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Introduction

Over the last decades, the research and development of chip-scale photonics
has made giant leaps forward, and has brought about exciting new physics and
technological devices that now permeate our lives. One of the fields that has
garnered much interest is that of plasmonics, which manipulates light at the
nanoscale by taking avail of the optical properties of metallic nanostructures.
Surface plasmon polaritons (SPPs) are charge-density oscillations which prop-
agate along the interface between a metal and a dielectric cladding. The SPP
propagation constant is given by the simple equation

kSP =
ω

c

√
εmεd
εm + εd

, (1)

where ω is the angular frequency, c is the speed of light and εd and εm are the
dielectric functions of the dielectric and metallic media, respectively. Thus,
kSP inherits the complex nature of the metal dielectric function εm: its real
part is linked to the effective index of the SPP, whereas its imaginary part
entails attenuation along the direction of propagation. These intrinsic losses
which plague metallic systems somewhat hinder the strength and the scope of
SPP-based technology.

To overcome this limitation, one might be interested in bluntly avoiding
metals and resorting to dielectric media: this is where Bloch surface waves
(BSWs) come into play.

Bloch surface waves are particular solutions of Maxwell’s equations which
occur in systems consisting of a truncated periodic multilayer and a dielectric
medium. An infinite periodic multilayer has a well-defined photonic band
gap (PBG) and behaves as a perfect mirror, i.e. with reflectivity R = 1 for
all the frequencies and wave vectors located inside the photonic band gap.
However, in the same way as defects in an electronic crystal may introduce
defect modes, a proper truncation of the multilayer periodicity may introduce
photonic states inside the photonic band gap: these modes living both below
the light line of the external material and inside the PBG of a 1D photonic
crystal are known as Bloch surface waves. They were originally discovered in
the late ’70s[1, 2, 3], but research on them underwent a relative hiatus until the
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’90s[4, 5, 6], when they attracted renewed interest thanks to the development
of fabrication techniques that enable the growth periodic multi-layers with tens
of periods relatively inexpensively. BSWs have been successfully applied in a
variety of situations that require the confinement of light close to the surface of
a device, e.g. optical surface sensors[7] and control of light emission[8, 9]. The
main feature that led researchers to delve into the subject of BSWs is their
intense surface field. Indeed, as with surface plasmons, most of the light in a
BSW is trapped near the surface of the multilayer. This occurs because such
modes exist both below the light line of the external medium and inside the
PBG, which means that light is confined by total internal reflection (TIR) on
the dielectric side and by the presence of a photonic band gap in the stacking
direction[10]. This allows for strongly peaked mode profiles, which is the reason
why BSWs have naively been considered ”dielectric plasmons”. However, unlike
plasmons, with proper design of the supporting multilayer both TE (transverse-
electric) and TM (transverse-magnetic) polarized BSWs may exist. In addition
to this, the decay rate of the Bloch mode in the stacking direction can be
changed by piloting the mode inside the photonic band gap, which can be
achieved by modifying the truncation layer on the interface with the external
dielectric[11]. Altogether, this shrinks the envelope of the mode and reduces
the modal volume of BSWs: this is particularly useful with a view to full three-
dimensional confinement of the mode, since the field enhancement depends
on the ratio between the quality factor of the cavity and the volume of the
mode[12].

In spite of all the advances, there still are many open questions that have
not allowed a full on-chip integration of Bloch surface waves.
In the first place, surprising though it may sound, the question whether BSWs
actually have a strategic advantage - in terms of field enhancement or modal
volume - with respect to simpler, fully TIR-based solutions is still unanswered.
Most researchers simply take for granted that such an advantage exists, but
no proof has ever been published in the scientific literature.
Another open question that has only been partially addressed up to now is
how BSWs interact with two-dimensional objects such as gratings, i.e. with
a one-dimensional refractive index modulation along the direction of propaga-
tion, i.e. independent of the multilayer supporting the mode itself. This is
important by itself, but also with a view to optimizing the coupling scheme,
which until now has mostly been prism-based.
Moreover, while it is known both theoretically[13] and experimentally[14] that
BSWs can be successfully guided using dielectric ridges, resonators based on
BSWs - another fundamental optical element and building block of a BSW-
based photonic circuit - are still being actively researched. The ground seems
to be particularly fertile, as a couple of years ago an experimental demonstra-
tion of a two-dimensional BSW disk resonator was published[15]. However,
with a view to further reducing the modal volume of the BSW, resorting to a
ring resonator seems inevitable. Features of BSW ring resonators have been
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studied theoretically[16], but a full-fledged experimental observation of their
behavior has not been carried out up to now.
Finally, the last point that should be addressed is how full three-dimensional
confinement of BSWs could be achieved. Photonic cavities are another fun-
damental scientific tool, and for at least the last two decades, the scientific
community has struggled to develop ultrahigh quality-factor (UHQ) photonic
cavities on the scale of the wavelength of light[17, 18, 19, 20, 21]. The applica-
tions of such devices are many, and range from strong coupling between light
and matter[22, 23, 24] to optical sensing[25], optical switching[26], lasing[27],
etc. No such device has ever been demonstrated for BSWs, and thus most of
these applications, with the exception of BSW-based sensors[28, 7], are still
lacking.

This PhD thesis represents my attempt to answer some of these open ques-
tions. It reports a selection of some of the results of my three-year research
activity on Bloch surface waves. In chapter 1, I will give a brief presentation of
Bloch surface waves by summarising their main features. After this, in chapter
2, I will introduce a general optimization procedure that allows one to under-
stand a priori the minimum modal length and maximum surface electric field
achievable with a BSW, given a set of refractive indices[29]. In chapter 3, I
will report my results on guided modes supported by a 1D grating built on a
1D truncated periodic multilayer as a function of the geometrical grating pa-
rameters. The role of these parameters on the position and width of the PBG
will be investigated, together with their influence on the mode dispersion[30].
In chapter 4 the first experimental demonstration of a BSW ring resonator will
be reported. This work represents a collaboration with the group of professor
S.M.Weiss from Vanderbilt University in Nashville, Tennessee. The material
employed for both the multilayer and the ring resonator was porous silicon,
which had been chosen for the fine tunability of its refractive index. In chapter
5, a theoretical study of nanobeam cavities based on BSWs is reported. We
first developed a general design strategy based on Fourier transforming the
profile of the electric field inside the cavity. This allowed us to optimize the
cavity parameters and to test the validity of our approximations with FDTD
simulations. Finally, in chapter 6 we draw our conclusions.
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Chapter 1
Bloch surface waves

A distributed Bragg reflector (DBR) consists of a long enough repetition of
alternating materials with different refractive indices. This periodic variation
creates multiple reflections from each layer boundary, which can interfere con-
structively if the incident wavelength is close to four times the optical thickness
of the layer. In this case, the overall reflectance of the structure ideally reaches
unity when the number of layers is infinite, and the range of wavelengths this
works for is called photonic band gap or photonic stopband.

However, no such thing as an infinite crystal can exist in physical reality;
sooner or later, the repetition of the unit cell would have to be truncated on
both sides. An adequate truncation in a photonic crystal, in the same way in
which defects in electronic crystals can introduce defect states, may give rise
to particular photonic modes called Bloch surface waves (BSWs).

As the name suggests, BSWs are propagating modes existing at the inter-
face between a homogeneous medium and a truncated photonic crystal. Light
confinement close to the interface is achieved via two different physical mecha-
nisms: the presence of a photonic band gap (PBG) on the multilayer side and
total internal reflection (TIR) on the homogeneous side.

They were discovered in the late ’70s[2, 31, 1], but interest in propagating
surface states was rekindled in the ’90s[10, 5, 6]. This revival saw the birth of
many diverse applications of Bloch surface waves, from optical sensing[32, 33,
11, 7, 28] to coupling with quantum objects such as quantum dots (QDs)[8].

Moreover, as will be shown in the next chapter, the dispersion of BSWs
is rather flexible: by slightly varying the design of the supporting truncated
multilayer, the dispersion of the surface mode can be piloted inside the PBG,
drastically changing two key figures that characterize guided modes, such as
the surface field and the mode volume.

Most of the results that follow will rely on transfer matrix theory. The
interested reader can find a reasonably light introduction to this technique in
Appendix A.
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1. Bloch surface waves

1.1 Bilayer transfer matrix

Consider a truncated periodic multilayer whose unit cell consists of two layers
of thicknesses d1 and d2 and refractive indices n1 and n2.

Figure 1.1: Scheme of a multilayer formed by the infinite repetition of a bilayer
unit cell. The unit cell has two layers characterized by thicknesses d1 and d2

and refractive indices n1 and n2.

If we consider the structure to extend indefinitely, we can construct its
transfer matrix T , according to the procedure reported in appendix A. The
result, reported in eq. (A.51), is

M =

(
ei(φ1+φ2) + r12r21e

i(φ1−φ2) r21e
i(φ2−φ1) + r12e

−i(φ1+φ2)

r12e
i(φ1+φ2) + r21e

i(φ1−φ2) r12r21e
i(φ2−φ1) + e−i(φ1+φ2)

)
, (1.1)

where rmn and tmn are the Fresnel reflection and transmission coefficients de-
fined in eq. (A.9) for s-polarization and eq. (A.10) for p-polarization, and
φ1 and φ2 are the phases gained by the electric field as it crosses the layer
transversally, i.e. φj = ewjdj . wj, the wave vector component perpendicular to
the interfaces of the multilayer in the j-th layer, is defined as

wj =
2πnj
λ0

cos θ, (1.2)

for light impinging at an angle θ against the interface.

The photonic band gap for this structure can be found by enforcing the
gap condition reported in eq. (A.59), which yields

2 cos(qΛ) =
1

t12t21

[(
ei(φ1+φ2) + e−i(φ1+φ2)

)
+ r12r21

(
ei(φ1−φ2) + e−i(φ1−φ2)

)]
.

(1.3)
As can be seen, the absolute value of the LHS in eq. (1.3) is less than or equal to
2, whereas the RHS is virtually unbounded. Thus, by sweeping on the parallel
component of the propagation wave vector k‖ - linked to wj by the relation
k2
‖ + w2

j = (2π/λ0)2 - we can map out the regions where the equation cannot
be satisfied. The result is shown in fig. (1.2) for a specific set of geometrical
parameters.
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1.1. Bilayer transfer matrix

Figure 1.2: Energy-wave vector diagram for a SiO2-Si unit cell formed by
d1 = 260 nm, n1 = 3.48, d2 = 320 nm, n2 = 1.44. The photonic band gap is
shown in white. The light line for the external medium (air) is dashed.

As can be seen from this diagram, the structure supports no gap modes.
However, one may consider a slightly different unit cell such as the one shown
in fig. 1.3.

Figure 1.3: Truncated version of fig. 1.1: the first layer in the multilayer is
now shrunk to a thickness d1st = σd1, where 0 < σ < 1 is given by eq. (A.132).

In this case, the unit cell is a shifted version of the former one, where the
first layer has thickness σd1, with a truncation factor 0 < σ < 1 given by
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1. Bloch surface waves

equation (1.4)1, i.e.

σ =
i

2w1d1

ln

(
(M11 − eiKL)(iw1 + qe)

(qe − iw1)M12

)
, (1.4)

and the last layer has thickness (1 − σ)d1. It may be useful to remark that
such a structure would have the same bulk properties as the one shown in fig.
1.1, since the two adjacent σd1 and (1 − σ)d1 layers would sum to form the
former thickness d1. This means, in particular, that the photonic band gap,
which is a bulk property, would not change[11]. We can then look for photonic
modes supported by the structure by looking for poles of the reflectance.

Figure 1.4: Energy-wave vector diagram for a semi-infinite SiO2-Si 1D PhC
whose unit cell is formed by d1 = 260 nm, n1 = 3.48, d2 = 320 nm, n2 = 1.44.
The first layer is truncated to a length σd1, with the truncation factor σ given
by eq. (1.4). The photonic band gap is shown in white, the light line for the
external medium (air) is dashed and the BSW is in solid red.

As can be seen from picture 1.4, the PBG is not changed by the shift in
the unit cell (as can be checked against fig. 1.2); however, the presence of
the first, truncated layer gives rise to a defect mode, shown in solid red. This
mode lives inside the band gap (shown in white in fig. 1.4); this means that the
electric field decays in the stacking direction, as implied by Bloch’s theorem for
a Bloch wave vector of non-zero imaginary part (see eq.A.60). Moreover, the
mode lives below the light line of the external medium; this implies that the
mode will be confined by TIR on the opposite interface. Altogether, the mode

1The full derivation of the truncation factor is given in the Appendices, eq. (A.132)
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1.1. Bilayer transfer matrix

cannot propagate in the z direction and is thus localized in the proximity of
the surface of the structure. This mode is called Bloch surface wave, and its
electric field profile is shown in fig. 1.5.

Figure 1.5: Field profile of the Bloch surface wave shown in fig. 1.4 for E =
0.8 eV.

The Bloch wave vector inside the photonic band gap has a non-zero imag-
inary part which entails the exponential decay of the field in the stacking
direction. The value of the imaginary part q = =[kBloch] changes as the par-
allel component of the propagation wave vector k‖ varies inside the band gap
according to eq. (A.60), i.e.

2 cos(kBlochΛ) =
1

t12t21

[(
ei(φ1+φ2)+e−i(φ1+φ2)

)
+r12r21

(
ei(φ1−φ2)+e−i(φ1−φ2)

)]
.

(1.5)
Inverting this equation yields

q =
1

Λ
ln
Tr(M)±

√
∆

4
, (1.6)

where the sign inside the logarithm is to be chosen to enforce exponential decay
in the stacking direction, as explained in section A.3. The typical behavior of
q is shown in fig. 1.6 for a Si/SiO2 multilayer of thicknesses dSi = 260 nm and
dSiO2 = 320 nm, at a wavelength λ0 = 1.55 µm (E = 0.8 eV).
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1. Bloch surface waves

Figure 1.6: Imaginary part of the Bloch wave vector inside a photonic band
gap for a typical Si/SiO2 multilayer.

As the energy increases, the photonic band gap broadens, together with
the variability range of the Bloch wave vector. In fig. 1.7, a contour plot
of the imaginary part of the Bloch wave vector is shown in the energy range
[0; 1.2 eV] for the same multilayer employed in fig. 1.6.

Figure 1.7: Contour plot of the imaginary part of the Bloch wave vector inside
a photonic band gap for a typical Si/SiO2 multilayer.

The position of the Bloch surface wave inside the photonic band gap can be
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1.1. Bilayer transfer matrix

piloted by slightly modifying the truncation factor σ. In the following pictures
two cases are reported for the usual Si/SiO2 structure relative to σ1 = 0.192
and σ2 = 0.423.

Figure 1.8: Bloch surface wave supported by a 9-layer Si/SiO2 multilayer with
dSi = 260 nm, dSiO2 = 320 nm, σ ≈ 0.192 (d1st = 50 nm), nSi = 3.48,
nSiO2 = 1.44. The external medium on both sides of the structure was chosen
to be water (next = 1.33). Mode dispersion (a) and square modulus of the
electric field mode profile (b) at E = 0.8 eV.

Figure 1.9: Bloch surface wave supported by a 9-layer Si/SiO2 multilayer with
dSi = 260 nm, dSiO2 = 320 nm, σ ≈ 0.423 (d1st = 110 nm), nSi = 3.48,
nSiO2 = 1.44. The external medium on both sides of the structure was chosen
to be water (next = 1.33). Mode dispersion (a) and square modulus of the
electric field mode profile (b) at E = 0.8 eV.
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1. Bloch surface waves

1.2 Light-coupling for Bloch surface waves

As was explained in section 1.1, Bloch surface waves exist below the light line
of the external material and within one of the photonic band gaps induced
by a truncated one-dimensional photonic crystal. This is due to the fact that
the confinement of light along the stacking direction of the multilayer occurs
via total internal reflection on the dielectric side and via the presence of a
photonic band gap on the multilayered side, respectively[1]. Each such mode
is represented by a pole in either the overall reflectance (or transmittance), as
shown in eq. A.48, and it has an associated parallel component of the wave
vector β = k‖ greater than that of photons propagating freely in the external
material (k = ωnext/c), as demonstrated by the fact that the amplitude of the
field decays within these regions. By definition, this entails that light from
some external source cannot typically be coupled into a BSW as it is; either
a glass prism or a grating coupler will be necessary to match the propagation
constant of the incoming wave to that of the Bloch surface wave. This is
typically achieved via a glass prism or a grating coupler.

Prisms are typically all dielectric devices placed on top of the multilayer
in the so-called Kretschmann configuration[34]. This technique was developed
in 1968 and became the main coupling scheme for surface plasmon polaritons.
In the original SPP version, it involves depositing a nano-dimensional metallic
layer on top of the prism surface. Total internal reflection of light causes
evanescent fields to appear and pass through the thin metal film and to excite
a surface plasmon on its opposite surface. In the case of Bloch surface waves,
no metals are involved, and the prism is placed on the bottom surface of the
multilayer; even in this case, phase matching between the incident wave vector
and the pole in the reflectance, ultimately allowing light to be plugged into
the BSW, is achieved via evanescent coupling.
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1.2. Light-coupling for Bloch surface waves

Figure 1.10: A multilayer topped by a coupling prism in the Kretschmann
configuration.

Another coupling scheme involves grating couplers, i.e. a periodic cor-
rugation placed on top of a multilayer to enforce phase matching conditions
between incoming light and the proper BSW.

Figure 1.11: A periodic grating placed on top of a truncated periodic multi-
layer. The grating is characterized by a period Λ and a filling fraction f .

9



1. Bloch surface waves

Incident radiation impinging on the coupler at an angle θ with respect
to the normal will be characterized by a wave vector kinc = nextk0, where
k0 = 2π/λ0. Light can then be scattered from the grating, and its wave
vector is changed by integer multiples of the grating wave vector kG = 2π/Λ,
Λ being the grating period. The actual integer m ∈ Z represents the order
of diffraction. A diffracted order having a wave vector greater than that of
photons moving freely in a medium of refractive index nj, i.e. k > kj =
k0nj = 2πnj/λ0 becomes evanescent. Then, when a phase matching condition
is met between the diffracted order and the parallel wave vector component of
a BSW supported by the underlying multilayer, i.e.

2πnext
λ0

cos(θ) +mkG = kBSW , (1.7)

light is coupled selectively into the Bloch surface wave having a parallel wave
vector component kBSW .

Thus, both coupling techniques rely on the evanescent coupling of light.
Grating couplers have the considerable pro of being mode selective, since, as
shown in eq. (1.7), the grating can be designed so that the phase-matching
condition is met just for a single mode. However, this selectivity comes at a
price, specifically the experimental disadvantage of fabricating a grating with
stringent optical tolerance.

Another coupling technique which was not taken into account in this thesis
is that of edge/butt coupling, in which light from an optical fiber is coupled to
a multilayer by holding the fiber facet against the cleaved side of a truncated
periodic multilayer. This technique can typically show high efficiency, which
is however counterweighted by the need for cleaving a facet of the multilayer,
which may still be a technical issue, and the lack of selectivity, as a variety of
modes can be coupled at the same time.
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Chapter 2
Optimization of Bloch surface
waves

2.1 Motivation

Bloch surface waves have always garnered interest because of the intrinsically
intense electric fields which characterize these modes. Indeed, BSWs found ap-
plication in a variety of scenarios whose common feature was the enhancement
of the interaction between light and matter near the surface of the structure,
such as control of light emission[35, 36, 37] or optical sensing[38, 39, 14, 32, 33].
Some examples of this interest can be gathered from recent papers, e.g.

1. ”Another favorable property of PCs is the possibility of large enhance-
ments of local fields with BSW.”[40]

2. ”Because the maximum intensity associated with the BSW can be en-
gineered to be at the surface, it is particularly attractive for biosensing
using the large field enhancements.”[41]

3. ”This large field enhancement can be used for improving the sensitivity
of sensors, fluorescence emission enhancement and enhancement of the
Goos–Hänchen effect.”[42]

It may therefore seem striking that their most renowned feature - the in-
tense surface field - has never been demonstrated, and that many authors take
this strategic advantage as given without inquiring whether simpler solutions
based on total internal reflection, e.g. guided modes in dielectric slab waveg-
uides, have similar performances.

It appears that this problem might be due to the confusion between the
field enhancement, which depends by definition on the physical volume in which
light confinement takes place, and the amount of energy that can be stored at
the surface of the structure due to the external excitation of the guided mode.
In a 1982 paper[43], Sipe et al. showed that, assuming a monochromatic plane
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2. Optimization of Bloch surface waves

wave impinging on a dielectric planar waveguide, the amount of energy that
it is possible to store in the photonic mode - and thus the electric field at
the surface of the structure itself - increases with the distance between the
structure and the prism which evanescently couples light inside the slab. Thus,
as a consequence of using plane waves in the theoretical derivation, the field
increases as the coupling strength decreases[43, 44], and in principle any value
of the electric field at the surface can be achieved by fine tuning the coupling
distance, regardless of the actual electric field distribution of the mode or the
input pump power. It is clear that, in this scenario, relying on the electric field
at the surface as a figure of merit to compare different structures would leave
a flank exposed to arbitrariness.

Thus, we are still faced with the question whether Bloch surface waves
are so special and deserve the extra complications they entail with respect to
simpler alternatives, such as regular asymmetric slabs.

Luckily, it is still possible to devise an objective procedure that allows
one to compare the surface fields supported by different structure in terms of
their electric field enhancements, which are intrinsic properties of the modes.
In this chapter we will present a systematic comparison between TE-polarized
Bloch surface waves propagating on a truncated periodic multilayer and guided
modes supported by an asymmetric slab waveguide. The results presented in
this chapter were published in [29]. The focus will be on TE-polarized BSWs
for at least two reasons: firstly, as shown in Appendix A (fig. A.7), the PBG for
TM-polarized modes closes and thus the range of existence of a Bloch surface
wave is limited; furthermore, if one is interested in TM-polarized modes, then
resorting to the electric field enhancement brought about by surface plasmons
can be exploited. With this in mind, it makes more sense to look for a solution
in the TE-polarization scenario.

2.2 Structural parameters

To start our analysis, consider the two planar dielectric structures shown in
fig. 2.1.
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2.2. Structural parameters

Figure 2.1: The structures we want to compare: (a) an asymmetric slab waveg-
uide and (b) a truncated periodic multilayer.

They consist of an asymmetric dielectric slab waveguide and a truncated
periodic multilayer. The slab has core thickness d and real refractive index
n1 = n2 + ∆n. On either side, the core layer is bounded by a semi-infinite
layer having refractive index n2 on the side of the substrate and next = 1 on
the external one. We chose to neglect symmetrical structure, e.g. membranes,
because in typical experimental conditions solid substrates are extremely useful
to facilitate the manipulation and movement of the waveguides.

The unit cell of the periodic multilayer consists of three layers layers having
refractive indices n1 = n2 + ∆n, n2 and n1 again; their thicknesses are σd1,
d2 and (1 − σ)d1. The multilayer is semi-infinite, truncated by air on only
one side, and the truncation factor satisfies the inequality 0 < σ < 1. This
choice for the unit cell is justified in chapter 1.1. Some technical details on how
to calculate the modes supported by a semi-infinite one-dimensional photonic
crystal are reported in appendix D.

In the case of the dielectric slab waveguide, the confinement of light is due
only to total internal reflection; because of this, the effective index of the mode1

satisfies the inequality

n2 < neff < n1. (2.1)

On the other hand, light confinement in the multilayer occurs due to TIR
on the external side and to the presence of a PBG in the stacking direction. In
principle, light could be confined in this direction also by TIR, but we restricted
our analysis to the case where 1 < nBSW < n, i.e. above the light line of the
lighter dielectric material.

1The effective index of the mode is linked to the parallel component of the propagation
wave vector β by the following definition: β = 2πneff/λ0.
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2.3 Figures of merit

Our analysis started from two questions:

1. Which structure performs best in terms of electromagnetic energy density
at a point at random along the stacking direction?

2. Which structure maximizes the electric field on the interface between the
structure and the external medium?

To try and answer these two questions, we exploited two figures of merit
(FoMs). The first one is the modal length, which was borrowed from the
modal volume used in the field of three-dimensional resonators[45]. In our
one-dimensional case, the modal length is defined as

Lmod =
1

max
z

[ε(z)|E(z)|2]

∫ +∞

−∞
ε(z)|E(z)|2dz, (2.2)

where ε(z) = ε0n
2(z) is the dielectric function in the stacking direction and

ε0 = 8.854187817 · · · × 10−12 F/m is the vacuum permittivity. E(z) is the
electric field profile in the stacking direction. According to eq. (2.2), for a
properly normalized mode the definition becomes

Lmod =
1

max
z

[ε(z)|E(z)|2]

~ω
2
, (2.3)

and thus maximizing the electromagnetic energy density amounts to minimiz-
ing the modal length.

The second figure of merit is the value of the electric field on the surface of
the structure, close to the external dielectric, i.e. E(0). To avoid incurring in
the issue presented at the beginning of this chapter, the one-dimensional mode
profile E(z) must be properly normalized. According to the procedure reported
in appendix A.6, the modes are normalized according to this condition:

S

∫ +∞

−∞
ε(z)|E(z)|2dz =

~ω
2
, (2.4)

where E(z) is the electric field profile in the stacking direction, ω = 2πc
λ0

is
the (angular) frequency of the field and ε(z) is the dielectric function profile
of the structure under scrutiny. S is a normalization surface in the transverse
direction, i.e. the plane of the structure, which we set equal to 1 m2. We further
assumed no chromatic dispersion for all the media around the wavelength of
interest λ0. It is important to notice that when the field is normalized as in
eq. (2.4), then energy-independent calculations can be produced by resorting
to scale-invariant figures such as Lmod/λ0 and E(0)λ0. To this aim, the figures
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of merit we employed were

FoM1 =
Lmod
λ0

=
1

λ0 max
z

[ε(z)|E(z)|2]

~ω
2
, (2.5)

FoM2 = |E(0)|λ0. (2.6)

Before closing this section we feel it appropriate to remark that our choice
for the figures of merit is not the only one, and that other authors have investi-
gated different possible strategies. Among them, the minimization of the limit
of detection (LoD), defined as the minimum variation in some parameter that
can still be resolved by a sensor, is the most common one. The LoD depends on
the sensitivity of the sensor and the width and depth of the resonance dips it re-
lies on[46]. Such an approach for BSWs would not be unfruitful, as BSW-based
sensors typically feature larger sensitivities than SPR-based systems involving
metallic media[47]. Thus, this chapter represents only a fraction of the whole
issue of the optimization of Bloch surface waves, and it leaves room for further
improvements in such a diverse field.

2.4 Theoretical procedure

For each pair of refractive indices in the range n1 ∈ [1.4; 4.1] and n2 ∈
[1.4; 2.1], our goal was to find out which structure - either the asymmetric
slab waveguide or the truncated periodic multilayer - managed to maximize
the field confinement via the scaled modal length Lmod/λ0 or to maximize the
scaled surface field E(0)λ0. The procedure differed according to the type of
structure.

For the asymmetric slab waveguides, we employed the semi-analytical ap-
proach sketched in appendix B. For each set of refractive indices n1 and n2,
we considered a sweep on the scaled core thickness between

dmin
λ0

=
1

2.0π
√
n2

1 − n2
2

(mπ + arctan

(√
n2
sub − n2

ext

n2
core − n2

sub

)
(2.7)

dmax
λ0

=
1

2.0π
√
n2

1 − n2
2

((m+ 1)π + arctan

(√
n2
sub − n2

ext

n2
core − n2

sub

)
, (2.8)

where m = 0 is a mode-count index[48]. The equations were found by inverting
the mode dispersion relation, i.e.

tan(hd) =

(
h(q + p)

h2 − qp

)
, (2.9)

as shown in appendix B.19, and then substituting the definitions of the wave
vector components in each layer, as given by eq. (B.5-B.7). The scaled core
length is the only independent geometric parameter in this case, and both
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2. Optimization of Bloch surface waves

figures of merit can be expressed a functions of d/λ0; therefore, the parameter
space can be searched for the structure with the highest FoMs among all the
possible asymmetric slab waveguides of the form shown in figure 2.1.

This is not the case with a truncated 1D photonic crystal, which depends
on more structural parameters, namely the refractive indices of both layers
in the unit cell, n1 and n2, their thicknesses d1 and d2, and the truncation
factor σ. Thus, in this case we endeavored to reduce the dimensionality of
the parameter space by choosing specific layer thicknesses in such a way as to
guarantee the fastest decay of the electric field in the multilayer. This occurs
when the so-called generalized quarter-wavelength condition is satisfied, i.e.
when the thicknesses are

d1 =
λ0

4
√
n2

1 − n2
BSW

(2.10)

d2 =
λ0

4
√
n2

2 − n2
BSW

, (2.11)

where nBSW is the effective index of the BSW, linked to the propagation wave
vector by βBSW = 2πnBSW/λ0. With this new hypothesis, for each pair of
refractive indices (n1;n2) in the unit cell, we considered all possible values
of the effective index nBSW ∈ [1; n2], and for each of these we calculated
the corresponding truncation factor σ according to the matricial procedure
reported in appendix A.8, i.e

σ =
i

2w1d1

ln

(
(M11 − eikBlochΛ)(iw1 + qe)

(qe − iw1)M12

)
. (2.12)

An explanation for all the physical quantities appearing in this equation is
presented in appendix A. Briefly, M11 and M12 are elements of the transfer
matrix for the structure under consideration; kBloch is the Bloch wave vector
proceeding from the multilayer structure of period Λ = d1 + d2; w1 is the
perpendicular component of the propagation wave vector of light in the first
layer, and qe is the imaginary part of the propagation wave vector of light in
the external medium.

Conditions (2.10, 2.11) seem reasonable, as they maximize the field decay in
the stacking direction of the multilayer. However, assuming these generalized
quarter-wavelength conditions is no guarantee that our numerical procedure
will lead to the best structures, i.e. those maximizing the two FoMs in eq. (2.6,
2.5). In fact, we verified via a more time-consuming brute-force approach that
these assumptions are reasonable: after fixing the refractive indices (n1, n2)
around some value of interest, we verified that the structural parameters max-
imizing our FoMs were either equal to or not considerably different from those
obtained by assuming conditions (2.10, 2.11).
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2.5. Results and discussion

2.5 Results and discussion

The goal of our analysis was to find the structural parameters of both asym-
metrical slab waveguide and truncated periodic multilayer that maximize the
field confinement, i.e. minimize the wavelength-scaled modal length Lmod/λ0,
and/or maximize the surface field |E(0)|λ0. This research was carried out for
each pair of refractive indexes (n1, n2), where n2 ∈ [1.4, 2.1] and n1 = n2 +∆n,
with ∆n ∈ [0, 2.0].

2.5.1 Modal volume

In figures 2.2b and 2.3c-d we plotted the thickness of the core layer of an
asymmetric slab and the thicknesses of the low-index and high-index layer of
a truncated 1D photonic crystal, respectively, corresponding to the structures
that minimize the mode length of a Bloch surface wave.

Figure 2.2: (a) The structure that is being optimized: an asymmetric slab
waveguide of core thickness d and core refractive index n2 + ∆n, surrounded
by two semi-infinite media of refractive indices ne = 1.0 and n2. (b) Contour
plot of the core thickness d of an asymmetrical slab waveguide corresponding
to the minimum wavelength-scaled mode length Lmod/λ0.
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2. Optimization of Bloch surface waves

Figure 2.3: (a) Sketch of the multilayer structure under scrutiny; (b) Contour
plot of the truncation factor σ that yields the minimum wavelength-scaled
mode length Lmod/λ0; (c) Contour plot of the low-index layer thickness d2

that yields the minimum wavelength-scaled mode length Lmod/λ0; (d) Contour
plot of the high-index layer thickness d1 that corresponds to the minimum
wavelength-scaled mode length Lmod/λ0.

The plot shows a non-trivial behavior, except for the divergence of the
layer thickness with decreasing refractive-index contrast (RIC) ∆n. With these
geometrical parameters, the figures of merit given in eq. (2.5) and (2.5) can
be evaluated.
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2.5. Results and discussion

Figure 2.4: Wavelength-scaled modal length of the TE0 mode supported by
an asymmetrical slab waveguide as a function of the refractive-index contrast
∆n = n1− n2. The refractive index of the substrate n2 takes 4 selected values
reported in the legend.

Figure 2.5: Wavelength-scaled modal length of the Bloch surface wave sup-
ported by a truncated periodic multilayer as a function of the refractive-index
contrast ∆n = n1 − n2. The lower refractive index n2 takes 4 selected values
reported in the legend.

In figures 2.4 we plot the smallest wavelength-scaled modal length Lmod/λ0
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2. Optimization of Bloch surface waves

Figure 2.6: Wavelength-scaled moduli of the electric fields of (a) the TE0 mode
supported by an asymmetric slab waveguide of core index n1 = 1.7, cladding
index n2 = 1.5 and core thickness d = 0.354λ0;

for a the fundamental TE mode supported by an asymmetric slab waveguide
in terms of the refractive-index contrast ∆n = n1 − n2; likewise, in figure 2.5
we plot the same physical quantity relative to a Bloch surface wave supported
by a truncated periodic multilayer. We can immediately recognize that in both
structures the wavelength-scaled modal length is essentially independent of the
lower refractive index n2; on the other hand, it is characterized by a strong
dependence on the refractive index contrast ∆n. Moreover, for a given RIC
∆n, the best TE0 mode - confined by total internal reflection - and the Bloch
surface wave - mainly confined by the presence of a photonic band gap - appear
to have similar mode lengths.

Another important remark can be made by looking at the mode profile of
the electric field corresponding to the points starred in figures (2.4) and (2.5).

From these pictures, it is clear that the maximum ε(z)|E(z)|2 of the TE0
mode in the best asymmetric slab is extremely close to that of a BSW in a
truncated periodic multilayer. However, from picture 2.6 it is also clear that
the BSW extends much deeper into the multilayer with respect to the TE0
mode. This may seem paradoxical, since the modal length Lmod is usually
associated to how tightly the field is confined. However, if one is interested in
measuring how tightly a mode is confined, then one must resort to the usual
statistical concepts of barycenter (< z >) and variance (σ2

mode) of the mode
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distribution, defined as

< z > =

∫ +∞
−∞ zε(z)|E(z)|2dz∫ +∞
−∞ ε(z)|E(z)|2dz

, (2.13)

σ2
mode =

∫ +∞
−∞ (< z > −z)2ε(z)|E(z)|2dz∫ +∞

−∞ ε(z)|E(z)|2dz
. (2.14)

Furthermore, another explanation could be that the Bloch surface wave oscil-
lates in the multilayer, and thus the contributions to the modal length coming
from the layers are modulated, whereas a TIR-guided mode undergoes simple
exponential decay without oscillatory behavior.

Figure 2.7: Contour plot showing the ratio between the best mode length of
a BSW supported by an optimized truncated periodic multilayer and the best
mode length of the TE0 mode supported by an optimized asymmetrical slab
waveguide as a function of the lower refractive index n2 and the refractive
index contrast ∆n. The star corresponds to the structural parameters used in
fig. 2.6.

In figure 2.7 we plotted the ratio of the modal lengths of the Bloch surface
wave and the TE0 mode as a function of both the lower refractive index and
the refractive index contrast. The contour plot confirms the slight dependence
of the mode length on the lower refractive index n2, which had already been
pointed out in fig. 2.4 and fig. 2.5. However, in addition to this, the plot also
shows further features. Firstly, the plot can be ideally divided in three regions:

21



2. Optimization of Bloch surface waves

• In the region ∆n > 0.6, the ratio goes below unity: this means that the
modal length of the TE0 mode is greater than that of the BSW, and this
implies in turn that the largest electromagnetic density in a generic point
is achieved in a truncated periodic multilayer. This behavior becomes
more pronounced with increasing refractive index contrast.

• For small refractive index contrasts, i.e. the region where ∆n < 0.5,
the ratio is greater than unity, which means that the largest electromag-
netic energy density in a generic point is achieved with an asymmetric
slab waveguide. This behavior increases as the refractive index contrast
decreases.

• In the intermediate region, i.e. where 0.5 < ∆n < 0.6, the ratio is close to
unity, and the two structures substantially behave in the same way. This
means that it is always possible to find an optimized asymmetric slab
that has similar performance to that of a truncated periodic multilayer.

In all our analysis, we always took the external medium to be air (ne = 1.0).
However, we do not believe this to be a limitation, and we expect that changing
the refractive index of the upper cladding would lead to similar results.

2.5.2 Surface field

Figure 2.8: Plot of the highest value of the wavelength-scaled surface field
|E(0)|λ0 that can be achieved by the TE0 mode in an asymmetric slab waveg-
uide as a function of the refractive index contrast between core and substrate.
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Figure 2.9: Plot of the highest value of the wavelength-scaled surface field
|E(0)|λ0 that can be achieved by a BSW in a truncated periodic multilayer
as a function of the refractive index contrast between the high-index and the
low-index layers in the unit cell.

In figures 2.8 and 2.9 we plotted the highest wavelength-scaled surface field
|E(0)|λ0 that can be achieved with either the fundamental TE mode or a
Bloch surface wave. In both cases, one can recognize that the surface field
increases with the RIC ∆n, since this induces a shrinking of the modal length
as shown in the previous section. Furthermore, the surface field decreases
as the lower index increases, especially in the case of the TE0 mode in an
optimized asymmetric slab waveguide, where confinement is only due to total
internal reflection. It was also noticed that as the average refractive index of
the structure increases, the maximum starts to drift away from the structure
interface, as shown in fig. 2.10. Finally, we notice that the values of the surface
field in the two structures are comparable.
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Figure 2.10: Shift of the maximum square modulus of the electric field for Bloch
surface waves supported by different multilayer structures. The multilayer
parameters are d1 = 260 nm, d2 = 320 nm, σ ≈ 0.346, n1 = 3.48 and either
n2 = 1.44 (red line), n2 = 1.84 (green line), n2 = 2.24 (blue line) or n2 = 2.64
(cyan line).

To better compare the performance of the two structures, one can look at
fig. 2.11, where we plotted the ratio between the optimized surface field of a
BSW and that of the TE0 mode, once more as a function of the lower refractive
index n2 and the refractive index contrast ∆n.
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Figure 2.11: Contour plot showing the ratio between the best surface field of a
BSW supported by a truncated periodic multilayer and the best surface field
of the TE0 mode supported by an asymmetrical slab as a function of the lower
refractive index n2 and the refractive index contrast ∆n. The star corresponds
to the structural parameters used in fig. 2.6.

The contour variable is always greater than unity; this clearly shows that
Bloch surface waves supported by optimized truncated periodic multilayers
always have greater surface fields with respect to the fundamental mode in an
asymmetric slab waveguide. The enhancement with a BSW can reach up to
45% of the TE0 surface field; this occurs when n2 > 1.7 and 0.4 < ∆n < 0.8.
Comparing this result with those summarized in fig. 2.7 leads to a surprising
conclusion: the region where the surface field of a BSW overtakes that of the
TE0 mode is characterized by comparable modal lengths. This means that
the advantage featured by BSWs must not be ascribed to a smaller modal
length, but to the particular energy distribution in the mode profile across
the supporting structure, and ultimately to the fact that confinement in this
complex structure is due to interference rather than total internal reflection.

Thus, these results indicate that the need for larger surface fields does
not always require resorting to Bloch surface waves. Indeed, they are always
characterized by the largest surface field with respect to simpler TIR-based
solutions, but the enhancement is rather small, especially in the strong RIC
regime.

2.6 Conclusions

In this chapter we dealt with the optimization of Bloch surface waves, and
we tried to understand whether the general interest shown in their features
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is justified or if simpler structures can behave similarly. With this in mind,
we compared the performance of the fundamental TE mode supported by
am asymmetrical slab waveguide and the Bloch surface wave supported by a
truncated periodic multilayer. This comparison relied on two figures of merit,
i.e. the modal length and the value of the electric field on the external side
of the surface of the structures. For our analysis, we considered dielectric
media with refractive indices in the range [1.4; 4.1], with a refractive index
contrast 0 < ∆n < 2. This wide range includes diverse materials such as
semiconductors and organic media. Given the generalness of our approach, we
could account for neither chromatic dispersion n(ω) nor absorption losses.

The most surprising result regards the modal length: we showed that,
under certain circumstances, modes confined by total internal reflection do not
always have the smallest modal length. For a strong enough refractive index
contrast (∆n > 0.5), Bloch surface waves feature smaller mode length, i.e a
larger electromagnetic energy density in a generic point across the structure,
than the best TE0 mode in an asymmetric slab of any core thickness based
on the same set of refractive indices. This result was obtained with a periodic
multilayer obtained by enforcing a generalized quarter-wavelength condition
for the thickness of the constituent layers.

On the other hand, it was shown that BSWs always exhibit larger values
of the electric field at the surface with respect to the best case achievable with
TIR-based solutions. However, our results show that the ratio between the
surface fields does not overtake the 45% threshold, and thus simple asymmetric
slabs may still be viable solutions to achieve strong light-matter interaction at
the surface of the structure.

The conclusions presented in this chapter were drawn from wavelength-
independent figures, and thus they apply to a wide range of energies in which
our hypotheses are satisfied.

The results presented in this chapter were published in 2017[29].
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Chapter 3
Gratings for Bloch surface waves

In this chapter we shall consider a patterned multilayer structure composed of a
one dimensional grating placed on top of a truncated one-dimensional photonic
crystal. The multilayer supports a Bloch surface wave, and the presence of
the grating strongly modifies its dispersion relation and its field distribution.
Our analysis relies on rigorous coupled wave analysis (RCWA), which is exact
within numerical approximations, but we also propose a numerical solution
based on effective-index theory to quickly reconstruct the dispersion relations.

3.1 Motivation

Diffraction gratings fabricated on top of a periodic multilayer have been inves-
tigated either to excite Bloch surface waves or as the main transducer element
in the field of optical sensing. In all these situations, one is forced to work both
above the light line of the cladding material and the diffraction cut-off[11, 49],
but in 2008 Descrovi et al.[50] showed that the dispersion relation of Bloch
surface waves supported by a truncated one-dimensional photonic crystal and
a photonic crystal slab located on top of it can change dramatically and give
rise to the opening of a photonic band gap. This is not entirely new in the
context of photonic-crystal slabs. For example, it was shown by Gerace and
Andreani[51] that the propagating modes featured by these systems can be
seen as arising from the coupling between the guided modes supported by an
effective slab formed by the presence of the two-dimensional photonic crys-
tal. This gives rise to a strong modification of the mode dispersion relation
and to the opening of photonic band gaps in which light propagation in the
plane is forbidden. The interaction between surface waves and periodically
corrugated one-dimensional photonic crystals (1DPC) has also been studied
experimentally[52, 53]. The long-term experimental interest is clear: by na-
ture, surface waves are extremely sensitive to any sort of modification involving
the top layers in the supporting 1DPC; indeed, most Bloch surface waves-based
optical sensors rely on this feature[28, 54, 55]. Besides, especially when sur-
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face electromagnetic waves are involved, the opening of bandgaps induced by
a grating is also useful for a variety of goals, ranging from light guiding[56] to
amplification of the interaction between light and matter[57].

All these results may be of particular interest when focusing on BSW-
oriented integrated optics. In this context, photonic crystals are fundamental
tools which allow one - among the rest - to control the propagation of light
and to design BSW-based resonators[14, 13, 39, 16, 15, 58].

With a view to implementing Bloch surface waves integrated optics, in this
chapter I will present some results of a systematic study on the interaction
between a one-dimensional PhC slab and a one-dimensional truncated periodic
multilayer supporting a Bloch surface wave. In particular, we analyzed the
effect of the structural parameters of the grating, e.g. its refractive index, its
height and its filling fraction, on the dispersion of the mode and on the electric
field distribution. This analysis was carried out by means of rigorous coupled-
wave analysis and even confirmed via the approximate method of effective-
index theory.

3.2 Structure details

A sketch of the structure we investigated is reported in fig. 3.1.

Figure 3.1: Sketch of the structure under consideration.

The structure consists of a one-dimensional rectangular grating placed
transversally on top of a one-dimensional truncated periodic multilayer. The
grating is periodic along the x direction, with a period Λ = Ld+Lg and a filling
fraction f = 1−Lg/Λ, its height is hg and its refractive index ng. On the other
hand, the underlying one-dimensional photonic crystal is periodic along the z
direction; its unit cell is formed by two layers of refractive indices n1, n2 and
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thicknesses d1, d2, respectively. The top layer of this photonic crystal is trun-
cated to a thickness dt = σd1, where the truncation factor, as was explained in
chapter 1, satisfies the inequality 0 < σ < 1. Altogether, the system consists
of two different periodic structures: the multilayer, which supports and con-
fines the Bloch surface wave along z, and the grating, which gives rise[50] to a
photonic band structure along x. As before, even in this chapter we will only
focus on TE-polarized light, i.e. where the only non-vanishing components of
the electromagnetic field are Hx, Ey and Hz.

3.3 Theoretical procedure

The structure shown in figure 3.1 can support propagating modes confined in
the z direction by both total internal reflection and the presence of a pho-
tonic band gap. Their dispersion relation can be reconstructed experimen-
tally by means of attenuated total reflectance or angle-resolved reflectance
measurements[59, 60]. For example, one may couple light into the structure
via a prism in the Kretschmann configuration and focus on the guided modes
lying below the light line corresponding to the cladding. Numerically, one may
resort to approaches that take into account the periodicity of the system, such
as rigorous coupled-wave analysis (RCWA)[61, 62].

The new theoretical setting is sketched in fig. 3.2.

Figure 3.2: Typical setting for a numerical attenuated total reflectance sim-
ulation. A coupling prism is attached to the lower interface of the structure.
Light from this layer can either be reflected backwards or couple into a mode
supported by the structure.

The prism is represented by a high-index layer located at a distance dair
from the surface of the structure. A mode is excited by means of a second
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high-index layer in the Kretschmann configuration. When light impinges on
the lower interface between the prism and the multilayer, it can either be
reflected back into the prism or tunnel into the upper layer; in this second
scenario, the coupling of light into the structure would result in a dip in the
reflectance spectrum, whose visibility would ultimately depend on the coupling
conditions: in a system such as the one we analyzed, the coupling efficiency
towards the upper layer increases exponentially[44, 43] with the distance dair,
whereas the coupling efficiency towards the substrate decreases exponentially
with the number of periods in the multilayer[16]. The critical coupling condi-
tion, in which the reflectance dips would drop to 0, would require the absence
of absorption and the coupling efficiencies towards the upper and lower sub-
strates to be identical; however, in a numerical simulation one can tune the
excitation conditions by tweaking both the number of periods in the vertical
multilayer and the distance dair to adjust the visibility of the dip to any desired
value. Figure 3.3 shows a typical reflectance spectrum plotted as a function of
the angle of incidence θ in the lower prism.

Figure 3.3: Reflectance spectrum of the structure as a function of the angle of
incidence at the energy E = 1.1642 eV.
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Similarly, one can calculate the reflectance spectra at fixed angles and vary-
ing energy. In fig. 3.4 we reported the reflectance spectra for fixed angles of
incidence from θmin = 13◦ to θmax = 25◦. It has been shown[60] that one can
extract the dispersion relation of the mode supported by the ideal, isolated
structure, provided the coupling to the extra coupling elements is sufficiently
small.

Figure 3.4: Reflectance spectrum at different angles of incidence, for a structure
with a filling fraction f = 0.5.

In order to calculate of the modes supported by the structure in fig. 3.1 one
can also resort to the approximation of the effective-index method (EIM)[48,
63], which is particularly useful when both the loaded and bare regions of the
structure support Bloch surface waves[13]. In this case, one can approximate
these regions as uniform materials having refractive indices nload and nbare given
by the frequency-dependent effective indices of the supported modes, thereby
reducing the dimensionality of the problem.

In our case, the structure can be approximated as an effective one-dimensional
photonic crystal with alternating layers of width Lg for the bare region (the
grooves in the grating) and Λ − Lg for the loaded region (the rulings of the
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grating), and the band structure of the approximated system can be found by
calculating the overall transmittance and its poles, as explained in appendix
A. Naturally, this simplification translates in an improvement of the calcula-
tion times, and thus it allows for a quick exploration of the vast parameter
space involved in such complex structure. In the rest of this chapter, it will be
shown that under the hypothesis mentioned above, the agreement between the
effective-index method and the spectra calculated with rigorous coupled-wave
analysis is rather accurate.

3.4 Results and discussion

The first system we analyzed was the one in fig. 3.1, i.e. a structure whose
unit cell is formed by layers of thickness d1 = 111.3 nm, d2 = 263.7 nm and
refractive indices n1 = 2.5, n2 = 1.45. The truncation layer has thickness
dt = σd1 = 11.13 nm, where σ = 0.1. These parameters were obtained with
the optimization procedure described in chapter 2: the layer thicknesses were
chosen using a generalized quarter-wavelength condition for the gap design, and
the truncation factor guaranteed the existence of a Bloch surface wave within
the photonic band gap with the largest surface field enhancement achievable
given the refractive indices provided[29]. Finally, the grating has a refractive
index ng = 1.7, and period Λ = 434.8 nm and thickness h = 111.3 nm. All
the results reported in this chapter were scaled to the wavelength, which in
our case was taken as λ0 = 1 µm; this means that if chromatic dispersion is
negligible, the results can be scaled to any wavelength the reader might be
interested in.
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3.4. Results and discussion

Figure 3.5: Dispersion relation for the Bloch surface waves in the patterned
multilayer approximated via the EIM (solid line) and RCWA (dotted) for vari-
ous grating filling factors: (a) f = 0 (no grating), (b) f = 0.25, (c) f = 0.5, (d)
f = 0.75, (e) f = 1 (full layer) and thickness h = 111.3 nm. The white region
corresponds to the band gap. The band structure of the photonic crystal for
TE-polarized light is also shown, together with the light line of air (dashed).
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3. Gratings for Bloch surface waves

The dispersion relation of the mode supported by the structure in fig. 3.1
is shown in fig. 3.5 for different values of the filling fraction of the grating
f = Ld/Λ. The dispersion relation is plotted as a function of the in-plane
component of the wave vector kx, i.e. along the grating direction; the peri-
odicity of the grating along x allows a reduction to the first Brillouin zone
associated to the period Λ. The two extreme cases in which the filling fraction
equals f = 0 (figure 3.1a) and f = 1 (figure 3.1e) correspond to the dispersion
relation of the Bloch surface waves supported by the bare multilayer and the
loaded multilayer, i.e. one in which no grating is present and one surmounted
with a uniform layer of height h and refractive index ng. In these two cases, the
folding of the energy/wave vector plot inside the first Brillouin zone is clearly
arbitrary, as the structures are invariant for any in-plane translation.

On the other hand, when the filling fraction satisfies the inequality 0 < f <
1, the translation invariance in the xy plane does not hold, as the presence
of the grating implies that the structure is no longer uniform in the plane.
These cases correspond to figures 3.5(b-d), which are associated to the filling
fractions fb = 0.25, fc = 0.25 and fd = 0.25, respectively. The black solid lines
represent the dispersion relations calculated by means of effective-index theory;
the red dots correspond to the results obtained by means of rigorous coupled-
wave analysis. As can be seen from fig. 3.5, the agreement between the two
methods is striking for each filling fraction f . The presence of a photonic band
gap along kx, i.e. for light propagating along x, can be seen as resulting from
the contra-directional coupling of the forward- and the backward-propagating
Bloch surface waves supported by the truncated multilayer in which the grating
has been substituted by an effective slab. The coupling is determined by the
grating, and its strength depends on the filling factor f , as can be deduced by
the fact that the largest photonic band gaps correspond to values of the filling
fraction close to f = 0.5.

Furthermore, the position of the mode inside the photonic band gap can
be piloted by means of the filling fraction of the grating. As the filling fraction
f increases, the refractive index of the effective slab increases; this increase in
the optical thickness causes the band structure in fig. 3.5 to redshift.

To complete the analysis, and with a view to potential applications in the
field of biosensing, in figure 3.6 we plot the square modulus of the electric
field calculated with rigorous coupled-wave analysis. The setup is the one
described in fig. 3.2, i.e. the excitation of the mode occurs in the Kretschmann
configuration. In the case of figures 3.6a-b, the field distribution is peaked
in the rulings of the grating: this occurs because the parameters belong to
the lower band, i.e. the so-called dielectric band. Light is localized near the
surface of the multilayer, it decays in air because the modes lies below the
corresponding light line and undergoes damped oscillations in the stacking
direction of the multilayer, which is a clear signature of the presence of a
photonic band gap.
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3.4. Results and discussion

Figure 3.6: Square modulus of the electric field obtained by means of rigorous
coupled-wave analysis for a few selected values of KBΛ

2π
: (a) 0.4326 , (b) 0.4912,

(c) 0.4903, (d) 0.4676 and (e) 0.4335. The modes in figures (a) - (b) correspond
to the lower bands, whereas figures (c) - (e) correspond to the upper bands.

In figures 3.6c-e, we show the field distributions for points in the upper
band, the so-called air band. Indeed, in this case the maxima of the field are
concentrated between the rulings, i.e. inside the air gaps in the grating. As
one considers points even higher in energy, e.g. fig. 3.6d-e, the dispersion
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3. Gratings for Bloch surface waves

Figure 3.7: Dispersion relation of Bloch surface waves for several grating
heights. The theoretical curves were done by means of the EIM for heights
h = 50 nm (dash dot line), h = 111.3 nm (solid line) and h = 160 nm (dot
line). The filling fraction was f = 0.5 throughout the analysis.

relation approaches the light line and the modes are less and less confined in
the grating region. Fig. 3.6e in particular corresponds to a point above the
light line, where the field distribution no longer decays in the cladding as the
modes are coupled to those in the radiative region. This situation is akin to
that of quasi-guided modes of a photonic crystal slab[59].

Lastly, we evaluated the role of the grating height on the dispersion relation
of the Bloch surface waves. Indeed, the strength of the contra-directional
coupling between the forward- and backward-propagating modes depends on
all its parameters, i.e. its refractive index ng, its filling fraction f and also its
height h. For example, it is known[64, 65] that the response of the grating under
certain conditions - typically when the thickness of the grating itself is smaller
than the wavelength of light - is proportional to the square of the grating height
h2. Thus, in fig. 3.7 we report the Bloch surface wave dispersion relation for
heights of the grating equal to h1 = 50 nm (dash-dotted line), h2 = 111.3 nm
(solid line) or h3 = 160.0 nm (dotted line).

The effect of the increasing grating height h is both a gradual red-shifting
of the center of the photonic band gap and a widening of the gap itself. A
wider gap also entails a relative flattening of the dispersion relation in the
proximity of the band edge, which corresponds to a smaller group velocity:
this is particularly relevant with a view to enhancing the interaction between
light and matter.

It is worth noticing that when the structure does not support guided modes,
the validity of the effective-index method is debatable. To show this, we chose
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3.5. Conclusions

Figure 3.8: Dispersion relation of the Bloch surface waves for a structure sup-
porting no bare modes. The exact numerical solutions are shown in red dots;
the solution obtained via the effective-index method is shown in solid black.
The so-called dielectric mode band, i.e. the lower one is recovered with both
approaches, whereas the air mode band shows significant differences between
the two methods.

to slightly modify the structure shown in fig. 3.1: the new truncation layer
is now σd1 = 327 nm. To follow the same approach we applied earlier in this
chapter, we assume an effective index for the bare structure equal to the re-
fractive index of air, i.e. n = 1.0. The results are shown in fig. 3.8; as can be
seen from the plot, the dispersion relations calculated via the scattering ma-
trix approach and the effective-index method are in relatively good agreement
in the lower band, i.e. the one relative to dielectric modes, but suffer from
significant discrepancies in the upper band.

3.5 Conclusions

In this chapter we studied the behavior of guided modes supported by a one-
dimensional grating located on a one-dimensional truncated periodic multilayer
as a function of the geometrical parameters of the grating. Firstly, the field
distributions and the modal dispersions were calculated via rigorous coupled-
wave analysis. To simplify this approach, we successfully applied effective-
index theory to approximate the grating region: our simulations found an
excellent agreement between the results obtained with the two methods, thus
confirming the validity of this approximate approach.
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3. Gratings for Bloch surface waves

The periodicity of the grating causes a folding of the dispersion relation of
the modes in the first Brillouin zone; this gives rise to the opening of a photonic
band gap between the two branches of the folded dispersion relation. Both the
position of the modes inside the band gap and the width of the gap strongly
depend on the filling factor of the grating: as the filling factor increases, the
effective index of the equivalent slab increases: this increase in the optical
thickness of the slab causes a redshift of the guided modes.

Moreover, the effect of the height of the grating was studied by means
of effective-index theory: as the grating becomes thicker, the guided modes
redshift further and the width of the gap increases.

The electric field distributions of the modes belonging to the lower or upper
branches of the dispersion relation are localized in the dielectric ridges of the
grating or in the air gaps between the rulings, respectively.

The results shown in this chapter were published in 2018[30].
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Chapter 4
BSW ring resonators

Ring resonators are optical waveguides looped back onto themselves in the
shape of a circle. When the optical path of the resonator is an integer number
of wavelengths, a resonance occurs, and the distance between adjacent reso-
nances is called free spectral range. Ring resonators by themselves would be
unaccessible from the outside world, therefore they become useful only when
some kind of coupling to external optical elements exists. The easiest and by
far the most common coupling technique relies on evanescent coupling between
the ring and an bus waveguide close by. In the case of a single ring resonator,
the transmission spectrum as measured on the bus waveguide shows dips at
the resonances of the ring. Ring resonators can be useful in a variety of appli-
cations, ranging from optical filters, optical sensing, optical communications,
etc.

Thus, with a view to employing Bloch surface waves in integrated optics,
ring resonators are fundamental building blocks. In this chapter, I will re-
port our results on the first experimental observation of a BSW-based ring
resonator.

4.1 Motivation

In order to obtain complete integration of Bloch surface waves, BSW-based op-
tical resonators must be adequately investigated. Resonators are unavoidable
components for many reasons. In the first place, they have much smaller foot-
prints than those that would be necessary for travelling light. Moreover, having
light dwell inside a small enough volume for a long enough time amplifies its
chances of interacting with matter inside said volume. This is the basis of a
series of physical applications ranging from optical biosensors[32, 33, 38, 11],
interaction with 2D materials[66] and with quantum dots[67].

It is already known that Bloch surface waves can be guided by fabricat-
ing dielectric ridges on top of the supporting multilayer. In this case, BSWs
are confined vertically by both total internal reflection (TIR) and the pres-
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4. BSW ring resonators

ence of a photonic band gap (PBG), and the additional lateral confinement is
achieved via TIR. Guided BSWs (GBSWs) in ridges have been studied both
theoretically[13] and experimentally[14, 68, 69], and it has also been suggested
theoretically that BSWs could be confined in ring resonators[16]. Indeed, af-
ter the theoretical suggestion, the first BSW-based microdisk resonator was
fabricated and demonstrated experimentally[15] by Herzig et al.

Along this line, in this chapter, I will present our results on the first exper-
imental confirmation of a Bloch surface wave ring resonator. This joint work
was a collaboration with the group of professor S. M. Weiss from Vanderbilt
University, in Tennessee. Both the ring and the underlying multilayer were
fabricated in porous silicon (pSi), a low-cost and extremely tunable material
that has already been successfully employed in a variety of physical scenarios
ranging from tunable Bragg mirrors, microcavities, etc[70, 71].

4.2 Basics of ring resonator theory

Ring resonators are fundamental optical elements that lead to the confinement
of light in three dimensions. They are essentially formed by a ridge waveguide
bent in a closed circular shape, as sketched in fig. 4.1.

Figure 4.1: Sketch of a ring resonator of radius R.

Light can be injected inside the ring resonator by means of evanescent side-
coupling to a bus waveguide. The strength of the coupling depends essentially
on the distance between the ring resonator and the waveguide itself: this dis-
tance is typically designed before fabrication, but it can also be fine-tuned in
a completed structure by employing heaters, which can slightly modify the
ring by thermal expansion. In its simplest version, the coupling between the
bus waveguide and the ring resonator can be expressed in terms of two real
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4.2. Basics of ring resonator theory

values: the cross-coupling constant κ and the self-coupling constant σ. When
the coupling is reciprocal, the two coupling constants satisfy σ2 +κ2 = 1. With
reference to fig. 4.1, we can write[48]

E1 = σE2 + iκEin (4.1)

Eout = iκE2 + σEin. (4.2)

As light propagates inside the ring, it is subject to various sources of losses,
such as bending, absorption and scattering losses. All these effects can be
taken into account with a single loss coefficient 0 < α < 1, i.e.

E2 = αE1e
ik(ω)·L, (4.3)

where L = 2πR is the length of a full round trip around the ring resonator.
Clearly, the case when α = 1 represents the lossless scenario. For the field in
eq. (4.3) to undergo constructive interference as it resonates inside the ring,
the following condition must hold:

k(ω)L = 2πm, (4.4)

where m ∈ Z is an integer. The wave vector k(ω) can be expanded around a
central frequency ω0 to get

k(ω) =
ω0

c
n+

1

vg
(ω − ω0) +

1

2
GVD(ω − ω0)2 + · · · , (4.5)

where n is the refractive index at frequency ω0,

vg =
∂ω

∂k
(4.6)

is the group velocity and

GVD =
∂2k(ω)

∂2ω
(4.7)

is the group velocity dispersion. We can evaluate the transmittance T (ω),
defined as

T (ω) ≡
∣∣∣∣EoutEin

∣∣∣∣2 (4.8)

starting from the ratio between the amplitudes of the transmitted field and
the incoming field, i.e.

Eout
Ein

=
σ − αeik(ω)L

1− σαeik(ω)L
. (4.9)

Altogether, one has[72]

T (ω) =
σ2 + α2 − 2σα cos(k(ω)L)

1 + σ2α2 − 2σα cos(k(ω)L)
. (4.10)
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4. BSW ring resonators

From eq. (4.10), one can recognize that the resonant frequencies given by con-
dition (4.4) correspond to the minima in the transmittance. The transmittance
is plotted in figure 4.2.

Figure 4.2: Transmission spectrum for a side-coupled ring of radius R =
120 µm (α = σ = 0.95) in critical coupling condition.

The frequency distance between adjacent resonances is the free spectral
range, defined as

FSRν =
c

2πRng
, (4.11)

where ng is the group index of the mode. When the frequency ω equals one of
the resonances of the ring ωres, the transmittance simplifies to

T (ωres) =
(σ − α)2

(1− σα)2
. (4.12)

When σ = α, the transmission at resonance becomes T (ωres) = 0. This is
known as critical coupling condition, and it usually a useful experimental con-
dition due to the high visibility of the dips. A fundamental figure of merit for
resonators is the quality factor Q, which is defined as the number of oscillations
undergone by the field before its amplitude drops to a fraction 1/e of its orig-
inal value; thus, this factor gives a precise measurement of how effective the
three-dimensional confinement of light is, since any source of loss is detrimental
to its value. The quality factor can in general be extracted from a transmission
spectrum such as the one shown in figure 4.2 by evaluating the ratio between
the resonance frequency and the FWHM of the dip, i.e. Q = ωres/∆ω. How-
ever, it is possible to separate different contributions inside the overall quality
factor.
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The bus waveguide, in addition to being a way to couple light inside the
resonator, is also a way for light to escape it. This term gives an extrinsic
quality factor Qext. Scattering, absorption and bending losses, on the other
hand, contribute to an intrinsic quality factor Qint, which is defined by

Qint =
2πng
λja

, (4.13)

where the λjs are the resonance wavelengths and a is a loss coefficient in units
of reciprocal length.

4.3 Structural parameters

The structure we analyzed is sketched in figure 4.3. It consists of a mul-
tilayer composed of N = 24 layers fabricated in porous silicon of different
porosities[28]. A porous-silicon ring resonator of radius R = 105 µm was real-
ized on top of the multilayer by means of electron beam lithography; the width
of the ridge is wWG = 6 µm, and its height is hWG = 149 nm. The refractive
index of the porous-silicon ring structure is nWG = 1.69. 100 nm away from
the outer radius of the ring lies a tapered channel waveguide to couple light
into the resonator. The geometrical features of the channel waveguide in the
coupling region is the same as the ring: its width is wWG = 6 µm and its height
is hWG = 149 nm.

The ring was realized on top of a truncated periodic multilayer formed by
porous silicon layers of alternately high or low refractive index. The refractive
index of the high-index layer is nhigh = 1.79 and its thickness is dhigh = 248 nm;
the refractive index of the low-index layer is nlow = 1.24, and its thickness is
dlow = 704 nm. Between the periodic crystal and the ring lie three layers with
the following structural details: d1 = 753.5 nm, n1 = 1.24; d2 = 231 nm,
n2 = 1.69; d3 = 743 nm, n3 = 1.24.

Figure 4.3: Sketch of the three-dimensional structure under scrutiny. The ring
and channel waveguide are not to scale.

43



4. BSW ring resonators

The inclusion of pores inside the silicon matrix is achieved with a com-
bination of electrochemical etching and lithographic processing. A thorough
description of the fabrication process can be found in [54], but for the sake
of clarity it will also be sketched out here. As previously reported[28], the
porous-silicon multilayer was formed by electrochemical etching of p+ (0.01
Ω·cm) Si (100) in a 15% hydrofluoric acid (HF) solution. The top layer was
electrically etched at a current density of 18 mA/cm2 for 28 s. The follow-
ing two layers were etched at current densities of 48 mA/cm2 for 22 s and 18
mA/cm2 for 34 s, respectively. The rest of the multilayer was obtained by
etching 10 unit cells formed by high and low refractive index layers with an
alternating current density of 5 mA/cm2 for 63 s and 48 mA/cm2 for 22 s,
respectively. Finally, the pore diameters were widened by drop casting a 1.5
mM KOH solution in ethanol on the as-anodized pSi multilayer film for 5 min-
utes. The structure was then rinsed with ethanol. The porous silicon surface
was passivated via thermal oxidation at 500◦C for 5 minutes in air. Finally,
the ring resonator pattern was then transferred on top of the pSi multilayer
by electron beam lithography and reactive ion etching. To confirm the layer
thicknesses reported above, the pSi structure was studied by means of scanning
electron microscopy imaging, and reflectance spectra at normal incidence were
fitted with transfer matrix simulations.

4.4 Results and discussion

The lateral confinement of the Bloch surface wave inside the ring resonator was
accounted for by means of the effective-index method (EIM)[13]. Following
the horizontal EIM[16], we substituted the porous silicon ridge on top of the
multilayer with an effective homogeneous layer of the same thickness hWG and
a refractive index neff,WG(ω) calculated as the fundamental TM1 guided mode
supported by a symmetric slab waveguide of porous silicon (n = 1.69) of width
wWG surrounded by air (n = 1).

1Note that in this scenario, TM polarization refers to the plane of the porous silicon
ridge.
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4.4. Results and discussion

Figure 4.4: The original truncated periodic multilayer supporting a ring res-
onator (a) and the structure approximated via effective-index theory (b): the
effective slab has the same height as the ridge in (a), and the refractive index
of the TM0 mode supported by the ridge in air.

In this specific case, the width of the curved ridge is wWG = 6 µm, which
is wide enough to cause but a slight variation in the effective index neff,WG =
1.685 ≈ nWG.

With this uniform layer, the photonic crystal ridge was numerically shown
to support two guided Bloch surface waves whose dispersion relations are shown
in Fig. 4.5.
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4. BSW ring resonators

Figure 4.5: Dispersion relation for the modes in the photonic band gap (lighter
region). The air light line is shown in dashed black, the BSW is solid red and
a further gap mode is shown in gray (dotted and dash-dotted).

The white region in fig. 4.5 corresponds to the photonic band gap of the
periodic multilayer, and the dashed black line represents the light line of the
external medium (air, next = 1). The parameters of the unit cell were chosen
so that the photonic band gap would be reasonably wide, and the truncation
factor was selected in order to have a guided Bloch surface wave around the
center of the gap for the energy of interest, E = 0.8 eV. Fig. 4.5 also shows
the presence of two guided Bloch surface waves inside the photonic band gap:
the first one is close to the lower band edge and has the largest wave vector
component (kBSSW‖ = 5.39 µm−1); the electric field associated to this mode is
peaked in the third layer, and the mode is thus a Bloch sub-surface wave[28].
The other gap mode falls at k‖ = 4.80 µm−1 at E = 0.8 eV, and its electric
field profile is peaked at the interface between the truncated multilayer and
the curved ridge. This is the Bloch surface wave we are interested in.
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4.4. Results and discussion

Figure 4.6: a) Square modulus of the electric field of the Bloch surface wave
(kBSW‖ = 4.80 µm−1); b) Square modulus of the electric field of the Bloch

sub-surface wave (kBSSW‖ = 5.39 µm−1).

When light at λ0 = 1.55 µm plugged into the channel waveguide couples
to the porous silicon ring, the transmission spectrum contains the typical dips
shown in fig. 4.7.
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4. BSW ring resonators

Figure 4.7: a) Transmission spectrum from the ring resonator; b) ring resonator
off resonance; c) ring resonator on resonance.

As can be seen from fig. 4.7a, the visibility of the peaks is limited: we
attribute this low visibility to the small distance between the ring and the
bus waveguide, which is likely to result in a strong over-coupling of the ring
resonator. Evidence for this interpretation also comes from Fig. 4.7c: when
the light from the channel waveguide resonates with the ring, it can couple
into the resonating structure; here, it is scattered in all direction due to the
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porosity of the pSi medium, and this appears as the ring resonator lighting up.
On the other hand, the ring remains dark when the resonance condition is not
satisfied, as shown in fig. 4.7b. This confirms that we are in the presence of a
resonant mode inside the ring.

Figure 4.8: Zoom on one of the transmission dips shown in Fig. 4.7. The
black solid line represents the transmission, the red solid line is a superimposed
Lorentzian fit.

From the experimental transmission plot in fig. 4.7a, we also estimate a
free spectral range FSR ≈ 3 nm, and from fig. 4.8 we can deduce a quality
factor Q ≈ 103. Interestingly, this rather low value of the Q factor was also
replicated by means of FDTD calculations where roughness in the pSi ma-
trix was neglected. Thus, the relatively low quality factor is likely to be due
to over-coupling or inter-modal cross-talk between the resonating mode and
leaky modes supported by the multilayer structures. We believe that a careful
optimization of the structure parameters may lead to quality factors as high
as 104. The maximum experimental value we managed to collect, albeit on a
different wavelength range, was Q ≈ 3700, as shown in fig. 4.9.
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4. BSW ring resonators

Figure 4.9: Transmission dip on a different wavelength range (black solid) with
a superimposed Lorentzian fit (red solid).

To confirm that the features observed in the transmission spectrum corre-
spond to a guided Bloch surface wave, we can estimate the group velocity of
the mode guided in the ring resonator from the transmission plot. When the
group velocity dispersion (GVD) is negligible[48], the free spectral range of a
ring resonator is related to the group velocity vg according to:

m

R
=

2π

vg
(νm − ν0) , (4.14)

where m is the order of the resonance at frequency νm with respect to a ref-
erence wavelength λ0 = 1552.75 nm (ν0 = 2πc/λ0), and R is the radius of the
ring resonator. In figure 4.10, we plot the experimental points corresponding
to the resonance order m with respect to a reference resonance at ν0 = versus
the frequency detuning ∆νm = (νm − ν0). Multiplying eq. (4.14) by the speed
of light c makes the formula even wieldier, i.e.

cm

R
= 2πng (νm − ν0) , (4.15)
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Figure 4.10: Plot of the relation given in equation (4.15) for the experimental
points shown in 4.7a. The angular coefficient of the blue line is the theoretical
group index ng evaluated from one-dimensional transfer-matrix theory.

The linear dependence of the resonances on ∆νm confirms that the GVD
is indeed negligible. The horizontal error bars correspond to the full-width-at-
half-dip of the transmission resonances. According to eq. (4.15), the slope of
the linear fit corresponds to the group index of the guided mode ng = c/vg.
From the experimental data we estimated the value vg = 1.967×108 m/s, which
is well comparable to the theoretical value that can be obtained by evaluating
the graphical slope of the dispersion relation shown in Fig. 4.5.

4.5 Conclusions

In conclusion, in this chapter we presented the first experimental demonstra-
tion of a Bloch surface wave-based ring resonator. The resonator was obtained
on a truncated periodic multilayer alternating high- and low-index porous sili-
con layers. The one-dimensional photonic crystal was designed to have a wide
photonic band gap and to support a guided Bloch surface wave in the center
of the gap, and porous silicon was selected for the utmost tunability of its
refractive index. An experimental quality factor Q ≈ 103 was demonstrated,
which, in spite of being still rather small with respect to typical quality factors
in ring resonators, still represents an important landmark in the road towards
the application of Bloch surface waves in integrated optics.
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Chapter 5
BSW nanobeam cavity

In this last chapter, I will present my results on the three-dimensional con-
finement of Bloch surface waves. We decided to focus on a one-dimensional
photonic crystal nanobeam cavity for a series of reasons, essentially related to
their design flexibility and the reasonably small footprint. The cavity is local-
ized on top of a one-dimensional photonic crystal that supports Bloch surface
waves, and the cavity was designed so that no spurious Fourier component of
the electric field would fall inside the light cone. This argument was originally
suggested by Akahane et al.[73] in 2003, and is generally known as Noda’s ar-
gument. Our design strategy is based on the effective-index method to reduce
the dimensionality of the problem. The resulting structure was tested with
two-dimensional FDTD simulations which confirmed a reasonably high qual-
ity factor Q ≈ 105.

Some of the calculations summarized in this chapter were developed to-
gether with a master student in Physics, dr. Tommaso Perani, and later be-
came part of his master thesis. The results were presented at the 2018 Inter-
national Conference on Transparent Optical Networks (ICTON) in Bucharest,
Romania.

5.1 Motivation

We saw in chapter 2 that Bloch surface waves, after an appropriate opti-
mization of the underlying supporting photonic crystal, have indeed a more
intense surface field with respect to simpler TIR-based solutions. This repre-
sents an asset in a variety of applications, ranging from BSW-based optical
sensing[55, 74, 75] to coupling with quantum objects[8]. In the second sce-
nario, the interaction between a QD575 quantum dot and a one-dimensional
photonic crystal was limited to a simple increase in the fluorescence count of
the QD575 with respect to the case in which the quantum dot was on a bare
glass substrate. In order to move from this unsurprising angular redistribution
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of energy to deeper physical effects, including strong coupling, what we need is
a strategy to further increase the spatial and temporal overlap between Bloch
surface waves and matter. It has already been pointed out in the previous
chapter that the best way to enhance the probability of light and matter inter-
acting is to create high-Q optical resonator capable of storing light for many
optical cycles[76]. However, it must also be considered that, depending on
the physical mechanism one is interested in, the relevant figure that has to be
maximized is not just the quality factor Q, but the ratio between Q and the
mode volume Vmod, defined as the three-dimensional upgrade of eq. (2.2), i.e.

Vmod =
1

[ε|E|2]max

∫ +∞

−∞
ε(r)|E(r)|2dr. (5.1)

This implies that high-Q optical resonators in which photons are spread out
over large modal volumes would still perform badly in terms of the ratio Q/V .
The best way to overcome this limitation associated with optical resonators is
resorting to photonic crystal cavities, which typically offer quality factors Q >
106 and wavelength-scale modal volumes. In this chapter, we will present our
design strategy and preliminary results regarding a photonic crystal nanobeam
cavity for Bloch surface waves.

Nanobeam cavities can be fabricated by starting from a ridge waveguide and
patterning it - either via etching or e-beam lithography - in such a way as to cre-
ate a central cavity surrounded on each side by distributed Bragg reflectors[77].
Many different one-dimensional patterns have been studied: among them,
one-dimensional lattices of holes in ridges of variable widths[78, 79], one-
dimensional lattices of holes of different sizes[80], one-dimensional lattices of
tapered air slits in ridges of fixed thickness[81], etc...

In this region, an adequate tapering profile of the optical thicknesses of the
layers can lead to light confinement. The principle governing this behavior
was published by S. Noda et al.[73]1: one must calculate the two-dimensional
Fourier transform of the electric field inside the cavity and remove the Fourier
components which either lie inside the light cone of the external medium or
lie outside the PBG. A consequence of this principle is that the profile of the
cavity in terms of optical thicknesses must be gentle, as any abrupt modification
would call forth undesirable Fourier components. In spite of the simplicity of
this argument, the parameter space is still very vast, and finding the proper
cavity parameters by trial and error can be a tiresome and time-consuming
procedure. Therefore a design algorithm is still necessary to produce high-Q
cavities with wavelength-scale modal volumes[82].

5.2 Structural parameters

The structure we have analyzed is shown if fig. 5.1.

1Although in their paper the authors referred to two-dimensional photonic-crystal slabs,
the argument still holds for different geometries.
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5.2. Structural parameters

Figure 5.1: Frontal view of the structure under investigation. It consists of a
one-dimensional truncated photonic crystal supporting a nanobeam cavity.

The structural parameters were selected so that the work wavelength could
be λ = 532 nm (E = 2.331 eV), corresponding to the green line of a Nd:YAG
laser, while at the same time maximizing the width of TE-polarized photonic
band gap. The layer thicknesses and refractive indices are as follows:

d1st = 10 nm (5.2)

nTa2O5 = 2.113 (5.3)

dTa2O5 = 93 nm (5.4)

nT iO2 = 1.484 (5.5)

dT iO2 = 135 nm. (5.6)

The nanobeam cavity is a ridge made in polymethylmethacrylate (PMMA),
and its parameters are

nPMMA = 1.48 (5.7)

dPMMA = 230 nm (5.8)

wPMMA = 1 µm. (5.9)

The three-dimensional structure appears as shown in fig. 5.2.
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5. BSW nanobeam cavity

Figure 5.2: Graphical rendition of the three-dimensional nanobeam cavity.

5.3 Theoretical procedure

One of the strengths of nanobeam cavities is their high versatility: they can
consist of air holes or air slits with parallel facets; each of these features can
be characterized by equal sizes or change according to some pattern; the holes
can be placed on a one-dimensional lattice or they can be staggered to create
a desired tapering, etc. This versatility, however, entails a series of drawbacks.
The parameters space of such complex structures, for example, is considerably
vast: among the relevant parameters, we can mention the height of the ridge
waveguide, its thickness, the composition of the distributed Bragg reflectors on
its sides, etc. Moreover, we must also take into account the parameters of the
vertical one-dimensional photonic crystal supporting Bloch surface waves: all
the components in the unit cell and the truncation factor. It is then clear that
a brute-force optimization based, for example, on fine-tuning the structural
parameters and then checking their effects via FDTD simulations would be
astoundingly time-consuming.

Thus, our approach proceeded as follows. To start with, we relied on
effective-index theory to reduce the dimensionality of the analysis: two di-
mensional stacks of layers were substituted with a uniform layer of index neff
given by the effective index of the Bloch surface wave we were interested in.
This aspect is discussed in subsection 5.3.1. With this approximation, our
goal was to enhance the quality factor of the cavity by properly engineering
the distribution of the Fourier components in k-space. In a dielectric structure
where no material absorption occurs, light only has three possible channels to
leak out of the cavity: in-plane leakage can either occur along x, i.e. through
the side mirrors in the ridge (QPBG

‖ ), or along y, where it is confined by total
internal reflection due to the refractive index contrast with the surrounding
medium (QTIR

‖ ); moreover, light can escape along z, i.e. by leaking through
the vertical multilayer (Q⊥). The various contributions to the overall quality
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factor are then taken into account as sums of reciprocals:

1

Qtot

=
1

Q⊥
+

1

QTIR
‖

+
1

QPBG
‖

. (5.10)

Of the three terms, QPBG
‖ is the most tractable, as the amount of light leaking

through the distributed Bragg reflector along the ridge, i.e. in the x direction,
can be reduced by simply increasing the number of unit cell repetitions. In
our simulations, we noticed that a value NDBR > 15 was sufficient to reduce
this contribution. As to Q⊥, this comes from the fact that we are dealing with
Bloch surface waves, which require a supporting truncated periodic multilayer.
However, the photonic band gap from this photonic crystal does not extend
indefinitely in k space, but only between the upper and lower band edges
relative to the reference energy, kUBE and kLBE, respectively. Wave vector
components smaller than kUBE or greater than kLBE will not be confined, and
will thus couple to the radiative modes and leak away from the cavity. QTIR

‖ ,
the last term in eq. (5.10), depends on the amount of radiation whose wave
vector component is less than that of the light line of the external medium
(kLL = ω/c · n): for three-dimensional structures, these are said to lie within
the light cone of this medium[83]. In order to maximize the quality factor, one
must then design the cavity in such a way that the field profile in real space
has no Fourier components localized in the region below max(kext, kUBE) and
above kLBE, where kext is the light line of the external medium.

It has been shown by Noda et al.[73] that the amount of these unconfined
Fourier components can be minimized if the in-cavity field profile changes
“smoothly” across the cavity, without abrupt changes. This principle was
first introduced in the field of double-heterostructure nanocavities by the same
authors[18], and was later applied to photonic crystal nanocavities by Notomi
et al.[84]. Once the in-cavity field has been worked out, via transfer-matrix
theory, rigorous coupled-wave analysis or otherwise, many techniques are avail-
able to calculate the Fourier transform (FT) of the field; in section 5.3.2 we
show how the FT can be calculated starting from the knowledge of the field
amplitudes in each layer. The strategy that seems to better fulfill the goal of
attracting most Fourier components in the range max(kext, kLBE) < k < kUBE
is to modulate the thicknesses of the in-cavity ridges according to a parabolic
law[85]. In section 5.3.3 we will inquire into this aspect and try and understand
its origin. Finally, in the last section we propose a step-by-step approach of
our design algorithm.

In the following subsections, we relate on various aspects of the approaches
we relied on in our analysis.

5.3.1 Effective-index theory

As has already been discussed in the previous chapters, the structure can be
divided in the loaded region, which supports the ridge, and the bare region,
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5. BSW nanobeam cavity

where the PMMA ridge has already been etched. Plotted in fig. 5.3a and b
we can see the Bloch surface waves supported by the two photonic crystals.

Figure 5.3: (a) The Bloch surface wave supported by the bare structure; at the
energy of interest, kbare = 13.60 µm−1 (b) The modes supported by the loaded
structure. For the upper Bloch surface wave, kload = 16.43 µm−1. The black
dashed line is the light line of the external medium (air: next = 1), and the
black dotted line represent the work wavelength λ0 = 532 nm (E ≈ 2.33 eV).

The bare and loaded Bloch surface waves at the work wavelength λ0 =
532 nm fall at kbare = 13.60 µm−1 and kload = 16.43 µm−1, respectively, and
correspond to the effective indices

nload = 1.391 (5.11)

nbare = 1.152. (5.12)

The Bloch surface wave mode profiles are plotted in fig. 5.4.
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5.3. Theoretical procedure

Figure 5.4: (a) Square modulus of the electric field of the Bloch surface wave
supported by the bare structure; at the energy of interest, kbare = 13.60 µm−1

(b) Square modulus of the electric field of the Bloch surface wave supported
by the loaded structure. For the upper Bloch surface wave in fig. (5.3), kload =
16.43 µm−1.

5.3.2 Fourier transforms

The electric field in the j-th layer can be written as

Ej(z) = E+
j e

iwjz + E−j e
−iwjz, (5.13)

where, as usual, the transversal wave vector component is defined as

wj =
√

(2πnj/λ0)2 − β2. (5.14)

The whole mode profile can then be recovered by summing all the contributions
due to each layer given by eq. (5.13), with adequate characteristic functions.
The Fourier transform of the field is then given by

Ê(k) =

∫ +∞

−∞
E(z)e−i2πkzdz ≈ (5.15)

≈
∑
j

∫
j

Ej(z)e−i2πkzdz (5.16)

This corresponds to Ej(z
′) = E+

j e
iwz′ + E−j e

−iwz′ , where 0 < z′ < dj. In
other terms, z′ = z −

∑
j

dj, so that the variable can actually roam only in the

region between [0; dj]. With the new notation, we have

Ê(k) =
∑
j

∫ zj+1

zj

(
E+
j e

iwz′ + E−j e
−iwz′

)
e−i2πkzdz =

=
∑
j

∫ zj+1

zj

E+
j e

iw

(
z−
∑
j
dj

)
+ zje

−iw
(
z−
∑
j
dj

) e−i2πkzdz
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5. BSW nanobeam cavity

Let us now make a variable change z → z′, so that dz = dz′, z = z′+
∑
j

dj

and the extrema become zj → 0 and zj+1 → dj:

Ê(k) =
∑
j

∫ L

0

(
E+
j e

iwz′ + E−j e
−iwz′

)
e
−i2πk

(
z′+

j∑
n
dn

)
dz′ =

=
∑
j

∫ L

0

(
E+
j e

iwz′ + E−j e
−iwz′

)
e−i2πkz

′
e
−i2πk

j∑
n
dn
dz′ =

=
∑
j

e
−i2πk

j∑
n
dn
∫ L

0

(
E+
j e

iwz′e−i2πkz
′
+ E−j e

−iwz′e−i2πkz
′
)
dz′ =

=
∑
j

e
−i2πk

j∑
n
dn
∫ L

0

(
E+
j e

i(w−2πk)z′ + E−j e
−i(w+2πk)z′

)
dz′ =

=
∑
j

e
−i2πk

j∑
n
dn
(
E+
j

∫ L

0

ei(w−2πk)z′dz′ + E−j

∫ L

0

e−i(w+2πk)z′dz′
)

=

=
∑
j

e
−i2πk

j∑
n
dn

(
E+
j

i (w − 2πk)
ei(w−2πk)z′

∣∣∣L
0

+
E−j

−i (w + 2πk)
e−i(w+2πk)z′

∣∣∣L
0

)
=

=
∑
j

e
−i2πk

j∑
n
dn

(
E+
j

i (w − 2πk)

(
ei(w−2πk)L − 1

)
+

E−j
−i (w + 2πk)

(
e−i(w+2πk)L − 1

))
=

=
∑
j

e
−i2πk

j∑
n
dn

(
−i

E+
j

w − 2πk

(
ei(w−2πk)L − 1

)
+ i

E−j
w + 2πk

(
e−i(w+2πk)L − 1

))
.

Likewise for the complex conjugate of the field, i.e. Ēj(z
′) = E+,∗

j e−iwz
′
+

E−,∗j eiwz
′
, where w is not conjugated because, in the scenario we are interested
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in, we are above the light line of each component medium.

ˆ̄E(k) =
∑
j

∫ L

0

(
E+,∗
j e−iwz

′
+ E−,∗j eiwz

′
)
e
−i2πk

(
z′+

j∑
n
dn

)
dz′ = (5.17)

=
∑
j

∫ L

0

(
E+,∗
j e−iwz

′
+ E−,∗j eiwz

′
)
e−i2πkz

′
e
−i2πk

j∑
n
dn
dz′ = (5.18)

=
∑
j

e
−i2πk

j∑
n
dn
∫ L

0

(
E+,∗
j e−iwz

′
e−i2πkz

′
+ E−,∗j eiwz

′
e−i2πkz

′
)
dz′ =

(5.19)

=
∑
j

e
−i2πk

j∑
n
dn
∫ L

0

(
E+,∗
j ei(−w−2πk)z′ + E−,∗j ei(w−2πk)z′

)
dz′ = (5.20)

=
∑
j

e
−i2πk

j∑
n
dn
(
E+,∗
j

∫ L

0

e−i(w+2πk)z′dz′ + E−,∗j

∫ L

0

ei(w−2πk)z′dz′
)

=

(5.21)

=
∑
j

e
−i2πk

j∑
n
dn

(
E+,∗
j

−i (w + 2πk)
e−i(w+2πk)z′

∣∣∣L
0

+
E−,∗j

i (w − 2πk)
ei(w−2πk)z′

∣∣∣L
0

)
=

(5.22)

=
∑
j

e
−i2πk

j∑
n
dn

(
E+,∗
j

−i (w + 2πk)

(
e−i(w+2πk)L − 1

)
+

E−,∗j

i (w − 2πk)

(
ei(w−2πk)L − 1

))
=

(5.23)

=
∑
j

e
−i2πk

j∑
n
dn

(
i
E+,∗
j

w + 2πk

(
e−i(w+2πk)L − 1

)
− i

E−,∗j

w − 2πk

(
ei(w−2πk)L − 1

))
(5.24)

Thus, all in all, since <[E(z)] = 1
2

(
E(z) + Ē(z)

)
, the overall Fourier trans-
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form is given by the following expression.

Ê(k) =
1

2

(
Ê(k) + ˆ̄E(k)

)
= (5.25)

=
1

2

∑
j

e
−i2πk

j∑
n
dn

(
−i

E+
j

w − 2πk

(
ei(w−2πk)L − 1

)
+ i

E−j
w + 2πk

(
e−i(w+2πk)L − 1

))
+

(5.26)

+
1

2

∑
j

e
−i2πk

j∑
n
dn

(
i
E+,∗
j

w + 2πk

(
e−i(w+2πk)L − 1

)
− i

E−,∗j

w − 2πk

(
ei(w−2πk)L − 1

))
=

(5.27)

=
1

2

∑
j

e
−i2πk

j∑
n
dn
{
−i
(
E+
j + E−,∗j

) ei(w−2πk)L − 1

w − 2πk
+ i
(
E−j + E+,∗

j

) e−i(w+2πk)L − 1

w + 2πk

}
.

(5.28)

5.3.3 In-cavity tapering

Consider a quarter-wavelength stack whose unit cell is formed by two layers of
index n1, n2 and thicknesses

d1 =
λ0

4n1

(5.29)

d2 =
λ0

4n2

. (5.30)

The Bloch wave vector at the center of the PBG, as derived in eq. (A.69), can
be shown to be[48]

q =
π

Λ
+ i

∆n

nΛ
. (5.31)

Thus, a plane wave travelling inside the band gap would propagate as

E(x) ∝ cos(
π

Λ
x)e−

∆n
nΛ
|x| ∝ cos(

π

Λ
x)e−γ|x|, (5.32)

and its Fourier transform can be easily shown to consist of two Lorentzian
contributions

Ê(k) ∝ γ

(k ± π
Λ

)2 + γ2
. (5.33)

As could have been guessed from the form of the field in eq. (5.32), the Fourier
transform has two sharp contributions centred at k = ∓ π

Λ
)2, with a FWHM

proportional to γ = ∆n
nΛ

. The width of these peaks, which is ultimately due
to the sharpness of the decay in real space, depends on structural parameters
of the quarter-wavelength stack which cannot be tuned. On the other hand,
a looser confinement in real space could be assumed to shrink the k-space

62



5.3. Theoretical procedure

distribution. In the presence of a Gaussian envelope function for the electric
field, i.e.

E(x) ∝ cos(
π

Λ
x)e−

x2

2σ2 , (5.34)

would lead to a Gaussian Fourier transform such as

Ê(k) ∝ σ

2
e−

σ2

2
(k± π

Λ
)2

. (5.35)

Eq. (5.35), as in eq. (5.33), has two contributions at k = ± π
Λ

, but the width
of the peaks in this case is inversely proportional to the standard deviation
σ: the peaks can now be shrunk by increasing the slackness of the envelope
function of the electric field in real space. This observation led Noda et al. to
the first in-plane Fourier transform-based design algorithm for photonic crystal
nanocavities[73]. Furthermore, by comparing eq. (5.35) and eq. (5.32), one
notices that the decay rates can be equated by assuming an imaginary part of
the Bloch wave vector equal to γ = x/(2σ2).

But what specific kind of tapering profile could give rise to such an electric
field distribution? It is clear, by analogy with potential wells in semiconductor
heterostructures, that the lattice constant must shrink as one gets closer to the
centre: as the period Λ shrinks, the photonic band gap of the shrunk structure
is blue-shifted proportionally. This forms the optical analogue of a potential
well for electrons. Expanding the dispersion relation ω(k) around the band
edge k = ± π

Λ
, one gets, up to second order,

ω = ω(π/Λ) + a(k − π/Λ)2, (5.36)

where the coefficient a < 0 due to the negative curvature of the dispersion
relation close to this point. Symmetry also forbids odd powers from showing
in the Taylor expansion. This dispersion relation can be turned into a complex
one by substituting k = π/Λ + iγ to get ω = ωLBE−aγ2. A little algebra then
leads to

ωLBE(x) = ω + a

(
x

2σ2

)2

= (5.37)

= ω(1− αx2), (5.38)

where α = −a/(4ωσ4) > 0 due to the curvature of the band being negative.
Altogether, the lower band edge of the photonic band gap at the centre of
the cavity can be blue shifted by reducing the lattice constant according to
Λ(x) = Λ/(1 − αx2). If αx2 � 1, then the fraction can be Taylor expanded
into

Λ(x) = Λ(1 + αx2). (5.39)

which links the in-cavity lattice constants to that of the DBR stack out of the
cavity via a quadratic dependency.
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5.3.4 Optimal tapering parameters

In order to induce an optical resonance inside the cavity, we designed a quadratic
tapering of the thicknesses of each ridge block. It has been shown elsewhere
that such a tapering creates an in-cavity electric field distribution with a Gaus-
sian profile. Thus, starting from the central end of the lateral Bragg reflectors,
we shrank the period according to the relation

Λj = Λ0

[
1 + α

(
j

Ntaper

)2]
, (5.40)

where the index j ∈ [−Ntaper, · · · , Ntaper] and Λ0 is the period at the centre
of the cavity, corresponding to j = 0. To enforce continuity of the layer
thicknesses between the lateral DBR and the cavity, one must have

Λj=Ntaper = ΛDBR, (5.41)

which leads to an equation for the attenuation coefficient α, i.e.

α = −1 +
ΛDBR

Λ0

. (5.42)

As a consequence, the minimum ridge period at the center of the cavity equals

Λ0 =
ΛDBR

α + 1
. (5.43)

The parameters α and Ntaper define the height and width of the optical
potential well, respectively, and can in principle be chosen arbitrarily. However,
we chose to obtain at least a rough estimate of these parameters with some
physical insight in the confinement mechanism. Scaling the lattice constant
ΛDBR → Λ0 leads to a shift of the bandgap upward in energy. Therefore, we
may assume that a good criterion to obtain a tight confinement of light occurs
when the lower band edge of the PBG lies in the centre of the photonic band
gap caused by the lateral DBRs. In terms of angular frequency, this can be
translated as

ωcentreLBE = ωmid−gapDBR . (5.44)

The mid-gap angular frequency of the first-order photonic band gap due to
a 1D PhC of period Λ0 and alternating layers of indices n1 and n2 can be
shown[86] to be

ωmid =
2πc

Λ0

n1 + n2

4n1n2

. (5.45)

When the refractive index contrast is reasonably weak, i.e. ∆n = |n1 − n2| �
n, with n being the average refractive index, n = (n1 + n2)/2, the mid-gap
frequency can be simplified to

ωmid =
πc

nΛ0

. (5.46)
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Solving the gap condition in eq. (A.60) yields an approximation for the width
of the gap, i.e.

∆ω = ωmid
4

π

|n1 − n2|
n1 + n2

≈ ωmid
2∆n

πn
, (5.47)

Plugging this relation in eq. (5.44), we can then write

ωcentreLBE = ωcentreDBR −
∆ωmid

2
= (5.48)

= ωcentreDBR

(
1− ∆ωmid

2ωcentreDBR

)
≈ (5.49)

≈ πc

nΛ0

(
1− ∆n

nπ

)
(5.50)

By comparison, the centre (angular) frequency in the PBG of a one-dimensional
photonic crystal of period ΛDBR would be, according to eq. (5.46),

ωmid =
πc

nΛDBR

. (5.51)

Thus, equating eq. (5.50) and eq. (5.51) yields the optimal ratio between the
periods, i.e.

Λ0

ΛDBR

≈ 1− ∆n

nπ
. (5.52)

This approximate equation can then be exploited to estimate the shrinking
parameter α given in eq. (5.42), i.e.

α = −1 +

(
1− ∆n

nπ

)−1

. (5.53)

5.3.5 Step-by-step approach

Thus, we tried to simplify the analysis by resorting to effective-index theory,
thereby reducing the dimensionality of the system. The effective-index method
has already been succesfully applied in the context of guided Bloch surface
waves in ridges[13], therefore it is surely reliable even in the context under
scrutiny. From this point on, we followed the following steps:

• We divided the structure in two regions, as shown in fig. 5.1: the loaded
region, which supports the ridge waveguide, and the bare region, in which
the ridge has been etched away. For each of these regions, we calculated
the wave vector component k‖ of the Bloch surface waves: the results
were kbare = 13.60 µm−1 and kload = 16.43 µm−1, corresponding the
effective indices neffload = 1.391 and neffbare = 1.152.

• To take into account lateral confinement of the BSW, the ridge was
substituted with the effective index of the TM0 mode supported by a
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symmetrical slab waveguide of core index neffload surrounded by two semi-

infinite media of refractive index neffbare. The result is depicted in fig.
5.5.

Figure 5.5: Mode profile of the TM0 mode supported by a symmetric slab
waveguide of core index neffload and cladding index neffload. The mode is found at

k‖ = 16.204 µm−1, corresponding to an effective index neffTM0 = 1.372.

• For top-view simulations, the lateral mirrors in the ridge waveguide are
formed by stacking alternating loaded layers of index neffTM0 = 1.372 and
bare layers of index neffbare = 1.152 in the x direction. The widths of the
mirrors are given by the quarter-wavelength condition:

dload =
λ0

4neffTM0

≈ 97 nm (5.54)

dbare =
λ0

4neffbare

≈ 115 nm. (5.55)

The period of the DBR is

ΛDBR =
λ0

4

(
1

neffTM0

+
1

neffbare

)
(5.56)

• The tapering in the central region consists of a quadratic shrinking of the
lattice constant. The shrinking was achieved with the following relation:

Λj = ΛDBR

[
1 + α

(
j

Ntaper

)]
, (5.57)
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The shrinking parameters we selected were NDBR = 20, Ntaper = 15 and
α = 8.05× 10−2.

• The resulting multilayer was simulated using the transfer-matrix method
reported in appendix A. The transmission spectrum is shown in fig. 5.6.

Figure 5.6: Reflectance spectrum along y (top-view) of a nanobeam cavity
formed by a quarter-wavelength stack of alternating nGBSW and nbare indices
with a parabolic in-cavity thickness profile. A dip in the reflectance can be
seen for λ ≈ λ0 = 532.0 nm.

The FWHM estimated from figure 5.6 is FWHM = 6.973 × 10−6 nm,
which yields a 1D quality factor

QTM = λ0/FWHM ≈ 7.6× 107. (5.58)

The square modulus of the electric field inside the cavity can be evalu-
ated at normal incidence by setting the energy equal to the reflectance
minimum and running. The result is shown in fig. 5.7.
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Figure 5.7: Square modulus of the electric field along the x direction.

• At this point, one can calculate the Fourier transform of the electric
field profile either directly via the coefficient obtained via the transfer
matrix approach, with the method outlined in section 5.3.2, or with any
numerical Fast Fourier Transform (FFT) algorithm. The result is plotted
in figure 5.8.

Figure 5.8: Fourier transform of the real part of the in-cavity electric field.
The yellow and red lines correspond to the upper and lower band-edge in fig.
5.9, respectively. The blue line represent the light line of the external medium.
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The vertical lines plotted in fig. 5.8 correspond to the boundaries of
each confinement mechanism: the light line of the external medium falls
at kext = 11.83 µm−1, the upper and lower band-edges fall at kUBE =
12.38 µm−1 and kLBE = 18.78 µm−1, respectively. As can be seen, with
the approach outlined in this chapter most of the Fourier components
fall below the lightcone[83].

Figure 5.9: Magnified view of the photonic band gap around the energy of
interest, E = 2.331 eV (λ0 = 532 nm). The boundaries of both total internal
reflection and PBG confinement are highlighted: kext = 11.83 µm−1, kUBE =
12.38 µm−1 and kLBE = 18.78 µm−1.

• Eventually the structure is analyzed via Meep (https://meep.readthedocs.
io/en/latest/), the Massachusetts Institute of Technology’s own ab-
initio FDTD software. A full-fledged explanation of the FDTD proce-
dure shall not be given here, as it would lead us astray from the central
topic of this thesis; a thorough discussion on this topic can however be
found, for example, in [87] and [88]. The results are reported in the next
section.

5.4 Results and discussion

In order to test the validity of our approach, we ran two two-dimensional
simulations for the structure under scrutiny: a top-view simulation and a side-
view simulation. In both cases, we relied on effective-index theory to compute
the proper effective indices for the two views.

The result of the side-view simulation in Meep is reported in fig. 5.10.
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5. BSW nanobeam cavity

Figure 5.10: Side-view simulation of the BSW nanobeam cavity. The field is
confined in the center of the cavity.

Harmonic analysis yielded a mode at ν̃ = 1.863 µm−1, corresponding to
λside ≈ 537 nm, with a quality factor Qside ≈ 9.4× 104.

The result of the top-view simulation is shown in picture 5.11.

Figure 5.11: Top-view simulation of the BSW nanobeam cavity. The field is
confined in the center of the cavity.

In this case, Meep found a slightly detuned mode at ν̃ = 1.862 µm−1,
corresponding to λside ≈ 537 nm, with a the FDTD quality factor was Qtop ≈
9.5× 104.

Unfortunately, our approach does not allow for a straightforward evaluation
of the mode volume of the in-cavity mode. One-dimensional mode lengths can
be promptly evaluated by semi-analytical or, if needs be, numerical integration
of the mode profiles shown in the previous section, i.e. fig. 5.7, fig. 5.5 and fig.
5.4, by sequentially applying the definition given in eq. (A.74). This would
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yield independent modal lengths Lx, Ly and Lz. However, it is clear that
Vmod 6= LxLyLz, and the relationship between these figures and the modal
volume Vmod is unclear and, most likely, inconsistent. Thus, a full-fledged
evaluation of the mode volume calls for a thorough three-dimensional FDTD
simulation. What can be done is a rough estimation of the mode size by
estimating the FWHM of the two-dimensional FDTD simulations given by fig.
5.10, fig. 5.11, etc. In this way, a figure such as Vmod ≈ 4 µm3 can be obtained.
By comparison, this is much smaller than the typical modal volume for a ring
resonator, which roughly speaking amounts to an effective modal area, i.e. the
transverse mode supported by the looping ridge, multiplied by the length of
the circumference, which is typically on the order of L = 2πR ≈ 2π× 102 µm.

Further analyses would be needed to understand why the transfer-matrix
quality factor QTM from eq. (5.58) and the FDTD quality factors in figures
5.10 and 5.11 do not match. In spite of this slight discrepancy, the FDTD
results confirm the validity of our approximate approach.

5.5 Conclusions

In this chapter we have sketched a novel design protocol for Bloch surface
wave-based nanobeam cavities. The approach mainly relies on two principles.
On the one hand, the full three-dimensional structure is approximated to two
two-dimensional structures by means of effective index theory, in which the
3D nature of the physical objects is hidden in the effective index of the optical
modes they support. On the other hand, the confinement of light itself proceeds
from the application of the so-called Noda’s argument, in which the cavity was
designed so as to obtain an in-cavity field with no spurious Fourier components
either inside the light cone or outside the photonic band gap of the supporting
multilayer. Our design algorithm led to a structure that was tested with FDTD
simulations: despite a not entirely unexpected mismatch in the quality factors,
harmonic analysis performed by the FDTD software confirmed the presence of
a resonance at the desired wavelength and a quality factor on the order of 105.
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Chapter 6
Conclusions and perspectives

This thesis represents a selection of the results I gathered during my PhD at
the University of Pavia, from autumn 2015 to late summer 2018.

The first topic I focused on during my PhD regarded Bloch surface waves
at large. While browsing through the recent scientific literature, my supervisor
and I noticed that the majority of the papers we happened upon simply took
for granted that Bloch surface waves had some sort of advantage in terms of
surface field with respect to simpler, totally TIR-based solutions. Moreover,
we noticed a certain confusion regarding the term surface field enhancement,
which had somehow been juxtaposed to the value of the electric field close to
the surface of the photonic structure. This was particularly problematic: the
typical theoretical scheme involves a plane wave coupling into the mode by
means of a prism, where modes are signalled by the divergence of a properly
calculated transmission coefficient for the supporting structure. This implies
that by properly tuning the parameters of the coupling mechanism, the electric
field at the surface can assume any value, thus making a direct comparison of
this figure between different photonic structures essentially immaterial.

Thus, our first goal was to understand whether Bloch surface waves actu-
ally had a strategic advantage or if similar performance could in principle be
achieved with alternative electromagnetic modes in simpler (or cheaper) struc-
tures. To pursue this goal, we focused on two figures of merit - the modal length
and the electric field at the external surface - and compared the performance
of the TE0 mode supported by an asymmetrical slab waveguide and the BSW
supported by a truncated one-dimensional photonic crystal. We spent a lot
of attention on widening the scope of our analysis: on the one hand, we con-
sidered dielectric media with refractive indices ranging from typical polymeric
materials to hard semiconductors both in the weak and strong refractive-index
contrast regimes; on the other hand, we decided to rely on energy-scaled fig-
ures of merit in order to make our conclusions valid for any work wavelength -
at least as long as the chromatic dispersion of the specific materials can be ne-
glected. As to the modal length, we showed that for refractive index contrasts
∆n > 0.5, the modal length of BSWs is smaller than that of the TE0 mode:
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indeed, this means that BSWs have larger electromagnetic energy densities,
but this maximum occurs in a generic point inside the structure, i.e. unacces-
sible from the outside world. In addition to this, BSWs were also shown to
exhibit larger surface fields with respect to the TE0 mode, thus confirming the
correctness of the generalized interest in BSWs typically shown in scientific
papers. However, we also calculated that this enhancement only reached up to
45%, which implies that in certain occasions one may resort to regular asym-
metric slabs instead of going the extra mile and fabricate a complex photonic
crystal.

After this, we investigated the interaction between Bloch surface waves and
one-dimensional gratings fabricated on top of the supporting truncated one-
dimensional photonic crystal. As expected, the presence of a further periodicity
transversal to the main one gives rise to a folding of the dispersion of the modes
inside the first Brillouin zone, and this leads to the opening of a photonic band
gap. We then evaluated the dependence of both the width of the band gap
and the photonic modes on the structural parameters of the grating. This
analysis was carried out with two approaches: on the one hand, we relied on
rigorous coupled-wave analysis to calculate the exact dispersion of the modes;
then, we also approximated the grating with a uniform slab via effective-index
theory, and managed to recover the exact dispersions to an extremely high
level of accuracy. Among our conclusions, we can mention that, as expected,
an increase in the optical thickness of the effective slab - caused for example
by an increase in the filling fraction of the grating - redshifts the dispersion of
the guided BSWs. In addition to this, we showed that increasing the height of
the grating causes both a widening of the photonic band gap and a redshift of
the mode dispersion.

From this point, we moved from one-dimensional systems and decided to
focus on two-dimensional structures. A few years ago, BSWs had already
been shown experimentally to resonate in optical microdisks; this result was
extremely promising with a view to full on-chip integration of Bloch surface
waves, but also came at the cost of rather large modal volumes. More or
less contemporarily, we started looking for Bloch surface wave-based ring res-
onators. A collaboration with professor S. M. Weiss from Vanderbilt Univer-
sity brought to the realization of a porous silicon ring resonator on top of a
truncated periodic multilayer supporting BSWs. We studied the system by a
variety of means involving transfer matrices, effective-index theory and FDTD
simulations, while the experimental group in Tennessee devoted itself to the
fabrication of the device in porous silicon and the realization of the experi-
ment. We showed the experimental transmission spectrum to be compatible
with our theoretical expectations, thus confirming the first experimental ob-
servation of a Bloch surface wave-based ring resonator. Professor Weiss and
her collaborator measured an experimental quality factor Q ≈ 103.

Lastly, we moved to full three-dimensional confinement of light by consid-
ering the design of a Bloch surface wave-based nanobeam cavity. As usual, we
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relied on a variety of theoretical techniques such as transfer matrices, effective-
index theory and FDTD simulations and also on the so-called Noda’s argument
to try and devise an algorithm to design BSW-based nanobeam cavities tuned
to a specific wavelength and with reasonably high quality factors. By gradu-
ally removing Fourier components out of the light cone, we managed to obtain
a structure characterized by two-dimensional quality factors in the order of
Q ∼ 105. These results were tested with 2D FDTD simulations, and we are
still looking forward to a full 3D confirmation of our recipe.

Altogether, this three-year research project moved from one-dimensional
theoretical observations to the design of 2D BSW ring resonators and finally
to the development of an algorithm for the design of cavities leading to full 3D
confinement of BSWs. I believe that these results provided additional insight
into the field of these particular solutions of Maxwell’s equation in truncated
photonic crystals. However, though much is taken, much abides, and I look
forward to the new directions and further applications the research on BSWs
might take in the near future.
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Appendix A
Transfer Matrix Method

The propagation of electromagnetic radiation in a multilayered structure can
be studied by means of the so-called transfer matrix method (TMM). This
method is particularly convenient in the presence of linear propagation, since
in this case the transfer matrix itself can be expressed as a simple product of
interface and propagation matrices.

A.1 General derivation

Let us start the discussion by assuming a multilayer such as the one shown in
Fig. A.1.

Figure A.1: ML structure

The structure consists of n layers characterized by a width dj and a refrac-
tive index nj. If the axis are oriented as in Fig. A.1, i.e. with light impinging
in the πxz plane and the layers perpendicular to the z axis, the electric field in
each layer can be decomposed as a sum of propagating and counter-propagating
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waves as
Ej(r) = [E+

j e
ikzz + E−j e

−ikzz]ei(kxx−ωt), (A.1)

where harmonic time dependence ∝ exp(−iωt) was also assumed. In this
equation, kx and kz are the components of the wave vector along the x and
z axis and E+

j , E−j are the amplitudes of the forward and backward waves,
respectively. The notation in eq. A.1 is valid for both s− and p−polarized
radiation. The fields across different layers are linked by the usual continuity
conditions implied by Maxwell’s equations, which, in the absence of surface
charge or current densities, can be written as:

E1‖ = E2‖, (A.2)

H1‖ = H2‖, (A.3)

D1⊥ = D2⊥, (A.4)

B1⊥ = B2⊥. (A.5)

In particular, the tangential components of both the electric and the magnetic
fields are conserved at every interface between the i-th and (i + 1)-th layer.
By introducing a vector Ej containing the amplitudes of both the forward and
backward propagating electric fields, that is

Ej =

(
E+
j

E−j

)
, (A.6)

the continuity condition on a single interface can be enforced by writing

Ei = Mi,jEj, (A.7)

where the Mi,i+1 matrix is defined as

Mi,i+1 =
1

tij

(
1 rij
rij 1

)
, (A.8)

where rij and tij are the polarization-dependent Fresnel coefficients given by

rsij =
wi − wj
wi + wj

, tsij =
2 · wi
wi + wj

(A.9)

for s-polarization and

rpij =
εjwi − εiwj
εjwi + εiwj

, tpij =
2ninj · wi
εjwi + εiwj

(A.10)

for p-polarization. In these equations, the ws represent the component of the
wave vector perpendicular to the interfaces in each layer, i.e.

wi =
2πni
λ0

cos θ. (A.11)
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A.1. General derivation

Moreover, straightforward manipulations of the definitions given in eq. (A.9)
and (A.10) yield a series of useful symmetry relations:

rij = −rji (A.12)

tijtji = 1 + rijrji. (A.13)

In order to account for the phase gained by the field as it propagates inside
a layer, one can write, provided d < dj,

Ej(zj + d) = ΦjEj(zj), (A.14)

where the propagation matrix was introduced, defined as

Φj =

(
exp iwjd 0

0 exp−iwjd

)
. (A.15)

Once propagation and interface matrices are defined as in equations (A.15) and
A.8, one can defined the transfer matrix for the whole structure by multiplying
them in the same order as they appear inside the layered structure:

M1→n = Mn−1→nΦn−1Mn−2→n−1Φn−2 · Φ2M1→2Φ1. (A.16)

The transfer matrix M1→n links the forward- and backward-propagating com-
ponents on one side of the multi-layered structure to those on the other side.
For the sake of clarity, let us assume that an electric field is impinging on the
structure only from the first layer, as in fig. A.1. In this case, we can write(

E+
n

0

)
= M1→n

(
E+

1

E−1

)
(A.17)(

E+
n

0

)
=

(
M11 M12

M21 M22

)(
E+

1

E−1

)
. (A.18)

Carrying out the algebraic product, we end up with the following equations,

E+
n = M11E

+
1 +M12E

−
1 (A.19)

0 = M21E
+
1 +M22E

−
1 . (A.20)

The second one can be cast in the following form

−M21E
+
1 = M22E

−
1 (A.21)

−M21

M22

=
E−1
E+

1

, (A.22)

where on the right-hand side of the equation we find the ratio between the
backward-propagation and the forward-propagating field amplitudes, i.e. the
Fresnel reflection coefficient by definition:

R = −M21

M22

=
E−1
E+

1

. (A.23)
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As to the second equation A.19, it can be rearranged to yield

E+
n

E+
1

= M11 +M12
E−1
E+

1

; (A.24)

in it, one can recognize both the Fresnel reflection coefficient defined in eq.
(A.23) and the Fresnel transmission coefficient,

T =
E+
n

E+
1

. (A.25)

Thus, substituting these two figures yields

T = M11 +M12r = (A.26)

= M11 −
M21M12

M22

= (A.27)

=
M11M22 −M21M12

M22

= (A.28)

=
det(M1→n)

M22

, (A.29)

an expression for the transmission coefficient in terms of transfer matrix ele-
ments.

The transfer matrix M1→n can be useful for a variety of applications, such
as evaluating the overall reflectance or transmittance of a multi-layered struc-
ture or to calculate the photonic modes supported by this structure.

As an example, consider a layer of thickness dc and refractive index nc
sandwiched between two semi-infinite leads chacterized by refractive indices
n1 and n2, as shown in picture A.2.

Figure A.2: A simple dielectric slab sandwiched between two semi-infinite
media.
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In this case, the interface matrices are

I1,c =
1

t1,c

(
1 r1,c

r1,c 1

)
, (A.30)

for the interface between medium 1 and the core, and

Ic,2 =
1

tc,2

(
1 rc,2
rc,2 1

)
, (A.31)

for the interface between the core and medium 2, while the propagation matrix
in the core region is

Φ =

(
eiwdc 0

0 e−iwdc

)
, (A.32)

where w is the component of the wave vector perpendicular to the interfaces
of the slab. The transfer matrix A.16 is then given by

M1→3 =
1

t2,ctc,1

(
1 r2,c

r2,c 1

)(
eiwdc 0

0 e−iwdc

)(
1 rc,1
rc,1 1

)
= (A.33)

=
1

t2,ctc,1

(
1 r2,c

r2,c 1

)(
eiwdc rc,1e

iwdc

rc,1e
−iwdc e−iwdc

)
= (A.34)

=
1

t2,ctc,1

(
eiwdc + r2,crc,1e

−iwdc rc,1e
iwdc + r2,ce

−iwdc

rc,1e
−iwdc + r2,ce

iwdc e−iwdc + r2,crc,1e
iwdc

)
. (A.35)

The transmittance given by eq. (A.26) becomes

T =
det(M)

M22

= (A.36)

=
1

t2,ctc,1

[(
eiwdc + r2,crc,1e

−iwdc
) (
eiwdc + r2,crc,1e

−iwdc
)

M22

+ (A.37)

−
(
rc,1e

iwdc + r2,ce
−iwdc

) (
rc,1e

−iwdc + r2,ce
iwdc
)

M22

]
= (A.38)

=
1

t2,ctc,1

1− r2
c,1 − r2

2,c + (r2,crc,1)2

e−iwdc(r2,crc,1e2iwdc + 1)
= (A.39)

=
1

t2,ctc,1

1− r2
c,1 − r2

2,c(1− r2
c,1)

e−iwdc(r2,crc,1e2iwdc + 1)
= (A.40)

=
1

t2,ctc,1

(1− r2
c,1)(1− r2

2,c)

e−iwdc(r2,crc,1e2iwdc + 1)
= (A.41)

=
1

t2,ctc,1

tc,1t1,ct2,ctc,2e
iwdc

(r2,crc,1e2iwdc + 1)
= (A.42)

=
t1,ctc,2e

iwdc

1− r2,cr1,ce2iwdc
, (A.43)
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where use has been made of the symmetry relations described above in equa-
tions (A.12) and (A.13). The procedure to evaluate the reflectance starts from
eq. (A.23) and follows the same steps; the result is

R = r1,c +
t1,crc,2tc,1e

2iwdc

1− r2,cr1,ce2iwdc
. (A.44)

The validity of these equations, sometimes reported as Airy’s equations[89],
can be tested by resorting to an elementary derivation. If the amplitude of

Figure A.3: Multiple reflections and transmissions from a simple dielectric
slab.

the electric field impinging from medium 1 is Ei, the overall amplitude of the
reflected light will be given by a series of contributions:

Er = Ei
(
r1,c + t1,crc,2tc,1e

iδ + t1,crc,2rc,1rc,2tc,1e
iδ + · · ·

)
, (A.45)

where δ = 2wdcore is the phase acquired by a full trip inside the core region.
In equation (A.45), one can recognize light reflected straight-away off the first
interface (r1,cEi), light transmitted through the first interface, reflected from
the second and transmitted again through the first interface, although in the
other direction (t1,crc,2tc,1e

2iδEi), etc. Each time light adds a round trip inside
the core region, it gains a phase factor eiδ and an additional reflection factor
rc,2rc,1. This means that the contributions sum to a geometric series whose
ratio is rc,2rc,1e

iδ, i.e.

Er = Ei

(
r1,c + t1,crc,2tc,1e

iδ

∞∑
n=0

(rc,2rc,1e
iδ)n

)
= (A.46)

= Ei

(
r1,c +

t1,crc,2tc,1e
iδ

1− rc,2rc,1eiδ

)
, (A.47)
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which is the same as eq. (A.44).
The transfer-matrix method can also be used to investigate the photonic

modes supported by a particular multi-layered photonic structure.
Reflectance and transmittance can be seen as simple optical response func-

tions for the structure under scrutiny. In particular, once they have been
calculated - via the transfer-matrix method or otherwise - one can investigate
which modes are supported by a particular structure by studying the poles of
either R or T , i.e.

1− r2,cr1,ce
2iwdc = 0. (A.48)

As an example, the TE-polarized modes supported by a silicon (nSi = 3.48)
slab of thickness d = 320nm are shown in Fig.

Figure A.4: TE modes supported by a 320 nm silicon slab (n = 3.48). The
dashed blue line and the red dotted line represent the air and silicon light lines,
respectively.

A.2 Transfer matrix for a bilayer

Consider a system formed by the infinite repetition of a unit cell consisting of
two layers: the first one has thickness d1 and refractive index n1, the second
one has thickness d2 and refractive index n2. The transfer matrix for such a
system can be built according to eq. (A.16) as

M = I12Φ2I21Φ1, (A.49)
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where the component matrices are

I12 =
1

t12

(
1 r12

r12 1

)
, I21 =

1

t21

(
1 r21

r21 1

)
, Φj =

(
eiwdj 0

0 e−iwdj

)
.

(A.50)
After some tedious algebra, the transfer matrix becomes

M =

(
ei(φ1+φ2) + r12r21e

i(φ1−φ2) r21e
i(φ2−φ1) + r12e

−i(φ1+φ2)

r12e
i(φ1+φ2) + r21e

i(φ1−φ2) r12r21e
i(φ2−φ1) + e−i(φ1+φ2)

)
, (A.51)

and the trace becomes

Tr(T ) =
1

t12t21

[(
ei(φ1+φ2) + e−i(φ1+φ2)

)
+ r12r21

(
ei(φ1−φ2) + e−i(φ1−φ2)

)]
(A.52)

If we further assume that the phases are real, i.e. φ1 = w1d1 and φ2 = w2d2,
the trace of the bilayer transfer matrix reduces to

Tr(Tperiod) = 2 cos(φ1) cos(φ2)− 2 sin(φ1) sin(φ2)

(
2

t12t21

− 1

)
. (A.53)

If one desires to write the trace in terms of wave vector components, then
one just needs to recall the definition of the Fresnel coefficient given above, i.e.

r12 =

{ w1−w2

w1+w2
TE-polarized wave

ξ1−ξ2
ξ1+ξ2

TM-polarized wave
(A.54)

for the reflection coefficient, where ξi = wi
εi

, and

t12 =

{
1 + r12 TE-polarized wave
n1

n2
(1 + r12) TM-polarized wave

(A.55)

for the transmission coefficients.
Substituting these yields

Tr(T ) = eiw1d1 cos(w2d2) +
i

2
eiw1d1

(
w1

w2

+
w2

w1

)
sin(w2d2)+ (A.56)

+ e−iw1d1 cos(w2d2)− i

2
e−iw1d1

(
w1

w2

+
w2

w1

)
sin(w2d2) =

= 2 cos(w1d1) cos(w2d2)− sin(w1d1) sin(w2d2)

(
w1

w2

+
w2

w1

)
.

Although less wieldy than its equivalent form in eq. (A.53), this equa-
tion can be shown to be easily convertible between TE and TM polarization.
Indeed, the term in the parentheses can be cast in the convenient form

C =
α1

α2

+
α2

α1

, (A.57)

where α1 and α2 have polarization-dependent form:

αi =

{
ni cos(θi) TE-polarized wave
cos(θi)/ni TM-polarized wave

(A.58)
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A.3 Gap condition

When the physical system under scrutiny features translational invariance, the
eigenvalues of the transfer matrix M in eq. (A.51) must be λ1,2 = e±iqΛ, where
Λ = d1 + d2 is the period of the bilayer. Then one can deduce that the trace
of the transfer matrix must be

Tr(M) = eikBlochΛ + e−ikBlochΛ = 2 cos(kBlochΛ). (A.59)

Equating formulas (A.59) and (A.52), one gets

2 cos(kBlochΛ) =
1

t12t21

[(
ei(φ1+φ2)+e−i(φ1+φ2)

)
+r12r21

(
ei(φ1−φ2)+e−i(φ1−φ2)

)]
.

(A.60)
It is then straightforward to notice that the absolute value of the LHS in eq.
(A.60) is bounded by 2, whereas the RHS is not. As a consequence, one is not
guaranteed to find values of kBloch ∈ R that satisfy the equation. When this
happens, then kBloch = iq ∈ C. The set of values of the parallel component
of the propagation wave vector for which this happens is called photonic band
gap.

The imaginary part of the Bloch wave vector, q = =[kBloch] can be easily
found from eq. (A.60). Introducing z = eikBloch , then z−1 = e−ikBloch , and the
trace becomes

z +
1

z
= Tr(M), (A.61)

and this leads to
z2 − Tr(M)z + 1 = 0. (A.62)

Thus, as k‖ varies, one can immediately understand if the gap condition is
verified by checking whether the second-degree equation has real or imaginary
solutions. If the discriminant

∆ = [Tr(M)]2 − 4 (A.63)

is negative, then z ∈ C. Since z = eikBloch , this means that the Bloch wave
vector is real, i.e. that k‖ does not lie in the photonic band gap. On the other
hand, if ∆ > 0, then the solutions to eq. (A.62) are real, i.e. kBloch ∈ C.
Following up,

z1,2 =
Tr(M)±

√
∆

4
; (A.64)

the proper solution can be selected by recalling that =[kBloch] > 0 is needed
to enforce exponential decay of the field in the stacking direction. This implies

that if Tr(M) > 0, then z = z1 = Tr(M)+
√

∆
4

, otherwise z = −z2 = −Tr(M)+
√

∆
4

.
Finally, the imaginary part of the Bloch wavevector will be

q = =[kBloch] =
1

Λ
ln z. (A.65)
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The behavior of q is shown in fig (A.5) and (A.6) for both varying and fixed
energy.

Figure A.5: TE-polarized photonic band gap for a semi-infinite Si/SiO2 multi-
layer of thicknesses d1 = 260 nm, d2 = 320 nm and refractive indices n1 = 3.48,
n2 = 1.44.
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A.3. Gap condition

Figure A.6: Imaginary part of the Bloch wave vector for a semi-infinite Si/SiO2

multilayer of thicknesses d1 = 260 nm, d2 = 320 nm and refractive indices
n1 = 3.48, n2 = 1.44 at a fixed energy E = 0.8 eV and for TE-polarization.

The trace given in eq. (A.60) can be further simplified when all the phase
factors φj = wjdj are real. In this case, the trace becomes

cos(qΛ) = cos(w1d1) cos(w2d2)− 1

2
(
α1

α2

+
α2

α1

) sin(w1d1) sin(w2d2), (A.66)

where the αs depend on the polarization and are defined as

TE polarization

{
αj = wj
αi = wi

(A.67)

and

TM polarization

{
αj = εiwj
αi = εjwi

(A.68)

In the case of a quarter-wavelength stack, one has wjdj = π/2, and eq. (A.66)
can be simplified to obtain the following value for the complex Bloch wave
vector:

q =
π

Λ
+ i

∆n

nΛ
. (A.69)
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A.4 Photonic band gap for TM polarization

In the simplest picture, reflection and transmission of an electric field impinging
on a surface can be explained by Fresnel coefficients, given by equations (A.9)
and (A.9), and reported here for convenience:

rs =
n1 cos θ1 − n2 cos θ2

n1 cos θ1 + n2 cos θ2

ts =
2n1 cos θ1

n1 cos θ1 + n2 cos θ2

. (A.70)

rp =
n1 cos θ2 − n2 cos θ1

n1 cos θ2 + n2 cos θ1

tp =
2n1 cos θ1

n1 cos θ2 + n2 cos θ1

. (A.71)

In the current notation, a ray of light impinges on an interface between a
medium n1 and a medium n2 with an angle θ1, and emerges beyond the
interface with an angle θ2. When the two angles are complementary, i.e
θ1 + θ2 = π/2, clearly sin(θ2) = sin(π/2− θ1) = cos(θ1); this implies that

n1 sin θ1 = n2 sin θ2 = n2 cos θ1, (A.72)

from Snell’s law of refraction. The angle of incidence θ1 which satisfies this
equation is the well-known Brewster angle θB, given by

θB = arctan
n2

n1

. (A.73)

If this angle is substituted into eq. (A.71), we can see that rp = 0, thus
frustrating interference in the periodic multilayer. In this particular condition,
the multilayer becomes transparent and the gap closes, as shown in picture
A.7.
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Figure A.7: TM-polarized photonic band gap for a semi-infinite Si/SiO2 multi-
layer of thicknesses d1 = 260 nm, d2 = 320 nm and refractive indices n1 = 3.48,
n2 = 1.44. The color scale corresponds to the value of the imaginary part of
the Bloch wave vector q = =[kBloch].

This closure of the photonic band gap in the case of p polarization makes
TM BSWs less appealing with respect to non-dielectric solutions such as sur-
face plasmon polaritons.

A.5 Modal length of a BSW

In a 1D scheme, the general definition of modal length is given by

Lmod =
1

εmax|Emax|2

∫ ∞
−∞
|E(z)|2ε(z)dz (A.74)

The modularity of a semi-infinite one-dimensional photonic crystal can be ex-
ploited to split the general definition (A.74) in its various contributions:

Lmod =
1

εmax|Emax|2

[ ∫
ext

|E(z)|2εextdz +

∫
1st period

|E(z)|2ε(z)dz+∫
2nd period

|E(z)|2ε(z)dz +

∫
3rd period

|E(z)|2ε(z)dz + ...

]
(A.75)
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Moreover, Bloch surface waves live inside the photonic band gap, and Bloch-
Floquet theorem then implies exponential decay in the z direction:

E(z + Λ) = e−qΛE(z). (A.76)

This means that the integral on each period beyond the first can be expressed
as the one on the first times a factor accounting for the exponential decay:

Lmod1st period =
1

εmax|Emax|2

∫
1stperiod

|E(z)|2ε(z)dz = I (A.77)

Lmod2nd period =
1

εmax|Emax|2

∫
2ndperiod

|E(z)|2ε(z)dz =

=
1

εmax|Emax|2

∫
1stperiod

|E(z + Λ)|2ε(z)dz =

=
e−2qΛ

εmax|Emax|2

∫
1stperiod

|E(z)|2ε(z)dz = e−2qΛI

Lmod3rd period =
1

εmax|Emax|2

∫
3rdperiod

|E(z)|2ε(z)dz = e−4qΛI (A.78)

· · · (A.79)

These terms can be summed as a geometric series of ratio r = e−2qΛ, and the
overall modal length in the case of N repeated unit cells becomes

Lmod,N = I
(
1 + e−2qΛ + e−4qΛ + e−6qΛ + ...

)
=

1− e−2q(N+1)Λ

1− e−2kΛ
I. (A.80)

When N →∞, we resort to the case of a semi-infinite truncated 1D PhC, i.e.

Lmod,∞ =
1

1− e−2qΛ
I. (A.81)

Equation (A.81) tells us that we can construct the overall modal length just
by calculating the contribution on the first period. This can be written as

I =
1

εmax|Emax|2

∫
1st period

|E(z)|2ε(z)dz = (A.82)

=
1

εmax|Emax|2

[∫ σd1

0

|E(z)|2n2
1dz +

∫ d2

0

|E(z)|2n2
2dz

∫ (1−σ)d1

0

|E(z)|2n2
1dz

]
,

where the truncation factor σ ∈ [0; 1], whose precise derivation will be given
in section A.8, represents the fraction of layer d1 enabling the existence of a
Bloch surface wave inside the photonic band gap, as explained in eq. (A.132).

In the remainder of this section, the electric fields in each layer will be split
in a forward-propagating wave and a backward-propagating wave.

The external field, i.e.

Eext(z) = E+
e e

ikez + E−e e
−ikez, (A.83)
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can be simplified by recalling that BSWs are guided modes, and thus live below
the light line of the external medium, i.e. ke = iwe, and that a divergence of
the field at infinity in the (−∞, 0) region of the z axis would be unphysical.
Altogether, the external field becomes

Eext(z) = E−e e
wez, (A.84)

For the rest of the layers, one can proceed likewise.

E1(z) = E+
1 e

iw1z + E−1 e
−iw1z

E2(z) = E+
2 e

iw2z + E−2 e
−iw2z (A.85)

E3(z) = E+
3 e

iw1z + E−3 e
−iw1z,

where the wave vector components along z, i.e. w1 and w2, are defined as

wi =

√(
2π

λ0

ni

)2

− k2
‖. (A.86)

As explained in eq. (A.7), the field amplitudes E+
j and E−j can all be found by

resorting to transfer matrix theory by fixing the value of the field on the first
interface between the external dielectric medium and the periodic multilayer,
i.e. the amplitude E−e in eq. (A.84). For example, one can write(

0
E−e

)
= I1,ext

(
E+

1

E−1

)
, (A.87)

and substituting the expression for I1,ext given in eq. (A.8) yields

1

t1e

(
1 r1e

r1e 1

)(
E+

1

E−1

)
=

(
0
E−e

)
, (A.88)

from which one derives

E+
1 =

r1e

t1e
E−e (A.89)

E−1 =
1

t1e
E−e (A.90)

The fields in the second layer d2 and in the remainder of the first layer, (1−σ)d1,
can be found with the same method. The calculation is trivial but lengthy,
and to avoid unnecessary complications, it is thus omitted. The results are

E+
2 =

1

t21

(
E+

1 e
iφ1 + r21E

−
1 e
−iφ1

)
(A.91)

E−2 =
1

t21

(
r21E

+
1 e

iφ1 + E−1 e
−iφ1

)
E+

3 =
1

t12

(
E+

2 e
iφ2 + r12E

−
2 e
−iφ1

)
(A.92)

E−3 =
1

t12

(
r12E

+
2 e

iφ2 + E−2 e
−iφ1

)
(A.93)
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Once that the electric field amplitudes in the unit cell have been found, the
electric field amplitudes in the rest of the multilayer can be found by taking
into account Bloch-Floquet theory and the fact that BSWs live inside the PBG,
as summarized in equation (A.76).

In the j-th layer, the field can be written in terms of forward- and backward-
propagating waves as Ej(z) = E+

j e
iwjz+E−j e

−iwjz, therefore its modulus square
is

|Ej(z)|2 = (E+
j e

iwjz + E−j e
−iwjz)(E+,∗

j e−iwjz + E−,∗j eiwjz) =

= |E+
j |2 + |E−j |2 + 2<{E+

j E
−,∗
j ei2wjz} (A.94)

Plugging this expression in the general definition of modal length given in eq.
(A.74) yields

Lu.c.mod = K

(∫ σd1

0

ε1|E1(z)|2dz +

∫ d2

0

ε2|E2(z)|2dz +

∫ (1−σ)d1

0

ε1|E3(z)|2dz

)
(A.95)

where the constant K = 1/(ε|E|2)max was introduced to improve readability.
The integration on the unit cell then yields

Lu.c.mod = K

[
ε1(|E+

1 |2 + |E−1 |2)σd1 + =
{
E+

1 E
−,∗
1

w1

(
ei2w1σd1 − 1

)}
+

ε2(|E+
2 |2 + |E−2 |2)d2 + =

{
E+

2 E
−,∗
2

w2

(
ei2w2d2 − 1

)}
+

ε1(|E+
3 |2 + |E−3 |2)(1− σ)d1 + =

{
E+

3 E
−,∗
1

w1

(
ei2w1(1−σ)d1 − 1

)}]
.

(A.96)

The rest of the structure can be fully taken into account, according to eq., by
means of eq. (A.76) as

Lmod = K

[
V ext
mod +

1

1− e−2qΛ
Lu.c.mod

]
(A.97)

A closed expression for the K = 1/(ε|E|2)max factor can derived thusly.
Given the usual expression for the field in the j-th layer, i.e.

Ej(z) = E+
j e

ikjz + E−j e
−ikjz, (A.98)

its square modulus has been shown to be

|Ej(z)|2 = |E+
j |2 + |E−j |2 + 2<

{
E+
j E

−,∗
j e2ikjz

}
. (A.99)

This expression can be derived and set equal to zero to find the zmax = z̄ where
the maximum of the square modulus of the field occurs, i.e.

∂|Ej(z)|2

∂z
= 2ikE+

j E
−,∗
j e2ikjz − 2ikjE

+,∗
j Bje

−2ikjz = 0. (A.100)
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This implies

E+
j E

−,∗
j e2ikjz = E+,∗

j E−j e
−2ikjz, (A.101)

where it can be easily recognized that the two sides of the equation are the
complex conjugate of each other. In turn, this yields

={E+
j E

−,∗
j e2ikjz} = 0, (A.102)

or, spelled out for the real and imaginary components,

={E+
j E

−,∗
j (cos(2kjz) + i sin(2kjz))} = 0. (A.103)

This equation can be cast in the form

cos(2kjz)={E+
j E

−,∗
j }+ sin(2kjz)<{E+

j E
−,∗
j } = 0, (A.104)

which, under the hypothesis that cos(2kz) 6= 0, reduces to

={E+
j E

−,∗
j }

<{E+
j E

−,∗
j }

= tan(φE+
j E
−,∗
j

) = − tan(2kjz), (A.105)

where φE+
j E
−,∗
j

= φ is a shortcut for the argument of the complex number

E+
j E

−,∗
j = |E+

j E
−,∗
j |eiφ. Finally, inverting this expression yields

z̄ =
πm− φ(E+

j E
−,∗
j )

2kj
, (A.106)

where m ∈ Z is an integer.
The calculation of the second derivative was carried out, but it is not in-

cluded here. The main result is that for z̄ to correspond to a maximum of the
square modulus of the field, m must be an even integer.

Now that z̄ is known, the maximum can be evaluated by plugging eq.
(A.106) in the general definition given in eq. ().

|Ej(z̄)|2 = |E+
j |2 + |E−j |2 + E+

j E
−,∗
j e2ikj z̄ + E+,∗

j E−j e
−2ikj z̄ =

= |E+
j |2 + |E−j |2 + |E+

j E
−,∗
j |eiφe2ikj z̄ + |E+,∗

j E−j |e−iφe−2ikj z̄ =

= |E+
j |2 + |E−j |2 + |E+

j E
−,∗
j |eiφei(πm−φ) + |E+,∗

j E−j |e−iφe−i(πm−φ) =

= |E+
j |2 + |E−j |2 + |E+

j E
−,∗
j |(eiπm + e−iπm) =

= |E+
j |2 + |E−j |2 + 2|E+

j E
−,∗
j | cos(πm) =

= |E+
j |2 + |E−j |2 + 2|E+

j E
−,∗
j |. (A.107)

where the evenness of m was employed, together with the fact that E+,∗
j E−j =

(E+
j E

−,∗
j )∗.
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All one is left to do is to sequentially evaluate expression (A.107) in each
layer forming the unit cell, to understand where the maximum falls: this de-
fines the pre-factor K included in eq. (A.96).

The external field contributes to the modal length with a term

Lextmod =

∫ 0

−∞
εext|E(z)|2dz = n2

ext(E
−
e )2

∫ 0

−∞
e2wezdz =

n2
ext(E

−
e )2

2we
, (A.108)

where the K factor was omitted and ke =
√

(k0next)2 − k2
‖ = iwe.

This concludes the calculation of the modal length in a truncated periodic
multilayer.

A.6 Mode normalization

In eq. (A.89) and (A.91), the amplitudes of the forward- and backward-
propagating waves which form the electric field in each layer were derived
in terms of the only component left in the external dielectric medium E−ext.
This parameter can be fixed by properly normalizing each mode so that it
transports the energy of a photon, according to the general expression1∫ +∞

−∞
ε(z)|E(z)|2dz =

~ω
2

(A.109)

Expressions for the square modulus of the field in each layer were worked
out in the previous section. Substituting everything yields

~ω
2K

= V ext
mod +

1

1− e−2kΛ

{
ε1

∫ σd1

0

(
|A1|2 + |B1|2 + 2<{A1B

∗
1e
i2w1z}

)
dz+

ε2

∫ d2

0

(
|A2|2 + |B2|2 + 2<{A2B

∗
2e
i2w2z}

)
dz+

ε1

∫ (1−σ)d1

0

(
|A3|2 + |B3|2 + 2<{A3B

∗
3e
i2w1z}

)
dz

}
=

= V ext
mod +

1

1− e−2kΛ

{
ε1(|A1|2 + |B1|2)σd1 + =

{
A1B

∗
1

w1

(
ei2w1σd1 − 1

)}
+

(A.110)

ε2(|A2|2 + |B2|2)d2 + =
{
A2B

∗
2

w2

(
ei2w2d2 − 1

)}
+

(A.111)

ε1(|A3|2 + |B3|2)(1− σ)d1 + =
{
A3B

∗
3

w1

(
ei2w1(1−σ)d1 − 1

)}}
.

(A.112)

1This expression is taken from [90], where the ratio between the phase and group velocities
vp/vg was simplified by assuming negligible chromatic dispersion, at least in the relevant
wavelength range.
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Inserting the expressions for the amplitudes in equations (A.89, A.91), with an
explicit dependence on E−e , allows one to factorize E−e and invert the formula.
The procedure is trivial, but also lengthy, and the final expression will not be
reported here. In all the relevant sections in this thesis, the expression was
evaluated numerically to enforce mode normalization.

A.7 Electric field at the surface

It is worth noting that the closed expression for the external field given in eq.
(A.84), i.e.

Eext(z) = E−e e
wez, (A.113)

depends only on the transversal component of the wave vector we and the
normalization constant E−e . Once these have been fixed, the value of the
electric field at the surface, SBSW is simply given by

SBSW =

√
KeV→J

ε0
B, (A.114)

where the vacuum permittivity ε0 = 8.85× 10−18 and the conversion constant
KeV→J = 1.6× 10−19 have been taken into account to calculate fields in units
of V/m.

A.8 Calculation of the truncation factor σ

When one deals with one-dimensional photonic crystals, the choice of the unit
cell is totally arbitrary. However, the structures analyzed in the previous sec-
tions are only semi-infinite, i.e. they extend indefinitely only in the (0,+∞)
region. Thus, different unit cells may lead to different truncations. In solid-
state physics, the Kronig-Penney model[91] is an extremely simplified model
of an electron in a one-dimensional periodic potential which however manages
to foresee the appearance of bands of allowed energies and especially forbid-
den bands between them where no states may exist, referred to as band-gaps.
Introducing defects in the periodicity breaks the translational invariance and
may cause new states to appear in the previously forbidden bands. We can
incorporate the same reasoning in the photonic realm.
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Figure A.8: Semi-infinite multilayer structures having the same bulk properties
but different truncations.

For example, a unit cell such as the one shown in fig. (A.8b) gives rise to
a semi-infinite bulk photonic crystal alternating layers (d1, n1) and (d2, n2),
exactly as the one in fig. (A.8a), but also to a truncation factor of thickness
σd1 and refractive index n1, which may introduce spurious modes inside the
otherwise forbidden band-gap. In this section, we will dwell on some features
of the truncation factor σ and especially on its derivation.

To start with, let us work out the relationship between the transfer matrix
M for structure (A.8a) and that for structure (A.8b), Mσ.

The semi-infinite 1D multilayer is periodic, therefore, from Bloch’s theorem,
we can derive the following identity(

M11 M12

M∗
12 M∗

11

)(
a0

b0

)
= eikBlochΛ

(
a0

b0

)
, (A.115)

where Λ = d1 + d2 is the multilayer period and eikBlochΛ is the eigenvalue
of the transfer matrix M . The calculation of the matrix entries is rather
straightforward, and follows directly from the definitions given in eq.s (A.15,
A.8):

M =
1

t12t21

(
eiw1d1 0

0 e−iw1d1

)(
1 r12

r12 1

)(
eiw2d2 0

0 e−iw2d2

)(
1 r21

r21 1

)
;

(A.116)
now, we employ the Fresnel coefficients’ identities tij = 1 + rij and rij = −rji
to obtain

M =
1

1− r2
12

(
eiw1d1

(
eiw2d2 − r2

12e
−iw2d2

)
−2ir12e

iw1d1 sin(w2d2)
2ir12e

−iw1d1 sin(w2d2) e−iw1d1
(
e−iw2d2 − r2

12e
iw2d2

) )
(A.117)
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We can now focus on the the second structure, namely the one in fig.
(A.8b), with the truncation layer σd1 shown explicitly. In this case, the transfer
matrix for the first unit cell Mσ can be written as

Mσ = Φ−1
σ Φ1I12Φ2I21Φσ = Φ−1

σ MΦσ, (A.118)

where Φσ is the propagation matrix relative to the truncation layer, i.e.

Φσ =

(
eiw1σd1 0

0 e−iw1σd1

)
, (A.119)

Even in this case, we can apply Bloch’s theorem to get

Mσ

(
aσ
bσ

)
= Φ−1

σ MΦσ

(
aσ
bσ

)
= eikBlochΛ

(
aσ
bσ

)
, (A.120)

and, comparing eq. (A.115) and eq. (A.120) we deduce

Φσ

(
aσ
bσ

)
=

(
a0

b0

)
=⇒

(
aσ
bσ

)
= Φ−1

σ

(
a0

b0

)
. (A.121)

According to eq. (A.118), matrices M and Mσ are similar, and thus they
represent the same transformation written in different bases. Since all the
properties relative to the linear transformation are conserved under a change of
basis, the characteristic polynomial and its derived properties, the eigenvalues,
the trace and the determinant of the matrices will be the same. In particular, as
was already pointed out in section (A.3), the photonic band structure depends
on the eigenvalues of the transfer matrix, and is thus independent of the basis
the operator was written in.

The field cannot propagate into the dielectric external medium because of
total internal reflection, therefore

1

te1

(
1 re1
re1 1

)(
aσ
bσ

)
=

(
0
E−e

)
. (A.122)

Multiplying the first row of the matrix yields

aσ = r1ebσ. (A.123)

We can now plug the definition of Φ−1
σ in eq. (A.121) and carry out the

following product: (
aσ
bσ

)
=

(
e−iw1σd1a0

eiw1σd1b0

)
, (A.124)

which can finally be inserted in eq. (A.123) to get

b0

a0

r1ee
i2w1σd1 = 1. (A.125)
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The definition of the Fresnel reflection coefficient given in eq. (A.54), i.e.

r1e =
w1 − we
w1 + we

. (A.126)

can be inverted to get

we = w1
1− r1e

1 + r1e

. (A.127)

The field is evanescent in the external dielectric medium, so we = iqe ∈ C/R
and we can write

qe = iw1
r1e − 1

r1e + 1
, (A.128)

Recalling eq. (A.123), this equation becomes

qe = iw1
aσ − bσ
aσ + bσ

. (A.129)

We can now employ eq. (A.124) to convert this equation from a relation linking
aσ and bσ to one linking a0 and b0, i.e.

qe = iw1
a0 − b0e

i2w1σd1

a0 + b0ei2w1σd1
. (A.130)

Finally, we can plug in b0 = a0

M12

(
eikBlochΛ −M11

)
from eq. (A.115) to get

qe = iw1
M12e

−i2w1σd1 +M11 − eikBlochΛ

M12e−i2w1σd1 −M11 + eikBlochΛ
. (A.131)

This last relation can be inverted to obtain a defining equation for the trunca-
tion factor σ:

σ =
i

2w1d1

ln

(
(M11 − eiKL)(iw1 + qe)

(qe − iw1)M12

)
. (A.132)

The matrix elements that show up in eq. (A.132) are completely defined in eq.
(A.117), and their values are reported here for convenience:

M11 =
eiw1d1

1− r2
12

(
eiw2d2 − r2

12e
−iw2d2

)
(A.133)

M12 = −2ir12e
iw1d1 sin(w2d2). (A.134)
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Appendix B
Slab waveguide modes

Consider the simple asymmetric slab waveguide reported in fig. B.1

Figure B.1: A general asymmetric slab waveguide.

The slab has core thickness d, and refractive indices nc for the core, ne = 1
for the external medium and ns for the substrate; the whole structure is made
of dielectric media, which means that the refractive indices are real.

From Pythagora’s theorem, the transverse component of the propagation
wave vector in each layer is defined according to

wj =
√

(k0nj)2 − β2, (B.1)

where k0 = 2π/λ0 and β is the component of the propagation wave vector
parallel to the interfaces.

We are interested in guided modes, therefore, from physical consideration,
we know that

we = iq, (B.2)

wc = h, (B.3)

ws = ip, (B.4)
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B. Slab waveguide modes

where1

q =
√
β2 − (k0ne)2, (B.5)

h =
√

(k0nc)2 − β2, (B.6)

p =
√
β2 − (k0ns)2. (B.7)

Thus, for s-polarized modes we can write, from eq. (A.9),

rce =
h− iq
h+ iq

(B.8)

rcs =
h− ip
h+ ip

. (B.9)

From the mode condition worked out in eq. (A.48), we get

1− h− iq
h+ iq

h− ip
h+ ip

e2ihd = 0, (B.10)

or

e2ihd =
h+ iq

h− iq
h+ ip

h− ip
. (B.11)

At this point, it would be sufficient to equate the real part of the left-hand
side of the equation to the real part of the right-hand side, and likewise for the
imaginary part. However, in order to simplify the calculations, the equation
can be rewritten with a slight variation:

e2ihd + 1 =
h+ iq

h− iq
h+ ip

h− ip
+ 1. (B.12)

This leads to

cos(2hd) + i · sin(2hd) + 1 =
(h+ iq)(h+ ip) + (h− ip)(h− iq)

(h− ip)(h− iq)
(B.13)

=
(h+ iq)(h+ ip) + (h− ip)(h− iq)

(h+ p2)(h+ q2)
(h+ ip)(h+ iq)

(B.14)

=
2(h2 − qp)

(h+ p2)(h+ q2)
(h2 − qp+ i(qh+ ph)). (B.15)

Instead of equating directly as explained above, one can resort to a trick and
equate the ratio of the imaginary part to the real part of the LHS to that on
the RHS:

sin(2hd)

cos(2hd) + 1
=
qh+ ph

h2 − qp
. (B.16)

1The concepts reported in this Appendix follow the notation in [48].
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B.1. Modal length of the TE0 mode

Now, remembering that

tan(x) =
sin(2x)

1 + cos(2x)
, (B.17)

we can finally write the dispersion relation for the TE modes in an asymmetric
slab waveguide:

tan(hd) =
qh+ ph

h2 − qp
. (B.18)

Thus, as the core thickness d increases, the asymmetric slab can support more
modes. In order for the slab to support m-th TE mode, one can invert eq.
(B.19), substitute the wave vector definitions in eq. (B.5, B.6, B.7) and define
a cut-off thickness [48] given by

d

λ0

=
1

2π
√
n2
c − n2

s

[
mπ + arctan

√
n2
s − n2

e

n2
c − n2

s

]
. (B.19)

B.1 Modal length of the TE0 mode

The modal length of a guided mode is defined in general as

Lmod =
1

εmax|Emax|2

∫ ∞
−∞
|E(z)|2ε(z)dz (B.20)

The fundamental TE mode in an asymmetrical slab waveguide can be
parametrized as [48]

Em(z) =


e−qz, if z ≥ 0

C(cos(hz)− q
h

sin(hz)), if − d ≤ z < 0

C(cos(hd) + q
h

sin(hd))ep(z+d), if − d ≤ z < 0

(B.21)

where C is a normalization constant and q, h and p are the wave vector com-
ponents perpendicular to the interfaces defined in eq. (B.5, B.6, B.7). To
calculate C, one must impose that the mode transports the energy of a pho-
ton, i.e.

A

∫ +∞

−∞
|E(z)|2ε(z)dz =

~ω
2

(B.22)

where A = 1 m2 is a transversal area necessary for the proper normalization
of the field. From eq. (B.21) and (B.23), one can immediately deduce

C =

√
~ω

2(Ie + Ic + Is)
, (B.23)
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B. Slab waveguide modes

where Is, Ic and Ie are the integrals of the fields times the dielectric functions
over the relevant ranges, as given by eq. (B.21). The calculation is trivial, and
the results are

Ie =
εe
2q

(B.24)

Is =
εs[cos(hd) + q

h
sin(hd)]2

2p
(B.25)

Ic =
εc
2

[
d+

sin(2hd)

2h
+
q2

h2

(
d− sin(2hd)

2h

)
+

+
q

h2

(
1− cos(2hd)

)]
. (B.26)

The maximum of the field modulus square of the fundamental TE mode
will occur inside the core region. To find this, we can derive eq. (B.26) and set
the derivative equal to 0 to find the location of the maximum. Substituting
this back into the equation yields a value

Emax = C

√
h2 + q2

h
(B.27)

Altogether, the modal length in eq. (B.20) becomes

Lmod =
h

εc(h2 + q2)
(Ie + Ic + Is). (B.28)
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Appendix C
Basics of light confinement

Light confinement in dielectric structures can be mainly ascribed to two differ-
ent physical principles, namely total internal reflection and the presence of a
photonic band-gap. In the following sections, the basic theory underlying these
two phenomena will be developed.

As a common hypothesis to both topics, it will be assumed that we are
working with linear, homogeneous and isotropic media. In this case, the solu-
tions of Maxwell’s equations can have plane-wave form,

E(r, t) = Eeik·re−iωt + c.c. (C.1)

If the media involved are homogeneous and isotropic, then the wave vector k
is linked to the frequency via the dispersion relation

k2 − ω2

c2
n2 = 0. (C.2)

C.1 Total internal reflection (TIR)

Assume a light wave is traveling through a medium of refractive index n1 with
a propagation vector

k = ω/ck̂ =
2πn1

λ0

k̂, (C.3)

where λ0 is the wavelength of light in vacuum, linked to the photon energy via

E =
hc

λ0

≈ 1.23984 . . .

λ0 (µm)
eV · µm, (C.4)

when it strikes an interface with another medium of refractive index n2 < n1.
Without loss of generality, assume that the interface lies in the z plane,

and that the plane of incidence is the x− z plane.
Light impinging on an interface between two media typically gives rise to

both a reflected and a refracted wave[92, 48].
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C. Basics of light confinement

Figure C.1: A light ray strikes a plane interface between two media with an
angle θ1 and is both reflected (angle θr) and refracted (angle θ2); all the angles
are conventionally measured with respect to the interface normal. The angle
of incidence is θ1, while the angle of refraction is θ2

This behavior is easily summarized by two equations. The first, the so-
called law of reflection, simply states that

θr = θ1, (C.5)

i.e. the incoming and outgoing angles are the same as measured from the
surface normal.

As to refraction, if the interface is planar and homogeneous, at least at the
scale of the wavelength of light, the in-plane component of the propagation
vector, namely k‖ = (kx, 0, 0) must be conserved. This in turn implies

k1,x = k2,x (C.6)

n1 sin(θ1) = n2 sin(θ2), (C.7)

which is the renowned Snell’s law of optics.
According to eq.(C.7), the angle of refraction θ2 must satisfy this identity:

sin θ2 =
n1

n2

sin θi (C.8)

θ2 = arcsin

[
n1

n2

sin θi

]
(C.9)

Thus, whenever the argument of the inverted sine in (C.9) is greater than unity,
the formula ceases to yield angles for the refracted light ray. The equation can
then be used to derive a threshold condition, as refracted light can at the most
propagate along the interface between the two media, i.e. at 90◦ with respect
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to the interface normal ẑ. The incoming angle θ1 for which θ2 = 90◦ = π/2 is
known as critical angle θc:

θc = arcsin
n2

n1

; (C.10)

Whenever θi > θc, no refracted ray emerges from the interface, and light
is confined in the first medium. In this scenario, we say that light undergoes
total internal reflection1.

The same situation can be analyzed in terms of wave vectors. According to
eq. (C.3), light is traveling in medium n1 with a wave vector k1 = k0n1. This
vector can be decomposed in two independent components kx and ky whose
moduli satisfy

k2
1 = k2

1,x + k2
1,z, (C.11)

or2

k1,z =
√
k2

1 − k2
1,x. (C.12)

Likewise, the propagation vector in the second medium satisfies

k2
2 = k2

2,x + k2
2,z. (C.13)

From equations (C.11) and (C.13), we can already deduce the TIR condi-
tion we derived earlier by simply assuming no component of the propagation
wave vector in medium n2 along ẑ, i.e.

k2,z = 0 (C.14)

k2,x = k2 = k1,x (C.15)

n1 sin(θ1) = n2 sin(θ2). (C.16)

But we can even go further and recognize that, for each medium, the decom-
position given in eq. (C.12) allows us to split the energy-wave vector plane in
two regions, as shown in fig. C.2.

The dashed blue line corresponds to the set of point for which eq. C.14
holds, i.e.

k2,z =
√
k2

2 − k2
2,x = 0; (C.17)

likewise, the dotted blue line corresponds to the condition k1,z = 0. These lines
are known as light lines, as they separate regions where k2

z > 0, to their lefts,
from regions where k2

z < 0, to their rights. If we recall the plane-wave form
of the solutions to Maxwell’s equation given in eq. C.1, it is straightforward
to notice that =kz 6= 0, i.e. whenever kx lies to the right of the light line
corresponding to medium nj, implies that the electric field in the corresponding
layer will undergo exponential decay in the transversal direction, as

E(r, t) = Eeik·re−iωt + c.c. ∝ Ee−=[kz ]z (C.18)
1If the situation were reversed and light were traveling in the lighter medium, i.e. n1 < n2,

then the n2/n1 ratio would be smaller than unity and no critical angle θc would exist.
2Here and in the following sections the sign of the square root will be chosen so that the

imaginary part of kz satisfies =kz ≥ 0; if =kz = 0, then we choose <kz > 0
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C. Basics of light confinement

Figure C.2: The energy-wavevector plane showing ith two light lines for media
n1 (dotted) and n2 (dashed).

C.2 Photonic band gap (PBG)

As is well known from basic solid state theory, crystals, i.e. highly ordered
structures in which the potential is periodic in at least one dimension, may
show the presence of an electronic band gap, an energy range in which electrons
cannot propagate inside the crystal[93].

Much as semiconductors control electrons, structure with periodic optical
properties can be employed to control photons. Photonic crystals were discov-
ered in the late 1980s in two seminal works by Yablonovitch[94], then at Bell
Communications Research, and John[95], then at Princeton University.

Yablonovitch’s goal in his 1987 Physical Review Letters paper was to inves-
tigate this new field to somehow dam losses arising from light being emitted at
unwanted frequencies or directions in many optical devices, such as semicon-
ductor lasers. The breakthrough was the observation that carving a transpar-
ent medium in order to create an artificially periodic structure would induce
a behavior analogous to a crystal lattice; in this case, however, the periodicity
would be appointed to the refractive indices of the materials.

Indeed, photonic band gaps, i.e. energy regions for which light propagation
inside a periodic structure is forbidden, arise due to electromagnetic waves
interfering inside the device[96, 31, 1, 97]. Much of the initial interest was
in three-dimensional photonic band gaps, which in Yablonovitch’s own words
are ”a frequency band in three-dimensional dielectric structures in which elec-
tromagnetic waves are forbidden irrespective of the propagation direction in
space”[94], but even lower-dimensional PBGs can find applications in control-
ling the propagation of light in photonic crystals.

Though Yablonovitch’s interest was mainly focused on 3D photonic crys-
tals, due to the completeness of their photonic band gaps, in the following
chapters my focus will be on 1D photonic crystals. More in detail, the main
object of my research will be based on the repetition of a bilayer unit cell.
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C.2. Photonic band gap (PBG)

Figure C.3: Examples of 1-, 2- and 3-dimensional photonic crystals, i.e. struc-
tures characterized by a periodic repetition of dielectric materials along one or
more axes; different refractive indices are mapped onto different colours.

Nature also boasts striking examples of photonic crystals. One such ex-
ample are opals, i.e. mineraloids formed by successive depositions of silicon
dioxide from silica-rich water. Some insects, such as members of the Morpho or
Polyommatus butterfly genus, arthropods of the Pachyrrhynchus and Hoplia
genus and even more complex animals such as peacocks, Pavo cristatus, all
owe their iridescent colours to structural coloration instead of more common
pigments.

All the naturally occurring photonic crystals mentioned up to now all fea-
ture a lattice constant comparable to the wavelength of visible light. However,
artificial photonic crystals can be designed and fabricated so as to tailor the
interaction between light and the microscopically structured device by vary-
ing the lattice constant, the structure of the lattice or the refractive index
of the materials involved. This causes the photonic band gap to shift in the
energy-wave vector plane, leading the condition for constructive or destructive
interference to shift as well and changing the structural coloration.
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C. Basics of light confinement

Figure C.4: Naturally occurring photonic crystals: (a) an iridescent opal en-
cased in a rock matrix; (b) dark ocelli on peacock feathers; (c) the marine
polychaete worm Aphrodita aculeata; (d) Rose chafer adult beetle (Cetonia
aurata). All pictures were taken from the Wikimedia Foundation website
(https://commons.wikimedia.org/).
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Appendix D
On semi-infinite structures

When doing calculations involving periodic multilayers, one might be interested
in understanding the limiting behaviour of its optical response as the number
of periods N goes to infinity.

For instance, consider the structure shown in fig. D.1, i.e. a multilayer
built with the repetition of a two-layer unit cell (na, da and nb, db). Imagine
inserting a infinitesimally thin air buffer between each unit cell.

Figure D.1: A semi-infinite periodic multilayer resulting from the repetition
of a single bilayer unit cell. A thin layer of air has been inserted between the
first unit cell and the bulk multilayer.

As sketched in fig. D.1, the overall reflection coefficient of the whole semi-
infinite multilayer is the sum of various contributions:

1. Light reflected by the first unit cell (rS);

2. Light transmitted by the first unit cell (tS), then reflected by the un-
derlying structure (which is the whole semi-infinite multilayer, thus rSI)
and then transmitted by the inverse unit cell (t̃S);
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D. On semi-infinite structures

3. Light transmitted by the first unit cell (tS), then reflected by the under-
lying structure (rSI), then reflected by the inverse unit cell above (r̃s),
reflected again by the semi-infinite structure (rSI) and then transmitted
by the inverse unit cell (t̃S);

4. ...

Thus, all in all, the reflection coefficient is

rSI = rs + tsrSI t̃s + tsrSI r̃srSI t̃s + ... = = rs + tsrSI t̃s (1 + r̃srSI + ...) = = rs + tsrSI t̃s
1

1− r̃srSI
(D.1)

This implicit formula can be further developed:

rSI (1− r̃srSI) = rs (1− r̃srSI) + tsrSI t̃s0 = −rSI + r̃sr
2
SI + rs − rsr̃srSI + tsrSI t̃s0 = r̃sr

2
SI − rSI

(
1 + tst̃s − rsr̃s

)
+ rs

(D.2)

The overall reflection coefficient rSI can then be found by solving the second-

degree equation ∆ =
(
1 + tst̃s − rsr̃s

)2 − 4rsr̃s. This yields

r±SI =

(
1 + tst̃s − rsr̃s

)
±
√(

1 + tst̃s − rsr̃s
)2 − 4rsr̃s

2r̃s
(D.3)

The modes supported by the semi-infinite periodic multilayer can finally
be found by looking for the poles of eq. (D.3), i.e. where r̃s = 0.

This result shows that the modes supported by a semi-infinite one-dimensional
photonic crystal can be found by considering the unit cell, inverting it, and
calculating the transmittance poles of this inverted structure.
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