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Hubbard parameters from density-functional perturbation theory
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We present a transparent and computationally efficient approach for the first-principles calculation of Hubbard
parameters from linear-response theory. This approach is based on density-functional perturbation theory and the
use of monochromatic perturbations. In addition to delivering much improved efficiency, the present approach
makes it straightforward to calculate automatically these Hubbard parameters for any given system, with tight
numerical control on convergence and precision. The effectiveness of the method is showcased in three case
studies—Cu2O, NiO, and LiCoO2—and by the direct comparison with finite differences in supercell calculations.
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I. INTRODUCTION

The development of density-functional theory (DFT) [1,2]
has allowed modeling of a broad spectrum of properties for a
large variety of systems. In practical applications, DFT relies
on approximations to the exchange-correlation (xc) electronic
interactions, among which the local-density approximation
(LDA) and the generalized-gradient approximation (GGA)
are the most popular ones. Both approximations suffer from
self-interaction errors (SIE), which limit the accuracy only to
systems with weak and moderate electronic correlations. In
systems with strongly localized electrons of d and f types,
SIE in LDA and GGA are much larger, which leads to overde-
localization of these electrons and quantitative and sometimes
even qualitative failures in the description of complex materials
(e.g., metallic instead of insulating ground states).

Various corrective methods have been devised to deal with
SIE. In particular, in DFT with hybrid functionals—such
as, e.g., B3LYP [3–7] or HSE06 [8,9]—a fraction of the
nonlocal Fock exchange is used for all (strongly localized and
nonstrongly localized) electrons with a fraction of (semi)local
exchange and a fully (semi)local correlation. This approach
is computationally more expensive than DFT with (semi)local
functionals, because the Fock exchange is a nonlocal integral
operator which acts on Kohn-Sham (KS) wave functions.
However, there has been recent progress in the development of
very efficient techniques, such as the adaptively compressed
exchange [10], to speed up such calculations. Another re-
cent suggestion is the meta-GGA functional SCAN (strongly
constrained and appropriately normed semilocal density func-
tional) [11], which has shown promising results for many sys-
tems [12,13]. Having a marginal increase in the computational
cost, DFT with the SCAN functional uses a xc potential which
depends on KS wave functions via a kinetic energy density.
However, SCAN still contains significant SIE [12].

A popular approach to alleviate SIE in DFT calculations
is to use Hubbard extensions to approximate DFT energy
functionals [14–16]. The rationale for this is that Hubbard
corrections impose piecewise linearity in the energy functional
as a function of occupations [17,18] and thus remove SIE in the
Hubbard manifold both in extended systems and in molecular

ones [19]. Within this approach, often referred to as DFT+U ,
the Hubbard correction acts selectively on strongly localized
manifolds (of d or f types, typically) through projectors on
the corresponding states, while electrons on more delocalized
states are treated at the level of approximate DFT. What
has made this approach popular is certainly the possibility
of achieving significant improvement in the description of
systems with localized electrons, while maintaining a com-
bination of simplicity and reduced computational costs. As
for other methods based on the Hubbard model, for example,
DFT+DMFT [20–22], the effectiveness of the functional
depends critically on the value of the effective interaction
parameters (i.e., the Hubbard U parameter), which represents
the strength of the onsite electron-electron interactions on
localized states [19,23,24]. Unfortunately, the value of these
parameters is not known a priori and it is a common practice in
literature to evaluate them semiempirically by fitting various
experimental properties (when available), which prevents this
method from being fully ab initio and from being predictive
for novel materials. Most importantly, it is often forgotten that
U acts on a Hubbard manifold that is defined in terms of
atomic orbitals, typically taken from the atomic calculations
used to generate the respective pseudopotentials, that can be
constructed with different degrees of oxidation. Hence, these
manifolds, and the relative U parameters, are not transferable
and one should not consider U as a universal number for a given
element or material (see the appendix in Ref. [25]). During the
past 30 years, there has been a large effort to develop methods
for the first-principles calculation of U . Among these, the con-
strained DFT (cDFT) approach [17,26–34], the Hartree-Fock-
based approaches [35–38], and the constrained random phase
approximation (cRPA) approach [39–45] are the most popular.

In this work, we present a method for the calculation of U

using the reciprocal space formulation of density-functional
perturbation theory (DFPT) [46,47]. Our approach, by con-
struction, is equivalent to the linear-response cDFT (LR-cDFT)
approach of Ref. [17]. Broadly, we refer to linear response as
to a first-order variation in the electronic spin charge density,
occupations, and potentials upon application of a perturbation.
This can be done with finite differences, typically using a
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supercell [17], or, as shown here, using DFPT. The DFPT
approach allows us to recast an isolated perturbation in a
supercell as a sum of monochromatic perturbations in its
primitive unit cell; these can be computed independently, with
a significant reduction of the computational cost [47]. The
favorable scaling of the DFPT approach makes it suitable
for incorporation in high-throughput materials screening, and
the automation of the elaborate postprocessing of the results
improves notably the level of user friendliness. Lastly, we note
the formal similarity of the present DFPT-based algorithm for
the calculation of Hubbard U with that used to evaluate the
screening coefficients for Koopmans’ corrections [18,48,49].

The paper is organized as follows. In Sec. II, we recall the ro-
tationally invariant formulation of DFT+U ; Sec. III contains
a brief reminder about the linear-response (LR) calculation of
U using the LR-cDFT approach of Ref. [17]; in Sec. IV, we
present the DFPT approach to compute U ; Sec. V contains
technical details of our calculations; Sec. VI highlights several
benchmarks of this method, demonstration of the convergence
of U in DFPT, and comparison of scaling of LR-cDFT and
DFPT; and finally, in Sec. VII, we give our conclusion. For
the sake of simplicity and clarity, in this paper we present the
formulation of the DFPT method in the framework of norm-
conserving pseudopotentials (PPs) and for gapped systems.
The generalization of DFPT to ultrasoft (US) PPs [50], projec-
tor augmented wave (PAW) method [51], metals, and intersite
interactions [52] will be provided in a following paper. Some
mathematical details of the DFPT method are discussed in the
appendix. Hartree atomic units are used throughout the paper.

II. DFT+ U

In this section, we briefly review the DFT+U ap-
proach [14,15]. The total energy is defined as

EDFT+U = EDFT + EU, (1)

where EDFT is the DFT total energy of an approximate
functional and EU is a corrective Hubbard energy term. Many
suggestions for EU have been put forward in the literature
(see, e.g., Refs. [14–16,53–58]). Here we take the simplified
rotationally invariant formulation by Dudarev et al. [16] with

EU = 1

2

∑
Iσm1m2

UI
(
δm1m2 − nIσ

m1m2

)
nIσ

m2m1

= 1

2

∑
Iσ

UI Tr[(1 − nIσ )nIσ ], (2)

where I is the atomic site index, σ is the spin index, m1

and m2 are magnetic quantum numbers associated with a
specific angular momentum, and UI is an effective Hubbard
parameter, which can be considered as the difference between
the spherically averaged on-site Coulomb repulsion and on-site
Hund’s exchange J I . The symbol “Tr” indicates the trace
(i.e., the sum over the diagonal elements) of the matrix it acts
on. The corrective Hubbard energy of Eq. (2) in its practical
incarnation within DFT acts as a linearization condition for the
total energy functional (as a function of populations nIσ of the
localized Hubbard manifold); i.e., it acts as a self-interaction
correction to standard DFT [17–19]. In Eq. (2), nIσ

m1m2
are

matrices which measure the occupation of localized orbitals

ϕI
m(r) ≡ ϕ

γ (I )
m (r − RI ) centered on the I th atomic site in the

cell RI [γ (I ) is the atomic type of the I th atom] [59]. If
we consider a periodic insulating crystal, these occupation
matrices can be computed as

nIσ
m1m2

=
Nk∑
k

Nocc∑
v

〈ψ◦
vkσ |P̂ I

m2m1
|ψ◦

vkσ 〉, (3)

where P̂ I
m2m1

is the projector on the manifold of localized
(atomic) orbitals

P̂ I
m2m1

= ∣∣ϕI
m2

〉〈
ϕI

m1

∣∣. (4)

The projector P̂ I
m2m1

is the key component of Hubbard-
corrected functionals, since it defines the Hubbard manifold
(typically localized on an atom) upon which the corrections
are constructed. Note that the occupation matrices nIσ

m1m2
are

real and symmetric with respect to m1 and m2. In Eq. (3) and
hereafter, with the superscript ◦ we indicate quantities which
refer to the unperturbed ground state of the system. In Eq. (3),
Nk is the number of k points in the first Brillouin zone, v is the
electronic band index which runs overNocc occupied states, and
ψ◦

vkσ are the ground-state Kohn-Sham (KS) wave functions,
which satisfy the orthonormality condition, 〈ψ◦

vkσ |ψ◦
v′k′σ ′ 〉 =

δvv′δkk′δσσ ′ . The normalization in Eq. (3) and in the following
is chosen according to definitions in Eqs. (A3), (A4), and (A5)
in the Appendix A 1. The KS wave functions are determined
by solving the KS equations,

Ĥ ◦
σ |ψ◦

vkσ 〉 = ε◦
vkσ |ψ◦

vkσ 〉 ; (5)

i.e., they are the eigenvectors of the total Hamiltonian Ĥ ◦
σ

which reads

Ĥ ◦
σ = Ĥ ◦

DFT,σ + V̂ ◦
Hub,σ , (6)

where

Ĥ ◦
DFT,σ = − 1

2∇2 + V̂ ◦
NL + V̂ ◦

loc + V̂ ◦
Hxc,σ , (7)

and

V̂ ◦
Hub,σ =

∑
Im1m2

UI

(
δm1m2

2
− nIσ

m1m2

)
P̂ I

m1m2
(8)

is the Hubbard potential [23]. V̂ ◦
Hub,σ can be obtained from

Eq. (2) by taking a functional derivative of EU with respect to
KS wave functions [and by making use of Eq. (3)]. In Eq. (7),
the first term is the kinetic-energy operator, the second and the
third terms are operators corresponding to the nonlocal and
local parts of the pseudopotential (which represent interactions
of electrons with ions), respectively, and the fourth term is
the operator representing the Hartree and exchange-correlation
(Hxc) potential. The Hxc potential is the sum of the Hartree
and xc contributions:

V ◦
Hxc,σ (r) =

∫
V

ρ◦(r′)
|r − r′| dr′ + V ◦

xc,σ (r), (9)

where V is the volume of the crystal, and the xc potential is
defined as the functional derivative of the xc energy Exc[ρσ ]
with respect to the spin charge density ρσ :

V ◦
xc,σ (r) = δExc

δρσ (r)

∣∣∣∣
ρσ (r)=ρ◦

σ (r)

. (10)
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For the ground state, the spin charge density reads

ρ◦
σ (r) =

Nk∑
k

Nocc∑
v

|ψ◦
vkσ (r)|2, (11)

and the total charge density results from the sum over spins,
ρ◦(r) = ∑

σ ρ◦
σ (r).

III. HUBBARD U FROM LINEAR-RESPONSE
CONSTRAINED DFT

As already mentioned in the introduction, in spite of the
fact that the semiempirical fitting of the Hubbard parameters is
still a common practice, their evaluation from first principles
is necessary to remove any empiricism, and hence many ap-
proaches have been proposed [17,26–45]. However, a thorough
comparative analysis of their formulation and performance has
been rarely and partially attempted in the literature (see, e.g.,
Ref. [42]). It is our belief that the completion of this task should
be based on a detailed comparison of screening mechanisms
in calculations of the effective Hubbard parameters.

In this section, we recall basic aspects of the LR-cDFT
approach of Ref. [17] for calculations of the effective Hubbard
parameter U . In fact, the approach presented in this work
is a DFPT-based reformulation of LR-cDFT whose results
will thus represent a useful reference. In LR-cDFT, U is
computed as the second derivative of the total energy of
the system with respect to atomic occupations that are de-
fined as the “on-site” trace of the occupation matrices, nI =∑

σ Tr[nIσ ] = ∑
σ,m nIσ

mm [see Eq. (3)]. In implementations
of DFT, like the present one [60,61], where a plane-wave
basis set and pseudopotentials are used, atomic occupations
are obtained as output quantities (i.e., constructed from the
solution of the KS equations) and cannot be controlled from
input. To overcome this problem, i.e., to control ground-state
occupations as independent variables, the LR-cDFT method
performs a Legendre transformation of the total energy. In
practice, the total energy functional EDFT[ρσ ] is augmented
with a linear combination of the products of atomic occupations
nI and Lagrange multipliers {λI }. Subsequently, this functional
is minimized with respect to the spin charge densities ρσ , which
gives the ground-state energy as a function of the coefficients
{λI }:

E({λI }) = min
ρσ

{
EDFT[ρσ ] +

∑
I

λInI

}
, (12)

from which the total energy as a function of the ground-state
atomic occupations nI is recovered by a Legendre transforma-
tion:

Ē({nI }) = E({λI }) −
∑

I

λInI . (13)

This definition of the total energy [Eq. (13)] can be used
to evaluate derivatives with respect to nI . Based on these
definitions, the first and second derivatives give

dĒ

dnI
= −λI , (14)

d2Ē

d(nI )2
= −dλI

dnI
= −(χ−1)II , (15)

where the last equality defines the response matrix χ . This
matrix contains the response of atomic occupations to the
potential shift used to perturb the ground state of the system
[see Eq. (12)]: χIJ = dnI /dλJ (I and J being atomic indices).
From linear-response theory, as detailed in Ref. [17], the
Hubbard U parameter is defined as

UI = (
χ−1

0 − χ−1
)
II

, (16)

where χ0 is the noninteracting analog of χ . Equation (16)
expresses U as the difference between two total-energy second
derivatives [see Eq. (15)]: the one obtained at self-consistency
(−χ−1) and the one evaluated at the first iteration of the
perturbed run (−χ−1

0 ), meaning the curvature of the total
energy of the noninteracting KS system. The subtraction of
the latter term is motivated by the fact that it is not related to
electron-electron interactions. According to a complementary
view, Eq. (16) can be seen as the solution of the Dyson equation
for χ and χ0, where U acts as the interaction kernel (χ =
χ0 + χ0Uχ ). In practice, in order to compute the variations of
atomic occupations, one needs to solve modified KS equations
where atomic potentials are perturbed one at a time [cf. with
Eq. (5)]: (

Ĥσ + λJ V̂ J
pert

)
|ψvkσ 〉 = εvkσ |ψvkσ 〉. (17)

These equations can be obtained by taking a functional deriva-
tive of EDFT[ρσ ] + ∑

I λInI [see Eq. (12)] with respect to
ψ∗

vkσ (r). Based on Eq. (3), it is easy to show that the perturbing
potential is

V̂ J
pert =

∑
m

P̂ J
mm, (18)

which is a sum of the projections on the localized atomic
orbitals of the J th atom [see Eq. (4)]. In Eq. (17), Ĥσ , ψvkσ , and
εvkσ are the Hamiltonian, the KS wave functions, and the KS
energies of the perturbed system, respectively. For the inverse
response matrices to correspond to atomic on-site interactions,
it is necessary to make sure that these localized, neutral (i.e.,
not charged) perturbations do not interact with their images
through the periodic-boundary conditions, which requires the
use of progressively larger supercells. The final results (i.e.,
the effective Hubbard parameters) thus have to be converged
with respect to the supercell’s size.

In practice, after solving Eq. (17) for at least two values of λJ

(centered around 0 eV, which corresponds to the unperturbed
ground state), the response matrices can be easily computed
using finite differences:

χIJ = �nI

�λJ
. (19)

The variation in the strength λJ of the perturbing potential
should be small, for the response of the system to be in the linear
regime, but large enough for the response to be significant with
respect to numerical noise. Then, the full response matrix χ is
constructed by perturbing one at a time the crystallographically
inequivalent Hubbard manifolds of the individual Hubbard
atoms. When one Hubbard atom or manifold is perturbed, the
response of all the atoms is recorded, so that one column of the
response matrix χ is determined. The other matrix elements
(in the columns corresponding to equivalent Hubbard atoms)
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are then reconstructed by symmetry. The dimension of the
response matrix χ is N sc

H × N sc
H , where N sc

H is the number
of Hubbard atoms in the supercell. We also point out that
the change in the occupations of the non-Hubbard atoms (not
explicitly included in the response matrices) contributes to the
screening of the effective interaction.

The procedure described above applies to the construction
of both χ and χ0. However, χ is computed after the self-
consistent solution of Eq. (17), while χ0, the KS (bare)
response, is computed at the first iteration, where the Hxc
potential is equal to that of the unperturbed system. It is worth
noting that the off-diagonal matrix elements in (χ−1

0 − χ−1)
IJ

represent intersite interactions, which are not included in the
standard, on-site only DFT+U Hamiltonian. These can be
important when the hybridization between strongly localized
and nonlocalized states occurs. These terms are included
in the so-called DFT+U + V functional [52] to which the
DFPT-based calculation of Hubbard interaction parameters
introduced in this work has been also extended, as will be
presented elsewhere.

It is important to note that U can be computed starting from
a DFT+U ground state (U 	= 0). This is particularly useful
when U is evaluated self-consistently [62]. In fact, this goal
is achieved through a series of linear-response evaluations of
the Hubbard parameters based on the DFT+U ground state
obtained with the U determined in the previous step; the cycle
is stopped when the computed value of U is within a fixed
threshold from that of the previous step. When evaluating
U from a DFT+U ground state, all the equations discussed
above apply after substituting EDFT with EDFT+U in Eq. (12),
and with the extra condition that the Hubbard potential in the
Hamiltonian Ĥσ , appearing in Eq. (17), is kept fixed to its
unperturbed ground-state value:

Ĥσ = ĤDFT,σ + V̂ ◦
Hub,σ . (20)

This is a consequence of the fact that U is defined as the
curvature of the DFT part of the total energy [first term in
Eq. (1)] as a function of atomic occupations [17]. Keeping
V̂Hub,σ (the first derivative of the Hubbard energy) fixed to its
unperturbed value V̂ ◦

Hub,σ avoids the problem where the second
derivative of the total energy [see Eq. (15)] contains a finite
contribution from the Hubbard correction. We note that in this
work we will not compute U self-consistently and we perform
only one-shot calculations starting from the DFT ground state
with U = 0.

The LR-cDFT approach is straightforward and easy to
implement in electronic-structure codes. However, it is com-
putationally expensive because of its cubic scaling with the
size of the supercell. Furthermore, this approach requires us
to perform a number of supercell calculations (depending on
how many nonequivalent Hubbard atoms are in the system) and
convergence tests with respect to the supercell size to avoid un-
physical interactions between periodic images of the perturbed
atoms. Even though some extrapolation techniques have been
devised to speed up the convergence of U with respect to the
supercell size [17], more computationally efficient algorithms
are highly desirable to overcome these difficulties, especially
in view of their possible deployment in highly automatized,
high-throughput calculations.

IV. HUBBARD U FROM DENSITY-FUNCTIONAL
PERTURBATION THEORY

In this section, we show how the LR-cDFT calculation of
the effective Hubbard parameters outlined in Sec. III can be
reformulated within the framework of DFPT, i.e., solving self-
consistently the system of linear equations that can be obtained
from perturbing to first-order Kohn-Sham equations around
the ground state of the system [46,47]. Although formally
an all-order perturbation theory, the limitation to first order
in the perturbations makes standard DFPT a linear-response
approach, and thus equivalent to LR-cDFT. It is important to
remark that DFPT allows for a reciprocal space formulation of
the LR problem, with wavelength-specific (i.e., momentum-
specific) perturbations and responses [47]. As will be shown
later, this presents the same advantages that a DFPT phonon
calculation [47] has with respect to a finite-difference approach
with ionic displacements frozen in the crystal structure (frozen
phonons): The possibility of performing calculations in primi-
tive unit cells (thus avoiding costly supercells), computational
costs essentially uniform across the Brillouin zone, exploita-
tion of symmetries, and a higher level of automation. The
transition from LR-cDFT to DFPT will be made in two steps:
first, substituting finite differences with continuous derivatives,
and second, recasting perturbative calculations in supercells as
series of monochromatic perturbations in primitive unit cells.

A. Hubbard U from DFPT in real space

In this section, we will show how to compute the nonin-
teracting and interacting response matrices χ0 and χ which
are needed for the calculation of U [see Eq. (16)]. With the
DFPT formalism in a “real-space” implementation, localized
perturbations are applied in the same supercells used in the
LR-cDFT approach, so the only difference is that the LR
matrices are continuous derivatives of atomic occupations,

χIJ =
∑
σ,m

dnIσ
mm

dλJ
, (21)

which, based on Eq. (3), can be constructed from the LR KS
wave functions directly obtained from DFPT:

dnIσ
m1m2

dλJ
=

Nk∑
k

Nocc∑
v

[
〈ψ◦

vkσ |P̂ I
m2m1

∣∣∣∣dψvkσ

dλJ

〉

+
〈
dψvkσ

dλJ

∣∣∣∣P̂ I
m2m1

|ψ◦
vkσ 〉

]
. (22)

Here, J and I label the atomic sites where the perturbation is
applied and whose change in occupation is being measured,
respectively. Within DFPT, the LR KS wave functions dψvkσ (r)

dλJ

are the solutions of the linear-response KS equations (from
first-order perturbation theory):

(Ĥ ◦
σ − ε◦

vkσ )
∣∣∣dψvkσ

dλJ

〉

= −
(

dV̂Hxc,σ

dλJ
− dεvkσ

dλJ
+ V̂ J

pert

)
|ψ◦

vkσ 〉. (23)

Equation (23) is obtained from Eq. (17) by a Taylor expansion
in λJ to first order of all quantities. Here, Ĥ ◦

σ , ε◦
vkσ , ψ◦

vkσ
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are, respectively, the total Hamiltonian [see Eq. (6)], the KS
energies, and the KS wave functions of the system in its

unperturbed ground state, while V̂ J
pert,

dεvkσ

dλJ , and dV̂Hxc,σ

dλJ are the
perturbing potential [see Eq. (18)] and the first-order variations
of the KS energies and Hxc potential. From Eqs. (9) and (10),
it is easy to see that in the coordinate representation the latter
quantity can be expressed as

dVHxc,σ (r)

dλJ
=

∫
V

1

|r − r′|
dρ(r′)
dλJ

dr′

+
∑
σ ′

∫
V

κxc,σσ ′ (r, r′)
dρσ ′ (r′)

dλJ
dr′, (24)

where the first and the second terms are the LR Hartree and xc
potentials, respectively, and κxc,σσ ′ (r, r′) is the xc kernel

κxc,σσ ′ (r, r′) = δ2Exc

δρσ (r)δρσ ′ (r′)

∣∣∣∣ ρσ (r)=ρ◦
σ (r)

ρσ ′ (r′ )=ρ◦
σ ′ (r′ )

, (25)

which is local in the local-spin-density approximation (or
semilocal in the generalized-gradient approximation) [63]. In
Eq. (24), dρ(r)

dλJ = ∑
σ

dρσ (r)
dλJ is the total LR charge density,

where

dρσ (r)

dλJ
= 2 Re

{
Nk∑
k

Nocc∑
v

ψ◦ ∗
vkσ (r)

dψvkσ (r)

dλJ

}
. (26)

In the last equation, the absence of the imaginary component
is a consequence of time-reversal symmetry. It is important to
note that in Eq. (23) there are no other first-order terms, because
the localized orbitals ϕI

m(r) are a fixed basis set. DFPT involves
solving the system of linearly coupled equations (23)–(26),
iteratively and self-consistently.

If the LR KS equations (23) are solved starting from the
DFT+U ground state with U 	= 0, then the response of the

Hubbard potential dV̂Hub,σ

dλJ must be set to zero, for the same
reason discussed in Sec. III after Eq. (20). As a consequence,
this term is not present on the right-hand side of Eq. (23).

It is well known in DFPT [47] that only the component
of the LR KS wave functions obtained by projection on the
empty (conduction) states manifold gives a nonzero contribu-
tion to the LR spin charge density (26) and LR occupation
matrices (22). Therefore, it is convenient to work directly with
the projection of Eq. (23) onto this manifold:

(Ĥ ◦
σ + αÔσ − ε◦

vkσ )

∣∣∣∣dψ̃vkσ

dλJ

〉

= −P̂σ

(
dV̂Hxc,σ

dλJ
+ V̂ J

pert

)
|ψ◦

vkσ 〉. (27)

In Eq. (27), Ôσ is the projector on the occupied states manifold,
Ôσ = ∑Nk

k′
∑Nocc

v′ |ψ◦
v′k′σ 〉〈ψ◦

v′k′σ |, while the operator P̂σ is the
projector on the empty states manifold, and it is expressed
using the identity relation P̂σ = 1 − Ôσ , in order to avoid
sums over empty states that would typically be very slow
converging with respect to the number of states [47]. In
Eq. (27), | dψ̃vkσ

dλJ 〉 ≡ P̂σ | dψvkσ

dλJ 〉 is the conduction component
of the LR KS wave functions. The extra term αÔσ on the
left-hand side of Eq. (27) is not strictly required by the

projection on conduction states: Its presence serves the purpose
of lifting the singularity of the operator Ĥ ◦

σ − ε◦
vkσ on the

valence manifold, which would create numerical issues when
solving it. For this purpose, the parameter α is fixed to
twice the spread of the unperturbed Kohn-Sham spectrum,
α = 2 (max[ε◦

vkσ ] − min[ε◦
vkσ ]), which makes the operator on

the left-hand side of Eq. (27) nonsingular. In practice, if
Eq. (27) is solved using iterative algorithms [64] and the trial
solution is chosen orthogonal to the occupied states manifold,
then the orthogonality is preserved during the iteration cycle
and there is no need of the extra term αÔσ on the left-hand
side of Eq. (27) [47]. It is worth noting that the term dεvkσ

dλJ

appearing in Eq. (23) has disappeared from Eq. (27) because
P̂σ |ψ◦

vkσ 〉 = 0 for valence states; this means that variations
of the valence KS energies (due to the perturbation) do not
contribute to the conduction component of the LR KS wave
functions. The expressions for the LR occupation matrices
and spin charge densities [see Eqs. (22) and (26), respectively]
remain identical, if we replace dψvkσ

dλJ by dψ̃vkσ

dλJ [65].
The DFPT method presented to this point, i.e., solving

Eq. (27) and computing the LR occupation matrices using
Eq. (22), is, by construction, exactly equivalent to the LR-
cDFT method, when used on the same supercell, but offers a
more automatic and elegant way of computing the Hubbard
parameters from linear response, avoids the need for finite
differences, and instead computes response quantities directly
as analytical derivatives, with a higher control of accuracy.
However, the formulation of DFPT discussed so far presents
no computational advantages with respect to LR-cDFT, be-
cause most of the computational effort is due to the use of
supercells. This latter aspect is, in fact, unavoidable within
LR-cDFT. Within DFPT, instead, perturbations in supercells
can be recast as sums over monochromatic perturbations
in primitive unit cells which can be computed indepen-
dently, thus leading to a significant reduction of the compu-
tational cost to calculate U , as will be discussed in detail in
Sec. IV B.

B. Hubbard U from DFPT in reciprocal space

In this section, we show how the response of a system to
isolated perturbations can be recast in terms of monochromatic
perturbations using the DFPT formalism outlined in Sec. IV A.
These perturbations can be treated within primitive unit cells
and thus present a computational cost which is substantially
independent of the wavelength of the perturbation considered,
λ = 2π/|q| (differences in these costs are still possible depend-
ing on the symmetry of the perturbation, i.e., the small group
of q). The first part of this section will be dedicated to explain
the general idea behind this reformulation; the second one will
instead illustrate all the technical details of the implementation
in DFPT.

In the following, we will consider for simplicity only
supercells whose lattice vectors are integer multiples of those
of the primitive unit cell. For supercells with lattice vectors
not parallel to those of the primitive unit cell, a conventional
unit cell can be usually identified (whose volume is typically a
small integer multiple of that of the primitive unit cell) that can
be used for DFPT calculations with a relatively small increase
in the computational cost.
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1. From localized perturbations in supercells to monochromatic
perturbations in primitive unit cells

A supercell of size L1 × L2 × L3 is defined here, having
lattice vectors {Ai} that are integer multiples of those of the
primitive unit cell {ai},

Ai = Li ai , (28)

where i = 1, 2, 3. Let {Bi} be the reciprocal lattice basis
vectors of this supercell. Based on their definition, it is easy to
determine the relationship with the reciprocal lattice vectors
{bi} of the primitive unit cell,

Bi = 2π
Aj × Ak

V
= 2π

aj × ak

Li v
= bi

Li

, (29)

where we have used the fact that V = L1L2L3 v, with v being
the volume of the primitive unit cell. Based on Eq. (29), the
reciprocal lattice vectors of the supercell

Gklm = k B1 + l B2 + m B3 (30)

can be rewritten as

Gklm = k

L1
b1 + l

L2
b2 + m

L3
b3, (31)

where k, l, and m are integer numbers, whose range is fixed
by the kinetic-energy cutoff. We now define the quotients k′,
l′, and m′ and the remainders k̄, l̄, and m̄ of the fractional
coefficients k/L1, l/L2, m/L3 in Eq. (31) as

k = k′L1 + k̄, (32)

l = l′L2 + l̄, (33)

m = m′L3 + m̄. (34)

With these definitions, we can rewrite any Gklm as follows:

Gklm = gk′l′m′ + qk̄l̄m̄, (35)

where gk′l′m′ are reciprocal lattice vectors for the primitive unit
cell, i.e.,

gk′l′m′ = k′b1 + l′b2 + m′b3, (36)

and qk̄l̄m̄ are vectors residing inside the first Brillouin zone of
the primitive unit cell, i.e.,

qk̄l̄m̄ = k̄

L1
b1 + l̄

L2
b2 + m̄

L3
b3, (37)

where 0 � k̄ < L1, 0 � l̄ < L2, and 0 � m̄ < L3. Based on
Eq. (29), it can be seen from Eq. (37) that qk̄l̄m̄ are, in fact,
reciprocal lattice vectors of the supercell.

In LR-cDFT, an isolated perturbation is achieved by choos-
ing a sufficiently large supercell. The Fourier expansion of
the corresponding perturbing potential thus contains only
reciprocal lattice vectors of the supercell:

V (r) =
∑

G

eiG·r V (G)

≡
∑
klm

eiGklm·r V (Gklm). (38)

Using Eq. (35), we can rewrite the potential of Eq. (38) as a
sum of monochromatic perturbations whose wave vectors q
are defined in Eq. (37):

V (r) =
∑
k̄l̄m̄

∑
k′l′m′

ei(gk′ l′m′+qk̄l̄m̄ )·r V (gk′l′m′ + qk̄l̄m̄)

≡
∑

q

∑
g

ei(g+q)·r V (g + q)

=
∑

q

eiq·r V̄q(r). (39)

Equation (39) defines the lattice-periodic potential V̄q(r) as

V̄q(r) =
∑

g

eig·r V (g + q). (40)

The simple derivation above shows that the response to a per-
turbation with the periodicity of a supercell can be equivalently
computed in the primitive unit cell as the sum of the responses
to monochromatic perturbations on a grid of q points defined
by Eq. (37). It is important to stress that the size of the q points
grid is determined by the size of the supercell. In Sec. IV B 2,
we show how this can be implemented in DFPT.

2. Monochromatic perturbations in DFPT

Let us now proceed with the reformulation of DFPT in
terms of monochromatic perturbations in a primitive unit
cell (this setting will define the meaning of “DFPT calcula-
tions” from this point on). For this purpose, it is necessary
to re-express localized, but supercell-periodic, responses as
sums of monochromatic contributions, as already done for
the perturbing potential in Sec. IV B 1, and show that they
can be computed one by one, solving q-specific first-order
perturbative equations.

Let us consider a supercell of size L1 × L2 × L3 [see
Sec. IV B 1] whose first Brillouin zone is sampled by N sc

k k
points. Based on the discussion in Sec. IV B 1, the size of
the supercell determines the grid of q points to be used,
which is L1 × L2 × L3 (hence the number of q points is
Nq = L1L2L3). It is also important to note that the DFPT
calculation requires Nk = N sc

k Nq k points to sample the first
Brillouin zone of the primitive unit cell with the same accuracy.
If RI describes the position of the I th atom in the supercell,
then this can be represented as RI = Rl + τ s , where Rl is
the Bravais lattice vector of the lth primitive unit cell and
τ s is the position of the sth atom in the lth primitive unit
cell. Hence, each index I corresponds to two indices (l, s).
By taking I = (l, s) and J = (l′, s ′), the interacting response
matrices (21) can be written as [66]

χsl,s ′l′ =
∑
σ,m

dnslσ
mm

dλs ′l′ , (41)

and a similar expression is used for the noninteracting response
matrices χ0. By performing mathematical manipulations as
explained in the appendix (a bar over the symbol of a quantity
indicates its lattice-periodic part), it can be shown that the LR
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occupation matrices, Eq. (22), can be expressed as

dnslσ
m1m2

dλs ′l′ = 1

Nq

Nq∑
q

eiq·(Rl−Rl′ ) �s ′
q n̄s σ

m1m2
, (42)

where �s ′
q n̄s σ

m1m2
is the lattice-periodic response of the atomic

occupation to a monochromatic perturbation of wave vector
q [67]:

�s ′
q n̄s σ

m1m2
= 1

Nk

Nk∑
k

Nocc∑
v

[〈
ū◦

vkσ

∣∣ ˆ̄P s
m2,m1,k,k+q

∣∣�s ′
q ūvkσ

〉
+〈ū◦

vkσ | ˆ̄P s
m1,m2,k,k+q

∣∣�s ′
q ūvkσ

〉]
, (43)

Nocc being the number of occupied states in the primitive unit
cell. Here, ū◦

vkσ (r) and �s ′
q ūvkσ (r) are the lattice-periodic parts

of the ground-state and LR KS wave functions, respectively,
while ˆ̄P s

m2,m1,k,k+q is the lattice-periodic projector operator

ˆ̄P s
m2,m1,k,k+q = ∣∣ϕ̄s

m2,k

〉〈
ϕ̄s

m1,k+q

∣∣, (44)

constructed on the lattice-periodic components of Bloch sums
of localized functions ϕs

m(r − Rl ) (see the appendix for more
details). Equation (43) shows that the quantities �s ′

q n̄s σ
m1m2

can

be computed by knowing �s ′
q ūvkσ (r). Since the perturbative

problem is expanded to first order, perturbations at different
wavelengths do not interact with each other, and it is possible
to show that the responses �s ′

q ūvkσ (r) can be obtained directly
from the self-consistent solution of Eq. (27) specialized to
single lattice-periodic q-specific (i.e., monochromatic) pertur-
bations [68]:

( ˆ̄H ◦
k+q,σ + α ˆ̄Ok+q,σ − ε◦

vkσ )
∣∣�s ′

q ūvkσ

〉
= − ˆ̄Pk+q,σ

(
�s ′

q
ˆ̄VHxc,σ + ˆ̄V s ′

pert,k+q,k

) |ū◦
vkσ 〉. (45)

Here ˆ̄H ◦
k+q,σ is the lattice-periodic part of the total ground-state

Hamiltonian of the system [see Eq. (A13)], and ˆ̄V s ′
pert,k+q,k is

the monochromatic q component of the perturbing potential:

ˆ̄V s ′
pert,k+q,k =

∑
m

ˆ̄P s ′
m,m,k+q,k, (46)

with ˆ̄P s ′
m,m,k+q,k defined in Eq. (44). ˆ̄Ok+q,σ and ˆ̄Pk+q,σ are the

lattice-periodic parts of the projectors on the occupied- and
empty-state manifolds, respectively, and �s ′

q V̄Hxc,σ (r) is the
lattice-periodic part of the LR Hxc potential [see Eq. (24)]:

�s ′
q V̄Hxc,σ (r) =

∫
V

1

|r − r′| e−iq·(r−r′ ) �s ′
q ρ̄(r′) dr′

+
∑
σ ′

∫
V
κxc,σσ ′ (r, r′) e−iq·(r−r′ ) �s ′

q ρ̄σ ′ (r′) dr′,

(47)

where �s ′
q ρ̄(r) = ∑

σ �s ′
q ρ̄σ (r) is the total LR lattice-periodic

charge density, and �s ′
q ρ̄σ (r) is the lattice-periodic part of the

LR spin charge density, which is

�s ′
q ρ̄σ (r) = 2 Re

{
1

Nk

Nk∑
k

Nocc∑
v

ū◦ ∗
vkσ (r) �s ′

q ūvkσ (r)

}
. (48)

Equations (41)–(48) represent the core results of this work,
and their implementation is discussed in the following. It
is important to note that Eqs. (45) refer to lattice-periodic
functions and operators and that, for a given q and a given s ′,
they need to be solved self-consistently and simultaneously for
all k, v, and σ , due to the coupling between them introduced by
Eqs. (47) and (48). Equations at different q and s ′ are, instead,
decoupled from one another and the linear-response problem
is decomposed into a set of independent problems that can be
solved on separate computational resources, thus allowing for
straightforward parallelization.

Besides better scaling (as will be discussed in Sec. VI C),
DFPT is also more user-friendly than LR-cDFT, due to the fully
automated postprocessing operations required for the calcula-
tion of U . As in LR-cDFT (see Sec. III), in DFPT only the
crystallographically inequivalent Hubbard atoms of each type
are perturbed, and these perturbations can be parallelized; In
addition, the identification of the inequivalent Hubbard atoms
as based on the symmetry of the system becomes automatic. In
DFPT calculations, the q-specific components of the response
occupation matrices�s ′

q n̄s σ
m1m2

are computed for all the Hubbard
atoms s in the primitive unit cell, responding to perturbations
on all the inequivalent Hubbard atoms s ′ [see Eq. (43)]. The full
response occupation matrix is then constructed at a negligible
computational cost in a postprocessing step using Eq. (42)
and using the symmetry of the system in order to recover
any missing elements. These postprocessing steps are fully
automated, thus avoiding the cumbersome and system-specific
postprocessing operations of the LR-cDFT approach.

In summary, all one needs to do in order to compute
Hubbard parameters through DFPT is to solve the system of
equations (45) for a grid of q points which represent the folding
of a supercell of desired size [see Eq. (37)] and to calculate
the LR occupation matrices by performing the sum over q
components defined in Eq. (42).

V. TECHNICAL DETAILS

The DFPT approach introduced in Sec. IV has been imple-
mented in the QUANTUM ESPRESSO package [60,61] and will
be distributed as an open-source module in a future release.
Here, we will verify the implementation of DFPT by applying
it to the case of bulk NiO, Cu2O, and LiCoO2. We note that
although we presented the DFPT formalism for the case of
norm-conserving pseudopotentials, the implementation with
ultrasoft pseudopotentials and PAW has also been completed
and fully tested; in fact, the results presented in the following
have been obtained from calculations using US PPs. In order
to get some insight about the extension of DFPT to US PPs
and PAW, the reader is referred to Refs. [69] and [70]. The
rather complex technical details for the Hubbard case will be
presented in detail in a following paper.

All calculations are performed using the plane-wave (PW)
pseudopotential method and the generalized-gradient ap-
proximation (GGA) for the xc functional constructed with
the PBEsol prescription [71]. US PPs are taken from Psli-
brary 0.3.1 [72,73]. KS wave functions and charge-density are
expanded in PWs up to a kinetic-energy cutoff of 80 and
640 Ry for NiO and Cu2O, and 120 and 960 Ry for LiCoO2,
respectively. Convergence tests for U have shown that by using
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these cutoffs one obtains U with an accuracy of better than
0.01 eV. We have chosen such high accuracy uniquely for the
sake of comparing DFPT and LR-cDFT. The Brillouin zones
of the different materials have been sampled with uniform
unshifted k and q point meshes, i.e., including the � point,
of different sizes. We have used the experimental lattice
parameters a = 4.17 Å for the rock-salt crystal structure of
antiferromagnetic NiO [74], a = 4.27 Å for the simple cubic
cell of Cu2O with space group O4

h (or Pn3̄m) [75], and a =
4.96 Å, α = 32.99◦, z = 0.24 (where z is the atomic positional
parameter along the trigonal axis) for the rhombohedral cell of
LiCoO2 [76].

Consistently with the implementation of DFT+U in QUAN-
TUM ESPRESSO, the approach presented here is based on
atomic orbitals. Other choices for the localized basis set
are possible (e.g., Wannier functions); the final values for
the Hubbard parameters can be expected to depend on the
choice of localized functions, as well as the xc functional and
pseudopotentials [34]; notably, pseudopotentials constructed
from all-electron atoms in different oxidation states will give
rise to different Hubbard manifolds and U parameters [25].
To construct the projectors of Eq. (44) we have used atomic
orbitals which were orthogonalized using Löwdin’s method
[77]. In the LR-cDFT calculations with finite differences, we
used λJ = ±0.05 eV [see Eq. (17)]. The LR KS equations (45)
were solved using the conjugate-gradient algorithm [64] and
the mixing scheme of Ref. [78] for the response Hxc poten-
tial (47) to speed up convergence.

In the following, we present the values of U computed using
DFPT and LR-cDFT starting from the GGA ground state [i.e.,
U = 0 in Eq. (8)]. A self-consistent calculation of the Hubbard
parameters is straightforwardly possible by iteration [34,79],
but it is not pursued here.

VI. RESULTS AND DISCUSSION

A. Validation

Table I shows a comparison between the values of U

computed for Cu2O, NiO, and LiCoO2, using the LR-cDFT
and DFPT as described in Secs. III and IV, respectively,
starting from the GGA (PBEsol) ground state. The two series of
calculations are set up equivalently: LR-cDFT calculations are
performed with supercells of size L1 × L2 × L3, and the cor-
responding reciprocal-space DFPT calculations are performed

TABLE I. Comparison of U (in eV) for Cu in Cu2O, Ni in NiO,
and Co in LiCoO2 computed using LR-cDFT with supercells (SC)
of different size and various k point meshes, and using DFPT for a
primitive unit cell with k and q point meshes chosen to be a folded
equivalent of the LR-cDFT calculations.

Method k-mesh SC-size/q-mesh Cu2O NiO LiCoO2

LR-cDFT 6 × 6 × 6 2 × 2 × 2 11.263 7.895 7.472
DFPT 12 × 12 × 12 11.268 7.900 7.473
LR-cDFT 4 × 4 × 4 3 × 3 × 3 11.287 8.146 7.538
DFPT 12 × 12 × 12 11.291 8.149 7.541
LR-cDFT 3 × 3 × 3 4 × 4 × 4 11.295 8.168 7.548
DFPT 12 × 12 × 12 11.293 8.172 7.550

using a primitive unit cell with q point meshes of equal size
L1 × L2 × L3. We present here the case with L1 = L2 = L3,
but we have also thoroughly tested less uniform cases with
L1 	= L2 	= L3. As for what concerns k point meshes, the
ones used in LR-cDFT are folded in the Brillouin zone of the
primitive unit cell to maintain the same density of k points in
DFPT and achieve an equivalent representation of ground-state
quantities (as, e.g., the spin charge density).

By construction, LR-cDFT and DFPT are meant to give the
same value of U . As evident from Table I, the values of U

obtained from LR-cDFT and DFPT agree within 5 × 10−3 eV
for all three systems considered here, a negligible numerical
difference that produces irrelevant variations in DFT+U re-
sults. In order to obtain an even closer agreement between these
results, one would need to achieve even tighter convergence of
the response matrices (in the present calculations they agree to
better than 10−4 eV−1) which not only incurs in significantly
higher computational costs but is also difficult to achieve for
LR-cDFT, for the reasons explained below.

It is important to note that the numerical precision of the
DFPT approach is inherently higher than that of LR-cDFT.
In DFPT, the iterative self-consistent solution of the LR KS
equations (45) for a primitive unit cell is continued until
the response matrices (41) are converged with the required
tolerance. Conversely, in LR-cDFT the convergence of the
response matrices depends on the precision of the iterative
self-consistent solution of the modified KS equations (17) for
a supercell. Controlling and improving this convergence in
LR-cDFT is intrinsically more difficult, because of the larger
simulation cells which make numerical noise more signifi-
cant. Moreover, the numerical derivatives of the occupation
matrices (19) are less practical as one needs to check that
they are being performed within a linear response regime and,
in addition, they are also more prone to the propagation and
amplification of the numerical noise, affecting the occupations.

B. Convergence of U in DFPT

Figure 1 shows the convergence of U with respect to
the number of q points used in the reciprocal-space DFPT
calculations within the primitive unit cell, which is equivalent
to the size of supercell that would be needed in a LR-cDFT
calculation. The figure shows results for various k point meshes
(corresponding to Nk k points) to study also the dependence
of the convergence of U with respect to this parameter. As for
other quantities, the choice of the optimal k and q point meshes
depends on the accuracy desired for U . Here we have used a
very strict convergence threshold �U = 0.01 eV in order to
demonstrate the numerical consistency of all our approaches.
In practice, however, such a high accuracy is typically not
needed to study materials, even if some exceptions are known
(see, e.g., Refs. [80,81]). As can be seen from Fig. 1, the
converged value of U is controlled by the size of both k and q
point meshes. Note that denser k point meshes show a faster
convergence with respect to the size of the q point mesh.

The converged U of Cu in Cu2O [see Fig. 1(a)] is
11.29 eV,which is obtained with optimal k and q point meshes
equal to 4 × 4 × 4 and 3 × 3 × 3, respectively. In the case of
NiO [see Fig. 1(b)], the U of Ni converges to a value of 8.18 eV
and requires 8 × 8 × 8 and 5 × 5 × 5 k and q point meshes,
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FIG. 1. Convergence of U in DFPT with respect to k and q point meshes for sampling of the first Brillouin zone for (a) Cu2O, (b) NiO, and
(c) LiCoO2.

respectively. For LiCoO2 [see Fig. 1(c)], the converged U of Co
is 7.55 eV; the calculation required k and q point meshes equal
to 4 × 4 × 4 and 3 × 3 × 3, respectively. Obviously, since U

is not variational with respect to the size of the k and q point
meshes, its dependence on these parameters cannot be expected
to be monotonic. Also, we remind here that these values of U

are dependent on the manifold chosen and other factors (see
Sec. V).

For all three systems studied here, the converged values
of U are obtained using q point meshes coarser than k point
meshes. In fact, when the q point mesh is as dense or denser
than the k point mesh, the value of U is observed to plateau
quite rapidly.

While the convergence tests shown in Fig. 1 are straight-
forward to perform, they might represent quite a significant
computational overload to the calculations on a specific mate-
rial. It is thus appropriate to extract, from the results discussed
above, some indications on how dense a k point mesh one has
to use to obtain a reliable value of the Hubbard parameters
(so that only the convergence with respect to the q point mesh
remains to be studied) and, specifically, how this k point mesh
compares with that necessary to converge other properties (e.g.,
total energy, forces, or stress) to typical precisions. To this
purpose, first of all, we recall once again that the convergence
threshold chosen here for the value of U (0.01 eV) is very strict.
A change of this parameter by 0.01 eV (from the converged
values) would result in a variation of total energies and stresses
of 3, 4, and 5 meV/cell and 0.06, 0.20, and 0.03 Kbar for Cu2O,
NiO, and LiCoO2, respectively. These variations are probably
smaller than the precision required for these quantities in most
calculations, especially because only energy differences are
meaningful. On the other hand, the k point meshes determined
above from the convergence study on the value of U lead
to a convergence of total energies and stresses to within,
respectively, 14, 1, and 7 meV/cell and 1.6, 0.5, and 0.2 Kbar for
Cu2O, NiO, and LiCoO2, which are probably comparable to or
actually larger than the precision thresholds on these quantities
needed in most cases. From Fig. 1, one can also easily see that
if a larger convergence threshold is chosen for U , e.g., 0.05 eV
(still quite strict), while nothing changes for LiCoO2, 2 × 2 ×
2 and 4 × 4 × 4 k point meshes are sufficiently dense to con-
verge the value of this quantity for Cu2O and NiO, respectively.

In summary, generalizing the results obtained here, reason-
able levels of accuracy on U can be achieved (upon converging
it with respect to the q point mesh) with k point meshes

as dense or coarser than needed for other properties. This
can be understood since ultimately one is calculating second
derivatives in energy upon charging and discharging; these are
pretty robust quantities (as opposed to properties that depend
only on, e.g., the states at the Fermi level). However, using
coarser k point meshes is not obviously convenient: Because
of the “wavy” behavior of U with respect to the number of q
points, larger q point meshes might be needed (depending on
the material and the desired level of accuracy) that might offset
the computational advantage (see Sec. VI C).

C. Scaling

We now discuss a rough estimate of the computational cost
of the reciprocal-space DFPT approach and compare its scaling
with that of the LR-cDFT approach.

DFT calculations for a cell containing Nat atoms and using
Nk k points to sample the first Brillouin zone have a compu-
tational cost that scales as the cubic power of Nat and linearly
with Nk: TDFT = ANk(Nat )3. Here, A is a constant factor
for self-consistent total energy calculations which depends on
the kinetic-energy cutoff and various technical details of the
implementation. The LR-cDFT approach consists of a series of
calculations using supercells; hence, its computational cost can
be expressed as TLR−cDFT = (A + 2B )NpertN

sc
k (N sc

at )3, where
N sc

at = NqNat is the number of atoms in the supercell, Npert is
the number of perturbations (i.e., the number of inequivalent
Hubbard atoms which must be perturbed), and, as was dis-
cussed in Sec. IV B 2, N sc

k = Nk/Nq. The factor 2B accounts
for the cost of two total energy perturbative calculations [with
two different values of λJ ; see Eq. (17)]. In the previous
formula, B < A since fewer iterations are typically needed
in order to reach convergence when the calculation starts
from a previously converged unperturbed total potential. Con-
versely, the computational cost of the DFPT approach can
be expressed as TDFPT = (A + NqNpertC)Nk(Nat )3, where the
factor A accounts for the DFT calculation using a primitive
unit cell in the unperturbed state and the factor C (C > A)
represents the unitary cost of the NqNpert DFPT calculations
which are necessary to compute the response matrices. This
estimate neglects the computational cost of the preliminary
non-self-consistent calculations of the lattice-periodic parts of
the ground-state KS wave functions at k + q points, ū◦

vk+qσ (r),

which are needed to construct the projectors ˆ̄Ok+q,σ and ˆ̄Pk+q,σ

[see Eqs. (A18) and (A21), respectively]. In fact, this cost
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FIG. 2. Comparison of CPU time (in core hours) needed to compute U using LR-cDFT and DFPT for (a) Cu2O, (b) NiO, and (c) LiCoO2.
The results are shown as a function of Nq (lower horizontal axis) and the supercell (SC) size (or, equivalently, the size of the q point mesh)
(upper horizontal axis) for the cases with and without symmetry for k (and q) points. The result for DFPT with symmetry for q points is
represented on the same scale as without symmetry for the sake of clarity. The k point meshes used for LR-cDFT and DFPT calculations are
listed in Table I. Solid lines are guides for the eye.

is very small compared to that of solving self-consistent LR
KS equations (45). Putting everything together, the direct
comparison between the costs of LR-cDFT and DFPT gives,
after simple algebraic manipulations, the following ratio:

TLR−cDFT

TDFPT
= (A + 2B )NpertN

2
q

A + NqNpertC
. (49)

Based on our experience, a rough estimate of the factors
appearing in this equations is B ≈ (2/3)A and C ≈ 7A. After
neglecting the first term in the denominator (since A �
NqNpertC), and by using these estimates of B and C, we
obtain TLR−cDFT/TDFPT ≈ Nq/3. Therefore, as the supercell
size (and, consequently, the number of q points in the primitive
unit cell) is larger, DFPT becomes more convenient because
of its better scaling with respect to LR-cDFT. We want to
stress that this estimate of timings of the LR-cDFT and DFPT
methods is necessarily approximate, and in practice deviations
from these results might be observed because of, e.g., the
size of the system [and the possible predominance of fast
Fourier transforms (FFT) on diagonalization costs], the way
the algorithms are implemented, the efficiency of the code in
writing and reading operations to/from the disk, the efficiency
of the parallelization of operations in the the total-energy
and linear-response calculations, etc. An additional advantage
of DFPT is the possibility to exploit the symmetry of the
system, which allows us to restrict q points to the irreducible
wedge of the first Brillouin zone. As a consequence, the
factor Nq in the denominator of Eq. (49) might be reduced
while the factor Nq in the numerator remains unchanged. It
should also be noted that using supercells (as in LR-cDFT)
typically makes convergence more difficult (more iterations
are needed) because the numerical noise tends to be larger.
On the other hand, DFPT calculations in primitive unit cells
can be parallelized more effectively because they are based on
denser k point meshes. In fact, the parallelization over k points
is intrinsically more flexible: Since all equations are diagonal
in k, k-specific blocks can be solved separately by different
groups of cores. This way the communications between groups
of cores working on different k points are limited to the
instances when summations over the Brillouin zone are needed.

In order to check the comparative scaling analysis com-
pleted above, we have compared the computational costs of
calculations of U with LR-cDFT and DFPT as a function of
the size of supercells (or, equivalently, q point meshes) with
and without symmetry. The results are shown in Fig. 2. When
symmetry is not used, LR-cDFT scales roughly quadratically
with respect to Nq (with deviations due to reasons mentioned
above), while DFPT shows a clear linear behavior, as expected.
The difference in CPU time between LR-cDFT and DFPT thus
increases with the size of the supercell or the size of the q
point mesh, respectively. When symmetry is used, we can see
a pronounced decrease in the CPU time for both methods. In
this case, LR-cDFT takes less CPU time because the number of
k points is decreased due to symmetry, while the size of the su-
percells is the same as when symmetry is not used; conversely,
in DFPT not only the number of k points is decreased but also
the number of q points is decreased, which leads to a decrease
of CPU time by a larger factor with respect to LR-cDFT. In the
case of DFPT with symmetry, for all three systems we have
Nq = 4, Nq = 6, and Nq = 13 when 2 × 2 × 2, 3 × 3 × 3,
and 4 × 4 × 4 q point meshes are used, respectively (in Fig. 2
this case is shown with the same Nq as when symmetry is
not used, just for the sake of clarity). The ratio of timings of
LR-cDFT and DFPT both without symmetry departs our rough
theoretical estimate TLR−cDFT/TDFPT ≈ Nq/3 (it is smaller by
a factor of 2–5), and this is not surprising since many factors
(parallelization, FFT, etc.) do influence strongly the prediction
for scaling. Nevertheless, we can say that approximatively
TLR−cDFT/TDFPT ∝ Nq with a prefactor which depends on
many technical details of the implementation. Therefore, we
can conclude that DFPT is a significantly more efficient method
than LR-cDFT for calculating U , and, in particular, it offers
a large computational advantage in the study of convergence
(as in Sec. VI B). The most important point, though, is its
robustness and automation.

VII. CONCLUSIONS

We have presented an implementation of the linear-
response method for first-principles calculations of Hubbard
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parameters. Based on DFPT, it avoids costly supercell cal-
culations by summing the responses to monochromatic per-
turbations in primitive unit cells. We have showcased its use
to compute U for several prototypical transition-metal oxides
and demonstrated that the DFPT approach gives the same
results as LR-cDFT, greatly decreasing the computational cost,
improving the precision in determining these parameters, and
making their calculation robust, automatic, and user friendly.
This method opens the way for high-throughput studies of
materials with strongly localized d- and/or f -type electrons.

The DFPT approach presented here is static and hence
allows us to compute static Hubbard parameters. However,
a generalization to the time domain (using time-dependent
density-functional (perturbation) theory [82,83]) can be inves-
tigated which would allow us to obtain frequency-dependent
Hubbard parameters, like in the cRPA approach. Finally, a
generalization of DFPT to tackle intersite interactions has
also been done and will be discussed elsewhere, together
with the extension of the formalism to metals and ultrasoft
pseudopotentials and the PAW method.
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APPENDIX: LATTICE PERIODICITY

In this appendix, we discuss the details of the DFPT for-
malism for periodic solids. In particular, we show how linear-
response quantities in a supercell with an isolated perturbation
(i.e., a perturbation that has the periodicity of the supercell)
can be rewritten as a sum of monochromatic q components in
a primitive unit cell.

1. Bloch sums of localized functions and Bloch functions

We start from setting the formalism of Bloch sums and their
lattice-periodic parts.

Using the fact that I = (l, s), with l being the cell index (Rl

pointing to the cell), and s being the atomic index (τ s inside
cell Rl), so that the position of atom I is Rl + τ s , we have that
the localized functions are

ϕI
m(r) = ϕl,s

m (r) = ϕs
m(r − Rl ) = ϕγ (s)

m (r − Rl − τ s ), (A1)

where γ (s) is the atomic type of the sth atom. In a periodic
solid, we can construct Bloch sums of localized functions (A1)
[84]. By doing so, we obtain

ϕ̃s
m,k(r) = 1√

Nk

Nk∑
Rl

eik·Rl ϕs
m(r − Rl ), (A2)

where summations run over the Nk primitive unit cells of the
Born–von Karman supercell. Given Eq. (A2), we can define
inverse Bloch sums as

ϕs
m(r − Rl ) = 1√

Nk

Nk∑
k

e−ik·Rl ϕ̃s
m,k(r). (A3)

It is useful to recall the analogy of Eqs. (A2) and (A3) with
those between KS wave functions and Wannier functions (see,
e.g., Ref. [85]).

According to Bloch theorem, in periodic solids the ground-
state KS wave functions can be written as

ψvkσ (r) = 1√
Nk

eik·r ūvkσ (r), (A4)

where ūvkσ (r) are the lattice-periodic parts of the ground-state
KS wave functions [ūvkσ (r + Rl ) = ūvkσ (r)]. The functions
ϕ̃s

m,k(r) are Bloch-like functions, as ψvkσ (r), and can also be
expressed in the same way,

ϕ̃s
m,k(r) = 1√

Nk
eik·r ϕ̄s

m,k(r), (A5)

where ϕ̄s
m,k(r) is defined as

ϕ̄s
m,k(r) ≡ e−ik·τ s ϕ̄

γ (s)
m,k (r − τ s ). (A6)

The normalization factor 1/
√

Nk has been chosen such that
the lattice-periodic functions ūvkσ (r) are normalized to unity
in the primitive unit cell, with inner products involving them
understood as integrals over one primitive unit cell, namely,

〈ψvkσ |ψv′k′σ ′ 〉 ≡
∫

V
ψ∗

vkσ (r) ψv′k′σ ′ (r) dr

= δk,k′ 〈ūvkσ |ūv′kσ ′ 〉, (A7)

where

〈ūvkσ |ūv′kσ ′ 〉 ≡
∫

v
ū∗

vkσ (r) ūv′kσ ′ (r) dr

= δvv′δσσ ′, (A8)

where v is the volume of the primitive unit cell and V = v Nk.
Here we use the notation 〈a|b〉 which stands for the inner
product between a and b over the whole crystal of volume
V when a and b represent ψvkσ (r), and the inner product over
the primitive unit cell of volume v when a and b represent
ūvkσ (r).

2. Ground-state quantities

In this section, we will show how to rewrite all ground-
state quantities that enter DFPT (see Sec. IV A) as the product
of a lattice-periodic part and appropriate phase factors. The
derivation is based on the equations of Sec. A 1.

Using Eqs. (11) and (A4), it is easy to show that the ground-
state spin charge density can be written as

ρ◦
σ (r) = 1

Nk

Nk∑
k

Nocc∑
v

|ū◦
vkσ (r)|2. (A9)

Similarly, it can be shown that using Eqs. (3), (4), (A3), (A4),
and (A5), the ground-state occupation matrices can be written
as

nsσ
m1m2

= 1

Nk

Nk∑
k

Nocc∑
v

〈ū◦
vkσ | ˆ̄P s

m2,m1,k,k|ū◦
vkσ 〉, (A10)

where ˆ̄P s
m2,m1,k,k corresponds to the q = 0 case of Eq. (44).

It is important to stress that the ground-state occupation
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matrices (A10) do not depend on the index of the primitive unit
cell, which is a consequence of the periodicity of the crystal.

The ground-state Hamiltonian, Eq. (6), in the coordinate
representation can be represented as

H ◦
σ (r, r′) = 1

Nk

Nk∑
k

eik·r H̄ ◦
k,σ (r, r′) e−ik·r′

, (A11)

where the Bloch phases and the lattice-periodic part have been
separated and the latter reads

H̄ ◦
k,σ (r, r′) = H̄ ◦

DFT,k,σ (r, r′) + V̄ ◦
Hub,k,σ (r, r′), (A12)

which in the operator form can be written as

ˆ̄H ◦
k,σ = ˆ̄H ◦

DFT,k,σ + ˆ̄V ◦
Hub,k,σ . (A13)

The first term in Eq. (A13) can be expressed as

ˆ̄H ◦
DFT,k,σ = − 1

2 (∇ + ik)2 + ˆ̄V ◦
NL,k + V̂ ◦

loc + V̂ ◦
Hxc, (A14)

where the first term is the kinetic energy operator, ˆ̄V ◦
NL,k is

the lattice-periodic component of the nonlocal part of PP as
in standard DFT plane-wave implementations [47,69], and the
last two terms are the local part of PP and Hxc potentials. The
nonlocality of H̄ ◦

DFT,k,σ (r, r′) comes from the nonlocality of
V̄ ◦

NL,k(r, r′). V ◦
Hxc(r) is defined in Eqs. (9) and (10), using the

expression for the ground-state spin charge density (A9). The
lattice-periodic part of the ground-state Hubbard potential, i.e.,
second term in Eq. (A13), reads [see Eq. (8)]

ˆ̄V ◦
Hub,k,σ =

∑
sm1m2

Us

(
δm1m2

2
− ns σ

m1m2

)
ˆ̄P s
m1,m2,k,k, (A15)

where ns σ
m1m2

is given by Eq. (A10), and ˆ̄P s
m1,m2,k,k can be

obtained from Eq. (44) by taking q = 0. As was noted for the
ground-state occupation matrices [see Eq. (A10)], also ˆ̄V ◦

Hub,k,σ

does not depend on the index of the primitive unit cell due to
the periodicity of the crystal.

Finally, let us consider the projectors on occupied and empty
states, Ôσ and P̂σ , which appear in Eq. (27). Similarly to
Eq. (A11), the operator Ôσ can be written in the coordinate
representation as

Oσ (r, r′) = 1

Nk

Nk∑
k′

eik′ ·r Ōk′σ (r, r′) e−ik′ ·r′
, (A16)

where Ōk′σ (r, r′) is the lattice-periodic part defined as

Ōk′σ (r, r′) =
Nocc∑
v

ū◦
vk′σ (r) ū◦ ∗

vk′σ (r′). (A17)

Using an operator notation, it is possible to express the same
projector as follows:

ˆ̄Ok′σ =
Nocc∑
v′

|ū◦
v′k′σ 〉〈ū◦

v′k′σ |. (A18)

In the same manner, it can be shown that the operator P̂σ can
be written in the coordinate representation as

Pσ (r, r′) = 1

Nk

Nk∑
k′

eik′ ·r P̄k′σ (r, r′) e−ik′ ·r′
, (A19)

where the lattice-periodic part P̄k′σ (r, r′) can obviously be
written as follows,

P̄k′σ (r, r′) = δ(r − r′) − Ōk′σ (r, r′), (A20)

which translates in the operator notation as

ˆ̄Pk′σ = 1 − ˆ̄Ok′σ . (A21)

3. Decomposition of linear-response quantities into
monochromatic components

In this section, we will demonstrate how a localized, neutral
perturbation that has the periodicity of a supercell (chosen
large enough to mimic a truly isolated perturbation) can be
recast as a sum of monochromatic (q-specific) perturbations
in a primitive unit cell, as discussed in Sec. IV B 1. Let us start
from the perturbing potential, Eq. (18). In periodic-boundary
conditions, perturbations cannot be isolated. In order to model
the response of occupations to an isolated perturbation, super-
cells must be used, whose size is chosen large enough to make
interactions between periodic replicas negligible. In mathe-
matical terms, this translates into the following approximation
for the perturbing potential [Eq. (18)]:

V s ′l′
pert (r, r′) =

∑
m

ϕs ′
m(r − Rl′ ) ϕs ′∗

m (r − Rl′ )

�
∑
Rsc

∑
m

ϕs ′
m(r − Rl′ − Rsc)

×ϕs ′∗
m (r − Rl′ − Rsc). (A22)

If we approximate each of the localized functions in Eq. (A22)
with the inverse Bloch sums, Eq. (A3), then the largest
(nontrivial) supercell vectors Rmax

sc on which the external sum
in Eq. (A22) runs over are such that Rmax

sc · �k = 2π , where
�k is the minimum spacing between k points in the first
Brillouin zone of the primitive unit cell. Larger Rsc’s are, in
fact, implicitly summed over, because of the periodicity of
inverse Bloch sums [see Eq. (A3)]. Therefore, the external
summation in Eq. (A22) runs over Nsc vectors Rsc, where
Nsc = N sc

k = Nk/Nq. Thus, using Eq. (A3), we can rewrite
Eq. (A22) as follows:

V s ′l′
pert (r, r′) = 1

Nk

Nsc∑
Rsc

∑
m

Nk∑
k′

e−ik′ ·Rl′ ϕ̃s ′
m,k′ (r)

×
Nk∑
k

eik·Rl′ ϕ̃s ′∗
m,k(r) e−i(k′−k)·Rsc . (A23)

In Eq. (A23), the sum over Rsc of the phase factor e−i(k′−k)·Rsc

imposes the difference between k′ and k to be equal to
reciprocal lattice vectors of the supercell, which we label as
q (see Sec. IV B 1). Therefore, in the summation over k′ only
Nq terms survive, which correspond to k′ = k + q. Thus, we
obtain

V s ′l′
pert (r, r′) = 1

Nk

Nsc∑
Rsc

∑
m

Nq∑
q

Nk∑
k

e−i(k+q)·Rl′ ϕ̃s ′
m,k+q(r)

× eik·Rl′ ϕ̃s ′∗
m,k(r) e−iq·Rsc . (A24)
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Since q vectors are the reciprocal lattice vectors of the
supercell, e−iq·Rsc = 1, and the summation over Rsc gives
a prefactor Nsc. Equation (A24) can thus be written
as

V s ′l′
pert (r, r′) = 1

Nq

Nq∑
q

e−iq·Rl′
∑
m

Nk∑
k

ϕ̃s ′
m,k+q(r) ϕ̃s ′∗

m,k(r).

(A25)
Finally, by using Eq. (A5), we can rewrite Eq. (A25) as

V s ′l′
pert (r, r′) = 1

Nq

Nq∑
q

e−iq·Rl′ V s ′
pert,q(r, r′), (A26)

where

V s ′
pert,q(r, r′) = 1

Nk

Nk∑
k

ei(k+q)·r V̄ s ′
pert,k+q,k(r, r′) e−ik·r′

.

(A27)
In Eq. (A27), V̄ s ′

pert,k+q,k(r, r′) is the lattice-periodic part of the
perturbing potential:

V̄ s ′
pert,k+q,k(r, r′) =

∑
m

P̄ s ′
m,m,k+q,k(r, r′), (A28)

with P̄ s ′
m,m,k+q,k(r, r′) representing the diagonal element of

the lattice-periodic operator in the coordinate representation,
which reads

P̄ s
m2,m1,k+q,k(r, r′) = ϕ̄s

m2,k+q(r) ϕ̄s∗
m1,k(r′). (A29)

Equation (A29) can be written in operator form [see Eq. (44)].
Equation (A26) constitutes a decomposition of the isolated per-
turbing potential into monochromatic components modulated
by a phase factor corresponding to the considered wave vector
q [86].

Similarly to the decomposition of the perturbing potential,
Eq. (A26), we can represent the LR KS wave functions of the
supercell as the inverse Bloch sum of the LR KS wave functions
of the primitive unit cell,

dψ̃vkσ (r)

dλs ′l′ = 1

Nq

Nq∑
q

e−iq·Rl′ �s ′
q ψ̃vkσ (r), (A30)

where �s ′
q ψ̃vkσ (r) are the LR KS wave functions of the primi-

tive unit cell corresponding to the monochromatic perturbation
with wave vector q, V s ′

pert,q. From (A30), we can define the
Bloch sum

�s ′
q ψ̃vkσ (r) =

Nq∑
Rl′

eiq·Rl′
dψ̃vkσ (r)

dλs ′l′ . (A31)

It is important to note that the normalization factors 1/Nq
in Eq. (A30) and 1 in Eq. (A31) are chosen in such a way
that these definitions are consistent with the normalization
in Eq. (A26). The LR KS wave functions �s ′

q ψ̃vkσ (r) are
Bloch-like functions, and hence they can be written as

�s ′
q ψ̃vkσ (r) = 1√

Nk
ei(k+q)·r �s ′

q ūvkσ (r), (A32)

where �s ′
q ūvkσ (r) are the lattice-periodic functions, in agree-

ment with the definition in Eq. (A4).
Similarly to the decomposition of the perturbing potential

and of the LR KS wave functions into monochromatic q
components [see Eqs. (A26) and (A30), respectively], also the
LR spin charge density can be decomposed into q-specific
terms,

dρσ (r)

dλs ′l′ = 1

Nq

Nq∑
q

e−iq·Rl′ �s ′
q ρ̃σ (r), (A33)

where

�s ′
q ρ̃σ (r) = eiq·r �s ′

q ρ̄σ (r) (A34)

and �s ′
q ρ̄σ (r) is given by Eq. (48). Since the LR Hxc potential

depends linearly on the variation in the spin charge density
[see Eq. (24)], the decomposition in Eq. (A33) means that also
the LR Hxc potential can be decomposed in a similar way:

dVHxc,σ (r)

dλs ′l′ = 1

Nq

Nq∑
q

e−iq·Rl′ �s ′
q ṼHxc,σ (r), (A35)

where

�s ′
q ṼHxc,σ (r) = eiq·r �s ′

q V̄Hxc,σ (r), (A36)

with �s ′
q V̄Hxc,σ (r) given by Eq. (47).

[1] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
[2] W. Kohn and L. Sham, Phys. Rev. 140, A1133 (1965).
[3] I. de P. R. Moreira, F. Illas, and R. L. Martin, Phys. Rev. B 65,

155102 (2002).
[4] F. Corà, M. Alfredsson, G. Mallia, D. Middlemiss, W. Mackrodt,

R. Dovesi, and R. Orlando, Struct. Bonding (Berlin) 113, 171
(2004).

[5] X.-B. Feng and N. M. Harrison, Phys. Rev. B 69, 035114
(2004).

[6] M. Alfredsson, G. D. Price, C. R. A. Catlow, S. C. Parker,
R. Orlando, and J. P. Brodholt, Phys. Rev. B 70, 165111 (2004).

[7] F. Tran, P. Blaha, K. Schwarz, and P. Novák, Phys. Rev. B 74,
155108 (2006).

[8] V. L. Chevrier, S. P. Ong, R. Armiento, M. K. Y. Chan, and
G. Ceder, Phys. Rev. B 82, 075122 (2010).

[9] D.-H. Seo, A. Urban, and G. Ceder, Phys. Rev. B 92, 115118
(2015).

[10] L. Lin, J. Chem. Theory Comput. 12, 2242 (2016).
[11] J. Sun, A. Ruzsinszky, and J. P. Perdew, Phys. Rev. Lett. 115,

036402 (2015).
[12] D. A. Kitchaev, H. Peng, Y. Liu, J. Sun, J. P. Perdew, and

G. Ceder, Phys. Rev. B 93, 045132 (2016).
[13] Y. Hinuma, H. Hayashi, Y. Kumagai, I. Tanaka, and F. Oba, Phys.

Rev. B 96, 094102 (2017).
[14] V. I. Anisimov, J. Zaanen, and O. K. Andersen, Phys. Rev. B 44,

943 (1991).

085127-13

https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRevB.65.155102
https://doi.org/10.1103/PhysRevB.65.155102
https://doi.org/10.1103/PhysRevB.65.155102
https://doi.org/10.1103/PhysRevB.65.155102
https://doi.org/10.1007/b97944
https://doi.org/10.1007/b97944
https://doi.org/10.1007/b97944
https://doi.org/10.1007/b97944
https://doi.org/10.1103/PhysRevB.69.035114
https://doi.org/10.1103/PhysRevB.69.035114
https://doi.org/10.1103/PhysRevB.69.035114
https://doi.org/10.1103/PhysRevB.69.035114
https://doi.org/10.1103/PhysRevB.70.165111
https://doi.org/10.1103/PhysRevB.70.165111
https://doi.org/10.1103/PhysRevB.70.165111
https://doi.org/10.1103/PhysRevB.70.165111
https://doi.org/10.1103/PhysRevB.74.155108
https://doi.org/10.1103/PhysRevB.74.155108
https://doi.org/10.1103/PhysRevB.74.155108
https://doi.org/10.1103/PhysRevB.74.155108
https://doi.org/10.1103/PhysRevB.82.075122
https://doi.org/10.1103/PhysRevB.82.075122
https://doi.org/10.1103/PhysRevB.82.075122
https://doi.org/10.1103/PhysRevB.82.075122
https://doi.org/10.1103/PhysRevB.92.115118
https://doi.org/10.1103/PhysRevB.92.115118
https://doi.org/10.1103/PhysRevB.92.115118
https://doi.org/10.1103/PhysRevB.92.115118
https://doi.org/10.1021/acs.jctc.6b00092
https://doi.org/10.1021/acs.jctc.6b00092
https://doi.org/10.1021/acs.jctc.6b00092
https://doi.org/10.1021/acs.jctc.6b00092
https://doi.org/10.1103/PhysRevLett.115.036402
https://doi.org/10.1103/PhysRevLett.115.036402
https://doi.org/10.1103/PhysRevLett.115.036402
https://doi.org/10.1103/PhysRevLett.115.036402
https://doi.org/10.1103/PhysRevB.93.045132
https://doi.org/10.1103/PhysRevB.93.045132
https://doi.org/10.1103/PhysRevB.93.045132
https://doi.org/10.1103/PhysRevB.93.045132
https://doi.org/10.1103/PhysRevB.96.094102
https://doi.org/10.1103/PhysRevB.96.094102
https://doi.org/10.1103/PhysRevB.96.094102
https://doi.org/10.1103/PhysRevB.96.094102
https://doi.org/10.1103/PhysRevB.44.943
https://doi.org/10.1103/PhysRevB.44.943
https://doi.org/10.1103/PhysRevB.44.943
https://doi.org/10.1103/PhysRevB.44.943


IURII TIMROV, NICOLA MARZARI, AND MATTEO COCOCCIONI PHYSICAL REVIEW B 98, 085127 (2018)

[15] V. Anisimov, F. Aryasetiawan, and A. Liechtenstein, J. Phys.:
Condens. Matter 9, 767 (1997).

[16] S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys,
and A. P. Sutton, Phys. Rev. B 57, 1505 (1998).

[17] M. Cococcioni and S. de Gironcoli, Phys. Rev. B 71, 035105
(2005).

[18] I. Dabo, A. Ferretti, N. Poilvert, Y. Li, N. Marzari, and M.
Cococcioni, Phys. Rev. B 82, 115121 (2010).

[19] H. J. Kulik, M. Cococcioni, D. A. Scherlis, and N. Marzari, Phys.
Rev. Lett. 97, 103001 (2006).

[20] V. Anisimov, A. Poteryaev, M. Korotin, A. Anokhin, and G.
Kotliar, J. Phys.: Condens. Matter 9, 7359 (1997).

[21] A. I. Liechtenstein and M. I. Katsnelson, Phys. Rev. B 57, 6884
(1998).

[22] G. Kotliar, S. Savrasov, K. Haule, V. Oudovenko, O. Porcollet,
and C. Marianetti, Rev. Mod. Phys. 78, 865 (2006).

[23] B. Himmetoglu, A. Floris, S. de Gironcoli, and M. Cococcioni,
Int. J. Quant. Chem. 114, 14 (2014).

[24] G. Moynihan, G. Teobaldi, and D. O’Regan, arXiv:1704.08076
(unpublished).

[25] H. Kulik and N. Marzari, J. Chem. Phys. 129, 134314 (2008).
[26] P. H. Dederichs, S. Blügel, R. Zeller, and H. Akai, Phys. Rev.

Lett. 53, 2512 (1984).
[27] A. K. McMahan, R. M. Martin, and S. Satpathy, Phys. Rev. B

38, 6650 (1988).
[28] O. Gunnarsson, O. K. Andersen, O. Jepsen, and J. Zaanen, Phys.

Rev. B 39, 1708 (1989).
[29] M. S. Hybertsen, M. Schlüter, and N. E. Christensen, Phys. Rev.

B 39, 9028 (1989).
[30] O. Gunnarsson, Phys. Rev. B 41, 514 (1990).
[31] W. E. Pickett, S. C. Erwin, and E. C. Ethridge, Phys. Rev. B 58,

1201 (1998).
[32] I. V. Solovyev and M. Imada, Phys. Rev. B 71, 045103 (2005).
[33] K. Nakamura, R. Arita, Y. Yoshimoto, and S. Tsuneyuki, Phys.

Rev. B 74, 235113 (2006).
[34] M. Shishkin and H. Sato, Phys. Rev. B 93, 085135 (2016).
[35] N. J. Mosey and E. A. Carter, Phys. Rev. B 76, 155123 (2007).
[36] N. Mosey, P. Liao, and E. Carter, J. Chem. Phys. 129, 014103

(2008).
[37] A. N. Andriotis, R. M. Sheetz, and M. Menon, Phys. Rev. B 81,

245103 (2010).
[38] L. A. Agapito, S. Curtarolo, and M. B. Nardelli, Phys. Rev. X 5,

011006 (2015).
[39] M. Springer and F. Aryasetiawan, Phys. Rev. B 57, 4364 (1998).
[40] T. Kotani, J. Phys.: Condens. Matter 12, 2413 (2000).
[41] F. Aryasetiawan, M. Imada, A. Georges, G. Kotliar, S. Biermann,

and A. I. Lichtenstein, Phys. Rev. B 70, 195104 (2004).
[42] F. Aryasetiawan, K. Karlsson, O. Jepsen, and U. Schönberger,

Phys. Rev. B 74, 125106 (2006).
[43] E. Sasioglu, C. Friedrich, and S. Blügel, Phys. Rev. B 83,

121101(R) (2011).
[44] L. Vaugier, H. Jiang, and S. Biermann, Phys. Rev. B 86, 165105

(2012).
[45] B. Amadon, T. Applencourt, and F. Bruneval, Phys. Rev. B 89,

125110 (2014).
[46] S. Baroni, P. Giannozzi, and A. Testa, Phys. Rev. Lett. 58, 1861

(1987).
[47] S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, Rev.

Mod. Phys. 73, 515 (2001).

[48] G. Borghi, A. Ferretti, N. L. Nguyen, I. Dabo, and N. Marzari,
Phys. Rev. B 90, 075135 (2014).

[49] N. Colonna, N. L. Nguyen, A. Ferretti, and N. Marzari, J. Chem.
Theory Comput. 14, 2549 (2018).

[50] D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).
[51] P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
[52] V. L. Campo Jr. and M. Cococcioni, J. Phys.: Condens Matter

22, 055602 (2010).
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