes between the two groups over the course of the 

study are indicated as follows. Primary outcomes: 1) a positive legs FFM response, with 

a mean difference of 443.70 g (p<0.05); 2) an increase of ALM (+0.53 kg; p<0.05) and 
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ALM/H2 (+0.19 kg/m2; p<0.05); 3) an increase of MVC (+1.38 kg; p<0.05) and PP (+9.87 W; 

p<0.05). Secondary outcomes: we registered an increase of vitamin D level of 11.72 

ng/ml (p<0.001).  

 

5.4. Pearson’s correlations between mean differences in treatment group 

 A significant correlation was found between vitamin D and ALM/H2 (r=0.706; 

p<0.001) (Figure 10A), between VAT/FM and MVC (r=-0.572; p<0.001) (Figure 10B) and 

between Legs FFM and ALM/H2 (r=0.857; p<0.001) (Figure 10C). R is computed as the 

partial correlation, adjusted for age, sex and BMI. 
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Table 4. Baseline characteristics and descriptive statistics of the 38 participants (mean ± sd). 
 

Variables  PLA SUPP Total P-value 
General data 
Gender (men, women)* 19 (5, 14) 19 (3, 16) 38 (8, 30) 0.26 
Age (years)  70.09±4.22 68.34±4.75 68.91±4.60 0.29 
Blood analysis 
Vitamin D (ng/ml) 23.92±9.28 25.59±8.73 25.05±8.80 0.62 
Anthropometric measures  
Height (m) 1.60±0.11 1.60±0.09 1.60±0.09 0.94 
BMI (kg/m2) 28.79±3.72 25.72±4.80 26.70±4.64 0.09 
DXA measures 
DXA weight (kg) 74.42±13.73 67.04±16.21 69.40±15.58 0.25 

FFM (g) 44046.00±10589.38 41915.78±9538.50 42561.30±9750.74 0.32 
Arms FFM (g) 4795.90±1642.47 4533.56±1511.04 4618.44±1534.66 0.66 
Legs FFM (g) 16453.09±3727.66 15736.00±3443.33 15968.00±3497.30 0.59 

ALM (kg) 20.87±5.44 20.26±4.80 20.45±4.92 0.76 
ALM/H2 (kg/m2) 8.06±1.20 7.82±1.09 7.89±1.11 0.60 

FM (g) 25672.60±8320.66 22614.13±9756.25 23540.94±9324.62 0.37 
Gynoid FM % 36.61±9.58 36.93±9.60 36.83±9.44 0.93 

Android FM % 43.50±8.15 38.99±13.53 40.36±12.20 0.25 
VAT (g)  1522.57±824.75 960.76±915.61 1124.62±910.32 0.16 

VAT/FM 0.05±0.02 0.04±0.02 0.04±0.02 0.11 
Indirect calorimetry 
RMR (kcal) 1292.73±264.19 1235.41±244.60 1254.51±248.65 0.55 
R  0.84±0.07 0.85±0.05 0.85±0.06 0.79 
FAT (%) 51.42±25.11 48.84±18.91 49.70±20.81 0.77 
CHO (%) 48.97±25.12 51.57±18.88 50.70±20.80 0.76 
Strength and Power assessment 
MVC (kg) 9.97±4.11 9.06±3.46 9.51±3.78 0.53 
PP (W) 41.04±26.40 29.72±17.45 35.38±21.92 0.21 
sEMG fatigue assessment 
FD iv  1.60±0.50 1.62±0.40 1.62±0.05 0.32 
FD slopes (%/s) -0.05±0.02 -0.04±0.03 -0.05±0.03 0.78 
CV iv (m/s) 4.27±0.93 4.07±0.61 4.15±0.77 0.44 
CV slopes (%/s) -0.38±0.32 -0.18±0.19 -0.24±0.25 0.15 
TtT (s) 66.50±17.81 61.00±17.38 62.67±17.42 0.42 
 

Notes: BMI, Body Mass Index; DXA, Dual Energy X-Ray Absorptiometry; FFM, Fat Free Mass; ALM, 
Appendicular Lean Mass; FM, Fat Mass; VAT, Visceral Adipose Tissue; RMR, Resting Metabolic Rate; R, 
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Respiratory quotient; MVC, Maximal Voluntary Contraction; PP, Peak Power; sEMG, surface 
electromyography; FD iv, Fractal Dimension initial value; CV iv, Conduction Velocity initial value; TtT, 

Time to perform the Task. *X2 : 1.27 
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Table 5. Treatment effect from baseline and between groups refers to subjects that completed the study. 

Variables Mean 
changes 
from 
baseline  

P-value 
 

95% CI Mean 
changes 
from 
baseline  

P-value 
 

95% CI Mean difference  
between groups  
and (CI 95%) 

P-value 

  PLA SUPP   
Blood analysis 
Vitamin D (ng/ml) -2.98 <0.001 -5.39;-0.58  8.73 <0.001 7.12; 10.35 11.72 (8.74; 14.70) <0.001 
Anthropometric measures   
BMI (kg/m2) -0.12 ns -0.77; 0.53 -0.01 ns -0.46; 0.42 0.12 (-0.69; 0.90) ns 
DXA measures 
DXA weight (kg) 0.25 ns -0.79; 1.30 0.18 ns -0.48; 0.84 -0.07 (-1.34; 1.19) ns 

FFM (g) 58.30 ns -809.67; 926.27 232.76 ns -313.72; 779.24 174.45 (-870.23; 1219.15) ns 
Arms FFM (g) 37.63 ns -203.45; 278.71 148.23 ns -13.33; 309.80 110.60 (-187.61; 408.82) ns 
Legs FFM (g) -235.37 ns -604.28; 133.54 208.33 ns -23.94; 440.60 443.70 (0.326; 887.72) <0.05 

ALM (kg) -0.18 ns -0.58; 0.21 0.34 <0.001 0.09; 0.59 0.53 (0.05; 1.01) <0.05 
ALM/H2 (kg/m2) -0.06 ns -0.22; 0.09 0.12 <0.001 0.02; 0.22 0.19 (0.00; 0.37) <0.05 

FM (g) 240.70 ns -665.29; 1146.69 -77.05 ns -647.47; 493.36 -317.75 (-1408.20; 772.69) ns 
Gynoid FM (%) 1.35 ns 0.03; 2.66 0.17 ns -0.65; 1.00 -1.17 (-2.76; 0.41) ns 

Android FM (%) 0.35 ns -1.92; 2.62 -0.65 ns -2.09; 0.77 -1.01 (-3.74; 1.73) ns 
VAT (g) -39.83 ns -130.23; 50.56 -76.25 <0.001 -136.84; -15.67 -34.11 (-139.49; 71.27) ns 

VAT/FM 0.00 ns -0.00; 0.00 -0.00 ns -0.00; 0.00 -0.001 (-0.003; +0.002) ns 
Indirect calorimetry 
RMR (kcal) -97.17 ns -227.90; 33.56 12.89 ns -69.41; 95.20 110.07 (-47.28; 267.42) ns 
R 0.00 ns -0.04; 0.05 -0.03 ns -0.06; 0.00 -0.04 (0.95; 0.23) ns 
FAT (%) 0.06 ns -16.60; 16.74 12.00 <0.001 1.51; 22.50 11.94 (-8.13; 32.01) ns 
CHO (%) -3.05 ns -20.46; 14.36 -6.27 ns -17.49; 4.94 -3.22 (-25.30; 18.85) ns 
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Strength and Power assessment 
MVC (kg) -0.86 <0.001 -1.51; -0.20 0.52 <0.001 0.08; 0.96 1.38 (0.57; 2.19) <0.05 
PP (W) -5.04 ns -10.13; 0.04 4.82 <0.001 1.41; 8.23 9.87 (3.58; 16.15) <0.05 
sEMG fatigue assessment 
FD iv 0.04 ns -0.02; 0.10 -0.03 ns -0.06; 0.00 -0.07 (-0.14; 0.00) ns 
FD slopes (%/s) -0.03 ns -0.08; 0.02 -0.01 ns -0.04; 0.02 0.02 (-0.05;  0.08) ns 
CV iv (m/s) -0.98 ns -2.01; 0.05 0.04 ns -0.48; 0.56 1.02 (-0.06; 2.21) ns 
CV slopes (%/s) 0.04 ns -0.23; 0.31 0.01 ns -0.13; 0.16 -0.26 (-0.34; 0.28) ns 
TtT (s) -12.53 ns -30.58; 5.51 0.58 ns -8.90; 10.07 13.11 (-7.48; 33.71) ns 

 

Notes: BMI, Body Mass Index; DXA, Dual Energy X-Ray Absorptiometry; FFM, Fat Free Mass; ALM, Appendicular Lean Mass; FM, Fat Mass; VAT, Visceral Adipose 
Tissue; RMR, Resting Metabolic Rate; R, Respiratory quotient; MVC, Maximal Voluntary Contraction; PP, Peak Power; sEMG, surface electromyography; FD iv, 
Fractal Dimension initial value; CV iv, Conduction Velocity initial value; TtT, Time to perform the Task. ns, not significant. In bold the statistically significant 
evidences. 
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Figure 9. Mean variation of vitamin D blood levels in PLA (-2.98 ng/ml) and SUPP 
(+ 8.73 ng/ml) after 12 weeks of treatment. Error bars indicate standard error of the 
mean.  
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Figure 10. Pearson’s correlations 
between mean differences in 
SUPP group (n=17): Vitamin D 
Vs. ALM/H2 (A); VAT/FM Vs. 
MVC (B); Legs FFM Vs. 
ALM/H2 (C). Notes: ALM/H2, 
Appendicular Lean Mass index; 
VAT/FM, Visceral Adipose 
Tissue to Fat Mass ratio; FFM, 
Fat Free Mass; MVC, Maximal 
Voluntary Contraction.  
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6. Discussion  

6.1. Effects on muscle mass, muscle strength and muscle power   

 The experimental results agree with comparable previously published works in 

which the use of a similar mixture of compounds has shown enhancements of muscle 

mass (ALM) with no exercise intervention [120, 131]. In particular, Bauer et al. [131] 

after 13 weeks of supplementation using a formula containing leucine-enriched whey 

protein (40 g) with 6 g of leucine, vitamin D (1600 IU) and carbohydrates, showed an 

absolute increase of 0.25 kg and a relative increase of 0.17 kg compared to control. 

More recently, Bell et al. [120] after 6 weeks of supplementation using a 

multi-ingredient mix including whey protein (60 g), vitamin D (1000 IU), creatine (5 

g) and n-3 PUFA, observed an improvement of ALM of 0.40 kg in treated group, 

whereas the difference with matched controls was not described. In our experimental 

conditions (ALM: + 0.34 kg from baseline; + 0.53 kg between groups), compared to 

the study by Bauer et al. [131] which shows lower ALM improvement after treatment 

and compared to placebo, the higher ALM gain may be attributed to the coexistence 

of EAA and creatine in the mixture, which is probably more effective than a higher 

dose of amino acids and leucine alone. In fact, although the leucine-enriched whey 

protein blend seems to be an appropriate approach to preserving muscle mass and 

function in older sarcopenic adults [154], a recent systematic review [155] found this 

effect only in 3 out of 12 Randomized Control Studies (RCTs) whereas an additional 



PhD in Biomedical Sciences             

           65 of 90 

 

anabolic action of creatine was found in 4 out of the 5 RCTs considered. In the study 

by Bell et al. [120] comparable results were obtained in half the time (6 weeks). 

However, the authors used a very high dose of protein/amino acids and creatine 

compared to our formula and the subjects involved were male. Although it is not 

known, at present, whether elderly males and females respond differently to a 

multi-ingredient supplementation, we should consider a “gender effect” of based on 

recent findings [156] underlying that aged females’ muscle displays higher 

heterogeneity in myofibers size and phenotype composition compared to males’ 

(about 5-fold).  

 Although it is not possible to isolate which compounds in the supplement were 

responsible for the outcomes assessed, we believe that the observed reversing of 

vitamin D inadequacies (Figure 9) may have contributed to the overall favorable 

effect on muscle strength (MVC). This hypothesis is based on previous meta-analysis 

revealing a small but significant positive effect of vitamin D supplementation on 

global muscle force expression [157]. Furthermore, published data indicated that 

serum 25-hydroxyvitamin D concentrations between 60 and 75 nmol/L (24.04 and 

30.05 ng/ml, respectively) correlate with lower-extremity strength [158] and, possibly, 

with the amelioration of Legs FFM. This correlation could explain the increase of 

Legs FFM we observed after supplementation (Table 5) and the positive correlation 

between Vitamin D and ALM/H2 (Figure 10A), Legs FFM and ALM/H2 (Figure 10C) 

we observed by the treatment effect. 
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 In the present study a gain in muscle power (PP) was found as an important 

functional outcome of nutrient supplementation. Considering that an additional 

effect of EAA and vitamin D on muscle power tests is improbable, as outlined by 

recent meta-analysis [157] and systematic review [155], we suppose that creatine in 

the mixture could be highly effective in increasing power-based functional tests [159] 

and may have contributed to the observed effect.  

 

6.2. Potential muscle and metabolic role of Muscle Restore Complex® (ALA, CoQ10 and 

resveratrol)  

 With the aim of obtaining greater insight for the design of “the most effective 

formula” - capable of maximally preventing muscle wasting due to ageing - and 

considering a likely role of free radical production and inflammation in its 

development and progression, compounds with antioxidants and anti-inflammatory 

properties (ALA, CoQ10 and resveratrol) [141-145, 160-164] were added to the mix. 

This is the first time that a similar blend has been added to an EAA-based formula 

for the prevention of aged-related loss of muscle mass and function. However, 

considering that the bioavailability of each single component was not measured, and 

sub-group analysis is also missing, at this stage we can only speculate that their 

presence in the formula may have played a potential synergic role leading to the 

obtained results. In particular, compared to the study of Bauer et al. [131], the greater 
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ALM improvement compared to placebo may be due at least in part to antioxidant 

and/or anti-inflammatory mechanisms.   

 The anti-inflammatory properties of ALA, although rarely investigated in 

humans, have shown a 15% significant decrease in serum interleukin-6 levels 

following 4 weeks of supplementation [165]. CoQ10 blood levels were recently 

correlated with muscle strength in two independent humans cohorts studies [162], 

and modulating effects of CoQ10 supplementation on inflammatory [163] and 

chronic oxidative stress response [164] were found after 4 weeks of treatment in the 

elderly. Other interesting data suggest that cellular energy delivery may be positively 

conditioned by a combination of creatine, ALA and CoQ10 use in subjects carrying 

mitochondrial dysfunctions [166]. Resveratrol, a plant-derived polyphenol, is 

probably the most promising of such compounds as it proved: 1) to protect skeletal 

muscle from aging-induced oxidative stress [167]; 2) to enhance, at least in rodents, 

skeletal muscle fiber size (type IIA and IIB fibers) and myonuclear number thus 

leading to hypertrophy [144]; 3) to reverse the atrophy, on isolated myotubes, caused 

by TNF-α, through the regulation of the Akt-mTORC1-FoxO1 signaling pathways 

and inhibition of the atrophy-related ubiquitin ligase [168]; 4) to improve 

mitochondrial capacity by activating the AMPK-SIRT1-PGC1α pathway [169-171]. 

On this latter point, Most et al. [172] showed that a 12-week supplementation with 80 

mg/day of resveratrol (a dosage similar to our experimental condition) can improve 

skeletal muscle oxidative capacity leading to amelioration of fasting substrate 
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oxidation. Just as we found, the authors [172] underlined that although body weight, 

total FM and resting R were not affected by treatment, a significant decrease of VAT 

(~11%) was found. Considering that VAT is detrimental to metabolic health [173], the 

reduction we observed may be of clinical importance in the long term. Furthermore, 

we found that the negative association between VAT and MVC (Figure 10B) is in 

agreement with previously published data [174].  

 

6.3. Effects on Time to perform the Task (TtT) and myoelectric manifestations of fatigue  

 We measured the effect of supplementation on TtT failure, as a measure of 

endurance, and on myoelectric descriptors as reliable indicators of peripheral (CV 

initial values and slopes) and central fatigue (FD initial values and slopes), during 

submaximal isometric contractions at 60% MVC to exhaustion. No statistical changes 

were found for all the measured outcomes, either compared to baseline or between 

groups. These data demonstrate, for the first time, that 12 weeks of an EAA-based 

multi-ingredient nutritional supplementation failed to positively affect muscle 

endurance capacity (TtT) and myoelectric manifestations of central and peripheral 

fatigue in older adults. We consider this finding to be indirect confirmation of a 

preferential effect of the mixture on the structure and function of type II fibers. In 

fact, changes in muscle mass, strength and power are mainly attributable to relative 

expression of fast fibers within the muscle without amelioration in endurance and 

relative proportion of slow type I fibers.  
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 This is the first study to have assessed the effects of a multi-ingredient 

supplementation on myoelectric manifestation of fatigue in the elderly and this 

precludes further considerations on the subject. So far, only two middle-term studies 

have investigated the effects of amino acids-based supplementations on fatigue in 

healthy elderly people but different procedures to induce and detect fatigue and the 

combination with a specific training program was used. In particular, Reule et al. 

[175] documented a reduction of fatigue after 12 weeks of leucine-rich (3.2 g/day) 

amino acid supplementation by measuring the capacity of this treatment to 

counteract the loss of strength measured as MVC, and not during submaximal 

contractions, in the acute phase recovery (0-3 hours) after an eccentric stress test 

(downhill walking). Gryson et al. [176] described the effect of 16 weeks of a 

leucine-fortified milk protein supplementation on TtT failure during a sustained 

isometric contraction (dominant leg until exhaustion at 75% MVC) performed after a 

fatiguing protocol (3 isometric MVCs). Authors referred that the TtT failure 

improved in the trained participants receiving a 10 g/day of the protein compared to 

controls. However, it is important to highlight that in this study TtT was measured at 

% MVC higher than those generally described in literature to assess the arising of 

peripheral fatigue [177] and the findings from Gryson et al. probably describe the 

overall contribution of type II fibers to peripheral fatigue rather than giving 

information on the role of type I fibers within the muscle. In fact, since fiber type 

composition has been proposed as a major determinant of CV rate of change during 
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submaximal isometric contractions [178], it is well known that 70% of MVC, with a 

higher decrease of CV, may indicate a major recruitment of type II fibers [179] 

compared to 60% MVC, more suitable to detecting the contribution of type I fibers to 

TtT [177]. 

 

6.4. Limitations 

 This study has limitations. As other authors have outlined [120], it is very 

difficult to create an experimental design finalized to statistically discriminate the 

effects of each single compound included in a multi-ingredient supplement. To 

obtain reliable results, this would require a very large sample size and several 

subgroups to be analyzed. Therefore, we consider the results obtained to be suitable 

for further investigations towards the effectiveness of each compound and their 

bioavailability.  

 Furthermore, compared to the two studies we mainly analyzed in the discussion 

[120, 131], we used different procedures for evaluating upper limb muscle strength 

and power. While on the one hand this represent an unconventional method to 

measure the muscle function, increasing the possibilities of studying muscular 

strength and power compared to classical methods used on the elderly (handgrip 

test, gait speed test, sit-to-stand chair test or other lower extremity function tests), on 

the other hand it limits the comparison to results obtained with more validated tests 

available in literature.  
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7. Conclusions, potential applications and future directions 

The study demonstrate that a mixture with EAA, creatine, vitamin D and MRC® 

(ALA, CoQ10, resveratrol) may improve muscle aging-related outcomes, such as 

muscle mass, muscle strength and muscle power in a medium-short period and 

without physical activity programs. In particular, given that from the fifth decade of 

life muscle mass and strength decline at rates of ~0.5-1% and ~1-3% annually, 

respectively [180], the changes in ALM (+ 1.68%) and MVC (+5.22%) observed in 

SUPP after 12 weeks of treatment are to be considered clinically relevant. In fact, in 

absolute values the increase of these variables is equivalent to an offsetting of more 

than one year of age-related decline, suggesting that this formula, similarly to 

previous studies [120, 131], can effectively counterbalance progression of muscle 

mass and strength loss. 

The importance of these results should be take into account not only for healthy 

aging (physiologic), but also for pathologic aging, considering that altered muscle 

mass has a recognized key role in the genesis of many common medical conditions 

and chronic diseases observable over the course of life [181]. From this last point of 

view, the maintenance of muscle mass and function during aging may be effective in 

the prevention of several metabolic disorders [181]: a) sarcopenia and related frailty, 

with a loss of quality of life and ultimately institutionalization, or other chronic 

diseases, such as cardiac or cancer cachexia, in which the loss of muscle mass and 

strength is an important determinant of survival; b) obesity, by the preservation of 
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muscle protein turnover and consequent energy requirements to sustain it; c) insulin 

resistance and diabetes, because the metabolic function of muscles is central to their 

development and progression; d) osteoporosis, because the conservation of adequate 

bone strength and density with aging is highly dependent on the maintenance of 

adequate muscle mass, strength and power. Furthermore, an adequate muscle mass 

is absolutely necessary to supply a greater demand for amino acids, from muscle 

protein breakdown, to support cellular metabolism during critical illness (sepsis, 

advanced cancer, traumatic injury).  

As a preliminary study, in this frame we first aimed to compare our original 

formula with others available in literature and we now hope for future studies that 

imply much more effort in terms of bioavailability assessment (measuring blood 

profile changes in levels of multi-ingredient components after ingestion), biochemical 

responses (with analysis of outcomes related to free radical production and 

inflammation, on blood samples, and outcomes related to cellular anabolic 

regulation, based on evaluation of muscle samples) and number of enrolled subjects 

(to create a sub-groups design trial able to discriminate the effects of each singular 

compound of the formula).  
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