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The next list describes several symbols that will be later used within this document.
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Cay(G,X) Cayley graph of G with respect to the set of generators X

LHS Abbreviation of “left hand side”
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Abstract

A group G is said to be poly-free if there exists a subnormal series of subgroups

{ 1G } = G0 / G1 / . . . / Gk−1 / Gk = G

whose factors Gi
Gi−1

are non-trivial free groups. In this thesis we will explore poly-

freeness and some stronger variants of this property, such as requiring that all the
factors are finitely generated or that each Gi is normal in G (and in this last case
we will say that G is strongly poly-free).
An Artin group A(Γ) is a group defined via a presentation whose structure is
encoded inside a Coxeter graph Γ. In this thesis we achieve the following new
results about poly-freeness of certain families of Artin groups.

1. In Chapter 1 we set up the basic definitions we need and survey the most
important properties of Artin groups. We also explain why poly-freeness is
an interesting property for groups, which are its implications for the structure
of a group and we also provide an original result where we show that strong
poly-freeness is preserved by free products.

2. In Chapter 2 we focus on irreducible Artin groups of finite type and we
establish that the only poly-free Artin groups in this family are those of type
I2(m) (m ≥ 3), A3, B3, B4 and D4, with the only possible exception of F4

which remains undetermined at the moment.

3. In Chapter 3 we study Artin groups built on Coxeter trees. We prove that
these groups are strongly poly-free with finitely generated factors and we
deduce that also Artin groups built on Coxeter forests are strongly poly-free.

4. In the last section of Chapter 3 we define a (new) costruction for a family of
Coxeter graphs that we call ‘2-join’ and we prove that the associated Artin
group is strongly poly-free when each graph in the family we begin with has
at most 2 vertices.
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Chapter 1

Introduction

1.1 Preface

In this section we simply want to make a brief digression about the history of Artin
groups without the aim to be overly precise, but rather to give a general idea of
how they arise, what are the most important results regarding them and how they
are connected with other active fields of research in mathematics.
Although usually referred as “Artin groups” by Emil Artin who worked on braid
groups in the first half of the XX century, the definition of this whole family of
groups (which includes braid groups) is due to Jacques Tits in [21] (1966) so that
the name “Artin-Tits groups” would be much more appropriate even if it rarely
occurs in the literature (except for this section, however, we will stick with the
established convention). Tits introduced these groups as extensions of Coxeter
groups which had already been intensively studied since the thirties, when H. S. M.
Coxeter discovered them during the study of reflection groups (i.e., subgroups of
Aut(Rn) generated by elements of order two).
Artin-Tits groups are defined in a purely algebraic way by means of an explicit
presentation in terms of generators and relators and the description of such presen-
tation is commonly encoded in a simplicial graph Γ whose edges are labelled with
integers. This leads to wonder whether there exists any connection between the
structure of the combinatorial data that is written in the graph and the algebraic
properties of Artin-Tits groups. Not surprisingly, this is sometimes the case and a
number of results we will present in this thesis (either original or already known in
the literature) state hypotheses on the structure of the graph Γ in order to infer
algebraic information regarding the Artin-Tits group associated to it. For example,
in [2] (2017) the authors Blasco-Garćıa, Mart́ınez-Pérez and Paris prove that if Γ
has only even labels and for any triangular subgraph at least two edges are labelled
with ‘2’, then the associated Artin-Tits group is poly-free. However, the “slightest

1



CHAPTER 1. INTRODUCTION 2

variation” in the structure of the graph may change a lot the properties of the
related Artin-Tits group; e.g., all results contained in the work we have just cited
heavily rely on the hypothesis that all edges are labelled with an even integer.
This situation has the consequence that many general questions about Artin-Tits
groups have been answered only for some more or less extended families using tools
specifically developed for that cases. For example, the following questions are still
open in the general case.

1. Do Artin-Tits group have torsion?

2. What is the center of Artin-Tits groups?

3. Are Artin-Tits groups orderable?

4. Does the K(π, 1) conjecture hold for all Artin-Tits groups?

We find pretty astonishing the lack of an answer especially for the first question,
which is widely believed to be true although no one has been able to prove it or
provide a counterexample (that, if exists, should not be that hard to find).
However, Artin-Tits groups are not just interesting in themselves. Their relation
to Coxeter groups is not limited to the definition, but extends to topological
applications. The easiest case is the one of braid groups (and pure braid groups)
which can be shown to be the fundamental groups of certain topological spaces
(built thanks to the action of the related Coxeter group on a vector space of
dimension equal to the number of vertices of Γ). Such approach has been greatly
generalized to all Artin-Tits groups which in [22] (1983) by Van der Lek are shown
to be the fundamental groups of spaces of the form

M = (T × V ) \

(⋃
r∈R

Hr ×Hr

)
where V is the finite dimensional vector space on which the Coxeter group acts, R is
the set of all its elements of order two, Hr is the hyperplane of V fixed by r ∈ R and
T is a particular open cone inside V called the “Tits cone”. The K(π, 1) conjecture
says that the manifold M is a classifying space for the associated Artin-Tits group
and an affirmative answer is known only for some families such as finite type
Artin-Tis groups (see [9] (1972) by Pierre Deligne).

In this thesis we will not deal with topological aspects and we will obtain all
results using algebraic techniques. In particular, we want to study poly-freeness,
a strong structural property of groups that in turn implies an affirmative answer
to questions 1 and 3 above, together with other properties that we will explain in
Section 1.3. We will show that the only poly-free irreducible Artin-Tits groups
of finite type are those of type I2(n) (n ≥ 3), A3, B3, B4 and D4 (with the only



CHAPTER 1. INTRODUCTION 3

exception of F4 which remains unknown at the moment). Moreover, we will prove
that all Artin-Tits groups whose associated graph is a tree or a forest are poly-free
and we give a couple of results that will hopefully help to study other families.

Finally, although this thesis has entirely been edited by myself, I must greatly
thank my advisors Thomas Stefan Weigel and Conchita Mart́ınez-Pérez for the
huge support I received.

1.2 Basic facts and definitions

This section is devoted to set some elementary definitions and state some very
well-known results for later reference. In particular we provide a couple of short
paragraphs where we recall some results that we will need from the theory of sigma
invariants and Bass-Serre theory.

1.2.1 Presentation of groups

Since Artin groups are defined by means of their presentation, in this section we
recall what it means to give the presentation of a group by generators and relators
as well as some well-known properties that we will use extensively throughout this
thesis.

Definition 1.2.1. A group F is said to be free over a set X if there exists an
injection ι : X → F such that for any group H and any map of sets f : X → H there
exists a unique morphism of groups ϕ : F → H such that f = ϕ ◦ ι; equivalently
there exists a unique morphisms of groups ϕ that makes the following diagram
commute.

X F

H

ι

f
∃!ϕ

There are other equivalent definitions of what a free group should be: the one
we chose above is what - from a categorical point of view - is called the universal
property of free groups. Although in this thesis we will not adopt the point of
view of category theory the above is nevertheless a remarkable property that allows
us to define morphisms from a free group F to an arbitrary group H by simply
specifying the images of the standard generators ι(X) of F without any further
concern about the existence and uniqueness of such map. Anyway, we still have to
show that for any set X such an algebraic object exists.

Proposition 1.2.2. For any set X there exists a group F which satisfies the
definition of free group over the set X together with a suitable inclusion of X into
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F . Moreover, if F and G are two such groups, they are isomorphic. Finally, if
X and Y are equipotent sets, then any two groups F and G free over X and Y ,
respectively, are isomorphic.

Proof. If X = ∅ the trivial group satisfies the definition of free group over X,
otherwise let X+ and X− be sets each containing exactly a copy of each element x
in X that we will mark with an upper ‘+’ or ‘−’ respectively, i.e.

X+ :=
{
x+
∣∣ ∀x ∈ X } , X− :=

{
x−
∣∣ ∀x ∈ X } .

For ease of notation we will henceforth identify the elements inside X with the
corresponding ones inside X+ so that X+ = X. Let W be the set of words in
the alphabet S = X+ tX−, i.e. all possible finite sequences xε00 x

ε1
1 x

ε2
2 . . . xεkk with

xi ∈ X and εi ∈ {+, −} for all i = 0, . . . , k, including the empty sequence ∅ ∈ W .
Given a word w = xε00 x

ε1
1 x

ε2
2 . . . xεkk ∈ W we say that w is reduced if for each

0 ≤ i ≤ k − 1 either xi 6= xi+1 or xi = xi+1 but εi 6= −εi+1. We also define the
empty word ∅ to be reduced. We say that a word w′ comes from an elementary
reduction of another word w if it can be obtained from the latter after the deletion
of a subsequence of type x+x− or x−x+ for some x ∈ X. If a word w′′ can be
obtained from w after a (possibily empty) finite sequence of elementary reductions
we say that w′′ comes from w by reduction. Given any two words v, w ∈ W we say
that they are equivalent if there exists a sequence of words w = w0, w1, . . . , wm = v
such that for each 0 ≤ j ≤ m− 1 one of wj and wj+1 comes from the other by an
elementary reduction. It’s readily checked that being equivalent is an equivalence
relation on the set W and we will denote it by ‘∼’. We are therefore allowed to
consider the quotient set F := W

∼ and it can be shown that there is a unique reduced
word inside each equivalence class (see, for instance, [4, Chapter I, Theorem 4]).
On W we define a binary operation ◦ : W ×W → W which sends any two words
w1 = xε00 . . . xεmm and w2 = yγ0

0 . . . yγnn to the word w1 ◦ w2 = xε00 . . . xεmm yγ0

0 . . . yγnn
given by juxtaposing the sequence of symbols of w2 after those of w1. This
operation induces a well-defined binary operation ∗ : F × F → F by setting
[w1]∼ ∗ [w2]∼ = [w1 ◦ w2]∼. We claim that the pair (F, ∗) is a group that satisfies
the definition of free group over the set X with the inclusion ι : X → F sending
any element x inside X to the equivalence class of the word of length one made
just of the symbol x+. The operation ∗ is associative, the identity element is the
equivalence class represented by the empty word (since for any [w]∼ ∈ F we have
[w]∼ ∗ [∅]∼ = [w ◦ ∅]∼ = [w]∼ = [∅ ◦w]∼ = [∅]∼ ∗ [w]∼) and for each element [w] ∈ F
with w = xε00 . . . xεkk its inverse is the equivalence class [x

δ(εk)
k . . . x

δ(ε0)
0 ]∼, where δ is

the function that sends + 7→ − and − 7→ +, in particular [x+]−1
∼ = [x−]∼. Therefore

(F, ∗) is a group and it is generated by the set of elements { [x+]∼ | x ∈ X } in a
one-to-one correspondence with the elements of X.
We are left to show that for any group H and for any map f : X → H there exists a
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unique morphism of groups ϕ : F → H such that f = ϕ◦ι. Denote with hx ∈ H the
image of x ∈ X under f . Since ι sends x 7→ [x+]∼ and [x+x−]∼ = [∅]∼, then 1H =
ϕ([∅]∼) = ϕ([x+x−]) = ϕ([x+]∼)ϕ([x−]∼) which implies ϕ([x−]∼) = ϕ([x+]∼)−1.
Since the set of all [x+]∼ generates F , for each g = [xε00 . . . xεkk ]∼ ∈ F the only
choice we have for a morphism of groups ϕ subject to the above restrictions is
to set ϕ(g) := ϕ([xε00 ]∼) . . . ϕ([xεkk ])∼ = hε0x0

. . . hεkxk (where εi = −1 if εi = ‘−’ and
εi = 1 otherwise), provided that such map is well-defined over the set of equivalence
classes of F . Indeed, this is the case since two words in any equivalence class differ
only by subsequences of type x+x− or x−x+ which both get mapped to the product
of an element of H and its inverse, which is the identity in H. Therefore F is a
free group over X.
Now, suppose that F and G are free groups over the same set X with respect to
the inclusions ι : X → F and λ : X → G. By the defining property of F there
exists a unique morphism ϕ : F → G such that λ = ϕ◦ ι and by the same argument
for G there exists a unique morphism ψ : G → F such that ι = ψ ◦ λ. This
implies ι = (ψ ◦ ϕ) ◦ ι, but the definition of free groups says that F admits a
unique morphism that can replace the function inside the parenthesis in the last
equality. Since IdF trivially satisfies such condition it must be ψ ◦ ϕ = IdF . With
a completely analogous argument one shows that ϕ ◦ ψ = IdG, so ϕ and ψ are one
the inverse of the other and F is isomorphic to G.

F

X G

F

ϕ

IdF

ι

λ

ι ψ

Finally, let X and Y be sets, f : X → Y a bijection and let F and G be free groups
on X and Y , respectively, together with inclusions ι : X → F and λ : Y → G.
Arguing in a very similar fashion as we have just done, with regard to the diagram
below the equality

ψ ◦ ϕ ◦ ι = ψ ◦ λ ◦ f = ι ◦ f−1 ◦ f = ι

implies that (by the universal property of the free group F ) ψ ◦ ϕ = IdF and with
an analogous argument for G we also get ϕ ◦ ψ = IdG. Therefore F and G are
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isomorphic.

X F

Y G

F

ι

λ◦f
f

IdF

ϕ

λ

ι◦f−1
ψ

�

Although in the construction we gave above elements of free groups are equiv-
alence classes of a convenient set of words, for the sake of convenience from now
on we will always write x instead of [x+]∼ even if we are actually referring to the
equivalence class of the symbol x. Of course we will pay special attention when
there could be the chance of confusion.
Moreover, since abstract algebra is concerned with the study of groups up to
isomorphism, the previous proposition allows us to speak about the free group
built from a set X and we will denote it by the symbol F (X). Since what actually
matters in the construction of F (X) is the cardinality of X, when |X| = n < +∞
we will also write Fn instead of F (X).

Definition 1.2.3. Let G be a group and let X be a set, F (X) the free group over

X and N E F (X) a normal subgroup. If G ' F (X)
N

then we say that the pair
(F (X), N) is a presentation for the group G.

Quite obviously a group may have many presentations over a lot of different
sets X (i.e., its set of generators), however the remarkable result is the following.

Proposition 1.2.4. Every group G admits a presentation.

Proof. Consider F (G) and consider IdG also as the inclusion map from G to F (G)
(so far G is regarded just as a set). By the definition of free group there exists a
unique morphisms of groups ϕ : F (G)→ G such that IdG = ϕ◦ IdG, in particular ϕ

is surjective and the first homomorphism theorem tells us that F (G)
Kerϕ

' Im(ϕ) = G.

The pair (F (G),Ker(ϕ)) is a presentation for G. �

However, most of the time we will deal with the presentation of a group G
we will not depict it as a pair (F (X), N) but rather we will adopt the following
striking notation

G = 〈X |R〉
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where R is a set of elements of N that generates it as a normal subgroup inside
F (X). If the elements of X or R are indexed by some set of indexes we will also
adopt the convention of explicitly listing them inside brackets, e.g.

G = 〈x1, x2, x3, . . . | r1, r2, r3, . . .〉 .

Finally, since the (equivalence classes of) words r inside R represent elements that

are “sent to the identity” when passing to the quotient F (X)
N
' G we will also write

them as ‘r = 1’ to stress this fact and we will called them relators. Recalling that
the r’s inside R are just elements of F (X) (and hence equivalence classes of finite
sequences of symbols) we will sometimes manipulate the equality r = 1 inside F (X)
to get some other equality that we will more generally call a relation as it depicts
an equality that must hold once the LHS and RHS are projected over G (e.g., we
may rewrite the relator ab−1c = 1 to the relation b = ca).

In general, given two presentations it is an extremely difficult problem to
establish if they represent isomorphic groups, however there are some easy moves,
called Tietze transformations, that allow to manipulate the presentation of a group
without changing its isomorphism type.

Theorem 1.2.5 (H. Tietze). Let G ' 〈a, b, c, . . . | P,Q,R, . . .〉 be a presentation
of groups, then the following transformations leave the group unchanged.

i) Adding or deleting a generator: if w(a, b, c, . . .) is a word in the defining
generators of G, then

〈a, b, c, . . . | P,Q,R, . . .〉 ' 〈a, b, c, . . . , x | P,Q,R, . . . , x = w(a, b, c, . . .)〉 .

ii) Adding or deleting a relation: if W (P,Q,R, . . .) is a word in the defining
relators of G, then

〈a, b, c, . . . | P,Q,R, . . .〉 ' 〈a, b, c, . . . | P,Q,R, . . . , U = W (P,Q,R, . . .)〉 .

Proof. See [14, Chapter I, Theorem 1.5]. �

Since we will work a lot with morphisms between presentations of groups we
will make extensive use of the following proposition.

Proposition 1.2.6. Let X be a set, let N E F (X) be a normal subgroup of F (X)
and let H be any group. Suppose we have a map of sets ψ : X → H such that1

1The universal property of free groups ensures that there exists a unique morphism ϕ : F (X)→
H such that ϕ◦ι = ψ where ι : X → F (X) is the standard embedding of X inside F (X). By abuse
of notation in what follows we identify the set X with its image through ι so that its elements
can be regarded as elements of the group F (X) and whenever we write ψ(g) for any g ∈ F (X)
we actually mean (ϕ ◦ ι)(g) with no chance of ambiguity since by construction ψ(x) = (ϕ ◦ ι)(x)
for all x in X.
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ψ(N) = { 1H }, then there exists a unique morphism of groups ψ : F (X)
N
→ H such

that ψ(x) = ψ(xN) for each x in X.
In particular, if G = 〈X |R〉 and ψ is such that ψ(R) = { 1H }, then there exists a
unique morphism of group ψ : G → H such that ψ(x) = ψ(xN) for each x in X,

where G ' F (X)
N

and N = 〈〈R〉〉F (X).

Proof. By the definition of free group there exists a unique morphisms of groups
ϕ : F (X) → H such that ϕ(x) = ψ(x) for each x in X ⊂ F (X). By the first
homomorphism theorem the hypothesis ψ(N) = { 1H } allows to build a well-

defined morphism of groups ψ : F (X)
N
→ H sending a coset xN to ϕ(x).

If G = 〈X |R〉 is given by a presentation, the hypothesis ψ(R) = { 1H } implies
that also the image of N = 〈〈R〉〉F (X) is trivial since each element in the normal
closure of R can be written as a product of elements conjugate to elements of R or
their inverses, i.e. for each n in N there exist r1, . . . , rk in R, ε1, . . . , εk ∈ {±1 }
and g1, . . . , gk in F (X) such that n = (rε11 )g1 · . . . · (rεkk )gk , so that

ψ(n) = ψ(rε11 )
g1 · . . . · ψ(rεkk )

gk
= 1H , ∀n ∈ N

and the first part of the proposition applies. �

Whenever a map ψ satisfies the hypotheses of previous proposition we will say
that ψ preserves the relators (or relations) of G. Moreover, with a slight abuse of
notation we will denote the morphism ψ with the same plain letter ψ that denotes
the initial map defined only on the set of generators.

Proposition 1.2.7. Given two groups H and K, suppose that a presentation is
known for each of them, say H = 〈X|R〉 and K = 〈Y |S〉. When taking various
kind of products between H and K it may be possible to describe the resulting group
by means of a presentation as well. We will make use of the following results.

1. If G := H ∗K, then G ' 〈X t Y |R t S〉.

2. If G := H ×K, then G ' 〈X t Y |R t S t {xy = yx, ∀x ∈ X, y ∈ Y }〉.

3. If G := H oϕ K for some morphism of groups ϕ : K → Aut(H), then

G '
〈
X t Y

∣∣ R t S t { yxy−1 = ϕ(y)(x), ∀x ∈ X, y ∈ Y }
〉
.

4. Another common type of construction is the amalgamated product of H and K
over a common subgroup A (this construction, for example, is central in the
well-known Seifert-Van Kampen theorem and corresponds to the pushout in
the category of groups). If A is a group with injections ι : A→ H, λ : A→ K,
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we write G := H ∗A K for the amalgamated product of H and K over A and
it can be shown that

G ' 〈X t Y | R t S t { ι(a) = λ(a), ∀a ∈ A }〉 .

Of course, the above presentation can also be taken as a definition for H ∗AK.

We take the chance to state a couple of results about free products with
amalgamation and semidirect products. Since both are very well-known we refer
to external sources for the proofs.

Lemma 1.2.8. Let G = G1 ∗H G2 and let Ti (i = 1, 2) be a set of representatives
of the right cosets of Gi in G containing the identity. Set T×1 := T1 \ { 1 } and
T×2 := T2 \ { 1 }, then each element g of G can be written in an unique way as a
word of the form g0 . . . gk (k ∈ N) where

• g0 ∈ H,

• either gj ∈ T×1 , gj+1 ∈ T×2 or gj ∈ T×2 , gj+1 ∈ T×1 for each j = 1, . . . , k − 1.

The word g0 . . . gk is called the H-normal form of g.

Proof. See [13, Theorem 2.6, Chapter IV]. �

Proposition 1.2.9. Let 1 → H
α−→ G

β−→ K → 1 be a short exact sequence of
groups, the following statements are equivalent.

1. The exists a homomorphism of groups γ : K → G such that β ◦ γ = IdK (γ
is said to be a section for β),

2. There exists a homomorphism of groups ϕ : K → Aut(H) and an isomorphism
θ : G→ H oϕ K such that

1 H G K 1

1 H H oρ K K 1

Id

α

θ

β

Id

commutes, where the bottom short exact sequence is the standard one for
semidirect products.

Proof. See [5, Theorem 3.3]. �
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1.2.2 Graphs

Definition 1.2.10. Let V be a set and let E ⊂P(V ) such that each element e of
E has exactly two (distinct) elements, called the endings of e. A simplicial graph Γ
is a pair (V,E), where the elements of V are called vertices of Γ and the elements
of E are called edges of Γ. To avoid confusion we will often denote V and E by
V (Γ) and E(Γ), respectively.

Throughout this thesis we always suppose that all graphs we consider have
a finite number of vertices and edges. Given a graph Γ = (V,E) we say that
Λ = (V ′, E ′) is a subgraph of Γ (and we will write Λ ⊆ Γ) if V ′ ⊆ V and E ′ ⊆ E.
A clique Λ of Γ is a subgraph of Γ such that each vertex of Λ is connected to any
other vertex in V (Λ) (i.e., Λ is a complete graph if regarded on its own). We say
that Λ is a full subgraph of Γ if for each e = { v1, v2 } ∈ E(Γ) with v1, v2 ∈ V (Λ) we
have e ∈ E(Λ). We denote with Γ \ Λ the graph given by (V \ V ′, E \ E ′). Finally,
given a subset W of V (Γ) we call the (full) subgraph spanned by W the subgraph
of Γ having W as vertices and edges the edges of Γ with both endings in W .

Definition 1.2.11. Given a graph Γ and a vertex v ∈ V (Γ), a path p inside Γ of
length n ∈ N based at the vertex v is a sequence of vertices p := (vi)0≤i≤n such that
v = v0 and { vi, vi+1 } ∈ E(Γ) for each i = 0, . . . n− 1.
Clearly, to any path (vi)0≤i≤n based at v we can associate

• the symbol ∅v, if n = 0,

• the sequence of edges (ej)1≤i≤n where ej := { vj−1, vj }, if n ≥ 1.

Since the above correspondence is one-to-one we will tacitly switch between the
sequences (vi)0≤i≤n and (ej)1≤j≤n when talking about paths.
A path p is said to be reduced if either n = 0 or ej 6= ej+1 for all j = 1, . . . , n− 1.

Let v, w ∈ V (Γ), we say that v ∼ w if there exists a path p = (vi)0≤i≤n in Γ such
that v = v0 and w = vn. It’s easy to check that ‘∼’ is an equivalence relation over
the set of vertices of Γ and the full subgraphs spanned inside Γ by its equivalence
classes are called the connected components of Γ.

Definition 1.2.12. A graph Γ is a tree if for any pair of vertices there exists a
unique reduced path connecting them. A graph Γ is a forest if all its connected
components are trees.

Lemma 1.2.13. For any connected graph Γ there exists at least one subgraph T
which is a tree and such that V (T ) = V (Γ). Such subtrees T are called maximal
subtrees of Γ.



CHAPTER 1. INTRODUCTION 11

1.2.3 Bass-Serre theory

Despite the definition we have just given (that will be implicitly adopted everywhere
else in this thesis unless otherwise stated), only in this section we need a more
refined definition of graph in order to state the fundamental theorem of Bass-Serre
theory. Moreover, since we are only interested in the applicative results that this
theory provides, we will refer to external references for all proofs but a couple of
them (for a complete introduction to the topic see [19]).

Definition 1.2.14. A graph Γ = (V,E, o, t, ) in the sense of Serre is a pair of
sets (V,E) together with three maps o, t : E → V and : E → E such that

• e = e and e 6= e, for each e ∈ E,

• o(e) = t(e), for each e ∈ E.

An orientation E+ for Γ is a subset of E such that |E+ ∩ { e, e } | = 1 for each
e ∈ E.
We say that a group G acts on the graph Γ = (V,E, o, t, ) if V and E are G-sets
and o, t, are maps of G-sets. The action is said to be without inversion of edges
if for all g ∈ G and e ∈ E we have g · e 6= e.

Lemma 1.2.15. Let Γ = (V,E, o, t, ) be a graph in the sense of Serre and let G
be a group acting on Γ. Denote with OV and OE the set of orbits of G on V and
E, respectively. Then the tuple G \\Γ := (OV ,OE, o, t, ) where

• ∀e ∈ E, o(G · e) := G · o(e),

• ∀e ∈ E, t(G · e) := G · t(e),

• ∀e ∈ E, G · e := G · e,
is a well-defined graph in the sense of Serre, called the quotient graph of Γ by G.

Proof. The proof is just an easy check that the maps o, t : OE → OV and : OE →
OE are well-defined. The other requirements are trivial. �

Definition 1.2.16. A graph of groups (Γ,G) is a connected graph Γ = (V,E, o, t, )
together with two families of groups G = (GV ,GE) indexed over the set of vertices
and edges of Γ and a family of injective morphisms {αe : Ge → Gt(e) | e ∈ E } such
that Ge = Ge for all e ∈ E(Γ).

Definition 1.2.17. The fundamental group of a graph of groups (Γ,G) with respect
to a maximal subtree T of Γ is

π1(Γ,G, T ) :=

〈
Gv, v ∈ V (Γ),

te, e ∈ E(Γ),

∣∣∣∣∣∣∣
t−1
e αe(g)te = αe(g), ∀e ∈ E(Γ), ∀g ∈ Ge,

tete = 1, ∀e ∈ E(Γ),

te = 1, ∀e ∈ E(T ),

〉
.

(1.1)
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It can be shown that the isomorphism type of π1(Γ,G, T ) does not depend on
the choice of the maximal subtree T in Γ, therefore we will also denote this group
simply by π1(Γ,G) when the choice of a specific tree T is not relevant.

Theorem 1.2.18 (Bass-Serre fundamental theorem). If G is the fundamental
group of a graph of groups (Γ,G), then G acts without inversion of edges on a
tree T (called the Serre tree of (Γ,G)) such that Γ ' G \\T and the stabilisers in
G of the vertices and edges of the tree T are isomorphic to Gv (v ∈ V (Γ)) and
Ge (e ∈ E(Γ)), respectively.
Conversely, if G acts on a tree T without inversion of edges, then G is isomorphic
to the fundamental group of the graph of groups (G \\T,G) whose vertex and edge
groups are (up to isomorphism) the stabilisers of the vertices and edges of T ,
respectively.

Proof. See [4, Chapter 8, Theorem 24 and Theorem 26]. �

The following statement provides a concrete example of the above theorem
when the group G is a free product with amalgamation.

Proposition 1.2.19. Let G = G1 ∗H G2, then there exists a tree T on which G
acts without inversion of edges such that Γ = G \\T is a segment2. Moreover, this
segment can be lifted to a segment in T such that the stabilisers in G of its vertices
and edge are equal to G1, G2 and H, respectively.

Proof. Given G = G1 ∗H G2 we choose the set of vertices of T = (V,E, o, t, ) to
be the left cosets of G1 and G2 in G. As edges we choose the cosets of H in G
together with the maps o(gH) := gG1 and t(gH) := gG2. The action of G on T
is given by left multiplication and it follows straight from the definition of T that
this action is without inversion of edges.
To show that T is connected observe that the vertices indexed by the cosets G1

and G2 are connected by the edge associated to H. For i = 1, 2 we show that
all vertices indexed by cosets of Gi are connected to Gi: this will imply that T
is a connected graph. Fix i = 1 (the case for i = 2 being analogous) and take
any left coset gG1. The normal form theorem for elements of an amalgamated
product tells us that g = g0 . . . gk where g0 . . . gk is the unique H-normal form of
g described in Lemma 1.2.8. We will prove the claim by induction on the length
of the H-normal form of g. If k = 0, then g0 ∈ H implies that g0G1 = G1 and
the claim is trivial. Now suppose the statement true for k − 1: if gk ∈ G1, then
g0 . . . gk−1gkG1 = g0 . . . gk−1G1 are the same vertex which is connected to G1 by the
inductive hypothesis; otherwise gk ∈ G2 and there is an edge between g0 . . . gk−1G1

2A graph Γ in the sense of Serre is called a segment if V (Γ) = { v, w }, E(Γ) = { e, e }, o(e) = v
and t(e) = w.
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and g0 . . . gk−1G2 = g0 . . . gk−1gkG2 and from this vertex to g0 . . . gk−1gkG1, the
inductive hypothesis allows us to conclude again that gG1 is connected to G1. In
any case we have shown that the vertices Gi and gGi (i = 1, 2) are connected and
therefore T is connected.
To show that T is a tree assume by contradiction that there exists a closed reduced
path e0, . . . , eh in T of length h > 0. Since T is connected we may assume without
loss of generality that such path is based at the vertex G1, i.e. o(e0) = t(eh) = G1.
For each j = 1, . . . , h− 1 we have

o(ej) ∈ G/G1 ⇒ t(ej) ∈ G/G2,

o(ej) ∈ G/G2 ⇒ t(ej) ∈ G/G1,

therefore h must be odd. Set t := h−1
2

, there exist elements a1, . . . , at ∈ G1 \H and
elements b1, . . . , bt ∈ G2 \H such that

o(e0) = G1, o(e1) = a1G2, o(e2) = a1b1G1, . . .

. . . o(eh) = a1b1 . . . atG2, t(eh) = a1b1 . . . atbtG1,

but o(e0) = t(eh) by construction and this is a contradiction with the uniqueness
of the H-normal forms for G = G1 ∗H G2. Therefore T is a tree on which G acts
without inversion of edges and the set of orbits of the vertices OV = { G/G1, G/G2 }
has only two elements that are connected by the only orbit G/H of all edges of T .
Therefore G \\T is a segment. �

Finally, we provide a couple of applications of what is stated in Theorem 1.2.18
that we will need later.

Theorem 1.2.20 (Nielsen-Schreier). Let F = F (X) be a free group and H ≤ F ,
then H is free.

Proof. The Cayley graph T := Cay(F,X) of F with respect to the set of generators
X is a tree. Indeed, T is connected since X is a generating set for F , therefore T
is a tree if and only if there exists a unique reduced path connecting 1F to g for
any g ∈ F . Since reduced paths in T based at 1F correspond to reduced words in
the alphabet X and each element g has a unique reduced representative (see proof
of Proposition 1.2.2), T is a tree.
F acts freely on it by left multiplication and without inversion of edges. The
induced action of H on T is without inversion of edges as well and Theorem 1.2.18
implies that H is isomorphic to the fundamental group of a graph of groups with
trivial edge and vertex groups, therefore it is free. �

Theorem 1.2.21 (Kurosh). Let H,K be groups and set G := H ∗K, then for any
subgroup S of G there exist two families of subgroups {Hi }i∈I and {Kj }j∈J of H
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and K, respectively, together with two families { gi }i∈I , { gj }j∈J of elements in G
and a subset X ⊆ G such that

S ' F (X) ∗
∐
i∈I

(Ki)
gi ∗

∐
j∈J

(Kj)
gj .

Proof. Let T be the Serre tree associated to the free product G = H∗K as described
in the proof of Proposition 1.2.19. Since G acts on T (by left multiplication), then
also S acts on T and by Theorem 1.2.18 S is isomorphic to the fundamental group
of the graph of groups (Ξ,S) with Ξ := S \\T . Each vertex group of (Ξ,S) is, by
construction, a subgroup of the stabiliser in G of some vertex of T , then either
Gv
∼= Hgi

i or Gv
∼= K

gj
j for suitable subgroups Hi ≤ H, Kj ≤ K and elements

gi, gj ∈ G. Moreover, since the edge stabilsers of (Γ,G) are trivial, so are the edge
stabilisers of (Ξ,S). By Theorem 1.2.18 S is isomorphic to the fundamental group
of the graph of groups (Ξ,S) which reads

π1(Ξ,G, R) =

〈
Gv, v ∈ V (Ξ),

te, e ∈ E(Ξ),

∣∣∣∣∣ tete = 1, ∀e ∈ E(Ξ),

te = 1, ∀e ∈ E(R),

〉
= π1(Ξ) ∗

∐
v∈V (Ξ)

Gv,

where R is any maximal subtree of Ξ and π1(Ξ) is the fundamental group of Ξ
in the standard topological sense. Since we observed that each vertex group is
conjugated to a subgroup of either H or K through an element of G, the thesis
follows. �

1.2.4 Sigma invariant

In this section we briefly define the Σ1 invariant of a group G and a couple of
theorems that we will use in Section 2.2 to achieve a preliminary result about
dihedral Artin groups. However, since the main results in this thesis do not depend
on the theory of sigma invariants we will give just the main definitions and the
statements we need, referring to external references for all proofs.
Let G be any group (although the typical case is when G is infinite) and denote by
Hom(G,R) the set of homomorphism of groups from G to the additive group of real
numbers. The elements of Hom(G,R) are called characters, the set Hom(G,R) has
a natural structure of real vector space and to each µ ∈ Hom(G,R) we associate
the monoid

Gµ := { g ∈ G | µ(g) ≥ 0 } .

Clearly Gµ does not change if µ is replaced by a positive multiple so that the
collection of these submonoids can be thought as the set of open rays in Hom(G,R).
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Definition 1.2.22. Let G be any group, we define the character sphere S(G) as
the quotient of Hom(G,R) under the equivalence relation ‘∼’ defined as follows.

∀µ1, µ2 ∈ Hom(G,R) : µ1 ∼ µ2 ⇐⇒ ∃λ ∈ R+ : µ1 = λµ2,

S(G) := { [µ]∼ | µ ∈ Hom(G,R) \ { 0 } } .

If G is finitely generated, the real vector space Hom(G,R) has dimension equal
to the torsion-free rank of Gab (see [20, Lemma A1.1]), which is finite. Therefore
Hom(G,R) can be endowed with the (essentially unique) topology induced by the
standard norm of Rn. As a consequence the space S(G) equipped with the quotient
topology is homeomorphic to the unit sphere in a Euclidean vector space of the
corresponding dimension.

Definition 1.2.23. Let G be a finitely generated group, X ⊂ G a set of generators
and Γ = Cay(G,X) the Cayley graph of G with respect to X. For each non-zero
homomorphism µ ∈ Hom(G,R) denote by Γµ the full subgraph of Γ spanned by the
monoid Gµ, then

Σ1(G) := { [µ]∼ ∈ S(G) | Γµ is connected }

is called the sigma 1 invariant of G and does not depend on the choice of the
generating set X.

For each µ ∈ Hom(G,R) we define its rank as the Z-rank of µ(G) ⊂ R. Since
the rank is constant over equivalence classes of ∼ we define the rank of [µ]∼ ∈ S(G)
as the rank of his representative. We are now ready to state the results we are
interested in.

Theorem 1.2.24. The kernel of a rank 1 character µ : G � Z ↪→ R is finitely
generated if and only if { [µ]∼, [−µ]∼ } ∈ Σ1(G).

Proof. See [20, Corollary A4.3]. �

Theorem 1.2.25 (Brown). Let G be a group given by a presentation 〈a, b|r〉 where
r = c1c2 . . . ck is a cyclically reduced, non-empty word containing both generators.
Then a non-zero character µ : G → R represents a point of Σ1(G) if and only
if the sequence fr(µ) = (µ(c1), µ(c1c2), . . . , µ(c1c2 . . . ck)) satisfies the following
conditions:

• if one of µ(a) and µ(b) is zero, then fr(µ) achieves its minimum twice,

• otherwise fr(µ) achieves its minimum once.

Proof. See [20, Theorem B4.1]. �
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1.3 Poly-freeness

Definition 1.3.1. A group G is called poly-free if there exists an integer k and a
subnormal series of subgroups (Gi)0≤i≤k such that

{ 1G } = G0 / G1 / . . . / Gk−1 / Gk = G

and for each i ∈ { 1, . . . , k } the factors Gi
Gi−1

are non-trivial free groups. We will

call such subnormal series a poly-free series for G. We say that G is poly-fg-free if
there exists a poly-free series for G such that each factor is a (non-trivial) finitely
generated free group. In general, poly-(fg)-free series, if they exist, are not unique
and we define the poly-(fg)-free length of a poly-(fg)-free group G as the minimum
integer k such that G admits a subnormal series as the above one, i.e.

pfl(G) := min
{
k ∈ N

∣∣ (Gi)0≤i≤k is a poly-free series for G
}
,

pflfg(G) := min
{
k ∈ N

∣∣ (Gi)0≤i≤k is a poly-fg-free series for G
}
.

We call G strongly poly-(fg)-free (or normally poly-(fg)-free) if there exists a
poly-(fg)-free series of G such that each term is a normal subgroup of G. We define
spfl(G) and spflfg(G) correspondingly.

Example 1.3.2. The trivial group { 1 } is (the only) poly-free group of length 0
and non-trivial free groups F are the only poly-free groups of length 1; they are
also strongly poly-free. It is also easy to give an example of a group G that admits
poly-free series of different length. Let G = F ({ a, b }) be the free group on two
elements. The series { 1G } / G is obviously strongly poly-free of length 1. If we
consider the series of normal subgroups { 1 } / G′ / G we have that the first factor
is the commutator subgroup of G (which is free since it is the subgroup of a free
group, see Theorem 1.2.20) while the second factor is G

G′
= Gab ' Z× Z which is

poly-free (as it is the direct product of two free groups, see Lemma 1.3.6). Starting
from this we can build the subnormal series

{ 1G } / G′ / 〈〈G′, a〉〉G / G

which is a strongly poly-free series of length 3 with free factors G′ (of infinite
countable rank), Z and Z.
In Corollary 1.3.14 we will show that the length of a strongly poly-fg-free series of
a group G is actually unique.

In the following statements we show that poly-freeness has some basic algebraic
properties that one may expect when studying properties of a group, e.g. subgroups
of a poly-free group are poly-free and the extension of a poly-free group by another
poly-free group is poly-free as well.
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Lemma 1.3.3. Let G be a poly-free (respectively, strongly poly-free) group and let
H ≤ G, then H is poly-free (respectively, strongly poly-free) and pfl(H) ≤ pfl(G)
(respectively, spfl(H) ≤ spfl(G)).

Proof. Given a poly-free series of minimal length (Gi)0≤i≤n for G, then the sequence
(Gi ∩H)0≤i≤n can be refined (after deleting potentially equal consecutive terms)
to a poly-free series for H of length at most n. Indeed, for each i ∈ { 1, . . . , n },
Gi−1 ∩H is the kernel of the projection of Gi ∩H over Gi

Gi−1
(which is not surjective

in general), therefore Gi∩H
Gi−1∩H is isomorphic to a subgroup of the free group Gi

Gi−1

and hence is free (see Theorem 1.2.20). Clearly, if (Gi)0≤i≤n is a strongly poly-free
series, so is also (Gi ∩H)0≤i≤n. �

Remark 1.3.4. Observe that in the previous lemma we cannot say anything about
the rank of the free factors of the poly-free series we build for H since the factors
Gi∩H
Gi−1∩H are just subgroups of the free factors Gi

Gi−1
and may have arbitrary rank.

Lemma 1.3.5. Let G be a group and H E G a poly-free normal subgroup of G
such that G

H
is also poly-free, then G is poly-free and pfl(G) ≤ pfl(H) + pfl(G

H
).

Moreover, if H and G
H

are both strongly poly-free, then G is also strongly poly-free
and spfl(G) ≤ spfl(H) + spfl(G

H
).

Proof. Let (Pi)0≤i≤h and (Qi)0≤i≤m be poly-free series of minimal length for H and
G
H

, respectively, and let π : G → G
H

be the canonical projection on the quotient.
For each i = 0, . . . ,m set Ri := π−1(Qi), then

{ 1G } / P0 / . . . / Ph = H = R0 / . . . / Rm = G

is a poly-free series for G. Indeed, for each i = 0, . . . ,m we have Qi ' Ri
H

and by
the third homomorphism theorem we get

Ri+1

Ri

'
Ri+1/H
Ri/H

' Qi+1

Qi

, ∀i = 0, . . . ,m− 1,

hence Ri+1

Ri
is free as well and if each Qi is normal in G

H
then each Ri is normal

in G. Since the poly-free series we have built has h + m terms it follows that
pfl(G) ≤ pfl(H) + pfl(G

H
). Finally, if H and G

H
are both strongly poly-free, the same

series for G is also strongly poly-free and spfl(G) ≤ spfl(H) + spfl(G
H

). �

Notice that the inequality in the previous lemma cannot be made into an
equality since given any non-trivial poly-free normal subgroup N of a non-trivial
free group F such that G

N
is poly-free we have pfl(F ) = 1, pfl(N) = 1 (since all

subgroups of a free group are free as well, see Theorem 1.2.20) and pfl
(
G
N

)
≥ 1.
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Lemma 1.3.6. Let H,K be poly-free (respectively, strongly poly-free) groups, then
G = H×K is poly-free (respectively, strongly poly-free) and pfl(G) ≤ pfl(H)+pfl(K)
(respectively, spfl(G) ≤ spfl(H)+spfl(K)). Moreover, if H,K are poly-fg-free groups,
then G is poly-fg-free.

Proof. Since G can be seen as an extension of H and K the first part of the thesis
follows straight from previous lemma; however in this case a (strongly) poly-free
series for H and K can be written explicitly in an easy way. Let (Hi)0≤i≤h and
(Ki)0≤i≤k be (strongly) poly-free series of minimal length for H,K respectively,
then

{ 1G } = H0 ×K0 / H1 ×K0 / . . . / Hh ×K0 / Hh ×K1 / . . . / Hh ×Kk = G

is a (strongly) poly-free series for G and pfl(G) ≤ h + k. This construction also
shows that if H,K are poly-fg-free, then G is also poly-fg-free. �

Definition 1.3.7. A group G is called indicable if it admits a surjective homo-
morphism onto Z. A group G is called locally indicable if each non-trivial finitely
generated subgroup H ≤ G is indicable.

Lemma 1.3.8. A poly-free group G is locally indicable.

Proof. Let H ≤ G be any non-trivial subgroup of G, by Lemma 1.3.3 H is poly-free,
hence it admits a poly-free series (Hi)0≤i≤k with k > 0. Then H

Hk−1
is a non-trivial

free group F , hence it contains a copy of Z. Let π : H → F be the canonical
projection, which is surjective, then composing π with the surjective map F → Z
gives the desired surjection from H to Z. Therefore G is locally indicable. �

Corollary 1.3.9. If G is poly-free, then G is torsion-free.

Proof. By previous Lemma G is locally indicable, hence torsion-free since any
torsion element would generate a finite subgroup that could not be mapped onto
Z. �

Corollary 1.3.10. Every poly-free group G is right orderable (i.e., for every
a, b, g ∈ G there exists a total order ‘≤’ on G such that a ≤ b ⇒ ag ≤ bg).

Proof. It is a consequence of Lemma 1.3.8 and [18, Proposition 1.1] by Rhemtulla
and Rolfsen where it is shown that every locally indicable group is right orderable
(which in turns is an easy consequence of a result contained in [3] by Burns and
Hale). �

Lemma 1.3.11. Let H,K be strongly poly-free groups. Set h := spfl(H) and
k := spfl(K), then the free product G = H ∗K is strongly poly-free and

spfl(G) ≤ max {h, k }+ 1.
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Proof. We proceed by induction on n = max {h, k }.
If n = 1, then H and K themselves are (possibly trivial) free groups and G = H ∗K
is free as well, hence strongly poly-free.
Now let H,K be groups with (Hi)0≤i≤h and (Kj)0≤j≤k strongly poly-free series of
minimal length for H and K, respectively. Consider the projections

f : H → H

H1

, g : K → K

K1

and observe that H
H1

is strongly poly-free with a series given by

{ 1 } =
H1

H1

/
H2

H1

/ . . . /
Hh

H1

=
H

H1

.

Indeed, by the third homomorphism theorem its factors are isomorphic to the last
h− 1 factors of the strongly poly-free serie of H

Hi/H1

Hi−1/H1

' Hi

Hi−1

, ∀i = 2, . . . , h.

Hence H
H1

is strongly poly-free of length less than or equal to h− 1. Similarly K
K1

is
poly-free of length less then or equal to k − 1. By the inductive hypothesis we may
assume H

H1
∗ K
K1

strongly poly-free and

spfl

(
H

H1

∗ K
K1

)
= max {h− 1, k − 1 }+ 1 = max {h, k } .

Consider the kernel of the map induced by f and g on the free product of H and
K, namely

f ∗ g : H ∗K → H

H1

∗ K
K1

.

By Theorem 1.2.21 there exist a family {Hi }i∈I of subgroups of H, a family
{Kj }j∈J of subgroups of K, elements gi, gj ∈ G and a subset X ⊂ H ∗K such
that

Ker(f ∗ g) = F (X) ∗
∐
i∈I

(Hi)
gi ∗

∐
j∈J

(Kj)
gj . (1.2)

Moreover, in our case all subgroups Hi and Kj must be contained inside the free
groups H1 = Ker(f) and K1 = Ker(g), respectively, otherwise there would be some
element in Equation (1.2) that does not get sent to the identity by f ∗ g. Since
H1 and K1 are normal subgroups, H i := Hgi

i and Kj := K
gj
j still lie inside H1 and

K1 for each i ∈ I and j ∈ J , in particular they are free groups. This implies that
Ker(f ∗ g) is free.
In conclusion we have proven that H ∗K is an extension of H

H1
∗ K
K1

by the free
subgroup Ker(f ∗ g) of G. Proposition 1.3.5 allows to conclude that the group
H ∗K is strongly poly-free and spfl(G) ≤ max {h, k }+ 1. �
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Remark 1.3.12. The proof of the above lemma is original and we do not know
whether it holds under the weaker hypothesis of H,K being just poly-free, however
we have not been able to find any counterexample.

While the length of general poly-free series of a group G may actually behave
unexpectedly as shown in Example 1.3.2, under the assumption of restricting to
strongly poly-fg-free series the associated length is unique, this is a consequence of
a result by Meier which reads as follows.

Theorem 1.3.13 (Meier, [15, Theorem 16]). A group G is poly-locally free if there
exists a subnormal series

{ 1G } = N0 / N1 / . . . / Nn−1 / Nn = G

whose factors are locally free groups (i.e., each finitely generated subgroup is free).
If all subgroups Ni are normal in G and the abelianized factors ( Ni

Ni−1
)ab are non-zero

and of finite torsion-free rank as abelian groups, then the homological dimension of
G over a field K of characteristic 0 is equal to n, the number of locally free factors.

Corollary 1.3.14. All the strongly poly-fg-free series (Gi)0≤i≤n of a group G have
the same length, which coincides with the homological dimension of G over any
field of characteristic 0.

Proof. Every poly-free group G is poly-locally free since all subgroups of a free
group are free as well. Since all factors in a poly-fg-free serie for G are non-trivial
finitely generated free groups, the abelian rank of their abelianization equals their
free rank which is finite and non-zero. Hence we can apply the theorem above to
deduce that the length of a strongly poly-fg-free serie is unique since it equals the
homological dimension of G over any field of characteristic 0. �

1.4 Artin groups

In this section we are going to define the main object of interest for this thesis
together with some examples and a brief summary of what is known and what is
not. Since Artin groups are closely related to Coxeter groups we will start giving
the definition of the latter, whose definition relies on a combinatorial type of data
represented by a Coxeter matrix or a Coxeter graph.

Definition 1.4.1. A square matrix M = (mij) of dimension n ∈ N+ is called a
Coxeter matrix if it is symmetric and

i) mii = 1 for each i = 1, . . . , n,
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ii) mij = mji ∈ { 2, 3, . . . } ∪ {∞} for each i, j = 1, . . . , n and i 6= j.

Definition 1.4.2. A Coxeter graph is a simplicial graph Γ with a finite number
of vertices and edges, each of the latter labelled with integers greater than or equal
to ‘2’. For later purpose we define Γodd as the Coxeter graph obtained from Γ after
the deletion of all edges labelled with an even integer.

When drawing a Coxeter graph we adopt the convention to mark each edge with
its associated label except for those with label ‘2’, which will be tacitly understood.
A Coxeter matrix brings the same amount of information as a Coxeter graph. The
bijection between the former and the latter objects is given by sending a Coxeter
matrix M to the Coxeter graph Γ having the set of vertices indexed over the set
of columns (or rows) of M . Two distinct vertices i, j in Γ are linked by an edge e
labelled with me := mij if and only if mij 6=∞ in M . Clearly this correspondence
is a bijection.
However, depending on the which families of Coxeter groups one is dealing with,
it could be more convenient to use another (equivalent) convention for Coxeter
graphs. From a Coxeter graphs Γ as defined above we can build the labelled graph
Γ̇ adding an edge labelled with ‘∞’ for any pair of unlinked vertices in Γ and
deleting all edges labelled with ‘2’ in Γ. When drawing this type of Coxeter graph
we adopt the convention to mark each edge with its associated label except for
those with label ‘3’, which will be implicit.

Notation 1.4.3. Whenever we will consider a Coxeter graph denoted by a Greek
upper case letter with a dot above it (e.g., Γ̇) it will be implicit that such graph has
to be understood following the alternative definition we have just given. Instead,
whenever we denote a graph by a plain Greek upper case letter, it has to be understood
as described in Definition 1.4.2.
In particular, in Chapter 2 we will always adopt the second convention we described
(the one denoted by Γ̇), while in Chapter 3 we will always use the first definition
we gave for a Coxeter graph Γ.

Clearly this construction can be reversed and there is a bijection between the
two types of Coxeter graphs: we are introducing this alternative version just to ease
the representation of some families of Coxeter graphs with a lot of edges labelled
with ‘2’.

Definition 1.4.4. Let Γ be a Coxeter graph with vertex set { s1, . . . , sn }, we define
the Coxeter group W(Γ) of type Γ as the group having the following presentation

W(Γ) :=

〈
si, ∀si ∈ V (Γ)

∣∣∣∣∣ s2
i = 1, ∀si ∈ V (Γ),

(sisj)
me = 1, ∀e = { si, sj } ∈ E(Γ)

〉
.
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Coxeter groups have been introduced in the thirties by H. S. M. Coxeter. They
arose during the study of real reflection groups, i.e. subgroups of the automorphisms
of Euclidean vector spaces generated by elements of order 2 called reflections. Indeed,
the relator s2

i = 1 that holds for each si ∈ W(Γ) can be geometrically interpreted
saying that each si is an automorphisms of a vector space fixing an hyperplane τi
pointwise and reflecting the remaining points across it. Given such action of the
si’s on the vector space, the product sisj of two distinct reflections corresponds to
a rotation of twice the angle α between the hyperplanes τi and τj. If m := π

α
is an

integer, then sisj is an element of Aut(Rn) of order m and the vertices si, sj of Γ
are connected by an edge labelled with m; otherwise, if m is not an integer, the
product sisj is of infinite order and we set no conditions on it in the presentation
of W(Γ). This geometric interpretation explains the second type of relations that
appear in the definition of Coxeter groups. In particular, when a pair of vertices
is linked by an edge labelled with ‘2’ it means that they commute (since each
generator is also a reflection)

(sisj)
2 = 1 =⇒ sisj = s−1

j s−1
i =⇒ sisj = sjsi.

For a Coxeter graph Γ, consider its related graph Γ̇: if Γ̇ has Γ̇1, . . . , Γ̇d connected
components, then the presentation ofW(Γ̇) is the same presentation asW(Γ̇1)×. . .×
W(Γ̇d) since each pair of generators belonging to different connected components
commutes. This leads to the following definition.

Definition 1.4.5. Let Γ be a Coxeter graph. If Γ̇ is connected, then W(Γ) is called
irreducible.

The main result in this area is due to Coxeter who showed that each real
reflection group admits a presentation in the form of a Coxeter group and each
Coxeter group admits a linear representation over Aut(Rn) for some n ∈ N+ (the
first part of this statement is proven in [6] (1934) while the second is contained in
[7] (1935)). Moreover, in the case of finite reflection groups such correspondence is
one-to-one, whereas there exist infinite Coxeter groups that do not admit a faithful
representation as a Euclidean reflection group.
H. S. M. Coxeter in [7] also achieved the classification of all finite irreducible
Coxeter groups shown in Table 1.1.

Artin groups are obtained from Coxeter groups removing the condition that
generators must be elements of order 2. Before giving the definition of Artin groups
let us establish the following notation for the sake of simplicity.

Notation 1.4.6. For any finite set of symbols a1, a2, . . . , an and each integer m ∈ N
we set

Π(a1, a2, . . . , an;m) := a1 a2 . . . an a1 a2 . . .︸ ︷︷ ︸
m symbols

.
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Ȧn, (n ≥ 2)
α1 α2 αn

Ḃn, (n ≥ 3)
4

β1 β2 βn

Ḋn, (n ≥ 4)
δ1 δ2

δn−1

δn
İ2(n), (n ≥ 3)

n

Ė6 Ḣ3
5

Ė7 Ḣ4
5

Ė8 Ḟ4
4

Table 1.1: Classification of all finite irreducible Coxeter groups.

Definition 1.4.7. Let Γ be a Coxeter graph (as in Definition 1.4.2) with vertex
set V (Γ) = { a1, . . . , an }, we define the Artin group A(Γ) of type Γ as the group
having the following presentation

A(Γ) := 〈ai, ai ∈ V (Γ) | Π(ai, aj;me) = Π(aj, ai;me), ∀e = { ai, aj } ∈ E(Γ)〉 .

For a Coxeter graph of type Γ̇ (as described in Notation 1.4.3) we set A(Γ̇) := A(Γ).

Definition 1.4.8. If Γ is any graph whose related graph Γ̇ appears in Table 1.1 the
associated Artin group A(Γ) is called of finite type. For simplicity we will denote
such groups with the calligraphic version of the letter that represents the graph (e.g.,
An = A(Ȧn), Bn = A(Ḃn), I2(n) = A(İ2(n)), etc...).

Since Coxeter groups are closely related to vector spaces, identifying them with
a Coxeter matrix instead of a Coxeter graph may sometimes be advantageous;
however, since we study Artin groups, we will always use Coxeter graphs and with
a slight abuse of notation we will denote with the same symbols (e.g., ai) both the
vertices of Γ and the generators of A(Γ). Moreover, when useful, we will write the
defining relation of A(Γ) associated to the edge e with endings ai and aj as

Ri,j := Re := Π(ai, aj;me) · Π(aj, ai;me)
−1

=

{
ai aj . . . ai a

−1
j a−1

i . . . a−1
j , me odd,

ai aj . . . aj a
−1
i a−1

j . . . a−1
j , me even,

so that we can write more compactly

A(Γ) = 〈ai, ai ∈ V (Γ) | Re = 1, ∀e ∈ E(Γ)〉 .
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If needed, to avoid confusion we will specify with a superscript to which Coxeter
graph or Artin group the relation Re refers (e.g., we will write either RΓ

e or R
A(Γ)
e ).

Each Coxeter group W(Γ) is the quotient of the corresponding Artin group
A(Γ) under the kernel of the unique morphism of groups defined extending the
map ϕ which sends each generator ai of A(Γ) to the generator si of W(Γ). The
existence and uniqueness of such map is guaranteed by Proposition 1.2.6 since for
each relator of A(Γ) we have

ϕ(Re) =

{
si sj . . . si s

−1
j s−1

i . . . s−1
j , me odd,

si sj . . . sj s
−1
i s−1

j . . . s−1
j , me even,

= (sisj)
me = 1.

The kernel of ϕ : A(Γ)→W(Γ) is called the pure Artin group of type Γ and we will
denote it with P(Γ). In the next chapters we will be interested in studying a few
structure properties of some families of Artin groups, in particular poly-freeness.

Since each normal subgroup is the kernel of a morphism of groups, building a
poly-free series for a group G essentially amounts to find the right morphisms going
from G to another smaller poly-free group and iterate this process. With this in
mind we will make extensive use of the following map defined for any Artin group.

Lemma 1.4.9. Let Γ be a Coxeter graph, then the map χΓ : A(Γ)→ Z defined on
the generators of A(Γ) in the following way

ai 7→ 1, ∀ai ∈ V (Γ)

extends (uniquely) to a well-defined morphism of groups and it is surjective if Γ is
non-empty.
Moreover, let Λ1, . . . ,Λd be the connected components of Γodd, then the maps
χ

(h)
Γ (h = 1, . . . , d) defined sending{

ai 7→ 1, ai ∈ V (Λh),

ai 7→ 0, ai 6∈ V (Λh),

extends (uniquely) to a well-defined epimorphism of groups.

Proof. We just have to apply Proposition 1.2.6 to check that χΓ is well-defined.
For any edge e of Γ let Re be the associated relator in the presentation of A(Γ).
By construction each Re is a word of even length containing the generators of A(Γ)
in the first half and their inverses in the other half. This implies that χΓ(Re) = 0Z
for any edge e of Γ and by the proposition cited above χΓ is morphism of groups.
Clearly χΓ is surjective if Γ is non-empty.
For h = 1, . . . , d the proof for the map χ

(h)
Γ is analogous observing that if ai, aj are

distinct vertices of Λh then the same argument as above applies; otherwise if two
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vertices ai ∈ V (Λh) and aj ∈ V (Λk) (with k 6= h) are connected inside Γ the integer
mij must be even and both ai and aj appear inside the relator Rij as many times

as their inverses, so that χ
(h)
Γ (Rij) = 0. We conclude that χ

(h)
Γ is a well-defined

morphism of groups and since each connected component has at least one vertex
by definition each χ

(h)
Γ is surjective. �

From now on, given a Coxeter graph Γ, we will denote by χΓ : A(Γ)→ Z the
homomorphism of groups defined in Lemma 1.4.9.

Notation 1.4.10. For a Coxeter graph Γ we denote by A′(Γ) the commutator
subgroup of A(Γ).

Lemma 1.4.11. Let Γ be a Coxeter graph, then A′(Γ) = Ker(χΓ) if and only if
Γodd is connected.

Proof. Since Artin groups are defined by means of their presentation it is easy to
compute the abelianization

A(Γ)ab =
A(Γ)

A′(Γ)
= 〈ai | Re = 1 (∀e ∈ E(Γ)), aiaj = ajai (∀ai, aj ∈ V (Γ))〉 .

Given any edge e = { ai, aj } ∈ E(Γ) the abelianization of the corresponding
relation Re leads to ai = aj if me is odd and to the identity if me is even, therefore

A(Γ)ab ' Zd

where d is the number of connected components of Γodd and the isomorphism is
given by sending any element g = ak1

i1
. . . aktit ∈ A(Γ) to (χ

(1)
Γ (g), . . . , χ

(d)
Γ (g)) ∈ Zd.

Now, suppose A′(Γ) = Ker(χΓ), this means that

A(Γ)ab =
A(Γ)

A′(Γ)
=
A(Γ)

Ker(χΓ)
' Z,

therefore d = 1 and Γodd is connected. Conversely, suppose Γodd is connected, by
the observation above the isomorphism between A(Γ)ab and Z is given by χ

(1)
Γ = χΓ,

so that A′(Γ) = Ker
(
χ

(1)
Γ

)
= Ker(χΓ). �

For the same reason explained in previous paragraph we will also make wide
usage of the following well-known property.

Proposition 1.4.12. Let Γ be a Coxeter graph and let S be a (non-empty) subset
of the vertices of Γ. Let Σ be the full subgraph spanned by S inside Γ, then the
subgroup generated inside A(Γ) by the elements associated to the vertices in S
is isomorphic to the abstract Artin group A(Σ) and the isomorphism is the most
obvious one, namely

S 3 ai 7→ ai ∈ A(Σ).
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Proof. The original proof has a topological approach and is due to Van der Lek in
[22, Chapter II, Theorem 4.13] (1983). Also, Paris gave an alternative exclusively
algebraic proof in [17, Theorem 3.1] (1997). �

1.5 An example

Before moving further we give an extensive example of all the definitions we gave
above taking as Coxeter graphs the family of type Ȧn (n ≥ 2). Artin groups of this
type are called “braid groups” due to the geometric interpretation we will explain
below. Also, these have been the very first family of Artin groups to be studied
due to their interesting properties and connections with other fields of mathematics
such as knot and link theory or mapping class groups; actually Artin groups may
be regarded as some kind of generalisation of those. In particular we will show
that pure Artin groups of this type are poly-fg-free by means of their connection
with some topological objects. All we are going to show in this section is already
well-known in the literature and can mostly be found in the book by Kassel and
Turaev [12, Chapter I]. We will use it as a reference for some technical statements
for which we will not provide proofs as well as the source for some images included
below.
The explicit presentations of the Coxeter and Artin groups of type Ȧn are as follows

W(Ȧn) =

〈
si, i = 1, . . . , n

∣∣∣∣∣∣∣
s2
i = 1, i = 1, . . . , n,

sisj = sjsi, i, j = 1, . . . , n, i 6= j,

sisi+1si = si+1sisi+1, i = 1, . . . , n− 1

〉
,

An =

〈
ai, i = 1, . . . , n

∣∣∣∣∣ aiaj = ajai, i, j = 1, . . . , n, i 6= j,

aiai+1ai = ai+1aiai+1, i = 1, . . . , n− 1

〉
.

Let us start identifying the Coxeter group W(Ȧn) as the symmetric group Sn+1

on n+ 1 objects. By Proposition 1.2.6 it is a straightforward check that the map
sending each generator si ofW(Ȧn) to the simple transposition (i, i+1) inside Sn+1

extends uniquely to a morphism ϕ : W(Ȧn)→ Sn+1 (indeed, any two transpositions
(i, i+ 1) and (j, j+ 1) with |i− j| ≥ 2 commute and (i, i+ 1)(i+ 1, i+ 2)(i, i+ 1) =
(i + 1, i + 2)(i, i + 1)(i + 1, i + 2) holds for each i = 1, . . . , n). Since the set of
simple transpositions { (i, i+ 1) | i = 1, . . . , n } generates Sn+1 it follows that ϕ is

surjective. This means that Sn+1 ' W(an)
Ker(ϕ)

admits a representation like〈
si, i = 1, . . . , n

∣∣ { s2
i = 1, sisj = sjsi, sisi+1si = si+1sisi+1 } ∪R

〉
whereR is a (possibly empty) set of words (relations) whose normal closure generates
Ker(ϕ) inside W(Ȧn). However, it is possible to show (see [12, Theorem 4.1]) that
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the presentation above with R = ∅ is already a presentation for Sn+1, so that
W(Ȧn) ' Sn+1; in a more informal language each word in the simple transpositions
of Sn+1 that equals the identity can be reduced using only the relators that appear
in the definition of W(Ȧn). Therefore, Sn+1 provides a concrete interpretation for
the abstract Coxeter groups of type Ȧn.
From this identification we can give the following description of the action ofW(Ȧn)
on a real vector space of dimension n: each generator si (i.e., a simple transposition)
acts by a permutation of the ith and (i+ 1)th component of each vector with respect
to any fixed basis for the vector space.

The description of An is even more geometric as it can be identified with the
group of geometric braids up to isotopy, however we need a couple of preliminary
definitions before giving the exact statement.

Definition 1.5.1. A geometric braid b on n ≥ 1 strings is a subset b ⊂ R2 × [0, 1]
formed by n disjoint topological intervals called the strings of b such that the
projection R2 × [0, 1]→ [0, 1] maps each string homeomorphically onto [0, 1] and

b ∩ (R2 × { 0 }) = { (1, 0, 0), (2, 0, 0), . . . , (n, 0, 0) } ,
b ∩ (R2 × { 1 }) = { (1, 0, 1), (2, 0, 1), . . . , (n, 0, 1) } .

We will denote with Gn the set of geometric braids on n strings.

Figure 1.1: A geometric braid on 4 strings.

Two braids on the same number of strings b1 and b2 are isotopic if there exists
a continuous map F : b1 × [0, 1]→ R2 × [0, 1] such that for each t ∈ [0, 1] the map
Ft := F (·, t) : b1 → R2× [0, 1] is an embedding whose image is a geometric braid on
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n strings, F (·, 0) = Idb1 and F (b1, 1) = b2. Notice that since Ft(b1) is a geometric
braid on n strings for each t ∈ [0, 1] and F is continuous by assumption, then Ft
fixes pointwise all starting and ending points of each string. It is an easy check
to verify that being isotopic is an equivalence relation on the set of geometric
braids and we denote it with ‘∼’. We will call Gn := Gn

∼ the set of braids whose
objects, loosely speaking, are determined only by how strings are interlaced ignoring
continuous deformations that fix their endings.
Also, for any pair of geometric braids b1 and b2 on the same number of strings we
define their geometric product as their concatenation (together with a suitable
reparametrization), i.e.

b1b2 =
{

(x, y, t) ∈ R2 × [0, 1]
∣∣ (x, y, 2t) ∈ b1 or (x, y, 2t− 1) ∈ b2

}
.

The above geometric product induces a well-defined operation on the set of braids
Gn := Gn

∼ just setting [b1]∼[b2]∼ := [b1b2]∼. The set Gn together with this product
turns out to be a group since the operation is easily checked to be associative, the
identity is given by the braid with n straight strings and the inverse of an element
[b]∼ ∈ Gn is the equivalence class represented by the braid b obtained reflecting b
across the hyperplane with equation z = 1

2
.

With the help of braid diagrams and of the related Reidemeister moves (in a much
similar way to the theory of Reidemeister moves for knots) it can be shown that
An ' Gn+1 under the mapping sending a generator ai (i = 1, . . . , n) of An to the
equivalence class of the geometric braid σi with n + 1 strings obtained from the
identity by twisting the ith and (i+ 1)th strings together as shown in Figure 1.2.

Figure 1.2: A representative of the braid σi.

A complete proof of this isomorphism is rather long and may get technical; we
point the interested reader to [12, Section 1.2] and we restrict ourselves to observe
that the images of the LHS and RHS of each defining relation of An do get sent to
the same element of Gn as shown in Figures 1.3 and 1.4.
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Figure 1.3: Isotopy transforming σiσj to σjσi.

Figure 1.4: Isotopy transforming σiσi+1σi to σi+1σiσi+1.

Under this geometric interpretation of An it is possible to give the following
description of the standard projection to W(Ȧn): each element g = σε1i1 . . . σ

εk
ik
∈

Gn+1 ' An is sent to the permutation(
1 2 . . . n n+ 1
t(1) t(2) . . . t(n) t(n+ 1)

)
where t(i) denotes the position of the ending of the string starting at the ith place.
The kernel of this projection is the group of pure braids Pn := P(Ȧn). Its elements
are exactly those braids whose underlying permutation is the identity. We are
going to show that these groups are poly-free leveraging a topological argument
involving certain spaces whose fundamental group is exactly Pn.
Let ιn : An → An+1 the morphism defined sending each generator σi (i = 1, . . . , n)
of An to the braid ςi obtained from a geometric representative of σi adding a
(n+ 1)th string unlinked from the previous (this operation is well-defined on the set
of braids). If we restrict to the pure braid group Pn the map ιn admits a section
fn : Pn → Pn−1 which sends a braid b to the braid b′ obtained deleting the last
string of b (note that such map is well-defined since we are working with pure
braids whose strings does not permute their endings). Thinking in terms of braids
it is readily checked that fn+1 ◦ ιn = IdPn , which in particular implies that ιn is
injective and fn is surjective for all n ≥ 2. The subgroups we are interested in to
build a poly-free series for Pn are the kernels of the family of maps fk

Uk := Ker(fk : Pk → Pk−1), k = 1, . . . , n.
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Theorem 1.5.2. For each n ≥ 2 the group Un is free on n− 1 generators.

Proof. The core idea of the proof is to build a topological space whose fundamental
group is Pn and apply the long exact sequence of homotopy groups induced by
a Serre fibration. The candidate for the space we need comes from looking at a
geometrical braid as the one in Figure 1.1: consider the projection of each string
on the plane with equation z = 0, their images already look like the collection of n
closed paths in R2 drawn in the same plane. The idea at the base of the following
definition is to realize the image of the projection of the n strings as a single closed
path in an appropriate space (rather than the union of n distinct closed path inside
the same plane). For n ≥ 2 we define the configuration space Cn as follows

Cn :=
{

(x1, . . . , xn) ∈
(
R2
)n ∣∣ xi 6= xj, ∀i 6= j ∈ { 1, . . . , n }

}
.

Notice that each coordinate of a point in Cn must be distinct from the others
(otherwise we would have Cn = R2n whose fundamental group is trivial): this
restriction we adopt in the definition is harmless to our purpose since by definition
a geometric braid excludes the possibility that two strings intersect each other in
one or more points. In this way we have a bijection between the set of braids on n
strings and the homotopy classes of closed paths in Cn. To any geometric braid b
we can associate a closed path p : [0, 1]→ Cn starting at the point ((1, 0), . . . , (n, 0))
and sending t ∈ [0, 1] to (p1(t), . . . , pn(t)) where pi(·) denotes the projection on the
first two coordinates of the ith string of b. Conversely, given a closed path p =
(p1(·), . . . , pn(·)) : [0, 1]→ Cn we associate to it the braid represented geometrically
by the union of the strings (pi(t), t) inside R3 for i = 1, . . . , n (notice that any pair
of these strings does not intersect inside R3 because of the condition we set in the
definition of configuration spaces). We also define Cm,n := Cn \ Qm where Qm is
any set of m points in Cn. Given these definitions the strategy is as follows.

• Prove that for n > r ≥ 1, the projection map

pn,r : Cm,n → Cm,r
(x1, . . . , xn) 7→ (x1, . . . , xr)

is a locally trivial fibration with fiber Cm+r,n−r. This is quite technical and is
proven in [12, Lemma 1.27 with M = R2].

• Prove that for any m ≥ 0, n ≥ 1, the group πi(Cm,n) is trivial for all i ≥ 2.
To achieve this it is enough to apply the long exact homotopy given by the
fibration pn,1 : Cm,n → Cm,1 = R2 \Qm with fiber Cm+1,n−1

. . .→ πi+1(R2 \Qm)→ πi+1(Cm+1,n−1)→ πi+1(Cm,n)→ πi(R2 \Qm)→ . . . .
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Since πi(R2 \Qm) is trivial for each i ≥ 2, we have

πi(Cm+1,n−1) ' πi(Cm,n), ∀i ≥ 2,

which means that

πi(Cm,n) ' πi(Cm+n−1,1) = πi(R2 \Qm+n−1) = { 1 } , ∀i ≥ 2.

• Finally, since R2 minus a finite set of points is connected, then π0(R2\Qm) has
only one element (although it is not canonically a group) and the homotopy
sequence induced by pn,1 is non-trivial only for i = 1

1→ π1(Cn−1,1)→ π1(C0,n)
p∗n,1−−→ π1(C0,n−1)→ 1.

By the bijection we constructed between homotopy classes of closed paths in
C0,n and pure braids we can actually replace π1(C0,n) and π1(C0,n−1) with Pn
and Pn−1 respectively and obtain

1→ π1(Cn−1,1)→ Pn
fn−→ Pn−1 → 1.

This means that Un = Ker(fn : Pn → Pn−1) = π1(Cn−1,1) is free, since Cn−1,1

is R2 minus n−1 points, whose fundamental group is free on n−1 generators.

�

Corollary 1.5.3. For each n ≥ 2 the group Pn is strongly poly-free and it admits
a poly-fg-free series

{ 1 } = U (0)
n / U (1)

n / . . . / U (n−1)
n = Pn

where U
(i)
n

U
(i−1)
n

is free of rank n− i for each i = 1, . . . , n− 1.

Proof. Choose U
(0)
n = { 1 } and for each i = 1, . . . , n− 1 set

U (i)
n := Ker(fn−i+1 ◦ . . . ◦ fn : Pn → Pn−i).

Thinking in terms of braids we see that the elements of U
(i)
n

U
(i−1)
n

are precisely those

which get sent to the identity by the map fn−i+1, therefore

U
(i)
n

U
(i−1)
n

' Ker(fn−i+1 : Pn−i+1 → Pn−i) ' Fn−i

and the statement follows. �
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Obviously this proof of the poly-freeness of pure braid groups heavily relies
on their connection with topological objects which allows to leverage a number of
powerful tools. However, for general Artin groups such a proof cannot be carried
out. Motivated by the result of [2, Theorem 3.17] (2017) where Blasco-Garćıa,
Mart́ınez-Pérez and Paris prove using an exclusively algebraic method that even
Artin groups of FC type3 are poly-free, the aim of this thesis is to find new results
about the poly-freeness of Artin groups using only algebraic tools.

3An Artin group of type Γ is even if all the edges of Γ are labelled with even integers. Such
Artin group is said to be of FC type if each tringular subgraph of Γ has at least two edges labelled
with ‘2’.



Chapter 2

Finite type Artin groups

This section is devoted to classify which finite type Artin groups are poly-free
and which are not. Since poly-freeness is preserved by subgroups and direct
products (see Lemma 1.3.3 and Lemma 1.3.6) the study of poly-freeness for Artin
groups of finite type can be reduced to the study of poly-freeness of the irreducible
Artin groups inside this family. Recall that the irreducible Artin groups of finite
type are those built starting from Coxeter graphs listed in Table 1.1 and that we
denote them by the calligraphic version of the same letter used for the graph (e.g.,
An := A(Ȧn), I2(n) := A(İ2(n)), etc...). Also, when we are working on Artin
groups with at most four generators we will denote them by the letters a, b, c, d
rather than a1, a2, a3, a4 and when we are dealing with multiple Artin groups at
the same time we will use the symbols αi’s, βi’s and δi’s instead of ai’s to avoid
confusion (as shown in Table 1.1).

2.1 Known obstructions

Mulholland and Rolfsen in [16, Theorem 1.1] show that the following groups are
not locally indicable

An (n ≥ 4), Bn (n ≥ 5), Dn (n ≥ 5), En (n = 6, 7, 8), Hn (n = 3, 4).

By Lemma 1.3.8 they cannot be poly-free. We will show that all the remaining
irreducible Artin groups of finite type, i.e.

I2(m) (m ≥ 3), A3, B3, B4, D4, F4,

are poly-free up to the possible exception of F4 which remains undetermined at
the moment. Moreover, we will construct an explicit poly-fg-free series for each of
them (and in the case of I2(m) and B3 it will also be a strongly poly-fg-free series).

33
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2.2 Dihedral Artin groups

Set m ≥ 3, we will prove that dihedral Artin groups

I2(m) := A
(

m

a b

)
= 〈a, b | Π(a, b;m) = Π(b, a;m)〉

are poly-fg-free and their poly-fg-free length is 2, hence they are strongly poly-fg-
free. In order to obtain this result we will consider the morphism χm := χİ2(m)

defined in Lemma 1.4.9 and show that I2(m) ∼= Km o Z where Km := Ker(χm) is
a free group of finite rank, so

{ 1 } / Km / I2(m)

is a poly-fg-free series for I2(m) of length 2.

2.2.1 Preliminaries

In this section we establish some key lemmata that hold both for odd and even
dihedral Artin groups.

Lemma 2.2.1. Let χm as above and set Km := Kerχm, then

I2(m) ∼= Km o Z.

Proof. Im(χm) = Z is free, hence the short exact sequence of groups

1→ Km ↪→ I2(m)
χm
� Z→ 1

splits since freeness returns a section of the map χm. By Proposition 1.2.9 this is
equivalent to say that I2(m) ∼= Km o Z. �

We want to find a generating set for Km. Observe that the character χm
coincides with the group homomorphism ε : I2(m) → Z defined by sending an
element g of I2(m) to the integer number

∑
i γi where γi are the exponents of the

letters a, b in a word representing g.

Lemma 2.2.2. The subgroup Km of I2(m) is generated by the set { kbi | i ∈ Z }
where k := ab−1.

Proof. Let g ∈ I2(m), then g can be represented by a word in a, b belonging to one
of these two cases:

(i) g = aα1bβ1aα2bβ2 . . . aαtbβt with αi, βi ∈ Z \ { 0 } and βt possibly 0,
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(ii) g = bβ1aα1bβ2aα2 . . . bβtaαt with αi, βi ∈ Z \ { 0 } and αt possibly 0.

Without loss of generality we can suppose to be in case (ii), indeed suppose the word
representing g is of type aα1bβ1aα2bβ2 . . . aαtbβt , then we can replace the leading
letter a with

a =

{
Π(b, a;m) Π(a−1, b−1;m− 1), m odd,

Π(b, a;m) Π(b−1, a−1;m− 1), m even,

falling back in case (ii). For the sake of convenience define

δl :=
l∑

i=1

αi + βi, ∀l = 1, . . . , t,

∆i :=


kb
−β1 . . . kb

−δ1+1
, αi > 0,

1 αi = 0,

(k−1)b
−β1+1

. . . (k−1)b
−δ1 , αi < 0.

We claim that any non-trivial element g = bβ1aα1bβ2aα2 . . . bβtaαt of I2(m) can be
written as

g = ∆1 · . . . ·∆tb
δt .

We proceed by induction on t. If t = 1 we distinguish three cases.

• If α1 > 0, then

g = bβ1aα1 = bβ1
(
ab−1b

)α1 = bβ1 (kb)α1

=
[
kb
−β1 bβ1+1 (kb)α1−1

]
=
[
kb
−β1 . . . kb

−δ1+1
]
bδ1 = ∆1b

δ1 .

• If α1 = 0, then
g = bβ1 = bδ1 = ∆1b

δ1 .

• If α1 < 0, set γ1 := −α1, then

g = bβ1aα1 = bβ1
(
ab−1b

)α1 = bβ1 (kb)−γ1 = bβ1
(
b−1k−1

)γ1

=
[
(k−1)b

−β1+1

bβ1−1
(
b−1k−1

)γ1−1
]

=
[
(k−1)b

−β1+1

. . . (k−1)b
−δ1
]
bδ1

= ∆1b
δ1 .

In any case the base step is verified.
Now suppose the statement true for t− 1 (t ≥ 2) and consider an element

g = bβ1aα1bβ2aα2 . . . bβtaαt = ∆1 . . .∆t−1b
δt−1 · bβtaαt = ∆1 . . .∆t−1b

δt−1+βtaαt .
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Applying the same procedure as we did in the base step to the term bδt−1+βtaαt we
obtain

bδt−1+βtaαt = ∆tb
δt−1+βt+αt = ∆tb

δt

and the claim is proven.
If we restrict to consider g = bβ1aα1bβ2aα2 . . . bβtaαt ∈ Km this amounts to say that
δt =

∑t
i=1 (αi + βi) = χm(g) = 0 and the statement follows. �

Notice that the map χm : I2(m) → Z ↪→ R can be regarded as an element of
Hom(I2(m),R) and it determines two different equivalence classes [χm], [−χm] ∈
S(I2(m)). With this in mind we now show that Km is finitely generated, while in
Propositions 2.2.11 and 2.2.14 we will show some finite generating sets explicitly.

Lemma 2.2.3. Km is finitely generated.

Proof. Theorem 1.2.24 states that Km is finitely generated if and only if

{ [χm], [−χm] } ∈ Σ1(I2(m)).

To achieve this we use Theorem 1.2.25. The defining relation of I2(m) can be
rewritten to form the cyclically reduced word

r := Π(a, b;m) Π(b, a;m)−1

that we use to construct the sequences ηi = χm(ri) and µi = −χm(ri) for 1 ≤ i ≤
2m, where ri denotes the word given by the first i letters of r. Explicitly we have

η1 = χm(a) = 1,

...

ηm = χm(Π(a, b;m)) = m,

ηm+1 = χm(Π(a, b;m)ξ−1) = m− 1,

...

η2m = χm(Π(a, b;m) Π(b, a;m)−1) = 0

and

µ1 = −χm(a) = −1,

...

µm = −χm(Π(a, b;m)) = −m,
µm+1 = −χm(Π(a, b;m)ξ−1) = −m+ 1,

...
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µ2m = −χm(Π(a, b;m) Π(b, a;m)−1) = 0,

where ξ is either b if m is odd or a if m is even. Both sequences assume their
minimum only once, therefore [χm], [−χm] ∈ Σ1(I2(m)) by the theorem cited above.
We conclude that Km is finitely generated. �

The goal of the next two sections is to prove that Km is actually a free group of
rank m− 1. In order to obtain such result we need to work directly on the relator
defining I2(m), hence the necessity to distinguish between the cases when m is
even and m is odd.

2.2.2 Odd dihedral Artin groups

In this section let m = 2n+ 1 (n ≥ 1). Although not necessary before moving to
the main result we compute the character sphere of I2(m).

I2(m)ab =
I2(m)

I ′2(m)
= 〈a, b | Π(a, b; 2n+ 1) = Π(b, a; 2n+ 1), ab = ba〉

=
〈
a, b

∣∣ an+1bn = anbn+1, ab = ba
〉

= 〈a, b | a = b〉
= 〈a | ∅〉
' Z.

It follows that the torsion free rank of I2(m)ab is 1 and by [20, Lemma A1.1] it is
the dimension of Hom(I2(2n+1),R) as a real vector space. Therefore the character
sphere S(I2(m)) is homeomorphic to S0, i.e. it consists of two points, namely the
equivalence classes [χm], [−χm]. Taking into account the proof for Lemma 2.2.3 we
have

Σ1(I2(2n+ 1)) = { [χ2n+1], [−χ2n+1] } = S(I2(2n+ 1)).

Remark 2.2.4. In the odd case the character sphere S(I2(2n + 1)) could also
be determined by observing that a generic character θ : I2(m) → R sending the
generator a to α ∈ R and the generator b to β ∈ R must preserve the defining
relation of I2(m), hence

θ(Π(a, b; 2n+ 1)) = θ(Π(b, a; 2n+ 1)),

(n+ 1)α + nβ = (n+ 1)β + nα,

α = β.

This means that θ is a real multiple of the character χ2n+1 defined above and
S(I2(2n+ 1)) contains exactly two equivalence classes.

Now let us resume our main goal.
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First examples: I2(3) and I2(5)

To achieve that
I2(3) = 〈a, b | aba = bab〉 (2.1)

is poly-free we work towards proving that K3 is free. Clearly k := ab−1 belongs
to K3 and since K3 is normal in I2(3) we have Kb

3 = K3. In order to find a finite
generating set for K3 we study the action of conjugation by b on the element k.

Proposition 2.2.5. K3 is generated by the set { k, kb }, where k := ab−1 and a, b
are as in Equation (2.1).

Proof. By Lemma 2.2.2 we know that { kbi | i ∈ Z } is a set of generators for
K3. Actually this set is much bigger than what is needed to generate K3. Set
ki := kb

i
, i ∈ Z. We show by induction that for i ≤ −1 and i ≥ 2 each ki can be

expressed as a product of k0 = k and k1 = kb. The base step for induction is as
follows.

k1 = kb = b−1ab−1b = b−1a, (2.2)

k2 = kb
2

= b−2ab = b−1
(
b−1ab

)
= b−1

(
aba−1

)
=
(
b−1a

)
(ba−1) = kbk−1, (2.3)

k−1 = kb
−1

= (bab−1)b−1 = a−1bab−1 = (kb)−1k.

For i ≥ 0 suppose the claim true for i, i.e. ki = Wi(k0, k1) a word involving only
k0 and k1, then ki+1 = kbi = Wi(k

b
0, k

b
1) = Wi(k1, k1k

−1
0 ) and the statement follows

for i ≥ 0. Analogously the case i ≤ −1 can be checked. This implies that K3 is
generated by the set { k, kb } and it is the normal closure of { k } inside I2(3). �

Proposition 2.2.6. K3 is free of rank 2.

Proof. The calculation carried out in the previous proof suggests that K3 may be
realized as the semidirect product of an infinite cyclic group 〈t〉 acting on a free group
of rank 2, F2 = F ({ k0, k1 }). We now prove this intuition. From now until the end of
this proof k0 and k1 will be regarded as abstract generators of F2. Eventually we will
show an isomorphism connecting k0, k1 ∈ F2 to k0 = ab−1, k1 = b−1a ∈ I2(3) which
justifies the abuse of notation. Start defining a homomorphism ϕ : 〈t〉 → Aut(F2)
by setting

ϕ(t) := ϕt : F2 → F2,

k0 7→ k1,

k1 7→ k1k
−1
0

as suggested by Equations (2.2) and (2.3) (here we want the action of t to mimic
the action of conjugation through b). Clearly ϕt is a group homomorphism as it is
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defined on the generators of a free group, moreover it is invertible having as inverse
the map

ϕt−1 : F2 → F2,

k0 7→ k−1
1 k0,

k1 7→ k0.

Since we want ϕ to be an homomorphism we must set

ϕ(tk) :=


ϕkt , k > 0,

IdF2 , k = 0,

ϕ−kt−1 , k < 0

and we can build the semidirect product H3 := F2 oϕ 〈t〉. As it is clear from the
construction the action of 〈t〉 on F2 is uniquely determined by the action of the
generating element t, therefore (taking into account Proposition 1.2.7, case 3) we
have the presentation

H3 =
〈
t, k0, k1

∣∣ kt0 = k1, k
t
1 = kt0k

−1
0

〉
.

Applying a sequence of Tietze transformations (see Theorem 1.2.5) we can rewrite
such presentation in the following way

H3 =
〈
t, k0, k1

∣∣∣ k1 = kt0, k
t2

0 = kt0k
−1
0

〉
substitute k1,

=
〈
s, t, k0

∣∣∣ s = k0t, k
t2

0 = kt0k
−1
0

〉
remove k1, add s = k0t,

=
〈
s, t, k0

∣∣∣ k0 = st−1,
(
st−1

)t2
=
(
st−1

)t (
st−1

)−1
〉

solve for k0, substitute,

=
〈
s, t

∣∣∣ (st−1
)t2

=
(
st−1

)t (
st−1

)−1
〉

remove k0,

= 〈s, t | sts = tst〉 simplify and rearrange.

This means that H3
∼= I2(3) through the isomorphism sending s 7→ a and t 7→ b.

Such isomorphism maps the free group generated by { k0, k1 } inside H3 to the
subgroup of I2(3) generated by { ab−1, b−1a } = { k, kb } which is K3, as shown in
Proposition 2.2.5. Therefore K3 is a free group of rank 2. �

Theorem 2.2.7. I2(3) is strongly poly-fg-free with a strongly poly-fg-free series of
length 2 and free factors given by

1 / K3 / I2(3),

K3 ' F2,
I2(3)

K3

' Z.
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Proof. Follows immediately from Lemma 2.2.1 and Proposition 2.2.6. �

Before generalizing to arbitrary odd dihedral Artin groups (where computations
become messy) let us try to apply the same procedure to the group

I2(5) = 〈a, b | ababa = babab〉 (2.4)

to check that the result obtained with m = 3 is not just a lucky case. As before, we
want to show that the kernel K5 of χ5 is a free group. Although the technique we
use is essentially the same as before, the “bigger” defining relation ababa = babab
requires to proceed in a more systematic way.

Proposition 2.2.8. K5 is generated by the set { k, kb, kb2 , kb3 }, where k := ab−1

and a, b are as in Equation (2.4).

Proof. By Lemma 2.2.2 we know that { kbi | i ∈ Z } is a set of generators for K5.
Set ki := kb

i
, i ∈ Z. In order to reduce this set we exchange the generators { a, b } of

I2(5) with a new generating set { k0, b } rewriting the only relation in the following
way

ababa = babab,

a
(
b−1b

)
ba
(
b−1b

)
ba
(
b−1b

)
= ba

(
b−1b

)
ba
(
b−1b

)
b,(

ab−1
)
b2
(
ab−1

)
b2
(
ab−1

)
b = b

(
ab−1

)
b2
(
ab−1

)
b2,

k0b
2k0b

2k0b = bk0b
2k0b

2.

In turn this relation can be manipulated to obtain new ones expressing k−1 and k4

in terms of k, kb, kb
2

and kb
3
.

b−2k0b
2k0b

2k0b = b−1k0b
2k0b

2, multiply by b−2 on the left,

kb
2

0 = kb0k
b−1

0

(
k−1

0

)b−2

k−1
0 , solve for kb

2

0 ,

kb
4

0 = kb
3

0 k
b
0k
−1
0

(
kb

2

0

)−1

, conjugate by b2, (2.5)

k0 =
(
kb

2

0

)−1 (
kb

4

0

)−1

kb
3

0 k
b
0, solve for k0,

kb
−1

0 =
(
kb0
)−1
(
kb

3

0

)−1

kb
2

0 k0, conjugate by b−1. (2.6)

Arguing by induction as we did in Proposition 2.2.5 using Equations (2.5) and (2.6)
as base step we conclude that for i ≤ −1 and i ≥ 4 each ki can be expressed in
terms of k0, k1, k2 and k3, therefore { k, kb, kb2 , kb3 } is a generating set for K5. �

Proposition 2.2.9. K5 is free of rank 4.
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Proof. As we did for the group I2(3) let us define an action of the infinite cyclic
group 〈t〉 on F4 = F ({ k0, k1, k2, k3 }) mimicking the action by conjugation through
b on k inside I2(5). Again, by abuse of notation, we will regard k0, . . . , k3 as
abstract generators of F4 and eventually we will connect them to the elements
k0 = ab−1, . . . , k3 = b−3ab2 ∈ I2(5). Let ϕt : F4 → F4 the homomorphism defined
setting

ϕt(k0) = k1, ϕt(k1) = k2, ϕt(k2) = k3, ϕt(k3) = kt
3

0 k
t
0k
−1
0

(
kt

2

0

)−1

,

as suggested by Equation (2.5). Such homomorphism is an automorphism having
as inverse the homomorphism ϕt−1 given by

ϕt−1(k0) =
(
kt0
)−1
(
kt

3

0

)−1

kt
2

0 k0, ϕt−1(k1) = k0, ϕt−1(k2) = k1, ϕt−1(k3) = k2.

As we did in the proof of Proposition 2.2.6 we consider the homomorphism

ϕ : 〈t〉 → Aut(F4)

tk 7→ (ϕt)
k, k ≥ 0,

tk 7→ (ϕt−1)−k, k < 0,

and we can define the semidirect product H5 := K5 oϕ 〈t〉 which has a presentation

H5 =
〈
t, k0, k1, k2, k3

∣∣ kt0 = k1, k
t
1 = k2, k

t
2 = k3, k

t
3 = k3k1k

−1
0 k−1

2

〉
.

Applying a sequence of Tietze transformations we can rewrite such presentation in
the following way

H5 =
〈
t, k0, k1, k2, k3

∣∣∣ ki = kt
i

0 (i = 1, 2, 3), kt3 = k3k1k
−1
0 k−1

2

〉
=
〈
s, t, k0

∣∣∣ s = k0t, k
t3

0 = kt
4

0 k
t
0k
−1
0

(
k−1

0

)t2〉
=

〈
s, t, k0

∣∣∣∣ k0 = st−1,
(
st−1

)t4
=
(
st−1

)t3 (
st−1

)t (
st−1

)−1
((
st−1

)t2)−1
〉

=
〈
s, t
∣∣∣ (st−1

)t4
=
(
st−1

)t3 (
st−1

)t (
st−1

)−1 (
ts−1

)t2〉
=
〈
s, t

∣∣ t−4st−1t4 = t−3st−1t3t−1st−1tts−1t−2ts−1t2
〉

= 〈s, t | ststs = tstst〉 .

Notice that the elements s, t in the last presentation satisfy exactly the same
relations as the generators { a, b } in the standard presentation of I2(5), so that the
groups I2(5) and H5 are isomorphic through the map sending s 7→ a and t 7→ b.
Therefore

t 7→ b, k0 7→ ab−1, k1 7→
(
ab−1

)b
, k2 7→

(
ab−1

)b2
, k3 7→

(
ab−1

)b3
.
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is an isomorphism that maps the free group generated by { k0, k1, k2, k3 } inside H5

to the subgroup of I2(5) generated by{
ab−1, b−1a, b−2ab, b−3ab2

}
=
{
k, kb, kb

2

, kb
3
}

which is K5, as shown in Proposition (2.2.8). We conclude that K5 is a free group
of rank 4. �

Theorem 2.2.10. I2(5) is strongly poly-fg-free with a strongly poly-fg-free series
of length 2 and free factors given by

1 / K5 / I2(5),

K5 ' F4,
I2(5)

K5

∼= Z.

Proof. Follows immediately from Lemma 2.2.1 and Proposition 2.2.9. �

The general case

Following the same process as in the previous examples we are able to prove that
odd dihedral Artin groups are strongly poly-fg-free with spflfg(I2(m)) = 2. In
Lemma 2.2.3 we showed that Km is finitely generated for any integer m ≥ 3 and
now we give an explicit finite set of generators for Km when m is odd.

Proposition 2.2.11. K2n+1 is generated by the set { k, kb, . . . , kb2n−1 }.

Proof. By Lemma 2.2.2 we know that { kbi | i ∈ Z } is a set of generators for K2n+1.
Set ki := kb

i
, i ∈ Z. In order to further reduce this set we exchange the generators

{ a, b } of I2(2n+ 1) with the generating set { k0, b } rewriting the only relation in
the following way.

Π(a, b; 2n+ 1) = Π(b, a; 2n+ 1), defining relation of I2(2n+ 1),

Π(a, b−1, b, b; 4n+ 3) = Π(b, a, b−1, b; 4n+ 1), insert b−1b after each a,

Π(k0, b, b; 3n+ 2) = Π(b, k0, b; 3n+ 1), substitute k0 = ab−1,

b−2 Π(k0, b, b; 3n+ 2) = b−2 Π(b, k0, b; 3n+ 1), multiply on the left by b−2,

kb
2

0 Π(k0, b, b; 3n− 1) = b−1 Π(k0, b, b; 3n), rearrange LHS, simplify RHS.

Now solve for kb
2

0 and further manipulate the right hand side to obtain a new
relation involving only b and the conjugate of k0 through positive powers of b

kb
2

0 = b−1 Π(k0, b, b; 3n− 1) Π(k−1
0 , b−1, b−1; 3n− 2),

kb
2

0 = kb0 Π(b, k0, b; 3n− 3) Π(k−1
0 , b−1, b−1; 3n− 2),
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kb
2

0 = kb0k
b−1

0 b Π(b, b, k0; 3n− 5) Π(k−1
0 , b−1, b−1; 3n− 2),

kb
2

0 = kb0k
b−1

0 kb
−3

0 b3 Π(b, b, k0; 3n− 8) Π(k−1
0 , b−1, b−1; 3n− 2),

kb
2

0 = kb0k
b−1

0 kb
−3

0 . . . kb
3−2n

0 b−3+2nb Π(k−1
0 , b−1, b−1; 3n− 2),

kb
2

0 = kb0k
b−1

0 kb
−3

0 . . . kb
3−2n

0 b−2+2n Π(k−1
0 , b−1, b−1; 3n− 2),

kb
2

0 = kb0k
b−1

0 kb
−3

0 . . . kb
3−2n

0

(
k−1

0

)b2−2n

b2n−2 Π(b−1, b−1, k−1
0 ; 3n− 3),

kb
2

0 = kb0k
b−1

0 kb
−3

0 . . . kb
3−2n

0

(
k−1

0

)b2−2n (
k−1

0

)b4−2n

b2n−4 Π(b−1, b−1, k−1
0 ; 3n− 6),

kb
2

0 = kb0k
b−1

0 kb
−3

0 . . . kb
3−2n

0

(
k−1

0

)b2−2n (
k−1

0

)b4−2n

. . .
(
k−1

0

)b−2 (
k−1

0

)b0
,

kb
2

0 =
n−1∏
i=0

kb
1−2i

0 ·
n−1∏
i=0

(
k−1

0

)b2−2n+2i

and conjugating by b2n−2 both sides we obtain

kb
2n

0 =
n−1∏
i=0

kb
2n−1−2i

0 ·
n−1∏
i=0

(
k−1

0

)b2i
.

The last equality together with Lemma 2.2.2 implies that { k0, k
b
0, . . . , k

b2n−1

0 } is a
generating set for K2n+1. �

Proposition 2.2.12. K2n+1 is free of rank 2n.

Proof. Let the infinite cyclic group 〈t〉 act on F2n mimicking the action by con-
jugation of b on k0 inside I2(2n + 1). Let ϕt : F2n → F2n be the homomorphism
defined by setting

ϕt(k0) = k1, ϕt(k1) = k2, . . . , ϕt(k2n−2) = k2n−1,

ϕt(k2n−1) =
n−1∏
i=0

kt
2n−1−2i

0 ·
n−1∏
i=0

(
k−1

0

)t2i
.

Such homomorphism is an automorphism having as inverse ϕt−1 given by

ϕt−1(k0) =
n−1∏
i=0

(
k−1

0

)2i+1 ·
n−1∏
i=0

kt
2n−2−2i

0 ,

ϕt−1(k1) = k0, ϕt−1(k2) = k1, . . . , ϕt−1(k2n−1) = k2n−2

and we obtain a homomorphism ϕ : 〈t〉 → Aut(F2n) by setting ϕ(t−1) := ϕt−1 ,
ϕ(tk) := ϕkt for k ≥ 0 and ϕ(tk) := ϕ−kt−1 for k < 0. Hence we can define the
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semidirect product H2n+1 := F2n oϕ 〈t〉 which has a presentation

H2n+1 =

〈
t, k0, . . . , k2n−1

∣∣∣∣∣∣∣
ki = kti−1, (i = 1, . . . , 2n− 1),

kt2n−1 =
i=n−1∏
i=0

kt
2n−1−2i

0 ·
i=n−1∏
i=0

(
k−1

0

)t2i
〉
.

Applying a sequence of Tietze transformations we can rewrite such presentation in
the following way

H2n+1 =

〈
t, k0, . . . , k2n−1

∣∣∣∣∣∣∣∣
ki = kt

i

0 , (i = 1, . . . , 2n− 1),

kt
2n

0 =
n−1∏
i=0

kt
2n−1−2i

0 ·
n−1∏
i=0

(
k−1

0

)t2i
〉

=

〈
s, t, k0

∣∣∣∣∣ s = k0t, k
t2n

0 =
n−1∏
i=0

kt
2n−1−2i

0 ·
n−1∏
i=0

(
k−1

0

)t2i〉

=

〈
s, t, k0

∣∣∣∣∣ k0 = st−1,
(
st−1

)t2n
=

n−1∏
i=0

(
st−1

)t2n−1−2i

·
n−1∏
i=0

(
ts−1

)t2i〉

=

〈
s, t

∣∣∣∣∣ (st−1
)t2n

=
n−1∏
i=0

(
st−1

)t2n−1−2i

·
n−1∏
i=0

(
ts−1

)t2i〉

=

〈
s, t

∣∣∣∣∣∣ t−2nst−1t2n = t−2n+1 st . . . st︸ ︷︷ ︸
2n−2 letters

s · ts−1 t−1s−1 . . . t−1s−1︸ ︷︷ ︸
2n−2 letters

t2n−2

〉

=

〈
s, t

∣∣∣∣∣∣ st = tst . . . stst︸ ︷︷ ︸
2n+1 letters

s−1t−1s−1 . . . t−1s−1︸ ︷︷ ︸
2n−1 letters

〉
= 〈s, t | Π(s, t; 2n+ 1) = Π(t, s; 2n+ 1)〉 .

The elements s, t in the last presentation satify exactly the same relations as the
generators a, b in the standard presentation of I2(2n + 1), this means that the
groups I2(2n+ 1) and H2n+1 are isomorphic through the map sending s 7→ a and
t 7→ b. Therefore

t 7→ b, k0 7→ ab−1, k1 7→
(
ab−1

)b
, . . . , k2n−1 7→

(
ab−1

)b2n−1

.

is an isomorphism that maps the free group generated by { k0, . . . , k2n−1 } inside
H2n+1 to the subgroup of I2(2n+ 1) generated by{

ab−1, . . . , b−2n+1ab2n−2
}

=
{
k, . . . , kb

2n−1
}

which is K2n+1, as shown in Proposition (2.2.11). We conclude that K2n+1 is a free
group of rank 2n. �
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2.2.3 Even dihedral Artin groups

In this section let m := 2n (n ≥ 2). As we did at the beginning of the previous
section we compute the character sphere of I2(2n).

I2(m)ab =
I2(m)

I2(m)′
=
〈
a, b

∣∣ (ab)2n = (ba)2n, ab = ba
〉

= 〈a, b | anbn = anbn, ab = ba〉
= 〈a, b | ab = ba〉
' Z× Z.

It follows that the torsion free rank of I2(2n)ab is 2 and by [20, Lemma A1.1]
it is also the dimension of Hom(I2(2n),R) as a real vector space. Therefore the
character sphere S(I2(2n)) is homeomorphic to S1. Taking into account the proof
for Lemma 2.2.3 we have

{ [χ2n], [−χ2n] } ⊆ Σ1(I2(2n)) ⊆ S(I2(2n)).

Remark 2.2.13. In the even case the character sphere S(I2(2n)) can be determined
by observing that a generic character θ : I2(2n) → R sending the generator a to
α ∈ R and the generator b to β ∈ R must preserve only the defining relation of
I2(2n), hence

θ((ab)2n) = θ((ba)2n) =⇒ nα + nβ = nβ + nα =⇒ 0 = 0.

This means that Hom(I2(2n),R) is a 2 dimensional real vector space with basis{
θ1 :

a 7→ 1
b 7→ 0

, θ2 :
a 7→ 0
b 7→ 1

}
.

Now let us resume our main goal moving directly to the general case. The
strategy to achieve poly-freeness of even dihedral Artin groups will be the same
as in the odd case (i.e., proving that K2n is free), however computations has to
be redone because the change of the parity of the lengths of LHS and RHS in the
defining relator of I2(2n) leads to slightly different results.

The general case

We remind that in Lemma 2.2.3 we showed that Km is finitely generated for any
integer m ≥ 3 and now we give an explicit finite set of generators for Km when m
is even.

Proposition 2.2.14. K2n is generated by the set { k, kb, . . . , kb2n−2 }.
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Proof. By Lemma 2.2.2 we know that { kbi | i ∈ Z } is a set of generators for K2n.
Set ki := kb

i
, i ∈ Z. Start exchanging the generators a, b of I2(2n) with the

generating set { k0, b } rewriting the only relation in the following way

Π(a, b; 2n) = Π(b, a; 2n), defining relation of I2(2n),

Π(a, b−1, b, b; 4n) = Π(b, a, b−1, b; 4n), insert b−1b after each a,

Π(k0, b, b; 3n) = Π(b, k0, b; 3n), substitute k0 = ab−1,

b−2 Π(k0, b, b; 3n) = b−2 Π(b, k0, b; 3n), multiply on the left by b−2,

kb
2

0 Π(k0, b, b; 3n− 3) = b−1 Π(k0, b, b; 3n− 1), rearrange LHS, simplify RHS.

Now solve for kb
2

0 and further manipulate the right hand side to obtain a new
relation involving only b and the conjugate of k0 through positive powers of b

kb
2

0 = b−1 Π(k0, b, b; 3n− 2) Π(b−1, k−1
0 , b−1; 3n− 4),

kb
2

0 = kb0 Π(b, k0, b; 3n− 4) Π(b−1, k−1
0 , b−1; 3n− 4),

kb
2

0 = kb0k
b−1

0 b Π(b, b, k0; 3n− 6) Π(b−1, k−1
0 , b−1; 3n− 4),

kb
2

0 = kb0k
b−1

0 kb
−3

0 b3 Π(b, b, k0; 3n− 9) Π(b−1, k−1
0 , b−1; 3n− 4),

kb
2

0 = kb0k
b−1

0 kb
−3

0 . . . kb
3−2n

0 b2n−3 Π(b−1, k−1
0 , b−1; 3n− 4),

kb
2

0 = kb0k
b−1

0 kb
−3

0 . . . kb
3−2n

0 b2n−4 Π(k−1
0 , b−1, b−1; 3n− 5),

kb
2

0 = kb0k
b−1

0 kb
−3

0 . . . kb
3−2n

0

(
k−1

0

)b4−2n

b2n−6 Π(k−1
0 , b−1, b−1; 3n− 8),

kb
2

0 = kb0k
b−1

0 kb
−3

0 . . . kb
3−2n

0

(
k−1

0

)b4−2n (
k−1

0

)b6−2n

. . .
(
k−1

0

)b−2 (
k−1

0

)b0
,

kb
2

0 =
n−1∏
i=0

kb
1−2i

0 ·
n−2∏
i=0

(k−1
0 )b

4−2n+2i

and conjugating both sides by b2n−3 we obtain

kb
2n−1

0 =
n−1∏
i=0

kb
2n−2−2i

0 ·
n−2∏
i=0

(
k−1

0

)b2i+1

.

The last equality together with Lemma 2.2.2 implies that { k0, k
b
0, . . . , k

b2n−2

0 } is a
generating set for K2n. �

Proposition 2.2.15. K2n is free of rank 2n− 1.

Proof. Let the infinite cyclic group 〈t〉 act on F2n−1 mimicking the action by
conjugation of b on k0 inside I2(2n). Let ϕt : F2n−1 → F2n−1 be the homomorphism
defined by setting

ϕt(k0) = k1, ϕt(k1) = k2, . . . , ϕt(k2n−3) = k2n−2,
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ϕt(k2n−2) =
n−1∏
i=0

kt
2n−2−2i

0 ·
n−2∏
i=0

(
k−1

0

)t2i+1

.

Such homomorphism is an automorphism having as inverse ϕt−1 given by

ϕt−1(k0) =
n−2∏
i=0

(
k−1

0

)t2i+1

·
n−1∏
i=0

kt
2n−2−2i

0 ,

ϕt−1(k1) = k0, ϕt−1(k2) = k1, . . . , ϕt−1(k2n−1) = k2n−2

and we obtain a homomorphism ϕ : 〈t〉 → Aut(F2n−1) by setting ϕ(t−1) := ϕt−1 ,
ϕ(tk) := ϕkt for k ≥ 0 and ϕ(tk) := ϕ−kt−1 for k < 0. Hence we can define the
semidirect product H2n := F2n−1 oϕ 〈t〉 which has a presentation

H2n =

〈
t, k0, . . . , k2n−2

∣∣∣∣∣∣∣
ki = kti−1, (i = 1, . . . , 2n− 2),

kt2n−2 =
n−1∏
i=0

kt
2n−2−2i

0 ·
n−2∏
i=0

(
k−1

0

)t2i+1

〉
Applying a sequence of Tietze transformations we can rewrite such presentation in
the following way

H2n =

〈
t, k0, . . . , k2n−2

∣∣∣∣∣∣∣∣
ki = kt

i

0 , (i = 1, . . . , 2n− 2),

kt
2n−1

0 =
n−1∏
i=0

kt
2n−2−2i

0 ·
n−2∏
i=0

(
k−1

0

)t2i+1

〉
=

〈
s, t, k0

∣∣∣∣∣ s = k0t, k
t2n−1

0 =
n−1∏
i=0

kt
2n−2−2i

0 ·
n−2∏
i=0

(
k−1

0

)t2i+1

〉

=

〈
s, t, k0

∣∣∣∣∣ k0 = st−1,
(
st−1

)t2n−1

=
n−1∏
i=0

(
st−1

)t2n−2−2i

·
n−2∏
i=0

(
ts−1

)t2i+1

〉

=

〈
s, t

∣∣∣∣∣ (st−1
)t2n−1

=
n−1∏
i=0

(
st−1

)t2n−2−2i

·
n−2∏
i=0

(
ts−1

)t2i+1

〉

=

〈
s, t

∣∣∣∣∣∣ t−2n+1st−1t2n−1 = t−2n+2 st . . . st︸ ︷︷ ︸
2n−2 letters

st−1 · s−1 t−1s−1 . . . t−1s−1︸ ︷︷ ︸
2n−4 letters

t2n−3

〉

=

〈
s, t

∣∣∣∣∣∣ st = tst . . . sts︸ ︷︷ ︸
2n letters

t−1s−1 . . . t−1s−1︸ ︷︷ ︸
2n−2 letters

〉
=
〈
s, t

∣∣ (st)2n = (ts)2n
〉
.
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The elements s, t in the last presentation satisfy exactly the same relations as
the generators a, b in the standard presentation of I2(2n), this means that the
groups I2(2n) and H2n are isomorphic through the map sending s 7→ a and t 7→ b.
Therefore

t 7→ b, k0 7→ ab−1, k1 7→
(
ab−1

)b
, . . . , k2n−2 7→

(
ab−1

)b2n−2

.

is an isomorphism that maps the free group generated by { k0, . . . , k2n−2 } inside
H2n to the subgroup of I2(2n) generated by{

ab−1, . . . , b−2n−2ab2n−3
}

=
{
k, . . . , kb

2n−2
}

which is K2n, as shown in Proposition 2.2.14. We conclude that K2n is a free group
of rank 2n− 1. �

Finally, we can gather the results from the previous sections in the following
theorem.

Theorem 2.2.16. For each m ≥ 3, I2(m) is strongly poly-fg-free with a strongly
poly-fg-free series of length 2 and free factors given by

1 / Km / I2(m),

Km ' Fm−1,
I2(m)

Km

' Z.

Proof. Follows immediately from Lemma 2.2.1, Proposition 2.2.12 and Proposition
2.2.15. �

2.3 Other finite type Artin groups

2.3.1 Artin group A3

While we cannot immediately apply the same approach used to prove poly-freeness
of dihedral Artin groups (essentially because we suspect that the poly-free length
of A3 is greater than 2), it is enough to analyse the quotient of

A3 = A
(

a b c

)
= 〈a, b, c | aba = bab, bcb = cbc, ac = ca〉

by its commutator subgroup before applying the same kind of machinery we used in
Section 2.2. We will obtain a poly-fg-free serie for A3 of length 3. In [16, Theorem
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3.6] a description of the commutator subgroup A′3 is given in terms of generators
and relations as follows1

A′3 =

〈
p0, p1, q0, q1

∣∣∣∣∣∣ q
p−1

0
0 = q1, q

p−1
0

1 = q2
1q
−1
0 q1,

q
p−1

1
0 = q−1

0 q1, q
p−1

1
1 =

(
q−1

0 q1

)3
q−2

0 q1

〉
,

where p0, p1, q0, q1 are given with respect to the generators a, b, c of A3 by

p0 = ba−1, p1 = aba−2, q0 = ca−1, q1 = ba−1ca−1.

Let us start evaluating the abelianization of A3

A3

A′3
= 〈a, b, c | aba = bab, bcb = cbc, ac = ca, ab = ba, bc = cb〉

= 〈a, b, c | a = b = c〉
= 〈a | ∅〉
' Z.

Looking at the defining relations of A′3 it seems possible that it may have the
structure of a semidirect product of two free groups of rank 2, namely we want
to show that the presentation of A′3 is actually a presentation for the semidirect
product given by F ({ p0, p1 }) acting on F ({ q0, q1 }). From now on p0, p1 and q0, q1

will denote abstract letters and we will justify the abuse of notation later on by
identifying them with the corresponding elements inside A′3.
Set A = F ({ p0, p1 }) and B = F ({ q0, q1 }), in order to build a semidirect product
we need to provide a morphism ϕ : A → Aut(B); for i = 1, 2 we will denote
by ϕpi the image of pi under ϕ (i.e., the action of pi on B). Since A is a free
group we only need to provide the values of ϕ on its generators and since ϕ takes
values in the automorphism group of a free group this amounts to say that ϕ is
uniquely determined once we provide the values of the action of p0, p1 on q0, q1 (or
equivalently the values of the action of the inverses of p0 and p1). Looking at the
defining relations of A′3 we are led to set

ϕp−1
0

(q0) := q1, (2.7)

ϕp−1
0

(q1) := q2
1q
−1
0 q1, (2.8)

ϕp−1
1

(q0) := q−1
0 q1, (2.9)

ϕp−1
1

(q1) :=
(
q−1

0 q1

)3
q−2

0 q1. (2.10)

1The approach of the authors consists in the application of the Reidemeister-Schreier rewriting
procedure (that we present in Section 3.1) followed by a non-trivial change of generators.
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It remains to check that ϕp−1
0

and ϕp−1
1

are actually automorphisms of B. To do that

let us show that the actions given by Equations (2.7) - (2.8) and Equations (2.9) -
(2.10) have inverses (which will be the actions of the related pi on the generators
q0, q1 of B). From (2.7) it follows immediately that it must be

ϕp0(q1) = q0. (2.11)

Moreover, with a bit of manipulations we obtain

ϕp−1
0

(q1) = q2
1q
−1
0 q1, Equation (2.8),

ϕp−2
0

(q0) =
(
ϕp−1

0
(q0)

)2

q−1
0 ϕp−1

0
(q0), substitute q1 from Equation (2.7),

ϕp0(q−1
0 ) = q−2

0 ϕp−1
0

(q0)q−1
0 , apply ϕp0 and retrieve ϕp0(q−1

0 ),

ϕp0(q0) = q0ϕp−1
0

(q−1
0 )q2

0, take inverses,

ϕp0(q0) = q0q
−1
1 q2

0, use Equation (2.8). (2.12)

Further, ϕp−1
1

(q0) = q−1
0 q1 implies ϕp1(q0) = ϕp1(q1)q−1

0 , so that

ϕp−1
1

(q1) =
(
q−1

0 q1

)3
q−2

0 q1, Equation (2.10),

q1 = q3
0ϕp1(q−2

0 )ϕp1(q1), substitute Equation (2.9) and apply ϕp1 ,

q1 = q3
0

(
ϕp1(q1)q−1

0

)−2
ϕp1(q1), use identity above,

q1 = q4
0ϕp1(q1)−1q0, simplify,

ϕp1(q1) = q0q
−1
1 q4

0, retrieve ϕp1(q1), (2.13)

and also
ϕp1(q0) = ϕp1(q1)q−1

0 = q0q
−1
1 q3

0. (2.14)

So far we have recovered the action of ϕpi (i = 0, 1) on q0, q1 applying only necessary
conditions in order for them to be the inverses of the corresponding ϕp−1

i
. Actually

these conditions are also sufficient as the following full computation shows.

q0

ϕp07−−→ q0q
−1
1 q2

0

ϕ
p−1
07−−−→ q1(q2

1q
−1
0 q1)−1q2

1 = q0,

q0

ϕ
p−1
07−−−→ q1

ϕp07−−→ q0,

q0

ϕp17−−→ q0q
−1
1 q3

0

ϕ
p−1
17−−−→ q−1

0 q1

[(
q−1

0 q1

)3
q−2

0 q1

]−1 (
q−1

0 q1

)3
= q0,

q0

ϕ
p−1
17−−−→ q−1

0 q1

ϕp17−−→
(
q0q
−1
1 q3

o

)−1
q0q1−1q4

0 = q0,

q1

ϕp07−−→ q0

ϕ
p−1
07−−−→ q1,

q1

ϕ
p−1
07−−−→ q2

1q
−1
0 q1

ϕp07−−→ q2
0

(
q0q
−1
1 q2

0

)−1
q0 = q1,

q1

ϕp17−−→ q0q
−1
1 q4

0

ϕ
p−1
17−−−→ q−1

0 q1

[(
q−1

0 q1

)3
q−2

0 q1

]−1 (
q−1

0 q1

)4
= q1,

q1

ϕ
p−1
17−−−→

(
q−1

0 q1

)3
q−2

0 q1

ϕp17−−→
[(
q0q
−1
1 q3

0

)−1
q0q
−1
i q4

0

]3 (
q0q
−1
1 q3

0

)−2
q0q
−1
1 q4

0 = q1.
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Therefore Equations (2.7) to (2.10) provide a unique homomorphism from A to
Aut (B), hence the above presentation of A′3 is actually the same of Aoϕ B. The
isomorphism linking these groups is the obvious one, i.e. the one identifying the
generators pi, qj (i, j = 0, 1) of A′3 to the generators of A and B (whence the
previous abuse of notation).

Theorem 2.3.1. A3 is poly-fg-free with a poly-fg-series of length 3 and free factors
given by

{ 1 } / 〈q0, q1〉 /A′3 /A3,

〈q0, q1〉 ' F2,
A′3
〈q0, q1〉

' F2,
A3

A′3
' Z.

Proof. The above discussion shows that A′3 ' F ({ q0, q1 }) oϕ F ({ p0, p1 }), hence
the subgroup generated by q0, q1 inside A′3 is free, normal and its quotient is
isomorphic to the group generated by p0, p1, which is free. �

2.3.2 Artin groups B3 and B4

Mulholland and Rolfsen in [16, Theorem 1.1] prove that the Artin groups of type
Ḃn are not locally indicable for n ≥ 5. As already stated at the beginning of this
chapter this result implies that they cannot be poly-free. In this section we will
prove that the Artin groups of this type for n = 3, 4 are poly-free.
Obtaining a strongly poly-free series for

B3 := A
(

4

a b c

)
=
〈
a, b, c

∣∣ aba = bab, (bc)2 = (cb)2, ac = ca
〉

is straightforward using [16, Theorem 3.9] which proves2 that its commutator
subgroup is a free group of rank 4 generated by

p0 = [a−1, b−1], p1 = [c, b][a−1, b−1],

p2 = [a, b][a−1, b−1], p3 = [ac, b][a−1, b−1].

Theorem 2.3.2. B3 is strongly poly-fg-free with a poly-fg-free series of length 3
and free factors given by

{ 1 } / B′3 / 〈〈B′3, b〉〉B3 / B3,

B′3 ' F4,
〈〈B′3, b〉〉B3

B′3
' Z,

B3

〈〈B′3, b〉〉B3

' Z.

2The approach of the authors consists in the application of the Reidemeister-Schreier rewriting
procedure (that we present in Section 3.1) followed by a non-trivial change of generators.
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Proof. Follows from the result of Mulholland and Rolfsen contained in [16, Theorem
3.9] and the fact that Bab

3 ' Z× Z under the isomorphism

ψ : Bab
3 → Z× Z,

aB′3 7→ (1Z, 0Z),

bB′3 7→ (1Z, 0Z),

cB′3 7→ (0Z, 1Z).

�

Although [16] also provides a presentation for B′4 we have not been able to use
that result to build a poly-free series for B4. Instead, for B4 we rely on the paper
[8] by Crisp and Paris where they show that Bn = Fn oAn−1 for all n ≥ 3, which
in turn means that poly-freeness of B4 follows from poly-freeness of A3 that we
achieved in Section 2.3.1. This result also allows to construct a poly-free series
for B3 of length 3 whose terms are not all normal in the whole group. Although
the central result in this section is due to Crisp and Paris we nevertheless give a
complete proof for it since the authors do not provide computations in their article.
To state the result of Crisp and Paris we need the following proposition due to
Artin (see [1]).

Proposition 2.3.3. Let Fn = F ({x1, . . . , xn }) be the free group on n generators,
then the map sending each generator αi (i = 1, . . . , n− 1) of An−1 to the element
ρi of Aut(Fn)

αi 7→ ρi :


xi 7→ xi+1,

xi+1 7→ x−1
i+1xixi+1,

xj 7→ xj, j 6= i, i+ 1,

, ∀i = 1, . . . , n− 1

extends (uniquely) to a well-defined homomorphism of groups ρ : An−1 → Aut(Fn).
Such map is called the Artin’s representation of braid groups.

Proof. First of all we retrieve the action of ρ on α−1
i :

ρ(α−1
i ) = ρ(αi)

−1 =


xi 7→ xixi+1x

−1
i ,

xi+1 7→ xi,

xj 7→ xj, j 6= i, i+ 1,

, ∀i = 1, . . . , n− 1.

By Proposition 1.2.6 the map ρ is well-defined if and only if it preserves all the
relators in the definition of An−1. Such presentation has exactly one relation for
each pair of distinct vertices αi, αj inside the graph Ȧn−1. If i, j are consecutive
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integers the relator is R
An−1

i,i+1 = αiαi+1αiα
−1
i+1α

−1
i α−1

i+1 and R
An−1

i,j = αiαjα
−1
j α−1

i

otherwise. In the former case for i = 1, . . . , n− 2 we have

ρ(R
An−1

i,i+1 ) = ρ(αiαi+1αiα
−1
i+1α

−1
i )◦


xi+1 7→ xi+1xi+2x

−1
i+1,

xi+2 7→ xi+1,

xj 7→ xj, j 6= i+ 1, i+ 2,

= ρ(αiαi+1αiα
−1
i+1)◦


xi 7→ xixi+1x

−1
i

xi+1 7→ xixi+2x
−1
i

xi+2 7→ xi,

xj 7→ xj, j 6= i, i+ 1, i+ 2,

= ρ(αiαi+1αi)◦


xi 7→ xixi+1xi+2x

−1
i+1x

−1
i

xi+1 7→ xixi+1x
−1
i

xi+2 7→ xi,

xj 7→ xj, j 6= i, i+ 1, i+ 2,

= ρ(αiαi+1)◦


xi 7→ xixi+1xi+2x

−1
i+1x

−1
i

xi+1 7→ xi

xi+2 7→ xi+1,

xj 7→ xj, j 6= i, i+ 1, i+ 2,

= ρ(αi)◦


xi 7→ xixi+1x

−1
i

xi+1 7→ xi

xi+2 7→ xi+2,

xj 7→ xj, j 6= i, i+ 1, i+ 2,

=


xi 7→ xi

xi+1 7→ xi+1

xi+2 7→ xi+2,

xj 7→ xj, j 6= i, i+ 1, i+ 2,

= IdFn .

Whereas the latter relators hold when |i− j| ≥ 2, in such case the sets of generators
of Fn on which ρ(αi) and ρ(αj) act non-trivially are disjoint, therefore ρ(αi) and
ρ(αj) commute and

ρ(R
An−1

i,j ) = ρ(αiαjα
−1
i α−1

j ) = IdFn .

Hence ρ is a well-defined homomorphism of groups. �
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Theorem 2.3.4 (Crisp and Paris, [8, Theorem 2.1]). For all n ≥ 3, let ρ : An−1 →
Aut(Fn) be the Artin’s representation of braid groups defined in Proposition 2.3.3,
then

Bn ' Fn oρ An−1.

Proof. To prove the statement Crisp and Paris explicitly construct an homomor-
phism from Bn to FnoρAn−1 and show that there exists an inverse homomorphism.
Let Fn = F ({x1, . . . , xn }) and ϕ : Bn → FnoρAn−1 be the homomorphism defined
on the generators β1, . . . , βn of Bn in the following way

ϕ :

{
βi 7→ αi, i = 1, . . . , n− 1,

βn 7→ xn.

According to Proposition 1.2.6 this mapping on the generators extends uniquely
to a homomorphism of groups if ϕ sends the relators of Bn to the identity of
Fn oρ An−1. For all i, j = 1, . . . , n− 1 with |i− j| ≥ 2 we have

ϕ(RBni,j ) = ϕ(βiβjβ
−1
i β−1

j ) = (1Fn , αiαjα
−1
i α−1

j ) = (1Fn , 1An−1),

ϕ(RBni,i+1) = ϕ(βiβi+1βiβ
−1
i+1β

−1
i β−1

i+1) = (1Fn , αiαi+1αiα
−1
i+1α

−1
i α−1

i+1) = (1Fn , 1An−1).

If j = n, for all i = 1, . . . , n− 2 we have

ϕ(RBni,n) = ϕ(βiβnβ
−1
i β−1

n )

= (1Fn , αi)(xn, 1An−1)(1Fn , αi)
−1(xn, 1An−1)−1

= (ρi(xn), αi)(ρ
−1
i (x−1

n ), α−1
i )

= (xn, αi)(x
−1
n , α−1

i )

= (xn ρi(x
−1
n ), 1An−1)

= (1Fn , 1An−1).

Finally, for i = n− 1 and j = n we have

ϕ(RBnn−1,n) = ϕ(βn−1βnβn−1βnβ
−1
n−1β

−1
n β−1

n−1β
−1
n )

= (1Fn , αn−1)(xn, 1An−1)(1Fn , αn−1)(xn, 1An−1) ·
· (1Fn , α−1

n−1)(x−1
n , 1An−1)(1Fn , α

−1
n−1)(x−1

n , 1An−1)

= (ρn−1(xn), αn−1)(ρn−1(xn), αn−1) ·
· (ρ−1

n−1(x−1
n ), α−1

n−1)(ρ−1
n−1(x−1

n ), α−1
n−1)

= (x−1
n xn−1xn, αn−1)(x−1

n xn−1xn, αn−1)(x−1
n−1, α

−1
n−1)(x−1

n−1, α
−1
n−1)

= (x−1
n xn−1xn ρn−1(x−1

n xn−1xn), α2
n−1)(x−1

n−1 ρ
−1
n−1(x−1

n−1), α−2
n−1)

= (x−1
n xn−1xn((x−1

n xn−1xn)−1xn(x−1
n xn−1xn)), α2

n−1) ·
· (x−1

n−1(xn−1x
−1
n x−1

n−1), α−2
n−1)
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= (xn−1xn, α
2
n−1)(x−1

n x−1
n−1, α

−2
n−1)

= (xn−1xn ρ
2
n−1(x−1

n x−1
n−1), 1An−1)

= (xn−1xn ρn−1(x−1
n x−1

n−1), 1An−1)

= (xn−1xn(x−1
n xn−1xn)−1x−1

n , 1An−1)

= (1Fn , 1An−1).

Therefore ϕ is an homomorphism of groups. We claim that the function

ψ : Fn oρ An−1 → Bn

defined on the generators of Fn oρ An−1 in the following way

ψ :

{
(1Fn , αi) 7→ βi, ∀i = 1, . . . , n− 1,

(xi, 1An) 7→ β−1
i . . . β−1

n−1βnβn−1 . . . βi, ∀i = 1, . . . , n,

is a homomorphism of groups. According to Proposition 1.2.7 a presentation for
the semidirect product Fn oρ An−1 is given by〈
αi, i = 1, . . . , n− 1,

xj, j = 1, . . . , n

∣∣∣∣∣ R
An−1

i,j = 1, ∀i, j = 1, . . . , n− 1, i 6= j,

αixjα
−1
i = ρi(xj), ∀i = 1, . . . , n− 1, ∀j = 1, . . . , n

〉
,

hence to check that ψ is a well-defined homomorphism of groups we have to check
that it sends all relators in the previous presentation to 1Bn . For relators of type
R
An−1

i,j the check is straightforward

ψ(R
An−1

i,j ) = βiβjβ
−1
i β−1

j = 1Bn , ∀i, j = 1, . . . , n− 1, |i− j| ≥ 2,

ψ(R
An−1

i,i+1 ) = βiβi+1βiβ
−1
i+1β

−1
i β−1

i+1 = 1Bn , ∀i = 1, . . . , n− 1.

For each i = 1, . . . , n− 1 and j = 1, . . . , n set Si,j := αixjα
−1
i ρi(xj)

−1, for relators
of this type we have a few cases to discuss.

• If i = j we have

ψ(Si,i) = ψ(αixiα
−1
i ρi(xi)

−1)

= βi (β−1
i . . . β−1

n−1βn . . . βi) β
−1
i (β−1

i+1 . . . β
−1
n−1βn . . . βi+1)−1

= 1Bn .

• If j = i+1 we proceed by induction to show that the elements of Bn represented
by the words Wi := ψ(Sn−i,n−i+1) are all trivial for all i = 1, . . . , n− 1. For
i = 1 we have

W1 = ψ(αn−1xnα
−1
n−1 ρn−1(xn)−1)
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= βn−1βnβ
−1
n−1 ψ(x−1

n xn−1xn)−1

= βn−1βnβ
−1
n−1 (β−1

n β−1
n−1βnβn−1βn)−1

= βn−1βn (β−1
n−1β

−1
n β−1

n−1β
−1
n ) βn−1βn

= βn−1βn (β−1
n β−1

n−1β
−1
n β−1

n−1) βn−1βn

= 1Bn .

Now suppose Wi = 1Bn (i ≥ 1), then

Wi+1 = ψ(αn−i−1 xn−i α
−1
n−i−1 ρn−i−1(xn−i)

−1)

= βn−i−1 (β−1
n−i . . . β

−1
n−1βn . . . βn−i) β

−1
n−i−1 (β−1

n−i . . . β
−1
n βn−1 . . . βn−i) ·

· (β−1
n−i−1 . . . β

−1
n βn−1 . . . βn−i−1) (β−1

n−i . . . β
−1
n−1βn . . . βn−i)

= βn−i−1 (β−1
n−i . . . β

−1
n−1βn . . . βn−i+1) β−1

n−i−1β
−1
n−iβn−i−1 ·

· (β−1
n−i+1 . . . β

−1
n βn−1 . . . βn−i+1) β−1

n−i−1β
−1
n−iβn−i−1 ·

· (β−1
n−i+1 . . . β

−1
n βn−1 . . . βn−i+1) β−1

n−i−1βn−iβn−i−1 ·
· (β−1

n−i+1 . . . β
−1
n−1βn . . . βn−i)

= βn−i−1β
−1
n−iβ

−1
n−i−1 (β−1

n−i+1 . . . β
−1
n−1βn . . . βn−i+1) β−1

n−i ·
· (β−1

n−i+1 . . . β
−1
n βn−1 . . . βn−i+1) ·

· (β−1
n−iβ

−1
n−i+1 . . . β

−1
n βn−1 . . . βn−i+1βn−i) ·

· (β−1
n−i+1 . . . β

−1
n−1βn . . . βn−i+1) βn−i−1βn−i

= β−1
n−iβ

−1
n−i−1βn−i (β−1

n−i+1 . . . β
−1
n−1βn . . . βn−i+1) β−1

n−i ·
· (β−1

n−i+1 . . . β
−1
n βn−1 . . . βn−i+1) ·

· (β−1
n−iβ

−1
n−i+1 . . . β

−1
n βn−1 . . . βn−i+1βn−i) ·

· (β−1
n−i+1 . . . β

−1
n−1βn . . . βn−i+1) βn−i−1βn−i

= W
βn−i−1βn−i
i

= 1Bn .

• If j 6= i, i + 1, recalling that βi and βj commute, if j > i + 1 we have
immediately

ψ(Si,j) = ψ(αixjα
−1
i ρi(xj)

−1)

= βi (β−1
j . . . β−1

n−1βn . . . βj) β
−1
i (β−1

j . . . β−1
n−1βn . . . βj)

−1

= βiβ
−1
i (β−1

j . . . β−1
n−1βn . . . βj) (β−1

j . . . β−1
n−1βn . . . βj)

−1

= 1Bn .

Otherwise, when j < i we have

ψ(Si,j) = ψ(αixjα
−1
i ρi(xj)

−1)



CHAPTER 2. FINITE TYPE ARTIN GROUPS 57

= βi (β−1
j . . . β−1

n−1βn . . . βj) β
−1
i (β−1

j . . . β−1
n−1βn . . . βj)

−1

= (β−1
j . . . β−1

i−2) βi (β−1
i−1β

−1
i β−1

i+1 . . . β
−1
n−1βn . . . βi+1βiβi−1) β−1

i ·
· (βi−2 . . . βj) (β−1

j . . . β−1
n βn−1 . . . βj)

= (β−1
j . . . β−1

i−2) βi (β−1
i−1β

−1
i β−1

i+1 . . . β
−1
n−1βn . . . βi+1) (βiβi−1β

−1
i ) ·

· (β−1
i−1β

−1
i . . . β−1

n βn−1 . . . βj)

= (β−1
j . . . β−1

i−2) βi (β−1
i−1β

−1
i β−1

i+1 . . . β
−1
n−1βn . . . βi+1) β−1

i−1 ·
· (β−1

i+1 . . . β
−1
n βn−1 . . . βj)

= (β−1
j . . . β−1

i−2) (βiβ
−1
i−1β

−1
i ) (β−1

i−1 βiβi−1 . . . βj)

= (β−1
j . . . β−1

i−2) (β−1
i−1β

−1
i βi−1) (β−1

i−1 βiβi−1 . . . βj)

= 1Bn ,

where in the third to last equality we used the fact that β−1
i−1 commutes with

each βl for all l ≥ i+ 1.

Hence ψ is a well-defined homomorphism of groups and it is trivial to verify on the
generators that ψ ◦ ϕ = IdBn and ϕ ◦ ψ = IdFnoAn−1 . The claim follows. �

Theorem 2.3.5. The group B3 admits a poly-fg-free series of length 3 as follows

1 / B(1)
3 / B(2)

3 / B3

where

B(1)
3 :=

〈
β−1

1 β−1
2 β3β2β1, β

−1
2 β3β2, β3

〉
, B(2)

3 :=
〈
B(1)

3 , β1β
−1
2 , β−1

2 β1

〉
,

and the free factors are

B(1)
3 ' F3,

B(2)
3

B(1)
3

' F2,
B3

B(2)
3

' Z.

Proof. Follows from the isomorphisms shown in Theorem 2.3.4 and Theorem 2.2.16
(since A2 = I2(3)). �

Theorem 2.3.6. The group B4 is poly-fg-free with a poly-fg-free series of length 4
given by

1 / B(1)
4 / B(2)

4 / B(3)
4 / B4,

where

B(1)
4 :=

〈
β−1

1 β−1
2 β−1

3 β4β3β2β1, β
−1
1 β−1

2 β3β2β1, β
−1
2 β3β2, β3

〉
,

B(2)
4 :=

〈
B(1)

4 , β3β
−1
1 , β2β

−1
1 β3β

−1
1

〉
,
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B(3)
4 :=

〈
B(2)

4 , β2β
−1
1 , β1β2β

−2
1

〉
and the free factors are

B(1)
4 ' F4,

B(2)
4

B(1)
4

' F2,
B(3)

4

B(2)
4

' F2,
B4

B(3)
4

' Z.

Proof. Follows from the isomorphisms shown in Theorem 2.3.4 and Theorem
2.3.1. �

2.3.3 Artin group D4

The approach we will adopt to build a poly-fg-free series of length 3 for D4 is to
use a result analogous to the one we used for B4, provided in the same article by
Crisp and Paris [8]. They show that Dn = Fn−1 o An−1 for all n ≥ 4, which in
turn means that poly-freeness of D4 follows from poly-freeness of A3. Also in this
case we provide complete computations for the result of Crisp and Paris which are
missing in their article. To state their result we need the following proposition.

Proposition 2.3.7. Let Fn−1 = F ({x1, . . . , xn−1 }) be the free group on n − 1
generators, then the map sending each generator αi (i = 1, . . . , n− 1) of An−1 to
the element ρi of Aut(Fn−1)

αi 7→ ρi :


xi 7→ xix

−1
i+1xi,

xi+1 7→ xi,

xj 7→ xj, j 6= i, i+ 1,

, ∀i = 1, . . . , n− 2,

αn−1 7→ ρn−1 :

{
xi 7→ x−1

n−1xi, i = 1, . . . , n− 2,

xn−1 7→ xn−1,

extends (uniquely) to a well-defined homomorphism3 of groups

ρ : An−1 → Aut(Fn−1).

Proof. Let us begin retrieving the action of ρ on α−1
i

ρ(α−1
i ) = ρ−1

i =


xi 7→ xi+1,

xi+1 7→ xi+1x
−1
i xi+1,

xj 7→ xj, j 6= i, i+ 1,

, ∀i = 1, . . . , n− 2,

3In the literature ρ is also referred as the “braid monodromy representation” since it has a
topological interpretation explained in [8, Section 2.3].
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ρ(α−1
n−1) = ρ−1

n−1 =

{
xi 7→ xn−1xi, i = 1, . . . , n− 2,

xn−1 7→ xn−1,

By Proposition 1.2.6 the map ρ is well-defined if and only if it preserves all the
relators in the definition of An−1. Such presentation has exactly one relation for
each pair of distinct vertices αi, αj inside the graph Ȧn−1. If i, j are consecutive

integers the relator is R
An−1

i,i+1 = αiαi+1αiα
−1
i+1α

−1
i α−1

i+1 and R
An−1

i,j = αiαjα
−1
j α−1

i

otherwise. To check the former relator we distinguish two cases.

• If i = 1, . . . , n− 3, then

ρ(R
An−1

i,i+1 ) = ρ(αiαi+1αiα
−1
i+1α

−1
i )◦


xi+1 7→ xi+2,

xi+2 7→ xi+2x
−1
i+1xi+2,

xj 7→ xj, j 6= i+ 1, i+ 2,

= ρ(αiαi+1αiα
−1
i+1)◦


xi 7→ xi+1,

xi+1 7→ xi+2,

xi+2 7→ xi+2x
−1
i+1xix

−1
i+1xi+2,

xj 7→ xj, j 6= i, i+ 1, i+ 2,

= ρ(αiαi+1αi)◦


xi 7→ xi+2,

xi+1 7→ xi+2x
−1
i+1xi+2,

xi+2 7→ xi+2x
−1
i+1xix

−1
i+1xi+2,

xj 7→ xj, j 6= i, i+ 1, i+ 2,

= ρ(αiαi+1)◦


xi 7→ xi+2,

xi+1 7→ xi+2x
−1
i xi+2,

xi+2 7→ xi+2x
−1
i+1xi+2,

xj 7→ xj, j 6= i, i+ 1, i+ 2,

= ρ(αi)◦


xi 7→ xi+1,

xi+1 7→ xi+1x
−1
i xi+1,

xi+2 7→ xi+2,

xj 7→ xj, j 6= i, i+ 1, i+ 2,

=


xi 7→ xi,

xi+1 7→ xi+1,

xi+2 7→ xi+2,

xj 7→ xj, j 6= i, i+ 1, i+ 2,

= IdFn−1 .
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• If i = n− 2, then

ρ(R
An−1

n−2,n−1) = ρ(αn−2αn−1αn−2α
−1
n−1α

−1
n−2)◦

{
xn−1 7→ xn−1,

xj 7→ xn−1xj, j 6= n− 1,

= ρ(αn−2αn−1αn−2α
−1
n−1)◦


xn−2 7→ xn−1x

−1
n−2xn−1xn−1,

xn−1 7→ xn−1x
−1
n−2xn−1,

xj 7→ xn−1x
−1
n−2xn−1xj,

j 6= n− 2, n− 1,

= ρ(αn−2αn−1αn−2)◦


xn−2 7→ xn−1x

−1
n−2xn−1,

xn−1 7→ xn−1x
−1
n−2,

xj 7→ xn−1x
−1
n−2xn−1xj,

j 6= n− 2, n− 1,

= ρ(αn−2αn−1)◦


xn−2 7→ xn−1,

xn−1 7→ xn−1x
−1
n−2,

xj 7→ xn−1xj,

j 6= n− 2, n− 1,

= ρ(αn−2)◦


xn−2 7→ xn−1,

xn−1 7→ xn−1x
−1
n−2xn−1,

xj 7→ xj, j 6= n− 2, n− 1,

=


xn−2 7→ xn−2,

xn−1 7→ xn−1,

xj 7→ xj, j 6= n− 2, n− 1,

= IdFn−1 .

Whereas the latter relators hold when |i− j| ≥ 2 and we have again two cases.

• If i, j 6= n − 1 the sets of generators of Fn−1 on which ρ(αi) and ρ(αj) act
non-trivially are disjoint, therefore ρ(αi) and ρ(αj) commute and we have

ρ(R
An−1

i,j ) = ρ(αiαjα
−1
i α−1

j ) = IdFn−1 .

• If either i or j is equal to n − 1, say j = n − 1, we still have to do a little
check

ρ(R
An−1

i,n−1) = ρ(αiαn−1α
−1
i )◦

{
xn−1 7→ xn−1,

xj 7→ xn−1xj, j 6= n− 1,
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= ρ(αiαn−1)◦


xi 7→ xn−1xi+1,

xi+1 7→ xn−1xi+1x
−1
i xi+1,

xn−1 7→ xn−1,

xj 7→ xn−1xj, j 6= i, i+ 1, n− 1,

= ρ(αi)◦


xi 7→ xi+1,

xi+1 7→ xi+1x
−1
i xi+1,

xn−1 7→ xn−1,

xj 7→ xj, j 6= i, i+ 1, n− 1,

= IdFn−1 .

We conclude that ρ is a well-defined homomorphism of groups. �

Theorem 2.3.8 (Crisp and Paris, [8, Theorem 2.3]). For all n ≥ 4, let ρ : An−1 →
Aut(Fn−1) be the representation described in Proposition 2.3.7, then

Dn ' Fn−1 oρ An−1.

Proof. Let Fn−1 = F ({x1, . . . , xn−1 }). To prove the theorem Crisp and Paris ex-
plicitly construct an isomorphism ϕ : Dn → Fn−1 oρAn−1 defined on the generators
δ1, . . . , δn of Dn in the following way

ϕ :

{
δi 7→ (1Fn−1 , αi), i = 1, . . . , n− 1,

δn 7→ (xn−1, αn−1).

According to Proposition 1.2.6 this mapping on the generators extends uniquely
to a homomorphism of groups if ϕ sends the relators of Dn to the identity of
Fn−1 oρAn−1. For all i = 1, . . . , n− 2 and j = 1, . . . , n− 1 with |i− j| ≥ 2 we have

ϕ(RDni,j ) = (1Fn−1 , αiαjα
−1
i α−1

j ) = (1Fn−1 , 1An−1),

ϕ(RDni,i+1) = (1Fn−1 , αiαi+1αiα
−1
i+1α

−1
i α−1

i+1) = (1Fn−1 , 1An−1).

Instead, when j = n, for all i = 1, . . . , n− 3, n− 1 we have

ϕ(RDni,n ) = ϕ(δiδnδ
−1
i δ−1

n ) = (1Fn−1 , αi)(xn−1, αn−1)(1Fn−1 , αi)
−1(xn−1, αn−1)−1

= (ρi(xn−1), αiαn−1)(ρ−1
i (x−1

n−1), α−1
i α−1

n−1)

= (xn−1, αiαn−1)(x−1
n−1, α

−1
i α−1

n−1)

= (xn−1 ρiρn−1(x−1
n−1), 1An−1)

= (1Fn−1 , 1An−1)
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and for i = n− 2 we have

ϕ(RDnn−2,n) = ϕ(δn−2δnδn−2δ
−1
n δ−1

n δ−1
n−2)

= (1Fn−1 , αn−2)(xn−1, αn−1)(1Fn−1 , αn−2) ·
· (xn−1, αn−1)−1(1Fn−1 , αn−2)−1(xn−1, αn−1)−1

= (ρn−2(xn−1), αn−2αn−1)(ρn−2(x−1
n−1), αn−2α

−1
n−1) ·

· (ρ−1
n−2(x−1

n−1), α−1
n−2α

−1
n−1)

= (xn−2, αn−2αn−1)(x−1
n−2, αn−2α

−1
n−1)(x−1

n−1xn−2x
−1
n−1, α

−1
n−2α

−1
n−1)

= (xn−2 ρn−2 ρn−1(x−1
n−2), αn−2αn−1αn−2α

−1
n−1) ·

· (x−1
n−1xn−2x

−1
n−1, α

−1
n−2α

−1
n−1)

= (xn−1 ρn−2ρn−1ρn−2ρ
−1
n−1(x−1

n−1xn−2x
−1
n−1), 1An−1)

= (1Fn−1 , 1An−1).

Therefore ϕ is an homomorphism of groups. Next, we claim that the function

ψ : Fn−1 oρ An−1 → Dn
defined on the generators of Fn−1 oρ An−1 in the following way

ψ :

{
(1Fn−1 , αi) 7→ δi, ∀i = 1, . . . , n− 1,

(xi, 1An−1) 7→ δiδi+1 . . . δn−2 (δnδ
−1
n−1) δ−1

n−2 . . . , δ
−1
i+1δ

−1
i , ∀i = 1, . . . , n− 1,

is a homomorphism of groups and is the inverse of ϕ. According to Proposition
1.2.7 a presentation for the semidirect product Fn−1 oρ An−1 is given by〈
αi, i = 1, . . . , n− 1,

xj, j = 1, . . . , n− 1

∣∣∣∣∣ R
An−1

i,j = 1, ∀i, j = 1, . . . , n− 1, i 6= j,

αixjα
−1
i = ρi(xj), ∀i = 1, . . . , n− 1, ∀j = 1, . . . , n

〉
,

hence to check that ψ is a well-defined homomorphism of groups we have to check
that it sends all relators in the previous presentation to 1Dn . For relators of type
R
An−1

i,j the check is straightforward

ψ(R
An−1

i,j ) = δiδjδ
−1
i δ−1

j = 1, ∀i, j = 1, . . . , n− 1, |i− j| ≥ 2,

ψ(R
An−1

i,i+1 ) = δiδi+1δiδ
−1
i+1δ

−1
i δ−1

i+1 = 1, ∀i = 1, . . . , n− 2.

For each i, j = 1, . . . , n− 1 set Si,j := αixjα
−1
i ρi(xj)

−1, for this type of relators we
have to make a few cases.

• If j = n− 1 and i = 1, . . . , n− 2, then

ψ(Si,n−1) =


δn−1 (δnδ

−1
n−1) δ−1

n−1 (δnδ
−1
n−1)−1 = 1Dn , i = n− 1,

δn−2 (δnδ
−1
n−1) δ−1

n−2 (δn−2δnδ
−1
n−1δ

−1
n−2)−1 = 1Dn , i = n− 2,

δi (δnδ
−1
n−1) δ−1

i (δnδ
−1
n−1)−1 = 1Dn , 1 ≤ i ≤ n− 3.
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• If j = 1, . . . , n− 2, then

– If i < j − 1, we have

ψ(αixjα
−1
i ρi(xj)

−1) = δiψ(xj)δ
−1
i ψ(xj)

−1 = 1Dn

since ψ(xj) is written using only δk (k ≥ j) and δi commutes with all of
them.

– If i = j − 1, we have

ψ(αj−1xjα
−1
j−1ρi(xj)

−1) = δj−1 (δj . . . δ
−1
j ) δ−1

j−1 (δj−1 . . . δ
−1
j−1)−1 = 1Dn .

– If i = j, we proceed by induction on Wi := ψ(Sn−i−1,n−i−1), i ≥ 1. In
the base case we have

W1 = ψ(αn−2xn−2α
−1
n−2ρn−2(xn−2)−1)

= δn−2 (δn−2δnδ
−1
n−1δ

−1
n−2) δ−1

n−2 ·
· (δn−2δnδ

−1
n−1δ

−1
n−2)−1 δnδ

−1
n−1 (δn−2δnδ

−1
n−1δ

−1
n−2)−1

= δ2
n−2δn (δ−1

n−1δ
−1
n−2δn−1) (δ−1

n δ−1
n−2δn) (δ−1

n−1δn−2δn−1) δ−1
n δ−1

n−2

= δ2
n−2δn (δn−2δ

−1
n−1δ

−1
n−2) (δn−2δ

−1
n δ−1

n−2) (δn−2δn−1δ
−1
n−2) δ−1

n δ−1
n−2

= δ2
n−2δnδn−2δ

−1
n−1δ

−1
n δn−1δ

−1
n−2δ

−1
n δ−1

n−2

= δ2
n−2δnδn−2δ

−1
n δ−1

n−2δ
−1
n δ−1

n−2

= δ2
n−2δ

−1
n−2δnδn−2δ

−1
n−2δ

−1
n δ−1

n−2

= 1Dn .

Now suppose the statement true for i− 1 (i ≥ 2), we have

Wi = ψ(αn−ixn−iα
−1
n−iρn−i(xn−i)

−1)

= ψ(αn−ixn−iα
−1
n−ix

−1
n−ixn−i+1x

−1
n−i)

= δn−i (δn−i . . . δ
−1
n−i) δ

−1
n−i (δn−i . . . δ

−1
n−i)

−1 ·
· (δn−1+1 . . . δ

−1
n−1+1) (δn−i . . . δ

−1
n−i)

−1

= δn−i (δn−i . . . δ
−1
n−i) δ

−1
n−iδn−iδn−i+1 (δn−i+2 . . . δ

−1
n−i+2)−1 ·

· δ−1
n−i+1δ

−1
n−iδn−i+1 (δn−i+2 . . . δ

−1
n−i+2) δ−1

n−i+1δn−iδn−i+1 ·
· (δn−i+2 . . . δ

−1
n−i+2)−1 δ−1

n−i+1δ
−1
n−i

= δn−iδn−i (δn−i+1 . . . δ
−1
n−i+1) δ−1

n−iδn−i+1 (δn−i+2 . . . δ
−1
n−i+2)−1 ·

· δn−iδ−1
n−i+1δ

−1
n−i (δn−i+2 . . . δ

−1
n−i+2) δn−iδn−i+1δ

−1
n−i ·

· (δn−i+2 . . . δ
−1
n−i+2)−1 δ−1

n−i+1δ
−1
n−i

= δn−iδn−i (δn−i+1 . . . δ
−1
n−i+1) δ−1

n−iδn−i+1δn−i (δn−i+2 . . . δ
−1
n−i+2)−1 ·

· δ−1
n−i+1δ

−1
n−iδn−i (δn−i+2 . . . δ

−1
n−i+2) δn−i+1 ·

· (δn−i+2 . . . δ
−1
n−i+2)−1 δ−1

n−iδ
−1
n−i+1δ

−1
n−i



CHAPTER 2. FINITE TYPE ARTIN GROUPS 64

= δn−iδn−i (δn−i+1 . . . δ
−1
n−i+1) δ−1

n−iδn−i+1δn−iδ
−1
n−i+1 ·

· (δn−i+1 . . . δ
−1
n−i+1)−1 (δn−i+2 . . . δ

−1
n−i+2) ·

· (δn−i+1 . . . δ
−1
n−i+1)−1 δ−1

n−iδ
−1
n−i+1

= δn−iδn−iδn−i+1 (δn−i+2 . . . δ
−1
n−i+2) δ−1

n−i+1δ
−1
n−iδn−i+1δn−iδ

−1
n−i+1 ·

· (δn−i+1 . . . δ
−1
n−i+1)−1 (δn−i+2 . . . δ

−1
n−i+2) ·

· (δn−i+1 . . . δ
−1
n−i+1)−1 δ−1

n−iδ
−1
n−i+1

= δn−iδn−iδn−i+1 (δn−i+2 . . . δ
−1
n−i+2) δn−iδ

−1
n−i+1δ

−1
n−iδn−iδ

−1
n−i+1 ·

· (δn−i+1 . . . δ
−1
n−i+1)−1 (δn−i+2 . . . δ

−1
n−i+2) ·

· (δn−i+1 . . . δ
−1
n−i+1)−1 δ−1

n−iδ
−1
n−i+1

= δn−iδn−iδn−i+1δn−i (δn−i+2 . . . δ
−1
n−i+2) δ−1

n−i+1δ
−1
n−i+1 ·

· (δn−i+1 . . . δ
−1
n−i+1)−1 (δn−i+2 . . . δ

−1
n−i+2) ·

· (δn−i+1 . . . δ
−1
n−i+1)−1 δ−1

n−iδ
−1
n−i+1

= δn−i+1δn−iδn−i+1 (δn−i+1 . . . δ
−1
n−i+1) δ−1

n−i+1 (δn−i+1 . . . δ
−1
n−i+1)−1 ·

· (δn−i+2 . . . δ
−1
n−i+2) (δn−i+1 . . . δ

−1
n−i+1)−1 δ−1

n−iδ
−1
n−i+1

= W
δ−1
n−iδ

−1
n−i+1

i−1

= 1Dn .

– If i = j + 1, we have

ψ(Si,i+1) = ψ(αj+1xjα
−1
j+1ρi(xj)

−1)

= δj+1 (δjδj+1 . . . δ
−1
j+1δ

−1
j ) δ−1

j+1 (δjδj+1 . . . δ
−1
j+1δ

−1
j )−1

= δj+1δjδj+1 (δj+2 . . . δ
−1
j+2) δ−1

j+1δ
−1
j δ−1

j+1 (δjδj+1 . . . δ
−1
j+1δ

−1
j )−1

= δjδj+1δj (δj+2 . . . δ
−1
j+2) δ−1

j δ−1
j+1δ

−1
j (δjδj+1 . . . δ

−1
j+1δ

−1
j )−1

= δjδj+1

[
δj (δj+2 . . . δ

−1
j+2) δ−1

j (δj+2 . . . δ
−1
j+2)−1

]
δ−1
j+1δ

−1
j

= ψ(αjxj+2α
−1
j ρi(xj)

−1)δ
−1
j+1δ

−1
j

= 1Dn

where in the last equality we used the first case i < j + 1.

– If i > j + 1, we have

ψ(Si,j) = ψ(αixjα
−1
i ρi(xj)

−1)

= δi (δj . . . δ
−1
j ) δ−1

i (δj . . . δ
−1
j )−1

= (δj . . . δi−2) δiδi−1δi (δi+1 . . . δ
−1
i+1) δ−1

i δ−1
i−1δ

−1
i ·

· (δ−1
i−2 . . . δ

−1
j ) (δj . . . δ

−1
j )−1
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= (δj . . . δi−2) δiδi−1δi (δi+1 . . . δ
−1
i+1) δ−1

i δ−1
i−1δ

−1
i ·

· (δi−1δi . . . δn−2(δnδ
−1
n−1)−1δ−1

n−2 . . . δj)

= (δj . . . δi−2) δiδi−1δi (δi+1 . . . δ
−1
i+1) δ−1

i−1δ
−1
i δ−1

i−1 ·
· (δi−1δi . . . δn−2(δnδ

−1
n−1)−1δ−1

n−2 . . . δ
−1
j )

= (δj . . . δi−2) (δiδi−1δiδ
−1
i−1δ

−1
i δ−1

i−1) (δ−1
i−2 . . . δ

−1
j )

= 1Dn .

Therefore ψ is a well-defined homomorphism of groups and its trivial to verify on
the generators that ψ ◦ ϕ = IdDn and ϕ ◦ ψ = IdFn−1oAn−1 . The claim follows. �

Theorem 2.3.9. The group D4 is poly-fg-free with a poly-fg-free series of length 4
given by

1 /D(1)
4 /D(2)

4 /D(3)
4 /D4,

where

D(1)
4 :=

〈
δ1δ2δ4δ

−1
3 δ−1

2 δ−1
1 , δ2δ4δ

−1
3 δ−1

2 , δ4δ
−1
3

〉
,

D(2)
4 :=

〈
D(1)

4 , δ3δ
−1
1 , δ2δ

−1
1 δ3δ

−1
1

〉
,

D(3)
4 :=

〈
D(2)

4 , δ2δ
−1
1 , δ1δ2δ

−2
1

〉
and the free factors are

D(1)
4 ' F3,

D(2)
4

D(1)
4

' F2,
D(3)

4

D(2)
4

' F2,
D4

D(3)
4

' Z.

Proof. Follows from the isomorphisms shown in Theorem 2.3.8 and Theorem
2.3.1. �

2.3.4 Artin group F4

As we have already stated in the introduction we have not been able to prove or

disprove that F4 := A( 4 ) is poly-free. Our approach mainly consisted in
projecting F4 over some smaller group G that we knew to be poly-free and try
to detect the isomorphisms type of the kernel in the hope of finding it out to be
poly-free (the main tool we employed for this step is the Reidemeister-Schreier
rewriting procedure explained in Section 3.1). Unfortunately we did not succeed,
mostly because we have not been able to simplify enough the presentations we
obtained for the kernels mentioned above. Observe, however, that if F4 is poly-free
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this approach must surely work for some group G (e.g., the last factor of its poly-
free series). More precisely the projections we took into account are the following
(well-defined) maps.

π1 : A
(

4

a b c d

)
→ A

(
a b

)
×A

(
c d

)
,

a 7→ (a, 1),

b 7→ (b, 1),

c 7→ (1, c),

d 7→ (1, d),

π2 : A
(

4

a b c d

)
→ A

(
a b

)
× Z,

a 7→ (a, 0Z),

b 7→ (b, 0Z)

c, d 7→ (1, 1Z),

π3 : A
(

4

a b c d

)
→ Z× Z,

a, b 7→ (1Z, 0Z),

c, d 7→ (0Z, 1Z),

π4 : A
(

4

a b c d

)
→ Z,

a, b, c, d 7→ 1Z.
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Summary

In Table 2.1 we provide a summary of the main results of this chapter.

Group Poly-fg-free Strongly poly-free Poly-free length

I2(m) (m ≥ 3) Yes Yes spflfg(I2(m)) = 2

A3 Yes ? pflfg(A3) ≤ 3

B3 Yes Yes spflfg(B3) = 3

B4 Yes ? pflfg(B4) ≤ 4

D4 Yes ? pflfg(D4) ≤ 4

F4 ? ? ?

Table 2.1: List of all poly-free irreducible Artin groups of finite type: all the other
irreducible Artin groups of finite type not listed in this table are not poly-free.



Chapter 3

Artin groups built on trees

In this chapter we show that Artin groups built on trees are strongly poly-fg-free
of length 2 and we use this result to prove that Artin groups built on forests are
also strongly poly-free. Finally, in the last section we describe another approach to
study poly-freeness of Artin groups which leverage the theory of Bass and Serre for
groups acting on trees.
To achieve the first result we will need to compute a presentation of certain
subgroups starting from the presentation of the whole Artin group. The main tool
to do this is the so called “Reidemeister-Schreier rewriting procedure” that we
describe in the next section.

3.1 Reidemeister-Schreier rewriting procedure

Definition 3.1.1. Let G be a group given by a presentation 〈X |R〉. Let H be a
subgroup of G and let K be a set of words in the alphabet X such that

i) ∅ ∈ K,

ii) the elements of G represented by words in K form a system of right coset
representatives for H,

iii) for each word w ∈ K each initial segment of w is also in K.

Then K is called a Schreier system for G modulo H.

Notation 3.1.2. Let K be a Schreier system for G modulo a subgroup H. Given a
word w in G we will denote with w the unique element of K such that Hw = Hw.

Theorem 3.1.3 (Reidemeister-Schreier rewriting procedure). Let G be a group
given by a presentation 〈X |R〉. Let H be a subgroup of G and let K be a Schreier
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CHAPTER 3. ARTIN GROUPS BUILT ON TREES 69

system for G modulo H. Then a presentation for H is given by

H '

〈
sK,aν ,

∀K ∈ K,
∀aν ∈ X ,

∣∣∣∣∣ sK,aν = 1, ∀K ∈ K, ∀aν ∈ X : Kaν ≡ Kaν ,

T
(
KRµK

−1
)

= 1, ∀K ∈ K, ∀Rµ ∈ R,

〉
where the generators sK,aν are defined with respect to the generators of G as

sK,aν = (Kaν)
(
Kaν

)−1
,

Kaν ≡ Kaν means that those two words are equivalent inside the free group F (X )
and T is the Reidemeister-Schreier rewriting function defined as follows

T : F (X )→ F ({ sK,aν }) ,
aεii1 . . . a

εm
im
7→ sε1Ki1 ,ai1

. . . sεmKim ,aim ,

with

Kij :=

a
εi
i1
. . . a

εj−1

ij−1
, if εj = 1,

aεii1 . . . a
εj
ij
, if εj = −1.

Proof. See [14, Theorem 2.9]. �

3.2 Artin groups built on trees

Definition 3.2.1. Let Γ be a graph. A vertex v of Γ is said to be a cut vertex if
the full subgraph of Γ spanned by the set of vertices V (Γ) \ { v } has more connected
components than Γ.

Theorem 3.2.2. Let Γ be a Coxeter graph. Suppose that Γ has a cut vertex a1.
Denote by Υt (t = 1, . . . , d) the connected components of the full subgraph of Γ
spanned by the set of vertices V (Γ) \ { a1 } and denote by Υt the full subgraph
of Γ spanned by the set of vertices V (Υt) ∪ { a1 }. Let A(Γ) be the Artin group
associated with Γ, then the kernel of the map χΓ defined in Lemma 1.4.9 admits a
decomposition as follows

Ker(χΓ) =
d∐
t=1

Ker(χΥt
).

Proof. Since χΓ is surjective, Z is isomorphic to the quotient of A(Γ) by the kernel
of χΓ. Clearly, the map sending any integer k to ak1 is a section for χΓ, hence the set
K = { ak1 | k ∈ Z } is a set of transversals for Ker(χΓ) and it satisfies all requests to
be a Schreier system for A(Γ) modulo Ker(χΓ). Applying the Reidemeister-Schreier
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rewriting procedure with Schreier system K as described in Theorem 3.1.3 we
obtain the following presentation

Ker(χΓ) =

〈
sak1 ,ai ,

∀k ∈ Z,
1 ≤ i ≤ n,

∣∣∣∣∣ sak1 ,ai = 1, ∀k ∈ Z, 1 ≤ i ≤ n : ak1ai ≡ ak1ai,

T
(
ak1Rea

−k
1

)
= 1, ∀k ∈ Z, ∀e ∈ E(Γ),

〉
(3.1)

where

sak1 ,ai = ak1ai

(
ak1ai

)−1

= ak1aia
−k−1
1 .

The following steps point towards simplifying such presentation. First observe that

ak1ai ≡ ak1ai = ak+1
1 ⇐⇒ i = 1,

hence
sak1 ,a1

= 1, ∀k ∈ Z (3.2)

and we can delete such generators from the above presentation.
Next, we want to write explicitly the relators of type T (ak1Rea

−k
1 ), where, for each

edge e of Γ with endings ai and aj, the relator Re has shape

Re = aiaj . . . ai︸ ︷︷ ︸
me letters

a−1
j a−1

i . . . a−1
j︸ ︷︷ ︸

me letters

or Re = aiaj . . . aj︸ ︷︷ ︸
me letters

a−1
i a−1

j . . . a−1
i︸ ︷︷ ︸

me letters

(3.3)

according to the parity of me. We remind that for each K ∈ K we have K = ak1 for
some integer k and we denote by Re,r (1 ≤ r ≤ 2me) the word given by the first r
letters of Re so we can compute the values of the Reidemeister-Schreier rewriting
function T on the word ak1Rea

−k
1 simply by applying its definition. In the following,

when the edge e is understood, we will always write m instead of me; e.g., Re,m

means Re,me . If Re is as the first expression of Equation (3.3) (i.e., if e has an odd
label) and k ≥ 0, then

T (ak1Rea
−k
1 ) = T (ak1 · aiaj . . . aia−1

j a−1
i . . . a−1

j · a−k1 )

=
(
s1,a1

sa1,a1 . . . sak−1
1 ,a1

)
·

· s
ak1 ,ai

s
ak1Re,1,aj

. . . s
ak1Re,m−1,ai

s−1

ak1Re,m+1,aj
s−1

ak1Re,m+2,ai
. . . s−1

ak1Re,2m,aj
·

·
(
s
ak1Rea

−1
1 ,a1

s
ak1Rea

−2
1 ,a1

. . . s
ak1Rea

−k
1 ,a1

)
=
(
s1,a1 sa1,a1 . . . sak−1

1 ,a1

)
·

· sak1 ,ai sak+1
1 ,aj

. . . sak+m−1
1 ,ai

s−1

ak+m−1
1 ,aj

s−1

ak+m−2
1 ,ai

. . . s−1
ak1 ,aj
·

·
(
sak−1

1 ,a1
sak−2

1 ,a1
. . . s1,a1

)
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= sak1 ,ai sak+1
1 ,aj

. . . sak+m−1
1 ,ai

s−1

ak+m−1
1 ,aj

s−1

ak+m−2
1 ,ai

. . . s−1
ak1 ,aj

,

where in the second to last equality we use the fact that

Re,t =

{
at−1

1 , 1 ≤ t ≤ me,

a2me−t
1 , me < t ≤ 2me.

For the sake of convenience in the following we will denote the word we obtained
above by Ski,j. If k < 0 then the computation does not change and we get again a
word of type Ski,j.
Instead, if Re is as the second expression of Equation (3.3) (i.e., if e has an even
label), with completely analogous computations for any integer k we obtain

T (ak1Rea
−k
1 ) = sak1 ,ai sak+1

1 ,aj
. . . sak+m−1

1 ,aj
s−1

ak+m−1
1 ,ai

s−1

ak+m−2
1 ,aj

. . . s−1
ak1 ,ai

=: T ki,j.

Recalling Equation (3.2), if we consider an edge e having a1 as one of its endings,
say ai = a1, according to the type of Re we obtain either

T (ak1Rea
−k
1 ) = sak+1

1 ,aj
sak+3

1 ,aj
. . . sak+m−2

1 ,aj
s−1

ak+m−1
1 ,aj

s−1

ak+m−3
1 ,aj

. . . s−1
ak1 ,aj

=: Uk
j

or

T (ak1Rea
−k
1 ) = sak+1

1 ,aj
sak+3

1 ,aj
. . . sak+m−1

1 ,aj
s−1

ak+m−2
1 ,aj

s−1

ak+m−4
1 ,aj

. . . s−1

ak+1
1 ,aj

=: V k
j .

Since such words are going to be relators for our presentation and since T ki,j and
V k
j are the inverses of Ski,j and Uk

j respectively, we will use only the latter to denote
the relation associated to an edge e of Γ. All the above implies that Presentation
(3.1) can be written more explicitly as follows

Ker(χΓ) =

〈
sak1 ,ai ,

∀k ∈ Z,
2 ≤ i ≤ n,

∣∣∣∣∣ Uk
i = 1, if { ai, a1 } ∈ E(Γ), ∀k ∈ Z,

Ski,j = 1, if { ai, aj } ∈ E(Γ), ∀k ∈ Z, i, j 6= 1

〉
.

(3.4)
Let X be the family of generators in the above presentation and notice that the
index i describing this family ranges from 2 up to n. Since i originally indexed the
set of vertices of Γ and each vertex different from a1 belongs exactly to one Υt for
t = 1, . . . , d, this allows to say that, if we set

Xt :=
{
sak1 ,ai

∣∣∣ ai ∈ V (Υt), i 6= 1
}
, ∀t = 1, . . . , d,

then

X =
d⊔
t=1

Xt. (3.5)
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Similarly, the set of relations R inside (3.4) can be written as the disjoint union

R =
d⊔
t=1

Rt (3.6)

where

Rt :=
{
Uk
i

∣∣ { ai, a1 } ∈ E(Υt), ∀k ∈ Z
}
∪

∪
{
Ski,j

∣∣ { ai, aj } ∈ E(Υt), ∀i, j 6= 1, ∀k ∈ Z
}
, ∀t = 1, . . . , d.

Moreover, each word in Rt is composed only of generators inside Xt since each
vertex of Γ except a1 is contained in exactly one subgraph Υt and the generators
of Ker(χΓ) of type sak1 ,a1

have been cancelled from Presentation (3.4). This allows
us to consider the abstract groups defined by 〈Xt |Rt〉 for t = 1, . . . , d. Each of
these groups contains the same generators and relators as those provided by the
Reidemeister-Schreier rewriting procedure applied to each subgraph Υt using the
Schreier system { ak1 | k ∈ Z } for A(Υt) modulo Ker(χΥt

), based at the copy of the

vertex a1 belonging to each Υt. This amounts to say that

Ker(χΥt
) = 〈Xt |Rt〉 , ∀t = 1, . . . , d.

Using Equations (3.5) and (3.6) we have

Ker(χΓ) = 〈X |R〉 =
〈
tdt=1Xt

∣∣tdt=1Rt

〉
=

d∐
t=1

Ker(χΥt
).

�

Remark 3.2.3. We observe that in the case of dihedral Artin groups I2(m) =

A( m ) the set of generators in the presentation of Ker
(
χI2(m)

)
we obtained in the

above proof is exactly the same as the one we studied in Section 2.2. Indeed, if we
set b := a1 and a := a2, then

Ker(χI2(m)) =
〈
sak1 ,a2

(k ∈ Z)
∣∣∣ Uk

2 = 1 (k ∈ Z)
〉
' F2m−1

where, by construction, the generators correspond to the elements

sak1 ,a2
= ak1a2a

−k−1
1 =

(
a2a

−1
1

)a−k1 = (ab−1)b
−k
,

i.e., sa0
1,a2

= a2a
−1
1 = ab−1 is precisely the element whose normal closure generates

the subgroup Ker
(
χI2(m)

)
in Proposition 2.2.11.
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Poly-freeness of Artin groups built on trees comes straight as a corollary of the
previous theorem.

Corollary 3.2.4. Let Γ be a Coxeter tree on n ≥ 2 vertices. Let A(Γ) be the
associated Artin group, then Ker(χΓ) is free of rank∑

e∈E(Γ)

(me − 1) ,

where me denotes the label associated to the edge e of Γ.

Proof. If n = 2 the group AΓ is a dihedral Artin group and the claim has already
been proved in Theorems 2.2.12 and 2.2.15.
For n ≥ 3 we proceed by induction on the number of vertices of Γ. Indeed, suppose
the statement true for trees built on less than n vertices and let Γ be a tree with n
vertices. Since n ≥ 3 and Γ is a tree there exists at least a vertex, say a1, that is a
cut vertex for Γ. Applying Theorem 3.2.2 using a1 as cut vertex we get

Ker(χΓ) =
d∐
t=1

Ker(χΥt
).

All subgraphs Υt (1 ≤ t ≤ d) have strictly less vertices than Γ and being subgraphs
of Γ they are trees as well. By the inductive hypothesis for each t = 1, . . . , d
Ker(χΥt

) is free of rank

rk
(
Ker(χΥt

)
)

=
∑

e∈E(Υt)

(me − 1).

Each edge of Γ belongs exactly to one of the connected components Υt and the
decomposition above gives us

rk (Ker(χΓ)) =
d∑
t=1

 ∑
e∈E(Υt)

(me − 1)

 =
∑
e∈E(Γ)

(me − 1) .

�

Corollary 3.2.5. Let Γ be a Coxeter tree, then A(Γ) is strongly poly-fg-free; more
precisely:

• If |V (Γ)| = 1, then A(Γ) ' Z is free, hence spflfg(A(Γ)) = 1 and a strongly
poly-fg-free series is trivially given by { 1 } /A(Γ). Notice that in this case
Ker(χΓ) = { 1 }.
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• If |V (Γ)| ≥ 2, a strongly poly-fg-free series for A(Γ) is given by

{ 1 } /Ker(χΓ) /A(Γ)

with free factors

Ker(χΓ) ' Fm,
A(Γ)

Ker(χΓ)
' F1,

where m :=
∑

e∈E(Γ)(me − 1) and spflfg(A(Γ)) = 2.

Proof. It follows straight from Corollary 3.2.4. �

Corollary 3.2.6. Let Γ be a Coxeter forest with connected components Γ1, . . . ,Γd,
then the Artin group A(Γ) is strongly poly-free with

spfl(A(Γ)) ≤ d+ 1.

Proof. We prove the claim by induction on the number of connected components
of Γ. If d = 1, then Γ = Γ1 is a tree and the associated Artin group is strongly
poly-free by Corollary 3.2.5 with spfl(A(Γ)) = 2.
Let the statement be true for forests with d − 1 connected components. Set
Λ := Γ1 t . . . t Γd−1, by the inductive hypothesis A(Λ) is strongly poly-free and
spfl(A(Λ)) ≤ d. Looking at the presentation of A(Γ) we have A(Γ) = A(Λ) ∗A(Γd)
and by Lemma 1.3.11 the claim follows. �

Under the hypothesis that Γodd is connected we can restate Theorem 3.2.2 and
Corollay 3.2.4 as follows.

Corollary 3.2.7. Let Γ be a Coxeter graph such that Γodd is connected. Suppose
Γ has a cut vertex a1. Denote by Υt (t = 1, . . . , d) the connected components of
the full subgraph of Γ spanned by the set of vertices V (Γ) \ { a1 } and denote by Υt

the subgraph of Γ obtained by re-adding a copy of the vertex a1 to the connected
component Υt. Let A(Γ) be the Artin group associated with Γ, then its commutator
subgroup admits a decomposition as follows

A′(Γ) =
d∐
t=1

A′(Υt).

Moreover, if Γ is a tree its commutator subgroup A′(Γ) is free of rank∑
e∈E(Γ)

(me − 1) .

Proof. It follows immediately from Theorem 3.2.2, Corollary 3.2.4 and Lemma
1.4.11. �
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Next we give a generalized version of Theorem 3.2.2 with a much abridged
proof. This is possible since the key steps that make the previous proof work are
much more combinatorial than it could seem from our exposition. We chose to
do so because the particularly easy shape of the Schreier system we had actually
allowed us to make explicit computations for all relators. However, if all what we
care about is just obtaining a decomposition for Ker(χΓ) we can argue in a much
more abstract way as follows.

Theorem 3.2.8. Let Γ be a Coxeter graph. Let Γ1 and Γ2 be full subgraphs of Γ
such that ∆ := Γ1 ∩ Γ2 is not empty and Γ = Γ1 ∪ Γ2, then

Ker (χΓ) = Ker (χΓ1) ∗Ker(χ∆) Ker (χΓ2) .

Proof. Since ∆ 6= ∅, it has at least one vertex, say a1. Let Λ be any full subgraph
of Γ such that a1 ∈ V (Λ). Choose K = { ak1 | k ∈ Z } as a Schreier system for
A(Λ) modulo Ker(χΛ). The Reidemeister-Schreier procedure described in Theorem
3.1.3 applied using the Schreier system K tells us that the kernel of χΛ admits a
presentation

Ker(χΛ) = 〈XΛ |RΛ〉 ,

where

XΛ :=
{
sΛ
ak1 ,ai

∣∣∣ ∀ai ∈ V (Λ)
}
,

RΛ :=

{
sΛ
ak1 ,ai

,

T
(
al1Rea

−l
1

)
,

∣∣∣∣∣ ∀k ∈ Z, ∀ai ∈ V (Λ) : ak1ai ≡ ak1ai,

∀l ∈ Z, ∀e ∈ E(Λ),

}
.

We are particularly interested in the cases when Λ = Γ, Γ1, Γ2, or ∆. Since
∆ = Γ1∩Γ2, ∆ is a full subgraph of Γ and Proposition 1.4.12 guarantees that A(∆)
injects into A(Γ), A(Γ1) and A(Γ2), therefore Ker(χ∆) injects inside Ker(χΓi) for
i = 1, 2 through the identity. Finally

Ker(χΓ) = 〈XΓ |RΓ〉

=
〈
XΓ1 tXΓ2

∣∣∣RΓ1 tRΓ2 t
{
sΓ1

ak1 ,ai
= sΓ2

ak1 ,ai
, ∀ai ∈ V (∆)

}〉
= 〈XΓ1 |RΓ〉 ∗〈X∆ |R∆〉 〈XΓ1 |RΓ〉
= Ker (χΓ1) ∗Ker(χ∆) Ker (χΓ2) .

�

Remark 3.2.9.

• The previous theorem generalises Theorem 3.2.2, indeed if a1 is a cut vertex
for Γ, then let Γ1 be one of the connected components (including a1) that
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arise when a1 is removed from Γ and let Γ2 be the union of the remaining
components (including a1 as well). Since ∆ = Γ1 ∩ Γ2 = { a1 }, A(∆) ' Z
and clearly Ker(χ∆) = { 1 } from Theorem 3.2.8 we have

Ker(χΓ) = Ker(χΓ1) ∗Ker(χΓ2)

and the statement of Theorem 3.2.2 follows from iterating such procedure on
Γ2. In particular, this means that all the computations done in the proof of
Theorem 3.2.2 are not strictly necessary to obtain the conclusion, however
they are interesting since they show that the rewriting function T can be
actually computed (thanks to the extremely easy shape of the words inside the
Schreier system we chose).

• The hypothesis ∆ 6= ∅ is required. Indeed, consider

Γ1 = 2

a b
, Γ2 = 2

c d
, a ∈ V (Γ1), c ∈ V (Γ2),

and let Γ = Γ1 t Γ2; then, by definition, A(Γ) = I2(2) ∗ I2(2). The element
ac−1 ∈ A(Γ) clearly belongs to Ker(χΓ). If it were true that such kernel admits
a decomposition as Ker(χΓ1) ∗ Ker(χΓ2), this would imply a ∈ Ker(χΓ1), a
contradiction.

3.3 Further developments

In the last part of this thesis we propose an approach to deal with the study of
Artin groups whose Coxeter graph may be “more connected” than a tree or a forest.
This approach requires the use of results from Bass-Serre theory that we briefly
recalled in Section 1.2.3.

Lemma 3.3.1. Let Γ be a Coxeter graph and Λ ⊆ Γ be a full subgraph. Denote
by NΛ (“neighbours” of Λ) the set of vertices of Γ \ Λ that are connected to
at least a vertex of Λ and denote by BΛ (“bridges” of Λ) the set of all edges
having exactly one of their endings in V (Λ) (and the other in NΛ). Suppose that
d := gcd {me | e ∈ BΛ } ≥ 2. Let Γ̂ be the labelled graph obtained by replacing all
vertices of Λ ⊆ Γ with a single vertex v̂ linked to all vertices in NΛ with edges
labelled with d. Then Γ̂ is a Coxeter graph and the map defined on the generators
of A(Γ) sending {

ai 7→ v̂, ai ∈ Λ,

ai 7→ ai, ai 6∈ Λ,

extends (uniquely) to a surjective homomorphism of groups ψΛ : A(Γ)→ A(Γ̂).
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Proof. The proof is just an application of Proposition 1.2.6. Let e ∈ E(Γ), if
e ∈ E(Λ), then

ψΛ(RΓ
e ) = v̂ . . . v̂︸ ︷︷ ︸

me letters

v̂−1 . . . v̂−1︸ ︷︷ ︸
me letters

= 1A(Γ̂).

If e ∈ BΛ, then me is a multiple of d, say me = kd (k ∈ N) and

ψΛ(RΓ
e ) = Π(v̂, ai;me) · Π(ai, v̂;me)

−1

=


Π(v̂, ai; d)k · Π(ai, v̂; d)−k, d even,

Π(v̂, ai; d) · Π(ai, v̂; d) . . .︸ ︷︷ ︸
k factors

· . . .Π(v̂, ai; d)−1 · Π(ai, v̂; d)−1︸ ︷︷ ︸
k factors

, d odd,

= 1A(Γ̂).

In the remaining case

ψΛ(RΓ
e ) = RΓ̂

e = 1A(Γ̂).

Therefore ψΛ is a well-defined homomorphism of groups. Clearly it is surjective. �

Definition 3.3.2. Let F = {Γ1, . . . ,Γk } be a finite family of Coxeter graphs and
let JF be a subset of P(tki=1V (Γi)) such that for each e ∈ JF we have e = { vi, vj }
where vi, vj are vertices belonging to distinct elements of F. We define the 2-join
jn2(F, JF) of F along JF as the Coxeter graph with

V (jn2(F, JF)) :=
k⊔
i=1

V (Γi), E (jn2(F, JF)) :=

(
k⊔
i=1

E(Γi)

)
t JF

where each edge in JF is labelled with ‘2’.

Remark 3.3.3. A 2-join jn2(F, JF) such that for each e = { vi, vj } ∈ JF we have
{ v′i, v′j } ∈ JF for all v′i in the same graph as vi and all v′j in the same graph as vj
coincides with the graph product1 of the Coxeter groups A(Γ1), . . . ,A(Γk).

Observe that each element of F is a full subgraph of jn2(F, JF) for any set JF
satisfying the conditions of previous definition.

Proposition 3.3.4. Let F be a finite family of Coxeter graphs, each of them
having at most two vertices. Let JF be any set satisfying the conditions described
in Definition 3.3.2 with respect to the family F and let Γ := jn2(F, JF). Suppose
that the hypotheses of Lemma 3.3.1 are satisfied for a fixed subgraph Λ ∈ F with
exactly two vertices u,w and let Γ̂ be the Coxeter graph obtained from Γ collapsing
Λ to a single vertex v̂ as described in Lemma 3.3.1, then the kernel of the map
ψΛ : A(Γ)→ A(Γ̂) is free.

1For the definition of the graph products of groups see [10].
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Proof. We proceed by induction on the number k of vertices of Θ := Γ \Λ that are
not connected to all vertices of Λ.
If k = 0, then each generator of A(Λ) commutes with each generator of A(Θ), this
means that A(Γ) = A(Λ)×A(Θ) and the map ψΛ factors as

ψΛ = χΛ × IdA(Θ) : A(Λ)×A(Θ)→ Z×A(Θ),

therefore Ker(ψΛ) = Ker(χΛ)×Ker(IdA(Θ)) ' Ker(χΛ) which is free by Corollary
3.2.4.
Now let k ≥ 1 and suppose the statement true for k − 1. There exists at least one
vertex v of Θ not linked to at least a vertex u of Λ and we proceed as follows: let
Γ1 be the full subgraph spanned inside Γ by the set of vertices V (Γ) \ {u } and let
Γ2 be the full subgraph spanned inside Γ by the set of vertices V (Γ) \ { v }. Set
∆ := Γ1∩Γ2, since Γ = Γ1∪Γ2 then A(Γ) = A(Γ1)∗A(∆)A(Γ2). Consider the Serre
tree Σ (described in Proposition 1.2.19) associated to this decomposition of A(Γ)
as a free product with amalgamation. Since Γ1 can be embedded in Γ̂ sending the
other vertex w of Λ to v̂ and each other vertex to its own copy, the restriction of
ψΛ to the subgroup A(Γ1) of A(Γ) is injective; therefore Ker(ψΛ) ∩ A(Γ1) = { 1 }
and since a kernel is a normal subgroup we have

Ker(ψ) ∩ A(Γ1)g = { 1 } , ∀g ∈ A(Γ). (3.7)

Since A(∆) is a subgroup of A(Γ1) we also have

Ker(ψ) ∩ A(∆)g = { 1 } , ∀g ∈ A(Γ). (3.8)

Recalling the action by left multiplication ofA(Γ) on its Serre tree Σ, Equations (3.7)
and (3.8) amount to say that under the induced action of Ker(ψe) the stabilisers of
the edges and the stabilisers of the vertices represented by the left cosets A(Γ)/A(Γ1)

are trivial. In the language of the Bass-Serre theorem this means that the graph of
groups associated to the action of K = Ker(ψe) on Σ has trivial edge groups Ke

for all e ∈ E(K \ Σ) and trivial vertex groups Kv for all v ∈ {Ox | x ∈ A(Γ)/A(Γ1) }
(where Ox denotes the orbit of a coset x under the action of K). In particular, the
first relation in Equation (1.1) becomes trivial, so that

Ker(ψ) '
〈
Stab(Ox) (x ∈ A(Γ)/A(Γ2)), te (e ∈ E+(K \\Σ) \ E(T ))

∣∣ ∅〉 , (3.9)

where T is a maximal subtree of the quotint graph K \\Σ (see Lemma 1.2.15) and
E+(K \\Σ) the choice of an orientation for K \\Σ. Since Γ2 contains Λ and Γ2 \ Λ
has exactly k − 1 vertices not linked to all vertices of Λ, the inductive hypothesis
ensures that Ker

(
ψΛ|A(Γ2)

)
is free and

Stab(v) = Ker(ψΛ) ∩ A(Γ2) = Ker
(
ψΛ|A(Γ2)

)
, ∀v ∈ A(Γ)/A(Γ2)
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is free as well since they are subgroups of a free group. Therefore Equation (3.9)
implies that K = Ker(ψΛ) is free since it decomposes as a free product of free
groups. This proves the claim. �

Theorem 3.3.5. Let F be a finite family of Coxeter graphs, each of them having at
most two vertices. Let JF be any set satisfying the conditions described in Definition
3.3.2 with respect to the family F and let Γ := jn2(F, JF), then the associated Artin
group A(Γ) is strongly poly-free.

Proof. We proceed by induction on the number n of vertices of Γ.
The case n = 0 (i.e., F = ∅) is degenerate with A(Γ) = { 1 } and the statement is
trivial. If n = 1, then Γ is made of just a vertex, A(Γ) ' Z and the statement
follows immediately.
Now let n ≥ 2. If Γ is not connected, then it is the disjoint union of its connected
components Γ1, . . . ,Γd (d ≥ 2), each of them having strictly less vertices than Γ.
Lemma 1.3.11 and the inductive hypothesis imply that A(Γ) = A(Γ1) ∗ . . . ∗ A(Γd)
is strongly poly-free. Therefore, to prove the statement for n ≥ 2, we can suppose
that Γ is connected. If F contains graphs with two vertices, then call Λ one of such
graphs, otherwise let Λ be the subgraph spanned by any connected pair of vertices
in Γ. The hypotheses we made on the structure of Γ ensure that the surjective map
ψΛ : A(Γ)→ A(Γ̂) described in Lemma 3.3.1 is a well-defined homomorphism of
groups. Since |V (Γ̂)| = n− 1 the inductive hypothesis tells us that A(Γ̂) is strongly
poly-free and by Proposition 3.3.4 the map ψΛ has free kernel. Lemma 1.3.5 allows
to conclude that A(Γ) is strongly poly-free. �



Chapter 4

Conclusion

In Chapter 2 we have been able to determine which irreducible Artin groups of
finite type are poly-free and which are not (with the only exception of F4 which
remains unknown at the moment) and to build explicit poly-fg-free series for each
of them. Namely, we have proven that the only poly-free irreducible Artin groups
of finite type are I2(m) (m ≥ 3), A3, B3, B4, and D4. However, to achieve this
result we had to rely on very specific constructions and facts which are extremely
(if not completely) unlikely to be generalised to other families of Artin groups. Still,
if compared to the work of Hermiller and Šunić [11] (2007) who proved that all
right angled1 Artin groups are poly-free, it is interesting that the only irreducible
finite type Artin groups which are poly-free are those built from the smallest graphs
in this family. This also gives a wide set of obstructions against poly-freeness of
a generic Artin group built on a Coxeter graph Γ: subgroups of poly-free groups
are poly-free and since the Artin groups built on full subgraphs of Γ injects as
subgroups inside A(Γ), if A(Γ) is poly-free then Γ cannot contain any full subgraph
isomorphic to those of finite type that are not poly-free.

In Chapter 3, instead, we considered the case when Γ is a tree and leveraged
the Reidemeister-Schreier rewriting procedure to obtain the explicit presentation
of a suitable normal subgroup of A(Γ) and deduce that such subgroup is free. This
allowed us to conclude that all Artin groups build on Coxeter trees are strongly
poly-fg-free and we have also been able to compute the rank of each factor. However,
in order to successfully apply this technique the hypothesis of Γ being a tree has
revealed to be essential. For this reason in the last part of the chapter we changed
approach and gave some partial results about poly-freeness of Artin groups built
on graphs that can be “more connected” than a tree or a forest. Despite the
hypotheses of Theorem 3.3.5 are still a bit restrictive, we think that a refinement
of that kind of approach employing Bass-Serre theory could lead to more general

1An Artin group of type Γ is right angled if all the edges of Γ are labelled with ‘2’.
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results.
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