Supporting Information

Prion peptides are extremely sensitive to copper induced oxidative stress

Simone Dell'Acqua,^a Chiara Bacchella,^a Enrico Monzani,^a Stefania Nicolis,^a Giuseppe Di Natale,^b Enrico Rizzarelli,^b Luigi Casella^{*a}

^a Dipartimento di Chimica, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy

^b Istituto CNR di Biostrutture e Bioimmagini, Via P. Gaifami 18, 95126 Catania, Italy

Figure S1. Kinetic profiles of DA (3 mM) oxidation with time (DA autoxidation in brown), in 50 mM Hepes buffer solution at pH 7.4 and 20 °C in the presence of Cu^{2+} (25 μ M) (orange) and with addition of PrP₈₄₋₁₁₄ (8 μ M, yellow; 25 μ M, green; 50 μ M, blue; 75 μ M, light blue). DA oxidation was monitored through the absorption band of dopaminochrome at 475 nm.

Figure S2. Selected absorption spectra recorded during the oxidation of DA (3 mM) in 50 mM Hepes buffer solution at pH 7.4 and 20 °C in the presence of: (A) 25 μ M copper(II), and (B) 25 μ M copper(II) and 75 μ M PrP₇₆₋₁₁₄. In (A) and (B), the first spectrum (lower trace) was recorded after 5 s, and the other spectra were recorded every 110 s.

Table S1. Computed percentage formation relative to Cu^{2+} of complex species formed in the Cu^{2+} -PrP₇₆₋₁₁₄ system in 50 mM Hepes buffer solution at pH 7.4 and different metal to ligand ratios (M/L). Protonation and Cu^{2+} complexation constants with PrP₇₆₋₁₁₄ are from ref. 2S.

M_L	free Cu	CuB	CuH5L	CuH4L	CuH3L	CuH2L	CuHL	CuL	Cu2HL	Cu2L	Cu2H-1L
1_1	0.01	0.59	0.03	3.91	24.70	50.44	16.70	0.25	0.39	0.54	0.61
1_2	0.00	0.01	0.04	4.07	25.70	52.48	17.37	0.26	0.01	0.01	0.02
1_3	0.00	0.01	0.04	4.08	25.71	52.48	17.38	0.26	0.00	0.01	0.01

Figure S3. Computed species distribution of the complexes formed in the presence of Cu^{2+} (25 μ M) and (A) 25 μ M PrP₇₆₋₁₁₄, (B) 50 μ M PrP₇₆₋₁₁₄ and (C) 75 μ M PrP₇₆₋₁₁₄, in 50 mM Hepes buffer solution at pH 7.4. Protonation and Cu^{2+} complexation constants with PrP₇₆₋₁₁₄ are from ref. 2S.

Table S2. Computed percentage formation relative to Cu^{2+} of complex species formed in the Cu^{2+} -PrP₈₄₋₁₁₄ system in 50 mM Hepes buffer solution at pH 7.4 and different metal to ligand ratios (M/L). Protonation and Cu^{2+} -complexation constants with PrP₈₄₋₁₁₄ are from ref. 1S.

	free		CuH	CuH4	CuH3	CuH2			Cu2H	Cu2H2	Cu2H	Cu2	Cu2H	Cu2H	Cu2H
	Cu	CuB	5L	L	L	L	CuHL	CuL	3L	L	L	L	-1L	-2L	-3L
1_1	0.16	6.79	0.02	1.44	9.99	51.20	13.16	0.20	0.01	0.12	1.10	4.17	2.63	0.44	0.01
1_2	0.03	1.27	0.02	1.80	12.44	63.80	16.40	0.25	0.00	0.03	0.26	0.97	0.61	0.10	0.00
1_3	0.02	0.67	0.02	1.85	12.76	65.48	16.83	0.26	0.00	0.02	0.14	0.52	0.33	0.05	0.00

Figure S4. Computed species distribution of the complexes formed in the presence of Cu^{2+} (25 μ M) and (A) 25 μ M PrP₈₄₋₁₁₄, (B) 50 μ M PrP₈₄₋₁₁₄ and (C) 75 μ M PrP₈₄₋₁₁₄, in 50 mM Hepes buffer solution at pH 7.4. Protonation and Cu²⁺ complexation constants with PrP₈₄₋₁₁₄ are from ref. 1S.

Table S3. Computed percentage formation relative to Cu^{2+} of complex species formed in the Cu^{2+} -PrP₁₀₆₋₁₁₄ system in 50 mM Hepes buffer solution at pH 7.4 and different metal to ligand ratios (M/L). Protonation and Cu^{2+} complexation constants with PrP₁₀₆₋₁₁₄ are from ref. 4S.

M/L	free Cu	CuB	CuH2L	CuHL	CuL	CuH-1L	CuH-2L	CuH-3L
1_1	0.89	37.69	0.01	0.29	44.23	16.43	0.04	0.00
1_2	0.40	16.92	0.01	0.40	59.80	22.22	0.05	0.00
1_3	0.24	10.23	0.01	0.43	64.84	24.08	0.06	0.00

Figure S5. Computed species distribution of the complexes formed in the presence of Cu^{2+} (25 μ M) and (A) 25 μ M PrP₁₀₆₋₁₁₄, (B) 50 μ M PrP₁₀₆₋₁₁₄ and (C) 75 μ M PrP₁₀₆₋₁₁₄, in 50 mM Hepes buffer solution at pH 7.4. Protonation and Cu²⁺ complexation constants with PrP₁₀₆₋₁₁₄ are from ref. 4S.

Figure S6. Kinetic profiles of MC (3 mM) oxidation with time, in 50 mM Hepes buffer solution at pH 7.4 and 20 °C in the presence of Cu^{2+} (25 μ M) (brown) and with addition of PrP₈₄₋₁₁₄ (25 μ M, orange; 50 μ M, yellow; 75 μ M, green).

Figure S7. Kinetic profiles of MC (3 mM) oxidation with time, in 50 mM Hepes buffer solution at pH 7.4 and 20 °C in the presence of Cu^{2+} (25 μ M) (brown) and with addition of PrP₁₀₆₋₁₁₄ (15 μ M, orange; 25 μ M, light green; 35 μ M, yellow; 50 μ M, green; 75 μ M, light blue).

Figure S8. Kinetic traces of absorbance at 401 nm *vs*. time for the oxidation of MC (3 mM) at pH 7.4 and 20 °C in the presence of free Cu²⁺ (25 μ M) (orange trace), PrP₇₆₋₁₁₄ (25 μ M) (green trace), Cu²⁺ (25 μ M) and PrP₇₆₋₁₁₄ (25 μ M) (light blue trace) in Hepes buffer (5 mM). MC autoxidation is shown by the yellow trace.

Figure S9. Selected absorption spectra recorded during the oxidation of MC (3 mM) in 5 mM Hepes buffer solution at pH 7.4 and 20 °C in the presence of : (A) 25 μ M copper(II), and (B) 25 μ M copper(II) and 25 μ M PrP₇₆₋₁₁₄. In (A) and (B), the first spectrum (lower trace) was recorded after 5 s, and the other spectra were recorded every 360 s.

Figure S10. Kinetic traces of MC (3 mM) oxidation with time, in 50 mM Hepes buffer solution at pH 7.4 and 20 °C in the presence of Cu^{2+} (25 μ M, light blue trace) and with addition of PrP₇₆₋₁₁₄ (50 μ M, yellow trace). A similar experiment was carried out with the solvent saturated with pure oxygen with Cu^{2+} (25 μ M, orange trace) and with addition of PrP₇₆₋₁₁₄ (50 μ M, green trace).

Figure S11. Dependence of the reaction rates of 4-methylquinone formation on the concentration of MC. The reactions were performed in Hepes buffer (50 mM) pH 7.4, at 20°C, in the presence of free copper(II) (white circles), $[Cu^{2+}-PrP_{106-114}]$ complex (25 μ M) (orange circles), $[Cu^{2+}-PrP_{84-114}]$ complex (25 μ M) (light blue circles), and $[Cu^{2+}-PrP_{76-114}]$ complex (25 μ M) (green circles). Solid lines correspond to fitting of experimental data with Michaelis-Menten equation.

Figure S12. Kinetic traces of MC (3 mM) oxidation with time, in 50 mM Hepes buffer solution at pH 7.4 and 20 °C in the presence of Cu^{2+} (25 μ M, light blue trace) and with addition of PrP₇₆₋₁₁₄ (25 μ M, yellow trace). Similar experiments were carried out with 1 mM H₂O₂ with both Cu^{2+} (25 μ M, green trace) and Cu^{2+} (25 μ M) with addition of PrP₇₆₋₁₁₄ (25 μ M, orange trace). Blank experiment in the presence of MC and H₂O₂ is shown by the blue trace.

Scheme S1. Reaction of histidine residues of PrP peptides with MQ and subsequent oxidation of the resulting adduct to quinone.

Figure S13. HPLC-MS elution profiles of peptides resulting from oxidation of MC (3 mM) by Cu-PrP₈₄₋₁₁₄ (25 μ M) at 60 min reaction time in 50 mM Hepes buffer at pH 7.4 and 20 °C. The assignment of the peaks is shown (MQ indicates a mass increment of 120 Da corresponding to the formation of a covalent adduct with 4-methylquinone).

$25 \mu\text{M}$ copper(II) nitrate and 3 mM MC in Hepes buffer (50 mM) pH 7.4 at 20 °C.						
Time (min)	PrP ₈₄₋₁₁₄	+	16	+120	+136	+152
	(%)	(%	6)	(%)	(%)	(%)
	$(R_t 31')$	(R _t 32')	(R _t 29')	(R _t 35')	(R _t 36')	(R _t 37')
1	95.6	1.2	0.4	1.8	0.4	0.6
10	80.0	3.4	3.5	5.8	5.4	1.9
15	72.7	8.9	2.4	7.6	6.2	2.2
60	59.0	7.7	8.3	6.9	11.7	6.4
90	44.9	8.9	1.7	9.0	21.7	13.8
100	11.0	14.5	4.1	13.7	28.0	28.7

Table S4. Modifications of PrP_{84-114} peptide (25 μ M) detected by LC-MS analysis, in the presence of 25 μ M copper(II) nitrate and 3 mM MC in Hepes buffer (50 mM) pH 7.4 at 20 °C.

Figure S14. HPLC-MS elution profiles of peptides resulting from the oxidation of MC (3 mM) by Cu-PrP₁₀₆₋₁₁₄ (25 μ M) at 100 min reaction time in 50 mM Hepes buffer at pH 7.4 and 20 °C. The assignment of the peaks is shown (MC and MQ indicate mass increments of 122 and 120 Da, corresponding to the formation of covalent adducts with 4-methylcatechol and 4-methylquinone, respectively).

25 µM c	opper(II) nit	rate and 3 r	nM MC in F	lepes buffer	(50 mM) pH 7	7.4 at 20 °C.	
Time	PrP ₁₀₆₋₁₁₄	+16	+32	+120	+122	+136	+138
(min)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
	$(R_t 11')$	$(R_t 21')$	(R _t 19')	(Rt 28')	(R _t 29')	(Rt 23')	(R _t 25')
10	82.7	2.8	0.2	6.5	6.4	0.5	0.9
20	67.7	9.0	1.7	10.2	3.9	1.5	6.0
30	60.6	9.5	0.3	13.7	11.8	2.7	1.4
55	47.0	23.2	3.6	7.4	8.1	7.4	3.3
100	35.1	34.9	5.1	4.8	7.8	7.9	4.4
120	21.1	36.8	8.3	4.9	7.5	14.2	7.2

Table S5. Modifications of $PrP_{106-114}$ peptide (25 µM) detected by LC-MS analysis, in the presence of 25 µM copper(II) nitrate and 3 mM MC in Hepes buffer (50 mM) pH 7.4 at 20 °C.

Figure S15. Proton NMR spectrum of Hepes buffer (5 mM) pH 7.4 and MC (3 mM) in D_2O at 20 °C. The Hepes buffer signal of the $-CH_2$ - group bound to sulfonic acid group at 3.7 ppm was used as internal standard.

Figure S16. Enlargement of the aromatic region of the proton NMR spectra of MC (3 mM) and Hepes buffer (5 mM) pH 7.4 in D₂O at 20 °C (gray trace), and after 2 h of reaction in the presence of copper(II) nitrate (25 μ M) (red trace) and Cu²⁺-PrP₇₆₋₁₁₄ (25 μ M) (blue trace).

Time (min)	[MC] (mM)					
	Cu^{2+}	$Cu^{2+}-PrP_{76-114}$				
0	3.00	3.00				
5	2.94 ± 0.08	2.55 ± 0.02				
30	2.82 ± 0.09	2.36 ± 0.06				
60	2.68 ± 0.10	2.17 ± 0. 10				
90	2.53 ± 0.06	1.88 ± 0.04				
120	2.44 ± 0.02	1.55 ± 0.07				
150	2.34 ± 0.04	1.32 ± 0.04				

Table S6. Determination of residual MC concentration by NMR upon oxidation of MC (3 mM) by Cu^{2+} and Cu^{2+} -PrP₇₆₋₁₁₄ (25 μ M) in 5 mM Hepes deuterated buffer at pH 7.4 and 20 °C.

Figure S17. Plots of UV-Vis absorbance at 560 nm for the NBT reduction to MF^+ by O_2^- in the presence of Cu^{2+} (black circles) and Cu^{2+} complexes (white circles) with $PrP_{106-114}$ (A), PrP_{84-114} (B) and PrP_{76-114} (C). Spectra were taken at 20 °C, in 50 mM phosphate buffer at pH 7.4.