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Introduction

The main field around which this work revolves is quaternion Kähler geome-
try, the area of differential geometry studying quaternion Kähler manifolds.
Such manifolds are defined by the property of being Riemannian with holon-
omy contained in Sp(n)Sp(1) but not in Sp(n). Here Sp(n) is the unitary
quaternionic Lie group, and Sp(1) acts by quaternionic scalar multiplica-
tion on the fibre of the tangent bundle, when said fibre is identified with
Hn ∼= R4n.

These Riemannian manifolds are interesting for several reasons: first of
all they are Einstein, so the Ricci curvature is a scalar multiple of the metric.
Einstein metrics have many significant properties: they generalise metrics
with constant sectional curvature, and more generally irreducible symmetric
spaces; they arise as critical points of a natural functional, namely the total
scalar curvature, and are often regarded as optimal elements in the space
of metrics on a given manifold (see [8]). Einstein manifolds also play an
important role in general relativity, as they solve Einstein’s field equation in
vacuum, and the scaling factor between the Ricci tensor and the metric is
a strictly related to the cosmological constant. In particular, for quaternion
Kähler manifolds, this constant is either positive or negative, but never zero.

The sign of this constant, which coincides with the scalar curvature, pro-
duces two entirely different geometries. In particular, for positive scalar cur-
vature, we know from [35] that in every dimension there is a finite number
of complete quaternion Kähler manifolds. Moreover, in this case there is a
conjecture by LeBrun and Salamon, claiming that every complete quaternion
Kähler manifold with positive scalar curvature is also a symmetric space (i.e.
what is called a Wolf space). Said conjecture has so far been proven only up
to dimension 8 ([42]).

Quaternion Kähler manifolds first make their appearance in 1955 in the
classification theorem of Berger ([7], see Theorem 1.3.48 below). This the-
orem classifies simply connected, locally irreducible, non-locally symmetric
Riemannian manifolds by their holonomy group. Said manifolds can be con-
sidered as fundamental building blocks for non-locally symmetric Riemannian
manifolds. It turns out that not all compact Lie groups can be the holon-
omy of one of these blocks; instead, the ones that can are grouped in seven
families: two generic ones (special orthogonal and unitary group) and five
special ones. Among the special ones is where we can find Sp(n)Sp(1), cor-
responding to quaternion Kähler manifolds. Whilst for the manifolds having
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as holonomy one of the two generic groups we do not have any particular
condition on the curvature, manifolds with special holonomy are necessarily
Einstein; however, among these, only quaternion Kähler manifolds have non
vanishing Ricci tensor.

The problem with quaternion Kähler manifolds is that it is difficult to
find them. Early examples appear in Cartan’s classification of symmetric
spaces, a most notable example being the so-called quaternionic projective
space:

PnH =
Sp(n+ 1)

Sp(n)Sp(1)
.

In 1965, in [48], Wolf provides an explicit construction and a characterisa-
tion of quaternion Kähler symmetric spaces. For the first non symmetric
spaces, we have to wait until Alekseevsky and Cortés ([1], [14]) classify the
so called Alekseevskian spaces, i.e. quaternion Kähler manifolds with a sim-
ply transitive real solvable group of isometries. In this classification, the first
homogeneous non-symmetric example is provided.

An important tool used to build quaternion Kähler manifolds of negative
scalar curvature is the so called c-map ([10],[18], [5], [4], [37], [31]). It is a
construction arising from supergravity and string theory, which produces a
quaternion Kähler manifolds from a projective special Kähler one. It was
first introduced by Cecotti in [10]; later, Ferrara and Sabharwal produced a
coordinate description of the metrics involved in the construction [21]. The
c-map played an important role in the completion of the classification of
Alekseevskian spaces and recently it was used by Cortés et al. to obtain
examples of quaternion Kähler manifolds in cohomogeneity one ([20]).

The c-map was first mathematically formalised in its local form only in
2009 by the hands of Hitchin ([30]). In [5] and [4], it is proved that the c-map
can be described in terms of the so-called rigid c-map and a more general
construction introduced by Haydys, called the HK-QK correspondence [26],
and extended in [5] and [4] to manifolds with indefinite metrics. A global
description was finally given in 2015 by Macia and Swann in [37]. Here,
they also suggest a different approach to the last step of the c-map, as they
show that the HK-QK correspondence can be replaced by a different general
construction due to Swann, called the twist [46].

As mentioned before, the initial data of the c-map are the so called pro-
jective special Kähler manifolds. They are a special class of Kähler quotients
of conic special Kähler manifolds, which is a class of pseudo-Kähler manifolds
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endowed with a symplectic, flat, torsion-free connection and an infinitesimal
homothety. Explicit examples can be found in [2], where homogeneous pro-
jective special Kähler manifolds of semisimple Lie groups are classified. A
notable case appearing in this list is the complex hyperbolic n-space. Many
projective special Kähler manifolds can be constructed via the so called r-
map ([18]), which is a construction also arising from supergravity and string
theory allowing to build a projective special Kähler manifold starting essen-
tially from a homogeneous cubic polynomial. We refer to [16] for a classi-
fication of 6-dimensional manifolds that can be constructed via the r-map.
Another example of projective special Kähler manifold is obtained by taking
the Weil-Petersson metric on the space of complex structure deformations on
a Calabi-Yau 3-dimensional manifold [15].

Projective special Kähler manifolds appear in the study of supergravity
and mirror symmetry with the name of local special Kähler manifolds (see
[22] and [23] for more details on their story and applications to physics,
and in particular [9] for their importance in mirror symmetry). The name
projective special Kähler was given by Freed in [23] where he also shows how
such manifolds are quotients of special Kähler ones ([23, Proposition 4.6,
p.20]) (see e.g. [3] for the relation between this definition and the one we
will use in this work). There is in particular an extrinsic construction ([3]) of
simply connected projective special Kähler manifold of a certain dimension
n, where the latter can be realised via an immersion in T ∗(Cn) with its flat
connection and standard complex structure.

The ultimate motivation behind this work is the construction of new
quaternion Kähler manifolds. we aim to do so by applying the c-map to
projective special Kähler manifolds; since the definition of special Kähler
manifolds is rather unwieldy, this motivates us to look for a better way to
describe them.

In this work, we manage to reduce the definition of projective special
Kähler manifold to the data of a circle bundle S → M with a certain con-
nection, and a 2-homogeneous bundle map γ : S → ]2S3,0. The bundle ]2S3,0

is isomorphic to the bundle of symmetric holomorphic tensors, so γ can be
interpreted locally as a homogeneous polynomial of degree 3 with complex
functional coefficients. In the examples built via the r-map, this polynomial
appears to be related to the polynomial forming the initial data for the r-map.
We call γ the deviance, as it represents the obstruction of a projective special
Kähler manifold to being the complex hyperbolic n-space, which now can be
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thought of as a distinguished case. Using the deviance, we manage to classify
4-dimensional Lie groups with a projective special Kähler structure. More-
over, we observe that for all β : M → U(1), βγ provides another projective
special Kähler structure on the same manifold, which does not necessarily
induce an isomorphism on the respective conic special Kähler manifolds.

Notice that giving γ is equivalent to giving a suitable family of compatible
local sections for ]2S3,0M . Thus, our characterisation is intrinsic in the sense
that we reduce the projective special Kähler structure to data solely defined
on the manifold itself and satisfying conditions on the manifold itself. We
prove a lower bound for the scalar curvature, which is reached exactly when
the deviance is zero; this condition characterises projective special Kähler
manifolds isomorphic to the complex hyperbolic n-space if one assumes the
manifold to be complete, connected and simply connected. Moreover, this
characterisation provides a simpler way to build projective special Kähler
manifolds, and we display this by classifying all possible projective special
Kähler structures on 4-dimensional Lie groups. We note that an intrinsic
characterisation of projective special Kähler Lie groups has been obtained
independently in a very recent paper by Macia and Swann [38]. In this
paper it is also shown that projective special Kähler Lie groups determine
quaternion Kähler Lie groups via the c-map, if one assumes the exactness of
the Kähler form and the invariance of the flat connection. A similar result,
holding in the case that the projective special Kähler Lie group is the quotient
of an affine special Kähler domain, can be deduced from the more general
result [20, Corollary 24, p. 33].

Concerning the c-map, we build explicit invariant coframes for three
quaternion Kähler Lie groups obtained via the c-map, that are isometric
respectively to the following quaternion Kähler solvmanifolds

G∗2/SO(4), SO0(4, 3)/SO(4)SO(3), SU(3, 2)/S(U(3)U(2)).

Consistently with the results of [38], we obtain left-invariant quaternion
Kähler (in particular Einstein) metrics on three solvable Lie groups. We
also give an explicit realisation of said Lie groups as the Borel subgroups
of the respective groups of isometries; thus inducing the isomorphism with
the respective symmetric space. Finally, we manage to modify the invariant
coframe in order to obtain one which is not only invariant, but also adapted
to the quaternion Kähler structure. We also study the general case of the
c-map applied to a complex hyperbolic n-space; if we write the latter with
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respect to an invariant coframe, we manage to show the structure constants
of one of the possible quaternion Kähler Lie groups. We show the explicit
structure constants only for n = 2.

Content of chapters

Chapter 1

In the first chapter, we present the general theory, starting from a brief
resume of representation theory and the relation between vector bundles and
representations. Then we proceed to present projective special Kähler and
related manifolds, along with quaternion Kähler ones, with an introduction
on quaternionic groups, in order to set the notation and the immersions in
the group of invertible real matrices. There are also two presentations of the
c-map: an intrinsic and global one, following the presentation of [37] and
a local coordinate one that follows [18]. Then we present the r-map and
recall a completeness result presented in [18]. After we have recalled all the
necessary preliminaries, we can now use these constructions in order to build
examples of invariant coframes on the resulting quaternion Kähler manifolds,
and use the induced structure constants to explicitly identify these manifolds.
We then modify the resulting coframe in order to obtain one which is also
adapted to the quaternion Kähler structure.

Chapter 2

Here we go through the details of the author’s paper [39]. We start with the
analysis of the symmetries of the difference tensor between the flat and the
Levi-Civita connection associated with a projective special Kähler manifold.
Then we describe the metric of a conic special Kähler manifold in terms of
the pullback of the projective special Kähler metric, and we observe that it
has the form of a conic metric up to changes in signature. We proceed by
giving a procedure to lift a unitary coframe on a projective special Kähler
manifold to a unitary coframe on the corresponding conic special Kähler
manifold. Then we use this lift to write the Levi-Civita connection on the
conic special Kähler manifold and its curvature in terms of the ones on the
projective special Kähler manifold. Locally, we encode the data of the dif-
ference tensor into tensors defined on open subsets of the projective special
Kähler manifold. These data or their global version will be what we call



xii INTRODUCTION

deviance. We then transfer the conditions of conic special Kähler manifold
to new conditions on the projective special Kähler manifold, which allows us
to formulate a characterisation theorem (Theorem 2.5.6). We also compute
the Ricci tensor and scalar curvature of a projective special Kähler manifold
with respect to the deviance, giving a lower bound on the scalar curvature
of a projective special Kähler manifold. Finally we use the deviance and
the characterisation theorem to generate new projective special Kähler met-
rics, not necessarily equivalent to the original one. The chapter ends with a
study of the complex hyperbolic n-space, characterised as the only projective
special Kähler manifold with zero deviance.

Chapter 3

In the last chapter we apply the characterisation of projective special Kähler
manifolds in terms of deviance to classify projective special Kähler Lie groups
in dimension 4. Then we compute the deviance in known examples and
finally we give a way to lift the coframe from a complex hyperbolic n-space
to the corresponding quaternion Kähler manifold obtained via the c-map.
The chapter ends with the explicit computation in the case of the complex
hyperbolic 2-space.
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Notation

We denote by R+ the set of strictly positive real numbers.

Matrices

Given a ring R, we denote the space of p, q matrices with entries in R by
Mat(m,n,R) and if m = n, we simply write Mat(n,R). The group of in-
vertible matrices of a unitary ring R will be denoted by GL(n,R). If R = R,
we call GL+(n,R) the subgroup of GL(n,R) of matrices with positive de-
terminant. The identity n × n-matrix is denoted with In. Given a matrix
A = (Ahk)h,k, we denote by Ahk the entry in row h and column k. We denote
the transpose of a matrix A by At and if A has complex or quaternionic
entries, we will denote by A? its adjoint, i.e. its conjugate transpose.

Tensors

We will mostly adopt the Einstein notation for repeated indices, meaning
that whenever we have a repeated index in a single term appearing as upper
and lower index, then summation over that index is implied, that is

αkβ
k =

∑
k

αkβ
k.

Let A,B be tensors of the same type; we define

A ∧B := A⊗B −B ⊗ A

AB :=
1

2
(A⊗B +B ⊗ A).

We adopt the following notation for differential forms: ei,j := ei ∧ ej. Given
a vector field X on a manifold M and a differential form ω ∈ Ωk(M), we
denote by ιXω := ω(X, ·, . . . , ·) the contraction of ω with X. We use the
same notation with a tensor α with at least one covariant component and
ιXα will be the contraction of α with X in the first component.

Given α ⊗ A ∈ Ωk(M, g) and β ⊗ B ∈ Ωh(M, g), we define the form
[(α⊗ A) ∧ (β ⊗B)] := α ∧ β ⊗ [A,B] ∈ Ωk+h(M, g).
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Groups and actions

Given a group G and a set X, if G acts on X on the right (respectively on
the left) we will denote by Rg (respectively Lg) the action of the element
g ∈ G on X, that is

Rg : X −→ X

x 7−→ x.g

Lg : X −→ X

x 7−→ g.x

On a Lie group G with Lie algebra g, we denote the adjoint representation
of G by Ad: G→ Aut(g). Namely, for all g ∈ G, Ad(g) is the differential of
the map

G −→ G

x 7−→ gxg−1

The differential of Ad, hence the adjoint representation of g, is instead de-
noted by ad: g→ Der(g), that is ad(X) = [X, ·].

Given a Lie group G acting on a manifold M , let A an element of the Lie
algebra of G, then we denote by A◦ the fundamental vector field associated
to A, that is, for all p ∈M :

A◦p =
d

dt
(p exp(tA))|t=0.

Principal bundles

Let M be a differentiable manifold of dimension n, we denote by GL(M) the
principal GL(n,R)-bundle of frames, simply called frame bundle, namely

GL(M) := {up : Rn → TpM |up is a linear isomorphism},

equipped with the projection mapping up to p and the right action of A ∈
GL(n,R) defined by up.A := up ◦ A.

Given a generic bundle p : P → M and an open subset with inclusion
map ιU : U ↪→M , we will denote the set of sections U → P by

Γ(U, P ) := {s : U → P |p ◦ s = ιU}.
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Complex vector bundles

We denote by T 1,0M the complex holomorphic tangent bundle and by T 0,1M
the antiholomorphic tangent bundle of the manifold M ; by T ∗1,0M = Λ1,0M
the complex holomorphic cotangent bundle and by T ∗0,1M = Λ0,1M the anti-
holomorphic cotangent bundle. Finally, if we denote by ΛkE the k-th skew-
symmetric tensor power of vector bundles, representations or vector spaces
and by SkE the symmetric one, we can also define

Λp,qM := ΛpT ∗1,0M ⊗ ΛqT ∗0,1M

Sp,qM := SpT ∗1,0M ⊗ SqT ∗0,1M

We adopt a similar notation for the corresponding representations in u(p, q)
(see Section 1.1).



Chapter 1

From projective special Kähler
to quaternion Kähler manifolds

In this chapter we are introducing the basic objects that we are going to
discuss in this work, namely projective special Kähler, conic special Kähler,
hyperKähler and quaternion Kähler manifolds. In the central part of this
chapter we are going to discuss the constructions known as the r-map and
the c-map and in the final part we use these constructions to build quaternion
Kähler manifolds. In particular, we find an invariant coframe on the resulting
manifolds, and from its structure constants we are able to directly identify the
manifolds from the list of Alekseevskian spaces. Finally, on these manifolds,
we build an invariant coframe which is also adapted to the quaternion Kähler
structure.

1.1 Representations and bundles

We start by giving some basic notions of representation theory that we are
using for this work, and we take the opportunity to introduce and fix some
notations. We mostly refer to [44] for this section, with a few changes in the
notation.

Let K be a field and consider a K-vector space V . Let G → AutK(V )
be a K-representation of G, then we will often denote the representation by
V , where the action of G is implied. We denote the left action of g ∈ G on
v ∈ V by g.v.

Given a K-representation V , we denote the dual representation by V ∗,

1
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namely HomK(V,K) with left action of A ∈ G on α ∈ V ∗ defined as A.α :=
α ◦A−1. If V = Kn, we can canonically identify AutK(V ) with GL(n,K) and
thus for every G ⊆ GL(n,K) we have the so-called standard representation
Kn, where the action is defined by matrix multiplication.

Suppose now K = C, we can also define the conjugate representation V
by taking the the conjugate vector space with the same group action.

On a generic complex representation, a real structure is a C-antilinear
involution σ : V → V . On the complex tensorial algebra of Cn there is
a canonical real structure obtained by extending the complex conjugation
Cn → Cn

and its inverse. A subspace of the tensorial algebra which is
stable by the canonical real structure inherits the real structure by restriction.
If K = R, we can transform a real representation V of G to a complex
representation V ⊗R C of G by extension of scalars. In this case we have a
natural real structure:

σ = idV ⊗R (·) : V ⊗R C −→ V ⊗R C.

We now present the following notation taken from [44]: if V is a complex
representation with a real structure σ, we define

[V ] := {v ∈ V |σ(v) = v}.

Otherwise, for any complex representation V ,

[[V ]] := [V ⊕ V ]

. In particular, the following isomorphisms of complex representations hold:

[V ]⊗R C ∼= V

[[V ]]⊗R C ∼= V ⊕ V

Unitary representations

We write U for either U(n) or U(p, q) depending on the signature. Notice
that, at the level of Lie algebras, gl(n,C) = u ⊗R C, so in order to study a
unitary representation we can study a complex GL(n,C)-representation with
a suitable real structure.

We fix the following notation

Λp,q := Λp(Cn)∗ ⊗ Λq(Cn)∗;
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Sp,q := Sp(Cn)∗ ⊗ Sq(Cn)∗.

In particular Λ1,1
∼= S1,1.

Remark 1.1.1. We consider only forms, since the hermitian product h =
g+iω (preserved U), provides the identifications Cn ∼= (Cn)

∗
and Cn ∼= (Cn)∗.

Notice that when p = q, both Λp,q and Sp,q have a real structure induced
by the one on the complex tensorial algebra. We thus have real representa-
tions [Λp,p], [Sp,p] for all p and [[Λp,q]], [[Sp,q]] for all p 6= q.

These U-representations, in general, are not irreducible. Consider in fact
the U-equivariant map L : Λp−1,q−1 → Λp,q defined by wedging with ω. This
map provides a splitting of representations

Λp,q = L(Λp,q)⊕ Λ0
p,q,

where Λ0
p,q is the orthogonal complement of L(Λp,q). The same can be done

for symmetric forms with the map Sp−1,q−1 → Sp,q, by taking the symmetric
product with g. We denote the complement of the image by S0

p,q, which is
an irreducible representation.

Lemma 1.1.2. [44, Lemma 3.1, p. 33] We have the following decompositions
in U-irreducible components for p < q, p+ q ≤ n:

[[Λp,q]] ∼= [[Λ0
p,q]]⊕ [[Λ0

p−1,q−1]]⊕ · · · ⊕ [[Λ0,q−p]]

[[Λq,p]] ∼= [[Λ0
q,p]]⊕ [[Λ0

q−1,p−1]]⊕ · · · ⊕ [[Λq−p,0]]

[Λp,p] ∼= [Λ0
p,p]⊕ [Λ0

p−1,p−1]⊕ · · · ⊕ [Λ0
1,1]⊕ Rω.

We obtain a similar result for symmetric representations [[S0
p,q]] and [S0

p,p].

Fibre bundles

Let M be an n-dimensional manifold, G a Lie group, P a principal G-bundle
and F a manifold with a smooth left action of G. We can build the fibre
bundle associated to F :

P ×G F := (P × F )/ ∼,

where ∼ is defined by (u, v) ∼ (u.g, g−1.v) for all g ∈ G. We denote the
class of (u, v) by [u, v], and the projection P ×G F →M maps [u, v] to p(u).
Notice that P ×G F →M is a bundle with fibre diffeomorphic to F .
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A useful case is when F = V is a representation of G. In this case,
P ×G V is a vector bundle with fibre isomorphic to V . Examples are the
tangent bundle TM ∼= GL(M)×GL(n,R)Rn and the cotangent bundle T ∗M ∼=
GL(M)×GL(n,R) (Rn)∗.

Remark 1.1.3. [33, I,Example 5.2, p. 76] There is a bijective correspon-
dence between sections of P ×G F → M and equivariant maps P → F , that
is s : P → F such that for all u ∈ P and g ∈ G, s(ug) = g−1s(u). The
correspondence is realised by mapping an equivariant map s : P → F to
M 3 p 7→ [u, s(u)] for any choice of u ∈ P projecting to p.

In particular, if F = V is a representation of G, this correspondence is
an isomorphism of vector spaces.

Given the bundle GL(M) → M , a linear connection ∇ on M induces
on GL(M) a principal connection that we call ω∇ ∈ Ω1(GL(M), gl(n,R)),
unless explicitly stated otherwise. The principal connection ω∇ is defined by
the property that for every smooth frame u : U → GL(M) with U ⊆ M
open,

u∗(ω∇) = (uh(∇uk))h,k.

We often work in the case where ιP : P → GL(M) is a reduction for the
group G ≤ GL(n,R), that is a G-structure. In case ω∇|P = ι∗Pω

∇ has image
in g, the Lie algebra of G, then ω∇|P is a principal connection form on P . In
this case we say that ∇ is adapted to the G-structure P .

The correspondence between linear connections adapted to a G-structure
P and principal connections on P is invertible. Given a principal connection
ω on P , for all X = xkuk written with respect to a frame u, we define
∇ω(xkuk) = dxkuk + u∗(ω)hkxhu

k. In the correspondence of Remark 1.1.3,
the covariant derivative of a section of P ×G V associated to an equivariant
map ν : P → V , corresponds to the section associated to D∇ν := dν+ω∇.ν.
In the same way, if θ ∈ Ω1(P,Rn) is the tautological form, the torsion and
the curvature of ∇ correspond respectively to the equivariant forms

Θ∇ = dθ + ω∇ ∧ θ : P −→ (Rn)∗ ⊗ Rn,

Ω∇ = dω∇ +
1

2
[ω∇ ∧ ω∇] : P −→ Λ2(Rn)∗ ⊗ (Rn)∗ ⊗ Rn.

Alternatively, as differential forms we have Θ∇ ∈ Ω1(P,Rn) and Ω∇ ∈
Ω2(P, g). We denote in the same way the corresponding tensors.
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Curvature decomposition

On a Riemannian manifold, (Ω∇)[ has values in Λ2(Rn)∗ ⊗ (Rn)∗ ⊗ (Rn)∗.
Define the following map

B : S2(Λ2(Rn)∗) −→ Λ4(Rn)∗

(α ∧ β)(γ ∧ δ) 7−→ α ∧ β ∧ γ ∧ δ.

The symmetries of the curvature tensor lead to the following:

Lemma 1.1.4. Let (M, g) be a Riemannian manifold, then (Ω∇)[, seen as
an eqivariant map, has image in S2Λ2(Rn)∗ ∩ ker(B).

Proof. See [44, Lemma 4.2, p. 47].

If we take the trace of the curvature tensor, we obtain the Ricci cur-
vature RicM , which is a tensor in S2(T ∗M). Explicitly, RicM(X, Y ) =
tr(R∇(·, Y )X). Using the metric, we can raise one index of RicM obtain-
ing (RicM)]. If we take the trace of this tensor and divide by the dimension
n of M , we obtain the scalar curvature scalM which is a function on M .
Explicitly scalM = 1

n
tr(RicM)].

In general, given a tensor R of curvature type, we call its Ricci and scalar
components the tensors Ric(R) and scal(R) respectively, defined as

Ric(R)(X, Y ) := tr(R(·, Y )X), scal(R) =
1

n
tr(Ric(R)]).

On Riemannian and Kähler manifolds, the space of curvature tensors
decomposes in three components if the dimension is n ≥ 4. We recall the
definition of a Kähler manifold

Definition 1.1.5. Let (M, g) be a (pseudo-)Riemannian manifold endowed
with a compatible complex structure I, that is such that

g(I·, I·) = g.

If the 2-form ω := g(I·, ·) is closed, we say that (M, g, I, ω) is a (pseudo-
)Kähler manifold, and ω is called Kähler form.

For Kähler manifolds, we have
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Lemma 1.1.6. Let (M, g, I, ω) be a Kähler manifold of complex dimension
n ≥ 2, then (Ω∇)[, seen as an equivariant map, has image in S2[Λ1,1] ∩
ker(B).

Proof. Based on the fact that the holonomy is u(n) ∼= [Λ1,1]. See e.g. [44,
Proposition 4.6, p. 50].

Proposition 1.1.7. We have the following U(n)-decomposition in irreducible
components:

S2[Λ1,1] ∩ ker(B) ∼= [S0
2,2]⊕ [Λ0

1,1]⊕ R.

Proof. See e.g. [44, Proposition 4.7, p. 51].

In particular, Ric defined above corresponds to the projection to the
components [Λ0

1,1]⊕ R ∼= [Λ1,1] and scal to the projection on the component
R. Therefore, the Ricci and scalar tensors can be seen as the components
of the curvature tensor in [Λ1,1] and R respectively. The third component is
called the Bochner tensor .

1.2 Special Kähler manifolds

The coming definitions involve a flat connection ∇ and its exterior covariant
derivative operator d∇.

Definition 1.2.1. A special Kähler manifold (M̃, g̃, Ĩ , ω̃,∇) is the data of

a pseudo-Kähler manifold (M̃, g̃, Ĩ , ω̃) and a flat, torsion free, symplectic
connection ∇ such that

d∇Ĩ = 0 (1.1)

where we interpret Ĩ as a 1-form with values in TM̃
We say that a special Kähler manifold is conic if there exists a vector

field ξ such that

1. g̃(ξ, ξ) is nowhere vanishing;

2. ∇ξ = ∇̃LCξ = id;

3. g̃ is negative definite on 〈ξ, Iξ〉 and positive definite on its orthogonal
complement.

Where ∇̃LC is the Levi-Civita connection.
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We will adopt the convention ω̃ = g̃(Ĩ·, ·). Definition 1.2.1 is identical to
Definition 3 in [18] if we take −g as metric.

We start by showing in a conic special Kähler manifold how the Lie
derivative along ξ and Iξ behaves with respect to the Kähler structure.

Lemma 1.2.2 (Lemma 3.2, p. 1336 in [37]). Let (M̃, g̃, Ĩ , ω̃,∇, ξ) be a conic
special Kähler manifold, then:

1. ξ is a homothety of scaling factor 2 preserving Ĩ;

2. Ĩξ preserves the Kähler structure.

Proof. 1. For any X, Y ∈ X
(
M̃
)

we get:

Lξg̃(X, Y ) = ξ(g̃(X, Y ))− g̃(LξX, Y )− g̃(X,LξY )

= ∇̃LC
ξ (g̃(X, Y ))− g̃([ξ,X], Y )− g̃(X, [ξ, Y ])

= g̃(∇̃LC
ξ X, Y ) + g̃(X, ∇̃LC

ξ Y )− g̃(∇̃LC
ξ X − ∇̃LC

X ξ, Y )

− g̃(X, ∇̃LC
ξ Y − ∇̃LC

Y ξ)

= g̃(∇̃LC
X ξ, Y ) + g̃(X, ∇̃LC

Y ξ)

= g̃(X, Y ) + g̃(X, Y ) = 2g̃(X, Y )

and also

Lξ Ĩ(X) = Lξ(ĨX)− ĨLξX = [ξ, ĨX]− Ĩ[ξ,X]

= ∇̃LC
ξ (ĨX)− ∇̃LC

ĨX
ξ − Ĩ∇̃LC

ξ X + Ĩ∇̃LC
X ξ

= Ĩ∇̃LC
ξ X − ĨX − Ĩ∇̃LC

ξ X + ĨX = 0

Therefore Lξg̃ = 2g̃, Lξ Ĩ = 0 and thus Lξω̃ = 2ω̃.

2. Similarly,

LĨξg̃(X, Y ) = (Ĩξ)(g̃(X, Y ))− g̃(LĨξX, Y )− g̃(X,LĨξY )

= ∇̃LC
Ĩξ

(g̃(X, Y ))− g̃([Ĩξ,X], Y )− g̃(X, [Ĩξ, Y ])

= g̃(∇̃LC
Ĩξ
X, Y ) + g̃(X, ∇̃LC

Ĩξ
Y )− g̃(∇̃LC

Ĩξ
X − ∇̃LC

X (Ĩξ), Y )

− g̃(X, ∇̃LC
Ĩξ
Y − ∇̃LC

Y (Ĩξ))

= g̃(Ĩ∇̃LC
X ξ, Y ) + g̃(X, Ĩ∇̃LC

Y ξ)
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= ω̃(X, Y ) + ω̃(Y,X) = 0;

LĨξ Ĩ(X) = LĨξ(ĨX)− ĨLĨξX = [Ĩξ, ĨX]− Ĩ[Ĩξ, X]

= ∇̃LC
Ĩξ

(ĨX)− ∇̃LC
ĨX

(Ĩξ)− Ĩ∇̃LC
Ĩξ
X + Ĩ∇̃LC

X (Ĩξ)

= Ĩ∇̃LC
Ĩξ
X +X − Ĩ∇̃LC

Ĩξ
X −X = 0.

From which LĨξg̃ = 0, LĨξ Ĩ = 0 and LĨξω̃ = 0.

Before proceeding, we write the following lemma for future reference.

Lemma 1.2.3. In a conic special Kähler manifold (M̃, g̃, Ĩ , ω̃,∇, ξ), we have

∇(Ĩξ) = Ĩ.

Proof. For all X ∈ X
(
M̃
)

∇X(Ĩξ)− ĨX = (∇X Ĩ)ξ + Ĩ∇Xξ − ĨX = (∇X Ĩ)ξ = (∇ξ Ĩ)X

= ∇ξ(ĨX)− Ĩ∇ξX = ∇ĨX(ξ) + [ξ, ĨX]− Ĩ (∇Xξ + [ξ,X])

= ĨX + Lξ(ĨX)− ĨX − ĨLξX = (Lξ Ĩ)X = 0

If we compare Definition 1.2.1 with Definition 3.1 in [37], we notice that
the main difference is the signature of the metric. In order to obtain two
equivalent definitions, it is enough to require the metric to be negative definite
on 〈ξ, Iξ〉 and positive definite on its orthogonal complement (condition 3 in
Definition 1.2.1), and to set X = −Iξ. The proof of the equivalence is
obtained by Lemma 1.2.3.

Definition 1.2.4. A projective special Kähler manifold is a Kähler manifold
M endowed with a C∗-bundle π : M̃ →M such that (M̃, g̃, Ĩ , ω̃,∇, ξ) is conic
special Kähler. Moreover, ξ and Iξ are the fundamental vector fields asso-
ciated to 1, i ∈ C respectively and M is the Kähler quotient with respect to
the induced U(1)-action. In this case we say that M has a projective special
Kähler structure.

For brevity, we will often denote a projective special Kähler manifold by
(π : M̃ →M,∇).

Remark 1.2.5. We shall see later that by construction, the action is always
Hamiltonian with moment map −g̃(ξ, ξ), and the choice of the level set affects
the quotient only up to scaling.
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Remark 1.2.6. Despite the name, projective special Kähler manifolds are
not necessarily special Kähler, as the existence of a flat connection is in
general not granted. See for example Proposition 2.6.9.

Concerning the notation for projective special Kähler manifolds as in
Definition 1.2.4, when a tensor or a connection is possessed by both M̃ and
M , we will write them and everything concerning them (torsion, curvature

forms, covariant exterior differentials) on M̃ with (̃·) above, whereas the
corresponding objects on M will be denoted without it.

Extrinsic construction of special Kähler manifolds

For further reference, we briefly mention an extrinsic construction of conic
special Kähler manifolds provided by [3].

The aim of this section is to give an immersion of a special Kähler mani-
fold (M, g, I, ω,∇) of dimension n in the complex vector space V = T ∗Cn ∼=
C2n. We call (z1, . . . , zn, w1, . . . , wn) the canonical coordinates on T ∗Cn, such
that zk = xk + iuk and wk = yk + ivk for all k = 1, . . . , n. Consider on V
the standard complex structure dzk 7→ idwk and the flat torsion free con-
nection ∇ vanishing on the canonical coordinate coframe. In particular, the
restriction to T ∗Rn has a chart (x1, . . . , xn, y1, . . . , yn), and the flat connec-
tion satisfies ∇dxk = ∇dyk = 0. Moreover, we have a complex symplectic
form on V

Ω = dzk ∧ dwk,

which, restricted to dxk ∧ dyk on T ∗Rn, that is the canonical 2-form (see
Section 1.4).

We have the following result

Theorem 1.2.7. Let (M, g, I, ω,∇) be a simply connected special Kähler
manifold of complex dimension n, then there exists a holomorphic immersion
φ : M → V = T ∗Cn such that

φ∗Ω = 0, φ∗(dxk ∧ dyk) is non-degenerate.

The map φ induces by pullback the Kähler metric g, the connection ∇ and
the symplectic form ω = 2φ∗(dxk ∧ dyk) = g(I·, ·) on M .

Moreover, if (M, g, I, ω,∇) is conic special Kähler, then for all p ∈ M
and U open neighbourhood of p, there exist a neighbourhood U1 ⊆ C∗ of 1
and Up ⊆M of p such that U1 · φ(Up) ⊆ φ(U) holds.
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Proof. For the first part see [3, Theorem 4(iii), p. 94] and for the second part
see [3, Theorem 9(iii), p. 100].

An immersion φ : M → T ∗Cn can be seen as a holomorphic form φ̃ =
φ̃kdz̃

k on M , where φ̃k = wk(φ) and z̃k = zk ◦ φ. In other words, φ̃ =
φ∗(wkdz

k).

The condition φ∗Ω = 0 corresponds to dφ̃ = 0, as

φ∗Ω = φ∗(−d(wkdz
k)) = −dφ∗(wkdzk) = −dφ̃.

Therefore, locally we can find a holomorphic map F satisfying dF = φ̃. The
condition appearing in the second part of Theorem 1.2.7 instead corresponds
to a homogeneity condition on F . We can infer the following

Corollary 1.2.8. Let (M, g, I, ω,∇, ξ) be a simply connected conic special
Kähler manifold of complex dimension n, and let φ : M → V = T ∗Cn

be the immersion of Theorem 1.2.7, then it corresponds to a form dF for
F ∈ C∞(M). Moreover, with respect to the chart (z1, . . . , zn) ◦ φ, F is ho-
mogeneous of degree 2 and ξ corresponds to the position vector.

Proof. See [19, Theorem 2, p. 8] for the first part. For the second see [19,
Proposition 5, p. 7] and [19, Proposition 6, p. 10].

We call such a function F the holomorphic prepotential .

Remark 1.2.9. In particular, if (M, g, I, ω) is defined by a holomorphic

prepotential F , then φ̃ = ∂kFdz
k where ∂kF := ∂F

∂zk
. Thus, if ∂2h,k = ∂h∂hF ,

we can describe the symplectic form:

ω = 2φ∗(dxk ∧ dyk) =
1

2
(dzk + dzk) ∧ (dφ̃k + dφ̃k)

=
1

2
(dzk + dzk) ∧ (d(∂kF ) + d(∂kF ))

=
1

2
(dzk + dzk) ∧ (∂2k,hFdz

h + ∂2k,hFdz
h)

=
1

2
(∂2k,hFdz

k ∧ dzh + ∂2k,hFdz
k ∧ dzh + ∂2k,hFdz

k ∧ dzh + ∂2k,hFdz
k ∧ dzh)

=
1

2
(∂2k,hF − ∂2k,hF )dzk ∧ dzh = i Im(∂2k,hF )dzk ∧ dzh.
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The metric is instead

g = ω(·, I·) = i Im(∂2k,hF )(dzk⊗ idzh−dzh⊗ (−idzk) = −2 Im(∂2k,hF )dzkdzh,

so the Hermitian form is

h = −2 Im(∂2k,hF )dzk ⊗ dzh.

A projective special Kähler manifold (π : M̃ → M,∇) such that M̃
is defined by a holomorphic prepotential is called projective special Kähler
domain.

1.3 Quaternion Kähler manifolds

In this section we are going to define hyperKähler and quaternion Kähler
manifolds and we are going to state some of their properties. However, before
dealing with manifolds we present some theory concerning quaternions.

1.3.1 Quaternions

For this part we will mostly refer to the notation of [43]. Let H be the
R-algebra of quaternions, namely

H = R⊕ Ri⊕ Rj ⊕ Rk

where the multiplication is R-bilinear and satisfies

i2 = j2 = k2 = ijk = −1. (1.2)

For n ∈ N, we can view Hn as a right H-module, where the scalar multi-
plication by q ∈ H is the matrix multiplication by (q) on the right.

Remark 1.3.1. We adopt this convention so that the left multiplication by
a quaternionic matrix A is H-linear. Explicitly, for all u, v ∈ Hn, we get
A(u+v) = Au+Av by distributivity and for all q ∈ H, we get A(uq) = (Au)q
by associativity.

As for complex numbers, there is a notion of conjugation also for quater-
nions:

(·)? : H −→ H
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q = a+ bi+ cj + dk 7−→ q? = a− bi− cj − dk.

The only difference with complex numbers is that the conjugation reverses
the order of multiplication, namely (ab)? = b?a? for all a, b ∈ H. This
phenomenon justifies the choice to denote it by the symbol usually employed
for the complex conjugate transposition. We use the same symbol also for the
quaternionic conjugate transposition of matrices. As for complex numbers,
q ∈ H is real if and only if q = q? and we say that q ∈ H is an imaginary
quaternion if q = −q?. As for complex numbers, we have Re(q) := 1

2
(q +

q?) and Im(q) := 1
2
(q − q?) called respectly real and imaginary part of a

quaternion. We denote the subset of imaginary quaternions by Im(H) =
{ai+ bj + ck|a, b, c ∈ R} ∼= R3.

We will now introduce two standard representations of H. The definition
of H provides an identification of H with R4, namely

H −→ R4 (1.3)

a+ bi+ cj + dk 7−→


a
b
c
d

 .

Using (1.3), we can obtain two suitable identifications of H with subgroups of
Mat(4,R). An element q ∈ H can act in two ways on H: by left multiplication
x 7→ qx or by right multiplication of the conjugate x 7→ xq?. Both these maps
are R-linear, so they provide two ways of mapping a quaternion in Mat(4,R)
which we call respectively ML and MR. We define the following matrices
representing the images of i, j, k via MR and ML:

i4 =

(
0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0

)
, j4 =

(
0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

)
, k4 =

(
0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

)
;

i′4 =

(
0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

)
, j′4 =

(
0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

)
, k′4 =

(
0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

)
.

Thus, an explicit description of the two R-algebra homomorphisms is:

MR : H −→ Mat(4,R) (1.4)

a+ bi+ cj + dk 7−→ aI4 + bi4 + cj4 + dk4 =


a b c d
−b a −d c
−c d a −b
−d −c b a

 ;
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ML : H −→ Mat(4,R) (1.5)

a+ bi+ cj + dk 7−→ aI4 + bi′4 + cj′4 + dk′4 =


a −b −c −d
b a −d c
c d a −b
d −c b a

 .

Remark 1.3.2. Since left and right multiplication commute, the images of
the two homomorphisms commute, namely [ML(H),MR(H)] = {0}, that is
[ML(a),MR(b)] = 0 for all a, b ∈ H.

We now present a characterisation of 4 × 4 real matrices representing a
quaternionic left multiplication, which will be useful in the next section to
characterise some Lie groups.

Lemma 1.3.3. Let A : H → H be an R-linear map and call MA its matrix
representation with respect to the basis 1, i, j, k. The following are equivalent:

1. There exists a ∈ H such that MA =ML(a);

2. MA commutes with MR(H);

3. MA commutes with i4, j4, k4.

Proof.

1 ⇒ 2 See Remark 1.3.2.

2 ⇒ 1 The condition [MA,MR(q)] = 0 is equivalent to the fact that A com-
mutes with the right multiplication by q. Condition 2 then implies
that for all x, q ∈ H, A(xq) = A(x)q, meaning that A is H-linear.
Let a = A(1), then A(q) = A(1q) = A(1)q = aq, thus A is the left
multiplication by a.

2 ⇔ 3 It is a consequence of R-linearity and the fact that MR(1) = I4 is in
the centre of Mat(4,H).

Remark 1.3.4. Notice also that given q = a + bi + cj + dk ∈ H, by a
straightforward computation we have

det(ML(q)) = det(MR(q)) = (a2 + b2 + c2 + d2)2 ≥ 0.
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1.3.2 Quaternionic groups

In this section we use quaternions to define some useful Lie groups and their
Lie algebras. Since H is a division algebra, all H-modules are free, that is
isomorphic, as H-modules, to some direct sum of copies of H (See e.g. [25,
Theorem 5.2, p. 335]). We can identify an H-linear map from Hn to Hm

with a n×m matrix with quaternionic entries in a canonical way. Explicitly,
let e1, . . . , en ∈ Hn be the canonical basis of Hn and e1, . . . , en : Hn → H
its dual basis as a right H-module, that is ek : Hn → H is an H-linear map
such that ek(eh) = δkh; then we map an H-homomorphism to the matrix
(Ahk = eh(A(ek)))h,k. In particular, EndH(Hn) is identified with Mat(n,H)
and via this identification, AutH(Hn) corresponds to GL(n,H).

We can extend the correspondence (1.3) to

Hn −→ R4n (1.6)

q = eh(a
h + bhi+ chj + dhk) 7−→ qR = ahe4h−3 + bhe4h−2 + che4h−1 + dhe4h,

There is a natural R-algebra left action of Mat(n,H) on Hn given by matrix
multiplication and there is one on the right given by quaternionic scalar
multiplication. We can extend ML of (1.5) in order to embed Mat(m,n,H)
in Mat(4m, 4n,R):

ML : Mat(n,m,H) −→ Mat(4n, 4m,R)
a11 a12 · · · a1m
a21 a22 · · · a2m
...

...
. . .

...
an1 an2 · · · anm

 7−→

ML(a11) ML(a12) · · · ML(a1m)
ML(a21) ML(a22) · · · ML(a2m)

...
...

. . .
...

ML(an1 ) ML(an2 ) · · · ML(anm)


Remark 1.3.5. Given a unitary ring R, we can define the category of
matrices with entries in R: Mat(R) with natural numbers as objects, and
Mat(n,m,R) as set of morphisms from m to n. We have thus defined a
functor ML : Mat(H) → Mat(R) mapping the object n to 4n and de-
fined by ML : Mat(n,m,H) → Mat(4n, 4m,R) on arrows. Namely, for
A ∈ Mat(n,m,H), B ∈ Mat(m, l,H)

ML(In) = I4n

ML(A)ML(B) =ML(AB).
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Remark 1.3.6. Notice that the map (1.6) is just ML(q) restricted to the
first column, if we see q as a column vector. In other terms, if e1 ∈ R4 is the
first element of the canonical basis, we have

qR =ML(q)e1.

The mapML gives an inclusion of Mat(n,H) in Mat(4n,R) by mapping
a matrix A to the real representation of the action of A by left multiplication.

We can also generalise the mapMR : H→ Mat(4,R) to a mapMn
R : H→

Mat(4n,R) by mapping a quaternion q in the real matrix representing the
right action of q? on Hn identified with Rn via (1.6). Explicitly, the images
of i, j, k via Mn

R : H→ Mat(4n,R) are respectively

i4n :=

( i4
i4

...
i4

)
, j4n :=

 j4
j4

...
j4

, k4n :=

 k4
k4

...
k4

.
Notice that i4n, j4n, k4n satisfy quaternionic equations (1.2) in Mat(4n,R).
Explicitly, the complete map is then

Mn
R : H −→ Mat(4n,R)

q = a+ bi+ cj + dk 7−→ aI4n + bi4n + cj4n + dk4n

Remark 1.3.7. By definition, for all x ∈ Hn, A ∈ Mat(m,n,H) and q ∈ H,
we have

ML(A)xR = (Ax)R

Mn
R(q)xR = (xq?)R.

Remark 1.3.8. When working in dimension 4n with n ≥ 2, unless stated
otherwise, we will use the inclusion ML to map a subgroup H of Mat(n,H)
to ML(H) in Mat(4n,R) so, where it will not generate confusion, we will
commit an abuse of notation by identifying H with ML(H).

We now present two useful results for further reference:

Lemma 1.3.9. Mat(n,H) is the subset of Mat(4n,R) containing exactly the
matrices commuting with i4n, j4n, k4n.

Moreover, GL(n,H) = GL(4n,R) ∩Mat(n,H).
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Proof. Let A ∈ Mat(4n,R) and let [A]uv be the 4 × 4-block in position u, v,
then [A, i4k] = ([[A]uv , i4])u,v, so A commutes with i4n if and only if each
[A]uv commutes with i4 and the same is true for j4n and k4n. Therefore, by
Lemma 1.3.3, A commutes with i4n, j4n, k4n if and only if its blocks represent
quaternions and thus if and only if A ∈ Mat(n,H).

The last statement follows sinceML is an injective R-algebra homomor-
phism, so invertible elements are mapped to invertible elements.

Lemma 1.3.10. Matrices inML(Mat(n,H)) andMn
R(H) have non-negative

determinant.
In particular, GL(n,H) ≤ GL+(4n,R).

Proof. For this proof we use the fact that, as we shall see later, a quater-
nion can be represented by a pair of complex numbers, and thus we can see
quaternionic matrices as complex ones, which always have positive determi-
nant. However, since we have not treated this part yet, we will be more
explicit.

Let A = (Auv) ∈ Mat(n,H), and considerML(A), which is a matrix with

blocksML(Auv) of the form


auv −buv −cuv −duv
buv auv −duv cuv
cuv duv auv −buv
duv −cuv buv auv

. Notice that if we divide

this matrix in 2× 2 blocks, it is of the form

(
Xu
v −Y u

v

Y u
v Xu

v

)
which is the usual

real representation of a complex matrix as a real one. The idea is to represent
ML(A) in a different basis, so that the determinant stays invariant, but it is
easier to deduce its non-negativity. Consider the canonical basis of R4n and,
for the sake of this proof, subdivide it in n blocks of four adjacent elements by
writing it as eu,k with 1 ≤ u ≤ n representing the u-th block and 1 ≤ k ≤ 4
representing the position in this block. We build a new basis by moving the
first two elements of each block to the left, that is

e1,1, e1,2, e2,1, e2,2, . . . , en,1, en,2, e1,3, e1,4, e2,3, e2,4, · · · , en,3, en,4.

This base change modifies ML(A) so that it can be divided in four blocks

as

(
X −Y
Y X

)
, where X = (Xu

v )u,v and Y = (Y u
v )u,v. Now we know how to

compute its determinant, which is | det(X+ iY )|2 (see e.g. [32, property (d),
p. 60]) and thus non-negative.



1.3. QUATERNION KÄHLER MANIFOLDS 17

The second part is easier as, given q ∈ H, the matrixMn
R(q) is built with

n identical blocksMR(q) on the diagonal, thus det(Mn
R(q)) = det(MR(q))n

and we know by Lemma 1.3.10 that det(MR(q)) is non-negative.

Remark 1.3.11. The space Mat(n,H) has a structure of differentiable mani-
fold as a real vector space. The group GL(n,H) is an open subset of Mat(n,H)
and inherits its differentiable structure, that makes it a Lie group whose Lie
algebra is gl(n,H) = Mat(n,H).

For all p, q ∈ N such that p+q = n, let Ip,q :=

(
Ip 0
0 −Iq

)
, then we define

an inner product Gp,q on Hn with signature (4p, 4q) as follows:

Gp,q(x, y) = Re

(
p∑

k=1

x?kyk −
n∑

k=p+1

x?kyk

)
= Re (x?Ip,qy)

for all x, y ∈ Hn. In this case we say that (p, q) is the quaternionic signature.

Remark 1.3.12. The quaternionic conjugate transpose of matrices corre-
sponds via the functorML to the transposition of real matrices. In particular
then, the real part of a quaternion q corresponds by ML to the symmetric
part of ML(a), which is its diagonal and of the form Re(q)I4.

The same holds for MR in (1.4).

Lemma 1.3.13. The homomorphism (1.6) maps Gp,q to the standard metric
with signature (4p, 4q) on R4n.

Proof. Explicitly, the statement of this proposition means that for all x, y ∈
Hn and for all quaternionic signatures (p, q), we have

Re(x?Ip,qy) = (xR)tI4p,4qyR.

Notice that I4p,4q = ML(Ip,q), thus by Remark 1.3.6, if e1 ∈ R4 is the first
element of the canonical basis, we have

(xR)tI4p,4qyR = (ML(x)e1)
tML(Ip,q)ML(y)e1.

By Remarks 1.3.12 and 1.3.5, we have

(ML(x)e1)
tML(Ip,q)ML(y)e1 = et1ML(x)tML(Ip,q)ML(y)e1
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= et1ML(x?)ML(Ip,q)ML(y)e1

= et1ML(x?Ip,qy)e1,

which is the entry at row 1 and column 1 of ML(x?Ip,qy), so it stays the
same if we take the transpose and, again by Remark 1.3.12,

et1ML(x?Ip,qy)e1 = et1
1

2
(ML(x?Ip,qy) +ML(x?Ip,qy)t)e1

= et1ML(Re(x?Ip,qy))e1 = Re(x?Ip,qy).

Definition 1.3.14. For n ∈ N, we define the group

Sp(n) = {Q ∈ Mat(n,H)|Q?Q = In},

called quaternionic unitary group.
More generally, for p, q ∈ N with p+ q = n, we define the group

Sp(p, q) = {Q ∈ Mat(n,H)|Q?Ip,qQ = Ip,q},

called indefinite quaternionic unitary group of quaternionic signature (p, q).

In particular, Sp(1) = {q ∈ H|q?q = 1} ∼= S3 is the unit 3-sphere in H
with respect to the norm induced by G1,0.

Remark 1.3.15. Equivalently, Sp(p, q) can be described as

Sp(p, q) = {Q ∈ Mat(n,H)|Gp,q(Q·, Q·) = Gp,q}.

If Q?Ip,qQ = Ip,q, in particular

Gp,q(Qx,Qy) = Re(x?Q?Ip,qQy) = Re(x?Ip,qy) = Gp,q(x, y),

for all x, y ∈ Hn.
Conversely, notice that if a = x+ iy + jz + kw, then

Re(a) = x, Re(ai) = −y, Re(aj) = −z, Re(ak) = −w,

so a = Re(a)− iRe(ai)− j Re(aj)− kRe(ak). Applied to our case then,

x?Q?Ip,qQy

= Gp,q(Qx,Qy)− iGp,q(Qx,Qyi)− jGp,q(Qx,Qyj)− kGp,q(Qx,Qyk)

= Gp,q(x, y)− iGp,q(x, yi)− jGp,q(x, yj)− kGp,q(x, yk) = x?Ip,qy,

so Q?Ip,qQ = Ip,q
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Proposition 1.3.16. For all n and p + q = n, the set Sp(p, q) is a closed
Lie subgroup of GL(n,H) with Lie algebra

sp(p, q) = {X ∈ Mat(n,H)|X?Ip,q + Ip,qX = 0}

=

{(
A B?

B D

)
∈ Mat(n,H)|B ∈ Mat(q, p,H), A? = −A,D? = −D

}
.

In particular,

sp(n) = {X ∈ Mat(n,H)|X? = −X},
sp(1) = Im(H).

Proof. We will only treat the case with generic quaternionic signature (p, q)
since the other case follows directly for q = 0.

First of all notice that Sp(p, q) is actually a subset of GL(n,H), in fact,
if A ∈ Sp(p, q), then Q?Ip,qQ = Ip,q and thus Q−1 = Ip,qQ

?Ip,q.
This subgroup is a closed subset, since it is the preimage of Ip,q via the

continuous map

ρ : Mat(n,H) −→ Mat(n,H)

Q 7−→ Q?Ip,qQ.

Thus, Sp(p, q) with the induced topology is a closed Lie subgroup of GL(n,H)
(see e.g. [28, Theorem 2.3, p. 115]).

Moreover, its Lie algebra is ker(dInρ), so let X ∈ gl(n,H), then

dInρ(X) = dInρ

(
d

dt
exp(tX)|t=0

)
=

d

dt
ρ(exp(tX))|t=0

=
d

dt
(exp(tX)?Ip,q exp(tX))|t=0 =

d

dt
(exp(tX?)Ip,q exp(tX))|t=0

= X?Ip,q + Ip,qX.

The matrix X can be subdivided in blocks by separating the first p lines and

columns from the last q. Then X =

(
A B
C D

)
must satisfy

0 = X?Ip,q + Ip,qX =

(
A B
C D

)?
Ip,q + Ip,q

(
A B
C D

)
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=

(
A? C?

B? D?

)(
Ip 0
0 −Iq

)
+

(
Ip 0
0 −Iq

)(
A B
C D

)
=

(
A? −C?

B? −D?

)
+

(
A B
−C −D

)
=

(
A? + A −C? +B
B? − C −D? −D

)
,

which translates to the conditions A? = −A, B? = C, D? = −D.

Remark 1.3.17. Observing the Lie algebras, for for n = p + q, we can
compute the dimensions of these Lie groups, obtaining

dim(Sp(p, q)) = dim(Sp(n)) = 2n2 + n.

As for GL(n,H), we identify Sp(p, q) with ML(Sp(p, q)), however, for
Sp(1) it will be useful to identify it with Mn

R(Sp(1)) ⊂ Mat(4n,R) instead.

Remark 1.3.18. As observed before, Sp(1) is the subset of elements with
norm 1 in H and thus all its elements are of the form a + bi + cj + dk with
a2 + b2 + c2 + d2 = 1. In particular, 1, i, j, k are in Sp(1).

Identifying Sp(1) with Mn
R(Sp(1)), we have that i4n, j4n, k4n ∈ Sp(1), in

fact they are the image via Mn
R of i, j, k respectively.

Proposition 1.3.19. We can characterise Sp(p, q) in the following equiva-
lent ways

1. Sp(p, q) = GL(n,H) ∩ SO(4p, 4q);

2. Sp(p, q) is the subset of matrices in SO(4p, 4q) commuting with Sp(1).

Both conditions are still valid with O(4p, 4q) instead of Sp(p, q).

Proof. We will prove both conditions for O(4p, 4q), since we already know
by Lemma 1.3.10 that the determinant of the inclusion is non-negative, and
thus, such a matrix is in O(p, q) if and only if it is in SO(p, q).

1. By Proposition 1.3.16, we know that Sp(p, q) ≤ GL(n,H), so consider
a matrix Q ∈ GL(n,H); explicitly, we have to prove that ML(Q) is in
O(p, q) if and only if Q ∈ Sp(p, q). Lemma 1.3.13 states that for all
x, y ∈ Hn, we have

Re(x?Ip,qy) = xtRI4p,4qyR.
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Thus, for all x, y ∈ Hn, using Remark 1.3.7 we have

Re(x?(Q?Ip,qQ)y) = Re((Qx)?Ip,qQy) = (Qx)tRI4p,4q(Qy)R

= (ML(Q)xR)tI4p,4qML(Q)yR

= xtRML(Q)tI4p,4qML(Q)yR.

Thus, if Q?Ip,qQ = Ip,q,

xtRI4p,4qyR = Re(x?Ip,qy) = Re(x?(Q?Ip,qQ)y)

= xtRML(Q)tI4p,4qML(Q)yR

so ML(Q)tI4p,4qML(Q) = I4p,4q. Conversely, if this happens

Re(x?Ip,qy) = xtRI4p,4qyR = xtRML(Q)tI4p,4qML(Q)yR

= Re(x?(Q?Ip,qQ)y),

so Gp,q(Q·, Q·) = Gp,q and thus, by Remark 1.3.15, Q?Ip,qQ = Ip,q.

2. This follows from the first point and Lemma 1.3.9. Explicitly, if Q
belongs to Sp(p, q) = GL(n,H) ∩O(p, q), then by Lemma 1.3.9, it also
commutes with i4n, j4n and k4n and clearly with I4n. Then, Q commutes
with 〈I4n, i4n, j4n, k4n〉R = MR(H) which contains in particular Sp(1).
Conversely, if Q ∈ O(p, q) commutes with Sp(1), then in particular it
commutes with i4n, j4n and k4n, so by Lemma 1.3.9 we infer that Q
belongs to GL(n,H) and thus to GL(n,H) ∩O(p, q) = Sp(n).

We have a similar characterisation for Sp(1) as well:

Proposition 1.3.20. Sp(1) is the subgroup of matrices in SO(4p, 4q) (equiv-
alently in O(4p, 4q)) commuting with Sp(p, q).

Proof. We will prove this statement only for the case O(p, q), since by Lemma
1.3.10, matrices in the image of MR have positive determinant, so they
belong to O(p, q) if and only if they belong to SO(p, q).

Let a ∈ Sp(1) and notice that for all x ∈ H, we have (axa?)? = ax?a? and
thus Re(axa?) = aRe(x)a? = aa? Re(x) = Re(x), as real numbers are in the
centre of H. It follows that for all x, y ∈ Hn,

Re((xa?)?Ip,q(ya
?)) = Re(ax?Ip,qya

?) = Re(x?Ip,qy) = xtRI4p,4qyR,
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but by Remark 1.3.7, we also have

Re((xa?)?Ip,q(ya
?)) = (xa?)tRI4p,4q(ya

?)R = xtRMR(a)tIp,qMR(a)yR

= xtRMR(a)tI4p,4qMR(a)yR,

thusMR(a)tI4p,4qMR(a) = I4p,4q implying thatMR(a) belongs to O(4p, 4q).
We already know by Proposition 1.3.19 that Sp(p, q) commutes with Sp(1),
so one direction is proven.

Conversely, let A be a matrix in O(4p, 4q) commuting with Sp(p, q). We
subdivide Q in 4 × 4 blocks and call [A]uv the one in the u-th row and v-th
column of blocks. This matrix corresponds to a subdivision of R4n in blocks
of dimension 4, each corresponding via (1.6) to a different component of Hn.
Consider the transformation Sh,l switching the h-th with the l-th component
of R4n. The matrix Sh,l is the transpose and the inverse of itself, and if
1 ≤ h, l ≤ p or p < h, l ≤ n, it belongs to Sp(p, q). Commutativity of A with
Sh,l then implies that A = Sh,lASh,l = S−1h,lASh,l. The effect of A 7→ S−1h,lASh,l
is to swap columns and rows of blocks in position h and l. Thus the matrix
stays invariant if 

[A]hv = [A]lv if v 6= h, l

[A]uh = [A]ul if u 6= h, l

[A]uu = [A]vv
[A]hl = [A]lh if v 6= h, l

Applying these conditions for all Sh,l ∈ Sp(p, q), we get that A is built by
only 6 types of blocks: B1, . . . , B6 ∈ Mat(4,R):

B1 B2 · · · B2 B3 · · · B3 B3

B2 B1 · · · B2 B3 · · · B3 B3
...

...
. . .

...
...

...
...

B2 B2 · · · B1 B3 · · · B3 B3

B4 B4 · · · B4 B5 · · · B6 B6
...

...
...

...
. . .

...
...

B4 B4 · · · B4 B6 · · · B5 B6

B4 B4 · · · B4 B6 · · · B6 B5


.

Consider now the two quaternionic matrices in Sp(p, q):

T1 =

 1√
2
− 1√

2
0

1√
2

1√
2

0

0 0 In−2

 T2 =

In−2 0 0
0 1√

2
− 1√

2

0 1√
2

1√
2

 ,
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then [A, T1] = 0 and thus A is fixed by A 7→ ML(T1)
−1AML(T1) which

modifies only the first two rows and columns. In particular, the top left 8×8
block, the top right 8× 4 and the bottom left 4× 8 become(

B1 +B2 0
0 B1 −B2

)
,

(
B3

0

)
,

(
B4 0

)
.

So the commutativity of A with ML(T1) implies B2, B3, B4 = 0. The same
operation with T2 implies also that B6 = 0. Therefore, the matrix A has
only blocks on the diagonal: B1 for the first p blocks and B5 on the last q.

Consider the quaternionic matrix Ua = aIn for a ∈ Sp(1), then Ua ∈
Sp(p, q) as one can check directly that U?

aIp,qUa = a?aIp,q = Ip,q. The commu-
tativity [A,Ua] = 0 forces B1 and B5 to commute with ML(a) ∈ Mat(4,R).
By seeing B1, B5 ∈ EndR(H), this is equivalent to ask that for all x ∈ H,
B1(ax) = aB1(x) and thus, it is H-linear on the left. Let b1 = B1(1)? and
b5 = B5(1)?, then for k = 1, 5 we get Bk(x) = xb?k, so Bk = MR(bk). The
proof is then complete if we show that b1 = b5 in the case where neither p
nor q is zero. In this case consider the quaternionic matrix

V =


Ip−1

0 i
−i 0

Iq−1

 ;

it is in Sp(p, q) and the map A 7→ V −1AV = V AV modifies only the central
blocks at rows and columns p, p+ 1 of A, which become(

ML(−i)B5ML(i) 0
0 ML(−i)B1ML(i)

)
=

(
B5 0
0 B1

)
by Remark 1.3.2 and the fact thatML is a homomorphism. Commutativity
of A with V implies that B1 = B5 and thus b1 = b5 = b and A =Mn

R(b). We
are left to prove that b ∈ Sp(1) and since A =Mn

R(b) belongs to O(p, q), we
have in particular MR(b)tMR(b) = I4. By Remark 1.3.12 and the fact that
MR is a homeomorphism, we have

MR(b?b) =MR(b)tMR(b) = I4 =MR(1).

Since MR is injective, we infer b?b = 1, ending the proof.
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Remark 1.3.21. We have Sp(p, q) ∩ Sp(1) = {−I4n, I4n} ∼= Z2, in fact by
Proposition 1.3.19, an element is in the intersection if and only if it is in
the centre of Sp(1) which is {±1} and thus, via MR we get the result. In
particular, this copy of Z2 is also contained in the centre of Sp(p, q).

Notice that every l ∈ H such that l2 = −1 defines an immersion

ιl : C −→ H
a+ ib 7−→ a+ lb.

This map is an R-algebra homomorphism, so we can define a structure of
complex vector space by restriction of scalars along ιl.

Remark 1.3.22. The quaternionic solutions of the equation q2 + 1 = 0 are
the quaternions in

Im(H) ∩ Sp(1) = {ai+ bj + ck ∈ H|a2 + b2 + c2 = 1} ∼= S2.

An explicit computation shows that the elements in this set satisfy the equa-
tion. Notice that in general, q?qq? = ‖q‖2 q? = q? ‖q‖2, so if q 6= 0, we can
cancel q? in order to obtain qq? = ‖q‖ = q?q, which is also satisfied by q = 0.

For the opposite inclusion, let q be a solution, then we can write

‖q‖4 = q?q2q? = −(q?)2 = 1

Thus ‖q‖ = 1, so q ∈ Sp(1).
If we now square the double of the real part of q we obtain

(q + q?)2 = q2 + qq? + q?q + (q?)2 = −1 + 1 + 1− 1 = 0,

implying Re(q) = 0 as claimed.

Definition 1.3.23. We call Ul(2p, 2q) := {A ∈ SO(2p, 2q)|[A,MR(l) =
0} the unitary group with signature (4p, 4q) and we say that the complex
signature is (2p, 2q).

Remark 1.3.24. By Proposition 1.3.19, we have

Sp(p, q) =
⋂

l∈Sp(1)∩Im(H)

Ul(p, q) = Ui(p, q) ∩ Uj(p, q) ∩ Uk(p, q)
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Remark 1.3.25. Sp(1) is never contained in any of the Ul(2p, 2q), as Sp(1)∩
Ul(2p, 2q) = {a+ bl|a2 + b2 = 1}; this is a subgrup isomorphic to U(1), which
will be denoted by Ul(1).

Another quaternionic group that has a central role in this thesis is the
one generated by Sp(p, q) and Sp(1) in SO(4p, 4q), that is Sp(p, q)Sp(1). The
case with positive signature is denoted by Sp(n)Sp(1).

Remark 1.3.26. By the second theorem of isomorphism and Remark 1.3.21,
we have Sp(p, q)Sp(1) = (Sp(p, q)× Sp(1))/Z2.

It follows that the Lie algebra of Sp(p, q)Sp(1) is isomorphic to

sp(p, q)⊕ sp(1),

and thus, by Remark 1.3.17:

dim(Sp(p, q)Sp(1)) = dim(Sp(n)Sp(1)) = 2n2 + n+ 3.

Remark 1.3.27. If n = 1, we have dim(Sp(1)Sp(1)) = 6 = dim(SO(4)) and
since SO(4) is connected, we must have Sp(1)Sp(1) = SO(4).

If n ≥ 2 instead

dim(Sp(p, q)Sp(1)) = 2n2 + n+ 3 < 2n(4n− 1) = dim(SO(4p, 4q)),

so Sp(p, q)Sp(1) is a proper subgroup of SO(4p, 4q).

On quaternions, this group is interpreted as follows: we consider our
usual left action of Sp(p, q) × Sp(1) on Hn given by x 7→ Qxq? for (Q, q) ∈
Sp(p, q) × Sp(1), which induces a map Sp(p, q) × Sp(1) → AutR(Hn) and
Sp(p, q)Sp(1) is the image of this map, whose kernel is {(In, 1), (−In,−1)}.

Remark 1.3.28. A consequence of Remark 1.3.25, Sp(p, q)Sp(1) is not con-
tained in Ul(2p, 2q) for any l.

We summarise the inclusions found in this section in the subgroup dia-
gram in Figure 1.1.

1.3.3 Quaternionic manifolds

For this part, we follow the theory as presented in [44]. In view of the
construction of the c-map, we now introduce the following manifolds.
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GL(4n,R)

O(4n)GL+(4n,R)

SO(4n)GL(n,H)

Sp(n)Sp(1)Ul(2n)

Sp(1)

Sp(n) Ul(1)

Z2

Figure 1.1: Diagram of subgroups defined in section 1.3.2

Definition 1.3.29. A pseudo-Riemannian manifold with holonomy group
contained in Sp(p, q) is called pseudo-hyperKähler with quaternionic signa-
ture (p, q).

A Riemannian manifold with holonomy group contained in Sp(n) is called
hyperKähler of quaternionic dimension n.

In general, let (M,∇) be a manifold of dimension n with holonomy
group Hol(∇). If H(M) is the holonomy bundle, then for any intermedi-
ate subgroup Hol(∇) ≤ G ≤ GL(n,Rn), we can build a principal G-bundle
P = H(M) ·G ⊆ GL(M). In particular, on a pseudo-hyperKähler manifold
(M, g) of quaternionic signature (p, q) with n = p+ q, we can always reduce
the frame bundle GL(M) to a principal Sp(p, q)-bundle P = H(M) ·Sp(p, q),
as Hol(∇LC) ≤ Sp(p, q). Moreover, we can describe the vector bundle of
endomorphisms of TM as a fibre bundle with fibre End(R4n) where, for
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A ∈ Sp(p, q) and φ ∈ End(R4n), the action is defined as A.φ = AφA−1. Thus

End(TM) ∼= P ×Sp(p,q) End(R4n),

where φx : TxM → TxM is mapped to [u, u−1 ◦ φx ◦ u] for all u : R4n → TxM
in Px.

The correspondence between sections of a fibre bundle and equivariant
maps of P to the fibre (Remark 1.1.3) is realised by mapping φ : M →
End(TM) to ux 7→ u−1x φxux for any ux ∈ Px. The inverse maps s : P →
End(R4n) to the section M 3 x 7→ ux ◦ s(ux) ◦ u−1x ∈ End(TxM) for any
choice of frame ux : R4n → TxM .

Remark 1.3.30. Notice also that the correspondence between sections of
End(TM) and equivariant maps P → End(R4n) preserves pointwise compo-
sition, so the correspondence is an R-algebra homomorphism.

Notice that for all l ∈ H such that l2 = −1 and thus l ∈ Sp(1)∩ Im(H) by
Remark 1.3.22,MR(l) commutes with Sp(p, q) by Proposition 1.3.19. Equiv-
alently, for all A ∈ Sp(p, q), we have AMR(l)A−1 =MR(l), so MR(l) is an
Sp(p, q)-invariant endomorphism and thus the constant map P → End(R4n)
mapping every point toMR(l) is equivariant. Let L : TM → TM be the sec-
tion of End(TM) corresponding to MR(l), then by Remark 1.3.30, we have
L2 = −idTM , so L is an almost complex structure. Notice also that since
Sp(1) ⊆ SO(4p, 4q) (Proposition 1.3.20), L is compatible with the metric.
Explicitly, for all u ∈ P ⊂ H(M)SO(4p, 4q), the metric is g = (u−1)tI4p,4qu

−1,
so

g(L·, L·) = (u−1)tI4p,4qu
−1 ◦ (uxMR(l)u−1x ⊗ uxMR(l)u−1x )

= (u−1)tMR(l)tI4p,4qMR(l)u−1 = (u−1)tI4p,4qu
−1 = g.

Notice also that the Sp(p, q)-invariance of MR(l) implies that the infinitesi-
mal action of sp(p, q) maps MR(l) to 0. It follows that

∇LCL = u(u∗ωLC .MR(l))u−1 = 0.

and thus L is integrable, i.e. a complex structure by the Newlander-Nirenberg
theorem [33, II, Theorem 2.5, p. 124]), as the Nijenhuis tensor

NL(X, Y ) = [LX,LY ]− [X, Y ]− L[X,LY ]− L[LX, Y ]

= ∇LC
LX(LY )−∇LC

LY (LX)−∇LC
X (Y ) +∇LC

Y (X)− L∇LC
X (LY )
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+ L∇LC
LY (X)− L∇LC

LX(Y ) + L∇LC
Y (LX)

vanishes. Moreover, we can define a corresponding symplectic form

ωL := g(L·, ·).

In fact, we have ∇LCωL = ∇LCg(L·, ·) = g(∇LCL·, ·) = 0, so taking its
alternating part gives dωL = 0. Since L is a complex structure, ωL is a
pseudo-Kähler form.

Remark 1.3.31. On a (pseudo-)hyperKähler manifold we have a 2-sphere
of (pseudo-)Kähler structures, each constructed as above from an element
l ∈ Sp(1) ∩ Im(H).

Consider in particular l = i, j, k and let I, J,K : TM → TM be the
respective sections of End(TM). Again by Remark 1.3.30, the quaternionic
equations (1.2) translate into

I2 = J2 = K2 = IJK = −idTM . (1.7)

We deduce that I, J,K = IJ are complex structures on M compatible with
the metric. We call the three corresponding symplectic forms ωI , ωJ , ωK . It
turns out that these three symplectic forms characterise pseudo-hyperKähler
manifolds by using the following result of Hitchin.

Lemma 1.3.32. [29, Lemma 6.8, p. 91] Given a (pseudo-)Riemannian man-
ifold (M, g) with I, J,K almost complex structures such that K = IJ , let
ωA = g(A·, ·) for A = I, J,K be the corresponding symplectic forms, then
I, J,K are integrable if dωI = dωJ = dωK = 0.

Merging this lemma with the previous construction, we get a full charac-
terisation of (pseudo-)hyperKähler manifolds.

Proposition 1.3.33. A manifold M is (pseudo-)hyperKähler if and only
if it is a (pseudo-)Riemannian manifold (M, g) endowed with three almost
complex structures I, J,K compatible with the metric, such that IJ = K and
such that the three 2-forms

ωA = g(A·, ·),

for A = I, J,K are closed.
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Proof. We have already shown one implication. For the converse, if we have
I, J,K such that dωI = dωJ = dωK = 0, then by Lemma 1.3.33 they are
integrable and hence they provide three Kähler structures. In particular this
means that the holonomy group Hol(∇LC) is contained in the intersection
of Ui(2p, 2q), Uj(2p, 2q) and Uk(2p, 2q), which by Remark 1.3.24 is Sp(p, q),
thus proving that M must be hyperKähler.

Definition 1.3.34. A 4n-dimensional manifold, with n ≥ 2 is called quater-
nion Kähler if it is a Riemannian manifold whose holonomy group is con-
tained in Sp(n)Sp(1) but not in Sp(n). In this case we say that the manifold
has quaternionic dimension n.

This definition generalises in a straightforward manner to the pseudo-
Riemannian case, but we will not explore this case, so we omit it.

Remark 1.3.35. We require n ≥ 2 because if n = 1, Sp(1)Sp(1) = SO(4n)
(Remark 1.3.27) and thus the holonomy condition does not impose restric-
tions. We also explicitly require that the holonomy group is not contained in
Sp(n) in order not to fall into the hyperKähler case.

Let (M, g) be a quaternion Kähler manifold and let H(M) ⊂ GL(M)
be its holonomy bundle, then we have a principal Sp(n)Sp(1)-bundle P =
H(M).Sp(n)Sp(1) ⊆ GL(M) with induced projection p : P → M . For
quaternion Kähler manifolds we cannot repeat the construction of the al-
most complex structures, since this time MR(l) is no more invariant by the
structure group. However, at each point x ∈ M we have a trivialising open
neighbourhood U , that is, such that P |U := p−1(U) ∼= U×Sp(n)Sp(1). Here,
for all l ∈ H such that l2 = −1, we can define an equivariant map

U × Sp(n)Sp(1) −→ Mat(4n,R) ∼= End(R4n)

(y,H) 7−→ H−1MR(l)H

where H is seen as matrix in GL(4n,R). This map gives rise to an almost
complex structure L on U , but the correspondence l 7→ L is not well defined,
as it depends on the choice of the isomorphism P |U ∼= U × Sp(n)Sp(1).

Remark 1.3.36. The images of such locally defined almost complex struc-
tures define globally a subbundle Z of End(TM) with fibre diffeomorphic to
S2. Explicitly,

Z = P ×Sp(n)Sp(1) {MR(l)|l ∈ H, l2 = −1} ⊆ P ×Sp(n)Sp(1) End(R4n).
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By choosing i, j, k in the previous construction, we can find local sections
I, J,K ∈ Γ(U,Z) satisfying the quaternionic equations (1.7) and generating
at each point any other section L ∈ Γ(U,Z), meaning that L = aI + bJ + cK
with a, b, c ∈ C∞(U) such that a2 + b2 + c2 = 1.

Remark 1.3.37. The isomorphism End(TM) → Λ2T ∗M mapping L to
ωL = g(L·, ·) maps Z to the subbundle Z[ ⊆ Λ2T ∗M , also with fibre S2.
The three 2-forms ωI , ωJ , ωK ∈ Ω2(U) corresponding to I, J,K of Remark
1.3.36 generate all sections of Z[.

Definition 1.3.38. On a quaternion Kähler manifold M , we have the so-
called fundamental 4-form Φ ∈ Ω4(M) defined locally as follows

Φ = ωI ∧ ωI + ωJ ∧ ωJ + ωK ∧ ωK .

Remark 1.3.39. Although the three 2-forms are only defined locally and up
to a quaternionic rotation, the fundamental 4-form is globally defined and
uniquely determined (see e.g. [44, Lemma 9.1, p. 126]).

The fundamental 4-form can be used to determine whether a manifold is
quaternion Kähler. First however, some definitions are necessary.

Definition 1.3.40. Let M be a smooth manifold, and consider the exterior
algebra of M , namely the space Ω•(M) =

⊕∞
k=0 Ωk(M) endowed with the

graded-antisymmetric operation

∧ : Ω•(M)× Ω•(M) −→ Ω•(M)

and the exterior differential

d : Ω•(M) −→ Ω•(M)

defined at each degree by d : Ωk(M)→ Ωk+1(M).
An algebraic ideal is an R-subspace I ⊆ Ω•(M) such that for all α ∈

Ω•(M), I ∧ α ⊆ I.
The algebraic ideal generated by a subset A is the smallest algebraic ideal

containing A.
A differential ideal is an algebraic ideal I such that d(I) ⊆ I.

We have the following theorem adapted from [45, Theorem 2.2, p. 423].
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Theorem 1.3.41 (Swann 1990). Let (M, g) be a Riemannian manifold of
dimension 4n endowed with an S2-subbundle Z ⊆ End(TM) such that at
every p ∈ M there is an open neighbourhood U such that sections of Z|U
are generated by almost complex structures {I, J,K}, such that IJ = K.
Suppose also that for all A ∈ Z we have g(A·, A·) = g. Let Φ ∈ Ω4(M) be
the fundamental 4-form.

If n ≥ 3, then dΦ = 0 implies ∇Φ = 0 and therefore M has holonomy
contained in Sp(n)Sp(1). If n = 2, M has holonomy contained in Sp(n)Sp(1)
if and only if the fundamental 4-form Φ is closed and for every open set
U ⊆M , the algebraic ideal generated by the sections U → Z is a differential
ideal of Ω•(U).

We can express the differential condition in a more explicitly manner in
the following corollary.

Corollary 1.3.42. In the situation of Theorem 1.3.41 it is enough to lo-
cally verify that for the generators ωI , ωJ , ωK of sections U → Z[ there are
αI , αJ , αK ∈ Ω(U) such that

dωI = αK ∧ ωJ − αJ ∧ ωK ;

dωJ = αI ∧ ωK − αK ∧ ωI ;
dωK = αJ ∧ ωI − αI ∧ ωJ .

Proof. If the three conditions are satisfied, then for all L = aI + bJ + cK
with a, b, c ∈ C∞(U) such that a2 + b2 + c2 = 1, we have that dωL is a
linear combination of ωI , ωJ , ωK . Moreover, for all β ∈ Ω•(U), d(ωL ∧ β) =
dωL ∧ β + ωL ∧ dβ, which is in the algebraic ideal generated by sections
U → Z[. Therefore this ideal is differential. A straightforward computation
shows that condition dΦ = 0 is also satisfied.

Conversely, suppose the manifold is quaternion Kähler. For all L ∈
Γ(U,Z) and X ∈ X(U), we have

g(LX,X) = g(L2X,LX) = −g(X,LX) = −g(LX,X)

and thus g(LX,X) = 0. To simplify the notation, we call I = I1, J = I2,
K = I3 and the corresponding forms ωI = ω1, ωJ = ω2, and ωK = ω3. These
three forms are linearly independent, since given a non-zero X ∈ X(U), the
function ωj(IkX,X) = g(IjIkX,X) vanishes if and only if j = k. Notice that
since the wedge product of 2-forms is commutative, the map

Λ2T ∗U ⊗ Λ2T ∗U −→ Λ4T ∗U α⊗ β 7−→ α ∧ β (1.8)
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factors through S2(Λ2T ∗U) and thus in particular B = {ωj ∧ ωk|1 ≤ j ≤
k ≤ 3} is a basis for the image of (1.8). Now let ∇ be the Levi-Civita
connection. Since the space {l ∈ H|l2 = −1} ∼= Sp(1) ∩ Im(H) is stable
under the action of Sp(n)Sp(1) (acting by conjugation), in particular there
exist forms αkj ∈ Ω1(U) for 1 ≤ j, k ≤ 3 such that

∇Ij = αkj ⊗ Ik

and since ∇g = 0,
∇ωj = αkj ⊗ ωk.

Since M has holonomy contained in Sp(nSp(1), ∇Φ = 0 and thus

∇Φ = ∇
( 3∑
j=1

ωj ∧ ωj
)

=
3∑
j=1

(∇(ωj) ∧ ωj + ωj ∧∇(ωj)) = 2
3∑
j=1

∇(ωj) ∧ ωj

= 2
3∑

j,k=1

αkj ⊗ ωk ∧ ωj = 2
3∑
j=1

αjj ⊗ ωj ∧ ωj + 2
3∑

j<k=1

(αkj + αjk)⊗ ωj ∧ ωk.

Since every coefficient must vanish for the linear independence of B, we get

αjj = 0, αjk = −αkj .

Thus we have

∇ω1 = α1
2 ⊗ ω2 −α3

1 ⊗ ω3

∇ω2 = −α1
2 ⊗ ω1 +α2

3 ⊗ ω3

∇ω3 = α3
1 ⊗ ω1 −α2

3 ⊗ ω2

The statement follows if we consider the antisymmetric part of these equa-
tions.

Remark 1.3.43. Notice that in the situation of Theorem 1.3.41 and Corol-
lary 1.3.42, the manifold is hyperKähler if and only if

αI = αJ = αK = 0.

Remark 1.3.44. Despite the name, quaternion Kähler manifolds are not
necessarily Kähler; in particular, no section of Z[ can be Kähler, as they are
not closed. This can also be deduced from Remark 1.3.28.
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Examples of quaternion Kähler solvmanifolds are described by [48, The-
orem 5.4, p. 1043]. For an explicit list see [8, Table 14.52, p. 409]. An
important case is the so-called quaternionic projective space in dimension n.
Denoted by PnH, it can be defined as the projectivisation of Hn+1 under the
scalar multiplication by H, that is

PnH := (Hn+1 \ {0})/ ∼

where x ∼ y if there is a quaternion q ∈ H \ {0} such that x = yq. The
action of Sp(n+1) on Hn+1\{0} by left multiplication factors to the quotient
and here it is transitive. Consider the point [en+1] ∈ PnH class of the n+ 1-th
element of the canonical basis of Hn, then its stabiliser consists of matrices
of the form (

A
a

)
with A ∈ Sp(n) and a ∈ Sp(1).

Thus, the quaternionic projective space can be identified with the sym-
metric space

PnH :=
Sp(n+ 1)

Sp(n)× Sp(1)

In analogy with the real and complex projective spaces, we have:

PnR =
O(n+ 1)

O(n)×O(1)
=

SO(n+ 1)

SO(n)
, PnC =

U(n+ 1)

U(n)× U(1)
=

SU(n+ 1)

S(U(n)× U(1))
.

An important property of quaternion Kähler manifolds is that they are
Einstein.

Definition 1.3.45. A Riemannian manifold (M, g) is called Einstein if its
Ricci tensor is a multiple of the metric

RicM = λg, (1.9)

with λ ∈ R constant.

Remark 1.3.46. For connected manifolds in dimension greater than 2, it is
enough to verify (1.9) at each point, and thus assume λ ∈ C∞(M) (See for
instance [8, Theorem 1.97, p. 44]), then it coincides with the scalar curvature
of M which must therefore be constant.
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We have the following

Theorem 1.3.47 (Berger 1966). A quaternion Kähler manifold is Einstein.

Proof. See for instance [8, Theorem 14.39, p. 403].

Another reason why quaternion Kähler manifolds are relevant is that
they appear in Berger’s classification theorem [7, Theorem 3, chapter III,
p. 318] which we state as 1.3.48 and therefore they can be thought of as
building blocks for Riemannian manifolds. First we recall some definitions: a
locally irreducible Riemannian manifold is a manifold such that the holonomy
representation is irreducible. Moreover, a manifold is non-locally-symmetric
if ∇R 6= 0, where R is the Riemannian curvature tensor.

Theorem 1.3.48 (Berger’s classification). The holonomy group of a simply
connected, locally irreducible, non-locally-symmetric Riemannian manifold
must necessarily be one of the following

1. SO(n): generic orientable Riemannian manifolds of dimension n;

2. U(n): generic Kähler manifold of real dimension 2n;

3. SU(n): Calabi-Yau manifold of real dimension 2n (Ric = 0);

4. Sp(n)Sp(1): generic quaternion Kähler manifold of dimension 4n
(Einstein, Ric 6= 0);

5. Sp(n): generic hyperKähler manifold of dimension 4n (Ric = 0);

6. G2: called G2-manifold, has dimension 7 (Ric = 0);

7. Spin(7): called Spin(7)-manifold, has dimension 8 (Ric = 0).

The first two cases are generic orientable, Riemannian and Kähler re-
spectively, while the others are necessarily Einstein. Among these cases,
quaternion Kähler manifolds are the only one where the Ricci tensor does
not vanish.

1.4 C-map

We are now presenting the so-called c-map, which allows to build quaternion
Kähler manifolds starting from projective special Kähler ones. In the first
part of this section we present an intrinsic description of this map and in the
second we provide a coordinate description.
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1.4.1 Intrinsic construction

We start with an intrinsic formulation of the c-map by following [37]. As
showed in [5] and [4], the c-map can be divided in two stages: a first one called
the rigid c-map which, from a projective special Kähler manifold, produces
a hyperKähler one and a second one called HK/QK-correspondence, which
allows to change the geometry of the resulting hyperKähler manifold in order
to obtain a quaternion Kähler one (See different approaches in [26], [31],
[4]). The HK/QK-correspondence has been described in [37] using the twist
construction introduced in [46], which will be our approach as well.

The general idea is resumed in Figure 1.2: we start from a projective
special Kähler manifold M and we take its associated conic special Kähler
manifold M̃ . We then take the associated cotangent bundle H = T ∗M̃ and
apply the twist by giving an S1-bundle P which has suitable quotients Q
with a quaternion Kähler structure.

M

M̃ H = TM̃

P

Q

Figure 1.2: c-map: M is projective special Kähler, M̃ the corresponding
conic special Kähler, H hyperKähler, P the so-called twistor bundle and Q
quaternion Kähler ([37, Fig.1, p. 1331]).

Rigid c-map

The rigid c-map, first described mathematically in [23], is a construction
allowing to build a hyperKähler manifold from a special Kähler one. This
part is based on [37, Section 2].

Let M be a generic manifold of dimension n and consider its frame bundle
π : GL(M) → M . We can define the tautological form θ ∈ Ω1(GL(M),Rn)
such that for X ∈ TuGL(M), we have θ(X) = u−1π∗(X). A connection ∇ on
M induces on GL(M) a principal connection form ω∇ ∈ Ω1(GL(M), gl(n,R))
such that for all sections u : U → GL(M) defined on an open U ⊆ M ,
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u∗ω∇(X) corresponds to the endomorphism mapping uk to ∇Xuk for all
X ∈ TU . In other words,

∇(xkuk) = dxkuk + xk(u∗ω∇)hkuh = (dxk + xh(u∗ω∇)kh)uk.

Notice that R∗gω
∇ = ad(g−1)(ω∇) = g−1ω∇g, where Rg is the action of the

element g on the right.
Let now V be a representation of GL(n,R), we naturally have a right

GL(n,R)-action GL(M) × V such that (u, v).g = (ug, g−1.v). The quotient
by this action is the fibre bundle GL(M)×GL(n,R) V associated to V , already
described in Section 1.3.3 and it has a differential structure (see [33, I, Section
I.5]) that makes GL(M) × V → GL(M) ×GL(n,R) V a principal GL(n,R)-
bundle. Moreover, GL(M) ×GL(n,R) V → M is a vector bundle with fibre
isomorphic to V .

Consider the map ν : GL(M)× V → V defined as the second projection.
Let g ∈ GL(n,R), then (Rg)

∗ν(u, v) = ν(Rg(u, v)) = ν(ug, g−1.v) = g−1.v,
thus

(Rg)
∗ν = g−1.ν (1.10)

Being V a vector space, TV ∼= V × V ; explicitly, let p, v ∈ V , then we can
define vp ∈ TV as the tangent vector at p ∈ V tangent to the path γt = p+tv
and the mapping (p, v) 7→ vp defines the isomorphism. Consider a smooth
function f ∈ C∞(N, V ) on a smooth manifold N , take its differential

f∗ : TN → TV

According to the identification TV ∼= V × V , we can see f∗ as having two
components TN → V . The first one is forced to be f ◦π whereas we call the
second one df . When V = R, df coincides with df as differential form.

Consider the differential of the map ν, than in particular ν∗ = (ν ◦ π, dν)
and dν ∈ Ω1(GL(M) × V, V ). If we apply the right action, we obtain
R∗gdν(X, vp) = dν((Rg)∗(X), (Rg)∗vp), but

(Rg)∗vp =
d

dt
(Rg(p+ tv))|t=0 =

d

dt
(Rg(p) + tRg(v))|t=0 = Rg(v)Rg(p)

= (g−1.v)g−1.p,

so R∗gdν(X, vp) = g−1.v, and thus

R∗gdν = g−1.dν (1.11)
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Consider now the cotangent bundle T ∗M over an n-dimensional manifold,
it can be seen as a fibred product GL(M) ×GL(n,R) (Rn)∗, where an element
g ∈ GL(n,R) acts on the left with the representation dual to the standard
one, namely g.β = βg−1. Explicitly, the isomorphism maps a form σ ∈ T ∗pM
to [u, β] where u is a generic frame and β = σ◦u : Rn → R. In this particular
case ν : GL(M)× (Rn)∗ → (Rn)∗, so (1.10) and (1.11) become R∗gν = ν.g and
R∗gdν = dνg respectively, for g ∈ GL(n,R).

Suppose we have a connection ∇ on M and let ω∇ ∈ Ω1(GL(M), gl(n,R))
be the corresponding principal connection form. We can define a 1-form
α ∈ Ω1(GL(M)× (Rn)∗, (Rn)∗) as

α = dν − νω∇

Notice that R∗gα = dνg−νgg−1ω∇g = αg, so its kernel is preserved by the ac-
tion of GL(n,R), and thus it passes to the quotient T (GL(M)×GL(n,R) (Rn)∗)
as the distribution Hor∇ ⊂ T (T ∗M). This distribution is a complement
for the vertical one Ver = ker((πT ∗M)∗) ⊂ T (T ∗M), in fact, a vector in
ker(α) is a pair of tangent vectors (X, vσ) ∈ T (GL(M)) × T (Rn)∗ such
that v = σω∇(X). If (X, vσ) projects also to the quotient in Ver, then
X ∈ T (GL(M)) is of the form A∗ for some A ∈ gl(n,R), so it is of the form
(A∗, σA) = d

dt
(u exp(tA), σ exp(tA))|t=0 = d

dt
Rexp(tA)(u, σ)|t=0. It is then tan-

gent to the orbits, so it projects to 0 on T (T ∗M). The distribution Ver has
constant rank n and

rk(ker(α(u,v))) = dim(T (TuGL(M)× Tv(Rn)∗))− dim(Im(α(u,v)))

≥ dim(M) + dim(TuGL(M)) + dim(Tv(Rn)∗)− dim((Rn)∗)

= n+ n2 + n− n = n2 + n,

so the quotient Hor∇ by the action of the n2-dimensional group GL(n,R)
has dimension at least n. By dimensional reasoning we have that T (T ∗M) =
Ver⊕ Hor∇.

On a cotangent bundle πT ∗M : T ∗M →M there is a canonical 1-form λcan
defined for any vector X tangent to T ∗M in β ∈ T ∗pM as

λcan(X) := β((πT ∗M)∗X)

In the notation of the associated bundle, λcan lifts by pullback to GL(M)×
(Rn)∗ as the right-invariant form νθ, in fact, given a coframe u and a form
σ = σku

k = at p ∈M , then (λcan)σ = σkπ
∗uk and

(νθ)(u,σ◦u) = σ ◦ u ◦ u−1 ◦ π∗ = σkπ
∗uk.
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We can then define a canonical 2-form ωcan := −dλcan ∈ Ω2(T ∗M).
A local frame u : U → GL(M) on an open U ⊆M induces a trivialisation

π−1(U) −→ U ×GL(n,R)

a 7−→ (π(a), u−1a),

which in turn induces a trivialisation

π−1T ∗M(U) −→ U ×GL(n,R)×GL(n,R) (Rn)∗ ∼= U × (Rn)∗

σ = σku
k 7−→ (πT ∗M(β), (σ1, . . . , σn)).

Remark 1.4.1. Given u, we also have an induced local coframe on π−1T ∗M(U)
by taking π∗T ∗Mu

∗θ = (u1, . . . , un) for the horizontal part, and for the vertical
ones, consider the form (u, id(Rn)∗)

∗α ∈ Ω1(U × (Rn)∗, (Rn)∗). Explicitly,
(u, id(Rn)∗)

∗α = dν − νu∗ω∇.

Notice that ωcan is closed, being exact, and it is non-degenerate thanks to
the following lemma which gives an explicit description of ωcan when lifted
to GL(M)× (Rn)∗:

Lemma 1.4.2. Given a manifold M endowed with a connection ∇, in the
notation above, the lift to GL(M)× (Rn)∗ of ωcan is −α ∧ θ if and only if ∇
is torsion free.

Proof. The torsion form of a connection ∇ is Θ = dθ+ω∇ ∧ θ = 0 and since
λcan lifts to νθ, so −ωcan lifts to

d(νθ) = dν ∧ θ + νdθ = dν ∧ θ + ν(Θ− ω∇ ∧ θ) = (dν − νω∇) ∧ θ + νΘ

= α ∧ θ + νΘ,

and νΘ vanishes if and only if Θ = 0.

We can now prove that ωcan is non-degenerate. Let X ∈ TT ∗M , then it
splits in X = XV +XH with XV ∈ Ver and XH ∈ Hor∇. Let X̃V and X̃H be
related lifts to GL(M) × (Rn)∗ of XV and XH respectively. Since ωcan lifts
to −α ∧ θ, we can pull back ωcan(X, ·) to GL(M)× (Rn)∗ obtaining

−α ∧ θ(X̃V − X̃H , ·) = −α(X̃V )θ + θ(X̃H)α.

In particular, α(X̃V )θ factors to a horizontal 1-form, i.e. it vanishes on Ver,

and θ(X̃H)α to a vertical one, i.e. it vanishes on Hor∇. These two forms are
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linearly independent and thus ωcan(X, ·) vanishes at a point if and only if they

both do. Since α and θ do not vanish, necessarily θ(X̃H) and α(X̃V ) vanish,
so XV and XH , and thus X, are both vertical and horizontal, implying that
X vanishes.

Suppose now M is (pseudo-)Kähler of dimension 2n, then we have a
(pseudo-)Riemannian metric g of signature (2p, 2q) and is endowed with a
compatible almost complex structure I.

If we identify R2n with Cn, we can see GL(n,C) inside GL(2n,R) and in
particular we have an action of i on R2n given by

I0 =


0 −1
1 0

. . .

0 −1
1 0

 , (1.12)

corresponding to iIn as a complex matrix. Explicitly, GL(n,C) corresponds
to the subset of matrices in GL(2n,R) that commute with I0. Intersect this
subset with

O(2p, 2q) = {A ∈ Mat(2n,R)|AtI2p,2qA = I2p,2q}

in order to obtain an inclusion of U(p, q) in GL(2n,R).
We say that a frame u : R2n → TpM is adapted to the complex structure

if uI0 = Iu. In this case we can use the standard identification and view u as
an isomorphism Cn → TpM , so that u(iIn) = Iu; we call such frames complex
frames . The frame u is adapted to the Riemannian structure, or equivalently
orthonormal, if g(u, u) = I2p,2q. Consider the subbundle of GL(M) of frames
adapted to both the Riemannian and the complex structure:

U(M, g, I) = {u ∈ GL(M)|Iu = uI0, g(u, u) = I2p,2q}.

This is a principal bundle with structure group U(p, q).
As we did for GL(M), we can write the cotangent space over M as the

fibred product U(M, g, I)×U(p,q) (R)∗, where the representation of U(p, q) on
R2n is induced by the standard representation of GL(2n,R).

Let (M, g, I,∇) be a special Kähler manifold, let H = T ∗M , we now
build on it a natural pseudo-hyperKähler structure. Suppose g has signature
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(2p, 2q), then π∗g = θtI2p,2qθ, where, recall I2p,2q =

(
I2p 0
0 −I2q

)
. Consider

the covariant tensor θtI2p,2qθ + αI2p,2qα
t. For all A ∈ U(p, q) we have

R∗A(θtI2p,2qθ + αI2p,2qα
t) = (A−1θ)tI2p,2qA

−1θ + αAI2p,2q(αA)t

= θt(A−1)tI2p,2qA
−1θ + αAI2p,2qA

tαt = θtI2p,2qθ + αI2p,2qα
t,

as both A,A−1 belong to O(2p, 2q). We infer that θtI2p,2qθ+αI2p,2qα
t passes

to the quotient U(M, g, I)×U(p,q) (Rn)∗ = H as the tensor ĝ ∈ T2H.
Consider now

1

2
(θt ∧ I t0I2p,2qθ − α ∧ I t0I2p,2qαt)

This is a 2-form, since I t0I2p,2q is antisymmetric. Again, for A ∈ U(p, q), we
have

1

2
R∗A(θt ∧ I t0I2p,2qθ − α ∧ I t0I2p,2qαt)

=
1

2
(θt ∧ (A−1)tI t0I2p,2qA

−1θ − αA ∧ I t0I2p,2qAtαt)

=
1

2
(θt ∧ (I0A

−1)tI2p,2qA
−1θ − α ∧ (I0A

t)tI2p,2qA
tαt)

=
1

2
(θt ∧ (A−1I0)

tI2p,2qAθ − α ∧ (AtI0)
tI2p,2qA

tαt)

=
1

2
(θt ∧ I t0(A−1)tI2p,2qA−1θ − α ∧ I t0AI2p,2qAtαt)

=
1

2
(θt ∧ I t0I2p,2qθ − α ∧ I t0I2p,2qαt),

as both A and A−1 belong to U(p, q). Being right invariant, it passes to the
quotient H as a 2-form ωI ∈ Ω2(H).

We then define ωJ := −ωcan, which pulls back to α ∧ θ as we saw earlier.
Finally, consider −α ∧ I0θ and let A ∈ U(p, q).

−R∗A(α ∧ I0θ) = −αA ∧ I0A−1θ = −α ∧ AA−1I0θ = −α ∧ I0θ.

By invariance, this form passes to the quotient as ωK ∈ Ω2(M).

Remark 1.4.3. Consider u ∈ U(M, g, I), then as observed in Remark 1.4.1,
we get an induced coframe û−1 = (ûk)k=1,...,2n. With respect to this coframe,
the forms ωI , ωJ , ωK are represented by the matrices(

I t0I2p,2q
−I t0I2p,2q

)
,

(
−I2n

I2n

)
,

(
−I0

−I0

)
.
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The metric instead is the block matrix

(
I2p,2q

I2p,2q

)
, so we can find en-

domorphisms L such that ωL = g(L·, ·) and write them with respect to the
frame û obtaining for I, J,K respectively:(

I0
−I0

)
,

(
I2p,2q

−I2p,2q

)
,

(
I0I2p,2q

I0I2p,2q

)
.

Notice that the quaternionic equations (1.7) hold.

We can now state the following

Proposition 1.4.4. Let (M, g, I, ω,∇) be a special Kähler manifold, then on
H = T ∗M , the previously defined ωI , ωJ , ωK determine a pseudo-hyperKähler
structure.

Proof. The idea is to use Proposition 1.3.33, in fact, by Remark 1.4.3 we know
that the quaternionic equations (1.7) are satisfied, and by a straightforward
computation, one checks also the compatibility of I, J,K with the metric.

We are only left to prove that ωI , ωJ , ωK are closed. We start with the
easiest case: ωJ = −ωcan = dλcan which is exact and therefore closed. For ωI ,
we need some preliminary result first. Notice that dα = −dν ∧ω∇− νdω∇ =
−α∧ω∇− νΩ∇ where Ω∇ is the curvature of ∇ and thus it is zero, implying

dα = −α ∧ ω∇. (1.13)

Notice also that since ∇ is symplectic with respect to the form represented
by S = I t0I2p,2q, we have

Sω∇ + (ω∇)tS = 0, (1.14)

and since S2 = −I2n, if we conjugate (1.14) by S, we also obtain

ω∇S = −S(ω∇)t.

Finally, notice that

(β1 ∧ β2)t = (−1)d1,d2βt2 ∧ βt1, (1.15)

where β1 and β2 are differential forms of degree respectively d1, d2.
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Now consider the pullback of 2dωI to U(M, g, I)× (R2n)∗, we have

d(θt ∧ Sθ − α ∧ Sαt)
= dθt ∧ Sθ − θt ∧ Sdθ − dα ∧ Sαt + α ∧ Sdαt

= −(ω∇ ∧ θ)t ∧ Sθ − θt ∧ S(−ω∇ ∧ θ) + α ∧ ω∇ ∧ Sαt − α ∧ S(α ∧ ω∇)t

= θt ∧ ((ω∇)tS + Sω∇) ∧ θ + α ∧ (ω∇S + S(ω∇)t) ∧ αt = 0,

thus proving that ωI is closed.
Finally, for ωK , one can prove that the special condition (1.1) implies

ωK = d(−νI0θ) (see e.g. [37, Lemma 2.3, p. 1333]). Therefore, being exact,
ωK is closed, proving that H is pseudo-hyperKähler.

Remark 1.4.5. The statement of Proposition 1.4.4 can be strengthened, as
the implication can be reversed. In [37, Proposition 2.4, p. 1334], Macia and
Swann prove that if we have a pseudo-Hermitian manifold (M, g, I, ω,∇)
and a symplectic connection on it, then the 3-forms ωI , ωJ , ωK determine a
pseudo-hyperKähler structure if and only if (M, g, I, ω,∇) is a special Kähler
manifold.

Moreover, if the special Kähler manifold is conic, then we can lift an
infinitesimal isometry to the cotangent space using the connection.

Proposition 1.4.6. If (M, g, I, ω,∇, ξ) is conic special Kähler, then let X̂

be the horizontal lift of −Iξ to a vector field X̂ on T ∗M with the hyperKähler
structure defined in Proposition 1.4.4 by the Kähler forms ωI , ωJ , ωK. Then,
X̂ is an infinitesimal isometry such that

LX̂ωI = 0, LX̂ωJ = ωK , LX̂ωK = −ωJ .

Proof. Let X̃ be a lift of X̂ to U(M, g, I)×U(p,q) (R2n)∗. Since X̂ is horizontal
we have

α(X̃) = 0, π∗(X̃) = −Iξ. (1.16)

Let χ := θ(X̃), then χ(u) = u−1π∗X̃ = u−1(−Iξ), so χ : U(M, g, I) → R2n

is the equivariant map corresponding to the vector −Iξ. Thus, by Lemma
1.2.3 we have ∇(−Iξ) = −I, which in the language of principal connections
corresponds to dχ + ω∇χ = −I0θ, since for all u ∈ U(M, g, I), we have
−Iuθu = u(−I0θu). Thus,

dχ = −ω∇χ− I0θ.
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Therefore, we can compute

LX̃θ = dιX̃θ + ιX̃dθ = dχ+ ιX̃(−ω∇ ∧ θ)
= −ω∇χ− I0θ − ω∇(X̃)θ + ω∇θ(X̃) = −I0θ − ω∇(X̃)θ;

LX̃α = dιX̃α + ιX̃dα = 0 + ιX̃(−α ∧ ω∇) = αω∇(X̃).

We compute LX̂ωI by lifting it to U(M, g, I), obtaining, for S = I t0I2p,2q:

LX̃(θt ∧ Sθ − α ∧ Sαt)
= (LX̃θ)

t ∧ Sθ + θt ∧ SLX̃θ − LX̃α ∧ Sα
t − α ∧ SLX̃α

t

= (−I0θ − ω∇(X̃)θ)t ∧ Sθ + θt ∧ S(−I0θ − ω∇(X̃)θ)

− αω∇(X̃) ∧ Sαt − α ∧ Sω∇(X̃)tαt

= −θt ∧ (I t0S + SI0)θ − θt ∧ (ω∇(X̃)tS + Sω∇(X̃))θ

− α ∧ (ω∇(X̃)S + Sω∇(X̃)t)αt = 0

where we used (1.15), compatibility of ω with I, (1.14) and (1.4.1).
We compute LX̂ωJ in the same way, obtaining

LX̃(α ∧ θ) = dιX̃(α ∧ θ) + 0 = d(α(X̃)θ)− αθ(X̃) = 0− d(αχ)

= −dαχ+ α ∧ dχ = α ∧ ω∇χ+ α ∧ (−I0θ − ω∇χ) = −α ∧ I0θ

which is the lift of ωK . Similarly, for ωK :

LX̃(−α ∧ I0θ) = −dιX̃(α ∧ I0θ) + 0 = −d(α(X̃)I0θ) + d(αI0θ(X̃))

= 0 + d(αI0χ) = dαI0χ− α ∧ d(I0χ)

= −α ∧ (d(I0χ) + ω∇I0χ).

Notice that I0χ = I0θ(−Iξ) = θ(ξ); U(M, g, I)→ R2n is the equivariant map
corresponding to ξ in TM and thus d(I0χ) +ω∇I0χ corresponds to ∇ξ = id,
therefore d(I0χ) + ω∇I0χ = θ. This proves LX̂ωK = −ωJ .

Finally, we compute LX̂ ĝ

LX̃(θtI2p,2qθ + αI2p,2qα
t)

= (LX̃θ)
tI2p,2qθ + θtI2p,2qLX̃θ + LX̃αI2p,2qα

t + αI2p,2q(LX̃α)t

= (−I0θ − ω∇(X̃)θ)tI2p,2qθ + θtI2p,2q(−I0θ − ω∇(X̃)θ)

+ αω∇(X̃)I2p,2qα
t + αI2p,2qω

∇(X̃)tαt
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= −θt(I0I2p,2q + I2p,2qI0)θ − θt ∧ (ω∇(X̃)tI2p,2q + I2p,2qω
∇(X̃))θ

+ α(ω∇(X̃)I2p,2q + I2p,2qω
∇(X̃)t)αt

= 0− θt(ω∇(X̃)tSI0 + SI0ω
∇(X̃))θ − α(ω∇(X̃)I t0S + I t0Sω

∇(X̃)t)αt

= θt ∧ S(ω∇(X̃)I0 − I0ω∇(X̃))θ + α(ω∇(X̃)I0 − I0ω∇(X̃))Sαt = 0

It vanishes because ω∇(X̃)I0 = I0ω
∇(X̃) and this is due to the fact that for

every vector field Y , we have

∇−Iξ(IY )− I∇−IξY = ∇−IξI(Y ) = ∇Y I(−Iξ) = ∇Y ξ − I∇Y (−Iξ)
= Y + I2Y = 0

and thus on the frame bundle,

(ω∇(X̃)I0 − I0ω∇(X̃))θ = ω∇(X̃)I0θ − I0ω∇(X̃)θ

= dI0θ + ω∇(X̃)I0θ − (I0dθ + I0ω
∇(X̃))θ = 0.

This concludes the proof.

Twist

Now we present the the construction that takes a pseudo-hyperKähler mani-
fold with a suitable infinitesimal isometry as in Proposition 1.4.6, and modi-
fies it in order to obtain a quaternion Kähler manifold. We will describe this
construction in terms of the so-called twist construction, following [37].

Let (H, g, I, J,K) be a pseudo-hyperKähler manifold with a vector field
X such that

LXg = 0, LXI = 0, LXJ = K, LXK = −J (1.17)

The idea of the twist is to consider a suitable S1-bundle P → H, lift the
isometry to P in a suitable way and then quotient by said isometry in order
to get another manifold Q which, with suitable modifications of the structure,
will be quaternion Kähler.

Let us start with the first ingredient, that is p : P → H; a principal
S1-bundle endowed with a principal connection ϑ with curvature

Ψ ∈ Ω2(H).
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Then we need the so-called twisting function, that is a ∈ C∞(H) such
that

da = −ιXΨ.

Let now Y be the generator of the principal action on P and consider the
horizontal lift X̂0 to P . We define a lift X̂ = X̂0 + aY of X.

If we now quotient P by the action of X̂, we obtain a manifold Q :=
P/〈X̂〉 which is the twisted manifold.

A tensor on H can be mapped to a tensor on Q by taking the correspond-
ing invariant tensor on P , pulling it back to the distribution

Horϑ = ker(ϑ) ↪→ P,

and then factoring the resulting tensor to the quotient Q. The initial tensor
in H and the final in Q will be said to be Horϑ-related and we will denote
this relation by ∼ϑ. In order for this procedure to work, it is required that
X̂ /∈ Horϑ, otherwise we will lose some non-trivial tensors in the process. The
condition of being transverse to Horϑ at a point p is equivalent to a(p) 6= 0

by the way we defined X̂.
It turns out that the twist construction does not preserve closed forms,

so we need to change our structure on H in order to obtain the structure we
want on Q. Before doing so, we define the following 1-forms:

α0 := X[ = g(X, ·), αL := (LX)[ = ιXωL = Lα0, for L = I, J,K.
(1.18)

We require the new metric gQ to be such that

gQ ∼ϑ fg + h(α2
0 + α2

I + α2
J + α2

K),

for f, h ∈ C∞(H).
In [37], Macia and Swann prove the following theorem describing ex-

actly for which Ψ, a, f, h we obtain a twisted manifold Q which is quaternion
Kähler.

Theorem 1.4.7. [37, Theorem 4.1, p. 1339] Let (H, g, I, J,K) be a hy-
perKähler manifold of dimension at least 8 endowed with a vector field X
satisfying (1.17). Then the only twists (Q, gQ) that are quaternion Kähler
are obtained by the data

Ψ = k(dX[ + ωI), a = k(g(X,X)− µ+ c)
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f =
B

µ− c
, h = − B

(µ− c)2
,

where µ is the moment map for X on (M, g, I) and c, k, B ∈ R are constants.

Proof. In dimension greater than 8 see [37, Section 4.1, p. 1340] and for
dimension 8 see [37, Section 4.2, p. 1344].

For reference, we also give the following result that allows us to compute
exterior differentials of differential forms on Q in terms of differential forms
in H, when these are invariant with respect to the infinitesimal isometry.

Proposition 1.4.8. Let (H, g, I, J,K) be a hyperKähler manifold of dimen-
sion at least 8 endowed with a vector field X satisfying (1.17) and let (Q, gQ)
be its twist with respect to an S1-bundle with curvature Ψ and a twisting
function a. Let σ ∈ Ωp(H) be X-invariant and let σQ ∈ Ωp(Q) be such that
σQ ∼ϑ σ, then

dσQ ∼ϑ dσ −
1

a
Ψ ∧ ιXσ.

Proof. See [46, Corollary 3.6, p. 412].

1.4.2 Coordinate description

We now proceed by presenting the explicit coordinate construction of the
c-map as illustrated in [18]. This construction was introduced in [21] (with
a different notation), where an explicit metric is put on the final quaternion
Kähler metric called Ferrara-Sabharwal metric. This extrinsic construction
can be related, via [4], to the intrinsic one, presented in Section 1.4.1.

The following construction is carried out on projective special Kähler
domains, and thus on projective special Kähler manifolds (π : M̃ → M,∇)

endowed with a holomorphic prepotential for M̃ , so we have F : M̃ → C
homogeneous of degree 2 in the sense of Corollary 1.2.8.

Consider the Hessian matrix ∂2F = (∂2h,kF )h,k. Notice that ∂2F has now
entries that are homogeneous of degree 0. In particular they are invariant by
the action generated by ξ by Corollary 1.2.8. This implies that ∂2F is well
defined on M .

Let B = 2 Im(∂2F ), then it is also well defined on M . Using this matrix,

we can build on M̃ the following

N = ∂2F + i
BzztBt

ztBz
= R+ iI,



1.4. C-MAP 47

where R and I are the real and imaginary part of N respectively. Notice
that this map is still homogeneous of degree 0, and thus both R and I are
well defined on M .

We are now ready to build the final quaternion Kähler manifold as

Q = M ×G,

where G ∼= R2n+3 ×R+ is a Lie group. Explicitly, we call the coordinates on
G

(ζ̃ , ζ, φ̃, φ) = (ζ̃0, . . . , ζ̃n, ζ0, . . . , ζn, φ̃, φ).

The group multiplication is then defined as

(ζ̃ , ζ, φ̃, φ) · (ζ̃ ′, ζ ′, φ̃′, φ′)

= (ζ̃ + e
φ
2 ζ̃ ′, ζ + e

φ
2 ζ ′, φ̃+ eφφ̃′ + e

φ
2 (ζtζ̃ ′ − ζ ′tζ̃), φ+ φ′).

Now let π : Q → M be the projection on the first component, then Q is a
trivial principal bundle. Let p ∈ M , then on π−1(p) ∼= G we can put the
following metric

gG =
1

4φ2
dφ2 +

1

4φ2

(
dφ̃+

n∑
h=0

(ζhdζ̃h − ζ̃hdζh

)2

+
1

2φ

n∑
u,v=0

Iu,v(p)dζudζv

+
1

2φ

n∑
u,v=0

(I−1)u,v(p)

(
dζ̃u +

n∑
h=0

Ru,h(p)dζh

)(
dζ̃v +

n∑
k=0

Rv,k(p)dζk

)
,

where the coefficients are evaluated at p. Notice that gG varies smoothly
with respect to p ∈M and it can then be defined on all of Q.

We can now define on Q the metric

gQ = π∗gM + gG, (1.19)

where gM is the metric of M . The metric (1.19) is called the Ferrara-
Sabharwal metric.

From the group multiplication G, we can find left invariant forms. It
follows that the following coframe is left invariant with respect to G:

ξk =

√
2

φ

(
dζ̃k +

n∑
h=0

Rk,hdζh

)
, ξn+1 =

dφ

φ
,

ηk =

√
2

φ
dζk, ηn+1 =

1

φ

(
dφ̃+

n∑
h=0

(ζhdζ̃h − ζ̃hdζh

)
.

(1.20)
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With respect to (1.20), the metric gG can be written as

gG =
1

4

(
n∑

k,h=0

(I−1)h,kξhξk + (ξn+1)2 +
n∑

k,h=0

Ih,kηhηk + (ηn+1)2

)
. (1.21)

We can also explicitly compute the differential of the invariant coframe
(1.20)

dξk =
1

2
ξk ∧ ξn+1, dηn+1 = −1

2

n+1∑
h=0

ξh ∧ ηh,

dηk = −1

2
ξn+1 ∧ ηk, dξn+1 = 0.

(1.22)

Let g be the Lie algebra of G. From (1.22) we deduce that the direction ξn+1

is such that ad(ξn+1) acts diagonally on g. It follows that g can be seen as
h o 〈ξn+1〉, where h = 〈ξ0, . . . , ξn, η0, . . . , ηn+1〉 and the the endomorphism
defining the semidirect product is ad(ξn+1)|h. Notice also that the only non-
zero structure constants of h are

[ξh, ηk] =
δh,k
2
ηn+1,

for h, k = 0, . . . , n.
Recall that the Heisenberg Lie algebra hm has a basis

A1, . . . , Am, B1, . . . , Bm, D

such that the only non-zero Lie brackets of elements of the basis are

[Ak, Bk] = −[Bk, Ak] = D,

for all k = 1, . . . ,m. We deduce that h is isomorphic to hn+1, the Heisenberg
Lie algebra of dimension 2n+ 3. In conclusion, G = Hn+1 oR+ where Hn+1

is the Heisenberg Lie group of dimension 2n+ 3.

Remark 1.4.9. Notice that the quaternion Kähler structure is not directly
visible from this description of the c-map. This fact will become apparent in
the explicit examples of Section 1.6.

We conclude this section with the following result by Cortés, Han and
Mohaupt [18] proving that this construction preserves completeness
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Theorem 1.4.10. Let (π : M̃ → M,∇) be a complete projective special
Kähler domain, then the quaternion Kähler manifold (Q, gQ) is complete and
has negative scalar curvature.

Proof. See [18, Theorem 5, p. 199].

The construction can also be generalised to projective special Kähler man-
ifolds covered by projective special Kähler domains [18, Section 6]. In this
case one repeats the same construction for each projective special Kähler
domain obtaining a family of quaternion Kähler manifolds. These manifolds
then are glued together in a unique quaternion Kähler manifold. Also in
this case we have that the c-map preserves completeness [18, Theorem 10, p.
205].

1.5 R-map

In Section 1.4, we have seen how to build a quaternion Kähler from a given
projective special Kähler one. In this section we present a way to construct
projective special Kähler manifolds starting from a polynomial function of
degree 3 . This construction is called supergravity r-map, or r-map for short.

The idea is to take an open subset U ⊆ Rn invariant by scalar multiplica-
tion under positive numbers and a polynomial function h : U → R of degree
3. Then we endow the tangent bundle of U with a suitable metric which
will render it projective special Kähler. For the construction we will mostly
follow [18].

Let U ⊆ Rn be an open subset closed under scalar multiplication by R+

and let h : U → R+ be a polynomial function of degree 3. Let now

H = {y ∈ U |h(y) = 1}.

Since U is closed by scalar multiplication by R+ and h is homogeneous,
we can deduce that U = R+ ·H. Explicitly, we realise x ∈ U as 3

√
h(y) y

3
√
h(y)

.

Let now ∂y be the connection on Rn associated to the standard coordinate
system y = (y1, . . . , yn) = idRn , that is such that ∂ydy

k = 0 for all k =

1, . . . , n. In particular then, given f ∈ C∞(U), we have ∂2yf = ∂2

∂yh∂yk
dyh⊗dyk.

We can now endow U with the following metric

gU = −1

4
∂2y log(h)
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Remark 1.5.1. In order to simplify the exposition, we have chosen a dif-
ferent scaling factor than the corresponding metric in [18]. Note that the
forthcoming metric gM built from this metric agrees with the one in [18].

Notice that being homogeneous, h is also regular on H ⊆ U . Explicitly,
suppose dh vanishes at a point p = (p1, . . . , pn) ∈ H, then in particular
∂h
∂yk

(p) = 0 for all k = 1, . . . , n, but then by Euler’s formula on homogeneous
functions we would have:

0 =
n∑
k=1

∂h

∂yk
pk = 3h(p) = 3.

If we put on H the induced metric as a submanifold of (U, gU), we obtain
a Riemannian manifold (H, gH = gU |H) called projective special real .

The last step of the r-map consists in taking M := TU with a suitable
metric. Let y = (y1, . . . , yn) be the the canonical coordinate chart on U ⊆ Rn

(i.e. idU), and let x1, . . . , xn be the induced coordinates on the tangent space,
meaning that for all X ∈ TyU and for all p ∈ U , we have

X = xk(X)
∂

∂yk
|p.

If the metric on U is gU = gh,k(y)dyh⊗ dyk, then the metric on M is defined
to be

gM = gh,k(y)(dxh ⊗ dxk + dyh ⊗ dyk).

Since U is parallelisable, its tangent bundle is trivial, and thus it can be
seen as immersed in Cn as

M := TU ∼= Rn + iU ;

this induces on M a complex structure compatible with the metric, and thus
a Kähler structure.

Moreover, we can realise it as a projective special Kähler manifold by
choosing as the associated conic special Kähler manifold the following

M̃ := {λ(1, ζ)|λ ∈ C∗, ζ ∈M ⊆ Rn + iU} ⊆ Cn+1.

Also, it turns out that M̃ we have a prepotential if we take

F (z0, . . . , zn) = h(z1, . . . , zn)/z0.
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Remark 1.5.2. Manifolds obtained via the r-map are actually projective
special Kähler domains.

Theorem 1.5.3. Let h : U → R+ be a polynomial function of degree 3,
(H, gH) be the corresponding projective special real manifold, and (M, gM)
the projective special Kähler manifold obtained via the r-map, then (M, gM)
is complete if H is.

Proof. See [18, Theorem 4, p. 197].

The composition of the r-map with the c-map is called q-map, which
then allows to build quaternion Kähler manifolds starting from polynomials
of degree three. By combining Theorem 1.5.3 and Theorem 1.4.10, by virtue
of Remark 1.5.2, we obtain

Corollary 1.5.4. Given a polynomial function h : U → R+ of degree 3, let
(H, gH) be the corresponding projective special real manifold, and (Q, gQ) the
quaternion Kähler manifold obtained via the r-map, then (Q, gQ) is complete
if H is.

1.6 Examples

In this section we follow the q-map for the polynomials y3 and y21y2 using the
coordinate description given in Section 1.4.2.

1.6.1 Example in dimension 8

For our first example of quaternionic Kähler manifold obtained via the q-
map, we consider the polynomial function y3 defined on U := R+. Then,
following the r-map construction, we have H = {y ∈ U |y3 = 1} = {1} and
thus U = R+ · {1}. On U we put the metric gU = −1

4
∂2 log(y3) = 3

4y2
dy2.

Being a point, H is a complete submanifold of U . As last step of the r-map,
we build M := TU ∼= R + iR+ ⊂ C with the metric gM = 3

4y2
dx2 + 3

4y2
dy2.

Notice that, up to rescaling, M is isometric to the hyperbolic plane. Via the
c-map, we can now obtain from M a quaternion Kähler manifold Q which is
complete by Corollary 1.5.4, since H is complete.

We now follow the construction given in section 1.4.2 in order to compute
an orthonormal coframe on the final quaternion Kähler manifold Q. Let
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F (z0, z1) := h(z1)
z0

= (z1)3

z0
and let ∂2F be the Hessian matrix of F , then if

z1
z0

= x+ iy,

∂2F =

(
2
z31
z30

−3
z21
z20

−3
z21
z20

6 z1
z0

)
=

(
2(x+ iy)3 −3(x+ iy)2

−3(x+ iy)2 6(x+ iy)

)
=

(
2x3 − 6xy2 −3x2 + 3y2

−3x2 + 3y2 6x

)
+ i

(
6x2y − 2y3 −6xy
−6xy 6y

)
.

The matrix B = 2 Im(∂2F ) has the form

B =

(
12x2y − 4y3 −12xy
−12xy 12y

)
and now we can use it to compute the matrix

N = ∂2F + i
BzztBt

ztBz
=

(
2x3 −3x2

−3x2 6x

)
+ i

(
3x2y + y3 −3xy
−3xy 3y

)
.

If we denote by R and I the real and imaginary part of N respectively, the
construction of section 1.4.2 provides us with a technique to build a coframe
ẽ = (dx, dy, ξ0, ξ1, η0, η1) such that gG = 1

4

∑1
h,k=0((I−1)h,kξhξk + (ξ2)2 +

Ih,kηhηk + (η2)2) as (1.21). In order to find an orthonormal coframe, we
compute the Cholesky decomposition of I−1 = U tU , obtaining

U =

(
1√
y3

x√
y3

0 1√
3y

)
, U−1 =

(√
y3 −

√
3yx

0
√

3y

)
.

We choose I−1 instead of I just because it gives entries that are easier to
work with. We can produce the following transformation, represented in the
coframe ẽ in order to obtain an orthonormal coframe e

B =


√
3

2y
I2

1
2
U

1
2

1
2
(U−1)t

1
2

 .

Explicitly, we want ek = Bk
h ẽ

h, so with respect to the chart

(x, y, ζ0, ζ1, φ, ζ̃0, ζ̃1, φ̃),
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the new coframe e on Q has the form:

e1 =

√
3

2y
dx e2 =

√
3

2y
dy (1.23)

e3 = − x3√
2φy3

dζ0 + 3
x2√
2φy3

dζ1 +
1√
2φy3

dζ̃0 +
x√
2φy3

dζ̃1

e4 = −
√

3x2√
2φy

dζ0 +

√
6x√
φy
dζ1 +

1√
6φy

dζ̃1

e5 =
1

2φ
dφ e6 =

√
y3√
2φ
dζ0

e7 = −
√

3yx√
2φ

dζ0 +

√
3y√
2φ
dζ1

e8 = − ζ̃0
2φ
dζ0 −

ζ̃1
2φ
dζ1 +

ζ0
2φ
dζ̃0 +

ζ1
2φ
dζ̃1 +

1

2φ
dφ̃

If we now compute the differentials, we obtain

de1 =
2√
3
e1,2 de2 = 0 (1.24)

de3 = 2e1,4 −
√

3e2,3 + e3,5 de4 =
4√
3
e1,7 − 1√

3
e2,4 + e4,5

de5 = 0 de6 =
√

3e2,6 − e5,6

de7 = −2e1,6 +
1√
3
e2,7 − e5,7 de8 = −2e3,6 − 2e4,7 − 2e5,8

On the Lie algebra

Let q be the Lie algebra of Q. With the structure constants (1.24), we can
compute the derived subalgebra

n := q(1) = [q, q] = 〈e1, e3, e4, e6, e7, e8〉

The algebras of the derived series q(n), with q(0) = q and q(n+1) = [q(n), q(n)]
continues with

q(2) = 〈e3, e4, e7, e8〉 , q(3) = 〈e8〉 , q(4) = 0.

Therefore, Q is a solvmanifold.
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In addition, ad(X) has real eigenvalues for all X ∈ q, so in particular it
is an Alekseevskian space. By the Alekseevsky-Cortés classification, there
are only two possibilities: SU(2, 2)/S(U(2) × U(2)) and G∗2/SO(4). We can
verify that the second case occurs as follows.

Notice first that the orthogonal complement a = 〈e2, e5〉 of n is abelian,
i.e. q is standard in the sense of [27]. This is consistent with a general result
of Lauret [34, Theorem 3.1, p. 1874] stating that any Einstein solvmanifold
is standard.

Given a semisimple Lie group G, there are closed subgroups K,A,N , such
that

• K is compact maximal;

• A is abelian;

• N is nilpotent;

• G = KAN .

This decomposition is called Iwasawa decomposition (e.g. [32, Theorem 6.46,
p. 374]). The Lie algebras of these groups are then such that g = k⊕ a⊕ n
with a abelian and n nilpotent. In particular a+n is called Borel subalgabra.

Back to our solvmanifold Q, it is not difficult to check that q = a n n
is the Borel subalgebra of g∗2 (see e.g. [12, Example 4.3, p. 17]). By [47,
Proposition 4.4, p. 59], Q has an Einstein metric which makes it isometric

to the symmetric space
G∗2

SO(4)
. Since the (standard) Einstein metric on a

solvmanifold is unique ([27, Theorem E, p. 283]), the quaternion Kähler
submanifold Q is isometric to G∗2/SO(4). In particular, if we compute its
scalar curvature, we get −8.

Quaternionic Kähler structure

By substituting the structure constants from (1.24) in the Koszul formula,
we can obtain the Levi-Civita connection and the corresponding curvature
tensor Ω.

The aim is now to find three almost complex structures I, J,K giving the
quaternion Kähler structure, without using the identification with the Wolf
space G∗2/SO(4) ([48, Theorem 5.4, p. 1043]). The idea is to look for them
in the holonomy algebra, since we know the latter is inside sp(2) + sp(1) and
sp(1) contains them. In order to compute the holonomy algebra, we use the
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so-called “holonomy theorem” by Cartan and Ambrose and Singer (see e.g.
[44, Theorem 2.8, p. 27]) that tells us it coincides with the image of the
curvature form. Interpreting Ω as an endomorphism R of T 1

1Q = End(TQ)
mapping X[ ⊗ Y to Ω(X, Y ) : TQ → TQ, the map R is symmetric with
respect to the metric g for the symmetries of the Riemannian tensor, in fact
at every point p ∈ Q for X, Y, Z,W ∈ TpQ

g(R(X[ ⊗ Y ), Z[ ⊗W ) = g(Ω(X, Y )Z,W ) = g(Ω(Z,W )X, Y )

= g(R(Z[ ⊗W ), X[ ⊗ Y ).

Since R is symmetric, it is also diagonalisable. In particular, fixing the
coframe e, R is a map from matrices to matrices and its image corresponds
to the image of the curvature form Ω. Therefore, in order to find the image
of the curvature form, it is sufficient to find the eigenvectors (eigenmatri-
ces) corresponding to non-zero eigenvalues. The map R has three different
eigenvalues: −20

3
,−4, 0. Since the Levi-Civita connection is invariant, so is

Ω and thus, as an endomorphism, R is equivariant. In particular, since sp(1)
is irreducible, by Schur’s Lemma, R will act on it as a scalar multiplication,
so we expect to find it inside an eigenspace.

We can find a basis I ′, J ′, K ′ for the eigenspace corresponding to −20
3

such that by sending i, j, k ∈ sp(1) in I ′, J ′, K ′ we obtain an isomorphism
between sp(1) and this eigenspace seen as subalgebra of gl(8,R). However,
no linear combination of I ′, J ′, K ′ is such that its square is −I8, and thus
these cannot be almost complex structures.

Therefore, we must look for them in the eigenspace corresponding to −4.
We can take in particular the three eigenmatrices I, J,K corresponding to
the three 2-forms:

ωI = −
√

3

2
e1,3 − 1

2
e1,7 +

1

2
e2,4 −

√
3

2
e2,6 +

1

2
e3,8 −

√
3

2
e4,5 +

1

2
e5,6 −

√
3

2
e7,8;

ωJ =
1

2
e1,4 −

√
3

2
e1,6 +

√
3

2
e2,3 +

1

2
e2,7 − 1

2
e3,5 −

√
3

2
e4,8 −

√
3

2
e5,7 − 1

2
e6,8;

ωK = −e1,2 −
√

3

2
e3,4 +

1

2
e3,6 − 1

2
e4,7 + e5,8 −

√
3

2
e6,7.

We can check that I2 = J2 = K2 = IJK = −I8, so these are three matrices
acting on R8 as i, j, k ∈ Sp(1). In particular, this correspondence provides
an isomorphism between the eigenspace of -4 and sp(1). As a consequence
of Schur’s lemma, the eigenspaces of −20

3
and −4 commute as subalgebras of
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gl(8,R), so the holonomy Lie algebra of Q is isomorphic to sp(1) + sp(1) ∼=
so(3) + so(3) ∼= so(4). We denote by the same symbols the almost complex
structures corresponding to the matrices I, J,K.

In order to check that I, J,K are the almost complex structures providing
the quaternion-Kähler structure, we apply Corollary 1.3.42, so we need need
to check the differential condition on the corresponding differential 2-forms
ωI , ωJ , ωK .

In order to simplify computations, we first change coframe to an adapted
one u. Explicitly, we choose it so that I, J,K are represented by the matrices
i8, j8, k8 respectively in the basis u, that is

u1 = e1, u2 = −Ie1, u3 = −Je1, u4 = −Ke1,
u5 = e5, u6 = −Ie5, u7 = −Je5, u8 = −Ke5.

Explicitly, the matrix of frame change is A = (Ahk)h,k such that uk = Ahkeh

A =



1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0

0
√
3
2

0 0 0 0 −1
2

0

0 0 −1
2

0 0 −
√
3
2

0 0
0 0 0 0 1 0 0 0

0 0
√
3
2

0 0 −1
2

0 0

0 1
2

0 0 0 0
√
3
2

0
0 0 0 0 0 0 0 −1


.

Notice that this is an orthogonal matrix, which tells us that also the frame
u is orthonormal with respect to gQ.

The following are the differentials with respect to the new dual coframe:

du1 =
2√
3
u1,4

du2 = −
√

3u1,3 − u1,6 +
2√
3
u2,4 + u2,5 + u4,7

du3 = − 1√
3
u1,2 − u1,7 − 2√

3
u3,4 + u3,5 − u4,6

du4 = 0 du5 = 0

du6 = −u1,2 −
√

3u1,7 + u3,4 − u5,6

du7 = −u1,3 +
√

3u1,6 − u2,4 − u5,7
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du8 = 2u2,3 − 2u5,8 − 2u6,7

With respect to this new frame, the three 2-forms are written as

ωI = −u1,2 + u3,4 − u5,6 + u7,8;

ωJ = −u1,3 − u2,4 − u5,7 − u6,8;
ωK = −u1,4 + u2,3 − u5,8 + u6,7.

Now we can see how these three forms generate a differential ideal, and in
particular, if αI := 2u6, αJ := 2u7 and αK := −

√
3u1 + u8, then

dωI = αK ∧ ωJ − αJ ∧ ωK ;

dωJ = αI ∧ ωK − αK ∧ ωI ;
dωK = αJ ∧ ωI − αI ∧ ωJ .

Therefore, by Corollary 1.3.42, we verify that Q has a quaternionic Kähler
structure given by I, J,K. We can also write the quaternionic 4-form explic-
itly:

Φ = −6u1,2,3,4 + 2u1,2,5,6 − 2u1,2,7,8 + 2u1,3,5,7 + 2u1,3,6,8 + 2u1,4,5,8 − 2u1,4,6,7

− 2u2,3,5,8 + 2u2,3,6,7 + 2u2,4,5,7 + 2u2,4,6,8 − 2u3,4,5,6 + 2u3,4,7,8 − 6u5,6,7,8.

1.6.2 Example in dimension 12

The second example will be obtained from the polynomial function y21y2
defined on U := R+ × R+. Let H = {(y1, y2) ∈ U |y21y1 = 1}, that is the
graph of x 7→ 1/x2 on positive real numbers, so in particular U = R+ · H.
On U we define gU = −1

4
∂2 log(y21y2) = 1

2y21
dy21 + 1

4y21
dy22. Consider now the

following embedding of H:

γ : R+ −→ H

t 7−→ (t,
1

t2
)

In particular, if ιH : H → U is the inclusion, so that gH = gU , then (H, gH)
is isometric to (R+, γ∗gH), but

γ∗gH = γ∗ι∗gU =
(dt)2

2t2
+

(
d
(

1
t2

))2
4
t4

=
3(dt)2

2t2
=

(
d

(√
3

2
log(t)

))2
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so t 7→
√

3
2

log(t) is an isometry between the euclidean real line and R+, and

therefore H. In particular, since R is complete, so is H, implying again that
the resulting quaternionic Kähler manifold Q will be complete by Corollary
1.5.4.

Now let M := TU ∼= R2 + i(R+ × R+) ⊂ C2 equipped with gM =
dx21
2y21

+
dy21
2y21

+
dx22
4y22

+
dy22
4y22

. Notice that M is isometric to the product of two

rescalings of the hyperbolic plane.
Following the explicit construction of the c-map we define F (z0, z1, z2) :=

h(z1,z2)
z0

= (z1)2z2
z0

. Setting z1
z0

= x1 + iy1 and z2
z0

= x2 + iy2, the Hessian matrix

∂2F is of the form:

∂2F =


2z21z2
z30

−2z1z2
z20

− z21
z20

−2z1z2
z20

2z2
z0

2z1
z0

− z21
z20

2z1
z0

0


=

 2(x1 + iy1)
2(x2 + iy2) −2(x1 + iy1)(x2 + iy2) −(x1 + iy1)

2

−2(x1 + iy1)(x2 + iy2) 2(x2 + iy2) 2(x1 + iy1)
(x1 + iy1)

2 2(x1 + iy1) 0


=

2x2x
2
1 − 4y1y2x1 − 2x2y

2
1 2y1y2 − 2x1x2 y21 − x21

2y1y2 − 2x1x2 2x2 2x1
y21 − x21 2x1 0


+ i

2y2x
2
1 + 4x2y1x1 − 2y21y2 −2x2y1 − 2x1y2 −2x1y1
−2x2y1 − 2x1y2 2y2 2y1
−2x1y1 2y1 0

 .

Following the construction as in the previous example, we obtain

N = R+ iI

=

 2x21x2 −2x1x2 −x21
−2x1x2 2x2 2x1
−x21 2x1 0

+ i


2x21y

2
2+y

2
1y

2
2+x

2
2y

2
1

y2
−2x1y2 −x2y21

y2

−2x1y2 2y2 0

−x2y21
y2

0
y21
y2

 .

We use this matrix to build an intermediate coframe as in (1.20), that is
ẽ = (dx, dy, ξ0, ξ1, ξ2, η0, η1, η2) such that

gG =
1

4

(
Ih,kξhξk + (ξ3)2 + (I−1)h,kηhηk + (η3)2

)
.
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As for the previous example, we compute the Cholesky decomposition of
I−1 = U tU , obtaining

U =


1

y1
√
y2

x1
y1
√
y2

x2
y1
√
y2

0 1√
2y2

0

0 0
√
y2
y1

 .

The following is the transformation represented with respect to the coframe
ẽ in order to obtain an orthonormal coframe e

1√
2y1

1
2y2

1√
2y1

1
2y2

1
2
U

1
2

1
2
(U t)−1

1
2


.

The new coframe can be written in the chart

(x1, x2, y1, y2, ζ0, ζ1, ζ2, φ, ζ̃0, ζ̃1, ζ̃2, φ̃)

(see section 1.4.2) as follows:

e1 =
1√
2y1

dx1; e2 =
1

2y2
dx2; (1.26)

e3 =
1√
2y1

dy1; e4 =
1

2y2
dy2;

e5 = − x1
2x2√

2φy2y1
dζ0 +

√
2x1x2√
φy2y1

dζ1 +
x1

2

√
2φy2y1

dζ2 +
1√

2φy2y1
dζ̃0

+
x1√

2φy2y1
dζ̃1 +

x2√
2φy2y1

dζ̃2;

e6 = − x1x2√
φy2

dζ0 +
x2√
φy2

dζ1 +
x1√
φy2

dζ2 +
1

2
√
φy2

dζ̃1;

e7 = −
x21
√
y2√

2φy1
dζ0 +

√
2x1
√
y2√

φy1
dζ1 +

√
y2√

2φy1
dζ̃2;

e8 =
1

2φ
dφ; e9 =

y1
√
y2√

2φ
dζ0;
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e10 = −
x1
√
y2√
φ

dζ0 +

√
y2√
φ
dζ1; e11 = − x2y1√

2φy2
dζ0 +

y1√
2φy2

dζ2;

e12 = − ζ̃0
2φ
dζ0 −

ζ̃1
2φ
dζ1 −

ζ̃2
2φ
dζ2 +

ζ0
2φ
dζ̃0 +

ζ1
2φ
dζ̃1 +

ζ2
2φ
dζ̃2 +

1

2φ
dφ̃.

The differentials are then

de1 =
√

2e1,3 de2 = 2e2,4

de3 = 0 de4 = 0

de5 = 2e1,6 + 2e2,7 −
√

2e3,5 − e4,5 + e5,8

de6 = 2e1,11 + 2e2,10 − e4,6 + e6,8

de7 = 2e1,10 −
√

2e3,7 + e4,7 + e7,8

de8 = 0

de9 =
√

2e3,9 + e4,9 − e8,9

de10 = −2e1,9 + e4,10 − e8,10

de11 = −2e2,9 +
√

2e3,11 − e4,11 − e8,11

de12 = −2e5,9 − 2e6,10 − 2e7,11 − 2e8,12

With these structure constants we compute the Levi-Civita connection and
its curvature tensor Ω.

On the Lie algebra

Let q be the Lie algebra of Q. We can compute its derived algebra:

n := q(1) = 〈u1, u2, u3, u5, u6, u7, u10, u11, u12〉 .

By continuing the derived series, one gets q(4) = 0, so LQ is a solvmanifold.
An explicit computation shows that for all X ∈ n, adX : q → q has real

eigenvalues, so q is real solvable. By definition, q is an Alekseevskian Lie alge-
bra, so Q is an Alekseevskian space. By the Alekseevsky-Cortés classification,
there are only three possibilities: Sp(3, 1)/Sp(3)Sp(1), SU(3, 2)/S(U(3)U(2))
and SO0(4, 3)/(SO(4)SO(3)). It follows the verification that we are dealing
with the third case.

The orthogonal complement of n is a = 〈u4, u8, u9〉 and is abelian, so q is
standard ([27]).
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We can check that q = a n n is the Borel subalgebra b of so(4, 3) as
follows. The geometry of the roots of B3 implies that b has a basis

H1, H2, H3, Xε1 , Xε2 , Xε3 , Xε1−ε3 , Xε2−ε3 , Xε1+ε3 , Xε2+ε3 , Xε1+ε2 ,

with [H,Xα] = α(H)Xα and [Xα, Xβ] a non-zero multiple of Xα+β.
The nilradical of b, 〈Xα|α〉, is uniquely determined by this condition

by the classification of nice nilpotent Lie groups [13], where it appears as
96421 : 426. Since the same condition is satisified by b, the two Lie algebras
coincide.

As for the previous example, the metric on Q makes it isometric to the
symmetric space SO0(4, 3)/SO(4)SO(3) ([47, Proposition 4.4, p. 59] and
[27, Theorem E, p. 283]). In particular, in our case, the metric has scalar
curvature −10.

On the quaternionic structure

As in the previous example, we aim to find sp(1) containing the three almost
complex structures I, J,K giving the quaternion Kähler structure by looking
at the eigenmatrices of the curvature tensor seen as endomorphism. The
curvature endomorphism R has three different eigenvalues: −8,−6, 0, the
eigenspace of −8 has dimension 3 and the eigenspace of −6 has dimension
6. Since the curvature endomorphism is equivariant and sp(1) is irreducible,
we expect to find its representation inside one of the eigenspaces.

We can find an isomorphism between the eigenspace of −8 with commu-
tator as Lie brackets and the Lie algebra sp(1); however, none of its elements
squares to −I12, so it cannot contain any almost complex structure.

As for the eigenspace V−6 corresponding to the eigenvalue −6, since the
holonomy Lie algebra is contained in sp(3) + sp(1), by uniqueness of the
decomposition in irreducible representation, we expect an orthogonal de-
composition as V−6 ∼= sp(1) + sp(1)⊥. Now the strategy is the following:

• we look for a matrix I in V−6 such that I2 = −I12;

• since the action of I on sp(1) is an isomorphism when restricted to the
orthogonal complement of I, the space ker([I.·])∩〈I〉⊥ is the orthogonal
complement of sp(1) in V−6;

• we take the orthogonal complement of sp(1)⊥ in V−6, which necessarily
is the representation of sp(1) we are looking for;
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• we pick a J in the orthogonal complement of I in sp(1) and we normalise
it so that J2 = −I12;

• finally we define K = IJ and we check whether K is still in sp(1).

In this way we obtain three forms I, J,K corresponding to the following
2-forms on Q:

ωI = − 1√
2
e1,5 − 1√

2
e1,11 − 1

2
e2,5 − 1√

2
e2,10 +

1

2
e2,11 +

1√
2
e3,7 − 1√

2
e3,9

+
1√
2
e4,6 − 1

2
e4,7 − 1

2
e4,9 +

1

2
e5,12 − 1√

2
e6,8 − 1

2
e7,8 +

1

2
e8,9

− 1√
2
e10,12 − 1

2
e11,12;

ωJ =
1√
2
e1,7 − 1√

2
e1,9 +

1√
2
e2,6 − 1

2
e2,7 − 1

2
e2,9 +

1√
2
e3,5 +

1√
2
e3,11

+
1

2
e4,5 +

1√
2
e4,10 − 1

2
e4,11 − 1

2
e5,8 − 1√

2
e6,12 − 1

2
e7,12

− 1√
2
e8,10 − 1

2
e8,11 − 1

2
e9,12;

ωK = −e1,3 − e2,4 − 1√
2
e5,6 − 1

2
e5,7 +

1

2
e5,9 − 1√

2
e6,11 − 1√

2
e7,10 +

1

2
e7,11

+ e8,12 − 1√
2
e9,10 − 1

2
e9,11.

We can check on the corresponding matrices that K2 = IJK = −I12, so we
have found three matrices acting on R12 as i, j, k ∈ Sp(1) and they generate
the desired sp(1).

It turns out that also the complement of sp(1) in V−6 has three almost
complex structures I ′, J ′, K ′ satisfying the quaternionic identities, so in par-
ticular V−6 ∼= sp(1) + sp(1) ∼= so(3) + so(3) ∼= so(4), and thus the holonomy
algebra is isomorphic to so(3) + so(4).

In order to simplify computations, we change coframe as follows:

u1 = e1, u2 = −Ie1, u3 = −Je1, u4 = −Ke1,
u5 = e2, u6 = −Ie2, u7 = −Je2, u8 = −Ke2,
u9 = e8, u10 = −Ie8, u11 = −Je8, u12 = −Ke8.
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Explicitly, the matrix of frame change is A = (Ahk)h,k such that uk = Ahkeh

A =



1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 1√

2
0 0 0 1

2
0 0 0 0 −1

2
0

0 0 0 0 0 0 − 1√
2

0 0 − 1√
2

0 0

0 0 − 1√
2

0 0 0 1
2

0 0 −1
2

0 0

0 0 0 0 0 0 0 0 1 0 0 0
0 0 1√

2
0 0 0 1

2
0 0 −1

2
0 0

0 0 0 0 0 1√
2

0 0 0 0 1√
2

0

0 1√
2

0 0 0 −1
2

0 0 0 0 1
2

0

0 0 0 0 0 0 0 0 0 0 0 −1



.

This matrix is orthonormal as expected, so the new frame u is orthonormal
with respect to gQ.

The following are the structure constants relative to the dual coframe u:

du1 =
√

2u1,4

du2 = −u1,7 − u1,10 + u2,8 + u2,9 + 2u3,5 − u4,6 + u4,11

du3 = −u1,6 − u1,11 − u3,8 + u3,9 + u4,7 − u4,10

du4 = 0

du5 = 2u5,8

du6 = −u1,3 −
√

2u1,7 + u2,4 + u5,7 − u5,10 + u6,9 + u8,11

du7 = −u1,2 +
√

2u1,6 − u3,4 − u5,6 − u5,11 + u7,9 − u8,10

du8 = 0

du9 = 0

du10 = −u1,2 −
√

2u1,11 + u3,4 − u5,6 − u5,11 + u7,8 − u9,10

du11 = −u1,3 +
√

2u1,10 − u2,4 − u5,7 + u5,10 − u6,8 − u9,11

du12 = 2u2,3 + 2u6,7 − 2u9,12 − 2u10,11

With respect to this new frame, the three 2-forms are written as

ωI = −u1,2 + u3,4 − u5,6 + u7,8 − u9,10 + u11,12;
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ωJ = −u1,3 − u2,4 − u5,7 − u6,8 − u9,11 − u10,12;
ωK = −u1,4 + u2,3 − u5,8 + u6,7 − u9,12 + u10,11.

Now we can see how these three forms generate a differential ideal, so that
in particular, for αI := 2u10, αJ := 2u11 and αK := −

√
2u1 − u5 + u12, the

positive cyclic permutations in I, J,K of the following formula are satisfied

dωI = αK ∧ ωJ − αJ ∧ ωK .

Therefore, by Corollary 1.3.42, I, J,K provide the quaternion Kähler struc-
ture.

Actually, the same property holds for I ′, J ′ and K ′, so this manifold
has two different quaternionic Kähler structures where the almost complex
structures of the first commute with the one of the second.

Notice that since the manifold has dimension 12 > 8, by Theorem 1.3.41
it would have been enough to compute the exterior differential of the funda-
mental 4-form Φ.



Chapter 2

Construction of projective
special Kähler manifolds

In this chapter we present the content of the author’s paper [39]. Namely,
we provide a characterisation of projective special Kähler manifolds that will
hopefully shed more light on this type of structure. Our characterisation
is intrinsic in the sense that we reduce the projective special Kähler struc-
ture to data solely defined on the manifold itself. The characterisation is
obtained by means of a locally defined symmetric tensor that we call de-
viance, satisfying certain conditions: a differential one and an algebraic one.
Moreover, this characterisation provides a simpler way to build projective
special Kähler manifolds, and we display this in Chapter 3 by classifying
all possible projective special Kähler structures on 4-dimensional Lie groups.
Since we are ultimately interested in the c-map, throughout this chapter we
adopt the same convention as [18], where we only consider projective special
Kähler manifolds obtained from conic special Kähler manifolds with signa-
ture (2n, 2). Nonetheless, our characterisation can be generalised to generic
signatures. It is worth mentioning that the deviance, being a symmetric ten-
sor of type (3,0), can often be seen as a homogeneous polynomial of degree
three, which may have a role in providing a partial inversion of the r-map.

2.1 Difference tensor

This section is devoted to the tensor obtained as difference between the flat
and Levi-Civita connection on a special Kähler manifold. We present the

65
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known symmetry of this tensor and write the flatness condition in terms of
it [23, p. 9-11].

Let (M̃, g̃, Ĩ , ω̃,∇) be a special Kähler manifold of dimension n + 1. We

define η̃ as the (1,2)-tensor such that for all vector fields X, Y on M̃ we have

η̃XY = ∇XY − ∇̃LC
X Y , where the employed notation η̃XY means η̃(X, Y ).

Consider frames adapted to the pseudo-Kähler structure, hence such that
the linear model is (R2n+2, g0, I0, ω0), where g0 =

∑2k
k=1(e

k)2 − (e2n+1)2 −
(e2n+2)2, Ie2k−1 = e2k for k = 1, . . . , n + 1 (see (1.12)) and ω0 = g0(I0·, ·).
Let ω∇ and ω̃LC be the connection forms corresponding respectively to the
flat and the Levi-Civita connections represented with respect to an adapted
frame. Thus we have

ω∇ = ω̃LC + η̃

Since both connections are symplectic, the corresponding forms, and thus
η̃, will have values in sp(2n+ 2,R) which can be described as

{A ∈ gl(2n+ 2,R)|AtI0 + I0A = 0},

where At is the transposed of A with respect to g0, that is such that for all
X, Y ∈ R2n+2, g0(AX, Y ) = g0(X,A

tY ). It follows that η̃ corresponds to a
section of T ∗ ⊗ sp(2n + 2,R) where T is the standard real representation of
U(n, 1).

The Lie algebra sp(2n+ 2,R) is closed with respect to transposition, and
thus it is also closed with respect to symmetrisation and antisymmetrisation.
As a consequence, we have the following splitting:

sp(2n+ 2,R) = (sp(2n+ 2,R) ∩ sym(2n, 2))⊕ (sp(2n+ 2,R) ∩ so(2n, 2))

The first summand consists of symmetric matrices A ∈ gl(2n+2,R) such that
0 = AtI0+I0A = AI0+I0A and thus, as complex endomorphisms, its elements
are all the real, C-antilinear and symmetric ones and therefore it is [[S2,0]].
By contrast, the second summand is u(n, 1), which is isomorphic to [Λ1,1].
As a u(n, 1)-representation, the subspace containing η̃ is then isomorphic to

[[Λ1,0]]⊗ ([[S2,0]]⊕ [Λ1,1]) = ([[Λ1,0]]⊗ [[S2,0]])⊕ ([[Λ1,0]]⊗ [Λ1,1]).

The condition d∇Ĩ = 0 is equivalent to requiring the symmetry of ∇Ĩ =
∇̃LC Ĩ + [η̃, Ĩ] = [η̃, Ĩ] in the covariant indices. Consider the splitting of
η̃ = η̃S + η̃A in its symmetric and antisymmetric part in the last two indices.
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Then η̃A ∈ u(n, 1) so in particular it commutes with Ĩ giving [η̃A, Ĩ] = 0,

whereas [η̃S, Ĩ] = η̃S Ĩ − Ĩ η̃S = (η̃S)tĨ − Ĩ η̃S = −2Ĩ η̃S. Thus [η̃, Ĩ] = [η̃S, Ĩ] +

[η̃A, Ĩ] = −2Ĩ η̃S which then needs to be symmetric in the two covariant

indices. However, the composition with Ĩ is an isomorphism acting only on
the contravariant index, so [η̃, Ĩ] is symmetric in the two covariant indices if
and only if η̃S itself is. Consider now the linear map that anti-symmetrises
the two covariant indices

A : T ∗ ⊗ T ⊗ T ∗ −→ Λ2T ∗ ⊗ T (2.1)

α⊗X ⊗ β 7−→ α ∧ β ⊗X.

By a straightforward computation on the irreducible components of [[Λ1,0]]⊗
[[S2,0]], one can see that applying A, the only vanishing component is [[S3,0]]
and hence this is where η̃S must be.

Both the Levi-Civita and the flat connection are torsion-free, therefore η̃
must be symmetric in the two covariant indices. We already know that A(η̃S)
vanishes thanks to the previous condition and moreover, (2.1) is injective
(actually an isomorphism) when restricted to T ∗⊗ so(2n+ 2,R), so A(η̃A) =
0 if and only if η̃A = 0. The torsion-free condition is then equivalent to
η̃ = η̃S, so in conclusion, η̃ is in the irreducible component isomorphic to
[[S3,0]]. The isomorphism is constructed with the musical isomorphisms [ and
] corresponding to the metric; explicitly, it is a restriction of

[2 = id⊗ [⊗ id : T ∗ ⊗ T ⊗ T ∗ −→ T3

with inverse ]2 := id ⊗ ] ⊗ id. We have then recovered the following result
(see [23, Proposition 1.34, p. 39] or [6, Lemma 3, p.1745]).

Lemma 2.1.1. On a special Kähler manifold (M̃, g̃, Ĩ , ω̃,∇), the tensor η̃ is

a section of ]2[[S3,0M̃ ]].

Notice that in the process we have also proven

∇Ĩ = [η̃, Ĩ] = −2Ĩη. (2.2)

By using the flatness of ∇, we observe:

0 = Ω∇ = dω∇ +
1

2
[ω∇ ∧ ω∇]



68 CHAPTER 2. CONSTRUCTION OF PSK MANIFOLDS

= dω̃LC + dη̃ +
1

2

(
[ω̃LC ∧ ω̃LC ] + [ω̃LC ∧ η̃] + [η̃ ∧ ω̃LC ] + [η̃ ∧ η̃]

)
= dω̃LC +

1

2
[ω̃LC ∧ ω̃LC ] + dη̃ + [ω̃LC ∧ η̃] +

1

2
[η̃ ∧ η̃]

= Ω̃LC + d̃LC η̃ +
1

2
[η̃ ∧ η̃],

where Ω̃LC and d̃LC are respectively the curvature and exterior covariant
derivative of the Levi-Civita connection on M̃ .

Arguing as in [23, Proposition 1.34, p. 39] (see also [6, Proposition 4, p.
1743]), we can prove

Proposition 2.1.2. For a Kähler manifold (M̃, g̃, Ĩ , ω̃) with a tensor η̃ in

T ∗M⊗TM⊗T ∗M such that [2η̃ is a section of [[S3,0M̃ ]] and with a connection
∇ with connection form ω∇ = ω̃LC + η̃, then

Ω∇ = 0 if and only if

{
Ω̃LC + 1

2
[η̃ ∧ η̃] = 0

d̃LC η̃ = 0

Proof. The Levi-Civita connection form takes values in u(n, 1), so Ω̃LC is
of type S2(u(n, 1)) and therefore, if [ is the map lowering the contravariant

index, we get that [Ω̃LC belongs to Ω2(M̃, [Λ1,1M̃ ]). Now, since [η̃ = [2η̃ is a

section of [[S3,0M̃ ]], it is in particular in Ω1(M̃, [[S2,0M̃ ]]), so [d̃LC η̃ = d̃LC[2η̃

belongs to Ω2(M̃, [[S2,0M̃ ]]). Finally, computations on a basis, show that

[[η̃ ∧ η̃] belongs to Ω2(M̃, [Λ1,1M̃ ]). Since [[S2,0M̃ ]] and [Λ1,1M̃ ] intersect

trivially, the quantities d̃LC η̃ and Ω̃LC + 1
2
[η̃ ∧ η̃] are independent, so their

sum is 0 if and only if they vanish separately.

2.2 Conic and projective special Kähler met-

rics

In this section we will consider the case of a projective special Kähler manifold
(π : M̃ →M,∇) and we will give the explicit relation between the metric on

M̃ and the one on M (see e.g. [17, Section 1.1]).

The mapping π : M̃ → M is a C∗-principal bundle with infinitesimal
principal action generated by ξ and Ĩξ. We can always build the function
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r =
√
−g̃(ξ, ξ) : M̃ → R+ and define S = r−1(1) ⊆ M̃ with inclusion map

ιS : S ↪→ M̃ . Now r has no critical points, since

dr =
d(r2)

2r
=
∇̃LC(r2)

2r
= −∇̃

LC(g̃(ξ, ξ))

2r
(2.3)

= −2g̃(∇̃LCξ, ξ)

2r
= − g̃(·, ξ)

r
= −1

r
ξ[

and g̃ is non-degenerate. It follows that S is a submanifold of dimension
2n + 1 whose tangent bundle corresponds to ker(dr) ⊂ TM̃ . Notice that

dr(Ĩξ) = − g̃(Ĩξ,ξ)
r

= − ω̃(ξ,ξ)
r

= 0, so Ĩξ is a vector field tangent to S and it
induces a principal U(1)-action. The induced metric on S is gS = ι∗S g̃ and
thus LĨξgS = ι∗SLĨξg̃ = 0.

The principal action of C∗ on M̃ induces by inclusion an R+-action, and
in addition we have

Lemma 2.2.1. The map r : M̃ → R+ is degree-one homogeneous with respect
to the action of R+ ⊆ C∗ on M̃ , i.e. for all s ∈ R+ and p ∈ M̃

r(ps) = r(p)s

Proof. Define the map

f : R −→ R+, t 7−→ r(pet)

Notice that t 7→ et is the exponential map of the Lie group R+, so pet = φtξ(p),
where φξ is the flow of ξ. The derivative of f is then

df

dt
(t0) =

d

dt
(r ◦ φtξ(p))|t=t0 =

d

dt
(r ◦ φtξφ

t0
ξ (p))|t=0 = (Lξr)(φt0ξ (p))

= dr(ξ)(φt0ξ (p)) = − g̃(ξ, ξ)

r
(φt0ξ (p)) = r(φt0ξ (p)) = r(pet0) = f(t0)

moreover, f(0) = r(p), so f is a solution of the following initial value problem:{
f ′ = f

f(0) = r(p)

which has a unique solution, namely f(t) = r(p)et and thus r(pet) = r(p)et.
Replacing et with s gives the statement.
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As a consequence of this lemma, we can now define a retraction

p : M̃ −→ S, u 7−→ u
1

r(u)
.

It is well defined, since r(p(u)) = r
(
u 1
r(u)

)
= r(u)

r(u)
= 1. Moreover, pιS = idS

implies the surjectivity of p, which allows us to see p : M̃ → S as a principal
R+-bundle and πS := πιS : S →M as a principal S1-bundle; the composition
of the two gives π.

Lemma 2.2.2. If (π : M̃ → M,∇) is projective special Kähler, then M̃ is
diffeomorphic to S × R+, and moreover

g̃ = r2p∗gS − dr2

Proof. Let a : S × R+ → M̃ be the restriction of the principal right action
M̃ ×R+ → M̃ to S×R+ and consider also (p, r) : M̃ → S×R+. These maps

are smooth and each an inverse to the other, in fact if u ∈ M̃ , a(p, r)(u) =
a(p(u), r(u)) = u 1

r(u)
r(u) = u and for all (q, s) ∈ S × R+, (πS, r)a(q, s) =

(p(qs), r(qs)) = (q s
r(qs)

, r(q)s) = (q, s).
For the second part of the statement consider the symmetric tensor

g′ =
1

r2
(g̃ + dr2)

We want to prove it is basic, that is horizontal and invariant with respect to
the principal R+-action.

Since there is only one vertical direction, and since g′ is symmetric, it
is enough to check whether g′ vanishes when evaluated on the fundamental
vector field ξ in one component. Using (2.3) we obtain

g′(ξ, ·) =
1

r
(g̃(ξ, ·) + dr(ξ)dr) =

1

r
(−rdr + rdr) = 0.

And now for the R+-invariance:

Lξg′ = −2
Lξr
r3

(g̃ + dr2) +
1

r2
(Lξg̃ + 2Lξ(dr)dr)

= −2
dr(ξ)

r3
(g̃ + dr2) +

1

r2
(2g̃ + 2(dιξdr + ιξd

2r)dr)
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= −2
r

r3
(g̃ + dr2) +

1

r2
(2g̃ + 2dr2) = 0.

Therefore g′ is basic, which in turn implies it is of the form p∗g′′ for some
tensor g′′ ∈ T2S, so that

g̃ = r2p∗g′′ − dr2.

The proof is ended by the following observation:

gS = ι∗S g̃ = ι∗S
(
r2p∗g′′ − dr2

)
= ι∗Sp

∗g′′ − ι∗Sdr2 = (pιS)∗g′′ = g′′.

The C∗-bundle π : M̃ →M has a unique principal connection orthogonal
to the fibres with respect to g̃; the connection form can be written as

dr

r
+ iϕ̃. (2.4)

Explicitly, we can describe ϕ̃ using the metric:

ϕ̃ =
g̃(Ĩξ, ·)
g̃(Ĩξ, Ĩξ)

= − 1

r2
Iξ[ = − 1

r2
ιξω̃.

If we restrict it to S, we obtain a connection form ϕ = ι∗Sϕ̃ = −ι∗S(ιξω)
corresponding to the S1-action on S.

Notice that p∗ϕ = ϕ̃, because the connection form (2.4) is right-invariant,
so ϕ̃ = p∗ϕ′ for some ϕ′, and thus ϕ = ι∗Sϕ̃ = ι∗Sp

∗ϕ′ = (pιS)∗ϕ′ = ϕ′.

The moment map for the action generated by Ĩξ is µ : M̃ → u(1) ∼= R
s.t. dµ = ιĨξω = −ξ[ = rdr = d

(
r2

2

)
, so up to an additive constant, we can

assume

µ =
r2

2
.

Since S = µ−1(1
2
) is a level set of the moment map and M is the Kähler

quotient, πS : S → M is a pseudo-Riemannian submersion and thus we can
write gS = π∗Sg − ϕ2.

Proposition 2.2.3. A projective special Kähler manifold (π : M̃ → M,∇)
satisfies

g̃ = r2π∗g − r2ϕ̃2 − dr2;

ω̃ = r2π∗ωM + rϕ̃ ∧ dr.
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Proof. From the previous arguments

g̃ = r2p∗gS − dr2 = r2p∗(π∗Sg − ϕ2)− dr2

= r2(πSp)
∗g − r2ϕ̃2 − dr2 = r2π∗g − r2ϕ̃2 − dr2.

For the Kähler form it is enough to notice that π is holomorphic, M being a
Kähler quotient, and that

(rϕ̃) ◦ Ĩ = −1

r
Ĩξ[Ĩ = −1

r
ξ[ = dr.

For future reference we give the following

Remark 2.2.4. The curvature of ϕ is computed using Lemma 1.2.2:

dϕ = −dι∗Sιξω̃ = ι∗S(−Lξω̃ + ιξdω̃) = −2ι∗Sω̃ = −2π∗SωM

in fact, the restriction to S of ω̃ maps fixes r = 1 and thus kills dr.
It will also be useful to compute

dϕ̃ = −2π∗ωM .

2.3 Lifting the coframe

The purpose of this section is to lift a generic unitary coframe on a pro-
jective special Kähler manifold to one on the corresponding conic special
Kähler. This will enable us to give a more explicit formulation of the Levi-
Civita connection and associated curvature tensor on the conic special Kähler
manifold.

In our convention, on a Kähler manifold (M, g, I, ω), the Hermitian form

is h = g + iω. Given a projective special Kähler manifold (π : M̃ → M,∇)
and an open subset U ⊆ M , consider a unitary coframe θ = (θ1, . . . , θn) ∈
Ω1(U,Cn) on M , then we can build a coframe θ̃ ∈ Ω1(π−1(U),Cn+1) on M̃
as follows:

θ̃k =

{
rπ∗θk if k ≤ n

dr + irϕ̃ if k = n+ 1
(2.5)

This coframe is compatible with the U(n, 1)-structure because it takes com-
plex values and

n∑
k=1

θ̃kθ̃k − θ̃n+1θ̃n+1 = r2π∗

(
n∑
k=1

θkθk

)
− dr2 − r2ϕ̃2 = g̃
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We will denote the dual frame to a given coframe by the same symbol,
but with lower indices.

Remark 2.3.1. Given a connection on a Kähler manifold, it can be repre-
sented by a connection form ω with values in u(n, 1), whose complexification
is gl(n + 1,C) ∼= T 1,0 ⊗ T1,0 ⊕ T 0,1 ⊗ T1,0, so we obtain projections in each
component, respectively ω1,0

1,0 and ω0,1
0,1 such that ω = ω1,0

1,0 + ω0,1
0,1. Notice that

ω0,1
0,1 = ω1,0

1,0 because ω comes from a real representation and to give the first
component is equivalent to give the whole form. Notice also that ([[T ]], I),
as complex representation, is isomorphic to T 1,0 and the component A1,0

1,0 of
an endomorphism A gives the corresponding endomorphism of T 1,0. We will
often present connection forms by giving only the T 1,0

1,0 component.
We will call R the projection from the complex tensor algebra to the real

representation, defined so that R(α) = α+α, where the conjugate is the real
structure.

Proposition 2.3.2. Let (π : M̃ →M,∇) be a projective special Kähler man-
ifold, let (U, θ) be a local unitary coframe on M lifted as in (2.5) to a coframe

θ̃ adapted to the U(n, 1)-structure on M̃ . With respect to θ̃, the Levi-Civita

connection form on M̃ is represented by

ω̃LC =

(
π∗ωLC 0

0 0

)
+

1

r


i Im

(
θ̃n+1

)
0 θ̃1

. . .
...

0 i Im
(
θ̃n+1

)
θ̃n

θ̃1 · · · θ̃n i Im
(
θ̃n+1

)

 ,

that is

ω̃LC =

(
π∗ωLC + iϕ̃⊗ In π∗θ

π∗θ? iϕ̃

)
(2.6)

and its curvature form is

Ω̃LC =

(
π∗(ΩLC + θ ∧ θ? − 2iωM ⊗ id) 0

0 0

)
.

Proof. The connection form (2.6) is metric if and only if the matrix is anti-
hermitian with respect to g̃ and since ωLC is antihermitian with respect to
g, we get

(ω̃LC)? =

(
π∗(ωLC)? − iϕ̃⊗ In −π∗θ

−π∗θ? −iϕ̃

)
= −ω̃LC .
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The torsion form of this connection is Θ̃LC = dθ̃+ω̃LC∧θ̃, so for 1 ≤ k ≤ n

(
Θ̃LC

)k
= dθ̃k +

n∑
j=1

(
ω̃LC

)k
j
∧ θ̃j +

(
ω̃LC

)k
n+1
∧ θ̃n+1

= d
(
rπ∗θk

)
+

n∑
j=1

(
π∗(ωLC)kj + iϕ̃δkj

)
∧
(
rπ∗θj

)
+ π∗θk ∧ θ̃n+1

= dr ∧ π∗θk + rπ∗dθk + rπ∗((ωLC)kj ∧ θj) + irϕ̃ ∧ π∗θk + π∗θk ∧ θ̃n+1

= rπ∗(ΘLC)k + (dr + irϕ̃) ∧ π∗θk + π∗θk ∧ θ̃n+1

= 0 + θ̃n+1 ∧ π∗θk + π∗θk ∧ θ̃n+1 = 0.

In the last component

(Θ̃LC)n+1 = dθ̃n+1 +
n∑
j=1

π∗θj ∧ rπ∗θj + iϕ̃ ∧ θ̃n+1

= d(dr + irϕ̃) + rπ∗

(
n∑
j=1

θj ∧ θj
)

+ iϕ̃ ∧ θ̃n+1

= idr ∧ ϕ̃+ irdϕ̃+ 2irπ∗ωM + iϕ̃ ∧ (dr + irϕ̃)

= idr ∧ ϕ̃+ ir(dϕ̃+ 2π∗ωM) + iϕ̃ ∧ dr = 0.

Since ω̃LC is metric and torsion-free, by uniqueness we infer that it must be
the Levi-Civita connection.

Let us now compute its curvature form Ω̃LC = dω̃LC + ω̃LC ∧ ω̃LC . For
1 ≤ k, h ≤ n we have(

Ω̃LC
)h
k

= d(ω̃LC)hk + (ω̃LC)hj ∧ (ω̃LC)jk

= dπ∗(ωLC)hk + idϕ̃δhk +
n∑
j=1

(π∗(ωLC)hj + iϕ̃δhj ) ∧ (π∗(ωLC)jk + iϕ̃δjk)

+ π∗θh ∧ π∗θk

= π∗d(ωLC)hk − 2iπ∗ωMδ
h
k + π∗((ωLC)hj ∧ (ωLC)jk)

+ iϕ̃ ∧ π∗(ωLC)hk + π∗(ωLC)hk ∧ iϕ̃− ϕ̃ ∧ ϕ̃δhk + π∗θh ∧ π∗θk

= π∗(ΩLC)hk − 2iπ∗ωMδ
h
k + π∗(θh ∧ θk);
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(
Ω̃LC

)h
n+1

= dπ∗θh +
n∑
j=1

(π∗(ωLC)hj + iϕ̃δhj ) ∧ π∗θj + π∗θh ∧ iϕ̃

= π∗dθh + π∗
(
(ωLC)hj ∧ θj

)
+ iϕ̃ ∧ π∗θh + π∗θh ∧ iϕ̃

= π∗
(
ΘLC

)h
= 0.

Since the curvature form must also be antihermitian, we get(
Ω̃LC

)n+1

k
= −

((
Ω̃LC

)?)n+1

k
=
(

Ω̃LC
)k
n+1

= 0.

Finally,(
Ω̃LC

)n+1

n+1
= idϕ̃+

n∑
j=1

π∗θj ∧ π∗θj − ϕ̃ ∧ ϕ̃ = idϕ̃+ 2iπ∗ωM = 0.

Remark 2.3.3. The tensor θ ∧ θ? − 2iωM ⊗ id, or explicitly

ΩPnC := R
(

(θk ∧ θh)⊗ θk ⊗ θh − (θk ∧ θk)⊗ θh ⊗ θh
)

is a curvature tensor of the complex projective space of dimension n. It is of
curvature type, in fact if we lower the contravariant index we get

Ω[
PnC

= R

(
1

2

(
(θk ∧ θh)⊗ θk ⊗ θh − (θk ∧ θk)⊗ θh ⊗ θh

))
=

1

2

(
(θk ∧ θh)⊗ θk ⊗ θh − (θk ∧ θk)⊗ θh ⊗ θh

+(θk ∧ θh)⊗ θk ⊗ θh − (θk ∧ θk)⊗ θh ⊗ θh
)

=
1

2

(
(θk ∧ θh)⊗ (θk ∧ θh) + (θk ∧ θk)⊗ (θh ∧ θh)

)
=

1

4

(
(θk ∧ θh)⊗ (θk ∧ θh) + (θh ∧ θk)⊗ (θh ∧ θk)

)
+

1

2
(θk ∧ θk)2

=
1

2
(θk ∧ θh)(θk ∧ θh) +

1

2
(θk ∧ θk)2

and if we apply the map

B : S2(Λ2T ∗) −→ Λ4T ∗

(α ∧ β)(γ ∧ δ) 7−→ α ∧ β ∧ γ ∧ δ,
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we obtain

B(Ω[
PnC

) =
1

2

(
θk ∧ θh ∧ θk ∧ θh + θk ∧ θk ∧ θh ∧ θh

)
=

1

2

(
θk ∧ θh ∧ θk ∧ θh − θk ∧ θh ∧ θk ∧ θh

)
= 0,

so ΩPnC satisfies the Bianchi identity.
In fact, ΩPnC is the curvature with respect to the Fubini-Study metric (see

for example [33, II, p. 277]). In order to verify that ΩPnC is exactly the
curvature of the Fubini-Study rather than a multiple, we compute the Ricci
tensor:

RicPnC = R
(
nθh ⊗ θh + δh,kθ

h ⊗ θk
)

= R ((n+ 1)h) = 2(n+ 1)g. (2.7)

Then,
scalPnC = 2(n+ 1). (2.8)

Thus ΩPnC corresponds exactly to the curvature of PnC with the Fubini-Study
metric.

Now, whenever we have a smooth map f : M → N between Riemannian
manifolds, we can extend the pullback f ∗ : T•N → T•M on the covariant
tensor algebra to the whole tensor algebra, using the musical isomorphisms
in each contravariant component. Explicitly, for X vector field on N , we
define f ∗X := ]f ∗[X = (f ∗X[)]. Notice that this extension of the pullback
is still functorial, since if f : M → N , g : N → L are smooth maps, then
f ∗g∗X = ]f ∗[]g∗[X = ]f ∗g∗[X = ](gf)∗[X = (gf)∗X.

Since M̃ and M are Riemannian manifolds, we have π∗ : T ••M → T •• M̃ ,
and in particular, for 1 ≤ k ≤ n we have

π∗θk = (π∗θ[k)] =
1

2
(π∗θk)] =

1

2r
(θ̃k)] =

1

r
θ̃k.

Remark 2.3.4. In this notation,

Ω̃LC = r2π∗(ΩLC + ΩPnC).

2.4 Deviance

In this section we will continue the analysis of the tensor η̃ started in section
2.1. The aim is to reduce it to a locally defined tensor on M that we call
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deviance. We will then use it to give an explicit local description of the Ricci
tensor and the scalar curvature.

Lemma 2.4.1. On a projective special Kähler manifold (π : M̃ →M,∇), if

η̃XY = ∇XY − ∇̃LC
X Y , then [2η̃ is horizontal with respect to π.

In other words, [2(η̃) is a section of π∗[[]2S3,0M ]] ⊂ [[S3,0M̃ ]]. Explicitly,
η̃v, η̃v and g̃(η̃, v) vanish for all v ∈ 〈ξ, Iξ〉.

Proof. First notice that η̃(ξ) = ∇ξ − ∇̃LCξ = 0, so by symmetry η̃ξ = 0
and g(η, ξ) = 0, so [2(η̃) in each component when evaluated at ξ. From this

fact and (2.2), we also deduce η̃(Ĩξ) = Ĩ η̃(ξ) + [η̃, Ĩ]ξ = 0− 2Ĩ η̃(ξ) = 0. By
symmetry, we conclude that [2η̃ vanishes in every component on Iξ. Linearity
then completes the proof.

Lemma 2.4.2. Let (M̃, g̃, Ĩ , ω̃,∇, ξ) be a conic special Kähler manifold and
η̃ be as above, then

1. Lξη̃ = 0;

2. LĨξη̃ = −2Ĩ η̃.

Proof. The proof relies on a generic formula satisfied by a torsion-free con-
nection D (see e.g. [37, equation (3.1), p. 1336]), that is:

LA(DXY )−DLAXY −DXLAY
= [A,DXY ]−D[A,X]Y −DX [A, Y ]

= DADXY −DDXYA−D[A,X]Y −DXDAY +DXDYA

= ΩD(A,X)Y −DDXYA+DXDYA.

1. We check the formula on vector fields X, Y ∈ X
(
M̃
)

(Lξη̃)XY = Lξ(η̃XY )− η̃LξXY − η̃XLξY
= Lξ∇XY − Lξ∇̃LC

X Y −∇LξXY + ∇̃LC
LξXY

−∇XLξY + ∇̃LC
X LξY

= Ω∇(ξ,X)Y −∇∇XY ξ +∇X∇Y ξ − Ω̃LC(ξ,X)Y

+ ∇̃LC
∇̃LCX Y

ξ − ∇̃LC
X ∇̃LC

Y ξ

= −∇XY +∇XY − Ω̃LC(ξ,X)Y + ∇̃LC
X Y − ∇̃LC

X Y
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= −Ω̃LC(ξ,X)Y.

Lowering the contravariant index of the curvature form, for Z ∈ X
(
M̃
)

,

thanks to the symmetries of the Riemannian tensor we obtain

g̃
(

Ω̃LC(ξ,X)Y, Z
)

= g̃
(

Ω̃LC(Y, Z)ξ,X
)

= g̃
(
∇̃LC
Y ∇̃LC

Z ξ − ∇̃LC
Z ∇̃LC

Y ξ − ∇̃LC
[Y,Z]ξ,X

)
= g̃

(
∇̃LC
Y Z − ∇̃LC

Z Y − [Y, Z], X
)

= g̃
(
ΘLC(Y, Z), X

)
= 0,

proving that Ω̃LC(ξ,X)Y = 0, which implies the statement.

2. As before

(LĨξη̃)XY = Ω∇(Ĩξ, X)Y −∇∇XY (Ĩξ) +∇X∇Y (Ĩξ)− Ω̃LC(Ĩξ, X)Y

+ ∇̃LC
∇̃LCX Y

(Ĩξ)− ∇̃LC
X ∇̃LC

Y (Ĩξ)

= −Ĩ∇XY +∇X(ĨY )− Ω̃LC(Ĩξ,X)Y + Ĩ∇̃LC
X Y − ∇̃LC

X (ĨY )

= (∇Ĩ)(X, Y )− Ω̃LC(Ĩξ, X)Y.

Proceeding as in the previous point

g̃
(

Ω̃LC(Ĩξ,X)Y, Z
)

= g̃
(

Ω̃LC(Y, Z)(Ĩξ), X
)

= g̃
(
∇̃LC
Y ∇̃LC

Z (Ĩξ)− ∇̃LC
Z ∇̃LC

Y (Ĩξ)− ∇̃LC
[Y,Z](Ĩξ), X

)
= g̃

(
ĨΩ̃LC(Y, Z)ξ,X

)
= −g̃

(
Ω̃LC(Y, Z)ξ, IX

)
= −g̃

(
Ω̃LC(ξ, ĨX)Y, Z

)
.

This quantity is zero as shown in the previous point, so it follows that
LĨξη̃ = ∇Ĩ, so (2.2) ends the proof.

We can now use a coframe θ̃ as in section 2.3 in order to progress in the
study of η̃. We then write

η̃ = R(η̃jk,hθ̃
k ⊗ θ̃j ⊗ θ̃h).
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Since every operator we use is C-linear, we can study only the component

in T1,0 ⊗ T 0,1 ⊗ T1,0, that is η̃jk,hθ̃
k ⊗ θ̃j ⊗ θ̃h. Because of Lemma 2.4.1, the

coefficients η̃jk,h vanish if any one of the indices is n + 1; moreover, η̃jk,h is
completely symmetric in its indices. The last statement follows from the fact
that [2η̃ is a tensor in π∗S3,0M , and such tensors are expressed using only
π∗θk for 1 ≤ k ≤ n, where the metric is positive definite, and thus [2 does
not change the signs of the coefficients of η̃.

We are now ready to reduce η̃ to an object defined locally on the base
space M .

Proposition 2.4.3. Given a projective special Kähler (π : M̃ → M,∇) and

a section s : U → S ⊆ M̃ inducing a trivialisation (p|π−1(U), z) : π−1(U) →
U × C∗, there exists a tensor η ∈ T1,0U ⊗ T 0,1U ⊗ T1,0U such that [2η is a
tensor in S3,0U and

η̃ = R(z2π∗η) = r2 cos(2ϑ)2 Reπ∗η + r2 sin(2ϑ)2 Imπ∗η

where z = reiϑ.

Proof. For every point p ∈ M we can find a local unitary coframe θ defined
on an open set containing p, and the corresponding coframe θ̃ on M̃ as in
(2.5).

For the coming arguments we first compute the following Lie derivatives

Lξθ̃k = dιξθ̃
k + ιξdθ̃

k = dιξ(rπ
∗θk) + ιξd(rπ∗θk)

= 0 + ιξ(dr ∧ π∗θk) + rιξdπ
∗θk

= dr(ξ)π∗θk + rιξπ
∗dθk = rπ∗θk + 0 = θ̃k;

Lξθ̃k = g̃(Lξθ̃k, ·)] = Lξ
(
g̃(θ̃k, ·)

)
]
−
(
Lξg̃(θ̃k, ·)

)
]

=
1

2

(
Lξθ̃k

)
]
− 2g̃(θ̃k, ·)] =

1

2
θ̃k] − 2θ̃k = −θ̃k;

LĨξθ̃k = dιĨξθ̃
k + ιĨξdθ̃

k = dιĨξ(rπ
∗θk) + ιĨξd(rπ∗θk)

= 0 + rιĨξdπ
∗θk = rιĨξπ

∗dθk = 0;
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LĨξθ̃k = g̃(LĨξθ̃k, ·)] = LĨξ
(
g̃(θ̃k, ·)

)
]

=
1

2

(
Lξθ̃k

)
]

= 0.

Lemma 2.4.2 implies

0 = Lξη̃ = LξR
(
η̃jk,hθ̃

k ⊗ θ̃j ⊗ θ̃h
)

= R
(
Lξη̃jk,hθ̃

k ⊗ θ̃j ⊗ θ̃h + η̃jk,hLξθ̃
k ⊗ θ̃j ⊗ θ̃h

+ η̃jk,hθ̃
k ⊗ Lξθ̃j ⊗ θ̃h + η̃jk,hθ̃

k ⊗ θ̃j ⊗ Lξθ̃h
)

= R
(
Lξη̃jk,hθ̃

k ⊗ θ̃j ⊗ θ̃h + η̃jk,hθ̃
k ⊗ θ̃j ⊗ θ̃h

)
= R

((
Lξη̃jk,h + η̃jk,h

)
θ̃k ⊗ θ̃j ⊗ θ̃h

)
and

0 = LĨξη̃ + 2Ĩ η̃ = LĨξR
(
η̃jk,hθ̃

k ⊗ θ̃j ⊗ θ̃h
)

+ R
(

2η̃jk,hθ̃
k ⊗ Ĩ

(
θ̃j

)
⊗ θ̃h

)
= R

(
Lξη̃jk,hθ̃

k ⊗ θ̃j ⊗ θ̃h − 2iη̃jk,hθ̃
k ⊗ θ̃j ⊗ θ̃h

)
= R

((
LIξη̃jk,h − 2iη̃jk,h

)
θ̃k ⊗ θ̃j ⊗ θ̃h

)
.

Independent components must vanish, so we obtain a family of differential
equations for 1 ≤ j, k, h ≤ n{

Lξη̃jk,h = −η̃jk,h
LĨξη̃

j
k,h = 2iη̃jk,h

. (2.9)

We define η, as the component in T1,0M ⊗ T 0,1M ⊗ T1,0M of s∗η̃, so that
R(η) = s∗η̃.

Notice that since πs = idM , the pullbacks satisfy s∗π∗ = idT ••M , so

s∗η̃ = s∗R(η̃jk,hθ̃
k ⊗ θ̃j ⊗ θ̃h) = R(s∗(r3η̃jk,hπ

∗θk ⊗ π∗θj ⊗ π∗θh))
= R((r ◦ s)3(η̃jk,h ◦ s)s

∗π∗θk ⊗ s∗π∗θj ⊗ s∗π∗θh))
= R((η̃jk,h ◦ s)θ

k ⊗ θj ⊗ θh).

Thus η = s∗η̃jk,hθ
k ⊗ θj ⊗ θh and we define ηjk,h := s∗η̃jk,h.
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Now we will use (2.9) to find η̃jk,h at a point of π∗U . We define the function

f : R→ C such that f(t) := η̃jk,h(s(u)et) for u ∈ U and compute its derivative
at t0 ∈ R.

d

dt
f |t0 =

d

dt
η̃jk,h(s(u)et)|t=t0 =

d

dt
η̃jk,h(s(u)et0+t)|t=0 =

d

dt
η̃jk,h(φ

t
ξ(s(u)et0))|t=0

= (Lξη̃jk,h)(s(u)et0) = −η̃jk,h(s(u)et0) = −f(t0).

Moreover, f(0) = η̃jk,h(s(u)) = ηjk,h(u), so f satisfies the following initial value
problem {

f ′ = −f
f(0) = ηjk,h(u)

which has a unique solution, that is f(t) = ηjk,h(u)e−t. This means that

η̃jk,h(s(u)et) = ηjk,h(u)e−t or equivalently, for all ρ ∈ R+ we have η̃jk,h(s(u)ρ) =
1
ρ
ηjk,h(u) = (1

r
π∗ηjk,h)(s(u)ρ).

Similarly, consider the function f : R→ C such that f(t) := η̃jk,h(s(u)ρeit)
and compute its derivative at t0 ∈ R.

d

dt
f |t0 =

d

dt
η̃jk,h(s(u)ρeit)|t=t0 =

d

dt
η̃jk,h(s(u)ρeit0+it)|t=0

=
d

dt
η̃jk,h(φ

t
Iξ(s(u)ρeit0))|t=0 = (LIξη̃jk,h)(s(u)ρet0)

= 2iη̃jk,h(s(u)ρet0) = 2if(t0),

and this time, f(0) = η̃jk,h(s(u)ρ) = 1
ρ
ηjk,h(u), so that for f{

f ′ = 2if

f(0) = 1
ρ
ηjk,h(u)

.

Its unique solution is f(t) = ηjk,h(u) e
2it

ρ
, which implies

η̃jk,h(s(u)ρeit) = ηjk,h(u)
e2it

ρ
=

(
π∗ηjk,h
r3

)
(s(u)ρeit)ρ2e2it.

Let now z : π−1(U) → C∗ be as in the statement, then in particular for

all w ∈ π−1(u), we have w = s(u)z(u). Thus η̃jk,h(w) = z2
π∗ηjk,h
r3

(w), so finally
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we have

η̃ = R(η̃jk,hθ̃
k ⊗ θ̃j ⊗ θ̃h) = R

(
z2
π∗ηjk,h
r3

(rπ∗θk ⊗ rπ∗θj ⊗ rπ∗θh)

)
= R(z2π∗ηjk,h(π

∗θk ⊗ π∗θj ⊗ π∗θh)) = R(z2π∗η).

Definition 2.4.4. Given a section s : U → S with U open subset of M , we
will call the corresponding tensor η found in Proposition 2.4.3 the deviance
tensor with respect to s.

We can give a more global formulation of Proposition 2.4.3 in the following
terms

Proposition 2.4.5. Given a projective special Kähler manifold (π : M̃ →
M,∇), there exists a map γ : M̃ → ]2S3,0M ⊂ T1,0M ⊗ T 0,1M ⊗ T1,0M
of bundles over M , such that γ(ua) = a2γ(u) and for every local section

s : U → S ⊂ M̃ , the deviance induced by s is η = γ ◦ s.
Let L := M̃ ×C∗ C, then γ can be identified with a homomorphism of

complex vector bundles γ̂ : L⊗L→ ]2S3,0M such that γ(u) = γ̂([u, 1]⊗[u, 1]).

Proof. Let u ∈ M̃ , then there exists an open neighbourhood U ⊆ M of u
and local trivialisation (π|π−1(U), z) : π−1(U)→ U × C∗ induced by a section
s : U → S so, for all w ∈ π−1(U) we have w = s(π(w))z(w). Let now η : U →
S3,0M be the deviance corresponding to s; we define γ(u) := z(u)2η(p) where
p = π(u). This definition is independent on the choice of s. In order to prove
it take another s′ : U ′ → S with p ∈ U ′ and the corresponding z′ and η′,
then, on U ∩U ′, there is a map c := z ◦ s′ : U ∩U ′ → C whose image is in S1,
as both s and s′ are sections of S. By definition, s′ = s · c. Since sz = s′z′,
z(u) = z(s′(p)z′(u)) = z(s′(p))z′(u) = c(p)z′(u), so z = z′π∗c. Now, by
construction, R(z′2π∗η′) = η̃ = R(z2π∗η) = R(z′2π∗c2π∗η′), so η′ = c2η.
Thus z(u)2η(p) = z′(u)2c(p)2η(p) = z′(u)2η′(p) and hence γ is well defined.
Moreover, γ(ua) = z(ua)2η(π(ua)) = z(u)2a2η(p) = a2γ(u).

We can define the homomorphism L ⊗ L → ]2S3,0M locally: given
a section s : U → S, we map [u,w] ⊗ [u′, w′] to z(u)z(u′)ww′ · ηsp where
p = π(u) = π(u′). This map does not depend on the choice of the sec-
tion as one can see from the relations above, and it is also independent on
the representatives chosen for these classes; for the first class for example
z(ua)w = z(u)aw.

This map commutes with the projections on M and it is C-linear on the
fibres, so it is a complex vector bundle map.
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Definition 2.4.6. We call γ : S → ]2S3,0M of Proposition 2.4.5 the intrinsic
deviance of the projective special Kähler manifold.

Remark 2.4.7. Given a section s : U → S and the corresponding function
z ∈ C∞(π−1(U),C∗) such that sz = idπ−1(U), we can compute dz = z(1

r
dr +

idϑ), since locally z = reiϑ. Notice that ϑ is not globally defined on π−1(U),
but dϑ and eiϑ are. Moreover,

1

z
dz =

1

r
dr + idϑ ∈ Ω1(π−1(U),C) (2.10)

is a principal connection form, in fact it is equivariant for the action of C∗
as z(ua) = az(u) for all a ∈ C and, given a complex number a and its

corresponding fundamental vector field a◦ ∈ X
(
M̃
)

,

1

z
dz(a◦)u =

1

z
dz(

d

dt
ueat|t=0) =

1

z(u)

d

dt
z(ueat)|t=0 =

1

z(u)

d

dt
z(u)eat|t=0 = a.

Remark 2.4.8. A local section s : U → S induces τ := s∗ϕ̃ = s∗ϕ ∈ Ω1(U)
such that on π−1(U)

ϕ̃ = dϑ+ π∗τ

and thus on π−1S (U):

ϕ = dϑ|S + π∗Sτ.

If we consider in fact the form ϕ̃−dϑ, we notice that it is basic, as it can
also be seen as the difference of two connection forms on π−1(U) (namely
(2.4) and (2.10)) up to a multiplication by i. Therefore, ϕ̃ − dϑ = π∗τ for
some τ ∈ Ω1(U). The second equation is simply obtained from the first by

restriction to S ⊆ M̃ .

2.5 Characterisation theorem

In this section we prove the main theorem of this chapter, characterising
projective special Kähler manifolds in terms of the deviance. We start by
deriving necessary conditions on the deviance, reflecting the curvature con-
ditions of Proposition 2.1.2.
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Proposition 2.5.1. Let (π : M̃ →M,∇) be a projective special Kähler mani-

fold with corresponding conic special Kähler manifold (M̃, g̃, Ĩ , ω̃,∇, ξ). Con-
sider a local section s : U → S, then the corresponding deviance η satisfies

dLCη = 2iτ ∧ η

where τ = s∗ϕ ∈ Ω1(U).

Proof. Thanks to Proposition 2.4.3, we know that there exists z = r2e2iϑ and
η ∈ T1,0U ⊗ T 0,1U ⊗ T1,0U such that on π−1(U) we have η̃ = R(zπ∗η).

Now we would like to describe d̃LC η̃ in terms of dLCη. Notice that

d̃LC η̃ = d̃LCR(z2π∗η) = R(d̃LC(z2π∗η))

= R(2zdz ∧ π∗η + z2d̃LCπ∗η)

= R(2(
1

r
dr + idϑ)z2 ∧ π∗η + z2d̃LCπ∗η)

= R

(
z2
(

2(
1

r
dr + idϑ) ∧ π∗η + d̃LCπ∗η

))
. (2.11)

The next step is to compute d̃LCπ∗η, but since we are using the Levi-
Civita connection, it is equivalent to compute ]2(d̃

LCπ∗σ), where σ = [2η ∈
S3,0U . Let us consider a local coframe θ in M and the corresponding lifting

θ̃ as in (2.5), so that we can denote explicitly σ = σk,j,hθ
k⊗ θj⊗ θh. We have

∇̃LCπ∗θk = ∇̃LC θ̃
k

r
= −dr

r2
⊗ θ̃k − 1

r

(
(ω̃LC)kj ⊗ θ̃j

)
= −dr

r
⊗ π∗θk − 1

r

(
n∑
j=1

π∗(ωLC)kj ⊗ θ̃j + iϕ̃⊗ θ̃j + π∗θk ⊗ θn+1

)

= −dr
r
⊗ π∗θk − π∗

(
(ωLC)kj ⊗ θj

)
− iϕ̃⊗ π∗θj − π∗θk ⊗ 1

r
θn+1

= π∗
(
∇LCθk

)
− 1

r
θn+1 ⊗ π∗θk − π∗θk ⊗ 1

r
θn+1.

We can now compute the following for X ∈ X(π−1(U)):

∇̃LC
X π∗σ = ∇̃LC

X π∗(σk,j,hθ
k ⊗ θj ⊗ θh) = ∇̃LC

X (π∗σk,j,hπ
∗θk ⊗ π∗θj ⊗ π∗θh)
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= dπ∗σk,j,h(X)θk ⊗ θj ⊗ θh + π∗σk,j,h

(
∇̃LC
X π∗θk ⊗ π∗θj ⊗ π∗θh

+π∗θk ⊗ ∇̃LC
X π∗θj ⊗ π∗θh + π∗θk ⊗ π∗θj ⊗ ∇̃LC

X π∗θh
)

= π∗dσk,j,h(X)θk ⊗ θj ⊗ θh + π∗σk,j,hπ
∗ (∇LCθk

)
X
⊗ π∗θj ⊗ π∗θh

+ π∗σk,j,hπ
∗θk ⊗ π∗

(
∇LCθj

)
X
⊗ π∗θh

+ π∗σk,j,hπ
∗θk ⊗ π∗θj ⊗ π∗

(
∇LCθj

)
X
− 3

r
θ̃n+1(X)π∗σ

− 1

r

(
π∗σk,j,hπ

∗θk(X)θ̃n+1 ⊗ π∗θj ⊗ π∗θh

+π∗σk,j,hπ
∗θk ⊗ π∗θj(X)θ̃n+1 ⊗ π∗θh

+π∗σk,j,hπ
∗θk ⊗ π∗θj ⊗ π∗θh(X)θ̃n+1

)
= π∗

(
∇LCσ

)
X
− 2

r
θ̃n+1(X)π∗σ − 1

r
θ̃n+1(X)π∗σ − 1

r
θ̃n+1 ⊗ π∗σ(X, ·, ·)

− 1

r
π∗σ(·, X ⊗ θ̃n+1, ·)− 1

r
π∗σ(·, ·, X ⊗ θ̃n+1).

In general then, if σ = θk ⊗ σk, where σk = σk,j,hθ
j, θh ∈ S2,0U , we have by

symmetry

∇̃LCπ∗σ = π∗
(
∇LCσ

)
− 2

r
θ̃n+1 ⊗ π∗σ − 2

r
((θ̃n+1)(π∗θk))⊗ π∗(σk,j,hθj ⊗ θh)

− 2

r

(
π∗(σk,j,hθ

k ⊗ θj)⊗ ((θ̃n+1)(π∗θh))
)
.

Notice in particular that the last two rows are symmetric in the first two
indices.

In order to compute d̃LCπ∗σ, we need to antisymmetrise ∇̃LCπ∗σ in the
first two indices and multiply by 2, so only the first row survives and we get

d̃LCπ∗σ = π∗(dLCσ)− 2

r
θ̃n+1 ∧ π∗σ

and therefore

d̃LCπ∗η = π∗(dLCη)− 2

r
θ̃n+1 ∧ π∗η.

Substituting this value in (2.11), we obtain

d̃LC η̃ = R

(
z2
(

2(
1

r
dr + idϑ) ∧ π∗η + π∗(dLCη)− 2

r
θ̃n+1 ∧ π∗η

))
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= R
(
z2
(
π∗dLCη − 2i(ϕ̃− dϑ) ∧ π∗η

))
.

As observed in Remark 2.4.8, ϕ̃− dϑ = π∗τ , so we have

d̃LC η̃ = R
(
z2π∗

(
dLCη − 2iτ ∧ η

))
.

From Proposition 2.1.2, we know that d̃LC η̃ = 0, and since η belongs to
Ω1(U, T0,1⊗T 1,0), η and η are linearly independent, so this quantity vanishes
if and only if z2π∗

(
dLCη − 2iτ ∧ η

)
does. Therefore,

dLCη − 2iτ ∧ η = 0,

ending the proof.

Let us now look at the final ingredient of the curvature tensor, that is
1
2
[η̃ ∧ η̃]. In the setting of Proposition 2.4.3, given a section s : U → S, and

the induced deviance η, then

1

2
[η̃ ∧ η̃] =

1

2
[R(z2π∗η) ∧R(z2π∗η)] =

1

2
[z2π∗η + z2π∗η ∧ z2π∗η + z2π∗η]

=
1

2
R
(
z4[π∗η ∧ π∗η]

)
+ |z|4[π∗η ∧ π∗η].

We can compute this tensor for a local coframe θ on M . Since we have

π∗θk ◦ π∗θh =
1

r
θ̃k(

1

r
θ̃h) =

1

r2
θ̃k(θ̃h) =

1

r2
δkh =

1

r2
π∗(θk ◦ θh)

and π∗θk ◦ π∗θh = π∗θk ◦ π∗θh = 0, then

[π∗η ∧ π∗η] = [π∗ηjk,hπ
∗θk ⊗ π∗θj ⊗ π∗θh ∧ π∗ηj

′

k′,h′π
∗θk

′ ⊗ π∗θj′ ⊗ π∗θh
′
]

= π∗ηjk,hπ
∗θk ∧ π∗ηj

′

k′,h′π
∗θk

′ ⊗ [π∗θj ⊗ π∗θh, π∗θj′ ⊗ π∗θh
′
] = 0

and

[π∗η∧π∗η] = [π∗ηjk,hπ
∗θk ⊗ π∗θj ⊗ π∗θh ∧ π∗ηj

′

k′,h′π
∗θk′ ⊗ π∗θj′ ⊗ π∗θh′ ]

= π∗ηjk,hπ
∗θk ∧ π∗ηj′k′,h′π

∗θk′ ⊗ [π∗θj ⊗ π∗θh, π∗θj′ ⊗ π∗θh′ ]

= π∗(ηjk,hθ
k ∧ ηj′k′,h′θk

′)⊗ 1

r2
π∗(θj ⊗ θh(θj′)⊗ θh′ − θj′ ⊗ θh′(θj)⊗ θh)
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=
1

r2
π∗[η ∧ η].

Therefore,
1

2
[η̃ ∧ η̃] =

|z|4

r2
π∗[η ∧ η] = r2π∗[η ∧ η]. (2.12)

Remark 2.5.2. Note that [η ∧ η] is independent on the local coframe, and
if we consider another section such that s′ = sa on the intersection of their
domains, with a taking values in S1, if η′ is the deviance corresponding to s,
then [η′ ∧ η′] = [ηa∧ ηa] = |a|2[η ∧ η] = [η ∧ η]. So, there is a globally defined
section M → S2(u(n)) mapping p to [ηp ∧ ηp].

For a projective special Kähler manifold (π : M̃ → M,∇) of real dimen-
sion 2n, the statement of Proposition 2.1.2, interpreted in the light of the
last observations and the ones made in Section 2.3 (see Remark 2.3.4), says
that 0 = r2π∗(ΩLC + ΩPnC + [η ∧ η]). Thus we have the following equation:

ΩLC + ΩPnC + [η ∧ η] = 0 (2.13)

This is a curvature tensor, so we can compute its Ricci and scalar component.

Proposition 2.5.3. Let (π : M̃ →M,∇) be a projective special Kähler man-
ifold of dimension 2n, then

RicM(X, Y ) + 2(n+ 1)g(X, Y )−R(h(ηX , ηY )) = 0; (2.14)

scalM + 2(n+ 1)− 2

n
‖η‖2h = 0. (2.15)

Proof. The first summand in (2.13) gives the Ricci tensor of M , the second
gives the Ricci tensor of the projective space (2.7). In order to compute the
last term, consider a unitary frame θ; from previous computations,

[η ∧ η] = (ηjk,hθ
k ∧ ηj′k′,h′θk

′)⊗ (δhj′θj ⊗ θh
′ − δh′j θj′ ⊗ θh)

= R
(
ηjk,hη

h
k′,h′θ

k ∧ θk′ ⊗ θj ⊗ θh′
)
,

then the Ricci component Ric([η ∧ η]) evaluated on X = R(Xkθk) and Y =
R(Y kθk) is the trace of [η ∧ η](·, Y )X, which is

[η∧η](·, Y )X
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= ηjk,hη
h
u,v(θ

kY u − Y kθu)⊗ θj ⊗Xv + ηjk,hη
h
u,v(θ

kY u − Y uθk)⊗ θj ⊗Xv

= R
(
ηjk,hη

h
u,v(θ

kY u − Y kθu)⊗ θj ⊗Xv
)
.

Its trace is therefore

−R
(
ηjk,hη

h
j,vY

kXv
)

= −R
(
ηjk,hη

h
u,jY

kXu
)

= −R(h(ηX , ηY )),

or equivalently, Ric([η ∧ η]) = −R
(
ηhu,jη

j
k,hθ

uθk
)

. Thus we obtain (2.14).

From this tensor we can now compute the scalar component by taking
the trace, raising the indices with g and then dividing it by the dimension of
M . Hence, the first summand gives scalM , the second gives 2(n+ 1) and the
third

1

2n
tr
(
−R

(
ηhu,jη

j
k,h(θ

u)]θ
k
))

= − 1

2n
tr
(
R
(
ηhu,jη

j
k,h(2θu)θ

k
))

= − 1

n

∑
j,h,k

R
(
ηjk,hη

h
k,j

)
= − 2

n
‖η‖2h ,

proving (2.15).

In particular, since the norm of η is non-negative, we obtain a lower bound
for the scalar curvature:

Corollary 2.5.4. Let (π : M̃ → M,∇) be a projective special Kähler mani-
fold, then

scalM ≥ −2(n+ 1).

Equality holds at a point it and only if the deviance vanishes at that point.

Remark 2.5.5. The lower bound is reached by projective special Kähler man-
ifolds with zero deviance; we will see that this condition characterises the
complex hyperbolic space (Proposition 2.6.8).

We can now state the main result:

Theorem 2.5.6. On a 2n-dimensional Kähler manifold (M, g, I, ω), to give
a projective special Kähler structure is equivalent to give an S1-bundle

πS : S −→M

endowed with a connection form ϕ and a bundle map γ : S → ]2S3,0M such
that:
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1. dϕ = −2π∗Sω;

2. γ(ua) = a2γ(u) for all a ∈ S1;

3. for a certain choice of an open covering {Uα|α ∈ A} of M and a family
{sα : Uα → S}α∈A of sections, denoting by ηα the local 1-form taking
values in T 0,1M ⊗ T1,0M determined by γ ◦ sα, for all α ∈ A:

D.1 ΩLC + ΩPnC + [ηα ∧ ηα] = 0

D.2 dLCηα = 2is∗αϕ ∧ ηα

In this case, 3 is satisfied by every such family of sections.

Proof. Given a projective special Kähler manifold, we define S := r−1(1) ⊂
M̃ and ϕ := −ιξω|S. The principal action on S is generated by Iξ which is

tangent to S since TuS = ker(dr) and dr(Iξ) = −1
r
ξ[(Iξ) = − g̃(ξ,Iξ)

r
. The

curvature is then dϕ = −2π∗Sω as shown in Remark 2.2.4, so the first point
is satisfied. The second condition holds thanks to Proposition 2.4.5. For the
third point, we get D.1 from the arguments leading to equation (2.13) and
D.2 from Proposition 2.5.1.

In order to prove the other direction, define M̃ := S × R+, π := πS ◦
π1 : M̃ → M , and t := π2 ∈ C∞

(
M̃,R+

)
, where π1 : S × R∗ → S and

π2 : S × R+ → R+ are the projections. Let ϕ̃ := π∗1ϕ, in particular dϕ̃ =
π∗1dϕ = −2π∗ω as expected. Define now

g̃ := t2π∗g − t2ϕ̃2 − dt2 (2.16)

which is non-degenerate, since rϕ̃ and dt are linearly independent and trans-
verse to π, so we can form a basis for the 1-forms according to which we can
see that g̃ has signature (2n, 2). Extend now I to Ĩ so that Ĩ · (π∗α) = π∗Iα

for all α ∈ T ∗M and Ĩ · (dt) = tϕ̃.

The metric g̃ is compatible with Ĩ since Ĩ ·g̃ = t2Ĩ ·π∗g−(Ĩ ·tϕ̃)2−(Ĩ ·dt)2 =
t2π∗(I · g)− (−dt)2 − (tϕ̃)2 = t2π∗(I · g)− dt2 − t2ϕ̃2 = g̃.

We thus have a Kähler manifold (M̃, g̃, Ĩ , ω̃), where

ω̃ := t2π∗ω + tϕ̃ ∧ dt.

Let ξ := t∂t where ∂t is the vector field corresponding to the coordinate
derivation on R+. Notice that the function r =

√
−g̃(ξ, ξ) coincides with t,
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as
√
−g̃(t∂t, t∂t) =

√
−t2g̃(∂t, ∂t) = t. In particular g̃(ξ, ξ) = −t2 6= 0 and

g̃(Ĩξ, Ĩξ) = g̃(ξ, ξ) < 0, so g̃ is negative definite on 〈ξ, Iξ〉 and hence positive
definite on the orthogonal complement.

Let now θ be a unitary coframe on an open subset U ⊆M , then we can lift
it to a complex coframe θ̃ on π−1(U) defined as in (2.5). It is straightforward

to check that θ̃ is adapted to the pseudo-Kähler structure of M̃ . Notice that
the proof of Proposition 2.3.2 is still valid in this situation even though we
do not know whether M̃ → M has a structure of projective special Kähler
manifold; this gives us a description of the Levi-Civita connection form on
M̃ with respect to θ̃. Notice that θ̃k(ξ) = 0 for k ≤ n and θ̃n+1(ξ) =

dt(t∂t) + iϕ̃(t∂t) = t so ξ = R(tθ̃n+1). We can thus compute

∇̃LCξ = dt⊗R(θ̃n+1) + t∇̃LCR(θ̃n+1)

= R(dt⊗ θ̃n+1) +
t

r
R

(
n∑
k=1

θ̃k ⊗ θ̃k + i Im(θ̃n+1)⊗ θ̃n+1

)

= R

(
n+1∑
k=1

θ̃k ⊗ θ̃k

)
= id.

Define on M̃ the tensor η̃ := R(t2π∗ ◦ γ ◦ π1) section of ]2S3,0M̃ . Each
section sα : Uα → S corresponds to the trivialisation (π|π−1(Uα), zα) : π−1Uα →
Uα × C∗ in the sense that s(π(u)) · zα(u) = u for all u ∈ π−1(Uα). For all α
on π−1(Uα), let η̃α := η̃|Uα , then locally we have

η̃α = R(t2π∗ ◦ γ ◦ π1(zα(sα ◦ π))) = R

(
t2π∗ ◦ γ ◦

(
zα
|zα|

sα ◦ π
))

= R

(
t2

z2α
|zα|2

π∗ ◦ γ ◦ sα ◦ π
)

= R(z2απ
∗ ◦ ηα ◦ π)R(z2απ

∗ηα).

We can build another connection ∇ := ∇̃LC + η̃. Notice that ∇ξ =
∇̃LCξ+ η̃(ξ) = id +R(z2απ

∗ηα)(ξ) = id because locally ηα is horizontal for all
α.

In order to prove that ∇ is symplectic, since the Levi-Civita connection
is symplectic, it is enough to prove that ω̃(η̃, ·) + ω̃(·, η̃) = 0. Locally, ω̃ =
1
2i

∑n+1
k=1 θ̃

k∧θ̃k and in fact, for all X = R(Xkθ̃k), Y = R(Y kθ̃k), Z = R(Zkθ̃k)

vector fields on M̃ :

2i(ω̃(η̃XY, Z) + ω̃(Y, η̃XZ)) =
n+1∑
k=1

(
θ̃k(η̃XY )θ̃k(Z)− θ̃k(η̃XY )θ̃k(Z)
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+θ̃k(Y ) ∧ θ̃k(η̃XZ)− θ̃k(Y ) ∧ θ̃k(η̃XZ)
)

=
n+1∑
k=1

(
zπ∗ηku,vX

uY vZk − Zkz2π∗η
k
u,vX

uY v

+ Y
k
z2π∗η

k
u,vX

uZv − z2π∗ηku,vXuZvY k
)

=
n+1∑
k=1

R
(
z2π∗ηku,vX

uY vZk − z2π∗ηku,vXuZvY k
)

=
n+1∑
k=1

R
(
z2π∗(ηku,v − ηvu,k)XuY vZk

)
.

By the symmetry of η, this quantity vanishes.
Proving d∇Ĩ = 0, is equivalent to proving that∇Ĩ is symmetric in the two

covariant indices, and thus ∇I = ∇̃LC Ĩ + [η, Ĩ] = [η, Ĩ]. Since I = R(iθ̃kθ̃
k),

we have

[η̃, Ĩ] = iz2π∗ηuv,wθ̃
v ⊗ θ̃u ⊗ θ̃w − iz2π∗ηuv,wθ̃v ⊗ θ̃u ⊗ θ̃w

+ iz2π∗ηuv,wθ̃
v ⊗ θ̃u ⊗ θ̃w − iz2π∗ηuv,wθ̃v ⊗ θ̃u ⊗ θ̃w = 2iη̃ = −2Iη̃

which is symmetric, proving d∇I = 0.
For the flatness of ∇, we compute the curvature locally:

Ω∇ = dω∇ + [ω∇ ∧ ω∇] = Ω̃LC + d̃LC η̃ + [η̃, η̃].

By Proposition 2.3.2, Ω̃LC = r2π∗(ΩLC + ΩPnC). For the same reasoning

exposed in the proof of Proposition 2.5.1, d̃LC η̃ = 0 if and only if dLCη −
2is∗ϕ ∧ η = 0, which is granted by D.2.

Finally, the computations leading to equation (2.12) still apply and thus
we can deduce that

Ω∇ = rπ∗(ΩLC + ΩPnC + [η ∧ η]) = 0,

making the connection ∇ flat.
Notice that π : M̃ → M is a principal C∗-bundle, where for all leiθ ∈ C∗

and (u, t) ∈ M̃ :
(u, t)leiθ := (ueiθ, tl).
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The infinitesimal vector field corresponding to 1 at (u, t0) is

d

dt
((u, t0) exp(t))|t=0 =

d

dt
((u, t0e

t))|t=0 = t0(∂t)(u,t0) = ξ(u,t0).

The one corresponding to i is X := d
dt

((u, t0) exp(it))|t=0 = d
dt

(ueit, t0)|t=0,
which is vertical and such that ϕ̃(X) = ϕ(p∗X) = ϕ( d

dt
(ueit)|t=0) = 1 and

dr(X) = 0. This means that X = Iξ since g̃(X, ·) = −r2ϕ̃ = −rIdr = Iξ[.

We are only left to prove that M is the Kähler quotient or M̃ with respect
to the U(1)-action and in order to do so, notice that ω̃(Iξ, ·) = −g̃(ξ, ·) =

rdr = d
(
r2

2

)
, so µ := r2

2
is a moment map for Iξ. Notice that µ−1(1

2
) =

S × {1} and S is a principal bundle so, by definition of g̃ and ω̃, S/U(1) is
isometric to M and this ends the proof.

Remark 2.5.7. Starting from the family {ηα}α, we can build a bundle map
γ : S → M as long as the ηα’s are linked by the relation ηα = g2α,βηβ, where
gα,β is a cocycle defining S.

Remark 2.5.8. Instead of requiring the existence of an S1-bundle we could
require a complex line bundle L with first Chern class c1(L) = [ 1

π
ω] and a

map of complex vector bundles L⊗ L→ ]2S3,0M .

Remark 2.5.9. Let (M, g, I) be a Kähler manifold, then if H2(M,Z) = 0,
in particular, every complex line bundle and every circle bundle are trivial.
Moreover, by de Rham’s theorem, H2

dR(M) = H2(M,R) = H2(M,Z)⊗R = 0,
so in particular ω = dλ for some λ ∈ Ω1(M).

Corollary 2.5.10. A Kähler manifold (M, g, I, ω) of dimension 2n such that
H2(M,Z) = 0, has a projective special Kähler structure if and only if there
exists a section η : M → ]2S3,0M such that

ΩLC + ΩPnC + [η ∧ η] = 0 (2.17)

and
dLCη = −4iλ ∧ η (2.18)

for some λ ∈ Ω1(M) such that dλ = ω.

Proof. If M has a projective special Kähler structure, then from Theorem
2.5.6 we obtain an S1-bundle p : S → M and the map γ : S → ]2S3,0M .
Consider the corresponding line bundle L = S ×U(1) C. As noted in Remark
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2.5.9, we can assume L = M × C and S = M × S1. In particular, there is
a global section s : M → S and if we call η = γ ◦ s : M → ]2S3,0M , it is
a global section satisfying the curvature equation thanks to Theorem 2.5.6.
Defining λ := −1

2
s∗φ, we have dλ = −1

2
s∗(−2π∗Sω) = (πSs)

∗ω = ω and thus
also the differential condition is satisfied by Theorem 2.5.6.

Conversely, by de Rham’s Theorem, we have λ ∈ Ω1(M) such that dλ =
ω. We define πS = π1 : S = M ×S1 →M and choose as connection the form
ϕ = π∗2dϑ− 2π∗Sλ, where dϑ is the fundamental 1-form on S1 = U(1). Then
dϕ = 0− 2π∗Sdλ = −2π∗Sω, so S → M has the desired curvature. Moreover,
it is trivial, so we have a global section s : M → S mapping p to (p, 1).

Given η : M → ]2S3,0M as in the statement, we define γ : S → ]2S3,0M
such that γ(p, a) := a2η(p) for all p ∈ M and a ∈ U(1). Notice that γ ◦ s =
γ(·, 1) = η, so the curvature equation of this corollary gives the curvature
equation in Theorem 2.5.6 and the same is true for the differential condition,
since s∗ϕ = s∗π∗2dϑ − 2s∗π∗Sλ = 0 − 2λ. By Theorem 2.5.6, M is thus
projective special Kähler.

Remark 2.5.11. Instead of requiring a section η, as in Corollary 2.5.10, we
could use a section σ of S3,0M such that ]2σ = η.

Theorem 2.5.6 allows to find a whole class of projective special Kähler
structures from a given one, as shown in the following

Proposition 2.5.12. Let (π : M̃ → M,∇) be a projective special Kähler
manifold, let γ : S → ]2S3,0M be its intrinsic deviance and ϕ ∈ Ω1(S) the
principal connection form on πS : S → M , then for all β ∈ C∞(M,U(1))

there is a new projective special Kähler manifold (π : M̃β → M,∇β) with
intrinsic deviance γβ = βγ : S → ]2S3,0M , and with principal connection

form ϕβ = π∗S

(
dβ
2iβ

)
+ ϕ on the same bundle.

Proof. We want to use Theorem 2.5.6, so consider the same bundle πS : S →
M , but with the new connection form ϕβ. Notice that ϕβ is a real form, in
fact ββ = 1, so

0 = βdβ + βdβ = ββ

(
dβ

β
+
dβ

β

)
=

((
dβ

β

)
+
dβ

β

)
= 2 Re

(
dβ

β

)
,

and thus Im
(
dβ
2iβ

)
= −1

2
Re
(
dβ
β

)
= 0. Moreover dϕβ = −π∗S

(
dβ∧dβ
β2

)
+dϕ =

dϕ = −2π∗ω, so this is an acceptable principal connection form. The bundle
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map γβ is still homogeneous of degree 2. We are only left to prove the
two conditions of point 3, so consider a family of sections {(Uα, sα)}α∈A
corresponding to a trivialisation of S and let ηβα := γβ ◦ sα = βγ ◦ sα = βηα.
We thus have

dLCηβα = dLC(βηα) = dβ ∧ ηα + β2is∗αϕ ∧ ηα = 2i

(
dβ

2iβ
+ s∗αϕ

)
∧ e2iβηα

= 2is∗α

(
dπ∗S

(
dβ

2iβ

)
+ s∗αϕ

)
∧ ηβα = 2is∗αϕ

β ∧ ηβα.

As for the curvature condition D.1, it still holds because

[ηβα ∧ η
β
α] = [βηα ∧ βηα] = [ηα ∧ ηα].

Before continuing, we recall the following elementary result.

Lemma 2.5.13. Let M be a smooth manifold and G a Lie group with Lie
algebra g such that there is a smooth right action

r : M ×G −→M.

Then, the differential of r at a point (x, a) is

r∗(X,A) = (Ra)∗(X) + A◦,

for all X ∈ TxM , A ∈ g.

Proof. We split the computation on each component of Tx,a(M×G) = TxM×
TaG ∼= TxM × g.

Consider the vector (X, 0) and let xt be a smooth path such that x0 = x
and d

dt
xt|t=0 = X, then (xt, a) is an integral curve for (X, 0) in (x, a). Thus,

r∗(X, 0) =
d

dt
r(xt, a)|t=0 =

d

dt
Ra(xt)|t=0 = (Ra)∗(X).

For the vector (0, A) instead, consider the curve at = (x, a exp(tA)), then
for t = 0 we are in (x, a) and its tangent vector for t = 0 is (0, A). Hence,

r∗(0, A) =
d

dt
r(x, a exp(tA))|t=0 =

d

dt
xa exp(tA)|t=0 = (A◦)xa.

The statement follows from the linearity of r∗.
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We now present the following isomorphism result:

Proposition 2.5.14. In the setting of Proposition 2.5.12, if moreover β has
a square root, meaning that β = b2 for some b : M → U(1), then the map

mb : S −→ S

u 7−→ u.b(πS(u)) = Rb(πS(u))(u)

induces a bundle isomorphism preserving connection and deviance, that is

ϕβ = m∗b(ϕ), γβ = γ ◦mb.

In particular, if H1
dR(M) = 0, then every β has a square root.

Proof. The preservation of γ follows from its 2-homogeneity, in fact, for all
u ∈ S:

γ ◦mb(u) = γ(ub(πS(u))) = b(πS(u))2γ(u) = (β ◦ πS)γ(u) = γβ.

For the connection instead, we first compute the differential of mb. Let
r : S × U(1) → S be the principal right action, then we can see mb as
r ◦ (idS× (b◦πS)). The differential of (idS× (u◦πS)) is idTS×π∗Sdb, where db
has values in u(1) = iR. Lemma 2.5.13 gives us the differential of the action.
We have

((mb)∗)u = (RbπS(u))∗ + (dπS(u)b)
◦

Now let us compute the pullback of ϕ, using the fact that ϕ is right invariant
and dβ = db2 = 2bdb

m∗b(ϕ) = ϕ ◦ (mb)∗ = ϕ ◦ (RbπS(u))∗ + ϕ((dπS(u)b)
◦) = R∗bπS(u)ϕ+

1

ib
dπS(u)b

= ϕ+
1

i2b2
dπS(u)β = ϕ+

1

i2β
dπS(u)β = ϕβ.

In order to prove the last statement, let a : U(1) → C be the standard
identification of U(1) with the unit circle. Notice that we can write the
fundamental form of U(1) as

1

ia
da.

Locally in fact it is a = eiα and thus 1
ia
da = dα.
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Now let β : M → U(1), and consider the pullback

β∗
(

1

ia
da

)
=

1

iβ
dβ.

We have β∗ : H1
dR(U(1)) → H1

dR(M) = 0, so in particular 1
iβ
dβ is exact. Let

λ ∈ C∞(M) be such that dλ = 1
iβ
dβ, then e−iλβ is a smooth function with

image in U(1) and differential

−ieiλβdλ+ eiλdβ = −ie
iλβ

iβ
dβ + eiλdβ = −eiλdβ + eiλdβ = 0.

So up to a locally constant function k, keiλ = β. Without loss of generality,
we can assume k = 1 (take λ′ = λ−i log(k)). Then let b = e

iλ
2 and b2 = β.

Remark 2.5.15. In the statement of Proposition 2.5.12, if H1
dR(M) = 0,

then, up to isomorphism, there is a unique projective special Kähler structure
on M , once we fix the Kähler structure.

2.6 Complex hyperbolic n-space

In this section we are going to describe a special family of projective special
Kähler manifolds, which can be thought of as the simplest possible model in
a given dimension.

Let Cn,1 be the Hermitian space Cn+1 endowed with the Hermitian form

〈z, w〉 = z1w1 + · · ·+ znwn − zn+1wn+1.

It is a complex vector space, so it makes sense to consider the projective
space associated to it, that is P(Cn,1) = (Cn,1 \ {0})/C∗ with the quotient
topology and the canonical differentiable structure, where C∗ acts by scalar
multiplication. We will denote the quotient class corresponding to an element
z ∈ Cn,1 by [z]. We can define the following open subset:

Hn
C := {[v] ∈ P(Cn,1)|〈v, v〉 < 0}.

Let v = (v1, . . . , vn+1) ∈ Cn,1, notice that if [v] ∈ Hn
C, then |v1|2+ · · ·+ |vn|2−

|vn+1|2 < 0 so |vn+1|2 > |v1|2 + · · · + |vn|2 ≥ 0 which implies vn+1 6= 0. We
thus have a global differentiable chart Hn

C → Cn by restricting the projective
chart [v] 7→ ( v1

vn+1
, . . . , vn

vn+1
).
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Remark 2.6.1. The inverse of this chart is the map Cn → P(Cn,1) such
that Cn 3 z = (z1, . . . , zn) 7→ [(z1, . . . , zn, 1)], which is in Hn

C if and only if
‖z‖2 < 1. We have proven that Hn

C is diffeomorphic to the complex unit ball
and thus in particular it is contractible.

Consider now the Lie group SU(n, 1) of the matrices with determinant
1 that are unitary with respect to the Hermitian metric on Cn,1. We define
a left action of SU(n, 1) on HC such that A[v] = [Av]; it is well defined by
linearity and invertibility and it is smooth.

This action is also transitive, in fact given [v], [w] ∈ Hn
C, without loss of

generality, we can assume that 〈v, v〉 = −1 = 〈w,w〉. Because of this, we
can always complete v and w to an orthonormal basis with respect to the
Hermitian product, obtaining {v1, . . . , vn, v} and {w1, . . . , wn, w}. Consider
the following block matrices V = (v1| . . . |vn|v) and W = (w1| . . . |wn|w)
which, up to permuting two of the first n-columns, belong to SU(n, 1). The
matrix A = WV −1 ∈ SU(n, 1) maps v in w and thus [v] in [w].

We shall now compute the stabiliser of the last element of the canonical
basis en+1 for this action, that is, the set of matrices A ∈ SU(n, 1) such that
Aen+1 = λen+1 for λ ∈ C. Observe that λ ∈ U(1) since

−1 = 〈en+1, en+1〉 = 〈Aen+1, Aen+1〉 = 〈λen+1, λen+1〉 = −|λ|2.

Moreover, the last column of A is An+1 = Aen+1 = λen+1. This forces A to
assume the form (

B 0
0 λ

)
.

Since A belongs to SU(n, 1), we must infer that B belongs to U(n) and λ =
det(B)−1. The stabiliser of en+1 is thus S(U(n)U(1)), which is isomorphic to
U(n). We deduce the diffeomorphism Hn

C
∼= SU(n, 1)/S(U(n)U(1)).

Proposition 2.6.2. Hn
C is a symmetric space.

Proof. Consider the Lie algebra

g := su(n, 1) =

{(
A b
b? −tr(A)

)
|A ∈ u(n), b ∈ Cn

}
.

It can be decomposed as g = h + m where:

h :=

{(
A 0
0 −tr(A)

)
|A ∈ u(n)

}
;
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m :=

{(
0 b
b? 0

)
|b ∈ Cn

}
.

Notice that h is the Lie algebra corresponding to the subgroup S(U(n)U(1)).
Furthermore, we have [h,m] ⊆ m and [m,m] = h, proving that the space
SU(n, 1)/S(U(n)U(1)) is symmetric.

Notice that h ∼= u(n) as a Lie algebra and m ∼= Cn as a vector space, with

isomorphism

(
0 b
b? 0

)
7→ b.

We will adopt the nomenclature of [24] for the following

Definition 2.6.3. We call the Kähler manifold Hn
C of complex dimension n,

the complex hyperbolic n-space.

There is a natural Kähler structure on Hn
C coming from its representation

as a symmetric space G/H.
On a symmetric space, there is a one-to-one correspondence between Rie-

mannian metrics and Ad(H)-invariant positive definite symmetric bilinear
forms on m (See [33, II, Corollary 3.2, p. 200]).

Let θ : T[en+1]Hn
C
∼= m→ Cn be the identification mapping to x the tangent

vector corresponding to

(
0 x
x? 0

)
. With this identification, for A ∈ U(n) we

see that the Ad(A)-action on m corresponds on Cn to the x 7→ det(A)Ax.
The metric is induced by the Killing form on su(n, 1) given by the following
Lemma ([28]).

Lemma 2.6.4. The Killing form on su(n, 1) is

B(X, Y ) = 2(n+ 1)tr(XY ), ∀X, Y ∈ u(n, 1).

Proof. The Killing form on su(n, 1) is the same as the Killing form of its
complexification sl(n + 1,C) (see [28, Lemma 6.1, p. 180]). In turn, the
Killing form of sl(n+1,C) evaluated on X, Y ∈ sl(n+1,C) is 2(n+1)tr(XY )
([28, (5), p. 187]), ending the proof.

We restrict the Killing form to m in order to define an Ad(H)-invariant
bilinear form, that is, given x, y ∈ Cn, if X, Y are the corresponding tangent
vectors,

B(X, Y ) = 2(n+ 1)tr

((
0 x
x? 0

)(
0 y
y? 0

))
= 2(n+ 1)tr

(
xy? 0
0 x?y

)
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= 2(n+ 1) Re(x?y) = 2(n+ 1)(θ?θ)(X, Y ).

We define g[en+1] := θ?θ, which is Ad(U(n))-invariant, so it extends to a
global Riemannian metric g. By using the same idea, we can also define an
almost complex structure I on m as the map corresponding to the scalar
multiplication by i on Cn. This structure is compatible with the metric
and it is Ad(U(n))-invariant, so it defines a Kähler structure (see [33, II,
Proposition 9.3, p. 260]).

The Kähler form ω is then:

ω(X, Y ) = g(IX, Y ) = Re(x?i?y) = Im(x?y) = Im(θ? ⊗ θ)(X, Y ).

We shall now compute the curvature of the complex hyperbolic n-space.

Proposition 2.6.5. The curvature tensor of Hn
C is −ΩPnC .

Proof. Since Hn
C is a symmetric space G/H, we can compute its Riemannian

curvature tensor at the point p = [en+1], corresponding to the coset H, with
the formula ΩHnC(X, Y )Z = −[[X, Y ], Z] (see [28, Theorem 4.2, p. 215]) using
the usual identification of TpHn

C with m. Explicitly, if x, y, z ∈ Cn and X, Y, Z
are the respective tangent vectors, ΩHnC(X, Y )Z at p corresponds to

−
[[(

0 x
x? 0

)
,

(
0 y
y? 0

)]
,

(
0 z
z? 0

)]
= −

[(
xy? − yx? 0

0 x?y − y?x

)
,

(
0 z
z? 0

)]
= −

(
0 (xy? − yx?)z − z(x?y − y?x)

((xy? − yx?)z − z(x?y − y?x))? 0

)
= −

(
0 (xy? − yx? − x?y + y?x)z

((xy? − yx? − x?y + y?x)z)? 0

)
.

It follows that

ΩHnC = −R(θk ∧ θh ⊗ θk ⊗ θh − θh ∧ θh ⊗ θk ⊗ θk) = −ΩPnC .

The curvature of the complex hyperbolic n-space is thus opposite of the cur-
vature of the complex projective space of the same dimension, as computed
in Remark 2.3.3.

Proposition 2.6.6. The manifold Hn
C is a projective special Kähler manifold

for all n ≥ 1 with constant zero deviance.
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Proof. By Remark 2.6.1, we know that Hn
C is contractible, so in particular

H2(M,Z) = 0, and thus we can apply Corollary 2.5.10. If we choose as
tensor η of type ]2S3,0M the 0-section, then the differential condition (2.18)
is trivially satisfied, while the condition (2.17) follows from the computation
of the curvature tensor in Proposition 2.6.5.

Notice that the deviance measures the difference of a projective special
Kähler manifold of dimension 2n from being the complex hyperbolic n-space.
More precisely, we have

Proposition 2.6.7. At a point p of a projective special Kähler manifold M
with intrinsic deviance γ : S → ]2S3,0M , the curvature tensor ΩM coincides
with the one of Hn

C exactly in those points p where γ|p vanishes.

In particular, for any section of S defined on an open neighbourhood of p,
the corresponding local deviance vanishes at p whenever the two curvatures
coincide.

Proof. One direction follows from condition D.1. For the opposite one, if
ΩM = ΩHnC = −ΩPnC , then scalM = −2(n + 1) and the intrinsic deviance
vanishes as the norm of any local deviance vanishes by (2.15).

We can also prove

Proposition 2.6.8. The only complete connected and simply connected pro-
jective special Kähler manifold of dimension 2n with zero deviance is Hn

C.

Proof. Let (π : M̃ → M,∇) be such a projective special Kähler manifold.
Consider a point p ∈ M , then (TpM, g, I) can be seen as a complex vec-
tor space compatible with the metric and can thus be identified with the
tangent space at a point of Hn

C via an isomorphism F as they are both iso-
morphic to Cn with the standard metric. Being complex manifolds, Hn

C and
M are analytic, and since the curvature of M is forced to be −ΩPnC , which
corresponds to a u(n)-invariant map from the bundle of unitary frames to
S2(u(n)), it is also parallel with respect to the Levi-Civita connection. It fol-
lows that the linear isomorphism F preserves the curvature tensors and their
covariant derivatives. It follows that F can be extended to a diffeomorphism
f : M → Hn

C (See [33, I, Corollary 7.3, p. 261]) such that F is its differential
at p.

Since F preserves I and ω which are parallel, f is an isomorphism of
Kähler manifolds, as the latter maps parallel tensors to parallel tensors.
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Since the deviance of both manifolds is zero, we also have an isomorphism
of projective special Kähler manifolds.

The complex hyperbolic n-space provides an example of projective special
Kähler manifold which is not special Kähler. This is due to the fact that any
complete special Kähler manifold is flat ([36, Theorem 2, p. 712]), which
is a consequence (see [6, Corollary 3.3, p. 2406]) of the Calabi-Pogorelov
Theorem ([40, Theorem 7.7, p. 125]). If Hn

C were a special Kähler manifold,
it would be flat, which is in contradiction with the statement of Proposition
2.6.5. We can prove the same result directly.

Proposition 2.6.9. The complex hyperbolic n-space is never special Kähler.

Proof. Assume by contradiction that Hn
C has a special Kähler structure, then

there is a connection ∇ with the required properties. By Lemma 2.1.1, we
know that ∇ = ∇LC + η̃ with η̃ section of ]2[[S3,0Hn

C]]. By Proposition 2.1.2,
flatness of ∇ implies in particular

ΩLC +
1

2
[η̃ ∧ η̃] = 0. (2.19)

The form of the first summand is provided by Proposition 2.6.5 which states
that ΩLC = −ΩPnC . Since η̃ is a section of ]2[[S3,0Hn

C]], we can write it as

η̃ = η̂ + η̂ for a unique tensor η̂ of type ]2S3,0Hn
C. Therefore, we have

1

2
[η̃ ∧ η̃] =

1

2
[η̂ + η̂ ∧ η̂ + η̂] =

1

2
R[η̂ ∧ η̂] + [η̂ ∧ η̂].

If we write η̂ on a complex frame θ, we observe that [η̂ ∧ η̂] vanishes, as
[θk ⊗ θj, θk ⊗ θj] = 0, so 1

2
[η̃ ∧ η̃] = [η̂ ∧ η̂] and (2.19) becomes

[η̂ ∧ η̂] = ΩPnC .

In particular then, the scalar components of these two tensors must equal
each other. The scalar curvature of the projective space however is 2(n+1) >
0 (See (2.8)), whereas the scalar component of [η̂ ∧ η̂] can be computed as in
the proof of Proposition 2.5.3, obtaining − 2

n
‖η̂‖2 ≤ 0. Being real functions

with different sign, they can never be the same, giving a contradiction.

We conclude this section by giving the Iwasawa decomposition of SU(n, 1)
(see e.g. [28, Theorem 1.3, p. 403]), which will imply in particular that Hn

C
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can be identified with a solvable Lie group; this group will appear in our
classification of projective special Kähler Lie groups of dimension 4 in the
next chapter.

Let Ej
k be the (n+ 1)× (n+ 1) matrix with entry 1 at row j and column

k and 0 everywhere else. Let us define the following matrices for 1 ≤ k ≤ n
and 1 ≤ j < h ≤ n:

Pk = Ek
n+1 + En+1

k ; Qk = iEk
n+1 − iEn+1

k ;

Hj,h = Ej
h − E

h
j ; Kj,h = iEj

h + iEh
j ;

Dk = iEk
k − iEn+1

n+1 .

These matrices form a real basis for su(n, 1).
Consider the Cartan involution θ mapping A ∈ su(n, 1) to−A?. Its action

on the basis is

θ(Pk) = −Pk θ(Qk) = −Qk θ(Hj,h) = Hj,h θ(Kj,h) = Kj,h θ(Dk) = Dk.

We can then define k = 〈Hj,h, Kj,h, Dk|1 ≤ j < h ≤ n, 1 ≤ k ≤ n〉R and p =
〈Pk, Qk|1 ≤ k ≤ n〉R.

Let a be a maximal abelian subalgebra of p. We choose P1 ∈ a, then
[P1, Q1] = −2D1 for all k 6= 1, [P1, Pk] = H1,k and [P1, Qk] = −K1,k, thus a =
〈P1〉R is a maximal abelian subalgebra of p containing P1. Consider Ck(a) =
{B ∈ k|[A,B] = 0, for all A ∈ a} = {B ∈ k|[P1, B] = 0}. Computations
show that the matrices A that commute with P1 must have a zero at positions
A1
k, A

n+1
k , Ak1, A

k
n+1 for all 2 ≤ k ≤ n and moreover A1

n+1 = An+1
1 and A1

1 =
An+1
n+1. The only matrices of k that satisfy this condition are D1 − 2Dk for

2 ≤ k ≤ n, and Hj,h or Kj,h for 2 ≤ j < h ≤ n. We also know that
g0 = a + Ck(a) = 〈P1, D1 − 2Dk, Hj,h, Kj,h|2 ≤ k ≤ n, 2 ≤ j < h ≤ n〉R (e.g.
[28, IX.§1, p. 401]).

On a0 we can define a linear form α mapping P1 to 1, and thus we can
compute the root spaces

g2α = 〈Q1 −D1〉R ;

g−2α = 〈Q1 +D1〉R ;

gα = 〈Pk +H1,k, Qk −K1,k|2 ≤ k ≤ n〉R ;

g−α = 〈Pk −H1,k, Qk +K1,k|2 ≤ k ≤ n〉R .

The positive roots are thus {α, 2α} and

n = 〈Q1 −D1, Pk +H1,k, Qk −K1,k|2 ≤ k ≤ n〉R .
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Explicitly, the Lie brackets on the elements of the basis are

[Q1 −D1, Pk +H1,k] = [Q1 −D1, Qk −K1,k] = 0;

[Ph +H1,h, Pk +H1,k] = [Qh −K1,h, Qk −K1,k] = 0;

[Ph +H1,h, Qk −K1,k] = 2δh,k(Q1 −D1).

for all 2 ≤ h, k ≤ n so, by rescaling the generating elements of the basis, we
get that n is isomorphic to the Heisenberg Lie algebra of dimension 2n− 1.
We now have g = k⊕ a⊕ n which is the Iwasawa decomposition.

Notice that k is the Lie subalgebra corresponding to S(U(n)U(1)), so in
particular the tangent space is isomorphic to a⊕ n and thus we have proven

Proposition 2.6.10. The complex hyperbolic n-space is a solvmanifold iso-
morphic to Hn−1 o R, where Hn−1 is the Heisenberg group of dimension
2n− 1.
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Chapter 3

Applications of the deviance

In this chapter we give some applications of the deviance. The first one is the
classification of 4-dimensional projective special Kähler Lie groups. Here we
can see how the introduction of the deviance in substitution to the classical
definition of projective special Kähler manifold, simplifies computations. In
fact, all it is left to do is to solve the algebraic condition D.1 of Theorem
2.5.6 for a generic deviance tensor defined in a neighbourhood of the identity
element, and then refine the solutions by imposing the differential condition
D.2.

In the following section, we compute the deviance for the examples of
Section 1.6. In particular, in the first part we also give a classification result
for projective special Kähler Lie groups in dimension 2.

The final section contains the computation of the coframe of a quaternion
Kähler manifold obtained from the intrinsic c-map construction as presented
in Section 1.4.1, starting from the complex hyperbolic n-space. An explicit
computation is done for n = 2.

3.1 Classification of 4-dimensional projective

special Kähler Lie groups

If M is a Lie group, the conditions of Theorem 2.5.6 are simpler, because a
Lie group is always parallelisable. As a consequence, the bundle ]2S3,0(M)
is trivial, and in particular we have a global coordinate system to write the
local deviances.

105
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Definition 3.1.1. A projective special Kähler Lie group is a Lie group
with projective special Kähler structure such that the Kähler structure is left-
invariant.

Notice that we do not require the deviance to be left-invariant.
An example is Hn

C, since the Iwasawa decomposition SU(n, 1) = KAN
gives a left-invariant Kähler structure on the solvable Lie group AN . We
denote by Hλ the hyperbolic plane with curvature −λ2, which is actually just
a rescaling of H1

C, since there is only one non-abelian Lie algebra. Consider
in fact such a Lie algebra and a unitary frame e, such that [e1, e2] = ae1 +be2
with (a, b) 6= 0. By defining u1 = 1√

a2+b2
(ae1 + be2) and u2 = Iu1, we get

[u1, u2] =
√
a2 + b2u1, which is a rescaling of the hyperbolic plane.

With Definition 3.1.1, we are able to classify 4-dimensional projective
special Kähler Lie groups; we obtain exactly two, which coincide with the
two 4-dimensional cases appearing in the classification of projective special
Kähler manifolds homogeneous under the action of a semisimple Lie groups
([2]).

Theorem 3.1.2. Up to isomorphisms of projective special Kähler manifolds,
there are only two connected simply connected projective special Kähler Lie
groups of dimension 4: H√2 × H2 and the complex hyperbolic plane. Up to
isomorphisms that also preserve the Lie group structure, there are four projec-
tive special Kähler connected and simply connected Lie groups of dimension
4, listed in Table 3.4.

Proof. We will start from the classification of pseudo-Kähler Lie groups pro-
vided by [41]. Table 3.1 displays the eighteen families of pseudo-Kähler Lie
algebras in dimension 4.

Among these families, only for the ones in Table 3.2 the metric can be
positive definite i.e. Kähler. It is now straightforward to find a unitary frame
u for each case, that is such that g =

∑4
k=1(u

k)2, Iu1 = u2, Iu3 = u4 and
ω = u1,2 + u3,4. With respect to u, we can write the new structure constants
and compute the Levi-Civita connection form ωLC and the corresponding
curvature form ΩLC . We write

H1 :=


−u1,2

u1,2

 H2 =

 −u3,4
u3,4
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g I ω
rh3 Ie1 = e2, Ie3 = e4 a1(e

1,3 + e2,4) + a2(e
1,4 − e2,3) +

a3e
1,2, a21 + a22 6= 0

rr3,0 Ie1 = e2, Ie3 = e4 a1e
1,2 + a2e

3,4, a1a2 6= 0
rr′3,0 Ie1 = e4, Ie2 = e3 a1e

1,4 + a2e
2,3, a1a2 6= 0

r2r2 Ie1 = e2, Ie3 = e4 a1e
1,2 + a2e

3,4, a1a2 6= 0
r′2 Ie1 = e3, Ie2 = e4 a1(e

1,3−e2,4)+a2(e
1,4+e2,3), a21+

a22 6= 0
r′2 Ie1 = −e2, Ie3 = e4 a1(e

1,3 − e2,4) + a2(e
1,4 + e2,3) +

a3e
1,2, a21 + a22 6= 0

r4,−1,−1 Ie4 = e1, Ie2 = e3 a1(e
1,2 + e3,4) + a2(e

1,3 − e2,4) +
a3e

1,4, a21 + a22 6= 0
r′4,0,δ Ie4 = e1, Ie2 = e3 a1e

1,4 + a2e
2,3, a1a2 6= 0, δ > 0

r′4,0,δ Ie4 = e1, Ie2 = −e3 a1e
1,4 + a2e

2,3, a1a2 6= 0, δ > 0

d4,1 Ie1 = e4, Ie2 = e3 a1(e
1,2 − e3,4) + a2e

1,4, a1 6= 0
d4,2 Ie4 = −e2, Ie1 = e3 a1(e

1,4 + e2,3) + a2e
2,4, a1 6= 0

d4,2 Ie4 = −2e1, Ie2 = e3 a1e
1,4 + a2e

2,3, a1a2 6= 0
d4,1/2 Ie4 = e3, Ie1 = e2 a1(e

1,2 − e3,4), a1 6= 0
d4,1/2 Ie4 = e3, Ie1 = −e2 a1(e

1,2 − e3,4), a1 6= 0
d′4,δ Ie4 = e3, Ie1 = e2 a1(e

1,2 − δe3,4), a1 6= 0, δ > 0

d′4,δ Ie4 = −e3, Ie1 = e2 a1(e
1,2 − δe3,4), a1 6= 0, δ > 0

d′4,δ Ie4 = −e3, Ie1 = −e2 a1(e
1,2 − δe3,4), a1 6= 0, δ > 0

d′4,δ Ie4 = e3, Ie1 = −e2 a1(e
1,2 − δe3,4), a1 6= 0, δ > 0

Table 3.1: Classification of pseudo-Kähler Lie algebras in dimension 4 [41,
Table 5.1]

From the computations in Table 3.3 we notice that the curvature tensors
are of two types:

(i) a2H1 + b2H2 for a, b ≥ 0;

(ii) −a2(ΩP2
C

+ 6bH2) for a > 0 and b ∈ {0, 1}.

Consider now the globally defined complex coframe θ1 = u1 + iu2, θ2 =
u3 + iu4. If M has a projective special Kähler structure, thanks to Theorem
2.5.6, there is an S1-bundle πS : S → M and a suitable family of sections.
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Case g I ω Conditions
I rr3,0 Ie1 = e2, Ie3 = e4 a1e

1,2 + a2e
3,4 a1, a2 > 0

II rr′3,0 Ie1 = e4, Ie2 = e3 a1e
1,4 + a2e

2,3 a1, a2 > 0

III r2r2 Ie1 = e2, Ie3 = e4 a1e
1,2 + a2e

3,4 a1, a2 > 0
IV r′4,0,δ Ie4 = e1, Ie2 = e3 a1e

1,4 + a2e
2,3 a1 < 0; a2, δ > 0

V r′4,0,δ Ie4 = e1, Ie2 = −e3 a1e
1,4 + a2e

2,3 a1, a2 < 0; δ > 0

VI d4,2 Ie4 = −2e1, Ie2 = e3 a1e
1,4 + a2e

2,3 a1, a2 > 0
VII d4,1/2 Ie4 = e3, Ie1 = e2 a1(e

1,2 − e3,4) a1 > 0
VIII d′4,δ Ie4 = e3, Ie1 = e2 a1(e

1,2 − δe3,4) a1, δ > 0

IX d′4,δ Ie4 = −e3, Ie1 = −e2 a1(e
1,2 − δe3,4) a1 < 0; δ > 0

Table 3.2: Kähler Lie algebras of dimension 4

Choose in this family a section s : U → S with U containing the identity
element of M . Without loss of generality, we can assume U simply connected.
Let η = γ◦s which is a section of ]2S3,0U , then applying [2 we obtain a section
σ of S3,0U which better displays the symmetry.

We write σ in its generic form with respect to θ:

σ = c1(θ
1)3 + c2(θ

1)2θ2 + c3θ
1(θ2)2 + c4(θ

2)3

for some functions c1, c2, c3, c4 ∈ C∞(U,C). By raising the second index, we
obtain η = ]2σ which is

η = 2c1θ
1 ⊗ θ1 ⊗ θ1 +

2c2
3

(
θ1 ⊗ θ1 ⊗ θ2 + θ1 ⊗ θ2 ⊗ θ1 + θ2 ⊗ θ1 ⊗ θ1

)
+

2c3
3

(
θ1 ⊗ θ2 ⊗ θ2 + θ2 ⊗ θ1 ⊗ θ2 + θ2 ⊗ θ2 ⊗ θ1

)
+ 2c4θ

2 ⊗ θ2 ⊗ θ2.

With respect to this generic section, we can compute [η ∧ η] explicitly:

[η ∧ η] =
4

9
R

(
θ1 ∧ θ1 ⊗

(
9|c1|2 + |c2|2 3c1c2 + c2c3
3c2c1 + c3c2 |c2|2 + |c3|2

)
+ θ1 ∧ θ2 ⊗

(
3c1c2 + c2c3 c1c3 + c2c4
|c2|2 + |c3|2 c2c3 + 3c3c4

)
+ θ2 ∧ θ1 ⊗

(
3c2c1 + c3c2 |c2|2 + |c3|2
c3c1 + c4c2 c3c2 + 3c4c3

)
+ θ2 ∧ θ2 ⊗

(
|c2|2 + |c3|2 c2c3 + c3c4
c3c2 + 3c4c3 |c3|2 + 9|c4|2

))
.
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Case g Str. constants ΩLC

I rr3,0
[u1, u2] = au2
a > 0

a2H1

II rr′3,0
[u1, u3] = −u4
[u1, u4] = u3

0

III r2r2

[u1, u2] = au2
[u3, u4] = bu4
a, b > 0

a2H1 + b2H2

IV r′4,0,δ

[u1, u2] = au2
[u1, u3] = −δau4
[u1, u4] = δau3
a, δ > 0

a2H1

V r′4,0,δ

[u1, u2] = au2
[u1, u3] = δau4
[u1, u4] = −δau3
a, δ > 0

a2H1

VI d4,2

[u1, u2] = −2au1
[u1, u3] = 2au4
[u2, u3] = −au3
[u2, u4] = au4
a > 0

−a2ΩP2
C
− 6a2H2

VII d4,1/2

[u1, u2] = 2au4
[u1, u3] = −au1
[u2, u3] = −au2
[u3, u4] = 2au4
a > 0

−a2ΩP2
C

VIII d′4,δ

[u1, u2] = 2a
√
δu4

[u1, u3] = −a
√
δu1 + 2a√

δ
u2

[u2, u3] = − 2a√
δ
u1 − a

√
δu2

[u3, u4] = 2a
√
δu4

a, δ > 0

−δa2ΩP2
C

IX d′4,δ

[u1, u2] = −2a
√
δu3

[u1, u4] = −a
√
δu1 − 2a√

δ
u2

[u2, u4] = 2a√
δ
u1 − a

√
δu2

[u3, u4] = −2a
√
δu3

a, δ > 0

−δa2ΩP2
C

Table 3.3: Curvature tensors
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Notice that if we define v1, v2, v3 ∈ C∞(U,C2) such that

v1 :=

(
2c1
2c2
3

)
=

(
x
y

)
, v2 :=

(
2c2
3
2c3
3

)
=

(
y
z

)
, v3 :=

(
2c3
3

2c4

)
=

(
z
w

)
, (3.1)

then we have

[η ∧ η] = R

(
θ1 ∧ θ1 ⊗

(
‖v1‖2 〈v1, v2〉
〈v1, v2〉 ‖v2‖2

)
+ θ1 ∧ θ2 ⊗

(
〈v1, v2〉 〈v1, v3〉
‖v2‖2 〈v2, v3〉

)
+θ2 ∧ θ1 ⊗

(
〈v1, v2〉 ‖v2‖2

〈v2, v3〉 〈v2, v3〉

)
+ θ2 ∧ θ2 ⊗

(
‖v2‖2 〈v2, v3〉
〈v2, v3〉 ‖v3‖2

))
In other words, the coefficients of [η∧η] are the pairwise Hermitian products
of v1, v2, v3.

Returning to the classification, if we write H1, H2,ΩP2
C

with respect to the
complex coframe, we notice that the positions corresponding to the mixed
Hermitian products are always zero.

H1 = R

(
θ1 ∧ θ1 ⊗

(
1
2

0
0 0

))
, H2 = R

(
θ2 ∧ θ2 ⊗

(
0 0
0 1

2

))
ΩP2

C
= R

(
θ1 ∧ θ1 ⊗

(
−2 0
0 −1

)
+ θ1 ∧ θ2 ⊗

(
0 0
−1 0

)
+θ2 ∧ θ1 ⊗

(
0 −1
0 0

)
+ θ2 ∧ θ2 ⊗

(
−1 0
0 −2

))
As a consequence, for all cases, if (2.13) holds, then v1, v2, v3 must be orthog-
onal.

Now we will treat each case of possible curvature tensor separately.

(i) Let a, b ≥ 0 and ΩLC = a2H1 + b2H2, then

ΩLC = R

(
θ1 ∧ θ1 ⊗

(
a2

2
0

0 0

)
+ θ2 ∧ θ2 ⊗

(
0 0

0 b2

2

))
So, by (2.13), [η ∧ η] = −ΩLC − ΩP2

C
, which implies

‖v1‖2 = 2− a2

2
, ‖v2‖2 = 1, ‖v3‖2 = 2− b2

2
.
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These equalities translate to a linear system in the squared norms of
x, y, z, w introduced in (3.1), namely

|x|2 + |y|2 = 2− a2

2

|y|2 + |z|2 = 1

|z|2 + |w|2 = 2− b2

2

.

Its solutions are
|x|2 = 1− a2

2
+ s

|y|2 = 1− s
|z|2 = s

|w|2 = 2− b2

2
− s

for s ∈ [0, 1]. (3.2)

Imposing the orthogonality conditions 〈v1, v2〉 = 〈v2, v3〉 = 〈v3, v4〉 = 0,
we get: 

xy + yz = 0

yz + zw = 0

xz + yw = 0

. (3.3)

Notice that because of (3.2), y and z cannot vanish simultaneously, so
we have (at each point) three different cases:

• Suppose at first that z = 0, then s = 0 and ‖y‖ = 1, so y 6= 0 and
(3.3) becomes 

xy = 0

0 = 0

yw = 0

Implying x = w = 0, so the solutions are (x, y, z, w) = (0, y, 0, 0)
for y ∈ C∞(U, S1) if we identify S1 with complex numbers with
module 1. Notice that y = eiα for some α ∈ C∞(U) since we
chose U simply connected. Explicitly, if ψ is the fundamental
1-form of S1, then y∗ψ is closed, and thus represents a class in
the first de Rham cohomology group of U , but H1

dR(U) = 0, so
y∗ψ = dα for some α ∈ C∞(U). Since ψ is locally represented
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by the differential of the argument of the complex number, up to
adding a constant to α, we can assume y = eiα. Thus we have
(c1, c2, c3, c4) = (0, 3

2
eiα, 0, 0) for some α ∈ C∞(U).

Finally, (3.2) gives {
1− a2

2
= 0

2− b2

2
= 0

and thus a =
√

2 and b = 2.

• Suppose now that z 6= 0 and y = 0, then (3.3) becomes
0 = 0

zw = 0

xz = 0

and then w = x = 0 so, similarly to the previous case, the solutions
are (c1, c2, c3, c4) = (0, 0, eiα, 0) for α ∈ C∞(U) and this time, (3.2)
implies a = 2 and b =

√
2.

• The remaining case has z 6= 0 and y 6= 0. In order to solve it, let
us call t := yz 6= 0, then (3.2) and (3.3) give

z =
ty

|y|2
=

ty

1− s

x = − ty

|y|2
= − ty

1− s

w = − tz

|z|2
= − t2y

s(1− s)

0 = xz + yw =

(
− ty

1− s

)(
ty

1− s

)
+ y

(
− t2y

s(1− s)

)
= −t2

(
1

1− s
+

1

s

)
= − t2

s(1− s)
,

in contradiction with t 6= 0.

In conclusion, for this class of curvature tensors, the only solutions are
for

a =
√

2, b = 2, σ =
3

2
eiα(θ1)2θ2 for α ∈ C∞(U)
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and

a = 2, b =
√

2, σ =
3

2
eiαθ1(θ2)2 for α ∈ C∞(U).

We deduce that in Table 3.3 there are no solutions for cases I, II, IV,
V, and the only solutions in case III are the ones mentioned before.
Moreover, these solutions are isomorphic to one another and the iso-
morphism is obtained by swapping u1 with u3 and u2 with u4. The
simply connected Lie group corresponding to this case is H√2 ×H2.

(ii) Let now a > 0, b ∈ {0, 1} and ΩLC = −a2(ΩP2
C

+ 6bH2), then

[η ∧ η] = −ΩLC − ΩPnC = (a2 − 1)ΩPnC + 6a2bH2

= R

(
θ1 ∧ θ1 ⊗

(
2(1− a2) 0

0 1− a2
)

+ θ1 ∧ θ2 ⊗
(

0 0
1− a2 0

)
+θ2 ∧ θ1 ⊗

(
0 1− a2
0 0

)
+ θ2 ∧ θ2 ⊗

(
1− a2 0

0 2− 2a2 + 3a2b

))
.

Therefore we obtain the following equations

‖v1‖2 = 2− 2a2, ‖v2‖2 = 1− a2, ‖v3‖2 = 2− 2a2 + 3a2b.

Giving the conditions
|x|2 + |y|2 = 2− 2a2

|y|2 + |z|2 = 1− a2

|z|2 + |w|2 = 2− 2a2 + 3a2b

with solutions
|x|2 = 1− a2 + s

|y|2 = 1− a2 − s
|z|2 = s

|w|2 = 2− 2a2 + 3a2b− s

for s ∈ [0, 1− a2] (3.4)

We now impose the vanishing of 〈v1, v2〉, 〈v2, v3〉, 〈v3, v4〉, that is (3.3).

We have four different cases:
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• Suppose at first that y = z = 0, then s = 0 and a = 1, so (3.3) is
always satisfied, while (3.4) becomes

|x|2 = 0

|y|2 = 0

|z|2 = 0

|w|2 = 3b

that has solutions (x, y, z, w) = (0, 0, 0,
√

3beiα) for α ∈ C∞(U)

and thus (c1, c2, c3, c4) = (0, 0, 0,
√
3b
2
eiα). In conclusion, a = 1 and

σ =
√
3b
2
eiα(θ2)

3.

• Suppose now that z = 0 but y 6= 0, then s = 0 and a2 − 1 6= 0.
The system (3.3) implies x = w = 0, but then by (3.4), 0 = |x|2 =
1− a2 6= 0, so in this case there are no solutions.

• Analogously, if z 6= 0 but y = 0, then s = 1 − a2 and (3.3) gives
w = x = 0, so from (3.4) we get 0 = |x|2 = 2 − 2a2 = 2|z|2 6= 0
leaving no solutions.

• The remaining case has z 6= 0 and y 6= 0. In order to solve it, let
us call t := yz 6= 0, then (3.4) and (3.3) give

z =
ty

|y|2
=

ty

1− a2 − s

x = − ty

|y|2
= − ty

1− a2 − s

w = − tz

|z|2
= − t2y

s(1− a2 − s)
0 = xz + yw

=

(
− ty

1− a2 − s

)(
ty

1− a2 − s

)
+ y

(
−t2y

s(1− a2 − s)

)
= −t2

(
1

1− a2 − s
+

1

s

)
= − t2(1− a2)

s(1− a2 − s)

The latter implies a = 1, and from (3.4) we deduce a contradiction:
0 < |y|2 = −s < 0.
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In conclusion, the only solutions for this type of curvature tensors are
obtained for

a = 1, b = 0, σ = 0;

and

a = 1, b = 1 σ =

√
3

2
eiα(θ2)3 for α ∈ C∞(U).

In Table 3.3, these results correspond to the cases: VI for a = 1 and
σ =

√
3
2
eiα(θ2)3 for α ∈ C∞(U); VII for a = 1 and σ = 0; VIII and IX

for a = 1√
δ
, δ > 0 and σ = 0.

Table 3.4 summarises (up to isomorphisms) the cases satisfying the cur-
vature condition, showing the non-vanishing differentials of the coframe and
the Levi-Civita connection. We know that these Lie groups are all solvable,

Case Structure constants ωLC PSK

III
du2 = −

√
2u1,2

du4 = −2u3,4

( √
2u2

−
√
2u2

2u4

−2u4

)
X

VI
du1 = 2u1,2

du3 = u2,3

du4 = −2u1,3 − u2,4

(
0 −2u1u4 u3

2u1 0 −u3 u4

−u4 u3 0 −u1
−u3 −u4 u1 0

)

VII
du1 = u1,3

du2 = u2,3

du4 = −2u1,2 − 2u3,4

(
0 u4 −u1 u2

−u4 0 −u2 −u1
u1 u3 0 2u4

−u2 −u4−2u4 0

)
X

VIII

du1 = u1,3 + 2
δ
u2,3

du2 = −2
δ
u1,3 + u2,3

du4 = −2u1,2 − 2u3,4

δ > 0

(
0 2

δ
u3+u4−u1 u2

− 2
δ
u3−u4 0 −u2 −u1
u1 u2 0 2u4

−u2 u1 −2u4 0

)
X

IX

du1 = u1,4 − 2
δ
u2,4

du2 = 2
δ
u1,4 + u2,4

du3 = 2u1,2 + 2u3,4

δ > 0

(
0 − 2

δ
u4−u3−u2 −u1

2
δ
u4+u3 0 u1 −u2
u2 −u1 0 −2u3
u1 u2 2u3 0

)
X

Table 3.4: Cases satisfying the curvature condition

and this implies that they are the product of a torus (product of circum-
ference) and a euclidean space [11, Theorem 2a, p.675]. In particular, they
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have trivial second cohomology group. We can thus apply directly Corollary
2.5.10, assuring that the previously found σ and α are actually global. No-
tice that for cases III, VII, VIII, IX, the Kähler form is exact with invariant
potentials; respectively − 1√

2
u2 − 1

2
u4, −1

2
u4, −1

2
u4, 1

2
u3.

Now we must check whether condition D.2 holds for the cases left. We
can immediately say that cases VII, VIII, IX are all projective special Kähler
because σ = 0, and thus the differential condition is trivially satisfied.

Concerning case III, we can compute dLCσ by understanding how the
Levi-Civita connection behaves on the unitary complex coframe θ.

∇LCθ1 = ∇LCu1 + i∇LCu2 = −(ωLC)1k ⊗ uk − i(ωLC)2k ⊗ uk

= −
√

2u2 ⊗ u2 + i
√

2u2 ⊗ u1 =
√

2iu2 ⊗ θ1;

∇LCθ2 = ∇LCu3 + i∇LCu4 = −(ωLC)3k ⊗ uk − i(ωLC)4k ⊗ uk

= −2u4 ⊗ u4 + i2u4 ⊗ u3 = 2iu4 ⊗ θ2.

Now we can compute

∇LCσ = ∇LC

(
3

2
eiα(θ1)2θ2

)
=

3

2
idα⊗ eiα(θ1)2θ2 + 3

√
2iu2eiα(θ1)2θ2 +

3

2
2iu4 ⊗ eiα(θ1)2θ2

= −4i

(
−1

4
dα− 1√

2
u2 − 1

2
u4
)
⊗ σ.

If we define λ := −1
4
dα − 1√

2
u2 − 1

2
u4, we have that dλ = ω and dLCσ =

−4iλ ∧ σ. Thanks to Corollary 2.5.10, we have proven that also case III has
a projective special Kähler structure for every choice of α ∈ C∞(M).

Suppose that VI is projective special Kähler, than by Theorem 2.5.6,
locally we must have the differential condition D.2. Consider the unitary
global complex coframe θ.

∇LCθ2 = ∇LCu3 + i∇LCu4

= u4 ⊗ u1 − u3 ⊗ u2 + u1 ⊗ u4 + i(u3 ⊗ u1 + u4 ⊗ u2 − u1 ⊗ u3)
= u4 ⊗ θ1 + iu3 ⊗ θ1 − iu1 ⊗ θ2 = iθ2 ⊗ θ1 − iu1 ⊗ θ2.

Thus

∇LCσ = ∇LC

(√
3

2
eiα(θ2)3

)
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= idα⊗
√

3

2
eiα(θ2)3 + 3

√
3

2
eiα(∇LCθ2)(θ2)2

= idα⊗ σ + 3

√
3

2
eiα(iθ2 ⊗ θ1 − iu1 ⊗ θ2)(θ2)2

= i(dα− 3u1)⊗ σ + 3iθ2 ⊗
√

3

2
eiαθ1(θ2)2;

dLCσ = i(dα− 3u1) ∧ σ + 3iθ2 ∧
√

3

2
eiαθ1(θ2)2.

Notice that this is never of the form required by condition D.2 for any
available choice of σ, since evaluating the last component at θ1, we obtain
i
√
3
2
θ2 ∧ θ2 ⊗ θ2 whereas the same operation on a form of type iτ ∧ σ would

evaluate to zero. We deduce that VI does not admit a projective special
Kähler structure.

We are now left with cases III, VII, VIII, IX. At the level of Lie groups,
case III corresponds to the connected simply connected Lie group H√2×H2

with σ = 3
2
(θ1)2θ2 up to isomorphism. The other deviances are in fact

obtained by taking eiασ and thus we are in the situation of Proposition
2.5.12. The Lie groups corresponding to the cases VII, VIII and IX, are in
particular homogeneous, and they all have zero deviance, so by Proposition
2.6.8 we deduce that they are all isomorphic to H2

C as projective special
Kähler manifolds.

Remark 3.1.3. Notice that case VII coincides with the description of H2
C

given in Proposition 2.6.10.

Remark 3.1.4. It is striking that in case III, which is obtained via the r-map
from the polynomial x2y, the deviance is a global tensor which is a multiple
of this polynomial with respect to a Kähler holomorphic coframe.

It turns out that all 4-dimensional projective special Kähler Lie groups
are simply connected, so this theorem already presents all possible cases.

Proposition 3.1.5. Let (π : M̃ →M,∇) be a projective special Kähler man-
ifold, then the universal cover p : U → M admits a projective special Kähler
structure. In particular, if γ : S → ]2S3,0M is the intrinsic deviance for M ,
then p∗S → U is an S1-bundle and if we call p′ the canonical map p∗S → S,
then U has deviance p∗ ◦ γ ◦ p′ : p∗S → ]2S3,0U on U .

If M is a projective special Kähler Lie group, then so is U .
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Proof. Since p : U →M is a cover, we can lift the whole Kähler structure of
M to U by pullback (U, p∗g, p∗I, p∗ω) (the pullback of I makes sense, since p
is a local diffeomorphism). We will now use Theorem 2.5.6. The S1-bundle
S lifts to an S1-bundle πp∗S : p∗S → U , where the right action can be defined
locally, since p is a local diffeomorphism. The principal connection ϕ on S
lifts to ϕ′ = p′∗ϕ and its curvature is, as expected, dϕ′ = p′∗dϕ = −2p′π∗Sω =
−2π∗p∗Sp

∗ω. Let γ′ = p∗ ◦ γ ◦ p′ : p∗S → ]2S3,0U , then γ′(ua) = a2γ′(u) holds,
as the action is defined on the fibres, which are preserved by the pullback.
The remaining properties also follow from the fact p is a local diffeomorphism.

Finally, if M is a Lie group with left invariant Kähler structure, then U
is a Lie group and its Kähler structure is also left invariant.

Given a universal cover p : U → M of a projective special Kähler Lie
group, ker(p) is a discrete subgroup and when M is connected, ker(p) is in
the center Z(U) of U . From this observation we obtain the following corollary

Corollary 3.1.6. A connected 4-dimensional projective special Kähler Lie
group is isomorphic to one of the following:

• H√2 × H2 with deviance [2(
3
2
(θ1)2θ2) in the standard complex unitary

coframe θ;

• complex hyperbolic n-space with zero deviance.

Proof. The proof follows from Theorem 3.1.2 with Proposition 3.1.5, as a con-
nected group M with universal cover p : U → M is isomorphic to U/ ker(p)
and, if M is a projective special Kähler Lie group, so is U by Proposition
3.1.5. Since U is also simply connected, Theorem 3.1.2 provides all the possi-
bilities up to isomorphisms preserving the Lie structure. Therefore, it suffices
to show that these possibilities for U have trivial centre.

Starting with H√2×H2, its centre is Z(H√2)×Z(H2), so it is enough to
prove that Z(Hλ) is trivial and, up to scaling, we can assume λ = 1. This
Lie group is isomorphic to the following Lie group of orientation preserving
affinities on the 1-dimensional real affine space, that is{(

a b
0 1

)
|a ∈ R+, b ∈ R

}

A generic matrix of this form X =

(
x y
0 1

)
is in the center if and only if for

every other orientation preserving affinity A, AX = XA, that is if and only
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if, for all a ∈ R+ and b ∈ R we have xb + y = ay + b, that is if and only if
x = 1 and y = 0. Therefore X = I2, so the centre is trivial.

For the complex holomorphic 2-space we have three Lie groups, corre-
sponding to cases VII, VIII and IX in Table 3.3. Notice that cases VIII and
IX have isomorphic Lie algebras, so it is enough to study the cases VII and
VIII.

In both cases, the derived Lie algebra is 〈u1, u2, u4〉R and the only non-
vanishing bracket on the elements of the basis is [u1, u2] = 2u4, so in both
cases, the derived Lie algebra is isomorphic to the Heisenberg Lie algebra h1
of dimension 3. For each case, the element u3 acts on this Lie algebra as the
following derivations represented in the basis u1, u2, u4

ϕVII =

1 0 0
0 1 0
0 0 2

 , ϕVIII =

 1 2
δ

0
−2
δ

1 0
0 0 2

 .

We can then see both Lie algebras as a semidirect product; namely, case VII
is isomorphic to h1 oϕVII

R and case VIII to h1 oϕVIII
R. The Lie algebra

corresponding to the semidirect product of two Lie groups is the semidirect
product of the associated Lie algebras. From the Lie groups-Lie algebras
correspondence, we can see both groups as semidirect products H1 o R+,
described by different automorphisms τV II , τV III : R+ → Aut(H1).

Given a semidirect product H1 oτ R+, the multiplication is defined as

(x1, y1)(x2, y2) = (x1τ(y1)(x2), y1y2).

Since R+ is abelian, two such elements commute if and only if x1τ(y1)(x2) =
x2τ(y2)(x1). An element (x, y) is then in the center if and only if

xτ(y)(u) = uτ(v)(x) (3.5)

for all (u, v) ∈ H1 oR+. In particular, for u = 1 we get

τ(v)(x) = x, (3.6)

so x is a fixed point for every τ(v). By applying (3.6) to (3.5), we obtain
that τ(y) must be the conjugation by x.

In order to compute τV II and τV III , we first need to consider the following
automorphisms of h1

exp(tϕVII) =

et 0 0
0 et 0
0 0 e2t

 , exp(tϕVIII) =

 et cos(t δ
2
) et sin(t δ

2
) 0

−et sin(t δ
2
) et cos(t δ

2
) 0

0 0 e2t

 .
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For both cases, the differential at the identity of τk(e
t) is exp(tϕk), and

since exp: h1 → H1 is invertible with inverse log, we can compute τk(e
t) =

exp ◦ exp(tϕk) ◦ log.

Explicitly, given a generic x =

1 a c
0 1 b
0 0 1

 ∈ H1,

log(x) =

0 a c− ab
2

0 0 b
0 0 0

 = au1 + bu2 +
1

2

(
c− ab

2

)
u4.

We analyze the two cases:

VII) If we apply exp(tϕVII) it becomes etau1 + etbu2 + e2t

2
(c − ab

2
)u4 which

exponentiates to

1 eta e2tc
0 1 etb
0 0 1

, which equals x for all t if and only if

a = b = c = 0, implying that the centre of case VII is trivial.

VIII) If we apply exp(tϕVIII) it becomes

et(a cos(t
δ

2
)+b sin(t

δ

2
))u1+et(b cos(t

δ

2
)−a sin(t

δ

2
))u2+

e2t

2
(b− ac

2
)u4.

If we exponentiate it, it is equal to x if and only if
et
(
a cos

(
tδ
2

)
+ b sin

(
tδ
2

))
= a

et
(
b cos

(
tδ
2

)
− a sin

(
tδ
2

))
= b

e2t
(
c+ ab

2
− cos(tδ) + b2−a2

4
sin(tδ)

)
= c

.

If this holds for all t, then in particular if we take the limit of this
system for t → −∞, the equations must still be satisfied, but this
implies a = b = c = 0.

In either case the centre is trivial, ending the proof.

3.2 Deviance in the examples

We now compute the deviance in the projective special Kähler manifolds
appearing in the examples of Section 1.6.
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3.2.1 Example H 2√
3

This is the projective special Kähler manifold used in Example 1.6.1, that is
the hyperbolic plane with curvature −4

3
. We use the coframe (1.23) restricted

to M , that is

e1 =

√
3

2y
dx e2 =

√
3

2y
dy

with structure constants

de1 =
2√
3
e1,2 de2 = 0.

We have a global complex coordinate chart z = x+ iy : M → C and we can
consider the complex coframe θ1 = e1 + ie2 =

√
3

2y
(dx + idy) =

√
3

2 Im(z)
dz in

Λ1,0M . The Levi-Civita connection form is then

ωLC =

(
0 − 2√

3
e1

2√
3
e1 0

)
= R

(
− i√

3
(θ1 + θ1)⊗ θ1 ⊗ θ1

)
,

and the curvature form

ΩLC =

(
0 −4

3
e1,2

4
3
e1,2 0

)
= R

(
2

3
(θ1 ∧ θ1)⊗ θ1 ⊗ θ1

)
.

In particular, the Ricci tensor and scalar curvature are

RicM = −4

3
g = −4

3
θ1θ1, scalM = −4

3
.

The manifold M is contractible, so we can apply Corollary 2.5.10 which tells
us that there is a global η section of ]2S3,0M . In particular its Kähler form

is exact: e1,2 = d

(
√
3
2
e1
)

. Since M has complex dimension 1, the bundle

S3,0M has complex dimension 1 and is generated by (θ1)3, so there exists
some c ∈ C∞(M,C) such that

η = ]2(cθ
1)3 = 2cθ1 ⊗ θ1 ⊗ θ1.

From Proposition 2.5.3 we can compute the norm of c, in fact from (2.15) we
have

8|c|2 = 2 ‖η‖2h = scalM + 4 = −4

3
+ 4 =

8

3
,
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implying c = eiα√
3

for some α ∈ C∞(M). Without loss of generality, we can
assume α = 0 as a consequence of Proposition 2.5.12, so a possible deviance
is

η =
2√
3
θ1 ⊗ θ1 ⊗ θ1.

The corresponding symmetric tensor obtained by lowering the second index
is

[2η =
1√
3

(θ1)3.

Notice that we have found another example of projective special Kähler Lie
group, different from H1

C
∼= H2 which is projective special Kähler by Proposi-

tion 2.6.6. These examples already appear in [37, Section 6], where it is also
proven that these are the only Hλ with a projective special Kähler structure.
Moreover, we can now state the following:

Proposition 3.2.1. Up to isomorphisms, there are only two connected pro-
jective special Kähler Lie groups in dimension 2, namely H2

∼= Hn
C and H 2√

3

with deviances respectively 0 and ]2
1√
3
(θ1)3 with respect to the standard uni-

tary coframe.

Proof. We have already seen that the two examples are projective special
Kähler manifolds, so we are left to prove that they are the only ones. Consider
a 2-dimensional projective special Kähler Lie group (M,∇). In the non-
abelian case, the Lie algebra of M is isometrically isomorphic to the one of
Hλ for a suitable λ. In fact, the center of Hλ is trivial (see e.g. the proof of
Corollary 3.1.6), so Hλ is the only complete connected Lie group with this
Lie algebra.

The case of the hyperbolic plane is treated in [37, Section 6] leaving only
the cases in the statement.

It remains to show that the abelian case does not occur. If M is abelian it
must be flat, so at any point p, we can always find a contractible neighbour-
hood U where we can define a local unitary coframe e such that ∇LCe1 =
∇LCe2 = 0. Consider U as a projective special Kähler manifold; being con-
tractible, we can apply Corollary 2.5.10 on U . In particular, ω|U = dλ for
some λ ∈ Ω1(U). We define θ1 := e1 + ie2 and since S3,0M has complex
rank 1, the deviance must necessarily be η = f]2((θ

1)3) for some f ∈ C∞(U).
Since the scalar curvature of M is 0, by (2.15) we deduce that ‖η‖ = n(n+1),
so f = n(n+ 1)eiα for α ∈ C∞(U). We can now compute

dLCη = dLC(f]2((θ
1)3)) = df ∧ ]2(θ1)3 + fdLC]2(θ

1)3
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= in(n+ 1)eiαdα ∧ ]2(θ1)3 + f(dθ1 ⊗ 2θ1 ⊗ θ1 − θ1 ⊗∇LC(2θ1 ⊗ θ1))

= idα ∧ η + 0

If (2.18) holds, then i(dα − 4λ) ∧ η = 0, so in particular (dα − 4λ) ∧ θ1 =
0. Notice that the operation · ∧ θ1 : Ω1(U,C) → Ω2(U,C) is injective, as
(a1e

1 + a2e
2) ∧ θ1 = (ia1 − a2)e

1,2 vanishes if and only if a1 = a2 = 0. It
follows that dα = 4λ, but then ω|U = dλ = 0, in contradiction with the
non-degeneracy of ω. Therefore, the abelian case does not occur.

3.2.2 Example H√2 ×H2

This second projective special Kähler manifold is the one used in Example
1.6.2. We use the coframe (1.26) restricted to M where we invert e2 and e3,
that is

e1 =
1√
2y1

dx1 e2 =
1√
2y1

dy1 e3 =
1

2y2
dx2 e4 =

1

2y2
dy2

with structure constants

de1 =
√

2e1,2 de2 = 0 de3 = 2e3,4 de4 = 0.

We follow the construction adopted for the previous example, so we find a
global complex coordinate chart (z1, z2) = (x1 + iy1, x2 + iy2) : M → C2 and
the complex coframe θ = (θ1, θ2) defined as

θ1 = e1 + ie2 =
1√
2y1

(dx1 + idy1) =
1√

2 Im(z1)
dz1;

θ2 = e3 + ie4 =
1

2y2
(dx2 + idy2) =

1

2 Im(z2)
dz2.

The Levi-Civita connection is then

ωLC =


0 −

√
2e1√

2e1 0
0 −2e3

2e3 0
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= R

(
− i√

2
(θ1 + θ1)⊗ θ1 ⊗ θ1 − i(θ2 + θ2)⊗ θ2 ⊗ θ2

)
,

and the curvature form

ΩLC =


0 −2e1,2

2e1,2 0
0 −4e3,4

4e3,4 0


= R

(
(θ1 ∧ θ1)⊗ θ1 ⊗ θ1 + 2(θ2 ∧ θ2)⊗ θ2 ⊗ θ2

)
.

The manifold M is isomorphic as a metric Lie group to H√2×H2, so we are
in case III of table 3.4. More specifically, the two coframes are one opposite
to the other, so the deviance can be chosen to be

η = ]2

(
3

2
(θ1)2θ2

)
=

1

2
(θ1 ⊗ θ1 ⊗ θ2 + θ1 ⊗ θ2 ⊗ θ1 + θ2 ⊗ θ1 ⊗ θ1).

3.3 Coframe lift through the c-map

In the work by Macia and Swann [38], published as preprint while this thesis
was being written, it is shown that applying the c-map to a projective spe-
cial Kähler Lie groups results in a Lie group with a left invariant quaternion
Kähler structure. In this section, we prove the result in a special case by
applying the intrinsic construction of the c-map described in Section 1.4.1
to the case of the complex hyperbolic n-space. We will first explore the con-
struction in the general case with zero deviance, i.e. for any projective special
Kähler Lie group isomorphic to Hn

C as a projective special Kähler manifold,
then apply it to case VII in the classification of Section 3.1, obtaining the
Wolf space SU(4, 2)/S(U(4)U(2)).

Complex Hyperbolic n-space

We start from a projective special Kähler Lie group M of dimension 2n with
principal S1-bundle πS : S → M , connection ϕ ∈ Ω1(S) and zero deviance.
Then by Proposition 2.6.8, necessarily M ∼= Hn

C. Suppose e is a unitary left
invariant global coframe on M , so orthogonal and such that Ie2k−1 = e2k for
all k = 1, . . . n. Call chk,j ∈ R its structure constants, that is

deh = chk,je
k,j, chk,j ∈ R.
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Consider the principal bundle M̃ := S×R+ with projection to M defined by
π := πSπ1 where π1 : S × R+ → S is the projection on the first component.

Let r : R+ → R be the inclusion; we can extend e to a coframe ẽ on
M̃ = S × R+ by taking for k = 1, . . . , 2n:

ẽk = rπ∗e2, ẽ2n+1 = dr, ẽ2n+2 = rπ∗1ϕ.

Notice that the differentials in the new coframe become

dẽk = dr ∧ π∗ek + rπ∗dek =
1

r
ẽ2n+1 ∧ ẽk + rπ∗(ckj,he

j,h)

= −1

r
ẽk,2n+1 + rckj,hπ

∗ej,h =
ckj,h
r
ẽj,h − 1

r
ẽk,2n+1;

dẽ2n+1 = d2r = 0;

dẽ2n+2 = dr ∧ π∗1ϕ+ rπ∗1dϕ = ẽ2n+1 ∧ π∗1ϕ− 2rπ∗ω

= −2

r

n∑
k=1

(ẽ2k−1,2k) +
1

r
ẽ2n+1,2n+2.

In the proof of Theorem 2.5.6 we show that (π : M̃ →M,∇) is a conic special
Kähler manifold with metric (2.16), that is

∑2n
k=1(ẽ

k)2− (ẽ2n−1)2− (ẽ2n)2 and

complex structure Ĩ such that Ĩ ẽ2n−1 = ẽ2n for all k = 1, . . . , n+1. It follows
that ẽ is a unitary coframe on M̃ .

Let ωLC be the Levi-Civita connection form of (M, g, I, ω), then by Propo-

sition 2.3.2 we know how to write the Levi-Civita connection on M̃ with
respect to ẽ:

ω̃LC =

=
1

r

( n∑
h,k=1

(
Re(ωLC)hk,j ẽ

2j−1 − Im(ωLC)hk,j ẽ
2j
)
⊗ (ẽ2h−1 ⊗ ẽ2k−1 + ẽ2h ⊗ ẽ2k)

+
n∑

h,k=1

(
Im(ωLC)hk,j ẽ

2j−1 + Re(ωLC)hk,j ẽ
2j
)
⊗ (ẽ2h−1 ⊗ ẽ2k − ẽ2h ⊗ ẽ2k−1)

− ẽ2n+2 ⊗ (ẽ2h−1 ⊗ ẽ2h − ẽ2h ⊗ ẽ2h−1)

+
n∑
h=1

ẽ2h−1 ⊗ (ẽ2h−1 ⊗ ẽ2n+1 + ẽ2h ⊗ ẽ2n+2)
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−
n∑
h=1

ẽ2h ⊗ (ẽ2h−1 ⊗ ẽ2n+2 − ẽ2h ⊗ ẽ2n+1)

+
n∑
h=1

ẽ2h−1 ⊗ (ẽ2n+1 ⊗ ẽ2h−1 + ẽ2n+2 ⊗ ẽ2h)

+
n∑
h=1

ẽ2h ⊗ (ẽ2n+1 ⊗ ẽ2h − ẽ2n+2 ⊗ ẽ2h−1)
)
.

Remark 3.3.1. Notice that the coefficients of rω̃LC are constant because the
coframe is orthonormal and ckh,j is constant for h, k, j = 1, . . . , n.

Since the deviance is zero, we know that the flat connection coincides
with the Levi-Civita one. From the proof of Theorem 2.5.6, we also have
ξ = r∂r = rẽ2n+1 and thus we define X = −Iξ = −rẽ2n+2.

Proceeding with the rigid c-map, let πH : H = T ∗M̃ → M̃ . We can lift
the coframe ẽ to a coframe ê on H, following Section 1.4.1 and [37]. In
the notation of that section, the first 2n + 2 components of the coframe are
π∗H ẽ = π∗H ẽ

∗θ and the last 2n+ 2 are ẽ∗α. The differentials of the first 2n+ 2
components are the pullback of the differentials of ẽ whereas for the remaining
2n+ 2 we use (1.13). We thus have, for k = 1, . . . , n and h = 1, . . . , 2n+ 2

dêk =
ckj,l

r ◦ πH
êj,l − 1

r ◦ πH
êk,2n+1;

dê2n+1 = 0;

dê2n+2 = − 2

r ◦ πH

n∑
k=1

(ê2k−1,2k) +
1

r ◦ πH
ê2n+1,2n+2

dê2n+2+h = −ê2n+2+j ∧ π∗H(ω̃LC)hj .

For brevity, from now on we will simply denote r ◦ πH by r.
We want to lift X horizontally as a vector X̂ tangent to H. By (1.16),

we know that ê2n+2+h(X̂) = 0 and êh(X̂) = ẽh((πH)∗X̂) = ẽh(X), for all

h = 1, . . . , 2n+ 2. This implies X̂ = −rê2n+2.
Notice that on H, the hyperKähler structure is given by Remark 1.4.3,

so in particular the metric and the Kähler form fixed by X̂ are

g =
2n∑
k=1

(êk)2 −
2n+2∑

k=2n+1

(êk)2 +
4n+2∑

k=2n+3

(êk)2 −
4n+4∑

k=4n+3

(êk)2;
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ωI =
n∑
k=1

ê2k−1,2k − ê2n+1,2n+2 −
2n∑

k=n+2

ê2k−1,2k + ê2n+1,2n+2.

We have

ιX̂ωI = ωI(−rê2n+2, ·) = −rê2n+1 = −rdr = d

(
− r2

2

)
.

so µ := − r2

2
is a moment map for X̂.

We can also compute the 1-forms (1.18), obtaining:

α0 = rê2n+2, α1 = −rê2n+1, α2 = rê4n+4, α3 = rê4n+3.

We can now compute the data of Theorem 1.4.7:

Ψ = k(dX[ + ωI) = k(d(rê2n+2) + ωI) = k(d(r) ∧ ê2n+2 + rdê2n+2 + ωI)

= k

(
ê2n+1,2n+2 − 2

n∑
j=1

(ê2j−1,2j) + ê2n+1,2n+2 + ωI

)

= k

(
2ê2n+1,2n+2 − 2

n∑
j=1

(ê2j−1,2j)

+
n∑
j=1

ê2j−1,2j − ê2n+1,2n+2 −
2n∑

j=n+2

ê2j−1,2j + ê4n+3,4n+4

)

= −k
( n∑

j=1

ê2j−1,2j − ê2n+1,2n+2 +
2n∑

j=n+2

ê2j−1,2j − ê4n+3,4n+4

)
;

a = k
(
g(X̂, X̂)− µ+ c

)
= k

(
− r2 +

r2

2
+ c

)
= −k

(
r2

2
− c
)

;

f =
B

µ− c
= − B

r2

2
+ c

, h = − B

(µ− c)2
= − B(

r2

2
+ c
)2 .

In order to simplify the following steps, we fix the constants

c = 0, B = −1

2
.
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We know by Theorem 1.4.7 that the manifold Q resulting from the twist
induced by these data is quaternion Kähler with metric gQ such that

gQ ∼ϑ fg + h(α2
0 + α2

1 + α2
2 + α2

3)

=

(
1

r2
g +

r2

r4
(ê2n+1)2 +

r2

r4
(ê2n+2)2 +

r2

r4
(ê4n+3)2 +

r2

r4
(ê4n+4)2

)
=

1

r2

4n+4∑
k=1

(êk)2.

Consider the new coframe ĕ = 1
r
ê, which is then orthonormal with respect

to this new metric in H. Suppose dêk =
ĉkj,h
r
êj,h, then the differentials of ĕ

become

dĕk = d

(
1

r
êk
)

= −dr
r2
∧ êk +

1

r2
ĉkj,hê

j,h = −ĕk,2n+1 + ĉkj,hĕ
j,h

And thus, for k = 1, . . . , 2n and h = 1, . . . , 2n+ 2, we get:

dĕk = ckj,lĕ
j,l;

dĕ2n+1 = 0;

dĕ2n+2 = −2
n∑
k=1

(ĕ2k−1,2k);

dĕ2n+2+h = −ĕ2n+2+h,2n+1 +
(
ω̆LC

)h
j,l
ĕl,2n+2+j,

where (ω̆LC)hj,l = rπ∗H
(
ω̃LC

)h
j
(êl).

Remark 3.3.2. By Remark 3.3.1 the coefficients of the differentials of ĕ are
constant.

Notice that M is contractible by Remark 2.6.1. This implies that the
bundle S → M is trivial, and then there is a global section s : M → S. Let
(π, z) : S →M × U(1) be the induced trivialisation.

Let us now compute the Lie derivatives of the ĕk’s with respect to X̂.
Notice that in the new frame, X̂ = −ĕ2n+2. Let k = 1, . . . , 2n, then

LX̂ ĕ
k = dιX̂ ĕ

k + ιX̂dĕ
k = 0;

LX̂ ĕ
2n+1 = 0 + ιX̂dĕ

k = 0;
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LX̂ ĕ
2n+2 = −d1 + 0 = 0.

The first 2n + 2 components of the coframe are thus invariant. For the
remaining components instead, let h = 1, . . . , n+ 1:

LX̂ ĕ
2n+2+2h−1 = 0 + (ω̆LC)2h−1j,2n+2ĕ

2n+2+j = −ĕ2n+2+2h;

LX̂ ĕ
2n+2+2h = 0 + (ω̆LC)2hj,2n+2ĕ

2n+2+j = ĕ2n+2+2h−1.

The second part of the coframe is not X̂-invariant, but it is rotated by
the infinitesimal action of X̂, so we now want to build a new orthonor-
mal coframe which is also invariant. Since we have a global section s :
M → S, let (π, z) : S → M × U(1) be the induced trivialisation. Consider
b = π∗Hπ

∗
1(z−1) : H → U(1), then if we compute the Lie derivative of b as a

function in C ∼= R2, we get

LX̂b = db(X̂) = dπ∗Hπ
∗
1z
−1(X̂) = π∗Hπ

∗
1dz

−1(X̂)

= dz−1((π1)∗(πH)∗X̂) ◦ (πHπ1)

= dz−1(X) ◦ (πHπ1) =
d

dt
(z−1 ◦Re−it)|t=0 ◦ (πHπ1)

=
d

dt
(z−1eit)|t=0 ◦ (πHπ1) = iz−1 ◦ (πHπ1) = ib.

Thus, if we let z−1 = x + iy, then LX̂(x + iy) = −y + ix, so LX̂ rotates x
and y. Now consider the following 1-forms:

xĕ2n+2+2h−1 + yĕ2n+2+2h, −yĕ2n+2+2h−1 + xĕ2n+2+2h;

if we compute the Lie derivatives, we can show they are X̂-invariant:

LX̂(xĕ2n+2+2h−1 + yĕ2n+2+2h)

= −yĕ2n+2+2h−1 − xĕ2n+2+2h + xĕ2n+2+2h + yĕ2n+2+2h−1 = 0;

LX̂(−yĕ2n+2+2h−1 + xĕ2n+2+2h)

= −xĕ2n+2+2h−1 + yĕ2n+2+2h − yĕ2n+2+2h + xĕ2n+2+2h−1 = 0.

Moreover, the transformation is orthonormal, as

det

(
x y
−y x

)
= x2 + y2 = |z−1|2 = 1.
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Notice also that these 1-forms are rotated by I.
Define now on the twist Q, the coframe u such that

uk ∼ϑ ĕk for 1 ≤ k ≤ 2n+ 2

u2n+2+2h−1 ∼ϑ xĕ2n+2+2h−1 + yĕ2n+2+2h for 1 ≤ h ≤ n+ 1

u2n+2+2h ∼ϑ −yĕ2n+2+2h−1 + xĕ2n+2+2h for 1 ≤ h ≤ n+ 1

Since every component of u corresponds to a X̂-invariant form, we can com-
pute its differential using Proposition 1.4.8. Notice that for all 1 ≤ k ≤ 4n+4,
we have ιX̂ ĕ

k = ĕk(ĕ2n+2) = δk2n+2. The differentials of u are going to have
the same coefficients as the corresponding forms on H, except for u2n+2, for
which

du2n+2 ∼ϑ dĕ2n+2 − 1

a
Ψ = −2

n∑
k=1

(ĕ2k−1,2k)

+
2

r2

( n∑
k=1

ê2k−1,2k − ê2n+1,2n+2 +
2n∑

k=n+2

ê2k−1,2k − ê2n+1,2n+2

)

= −2
n∑
k=1

(ĕ2k−1,2k)

+ 2

( n∑
k=1

ĕ2k−1,2k − ĕ2n+1,2n+2 +
2n∑

k=n+2

ĕ2k−1,2k − ĕ2n+1,2n+2

)

= −2ĕ2n+1,2n+2 + 2
2n∑

k=n+2

ĕ2k−1,2k − 2ĕ2n+1,2n+2.

So for the first 2n+ 2 components, for k = 1, . . . , 2n,

duk = ckj,hu
j,h

du2n+1 = 0

du2n+2 = −2u2n+1,2n+2 + 2
2n∑

k=n+2

u2k−1,2k − 2u2n+1,2n+2.

In order to compute the last components of u, we need to know the
differentials of x and y in terms of the elements of the coframe. In order to
compute the differential of z−1, we compute dz and then dz−1 = dz. Notice



3.3. COFRAME LIFT THROUGH THE C-MAP 131

that (idS)∗ = (z(s ◦ πS))∗ is the composition of (z, s ◦ πS)∗ = (dz, s∗(πS)∗)
and the differential of the action S × U(1) → S; see Lemma 2.5.13. Hence,
we get (idM̃)∗ = (dz)◦ + s∗(πS)∗, so if we compose this tensor with ϕ, we
obtain

ϕ = ϕ ◦ (idM̃)∗ = ϕ((dz)◦ + s∗(πS)∗) =
1

iz
dz + π∗Ss

∗ϕ.

It follows that

dz−1 = dz = dz = iz(ϕ− π∗Ss∗ϕ) = iz−1(π∗Ss
∗ϕ− ϕ).

In particular, db = ib(π∗Hπ
∗s∗ϕ− π∗Hπ∗1ϕ), so

dx = −y(π∗Hπ
∗s∗ϕ− π∗Hπ∗1ϕ);

dy = x(π∗Hπ
∗s∗ϕ− π∗Hπ∗1ϕ).

If now s∗ϕ is invariant, as is the cases of the classification of Section 3.1, then
s∗ϕ =

∑2n
k=1 λke

k with λk constant for all k = 1, . . . , n. Therefore,

dx = −y
( 2n∑

k=1

λkĕ
k − ĕ2n+2

)
;

dy = x

( 2n∑
k=1

λkĕ
k − ĕ2n+2

)
.

We can finally compute the differentials of the last components of the
coframe.

du2n+2+2h−1 (3.7)

∼ϑ dx ∧ ĕ2n+2+2h−1 + xdĕ2n+2+2h−1 + dy ∧ ĕ2n+2+2h + ydĕ2n+2+2h

=

( 2n∑
k=1

λkĕ
k − ĕ2n+2

)
∧ (−yĕ2n+2+2h−1 + xĕ2n+2+2h)

+ x

(
− ĕ2n+2+2h−1,2n+1 +

(
ω̆LC

)2h−1
j,l

ĕl,2n+2+j

)

+ y

(
− ĕ2n+2+2h,2n+1 +

(
ω̆LC

)2h
j,l
ĕl,2n+2+j

)
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=

( 2n∑
k=1

λkĕ
k − ĕ2n+2

)
∧ (−yĕ2n+2+2h−1 + xĕ2n+2+2h)

− (xĕ2n+2+2h−1 + yĕ2n+2+2h) ∧ ĕ2n+1

x
(
ω̆LC

)2h−1
2j−1,lĕ

l,2n+2+2j−1 + x
(
ω̆LC

)2h−1
2j,l

ĕl,2n+2+2j

+ y
(
ω̆LC

)2h
2j−1,lĕ

l,2n+2+2j−1 + y
(
ω̆LC

)2h
2j,l
ĕl,2n+2+2j.

From the symmetries of the Levi-Civita connection form (in particular from
the fact that ∇LCI = 0), we have

Ahj,l =
(
ω̆LC

)2h−1
2j−1,l =

(
ω̆LC

)2h
2j,l
, Bh

j,l =
(
ω̆LC

)2h
2j−1,l = −

(
ω̆LC

)2h−1
2j,l

.

The sum of the four terms in (3.7) whose coefficients involve the Levi-Civita
connection is then

Ahj,lĕ
l ∧
(
xĕ2n+2+2j−1 + yĕ2n+2+2j

)
+Bh

j,lĕ
l ∧
(
yxĕ2n+2+2j−1 − xĕ2n+2+2j

)
In conclusion, the differential of u2n+2+2h−1 is

du2n+2+2h−1 = −
( 2n∑

k=1

λku
k − u2n+2

)
∧ u2n+2+2h − u2n+2+2h−1 ∧ u2n+1

+ Ahj,lu
l ∧ u2n+2+2j−1 −Bh

j,lu
l ∧ u2n+2+2j

= −
2n∑
k=1

λku
k,2n+2+2h + u2n+2,2n+2+2h + u2n+1,2n+2+2h−1

+ Ahj,lu
l,2n+2+2j−1 −Bh

j,lu
l,2n+2+2j.

The same reasoning can be applied to u2n+2+2h, for which

du2n+2+2h (3.8)

∼ϑ −dy ∧ ĕ2n+2+2h−1 − ydĕ2n+2+2h−1 + dx ∧ ĕ2n+2+2h + xdĕ2n+2+2h

= −
( 2n∑

k=1

λkĕ
k − ĕ2n+2

)
∧ (xĕ2n+2+2h−1 + yĕ2n+2+2h)

− y

(
− ĕ2n+2+2h−1,2n+1 +

(
ω̆LC

)2h−1
j,l

ĕl,2n+2+j

)
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+ x

(
− ĕ2n+2+2h,2n+1 +

(
ω̆LC

)2h
j,l
ĕl,2n+2+j

)

= −
( 2n∑

k=1

λkĕ
k − ĕ2n+2

)
∧ (xĕ2n+2+2h−1 + yĕ2n+2+2h)

− (−yĕ2n+2+2h−1 + xĕ2n+2+2h) ∧ ĕ2n+1

− y
(
ω̆LC

)2h−1
2j−1,lĕ

l,2n+2+2j−1 − y
(
ω̆LC

)2h−1
2j,l

ĕl,2n+2+2j

+ x
(
ω̆LC

)2h
2j−1,lĕ

l,2n+2+2j−1 + x
(
ω̆LC

)2h
2j,l
ĕl,2n+2+2j.

By symmetry, the sum of the four terms in (3.8) with coefficients involving
the Levi-Civita connection becomes

Ahj,lĕ
l ∧
(
− yĕ2n+2+2j−1 + xĕ2n+2+2j

)
+Bh

j,lĕ
l ∧
(
xĕ2n+2+2j−1 + yĕ2n+2+2j

)
In conclusion, the differential of u2n+2+2h is

du2n+2+2h = −
( 2n∑

k=1

λku
k − u2n+2

)
∧ u2n+2+2h−1 − u2n+2+2h ∧ u2n+1

+ Ahj,lu
l ∧ u2n+2+2j +Bh

j,lu
l ∧ u2n+2+2j−1

= −
2n∑
k=1

λku
k,2n+2+2h−1 + u2n+2,2n+2+2h−1 + u2n+1,2n+2+2h

+ Ahj,lu
l,2n+2+2j +Bh

j,lu
l,2n+2+2j−1.

We have thus computed all of the differentials of the coframe, for which we
are able to describe the structure constants starting from the entries of the
Levi-Civita connection with respect to a suitable invariant coframe e on the
initial Lie group.

Case VII: H2
C

Consider case VII of Section 3.1. This case corresponds to H2
C and thus it

has zero deviance. Let Q be the quaternion Kähler manifold obtained from
H2

C by the c-map.
If we now apply the general construction we just mentioned, we get on Q

the following differentials:

du1 = u1,3; du2 = u2,3; du3 = 0;
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du4 = −2u1,2 − 2u3,4; du5 = 0;

du6 = −2u5,6 + 2u7,8 + 2u9,10 − 2u11,12;

du7 = u1,9 + u1,11 − u2,10 − u2,12 − u5,7;
du8 = u1,10 + u1,12 + u2,9 + u2,11 − u5,8;
du9 = −u1,7 − u2,8 + u3,11 − u4,10 − u4,12 − u5,9;
du10 = −u1,8 + u2,7 + u3,12 + u4,9 + u4,11 − u5,10;
du11 = +u1,7 + u2,8 + u3,9 + u4,10 + u4,12 − u5,11;
du12 = +u1,8 − u2,7 + u3,10 − u4,9 − u4,11 − u5,12.

Denoting by q the Lie algebra of Q, its derived algebra is

q(1) = 〈u1, u2, u4, u6, u7, u8, u9, u10, u11, u12〉 .

The derived series has q(5) = 0, so Q is solvable. One can check that q is also
real solvable.

Since we know that Q is a quaternion Kähler symmetric space with di-
mension 12, it must necessarily be one of the following (see [8, Table 14.52,
p. 409]):

Sp(3, 1)

Sp(3)Sp(1)
= P3

H,
SU(3, 2)

S(U(3)U(2))
,

SO0(4, 3)

SO(4)SO(3)
.

One could apply the reasoning done for the examples in Section 1.6 and show
directly that Q ∼= SU(3,2)

S(U(3)U(2))
.

As an alternative, we can construct the curvature operator R as in Section
1.6 and if we compute its eigenvalues, we obtain

−10︸︷︷︸
1

,−6,−6,−6︸ ︷︷ ︸
3

,−4,−4,−4,−4,−4,−4,−4,−4︸ ︷︷ ︸
8

, 0, . . . , 0︸ ︷︷ ︸
54

;

so, we infer that the dimension of the holonomy algebra of Q is 12. The
dimension of their holonomy algebras of the possible symmetric spaces are
24, 12 and 9 respectively, so necessarily Q ∼= SU(3,2)

S(U(3)U(2))
.
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