
Università degli studi di Pavia
Joint Ph.D. program in Mathematics Milano Bicocca - Pavia - INdAM

Doctoral Thesis

Preconditioners for Isogeometric Analysis

Author:
Monica Montardini

Supervisor:
Prof. Giancarlo Sangalli

Co-supervisor:
Dr. Mattia Tani





iii

Acknowledgements
First and foremost, I would like to express my sincere gratitude to my supervisor prof.

Giancarlo Sangalli for having encouraged me in following my academic dreams. I learned
a lot from his vast knowledge, not limited to numerical analysis. I really appreciated his
patience and motivation and, in particular, the time he spent in giving me valuable advice in
mathematical and non-mathematical topics.

I would also thank my co-supervisor and friend Dr. Mattia Tani. I am very grateful to
him for his excellent scientific opinions and for having always encouraged me to do my best.
In particular, I would like to thank him for having stimulated me to look at the world from
a different side and with a changed soul.

A special thanks goes to prof. Matteo Negri. The discussions on functional analysis
problems with him were very fruitful and he was always ready to explain me the issues I
could not understand.

I would like also to thank prof. Ulrich Langer, that allowed me to spend three months
at the Johannes Kepler University in Linz, where I had the chance to meet high-qualified
researchers. I really appreciated the collaborations that started there.

My gratitude is also due to Dr. Michał Bosy. He helped me in understanding domain
decomposition methods and in facing everyday university problems.

I would like to thank my fellow Ph.D. students for their feedback, cooperation and of course
friendship: Maria Gioia, Nicolò, Barbara, Alberto, Christian, Anderson, Irene, Gabriele,
Silvia, Federico and Mai. I really appreciated the time we spent together.

My thanks also goes to my cousins Marco, Silvia and Franco for their continuous encour-
agement, especially when I was abroad.

Finally, I would like to express my gratitude to my parents Antonio and Paola, my grand-
mother Rosella and my uncles Tino and Renata, for their undeserved and endless support
and love.





v

Contents

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Main achievements and structure of the work . . . . . . . . . . . . . . . . . . 4

2 Preliminaries 7
2.1 B-splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Univariate B-splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Tensor product B-splines . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Kronecker product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Fast diagonalization preconditioner for Poisson problem . . . . . . . . . . . . 10

2.3.1 The preconditioner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.2 The application of the preconditioner: the fast diagonalization method 12
2.3.3 Computational cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 The Stokes problem 15
3.1 Notations and main assumptions for the spline spaces . . . . . . . . . . . . . 16
3.2 Isogeometric spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.1 Taylor-Hood isogeometric spaces . . . . . . . . . . . . . . . . . . . . . 17
3.2.2 Raviart-Thomas isogeometric spaces . . . . . . . . . . . . . . . . . . . 18

3.3 Isogeometric analysis of the Stokes system . . . . . . . . . . . . . . . . . . . . 19
3.4 Preconditioners for the whole system . . . . . . . . . . . . . . . . . . . . . . . 21
3.5 Preconditioners for PV and PQ . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.5.1 Spectral properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5.2 Preconditioners application by the fast diagonalization method . . . . 27
3.5.3 Inclusion of the geometry and coefficients information in PV and PQ . 28

3.6 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 The heat equation: least-squares method 41
4.1 Notations and main assumptions for the spline spaces . . . . . . . . . . . . . 42
4.2 Isogeometric spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3 Parabolic model problem and its discretization . . . . . . . . . . . . . . . . . 44

4.3.1 The heat equation and the regularity of its solution . . . . . . . . . . . 44
4.3.2 Space-time least-squares variational formulation . . . . . . . . . . . . . 46
4.3.3 Space-time least-squares approximation . . . . . . . . . . . . . . . . . 48
4.3.4 A priori error analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 48



vi

4.3.5 Discrete system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.4 Preconditioner definition and application . . . . . . . . . . . . . . . . . . . . 51

4.4.1 Spectral properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4.2 Preconditioner application by fast diagonalization method . . . . . . . 55
4.4.3 Inclusion of the geometry and coefficient information in the preconditioner 56
4.4.4 Computational cost and memory consumption of the linear solver . . . 57

4.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.5.1 Orders of convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.5.2 Performance of the preconditioner . . . . . . . . . . . . . . . . . . . . 59

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.7 Technical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.7.1 Smooth approximation of V̂0 . . . . . . . . . . . . . . . . . . . . . . . 65
4.7.2 A variational formulation equivalent to (4.3.10)–(4.3.11) . . . . . . . . 66

4.8 Some classical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.8.1 Results from [73] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.8.2 Results from [59] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.8.3 Results from [49] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.8.4 Results from [23] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5 The heat equation: Galerkin method 69
5.1 Notations and main assumptions for the spline spaces . . . . . . . . . . . . . 70
5.2 Isogeometric spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.3 Parabolic model problem and its discretization . . . . . . . . . . . . . . . . . 71

5.3.1 Space-time variational formulation . . . . . . . . . . . . . . . . . . . . 71
5.3.2 Space-time Galerkin approximation . . . . . . . . . . . . . . . . . . . . 72
5.3.3 Discrete system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.4 Preconditioner definition and application . . . . . . . . . . . . . . . . . . . . . 74
5.4.1 Stable factorization of the pencils (K̂i, M̂i) i = 1, . . . , d . . . . . . . . . 74
5.4.2 Stable factorization of the pencil (Ŵt, M̂t) . . . . . . . . . . . . . . . . 75
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Chapter 1

Introduction

1.1 Motivation

Partial differential equations (PDEs) represent the main tools to model many physical pro-
cesses, for example fluid flow, heat transfer and solid problems. Typically, the expression of
the exact solution can not be found in an analytic way. In these situations numerical methods
are the fundamental ingredients to recover an approximated solution.

The most popular technique used to make numerical simulations is the finite element
method (FEM). However, one of the main issue of FEM is that the computational domain,
usually described by a computer aided design (CAD) file, needs to be approximated, e.g. by
triangulation. As a consequence, there is always a systematic geometrical error source and
the operation of mesh-refinement results very expensive. The discrepancy between CAD and
FEM relies on their mathematical foundation: the former employs splines while the latter
uses linear or quadratic interpolation polynomials.

To overcome the gap between FEM and CAD and to improve the interoperability between
CAD and PDE solvers, Hughes et al. introduced in the seminal paper [66] an extension of
FEM: Isogeometric Analysis (IgA). IgA is based on the adoption of the same functions that de-
scribe the CAD geometry (usually B-splines and Non-Uniform Rational B-splines (NURBS))
to construct and represent the approximated solution of the PDE. In this way, thanks to an
exact representation of the computational domain the error due to the approximation of the
geometry is eliminated. IgA is not limited to B-splines and NURBs as it allows to use a wide
variety of spline technologies, e.g. T-splines [5, 98, 7], hierarchical splines [26, 112], Truncated
Hierarchical B-splines (THB-splines) [56, 55], Locally Refineable splines (LR-splines) [68, 19].

The refinement of the spline space can be achieved not only by the classical p-refinement
(order elevation) and h-refinement (knot insertion) procedures, already present in FEM, but
also by the new k-refinement, that is order elevation followed by knot insertion, see [66]. We
remark that all kinds of refinement do not alter the geometry and do not need the communica-
tion with CAD systems. Despite it does not construct nested spline spaces, the k-refinement
leads to possibilities previously unavailable in FEM, as the direct discretization of high order
PDEs, the use of continuous stresses and the development of collocation methods. In addition,
it paves the way to the so called k-method, that is an isogeometric method where the basis
functions have high regularity: unlike the standard FEM functions, that are typically only C0

continuous, in the k-method, in general, isogeometric basis functions have regularity Cp−1,
where p represents the polynomial degree. The k-method brings several advantages: higher ac-
curacy per degree-of-freedom [44], robust approximation of non-smooth functions [29], better
approximation of the spectrum [38]. However, the high continuity of the k-method introduces
challenging problems at the computational level. The two main computational costs (in terms
of time and memory) in a solver for PDEs are:
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• the formation of the system matrix A;

• the solution of the linear system associated to the PDE

Au = b. (1.1.1)

Even if the focus of our thesis deals with the second problem, we give a brief overview of
the techniques that the isogeometric community has introduced to address the first problem.
In the early applications of IgA, the implementation of the k-method was done by extending
the existing FEM codes and exploiting their architecture. The system matrix was built
performing standard Gaussian quadrature rules within each element and then assembling
these local matrices into the global one, as in standard FEM codes. However, there is an
important difference with respect to FEM: the higher continuity and, consequently, the larger
support of IgA basis functions. Indeed, univariate B-splines of degree p and regularity Cp−1

can have a support that, usually, consists of p + 1 elements. Thus, interactions between
functions become more costly, as the overlapping support between two functions is bigger
and the memory required is higher (see [34]). In addition, Gaussian quadrature rules within
each element are far from being optimal and they are the most time-consuming part of the
FEM-like assembling codes. The extension to IgA of standard FEM codes was not enough
to have a competitive isogeometric assembling method. The development of new and ad-hoc
algorithms became an essential goal to pursue. Recently, different alternatives to the standard
Gaussian quadrature element-wise assembling have been proposed. Among them, some of the
most relevant are sum-factorization techniques [2, 21], low-rank assembling [78, 79] and the
weighted quadrature approach [30, 94].

The focus of this thesis regards the study of efficient solution of the isogeometric linear
systems, that represents the second main computational cost in the construction of a solver for
PDEs. An important issue is that the high continuity of the functions in the k-method affects
the sparsity-pattern of the system matrix and increases the computational cost required by the
linear solver to find an approximated solution. The studies of [34] highlight that direct solvers
do not provide good performances when combined with the k-method. For example, suppose
to solve a d-dimensional Poisson problem with a multi-frontal solver, that is a standard direct
solver (see [34, Section 2.3]). Let Ndof be the number of degrees-of-freedom. Assuming
Ndof � pd, the number of floating point operations (FLOPs) required to solve the system
discretized with splines of degree p and regularity Cp−1 is O(N2

dofp
d). On the other hand,

when we use a standard C0 FEM discretization with polynomials of degree p, we need O(N2
dof )

FLOPs. The degradation of the performances of direct solvers applied within Cp−1 IgA has
switched the attention of the isogeometric community on iterative solvers. The most used
iterative methods are the so-called Krylov subspace methods, see e.g. [91]. The rate of
convergence of Krylov subspace methods can be bounded by using the distribution of the
eigenvalues of the system matrix [91]. For example, when A is symmetric positive-definite,
we can use the conjugate gradient (CG) method [60] to solve the linear system and it is known
that the behavior of the solver depends, on the worst case, on the spectral condition number
κ(A) := λmax(A)

λmin(A) as

‖u− uk‖A ≤ 2

(√
κ(A)− 1√
κ(A) + 1

)k
‖u− u0‖A, (1.1.2)

where uk is the k-th iterate and where ‖ ·‖A is the norm induced by the vector norm ‖v‖A :=

(vTAv)
1
2 . The dependence of the rate of convergence on the eigenvalues still holds when the
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matrix A is just symmetric and the system is solved by MINRES [87]. If we consider non-
symmetric matrices the situation is more complicated and we can not describe the convergence
of Krylov subspace methods, like GMRES [92], through the distribution of the eigenvalues.
Nevertheless, in many applications it is observed that a clustered spectrum (away from 0
and infinity) makes the convergence faster [57]. Thus, in general, the more clustered are the
eigenvalues, the faster is the convergence.

The introduction of a preconditioning operation implies that instead of solving (1.1.1), we
solve

P−1Au = P−1b

where P is a square, invertible matrix called preconditioner. This means that at each iteration
of a preconditioned Krylov-subspace method we have to solve a linear system with matrix P
as

Pv = r

where r represents the current residual. The rates of convergence of the iterative methods can
gain benefits, provided that the preconditioned system has better spectral properties than the
unpreconditioned one. For example, in the CG case, when we introduce a symmetric positive
definite preconditioner P, the convergence estimate (1.1.2) becomes

‖u− uk‖A ≤ 2

(√
κ(P−1A)− 1√
κ(P−1A) + 1

)k
‖u− u0‖A.

As isogeometric matrices suffer of large condition numbers when the degree is high or when
the mesh-size is small, iterative solvers could perform well only if combined with efficient
preconditioning strategies. In this context, we say that the preconditioner P is ideal if it
satisfies both of the following properties:

• P must be computationally efficient : the setup and the application of P should be non-
expensive in terms of FLOPs and memory and proportional to the number of DOFs of
the problem;

• P must be robust : the eigenvalues of the preconditioned system P−1A should be clus-
tered and they should be bounded away from 0 and infinity, independently on the
parameters of the problem.

Ideal preconditioners are not easy to obtain with high order methods. The first studies
on isogeometric preconditioners are provided by [33], where the problem of interest is the
Poisson problem and the iterative method is the CG method. The authors show that the
most efficient preconditioners used in FEM applications, as diagonal Jacobi, incomplete LU
and SOR, work well with low-order splines, but their computational performances deteriorate
when high order functions are employed. That is why, up to some years ago, in practical
applications, quadratic or cubic splines were preferred, see [6, 82].

It was clear that the extension of standard FEM preconditioners was not an effective choice
and, consequently, in IGA community the development of efficient preconditioning strategies
has become a primary task. A lot of efforts have been directed to the Poisson system. One
of the first kind of preconditioners for elliptic problems that has been studied is the group of
multigrid based preconditioners [41, 52, 65]. An additive multilevel approach has been used
in [27]. The authors of [93] exploit the tensor product structure of the isogeometric spaces
to design a preconditioner that is the sum of matrices with a special Kronecker structure.
Their preconditioner can be efficiently applied by using the fast diagonalization method (FD),
that is a direct solver introduced in [77]. Such designed preconditioning strategy reveals to
be robust both with respect to spline degree and mesh-size and it can be easily coupled
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with an overlapping-Schwarz domain decomposition method. Moreover, in practice, it has a
computational setup and application cost that is proportional to the number of DOFs of the
problem. Overlapping Schwarz methods for elliptic problems in IgA have been also studied in
[10, 9], while BDDC methods and preconditioners in [8, 12, 89]. The extension of FETI-DP,
a variant of FETI (see [50]), to IgA has been introduced in [70] and further studied in [61,
62].

The recent paper [94] combines the FD preconditioner with a matrix-free weighted-quadrature
approach in order to design an efficient Poisson solver. The overall procedure is very efficient in
practical applications. The authors are able to provide a computationally-efficient k-method
that has superior performances with respect to low-order discretizations. The extension of
the global solver to other PDEs is possible, but the efficiency of the method is strictly related
to the presence of a good preconditioner. As this paper confirms, the preconditioning step is
the most critical part for the development of an efficient isogeometric solver.

Several efforts have been done in the design of efficient preconditioners for PDEs different
than the Poisson equation, as it will be highlighted in the introduction of Chapter 3, 4 and
5, and this thesis represents a contribution in this direction.

1.2 Main achievements and structure of the work

The aim of this thesis is the development of efficient solvers for linear systems arising in the
isogeometric discretization of different PDEs. Each problem studied yields to linear system
matrices with different properties and structure, that thus require ad-hoc preconditioning
strategy.

The starting point and the basis of our preconditioners is the FD method and, in par-
ticular, the work [93], in which the authors fully exploit the tensor product structure of the
isogeometric functions to build a preconditioner obtained by discretizing the Poisson system
in the parametric domain and considering constant coefficients.

Having in mind the good results and performances gained in [93] by using the FD method
for its application, we tried to use the same or similar ideas in the design of preconditioners
for the isogeometric discretization of other PDEs and thus discretizing the problem of interest
(or a simplification of it) in the parametric domain. In particular, we focus on two PDEs:
the Stokes problem and the parabolic problem. We are able to recover in all cases the tensor-
product structure that can be exploited by the FDmethod for an efficient application. As there
is a strong connection between the eigenvalues and the rate of convergence of Krylov subspace
methods, we provide proofs of meaningful spectral estimates for the matrices involved. All the
preconditioning strategies that we propose are robust both with respect to the spline degree p
and the mesh-size h. One important issue we have to face is the fact that the influence of the
geometry on the performance of the preconditioning strategy can create a loss of efficiency,
especially when the parametrization highly departs from the identity. Ideally, we would
like that the efficiency of the preconditioner does not depend on the coefficients and on the
geometry of the problem and that is why we investigate strategies that allow to incorporate in
the basic version of the preconditioner some of these pieces of information without increasing
the original computational cost. The designed variants of the preconditioners that include
some information on the parametrization and on the coefficients also show robustness with
respect to the geometry.

The first model problem that we examine is the Stokes stationary system. We consider
both the isogeometric Taylor-Hood [4] and the Raviart-Thomas discretizations [25, 45] in a
single-patch domain. We develop preconditioners suited for the resulting saddle-point linear
systems that have the classical block diagonal, block triangular or constrained structure [43].
The FD method is then used to invert the diagonal blocks. We provide spectral estimates that
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ensure the good convergence properties of MINRES solver and we show both numerically and
theoretically that our preconditioner is robust with respect to h and p. Moreover we compare
our preconditioner with the more classical one based on a zero fill-in Incomplete Cholesky (IC)
factorization and we observe the superiority of the performances of our approach, especially
when including some information on the parametrization in the preconditioner.

Then we consider parabolic problems and in particular the heat equation in computational
domains that are fixed in time. We want to fully-exploit the high continuity of the k-method
by considering a space-time discretization, where the PDE is discretized simultaneously in
space and in time. The first formulation of the heat problem we study has its foundation
on the least-squares principle. Indeed, we propose a space-time least-squares isogeometric
method and we provide a-priori error estimates that guarantee the good convergence prop-
erties of the method. The regularity required by the basis functions is higher than for a
standard Galerkin formulation, but this does not represent a problem in the framework of the
isogeometric k-method. The resulting system is symmetric and positive definite and the same
FD-based preconditioning strategy of [93] can be trivially applied. The total cost of the setup
and the application of the preconditioner is, in practical applications, proportional to the
number of DOFs. The second weak formulation of the heat problem that we consider is the
low-order formulation of [103]. We extend to IgA the theory of [103], developed for standard
finite elements, and we provide quasi-optimal error estimates. The isogeometric discretization
of this formulation does not lead to a straightforward use of FD method. We circumvent
this difficulty by introducing an ad-hoc factorization of the matrices that allows to design a
solver conceptually similar to the FD method, with similar computational cost and robust
with respect to degree and mesh-size. We provide numerical experiments on non-trivial com-
putational domains and we show a comparison with the previous least-squares solver. The
preconditioner is robust with respect to degree and mesh size and the version that incorpo-
rates information on the parametrization gives very good results also with highly-distorted
geometries. The cost is still proportional to the number of DOFs of the problem.

The structure of this work is the following one:

• Chapter 2 introduces the basic concepts of IgA. We define univariate and multivariate
B-spline functions, highlighting their main features. Then we present the Kronecker
product and the related properties we need. Finally, we report the preconditioning
strategy for the Poisson problem based on the FD method.

• Chapter 3 focuses on the stationary Stokes problem. The chapter starts by present-
ing the isogeometric discretizations that we use: the isogeometric Taylor-Hood and the
isogeometric Raviart-Thomas elements. For the resulting saddle-point linear systems
we design preconditioners with a block diagonal, a block triangular or a constrained
structure and we prove theoretical estimates that assures the robustness of the precon-
ditioners with respect to the spline degree and mesh-size. We also study the issue of
incorporating information on the geometry in the basic preconditioner. Our numerical
benchmarks confirm the efficiency of the proposed preconditioning strategies.

• Chapter 4 deals with the least-squares space-time variational formulation of the heat
equation. After the introduction of the method, we prove the well-posedness of the
least-squares formulation and we provide a-priori error estimates. Then, we present the
basic version of the preconditioner, we analyze the spectral properties and the com-
putational cost. We also show how to improve the performance of the basic version
of the preconditioner by including some information on the geometry parametrization.
Numerical results that confirm the error estimates and show the performances of the
preconditioning strategies are finally presented.



6 Chapter 1. Introduction

• Chapter 5 presents a preconditioning strategy suited for a Galerkin space-time dis-
cretization of the heat equation. To overcome the problem of the non-stable eigende-
composition of the time-matrices, we build an ad-hoc decomposition of the pencils and
we provide an extension of the FD method. The time required for the application of
such designed preconditioner still grows as the number of DOFs. In addition, an im-
proved version of the preconditioning technique that includes some information on the
parametrization and on the coefficients of the problem is studied. Lastly, some numer-
ical benchmarks that confirms the error estimates and that assess the performance of
the proposed preconditioners are provided.

• Chapter 6 contains brief conclusions of our work and possible future directions of re-
search.

Parts of the results presented in this thesis have been published by the author and coau-
thors in peer reviewed journals or they are available online:

• Chapter 3:

[81] M. Montardini, G. Sangalli, and M. Tani. “Robust isogeometric preconditioners for
the Stokes system based on the Fast Diagonalization method”. In: Computer Methods
in Applied Mechanics and Engineering 338 (2018), pp. 162 - 185.

• Chapter 4:

[80] M. Montardini, M. Negri, G. Sangalli, and M. Tani. “Space-time least-squares
isogeometric method and efficient solver for parabolic problems”. In: Mathematics of
Computation (accepted for publication).

• Chapter 5:

[76] G. Loli, M. Montardini, G. Sangalli, and M. Tani. “Space-time Galerkin isogeometric
method and efficient solver for parabolic problem”. In: arXiv e-prints, arXiv:1909.07309
(2019).



7

Chapter 2

Preliminaries

The aim of this chapter is to introduce the preliminary ingredients and the notations that
will be used in the rest of the work.

2.1 B-splines

In this section we present the definition and the basic properties of univariate and multivariate
B-splines. For a detailed explanation on this topic we refer to [37, 96]. Useful algorithms for
the evaluation of B-splines can be found e.g. in [90].

Remark 2.1. We remark that in our thesis we investigate isogeometric solvers for different
PDEs and each problem is discretized by a particular kind of isogeometric space. For this
reason and in order to have self-contained chapters, in this section we give just a general
overview of the construction of spline spaces in the parametric domain, while at the beginning
of each of the following chapters we resume the splines notations and we define the isogeometric
spaces needed.

2.1.1 Univariate B-splines

Given two positive integers m and p, a knot vector in [0, 1] is a set of non-decreasing points

Ξ := {0 = ξ1 ≤ · · · ≤ ξm+p+1 = 1}.

Note that the knots can be repeated. Thus, we introduce the breakpoint vector

Z := {ζ1, ..., ζs},

that is a vector that contains the knots without repetitions, and the corresponding vector
{r1, . . . , rm} of knot multiplicities, i.e. ri is the multiplicity of the knot ζi in Ξ:

Ξ = {ζ1, . . . , ζ1︸ ︷︷ ︸
r1 times

, ζ2, . . . , ζ2︸ ︷︷ ︸
r2 times

, . . . , ζm, . . . , ζm︸ ︷︷ ︸
rm times

},

with
∑m

i=1 ri = m + p + 1. We assume that the multiplicity of each internal knot does not
exceed p + 1, that is ri ≤ p + 1. The i-th knot span is defined as the interval [ξi, ξi+1) and,
if the knots are repeated, it can have null length. A knot span with non-zero length is called
element and the maximum of length of each element h := max{ξi+1 − ξi|i = 1, . . . ,m+ p} is
called mesh-size.

Then, from the knot vector Ξ we define univariate B-splines basis functions b̂i,p recursively
through Cox-De Boor formulas [39] as
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Figure 2.1: Example of cubic B-spline basis built from the open knot vector
{0, 0, 0, 0, 0.25, 0.25, 0.25, 0.5, 0.75, 0.75, 1, 1, 1, 1}

for p = 0:

b̂i,0(η) =

{
1 if ξi ≤ η < ξi+1,

0 otherwise,

for p ≥ 1:

b̂i,p(η) =


η − ξi
ξi+p − ξi

b̂i,p−1(η) +
ξi+p+1 − η
ξi+p+1 − ξi+1

b̂i+1,p−1(η) if ξi ≤ η < ξi+p+1,

0 otherwise,

where we adopt the convention 0/0 = 0. The set of the m B-splines that we have just defined
forms a basis of the space of splines of degree p with αi := p − ri continuous derivatives
at the breakpoint ζi. From the definition we have that −1 ≤ αi ≤ p − 1 and if αi = −1,
then we have a discontinuity at ζi. We collect the information on the regularity in the vector
α := {α1, . . . , αs}.

We assume that every knot vector is open, that is, we set ξ1 = · · · = ξp+1 = 0 and
ξm+1 = · · · = ξm+p+1 = 1. The assumption that the knot vector is open corresponds to
the choice α1 = αs = −1. An example of B-spline basis built from an open knot vector is
represented in Figure 2.1. We note that the repetition of the knot causes a loss of regularity
and, in particular, we have that at the point 0.25 the basis is just C0. B-splines built from
open knot vectors have useful properties, e.g. they are interpolatory at the extremes of the
parametric interval [0, 1] and they are beneficial to impose Dirichlet boundary conditions.

We denote the univariate spline space as

Ŝph := span{b̂i,p | i = 1, . . . ,m}. (2.1.1)

Some useful properties of B-splines are:

• for all η it holds
∑m

i=1 b̂i,p(η) = 1;

• the support of each b̂i,p is contained in the interval [ξi, ξi+p+1];

• for all η it holds b̂i,p(η) ≥ 0.

The proofs of the properties above are elementary and they can be found e.g. in [39]. We
remark that for p = 0 and p = 1, the B-splines are the same piecewise constant and piecewise
linear functions, respectively, present in classical FEM, while for higher degree they are dif-
ferent. In particular, for p ≥ 2, B-splines are not nodal and their support consist not only of
one element, in general.
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The space Ŝph can be refined through knot insertion and degree elevation. These two
operations generate two kinds of refinement: h-refinement, that is a refinement of the mesh
obtained by insertion of new knots, and p-refinement, that corresponds to degree elevation
without increasing the regularity and it is obtained by increasing the multiplicity of the
knots. In IgA there is also a third kind of refinement, not present in FEM literature, that is
the k-refinement that is obtained by degree elevation followed by knot insertion. Differently
from h-refinement and p-refinement, the k-refinement does not lead to a sequence of nested
spaces: the spaces obtained through this procedure have increased regularity (see [37] for
more details).

2.1.2 Tensor product B-splines

The simplest and straightforward way to extend univariate B-splines to the d-dimensional
case with d > 1 is using a tensor product construction.

The d-dimensional parametric domain is defined as the d-dimensional cube Ω̂ := (0, 1)d.
Let Ξl := {ξl,1 ≤ · · · ≤ ξl,ml+pl+1} for l = 1, . . . , d be d knot vectors and p be the vector

that contains the degree indexes, i.e. p := (p1, . . . , pd). Let also Zl = {ζl,1, . . . , ζl,sl} be the
corresponding breakpoint vectors and αl := {−1, αl,2, . . . , αl,sl ,−1} the associated regularity
vectors for l = 1, . . . , d. We introduce the mesh-sizes hl := max{ξl,i+1−ξl,i | i = 1, . . . ,ml+pl}
and the global mesh-size as h := max{hl | l = 1, . . . , d}.

Then the multivariate B-splines are defined as

B̂i,p(η) := b̂i1,p1(η1) . . . b̂id,pd(ηd) (2.1.2)

where i := (i1, . . . , id) and η = (η1, . . . , ηd).
The corresponding multivariate spline space is defined as

Ŝph := span
{
B̂i,p

∣∣∣ ik = 1, . . . ,mk for k = 1, . . . , d
}

= Ŝp1

h1
⊗ . . .⊗ Ŝpdhd .

Multivariate B-splines inherit the same properties as univariate B-splines: they are non-
negative, they form a partition of unity and they have local support.

We remark that tensor product B-splines do not allow local refinement. However, there are
several generalizations of univariate B-splines to the multivariate case, not considered in this
thesis, that make possible the local refinement of the mesh, as T-Splines [5, 98, 7], LR-Splines
[68, 19], THB-splines [56, 55] and HB-splines [26, 112].

2.2 Kronecker product

The Kronecker product between two matrices C ∈ Cn1×n2 and D ∈ Cn3×n4 is defined as

C⊗D :=

 [C]1,1D . . . [C]1,n2D
...

. . .
...

[C]n1,1D . . . [C]n1,n2D

 ∈ Cn1n3×n2n4 ,

where the ij-th entry of the matrix C is denoted by [C]i,j .
The properties of the Kronecker product that we will exploit are the following ones:

• it holds
(C⊗D)∗ = C∗ ⊗D∗, (2.2.1)

where ∗ is the complex conjugate transpose operation;



10 Chapter 2. Preliminaries

• if C, D, E and L are matrices of conforming order, then it holds

(C⊗D)(E⊗ L) = (CE)⊗ (DL); (2.2.2)

• if C and D are non-singular, then

(C⊗D)−1 = C−1 ⊗D−1; (2.2.3)

• if X ∈ Cn4×n2 then
(C⊗D)vec(X) = vec(DXCT ) (2.2.4)

where we introduced the vectorization operator “vec”, that, when applied to a matrix,
simply stacks the columns of the matrix in a vector as

[vec(X)]i1+(i2−1)n1
= [X]i1,i2 for ij = 1, . . . , nj and j = 1, 2.

We need to recall the extension of (2.2.4) to the d-dimensional case. We introduce, for
m = 1, . . . , d, the m-mode product ×m of a tensor X ∈ Cn1×···×nd with a matrix J ∈ Cw×nm ,
that is a tensor of size n1 × · · · × nm−1 × w × nm+1 × . . . nd whose elements are defined as

[X×m J]i1,...,id =

nm∑
j=1

[X]i1,...,im−1,j,im+1...,id [J]im,j .

Then, given Ji ∈ Cwi×ni for i = 1, . . . , d, the generalization to the d-dimensional case of
(2.2.4), reads as

(Jd ⊗ · · · ⊗ J1) vec (X) = vec (X×1 J1 ×2 · · · ×d Jd) , (2.2.5)

where the vectorization operator “vec" applied to a tensor stacks its entries into a column
vector as

[vec(X)]j = [X]i1,...,id for il = 1, . . . , nl and l = 1, . . . , d,

where j = i1 +
∑d

k=2

[
(ik − 1)Πk−1

l=1 nl

]
.

For more details on the Kronecker product and on its properties we refer to [71].

2.3 Fast diagonalization preconditioner for Poisson problem

In this section we resume the results obtained in [93], where the authors study preconditioning
strategies for Poisson problem and they propose the use of the fast diagonalization method to
apply their designed preconditioner. For the sake of clarity, we focus on the two-dimensional
case.

Let us consider the following Poisson problem endowed, for simplicity, with homogeneous
Dirichlet boundary conditions{

−∇ · (K(x)∇u(x)) = f(x) in Ω,

u = 0 on ∂Ω,
(2.3.1)

where Ω ⊂ R2 and K(x) is a symmetric positive definite matrix for every x ∈ Ω. For the
notations of univariate and multivariate B-splines in the parametric domain, we refer to
Section 2.1 We suppose that Ω is given by a regular single-patch spline parametrization
G ∈ [Ŝph ]2.
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We need to introduce the spline space with boundary conditions in the parametric domain
Ω̂:

Ŝph,0 := {v ∈ Ŝph | v = 0 on ∂Ω̂} = span{B̂i,p | 2 ≤ il ≤ ml − 1 and l = 1, 2}.

Note that
Ŝph,0 := Ŝp2

h2,0
⊗ Ŝp1

h1,0
,

where Ŝplhl,0 := span{b̂i,pl | i = 2, . . . ,ml−1}. We associate to each multi-index i the number
i = i1 − 1 + (m1 − 2)(i2 − 2) and, with abuse of notations, we write

Ŝph,0 = span{B̂i,p | 1 ≤ i ≤ Ndof}

where Ndof := (m1−2)(m2−2) is the dimension of the space that incorporates the boundary
conditions. We now introduce the corresponding isogeometric space

Sph,0 :=
{
v̂ ◦G | v ∈ Ŝph,0

}
= span{Bi,p := B̂i,p ◦G | i = 1, . . . , Ndof},

Then, the Galerkin stiffness matrix associated to the system (2.3.1) takes this form:

[A]i,j :=

∫
Ω

(∇Bi,p)T K∇Bj,p dΩ =

∫
Ω̂

(
∇B̂i,p

)T
Q∇B̂j,p dΩ̂ i, j = 1, . . . , Ndof (2.3.2)

where
Q = J−1

G KJ−TG |det(JG)| (2.3.3)

and JG is the Jacobian matrix.

2.3.1 The preconditioner

The authors of [93] propose to use as a preconditioner for the CG method applied to the
system (2.3.2) the matrix

[P]i,j :=

∫
Ω̂

(
∇B̂i,p

)T
∇B̂j,p dΩ̂ i, j = 1, . . . , Ndof (2.3.4)

that is obtained by considering in (2.3.2) G equal to the identity map and K equal to the
identity matrix. In particular, exploiting the tensor-product structure of the basis functions,
we can write

P = K2 ⊗M1 +M2 ⊗K1, (2.3.5)

where K1 and K2 are the univariate stiffness matrices while M1 and M2 are the univariate
mass matrices, that is, for k = 1, 2 they are defined for i, j = 2, . . . ,mk − 1 as

[Kk]i−1,j−1 :=

∫ 1

0
b̂′i,p(ηk )̂b

′
j,p(ηk)dηk, [Mk]i−1,j−1 :=

∫ 1

0
b̂i,p(ηk )̂bj,p(ηk)dηk.

At each CG iteration the application of the preconditioner P requires to find the solution of
the system

Ps = r,

that is equivalent to solve
(K2 ⊗M1 +M2 ⊗K1)s = r, (2.3.6)

where r is the current residual. The influence of the preconditioner on the rate of convergence
of CG is well known (see (1.1))and it depends on the condition number of the preconditioned
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system. For this reason we report below [93, Proposition 1] that investigates the spectral
properties of P.

Proposition 2.1. It holds

κ(P−1A) ≤
sup

Ω̂

λmax(Q)

inf
Ω̂
λmin(Q)

, (2.3.7)

where Q is given by (2.3.3), while λmax(Q) and λmin(Q) denote the maximum and the mini-
mum eigenvalue of Q, respectively.

Note that the bound depends only on the geometry G and on K while it is independent
on the mesh-size and the spline degree. Thus, the performance of the preconditioner could
deteriorate if the geometry highly departs from the identity or if the coefficient matrix K
varies widely.

2.3.2 The application of the preconditioner: the fast diagonalization method

We now consider the problem of the efficient application of P, that is, to find the solution of
(2.3.6). Using (2.2.4), we can rewrite (2.3.6) as

M1SK
T
2 +K1SM

T
2 = R, (2.3.8)

where vec(S) = s and vec(R) = r. Equation (2.3.8) is called in literature (generalized)
Sylvester equation and arises in many applications. For a recent survey on the solving methods
for the Sylvester equation we refer to [101].

In [93] the authors propose to use the fast diagonalization method (FD), that is a direct
method for solving equations with the Sylvester-like structure of (2.3.8). The FD method was
first proposed in [77] as a method to solve elliptic PDEs discretized using finite differences.
Let us suppose for simplicity that the univariate stiffness and mass matrices have dimensions
n × n and that the total number of degrees-of-freedom is Ndof := n2. The first step in the
two-dimensional FD method is to compute the generalized eigendecompostion of the matrix
pencils (Ki,Mi) for i = 1, 2, that is

K1U1 = M1U1Λ1, K2U2 = M2U2Λ2 (2.3.9)

where U1 and U2 are matrices containing the generalized eigenvectors and Λ1 and Λ2 are
the diagonal matrices of the corresponding eigenvalues. Note that, as the matrices Mi are
symmetric and positive definite, we also have that the eigenvectors are Mi-orthogonal, that
is

UT1 M1U1 = In and UT2 M2U2 = In, (2.3.10)

where In denotes the identity matrix of dimension n. Thus, as a consequence, we have the
factorizations

U−T1 U−1
1 = M1 and U−T2 U−1

2 = M2

and, by inserting them in (2.3.9), we get

U−T1 Λ1U
−1
1 = K1 and U−T2 Λ2U

−1
2 = K2.

Thus, we can rewrite (2.3.6) as

(U2 ⊗ U1)−T (In ⊗ Λ1 + Λ2 ⊗ In)(U2 ⊗ U1)−1s = r,
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and then the solution of the system is given by

s = (U2 ⊗ U1)(In ⊗ Λ1 + Λ2 ⊗ In)−1(U2 ⊗ U1)T r.

After a preliminary step in which we have to setup the preconditioner by performing the
generalized eigendecomposition, the application of P just involves two matrix vector multi-
plications and an inversion of a diagonal matrix. We summarize this procedure in Algorithm
1.

Algorithm 1 2D FD method
1: Setup: Compute the generalized eigendecompositions (2.3.9)
2: Application: Compute t = (U2 ⊗ U1)T r
3: Compute q = (In ⊗ Λ1 + Λ2 ⊗ In)−1 t
4: Compute s = (U2 ⊗ U1) q.

2.3.3 Computational cost

We briefly analyze the cost of Algorithm 1. For more details see [93].
The setup of the preconditioner, that is Step 1 in Algorithm 1, needs O(N

3/2
dof ). We remark

that the setup step has to be performed only once, as the matrices do not change during the
CG iterative process.

The application of the preconditioner involves Steps 2-4. Step 2 and Step 4 are computed
using property (2.2.4) and involve two matrix-matrix product each. The resulting computa-
tional cost for both steps is O(N

3/2
dof ). Finally, Step 3 is just a diagonal scaling and its cost of

O(Ndof ) FLOPs is negligible. The total computational cost of Algorithm 1 is thus of O(N
3/2
dof ).

The memory required to store the preconditioner is of O(Ndof ).
The other dominant cost in a CG iteration is the product between the matrix A and a

vector, that is the residual computation. This matrix-vector product is twice the number of
non-zeros of A, that is approximately equal to 2(2p+ 1)2Ndof .
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Chapter 3

The Stokes problem

In this chapter the problem of interest is the Stokes system. We consider two well-known
isogeometric discretizations for which stability and convergence is known. One is the extension
of the Taylor-Hood element, which is inf-sup stable, see [4, 28, 25, 18, 20]. The other is the
extension of the Raviart-Thomas element, which is stable and structure-preserving, in the
sense that the discrete solution is pointwise divergence-free; see [25, 45] (and [46, 47] for its
extension to Navier-Stokes). Both allow for arbitrary degree and regularity, in the spirit of
the k-method.

Isogeometric preconditioners for the Stokes system have also been studied in recent pa-
pers: [35, 36] consider block-diagonal and block-triangular preconditioners combined to black-
box solvers (either algebraic-multigrid or incomplete factorization); [88] studies the domain-
decomposition FETI-DP strategy; [32] focuses on a multigrid strategy; another multigrid
approach, which extends the results of [64], can be found in [106].

In this chapter, for both Taylor-Hood and Raviart-Thomas isogeometric discretizations of
the Stokes system, we consider preconditioners having the classical block structure (see [43])
and using direct solvers to invert the diagonal blocks.

In the simplest approach, our pressure Schur complement preconditioner is the pressure
mass matrix in parametric coordinates, which is solved by exploiting its Kronecker structure.
Moreover, our preconditioner for the velocity blocks is a component-wise divergence of the
symmetric gradient in parametric coordinates, and its solution is the solution of a Sylvester-
like equation. Among many methods, following [93] we adopt the fast diagonalization (FD)
method (see also Section 2.3).

An important problem we have to face is the treatment of the geometry parametrization.
The simplest approach outlined above does not incorporate any geometry information in
the preconditioner, causing a significant loss of efficiency on complex geometry parametriza-
tions. To overcome this limitation, we propose a modification of the preconditioner for a
partial inclusion of the geometry information, without increasing its computational cost: in
our numerical benchmarking we show the clear benefits of this approach. Indeed, we show
theoretically and numerically that our preconditioner is robust with respect to the mesh size
h and spline degree p, both for the isogeometric Taylor-Hood and Raviart-Thomas methods.
While previous papers considered low-degree splines only (typically quadratics and cubics),
we are motivated to consider higher degrees in our tests (up to degree 6 for the velocity and
5 for the pressure, for memory constraints) by the fact that the computational cost of our
preconditioner is almost independent of the degree. The iterative solver total computational
time is O(ndofp

3), but it is heavily dominated by the matrix-vector multiplication which takes
more than the 99% of the overall cost when the pressure degree is 5 and the velocity degree
is 6, on a 163 elements mesh. In this case our preconditioner is much faster than the alter-
natives known in literature: for example, about 3 orders of magnitude when comparing to a
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standard preconditioner based on the incomplete Cholesky factorization, which is known to
be an effective choice (see e.g. [35]).

In conclusion our numerical benchmarks confirm that the proposed preconditioner is very
efficient and well suited for the k-method. Further advances in the solver performance can
be achieved with a matrix-free approach, that accelerates the matrix-vector multiplication
operation, for moderate or large degree. A first step in this research direction is [94].

The outline of the chapter is as follows. In Section 3.1 we recall the basic notations on
the univariate and multivariate B-splines, while in Section 3.2 we give a short review of the
Taylor-Hood and Raviart-Thomas isogeometric discretizations for the Stokes system. The
derivation of the discrete Stokes system is given in Section 3.3 and in Section 3.4 we introduce
some standard block-structured preconditioners that we will consider in the numerical tests.
The core of the chapter is Section 3.5, where we focus on the construction of the precondi-
tioning matrices for the velocity and pressure blocks, discuss their properties and solution
strategies. We also propose a modification aimed at improving the preconditioner efficiency
by incorporating some information on the geometry parametrization. Numerical results on
three different single-patch domains are reported in Section 3.6. Finally, in Section 3.7 we
draw the conclusions.

3.1 Notations and main assumptions for the spline spaces

In this section we summarize the notations for the spline spaces we will use thorough the
chapter, referring to Section 2.1 for the basic definitions. For the discretization of the Stokes
system, the regularity of the basis functions in each parametric direction is a fundamental
piece of information, that we want to highlight in the notation.

Let Ξ := {ξ1, ..., ξm+p+1} be an open knot vector. We assume that Ξ is uniform, i.e. with
equally spaced breakpoints and we denote the mesh size with h. We also assume that Ξ has
uniform regularity α, that is, we set α2 = · · · = αs−1 = α. Then, we slightly modify the
notation presented in 2.1 and, we denote the associated univariate B-splines of degree p and
the corresponding univariate spline space as

b̂αi,p and Ŝpα = span{b̂αi,p | i = 1, . . .m},

and we setmp
α := m = dim(Ŝpα). The extension of this framework to non-uniform knot vectors

and arbitrary regularity is trivial (see, in this context, [20, Remark 4.4] and [28]) and it is
considered in our numerical tests.

For 3D problems, the case we address, the univariate open knot vectors Ξl := {ξl,1, ..., ξl,mplαl+pl+1}
for l = 1, 2, 3 and degree indices p = (p1, p2, p3) are given and we collect the regularity of
each direction in the vector α := (α1, α2, α3). Then, for a multi-index i = (i1, i2, i3), the
multivariate B-spline is denoted as

B̂αi,p(η) := b̂α1
i1,p1

(η1)̂bα2
i2,p2

(η2)̂bα3
i3,p3

(η3)

where η = (η1, η2, η3), and the multivariate spline space as

Ŝpα := Ŝp1
α1
⊗ Ŝp2

α2
⊗ Ŝp3

α3
= span{B̂αi,p | ik = 1, ...,mpk

αk
; k = 1, 2, 3}.

We refer to spline spaces as spaces of splines defined on the parametric domain Ω̂ := [0, 1]3.
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3.2 Isogeometric spaces

Let the computational domain Ω ⊂ R3 be given by a single-patch spline parametrization
G ∈ Ŝpα × Ŝpα × Ŝpα of degree p in each parametric direction. We assume that G is a regular
parametrization, in sense that its Jacobian is everywhere invertible.

Isogeometric spaces over Ω are suitable push-forwards, through G, of spline spaces. In
particular, in the context of the Stokes system, we focus on two discretizations of isogeometric
spaces that have been proposed in [20] and [28] respectively. Their definition and properties
are summarized in this section, see [4, 18, 20, 28, 45] for further details.

3.2.1 Taylor-Hood isogeometric spaces

The Taylor-Hood (TH) spline spaces are defined as

VTHh := Ŝp+1
α × Ŝp+1

α × Ŝp+1
α ,

QTHh := Ŝpα.

where p+ 1 := (p+ 1, p+ 1, p+ 1). For the velocity space we will also need

VTHh,0 :=
{
v̂h ∈ VTHh

∣∣∣ v̂h = 0 on ∂Ω̂
}
.

A basis for VTHh is {
ekB̂

α
i,p+1

∣∣∣ il = 1, ...,mp+1
αl

; k, l = 1, 2, 3
}
.

where ek is the k-th canonical basis vector of R3.
A basis for VTHh,0 is then{

ekB̂
α
i,p+1

∣∣∣ il = 2, ...,mp+1
αl
− 1; k, l = 1, 2, 3

}
. (3.2.1)

To each multi-index i present in (3.2.1) we associate a scalar index i, corresponding to the
colexicographical ordering of the internal degrees of freedom, such that

i = i1 − 1 + (i2 − 2)(mp+1
α1
− 2) + (i3 − 2)(mp+1

α1
− 2)(mp+1

α2
− 2)

and, with abuse of notation, we rewrite the basis of VTHh,0 as{
ekB̂

α
i,p+1

∣∣∣ i = 1, ..., nTHV,k ; k = 1, 2, 3
}
,

where nTHV,1 = nTHV,2 = nTHV,3 := (mp+1
α1 − 2)(mp+1

α2 − 2)(mp+1
α3 − 2). We also define

nTHV := dim(VTHh,0 ) = nTHV,1 + nTHV,2 + nTHV,3 .

A basis for QTHh is {
B̂αi,p

∣∣∣ il = 1, ...,mp
αl

; l = 1, 2, 3
}
. (3.2.2)

To each multi-index i present in (3.2.2) we associate a scalar index i, corresponding to the
colexicographical ordering of the internal degrees of freedom, such that

i = i1 + (i2 − 1)mp
α1

+ (i3 − 1)mp
α1
mp
α2

(3.2.3)
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and, with abuse of notation, we rewrite the basis of QTHh as{
B̂αi,p

∣∣∣ i = 1, ..., nTHQ

}
, (3.2.4)

where
nTHQ := dim(QTHh ) = mp

α1
mp
α2
mp
α3
. (3.2.5)

The TH isogeometric spaces are the isoparametric push-forwards (see [20, 28]):

VTHh,0 := span
{
φk,THi := ekB̂

α
i,p+1 ◦G−1

∣∣∣ i = 1, ..., nTHV,k ; k = 1, 2, 3
}

(3.2.6a)

QTHh := span
{
ρTHi := B̂αi,p ◦G−1

∣∣∣ i = 1, ..., nTHQ

}
. (3.2.6b)

For the discrete variational formulation of the Stokes system we will also need the space

QTHh,0 :=

{
w ∈ QTHh

∣∣∣∣ ∫
Ω
w dΩ = 0

}
. (3.2.7)

3.2.2 Raviart-Thomas isogeometric spaces

The Raviart-Thomas (RT) spline spaces are defined as

VRTh := Ŝp+e1
α+e1

× Ŝp+e2
α+e2

× Ŝp+e3
α+e3

,

QRTh := Ŝpα.

where p + e1 = (p + 1, p, p), p + e2 = (p, p + 1, p), p + e3 = (p, p, p + 1) and α + e1 =
(α1 + 1, α2, α3), α+ e2 = (α1, α2 + 1, α3), α+ e3 = (α1, α2, α3 + 1).

For the velocity space we will also need

VRTh,0 :=
{
v̂h ∈ VRTh

∣∣∣ v̂h · n̂ = 0 on ∂Ω̂
}
.

A basis for VRTh is{
ekB̂

α+ek
i,p+ek

∣∣∣ ik = 1, ...,mαk+1
p+1 ; il = 1, ...,mαl

p ; l 6= k; l, k = 1, 2, 3
}
.

A basis for VRTh,0 is then{
ekB̂

α+ek
i,p+ek

∣∣∣ ik = 2, ...,mαk+1
p+1 − 1; il = 1, ...,mαl

p ; l 6= k; l, k = 1, 2, 3
}
. (3.2.8)

To each multi-index i present in (3.2.8) we associate a scalar index i, corresponding to the
lexicographical ordering of the internal degrees of freedom, such that

for k = 1 i = i1 − 1 + (i2 − 1)(mα1+1
p+1 − 2) + (i3 − 1)(mα1+1

p+1 − 2)mα2
p ,

for k = 2 i = i1 + (i2 − 2)mα1
p + (i3 − 1)mα1

p (mα2+1
p+1 − 2),

for k = 3 i = i1 + (i2 − 1)mα1
p + (i3 − 2)mα1

p m
α2
p

and, with abuse of notation, we rewrite the basis of VRTh,0 as{
ekB̂

α+ek
i,p+ek

∣∣∣ i = 1, ..., nRTV,k; k = 1, 2, 3
}
, (3.2.9)
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where

nRTV,1 = (mα1+1
p+1 − 2)mα2

p m
α3
p , nRTV,2 = mα1

p (mα2+1
p+1 − 2)mα3

p , nRTV,3 = mα1
p m

α2
p (mα3+1

p+1 − 2).

We also define
nRTV := dim(VRTh,0 ) = nRTV,1 + nRTV,2 + nRTV,3 .

As QRTh = QTHh , a basis for QRTh is (3.2.4) and its dimension is denoted by nRTQ = nTHQ = nQ
(cfr. (3.2.5)).

The RT isogeometric spaces are defined by suitable push-forwards:

VRTh,0 := span
{
φk,RTi :=

(
(det(JG))−1JGekB̂

α+ek
i,p+ek

)
◦G−1

∣∣∣ i = 1, ..., nRTV,k; k = 1, 2, 3
}

(3.2.10a)

QRTh := span
{
ρRTi :=

(
(det(JG))−1B̂αi,p

)
◦G−1

∣∣∣ i = 1, ..., nRTQ

}
. (3.2.10b)

The push-forward employed for VRTh,0 is the Piola transform and its use is important to assure
inf-sup stability, see [28] and Section 3.3.

We remark that although in the parametric domain QRTh = QTHh , in general QRTh 6= QTHh .
For the discrete variational formulation of the Stokes system we will also need the space

QRTh,0 :=

{
w ∈ QRTh

∣∣∣∣ ∫
Ω
w dΩ = 0

}
. (3.2.11)

3.3 Isogeometric analysis of the Stokes system

As usual, let L2(Ω) be the space of square integrable functions, L∞(Ω) the space of essentially
bounded measurable functions and H1(Ω) the space of functions in L2(Ω) whose first-order
derivatives belong to L2(Ω). We define the vectorial spaces L2(Ω) :=

[
L2(Ω)

]3 and H1
0(Ω) :=[

H1
0 (Ω)

]3 endowed with the standard norms that we denote with ‖ · ‖L2(Ω) and ‖ · ‖H1(Ω),
respectively. The standard L2-scalar product is denoted with (·, ·)L2(Ω).

Then, the Stokes system reads as

−∇ · (2ν∇su) +∇q = f in Ω

∇ · u = 0 in Ω

where ∇s = 1
2

(
∇+∇T

)
, u is the velocity, q is the scalar pressure and ν > 0 is the kinematic

viscosity. We assume ν ∈ L∞(Ω) and f ∈ L2(Ω). We consider no-slip boundary conditions,
that is we impose u = 0 on ∂Ω. The pressure is determined up to a constant.

The standard (mixed) variational formulation of the problem reads: find u ∈ H1
0(Ω) and

q ∈ L2
0(Ω) := {w ∈ L2(Ω) |

∫
Ωw dΩ = 0} such that

A(u,v) + B(u, q) = (f ,v)L2(Ω) ∀v ∈H1
0(Ω) (3.3.1a)

B(u, r) = 0 ∀ r∈L2
0(Ω), (3.3.1b)

where the bilinear forms A(·, ·) and B(·, ·) are defined as

A(w,v) =

∫
Ω

2ν∇sw : ∇sv dΩ (3.3.2)

B(v, r) = −
∫

Ω
r∇ · v dΩ.
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The isogeometric Taylor-Hood (TH) discretization of Stokes system is a standard Galerkin
method for (3.3.1) and reads: find uTHh ∈ VTHh,0 and qTHh ∈ QTHh,0 such that

A(uTHh ,vh) + B(vh, q
TH
h ) = (f ,vh)L2(Ω) ∀vh ∈VTHh,0 , (3.3.3a)

B(uTHh , rh) = 0 ∀ rh ∈QTHh,0 , (3.3.3b)

where VTHh,0 and QTHh,0 are defined as (3.2.6a) and (3.2.7). A detailed analysis on the well
posedness of this problem can be found in [4, 18, 20].

The isogeometric Raviart-Thomas (RT) discretization we adopt is based on a Nitsche
formulation for the weak imposition of the tangential Dirichlet boundary condition to ensure
stability (see [45]).

The method reads: find uRTh ∈ VRTh,0 and qRTh ∈ QRTh,0 such that

A(uRTh ,vh) + σ(uRTh ,vh) + B(vh, q
RT
h ) = (f ,vh)L2(Ω) ∀vh ∈VRTh,0 , (3.3.4a)

B(uRTh , rh) = 0 ∀ rh ∈QRTh,0 , (3.3.4b)

where VRTh,0 and QRTh,0 are defined as (3.2.10a) and (3.2.11) and the bilinear form σ(·, ·) is
defined as

σ(wh,vh) :=

∫
∂Ω

2ν

[
Cpen
h
wh ·vh − ((∇swh)n) · vh − ((∇svh)n) ·wh

]
dΓ, (3.3.5)

with Cpen > 0 a penalty parameter. The well-posedness of RT discretization for Stokes
problem and the choice of Cpen are analysed in [45].

In practice, we build the linear system by replacing QTHh,0 and QRTh,0 by QTHh and QRTh ,
respectively. This means that we do not incorporate the zero-mean-value constraint into the
pressure space, since this will be taken care of by the Krylov iterative solver later.

Then, the discrete Stokes system matrix is

A =

[
A BT

B 0

]
, (3.3.6)

where

A =

A11 A12 A13

A21 A22 A23

A31 A32 A33

 , B = [B1 B2 B3],

and for TH discretization, i = 1, ..., nTHV,r , j = 1, ..., nTHV,s , r, s = 1, 2, 3 and l = 1, ..., nQ

[ATHrs ]i,j := A(φr,THi ,φs,THj ),

[BTH
r ]l,j := B(φr,THj , ρTHl ),

while for RT discretization, i = 1, ..., nRTV,r , j = 1, ..., nRTV,s , r, s = 1, 2, 3 and l = 1, ..., nQ

[ARTrs ]i,j := A(φr,RTi ,φs,RTj ) + σ(φr,RTi , φs,RTj ),

[BRT
r ]l,j := B(φr,RTj , ρRTl ),

referring to Section 3.2 for the notations of the basis.
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In particular the following expressions will be useful for the construction of the precondi-
tioner: for k = 1, 2, 3 and i, j = 1, ..., nTHV,k[

ATHkk
]
i,j

=

∫
Ω̂

(
∇B̂αi,p+1

)T
CTH
k ∇B̂αj,p+1 dη, (3.3.7)

where
CTH
k = ν(J−1

G J−TG +DkD
T
k ) |det(JG)| (3.3.8)

and Dk := J−1
G ek, while for k = 1, 2, 3 and i, j = 1, ..., nRTV,k

[
ARTkk

]
i,j

:=

∫
Ω̂

(
∇B̂α+ek

i,p+ek

)T
CRT
k ∇B̂α+ek

j,p+ek
dη

+σ
((
J̃GekB̂

α+ek
i,p+ek

)
◦G−1,

(
J̃GekB̂

α+ek
j,p+ek

)
◦G−1

)
+

∫
[0,1]3

2ν
{[
Rk

(
∇B̂α+ek

i,p+ek
J−1
G

)]s
:
[
(HGekB̂α+ek

j,p+ek
)J−1
G

]s
+
[
(HGekB̂α+ek

i,p+ek
)J−1
G

]s
:
[
Rk

(
∇B̂α+ek

j,p+ek
J−1
G

)]s
+
∣∣∣∣∣∣[(HGekB̂α+ek

j,p+ek
)J−1
G

]s∣∣∣∣∣∣2
F

}
|det(JG)| dη, (3.3.9)

where

CRT
k = ν|det(JG)|J−1

G

(
‖Rk‖22I +RkR

T
k

)
J−TG , (3.3.10)

J̃G := (det(JG))−1 JG, Rk := J̃G ek andHG is the (trivariate) Hessian tensorHG := ∇J̃G,
with the convention that, for a given vector w ∈ R3,

HGw :=
[(
∂η1 J̃G

)
w,

(
∂η2 J̃G

)
w,

(
∂η3 J̃G

)
w
]
.

Here and throughout, ‖ · ‖2 denotes the Euclidean vector norm and the induced matrix
norm, ‖ · ‖F refers to the Frobenius matrix norm and [ · ]s denotes the symmetric part. Note
that the last integral in (3.3.9) is zero when G is the identity map.

3.4 Preconditioners for the whole system

In this section we introduce the preconditioning strategies that we consider in our numerical
tests. In what follows PV represents a preconditioning matrix for the block A and PQ a
preconditioning matrix for S, where

S = BA−1BT (3.4.1)

is the (negative) Schur complement.
Once PV and PQ are constructed (this will be discussed in the next section), one can set

up suitable preconditioners to be used in the context of Krylov iterative methods [15, 43, 114,
100]. We select three approaches.

In the first one, we consider the block diagonal preconditioner [83]

PD =

[
PV 0
0 PQ

]
, (3.4.2)
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which, being symmetric and positive definite, preserves the symmetry of the problem. There-
fore it can be coupled with a method for symmetric systems such as MINRES [87]. In the
other two approaches, we respectively consider the block triangular [83] and constrained [69]
preconditioners

PT =

[
PV BT

0 −PQ

]
(3.4.3)

and

PC =

[
PV BT

B BP−1
V BT− PQ

]
, (3.4.4)

both coupled with the GMRES method [92]. We remark that P−1
C can be applied efficiently

thanks to the factorization

P−1
C =

[
InV −P−1

V BT

0 InQ

][
InV 0

0 −P−1
Q

][
InV 0

−B InQ

][
P−1
V 0

0 InQ

]
,

where, as in the rest of the thesis, Ik denotes the identity matrix of dimension k × k.

3.5 Preconditioners for PV and PQ

Our choice for the preconditioning block PV has a block diagonal structure:

PV :=

PV,1 0 0
0 PV,2 0
0 0 PV,3

 ; (3.5.1)

the blocks PV,k are a simplified version of the blocks Akk where the geometry map and the
kinematic viscosity are replaced by the identity map and identity function, respectively. In
other words, analogously to (3.3.2) and (3.3.5), we define in the parametric domain

Â(ŵ, v̂) :=

∫
Ω̂

2∇sŵ : ∇sv̂ dΩ̂,

σ̂(ŵ, v̂) :=

∫
∂Ω̂

2

[
Cpen
h
ŵ·v̂ − ((∇sŵ)n̂) · v̂ − ((∇sv̂)n̂) · ŵ

]
dΓ̂,

where n̂ is the exterior normal to the boundary ∂Ω̂. Therefore for TH discretization, according
to (3.3.7), for i, j = 1, ..., nTHV,k and k = 1, 2, 3 we define

[
P THV,k

]
i,j

:= Â(ekB̂
α
i,p+1, ekB̂

α
j,p+1) =

∫
Ω̂

(
∇B̂αi,p+1

)T
Tk∇B̂αj,p+1 dη, (3.5.2)

where Tk = I + eke
T
k , while for RT discretization, according to (3.3.9), for i, j = 1, ..., nRTV,k

and k = 1, 2, 3 we define[
PRTV,k

]
i,j

:= Â(ekB̂
α+ek
i,p+ek

, ekB̂
α+ek
j,p+ek

) + σ̂
(
ekB̂

α+ek
i,p+ek

, ekB̂
α+ek
j,p+ek

)
=

∫
Ω̂

(
∇B̂α+ek

i,p+ek

)T
Tk∇B̂α+ek

j,p+ek
dη + σ̂

(
ekB̂

α+ek
i,p+ek

, ekB̂
α+ek
j,p+ek

)
. (3.5.3)
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Exploiting the tensor product structure of the basis functions, we can write

P THV,1 = KTH
3 ⊗MTH

2 ⊗MTH
1 +MTH

3 ⊗KTH
2 ⊗MTH

1 + 2MTH
3 ⊗MTH

2 ⊗KTH
1 , (3.5.4a)

P THV,2 = KTH
3 ⊗MTH

2 ⊗MTH
1 + 2MTH

3 ⊗KTH
2 ⊗MTH

1 +MTH
3 ⊗MTH

2 ⊗KTH
1 , (3.5.4b)

P THV,3 = 2KTH
3 ⊗MTH

2 ⊗MTH
1 +MTH

3 ⊗KTH
2 ⊗MTH

1 +MTH
3 ⊗MTH

2 ⊗KTH
1 , (3.5.4c)

and

PRTV,1 = K̃RT
3 ⊗M̃RT

2 ⊗MRT
1 + M̃RT

3 ⊗K̃RT
2 ⊗MRT

1 + 2M̃RT
3 ⊗M̃RT

2 ⊗KRT
1 , (3.5.5a)

PRTV,2 = K̃RT
3 ⊗MRT

2 ⊗M̃RT
1 + 2M̃RT

3 ⊗KRT
2 ⊗M̃RT

1 + M̃RT
3 ⊗MRT

2 ⊗K̃RT
1 , (3.5.5b)

PRTV,3 = 2KRT
3 ⊗M̃RT

2 ⊗M̃RT
1 +MRT

3 ⊗K̃RT
2 ⊗M̃RT

1 +MRT
3 ⊗M̃RT

2 ⊗K̃RT
1 , (3.5.5c)

where for k = 1, 2, 3 the univariate matrix factors are[
KTH
k

]
l−1,s−1

=

∫
[0,1]

(̂bαkl,p+1)′(ηk)(̂b
αk
s,p+1)′(ηk) dηk, l, s = 2, ...,mp+1

αk
−1,

[
MTH
k

]
l−1,s−1

=

∫
[0,1]̂
bαkl,p+1(ηk) b̂

αk
s,p+1(ηk) dηk, l, s = 2, ...,mp+1

αk
−1,

and [
KRT
k

]
l−1,s−1

=

∫
[0,1]

(̂bαk+1
l,p+1)′(ηk)(̂b

αk+1
s,p+1)′(ηk) dηk, l, s = 2, ...,mαk+1

p+1 −1,

[
MRT
k

]
l−1,s−1

=

∫
[0,1]̂
bαk+1
l,p+1 (ηk) b̂

αk+1
s,p+1(ηk) dηk, l, s = 2, ...,mαk+1

p+1 −1,[
K̃RT
k

]
l,s

=

∫
[0,1]

(̂bαkl,p)′(ηk)(̂b
αk
s,p)
′(ηk) dηk −

[
(̂bαkl,p)′(1)̂bαks,p(1)−(̂bαkl,p)′(0)̂bαks,p(0)

+(̂bαks,p)
′(1)̂bαkl,p(1)− (̂bαks,p)

′(0)̂bαkl,p(0)− 2
Cpen
h

(
b̂αkl,p (1)̂bαks,p(1)

+b̂αkl,p(0)̂bαks,p(0)
)]
, l, s = 1, ...,mαk

p ,[
M̃RT
k

]
l,s

=

∫
[0,1]̂
bαkl,p(ηk) b̂

αk
s,p(ηk) dηk, l, s = 1, ...,mαk

p .

Now we consider the construction of PQ. The Schur complement S is spectrally equivalent
to the (weighted) pressure mass matrix

[
QTH

]
i,j

:=

∫
Ω
ν−1ρTHi ρTHj dΩ =

∫
Ω̂
ν−1B̂αi,pB̂

α
j,p g

TH dη,[
QRT

]
i,j

:=

∫
Ω
ν−1ρRTi ρRTj dΩ =

∫
Ω̂
ν−1B̂αi,pB̂

α
j,p g

RT dη,

(3.5.6)

for i, j = 1, ..., nQ, where gTH(η) := |det(JG)| and gRT (η) := |det(JG)|−1. The equivalence
holds uniformly with respect to a variable kinematic viscosity ν, see [58]. However, as for PV ,
in our simple approach we drop the dependence on ν and the geometry mapping, by selecting:[

P THQ
]
i,j

:=
[
PRTQ

]
i,j

:=

∫
Ω̂
B̂αi,pB̂

α
j,p dη i, j = 1, ..., nQ;

as for (3.5.2) and (3.5.3). Exploiting again the tensor product structure of the basis we can
write PQ as

PQ = M3 ⊗M2 ⊗M1, (3.5.7)
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where for k = 1, 2, 3

[Mk]l,s =

∫
[0,1]

b̂αkl,p(ηk) b̂
αk
s,p(ηk) dηk, l, s = 1, ...,mp

αk
.

3.5.1 Spectral properties

A desirable requirement for all the strategies proposed in Section 3.4 is that PV and PQ are
spectrally equivalent to A and Q, respectively. We analyse here the spectral properties of
P−1
V A and P−1

Q Q. We refer to [43, Section 4.2], where such properties are used to derive
explicit bounds for the eigenvalues of the preconditioned system P−1A, in the special case
of the block diagonal preconditioner. In particular, if the eigenvalues of P−1

V A and P−1
Q Q

are bounded away from 0 and infinity uniformly with respect to h and p, then so are the
eigenvalues of the full system.

The bilinear forms A(·, ·) and Â(·, ·) satisfy

2CKornνmin |v|2H1(Ω) ≤A(v,v)≤ 2νmax |v|2H1(Ω) ∀v ∈ H1
0(Ω), (3.5.8)

2ĈKorn |v̂|2H1(Ω̂)
≤Â(v̂, v̂)≤ 2 |v̂|2

H1(Ω̂)
∀ v̂ ∈ H1

0(Ω̂), (3.5.9)

where CKorn and ĈKorn are the Korn constants (for homogeneous Dirichlet boundary condi-
tions on the whole boundary we have CKorn = ĈKorn = 1/2, see [31, Section 6.3]) and

νmin := inf
Ω
ν, νmax := sup

Ω
ν.

We also have that the bilinear forms A(·, ·) + σ(·, ·) and Â(·, ·) + σ̂(·, ·) in the discrete spaces
satisfy

C1‖vh‖2H1
pen(Ω) ≤ A(vh,vh) + σ(vh,vh) ≤ C2‖vh‖2H1

pen(Ω) ∀vh ∈ VRTh,0 , (3.5.10)

Ĉ1‖v̂h‖2H1
pen(Ω̂)

≤ Â(v̂h, v̂h) + σ̂(v̂h, v̂h) ≤ Ĉ2‖v̂h‖2H1
pen(Ω̂)

∀ v̂h ∈ VRTh,0 , (3.5.11)

where the norm ‖ · ‖
H1
pen(Ω̂)

is defined as ‖ · ‖2H1
pen(Ω) := ‖ · ‖2H1(Ω) +

Cpen
h ‖ · ‖

2
L2(∂Ω) and C1,

C2, Ĉ1 and Ĉ2 are constants depending on Cpen and on the inverse estimate constants of the
discrete spaces VRTh,0 and VRTh,0 respectively: these inequalities follow from [45, Lemma 6.2],
[45, Lemma 6.3],[45, Eq. (6.9)] and the equivalence between ‖ · ‖H1

pen(Ω) and | · |2H1
pen(Ω) :=

| · |2H1(Ω) +
Cpen
h ‖ · ‖2L2(∂Ω).

We start by proving bounds on the eigenvalues of P−1
V A.

Theorem 3.1. It holds

δ ≤ λmin

(
P−1
V A

)
, λmax

(
P−1
V A

)
≤ ∆, (3.5.12)

where δ and ∆ are positive constants that do not depend on h or on p.

Proof. We begin with TH discretization case, proving (3.5.12) for δ = δTH and ∆ = ∆TH .
Let v̂h ∈ VTHh,0 and let vh := v̂h ◦G−1 ∈ VTHh,0 . Moreover, let v be the coordinate vector of v̂h
with respect to the basis (3.2.8). By the Courant-Fischer theorem, (3.5.12) is equivalent to
find δTH and ∆TH such that

δTH ≤ vTATHv

vTP THV v
≤ ∆TH .
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Using (3.5.8), we have

2CKornνmin |vh|2H1(Ω) ≤ vTATHv ≤ 2νmax |vh|2H1(Ω) .

Using (3.5.9) and decomposing v̂h = v̂h,1+v̂h,2+v̂h,3, where v̂h,k are the Cartesian components
of v̂h, we have for k = 1, 2, 3,

2ĈKorn |v̂h,k|2H1(Ω̂)
≤ Â(v̂h,k, v̂h,k) ≤ 2 |v̂h,k|2H1(Ω̂)

;

summing the three bounds above and using Â(v̂h,1, v̂h,1) + Â(v̂h,2, v̂h,2) + Â(v̂h,3, v̂h,3) =
vTP THV v yields

2ĈKorn |v̂h|2H1(Ω̂)
≤ vTP THV v ≤ 2 |v̂h|2H1(Ω̂)

;

in conclusion it suffices to prove

δTH

CKornνmin
≤
|vh|2H1(Ω)

|v̂h|2H1(Ω̂)

≤ ĈKorn∆TH

νmax
, (3.5.13)

for suitable δTH and ∆TH and for all all v̂h ∈ VTHh,0 with vh =: v̂h ◦G−1 ∈ VTHh,0 . In other
words, we just need to prove the equivalence between |vh|H1(Ω) and |v̂h|H1(Ω̂)

. One of the two
bounds is

|vh|2H1(Ω)=

∫
Ω
‖∇vh‖2F dΩ =

∫
Ω̂
|det (JG)|

∥∥∇v̂hJ−1
G

∥∥2

F
dη

≤ sup
Ω̂

{
|det (JG)|

∥∥J−1
G

∥∥2

2

}∫
Ω̂
‖∇v̂h‖2F dη = sup

Ω̂

{
|det (JG)|

∥∥J−1
G

∥∥2

2

}
|v̂h|2H1(Ω̂)

,

(3.5.14)

where we used the fact that, given any two matrices X,Y with conforming dimensions, it
holds ‖XY ‖2F ≤ ‖X‖

2
F ‖Y ‖

2
2. For the other bound, just observe that v̂h := vh ◦G, and then

|v̂h|2H1(Ω̂)
≤ sup

Ω

{
|det (JG−1)|

∥∥J−1
G−1

∥∥2

2

}
|vh|2H1(Ω) = sup

Ω̂

{
‖JG‖22
|det (JG)|

}
|vh|2H1(Ω) . (3.5.15)

This concludes the proof for the TH case.
The RT case is similar, we just highlight the differences. As above, from (3.5.10) and

(3.5.11), we get
C1‖vh‖2H1

pen(Ω) ≤ vTARTv ≤ C2‖vh‖2H1
pen(Ω), (3.5.16)

Ĉ1‖v̂h‖2H1
pen(Ω̂)

≤ vTPRTV v ≤ Ĉ2‖v̂h‖2H1
pen(Ω̂)

, (3.5.17)

where v̂h ∈ VRTh,0 , vh = ((det(JG))−1JGv̂h)◦G−1 = (J̃Gv̂h)◦G−1 ∈ VRTh,0 and v is the common
coordinate vector. Then, we look for δRT and ∆RT such that

δRT
Ĉ2

C1
≤
‖vh‖2H1

pen(Ω)

‖v̂h‖2H1
pen(Ω̂)

≤ Ĉ1

C2
∆RT .
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Direct computation shows that ∇
(
J̃Gv̂h

)
= J̃G∇v̂h+HGv̂h, where J̃G and HG as in Section

3.3. It holds

|vh|2H1(Ω)=

∫
Ω
‖∇vh‖2F dΩ =

∫
Ω̂
|det(JG)|

∥∥∥∇(J̃Gv̂h) J−1
G

∥∥∥2

F
dΩ̂

≤ 2

∫
Ω̂
|det(JG)|

(∥∥∥J̃G∇v̂hJ−1
G

∥∥∥2

F
+
∥∥(HGv̂h) J−1

G

∥∥2

F

)
dΩ̂

≤ 2 sup
Ω̂

{
|det(JG)|

∥∥J−1
G

∥∥2

2

∥∥∥J̃G∥∥∥2

2
, |det(JG)|

∥∥J−1
G

∥∥2

2
‖HG‖2F

}
‖v̂h‖2H1(Ω̂)

,

where ‖HG‖2F is the Frobenius tensor norm of HG. Moreover, it holds

‖vh‖2L2(Ω) =

∫
Ω
|vh|2dΩ =

∫
Ω̂
|det(JG)|

∥∥∥J̃Gv̂h∥∥∥2

2
dΩ̂

≤ sup
Ω̂

{
|det(JG)|

∥∥∥J̃G∥∥∥2

2

}
‖v̂h‖2L2(Ω̂)

,

‖vh‖2L2(∂Ω)=

∫
∂Ω
|vh|2dΓ ≤ ‖cof(∇G)‖

L∞(Ω̂),l

∫
∂Ω̂

∥∥∥J̃Gv̂h∥∥∥2

2
dΓ̂

≤ ‖cof(∇G)‖
L∞(Ω̂),l

sup
∂Ω̂

{∥∥∥J̃G∥∥∥2

2

}
‖v̂h‖2L2(∂Ω̂)

where cof(·) refers to the matrix of the cofactors and ‖·‖
L∞(Ω̂),l

is defined as in [48].
By observing that v̂h = (J̃G−1vh) ◦G, we can use a similar argument to show that

|v̂h|2H1(Ω̂)
≤ 2 sup

Ω

{
|det(JG−1)|

∥∥J−1
G−1

∥∥2

2

∥∥∥J̃G−1

∥∥∥2

2
, |det(JG−1)|

∥∥J−1
G−1

∥∥2

2
‖HG−1‖2F

}
‖vh‖2H1(Ω) ,

‖v̂h‖2L2(Ω̂)
≤ sup

Ω

{
|det(JG−1)|

∥∥∥J̃G−1

∥∥∥2

2

}
‖vh‖2L2(Ω) ,

‖v̂h‖2L2(∂Ω̂)
≤
∥∥cof(∇G−1)

∥∥
L∞(Ω),l

sup
∂Ω

{∥∥∥J̃G−1

∥∥∥2

2

}
‖vh‖2L2(∂Ω) .

This concludes the analysis of the RT case.

We next analyse P−1
Q Q.

Theorem 3.2. It holds

θ ≤ λmin

(
P−1
Q Q

)
, λmax

(
P−1
Q Q

)
≤ Θ, (3.5.18)

where θ and Θ are positive constants that do not depend on h or on p.

Proof. We report the proof for TH discretization. The proof for the RT discretization can be
derived in an analogous way.

By Courant-Fischer theorem, we need to prove

θ ≤ 〈Qg,g〉
〈PQg,g〉

≤ Θ ∀g ∈ RnQ .
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Let g ∈ RnQ and gh =
∑nQ

i=1[g]iB̂
α
i,p. It holds

gTQTHg =

∫
Ω̂
g2
hν
−1|det(JG)| dΩ̂ ≤ sup

Ω̂

(
|det(JG)| ν−1

) ∫
Ω̂
g2
h dΩ̂

≤ sup
Ω̂

(
|det(JG)| ν−1

)
gTP THQ g, (3.5.19)

and, in an analogous way, one can prove the other side of the inequality.

Remark 3.1. The constants δ, ∆, θ and Θ depend on the parametrization G and on the
kinematic viscosity ν. This dependence can be inferred from the proof of Theorems 3.1–3.2.
Considering for example the TH case, from (3.5.13)–(3.5.15) and using[

sup
Ω̂

{
‖JG‖22
|det (JG)|

}]−1

= inf
Ω̂

{
|det (JG)|
‖JG‖22

}
,

we get to the following admissible choices

δTH = CKornνmininf
Ω̂

{
|det (JG)|
‖JG‖22

}
and ∆TH = Ĉ−1

Kornνmaxsup
Ω̂

{
|det (JG)| ‖JG‖22

}
.

In a similar way, from (3.5.19), we have following admissible choices

θTH = inf
Ω̂

(|det(JG)|ν−1), and ΘTH = sup
Ω̂

(|det(JG)|ν−1).

3.5.2 Preconditioners application by the fast diagonalization method

At each iteration of our iterative solver we have to solve

Ps = r, (3.5.20)

where r is the current residual and P is a preconditioner, that can be either matrix from
(3.4.2), (3.4.3) or (3.4.4). Besides multiplications by B or BT , to accomplish this task we
need to solve the linear systems with matrices PV and PQ. Thanks to (2.2.3), (2.2.5) and the
band structure of the univariate factors in (3.5.7), the solution of a linear system with matrix
PQ is obtained in a direct way with only O(pnQ) FLOPs.

On the other hand, the solution of a linear system with matrix PV requires to solve three
Sylvester-like equations, one for each diagonal block PV,k. Following [93], to accomplish this
aim we use the fast diagonalization (FD) direct method. We refer to Section 2.3 for the
two-dimensional case. Here, we briefly explain its main features in three dimensions.

Consider the general Sylvester-like system:

Rq := (K3 ⊗M2 ⊗M1 +M3 ⊗K2 ⊗M1 +M3 ⊗M2 ⊗K1) q = t, (3.5.21)

with both Mi and Ki symmetric and positive definite matrices for i = 1, 2, 3. We assume for
simplicity that the matrices Ki and Mi all have the same order n for i = 1, 2, 3. Let

KiUi = MiUiDi, i = 1, 2, 3, (3.5.22)

be the eigendecomposition of the pencils (Ki,Mi), where Di are diagonal matrices containing
the eigenvalues of M−1

i Ki and UTi MiUi = In. We have Mi = U−Ti U−1
i and Ki = U−Ti DiU

−1
i .
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Then, we can factorize R as

R = (U3 ⊗ U2 ⊗ U1)−T (In ⊗ In ⊗D1 + In ⊗D2 ⊗ In +D3 ⊗ In ⊗ In)(U3 ⊗ U2 ⊗ U1)−1.

Exploiting (2.2.1), (2.2.5) and the factorization above, the solution of (3.5.21) can be com-
puted by the following algorithm.

Algorithm 2 3D FD method
1: Setup: Compute the generalized eigendecompositions (3.5.22)
2: Application: Compute t̃ = (U3 ⊗ U2 ⊗ U1)T t
3: Compute q̃ = (In ⊗ In ⊗D1 + In ⊗D2 ⊗ In +D3 ⊗ In ⊗ In)−1 t̃
4: Compute q = (U3 ⊗ U2 ⊗ U1) q̃

Algorithm 2 requires 12n4 +O(n3) = 12N
4/3
dof +O(Ndof ) FLOPs, where Ndof = n3 denotes

the order of R. Step 1, i.e the setup, and Step 3 are optimal as they require only O(Ndof )

FLOPs. The asymptotic dominant cost, i.e. 12N
4/3
dof FLOPs, is related to the matrix-matrix

products of step 2 and step 4. However Step 2 and Step 4, being BLAS level 3 operations,
are typically implemented in a highly efficient way on modern computers. As a consequence,
despite their superlinear computational cost, in practice they do not dominate the compu-
tational time of the overall iterative strategy (see the numerical experiments of [93] and the
ones in the present chapter for more details on this important point).

3.5.3 Inclusion of the geometry and coefficients information in PV and PQ

The proposed preconditioners PV and PQ are robust with respect to the mesh size and spline
degree. However they do not incorporate any information from the coefficients (either the
geometry map G and or the kinematic viscosity ν) and in fact the preconditioner’s quality is
affected from the coefficients. This is reflected in the analysis of Section 3.5.1 (see Remark
3.1 for the TH case). Numerical tests of Section 3.6 confirm this expectation. We therefore
present two strategies that partially incorporate ν and G in PV and PQ, without increasing
the preconditioners computational cost.

First, we consider a diagonal scaling. In particular, we replace PQ by PGQ := D
1/2
Q PQD

1/2
Q ,

where DQ is a diagonal matrix having diagonal entries

[DQ]i,i = [Q]i,i / [PQ]i,i .

Even though we postpone a mathematical analysis of it to a further work, the numerical tests
in Section 3.6 show that this cheap modification of the preconditioner is sufficient to give PGQ
robustness with respect to the coefficients (not only G, as indicated, but also ν).

The same idea, applied to PV , while able to incorporate efficiently the contribution of
the scalar coefficient ν, is less effective when the geometry parametrization is far from a
scaled identity. In this case we propose to incorporate some components of the geometry
parametrization into the univariate matrix factors appearing in (3.5.4) and (3.5.5) in order to
build a preconditioner

_

PV such that Algorithm 2 can still be used. We focus on the diagonal
blocks Akk and we incorporate in PV some information on the parametrization present in the
Akk by making approximations of the full matrix Ck (see equations (3.3.8), (3.3.10)), whose
entries are functions of three variables that we denote with [Ck]i,j(η):

Ck(η) =

[Ck]1,1(η) [Ck]1,2(η) [Ck]1,3(η)
[Ck]2,1(η) [Ck]2,2(η) [Ck]2,3(η)
[Ck]3,1(η) [Ck]3,2(η) [Ck]3,3(η)

 . (3.5.23)
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We discard the off-diagonal terms and approximate the diagonal entries [Ck]1,1(η), [Ck]2,2(η)
and [Ck]3,3(η) by the algorithm reported in Appendix A as follows

Ck(η) ≈
_

Ck(η) :=

ωk1 (η1)µk2(η2)µk3(η3) 0 0
0 µk1(η1)ωk2 (η2)µk3(η3) 0
0 0 µk1(η1)µk2(η2)ωk3 (η3)

 .
The approximation above is computed directly at the quadrature points, hence no function
space has to be selected a-priori. The cost of this algorithm is proportional to the number of
quadrature points, hence in our setting it requires O(nelp

d) FLOPs. This cost could be easily
reduced by computing the approximation on a coarser grid of points, and then extending by
interpolation, as we do in the other chapter. However this is not necessary, since such cost is
already negligible in the context of the iterative procedures considered in this chapter, as can
be seen e.g. by comparing Tables 3.3 and 3.7.

Keeping the block-diagonal structure of PV (cfr. (3.5.1)), we define for the TH discretiza-
tion, k = 1, 2, 3 and i, j = 1, ..., nTHV,k[

_

P THV,k

]
i,j

:=

∫
Ω̂

(
∇B̂αi,p+1

)T _

CTH
k ∇B̂αj,p+1 dη,

while for the RT discretization, k = 1, 2, 3 and i, j = 1, ..., nRTV,k[
_

PRTV,k

]
i,j

:=

∫
Ω̂

(
∇B̂α+ek

i,p+ek

)T _

CRT
k ∇ B̂α+ek

j,p+ek
dη + 2

∫
∂Ω̂

[
Cpen
h

B̂α+ek
i,p+ek

ek ·
(
_

CRT
k ekB̂

α+ek
j,p+ek

)
−
((
∇s
(
ekB̂

α+ek
i,p+ek

)
n̂
))
·
(
_

CRT
k ekB̂

α+ek
j,p+ek

)
−
((
∇s
(
ekB̂

α+ek
j,p+ek

)
n̂
))
·
(
_

CRT
k ekB̂

α+ek
i,p+ek

)]
dΓ̂.

The preconditioners
_

PV,k maintain the tensor structure of (3.5.4) and (3.5.5):
_

P THV,1 = K1,TH
3 ⊗M1,TH

2 ⊗M1,TH
1 +M1,TH

3 ⊗K1,TH
2 ⊗M1,TH

1 +M1,TH
3 ⊗M1,TH

2 ⊗K1,TH
1 ,

_

P THV,2 = K2,TH
3 ⊗M2,TH

2 ⊗M2,TH
1 +M2,TH

3 ⊗K2,TH
2 ⊗M2,TH

1 +M2,TH
3 ⊗M2,TH

2 ⊗K2,TH
1 ,

_

P THV,3 = K3,TH
3 ⊗M3,TH

2 ⊗M3,TH
1 +M3,TH

3 ⊗K3,TH
2 ⊗M3,TH

1 +M3,TH
3 ⊗M3,TH

2 ⊗K3,TH
1 ,

_

PRTV,1 = K̃1,RT
3 ⊗M̃1,RT

2 ⊗M1,RT
1 + M̃1,RT

3 ⊗K̃1,RT
2 ⊗M1,RT

1 + M̃1,RT
3 ⊗M̃1,RT

2 ⊗K1,RT
1 ,

_

PRTV,2 = K̃2,RT
3 ⊗M2,RT

2 ⊗M̃2,RT
1 + M̃2,RT

3 ⊗K2,RT
2 ⊗M̃2,RT

1 + M̃2,RT
3 ⊗M2,RT

2 ⊗K̃2,RT
1 ,

_

PRTV,3 = K3,RT
3 ⊗M̃3,RT

2 ⊗M̃3,RT
1 +M3,RT

3 ⊗K̃3,RT
2 ⊗M̃3,RT

1 +M3,RT
3 ⊗M̃3,RT

2 ⊗K̃3,RT
1 ,

where, for d, k = 1, 2, 3 and l, s = 2, ...,mp+1
αk − 1 the new pairs (Kd

k ,M
d
k ) are defined as[

Kd,TH
k

]
l−1,s−1

=

∫
[0,1]
ωd,THk (ηk)(̂b

αk
l,p+1)′(ηk)(̂b

αk
s,p+1)′(ηk) dηk,[

Md,TH
k

]
l−1,s−1

=

∫
[0,1]
µd,THk (ηk )̂b

αk
l,p+1(ηk) b̂

αk
s,p+1(ηk) dηk,[

Kd,RT
k

]
l−1,s−1

=

∫
[0,1]
ωd,RTk (ηk)(̂b

αk+1
l,p+1 )′(ηk)(̂b

αk+1
s,p+1)′(ηk) dηk,

[
Md,RT
k

]
l−1,s−1

=

∫
[0,1]
µd,RTk (ηk )̂b

αk+1
l,p+1 (ηk) b̂

αk+1
s,p+1(ηk) dηk,
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while for d, k = 1, 2, 3 and l, s = 1, ...,mαk
p the pairs (K̃d

k , M̃
d
k ) are defined as[

K̃d,RT
k

]
l,s

=

∫
[0,1]
ωd,RTk (ηk)(̂b

αk
l,p)′(ηk)(̂b

αk
s,p)
′(ηk) dηk

−
[
ωd,RTk (1)(̂bαkl,p)′(1)̂bαks,p(1)− ωd,RTk (0)(̂bαkl,p)′(0)̂bαks,p(0)

+ωd,RTk (1)(̂bαks,p)
′(1)̂bαkl,p(1)− ωd,RTk (0)(̂bαks,p)

′(0)̂bαkl,p(0)

−2
Cpen
h

(
ωd,RTk (1)̂bαkl,p(1)̂bαks,p(1) + ωd,RTk (0)̂bαkl,p (0)̂bαks,p(0)

)]
,

,[
M̃d,RT
k

]
l,s

=

∫
[0,1]
µd,RTk (ηk )̂b

αk
l,p(ηk) b̂

αk
s,p(ηk) dηk.

Then, we apply a diagonal scaling. This leads to an effective preconditioner having the
form PGV := D

1/2
V

_

PVD
1/2
V , where DV has diagonal entries [DV ]i,i = [A]i,i /

[
_

PV

]
i,i
.

We use the following notation: PGD , P
G
T and PGC are the preconditioner matrices for the

Stokes system obtained by replacing PV and PQ with PGV and PGQ in (3.4.2), (3.4.3) and
(3.4.4), respectively. The corresponding preconditioned strategies are then referred to as
PGD-MINRES, PGT -GMRES and PGC -GMRES.

3.6 Numerical results

We present here numerical experiments to show the performance of our preconditioning strate-
gies. All the tests are performed by Matlab (version 8.5.0.197613 R2015a) and using the
GeoPDEs toolbox [111], on a Intel Xeon i7-5820K processor, running at 3.30 GHz, and with
64 GB of RAM. We restrict our tests to a single computational thread. Indeed, even though
our strategy would likely benefit from parallelization on a multicore hardware, as its main
computational efforts are matrix products, a careful analysis of the parallel implementation
would require an in-depth study, which is beyond the scope of this work.

In the construction and application of our preconditioner the two dominant steps are the
eigendecomposition of the univariate matrices (step 1 in Algorithm 2) and the multiplication
of Kronecker matrices (steps 2 and 4 in Algorithm 2). These two key operations are performed
by the eig Matlab function and by the Tensorlab toolbox [102], respectively. The tolerance of
both MINRES and GMRES is set to 10−8 and the initial guess is the null vector in all tests.

As a comparison, we consider a block-diagonal preconditioner based on an incomplete
Cholesky factorization. In our case, the zero-fill incomplete Cholesky factorization, denoted
IC(0), is computed by the MATLAB ichol routine for the matrix

A11 0 0 0
0 A22 0 0
0 0 A33 0
0 0 0 Q


and then used in a Conjugate Gradient (CG) inner iteration in order to approximate the
application of the ideal preconditioner

A11 A12 A13 0
A21 A22 A23 0
A31 A32 A33 0
0 0 0 Q

 . (3.6.1)
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This strategy is denoted IC(0)-MINRES. The tolerance of this inner CG loop is set to 10−2 as
this maximizes the efficiency of the overall strategy in the numerical tests we consider below.
The inner loop is needed to achieve robustness with respect to h, while robustness with respect
to p is common for incomplete factorizations. For this reason, incomplete factorizations are
often adopted in IGA as preconditioners: in the context of the Stokes system, see [35] where
a similar approach is considered and benchmarked.

We remark that the geometry parametrization, without simplifications, is directly incorpo-
rated in the preconditioner (3.6.1). Therefore, as it is seen in the tests below, IC(0)-MINRES
behaves quite robustly with respect to the geometry parametrizations (since λmax

(
Q−1BA−1BT

)
and λmin

(
Q−1BA−1BT

)
depend on Ω, some dependence on the shape of the domain is un-

avoidable), while the geometry parametrization has a critical role in our strategies. Also for
this reason, IC(0)-MINRES is an important term of comparison.

We consider three different geometries, with increasing complexity (from the point of view
of the geometry parametrization): the cube, the eighth of annulus, and a hollow torus with
an eccentric annular cross-section (see Figure 5.1).

As discussed in Section 3.3, the Stokes problem is discretized using the spaces VTHh,0 , QTHh,0 ,
VRTh,0 and QRTh,0 defined respectively in (3.2.6a), (3.2.7), (3.2.10a) and (3.2.11). In all our
tests we choose a uniform regularity α = (α, α, α) with α = p − 1, except for the hollow
torus domain where the spaces are C0 at the boundary of the initial mesh elements, and Cα,
α = p − 1, once the mesh is refined. Note that p always refers to the spline degree of the
pressure space. For Raviart-Thomas discretizations we choose Cpen = 5(α + 1) in (3.3.5), as
it numerically leads to stable schemes (see [45]).

Tables 3.1–3.10 report the total solving time, which includes the preconditioner setup
and the MINRES/ GMRES iterations. However, we exclude the time for the formation of
the pressure mass matrix Q, which is needed in IC(0) and PGD , PGT , PGC setup (though
only the main diagonal of Q is needed in our approaches, and, in all cases, only a low-order
approximation of Q is needed for preconditioning). Indeed, it is well known that the formation
of isogeometric matrices is expensive unless ad-hoc routines are adopted (e.g. the weighted-
quadrature approach [30] or the low-rank approach [78]). In this work, we only focus on
the solver and do not address the efficient formation of the matrix. We denote by nel the
number of elements in each parametric direction. The symbol “∗” denotes the impossibility
of formation of the matrix A, due to memory requirements.

In Table 3.7 we report, only for the eighth of annulus testcase, the preconditioner setup
time and the preconditioner application time, separately, and in Table 3.8 we report the
percentage of computing time spent in the preconditioner application. Finally, Table 3.11
contains number of iterations and solving times obtained with three different choices of vari-
able kinematic viscosity ν in the hollow torus domain.

Cube. We first consider the symmetric driven cavity problem in Ω = Ω̂ = [0, 1]3 (Figure
4.1b). In this case, G is the identity map and therefore Akk = PV,k. Homogeneous boundary
conditions for the velocity on the lateral sides of the cube and a velocity equal to [1, 0, 0]T at
the top and to [−1, 0, 0]T at the bottom are imposed, while f is the null function and ν = 1.

In Table 3.1 we report, for the TH discretization, PD-MINRES and IC(0)-MINRES per-
formances. The former is much faster, especially for high degree. PD-MINRES results with
RT discretization are reported in Table 3.2. The computational time is lower compared to
TH discretization since, for equal mesh sizes, the TH velocity space is about 23 times bigger
than the one for RT. In all cases the number of iterations is uniformly bounded with respect
to p and nel.
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(a) Cube. (b) One eighth of thick
annulus.

(c) Hollow torus. (d) Hollow torus (cross
section).

Figure 3.1: Stokes system. Computational domains.
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(TH) PD-MINRES Iterations / Time
nel p = 2 p = 3 p = 4 p = 5

4 48 / 0.16 51 / 0.21 52 / 0.43 52 / 0.81
8 53 / 0.74 53 / 1.49 53 / 3.01 53 / 5.70
16 56 / 5.61 56 / 12.76 56 / 26.54 56 / 51.00
32 56 / 52.23 56 / 114.07 ∗ ∗

(TH) IC(0)-MINRES Iterations / Time
nel p = 2 p = 3 p = 4 p = 5

4 35 / 0.22 37 / 0.69 37 / 1.71 37 / 3.77
8 34 / 2.82 37 / 7.22 35 / 16.10 36 / 33.76
16 35 / 35.09 35 / 74.34 35 / 151.87 35 / 305.90
32 36 / 482.25 36 / 902.51 ∗ ∗

Table 3.1: Stokes system. Cube domain (TH). Performance of PD-MINRES
(upper table) and IC(0)-MINRES (lower table).

(RT) PD-MINRES Iterations / Time
nel p = 2 p = 3 p = 4 p = 5

4 43 / 0.13 46 / 0.18 48 / 0.23 48 / 0.39
8 54 / 0.23 52 / 0.44 52 / 0.85 52 / 1.59
16 55 / 0.95 53 / 2.56 52 / 4.77 52 / 9.02
32 55 / 6.39 54 / 16.67 52 / 34.58 ∗

Table 3.2: Stokes system. Cube domain (RT). Performance of PD-MINRES.
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One eighth of thick annulus. Now we consider the eighth of a thick annulus domain
(Figure 3.1b). The internal radius and the height are equal to 1, while the external radius
is equal to 2. The boundary data represent a generalization of the symmetric driven cavity
boundary conditions, i.e. the velocity is constrained to be [−1, 0, 0]T on the set {y = 0} and
[
√

2/2,
√

2/2, 0]T on the opposite side, while homogeneous boundary conditions are imposed
anywhere else. Note that in this case Akk 6= PV,k. The kinematic viscosity ν is constant and
equal to 1.

Table 3.3 shows the results of PD-MINRES, PGD-MINRES and IC(0)-MINRES for TH
discretization. Again, IC(0)-MINRES is not competitive with PD-MINRES and PGD-MINRES
in terms of computing time. The use of PGD-MINRES halves the number of iterations and the
solving time w.r.t. PD-MINRES, indicating that the inclusion of some geometry information
improves the performance of the preconditioner. In Table 3.4 we report results for PGD-
MINRES with RT discretization. The performances of PGT -GMRES and PGC -GMRES with
TH and RT discretizations are reported in Table 3.5 and Table 3.6 respectively. We do not
report results for PT -GMRES and PC-GMRES, as the effect of not including any geometry
in the preconditioners is similar to the case of the block diagonal preconditioner. We see
that, though the number of iterations of both PGT -GMRES and PGC -GMRES is lower than
PGD-MINRES, they are comparable to it in terms of CPU time. This is due to the higher
application cost of the block triangular and constraint preconditioners (which is mainly related
to the matrix-vector products with B and BT ). We emphasize that, again, in all the FD-based
strategies the number of iterations is uniformly bounded with respect to p and nel.

In order to better understand the behaviour of the preconditioners, and identify directions
of further improvements, we analyse in Table 3.7 the computational costs for the setup and
the application of the preconditioners. We recall that for IC(0)-MINRES, the application
corresponds to the execution of the inner CG iterative solver with residual tolerance 10−2.
In all cases, we assume the pressure mass matrix Q is given. Table 3.7 reports the total
time spent in the preconditioner setup and application. We clearly see that the FD-based
preconditioners are much faster than the incomplete factorization. Note that the setup time
for PGD is higher than for PD due to the cost of computing the separable approximation of the
geometry (see the Appendix): further studies and tune up of this procedure will be considered
in our following works.

In Table 3.8, preconditioner application time is compared with the overall computation
time of the iterative solver. With PGD-MINRES strategy, the percentage of time spent for the
preconditioner is negligible, e.g. when p = 5 and nel = 16 it is less than 1%. The computation
time is indeed mainly spent in the matrix-vector multiplication. This situation suggests that
further improvements could be obtained shifting towards a matrix-free implementation [94].

The results of Table 3.7 and 3.8 clearly show that the suboptimal asymptotic cost O(N
4/3
dof )

of the preconditioner is not seen in practice, up to the largest problem tested. Note in
particular from Table 3.7 that the application times of the FD-based preconditioners scale
with respect to h much better than the asymptotic cost would suggest. This is due to the
high efficiency of the routines that computes the dense matrix-matrix products that are the
core of the FD method.

Hollow torus. The last domain examined is a torus with a hole (Figure 3.1c), obtained
by revolving an eccentric annulus (Figure 3.1d) around the y axis. We take ν = 1, f =
[cos(arctan(x/z)), sin(4πx), sin(arctan(x/z))]T and we impose homogeneous Dirichlet bound-
ary conditions anywhere on the external boundary. We consider here the periodic setting,
imposing C0 periodic continuity in the function space. For this problem, we present only
TH discretization results and focus on the effects of the geometry parametrization on the
performances of the preconditioning strategies. Computing time and number of iterations of
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(TH) PD-MINRES Iterations / Time
nel p = 2 p = 3 p = 4 p = 5

4 116 / 0.39 128 / 0.56 137 / 1.12 146 / 2.14
8 146 / 1.66 153 / 4.02 158 / 8.79 160 / 16.83
16 163 / 16.53 164 / 38.54 165 / 75.95 162 / 138.17
32 169 / 181.68 166 / 337.37 ∗ ∗

(TH) PGD-MINRES Iterations / Time
nel p = 2 p = 3 p = 4 p = 5

4 65 / 0.21 68 / 0.33 69 / 0.57 72 / 1.09
8 72 / 0.91 74 / 2.06 74 / 4.24 75 / 8.01
16 77 / 8.11 77 / 18.82 77 / 36.70 77 / 67.74
32 79 / 90.56 79 / 168.60 ∗ ∗

(TH) IC(0)-MINRES Iterations / Time
nel p = 2 p = 3 p = 4 p = 5

4 39 / 0.28 39 / 0.79 41 / 1.64 41 / 32.69
8 39 / 3.13 39 / 7.44 39 / 16.47 39 / 32.69

16 40 / 39.44 39 / 80.53 37 / 157.37 37 / 281.24
32 38 / 611.55 38 / 1085.21 ∗ ∗

Table 3.3: Stokes system. One eighth of thick annulus domain (TH). Perfor-
mance of PD-MINRES (upper table), PG

D-MINRES (middle table) and IC(0)-
MINRES (lower table).

(RT) PGD-MINRES Iterations / Time
nel p = 2 p = 3 p = 4 p = 5

4 59 / 0.22 58 / 0.17 62 / 0.30 63 / 0.54
8 63 / 0.29 63 / 0.58 61 / 1.09 64 / 2.10
16 67 / 1.36 65 / 3.23 65 / 6.37 66 / 12.07
32 65 / 8.71 66 / 23.73 66 / 48.38 ∗

Table 3.4: Stokes system. One eighth of thick annulus domain (RT). Perfor-
mance of PG

D-MINRES.
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(TH) PGT -GMRES Iterations / Time
nel p = 2 p = 3 p = 4 p = 5

4 38 / 0.20 42 / 0.28 42 / 0.56 47 / 1.17
8 41 / 0.78 42 / 1.78 43 / 4.50 45 / 8.50
16 43 / 7.57 44 / 17.52 45 / 35.43 46 / 66.21
32 45 / 76.69 46 / 165.72 ∗ ∗

(TH) PGC -GMRES Iterations / Time
nel p = 2 p = 3 p = 4 p = 5

4 35 / 0.21 37 / 0.30 39 / 0.59 41 / 1.15
8 37 / 0.80 38 / 1.77 39 / 4.33 41 / 8.25
16 38 / 7.19 39 / 16.51 40 / 33.47 41 / 62.98
32 39 / 61.29 40 / 152.44 ∗ ∗

Table 3.5: Stokes system. One eighth of thick annulus domain (TH). Perfor-
mance of PG

T -GMRES (upper table) and PG
C -GMRES (lower table).

(RT) PGT -GMRES Iterations / Time
nel p = 2 p = 3 p = 4 p = 5

4 41 / 0.19 44 / 0.20 46 / 0.35 48 / 0.69
8 46 / 0.34 47 / 0.71 49 / 1.48 50 / 5.55
16 47 / 1.72 49 / 7.77 50 / 16.57 52 / 32.86
32 48 / 21.15 50 / 56.50 52 / 120.06 ∗

(RT) PGC -GMRES Iterations / Time
nel p = 2 p = 3 p = 4 p = 5

4 37 / 0.19 38 / 0.22 39 / 0.36 40 / 0.68
8 38 / 0.34 40 / 0.71 41 / 1.41 42 / 4.98
16 39 / 1.63 40 / 6.81 41 / 14.42 42 / 28.18
32 39 / 18.30 40 / 48.05 41 / 100.99 ∗

Table 3.6: Stokes system. One eighth of thick annulus domain (RT). Perfor-
mance of PG

T -GMRES (upper table) and PG
C -GMRES (lower table).
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(TH) PD Setup times / Total application times
nel p = 2 p = 3 p = 4 p = 5

4 0.02 / 0.19 0.02 / 0.20 0.02 / 0.20 0.03 / 0.21
8 0.04 / 0.27 0.04 / 0.29 0.04 / 0.33 0.04 / 0.37
16 0.05 / 0.87 0.06 / 0.95 0.06 / 1.09 0.06 / 1.18
32 0.09 / 7.21 0.12 / 9.94 ∗ ∗

(TH) PGD Setup times / Total application times
nel p = 2 p = 3 p = 4 p = 5

4 0.05 / 0.88 0.06 / 0.10 0.06 / 0.10 0.07 / 0.11
8 0.09 / 0.13 0.12 / 1.49 0.16 / 0.16 0.21 / 0.18
16 0.28 / 0.46 0.49 / 0.51 0.76 / 0.56 1.14 / 0.62
32 1.57 / 3.86 3.20 / 3.93 ∗ ∗

(TH) IC(0) Setup times / Total application times
nel p = 2 p = 3 p = 4 p = 5

4 0.01 / 0.21 0.03 / 0.59 0.12 / 1.43 0.38 / 3.04
8 0.09 / 2.55 0.45 / 6.02 1.46 / 13.05 4.23 / 23.98
16 0.94 / 34.49 4.36 / 66.68 13.90 / 125.35 40.91 / 207.12
32 9.09 / 558.27 46.65 / 889.03 ∗ ∗

Table 3.7: Stokes system. One eight of thick annulus domain (TH). Setup
times and total application times of PD (top table), PG

D (middle table) and
IC(0) (bottom table).

(TH) PGD-MINRES
nel p = 2 p = 3 p = 4 p = 5

8 14.28% 6.79% 3.77% 2.24%
16 5.67% 2.70% 1.52% 0.91%
32 4.26 % 2.33% ∗ ∗

(TH) IC(0)-MINRES
nel p = 2 p = 3 p = 4 p = 5

8 81.46% 80.91% 79.23% 73.35%
16 87.44% 82.80% 79.65% 73.64%
32 91.28% 81.92% ∗ ∗

Table 3.8: Stokes system. One eight of thick annulus domain (TH). Per-
centage of computing time of the preconditioner application in each MINRES

iteration: PG
D-MINRES (top table) and IC(0)-MINRES (bottom table).
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(TH) PD-MINRES Iterations / Time
nel p = 2 p = 3 p = 4 p = 5

4 2004 / 6.42 4125 / 39.16 6411 / 153.95 8305 / 478.69
8 5524 / 80.73 7875 / 360.15 9914 / 1117.12 11032 / 3286.67
16 9931 / 1081.01 11780 / 3763.90 12964 / 8776.73 13553 / 18626.03
32 12864 / 10244.45 13426 / 29344.81 ∗ ∗

(TH) PGD-MINRES Iterations / Time
nel p = 2 p = 3 p = 4 p = 5

4 77 / 0.31 87 / 0.89 97 / 2.59 104 / 6.24
8 96 / 1.52 104 / 4.99 110 / 12.82 115 / 34.70
16 119 / 13.87 124 / 40.89 133 / 91.82 139 / 197.30
32 142 / 116.95 147 / 344.34 ∗ ∗

(TH) IC(0)-MINRES Iterations / Time
nel p = 2 p = 3 p = 4 p = 5

4 49 / 1.05 46 / 3.74 50 / 11.79 50 / 31.42
8 45 / 5.42 45 / 18.52 45 / 51.18 45 / 126.83
16 45 / 45.11 43 / 125.60 45 / 307.79 45 / 660.63
32 45 / 493.12 44 / 1352.81 ∗ ∗

Table 3.9: Stokes system. Hollow torus domain (TH). Performance of
PD-MINRES (upper table), PG

D-MINRES (middle table) and IC(0)-MINRES
(lower table).

PD-MINRES, PGD-MINRES and IC(0)-MINRES are reported in Table 3.9. As expected, the
geometry parametrization of the hollow torus has a non-negligible influence on the perfor-
mance of our preconditioners.

This is especially true for the PD-MINRES strategy, that requires thousands of iterations
to converge. On the other hand, this influence is greatly reduced with partial inclusion of the
geometry (PGD-MINRES). Here the number of iterations and the CPU times are two orders
of magnitude lower than for PD-MINRES. CPU times for PGD-MINRES are also significantly
better than for IC(0)-MINRES, despite the fact the number of iterations is higher. We also
remark that the number of iterations for PGD-MINRES is only three times higher than PD-
MINRES on the cube.

Finally, in Table 3.10 we present the computing times and the number of iterations of
PGT -GMRES and PGC -GMRES. Also in this case, we do not report the performance of PT -
GMRES and PC-GMRES because the effects of the non-inclusion of the geometry information
are the same as for the block diagonal preconditioner. As for the cube domain, we see that
the computing times of both GMRES based strategies are comparable with the computing
times of PGD-MINRES, even if the number of iterations is lower.

Hollow torus: variable ν. In this paragraph we investigate the effect of a variable kine-
matic viscosity ν on our preconditioning strategies. We consider the hollow torus domain with
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(TH) PGT -GMRES Iterations / Time
nel p = 2 p = 3 p = 4 p = 5

4 44 / 0.30 50 / 0.80 57 / 2.39 61 / 6.89
8 49 / 1.25 54 / 4.54 58 / 11.98 62 / 31.52
16 58 / 10.78 60 / 32.86 63 / 73.52 67 / 159.46
32 68 / 105.31 71 / 275.54 ∗ ∗

(TH) PGC -GMRES Iterations / Time
nel p = 2 p = 3 p = 4 p = 5

4 37 / 0.28 41 / 0.74 45 / 2.09 50 / 6.09
8 41 / 1.16 45 / 4.07 49 / 10.82 53 / 28.59
16 51 / 10.27 55 / 31.73 59 / 72.91 63 / 158.12
32 69 / 113.81 72 / 299.62 ∗ ∗

Table 3.10: Stokes system. Hollow torus domain (TH). Performance of PG
T -

GMRES (upper table) and PG
C -GMRES (lower table)

PD-MINRES PGD-MINRES PGT -GMRES
k = 1 13426 / 29344.81 147 / 344.34 71 / 275.54
k = 100 17254 / 37667.04 180 / 400.46 84 / 325.02
k = 10000 − 180 / 407.68 84 / 326.78

Table 3.11: Stokes system. Hollow torus domain (TH). Performance of PD-
MINRES, PG

D-MINRES and PG
T -GMRES for p = 3 and nel = 32. The symbol

“−” denotes the fact the the solver does not converge because of stagnation.

ν = 1+(k−1)(1+cos(arctan(x/z)))/2) depending on a parameter k, p = 3 and nel = 32 and
we compare in Table 3.11 the performances of PD-MINRES, PGD-MINRES and PGT -GMRES.

PD-MINRES is the worse strategy both in terms of number of iterations and in computing
times for all values of k and in the case k = 10000 it does not even converge. The geometry
inclusion strategy, on the other hand, succeeds in capturing the effect of the variable ν; the
number of iterations of PGD-MINRES and PGT -GMRES remains stable when k varies.

We remark that PGC -GMRES has a behaviour similar to PGT -GMRES, as it is also high-
lighted in the previous testcases, and for this reason we do not consider it in the table.

3.7 Conclusions

In this chapter we have addressed the problem of finding good preconditioners for isogeometric
discretizations of the Stokes system. Our approach exploits the tensor-product structure of
the multivariate B-spline basis. The application of our preconditioners PD, PT and PC (and
their coefficients-including variants PGD , P

G
T and PGC ) requires the solution of linear systems

that have a Kronecker structure, or a Sylvester-like equation structure. This can be performed
by direct solvers with the highest efficiency. This also guarantees robustness with respect to
both the spline degree p and mesh resolution. Numerical tests show that PGD , P

G
T and PGC

allow to maintain the performance also in case of non-trivial geometries and highly oscillating
coefficients.
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We have performed a comparative numerical benchmarking with respect to a more com-
mon approach which uses a similar block structure for the preconditioner but applies it by
an incomplete Cholesky factorization and an inner conjugate gradient. The solution time
is always in favour of our preconditioners, despite that they are influenced by the geome-
try parametrization. Even more important is that our preconditioners are well suited for a
matrix-free approach, which should lead to solvers that are orders of magnitude faster.
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Chapter 4

The heat equation: least-squares
method

In this chapter, we design and analyze an isogeometric method for parabolic equations, focus-
ing on the heat equation as model problem. The most common numerical methods for time-
dependent PDEs are obtained by discretizing separately in time (e.g, by difference schemes)
and in space (e.g., by a Galerkin method). We consider instead the alternative approach of
discretizing the PDE simultaneously in space and time, that is, the so-called space-time (vari-
ational) approach. A first idea of space-time finite element method has been introduced in
[51, 85, 86] and developed for the heat conduction problem in [24]. Further pioneering studies
on space-time methods have been [99, 67], where the authors consider a Galerkin formulation
and add a least-squares operator to enhance stability and mitigate spurious oscillations.

More recently, the mathematical analysis of Galerkin space-time methods for parabolic
equations has been developed in [97] for a wavelet discretization, and in [103] for a Galerkin
finite element discretization. In the IGA framework, the idea of using smooth splines in time
has been first proposed in [107]. In [17] the authors consider C0 coupling between the space-
time slabs with a suitable stabilized formulation that also yields to a sequential scheme. Space-
time Isogeometric Analysis involving fluid-structure interaction, again based on discontinuous
approximation in time, are proposed in [108, 109, 110]. A stabilized space-time isogeometric
method for the heat equation has been proposed in [74, 75] and its time-parallel multigrid
solver has been developed in [63].

In contrast to the existing space-time IGA works, in this work we adopt an L2 least-squares
approximation. The first appearance of a least-squares space-time formulation was in [84].
However, as discussed in [13, 14], the discretized formulation of [84] departs from the least-
squares minimization principle. In [13, 14] the authors consider a least-squares finite element
method for unsteady fluid dynamics problems. For second-order differential equations, the L2

minimization of the equation residual would require C1-continuous functions in the spatial
variables, however [13, 14] recast the second-order equation into a set of first-order equations,
whose least-squares formulation allows C0 functions. Furthermore, [13, 14] introduce a time-
marching approach to lower the memory requirement and the computational time. Henceforth,
the most relevant contributions on space-time least-squares methods have retained these two
features: 1) the minimization of first-order residuals and 2) the time-marching technique
(similar to the use of time-slabs or discontinuous-in-time approximation). We refer to the
book [16] for a review of the literature.

Our work departs from the setting described above: we consider high degree and smooth-
ness splines in time and space with the following implications: 1) exploiting the C1-continuity
of our approximating function, we directly minimize the second-order residual and 2) we need
to solve a global-in-time linear system. Point 1) represents an advantage while point 2) is
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addressed by exploiting the tensor product structure of the spline basis functions: we do
not need to form the global space-time matrix, which is given as sum of Kronecker products
of matrices, and we set up a preconditioner that relies on the solution of a Sylvester-like
equation. Indeed, the least-squares formulation allows us to use the same preconditioning
technique introduced in [93] for the Poisson problem, based the fast diagonalization method
(see also Section 2.3). For the space-time least-squares formulation, the computational cost
of the preconditioner setup is at most O(Ndof ) floating-point operations (FLOPs) while its
application is O(N

1+1/d
dof ) FLOPs, where d is the number of space dimensions and Ndof denotes

the total number of degrees-of-freedom (for simplicity, here we consider the same number of
degrees-of-freedom in time and in each space direction). In our numerical benchmarks the
measured computational time of the preconditioner, for serial single-core execution, is close to
optimality, that is proportional to Ndof , with no dependence on p. Therefore, the precondi-
tioner is robust with respect to the polynomial degree. Moreover, under the assumption that
the coefficients of the equation do not depend on time, our approach requires a significantly
small amount of memory compared to other space-time approaches: denoting by Ns the total
number of degrees-of-freedom in space (and assuming the number of degrees-of-freedom in
time is not too large, as in typical applications) the storage cost is O(pdNs + Ndof ). This is
exactly what one would get for low-order time-marching schemes.

Space-time methods facilitate the full parallelization of the solver, see [42, 54]. The pre-
conditioner we propose fits in the framework, e.g., of [72]. We do not address this important
issue in our work, that will be the focus of our further research.

The outline of the chapter as follows. In Section 4.1 we recall the notations for the univari-
ate and multivariate B-Splines basis functions while the isogeometric spaces that we need for
the discrete analysis are introduced in Section 4.2. The parabolic model problem is presented
in Section 4.3, where we also discuss the well-posedness of the least-squares approximation and
the a-priori error estimates. Section 4.4 focuses on preconditioning strategy and its spectral
analysis. We show numerical results to assess the performance of the proposed preconditioner
and to confirm the a-priori error estimates in Section 4.5. In Section 4.6 we draw conclusions
and highlight future research directions. Section 4.7 contains some technical results while the
last section resumes useful classical theorems used in this chapter.

4.1 Notations and main assumptions for the spline spaces

In this section we summarize the notations and the assumptions for the univariate and mul-
tivariate spline space that we employ in the rest of the chapter.

We consider functions of space and time, where the space domain is d-dimensional. Even if
the analysis works for a general d, in the numerical tests we will focus on d = 2, 3, which are the
most interesting cases in practical applications. Therefore we introduce d+ 1 univariate knot
vectors Ξl := {ξl,1 ≤ · · · ≤ ξl,ml+pl+1} for l = 1, . . . , d and Ξt := {ξt,1 ≤ · · · ≤ ξt,mt+pt+1}. For
the definition of univariate B-splines in each parametric direction we refer to Section 2.1.1.
We collect the degree indexes in a vector p := (ps, pt), where ps := (p1, . . . , pd) ∈ Nd. For the
sake of simplicity, we consider p1 = · · · = pd =: ps but the general case is similar.

In the following, hs will denote the maximum mesh size in all spatial directions and ht
the mesh size in the time direction. We assume that the following quasi-uniformity condition
on the knot vectors holds.

Assumption 4.1. We assume that the knot vectors are quasi-uniform, that is, there exists α
such that 0 < α ≤ 1, independent of hs and ht, such that each non-empty knot span (ξl,i, ξl,i+1)
fulfills αhs ≤ ξl,i+1−ξl,i ≤ hs, for 1 ≤ l ≤ d, and each non-empty knot span (ξt,i, ξt,i+1) fulfills
αht ≤ ξt,i+1 − ξt,i ≤ ht.
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We introduce the univariate spline spaces Ŝpshs and Ŝptht and we denote by Ω̂ := (0, 1)d the
spatial parameter domain. Following (2.1.2), we denote the multivariate B-spline on Ω̂× [0, 1]
as

B̂i,p(η, τ) := B̂is,ps(η)̂bit,pt(τ),

where B̂is,ps(η) := b̂i1,ps(η1) . . . b̂id,ps(ηd), is := (i1, . . . , id), i := (is, it) and η = (η1, . . . , ηd).
The corresponding spline space is denoted as

Ŝph := span
{
B̂i,p

∣∣∣ ik = 1, ...,mk for k = 1, . . . , d; it = 1, . . . ,mt

}
,

where h := max{hs, ht}. We have Ŝph = Ŝpshs ⊗ Ŝ
pt
ht

= Ŝpshs ⊗ · · · ⊗ Ŝ
ps
hs
⊗ Ŝptht , where Ŝ

ps
hs

:=

span
{
B̂is,ps(η)

∣∣∣ ik = 1, ...,mk for k = 1, . . . , d
}
.

The minimum regularity of the spline spaces that we assume is the following.

Assumption 4.2. We assume that ps ≥ 2, Ŝpshs ⊂ C
1(Ω̂), pt ≥ 1 and Ŝptht ⊂ C

0(Ω̂).

4.2 Isogeometric spaces

The space domain Ω ⊂ Rd is given as a spline non-singular single-patch, that is, the following
conditions are fulfilled.

Assumption 4.3. We assume that F : Ω̂→ Ω, with F ∈
[
Ŝpshs

]d
on the closure of Ω̂.

Assumption 4.4. We assume that F−1 has piecewise bounded derivatives of any order.

Let x = (x1, . . . , xd) := F (η). Given T > 0, the space-time computational domain

Ω× [0, T ] is given by the parametrization G ∈
[
Ŝph
]d+1

such that G : Ω̂× [0, 1]→ Ω× [0, T ]

with G(η, τ) := (F (η), T τ) = (x, t), and where t := Tτ . We introduce, in the parametric
domain, the space with boundary conditions

V̂h,0 :=
{
v̂h ∈ Ŝph

∣∣∣ v̂h = 0 on ∂Ω̂× (0, 1) and v̂h = 0 on Ω̂× {0}
}
.

Note that V̂h,0 = V̂s,hs,0 ⊗ V̂t,ht,0, where

V̂s,hs,0 :=
{
ŵh ∈ Ŝpshs

∣∣∣ ŵh = 0 on ∂Ω̂
}

= span
{
b̂i1,ps . . . b̂id,ps

∣∣∣ ik = 2, . . . ,mk − 1; k = 1, . . . , d
}
, (4.2.1a)

V̂t,ht,0 :=
{
ŵh ∈ Ŝptht

∣∣∣ ŵh(0) = 0
}

= span
{
b̂it,pt

∣∣∣ it = 2, . . . ,mt

}
. (4.2.1b)

Reordering the basis and then introducing the colexicographical ordering of the degrees-of-
freedom, we have

V̂s,hs,0 = span
{
b̂i1,ps . . . b̂id,ps

∣∣∣ik = 1, . . . , ns,k; k = 1, . . . , d
}

= span
{
B̂i,ps

∣∣∣i = 1, . . . , Ns

}
,

V̂t,ht,0 = span
{
b̂i,pt

∣∣∣ i = 1, . . . , nt

}
and

V̂h,0 = span
{
B̂i,p

∣∣∣ i = 1, . . . , Ndof

}
, (4.2.2)
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where we have defined

nt := mt − 1, ns,k := mk − 2, Ns :=

d∏
k=1

ns,k, Ndof := Nsnt.

The isogeometric space we consider is the isoparametric push-forward of V̂h,0, i.e.

Vh,0 := span
{
Bi,p := B̂i,p ◦G−1

∣∣∣ i = 1, . . . , Ndof

}
. (4.2.3)

Note that Vh,0 can be written as

Vh,0 = Vs,hs,0 ⊗ Vt,ht,0,

where
Vs,hs,0 := span

{
Bi,ps := B̂i,ps ◦ F−1

∣∣∣ i = 1, . . . , Ns

}
,

Vt,ht,0 := span
{
bi,pt := b̂i,pt(·/T )

∣∣∣ i = 1, . . . , nt

}
.

4.3 Parabolic model problem and its discretization

4.3.1 The heat equation and the regularity of its solution

In this section, after the definition of the model problem, we prove some results on the
regularity of its solution. In order to help the reading of the proofs, we report in Section 4.8
the classical results of functional analysis that we employ, rewritten in our simplified setting.

We denote by ∂t the partial time derivative and by ∆ the laplacian w.r.t. spatial variables.
If A and B are Hilbert spaces, A⊗B denotes the closure of their tensor product (see [3, Defini-
tion 12.3.2]). We also identify the spacesHm((0, T );Hn(Ω)),Hn(Ω)⊗Hm(0, T ) andHn,m(Ω×
(0, T )), (see [3, Section 12.7]). We denote by H∆(Ω) the space

{
z ∈ L2(Ω)

∣∣ ∆z ∈ L2(Ω)
}
,

we have the following result.

Proposition 4.1. Under Assumptions 4.2–4.4, there exists a constant C∆ > 0, depending
only on the space parametrization F , such that

‖z‖2H2(Ω) ≤ C∆‖∆z‖2L2(Ω) ∀z ∈ H1
0 (Ω) ∩H2(Ω). (4.3.1)

Proof. From Assumptions 4.2–4.4, Ω has a piecewise smooth boundary with bounded cur-
vature and, in particular, it has non-null interior angles (see the definition in [73, Chapitre
III, pag. 161], reported in Definition 4.1) of Section 4.8. Then, we can use [73, Chapitre III,
Lemme 11.1], reported in Lemma 4.8 of Section 4.8.

We define the space

V0 :=
{
v ∈

[(
H1

0 (Ω) ∩H2(Ω)
)
⊗ L2(0, T )

]
∩
[
L2(Ω)⊗H1(0, T )

] ∣∣ v = 0 on Ω× {0}
}
,

endowed with the norm

‖v‖2V0
:=

∫ T

0
‖∆v(·, t)‖2L2(Ω) dt +

∫ T

0
‖∂tv(·, t)‖2L2(Ω) dt. (4.3.2)

Thanks to Proposition 4.1, V0 is a Hilbert space and the ‖ · ‖V0-norm is equivalent to

|||v|||2 := ‖v‖2H2(Ω)⊗L2(0,T ) + ‖v‖2L2(Ω)⊗H1(0,T ). (4.3.3)
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Our model problem is the heat equation, with initial and homogeneous boundary condi-
tions: we seek for a solution u such that

∂tu−∆u = f in Ω× (0, T ),

u = 0 on ∂Ω× (0, T ),

u = 0 in Ω× {0}.
(4.3.4)

with f ∈ L2(Ω× (0, T )). Before proving the theorem assessing the regularity of the solution
u of (4.3.4), we need the following lemma.

Lemma 4.1. Let Assumptions 4.3–4.4 hold and let r ∈ L2(Ω). Then, there exists a unique
weak solution z ∈ H2(Ω) to the Poisson problem{

−∆z = r in Ω,

z = 0 on ∂Ω.
(4.3.5)

Moreover, there exists a constant C depending only on F such that

‖z‖H2(Ω) ≤ C‖r‖L2(Ω). (4.3.6)

Proof. We recall that z is a weak solution of (4.3.5) if z ∈ H1
0 (Ω) and if

∫
Ω∇z · ∇q dΩ =∫

Ω rq dΩ ∀q ∈ H1
0 (Ω). Then, we have that z ∈ H1

0 (Ω) is a weak solution of (4.3.5) if and only
if w := z ◦ F ∈ H1

0 (Ω̂) is a weak solution of{
−∇ · (R ∇w) = g in Ω̂,

w = 0 on ∂Ω̂,
(4.3.7)

where g := |det(JF )|r ◦ F and R := J−1
F J−TF |det(JF )|. Thanks to Assumptions 4.3–4.4, we

have that F : Ω̂→ Ω fulfils F ∈ C1,1 on the closure of Ω̂ and F−1 ∈ C1,1(Ω). Therefore, we
have that the entries of the matrix R are Lipschitz continuous and we can apply [59, Theorem
3.2.1.2], reported in Theorem 4.5 in Section 4.8, to conclude that there exists a unique solution
w ∈ H2(Ω̂) of problem (4.3.7). Thanks to [73, Chapitre III, Lemme 11.1], reported in Lemma
4.8 in Section 4.8, we also have

‖w‖2
H2(Ω̂)

≤ c1

(
‖∇ · (R ∇w) ‖2

L2(Ω̂)
+ ‖w‖2

L2(Ω̂)

)
≤ c2‖∇ · (R ∇w)‖2

L2(Ω̂)
= c2‖g‖2L2(Ω̂)

,

where c1 and c2 are constants depending only on R, that is, on F and its inverse. Finally, we
conclude

‖z‖H2(Ω) ≤ C1‖w‖H2(Ω̂)
≤ C2‖g‖L2(Ω̂)

≤ C‖r‖L2(Ω),

where the constants C1, C2 and C depend only on F .

Theorem 4.1. Let f ∈ L2(Ω × (0, T )) and let Assumptions 4.1-4.4 hold. Then there exists
a unique weak solution (as defined in [49, Chapter 7], see also Definition 4.2 in Section 4.8)
u ∈

(
H2(Ω)⊗ L2(0, T )

)
∩
(
L2(Ω)⊗H1(0, T )

)
∩
(
H1

0 (Ω)⊗ L∞(0, T )
)
of (4.3.4). We also have

‖u‖H2(Ω)⊗L2(0,T ) + ‖u‖L2(Ω)⊗H1(0,T ) + ‖u‖H1
0 (Ω)⊗L∞(0,T ) ≤ C‖f‖L2(Ω×(0,T )),

where C is a constant depending only on F .

Proof. Following the same arguments of step 1 and step 2 of the proof of [49, Chapter 7,
Theorem 5] (see Theorem 4.6 in Section 4.8), we conclude that u ∈

(
H1

0 (Ω)⊗ L∞(0, T )
)
∩
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(
L2(Ω)⊗H1(0, T )

)
and that

‖u‖L2(Ω)⊗H1(0,T ) + ‖u‖H1
0 (Ω)⊗L∞(0,T ) ≤ D1‖f‖L2(Ω×(0,T )), (4.3.8)

where D1 is a constant depending only on F .
We write for a.e. t ∈ [0, T ]∫

Ω
∇u(x, t) · ∇v(x) dΩ =

∫
Ω
r(x, t) v(x) dΩ ∀v ∈ H1

0 (Ω),

where r := f − ∂tu ∈ L2(Ω × (0, T )) and in particular r(·, t) ∈ L2(Ω) for a.e. t ∈ [0, T ].
Therefore, thanks to Lemma 4.1, we conclude that u(·, t) ∈ H2(Ω) for a.e. t ∈ [0, T ] and thus
u ∈ H2(Ω) ⊗ L2(0, T ): indeed, integrating in time, (4.3.6) and (4.3.8) yield to the following
estimate

‖u‖2H2(Ω)⊗L2(0,T ) ≤ C
2‖r‖2L2(Ω×(0,T )) ≤ C

2(‖f‖2L2(Ω×(0,T ))+‖u‖
2
L2(Ω)⊗H1(0,T )) ≤ D

2
2‖f‖2L2(Ω×(0,T )),

where D2
2 := C2 +D2

1. This concludes the proof.

More generally, non-homogeneous initial and boundary conditions are allowed. For exam-
ple, if u = u0 in Ω×{0}, with u0 ∈ H1

0 (Ω), we lift1 u0 to ũ0 ∈ (H1
0 (Ω)∩H2(Ω))⊗L2(0, T )∩

L2(Ω)⊗H1(0, T ). Then ũ = u− ũ0 ∈ V0 is the solution of
∂tũ−∆ũ = f̃ in Ω× (0, T ),

ũ = 0 on ∂Ω× (0, T ),

ũ = 0 in Ω× {0},
(4.3.9)

where f̃ := f − ∂tũ0 + ∆ũ0. For a detailed description of the variational formulation of
problems (4.3.4)–(4.3.9) and their well-posedness see, for example, [49, 97].

4.3.2 Space-time least-squares variational formulation

We consider the following variational formulation for the system (4.3.4): find u ∈ V0 such
that

u = arg min
v∈V0

1
2 ‖∂tv −∆v − f‖2L2(Ω×(0,T )) . (4.3.10)

Its Euler-Lagrange equation is

A(u, v) = F(v) ∀v ∈ V0, (4.3.11)

where the bilinear form A(·, ·) and the linear form F(·) are defined as

A(v, w) :=

∫ T

0

∫
Ω

(∂tv ∂tw + ∆v∆w − ∂tv∆w −∆v ∂tw) dΩ dt, (4.3.12)

F(w) :=

∫ T

0

∫
Ω
f (∂tw −∆w) dΩ dt.

For an equivalent way of writing the minimization problem (4.3.10), we refer to Section 4.7.2.
The variational formulation (4.3.11) is well-posed, thanks to the following Lemmas 4.2–4.4
and Proposition 4.2.

1We can use the same argument as in Theorem 4.1 that is, the proof of [49, Chapter 7, Theorem 5] (see
also Theorem 4.6 in Section 4.8), where step 3 therein uses the elliptic regularity property which is given, in
our case, by Lemma 4.1.
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Lemma 4.2. The bilinear form A(·, ·) is continuous in V0. Particularly, it holds

|A(v, w)| ≤ 2‖v‖V0‖w‖V0 ∀v, w ∈ V0.

Proof. Given v, w ∈ V0, by Cauchy-Schwarz inequality

|A(v, w)| ≤ ‖v‖V0‖w‖V0 +

∫ T

0

∫
Ω
|∂tv∆w| dΩ dt +

∫ T

0

∫
Ω
|∆v ∂tw| dΩ dt

≤ ‖v‖V0‖w‖V0 +

[∫ T

0

(
‖∂tv(·, t)‖2L2(Ω) + ‖∆v(·, t)‖2L2(Ω)

)
dt

]1/2

∗
[∫ T

0

(
‖∂tw(·, t)‖2L2(Ω) + ‖∆w(·, t)‖2L2(Ω)

)
dt

]1/2

≤ 2‖v‖V0‖w‖V0 ,

which concludes the proof.

Lemma 4.3. The bilinear form A(·, ·) is V0-elliptic. In particular, it holds

A(v, v) ≥ ‖v‖2V0
∀v ∈ V0.

Proof. Let v ∈ V0. Thanks to [23, Lemme 3.3] (see also Lemma 4.9 of Section 4.8), we can
write

−2

∫ T

0

∫
Ω
∂tv∆v dΩ dt =

∫
Ω
|∇v(x, T )|2 dΩ−

∫
Ω
|∇v(x, 0)|2 dΩ,

where ∇ := [∂x1 , . . . , ∂xd ]
T denotes the gradient w.r.t. spatial variables x1, . . . , xd. In partic-

ular, as ∇v(x, 0) = 0, we have that

A(v, v) =

∫ T

0
‖∂tv(·, t)‖2L2(Ω) dt+

∫ T

0
‖∆v(·, t)‖2L2(Ω) dt+

∫
Ω
|∇v(x, T )|2 dΩ ≥ ‖v‖2V0

∀v ∈ V0,

which concludes the proof.

Lemma 4.4. The linear form F(·) is continuous in V0. In particular it holds

F(v) ≤
√

2‖f‖L2(Ω×(0,T ))‖v‖V0 ∀v ∈ V0.

Proof. Given v ∈ V0, by Cauchy-Schwarz inequality we get

|F(v)| ≤ ‖f‖L2(Ω×(0,T ))

(∫ T

0
‖∂tv(·, t)−∆v(·, t)‖2L2(Ω) dt

)1/2

≤
√

2‖f‖L2(Ω×(0,T ))

(∫ T

0
‖∂tv(·, t)‖2L2(Ω) dt +

∫ T

0
‖∆v(·, t)‖2L2(Ω) dt

)1/2

=
√

2‖f‖L2(Ω×(0,T ))‖v‖V0 ,

which concludes the proof.

Proposition 4.2. Under Assumptions 4.2–4.4, the minimization problem (4.3.10) and the
variational problem (4.3.11) are equivalent and they admit a unique solution u ∈ V0.

Proof. The proof follows using Lemmas 4.2–4.4 and the Lax-Milgram theorem.



48 Chapter 4. The heat equation: least-squares method

4.3.3 Space-time least-squares approximation

Thanks to Assumption 4.2, we have

Vh,0 ⊂ (H1
0 (Ω) ∩H2(Ω))⊗H1(0, T ) ⊂ V0. (4.3.13)

Therefore, we consider a Galerkin method for (4.3.11), that is, the least-squares approximation
of the system (4.3.4): find uh ∈ Vh,0 such that

uh = arg min
vh∈Vh,0

1
2 ‖∂tvh −∆vh − f‖2L2(Ω×(0,T )) . (4.3.14)

Its Euler-Lagrange equation is

A(uh, vh) = F(vh) ∀vh ∈ Vh,0. (4.3.15)

Well-posedness and quasi-optimality follow from standard arguments.

Proposition 4.3. The minimization problem (4.3.14) and the variational problem (4.3.15)
are equivalent and they admit a unique solution uh ∈ Vh,0. It also holds:

‖u− uh‖V0 ≤
√

2 inf
vh∈Vh,0

‖u− vh‖V0 . (4.3.16)

Proof. The proof of the equivalence and of the existence and uniqueness of a solution follow
by using Lemmas 4.2–4.4 and the Lax-Milgram theorem, while the proof of (4.3.16) is a
consequence of the Céa Lemma and the symmetry of the bilinear form A.

The following result states the convergence of our method.

Theorem 4.2. Under Assumptions 4.2–4.4, we have limh→0 ‖u− uh‖V0 = 0.

Proof. To prove the theorem, we show that

lim
h→0

inf
vh∈Vh,0

‖u− vh‖V0 = 0, (4.3.17)

and then use (4.3.16).
Given u ∈ V0, let û = u ◦G−1 be its pullback. Since G and G−1 are both of class W 2,∞

and since the V0-norm (4.3.2) is equivalent to the ||| · |||-norm (4.3.3), the pullback is an
isomorphism between V0 and

V̂0 =
{
v ∈

[(
H2(Ω̂) ∩H1

0 (Ω̂)
)
⊗ L2(0, 1)

]
∩
[
L2(Ω̂)⊗H1(0, 1)

] ∣∣∣ v = 0 on Ω̂× {0}
}
,

endowed with the norm

‖v‖2V̂0
:=

∫ 1

0
‖∆v(·, τ)‖2

L2(Ω̂)
dτ +

∫ 1

0
‖∂τv(·, τ)‖2

L2(Ω̂)
dτ.

Then, by using Lemma 4.7 reported in Section 4.7.1, we can approximate, as close as we
want, û ∈ V̂0 by a smooth function fulfilling the same boundary conditions of û, and then by
a spline in V̂h,0 (see (4.2.2)), on a fine enough mesh. This implies (4.3.17).

4.3.4 A priori error analysis

We investigate in this section the approximation properties of the isogeometric space Vh,0
under h-refinement.
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Proposition 4.4. Let qs and qt be two integers such that 2 ≤ qs ≤ ps + 1 and 1 ≤ qt ≤
pt + 1. Under Assumption 4.1, there exists a projection Πh : V0 ∩

(
Hqs(Ω)⊗H1(0, T )

)
∩(

H2(Ω)⊗Hqt(0, T )
)
→ Vh,0 such that

‖v −Πhv‖V0
≤ C

(
hqs−2
s ‖v‖Hqs (Ω)⊗H1(0,T ) + hqt−1

t ‖v‖H2(Ω)⊗Hqt (0,T )

)
(4.3.18)

where the constant C depends on ps, pt, α and the parametrization G.

Proof. The result follows from the anisotropic approximation estimates that are developed in
[11]. We remark that [11] states its error analysis for 2 dimensions, but the results therein
straightforwardly generalize to higher dimension. We give an overview of the proof, for the
sake of completeness.

As space and time coordinates in Ω × [0, T ] are orthogonal, the parametric coordinate
(tangent) vectors are

gi(x) := ∂ηiG ◦G−1(x, t) =

[
∂ηiF ◦ F−1(x)

0

]
∈ Rd × {0} ⊂ Rd+1 for i = 1, . . . , d,

gt(t) := ∂τG ◦G−1(x, t) =


0
...
0

T

 ∈ Rd+1.

Then, given v ∈ V0, the directional derivatives w.r.t. gi and gt that are used in [11, Section
5], become

∂v(x,t)
∂g1

...
∂v(x,t)
∂gd

 =
(
JF ◦ F−1(x)

)T ∇xv(x, t),
∂v

∂gt
(x, t) = T ∂tv(x, t).

Higher-order directional derivatives can be defined similarly, as in [11, Section 5]. We also
have that ∥∥∥∥ ∂

∂gi1

(
. . .

∂v

∂gik

)∥∥∥∥
L2(Ω×(0,T ))

≤ C‖v‖Hk(Ω)⊗L2(0,T ), (4.3.19a)∥∥∥∥∂kv∂gkt

∥∥∥∥
L2(Ω×(0,T ))

≤ C‖v‖L2(Ω)⊗Hk(0,T ), (4.3.19b)

for a suitable constant C, k ≥ 0 and ij ∈ {1, . . . , d}, j = 1, . . . , k. Therefore, [11, Theorem
5.1] generalized to d + 1 dimensions gives the existence of a projection Πh on the space Vh,0
such that

‖v −Πhv‖H2(Ω)⊗L2(0,T ) ≤ C
(
hqs−2
s ‖v‖Hqs (Ω)⊗L2(0,T ) + hqt−1

t ‖v‖H2(Ω)⊗Hqt−1(0,T )

)
,

‖v −Πhv‖L2(Ω)⊗H1(0,T ) ≤ C
(
hqs−2
s ‖v‖Hqs−2(Ω)⊗H1(0,T ) + hqt−1

t ‖v‖L2(Ω)⊗Hqt (0,T )

)
,

with C depending only on ps, pt, α and the space parametrization G. Squaring and sum-
ming the two inequalities above, using (4.3.19) and that

∫ T
0 ‖∆(v −Πhv)(·, t)‖2L2(Ω) dt ≤



50 Chapter 4. The heat equation: least-squares method

‖v −Πhv‖2H2(Ω)⊗L2(0,T ) , leads to

‖v −Πhv‖V0
≤Chqs−2

s

(
‖v‖Hqs (Ω)⊗L2(0,T ) + ‖v‖Hqs−2(Ω)⊗H1(0,T )

)
+ Chqt−1

t

(
‖v‖H2(Ω)⊗Hqt−1(0,T ) + ‖v‖L2(Ω)⊗Hqt (0,T )

)
,

and finally (4.3.18) by the obvious upperbound of the right-hand-side norms.

As a direct corollary of Proposition 4.3 and 4.4, we can now state the a-priori error estimate
for the least-squares method.

Theorem 4.3. Let qs and qt be two integers such that qs ≥ 2 and qt ≥ 1. If u ∈ V0 ∩(
Hqs(Ω)⊗H1(0, T )

)
∩
(
H2(Ω)⊗Hqt(0, T )

)
is the solution of (4.3.4) and uh ∈ Vh,0 is the

solution of (4.3.15), then

‖u− uh‖V0 ≤ C
(
hks−2
s ‖u‖Hks (Ω)⊗H1(0,T ) + hkt−1

t ‖u‖H2(Ω)⊗Hkt (0,T )

)
(4.3.20)

where ks := min{qs, ps + 1}, kt := min{qt, pt + 1}, C is a constant that depends only on ps,
pt, α and the parametrization G.

4.3.5 Discrete system

Before introducing the discrete system, we rewrite the bilinear form A(·, ·) in an equivalent
way, through the following Lemma.

Lemma 4.5. The bilinear form A(·, ·) can be written as

A(vh, wh) =

∫ T

0

∫
Ω
∂tvh ∂twh dΩ dt +

∫ T

0

∫
Ω

∆vh ∆wh dΩ dt +

∫
Ω
∇vh(x, T ) · ∇wh(x, T ) dΩ

(4.3.21)
for all vh, wh ∈ Vh,0.

Proof. Let vh, wh ∈ Vh,0. First note that ∂tvh, ∂twh ∈
(
H1

0 (Ω) ∩H2(Ω)
)
⊗ L2(0, T ), from

(4.3.13), and ∂tvh = ∂twh = 0 on ∂Ω× [0, T ]. Using Green formula and integrating by parts
yields to

−
∫ T

0

∫
Ω

(∂tvh ∆wh + ∂twh∆vh) dΩ dt = −
∫ T

0

∫
∂Ω

(∂tvh∇wh · ν + ∂twh∇vh · ν) dΩ dt

+

∫ T

0

∫
Ω

[∇(∂tvh) · ∇wh +∇(∂twh) · ∇vh] dΩ dt

=

∫ T

0

[
∂t

(∫
Ω
∇vh · ∇wh dΩ

)]
dt

=

∫
Ω
[∇vh(x, T )·∇wh(x, T )−∇vh(x, 0)·∇wh(x, 0)] dΩ

=

∫
Ω
∇vh(x, T ) · ∇wh(x, T ) dΩ,

where ν ∈ Rd is the external normal unit vector to ∂Ω. Then (4.3.21) follows.

Remark 4.1. Note that the identity (4.3.21) holds also in the continuous setting (see Section
4.7.2).
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After the introduction of the basis (4.2.3) for Vh,0, the linear system associated to (4.3.15)
is

Au = b

where [A]i,j := A(Bi,p, Bj,p) and [b]i := F (Bi,p). The discrete system matrix A can be
written as the sum of Kronecker product matrices (see (4.3.21))

A = Kt ⊗Ms +Mt ⊗ Ls + St ⊗Ks, (4.3.22)

where the time matrices are for i, j = 1, . . . , nt

[Kt]i,j :=

∫ T

0
b′i,pt(t) b

′
j,pt(t) dt, [Mt]i,j :=

∫ T

0
bi,pt(t) bj,pt(t) dt, [St]i,j := bi,pt(T ) bj,pt(T ),

and the spatial matrices are for i, j = 1, . . . , Ns

[Ls]i,j :=

∫
Ω

∆Bi,ps(x) ∆Bj,ps(x) dΩ, [Ms]i,j :=

∫
Ω
Bi,ps(x)Bj,ps(x) dΩ,

[Ks]i,j :=

∫
Ω
∇Bi,ps(x)∇Bj,ps(x) dΩ.

4.4 Preconditioner definition and application

In this section we analyze solving strategies for the least-squares method (4.3.15) and we
present a suitable preconditioner. Thanks to the least-squares formulation of the heat equa-
tion, the matrix A in (4.3.22) is symmetric and positive definite. Thus, we can design and
analyze a suitable symmetric positive definite preconditioner to be used for a preconditioned
Conjugate Gradient method.

The simpler version of our preconditioner is associated with the bilinear form P̂ : V̂h,0 ×
V̂h,0 → R defined as

P̂(wh, vh) :=

∫ 1

0

∫
Ω̂
∂τwh ∂τvh dΩ̂ dτ +

d∑
k=1

∫ 1

0

∫
Ω̂

∂2wh
∂η2

k

∂2vh
∂η2

k

dΩ̂ dτ (4.4.1)

and with the corresponding norm

‖vh‖2P̂ := P̂(vh, vh). (4.4.2)

The preconditioner matrix is given by

[P]i,j = P̂(B̂i,p(η, τ), B̂j,p(η, τ)) i, j = 1, . . . , Ndof

and has the following structure:

P = K̂t ⊗ M̂s + M̂t ⊗ L̃s, (4.4.3)

where, referring to (4.2.1) for the notation of the basis functions, we have defined for i, j =
1, . . . , nt

[K̂t]i,j :=

∫ 1

0
b̂′i,pt(τ) b̂′j,pt(τ) dτ, [M̂t]i,j :=

∫ 1

0
b̂i,pt(τ) b̂j,pt(τ) dτ,
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and for i, j = 1, . . . , Ns

[L̃s]i,j :=
d∑

k=1

∫
Ω̂

∂2B̂i,ps(η)

∂η2
k

∂2B̂j,ps(η)

∂η2
k

dΩ̂, [M̂s]i,j :=

∫
Ω̂
B̂i,ps(η) B̂j,ps(η) dΩ̂.

Note that K̂t, M̂t and M̂s correspond to Kt, Mt and Ms, respectively, where the integration
is performed on the parametric domain Ω̂. The matrices L̃s and M̂s can be further factorized
as sum of Kronecker products as

L̃s =
d∑

k=1

M̂d ⊗ · · · ⊗ M̂k+1 ⊗ L̂k ⊗ M̂k−1 ⊗ · · · ⊗ M̂1, M̂s = M̂d ⊗ · · · ⊗ M̂1,

where for k = 1, . . . , d and for i, j = 1, . . . , ns,k

[L̂k]i,j :=

∫ 1

0
b̂′′i,ps(ηk) b̂

′′
j,ps(ηk) dηk, [M̂k]i,j :=

∫ 1

0
b̂i,ps(ηk) b̂j,ps(ηk) dηk.

If d = 3, that is the case addressed in the numerical tests, we have that (4.4.3) becomes

P = K̂t⊗ M̂3⊗ M̂2⊗ M̂1 + M̂t⊗ L̂3⊗ M̂2⊗ M̂1 + M̂t⊗ M̂3⊗ L̂2⊗ M̂1 + M̂t⊗ M̂3⊗ M̂2⊗ L̂1.

4.4.1 Spectral properties

We now focus on the spectral analysis of P−1A. We need to define the bilinear form P :
Vh,0 × Vh,0 → R

P(wh, vh) :=

∫ T

0

∫
Ω
∂twh ∂tvh dΩ dt +

d∑
k=1

∫ T

0

∫
Ω

∂2wh
∂x2

k

∂2vh
∂x2

k

dΩ dt

and the associated norm
‖vh‖2P := P(vh, vh).

Note that P(·, ·) and ‖ · ‖P are analogous to P̂(·, ·) and ‖ · ‖P̂ but integration is performed on
the physical domain (see (4.4.1) and (4.4.2)).

We first prove the equivalence between the norms ‖ · ‖P and ‖ · ‖V0 in Vh,0.

Proposition 4.5. Under Assumptions 4.2–4.3, it holds

1

C∆
‖vh‖2P ≤ ‖vh‖2V0

≤ d‖vh‖2P ∀vh ∈ Vh,0,

where C∆ is the constant defined in (4.3.1).

Proof. Given vh ∈ Vh,0, recalling (4.3.13) and thanks to (4.3.1), we have that

d∑
k=1

∫ T

0

∫
Ω

∣∣∣∣∂2vh
∂x2

k

∣∣∣∣2 dΩ dt ≤
∫ T

0

∫
Ω

 d∑
k,l=1

∣∣∣∣ ∂2vh
∂xk∂xl

∣∣∣∣2
 dΩ dt =

∫ T

0
|vh(·, t)|2H2(Ω) dt

≤
∫ T

0
‖vh(·, t)‖2H2(Ω) dt ≤ C∆

∫ T

0
‖∆vh(·, t)‖2L2(Ω) dt.
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Thus, the first inequality holds. We also have∫ T

0
‖∆vh(·, t)‖2L2(Ω) dt =

d∑
k,l=1

∫ T

0

∫
Ω

∂2vh
∂x2

k

∂2vh
∂x2

l

dΩ dt

≤ 1

2

d∑
k,l=1

∫ T

0

[∥∥∥∥∂2vh
∂x2

k

(·, t)
∥∥∥∥2

L2(Ω)

+

∥∥∥∥∂2vh
∂x2

l

(·, t)
∥∥∥∥2

L2(Ω)

]
dt

≤ d
d∑

k=1

∫ T

0

∥∥∥∥∂2vh
∂x2

k

(·, t)
∥∥∥∥2

L2(Ω)

dt = d
d∑

k=1

∫ T

0

∫
Ω

∣∣∣∣∂2vh
∂x2

k

∣∣∣∣2 dΩ dt

and we can conclude that the second inequality holds.

Corollary 4.1. Under Assumptions 4.2–4.3, it holds

1

C∆
‖vh‖2P ≤ A(vh, vh) ≤ 2d‖vh‖2P ∀vh ∈ Vh,0. (4.4.4)

Proof. The statement follows from Lemma 4.2, Lemma 4.3 and Proposition 4.5.

Proposition 4.6. Under Assumptions 4.2–4.4, there exist constants Q1, Q2 > 0 independent
of hs, ht, ps, pt, but dependent on G such that

Q1‖vh‖2P ≤ ‖v̂h‖2P̂ ≤ Q2‖vh‖2P ∀v̂h ∈ V̂h,0 and vh := v̂h ◦G−1.

Proof. Let v̂h ∈ V̂h,0 and vh := v̂h ◦G−1 ∈ Vh,0. First we prove the first inequality. Observing
that G−1(x, t) = (F−1(x), t/T ), we get∫ T

0

∫
Ω

(∂tvh)2 dΩ dt =
1

T

∫ 1

0

∫
Ω̂

(∂τ v̂h)2 |det (JG)| dΩ̂ dτ

≤ 1

T
sup

Ω̂

{|det(JG)|}
∫ 1

0
‖∂τ v̂h(·, τ)‖2

L2(Ω̂)
dτ

≤ 1

T
sup

Ω̂

{|det(JG)|} ‖v̂h‖2P̂ .

Let Hv̂h be the Hessian of v̂h with respect to the spatial parametric variables η1, . . . , ηd,
i.e. Hv̂h ∈ Rd×d with [Hv̂h ]i,j = ∂2v̂h

∂ηi∂ηj
for i, j = 1, . . . , d, and let [J−1

G ]·,i ∈ Rd denote the i-th
column of J−1

G . Then, for i = 1, . . . , d, it holds

∫ T

0

∫
Ω

(
∂2vh
∂x2

i

)2

dΩ dt =

∫ 1

0

∫
Ω̂

(
[J−1
G ]T·,iHv̂h [J−1

G ]·,i +∇v̂Th
∂[J−1

G ]·,i
∂ηi

)2

T | det(JG)| dΩ̂ dτ

≤
∫ 1

0

∫
Ω̂

(
Ĉ1‖Hv̂h‖

2
F + Ĉ2‖∇v̂h‖22

)
dΩ̂ dτ,

where ‖ ·‖F and ‖ ·‖2 denote the Frobenius norm and the two-norm of matrices (the norm in-
duced by the Euclidean vector norm), respectively, Ĉ1 := 2Tmax

i
sup

Ω̂

{(
‖[J−1

G ]·,i‖2
)4 | det(JG)|

}
,

Ĉ2 := 2Tmax
i

sup
Ω̂

{(∥∥∥∥∂[J−1
G ]·,i
∂ηi

∥∥∥∥
2

)2

|det(JG)|

}
and where we used that ‖Hv̂h‖2 ≤ ‖Hv̂h‖F .
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Following the proof of Proposition 4.5, we can prove that∫ 1

0
‖∆v̂h(·, τ)‖2

L2(Ω̂)
dτ ≤ d‖v̂h‖2P̂ ∀v̂h ∈ V̂h,0.

Thus it holds∫ 1

0

∫
Ω̂
‖Hv̂h‖

2
F dΩ̂ dτ ≤ 2

∫ 1

0
|v̂h(·, τ)|2

H2(Ω̂)
dτ ≤ 2Ĉ∆

∫ 1

0
‖∆v̂h(·, τ)‖2

L2(Ω̂)
dτ ≤ 2dĈ∆‖v̂h‖2P̂∫ 1

0

∫
Ω̂
‖∇v̂h‖22 dΩ̂ dτ =

∫ 1

0
|v̂h(·, τ)|2

H1(Ω̂)
dτ ≤ Ĉ∆

∫ 1

0
‖∆v̂h(·, τ)‖2

L2(Ω̂)
dτ ≤ dĈ∆‖v̂h‖2P̂ ,

where Ĉ∆ > 0 is the constant such that ‖z‖2
H2(Ω̂)

≤ Ĉ∆‖∆z‖2L2(Ω̂)
, for z ∈ H1

0 (Ω̂) ∩H2(Ω̂).
Therefore, we have ∫ T

0

∫
Ω

(
∂2vh
∂x2

i

)2

dΩ dt ≤ dĈ∆

(
2Ĉ1 + Ĉ2

)
‖v̂h‖2P̂

and, summing all terms that define ‖ · ‖P , we conclude

Q1‖vh‖2P ≤ ‖v̂h‖2P̂

with 1
Q1

:= 1
T sup

Ω̂

{|det(JG)|}+ d2Ĉ∆

(
2Ĉ1 + Ĉ2

)
.

Now we prove the other bound. We observe that v̂h = vh ◦G and G(η, τ) = (F (η), T τ).
Thus, with similar arguments and using (4.3.1), we have∫ 1

0

∫
Ω̂
∂τ v̂

2
h dΩ̂ dτ ≤ T sup

Ω
{|det(JG−1)|} ‖vh‖2P

and ∫ 1

0

∫
Ω̂

(
∂2v̂h
∂η2

i

)2

dΩ̂ dτ ≤ dC∆ (2C1 + C2) ‖vh‖2P ,

where
C1 := 2

1

T
max
i

sup
Ω

{(
‖[J−1

G−1 ]·,i‖2
)4 | det(JG−1)|

}
and

C2 := 2
1

T
max
i

sup
Ω


(∥∥∥∥∂[J−1

G−1 ]·,i

∂ηi

∥∥∥∥
2

)2

|det(JG−1)|

 .

We conclude that
‖v̂h‖2P̂ ≤ Q2‖vh‖2P

with Q2 := T sup
Ω
{|det(JG−1)|}+ d2C∆ (2C1 + C2).

Theorem 4.4. Under Assumptions 4.2–4.4, it holds

θ ≤ λmin(P−1A), λmax(P−1A) ≤ Θ,

where θ and Θ are positive constants that do not depend on hs, ht, ps and pt.
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Proof. Let v̂h ∈ V̂h,0, v its coordinate vector with respect to the basis (4.2.2) and vh =
v̂h ◦G−1 ∈ Vh,0. Thanks to Courant-Fischer theorem, we have to show that there are bounds
θ and Θ such that

θ ≤ vTAv

vTPv
≤ Θ

holds for all v. Equivalently, using (4.4.4) and noting that vTAv = A(vh, vh) and vTPv =
P̂(v̂h, v̂h) = ‖v̂h‖2P̂ , it is sufficient to show that there are bounds θ and Θ such that

θC∆ ≤
‖vh‖2P
‖v̂h‖2P̂

≤ Θ

2d
∀v̂h ∈ V̂h,0,

with vh = v̂h ◦G−1. Using Proposition 4.6, we can conclude that the previous inequalities
hold with θ := 1

C∆Q2
and Θ := 2d

Q1
.

4.4.2 Preconditioner application by fast diagonalization method

The application of the preconditioner is a solution of a Sylvester-like equation: given r find s
such that

Ps = r. (4.4.5)

Following [93], to solve (4.4.5), we use FD method. It is a direct method that, at the first
step, computes the eigendecomposition of the pencils (M̂i, L̂i) for i = 1, . . . , d and of (M̂t, K̂t),
i.e.

L̂iUi = M̂iUiΛi, K̂tUt = M̂tUtΛt (4.4.6)

where Λi and Λt are diagonal eigenvalue matrices while the columns of Ui and Ut contain the
corresponding generalized eigenvectors and they are such that

M̂i = U−Ti U−1
i , L̂i = U−Ti ΛiU

−1
i , M̂t = U−Tt U−1

t , K̂t = U−Tt ΛtU
−1
t .

Then, we can rewrite M̂s as

M̂s=(U−Td U−1
d )⊗ · · · ⊗(U−T1 U−1

1 )=(U−Td ⊗ · · · ⊗ U
−T
1 )(U−1

d ⊗ · · · ⊗ U
−1
1 ) using (2.2.2),

=(Ud ⊗ · · · ⊗ U1)−T (Ud ⊗ · · · ⊗ U1)−1 = U−Ts U−1
s using (2.2.1) and (2.2.3),

where Us := Ud ⊗ · · · ⊗ U1. Similarly, denoting with Im ∈ Rm×m the identity matrix of size
m and defining Λs :=

∑d
i=1 Ini−1

s
⊗ Λi ⊗ Ind−is

, we rewrite L̃s as

L̃s =
∑d

i=1(U−Td U−1
d )⊗ · · · ⊗ (U−Ti+1U

−1
i+1)⊗ (U−Ti ΛiU

−1
i )⊗ (U−Ti−1U

−1
i−1)⊗ · · · ⊗ (U−T1 U−1

1 )

=
∑d

i=1(U−Td ⊗ · · · ⊗ U−T1 )(Ini−1
s
⊗ Λi ⊗ Ind−is

)(U−1
d ⊗ · · · ⊗ U

−1
1 ) using (2.2.2),

= U−Ts ⊗ Λs ⊗ U−1
s using (2.2.1), (2.2.2) and (2.2.3).

Then, P can be factorized as

P = (Ut ⊗ Us)−T (Λt ⊗ Inds + Int ⊗ Λs)(Ut ⊗ Us)−1,

where we have used (2.2.1), (2.2.2) and (2.2.3). Therefore, after introducing the tensors
R, Q̃ ∈ Rns,1×...ns,d×nt s.t. vec (R) = r and vec

(
Q̃
)

= q̃, the solution of (4.4.5) can be
obtained by the following algorithm.
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Algorithm 3 (d+ 1)-dimensional FD

1: Setup: Compute the generalized eigendecompositions (4.4.6)
2: Application: Compute r̃=(Ut⊗Us)T r = (Ut ⊗ Ud ⊗ · · · ⊗ U1)Tr=R×1U

T
1 · · ·×d+1U

T
t .

3: Compute q̃ =
(

Λt ⊗ Inds + Int ⊗ Λs

)−1
r̃.

4: Compute s = (Ut⊗Us) q̃ = (Ut⊗Ud⊗ · · · ⊗U1) q̃ = Q̃×1 U1 · · · ×d+1 Ut.

4.4.3 Inclusion of the geometry and coefficient information in the precon-
ditioner

The spectral estimates in Section 4.4.1 show the dependence on G (see the proof of Theorem
4.4): the geometry parametrization affects the performance of our preconditioner (4.4.3), as
it is confirmed by the numerical tests in Section 4.5. In this section, we present a strategy to
partially incorporate G in the preconditioner, without increasing its computational cost. The
same idea has been used in Chapter 3 for the Stokes problem (see also [81]).

We begin by splitting the bilinear form A(·, ·) as

A(vh, wh) = Kt(vh, wh) +Ks(vh, wh)−O(vh, wh) ∀vh, wh ∈ Vh,0
where

Kt(vh, wh) :=

∫ T

0

∫
Ω
∂tvh ∂twh dΩ dt, Ks(vh, wh) :=

∫ T

0

∫
Ω

∆vh ∆wh dΩ dt,

O(vh, wh) :=

∫ T

0

∫
Ω

(∂tvh ∆wh + ∂twh ∆vh) dΩ dt.

Using that vh := v̂h ◦G−1, wh := ŵh ◦G−1 and

∂2vh
∂x2

i

=

d∑
j,k=1

∂2v̂h ◦G−1

∂ηj∂ηk
[J−1
G ]k,i[J

−1
G ]j,i +

d∑
j=1

∂v̂h ◦G−1

∂ηj

∂[J−1
G ]j,i
∂ηi

,

we can rewrite Kt and Ks as

Kt(vh, wh) =

∫ 1

0

∫
Ω̂
cd+1∂τ v̂h ∂τ ŵh dΩ̂ dτ, Ks(vh, wh) = Ks,1(v̂h, ŵh) +Ks,2(v̂h, ŵh)

where

Ks,1(v̂h, ŵh) :=

d∑
k=1

∫ 1

0

∫
Ω̂
ck
∂2v̂h
∂η2

k

∂2ŵh
∂η2

k

dΩ̂ dτ,

Ks,2(v̂h, ŵh) :=

d∑
r,s=1
r 6=s

d∑
j,k=1
j 6=k

∫ 1

0

∫
Ω̂
g1
rsjk

∂2v̂h
∂ηk∂ηj

∂2ŵh
∂ηr∂ηs

dΩ̂ dt +

d∑
j,k=1

∫ 1

0

∫
Ω̂
g2
jk

∂v̂h
∂ηk

∂ŵh
∂ηj

dΩ̂ dt

+
d∑
r=1

d∑
j,k=1

∫ 1

0

∫
Ω̂
g3
rjk

(
∂2v̂h
∂ηk∂ηj

∂ŵh
∂ηr

+
∂2ŵh
∂ηk∂ηj

∂v̂h
∂ηr

)
dΩ̂ dt

and where we have defined

ck :=
(∥∥[J−1

G ]·,k
∥∥

2

)4 |det(JF )|T for k = 1, . . . , d, cd+1 := |det(JF )|T−1, (4.4.7)
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while g1
rsjk, g

2
jk, g

3
rjk are functions that depend on the parametrization G.

The preconditioner will be based on an approximation of Kt +Ks,1 only. In particular we
approximate ck, for k = 1, . . . , d+ 1 as

ck(η, τ) ≈ µ1(η1) . . . µk−1(ηk−1)ωk(ηk)µk+1(ηk+1) . . . µd(ηd)µd+1(τ) for k = 1, . . . , d,

cd+1(η, τ) ≈ µ1(η1) . . . µd(ηd)ωd+1(τ).
(4.4.8)

The functions ck in (4.4.8) are first interpolated by constants in each element and then the
construction of the univariate factors µk, and ωk is performed by the separation of variable
algorithm detailed in the Appendix A. The resulting computational cost is therefore propor-
tional to the number of elements, which for smooth splines is roughly equal to Ndof , and
independent of the degrees ps and pt. As a consequence, the computation of (4.4.8) has a
negligible cost in the whole iterative strategy. This first step leads to a matrix of this form

PG := K̂G
t ⊗ M̂G

s + M̂G
t ⊗ L̃Gs ,

where, referring to (4.2.1) for the notation of the basis functions, for i, j = 1, . . . , nt,[
K̂G
t

]
i,j

:=

∫ 1

0
ωd+1(τ) b̂′i,pt(τ) b̂′j,pt(τ) dτ,

[
M̂G
t

]
i,j

:=

∫ 1

0
µd+1(τ) b̂i,pt(τ) b̂j,pt(τ) dτ

(4.4.9)

L̃Gs :=
d∑

k=1

M̂G
d ⊗ · · · ⊗ M̂G

k+1 ⊗ L̂Gk ⊗ M̂G
k−1 ⊗ · · · ⊗ M̂G

1 , M̂G
s := M̂G

d ⊗ · · · ⊗ M̂G
1 ,

with for i, j = 1, . . . , ns,k and k = 1, . . . , d,

[L̂Gk ]i,j :=

∫ 1

0
ωk(ηk) b̂

′′
i,ps(ηk) b̂

′′
j,ps(ηk) dηk, [M̂G

k ]i,j :=

∫ 1

0
µk(ηk) b̂i,ps(ηk) b̂j,ps(ηk) dηk.

(4.4.10)
The matrix PG maintains the Kronecker structure of (4.4.3) and Algorithm 3 can still be
used to compute its application.

Finally, as in [81], we apply a diagonal scaling and we define the preconditioner as
PG := D1/2 PG D1/2 where D is the diagonal matrix whose diagonal entries are [D]i,i :=

[A]i,i/[PG]i,i.

Remark 4.2. For the model problem considered in this chapter, the approximation of the
geometry parametrization in the time direction is trivial. Notice that the coefficients in (4.4.7)
do not depend on τ . Indeed, in our case it holds

Kt =
1

T
K̂t, Mt = TM̂t,

and hence we could set explicitly K̂G
t = Kt and M̂G

t = Mt, which is exact. However, we want
to present the more general approximating strategy above which could be used also when the
spatial geometry or equation’s coefficients depend on time.

4.4.4 Computational cost and memory consumption of the linear solver

The cost of our preconditioning strategies consists of two parts: setup cost and application
cost.

The setup cost of both P and PG includes the eigendecomposition of the pencils (L̂i, M̂i)

and (K̂t, M̂t) or (L̂Gi , M̂
G
i ) and (K̂G

t , M̂
G
t ), respectively, that is, Step 1 of Algorithm 1. If we
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assume for simplicity that L̂i, M̂i, L̂Gi , M̂
G
i for i = 1, . . . , d have size ns × ns and that K̂t,

M̂t, K̂G
t and M̂G

t have size nt × nt, then the cost of the eigendecomposition is O(dn3
s + n3

t )
FLOPs. This cost is optimal for d = 2 and negligible for d = 3, provided that nt ≈ ns. For
PG, we also have to include in the setup cost the creation of the diagonal matrix D, which
is negligible, and the construction of the 2(d+ 1) univariate approximations µ1, . . . , µd+1 and
ω1, . . . , ωd+1, that are used to incorporate some geometry information into the preconditioner.
As explained in Section 4.4.3, this has a cost which is O(Ndof ) FLOPs.

The application of P and PG, is performed by Algorithm 3, Steps 2–4. Step 2 and Step
4 are efficiently performed exploiting property (2.2.5) and they need a total of 4(dnd+1

s nt +
n2
tn

d
s) = 4Ndof (dns + nt) FLOPs, while Step 3 has an optimal cost, as it requires O(Ndof )

FLOPs. Thus, the total cost of Algorithm 1 is 4Ndof (dns + nt) + O(Ndof ) FLOPs. The
non-optimal dominant cost is given by the dense matrix-matrix products of Step 2 and Step
4, which, however, are usually implemented on modern computers in a high-efficient way, as
they are BLAS level 3 operations. In our numerical tests, the overall serial computational
time grows almost as O(Ndof ) up to the largest problem considered, as we will show in Section
4.5.

Clearly, the computational cost of each iteration of the CG solver depends on both the
preconditioner application and the residual computation. For the sake of completeness, we
also discuss the cost of the residual computation, which consists in the multiplication between
A and a vector. Note that this multiplication can be computed by exploiting the special
structure (4.3.22) and the formula (2.2.4). In this case, we do not need to compute and store
the whole matrix A, but only its factors Kt, St, Mt, Ks, Ls and Ms. With this matrix-
free approach, noting that the time matrices Kt, St, Mt are banded matrices with a band
of width 2pt + 1 and the spatial matrices Ks, Ls, Ms have a number of non-zeros per row
approximately equal to (2ps+1)d, the computational cost of a single matrix-vector product is
6
[
(2ps + 1)d + 2pt + 1

]
Ndof ≈ 6(2p+ 1)dNdof , if p = ps ≈ pt. Even if this cost is lower than

what one would get by using A explicitly, the comparison with the cost of the preconditioner
shows that the residual computation easily turns out to be the dominant cost of the iterative
solver (see Table 4.3 in Section 4.5). This issue was already recognized in [93, 81] (see also
Chapter 3).

We now analyze the memory consumption. For the preconditioner, we need to store the
eigenvector matrices Ut, U1, . . . , Ud and the diagonal eigenvalue matrix

(
Λt ⊗ Inds + Int ⊗ Λs

)
.

The memory required is
n2
t + dn2

s +Ndof .

For the system matrix, we need to store the matrices Kt, Mt, Ms, Ks and Ls (the storage of
St is negligible). The memory required is roughly

2 (2pt + 1)nt + 3 (2ps + 1)dNs.

These numbers show that memory-wise our space-time strategy is very appealing when com-
pared to other approaches, even when spatial and time variables are discretized separately,
e.g., with finite differences in time or other time-stepping schemes. To see this, take d = 3 and
pt ≈ ps = p, and assume n2

t ≤ Cp3Ns. In this case, the total memory consumption is then
O
(
p3Ns +Ndof

)
which is the memory required to store the Galerkin matrices associated to

spatial variables, plus the memory required to store the solution of the problem.
We emphasize that it is possible, though beyond the scope of this work, to take the matrix-

free paradigm one step further by using the approach developed in [94]. Using this approach,
where even the factors of A as in (4.3.22) are not needed, would significantly improve the
overall iterative solver in terms of memory and computational cost (both for the setup and
for the matrix-vector computations).
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4.5 Numerical results

In this section, we show numerical experiments that confirm the convergence behaviour
(4.3.20) of the least-squares approximation method defined in Section 4.3.3, and then we
present some numerical results regarding the performance of our preconditioner.

The tests are performed with Matlab R2015a and GeoPDEs toolbox [111], on a Intel Core
i7-5820K processor, running at 3.30 GHz, with 64 GB of RAM.

In Algorithm 3, the eigendecomposition of Step 1 is done by eigMatlab function, while the
multiplications of Kronecker matrices, appearing in Step 2 and 4, are performed by Tensorlab
toolbox [102]. We fix the tolerance of CG equal to 10−8 and the initial guess equal to the null
vector in all tests.

We set hs = ht =: h, and we denote the number of subdivisions in each parametric
direction by nsub.

4.5.1 Orders of convergence

We perform accuracy tests in a 2D spatial domain since the calculation of the numerical
errors on 3D spatial domains is expensive in terms of computational time, when element-wise
Gaussian quadrature is adopted. We set T = 1 and we consider a 2D spatial domain: the
quarter of annulus with internal radius equal to 1 and external radius equal to 2 (see Figure
4.1a). The initial and Dirichlet boundary conditions and the source term f are fixed such that
the exact solution is u = −(x2 + y2 − 1)(x2 + y2 − 4)xy2 sin(πt). We solved the linear system
with Matlab direct solver (backslash "\" operator). Figure 4.2a shows the ‖ · ‖V0 relative
errors with splines of degree ps = pt from 2 to 6: the rate of convergence of O(hpt−1) confirms
the results of Theorem 4.3. As predicted by the theory, if we increase the degree of spatial
B-splines and we set ps = pt + 1, we can gain an order of convergence. Indeed, Figure 4.2b
shows that in this case the ‖ · ‖V0 relative errors have order pt.

Even if theoretical results do not cover this case, we also analyze in Figures 4.2c and 4.2d
the error behaviour for pt = ps in L2(Ω× [0, T ]) and H1(Ω× [0, T ]) norms, respectively. While
the H1 errors are optimal for every pt considered, i.e. they are of order pt for pt ≥ 2, the
orders of convergence in L2 norm are optimal and thus equal to pt + 1, only for pt ≥ 3. The
suboptimal behaviour of the error in L2 norm for pt = ps = 2 is in fact consistent with the
Aubin-Nitsche type estimate and with the a-priori error estimates for fourth-order PDEs (see
in particular the classical result [105, Theorem 3.7]).

4.5.2 Performance of the preconditioner

To assess the performance of our preconditioning strategy, we set T = 1 and we focus on two
3D spatial domains Ω ⊂ R3, represented in Figure 4.1b and Figure 4.1c: the cube and the
rotated quarter of annulus, respectively. As a comparison, we also consider as preconditioner
for CG the Incomplete Cholesky with zero fill-in (IC(0)) factorization of A, that is executed
by the Matlab routine ichol. Tables 4.1 and 4.2 report the number of iterations and the total
solving time, that includes the setup time of the preconditioner. The symbol " * " is used
when the construction of the matrix A or its matrix factors go out-of-memory. We force the
execution to be sequential and to use only a single computational thread.

As discussed in the previous section, the matrix-vector products of CG are computed in
a matrix-free way using its factors as in (4.3.22). Matrix A is still assembled in order to use
the IC(0) preconditioner. In any case, the assembly times are never included in the reported
times.

For simplicity, we consider only the case where ps = pt. The case where ps = pt + 1 will
lead to a computational cost that is of the same order of the case pt = ps, as it can be inferred
from Section 4.4.4.
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(a) Quarter of annulus. (b) Cube.

(c) Rotated quarter of
annulus.

Figure 4.1: Space-time least-squares. Computational domains.
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(a) V0-norm relative error
with pt = ps.
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(b) V0-norm relative error
with pt = ps − 1.
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(c) L2-norm relative error
with pt = ps.
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(d) H1-norm relative error
with pt = ps.

Figure 4.2: Space-time least-squares. Relative errors.

Cube. We first consider the domain Ω̂ = Ω = (0, 1)3 (Figure 4.1b). Note that in this
case we have that [P]i,j = P̂(B̂i,p, B̂j,p) = P(Bi,p, Bj,p). We set homogeneous Dirich-
let and zero initial boundary conditions and we fix f such that the exact solution is u =
sin(πx) sin(πy) sin(πz) sin(t).

Table 4.1 shows the performance of P and IC(0) preconditioners in the case pt = ps. The
number of iterations obtained with P are stable w.r.t pt and nsub.

Even if the number of iterations of our strategy might be larger than that of IC(0), the over-
all computational time is significantly lower, up to two orders of magnitude for the problems
considered. This is due to the higher setup and application cost of the IC(0) preconditioner.

Rotated quarter of annulus. Finally, we consider as computational domain Ω a quarter
of annulus with center in the origin, internal radius 1 and external radius 2, rotated along the
axis {(x,−1, 0) | x ∈ R} by π/2 (see Figure 4.1c). Boundary data and forcing function are
set such that the exact solution is u = −(x2 + y2 − 1)(x2 + y2 − 4)xy2 sin(z) sin(t).

Table 4.2 shows the results of CG coupled with P, PG or IC(0) preconditioner. From the
spectral estimates of Theorem 4.4, we know that the geometry parametrization G, which in
this case is not trivial, plays a key-role in the performance of P. This is confirmed by the
results of Table 4.2: the number of iterations is higher than the ones obtained in the cube
domain, whereG is the identity map (see Table 4.1). However, the inclusion of some geometry
information, and thus the use of PG as a preconditioner, improves the performances, as we
can see from the middle table of Table 4.2. Moreover, we show that IC(0) is not competitive
neither with P nor with PG, in terms of computational time.

For the last domain, we analyze the percentage of computation time of a PG application
with respect to the overall CG time. The results, reported in Table 4.3, show that the time
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P + CG pt = ps Iterations / Time
nsub pt = 2 pt = 3 pt = 4 pt = 5

8 9 / 0.06 11 / 0.07 11 / 0.18 11 / 0.28
16 11 / 0.27 11 / 0.69 12 / 1.80 12 / 3.80
32 12 / 5.10 12 / 13.37 12 / 27.31 12 / 52.95
64 13 / 100.09 13 / 227.93 13 / 458.86 13 / 924.44
128 13 / 2012.94 13 / 4235.96 ∗ ∗

IC(0) + CG pt = ps Iterations / Time
nsub pt = 2 pt = 3 pt = 4 pt = 5

8 9 / 0.18 7 / 1.69 6 / 14.04 6 / 80.39
16 22 / 5.01 16 / 45.54 12 / 355.99 10 / 1913.90
32 64 / 157.05 ∗ ∗ ∗

Table 4.1: Space-time least-squares. Cube domain with pt = ps. Performance
of P+CG (upper table) and of IC(0)+CG (lower table).

spent in the preconditioner application takes only a little amount of the overall solving time.
The dominant cost, in this implementation is due to the matrix-vector products of the residual
computation, that is the other main operation performed in a CG cycle.

Since we are primarily interested in the preconditioner performance, in Figure 4.3 we
report in a log-log scale the computational times required for the setup and for a single
application of PG versus the number of degrees-of-freedom. We see that the setup time is
clearly asymptotically proportional to Ndof , as expected. Remarkably, the single application
time grows slower than the expected theoretical cost O(N

5/4
dof ); indeed, it grows almost as the

optimal rate O(Ndof ), even for the largest problems tested. As already mentioned, this is
likely due to the high efficiency of the BLAS level 3 routines that perform the computational
core of the application of the preconditioner.

4.6 Conclusions

In this chapter, we have proposed and studied a least-squares method for the heat equa-
tion, that allows us to design an innovative preconditioner in the framework of Isogeometric
Analysis. Even though we adopt a global-in-time space-time formulation, based on smooth
splines in space and time, the preconditioner P that we have presented is highly efficient
both in terms of FLOPs and memory, thanks to its matrix representation as suitable sum of
Kronecker products, leading to a Sylvester-like problem.

The computational cost of the preconditioner setup is at most O(Ndof ) FLOPs while
its application is O(N

1+1/d
dof ) FLOPs. In our numerical benchmarks the computational time,

for serial single-core execution, is in fact close to O(Ndof ), with no dependence on p. The
proposed preconditioner P is indeed robust with respect to the spline degree and its variant,
denoted with PG, has a good performance also when the geometry parametrization G of the
patch is not trivial.

The storage cost is instead O(pdNs + Ndof ), under the reasonable assumption that n2
t ≤

CpdNs. We emphasize that is roughly the same storage cost that one would get by discretizing
separately in space and time.
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P + CG pt = ps Iterations / Time
nsub pt = 2 pt = 3 pt = 4 pt = 5

8 107 / 0.21 107 / 0.48 114 / 1.17 123 / 2.73
16 126 / 2.56 128 / 6.90 133 / 17.04 135 / 35.17
32 142 / 52.77 143 / 132.24 148 / 292.53 151 / 572.84
64 153 / 1056.21 155 / 2415.23 156 / 4956.68 159 / 9906.33
128 164 / 22106.01 166 / 47539.02 ∗ ∗

PG + CG pt = ps Iterations / Time
nsub pt = 2 pt = 3 pt = 4 pt = 5

8 24 / 0.09 24 / 0.13 26 / 0.37 26 / 0.60
16 35 / 0.77 34 / 1.96 33 / 4.62 33 / 9.35
32 42 / 17.03 41 / 39.57 40 / 82.35 41 / 161.73
64 46 / 333.20 44 / 716.03 49 / 1577.55 53 / 3384.08
128 48 / 6767.08 50 / 14814.09 ∗ ∗

IC(0) + CG pt = ps Iterations / Time
nsub pt = 2 pt = 3 pt = 4 pt = 5

8 11 / 0.17 8 / 1.71 7 / 13.96 6 / 80.28
16 29 / 5.52 18 / 45.22 14 / 377.47 11 / 1895.55
32 86 / 185.08 ∗ ∗ ∗

Table 4.2: Space-time least-squares. Rotated quarter domain with pt = ps.
Performance of P+CG(upper table), PG+CG (middle table) and of IC(0)+CG

(lower table).

PG

nsub pt = 2 pt = 3 pt = 4 pt = 5

8 35.86% 20.66% 10.85% 7.05 %
16 17.90% 8.10 % 3.95 % 2.28 %
32 14.25 % 7.35 % 4.05 % 2.49 %
64 17.28 % 8.75 % 4.67 % 2.52 %
128 23.98 % 12.21 % ∗ ∗

Table 4.3: Space-time least-squares. Rotated quarter domain with pt = ps.
Percentage of computational time of the preconditioner PG application in the

overall CG cycle.
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Figure 4.3: Space-time least-squares. Rotated quarter domain with pt = ps.
Setup times and single application times of PG.
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Our approach could be coupled with a matrix-free idea (see [94]), and this is expected
to further improve the efficiency of the overall method. Everything is well-suited for paral-
lelization: even though in this chapter we do not consider parallel implementation, this is a
promising research direction for the future.

4.7 Technical results

4.7.1 Smooth approximation of V̂0

In this section we prove the density of spaces of smooth functions, with boundary conditions,
in suitable Sobolev spaces on the parametric domain. The first result concerns H1

0 ∩H2.

Lemma 4.6. Let Q := Ω̂ × (a, b) be an open (d + 1)-dimensional box. Then, the space
C∞

(
Q
)
∩H1

0 (Q) is dense in H2 (Q) ∩H1
0 (Q).

Proof. Let w ∈ H2 (Q)∩H1
0 (Q) and g := −∆w ∈ L2 (Q). Clearly, w solves, in a weak sense,{

−∆w = g in Q,
w = 0 on ∂Q.

Let gn ∈ C∞0 (Q) such that gn → g in L2(Q) and let wn ∈ H1
0 (Q) be the weak solution of{

−∆wn = gn in Q,
wn = 0 on ∂Q.

Then wn → w in H2 (Q). Note that wn is defined on Q, vanishes on its boundary ∂Q and
is harmonic in a inner neighborhood of ∂Q because gn has compact support, thus, employ-
ing recursively Schwarz reflection (see, e.g., [49, Exercise 9, Section 2.5] and [22, Remarque
10, Section IX.2]) we can extend wn outside Q, such that this extension is harmonic in a
neighborhood of ∂Q. It follows that wn ∈ C∞

(
Q
)
.

The second result focuses on the space which is needed for our least-squares formula-
tion, that is, H2 in space and H1 in time, endowed with homogeneous initial and boundary
conditions. This is used to show, in Theorem 4.2, the convergence of our method.

Lemma 4.7. Let

V̂0 =
{
v ∈

[(
H2(Ω̂) ∩H1

0 (Ω̂)
)
⊗ L2(0, 1)

]
∩
[
L2(Ω̂)⊗H1(0, 1)

] ∣∣∣ v = 0 on Ω̂× {0}
}

be a Hilbert space endowed with the norm

‖v‖2V̂0
:=

∫ 1

0
‖∆v(·, τ)‖2

L2(Ω̂)
dτ +

∫ 1

0
‖∂τv(·, τ)‖2

L2(Ω̂)
dτ.

Then, the space C∞
(
[0, 1]d+1

)
∩ V̂0 is dense in V̂0.

Proof. Consider a given w ∈ V̂0 as the solution of a heat problem on the parametric domain
Ω̂× (0, 1) = (0, 1)d+1, with datum g := (∂tw −∆w) ∈ L2

(
(0, 1)d+1

)
, i.e.

∂tw −∆w = g in Ω̂× (0, 1),

w = 0 on ∂Ω̂× (0, 1),

w = 0 in Ω̂× {0}.
(4.7.1)
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Let gn ∈ C∞0
(
(0, 1)d+1

)
such that gn → g in L2

(
(0, 1)d+1

)
and let wn be the solution of

the same heat problem (4.7.1) with datum gn. Following the proof of Theorem 4.1 applied
in Ω̂ × (0, 1), we get wn → w in V̂0 while, by [49, Chapter 7, Theorem 6], we also get
wn ∈ L2(Ω̂)⊗H2(0, 1).

We use now Lemma 4.6 to approximate wn. Fix δ > 0 and consider an extension zn of wn
and zn ∈

[(
H2(Ω̂) ∩H1

0 (Ω̂)
)
⊗ L2(0, 1 + δ)

]
∩
[
L2(Ω̂)⊗H2(0, 1 + δ)

]
such that zn(·, 1+δ) =

0. 2 Now observe that zn is a function in H2
(

Ω̂× (0, 1 + δ)
)
∩H1

0

(
Ω̂× (0, 1 + δ)

)
, we can

then apply Lemma 4.6 to construct a sequence zn,k ∈ C∞
(
[0, 1]d × [0, 1 + δ]

)
∩H1

0

(
Ω̂× (1 + δ)

)
converging, as k → ∞, to zn in the H2

(
Ω̂× (0, 1 + δ)

)
norm. The restriction of zn,k to

[0, 1]d+1 belongs to the required space C∞
(
[0, 1]d+1

)
∩ V̂0 and the sequence converges (as

k →∞) to zn in the H2((0, 1)d+1) norm, and thus in the V̂0-norm.

4.7.2 A variational formulation equivalent to (4.3.10)–(4.3.11)

In this section, we show that the least-squares space-time functional

ELS(v) := 1
2

∫ T

0
‖∂tv(·, t)−∆v(·, t)− f(·, t)‖2L2(Ω) dt ∀v ∈ V0 (4.7.2)

that appears in the minimization problem (4.3.10), coincides with another space-time func-
tional (4.7.3) appearing in the theory of gradient flows and curves of maximal slopes (see e.g.,
[1, 95]).

First, let us introduce the energy J : H1
0 (Ω)× [0, T ]→ R given by

J (w, t) :=

∫
Ω

(
1
2 |∇w(x)|2 − f(x, t)w(x)

)
dΩ

and assume, for the sake of simplicity, that f ∈ H1(0, T ;L2(Ω)) = L2(Ω) ⊗ H1(0, T ). If
w ∈ H1

0 (Ω)∩H∆(Ω) then for all z ∈ H1
0 (Ω) and for all t ∈ (0, T ) by Green’s formula we have

∂wJ (w, t)[z] =

∫
Ω

(
−∆w(x)− f(x, t)

)
z(x) dΩ.

Moreover, thanks to the regularity of f we have

∂tJ (w, t) = −
∫

Ω
w(x)∂tf(x, t) dΩ.

At this point, let us see that the functional ELS coincides with the following functional defined
∀v ∈ V0

E(v) := J (v(·, T ), T ) + 1
2

∫ T

0

(
‖∂tv(·, t)‖2L2(Ω) + ‖∆v(·, t) + f(·, t)‖2L2(Ω)

)
dt

−
∫ T

0
∂tJ (v(·, t), t) dt. (4.7.3)

2The extension is obtained, for instance, in the following way. Consider the null extensions f̃n of fn in
L2
(

Ω̂× (0, 1 + δ)
)
. Let w̃n be the solutions of a heat problem (4.7.1) in Ω̂ × (0, 1 + δ) (note that w̃n is an

extension of wn, by uniqueness, and that w̃n has the same regularity of w). Next, let φ be a cut-off function
for (0, 1) in (0, 1 + δ) and let zn(·t) = φ(t) w̃n(·, t).
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For v ∈ V0 we know, e.g., by [23, Lemme 3.3], that the energy t 7→ J (v(·, t), t) is absolutely
continuous and thus

J (v(·, T ), T ) =

∫ T

0

d

dt
J (v(·, t), t) dt =

∫ T

0
(∂wJ (v(·, t), t)[∂tv(·, t)] + ∂tJ (v(·, t), t)) dt

=

∫ T

0

∫
Ω

(
−∆v − f

)
∂tv dΩ dt−

∫ T

0

∫
Ω
v ∂tf dΩ dt .

Then, we can re-write the least-squares functional (4.7.2) as follows:

ELS(v) = 1
2

∫ T

0

(
‖∂tv(·, t)‖2L2(Ω) + ‖∆v(·, t) + f(·, t)‖2L2(Ω)

)
dt−

∫ T

0

∫
Ω

(∆v + f)∂tv dΩ dt

= J (v(·, T ), T ) + 1
2

∫ T

0

(
‖∂tv(·, t)‖2L2(Ω) + ‖∆v(·, t) + f(·, t)‖2L2(Ω)

)
dt

−
∫ T

0
∂tJ (v(·, t), t) dt = E(v).

As a consequence, the representation (4.3.21) in the discrete space Vh,0 holds also in the
space V0, moreover, the bilinear form (4.3.12) turns out to be the Euler-Lagrange equation of
the functional (4.7.3).

4.8 Some classical results

To help the reader going through the proofs of theorems, lemmas and propositions of Section
4.3.1 and Section 4.3.2, we report in this section some of the classical results we have used.
For the sake of easiness, we decide to rewrite the original results with the notations of the
present chapter. For the original statements, we refer to the corresponding works.

4.8.1 Results from [73]

We report the definition that we need for the following lemma, always referring to the original
work [73] for more details and for an accurate definition of quadratic form and its proper
values.

Definition 4.1 (Piecewise smooth surface with curvature bounded from below by the number
K (pag. 161)). A surface S is said to be a piecewise smooth surface with curvature bounded
from below by the number K if the following two properties are satisfied:

1. S is piecewise smooth with non null interior angles;

2. for almost every x0 ∈ S there is a plane tangent to S and the equation in local Cartesian
coordinates of the neighborhood of x0 has the form yn = ω(y1, . . . , yn−1), with ω two
times differentiable (the axis yn is in the direction of the exterior normal derivative
to S at x0 while the axes y1, . . . , yn−1 are in the plane tangent to S at x0). We also
require that the eigenvalues µ1(x0), . . . , µn−1(x0) of the matrix W with entries defined
as [W ]k,l = ∂2ω

∂yk∂yl
for k, l = 1, . . . , n − 1 evaluated at the point x0 are bounded from

below by a non negative constant K ∈ R as sup
k=1,...,n−1;x0∈S

{µk(x0)} ≤ −K.

The lemma below is used in the proof of Proposition 4.1 and of Lemma 4.1.

Lemma 4.8 (Lemme 11.1 of Chapitre III). Let Ω ⊂ Rn have piecewise bounded boundary
with curvature bounded from below by the number K.Then, it holds

‖u‖H2(Ω) ≤ c(‖∆u‖L2(Ω) + ‖u‖L2(Ω)) ∀u ∈ H1
0 (Ω) ∩H2(Ω)
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where the constant c depends only on Ω.

4.8.2 Results from [59]

Theorem 3.2.1.2 of [59], that states the regularity of the solution of a Poisson problem in a
convex domain, is reported below. We use this theorem in the proof of Lemma 4.1.

Theorem 4.5 (Theorem 3.2.1.2). Let Ω ⊂ Rn be a convex, bounded and open subset of Rn.
Then for each f ∈ L2(Ω), there exist a unique u ∈ H2(Ω) solution of{

−∆u = f in Ω,

u = 0 on ∂Ω.
(4.8.1)

4.8.3 Results from [49]

We first report the definition of weak solution for the heat equation, as it is defined in [49],
then we recall the theorem that we employ in the proof of Theorem 4.1. In the following, as
usually, we denote by H−1(Ω) the dual space of H1

0 (Ω).

Definition 4.2 (Weak solution of the parabolic problem of in Chapter 7). A function u ∈
H1

0 (Ω)⊗ L2(0, T ) with ∂tu ∈ H−1(Ω)⊗ L2(0, T ) is a weak solution of the problem
∂tu−∆u = f in Ω× (0, T ),

u = 0 on ∂Ω× (0, T ),

u = 0 in Ω× {0}.
(4.8.2)

with f(·, t) ∈ L2(Ω) for almost every t ∈ [0, T ] if the following two conditions are satisfied

•
∫

Ω ∂tu(·, t)v dΩ +
∫

Ω∇u(·, t)∇v dΩ =
∫

Ω f(·, t)v dΩ ∀v ∈ H1
0 (Ω) and almost every

t ∈ [0, T ],

• u(·, 0) = 0 almost everywhere in Ω.

We now report the first statement of [49, Theorem 5, Chapter 7].

Theorem 4.6 (Theorem 5 in Chapter 7). Let f ∈ L2(Ω)⊗L2(0, T ). Suppose that u ∈ H1
0 (Ω)⊗

L2(0, T ) with ∂tu ∈ H−1(Ω)⊗L2(0, T ) is the weak solution of (4.8.2) as defined in Definition
4.2. Then we have that u ∈ (H2(Ω)⊗ L2(0, T )) ∩ (H1

0 (Ω)⊗ L∞(0, T )) ∩ (L2(Ω)⊗H1(0, T )).
Moreover it holds

‖u‖H2(Ω)⊗L2(0,T ) + ‖u‖L2(Ω)⊗H1(0,T ) + ‖u‖H1
0 (Ω)⊗L∞(0,T ) ≤ C‖f‖L2(Ω×(0,T )),

where C is a constant that depends only on Ω and T .

4.8.4 Results from [23]

We report below the lemma of [23], in the simplified setting of this chapter, that allows us to
prove Lemma 4.3.

Lemma 4.9 (Lemme 3.3). Let u ∈ ((H1
0 (Ω)∩H2(Ω))⊗L2(0, T ))∩ (L2(Ω)⊗H1(0, T )). Then

the function t 7→ 1
2

∫
Ω |∇u(·, t)|2 dΩ is absolutely continue in [0, T ].
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Chapter 5

The heat equation: Galerkin method

In this chapter we focus again on the heat equation but, differently than the previous chapter,
we consider a space-time Galerkin isogeometric discretization. We focus in particular on the
plain Galerkin space-time method, whose well-posedness has been studied, for finite element
discretizations and for the heat equation, in the recent papers [103] and [104]. As already
seen in the previous chapter, a key issue, when adopting smooth approximation in space and
time, is the design of an efficient solver for the space-time system, which is inherently global.
This is indeed the aim of the work presented in this chapter. Exploiting the tensor product
structure of the spline basis and assuming that the spatial domain does not change with time,
the linear system has the structure

γWt ⊗Ms + νMt ⊗Ks, (5.0.1)

where Wt is given by the Galerkin discretization of the time derivative, Ks is given by the
discretization of the Laplacian in the spatial variables, Mt and Ms are “mass matrices” in
time and space, respectively, and γ, ν > 0 are constants of the problem. Adopting an itera-
tive solver, we do not need to form the matrix (5.0.1) (observe that the cost of formation of
the matrices in (5.0.1) is comparable to the cost of forming a steady-state diffusion matrix)
but there is the need of an efficient preconditioning strategy. The main contribution of the
work presented in this chapter of the thesis is the construction of a preconditioner for (5.0.1)
generalizing the classical fast diagonalization method [77]. Indeed the fast diagonalization,
as other fast solvers for (5.0.1), would require the eigendecomposition of the pencil (Wt,Mt)
which is numerically unstable. We circumvent this difficulty by introducing an ad-hoc factor-
ization of the time matrices which allows to design a solver conceptually similar to the fast
diagonalization method. The computational cost of the setup of the resulting preconditioner
is O(Ndof ) floating-point operations (FLOPs) while its application is O(N

1+1/d
dof ) FLOPs,

where d is the number of spatial dimensions and Ndof denotes the total number of degrees-of-
freedom (assuming, for simplicity, to have the same number of degrees-of-freedom in time and
in each spatial direction). Our numerical benchmarks show that the computing time (serial
and single-core execution) is close to optimality, that is, proportional to Ndof . The precondi-
tioner is robust with respect to the polynomial degree. Furthermore, our approach is optimal
in terms of memory requirement: denoting by Ns the total number of degrees-of-freedom in
space, the storage cost is O(pdNs + Ndof ). We also remark that global space-time methods
in principle facilitate the full parallelization of the solver, see [42, 54, 72]. A comparison
between the L2 least-squares variational formulation and the related preconditioner of the
previous chapter and the Galerkin formulation and the related preconditioner of the current
chapter is carried out in the numerical experiments, showing the higher efficiency of the plain
Galerkin method.
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The outline of this chapter is as follows. In Section 5.1 we recall the notations for the
univariate and multivariate spline spaces while in Section 5.2 we present the isogeometric
spaces we will use for the discretization. The model problem is introduced in Section 5.3
and in Section 5.4 we define the preconditioner and we discuss its application. We present
the numerical results assessing the performance of the proposed preconditioner in Section 5.5.
Finally, in the last section we draw some conclusions and we highlight some future research
directions.

5.1 Notations and main assumptions for the spline spaces

In this section we summarize the notations and the assumptions for the univariate and mul-
tivariate spline spaces that we employ in the rest of the chapter.

We consider functions that depend on d spatial variables and the time variable. Therefore
we introduce d+ 1 univariate knot vectors Ξl := {ξl,1 ≤ · · · ≤ ξl,ml+pl+1} for l = 1, . . . , d and
Ξt := {ξt,1 ≤ · · · ≤ ξt,mt+pt+1}. For the definition of univariate B-splines in each parametric
direction we always refer to Section 2.1.1. Let p be the vector that contains the degree
indexes, i.e. p := (ps, pt), where ps := (ps, . . . , ps) ∈ Nd, that is, we assume to have the same
polynomial degree in all spatial directions. Let hs be the maximal meshsize in all spatial knot
vectors and let ht be the meshsize of the time knot vector. We assume that the following
quasi-uniformity condition on the knot vectors holds.

Assumption 5.1. There exists 0 < α ≤ 1, independent of hs and ht, such that each non-
empty knot span (ξl,i, ξl,i+1) fulfils αhs ≤ ξl,i+1 − ξl,i ≤ hs for 1 ≤ l ≤ d and each non-empty
knot-span (ξt,i, ξt,i+1) fulfils αht ≤ ξt,i+1 − ξt,i ≤ ht.

We then introduce the univariate spline spaces Ŝpshs and Ŝptht . The multivariate B-spline is
defined as

B̂i,p(η, τ) := B̂is,ps(η)̂bit,pt(τ),

where
B̂is,ps(η) := b̂i1,ps(η1) . . . b̂id,ps(ηd), (5.1.1)

is := (i1, . . . , id), i := (is, it) and η = (η1, . . . , ηd). The corresponding spline space is denoted
as

Ŝph := span
{
B̂i,p

∣∣∣ ik = 1, ...,mk for k = 1, . . . , d; it = 1, . . . ,mt

}
,

where h := max{hs, ht}. We have Ŝph = Ŝpshs ⊗ Ŝ
pt
ht

= Ŝpshs ⊗ · · · ⊗ Ŝ
ps
hs
⊗ Ŝptht , where Ŝ

ps
hs

:=

span
{
B̂is,ps(η)

∣∣∣ ik = 1, ...,mk for k = 1, . . . , d
}
.

We need the following assumptions on the regularity of the splines.

Assumption 5.2. We assume that pt, ps ≥ 1 and that Ŝpshs ⊂ C
0(Ω̂) and Ŝptht ⊂ C

0((0, 1)) .

5.2 Isogeometric spaces

Even if similar to the previous chapter, in order to have a self-contained part, we define the
isogeometric space-time spaces that we will need in the following.

The space-time computational domain that we consider is Ω× (0, T ), where Ω ⊂ Rd and
T > 0 is the final time. We make the following assumptions.

Assumption 5.3. We assume that Ω is parametrized by F : Ω̂→ Ω, with F ∈
[
Ŝpshs

]d
.

Assumption 5.4. We assume that F−1 has piecewise bounded derivatives of any order.
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We define x = (x1, . . . , xd) := F (η) and t := Tτ . Then space-time domain is given by the
parametrization G : Ω̂× (0, 1)→ Ω× (0, T ), such that G(η, τ) := (F (η), T τ) = (x, t).

We introduce the spline space with initial and boundary conditions, in parametric coor-
dinates, as

X̂h :=
{
v̂h ∈ Ŝph

∣∣∣ v̂h = 0 on ∂Ω̂× (0, 1) and v̂h = 0 on Ω̂× {0}
}
.

We also have that X̂h = X̂hs ⊗ X̂ht , where

X̂hs :=
{
ŵh ∈ Ŝpshs

∣∣∣ ŵh = 0 on ∂Ω̂
}

= span
{
b̂i1,ps . . . b̂id,ps

∣∣∣ ik = 2, . . . ,mk − 1; k = 1, . . . , d
}
,

X̂ht :=
{
ŵh ∈ Ŝptht

∣∣∣ ŵh(0) = 0
}

= span
{
b̂it,pt

∣∣∣ it = 2, . . . ,mt

}
.

By introducing a colexicographical reordering of the basis functions, we can write

X̂hs = span
{
b̂i1,ps . . . b̂id,ps

∣∣∣ ik = 1, . . . , ns,k; k = 1, . . . , d
}

= span
{
B̂i,ps

∣∣∣ i = 1, . . . , Ns

}
,

X̂ht = span
{
b̂i,pt

∣∣∣ i = 1, . . . , nt

}
and then

X̂h = span
{
B̂i,p

∣∣∣ i = 1, . . . , Ndof

}
, (5.2.2)

where nt := mt − 1, ns,k := mk − 2, Ns :=
∏d
k=1 ns,k, Ndof := Nsnt.

Finally, the isogeometric space we consider is the isoparametric push-forward of (5.2.2)
through the geometric map G, i.e.

Xh := span
{
Bi,p := B̂i,p ◦G−1

∣∣∣ i = 1, . . . , Ndof

}
. (5.2.3)

We also have that Xh = Xhs ⊗Xht , where

Xhs := span
{
Bi,ps := B̂i,ps ◦ F−1

∣∣∣ i = 1, . . . , Ns

}
, Xht := span

{
bi,pt := b̂i,pt(·/T )

∣∣∣ i = 1, . . . , nt

}
.

5.3 Parabolic model problem and its discretization

5.3.1 Space-time variational formulation

Our model problem is the heat equation: we look for a solution u such that
γ∂tu−∇ · (ν∇u) = f in Ω × (0, T ),

u = 0 on ∂Ω × [0, T ],

u = u0 in Ω × {0},
(5.3.1)

where Ω ⊂ Rd, T is the final time, γ > 0 is the heat capacity constant and ν > 0 is the thermal
conductivity constant. We assume that f ∈ L2(0, T ;H−1(Ω)) and that u0 ∈ L2(Ω). This last
assumption guarantees the existence of a lifting ū0 of u0 such that ū0 ∈ L2(0, T ;H1

0 (Ω)) ∩
H1(0, T ;H−1(Ω)), see [49]. We introduce the Hilbert spaces

X :=
{
v ∈ L2(0, T ;H1

0 (Ω)) ∩H1(0, T ;H−1(Ω)) | v(x, 0) = 0
}

and Y := L2(0, T ;H1
0 (Ω)),
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endowed with the following norms

‖v‖2X :=
γ2

ν
‖∂tv‖2L2(0,T ;H−1(Ω)) + ν‖v‖2L2(0,T ;H1

0 (Ω)) and ‖v‖2Y := ν‖v‖2L2(0,T ;H1
0 (Ω)),

respectively. The variational formulation of (5.3.1) reads:

Find ū ∈ X such that A(ū, v) = F0(v) := F(v)−A(ū0, v) ∀v ∈ Y, (5.3.2)

where the bilinear form A(·, ·) and the linear form F(·) are defined ∀v ∈ X and ∀w ∈ Y as

A(v, w) :=

∫ T

0

∫
Ω

(γ∂tv w + ν∇v · ∇w) dΩ dt and F(w) :=

∫ T

0

∫
Ω
f w dΩ dt.

Then, the solution u of (5.3.1) is u := ū+ū0. The well-posedness of the variational formulation
above is a classical result, see for example [103].

5.3.2 Space-time Galerkin approximation

Let Xh ⊂ X be the isogeometric space defined in (5.2.3). We consider the following Galerkin
method for (5.3.2):

Find uh ∈ Xh such that A(uh, vh) = F0(vh) ∀vh ∈ Xh. (5.3.3)

Following [103], let Nh : L2(0, T ;H−1(Ω))→ Xh be the discrete Newton potential opera-
tor: given φ ∈ L2(0, T ;H−1(Ω)) then Nhφ ∈ Xh fulfills∫ T

0

∫
Ω
ν∇(Nhφ) · ∇vh dΩ dt = γ

∫ T

0

∫
Ω
φ vh dΩ dt ∀vh ∈ Xh.

Thus, we define the norm in Xh as

‖w‖2Xh := ν‖Nh(∂tw)‖2L2(0,T ;H1
0 (Ω)) + ν‖w‖2L2(0,T ;H1

0 (Ω)).

The stability and the well-posedness of the formulation (5.3.3) are guaranteed by a straight-
forward extension to IgA of [103, Equation (2.7)], [103, Theorem 3.1] and [103, Theorem 3.2].

Proposition 5.1. It holds

A(w, v) ≤
√

2‖w‖X ‖v‖Y ∀w ∈ X and ∀v ∈ Y,

and
‖wh‖Xh ≤ 2

√
2 sup
vh∈Xh

A(wh, vh)

‖vh‖Y
∀wh ∈ Xh.

Theorem 5.1. There exists a unique solution uh ∈ Xh to the discrete problem (5.3.3). More-
over, it holds

‖u− uh‖Xh ≤ 5 inf
wh∈Xh

‖u− wh‖X ,

where u ∈ X is the solution of (5.3.2).

We have then the following a-priori estimate for h-refinement.

Theorem 5.2. Let q be an integer such that 1 ≤ q ≤ min{ps, pt} + 1. If u ∈ X ∩
H1(0, T ;Hq(Ω)) ∩ Hq(0, T ;H1(Ω)) is the solution of (5.3.2) and uh ∈ Xh is the solution
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of (5.3.3), then it holds

‖u− uh‖Xh ≤ C
√
γ2

ν
+ ν

(
hq−1
s ‖u‖H1(0,T ;Hq(Ω)) + hq−1

t ‖u‖Hq(0,T ;H1(Ω))

)
(5.3.4)

where C is independent of hs, ht, γ, ν and u.

Proof. We use the approximation estimates of the isogeometric spaces from [11]. We report
here only the main steps, since the proof is similar to the one of Proposition 4.4 in Chapter
4 ( see also [80, Proposition 4]).

Let u ∈ X ∩H1(0, T ;Hq(Ω))∩Hq(0, T ;H1(Ω)). Let Πhu be a suitable projection of u in
Xh, based on the construction of [11]. We have the a-priori bounds

‖∂t(u−Πhu)‖L2(0,T ;H−1(Ω)) ≤ C1‖∂t(u−Πhu)‖L2(0,T ;L2(Ω))

≤ C2

(
hq−1
s ‖u‖H1(0,T ;Hq−1(Ω)) + hq−1

t ‖u‖Hq(0,T ;L2(Ω))

)
,

and also

‖u−Πhu‖L2(0,T ;H1
0 (Ω)) ≤ C3

(
hq−1
s ‖u‖L2(0,T ;Hq(Ω)) + hq−1

t ‖u‖Hq−1(0,T ;H1(Ω))

)
.

Therefore, we get

‖u−Πhu‖2X ≤ C4

(
γ2

ν
+ ν

)[
h2(q−1)
s ‖u‖2H1(0,T ;Hq(Ω)) + h

2(q−1)
t ‖u‖2Hq(0,T ;H1(Ω))

]
which gives (5.3.4) thanks to Theorem 5.1. The constants C1, C2, C3 and C4 above are inde-
pendent of hs, ht, γ, ν and u.

Remark 5.1. The constants in the estimates of Proposition 5.1 and of Theorem 5.1 can
be improved by considering a different norm in the functional space X , i.e. by choosing
|||v|||2 := ‖v‖2X + γ‖v(T )‖2L2(Ω), as remarked in [103, 104].

5.3.3 Discrete system

The linear system associated to (5.3.3) is

Au = b, (5.3.5)

where [A]i,j = A(Bj,p, Bi,p) and [b]i = F0(Bi,p). The tensor-product structure of the isoge-
ometric space (5.2.3) allows to write the system matrix A as sum of Kronecker products of
matrices as

A = γWt ⊗Ms + νMt ⊗Ks, (5.3.6)

where for i, j = 1, . . . , nt

[Wt]i,j =

∫ T

0
b′j,pt(t) bi,pt(t) dt and [Mt]i,j =

∫ T

0
bi,pt(t) bj,pt(t) dt, (5.3.7a)

while for i, j = 1, . . . , Ns

[Ks]i,j =

∫
Ω
∇Bi,ps(x) · ∇Bj,ps(x) dΩ and [Ms]i,j =

∫
Ω
Bi,ps(x) Bj,ps(x) dΩ. (5.3.7b)
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5.4 Preconditioner definition and application

We introduce, for the system (5.3.5), the preconditioner

[Â]i,j := Â(B̂j,p, B̂i,p),

where

Â(v̂, ŵ) :=

∫ 1

0

∫
Ω̂

(γ∂tv̂ ŵ + ν∇v̂ · ∇ŵ) dΩ̂ dτ ∀v̂, ŵ ∈ X̂h.

We have again
Â = γŴt ⊗ M̂s + νM̂t ⊗ K̂s, (5.4.1)

where Ŵt, K̂t, K̂s and M̂s are the equivalent of (5.3.7a) and (5.3.7b), respectively, in the
parametric domain, i.e. for i, j = 1, . . . , nt

[Ŵt]i,j =

∫ 1

0
b̂′j,pt(τ) b̂i,pt(τ) dτ and [M̂t]i,j =

∫ 1

0
b̂i,pt(τ )̂bj,pt(t) dτ, (5.4.2a)

while for i, j = 1, . . . , Ns

[K̂s]i,j =

∫
Ω̂
∇B̂i,ps(η) · ∇B̂j,ps(η) dΩ̂ and [M̂s]i,j =

∫
Ω̂
B̂i,ps(η) B̂j,ps(η) dΩ̂. (5.4.2b)

Thanks to the definition of the spline spaces in the parametric domain (5.1.1), the spatial
matrices (5.4.2b) have the following structure

K̂s =
d∑

k=1

M̂d ⊗ · · · ⊗ M̂k+1 ⊗ K̂k ⊗ M̂k−1 ⊗ · · · ⊗ M̂1 and M̂s = M̂d ⊗ · · · ⊗ M̂1, (5.4.3)

where for k = 1, . . . , d and for i, j = 1, . . . , ns,k

[K̂k]i,j :=

∫ 1

0
b̂′i,ps(ηk )̂b

′
j,ps(ηk)dηk and [M̂k]i,j :=

∫ 1

0
b̂i,ps(ηk )̂bj,ps(ηk)dηk.

The efficient application of the proposed preconditioner, that is, the solution of a system
with matrix Â, should exploit the structure highlighted above. When the pencils (Ŵt, M̂t),
(K̂1, M̂1), . . . , (K̂d, M̂d) admit a stable generalized eigendecomposition, a possible approach
is the fast diagonalization (FD) method, see [40] and [77] for details. We will see in Section
5.4.1 that the spatial pencils (K̂1, M̂1), . . . , (K̂d, M̂d) admit a stable diagonalization, but this
is not the case of (Ŵt, M̂t), that needs a special treatment as explained in Section 5.4.2.

5.4.1 Stable factorization of the pencils (K̂i, M̂i) i = 1, . . . , d

The spatial stiffness and mass matrices K̂i and M̂i are symmetric and positive definite. Thus,
the pencils (K̂i, M̂i) for i = 1, . . . , d admit the generalized eigendecomposition

K̂iUi = M̂iUiΛi (5.4.4)

where the matrices Ui contain in each column the M̂i-orthonormal generalized eigenvectors,
and Λi are diagonal matrices whose entries contain the generalized eigenvalues. Therefore we
have for i = 1, . . . , d the factorizations

UTi K̂iUi = Λi and UTi M̂iUi = Ins,i , (5.4.5)
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where Ins,i denotes the identity matrix of dimension ns,i × ns,i. The stability of the decom-
position (5.4.5) is expressed by the condition number of the eigenvector matrix. In particular
UTi M̂iUi = Ins,i implies that

κ
M̂i

(Ui) := ‖Ui‖M̂i
‖U−1

i ‖M̂i
= 1,

where ‖ · ‖
M̂i

is the norm induced by the vector norm ‖v‖
M̂i

:=
(
vT M̂iv

)1/2
for v ∈ Rns,i .

Furthermore,

κ2(Ui) := ‖Ui‖2‖U−1
i ‖2 =

√
κ2(M̂i),

where ‖ ·‖2 is the norm induced by the Euclidean vector norm. The condition number κ2(M̂i)
has been studied in [53] and it does not depend on nsub but it depends on the polynomial
degree. Indeed, we report in Table 5.1 the behavior of κ2(Ui) that exhibits a dependence
only on the degree ps, but stays moderately low for all low polynomial degrees that are in the
range of interest.

nsub ps = 2 ps = 3 ps = 4 ps = 5 ps = 6 ps = 7 ps = 8

32 2.7 · 100 4.5 · 100 7.6 · 100 1.3 · 101 2.1 · 101 3.5 · 101 5.7 · 101

64 2.7 · 100 4.5 · 100 7.6 · 100 1.3 · 101 2.1 · 101 3.5 · 101 5.7 · 101

128 2.7 · 100 4.5 · 100 7.6 · 100 1.3 · 101 2.1 · 101 3.5 · 101 5.7 · 101

256 2.7 · 100 4.5 · 100 7.6 · 100 1.3 · 101 2.1 · 101 3.5 · 101 5.7 · 101

512 2.7 · 100 4.5 · 100 7.6 · 100 1.3 · 101 2.1 · 101 3.5 · 101 5.7 · 101

1024 2.7 · 100 4.5 · 100 7.6 · 100 1.3 · 101 2.1 · 101 3.5 · 101 5.7 · 101

Table 5.1: κ2(Ui) for different polynomial degree ps and number of dyadic
subdivisions nsub.

5.4.2 Stable factorization of the pencil (Ŵt, M̂t)

Numerical instability of the eigendecomposition

While M̂t is symmetric, Ŵt is neither symmetric nor skew-symmetric. Indeed

[Ŵt]i,j + [Ŵt]j,i =

∫ 1

0
b̂′j,pt(t) b̂i,pt(τ) dτ +

∫ 1

0
b̂′i,pt(τ) b̂j,pt(τ) dτ = b̂i,pt(1) b̂j,pt(1) (5.4.6)

where b̂i,pt(1) b̂j,pt(1) vanishes for all i = 1, . . . , nt − 1 or j = 1, . . . , nt − 1. A numerical
computation of the generalized eigendecomposition of the pencil (Ŵt, M̂t), that is

ŴtU = M̂tUΛt, (5.4.7)

where Λt is the diagonal matrix of the generalized complex eigenvalues and U is the complex
matrix whose columns are the generalized eigenvectors (with normalization w.r.t. the ‖ · ‖

M̂t
-

norm), reveals that the eigenvectors are far from M̂t-orthogonality, i.e. the matrix U∗M̂tU
is not diagonal. As seen in Table 5.2 and Table 5.3, the numerically computed condition
numbers κ2(U) and κ

M̂t
(U) are large and grow exponentially with respect to the degree pt

and the level of mesh refinement, in contrast to the spatial case (see Table 5.1).
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nsub pt = 2 pt = 3 pt = 4 pt = 5 pt = 6 pt = 7 pt = 8

32 8.9 · 102 3.0 · 104 5.0 · 104 3.4 · 105 3.1 · 106 4.2 · 107 7.0 · 108

64 4.4 · 103 2.6 · 105 5.0 · 105 5.4 · 106 8.9 · 107 3.1 · 109 2.0 · 1010

128 2.3 · 104 1.2 · 106 5.8 · 106 1.0 · 108 3.0 · 109 6.4 · 1011 1.3 · 1012

256 1.2 · 105 9.4 · 106 7.6 · 107 2.1 · 109 1.2 · 1011 1.2 · 1013 2.1 · 1013

512 7.0 · 105 8.3 · 107 1.1 · 109 4.9 · 1010 4.5 · 1012 3.6 · 1013 4.9 · 1012

1024 4.1 · 106 8.0 · 108 1.9 · 1010 1.3 · 1012 9.6 · 1012 1.4 · 1012 5.6 · 1012

Table 5.2: κ2(U) for different degree pt and number of dyadic subdivisions
nsub.

nsub pt = 2 pt = 3 pt = 4 pt = 5 pt = 6 pt = 7 pt = 8

32 1.8 · 103 7.7 · 104 1.3 · 105 6.3 · 105 4.1 · 106 3.6 · 107 4.3 · 108

64 9.9 · 103 7.9 · 105 1.5 · 106 1.3 · 107 1.5 · 108 3.6 · 109 1.4 · 1010

128 5.5 · 104 4.0 · 106 2.1 · 107 3.1 · 108 6.8 · 109 1.1 · 1012 1.1 · 1012

256 3.2 · 105 3.3 · 107 3.3 · 108 8.6 · 109 3.5 · 1011 2.3 · 1013 2.8 · 1013

512 1.8 · 106 3.1 · 108 5.6 · 109 2.5 · 1011 1.9 · 1013 1.6 · 1014 9.3 · 1012

1024 1.1 · 107 3.1 · 109 1.0 · 1011 8.6 · 1012 5.6 · 1013 6.0 · 1012 6.1 · 1012

Table 5.3: κ
M̂t

(U) for different degree pt and number of dyadic subdivisions
nsub.

These tests clearly indicate a numerical instability when computing the generalized eigen-
decomposition of (Ŵt, M̂t). Similar instabilities have also been highlighted in [63].

Construction of the stable factorization

The analysis above motivates the search of a different but stable factorization of the pencil
(Ŵt, M̂t). We look now for a factorization of the form

ŴtUt = M̂tUt∆t, (5.4.8)

where ∆t is a complex matrix with non-zero entries allowed on the diagonal, on the last row
and on the last column only. We also require that Ut fulfils the orthogonality condition

U∗t M̂tUt = Int . (5.4.9)

From (5.4.8)–(5.4.9) we then obtain the factorizations

U∗t ŴtUt = ∆t and U∗t M̂tUt = Int . (5.4.10)

With this aim, we look for Ut as follows:

Ut :=

[ ◦
Ut k

0T ρ

]
(5.4.11)

where
◦
Ut ∈ C(nt−1)×(nt−1), k ∈ Cnt−1, ρ ∈ C and where 0 ∈ Rnt−1 denotes the null vector. In

order to guarantee the non-singularity of Ut, we further impose ρ 6= 0. Accordingly, we split
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the time matrices Ŵt and M̂t as

Ŵt =

[ ◦
Wt w

−wT ω

]
and M̂t =

[ ◦
Mt m

mT µ

]
, (5.4.12)

where we have defined
ω := [Ŵt]nt,nt , µ := [M̂t]nt,nt ,

[w]i = [Ŵt]i,nt and [m]i = [M̂t]i,nt for i = 1, . . . , nt − 1,

[
◦
Wt]i,j = [Ŵt]i,j and [

◦
Mt]i,j = [M̂t]i,j for i, j = 1, . . . , nt − 1. (5.4.13)

Recalling (5.4.6), we observe that
◦
Wt is skew-symmetric and, since

◦
Mt is symmetric, we can

write the eigendecomposition of the pencils (
◦
Wt,

◦
Mt):

◦
Wt

◦
Ut =

◦
Mt

◦
Ut
◦
Λt with

◦
U∗t

◦
Mt

◦
Ut = Int−1, (5.4.14)

where
◦
Ut contains the complex generalized eigenvectors and

◦
Λt is the diagonal matrix of the

generalized eigenvalues, that are pairs of complex conjugate pure imaginary numbers plus,
eventually, the eigenvalue zero. From (5.4.11)–(5.4.12), it follows

U∗t M̂tUt =

 Int−1

◦
U∗t

◦
Mtk +

◦
U∗t mρ

k∗
◦
Mt

◦
Ut + ρ∗mT

◦
Ut [k∗ρ∗] M̂t

[
k

ρ

]  ,
where for the top-left block we have used (5.4.14).

The orthogonality condition in (5.4.9) holds if and only if k and ρ fulfil the two conditions:

◦
U∗t

◦
Mtk +

◦
U∗t mρ = 0, (5.4.15a)

[k∗ρ∗] M̂t

[
k

ρ

]
= 1. (5.4.15b)

In order to calculate k and ρ, we first find v ∈ Cnt−1 such that
◦
Mtv = −m; (5.4.16)

then normalize the vector

[
v

1

]
w.r.t. the ‖ · ‖

M̂t
-norm to get

[
k

ρ

]
:=

[
v

1

]
(

[v∗ 1]M̂t

[
v

1

])1
2

that fulfils (5.4.15a)–(5.4.15b). Finally, we get (5.4.8) by defining

∆t := U∗t ŴtUt =

[ ◦
Λt l

−l∗ σ

]
, (5.4.17)
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where l :=
◦
U∗t

[ ◦
Wt w

] [k
ρ

]
and σ := [k∗ρ∗] Ŵt

[
k

ρ

]
. Note that matrix (5.4.17) has an arrow-

head structure.
To assess the stability of the new decomposition (5.4.10), we compute the condition num-

bers κ2(Ut) for dyadically refined uniform knot spans and different degrees. Thanks to (5.4.9),

we have κ2(Ut) =

√
κ2(M̂t). The results, reported in Table 5.4, show that the condition num-

bers κ2(Ut) are uniformly bounded w.r.t. the mesh refinement, they grow with respect to
the polynomial degree but they are moderately small for all the degrees of interest. As a
consequence of (5.4.9), we also have that κ

M̂t
(Ut) = 1. We conclude that the factorization

(5.4.10) for the time pencil (Ŵt, M̂t) is stable.

nsub pt = 2 pt = 3 pt = 4 pt = 5 pt = 6 pt = 7 pt = 8

32 3.2 · 100 5.2 · 100 8.3 · 100 1.3 · 101 2.2 · 101 3.6 · 101 5.9 · 101

64 3.3 · 100 5.2 · 100 8.3 · 100 1.3 · 101 2.2 · 101 3.6 · 101 5.9 · 101

128 3.3 · 100 5.2 · 100 8.3 · 100 1.3 · 101 2.2 · 101 3.6 · 101 5.9 · 101

256 3.3 · 100 5.2 · 100 8.3 · 100 1.3 · 101 2.2 · 101 3.6 · 101 5.9 · 101

512 3.3 · 100 5.2 · 100 8.3 · 100 1.3 · 101 2.2 · 101 3.6 · 101 5.9 · 101

1024 3.3 · 100 5.2 · 100 8.3 · 100 1.3 · 101 2.2 · 101 3.6 · 101 5.9 · 101

Table 5.4: κ2(Ut) for different degree pt and number of dyadic subdivisions
nsub.

5.4.3 Preconditioner application by the extended fast diagonalization method

The application of the preconditioner involves the solution of the linear system

Âs = r, (5.4.18)

where Â has the structure (5.4.1). We are able to efficiently solve system (5.4.18) by extending
the fast diagonalization method. The starting points, that are involved in the setup of the
preconditioner, are the following ones:

• for the pencils (K̂i, M̂i) for i = 1, . . . , d we have the factorizations (5.4.5);

• for the pencil (Ŵt, M̂t) we have the factorization (5.4.10).

Then, by defining Us := Ud⊗· · ·⊗U1 and Λs :=
∑d

i=1 Ins,d⊗· · ·⊗Ins,i+1⊗Λi⊗Ins,i−1⊗· · ·⊗Ins,1 ,
we have for the matrix Â the factorization

Â =
(
U∗t ⊗ UTs

)−1
(γ∆t ⊗ INs + νInt ⊗ Λs) (Ut ⊗ Us)−1 . (5.4.19)

Note that the second factor in (5.4.19) has the block-arrowhead structure

γ∆t ⊗ INs + νInt ⊗ Λs =


H1 B1

. . .
...

Hnt−1 Bnt−1

−B∗1 . . . −B∗nt−1 Hnt

 (5.4.20)

where Hi and Biare diagonal matrices defined as

Hi := γ[Λt]iiINs + νΛs and Bi := γ[l]iINs for i = 1, . . . , nt − 1,
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Hnt := γσINs + νΛs.

The matrix (5.4.20) has the following easy-to-invert block LU decomposition

γ∆t ⊗ INs + νInt ⊗ Λs =


INs

. . .

INs
−B∗1H

−1
1 . . . −B∗nt−1H

−1
nt−1 INs



H1 B1

. . .
...

Hnt−1 Bnt−1

S


(5.4.21)

where S := Hnt +
∑nt−1

i=1 B∗iH
−1
i Bi is a diagonal matrix.

Summarising, the solution of (5.4.18) can be computed by the following algorithm.

Algorithm 4 Extended FD
1: Setup: Compute the factorizations (5.4.5) and (5.4.10).
2: Application: Compute s̃ = (U∗t ⊗ UTs )s.
3: Compute q̃ = (γ∆t ⊗ INs + νInt ⊗ Λs)

−1 s̃.
4: Compute r = (Ut ⊗ Us) q̃.

5.4.4 Inclusion of the geometry and coefficient information in the precon-
ditioner

The preconditioner (5.4.1) does not incorporate any information on the geometry parametriza-
tion G. Thus, the performance of Â may depend on the geometry map: we see this trend in
the numerical tests of Section 5.5 and, in particular, in the upper tables of Table 5.5 and Table
5.7. However, we can generalize (5.4.1) by including in the time matrices Ŵt and M̂t and in
the univariate spatial matrices K̂i, M̂i for i = 1, . . . , d a suitable approximation of G, without
increasing the asymptotic computational cost. A similar approach has been used also in [81]
for the Stokes problem (see also Section 3.5.3) and in [80] for a least-squares formulation of
the heat equation (see also Section 4.4.3). We briefly give an overview of this strategy.

Referring to Section 5.2 for the notation of the basis functions, we rewrite the entries of
the system matrix (5.3.5) in the parametric domain as

[A]i,j = A(Bj,p, Bi,p)

= γ

∫ 1

0

∫
Ω̂

1
T ∂τ B̂j,pB̂i,p|det(JG)|dΩ̂ dτ +

∫ 1

0

∫
Ω̂
ν(∇B̂j,p)TJ−1

G J−TG ∇B̂i,p|det(JG)|dΩ̂ dτ

=

∫ 1

0

∫
Ω̂

[
(∇B̂j,p)T ∂τ B̂j,p

]
C
[
(∇B̂i,p)T B̂i,p

]T
dΩ̂ dτ, (5.4.22)

where

C(η, τ) :=

[
νJ−1
F J−TF | det(JF )|T

γ|det(JF )|

]
and where we used that Bi,p = B̂i,p◦G−1, Bj,p = B̂j,p◦G−1 and |det(JG)| = T |det(JF )|. The
construction of the preconditioner is based on the following approximation of the diagonal
entries only of C:

[C(η, τ)]k,k ≈ [C̃(η, τ)]k,k := ϕ1(η1) . . . ϕk−1(ηk−1)Φk(ηk)ϕk+1(ηk+1) . . . ϕd(ηd)ϕd+1(τ)

k = 1, . . . , d, (5.4.23a)
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[C(η, τ)]d+1,d+1 ≈ [C̃(η, τ)]d+1,d+1 := ϕ1(η1) . . . ϕd(ηd)Φd+1(τ). (5.4.23b)

We interpolate the functions C̃k,k in (5.4.23) by piecewise constants in each element and we
build the univariate factors ϕk and Φk by using the separation of variables algorithm detailed
in the Appendix A. The computational cost of the approximation above is proportional to
the number of elements, that, when using smooth B-splines, is almost equal to Ndof and it is
independent of ps and pt and thus negligible in the whole iterative strategy.

Then we define

[Ã]i,j :=

∫ 1

0

∫
Ω̂

[
(∇B̂j,p)T ∂τ B̂j,p

]
C̃
[
(∇B̂i,p)T B̂i,p

]T
dΩ̂ dτ.

The previous matrix maintains the same Kronecker structure as (5.4.1):

Ã = W̃t ⊗ M̃s + M̃t ⊗ K̃s, (5.4.24)

where for i, j = 1, . . . , nt

[W̃t]i,j :=

∫ 1

0
Φd+1(τ )̂b′j,pt(τ) b̂i,pt(τ) dτ and [M̃t]i,j :=

∫ 1

0
ϕd+1(τ )̂bi,pt(τ )̂bj,pt(t) dτ,

K̃s :=
d∑

k=1

M̃d ⊗ · · · ⊗ M̃k+1 ⊗ K̃k ⊗ M̃k−1 ⊗ · · · ⊗ M̃1, M̃s := M̃d ⊗ · · · ⊗ M̃1,

and where for k = 1, . . . , d and for i, j = 1, . . . , ns,k we define

[K̃k]i,j :=

∫ 1

0
Φk(ηk )̂b

′
i,ps(ηk )̂b

′
j,ps(ηk)dηk and [M̃k]i,j :=

∫ 1

0
ϕk(ηk )̂bi,ps(ηk )̂bj,ps(ηk)dηk.

We remark that the application of (5.4.24) can still be performed by Algorithm 4. Finally,
we apply a diagonal scaling on Ã and we define the preconditioner as

ÂG := D
1
2 ÃD

1
2 (5.4.25)

where [D]i,i := [A]i,i/[Ã]i,i.

Remark 5.2. We remark that when γ and ν do not depend on time, it holds

Wt = Ŵt and Mt = TM̂t

and we can set explicitly W̃t = Wt and M̃t = Mt. However, as in our numerical tests we con-
sider a more general framework in which γ and ν depend on time, we have presented the more
general strategy above, that allows to incorporate in ÂG possible non-constant coefficients.

5.4.5 Computational cost and memory consumption of the linear solver

The linear system (5.3.5) is neither positive definite nor symmetric, and we choose GMRES as
linear solver. In GMRES, the orthogonalization of the basis of the Krylov subspace makes the
computational cost nonlinear with respect to the number of iterations. However, as long as
this number is not too high, at each iteration the two dominant costs are the application of the
preconditioning strategy and the computation of the residual. We assume, for simplicity that
for i = 1, . . . , d the matrices K̂i, M̂i and K̃i, M̃i have dimensions ns×ns and that the matrices
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Ŵt, M̂t and W̃t, M̃t have dimensions nt × nt. Thus the total number of degrees-of-freedom is
Ndof = Nsnt = ndsnt.

The setup of Â and ÂG includes the operations performed in Step 1 of Algorithm 4, i.e.
d spatial eigendecompositions, that have a total cost of O(dn3

s) FLOPs, and the factorization
of the time matrices. The computational cost of the latter is the sum of the cost of the
eigendecomposition (5.4.14) and of the cost of the solution of the linear system (5.4.16),
yielding a cost of O(n3

t ) FLOPs. Then, the total cost of the space and time factorizations is
O(dn3

s + n3
t ) FLOPs. Note that, if nt = O(ns)., this cost is optimal for d = 2 and negligible

for d = 3. The setup cost of ÂG includes also the the construction of the diagonal matrix D,
that has a negligible cost, and the computation of the 2(d + 1) approximations ϕ1, . . . , ϕd+1

and Φ1, . . . ,Φd+1 in (5.4.23), that, as mentioned in Section 5.4.4, has the optimal cost of
O(Ndof ) FLOPs. We remark that the setup of the preconditioners has to be performed only
once, since the matrices involved do not change during the iterative procedure.

The application of the preconditioner is performed by Steps 2-4 of Algorithm 4. Exploiting
(2.2.5), Step 2 and Step 4 costs 4(dnd+1

s nt +n2
tn

d
s) = 4Ndof (dns +nt) FLOPs. The use of the

block LU decomposition (5.4.21) makes the cost for Step 3 equal to O(Ndof ) FLOPs.
In conclusion, the total cost of Algorithm 4 is 4Ndof (dns + nt) + O(Ndof ) FLOPs. The

non-optimal dominant cost of Step 2 and Step 4 is determined by the dense matrix-matrix
products. However, these operations are usually implemented on modern computers in a very
efficient way. For this reason, in our numerical tests, the overall serial computational time
grows almost as O(Ndof ), see Figure 5.3 in Section 5.5.

The other dominant computational cost in a GMRES iteration is the cost of the residual
computation, that is the multiplication of the matrix A with a vector. This multiplication is
done by exploiting the special structure (5.3.6), that allows a matrix-free approach and the
use of formula (2.2.5). Note in particular that we do not need to compute and to store the
whole matrix A, but only its time and spatial factors. Since the time matrices Mt and Wt

are banded with a band of width 2pt + 1 and the spatial matrices Ks and Ms have roughly
Ns(2ps + 1)d nonzero entries, we have that the computational cost of a single matrix-vector
product is 6Ndof [(2ps + 1)d + 2pt + 1] ≈ 6Ndof (2p + 1)d = O(Ndofp

d) FLOPs, if we assume
p = ps ≈ pt. The numerical experiments reported in Table 5.6 of Section 5.5 show that the
dominant cost in the iterative solver is represented by the residual computation. This is a
typical behaviour of the FD-based preconditioning strategies, see [80, 81, 93].

We now investigate the memory consumption. For the preconditioner we have to store the
eigenvector spatial matrices U1, . . . , Ud, the time matrix Ut and the block-arrowhead matrix
(5.4.20). The memory required is roughly

n2
t + dn2

s + 2Ndof .

For the system matrix, we have to store the time factors Mt and Wt and the spatial factors
Ms and Ks. Thus the memory required is roughly

2(2pt + 1)nt + 2(2ps + 1)dNs ≈ 4ptnt + 2d+1pdsNs.

As for the least-squares case [80], we conclude that, in terms of memory requirement, our
approach is very attractive w.r.t. other approaches, e.g. the ones obtained by discretizing in
space and in time separately. For example if we assume d = 3, pt ≈ ps = p and n2

t ≤ Cp3Ns,
then the total memory consumption is O(p3Ns+Ndof ), that is equal to the sum of the memory
needed to store the Galerkin matrices associated to spatial variables and the memory needed
to store the solution of the problem.

We remark that we could avoid storing the factors of A by using the matrix-free approach
of [94]. The memory and the computational cost of the iterative solver would significantly



82 Chapter 5. The heat equation: Galerkin method

improve, both for the setup and the matrix-vector multiplications. However, we do not pursue
this strategy, as it is beyond the scope of this paper.

Remark 5.3. For a better computational efficiency, we use a real-arithmetic version of Algo-
rithm 4: we replace Λ̃t in (5.4.17) by a block diagonal matrix where each pair of generalized
eigenvalues iλj and −iλj is replaced by a diagonal block[

0 λj

−λj 0

]

and we set

Hj :=

[
νΛs γλjIns
−γλjIns νΛs

]
and Bj := γ

[
[l]2(j−1)+1INs , [l]2(j−1)+2INs

]T
.

Note that the computational cost of Step 3 in Algorithm 4 does not change, as we have

H−1
j :=

 1
νΛ−1

s −
γ2

ν2λ
2
jΛ
−1
s

(
νΛs + γ2

ν λ
2
jΛ
−1
s

)−1
Λ−1
s −γ

νλjΛ
−1
s

(
νΛs + γ2

ν λ
2
jΛ
−1
s

)−1

γ
νλj

(
νΛs + γ2

ν λ
2
jΛ
−1
s

)−1
Λ−1
s

(
νΛs + γ2

ν λ
2
jΛ
−1
s

)−1

 .
5.5 Numerical results

In this section we first present the numerical experiments that assess the convergence behavior
of the Galerkin approximation and then we analyze the performance of the preconditioners.

The tests are performed with Matlab R2015a and GeoPDEs toolbox [111]. We consider
only sequential executions and we force the use of a single computational thread in a Intel Core
i7-5820K processor, running at 3.30 GHz and with 64 GB of RAM. We use the eig Matlab
function to compute the generalized eigendecompositions present in Step 1 of Algorithm 4,
while Tensorlab toolbox [102] is employed to perform the multiplications with Kronecker
matrices occurring in Step 2 and Step 4. The linear system is solved by GMRES without
restart, with tolerance equal to 10−8 and with the null vector as initial guess in all tests.

We consider the same mesh-size in space and in time, by setting hs = ht =: h, and we
denote the number of subdivisions in each parametric direction by nsub. We use splines of
maximal continuity allowed and of the same degree both in space and in time, i.e. we set
pt = ps =: p.

5.5.1 Orders of convergence

We consider as spatial computational domain Ω a rotated quarter of annulus, represented in
Figure 5.1a: we rotate by π

2 a quarter of annulus with center in the origin, internal radius
1 and external radius 2 along the axis{(x,−1, 0) | x ∈ R}. Dirichlet and initial boundary
conditions are set such that u(x, y, z, t) = −(x2 + y2 − 1)(x2 + y2 − 4)xy2 sin(t) sin(z) is the
exact solution with constants ν = γ = 1.

In Figure 5.2a we represent the relative errors in L2(0, T ;H1
0 (Ω))∩H1(0, T ;L2(Ω)) norm,

an easily computable upper bound of ‖ ·‖Xh , for polynomial degrees p = 1, 2, 3, 4, 5. The rates
of convergence are optimal, i.e. of order O(hp), consistent with the a-priori estimate (5.3.4).
Even if this case is not covered by theoretical results, we also compute the relative errors in
L2(0, T ;L2(Ω)) norm: the orders of convergence are still optimal, that is of order O(hp+1), as
Figure 5.2b shows.
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(a) Rotated quarter of annulus.

(b) Hollow torus. (c) Section of the hol-
low torus.

Figure 5.1: Space-time Galerkin. Computational domains.
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(b) L2(0, T ;L2(Ω)) norm
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Figure 5.2: Space-time Galerkin. Relative errors.

5.5.2 Performance of the preconditioner

In this section we present the performance our preconditioner in two computational domains:
a rotated quarter of annulus and a hollow torus.

The symbol “∗” denotes that the construction of the matrix factors of A (see (5.3.6)) goes
out of memory, while the symbol “ ∗ ∗” indicates that the dimension of the Krylov subspace
is too high and there is not enough memory to store all GMRES iterates. We remark that in
all the tables the total solving time of the iterative strategies includes also the setup time of
the considered preconditioner.

Rotated quarter of annulus. We consider again as spatial computational domain Ω the
rotated quarter of annulus of Figure 5.1a and the same exact solution, initial and boundary
data as in Section 5.5.1. We analyze the performance of both Â and ÂG. The maximum
dimension of the Krylov subspace is set equal to 100 for both the preconditioners up to
nsub = 64. We are able to reach convergence and to perform the tests with ÂG, nsub = 128
and p = 1, 2, 3 by setting the maximum Krylov subspace dimension equal to 25. In Table
5.5 we report the number of iterations and the total solving time of GMRES preconditioned
with Â (upper table) and ÂG (middle table). The non-trivial geometry clearly affects the
performance of Â, but, when we include some information on the parametrization by using
ÂG, the number of iterations is more than halved and it is stable w.r.t. p and nsub. Moreover,
the computational times are one order of magnitude lower for the highest degrees and nsub.

Finally, we analyze with more details the performance of ÂG. First, we consider the
percentage of time spent in the application of ÂG in one GMRES iteration. The results,
reported in Table 5.6, clearly show that the dominant cost consists of the matrix-vector
multiplications, while the application of the preconditioner takes a small percentage of the
total computational time, for example less than 10% for polynomial degree 5 and nsub = 32 or
nsub = 64. In Figure 5.3 we report the setup time and the single application time of ÂG w.r.t.
the number of degrees of freedom. As expected, the setup time is proportional to O(Ndof ).
What is more interesting is that the application time grows slower than O(N

5/4
dof ), i.e. the

FLOPS counting, and it is almost proportional to O(Ndof ): this may be explained by the fact
that the memory access is the dominant cost due to the high-efficiency of CPU operations, in
our case implemented in Matlab Tensorlab [102].
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Â Iterations / Time

nsub p = 1 p = 2 p = 3 p = 4 p = 5

8 34 / 0.20 37 / 0.21 42 / 0.42 46 / 0.63 50 / 1.13

16 43 / 1.15 46 / 1.65 50 / 3.42 54 / 5.80 57 / 11.87

32 50 / 22.75 53 / 31.10 57 / 54.02 61 / 96.06 64 / 184.84

64 57 / 586.73 60 / 764.26 67 / 1254.81 67 / 1858.55 71 / 3188.51

128 ∗∗ ∗∗ ∗∗ ∗ ∗

ÂG Iterations / Time

nsub p = 1 p = 2 p = 3 p = 4 p = 5

8 11 / 0.06 12 / 0.09 12 / 0.11 13 / 0.18 14 / 0.29

16 13 / 0.26 14 / 0.52 14 / 1.18 14 / 1.44 15 / 3.85

32 15 / 4.73 15 / 6.76 15 / 12.67 15 / 21.47 16 / 40.54

64 16 / 107.24 16 / 135.74 18 / 249.27 16 / 370.31 17 / 695.44

128 17 / 2623.57 17 / 3105.76 17 / 5614.10 ∗ ∗

Table 5.5: Space-time Galerkin. Revolved quarter domain. Performance of
Â (upper table) and ÂG (lower table).

nsub p = 1 p = 2 p = 3 p = 4 p = 5

8 73.02 % 79.24 % 66.62 % 46.94 % 33.73 %

16 68.10 % 46.13 % 30.06 % 17.63 % 11.27 %

32 53.09 % 33.34 % 20.44 % 13.06 % 8.19 %

64 54.71 % 32.46 % 20.20 % 12.52 % 7.31 %

128 54.12 % 33.53 % 18.89 % ∗ ∗

Table 5.6: Space-time Galerkin. Percentage of computing time of ÂG in one
GMRES iteration for the rotated quarter domain.
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Figure 5.3: Space-time Galerkin. Setup time and single application time of
ÂG in the rotated quarter domain.
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Â Iterations / Time

nsub p = 1 p = 2 p = 3 p = 4 p = 5

8 32 / 0.49 70 / 0.79 101 / 2.02 128 / 5.83 156 / 14.48

16 98 / 5.83 121 / 10.54 149 / 26.13 167 / 57.27 177 / 128.68

32 143 / 122.28 165 / 236.47 177 / 400.79 193 / 746.28 197 / 1230.60

64 165 / 3657.33 168 / 4733.98 175 / 6596.99 179 / 15894.01 184 / 20215.23

ÂG Iterations / Time

nsub p = 1 p = 2 p = 3 p = 4 p = 5

8 14 / 0.30 15 / 0.50 19 / 0.71 20 / 1.11 23 / 1.98

16 18 / 0.87 19 / 1.66 21 / 2.79 23 / 5.77 25 / 14.12

32 22 / 8.88 24 / 16.08 25 / 29.66 26 / 61.22 27 / 114.93

64 26 / 207.70 27 / 303.33 28 / 495.29 29 / 1118.44 30 / 1923.20

Table 5.7: Space-time Galerkin. Hollow torus domain. Performance of Â
(upper table) and ÂG (lower table).

Hollow torus. We consider a torus with a hole (Figure 5.1b) that is obtained by revolving
an eccentric annulus (Figure 5.1c) along the y axis. For this problem we consider γ = 1 and
a separable in space and time, non-constant diffusion coefficient ν. Precisely, we choose

ν(x, y, z, t) =

{
1 + 50

[
1 + cos

(
t

2π

)]}1 +
99

2

1 +
1(

1 + x2

z2

)1
2


 .

The initial data and right-hand side are defined such that
u(x, y, z, t) := sin(πx) sin(πy) sin(πz) sin(πt) is the exact solution. In this case, we replace ν
in (5.4.1) with its integral mean 1

T |Ω|
∫ T

0

∫
Ω ν(x, y, z, t) dΩ dt. In Table 5.7 we compare the

performance of Â (upper table) and ÂG (lower table): the inclusion of the information about
the geometry parametrization and ν significantly reduces the number of iterations and the
computational times.

5.6 Comparison between least-squares and Galerkin approaches

In this section we want to compare the least-squares solver of Chapter 4 with the Galerkin
approach of the present chapter. The least-squares formulation requires basis functions with
a higher regularity and degree than the Galerkin ones, at least for spatial functions. Indeed,
if for the Galerkin formulation we only need C0 continuity and ps ≥ 1 (cfr. Assumption 5.2),
for the least-squares method we request C1 smoothness and ps ≥ 2 (cfr. Assumption 4.2).
However, this is not a problem in the framework of the k-method.

The least-squares linear system is symmetric and positive definite and thus preconditioned
CG linear solver can be employed. On the contrary, the Galerkin linear-system does not
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have these properties and thus we use preconditioned GMRES. Differently then for CG, with
GMRES all the iterates have to be stored and the memory consumption is higher.

The design of the least-squares preconditioner does not require any special techniques and
the FDmethod can be used straightforwardly for its application (see Section 4.4). On the other
side, the time matrices in the Galerkin linear system do not have a stable eigendecomposition
and we need to build an extension of the FD method (see Section 5.4), that, however, has the
same computational cost as the standard FD method.

If we look at practical examples, we can compare the number of iterations and the com-
putational times in the the rotated quarter of annulus test. We focus on the variant of the
preconditioners that incorporates some information of the geometry parametrization. First,
we see from Figure 4.3 and Figure 5.3, that the setup cost and application cost of the precon-
ditioners are asymptotically the same for both formulations. Then, we consider the middle
table of Table 4.2 in Chapter 4 and the lower table of Table 5.5. For the least squares solver,
the number of iterations is more than doubled and the computational times are three times
higher than the number of iterations and computational times of the Galerkin preconditioner.

To conclude, even if the least-squares formulation yields to a symmetric positive definite
linear system and makes easier the use of the FD method in the preconditioning strategy, the
Galerkin formulation with the related preconditioner gives better performances in practical
experiments.

5.7 Conclusions

In this work we proposed a preconditioner suited for a space-time Galerkin isogeometric
discretization of the heat equation. Our preconditioner Â is represented by a suitable sum of
Kronecker products of matrices, that makes the computational cost of its construction (setup)
and application, as well as the storage cost, very appealing. In particular the application of the
preconditioner, inspired by the fast diagonalization technique, exploits an ad-hoc factorization
of the time matrices. The preconditioner cost seen in numerical tests, for a serial single core
execution, is almost equal to O(Ndof ) and does not depend on the polynomial degree.

At the same time, the storage cost is roughly the same that we would have by discretizing
separately in space and in time, if we assume nt ≤ CpdNs. Indeed, in this case the memory
used for the whole iterative solver is O(pdNs +Ndof ).

The coupling with a matrix-free approach [94] will lead to a significant improvement of the
solver strategy. Our method is also suited for parallelization and this will be an interesting
future direction study.
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Chapter 6

Conclusions

In this thesis we developed efficient solvers for linear systems arising in the isogeometric
discretization of two kind of problems: the Stokes system and the heat equation.

The basis of all our preconditioning strategies was the fast diagonalization method, a
fast solver that has been efficiently employed in IgA in [93] for the construction of a solving
method for the Poisson system. The preoconditioning matrix was obtained by discretizing
the Poisson equation in the parametric domain and considering constant coefficients. Its
application through the FD method revealed to be very fast.

We wanted to employ a similar idea to design preconditioners for the isogeometric dis-
cretization of Stokes system and the heat equation: we built the preconditioning matrices by
discretizing the considered PDE (or a simplification of it) in the parametric domain in such
a way that their application could be efficiently performed by the FD method. We provided
spectral estimates that assured the good behavior of our preconditioners when used in a it-
erative solver, as CG or MINRES. Moreover, we went further this simple idea by creating
a strategy, based on a separation of variables algorithm, that allowed to incorporate in the
basic versions of our preconditioners some information on the geometry parametrization and
the coefficients of the PDE. The overall asymptotic computational cost, which, in practical
applications, is proportional to the number of degrees of freedom, was not increased.

The first problem we considered is the Stokes stationary system, discretized either with
isogeometric Taylor-Hood or Raviart-Thomas elements. We proposed three kind of precon-
ditioners for the resulting saddle-point linear system: block diagonal, block triangular and
constrained. Theoretical results were supported by numerical experiments, that also demon-
strated the better performances of our preconditioners with respect to the more classical
Incomplete Cholesky based one.

The second PDE that we studied was the heat equation. We focused on space-time
discretizations, that allowed to exploit the high regularity and continuity of isogeometric
basis functions. We considered two kind of formulations. The first one was based on the
least-squares principle and provided a linear system that was symmetric and positive definite.
We proved a-priori error estimates that guaranteed the good convergence of the method. We
proposed preconditioners whose application could be straightforwardly and efficiently done
with the FD method. Numerical tests confirmed the efficiency of the proposed preconditioning
strategies and the superiority of our approach with respect to a classical Incomplete Cholesky
preconditioner. The other formulation yielded to a plain Galerkin space-time method. The
straightforward use of the FD method for the application of the designed preconditioners
was not possible, in that case. We circumvented this problem, by introducing an ad-hoc
factorization of the matrices that allowed us to develop a solver that was conceptually similar
to the FD method and had the same computational cost. We also provided comparisons of
the performances of the two formulations and related preconditioners.
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The FD method was a key ingredient in the development of all of our preconditioning
strategies. We believe that it has the potential to be part of efficient solvers designed for other
kind of PDEs or in non-overlapping domain decomposition area. Moreover, the combination
with matrix-free approaches would lead to a significant improvement of the performances.
Furthermore, the parallelization of the solver, especially for space-time methods, could be an
important future development.
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Appendix A

Separation of variables algorithm

The basic version of our preconditioners is built by discretizing the PDE or a simplification
of it in the parametric domain Ω̂ and considering constant coefficients. Numerical tests of
Section 3.6, Section 4.5 and Section 5.5 confirm that the geometry parametrization clearly
affects the performance of the preconditioning strategy. To overcome this issue, we have
proposed an improved version of each preconditioner that incorporates in the univariate factors
coefficients containing some information on the geometry and on the PDE without losing the
tensor-product structure.

An important part of this process is the approximation of N multivariate functions ck(η)
for k = 1, . . . , N by the product of univariate factors as

ck(η) ≈ µ1(η1) . . . µk−1(ηk−1)ωk(ηk)µk+1(ηk+1) . . . µN (ηN ) k = 1, . . . , N, (A.0.1)

where η ∈ RN . We describe here the procedure for the general case while specific details
for each PDE will be given at the end of the section. After approximating each function by
piecewise constants, (A.0.1) becomes[

C(k)
]
i1,...,iN

≈ [µ(1)]i1 . . . [µ
(k−1)]ik−1

[ω(k)]ik [µ(k+1)]ik+1
. . . [µ(N)]iN , (A.0.2)

where, denoting by R+ the set of strictly positive real numbers, the tensors C(k) ∈ Rn1×···×nN
+

are given and µ(k),ω(k) ∈ Rnk+ , k = 1, . . . , N , are unknown vectors to be computed.
In order to compute the approximation (A.0.2), we aim at finding µ(k),ω(k) ∈ Rnk+ for

k = 1, . . . , N , that minimize the functional[
χ(k),ψ(k)

]
k=1,...,N

7−→

max
ik=1,...,nk;
k=1,...,N

{∣∣∣∣∣log

(
[C(k)]i1,...,iN

[χ(1)]i1 . . . [χ
(k−1)]ik−1

[ψ(k)]ik [χ(k+1)]ik+1
. . . [χ(N)]iN

)∣∣∣∣∣
}
.

Equivalently, we look for µ(k),ω(k) ∈ Rnk+ for k = 1, . . . , N , such that the minimum and
maximum values of the ratio

[C(k)]i1,...,iN
[µ(1)]i1 . . . [µ

(k−1)]ik−1
[ω(k)]ik [µ(k+1)]ik+1

. . . [µ(N)]iN
, ik = 1, . . . , nk; k = 1, . . . , N,

are as close as possible to 1 (in the logarithmic sense).
Algorithm 5 computes an approximate solution of the above optimization problem. This

algorithm generalizes the one used in [113] which is focused on the case of two variables, i.e.
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it computes the approximations[
C(1)

]
i1,i2
≈ [ω(1)]i1 [µ(2)]i2 ,

[
C(2)

]
i1,i2
≈ [µ(1)]i1 [ω(2)]i2 .

Note that in this case the two approximation problems are completely decoupled, so they can
be solved independently. As in [113], in all our tests we set maxit = 2.

In the case of Stokes system of Chapter 3, we have to compute three approximations as
(A.0.2), one for each diagonal block of the preconditioner PV (see (3.5.1)). Thus, for l = 1, 2, 3,
we set N = 3 and, referring to Section 3.5.3 for the notations, we have ck(η) = [Cl]k,k(η).
We construct C(k) ∈ Rn1×n2×n3

+ by interpolating the functions ck directly at the quadrature
points, whose number in each parametric direction is equal to n1, n2, n3, respectively.

For the space-time least-squares formulation of the heat problem of Chapter 4 and for the
space-time Galerkin formulation of Chapter 5 we consider d spatial variables and the time:
we set N := d+ 1 and ηd+1 := τ . The functions ck in (A.0.1) that need to be approximated
correspond to the functions defined in (4.4.7) and (5.4.23) for the least-squares and Galerkin
formulations, respectively. In both case, n1, . . . , nd are the number of elements in each spatial
direction and nd+1 the number of elements in time, and we construct C(k) ∈ Rn1×···×nd+1

+

by interpolating ck in the element barycenters. The approximation at the quadrature points
required to construct the univariate factors in (4.4.9) and (4.4.10) is then recovered by inter-
polation.
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Algorithm 5 Separation of variables

1: Initialize µ(l) = ω(l) = 1nl for l = 1, . . . , N .
2: for iter = 1 . . .maxit do
3: for k = 1, . . . , N do
4: Compute V(k) ∈ Rn1×···×nN s.t.[

V(k)
]
i1,...,id+1

=
[C(k)]i1,...,iN

[µ(1)]i1 ...[µ
(k−1)]ik−1

[µ(k+1)]ik+1
...[µ(N)]iN

.

5: for j = 1, . . . , nk do
6: Computem = min

{
V

(k)
i1,...,ik−1,j,ik+1,...iN

| il = 1, . . . , nl; l = 1, . . . , N and l 6= k
}
.

7: ComputeM = max
{
V

(k)
i1,...,ik−1,j,ik+1,...iN

| il = 1, . . . , nl; l = 1, . . . , N and l 6= k
}
.

8:
9: Update [ω(k)]j =

√
mM.

10: end for
11: end for
12: for k = 1, . . . , N do
13: for l = 1, . . . , N do
14: if l 6= k then
15: Compute W(k,l) ∈ Rn1×···×nN s.t.[

W(k,l)
]
i1,...,iN

=
[C(k)]i1,...,iN [µ(l)]il

[µ(1)]i1 ...[µ
(k−1)]ik−1

[ω(k)]ik [µ(k+1)]ik+1
...[µ(N)]iN

.

16: end if
17: end for
18: Compute Y ∈ Rn1×···×nN s.t.

[Y]i1,...,inN = min
{

[W(k,l)]i1,...,inN | l = 1, . . . , N and l 6= k
}

19: Compute Z ∈ Rn1×···×nN s.t.
[Z]i1,...,inN = max

{
[W(k,l)]i1,...,inN | l = 1, . . . , N and l 6= k

}
20: for j = 1, . . . , nk do
21: Computem = min

{
[Y]i1,...,ik−1,j,ik+1,...iN | il = 1, . . . , nl; l = 1, . . . , N and l 6= k

}
.

22:
23: ComputeM = max

{
[Z]i1,...,ik−1,j,ik+1,...iN | il = 1, . . . , nl; l = 1, . . . , N and l 6= k

}
.

24:
25: Update [µ(k)]j =

√
mM.

26: end for
27: end for
28: end for
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