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Chapter 1
Introduction

1.1 Phenomenological study of particles

The phenomenological analysis of the internal structure of nucleons can offer a
picture of the composition of matter in terms of its fundamental constituents,
quarks and gluons, collectively called partons. Through the combined efforts of
experimental and theoretical research we try to achieve a better understanding
of the inner dynamics of nucleons and to find a solution to many unanswered
questions that separate us from a complete description of their interactions.

It is known that the interactions of partons are governed by the strong
force, which is described by Quantum Chromodynamics (QCD). However, we
are not able to entirely describe the behavior of the nucleon starting from
the dynamics of its constituents, in other words, we do not fully understand
QCD in nonperturbative regime and, in particular, we cannot describe its most
crucial feature, the confinement of quarks and gluons. Moreover, the properties
of nucleons are very well known and high precision measurements of its spin,
quark content, charge, magnetic moment and charge radius are available at
the moment. Nonetheless, we are not able to explain these quantities starting
from first principles, that is, considering simply the properties of partons. In
recent years we started gathering the information necessary to reconstruct
multi-dimensional maps of the nucleon, which allows the analysis of properties
of the nucleons otherwise inaccessible and could help us to understand more
accurately QCD and its properties.

We can investigate the internal partonic structure observing the outcome
of hard scattering processes. The quantities measured during this collisions are
related to the distributions of partons inside the nucleons and can noticeably
change with the type of process considered and the energy scale. Through the
measurement of scattering processes we cannot obtain the full information of
the hadron structure available, but only certain projections on a part of the
coordinate and momentum space.

The study of the fundamental constituents of matter has progressed in
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1. Introduction

parallel with the discovery of new methods to observe them with increasing
details. The use of particle scattering as a fundamental tool to investigate
the internal structure of the constituents of matter became first apparent with
the gold foil scattering experiment performed by Geiger, Marsden and Ruther-
ford in 1909 [1]. The experiment was originally conceived as a test to verify
Thomson’s model of the atom. However its outcome was not compatible with
predictions and gave a contrasting picture of the atomic inner composition,
which eventually led to the proposal of a planetary model for the atom, where
negatively charged electrons orbit around a positively charged nucleus. The
gold foil experiment opened the way to the investigation of the structure of
fundamental constituents through the phenomenology of scattering processes.

The difference between theoretical predictions based on an atomic model
with a point-like nucleus and experimental observations, which suggested a
more complex structure, has been since used to explore the internal configura-
tion of the atomic nucleus and, subsequently, of the nucleon. About fifty years
after the original scattering experiments, Hofstadter proposed the theory of
nuclear form factors [2], related to the internal charge distribution, to explain
the ratio between the theoretical estimate of the Rutherford model and the
experimental measurements. This concept was later extended also to protons
and neutrons [3].

A step further was taken in 1967 at the Stanford Linear Accelerator Cen-
ter (SLAC) with deep inelastic scattering (DIS) experiments [4, 5]. In this
process electrons are scattered off a proton target, in a way similar to the
original Rutherford experiment. There is however an important distinction, as
the energy of the probe is greatly increased, enabling to explore the internal
structure of the target to a much higher resolution.

Analysis of the spectrum of baryons and mesons, through high-energy scat-
tering, led to the discovery of quarks, the fundamental constituents of strongly
interacting particles [6, 7]. The observation coming from DIS experiments led
to an image of the proton as a cloud of free point-like fermions, which was
named parton model [8].

The study of the relation between the transverse motion of partons and
the corresponding effects on hard processes involving hadrons started in the
70’s with the papers by Feynman, Fox and Field [9, 10]. Their work can be
considered as the starting point for the generalization of the parton model
to include also contributions to the dynamics of partons coming from their
transverse momentum,which is the momentum component perpendicular to
the longitudinal direction, in turn defined as the direction along the proton
momentum in the center of mass of proton and probe. They proposed that the
transverse momentum measured in Drell–Yan processes could originate either
from non-perturbative effects, such as intrinsic momentum of partons confined
in the nucleons, or from perturbative effect, as radiative corrections for gluons
emitted by active quarks, thus connecting for the first time the outcome of
hadronic high-energy processes with the basic properties of partons.
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1.2. 3D mapping of the nucleon

In recent years, the unpolarized structure of the proton was explored in
deep inelastic electron-proton scattering experiments, such as H1 and ZEUS
at DESY. At the same time, collaborations at CERN, SLAC, Jefferson Lab and
Hermes mapped the polarized nucleon structure. Along with the experimental
breakthroughs, a theoretical framework was developed, which describes the
three-dimensional picture of nucleons in terms of a wide variety of partonic
distributions.

The investigation of the three-dimensional hadron structure is motivated
not only by the pursuit of a more complete description of matter, but also by
several open questions in QCD physics. One of the fundamental problems that
still have no answer is the proton spin puzzle. While initially it was expected
that the well known total value 1/2 of the nucleon spin should come from the
spin of its quarks, this was disputed by the experimental measurements taken
by the EMC collaboration and by the subsequent ones [11]. The missing contri-
bution could come from the spin of gluons or the orbital angular momentum of
the single partons, which cannot be studied through a simple one-dimensional
description of their distribution. In addition, the experimental investigation of
hard processes and the search for physics beyond the standard model is mov-
ing towards the observation of effects that require very high precision, where it
becomes necessary to exclude contributions that could come from the internal
composition and momentum of the hadronic constituents.

As an example, a recent study [12] investigated the uncertainties on the
determination of the W boson mass extracted at the LHC, which could be
induced by a possible flavor dependence of partonic intrinsic transverse mo-
mentum. The results suggests that a data analysis which ignores effects of
flavor dependence may be not sufficiently accurate and that a complete flavor
decomposition of the unpolarized TMDs could be necessary for future precision
measurements at high energies.

1.2 3D mapping of the nucleon

The description of the internal structure of a hadron can be achieved by de-
termining the specific momenta and positions of its partons [13]. Their state
can be described by Wigner distributions in five dimensions. They are close to
a classical probability density in phase space, but they cannot be consistently
considered as probability densities and are not positive definite. Nevertheless,
they can be used to compute the expectation value of any physical observable.
From this point of view, they represent the complete knowledge of the partonic
structure. We cannot access directly Wigner distributions, but we are able to
observe their projections on some of the available dimensions in coordinate
and momentum space.

For example, integrating over all coordinates and the two transverse com-
ponents of momentum, we obtain one of the fundamental ways to describe the
nucleons: the collinear parton distribution functions (PDF), which give the
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Table 1.1: Twist-2 quark TMD distribution functions (a) and fragmentation
functions (b). U, L, T correspond to unpolarized, longitudinally polarized and
transversely polarized nucleons or hadrons, and quarks. Functions in black
are T-even, while functions in red are T-odd. Functions in boldface survive
transverse momentum integration.

probability of finding a quark or gluon inside a proton with a certain fraction
x of the collinear momentum. They represent one-dimensional maps of the
hadron structure in momentum space. They are essential objects for the de-
scription of hadronic processes and have been studied in depth, however they
are sensitive only to the momentum in the collinear direction.

Considering also the dependence of partonic distributions on the transverse
momentum k⊥ we can obtain more complete three-dimensional maps of the
nucleons in momentum space. This 3D picture is defined through Transverse
Momentum Dependent (TMD) parton distribution functions, which can be
considered as generalizations of collinear distributions. There are many non-
trivial questions related to TMDs which are still unanswered. For instance, we
do not have enough information on the partonic density to distinguish if it is
higher in the center of the map or if it increases towards the border. Moreover,
the dependence of these distributions on the energy scale and on the parton
flavor is not completely understood.

To have a complete description of high energy processes we need to intro-
duce also TMD fragmentation functions (FF), which give the probability that
a quark fragments into a certain hadron in the final state, as a function of the
hadron collinear and transverse momentum.

The foundation of the present formalism for TMDs can be traced back to
the work of Collins and Soper [14], where they combined for the first time the
nonperturbative and perturbative components of TMDs in a formally coherent
way.

It is possible to introduce different TMDs depending on the polarization of
the nucleon (or the final-state hadron in the case of FFs) and of the partons
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1.2. 3D mapping of the nucleon

Figure 1.1: Probabilistic interpretation of twist-2 TMDs. To avoid ambiguities
we specify that the proton is moving out of the page.

inside [15, 16, 17, 18, 19, 20]. For the moment, we consider twist-2 TMDs, i.e.,
we include only leading-power contributions of the (M/Q) expansion used for
factorization theorems. At this level of accuracy we can distinguish 8 different
TMD PDFs and an equal number of TMD FFs. They can be observed in Ta-
ble 1.1, where U, L, T denotes unpolarized, longitudinally and transversely
polarized particles, respectively. For completeness we included also the polar-
ized fragmentation functions, even if they will not be necessary in our work.
Their probabilistic interpretations in terms of quark transverse momentum,
and of the spin of target and quark are presented in Fig. 1.1. They can be seen
as the interference of the amplitudes given by all the possible combinations of
nucleons and partons with a specific polarization.

In the last years there has been a great research effort to determine the
dependence of TMDs in relation to collinear and transverse momentum, en-
ergy and flavor of partons. At present, they cannot be easily computed from
first principles, because they require the ability to carry out QCD calcula-
tions in its nonperturbative regime. Nevertheless, we can access them through
their relation with many different experimental observables in hard scattering
experiments involving hadrons, in a way that is specified by factorization the-
orems (see, e.g., Refs. [21, 22]). These theorems also elucidate the universality
properties of PDFs and FFs (i.e., the fact that they are the same in different
processes) and their evolution equations (i.e., how they get modified by the
change in the hard scale of the process). Availability of measurements of dif-
ferent processes in different experiments makes it possible to test factorization
theorems and extract PDFs and FFs through so-called global fits. Attempts
to extract some of the TMDs discussed have already been presented in the
literature [23, 24, 25, 26, 27, 28, 29, 30, 31].

In this thesis, we will initially focus on the unpolarized TMD PDF and the
unpolarized TMD FF. Even if they do not take into account any polarization,
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1. Introduction

they are fundamental for the description of the nucleons. Moreover an accurate
determination of these unpolarized distributions is crucial also for the deter-
mination of the polarized TMDs, because the observables used to investigate
them require a good knowledge of the unpolarized structure, as we will observe
in the case of the Sivers function.

1.3 Polarized processes and the Sivers func-

tion

Transverse spin phenomena have gained increased attention in the investiga-
tion of the 3D picture of the nucleon in momentum space. As we observed
in Table 1.1, it is possible to define different TMDs considering also polar-
ization. In particular, in this thesis we will focus on the extraction of the
function f⊥1T , proposed by Sivers [32], which represents the number density of
unpolarized partons inside a transversely polarized nucleon.

In addition to giving informations on the internal structure of hadrons,
the study of polarized processes in a three-dimensional framework allows to
observe the correlations between transverse momentum and spin, that is spin-
orbit correlations at the partonic level. These properties cannot be studied in
a collinear approximation, where orbital motion is not considered.

Our current knowledge of QCD in the perturbative regime still presents
challenging question regarding spin and its correlation with the motion of par-
tons inside the nucleon. We already cited the missing spin budget of the
hadron. Another phenomenon that leaves many open questions is the behav-
ior of transverse Single-Spin Asymmetries (SSA) [33]. These are commonly
observed in inclusive hadron production in high-energy collisions of protons
with large pT , and it was expected that large transverse SSAs could not be
observed in the hard elementary process. In fact, in QED and pQCD inter-
actions, due to their intrinsic property of helicity conservation in the massless
limit, these asymmetries should vanish with the increase of energy scale. Their
persistence in many experimental measurements has to be attributed to contri-
butions outside the perturbative regime of QCD [34]. These nonperturbative
contributions are also indirectly connected to parton orbital motion. Therefore,
being able to relate the origin of these transverse SSAs to intrinsic property of
nucleons and their components can be useful to achieve a deeper knowledge of
the inner dynamics of nucleons.

Two main methods have been used to investigate the transverse single-spin
asymmetries. One is called twist-3 approach and it is based on the collinear
QCD factorization and describe the process in terms of higher-twist quark-
gluon correlations. Another possible approach is generalized parton model
(GPM) that expands the parton model focusing on its phenomenology, by in-
cluding TMD parton distributions and fragmentation functions. There is a
proven connection between twist-3 correlations and the moments of the cor-
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1.3. Polarized processes and the Sivers function

responding TMDs [35]. In this thesis, however, we will not consider twist-3
asymmetries but rather focus on twist-2 asymmetries that can be interpreted
without ambiguity in terms of TMDs, in particular of the Sivers asymmetry.

The description of the asymmetries in terms of TMDs was firstly theo-
rized at the beginning of the 90’s, when two fundamental correlations between
partonic transverse motion and nucleon spin were proposed by Sivers [32, 36]
and Collins [37]. The function H⊥1 proposed by Collins describes the corre-
lation between the transverse spin of a fragmenting quark in the initial state
and the transverse momentum of the final-state hadron. The Collins fragmen-
tation function, convoluted with the quark transversity distribution h1, can
be accessed in SIDIS experiments, studying the azimuthal modulation that it
induces due to its dependence on the hadronic transverse momentum.

While Collins described the dynamics of final-state hadrons, Sivers pro-
posed a new TMD distribution functions, which now bears his name, describ-
ing the position of unpolarized quarks inside a transversely polarized hadron.
The Sivers distribution could be used to describe the large single-spin asym-
metries in pion production off hadron-hadron scattering. The seminal result
of Sivers was to suggest that the transverse momentum distribution of a quark
inside an hadron could include an azimuthal asymmetry if the initial hadrons
have transverse polarization. However, this claim was dismissed by Collins [37]
who observed that the existence of a nonzero asymmetry would violate time-
reversal invariance for strong interactions. He showed that to satisfy these
symmetry properties, the number density of partons should not be dependent
on the spin of the hadron in the initial state.

The study of the Sivers distribution was then abandoned for about a decade,
until Brodsky, Hwang and Schmidt [38] showed that taking into account final-
state interactions in deep inelastic lepton-proton scattering, where the pro-
duced hadron and the target spectator system exchange gluons, a nonzero
single-spin asymmetry at leading twist is obtained. Shortly after, the same
authors [39] showed that a similar mechanism exists also for initial state in-
teraction for polarized Drell–Yan process and generates a leading twist sin-
gle spin asymmetry. In this case the required phase interference is produced
by the initial-state interaction between the annihilating quark and the spec-
tator target. The single spin asymmetry derived for the Drell–Yan process
with transverse polarization πp↑ → `+`−X is similar to the one which follows
from final-state interactions in deep inelastic semi-inclusive leptoproduction
`p↑ → `′πX. The resulting SSA calculated for Drell–Yan and for SIDIS pro-
cesses present however a fundamental difference: the Sivers function appears
with an opposite sign.

As a consequence, Collins [40] recognized that his proof for a vanishing
Sivers distribution was not valid. In fact, it did not correctly take into ac-
count the presence of Wilson lines in the operators, necessary to satisfy gauge
invariance. The future-pointing Wilson lines under time-reversal transform in
past pointing Wilson lines, leading to the conclusion that the Sivers asymme-
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1. Introduction

try does not vanish, but instead has an opposite sign for DIS and Drell–Yan
processes.

This peculiarity constitutes a crucial experimental check for the polarized
TMD framework, which however still awaits verification. A precise determina-
tion of the Sivers function, as the one presented in the thesis, is an essential
step towards this important goal.

1.4 Outline of the thesis

In this thesis we present an extraction of the unpolarized TMD PDFs and
FFs from semi-inclusive deep inelastic scattering, Drell–Yan process and Z
boson production, taking into account the contribution of evolution at different
energy scales. Afterwards, we present a determination of the Sivers distribution
form polarized semi-inclusive DIS, with the inclusion of TMD evolution and
consistent unpolarized TMDs.

The work is organized in the following way. In Ch. 2, the theory for trans-
verse momentum dependent parton distribution and fragmentation function is
shown, focusing on the unpolarized ones and on the Sivers distribution. We
discuss the relation between the experimental observables and the TMDs and
how they evolve with respect to their characteristic scales.

In Ch. 3 the parametrization for the description of TMDs in SIDIS, DY
processes, and Z production is briefly outlined, including a description of the
assumptions and approximations in the phenomenological implementation of
TMD evolution equations. We present the data included in the global fit and
the criteria for selecting the data analyzed. In the last part we show the results
of our analysis and their stability.

In Ch. 4 we discuss our framework for the extraction of the Sivers function
from SIDIS data, coming from Hermes , Compass , and JLab experiments.
In the first part the parametrization and choices for the evolution of the Sivers
are discussed. Finally, we examine the agreement between our theoretical
prediction and the experimental measurements.
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Chapter 2
Theory of polarized and
unpolarized Transverse
Momentum Dependent
distributions

In this chapter we outline the formalism needed to describe polarized and
unpolarized scattering processes in terms of Transverse Momentum Dependent
PDFs and FFs. Starting from the case of deep inelastic scattering, we proceed
to discuss the semi-inclusive case and the Drell–Yan process. Then we present
the framework necessary to the investigation of the Sivers function in the case
of polarized SIDIS. In addition, the evolution in relation to the hard energy
scale of the TMDs discussed is shown.

2.1 Inclusive DIS

In order to understand the relation between the partonic internal structure
of nucleons and scattering processes, it is interesting to observe how the ex-
perimental observables of inclusive DIS are connected with hadronic struc-
ture functions in parton model. Deep inelastic scattering can be represented
schematically as

`(l) +N(P )→ `(l′) +X (2.1)

where ` denotes a lepton in the initial beam with a four-momentum l that
scatters of a nucleon N , changing its momentum and producing a remnant X.
The invariants usually used to study the kinematics of the process are1

xB =
Q2

2P · q y =
P · q
P · l =

Q2

xBs
(2.2)

1To avoid confusion, we point out that P refers to the momentum of the proton, while
Ph is related to the momentum of the final state hadron.

15



2. Theory of polarized and unpolarized TMDs
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Figure 1: Definition of azimuthal angles for semi-inclusive deep inelastic scattering in the target

rest frame [23]. Ph⊥ and S⊥ are the transverse parts of Ph and S with respect to the photon

momentum.

cover a variety of situations with different types of power behavior we wish to discuss.

Many of them have been measured in experiment, see [16–21] and the recent review in [22].

Working in the one-photon exchange approximation, we define the photon momentum

q = l − l′ and its virtuality Q2 = −q2. We use the conventional variables for SIDIS

x =
Q2

2P · q , y =
P · q
P · l , z =

P · Ph

P · q , (2.2)

and write M and Mh for the respective masses of the proton target and the produced

hadron h. We take the limit of large Q2 at fixed x, y, z, and throughout this paper we

neglect corrections in the masses of the hadrons or the lepton.

It is convenient to discuss the experimental observables for SIDIS in a frame where P

and q collinear. We define the transverse part Pµ
h⊥ of Pµ

h as orthogonal with respect to the

momenta P and q. Likewise, we define the transverse part Sµ
⊥ of the spin vector Sµ of the

target, as well as its longitudinal projection S‖ along Pµ. We further define the azimuthal

angles φh and φS of Pµ
h and Sµ with respect to the lepton plane in accordance with the

Trento conventions [23], as shown in Fig. 1. Covariant expressions for the quantities just

discussed can be found in [14]. Finally, we write λe for the longitudinal polarization of the

incoming lepton, with λe = 1 corresponding to a purely right-handed beam.

The lepton-hadron cross section can then be parameterized as [14]

dσ

dx dy dz dφS dφh dP
2
h⊥

=
α2

xQ2

y

2 (1 − ε)

×
{
FUU,T + εFUU,L +

√
2 ε(1 + ε) cosφh F

cos φh
UU + ε cos(2φh)F

cos 2φh
UU

+ λe
√

2 ε(1 − ε) sinφh F
sinφh
LU

+ S‖

[√
2 ε(1 + ε) sinφh F

sinφh
UL + ε sin(2φh)F

sin 2φh
UL

]

– 6 –

Figure 2.1: Kinematics of a lepton scattering off a hadron, in a frame with
parallel hadron and virtual photon momenta.

where the virtuality of the photon is q = l− l′ and the hard scale is Q2 = −q2;
we will denote with λ the helicity of the leptons and with S the spin of the
hadron. The dynamics for this process is represented in Fig. 2.1.

We want to obtain the expression for the cross section of inclusive DIS in
terms of its fundamental components. The invariant amplitude for this process
is calculated as

M = ū(k′, λ′)γµu(k, λ)
e2

Q2
〈PX |Jµ(0)|PS〉 (2.3)

where a sum over spins of the unobserved state X is implied.
The square of this amplitude, related to the cross section of a lepton-nucleon

scattering, can be separated into a tensor L representing the leptonic part and
a hadronic tensor W : ∣∣M2

∣∣ =
e4

Q4
LµνW

µν . (2.4)

The expressions contained in Eqs. (2.3) and (2.4) are valid in the single-photon
exchange approximation.

The total scattering cross section then becomes

dσ =
1

F

e4

Q4
LµνW

µνdR (2.5)

with the Lorentz invariant phase space

dR = (2π)4δ4(l + P − l′ − PX)
d3PX

(2π)32P 0
X

d3l′

(2π)32l′0
(2.6)

and the flux factor
F = 4

√
(P · k)2 −M2m2 ≈ 2s (2.7)
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2.1. Inclusive DIS

In this way, the information on the leptonic probe, which can be described
resorting only to perturbative QED, is isolated from the information on the
hadronic target. Without considering the mass contributions, the leptonic
tensor can be written as

Lµν(l, l
′, λe) =

∑

λ′e

(ū (l′, λ′e)) γµu (l, λe))
∗ (ū (l′, λ′e)) γνu (l, λe))

=−Q2gµν + 2
(
lµl
′
ν + l′µlν

)
+ 2iλeεµνρσl

ρl′σ . (2.8)

The hadronic tensor W µν depends on the process considered and in general
cannot be explicitly calculated from first principles, due to nonperturbative
contributions from the nucleon. However it can be parametrized exploiting the
known symmetric property of QCD. The hadronic tensor can be calculated as
the product of currents that, acting on the on-shell initial state, generate the
final state of the process, containing some remnant X of the hadron, even-
tually in addition to some other on-shell particles, depending on the process
considered:

W µν ∼ 〈in|jµ(0)|out〉〈out|jν(0)|in〉 (2.9)

The hadronic tensor, after integration over all possible on-shell remnant X
that is not observed in the final state, is given by

2MW µν(q, P, S) =
1

2π

∑

X

∫
d3PX

(2π)3EX
(2π)4δ(4) (q + P − PX)hµν(P, S, PX)

=
1

2π

∫
d4xeiq·x〈P, S|[Jµ(x), Jν(0)]|P, S〉 (2.10)

which contains the product of hadronic current matrix elements

Hµν(P, S;PX) = 〈P, S|Jµ(0)|PX〉〈PX |Jν(0)|P, S〉 . (2.11)

It is useful to define a basis of vector suitable for the theoretical descrip-
tion of the hadron structure. In order to study deep inelastic processes it is
convenient to define a Cartesian set of vectors derived from the particles mo-
menta. For lepton-hadron scattering the vector basis is constructed starting
from the spacelike direction of the momentum transfer qµ. The next step is
to define vectors ã that are orthogonal to q, obtained subtracting from some
initial vector a its projections along q:

ãµ =g̃µνaν = aµ − a · q
q2

qµ (2.12)

g̃µν =gµν − qµqν

q2
(2.13)

In particular, using the target hadron momentum P µ the orthogonal vector
becomes P̃ µ = P µ − (P · q/q2)qµ. This vector is timelike and satisfies

P̃ 2 = κP · q , κ = 1 +
M2Q2

(P · q)2
(2.14)
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2. Theory of polarized and unpolarized TMDs

where only mass corrections of the order (M2/Q2) are taken into account. To
study the expansion of the hadronic tensor to increasing orders of 1/Q it is
convenient to define

Zµ ≡− qµ (2.15)

T µ ≡ Q2

P · q
P̃ µ

√
κ

=
qµ + 2xBP

µ

√
κ

(2.16)

and we observe that their modules are directly related to the value of Q as

Z2 = −Q2 T 2 = Q2 . (2.17)

We will mainly use the normalized vectors ẑµ = Zµ/Q and t̂µ = T µ/Q. Finally,
in the space orthogonal to ẑ and t̂ one has the tensors

gµν⊥ ≡ gµν + q̂µq̂ν − t̂µt̂νεµν⊥ ≡ εµνρσ t̂ρq̂σ =
1

(P · q)√κε
µνρσPρqσ (2.18)

Using these tensors we can introduce a normalized vector related to the lepton
momentum, written as

l̂µ = − gµν⊥ lν
|gµν⊥ lν |

(2.19)

The vector for the lepton momentum l can be expressed using the normalized
vectors, as

lµ =
Q

2
q̂µ +

(2− y)

2y
t̂µ +

Q
√

1− y
y

l̂µ (2.20)

It is possible to rewrite the leptonic tensor using these normalized vectors:

Lµν =
2Q2

y2

[
−
(

1− y +
1

2
y2

)
g⊥µν + 2(1− y)t̂µt̂ν

+2(1− y)(l̂µl̂ν +
1

2
g⊥µν) + (2− y)

√
1− y(t̂µl̂ν + t̂ν l̂µ)

+
i

2
λey(2− y)ε⊥µν − iλey

√
1− y(t̂µε⊥ν + t̂νε⊥µ)l̂ρ

(2.21)

To express also the hadronic tensors in terms of the normalized vectors, we
observe that it has to satisfies the properties of Hermiticity, parity and time-
reversal, respectively:

W ∗
µν(q, P, S) = Wνµ(q, P, S) , (2.22)

LρµL
σ
νWρσ(q, P, S) = Wµν(q̃, P̃ ,−S̃) , (2.23)

LρµL
σ
νWρσ(q, P, S) = Wµν(q̃, P̃ , S̃) (2.24)
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2.1. Inclusive DIS

where q̃ν = Lνρq
ρ and the parity reversal transformation L is defined as

Lρσ =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 (2.25)

A combination of the momentum vectors that fulfills the previous condi-
tions, could be

2MW µν = 2M

[
Agµν +Bqµqν + C

P µP ν

M2
+D

P µqν + qµP ν

M2

]
, (2.26)

where each term might have a dependence on Q2 and xB. We have an ad-
ditional constraint given by electromagnetic gauge invariance, that requires
qµW

µν = W µνqν = 0 and gives the following relations between the coefficients:

D = −P · q
q2

B, C =

(
P · q
q2

B +
M2

q2
A

)
(2.27)

It follows then that only two coefficients are independent and we can define
only two independent structure functions for the hadronic tensor. In terms of
the normalized vectors we have

2MW µν(q, P, S) =
1

xB

[
−gµν⊥ FT (xB, Q

2) + t̃µt̃νFL(xB, Q
2)
]

(2.28)

We take into account also the polarization for the inclusive DIS process, we
can introduce four independent structure functions. A possible definition is

2MW µν(q, P, S) =
1

xB

[
−gµν⊥ FT (xB, Q

2) + t̂µt̂νFL(xB, Q
2)

+iSLε
µν
⊥ 2xB

(
g1(xB;Q2)− γ2g2(xb, Q

2)
)

+it̂µενρ⊥ Sρ2xBγ
(
g1(xB, Q

2) + g2(xB, Q
2)
) ]
.

(2.29)

In this discussion we should have distinguished the component of S par-
allel or orthogonal to the lepton beam instead of the virtual photon, but the
difference between them at M/Q level is negligible.

The relation between these structure functions and the standard unpolar-
ized ones is

FT (xB, Q
2) =2xBF1(xB, Q

2) (2.30)

FL(xB, Q
2) =(1− γ2)F2(xB, Q

2)− 2xBF1(xB, Q
2) (2.31)

Finally, contracting the leptonic and hadronic tensor, expressed in this way,
for the inclusive DIS cross section we found
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2. Theory of polarized and unpolarized TMDs

dσ

dxBdydφS
=

2α2

xByQ2

y2

2(1− ε){FT + εFL + S‖λe
√

1− ε2 2xB(g1 − γ2g2)

−|S⊥|λe
√

2ε(1− ε) cosφS 2xB γ(g1 + g2)} (2.32)

where we have introduced the ratio ε of longitudinal and transverse photon
flux:

ε =
1− y − 1

4
γ2y2

1− y + 1
2
y2 + 1

4
γ2y2

γ =
2MxB
Q

(2.33)

2.1.1 DIS cross section in parton model

For the explicit calculation of DIS cross section in terms of parton distribution
functions is convenient to choose a frame of reference where there are no trans-
verse component of proton and photon momenta. Working in this framework
and considering processes at high Q2, we can describe DIS through a parton
model, where we assume that the electrons scatter on an almost free quark
of mass m inside the nucleons,producing a final state X. This state can be
separated in a quark with momentum k and a state X with momentum PX .
In this picture the scattering process can be factorized in a hard part and a
non-perturbative part, where the first one expresses the electromagnetic inter-
action between the lepton and the struck parton and the latter refers to the
probability to find such a parton inside the nucleon.

In this model the hadronic tensor can be written as

2MW µν(q, P, S) =
1

2π

∑

q

e2
q

∑

X

∫
d3PX

(2π)32P 0
X

∫
d3p

(2π)32p0
(2π)4

×δ(4)(P + q − p− PX)〈P, S|ψ̄i(0)|X〉〈X|ψj(0)|P, S〉
×γµik(/p+m)kl γ

ν
lj ,

(2.34)

considering only tree-level contributions for the electron-quark interaction. Us-
ing completeness to get rid of the unobserved states X and integrating over
the phase space of the final-state quark we can rearrange the hadronic tensor
in the following way:

2MW µν(q, P, S) =
∑

q

e2
q

∫
d4p δ((k + q)2 −m2)θ(k0 + q0 −m)

× Tr[Φ(k, P, S)γµ(/k + /q +m)γν ]

(2.35)

by introducing the quark-quark correlation function Φ, defined as

Φji(k, P, S) =
∑

X

∫
d3PX

(2π)32P 0
X

〈P, S|ψ̄i(0)|X〉〈X|ψj(0)|P, S〉δ(4)(P − k − PX),
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2.1. Inclusive DIS

P
Φ

P

k k

q q

Figure 2.2: Cut diagram describing the hadronic tensor for inclusive DIS at
tree level.

A graphical representation of the hadronic tensor at tree level in the parton
model is given by the handbag diagram in Fig. 2.2. In this diagram the hard
part, related to the electromagnetic interaction of the virtual photon with the
struck parton (in this case a quark) is factorized from the non-perturbative
quark-quark correlator. A sum over all possible final states is understood in
the cut of both the on-shell quark propagator and the soft correlator Φ.

To further investigate the contributions of the different components of the
quark momentum to the cross section, it is convenient to parametrize k as

kµ =

[
k2 + |k⊥|2

2xP+
, xP+,k⊥

]
. (2.36)

The approach that we are adopting is valid only if we assume that the virtu-
ality of the quark k2 and its transverse momentum squared |k⊥|2 are small in
comparison to the scale of the probe Q2.

If we perform a 1/Q expansion of the complete expression we see that the
dominant terms in a collinear frame are combination of plus component in
the correlation function and minus component in the outgoing quark momen-
tum. Without considering term that are 1/Q suppressed the final form for the
hadronic tensor at leading twist is

2MW µν(q, P, S) '
∑

e2
q

1

2
Tr[Φq(xB, S)γµγ+γν ] , (2.37)

with the integrated correlation function

Φq
ji(x, S) =

∫
d2k⊥dk

−Φq
ji(k, P, S)

∣∣∣∣
k+=xP+

(2.38)

=

∫
dξ−

2π
e−ik·ξ 〈P, S| ψ̄qi (ξ)ψqj (0) |P, S〉

∣∣∣∣
ξ+=ξT=0

. (2.39)
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2. Theory of polarized and unpolarized TMDs

2.1.2 Correlators and structure functions

The hadronic tensor now is expressed mainly in terms of the correlation func-
tion Φq. This function is a Dirac matrix and thus can be generally decomposed
on a basis of Dirac terms, to analyze more precisely its structure. The terms
of the decomposition are combinations of the Lorentz vectors p and P , the
pseudovectors S, the vector n− (related to the direction of the gauge link) and
the Dirac structures 1, γ5, γ

µ, γµγ5, (i/2)[γµ, γν ]γ5.
Considering only the leading twist terms, the integrated correlator function

in Eq. (2.38) for a parton q in the polarized case becomes [41]

Φq(x) = f q1 (x)
/n+

2
, (2.40)

where we introduced the integrated parton distribution function

f q1 (x) =

∫
d2k⊥ dk

2 d(2k ·P )δ(k2
⊥+x2M2 + k2− 2xk ·P ) [Aq2 + xAq3] . (2.41)

The amplitudes Ai are real scalar functions Ai = Ai(k · P, k2) with dimension
1/[m]4. If the analysis is extended to the polarized case the decomposition
takes into account also combination with the S vector. The general expression
of the integrated correlation function in the unpolarized case is

Φ(x, S) =
1

2

{
f1/n+ + SLg1L γ5/n+ + h1

[/ST , /n+]γ5

2

}
, (2.42)

and it contains, together with f1(x) defined in eq. (2.41), the integrated parton
distribution functions:

g1L(x) =

∫
d2k⊥d

2k d(2k · P )δ
(
k2
⊥ + k2 − 2xk · P

)
(2.43)

×
[
−A6 −

(
k · P
M2

− x
)

(A7 + xA8)

]

h1(x) =

∫
d2k⊥d

2k d(2k · P )δ
(
k2
⊥ + k2 − 2xk · P

)
(2.44)

×
[
−A9 − xA10 +

k2
⊥

2M2
A11

]
.

where the amplitudes Ai = Ai(k ·P, k2) are real. The function gq1L is the helicity
distribution, while h1 is known as the transversity distribution. The individual
distribution functions can be isolated from Φ(x, S) through the projection

Φ[Γ] ≡ 1

2
Tr(ΦΓ), (2.45)

where Γ denotes a specific Dirac structure.
The functions f1 and g1L in the chiral representation can be interpreted as

a description of the probability to find a quark with a certain chirality inside
the target, while the transversity distribution h1 is related to the interference
between two probability amplitudes of quark chirality [42, 43].
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2.2. Semi-inclusive DIS

2.1.3 DIS structure functions in the parton model

The general decomposition of the correlation function Φq can be used to calcu-
late the hadronic tensor of a DIS process. In the unpolarized case the correlator
Φ(x) is described by Eq. (2.40); inserting this expression in Eq. (2.37) and eval-
uating the traces of the Dirac matrices we find an expression for the hadronic
tensor, similar to Eq. (2.32). The unpolarized structure functions derived from
this expression are

FT =xB
∑

q

e2
qf

q
1 (xB) (2.46)

FL =0 . (2.47)

In the polarized case to calculate the hadronic tensor we have to con-
sider also the spin related contributions to the quark correlator, contained
in Eq. (2.42). The resulting structure functions are:

F1 =
1

2

∑

q

e2
qf

q
1 (xB) , (2.48)

FL = 0 , (2.49)

g1 =
1

2

∑

q

e2
qg
q
1L(xB) , (2.50)

g1 + g2 = 0 . (2.51)

Once we have obtained the explicit expression of the hadronic tensor it is
possible to calculate the cross section for inclusive DIS, using Eq. (2.5). The
final results of the cross section can be obtained from the explicit expression
of the structure functions.

2.2 Semi-inclusive DIS

Our analysis is focused on the extraction of unpolarized TMD parton distribu-
tion functions and fragmentation functions from semi-inclusive deep inelastic
scattering (SIDIS), with and without target polarization, and Drell–Yan pro-
cesses. As an example, we discuss SIDIS, given that its descriptions needs both
unpolarized TMDs. Semi-inclusive DIS can be represented as

`(l) +N(P )→ `(l′) + h(Ph) +X (2.52)

where ` denotes the incoming lepton, N the nucleon target, h the observed
hadron and X the unobserved final states, with four-momenta inside the paren-
theses. We introduce the kinematic variable z, defined as

z =
P · Ph
P · q . (2.53)
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nucleon

hadron

quark

photon

k

Ph

q

k⊥

k⊥

PhT

P⊥

p

∼ zk⊥

q

Figure 2.3: Diagram describing the relevant momenta involved in a semi-
inclusive DIS event (see also Ref. [45]): a virtual photon (defining the ref-
erence axis) strikes a parton inside a proton. The parton has a transverse
momentum k⊥ (not measured). The struck parton fragments into a hadron,
which acquires a further transverse momentum P⊥ (not measured). The to-
tal measured transverse-momentum of the final hadron is PhT . When Q2 is
very large, the longitudinal components are all much larger than the transverse
components. In this regime, PhT ≈ zk⊥ + P⊥.

We consider the possible polarization of beam and target, but not the
eventuality of having a polarized final state; we investigate only the situation
in which h has spin zero or its polarization is simply not observed. Adopting
the one-photon approximation, we use the conventional variables for semi-
inclusive DIS, introduced in Eq. (2.2). The masses for the nucleon target and
the produced hadron h are denoted by M and Mh, respectively; we neglect
contributions from lepton mass.

We define the transverse part of the hadron momentum Ph, denoted by
PhT , as orthogonal with respect to P and q, choosing a frame where these
momenta are collinear. In a similar way, we define the transverse part S⊥ of
the spin vector and its longitudinal projection S‖ along P . To study the Sivers
distribution later, we have to consider also the azimuthal angles φh and φS,
related to the momentum P and the spin S of the target with respect to the
lepton plane. The definitions that we use in our formalism are in accordance
with the Trento conventions [44] and are shown in Fig. 2.3 for the unpolarized
case.

We want to express the SIDIS cross section in terms of structure functions.
As a starting point, the cross section can be written as the product of a leptonic
and a hadronic tensor:

d6σ

dxBdydzhdφSd2PhT
=

α2

4zsxBQ2
Lµν (l, l′, λe) 2MW µν (q, P, S, Ph) (2.54)

The expression for the leptonic tensor is the same as in the inclusive DIS
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2.2. Semi-inclusive DIS

process, while the hadronic tensor should now include also the information on
the outgoing hadron h:

2MW µν(q, P, S, Ph) = (2.55)

1

(2π)4

∑

X′

∫
d3PX′

2P 0
X′

2πδ(4)(q + P − PX′ − Ph)Hµν(P, S, PX′ , Ph),

Hµν(P, S, PX′ , Ph) = 〈P, S|Jµ(0)|Ph, X ′〉〈Ph, X ′|Jν(0)|P, S〉. (2.56)

To decompose the hadronic tensor Mµν we require that it satisfies Hermiticity,
parity, and time reversal, as done for the inclusive process. However, we cannot
impose the same condition of time-reversal invariance because, differently from
the inclusive case, we should take into consideration final-state interactions
on the outgoing hadron detected. This prevents the possibility of switching
the initial and final state, as required by time-reversal. Instead we apply a
simplified version, that consists in a simple change of sign of all vectors time
components and complex conjugation:

LρµL
σ
νW

∗
ρσ(q, P, S) = Wµν(q̃, P̃ , S̃) . (2.57)

The lepton-hadron cross section can then be parametrized in terms of 18
different structure functions [46], which depend on xB, z, PhT , Q

2. If we limit
ourselves to an unpolarized target, the hadronic tensor can be parametrized in
terms of 5 structure functions:

FUU,T , FUU,L, F
cosφh
UU , F cos 2φh

UU , F sinφh
UU . (2.58)

The different structure functions F are characterized by polarization: the
first two indices U , L and T refers to the polarization of the beam and the
target, while a possible third index denotes the polarization of the virtual
photon. Using these structure functions we can write

2MW µν(q, P, S) =
2z

xB

[
− gµν⊥ FUU,T (xB, z, P

2
hT , Q

2)

+ t̂µt̂νFUU,L(xB, z, P
2
hT , Q

2)

+ (t̂µĥν + t̂ν ĥµ)F cosφh
UU (xB, z, P

2
hT , Q

2)

+ (ĥµĥµ + gµν⊥ )F cos 2φh
UU (xB, z, P

2
hT , Q

2)

− i(t̂µĥν − t̂ν ĥµ)F sinφh
LU (xB, z, P

2
hT , Q

2)

]

(2.59)

where we use the normalized vector ĥ = PhT/|PhT |.
After the contraction of the hadronic tensor with the leptonic tensor the

cross section results

dσ

dxBdydzdφhdPhT
=

2πα2y2

xByQ2(1− ε) ×
{
FUU,T + ε FUU,L (2.60)

+
√

2ε(1 + ε) cosφhF
cosφh
UU + ε cos(2φh)F

cos 2φh
UU + λe

√
2ε(1− ε) sinφhF

sinφh
LU

}

25



2. Theory of polarized and unpolarized TMDs

↓ p

↓ k

p ↑

k ↑q q

P P

Ph ↑ Ph ↓

Φ

Δ

k k

P P

p p

Ph Ph

Figure 2.4: Cut diagram, describing the hadronic tensor at tree level.

The last term in Eq. (2.60) vanishes if the lepton beam is not polarized; the
third and fourth term vanish if we integrate over the angle φh.

At sufficiently highQ2 we can adopt the parton model again. Semi-inclusive
DIS can be seen as a virtual photon interacting with a quark of mass m inside
the nucleon; as a result the struck quark fragments producing an outgoing
hadron h. The interaction dynamics of these different stages of the scattering
process can be analyzed separately, it is then possible to factorize the differ-
ential cross section into two nonperturbative hadronic parts connected by a
hard scattering part, as depicted in the so-called bull diagram in Fig. 2.4. The
correlation function Φ describes the distribution of quarks, while ∆ is related
to quark fragmentation. The hadronic tensor at tree level can be written as

2MW µν = 2
∑

a

e2
a

∫
d2k⊥d

2P⊥
z
δ2(zk⊥ + P⊥ − PhT )

× Tr [Φa(x,k⊥, S)γµ∆a(z,P⊥)γν ]

(2.61)

The quark-quark distribution correlation functions at tree level is defined
as [47]:

Φij(x, k⊥, S) =

∫
dξ−d2ξT

2π3
eik·ξ〈P, S|ψ̄j(0)Un−(0,+∞)U

n−
(+∞,ξ)ψ(ξ)|P, S〉

∣∣∣∣
ξ+=0

.

(2.62)
The terms U , called gauge links or Wilson lines, are inserted between quark
fields to ensure that the definition of the correlator is gauge invariant. In
principle Wilson lines should be included also in the integrated correlator in
Eq. (2.38), however, they are usually neglected because in the light-cone gauge
they are equal to 1. The structure of the gauge link changes for different
processes and later we will discuss in more detail the differences and their
observable effects. In the collinear case we do not observe any effect related to
process dependence.
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2.2. Semi-inclusive DIS

In the case of the fragmentation correlation we have

∆ij(z,P⊥) =
1

2

∑

X

∫
dξ+d2ξT

(2π)3
eip·ξ〈0|Un+

(+∞,ξ)ψi(ξ)|h,X〉

×〈h,X|ψ̄j(0)Un+

(0,+∞)|0〉
∣∣∣∣
ξ−=0

.

(2.63)

To express the quark distribution correlator in terms of TMDs we follow
a similar procedure to the one used for the inclusive case, but including this
time also transverse momentum effects. The complete parametrization of the
quark-quark correlation function has been given in Ref. [46]. Limiting ourselves
to the leading-twist term, we get, for example:

Φ(x,k⊥) =

(
f1(x,k2

⊥) + ih⊥1 (x,k2
⊥)
/k⊥
M

)
/n+

2
, (2.64)

which contains the unpolarized TMD parton distribution function f1(x,k2
⊥),

which will be the object of our extraction in the next chapter, and the Boer-
Mulders TMD h⊥1 (x,k2

⊥) for transversely polarized quarks [17]. The relation
between quark correlators and structure function can be found through pro-
jections of the type Φ[Γ], where Γ is a Dirac structure function. As an example,
if we consider Φ[/n] we can obtain the unpolarized fa1 (x,k2

⊥).
The same procedure can be applied, with opportune modifications, to the

fragmentation correlator, to get

∆(z,P 2
⊥) =

(
D1(z,P 2

⊥) + iH⊥1 (z,P 2
⊥)
/P⊥
Mh

)
/n−
2
. (2.65)

The function D1(z,P 2
⊥) is the unpolarized TMD fragmentation function, while

H⊥1 (z,P 2
⊥) is called Collins function [37].

Once we have the parametrization for the different correlators we can write
explicitly the hadronic tensor in Eq. (2.61) and calculate the leptoproduction
cross section. At this point we can express the structure functions contained
in the expression of the cross section in terms of TMDs. The unpolarized cross
section for SIDIS, integrated over the azimuthal angle, becomes

dσ

dxdydzdP 2
hT

=
4π2α2

xQ2

y

2(1− ε)

(
FUU,T (x, z,P 2

hT , Q
2)+εFUU,L(x, z,P 2

hT , Q
2)

)
.

(2.66)
The structure functions FUU,T and FUU,L can be written explicitly as

FUU,T =
∑

a

e2
aC [fa1D

a
1 ] , FUU,L = O

(
M2

Q2
,
P 2
hT

Q2

)
(2.67)

with a compact notation for the convolution

C [fD] = xB

∫
d2k⊥

d2P⊥
z

δ(2)(zk⊥ − PhT + P⊥)fa(xB,k
2
⊥)Da(z,P 2

⊥) . (2.68)
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2. Theory of polarized and unpolarized TMDs

In order to later discuss the formalism for the evolution of TMDs, which
is developed in the space conjugate to the momentum, it is useful to calculate
the Fourier transform of this convolution. The structure function in this case
reduces to [48]:

FUU,T (x, z,P 2
hT , Q

2)

≈ 2π
∑

a

e2
ax

∫ ∞

0

dξT ξTJ0

(
ξT |PhT |/z

)
f̃a1
(
x, ξ2

T ;Q2
)
D̃a~h1

(
z, ξ2

T ;Q2
)
, (2.69)

where we introduced the Fourier transforms of the TMD PDF and FF:

f1(x,k2
⊥;Q2) =

1

2π

∫ ∞

−∞
dξ2

T e
iξT ·k2

⊥ f̃1(x, ξ2
T ;Q2)

=
1

2π

∫ 2π

0

∫ +∞

−∞
dφ
d2ξT

2
ei|ξT ||k⊥| cosφf̃1(x, ξ2

T ;Q2) .

(2.70)

Using the definition of the Bessel function of the first kind

J0(z) =
1

2

∫ 2π

0

eiz cos θdθ (2.71)

we can express the Fourier transform of the distribution function

f̃a1
(
x, ξ2

T ;Q2
)

=

∫ ∞

0

d|k⊥||k⊥|J0

(
ξT |k⊥|

)
fa1
(
x,k2

⊥;Q2
)
, (2.72)

and, in a similar way, the TMD fragmentation function

D̃a~h1

(
z, ξ2

T ;Q2
)

=

∫ ∞

0

d|P⊥|
z2
|P⊥|J0

(
ξT |P⊥|/z

)
Da~h1

(
z,P 2

⊥;Q2
)
. (2.73)

2.3 Drell–Yan

In our global extraction, in addition to the semi-inclusive DIS unpolarized
data, we include also measurements of Drell–Yan processes (DY). We consider
separately Drell–Yan processes with a virtual photon or with Z boson produc-
tion in the intermediate state. One of the most interesting feature of TMD
distributions is that their description of the partonic internal structure does
not depend on the specific process considered, and should be able to give an
equally good description for both SIDIS and Drell–Yan processes. In the case
of TMDs the study of universality becomes more nuanced, because in some
cases, such as the sign change for the Sivers function, it is not completely
respected.

In the following discussion we will derive the cross section in terms of TMDs
of dilepton production from high-energy scattering of two hadrons

A (PA, SA) +B (PB, SB)→ `−(l, λ) + `+ (l′, λ′) +X (2.74)
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2.3. Drell–Yan
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Figure 2.5: Kinematics of Drell–Yan process in the dilepton rest frame. PA, B
denote the momenta of the nucleons in the initial state, while k and k′ = q−k
are the momenta of the produced leptons.

where (PA,B, SA,B) denotes the four-momenta and spin vectors of the initial
state hadrons and λ, λ′ are the helicities of the produced leptons [49]. The
momenta and spin vectors of the two hadrons follow the relation P 2

A,B =
M2

A,B, PA,B · SA,B = 0 and S2
A = −1. The mass of the leptons are neglected

also in this case. The quantities used to describe the kinematic of the DY
process are represented in Fig. 2.5.

For a sufficiently high value of the dilepton invariant mass we can adopt
the parton model framework. In this approach a quark from the hadron A and
an antiquark from hadron B annihilate and produce a virtual photon in the
intermediate state, which consequently decays into an e+e− pair; these steps
can be schematized as

A+B → γ∗(q) +X → `− + `+ +X (2.75)

where q = l + l′ again indicates the virtuality of the photon.
Adopting the one-photon approximation the cross section of the Drell–Yan

processes can be written in a frame-independent way as

l0l0dσ

d3ld3l′
=
α2
em

Fq4
LµνW

µν (2.76)

with the flux F of the initial hadrons defined as

F = 4

√
(PA · PB)2 −M2

AM
2
B . (2.77)

To gather information about the internal structure of nucleons, we need
to study the angular distribution of the DY cross section. The most con-
venient frame to conduct this analysis is a dilepton rest frame, such as the
Collins–Soper frame [50]. In this kind of framework the differential cross sec-
tion becomes

dσ

d4qdΩ
=

α2
em

2Fq4
LµνW

µν . (2.78)
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qTq

Figure 2.6: Diagram describing the relevant momenta involved in a Drell–Yan
event: two partons from the nucleons A and B collide. They have transverse
momenta k⊥A and k⊥B (not measured) and produce a virtual photon with
(measured) transverse momentum qT = k⊥A+k⊥B with respect to the hadron
collision axis.

where the solid angle Ω determines the orientation of the produced leptons.
The spin-averaged leptonic tensor Lµν is written explicitly as

Lµν =
∑

λ,λ′

(u(l, λ)γµν (l′, λ′)) (u(l, λ)γνν (l′, λ′))
∗

= 4

(
lµl′ν + lνlµ − q2

2
gµν
)

(2.79)
and the hadronic tensor W µν in the cross section reads

W µν (PA, SA;PB, SB; q)

=
1

(2π)4

∫
d4xeiq·x 〈PA, SA;PB, SB |Jνem(0)Jνem(x)|PA, SA;PB, SB〉 .

(2.80)

As we already discussed, the hadronic tensor naturally follows the requirements
of electromagnetic gauge invariance, parity and Hermiticity. Exploiting these
properties is possible to write the hadronic tensor in terms of structure func-
tions. The full decomposition of the hadronic tensor W µν in terms of structure
functions can be found in Ref. [49].

In the unpolarized case the hadronic tensor depends on the vectors qµ,
P µ
A, and P µ

B, shown in Fig. 2.6. Using the possible combination of these four-
vectors one can create a basis of seven independent tensors that satisfy the
parity property. Through this tensor basis it is now possible to decompose the
hadronic tensor as

W µν
i =

7∑

i=1

hµνi,j Ṽi,j (2.81)

where Ṽi,j are structure functions that depend on the invariants q2 and PA,B ·q.
If we apply the gauge invariance constraints, we observe that only four of the
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2.3. Drell–Yan

structure functions Ṽi,j are independent. It is useful, then, to redefine the
tensor basis using the projection operators:

P µν = gµν − qµqν

q2
(2.82)

They are constructed so that qµP
µν = P µνqν = 0. When the operator P acts

on the tensor basis, according to P µ
ρ h

ρσ
i,jP

ν
σ , we are left with the appropriate

basis of four tensors, gauge invariant by construction. The hadronic tensor
decomposed using this basis becomes

W µν
i =

4∑

j=1

tµνi,jVi,j . (2.83)

The tensor W µν in Eq. (2.81) is frame independent and alternative forms
can be used equivalently.

Using this general form for the hadronic tensor, we can obtain the DY cross
section in terms of structure functions related to the angular distribution of
the particles involved in the process. This can be done in any reference frame
in principle, because the hadronic tensor is frame independent; we adopt the
CS frame, where the angular distribution assumes the most compact form.
Contracting the leptonic tensor in Eq. (2.79) with the hadronic tensor one
obtains the following expression for Eq. (2.78) :

dσ

d4qdΩ
=
α2
em

Fq2
×
[ (

1 + cos2 θ
)
F 1
UU +

(
1− cos2 θ

)
F 2
UU (2.84)

+ sin 2θ cosφF cosφ
UU + sin2 θ cos 2φF cos 2φ

UU

]
.

where φ is the angle between the collision and the lepton plane, and θ is the
angle between the direction ẑ of the beam and the momentum of the outgoing
lepton l (as shown in Fig. 2.5).

In the kinematic region where the order the transverse photon momentum
qT is much smaller than the hard scale Q, the DY process can be described in
terms of TMD functions. At leading twist, i.e., considering the leading order
of an expansion in terms of 1/Q, the hadronic part of the cross section can be
written in terms of unintegrated quark-quark correlators, as in

W µν =
1

Nc

∑

q

e2
q

∫
d4kAd

4kBδ
(4) (q − kA − kB) (2.85)

× Tr
[
γµΦq (kA, PA, SA) γνΦ̄q (kB, PB, SB)

]
+ {Φ↔ Φ̄}

where the correlator for a specific hadron A is defined in a way similar to the
SIDIS case. The last term {Φ↔ Φ̄} of Eq. (2.85) represents the contributions
of the DY process diagrams where the hadrons A and B switch their roles
in the annihilation, with A exchanging an antiquark instead of a quark and
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2. Theory of polarized and unpolarized TMDs

viceversa for B; formally it is obtained interchanging the Φ correlators that
appear in the first term.

Adopting the light-cone vectors, we observe that the initial partons in a
parton model are assumed to move approximately along the direction of their
parent hadron, consequently we can choose a frame where the hadron A has
a large component k+

A and the hadron B instead has a large component k−B .
Considering only the leading terms the hadronic tensor then reduces to

W µν =
1

Nc

∑

q

e2
q

∫
d2k⊥Ad

2k⊥Bδ
(2) (qT − k⊥A − k⊥B) (2.86)

× Tr
[
γµΦq (xA,k⊥A, SA) γνΦ̄q (xB,k⊥B, SB)

]
+ {Φ↔ Φ̄}

with the usual DY fractional momenta variables

xA =
q2

2PA · q
≈ k+

A

P+
A

, xB =
q2

2PB · q
≈ k−B
P−B

. (2.87)

and the quark correlators is analogous to Eq. (2.62), with a different gauge
link WDY. It can be written as

Φq
ij (xA,k⊥A, SA) =

∫
dξ−d2ξT

(2π)3
eikA·ξ (2.88)

× 〈PA, SA|ψ̄qj (0)Un−(0,−∞)U
n−
(−∞,ξ)ψ

q
i (ξ)|PA, SA〉|ξ+=0 .

The quark-quark correlator in the kinematic region that we discussed, can
be parametrized through TMD parton distribution functions [15] calculated
through the traces Φ[Γ]. The traces for the antiquarks can be treated in the
same way, however, since we have chosen a collinear framework, the role of the
plus and minus components in hB have to be interchanged compared to hA,
consequently producing an opposite sign, which appears in front of εijT in the
traces Φ̄[Γ].

Inserting them in the hadronic tensor (2.86) it is now possible to calculate
the leading-twist observables. For the unpolarized case in the CS frame we
find

F 1
UU =C

[
f1f̄1

]
, (2.89)

F 2
UU =

1

2
C
[

2 (h · k⊥A) (h · k⊥B)− k⊥A · k⊥B
MAMB

h⊥1 h̄
⊥
1

]
(2.90)

where we made use of the following notation for the convolution of TMDs in
momentum space:

Cw
[
w (k⊥A,k⊥B) f1f 2

]
≡ 1

Nc

∑

q

e2
q

∫
d2k⊥Ad

2k⊥Bδ
(2) (qT − k⊥A − k⊥B)

×w (k⊥A,k⊥B)
[
f q1
(
xA,k

2
⊥A
)
f q2
(
xB,k

2
⊥B
)

+ f q1
(
xA,k

2
⊥A
)
f q2
(
xB,k

2
⊥B
)]
.

(2.91)
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2.4. Sivers distribution function in leptoproduction

Also in the case of DY processes the structure function can be conveniently
expressed as a Fourier transform:

F 1
UU(xA, xB, q

2
T , Q

2) ≈ 2π
∑

a

H1a
UU xaxB

×
∫ ∞

0

dξT ξT J0

(
ξT |qT |

)
f̃a1
(
xA, ξ

2
T ;Q2

)
f̃ ā1
(
xB, ξ

2
T ;Q2

)
, (2.92)

where we introduced a hard coefficient H in order to be able to use the same
formula for DY and Z boson production. In fact, the hard coefficients H, in
the case of DY processes and Z boson production, up to leading order in the
couplings, are

H1a
UU,γ(Q

2) ≈ e2
a

Nc

, H1a
UU,Z(Q2) ≈ V 2

a + A2
a

Nc

, (2.93)

where, using the value of weak isospin I3 (equal to +1/2 for u, c, t and −1/2
for d, s and b) we have

Va = I3a − 2ea sin2 θW , Aa = I3a . (2.94)

In Section 3.2.2 we discuss the choices that we adopted for the parametriza-
tion of the TMDs in the calculation of the DY cross section.

2.4 Sivers distribution function in leptopro-

duction

In this section we will study the cross sections for semi-inclusive DIS, including
also the effects of beam, target and parton polarization. The complete discus-
sion of SIDIS at small transverse momentum is presented in Ref. [46], which
expands the work presented in Refs [15, 17, 51].

Working in the target rest frame, we use the same definitions of Eq. (2.2) for
the kinematic variables and introduce the azimuthal angle φh of the outgoing
hadron [44] through its projections:

cosφh = − lµPhνg
µν
⊥√

l2⊥P
2
hT

, sinφh = − lµPhνε
µν
⊥√

l2⊥P
2
hT

. (2.95)

It is possible to decompose the spin vector S of the target as

Sµ = S‖
P µ − qµM2/(P · q)

M
√

1 + γ2
+ Sµ⊥, S‖ =

S · q
P · q

M√
1 + γ2

, Sµ⊥ = gµν⊥ Sν .

(2.96)
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2. Theory of polarized and unpolarized TMDs

We introduce the spin azimuthal angle φS, in analogy to the definition of
φh, simply substituting Ph with S in Eq. (2.95).

In one-photon exchange approximation, the cross section for semi-inclusive
DIS can be expressed by a set of structure functions [52], dependent on x, Q2,z
and P 2

hT , as

dσ

dxdydψdzdφhdP 2
h⊥

=

α2

xyQ2

y2

2(1− ε)

(
1 +

γ2

2x

){
FUU,T + εFUU,L +

√
2ε(1 + ε) cosφhF

cosφh
UU

+ ε cos (2φh)F
cos 2φh
UU + λe

√
2ε(1− ε) sinφhF

sinφh
LU

+ S‖
[√

2ε(1 + ε) sinφhF
sinφh
UL + ε sin (2φh)F

sin 2φh
UL

]

+ S‖λe
[√

1− ε2FLL +
√

2ε(1− ε) cosφhF
cosφh
LL

]

+ |S⊥|
[

sin (φh − φS)
(
F

sin(φh−φS)
UT,T + εF

sin(φh−φS)
UT,L

)

+ ε sin (φh + φS)F
sin(φh+φS)
UT + ε sin (3φh − φS)F

sin(3φh−φS)
UT

+
√

2ε(1 + ε) sinφSF
sinφS
UT +

√
2ε(1 + ε) sin (2φh − φS)F

sin(2φh−φS)
UT

]

+ |S⊥|λe
[√

1− ε2 cos (φh − φS)F
cos(φh−φS)
LT +

√
2ε(1− ε) cosφSF

cosφS
LT

+
√

2ε(1− ε) cos (2φh − φS)F
cos(2φh−φS)
LT

]}
,

(2.97)

where we used the previous meaning for the indices of the functions FXY,Z .
The cross section is differential in ψ, which is the azimuthal angle of `′ on the
lepton beam axis with respect to an arbitrary direction, usually the direction
of S in the case of a transversely polarized target; in deep kinematics we can
use dψ ≈ dφS.

The relation to the collinear semi-inclusive cross section can be directly
obtained integrating Eq. (2.97) over the transverse hadron momentum Ph⊥ :

dσ

dxdydψdz
=

2α2

xyQ2

y2

2(1− ε)

(
1 +

γ2

2x

)
{FUU,T + εFUU,L + S‖λe

√
1− ε2FLL

+ |S⊥|
√

2ε(1 + ε) sinφSF
sinφS
UT + |S⊥|λe

√
2ε(1− ε) cosφSF

cosφS
LT }

(2.98)

where the relation with the previous unintegrated structure functions is

FUU,T
(
x, z,Q2

)
=

∫
d2PhTFUU,T

(
x, z, P 2

hT , Q
2
)
. (2.99)
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2.4. Sivers distribution function in leptoproduction

To explicit the relation between the structure functions with polarization
and the parton distribution and fragmentation functions, we need to calculate
the leptoproduction cross section, expressed as the product of a leptonic and
a hadronic tensor:

dσ

dxdydψdzdφhdP 2
hT

=
α2y

8zQ4
2MW µνLµν , (2.100)

where the leptonic and hadronic tensor have been already discussed in the
previous sections.

The transverse direction is defined with respect to the momenta of the
target and of the produced hadron, and the photon acquires a transverse mo-
mentum qT . In some occasion, it is more convenient to use a frame where the he
initial quark and the virtual photon are collinear and the transverse direction
is defined in relation to them and the final hadron has a transverse momentum
PhT . At leading twist the two frames are related by qT = −PhT/z. The term ∆
or Φ that appears in the hadronic tensor, expressed as in Eq. (2.61), are related
to the quark distributions and quark fragmentation, respectively. Focusing on
the Sivers function, we will discuss more in detail the quark-quark correlation
function Φ, defined in Eq. (2.62).

If we consider also target polarization, neglected until now, the leading part
of the transverse momentum dependent correlator becomes [15]

Φ (x,k⊥) =
1

2

{
f1/n+ + f⊥1T

ερσT STρk⊥σ
M

/n+ + g1Sγ5/n+ + h1T

[
/ST , /n+

]
γ5

2

+ h⊥1s

[
/k⊥, /n+

]
γ5

2M
+ ih⊥1

[
/k⊥, /n+

]

2M

}
(2.101)

where we used εαβT = εαβρσn+ρn−σ and we introduced the following shorthand
notation for the spin-dependent function (i.e., the one with an index S):

g1S (x,k⊥) = SLg1L

(
x,k2

⊥
)
− ST · k⊥

M
g1T

(
x,k2

⊥
)

(2.102)

It is useful define combination of the original functions which can later related
to experimental observables, as in the case of the transversity function, which
is defined as

h1(x,k2
⊥) ≡ h1T (x,k2

⊥) + h
⊥(1)
1T (x,k2

⊥) . (2.103)

We can define eight different TMD distribution functions, related to the
polarization of the nucleon target and of the struck quark.

The relation between quark correlators and structure function can again
be found through projections of the type Φ[Γ], where Γ is a Dirac matrix
γµ, γµγ5, iσ

µνγ5, 1, iγ5.
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2. Theory of polarized and unpolarized TMDs

The explicit expression for all the projections that include twist–2 TMDs
are

Φa[γ+] =fa1
(
x,k2

⊥
)
− εijT k

i
⊥S

j
⊥

M
f⊥a1T

(
x,k2

⊥
)
, (2.104)

Φa[γ+γ5] =SLg
q
1L

(
xA,k

2
⊥
)

+
k⊥ · S⊥
M

ga1T
(
x,k2

⊥
)
, (2.105)

Φa[iσi+γ5] =Si⊥h
a
1

(
x,k2

⊥
)

+
ki⊥ (k⊥ · S⊥)− 1

2
k2
⊥AS

i
⊥

M2
h⊥a1T

(
x,k2

⊥
)

+ SL
ki⊥
M
h⊥a1L

(
x,k2

⊥
)

+
εijT k

j
⊥

M
h⊥a1

(
x,k2

⊥
)
. (2.106)

Transverse momentum dependent distributions of leading twist can be in-
terpreted as number densities, for example if we consider the distribution of
unpolarized quarks in a polarized proton:

fa/p↑ (x,k⊥) =Φ[/n−] = fa1
(
x,k2

⊥
)
− f⊥a1T

(
x, p2

T

) εµνρσPµpνSρ (n−)σ
M (P · n−)

=fa1
(
x,k2

⊥
)
− f⊥a1T

(
x,k2

⊥
) (P̂ × k⊥) · S

M

. (2.107)

The second expression is valid in any frame where n and the direction P̂
of the proton momentum point into opposite directions. Therefore f⊥a1T > 0
corresponds to a preference of the quark to move to the left if the proton is
moving towards the observer and the proton spin is pointing upwards.

The usual TMD structure function and their probabilistic interpretation,
related to nucleon target and quark polarization was summarized in Fig. 1.1.

If we explicit the expressions of the different correlators in the hadronic
tensor we can write the structure function which appears in Eq. (2.97) as

convolutions of PDF and FF. In particular, the structure function F
sin(φh−φS)
UT,T

contains the Sivers function:

F
sin(φh−φS)
UT,T = C

[
−ĥ · k⊥

M
f⊥1TD1

]
. (2.108)

We introduce also the corresponding expression for the structure function
in terms of the Fourier transform of the first moment of the Sivers function
f
⊥(1)a
1T and of the FF:

F
sin(φh−φS)
UT,T

(
x, z,P 2

hT , Q
2
)

= −2πM
∑

a

e2
ax

∫ ∞

0

dξ2
T ξ

2
T J1 (ξT |PhT | /z)

× f̃⊥(1)a
1T

(
x, ξ2

T ;Q2
)
D̃a~h1

(
z, ξ2

T ;Q2
)
. (2.109)
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2.4. Sivers distribution function in leptoproduction

(a) (b)

Figure 2.7: Gauge link for semi-inclusive DIS (a) and Drell–Yan (b)

2.4.1 Time reversal of Sivers function

An interesting feature of the Sivers function f⊥1T (x, k2
⊥) and the Boer-Mulders

function h⊥1 (x, k⊥) is to be time-reversal odd, or T-odd for short. This means
that when a naive time-reversal transformation is applied to the Sivers dis-
tribution the resulting function has an opposite sign. At first, this seems to
suggest that the function is its own opposite, thus excluding the possibility of
having a non-zero value. However, we are considering a gauge theory where
Wilson lines are present and the PT transformation changes them from the
past-pointing to the future-pointing direction, introducing a different term for
each functions and thus avoiding their cancellation.

In the case of Drell–Yan processes we have to include past-pointing Wilson
lines, opposed to the gauge links introduced in the definition of the SIDIS
polarized cross section [40].

As we observed, to preserve gauge invariance in the expression of the
hadronic tensor it is necessary to introduce gauge link U , defined as

Un−(0,+∞) = Un−
(
0−,∞−; 0T

)
UT
(
0T ,∞T ;∞−

)
(2.110)

Un−(+∞,ξ) = UT
(
∞T , ξT ;∞−

)
Un−

(
∞−, ξ−, ξT

)
, (2.111)

where Un− (a−, b−; cT ) denotes a gauge link going from [a−, 0+, cT ] to [c−, 0+, bT ]
along the minus direction. Instead, UT (aT , bT ; c−) indicates a Wilson line run-
ning in the transverse direction. Their explicit expression is

Un−
(
a−, b−; cT

)
= P exp

[
−ig

∫ b−

a−
dη−A+

(
η−, 0, cT

)
]

(2.112)

UT
(
aT , bT ; c−

)
= P exp

[
−ig

∫ bT

aT

dηT · AT
(
c−, 0,ηT

)]
(2.113)

The graphical representation of the gauge link for the SIDIS and DY case
are shown in Fig. 2.7a and Fig. 2.7b, respectively. The gauge link structure
can change for different processes [53, 54]. The gauge link can be calculated,
choosing a specific model, considering the contributions at leading twist of
diagrams similar to the ones shown in Fig. 2.8 and their conjugates.
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2. Theory of polarized and unpolarized TMDs

Figure 2.8: Types of diagrams contributing to the gauge link.

Understanding how the gauge links and the quark-quark correlator change
in relation to the kind of process is fundamental to keep using the same uni-
versal distributions to fit different processes in a global analysis.

As an example, we outline the differences between the calculation of the
amplitude for Drell–Yan scattering and SIDIS, taking into account also gauge
links. We adopt the eikonal approximation, thus taking into account only the
leading parts of the momenta of the quark after the photon scattering. The
leading part in this calculation are the minus components.

The important difference for DY compared to the SIDIS case is that, instead
of having an outgoing quark, we have an incoming antiquark. As a consequence
the quark propagator in the upper part of the diagram is slightly modified. For
the diagram of semi-inclusive DIS, shown in Fig. 2.9a, we get

i(/k + /q − /l +m)

(k + q − l)2 −m2 + iε
≈ i

(k + q)−γ+

−2l+(k + q)− + iε
=

iγ+

2(−l+ + iε)
(2.114)

In the last step it is essential that we have (k + q)− > 0, which is guaranteed
by the fact that we have an outgoing quark with momentum (k + q) in the
final state.

Instead, the explicit expression for the propagator in the Drell–Yan in
Fig. 2.9b case is written:

i(/k − /q − /l +m)

(k − q − l)2 −m2 + iε
≈ i

−(q − k)−γ+

2l+(q − k)− + iε
=

iγ+

2 (−l+ − iε)
(2.115)

Differently from the SIDIS case, in this case we have (q− k)− ≥ 0, because
we consider an incoming quark with momentum q−k in the initial state, which
gives an opposite sign for iε. This detail leads to a noticeable difference for the
calculation of the Sivers function, since when we apply the residue theorem to
integrate over l+, we use

1

[l+ − iε] → 2πiδ
[
l+
]

(2.116)

while for semi-inclusive DIS we have to use
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2.5. Evolution of TMDs

(a) (b)

Figure 2.9: Feynman diagrams for semi-inclusive DIS (a) and Drell–Yan (b)

1

[l+ + iε]
→ −2πiδ

[
l+
]

(2.117)

and the final result will carry an opposite sign.
More in general, the gauge link introduced for the gauge invariance of DY

processes, goes towards −∞ instead of +∞, or in other terms, we have a
past-pointing Wilson line instead of a future-pointing one.

Therefore the DY quark correlator will assume the form

Φij (x, k⊥) =

∫
dξ−d2ξT

(2π)3
eip·ξ〈P |ψ̄j(0)Un−(0,−∞)U

n−
(−∞,ξ)ψi(ξ)|P 〉

∣∣∣∣
ξ+=0

(2.118)

The differences in the gauge links have the effect of modifying the T-odd
distribution functions. In particular, the contribution of the Sivers and the
Boer–Mulders functions will have an opposite sign for DIS and Drell–Yan.

2.5 Evolution of TMDs

2.5.1 Evolution formalism for unpolarized TMDs

To carry out a complete determination of TMD parton distribution and frag-
mentation functions one needs to study how they are affected by the change
of parton flavor and values of the kinematic variables x, z, P⊥ or qT . To in-
vestigate their behavior, we have included measurements that cover a large
kinematic region and have been collected from three different processes by
different experimental collaboration.

However to have a full description of the TMDs we have to reproduce also
how their shape and normalization change in relation with the energy scale
Q2, to establish in this way a connection between experimental measurements
at any value of the hard scale and, at the same time, to test the validity of the
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2. Theory of polarized and unpolarized TMDs

QCD formalism that describes them and predicts the scale evolution of TMDs.
To fully appreciate TMD evolution, we included also Z boson production data,
in order to cover a wider Q2 interval, going from Q ' 1 GeV to Q 'MZ .

In this section we discuss the formalism needed to describe the QCD evo-
lution of TMDs. The resulting evolution equations derive from factorization
theorems, which give us rules for the separation of soft and hard scales. Fac-
torization is a fundamental concept in QCD phenomenology which provides
much of the predictive power of the theory behind hard scattering processes,
providing a solid basis for the description of perturbative and nonperturbative
effects measured in various high energy experiments.

Different factorization procedures should be applied in different kinematic
regions, characterized by the ratio of qT with respect to Q. In the low-qT region
(qT � Q) transverse momentum is generated by nonperturbative contributions
and by soft and collinear gluon radiation. In this regime, TMD factorization
applies and the nonperturbative objects involved are TMDs. In the high-qT
region (qT � Q) transverse momentum is generated by hard perturbative radi-
ation, therefore collinear factorization applies and the nonperturbative objects
involved are collinear PDFs [47].

In the intermediate region, where M � qT � Q, both descriptions could
be valid; a prescription to match the two factorization schemes is then re-
quired [55]. A common solution is the introduction of a matching term

Y (qT ,M) =
dσ

dq2
T

∣∣∣∣
fixed
order

− dσ

dq2
T

∣∣∣∣
ASY

. (2.119)

The first term is the differential cross section calculated at a fixed order n
for high-qT , while the second term subtracts the asymptotic limit qT → 0
of the fixed order, which is already included in the TMD description. By
construction, the matching term should be negligible for low-qT , increase in
the intermediate region and finally match the fixed order calculation at high-
qT [56]. The transverse momentum qT is related to PhT by the relation PhT =
−zqT .

The most interesting kinematic region to study the three-dimensional nu-
cleon structure is the low-qT regime, where the effects related to intrinsic trans-
verse momenta of partons in the nucleon are more evident.

If we consider semi-inclusive DIS in a region where the transverse momen-
tum qT is much smaller than the hard scale Q, in general the cross section
can be factorized in terms of nonperturbative elements which depends on the
parton and produced hadron transverse momenta, in what is called TMD fac-
torization:

d(n)σ ≈
∑

a

H(Q, µ)fa1 (x,k2
⊥;µ, ζ)Da~h1 (z,P 2

⊥, µ, ζh) +O
(
PhT
Q

)
. (2.120)
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Similarly for the Drell–Yan process we have

d(n)σ ≈
∑

a,b

H(Q, µ)fa1 (xa, p
2
T ;µ, ζa)f

b
1(x, p2

T , µ, ζb) +O
(
qT
Q

)
. (2.121)

where H is a factor that represents the hard interaction and µ is the factoriza-
tion scale where separation between hard and soft part occur. The meaning of
the scale ζ will be explained in the next sections.

One of the most commonly used method to deal with divergences that
arise from the choices for the scales is the transverse momentum resummation,
intially developed by Collins and Soper. In their original work [14] they derived
the factorization theorem for for e+e− annihilation and it was later extended
to other high energy processes.

The observation at the basis of the resummation procedure is that at low
transverse momentum qT � Q fixed-order calculations are not reliable any-
more [57]. The reason is that in the limit qT → 0, infra-red singularities do
not cancel completely between real and virtual diagrams, leaving in the cross
section dσ/dq2

T logarithmic terms of the form

αkS
lnm(Q2/q2

T )

q2
T

(2.122)

where k is the perturbative order and m = 1, . . . , 2k − 1. For smaller qT the
coupling constant αS is not a valid expansion parameter for the perturbative
series, since it will not be able to compensate the divergence of the logarithms
divided by the small value of qT . Consequently, to have a consistent estimate
of the cross section, it becomes necessary to resum the large logarithms to all
order in αS.

The most widespread method for resummation is the Collins-Soper-Sterman
(CSS) formalism [55]. It is derived in configuration space, which is related to
the momentum space by a Fourier transform. In this space the convolution of
TMDs with the evolution has a simpler expression and the conservation of the
soft-gluon momenta is guaranteed. The formalism was initially developed for
the Drell–Yan process and then applied also to other high energy observables,
including unpolarized and polarized SIDIS.

An important observation is that the CSS evolution equations used for the
evolution of spin-dependent and unpolarized TMDs is the same [58].

2.5.2 Evolution operator

As we have seen the relevant structure function for the calculation of the
unpolarized SIDIS cross section is FUU,T ; following the CS factorization it can
be written as

FUU,T =H
(
Q2, µ2

)∑

a

xe2
a

∫
d2k⊥

d2P⊥
z

× δ(2) (zk⊥ + P⊥ + zqT ) fa1
(
x,k2

⊥; ζ
)
Da

1

(
z,P 2

⊥; ζ
)
. (2.123)
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The corresponding formulation in ξT -space is

FUU,T (x, z,P 2
hT , Q

2) ≈
∑

a

e2
ax

∫
dξ2

T e
iξTPhT /zf̃1

a
(x, ξ2

T ;µ, ζ)D̃a~h1 (z, ξ2
T ;µ, ζ)

(2.124)
Having defined explicitly the convolution in ξT -space of TMD PDF and

FF contained in the unpolarized structure function, we can now apply the
CSS evolution formalism to them, and observe how they depend upon the
renormalization scale µ and the rapidity scale ζ, related to two different kind
of divergences of the perturbative part of FUU,T . The ultraviolet divergences
in the cross section calculation are regulated by introducing a renormalization
scale µ. The dependence of the nonperturbative components on this scale is
dictated by renormalization group equations (RGEs).

In addition to the standard UV divergences, the TMD distributions contain
also the so-called light-cone or rapidity divergences [59]. They arise when the
gauge links required for the definitions of the TMD correlators are oriented
exactly in light-like directions. This type of singularities is not present in the
collinear correlation functions because they cancel out when the integration
over qT is performed, which naturally is not carried out in the TMD case. Light-
cone divergences correspond to gluons moving with infinite rapidity in the
direction opposite to the hadron which contains them, and are not regulated
by the use of an infrared cut-off.

The common approach to deal with the light-cone divergences to act on
the direction of the Wilson lines. Initially they are deviated slightly from
the light-cone directions, removing in this way the rapidity divergences. This
deviation however introduces a dependence on the arbitrary rapidity scale ζ.
This scale can be used to separate three kinematic regions and introduce three
nonperturbative objects: a soft factor and two TMDs. To have a consistent
definition of TMDs it is necessary to consider also the role of soft gluons in
the formula for TMD factorization, which brings a separate soft factor, defined
as the expectation value of the Wilson lines on bare fields. The soft factor,
which would introduce an universal normalization in the calculation of the
cross section of different processes, is usually adsorbed into the TMDs, now
called subtracted TMDs, to distinguish them from the previous unsubtracted
ones.

As we have seen, in general the QCD evolution with respect to µ follows
standard renormalization group equations (RGE), while the evolution in ζ is
determined by a different set of equations[60].

The evolution equation of the TMDs with respect to the rapidity scale can
be written in terms of a rapidity-independent kernel

∂ ln f̃(x, ξT ;µ, ζ)

∂ ln ζ
= K(ξT ;µ)f̃(x, ξT ;µ, ζ) . (2.125)

This is called the Collins-Soper kernel and it regulates the rapidity evolution
for any quark TMDs, as its definitions is connected to the soft factor, which
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2.5. Evolution of TMDs

is entirely related only to soft-gluon emission and hence spin and flavor inde-
pendent. Considering that we want to apply this evolution kernel to factorized
factors that will be evaluated at different µ, it is important to consider also its
RG evolution, expressed by

dK(ξT ;µ)

d lnµ
= Γcusp[αS(µ)] . (2.126)

The evolution of TMD distribution function from µb to another value of µ
is governed by the standard renormalization group equations [61]:

df̃(x, ξT ;µ, ζ)

d lnµ
= γF

(
αs(µ); ζ/µ2)

)
f̃(x, ξT ;µ, ζ) (2.127)

where γF is called anomalous dimension and is defined as

γF = −
(

Γcusp ln
ζ

µ2
+ γV

)
. (2.128)

The terms Γcusp and γV can be written as power series in αS in the MS
scheme [60].

Solving the Collins-Soper equation for rapidity and the RG equations for
renormalization, we find the expression for the TMD distribution evolved from
the initial scale {µi, ζi} to {µf , ζf}:

f̃(x, ξT ;µf , ζf ) =
∑

a=q,q̄,g

(Ci ⊗ fa1 )(x, ξT , µi, ζi)

(
ζf
ζi

)−K(ξT ,µi)

× exp

{∫ µf

µi

dµ

µ
γF

}
fa1NP(x, ξT )

(2.129)

The terms in exponential is called Sudakov factor and written in a more com-
pact form as eS(µ2i ,Q).

The explicit expression for the Sudakov form factor S(µ2
b , Q) reads

S(µ2
b , Q

2) = −1

2

∫ Q2
b

µ2b

dµ2

µ2

[
A
(
αS(µ2)

)
ln

(
Q2

µ2

)
+B

(
αS(µ2)

)]
, (2.130)

where the functions A and B can be written as perturbative expansions in αs

A(αS) =
∞∑

k=1

Ak

(αS
π

)k
B(αS) =

∞∑

k=1

Bk

(αS
π

)k
(2.131)

If we consider the resummation only at order Next-to-Leading Logarithms
(NLL), only the coefficient A1,2 and B1 are needed. Their explicit expressions
are [62, 55]

A1 = CF , A2 =
1

2

[
CA

(
67

18
− π2

6

)
− 5

9
Nf

]
, B1 = −3

2
CF , (2.132)
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where CA and CF are related to the number of colors Nc by

CA = Nc, CF = (N2
c − 1)/2Nc (2.133)

and Nf is related to the number of active quarks

The TMD evolution framework leaves some arbitrary choices that can lead
to different possible scenarios, according for example to the choice of the initial
starting value for the factorization scale, and of the model for the nonpertur-
bative part of the evolution kernel. We will discuss in the next chapter also
the specific choices that we made for our parametrization of the TMDs.

2.5.3 Analytical calculation of Sudakov factor

The explicit expression of the Sudakov factor can be obtained at LL solving
the integral

∫ Q2
b

µ2b

1

2µ2
CF

1

π

4π

β0 log (µ2/Λ2)
log

(
Q2

µ2

)
(2.134)

where CF has been defined already and β0 is a function dependent on the
number of flavors available for the particles involved in the process at leading
order:

β0 = βLO(Q) = 11− 2

3
nf (Q) . (2.135)

The variable nf (Q) gives the number of available flavors for different energy
thresholds:

nf (Q) =





3 if Q < 1.4 GeV

4 if 1.4 < Q < 4.5 GeV

5 if Q > 4.5 GeV

(2.136)

To calculate the integral Eq. (2.134) we assumed Q2, µ2
b ,Λ

2 to be real and
positive. Moreover these quantities are assumed to have the following relations:

µ2
b < Λ2; Q2

b < µ2
b

.
(2.137)

After integrating Eq. (2.134), the expression for the Sudakov factor becomes

2CF
β0

[
log(Q2

b) log

(
log(Q2

b/Λ
2)

log(µ2
b/Λ

2)

)
+ log(Λ2) log

(
log(µ2

b/Λ
2)

log(Q2
b/Λ

2)

)
+ log

(
µ2
b

Q2
b

)]
.

(2.138)
This can be rewritten in a more condensed way as

exp

{
−
[
2CF

(
log

(
µ2
b

Q2
b

)
+ log

(
Q2

Λ2

)
log(

log(Q2
b/Λ

2)

log(µ2
b)/Λ

2)

)
· 1

β0

]}
. (2.139)
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2.5.4 Wilson coefficients

To study the evolution of TMDs in configuration space it is useful to separate
their perturbative part, related mostly to the interaction of the hadron with
the probe, from the nonperturbative part.

To factorize these terms we apply the Operator Product Expansion, pro-
posed by Wilson [63]. It states that a product of local operators have an
expansion of the form

A(x)B(y) =
∑

n

Cn(x− y)On(x) (2.140)

when |x − y| is sufficiently small. On(x) is a basis of local operators. In the
same way, a generic TMD function can be expanded over a basis of collinear
PDFs using the appropriately named Wilson coefficients C. The TMD parton
distribution functions, and similarly also the TMD FF, can be represented
as [64]

f1(x, ξT ;µ, ζ) = [C ⊗ f1](x, ξT ;µ, ζ) +O(ξTΛQCD) (2.141)

where the first factor of the sum can be calculated perturbatively at small ξT
and the second term contains the contributions relevant for ξT � ΛQCD.

The convolution is defined as

(C ⊗ f1) (x, ξT ;µ, ζ) =

∫ 1

z

du

u
C

(
x

u
, ξT ;µ, ζ

)
f1(u;µ) . (2.142)

This formula is valid only for the small ξT region, as the explicit expression for
the Wilson coefficients consists in a power series in αS ln(µ2/µ2

b), and the OPE
is valid only when the logarithms are not divergent. The definition of µb is

µb =
2e−γE

ξT
(2.143)

and the term γE in the exponent is the Euler gamma constant.
We want to have a consistent definition for the perturbative expression,

thus minimizing all the divergent logarithm. A natural choice for the scale
µ that takes into account the logarithms in Eq. (2.122) and in the Wilson
coefficient is µ = µb.

To include in Eq. (2.142) also the contributions at large ξT we introduce an
additional nonperturbative term f1NP, obtaining the following expression for
the TMD distribution at the initial scales µi and ζi:

f̃a1 (x, ξT ;µi, ζi) =
∑

i=q,q̄,g

Ca/i(x, ξT ;µi, ζi)⊗ f i1(x;µi)f̃
a
1NP(x, ξT ) . (2.144)

The model f1NP might be a function of x, the flavor parton a. Then the func-
tional form of TMDs has different characteristic in different regimes, depending
on the value of ξT . For small values it can be calculated in perturbative QCD,
for the nonperturbative part at large ξT the calculations cannot be performed
and it must be constrained by fitting experimental data.
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2. Theory of polarized and unpolarized TMDs

2.5.5 Parametrization of renormalization scale

As shown in the previous section the cross section in transverse momentum
space is obtained by an inverse Fourier transform of f(x, ξT ;Q2). This involves
an integration over ξT = |ξT | from 0 to infinity. Because of the Landau pole
of the perturbative strong coupling in the Sudakov exponent at ξT ∼ ΛQCD ,
this integration is not well defined for some of the possible value of ξT . The
ξT -integration extends over both perturbative (ξT � 1/ΛQCD) and nonpertur-
bative (ξT ≥ ΛQCD) regions. In order to define a perturbative resummed cross
section, a prescription for the ξT integration is required to prevent ξT from
becoming too large and to avoid the Landau pole.

The most common prescription introduces a new parameter, called ξmax,
that represent the limit for ξT , beyond which we do not trust the perturba-
tive calculation [59]. Then we introduce a new variable ξ∗ for the OPE that
saturates at the value of ξmax even when ξT becomes large:

lim
ξT→∞

ξ∗T (ξT ) = ξmax. (2.145)

For ξT ≤ ξmax the evolution is controlled by the function K(ξ∗T ;µb) that now
depends on the new variable ξ∗T ) and on

µb =
2e−γE

ξ∗T
.

The nonperturbative part introduces a new term in the Sudakov factor

eS(ξT ,Q) → eS(ξT ,Q)−gnpξ2T (2.146)

where gnp is a coefficient that must be determined by comparison to data.
We can write this nonperturbative part also using the K function

gnp(ξT ) = −K(ξ∗T ;µb) +K(ξT ;µb) . (2.147)

This definition implies a dependence on ξmax, the parameter that separates
the perturbative and nonperturbative regimes. This is more evident if we
expand perturbatively the function K(ξT , µb) at lowest order, obtaining

gnp(ξT ) ' αS(µb)CF
π

ln

(
1 +

ξ2
T

ξ2
max

)
. (2.148)

In the regime ξT � ξmax we parametrize this term as gnp(ξT ) ' 1
2
g2ξ

2
T .

We observe that the parameter g2 is not totally arbitrary, because it is anti-
correlated to the value of ξmax. In general this is due to the fact that both
K(ξT ;µb) and the TMDs should not depend on the arbitrary choice of the
value of ξmax. This means that ξmax has to be considered an arbitrary scale
that separates different regimes, and not as a free parameter to fit. A varia-
tion in ξmax requests that all terms in the convolution are rearranged, so that
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the TMD PDF does not change. However in practical situations changing the
value of ξmax could give different results.

With the parametrization just discussed and using ζi = µi = µ2
b̂

and ζf =

µ2
f = Q2 we obtain the equation Eq. (2.129). We can write this expression

including all the evolution terms in a single evolution operator, called R, that
acts on the initial TMD PDF, evaluated at the scale µb:

f1(x, ξT ;Q2) = R(ξT ;Q2, µ2
b)f(x, ξT ;µ2

b). (2.149)

The effect of evolution is represented through the action of an evolution oper-
ator on an input TMD distribution evaluated at the scale µb, which depends
on ξT . This dependence assures that there is a smooth matching between the
perturbative region at small ξT and the nonperturbative one at large ξT . In
addition, from Eq. (2.129) it can be seen that choosing different models for
the nonperturbative part affects the whole ξT spectrum, not only the large ξT
region.

The procedure used for the evolution of TMD PDFs can be reproduced in
a similar way for the TMD fragmentation function.

Finally, having defined all the necessary elements, we can write the convo-
lution in configuration space of the evolved D1 and f1 that appears in FUU,T :

FUU,T (x, z,P 2
hT , Q

2) =
1

2πz2

∫ ∞

0

dξT |ξT |J0

(
|ξT ||

PhT
z
|
)
f1(x, µ2

b)R(ξT ;Q2, µ2
b)

×D1(z, µ2
b)z

2R(ξT ;Q2, µ2
b) exp

(
− P

2
hT ξ

2
T

4z2

)
.

(2.150)

2.5.6 TMD evolution and Sivers distribution

The Sivers distribution function is a fundamental tool to study how the internal
structure of nucleons influences scattering processes with polarized targets. To
have a complete picture of their behavior is fundamental to comprehend how
it is affected by changes in the energy scale of the process.

The formalism used to describe evolution of unpolarized TMDs can be
applied also in the spin-dependent case. The evolution of the Sivers function is
usually defined in terms of its first derivative in configuration space f̃

⊥(1)
1T (x, ξ2

T ).
The first moment is defined as

f
⊥(1)
1T (x) =

∫
d2k⊥

k2
⊥

2M2
p

f⊥1T (x,k2
⊥) =

〈k2
⊥〉

2M2
p

f⊥1T (x) . (2.151)

As we observed, the evolution of TMDs depends on two different energy scales.
The Collins-Soper (CS) equation describes the evolution regulated by the ra-
pidity ζ and the renormalization group (RG) equations give evolution with
respect to µ.
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2. Theory of polarized and unpolarized TMDs

The CS evolution equation applied to the first moment of the Sivers func-
tion reads

∂ ln f̃
⊥(1)a
1T (x, ξ2

T ;µ, ζ)

∂ ln ζ
= K (ξT ;µ) (2.152)

where we use the same evolution kernel K(ξT , µ), defined in Eq. (2.126), and
anomalous dimension γF (αS(µ); ln(ζ/µ2)). Instead, the RG equation for the
first moment assumes the form:

df̃
⊥(1)a
1T (x, ξ2

T ;µ, ζ)

d lnµ
= γF

(
αs(µ); ζ/µ2)

)
f̃
⊥(1)a
1T (x, ξ2

T ;µ, ζ) . (2.153)

The TMD evolution for the Sivers function f
⊥(1)
1T follows the same equa-

tions of the unpolarized TMD f1, however, there is a difference in the OPE
expansion: while for the evolution of the unpolarized distributions we consider
the convolution with the Wilson coefficient Ci, in the case of Sivers function we
have a different coefficient CSiv. Then, we will apply the evolution equations
to the object

f̃⊥a1T (x, ξT ;µb, ζ) =
∑

i=q,q̄,g

CSiv
a/i (x, ξT , µb, ζ)⊗ f⊥(1)i

1T (x, µb)f̃
⊥a
1TNP(x, ξT ) . (2.154)

We substitute the first moment of the Sivers function with the twist-3
Qiu-Sterman function TaF (x, x, µ) which can be considered the collinear coun-

terpart of the Sivers function [65]. The first moment f
⊥(1)
1T (x) is related to the

Qiu-Sterman function by the following relation [66]:

f
⊥(1)
1T (x) = − 1

2M
TF (x, x) . (2.155)

The µb evolution for this term follows the Efremov–Teryaev–Qiu–Sterman
(ETQS) evolution equations [67]. In our case the Wilson coefficients are cal-
culated at leading-order and then they assume the form [68]:

CSiv(0) = δ(1− x)δai . (2.156)

Moreover, we assume that f
⊥(1)
1T (x) evolves in the same way as f1(x), which

constitutes, however, a simplification [69].
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Chapter 3
Phenomenology of unpolarized
TMDs

3.1 Introduction

The determination of TMD parton distribution and fragmentation functions,
due to their nonperturbative nature, cannot be done only through analytical
methods but has to be extracted form experimental observables measured in
hard scattering processes. Through this extraction from experimental data,
we want to study the evolution of TMDs over a large enough range of energy,
and to test their universality among different processes. To achieve this we
included measurements taken from SIDIS, Drell–Yan and Z boson production
from different experimental collaborations at different energy scales.

As we explained in the previous chapter, if we take into account target and
probe polarizations, we can define several different TMDs [15, 17, 18, 19, 20]. In
the past there have been many different attempts to extract some of them, with
different levels of accuracy and sometimes without considering the contribution
of TMD evolution [23, 24, 25, 26, 27, 28, 29, 30, 31]. In this chapter we present
our work [70] on the extraction of the simplest ones of all the possible transverse
distributions, the unpolarized TMD PDF f q1 (x, k2

⊥) and the unpolarized TMD
FF Dq→h

1 (z, P 2
⊥).

Even if they appear simple, the phenomenology of these unpolarized TMDs
presents several challenges [71], such as the choice of a functional form for the
nonperturbative components of TMDs, the inclusion of a possible dependence
on partonic flavor [72], the implementation of TMD evolution [60, 73], the
matching to fixed-order calculations in collinear factorization [74].

In this chapter we present the first attempt at a global fit of unpolarized
TMDs, including their evolution. We have considered three kinds of processes:
SIDIS, Drell–Yan processes (DY) and the production of Z bosons. To date,
they represent all possible processes where experimental information is avail-
able for unpolarized TMD extractions. The only important process currently
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3. Phenomenology of unpolarized TMDs

missing is electron-positron annihilation, which is particularly important for
the determination of TMD FFs [60]. The expression for the observables mea-
sured in SIDIS and DY experiments contains at least a TMD parton distribu-
tion, while the cross section of e+e− annihilation is proportional to the convolu-
tion of two TMD fragmentation functions. Therefore, when annihilation data
will be available, including them in an eventual global fit will allow to extract
the FF without an inherent bias from the coupled PDF. The measurements
for the included processes have been taken by different experimental collabo-
ration, such as Hermes at DESY, Compass at CERN and E288, E605, CDF,
D0 at Fermilab.

3.2 Formalism

3.2.1 Semi-inclusive DIS

The first step taken in our study was the independent analysis of semi-inclusive
DIS measured at Hermes the same group of data considered in a previous
work of the Pavia group [72], using a similar Gaussian functional form for
the TMDs but with an important addition, that is the contributions of TMD
evolution. To enrich the statistics of SIDIS data, for the next stage we decided
to include the large number of Compass measurements, even if they were not
as sensible to parton flavor as the Hermes data. In order to make the analysis
more sensible to the change of energy, subsequently we considered also data
sets for DY and Z boson production cross section, collected at Fermilab, which
covers a larger interval of Q2. Following the initial steps of our analysis, which
started from the Hermes data, in this section we start with outlining the
formalism necessary to the analysis of the semi-inclusive DIS multiplicities.

The available SIDIS data from Hermes and Compass, refer to SIDIS
hadron multiplicities, i.e., to the differential number of hadrons produced per
corresponding inclusive DIS event. In terms of cross sections, the multiplicities
can be defined as

mh
N(x, z, |PhT |, Q2) =

dσhN/(dxdzd|PhT |dQ2)

dσDIS/(dxdQ2)
, (3.1)

where dσhN is the differential cross section for the SIDIS process and dσDIS

is the corresponding inclusive one, and where PhT is the component of Ph
transverse to q (we follow here the notation suggested in Ref. [75]). We already
discussed how the unpolarized inclusive and semi-inclusive DIS cross sections
can be expressed in terms of structure functions. In the single-photon-exchange
approximation, the multiplicities can be written as ratios of structure functions
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3.2. Formalism

(see Ref. [46] for details):

mh
N(x, z, |PhT |, Q2) =

2π |PhT |FUU,T (x, z,P 2
hT , Q

2) + 2πε|PhT |FUU,L(x, z,P 2
hT , Q

2)

FT (x,Q2) + εFL(x,Q2)
. (3.2)

The semi-inclusive cross section can be expressed in a factorized form in
terms of TMDs only in the kinematic limits M2 � Q2 and P 2

hT � Q2. In
these limits, the structure function FUU,L of Eq. (3.2) can be neglected [47].
The structure function FL in the denominator contains contributions involving
powers of the strong coupling constant αS at an order that goes beyond the level
reached in this analysis; hence, it will be consistently neglected (for measure-
ments and estimates of the FL structure function see, e.g., Refs. [76, 77, 78, 79]
and references therein).

To express the structure functions in terms of TMD PDFs and FFs, we
rely on the factorized formula for SIDIS [14, 55, 80, 81, 22, 59, 82, 83, 84] (see
Fig. 2.3 for a graphical representation of the involved transverse momenta):

FUU,T (x, z,P 2
hT , Q

2) =
∑

a

Ha
UU,T (Q2) (3.3)

× x
∫
d2k⊥ d

2P⊥ f
a
1

(
x,k2

⊥;Q2
)
Da~h1

(
z,P 2

⊥;Q2
)
δ(2)
(
zk⊥ − PhT + P⊥

)

+ YUU,T
(
Q2,P 2

hT

)
+O

(
M2/Q2

)
.

Here, HUU,T is the hard scattering part. The Fourier transform in momentum
space of this structure function is

FUU,T (x, z,P 2
hT , Q

2) = 2π
∑

a

Ha
UU,T (Q2) (3.4)

× x
∫ ∞

0

dξT ξTJ0

(
ξT |PhT |/z

)
f̃a1
(
x, ξ2

T ;Q2
)
D̃a~h1

(
z, ξ2

T ;Q2
)

+ YUU,T
(
Q2,P 2

hT

)
+O

(
M2/Q2

)
.

For the moment we have included the possibility of higher order contributions
in HUU,T and the presence of the matching term YUU,T of Eq. (2.119).

TMDs generally depend on two energy scales [22], which enter via the
renormalization of ultraviolet and rapidity divergences. In this chapter we
choose them to be equal and set them to Q2. The term YUU,T is introduced
to ensure a matching to the perturbative fixed-order calculations at higher
transverse momenta.

In our analysis, we neglect any correction of the order of M2/Q2 or higher
to Eq. (3.3). At large Q2 this is well justified. However, fixed-target DIS
experiments typically collect a large amount of data at relatively low Q2 values,
where these assumptions should be all tested in future studies. The reliability
of the theoretical description of SIDIS at low Q2 has been recently discussed
in Refs. [56, 85].
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3. Phenomenology of unpolarized TMDs

Eq. (3.3) can be expanded in powers of αS. In the present analysis, we
will consider only the terms at order α0

S. In this case Ha
UU,T (Q2) ≈ e2

a and
YUU,T ≈ 0. However, perturbative corrections include large logarithms L ≡
log
(
z2Q2/P 2

hT

)
, so that αSL ≈ 1. In the present analysis, we will take into

account all leading and NLL. We remark that formulas at NNLL are available
in the literature [86].

In these approximations (α0
S and NLL), only the first term in Eq. (3.3) is

relevant (often in the literature this has been called W term). We expect this
term to provide a good description of the structure function only in the region
where P 2

hT � Q2. It can happen that YUU,T , defined in the standard way (see,
e.g., Ref. [55]), gives large contributions also in this region, but it is admissible
to redefine it in order to avoid this problem [74].

3.2.2 Drell–Yan and Z production

To test the universality of the TMD parton distribution functions we included
in our analysis also measurements of Drell–Yan cross section. As we have
seen, the description of a Drell–Yan cross section involves the convolution of
two PDFs, one for each of the hadrons present in the initial state. Due to
the universality property, we use the same expression for the distributions
involved in the modelization of the Drell–Yan and SIDIS process. In a Drell–
Yan process, two hadrons A and B with momenta PA and PB collide at a
center-of-mass energy squared s = (PA+PB)2 and produce a virtual photon or
a Z boson plus hadrons. The boson decays into a lepton-antilepton pair. The
invariant mass of the virtual photon is Q2 = q2 with q = l + l′. We introduce
the rapidity of the virtual photon/Z boson

η =
1

2
log

(
q0 + qz
q0 − qz

)
. (3.5)

where the z direction is defined along the momentum of hadron A (see Fig. 2.6).
The cross section can be written in terms of structure functions [87, 49].

For our purposes, we need the unpolarized cross section integrated over dΩ
and over the azimuthal angle of the virtual photon,

dσ

dQ2 dq2
T dη

= σγ,Z0

(
F 1
UU +

1

2
F 2
UU

)
. (3.6)

The elementary cross sections are

σγ0 =
4π2α2

em

3Q2s
, σZ0 =

π2αem

s sin2 θW cos2 θW
BR(Z → `+`−)δ(Q2 −M2

Z), (3.7)

where θW is Weinberg’s angle, MZ is the mass of the Z boson, and BR(Z →
`+`−) is the branching ratio for the Z boson decay in two leptons.We used the
values sin2 θW = 0.2313, MZ = 91.18 GeV, and BR(Z → `+`−) = 3.366 [88].
We adopted the narrow-width approximation, i.e., we neglect contributions for
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3.2. Formalism

Q2 6= M2
Z . Similarly to the SIDIS case, in the kinematic limit q2

T � Q2 the
structure function F 2

UU can be neglected (for measurement and estimates of
this structure function see, e.g., Ref. [89] and references therein).

The longitudinal momentum fractions of the annihilating quarks can be
written in terms of rapidity in the following way

xA =
Q√
s
eη, xB =

Q√
s
e−η. (3.8)

Some experiments use the variable xF , which is connected to the other variables
by the following relations

η = sinh−1

(√
s

Q

xF
2

)
, xA =

√
Q2

s
+
x2
F

4
+
xF
2
, xB = xA − xF . (3.9)

The structure function F 1
UU can be written as (see Fig. 2.6 for a graphical

representation of the involved transverse momenta)

F 1
UU(xA, xB, q

2
T , Q

2) =
∑

a

H1a
UU(Q2) (3.10)

×
∫
d2k⊥A d

2k⊥B f
a
1

(
xA,k

2
⊥A;Q2

)
f ā1
(
xB,k

2
⊥B;Q2

)

× δ(2)
(
k⊥A − qT + k⊥B

)
+ Y 1

UU

(
Q2, q2

T

)
+O

(
M2/Q2

)
.

As in the SIDIS case, in our analysis we neglect the YUU term. The hard
coefficients HUU have been defined in Eq. (2.93).

The Drell–Yan data considered cover a wide range of Q2 and they are
fundamental for the factor gK which appears in Eq. (2.129). Also in this case,
it is useful to express the convolution of PDF in ξT -space.

The Fourier transform of the right-hand side of Eq. (3.10) has been given
in Eq. (2.92).

3.2.3 Choices for unpolarized TMDs and their evolution

In this section we will discuss the explicit expression for the terms in Eq. (2.92),
and the choices adopted for the arbitrary parameters of the TMD evolution
formalism. Evolution equations quantitatively describe the connection between
different values for the energy scales. In the following we will set their initial
values to µ2

b and their final values as Q2, so that only these quantities will be
relevant in a TMD distribution. Following the formalism of Refs. [22, 59], the
fragmentation functions in configuration space for a parton with flavor a at a
certain scale Q2 can be written as

D̃a→h
1 (z, ξ2

T ;Q2) =
∑

i=q,q̄,g

(
Ĉa/i ⊗Di→h

1

)
(z, ξ̄∗, µ

2
b) (3.11)

× eS(µ2b ,Q
2)

(
Q2

µ2
b

)−K(ξ̄∗;µb)
(
Q2

Q2
0

)gK(ξT )

D̃a→h
1NP (z, ξ2

T ) .
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3. Phenomenology of unpolarized TMDs

and the corresponding expression for the TMD PDF has been given in Eq. (2.129).
We make the canonical choice for the scale µb to be

µb =
2e−γE

ξ̄∗
, (3.12)

where γE is the Euler constant and

ξ̄∗ ≡ ξ̄∗(ξT ; ξmin, ξmax) = ξmax

(
1− exp(−ξ4

T/ξ
4
max)

1− exp(−ξ4
T/ξ

4
min)

)1/4

. (3.13)

The variable ξ̄∗ replaces the simple dependence upon ξT in the perturbative
parts of the TMD definitions of Eqs. (2.129) and (3.11). This substitution is
necessary because at large ξT these parts are no longer reliable. Therefore, ξ̄∗
is constructed so that it saturates on the maximum value ξmax, as suggested
by the CSS formalism [22, 59]. On the other hand, at small ξT the TMD
formalism is not valid and should be matched to the fixed-order collinear cal-
culations. The way the matching is implemented is not unique. In any case,
the TMD contribution can be arbitrarily modified at small ξT , considering that
resummed calculations are not reliable in that region. In our approach, we mir-
ror the general idea that leads to the introduction of the parameter ξmax and
we choose to saturate ξ̄∗ at the minimum value ξmin ∝ 1/Q. With the appro-
priate choices, for ξT = 0 the Sudakov exponent vanishes, as it should [90, 91].
Our choice partially corresponds to modifying the resummed logarithms as in
Ref. [92] and to other similar modifications proposed in the literature [93, 74].
These kind of prescriptions are in part justified by a unitarity constraint, so
that by integrating over the impact parameter ξT , the collinear expression for
the cross section in terms of collinear PDFs is recovered, at least at leading
order [74]. In the original CSS paper the functional form adopted was based on
a square-root function that saturated at a certain value. With our definition
of, ξ̄∗ rapidly saturates to its limits ξmax and ξmin, leaving a reasonably wide
region where it reduces to ξT . It becomes particularly critical for small Q,
where ξmax and ξmin assume really close values.

There are alternative schemes available to deal with the high-ξT region,
which differ from our approach, such as the the so-called “complex-ξ prescrip-
tion” [94] or another one based on an extrapolation of the perturbative small-ξT
calculation to the large ξT region based on dynamical power corrections [95].

The values of ξmax and ξmin could be regarded as arbitrary scales separating
perturbative from nonperturbative regimes. Their definition is not completely
unconstrained, but at the same time there is not a method to accurately de-
termine them. We choose to fix them to the values

ξmax = 2e−γE GeV−1 ≈ 1.123 GeV−1, ξmin = 2e−γE/Q . (3.14)

The motivations behind these choices are the following:
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Figure 3.1: Values of ξ̄∗ as a function of ξT for different energy scales Q.

Figure 3.2: Values of µ(ξ̄∗) as a function of ξT for different energy scales Q.

• the scale µb is constrained between 1 GeV and Q, so that the collinear
PDFs are never computed at a scale lower than 1 GeV and the lower limit
of the integrals contained in the definition of the perturbative Sudakov
factor (see Eq. (2.130)) can never become larger than the upper limit;

• at the initial energy scale, by definition, we do not expect any contribu-
tion of TMD evolution. In fact, if we set the energy scale at the initial
value Q = Q0 = 1 GeV, ξmax = ξmin and there are no evolution effects:
the TMD is simply given by the corresponding collinear function multi-
plied by a nonperturbative contribution depending on k⊥ (plus possible
corrections of order αS from the Wilson coefficients).

In Fig. 3.1 are shown the values for ξ̄∗(ξT , ξmax, ξmin) as a function of ξT
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3. Phenomenology of unpolarized TMDs

for Q = 1, 2, 10 GeV. We can observe how this variable reach the saturation
value more slowly with higher values of Q and in particular, for the initial
scale Q = 1 GeV we reach immediately the saturation level. The consequence
of this saturation can be observed in Fig. 3.2, where the corresponding values
of µ(ξ̄∗) are presented. In this case for Q = 1 GeV, the scale µb remain
at the initial value and there are no evolution effects, while at higher Q we
observe a larger region where the scale is not saturated, as expected from our
definition. Alternative choices for the parametrization of the scale µb and their
consequences will be discussed in the next sections.

Having discussed the parametrization of the energy scale, we need now
to discuss the explicit expression of the other terms related to the evolution,
which appear in Eqs. (2.129) and (3.11). At NLL accuracy, for our choice of
scales the evolution kernel K(ξ̄∗, µb) for the rapidity scale ζ is equal to zero.
Similarly, C and Ĉ are perturbatively calculable Wilson coefficients for the
TMD distribution and fragmentation functions, respectively. We remind that
in the present analysis, we consider only the leading-order term in the αS
expansion for C and Ĉ , i.e.,

Ca/i

(x
u
, ξ̄∗, αS

(
µ2
b

))
≈ δaiδ(1− x/u), Ĉa/i

(z
u
, ξ̄∗, αS

(
µ2
b

))
≈ δaiδ(1− z/u).

(3.15)

As a consequence of the choices we made, the expression for the evolved TMD
functions reduces to

f̃a1 (x, ξ2
T ;Q2) = fa1 (x;µ2

b) e
S(µ2b ,Q

2) egK(ξT ) ln(Q2/Q2
0) f̃a1NP(x, ξ2

T ) , (3.16)

D̃a→h
1 (z, ξ2

T ;Q2) = Da→h
1 (z;µ2

b) e
S(µ2b ,Q

2) egK(ξT ) ln(Q2/Q2
0) D̃a→h

1NP (z, ξ2
T ) . (3.17)

The explicit expression for the Sudakov exponent S was given in Eq. (2.130)1.
We use the approximate analytic expression for αS at NLO with ΛQCD =

340 MeV, 296 MeV, 214 MeV for three, four, five flavors, respectively, cor-
responding to a value of αS(MZ) = 0.117. We fix the flavor thresholds at
mc = 1.5 GeV and mb = 4.7 GeV. The integration of the Sudakov exponent
in Eq. (2.130) can be done analytically (for the complete expressions see, e.g.,
Refs. [96, 97, 83]) as discussed in Section 2.5.

Following Refs. [98, 99, 100], for the nonperturbative Sudakov factor we
use the most common choice found in the literature, which is:

gK(ξT ) = −g2ξ
2
T/4 (3.18)

with g2 a free parameter. Recently, several alternative forms have been pro-
posed [101, 102]. Also, recent theoretical studies tried to calculate this term
using nonperturbative methods [103]. In Ref. [104], a good agreement with

1We warn the reader that the definition of the Sudakov factor in (2.3) of [70] is missing
a term 1/2
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data was achieved even without this term, but this is not possible when in-
cluding data at low Q2.

We still need to give an explicit form for fa1 and fa1NP to have a complete
expression of FUU,T ; the collinear PDF fa1 has been studied in detail by many
theoretical groups and its expression, even if nonperturbative, is well known at
the moment. The collection of these collinear extractions, obtained by different
groups, is available through the LHAPDF library [105]. In this analysis, for the
collinear PDFs fa1 we adopt the GJR08FFnloE set [106], and for the collinear
fragmentation functions the DSS14 NLO set for pions [107] and the DSS07
NLO set for kaons [108]. After the completion of our analysis, a new set of
kaon fragmentation functions was presented in Ref. [109]. We will comment on
the use of other PDF sets in Sec. 3.5.3. The Compass data distinguish only
negatively and positively charged hadrons, and it was chosen to identify them
with pions. It could be possible to get a plausible estimate of the percentage of
kaons in the sample and include more accurately their contribution. However,
we stress that our analysis is not flavor dependent and, when considering the
necessity to distinguish between pions and kaons contributions, we evaluated
that the smaller percentage of kaons should not introduce a significant error
in the final prediction for the multiplicities. However, in future studies we will
take into account this aspect of the collinear FFs when including Compass
data.

Having determined the terms of the expression that are well known or
perturbatively calculable, we have now to deal with the contributions at large
ξT and choose a reasonable model for f1NP and D1NP. We parametrize the
intrinsic nonperturbative parts of the TMDs in the following ways

f̃a1NP(x, ξ2
T ) =

1

2π
e−g1a

ξ2T
4

(
1− λg2

1a

1 + λg1a

ξ2
T

4

)
, (3.19)

D̃a→h
1NP (z, ξ2

T ) =
g3a→h e

−g3a→h
ξ2T
4z2 +

(
λF/z

2
)
g2

4a→h

(
1− g4a→h

ξ2T
4z2

)
e−g

2
4a→h

ξ2T
4z2

2πz2
(
g3a→h +

(
λF/z2

)
g2

4a→h

) .

(3.20)

After performing the anti-Fourier transform, the f1NP and D1NP in momentum
space correspond to

fa1NP(x,k2
⊥) =

1

π

(
1 + λk2

⊥
)

g1a + λ g2
1a

e
− k2⊥
g1a , (3.21)

Da→h
1NP (z,P 2

⊥) =
1

π

1

g3a→h +
(
λF/z2

)
g2

4a→h

(
e
− P 2

⊥
g3a→h + λF

P 2
⊥
z2

e
− P 2

⊥
g4a→h

)
.

(3.22)

The TMD PDF at the starting scale is therefore a normalized sum of a Gaus-
sian with variance g1 and the same Gaussian weighted by a factor λk2

⊥. The
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TMD FF at the starting scale is a normalized sum of a Gaussian with variance
g3 and a second Gaussian with variance g4 weighted by a factor λFP

2
⊥/z

2.
The choice of this particular functional forms is motivated by model cal-
culations: the weighted Gaussian in the TMD PDF could arise from the
presence of components of the quark wave function with angular momentum
L = 1 [110, 111, 112, 113, 114]. Similar features occur in models of fragmen-
tation functions [115, 110, 45].

The Gaussian width of the TMD distributions may depend on the parton
flavor a [72, 45, 116]. In the present analysis, however, we assume they are
flavor independent. The motivation for this choice is that most of the data
we are considering are not sufficiently sensitive to flavor differences, leading to
unclear results. We will devote attention to this issue in further studies.

Finally, we assume that the Gaussian width of the TMD depends on the
fractional longitudinal momentum x according to

g1(x) = N1
(1− x)α xσ

(1− x̂)α x̂σ
, (3.23)

where α, σ, and N1 ≡ g1(x̂) with x̂ = 0.1, are free parameters. Similarly, for
fragmentation functions we have

g3,4(z) = N3,4
(zβ + δ) (1− z)γ

(ẑβ + δ) (1− ẑ)γ
, (3.24)

where β, γ, δ, and N3,4 ≡ g3,4(ẑ) with ẑ = 0.5 are free parameters.
The average transverse momentum squared for the distributions in Eq. (3.21)

and (3.22) can be computed analytically:

〈
k2
⊥
〉
(x) =

g1(x) + 2λg2
1(x)

1 + λg1(x)
,

〈
P 2
⊥
〉
(z) =

g2
3(z) + 2λFg

3
4(z)

g3(z) + λFg2
4(z)

. (3.25)

The form used for g1(x) and g3,4(z) was initially introduced in Ref. [71],
where a model with a single Gaussian was chosen for TMDs. The Gaussians
used the average momenta

〈
k2
⊥
〉
(x) and

〈
P 2
⊥
〉
(z) as widths. At the fixed

values x̂ and ẑ their expressions reduce to the normalization only. In this way,
the normalizations are fixed at the values assumed at x̂ and ẑ, connecting
them to a real value and allowing us to check if they reproduce the momenta
measured experimentally. The same idea inspired the definition of g1(x) and
g3,4(z), however in their case the relation between normalization and average
momenta is not so straight-forward, but follows Eq. (3.25). This choice for the
parametrization is arbitrary and while it could influence the results for the free
parameters, it does not change the final result for the Gaussian widths.

In total our parametrization for the TMDs uses 11 different free parameters:

• 4 parameters to describe the PDFs (N1, α, σ, λ)

• 6 parameters to determine the two Gaussians that constitute the FFs
(N3,N4, β, δ, γ, λF )
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3.3. Data analysis

• 1 additional parameter characterizes the nonperturbative part of the
TMD evolution.

In the present analysis these parameters do not have a dependence on the
flavors of the constituents.

3.3 Data analysis

In this section we review the features of the data sets considered for each
process. We will also discussed the kinematic cuts applied to the data and
justify why they are necessary.

Table 3.1 refers to the measurements for SIDIS off a proton target (Hermes
experiment) and presents their kinematic ranges. Tables 3.2 to 3.4 present the
characteristics of data for SIDIS off deuteron (Hermes and Compass experi-
ments), Drell–Yan events at low energy, and Z boson production respectively.
If not specified otherwise, the theoretical formulas are computed at the average
values of the kinematic variables in each bin.

3.3.1 Semi-inclusive DIS data

The data for semi-inclusive DIS are taken from Hermes [117] and Com-
pass [118] collaborations. Both data sets have already been analyzed in previ-
ous works, e.g., Refs. [72, 119], however they have never been fitted together,
including also the contributions deriving from TMD evolution.

The application of the TMD formalism to SIDIS depends on the capability
of identifying the current fragmentation region. This task has been recently
discussed in Ref. [56], where the authors point out a possible overlap among
different fragmentation regions when the hard scale Q is sufficiently low. For
the moment, we do not tackle this problem and we leave it to future studies.
As described in Tabs. 3.1 and 3.2, we identify the current fragmentation region
operating a cut on z only, namely 0.2 < z < 0.74.

Another requirement for the applicability of TMD factorization is the pres-
ence of two separate scales in the process, which allows the identification of a
hard and a soft part of the interaction. In SIDIS, those are the energy Q2 and
transverse momentum P 2

hT , which should satisfy the condition P 2
hT � Q2, or

more precisely P 2
hT/z

2 � Q2. We implement this condition by selecting the
data that satisfy PhT < min[0.2 Q, 0.7 Qz] + 0.5 GeV. With this choice, P 2

hT

is always smaller than Q2/3, but in a few bins (at low Q2 and z) P 2
hT/z

2 may
become larger than Q2. The applicability of TMD factorization in this case
could be questioned.

However, as we will explain further in Sec. 3.5.3, the best fit parameters that
we obtained using this selection rules give a good description of the phenomena
over a wide region of PhT , while at the same time performing very well in a
restricted region, where TMD factorization is certainly valid. All these choices
are summarized in Tabs. 3.1 and 3.2.

59



3. Phenomenology of unpolarized TMDs

HERMES data

Hermes hadron multiplicities are measured in a fixed–target experiment, using
a 27.6 GeV lepton beam which collides on a hydrogen (p) or deuterium (D)
gas target. The data set consist in a total of 2688 points.

They are grouped in bins of (x, z,Q2, PhT ) with the values of the binnning of
(x,Q2) ranging from about (0.023, 1.25 GeV2) to (0.6, 9.2 GeV2). The collinear
energy fraction z assumes values in the interval in 0.1 ≤ z ≤ 0.8, while the
transverse momentum of the detected hadron covers the interval 0.1 GeV ≤
|PhT | ≤ 1.2 GeV.

The peculiarity of Hermes SIDIS experiment lies in the ability of its de-
tector to distinguish between pions and kaons in the final state, in addition to
determining their momenta and charges. This setup allows to consider eight
different combinations of target (p, D) and detected charged hadron (π±, K±

).

The Hermes collaboration published two distinct group of data, charac-
terized by the inclusion or subtraction of the vector meson contribution. In
our work we considered only the data set where this contribution has been
subtracted. We made this choice in order to avoid higher-twist contributions,
however, at the moment we are not completely sure how much they are af-
fected by vector meson contributions. We observe that, in any case, there is
not much difference in the data at low and medium z.

Compass data

The Compass collaboration extracted multiplicities produced in SIDIS off a
deuteron (6LiD) target [118]. Differently from the Hermes experiment, the
hadrons in the final state are not identified, but only separated into negatively
and positively charged. The number of data points is an order of magnitude
higher compared to the Hermes experiment. The data are organized in mul-
tidimensional bins of (x, z,Q2, PhT ), which cover a range in (x,Q2) from about
(0.005, 1.11 GeV2) to (0.09, 7.57 GeV2) and the interval 0.2 ≤ z ≤ 0.8. The
multiplicities published by Compass are affected by normalization errors (see
the erratum to Ref. [118]). In order to avoid this issue, we divide the data in
each bin in (x, z,Q2) by the data point with the lowest P 2

hT in the bin. As a
result, we define the normalized multiplicity as

mnorm(x, z,P 2
hT , Q

2) =
mh
N(x, z,P 2

hT , Q
2)

mh
N(x, z,min[P 2

hT ], Q2)
, (3.26)

where the multiplicity mh
N is defined in Eq. (3.1). When fitting normalized

multiplicities, the first data point of each bin is considered as a fixed constraint
and excluded from the degrees of freedom. Alternatively, we could consider the
normalizations as extra free parameters, while maintaining the total number
of points. The final number of d.o.f. would turn out to be the same.
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3.3. Data analysis

Recently Compass collaboration has published a new semi-inclusive mea-
surement of charged hadron multiplicities from muon-deuteron DIS [120]. Com-
paring this dataset to the one used in our previously discussed analysis [118],
we observe that they cover a wider kinematic range, reaching in x up to 0.4 in-
stead of 0.12, in Q2 up to 81 GeV2 instead of 10 GeV2 and in P 2

hT up to 3 GeV2

instead of about 1 GeV2. Even if the data points are reduced in quantity they
have a much higher statistics, leading to a significantly decreased systematic
uncertainties on the normalization of the P 2

hT -integrated multiplicities. This
feature could be an important improvement for our analysis, considering that
at the moment it seems to be necessary to normalize each x, z, Q2 bin of
Compass data. We conducted a preliminary study of this new data set to test
its agreement with the result obtained in our global fit. The initial outcomes
suggest that they are compatible, however further consideration on the nor-
malization and the description of the z dependence are necessary for a future
improved global fit.

3.3.2 Low-energy Drell–Yan data

Our global analysis includes Drell–Yan events collected by fixed-target exper-
iments at low-energy. These data sets have been considered also in previous
works, e.g., in Ref. [121, 99, 100, 122]. We used data sets from the E288 exper-
iment [123], which measured the invariant dimuon cross section Ed3σ/d3q for
the production of µ+µ− pairs from the collision of a proton beam with a fixed
target, either composed of Cu or Pt. The measurements were performed using
proton beam energies of 200, 300 and 400 GeV, producing three different data
sets. Their respective center of mass energies are

√
s = 19.4, 23.8, 27.4 GeV.

We also included the set of measurements Ed3σ/d3q from E605 [124], extracted
from the collision of a proton beam with an energy of 800 GeV (

√
s = 38.8

GeV) with a copper target .
The explored Q values are higher compared to the SIDIS case, as can

be seen in Table 3.3. E288 provides data at fixed rapidity, whereas E605
provides data at fixed xF = 0.1. We can apply TMD factorization if q2

T � Q2,
where qT is the transverse momentum of the intermediate electroweak boson,
reconstructed from the kinematics of the final–state leptons. We choose qT <
0.2 Q+ 0.5 GeV.

As suggested in Ref. [123], we consider the target nuclei as an incoherent
ensemble composed 40% by protons and 60% by neutrons. We considered
eventual nuclear corrections to the PDFs to be negligible at our level of accu-
racy.

As we already observed, results from E288 and E605 experiments are re-
ported as Ed3σ

d3q
; this variable is related to the differential cross section of

Eq. (3.6) in the following way:

Ed3σ

d3q
=

d3σ

dφdηqTdqT
⇒ d2σ

πdηd(q2
T )
, (3.27)
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3. Phenomenology of unpolarized TMDs

where φ is the polar angle of qT and the third term is the average over φ.
Therefore, the invariant dimuon cross section can be obtained from Eq. (3.6)
integrating over Q2 and adding a factor 1/π to the result

Ed3σ

d3q
=

1

π

∫
dQ2 dσ

dQ2dq2
Tdη

. (3.28)

Numerically we checked that integrating in Q2 only the prefactor σγq in
Eq. (3.7) introduces only a negligible error in the theoretical estimates. We
also assume that αem does not change within the experimental bin. Therefore,
for Drell–Yan we obtain

1

π

∫
dQ2 dσ

dQ2dq2
Tdη
≈ 4πα2

em

3s
ln

(
Q2
f

Q2
i

)
F 1
UU . (3.29)

where Qi,f are the lower and upper values in the experimental bin.

3.3.3 Z-boson production data

In order to reach higher Q and qT values, we also consider Z boson production
measured in collider experiments at Tevatron. We analyze data from the CDF
and D0 collaborations, collected during Tevatron Run I [125, 126] at

√
s =

1.8 TeV and Run II [127, 128] at
√
s = 1.96 TeV. CDF and D0 groups studied

the differential cross section for the production of an e+e− pair through an
intermediate Z vector boson from the collision of a proton and an antiproton,
namely pp̄→ Z → e+e− +X.

Naturally, the invariant mass distribution peaks at the Z-pole, Q ≈ MZ ,
while the transverse momentum of the exchanged Z ranges in 0 < qT <
20 GeV.

We use the same kinematic cut applied to Drell–Yan events: qT < 0.2 Q+
0.5 GeV. This choice produces the same cut for every data point at qT = 18.7
GeV, since Q is fixed to MZ .

The observable measured in CDF and D0 is

dσ

dqT
=

∫
dQ2dη2qT

dσ

dQ2dq2
Tdη

≈ π2αem

s sin2 θW cos2 θW
BR(Z → `+`−)2qT

∫
dηF 1

UU , (3.30)

except in the case of D0 Run II, for which the published data refer to 1/σ ×
dσ/dqT . In order to work with the same observable, we multiply the D0 Run
II data by the total cross section of the process σexp = 255.8± 16 pb [129]. To
take into account the error introduced by this correction, we add in quadrature
the uncertainties of the total cross section and of the published data.

We normalize our functional form with the factors listed in Table 3.4. These
are the same normalization factors used in Ref. [122], computed by comparing
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3.4. The replica method

the experimental total cross section with the theoretical results based on the
code of Ref. [130]. These factors are not entirely consistent with our formulas.
In fact, as we will discuss in Sec. 3.5.3 a 5% increase in these factors would
improve the agreement with data, without affecting the TMD parameters.

Hermes Hermes Hermes Hermes

p→ π+ p→ π− p→ K+ p→ K−

Reference [117]

Cuts

Q2 > 1.4 GeV2

0.20 < z < 0.74

PhT < Min[0.2 Q, 0.7 Qz] + 0.5 GeV

Points 190 190 189 187

Max. Q2 9.2 GeV2

x range 0.04 < x < 0.4

Table 3.1: SIDIS proton-target data (Hermes experiment).

Hermes Hermes Hermes Hermes Compass Compass

D → π+ D → π− D → K+ D → K− D → h+ D → h−

Reference [117] [118]

Cuts

Q2 > 1.4 GeV2

0.20 < z < 0.74

PhT < Min[0.2 Q, 0.7 Qz] + 0.5 GeV

Points 190 190 189 189 3125 3127

Max. Q2 9.2 GeV2 10 GeV2

x range 0.04 < x < 0.4 0.005 < x < 0.12

Table 3.2: SIDIS deuteron-target data (Hermes and Compass). For Com-
pass data the observable considered is mnorm, defined in Eq. (3.26)

.

3.4 The replica method

In our minimization we apply the replica method to deal with the error analysis
of our theoretical predictions.
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3. Phenomenology of unpolarized TMDs

E288 200 E288 300 E288 400 E605

Reference [123] [123] [123] [124]

Cuts qT < 0.2 Q+ 0.5 GeV

Points 45 45 78 35√
s 19.4 GeV 23.8 GeV 27.4 GeV 38.8 GeV

Q range 4-9 GeV 4-9 GeV 5-9, 11-14 GeV 7-9, 10.5-11.5 GeV

Kin. var. η=0.40 η=0.21 η=0.03 xF = 0.1

Table 3.3: Low energy Drell–Yan data collected by the E288 and E605 exper-
iments at Tevatron, with different center-of-mass energies.

CDF Run I D0 Run I CDF Run II D0 Run II

Reference [125] [126] [127] [128]

Cuts qT < 0.2 Q+ 0.5 GeV = 18.7 GeV

Points 31 14 37 8√
s 1.8 TeV 1.8 TeV 1.96 TeV 1.96 TeV

Normalization 1.114 0.992 1.049 1.048

Table 3.4: Z boson production data collected by the CDF and D0 experiments
at Tevatron, with different center-of-mass energies.

The replica method is a Monte Carlo approach similar to Refs. [131, 72, 132]
and inspired by the work on collinear parton distribution extraction of the
Neural-Network PDF (NNPDF) collaboration, e.g. in Refs. [133, 134, 135].
The steps necessary for the replica methodology are summarized in Fig. 3.3,
where it is applied on some arbitrary bins of Hermes . The general idea
consists in creating M replicas of the original data points and then conduct
the minimization on each different replica, to create a confidence band for our
theoretical predictions. We start from the original data points with their er-
ror band, grouped in different kinematic bins (Fig. 3.3(a)). To create each
single replica (denoted by the index r), every data point i is shifted by a Gaus-
sian noise with the same variance as the measurement (b). This procedure is
repeatedM times choosing different random values for the Gaussian noise, ob-
taining different groups of replicated data. Each one of these replica, therefore,
represents a possible outcome of an independent experimental measurement,
which we denote by mh

N,r(x, z,P
2
hT , Q

2).

The number of replicas is chosen so that the mean and standard deviation
of the set of replicas accurately reproduces the original data points. In this
case we checked that 200 replicas are sufficient for the purpose.

The error for each replicated data point is taken to be equal to the error on
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3.4. The replica method

the corresponding original data points. This is consistent with the fact that
the variance of the M replicas should reproduce the variance of the original
data points.

In the next step, a minimization procedure is applied to each replica sepa-
rately (c), by searching for the best fit of the following error function:

E2
r ({p}) =

∑

i

(
mh
N,r(xi, zi,P

2
hT i, Q

2
i )−mh

N,theo(xi, zi,P
2
hT i; {p})

)2

(
∆mh 2

N,stat + ∆mh 2
N,sys

)
(xi, zi,P 2

hT i, Q
2
i ) +

(
∆mh

N,theo(xi, zi,P
2
hT i)
)2 .

(3.31)
The sum runs over the i experimental points, including all species of targets
N and final-state hadrons h. We choose different starting points for the fit
parameters, in order to better sample the parameter space and avoid stagnation
in a local minimum for our predictions.

Another aspect of our parametrization that is changed for every replica, are
the values of the collinear fragmentation functions Da~h1 , which are indepen-
dently modified with a Gaussian noise, different for each z bin, with standard
deviation equal to the theoretical error ∆Da~h1 . In this work we rely on differ-
ent parametrizations for Da~h1 : for pions we use the DSEHS analysis [107] at
NLO in αS; for kaons we use the DSS parametrization [108] at LO in αS. The
uncertainties ∆Da~h1 are estimated from the plots in Ref. [136]; they represent
the only source of uncertainty in ∆mh

N,theo.

Statistical and systematic experimental uncertainties ∆mh
N,stat and ∆mh

N,sys,
used in the error function (3.31), are taken directly from the publications of
the experimental collaborations. We do not take into account the covariance
among different kinematic bins.

The minimization is carried out using a Fortran code that employs the
algorithms provided by Minuit [137].

The final outcome (d) is a set ofM different vectors of best-fit parameters,
{p0r}, r = 1, . . .M, with which we can calculate any observable, its mean,
and its standard deviation. The distribution of these values needs not to be
necessarily Gaussian. In fact, in this case the 1−sigma confidence interval is
different from the 68% interval. The latter can simply be computed for each
experimental point by rejecting the largest and the lowest 16% of theM values
(e), obtaining for every bin the lower and upper bound of the 68% confidence
band for our theoretical predictions.

Although the minimization is performed on the function defined in Eq. (3.31),
the agreement of theM replicas with the original data is expressed in terms of
a χ2 function defined as in Eq. (3.31) but with the replacement mh

N,r → mh
N ,

i.e., with respect to the original data set. If the model is able to give a good
description of the data, the distribution of the M values of χ2/d.o.f. should
be peaked around one.
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Figure 3.3: Hermes multiplicities for production of pions off a proton and a
deuteron for different 〈x〉, 〈z〉, and 〈Q2〉 bins as a function of the transverse
momentum of the detected hadron PhT . For clarity, each 〈z〉 bin has been
shifted by an offset indicated in the legend.

3.5 Results

Our work aims at simultaneously extracting unpolarized TMDs data sets re-
lated to different experiments for the first time. In the past, only fits related
either to SIDIS or hadronic collisions have been presented.

In Ref. [72], the authors fitted Hermes multiplicities only (taking into ac-
count a total of 1538 points) without taking into account QCD evolution. In
that work, a flavor decomposition in transverse momentum of the unpolarized
TMDs and an analysis of the kinematic dependence of the intrinsic average
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square transverse momenta were presented. In Ref. [119] the Torino group
fitted Hermes and Compass multiplicities separately (576 and 6284 points
respectively), without TMD evolution and introducing an ad-hoc normaliza-
tion for Compass data. A fit of SIDIS data including TMD evolution was
performed on measurements by the H1 collaboration of the so-called trans-
verse energy flow [98, 138].

Looking at data from hadronic collisions, Konychev and Nadolsky [100] fit-
ted data of low-energy Drell–Yan events and Z-boson production at Tevatron,
taking into account TMD evolution at NLL accuracy (this is the most recent
of a series of important papers on the subject [139, 121, 99]). They fitted in
total 98 points. Contrary to our approach, Konychev and Nadolsky studied
the quality of the fit as a function of ξmax. They found that the best value
for ξmax is 1.5 GeV−1 (to be compared to our choice ξmax ≈ 1.123 GeV−1,
see Sec. 3.2.3). Comparisons of best-fit values in the nonperturbative Sudakov
form factors are delicate, since the functional form is different from ours.

In 2014 D’Alesio, Echevarria, Melis, Scimemi performed a fit [122] of Drell–
Yan data and Z-boson production data at Tevatron, focusing in particular
on the role of the nonperturbative contribution to the kernel of TMD evolu-
tion. This is the fit with the highest accuracy in TMD evolution performed
up to date (NNLL in the Sudakov exponent and O(αS) in the Wilson coef-
ficients). In the same year Echevarria, Idilbi, Kang and Vitev [25] presented
a parametrization of the unpolarized TMD that described qualitatively well a
limited number of bins of Hermes and Compass data, together with Drell–
Yan and Z-production data. A similar result was presented by Sun, Isaacson,
Yuan and Yuan [140].

In 2017 Scimemi and Vladimirov [141] presented an extraction of the unpo-
larized TMD parton distribution functions from Drell–Yan and Z-boson pro-
duction measurements, including the data of E288, Tevatron and LHC ex-
periments. They choose a scheme for dealing with the scale fixation, called
ζ-prescription, which tends to minimize the contribution of perturbative loga-
rithms in the large range of scales.

In the following, we detail the results of a fit to the data sets described in
Sec. 3.3 with a flavor-independent configuration for the transverse momentum
dependence of unpolarized TMDs. In Table 3.5 we present the total χ2; the
number of degrees of freedom (d.o.f.) is given by the number of data points
analyzed reduced by the number of free parameters in the error function (in-
cluding the Compass data points which were used as normalization in mnorm).
The overall quality of the fit is good, with a global χ2/d.o.f. = 1.55 ± 0.05.
Uncertainties are computed as the 68% confidence level (C.L.) from the replica
methodology.

3.5.1 Agreement between data and theory

The partition of the global χ2 among SIDIS off a proton, SIDIS off a deuteron,
Drell–Yan and Z production events is given in Table 3.6, 3.7, 3.8, 3.9 respec-
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Points Parameters χ2 χ2/d.o.f.

8059 11 12629± 363 1.55± 0.05

Table 3.5: Total number of points analyzed, number of free parameters and χ2

values.

tively.

Semi-inclusive DIS

For SIDIS at Hermes off a proton, most of the contribution to the χ2 comes
from events with a π+ in the final state. In Ref. [72] the high χ2 was at-
tributed to the poor agreement between experiment and theory at the level of
the collinear multiplicities. In this work we use a newer parametrization of the
collinear FFs (DSEHS [107]), based on a fit that includes Hermes collinear
pion multiplicities. In spite of this improvement, the contribution to χ2 from
Hermes data is higher then in Ref. [72], because the present fit includes data
from other experiments (Hermes represents less than 20% of the whole data
set). The bins with the worst agreement are at low Q2. As we will discuss
in Sec. 3.5.3, we think that the main reason for the large χ2 at Hermes is a
normalization difference. This may also be due to the fact that we are comput-
ing our theoretical estimates at the average values of the kinematic variables,
instead of integrating the multiplicities in each bin. Kaon multiplicities have
in general a lower χ2, due to the bigger statistical errors and the large uncer-
tainties for the kaon FFs.

Hermes Hermes Hermes Hermes

p→ π+ p→ π− p→ K+ p→ K−

Points 190 190 189 187

χ2/points 4.83± 0.42 2.47± 0.28 0.91± 0.14 0.82± 0.17

Table 3.6: Number of points analyzed and χ2 values for SIDIS off a proton
target.

For pion production off a deuteron at Hermes the χ2 is lower with respect
to the production off a proton, but still compatible within uncertainties. For
kaon production off a deuteron the χ2 is higher with respect to the scattering
off a proton. The difference is especially large for K−.

SIDIS at Compass involves scattering off deuteron only, D → h±, and we
identify h ≡ π. The quality of the agreement between theory and Compass
data is better than in the case of pion production at Hermes. This depends
on at least two factors: first, our fit is essentially driven by the Compass data,
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which represent about 75% of the whole data set; second, the observable that
we fit in this case is the normalized multiplicity, defined in Eq. (3.26). This
automatically eliminates most of the discrepancy between theory and data due
to normalization.

Hermes Hermes Hermes Hermes

D → π+ D → π− D → K+ D → K−

Points 190 190 189 189

χ2/points 3.46± 0.32 2.00± 0.17 1.31± 0.26 2.54± 0.57

Compass Compass

D → h+ D → h−

Points 3125 3127

χ2/points 1.11± 0.03 1.61± 0.04

Table 3.7: Number of points analyzed and χ2 values for SIDIS off a deuteron
target.

In section 3.7 the plots showing the agreement between experimental data
and our predictions are collected. Figure 3.4 presents the agreement between
the theoretical formula in (3.1) and the Hermes multiplicities for production
of pions off a proton and a deuteron. Different 〈x〉, 〈z〉 and 〈Q2〉 bins are
displayed as a function of the transverse momentum of the detected hadron
PhT . The grey bands are an envelope of the 200 replicas of best-fit curves.
For every point in PhT we apply a 68% C.L. selection criterion. Points marked
with different symbols and colors correspond to different 〈z〉 values. There is a
strong correlation between 〈x〉 and 〈Q2〉 that does not allow us to explore the x
and Q2 dependence of the TMDs separately. Studying the contributions to the
χ2/points as a function of the kinematics, we notice that the χ2(Q2) tends to
improve as we move to higher Q2 values, where the kinematic approximations
of factorization are more reliable. Moreover, usually the χ2(z) increases at
lower z values.

Figure 3.5 has same content and notation as in Fig. 3.4 but for kaons in
the final state. In this case, the trend of the agreement as a function of Q2 is
not as clear as for the case of pions: good agreement is found also at low Q2.

In Fig. 3.6 we present Compass normalized multiplicities (see Eq. (3.26))
for production of negative hadrons off a deuteron for different 〈x〉, 〈z〉, and
〈Q2〉 bins as a function of the transverse momentum of the detected hadron
PhT . The open marker around the first PhT point in each panel indicates that
the first value is fixed and not fitted. The correlation between x and Q2 is less
strong than at Hermes and this allows us to study different 〈x〉 bins at fixed
〈Q2〉. For the highest Q2 bins, the agreement is good for all 〈x〉, 〈z〉 and P 2

hT .
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3. Phenomenology of unpolarized TMDs

In bins at lower Q2, the descriptions gets worse, especially at low and high
z. We observe even though normalized, the low-x high-z data are not always
well described, this is probably due to the first data point of the bin used as
normalization, which in these specific region does not follow the general trend
of the rest of the data points of the bin. This problem could be avoided using
a different strategy for normalization, such as using the data in the middle
of the bin to normalize instead of the initial one, or such as a normalization
factor which is derived through a fit over every data point in the bin

For fixed 〈Q2〉 and high 〈z〉, a good agreement is recovered moving to higher
〈x〉 bins (see, e.g., the third line from the top in Fig. 3.7).

Fig. 3.7 has same content and notation as in Fig. 3.7, but for h− ≡ π−.
The same comments on the agreement between theory and the data apply.

Drell–Yan and Z production

The low energy Drell–Yan data collected by the E288 and E605 experiments
at Fermilab have large error bands (see Fig. 3.8). This is why the χ2 values
in Table 3.8 are rather low compared to the other data sets.

The agreement is also good for Z boson production, see Table 3.9. The
statistics from Run-II is higher, which generates smaller experimental uncer-
tainties and higher χ2, especially for the CDF experiment.

E288 [200] E288 [300] E288 [400] E605

Points 45 45 78 35

χ2/points 0.99± 0.09 0.84± 0.10 0.32± 0.01 1.12± 0.08

Table 3.8: Number of points analyzed and χ2 values for fixed-target Drell–Yan
experiments at low energy. The labels in square brackets were introduced in
Sec. 3.3.2.

CDF Run I D0 Run I CDF Run II D0 Run II

Points 31 14 37 8

χ2/points 1.36± 0.00 1.11± 0.02 2.00± 0.02 1.73± 0.01

Table 3.9: Number of points analyzed and χ2 values for Z boson production
at Tevatron.

Fig. 3.8 displays the cross section for DY events differential with respect
to the transverse momentum qT of the virtual photon, its invariant mass Q2

and rapidity y. As for the case of SIDIS, the grey bands are the 68% C.L.
envelope of the 200 replicas of the fit function. The four panels represents

70



3.5. Results

different values for the rapidity y or xF (see Eq. (3.9)). In each panel, we
have plots for different Q2 values. The lower is Q, the less points in qT we
fit (see also Sec. 3.3.2). The hard scale lies in the region 4.5 < 〈Q〉 < 13.5
GeV. This region is of particular importance, since these “moderate”Q values
should be high enough to safely apply factorization and, at the same time, low
enough in order for the nonperturbative effects to not be shaded by transverse
momentum resummation.

In Fig. 3.9 we compare the cross section differential with respect to the
transverse momentum qT of the virtual Z (namely Eq. (3.6) integrated over
η) with data from CDF and D0 at Tevatron Run I and II. Due to the higher
Q = MZ , the range explored in qT is much larger compared to all the other
observables considered. The tails of the distributions deviate from a Gaussian
behavior, as it is also evident in the bins at higher Q2 in Fig. 3.8. The band
from the replica methodology in this case is much narrower, due to the reduced
sensitivity to the intrinsic transverse momenta at Q = MZ and to the limited
range of best-fit values for the parameter g2, which controls soft-gluon emission.
As an effect of TMD evolution, the peak shifts from ∼ 1 GeV for Drell–
Yan events in Fig. 3.8 to ∼ 5 GeV in Fig. 3.9. The position of the peak is
affected both by the perturbative and the nonperturbative part of the Sudakov
exponent (see Sec. 3.2.3 and [71]). Most of the contributions to the χ2 comes
from normalization effects and not from the shape in qT (see Sec. 3.5.3).

3.5.2 Transverse momentum dependence at 1 GeV

The variables ξmin and ξmax delimit the range in ξT where transverse momen-
tum resummation is computed perturbatively. The g2 parameter enters the
nonperturbative Sudakov exponent and quantifies the amount of transverse
momentum due to soft gluon radiation that is not included in the perturbative
part of the Sudakov form factor. As already explained in Sec. 3.2.3, in this
work we fix the value for ξmin and ξmax in such a way that at Q = 1 GeV the
unpolarized TMDs coincide with their nonperturbative input. We leave g2 as
a fit parameter.

Table 3.10 summarizes the chosen values of ξmin, ξmax and the best-fit value
for g2. The latter is given as an average with 68% C.L. uncertainty computed
over the set of 200 replicas. We also quote the results obtained from replica 105,
since its parameters are very close to the mean values of all replicas. We obtain
a value g2 = 0.13± 0.01, smaller than the value (g2 = 0.184± 0.018) obtained
in Ref. [100], where however no SIDIS data was taken into consideration, and
smaller than the value (g2 = 0.16) chosen in Ref. [25]. We stress however
that our prescriptions involving both ξmin and ξmax are different from previous
works.

Table 3.11 collects the best-fit values of parameters in the nonperturbative
part of the TMDs at Q = 1 GeV (see Eqs. (3.19) and (3.20)); as for g2, we
give the average value over the full set of replicas and the standard deviation
based on a 68% C.L. (see Sec. 3.4), and we also quote the value of replica 105.
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In Fig. 3.12 we compare different extractions of partonic transverse mo-
menta. The horizontal axis shows the value of the average transverse momen-
tum squared for the incoming parton,

〈
k2
⊥
〉
(x = 0.1) (see Eq. (3.25)). The

vertical axis shows the value of
〈
P 2
⊥
〉
(z = 0.5), the average transverse mo-

mentum squared acquired during the fragmentation process (see Eq. (3.25)).
The white square (label 1) indicates the average values of the two quantities
obtained in the present analysis at Q2 = 1 GeV2. Each black dot around the
white square is an outcome of one replica. The red region around the white
square contains the 68% of the replicas that are closest to the average value.
The same applies to the white circle and the orange region around it (label 2),
related to the flavor-independent version of the analysis in Ref. [72], obtained
by fitting only Hermes SIDIS data at an average 〈Q2〉 = 2.4 GeV2 and neglect-
ing QCD evolution. A strong anticorrelation between the transverse momenta
is evident in this older analysis. In our new analysis, the inclusion of Drell–Yan
and Z production data adds physical information about TMD PDFs, free from
the influence of TMD FFs. This reduces significantly the correlation between〈
k2
⊥
〉
(x = 0.1) and

〈
P 2
⊥
〉
(z = 0.5). The 68% confidence region is smaller than

in the older analysis. The average values of
〈
k2
⊥
〉
(x = 0.1) are similar and

compatible within error bands. The values of
〈
P 2
⊥
〉
(z = 0.5) in the present

analysis turn out to be larger than in the older analysis, an effect that is due
mainly to Compass data. It must be kept in mind that the two analyses lead
also to differences in the x and z dependence of the transverse momentum
squared. This dependence is shown in Fig. 3.10 (a) for

〈
k2
⊥
〉
(x) and Fig. 3.10

(b) for
〈
P 2
⊥
〉
(z). The bands are computed as the 68% C.L. envelope of the full

sets of curves from the 200 replicas. Comparison with other extractions are
presented and the legend is detailed in the caption of Fig. 3.12.

In Fig. 3.11 we present the same results with the complete set of curves
extracted from the 200 replicas minimization. This plots can be useful also
to understand the relation between the complete space covered by the replicas
and the 68% C.L bands.

ξmax [GeV−1] ξmin [GeV−1] g2 [GeV2]

(fixed) (fixed)

All replicas 2e−γE 2e−γE/Q 0.13± 0.01

Replica 105 2e−γE 2e−γE/Q 0.128

Table 3.10: Values of parameters common to TMD PDFs and TMD FFs.

3.5.3 Stability of our results

The value that we obtained for the reduced χ2 does not necessarily means
a good agreement between measurements and predictions, if we consider the
large amount of data points included. However, we are mostly interested in
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TMD PDFs N1 α σ λ

[GeV2] [GeV−2]

All replicas 0.28± 0.06 2.95± 0.05 0.17± 0.02 0.86± 0.78

Replica 105 0.285 2.98 0.173 0.39

TMD FFs N3 β γ δ λF N4

[GeV2] [GeV−2] [GeV2]

All replicas 0.21± 0.01 1.65± 0.49 2.28± 0.46 0.14± 0.07 5.50± 1.23 0.03± 0.01

Replica 105 0.212 2.10 2.52 0.094 5.29 0.033

Table 3.11: 68% confidence intervals of best-fit values for parametrizations of
TMDs at Q = 1 GeV.

determining the shape of the TMDs in the widest possible kinematic region.
In this section we will observe how we can achieve a value for the reduced
χ2 closer to 1, simply introducing appropriate normalizations or reducing the
kinematic area, without modifying the parameters found in the original fit,
which define the TMDs shape.

Moreover, we will test the stability of our parametrization against some
of the choices we made in our default fit. Instead of repeating the fitting
procedure with different choices, we limit ourselves to checking how the χ2 of
a single replica is affected by the modifications.

As starting point for this exploration and subsequent ones, we choose
replica 105, which, as discussed above, is one of the most representative among
the whole replica set. The global χ2/d.o.f. of replica 105 is 1.51. We keep all
parameters fixed, without performing any new minimization, and we compute
the χ2/d.o.f. after the modifications described in the following.

First of all, we analyze Hermes data with the same strategy as Compass,
i.e., we normalize Hermes data to the value of the first bin in PhT . In this case,
the global χ2/d.o.f. reduces sharply to 1.27. The partial χ2 for the different
SIDIS processes measured at Hermes are shown in Table 3.12. This confirms
that normalization effects are the main contribution to the χ2 of SIDIS data
and have minor effects on TMD-related parameters. In fact, even if we perform
a new fit with this modification, the χ2 does not improve significantly and
parameters are compatible with the ones of the original fit. However, we
decided not to include a normalization for Hermes data in the final results
because, differently from Compass data, they are not affected by an error in
the normalization.

We consider the effect of changing the normalization of the Z-boson data:
if we increase the normalization factors quoted in the last row of Table 3.4 by
5%, the χ2 quoted in the last row of Table 3.9 drops to 0.66, 0.52, 0.65, 0.68.
This effect is also already visible by eye in Fig. 3.9: the theoretical curves are
systematically below the experimental data points, but the shape is reproduced
very well.
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p→ π+ p→ π− p→ K+ p→ K−

Original 5.18 2.67 0.75 0.78

Normalized 1.94 1.13 0.57 0.29

D → π+ D → π− D → K+ D → K−

Original 3.63 2.31 1.12 2.27

Normalized 1.59 0.80 0.47 0.97

Table 3.12: χ2/d.o.f. for Hermes data of replica 105 with and without nor-
malization to the value of the first bin in PhT .

We test the sensitivity of our results to the parametrizations adopted for
the collinear quark PDFs. The χ2/d.o.f. varies from its original value 1.51,
obtained with the NLO GJR 2008 parametrization [106], to 1.84 using NLO
MSTW 2008 [142], and 1.85 using NLO CJ12 [143]. In both cases, the agree-
ment with Hermes and Z boson data is not affected significantly, the agree-
ment with Compass data becomes slightly worse, and the agreement with DY
data becomes clearly worse.

The choices we made for the parameters of the renormalization scale µb
can be challenged and we test how alternative values for ξmax affect the results
of replica 105, compared to our default choice ξmax = 2e−γE GeV−1. As a
first step we set ξmax = 0.5 GeV−1 as was done in Ref. [99], and we find
similarly a larger value of g2. Repeating the analysis on a restricted number
of replicas, adopting ξmax = 0.5 GeV−1, we find in general a worse agreement
compared to our original results. In fact, it has been found that this choice
restricts the perturbative part of the calculation of the resummation to a range
in ξT that is smaller than the range where perturbative methods should still be
valid [59]. A more reasonable choice appears to be ξmax = 1.5 GeV−1, chosen
for example in Ref. [100]. If we repeat our analysis using this choice, g2 assumes
values compatible with our original ones and we get in general an higher value
for χ2. Finally we tried to remove ξmin and repeat the minimization, in this
case the outcome has a noticeably worse agreement with experimental data.
Therefore, ξmin is an important element of the µb parametrization, an it could
be a signal that we are exiting the proper region for TMD factorization and we
are approaching the region of collinear factorization, especially in SIDIS data
at low Q.

An extremely important point is the choice of kinematic cuts. Our default
choices are listed in Tabs. 3.1–3.4. We consider also more stringent kinematic
cuts on SIDIS data: Q2 > 1.5 GeV2 and 0.25 < z < 0.6 instead of Q2 > 1.4
GeV2 and 0.2 < z < 0.7, leaving the other ones unchanged. The cut in the
high-z region, even if it could be useful for TMD factorization, was made to
guarantee that we are in an area which avoids The number of bins with these
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cuts reduces from 8059 to 5679 and the χ2/d.o.f. decreases to the value 1.23.
In addition, if we replace the constraint PhT < Min[0.2Q, 0.7Qz] + 0.5 GeV
with PhT < Min[0.2Q, 0.5Qz] + 0.3 GeV, the number of bins reduces to 3380
and the χ2/d.o.f. decreases further to 0.96. By adopting the even stricter cut
PhT < 0.2Qz, the number of bins drops to only 477, with a χ2/d.o.f. =1.02.
We can conclude that our fit, obtained by fitting data in an extended kinematic
region, where TMD factorization may be questioned, works extremely well also
in a narrower region, where TMD factorization is expected to be under control.

When we planned the step of our minimization procedure, after some initial
test with different numbers of replicas, we assumed that including 200 replicas
in our analysis is enough to reproduce the mean and standard deviation of
the original data points. In fact, with this assumption we are able to produce
theoretical predictions for the cross sections that are consistent with the shape
of the experimental data and contained in the range of their uncertainties.
A greater number of replicas would be required if we wanted to reproduce
also correlations between data. As a test for this choice, we created again
the theoretical bands for our predictions, this time including only the results
of 100 replicas. As expected, we found that even with a reduced number we
achieve a good description (χ2 = 1.53 ± 0.05) where the 68% bands are still
contained in the uncertainty range, confirming that our assumption is sufficient
to effectively reproduce the original data.

3.6 Visualization of TMDs in momentum space

We have presented our results extraction of TMDs showing the curves for
theoretical multiplicities which are directly related to their values and we have
shown the shape of the average momenta k⊥ and P⊥ as a function of x and z,
respectively. In this section we present some approaches to the visualization of
TMD parton distribution functions in momentum space, focusing also on how
their shape changes for different values of x and Q2. In particular visualizing
the shift of the distribution peak with different values for the hard scale, could
be useful to observe the effects of TMD evolution.

Figure 3.13 shows a density plot for the value of f1(x, k;Q2) for the up
quark, calculated for Q2 = 1 GeV2, using the parameters extracted from the
usual replica 105. There are three different panels for increasing values of x
and through the color gradient it is possible to observe how the shape of the
distribution changes with respect to the projections of the momentum kx and
ky. In Fig. 3.14 is shown the corresponding plot for the TMD fragmentation
function with three different slices characterized by increasing values of z.

The shape of the TMD PDF is plotted in Fig. 3.15 for different values of
x and Q2, again using the replica 105 parameters. The peak of each one of
this curves is highlighted by a red point, this way we can observe its shift with
respect to the variation of the hard scale. We point out that the width of
the distribution broadens with the increase of Q2 and the position of the peak
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shifts to higher k⊥.
In order to give an idea of the different estimates of the TMD PDF given

by the different replicas, we show in Fig. 3.16 and Fig. 3.17 some density plots
for f1(x, k;Q2) in momentum space for the up quark, calculated at Q2 = 1
GeV2. We chose to display in particular replicas that shows particular features
compared to the others; For example replica 158 has a larger value of ga1(x),
while replica 149 has a large value for λ. Moreover, we included replica 149
because it shows an interesting shape for the x-dependence, not found in other
replicas. Finally, we included also replica 191 which has the χ2/d.o.f. closer
to 1. ı̀ We observe that focusing on replicas with different features, we obtain
different shapes for the unpolarized TMDs, e.g., replica 158 is wider, while
replica 149 is much narrower. The shape of replica 185 instead displays a dip
in the middle. Even with their different shapes, all these PDFs give a good
agreement with the experimental data.

The corresponding plots for the TMD fragmentation function are shown
in Fig. 3.18 and Fig. 3.19, where we chose to use the same replicas shown in
the PDF plots. We notice that all the FF shapes shown here present a dip in
the middle, due to our choice of having different widths in the two summed
Gaussian parametrization.
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3.7 Appendix: Plots and Figures

3.7.1 HERMES multiplicities for unpolarized SIDIS
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Figure 3.4: Hermes multiplicities for production of pions off a proton and a
deuteron for different 〈x〉, 〈z〉, and 〈Q2〉 bins as a function of the transverse
momentum of the detected hadron PhT . For clarity, each 〈z〉 bin has been
shifted by an offset indicated in the legend.
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Figure 3.5: Hermes multiplicities for production of kaons off a proton and a
deuteron for different 〈x〉, 〈z〉, and 〈Q2〉 bins as a function of the transverse
momentum of the detected hadron PhT . For clarity, each 〈z〉 bin has been
shifted by an offset indicated in the legend.
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3.7.2 COMPASS multiplicities for unpolarized SIDIS
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Figure 3.6: Compass multiplicities for production of positive hadrons (π+) off
a deuteron for different 〈x〉, 〈z〉, and 〈Q2〉 bins as a function of the transverse
momentum of the detected hadron PhT . Multiplicities are normalized to the
first bin in PhT for each 〈z〉 value (see Eq. (3.26)). For clarity, each 〈z〉 bin has
been shifted by an offset indicated in the legend.

79



3. Phenomenology of unpolarized TMDs

〈��〉=��� ����

〈�〉=�����

�

�

�

�

��

�
�
��

��
�
���
�
���
���

��� ��� ���
���[���]

〈��〉=��� ����

〈�〉=����

��� ��� ���
���[���]

〈��〉=�� ����

〈�〉=�����

��� ��� ���
���[���]

〈��〉=�� ����

〈�〉=�����

�

�

�

�

��

�
�
��

��
�
���
�
���
���

〈��〉=�� ����

〈�〉=�����

��� ��� ���
���[���]

〈��〉=�� ����

〈�〉=�����

〈��〉=��� ����

〈�〉=�����

�

�

�

�

��
�
�
��

��
�
���
�
���
���

〈��〉=�� ����

〈�〉=�����

��� ��� ���
���[���]

〈��〉=�� ����

〈�〉=�����

〈��〉=��� ����

〈�〉=�����

〈��〉=�� ����

〈�〉=�����

��� ��� ���
���[���]

〈��〉=�� ����

〈�〉=�����

〈��〉=��� ����

〈�〉=�����

〈��〉=�� ����

〈�〉=�����

�

�

�

�

��

�
�
��

��
�
���
�
���
���

〈��〉=��� ����

〈�〉=�����

��� ��� ���
���[���]

〈��〉=�� ����

〈�〉=�����

〈�〉=���� (������=�)
〈�〉=���� (������=�)
〈�〉=���� (������=�)
〈�〉=���� (������=�)
〈�〉=���� (������=�)
〈�〉=���� (������=�)
〈�〉=���� (������=�)

Figure 3.7: Compass multiplicities for production of negative hadrons (π−) off
a deuteron for different 〈x〉, 〈z〉, and 〈Q2〉 bins as a function of the transverse
momentum of the detected hadron PhT . Multiplicities are normalized to the
first bin in PhT for each 〈z〉 value (see Eq. (3.26)). For clarity, each 〈z〉 bin has
been shifted by an offset indicated in the legend.
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3.7.3 Cross section for Drell–Yan and Z boson produc-
tion
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Figure 3.8: Drell–Yan differential cross section for different experiments and
values of

√
s and for different 〈Q〉 bins. For clarity, each 〈Q〉 bin has been

normalized and then shifted by an offset.
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Figure 3.9: Cross section differential with respect to the transverse momentum
qT of a Z boson produced from pp̄ collisions at Tevatron. The four panels refer
to different experiments (CDF and D0) with two different values for the center-
of-mass energy (

√
s = 1.8 TeV and

√
s = 1.96 TeV).
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3.7.4 Behavior of transverse momenta
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Figure 3.10: Kinematic dependence of
〈
k2
⊥
〉
(x) (a) and of

〈
P 2
⊥
〉
(z) (b). The

bands are the 68% C.L. envelope of the full sets of best-fit curves.
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Figure 3.11: Kinematic dependence of
〈
k2
⊥
〉
(x) (a) and of

〈
P 2
⊥
〉
(z) (b). Each

curves represent a different set of the 200 replica parameters.
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Figure 3.12: Correlation between transverse momenta in TMD FFs, 〈P 2
⊥〉(z =

0.5), and in TMD PDFs, 〈k2
⊥〉(x = 0.1), in different phenomenological ex-

tractions. (1): average values (white square) obtained in the present analysis,
values obtained from each replica (black dots) and 68% C.L. area (red); (2)
results from Ref. [72], (3) results from Ref. [144], (4) results from Ref. [119] for
Hermes data, (5) results from Ref. [119] for Hermes data at high z, (6) re-
sults from Ref. [119] for normalized Compass data, (7) results from Ref. [119]
for normalized Compass data at high z, (8) results from Ref. [25].
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3. Phenomenology of unpolarized TMDs

3.7.5 Visualization of TMDs

Figure 3.13: Density plot for three-dimensional visualization of f1(x, k2
⊥;Q2)

for the up quark extracted from replica 105. The slices are characterized by
different values of x.

Figure 3.14: Density plot for three-dimensional visualization of D1(z, P 2
⊥;Q2)

for the up quark extracted from replica 105. The slices are characterized by
different values of z.
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Figure 3.15: TMD parton distribution calculated with the parameters ex-
tracted from replica 105 for different values of x and Q. The red point indicates
the peak for each curve.
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3. Phenomenology of unpolarized TMDs

Figure 3.16: Density plots for the TMD parton distribution function in momen-
tum space, calculated at Q2 = 1 GeV2 for the up quark. Replica parameters
used for the calculation are indicated in each panel.
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Figure 3.17: Density plots corresponding to Fig. 3.16 for different replica pa-
rameters.
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3. Phenomenology of unpolarized TMDs

Figure 3.18: Density plots for the TMD fragmentation function in momentum
space, calculated at Q2 = 1 GeV2 for the up quark. The specific replica
parameters used for the calculation are indicated in each panel.
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Figure 3.19: Density plots corresponding to Fig. 3.18 for different replica pa-
rameters.
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Chapter 4
Phenomenology of Sivers
Function

4.1 Introduction

The study of the internal structure of nucleons become even more challenging
when we consider also the polarization of hadrons and partons. After having
completed the extraction of unpolarized TMDs in the previous chapter, we now
focus on the analysis of the TMD Sivers distribution function, related to the
number density of unpolarized partons inside a transversely polarized nucleon.
An accurate determination of this TMD distribution could help clarify the
relation between the motion of quarks and the nucleon spin.

As in the previous analysis, we are not able to determine the Sivers function
only through analytical calculation, but we have to extract it from experimen-
tal data. In particular, we will study the single-spin asymmetry A

sin(φh−φS)
UT

measured in SIDIS. We will include measurements taken at Hermes at Com-
pass in 2009 and 2017, and at JLab. This extraction is connected with our
previous determination of unpolarized TMDs, because in the expression used
to calculate the azimuthal asymmetry both TMD PDFs and FFs appear. Our
analysis, therefore, wants to achieve a determination of the Sivers function,
using for the first time unpolarized TMDs directly obtained from experimental
data, with the inclusion of the complete TMD evolution formalism.

4.2 Formalism

The Sivers distribution function can be determined through its contributions
to the cross section of the semi-inclusive deep inelastic scattering process. To
access the Sivers function, we perform a fit on SIDIS measurements where
the nucleon is transversely polarized with respect to the virtual photon. The
corresponding cross-section can be expressed in a model-independent way by
a set of structure functions [46]. In particular, we focus on the measurements
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4. Phenomenology of Sivers Function

of the Sivers asymmetry, defined through a sin(φh − φS) modulation of the
differential cross section:

dσ

dx dy dz dφS dφhdP 2
hT

=
α2

xyQ2

y2

2(1− ε)

(
1 +

γ2

2x

){
FUU,T + εFUU,L

+ sin(φh − φS)|ST |
[
F

sin(φh−φS)
UT,T + εF

sin(φh−φS)
UT,L

]
+ . . .

}
(4.1)

where ST is the covariant spin vector, PhT is the transverse component of the
hadron momentum in the final state and φS, φh are their respective azimuthal
angles. The dots in the last term indicates higher order contributions. Isolating
the terms relevant to the sin(φh − φS) modulation, the asymmetry becomes

A
sin(φh−φS)
UT = 2

∫
dφSdφh[dσ

↑ − dσ↓] sin(φh − φS)∫
dφSdφh[dσ↑ + dσ↓]

(4.2)

=
F

sin(φh−φS)
UT,T + εFUT,L

FUU,T + εFUU,L

(4.3)

In this analysis we neglect the lepton mass and rely on the one-photon ex-
change approximation. Moreover, we will consider only the terms at order α0

S,
consequently the structure functions can be written in terms of convolutions
of TMDs, in the following way [47]:

FUU,T = C [f1D1] , (4.4)

FUU,L = O
(
M2

Q2
,
P 2
hT

Q2

)
= 0 , (4.5)

F
sin(φh−φS)
UT,T = C

[
−ĥ · k⊥

M
f⊥1TD1

]
(4.6)

F
sin(φh−φS)
UU,L = 0 (4.7)

where we introduced the normalized vector ĥ = PhT/|PhT | and denoted with
C the transverse-momentum convolution of TMDs. Another consequence of
including only LO contributions, is that the effects of the collinear matching
term YUU,T are not included. The Sivers asymmetry measured experimentally
can be expressed as this level of accuracy as the ratio between a Sivers function
and the corresponding unpolarized TMD distribution, both convoluted with
an unpolarized fragmentation function, as in

A
sin(φh−φS)
UT =

σ0(x, y,Q2)C
[
− ĥ·k⊥

M
f⊥1TD1

]

σ0(x, y,Q2)C [f1D1]
(4.8)

where we have defined

σ0(x, y,Q2) =
1

xyQ2

1

1 + γ2

(
1− y +

1

2
y2 +

1

4
γ2y2

)(
1 +

γ2

2x

)
. (4.9)
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4.2. Formalism

This term is present both in the numerator and denominator, but might not
cancel if we take into account the integral of the cross section over at least one
of its variable x, y, Q2.

We can write the structure functions FUU,T and F
sin(φh−φS)
UU,T in terms of the

Fourier transform of the TMDs in coordinate ξT -space, using the following
representation of the delta function:

δ2(zk⊥ + P⊥ − PhT ) =
1

z2

∫
d2ξT
(2π)2

eiξT ·(k⊥+P⊥/z−PhT /z) (4.10)

and the Bessel functions J0 and J1, defined in general as

Jn(x) =
1

2π

∫ π

−π
dθe−inθ+ix sin θ . (4.11)

We recall the expression for the unpolarized TMD distribution and frag-
mentation functions, written in ξT -space as

f̃a1 (x, ξ2
T ;Q2) =

1

2π

∫
d2k⊥e

iξT ·k⊥fa1 (x, k2
⊥;Q2) = (4.12)

∫ ∞

0

d|k⊥||k⊥|J0(ξT |k⊥|)fa1 (x, k2
⊥;Q2) ,

D̃a→h
1 (z, ξ2

T ;Q2) =
1

2π

∫
d2P⊥
z2

eiξT ·P⊥/zDa→h
1 (z, P 2

⊥;Q2) = (4.13)

∫ ∞

0

d|P⊥|
z2
|P⊥|J0(ξT

|P⊥|
z

)Da→h
1 (z,P 2

⊥;Q2),

(4.14)

and we introduce the general expression for the derivatives of the Sivers func-
tion:

f̃
⊥(n)a
1T (x, ξ2

T ;Q2) = n!

(
−−2

M2
∂ξ2T

)n
f̃⊥a1T (x, ξ2

T ;Q2) = (4.15)

n!

(M2)n

∫ ∞

0

d|k⊥||k⊥|
( |k⊥|
ξT

)n
Jn(ξT |k⊥|)f̃⊥a1T (x, ξ2

T ;Q2) .

The structure functions can be then defined as convolutions of these TMDs in
ξT−space as

FUU,T (x, z,P 2
hT , Q

2) = (4.16)

2π
∑

a

e2
ax

∫ ∞

0

dξT ξTJ0(ξT |PhT |/z)f̃a1 (x, ξ2
T ;Q2)D̃a→h

1 (z, ξ2
T ;Q2) ,

F
sin(φh−φS)
UT,T (x, z,P 2

hT , Q
2) = (4.17)

− 2πM
∑

a

e2
ax

∫ ∞

0

dξT ξ
2
TJ1(ξT |PhT |/z)f̃

⊥(1)a
1T (x, ξT ;Q2)D̃a→h

1 (z, ξ2
T ;Q2) .
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4. Phenomenology of Sivers Function

Substituting these Fourier transforms for the structure function we obtain
the following expression for the Sivers asymmetry:

A
sin(φh−φS)
UT = −Mσ0(x, y,Q2)

∑
a e

2
ax

σ0(x, y,Q2)
∑

a e
2
ax

×
∫∞

0
dξT ξ

2
TJ1(ξT |PhT |/z)f̃

⊥(1)a
1T (x, ξT ;Q2)D̃a→h

1 (z, ξ2
T ;Q2)∫∞

0
dξT ξTJ0(ξT |PhT |/z)f̃a1 (x, ξ2

T ;Q2)D̃a→h
1 (z, ξ2

T ;Q2)
, (4.18)

which will allow to extract the Sivers distribution from experimental data,
after an appropriate parametrization.

4.2.1 Parametrization of f
⊥(1)
1T

The azimuthal asymmetry A
sin(φh−φS)
UT is now expressed in terms of TMD dis-

tributions. However, to complete the framework necessary to the extraction
of the Sivers distribution, we need to take another step and choose a reason-
able parametrization for f⊥1T (x, k2

⊥) which describes in an appropriate way its
dependence on x and the transverse momentum. The Sivers function can be
expressed in term of its first moment, integrated in k2

⊥, and a nonperturbative
part:

f⊥1T (x, k2
⊥) = f

⊥(1)
1T (x)f⊥1TNP (x, k2

⊥) (4.19)

This way to express the Sivers function is particularly useful when considering
TMD evolution, because the evolution equations are usually applied to the first
moment, as seen in Eqs. (2.152) and (2.153). The last term in Eq. (4.19), even
if its definition should be arbitrary in general, is constrained by the positivity
bound [145]:

(
f
⊥(1)
1T (x, k2

⊥)
)2

≤ P 2
hT

4M2
f 2

1 (x, k2
⊥) (4.20)

We have chosen to implement the unpolarized TMDs obtained from our global
fit in the definition of Eq. (4.18), therefore, to respect the positivity bound, we
define the nonperturbative f⊥1TNP (x, k2

⊥) as

f⊥1TNP (x, k2
⊥) =

1

πKf

(1 + λSk
2
⊥)

(M2
1 + λSM4

1 )
e−k

2
⊥/M

2
1 f1NP (x, k2

⊥) (4.21)

where the definition f1NP (x, k2
⊥) is taken from Eq. (3.21) and Kf is a normal-

ization factor, which will be defined later.

The function f⊥1T (x, k2
⊥) integrated over the transverse momentum should

reduce to f⊥1T (x) or, equivalently, its nonperturbative part, which depends on
k⊥, should be normalized to unity. Then, it is necessary to integrate this
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4.2. Formalism

quantity in order to completely define f⊥1T :

Kf ≡
∫
d2k⊥

k2
⊥

2M2
f⊥1TNP (x, k2

⊥)

=π

∫
dk2
⊥
k2
⊥

2M2

(1 + λSk
2
⊥)

(M2
1 + λM4

1 )
e−k

2
⊥/M

2
1

1

π

(1 + λk2
⊥)

(g1a + λg2
1a)
e−k

2
⊥/g1a (4.22)

=
g1aM

2
1

2πM2(g1aλ+ 1) (g1a +M2
1 )

4
(λSM2

1 + 1)

[
2g1aλM

2
1 (3g1aλSM

2
1

+ g1a +M2
1 ) +

(
g1a +M2

1

) (
2g1aλSM

2
1 + g1a +M2

1

) ]

The x-dependence of f
⊥(1)
1T (x) is chosen to be flexible enough to eventu-

ally describe a sign change in the distribution for different parton flavors and
longitudinal momentum fractions. Taking inspiration from [146] we define the
function

gaSiv(x) =Na
Siv

Gasiv(x)

maxx[|Gasiv(x)|] (4.23)

GaSiv(x) =xαa(1− x)βa [1 + AaT1(x) +BaT2(x)] (4.24)

where Tn(x) are Chebyshev polynomials of order n and Na
Siv is a normalization

parameter. We divide GaSiv(x) by a fixed parameter, equal to its maximum
absolute value, to automatically satisfy the positivity bound at the starting
energy scale. Then the complete expression of f⊥1T integrated over k2

⊥ reads

f
⊥(1)a
1T (x) =

Na
Siv

Ga
max

xαa(1− x)βa [1 + AaT1(x) +BaT2(x)] f1(x,Q2) (4.25)

Finally, having defined all the necessary terms, we can define the complete
parametrization f⊥1T (x, k2

⊥) used in our analysis:

f⊥a1T (x, k2
⊥) =

1

Kf

(1 + λSk
2
⊥)

π(M2
1 + λSM4

1 )
e−k

2
⊥/M

2
1

(1 + λk2
⊥)

π(g1a + λg2
1a)

e−k
2
⊥/g1agaSiv(x)fa1 (x) .

(4.26)
To deal with energy scale evolution we want to implement the CSS for-

malism; it is then more convenient to express the first moment of the Sivers
distribution in ξT -space. Following Eq. (4.15) we have

f̃
⊥(1)
1T (x, ξ2

T ;Q2) =
1

32π (g1 +M2
1 )

2 (4.27)

×
exp

(
− ξ2T g1M

2
1

4(g1+M2
1)

)

(2g1M2
1 (3g1λλSM2

1 + g1λS + g1λ+ (1/2(M2
1 ))g1 + λSM2

1 + λM2
1 + 1 +M2

1 ))
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×
(
ξ4
Tg

4
1λλSM

8
1 − 24ξ2

Tg
4
1λλSM

6
1 − 4ξ2

Tg
4
1λSM

4
1 − 4ξ2

Tg
4
1λM

4
1

− 24ξ2
Tg

3
1λλSM

8
1 − 8ξ2

Tg
3
1λSM

6
1 − 8ξ2

Tg
3
1λM

6
1

− 4ξ2
Tg

2
1λSM

8
1 − 4ξ2

Tg
2
1λM

8
1 + 96g4

1λλSM
4
1 + 32g4

1λSM
2
1 + 32g4

1λM
2
1 + 16g4

1

+ 192g3
1λλSM

6
1 + 96g3

1λSM
4
1 + 96g3

1λM
4
1 + 64g3

1M
2
1 + 96g2

1λλSM
8
1 + 96g2

1λSM
6
1

+ 96g2
1λM

6
1 + 96g2

1M
4
1 + 32g1λSM

8
1 + 32g1λM

8
1 + 64g1M

6
1 + 16M8

1

)

× gSiv(x)f1(x;Q2)

Without the inclusion of λS the previous expression assumes a simpler form:

f
⊥(1)
1T =

1

2π

(
1− λg2

1M
4
1 ξ

2
T

4 (g1 +M2
1 ) (g1 +M2

1 + 2λg1M2
1 )

)

× e
− ξ2T g1M

2
1

4(g1+M2
1) gsiv(x)f1(x,Q2) (4.28)

If we consider the distributions of valence and sea quarks as different con-
tributions, we have to redefine our function as

f̃
⊥(1)q
1T (x, ξ2

T ;Q2) = f̃
⊥(1)q
1T (x, ξ2

T ;Q2) + f̃
⊥(1)q̄
1T (x, ξ2

T ;Q2)

= f̃
⊥(1)q
1Tnorm(x, ξ2

T ;Q2) (4.29)

×
{
gqvSiv(x)

[
f q1 (x;Q2)− f q̄1 (x;Q2)

]
+ gq̄Siv(x)

[
f q̄1 (x;Q2)

]}

where we defined f̃
⊥(1)q
1Tnorm(x, ξ2

T ;Q2) as Eq. (4.28) without the x-dependence
expressed by gSiv(x). We use the same nonperturbative contribution for all
flavors, because the parameter g1 is taken from our unpolarized TMD fit which,
for the moment, does not take into account flavor dependence.

4.2.2 Choices for TMD evolution of the Sivers function

Until this point we have not yet included in our Sivers distribution the modi-
fication due to TMD evolution. To be coherent with our choices for the unpo-
larized fit we follow a similar method based on CSS formalism [147, 25]. The
first moment of the Sivers distribution evolved to a certain energy scale Q2 can
be expressed in ξT -space as

f̃
⊥(1)
1T (x, ξ2

T ;Q2) =
∑

i=q,q̄,g

(
Ca/i ⊗ f i1

)
(x, ξ̄∗, µ

2
b)

× eS(µ2b ,Q
2)

(
Q2

µ2
b

)−K(ξ̄∗;µb)
(
Q2

Q2
0

)gK(ξT )

f̃
⊥(1)a
1Tnorm(x, ξ2

T )gSiv(x) .

(4.30)
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where we have included the nonperturbative part of Eq. (4.28), that is

f̃
⊥(1)a
1TNP(x, ξ2

T ) =

1

2πM4

(
1− λg2

1M
4
1 ξ

2
T

4(g1 +M2
1 )(g1 +M2

1 + 2λg1M2
1 )

)
e
− ξ2T g1M

2
1

4(g1+M2
1 ) gSiv(x) . (4.31)

We recall the definitions, first introduced in the formalism for the evolved
unpolarized TMDs, of the scale µb and its parameters:

µb =
2e−γe

ξ̄∗
, ξ̄∗ = ξmax

(
1− e−ξ4T /ξ4max

1− e−ξ4T /ξ4min

)(1/4)

(4.32)

where the values of ξmax and ξmin are defined in Eq. (3.14).
We choose to describe our asymmetry with NLL accuracy and to consider

only the leading term in the expansion of the Wilson coefficients C. As a
consequence the expression for the evolved Sivers distribution is reduced to

f̃
⊥(1)a
1T (x, ξ2

T ;Q2) = fa1 (x;µ2
b) e

S(µ2b ,Q
2) egK(ξT ) ln(Q2/Q2

0) f̃
⊥(1)a
1TNP(x, ξ2

T ) . (4.33)

The explicit functional form for the Sudakov exponent S and the nonpertur-
bative Sudakov factor gK have been already defined in Eqs. (2.130) and (3.18).
Including in Eq. (4.18) the functional form of Eq. (4.33), together with the

evolved unpolarized TMD f̃a1 (x, ξ2
T ;Q2) and D̃a~h1 (z, ξ2

T ;Q2) in Eq. (4.18) we
obtain the complete expression for the Sivers asymmetry evolved at a certain
scale Q and match the experimental measurements taken at different energy
values.

4.3 Data Sets

An accurate extraction of the Sivers function with TMD evolution requires the
inclusion of asymmetry measurements taken by different experimental collab-
oration which cover different ranges of kinematic variables. This way we can
check the universality of the Sivers formalism and observe the effect produced
by different type of targets and final-state hadrons, while at the same time
studying the contributions of TMD evolution. In our fit we studied SIDIS
Sivers asymmetries on different targets published by the Hermes, Compass
and JLab collaborations.

Hermes measured azimuthal single-spin asymmetries during the 2002–
2005 run [148], using a transversely polarized gaseous hydrogen target internal
to the 27.6 GeV HERA lepton storage ring. Scattered leptons and coincident
hadrons were identified using a spectrometer and charged hadrons were addi-
tionally separated using a ring-imaging Cherenkov detector (RICH) enabling
the possibility to distinguish π±, π0, K± contributions in the final measure-
ments. The measured events were preliminarily selected applying the require-
ments Q2 > 1 GeV2, W 2 > 10 GeV2, 0.1 < y < 0.95 and 0.023 < x < 0.4,
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4. Phenomenology of Sivers Function

while final-state hadrons were accepted if they satisfied 0.2 < z < 0.7. The
asymmetries for pions and charged kaons are presented in the published data
tables as projections of x, z, and Ph⊥. They are all positive except in the π−

channel, where they are consistent with zero.
The Compass collaboration published multiple measurements of the SIDIS

asymmetries relative to different runnning periods of the experiment and with
different binning criteria. The first ones that we included in our analysis are
the data collected from 2002 to 2004 [149], using a longitudinally polarized µ+

beam scattered off a polarized deuteron target, consisting in two oppositely
polarized cells containing solid 6LiD. The measurements are selected using the
following cuts: Q2 > 1 GeV2, W > 5 GeV, 0.1 < y < 0.9. Finally, the data are
presented as function of x, z or Ph⊥ separated in π±, K0

S, K
± channels. Both

pion and kaon asymmetries measured on the deuteron target are rather small
and consistent with zero.

The second group of Compass SIDIS data that we have considered was
taken in 2010 [150] using the same muon beam line with longitudinal polariza-
tion and a NH3 proton target with transverse polarization. These data, already
presented in Ref. [151], have been recently presented with a different binning
in Q2. They were reorganized in order to be compatible with Drell–Yan data
collected in 2015 using a similar transversely polarized target, in order to al-
low an easier comparison of Sivers distributions obtained from SIDIS data with
those obtained from Drell–Yan data, in future global analyses. Therefore, it is
useful to rearrange the SIDIS data using the same Q2 ranges that appear in
DY measurements (subsequent comments relate to the di–muon process):

i) 1 GeV < Q < 2 GeV: low di-muon mass range with many background
processes

ii) 2 GeV < Q < 2.5 GeV: intermediate mass range

iii) 2.5 GeV < Q < 4 GeV: mass range of J/ψ

iv) 4 GeV < Q < 9 GeV: high mass range with suppressed background effects.

The lower energy range has a much higher yield.
The requirements for the selection of the events are Q2 > 1 GeV2, W 2 >

10 GeV2, and 0.1 < y < 0.9. The particle identification in this case was
limited to negatively and positively charged final-state hadrons and, as in the
previous case, the data are showed as functions of x, z or Ph⊥. The mean Sivers
asymmetry is positive for all the channels, except for the lowest Q2 range of the
negatively charged hadrons, where it is compatible with zero. For positively
charged hadrons, the mean Sivers asymmetry is positive for all four Q2 ranges,
while for negatively charged hadrons it is consistent with zero in the lowest
and positive for the other three Q2-ranges.

Together with proton and deuteron target measurements, we included also
single-spin asymmetries measured at Jefferson Lab from semi-inclusive DIS on
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4.4. Results

Hermes Compass’09 Compass’17 JLab

Reference [148] [149] [150] [152]

Data points 95 88 111 6

Target p [H] D [6LiD] p [NH3] n [3He]

Q2 range [GeV2] 1.28 - 6.63 1.24 - 31.4 1.27 - 37.7 1.38 - 2.68

x range 0.035 - 0.275 0.006 - 0.286 0.006 - 0.638 0.15 - 0.35

y range 0.043 - 0.717 0.19 - 0.66 0.11 - 0.77 0.70 - 0.81

z range 0.233 - 0.663 0.233 - 0.879 0.14 - 0.74 0.50 - 0.58

PhT range [GeV] 0.11 - 0.972 0.154 - 1.57 0.21 - 1.33 0.24 - 0.44

Table 4.1: Target type and kinematic ranges of Q2, x, y , z and PhT for SSA
data. The data point numbers refer to the ones that satisfy the kinematic cuts
of the fit.

a transversely polarized 3He neutron target in the 2008–2009 run [152]. SIDIS
events selections required a four- momentum transfer squared Q2 > 1 GeV2,
an hadronic final-state invariant mass W > 2.3 GeV, and a mass of undetected
final-state particles W ′ > 1.6 GeV. The data are separated into positive and
negative final-state π and presented as a function of x only, for a total of 8 data
points. JLab data suggest negative π+ Sivers moments, while the π− moments
are close to zero.

For the selection of data included in our study we applied the same criteria
used for the unpolarized TMD fit, i.e., Q2 > 1.4 GeV2, 0.20 < z < 0.74 and
PhT < min[0.2Q, 0.7Qz] + 0.5 GeV. After applying these kinematic cuts we
have a total of 300 data points, that is 95 from Hermes , 88 from Compass’09
, 111 from Compass’17 , and 6 from JLab. The characteristics of the included
data points are summarized in Tab. 4.1 .

4.4 Results

The purpose of our fit is the extraction of Sivers distribution from the complete
set of currently available SIDIS asymmetries measurements, using a consistent
TMD formalism for the treatment of energy scale evolution.

Our previous determination of the unpolarized TMDs gives us an interest-
ing opportunity to include in the model for A

sin(φh−φS)
UT a parametrization for the

unpolarized distribution that is not simply based on reasonable assumptions,
but instead has been extracted directly from experimental data [153]. Having
a good knowledge of the unpolarized TMD distributions is essential to consis-
tently study the Sivers function, considering their interplay in the convolutions
that appear in the definition of the azimuthal asymmetry A

sin(φh−φS)
UT . More-
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4. Phenomenology of Sivers Function

over, using our unpolarized TMD parametrization could be useful to check
if it is actually able to describe the azimuthal asymmetries or if it has any
pathological behavior that was not clearly evident in the description of the
unpolarized data.

The procedure used for the best fit of the Sivers asymmetries is analogous to
the replica method described in Section 3.4. We createdM different replicas of
the original data, shifting them by a Gaussian noise and maintaining the same
original variance for every single data point. When calculating the theoretical
predictions for A

sin(φh−φS)
UT , we need to choose a suitable parametrization for

the unpolarized TMDs. For every replica r of the asymmetries we have chosen
the set of parameters extracted from the corresponding replica r of unpolarized
data. Considering this, and following the procedure applied for the unpolarized
extraction, we create a total of 200 replicas of the original AUT data. For the
minimization process we adopted, where possible, the same choices used in
our previous work, in order to be consistent with the framework where our
description of the TMD PDFs and FFs is valid. Therefore, for the calculation
of collinear PDFs we kept the GJR08FFnloE set [106] and for the collinear
FFs we again used the DSS14 NLO set for pions [107] and the DSS07 NLO
set for kaons [108]. Each minimization started from a different set of initial
parameters chosen in a reasonable interval, to explore the parameters space
without being too much constrained by their initial choice, while at the same
time avoiding area of no physical significance.

As said in the previous section, the Compass and Hermes measurements
of the asymmetry are presented as function of x, z and PhT . However, these
three groups of data refer to the same measurements, only projected on differ-
ent observables. Therefore we decided to fit only one of these projections in
order to avoid considering fully correlated measurements. We chose to analyze
the x sets of data, given that we are mainly interested in the x-dependence of
the Sivers function.

Adopting this configuration for our minimization, we considered 118 data
points of the data sets projected on x which, after being reduced by 14 free
parameters, gives a total number of degrees of freedom equal to 104. We
obtained a good agreement between the experimental measurements of AUT
as a function of x and our theoretical prediction, with an overall value of
χ2/d.o.f.= 1.06 ± 0.12. The uncertainties are estimated from the 68% confi-
dence level obtained through the replica methodology. The global results of
our minimization are summarized in Table 4.2 and the histogram of the dis-
tribution of χ2/d.o.f. values obtained from the replica methodology is shown
in Fig. 4.1.

In Table 4.3 we report the value of total χ2 and the number of data points
analyzed, distinguished according to their experimental collaboration. Instead,
Table 4.4 present the same quantities, separated with respect to the detected
hadron in the final state. We observe that our parametrization is able to
describe very well the x-group data of Compass’17, even if they have smaller
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Points Parameters χ2 χ2/d.o.f.

118 14 110.19± 10.84 1.06± 0.10

Table 4.2: Number of included data points, of free parameters and values of
χ2. The difference between the number of data points and free parameters
gives the total degrees of freedom.

Hermes Compass’09 Compass’17 JLab

χ2 47.60± 7.29 30.10± 4.75 31.10± 5.98 5.01± 1.54

Points 30 32 50 6

Table 4.3: Values of obtained total χ2 and uncertainties, and corresponding
number of data points, separated according to their experimental collabora-
tions.

π+ π0 π− K+ K−

28.80± 5.05 5.68± 0.30 44.40± 2.80 13.30± 2.82 20.70± 3.21

Points 42 6 42 14 14

Table 4.4: Values of obtained total χ2 and uncertainties, and corresponding
number of data points, separated according to the detected hadron in the final
state.
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Figure 4.1: Global distribution of χ2/d.o.f. values obtained from the mini-
mization of 200 replicas.

uncertainties compared with the other data sets. This could be probably due
to their Q2 binning, which is much finer compared to the other data sets
considered. Another possible reason is that the Compass’17 data do not
identify the type of hadron in the final state, only their charge; they could
be more compatible with our extraction of unpolarized TMDs, which did not
take into account flavor dependence and was based mostly on Compass data
without final-state particle identification. Also in the cases of Compass’09
and JLab measurements we obtain a good agreement with our theoretical
prediction. However, in these cases we have larger uncertainties compared to
the ones of Compass’17.

The Hermes asymmetries data set is, in general, well described by our
extracted functional form. Their agreement however is slightly worse compared
with the other experiments and its χ2 value is larger than the one obtained for
the global fit. Comparing the distributions of the Hermes data points with
the rest of the data sets, we observe that it is less regular and it has smaller
uncertainties, resulting then more challenging to describe accurately.

Our extraction of the Sivers distribution function presents larger uncertain-
ties compared with similar results obtained by other collaborations. There are
different factors that contribute to produce larger error bands. First of all,
we adopted a functional form more flexible than in the past, to reduce the
bias connected to its choice. This aspect is emphasized by the implementation
of the replica methodology to determine error bands, as it allows the already
flexible function to fit different realistic outcomes of the experiments.
Another aspect to take into account is that we are using unpolarized TMDs
which in turn have been extracted from experimental measurements. There-
fore, we are introducing in the final outcome also these additional uncertainties.
We believe it is important to include them, as the determinations of unpolar-
ized TMDs are still affected by relatively large uncertainties.
Last but not least, in our fit we consider only the x-projection of the SIDIS
A

sin(φh−φS)
UT data. Past studies included also the z and PhT projections, which
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are however fully correlated. This is equivalent to artificially increase the num-
ber of data, duplicating the actual experimental measurements, and probably
producing smaller error bands as a consequence. Therefore, we believe that
our recent error estimates more accurately reflect the actual knowledge of the
Sivers function.

The inclusion of TMD evolution contributions in the study of the Sivers
asymmetry was not dictated only by the necessity to give a good description
of the experimental data. In fact, repeating the analysis using the same frame-
work but excluding the terms related to TMD evolution, we are able to obtain
a similar outcome, with χ2 = 1.07 ± 0.17. The main reason to include these
contributions is that we are using unpolarized TMDs extracted from exper-
imental data and we want to be coherent with the formulas used to obtain
them. In that case TMD evolution has been proved to play an important role,
as the data cover a wide range in Q2. Using this parametrization to describe
the asymmetries, without including all the necessary ingredients, would intro-
duce some inconsistencies in our analysis. We observe that, even if the terms
related to TMD evolution do not produce a significant effect due to the limited
range energy range, in principle their exclusion is not justified by theoretical
considerations, but only as a way to simplify the formulas used. In any case, we
want to test the validity of the complete TMD formalism, including evolution,
and its ability to reproduce the quantities experimentally observed. Moreover,
the study of the Sivers distribution can be extended to AN asymmetries mea-
sured on DY processes. These measurements cover a wider energy interval and
TMD evolution could play an important role, thus, it makes sense to already
include these contributions, in view of future analyses which may include DY
data.

The agreement of theoretical predictions and experimental data can be
observed more in detail in the figures contained in Section 4.6. In Fig. 4.5
are shown the asymmetries A

sin(φh−φS)
UT measured at Hermes, in Fig. 4.6 the

Compass’09 data, in Fig. 4.7 and Fig. 4.8 the Compass’17 data for positive
and negative final-state hadrons respectively and, finally, in Fig. 4.9 we have
the results for JLab measurements. All plots presents the Sivers asymmetry
as a function of x,z and ¶hT , except for the Jlab data where only the x bin
is present. The colored data points represent the experimental data with the
corresponding uncertainties, while the grey bands denote the 68% confidence
level of the 200 replicas.

In Table 4.5 we present the best fit parameters extracted from our fit. They
are flavor dependent and have different values for the contributions of valence
u and d quarks and for the sea quarks s. In particular, we noticed that the
β parameters are not well determined by the minimization, and we decided to
assign them a fixed value in a reasonable interval, determined through prelim-
inary fits with β as the only free parameter. In the second line of Table 4.5 we
show the best fit parameters obtained using the replica 105 parametrization,
used as a reference to explore more in detail the results of the unpolarized fit.
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M1 λS αd αu αs

All Repl. 0.55± 0.55 −9.23± 10.10 0.33± 0.70 −0.01± 0.30 0.52± 0.66

Repl. 105 1.30× 10−6 −1.97 1.24 0.02 0.22

βd (r) βu (r) βs (r) Ad Au As

0.50± 0.33 0.48± 0.34 0.49± 0.33 10.80± 19.30 2.47± 8.97 −0.01± 6.55

0.85 0.99 0.20 12.40 −0.55 −0.20

Bd Bu Bs Nxd Nxu Nxs

1.31± 3.62 −2.25± 6.12 0.15± 2.96 0.11± 0.56 −0.02± 0.12 −0.05± 0.27

6.49 1.10 1.01 −1.00 0.05 −1.00

Table 4.5: Values of best fit parameters for Sivers distribution. The values
in the second row refers to the best fit parameters obtained from replica 105.
The symbol (r) denotes that the parameter is not free, but randomly chosen.

The plots in Fig. 4.2 shows the values of xf
⊥(1)
1T (x,Q2) for the valence and

sea quarks are shown as a function of x. The first moment of the Sivers
distribution are evaluated at Q0 = 1 GeV and in the case of the sea quarks,
we show only the strange quark case, as an example. The bands represents
the 68% confidence level obtained through the replica methodology, calculating
xf
⊥(1)
1T (x,Q2) for each group of replica parameters, and excluding for each value

of x the results outside the 16th and 84th percentile.
The distribution for the up quark is negative, while for the down quark is

positive and they have a similar magnitude. The contribution of the s quark
is instead close to zero. The values that we found for the first moment of the
Sivers distributions are compatible with previous studies of the Sivers function,
that will be discussed in the next section.

4.5 Comparison with previous extractions of

the Sivers function.

4.5.1 2011 Pavia group

The Pavia group carried out a previous study on the Sivers function [23],
considering also its relation with the quark angular momentum. The group
of SIDIS asymmetries data included in this study differs from the current
analysis for the important addition of Compass proton data. Moreover, it did
not consider TMD evolution effects. For the parametrization of unpolarized
TMDs, it used a Gaussian model:

fa1
(
x, k2

⊥;Q2
0

)
=
fa1 (x;Q2

0)

π 〈k2
⊥〉

e−k
2
⊥/〈k2⊥〉, Da

1

(
z, P 2

⊥;Q2
0

)
=
Da

1 (z;Q2
0)

π 〈P 2
⊥〉

e−P
2
⊥/〈P 2

⊥〉

(4.34)
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(a) (b)

(c) (d)

(e) (f)

Figure 4.2: The function xf
⊥(1)
1T as a function of x calculated for the up (a,b),

down (c,d) and strange (e,f) quark at the scale Q0 = 1 GeV. The uncertainty
bands shown in (a),(c) and (e) are created using the 68% C.L. obtained with
the replica methodology. In the panels (b),(d) and (f) we show all the curves
corresponding to the 200 replica fits.

105



4. Phenomenology of Sivers Function

where the definitions of the variables is presented more in detail in the refer-
enced paper.

The Sivers function, instead, was parametrized as function of its zeroth
moment in the following way:

f⊥a1T

(
x, k2

⊥;Q2
0

)
= f

⊥(0)a
1T

(
x;Q2

0

)M2
1 + 〈k2

⊥〉
πM2

1 〈k2
⊥〉

e−k
2
⊥/M

2
1 e−k

2
⊥/〈k2⊥〉 (4.35)

and, for the valence quark:

f
⊥(0)qv
1T

(
x;Q2

0

)
= Cqv

√
2e

MM1

M2
1 + 〈k2

⊥〉
1− x/αqv
|αqv − 1| (1− x)f qv1 (x;Q2

0) (4.36)

where M1, αqv ,Cqv were free parameters and the model distinguished up, down
and sea quarks contributions.

Moreover, to explore the relation between the quark angular momentum
and the azimuthal asymmetries, the function f

(0)a
1T (x,Q2) is connected to the

generalized parton distribution Ea, at Q = 1 GeV, through a certain lensing
function in the following way:

f
⊥(0)a
1T

(
x;Q2

L

)
= −L(x)Ea

(
x, 0, 0;Q2

L

)
, (4.37)

taking inspiration from spectator model results and theoretical consideration.
The total longitudinal angular momentum Ja can be computed from the GPDs
Ha and Ea, creating a relation with the Sivers function and thus imposing
an additional constraint to its extraction, while at the same time opening a
possible way to determine quark angular momentum. This model gave a good
agreement between the experimental values and the theoretical predictions
with a χ2/d.o.f around 1.3 and gives a good estimate of the quark angular
momentum.

As a note, we briefly show how to pass from the functional forms of this
original paper to our the current framework. The first important step is to
Fourier transform the Gaussian models for TMDs from the momentum space
to the configuration one, as discussed in Section 4.2.

We can express f⊥1T (x,Q2
0) as a function of its first moment, in a similar

way to our recent fit:

f⊥1T (x,Q2
0) =

2M2 (〈k2
⊥〉+M2

1 )
2

π (〈k2
⊥〉M2

1 )
2 f

⊥(1)
1T (x,Q2

0)e−k
2
⊥/M

2
1 e−k

2
⊥/〈k2⊥〉 (4.38)

The first moment f̃
⊥(1)a
1T , if we include the contributions of TMD evolution,

can be written as

f̃
⊥(1)a
1T (x, ξ2

T ;Q2
0) =

〈k2
⊥〉M2

1

4πM2(〈k2
⊥〉+M2

1 )
e
− ξ2T 〈k

2
⊥〉M

2
1

4(〈k2⊥〉+M
2
1 )f
⊥(0)a
1T (x;µ2

b) e
gK(ξT ) ln(Q2/Q2

0) .

(4.39)

Inserting this distribution in A
sin(φh−φS)
UT we can reproduce the results of the

original paper.
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4.5.2 EIKV collaboration

In 2014 the Echevarria-Ibildi-Kang-Vitev collaboration [25] performed a fit of
the Sivers asymmetry in SIDIS, focusing in particular on the different terms
that contribute to the TMD evolution, such as the nonperturbative Sudakov
factor. The minimization considers the data sets included in the Pavia 2011 fit
with the addition of Compass data with proton target. The proton Compass
data, however, are from a different data set than the one included in our current
fit, and refers to a previous publication without a fine binning in Q2.

To describe the TMD PDF and FF, a simple Gaussian functional form was
chosen, with their widths related to the transverse momenta. To take into
account the flavor dependence, the contributions for the quarks u, d, ū, d̄, and
for the sea quark s were distinguished.

The authors used the model obtained from this global fit to make predic-
tions for the Sivers asymmetry in DY lepton pair and W/Z production at the
characteristic energies of experimental measurements at Tevatron and LHC, to
test the sign change of the Sivers functions between SIDIS and DY processes
and constrain the sea quark Sivers functions.

4.5.3 Torino-Cagliari collaboration.

In 2018 a collaboration between the research groups of Torino and Cagliari
published an extraction of the Sivers function from azimuthal asymmetries
measured in polarized SIDIS [153]. At the moment this is the most updated
published analysis of the Sivers asymmetries and can be considered the con-
tinuation of their previous studies of the Sivers distribution from SIDIS [154]
and W/Z production data [26].

This analysis and, later, our work included the same data sets taken from
Hermes Compass and JLab, given that they are the most recent data avail-
able for polarized semi-inclusive DIS. They excluded the measurements for the
K− channel because the sea contributions, which drives the kaons data, was
not separated from the valence contribution. Another important difference is
that the Torino-Cagliari group included together in the minimization all the
projections of the data on x, z, PhT .

To address the Q2 dependence of the Sivers function the authors considered
three different approaches, one without any evolution, one adopting a collinear
twist-3 evolution, and the last one using a TMD-like approach [24]. For each
one of these cases they found a good agreement with the data, with a χ2/d.o.f
of 0.99, 0.94 and 0.99 respectively.

A crucial feature of the framework adopted for our fit, which emerges from
this comparison and constitutes an interesting improvement, is the inclusion
of unpolarized TMDs extracted directly from unpolarized data. The Torino-
Cagliari fit, instead, adopted for the unpolarized TMDs an arbitrary reason-
able parametrization, not related to an extraction form experimental data.
Moreover, in our minimization for the scale dependence we fully included the
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standard formalism for the TMD evolution. With these choices we found re-
sults comparable with the one published by the Torino-Cagliari group. The
comparison between the two studies will be discussed in the next section.

4.5.4 Graphical comparison of different extraction.

We present the comparison between our extraction of the first moment of the
Sivers function with the results obtained by other research groups, in Fig. 4.3
for the up quarks and in Fig. 4.4 for the down quarks. We denote with PV11
the result of the Pavia group in 2011 [23], with TC18 the reference fit of
Torino-Cagliari [153] results and with PV18 our most recent results. The data
were presented calculated for different values of Q2, the curves of TC18 were
calculated at Q2 = 1.2 GeV2, the results of Pavia at Q2 = 1 GeV2, while
the curve corresponding to EIKV were presented in the original publication
at Q2 = 2.4 GeV2. In our plot, however we calculated again the EIKV curve
at Q2 = 1 GeV2 adding also the estimate for the error bands, which were not
present originally. In some cases we had to rearrange the final results, so that
they referred to the same quantity xf

⊥(1)
1T ; for example in the case of TC18 the

final results were presented in terms of ∆Nf
(1)

q/p↑
(x) = −f q⊥(1)

1T (x), while EIKV

discussed the Qiu-Sterman function Tq,F (x, x,Q).
From the plots, we can conclude that our current analysis is in good agree-

ment with the previous extraction of the Sivers function from similar data sets
of polarized SIDIS.

EIKV

PV11

TC18

PV18

Printed by Wolfram Mathematica Student Edition

Figure 4.3: Comparison of different extractions of the first moment of Sivers
distribution as a function of x for up quark.
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EIKV

PV11

TC18

PV18

Printed by Wolfram Mathematica Student Edition

Figure 4.4: Comparison of different extractions of the first moment of Sivers
distribution as a function of x for down quark.
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4.6 Appendix: Plots of best fit results for Sivers

asymmetries.
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Figure 4.5: Hermes Sivers asymmetries from SIDIS off a proton target (H)
with production of π+, π0, π−, K+, K− in the final state, presented as function
of x, z, PhT .
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Figure 4.6: Compass’09 Sivers asymmetries from SIDIS off a deuteron target
(6LiD) with production of π+, π−, K+, K− in the final state, presented as
function of x, z, PhT .
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Figure 4.7: Compass’17 Sivers asymmetries from SIDIS off a proton target
(NH3) with production of positive hadrons h+, presented as function of x, z,
PhT and divided in four different Q2 bins.
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4.6. Appendix: Plots of best fit results for Sivers asymmetries.
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Figure 4.8: Compass’17 Sivers asymmetries from SIDIS off a proton target
(NH3) with production of negative hadrons h−, presented as function of x, z,
PhT and divided in four different Q2 bins.
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Figure 4.9: JLab Sivers asymmetries from SIDIS off a deuteron target (6LiD)
with production of positive and negative π in the final state, presented as
function of x.
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Chapter 5
Conclusions

In this thesis we presented a phenomenological study of unpolarized TMD
parton distribution and fragmentation functions and, subsequently, of the
Sivers distribution function. These two extraction are tightly connected, as
the extraction of the Sivers function requires an accurate knowledge of the
unpolarized TMDs. In both cases we paid particular attention to their Q2-
dependence, through the inclusion of TMD evolution contributions at NLL
accuracy. Another interesting aspect of our minimization is the implemen-
tation of the replica methodology, a Monte Carlo approach to estimate the
uncertainties of the functions obtained.

The extraction of the unpolarized TMDs can be considered as the first
attempt at a global fit, in the context of TMD factorization and including
also TMD evolution. Then, we effectively proved that, using the same TMD
PDFs and FFs, it is possible to simultaneously describe data taken from SIDIS,
Drell–Yan and Z boson production collected by different experiments. For the
first time a phenomenological study tested the universality property of TMDs;
using the same unpolarized TMDs we achieved a good description of a wide
set of measurements covering different processes in different kinematic regions.
Moreover, considering data at different values of Q2 we were able to test the
validity of the TMD evolution formalism. We extracted unpolarized TMDs
using 8059 data points with 11 free parameters using a replica methodology.
We selected data with Q2 > 1.4 GeV2 and 0.2 < z < 0.74. We restricted our
fit to the small transverse momentum region, selecting the maximum value
of transverse momentum on the basis of phenomenological considerations (see
Sec. 3.3). With these choices, we included regions where TMD factorization
could be questioned, but we checked that our results describe very well the
regions where TMD factorization is supposed to hold. Our fit is performed
assuming that the intrinsic transverse momentum dependence of TMD PDFs
and FFs can be parametrized by a normalized linear combination of a Gaus-
sian and a weighted Gaussian, without considering an eventual dependence on
parton flavors. We considered that the widths of the Gaussians depend on the
longitudinal momenta. For the nonperturbative component of TMD evolution,
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we adopted the choice most often used in the literature (see Sec. 3.2.3).

In general, the parametrization obtained from our fit gives a good descrip-
tion of the different experimental data sets, with an average χ2/d.o.f. equal to
1.55± 0.05, including 8059 points with 11 free parameters. We have observed
that restricting the kinematic region considered by excluding regions where
the TMD factorization could be challenged, there is an even better match be-
tween our predictions and data, with an improved value of χ2/d.o.f. of 1.02.
Most of the discrepancies between experimental data and theory comes from
the normalization and not from the transverse momentum shape. The results
presented in this thesis, therefore, represent the most comprehensive determi-
nation of unpolarized TMDs available at the moment.

The three-dimensional internal structure of the nucleons in momentum
space can be described through the accurate determination of TMDs. Us-
ing the results obtained from our fit, we were able to visualize the partonic
3D structure and to explore how it is modified by different values of x and
Q2, and what are its uncertainties. With our analysis we demonstrated that
it is possible to reconstruct a map of hadrons in three dimensions through the
study of high-energy scattering observables, which is currently one of the main
purposes behind the multiple efforts to determine TMDs.

Having completed the determination of unpolarized TMDs, we used the
obtained results to extract the Sivers distribution function, following a similar
procedure. We considered the most updated measurements of polarized SIDIS
azimuthal asymmetries, including data sets taken from Compass , Hermes ,
and JLab experiments. At variance with previous extractions, we limited our
fit to the x projections, excluding the z and PhT projection, in order to avoid
examining fully correlated data.

We found a good agreement between our calculations of the azimuthal
asymmetries and the data, with an average value of χ2/d.o.f. = 1.06 ± 0.12,
including 118 data points and 14 free parameters. We were able to reproduce
consistently also the curves for the data presented as a function of z and PhT
even if they were not fitted directly, thanks to the fact that we could rely on
unpolarized TMD FF extracted from data. In this analysis we were able to
distinguish the contributions of different flavors, obtaining different parameters
for the u, d and sea quarks.

The analysis presented in this thesis is the first extraction of the Sivers
function that implements in the description of azimuthal asymmetries an ac-
curate functional form for unpolarized TMD PDF and FFs, obtained directly
from experimental data. At the same time, our fit includes a coherent TMD
evolution formalism to describe effects due to the hard scale variation. These
features represent a significant progress in the procedure to determine the
Sivers distribution.

Testing the formalism of TMD factorization and understanding the struc-
ture of unpolarized TMDs is only the first crucial step in the exploration of
the 3D proton structure in momentum space and this work opens the way to
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global determinations of TMDs. Building on this, we can proceed to deepen
our understanding of hadron structure via polarized structure function and
asymmetries (see, e.g., Refs. [155, 156] ) and, at the same time, to test the
impact of hadron structure in precision measurements at high-energies, such
as at the LHC. A detailed mapping of hadron structure is essential to interpret
data from hadronic collisions, which are among the most powerful tools to look
for footprints of new physics.

5.1 Outlook

In order to overcome some limitations of the extraction presented in this thesis,
we plan to improve some aspects of the procedure that we used. To increase the
level of accuracy of our model, we should include also NLO contributions to the
formalism adopted to describe the TMDs and their evolution. In future studies,
different functional forms for all the nonperturbative ingredients should be
explored, including also a possible flavor dependence of the intrinsic transverse
momenta. A more precise analysis from the perturbative point of view is also
needed, which should in principle make it possible to relax the tension in the
normalization and to describe data at higher transverse momenta. Moreover,
the description at low transverse momentum should be properly matched to
the collinear fixed-order calculations at high transverse momentum.

Together with an improved theoretical framework, in order to better under-
stand the formalism more experimental data is needed. It would be particularly
useful to extend the coverage in x, z, rapidity, and Q2. The 12 GeV physics
program at Jefferson Lab [157] will be very important to constrain TMD dis-
tributions at large x. Additional data from SIDIS (at Compass, at a future
Electron-Ion Collider), Drell–Yan (at Compass, at Fermilab, and at A Fixed-
Target Experiment at the LHC [158]), Z/W production (at LHC, RHIC) will
be very important. Measurements related to unpolarized TMD FFs at e+e−

colliders (at Belle-II, BES-III, at a future International Linear Collider) will
be invaluable, since they are presently missing.

Moreover, it would be useful to fit a wider group of data sets, in order to ex-
tend the coverage in rapidity, x, z and Q2 . Currently, the data sets that could
be included in our analysis, in addition to the ones already considered, are the
recently published Compass SIDIS measurements with improved statistics,
and the data from Z boson production at LHCb, CMS and ATLAS. In partic-
ular, the LHC data allow to cover a larger interval of Q2, which could be useful
to study more in detail the contributions related to TMD evolution. Additional
data from Drell–Yan (at Compass, at Fermilab, and at A Fixed-Target Ex-
periment at the LHC [158]), Z/W production (at LHC, RHIC) will be very
important for the determination of TMDs. This updated extraction would
probably allow us to study also the flavor dependence of unpolarized TMDs,
which produced no particular effects in the current analysis. Otherwise, we
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will have to include Compass proton data to achieve flavor separation.

In the next years, we expect further data that will be useful for the de-
termination of TMDs. Our global fit is currently missing the independent de-
termination of TMD fragmentation functions, which will be possible with the
inclusion of data from e+e− annihilation that should become available from
the Belle collaboration [159, 160]. Moreover, the 12 GeV physics program at
Jefferson Lab [157] has started to collect a large amount of data after the up-
grade, which will be available in the near future. These measurements will be
very important to constrain TMD distributions at large x.

In the longer run, the LHC beam can also be used in fixed-target mode,
either with gaseous or solid targets [161, 162], which would allow to probe
TMD PDFs at highest energies in fixed-target kinematics (e.g., including the
large-x region). The target will be unpolarized, but there are plans also to
build a polarized target.

Finally, in the US there are plans to build a new Electron-Ion Collider
(EIC) [163], which has been defined as one of the highest priorities for the
Nuclear Physics community in the US and has been recently endorsed by the
National Science Academy. This collider will be able to collide electrons with
protons and light nuclei, and it will cover the kinematic area of low-x and high
Q2, currently unexplored. The data collected by this experiment will provide
significant information for the mapping of the nucleon internal structure and
the investigation of the relation between spin and partons.

Our work focused on quark TMDs. We remark that at present almost
nothing is known experimentally about gluon TMDs [19, 164], because they
typically require higher-energy scattering processes and they are harder to iso-
late as compared to quark distributions. Several promising measurements have
been proposed in order to extract both the unpolarized and linearly polarized
gluon TMDs inside an unpolarized proton. The cleanest possibility would be to
look at dijet and heavy quark pair production in electron-proton collisions at a
future EIC [165, 166]. Other proposals include isolated photon-pair production
at RHIC [167] and quarkonium production at the LHC [168, 169, 170, 171].

As we mentioned earlier, an accurate description of the flavor dependence
of the unpolarized TMDs will be necessary for precise measurements at high
energies, such as the determination of the W boson mass.

With regards to the study of the Sivers function, there are many aspects
that will require further attention. Having a detailed parametrization for the
polarized TMDs is crucial for investigating the relation between the spin of the
nucleons and the motion of their partons. It would be interesting to study the
connection of the updated Sivers distribution function with the orbital angular
momentum of the proton, improving for example the results obtained in the
Pavia 2011 analysis.

Moreover, the AN asymmetry measured in Drell–Yan processes presently
have large errors. In the future, following the general idea of a global fit, we
plan to include them in the extraction of the Sivers function.
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In order to better evaluate the stability of our extraction, it could be useful
to explore alternative functional forms for the Sivers function and study more
in detail the flavor dependence, increasing eventually the number of flavor
described by different parameters.

As we said this work proceeds in parallel with the study of the unpolarized
TMDs, therefore, once we improve the unpolarized extraction, we plan to
repeat the analysis of the Sivers function, including the updated results and
eventually higher-order contributions.

Having a detailed parametrization for the polarized TMDs is crucial for
investigating the relation between the spin of the nucleons and the motion of
their partons. This updated extraction of the Sivers distribution, therefore,
will be useful to study the orbital angular momentum of protons, improving
for example the results obtained in the Pavia 2011 analysis.

The study of the internal structure of the hadron is in fact an ongoing
process, where the progress in the experimental observations of high-energy
processes stimulates new developments in their theoretical description and vice
versa, leading with each step to a deeper understanding of the phenomena in
particle physics.
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