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Introduction

The shadows cast by opaque objects and motion pictures displayed on a screen are examples
of projections that everyone has in mind. In mathematics, linear projections are one of the
most important morphisms in projective geometry, whose name originated from the visual
e�ect of perspective. Linear projections have also useful applications to computer vision.

Given a point P in the complex projective space Pn+1 and a hyperplane H ∼= Pn ⊂ Pn+1

not containing P , a linear projection from P is the rational map

πP : Pn+1 99K Pn

sending a point Q ∈ Pn+1 \ {P} to the point 〈Q,P 〉 ∩ Pn, where 〈Q,P 〉 is the line through P
and Q. The map is not de�ned on P . We will restrict πP to a variety X and, when it is clear
from the context, we will just write πP instead of (πP )|X . If we require P /∈ X, the map we
obtain is regular. One can also de�ne projections from linear subspaces L of dimension k > 1
in an analogous way; those maps may also be realized as the composition of a sequence of
projections from points spanning L.

In particular, we will focus on projections of hypersurfaces. Let X be a irreducible and
reduced complex projective hypersurface, i.e. a subvariety of Pn+1 of dimension n, and
consider its projection from a point P not in X. It is a �nite morphism of degree equal
to the degree of X.

We can associate to this morphism a topological invariant: the monodromy group. If we
consider an Zariski open U ⊂ Y over which the map is unrami�ed, the projection can be seen
as a topological covering. The monodromy map on πP : X → Pn is

µ : π1(U, q)→ Aut(π−1
P (q)) ' Sd.

We denoted by Sd the symmetric group on d elements, where d is the degree of the map.
The image

µ (π1(U, q)) =: M(πP ) ≤ Sd
is a subgroup of the symmetric group, called monodromy group. It is a transitive subgroup
since X is irreducible.

The goal of this work is to study the projections of an irreducible and reduced hyperurface
X ⊂ Pn+1 in terms of their monodromy group.

A classical result in projective geometry is the so-called Uniform position principle, which
was introduced by Castelnuovo and later stated in more modern terms by Harris ([Ha4]). One
of the several applications of this principle is the following
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IV INTRODUCTION

Lemma. The projection of an irreducible and reduced hyperurface X ⊂ Pn+1 from a general
point P has monodromy group isomorphic to the symmetric group.

We will say that a point P is uniform for X if M(πP ) = Sd, non uniform otherwise. We
will denote by W(X) the locus in Pn+1 of non uniform points for X.

Hence, projections from non uniform points are in some sense special. The problem we
want to address in this work is to �nd a bound on the dimension of W(X).

In 1999, Cukierman [Cu] has shown that for a general smooth plane curve of degree d,
every point P /∈ X is uniform. Moreover, in 2005 Pirola and Schlesinger [PS] proved that for
an irreducible and reduced curve X ⊂ Pc+1, the non uniform locus, that can be analogously
de�ned in the Grassmannian G(c − 1,Pc+1), has codimension at least two. Examples show
that this bound is sharp ([PS, Remark 3.6]). In particular, they proved that a plane curve
admits at most a �nite number of non uniform points. In 2013 Cuzzucoli, Moschetti and
Serizawa [CMS] proved the same statement for projections of smooth surfaces in P3.

The main Theorem of this thesis is a generalization of those results.

Theorem. Let X be an irreducible, reduced, complex hypersurface of Pn+1. Then, the locus
W(X) is contained in a �nite union of linear subspaces of codimension at least 2.

Cones constructed over an irreducible and reduced plane curve admitting at least a non
uniform point, are examples of hypersurfaces with exactly a �nite union of codimension two
linear subspaces of non uniform points (Proposition 3.3.4).

This bound can be improved if we add some hypothesis on the variety X.

Theorem. Let X be a smooth projective hypersurface in Pn+1. Then the locus of non uniform
points is �nite.

The same is true for hypersurfaces X ⊂ Pn+1 that are image of general projections of
smooth varieties X in PN with N > n+ 1 (Proposition 3.5.1) and for irreducible and reduced
hypersurfaces of prime degree (Corollary 3.3.14).

Projections can be studied from several di�erent point of views, in the context of algebra,
topology and di�erential geometry.

An algebraic description of the monodromy group comes from Galois theory: the Galois
group GπP of πP is the Galois closure of the extension �eld C(X) : C(Pn), the �elds of rational
functions. The Galois group is isomorphic to the monodromy group [Ha, Section I]. Thanks
to this description, we have that the monodromy group is independent on the choice of the
open U and the base point q.

We study generators of the monodromy group by means of classical results as Bertini's
Theorem on linear sections and Zariski Lefschetz type theorem on fundamental groups. In
particular, Zariski has intensively studied the fundamental group of a complement of a hyper-
surface ([Zar1]), and this knowledge is very useful for our case when applied to the complement
of the branch locus of the projection.

The di�erential of the map πP allows us to de�ne the locus in which the map is rami�ed
or not. Moreover, di�erential geometry techniques as the theory of focal loci are used to study
families of lines through the centre of projection P . It is a classical di�erential geometry theory
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in projective geometry introduced by Segre ([Se1], [Se]); it has been rewritten in modern terms
for instance by Sernesi, Ciliberto and Flamini ([Ser], [CF], [CS]). In the classical de�nition,
it is a locus, proper under some additional assumptions, in a family of linear subspaces in a
projective space.

A complete classi�cation of irreducible and reduced hypersurfaces admitting in�nitely
many non uniform points is not known. However, a consequence of the main theorem in this
case is the following.

Theorem. Assume X is an irreducible reduced hypersurface in Pn+1 with dimW(X) > 0,
and X not a cone. Then, the projection from all but �nitely many points in W(X) must be
decomposable.

We recall that a map X → Y is decomposable if it factors non trivially as

X
f→ Z

g→ Y

with deg(f), deg(g) > 1. This property is deeply related with the monodromy group: a
point P is uniform if the monodromy group M(πP ) contains a transposition and if πP is non
decomposable. This suggest us the following conjecture

Conjecture. Let X ⊂ Pn+1 be a reduced and irreducible hypersurface that is not a cone.
Then W(X) is at most �nite.

The conjecture is true when the degree of X is a prime number.
In order to approach the conjecture, the previous Theorem tells that a possible way to the
study of the varieties admitting in�nitely many non uniform points, is to understand better
the notion of decomposable morphisms.

In Section 3.4 we introduce a technique based on fundamental groups. The �rst step is
the generalisation to hypersurfaces of a result of Nori ([No, Prop. 4.1]).

Lemma. Let Γ be a irreducible and reduced curve in Pn and R ⊂ Pn be a closed subset such
that Γ * R and the intersection between Γ and R is transverse. Then we have a surjective
map

π1 (Γ rR)→ π1 (Pn rR) .

If W(X) has dimension greater than zero, we apply the Lemma to Γ being the image, via
a general projection from a point P , of a curve S inside W(X). The hypothesis of transverse
intersection is veri�ed for instance when we consider projections of smooth hypersurfaces
(Remark 3.4.5).

An example of non uniform points are the so called Galois points. A point P is Galois
if the extension of �elds C(X) : C(Pn) of the projection of X from P is Galois. Fukasawa
[Fu] classi�ed the number of Galois points for smooth plane curves of degree d ≥ 4. More
in general, Yoshihara ([Yo2, Proposition 11]) proved that there is at most a �nite number
of Galois points P /∈ X for a smooth hypersurface X ⊂ Pn. He also provided a bound for
such a �nite number. In the case of normal hypersurfaces X, Fukasawa and Takahashi [FT,
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Theorem 2, Proposition 6] proved that the number of Galois points is �nite unless X is a
cone.

The last part of the Thesis is devoted to the study of projections of smooth varieties.
Using Theorem 3.3.3, we get the following bound on the dimension ofW in the corresponding
Grassmannian.

Proposition. Let X̃ be a smooth irreducible complex projective variety of dimension n in
Pn+c, c ≥ 1. The locus of non-uniform L not intersecting X̃ has codimension at least n + 1
in the Grassmannian G(c− 1,Pn+c).

As before, this bound is sharp: the family of linear subspaces L passing through a non
birational point (see [CaCi]) is an example of codimension n+1 family of non uniform elements
in G(c − 1,Pn+c). Moreover, we present a classi�cation of smooth curves in any dimension
admitting a family of lines of codimension exactly two in the Grassmannian.

The basic de�nitions and results on Galois theory, linear projections and monodromy are
contained in the �rst chapter of this thesis. In the second chapter we introduce the main
ingredients we used in the proof of our results. Finally, Chapter three is devoted to the proof
of the main results concerning the monodromy of projections.



Chapter 1

Preliminaries

1.1 Generalities on permutation groups

We start recalling some basics de�nitions on permutations groups that we will use in the
following. For a more complete treatment, see for instance [Is, Chapter 8].

Let Ω := {1, . . . , d} be a set of indices, d ≥ 2. The set of all the permutation of Ω is a
group called the symmetric group of d elements and we will denote it by Sd.

LetH be a group acting on Ω. Recall that such an action de�nes a natural homomorphism,
called permutation representation, from H into the symmetric group Sd. We say that H is a
permutation group if the action is faithful and we write H ≤ Sd.

We list some basic de�nitions that will be useful later.

De�nition 1.1.1. The action of H on Ω is transitive if for every pair of indices (i, j), with
i, j ∈ Ω i 6= j, there is a permutation σ ∈ H such that σ(i) = j. Equivalently, H is transitive
if it has only one orbit.

In general, H is said k-transitive, with 1 ≤ k ≤ d, if it is transitive on ordered k-ple of
distinct indices in Ω.

Observe that if H is k-transitive on Ω then it is automatically m-transitive for all integers
1 ≤ m ≤ k. The group Sd is d-transitive, while the alternating group Ad is (d− 2)-transitive.

Let H acting transitively on Ω and let ∆ ⊆ Ω be non empty. The subset ∆ is called a
block for H if, for every σ ∈ H, either σ ·∆ = ∆ or σ ·∆ ∩∆ = ∅. A block is called trivial if
∆ = {i} for some i ∈ Ω or ∆ = Ω.

De�nition 1.1.2. A transitive subgroup H of Sd is called primitive if it has only trivial blocks.
Otherwise H is imprimitive.

The group Sd is primitive for every d ≥ 2 and the alternating group Ad is primitive for
every d ≥ 3. Moreover, we can show that all the blocks have the same cardinality when the
action is transitive.

Lemma 1.1.3. Let H acting transitively on Ω and let ∆ be a block. Then |∆| divides |Ω|
and in Ω there are exactly |Ω|/|∆| disjoint blocks, all with the same cardinality.

1



2 CHAPTER 1. PRELIMINARIES

Proof. Let σ, γ in H and suppose that σ ·∆ 6= γ ·∆. Since ∆ is a block, σ ·∆∩γ ·∆ = ∅. The
group H acts transitively on Ω, and so the union of all disjoint blocks of the type σ ·∆, σ ∈ H
is the whole Ω. Moreover, since they are disjoint, they have equal cardinality and cover Ω,
there must be exactly |Ω|/|∆| of them.

Corollary 1.1.4. If H acts transitively on a set Ω whose cardinality is prime, then H is
primitive.

Proof. Let d := |Ω| > 1 be a prime number. If ∆ ⊂ Ω is a block, then by Lemma 1.1.3 |∆|
divides |Ω|, and so |∆| = |Ω| or |∆| = 1. In both cases ∆ is a trivial block and thus the given
action of H on Ω is primitive.

We can relate primitivity with double transitivity.

Lemma 1.1.5. If H ≤ Sd be a 2-transitive subgroup, then it is primitive.

Proof. We show that ifH is imprimitive, then it is not 2-transitive. Indeed, ifH is imprimitive,
there exists at least a non trivial blocks ∆. Consider two distinct elements i, j ∈ ∆ and
k ∈ Ω \∆, that is non empty because ∆ is non trivial. By assumptions, ∆ is a block and so
there is no permutation σ ∈ H such that σ(i) = j ∈ ∆ and σ(j) = k /∈ ∆. Hence H is not
2-transitive, that is a contradiction.

Remark 1.1.6. A transitive subgroup of Sd generated by transpositions is Sd ([Cu, Lemma
2.5]).

If d is prime and H acts transitively on Ω, Lemma 1.1.3 implies that there can only be
one block, namely the whole Ω; if moreover H contains at least one transposition, then it
contains all the transpositions. As the transpositions generate Sd (Remark 1.1.6), it follows
that H = Sd.

More in general, we have the following:

Theorem 1.1.7. (Jordan) Let H be a transitive subgroup of Sd. If H is primitive and contains
a transposition, then H = Sd.

Proof. Since every element of Sd is a product of transpositions, it su�ces to show that H
contains all transpositions. To do this, consider the (undirected) graph with vertex set Ω, in
which distinct points i and j are joined by an edge when the transposition (i, j) is an element
of H.

Let σ ∈ H be a permutation, it is easy to see that if i and j are two points joined by an
edge, then their images under σ are also joined by an edge. In other words, the permutations
in H de�ne automorphisms of the graph.

Now, if G is a connected component of the graph, then σ · G is also a component. If G
meets σ ·G nontrivially, then G ∪ σ ·G is a connected set that contains the two components,
and thus G = σ · G. In other words, G is a block. The action of H is primitive, hence G
must be a trivial block. By hypothesis, the graph has at least one edge, and so there is a
component consisting of more than one point. Then G = Ω, which means that the graph is
connected.
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Each two points i, j are joined by a path, and we de�ne the distance d(i, j) to be the
length of the shortest path from i to j, where we set d(i, j) = 1 when the group H contains
the transposition (i, j).

We need to prove that H contains all the transpositions, and so it su�ces to show that
d(i, j) ≤ 1 for every i, j ∈ Ω.

Suppose that there exist i, j such that the distance δ := d(i, j) > 1 is as small as possible.
There must exist a point k ∈ Ω such that d(i, k) = d(k, j) = 1 and thus the transposition
(k, j) ∈ H. Then (i, k) · (k, j) = (i, j) ∈ H that is a contradiction.

1.2 Tangent spaces

We now introduce some basic de�nitions on tangent lines and tangent spaces to a projective
variety. We will follow [Ha, Lecture 14-15] and [Sh, Chapter II.1].

Tangency is a local property, i.e. a property of a point x ∈ X that remains unchanged if
X is replaced by an open neighborhood of x. Since any point has an a�ne neighbourhood,
we can restrict ourselves to a�ne varieties.

Suppone that X ⊂ An is given by {f1 = . . . = fm = 0}, let I(X) be its de�ning ideal
and choose coordinates such that x = (0, . . . , 0). Every polynomial f ∈ I(X) has a Taylor
expansion

f(t) = f(0) + f1(t) + . . .+ fk(t)

where f(0) = 0 and f i are homogeneous polynomials in (t1, . . . , tn) of degree i. The equations
of the tangent space to X at x are

n∑
i=1

∂f

∂ti
(0)ti = 0

for all f ∈ I(X).

Remark 1.2.1. The Zariski tangent space TxX to X at x is isomorphic to (mx/m
2
x)∗, where

mx is the maximal ideal of the local ring Ox.

Let X ⊂ Pn is a projective variety and let x ∈ X be a point. The tangent space TxX is
an a�ne linear subspace of Ani , an open a�ne neighborhood of x. The closure TxX of TxX
in Pn does not depend on the choice of the a�ne charts on the projective space; it is called
the projective tangent space.

De�nition 1.2.2. A point x ∈ X is non singular (or smooth) if dimTxX = dimxX.

The Zariski tangent space to a variety X ⊂ An at a point x does not give us a very precise
picture of the local geometry of X when x is a singular point of X. We will introduce the
re�ned notion of tangent cone.

In the de�nition of the tangent space of an a�ne variety X at a point x we took all
f ∈ I(X), expanded around x and took their linear parts; we de�ned Tx(X) to be the zero
loci of these homogeneous linear forms. In the de�nition of the tangent cone TCx(X) we look
to the leading terms, i.e. the lowest degree terms.
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Consider again X a�ne, f ∈ I(X) with Taylor expansions around the point x,

f = f l + . . .+ fkj

where f l 6= 0. The form f l is the leading form of f .
The equations of the tangent cone TCxX are f l = 0 for all f ∈ I(X). Since TCxX is

de�ned by homogeneous polynomials, it is a cone with vertex x. One can see that TCxX ⊆
TxX , and that the two notions coincide if x is a smooth point.

Example 1.2.3. Let X ⊂ An be an hypersurface de�ned by f = f(x1, . . . , xn) = 0 around
x = (0, . . . , 0). Expanding f around x we get

f(t) = fm(t) + fm+1(t) + . . .

where t = (t1, . . . , tn) and the fj 's are homogeneous polynomials of degree j. Thus the tangent
cone to X at x is given by fm = 0.

If X ⊂ Pn is a projective variety, we can associate a projective variety TCx(X) called
projective tangent cone. We can also realize TCx(X) ⊂ TxX as the set of the tangent lines
to X at x.

Remark 1.2.4. The most important fact about the tangent cone is that its dimension is
always the local dimension of X at x.

1.2.1 Tangent lines

Consider a reduced and irreducible hypersurface X and a line l * X. The intersection X ∩ l
consists of a �nite number of points P1, . . . , Pk counted with multiplicities m1, . . . ,mk. Notice
that

∑k
i=1mi is equal to the degree of X. We call the contact order of l with X at Pi the

number mi − 1, and we denote it by ordPi(l ∩X).
The line l is transverse to X at Pi if ordPi(l ∩ X) = 0, and tangent to X at Pi if

ordPi(l ∩X) ≥ 1. In the case of higher contact order, i.e. ordPi(l ∩X) ≥ 2, we say that the
line l is an asymptotic tangent to X at Pi. The line l is called bitangent to X at two points
Pi 6= Pj of the intersection l ∩X, if l is tangent to X at both points Pi, Pj .

We say that l is simply tangent toX if there is a unique point Pi ∈ l∩X with ordPi(l∩X) =
1 and l is transverse to X for all the other Pj 6= Pi in l ∩ X. Finally, we will say l is more

than simply tangent to X if
∑k

i=1 ordPi(l ∩ X) ≥ 2, i.e. the line l is not secant nor simply
tangent.

1.2.2 Dual variety and Gauss maps

Let X be a irreducible, non degenerate projective variety in PN of dimension n. Let PX ⊆
X × (PN )∗ be the Zariski closure of

PX := {(x,H) ∈ Xsm × (PN )∗ | TxX ⊆ H}

with the projections p1 : PX → X and p2 : PX → (Pn)∗
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De�nition 1.2.5. The image X∗ := p2(PX) ⊂ (PN )∗ is called the dual variety of X.

De�nition 1.2.6. The variety X is said to be re�exive if the natural isomorphism PN '
((PN )∗)∗ induces an isomorphism (X∗)∗ ' X.

Since we work in characteristic zero, we have the following biduality theorem.

Theorem 1.2.7. All projective irreducible varieties are re�exive.

Moreover, we can de�ne a map

γ : X 99K G(n,N)

that sends a smooth point x ∈ X to the tangent [TxX] ∈ G(n,N). The map γ is called the
Gauss map and it is a regular map on the open subset of smooth points of X.

When X ⊂ PN is a smooth hypersurface given by an homogeneous polynomial f , then

the Gauss map is given by γ(x) =

[
∂f

∂z0
(x) : . . . :

∂f

∂zN
(x)

]
, where z0, . . . , zN are coordinates

in PN .
If X is smooth the Gauss map is a regular map de�ned everywhere. In this case we have

a stronger result due to Zak ([FL, Cor 7.2], [Za1]).

Proposition 1.2.8. Let X ⊂ PN be a smooth, iireducible, non degenerate projective variety
of dimension n. Then the Gauss map γ : X → G(n,N) is �nite and birational onto the
image.

It follows from the following more general Theorem in the case m = n.

Theorem 1.2.9 (Zak). Let L be a linear subspace of dimension m with n ≤ m ≤ N − 1.
Then

dim{x ∈ X | TxX ⊂ L} ≤ m− n.

Proof. By contradiction, assume that there exists an irreducible component S ⊆ {x ∈
X | TxX ⊂ L} of dimension strictly grater than m − n. Since X is non degenerate, then
X * L. Fix two points x ∈ X \ L and s ∈ S. Note that the line 〈x, s〉 does not lie on
X. Moreover, choose a point p ∈ 〈x, s〉 such that p /∈ X: one can take a general linear sub-
space V of dimension N −m− 1 through p, disjoint from X and L, such that the projection
πV : X → L is not birational onto πV (S). We want now to apply the connectness Theorem
(see Theorem 2.2.4 ) to

f := πV × (πV )|S : X × S → L× L ' Pm × Pm

Since f−1(∆) is connected and it does not consist only on the diagonal δ ⊂ X×S, there exist
a curve T and a morphism T → f−1(∆) whose image intersects δ. This give rise to a family
of pairs {(xt, st)}t∈T such that xt 6= st for the general t ∈ T and xt0 = st0 := s0 for some
t0 ∈ T . The secant lines 〈xt, st〉 meet V and so the tangent line l0 ⊂ Ts0X ⊂ L, limit of those
secant lines as t→ t0. But this contradicts the assumption that L and V are disjoint.
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We conclude this part by stating another consequence of Theorem 1.2.9.

Corollary 1.2.10. Let X ⊂ PN be a smooth, non degenerate projective variety of dimension
n. Let X∗ be its dual variety. Then

dim(X∗) ≥ dim(X).

Proof. Consider the incidence variety

I := {(x, L) | TxX ⊂ L}

where x ∈ X is a point and L is a linear subspace of dimension m with n ≤ m ≤ N − 1.
The �rst projection p : I → X realizes I as a Pm−n−1 bundle over X, i.e. dim I = m − 1.
Consider now the second projection q : I → (Pm)∗ and let X∗ be its image. Theorem
1.2.9 implies that the �bres of q have all dimension lower or equal to m − n − 1. Therefore
dim(X∗) ≥ n = dim(X).

1.3 Topology of �bre spaces

We brie�y recall some de�nitions and classical results (we follow notations in [FL], [No]).
Let X and Y be two manifolds. A topological �bre bundle with base Y is a surjective

map f : X → Y such that there exist an open covering {Uj} of Y with f−1(Uj) ' Uj × F ,
where the �bre F is a topological variety.

We have an exact homotopy sequence

. . .→ π1(F )→ π1(X)→ π1(Y )→ π0(F )→ π0(X)→ π0(Y )→ 1

If X and Y are connected, then π0(X) = π0(Y ) = 1. Moreover, if also the �bre F is connected
then we have an exact sequence

. . .→ π1(F )→ π1(X)→ π1(Y )→ 1

i.e. the map π1(X) → π1(Y ) is surjective. In particular, if X is connected and f admits a
section, then F is connected.

We recall two important results that we will use. The �rst one is the so called Stein
factorization.

Proposition 1.3.1. [Hart, III.11.5] Let f : X → Y a proper and dominant morphism between
complex varieties. Then f admits a factorization

X
h //

f

  

Z

g

��
Y

where h : X → Z has connected �bres and g : Z → Y is �nite. Moreover, if X is normal,
then also Z is normal.
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Lemma 1.3.2. [No, Lemma 1.5 ] Let X and Y be smooth connected complex varieties and
let f : X → Y be an arbitrary morphism. Then

A) there is a non empty Zariski open U ∈ Y such that f−1(U)→ U is a �bre bundle;

B) if f is dominant, the image of π1(X) has �nite index in π1(Y );

C) if the general �bre F of f is connected and the set S = {y ∈ Y | f−1(y) is not generically
reduced in at least one irreducible component of f−1(y)} is a codimension at least 2 subset
in Y , then the sequence

π1(F )→ π1(X)→ π1(Y )→ 1

is exact.

Proof. By Hironaka's resolution of singularities ([La, Theorem 4.1.3]), we may assume that
X = X̃ \D where f̃ : X̃ → Y is a proper map and i : X → X̃ an open immersion such that
f = f̃ ◦i and D = X̃ \i(X) is a normal crossing divisor. Let Di, i = 1, . . . , r be the irreducible
components of D and set DS =

⋂
i∈S Di for every subset S ⊂ {1, . . . , r}. By assumptions, DS

is smooth for every S. Moreover, by Sard's theorem ([Hi, Chapter 3.1], there is a Zariski open
U ⊂ Y such that f̃ restricted to f̃−1(U) ∩DS is a submersion. By Ehresmann's theorem, we
get that the map is a locally trivial �bration. This proves A).

Set F = f−1(p) for p ∈ U , the open de�ned in A). From the homotopy sequence we have

π1(F ) // π1(f−1(U)) //

��

π1(U) //

��

π0(F )

π1(X) // π1(Y )

where π1(U) → π1(Y ) and π1(f−1(U)) → π1(X) are surjective. Moreover, by Stein factor-
ization (Proposition 1.3.1) on f , π0(F ) is �nite. This proves B).

We are left with part C).

π1(F ) //

β

&&

π1(f−1(U))
i //

k
��

π1(U)

j

��
π1(X)

α // π1(Y )

Let T := {q ∈ Y | dim f−1(q) > dimF} be the codimension at least two subset of Y .
Let R be a irreducible component of Y \ U of codimension one in Y and r ∈ R a smooth
point not lying in S ∪ T . Then, f−1(r) contains at least a smooth point m and let M be
an irreducible component in f−1(R) containig m; moreover, dim f−1(R) = dimF and so f
induces a surjection at the level of tangents at m.

Following [No, Section 1] we will denote by γ(M) the subset of π1(f−1(U)) of coniugacy
classes of elements f|S1 that does not depend on the choice of f . Since i is surjective for what
we already proved and thanks to facts 1.2 and 1.3 in [No], we get that γ(M) = γ(R). The
subset γ(R) generates ker(j) so we get �nally that i(ker(k)) = ker(j).
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In general, if we have a (locally irreducible in the usual topology) smooth complex variety
X, for any closed subset analytic space R ( X there exist a surjective map

π1(U)� π1(X)

where we set U = X \ R. Moreover if R is a closed subset of X of codimension at least 2,
then π1(U) ' π1(X).

1.4 Galois theory

1.4.1 Galois extensions

Let L,K be two �elds and L : K an extension �eld.

De�nition 1.4.1. An extension L : K is called algebraic if every element α of L is a root of
some polynomial with coe�cients in K. If this polynomial is monic and irreducible over K,
it is called the minimal polynomial of α.

When L is generated as a K-algebra by the elements α1, . . . , αr ∈ L, we write L =
K(α1, . . . , αr).

Let L : K be an algebraic extension. Its degree overK, denoted by [L : K], is its dimension
as a K-vector space. If L is generated over K by a single element with minimal polynomial
f , then [L : K] is equal to the degree of f .

We begin recalling two basic properties of �eld extensions. The �rst is the normality.

De�nition 1.4.2. An algebraic extension L : K is said to be normal if, given f ∈ K[x] an
irreducible polynomial, then either f splits over L or f has no roots in L.

An algebraic extension L : K is normal if and only if the minimal polynomial over K of
each element of L splits over L.

The latter property is the separability. Let f be a irreducible polynomial of degree k in
K[x] and let L : K be a splitting �eld extension for f .

De�nition 1.4.3. We say that f is separable over K if it has k distinct roots in L.

If f is an arbitrary polynomial in K[x], we say that it is separable over K if each of its
irreducible factors is separable. Let L : K be an extension and let α ∈ L.

De�nition 1.4.4. We say that α is separable over K if it is algebraic over K and its minimal
polynomial over K is separable. An extension L : K is separable if each α ∈ L is separable
over K.

An important result concerning separable extension is the following, known as the theorem
of primitive element.

Proposition 1.4.5. A �nite separable extension can be generated by a single element.

The two properties, separability and normality, will lead us to the following characteriza-
tion of �eld extensions.

De�nition 1.4.6. A �nite, normal and separable extension is called a Galois extension.
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1.4.2 Galois group

Given a �eld L we will denote by Aut(L) the set of all automorphisms of L. This is a group
with the law of composition. If L : K is a �eld extension, we denote by Γ(L : K) the set of
automorphisms of L that �x K, i.e. Γ(L : K) := {σ ∈ Aut(L) | σ(t) = t, ∀t ∈ K}. Clearly
Γ(L : K) is a subgroup of Aut(L).

Conversely, if H is a subset of Aut(L), we can de�ne the �xed �eld of H as the sub�eld
of L, LH := {t ∈ L | σ(t) = t ∀σ ∈ H}. Hence we �nd a �eld extension L : LH .

De�nition 1.4.7. We call Γ(L : K) the Galois group of the extension of �elds L : K.

If L : K is the splitting �eld extension for a polynomial f ∈ K[x], we call G(f) := Γ(L : K)
the Galois group of f .

Theorem 1.4.8. Let R be the set of roots of f on L. Each σ ∈ G(f) de�nes a permutation
of R, so that it is well de�ned a group homomorphism from G(f) to the symmetric group Sd
of permutations of R.

Proof. An element σ ∈ G(f) is an automorphism of L that �xes K, hence σ(f) = f since
its coe�cients are in K. Let α ∈ R be a root, then f(σ(α)) = σ(f(α)) = σ(0) = 0, hence
σ maps R into R. Thus σ restricted to R is a permutation. Moreover, the map restricting
σ on R is a group homomorphism. If there exists τ ∈ G(f) such that σ(α) = τ(α) for every
α ∈ R, then τ−1σ �xes L and so σ = τ .

Lemma 1.4.9. Suppose that f ∈ K[x] is irreducible and that L : K is a splitting �eld
extension for f . If α and β are roots for f in L, there is an automorphism σ : L → L such
that σ �xes K and σ(α) = β.

Thus, if we have that f is a irreducible polynomial, then the Galois group G(f) acts
transitively on the set of roots R. Conversely, let f be a monic polynomial of degree d with
d distinct roots in L and let G(f) act transitively on R. Let α ∈ R and g be the minimal
polynomial of α. Then, if β is any other root in R, g(β) = 0 giving that g has at least d
distinct roots. The minimal polynomial g divides f then g = f providing that f is irreducible.

We recall that LH is the sub�eld of L �xed by H. The degree [L : K] of the �nite
extension L : K over K is its dimension as a K-vector space. If L is generated over K by a
single element with minimal polynomial f , then [L : K] is equal to the degree of f .

If L : K is a Galois extension we have the following characterization.

Lemma 1.4.10. A �nite extension L : K is Galois with group G = Aut(L : K) if and only
if G has order [L : K].

Proof. If L : K is Galois, it is the splitting �eld of a polynomial. Thus G has order [L : K] by
construction. Conversely, the extension L : LG is Galois by de�nition, so G has order [L : K].
Thus LG = K.
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1.4.3 Galois covers

Let X be a topological space.

De�nition 1.4.11. A (topological) cover of X is a couple (Y, f) where f is a continuous map
f : Y → X between topological spaces such that f is surjective and, for each point x ∈ X there
is a neighborhood W of x such that f−1(W ) consists of a disjoint union of open sets Yj, each
mapping via f homeomorphically onto W .

We recall the de�nition of a Galois cover.

De�nition 1.4.12. We say that a topological cover f : Y → X is a Galois cover if Y is
connected and G := Aut(f) acts transitively on f−1(x) for any x ∈ X.

1.4.4 Galois groups of �nite maps

This section is devoted to the description of the relation between Galois groups and �nite
maps.

Let X and Y be two irreducible complex algebraic varieties of the same dimension n and
let f : X → Y be a map of degree d > 0. Let f∗ : C(Y )→ C(X) be the inclusion of function
�elds induced by f ; by the primitive element theorem (Proposition 1.4.5), C(X) is generated
over C(Y ) by a single rational function g ∈ C(X) satisfying a minimal polynomial of degree
d

P (g) = gd + h1g
d−1 + . . .+ hd = 0

where h1, . . . , hd ∈ C(Y ).
Let y ∈ Y be a point and let ∆ be the �eld of germs of meromorphic functions around

y. Let φ : C(Y ) → ∆ be the inclusion obtained by restriction. Let ∆i be the �eld of germs
of meromorphic functions around xi, with x1, . . . , xd points in the �bre f−1(y). Then, the
map f induces isomorphisms πi : ∆i → ∆. Let φi : C(X) → ∆i be the inclusion obtained
by restriction to ∆i composed with πi. Let K = φ(C(Y )) and let L be the sub�eld of ∆
generated by the sub�elds Ki = φi(C(X)). Set φ(hj) = h̃j for j = 1, . . . , d and φi(g) = g̃i for
i = 1, . . . , d. Each element g̃i satis�es the polynomial

P̃ (g̃i) = g̃i
d + h̃1g̃i

d−1 + . . .+ h̃d = 0

To see that L is indeed the splitting �eld of P , it su�ces to show that all the g̃i are distinct
since P has degree d and L is by de�nition the smallest �eld containing all the g̃i. But since
g generates C(X) over C(Y ), it must have all distinct values at the points xi. Then g̃i are
all the roots of P̃ since they are all distinct. The �eld L ⊂ ∆ is then the normalization of
the extension C(X)/C(Y ) and the Galois group Gf = Gal(L/K) acts on the roots g̃i of P̃ .
Therefore we have an inclusion

Gf ↪→ Sd

Remark 1.4.13. If C(X) : C(Y ) is a Galois extension, the degree of Gf is d (see Lemma
1.4.10), hence it is a proper subgroup of Sd when d ≥ 3.
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The Galois group Gf associated to f is a transitive subgroup of the Symmetric group
Sd. We remark here that it is imprimitive if and only if there is an intermediate �eld in the
extension C(X) : C(Y ).

Indeed, if the action of Gf on the set Ω = {x1, . . . , xd} of points in a general �bre of f
is imprimitive, then there are ∆1, . . . ,∆r non trivial blocks inside Ω. We want to show that
therefore there is an intermediate �eld in the extension. Let x1 be an element in ∆1. Look
at the two subgroups G1 = StabG(x1) < G2 = StabG(∆1), the stabilizers of x1 and of the
block ∆1 respectively. Note that G1 is not the all G2: an element σ ∈ G2 sends σ(x) ∈ ∆1

for any x ∈ ∆1, but it non necessarly �xes x1; on the other hand, an element σ ∈ G1 must
have σ(∆1) = ∆1 since ∆1 is a block of the action by assumption.

Moreover, G2 is not the whole Gf because the action is imprimitive. These strict inclusions
G1 < G2 < Gf correspond to strict inclusions of sub�elds of automorphism

LGf < LG2 < LG1 .

If there is an an intermediate �eld in the extension C(X) : C(Y ), analogously it gives rise to
a non trivial block, hence the action is imprimitive.

1.5 Monodromy group

In this section we will give the de�nition of the mondoromy group. It will turn out to be
isomorphic to the Galois group.

We begin by recalling a few topological notions we will use in the following.

1.5.1 Fundamental group and coverings

Let U be a connected manifold and let y ∈ U be a point. A path on U is a continuous
map γ : [0, 1] → U ; a loop at y is a path on U such that γ(0) = γ(1) = y. Two loops γ
and δ are said to be homotopic if there is a continuous map G : [0, 1]× [0, 1]→ U such that
G(0, t) = γ(t) and G(1, t) = δ(t) for all t ∈ [0, 1], and G(s, 0) = G(s, 1) = y. The fundamental
group of U is the set of homotopy classes of loops at y and is denoted by π1(U, y).

A continuous map f : V → U between manifolds is a covering space of U if f is surjective
and, for each point y ∈ U , there is a neighborhood W such that f−1(W ) consists of a disjoint
union of open sets Vj , each mapping via f homeomorphically onto U . A covering space
f : V → U enjoys the path-lifting property, i.e. for any path γ : [0, 1]→ U and any preimage
v of γ(0) = y there is a path γ̃ on V such that γ̃(0) = v and f ◦ γ̃ = γ.

There exists a covering space f : V → U such that V is simply connected; it is called
universal covering space. Moreover, it is unique up to isomorphism.

1.5.2 Branched coverings

We recall here some basics on branched coverings between smooth complex varieties (see
[Na]). Let Y be a connected complex manifold of dimension n and let f : X → Y be a
branched covering of Y (see De�nition 1.4.11). We de�ne
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De�nition 1.5.1. A morphism f : X → Y between smooth complex varieties is called un-
rami�ed if the natural homomorphism f∗Ω1

Y → Ω1
X is surjective. This is equivalent to ask

that f is topologically an immersion, i.e. dfx : TxX → Tf(x)Y is injective for every x ∈ X.

The rami�cation divisor Rf of a �nite morphism f : X → Y is the scheme of zeros on X
of the determinant of the Jacobian of f . The branch divisor Bf on Y is the pushforward of
Rf via f . They are divisors in X and Y respectively.

Recall that the degree of a �nite covering f : X → Y is the degree of the unrami�ed map
X \ f−1(Bf )→ Y \Bf . Equivalently, it is the degree of the separable extension C(X) : C(Y )
of function �elds. Let f : X → Y be a �nite morphism of degree d between smooth complex
varieties. Let f−1(y) = {x1, . . . , xk} with k ≤ d be the �bre of f over a point y ∈ Y . If we
assume X to be smooth, we can de�ne a branch point as a point in Y with less than d points
in its �bre.

One can give an analytical description of the branched covering f : X → Y locally
around a branch point p (see [Na, Theorem 1.1.8, Theorem 1.1.14]): let W be a su�ciently
small open neighbourhood of p ∈ Y with coordinates (w1, . . . , wn) such that p = (0, . . . , 0), let
q ∈ f−1(p) be a point and Bf∩W = {(w1, . . . , wn) ∈W | wn = 0}. Then there are coordinates
(z1, . . . , zn) in the connected component U of f−1(W ) such that q = (0, . . . , 0) ∈ U and there
exist a positive integer m such that

fU : (z1, . . . , zn) 7→ (w1, . . . , wn) = (z1, . . . , zn−1, z
m
n ).

The coe�ent m is called rami�cation index of f at q. The point q is in Rf if and only if
m ≥ 2. More generally, if Bf is normal crossing at p and f−1(Bf ) at q, and Bf ∩ W =
{(w1, . . . , wn) ∈W | wkwk+1 . . . wn = 0} for some integer 1 ≤ k ≤ n, with the same notation
as above we get

fU : (z1, . . . , zn) 7→ (w1, . . . , wn) = (z1, . . . , zk−1, z
mk
k , . . . , zmn

n )

where mj , j = k, . . . , n, is the rami�cation index of the irreducible component Cj of f−1(Bf )
such that Cj ∩ U = {(z1, . . . , zn) ∈ U | zj = 0}, where f−1(Bf ) ∩ U = {(z1, . . . , zn) ∈
U | zk . . . zn = 0}.

Let ord(x) of f at x be de�ned as the degree of the map Ux → U , i.e. as the number of
preimages in Ux of a generic point of U , where U is an open neighbourhood of y in Y and
Ux is the open in f−1(U) containing the preimage x ∈ f−1(y). When X is an irreducible
complex projective variety of dimension n and f : X → Pn a �nite morphism of degree d, the
following holds.

Theorem 1.5.2. [FL, Theorem 6.1] Let X be an irreducible projective variety of dimension
n and let f : X → Pn be a branched covering of degree d. Then there exists at least one point
x ∈ X at which ord(x) ≥ min{d, n + 1}. More generally, if X is normal, every irreducible
component of Rf has codimension at most one in X.
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1.5.3 Monodromy of �nite maps

Let f : X → Y be a �nite morphism of degree d ≥ 1 between irreducible algebraic complex
varieties of the same dimension n.

Let U be a Zariski open subset of Y such that the restriction of f to V := f−1(U) is an
étale covering f : V → U . Let q ∈ U be a point, then its �bre Γ := f−1(q) = {x1, . . . , xd}
has d distinct points. For any loop γ : [0, 1]→ U centred in q and for any xi ∈ Γ there exist
a unique lifting γ̃i such that γ̃i(0) = xi. We may de�ne a permutation σi of the elements of Γ
by sending xi 7→ γ̃i(1). The permutation σi depends only on the homotopy class of γi, then
it is well de�ned a group homomorphism

µ : π1(U, q)→ Aut(f−1(q)) ' Sd

called monodromy map.

De�nition 1.5.3. The image

M(f) := µ (π1(U, q)) ≤ Sd

is the monodromy group of the map f .

In the following Lemma we prove that M(f) is a transitive subgroup of the symmetric
group.

Lemma 1.5.4. Let µ : π1(U, q) → Sd be the monodromy map of a �nite étale covering
f : V → U where V connected. Then the image M(f) is a transitive subgroup of Sd.

Proof. Label the points in the �bre Γ = f−1(q) as x1, . . . , xd. Consider two points xi and
xj in the �bre Γ = f−1(q). Since V is connected, we may �nd a path γ̃ starting at xi and
ending at xj . Let γ = f ◦ γ̃ be the image of γ̃ in U ; note that γ is a loop based at q. Then
by construction we have that µ([γ]) is a permutation which sends xi to xj .

We have the following correspondence
isomorphism classes
of connected covers
f : V → U of degree d

←→


group homomorphism µ : π1(U, y)→ Sd
with transitive image
up to conjugacy in Sd


The group Sd acts by conjugation on the set on the right; geometrically, this correspond to a
relabeling of the points in the �bre of the covering over the base point.

We show that there is an isomorphism between the monodromy group and the Galois
group de�ned before.

Proposition 1.5.5. [Ha, Sec. I] Let f : X → Y as before. Then the monodromy group M(f)
is isomorphic to the Galois group Gf .
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Proof. In the same notation as above, let γ be any loop in U centred in q; let γ̃i be the lifting of
γ to V with γ̃i(0) = xi and let σ be the permutation induced on f−1(y), i.e. γ̃i(1) = xσ(i). For
any germ h ∈ L ⊂ ∆ of a meromorphic function at y in the �eld L, the analytic continuation
of h along the path γ is well de�ned. Such analytic continuation along γ allow us to de�ne
an automorphism of the �eld L �xing K and sending the function element gi to gσ(i), so that
σ is in Gf .

Conversely, we claim that any automorphism of the �eld L over K is obtained by analytic
continuation along some arc γ in U . For this purpose, we de�ne a meromorphic function h̃
on U by choosing for every z ∈ U an arc η from y to z and letting the germ of h̃ at z be the
analytic continuation of h along η. Note that choosing a di�erent arc η′ yield the same germ,
since the analytic continuation of h along η−1η′ is again h. We will write H = q(h1, . . . , hd),
where hi is the germ in ∆i of a meromorphic function h̃i on X. We have that h̃ cannot have
essential singularities. Therefore h̃ extends to a meromorphic function on Y with germ h at
y.

From this isomoprhism follows that the de�nition of the monodromy group does not
depend on the base point q and on the choice of the open U as long as f|V : V → U is
unbranched.

1.5.4 Finite maps of curves

In this section we will consider the case of �nite morphisms from projective curves to P1. We
will follow mainly the book of Miranda [Mi, Ch. 3 Sec. 4].

Let X ⊂ Pn be a smooth projective curve and let f : X → P1 be a �nite map of degree d.
Let µ : π1(U, q) → Sd the monodromy map described above. This map associates to a loop
in U around a branch point y a permutation of the d points in the �bre over a general point
q. Let B be the branch locus of the map f .

The following Lemma gives a description of the element in the symmetric group associated
to a certain branch point([Mi, Lemma 4.6]).

Lemma 1.5.6. Suppose that y ∈ B is a branch point whose preimages f−1(y) = {x1, . . . , xk}
are contained in X and have multiplicities m1, . . . ,mk, k < d. Then, the cycle structure of
the permutation σ representing a loop around y (up to the identi�cation via a certain path α)
is (m1, . . . ,mk).

Proof. For a branch point y ∈ Y , choose a small open neighborhood in the analytic topology
W of y. It is isomorphic to a small punctured disc. Let x1, . . . , xk, k < deg(f) be the
preimages of y in X; by assumptions, at least one of the xi's is a rami�cation point. Choose
W small enough so that f−1(W ) decomposes as a disjoint union of open neighborhoods
U1, . . . , Uk of the points x1, . . . , xk respectively. Set mj := multxjf to be the multiplicity of
f at these points; by the Local Normal Form ([Mi, Proposition 4.1]), there are coordinates zj
on the Uj and z on W so that the map f has the form

z 7→ zmj
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on Uj . Now Uj \ {xj} is isomorphic to a punctured disc and the map f sends Uj \ {xj} to
W \ {y} via a power map of power mj . A loop centred at q ∈ U around the branch point
y is given by a path α from the point q to a point q0 ∈ W \ {y} and a loop γ centred at q0

in W \ {y}. The permutation σ of the �ber of f over q is actually determined (up to this
identi�cation) by the loop γ in W \ {y}. Moreover, the monodromy for each cover Uj \ {xj}
to W \ {y} with j = 1, . . . , k induces a cyclic permutation of those mj preimages of q0 which
lie in Uj .

In general, let f : X → P1 be a holomorphic map. The monodromy of f is generated by
local monodromies: said b1, . . . , bk ∈ P1 the branch points of the map f , U = P1 \{b1, . . . , bk}
and q ∈ U , the fundamental group π1(U, q) is generated by loops [γ1], . . . , [γk] satisfying

[γ1] · · · [γk] = 1

where γi is a small loop around bi for i = 1, . . . , k. Thus the monodromy group M(f) is
generated by permutations σi = µ([γi]) satisfying the relation

σ1 · · ·σk = 1

Hence we have the following correspondence ([Mi, Cor 4.10]).

Proposition 1.5.7. There is a one-to-one correspondence between
isomorphism classes
of holomorphic maps
f : X → P1 of degree d
with branch points b1, . . . , bt

←→


coniugacy classes of t-ple (σ1, . . . , σt)
of permutations in Sd
with σ1 · . . . · σk = 1

and the subgroup generated by them is transitive


Moreover if σi has cycle structure (m1, . . . ,mk), then there are k preimages x1, . . . , xk of bi
in the corresponding cover f : X → P1, with multxjf = mj for each j = 1, . . . , k.

1.6 Projections

1.6.1 Cones

Cones will paly an important role in our results. Here we recall the de�nition and some basic
results. We use the notation in [Ha, Example 3.1].

Let Pn in Pn+1 be an hyperplane, P /∈ Pn a point and Y ⊂ Pn a variety. A cone X over
Y with vertex P is the union of the lines joining P and points in Y , i.e.

X =
⋃
y∈Y
〈P, y〉.

More generally,
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De�nition 1.6.1. Let V ∼= Pt and L ∼= Pn−t be complementary linear subspaces of Pn+1. Let
Y ⊂ L be a variety. The cone X over Y with vertex V is the union of the (t+1)-planes 〈V, y〉
with y ∈ Y .

Equivalently, let X be an irreducible reduced variety in Pn+1, and let V ∼= Pt ⊂ X. Then
X is a cone with vertex V if and only if for all x ∈ X \ V , the linear subspace 〈x, V 〉 is
contained in X.

We will write V ert(X) for the vertex V .

Proposition 1.6.2 ([Ru], Prop. 1.3.3). Let X ⊂ PN be a irreducible variety of dimension n.
Then

V := V ert(X) =
⋂
x∈X

TxX

Proof. Let T =
⋂
x∈X TxX. Set S to be the join of TL and X, i.e. S is the Zariski closure of⋃

t∈T,x∈X〈t, x〉 with t 6= x. Therefore, dimS = dimT + dimX − dim(T ∩ TxX) = dimX for
x ∈ X general (see [Ru, Section 1.3]). By de�nition, T ⊆ V .

Conversely, it is enough to prove that, given v, w ∈ V , the line 〈v, w〉 is contained in X
(see [Ru, Prop 1.2.2]). Let x ∈ X \ V be a point and consider z ∈ 〈v, w〉 with z 6= v, w. The
lines 〈v, x〉 and 〈w, x〉 are contained in X. By the de�nition of a cone, also the plane spanned
by x, v, w is contained in X and so is the line 〈z, x〉 for every z ∈ 〈v, w〉. This concludes the
proof.

An irreducible projective variety X is a cone if and only if V ert(X) 6= ∅. We end this
chapter de�ning the maps we are going to study.

1.6.2 Linear projections

Let X ⊂ Pn+c, c ≥ 1 be an irreducible projective variety of dimension n. Let L be a linear
subspace of dimension k ≤ c− 1 and let Pn+c−k−1

L ' H be a linear space disjoint from L. Let

πL : X ⊂ Pn+c 99K Pn+c−k−1
L

be the rational map de�ned on X \ (X ∩ L) sending x ∈ X 7→ 〈x, L〉 ∩ H. The subspace
Pn+c−k−1
L parametrizes all the (k + 1) dimensional subspaces in Pn+c containing L.
This map may also be realized as the composition of a sequence of projections from points

p0, . . . , pk spanning L, which is also called the centre of the projection.

Remark 1.6.3. If L ∩X = ∅ the map πL is a �nite morphism and the image X̃ = πL(X) is
a projective variety of dim(X) = dim(X̃). Indeed, it is su�cient to show that πL has �nite
�bres by Stein factorization. Given a point y ∈ Pn, we have that π−1

L (y) = 〈L, y〉∩X. If there
exist a curve C inside π−1

L (y), then ∅ 6= L ∩ C ⊆ L ∩X = ∅, that is a contradiction.
In particular, the degree of the map πL is equal to the degree of X.

We can ask when a projection is birational or a closed embedding. We denote by T (X)
the union of all tangent hyperplanes of points of X and Sec(X) the secant variety to X, i.e.⋃
x 6=y〈x, y〉, x, y ∈ X.
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Proposition 1.6.4. [Ru, Prop. 1.3.5] Let L be a linear space of dimenison k ≤ c − 1 such
that L ∩X = ∅. Let πL : X → Pn be the projection. Then

• πL is one to one if and only if L ∩ Sec(X) = ∅;

• πL is unrami�ed if and only if L ∩ T (X) = ∅;

• πL is a closed embedding if and only if L ∩ T (X) = L ∩ Sec(X) = ∅.

Proof. The morphism is one to one if and only if there exist no couple of point x 6= y such
that πL(x) = πL(y), i.e. 〈x, y〉 ∩ L 6= ∅. Therefore, πL is one to one if and only if there is
no secant line to X through the centre of projection L. The map πL is rami�ed at a point
x ∈ X if TxX ∩ L 6= ∅ by looking at the projective di�erential of πL. A �nite morphism is a
closed embedding if and only if it is one to one and unrami�ed.

We now want to recall the relation between branch points and permutations in the
monodromy group. Let X be a irreducible and reduced projective hypersurface and let
πP : X → Pn be a projection map of degree d with P /∈ X. The �bre over a point y ∈ Pn is
π−1
P (y) = {x1, . . . , xk} with k ≤ d distinct points.
Recall that, if X is smooth, the branch locus B of πP corresponds to the locus of points

y ∈ Pn such that the cardinality of the �bre π−1
P (y) is strictly lower than d. If X is singular,

the image via πP of the singular locus of X is contained in the branch locus. This follows
from the fact that any line passing through Q ∈ Sing(X) is tangent to X. However, we want
to distinguish between the order of the general line passing through Q and the lines for which
such order increase. At this purpose, consider the diagram

X̃
ϕ

  

ν // X

πP
��

Pn

where ν : X̃ → X is the normalization map. Let y be a general point of an irreducible
component of B and let l be the 0 dimensional scheme cut by the line 〈P, y〉 on X. Pulling it
back to X̃, we write l̃ = m1x1+. . .+mtxt where d ≥ t ≥ k and

∑t
i=1mi = d. By the genericity

of y, the points x1, . . . , xt are smooth in X̃ since the normalization has codim
(
sing(X̃)

)
≥ 2.

Consider an analytic neighbourhood U(y) and consider all the disks U i1, . . . , U
i
k dominating

analytic neighbourhoods U(xi) of the points x1, . . . , xk in the �bre of y via ϕ. We will say
that an irreducible component of B is a branch component if the �bre of ϕ of a general point
y has at least a smooth point xi with mi ≥ 2.

We denote the branching weight of a branch point y by

b(y) :=
t∑
i=1

(mi − 1) ≥ 1,

where m1x1 + . . .+mtxt is the �bre ϕ−1(y) on X̃.
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We say that y ∈ B is a simple branch point if b(y) = 1. Simple branch points correspond to
transpositions in the monodromy group, see [Ha3, pag. 698]. More generally, there is a relation
between the branching weight of a point and the type of the corresponding permutation. Up
to taking general plane sections of our projection, we can restrict to the case of plane curves
(recall that π1

(
P1 \ (P1 ∩B)

)
� π1 (Pn \B) for a general P1 ⊂ Pn, see [FL, Theorem 3.1].

In this case Lemma 1.5.6 gives the explicit relation between branch points and permutations
in the monodromy group.

Moreover, in the case of curves we have the following characterization from group theory.

Lemma 1.6.5. [PS, Proposition 2.5 ] Let C be a smooth curve and let π : C → P1 be a
�nite morphism of degree d with branch points b1, . . . , bk ∈ P1. To each bi we associate a
permutation σi in the Galois group such that

• the Galois group Gπ is generated by any set of n− 1 permutations among the σi;

• if the scheme theoretic �bre over bi is
∑ti

j=1mjpj, then σi is a permutation with cycle
structure (m1, . . . ,mti).

In particular, if all but one of the branch points are simple, then Gπ is generated by transpo-
sitions, hence Gπ = Sd.

1.6.3 Hypersurfaces from general projections

Let X̃ be a smooth variety of dimension n in Pn+c and let L ∩ X̃ = ∅ be a linear subspace of
dimension c− 2. We say that a projection πL : X̃ →⊂ X ⊂ Pn+1 is a general projection if L
is general in the Grassmannian G(c− 2, n+ c). The image of X̃ via πL is an hypersurface X
in Pn+1.

Remark 1.6.6. A projection πM : X̃ → Pn, with dimM = c − 1, can also be seen as the
composition of a general projection πL : X̃ → X ⊂ Pn+1 and πp : X → Pn, where L ⊂ M is
a general subspace of dimension c− 2 and p ∈M \ L is a point.

We �rst remark that, even if X̃ is a smooth variety, the image of a general projection
X ⊂ Pn+1 is a singular hypersurface (see Proposition 1.6.4). The singularities arising from a
general projection of a smooth variety are well studied only in low dimension.

In the case of curves, the image X ⊂ P2 of a smooth curve X̃ is a plane curve with at most
nodes as singularieties. General projections of a smooth surface X̃ ⊂ PN , N ≥ 6 up to P5

are birational onto the image. A general projection of a smooth, irreducible, non degenerate
surface to P4 is a general surface.

De�nition 1.6.7. A non-degenerate, irreducible, projective surface X ⊂ P4 is called general
surface if either X is smooth or the singularities of X are at most a �nite number of improper
double points, i.e. the origin of two smooth branches with independent tangent planes.

If we project to P3, we have the following results, known in litterature as General Pro-
jection Theorem (see for instance [Fr], [En] for classical results and [MP], [CF] for modern
references).
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Theorem 1.6.8. Let X̃ be a smooth surface of Pn, n ≥ 4. Then a projection X of X̃ from
a suitable general linear subspace of Pn to P3 is a surface with ordinary singularities.

We recall the de�nition of ordinary singularities on a surface.

De�nition 1.6.9. A surface X ⊂ P3 is said to have ordinary singularities if the one-
dimensional component of the singular locus is a curve γ satisfying the following:

1. The curve γ has at most a �nite number of ordinary triple points as singularities. All
these points are also triple points of X. In local coordinates such a point is described by
f := x1x2x3+ higher degree terms.

2. The general point of γ corresponds to a nodal point of X. In local coordinates such a
point is described by f := x1x2+ higher degree terms.

3. A �nite number of smooth points of γ are pinch points. In local coordinates such a point
is described by f := x2

2 + x2
1x3+ higher degree terms.

Remark 1.6.10. The normalization of a surface with ordinary singularities is smooth.

Generalising such a classi�cations to higher dimension is more complicated. Doherty
proved that the projected hypersurface X of dimension n has semi log canonical singularities
if n ≤ 5 ([Doh, Main Theorem]). There are many deep results on the properties of general
projections which are very useful at our purposes. In the following, we will use a theorem of
Mather, [AO]. We state it here in the general setting: let X ⊂ Pn+c be a smooth variety of
dimension n and codimension c. Let T be any linear subspace of dimension t ≤ c − 1 such
that T ∩X = ∅ and consider the linear projection πT : X → Pn+c−t−1.

Theorem 1.6.11. [AO, Theorem 2] Let X and T as above. For any i1 ≤ t + 1, de�ne
Xi1 := {x ∈ X | dim(TxX ∩ T ) = i1 − 1}. When Xi1 is smooth, de�ne Xi1,i2 := {x ∈
Xi1 | dim(TxXi1 ∩ T ) = i2 − 1} and so on. For ik ≤ . . . ≤ i2 ≤ i1, when possible, de�ne
Xi1,...,ik . For T general, every Xi1,...,ik is smooth and, when non empty, its codimension in X
is equal to νi1,...,ik de�ned below.

Set µi1,...,ik the number of sequences j1 ≥ j2 ≥ . . . ≥ jk such that j1 > 0 and ir ≥ jr for
k ≥ r ≥ 1. Then

νi1,...,ik = (c− t− 1 + i1)µi1,...,ik − (i1 − i2)µi2,...,ik − . . .− (ik−1 − ik)µik .

For instance, if i1 = q, i2 = . . . = ik = 0 the codimension of Xi1 in X is q(c− t− 1 + q).

1.6.4 Galois points

We introduce the notion of Galois points, which is very related to projections and Galois
theory. They have been extensively studied in various papers, for instance [Yo2, FT, Fu, MY],
with a particular focus on computing the number of Galois points. Let us recall the de�nition.
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De�nition 1.6.12. A point P ∈ Pn+1 \ X is called a Galois point if the �eld extension
k(X) : k(Pn) associated with the projection of X from P is Galois (see De�nition 1.4.6).

We will just write Galois points for what the previous authors refer to as outer Galois
points.

Miura and Yoshihara [MY] determined all the possible monodromy groups for plane quar-
tic curves. Fukasawa [Fu] classi�ed the number of Galois points for smooth plane curves of
degree d ≥ 4 and the characteristic of the ground �eld p ≥ 0.

More in general, Yoshihara ([Yo2, Proposition 11]) proved that there is at most a �nite
number of Galois points P /∈ X for a smooth hypersurface X ⊂ Pn; moreover, he gave a
bound on the number of Galois points and equations for an hypersurface X admitting such
number of Galois points. In particular, there are at most n+ 2 Galois points in Pn+1 \X and
they are exactly n+ 2 if X is a Fermat hypersurface.

In the case of normal hypersurfaces X, Fukasawa and Takahashi [FT, Theorem 2, Propo-
sition 6] proved that the number of Galois points is �nite unless X is a cone.



Chapter 2

Tools

In this chapter we introduce the main tools we use to prove our main results on monodromy
of projections.

2.1 Focal loci

The theory of focal loci is a classical di�erential geometry technique applied in projective
geometry. It was introduced by C. Segre ([Se1], [Se2]) and rewritten in more modern terms
for instance by Sernesi and Ciliberto [Ser, Sec 4.6.7], [CS] and [CiC].

De�nition 2.1.1. [Hart, Ch.III, Sec.9]Let f : X → Y be a morphism of schemes and let F
be an OX module. We say that F is �at over Y if, for every point x ∈ X, the stalk Fx is a
�at OY,y module, where y = f(x). We say that X is �at over Y if OX is.

A �at family of schemes is a family whose elements are �bres of a �at morphism. We recall
that, for a �at family of closed subschemes of projective space (over an integral scheme), the
Hilbert polynomial of all the �bres is the same.

Let X be a �at family of closed subschemes of a projective scheme Y parametrized by an
integral base scheme D. It can be described by the following diagram, where the map i is
the inclusion, p, q are the projections on the �rst and second factor respectively and f is the
restriction of q to X

X
p|X
�� f ##

� � i // D × Y
q

��
D Y

21
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Consider the following diagram arising from the short exact sequence of sheaves on X :

(p∗TD)|X

��

g // NX|D×Y

0 // TX

df

��

// (TD×Y )|X

��

// NX|D×Y // 0

f∗TY (q∗TY )|X

The map g : (p∗TD)|X → NX|D×Y is called the global characteristic map of the family X
and is de�ned by the composition of the arrows in its corresponding square.

Moreover, for each d ∈ D, g induces a homomorphism

gd : TD,d ⊗OXd
→ NXd|Y

where Xd is the �bre of p|X at the point d.
If Y and D are smooth, all the sheaves in the diagram are locally free and so, at the level

of sheaves, the kernel of g is equal to the kernel of df ; it is a sheaf F over X . If moreover,
f : X → Y is dominant and generically �nite, the sheaf F is torsion free.

De�nition 2.1.2. The sheaf F is called the focal sheaf of the family X . The locus F(X ), i.e.
the support of the sheaf, is called the focal scheme of X .

Therefore we have

Proposition 2.1.3. dim(f(X )) = dim(X )− rk (ker(g)) .

We can de�ne a closed subscheme F of X satisfying the condition

rk(g) < min
{

rk((p∗TD)|X ), rk(NX|D×Y )
}

= min
{

dim(D), codimD×Pn(X )
}

The points in F are called �rst order foci of the family X . It is a proper closed subscheme of
X if g has maximal rank. One de�nes higher order foci inductively: second order foci are the
�rst order foci of the family of �rst order foci, and so on.

One can de�ne the �rst order foci at a point d in D by restricting g to a �bre Xd; it
depends only on the geometry of the family X in a neighborhood of the point d. A focus
y ∈ Fd can be thought a point where there is an intersection between the �ber Xd and the
in�nitesimally near ones.

2.1.1 Families of linear subspaces

We are interested in the case in which X is a family of linear subspaces of dimension k of Pn.
Here D is the desingularization of a subscheme D′ of the Grassmannian G(k, n) parametrising
X .

Let d ∈ D be a point and let Xd be the �bre of p|X over the point d. In this setting

gd : TD,d ⊗Xd → NXd|Pn+1 ,

is called the local characteristic map.
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De�nition 2.1.4. A family X of linear subspaces in Pn is called �lling if

• the dimension of D is n− k.

• the map f = i ◦ q is dominant.

Remark 2.1.5. We will consider �lling families X where f is dominant and generically �nite.
Hence dim(F(X )) < dim(X ). Moreover, let F(Xd) be the focal scheme restricted to Xd ' Pk.
We get dim(F(Xd)) < dim(Xd) = k. We will refer to this fact saying that the family has the
�lling property.

We are able to describe more precisely the focal locus in the case of a �lling family of
linear subspaces:

Lemma 2.1.6. Let X be a �lling family of subspaces of dimension k in Pn and let d ∈ D be
a general point. Then the focal locus in the �bre Xd ' Pk is a hypersurface of degree n− k in
Xd.

Proof. The family X is a �lling family of linear subspaces of Pn, therefore the local charac-
teristic map becomes

gd : (TD,d ⊗Xd) ' O
⊕(n−k)
Xd

−→ NXd|Pn+1 ' O⊕(n−k)
Xd

(1)

In particular, the map is described by a (n− k)× (n− k) matrix Md with linear entries. The
focal locus in a general �bre is given by the equation det(Md) = 0. From the �lling property,
the determinant cannot be identically zero.

In the case k = 1, the focal locus is given by n−1 points counted with multiplicity, where
multiplicity means as root of the equation of degree n.

A �rst example of focal point is a fundamental point

De�nition 2.1.7. A point P is called fundamental if there is a subfamily of X of dimension
s passing through it.

Remark 2.1.8. Recall that the set of second order foci is the set of rami�cation points of
f restricted to the �rst order foci F . The locus of fundamental points φ is contained in the
locus of second order foci, since the �bre of f|F at points in φ has dimension grater than the
general one.

The following lemma on fundamental points is well known, and we can trace its origins
back to Segre ([Se2]).

Lemma 2.1.9. Consider a �lling family of lines in Pn+1 and assume that a subfamily of
dimension s pass through a point P . Then P is a focus of multiplicity s.

Using the focal machinery we can give an alternative proof of the so called Trisecant
Lemma ([Ru, Proposition 1.4.3]) for curves in P3.
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Lemma 2.1.10. Let X ⊂ P3 be a non degenerate, irreducible projective curve. Then the
general secant line is not trisecant.

Proof. Let X be the family of lines in P3 secant to the curve X. This family is parametrized
by a base scheme of dimension 2 since we have to choose two points in the curve to have a
secant line. Moreover, the map X → P3 is dominant since the family of secant lines to a non
degenerate curve �ll the whole P3.

Therefore, the family X is a �lling family of lines and by Lemma 2.1.6, there are two points
counted with multiplicity in the focal locus in a general line of the family. By assumption,
every line in X intersectX in at least two distinct points, each of which is a focus of multiplicity
one for the line: there is a one dimensional subfamily of lines in X through every point in X,
so they are fundamental points (Lemma 2.1.9).

If a general line of X is trisecant, then there are three focal points in it. This contradicts
Lemma 2.1.6.

2.2 Topology of a complement of Pn

The study of the fundamental group of the complement of hypersurfaces in Pn dates back to
Enriques [En], van Kampen [VaK] and Zariski [Zar2]. Their interest was mainly on the study
of complements of curves in P2, also considered as branch curves of a map from a surface.
One of the tools Zariski introduced was his celebrated theorem on fundamental groups of
hyperplane sections extending Lefschetz homological results ([Zar1]). On the fundamental
groups of the complements of plane curves with only nodes worked also Fulton [Ful], Deligne
[De] and Nori [No]. For a reference on the theory of complement of hypersurfaces see the
book of Dimca [Di].

2.2.1 Classical results

We list in this section some classical results on hyperplane sections of projective varieties and
fundamental groups. We will mainly follow [FL] and [La].

We start stating the famous Bertini's Theorem with the second part due to Deligne ([FL,
Theorem 1.1]). This Theorem has been widely studied, see for instance the works of [Jo],
[Kl]; in [MNP] is presented a di�erent proof that works in any characteristic.

Theorem 2.2.1 (Bertini/Deligne). Let X be a irreducible complex variety and f : X → Pr
a morphism. Fix an integer d < dim(f(X)). Then there is a non empty Zariski open subset
U ⊂ G(r − d, r) such that for all L ∈ U

1. f−1(L) is irreducible

2. if moreover X is also locally irreducible as a complex analytic space,

π1(f−1(L))� π1(X)
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Proof. Assume that f is generically �nite (see [Jo] for the general case). Let dim(X)= n. Fix
a linear subspace M in Pr of codimension n + 1 disjoint from f(X) and consider the linear
projection from it πM : Pm → Pn. There is a natural isomorphism between G(n − d, n) and
{L ∈ G(r − d, r) | M ⊂ L}, hence we can consider πM ◦ f : X → Pn and restrict to the case
r = n.

Assume r = n, so that f is dominant. We may assume that there exists a hypersurface
B ⊂ Pn such that f : X → Pn \ B is a topological covering, where we may replace X
with the open X \ f−1(B). Take a point p ∈ Pn \ B and consider the blow up at p. The
exceptional divisor parametrizes the Pn−1 of lines lt through p, so let Bp := {(y, t) | y ∈
lt} ⊂ (Pn \ B) × Pn−1. Analogously, consider the blow up of X at the �bre f−1(p), let
X̃ := {(x, t) | f(x) ∈ lt} ⊂ X × Pn−1. The map f̃ : X̃ → Bp sending (x, t) 7→ (f(x), t) is a
topological covering. The second projection p2 : Bp → Pn−1 restricts to a topologically locally
trivial �bre space over the open T of lines through p meeting B transversally. Composing
with f̃ , we get that also h := p2 ◦ f̃ : X̃ → Pn−1 is locally trivial over T and moreover h−1(T )
is irreducible since X̃ is.

The map h is a �bration between connected spaces that admits a section, hence has
connected �bres (Lemma 2.2.2). For instance consider the map t 7→ (x′, t), with x′ ∈ f−1(p).
Therefore, for every t ∈ T , f−1(lt \ B) is connected. It follows that for a linear subspace
L ∈ G(r − d, r) that contains a line lt with t ∈ T , f−1(L \B) is connected and non singular,
hence irreducible.

To get part 2), apply the previous argument to g : X∗ → Pn \B, where X∗ is the universal
cover of X. From the general case, we get that for almost every L ∈ G(r − d, r) containing
the linear subspace M , f−1(L) is irreducible and π1(f−1(L))� π1(X). It follows that there
is a dense open set U in G(r − d, r) for which the statement holds.

We recall here an important lemma concerning conditions for the irreducibility of the
�bres of a dominant morphism (see [La, Lemma 3.3.2]).

Lemma 2.2.2. Let f : X → Y be a dominant morphism between irreducible complex varieties.
Assume that f admits a section s : Y → X whose image lie in the smooth locus of X, i.e.
s(y) ∈ X \ Sing(X) for a general y ∈ Y .

Then the general �bre Xy := f−1(y) is irreducible.

Proof. Up to shrinking Y and replacing X by a non empty Zariski open subset, we can assume
that f is a smooth morphism, by the theorem on generic smoothness. It su�ces now to show
that the �bres are connected. Up to shrinking again Y , we can suppose that f is topologically
locally trivial. A locally trivial �bration between path-connected spaces that admits a section
has connected �bres.

The following is a generalization of the Bertini's Theorem in the case of an arbitrary linear
sections.

Theorem 2.2.3. Let X be a irreducible variety, let f : X → Pr be a morphism and let L be
an arbitrary linear subspace in Pr of codimension d < dim(f(X)).
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• If X is complete, then f−1(L) is connected. More in general, if f is proper over some
open V in Pr containing L, then f−1(L) is connected.

• If X is locally irreducible then, for any U neighborhood of L,

π1(f−1(U))� π1(X)

Proof. To prove the �rst part, letG(r−d,Pr) be the Grassmannian parametrizing codimension
d linear spaces in Pr and let W ⊂ G(r− d, r) be the open set of linear spaces contained in V .
Consider

Z := {(x, L′) ∈ X ×W | x ∈ f−1(L′)}

This is a Zariski open subset of a Grassmannian bundle over X, hence it is irreducible. The
morphism f is proper providing that the second projection pr2 : Z → W is proper too.
Consider its Stein factorization (Proposition 1.3.1)

Z
h→W ′

g→W

where h : Z →W ′ has connected �bres and g : W ′ →W is �nite. Theorem 2.2.1 implies that
the general �bre of pr2 is irreducible, hence g is generically one to one. Since the map g is a
surjective branched covering of W , it must be one to one everywhere. Therefore f−1(L′) is
connected for every L′ ∈W .

By Theorem 2.2.1 every open neighbourhood U of L contains a linear space L′ for which
π1(f−1(L′))� π1(X) and so follows the second part of the Theorem.

We end this section stating the Fulton-Hansen Theorem and some of its important con-
sequences.

Theorem 2.2.4 (Fulton-Hansen). Let X be a (irreducible projective) complete variety and
f : X → Pr × Pr a morphism. Assume dim(f(X)) > r, then

• f−1(∆) is connected, where ∆ ⊂ Pr × Pr is the diagonal;

• if X is locally irreducible, π1(f−1(∆))� π1(X).

For a proof of this result see [FL, Theorem 3.1] or [MNP, Theorem 5.1].
This Theorem has several applications. Here we list some of them related to our problem.

Theorem 2.2.5. Let X be a complete variety of dimension n and let f : X → Pr a morphism
unrami�ed. If 2n > r, f is a closed embedding.

Corollary 2.2.6. Let X ⊂ Pr be a closed subvariety of dimension n with 2n > r. If X is not
normal, then the normalization ν : X̃ → X must be rami�ed.

For instance, if X is a surface with ordinary singularities, the normalization X̃ is smooth
and the map X̃ → X rami�es over the pinch points of X.

We recall also that a consequence of the Fulton-Hansen Theorem is the �niteness of the
Gauss map (Proposition 1.2.8) stated before.
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2.2.2 Fundamental groups

The complex projective space Pn is simply connected, i.e. π1(Pn) = 1, while open subsets
U = Pn \ R, with R closed, may have non trivial fundamental group. The following result
implies that the only non trivial cases are the ones in which R has codimension one in Pn.

Proposition 2.2.7. [Di, Ch.4, Prop. 1.1] Let X ⊂ Pn be a projective variety. Then

π1(Pn \X) = 0 if dim(X) ≤ n− 2.

Proof. Any element in π1(Pn \X) is represented by a smooth map α : S1 → Pn \X, and any
relation among the elements in π1(Pn \X) is represented by a smooth map β : D2 → Pn \X
of the 2-disc D2 into Pn. This follows from the fact that any continuous map between smooth
manifolds can be approximated, without changing the homotopy class, by a smooth map.
See, for instance [Hi, p.124]. Moreover we need work only with maps α : S1 → Pn \X and
β : D2 → Pn\X which are transversal to all the strata in the decompositions of X; to see this,
use the transversality theorem (for instance, in [Hi, p.74]). Hence all the strata of complex
codimension strictly greater than one play no role.

Moreover, Zariski established an important result that extends Lefschetz homological re-
sults ([Zar1]; see [HT] for a more complete proof).

Theorem 2.2.8 (Zariski). Let X ⊂ Pn, n > 2, be a complex projective hypersurface. Let H
be a general hyperplane in Pn and let XH be the corresponding hyperplane section of X. Then

π1(Pn \X) = π1(H \XH)

It is worth noticing that the isolated singularities of X have no e�ect upon the founda-
mental group of its residual space. Moreover, iterating we get the following

Corollary 2.2.9. Let Π be a general plane in Pn, n ≥ 3 and X ⊂ Pn an hypersurface. Let
XΠ be the corresponding plane section. Then

π1(Pn \X) = π1(Π \XΠ)

2.3 Uniform position principle

We end this chapter by recalling the so called Uniform Position Principle, introduced by
Castelnuovo. It has been used later by Harris (see [ACGH, Chapter 3], [Ha2]).

Theorem 2.3.1 (Uniform position principle). Let C ⊂ Pc+1, c ≥ 1 be a irreducible, non
degenerate curve of degree d. Then a general hyperplane meets C in d points any c + 1 of
which are linearly independent.

An equivalent version of this Theorem will be useful for our treatment ([ACGH, Chapter
3.1]). Let C ⊂ Pc+1 be a irreducible, non degenerate curve of degree d. Let U ⊂ (Pc+1)∗ be
the open set of transverse hyperplanes to C and let

I = {(p,H) ∈ C × U | p ∈ H ∩ C}
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Observe �rstly that I is irreducible of dimension c+ 1. The second projection p2 : I → U is
a topological covering of degree d.

Lemma 2.3.2. The monodromy group of p2 is the full symmetric group Sd.

One can use this result to prove the following.

Proposition 2.3.3. [PS, Prop. 2.3] Let L ⊂ Pc+1 be a c − 1 plane that does not meet C
and let Bred be the branch divisor of p2 taken with its reduced scheme structure. Let P1

L be
the line parametrizing hyperplanes containing L. If P1

L intersect Bred transversally, then the
monodromy group of p2 restricted to p−1

2 (P1
L) is the full symmetric group.

We remark that p2 restricted to p−1
2 (P1

L) is the same as the projection πL : C → P1 of C
from L.



Chapter 3

Monodromy of projections

Let X ⊂ Pn+c, c ≥ 1 be a irreducible, reduced projective variety of dimension n and let L be
a linear subspace of dimension c− 1 such that L ∩X = ∅. Consider the projection map

πL : X ⊂ Pn+c → Pn

To the morphism πL we can associate the monodromy group M(πL) de�ned in Section 1.5.

De�nition. An element L ∈ G(c − 1, n + c) such that M(πL) = Sd is called uniform.
Otherwise, L is non uniform. We set W(X) the locus of non uniform elements L for the
variety X. When clear, we will just write W.

Our aim is to give an estimate of the dimension of W.

3.1 General projections

A �rst rough bound on the dimension of W is given by looking at general projections. We
prove a more general version of the Lemma 2.3.2, equivalent to the Uniform position principle.

Let X ⊂ Pn+c be a irreducible, reduced variety of dimension n and degree d. Let U ⊂
G(c, n + c) be the open set of linear subspaces of dimension c that are transverse to X and
let

I = {(p, L) ∈ X × U | p ∈ L ∩X}

The second projection p2 : I → U is a topological covering of degree d.
Following the proof of Lemma 2.3.2 we get:

Lemma 3.1.1. The monodromy group of p2 is the full symmetric group Sd.

Proof. To show that M(p2) is Sd, we have to show that it is 2-transitive and contains a
transposition. Saying that the monodromy group is 2-transitive is equivalent to saying that

I(2) := {(p1, p2, L) ∈ X ×X × U | p1, p2 ∈ L ∩X }

29
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is connected. Therefore, consider a slight modi�cation of the previous de�nition. Let

Ĩ(2) := {(p1, p2, L) ∈ X ×X ×G | p1, p2 ∈ L ∩X, p1 6= p2}

that maps to (X ×X) \∆, where ∆ is the diagonal, with �bres that are linear of dimension
c− 1. Hence Ĩ(2) is irreducible and I(2) is a Zariski open inside Ĩ(2), hence it is connected.

We are left to show that M(p2) contains a transposition. Take L0 ∈ G(c, n + c) simply
tangent to X at a smooth point. Consider a family of subspaces {Lt}t∈C, |t|<ε, with Lt ∈ U
for t 6= 0. Let X∗ be the dual of X in G(c, n + c) of c-planes containing tangent lines to
X. The family {Lt} meets X∗ transversally at L0, then Lt ∩ C contains two points that
come together to the point of tangency when t→ 0. Thus the monodromy group contains a
transposition.

Let L ∈ G(c − 1, n + c) be such that L ∩X = ∅ and let πL : X → PnL be the projection,
where PnL parametrizes all the c-planes in G(c, n+ c) through L.

Proposition 3.1.2. Let B be the branch of p2 : I → G(c, n+c) taken with the reduced scheme
structure. If PnL meets B transversally, then L is uniform.

Proof. In the proof we follow the same argument in [PS, Proposition 2.3]. The map πL
corresponds to the restriction of p2 to p−1

2 (PnL) ' X. Since PnL meets B transversally, by
a Lefschetz-type theorem ([Di, Theorem 6.5]) we have a surjection π1(PnL \ (PnL ∩ B)) �
π1(G(c, n + c) \ B). Thanks to Lemma 3.1.1 we know that the monodromy of p2 is the full
symmetric group. Combining with the previous surjection, we get that L is uniform.

A general L correspond to a general PnL in G(c, n + c). Using this we can deduce a �rst
bound on the dimension of the non uniform locus W(X).

Corollary 3.1.3. A general L is uniform.

The same is proven also in [Cu, Proposition 2.3] taking hyperplane sections up to reduce
the variety to a curve. The procedure is described in the following Section.

3.1.1 The case of curves

In the proof of our main results, we will use an induction argument on the dimension n of the
variety X. It is based on the following fact.

Lemma 3.1.4. Let X be an irreducible and reduced projective variety and πL a projection
as above. Let H be a general hyperplane containing L and let π′ be the restriction of the
projection πL to H ∩X. By Bertini's theorem 2.2.1, the section X ∩H is again irreducible
and reduced; so it makes sense to consider M(π′) and

M(π′) ≤M(πL).

In particular, W(X ∩H) ⊇ W(X) ∩H.
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Proof. We have the following diagram

X ∩H i //

π′=πL|H
��

X

πL
��

Pn−1 i // Pn

where the map i is an inclusion. Let B the branch divisor of the projection πL and let
µ : π1(Pn \ B)� M(πL) ≤ Sd be the monodromy map. At the level of fundamental groups,
we have the following diagram

π1(Pn−1 \ (Pn−1 ∩B)) //

µ

��

π1(Pn \B)

µ

��
M(π′)

))

//M(πL)

��
Sd

where the map π1(Pn−1 \ (Pn−1 ∩ B)) → π1(Pn \ B) is an inclusion by the genericity of H.
Since the diagram commutes, we get that M(π′) is contained in M(πL). Moreover, if L is
such that M(πL) 6= Sd, then also M(π′) is so; in other words, W(X ∩H) ⊇ W(X) ∩H.

The base case for the induction is the case of curves. In 2005 Pirola and Schlesinger [PS,
Theorem 3.5] proved the following bound on the dimension of W.

Theorem 3.1.5. Let X ⊂ Pc+1, c ≥ 1 be an irreducible, non degenerate curve. The locus
W(X) of non uniform (c − 1)-planes has codimension at least two in the Grassmannian
G(c− 1, c+ 1).

This bound is sharp ([PS, Remark 3.6]).

Example 3.1.6. An example in P3 of a curve C admitting a codimension two family on non
uniform lines is the twisted cubic curve ([PS, Ex 2.6]). Given two distinct points p, q ∈ C,
denote by Hp, Hq the osculating planes at p and q respectively. Let L := Hp ∩Hq; then the
line L does not meet C. By Riemann-Hurwitz, the projection πL from L is rami�ed only over
Hp and Hq and, by Lemma 1.6.5, L is non uniform. Letting p and q vary along the curve, we
�nd a two dimensional irreducible family of lines L that are non uniform.

Remark 3.1.7. We remark that, if X ⊂ Pn+1 is an hypersurface with n ≥ 2, up to taking
hyperplane sections (Lemma 3.1.4) and using Theorem 3.1.5, the codimension of W(X) must
be at least 2 in Pn+1.

3.2 Filling families of tangent lines

The theory of focal loci has been introduced in Section 2.1. Here we present some results on
the focal locus of a �lling family of tangent lines in Pn+1, following [CF].
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Let X be a �lling family of lines in Pn+1. Assume X , which has dimension n by the �lling
property, is locally parametrized by D = D(u1, . . . , un). The line ld corresponding to a point
d ∈ D can be given by the intersection of n distinct hyperplanes

ld := {a1(d) · x = . . . = an(d) · x = 0}.

Here x = (x0 : . . . : xn+1) are the coordinates of Pn+1 and ai(d) = (ai(d)0 : . . . : ai(d)n+1)
denotes the independent vectors determining the hyperplane. We will denote by ∂ukai(d)j
the partial derivative of ai(d)j with respect to the variable uk, and inductively, for high
order derivatives, ∂uk,ulai(d)j , and so on. Write just ∂uiai for the vector (∂uka1(d)0 : . . . :
∂uiai(d)n+1). The equation of the focal locus on the line ld is ([CF, Sec. 4.3], [Se1])

det

∂u1a1 · x · · · ∂una1 · x
...

...
∂u1an · x · · · ∂unan · x

 = 0. (3.1)

The following result is a generalisation of part (a) and (c) of Proposition 5.1 in [CF].

Lemma 3.2.1. Consider a �lling family X of lines in Pn+1, and assume its general member
l is tangent to a irreducible reduced hypersurface X at a general point P . Then P is a focus
on l, and if the contact order of l with X at P is 2, then P is a focus with multiplicity at least
two on l.

Proof. We can assume that the surface X is parametrised locally around P by the same B
which parametrises the family X , so P := P (u1, . . . , un). Moreover we can choose a1 to give
the tangent plane to X at P . So we have

a1 · P = a1 · (∂u1P ) = . . . = a1 · (∂unP ) = 0.

By taking partial derivatives and by using the previous relations, we get

(∂u1a1) · P = . . . = (∂una1) · P = 0. (3.2)

It immediately follows that P satis�es Equation (3.1), and so is a focus on l independently of
the choices of the other n− 1 hyperplanes. This proves the �rst claim.

For the second part of the proof, notice that the line l is tangent to X, so we can assume
l to be explicitly parametrised as follows:

l := {P + λ∂u1P} . (3.3)

The contact order of l with X at P is 2, hence we get

a1 · (∂u1,u1P ) = 0.

Notice that, for any hyperplane {b · x = 0} passing through P and containing l, we have that
b · (∂u1P ) = 0 from equation (3.3), and hence, by taking derivatives, we get that

(∂u1b) · P = 0. (3.4)
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We can choose other n − 1 independent vectors b2, . . . , bn in Pn+1 and the hyperplanes
bi · x = 0 de�ned by them pass through P and contain l. The line l is given by the equations:

{a1 · x = b2 · x = . . . = bn · x = 0} ,

and the focal scheme on l described by Equation (3.1) is explicitly given as a function of the
parameter λ by

det


(∂u1a1) · x · · · (∂una1) · x
(∂u1b2) · x · · · (∂unb2) · x

...
...

(∂u1bn) · x · · · (∂unbn) · x

 = 0. (3.5)

Now we can use Equation (3.3) to express the focal scheme as a function of the parameter
λ. Moreover, if we consider Equation (3.2) and Equation (3.4), we get a simpli�ed form for
our matrix:

det


0 λ(∂u2a1) · (∂u1P ) · · · λ(∂una1) · (∂u1P )

λ(∂u1b2) · (∂u1P ) · · · · · · · · ·
...

...
λ(∂u1bn) · (∂u1P ) · · · · · · · · ·

 = 0. (3.6)

Lemma 2.1.6 guarantees that the determinant is not identically zero whenever l is a general
element of the family. Such a determinant is given by λ2 · α(λ) = 0, where α is a polynomial
depending on λ. Hence the point P is a focus of multiplicity at least 2.

We conclude this part by studying the focal locus for a di�erent family of lines in Pn+1. Let
S be a curve in Pn+1 and let X be an irreducible reduced hypersurface with codim(Xsing) = 1
in X. Let X be the family of lines given by the join between S and Xsing.

Lemma 3.2.2. Assume that the family X is �lling and that its general member l is contained
in the tangent cone to X at a general point P in Xsing, taken with its reduced scheme structure.
Assume moreover that the line l is not contained in the Zariski tangent space to Xsing at P .
Then P is a focus on l with multiplicity at least two.

Proof. We will follow the same lines of the proof of Lemma 3.2.1. Assume S is parametrised
by the coordinate u1 around the point l ∩ S and Xsing is parametrised by the coordi-
nates u2, . . . , un around P . The family X is �lling, hence we can assume that it is locally
parametrized by the coordinates u1, . . . , un around the line l. The point P is general, hence
smooth in Xsing, so we can consider {a1 ·x = 0} to be the hyperplane containing the line l and
the Zariski tangent space to Xsing at P . As before, we want to describe l as the intersection
of {a1 · x = 0} and other n− 1 independent hyperplanes:

{a1 · x = b2 · x = . . . = bn · x = 0} .

Every line joining S and P belongs to X , so we have that

(∂u1bi) · P = (∂u1a1) · P = 0. (3.7)
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Moreover, since {a1 · x = 0} contains the tangent space to Xsing at P , we have that

(∂uja1) · P = 0, ∀j = 2, . . . , n. (3.8)

By hypothesis, the line l is not contained in the tangent space to Xsing at P , hence we can
parametrise the family X around P by choosing the independent coordinate u1 such that the
direction of the line l is ∂u1P . In other words, we assume l to be explicitly parametrized as:

l := {P + λ∂u1P} . (3.9)

The line l is in the tangent cone to X at P , hence we get a1 · (∂u1,u1P ) = 0. Therefore, as for
Lemma 3.2.1, we obtain

(∂u1a1) · (∂u1P ) = 0. (3.10)

The focal scheme on the line l is still given by the determinant in Equation (3.5). Once we
express it as a function of the parameter λ through Equation (3.9), and we consider Equations
(3.7), (3.8) and (3.10), we �nd the same matrix of Equation (3.6). Such a determinant is given
by λ2 · α(λ) = 0, where α is a polynomial depending on λ. Lemma 2.1.6 guarantees that the
determinant is not identically zero whenever l is a general element of the family. Hence the
point P is a focus of multiplicity at least 2.

3.3 Hypersurfaces

The Theorem 3.1.5 implies that the locus of non uniform points is �nite for irreducible and
reduced plane curves. This has been generalized in [CMS] to smooth surfaces in P3.

Theorem 3.3.1. [CMS, Theorem 1.1] Let X ⊂ P3 be a smooth surface. Then the locus of
non uniform points W(X) is at most �nite.

Example 3.3.2. Let X ⊂ P3 be the Fermat cubic surface, zero locus of G(x0 : . . . : x3) =
x3

0 + . . . + x3
3. The point P = (0 : 0 : 0 : 1) ∈ P3 is not uniform since the monodromy group

is generated by 3-cycles.

The main result of this thesis generalizes those results.

Theorem 3.3.3. Let X be an irreducible, reduced, complex hypersurface of Pn+1. Then, the
locus W(X) is contained in a �nite union of linear subspaces of codimension at least 2.

Cones provide examples of varieties with a �nite union of non uniform linear subspaces of
codimension at 2.

Proposition 3.3.4. Let C ⊂ Pn+1 be an irreducible and reduced curve contained in a plane
H ∼= P2 and consider a linear space V of dimension n− 2 disjoint from H. Let X be the cone
on C with vertex V . Then every point in 〈Q,V 〉 \ V is non uniform for X, where Q is a non
uniform point for C in H. Moreover, the non uniform locus of X is a �nite union of such
linear subspaces of codimension 2.
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Proof. Let P be a point in 〈Q,V 〉 \V . Generators of the monodromy group of the projection
of X from P are obtained by taking a general plane section by a plane containig P ([Di, Prop.
3.1]). The linear projection from the vertex V of X induces an isomorphism from the general
P2 to H which sends X∩P2 to C. There are at most a �nite number of non uniform points for
an irreducibile and reduced plane curve (Theorem 3.1.5). Therefore, the non uniform locus
for the cone X is a �nite union of linear subspaces of codimension 2 containing the vertex V .

In a similar �avour, cones X ⊂ Pn+1 with vertex of dimension k − 1, provide an example
of irreducible and reduced varieties with W(X) being a �nite union of Pk, k = 1, . . . , n− 2.

3.3.1 Proof of the main theorem

We start by characterising a point Q ∈ W(X) with respect to a general, hence uniform, point
P ∈ Pn+1 \X.

Consider a general P2 passing through Q; the plane curve X ∩ P2 is irreducible and
reduced thanks to Bertini's Theorem 2.2.1. We can associate Q with the set of permutations
corresponding to the branch points of πQ restricted to the chosen P2 (Corollary 2.2.9), whose
type is given by Lemma 1.5.6. Recall that from the generality of the choice of the P2, these
permutations generate the monodromy group M(πQ).

The contact orders of lines from a general, hence uniform, point P are the smallest possible,
so a non uniform point Q must have at least one permutation among the generators ofM(πQ)
that has order strictly greater than the ones that generate M(πP ) ' Sd.

We will denote by VQ the family of lines through Q corresponding to those generators
with high order. If S is a subvariety of W(X), we denote by VS the union of VQ for all
Q ∈ S ⊂ W(X).

There are several ways in which the contact order of a general line l in VQ can increase.
We will subdivide them in four cases.

(C1) The line l is more than simply tangent on points inXsm, i.e. l is bitangent or asymptotic
tangent;

(C2) The line l is bisecant to Xsing;

(C3) The line l pass through a point of Xsing and is tangent to a point of Xsm;

(C4) The line l is in the tangent cone to X at a point in Xsing.

Lemma 3.3.5. Let X be a irreducible, reduced hypersurface in Pn+1, and let Q ∈ W(X) be
a non uniform point. Then, the base locus parametrising the family VQ has dimension n− 1
in the Grassmannian G(1,Pn+1).

Proof. For n = 1, [PS, Proposition 2.5] guarantees that a non uniform point must have at
least two non-simple tangent lines passing through it. We proceed now by induction. Assume
that the claim is true for a hypersurface of dimX = n − 1, n ≥ 2 and prove it for the case
dimX = n. By contradiction, assume that the dimension of the base of VQ is smaller than
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n − 1. Take a general hyperplane H in Pn+1 passing through Q; by Bertini's Theorem, the
section X∩H is irreducible and reduced since Q /∈ X. The hyperplane H contains a subfamily
of VQ parametrised by a base of dimension strictly lower than n− 1, but this contradicts the
induction hypotesis.

Lemma 3.3.6. Let S ⊂ W(X) be an irreducible curve not contained in a linear space of
codimension 2. Then the family VS is a �lling family of lines.

Proof. We want to show that VS is a family whose base space has dimension n and the map
VS → Pn+1 of De�nition 2.1.4 is dominant. For every choice of Q ∈ S, the dimension of the
base of VQ is n − 1 thanks to Lemma 3.3.5. Every line in VS belongs to VQ for a certain
Q ∈ S, so the dimension of the base of VS is n.

If VS were not dominant, then the family VS would be contained in a �nite union of
irreducible hypersurfaces Vj , j = 1, . . . , k in Pn+1, distinct from X since S * X. For a
general Q ∈ S, VQ is the union of cones over Vj ∩ X with vertex Q. For each j = 1, . . . , k,
the hypersurface VQ over Vj ∩X coincide with Vj since they have the same dimension. Let us
consider Vj := V for a j ∈ {1, . . . , r}. The cone VQ = V ′Q for every Q,Q′ ∈ S and we will just
write V ∼= VQ for every Q ∈ S. We claim that V is linear. Consider a general line l passing
through a general point T ∈ S and not contained in V . If V would not be a hyperplane, there
should be at least a point Z ∈ V ∩ l, Z 6= T . By hypothesis, V is the cone over V ∩X with
vertex T . The line 〈Z, T 〉 with Z ∈ V is contained in V . This is a contradiction. Hence V is
linear.

The family VS is contained in a �nite union of hyperplanes H1, . . . ,Hk and a �nite number
of cones Rj with vertex on S. As a consequence, the curve S must be contained in the
intersection of H1, . . . ,Hk. We want to exclude the case k = 1. Take a general P2 passing
through a general point Q of S: it intersects X in an irreducible and reduced curve. Lemma
3.1.4 ensures that Q is non uniform also for P2 ∩X. The hyperplanes Hi intersect this P2 in
lines which correspond to generators of the monodromy group πQ. Since the point Q is not
uniform, there must be at least two generators coming from theHi that are not transpositions,
hence k > 1.

Proof. (Proof of Theorem 3.3.3).
We can assume n > 1 thanks to Theorem 3.1.5. Let us assume by contradiction that

there exists a component of W(X) not contained in a linear space of codimension 2. We can
choose a irreducible curve S ⊂ W(X) with the same property. We now want to apply the
focal machinery to the family VS to get a contradiction. The hypothesis of Lemma 3.3.6 are
satis�ed, so we know that VS is �lling. Notice that all of the conditions (C1), ..., (C4) are
de�ned by Zariski-closed properties, as a consequence there exist a Zariski-open U ⊂ S such
the lines in VQ for Q ∈ U belong to exactly one of the cases (C1), ..., (C4). Let us study such
cases one by one.

The general element of VS belongs to Case (C1).
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If l is an asymptotic tangent line at the point P , then it is a focal point with multiplicity
2; if l is bitangent at P and Q, P 6= Q then both the two points are focal point for l (see
Lemma 3.2.1).

The general element of VS belongs to Case (C2).
The family VS is made by lines bisecant to Xsing and passing through W(X). Hence,

there is a one dimensional subfamily of lines of VS trough every point in Xsing. By Lemma
2.1.9 the points in l ∩Xsing are focal points for l, each of multiplicity one.

The general element of VS belongs to Case (C3).
A point in l∩Xsm at which l is tangent is focal by Lemma 3.2.1, while a point in l∩Xsing

is focal by Lemma 2.1.9 as observed before.

The general element of VS belongs to Case (C4). In this case, l ∈ VS belongs to
the tangent cone to X at a point x in Xsing. As a consequence, S must be contained in the
intersection of all the tangent cones to X at points in Xsing. The family VS is �lling, so its
general member is not contained in the tangent space to Xsing. We are in the situation of
Lemma 3.2.2, and the point x is a focus of multiplicity at least two.

In each of the previous cases, there are at least two points, counted with the right multi-
plicity, in the focal locus of l. Moreover, l passes through a point of S and, by construction,
for every such point there is a n − 1 dimensional subfamily of VS . Therefore, this point is a
focus for l as well, its multiplicity being n − 1 by Lemma 2.1.9. Note that the general line
meets S in a point outside X. Thus, we have at least n − 1 + 2 = n + 1 focal points in a
general line l of the �lling family VS . But this is a contradiction because of Lemma 2.1.6, as
the focal locus in a general line of a �lling family of lines in Pn+1 consists of n points counted
with multiplicity.

In each of the cases (C1), ..., (C4) we found a contradiction. This concludes the proof.

3.3.2 Special cases

The aim of this section is to prove stronger results on the dimension of the non uniform locus,
under some assumptions on the variety X.

Firstly, we state a consequence of Bertini's Theorem (Thm 2.2.1) that we will use in the
following.

Proposition 3.3.7. Let X be irreducible and reduced projective hypersurface. Assume that
W(X) is not �nite and let K ∼= Pk be the smallest linear space containing a component of
W(X). Then, a general linear subspace H ∼= Pk+1 containing K, cuts X in either a reducible
or not reduced hypersurface.

Proof. If that were not true, since a non uniform point for X is also non uniform for X ∩H
in H (Lemma 3.1.4), the locus W(X ∩H) would span a space of codimension 1 in H, which
contradicts Theorem 3.3.3.

Notice that, by Bertini's Theorem, a general section H ∩X cannot be not reduced since it
must be not reduced away from the base locus K∩H for the assumptions on the hypersurface
X.



38 CHAPTER 3. MONODROMY OF PROJECTIONS

Using this property, we can generalize the Theorem in [CMS] for smooth hypersurfaces of
dimension n ≥ 3.

Theorem 3.3.8. Let X be a smooth hypersurface in Pn+1. Then the locus of non uniform
points is �nite.

Proof. Assume W(X) is not �nite. Thanks to Theorem 3.3.3, there are at least two hyper-
planes H1, H2 containingW(X). Let us consider an irreducible curve S inW(X) and H1, H2

as in the proof of Lemma 3.3.6. Let Y ∈ H1 ∩ X and let TYX be its tangent hyperplane.
By construction, H1 contains a n − 1 dimensional family of non simple tangent lines to X
through a general point of S. Hence, since every line 〈Q,Y 〉 with Q ∈ S is tangent at Y ,
since H1 ∩X has codimension one in X. Hence S is contained in TYX for every Y ∈ H1 ∩X
and so, by linearity, the linear span 〈S〉 is contained in TYX, ∀ Y ∈ H1 ∩X.

We �rstly show that S should be a line. To do this, we recall that, since X is smooth, the
Gauss map is �nite and birational onto the image X∗ (Theorem 1.2.8).
If, by contradiction, dim〈S〉 ≥ 2, then its dual in (Pn+1)∗ is a linear space of dimension at
most n − 2 containing TYX ∈ X∗ for every Y ∈ H1 ∩ X, while we expect (H1 ∩ X)∗ to be
n− 1 dimensional in X∗.
Now we assume that S is a line. The family of hyperplanes in Pn+1 through it is of dimension
n − 1. Therefore, if we assume that all the TYX, Y ∈ H1 ∩ X are distinct, the general
hyperplane passing through S is a hyperplane tangent to X at a point Y . But this contra-
dicts Bertini's Theorem 2.2.1. In any case, there exists a hyperplane tangent to a positive
dimensional subvariety of X. But this contradicts Theorem 1.2.8.

Remark 3.3.9. We can rewrite our problem in the dual space (Pn+1)∗. Let Q be a point in
W(X) and let B be the branch divisor of πQ. Let B̃ be the intersection of the hyperplane
Pn ∼= Q⊥, parametrizing the hyperplanes through Q, and X∗, that is the dual variety of
X. If we assume that X is not developable, then X∗ is an hypersurface in (Pn+1)∗. The
condition of being non uniform for a point Q in Pn+1 \X correspond to ask that at least an
irreducible component of the branch divisor B is not reduced. This translate into asking that
the intersection of Q⊥ and the singular locus of X∗ has an irreducible component that forms
a component of B̃. Note that there could be components of B corresponding to points of B̃.
This cannot happen if we assume X to be smooth since the Gauss map is �nite (Theorem
1.2.8). To have in�nitely many hyperplanes Q⊥ containing at least a component of X∗sing,
this must contain a linear component L. We remark that a linear irreducible component in
the singular locus of X∗ cannot exist if X is smooth, otherwise there would exist a family of
hyperplanes contradicting Bertini's Theorem (Thm 2.2.1). It gives a di�erent argument to
prove Theorem 3.3.8.

We conclude this section by showing another important consequence of Proposition 3.3.7.

Proposition 3.3.10. If dimW(X) > 0 and X is not a cone, then the monodromy group
relative to all but �nitely many points of W(X) contains transpositions.
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Proof. Denote by K ' Pk the smallest linear subspace containing a positive dimensional
component of W(X) and let H be a general Pk+1 containing K. By Theorem 3.3.3 k < n
and by Proposition 3.3.7, X ∩ H is reducible. Assume there exists an irreducible reduced
component X1 in X ∩H of degree at least 2.

Let Ao be the set of points P in Pk+1rX1 such that all the lines tangent to X1 and passing
through P are more than simply tangent. Consider the subvariety A of Pk+1, Zariski closure
of the set Ao. If we assume by contradiction that every line tangent to X and passing through
points inW(X) is not simply tangent (except maybe for �nitely many points inW(X)), then
dimA > 0. As in the proof of the main theorem, considering a curve in A, we can construct
a �lling family of lines in Pn+1; analogously, we would get a contradiction by using Lemma
2.1.6. As a consequence, all but �nitely many points of W(X) have simply tangent lines
passing trough them. Notice that these lines will not be tangent to other components Xi in
X ∩H since the dual varieties of the Xi are distinct.

Let now X ∩H have only linear components X1, . . . , Xd and let V := X ∩W(X). We are
now left to prove that X is a cone. Notice that V ∩Xi 6= ∅, i = 1, . . . , d for every H and so
X turns out to be a union of cones with vertices in V (see De�nition 1.6.1). By irreducibility
of X, V must be a unique linear subspace and X is a cone of vertex V .

When the hypersurface X is not a cone, this result lets us to give a strong characterization
of its projections with non uniform monodromy group. Firstly we recall some de�nition and
properties.

De�nition 3.3.11. A projection πP : X → Pn is decomposable if there exists an open dense
subset U ⊂ Pn over which πP factors non birationally, i.e.

π−1
P (U)

f→ V
g→ U

where f, g are �nite morphism of degree at least 2.

Remark 3.3.12. The map πP is decomposable if and only if there is an intermediate �eld
in the extension C(X) : C(Pn), i.e. the group M(πP ) is imprimitive.

We recall that, if the monodromy group M(πP ) is the full symmetric group, then the
projection πP is indecomposable, since Sd is primitive. The converse holds if we require
that M(πP ) contains a transposition (see [PS, Remark 2.2]). Indeed, consider the subgroup
N ≤ M(πP ) generated by transpositions; it is a non trivial normal subgroup of M(πP ).
Moreover, it must be transitive otherwise it will form a system of non trivial blocks, i.e. H
will be imprimitive. Therefore H is the whole Sd.

Finally we have the following consequence of Proposition 3.3.10.

Theorem 3.3.13. Assume X is a irreducible reduced hypersurface in Pn+1 with W(X) not
�nite and X not a cone. Then, the projection from all but �nitely many points in W(X) must
be decomposable.
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Proof. Let Q be a general point in W(X). By Proposition 3.3.10 the monodromy group
M(πQ) contains a transposition. Hence, to be non uniform, the projection must be decom-
posable.

Corollary 3.3.14. Let X be an irreducible, reduced hypersurface of Pn+1 of prime degree d.
Then the locus W(X) is �nite, unless X is a cone.

Proof. The map πP : X → Pn is indecomposable for every P /∈ X because otherwise the
degree of an intermediate non birational map would divide d.

A special case of non uniform points are the Galois points introduced in Section 1.6.4 (see
Remark 1.4.13). We recall the de�nition.

De�nition 3.3.15. Let πP : X ⊂ Pn+1 → Pn be a projection from a point P . A point
P ∈ Pn+1 is called a Galois point if the �eld extension C(X) : C(Pn) associated to πP is
Galois (see De�nition 1.4.6).

As a consequence of Proposition 3.3.10 we get the following corollary, which was proven
in [FT, Proposition 6].

Corollary 3.3.16. Let X be an irreducible, reduced, hypersurface in Pn+1 of degree d ≥ 3.
Then the number of Galois points is �nite, unless X is a cone.

Proof. Following the notation of [FT], denote by ∆′(X) the locus of outer Galois points
relative to X. Clearly, ∆′(X) ⊂ W(X). If we assume ∆′(X) to be in�nite and X not being
a cone, Proposition 3.3.10 shows the existence of transpositions in the monodromy group of
a general point Q in ∆′(X). As a consequence, the �eld extension given by πQ is not Galois
since the action of an element in the Galois group on a general �bre of πQ has no �xed
components. This is a contradiction.

All these results suggest us the following conjecture

Conjecture. Let X ⊂ Pn+1 be a reduced and irreducible hypersurface that is not a cone.
Then W(X) is at most �nite.

3.4 Decomposable maps

In order to understand better W(X) when X is not a cone, Theorem 3.3.13 says that we
have to study decomposable projections. In this section we want to introduce a technique
involving fundamental groups to study this property.

From an algebraic point of view, saying that the map πP is decomposable is equivalent
to saying that the monodromy group of πP is imprimitive. We recall here the de�nition
introduced in Section 1.1.

De�nition 3.4.1. Consider a transitive group G acting on a set Ω = {1, . . . ,m}. A block
for this action is a non empty subset B ⊂ Ω such that either gB = B or (gB)∩B = ∅ for all
g ∈ G. The whole Ω and subsets of single elements {i} ⊂ Ω are trivial blocks. We say that G
is imprimitive if its action preserves non trivial blocks; it is primitive otherwise.
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In Section 2.2 have been introduced classical results on fundamental groups. Here we
want to prove a generalization of [No, Proposition 4.1], that follows the idea in [Zar1, Main
Theorem] or [FL, Theorem 1.1] and present a surjectivity of fundamental groups.

Lemma 3.4.2. Let Γ be a irreducible and reduced curve in Pn and R ⊂ Pn be a closed
subset such that Γ * R and the intersection between Γ and R is transverse. Then we have a
surjective map

π1 (Γ rR)→ π1 (Pn rR) .

Proof. Let D be the normalisation of Γ, so that we have a map

D

σ
��

h

  
Γ

i // Pn

where i denotes the inclusion, σ the normalisation map and h = i ◦ σ.
As in the proof of [No, Proposition 4.1], choose G := Sl(n + 1), the special linear group

of order n+ 1, and consider

θ : G×D → Pn

(g, x) 7→ g · h(x).

Since Pn is simply connected, the map θ is a �bre bundle with smooth and connected
�bres. We can restrict to the Zariski-open subset V := Pn r R. Denote by X the preimage
θ−1(V ). We have that

π1(X)→ π1(Pn rR)

is surjective from the homotopy sequence. Consider now the projection on the �rst factor
G×D → G and let pr1 be its restriction to X, whose �bres are non empty outside the set of
points

S :=
{
g ∈ G| g · (h(D)) ⊂ R

}
.

Note that the non empty �bres of pr1 are isomorphic to Γ rR and so they are reduced. We
want to apply Part C of Lemma 1.3.2 to pr1. We claim that S has codimension at least 2
in G. Indeed, choose x, y two distinct points in D. The set S is contained in I :=

{
g ∈

G | g · x, g · y ∈ R
}
. For every choice of such x, y, we can de�ne a map ϕx,y : I → R × R

sending g to (g ·x, g · y). The �bres of this map are cosets of stabx ∩ staby, the intersection of
the stabilisers of the two points x and y in G. Its order correspond to the dimension of the
space of matrices in PSL(n+ 1) with two �xed columns, therefore we have

dim(S) ≤ dim(I) ≤ ord(stabx ∩ staby) + dim(R×R)

≤ n2 + 2(n− 1) = n2 + 2n− 2.

Hence we can apply Lemma 1.3.2 to pr1. Since G is simply connected, the map

π1(F )→ π1(X)
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is surjective for the general �bre F of pr1. Combining the two surjections above, we get

π1(F )� π1(X)� π1(Pn rR).

The �bre of pr1 over a general g ∈ G is (g ·D) \ h−1(R). Thanks to the assumption on Γ of
transverse intersection, Part C of Lemma 1.3.2 holds also for the �bre over the identity of G,
i.e.

π1(D r h−1(R))� π1(Pn rR).

From the initial diagram we have h = σ ◦ i, so �nally we get

π1(Γ rR)� π1(Pn rR).

The previous result can be applied to the case of X being an irreducible, reduced hyper-
surface in Pn+1 and S ⊂ Pn+1 being a curve not contained in X.

Corollary 3.4.3. Let P ∈ Pn+1 r X and assume SP := πP (S) intersects the branch locus
BP of πP transversally. Then we have a surjection

π1(SP rBP )→ π1(Pn rBP ).

Proof. Apply Lemma 3.4.2 with Γ = πP (S) and R = BP .

The transversality hypothesis of Corollary 3.4.3 is an open condition; hence, if there exists
a point P that veri�es such hypothesis, then the general point in Pn+1 does. We use this to
state the following result on monodromy groups.

Proposition 3.4.4. If for P ∈ Pn+1 general and S ⊂ Pn+1 a curve, SP = πP (S) and
BP satisfy hypothesis of Corollary 3.4.3, then the projection from the general point of S has
primitive monodromy group.

Proof. Assume by contradiction that the general point of S has non primitive monodromy
group. Take a general point P ∈ Pn+1. Thanks to Corollary 3.4.3 we have the following
surjective map, where t ∈ SP rBP .

π1(SP rBP , t)
τ // π1(Pn rBP , t) (3.11)

We call γ1, . . . , γk the generators of π1(Pn r BP , t) and γ̃1, . . . , γ̃k the corresponding lifts in
π1(SP rBP , t). Recall that the monodromy group of πP is generated by the images γ1, . . . , γk.
Up to a homotopy equivalence, also the γ̃i, seen as elements in π1(PnrBP ), generateM(πP ).

We can assume without loss of generality that each element γ̃i is a loop in SP rBP around
a single branch point.

Since P is general, the line 〈P, t〉 intersects S in a unique point q and meets X in d distinct
points. By assumption, M(πq) is non primitive, that is, the �bre of πq over t, which is the
same as the �bre of πP over t, splits into non trivial blocks. Since we are assuming that the
general point of S has non primitive monodromy group, by a continuity argument we can
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move the point q around to show that this subdivision in blocks stays the same for every non
primitive point in S.

We remark that we can take a loop ηi in SP rBP , homotopy equivalent to γ̃i, such that
every line joining P with a point of ηi do not meet S in one of the �nitely many point that
are primitive. Up to homotopy equivalence, for every γ̃i the preimages of points of the loops
on S are non primitive points, all with the same block subdivision. Considering all the loops
γ̃i in SP r BP around t, we can show that the group M(πP ), generated by µ(γ̃1), . . . , µ(γ̃k),
is non primitive. Again, by a continuity argument, we can show that also the projection from
a general point of S is non primitive. This gives a contradiction, because we chose the point
P to be general, hence uniform. This concludes the proof.

Remark 3.4.5. Recall that the locus of points with imprimitive monodromy group is con-
tained in W(X).

We want to apply this result to the study of decomposable projections, i.e. projections
with imprimitive monodromy group.

Corollary 3.4.6. Let X ⊂ Pn+1 be an irreducible and reduced hypersurface that is not a
cone. Assume that W(X) has positive dimension. Then there is no curve S ⊂ W(X) which
satis�es the hypothesis of Proposition 3.4.4.

Proof. Proposition 3.3.10 ensures the existence of a transposition for all but �nitely many
points in Pn+1 \ X. Let S ⊂ W(X) be a curve. Since a general point of S is non uniform,
the projection from it has imprimitive monodromy group. If S satis�es the hypothesis of
Proposition 3.4.4, this would give a contradiction.

We can use this Corollary to obtain another proof on the �nitness of W(X) when X is
smooth (Theorem 3.3.8).

Indeed, by contradiction, assume that W(X) is not �nite and let S ⊂ W(X) be a curve.
We claim that S satis�es the hypotesis of Proposition 3.4.4.

Let P be a general point in Pn+1 and let SP = πP (S). By the genericity of P we can
assume that SP is not contained in BP : let y ∈ S be a general point and choose P not lying
in a line through y tangent to X. Assume, morevore, that SP does not intersect transversally
BP at a point z, i.e. the tangent line to S at y = π−1

P (z) ∩ S is contained in the hyperplane
tangent to X at x ∈ π−1

P (z) ∩ X. Thanks to the construction in Proposition 3.3.10 there
exists at least a simple tangent line to X trough a point of S; let z be the image of such a
line.

Dualizing, the variety X∗ ⊂ (Pn+1)∗ is an hypersurface given by the tangent hyperplanes
to (smooth) points of X, while S∗ ⊂ (Pn+1)∗ is the hypersurface given by the hyperplanes
containing a line tangent to a (smooth) point of S. Since S * X, the biduality theorem implies
that S∗ 6= X∗. Hence the intersection S∗ ∩X∗ is of dimension n− 1. As a consequence, the
family of lines

F :=
{
l := 〈y, x〉 where y ∈ X, x ∈ S and l ⊂ Π such that Π∗ ∈ X∗ ∩ S∗

}
has dimension n− 1 in G(1, n+ 1).
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Therefore, considering the duals in (Pn+1)∗, a line corresponding to a non transverse
intersection of SP and BP , lives in a family of dimension n − 1 in G(1,Pn+1). Since P is
general, we can assume that it does not belong to a line of that family.

Finally, we can compare Proposition 3.4.4 with the main result on the non uniform locus
(Theorem 3.3.3) at the level of monodromy groups. Let us set M ′ := µ(im τ).

π1(SP rBP , t)
τ //

��

π1(Pn rBP , t)

µ

��
M ′ //M(πP ) = Sd

(3.12)

The groupM ′ is a subgroup ofM(πP ) and can be interpreted as the part of the monodromy
group of the projection πP which comes from generators that can be restricted to SP . If SP
satis�es the hypothesis of Proposition 3.4.4, we obtain that τ is surjective, which comes from
the Nori's lemma 3.4.2. Therefore, M ′ is equal to M(πP ) = Sd.

On the other hand, if Proposition 3.4.4 does not apply to SP , it means that τ is not
surjective. However, it is still possible to have a surjection at the level of monodromy groups.

3.5 Higher codimension varieties

Let X̃ ⊂ Pn+c, c ≥ 2 be a smooth projective variety of dimension n and let L ⊂ Pn+c be a
linear subspace of dimension l = c− 1 such that L ∩ X̃ = ∅. Let

πL : X̃ → Pn

be the linear projection of X̃ from L. We denote by W(X̃) the subset of the Grassmanian
G(c− 1,Pn+c) of non uniform (c− 1)-planes for X̃.

As said in Section 1.6, the above projection can be factorized

X̃
πM−→ X ⊂ Pn+1 πP−→ Pn

where M is a general linear subspace of dimension c− 2 such that M ⊂ L and P ∈ L \M is
a point such that 〈M,P 〉 = L.

We state a result on hypersurfaces that are the image of a general projections of a smooth
variety, that is a generalization of Theorem 3.3.8.

Proposition 3.5.1. Let X̃ be a smooth irreducible complex projective variety of dimension n
in Pn+c, c ≥ 1. Take X to be the projection of X̃ from a general linear subspace A of Pn+c

of dimension c− 2. Then, the locus W(X) is at most �nite.

Proof. Assume W(X) is not �nite, and denote by K ∼= Pk the smallest linear subspace of
Pn+1 containing one of its components. By Proposition 3.3.7, k < n and there exists a family
of Pk+1 containing K such that X ∩H is reducible for the general element H of this family.

We have that X ∩H is the linear projection from A of X̃ ∩〈H,A〉. Notice that X̃ ∩〈H,A〉
must be reducible as well, because the projection is a continuous map. So 〈H,A〉 gives a family
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of Pk+c−1 whose general member cuts X̃ in a reducible variety. The base locus of this family
is obtained by intersecting X̃ with Γ := 〈K,A〉. In order not to contradicts Bertini's theorem
(see Theorem 2.2.1 and Lemma 2.2.3), this base locus must consists of singular points. So,
the only possibility is that the space Γ is tangent to X̃. This contradicts Theorem 1.6.11:
Γ∩ X̃ is contained in one of the Xi1,...,ik , which are smooth, since we assumed A general.

We can use this Theorem and reason as in [PS, Theorem 3.5] to show the following.

Proposition 3.5.2. Let X̃ be a smooth irreducible complex projective variety of dimension
n in Pn+c, c ≥ 1. The locus of non-uniform L not intersecting X̃ has codimension at least
n+ 1 in the Grassmannian G(c− 1,Pn+c).

Proof. We will follow the proof of [PS, Theorem 3.5]. When c = 1 we know from Corollary
3.5.1 that all but �nitely many points P ∈ Pn+1 r X̃ are uniform. Now assume c ≥ 2. After
projecting from a general (c − 2)-subspace M , we get X ⊂ Pn+1

M , where Pn+1
M parametrises

all the (c − 1)-planes L containing M . Notice that projecting to Pn from X̃ is the same as
projecting from X, hence we can work with X in Pn+1 and apply Corollary 3.5.1.

Assume by contradiction that W(X̃) has codimension at most n in the Grassmannian
G(c − 1,Pn+c). In this case there would be an irreducible subvariety D of codimension at
most n such that the general L ∈ D is non-uniform, i.e. every L ∈ Dr∆ is non uniform for a
proper Zariski closed subset ∆. We claim that for a general element M ∈ G(c− 2,Pn+c), the
dimension of (D r ∆) ∩ Pn+1

M is greater than zero. Notice �rst that D ∩ Pn+1
M is at least one

dimensional: D has codimension at most n in G(c− 1,Pn+c) and Pn+1
M is n+ 1 dimensional.

Secondly, we have that
dim(∆ ∩ Pn+1

M ) < dim(D ∩ Pn+1
M ).

This implies that there exist in�nitely many non uniform such planes L containing a general
M ∈ G(c−2,Pn+c), but this contradicts the base case c = 1. Hence, the locus of non-uniform
(c− 1)-planes has codimension at least n+ 1 in the Grassmannian G(c− 1,Pn+c).

Remark 3.5.3. The same argument of [PS, Remark 3.6] shows that the bound of Proposition
3.5.2 is sharp. There are varieties X for which there exist points x /∈ X such that the
projection πx : X ⊂ Pn+c → Pn+c−1 is non birational onto the image. If this happens,
a (c − 1)-plane L cointaining such an x is non uniform because the map πL factorises non
trivially. Thus, the family of the (c−1)-planes passing through x is a codimension n+1 family
in G(c− 1,Pn+c) of non uniform elements. Non birational projections have been studied for
instance in [Noma, Theorem 1, Theorem 3] and [CaCi].

3.6 Examples of families of non uniform subspaces

3.6.1 Curves

Let C be a smooth, non degenerate, irreducible curve in Pn. We recall that a Schubert cycle
σ(x), with x ∈ Pn a point, is the subvariety of G(n−2,Pn) given by the (n−2)-planes passing
through x.

We introduce a de�nition that we will use in the following.
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De�nition 3.6.1. We say that C has special monodromy if exists a subvariety Σ ⊂ G(n −
2,Pn) of codimension 2 in the Grassmannian, closed and irreducible that is not a Schubert
cycle σ(x), such that the general L ∈ Σ does not meet C and the projection πL factors:

C
γ→ P1 β→ P1

with deg(γ), deg(β) ≥ 2.

Proposition 3.5.2 (already proved in [PS, Theorem 3.5]) says that

codimG(c−1,c+1) (W(C)) ≥ 2.

As seen in Remark 3.5.3, the Schubert cycle of a non birational point gives an example
of a codimension two subvariety of G(n− 2,Pn) of non birational elements. Moreover, Pirola
and Schlesinger ([PS, Theorem 4.2]) classi�ed all the smooth curves X ⊂ P3 admitting a
family of non uniform lines of codimension 2. Here we follow their argument and we present
a generalization of their result.

Theorem 3.6.2. Let C be a smooth, non degenerate, irreducible curve in Pn. Suppose Σ ⊂
G(n − 2, n) is an irreducible Zariski closed codimension 2 subvariety such that the general
L ∈ Σ does not meet C and is not uniform. Then one of the following occurs:

• there exists a non-birational point x ∈ Pn such that Σ = σ(x);

• C is a rational normal curve and the general element in Σ is the intersection of two
osculating hyperplanes;

• C is rational and has special monodromy.

Before starting the proof, we recall the Lemma of Strano on families of trisecant lines to
a curve. We will focus on lines that intersect a variety in at least three distinct points; we
will refer to them as honest trisecant lines.

Lemma 3.6.3. ([PS, Lemma 4.5]) Let X ⊂ P3 be a reduced curve of degree d ≥ 3, possibly
reducible. Let Σ ⊂ G(1,P3) be an irreducible Zariski closed subvariety of codimension 2.
Assume that a general L ∈ Σ is an honest trisecant line to X. Then Σ = σ(H) is the family
of all the lines lying on a plane H that contains a subcurve of X of degree at least 3.

We need the following generalized version.

Lemma 3.6.4. Let X ⊂ Pn be a reduced variety of dimension n − 2 and degree d ≥ 3. Let
Σ ⊂ G(1,Pn) be a irreducible Zariski closed subvariety of codimension 2. Assume that a
general L ∈ Σ is an honest trisecant line to X. Then Σ = σ(H) is the family of lines lying
on a hyperplane H that contains a subvariety of X of dimension n− 2 and degree at least 3.

Proof. Let K be a general 3-plane in Pn. Then K ∩X is a curve and K contains a subfamily
of Σ of dimension two. Applying Lemma 3.6.3, we have that X ∩K contains a plane curve of
degree at least three, and the general line in that plane is an honest trisecant to X ∩K. Then
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the variety X itself must have an equidimensional subvariety of degree at least 3 contained
in a hyperplane H. Indeed, if all the irreducible components of X were non degenerate, a
general hyperplane section of X must have the same property.
The 3-plane K intersects H in the plane containing the curve and the subfamily of Σ. Hence,
Σ is the family of lines in H whose general element is an honest trisecant to X.

We are ready to prove the Theorem 3.6.2. We will call hyperosculating hyperplane an
hyperplane that has intersection of multiplicity grater than n− 1 with the curve C at a point
x ∈ C.

Proof. By assumption, the subspace L is non uniform. Hence (see Lemma 1.6.5) there should
be at least two distinct branch points b1 and b2 of πL that are not simple, i.e. that do not
correspond to a tranposition in the monodromy groupM(πL). The hyperplanes corresponding
to b1 and b2 are singular points of C∗ ⊂ (Pn)∗ and so the line P1

L = L∗ meets the singular
locus C∗sing of C

∗ in at least two distinct points.
Suppose �rst that P1

L meets C∗sing in more than two distinct points. Consider the curve
C∗sing taken with its reduced scheme structure, and apply lemma 3.6.4 to the variety Σ∗ =

{P1
L | L ∈ Σ}.

We're looking for honest trisecant to C∗sing, therefore Σ∗ = σ(H). Coming back to the duals,
Σ = σ(x), i.e. all the (n − 2)-planes passing trough a point x, where x is the dual of the
hyperlpane H. This point is not birational due to Theorem 3.5 in [PS].

Suppose now that πL rami�es exactly over b1, b2; the branching weight of the bi is at
most d− 1, so by Riemann-Hurwitz

2g(C)− 2 = d
(
2g(P1)− 2

)
+R⇒ R = 2d− 2 + 2g(C) ≤ 2d− 2

providing that the curve C is rational and πL is given in some coordinates by z 7→ zd. Thus L
is the intersection of the two hyperplanes H1 and H2 corresponding to b1 and b2 respectively,
each of them meeting C at a single point with multiplicity d.

As L vary in a family of dimension 2n−4, there must be in�nitely many such hyperplanes.
We cannot have in�nitely many hyperosculating hyperplanes to C and so d ≤ n. The curve
C ⊂ Pn is non degenerate, therefore d = n and C is a rational normal curve. We are left
with the case when, for a general L in Σ, the line P1

L meets C∗sing in exactly two points
b1, b2, but it also contains a smooth point b3 ∈ C∗, that correspond to a transpositon in
the monodromy group of πL. By assumptions L is non uniform and the monodromy group
M(πL) contains a transposition, hence it is imprimitive (Theorem 1.1.7). Therefore the map
factors non-trivially as

C
γ−→ Y

a−→ P1

If the map a rami�es over more than two distinct points of P1
L, these points would all be

singular points of C∗ contraddicting the assumptions. Therefore Y ∼= P1 is rational and, up
to a choice of coordinates, a is the map z 7→ zα where α = deg(a) ≥ 2. As before, we cannot
have α ≥ n + 1 because this would imply the existence of in�nitely many hyperosculating
planes to C. The degree of γ is at least 2, then the degree of a should be strictly lower than n
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because hyperplanes cannot osculate in more than one point. All the integers 2 ≤ α ≤ n− 1
are possible values for the degree of a.

If Σ is not a Schubert cycle σ(x), then C is a curve with special monodromy. We claim
that also C is rational. Let H be a general hyperplane. For every couple of e�ective divisors
E1, E2 of degree g = deg(γ) on C, there exist L ∈ Σ such that L ⊂ H and the projection
from L factors C

γ−→ Y
a−→ P1, where E1, E2 are �bres of γ. In particular, they are linearly

equivalent. Given P1, P2 distinct points in C ∩ H, we choose F1, F2 of degree g − 1 such
that P1 + P2 + F1 + F2 ≤ DH , where DH = P1 + . . . + Pd, P1, . . . , Pd ∈ C ∩ H. Then
Pi + Fi ∼ Pj + Fj i, j ∈ {1, 2}, so 2P1 ∼ 2P2. This holds for a general hyperplane H and
every pair of distinct points in C ∩ H, so we can �nd a point P ∈ C such that Q − P is a
2-torsion point in the Jacobian for in�nitely many points Q. Therefore C is a rational curve
with special monodromy.

3.6.2 Rational curves with special monodromy

The aim of this part is to look for examples of smooth rational curves with special monodromy.
Pirola e Schlesinger proved that the only examples in P3 are the general quartic and special
sextics ([PS, Theorem 5.9]). The study of smooth curves with special monodromy in higher
dimension is not complete. Here we present some result in the direction of a classi�cation of
such curves in P4.

What follows in this Section is a generalization of [PS, Section 5].

Let C ⊂ Pn be a smooth rational curve with special monodromy of degree αd ≥ n. Let
V ⊂ H0(P1,OP1(αd)) be the (n+ 1)-dimensional space that de�nes the embedding

C ↪→ Pn = P(V ∗)

i.e. to each point we associate the polynomials in V that vanish at the point.
Set Pd := P

(
H0(P1,OP1(d))

)
the projective space of polynomials of degree d and

qα : Pd → Pαd
the embedding given by qα(f) = fα with 2 ≤ α ≤ n−1. This are the only cases that we have
to study thanks to the proof of Theorem 3.6.2. Let X := qα(Pd) be the image of the map qα.

Proposition 3.6.5. Let C ⊂ P(V ) be a smooth rational curve of degree αd ≥ n with special
monodromy. Then the intersection (X ∩ P(V )) ⊂ Pαd has dimension at least n− 2.

Proof. Since C has special monodromy, there exists a codimension two family Σ ⊂ G(1,P(V ∗))
of (n − 2) planes such that, for every L ∈ Σ, the projection πL factors through a degree α
morphism βL : P1 → P1. Up to a choice of coordinates, βL is the map z 7→ zα and so the line
P1
L ⊂ P(V ) ⊂ Pαd intersects X in at least two points, that are points in the branch. Thus the

surface Σ′ := {P1
L | L ∈ Σ} is contained in the set of lines secant to X ∩ P(V ).

If we take two points on (X ∩P(V )), then there exists a secant line passing through them;
therefore 2 dim(X ∩ P(V )) ≥ dim{secants to(X ∩ P(V )) }. Furthermore dim(Σ′) = 2(n− 2),
hence X ∩ P(V ) is at least n− 2 dimensional:

dim(X ∩ P(V )) ≥ 1

2
dim(Σ′) = n− 2.
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Proposition 3.6.5 for n = 4 says that the dim(X ∩ P(V )) ≥ 2. Therefore we will consider
the case in which a two dimensional subvariety is contained in X ∩ P(V ).

α=2. Let us consider C ⊂ P4 of degree 2d and q := q2 : Pd → P2d.

Lemma 3.6.6. Suppose S ⊂ Pd is a reduced irreducible surface such that q(S) spans a four-
dimensional linear subspace P(V ) of P2d. Then S = P2 and d = 2.

Proof. Consider a surface S ⊂ Pd such that 〈q(S)〉 ∼= P4 = P(V ). A general hyperplane H
in P2d cuts q(S) on a curve that spans a P3 by the hypotesis on S. The pullback of the
hyperplane H is a quadric Q since q∗O(1) = O(2). Therefore Y = S ∩ Q is an irreducible
curve by Bertini's Theorem 2.2.1. Via this construction, the curve Y is one of those classi�ed
in [PS, Proposition 5.6]. Using that classi�cation, the only two possibilities are deg(Y ) = 2
or deg(Y ) = 3:

• deg(Y ) = 3 is not possible since deg(Q) = 2, so we cannot have a odd degree for Y ;

• if deg(Y ) = 2, then S = P2 because deg(Y ) = 2 deg(S).

Therefore we are left with S = P2 ⊆ Pd and we claim that it must be d = 2.
According to the Eisenbud/Hopf proposition in [PS, Prop 5.5], if P2 ⊂ Pd is such that

dim〈q(P2)〉 = 4, then there exist two linearly independent forms F,G of degree a such that
P2 = P(< hF 2, hFG, hG2 >) where h ∈ Pd−2a.
Hence< q(P2) >= P(< h2F 4, h2F 3G, h2F 2G2, h2FG3, h2G4 >) is a linear system that de�nes
a morphism P1 → P4 whose image is a rational normal quartic T in P4. On the other
hand, P(V ) ∼= P4 =< q(P2) > and V induces the embedding C ↪→ P4 = P(V ∗); hence
deg(C) = deg(T ) = 4, i.e. d = 2.

The following Lemma is the converse of Proposition 3.6.5.

Lemma 3.6.7. Let C ⊂ P(V ∗) be a smooth rational curve of degree 2d ≥ 4 and let the
dimension of X ∩ P(V ) be grater than one. Then C has special monodromy.

Proof. Assume that there exists a surface S in X ∩ P(V ) such that 〈S〉 ∼= P(V ). Hence,
also the lines secant to S are not all contained in a hyperplane. Let Σ′ be the codimension
two subvariety in G(1,P(V )) of lines secant to S; let Σ be the corresponding subvariety in
G(1,P(V ∗)).

Since Σ′ is not contained in a hyperplane, the dual Σ is not the Schubert cycle of a point.
By construction, a general line in Σ′ is base point free, so its dual L in Σ does not meet
C and the projection from L is decomposable (Theorem 3.6.2). Therefore, C has special
monodromy.

Finally we have:

Lemma 3.6.8. Let C ⊂ P4 be a rational curve of degree 2d ≥ 4 with special monodromy.
Then deg(C) = 4. Moreover, every rational quartic has special monodromy.
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Proof. Since C is a quartic, d = 2 and q2(P2) = X ⊂ P4. ThereforeX∩
(
P(V ) ∼= P4

)
= X that

is a surface. Then we can apply Lemma 3.6.7 and obtain that C has special monodromy.

α=3. The other case we have to consider for smooth rational curves in P4 is α = 3. We
were not able to have a complete classi�cation in this situation, but we present some result
in that direction.

Let C ⊂ P4 be a rational curve of degree 3d ≥ 4 and let q3 : Pd → P3d be a map and let
as before X be its image. Similarly to Lemma 5.3 [PS] we can prove the following property.

Lemma 3.6.9. The image X := qα(Pd) has no trisecants for α ≥ 3.

Proof. By contradiction, let fα, gα, hα ∈ X be three alligned points, where f, g, h are poly-
nomials in Pd. We can assume that the trisecant line, de�ned by f, g and h, is a base point
free linear series g1

αd and so it de�nes a morphism f : P1 → P1 of degree αd.
Since we are considering all the roots to be distinct, f, g and h are in the rami�cation

divisor of f , each with multiplicity (α− 1)d. By Riemman-Hurwitz we get

−2 ≥ −2αd+ 3(α− 1)d

Therefore we have −2 ≥ (α− 3)d ≥ 0 since by assumption α ≥ 3. But this is a contradiction.

By proposition 3.6.5 we look for a surface S ⊂ Pd such that q3(S) ⊂ P3d.

Lemma 3.6.10. The span 〈q3(S)〉 is P(V ) ∼= P4.

Proof. If the surface q3(S) spans a P3 inside P(V ), we can �nd in�nitely many trisecant to
q3(S) ⊂ X since it has degree grater than or equal to 3. But this contradicts Lemma 3.6.8.
Therefore 〈q3(S)〉 ∼= P(V ).

Let S ⊂ Pd be a surface such that S̃ := q3(S) ⊂ X ∩ P(V ) with 〈S̃〉 ∼= P(V ) ∼= P4. Given
a point s ∈ P1, we denote by Hs in P3d the hyperplane of forms vanishing at s.

Taking a general hyperplane section of S̃, we get a curve Ỹ whose span is a P3. Therefore,
it makes sense to study curves Y ⊂ Pd with 〈q3(Y )〉 ∼= P3.

Remark 3.6.11. The pullback of a general hyperplane via q3 is a cubic Z in Pd. If we
pullback the hyperplane section, the curve Y cut by Z on S must have degree at least 3.

If we look for a curve Y ⊂ Pd with 〈q3(Y )〉 ∼= P3, we claim that the degree of Y is at
most 6. Indeed, reasoning as in Proposition 5.6 of [PS], for a general s ∈ P1, the intersection
Hs ∩ Y is transverse. The tangent line Tf(s)Y meets Y only at f(s) and with multiplicity
two. Hence projection from a general plane containing the tangent line is a degree 3d − 2
morphism P1 → P1. By Riemann Hurwitz

−2 = −2(3d− 2) + deg(R) ≥ −2(3d− 2) + deg(Y )(d− 1)

so that deg(Y ) ≤ 6.
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Combining it with the previous observation, the degree of the curve Y on S is 3 ≤
deg(Y ) ≤ 6 and it is cut by cubics. Therefore deg(Y ) = 3 or deg(Y ) = 6. This implies that

• deg(S) = 1, i.e. S ∼= P2 is linear in Pd.

• deg(S) = 2, i.e. S is a quadric surface in Pd.

To have a complete classi�cation of the smooth rational curves C ⊂ P4 of degree 3d ≥ 4 with
special monodromy, it is left to verify if this degrees for S are in fact admissible.
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compagni di viaggio e spalle su cui sempre contare. Alberto e Barbara, che non ringrazierò
mai abbastanza per avere il grande privilegio di poterli chiamare amici. Dal mio cuore, non
se ne va nessuno!

Come alla base di un albero stanno le sue radici, così l'ultimo ringraziamento va alla mia
famiglia. Quella marchigiana che mi sostiene sempre da lontano, e quella ferrarese che ho
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costruito in questi anni con Filippo, che sempre mi sostiene nelle mie debolezze. Grazie per
essere sempre il mio porto sicuro.


