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Abstract

This thesis deals with two fractional stochastic equations: the fractional stochastic heat equation
(a partial stochastic differential equation or SPDE) and a fractional stochastic Volterra equation
(a stochastic differential equation or SDE).

In the first part, we deal with the fractional stochastic heat equation

∂tu = −(−∆)
α
2 u+ f(u) Ẇ

in the spatial domain R, driven by space-time white noise W . We prove the existence, uniquess
and regularity of the solution for α ∈ (1, 2] through classical methods of stochastic integration.
Our first contribution is to prove these results under optimal assumptions on the initial datum,
which was previously known only in the non-fractional case α = 2. Our second main contribution
is to study the behavior of the solution for t → 0, by proving a quantitative comparison
result between the solution of the stochastic problem and the solution of the corresponding
deterministic problem. As a by-product, we derive a new proof of the strict positivity of the
solution, in the linear case f(u) = u.

In the second part, we deal with the stochastic Volterra integral equation

ut = ξ +

∫ t

0
f(us) (t− s)H−

1
2 dWs,

which can be written in differential form Dαu = f(u) Ẇ for α = H + 1
2 . We perform a

robust analysis of this equation, proving existence, uniqueness and regularity of the solution for
H ∈ (1

4 ,
1
2) in the framework of rough paths theory. We also prove finer estimates on the solution,

which lead to a finite-increment reformulation of the equation. To develop our analysis, we enrich
the usual rough paths theory with an extension of independent interest, namely the integration
with respect to singular kernels, in the spirit of Hairer’s theory of Regularity Structures, but in
a rather elementary way.
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Introduction

This thesis is divided in two parts: we consider two distinct stochastic differential problems and
we analyze them with two different approaches and methods.

In the first part, we deal with a stochastic partial differential equation (SPDE) in one space
dimension, called fractional stochastic heat equation (FSHE), written formally as

∂u

∂t
+ (−∆)

α
2 u = f(u) Ẇ (FSHE)

where f is a Lipschitz function, Ẇ is the “density of a white noise” on R+ × R, and (−∆)
α
2 is

the fractional Laplacian of order α, for α ∈ (1, 2]. This kind of stochastic differential equation
has been widely studied in literature; for the case α = 2, (FSHE) coincides with the classical
stochastic heat equation, which has been intensively studied; for α ∈ (1, 2), the existence,
uniqueness and regularity of a solution has been proven only in recent years.

In particular the case α = 2 was initially motivated by the parabolic Anderson model (in
which f(u) = u) (see [Carmona, Molchanov 94]). A study of the stochastic heat equation can
be found in [Bertini, Cancrini 95], and, more recently, in [Dalang et al. 09], [Conus et al. 10],
[Conus et al. 14], and [Chen, Dalang 15 A]. The Hölder continuity of the solution was already
studied in [Walsh 86], in the case of bounded inital data, and in [Shiga 94] and [Pospisil, Tribe 07]
in the case in which the initial data is a continuous function with tails that grow at most ex-
ponentially. In [Dalang et al. 07],[Dalang et al. 09], the authors proved the Hölder continuity
of the solution of (FSHE) with vanishing initial conditions and in [Chen, Dalang 15 A], the
authors extended the above results proving the regularity of the solution for α = 2 under the
weakest possible condition on the initial data.

The case α ∈ (1, 2) is a particular case of the fractional stochastic equations studied in
[Debbi, Dozzi 05], [Debbi 06]. They proved the existence and uniqueness of a solution with
the assumption that the initial condition is a bounded function. In [Chen, Dalang 15 A] and
[Chen, Kim 14] the authors extended the results by enlarging the space of the possible initial
data to locally uniformly bounded measures (see (1.2)) below.

Our first contribution is to present a general proof of the existence, uniqueness and regularity
of a solution of (FSHE) for α ∈ (1, 2] under optimal assumptions on the initial datum (see
Theorems 1.3 and 1.4). In particular, we prove that, under optimal assumptions, the solution u
of (FSHE) is a locally Hölder continuous function with exponents (α−1

2α )− in time and (α−1
2 )−

in space.
For α = 2 this was done in [Chen, Dalang 15 A], while for α ∈ (1, 2) this is a new result. We

follow a standard approach, based on Picard’s iteration scheme. However, instead of the classical
Gronwall’s inequality, we use Gronwall-type inequalities that involve space-time convolutions.
We obtain sharper results for α ∈ (1, 2) thanks to sharper estimates on the convolutions of the
square of the fractional heat kernel g (see Propostion 1.5), that is the solution of the following

∂g

∂t
= ∆

α
2 g

g0(x) = δ0(x),

v
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where δ represent the Dirac delta measure.
Our second contribution concerns the behavior of the solution u(t, x) as t ↓ 0, which depends

of course on the initial datum u(0, ·) = µ0(·). We prove that u(t, x) is close to the solution
I0(t, x) = (µ0 ? gt)(x) of the corresponding deterministic problem in a rather strong sense: the
ratio u(t, x)/I0(t, x)) converges to 1 as t ↓ 0 uniformly for x in compact sets. Actually this ratio,
that we call normalized solution, can be extended to a Hölder function on [0,∞)×R (including
t = 0) with explicit Hölder exponents (see Theorem 2.2).

Finally, we present an alternative proof of the strict positivity of the solution of the linear
(FSHE) (that is when f(u) = cu) started with non-negative initial conditions. This result was
proven first in [Mueller 91] for the case α = 2, through a strong comparison principle but
under strong conditions on the initial datum; see [Moreno 14] and [Gubinelli, Perkowski 17] for
alternative approaches. In [Chen, Kim 14], authors proved the strict positivity to the general
(non-linear) (FSHE), extending Mueller’s comparison principle for the case α ∈ (1, 2). Here we
stick to the linear case, but we present an alternative approach, which is based on the proof of
the continuity of the normalized solution (see Theorem 2.19).

In the second part of this thesis, we consider the one-dimensional rough fractional differential
equation (RFDE), written as

Dαu = f(u) Ẇ , (RFDE)

where f is a Lipschitz function, Ẇ is the density of a white noise on R+ (i.e. the derivative of
Brownian motion) and Dα denotes the fractional differential operator of order α, such that the
integral formulation of (RFDE) is written as

ut = u0 +
1

Γ(α)

∫ t

0
f(us) (t− s)α−1 dWs. (I)

Equation (I) represent the so-called Volterra integral equation with kernel given by ps = sα−1.
This kind of equation has been studied in literature and solved by different techniques. The first
studies were carried in [Berger, Mizel 80a]-[Berger, Mizel 80b], where (I) is solved by using the
classical theory of Itô stochastic integration. Then, many authors studied stochastic Volterra
equations in different settings and generality, for instance [Protter 85], [Pardoux, Protter 90],
[Chocran et al. 95 ], [Zhang 10]. In recent years, stochastic Volterra equations attracted atten-
tion in financial modelling, because stochastic Volterra equations with singular kernels consti-
tute very suitable models for the rough behaviour of volatility in financial markets; this was
first observed in [Gatheral et al. 18]. Very recently, in [Bayer et al. 17], the authors used a new
and powerful tool to analyze rough volatility models, that is the theory of regularity structures
([Hairer 14]). Meanwhile [Prömel, Trabs 18] develop a pathwise approach and a solution theory
for Volterra equations, using the theory of paracontrolled distributions.

Like [Bayer et al. 17]-[Prömel, Trabs 18] (which appeared as a preprint simultaneously to
the writing of this thesis), here we present a robist pathwise analysis of (I). We prove the
existence, uniqueness and regularity of a solution of (I) (see Theorem 4.6) in the framework of
the rough path theory, which is more elementary than regularity structures or paracontrolled
distributions. To solve (I) with the theory of rough paths, developed by Lyons ([Lyons 98])
and extended by [Gubinelli 04], we need some generalizations of independent interest: as in
[Hairer 14], but with more elementary techniques, we define the integration of singular kernel.

It is convenient to set α = H + 1
2 . The solution turns out to be a controlled path of the
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function

Xt =
1

Γ
(
H + 1

2

) ∫ t

0
(t− s)H−

1
2 dWs, (RL-fBM)

that is the so-called Riemann-Liouville fractional Brownian motion with Hurst parameter H ∈
(0, 1

2), close to the usual fractional Brownian motion. We are able to give finer estimate for
the solution (for the linear case in which f(u) = u), see Theorem 5.2, providing an equivalent
characterization of the equation based on increments.



viii CONTENTS



Part I

Fractional Stochastic Heat Equation
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Introduction to Part I

In the first part of this thesis, we consider the fractional stochastic heat equation (FSHE) in
the spatial domain R.

In Chapter 1, we investigate the existence, the uniqueness and the regularity of the solution
of (FSHE), taking inspiration from [Chen, Dalang 15 B] and [Chen, Kim 14], and extending
their results to a wider class of initial data.

In Chapter 2, we focus on the normalized solution, that is the ratio of the solution of (FSHE)
and the fractional heat kernel, that is the solution of the (deterministic) fractional heat equation.
We study the properties of the normalized solution, in particular its continuity, from which we
derive an alternative proof of the strict positivity of the solution of (FSHE) (first proved in
[Mueller 91] for α = 2 and in [Chen, Kim 14] for α ∈ (1, 2]), when f is linear.
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Chapter 1

Fractional Stochastic Heat Equation

Introduction

We consider the Fractional Stochastic Heat Equation (FSHE), which is formally written as
∂u

∂t
(t, x) = ∆

α
2 u(t, x) + f(u(t, x)) Ẇ (t, x) for t > 0, x ∈ R,

u(0, ·) = µ0,

(1.1)

where α ∈ (1, 2] is fixed, f : R → R is a function, µ0 is the initial datum, which may be a
function or a measure on R, Ẇ (t, x) is “the density of a white noise” W (dt,dx) on R+ × R
and ∆

α
2 denotes the fractional Laplacian operator. Actually, it would be more correct to write

−(−∆)
α
2 instead of ∆

α
2 , since −∆ is positive definite; however, for convenience, we will stick

to the notation used in (1.1).
In the case of α = 2, (1.1) is the usual stochastic heat equation. Indeed, ∆

α
2 becomes the

Laplacian (since we are in the one-dimensional case, the Laplacian is just the second deriva-
tive in space). The stochastic heat equation has been intensively studied (i.e. [Mueller 91],
[Bertini, Cancrini 95], [Khoshnevisan 09], [Hairer, Pardoux 15]). When f is a linear function,
that is f(x) = βx for some β ∈ R, the problem (1.1) is known as the parabolic Anderson model,
which has been studied in depth since [Carmona, Molchanov 94] and permits to model random
motions in random media.

When α ∈ (1, 2), the operator ∆
α
2 can be defined as the generator of a symmetric α-stable

Lévy process (recall that for α = 2, the Laplacian can be defined as the generator of a Brownian
Motion). We stick to the case α ∈ (1, 2] since, according to Theorem 11 in [Dalang 99], even
the simplest form of (1.1), with f ≡ 1, does not have a solution if α ≤ 1.

This equation has been studied in literature also in recent years: in particular, we took
inspiration from [Chen, Dalang 15 B] and [Chen, Kim 14]. (In both articles, the authors ac-
tually consider a more general fractional operator of order α ∈ (1, 2] with skewness δ (where
|δ| ≤ min(α, 2 − α)); here we stick for simplicity to the symmetric case δ = 0). They proved
existence, uniqueness and regularity of a solution to (1.1) for the class M(α) of initial data,
where

M(α) =
{
µ0 Borel measures on R, s.t. sup

x∈R

∫
R

1

1 + |x− y|α+1
µ0(dy) <∞

}
for α ∈ (1, 2)

(1.2)
and

M(2) =
{
µ0 Borel measures on R, s.t.

∫
R
e−ay

2
µ0(dy) <∞ for all a > 0

}
. (1.3)

Note thatM(2) is the widest class of initial data for which the usual deterministic heat equation
(i.e. with f(u)Ẇ = 0) has a solution defined for all times, so it is an optimal choice.

5



6 1. FRACTIONAL STOCHASTIC HEAT EQUATION

Our first contribution, described in this chapter, is to extend the above results by allowing
an optimal class of initial data also for the case α ∈ (1, 2). Indeed, condition (1.2) is much
stronger than the condition of the case α = 2, due to the presence of sup. We are able to
remove the sup thanks to sharp estimates of the convolutions of the sqare of the “fractional
heat kernels”, i.e. the fundamental solution of the deterministic fractional heat equation.

Description of the chapter. This first chapter follows the following scheme:

• In Section 1.1, we define the problem (1.1) more precisely and give the results of existence,
uniqueness and regularity of the solution; we re-write the problem in integral formulation,
using the theory of stochastic integration.

• In the remaining Sections, we give the proofs of existence and uniquess (Section 1.3) and
regularity (Section 1.4). Before that, in Section 1.2 we prove a basic but crucial estimate
on the convolution of the square of the square of the fractional heat kernel.

• The main properties of the fractional heat kernel are given in Appendix A and the most
technical proofs are deferred to Appendix B.

1.1. Mild solution, assumptions and main results

Fix a complete probability space (Ω,A,P), and a white noise W on R+ × R defined on Ω. All
the stochastic processes we will deal with, will be defined on (Ω,A,P). We also fix a complete
filtration F = (Ft)t≥0, which is compatible with the white noise W . All the notions about
measurability, adaptedness and progressive measurability are done with respect to F . For our
goals, we could actually work with the augmented filtration generated by the white noise, that
is FW = (FWt )t≥0, where

FWt = σ
(
{Ws(A) | s ∈ [0, t], A ∈ B∗(R)} ∪ N

)
,

where B∗(R) are the Borel sets with finite Lebesgue measure, and N is the collection of the
P-null sets. Working with a more general filtration can be useful, e.g., to allow for random
initial data.

1.1.1. Mild solution and main results. Consider the stochastic differential problem
(1.1) with a measure as initial datum, that is formally

∂u

∂t
(t, x) = ∆

α
2 u(t, x) + f(u(t, x)) Ẇ (t, x) for t > 0, x ∈ R,

u(0, ·) = µ0(·),
(1.4)

We now give a rigorous meaning to this equation.

Definition 1.1. A mild solution of (1.4) is a progressively measurable stochastic process
(u(t, x))(t,x)∈(0,∞)×R such that, for every (t, x) ∈ (0,∞)× R,∫ t

0

∫
R
E(|f(u(s, y))|2)g2

t−s(x− y) ds dy <∞, (1.5)

and

u(t, x) =

∫
R
gt(x− y)µ0(dy) +

∫ t

0

∫
R
f(u(s, y))gt−s(x− y)W (ds, dy) P-a.s.. (1.6)
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A mild solution consists of two terms: the first one is a standard “deterministic” integral,
the second one is a stochastic integral with respect to W . Condition (1.5) and the progressive
misurability of u ensure that the stochastic integral in the right hand side of (1.6) is well
defined, see [Walsh 86].

For the deterministic term we will use the following notation:

I0(t, x) =

∫
R
gt(x− y)µ0(dy), (1.7)

that is the solution of the deterministic differential problem:{
∂u
∂t (t, x) = ∆

α
2 u(t, x) for t > 0, x ∈ R

u(0, ·) = µ0(·).
(1.8)

We are going to study:

1. the existence of a mild solution;

2. the uniqueness;

3. the regularity.

We make the following hypothesis on f and µ0.

Hypothesis on f . The function f : R→ R is globally Lipschitz and it has at most linear
growth: there exist constants L,K > 0 such that

|f(x)− f(y)| ≤ L|x− y| for all x, y ∈ R, (1.9)
|f(x)| ≤ K(1 + |x|) for all x ∈ R. (1.10)

Remark 1.2. Condition (1.9) implies condition (1.10). Indeed, suppose that f satisfies (1.9),
then, for all x, y ∈ R,

|f(x)| ≤ |f(x)− f(y)|+ |f(y)| ≤ L|x− y|+ |f(y)|.

We can choose y = 0 and, if we define K = max {L, |f(0)|}, then we get (1.10). However, it
is customary to separate the two conditions, since they will play different roles in the proofs
of the theorems of existence, uniqueness and regularity of the solution. Moreover, (1.9) can in
principle be weakened to a local Lipschitz condition – something we will not consider – in which
case it no longer implies (1.10).

Hypothesis on µ0. The initial datum µ0 is a deterministic positive Borel measure on R,
where we recall that a Borel measure is a measure defined on the sigma-algebra of Borel sets.

We require that ∫
R
gt(x− y)µ0(dy) <∞ for all t > 0, x ∈ R, (1.11)

where gt(x) denotes the functional heat kernel, i.e. the solution of (1.8) with µ0 = δ0. See
Appendix A for a quick remainder of its main properties. In particular, by properties (3) and
(8) of Proposition A.2, condition (1.11) is equivalent to (1.2) with supx∈R removed.
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For the case α = 2, where g is the classic heat kernel, condition (1.11) is equivalent to the
condition in [Chen, Dalang 15 B] (see (1.3)):∫

R
e−ay

2
µ0(dy) <∞ for all a > 0.

For the case α ∈ (1, 2), condition (1.11) is weaker than condition used in [Chen, Dalang 15 B]
(see (1.2)). Indeed, condition (1.2) implies that the admissible measures have to uniformly
bounded on compact sets: supx∈R µ0([x, x + 1]) < ∞. Instead, condition (1.11), which we un-
derline is the weakest possible condition on µ0 to have the possibility to define the deterministic
solution I0 in (1.7), allows the initial datum to be a measure with a polynomial growth, e.g.
µ0([x, x+ 1]) ∼ |x|γ as |x| → ∞, with γ < α.

Theorem 1.3 (Existence and uniqueness). If f satisfies (1.9) and (1.10), and µ0

satisfies (1.11), then the fractional stochastic heat equation (1.4) has an unique (up to mod-
ification) mild solution such that, for all (t, x) ∈ (0,∞)× R,∫ t

0

∫
R
E(|u(s, y)|2)g2

t−s(x− y) ds dy <∞. (1.12)

For every p ∈ [2,∞),

‖u(t, x)‖2p ≤

{
Cp(t)(1 + |I0(t, x)|2) if f(0) 6= 0

Cp(t) |I0(t, x)|2 if f(0) = 0,
(1.13)

for all (t, x) ∈ (0,∞)× R, where

Cp(t) :=
∞∑
k=0

(c̃p4K
2)k t

k(α−1)
α

Γ
(
α−1)
α

)k
Γ
(

(k+1)(α−1)
α

) (1.14)

and c̃p is the constant that appears in Corollary B.20 and depends only on p.

Theorem 1.4 (Regularity). The mild solution of (1.4) has a locally (α−1
2α

−
, α−1

2

−
)-

Hölder continuous modification in (0,∞)× R.

Sketch of the proof. We divided the proofs of existence and uniqueness (Theorem 1.3)
and regularity (Theorem 1.4).

The strategy of the proof of the theorem of existence and uniqueness (see Theorem 1.3) is
similar to the usual one adopted for SDEs (stochastic differential equations), in which the two
main tools are Gronwall’s inequality and Picard’s iteration scheme. One can proceed with the
standard Gronwall’s lemma (for example, see [Walsh 86] or [Khoshnevisan 09]); however, here
we use the properties of the convolutions of g, which play a similar role. They turn out to be
more specific for SPDEs, since they involve space-time convolutions, not only time ones and
they lead to sharper results. This kind of inequalities are of Gronwall-type: we present them and
their proofs in Appendix B. This approach is similar to the one used in [Chen, Dalang 15 A]
and [Chen, Dalang 15 B]. The novel ingredient, which allows us to prove Theorems 1.3 and
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1.4 under the weakest possible assumption on the initial datum (see (1.11)) is the following
estimate on the square of the fractional heat kernel, whose proof can be found in Section 1.2.

Proposition 1.5. Let α ∈ (1, 2]. For all 0 < s < t <∞ and x ∈ R, we have∫
R

dy [I0(s, y)]2g2
t−s(x− y) ≤ c t

1
α

s
1
α (t− s)

1
α

[I0(t, x)]2,

where c(α) is a positive constant which depends only on α.

To prove the regularity of a mild solution (see Theorem 1.11), we need some useful estimates
on its p-norms. The starting points are the Generalized Kolmogorov Continuity Theorem (see
Theorem B.17), the Burkholder-Davis-Gundy (BDG) inequality and the regularity of the Gaus-
sian integral. All the most technical results can be found in Section B.3 of Appendix B.

1.2. Proof of Proposition 1.5

In this section we contain the proof of Proposition 1.5, which is our key fundamental result to
prove the existence, uniqueness and regularity of a solution for the case α ∈ (1, 2).

Proof of Proposition 1.5. It is enough to prove that, for all z1, z2 ∈ R,∫
R

dy gs(y − z1) gs(y − z2) g2
t−s(x− y) ≤ c t

1
α

s
1
α (t− s)

1
α

gt(x− z1) gt(x− z2). (1.15)

We consider two case:

1. |x− z1| ≤ 2mt
1
α or |x− z2| ≤ 2mt

1
α ;

2. |x− z1| ≥ 2mt
1
α and |x− z2| ≥ 2mt

1
α .

where m is the same of the Lemma A.6. In the first case, we can suppose that |x− z1| ≤ 2mt
1
α

and we can write∫
R

dy gs(y − z1) gs(y − z2) g2
1−s(x− y) ≤ ‖g‖2∞

1

s
1
α (t− s)

1
α

∫
R

dy gs(y − z2) gt−s(x− y)

= ‖g‖2∞
1

s
1
α (t− s)

1
α

gt(x− z2)

≤ ‖g‖
2
∞

g(2m)

t
1
α

s
1
α (t− s)

1
α

gt(x− z1) gt(x− z2),

having used (A.5) and the semigroup property of g and the fact that z 7→ g(z) is a symmetric

function which decreases for z > 0 and then 1 ≤ gt(x− z1) t
1
α

g(2m) . If we suppose that |x− z2| ≤
2mt

1
α , we just switch the role of z1 and z2 and then (1.15) is proved in case (1).

In the case (2), we have both |x − z1| ≥ 2m and |x − z2| ≥ 2m. We can suppose that z1 < z2
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and we divide the integral in three parts:∫
R

dy gs(y − z1) gs(y − z2) g2
t−s(x− y) =

=

[ ∫
y>

x+z2
2

dy gs(y − z1) gs(y − z2) g2
t−s(x− y) +

∫
y<

x+z1
2

dy gs(y − z1) gs(y − z2) g2
t−s(x− y)+

+

∫
x+z1

2
≤y≤x+z2

2

dy gs(y − z1) gs(y − z2) g2
t−s(x− y)

]
.

Let us first fix x such that x > z2. When y > x+z2
2 , then also y > x+z1

2 (recall that z2 > z1)
and then we have

y − z2 >
x− z2

2
which implies that gs(y − z2) ≤ gs

(x− z2

2

)
y − z1 >

x− z1

2
which implies that gs(y − z1) ≤ gs

(x− z1

2

)
.

Now, using Lemma A.6, we have

gs(y − z2) ≤ gt
(x− z2

2

)
and gs(y − z1) ≤ gt

(x− z1

2

)
.

Then∫
y>

x+z2
2

dy gs(y − z1) gs(y − z2) g2
t−s(x− y) ≤ gt

(x− z1

2

)
gt

(x− z2

2

) ∫
R
g2
t−s(x− y)

≤ c 1

(t− s)
1
α

gt(x− z1) gt(x− z2).

When y < x+z1
2 , which implies that y < x+z2

2 , we use the fact that

x− y > x− z1

2
> 0 which implies that gt−s(x− y) ≤ gt−s

(x− z1

2

)
x− y > x− z2

2
> 0 which implies that gt−s(x− y) ≤ gt−s

(x− z2

2

)
.

Then,

g2
t−s(x− y) = gt−s(x− y) gt−s(x− y) ≤ gt−s

(x− z1

2

)
gt−s

(x− z2

2

)
≤ c gt(x− z1) gt(x− z2),

using Lemma A.6 as above. We get∫
y<

x+z1
2

dy gs(y − z1) gs(y − z2) g2
1−s(x− y) ≤ c ‖g‖∞

s
1
α

gt(x− z1) gt(x− z2)

∫
R

dy gs(y − z1)

= c
‖g‖∞
s

1
α

gt(x− z1) gt(x− z2)

The last part of the integral is for x+z1
2 ≤ y ≤ x+z2

2 . In this case, we get:

x− y ≥ x− z2

2
> 0 and then gt−s(x− y) ≤ c gt(x− z2)

y − z1 ≥
x− z1

2
> 0 and then gs(y − z1) ≤ c gt(x− z1).
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Finally, ∫
x+z1

2
≤y≤x+z2

2

dy gs(y − z1) gs(y − z2) g2
1−s(x− y)

≤ c gt(x− z1) gt(x− z2)

∫
R
gs(y − z1) gt−s(x− y)

≤ c ‖g‖∞
t

1
α

gt(x− z1) gt(x− z2).

By summing up the estimate in the case (1) and these three estimates in the case (2), relation
(1.15) is proved for for every x > z2. However, it is easy to extend the result also in the case x <
z1 or z1 < x < z2. Indeed, in the prove of (1) nothing changes, while in the prove of (2) we have
to use always Lemma A.6 and find convenient relations between x−y, y−z1, y−z2, x−z1, x−z2,
which gives convenient relations between g, recalling that z 7→ g(z) is increasing when z < 0,
and descreasing when z > 0.

1.3. Proof of Existence and Uniqueness

In this section, we are going to prove the existence and uniqueness, stated in Theorem 1.3. Let
us recap the statement.

Theorem 1.6 (Existence and uniqueness). If µ0 is a positive Borel measure on R
that satisfies (1.11) and f : R→ R is a globally Lipschitz function (that is satisfies (1.9) and
(1.10)), then the fractional stochastic heat equation (1.1) has an unique (up to modification)
mild solution such that, for all (t, x) ∈ (0,∞)× R,∫ t

0

∫
R
E(|u(s, y)|2)g2

t−s(x− y) ds dy <∞. (1.16)

For every p ∈ [2,∞),

‖u(t, x)‖p <∞, (1.17)

and, for every even integer p ∈ [2,∞),

‖u(t, x)‖2p ≤

{
Cp(t)(1 + |I0(t, x)|2) if f(0) 6= 0

Cp(t) |I0(t, x)|2 if f(0) = 0
(1.18)

where t 7→ Cp(t) is an increasing function and depends only on p (and on α and f , which are
fixed). We can define Cp as

Cp(t) :=

∞∑
k=0

(c c̃pK
2)k t

k(α−1)
α

Γ
(
α−1
α

)k
Γ
(

(k+1)(α−1)
α

) , (1.19)

where c̃p is the constant that appears in Corollary B.20 and depends only on p, c is a linear
combination of ‖g‖∞ and c(α) (see (A.8)), and K depends on the function f (see (1.10)).
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Remark 1.7. Note that, if (1.18) holds for some p ≥ 2, then (1.16) is automatically satisfied.
Indeed, by ‖ · ‖2 ≤ ‖ · ‖p,∫ t

0

∫
R
E(|u(s, y)|2)g2

t−s(x− y) dsdy ≤
∫ t

0

∫
R
Cp(s)(1 + |I0(s, y)|2)g2

t−s(x− y) ds dy

≤ Cp(t)t
α−1
α (1 + |I0(t, x)|2) <∞,

by Corollary B.5.
Moreover, for any (possibly non integer) p ∈ [2,∞), denoting by p− := 2bp2c and p+ := 2dp2e

the even integers closer to p, we have

‖u(t, x)‖p− ≤ ‖u(t, x)‖p ≤ ‖u(t, x)‖p+ ,

and then (1.18) implies also (1.17).

Remark 1.8. It is important to distinguish the case f(0) = 0. Indeed, this holds in the special
linear case in which f(u) = u. Relation (1.18) will be used in Chapter 2 to prove the strict
positivity for the linear case.

We divide the proof in two parts: in the first one we prove the uniquess, and, in the secon
part, we prove the existence.

Proof of Theorem 1.3, Uniqueness. Suppose u and v are mild solutions of (1.1), which
satisfy (1.16). We have to prove that u and v are modifications of one another. For all (t, x) ∈
(0,∞)× R, define

d(t, x) := u(t, x)− v(t, x)

=

∫ t

0

∫
R

[
f(u(s, y))− f(v(s, y))

]
gt−s(x− y)W (ds, dy) P-a.s.

thanks to the definition (1.6) of a mild solution. We will show that P(d(t, x) = 0) = 1, by
proving that E(d(t, x)2) = 0. By the Ito isometry and the Lipschitz condition (1.9) on f,

E
(
|d(t, x)|2

)
≤ L2

∫ t

0

∫
R
E
(∣∣u(s, y)− v(s, y)

∣∣2)g2
t−s(x− y) dsdy

= L2

∫ t

0

∫
R
E
(
|d(s, y)|2

)
g2
t−s(x− y) ds dy.

Moreover, applying the triangle inequality, we have∫ t

0

∫
R
E
(
|d(s, y)|2

)
g2
t−s(x− y) dsdy ≤ 2

(∫ t

0

∫
R
E
(
|u(s, y)|2

)
g2
t−s(x− y) ds dy+

+

∫ t

0

∫
R
E
(
|v(s, y)|2

)
g2
t−s(x− y) ds dy

)
=: I1(t, x) <∞,

thanks to (1.16).
Let us define ϕn(t, x) := E(|d(t, x)|2) for every n ∈ N (even though, of course, it does not

depend on n): it is a sequence of non-negative measurable functions defined on (0,∞)×R that
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satisfy (B.4) with A = 0 and B = L2. (The measurability of ϕn follows by Fubini’s theorem,
because u and v, and hence d, being progressively measurable, are jointly measurable functions
of (ω, t, x).) We can apply Lemma B.2 and get

E(|d(t, x)|2) ≤ L2n cnt
(n−1)(α−1)

α

Γ
(
α−1
α

)n
Γ
(
n(α−1)

α

) I1(t, x)

for all n ∈ N. Letting n→∞, we have E(|d(t, x)|2) = 0, and then P(u(t, x) = v(t, x)) = 1, for
all (t, x) ∈ (0,∞)× R.

The next proof of the existence part is based on Theorem 2.4 of [Chen, Dalang 15 A].

Proof of Theorem 1.3, Existence. We proceed with the standard Picard iteration scheme,
showing that the solution can be written as the limit in Lp(Ω) of a Cauchy sequence, for every
p ≥ 2 (which means p ∈ [2,∞)). For all (t, x) ∈ (0,∞)× R define

v0(t, x) := I0(t, x) =

∫
R
gt(x− y)µ0(dy), (1.20)

vn+1(t, x) := I0(t, x) +

∫ t

0

∫
R
f(vn(s, y))gt−s(x− y)W (ds, dy), (1.21)

for all n ∈ N0.
We divide the proof in four steps: in the first one we prove that the sequence (vn)n∈N is

well defined; in the second one we find useful estimates on the p-norms; in the third step we
show that, for every (t, x) ∈ (0,∞)× R, (vn(t, x))n∈N is a Cauchy sequence in Lp(Ω) and so it
converges to some u(t, x) in Lp(Ω); finally we prove that the process (u(t, x))(t,x)∈(0,∞)×R is a
mild solution of (1.1) satisfying (1.18).

Step 1. (vn) are “well-defined”, that is the stochastic integral which appears in (1.21) is
well-defined and vn+1 is progressively measurable, for all n ∈ N.

Let us start with the case n = 0 : since I0 is a non-random continuous function over (0,∞)×R
(see Proposition A.2), clearly the following hold:

• I0 is adapted;

• I0(t, x) <∞ by (1.11) and I0 is L2(Ω)-continuous.

Thanks to Proposition B.15, with ϕ = v0 = I0, these properties imply that the process(∫ t

0

∫
R
f(I0(s, y))gt−s(x− y)W (ds, dy)

)
(t,x)∈(0,∞)×R

,

which appears in the definition of v1, is well-defined, adapted, continuous in L2 and we have∫ t

0

∫
R
E(|f(I0(s, y))|2)g2

t−s(x− y) dsdy ≤ C̃1(t)(1f(0)6=0 + |I0(t, x)|2) <∞,

by Proposition B.15, where, in this case, we can calculate directly C̃1(t) = 2K2c(α)t
α−1
α , thanks

to the growth condition (1.10) on f and Corollary B.5 (notice that when f(0) = 0, |f(I0)|2 ≤
K2|I0|2). Then, even the process

v1 =
(
I0(t, x) +

∫ t

0

∫
R
f(I0(s, y))gt−s(x− y)W (ds, dy)

)
(t,x)∈(0,∞)×R
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is well-defined, adapted, continuous in L2 and, by the triangle inequality and the Ito isometry,

E(|v1(t, x)|2) ≤ C1(t)(1f(0)6=0 + |I0(t, x)|2)

where C1 : (0,∞)→ R is a non-decreasing map.
Let us proceed by induction: let n ≥ 1 and suppose that

vn =
(
I0(t, x) +

∫ t

0

∫
R
f(vn−1(s, y))gt−s(x− y)W (ds, dy)

)
(t,x)∈(0,∞)×R

(1.22)

is a well-defined stochastic process and the following properties hold:

1. (vn(t, x))(t,x)∈(0,∞)×R is adapted;

2. (t, x) 7→ vn(t, x) is L2(Ω)-continuous;

3. for all (t, x) ∈ (0,∞) × R, E(|vn(t, x)|2) ≤ Cn(t)(1 + |I0(t, x)|2) for some non-decreasing
function Cn : (0,∞)→ R.

By Proposition B.15, we have that the process

(f(vn)Ẇ ) ? g :=
(∫ t

0

∫
R
f(vn(s, y))gt−s(x− y)W (ds, dy)

)
(t,x)∈(0,∞)×R

(1.23)

is well-defined and

1. (f(vn)Ẇ ) ? g is adapted;

2. (f(vn)Ẇ ) ? g is L2(Ω)-continuous;

3. for all (t, x) ∈ (0,∞) × R, E(|(f(vn)Ẇ ) ? g|2) ≤ C̃n(t)(1f(0)6=0 + |I0(t, x)|2) for some
non-decreasing function C̃n : (0,∞)→ R.

But, since I0(t, x) is a continuous and deterministic function, (1) and (2) holds even for vn+1 =
I0 + (f(vn)Ẇ ) ? g. Moreover,

E(|vn+1(t, x)|2) ≤ 2|I0(t, x)|2 + 2C̃n(t)(1f(0)6=0 + |I0(t, x)|2) ≤ Cn+1(t)(1f(0)6=0 + |I0(t, x)|2),

where Cn+1 is a non-decreasing function over (0,∞). We have just proved that the properties
(1), (2) and (3) holds for any n ∈ N0, which means that the sequence (vn) is well-defined.

Step 2. Once we know that the Picard iteration scheme is well defined, we would like to
have some estimates on the p-norms of (vn) (that is to have a control on the C ′ns which will
be useful in order to prove the property (1.17) satisfied by a mild solution. Fix an even integer
p ≥ 2 : for every (t, x) ∈ (0,∞)× R, by (1.21) and the triangle inequality,

‖vn+1(t, x)‖2p ≤ 2|I0(t, x)|2 + 2
∥∥∥∫ t

0

∫
R
f(vn(s, y))gt−s(x− y)W (ds, dy)

∥∥∥2

p
.

Now, since p is even, we can apply Corollary B.20 on the second term, getting

‖vn+1(t, x)‖2p ≤ 2|I0(t, x)|2 + 2c̃p

∫ t

0

∫
R
‖f(vn(s, y))‖2p g2

t−s(x− y) ds dy

≤ 2|I0(t, x)|2 + c̃p4K
2

∫ t

0
(1f(0)6=0 + ‖vn(s, y)‖2p)g2

t−s(x− y) ds dy
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by the growth condition (1.10) on f. If we define ϕn(t, x) := ‖vn+1(t, x)‖2p, then (ϕn)n∈N is
a sequence of non-negative and measurable functions that satisfy (B.10) with A = 2 and
B = c̃p4K

2 when f(0) 6= 0 and (ϕn)n∈N satisfies (B.7) with the same A and B. Then, by
Lemma B.7 (when f(0) 6= 0) and Lemma B.6 (when f(0) = 0), we can write

‖vn+1(t, x)‖2p ≤ 2 |I0(t, x)|2+(1f(0)6=0+2|I0(t, x)|2)

n+1∑
k=1

(c c̃p4K
2)k t

k(α−1)
α

Γ
(
α−1
α

)k+1

Γ
(

(k+1)(α−1)
α

) . (1.24)
Step 3. Fix an arbitrary even p ≥ 2; we are going to prove that, for every (t, x) ∈ (0,∞)×R,

{vn(t, x)}n∈N0 is a Cauchy sequence in Lp(Ω).

For all (t, x) ∈ (0,∞)× R define

dn+1(t, x) = vn+1(t, x)− vn(t, x)

=

∫ t

0

∫
R

[
f(vn(s, y))− f(vn−1(s, y))

]
gt−s(x− y)W (ds, dy),

for n ∈ N, and

d1(t, x) = v1(t, x)− I0(t, x) =

∫ t

0

∫
R
f(I0(s, y))gt−s(x− y)W (ds, dy).

We notice that, for all (t, x) ∈ (0,∞)× R and for all n ∈ N, we have

‖dn+1(t, x)‖2p ≤ c̃p
∫ t

0

∫
R
‖f(vn(s, y))− f(vn−1(s, y))‖2pg2

r−s(x− y) dsdy

≤ c̃pL2

∫ t

0

∫
R
‖dn(s, y)‖2pg2

r−s(x− y) ds dy,

having used Corollary B.20 and the Lipschitz condition (1.9) on f. Similarly, for n = 0, using
the growth condition (1.10),

‖d1(t, x)‖2p ≤ c̃p
∫ t

0

∫
R
‖f(I0(s, y))‖2pg2

t−s(x− y) ds dy

≤ c̃p 2K2

∫ t

0

∫
R

(1f(0)6=0 + |I0(s, y)|2)g2
t−s(x− y) ds dy

≤ c̃p 2K2 cαt
α−1
α (1f(0)6=0 + |I0(t, x)|2),

(1.25)

by Corollary B.5.
Denoting by ϕn(t, x) = ‖dn(t, x)‖2p, then (ϕn)n∈N is a sequence of non-negative and measur-

able functions defined on (0,∞)×R that satisfy the condition (B.4) of Lemma B.2 with A = 0
and B = c̃pL

2. Then

‖dn+1(t, x)‖2p ≤ (c c̃pL
2)n

Γ
(
α−1
α

)n
Γ
(
n(α−1)

α

) t (n−1)(α−1)
α I1(t, x)
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where, by (B.3) and (1.25),

I1(t, x) =

∫ t

0

∫
R
‖d1(s, y)‖2pg2

t−s(x− y) ds dy

≤ cα c̃p 2K2t
α−1
α

∫ t

0

∫
R

(1f(0)6=0 + |I0(s, y)|2)g2
t−s(x− y) ds dy

≤ cα c̃p 2K2 t
2(α−1)
α (1f(0)6=0 + |I0(t, x)|2),

(in the same way we have done in (1.25)) and this is finite for every fixed (t, x). Then,

‖dn+1(t, x)‖2p ≤ cn (c̃p)
n+1L2nK2

Γ
(
α−1
α

)n
Γ
(
n(α−1)

α

) t (n+1)(α−1)
α (1 + |I0(t, x)|2).

In particular, we have

∞∑
n=0

‖vn+1(t, x)− vn(t, x)‖p = ‖d1(t, x)‖p +

∞∑
n=1

‖dn+1(t, x)‖p

≤
√

2cαc̃pK t
α−1
2α

√
1 + |I0(t, x)|2 + t

α−1
2α

√
(1 + |I0(t, x)|2)×

×
∞∑
n=1

cn (c̃p)
n+1

2 LnK
Γ
(
α−1
α

)n
2√

Γ(n(α−1)
α )

t
(n−1)(α−1)

2α <∞.

(1.26)

Hence, for every (t, x) ∈ (0,∞) × R, and for every even p ≥ 2, {vn(t, x)}n∈N0 is a Cauchy
sequence in Lp(Ω) and so it converges to some random variable in Lp(Ω).We define the process(
u(t, x)

)
(t,x)∈(0,∞)×R such that, for every (t, x) ∈ (0,∞)× R,

u(t, x) = lim
n→∞

vn(t, x) in Lp(Ω). (1.27)

We stress that, for any fixed (t, x), we have defined u(t, x) by choosing arbitrarily a random
variable in the Lp equivalence class of the limit of vn(t, x), which is uniquely determined only
for a.e. ω. As a consequence, for the moment we have no information on the path properties
of u(t, x) and, in particular, we have no guarantee that the process (u(t, x))(t,x)∈(0,∞)×R is
progressively measurable. We are now going to show that this is the case, provided we choose
a suitable modification.

Fix (t, x) ∈ (0,∞)× R, then, for every even p ≥ 2, passing to the limit in (1.24),

‖u(t, x)‖2p ≤ 2|I0(t, x)|2 + (1f(0)6=0 + 2|I0(t, x)|2)

∞∑
k=1

(cc̃p4K
2)kt

k(α−1)
α

Γ
(
α−1
α

)k+1

Γ( (k+1)(α−1)
α )

≤ Cp(t)(1f(0)6=0 + |I0(t, x)|2),

(1.28)

where Cp is defined by (1.19). This proves that (1.18) holds, as well as (1.16) and (1.17) (see
Remark 1.7).

Moreover, for every (t, x) ∈ (0,∞) × R, u(t, x) is Ft-measurable, since each vn(t, x) is; in
other words, the process (u(t, x))(t,x)∈(0,∞)×R is adapted.
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Since the convergence holds for every even p ≥ 2, we can say that it actually holds for every
p ≥ 2.

Step 4. We shall verify that (u(t, x))(t,x)∈(0,∞)×R is a mild solution of (1.1). By Step 2, we
know that

• u is adapted;

• for all (t, x) ∈ (0,∞)× R, E(|u(t, x)|2) ≤ C2(t)(1 + |I0(t, x)|2).

If we prove that u is L2(Ω)-continuous, then Proposition B.15 will say that

(f(u)Ẇ ) ? g :=
(∫ t

0

∫
R
f(u(s, y))gt−s(x− y)W (ds, dy)

)
(t,x)∈(0,∞)×R

is a well defined stochastic process (this is the minimal requirement on u to be a mild solution).
To prove that u is L2(Ω)-continuous, we show that vn(t, x) → u(t, x) in L2(Ω) uniformly

with respect to (t, x), on any compact set of (0,∞)×R. LetM > 0 and define KM = [ 1
M ,M ]×

[−M,M ]; then we have

∞∑
n=0

sup
(t,x)∈KM

‖vn+1(t, x)− vn(t, x)‖2

≤ sup
(t,x)∈KM

[
t
α−1
α (1f(0)6=0 + |I0(t, x)|2)

] 1
2

︸ ︷︷ ︸
SM

∞∑
n=0

2cnLnK
Γ
(
α−1
α

)n
2√

Γ
(
n(α−1)

α

)M α−1
2α

(see (1.26)). Since I0 is continuous over KM , and KM is a compact set, SM <∞ for anyM > 0.
This implies that vn → u uniformly over KM : indeed, for any (t, x) ∈ KM ,

‖u(t, x)− vn(t, x)‖2 ≤ lim
k→∞

‖vk(t, x)− vn(t, x)‖2 ≤
∞∑
i=n

sup
(s,y)∈KM

‖vi+1(s, y)− vi(s, y)‖2,

which is the tail of a convergence series and proves that

sup
(t,x)∈KM

‖u(t, x)− vn(t, x)‖2 −−−→
n→∞

0.

Then u is L2(Ω)-continuous over KM for any M > 0, which leads to say that u is L2(Ω)-
continuous over (0,∞)× R.

It remains to prove that u satisfies (1.6) for all (t, x) ∈ (0,∞) × R. Passing to the limit as
n→∞ in (1.21), for every (t, x) ∈ (0,∞)× R, we get

u(t, x) =

∫
R
gt(x− y)µ0(dy) +

∫ t

0

∫
R
f(u(s, y))gt−s(x− y)W (ds, dy)

in L2(Ω). Indeed, for every (t, x) ∈ (0,∞)× R,∫ t

0

∫
R
f(vn(s, y))gt−s(x− y)W (ds, dy) −−−→

n→∞

∫ t

0

∫
R
f(u(s, y))gt−s(x− y)W (ds, dy)
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in L2(Ω), since, by the Ito isometry and the Lipschitz condition (1.9) on f, we can write

E
[∣∣∣ ∫ t

0

∫
R

(
f(u(s, y))− f(vn(s, y))

)
gt−s(x− y)W (ds, dy)

∣∣∣2]
=

∫ t

0

∫
R
E(|f(u(s, y))− f(vn(s, y))|2)g2

t−s(x− y) ds dy

≤ L2

∫ t

0

∫
R
E(|u(s, y)− vn(s, y)|2)g2

t−s(x− y) ds dy −−−→
n→∞

0

by dominated convergence. In fact, for all (s, y) ∈ (0,∞)× R,

‖u(s, y)− vn(s, y)‖22 −−−→n→∞
0

by (1.27), and

E(|u(s, y)− vn(s, y)|2)g2
t−s(x− y) ≤ 2

[
E(|u(s, y)|2) + E(|vn(s, y)|2)

]
g2
t−s(x− y)

≤ 4C2(s)(1 + |I0(s, y)|2)g2
t−s(x− y),

(see (1.24) and (1.28)) and (s, y) 7→ 4C2(s)(1 + |I0(s, y)|2)g2
t−s(x− y) is in L1([0, t]×R), since

we have ∫ t

0

∫
R

4C2(s)(1 + |I0(s, y)|2)g2
t−s(x− y) ds dy <∞

by Corollary B.5.

1.3.1. Continuity with respect to the initial datum. In Section 1.3 we proved
the existence of a solution to the differential stochastic problem (FSHE-α). Clearly this solution
depends on the initial datum µ0. We now prove that this dependence is continuos in the sense
of the weak convergence of measures.

We start by proving this Lemma, that gives an estimate for the difference in the L2-norm
of solutions with different initial data.

Lemma 1.9 (Distance between solutions). Let µ(1) and µ(2) be Borel measures that
satisfy condition (1.11). Let u(1) be the solution to (FSHE-α) with µ(1) as initial condition
and let u(2) be the solution to (FSHE-α) with µ(2) as initial condition. Then

E[|u(1)(t, x)− u(2)(t, x)|2] ≤ C(t, α) (I
(1)
0 (t, x)− I(2)

0 (t, x))2, (1.29)

where

I
(i)
0 (t, x) =

∫
R
gt(x− y)µ(i)(dy) for i = 1, 2,

and C > 0 is a real constant which depends only on time t and α and can be chosen as

C(t, α) = 1 +
∑
k∈N

ck−1 Lk t
k(α−1)
α

Γ
(
α−1
α

)k+1

Γ
(

(k+1)(α−1)
α

) .



1.3. PROOF OF EXISTENCE AND UNIQUENESS 19

Proof. Since u(1) and u(2) are solutions to (FSHE-α) with initial data given by µ(1) and µ(2)

respectively, then, thanks to the integral formulation (1.6), for every (t, x) ∈ (0,∞) × R,for
i = 1, 2, we can write

u(i)(t, x) =

∫
R
gt(x− y)µ(i)(dy) +

∫ t

0

∫
R
f(u(i)(s, y)) gt−s(x− y)W (ds, dy).

Then, for every (t, x) ∈ (0,∞)× R,

u(1)(t, x)− u(2)(t, x) =
[ ∫

R
gt(x− y)µ(1)(dy)−

∫
R
gt(x− y)µ(2)(dy)

]
+

∫ t

0

∫
R

(
f(u(1)(s, y))− f(u(2)(s, y))

)
gt−s(x− y)W (ds, dy).

For the second term, we can write

E
[∣∣∣ ∫ t

0

∫
R

(
f(u(1)(s, y))− f(u(2)(s, y)

)
gt−s(x− y)W (ds, dy)

∣∣∣2]
=

∫ t

0

∫
R
E
[∣∣f(u(1)(s, y))− f(u(2)(s, y)

∣∣2] g2
t−s(x− y) dsdy

≤ L
∫ t

0

∫
R
E
[∣∣u(1)(s, y)− u(2)(s, y)

∣∣2] g2
t−s(x− y) ds dy.

Hence, we can write

E
[∣∣u(1)(t, x)− u(2)(t, x)

∣∣2]
≤
(
I

(1)
0 (t, x)− I(2)

0 (t, x)
)2

+ L

∫ t

0

∫
R
E
[∣∣u(1)(s, y)− u(2)(s, y)

∣∣2] g2
t−s(x− y) ds dy.

We can apply Lemma B.6: in this case A = 1, B = L, ϕn(t, x) = E[|u(1)(t, x)− u(2)(t, x)|2] for
every (t, x) and for every n (of couse it does not depend on n) and we can use as I0(t, x) the
map

(t, x) 7→
∫
R
gt(x− y)(µ− ν)(dy)

indeed, by triange inequality, it satisfies Proposition 1.5. Then,

E
[∣∣u(1)(t, x)− u(2)(t, x)

∣∣2] ≤ (I(1)
0 (t, x)− I(2)

0 (t, x)
)2
(

1 +
∑
k∈N

ck−1 Lk t
k(α−1)
α

Γ
(
α−1
α

)k+1

Γ
(

(k+1)(α−1)
α

)),
that is (1.29).

We recall that, given a sequence of measures (µn)n∈N, we say that they converge weakly to
the measure µ, and we write

µn −→weakly
n→∞ µ
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if, for all bounded and continuos functions h : R→ R, we have∫
R
h(y)µn(dy) −→n→∞

∫
R
h(y)µ(dy).

We have the following.

Proposition 1.10. Let (µn)n∈N and µ be Borel measures that satisfy (1.11). For every
n ∈ N, let (un(t, x))(t,x)∈[0,∞)×R be the solution to (FSHE-α) with initial datum given by µn
and let (u(t, x))(t,x)∈[0,∞)×R be the solution to (FSHE-α) with µ as initial datum.

If µn −→weakly
n→∞ µ, then

lim
n→∞

E[|u(t, x)− un(t, x)|2] = 0 for every (t, x) ∈ (0,∞)× R. (1.30)

Proof. Thanks to Lemma 1.9, for every n ∈ N and for every (t, x) ∈ (0,∞)× R,

E[|u(t, x)− un(t, x)|2] ≤ C(t, α)
[ ∫

R
gt(x− y)µ(dy)−

∫
R
gt(x− y)µn(dy)

]2
.

But we know that µn converge weakly to µ, and then

lim
n→∞

[ ∫
R
gt(x− y)µ(dy)−

∫
R
gt(x− y)µn(dy)

]
= 0,

since, for every fixed t > 0, the map y 7→ gt(x − y) is bounded and continuous. This implies
(1.30).

We would like to point out the the convergence in (1.30) is actually uniform for (t, x) ∈
[ε,∞)× R.

1.4. Proof of the Regularity

Once we know a solution exists, we would like to know its regularity: in this section we will
prove that, away from t = 0, the solution of (1.1) has a continuous modification. In the sequel,
we will implicitly fix such a modification. Thanks to this fact, we can exchange “a.s.” and “for
all (t, x)” in the definition of mild solution. Namely, a mild solution of (1.1) is a continuous
adapted stochastic process, (u(t, x))(t,x)∈(0,∞)×R, such that, P-a.s.,

u(t, x) =

∫
R
gt(x− y)µ0(dy) +

∫ t

0

∫
R
f(u(s, y))gt−s(x− y)W (ds, dy)

for all (t, x) ∈ (0,∞)× R. We have the following:

Theorem 1.11 (Regularity). Suppose that f is a globally Lipschitz function and µ0 is
a Borel measure such that gt ? µ0(x) < ∞ for all (t, x) ∈ (0,∞) × R. Then, the solution of
(1.1) has a locally

(
(α−1

2α )−, (α−1
2 )−

)
-Hölder continuous modification in (0,∞)× R.

The first step is the following result, which says that the solution u(t, x) at time t of the
SHE on the interval [0, t], with initial value µ0 at time 0, coincides with the solution at time t
of the SHE on the interval [ε, t], with initial value u(ε, ·) at time ε.
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Proposition 1.12. For all 0 < ε < t <∞ and x ∈ R,

u(t, x) =

∫
R
gt−ε(x− y)u(ε, y) dy +

∫ t

ε

∫
R
f(u(s, y))gt−s(x− y)W (ds, dy) (1.31)

P-a.s..

Proof. Fix ε > 0 and (t, x) ∈ (ε,∞)× R. We know that

u(ε, y) =

∫
R
gε(y − z)µ0(dz) +

∫ ε

0

∫
R
f(u(s, z))gε−s(y − z)W (ds, dz),

by Definition 1.1. So we can write∫
R
gt−ε(x− y)u(ε, y) dy =

∫
R
gt−ε(x− y)

[ ∫
R
gε(y − z)µ0(dz)

]
dy+

+

∫
R
gt−ε(x− y)

[ ∫ ε

0

∫
R
f(u(s, z))gε−s(y − z)W (ds, dz)

]
dy.

(1.32)

Consider the first term: thanks to Fubini it can be rewritten as∫
R

[ ∫
R
gt−ε(x− y)gε(y − z) dy

]
µ0(dz) =

∫
R
gt(x− z)µ0(dz),

by the semigroup property of the fractional heat kernel. Now, consider the second term in
(1.32): we claim that also in this case we can switch the order of integration:∫

R
gt−ε(x− y)

[ ∫ ε

0

∫
R
f(u(s, z))gε−s(y − z)W (ds, dz)

]
dy

(?)
=

∫ ε

0

∫
R
f(u(s, z))

[ ∫
R
gt−ε(x− y)gε−s(y − z) dy

]
W (ds, dz)

=

∫ ε

0

∫
R
f(u(s, z))gt−s(x− z)W (ds, dz).

This implies that∫
R
gt−ε(x− y)u(ε, y) dy +

∫ t

ε

∫
R
f(u(s, y))gt−s(x− y)W (ds, dy)

=

∫
R
gt(x− z)µ0(dz) +

∫ ε

0

∫
R
f(u(s, z))gt−s(x− z)W (ds, dz)

+

∫ t

ε

∫
R
f(u(s, y))gt−s(x− y)W (ds, dy)

=

∫
R
gt(x− z)µ0(dz) +

∫ t

0

∫
R
f(u(s, y))gt−s(x− y)W (ds, dy)

= u(t, x)

in L2(Ω), and then (1.31) will be proved.
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It remains to justify (?) : we can switch the integrals thanks to the stochastic Fubini’s theo-
rem. We have to show that the hypothesis holds: it is clear that

(
f(u(s, z))gε−s(y− z)gt−ε(x−

y)
)

(s,z,y)∈[0,ε)×R2 is progressively measurable; we must prove that∫
R

[ ∫ ε

0

∫
R
E(|f(u(s, z))|2) g2

ε−s(y − z)dsdz
] 1

2
gt−ε(x− y)dy <∞. (1.33)

We can write∫ ε

0
ds

∫
R

dz g2
ε−s(y − z)E(|f(u(s, z))|2)

≤ 2K2

∫ ε

0
ds

∫
R

dz g2
ε−s(y − z)

(
1 + E(|u(s, z)|2)

)
≤ 2K2 α

α− 1
ε
α−1
α + 2K2

∫ ε

0
ds

∫
R

dz g2
ε−s(y − z)C2(s)

(
1 + 2|I0(s, z)|2

)
≤ D1(ε) +D2(ε)|I0(ε, y)|2,

by Proposition B.5, where D1(ε) and D2(ε) are positive constant which depend only on ε (and
K), and C2 is defined by (1.19). Then, since

√
a+ b ≤

√
a+
√
b for any a, b ≥ 0,∫

R

[ ∫ ε

0

∫
R
E(|f(u(s, z))|2) g2

ε−s(y − z)ds dz
] 1

2
gt−ε(x− y)dy

≤
√
D1(ε) +

√
D2(ε)

∫
R
I0(ε, y)gt−ε(x− y) dy.

Hence, to prove (1.33), we just have to show that∫
R
I0(ε, y) gt−ε(x− y)dy <∞. (1.34)

This holds since∫
R
I0(ε, y) gt−ε(x− y)dy =

∫
R

[ ∫
R
gε(y − z)µ0(dz)

]
gt−ε(x− y)dy

=

∫
R

[ ∫
R
gε(y − z)gt−ε(x− y) dy

]
µ0(dz)

=

∫
R
gt(x− z)µ0(dz) = I0(t, x),

thanks to (classic) Fubini and the semigroup property of the fractional heat kernel. It is finite
for every fixed (t, x) by (1.11), and then we have finished.

Proof of Theorem 1.11. Fix ε > 0; by Proposition 1.12, for all (t, x) ∈ (ε,∞)×R, the mild
solution of (1.1) can be written as

u(t, x) = Aε(t, x) +Bε(t, x), in P-a.s.,

where

Aε(t, x) =

∫
R
gt−ε(x− y)u(ε, y) dy

Bε(t, x) =

∫ t

ε

∫
R
f(u(s, y))gt−s(x− y)W (ds, dy).
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First let us prove that Aε is in C∞((ε,∞)×R). We note that Aε is a path-by-path integral,
and, for every ω ∈ Ω, Aε(t, x)(ω) is a deterministic space convolution between the fractional
heat kernel and the map y 7→ u(ε, y)(ω). We can write

Aε(t, x)(ω) = I0(µ+
ε (ω); t− ε, x)− I0(µ−ε (ω); t− ε, x), (1.35)

where I0(ν; r, z) =
∫
R gr(z−y) ν(dy), according to definition of I0 (here we show the dependence

on the measure for convenience), and we define

µ±ε (ω)(dy) =
[
u(ε, y)(ω)

]±
dy.

We claim that µ+
ε (ω), µ−ε (ω) are positive Borel measures on R which satisfy (1.11) for almost

every ω. In fact, for every (t, x) ∈ (0,∞)×R, I0(µ±ε (ω); t, x) <∞, since ‖u(ε, y)‖22 ≤ C2(ε) (1+
|I0(ε, y)2). Hence, since I0 ∈ C∞((0,∞) × R), and recalling (1.35), one has that, for almost
every ω, Aε(t, x)(ω) is in C1((ε,∞)× R). In particular, it is locally Hölder of any exponent in
(0, 1).

Now we have to show the continuity of the stochastic process given by the stochastic integral,
Bε(t, x) =

∫ t
ε

∫
R f(u(s, y))gt−s(x− y)W (ds, dy) for (t, x) ∈ (ε,∞)× [−M,M ]. The strategy of

the proof is to use the (generalized) Kolmogorov continuity theorem (see Theorem B.17): let
us fix T > 0, M > 0 and show that, for all even p ≥ 2,

E
(
|Bε(t, x)−Bε(t′, x′)|p

)
≤ A

(
|t− t′|p

α−1
2α + |x− x′|p

α−1
2

)
, (1.36)

for all (t, x), (t′, x′) ∈ (ε, T ] × [−M,M ], where A = A(p, ε, T,M) ∈ R+ is a constant which
depends only on p, ε, T and M .

Suppose that we proved (1.36): we can apply Theorem B.17 with α1 = p(α−1)
2α and α2 =

p(α−1)
2 , where we can choose p arbitrarily large. This implies that (Bε(t, x))(t,x)∈(ε,T ]×[−M,M ]

has a
(
(α−1

2α )−, (α−1
2 )−

)
-Hölder continuous modification in (ε, T ]× [−M,M ], and the theorem

will be proved.

First of all, we can write

‖Bε(t, x)−Bε(t′, x′)‖2p =

∥∥∥∥∫ t

ε

∫
R
f(u(s, y)) (gt−s(x− y)− gt′−s(x′ − y))W (ds, dy)

∥∥∥∥2

p

,

with the convention that gr(z) = 0 if r ≤ 0. By applying Corollary B.20, for every p even, we
get for 0 < t′ < t

‖Bε(t, x)−Bε(t′, x′)‖2p ≤ c̃p
∫ t

ε
ds

∫
R

dy ‖f(u(s, y))‖2p (gt−s(x− y)− gt′−s(x′ − y))2

≤ K2c̃p

∫ t

ε
ds

∫
R

dy (1 + ‖u(s, y)‖2p) (gt−s(x− y)− gt′−s(x′ − y))2

≤ K2c̃p(1 + Cp(T ))

∫ t

ε
ds

∫
R

dy (gt−s(x− y)− gt′−s(x′ − y))2+

+K2c̃pCp(T )

∫ t

ε
ds

∫
R

dy I2
0 (s, y)(gt−s(x− y)− gt′−s(x′ − y))2

=: I + II,
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having used condition (1.10) of f and (1.13) to bound ‖u‖2p. In order to bound I and II, we
will use the following theorems, whose proofs use the fundamental result in Proposition 1.5 and
are deferred in Section B.3 in Appendix B (see Theorems B.21 and B.22).

Theorem 1.13. For all x, x′ ∈ R and t, t′ with 0 < t′ < t, we have∫ t

t′

∫
R
g2
t−s(x− y) ds dy ≤ K1 |t− t′|

α−1
α (1.37)∫ t

0

∫
R

(
gt−s(x− y)− gt−s(x′ − y)

)2
dsdy ≤ K2 |x− x′|α−1, (1.38)∫ t′

0

∫
R

(
gt−s(x− y)− gt′−s(x− y)

)2
ds dy ≤ K3 |t− t′|

α−1
α (1.39)

Theorem 1.14. For all x, x′ ∈ R, with x′ < x, and t, t′ with 0 < t′ < t, we have∫ t

t′

∫
R
I2

0 (s, y) g2
t−s(x− y) ds dy ≤ K̃1 I

2
0 (t, x) |t− t′|

α−1
α (1.40)∫ t

0

∫
R
I2

0 (s, y)
(
gt−s(x− y)− gt−s(x′ − y)

)2
ds dy

≤ K̃2

(
1 +

1√
t
1α=2

)(
max
w∈[x′,x]

I2
0 (t, w)

)
|x− x′|α−1, (1.41)∫ t′

0

∫
R
I2

0 (s, y)
(
gt−s(x− y)− gt′−s(x− y)

)2
ds dy

≤ K̃3

(
1 +

1√
t
1α=2

)(
max
c∈[t′,t]

I2
0 (c, x)

)
|t− t′|

α−1
α (1.42)

Thanks to Theorem 1.13, I can be bounded by:

K2c̃p(1 + Cp(T )) (K1 +K2 +K3)

[
|t− t′|

α−1
α + |x− x′|α−1

]
,

and, in the meanwhile, thanks to Theorem 1.14, II can be bounded by:

K2c̃pCp(T ) (K̃1 + K̃2 + K̃3)
(

1 +
1√
ε

) (
max

c∈[ε,T ],w∈[−M,M ]
I2

0 (c, w)
)[
|t− t′|

α−1
α + |x− x′|α−1

]
Since I2

0 is a continuous function, in the compact [ε, T ]×[−M,M ] its maximum is a real positive
constant which depends only on ε, T,M . Hence we have just proved (1.36) and we are done.

We point out that from Theorems 1.13 and 1.14, that is from Proposition 1.5 which is widely
used to prove them, we are able to write the Hölder constant of the solution.



Chapter 2

Normalized Solution and Strict
Positivity

Introduction

In this chapter we prove the strict positivity of the solution to the linear fractional stochastic
heat equation with measure-valued initial data, that is formally written as

∂u

∂t
(t, x) = ∆

α
2 u(t, x) + β u(t, x) Ẇ (t, x) for t > 0, x ∈ R,

u(0, ·) = µ0,

(2.1)

(hence, with f(u) = β u for some β ∈ R; cfr. (1.1) in Chapter 1).
For the case α = 2, that is the “classical” stochastic heat equation, there are many refer-

ences in literature, starting by the well-known theorem proved by Mueller ([Mueller 91]) of a
strong comparison principle, and then, due to the links between the SHE and the KPZ models
(see [Quastel 11] for a review), the strict positivity of the solution was studied and proved in
[Moreno 14] and [Gubinelli, Perkowski 17] with alternative techniques based on concentration
of measure arguments and paracontrolled pathwise arguments, respectively. The problem of
strict positivity, for a different choice of noise, was also studied in [Tessitore, Zabczyk 98] and
[Wang 18].

In [Chen, Kim 14], the authors proved the strict positivity of the solution to the nonlinear
fractional stochastic heat equation through a comparison principle, extending Mueller’s com-
parison principle on the stochastic heat equation ([Mueller 91]) to allow more general initial
data.

We are going to prove the strict positivity with an alternative proof, by showing the continu-
ity of the normalized solution û, defined as the ratio of the solution u of the stochastic fractional
heat equation (1.1) with the same initial datum, which is I0(t, x) =

∫
R gt(x − y)µ0(dy) (see

(1.7)). This result is interesting in itself and becomes the real aim of this chapter. Indeed, this
yields information on the behavior of the solution to (2.1) when time goes to zero. We point out
that in the recent preprint [Han, Kim 19], in a multi-dimensional setting, the authors obtained
Hölder regularity and boundary behavior using a suitable notion of normalized solution, defined
there as the ratio of the solution u and its distance from the boundary.

Our results also permit to prove the continuity of the four-parameter fundamental solution
(see Section 2.4.2), that is a continuity also with respect to the initial time. This feature is es-
sential to define a long-range version of the continuum directed polymer in random environments
([Alberts, Khanin, Quastel 14a], [Alberts, Khanin, Quastel 14b], [Caravenna, Sun, Zygouras 16],
[Caravenna, Sun, Zygouras 17]).

Description of the Chapter.

• In Section 2.1, we define the normalized solution and we present our main results.
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• In Sections 2.2 and 2.3, we prove the Hölder continuity of the normalized solution in
the case α ∈ (1, 2) and α = 2, respectively. For the case α = 2, we just prove the
continuity of the fundamental normalized solution, which actually is enough to prove the
strict positivity for the linear case.

• In Section 2.4, we define the Stochastic Fundamental Solution, which is the solution to the
fractional stochastic heat equation with the delta measure as initial datum. We present a
“four parameter” fundamental solution and we analyze its specific properties. In Section
2.4.3, we prove the continuity of the normalized fundamental solution.

• In the last Section 2.5 we prove the strict positivity of the fundamental solution, which
implies the strict positivity of the solution of the fractional stochastic heat equation in
the linear case.

• In Section 2.6, we deferred some technical proofs.

2.1. Normalized Solution and Main Results

Let (u(t, x))(t,x)∈(0,∞)×R be the solution of
∂u

∂t
(t, x) = ∆

α
2 u(t, x) + f(u(t, x)) Ẇ (t, x) for t > 0, x ∈ R,

u(0, ·) = µ0,

(FSHE-α)

We know that u is well defined, unique and Hölder continuos and we can write

u(t, x) =

∫
R
gt(x− y)µ0(dy) +

∫ t

0

∫
R
f(u(s, y))gt−s(x− y)W (ds, dy)

= µ0 ? g(t, x) +
(
f(ϕ) Ẇ

)
? g(t, x),

(2.2)

where we have used the notation (B.16) for the stochastic integral, while the first term denotes
the classic convolution and is another way to write the solution I0(t, x) of the deterministic
problem 

∂u

∂t
(t, x) = ∆

α
2 u(t, x) for t > 0, x ∈ R,

u(0, ·) = µ0,

(2.3)

Roughly speaking, for times close to 0, we expect that u(t, x) behaves like I0(t, x), and then
u(t, x)/I0(t, x) should be close to 1. This is a motivation to introduce the following definition.

Definition 2.1. Let us define the Normalized Solution of (FSHE-α) as the process (û(t, x))(t,x)∈(0,∞)×R
such that

û(t, x) =


u(t, x)

I0(t, x)
if t > 0;

1 if t = 0.
(2.4)

We know will prove the following theorem.
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Theorem 2.2. Let u be the solution of (1.1) where f is a globally Lipschitz function such
that f(0) = 0 and let µ0 satisfy (1.11), that is µ0 is a Borel measure such that I0(t, x) is well
defined for every (t, x) ∈ (0,∞)× R. Then the process (û(t, x))(t,x)∈[0,∞)×R, defined in (2.4)
has a locally (γ, δ)-Hölder continuous modification, where

1. if α ∈ (1, 2), we can choose any γ < α−1
2α and any δ < α−1

2 ;

2. if α = 2, we can choose any γ < 1
6 and any δ < 1

2 .

Remark 2.3. In the case α ∈ (1, 2), we can write that both u and û have a locally
((

α−1
2α

)−
,
(
α−1

2

)−)
-

Hölder continuous modification. The case α = 2 is worse, since the coefficient of Hölder conti-
nuity in time of the normalized solution û is lower that the one of the solution u. This is not
an artifact of the proof: it can be shown that the exponent (1

6)− in time is optimal for α = 2.

The idea to prove Theorem 2.2 is to use (a generalized version of) the Kolmogorov continuity
theorem (see Theorem B.17). The key step is the proof of the following result:

Theorem 2.4. Fix T,M > 0. For all p large enough, for all 0 ≤ t′ ≤ t < T and x, x′ ∈
[−M,M ],

‖û(t, x)− û(t′, x′)‖2p ≤

{
C
[
|t− t′|

α−1
α + |x− x′|α−1

]
if α ∈ (1, 2)

C
[
|t− t′|

1
3 + |x− x′|

]
if α = 2

(2.5)

where C is a positive constant which depends only on p, T,M .

In order to prove Theorem 2.4, which leads directly to Theorem 2.2 thanks to the Kolmogorov
continuity theorem (see Theorem B.17), we need to prove the following Theorem, whose proof
is deferred to Section 2.2 and Section 2.3, since we divide the cases α ∈ (1, 2) and α = 2. For
α = 2 we prove the following theorem only in the case I0(s, y) = gs(y), which correspond to the
case µ0 = δ0, that is the Dirac delta measure is the initial datum of the problem (FSHE-α).

Theorem 2.5. For all 0 < t′ < t <∞ and x, x′ ∈ R, we have∫ t

t′
ds

∫
R

dy I2
0 (s, y)

g2
t−s(x− y)

I2
0 (t, x)

≤ C1 |t− t′|
α−1
α

∫ t′

0
ds

∫
R

dy I2
0 (s, y)

(
gt−s(x− y)

I0(t, x)
− gt′−s(x− y)

I0(t′, x)

)2

≤ C2

{
|t− t′|

α−1
α if α ∈ (1, 2)

|t− t′|
1
3 if α = 2

;

∫ t

0
ds

∫
R

dy I2
0 (s, y)

(
gt−s(x− y)

I0(t, x)
− gt−s(x

′ − y)

I0(t, x′)

)2

≤ C3 |x− x′|α−1.

Proof of Theorem 2.4. If t = t′ = 0, then û(t, x) = û(t′, x′) and we have nothing to prove.
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If t′ = 0 < t, then we can write

û(t, x)− 1 =
1

I0(t, x)

(
u(t, x)− I0(t, x)

)
=

1

I0(t, x)

∫ t

0

∫
R
f(u(s, y)) gt−s(x− y)W (ds, dy).

Then,

‖û(t, x)− 1‖2p =
1

I2
0 (t, x)

∥∥∥∥∫ t

0

∫
R
f(u(s, y)) gt−s(x− y)W (ds, dy)

∥∥∥∥2

p

≤ C
∫ t

0
ds

∫
R

dy I2
0 (s, y)

g2
t−s(x− y)

I2
0 (t, x)

,

as we have done to get (2.6). Thanks to the first relation of Theorem 2.5, we have

‖û(t, x)− 1‖2p ≤ C t
α−1
α

and we have done.
So, from now on, we consider the case in which t, t′ > 0. We first get a general estimate: if
0 < t′ < t < T , x, x′ ∈ R and p be is an integer, then, thanks to Theorem 1.3, we know that

‖û(t, x)− û(t′, x′)‖2p =

∥∥∥∥∫ t

0

∫
R
f(u(s, y))

(gt−s(x− y)

I0(t, x)
− gt′−s(x

′ − y)

I0(t′, x′)

)2
W (ds, dy)

∥∥∥∥2

p

≤ 2K2C(T ) c̃p

∫ t

0

∫
R
‖f(u(s, y))‖2p

(gt−s(x− y)

I0(t, x)
− gt′−s(x

′ − y)

I0(t′, x′)

)2
ds dy,

having used also Corollary B.20.
Now, since we suppose that f(0) = 0, then we know that ‖f(u(s, y))‖2p ≤ 2K2Cp(s) |I0(s, y)|2

and we can write

‖û(t, x)− û(t′, x′)‖2p ≤ 2K2C(T ) c̃p

∫ t

0
ds

∫
R

dy I2
0 (s, y)

(gt−s(x− y)

I0(t, x)
− gt′−s(x

′ − y)

I0(t′, x′)

)2
.

(2.6)

We can write

‖û(t, x)− û(t′, x′)‖p = ‖û(t, x)− û(t, x′) + û(t, x′)− û(t′, x′)‖p
≤ ‖û(t, x)− û(t′, x′)‖p + ‖û(t, x′)− û(t′, x′)‖p,

so it is enough to prove (2.5) by considering the case t 6= t′ and x = x′ and the case t = t′ and
x 6= x′.

Case x = x′. We have

‖û(t, x)− û(t′, x)‖2p ≤ C
∫ t

0

∫
R

ds

∫
R

dy I2
0 (s, y)

(gt−s(x− y)

I0(t, x)
− gt′−s(x− y)

I0(t′, x)

)2

= C

∫ t′

0
ds

∫
R

dy

∫
R
I2

0 (s, y)
(gt−s(x− y)

I0(t, x)
− gt′−s(x− y)

I0(t′, x)

)2
+ C

∫ t

t′
ds

∫
R

dy I2
0 (s, y)

g2
t−s(x− y)

I2
0 (t, x)

thanks to (2.6) and the fact that we consider gr(z) := 0 when r ≤ 0. By using the second
relation of Theorem 2.5, we get

‖û(t, x)− û(t′, x)‖2p ≤

{
C |t− t′|

α−1
α if α ∈ (1, 2)

C |t− t′|
1
3 if α = 2
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Case t = t′. Thanks to (2.6), we have

‖û(t, x′)− û(t, x′)‖p ≤
∫ t

0
ds

∫
R

dy I2
0 (s, y)

(gt−s(x− y)

I0(t, x)
− gt−s(x

′ − y)

I0(t, x′)

)2

≤ C |x− x′|α−1,

having used the third relation of Theorem 2.5.

2.2. Proof of the Hölder continuity for α ∈ (1, 2)

This is the fundamental theorem which permits to prove Theorem 2.2 when α ∈ (1, 2).

Theorem 2.6. For all 0 < t′ < t <∞ and x, x′ ∈ R, we have∫ t

t′
ds

∫
R

dy I2
0 (s, y)

g2
t−s(x− y)

I2
0 (t, x)

≤ C1 |t− t′|
α−1
α (2.7)∫ t′

0
ds

∫
R

dy I2
0 (s, y)

(
gt−s(x− y)

I0(t, x)
− gt′−s(x− y)

I0(t′, x)

)2

≤ C2 |t− t′|
α−1
α ; (2.8)∫ t

0
ds

∫
R

dy I2
0 (s, y)

(
gt−s(x− y)

I0(t, x)
− gt−s(x

′ − y)

I0(t, x′)

)2

≤ C3 |x− x′|α−1. (2.9)

We first prove a simple lemma that will be used in the proof of Theorem 2.2.

Lemma 2.7. For all 0 < s < t <∞ and x, y ∈ R, we have∣∣∣∣ d

dc

gc−s(x− y)

I0(c, x)

∣∣∣∣ ≤ 2

α

1

c− s
gc−s(x− y)

I0(c, x)
(2.10)∣∣∣∣ d

dw

gt−s(w − y)

I0(t, w)

∣∣∣∣ ≤ 2

(t− s)
1
α

gt−s(w − y)

I0(t, w)
(2.11)

Proof. First of all, since we can change the order of integral and derivative, relations (A.12)
and (A.13) show that the following hold:∣∣∣∣ d

dc
I0(c, z)

∣∣∣∣ ≤ 1

α

1

c
I0(c, z) (2.12)∣∣∣ d

dw
I0(t, w)

∣∣∣ ≤ 1

t
1
α

I0(t, w) (2.13)

Then we can write∣∣∣∣ d

dc

gc−s(x− y)

I0(c, x)

∣∣∣∣ =
1

I2
0 (c, x)

∣∣∣∣ d

dc
gc−s(x− y) I0(c, x)− gc−s(x− y)

d

dc
I0(c, x)

∣∣∣∣
≤ 1

I2
0 (c, x)

∣∣∣∣ 1α 1

c− s
gc−s(x− y) I0(c, x) + gc−s(x− y)

1

α

1

c
I0(c, x)

∣∣∣∣
≤ 2

α

1

c− s
gc−s(x− y)

I0(c, x)
,
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having used (A.12) and (2.12). To prove (2.11), we proceed similarly and we write∣∣∣∣ d

dw

gt−s(w − y)

I0(t, w)

∣∣∣∣ =
1

I2
0 (t, w)

∣∣∣∣ d

dw
gt−s(w − y) I0(t, w)− gt−s(w − y)

d

dw
I0(t, w)

∣∣∣∣
≤ 1

I2
0 (t, w)

∣∣∣∣ 1

(t− s)
1
α

gt−s(w − y) I0(t, w) + gt−s(w − y)
1

t
1
α

I0(t, w)

∣∣∣∣
≤ 2

(t− s)
1
α

gt−s(w − y)

I0(t, w)

Now we can pass to prove Theorem 2.6.

Proof of Theorem 2.6. The proof of (2.7) is straightforward: thanks to Proposition 1.5, we
have ∫ t

t′
ds

∫
R

dy I2
0 (s, y)

g2
t−s(x− y)

I2
0 (t, x)

≤ c(α)

∫ t

t′
ds

t
1
α

s
1
α (t− s)

1
α

≤ c(α) (t− t′)
α−1
α Beta

(α− 1

α
,
α− 1

α

)
=: C1 |t− t′|

α−1
α ,

having used also Lemma A.11.

Before proving (2.8) and (2.9), we can write∫ t′

0
ds

∫
R

dy I2
0 (s, y)

(
gt−s(x− y)

I0(t, x)
− gt′−s(x

′ − y)

I0(t′, x′)

)2

≤ 2

∫ t′

0
ds

∫
R

dy I2
0 (s, y)

g2
t−s(x− y)

I2
0 (t, x)

+ 2

∫ t′

0
ds

∫
R

dy I2
0 (s, y)

g2
t′−s(x

′ − y)

I2
0 (t′, x′)

≤ 2c(α)

∫ t′

0
ds

t
1
α

s
1
α (t− s)

1
α

+ 2c(α)

∫ t′

0
ds

(t′)
1
α

s
1
α (t′ − s)

1
α

≤ 4c(α)

∫ t′

0
ds

(t′)
1
α

s
1
α (t′ − s)

1
α

≤ 4c(α) Beta
(α− 1

α
,
α− 1

α

)(
t′
)α−1

α
,

having used Proposition 1.5 and Lemma A.11. In particular, we have∫ t′

0
ds

∫
R

dy I2
0 (s, y)

(
gt−s(x− y)

I0(t, x)
− gt′−s(x− y)

I0(t′, x)

)2

≤ C |t− t′|
α−1
α if t′ ≤ 2|t− t′| (2.14)

and∫ t

0
ds

∫
R

dy I2
0 (s, y)

(
gt−s(x− y)

I0(t, x)
− gt−s(x

′ − y)

I0(t, x′)

)2

≤ C |x− x′|α−1 if t ≤ 2|x− x′|α (2.15)

Hence it is sufficient to prove (2.8) in the case t′ > 2|t− t′| and we can prove (2.9) in the case
t > 2|x− x′|α; let us fix t′, t, x, x′ which satisfy these relations.
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Now we show (2.8); we split the integral:

♦0,t′ :=

∫ t′

0
ds

∫
R

dy I2
0 (s, y)

(
gt−s(x− y)

I0(t, x)
− gt′−s(x− y)

I0(t′, x)

)2

=

∫ t′−|t−t′|

0
ds

∫
R

dy I2
0 (s, y)

(
gt−s(x− y)

I0(t, x)
− gt′−s(x− y)

I0(t′, x)

)2

+

+

∫ t′

t′−|t−t′|
ds

∫
R

dy I2
0 (s, y)

(
gt−s(x− y)

I0(t, x)
− gt′−s(x− y)

I0(t′, x)

)2

=: ♦0,t′−|t−t′| +♦t′−|t−t′|,t′ .

Estimate of ♦t′−|t−t′|,t′. For the second integral, we have

♦t′−|t−t′|,t′

≤ 2

∫ t′

t′−|t−t′|
ds

∫
R

dy I2
0 (s, y)

g2
t−s(x− y)

I2
0 (t, x)

+ 2

∫ t′

t′−|t−t′|
ds

∫
R

dy I2
0 (s, y)

g2
t′−s(x− y)

I2
0 (t′, x)

≤ 2c(α)

∫ t′

t′−|t−t′|
ds

t
1
α

s
1
α (t− s)

1
α

+ 2c(α)

∫ t′

t′−|t−t′|
ds

(t′)
1
α

s
1
α (t′ − s)

1
α

≤ 4c(α) Beta
(α− 1

α
,
α− 1

α

)
|t− t′|

α−1
α ,

as we have done to prove (2.7).

Estimate of ♦0,t′−|t−t′|. To prove (2.8), we now have just to prove that

♦0,t′−|t−t′| ≤ C |t− t′|
α−1
α .

We write

♦0,t′−|t−t′| =

∫ t′−|t−t′|

0
ds

∫
R

dy I2
0 (s, y)

(
gt−s(x− y)

I0(t, x)
− gt′−s(x− y)

I0(t′, x)

)2

=

∫ t′−|t−t′|

0
ds

∫
R

dy I2
0 (s, y)

(∫ t

t′

d

dc

gc−s(x− y)

I0(c, x)
dc

)2

≤ (t− t′)
∫ t′−|t−t′|

0
ds

∫
R

dy I2
0 (s, y)

∫ t

t′

(
d

dc

gc−s(x− y)

I0(c, x)

)2

dc,

having used Jensen’s inequality. By using the estimate (2.10) for the derivative, we get

♦0,t′−|t−t′| ≤
4

α2
(t− t′)

∫ t′−|t−t′|

0
ds

∫ t

t′
dc

1

(c− s)2

∫
R

dy
I2

0 (s, y)g2
c−s(x− y)

I2
0 (c, x)

≤ 4c(α)

α2
(t− t′)

∫ t′−|t−t′|

0
ds

∫ t

t′
dc

1

(c− s)2

c
1
α

s
1
α (c− s)

1
α

,

thanks to Proposition 1.5.
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Since t′ > 2(t− t′), we have t′ − (t− t′) > t′/2 and then we can split the integral over s:

♦0,t′−|t−t′|

≤ 4c(α)

α2
(t− t′)

[ ∫ t′
2

0
ds

∫ t

t′
dc

1

(c− s)2

c
1
α

s
1
α (c− s)

1
α

+

∫ t′−(t−t′)

t′
2

ds

∫ t

t′
dc

1

(c− s)2

c
1
α

s
1
α (c− s)

1
α

]

≤ 4c(α)

α2
(t− t′)

[
t

1
α

(t′/2)2+ 1
α

∫ t′
2

0
ds

1

s
1
α

∫ t

t′
dc+

t
1
α

(t′/2)
1
α

∫ t′−(t−t′)

t′
2

ds

∫ t

t′
dc

1

(c− s)2+ 1
α

]

≤ 22+ 2
α c(α)

α(α− 1)
,

t
1
α

(t′)2+ 1
α

(t− t′)2 (t′)1− 1
α +

4c(α)(2
1
α + 1)

α+ 1
(t− t′) t

1
α

(t′)
1
α

(t− t′)−
1
α ;

indeed,∫ t′−(t−t′)

t′
2

ds

∫ t

t′
dc

1

(c− s)2+ 1
α

=

∫ t′−(t−t′)

t′
2

ds
1

(−1− 1
α)

[
(t− s)−1− 1

α − (t′ − s)−1− 1
α

]

=
α

(1 + 1
α)

[
− (t− s)−

1
α + (t′ − s)−

1
α

]s=t′−(t−t′)

s= t′
2

≤ α2

1 + α

[
(t− t′

2
)−

1
α + (t− t′)−

1
α

]
≤ α2

1 + α
(2−

1
α + 1) (t− t′)−

1
α ,

since t− t′/2 > 2(t− t′). Hence

♦0,t′−|t−t′| ≤ (const.)
t

1
α

(t′)
1
α

[
(t− t′)2

(t′)1+ 1
α

+ (t− t′)1− 1
α

]
≤ (const.) (t− t′)

α−1
α ,

reminding that t′ > t− t′.
Now we prove the last relation, (2.9). First of all, we remind that we can consider only the case
t > 2 |x− x′|α, since the other case can be proved simply (see (2.15)). We write

♦0,t : =

∫ t

0
ds

∫
R

dyI0(s, y)2

(
gt−s(x− y)

I0(t, x)
− gt−s(x

′ − y)

I0(t, x′)

)2

=

∫ t−|x−x′|α

0
ds

∫
R

dyI0(s, y)2

(
gt−s(x− y)

I0(t, x)
− gt−s(x

′ − y)

I0(t, x′)

)2

+

+

∫ t

t−|x−x′|α
ds

∫
R

dyI0(s, y)2

(
gt−s(x− y)

I0(t, x)
− gt−s(x

′ − y)

I0(t, x′)

)2

=: ♦0,t−|x−x′|α +♦t−|x−x′|α,t.

Estimate of ♦t−|x−x′|α,t. For ♦t−|x−x′|α,t, we write

♦t−|x−y|α,t

≤ 2

∫ t

t−|x−x′|α
ds

∫
R

dy I2
0 (s, y)

g2
t−s(x− y)

I2
0 (t, x)

+ 2

∫ t

t−|x−y|α
ds

∫
R

dy I2
0 (s, y)

g2
t−s(x

′ − y)

I2
0 (t, x′)

≤ 4c(α)

∫ t

t−|x−y|α
ds

t
1
α

s
1
α (t− s)

1
α

≤ 4c(α) Beta
(α− 1

α
,
α− 1

α

)(
t− (t− |x− y|α)

)α−1
α

= (const.) |x− y|α−1.

having used Proposition 1.5, and Lemma A.11.
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Estimate of ♦0,t−|x−x′|α. We write

♦0,t−|x−x′|α =

∫ t−|x−x′|α

0
ds

∫
R

dy I2
0 (s, y)

(
gt−s(x− y)

I0(t, x)
− gt−s(x

′ − y)

I0(t, x′)

)2

=

∫ t−|x−x′|α

0
ds

∫
R

dy I2
0 (s, y)

(∫ x

x′

d

dw

gt−r(w − y)

I0(t, w)
dw

)2

≤ |x− x′|
∫ t−|x−x′|α

0
ds

∫
R

dy I2
0 (s, y)

∫ y

x
dw

(
d

dw

gt−r(w − y)

I0(t, w)

)2

,

having used Jensen’s inequality. Then, by using (2.11), which gives an estimate on the derivative
with respect to w, we can write

♦0,t−|x−x′|α ≤ 4 |x− x′|
∫ t−|x−x′|α

0
ds

1

(t− s)
2
α

∫
R

dy

∫ x

x′
dw

I2
0 (s, y)g2

t−s(w − y)

I2
0 (t, w)

= 4 |x− x′|
∫ t−|x−x′|α

0
ds

1

(t− s)
2
α

∫ x

x′
dw

∫
R

dy
I2

0 (s, y)g2
t−s(w − y)

I2
0 (t, w)

.

By using Proposition 1.5, we write

♦0,t−|x−x′|α ≤ 4c(α) |x− x′|2
∫ t−|x−x′|α

0
ds

t
1
α

(t− s)
3
α s

1
α

.

Since we are in the case t > 2|x − x′|α, then t
2 < t − |x − x′|α, and we divide the integral by

convenience:

♦0,t−|x−x′|α ≤ 4c(α) |x− x′|2
[ ∫ t

2

0
ds

t
1
α

(t− s)
3
α s

1
α

+

∫ t−|x−x′|α

t
2

ds
t

1
α

(t− s)
3
α s

1
α

]

≤ 4c(α) |x− x′|2
[
t

1
α

( t2)
3
α

∫ t
2

0
ds

1

r
1
α

+
t

1
α

( t2)
1
α

∫ t−|x−x′|α

t
2

ds
1

(t− s)
3
α

]

≤ 4c(α) |x− x′|2
[

2
3
αα

α− 1
t
α−3
α +

2
1
αα

3− α
|x− x′|α−3

]
≤ 23c(α)

α

α− 1
|x− x′|α−1,

and we have finished.

2.3. Proof of the Hölder continuity for α = 2

In the case α = 2, the proof of the Hölder continuity is similar to the proof of the case α ∈ (1, 2),
and can be done in the same way exept to

♦0,t−|t−t′| =

∫ t′−|t−t′|

0
ds

∫
R

dy I0(s, y)2

(
gt−s(x− y)

I0(t, x)
− gt′−s(x− y)

I0(t′, x)

)2

♦0,t−|x−x′|2 =

∫ t−|x−x′|2

0
ds

∫
R

dy I0(s, y)2

(
gt−s(x− y)

I0(t, x)
− gt−s(x

′ − y)

I0(t, x′)

)2
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where we can assume that t′ > 2 |t − t′| and t > 2 |x − x′|, otherwise we can apply (2.14) and
(2.15) and get the expected results of Theorem 2.5.

The problem is in these integrals, ♦0,t−|t−t′| and ♦0,t−|x−x′|2 , since here we use an approxi-
mation with derivatives, which have different behavior from the case α ∈ (1, 2), as can be seen
by comparing Lemma 2.7 above and Lemma 2.9 below. Indeed, in the case α = 2, we have an
exponential function whose derivatives have polynomial factors.

We recall that here we report the proof only in the case in which the initial measure is the
Dirac delta measure, and then I0(s, y) = gs(y).

In order to prove Theorem 2.5 for α = 2, we need to show the following:

Theorem 2.8. Let us fix 0 < t′ < t <∞ and x, x′ ∈ R with t′ > 2 |t− t′| and t > 2 |x−x′|.
Then we have

♦0,t−|t−t′| :=

∫ t′−|t−t′|

0
ds

∫
R

dy g2
s(y)

(
gt−s(x− y)

gt(x)
− gt′−s(x− y)

gt′(x)

)2

≤ C |t− t′|
1
3 (2.16)

♦0,t−|x−x′|2 :=

∫ t−|x−x′|2

0
ds

∫
R

dy g2
s(y)

(
gt−s(x− y)

gt(x)
− gt−s(x

′ − y)

gt(x′)

)2

≤ C |x− x′|.

(2.17)

We first need the following lemma (cfr. Lemma 2.7).

Lemma 2.9. For all 0 < s < t <∞ and x, y ∈ R, we have

d

dc

gc−s(x− y)

gc(x)
=
gc−s(x− y)

gc(x)

1

2

[
(x− y)2

2(c− s)2
− x2

2c2
− s

c(c− s)

]
(2.18)

=
gc−s(x− y)

gc(x)

1

4

[
(y − s

cx)2

(c− s)2
−

2x(y − s
cx)

c(c− s)
− 2s

c(c− s)

]
(2.19)

d

dw

gt−s(w − y)

gt(w)
=

1

2(t− s)
gt−s(w − y)

gt(w)

(
y − s

t
w
)
. (2.20)

Proof. The proof just follows from Lemma A.8 in Appendix A.
Thanks to (A.14), we write

d

dc

gc−s(x− y)

gc(x)
=
gc−s(x− y)

gc(x)

1

2

[
1

c− s

((x− y)2

2(c− s)
− 1
)
− 1

c

(x2

2c
− 1
)]

=
gc−s(x− y)

gc(x)

1

2

[
(x− y)2

2(c− s)2
− x2

2c2
− s

c(c− s)

]
,

that is (2.18). Moreover, by computation, one get

(x− y)2

(c− s)2
− x2

c2
=

(y − s
cx)2

(c− s)2
−

2x(y − s
cx)

c(c− s)
,

and then relation (2.19) follows.
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Thanks to (A.15), we can write

d

dw

gt−s(w − y)

gt(w)
= − (w − y)

2(t− s)
gt−s(w − y)

gt(w)
+
w

2t

gt−s(w − y)

gt(w)
=
gt−s(w − y)

gt(w)

[−wt+ yt+ wt− ws
2t(t− s)

]
=

1

2(t− s)
gt−s(w − y)

gt(w)

(
y − s

t
w
)
,

that is (2.20).

Now we can prove Theorem 2.8.

Proof of Theorem 2.8. We divide the proof of the two estimates (2.16) and (2.17).

Estimate (2.16) for ♦0,t−|t−t′|. We can always write

♦0,t−|t−t′| =

∫ t−|t−t′|

0
ds

∫
R

dy g2
s(y)

(
gt−s(x− y)

gt(x)
− gt′−s(x− y)

gt′(x)

)2

=

∫ t−|t−t′|

0
ds

∫
R

dy g2
s(y)

(∫ t

t′
dc

d

dc

gc−s(x− y)

gc(x)

)2

≤ |t− t′|
∫ t−|t−t′|

0
ds

∫
R

dy g2
s(y)

∫ t

t′
dc

(
d

dc

gc−s(x− y)

gc(x)

)2

,

having used Jensen inequality.
By using (2.19) for the derivative, we get

♦0,t−|t−t′| ≤
1

4
|t− t′|

∫ t−|t−t′|

0
ds

∫
R

dy g2
s(y)

∫ t

t′
dc

g2
c−s(x− y)

g2
c (x)

(
(y − s

cx)2

(c− s)2
−

2x(y − s
cx)

c(c− s)
− 2s

c(c− s)

)2

≤ ♦(1)
0,t′−|t−t′| +♦

(2)
0,t′−|t−t′| +♦

(3)
0,t′−|t−t′|,

where

♦(1)
0,t′−|t−t′| = 3 |t− t′|

∫ t′−|t−t′|

0
ds

∫ t

t′
dc

∫
R

dy
g2
s(y)g2

c−s(x− y)

g2
c (x)

(y − s
cx)4

(c− s)4

♦(2)
0,t′−|t−t′| = 3 |t− t′|

∫ t′−|t−t′|

0
ds

∫ t

t′
dc

∫
R

dy
g2
s(y)g2

c−s(x− y)

g2
c (x)

4x2(y − s
cx)2

c2(c− s)2

♦(3)
0,t′−|t−t′| = 3 |t− t′|

∫ t′−|t−t′|

0
ds

∫ t

t′
dc

∫
R

dy
g2
s(y)g2

c−s(x− y)

g2
c (x)

4s2

c2(c− s)2
,

having used the fact that (a+ b+ c)2 ≤ 3a2 + 3b2 + 3c2. Thanks to (A.7) and Lemma A.9, we
recall that

g2
s(y)g2

c−s(x− y)

g2
c (x)

=
1√
8π

√
c

s(c− s)
g s

2
(y)g c−s

2
(x− y)

g c
2
(x)

=
1√
8π

√
c

s(c− s)
g s

2c
(c−s)

(
y − s

c
x
)
.
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Hence, with the change of variable

z :=
y − s

cx√
s
2c(c− s)

,

we can write

♦(1)
0,t′−|t−t′| =

3√
8π
|t− t′|

∫ t′−|t−t′|

0
ds

∫ t

t′
dc

√
c

s(c− s)

∫
R

dz g(z)
z4 s2

4c2(c− s)2

♦(2)
0,t′−|t−t′| =

3√
8π
|t− t′|

∫ t′−|t−t′|

0
ds

∫ t

t′
dc

√
c

s(c− s)

∫
R

dz g(z)
2x2 z2 s

c3 (c− s)

♦(3)
0,t′−|t−t′| =

3√
8π
|t− t′|

∫ t′−|t−t′|

0
ds

∫ t

t′
dc

√
c

s(c− s)

∫
R

dz g(z)
s2

c2(c− s)2

We now proceed by estimating the three integrals.

Estimate for ♦(1)
0,t′−|t−t′|. We write

♦(1)
0,t′−|t−t′| ≤

3

4
√

8π
|t− t′|

∫ t′−|t−t′|

0
ds

∫ t

t′
dc

√
c

s(c− s)
s2

c2(c− s)2
C(4),

where

C(4) :=

∫
R

dz g(z) z4 <∞, (2.21)

since we recall that g(z) = 1√
4π
e−

z2

4 has an exponential decay. Then

♦(1)
0,t′−|t−t′| ≤

3

4
√

8π
C(4) |t− t′|

∫ t′−|t−t′|

0
ds

∫ t

t′
dc

s
3
2

c
3
2 (c− s)

5
2

≤ 3

4
√

8π
C(4) |t− t′|2

∫ t′−|t−t′|

0
ds

1

(t′ − s)
5
2

=
1

2
√

8π
C(4) |t− t′|2

[
|t− t′|−

3
2 − (t′)−

3
2

]
≤ 1

2
√

8π
C(4) |t− t′|

1
2 ,

(2.22)

since s < c and (c − s) > (t′ − s) for any s ∈ (0, t′ − |t − t′|) and c ∈ (t′, t) and we recall that
t′ > 2 (t− t′).

Estimate for ♦(2)
0,t′−|t−t′|. We have

♦(2)
0,t′−|t−t′| =

3√
8π

C(2)x2 |t− t′|
∫ t′−|t−t′|

0
ds

∫ t

t′
dc

√
c

s(c− s)
2s

c3 (c− s)

where

C(2) :=

∫
R

dz g(z) z2 <∞.
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We recall that, since (2.14) holds in general, then, if t′ ≤ 2(t − t′)
2
3 , then (2.16) follows.

Hence, we can suppose t′ > 2 (t − t′)
2
3 , and then t′ > 8 (t.t′)2

(t′)2 . We will find an estimate for the
integral over [0, t′] with a different split: we will prove that

♦(2)

0,t′− |t−t
′|2

(t′)2
:=

3√
8π

C(2)x2 |t− t′|
∫ t′− |t−t

′|2

(t′)2

0
ds

∫ t

t′
dc

√
c

s(c− s)
2s

c3 (c− s)
≤ C |t− t′|

1
3

(2.23)

and

♦
t′− |t−t

′|2
(t′)2

,t′
:=

∫ t′

t′− |t−t
′|2

(t′)2

ds

∫
R

dy g2
s(y)

(
gt−s(x− y)

gt(x)
− gt′−s(x− y)

gt′(x)

)2

≤ C |t− t′|
1
3 , (2.24)

which combined together leads to the proof of (2.16) and then to Theorem 2.5 for α = 2.
For the second integral, we can use the same argument used for the proof of the estimate

for ♦t′−|t−t′|,t′ in Theorem 2.6: we can write

♦
t′− |t−t

′|2
(t′)2

,t′
:=

∫ t′

t′− |t−t
′|2

(t′)2

ds

∫
R

dy g2
s(y)

(
gt−s(x− y)

gt(x)
− gt′−s(x− y)

gt′(x)

)2

≤ 4 c(2) Beta
(1

2
,
1

2

) |t− t′|
t′

≤ 4π c(2) |t− t′|
1
3 ,

by using triangle inequality, Proposition 1.5 and Lemma A.11, and recalling that we assume
t′ > 2|t− t′|

2
3 .

Now it remains to prove (2.23). We can write

♦(2)

0,t′− |t−t
′|2

(t′)2
≤ 3√

2π
C(2)x2 |t− t′|

∫ t′− |t−t
′|2

(t′)2

0
ds

∫ t

t′
dc

s
1
2

c
5
2 (c− s)

3
2

.

Now, since s < t′ (and then s
1
2 < (t′)

1
2 ) and c > t′ (and then c

5
2 (c − s)

3
2 > (t′)

5
2 (t′ − s)

3
2 ), we

can write

♦
0,t′− |t−t

′|2
(t′)2

≤ 3√
2π

C(2)x2 |t− t′|2

(t′)2

∫ t′− |t−t
′|2

(t′)2

0
ds

1

(t′ − s)
3
2

≤ 3√
2π

C(2)x2 |t− t′|
(t′)

≤ 3√
2π

C(2)x2 |t− t′|
1
3 ,

since t′ > 2|t− t′|
2
3 , and we have done also for this part.

Estimate for ♦(3)
0,t′−|t−t′|. We have

♦(3)
0,t′−|t−t′| =

12√
8π
|t− t′|

∫ t′−|t−t′|

0
ds

∫ t

t′
dc

√
c

s(c− s)
s2

c2(c− s)2

=
12√
8π
|t− t′|

∫ t′−|t−t′|

0
ds

∫ t

t′
dc

s
3
2

c
3
2 (c− s)

5
2

≤ 4√
2π
|t− t′|

1
2 ,

as we have done for ♦(1)
0,t′−|t−t′| (see (2.22)).
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Estimate (2.17) for ♦0,t−|x−x′|2. We can always write

♦0,t−|x−x′|2 =

∫ t−|x−x′|2

0
ds

∫
R

dy I2
0 (s, y)

(
gt−s(x− y)

I0(t, x)
− gt−s(x

′ − y)

I0(t, x′)

)2

=

∫ t−|x−x′|2

0
ds

∫
R

dy I2
0 (s, y)

(∫ x

x′
dw

d

dw

gt−s(w − y)

I0(t, w)

)2

≤ |x− x′|
∫ t−|x−x′|2

0
ds

∫
R

dy I2
0 (s, y)

∫ x

x′
dw

(
d

dw

gt−s(w − y)

I0(t, w)

)2

,

having used Jensen inequality.

Recalling that

g2
t (x) =

1√
8πt

g t
2
(x),

(see (A.7)), and by changing the order of integration, we have

|x− x′|
∫ t−|x−x′|2

0
ds

∫ x

x′
dw

∫
R

dy g2
s(y)

(
d

dw

gt−s(w − y)

gt(w)

)2

=
1

4
|x− x′|

∫ t−|x−x′|2

0
ds

1

(t− s)2

∫ x

x′
dw

∫
R

dy g2
s(y)

g2
t−s(w − y)

g2
t (w)

(
y − s

t
w
)2
,

having used relation (2.20). Now, from (A.7), we can write

g2
s(y)

g2
t−s(w − y)

g2
t (w)

=
1√
8π

√
t

s(t− s)
g s

2
(y)g t−s

2
(w − y)

g t
2
(w)

=
1√
8π

√
t

s(t− s)
g s

2t
(t−s)

(
y − s

t
w
)
,

having used also Lemma A.9. We recall the fact that the following quantity

∫
R

dy g s
2t

(t−s)

(
y − s

t
w
)(

y − s

t
w
)2

represent the second moment of a Gaussian random variable with mean zero and standard
variation given by s

2t(t− s).



2.4. THE STOCHASTIC FUNDAMENTAL SOLUTION 39

Then, we write

♦0,t−|x−x′|2

≤ 1

8
√

2π
|x− x′|

∫ t−|x−x′|2

0
ds

1

(t− s)2

√
t

s(t− s)

∫ x

x′
dw

∫
R

dy g s
2t

(t−s)

(
y − s

t
w
)(

y − s

t
w
)2

=
1

8
√

2π
|x− x′|

∫ t−|x−x′|2

0
ds

1

(t− s)2

√
t

s(t− s)

∫ x

x′
dwE

[
N (0,

s

2t
(t− s))2

]
=

1

16
√

2π
|x− x′|2

∫ t−|x−x′|2

0
ds

1

(t− s)2

√
t

s(t− s)
s

t
(t− s)

=
1

16
√

2π
|x− x′|2

∫ t−|x−x′|2

0
ds

√
s

t

1

(t− s)
3
2

≤ 1

16
√

2π
|x− x′|2

∫ t−|x−x′|2

0
ds

1

(t− s)
3
2

=
1

8
√

2π
|x− x′|2

[
|x− x′|−1 − t−

1
2

]
≤ 3

8
√

2π
|x− x′|,

since t > 2 |x− x′|2.

2.4. The Stochastic Fundamental Solution

2.4.1. Two-parameter fundamental solution. Let us fix β ∈ R and consider the
linear SHE with zero initial time and delta initial datum:

∂u

∂t
(t, x) = ∆

α
2 u(t, x) + β u(t, x) Ẇ (t, x) for t > 0, x ∈ R

u(0, ·) = δ0(·),
(2.25)

where δ0 is the Dirac delta in 0, which is the positive Borel measure on R such that∫
R
h(z) δ0(dz) = h(0), for all h ∈ Cb(R),

where Cb(R) denotes the set of the continuous and bounded functions. Clearly the measure
δ0 satisfies the hypothesis (1.11) of Theorem 1.3 and Theorem 1.4. Hence, all the results of
existence, uniqueness and regularity of a solution can be applied to this particular case.

We can give the following definition.

Definition 2.10. The two-parameter fundamental solution of the linear SHE, also called
stochastic fundamental solution, is the unique (up to indistinguishability) continuous and adapted
process, denoted by (U(t, x))(t,x)∈(0,∞)×R, which is a mild solution of (2.25). It is locally Hölder
continuous of any order β1 <

α−1
2α in time and β2 <

α−1
2 in space.
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Remark 2.11. By standard arguments any two mild solutions of (2.25) with continuous tra-
jectories are indinstinguishable. Indeed, by the up-to-modification uniqueness, we have

P
(
u(t, x) = v(t, x)

)
= 1 for all t > 0, x ∈ R.

Since the countable intersection of amost sure events is also almost sure, this implies that

P
(
u(t, x) = v(t, x) for all t ∈ Q+, x ∈ Q

)
= 1.

But, for almost every ω ∈ Ω, both (t, x) 7→ u(t, x)(ω) and (t, x) 7→ v(t, x)(ω) are continuous: if
they agree on all the rational points, they must be the same function on (0,∞) × R. In other
words,

P
(
u(t, x) = v(t, x) for all t ∈ (0,∞)× R

)
= 1.

2.4.2. Four-parameter fundamental solution. It is useful to define a stochastic
fundamental solution which depends on four parameters.

Fix (s, y) ∈ [0,∞)×R and consider now the linear fractional stochastic heat equation with
initial time s and initial datum δy,

∂u

∂t
(t, x) = ∆

α
2 u(t, x) + β u(t, x) Ẇ (t, x) for t > s, x ∈ R

u(s, ·) = δ0(· − y).

(2.26)

A mild solution of (2.26) is a progressively measurable process, which will be denoted by
U s,y = (U s,y(t, x))(t,x)∈(s,∞)×R, such that, for every (t, x) ∈ (s,∞)× R,

U s,y(t, x) =

∫
R
gt−s(x− y) +

∫ t

s

∫
R
U s,y(r, z)gt−r(x− z)W (dr, dz) (2.27)

P-a.s..
It is easy to show that Theorems 1.3 and 1.4, combined with the fact that white noise has

a good behaviour with translations, ensure the existence, uniqueness and regularity of a mild
solution of (2.26).

Definition 2.12. The (four-parameter) fundamental solution of (1.1) is a stochastic process,

(U(s, y; t, x))(s,y;t,x)∈[0,∞)2
<×R2

such that, for every (s, y) ∈ [0,∞)×R, (U(s, y; t, x;β))(t,x)∈(s,∞)×R is a mild solution of (2.26)
with continuous trajectories.

We note that U(t, x) = U(0, 0; t, x) P-a.s., for all (t, x) ∈ (0,∞)× R.

Remark 2.13. As things stand, the regularity of the four-parameter fundamental solution is
far from obvious. Indeed, for any fixed (s, y) ∈ [0,∞)× R, the map

(t, x) 7→ U(s, y; t, x)(ω)

is continuous on (s,∞)×R, for all ω ∈ Ω. However, this does not imply the joint continuity in
all four variables. We are going to prove that joint continuity does hold.
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Now we can give the definition of the four-parameter normalized fundamental solution (cfr.
Definition 2.1).

Definition 2.14. We define the normalized fundamental solution as the four-parameter pro-
cess

(Û(s, y; t, x))(s,y;t,x)∈[0,∞)2
≤×R2

such that, for all (s, y; t, x) ∈ [0,∞)2
≤ × R2,

Û(s, y; t, x) =


U(s, y; t, x)

gt−s(x− y)
if t > s

1 if t = s.

(2.28)

We denote by Û(t, x) := Û(0, 0; t, x), for all t ≥ 0 and x ∈ R.

We now state some basic properties for the processes U . When necessary, we will write the
dependence on β by the writing “U(s, y; t, x;β)” and “Û(s, y; t, x;β)”, where β ∈ R is the one
that appears in (2.25).

Proposition 2.15 (Basic properties). For every β > 0, the following properties hold.

• Stationarity: for all (t0, x0) ∈ [0,∞)× R,(
U(s, y; t, x;β)

)
(s,y;t,x)∈[0,∞)2

<×R2

(d)
=(

U(s+ t0, y + x0; t+ t0, x+ x0;β)
)

(s,y;t,x)∈[−t0,∞)2
<×R2

.

• Diffusive scaling: for every r > 0,(
U(r2s, ry; r2t, rx;β)

)
(s,y;t,x)∈[0,∞)2

<×R2

(d)
=
(1

r
U(s, y; t, x;β

√
r)
)

(s,y;t,x)∈[0,∞)2
<×R2

.

• Independence: for any finite disjoint intervals {[si, ti)}ni=1 and for all xi, yi ∈ R, the
random variables {U(si, yi; ti, xi;β)}ni=1 are mutually independent.

• Semigroup property: For all x, y ∈ R and 0 ≤ s < r < t,

U(s, y; t, x;β) =

∫
R
U(s, y; r, z;β)U(r, z; t, x;β) dz, P-a.s.. (2.29)

• Non-negativity: for all s ≥ 0, y ∈ R,

P
(
U(s, y; t, x;β) ≥ 0 for all t > s, x ∈ R

)
= 1. (2.30)

The key property of the normalized fundamental solution is its continuity in all four vari-
ables, on the domain 0 ≤ s ≤ t <∞ and x, y ∈ R. This permits us to prove the two missing key
properties of the four-parameter fundamental solution: the continuity and the strict positivity
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of U. The first one follows clearly from the corrisponding statement for Û ; the second one is
proved in the next section.

Theorem 2.16. The process (Û(s, y; t, x))(s,y;t,x)∈[0,∞)2
≤×R2 has a locally (γ−, δ−; γ−, δ−)-

Hölder continuous modification;

1. if α ∈ (1, 2), γ = α−1
2α and δ = α−1

2 ;

2. if α = 2, γ = 1
6 and δ = 1

2 .

2.4.3. Continuity of the normalized fundamental solution.

Proof of Theorem 2.16. Fix T,M > 0 and let (s′, y′; t′, x′), (s, y; t, x) ∈ [0, T ]≤× [−M,M ].
In order to prove the continuity of the process, we use the generalized Kolmogorov continuity
theorem (Theorem B.17): it suffices to show that

E(|Û(s, y; t, x)− Û(s′, y′; t′, x′)|p) ≤

C(T,M, p)
(
|s− s′|pγ + |y − y′|pδ + |t− t′|pγ + |x− x′|pδ),

(2.31)

where

• if α ∈ (1, 2), then γ = α−1
2α and δ = α−1

2 ;

• if α = 2, then γ = 1
6 and δ = 1

2 .

The constant C(T,M, p) > 0 depends only on T,M, p (and whose value may change from
line to line throughout the proof) and for all p large enough (we need to let p→∞ in order to
get the optimal exponents).

By symmetry, we can suppose that s′ ≤ s; applying the triangle inequality,

‖Û(s, y; t, x)− Û(s′, y′; t′, x′)‖p ≤
‖Û(s, y; t, x)− Û(s′, y; t, x)‖p + ‖Û(s′, y; t, x)− Û(s′, y′; t, x)‖p+
‖Û(s′, y′; t, x)− Û(s′, y′; t′, x)‖p + ‖Û(s′, y′; t′, x)− Û(s′, y′; t′, x′)‖p.

(2.32)

By the stationarity property of Û (which follows from Proposition 2.15) and by Theorem 2.2,
we can write

‖Û(s, y; t, x)− Û(s′, y; t, x)‖p = ‖Û(t− s, x− y)− Û(t− s′, x− y)‖p
≤ C(T,M, p) |s− s′|γ ,

‖Û(s′, y; t, x)− Û(s′, y′; t, x)‖p = ‖Û(t− s′, x− y)− Û(t− s′, x− y′)‖p
≤ C(T,M, p) |y − y′|δ,

‖Û(s′, y′; t, x)− Û(s′, y′; t′, x)‖p = ‖Û(t− s′, x− y′)− Û(t′ − s′, x− y′)‖p
≤ C(T,M, p) |t− t′|γ ,

‖Û(s′, y′; t′, x)− Û(s′, y′; t′, x′)‖p = ‖Û(t′ − s′, x− y′)− Û(t′ − s′, x′ − y′)‖p
≤ C(T,M, p) |x− x′|δ.
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Then (2.31) holds true for every p big enough. By the Kolmogorov continuity theorem (see
Theorem B.17), Û has a continuous modification, which indeed is locally (γ−, δ−; γ−, δ−)-
Holder continuous.

Theorem 2.17 (Regularity). (U(s, y; t, x))(s,y;t,x)∈[0,∞)2
<×R2 has a continuous modifi-

cation, jointly in all four variables.

Proof. We can write U(s, y; t, x) = gt−s(x− y) Û(s, y; t, x); the statement follows from Theo-
rem 2.16 and from the regularity of the fractional heat kernel.

From now on, every time we write U, we implicitly consider the continuous modification of
the four-parameter process.

Corollary 2.18. We have

P
(
U(s, y; t, x) =

∫
R
U(s, y; r, z)U(r, z; t, x) dz for all 0 ≤ s < r < t , x, y ∈ R

)
= 1,

(2.33)

and
P
(
U(s, y; t, x) ≥ 0 for all (s, y; t, x) ∈ [0,∞)2

< × R2
)

= 1. (2.34)

Proof. In Proposition 2.15 we proved the semigroup property (2.29) (see also Proposition
2.22), that is, for all (s, y; t, x) ∈ [0,∞)2

< × R2, and for all r ∈ (s, t),

U(s, y; t, x) =

∫
R
U(s, y; r, z)U(r, z; t, x) dz P-a.s.. (2.35)

This implies that

P
(
U(s, y; t, x) =

∫
R
U(s, y; r, z)U(r, z; t, x) dz

for all (s, y; t, x) ∈
(
[0,∞)2

< × R2
)
∩Q4 and r ∈ Q

)
= 1.

(2.36)

If we prove that the following map is continuous:

(s, y; t, x; r) 7→
∫
R
U(s, y; r, z)(ω)U(r, z; t, x)(ω) dz (2.37)

on the domain s < r < t and x, y ∈ R, then (2.33) follows, since both sides of (2.35) are
continuous, and by (2.36) they must be equal almost surely (see Remark 2.11 for more details).

With the same argument on the continuity, we can pass from (2.30) of Proposition 2.15 to
(2.34).
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2.5. Strict Positivity in the Linear Case

We now focus our attention on the linear (fractional) stochastic heat equation with general
initial datum, that is

∂u

∂t
(t, x) = ∆

α
2 u(t, x) + β u(t, x) Ẇ for x ∈ R, t > 0,

u(0, ·) = µ0(·),
(2.38)

for some β ∈ R and α ∈ (1, 2). If the initial datum µ0 satisfies (1.11), that is
∫
R gt(x−y)µ0(dy) <

∞ for all (t, x) ∈ (0,∞) × R, we can apply Theorems 1.3 and 1.4, getting all the results
of existence, uniqueness and regularity of the mild solution. Moreover, we are in the case of
f(0) = 0 and then we can apply Theorem 2.2. The approach we use to prove the strict positivity
relies on the continuity of the normalized fundamental solution and on the semigroup property.
Roughly speaking, we have proved that Û is continuous: since Û(s, ·; s, ·) = 1, this implies that
Û(s, ·; t, ·) must be strictly positive for close times, i.e. t− s > 0 small enough. Thanks to the
semigroup property, we can bootstrap this argument to prove strict positivity for all times.

Theorem 2.19 (Strict Positivity for the Fundamental Solution).

P(Û(s, y; t, x) > 0 for every (s, y; t, x) ∈ [0,∞)2
≤ × R2) = 1, (2.39)

and
P(U(s, y; t, x) > 0 for every (s, y; t, x) ∈ [0,∞)2

< × R2) = 1. (2.40)

Proof. Note that it suffices to prove (2.39). Indeed, recalling that U(s, y; t, x) = gt−s(x −
y)Û(s, y; t, x), (2.40) follows from (2.39) and the strict positivity of the map (s, y; t, x) 7→
gt−s(x− y) over [0,∞)2

< × R2.
In order to prove (2.39) it is enough to show that

P(Û(s, y; t, x) > 0 for every (s, y; t, x) ∈ [0, T ]2≤ × [−M,M ]2) = 1 (2.41)

for every T > 0 and M > 0. Indeed, let us suppose we proved (2.41): define

AT,M =
{
Û(s, y; t, x) > 0 for every (s, y; t, x) ∈ [0, T ]2≤ × [−M,M ]2

}
, and

A =
⋂
T∈N

⋂
M∈N

AT,M .

Then we have P(A) = 1, since it is a countable intersection of almost sure events; moreover
A =

{
Û(s, y; t, x) > 0 for every (s, y; t, x) ∈ [0,∞)2

≤ × R2
}
, so we get (2.39).

Let us prove (2.41): fix T > 0, M > 0 and denote by Ω̂, a measurable set in A, such that,
for every ω ∈ Ω̂, Û(·, ·, ·, ·)(ω) is a continuous function, and both the semigroup property (2.50)
and the non-negativity (2.56) hold true. Thanks to Theorem 2.16 and Corollary 2.18, we have
P(Ω̂) = 1.

Let fix ω ∈ Ω̂. Then, the function

[0, T ]2≤ × [−M,M ]2 → R

(s, y; t, x) 7→ Û(s, y; t, x)(ω)
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is uniformly continuous: for every η ∈ (0, 1), there exists ε = ε(η, ω, T,M) > 0 such that, if
|(s, y; t, x)− (s̃, ỹ; t̃, x̃)| ≤ ε, then

|Û(s, y; t, x)(ω)− Û(s̃, ỹ; t̃, x̃)(ω)| < η, (2.42)

where we denote by | · | the Euclidean norm. For all a ∈ (0, T ], we define

D(a, T,M) = {(s, y; t, x) ∈ [0, T ]2 × [−M,M ]2 | 0 ≤ t− s ≤ a}.

Clearly D(T, T,M) = [0, T ]2≤ × [−M,M ]2; our aim is to show that

Û(s, y; t, x)(ω) > 0 for every (s, y; t, x) ∈ D(T, T,M). (2.43)

By induction, we will prove that, for all N = 1, . . . ,
⌈
T
ε

⌉
,

Û(s, y; t, x)(ω) > 0 for every (s, y; t, x) ∈ D(Nε, T,M). (2.44)

For N = 1, we use the uniform continuity: for all (s, y; t, x) ∈ [0, T ]2≤× [−M,M ]2, such that
t− s ≤ ε, since Û(s, y; s, x) = 1, by (2.42)

|Û(s, y; t, x)(ω)− 1| < η =⇒ Û(s, y; t, x)(ω) > 1− η > 0.

Let N ≥ 2 and suppose we proved that

Û(s, y; t, x)(ω) > 0 for every (s, y; t, x) ∈ D
(
(N − 1)ε, T,M

)
. (2.45)

We are now going to switch for a moment to U, which enjoys the semigroup property (2.50):
for every (s, t) ∈ [0, T ]2≤, such that (N − 1)ε < t− s ≤ Nε, and for every x, y ∈ [−M,M ],

U(s, y; t, x)(ω) =

∫
R
U
(
s, y; s+ (N − 1)ε, z

)
(ω) U

(
s+ (N − 1)ε, z; t, x

)
(ω) dz

≥
∫
|z|≤M

U
(
s, y; s+ (N − 1)ε, z

)
(ω) U

(
s+ (N − 1)ε, z; t, x

)
(ω) dz,

where the last inequality is ensured by the non-negativity (2.56). We want to prove that the
last integral is strictly positive: we are going to show that the integrand is strictly positive. The
function defined by

[−M,M ]→ R
z 7→ U

(
s, y; s+ (N − 1)ε, z

)
(ω)

is strictly positive by the induction hypothesis (2.45), in fact, for every |z| ≤M,
(
s, y; s+ (N −

1)ε, z
)
∈ D

(
(N − 1)ε, T,M

)
, and U = g Û where g > 0. Analogously, the function defined by

[−M,M ]→ R
z 7→ U

(
s+ (N − 1)ε, z; t, x

)
(ω)

is strictly posivite by the case N = 1, since t− s− (N − 1)ε ≤ ε.
We have just proved that U(s, y; t, x)(ω) > 0 for (N−1)ε < t−s ≤ Nε and the same clearly

holds for Û . Joining this fact with the induction hypothesis (2.45),

Û(s, y; t, x)(ω) > 0 for every (s, y; t, x) ∈ D(Nε, T,M),

which is what we had to prove.
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Now we have to prove the strict positivity of any mild solution u of (2.38) with general
measure as initial datum (but it always has to satisfy (1.11)).

Lemma 2.20. Let (u(t, x))(t,x)∈(0,∞)×R be the solution to the linear fractional stochastic
heat equation (2.38) with µ0 as initial datum, where µ0 is a Borel measure that satisfies
(1.11). Then, for every (t, x) ∈ (0,∞)× R,

u(t, x) =

∫
R
µ0(dy)U(0, y; t, x), (2.46)

and, for any s ∈ (0, t),

u(t, x) =

∫
R

dy u(s, y)U(s, y; t, x). (2.47)

Proof. The proof is similar to the proof of Proposition 2.22 and here we just rewrite the
fundamental steps. We fix s > 0 and we define the process v such that, for every t > s and
x ∈ R,

v(t, x) =

∫
R

dy u(s, y)U(s, y; t, x).

It is well defined, moreover, using the definition of mild solution for U , we have

v(t, x) :=

∫
R

dy u(s, y)U(s, y; t, x)

=

∫
R

dy u(s, y)

[
gt−s(x− y) +

∫ t

s

∫
R
U(s, y; r, z) gt−r(x− z)W (dr, dz)

]
=

∫
R

dy u(s, y) gt−s(x− y) +

∫ t

s

∫
R

(∫
R

dy u(s, y)U(s, y; r, z)

)
gt−r(x− z)W (dr, dz)

=

∫
R

dy u(s, y) gt−s(x− y) +

∫ t

s

∫
R
v(s, y) gt−r(x− z)W (dr, dz),

recalling Proposition 1.12. Then v is a modification of u and we have proved (2.47). In order to
prove (2.46), one can running through the proof above and replace “dy u(s, y)” with “µ0(dy)”.

The strict positivity of a solution u of a linear stochastic heat equation follows directly from
(2.46) and from the strict positivity of the four-parameter fundamental solution (see Theorem
2.19).

Theorem 2.21. Let (u(t, x))(t,x)∈(0,∞)×R be the solution to a linear fractional stochastic
heat equation (2.38) with initial datum given by a Borel positive measure µ0, not identically
null.

Then
P
(
u(t, x) > 0 for every (t, x) ∈ (0,∞)× R

)
= 1. (2.48)

Proof. With the same argument used in the proof of Theorem 2.19, it is enough to prove
(2.48) by proving that

P
(
u(t, x) > 0

)
= 1, for any (t, x) ∈ (0, T ]× [−M,M ]. (2.49)
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Thanks to Lemma 2.20, we can write

u(t, x) =

∫
R
µ0(dy)U(s, y; t, x),

for any s ∈ (0, t). Then we have done, since we know that µ0 is a positive Borel measure
not identically null by assumptions and U is a continuous strictly positive function (Theorem
2.19).

2.6. Technical Proofs

2.6.1. Proof of Proposition 2.15. In this section we are going to prove the basic
properties of the four-parameter fundametal solution U . We split Proposition 2.15 and prove
each statement independently. The stationarity, the diffusive scaling and the independence
properties are peculiar to the stochastic framework and due to the definition of a white noise
(in particular its covariance function). Then, we are going to prove the semigroup property and
the non-negativity, which requires some further specifications.

Semigroup property. Relation (2.50) below is usually called Chapman–Kolmogorov equa-
tion.

Proposition 2.22 (Semigroup property). For all x, y ∈ R and 0 ≤ s < r < t,

U(s, y; t, x) =

∫
R
U(s, y; r, z)U(r, z; t, x) dz, P-a.s.. (2.50)

Proof. Let us define the four-parameter process V, given by

V (s, y; t, x) :=

∫
R
U(s, y; r, z)U(r, z; t, x) dz, (2.51)

where r ∈ (s, t) is fixed. Fix (s, y; t, x) ∈ [0,∞)2
< × R2 and r ∈ (s, t). First of all we should

prove that V (s, y; t, x) is well defined, i.e.

P
(

(U(s, y; r, z)U(r, z; t, x))z∈R ∈ L1(R)
)

= 1. (2.52)

The measurability of the function

z 7→ U(s, y; r, z)U(r, z; t, x)(ω)

follows from the property of mild solution. Moreover,

E
(∫

R

∣∣U(s, y; r, z)U(r, z; t, x)
∣∣dz) ≤ ∫

R
‖U(s, y; r, z)U(r, z; t, x)‖2 dz

=

∫
R
‖U(s, y; r, z)‖2‖U(r, z; t, x)‖2 dz

=
√
C2(r − s)C2(t− r)gt−s(x− y),

(2.53)

by Cauchy-Schwarz, the independence property, estimate (1.13) in the linear case and the
semigroup property of the heat kernel. Relation (2.52) follows.
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Now our aim is to prove that V is a modification of U, by the uniqueness of the solution.
We know that

U(r, z; t, x) = gt−r(x− z) +

∫ t

r

∫
R
U(r, z; t1, x1)gt−t1(x− x1)W (dt1,dx1).

Let us substitute the formula above in (2.51):

V (s, y; t, x)

=

∫
R
U(s, y; r, z)

[
gt−r(x− z) +

∫ t

r

∫
R
U(r, z; t1, x1)gt−t1(x− x1)W (dt1,dx1)

]
dz

=

∫
R
U(s, y; r, z) gt−r(x− z) dz +

∫
R
U(s, y; r, z)

[ ∫ t

r

∫
R
U(r, z; t1, x1)gt−t1(x− x1)W (dt1, dx1)

]
dz.

We claim that∫
R
U(s, y; r, z;β)

[ ∫ t

r

∫
R
U(r, z; t1, x1;β)gt−t1(x− x1)W (dt1, dx1)

]
dz =

=

∫ t

r

∫
R

[ ∫
R
U(s, y; r, z;β)U(r, z; t1, x1;β) dz

]
gt−t1(x− x1)W (dt1,dx1).

(2.54)

This implies that

V (s, y; t, x) =

∫
R
U(s, y; r, z)gt−r(x− z) dz +

∫ t

r

∫
R
V (s, y; t1, x1)gt−t1(x− x1)W (dt1,dx1),

P-a.s. and then V is a modification of U .
It remains to prove (2.54): it holds thanks to the stochastic Fubini’s theorem. In fact, we

can apply it since∫
R

[ ∫ t

r

∫
R
E(|U(s, y; r, z)U(r, z; t1, x1)|2) g2

t−t1(x− x1) dt1 dx1

] 1
2

dz

=

∫
R

[ ∫ t

r

∫
R
E(|U(s, y; r, z)|2)E(|U(r, z; t1, x1)|2) g2

t−t1(x− x1) dt1 dx1

] 1
2

dz

≤ C(t)

∫
R
gr−s(z − y)

[ ∫ t

r

∫
R
g2
t1−r(x1 − z) g2

t−t1(x− x1) dt1 dx1

] 1
2

dz,

and by Proposition 1.5 and Lemma A.11, this is less than

C(t)
[
Beta

(α− 1

α
,
α− 1

α

)
(t− r)

α−1
α

] 1
2

∫
R
gr−s(z − y)gt−r(x− z) dz ≤ C̃(t) gt−s(x− y) <∞,

where C̃(t) is a constant which depens only on t (and α). For the first equality, we have used
the independence property.

Non-negativity. The non-negativity, as stated in Proposition 2.24 below, can be proven
through the comparison principle; a proof of this, in the case α = 2 and with the assumptions
of continuity on initial data, can be found in [Mueller 91] and in [Bertini, Cancrini 95] there is a
generalization for measures. The proof for the general case with α ∈ (1, 2] is in [Chen, Kim 14]
(Theorem 1.1), which we report here:
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Theorem 2.23 (Weak comparison Principle). Let µ(1) and µ(2) be positive Borel
measure on R such that µ(1) ≤ µ(2) as measures and, for all T > 0,

• for α ∈ (1, 2)

sup
y∈R

∫
R

1

1 + |y − z|1+α
µ(i)(dz) <∞, for i = 1, 2.

• for α = 2, ∫
R
e−az

2
µ(i)(dz) <∞ for all a > 0.

Suppose that u(1) and u(2) are the mild solutions of the following

∂u

∂t
= ∆

α
2 u+ f(u) Ẇ (2.55)

with µ(1) and µ(2) as the initial datum, respectively. Then

P
(
u(1)(t, x) ≤ u(2)(t, x) for all (t, x) ∈ (0,∞)× R

)
= 1.

We see that in [Chen, Kim 14] the authors proves the weak comparison principle under a
stronger assumption for α ∈ (1, 2) on the initial measure (indeed it is the assumption with
which they proved existence, uniqueness and regularity, cfr. [Chen, Dalang 15 B]). Actually
this is all we need, since we are going to show the non-negativity for the fundamental solution,
for which the initial datum is a Dirac delta measure.

However, to be complete, we can say that the weak comparison principle, as stated above,
can be easily carry to the case in which the measure satisfies the weaker assumption (1.11)
thanks to the continuity of the solution with respect to the initial datum (see Proposition
1.10).

Proposition 2.24 (Non-negativity). For all s ≥ 0, y ∈ R,

P
(
U(s, y; t, x) ≥ 0 for all t > s, x ∈ R

)
= 1. (2.56)

Proof of Proposition 2.24. Fix (s, y) ∈ [0,∞)×R), then the process (U(s, y; t, x))(t,x)∈(s,∞)×R
is a mild solution of (2.55) with µ(2) = δy as the initial datum. At the same time, the process
given by (V (t, x) = 0)(t,x)∈(s,∞)×R is a mild solution of (2.55) with µ(1) ≡ 0 as the initial datum.
Since µ(1) ≤ µ(2), applying Theorem 2.23, we get (2.56).
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Introduction to Part II

In the second part of this thesis, we study the rough differential equation (RDE) written as
follows

Yt = ξ +

∫ t

0
F (Yu) pt−u dWu, (RDE)

where ξ is the starting point, F : R→ R is a smooth function,W is a (possibly random) Hölder
function and p is a singular kernel.

In the particular case where W is a (typical path of) Brownian motion, pu = uH−
1
2 for some

H ∈ (0, 1
2), and F ≡ 1, the solution Y of (RDE) represents the so-called Riemann-Liouville

fractional Brownian motion.
This kind of integral equation of convolution type is usually called “Volterra equation” and it

has been already studied in literature, mostly with the classical theory of stochastic differential
equations.

In [Prömel, Trabs 18], the authors proved the existence and uniqueness of a solution of
(RDE) using the theory of paracontrolled distributions. In [Bayer et al. 17], the authors solve
(RDE) by using the theory of regularity structures ([Hairer 14]).

Our aim is to prove existence and uniqueness of the solution Y of (RDE) with a more
elementary approach, by using the theory of rough paths, initiated by [Lyons 98] and extended
by [Gubinelli 04], which provides an alternative approach to the theory of stochastic differential
equations.

In Chapter 3, we give some reminders as well as extensions of the classical rough path
theory: we first recall the definition of rough path, controlled path and rough integral and then
we define the integration with respect to singular kernels. This ingredient, which is one of the
cornerstones in the theory of regularity structures [Hairer 14], is necessary to study Volterra
equations (RDE) in the framework of rough paths.

In Chapter 4, we prove the existence and uniqueness of the solution to (RDE). In the case of
pu = uH−

1
2 , we are able to prove existence and uniqueness of the solution under the assumption

H > 1
4 , which is weaker than the assumption H > 1

3 of [Prömel, Trabs 18].

In Chapter 5, we give some finer properties of the solution, which lead to a finite reformu-
lation of (RDE).
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Chapter 3

Controlled Paths and Rough Integrals

Introduction

This chapter is a quick remainder, in the simplest setting, of rough path theory, originally
developed by Lyons in [Lyons 98] and later extended in [Gubinelli 04] (see also [Friz, Hairer 14]).
The motivation arises from rough differential equations of the form

Yt = ξ +

∫ t

a
F (Yu) dWu for t ∈ (a, b], (RDE1)

which can also be written as a rough differential problem:{
dYt = F (Yt) dWt for t ∈ (a, b]

Ya = ξ,
(RDE2)

where [a, b] is a subset of R, ξ ∈ R is the starting point, F : R→ R is a (say, smooth) function
and W : [a, b] → R is a continuos Hölder function, which might be non differentiable and so
classical theory cannot be applied.

Note that, if W is differentiable, then the integral (RDE1) is well defined and equals to∫ t
a F (Yu)W ′u du. Then the solution is a path Y : [a, b]→ R such that

Yt = ξ +

∫ t

a
F (Yu)W ′u du.

Under suitable and classical assumptions on F , there exists a unique well-defined solution Y .
However, if W is not differentiable, say W ∈ Cθ with θ < 1, then the integral with respect

to W is not well-defined. More generally, one wishes to define integrals of the form∫
Xu dWu,

when X and W are continuous Hölder functions, say X ∈ Cβ and W ∈ Cθ, with β < 1 and
θ < 1. Remarkably, when β+ θ > 1, we have a canonical definition of the integral, coming from
Young ([Young 36]). If instead β + θ ≤ 1, there is no canonical definition: actually, different
“approximations” ofX andW may yield different integrals ofX with respect toW . A “solution”,
first conceived by Terry Lyons ([Lyons 98]), is to enrich the path X, giving more “information”,
which leads to the notion of rough paths defined below. Then Gubinelli introduced the important
notion of controlled path (see [Gubinelli 04]).

Although rough path theory is a “deterministic” theory of integration, equations like (RDE1)
are very common in probability where the driving signal W might be a Brownian motion. So,
rough path theory can be used as a new path-wise approach to solve SDE, alternative to the
Itô’s approach which constructs solutions as limits of random variables. Rough path theory
can also be used to solve SDE driven more generally by semimartingales (for the literature, see
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[Gubinelli 04] and [Friz, Hairer 14]). In [Gubinelli 10] there is a generalization of rough path
theory, which permits to study rough integrals through a larger algebraic structure. Hairer
used rough path theory to find a robust solution of KPZ equation ([Hairer 13]) and he also
generalized this theory to construct regolarity structures ([Hairer 14]).

In this chapter, after recalling the basic notions of rough paths and controlled paths, we
define the integration with respect to singular kernels in the framework of rough paths theory.
This can be done in a simple way, taking inspiration from [Hairer 14], and seems not to have
been considered in the literature.

Description of the chapter.

• In Section 3.1, we first fix some notation, then we recall the crucial Sewing Lemma.

• In Section 3.2 we give the definition of a generalized integral, and we recall the definition
of controlled path and rough path.

• In Section 3.3 we give a meaning of integrals of the form
∫
g p dW , where g is controlled

by X and p is a singular function. These general results are very useful to solve the rough
fractional SDE introduced in the next chapter (Chapter 4).

• In Section 3.4 we defer some minor results and/or proofs.

3.1. Notation and Basic Tools

Fix −∞ < a < b < +∞. We use the following notation: if f : [a, b] → R is a function, for any
a ≤ s < t ≤ b, we write

δf(s, t) := f(t)− f(s).

We recall the definition of Hölder functions.

Definition 3.1. We say that a function f : [a, b] → R is a Hölder function of index β, with
β ∈ (0, 1), if

‖f‖β := sup
a≤s<t≤b

|δf(s, t)|
|t− s|β

<∞, (3.1)

and we write f ∈ Cβ .
‖ · ‖β is a semi-norm on Cβ , which is null if and only if f is constant. We will also use the

standard notation

‖f‖∞ := sup
a≤t≤b

|f(t)|,

that is the standard norm on the space C0 of the continuous functions.

We will deal also with functions of two ordered variables. We denote by [a, b]2< the following
subset of R2:

[a, b]2< := {(s, t) ∈ [a, b]2 such that s < t}.
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We say that a function A : [a, b]2< → R is in Cγ2 if

‖A‖γ := sup
a≤s<t≤b

|A(s, t)|
|t− s|γ

<∞.

We also define the “δ” operator for a function of two variables in the following way:

δA(s, u, t) := A(s, t)−A(s, u)−A(u, t),

and we write

‖δA‖γ := sup
a≤s<u<t≤b

|δA(s, u, t)|
|t− s|γ

.

Here we state a very simple Lemma which characterizes the functions for which the “δ
operator” has some particular property. The proof is deferred to Section 3.4.

Lemma 3.2. A one-variable function f satisfies

δf(s, t) = o(|t− s|) uniformly for |t− s| → 0 (3.2)

if and only if it is constant.
A two-variable function A satisfies δA ≡ 0 if and only if there exists a one-variable function

f such that A(s, t) = δf(s, t).

Moreover we state the following useful computational tool, whose proof is immediate.

Lemma 3.3. If A : [a, b]2< → R can be written as

A(s, t) = c(s)D(s, t),

for some functions c : [a, b]→ R and D : [a, b]2< → R, then

δA(s, u, t) = c(s) δD(s, u, t)− δc(s, u)D(u, t). (3.3)

We end this section by stating the following fundamental result that we will often use and
whose proof can be found for instance in [Gubinelli], [Friz, Hairer 14].

Theorem 3.4 (The Sewing Map). If A : [a, b]2< → R is a function such that ‖δA‖γ <∞
for some γ > 1, then there exists a unique function I : [a, b] → R with I(a) = 0 and such
that

δI(s, t) = A(s, t) + o(|t− s|) uniformly for |t− s| → 0, (3.4)

More precisely, I is the limit of “Riemann sums”:

It = lim
|P|→0

∑
[ti,ti+1]∈P

A(ti, ti+1) for every t ∈ [a, b], (3.5)

along arbitrary partitions P of the interval [a, t] with mesh |P| = max[ti,ti+1]∈P |ti+1−ti| → 0.
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The remainder

R := δI −A, that is R(s, t) = I(t)− I(s)−A(s, t), (3.6)

is a linear function of δA and it satisfies the following inequality:

‖R‖γ ≤ cγ ‖δA‖γ , where cγ =
1

1− 2−(γ−1)
. (3.7)

3.2. Generalized Integral and Controlled Path

We still fix the interval [a, b] ⊂ R and we work with continuous functions X,W : [a, b] → R.
We want to give a meaning to the “integral” of X with respect to W , that is

I(t) :=

∫ t

a
X(s) dW (s).

We know that, if W ∈ C1, then

I(t) =

∫ t

a
X(s)W ′(s) ds.

Moreover, in this case we have

δI(s, t) = Xs δW (s, t) + o(|t− s|), uniformly for |t− s| → 0. (3.8)

Our goal is to extend the definition of integral when X ∈ Cβ and W ∈ Cθ for some fixed
β, θ ∈ (0, 1). However, we cannot expect that condition (3.8) holds generally for any β, θ ∈ (0, 1).
We are going to give a more general definition.

Definition 3.5 (Generalized Integral). Fix β and θ in (0, 1) and let us consider two
functions X ∈ Cβ and W ∈ Cθ. We say that I : [a, b] → R is a (β + θ)-integral of X with
respect to W , and we write I =

∫
X dW , if the following holds

δI(s, t) = X(s) δW (s, t) + O(|t− s|β+θ) uniformly for |t− s| → 0. (3.9)

We say that X is the derivative of I with respect to W .
Sometimes we will omit the (β + θ) writing from the integral, even if the definition (3.9)

actually depends on β + θ.

In Sections 3.2.1 and 3.2.2, we are going to show that this definition is not empty. In Section
3.2.1 we deal with the case β + θ > 1, while in Section 3.2.2 we consider the case β + θ ≤ 1.

3.2.1. Young Integral. We notice that, when β + θ > 1, (3.9) implies (3.8). Then, by
Lemma 3.2, when β+ θ > 1, there exists at most one such a function I (up to the addition of a
constant). This is called the Young Integral of X with respect to W and its existence was first
studied and proved by Young in [Young 36] (in a slightly different context).

In the following theorem, we summarise the principal properties of the Young integral.
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Theorem 3.6. Fix β, θ in (0, 1) with β + θ > 1. Let X,W : [a, b] → R be functions such
that X ∈ Cβ and W ∈ Cθ. Then there exists a unique integral I : [a, b] → R of X with
respect to W such that I(a) = 0 and (3.9) holds. Moreover, I satisfies

‖I‖θ ≤
(
‖X‖∞ + cβ+θ ‖X‖β τβ

)
‖W‖θ, (3.10)

where the norms are considered in the interval [a, b], τ := b− a is the length of this interval
and cβ+θ := 1

1−2−(β+θ−1) as in (3.7).

A proof of Theorem 3.6 can be found in [Gubinelli]; here we just give a brief sketch.

Uniqueness. If there exist I and I ′ integrals of X with respect to W according to Definition
3.5, then, by (3.9),

δ(I − I ′)(s, t) = O(|t− s|β+θ) = o(|t− s|),

since β + θ > 1. Hence, by Lemma 3.2, I − I ′ is constant and then it is identically null, since
I(a) = I ′(a) = 0.

Existence. The existence follows easily from the Sewing Map (Theorem 3.4). Indeed, we just
have to consider the function A : [a, b]2< → R defined by

A(s, t) := X(s) δW (s, t).

Thanks to Lemma 3.3, we have δA(s, u, t) = −δX(s, u) δW (u, t) and then, since γ := β+θ > 1,

‖δA‖γ = ‖X‖β ‖W‖θ <∞,

which implies the existence of the (β + θ)-integral I. Moreover, we have

|δI(s, t)| ≤ |δI(s, t)−X(s) δW (s, t)|+ |X(s) δW (s, t)|
≤ ‖R‖β+θ (t− s)β+θ + ‖X‖∞ ‖W‖θ (t− s)θ.

Thanks to the relation (3.7)) in Theorem 3.4 we know that ‖R‖β+θ ≤ cβ+θ ‖A‖β+θ ≤ cβ+θ‖X‖β ‖W‖θ,
and then, for the Young integral, (3.10) holds.

3.2.2. Beyond Young. When β + θ ≤ 1 there is no more uniqueness: if I satisfies (3.9),
then also I + f satisfy (3.9), for any Hölder function f in Cβ+θ.

The existence of such a function I is not obvious, but we notice that the proof of this is
equivalent to proving that there exists a two-variable function R, that will play the role of
“remainder”.

Proposition 3.7. Fix β, θ in (0, 1) with β + θ ≤ 1. Let X,W be functions such that
X ∈ Cβ and W ∈ Cθ.

The two following are equivalent.

(i) There exists a integral I of X with respect to W , according to Definition 3.5.

(ii) There exists a function R : [a, b]2< → R such that R ∈ Cβ+θ
2 and it satisfies the Chen

relation

δR(s, u, t) = δX(s, u) δW (u, t). (3.11)
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Proof. If there exists a integral I of X with respect to W , by (3.9), we have

δI(s, t)−X(s) δW (s, t) = O(|t− s|β+θ).

If we set R(s, t) := δI(s, t) −X(s) δW (s, t), then it is a function in Cβ+θ
2 and, by Lemma 3.2

and Lemma 3.3,

δR(s, u, t) = δX(s, u) δW (u, t),

that is (3.11).
Vice versa, if there exists R : [a, b]2< → R in Cβ+θ

2 such that (3.11) holds, then we define the
map I : [a, b]→ R with I(a) = 0 and

I(t) = X(0) δW (0, t) +R(0, t).

It follows by (3.11) that

δI(s, t) = X(s) δW (s, t) +R(s, t).

Then I is an integral of X with respect to W .

Hence, to prove the existence of a integral I of X with respect to W , we should prove the
existence of a 2-variable function R such that |R(s, t)| = O(|t − s|β+θ) and (3.11) holds. This
is actually always possible, by the Lyons-Victoir extension theorem [Friz, Hairer 14]; see also
Sheet 3 of [Gubinelli]. We note that there is a one-to-one correspondence between an integral
I and the two-variable function, also called remainder, R.

Itô stochastic integral as rough integral. Since in the case of our interest W is a
path of a Brownian motion, we can show that Itô stochastic integral with respect to a Brownian
motion is an integral in the sense of (3.9).

Let us fix a probability space (Ω,A, P ) with a filtration (Ft)t∈[0,1]. Let (Wt)t∈[0,1] be a
Brownian motion and let (Xt)t∈[0,1] be an adapted process with continuous paths. We recall
that a.s. W ∈ Cθ for any θ < 1

2 . We know that

It =

∫ t

0
Xu dWu (3.12)

is well defined as a random variable and the stochastic process (It)t∈[0,1] admits a version with
continuous paths.

We define

R(s, t) = It − Is −Xs δW (s, t),

then R is a two-variable random continuous function. Moreover, it satisfies the Chen relation
(3.11), because of the linearity of the stochastic integral. We have the following theorem, whose
proof can be found in [Gubinelli 04].

Theorem 3.8. Assume that a.s. X ∈ Cβ for some β ∈ (0, 1). Then there is an a.s. finite
constant C such that

|R(s, t)| ≤ C |t− s|β+θ, for all 0 ≤ s ≤ t ≤ 1. (3.13)

In particular, a.s. the Itô integral in (3.12) is a integral of X with respect to W in the sense
of (3.9).
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3.2.3. Controlled Paths and Rough Integral. We now introduce the notion of
controlled paths.

Definition 3.9. We say that G = (g, g′) ∈ Cβ × Cβ is a controlled path by X if g is a
2β-integral of g′ with respect to X, that is

δg(s, t) = g′(s) δX(s, t) + O(|t− s|2β) (3.14)

uniformly for |t− s| → 0, according to Definition 3.5.

We denote with D(β,β)
X the set of all the paths G ∈ Cβ×Cβ controlled by X and we introduce

the following seminorm

‖G‖D(β,β)
X

= ‖(g, g′)‖D(β,β)
X

= ‖g′‖β + ‖gR‖2β, (3.15)

where
gR(s, t) := δg(s, t)− g′(s) δX(s, t), (3.16)

is the remainder in C2β
2 , that is

‖gR‖2β = sup
a≤s<t≤b

|gR(s, t)|
|t− s|2β

<∞,

thanks to (3.14).

Fix X ∈ Cβ . Classical rough path theory ensures that, if we fix a choice of the rough integral
“
∫
X dX”, or equivalently if we fix the function X(s, t) = “

∫ t
s δX(s, u) dX(u)”, and we suppose

that β > 1
3 , then, for any G ∈ D

(β,β)
X , there exists a unique function Z : [a, b] → R, the rough

integral of G with respect to X, Z(t) = “
∫ t
a G dX”, such that Z(a) = 0 and

δZ(s, t) = g(s) δX(s, t) + g′(s)X(s, t) + O(|t− s|3β)

uniformly for |t− s| → 0. Moreover, Z is the sum of “Riemann sums”:

Zt = lim
|P|→0

∑
[ti,ti+1]∈P

(
g(ti) δX(ti, ti+1) + g′(ti)X(ti, ti+1)

)
for every t ∈ [a, b],

along partitions P of the interval [a, t] with mesh |P| = max[ti,ti+1]∈P |ti+1 − ti| → 0.

In our setting, we need a slight extension: we need to define the integral of G ∈ D(β,β)
X

with respect to another path W , by fixing the value of “
∫
X dW ” . Motivated by the classical

definition of rough paths and rough integrals (see for instance [Gubinelli 04]), we give the
following definition.

Definition 3.10. Fix β, θ ∈ (0, 1) with 2β+θ > 1. A (β, θ)- rough path is a triplet (X,W,XW)
such that

• X : [a, b]→ R is in Cβ ;

• W : [a, b]→ R is in Cθ;
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• XW : [a, b]2< → R is a two-variable function in Cβ+θ
2 such that Chen relation holds, that

is

δXW(s, u, t) = δX(s, u) δW (u, t) (3.17)

In the classical definition of rough path X and W coincide, XW is denoted by X and the
rough path is just the pair (X,X), with the assumption that β > 1

3 (that coincides 2β + θ > 1,
for β = θ). Hence, Definition 3.10 is a generalization of the classical definition for rough paths.

Shortly we keep in mind these relations:

• β, θ ∈ (0, 1) such that θ + β < 1 and θ + 2β > 1;

• (X,W,XW) ∈ Cβ is a (β, θ)-rough path, that is ∈ Cβ × Cθ × Cβ+θ
2 and such that (3.17)

holds.

• G = (g, g′) ∈ Cβ × Cβ is a path controlled by X.

We know that, since β+θ < 1, there exist infinite integrals ofX with respect toW , according
to Definition 3.5. However, thanks to Proposition 3.7, we can fix a choice of the integral of X
with respect to W , corresponding to the “remainder” XW.

We now want to define a rough integral of g with respect to W , by using the path X, since
G = (g, g′) is a path controlled by X and we have fixed the integral of X with respect to W
by fixing XW. Heuristically, we write I(t) = “

∫ t
a g(u) dW (u)”, and then

δI(s, t)− g(s)δW (s, t) =

∫ t

s
δg(s, u) dW (u)

= g′(s)

∫ t

s
δX(s, u) dW (u) +

∫ t

s
O(|u− s|2β) dW (u)

= g′(s)XW(s, t) + O(|t− s|θ+2β).

We now give the following theorem, which gives a precise definition of such integral I. The proof
of the following is based on the Sewing Map (see Theorem 3.4) and is postponed to Section 3.4.

Theorem 3.11. Let us fix β, θ ∈ (0, 1) such that β + θ < 1 and 2β + θ > 1. Also fix
(X,W ) ∈ Cβ × Cθ and XW ∈ Cβ+θ

2 such that (3.17) holds. Then, for any controlled path
G = (g, g′) ∈ D(β,β)

X , there is a unique I : [a, b]→ R with I(a) = 0 such that

δI(s, t) = g(s) δW (s, t) + g′(s)XW(s, t) + O(|t− s|2β+θ), uniformly for |t− s| → 0.
(3.18)

We call informally I the “rough integral of G, or even g, with respect to W ”, and write
I(t) =

∫ t
a g dW (even though I depends also on g′ and XW).

One can obtain I as the limit of “Riemann sums”:

I(t) = lim
|P|→0

∑
[ti,ti+1]

(
g(ti)δW (ti, ti+1) + g′(ti)XW(ti, ti+1)

)
along partitions P of the interval [a, t] with mesh |P| = max[ti,ti+1]∈P |ti+1 − ti| → 0.



3.2. GENERALIZED INTEGRAL AND CONTROLLED PATH 63

Moreover, we have the following estimates:

‖δI − gδW − g′XW‖2β+θ ≤ c2β+θ CW,XW ‖G‖D(β,β)
X

(3.19)

‖δI − gδW‖β+θ ≤ c2β+θ CW,XW (‖G‖D(β,β)
X

τβ + ‖g′‖∞) (3.20)

‖δI‖θ ≤ c2β+θ CW,XW (‖G‖D(β,β)
X

τ2β + ‖g′‖∞ τβ + ‖g‖∞) (3.21)

where c2β+θ = 1
1−2−(2β+θ−1) , τ = b− a is the length of the interval, and

CW,XW := max{‖W‖θ, ‖XW‖β+θ}. (3.22)

.

3.2.4. Associativity. We can also extend the results when we deal with an integral of a
controlled path G multiplied by a function p with a higher regularity. We always work with β, θ
fixed with β + θ < 1 and 2β + θ > 1, and (X,W,XW) ∈ Cβ × Cθ × Cβ+θ.

We first see that, given a controlled path G = (g, g′) and a function p with a higher regularity
(at least C2β), it is always possible to construct another controlled path in a canonical way by
multiplication. The proof is just computational and is deferred to Section 3.4.

Lemma 3.12. For any p ∈ C2β , if G = (g, g′) ∈ D(β,β)
X , then (p g, p g′) ∈ D(β,β)

X .

Thanks to Theorem 3.11, we can define the rough integral of pg with respect to W , that is
the map Ipg : [a, b]→ R with Ipg(a) = 0 and such that

δIpg(s, t) = (pg)(s) δW (s, t) + (pg′)(s)XW(s, t) + O(|t− s|2β+θ)

= p(s)g(s) δW (s, t) + p(s) g′(s)XW(s, t) + O(|t− s|2β+θ),

uniformly for |t− s| → 0.
We are going to show that the rough integral of the controlled path pg with respect to W ,

coincides with the rough integral of p with respect to the rough integral of g with respect to
W . We can use the following notation

Ig =

∫
g dW, and Ipg =

∫
pg dW

even if these functions depend also on g′ and XW.

Proposition 3.13. We have
Ipg =

∫
pdIg, (3.23)

that is ∫ t

a
p(s) g(s) dW (s) =

∫ t

a
p(s) dIg(s) for every t ∈ [a, b].

Moreover,

‖Ipg‖θ ≤
(
‖p‖∞ + c2β+θ‖p‖2β τ2β

)
‖Ig‖θ, (3.24)
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where c2β+θ = 1
1−2−(2β+θ−1) .

Proof. First of all, we notice that Ig ∈ Cθ, thanks to Theorem 3.11. Hence, it is well defined
the integral ∫

p dIg,

which is a Young Integral, and hence it is uniquely defined, since 2β + θ > 1 by assumptions.
By Definition 3.5, we recall that

∫
p dIg is the unique function such that

δ
(∫

p dIg

)
(s, t) = p(s) δIg(s, t) + O(|t− s|2β+θ)

= p(s) g(s) δW (s, t) + p(s) g′(s)XW(s, t) + O(|t− s|2β+θ)

by using the property (3.18) of δIg(s, t). Then (3.23) holds. Relation (3.24) follows from relation
(3.10), which follows from the Sewing Map (see Theorem 3.4) and can be applied in this case
with X = p and W = Ig (recall that 2β + θ > 1).

To simplify notations, given a function p : [0,∞)→ R, C2β over the interval [a, b], we define
the following norm:

|||p|||[a,b] := ‖p‖∞,[a,b] + ‖p‖2β,[a,b] (b− a)2β. (3.25)

Then Proposition 3.13 ensures that

‖Ipg‖θ ≤ c2β+θ |||p||| ‖Ig‖θ, (3.26)

and then

|Ipg(b)− Ipg(a)| ≤ c2β+θ (b− a)θ |||p|||[a,b] ‖Ig‖θ,[a,b]. (3.27)

These relations will be used also in the next Chapters.

3.3. Singular Kernels and Rough Integral

In Section 3.2, we gave a meaning of the rough integral
∫
g dW , when g ∈ Cβ and W ∈ Cθ

are Hölder continuous functions with 2β + θ > 1, g is a path controlled by X and we fix the
function XW ∈ Cβ+θ

2 such that (3.17) holds.
In this section, that is the novel content of this chapter, we are going to study integrals in

the form

Igp̄(t) :=

∫ t

0
g p̄ dW, (3.28)

where g ∈ Cβ , W ∈ Cθ and p̄ : [0,∞) → R is a function in C2β except for a point s ∈ [0,∞),
where p̄ has a singularity of order η̄ ∈ R+, for some η̄ such that η̄ < θ. We call p̄ a singular
kernel. With the order of singularity, we mean that

|p̄u| ≤
c

|u− s|η̄
and |p̄′u| ≤

c

|u− s|η̄+1
, (3.29)
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for some c > 0.
We are going to show that, under suitable assumptions and according to rough path theory,

it is possible to give a well-posed definition of the integral in (3.28). The regularity of the
integral function t 7→ I(t) will not be the same as the path W , as it happens in classical theory,
but it will be a (θ − η̄)-Hölder function; this is the reason for requiring that θ > η̄, that is the
regularity of the integrator function W has to be higher than the order of the singularity of the
integrand function. We still use the notation above and fix the following:

• β, θ ∈ (0, 1) such that θ + β < 1 and 2β + θ > 1;

• η̄ such that 0 < η̄ < θ;

• (X,W,XW) ∈ Cβ × Cθ × Cβ+θ
2 a rough path according to Definition 3.10;

• G = (g, g′) ∈ D(β,β)
X , a controlled path by X;

• p̄ ∈ C2β except a singularity at s η̄, such that (3.29) holds.

We first give the definition for the integral in (3.28). If s > t, then (3.28) is a well defined
integral (see Section 3.2.4), since in [0, t] p̄ is in C2β . The problem arises when s ∈ [0, t]: in this
case we can write ∫ t

0
gu p̄u dWu =

∫ s

0
gu p̄u dWu +

∫ t

s
gu p̄u dWu

and now we are going to define the integral (3.28) when the singularity is one extreme of the
integral itself.

Definition 3.14. Given G and p̄ as above, we define∫ s

0
gu p̄u dWu := lim

n→∞

∫ s− 1
2n

0
gu p̄u dWu (3.30)

and ∫ t

s
gu p̄u dWu := lim

n→∞

∫ t

s+ 1
2n

gu p̄u dWu. (3.31)

This definition is well posed, since in any interval of the form [0, s − 1
2n ] and [s + 1

2n , t],

the kernel p̄ is in C2β and then the integrals
∫ s− 1

2n

0 g p̄ dW and
∫ t
s+ 1

2n
g p̄ dW are well defined

thanks to Proposition 3.13. The limit exists, as we will show in Theorem 3.16 below.
We recall the definition of the norm |||·|||(3.25):

|||p̄|||[a,b] := ‖p̄‖∞,[a,b] + (b− a)2β ‖p̄‖2β,[a,b]

= sup
u∈[a,b]

|p̄(u)|+ (b− a)2β sup
a≤v<u≤b

|p̄(u)− p̄(v)|
(u− v)2β

.
(3.32)

Clearly this norm can be defined only on the intervals [a, b] where p̄ has no singularities.
The following lemma gives an estimate for |||p̄||| that will be used to get estimates for the

norm of the integral Igp̄.
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Lemma 3.15. Let p̄ : [0,∞) be a C2β function with a singularity at s of order η (in the
sense of (3.29)). Then, for all the intervals [a, b] with 0 ≤ a < b < s, we have

|||p̄|||[a,b] ≤
c

(s− b)η̄
(

1 +
b− a
s− b

)
. (3.33)

For all the intervals [a, b] with 0 ≤ s < a < b, we have

|||p̄|||[a,b] ≤
c

(a− s)η̄
(

1 +
b− a
a− s

)
. (3.34)

If [a, b] is an interval with no singularities for p̄, then we know by assumptions that p̄ ∈ C2β

and, by Proposition 3.13, we have

|Ipg(b)− Ipg(a)| ≤ c2β+θ |||p̄|||[a,b] ‖Ig‖θ,[a,b] (b− a)θ, (3.35)

(see also (3.27)).
However, we need to have an estimate for |Ipg(b)− Ipg(a)| even when the singularity s is in

[a, b] and may coincide also with an end point of the interval. In this case, the Hölder regularity
of the integral decreases, as we now show.

We recall the following constant, as we defined above:

c2β+θ =
1

1− 2−(2β+θ−1)
(3.36)

and we also define

cβ,θ,η̄ := 4
1

1− 2−(2β+θ−1)

1

2θ−η̄ − 1
= 4 c2β+θ

1

2θ−η̄ − 1
. (3.37)

Theorem 3.16. Suppose that the function p̄ : [0,∞) → R has a singularity at s ∈ [0,∞]
of order η̄, according to (3.29). Then the integral of Definition 3.14 is well defined. Moreover,
for 0 ≤ a < b <∞ with s ∈ [a, b] (included a and b), we have

|Ip̄g(b)− Ip̄g(a)| ≤ cβ,θ,η̄ c ‖Ig‖θ,[a,b] (b− a)θ−η̄, (3.38)

where c is the same positive constant that appears in (3.29) and cβ,θ,η̄ is defined in (3.37).

Proof. We distinguish three cases, depending on the position of s in the interval [a, b].

Case 1: s = a. In this case, we write

|Ip̄g(b)− Ip̄g(s)| =
∣∣∣ ∫ b

s
p̄u gu dWu

∣∣∣
=
∣∣∣ lim
n→∞

∫ b

s+ b−s
2n

p̄u gu dWu

∣∣∣ ≤ lim
n→∞

n∑
i=0

∣∣∣ ∫ s+ b−s
2i

s+ b−s
2i+1

p̄u gu dWu

∣∣∣,
which is consistent with Definition 3.14.
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For each integral in the intervals [s+ b−s
2i+1 , s+ b−s

2i
], we notice that the function p̄ is in C2β

for assumption, and we can apply relation (3.26) and write

∣∣∣ ∫ s+ b−s
2i

s+ b−s
2i+1

gu p̄u dWu

∣∣∣ ≤ c2β+θ

(b− s
2i+1

)θ
|||p̄|||[s+ b−s

2i+1 ,s+
b−s
2i

] ‖Ig‖θ,[s+ b−s
2i+1 ,s+

b−s
2i

]. (3.39)

Now we can use Lemma 3.15, and we have

|||p̄|||[s+ b−s
2i+1 ,s+

b−s
2i

] ≤ 2c
(b− s

2i+1

)−η̄
,

and then, from (3.39),

∣∣∣ ∫ s+ b−s
2i

s+ b−s
2i+1

gu p̄u dWu

∣∣∣ ≤ c2β+θ

(b− s
2i+1

)θ−η̄
2c ‖Ig‖θ,[s,b].

Then

lim
n→∞

n∑
i=0

∣∣∣ ∫ s+ b−s
2i

s+ b−s
2i+1

gu p̄u dWu

∣∣∣ ≤ 2 c2β+θ c ‖Ig‖θ,[s,b](b− s)θ−η̄
∞∑
i=0

2−(i+1)(θ−η).

Since θ − η > 0, the series is geometric and we can calculate the sum:

∞∑
i=0

2−(i+1)(θ−η) =
1

2θ−η̄
1

1− 1
2θ−η̄

=
1

2θ−η̄ − 1
.

Recalling the definition (3.37) of cβ,θ,η̄, we finally get∣∣∣ ∫ b

s
gu p̄u dWu

∣∣∣ ≤ 1

2
cβ,θ,η̄ c ‖Ig‖θ,[s,b] (b− s)θ−η̄,

and then (3.38) follows for s = a.

Case 2: s = b. This case is symmetrical to Case 1 and can be done in the same way, getting∣∣∣ ∫ s

a
gu p̄u dWu

∣∣∣ ≤ 1

2
cβ,θ,η̄ c ‖Ig‖θ,[a,s] (s− a)θ−η̄,

Case 3: a < s < b. In this case, we write∣∣∣ ∫ b

a
gu p̄u dWu

∣∣∣ ≤ ∣∣∣ ∫ s

a
gu p̄u dWu

∣∣∣+
∣∣∣ ∫ b

s
gu p̄u dWu

∣∣∣
≤ 1

2
cβ,θ,η̄ c ‖Ig‖θ,[a,s] (s− a)θ−η̄ +

1

2
cβ,θ,η̄ c ‖Ig‖θ,[s,b] (b− s)θ−η̄

≤ cβ,θ,η̄ c ‖Ig‖θ,[a,b] (b− a)θ−η̄,

thanks to the proofs for cases 1 and 2.

From Theorem 3.16 and Theorem 3.11 (in particular, see relation (3.21)), we can write the
following.
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Corollary 3.17. Suppose that the function p̄ : [0,∞)→ R has a singularity in s and/or
in t, of order η̄ (according to (3.29)). Then, for any 0 ≤ a < b <∞, we have

|Ip̄g(b)− Ip̄g(a)| ≤ c̃β,θ,η̄ cCW,XW
(
‖G‖D(β,β)

X

(b− a)2β + ‖g′‖∞ (b− a)β + ‖g‖∞
)

(b− a)θ−η̄,

(3.40)
where c is the same positive constant that appears in (3.29), CW,XW is defined in (3.22) and
c̃β,θ,η̄ is a constant that depends only on the coefficients β, θ, η̄ and can be chosen as

c̃β,θ,η̄ = 4 c2
2β+θ

1

2θ−η̄ − 1
= 4

( 1

1− 2−(2β+θ−1)

)2 1

2θ−η̄ − 1
. (3.41)

3.4. Technical Proofs

In this Section we put some technical and/or minor proofs of some results we stated above.

Proof of Lemma 3.2.

Proof. Relation (3.2) says that, for any ε > 0, there exists a k > 0 such that, if |t − s| < k,
then |f(t) − f(s)| < ε |t − s|. For any t ∈ (a, b], we fix a partition of (a, t), say t0 = a < t1 <
. . . < tn = t with maxi=0,...,n−1 |ti+1 − ti| < k. We write

|f(t)− f(a)| =
∣∣∣ n−1∑
i=0

f(ti+1)− f(ti)
∣∣∣ ≤ n−1∑

i=0

∣∣∣f(ti+1)− f(ti)
∣∣∣

≤ ε
n−1∑
i=0

|ti+1 − ti| = ε (t− a).

Sending ε→ 0, we get f(t) = f(a) for every t ∈ [a, b].
For the second part, we notice that, if A(s, t) = δf(s, t), then

δA(s, u, t) = δf(s, t)− δf(s, u)− δf(u, t)

= f(t)− f(s)− f(u) + f(s)− f(t) + f(u) = 0.

Now let us suppose that δA ≡ 0. We define a function f such that A(a, t) = f(t) for every
t ∈ (a, b]. Since δA ≡ 0,for any s < t in (a, b), we can write

A(a, t) = A(a, s) +A(s, t) that is A(s, t) = A(a, t)−A(a, s) = f(t)− f(s).

Proof of Theorem 3.11.

Proof. The proof is just an application of the Sewing Map (Theorem 3.4). We define the
function A : [a, b]2< → R as

A(s, t) = g(s) δW (s, t) + g′(s)XW(s, t).

In order to apply Theorem 3.4, we have to prove that

‖δA‖2β+θ <∞, (3.42)
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which yield to the existence and uniquess of the function I such that (3.18) holds, since θ+2β >
1 by assumption. By applying Lemma 3.3, we write

δA(s, u, t) = −δg(s, u) δW (u, t)− δg′(s, u)XW(u, t) + g′(s) δXW(s, u, t)

= −g′(s) δX(s, u) δW (u, t)− gR(s, u) δW (u, t)+

− δg′(s, u)XW(u, t) + g′(s) δX(s, u) δW (u, t)

= −gR(s, u) δW (u, t)− δg′(s, u)XW(u, t),

having used also Lemma 3.2, the fact that G = (g, g′) is a controlled path by X (see (3.14))
and the Chen relation (3.17). Then, we have

|δA(s, u, t)| ≤ |gR(s, u) δW (u, t)|+ |δg′(s, u)XW(u, t)|
≤ ‖gR‖2β |u− s|2β ‖W‖θ |t− u|θ + ‖g′‖β |u− s|β ‖XW‖β+θ |t− u|β+θ

≤ CW,XW
(
‖gR‖2β + ‖g′‖β

)
|t− s|2β+θ.

Hence, we get

‖δA‖2β+θ ≤ CW,XW ‖G‖D(β,β)
X

,

recalling the definition of ‖ · ‖D(β,β)
X

in (3.15).
Applying the Theorem 3.4 of the Sewing Map, we have

‖δI − gδW − g′XW‖2β+θ = ‖δI −A‖2β+θ ≤ c2β+θ ‖δA‖2β+θ, where c2β+θ =
1

1− 2−(2β+θ−1)
,

which yields to (3.19).
Now we write

|δI(s, t)− g(s) δW (s, t)| ≤ |δI(s, t)−A(s, t)|+ |g′(s)XW(s, t)|
≤ ‖δI −A‖2β+θ |t− s|2β+θ + ‖g′‖∞ ‖XW‖β+θ |t− s|θ+β

≤
(
‖δI −A‖2β+θ |t− s|β + ‖g′‖∞ ‖XW‖β+θ

)
|t− s|β+θ

≤ c2β+θ CW,XW
(
‖G‖D(β,β)

X

(t− s)β + ‖g′‖∞
)
|t− s|β+θ,

which yields to (3.20).
Finally, to prove (3.21), we write

|δI(s, t)| ≤ |δI(s, t)− g(s) δW (s, t)|+ |g(s) δW (s, t)|
≤ ‖δI − g δW‖θ+β |t− s|θ+β + ‖g‖∞ ‖W‖θ |t− s|θ

=
(
‖δI − g δW‖θ+β |t− s|β + ‖g‖∞ ‖W‖θ

)
|t− s|θ.

Then,

‖δI‖θ ≤ ‖δI − g δW‖β+θ τ
β + ‖g‖∞ ‖W‖θ

≤ c2β+θ CW,XW (‖G‖D(β,β)
X

τ2β + ‖g′‖∞ τβ + ‖g‖∞),

and we have done.
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Proof of Lemma 3.12.

Proof. We are going to prove that

δ(pg)(s, t) = (p g′)(s) δX(s, t) + O(|t− s|2β) uniformly for |t− s| → 0, (3.43)

which yields to conclusion, thanks to Definition 3.9. We can write

δ(pg)(s, t) = p(t)g(t)− p(s)g(s) = p(t)g(t)− p(s)g(t) + p(s)g(t)− p(s)g(s)

= p(s) δg(s, t) + g(t) δp(s, t)

= p(s)
(
g′(s) δX(s, t) + gR(s, t)

)
+ O(|t− s|2β)

= p(s) g′(s) δX(s, t) + O(|t− s|2β),

since g is a controlled path by X (see (3.14)) and p is in C2β .

Proof of Lemma 3.15.

Proof. We can prove just relation (3.33), since relation (3.34) can be proved analogously.
We write

‖p̄‖∞,[a,b] = sup
u∈[a,b]

|p̄(u)| ≤ sup
u∈[a,b]

c

|u− s|η̄
=

c

(s− b)η̄
,

and, at the same time,

‖p̄‖2β,[a,b] = sup
a≤v<u≤b

|p̄u − p̄v|
|u− v|2β

≤ sup
a≤z≤b

|p̄′z| (b− a)1−2β ≤ c

(s− b)η̄+1
(b− a)1−2β,

and these calculations hold directly to (3.33).



Chapter 4

Rough Fractional SDE

Introduction

In this chapter we are going to use rough path theory and, in particular, the results in Chapter
3, to prove the existence and uniqueness of the solution to the following stochastic integral
equatation:

Yt = ξ +
1

Γ
(
H + 1

2

) ∫ t

0
F (Yu) (t− u)H−

1
2 dWu for all t ∈ [0, T ], (4.1)

for some H ∈ (0, 1
2), where ξ ∈ R is the starting point, F : R→ R is a smooth function and, in

this case, (Wu)u≥0 is a Brownian motion with stochastic integration in the Itô sense. Setting
α := H + 1

2 , equation (4.1) can be formally written in the differential form as follows:{
DαYt = F (Yt) Ẇt for t > 0

Y0 = ξ,
(4.2)

where Dα is the fractional differential operator, i.e. the inverse of the integral operator Jα

defined by

JαZt =
1

Γ(α)

∫ t

0
Zu (t− u)α−1 du.

This kind of stochastic differential equation is called “fractional” because of the presence of the
fractional operator Dα. We will solve this equation in the framework of rough path theory. The
solution Y of (4.2) turns to be a path controlled by the process X given by

Xt =
1

Γ
(
H + 1

2

) ∫ t

0
(t− u)H−

1
2 dWu, (4.3)

which is the so-called Riemann-Liouville (RL) fractional Brownian motion with Hurst param-
eter H ∈ (0, 1

2), close to the usual fractional Brownian motion.
In applications, problems in the form of (4.2) can be found in finance (see [Bayer et al. 17]).

Indeed, these differential equations appear in the study of the dynamics of an important class
of stochastic “rough” volatility models. Also in [Prömel, Trabs 18], the authors deal with the
Volterra integral equation (4.1) and they prove existence and uniqueness of the solution in the
case of H > 1

3 .

Description of the chapter.

• In Section 4.1 we present a more general problem than (4.1) and we state our main results
of existence and uniqueness, under suitable assumptions.

• In Section 4.2 we prove our main result.

• In Section 4.3 we prove some auxiliary technical results.

71
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4.1. Main Results

In this section we present a more general form of the rough fractional differential equation (4.1)
and we prove existence and uniqueness in this general formulation.

Now we fix

(i) the starting point ξ ∈ R;

(ii) a sufficiently smooth function F : R→ R (see below for details);

(iii) two exponents θ, η ∈ R+, with θ > η and β := θ − η;

(iv) a function W ∈ Cθ;

(v) a function p : [0,∞)→ R which is C2 except for a singularity in zero of order η such that

|pu| ≤
c

uη
, |p′u| ≤

c

uη+1
, |p′′u| ≤

c

uη+2
, (4.4)

for some constant c > 0, for all u < 1;

(vi) a function X defined by

Xt =

∫ t

0
pt−u dWu; (4.5)

(vii) a function XW ∈ Cβ+θ
2 such that the Chen relation (3.17) holds, that is

δXW(s, u, t) = δX(s, u) δW (u, t).

Remark 4.1. We know that, for any t ∈ [0, T ], X is well-defined as an easy consequence of
Theorem 3.16 with g ≡ 1 (for any t, we write p̂u = pt−u, which has a singularity in t of order
η). The following proposition, which will be proved below in Section 4.3, says that X ∈ Cβ ,
where β = θ − η, and then the definition of XW is well posed.

Proposition 4.2. The function X defined in (4.5) is a Hölder function with exponent
given by β = θ − η.

Remark 4.3. As we have seen in Chapter 3, if (g, g′) is a path controlled by X, then we can
uniquely define the integral of g with respect to W once we have fixed an integral of X with
respect to W , which is equivalent to fix a map XW ∈ Cβ+θ

2 that satisfies the Chen relation (see
Definition 3.5). If W is a Brownian motion, the existence of XW is ensured by Proposition 3.7
and Theorem 3.8.

We want to solve the following rough fractional integral equation:

Yt = ξ +

∫ t

0
F (Yu) pt−u dWu, for t ∈ [0, T ] (4.6)

Because of the presence of the singular kernel pt−u in the integral, we cannot treat (4.6) as a
classic rough integral equation as in [Friz, Hairer 14]. So, we are going to proceed in a different
way, but always connected to the classical theory.

Let us give a meaningful definition of solution.
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Definition 4.4. A function Y : [0, T ]→ R is called solution of (4.6) if

(i) (Y, F (Y )) is a path controlled by the function X defined in (4.5);

(ii) Y satisfies (4.6), where the integral that appears is a rough integral with the singular
kernel p, as defined in Chapter 3.

Hence, the space of the solution to (4.6) is given by the space the paths controlled by the
path X in (4.5).

Remark 4.5. In the special case of the rough differential equation (4.1), we recall that W is

a Brownian motion and X, as defined in (4.5) with pu = u
1
2−H

Γ(H+ 1
2

)
, is a RL-fractional Brownian

motion with Hurst parameter H, and hence θ = 1
2 − ε, η = 1

2 −H and then rightly β = H − ε,
for any ε small enough.

Our goal is to ensure existence and uniqueness of a solution to (4.6). Before stating the main
theorem, we show the assumptions we need for the function F .

Assumptions on F . We now set two differents assumptions on F : the first one is enough to
prove local existence and uniqueness, while the second one is needed when we want to prove a
global existence.

The first set of assumption is

F ′′ is locally Lipschitz (4.7)

and for the second one we set

F is bounded and F, F ′, F ′′ are globally Lipschitz (4.8)

We note that, in order to have condition (4.7), it is sufficient to request that F ∈ C3 and, in
order to have condition (4.8), we can just require that F ∈ C3 and F, F ′, F ′′, F ′′′ are bounded.

Theorem 4.6 (Existence and uniqueness). We fix ξ, F, θ, η,W, p,X,XW as above.
Consider the rough integral equation in (4.6). If θ, η are such that

θ + (θ − η) < 1, θ + 2(θ − η) > 1, (4.9)

We have

• Uniqueness: if F satisfies (4.7), then there exists at most one solution;

• Local Existence: if F satisfies (4.7), then there exists a solution on a short time
interval, i.e. on the interval [0, T ], for T small enough;

• Global Existence: if F satisfies (4.8), then there exists a global solution on an arbi-
trary time interval.

Remark 4.7. We just prove global existence and uniqueness under assumption (4.8), since
local existence and uniqueness under assumption (4.7) follow by a localization argument.

Indeed, if F satisfies the weak assumption (4.7), then F satisfies the strong assumption (4.8)
restricted to a closed ball B with center in ξ, which is a compact subset of R. Then there exists
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a function F̃ which satisfies the strong assumption (4.8) on the whole R and coincides with F
on B. By global existence, there exists a solution Y : [0, T ]→ R of (4.6) with F replaced by F̃ .
Since Y is continuous with Y (0) = ξ, we can find T ′ < T such that Y (t) ∈ B for all t ∈ [0, T ′].
Then F (Yt) = F̃ (Yt) for all t ∈ [0, T ′] (recall that F = F̃ on B), so Y is a solution of the
original rough differential equation (4.6) on the shorter time interval [0, T ′]. We have proved
local existence under the weak assumption (4.7), assuming global existence under the strong
assumption (4.8). The same can be done for the uniqueness.

Remark 4.8. For the orginal Volterra equation (4.1), recalling that in this case θ = 1
2 − ε for

any ε small enough and η = 1
2 −H, the assumption (4.9) corresponds to

1

4
< H <

1

2
. (4.10)

Sketch of the proof. To prove Theorem 4.6, we use the Banach contraction principle, the
standard technique to solve SDE. We need the estimate that we got in Chapter 3, Section 3.3.

We first show that the integral that appears in (4.6) is a well defined rough integral controlled
by the path X defined in (4.5). To do this, we need to show that F (Y ) is still a controlled path
by X and we prove that, if (g, g′) is a controlled path by X, then (Ig, g) is still a controlled
path by X, where Ig(t) :=

∫ t
0 gu pt−u dWu.

Then we prove that the integral operator

(Y, Y ′) 7→ (ξ + IF (Y ), F (Y ))

is a contraction in a suitable Banach space, and then it has a fixed point, which turns out to
be the solution Y to (4.6).

4.2. Proof of Theorem 4.6

The proof, based on the contraction mapping theorem, is given in Subsection 4.2.3. We first
derive useful estimates on the composition and rough integral operators (Subsections 4.2.1 and
4.2.2).

The framework is the following:

ξ ∈ R
F : R→ R satisfies the strong condition (4.8)
θ, η > 0, θ > η

β := θ − η, θ + β < 1, θ + 2β > 1

p ∈ C2(0,∞) satisfies (4.4)

W ∈ Cθ, X ∈ Cβ defined by (4.5),

XW ∈ Cβ+θ
2 that satisifes the Chen relation (3.17).

We now are going to prove global existence and uniqueness under the strong assumption
(4.8). We recall that this condition says that F : R → R is twice differentiable and F, F ′, F ′′

are globally Lipschitz. In particular, from now on we assume that CF > 0 is such that

max
y,z∈R

{|F (y)− F (z)|, |F ′(y)− F ′(z)|, |F ′′(y)− F ′′(z)|} ≤ CF |y − z|.
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We note that the integral equation (4.6) can be written as

Y = ξ + IF (Y ),

where

IF (Y )(t) :=

∫ t

0
F (Yu) pt−u dWu. (4.11)

Then, in order to prove the existence and uniqueness of a solution to (4.6), we need to prove
that there exists a unique fixed point of the following integral operator:

(Y, Y ′) 7→ I(Y ) := (ξ + IF (Y ), F (Y )). (4.12)

However, since we are interested in defining I over the space of a possible solution of (4.6),
we focus on the following subspace of D(β,β)

X :

E = {Y = (Y, Y ′) ∈ D(β,β)
X such that ‖Y‖D(β,β)

X

≤ C, Y (0) = ξ, and Y ′(0) = F (ξ)},
(4.13)

where
C := 4 c̃β,θ,η CX,W,XWCF (1 + ‖F‖∞) (1 + c) (4.14)

and we recall that c is the same that appears in (4.4), C̃X,W,XW is defined as

CX,W,XW := 3CW,XW (1 + ‖X‖β) = 3 max{‖W‖θ, ‖XW‖θ+β} (1 + ‖X‖β), (4.15)

and c̃β,θ,η is a positive constant which depends only on θ, η (and β = θ − η) which can be
defined as in (3.41).

We are going to show that there exists a unique solution of the rough integral equation (4.6),
provided T small enough: we require that

T β ≤ 1

4(1 + C) (1 + ‖F‖∞)2(1 + ‖X‖β)2
, (4.16)

where C is defined in (4.14).
To complete the proof for an arbitrary time interval [0, T ], we can split it into a finite

number of sub-intervals for which (4.16) holds, and apply our existence and uniqueness result
to all sub-intervals.

We proceed by three steps:

• In Subsection 4.2.1, we prove that, given Y , a path controlled by X, then also F (Y ) (with
its appropriate derivative with respect to X) is a path controlled by X (see Definition
3.9), in order to make sense of the rough integral that appears in the right side of the
equation (4.6). Moreover, we find useful estimates that link the norms ‖F (Y )‖D(β,β)

X
and

‖Y ‖D(β,β)
X

and also the norms of the differences ‖F (Y )− F (Ŷ )‖D(β,β)
X

and ‖Y − Ŷ ‖D(β,β)
X

.

• In Subsection 4.2.2, we show that also t 7→
∫
F (Yu) pt−u dWu is a path controlled by X

with derivative given by F (Y ) and we find some relations for the norms. This implies
that I is a well defined operator over the space E .

• In Subsection 4.2.3 we prove that the integral I is a contraction over the closed space
E ⊂ D(β,β)

X .
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4.2.1. Composition Operator. Since we are dealing with integrals of F (Y ), where Y
is a controlled path and F is a function, then we need some statements on the rough path
F(Y ) := (F (Y ), F ′(Y )Y ). Now we show that F(Y ) is still a path controlled by X and we get
a relation to control ‖F(Y )‖D(β,β)

X

with ‖Y‖D(β,β)
X

, where we use the notation Y = (Y, Y ′).

Lemma 4.9. Let F : R→ R be a Lipschitz differentiable function with a Lipschitz derivative
F ′; in particular, we suppose that there exists CF > 0 such that

max{|F (x)− F (y)|, |F ′(x)− F ′(y)|} ≤ CF |x− y|. (4.17)

If Y = (Y, Y ′) is in D(β,β)
X , then F(Y ) := (F (Y ), F ′(Y )Y ′) is in D(β,β)

X . Moreover

‖F(Y )‖D(β,β)
X

≤ CF
(
‖Y‖D(β,β)

X

+ ‖Y ‖β‖Y ′‖∞ +
1

2
‖Y ‖2β

)
. (4.18)

Proof. We have the following:

• F (Y ) ∈ Cβ , which can be easily proved by observing that

|F (Y )(t)− F (Y )(s)| = |F (Y (t))− F (Y (s))| ≤ CF |Y (t)− Y (s)| ≤ CF ‖Y ‖β |t− s|β,

which implies

‖F (Y )‖β ≤ CF ‖Y ‖β.

• F ′(Y )Y ′ ∈ Cβ , indeed:

|(F ′(Y )Y ′)(t)− (F ′(Y )Y ′)(s)| = |F ′(Y (t))Y ′(t)− F ′(Y (s))Y ′(s)|
= |F ′(Y (t))Y ′(t)− F ′(Y (s))Y ′(t) + F ′(Y (s))Y ′(t)− F ′(Y (s))Y ′(s)|
≤ |F ′(Y (t))− F ′(Y (s))| |Y ′(t)|+ |F ′(Y (s))| |Y ′(t)− Y ′(s)|
≤ CF ‖Y ‖β |t− s|β ‖Y ′‖∞ + CF ‖Y ′‖β |t− s|β,

having used the Lipschitz property (4.17) of F and F ′.

Then

‖F ′(Y )Y ′‖β ≤ CF
(
‖Y ‖β‖Y ′‖∞ + ‖Y ′‖β

)
. (4.19)

Now it remains to prove that

|F (Y )(t)− F (Y )(s)− (F ′(Y )Y ′)(s) δX(s, t)| = O(|t− s|2β) uniformly for |t− s| → 0.
(4.20)

Since Y is a controlled path by X, then Y ′(s) δX(s, t) = δY (s, t)− Y R(s, t), where Y R(s, t)

is in C2β
2 . We can write

F (Y (t))− F (Y (s))− F ′(Y (s))Y ′(s) δX(s, t)

= F (Y (t))− F (Y (s))− F ′(Y (s)) (Y (t)− Y (s))− F ′(Y (s))Y R(s, t).
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The last term is O(|t− s|2β), because so is Y R and F ′ is bounded. For the first three terms, we
note that, since F and F ′ are Lipschitz with constant CF , we have

|F (Y (t))− F (Y (s))− F ′(Y (s)) (Y (t)− Y (s))| =
∫ Y (t)

Y (s)
(F ′(z)− F ′(Ys)) dz ≤ 1

2
CF |Y (t)− Y (s)|2.

This proves (4.20), noting that

(Y (t)− Y (s))2 ≤ ‖Y ‖2β |t− s|2β.

Moreover, we have just shown that

|FR(Y )(s, t)| = |δF (Y )(s, t)− F ′(Y (s))Y ′(s) δX(s, t)|

≤ 1

2
CF ‖Y ‖2β |t− s|2β + CF ‖Y R‖2β |t− s|2β,

which implies

‖F (Y )R‖2β ≤ CF
(1

2
‖Y ‖2β + ‖Y R‖2β

)
. (4.21)

Relation (4.18) follows easly from (4.19) and (4.21):

‖F(Y )‖Dβ,βX = ‖F ′(Y )Y ′‖β + ‖F (Y )R‖2β

≤ CF
(
‖Y ‖β‖Y ′‖∞ +

1

2
‖Y ‖2β +

(
‖Y ′‖β + ‖Y R‖2β

))
= CF

(
‖Y‖D(β,β)

X

+ ‖Y ‖β‖Y ′‖∞ +
1

2
‖Y ‖2β

)
.

We need also estimates in order to control ‖F(Y ) − F(Ŷ )‖D(β,β)
X

by ‖Y − Ŷ ‖D(β,β)
X

, where

both Y = (Y, Y ′) and Ŷ = (Ŷ , Ŷ ′) are controlled paths in E which is a subset of D(β,β)
X defined

in (4.13). The proof of the following is deferred to Section 4.3.

Lemma 4.10. Let F : R→ R be a twice differentiable function Lipschitz, with also F ′ and
F ′′ Lipschitz: in particular, suppose that there exists CF > 0 such that

max{|F (x)− F (y)|, |F ′(x)− F ′(y)|, |F ′′(x)− F ′′(y)|} ≤ CF |x− y|.

Take Y = (Y, Y ′) and Ŷ = (Ŷ , Ŷ ′) in D(β,β)
X such that ‖Y‖D(β,β) ≤M and ‖Ŷ‖D(β,β) ≤M , for

some M > 0 in the interval [0, T ]. Then there exists a positive constant C = C(M,T,X,CF )
such that

‖F(Y )−F(Ŷ )‖D(β,β)
X

≤ C ‖Y − Ŷ‖D(β,β)
X

.

More precisely, if Y and Ŷ are controlled paths in E ⊂ D(β,β)
X , then

‖F(Y )−F(Ŷ )‖D(β,β)
X

≤ 3CF (1 + ‖X‖β) ‖Y − Ŷ‖D(β,β)
X

.
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4.2.2. Rough Integral Operator. We now want to show that the rough integral
operator that we defined in (4.12) is well-defined.

In the following Proposition, we show that, if (g, g′) is a path controlled by X, in notations
(g, g′) ∈ D(β,β)

X , then also the rough integral Ig, defined by (4.22) below, is a path controlled by
X with derivative given by g. The proof of the following is deferred to Section 4.3.

Proposition 4.11. For every G = (g, g′) ∈ D(β,β)
X , let us define the rough integral

Ig(t) :=

∫ t

0
gu pt−u dWu. (4.22)

Then (Ig, g) is in D(β,β)
X , that is Ig is a path controlled by X in Cβ with g as a derivative

with respect to X.
More precisely, for all 0 ≤ s < t ≤ T ,∣∣∣δIg(s, t)− gs δX(s, t)

∣∣∣ =
∣∣∣ ∫ t

0
(gu − gs) (pt−u − ps−u) dWu

∣∣∣
≤ c (t− s)2β c̃θ,β,η CW,XW

(
‖G‖D(β,β)

X

tβ + ‖g′‖∞ + ‖g‖β
)
.

(4.23)

where c is the same that appears in (4.4), CW,XW = max{‖W‖θ, ‖XW‖β+θ} (the same defined
in (3.22)) and c̃θ,β,η is a positive constant which depends only on θ, η (and β = θ − η) and
can be chosen as the one in (3.41).

By Lemma 4.16 below (see Section 4.3 which contains technical proofs) and thanks to relation
(4.23) we got above, we obtain an estimates of ‖Ig‖D(β,β)

X

(where Ig is defined by (4.22)).

Corollary 4.12. For any T > 0, we have

‖Ig‖D(β,β)
X ,[0,T ]

≤ c̃β,θ,η CX,W,XW (1 + c)
(
‖G‖D(β,β)

X

T β + |g′(0)|
)
, (4.24)

where cβ,θ,η is defined in (3.37), c is the same that appears in (4.4) and CX,W,XW is defined
as (4.15).

Proof. By definition,

‖Ig‖D(β,β)
X

= ‖g‖β + ‖IRg ‖2β

≤ ‖g‖β + c̃θ,β,η CW,XW c
(
‖G‖D(β,β)

X

T β + ‖g′‖∞ + ‖g‖β
)
,

where we used Proposition 4.11 to get an estimate for ‖IRg ‖2β (see (4.23)). Then, by applying
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(4.31) and (4.32) (see Lemma 4.16 below), we can write (recalling (4.15))

‖Ig‖D(β,β)
X ,[0,T ]

≤ (1 + ‖X‖β)
(
‖G‖D(β,β)

X

T β + |g′(0)|
)

+

+ c̃θ,β,η CW,XW c

[
2 ‖G‖D(β,β)

X

T β + |g′(0)|+ (1 + ‖X‖β)
(
‖G‖D(β,β)

X

T β + |g′(0)|
)]

≤ (1 + ‖X‖β)
(
‖G‖D(β,β)

X

T β + |g′(0)|
)

+ c̃θ,β,η CW,XW c (1 + ‖X‖β)
(

3‖G‖D(β,β)
X

T β + 2|g′(0)|
)

≤ (1 + ‖X‖β)
(
‖G‖D(β,β)

X

T β + |g′(0)|
)

+ c̃θ,β,η CX,W,XW c
(
‖G‖D(β,β)

X

T β + |g′(0)|
)

≤ c̃θ,β,η CX,W,XW (1 + c)
(
‖G‖D(β,β)

X

T β + |g′(0)|
)
,

that is (4.24).

Thanks to Proposition 4.11, the rough integral operator I (see (4.12)) is well defined over
all the space D(β,β)

X . Indeed, in Lemma 4.9 we proved that, given (Y, Y ′) in D(β,β)
X , also

(F (Y ), F ′(Y )Y ′) is in D(β,β)
X . Then, by applying Proposition 4.11, we have that the rough

path (IF (Y ), F (Y )) is in D(β,β)
X and then (ξ + IF (Y ), F (Y )) is still in D(β,β)

X .
However, as we say above, we restrict our study to a close subspace E of D(β,β)

X , defined in
(4.13), where we find the solution Y of (4.6).

Remark 4.13. The space D(β,β)
X is a Banach space with the norm ‖Y ‖∞+ ‖Y ′‖∞+ ‖Y‖D(β,β)

X

,
which is equivalent to |Y (0)|+ |Y ′(0)|+ ‖Y‖D(β,β)

X

. Hence, in the space E , we can just consider
the distance given by

d(Y, Ŷ) = ‖Y − Ŷ‖D(β,β)
X

.

Since E is a closed subset of D(β,β)
X , we can say that E is a complete metric space with the

distance ‖Y − Ŷ‖D(β,β)
X

.

Remark 4.14. E is not empty. Indeed, let us define

Yt = ξ + F (ξ)Xt for t ∈ [0, T ].

Then Y is a controlled path by X with Y (0) = ξ, derivative identically equals to F (ξ) and with
null remainder; indeed, for any s, t,

δY (s, t) = F (ξ) δX(s, t).

Then ‖Y‖D(β,β)
X

= 0 and hence Y belongs to E .

4.2.3. Fix Point Solution of RDE. Proving Theorem 4.6 is equivalent to prove the
following.

Proposition 4.15. I is a contraction in (E , d), where, for any Y, Ŷ ∈ E ,

d(Y, Ŷ) = ‖Y − Ŷ‖D(β,β)
X

. (4.25)

If we assume this result, then we can prove directly Theorem 4.6.
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Proof of Theorem 4.6. Thanks to Remarks 4.13 and 4.14, we know that (E , d) is a non-
empty complete metric space and, thanks to Proposition 4.15, we know that I is a contraction
on (E, d). Then, by the Banach fixed-point theorem, I admits a unique fixed-point Y? in E ,
i.e. I(Y?) = Y?. In particular, Y? = (Y ?, Y ′?) is such that

Y ?(t) = ξ +

∫ t

0
F (Y ?)(u) pt−u dWu,

and then it is the unique solution to (4.6).

Now it remains to prove Proposition 4.15 and then we are done. In the following proof we
use some technical results whose proofs are deferred to Section 4.3.

Proof of Proposition 4.15. In order to prove Propposition 4.15, we proceed in the follow-
ing way:

• first, we show that I maps E to E , that is: for any Y ∈ E , we have I(Y) ∈ E , that is:
I(Y)(0) = (ξ, F (ξ)) and

∀Y ∈ E : ‖I(Y)‖D(β,β)
X

≤ C; (4.26)

• second, we show that I is a contraction: we will prove that, for all Y, Ŷ in E,

‖I(Y)− I(Ŷ)‖D(β,β)
X

≤ 1

2
‖Y − Ŷ‖D(β,β)

X

. (4.27)

Recalling the definition (4.13) of E and the definition of the operator I(Y) = (ξ+IF (Y ), F (Y )),
we know that ξ + IF (Y )(0) = ξ and its derivative in zero is F (Y (0)) = F (ξ), and so, in order
to say that I(Y) ∈ E , we just have to show (4.26).

Thanks to Corollary 4.12, for Y ∈ E , we write

‖I(Y)‖D(β,β)
X

= ‖IF (Y )‖D(β,β)
X

≤ c̃β,θ,η CX,W,XW (1 + c)
(
‖F(Y)‖D(β,β)

X

T β + |F ′(ξ)F (ξ)|
)

= c̃β,θ,η CX,W,XW (1 + c) ‖F(Y)‖D(β,β)
X

T β︸ ︷︷ ︸
A1

+ c̃cβ,θ,η CX,W,XW (1 + c)CF ‖F‖∞︸ ︷︷ ︸
A2

,

where, in A2 we used the fact that ‖F ′‖∞ ≤ CF and |F (ξ)| ≤ ‖F‖∞.
Now we show that

A1 ≤
1

2
C and A2 ≤

1

2
C,

which lead to (4.26).
For A2, easily, we have

A2 =
1

4

‖F‖∞
1 + ‖F‖∞

C ≤ 1

2
C,

directly from the definifion of C in (4.14).
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To prove the relation for A1, we first show that, if Y ∈ E , then

‖F(Y )‖D(β,β)
X ,[0,T ]

T β ≤ 5

8
CF . (4.28)

If Y ∈ E , from relation (4.18) proved in Lemma 4.9 and by Lemma 4.17 below, we can write

‖F(Y )‖D(β,β)
X ,[0,T ]

≤ CF
(
C +

3

2
(1 + ‖X‖β)2 (1 + ‖F‖∞)2

)
. (4.29)

Then

‖F(Y )‖D(β,β)
X ,[0,T ]

T β ≤ CF
(
CT β +

3

2
(1 + ‖X‖β)2 (1 + ‖F‖∞)2 T β

)
≤ CF

(
C

1

4(1 + C)
+

3

2
(1 + ‖X‖β)2 (1 + ‖F‖∞)2 1

4(1 + ‖X‖β)2(1 + ‖F‖∞)2

)
≤ 5

8
CF ,

since T satisfies (4.16). Recalling the definition of C (see (4.14)), we have

A1 ≤
5

8
c̃β,θ,η CX,W,XWCF =

5

32

C

1 + ‖F‖∞
≤ 1

2
C.

Hence we have proved (4.26).

Now we have to show (4.27). Thanks to Corollary 4.12, for Y, Ŷ ∈ E , we write

‖I(Y)− I(Ŷ)‖D(β,β)
X

= ‖IF (Y )−F (Ŷ )‖D(β,β)
X

≤ c̃β,θ,η CX,W,XW (1 + c) ‖F(Y )−F(Ŷ )‖D(β,β)
X

T β,

(4.30)

because (Ig, g) is a controlled path by X, where

g = F (Y )− F (Ŷ ) and g′ = F ′(Y )Y ′ − F ′(Ŷ )Ŷ ′.

In particular, g′(0) = F ′(Y (0))Y ′(0) − F ′(Ŷ (0)) Ŷ ′(0) = 0, since both Y and Ŷ are in E (see
(4.13)) and then (4.30) holds.

Thanks to Lemma 4.10, which gives an estimate on ‖F(Y )−F(Ŷ )‖D(β,β)
X

, for Y, Ŷ ∈ E , we
can write

‖I(Y)− I(Ŷ)‖D(β,β)
X

≤ c̃β,θ,η CX,W,XW (1 + c) 3CF (1 + ‖X‖β) ‖Y − Ŷ‖D(β,β)
X

T β

= K‖Y − Ŷ‖D(β,β)
X

,

where

K = 3 c̃β,θ,η CX,W,XW (1 + c)CF (1 + ‖X‖β)T β ≤ 3

4
C (1 + ‖X‖β)T β,

having used the definition (4.14) of C. Since T β satisfies (4.16),

K ≤ 3

16

C

1 + C

1

1 + ‖X‖β
≤ 3

16
<

1

2
.

We have just proved that

‖I(Y)− I(Ŷ)‖D(β,β)
X

<
1

2
‖Y − Ŷ‖D(β,β)

X

and then the operator I is a contraction on the close set E of D(β,β)
X .
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4.3. Technical Proofs

Proof of Proposition 4.2.

Proof. For any 0 ≤ s < t <∞, write

Xt −Xs =

∫
R

(pt−u − ps−u) dWu,

with the convention that pu ≡ 0 when u ≤ 0. Now we use Proposition 4.18 (in particular (4.42)
with g ≡ 1), and we can write

|Xt −Xs| ≤ K (t− s)θ−η,

where K is a constant which depends on the data of the problem, but not on s, t.

Relations between norms. In this section, we report some useful relations between the
norms.

Lemma 4.16. Let G = (g, g′) ∈ D(β,β) be a path controlled by X. Then we have

‖g′‖∞,[s,t] ≤ |g′(s)|+ ‖G‖D(β,β)
X

(t− s)β (4.31)

and
‖g‖β,[s,t] ≤ (1 + ‖X‖β)

(
|g′(s)|+ ‖G‖D(β,β)

X

(t− s)β
)
. (4.32)

Proof. Relation (4.31) follows by

|g′u| ≤ |g′s|+ |g′u − g′s| ≤ |g′s|+ ‖g′‖β (t− s)β.

To get relation (4.32), we recall that G is controlled by X and we can write

|δg(s, t)| = |g′s δX(s, t) + gR(s, t)|
≤ ‖g′‖∞ ‖X‖β (t− s)β + ‖gR‖2β (t− s)2β

≤ (t− s)β
(
|g′(s)| ‖X‖β + ‖G‖D(β,β)

X

‖X‖β (t− s)β + ‖G‖D(β,β)
X

(t− s)β
)
,

having used also (4.31).

Lemma 4.17. If Y ∈ E and T satisfies (4.16), then

‖Y ‖β ≤ (1 + ‖X‖β) (1 + ‖F‖∞) (4.33)

and

‖Y ′‖∞ ≤ (1 + ‖F‖∞). (4.34)

Proof. The proof follows from Lemma 4.16. If Y ∈ E , thanks to (4.32), we can write

‖Y ‖β ≤ (1 + ‖X‖β) (|F (ξ)|+ CT β)

≤ (1 + ‖X‖β) (‖F‖∞ + 1),
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since T β ≤ 1
1+C (see (4.16)).

From (4.31), we can write

‖Y ′‖∞ ≤ |F (ξ)|+ CT β ≤ ‖F‖∞ + 1.

Proof of Lemma 4.10.

Proof. We define

H = (h, h′) = (F (Y )− F (Ŷ ), F ′(Y )Y ′ − F ′(Ŷ ) Ŷ ′). (4.35)

We know that H ∈ D(β,β)
X with HR := δh− h′ δX in C2β

2 . By calculation, one gets

‖h′‖β ≤
CF
[
‖Y ‖β ‖Y ′ − Ŷ ′‖∞ + ‖Y ′‖∞ ‖Y − Ŷ ‖β + ‖Y ′ − Ŷ ′‖β +

(
‖Y ′‖β + ‖Y ′‖∞ ‖Y ‖β

)
‖Y − Ŷ ‖∞

]
,

(4.36)

and

‖HR‖2β

≤ CF
[
‖Y R − Ŷ R‖2β +

(
‖Y R‖2β +

1

2
‖Y ‖2β

)
‖Y − Ŷ ‖∞ + ‖Y ‖β ‖Y − Ŷ ‖β +

1

2
‖Y − Ŷ ‖2β

]
(4.37)

(the proofs of these two relations are postponed at the end of the proof).
By (4.36) and (4.37), we have

‖H‖D(β,β)
X

= ‖h′‖β + ‖HR‖2β

≤ CF
[
‖Y R − Ŷ R‖2β + ‖Y ′ − Ŷ ′‖β + ‖Y − Ŷ ‖∞

(
‖Y R‖2β +

1

2
‖Y ‖2β + ‖Y ′‖β + ‖Y ′‖∞ ‖Y ‖β

)
+

+ ‖Y − Ŷ ‖β
(
‖Y ′‖∞ + ‖Y ‖β

)
+ ‖Y ′ − Ŷ ′‖∞ ‖Y ‖β +

1

2
‖Y − Ŷ ‖2β

]
Since Y (0) = Ŷ (0) and Y ′(0) = Ŷ ′(0), then we have the follwing relations:

‖Y − Ŷ ‖∞ ≤ ‖Y − Ŷ ‖β T β

‖Y ′ − Ŷ ′‖∞ ≤ ‖Y ′ − Ŷ ′‖β T β ≤ ‖Y − Ŷ‖D(β,β)
X

T β

and

‖Y − Ŷ ‖β ≤ ‖Y ′ − Ŷ ′‖∞ ‖X‖β + ‖Y R − Ŷ R‖2β T β ≤ ‖Y − Ŷ‖D(β,β)
X

T β (1 + ‖X‖β).

We also use the fact that

‖Y − Ŷ ‖2β ≤ ‖Y − Ŷ ‖β
(
‖Y ‖β + ‖Ŷ ‖β

)
,
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and we write

‖H‖D(β,β)
X

≤ CF
[
‖Y − Ŷ‖D(β,β)

X

+

+ ‖Y − Ŷ‖D(β,β)
X

T 2β (1 + ‖X‖β)
(
‖Y‖D(β,β)

X

+
1

2
‖Y ‖2β + ‖Y ′‖∞ ‖Y ‖β

)
+

+ ‖Y − Ŷ‖D(β,β)
X

T β (1 + ‖X‖β)
(
‖Y ′‖∞ + ‖Y ‖β

)
+ ‖Y − Ŷ‖D(β,β)

X

T β ‖Y ‖β+

+
1

2
‖Y − Ŷ‖D(β,β)

X

T β (1 + ‖X‖β) (‖Y ‖β + ‖Ŷ ‖β)

]
≤ CF (1 + ‖X‖β) ‖Y − Ŷ‖D(β,β)

X

×

×
(

1 + T β (
5

2
‖Y ‖β + ‖Y ′‖∞ + ‖Ŷ ‖β) + T 2β (‖Y‖D(β,β)

X

+
1

2
‖Y ‖2β + ‖Y ′‖∞ ‖Y ‖β)

)
.

In Lemma 4.17, we proved that

max{‖Y ‖β, ‖Y ′‖∞} ≤ (1 + ‖X‖β) (1 + ‖F‖∞), (4.38)

for any Y ∈ E . Then, since Y, Ŷ ∈ E and T satisfies (4.16), by using also (4.31) and (4.32), we
have

T β
(5

2
‖Y ‖β + ‖Y ′‖∞ + ‖Ŷ ‖β

)
≤ 9

2
T β (1 + ‖X‖β) (1 + ‖F‖∞) ≤ 9

8

and

T 2β (‖Y‖D(β,β)
X

+
1

2
‖Y ‖2β + ‖Y ′‖∞ ‖Y ‖β) ≤ T 2β (C +

3

2
(1 + ‖X‖β)2 (1 + ‖F‖∞)2)

≤ 5

32
.

Then

‖H‖D(β,β)
X

≤
(

1 +
9

8
+

5

32

)
CF (1 + ‖X‖β) ‖Y − Ŷ‖D(β,β)

X

< 3CF (1 + ‖X‖β) ‖Y − Ŷ‖D(β,β)
X

.

Proof of (4.36). By definition of h′ in (4.35), we have

h′(t)− h′(s) = (F ′(Yt)Y
′
t − F ′(Ŷt) Ŷ ′t )− (F ′(Ys)Y

′
s − F ′(Ŷs) Ŷ ′s ).

By adding and subtracting F ′(Yt)Y ′s and F ′(Ŷt) Ŷ ′s , we can write

h′(t)− h′(s) = (F ′(Yt)− F ′(Ys))Y ′s + F ′(Yt) (Y ′t − Y ′s )+

− (F ′(Ŷt)− F ′(Ŷs)) Ŷ ′s − F ′(Ŷt) (Ŷ ′t − Ŷ ′s )

:= gs,t Y
′
s + F ′(Yt) δY

′
s,t − ĝs,t Ŷ ′s + F ′(Ŷt) δŶ

′
s,t,

where we use the notations

gs,t := F ′(Yt)− F ′(Ys), ĝs,t := F ′(Ŷt)− F ′(Ŷs).

By triangle inequality,

|h′(t)− h′(s)| ≤ |gs,t − ĝs,t| |Y ′s |+ |ĝs,t| |Y ′s − Ŷ ′s |+ |F ′(Yt)| |δY ′s,t − δŶ ′s,t|+ |F ′(Yt)− F ′(Ŷt)| |δY ′s,t|.
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We use the following relations:

|ĝs,t| = |F ′(Ŷt)− F ′(Ŷs)| ≤ CF |Ŷt − Ŷs| ≤ CF ‖Ŷ ‖β |t− s|β

|Y ′s − Ŷ ′s | ≤ ‖Y ′ − Ŷ ′‖∞
|F ′(Yt)| ≤ ‖F ′‖∞ ≤ CF
|δY ′s,t − δŶ ′s,t| ≤ ‖Y ′ − Ŷ ′‖β |t− s|β

|F ′(Yt)− F ′(Ŷt)| ≤ CF |Yt − Ŷt| ≤ CF ‖Y − Ŷ ‖∞
|δY ′s,t| ≤ ‖Y ′‖β |t− s|β.

We can write
|h′(t)− h′(s)|
|t− s|β

≤ |gs,t − ĝs,t|
|t− s|β

‖Y ′‖∞ + CF ‖Ŷ ‖β ‖Y ′ − Ŷ ′‖∞ + CF ‖Y ′ − Ŷ ′‖β + CF ‖Y − Ŷ ‖∞ ‖Y ′‖β.

Now we focus on |gs,t − ĝs,t|: we can write

|gs,t − ĝs,t| = |(F ′(Ys + δYs,t)− F ′(Ŷs + δŶs,t))− (F ′(Ys)− F ′(Ŷs))|.

By summing and subtracting the term F ′(Ŷs + δYs,t) and by triangle inequality, we get

|gs,t − ĝs,t| ≤ |F ′(Ŷs + δYs,t)− F ′(Ŷs + δŶs,t)|+ |F ′(Ys + δYs,t)− F ′(Ys)− (F ′(Ŷs + δYs,t)− F ′(Ŷs))|

≤ CF |δYs,t − δŶs,t|+
∣∣∣ ∫ 1

0

(
F ′′(Ys + u δYs,t)− F ′′(Ŷs + u δYs,t)

)
δYs,t du

∣∣∣
≤ CF |δYs,t − δŶs,t|+ CF ‖Y − Ŷ ‖∞ |δYs,t|.

Hence
|gs,t − ĝs,t|
|t− s|β

≤ CF (‖Y − Ŷ ‖β + ‖Y − Ŷ ‖∞ ‖Y ‖β).

Proof of (4.37). We have

HR(s, t) = h(t)− h(s)− h′(s) δX(s, t)

= (F (Yt)− F (Ŷt))− (F (Ys)− F (Ŷs))− (F ′(Ys)Y
′
s − F ′(Ŷs) Ŷs) δX(s, t)

= (F (Yt)− F (Ys)− F ′(Ys)Y ′s δX(s, t))− (F (Ŷt)− F (Ŷs)− F ′(Ŷs) Ŷ ′s δX(s, t)).

By summing and subtracting F ′(Ys) δY (s, t) and F ′(Ŷs) δŶ (s, t), we write

HR(s, t) =
(
F (Ys + δY (s, t))− F (Ys)− F ′(Ys) δY (s, t)

)
+

−
(
F (Ŷs + δŶ (s, t))− F (Ŷs)− F ′(Ŷs) δŶ (s, t)

)
+ F ′(Ys) (δY (s, t)− Y ′s δX(s, t))− F ′(Ŷs) (δŶ (s, t)− Ŷ ′s δX(s, t)).

(4.39)

For the last two terms, we can write

|F ′(Ys) (δY (s, t)− Y ′s δX(s, t))− F ′(Ŷs) (δŶ (s, t)− Ŷ ′s δX(s, t))|
= |F ′(Ys)Y R(s, t)− F ′(Ŷs) Ŷ R(s, t)|
≤ |F ′(Ys)| |Y R(s, t)− Ŷ R(s, t)|+ |Y R(s, t)| |F ′(Ys)− F ′(Ŷs)|
≤ CF ‖Y R − Ŷ R‖2β |t− s|2β + ‖Y R‖2β |t− s|2β CF ‖Y − Ŷ ‖∞

= CF

(
‖Y R − Ŷ R‖2β + ‖Y R‖2β ‖Y − Ŷ ‖∞

)
|t− s|2β.
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Now we look at the first two terms of (4.39). If we define

G(Y, δ) := F (Y + δ)− F (Y )− F ′(Y ) δ, (4.40)

we write these two first terms of (4.39) as

G(Ys, δY (s, t))−G(Ŷs, δŶ (s, t))

=
(
G(Ys, δY (s, t))−G(Ŷs, δY (s, t))

)︸ ︷︷ ︸
A

+
(
G(Ŷs, δY (s, t))−G(Ŷs, δŶ (s, t))

)︸ ︷︷ ︸
B

.

By (4.40), we have

G(Y, δ) =

∫ 1

0
(F ′(Y + u δ)− F ′(Y )) δ du,

hence

|G(Y, δ)| ≤ 1

2
CF |δ|2, (4.41)

and we write

A =

∫ 1

0

∫ 1

0
(F ′′(Ys + u v δY (s, t))− F ′′(Ŷs + u v δY (s, t))) δ2 ududv,

which yiels that

|A| ≤ 1

2
CF ‖Y − Ŷ ‖∞ |δY (s, t)|2 ≤ 1

2
CF ‖Y − Ŷ ‖∞ ‖Y ‖2β |t− s|2β.

For B, we can write

B = F (Ŷs + δY (s, t))− F (Ŷs + δŶ (s, t))− F ′(Ŷs) (δY (s, t)− δŶ (s, t)).

By adding and subtracting the term F ′(Ŷs + δY (s, t)) (δY (s, t)− δŶ (s, t)), we write

B = F (Ŷs + δY (s, t))− F (Ŷs + δŶ (s, t))− F ′(Ŷs + δY (s, t)) (δY (s, t)− δŶ (s, t))+

+ (F ′(Ŷs + δY (s, t))− F ′(Ŷs)) (δY (s, t)− δŶ (s, t))

= G(Ŷs + δŶ (s, t), δY (s, t)− δŶ (s, t)) + (F ′(Ŷs + δY (s, t))− F ′(Ŷs)) (δY (s, t)− δŶ (s, t)).

Then, recalling also (4.41), we have

|B| ≤ 1

2
CF |δY (s, t)− δŶ (s, t)|2 + CF |δY (s, t)| |δY (s, t)− δŶ (s, t)|

≤ 1

2
CF ‖Y − Ŷ ‖2β |t− s|2β + CF ‖Y ‖β ‖Y − Ŷ ‖β |t− s|β.

Then, summing up the estimates, we get

‖HR‖2β

≤ CF
(1

2
‖Y − Ŷ ‖2β + ‖Y ‖β ‖Y − Ŷ ‖β +

1

2
‖Y ‖2β ‖Y − Ŷ ‖∞ + ‖Y R − Ŷ R‖2β + ‖Y R‖2β ‖Y − Ŷ ‖∞

)
,

that is (4.37).

Proof of Proposition 4.11. Before the proof of Proposition 4.11, we need the following
result, whose proof is postponed to Chapter 5 (see Proposition 5.7).
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Proposition 4.18. Let us suppose that G = (g, g′) is a path controlled by X in D(β,β)
X

and p : (0,∞)→ R is a function with a singularity of order η for u = 0 and is a C2 function
elsewhere such that satisfies (4.4) for some c > 0.

Then, if θ − η < 1,∣∣∣ ∫
R
gu (pt−u − ps−u) dWu

∣∣∣ ≤ cβ,θ,η CW,XW c (t− s)θ−η
(
‖G‖D(β,β)

X

t2β + ‖g′‖∞ tβ + ‖g‖∞
)
.

(4.42)
If θ + β − η < 1, we have∣∣∣ ∫

R
(gu − gs) (pt−u − ps−u) dWu

∣∣∣
≤ cβ,θ,η CX,W,XW c (t− s)θ+β−η

(
‖G‖D(β,β)

X

tβ + ‖g′‖∞ + ‖g‖β
)
,

(4.43)

where cβ,θ,η is a constant which depends only on β, θ, η and we use the convention that pu ≡ 0
when u ≤ 0.

Thanks to this result, we can easily prove Proposition 4.11.

Proof of Proposition 4.11. We know that, if (g, g′) controlled path of X in D(β,β)
X , then,

for any t ∈ [0, T ],

Ig(t) =

∫ t

0
gu pt−u dWu,

is well defined. In order to prove that (Ig, g) is in D(β,β)
X , we have to prove the following relation:

Ig(t)− Ig(s) = gs δXs,t + O(|t− s|2β),

uniformly for |t− s| → 0.
By using the definition (4.22) of Ig, we can write

Ig(t)− Ig(s) =

∫ t

0
gu (pt−u − ps−u) dWu

= gs

∫ t

0
(pt−u − ps−u) dWu +

∫ t

0
(gu − gs) (pt−u − ps−u) dWu.

The first integral equals δXs,t, while, thanks to Proposition 4.18, the second integral is O(|t−
s|2β), and, in particular, relation (4.23) follows.
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Chapter 5

Finer Estimate for the Solution to a
Linear Rough Fractional SDE

Introduction

In Chapter 4 we proved the existence and uniqueness of a solution to a general class of rough
fractional stochastic differential equations. In this Chapter, we are going to find finer estimates
of the behavior of the solution, which will provide an equivalent characterization bound on its
increments. For simplicity, we will focus on the linear case, that is:

Yt = ξ +

∫ t

0
Yu pt−u dWu, (5.1)

where we recall that:

ξ ∈ R
β, θ, η ∈ (0, 1) with β := θ − η
β + θ < 1, 2β + θ > 1, η < θ,

u 7→ pu is a C2β function in (0,∞) with a discontinuity of order η in zero

W ∈ Cθ

and the solution Y turns to be a path controlled by the function X, where

Xt :=

∫ t

0
pt−u dWu, and X ∈ Cβ = Cθ−η.

We also fix XW, the “remainder” of the integral ofX with respect toW , defined as a two-variable
function in Cβ+θ

2 such that satisfies the Chen relation, that is:

δXW(s, u, t) = δX(s, u) δW (u, t)

(cfr. (3.17)).
We recall that our motivation was the special case when W is a Brownian motion and

pt−u = (t−u)H−
1
2 . In this case, X is a so-called Riemann-Liouville fractional Brownian motion

with Hurst exponent H where, with the notation used above,

θ =
1

2
− ε, η =

1

2
−H, β = θ − η = H − ε, for any ε > 0,

and then, in order to satisfies the relations between θ, β and η, it turns out that we need to
consider

H ∈
(1

4
,
1

2

)
.

89
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Since this is the case of our interest, in this Chapter we stick to it, even if, for convienience, we
mantain the notation written as in (5.1).

In order to search for finer estimate of the solution, we find a new writing for δY (s, t).
Starting from (5.1), we write for arbitrary s, t ≥ 0

Yt − Ys =

∫
R
Yu (pt−u − ps−u) dWu = Ys δX(s, t) + Ỹ R(s, t), (5.2)

with the convention that pu ≡ 0 when u ≤ 0 and where Ỹ R : [0,∞)2 → R is a function in C2β
2

with the arguments (s, t) not necessary ordered. It is defined as

Ỹ R(v, u) = δY (v, u)− Yv δX(v, u) =

{
Y R(v, u) if v ≤ u
δY (u, v) δX(u, v)− Y R(u, v) if v > u.

(5.3)

where Y R : [0,∞)2
< → R is the remainder with ordered arguments defined after Definitin 3.9

(see (3.16)). The equation (5.2) is the starting point to find a new finer expression. We recall
that

|δX(s, t)| = |Xt −Xs| = O(|t− s|β) and |Ỹ R(s, t)| = O(|t− s|2β),

where β < 1
2 . The idea is to expand the remainder Ỹ R until we find a term which is o(|t− s|).

Of course, the expansion will be more and more complicated when β becomes smaller. Recall
that, in order to make sense of the SDE driven by a fractional Brownian motion, the Hurst
parameter H = β− ε should be in (1

4 ,
1
2) and θ < 1

2 , since it represents the Hölder regularity of
a path of a Brownian motion process. Then, for our interests, we will treat the case β ∈ (1

4 ,
1
2).

Description of the Chapter.

• In Section 5.1 we present the results and we state the main theorem.

• In Section 5.2, we state and prove the key result to get the finer estimates for the solution.
Proposition 5.6 permits to get important bounds on the rough integrals with singular
kernels.

• In Section 5.3, we prove the theorem for the “characterization” of the solution. The proof
is divided in three steps: the first one is a general result; the secon step permits to find a
characterization when β ∈ (1

3 ,
1
2); the third step gives a characterization when β ∈ (1

4 ,
1
3).

• In Section 5.4, we collect some technical proofs.

5.1. Main result

Let us consider the case of the linear rough differential equation (see (4.6) in Chapter 4), that
can be written as

Yt = ξ +

∫ t

0
Yu pt−u dWu for t ∈ [0, T ]. (5.4)

Thanks to Theorem 4.6, we know that there exists a unique global solution Y in the space of
paths controlled by Xt =

∫ t
0 pt−u dWu, where the integral in (5.4) is a rough integral.
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We need the following further condition: p : [0,∞) → R is a function which is C3 except a
singularity at zero of order η, more precisely there exists some positive c > 0 such that

|pu| ≤
c

uη
, |p′u| ≤

c

uη+1
, |p′′u| ≤

c

uη+2
, |p′′′u | ≤

c

uη+3
(5.5)

We start from (5.2) and find new expansions for the increment Yt − Ys, when |t − s| → 0.
To this purpose, we need to define the following objects, which will provide a finer description
of Yt − Ys:

X̃W(s, t) :=

∫
R
δX(s, u) (pt−u − ps−u) dWu, (5.6)

C(Y, s) :=

∫
R
Ỹ R(s, u) p′s−u dWu, (5.7)

XW(s, t) =

∫
R
X̃W(s, u) (pt−u − ps−u − (t− s) p′s−u) dWu (5.8)

where Ỹ R is defined in (5.3).
A key step for the main Theorem 5.2 is the following Proposition.

Proposition 5.1.

|X̃W(s, t)| = O(|t− s|2β)

|C(Y, s)| = O(s3β−1)

|XW(s, t)| = O(|t− s|3β)

Theorem 5.2. Y ∈ D(β,β)
X is a solution of (5.4) if and only if, for any 0 < s < t:

(i) for 1
3 < β < 1

2 ,

δY (s, t) = Ys δX(s, t) + Ys X̃W(s, t) + (t− s)C(Y, s) + o(|t− s|); (5.9)

(ii) for 1
4 < β < 1

3 ,

δY (s, t) = Ys δX(s, t) + Ys X̃W(s, t) + (t− s)C(Y, s) + YsXW(s, t) + o(|t− s|).
(5.10)

It is enough to prove that the solution Y of (5.4) satisfies (5.9)-(5.10), because there can
be at most one Y which satisfies (5.9)-(5.10). This follows by Lemma 3.2, because the r.h.s. of
these equations are linear in Y (note that C(Y, s) is linear in Y ).

Remark 5.3. The “characterization” given by Theorem 5.2 is not local in the sense that the
r.h.s. of (5.9)-(5.10) is not a local function of Y , because the “coefficient” C(Y, s) depends on
the whole path Y and not only on the value Ys. This is in contrast with the case of the usual
SDE

dYt = F (Yt) dWt

which, in our language, would correspond to taking pt := 1[0,∞)(t) as the Heaviside function.



92 5. FINER ESTIMATE FOR THE SOLUTION TO A LINEAR ROUGH FRACTIONAL SDE

Sketch of the proof of Theorem 5.2. We will prove Theorem 5.2 and Proposition 5.1
simultaneously.

First, in Section 5.2, we present the key result to prove Theorem 5.2, that is the fundametal
Proposition 5.6. This proposition permits to have finer estimates for rough integrals with singu-
lar kernels and is formulated in a more general way. We used the first part of that proposition
to prove Proposition 4.18 whose proof we have postponed in this chapter and which we used
in turn to prove Proposition 4.11.

Once we get the estimates from Proposition 5.6, we can prove Proposition 5.1 and then the
equations (5.9) and (5.10) by using repeatedly the integral formulation of the solution (5.4).

5.2. Fundamental Proposition for Rough Integral with Singular
Kernels

In this section we are going to prove a fundamental proposition that will be used in the study
of the rough fractional SDE of Chapter 4.

In Chapter 3, Section 3.3, we defined the integral in the form

Igp̄(t) :=

∫ t

0
g p̄u dWu,

where p̄ is a kernel with a singularity of order η̄ and G = (g, g′) is a controlled path by X ∈ Cβ .
In particular, by Corollary 3.17, we got the following:

|Ip̄g(t)− Ip̄g(s)| ≤ c̃β,θ,η̄ cCW,XW
(
‖G‖D(β,β)

X

(t− s)2β + ‖g′‖∞ (t− s)β + ‖g‖∞
)

(t− s)θ−η̄,
(5.11)

where c̃β,θ,η̄ is a positive constant which depends only on θ, η̄ and β := θ− η̄ and can be defined
as in (3.41) and CW,XW := max{‖W‖θ, ‖XW‖β+θ}, as defined in (3.22).

We give two different and stronger assumptions on the function p̄. We assume that p̄ has a
singularity in some s ∈ [0,∞) of order η̄ in the sense of (3.29), but also such that its behavior
improves “far” from s, in the following sense:

|p̄u| ≤


c

|u− s|η̄
if |u− s| < δ

c δ

|u− s|η̄+1
if |u− s| ≥ δ.

(5.12)

and

|p̄′u| ≤


c

|u− s|η̄+1
if |u− s| < δ

c δ

|u− s|η̄+2
if |u− s| ≥ δ.

(5.13)

The reason for the above conditions (5.12) and (5.13) is that we will deal with rough integrals∫
g p̄ dWu where p̄ is a “remainder” in the following sense:

p̄u = pt−u − ps−u or p̄u = pt−u − ps−u − (t− s) p′s−u, with pu ∼
c

uη
.

These functions satisfies (5.12) and (5.13) with η̄ = η and δ = (t− s) for the first case and, in
the second case, with c = c (t− s), η̄ = η + 1 and δ = (t− s) (see Corollaries 5.7 and 5.8).
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The following Lemma can be compared with Lemma 3.15; in the following one, we use the
stronger assumptions (5.12) and (5.13).

Lemma 5.4. Fix β ∈ (0, 1
2). If p̄ : [0, T ]→ R is a C2β function with a singularity at s and

such that (5.12) and (5.13) hold for some c > 0 and δ > 0. Then, for all the intervals [a, b],
with 0 ≤ a < b < s, and s− b ≥ δ, we have

|||p̄||||[a,b] ≤
cδ

(s− b)η̄+1

(
1 +

b− a
s− b

)
. (5.14)

Proof. We recall the definition of |||p̄|||:

|||p̄||||[a,b] := ‖p̄‖∞|[a,b] + (b− a)2β ‖p̄‖2β|[a,b].

We can write

sup
u∈[a,b]

|p̄u| ≤ sup
u∈[a,b]

cδ

(s− u)η̄+1
≤ c δ

(s− b)η̄+1
,

having used condition (5.12), and noting that s−u ≥ s− b for any u ∈ [a, b]. Also we can write

sup
a≤v<u≤b

|p̄u − p̄v|
(u− v)2β

≤ sup
a≤v<u≤b

sup
z∈[v,u]

|p̄′z| (u− v)1−2β ≤ cδ

(s− b)η̄+2
(b− a)1−2β.

Then

|||p̄||||[a,b] ≤
cδ

(s− b)η̄+1

(
1 +

b− a
s− b

)
.

Remark 5.5. If p̄ : [0, T ]→ R has a singularity at s of order η̄, i.e. it satisfies (3.29), then, for
any [a, b] with 0 ≤ a < b < s, we can write

|||p̄|||[a,b] ≤
c

(s− b)η̄
(

1 +
b− a
s− b

)
,

thanks to Lemma 3.15. We note that this relation is weaker than (5.14) when s− b ≥ δ. Then
assumptions (5.12) and (5.13) are needed to prove the following proposition, where (5.14) is
used repeatedly.

Proposition 5.6. Fix s ∈ [0,∞). Let g : [0, s] → R be a controlled path of X and let
p̄ : [0, s)→ R be a C2β function, with a singularity at s, and which satisfies (5.12) and (5.13).

For any G = (g, g′) path controlled by X, we have∣∣∣ ∫ s

0
gu p̄u dWu

∣∣∣ ≤ ĉβ,θ,η̄ CW,XW c δθ−η̄
(
‖G‖D(β,β)

X

s2β + ‖g′‖∞ sβ + ‖g‖∞
)
. (5.15)

Moreover:
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(i) If g satisfies
|gu| ≤ K |s− u|β, (5.16)

then, if θ + β − η̄ < 1,∣∣∣ ∫ s

0
gu p̄u dWu

∣∣∣ ≤ ĉβ,θ,η̄ CW,XW c δθ+β−η̄
(
‖G‖D(β,β)

X

sβ + ‖g′‖∞ + 2K
)
. (5.17)

(ii) If g satisfies:

|gu| ≤ K |s− u|2β

|g′u| ≤ K |s− u|β,
(5.18)

then, if θ + 2β − η̄ < 1,∣∣∣ ∫ s

0
gu p̄u dWu

∣∣∣ ≤ ĉ2β,θ,η̄ CW,XW c δθ+2β−η̄
(
‖G‖D(β,β)

X

+ 4K
)

(5.19)

(iii) If g satisfies:

|gu| ≤ K |s− u|3β

|g′u| ≤ K |s− u|2β

‖G‖D(β,β)
X

|[u,s] ≤ K (s− u)β
(5.20)

then, if θ + 3β − η̄ < 1,∣∣∣ ∫ s

0
gu p̄u dWu

∣∣∣ ≤ ĉ3β,θ,η̄ CW,XW c δθ+3β−η̄ 8K. (5.21)

In (5.17), (5.19) and (5.21), the constants c > 0 and δ > 0 are the same that appear in
(5.12)-(5.13) and we have used the following notations:

ĉnβ,θ,η̄ :=
1

1− 2−(2β+θ−1)

1

1− 2nβ+θ−η̄−1
for n = 1, 2, 3,

and

CW,XW := max{‖W‖θ, ‖XW‖β+θ}.

Proof. We define

I[0,s] :=

∫ s

0
gu p̄u dWu.

If we use Corollary 3.17 (note that (5.12)-(5.13) imply (3.29)), then we can write

|I[0,s]| ≤ c̃β,θ,η̄ CW,XW c sθ−η̄
(
‖G‖D(β,β)

X

s2β + ‖g′‖∞ sβ + ‖g‖∞
)
.

Then, if s ≤ 2δ, we have proved (5.15). Moreover, if g satisfies (5.16), (5.18) or (5.20), we obtain
(5.17), (5.19) or (5.21), respectively.
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Now we just have to prove the proposition in the case of s > 2δ. In this case, there exists
n = n(δ) ∈ N such that 2n δ < s ≤ 2n+1 δ. We can divide the integral and write

|I[0,s]| ≤
∣∣∣ ∫ s

2

0
gu p̄u dWu

∣∣∣+
n∑
i=1

∣∣∣ ∫ si

si+1

gu p̄u dWu

∣∣∣+
∣∣∣ ∫ s

s−δ
gu p̄u dWu

∣∣∣
= |I[0, s

2
]|+

n∑
i=1

∣∣∣I[si+1,si]|+ |I[s−δ,s]|,
(5.22)

where si = s− 2i−1 δ. For the last integral, I[s−δ,s], we use Corollary 3.17 and we write∣∣∣ ∫ s

s−δ
gu p̄u dWu

∣∣∣ ≤ c̃β,θ,η̄ CW,XW c δθ−η̄
(
‖G‖D(β,β)

X

δ2β + ‖g′‖∞ δβ + ‖g‖∞
)
.

If g satisfies (5.16), and then ‖g‖∞|[s−δ,s] ≤ Kδβ , we obtain (5.17):∣∣∣ ∫ s

s−δ
gu p̄u dWu

∣∣∣ ≤ cβ,θ,η̄ CW,XW c δθ+β−η̄
(
‖G‖D(β,β)

X

δβ + ‖g′‖∞ +K
)
.

If g satisfies (5.18), we obtain (5.19):∣∣∣ ∫ s

s−δ
gu p̄u dWu

∣∣∣ ≤ cβ,θ,η̄ CW,XW c δθ+2β−η̄
(
‖G‖D(β,β)

X

+K
)
,

and, if g satisfies (5.20), we obtain (5.21):∣∣∣ ∫ s

s−δ
gu p̄u dWu

∣∣∣ ≤ cβ,θ,η̄ CW,XW c δθ+3β−η̄K.

Hence it remains to prove the estimates for the remaining integrals in (5.22). If we use (3.26),
we can write∣∣∣ ∫ s

2

0
gu pu dWu

∣∣∣+

n∑
i=1

∣∣∣ ∫ si

si+1

gu pu dWu

∣∣∣
≤
(s

2

)θ
|||p|||[0, s

2
] ‖Ig‖θ|[0, s2 ] +

n∑
i=1

(si − si+1)θ |||p||||[si+1,si] ‖Ig‖θ|[si+1,si],

(5.23)

We are going to give an estimate to the norms in this relation.
For the norms in the interval [0, s2 ] we can use condition (5.12), since s

2 > δ, and, by Lemma
5.4, we can write

|||p||||[0, s
2

] ≤ c
(s

2

)−η−1
δ ≤ c 2η̄+1 2n(−η̄−1) δ−η̄, (5.24)

recalling also that s > 2n δ. For Ig, thanks to Theorem 3.11 (in particular, relation (3.21)), we
write

‖Ig‖θ|[0, s
2

] ≤ c2β+θ CW,XW

(
‖G‖D(β,β)

X ,[0, s
2

]

(s
2

)2β
+ ‖g′‖∞,[0, s

2
]

(s
2

)β
+ ‖g‖∞,[0, s

2
]

)
. (5.25)
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If g satisfies (5.16), then

‖g‖∞,[0, s
2

] ≤ K sup
u∈[0, s

2
]
(s− u)β = K sβ ≤ 2K

(s
2

)β
,

and we can write

‖Ig‖θ|[0, s
2

] ≤ c2β+θ CW,XW

(s
2

)β (
‖G‖D(β,β)

X

(s
2

)β
+ ‖g′‖∞,[0, s

2
] + 2K

)
≤ c2β+θ CW,XW 2nβ δβ

(
‖G‖D(β,β)

X

sβ + ‖g′‖∞ +K
)
,

since s ≤ 2n+1 δ.
If g satisfies (5.18), then we have the following estimates

‖g‖∞,[0, s
2

] ≤ K sup
u∈[0, s

2
]
(s− u)2β ≤ K 22β

(s
2

)2β
≤ 2K

(s
2

)2β

and

‖g′‖∞,[0, s
2

] ≤ K sup
u∈[0, s

2
]
(s− u)β ≤ K sβ ≤ 2K

(s
2

)β
.

Then, by (5.25), we can write in this case

‖Ig‖θ|[0, s
2

] ≤ c2β+θ CW,XW

(s
2

)2β (
‖G‖D(β,β)

X ,[0, s
2

]
+ 4K

)
≤ c2β+θ CW,XW 22nβ δβ

(
‖G‖D(β,β)

X

+ 4K
)
.

If g satisfies (5.20), then we know that

‖g‖∞,[0, s
2

] ≤ K sup
u∈[0, s

2
]
(s− u)3β ≤ K 23β

(s
2

)3β
≤ 4K

(s
2

)3β
,

‖g′‖∞,[0, s
2

] ≤ K sup
u∈[0, s

2
]
(s− u)2β ≤ K 22β

(s
2

)2β
≤ 2K

(s
2

)2β

and

‖G‖D(β,β)
X ,[0, s

2
]
≤ ‖G‖D(β,β)

X ,[0,s]
≤ K sβ = K 2β

(s
2

)β
≤ 2K

(s
2

)β
.

Then, we can write in this case

‖Ig‖θ|[0, s
2

] ≤ c2β+θ CW,XW

(s
2

)3β
K

≤ c2β+θ CW,XW 23nβ 8K.

For the integrals I[si+1,si], we first notice that

s− si = si − si+1 = 2i−1 δ and s− si+1 = 2i δ for i = 1, . . . , n.
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Since also s− si ≥ δ, for i = 1, . . . , n, we have by Lemma 5.4

|||p̄||||[si+1,si] ≤
2c

(s− si)η̄+1
δ ≤ c 2(i−1)(−η̄−1) δ−η̄. (5.26)

By using relation (3.21), for ‖Ig‖θ,[si+1,si], we write

‖Ig‖θ,[si+1,si]

≤ c2β+θ CW,XW

(
‖G‖D(β,β)

X ,[si+1,si]
(si − si+1)2β + ‖g′‖∞,[si+1,si] (si − si+1)β + ‖g‖∞,[si+1,si]

)
= c2β+θ CW,XW

(
‖G‖D(β,β)

X ,[si+1,si]
(2i−1 δ)2β + ‖g′‖∞,[si+1,si] (2i−1 δ)β + ‖g‖∞,[si+1,si]

)
.

(5.27)

By proceeding in a similar way as we have done above for I[0, s
2

], if g satisfies (5.16), then

‖g‖∞,[si+1,si] ≤ K sup
u∈[si+1,si]

(s− u)β = K (s− si+1)β = K (2i δ)β ≤ 2K (2i−1 δ)β

and we can write

‖Ig‖θ,[si+1,si] ≤ c2β+θ CW,XW δβ
(
‖G‖D(β,β)

X

(2i−1δ)β + ‖g′‖∞ + 2K
)

2(i−1)β

≤ c2β+θ CW,XW δβ
(
‖G‖D(β,β)

X

sβ + ‖g′‖∞ + 2K
)

2(i−1)β.

If g satisfies (5.18), then

‖g‖∞,[si+1,si] ≤ 2K (2i−1δ)2β

‖g′‖∞,[si+1,si] ≤ 2K (2i−1δ)β

and we have

‖Ig‖θ,[si+1,si] ≤ c2β+θ CW,XW δ2β
(
‖G‖D(β,β)

X

+ 4K
)

2(i−1)2β.

If g satisfies (5.20), then

‖g‖∞,[si+1,si] ≤ 4K (2i−1δ)3β

‖g′‖∞,[si+1,si] ≤ 2K (2i−1δ)2β

and

‖G‖D(β,β)
X ,[si+1,si]

≤ 2K (2i−1δ)β,

and we can write

‖Ig‖θ,[si+1,si] ≤ c2β+θ CW,XW δ3β 8K 2(i−1)3β.

Incidentally, if we plug i = n+1 in the previous bound, we find the estimate that we obtained
for I[0, s

2
]. Then, summing up, recalling (5.23) and bounding ( s2)θ ≤ 2nθsθ, it follows by (5.24),
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(5.25) and (5.26), (5.27) that

|I[0, s
2

]|+
n∑
i=1

|I[si+1,si]|

≤
(s

2

)θ
|||p̄|||[0, s

2
] ‖Ig‖θ|[0, s2 ] +

n∑
i=1

(si − si+1)θ |||p̄||||[si+1,si] ‖Ig‖θ|[si+1,si]

≤ c2β+θ CW,XW c δθ−η̄
(
‖G‖D(β,β)

X

s2β + ‖g′‖∞ sβ + ‖g‖∞
)( n+1∑

i=1

2(i−1)(θ−η̄−1)
)

= ĉβ,θ,η̄ CW,XW c δθ−η̄
(
‖G‖D(β,β)

X

s2β + ‖g′‖∞ sβ + ‖g‖∞
)
,

where we set

ĉβ,θ,η̄ = c2β+θ

∞∑
i=1

2(i−1)(θ−η̄−1) =
1

1− 2−(2β+θ−1)

1

1− 2θ−η̄−1
.

Moreover:

• if g satisfies (5.16),

|I[0, s
2

]|+
n∑
i=1

|I[si+1,si]|

≤
(s

2

)θ
|||p̄|||[0, s

2
] ‖Ig‖θ|[0, s2 ] +

n∑
i=1

(si − si+1)θ |||p̄||||[si+1,si] ‖Ig‖θ|[si+1,si]

≤ c2β+θ CW,XW c δθ+β−η̄
(
‖G‖D(β,β)

X

sβ + ‖g′‖∞ + 2K
)( n+1∑

i=1

2(i−1)(θ+β−η̄−1)
)
.

If θ + β − η̄ < 1, the sum is convergent and we have∣∣∣ ∫ s
2

0
gu p̄u dWu

∣∣∣+
n∑
i=1

∣∣∣ ∫ si

si+1

gu p̄u dWu

∣∣∣ ≤ ĉβ,θ,η̄ CW,XW c δθ+β−η̄
(
‖G‖D(β,β)

X

sβ + ‖g′‖∞ + 2K
)
,

where

ĉβ,θ,η̄ = c2β+θ

∞∑
i=0

2i(θ+β−η̄−1) =
1

1− 2−(2β+θ−1)

1

1− 2θ+β−η̄−1
.

• If g satisfies (5.18), we have

|I[0, s
2

]|+
n∑
i=1

|I[si+1,si]|

≤ c2β+θ CW,XW c δθ+2β−η̄
(
‖G‖D(β,β)

X

+ 4K
)( n+1∑

i=1

2(i−1)(θ+2β−η̄−1)
)
.

Hence, if θ + 2β − η̄ < 1, the sum is convergent and we have∣∣∣ ∫ s
2

0
gu p̄u dWu

∣∣∣+
n∑
i=1

∣∣∣ ∫ si

si+1

gu p̄u dWu

∣∣∣ ≤ ĉ2β,θ,η̄ CW,XW c δθ+2β−η̄
(
‖G‖D(β,β)

X

+ 4K
)
.
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• If g satisfies (5.20) we have

|I[0, s
2

]|+
n∑
i=1

|I[si+1,si]| ≤ cβ,θ,η̄ CW,XW c δθ+3β−η̄ 8K
( n+1∑
i=1

2(i−1)(θ+3β−η̄−1)
)
.

Hence, if θ + 3β − η̄ < 1, the sum is convergent and we have∣∣∣ ∫ s
2

0
gu p̄u dWu

∣∣∣+

n∑
i=1

∣∣∣ ∫ si

si+1

gu p̄u dWu

∣∣∣ ≤ ĉ3β,θ,η̄ CW,XW c δθ+3β−η̄ 8K.

Here we can prove Proposition 4.18, which we used in Chapter 4 and now turns out to
be a particular and useful case for which Proposition 5.6 can be applied. We restate here the
Proposition as a Corollary of Proposition 5.6.

Proposition 5.7. Let us suppose that G = (g, g′) is a controlled path by X in D(β,β)
X

and p : (0,∞)→ R is a function with a singularity of order η for u = 0 and is a C2 function
elsewhere such that satisfies (4.4) for all u close to 0 and for some c > 0.

Then, if θ − η < 1,∣∣∣ ∫
R
gu (pt−u − ps−u) dWu

∣∣∣ ≤ ĉβ,θ,η CW,XW c (t− s)θ−η
(
‖G‖D(β,β)

X

t2β + ‖g′‖∞ tβ + ‖g‖∞
)

(5.28)
Then, if θ + β − η < 1,∣∣∣ ∫

R
(gu − gs) (pt−u − ps−u) dWu

∣∣∣
≤ ĉβ,θ,η CW,XW c (t− s)θ+β−η

(
‖G‖D(β,β)

X

tβ + ‖g′‖∞ + ‖g‖β
)
,

(5.29)

where we use the convention that pu ≡ 0 when u ≤ 0.

Proof. We can write∫ t

0
gu (pt−u − ps−u) dWu =

∫ s

0
gu (pt−u − ps−u) dWu +

∫ t

s
gu pt−u dWu.

For the second integral, we can use Corollary 3.17 with p̄u = pt−u, which has a singularity in t
of order η, and then we can write∣∣∣ ∫ t

s
gu pt−u dWu

∣∣∣ ≤ c̃β,θ,η CW,XW c (t− s)θ−η
(
‖G‖D(β,β)

X

(t− s)2β + ‖g′‖∞ (t− s)β + ‖g‖∞
)
.

It remains to prove (5.28) for the first integral over the interval [0, s]. This follows from (5.15)
of Theorem 5.6 with p̄u = pt−u − ps−u, once we have proved that such a p̄ satisfies conditions
(5.12) and (5.13).

For u ∈ [0, s), we can write

|pt−u − ps−u| ≤
2c

(s− u)η
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and, at the same time,

|pt−u − ps−u| ≤ sup
r∈[s,t]

|p′r−u| (t− s) ≤
c

(s− u)η+1
(t− s).

Then condition (5.12) is satisfied with δ = t−s. The same can be done with p′t−u−p′s−u, under
the assumption that |p′′u| ≤ c

uη+2 . Then (5.28) follows.
To prove (5.29), we proceed in a similar way: we write∫ t

0
(gu − gs) (pt−u − ps−u) dWu

=

∫ s

0
(gu − gs) (pt−u − ps−u) dWu +

∫ t

s
(gu − gs) pt−u dWu.

For the second integral, we use Corollary 3.17 and, for the first one, relation (5.29) follows from
the part (i) of Proposition 5.6 with gu = gu − gs and p̄u = pt−u − ps−u. Indeed, such p̄ satisfies
(5.12) and (5.13), as we have shown above, and clearly,

|gu − gs| ≤ ‖g‖β (u− s)β,

and then condition (5.16) holds with K = ‖g‖β .

We also give the following Corollary of Proposition 5.6, which is used below.

Corollary 5.8. Let X ∈ Cβ and W ∈ Cθ as above. Let p : (0,∞)→ R be a C3 function
such that satisfies (5.5) for some c > 0 (and we use the convention that pu ≡ 0 when u ≤ 0).
Let G = (g, g) be a controlled path of X.

(i) If g satisfies (5.16), then, if θ + β − η < 2,∣∣∣ ∫
R
gu (pt−u − ps−u − (t− s) p′s−u) dWu

∣∣∣
≤ ĉβ,θ,η+1CW,XW c (t− s)θ+β−η

(
‖G‖D(β,β)

X

tβ + ‖g′‖∞ + 2K
)
.

(5.30)

(ii) If g satisfies (5.18), then, if θ + 2β − η < 2,∣∣∣ ∫
R
gu (pt−u−ps−u−(t−s) p′s−u) dWu

∣∣∣ ≤ ĉ2β,θ,η+1CW,XW c (t−s)θ+2β−η
(
‖G‖D(β,β)

X

+4K
)

(5.31)

(iii) If g satisfies (5.20) then, if θ + 3β − η < 2,∣∣∣ ∫
R
gu (pt−u − ps−u − (t− s) p′s−u) dWu

∣∣∣ ≤ ĉ3β,θ,η+1CW,XW c (t− s)θ+3β−η 8K. (5.32)

Proof. In the three cases, we can write∫
R
gu (pt−u − ps−u − (t− s) p′s−u) dWu =

∫ s

0
gu (pt−u − ps−u − (t− s) p′s−u) dWu +

∫ t

s
gu pt−u dWu.
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For the second integral, we can apply Theorem 3.16, and we write∣∣∣ ∫ t

s
gu pt−u dWu

∣∣∣
≤ cβ,θ,η CX,W,XW c (t− s)θ−η

(
‖G‖D(β,β)

X ,[s,t]
(t− s)2β + ‖g′‖∞,[s,t] (t− s)β + ‖g‖∞,[s,t]

)
.

• If g satisfies (5.16), then

‖g‖∞,[s,t] ≤ K (t− s)β

and then∣∣∣ ∫ t

s
gu pt−u dWu

∣∣∣ ≤ cβ,θ,η CW,XW c (t− s)θ+β−η
(
‖G‖D(β,β)

X

(t− s)β + ‖g′‖∞ +K
)
.

• If g satisfies (5.18), then

‖g‖∞,[s,t] ≤ K (s− t)2β and ‖g′‖∞,[s,t] ≤ K (t− s)β,

and then ∣∣∣ ∫ t

s
gu pt−u dWu

∣∣∣ ≤ cβ,θ,η CW,XW c (t− s)θ+2β−η
(
‖G‖D(β,β)

X

+ 2K
)
.

• If g satisfies (5.20), then

‖g‖∞,[s,t] ≤ K (s− t)3β, ‖g′‖∞,[s,t] ≤ K (t− s)2β, and ‖G‖D(β,β)
X ,[s,t]

≤ K (t− s)β

and then ∣∣∣ ∫ t

s
gu pt−u dWu

∣∣∣ ≤ cβ,θ,η CW,XW c (t− s)θ+3β−η 3K.

Hence we just have to show that (5.30), (5.31) and (5.32) holds for∣∣∣ ∫ s

0
gu (pt−u − ps−u − (t− s) p′s−u) dWu

∣∣∣.
We define

p̄u = p̄(s,t)
u := pt−u − ps−u − (t− s) p′s−u.

Then, p̄ : [0, s)→∞ has a singularity at s of order η̄ = η + 1. Moreover,

|p̄u| = |pt−u − ps−u − (t− s) p′s−u| ≤ (t− s)2 sup
x∈[s−u,t−u]

|p′′x| ≤
c (t− s)2

(s− u)η+2

and, if s− u ≤ t− s,

|p̄u| = |pt−u − ps−u − (t− s) p′s−u| ≤ |pt−u − ps−u|+ (t− s) |p′s−u|

≤ 2 (t− s) sup
x∈[s−u,t−u]

|p′x| ≤
2c (t− s)

(s− u)η+1
.

Then condition (5.12) holds with

c = 2 c (t− s), δ = t− s, η̄ = η + 1. (5.33)

The same can be proved for (5.13), since we have supposed that p ∈ C3 and (5.5) holds.
Thus we can apply Proposition 5.6 with data given by (5.33) and we have done.
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5.3. Proof of Theorem 5.2

In this section we are going to prove Theorem 5.2 by using mainly Proposition 5.6.

5.3.1. Step 1. The first step to prove Theorem 5.2 is to start from the definition of solution
of (5.4) and get new estimates about the remainder of the controlled path Y . Moreover, we
point out the the remainder defined below does not have to have ordered arguments.

Proposition 5.9. Let Y be the solution of (5.4). For any s, t ∈ [0, T ], we write

δY (s, t) = Ys δX(s, t) + Ỹ R(s, t), (5.34)

where |Ỹ R(s, t)| = O(|t− s|2β).
For any fixed s ≥ 0, the function u 7→ Ỹ R(s, u) is in D(β,β)

X , with derivative (Ỹ R(s, u)) =
Yu − Ys. Then, for all u ∈ [0, T ],

|Ỹ R(s, u)| ≤ (‖Y ‖β ‖X‖β + ‖Y R‖2β)|s− u|2β ≤ ‖Y ‖D(β,β)
X

(1 + ‖X‖β) |s− u|2β (5.35)

|(Ỹ R)′(s, u)| ≤ ‖Y ‖β |s− u|β (5.36)

‖Ỹ R(s, ·)‖D(β,β)
X

= ‖Y ‖D(β,β)
X

. (5.37)

Proof. The first part follows directly from (5.4), that is the integral formulation of the solu-
tion. Indee, we can write

Yt − Ys =

∫
R
Yu (pt−u − ps−u) dWu

= Ys (Xt −Xs) +

∫
R

(Yu − Ys) (pt−u − ps−u) dWu

=: Ys (Xt −Xs) + Ỹ R(s, t),

recalling our convention to set pu ≡ 0 when u ≤ 0. This equation holds for any s, t, not
necessarily ordered.

We already proved (see Proposition 4.11) that

|Ỹ R(s, t)| =
∣∣∣ ∫

R
(Yu − Ys) (pt−u − ps−u) dWu

∣∣∣ = O(|t− s|2β),

which shows that Y is a controlled path with derivative Y ′ = Y with respect to X, by the
definition of controlled path (see Definition 3.9). Relation (5.35) is a simple link between Ỹ R,
whose arguments are unordered, and Y R, whose arguments are ordered, and follows immediately
from (5.3). (The second inequality holds because Y = Y ′ and then ‖Y ‖β ≤ ‖Y ‖D(β,β)

X

.)

We now pass to prove the second part of Proposition 5.9. We are going to show that Ỹ R(s, ·)
is a controlled path by X. For 0 ≤ v < u ≤ t, we can write

Ỹ R(s, u)− Ỹ R(s, v) = (Yu − Yv)− Ys(Xu −Xv) = (Yv − Ys) δX(v, u) + Y R(v, u), (5.38)

having applied the fact that (Y, Y ) is in D(β,β)
X with reminder Y R.
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This implies that (Ỹ R(s, ·), Y· − Ys) is in D(β,β)
X with reminder Y R. In particular,

|(Ỹ R)′(s, u)| = |Ys − Yu| ≤ ‖Y ‖β |s− u|β,

that is (5.36). Moreover, since the remainder is the same of Y , we have

‖Ỹ R(s, ·)‖D(β,β)
X

= ‖Y ‖β + ‖Y R‖2β = ‖Y ‖D(β,β)
X

,

that proves (5.37).

Lemma 5.10. We have∣∣∣ ∫
R
Ỹ R(s, u) (pt−u − ps−u − (t− s) p′s−u) dWu

∣∣∣
≤ c̃2β,θ,η+1CW,XW c (t− s)3β ‖Y ‖D(β,β)

X

(1 + ‖X‖β)
(5.39)

Proof. We apply the second part of Corollary 5.8 where, in this case, gu = Ỹ R(s, u). Thanks
to (5.35) and (5.36), we know that Ỹ R(s, u) satisfies (5.18). Moreover, θ+2β−η = 3β < 2, since
β < 1

2 , and then, from (5.31), we get (5.39), recalling that θ − η = β and relation (5.37).

5.3.2. Step 2: Theorem 5.2 for β ∈ (1
3 ,

1
2). Here we are going to recall and prove

Theorem 5.2 for β ∈ (1
3 ,

1
2).

Proposition 5.11. For any s, t ∈ [0, T ], we write

δY (s, t) = Ys δX(s, t) + Ys X̃W(s, t) + (t− s)C(Y, s) + YR(s, t), (5.40)

where we used the notations:

X̃W(s, t) :=

∫
R
δX(s, u) (pt−u − ps−u) dWu, (5.41)

C(Y, s) :=

∫
R
Ỹ R(s, u) p′s−u dWu, (5.42)

YR(s, t) :=

∫
R
Ỹ R(s, u) (pt−u − ps−u − (t− s) p′s−u) dWu. (5.43)

Moreover,

|X̃W(s, t)| ≤ c̃β,θ,η CW,XW c (1 + ‖X‖β) |t− s|2β (5.44)

|C(Y, s)| ≤ c̃β,θ,η+1CW,XW c (2 + ‖X‖β) (‖Y ‖D(β,β)
X

+ ‖Y ‖β) s3β−1 (5.45)

|YR(s, t)| ≤ c̃2β,θ,η+1CW,XW c ‖Y ‖D(β,β)
X

(1 + ‖X‖β) |t− s|3β. (5.46)

Proof. By Proposition 5.9, we know that

δY (s, t)− Ys δX(s, t) = Ỹ R(s, t)

=

∫
R

(Yu − Ys) (pt−u − ps−u) dWu

=

∫
R

(Ys δX(s, u) + Ỹ R(s, u)) (pt−u − ps−u) dWu,
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having used again (5.34) for Yu − Ys. Then,

δY (s, t)− Ys δX(s, t) = Ys

∫
R
δX(s, u) (pt−u − ps−u) dWu +

∫
R
Ỹ R(s, u) (pt−u − ps−u) dWu

= YsXW(s, t) + (t− s)C(Y, s) +

∫
R
Ỹ R(s, u) (pt−u − ps−u − (t− s) p′s−u) dWu,

by adding and subtracting (t− s) p′s−u in the last integral. This is precisely (5.40).
To prove relation (5.44), we just apply relation Proposition 5.7 with gu = Xu, which is

trivally a controlled path by X with derivative 1 and remainder identically zero. By (5.29),
recalling that β = θ − η and 2β < 1, we get

|X̃W(s, t)| =
∣∣∣ ∫

R
(Xu −Xs) (pt−u − ps−u) dWu

∣∣∣
≤ c̃β,θ,η CW,XW c

(
‖X‖D(β,β)

X

tβ + ‖X ′‖∞ + ‖X‖β
)

(t− s)2β

= c̃β,θ,η CW,XW c (1 + ‖X‖β) (t− s)2β.

(Note that ‖X‖D(β,β)
X

= 0).
Relation (5.45) follows from Theorem 3.16 with p̄u = p′s−u (then η̄ = η + 1 ) and gu =

Ỹ R(s, u); see more precisely Corollary 3.17 with [a, b] = [0, s]. Then we can write

|C(Y, s)| =
∣∣∣ ∫

R
Ỹ R(s, u) p′s−u dWu

∣∣∣
≤ c̃β,θ,η+1CW,XW c sθ−η−1

(
‖Ỹ R(s, ·)‖D(β,β)

X

s2β + ‖(Ỹ R(s, ·))′‖∞,[0,s] sβ + ‖Ỹ R(s, ·)‖∞,[0,s]
)

= c̃β,θ,η+1CW,XW c sβ−1
(
‖Ỹ R(s, ·)‖D(β,β)

X

s2β + ‖(Ỹ R(s, ·))′‖∞,[0,s] sβ + ‖Ỹ R(s, ·)‖∞,[0,s]
)
,

recalling that θ − η = β.
Moreover, recalling Proposition 5.9,

‖(Ỹ R(s, ·))′‖∞,[0,s] = sup
u∈[0,s]

|Yu − Ys| ≤ ‖Y ‖β sβ

and

‖Ỹ R(s, ·)‖∞,[0,s] = sup
u∈[0,s]

|Ỹ R(s, u)| ≤ K s2β, with K = (1 + ‖X‖β) ‖Y ‖D(β,β)
X

.

We can write

|C(Y, s)| ≤ c̃β,θ,η+1CW,XW c s3β−1
(
‖Y ‖D(β,β)

X

+ ‖Y ‖β + ‖Y ‖D(β,β)
X

(1 + ‖X‖β)
)

(5.47)

≤ c̃β,θ,η+1CW,XW c s3β−1 (2 + ‖X‖β) (‖Y ‖D(β,β)
X

+ ‖Y ‖β), (5.48)

that is (5.45).
Finally, relation (5.46) was already obtained in Lemma 5.10.

Notice that, when β > 1
3 , then 3β > 1 and, by (5.46), we have that |YR(s, t)| = o(|t − s|),

and then (5.40) can be written as

δY (s, t) = Ys δX(s, t) + YsXW(s, t) + (t− s)C(Y, s) + o(|t− s|),

that is the characterization (5.9) for the solution Y to the differential problem (5.4) when
β = θ − η > 1

3 .
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5.3.3. Step 3: Theorem 5.2 for β ∈ (1
4 ,

1
3). When β < 1

3 , relation (5.46) does not give
us a characterization, since 3β < 1. Then we have to go further in the rewriting of the solution
Y , by using (5.40).

Proposition 5.12. For any s, t ∈ [0, T ], we have

δY (s, t) = Ys δX(s, t) + Ys X̃W(s, t) + (t− s)C(Y, s) + YsXW(s, t)+

+ C(Y, s)

∫
R

(u− s) (pt−u − ps−u − (t− s)p′s−u) dWu+

+

∫
R
YR(s, u) (pt−u − ps−u − (t− s)p′s−u) dWu,

(5.49)

where X̃W, C(Y, ·), YR and XW are defined in (5.41), (5.42) and (5.43) and (5.8).
Moreover,

|XW(s, t)| =
∣∣∣ ∫

R
X̃W(s, u) (pt−u − ps−u − (t− s)p′s−u) dWu

∣∣∣ = O(|t− s|3β), (5.50)

and, if β < 1
3 , then∣∣∣ ∫

R
(u− s) (pt−u − ps−u − (t− s)p′s−u) dWu

∣∣∣ = O(|t− s|4β), (5.51)∣∣∣ ∫
R
YR(s, u) (pt−u − ps−u − (t− s)p′s−u) dWu

∣∣∣ = O(|t− s|4β). (5.52)

We first need to prove that the maps t 7→ X̃W(s, t) and t 7→ YR(s, t) are controlled paths by
X, otherwise the rough integrals given by the definition (5.8) of XW and by the last integral
in (5.49) would not be well defined. At the same time, we find useful relations on their norms.
We divide the results in two different lemmas whose proofs are deferred to Section 5.4.

Lemma 5.13. Given a fixed s ∈ [0, T ], the map t 7→ X̃W(s, t) defined in (5.41) is a path
controlled by X with derivative given by (X̃W(s, t))′ = Xt −Xs.

We have the following estimates, for suitable K that will be explicit from the proof.

|X̃W(s, u)| ≤ K |s− u|2β (5.53)

|(X̃W(s, t))′| ≤ K |s− u|β. (5.54)

Lemma 5.14. Given a fixed s ∈ [0, T ], the map t 7→ YR(s, t) defined in (5.43) is a path
controlled by X with derivative given by (YR(s, t))′ = Ỹ R(s, t). Then we have the following
relations, for suitable K:

|YR(s, u)| ≤ K |s− u|3β (5.55)

|(YR)′(s, u)| ≤ K|s− u|2β (5.56)

‖YR‖D(β,β)
X

|[v,s] ≤ K |s− v|β. (5.57)

With this results, we can proceed with the proof of Proposition 5.12.
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Proof of Proposition 5.12. We start from (5.40), that says that

Ỹ R(s, u) = δY (s, u)− Ys δX(s, u) = Ys X̃W(s, u) + (u− s)C(Y, s) + YR(s, u).

Then, we can write, by (5.43),

YR(s, t) =

∫
R
Ỹ R(s, u) (pt−u − ps−u − (t− s)p′s−u) dWu

= Ys

∫
R
X̃W(s, u) (pt−u − ps−u − (t− s)p′s−u) dWu+

+ C(Y, s)

∫
R

(u− s) (pt−u − ps−u − (t− s)p′s−u) dWu +

∫
R
YR(s, u) (pt−u − ps−u − (t− s)p′s−u) dWu.

Then, from (5.40), recalling the definition (5.8) of XW,

δY (s, t) = Ys δX(s, t) + Ys X̃W(s, t) + (t− s)C(Y, s) + YR(s, t)

= Ys δX(s, t) + Ys X̃W(s, t) + (t− s)C(Y, s) + YsXW(s, t)+

+ C(Y, s)

∫
R

(u− s) (pt−u − ps−u − (t− s)p′s−u) dWu +

∫
R
YR(s, u) (pt−u − ps−u − (t− s)p′s−u) dWu,

that is (5.49).
Now we prove the second part, by applying Corollary 5.8. In particular, by Lemma 5.13,

gu = X̃W(s, u) satisfies (5.18), and then by (5.31), recalling that β = θ − η,

|XW(s, t)| =
∣∣∣ ∫

R
X̃W(s, u) (pt−u − ps−u − (t− s)p′s−u) dWu

∣∣∣ = O(|t− s|3β).

The function gu = u − s is a controlled path of X with zero derivative with respect to X.
Then we can apply Corollary 5.8 also for the second integral with the linear term. In particular,
when 3β < 1, for all u such that |u− s| < 1, we can easily show that g satisfies (5.20)

|gu| = |u− s| ≤ |u− s|3β

|g′u| = 0 ≤ |u− s|2β

‖G‖D(β,β)
X ,[u,s]

= ‖g′‖β,[u,s] + ‖gR‖2β,[u,s] = |u− s|1−2β ≤ |u− s|β.

Then, from the third part of Corollary 5.8, we get∣∣∣ ∫
R

(u− s) (pt−u − ps−u − (t− s)p′s−u) dWu

∣∣∣ = O(|t− s|4β).

By Lemma 5.14, gu = YR(s, u) satisfies (5.20), and then we have∣∣∣ ∫
R
YR(s, u) (pt−u − ps−u − (t− s)p′s−u) dWu

∣∣∣ = O(|t− s|4β)
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5.4. Technical Proofs

Proof of Lemma 5.13.

Proof. Recalling the definition (5.41) of X̃W, we write

X̃W(s, t)− X̃W(s, t′) =

∫
R

(Xu −Xs) (pt−u − pt′−u) dWu

= (Xt′ −Xs)

∫
R

(pt−u − pt′−u) dWu +

∫
R

(Xu −Xt′) (pt−u − pt′−u) dWu

= (Xt′ −Xs)δX(t′, t) +

∫
R

(Xu −Xt′) (pt−u − pt′−u) dWu.

Then we can use Proposition 4.18 with gu = Xu and we have∣∣∣ ∫
R

(Xu −Xt′) (pt−u − pt′−u) dWu

∣∣∣ = O(|t− t′|2β),

and this implies that t 7→ X̃W(s, t), for any fixed s, is a controlled path by X with derivative
given by (X̃W(s, t))′ = Xt −Xs.

Relation (5.53) has already proved in (5.44), while relation (5.54) follows from the derivative
we have just found.

Proof of Lemma 5.14. For the proof of Lemma 5.14 and then of Proposition 5.12, and, in
particular, the fact that |YR(s, t)| = O(|t−s|4β) when β < 1

3 , we need the following proposition,
whose proof can be compared to the proof of the above Proposition 5.6.

Lemma 5.15. Let p : (0, T ]→ R be a C2 function with a singularity at 0 of order η, such
that the following conditions hold:

|pu| ≤
c

uη
, |p′u| ≤

c

uη+1
, |p′′u| ≤

c

uη+2
. (5.58)

Let s > 0 be fixed. Then, for any t, t′ with 0 ≤ t′ < t ≤ s, we have∣∣∣ ∫
R

(Ỹ R(s, u)− Ỹ R(s, t′)) (pt−u − pt′−u) dWu

∣∣∣
≤ ĉβ,θ,η CW,XW c ‖Y ‖D(β,β)

X

(1 + ‖X‖β) (t− t′)2β (s− t′)β,
(5.59)

where ĉβ,θ,η is a constant which depends only on β, θ, η, the constant CX,W,XW = ‖W‖θ +
‖XW‖β+θ and c is the same that appears in (5.58).

Proof. First of all, we divide the integral in two parts: we can write∫
R

(Ỹ R(s, u)− Ỹ R(s, t′)) (pt−u − pt′−u) dWu =∫ t′

0
(Ỹ R(s, u)− Ỹ R(s, t′)) (pt−u − pt′−u) dWu +

∫ t

t′
(Ỹ R(s, u)− Ỹ R(s, t′)) pt−u dWu
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We first look after the second integral. By using Theorem 3.16, more precisely Corollary 3.17,
we have∣∣∣ ∫ t

t′
(Ỹ R(s, u)− Ỹ R(s, t′)) pt−u dWu

∣∣∣
≤ cβ,θ,η CW,XW c (t− t′)θ−η

(
‖G‖D(β,β)

X ,[t′,t]
(t− t′)2β + ‖g′‖∞,[t′,t] (t− t′)β + ‖g‖∞,[t′,t]

)
,

where, in this case, gu = Ỹ R(s, u)− Ỹ R(s, t′) and g′u = (Ỹ R(s, u))′ = Yu− Ys, and then we can
improve this inequality by using the relations above. In particular, recalling (5.38), we have

‖g‖∞,[t′,t] = sup
u∈[t′,t]

|Ỹ R(s, u)− Ỹ R(s, t′)| = sup
u∈[t′,t]

|δY (s, t′) δX(t′, u) + Y R(t′, u)|

≤ (t− t′)β
(
‖Y ‖β ‖X‖β (s− t′)β + ‖Y R‖2β (t− t′)β

)
,

and, recalling (5.36),

‖g′‖∞,[t′,t] ≤ (s− t′)β ‖Y ‖β.

Recalling also that ‖Ỹ R(s, ·)‖D(β,β)
X ,[t,t′]

= ‖Y ‖D(β,β)
X ,[t,t′]

by (5.37), we can write

∣∣∣ ∫ t

t′
(Ỹ R(s, u)− Ỹ R(s, t′)) pt−u dWu

∣∣∣
≤ cβ,θ,η CW,XW c (t− t′)θ+β−η ×

×
(
‖Y ‖D(β,β)

X ,[t′,t]
(t− t′)β + ‖Y ‖β (s− t′)β + ‖Y ‖β ‖X‖β(s− t′)β + ‖Y R‖2β (t− t′)β

)
≤ cβ,θ,η CW,XW c (s− t′)β(t− t′)2β ‖Y ‖D(β,β)

X

(1 + ‖X‖β),

since s > t > t′ for assumptions, recalling that for our case we have θ− η = β and having used
the definition of norm in D(β,β)

X and the fact that Y = Y ′.
Now we pass to the first integral over the interval [0, t′]:

I[0,t′] =

∫ t′

0
(Ỹ R(s, u)− Ỹ R(s, t′)) (pt−u − pt′−u) dWu.

In this case, we would like to use the first part of Proposition 5.6, but it is not enough. Indeed,
since p̄ := pt−u − pt′−u satisfies (5.12)-(5.13) with δ = (t− s), by (5.17) we would obtain∣∣∣ ∫ t′

0
(Ỹ R(s, u)− Ỹ R(s, t′)) (pt−u − pt′−u) dWu

∣∣∣
≤ c̃β,θ,η CW,XW c (t− t′)2β

(
‖Y ‖D(β,β)

X

(t− t′)β + ‖(Ỹ R(s, ·))′‖∞,[0,t′] + ‖Ỹ R(s, ·)‖β,[0,t′]
)
,

which misses the factor (s − t′)β in (5.59). Hence, we have to decompose the proof of that
proposition and then recompose it using the properties of the special function “g” of this case,
that is Ỹ R(s, ·).

If t′ ≤ 2(t− t′), then we can use Theorem 3.16, more precisely Corollary 3.17, and we have

|I[0,t′]| ≤ cβ,θ,η CW,XW c (t′)θ−η
(
‖G‖D(β,β)

X ,[0,t′]
(t′)2β + ‖g′‖∞,[0,t′] (t′)β + ‖g‖∞,[0,t]

)
≤ cβ,θ,η CW,XW c (t′)θ+2β−η ‖Y ‖D(β,β)

X

(1 + ‖X‖β),
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having used the facts that for 0 < u ≤ t′ < s, by (5.38)

sup
u∈[0,t′]

| − Ỹ R(s, u)− Ỹ R(s, t′)| = sup
u∈[0,t′]

|δY (s, u) δX(u, t′) + Y R(u, t′)|

≤ ‖Y ‖β ‖X‖β sup
u∈[0,t′]

(s− u)β (t′ − u)β + ‖Y R‖2β sup
u∈[0,t′]

(t′ − u)2β ≤ sβ (t′)β (‖Y ‖β ‖X‖β + ‖Y R‖2β)

≤ sβ (t′)β (1 + ‖X‖β) ‖Y ‖D(β,β)
X

.

Then, in the case of t′ ≤ 2(t− t′), which implies s = (s− t′) + t′ ≤ (s− t′) + 2(t− t′) ≤ 3(s− t′),
we have

|I[0,t′]| ≤ cβ,θ,η CW,XW c (t− t′)2β (s− t′)β ‖Y ‖D(β,β)
X

(1 + ‖X‖β)

≤ cβ,θ,η CW,XW c (t− t′)2β (s− t′)β ‖Y ‖D(β,β)
X

(1 + ‖X‖β),

and then (5.59) holds in this case.
Now we pass to the case t′ > 2 (t− t′). Following the scheme of the proof of Proposition 5.6,

in this case we consider n = n(t, t′) ∈ N, such that 2n (t− t′) < t′ ≤ 2n+1 (t− t′) and we write

|I[0,t′]| ≤ |I[0, t
′
2

]
|+

n∑
i=1

|Iti+1,ti |+ |I[t′−(t−t′),t′]|,

with ti = t′ − 2i (t− t′). We now analyze these integrals.
For the last integral, we can use Theorem 3.16 (see Corollary 3.17) and we write

|I[t′−(t−t′),t′]| ≤ cβ,θ,η CX,W,XW c (t− t′)θ−η ×

×
(
‖Y ‖D(β,β)

X

(t− t′)2β + ‖(Ỹ R(s, ·))′‖∞,[t′−(t−t′),t′] (t− t′)β + ‖Ỹ R(s, ·)− Ỹ R(s, t′)‖∞,[t′−(t−t′),t′]

)
Now we use the fact that

‖(Ỹ R(s, ·))′‖∞,[t′−(t−t′),t′] = sup
u∈[t′−(t−t′),t′]

|Yu − Ys|

≤ ‖Y ‖β sup
u∈[t′−(t−t′),t′]

(s− u)β = ‖Y ‖β (s− t′ + (t− t′))β

≤ 2 ‖Y ‖β
[
(s− t′)β + (t− t′)β

]
,

and, thanks to (5.38),

‖Ỹ R(s, ·)− Ỹ R(s, t′)‖∞,[t′−(t−t′),t′]

≤ ‖Y ‖β ‖X‖β sup
u∈[t′−(t−t′),t′]

(t′ − u)β (s− u)β + ‖Y R‖2β sup
u∈[t′−(t−t′),t′]

(t′ − u)2β

≤ ‖Y ‖β ‖X‖β(t− t′)β (s− t′ + (t− t′))β + ‖Y R‖2β (t− t′)2β

≤
[
‖Y ‖β ‖X‖β + ‖Y R‖2β

]
(t− t′)2β + ‖Y ‖β ‖X‖β (t− t′)β (s− t′)β.

Then
|I[t′−(t−t′),t′]|

≤ cβ,θ,η CW,XW c (t− t′)θ−η
[
(t− t′)2β

(
‖Y ‖D(β,β)

X

+ ‖Y ‖β + ‖Y ‖β ‖X‖β + ‖Y R‖2β
)

+ (t− t′)β (s− t′)β
(
‖Y ‖β + ‖Y ‖β ‖X‖β

)]
≤ cβ,θ,η CW,XW c ‖Y ‖D(β,β)

X

(1 + ‖X‖β) [(t− t′)3β + (s− t′)β (t− t′)2β],

(5.60)
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recalling that θ − η = β in this case.
For i = 1, . . . , n, we notice that:

t′ − ti+1 = 2i (t− t′), and t′ − ti = ti − ti+1 = 2i−1 (t− t′).

Thanks to (3.27), we can write

|I[ti+1,ti]| ≤ (ti − ti+1)θ |||p|||[ti+1,ti]
‖Ig‖θ,[ti+1,ti]

= 2(i−1)θ (t− t′)θ |||p|||[ti+1,ti]
‖Ig‖θ,[ti+1,ti].

In the proof of Corollary 5.7, we proved that the function u 7→ p̄
(t′,t)
u = pt−u − pt′−u satisfies

(5.12) and (5.13) with δ = (t− t′) and η̄ = η; then, thanks to Lemma 5.4, we have

|||p̄(t′,t)|||[ti+1,ti]
≤ c(t− t′)

(t′ − ti)η+1

(
1 +

(ti − ti+1)

(t′ − ti)

)
= 2 c 2(i−1)(−η−1) (t− t′)−η

and, thanks to (3.21),

‖Ig‖θ,[ti+1,ti]

≤ c2β+θ CW,XW

(
‖G‖D(β,β)

X ,[ti+1,ti]
(ti − ti+1)2β + ‖g′‖∞,[ti+1,ti] (ti − ti+1)β + ‖g‖∞,[ti+1,ti]

)
,

where gu = Ỹ R(s, u)− Ỹ R(s, t′) and then,

‖g′‖∞,[ti+1,ti] = sup
u∈[ti+1,ti]

|Yu − Ys| ≤ ‖Y ‖β sup
u∈[ti+1,ti]

|u− s|β = ‖Y ‖β (s− ti+1)β

= ‖Y ‖β (s− t′ + t′ − ti+1)β ≤ ‖Y ‖β
(

(s− t′)β + 2iβ(t− t′)β
)
,

and

‖g‖∞,[ti+1,ti] = sup
u∈[ti+1,ti]

|Ỹ R(s, u)− Ỹ R(s, t′)| = sup
u∈[ti+1,ti]

|δY (u, s) δX(u, t′)− Y R(u, t′)|

≤ ‖Y ‖β ‖X‖β sup
u∈[ti+1,ti]

(s− u)β (t′ − u)β + ‖Y R‖2β sup
u∈[ti+1,ti]

(t′ − u)2β

≤ ‖Y ‖β ‖X‖β(s− ti+1)β (t′ − ti+1)β + ‖Y R‖2β (t′ − ti+1)2β

≤ ‖Y ‖β ‖X‖β (s− t′)β(t′ − ti+1)β +
(
‖Y ‖β ‖X‖β + ‖Y R‖2β

)
(t′ − ti+1)2β

= ‖Y ‖β ‖X‖β (s− t′)β(2i(t− t′))β +
(
‖Y ‖β ‖X‖β + ‖Y R‖2β

)
(2i(t− t′))2β.

Then,

‖Ig‖θ,[ti+1,ti] ≤ c2β+θ CW,XW×

×
(
‖Y ‖D(β,β)

X ,[ti+1,ti]
2(i−1)2β(t− t′)2β + ‖Y ‖β

(
(s− t′)β + 2iβ(t− t′)β

)
2(i−1)β(t− t′)β+

+ ‖Y ‖β ‖X‖β (s− t′)β2iβ(t− t′)β +
(
‖Y ‖β ‖X‖β + ‖Y R‖2β

)
2i(2β)(t− t′)2β

)
≤ c2β+θ CW,XW 2(i−1)β(t− t′)β

(
‖Y ‖D(β,β)

X

2(i−1)β(t− t′)β + ‖Y ‖β
(
(s− t′)β + 2iβ(t− t′)β

)
+

+ ‖Y ‖β ‖X‖β (s− t′)β +
(
‖Y ‖β ‖X‖β + ‖Y R‖2β

)
2iβ(t− t′)β

)
≤ c2β+θ CW,XW 2(i−1)β(t− t′)β ‖Y ‖D(β,β)

X

(1 + ‖X‖β)
[
2(i−1)β(t− t′)β + (s− t′)β

]
.
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Now we look at the integral in [0, t
′

2 ]. In this case, we can proceed as above. We get

|||p̄(t′,t)|||
[0, t
′
2

]
≤ 2c

t− t′(
t′

2

)η+1 = 22+ηc 2n(−η−1) (t− t′)−η,

recalling that

t′ > 2n (t− t′).

At the same time,

‖Ig‖θ,[0, t′
2

]
≤ c2β+θ CX,W,XW

(
‖G‖D(β,β)

X ,[0, t
′
2

]

( t′
2

)2β
+ ‖g′‖∞,[0, t′

2
]

( t′
2

)β
+ ‖g‖∞,[0, t′

2
]

)
,

where, as above, we can prove that

‖g′‖∞,[0, t′
2

]
≤ ‖Y ‖β sβ ≤ ‖Y ‖β

(
(s− t′)β + t′β

)
,

and

‖g‖∞,[0, t′
2

]
= sup

u∈[0, t
′
2

]

|Ỹ R(s, u)− Ỹ R(s, t′)| = sup
u∈[0, t

′
2

]

|δY (u, s) δX(u, t′)− Y R(u, t′)|

≤ ‖Y ‖β ‖X‖β (s)β (t′)β + ‖Y R‖2β (t′)2β

≤ ‖Y ‖β ‖X‖β (s− t′)β (t′)β +
(
‖Y ‖β ‖X‖β + ‖Y R‖2β

)
(t′)2β.

Then, since t′ ≤ 2n+1 (t− t′),

‖Ig‖θ,[0, t′
2

]
≤ c2β+θ CW,XW t′β ‖Y ‖D(β,β)

X

(1 + ‖X‖β)
[
(s− t′)β + t′β

]
≤ c2β+θ CW,XW 2nβ(t− t′)β ‖Y ‖D(β,β)

X

(1 + ‖X‖β)
[
(s− t′)β + 2nβ(t− t′)β

]
.

We can use Theorem 3.16 and write

|I
[0, t
′
2

]
|+

n∑
i=1

|I[ti+1,ti]|

≤
( t′

2

)θ
|||p̄(t,t′)|||

[0, t
′
2

]
‖Ig‖θ,[0, t′

2
]
+

n∑
i=1

(ti − ti+1)θ |||p̄(t,t′)|||[ti+1,ti]
‖Ig‖θ,[ti+1,ti].

By using the relations we got above, we can write

|I
[0, t
′
2

]
|+

n∑
i=1

|I[ti+1,ti]| ≤ c2β+θ CX,W,XW c ‖Y ‖D(β,β)
X

(1 + ‖X‖β)×

× (t− t′)θ+β−η
[
(s− t′)β

n+1∑
i=1

2(i−1)(θ+β−η−1) + (t− t′)β
n+1∑
i=1

2(i−1)(θ+2β−η−1)
]
.

In our case, we have θ − η = β < 1
3 , and then, both the sum converge. We can write

|I
[0, t
′
2

]
|+

n∑
i=1

|I[ti+1,ti]| ≤ ĉβ,θ,η CW,XW c ‖Y ‖D(β,β)
X

(1 + ‖X‖β) [(s− t′)β (t− t′)2β + (t− t′)3β],
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where

ĉβ,θ,η = c2β+θ

[ 1

1− 2θ+β−η−1
+

1

1− 2θ+2β−η−1

]
and then is the same estimate that we got for |I[t′−(t−t′),t′]| (see (5.60)). Then

|I[0,t′]| ≤ ĉβ,θ,η CW,XW c ‖Y ‖D(β,β)
X

(1 + ‖X‖β) [(s− t′)β (t− t′)2β + (t− t′)3β],

and, since v ≤ t′ < t ≤ s, this implies (5.59).

Now we pass to prove Lemma 5.14.

Proof of Lemma 5.14. Relation (5.55) is proved in Lemma 5.10.
Now we pass to prove that the map t 7→ YR(s, t) is a path controlled by X. For any t, t′, we

can write

YR(s, t)− YR(s, t′) =

∫
R
Ỹ R(s, u) (pt−u − pt′−u − (t− t′) p′s−u) dWu

= Ỹ R(s, t′) δX(t′, t) +

∫
R

(Ỹ R(s, u)− Ỹ R(s, t′)) (pt−u − pt′−u) dWu − (t− t′)
∫
R
Ỹ R(s, u) p′s−u dWu.

We can apply Proposition 4.18, and, recalling that θ + 2β − η = 3β < 1, we have∣∣∣ ∫
R

(Ỹ R(s, u)− Ỹ R(s, t′)) (pt−u − pt′−u) dWu

∣∣∣
≤ cβ,θ,η CW,XW c (t− t′)2β

(
‖Ỹ R(s, ·)‖D(β,β)

X

tβ + ‖(Ỹ R(s, ·))′‖∞ + ‖Ỹ R(s, ·)‖β
)
.

In particular, this implies that we can write

YR(s, t)− YR(s, t′) = Ỹ R(s, t′) δX(t′, t) + O(|t− t′|2β),

which implies that t 7→ is a controlled path by X with derivative given by t 7→ Ỹ R(s, t) and
the remainder term “O(|t− t′|2β)” is given by

R(t′, t) :=

∫
R

(Ỹ R(s, u)− Ỹ R(s, t′)) (pt−u − pt′−u) dWu − (t− t′)
∫
R
Ỹ R(s, u) p′s−u dWu.

Thanks to (5.35), we can write

|(YR)′(s, u)| = |Ỹ R(s, u)| ≤ K(s− u)2β,

that is (5.56).
Relation (5.57) can be proved by noting that

‖R‖2β|[v,s] = sup
v≤t′<t≤s

|R(t′, t)|
(t− t′)2β

≤ sup
v≤t′<t≤s

∣∣∣ ∫R(Ỹ R(s, u)− Ỹ R(s, t′)) (pt−u − pt′−u) dWu

∣∣∣
(t− t′)2β

+

+ sup
v≤t′<t≤s

(t− t′)1−2β
∣∣∣ ∫

R
Ỹ R(s, u) p′s−u dWu

∣∣∣.
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For the first part, we use Lemma 5.15, and we get

sup
v≤t′<t≤s

∣∣∣ ∫R(Ỹ R(s, u)− Ỹ R(s, t′)) (pt−u − pt′−u) dWu

∣∣∣
(t− t′)2β

≤ cβ,θ,η CW,XW c (s− v)β (1 + ‖X‖) ‖Y ‖D(β,β)
X

.

For the second part, we can use Corollary 3.17 with [a, b] = [0, s], gu = Ỹ R(s, u), p̄u = p′s−u
and η̄ = η + 1, and we get

sup
v≤t′<t≤s

(t− t′)1−2β
∣∣∣ ∫

R
Ỹ R(s, u) p′s−u dWu

∣∣∣
≤ c̃β,θ,η+1CX,W,XW c (s− v)1−2β s3β−1 (‖Y ‖D(β,β)

X

+ ‖Y ‖β + ‖Y ‖D(β,β)
X

(1 + ‖X‖β))

having used relations (5.35) and (5.36). Now we can write

(s− v)1−2β s3β−1 =
(s− v

s

)1−2β
sβ ≤

(s− v
s

)β
sβ = (s− v)β,

when β < 1
3 , and then, recalling also that ‖Y ‖β = ‖Y ′‖β ≤ ‖Y ‖D(β,β)

X

,

sup
v≤t′<t≤s

(t− t′)1−2β
∣∣∣ ∫

R
Ỹ R(s, u) p′s−u dWu

∣∣∣ ≤ c̃β,θ,η+1CW,XW c (s− v)β (1 + ‖X‖β) ‖Y ‖D(β,β)
X

.

Moreover, thanks to (5.38), we have

‖(YR)′(s, ·)‖β|[v,s] = ‖Ỹ R(s, ·)‖β|[v,s] ≤ (s− v)β [‖Y ‖β ‖X‖β + ‖Y R‖2β]

≤ (s− v)β (1 + ‖X‖β) ‖Y ‖D(β,β)
X

.

Then

‖YR‖D(β,β)
X

|[v,s] = ‖(YR)′(s, ·)‖β|[v,s] + ‖Remainder‖2β|[v,s]

≤ cβ,θ,η CW,XW (c+ 1) (s− v)β (1 + ‖X‖β) ‖Y ‖D(β,β)
X

,

which completes the proof of (5.57).
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Appendix A

Fractional Heat Kernel

In this section, we will define and study the (fractional) heat kernel, whose properties are key
tools in our problem. We fix α ∈ (1, 2]; in some case, results and proofs are separated for α = 2
and α ∈ (1, 2).

Definition A.1. We denote by (t, x) 7→ gt(x) the solution to the following non random
differential problem: 

∂g

∂t
(t, x) = ∆

α
2 g(t, x) for t > 0, x ∈ R,

g(0, ·) = δ0.

(A.1)

We will call this function heat kernel for the case α = 2, and fractional heat kernel for the case
α ∈ (1, 2).

When α = 2, we have an explicit formula for g:

gt(x) =
1√
4πt

e−
x2

4t , for all (t, x) ∈ (0,∞)× R. (A.2)

When α ∈ (1, 2), we do not have an explicit formula for g, but we now show some properties
that are all we need in order to study the equation (1.1).

The following proposition contains the first elementary properties of the function g.

Proposition A.2. The map (t, x) 7→ gt(x), solution to (A.1), is the density of a symmetric
α-stable Lévy process. In particular, the following properties hold:

1. regularity : (t, x) 7→ gt(x) is a C∞ function defined over (0,∞)× R.

2. gt(x) > 0 for all (t, x) ∈ (0,∞)× R and
∫
R gt(x) = 1, for every t > 0 (g is a density).

3. scaling property : for every t > 0,

gt(x) =
1

t
1
α

g
( x
t

1
α

)
,

where g(·) := g1(·).

4. g is symmetric over R, that is g(x) = g(−x) for all x ∈ R.

5. x 7→ g(x) is strictly decreasing in [0,∞) and ‖g‖∞ = g(0).

6. g satisfies the semigroup property : gt ? gs = gt+s, that is

gt+s(x) =

∫
R
gt(x− y) gs(y) dy.
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7. characteristic function: the following relation holds:∫
R
e−iθz gt(z) dz = e−t|θ|

α
.

8. asymptotic behaviour : for α ∈ (1, 2), we have

g(x) ∼ cα
|x|1+α

when |x| → ∞ (A.3)

for some cα > 0.

9. We have g′(0) = 0 and:

(a) for α = 2, g′(x) = −x
2 g(x)

(b) for α ∈ (1, 2),

g′(x) ∼ −sign(x) cα
(α+ 1)

|x|2+α
as |x| → ∞; (A.4)

moreover, |x g′(x)| ≤ c1 g(x) and also |g′(x)| ≤ c2 g(x) for some c1, c2 > 0.

Now we give some preliminary estimates on the square of g and its integral with respect to
time and space.

Lemma A.3. The following properties hold:

1. for any (t, x) ∈ (0,∞)× R,

gt(x)2 ≤ ‖g‖∞
1

t
1
α

gt(x). (A.5)

2. for all (t, x) ∈ (0,∞)× R,∫ t

0

∫
R
g2
t−s(x− y) ds dy =

∫ t

0

∫
R
g2
s(y) ds dy ≤ ‖g‖∞

α

α− 1
t
α−1
α . (A.6)

In particular, g ∈ L2([0, T ]× R), for any T > 0.

Proof. Clearly gt(x)2 ≤ ‖gt‖∞ gt(x), and (A.5) follows from property (3) of Proposition A.2.
Thanks to (A.5), we can write∫ t

0

∫
R
g2
s(y) dsdy ≤ ‖g‖∞

∫ t

0
ds

1

s
1
α

∫
R

dy gs(y),

which gives exactly ‖g‖∞ α
α−1 t

α−1
α , since the integral over the space is 1 (we recall that g is a

density).

Remark A.4. In the case α = 2, we could get the exact values:

g2
t (x) =

1√
8π

1√
t
g t

2
(x) (A.7)
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and ∫ t

0

∫
R
g2
t−s(x− y) ds dy =

√
t

4π
.

We now state a basic but crucial estimate, that will be used frequently. This estimate is
easy to show for the case α = 2, but it is more difficult and requires more efforts in the case
α ∈ (1, 2).

Proposition A.5. For any x ∈ R and 0 < r < t <∞, we have∫
R

g2
r (z) g

2
t−r(x− z)
g2
t (x)

dz ≤ c(α)
t

1
α

r
1
α (t− r)

1
α

(A.8)

where c(α) is a constant which may depend only on α.

In the case α = 2, thanks to (A.7) and the semigroup property,∫
R
g2
r (z) g

2
t−r(x− z) dz =

1√
8πr

1√
8π(t− r)

∫
R
gr/2(z) g(t−r)/2(x− z)dz

=
1

8π

1√
r(t− r)

gt/2(x)

=
1√
8π

√
t√

r(t− r)
g2
t (x),

(A.9)

which proves (A.8) for α = 2 with c(2) = 1√
8π
. For α ∈ (1, 2), it is not so straight forward.

Indeed, if we used the same argument, by (A.5), we would get∫
R
g2
r (z) g

2
t−r(x− z) dz ≤ ‖g‖2∞

1

r
1
α (t− r)

1
α

∫
R
gr(z) gt−r(x− z) dz (A.10)

= ‖g‖2∞
1

r
1
α (t− r)

1
α

gt(x). (A.11)

The point is that we cannot bound gt(x) ≤ c1 g
2
c2t(x) for α < 2 (recall (A.3)). Instead, we need

the following lemma.

Lemma A.6. Let α ∈ (1, 2) and define m = mα ∈ (0,∞) as the largest y > 0 such that
g(y) + y g′(y) = 0. Then, for every x ∈ R+, the map

t 7→ gt(x)

is incrasing over t ∈ (0, ( xm)α].

Proof. Thanks to (A.3) and (A.4), we have

g(y) + y g′(y) ∼ 1

yα+1
+
−(α+ 1)

yα+1
< 0 for large y > 0 .
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Since the function g(y) + y g′(y) is continuous, and positive for y = 0, there is indeed a largest
y > 0 for which g(y) + y g′(y) = 0, so m is well-defined.

We take the derivative of gt(x) with respect to the time:

∂

∂t
gt(x) =

∂

∂t

[
1

t
1
α

g
( x
t

1
α

)]
= − 1

α

1

t1+ 1
α

g
( x
t

1
α

)
+

1

t
1
α

g′
( x
t

1
α

)(
− 1

α

x

t1+ 1
α

)
= − 1

α

1

t1+ 1
α

[
g
( x
t

1
α

)
+

x

t
1
α

g′
( x
t

1
α

)]
.

For t ∈ (0, (x/m)α] we have x/t
1
α > m, hence the term in square bracket is negative, by

definition of m. This concludes the proof.

Now we are able to proof Proposition A.5 also for the case α ∈ (1, 2).

Proof of Proposition A.5. We have already proved (A.8) in the case α = 2, hence we
focus on the case α ∈ (1, 2). Fix (t, x) ∈ (0,∞) × R+ (thanks to the symmetry of g, we just
consider x ≥ 0); if x

t
1
α
≤ 2m, where m is defined in Lemma A.6, we have

1

t
1
α

g
( x
t

1
α

)
≥ 1

t
1
α

g(2m),

and, by (A.10) (see also (A.5)), we can write∫
R

g2
r (z) g

2
t−r(x− z)
g2
t (x)

dz ≤ ‖g‖
2
∞

g(2m)

t
1
α

r
1
α (t− r)

1
α

.

Hence, we now have to prove (A.8) for α ∈ (1, 2) and for (t, x) such that x

t
1
α
> 2m, that is

t ∈ (0, ( x
2m)α] and then, thanks to Lemma A.6, in this case the function s 7→ gs(

x
2 ) is increasing

for any s ≤ t. We divide the integral:∫
R
g2
r (z) g

2
t−r(x− z) dz =

∫ x
2

−∞
g2
r (z) g

2
t−r(x− z) dz +

∫ +∞

x
2

g2
r (z) g

2
t−r(x− z) dz.

For z < x
2 , we use the estimate

g2
t−r(x− z) ≤ g2

t−r

(x
2

)
≤ g2

t

(x
2

)
by the increasing property

g2
r (z) ≤ ‖g‖∞

1

r
1
α

gr(z) (see (A.5)).

We get ∫ x
2

−∞
g2
r (z) g

2
t−r(x− z) dz ≤ ‖g‖∞

r
1
α

g2
t

(x
2

) ∫ x
2

−∞
gr(z) ≤

‖g‖∞
r

1
α

g2
t

(x
2

)
.

For z > x
2 , we use the estimates

g2
r (z) ≤ g2

r

(x
2

)
≤ g2

t

(x
2

)
by the increasing property

g2
t−r(x− z) ≤

‖g‖∞
(t− r)

1
α

gt−r(x− z) (see (A.5)),
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and we have∫ +∞

x
2

g2
r (z) g

2
t−r(x− z) dz ≤ ‖g‖∞

(t− r)
1
α

g2
t

(x
2

) ∫ +∞

x
2

gt−r(x− z) dz ≤ ‖g‖∞
(t− r)

1
α

g2
t

(x
2

)
.

Summing up, ∫
R
g2
r (z) g

2
t−r(x− z) dz ≤ ‖g‖∞

[
1

r
1
α

+
1

(t− r)
1
α

]
g2
t

(x
2

)
≤ 2 ‖g‖∞

t
1
α

r
1
α (t− r)

1
α

g2
t

(x
2

)
,

since both t
r and t

t−r are greater than 1. Then∫
R

g2
r (z) g

2
t−r(x− z)
g2
t (x)

dz ≤ 2 ‖g‖∞C
t

1
α

r
1
α (t− r)

1
α

where C := supx∈R
g2(x/2)
g2(x)

<∞ is a positive constant (recall (A.3)).

With the following lemma, we estimate the derivatives of g in the case α ∈ (1, 2).

Lemma A.7. Let α ∈ (1, 2). For all z ∈ R and t ∈ (0,∞), we have∣∣∣∣ d

dc
gc(z)

∣∣∣∣ ≤ 2

α

1

c
gc(z). (A.12)

and ∣∣∣ d

dw
gt(w)

∣∣∣ ≤ 1

t
1
α

gt(w) (A.13)

Proof. To prove (A.12), we can write

d

dc
gc(z) =

d

dc

(
1

c
1
α

g
( z

c
1
α

))
= − 1

α

1

c1+ 1
α

[
g
( z

c
1
α

)
+

z

c
1
α

g′
( z

c
1
α

)]
.

Since |zg′(z)| ≤ g(z), we have ∣∣∣∣ d

dc
gc(z)

∣∣∣∣ ≤ 2

α

1

c
gc(z).

For (A.13), we notice that

d

dw
gt(w) =

1

t
1
α

d

dw

[
g

(
w

t
1
α

)]
=

1

t
2
α

g′
(
w

t
1
α

)
.

By using the fact that |g′(z)| ≤ g(z), we have∣∣∣ d

dw
gt(w)

∣∣∣ ≤ 1

t
2
α

g

(
w

t
1
α

)
=

1

t
1
α

gt(w),

that is (A.13).
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The following gives an estimate on the derivative of g in the case α = 2, in which the heat
kernel has an explicit representation and then the following relations can be proved just by
computing.

Lemma A.8. Fix α = 2 (Gaussian case). For all z ∈ R and t ∈ (0,∞), we have

d

dc
gc(z) =

1

2c

(z2

2c
− 1
)
gc(z). (A.14)

and
d

dw
gt(w) = −w

2t
gt(w) (A.15)

We also need the following lemma, that holds when α = 2.

Lemma A.9. Fix α = 2 (Gaussian case). Let 0 ≤ s < t and a, b ∈ R. For every r ∈ (s, t),

gr−s(z − y)gt−r(x− z)
gt−s(x− y)

= g (t−r)(r−s)
(t−s)

(
z −

(
y +

r − s
t− s

(x− y)
))
.

Proof. By direct calculation,

gr−s(z − y)gt−r(x− z)
gt−s(b− a)

=

√
t− s

2π(t− r)(r − s)
e
− (z−y)2

2(r−s) e
− (x−z)2

2(t−r) e
(x−y)2

2(t−s)

=

√
t− s

2π(t− r)(r − s)
e
− 1

2
(t−s)

(t−r)(r−s)

(
z−(y t−r

t−s+x r−s
t−s )
)2

= g (t−r)(r−s)
(t−s)

(
z −

(
y +

r − s
t− s

(x− y)
))
.

A.0.1. Beta and Gamma function and integrals over time. Now we recall
some properties of the Beta and Gamma function; indeed, when we integrate with respect to
the time, we would face expression like this:∫ t

0

t
1
α

r
1
α (t− r)

1
α

,

and it is useful to recall and state how to get exact expression of it.

Definition A.10 (Beta function). The Beta function is defined as

Beta(α, β) =

∫ 1

0
uα−1(1− u)β−1 du,

for all (α, β) ∈ (0,∞)2.

We recall that, for all (α, β) ∈ (0,∞)2,

Beta(α, β) =
Γ(α)Γ(β)

Γ(α+ β)
. (A.16)
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where the Gamma function is given by

Γ(α) =

∫ ∞
0

xα−1e−x dx,

for which we recall the following properties: The following properties hold:

1. Γ(α+ 1) = αΓ(α) for all α > 0;

2. Γ(1) = 1 and Γ(n) = (n− 1)! for all n ∈ N;

3. Γ(1
2) =

√
π;

We have the following

Lemma A.11. For all 0 ≤ s < t and α > 1, we have

∫ t

0

t
1
α

r
1
α (t− r)

1
α

dr = t
α−1
α Beta

(
α− 1

α
,
α− 1

α

)
= t

α−1
α

Γ
(
α−1
α

)2

Γ
(

2 α−1
α

) , (A.17)

∫ t

s

t
1
α

r
1
α (t− r)

1
α

dr ≤ (t− s)
α−1
α Beta

(
α− 1

α
,
α− 1

α

)
= (t− s)

α−1
α

Γ
(
α−1
α

)2

Γ
(

2 α−1
α

) (A.18)

Proof. With a change of the variable u = r
t , we write∫ t

0

t
1
α

r
1
α (t− r)

1
α

= t

∫ 1

0

t
1
α

t
1
αu

1
α t

1
α (1− u)

1
α

du

= t1−
1
α

∫ 1

0
u
α−1
α
−1 (1− u)

α−1
α
−1 du

= t
α−1
α Beta

(
α− 1

α
,
α− 1

α

)
.

Relation (A.18) follows from (A.17) by a simple translation and the fact that t
r ≤

t−s
r−s for any

r ∈ (s, t): ∫ t

s

t
1
α

r
1
α (t− r)

1
α

≤
∫ t

s

(t− s)
1
α

(r − s)
1
α (t− r)

1
α

=

∫ t−s

0

(t− s)
1
α

r
1
α (t− s− r)

1
α

.
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Appendix B

Technical tools

In this section, we put all the technical tools which are useful for the proof of existence, uniquess
and regularity of the solution of the Fractional Stochastic Heat Equation in Theorems 1.3 and
1.4. Indeed, all the results in this section are the components of these proofs: we put them apart
since they require quite long calculations and have their own independence. We fix α ∈ (1, 2]

and we recall that gt(x) = g
(α)
t (x) denotes the fractional heat kernel, see Appendix A.

B.1. Gronwall-type inequalities

Lemma B.1. Let α ∈ (1, 2]. Let k ∈ N, x ∈ R and t ∈ (0,∞). Then we have

1

Γ
(
k(α−1)
α + 1

) ∫ t

0

∫
R
s
k(α−1)
α g2

t−s(x− y) ds dy ≤ ‖g‖∞ t
(k+1)(α−1)

α

Γ
(
α−1
α

)
Γ
(

(k + 1)α−1
α + 1

) (B.1)

and, for all z ∈ R and r ∈ [0,∞) with r < t,

1

Γ
(

(k+1)(α−1)
α

) ∫ t

r

∫
R

(s− r)
k(α−1)
α g2

s−r(y − z) g2
t−s(x− y) ds dy

≤ (const.) (t− r)
(k+1)(α−1)

α g2
t−r(x− y)

Γ
(
α−1
α

)
Γ
(

(k+2)(α−1)
α

)
(B.2)

where the constant may depend only on α.

Proof. To prove (B.1), using (A.5), we just write∫ t

0

∫
R
s
k(α−1)
α g2

t−s(x− y) ds dy ≤ g(0)

∫ t

0
s
k(α−1)
α

1

(t− s)
1
α

= g(0) t
(k+1)(α−1)

α

∫ 1

0
v
k(α−1)
α

+1−1 (1− v)
α−1
α
−1 dv

= g(0) t
(k+1)(α−1)

α Beta
(k(α− 1)

α
+ 1,

α− 1

α

)
and conclusion follows from the relation between Beta and Gamma function (see (A.16)).

123



124 B. TECHNICAL TOOLS

Now, for (B.2), we recall Proposition A.5 and write∫ t

r

∫
R

(s− r)
k(α−1)
α g2

s−r(y − z) g2
t−s(x− y) ds dy

≤ C g2
t−r(x− z)

∫ t

r
(s− r)

k(α−1)
α

(t− r)
1
α

(s− r)
1
α (t− s)

1
α

ds

= C (t− r)
1
α

∫ t

r
(s− r)

(k+1)(α−1)
α

−1 (t− s)
α−1
α
−1 ds,

and, using the definition of Beta integral as above, we get

C g2
t−r(x− z) (t− r)

(k+1)(α−1)
α Beta

((k + 1)(α− 1)

α
,
α− 1

α

)
,

and (B.2) follows.

Lemma B.2. Let (ϕn)n∈N be a sequence of measurable and non-negative functions defined
on (0,∞)× R such that, for all (t, x) ∈ (0,∞)× R

I1(t, x) :=

∫ t

0
dt1

∫
R

dx1 ϕ1(t1, x1)g2
t−t1(x− x1) <∞. (B.3)

Suppose there exist constants A, B ≥ 0 such that, for all (t, x) ∈ (0,∞)× R,

ϕn+1(t, x) ≤ A+B

∫ t

0

∫
R
ϕn(s, y) g2

t−s(x− y) ds dy (B.4)

for all n ∈ N. Then

ϕn+1(t, x) ≤ A
n−1∑
k=0

g(0)k Bkt
k(α−1)
α

Γ
(
α−1
α

)k
Γ
(
k(α−1)
α + 1

) +Bn cn−1
Γ
(
α−1
α

)n
Γ
(
n(α−1)

α

) t (n−1)(α−1)
α I1(t, x)

(B.5)

for all (t, x) ∈ (0,∞) × R and n ∈ N, where c > 0 is a constant which can be chosen as the
one in (A.8), and then it may depend only on α.

Proof. Let us prove by induction the following

ϕn+1(t, x) ≤A
n−1∑
k=0

g(0)k Bkt
k(α−1)
α

Γ
(
α−1
α

)k
Γ
(
k(α−1)
α + 1

)+

+Bn cn−1
Γ
(
α−1
α

)n
Γ
(
n(α−1)

α

) ∫ t

0
dt1 (t− t1)

(n−1)(α−1)
α

∫
R

dx1 ϕ1(t1, x1)g2
t−t1(x− x1),

(B.6)

which easily implies (B.5).
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If n = 1, by (B.4)

ϕ2(t, x) ≤ A+B

∫ t

0

∫
R
ϕ1(t1, x1)g2

t−t1(x− x1)dt1 dx1,

and then (B.6) holds.
Let n ≥ 1 and suppose that (B.6) holds for all (t, x) ∈ (0,∞)× R. We have

ϕn+2(t, x) ≤ A+B

[
A
n−1∑
k=0

g(0)k Bk
Γ
(
α−1
α

)k
Γ
(
k(α−1)
α + 1

) ∫ t

0

∫
R
s
k(α−1)
α g2

t−s(x− y) ds dy

+Bn cn−1
Γ
(
α−1
α

)n
Γ
(
n(α−1)

α

) ∫ t

0
ds

∫
R

dy

∫ s

0
dt1 (s− t1)

(n−1)(α−1)
α

∫
R

dx1 ϕ1(t1, x1)g2
s−t1(y − x1)g2

t−s(x− y)

]
.

Using (B.1) and (B.2), the latter with k and r replaced respectively by n− 1 and t1, this is

A+A
n−1∑
k=0

g(0)k+1Bk+1
Γ
(
α−1
α

)k+1

Γ
(

(k+1)(α−1)
α + 1

) t (k+1)(α−1)
α +

+Bn+1 cn
Γ
(
α−1
α

)n+1

Γ( (n+1)(α−1)
α )

∫ t

0
dt1 (t− t1)

n(α−1)
α

∫
R

dx1 ϕ1(t1, x1)g2
t−t1(x− x1).

Then (B.6) holds for every n ∈ N.

Thanks to Proposition 1.5, we have the following corollaries: the first one can be derived
from the proof of Proposition 1.5, while the other two are its direct consequences.

Corollary B.3. Let α ∈ (1, 2]. For all 0 < s < t <∞ and x ∈ R, we have∫
R

dy [I0(s, y)]2gt−s(x− y) ≤ c(α)
1

s
1
α

[I0(t, x)]2,

where c(α) is a positive constant which depends only on α.

Corollary B.4. For all k ∈ N, (t, x) ∈ (0,∞)× R, we have∫ t

0
ds (t− s)

(k−1)(α−1)
α

∫
R

[I0(s, y)]2 g2
t−s(x− y) ≤ c(α) t

k(α−1)
α [I0(t, x)]2 Beta

(k(α− 1)

α
,
α− 1

α

)
.

Corollary B.5. For every positive and non-decreasing function C : (0,∞)→ R,∫ t

0

∫
R
C(s)

(
1 + |I0(s, y)|2

)
g2
t−s(x− y) dsdy ≤ c(α)C(t) t

α−1
α
(
1 + |I0(t, x)|2

)
,

for all (t, x) ∈ (0,∞)× R, where c(α) is a constant which depends only on α.
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The following two lemmas are variants of Lemma B.2 and contains Gronwall’s type inequal-
ities.

Lemma B.6. Let (ϕn)n∈N be a sequence of measurable non-negative functions defined on
(0,∞)×R and denote by ϕ0(t, x) := |I0(t, x)|2, where I0 is defined in (1.7) (or, more generally,
is a function which satisfies Proposition 1.5). Suppose that there exist constants A ≥ 1 and
B ≥ 0 such that, for all (t, x) ∈ (0,∞)× R and n ∈ N0,

ϕn+1(t, x) ≤ A|I0(t, x)|2 +B

∫ t

0

∫
R
ϕn(s, y) g2

t−s(x− y) ds dy (B.7)

Then

ϕn+1(t, x) ≤ A|I0(t, x)|2
(

1 +
n+1∑
k=1

ck−1Bk t
k(α−1)
α

Γ
(
α−1
α

)k+1

Γ
(

(k+1)(α−1)
α

)), (B.8)

for all (t, x) ∈ (0,∞) × R and n ∈ N0, where we can choose c ≥ 1 as a constant which may
depend only on α (a linear combination between ‖g‖∞ and c(α) of (A.8) and of Corollary
B.4).

Proof. We will prove that, for every n ∈ N0,

ϕn+1(t, x) ≤ A|I0(t, x)|2+

+A
n+1∑
k=1

ck−1Bk

∫ t

0
ds (t− s)

(k−1)(α−1)
α

∫
R

dy |I0(s, y)|2 g2
t−s(x− y)

Γ
(
α−1
α

)k
Γ
(
k(α−1)
α

) (B.9)

which yields (B.8), since

∫ t

0
ds (t− s)

(k−1)(α−1)
α

∫
R

dy |I0(s, y)|2 g2
t−s(x− y) ≤ c(α) t

k(α−1)
α

Γ
(
α−1
α

)
Γ
(
k(α−1)
α

)
Γ
(

(k+1)(α−1)
α

) [I0(t, x)]2,

having used Corollary B.4.
By induction: if n = 0, by (B.10),

ϕ1(t, x) ≤ A|I0(t, x)|2 +B

∫ t

0

∫
R
|I0(s, y)|2 g2

t−s(x− y) ds dy

and then (B.9) holds, since c, A ≥ 1.

Suppose that n ≥ 1 and, for all (s, y) ∈ (0,∞)× R,

ϕn(s, y) ≤ A|I0(s, y)|2+

+A
n∑
k=1

ck−1Bk

∫ s

0
dr (s− r)

(k−1)(α−1)
α

∫
R

dz |I0(r, z)|2 g2
s−r(y − z)

Γ
(
α−1
α

)k
Γ
(
k(α−1)
α

) .
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By (B.10), we have

ϕn+1(t, x) ≤ A|I0(t, x)|2 +B

∫ t

0

∫
R
ϕn(s, y) g2

t−s(x− y) ds dy

≤ A|I0(t, x)|2 +AB

∫ t

0

∫
R
|I0(s, y)|2 g2

t−s(x− y) ds dy+

+AB

∫ t

0
ds

∫
R

dy g2
t−s(x− y)×

×
[ n∑
k=1

ck−1Bk

∫ s

0
dr (s− r)

(k−1)(α−1)
α

∫
R

dz |I0(r, z)|2 g2
s−r(y − z)

Γ
(
α−1
α

)k
Γ
(
k(α−1)
α

)].
Let us focus on the third term: for k = 1, . . . , n we can change the order of integration and
write∫ t

0
dr

∫
R

dz|I0(r, z)|2
∫ t

r
ds (s− r)

(k−1)(α−1)
α

∫
R

dy g2
t−s(x− y)g2

s−r(y − z)
Γ
(
α−1
α

)k
Γ
(
k(α−1)
α

)
≤ c

∫ t

0
dr

∫
R

dz |I0(r, z)|2 (t− r)
k(α−1)
α g2

t−r(x− z)
Γ
(
α−1
α

)k+1

Γ
(

(k+1)(α−1)
α

) ,
where we applied (B.2) with k replaced by k − 1 (such relation was proved in Lemma B.1).
Then

ϕn+1(t, x) ≤ A|I0(t, x)|2 +AB

∫ t

0

∫
R
|I0(s, y)|2 g2

t−s(x− y) ds dy+

+AB c
n∑
k=1

ck−1Bk

∫ t

0
dr (t− r)

k(α−1)
α

∫
R

dz|I0(r, z)|2 g2
t−r(x− z)

Γ
(
α−1
α

)k+1

Γ
(

(k+1)(α−1)
α

) ,
which is (B.9).

Lemma B.7. Let (ϕn)n∈N be a sequence of measurable non-negative functions defined on
(0,∞)×R and denote by ϕ0(t, x) := |I0(t, x)|2, where I0 is defined in (1.7) (or, more generally,
is a function which satisfies Proposition 1.5). Suppose that there exist constants A ≥ 1 and
B ≥ 0 such that, for all (t, x) ∈ (0,∞)× R and n ∈ N0,

ϕn+1(t, x) ≤ A|I0(t, x)|2 +B

∫ t

0

∫
R

[1 + ϕn(s, y)]g2
t−s(x− y) ds dy (B.10)

Then

ϕn+1(t, x) ≤ A|I0(t, x)|2 + (1 +A|I0(t, x)|2)

n+1∑
k=1

ck Bk t
k(α−1)
α

Γ
(
α−1
α

)k+1

Γ
(

(k+1)(α−1)
α

) , (B.11)

for all (t, x) ∈ (0,∞) × R and n ∈ N0, where we can choose c ≥ 1 as a constant which may
depend only on α (a linear combination between g(0) and c(α) of (A.8)).
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Proof. We will prove that, for every n ∈ N0,

ϕn+1(t, x) ≤ A|I0(t, x)|2+

+
n+1∑
k=1

ck−1Bk

∫ t

0
ds (t− s)

(k−1)(α−1)
α

∫
R

dy [1 +A|I0(s, y)|2]g2
t−s(x− y)

Γ
(
α−1
α

)k
Γ
(
k(α−1)
α

) (B.12)

which yields (B.11), since∫ t

0
ds (t− s)

(k−1)(α−1)
α

∫
R

dy g2
t−s(x− y) ≤ g(0)

α

k(α− 1)
t
k(α−1)
α ,

∫ t

0
ds (t− s)

(k−1)(α−1)
α

∫
R

dy |I0(s, y)|2g2
t−s(x− y) ≤ c(α) t

k(α−1)
α

Γ
(
α−1
α

)
Γ
(
k(α−1)
α

)
Γ
(

(k+1)(α−1)
α

) [I0(t, x)]2,

having used the property (A.5) of g and Corollary B.4.
By induction: if n = 0, by (B.10),

ϕ1(t, x) ≤ A|I0(t, x)|2 +B

∫ t

0

∫
R

[1 + |I0(s, y)|2]g2
t−s(x− y) ds dy

and then (B.12) holds, since c, A ≥ 1.
Suppose that n ≥ 1 and, for all (s, y) ∈ (0,∞)× R,

ϕn(s, y) ≤ A|I0(s, y)|2+

+
n∑
k=1

ck Bk

∫ s

0
dr (s− r)

(k−1)(α−1)
α

∫
R

dz [1 +A|I0(r, z)|2]g2
s−r(y − z)

Γ
(
α−1
α

)k
Γ
(
k(α−1)
α

) .
By (B.10), we have

ϕn+1(t, x) ≤ A|I0(t, x)|2 +B

∫ t

0

∫
R

[
1 + ϕn(s, y))

]
g2
t−s(x− y) dsdy

≤ A|I0(t, x)|2 +B

∫ t

0

∫
R

[
1 +A|I0(s, y)|2

]
g2
t−s(x− y) ds dy+

+B

∫ t

0
ds

∫
R

dy g2
t−s(x− y)×

×
[ n∑
k=1

ck Bk

∫ s

0
dr (s− r)

(k−1)(α−1)
α

∫
R

dz [1 +A|I0(r, z)|2]g2
s−r(y − z)

Γ
(
α−1
α

)k
Γ
(
k(α−1)
α

)].
Let us focus on the third term: for k = 1, . . . , n we can change the order of integration and
write∫ t

0
dr

∫
R

dz[1 +A|I0(r, z)|2]

∫ t

r
ds (s− r)

(k−1)(α−1)
α

∫
R

dy g2
t−s(x− y)g2

s−r(y − z)
Γ
(
α−1
α

)k
Γ
(
k(α−1)
α

)
≤ c

∫ t

0
dr

∫
R

dz [1 +A|I0(r, z)|2] (t− r)
k(α−1)
α g2

t−r(x− z)
Γ
(
α−1
α

)k+1

Γ
(

(k+1)(α−1)
α

) ,
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where we applied (B.2) with k replaced by k − 1 (such relation was proved in Lemma B.1).
Then

ϕn+1(t, x) ≤ A|I0(t, x)|2 +B

∫ t

0

∫
R

[
1 +A|I0(s, y)|2

]
g2
t−s(x− y) ds dy+

+B c

n∑
k=1

Bk ck
∫ t

0
dr (t− r)

k(α−1)
α

∫
R

dz[1 +A|I0(r, z)|2]g2
t−r(x− z)

Γ
(
α−1
α

)k+1

Γ
(

(k+1)(α−1)
α

) ,
which is (B.12).

B.2. Progressive measurability and stochastic integral

In this section we recall some definitions and properties of measurability. Indeed, it is a funda-
mental property required to define the stochastic integral that appears in the Definition 1.1 of
mild solution.

Definition B.8. A stochastic process (X(t, x))(t,x)∈[0,∞)×Rn is called measurable if the map

X : ([0,∞)× Rn × Ω,B([0,∞)× Rn)⊗A)→ R
(t, x, ω) 7→ X(t, x)(ω)

is measurable

Definition B.9. A filtration on (Ω,A,P), with respect to the set [0,∞), is a collection
(Ft)t∈[0,∞) of non-decreasing sub-σ algebras, that is

Ft ⊂ A,
Ft is a σ algebra,
Fs ⊆ Ft,

for all s, t ∈ [0,∞) and s ≤ t.
If X = (Xt)t∈[0,∞) is a stochastic process on (Ω,A,P), we denote by (FXt )t∈[0,∞) the natural

filtration of X, given by
FXt = σ

(
{Xs | 0 ≤ s ≤ t}

)
. (B.13)

Definition B.10. A stochastic process (X(t, x))(t,x)∈[0,∞)×Rn is adapted to the filtration
(Ft)t∈[0,∞) if, for any (t, x) ∈ [0,∞)× Rn, X(t, x) is Ft-measurable, that is

X(t, x) : (Ω,Ft)→ R

is measurable.
A stochastic process (X(t, x))(t,x)∈[0,∞)×Rn is progressively measurable with respect to the

filtration F if, for any t ≥ 0, the map

X :
(

[0, t]× Rn × Ω,B([0, t]× Rn)⊗Ft
)
→ R

is measurable.
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The assumption on a stochastic process ϕ to be progressively measurable is not always
easy to check. However, in Proposition B.12 below we present a sufficient condition which is
borrowed from Proposition 3.1 in [Chen, Dalang 15 A].

First we need the following definition.

Definition B.11. We say that a stochastic process ϕ = (ϕ(s, y))(s,y)∈(0,∞)×R is L2(Ω)-
continuous if the map

(0,∞)× R→ L2(Ω)

(t, x) 7→ ϕ(t, x)

is continuous. That is

lim
(t′,x′)→(t,x)

‖ϕ(t, x)− ϕ(t′, x′)‖2 = 0 for all (t, x) ∈ (0,∞)× R.

For the notion of adaptedness and progressive measurability, see Definition B.10.

Proposition B.12. Let t > 0 be fixed and let (ϕ(s, y))(s,y)∈(0,t)×R be a stochastic process
such that

1. ϕ is adapted;

2. for all (s, y) ∈ (0, t)× R, ‖ϕ(s, y)‖2 <∞ and ϕ is L2-continuous;

3.
∫ t

0

∫
R E(|ϕ(s, y)|2) ds dy <∞.

Then ϕ is is progressively measurable.

We now define the class of stochastic processes for which we can define the stochastic integral.

Definition B.13. We denote byM2([0, T ] × RN ) the set of stochastic processes indexed by
[0, T ]× RN , ϕ = (ϕ(s, y))(s,y)∈[0,T ]×RN , such that

1. ϕ is progressively measurable;

2.

E
(∫ T

0

∫
RN

ϕ(s, y)2 ds dy
)
<∞.

If ϕ ∈M2([0, T ]× RN ), then we can define

WT (ϕ) :=

∫ T

0

∫
RN

ϕ(s, y)W (ds, dy),

as a stochastic process in L2(Ω,FT ,P). We report the following:

Proposition B.14. There exists a unique linear isometry

WT : M2([0, T ]× RN )→ L2(Ω,FT ,P)

such that
WT (X 1[a,b) 1A) = X [Wb(A)−Wa(A)]
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for all A ∈ B∗(RN ), 0 ≤ a < b ≤ T and X ∈ L2(Ω,Fa,P). This isometry is called stochastic
integral with respect to the white noise on [0, T ]× RN , or Walsh integral. In particular,

• WT (ϕ) is a random variable in L2(Ω,FT ,P);

• E(WT (ϕ)2) =
∫ T

0

∫
RN E(ϕ(s, y)2) ds dy;

• WT (αϕ+ βψ) = αWT (ϕ) + βWT (ψ);

• 〈WT (ϕ),WT (ψ)〉L2(Ω,FT ,P) = 〈ϕ,ψ〉M2([0,T ]×RN ) i.e.

E
(
WT (ϕ)WT (ψ)

)
=

∫ T

0

∫
RN

E(ϕ(s, y)ψ(s, y)) ds dy, (B.14)

for all ϕ,ψ ∈M2([0, T ]× RN ) and for all α, β ∈ R.

The following result will be used to prove that the Picard iteration scheme is well-defined
(see (1.21)). For the proof, we refer to Lemma 3.3 and Proposition 3.4 in [Chen, Dalang 15 A].

Proposition B.15. Let ϕ = (ϕ(t, x))(t,x)∈(0,∞)×R be a stochastic process such that

1. ϕ is adapted ;

2. ϕ is L2(Ω)-continuous;

3. for all (t, x) ∈ (0,∞)× R,

E(|ϕ(t, x)|2) ≤ C(t)
(

1 + |I0(t, x)|2
)

(B.15)

for some non-decreasing function C : (0,∞)→ R.

Then the process given by

(f(ϕ)Ẇ ) ? g :=
(∫ t

0

∫
R
f(ϕ(s, y))gt−s(x− y)W (ds, dy)

)
(t,x)∈(0,∞)×R

(B.16)

is well-defined and satisfies the following properties:

(i) (f(ϕ)Ẇ ) ? g is adapted;

(ii) (f(ϕ)Ẇ ) ? g is L2(Ω)-continuous;

(iii) for all (t, x) ∈ (0,∞)× R,

E
(∣∣∣[(f(ϕ)Ẇ ) ? g

]
(t, x)

∣∣∣2) ≤ C̃(t)
(

1 + |I0(t, x)|2
)

(B.17)

for some non-decreasing function C̃ : (0,∞)→ R.
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B.3. Tools for the regularity

To prove the regularity of the mild solution of (1.4), we recall some definitions and the main
results.

Definition B.16. Let I ⊂ RN ; we say that a stochastic process X = (Xi)i∈I is continuous if,
for every ω ∈ Ω, the trajectory i 7→ Xi(ω) is a continuous function on I.

Now we give some sufficient condition for the existence of a continuous modification of a
given process X, in the special case of I ⊂ RN . The classical Kolmogorov continuity theorem
states that, if X = (Xt)t∈I is a stochastic process indexed by a compact cube I = [a1, b1] ×
· · · × [aN , bN ] ⊂ RN , and there exist constants c > 0, p > 0 and γ > N such that

E
(∣∣Xt −Xs

∣∣p) ≤ c‖t− s‖γ for all s, t ∈ I,

for some norm ‖·‖ on Rd, then X has a continuous version which is in fact β-Hölder continuous,
for any β ∈ (0, γ−Np ).

However, we are interested in having a sufficient condition which involves a “metric” on RN
of the following form

‖t− s‖α =
N∑
i=1

|ti − si|αi , (B.18)

for some α = (α1, . . . , αN ) ∈ (0,∞)N , whose components are different. This is because we work
on the heat equation which is by its nature anisotropic, since time and space variables have
different natural scaling exponents. In particular, we shall deal with the following condition

E
(∣∣X(t, x)−X(s, y)

∣∣p) ≤ C(|t− s|pα−1
2α + |x− y|p

α−1
2

)
.

for all t, s ∈ [0, T ] and x, y ∈ [−M,M ] In principle we could still apply Kolmogorov’s theorem,
e.g. bounding |x − y|p/2 ≤ C(M)|x − y|p/(2α), since α ∈ (1, 2), but we would get non-optimal
exponents. Instead, we will use the following generalization of Kolomorov’s theorem; for a proof,
we refer to [Kunita 90], Theorem 1.4.1.

Theorem B.17 (Generalized Kolmogorov Continuity Theorem). Let X =
(Xt)t∈I be a stochastic process indexed by a compact cube I = [a1, b1]×· · ·× [aN , bN ] ⊂ RN .
Suppose that there exist positive constants c, p and α1, . . . , αn with

∑N
i=1

1
αi
< 1, such that

E
(∣∣Xt −Xs

∣∣p) ≤ c N∑
i=1

|ti − si|αi for all t, s ∈ I.

Then X has a continuous version X̃ which is (β1, . . . , βN )-Hölder continuous, that is,

|X̃t − X̃s| ≤ C‖t− s‖β

for all s, t ∈ I, where C is a finite (random) constant such that E(Cp) <∞, and ‖ · ‖β is the
“metric” defined in (B.18), for all (β1, . . . , βN ) such that

0 < βi < αi
α0 −N
α0 p

, for i = 1, . . . , N and α0 =
N∑N
i=1

1
αi

.
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In many cases of our interest, the set of indices I is thought of as an interval of time, for
instance I = [0,∞). More generally, we will consider the setting when I = [0,∞)×Rn, since we
shall work with processes (X(t, x))(t,x)∈[0,∞)×Rn that are indexed by both “time” and “space”.

Theorem B.18 (Burkholder-Davis-Gundy inequality). For all p ≥ 2 there exist
universal positive constants bp, cp (which depend only on p) such that, for every continuous
L2 martingale (Mt)t≥0, with M0 = 0, and for all t ≥ 0,

bpE(〈M〉
p
2
t ) ≤ E(|Mt|p) ≤ cpE(〈M〉

p
2
t ), (B.19)

where (〈M〉t)t≥0 denotes the quadratic variation of M.

The following is the application of the BDG inequality to the case of our interest. For a
proof see Theorem 5.26 in [Khoshnevisan 09].

Corollary B.19. For all p > 2 there exists a constant cp > 0 (the same of the BDG
inequality) such that, for all t > 0,

E
(∣∣∣ ∫ t

0

∫
RN

ϕ(s, y)W (ds, dy)
∣∣∣p) ≤ cp E(∣∣∣ ∫ t

0

∫
RN
|ϕ(s, y)|2 ds dy

∣∣∣p/2)
for every ϕ ∈M2([0,∞)× RN ).

Note that, by the Ito isometry, when p = 2, we have

E
(∣∣∣ ∫ t

0

∫
RN

ϕ(s, y)W (ds, dy)
∣∣∣2) =

∫ t

0

∫
RN

E(|ϕ(s, y)|2) ds dy.

Looking at the representation formula (1.6), we have to deal with a process of the form

(f(u)Ẇ ) ? g :=
([

(f(u)Ẇ ) ? g
]
(t, x) :=

∫ t

0

∫
R
f(u(s, y))gt−s(x− y)W (ds, dy)

)
(t,x)∈(0,∞)×R

.

(B.20)
In order to get some useful bounds on the p-norms of a stochastic process of the form (B.20),

we need the following result, which is a consequence of Corollary B.19.

Corollary B.20. Let (ϕ(s, y))(s,y)∈[0,t]×R be a progressively measurable stochastic pro-
cess; then, for all even integers p ≥ 2, and (t, x) ∈ [0,∞)× R,∥∥∥∫ t

0

∫
R
ϕ(s, y)gt−s(x− y)W (ds, dy)

∥∥∥2

p
≤ c̃p

∫ t

0

∫
R
‖ϕ(s, y)‖2p g2

t−s(x− y) ds dy, (B.21)

where c̃p = c
2/p
p and cp is the constant in the BDG inequality.
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Proof. By Corollary B.19, and using the fact that p is even,

E
(∣∣∣ ∫ t

0

∫
R
ϕ(s, y)gt−s(x− y)W (ds, dy)

∣∣∣p) ≤ cp E(∣∣∣ ∫ t

0

∫
R
|ϕ(s, y)|2 g2

t−s(x− y) ds dy
∣∣∣p/2)

= cp E
( p/2∏
i=1

∫ t

0

∫
R
|ϕ(si, yi)|2 g2

t−si(x− yi) dsi dyi

)

= cp

∫
[0,t]p/2

∫
Rp/2

E

[
p/2∏
i=1

|ϕ(si, yi)|2
]
g2
t−si(x− yi) d~sd~y.

Applying the generalized Hölder inequality,

E

[
p/2∏
i=1

|ϕ(si, yi)|2
]
≤

p/2∏
i=1

E(|ϕ(si, yi)|p)
2
p =

p/2∏
i=1

‖ϕ(si, yi)‖2p.

Then

E
(∣∣∣ ∫ t

0

∫
R
ϕ(s, y)gt−s(x− y)W (ds, dy)

∣∣∣p) ≤ cp (∫ t

0

∫
R
‖ϕ(s, y)‖2p g2

t−s(x− y) ds dy
) p

2
.

Now we are going to prove Theorem 1.13.

Theorem B.21. For all x, x′ ∈ R and t, t′ with 0 < t′ < t, we have∫ t

t′

∫
R
g2
t−s(x− y) ds dy ≤ K1 |t− t′|

α−1
α (B.22)∫ t

0

∫
R

(
gt−s(x− y)− gt−s(x′ − y)

)2
dsdy ≤ K2 |x− x′|α−1, (B.23)∫ t′

0

∫
R

(
gt−s(x− y)− gt′−s(x− y)

)2
ds dy ≤ K3 |t− t′|

α−1
α , (B.24)

where K1,K2 and K3 are positive constants which depend only on α.

Proof of Theorem B.21. The proof of (B.22) is straightforward; indeed,∫ t

t′

∫
R
g2
t−s(x− y) ds dy ≤ ‖g‖∞

∫ t

t′
ds

1

(t− s)
1
α

∫
R

dy gt−s(x− y)

= ‖g‖∞
∫ t

t′
ds

1

(t− s)
1
α

= ‖g‖∞
α

α− 1
(t− t′)

α−1
α .

In a similar way, it is easy to show that

♦0,t :=

∫ t

0

∫
R

(
gt−s(x− y)− gt−s(x′ − y)

)2
ds dy

≤ 2

∫ t

0

∫
R
g2
t−s(x− y) ds dy + 2

∫ t

0

∫
R
g2
t−s(x− y) ds dy

≤ 4 ‖g‖∞
α

α− 1
t
α−1
α ,
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which satisfies (B.23) in the case t < (const.) |x− x′|α. Then, we can prove (B.23) considering
the case t > 2 |x− x′|α. We can write

♦0,t =

∫ t−|x−x′|α

0

∫
R

(
gt−s(x− y)− gt−s(x′ − y)

)2
dsdy +

∫ t

t−|x−x′|α

∫
R

(
gt−s(x− y)− gt−s(x′ − y)

)2
ds dy

=: ♦0,t−|x−x′|α +♦t−|x−x′|α,t

For the second part, as above,

♦t−|x−x′|α,t

≤ 2

∫ t

t−|x−x′|α

∫
R
g2
t−s(x− y) ds dy + 2

∫ t

t−|x−x′|α

∫
R
g2
t−s(x− y) ds dy

≤ 4 ‖g‖∞
∫ t

t−|x−x′|α
ds

1

(t− s)
1
α

= 4 ‖g‖∞
α

α− 1
|x− x′|α−1.

For the first part, we write

♦0,t−|x−x′|α =

∫ t−|x−x′|α

0
ds

∫
R

dy

(∫ x

x′

d

dw
gt−s(w − y) dw

)2

≤ |x− x′|
∫ t−|x−x′|α

0
ds

∫
R

dy

∫ x

x′

(
d

dw
gt−s(w − y)

)2

having used Jensen inequality. For α ∈ (1, 2), we use the estimate (A.13) for the derivative and
we get

♦α∈(1,2)
0,t−|x−x′|α ≤ |x− x

′|
∫ t−|x−x′|α

0
ds

1

(t− s)
2
α

∫
R

dy

∫ x

x′
dw g2

t−s(w − y)

≤ ‖g‖∞ |x− x′|2
∫ t−|x−x′|α

0
ds

1

(t− s)
3
α

= ‖g‖∞ |x− x′|2
α

3− α
|x− x′|α−3

= ‖g‖∞
α

3− α
|x− x′|α−1.

When α = 2, we use the estimate (A.15) of the derivative, getting

♦α=2
0,t−|x−x′|2 ≤

1

4
|x− x′|

∫ t−|x−x′|2

0
ds

∫
R

dy

∫ x

x′
dw

(w − y)2

(t− s)2
g2
t−s(w − y)

=
1

4
|x− x′|

∫ t−|x−x′|2

0
ds

∫ x

x′
dw

∫
R

dy
1

(t− s)

( w − y√
t− s

)2 1

t− s
g2

(
w − y
t− s

)
,

having changer the order of integrals and using the scaling property of the heat kernel. Defining
the new variable z = w−y√

t−s , we have

♦α=2
0,t−|x−x′|2 ≤

1

4
|x− x′|

∫ t−|x−x′|2

0
ds

1√
t− s

∫ x

x′
dw

∫
R

dz z2 g2(z)

≤ (const.) |x− x′|2
∫ t−|x−x′|2

0
ds

1

(t− s)
3
2

≤ (const.) |x− x′|.
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We now prove (B.24). By a similar argument used above:

♦0,t′ :=

∫ t′

0

∫
R

(
gt−s(x− y)− gt′−s(x− y)

)2
ds dy

≤ 2

∫ t′

0

∫
R
g2
t−s(x− y),ds dy + 2

∫ t′

0

∫
R
g2
t′−s(x− y), ds dy

≤ 4 ‖g‖∞
∫ t′

0
ds

1

(t′ − s)
1
α

= 4 ‖g‖∞
α

α− 1
(t′)

α−1
α
.

Then, if t′ ≤ |t− t′|, (B.24) follows easily. It remains to prove (B.24) when t′ > |t− t′|; in this
case, we write

♦0,t′

=

∫ t′−|t−t′|

0

∫
R

(
gt−s(x− y)− gt′−s(x− y)

)2
ds dy +

∫ t′

t′−|t−t′|

∫
R

(
gt−s(x− y)− gt′−s(x− y)

)2
ds dy

=: ♦0,t′−|t−t′| +♦t′−|t−t′|,t′ .

For the second integral, we use the triangle inequality and the argument used above:

♦t′−|t−t′|,t′ ≤ 4 ‖g‖∞
∫ t′

t′−|t−t′|
ds

1

(t′ − s)
1
α

= 4 ‖g‖∞
α

α− 1
|t− t′|

α−1
α .

For the first integral,

♦0,t′−|t−t′| =

∫ t′−|t−t′|

0
ds

∫
R

dy

(∫ t

t′

d

dc
gc−s(x− y) dc

)2

≤ |t− t′|
∫ t′−|t−t′|

0
ds

∫
R

dy

∫ t

t′
dc

(
d

dc
gc−s(x− y)

)2

,

having used Jensen inequality. Now we use the estimates of the derivative of g, with respect to
the time, and we shall distinguish the case α ∈ (1, 2) and α = 2. If α ∈ (1, 2), by using (A.12),
we get

♦α∈(1,2)
0,t′−|t−t′| ≤

4

α2
|t− t′|

∫ t′−|t−t′|

0
ds

∫
R

dy

∫ t

t′
dc

1

(c− s)2
g2
c−s(x− y)

≤ 4‖g‖∞
α2

|t− t′|
∫ t

t′
dc

∫ t′−|t−t′|

0
ds

1

(c− s)2+ 1
α

(B.25)

by changing the order of the integrals and using (A.5). If α = 2, we use (A.14), getting

♦α=2
0,t′−|t−t′| ≤ |t− t

′|
∫ t′−|t−t′|

0
ds

∫
R

dy

∫ t

t′
dc

1

4(c− s)2

[
(x− y)2

2(c− s)
− 1

]2

g2
c−s(x− y)

=
1

4
|t− t′|

∫ t′−|t−t′|

0
ds

∫ t

t′
dc

1

(c− s)2

∫
R

dy

[
1

2

( x− y√
c− s

)2
− 1

]2 1

c− s
g2

(
x− y√
c− s

)
,
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by changing the integral and the scaling property of g. Now, by changing the variable z = x−y√
c−s ,

we write

♦α=2
0,t′−|t−t′| ≤

1

4
|t− t′|

∫ t′−|t−t′|

0
ds

∫ t

t′
dc

1

(c− s)2+ 1
2

∫
R

dz
(1

2
z2 − 1

)2
g2(z)

≤ (const.) |t− t′|
∫ t′−|t−t′|

0
ds

∫ t

t′
dc

1

(c− s)2+ 1
2

,

(B.26)

since the integral over z is a real number. Looking at (B.25) and (B.26), we have just proved
that for every α ∈ (1, 2], we have

♦0,t′−|t−t′| ≤ (const.) |t− t′|
∫ t

t′
dc

∫ t′−|t−t′|

0
ds

1

(c− s)2+ 1
α

= (const.) |t− t′|
∫ t

t′
dc

1

(c− 2t′ + t)1+ 1
α

≤ (const.)
α

α+ 1
|t− t′|α |t− t′|−

1
α

= (const.) |t− t′|
α−1
α .

The following theorem coincides with Theorem 1.14: here we show the proof.

Theorem B.22. For all x, x′ ∈ R, with x′ < x, and t, t′ with 0 < t′ < t, we have∫ t

t′

∫
R
I2

0 (s, y) g2
t−s(x− y) ds dy ≤ K̃1 I

2
0 (t, x) |t− t′|

α−1
α , (B.27)∫ t

0

∫
R
I2

0 (s, y)
(
gt−s(x− y)− gt−s(x′ − y)

)2
ds dy

≤ K̃2

(
1 +

1√
t
1α=2

)(
max
w∈[x′,x]

I2
0 (t, w)

)
|x− x′|α−1, (B.28)∫ t′

0

∫
R
I2

0 (s, y)
(
gt−s(x− y)− gt′−s(x− y)

)2
ds dy

≤ K̃3

(
1 +

1√
t
1α=2

)(
max
w∈[t′,t]

I2
0 (c, x)

)
|t− t′|

α−1
α . (B.29)

Proof of Theorem B.22. Thanks to Proposition 1.5, we have

∫ t

t′

∫
R
I2

0 (s, y) g2
t−s(x− y) ds dy ≤ c I2

0 (t, x)

∫ t

t′
ds

t
1
α

s
1
α (t− s)

1
α

≤ c I2
0 (t, x) Beta

(α− 1

α
,
α− 1

α

)
|t− t′|

α−1
α

(see also (A.18)) and (B.27) is proved.
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We now pass to (B.28). The idea is similar to the one used to prove (B.23). We first write

♦0,t :=

∫ t

0

∫
R
I2

0 (s, y)
(
gt−s(x− y)− gt−s(x′ − y)

)2
ds dy

≤ 2

∫ t

0

∫
R
I2

0 (s, y) g2
t−s(x− y) ds dy + 2

∫ t

0

∫
R
I2

0 (s, y)g2
t−s(x− y) ds dy

≤ 4 c I2
0 (t, x) Beta

(α− 1

α
,
α− 1

α

)
, t

α−1
α ,

as done previously, by using Proposition 1.5 and the definition of Beta function (see Definition
A.10). Hence, we can suppose that t > 2|x − x′|α, otherwise (B.28) would follow easily from
the above calculation. We can write

♦0,t =

∫ t−|x−x′|α

0

∫
R
I2

0 (s, y)
(
gt−s(x− y)− gt−s(x′ − y)

)2
dsdy+

+

∫ t

t−|x−x′|α

∫
R
I2

0 (s, y)
(
gt−s(x− y)− gt−s(x′ − y)

)2
dsdy

=: ♦0,t−|x−x′|α +♦t−|x−x′|α,t

For the second part, as above,

♦t−|x−x′|α,t

≤ 2

∫ t

t−|x−x′|α

∫
R
I2

0 (s, y) g2
t−s(x− y) ds dy + 2

∫ t

t−|x−x′|α

∫
R
I2

0 (s, y) g2
t−s(x

′ − y) dsdy

≤ 4 c max(I2
0 (t, x), I2

0 (t, x′))

∫ t

t−|x−x′|α
ds

t
1
α

s
1
α (t− s)

1
α

= 4 c max(I2
0 (t, x), I2

0 (t, x′)) Beta
(α− 1

α
,
α− 1

α

)
|x− x′|α−1,

by using Proposition 1.5.
For the first part, we write

♦0,t−|x−x′|α =

∫ t−|x−x′|α

0

∫
R
I2

0 (s, y)

(∫ x

x′

d

dw
gt−s(w − y) dw

)2

dsdy

≤ |x− x′|
∫ t−|x−x′|α

0
ds

∫
R

dy I2
0 (s, y)

∫ x

x′
dw

(
d

dw
gt−s(w − y)

)2

,

having used Jensen inequality. In the case α ∈ (1, 2), we use the estimate (A.13) for the
derivative and, with a change of integrals in y, w, and Proposition 1.5, we get

♦0,t−|x−x′|α ≤ |x− x′|
∫ t−|x−x′|α

0
ds

1

(t− s)
2
α

∫ x

x′
dw

∫
R

dy I2
0 (s, y) g2

t−s(w − y)

≤ c |x− x′|
∫ t−|x−x′|α

0
ds

t
1
α

s
1
α (t− s)

3
α

∫ x

x′
dw I2

0 (t, w)

≤ c
(

max
w∈[x′,x]

I2
0 (t, w)

)
|x− x′|2

∫ t−|x−x′|α

0
ds

t
1
α

s
1
α (t− s)

3
α

.

(B.30)
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In the case of α = 2, we use estimate (A.15), and we write

♦0,t−|x−x′|2 ≤ |x− x′|
∫ t−|x−x′|2

0
ds

∫
R

dy I2
0 (s, y)

∫ x

x′
dw

(w − y)2

4(t− s)2
g2
t−s(w − y). (B.31)

We use the fact that x2 g(x) ≤ 1 (it is easy to see by plotting the function), that is x2 g2(x) ≤
g(x). In particular, we have

(w − y)2 g2
t−s(w − y) =

(w − y)2

(t− s)
g2

(
w − y√
t− s

)
≤ g
( w − y√

t− s

)
=
√
t− s gt−s(w − y).

Then, from (B.31), we can write

♦0,t−|x−x′|2 ≤
1

4
|x− x′|

∫ t−|x−x′|2

0
ds

1

(t− s)
3
2

∫ x

x′
dw

∫
R

dy I2
0 (s, y) gt−s(w − y)

≤ c(2)

4
|x− x′|

∫ t−|x−x′|2

0

1
√
s(t− s)

3
2

∫ x

x′
dw I2

0 (t, w)

≤ 1√
t

c(2)

4
|x− x′|2

(
max
w∈[x′,x]

I2
0 (t, w)

) ∫ t−|x−x′|2

0

√
t

√
s(t− s)

3
2

,

(B.32)

having used Lemma B.3.
Looking at (B.30) and (B.32), we can write

♦0,t−|x−x′|α ≤ (const.) c(α)
(

1 +
1√
t
1α=2

)(
max
w∈[x′,x]

I2
0 (t, w)

)
|x− x′|2

∫ t−|x−x′|α

0
ds

t
1
α

s
1
α (t− s)

3
α

.

Since we are in the case t > 2|x − x′|α, then t
2 < t − |x − x′|α, and we divide the integral by

convenience:

♦0,t−|x−x′|α

≤ c
(

1 +
1√
t
1α=2

)(
max
w∈[x′,x]

I2
0 (t, w)

)
|x− x′|2

[ ∫ t
2

0
ds

t
1
α

(t− s)
3
α s

1
α

+

∫ t−|x−x′|α

t
2

ds
t

1
α

(t− s)
3
α s

1
α

]

≤ c
(

1 +
1√
t
1α=2

)(
max
w∈[x′,x]

I2
0 (t, w)

)
|x− x′|2

[
t

1
α

( t2)
3
α

∫ t
2

0
ds

1

r
1
α

+
t

1
α

( t2)
1
α

∫ t−|x−x′|α

t
2

ds
1

(t− s)
3
α

]
≤ c

(
1 +

1√
t
1α=2

)(
max
w∈[x′,x]

I2
0 (t, w)

)
|x− x′|2

[
t
α−3
α + |x− x′|α−3

]
≤ c

(
1 +

1√
t
1α=2

)(
max
w∈[x′,x]

I2
0 (t, w)

)
|x− x′|α−1,

and we have done with (B.28).
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We now pass to prove (B.29). We write

♦0,t′ :=

∫ t′

0

∫
R
I2

0 (s, y)
(
gt−s(x− y)− gt′−s(x− y)

)2
ds dy

≤ 2

∫ t′

0

∫
R
I2

0 (s, y) g2
t−s(x− y)ds dy + 2

∫ t′

0

∫
R
I2

0 (s, y) g2
t′−s(x− y)ds dy

≤ 4 c max
(
I2

0 (t, x), I2
0 (t′, x)

) ∫ t′

0
ds

(t′)
1
α

s
1
α (t′ − s)

1
α

= 4 c max
(
I2

0 (t, x), I2
0 (t′, x)

)
Beta

(α− 1

α
,
α− 1

α

)
(t′)

α−1
α
.

If t′ < 2 |t − t′|, (B.29) follows easily. It remains to prove (B.29) when t′ > 2 |t − t′| (that is
3t′ > 2t); in this case, we write

♦0,t′

=

∫ t′−|t−t′|

0

∫
R
I2

0 (s, y)
(
gt−s(x− y)− gt′−s(x− y)

)2
ds dy+

+

∫ t′

t′−|t−t′|

∫
R
I2

0 (s, y)
(
gt−s(x− y)− gt′−s(x− y)

)2
ds dy

=: ♦0,t′−|t−t′| +♦t′−|t−t′|,t′ .

For the second integral, we use the triangle inequality and the argument used above:

♦t′−|t−t′|,t′ ≤ 4 c max
(
I2

0 (t, x), I2
0 (t′, x)

) ∫ t′

t′−|t−t′|
ds

(t′)
1
α

s
1
α (t′ − s)

1
α

= 4 c max
(
I2

0 (t, x), I2
0 (t′, x)

)
Beta

(α− 1

α
,
α− 1

α

)
|t− t′|

α−1
α .

For the first integral,

♦0,t′−|t−t′| =

∫ t′−|t−t′|

0
ds

∫
R

dy I2
0 (s, y)

(∫ t

t′

d

dc
gc−s(x− y) dc

)2

≤ |t− t′|
∫ t′−|t−t′|

0
ds

∫
R

dy I2
0 (s, y)

∫ t

t′
dc

(
d

dc
gc−s(x− y)

)2

,

having used Jensen inequality. In the case of α ∈ (1, 2), we use the estimate (A.12) for the
derivative and, changing the order of the integrals and using Proposition 1.5, we get

♦0,t′−|t−t′| ≤
1

α2
|t− t′|

∫ t′−|t−t′|

0
ds

∫
R

dy I2
0 (s, y)

∫ t

t′
dc

1

(c− s)2
g2
c−s(x− y)

≤ c(α)

α2
|t− t′|

∫ t′−|t−t′|

0
ds

∫ t

t′
dc I2

0 (c, x)
c

1
α

s
1
α (c− s)2+ 1

α

≤ c(α)

α2
|t− t′|

(
max
c∈[t′,t]

I2
0 (c, x)

) ∫ t′−|t−t′|

0
ds

∫ t

t′
dc

c
1
α

s
1
α (c− s)2+ 1

α

.
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If α = 2, we use the estimate (A.14) for the derivative, and we get

♦0,t′−|t−t′| ≤
1

4
|t− t′|

∫ t′−|t−t′|

0
ds

1

(c− s)2

∫
R

dy I2
0 (s, y)

∫ t

t′
dc

(
(x− y)2

2(c− s)
− 1

)2

g2
c−s(x− y).

We now use the fact that the function z 7→ ( z
2

2 − 1)2g(z) is limited, say ( z
2

2 − 1)2g(z) ≤M for
any z, then ( z

2

2 − 1)2g2(z) ≤Mg(z) for any z. In particular,

(
(x− y)2

2(c− s)
− 1

)2

g2
c−s(x− y) =

1

c− s

(
(x− y)2

2(c− s)
− 1

)2

g2

(
x− y
c− s

)
≤M 1

c− s
g

(
x− y
c− s

)
=

M√
c− s

gc−s(x− y)

Then, we can write

♦0,t′−|t−t′| ≤
M

4
|t− t′|

∫ t′−|t−t′|

0
ds

∫ t

t′
dc

1

(c− s)2+ 1
2

∫
R

dy I2
0 (s, y) gc−s(x− y)

≤ M c(2)

4
|t− t′|

∫ t′−|t−t′|

0
ds

∫ t

t′
dc

1

(c− s)2+ 1
2

1√
s
I2

0 (c, x)

≤ M c(2)

4

1√
t
|t− t′|

√
t
(

max
c∈[t′,t]

I2
0 (c, x)

) ∫ t′−|t−t′|

0
ds

∫ t

t′
dc

1
√
s(c− s)2+ 1

2

(B.34)

having used Lemma B.3.
Summing up (B.33) and (B.34), we can write

♦0,t′−|t−t′| ≤ (const.)
(

1 +
1√
t
1α=2

)
|t− t′| t

1
α

(
max
c∈[t′,t]

I2
0 (c, x)

) ∫ t′−|t−t′|

0
ds

∫ t

t′
dc

1

s
1
α (c− s)2+ 1

α

.

Now we split the integral over s, recalling that t′ > 2(t− t′); we write

t
1
α

∫ t

t′
dc

1

s
1
α (c− s)2+ 1

α

≤ t
1
α

[ ∫ t′
2

0
ds

∫ t

t′
dc

1

s
1
α (c− s)2+ 1

α

+

∫ t′−(t−t′)

t′
2

ds

∫ t

t′
dc

1

s
1
α (c− s)2+ 1

α

]

≤ |t− t′|
[

t
1
α

(t′/2)2+ 1
α

∫ t′
2

0
ds

1

s
1
α

∫ t

t′
dc+

t
1
α

(t′/2)
1
α

∫ t′−(t−t′)

t′
2

ds

∫ t

t′
dc

1

(c− s)2+ 1
α

]

≤ (const.) |t− t′|
[

t
1
α

(t′)2+ 1
α

(t′)1− 1
α |t− t′|+ t

1
α

(t′)
1
α

(t− t′)−
1
α

]
;
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indeed,∫ t′−(t−t′)

t′
2

ds

∫ t

t′
dc

1

(c− s)2+ 1
α

=

∫ t′−(t−t′)

t′
2

ds
1

(−1− 1
α)

[
(t− s)−1− 1

α − (t′ − s)−1− 1
α

]

=
1

(1 + 1
α)(α)

[
− (t− s)−

1
α + (t′ − s)−

1
α

]s=t′−(t−t′)

s= t′
2

≤ (const.)
[
(t− t′

2
)−

1
α + (t− t′)−

1
α

]
≤ (const.) (t− t′)−

1
α .

Hence

♦0,t′−|t−t′| ≤ (const.)
(

1 +
1√
t
1α=2

)(
max
c∈[t′,t]

I2
0 (c, x)

) t
1
α

(t′)
1
α

[
(t− t′)2

(t′)1+ 1
α

+ (t− t′)1− 1
α

]
≤ (const.)

(
1 +

1√
t
1α=2

)(
max
c∈[t′,t]

I2
0 (c, x)

)
|t− t′|

α−1
α ,

reminding always that t′ > 2|t− t′|.



Bibliography

[Alberts, Khanin, Quastel 14a] Alberts T. Khanin K. and Quastel J. , Intermediate disorder
regime for 1 + 1 dimensional directed polymers, Annals of Probability, 42, no. 3, 1212-1256,
2014.

[Alberts, Khanin, Quastel 14b] Alberts T. Khanin K. and Quastel J. , The Continuum Directed
Random Polymer, J. Stat. Phys., 154, no. 1-2, 305-326, 2014.

[Bayer et al. 17] Bayer C., Friz P. K., Gassiat P., Martin J., Stemper B., A regularity structure
for rough volatility, available online at arXiv:1710.07481, 2017.

[Berger, Mizel 80a] Berger M. A., V. J. Mizel, Volterra equations with Itô integrals I, J. Integral
Equations 2(3), 1980. 187–245.

[Berger, Mizel 80b] Berger M. A., V. J. Mizel, Volterra equations with Itô integrals II, J. Integral
Equations 2(4), 319–337, 1980.

[Bertini, Cancrini 95] Bertini L., Cancrini N., The stochastic heat equation: Feynman–Kac for-
mula and intermittence, J. Stat. Phys. Vol. 78(5–6), pages 1377–1401, 1995.

[Bertini, Giacomin 97] Bertini L., Giacomin G., Stochastic Burgers and KPZ equations from
particle systems, Commun. Math. Phys. 183 571–607, 1997.

[Carmona, Molchanov 94] Carmona, R.A., Molchanov, S.A., Parabolic Anderson problem and
intermittency, . Mem. Am. Math. Soc. 108(518), Viii+125 (1994)

[Caravenna, Sun, Zygouras 16] Caravenna F., Sun R., Zygouras N., The continuum disordered
pinning model, Probab. Theory Related Fields 164, 17-59, 2016.

[Caravenna, Sun, Zygouras 17] Caravenna F., Sun R., Zygouras N., Polynomial chaos and scal-
ing limits of disordered systems, Journal of the European Mathematical Society 19 (1),
1–65, 2017.

[Chen, Dalang 15 A] Dalang R.C., Le Chen, Moments and Growth indices for the nonlinear
stochastic heat equation with rough initial condition, Vol. 43, No. 6, 3006–3051, 2015.

[Chen, Dalang 15 B] Dalang R.C., Le Chen, Moments, intermittency and growth indices for
the nonlinear fractional stochastic heat equation, Stoch PDE: Anal Comp (2015) 3:360–397,
2015.

[Chen, Kim 14] Le Chen, K. Kim, On comparison principle and strict positivity of solutions
to the nonlinear stochastic fractional heat equations, preprint, to appear on Ann. Inst. H.
Poincaré, 2014.

[Chocran et al. 95 ] Cochran W. G., J.-S. Lee, J. Potthoff, Stochastic Volterra equations with
singular kernels, Stochastic Process. Appl. 56(2), 337–349, 1995.

143

arXiv:1710.07481


144 BIBLIOGRAPHY

[Conus et al. 10] Conus D., Khoshnevisan D., Weak non mild solutions to some SPDEs, Illinois
J. Math., 5(4), 1329-1341, 2010.

[Conus et al. 14] Conus D., Joseph M., Khoshnevisan D., Shiu S., Initial measures for the
stochastic heat equation, Ann. Inst. Henri Poincaré, Probab. Stat. 50(1), 136-153, 2014.

[Corwin 12] Corwin I., The Kardar-Parisi-Zhang equation and universality class, Random Ma-
trices Theory Appl., 1, 2012.

[Dalang 99] Dalang, R.C., Extending the martingale measure stochastic integral with applica-
tions to spatially homogeneous s.p.d.e.’s, Electron. J. Probab. 4(6), 1–29 (1999)

[Dalang et al. 07] Dalang, R.C., Khoshnevisan D., Nualart E., Hitting probabilities for systems
for non-linear stochastic heat equation with additive noise, ALEA Lat. Am. J. Probab.
Math. Stat. 3, 231-271, 2007.

[Dalang et al. 09] Dalang, R.C., Khoshnevisan D., Nualart E., Hitting probabilities for systems
for non-linear stochastic heat equation with multiplicative noise, Probab. Theory Relat.
Fields 144 (3-4), 371-427, 2009.

[Debbi, Dozzi 05] Debbi L., Dozzi M.,On the solutions of non linear stochastic fractional partial
differential equations in one spatial dimension, Stoch. Process. Appl. 115(11), 1764–1781,
2005.

[Debbi 06] Debbi, L., Explicit solutions of some fractional partial differential equations via
stable subordinators, J. Appl. Math. Stoch. Anal. 93502, 2006.

[Friz, Hairer 14] Friz P., Hairer M, A Course on Rough Paths, Springer, 2014.

[Gatheral et al. 18] Gatheral J., Jaisson T., Rosenbaum M., Volatility is rough, Quantitative
Finance, 18:6, 933-949, 2018.

[Gubinelli 04] Gubinelli M., Controlling Rough Paths, Journal of Functional Analysis 216 (1),
86-140, 2004.

[Gubinelli 10] Gubinelli M., Ramification of rough paths, Journal of Differential Equations 248
(4), 693-721, 2010.

[Gubinelli] Gubinelli M., Lecture sheets on "Rough paths and controlled paths",
available at http://www.iam.uni-bonn.de/abteilung-gubinelli/teaching/
rough-paths-controlled-paths-ws1516/

[Gubinelli, Perkowski 17] Gubinelli M., Perkowski N., KPZ reloaded, Communications in Math-
ematical Physics 349 (1), 165-269, 2017.

[Hairer 13] Hairer M., Solving the KPZ equation, Annals of Mathematics. 178 (2): 559–664.,
2013.

[Hairer 14] Hairer M., A theory of regularity structures, Inventiones mathematicae 198 (2),
269-504, 2014.

[Hairer, Pardoux 15] Hairer M., Pardoux E., A Wong-Zakai theorem for stochastic PDEs, Jour-
nal of the Mathematical Society of Japan, Volume 67, Number 4, 1551-1604, 2015.

http://www.iam.uni-bonn.de/abteilung-gubinelli/teaching/rough-paths-controlled-paths-ws1516/
http://www.iam.uni-bonn.de/abteilung-gubinelli/teaching/rough-paths-controlled-paths-ws1516/


BIBLIOGRAPHY 145

[Han, Kim 19] Han B., Kim K., Boundary behavior and interior Hölder regularity of solution to
nonlinear stochastic partial differential equations driven by space-time white noise, available
at arXiv:1905.11609, 2019.

[Kardar, Parisi, Zang 86] M. Kardar, G. Parisi and Y. Z. Zhang, Dynamic scaling of growing
interfaces, Phys. Rev. Lett. 56, 889–892, 1986.

[Khoshnevisan 09] Khoshnevisan D., A Primer on Stochastic Partial Differential Equations,
2009

[Kunita 90] Kunita H. Stochastic flows and stochastic differential equations, Cambridge Uni-
versity Press, Cambridge, 1990.

[Lyons 98] Lyons T.J., Differential equations driven by rough signals, Rev. Mat. Iberoamericana
14, n. 2, 215–310, 1998.

[Moreno 14] Moreno Flores G. R., On the (strict) positivity of solutions of the stochastic heat
equation, Volume 42, Number 4, 1635-1643, 2014

[Mueller 91] Mueller C., On the support of solutions to the heat equation with noise, Stochastics
and Stochastics Reports, Vol. 37, pages 225-245, 1991.

[Pardoux, Protter 90] Pardoux E., P. Protter, Stochastic Volterra equations with anticipating
coefficients, Ann. 38 Probab.1 18(4), 1635–1655, 1990.

[Pospisil, Tribe 07] Pospisil J., Tribe R., Parameter estimates and exact variations for stochas-
tic heat equations driven by space-time white noise, Stoch. Anal. Appl. 25 (3), 593-611,
2007.

[Prömel, Trabs 18] Prömel D., Trabs M., Paracontrolled distribution approach to stochastic
Volterra equations, preprint available online at arXiv:1812.05456, 2018.

[Protter 85] Protter P. Volterra equations driven by semimartingales, Ann. Probab. 13(2),
519–530, 1985.

[Quastel 11] Quastel J.,Introduction to KPZ, Current developments in mathematics 2011 (1).

[Shiga 94] Shiga T., Two Contrasting Properties of Solutions for One-Dimensional Stochastic
Partial Differential Equations,Can., J. Math., 46(2), 415-437, 1994.

[Tessitore, Zabczyk 98] Tessitore G., Zabczyk J., Strict positivity for stochastic heat equations,
Stochastic Processes and their Applications Volume 77, Issue 1, Pages 83-98, 1998.

[Walsh 86] Walsh, J.B., An introduction to stochastic partial differential equations, École d’Été
de Probabilités de Saint Flour XIV - 1984, Vol. in Lecture Notes in Mathematics pp 265-
439, Springer, Berlin, 1986.

[Young 36] Young L. C. An inequality of the Hölder type, connected with Stieltjes integration,
Acta Math. 67, 251–282, 1936.

[Wang 18] Wang Z., A probabilistic Harnack inequality and strict positivity of stochastic partial
differential equations, Probab. Theory Relat. Fields, Volume 171, Issue 3–4, pp 653–684,
2018.

 arXiv:1905.11609
 arXiv:1812.05456


146 BIBLIOGRAPHY

[Zhang 10] Zhang X.Stochastic Volterra equations in Banach spaces and stochastic partial dif-
ferential equation, Journal of Functional Analysis 258(4), 1361–1425, 2010.



Ringraziamenti

Vorrei ringraziare il prof. Caravenna, relatore di questa tesi di dottorato, per l’aiuto fornitomi,
per la disponibilità dimostratami durante tutto il periodo di stesura e per la grande conoscenza
che mi ha donato, non solo durante questo dottorato, ma anche durante i miei anni da laureanda.

Vorrei ringraziare tutti i professori che in questi anni mi hanno aiutata, donandomi sapere
e potenziando la mia curiosità.

Un grande ringraziamento alla mia famiglia, per avermi sempre supportata e sopportata in
questi anni. Grazie ai miei genitori, ai miei nonni, ai miei zii, e, in particolare, a mia sorella
Marta, punto di riferimento e mia certezza, e ai miei cugini Silvia, Elisa, Giacomo e Mattia:
siete le mie rocce.

Un grazie speciale ai miei amici e ai miei colleghi, che sono stati sempre pronti ad aiutarmi
nel momento del bisogno. Grazie per aver condiviso con me momenti importanti, vi voglio bene.

Grazie ai miei alunni, che ogni giorno mi insegnano qualcosa.
Un immenso grazie a Gianluca, per l’amore e il sostegno che mi ha regalato ogni giorno di

questa avventura.

147


	Abstract
	Introduction
	I Fractional Stochastic Heat Equation
	Introduction to Part I
	Fractional Stochastic Heat Equation
	Mild solution, assumptions and main results
	Proof of Proposition 1.5
	Proof of Existence and Uniqueness
	Proof of the Regularity

	Normalized Solution and Strict Positivity
	Normalized Solution and Main Results
	Proof of the Hölder continuity for  (1,2) 
	Proof of the Hölder continuity for  =2 
	The Stochastic Fundamental Solution
	Strict Positivity in the Linear Case
	Technical Proofs


	II A 1d Rough Fractional Equation
	Introduction to Part II
	Controlled Paths and Rough Integrals
	Notation and Basic Tools
	Generalized Integral and Controlled Path
	Singular Kernels and Rough Integral
	Technical Proofs

	Rough Fractional SDE
	Main Results
	Proof of Theorem 4.6
	Technical Proofs

	Finer Estimate for the Solution to a Linear Rough Fractional SDE
	Main result
	Fundamental Proposition for Rough Integral with Singular Kernels
	Proof of Theorem 5.2
	Technical Proofs

	Fractional Heat Kernel
	Technical tools
	Gronwall-type inequalities
	Progressive measurability and stochastic integral
	Tools for the regularity

	Bibliography
	Ringraziamenti


