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I 

 

Abstract 
 

Nucleotide excision repair (NER) is one of the repair processes, involved 
in DNA damage response (DDR), which is able to remove DNA damages 
caused by UV radiation.  
DNA damage binding protein 2 (DDB2) is involved in the recognition step of 
Global Genome-NER (GG-NER), a subpathway of this mechanism. It was 
previously demonstrated that cells expressing DDB2PCNA- protein, unable to 
directly interact with PCNA, showed a delay in DDR. 
 
Starting from this evidence, in the first part of my PhD thesis, it was 
demonstrated that DDB2 mutated protein has an inefficient DNA binding 
affinity to UV photolesions, highlighting that the loss of DDB2-PCNA 
association affects the GG-NER mechanism.  
 
Hereafter, mutated DDB2 protein confers to cells an unexpected proliferation 
advantage and an increased UV resistance, suggesting that these cells are 
more prone to proliferate. Interestingly, analyzing the morphological features 
of mitoses, a significant presence of atypical mitoses was found in cells stably 
expressing DDB2PCNA- protein, leading to speculate that these cells could be 
more prone to acquire a tumour-like phenotype. Moreover, I demonstrated, 
using different approaches, that DDB2PCNA- protein is able to interact with 
Polymerase η, an enzyme involved in the Translesion DNA Synthesis (TLS), 
after UV-C exposure. 
 
Next, wound healing experiment and Boyden chamber assay have highlighted 
marked migration ability in the presence of mutated protein, suggesting a 
possible correlation to an aggressive cell phenotype.  
Besides, the modified expression levels of E-cadherin and Vimentin proteins 
together with an increased activity of two metalloproteinases (MMP-2 and 
MMP-9), in the presence of mutated protein, leaving to speculate a possible 
DDB2PCNA- protein involvement in the epithelial to mesenchymal transition 
(EMT) process.  
 
Finally, in the last section of my PhD project, I have investigated whether 
DDB2 protein may be involved in other steps of DDR, suggesting a possible 
cooperation between GG-NER and Transcription Coupled-NER (TC-NER).  
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In conclusion, it was demonstrated that: 

- the loss of DDB2-PCNA interaction affects the mainly steps of GG-NER 
mechanism; 

- the presence of a DDB2PCNA- protein confers to cells not only an 
increased UV resistance, but also proliferation and motility 
advantages characterizing an aggressive behaviour and suggesting 
that mutated cells could be more prone to acquire a tumour-like 
phenotype; 

- the Polymerase η-DDB2 mutated protein interaction leads to consider 
a possible correlation between DDB2PCNA- positive cells and genomic 
instability; 

- the inability of DDB2 to directly interact with PCNA also affects the 
repair process of actively transcribed genes, speculating a possible 
cooperation between GG-NER and TC-NER processes.  
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1. Introduction 

 

 

1.1 DNA damage and DNA damage response  

Several DNA damaging agents constantly threaten our genetic heritage. 
Alkylating chemicals and metabolically-derived aldehydes or reactive oxygen 
species produced by cellular metabolism and spontaneous replication errors 
are endogenous damaging factors; whereas, the ultraviolet radiation (UV), 
ionizing rays, environmental chemicals and chemotherapeutic agents are 
considered the exogenous mutagens.  
When a DNA lesion has occurred, cells carry out several strategies to preserve 
the integrity of genetic information and to overcome the accumulation of 
mutations that can leads to genome instability (Gillet LC and Schärer OD 
2006; Roos WP et al. 2016).  
Following a DNA lesion, mammalian cells activate checkpoint control systems 
that arrest cell cycle progression to repair DNA damage or, if the lesion is too 
severe, to induce cell death program (Plesca D et al. 2008). 
When the lesion is repairable, the DNA damage response (DDR) is activated 
to remove DNA adducts, which are toxic for cells causing the arrest of 
polymerases during the replication or transcription phases (Hoeijmakers JH 
2001; Roos WP et al. 2016). 
Depending on the type of DNA lesion and on the type of activated signalling 
pathway, the mainly mechanisms which are involved in the DDR are the DNA 
repair by non-homologous end joining (NHEJ), homologous recombination 
(HR), mismatch repair (MMR), base excision repair (BER) and nucleotide 
excision repair (NER) (Figure 1) (Ashour ME et al. 2015; Stingele J et al. 2015, 
Chatterjee N and Walker GC 2017).  
Furthermore, when the replication fork is stalled, there is a mechanism of 
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DNA damage tolerance, known as translesion DNA synthesis (TLS), that can 
bypass the DNA lesion but it is not error free (Figure 1) (Roos WP et al. 2009; 
Waters LS et al. 2009; Sale JE 2012; Goodman MF and Woodgate R 2013).  

 

  

1.2 Nucleotide excision repair 

In eukaryotic organisms the NER mechanism is a highly conserved 
versatile pathway, which is able to remove a broad variety of DNA damages 
(e.g. modifications of one or more nucleotides in purine or pyrimidine bases, 
chemically induced bulky adducts); this process is particularly specialised in 
UV-lesion removal caused by UV irradiation (Paul D et al. 2019).  
UV rays, originated from sunlight, are severe DNA mutagens and the most 
frequent UV-lesions on chromatin are cyclobutane pyrimidine dimers (CPDs) 
and 6-4 photoproducts (6-4 PPs) which are constituted by covalent linkages 

Figure 1 DNA damage response pathways (O’ Connor MJ 2015) 
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between two adjacent pyrimidines (Friedberg EC et al. 2006; Ganesan A and 
Hanawalt P 2017; Mao P et al. 2017; Cadet J and Douki T 2018) and cause 
DNA helix distortion (Figure 2). 

The frequency of CPD or 6-4 PP formation depends on the type of UV 
wavelength, the dose and the region of DNA damaged (Friedberg EC et al. 
2006; Besaratinia A et al. 2011). Generally, if unrepaired, the mainly mutagen 
and cancerous photolesions are CPDs molecules, which occur 3-4 fold more 
than 6-4 PPs upon UV-C or UV-B rays with a λ ≤ 296 nm (You YH et al. 2001); 
however, a DNA containing 6-4 PPs damages exhibits a structural distortion 
more pronounced than a DNA-harbouring CPDs lesions (Park H et al. 2002; 
Dehez F et al. 2017). 
Depending on the early recognition step of DNA lesions, NER process is 
divided in two subpathways: the global genome-NER (GG-NER) and the 
transcription-coupled NER (TC-NER) (Schärer OD 2013; Spivak G 2015). 

Figure 2 CPD and 6-4 PP chemical structures and formation (Gillet LC and Schärer 
OD 2006) 
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The GG-NER process operates and eliminates photolesions in the entire 
genome, included the untranscribed and silent regions (Petruseva IO et al. 
2014); whereas, the TC-NER removes DNA damage in actively transcribed 
genes followed the RNA polymerases stalling (Figure 3) (Brueckner F et al. 
2007; Li W et al. 2014; Xu J et al. 2017; Sanz-Murillo M et al. 2018).  

 

 

Figure 3 NER subpathways: GG-NER and TC-NER (Lans H et al. 2012) 
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1.2.1 Global genome-nucleotide excision repair 

GG-NER, a “cut and patch” process, in eukaryotic cells is orchestrated 
by 30 proteins which are sequentially involved in damage recognition, dual 
incision and excision of damaged fragment, gap-filling new DNA synthesis and 
ligation steps (Figure 4) (Aboussekhra A et al. 1995; Mu D et al. 1995; Araujo 
SJ et al. 2000).  

The heterotrimeric complex formed by XPC-hHR23B-Centrin-2 (XPC complex) 
detects the DNA damage in a multistep manner (Sugasawa K et al. 1998; Araki 
M et al. 2001; Sugasawa K et al. 2001; Sugasawa K et al. 2002). It directly 
interacts with the damaged DNA producing a well-defined DNA conformation 

Figure 4 Molecular mechanism of GG-NER. (A) DNA containing lesion; (B) recognition 
of damage; (C) TFIIH complex recruitment; (D) DNA helix unwinding; (E) “preincision 
complex” assembling; (F) dual incision; (G) synthesis of a new DNA fragment and 
ligation steps (Gillet LC and Schärer OD 2006, modified) 
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to enhance the recruitment of the next NER factor TFIIH (Transcription factor 
II H) (Yokoi M et al. 2000; Volker M et al. 2001; Janicijevic A et al. 2003).  
It was demonstrated that hH23B stabilizes and protects XPC from 
proteasome 26S degradation, inhibiting its polyubiquitination (Ortolan TG et 
al. 2000; Ng JM et al. 2003).  
Interestingly, the XPC complex poorly recognizes CPDs lesions (Kusumoto R 
et al. 2001; Sugasawa K et al. 2001; Reardon JT and Sancar A 2003), thus, this 
function is carried out by UV-DDB (Ultraviolet DNA damage binding protein) 
complex (Figure 5) (Wakasugi M et al. 2002; Fitch ME et al. 2003) that 
facilitates the following recruitment of XPC (Sugasawa K et al. 2005).  

Figure 5 Molecular structure of UV-DBB complex (Scrima A et al. 2008) 
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This complex is composed by DDB1 (DNA damage-binding protein 1) and 
DDB2 (DNA damage-binding protein 2) proteins (Wittschieben BØ et al. 2005; 
Feltes BC and Bonatto D 2015; Sugasawa K 2016); DDB1 protein forms a 
complex with CUL4 (Cullin 4) and ROC1 (Regulator of Cullin 1) E3 ubiquitin 
ligase (Groisman R et al. 2003); thus, the complex transfers ubiquitin 
molecules to target protein, such as DDB2, XPC or histones for chromatin 
relaxation (Kapetanaki MG et al. 2006; Jackson S and Xiong Y 2009; Zhu Q et 
al. 2009).  
Upon UV stimuli, DDB2 translocates DDB1 into the nucleus and all together 
form the UV-DDB complex. Then, DDB2 directly interacts with CPDs 
photolesions with its suitable binding pocket (Schärer OD and Campbell AJ 
2009); it seems that the presence of DDB1 protein allows the stabilization of 
the complex to photolesions (Wittschieben BØ et al. 2005; Feltes BC and 
Bonatto D 2015; Sugasawa K 2016). After damage recognition, DDB2 is 
ubiquitinated by DDB1-CUL4-ROC1 complex, causing the loss of its DNA 
binding affinity and its proteasomal-mediated degradation. It was “in vivo” 
demonstrated that DDB2 degradation not only facilitates but also is necessary 
for XPC recruitment to damaged sites (Sugasawa K et al. 2005; Wang QE et 
al. 2005; El-Mahdy MA et al. 2006).  
Moreover, several studies have demonstrated that UV-DDB complex is able 
to interact with chromatin remodelling factors or histone modification 
enzymes to promote chromatin accessibility to the following NER factors 
(Groisman R et al. 2003; Sugasawa K et al. 2005; Kapetanaki MG et al. 2006; 
Wang H et al. 2006; Fischer ES et al. 2011; Luijsterburg MS et al. 2012; 
Osakabe A et al. 2015).  
 
TFIIH factor is composed by ten subunits which are assemble in a ring-like 
structure, the “core” complex, constituted by XPB, XPD, p62, p44, p34, p52, 
p8 and a cdk activating kinase (CAK) subunit (Mat1, Cdk7, CyclinH).  
Together with XPC, TFIIH verifies the damage by a so-called bipartite selection 
system (Hess MT et al. 1997): 

1) XPC detects DNA distortion (“base pairing disruption”); 
2) TFIIH complex confirms the presence of a “chemical modification”. 

Specifically, as first step TFIIH is loaded at the 5’ damaged strand through a 
direct interaction with XPC in an ATP-independent manner (Araujo SJ et al. 
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2001; Uchida A et al. 2002; Riedl T et al. 2003; Tapias A et al. 2004); then, 
thanks to XPB and XPD motor components, TFIIH translocates along the 
chromatin; when a DNA lesion is detected, XPB and XPD helicases stall in the 
area of the lesion and begin to unwind the chromatin in ATP-dependent 
manner to allow the DNA helix opening and the recruitment of subsequent 
NER proteins (Drapkin R et al. 1994). 
 
After the preliminary proofreading activity of TFIIH, the “pre-incision 
complex” composed by RPA, XPA and XPG protein, is recruited to damaged 
DNA. At the arrival of XPG, it was demonstrated that XPC loses its damage 
DNA binding activity (Wakasugi M and Sancar A. 1998; Riedl T et al. 2003).  
RPA, through its recruitment to undamaged strand close to DNA bubble, 
allows the accurate positioning of XPG and ERCC1-XPF (de Laat WL et al. 
1998).  
XPA is a small protein and it appears to have a key role in probing the proper 
assemble of the “pre-incision complex”; furthermore, XPA interacts with 
several NER proteins (RPA, ERCC1-XPF, TFIIH, XPC) (Gillet LC and Schärer OD 
2006).  
 
Next, to remove 24-32 nucleotides containing DNA photolesion, a dual 
incision is performed by two endonucleases: XPG, which is already recruited 
with “pre-incision complex” and XPF-ERCC1. The second one cuts on 5’ side 
of DNA, followed by the incision on 3’ end carried out by the nucleases XPG 
that leaves a free 3’ OH terminus (Sijbers AM et al. 1996; Evans E et al. 1997; 
Gillet LC and Schärer OD 2006; Tsodikov OV et al. 2007; Staresincic L et al. 
2009). 
 
Then, the gap-filling occurs with the synthesis of a new DNA fragment by 
polymerases. In particular, this step is divided in two separated pathways. In 
the first one, polymerases δ and κ are recruited by RFC (Replication factor C) 
complex or ubiquitinated PCNA (Proliferating cell nuclear antigen) with 
XRCC1 molecules, respectively. Both polymerases intervene when the repair 
synthesis is difficult, due to damaged chromatin structure: for example, it was 
supposed that polymerases κ, that is involved in TLS process, is recruited 
when two lesions are closely spaced.  
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In the second pathway, which occurs in 50% of human cells, polymerase ε 
operates quickly with CTF18-RFC complex when the damaged site is in 
accessible conformation (Ogi T et al. 2010).  
 
Finally, the nick is sealed by specific DNA ligases (Araujo SJ et al. 2000; Moser 
J et al. 2007).  

 

1.2.2 Transcription-coupled nucleotide excision repair 

The TC-NER is the other subpathway involved in NER that differs from 
GG-NER in the early step of the repair process, during the recognition of the 
lesion. Conversely to GG-NER, this pathway removes CPDs and 6-4 PPs with 
an equal and efficient repair ability (van Hoffen A et al. 1995). 
Following a UV photolesion formation, the RNA polymerase II blocked at the 
damaged site of actively transcribed strand, is the signal that triggers a 
cascade of events that leads to the assembling of an efficient repair 
machinery (Figure 6) (Vermeulen W and Fousteri M 2013). 

Importantly, the accessibility to damaged chromatin is a critical step in this 
repair process, thus, several TC-NER factors coordinate their activity and 
recruit some enzyme which are involved in histone modifications and 
chromatin remodelling (Lans H et al. 2012). 

Figure 6 DNA damage recognition factors in TC-NER (Auclair Y et al. 2009, modified) 
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The principal factors involved in TC-NER in mammalian cells are: CSB 
(Cockayne Syndrome group B protein), CSA (Cockayne Syndrome group A 
protein), UVSSA (UV-sensitive scaffold protein A) and USP7 (Ubiquitin-specific 
peptidase 7), XAB2 and HMGN1. 
 
CSB factor dynamically interacts with RNA polymerase II with a great binding 
affinity; upon UV damage, this interaction is stabilized (van den Boom V et al. 
2004). CSB, defined as the master coordinator of TC-NER, remodels the 
chromatin in an ATP-dependent manner (Citterio E et al. 2000) to allow the 
following recruitment of CSA, p300 and the other NER factors (TFIIH, XPG, 
XPA, RPA, and XPF/ERCC1) (Groisman R et al. 2003; Beerens N et al. 2005; 
Fousteri M et al. 2006). In the structure of this protein there is the ubiquitin-
binding domain, which is essential for the regulation and the activity of CSB 
(Anindya R et al. 2010): its binding to an ubiquitylated factor allows the 
release of CSB from damaged sites at late phase of TC-NER enhancing the 
repair activity (Vermeulen W and Fousteri M 2013).  
 
CSA protein, recruited by CSB, is the dedicated substrate receptor (DCAF) of 
the complex DDB1-CUL4-RX1 (CRL4) E3-ubiquitin ligase associated with COP9 
(Constitutive photomorphogenesis 9) signalosome (CNS). The complex is 
involved in the regulation of TC-NER process through the ubiquitination of 
some NER factors. At early time upon UV damage, CNS inhibits the 
ubiquitination activity of CRL4 complex (Groisman R et al., 2003; Fousteri M 
et al. 2006); when CNS is dissociated from CSA, the latter is activated. 
Consequently, CSB, the substrate for the CRL4 complex, is ubiquitylated and 
degraded by proteasome to permit the subsequent steps of repair process 
(Groisman R et al. 2006; Li JM and Jin J 2012). 
 
The recently identified UVSSA forms a complex with USP7 and all together 
stabilize and protect CSB and RNA polymerase II complex, preventing their 
polyubiquitination and, consequently, degradation (Fei J and Chen J 2012; 
Schwertman P et al. 2012; Zhang X et al. 2012).  
 
XAB2 protein binds to RNA polymerase II stalled via CSA- and UV-dependent 
manner (Fousteri M et al. 2006); it is considered as a scaffold protein for the 
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proper TC-NER complex formation (Nakatsu Y et al. 2000) and also for the 
restoration of RNA synthesis upon UV-damage induction (Kuraoka I et al. 
2008). 
 
Another important factor for TC-NER is HMGN1. The protein interacts with 
UV-blocked RNAPII through CSA-dependent manner (Fousteri M et al. 2006). 
This protein is not essential for the incision complex assembly, but it is 
supposed that HMGN1 might enhances the dual incision helping p300 to 
remodel the chromatin (Trieschmann L et al. 1998; Lim JH et al. 2005). 
 
Both “in vitro” and “in vivo” experiments have demonstrated that the stalled 
RNA polymerase II, after the damage sensing, is dislocated to allow the 
accessibility and the correct assembly of the following factors involved in the 
repair pathway (Donahue BA et al. 1994; Sigurdsson S et al. 2010; Cheung AC 
and Cramer P 2011). The “backtracking” of the polymerase is related to a 
transcription cleavage of the nascent RNA: any mismatch between RNA and 
DNA hybrid stimulates the backtracking elongation to allow the removal of 
RNA-containing the error (Vermeulen W and Fousteri M 2013).  
 
Finally, after the recognition of the lesion, the following steps and factors are 
the same of the GG-NER (Figure 4 from step C).  

 

 

1.3 Nucleotide excision repair-related human diseases 

Three rare autosomal recessive diseases, Xeroderma pigmentosum 
(XP), Trichothiodystrophy (TTD) and Cockayne syndrome (CS), are associated 
with mutations in NER genes (Bukowska B and Karwowski T 2018). 

 
Xeroderma pigmentosum (from the Greek words xero – dry and derma – skin) 
is characterized by extreme sunlight sensitiveness (Hebra F and Kaposi M 
1874) and a significantly increased frequency to develop skin cancer (Tofuku 
Y et al. 2015). It has been reported that XP patients are more prone to 
carcinogenesis; in fact, they shown deficient antioxidant enzyme activity and, 
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moreover, several mutations in tumour suppressor genes were identified 
(Vuillaume M et al. 1986; Giglia G et al. 1998; Hayashi M et al. 2005). In two 
third of patients, clinical manifestations occurred in the early months of life, 
and the main symptom is hypersensitivity to sunlight which is characterized 
by the manifestations of freckling, redness and blistering. In the other 
patients, the first clinical evidence is an increased number of lentigines in the 
UV-exposed skin areas (Lehmann AR et al. 2011). Moreover, sun exposure 
leads to premature skin ageing.  
Depending on which gene is impaired in NER process, the syndrome is 
classified in seven complementation groups (from XP-A to XP-G) (Cleaver JE 
1968); additionally, XP-V variant was described by Lehmann and colleagues 
(Lehmann AR et al. 1975). The severity of symptoms and the main organs that 
are affected depend on the type of gene alterations. All XP patients are 
predisposed to skin abnormalities; indeed, 30% of them develops 
neurological impairments and 40% of XP patients are related to 
ophthalmologic diseases (Kraemer KH et al. 2007; Karass M et al. 2015).  
Among the seven complementation groups, XP-E is characterized by 
mutations in DDB2 gene; it is the least severe type of disease with mild skin 
symptoms, but the risk to develop skin cancer at later age is high. 
Neurological pathologies have not been diagnosed in these patients 
(Lehmann AR et al. 2011). 
 
Trichothiodystrophy (TTD) (from Latin tricho-thio-dys-trophe means 
hairsulphur-faulty-nourishment) is a very rare disease with a prevalence of 
1:1000000, to date about only 100 patients are diagnosed (Faghri S et al. 
2008). Principal clinical manifestations are photosensitivity, ichthyosis, brittle 
hair, intellectual disability, decreased fertility and short stature (Crovato F et 
al. 1983). Brittle and fragile hair, caused by a lack of sulphure, is the typical 
diagnostic hallmark of this syndrome (Stefanini M et al. 2010). Moreover, 
several TTD patients are affected by neurological pathologies such as 
developmental retardation, altered motor control, hearing impairment and 
growth retardation (Faghri S et al. 2008).  
The main mutated genes, XPB, XPD, TTDA, which are normally involved in 
TFIIH formation, are responsible for developmental retardation as 
consequence of transcription impairment (Fois A et al. 1988; Botta E et al. 
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1998; Bergmann E and Egly JM 2001). 
A distinct small group of TTD patients, who carried mutations in TTDN1 gene, 
is characterized by non-photosensitive type of disease with a proper 
formation and expression of TFIIH factor (Fois A et al. 1988; Botta E et al. 
1998; Bergmann E and Egly JM 2001).  
 
Cockayne syndrome (CS) is identified by a huge variety and severity of clinical 
manifestations, such as neurological impairment, growth failure, 
microcephaly and mental retardation; for this reason, it is divided in three 
groups. The type 1 is the classical form and it is diagnosed in one year 
newborn child. Mutations in CSA gene are responsible for the phenotype of 
this group (Karikkineth AC et al. 2017). Type 2 is more severe than type 1, 
with an early-onset of symptoms. It is related to CSB gene mutations which 
cause a grave retarded neurological development. Type 3 is the mildest form 
with a late onset of the disease (Karikkineth AC et al. 2017).  
CS patients also manifested a premature accelerated ageing. Among the 
complicated mechanisms underlying ageing, the authors suggested an 
impairment in the activity of mitochondrial RNA polymerase, involving CSB 
protein in the proper function of this organelle (Scheibye-Knudsen M et al. 
2012). 
Despite its severe outcome, it is difficult to detect CS disease and, contrary to 
XP and TTD syndromes, a prenatal diagnosis test is not available (Wilson BT 
et al. 2016). 

 

 

1.4 Translesion DNA synthesis 

As mentioned in Paragraph 1.1, translesion DNA synthesis (TLS) is a 
conserved DNA damage tolerance process, which occurs after replicative 
DNA polymerases blocking following a DNA lesion (Quinet A et al. 2018). 
The mechanism is activated to overcome the prolonged stalling of 
polymerases to avoid fork collapse and DNA strand breaks (both double and 
single) (Waters LS et al. 2009; Goodman MF and Woodgate R 2013). 
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Currently, 11 TLS polymerases are known: REV1, Pol η, Pol ι, Pol κ, Pol ζ, Pol 
μ, Pol λ, Pol β, Pol ν, Pol θ which are distributed in four families (Y, B, X and A) 
and PrimPol (Chatterjee N and Walker GC 2017). 
These polymerases are able to displace replicative polymerases from 
damaged sites, insert new nucleotides in the opposite strand and past the 
lesions; then, DNA is displaced from TLS enzyme to allow the replacement of 
a high fidelity DNA polymerases (Sale JE 2013). 
These enzymes are characterized by a more spacious and malleable active 
site compared to replicative polymerases; this characteristic allows to better 
fit several DNA damaged templates, although they have a lower DNA binding 
affinity (Rothwell PJ and Waksman G 2005; Waters LS and Walker GC 2006; 
Silverstein TD et al. 2010; Zhao Y et al. 2012; Sale JE 2013). However, TLS 
polymerases are generally related to mutagenesis because of their low 
fidelity activity to incorporate nucleotides, without a 3’-5’ exonuclease 
proofreading ability (Kunkel TA 2003). 
Two models have been proposed to explain the TLS polymerases activity: 
“two steps” and “central step”.  
In the first mechanism, which is both error-free and error prone, two 
polymerases are involved: the inserter and the extender (Shachar S et al. 
2009). The earlier, generally Pol η, ι or κ, is able to add a single nucleotide in 
the DNA strand opposite to the lesion, then, the extender enzyme, usually Pol 
ζ, takes place of the inserter and extends the primer template (Washington 
MT et al. 2002; Korzhnev DM and Hadden MK 2016). 
In the “central or multistep model”, REV1 acts as a scaffold protein to unify 
both inserter and extender activity. One inserter TLS polymerase (η, ι or κ) 
interacts with the REV1 interface through the RIR (REV1-interacting region) 
sequence, simultaneously Pol ζ4 binds to the other REV1 interface to extend 
the DNA strand (Wojtaszek J et al. 2012a; Wojtaszek J et al. 2012b; 
Pustovalova Y et al. 2016). 
Pol η, which belong to Y family, is the best known specialized polymerase to 
bypass the two main UV-lesions, CPDs and 6-4 PPs (Yoon JH et al. 2015; 
Quinet A et al. 2016). This family is characterized by the presence of PIP-boxes 
(PCNA-protein interacting) and several ubiquitin-binding domains (UBDs) in 
the C-terminal region, known as UBZ (ubiquitin-binding zinc domain) and 
UBM (ubiquitin-binding motif) (Yang W and Woodgate R 2007).  
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TLS polymerases are able to bind to PCNA through their PIP-box sequence, 
even though these interactions are weak. Thus, to strengthen this binding, 
the protein Rad18, an E3 ubiquitin ligase, ubiquitinates PCNA on Lysine 164 
after UV damage, promoting the binding of TLS polymerases to 
monoubiquitinated PCNA, by their UBD domains (Watanabe K et al. 2004; Bi 
X et al. 2006). 
Conversely, to inhibit and block this interplay in undamaged cells, it was 
demonstrated by “in vivo” experiments, that polymerases are ubiquitinated 
themselves (Bienko M et al. 2005; Guo C et al. 2006; Plosky BS et al. 2006; 
Bienko M et al. 2010; Jung YS et al. 2011). 
Regarding CPDs, Pol η directly interact, through its PIP-box, with stalled 
monoubiquitinated-PCNA (Kannouche PL et al. 2004) and acts both as 
inserter and extender enzyme by adding three nucleotides past the lesion 
(Johnson RE et al. 1999b) with a very efficient and quite accurate ability 
(Biertümpfel C et al. 2010; Su Y et al. 2015). For this reason, this polymerase 
is considered as a protector of mammal cells from UV-induced carcinogenesis 
(Stary A et al. 2003).  
Indeed, patients who carried mutations in POLH gene, which encodes for 
polymerase η, are characterized with an extremely sensitivity to sunburn and 
a higher risk to develop skin cancers compared to normal populations. This 
very rare, recessive genetic disease is the eighth form of XP, also known as 
Xeroderma pigmentosum variant (XP-V) (Johnson RE et al. 1999a; Masutani C 
et al. 1999). 
Conversely, when a 6-4 PP lesion occurs, the “two steps” model is triggered: 
REV1 acts as a scaffold protein for pol η, which inserts a nucleotide in the 
opposite strand, and pol ζ that promotes the gap-filling across the damage 
(Johnson RE et al. 2001; Bresson A and Fuchs RP 2002; Yoon JH and Prakash 
L 2010). In this model, “in vivo” and “in vitro” studies have demonstrated that 
pol η acts in an error-prone manner (Johnson RE et al. 2001; Bresson A and 
Fuchs RP 2002; Yoon JH and Prakash L 2010; Quinet A et al. 2016).  
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1.5 DDB2 and its multiple facets 

DDB2 is a protein composed by 427 amino acid residues (48 kDa) that 
is encoded by the XPE gene located to 11p12-p11 (Takao M et al. 1993; 
Dualan R et al. 1995). Structurally, DDB2 is characterized by seven WD-40 
repeats, which are associated to a family of proteins involved in chromatin 
remodelling (Neuwald A and Poleksic A 2000). 
 
The expression of this protein depends on p53, thanks to the presence, in the 
5’ untranslated sequence of DDB2 gene, of a consensus binding site for p53 
(Tan D and Chu G 2002). It was demonstrated that, in the absence of p53, 
basal expression levels of DDB2 are dramatically reduced, and the expression 
does not increase even after the exposure to UV or IR irradiation (Hwang BJ 
et al. 1999). 
  
DDB2 is mainly localized into the nucleus, both in undamaged and damaged 
cells; whereas DDB1, in normal conditions, is located both in the nucleus and 
cytoplasm and, after UV stimuli, DDB1 is mainly recruited into the nucleus by 
DDB2 translocation (Otrin V et al. 1997; Shiyanov P et al. 1999; Liu W et al. 
2000). 
  
As reported in the Paragraph 1.2.1, DDB2 is directly involved in the GG-NER 
pathway, recognizing UV photolesions.  
However, DDB2 is also indirectly implicated in DDR pathway, in particular in 
chromatin remodelling. 
For instance, Kapetanaki and colleagues have demonstrated that DDB2, 
together with Cul4A-DDB1 ligase complex, promotes the monoubiquitination 
of the H2A histone, speculating the possible DDB2 role as an adaptor 
molecule in NER mechanism (Kapetanaki MG et al. 2006). Indeed, another 
study has demonstrated the same role of DDB2 for the ubiquitination of H3 
and H4 histones, suggesting a possible support for XPC recruitment upon UV 
irradiation (Wang H et al. 2006).  
Moreover, DDB2 also interacts, both “in vivo” and “in vitro”, with the histone 
acetyltransferase p300/CBP proteins (Datta A et al. 2001; Rapic-Otrin V et al. 
2002). 
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DDB2 plays also an important role in the modulation of p53 and p21 
expression. p53 protein is a crucial molecule for cell cycle arresting upon UV 
damage: it ensures that damaged cells do not proceed into cell cycle until the 
repair of lesions, preventing the accumulation and propagation of DNA 
mutations.  
p53 is phosphorylated by Ataxia telangiectasia mutated kinase (ATM) and 
Ataxia telangiectasia RAD3-related kinase (ATR) after UV damage (on serine 
15 or 18 in humans or mice, respectively) to stimulate its stability (Chao C et 
al. 2003). When mouse embryonic fibroblasts (MEFs) were exposed to low 
UV dose, DDB2 favoured p53S18P ubiquitin proteasome-mediated 
degradation (Stoyanova T et al. 2008) through Cul4a-DDB1 ligase complex, 
enhancing the nuclear accumulation of DDB1 protein that is responsible for 
p53 proteolysis (Stoyanova T et al. 2009). Moreover, its proteolysis is 
fundamental to maintain p21 expression at low levels to promote the NER 
process activation (Stoyanova T et al. 2008).  
Conversely, the exposure at high UV-dose causes unrepairable cell damages 
and inhibits the DDB2 ubiquitination activity on p53, allowing the activation 
of the apoptotic pathway inducing the expression of specific pro-apoptotic 
factors such as Bax, PUMA and NOXA (Nakano K and Vousden KH 2001). In 
this case, the cell death program is protected from p21 inhibition because 
DDB2 stimulates the proteasome-mediated degradation of the protein 
through its ubiquitination. 
 
DDB2 is also implicated in cell cycle regulation thanks to its interaction with 
E2F1 transcription factor, an important regulator of the expression of 
molecules that are implicated in DNA replication or S-phase onset (Hayes S et 
al. 1998). This interaction was demonstrated only in undamaged cells; after 
UV damage, the UV-DDB complex is not able to bind and activate E2F1 since 
the complex is sequestered by damaged DNA, causing a delay in cell cycle 
progression (Shiyanov P et al. 1999). In addition, the presence of a DDB2 
mutated protein (DDB2PCNA-), unable to interact with PCNA, determines DDB2 
accumulation in cells (Cazzalini O et al. 2014) and influences cell cycle 
progression promoting cell proliferation (Perucca P et al. 2015); furthermore, 
DDB2PCNA- also confers an increase UV-resistance and proliferation advantage 
to irradiated cells (Perucca P et al. 2018).  
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DDB2 protein is not only correlated to UV damage or DDR pathways; in the 
last 15 years, several studies have demonstrated that it also plays an 
important role in cancer biology, although its contribution is still debated. 
Interestingly, it was found that DDB2-deficient mice were not only prone to 
UV-induced carcinogenesis, but they also frequently developed spontaneous 
malignant tumour in internal organs in the absence of damaging agents, 
suggesting, for the first time, a hypothetical DDB2 role as tumour suppressor 
(Yoon T et al. 2005). 
 
Furthermore, in several tumours (such as ovarian, breast and lung cancer), a 
low expression of DDB2 mRNA is frequently associated to a poor prognosis 
(Ennen M et al. 2013; Roy N et al. 2013), suggesting a possible involvement 
of DDB2 in preventing tumour progression and relapse. 
 

In non-invasive breast cancer cells, DDB2 overexpression inhibits the 
transcription of manganese superoxide dismutase (MnSOD) and reduces the 
activity of NF-kB enhancing the expression of IkBα (Ennen M et al. 2013).  
Conversely, in metastatic breast cancer cells DDB2 is not produced, thus the 
increase of MnSOD expression promotes the invasive capability of cells 
through the extracellular matrix (ECM) digestion by metalloproteinases 9 
(MMP-9). Indeed, the transcription factor NF-kB by the regulation of some 
target genes expression, confers to metastatic breast cancer cells migration 
and invasive abilities (Min C et al. 2008). 
 

Concerning colon cancer, DDB2 was found overexpressed in colorectal cancer 
(CRC) and colorectal adenoma (CRA) cells, probably due to the high rate of 
DNA damage in these cells compared to adjacent non-tumour tissues. 
Interestingly, a significant downregulation of DDB2 was found in high grade 
colon cancer cells associated to an aggressive phenotype, suggesting a 
correlation between DDB2 expression and CRC outcome (Roy N et al. 2013; 
Yang H et al. 2018). 
Other data, obtained in metastatic colon cancer cells, have demonstrated 
that, a decrease in DDB2 expression is related to a reduction of E-cadherin 
expression, suggesting a possible DDB2 involvement in epithelial to 
mesenchymal transition (EMT) (Roy N et al. 2013).  
EMT is a conserved mechanism which occurs both in physiological (e.g. 
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embryonic development) and pathological condition; for instance, in 
epithelial cancers is often activated during metastatic progression. In EMT, 
epithelial cells acquire typical feature of mesenchymal cells and, during this 
process, several changes occur (such as the loss of cell-cell adhesion and 
apical-basal polarity) to gain motility and migratory advantages (Ye X and 
Weinberg RA 2015).  
 
Cancer stem cells (CSCs) are key factors for tumour initiation and progression 
in several solid tumours (Dean M et al. 2005; Hermann PC et al. 2008; Nguyen 
LV et al. 2012; Han C et al. 2014). Moreover, non-CSCs are able to 
dedifferentiate in CSCs (Friedmann-Morvinski D and Verma IM 2014).  
Ovarian CSCs are characterized by a pronounced aldehyde dehydrogenase 
(ALDH) activity which promotes their cell differentiation to enrich CSCs pool 
(Vasiliou V and Nebert DW 2005; Silva IA et al. 2011).  
Cui T and colleagues (Cui T et al. 2018), have demonstrated that DDB2 is able 
to bind to ALDH gene promoter inhibiting the transcriptional activity and, 
therefore, the amount and self-renewal capabilities of CRCs.  
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2. Aims of the research 

Nucleotide excision repair (NER) is one of the DNA damage response 
(DDR) mechanisms that is able to remove different DNA lesions, such as 
distorting helix generated by physical (UV irradiation) or chemical mutagens. 
The process is divided in two subpathways – global genome-NER (GG-NER) 
and transcription coupled-NER (TC-NER) - that repair damaged DNA in the 
entire genome or in actively transcribed genes, respectively. The mechanism 
is composed by several phases: 1) the recognition of the lesion which differs 
in the two subpathways, 2) the damaged fragment incision and excision, 3) 
the gap-filling of new DNA synthesis and 4) the ligation steps.  
DNA damage binding protein 2 (DDB2) is an essential factor that recognizes 
and binds UV photolesions – cyclobutane pyrimidine dimers (CPD) or 6-4 
photoproducts (6-4 PPs) – in GG-NER pathway; this protein directly interacts 
with PCNA by its PCNA-protein interacting box (PIP box) sequence, allowing a 
correct DDB2 degradation via proteasome for the recruitment of following 
NER factors. In fact, in our laboratory, it was previously demonstrated that a 
DDB2 mutated protein (DDB2PCNA-), unable to interact with PCNA, 
accumulates in cells.  
 
In my PhD project, I employed, as experimental models, HEK293 and HeLa 
cell lines stably or transiently transfected with pcDNA3.1-DDB2Wt or 
pcDNA3.1-DDB2PCNA- constructs and exposed to UV-C irradiation, to study the 
following proposals: 
 
I. In the first part of my PhD project I studied whether the loss of DDB2-PCNA 
interaction can influence other steps of GG-NER process. For this purpose, 
the DDB2 binding affinity to UV photolesions was analysed, using two 
different electrophoretic mobility shift assays (EMSA), to investigate whether 
the early phase of repair mechanism could be impaired; then a late step of 
NER process was dissected through co-localization studies and 
immunoprecipitation experiments. 
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II. In the second section of my thesis I investigated, whether the loss of DDB2-
PCNA interaction could influence cell proliferation, after UV damage 
induction; for this purpose, I performed clonogenic assay and study pospho-
histone 3 protein level. Furthermore, morphological features of mitoses were 
considered to identify possible hallmarks of genomic instability.  
Starting from an enhanced UV-resistance and highest cell proliferation 
demonstrated when DDB2-PCNA interaction is lost, it was hypothesized a 
possible interaction between DDB2 and Polymerase η which is involved in 
Translesion DNA Synthesis (TLS). For this purpose, HeLa cells were co-
transfected with Polymerase η-GFP and DDB2Wt or DDB2PCNA- constructs and 
co-localization protocols and immunoprecipitation experiments were 
performed. Moreover, to evaluate whether DDB2 protein could be directly 
associated to Polymerase η, the Proximity Ligation Assay (PLA), an innovative 
approach, was performed. 
 

III. In the third part of my project, motility abilities and the possible DDB2 
involvement in epithelial to mesenchymal transition (EMT) were taken into 
account and investigated in irradiated HEK293 cell lines (CTR, DDB2Wt and 
DDB2PCNA-). In particular, wound healing experiments and Boyden chamber 
assay were used to evaluate cellular environment and motility abilities in 
response to chemoattractant stimulus. Then, the Western blotting analysis 
was performed to investigate the expression levels of E-cadherin and 
Vimentin proteins, the main epithelial and mesenchymal markers 
respectively, and to detect the activity of metalloproteinases (MMPs) 2 and 
9.  
 
IV. Finally, I investigated a possible other role of DDB2 in the repair process 
of actively transcribed genes, evaluating the ability of HEK293 cells (DDB2Wt 

and DDB2PCNA- stable clones) to repair and restore the expression of a UV-
damaged gene by Host Cell Reactivation (HCR) assay. Moreover, co-
localization studies between DDB2 and Polymerase II were performed to find 
a possible cooperation between GG-NER and TC-NER pathways.  
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3. Materials and methods 

 

 

3.1 Cell lines 

HEK293 (Human Embryonic Kidney) cell line and HeLa S3 (cervical 
cancer cells) cell line were cultured in Dulbecco’s modified Eagle’s medium 
(DMEM High glucose 4.5 g/l, Sigma-Aldrich) supplemented with 10% fetal 
bovine serum (One Shot™ FBS, Gibco™), 2 mM L-Glutamine (Gibco™), 100 
U/ml penicillin, 100 µg/ml streptomycin in a 5% CO2 humidified atmosphere 
at 37°C in sterile conditions.  

 

 

3.2. Stable transfection of HEK293 or transient transfection of HeLa cells 
with pcDNA3.1-DDB2Wt or pcDNA3.1-DDB2PCNA- constructs 

To evaluate and analyse the exogenous expression of DDB2 wild-type 
or mutated form in our cell lines, a standard transfection protocol was 
performed.  

 
HEK293 cells (50% confluent) were stably transfected with pcDNA3.1-
DDB2Wt/His construct kindly provided by Dr. Q.E. Wang (The Ohio State 
University, Columbus, USA) (Barakat BM et al. 2010) or the mutated 
pcDNA3.1-DDB2PCNA-/His constructs.  
The pcDNA3.1-DDB2PCNA-/His construct was previously obtained in our 
laboratory performing a site-directed mutagenesis in the DDB2 wild type 
plasmid vector (Invitrogen) (Figure 7) (Cazzalini O et al. 2014). 
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DDB2PCNA- protein is mutated in a conserved sequence called PIP-box which 
is present in many proteins that directly interact with PCNA (Figure 8) 
(Cazzalini O et al. 2014). 

 

 

 

 

 

 

Figure 7 Map of pcDNA3.1 DDB2Wt/His kindly provided by Dr. Wang. The plasmidic 
vector was employed for the mutagenesis of DDB2PCNA- 
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The mutation in this region prevents the association between DDB2 and 
PCNA, leading to DDB2 accumulation due to its degradation impairment 
(Cazzalini O et al. 2014). 
DDB2Wt or DDB2PCNA- HEK293 stable clones were previously selected and 
maintained in my laboratory by Geneticin® (G418) resistance present in 
plasmid vector (Figure 7). 
 
HeLa S3 cells (70% confluent) were transiently transfected with DDB2 wild-
type or mutated construct.  
The transfection was performed in sterile conditions using “Effectene 
Transfection Reagents” (Qiagen) as described below: 

- 106 cells were seeded in Petri dish (100x20 mm) and incubated at 37°C 
for 24 h; 

- 1 µg of DDB2Wt or DDB2PCNA- DNA was diluted in 100 µl of EC buffer 
(DNA condensation buffer); 

- 8 µl of Enhancer were added, then the mix was vortexed for 1 s and 
incubated for 5 min at room temperature (RT); 

- 25 µl of Effectene were added and gently mixed; 
- the mix was incubated for 10 min at RT; 

Figure 8 Phylogenetic analysis of aminoacidic sequence of PIP-box in DDB2 among 
several species. Comparison between DDB2Wt and DDB2PCNA- PIP-box sequence in 
human: in red the three mutated amino acids 
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- meanwhile the medium was removed from Petri dish, after a gently 
wash with phosphate-buffered saline (PBS), 9 ml of culture medium 
were added; 

- finally, 1 ml of culture medium was added to the mix which was 
distributed on Petri dish. 

 
HeLa cells, previously seeded on coverslips (22x22 mm) contained in Petri 
dishes (35 mm), were transfected with the same procedure described above 
but with 0.4 µg of DNA, 3.2 µl of Enhancer and 10 µl of Effectene.  

 

 

3.3 Electrophoretic mobility shift assay  

To study the electrophoretic mobility shift of DDB2 protein complexed 
with a specific DNA containing UV-damage, two different approaches were 
performed: 

- EMSA on agarose gel with recombinant DDB2 (wild-type and mutated 
form) protein binds to UV plasmid; 
- EMSA on polyacrylamide gel with cell extracts (HEK293 DDB2Wt or 
DDB2PCNA-) complexed to CPDs-oligonucleotide.  

 

3.3.1 EMSA with recombinant proteins 

DDB2Wt recombinant protein was previously obtained in my laboratory 
(Cazzalini O et al. 2014). 

 

3.3.1.1 Extraction and purification of recombinant DDB2PCNA- protein with Ni-
His tagged resin (QIAGEN) 

Escherichia coli (E. coli) BL21 were transformed with pET45-DDB2PCNA- 
construct to produce DDB2PCNA- with a histidine tail (6xHis). This tag allows 
purifying the protein of interest with a specific resin (His tagged). 
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50 µl of transformed E. coli BL21 cells were inoculated in 50 ml of sterile 2xYT 
broth with Ampicillin (Amp) [50 µg/ml] (Table 1) and grown overnight in a 
shaking 37°C incubator. 
 

Components Quantity 
Bacto Tryptone 16 g 

Bacto Yeast Extract 10 g 

NaCl 5 g 

Deionized water to 1 l  

Table 1 2xYT medium for 1 litre 

Next day, the bacterial culture was inoculated in 500 ml of 2xYT broth with 
Amp [50 µg/ml] and enriched until the obtaining of 0.35 value of optical 
density at 600 nm (OD600).  
To induce DDB2PCNA- expression in E. coli BL21, Isopropyl-β-D-1-
thiogalactopyranoside (IPTG) [1 mM] was added to bacterial culture and the 
expression was continued for 3 h. 
Then, the bacteria were centrifuged (Avanti™ Centrifuge J-25, Beckman) at 
1200 g for 16 min at RT: an aliquot of the pellet was stored at -80°C, whereas 
the remaining pellet was employed for DDB2PCNA- protein purification. 
Pellet was resuspended and vortexed in 2.5 ml of BugBuster HT Protein 
Extraction Reagent (Novagen), then sample was placed on roller at 4°C for 40 
min.  
The sample was centrifuged (Allegra 21R, Beckman Coulter) at 5000 g for 10 
min at 4°C and the lysate was collected.  
 
In the meantime, to activate the resin for protein purification, a Nickel His-
tagged resin (Qiagen) was washed 3 times with purification buffer pH 8.0 
(Table 2) and it was centrifuged at 2880 g for 15 min at 4 °C each time.  
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Components Molarity 
NaCl 300 mM 

NaH2PO4 50 mM 

Table 2 Purification buffer 

The lysate was incubated with resin on roller at 4°C overnight.  
 
Next day, the mix was centrifuged at 2880 g for 15 min at 4°C and the 
supernatant was collected as “Waste”. 
The resin was resuspended with 8 ml of purification buffer (Table 2) 
containing 1 µl of protease inhibitors (Protease Inhibitor Cocktail, Sigma-
Aldrich), glycerol 10% and phenylmethane sulfonyl fluoride (PMSF) [1 mM]. 
After centrifugation at 2880 g for 15 min at 4°C, the resin was loaded into a 
purification column.  
The resin was washed 2 times with 8 ml of purification buffer (Table 2) 
containing 1 µl of protease inhibitors (Protease Inhibitor Cocktail, Sigma), 
glycerol 10% and PMSF [1 mM], the two washing were collected (Wash 1 and 
2).  
Several concentrations of imidazole pH 7.2 (diluted in 8 ml of purification 
buffer) were used to eluate the protein, as reported in Table 3. Each elution 
was collected. 
 

Elution [Imidazole] 
1 25 mM 

2 50 mM 

3 100 mM 

4 250 mM 

5 500 mM 

6 1 M 

Table 3 Imidazole concentrations employed for protein elution 

Each elution, Waste sample and Wash 1 and 2 were quantified by 
spectrophotometer (Eppendorf BioPhotometer® D30) through Bradford 
method; then, 2.5 µg of each sample resuspended in Mix 3x (Table 4) and a 
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protein marker “Precision Plus Standard Dual Color” (Bio-Rad) were loaded 
on 10% acrylamide gel (Table 5) to evaluate the presence of DDB2PCNA- 

protein. 
 

Components Molarity/Concentration 
Bromophenol blue 0.06% 

SDS 3% 

DTT 300 mM 

Glycerol 30% 

Tris base 150 mM 

Deionized water to volume 

Table 4 Composition of Mix 3x for loading samples on acrylamide gels 

The acrylamide gel was prepared, as reported in Table 5, with the following 
reagents: 

- lower buffer (4x) (Tris pH 8.8; 1.5 mM + SDS 0.4%); 
- upper buffer (4x) (Tris pH 6.8; 0.5mM + SDS 0.4%); 
- acrylamide/bisacrylamide 30% (37.5:1); 
- tetramethylethylenediamine (TEMED, AppliChem); 
- ammonium persulfate (APS, AppliChem) al 15%. 

 

PLUG 
7.5% 10% 

(µl) (µl) 
Deionized water 1500 1250 

Lower buffer 750 750 

Acrylamide 750 1000 

TEMED 12 9 

APS 40 76 
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RUNNING 
7.5% 10% 

(µl) (µl) 
Deionized water 6000 4600 

Lower buffer 3000 3000 

Acrylamide 3000 4400 

TEMED 30 10 

APS 120 80 

 

STACKING 5% 
5 % 

(µl) 
Deionized water 2340 

Lower buffer 1000 

Acrylamide 660 

TEMED 10 

APS 30 

Table 5 Composition of acrylamide gels used for protein electrophoresis 

The protein electrophoresis was performed before at 60 V, then at 120 V 
under denaturing and reducing conditions with the Migration buffer 1x (from 
Migration buffer 10x, Table 6).  
 

Components Molarity/Concentration 
Tris base 250 mM 

Glycine 2 M 

SDS 10% 

Deionized water to volume 

Table 6 Composition of Migration buffer 10x 

The acrylamide gel was stained with Coomassie 0.25% (Table 7) overnight to 
verify the presence of the DDB2PCNA- protein. 
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Components Concentration 
Brilliant blue 0.25% 

Acetic acid 10% 

Methanol 45% 

Deionized water 45% 

Table 7 Coomassie 0.25% staining composition 

Then, the purificated protein was concentrated through an Amicon® Ultra 
Centrifugal Filter (Millipore) with a cutoff of 30 kDa as described below: 

- the filter was activated with 8 ml of PBS and glycerol 10% and 
centrifuged at 4500 g for 15 min at 4°C; 

- the eluted DDB2PCNA- protein was loaded on the filter and centrifuged 
at 4500 g for 15 min at 4°C; 

- 2 washing with 8 ml of PBS were performed by several centrifugation 
at 4500 g for 15 min at 4°C to obtain 250 µl of concentrated protein.  

 
The concentrated protein was quantified by spectrophotometer (Eppendorf 
BioPhotometer® D30) using Bradford method; then, 2.5 µg of protein 
resuspended in Mix 3x (Table 4) and a protein marker “Precision Plus 
Standard Dual Color” (Bio-Rad) were loaded on 10% polyacrylamide gel 
(Table 5). After the protein electrophoresis, the acrylamide gel was stained 
with Coomassie 0.25% (Table 7) overnight to verify the correct presence of a 
protein band with the same molecular weight of DDB2PCNA-. 

 

3.3.1.2 pEGFP-N1 plasmid (Clontech) UV irradiation  

2.85 ug/μl of pEGFP-N1 plasmid (Clontech), previously quantified by 
spectrophotometer (Eppendorf BioPhotometer® D30), were resuspended in 
10.5 µl of TE buffer pH 8.0 (Table 8) and UV-C irradiated at 800 J/m2 with a 
lamp (Philips TUV-9) emitting mainly at 254 nm, as measured with a DCRX 
radiometer (Spectronics). 
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Components Molarity 
Tris-HCl 10 mM 

EDTA 1 mM 

Table 8 TE buffer composition 

Ethanol at a final concentration of 70% was added to irradiated DNA to 
enhance its precipitation. After 15 min at -20°C, the sample was centrifuged 
at 15500 g for 15 min at 4°C (Allegra 21R, Beckman Coulter). The pellet was 
resuspended in 15 µl of TE buffer pH 8.0 (Table 8) and quantified by 
spectrophotometer (POLARstar Omega, BMG LABTECH). 

 

3.3.1.3 EMSA on agarose gel 

The “in vitro” assay with recombinant DDB2 protein was performed 

following the published protocol (Osakabe E et al. 2015). 
The irradiated pEGFP-N1 plasmid (Paragraph 3.3.1.2) was incubated with 
recombinant DDB2Wt or DDB2PCNA- proteins, previously purified in our 
laboratory (Paragraph 3.3.1.1). The reactions were performed in Binding 
buffer (Table 9) for 30 min (Table 10, sample 1, 2 and 3) or 1 h (Table 10, 
sample 4 and 5) at 30°C.  
 

Components Molarity/Concentration 
Sodium phosphate pH 7.5 28 mM 

NaCl 150 mM 

MgCl2 3.4 mM 

EDTA 1.4 mM 

Glycerol 2% 

BSA (Bovine Serum Albumin) 0.1 mg/ml 

Table 9 Composition of Binding buffer employed for “in vitro” assay 
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Gel electrophoresis was performed on 1% agarose gel in TBE 1x buffer (from 
TBE 10x, Table 11) at 40 V for 3 h.  
 

Components Molarity 
Tris base 0.9 M 

Boric acid 0.9 M 

EDTA 20 mM 

Table 11 Composition of TBE 10x 

The DNA was visualized and photographed by transilluminator UST-20M-8E 
on Darkhood DH-30/32 (Biostep). 

 

3.3.2 EMSA with cell extracts derived from HEK293 DDB2Wt or DDB2PCNA-  

The electrophoretic mobility shift assay with cell extracts derived from 
HEK293 DDB2Wt or DDB2PCNA- on polyacrylamide gel was performed following 

Table 10 Schematic representation of EMSA with recombinant DDB2Wt or DDB2PCNA- 
proteins 
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a published protocol (Tsai C et al. 2012). 

 

3.3.2.1 HEK293 DDB2Wt or DDB2PCNA- cell extracts 

HEK293 DDB2Wt and DDB2PCNA- cells (2x106 for each sample) were 
harvested and resuspended in 1 ml of sterile cold PBS. After centrifugation at 
13000 g for 1 min at 4°C (Allegra 21R, Beckman Coulter), pellets were 
resuspended in 100 µl of cold Lysis buffer (Table 12) and incubated for 30 min 
at 4°C on roller. 

 

Components Molarity/Concentration 
NaCl 700 mM 

EGTA 1 mM 

EDTA 1 mM 

β-glycerolphosphate 10 mM 

MgCl2 2 mM 

KCl 10 mM 

Sodium vanadate 1 mM 

PMSF 1 mM 

DTT 1 mM 

Nonidet NP-40 0.1% 

Protease inhibitor cocktail  1 µl/ml 

Table 12 Lysis buffer composition 

Lysates were centrifuged at 13000 g for 30 min at 4°C and the supernatants 
were stored at -80°C overnight. 
Protein concentration of cell extracts was measured by spectrophotometer 
(Eppendorf BioPhotometer® D30) through Bradford method. 
To verify the presence of DDB2 protein, 30 µg of HEK293 DDB2Wt and 
DDB2PCNA- cell extracts were resuspended in Mix 3x (Table 4) and loaded on 
10% polyacrylamide gel (Table 5). The electrophoresis was performed as 
previously indicated (Paragraph 3.3.1.1)  
Proteins were electrotransferred to nitrocellulose membrane by semi-dry 
transfer cell (Sigma B2529) at 100 mA for 30 min with Transfers buffer (Table 
13). The Western blot system was assembled as followed described: 
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- 3 filter papers 3 MM of Whatman soaked in Transfers buffer (Table 
13); 

- nitrocellulose membrane soaked in Transfers buffer (Table 13); 
- polyacrylamide gel 10%; 
- 3 filter papers 3 MM of Whatman soaked in Transfers buffer (Table 

13). 
 

Components Quantity/Volume 
Tris base 0.3 g 

Glycine 1.4 g 

Methanol 20 ml 

Deionized water to 100 ml 

Table 13 Transfers buffer composition 

The nitrocellulose membrane was stained with Ponceau and blocked with 5% 
non-fat milk in PBS and 0.2% Tween 20 (PBST) buffer for 30 min under 
constant agitation to reduce background and minimize non-specific binding 
by primary antibodies.  
Membrane was incubated with primary antibody (Table 14) for 1 h under 
constant agitation, following by three washing with PBST 10 min/each. Then, 
membrane was probed with appropriate HRP-conjugated secondary 
antibody (Table 14) for 30 min. After three washing with PBST, the signal was 
revealed using enhanced chemiluminescence with ECL kit (Bio-Rad). 
 

Primary antibody Secondary antibody 
anti-DDB2 in rabbit 

polyclonal (1:500, Novus 
Biologicals) 

anti-rabbit HRP-conjugated 
(1:10000, KPL) 

Table 14 Antibodies employed for immunoblot assay 

 

3.3.2.2 EMSA on acrylamide gel     

The oligonucleotide CPD-annealing 5’ labeled with carboxyfluorescin 
(FAM) group, kindly provided by Dr. E. Crespan (Istituto di Genetica 
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Molecolare-Centro Nazionale delle Ricerche [IGM-CNR], Pavia), was used as 
a substrate to evaluate the DDB2Wt or DDB2PCNA- binding affinity. 
Each binding reaction was prepared with the following reagents: 

- 0.5 µg of cell extracts derived from HEK293 DDB2Wt or DDB2PCNA-; 
- 40 nM of oligonucleotide CPD-annealing 5’ labeled with 

carboxyfluorescin (FAM) group; 
- 40 nM of primer INT2-600 (MWG-Biotech AG) used as a competitor 

of oligonucleotide CPD for DNase digestion; 
- Binding buffer 1x (from Binding buffer 5x, Table 15); 
- 10 mg/ml of BSA (Albumin fraction V [pH 7.0], Blotting Grade 

[BioFroxx]). 
 

Components Molarity/Concentration 
Hepes-KOH pH 7.9 12 mM 

KCl 60 mM 

MgCl2 5 mM 

Tris base 4 mM 

EDTA 0.6 mM 

DTT 1 mM 

Glycerol 12% 

Table 15 Binding buffer 5x composition 

A mix containing the Binding buffer 5x (Table 15), the oligonucleotide CPD-
annealing, the primer INT2-600 and BSA was prepared and aliquoted in each 
“in vitro” binding reaction. As reported in the following experimental plan 
(Table 16), the experiments were performed in a final volume of 10 µl and 
conducted at RT for 30 min (Table 16, Sample 1, 2 and 4) or 1 h (Table 16, 
Sample 3 and 5), protecting samples by light exposure to preserve the 
fluorescence of the oligonucleotide-CPD.  
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Table 16 Experimental plan of EMSA performed on polyacrylamide gel with HEK293 
DDB2Wt or DDB2PCNA- cell extracts 

Then, the protein-DNA complexes were resolved from free oligonucleotide in 
4% non-denaturing polyacrylamide gel (Table 17); before loading, samples 
were mixed with 2 µl of loading dye composed by 0.025% of blue 
bromophenol diluted in Binding buffer 5x (Table 15). The assay was 
performed in TGE buffer 1x (from TGE buffer 5x, Table 18) at 10 V/cm (70 V) 
for approximately 90-120 min. 
 

Components Volume (ml) 
Acrylamide 2.8  

TGE 5x 4  

APS 10% 0.2 

TEMED 0.024 

Deionized water 13 

Table 17 Composition of non-denaturing gel at 4% 
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Components Molarity 
Tris-HCl pH 8.5 50 mM 

Glycine 380 mM 

EDTA 2 mM 

Table 18 TGE buffer 5x composition 

EMSA was revealed by Molecular Dynamics Phosphoimager (Typhoon Trio, 
GE Healthcare) through the detection of carboxyfluorescin (FAM) group on 
oligonucleotide-CPD. 
 
The densitometric analysis was performed for each sample comparing 
protein-DNA complexes bands on total bands (protein-DNA complexes + free 
oligonucleotide bands) through the public software ImageJ 
(https://imagej.nih.gov/ij/).  

 

 

3.4 Interaction between DDB2 and XPG at UV-damaged sites 

To verify a possible delay in DNA repair process in the late steps of NER, 
in particular in HEK293 DDB2PCNA- clone, DDB2 and XPG recruitment was 
investigated. 
In particular, DDB2 and XPG colocalization to DNA damaged sites and their 
interaction were evaluated. 
Then, it was examined the possible DDB2 involvement in translesion DNA 
synthesis (TLS) focusing on DDB2 and Polymerase η interaction. 

 

3.4.1 DDB2 and XPG colocalization  

 

3.4.1.1 UV-C local irradiation  

HeLa cells, previously seeded on coverslips, were transiently 

https://imagej.nih.gov/ij/
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transfected with DDB2Wt or DDB2PCNA- construct (Paragraph 3.2). The next 
day, samples were gently washed with PBS and, after its removal were locally 
irradiated with a lamp (Philips TUV-9) emitting mainly at 254 nm at 100 J/m2, 
by laying on top of cells an Isopore polycarbonate filters (Millipore) with 3 µm 
pores to induce DNA damage foci formation.  
After UV-C irradiation, samples were incubated at 37° C and fixed 5, 10, 30 
and 60 min later. Not irradiated HeLa cells were used as control.  

 

3.4.1.2 Paraformaldehyde fixation protocol 

At the end of specific recovery times, cells were washed twice with cold 
PBS and lysed with 0.5% Triton X-100 (Sigma-Aldrich) diluted in cold PBS for 
30 min at 4°C in shaking. Then, cells were fixed with 2% paraformaldehyde 
(PFA) for 5 min and 70% ethanol for 20 min at -20°C.  

 

3.4.1.3 Immunofluorescence staining  

To detect the protein localization, the following immunostaining 
standard protocol was applied:  

- after the removal of ethanol, cells were washed twice with cold PBS; 
- samples were incubated with blocking solution containing 1% of BSA 

in PBST buffer for 30 min at RT with gentle shaking; 
- cells were incubated with primary specific antibodies diluted in 

PBST/1% BSA for 1 h at RT; 
- three washing, for 10 min each, with PBST with shaking were 

performed; 
- the reactions were followed by incubation with secondary antibodies 

diluted in PBST/1% BSA for 30 min;  
- after immunoreactions and three washing with PBST (as previously 

described), samples were incubated with Hoechst 33258 dye (0.5 
μg/ml) for 10 min at RT with mild agitation and then washed in PBS; 

- finally, coverslips were mounted in Mowiol (Calbiochem) containing 
0.25% 1,4-diazabicyclo-octane (Aldrich) as antifading agent. 
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Images were acquired with a TCS SP5 II Leica confocal microscope, at 0.3 μm 
intervals. Image analysis was performed using the LAS AF software. 
To detect the presence and the colocalization between DDB2 and XPG, HeLa 
cells were immunostaining with specific antibodies as reported in Table 19. 
XPG antibody was kindly provided by Dr. E. Prosperi (IGM-CNR, Pavia). 
 

Primary antibodies Secondary antibodies 
anti-DDB2 in mouse 

monoclonal (1:100, Santa 
Cruz Biotechnology) 

anti-mouse DyLight™ 594 
(1:200, Thermo Scientific) 

anti-XPG in rabbit polyclonal 
(1:200, Sigma-Aldrich) 

anti-rabbit DyLight™ 488 
(1:100, KPL) 

Table 19 Antibodies used for DDB2 and XPG immunostaining 

 

3.4.1.4 Immunoprecipitation assay and immunoblot analysis 

To evaluate the direct or indirect interaction between DDB2 and XPG 
after UV damage induction, an immunoprecipitation assay was performed.  
 
For this purpose, HeLa cells were seeded at the density of 1x106. The day 
after, cells were transiently transfected with DDB2Wt or DDB2PCNA- construct 
(Paragraph 3.2). 
24 h later, cells were washed with PBS and irradiated with a lamp (Philips 
TUV-9) emitting mainly at 254, at a dose of 30 J/m2 UV-C. 
HeLa cells not transfected and not irradiated were employed as control. 
After 30 or 60 min recovery times, cells were trypsinized, harvested and 
pelleted by centrifugation at 200 g for 3 min (Centrifuge 4236, Alc). Pellets 
were stored at -80°C. 
 
Dynabeads™ Protein G (Invitrogen) were used to immunoprecipitate DDB2 
protein and were prepared as follow:  

- 180 µl of magnetic beads (corresponding to 900 µg for each sample) 
were washed twice with 1 ml of Beads washing buffer 1x (from Beads 
washing buffer 2x, Table 20); 

- beads were resuspended with 150 µl of Beads washing buffer 1x (from 
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Beads washing buffer 2x, Table 20) and 30 µl of anti-DDB2 in rabbit 
polyclonal (Santa Cruz Biotechnology) (corresponding to 1 µg of 
antibody for each sample) were added; 

- the mix was placed on roller for 90 min at 4°C to obtain the binding 
beads-antibody. 
 

Components Quantity (g)/Volume 
Citric acid 0.094 

Sodium phosphate bibasic 0.184 

Deionized water 10 ml 

Table 20 Beads washing buffer 2x composition for 10 ml 

In the meantime, pellets were resuspended and lysed with 1 ml of Hypotonic 
buffer (Table 21) for 10 min on ice.  
 

Components Molarity/Concentration  
Tris-HCl, pH 8.0 10 mM 

MgCl2 2.5 mM 

Nonidet NP-40 0.5% 

Na3VO4 0.2 mM 

DTT 1 mM 

PMSF 1 mM 

Protease inhibitor cocktail  0.5 µl/ml 

Table 21 Hypotonic buffer composition 

After centrifugation at 2900 g for 1 min at 4°C (Allegra 21R, Beckman Coulter), 
supernatants, corresponding to Soluble (S) fraction, were collected and 
quantified by spectrophotometer (Eppendorf BioPhotometer® D30) through 
Bradford method. 50 µl of these samples were mixed with 25 µl of Mix 3x 
(Table 4) and stored at -20°C as Soluble fraction of Input. 
Pellets were washed in Hypotonic buffer (Table 21) and centrifuged at 2900 
g for 1 min at 4°C.  
Pellets were resuspended and washed with 1 ml of Isotonic buffer (Table 22) 
and centrifuged at 2900 g for 1 min at 4°C.  
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Components Molarity/Concentration  
Tris-HCl, pH 8.0 10 mM 

NaCl 150 mM 

PMSF 1 mM 

Protease inhibitor cocktail  0.5 µl/ml 

Table 22 Composition of Isotonic buffer 

Pellets were digested by 1 ml of DNase buffer 1x (Buffer A 2x (Table 23), 
DNase 20 U/µl/106 cells and Buffer B 2x (Table 24)) (Buffer A and B ratio 1:1) 
for 20 min at 4°C. 
 

Components Molarity 
Tris-HCl, pH 8.0 20 mM 

MgCl2 10 mM 

Table 23 Buffer A 2x composition 

 

Components Molarity 
NaCl 20 mM 

PMSF 1 mM 

Table 24 Buffer B 2x composition 

Samples were centrifuged at 16000 g for 1 min at 4°C. 40 µl of supernatants, 
corresponding to Chromatin Bound (CB) of Input, were collected and mixed 
with 20 µl of Mix 3x (Table 4) and placed at -20°C.  
The remainder fraction of CB and 1.5 mg/ml of proteins of S fractions were 
incubated with 30 µl of the mix composed by magnetic beads and anti-DDB2 
(previously obtained) for 3 h at 4°C under constant agitation.  
Then, immunocomplexes were washed three times with Isotonic buffer 
(Table 22), resuspended in 60 µl of Mix 3x (Table 4) and placed at -20°C.  
 
Samples were resolved by Mini-PROTEAN® TGX™ Precast Gel gradient gel 4-
15% (Bio-Rad). 30 µl of immunoprecipitated samples (S fraction and CB) and 
30 µg of Input (S fraction and CB) were loaded and a protein marker 
“Precision Plus Standard Dual Color” (Bio-Rad) was used. Protein 
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electrophoresis was conducted at 150 V for 45-60 min at 4°C in TGS 1x buffer 
(Table 25). 
 

Components Molarity/Concentration  
Tris base 25 mM 

Glycine 192 mM 

SDS 0.1% 

Table 25 TGS buffer 1x used as running buffer for protein electrophoresis 

The Western blot was performed as reported in Paragraph 3.3.1.1 and the 
antibodies are indicated in Table 26. The signal was revealed using enhanced 
chemiluminescence with Azure Biosystem. 
 

Primary antibodies Secondary antibodies 
anti-DDB2 in mouse 

monoclonal (1:100, Santa 
Cruz Biotechnology) 

anti-mouse HRP-conjugated 
(1:20000, Sigma-Aldrich) 

anti-XPG in rabbit polyclonal 
(1:1000, Sigma-Aldrich) 

anti-rabbit HRP-conjugated 
(1:10000, KPL) 

anti-beta actin in mouse 
monoclonal (1:1000, Sigma-

Aldrich) 

anti-mouse HRP-conjugated 
(1:20000, Sigma-Aldrich) 

anti-IgG HRP-conjugated in rabbit polyclonal (1:4000, 
Amersham Biosciences) 

Table 26 Antibodies employed  

 

 

3.5 Evaluation of proliferation ability 

 

3.5.1 Clonogenic assay 

To investigate, after UV damage, the cells proliferation capability, the 
clonogenic assay was performed. 
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HEK293 CTR, DDB2Wt and DDB2PCNA- stable clones were seeded into 100 mm 
culture dishes and two days later, cells were UV-C irradiated (10 J/m2), 
immediately harvested and 5x103 cells were re-seeded into 60 mm cell 
culture dishes in triplicate for each cell line. 
To allow cellular growth and colony formation, Petri dishes were incubated 
at 37°C for 10 days, then cells were fixed and stained with Gentian violet 
(Table 27) for 20 min in agitation and washed several times with deionized 
water.  
 

Components Volume/Quantity  
Acetic acid 5 ml 

Gentian violet 1 g 

Aniline oil 1 ml 

Ethanol 15 ml 

Deionized water 80 ml 

Table 27 Gentian violet staining composition 

The number of developed colonies was manually counted. 

 

3.5.2 Study of mitoses 

To examine the colony formation focusing on the number and 
morphological features of their mitoses, an immunofluorescence and a May-
Grünwald Giemsa staining were performed.  
To visualize mitoses, irradiated HEK293 cells (CTR, DDB2Wt and DDB2PCNA-), 
previously exposed to 10 J/m2 and seeded on coverslips, were fixed with 3.7 
paraformaldehyde three days after UV-radiation treatment and 
permeabilized with ethanol 70% at -20°C. 
Then, samples were immunostained with antibodies reported in the Table 28 
and the procedure is reported in Paragraph 3.4.1.3. Cells were incubated with 
primary antibody for 2 h; the antibody was kindly provided by Dr. C. Mondello 
(IGM-CNR, Pavia).  
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Primary antibody Secondary antibody 
anti-pospho-Histone 3 in 
rabbit polyclonal (1:100, 

Upstate) 

anti-rabbit DyLight™ 488 
(1:100, KPL) 

Table 28 Antibodies employed to visualize mitoses 

HEK293 cells (CTR and both stably transfected clones) were seeded on 
coverslips. After two days, cells were totally UV-C irradiated (10 J/m2), 
trypsinized and reseeded on coverslips (2X105 cells).  
 
Three days later, samples were fixed with methanol and acetic acid and 
stained with May-Grünwald Giemsa using a standard protocol. 
  
Total number of cells per colony, including dead cells and mitoses were 
counted and photographed by Nikon Eclipse 80i digital microscope with 
Nikon Digital Sight DS-Fi1 camera. 

 

 

3.6 Study of DDB2-Polymerase η interaction 

To investigate whether DDB2 protein could be involved in TLS, its 
colocalization with Polymerase η was assessed through confocal analysis and 
immunoprecipitation assay. 
Moreover, using Proximity Ligation Assay (PLA), DDB2 and Polymerase η 
direct interaction was investigated. 

 

3.6.1 Co-transfection of HeLa cells with pcDNA3.1-DDB2Wt or pcDNA3.1-
DDB2PCNA- and Polymerase η-GFP constructs and local UV-irradiation 

HeLa cells were co-transfected with Polymerase η-GFP (Pol η-GFP) 
construct kindly provided by Dr. S. Sabbioneda (IGM-CNR, Pavia) and DDB2Wt 

or DDB2 mutated construct following the protocol as described in Paragraph 
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3.2.1.  
In particular, cells, previously seeded on coverslips, were co-transfected with 
0.2 µg of Pol η-GFP and 0.4 µg of DDB2Wt or DDB2PCNA- DNA.  
As a positive control of Polymerase η expression, HeLa cells were transfected 
only with Pol η-GFP construct. 
The day after cells were exposed to local UV-C radiation (100 J/m2), as 
reported at Paragraph 3.4.1.1. 

 

3.6.2 Fixation and lysis protocol 

Cells were fixed and lysed 30 and 60 min later, following a specific 
protocol published by Soria and colleagues (Soria G et al. 2008). Briefly: 

- cells were fixed with a solution containing 4% PFA and 4% sucrose 
diluted in PBS for 15 min at RT; 

- then cells were washed with PBS and incubated with 0.1% Triton X-
100 diluted in PBS for 10 min under constant agitation at RT; 

- finally, after a gently wash with PBS, samples were incubated with 
ethanol 70% at -20°C for at least 20 min.  

 

3.6.3 Immunostaining and immunoprecipitation experiments 

For confocal analysis, cells were immunostained as reported in 
Paragraph 3.4.1.3.  
In Table 29 are reported the antibodies employed for the incubation: 
 

Primary antibodies Secondary antibodies 
anti-XPE/DDB2 in rabbit 
polyclonal (1:100, Novus 

Biologicals) 

anti-rabbit DyLight™ 488 
(1:100, KPL) 

anti-Polymerase H in mouse 
monoclonal (1:100, Santa 

Cruz Biotechnology) 

anti-mouse DyLight™ 594 
(1:200, Thermo Fisher 

Scientific) 

Table 29 Antibodies used for DDB2 and Polymerase η (Polymerase H) 
immunostaining 
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For immunoprecipitation assay, HeLa cells, previously seeded on Petri dishes, 
were co-transfected with with 0.8 µg of Pol η-GFP and 1 µg of DDB2Wt or 
DDB2PCNA- DNA. 24 h later, cells were washed with PBS and irradiated at a 
dose of 30 J/m2 UV-C and after 30 min were pelleted. 
 
In addition, as negative and positive controls, HeLa cells were only 
transfected with GFP (0.5 µg) or Pol η-GFP (0.8 µg) constructs. These samples 
were not irradiated. 

Immunoprecipitation experiment was performed following the protocol 
reported in Paragraph 3.4.1.4, magnetic beads were incubated with anti-GFP 
in mouse monoclonal (Sigma) and, to immunodetect DDB2 and Polymerase η 
proteins, the following antibodies were employed (Table 30):  
 

Primary antibodies Secondary antibodies 
anti-XPE/DDB2 in rabbit 
polyclonal (1:500, Novus 

Biologicals) 

anti-rabbit HRP-conjugated 
(1:10000, Sigma-Aldrich) 

anti-Polymerase H in mouse 
monoclonal (1:500, Santa 

Cruz Biotechnologies) 

anti-mouse HRP-conjugated 
(1:20000, Sigma-Aldrich) 

anti-beta actin in mouse 
monoclonal (1:1000, Sigma-

Aldrich) 

anti-mouse HRP-conjugated 
(1:20000, Sigma-Aldrich) 

anti-IgG HRP-conjugated in rabbit polyclonal (1:4000, 
Amersham Biosciences) 

Table 30 Antibodies used for DDB2 and Polymerase η (Polymerase H) 
immunoblotting 

 

3.6.4 Proximity Ligation Assay  

HeLa cells, previously seeded on coverslips, were transfected with Pol 
η-GFP only or co-transfected with DDB2 (wild-type or mutated DNA) and Pol 
η-GFP (Paragraph 3.6.1). 
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After 24 h, cells were irradiated (10 J/m2) to induce DNA UV-damage and 30 
min later samples were lysed (Paragraph 3.6.2). 
 The PLA assay was performed with the kit “Duolink® In Situ PLA” (Sigma-
Aldrich), according to the “Fluorescence Protocol” provided by the 
manufacturer (Figure 9). 

 

After the blocking with 1% of BSA, samples were co-incubated for 1 h at RT 
with the following primary antibodies (Table 31): 
 

Primary antibodies 
anti-DDB2 in rabbit polyclonal 

(1:100, Rockland) 

anti-GFP in mouse monoclonal 
(1:100, Sigma-Aldrich) 

Table 31 Antibodies used for PLA assay 

Finally, images of fixed cells were acquired with a TCS SP5 II Leica confocal 
microscope, at 0.3 μm intervals. Image analysis was performed using the LAS 
AF software. 

 

 

3.7 Wound healing assay 

To analyse whether irradiated HEK293 stable clones could acquire 

Figure 9 Schematic representation of PLA technique 
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better proliferation and motility capabilities, a wound healing assay was 
performed.  

HEK293 CTR cells, DDB2Wt and DDB2PCNA- stable clones, previously seeded on 
Petri dishes, were totally irradiated (10 J/m2 UV-C) immediately trypsinized 
and counted.  
In the meantime, an Ibidi Culture-Insert (Madison, WI), composed by two 
septa, was applicated in a 6 well-plate pre-treated with polylysine that 
allowing cell adhesion.  
Irradiated cells (7x104) were resuspended in 70 µl of medium and seeded in 
each septum of the culture-insert, and incubated at 37° C. 
Cells grew until the achievement of a confluent layer, then the culture-insert 
was carefully removed and a cell-free gap was evident.  
 
The growth and motility of irradiated cells in the gap were daily monitored 
and photographed starting from day 0 (corresponding to the removal of 
culture-inserts) until day 10, employing an inverted light microscope 
equipped with a Canon A590 IS camera (Tokyo, JP). 

 

 

3.8 Influence of DDB2 protein on cell migration ability 

To study whether DDB2 protein (wild-type or mutated form) could be 
implicated in EMT, the expression levels of E-cadherin and Vimentin proteins 
and the activity of metalloproteinases (MMPs) 2 and 9 were analysed. 
 
To this purpose, HEK293 CTR and stably transfected clones expressing 
DDB2Wt or DDB2PCNA- protein were exposed to UV-C irradiation (10 J/m2). 
After several recovery times from UV-induced DNA damage (4, 8, 24, 48, 72, 
96 h and 7 d), pelleted cells and supernatants were collected for Western blot 
analysis and Zymography assay, respectively.  
For each cell line, not irradiated cells were employed as negative controls. 
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3.8.1 Western blot analysis of E-cadherin and Vimentin proteins 

30 µg of proteins of each sample were resuspended in Mix 3x (Table 4) 
and separated on 10% polyacrylamide gel (Table 5); “Precision Plus Standard 
Dual Color” (Bio-Rad) was used as protein marker. 
The protein electrophoresis was conducted at 120 V for about 90 min with 
Migration buffer 1x (Table 6).  
Proteins were electrotransferred to nitrocellulose membrane by semi-dry 
transfer cell (Sigma B2529) at 100 mA for 30 min with Transfers buffer (Table 
13). 
After the blocking with milk, the membrane was probed with the antibodies 
reported on Table 32.  
To detect beta actin, as a loading control protein, a specific antibody for it 
was used.  
 

Primary antibodies Secondary antibodies 
anti-E cadherin in rabbit 

polyclonal (1:1000, 
GeneTex) 

anti-rabbit HRP-conjugated 
(1:10000, KPL) 

anti-Vimentin in mouse 
monoclonal (1:1000, Santa 

Cruz Biotechnology) 
 

anti-mouse HRP-conjugated 
(1:20000, Sigma-Aldrich) 

 
anti-beta actin in mouse 

monoclonal (1:1000, Sigma-
Aldrich) 

Table 32 Antibodies employed for Western blot analysis 

The signal was revealed using enhanced chemiluminescence with Azure 
Biosystem.  
 
The densitometric analysis was performed with the public software ImageJ 
(https://imagej.nih.gov/ij/) and the results were normalized with beta actin. 

 

3.8.2 Zymography assay 

The presence and the activity of MMPs-2 and 9, also known as Gelatine 

https://imagej.nih.gov/ij/
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A and B, were investigated by Zymography technique. 
 
Therefore, a 10% acrylamide gel (Table 5) containing 1209 µl of gelatin [10 
mg/ml] in the Running gel was prepared. 
Supernatants were centrifuged (Allegra 21R, Beckman Coulter) at 1100 g for 
10 min at 4°C and resuspended in Sample buffer 2x (Table 33, ratio 1:1).  
 

Components Molarity/Concentration 
Tris HCl pH 6.8 125 mM 

Glycerol 20% 

SDS 4% 

Bromophenol blue 0.005% 

Deionized water to volume 

Table 33 Sample buffer 2x composition 

30 µl of each sample and the “Precision Plus Standard Dual Color” (Bio-Rad) 
protein marker were loaded. 
The protein electrophoresis was performed before at 60 V, then at 100 V 
under denaturing but not reducing conditions with the Migration buffer 1x 
(from Migration buffer 10x, Table 6). 
 
To eliminate SDS and for MMPs renaturation, gel was incubated with 
Renaturing buffer (2.5 % Triton X-100 diluted in deionized water) for 30 min 
under stirring. 
Next, gel was incubated with Developing buffer 1x (from Developing buffer 
10x, Table 34) at RT for 30 min and then at 37°C overnight. 
 

Components Quantity (g)/Concentration 
Tris base 12.1 

Tris-HCl 63 

NaCl 117 

CaCl2 7.4 

Triton X-100 0.1% 

Deionized water to 1 l 

Table 34 Developing buffer 10x composition 
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Then, gel was dipped in Staining buffer (Table 35) for 1 h under constant 
agitation. 
Finally, to detect the digested white bands, gel was incubated 30 min with 
Destaining buffer (Table 36).  
 

Components Volume (ml) 
Methanol 30 

Acetic acid 10 

Blue Coomassie 0.5 

Deionized water to 100 

Table 35 Staining buffer composition 

 

Components Volume (ml) 
Methanol 25 

Acetic acid 37.5 

Deionized water to 500 

Table 36 Composition of Destaining buffer 

The densitometric analysis of each digested bands was performed by the 
public software ImageJ (https://imagej.nih.gov/ij/). 

 

3.8.3 Boyden chamber assay 

Finally, to determine whether DDB2 protein could also be implicated in 
the migration process of irradiated HEK293 cells, a Boyden assay was 
performed.  

 
The 48-Well Micro Chemotaxis chamber (Neuro Probe) was composed by a 
top and bottom plates containing wells, separated by a silicone gasket. 
Indeed, to analyse migrated cells, a coated polycarbonate membrane with 
8µm pores (Neuro Probe) was placed between the bottom plate and silicone 
gasket. The membrane was incubated with 0.5 M acetic acid at RT overnight; 
then, after an accurate washing in distilled water, the filter was coated with 
100 µg/ml of collagen type 1 (from calf skin, Sigma-Aldrich) solution diluted 

https://imagej.nih.gov/ij/
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in 0.1 M acetic acid for 72 h at RT. Before use, the polycarbonate membrane 
was left to completely air dry. 
For the experiment, HEK293 control line and both stable clones expressing 
DDB2Wt or DDB2PCNA- protein were exposed to UV irradiation (10 J/m2) and 
immediately harvested and counted. 105 cells diluted in 50 µl of medium 
without FBS were loaded in each wells of the top plate. For each cell lines, 
not irradiated cells were used as control. 
 
The protocol was performed as followed described: 

- in the bottom wells 30 µl of DMEM containing different FBS 
concentration (0, 10 and 20%) were loaded to chemoattractant cells; 

- the collagen-coated polycarbonate membrane was carefully placed 
followed by silicone gasket and top of chamber assembly; 

- clamps were screwed applying a great pressure to avoid bubble 
formation; 

- Boyden chamber was located at 37°C for 5 min to equilibrate the 
system; 

- irradiated and not irradiated cells were loaded in the top wells; 
- the chamber was placed in incubator at 37°C for 24 h; 
- the day after, the membrane containing both migrated (on top) and 

non-migrated cells (bottom) was incubated with fixative (Diff-Quick 
Fixative) for 2 min, then with the Diff-Quick Solution I for 2.5 min and 
Diff-Quick Solution II for 1 min and, finally, the filter was placed in 
distilled water to eliminate the excess dyes; 

- then, the filter was set on a clean slide with the migrated cell side 
down and, with a cotton swab, non-migrated cells were wiped off; 

- three coverslips were placed on the membrane with a mounting 
media and cells were visualized and photographed under a digital 
microscope Nikon Eclipse 80i with a camera Nikon Digital Sight DS-Fi1. 

 

 

3.9 Other possible role of DDB2 

To investigate the possible involvement of DDB2 protein (wild-type and 
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mutated form) in the TC-NER, the other subpathway of NER, the host cell 
reactivation (HCR) assay and confocal analysis were performed.  

 

3.9.1 Host cell reactivation assay and “in vivo” cytofluorimetric analysis 

This assay allows evaluating the DNA repair ability by FACS technology 
(Burger K et al. 2010). To this end, plasmidic DNA was previously irradiated 
and then transfected. 
 
HEK293 stable transfected clones (DDB2Wt and DDB2PCNA-) were co-
transfected with 0.4 or 0.6 µg of pmRFP-N2 (as a positive control) kindly 
provided by Dr. M.C. Cardoso (Technische Universität Darmstadt, Germany) 
and 0.4 µg of pEGFP-N1 or 0.6 µg of UV-pEGFP-N1 (obtained as previously 
described on Paragraph 3.3.1.2) employing the kit “Effectene Transfection 
Reagent” (Qiagen) (Figure 10).  

After 16 and 48 h respectively, cells were trypsinized, harvested and 
centrifuged at 200 g for 3 min (Centrifuge 4236, Alc); the pellets were gently 

Figure 10 Experimental plan of HCR 
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re-suspended in PBS for “in vivo” cytofluorimetric assay (CyFlow® SL, Sysmex 
Partec GmbH).  
 
The analysis was performed only on RFP positive cells and the mean 
fluorescence intensity (MFI) for the RFP and GFP protein was calculated. After 
normalization (MFI GFP/MFI RFP), the relative expression of GFP protein was 
computed by comparing the normalized MFI UV to the normalized MFI not 
irradiated. 

 

3.9.2 Evaluation of DDB2 and Polymerase II co-localization by 
immunofluorescence and confocal microscopies 

HeLa cells previously seeded on coverslips, were transfected with 
DDB2Wt or DDB2PCNA- construct, as described in Paragraph 3.2. 
The day after, cells were exposed to local UV-C irradiation (100 J/m2, as 
previously described at Paragraph 3.4.1.1), and 30 or 60 min later were fixed 
(Paragraph 3.4.1.2). 
Then, following the procedure described in Paragraph 3.4.1.3, cells were 
immunostained with the antibodies reported in the Table 37 and observed 
by immunofluorescence and confocal microscopies. 
Anti-RNA Polymerase II was kindly provided by Dr. T. Nardo (IGM-CNR, Pavia).  
 

Primary antibodies Secondary antibodies 
anti-DDB2 in rabbit 

polyclonal (1:100, Novus 
Biologicals) 

anti-rabbit DyLight™ 488 
(1:100, KPL) 

anti-RNA Polymerase II in 
mouse monoclonal (1:100, 

Covance) 

anti-mouse DyLight™ 594 
(1:200, Thermo Scientific) 

Table 37 Antibodies employed for DDB2 and Polymerase II co-localization studies 
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4. Results 

 

 

I. DDB2PCNA- in global genome-nucleotide excision repair 

 

 

4.1 Delay in the recognition of UV-DNA lesions 

In the laboratory in which I have conducted my PhD project, previous 
studies have demonstrated that DDB2PCNA- protein, which is unable to directly 
interact with PCNA, shows a delayed recruitment at DNA damaged sites, after 
UV-C radiation, compared to DDB2 wild-type protein. These time course 
experiments were performed by immunofluorescence staining and confocal 
analysis (Perucca P et al. 2018). In order to clarify the molecular mechanism 
that determines this delay, I performed new experiments applying different 
approaches. 

 

 

4.2 Evaluation of DDB2 binding affinity to DNA lesions 

Firstly, I investigated whether the mutation in DDB2 sequence may 
affects the protein binding affinity to DNA photolesions.  
To test the DDB2-DNA interaction “in vitro”, two different electrophoretic 
mobility shift assays (EMSA) were performed:  

- EMSA on agarose gel with recombinant DDB2 (wild-type or mutated 
form) protein incubated with an UV-irradiated plasmid; 
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- EMSA on acrylamide gel with HEK293 cell extracts (DDB2Wt or 
DDB2PCNA- stable clones) and CPDs-oligonucleotide. 

Both approaches allow to visualize a band shift when a DNA/protein complex 
is formed.  

 

4.2.1 EMSA on agarose gel 

EMSA on agarose gel was performed to evaluate the binding ability of 
recombinant DDB2 (wild-type or mutated form) proteins to irradiated 
plasmid containing DNA UV photolesions. DDB2Wt recombinant protein was 
purified in our laboratory (Cazzalini O et al. 2014) and, the protocol used to 
produce a recombinant DDB2PCNA- protein is reported in Materials and 
Methods (Paragraph 3.3.1.1). 
 
Figure 11 shows gel electrophoresis and staining of DDB2 (wild-type and 
mutated form) concentrated protein. The blue evident band in lane 2 of each 
gel, between 37 and 50 kDa, highlighted the correct presence of DDB2 
recombinant proteins (molecular weight 48 kDa).  

Figure 11 Precision Plus Standard Dual Color protein marker (50, 37 and 25 kDa; lane 
1), protein electrophoresis of recombinant DDB2Wt and DDB2PCNA- proteins stained 
with Coomassie (48 kDa, lane 2) 
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The irradiated plasmid was incubated “in vitro” with recombinant DDB2 (wild-
type or mutated form) proteins for 30 or 60 min at 30° C; then, DNA/protein 
complexes were resolved by an agarose gel electrophoresis (Figure 12) 
(Perucca P et al. 2018).  

DDB2PCNA- proteins was not able to bind to the irradiated UV-plasmid both 30 
and 60 min after the incubation (lane 3 and 5): in fact, these lanes showed 
the same banding pattern of lane 1 in which the free irradiated plasmid was 
loaded, as negative control.  
Conversely, the presence of recombinant DDB2Wt protein allowed to form a 
UV-plasmid/protein complex already 30 min after incubation (lane 2) and this 
bound persisted 1 h later, as demonstrated by the band shift (lane 4). 
The results shown that DDB2PCNA-, unlike DDB2Wt protein, is not able to 
recognize and bind the lesions present on UV-irradiated DNA plasmid 
demonstrating an inefficient binding affinity.  

 

4.2.2 EMSA on acrylamide gel 

To investigate whether the ectopically DDB2 expression in both HEK293 
stable clones may also modify the binding affinity to UV-induced 
photolesions, an “in vitro” reaction was prepared.  
 

Figure 12 Gel electrophoretic mobility shift assay. Damaged plasmidic DNA (lane 1), 
UV-damaged DNA incubated with recombinant DDB2Wt protein for 30 or 60 min, 
respectively (lane 2 and 4), UV-damaged DNA incubated with recombinant DDB2PCNA- 
protein for 30 or 60 min, respectively (lane 3 and 5)  
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First of all, HEK293 (DDB2Wt and DDB2PCNA-) were lysed in order to obtain cell 
extracts. Next, to verify the presence of DDB2 protein in both cell extracts, a 
Western blot analysis, with a specific DDB2 antibody, was performed (Figure 
13). 

Then, HEK293 DDB2Wt or DDB2PCNA- cell extracts were incubated with CPDs-
oligonucleotides, labeled with FAM probe, for 30 min or 1 h. The protein-DNA 
complexes were resolved by electrophoresis and revealed by Typhoon. 

In both HEK293 cell extracts (DDB2Wt or DDB2PCNA-) the CPDs oligonucleotide-
protein complex formation has occurred, as demonstrated by the band shifts 
in Figure 14. 

Figure 13 Western blot analysis of DDB2 protein in HEK293 cell extracts: DDB2Wt 

(lane 1) and DDB2PCNA- (lane 2)  
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However, the DDB2 ability to recognize specific CPDs lesions was different: in 
HEK293 DDB2PCNA- extracts the binding affinity was less evident, as 
demonstrated by the marked presence of unbound CPDs oligonucleotide 
both 30 min and 1 h later from the incubation (lanes 4 and 5, respectively). 
On the contrary, the wild-type DDB2 protein was able to bind CPDs lesions, 
as highlighted by the decrease of free CPDs oligonucleotide bands (30 min or 
1 h of incubation, lane 2 and 3 respectively). 
 
Finally, to confirm these data, densitometric and statistical analysis were 
performed (Figure 15). HEK293 DDB2Wt extracts showed a significant binding 
affinity to DNA lesions compared to DDB2PCNA- cell extracts 30 min after 
incubation. Moreover, although the DDB2 mutated protein binding affinity 
was increased 1 h later, the statistical difference with the wild-type protein is 
still maintained.  
 

 

 
 

Figure 14 Representative image of EMSA on acrylamide gel. Unbound CPDs 
oligonucleotide (lane 1), HEK293 DDB2Wt cell extracts incubated with CPDs 
oligonucleotide for 30 min or 1 h, respectively (lane 2 and 3), HEK293 DDB2PCNA- 
incubated with CPDs oligonucleotide for 30 min or 1 h, respectively (lane 4 and 5). 
Results from n=3 independent experiments 
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All these collected data demonstrate that the expression of a mutated DDB2 
protein confers a lower capability to bind UV DNA lesions, compared to 
DDB2Wt protein. 

 

 

4.3 Influence of DDB2 protein in the late NER phases 

In previous studies carried out in my laboratory, it was demonstrated 
that DDB2PCNA- protein co-localized later with XPC, another key protein 
involved in the recognition of DNA lesions, compared to DDB2 wild-type 
protein (Perucca P et al. 2018). This observation suggested a delay in the 
initiation of the repair process in cells expressing the mutated DDB2.  

 
Therefore, it was evaluated whether this defective delay may also be evident 
in a late step of NER, focusing on DDB2 and XPG co-localization and 
interaction.  

Figure 15 Densitometric and statistical analysis of DDB2Wt (light blue bar) and 
DDB2PCNA- (blue bar) extracts performed on EMSA with acrylamide gel experiments. 
N=3 independent experiments; HEK293 DDB2Wt extracts vs. HEK293 DDB2PCNA- 
extracts, * p < 0.05 and ** p < 0.01 
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To study this aspect, I performed co-localization experiments in HeLa cells, 
transiently transfected with DDB2Wt or DDB2PCNA- constructs; the next day 
cells were locally irradiated using a polycarbonate filter with 3 µm pores and 
fixed after several minutes from UV-C damage. The results were obtained 
using immunofluorescence techniques, visualized by fluorescence and/or 
confocal microscopies. 
 
Figure 16 shows representative images of DDB2-XPG co-localization: the best 
result, in cells expressing DDB2 wild-type protein, was found 10 min after 
local UV irradiation (Figure 16 A, upper panel), whereas DDB2 mutated 
protein postponed its co-localization with XPG and the signals were evident 
only 30 min later (Figure 16 B, lower panel) (Bassi E et al. 2019). 
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To study in depth the co-localization between XPG (green signal) and DDB2 
(red signal) proteins, confocal analysis was performed. Figure 17 A and B 
shown the specific co-localization study performed in representative nuclei 
(Bassi E et al. 2019). In particular, in DDB2Wt positive cells the two peaks 
related to DDB2 and XPG signals were perfectly overlapped 10 min after UV 
irradiation (Figure 17 A). 
On the contrary, as shown in the pixel profile (Figure 17 B), the DDB2 mutated 
peak was not coincident with XPG peak even 30 min from UV-damage, 
demonstrating that the two proteins were in proximity to each other but not 
completely overlapped.  

Figure 16 Representative images of DDB2 and XPG co-localization. Cells expressing 
DDB2Wt (A) or DDB2PCNA- (B) protein were analysed after 10 or 30 min from UV-C local 
exposure (100 J/m2). HeLa nuclei were stained with blue DAPI, XPG (green) and DDB2 
(red) 
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To verify whether the co-localization was an evidence of an interaction 
between DDB2 and XPG, an immunoprecipitation assay was performed. For 
this purpose, a specific DDB2 antibody was used to the immunoprecipitation 

Figure 17 Representative images of confocal co-localization analysis between XPG 
and DDB2 proteins. HeLa nuclei were stained with blue DAPI, XPG (green) and DDB2 
(red). (A) and (B) DDB2Wt (A) or DDB2PCNA- (B) positive cells. Scale bar 13.54 µm. N=3 
independent experiments 
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reaction and then, both Soluble (S) and Chromatin Bound (CB) fractions were 
analysed.  
 
In the S fraction, XPG protein was not immunoprecipitated with DDB2 wild-
type or mutated protein 30 min after UV irradiation, although the presence 
of both proteins in the Input S was demonstrated (Figure 18, upper panel).  
Otherwise, DDB2 proteins (both wild-type and mutated) associated to CB 
fraction were able to pull-down XPG, as shown in the lower panel of Figure 
18.  
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This evidence not only confirms the results obtained with 
immunofluorescence analysis but highlighted that the presence of a mutated 
DDB2 protein affects several steps of NER process.  
 
Furthermore, previous studies have demonstrated that cells stably 
expressing DDB2PCNA- protein shown a lower efficiency in CPDs removal, the 
ultimate purpose of the NER process, compared to DDB2Wt stable clone or 
control cell line (Perucca P et al. 2018).  

Figure 18 DDB2 interaction with XPG, representative images: results were separated 
in Soluble (S) or Chromatin Bound (CB) fractions, upper panel and lower panel, 
respectively; a DDB2 antibody was used to immunoprecipitate samples (IP). IP and 
Input fractions were analysed by Western blot. Molecular weights: XPG 133 kDa, 
DDB2 48 kDa, Actin 42 kDa, IgG light chains 25 kDa. N > 3 independent experiments 
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II. Influence of DDB2-PCNA interaction on cell proliferation after UV-
damage 

 

 

4.4 Study of cell proliferation ability  

It was previously demonstrated that the stable expression of a mutated 
DDB2 protein in HEK293 cells allows an increased cell proliferation compared 
to HEK293 DDB2Wt or control cell lines (Perucca P et al. 2015).  
Starting from this evidence, it was investigated whether DDB2 protein could 
influence the cellular growth of HEK293 cell lines, after UV irradiation. To this 
end, a clonogenic assay has been performed. 
 
Irradiated HEK293 (CTR, DDB2Wt and DDB2PCNA-) were seeded at a low density 
to avoid colony confluence; then, the cellular growth and the colony 
formation were daily checked and, after 10 days, cells were fixed and stained 
for manual colony counting. 
 
Figure 19 A displays representative images of the assay: the highest number 
of colonies was evident in cells stably transfected with DDB2PCNA- construct; 
moreover, these colonies showed larger dimensions than those obtained 
with other cell lines (Perucca P et al. 2018). 
The DDB2Wt clone was able to form colonies, although these cells shown an 
increased sensitivity to UV rays, as demonstrated by the lower number of 
developed colonies compared to the mutated clone.  
Instead, in the control cell line (HEK293 CTR) the few formed colonies 
appeared faded, thus confirming the poor resistance to UV irradiation of 
these cells. 



 

 

 

 

 

 

 

 

 

 
4. Results  

 
 67  

 

The data obtained and the statistical analysis are summarized in Figure 19 B: 
cells expressing the exogenous DDB2 protein, both wild-type and even more, 
the mutated form, acquired an unexpected and significant increased UV 
resistance, compared with control cell line (Perucca P et al. 2018). Moreover, 
comparing both stable clones, the ability to develop colonies was significantly 
marked in the mutated one. 

 

Figure 19 Clonogenic assay of HEK293 (CTR, DDB2Wt and DDB2PCNA- stable clones) 
after UV-induced DNA damage (10 J/m2). (A) Representative images of colonies 
formed after Gentian violet staining. (B) Number of colonies grown. Mean values (± 
S.D.) are reported from 3 independent experiments. ** p < 0 .01 
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4.5 Study of mitoses and cell viability 

To examine in depth the number and morphological features of mitoses 
in HEK293 cells (CTR, DDB2Wt and DDB2PCNA- stable clones), an 
immunofluorescence and a May-Grünwald Giemsa staining were performed. 
 
To visualize the number of mitoses, not irradiated and irradiated HEK293 cells 
were fixed after three days and incubated with a specific pospho-Histone 3 
antibody. Not irradiated cells were used as positive control (data not shown).  
In Figure 20 are reported the results obtained from the immunostaining 
analysis.  

The mutated clone showed the highest percentage of pH3-positive irradiated 
cells, confirming not only its increased resistance to UV-C radiation but also 
its predisposition to proliferate. On the contrary, few cells of the control line 
were immunostained, suggesting that a lower number of cells was able to 
enter in mitosis, after UV DNA damage.  

Figure 20 Immunofluorescence analysis of positive pH3 cells expressed in 
percentage. Irradiated HEK293 CTR (white bar), DDB2Wt (grey bar) and DDB2PCNA- 
(black bar) stable clones were fixed, immunostained with pospho-Histone 3 (pH3) 
antibody and manually counted. Mean values (± S.D.) are reported from 3 
independent experiments, * p < 0.05 and ** p < 0.01 
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To evaluate the morphological features, three days after seeding, when 
irradiated cells were grown but they have not yet formed multilayer and 
confluent colonies, samples were stained with May-Grünwald Giemsa. Total 
number of cells per colony, including dead cells and mitoses, were counted 
and photographed. 
In particular, the attention was focused on the presence of atypical mitoses, 
which are a specific hallmark frequently observed in cancer cells (Batistatou 
A 2004). 
 

Some representative images show the morphological features of colonies 
(Figure 21 A) and their sorting on mitoses, atypical mitoses and dead cells 
(Figure 21 B) (Perucca P et al. 2018).  
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Cells expressing DDB2PCNA- produced more colonies with larger size compared 
to DDB2Wt stably transfected clone and control cell line (Figure 21 A), as it 
was also demonstrated with the clonogenic assay above. Although the 
number of mitoses was comparable in DDB2PCNA- and DDB2Wt clones, in cells 
expressing DDB2 mutated protein, a higher and significant percentage of 
atypical mitoses (Figure 21 B) was found (indicated with letter M in Figure 21 
A.  
Both clones showed an increased UV resistance, as demonstrated by the poor 
presence of dead cells in samples but, in mutated clone, the number was 
strongly reduced (Figure 21 B). 

Conversely, the number of dead cells (highlighted with arrows in Figure 21 A) 
in control cell line was very high, confirming a low resistance to UV-C 
radiation. In some of control cells, apoptotic bodies were also observed. 

 

Figure 21 May-Grünwald Giemsa staining in control HEK293 (CTR), DDB2Wt and 
DDB2PCNA- stable clones after UV-C radiation (10 J/m2), representative images. (A) 
Morphological features of growing colonies of DDB2Wt and DDB2PCNA- clones vs. 
control cell line. Arrows pointed dead cells; representative atypical mitoses (M) in 
cells expressing DDB2PCNA- protein. (B) Percentages of cells per colony, mitoses, 
atypical mitoses and dead cells in control HEK293 (white bar), DDB2Wt (grey bar) and 
DDB2PCNA- (black bar) stable clones, respectively. Mean values (± S.D.) are reported 
from 3 independent experiments, ** p < 0 .01 
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4.6 Evaluation of DDB2-Polymerase η interaction 

The previously collected data have demonstrated that cells expressing 
DDB2 mutated protein acquired an unexpected proliferation advantage after 
UV damage. Moreover, these cells developed an increased resistance to UV 
irradiation and showed specific morphological features, such as atypical 
mitoses, underlying genomic instability.  
  
Starting from this evidence it was explored whether DDB2 is involved in 
Trans-Lesion DNA Synthesis (TLS). In particular, it was investigated the 
possible interaction between DDB2 protein and Polymerase η, the protein 
involved in TLS. 

 

4.6.1 Evaluation of DDB2 and Polymerase η co-localization by confocal 
analysis 

For this purpose, HeLa cells were transiently co-transfected with Pol η-
GFP and DDB2Wt or DDB2PCNA- constructs. Cells transfected only with Pol η-
GFP construct represent negative control. After UV-C local irradiation, cells 
were lysed and immunostained with specific antibodies; the analysis was 
performed by confocal microscopy. 
 
In Figure 22 are reported some representative images. First of all, it was 
verified the proper foci formation of Polymerase η after UV irradiation (Figure 
22, upper panel) and that the expression of DDB2 protein (both wild-type and 
mutated) was homogeneous in all the samples (Figure 22, representative 
images middle and lower panel).  
Confocal analysis evidenced the co-localization between DDB2 and Pol η only 
in the presence of mutated form, suggesting their possible interaction.  
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To study in depth the possible co-localization between Polymerase η and 
DDB2, it was analysed the pixel intensity of both proteins by confocal 
microscopy. 
 
Regarding the recruitment to UV photolesions of Polymerase η and DDB2 
wild-type protein, no co-localization was observed.  
Interestingly, the Polymerase involved in TLS and DDB2PCNA- protein were 
overlapped (Figure 23). 

Figure 22 Representative images of confocal analysis of Pol η-GFP and DDB2 
recruited to DNA damage sites after UV irradiation. Recruitment of Pol η-GFP (green 
fluorescence), upper panel; recruitment of Pol η-GFP and DDB2 (red fluorescence) 
wild-type or mutated form, middle and lower panel, respectively. Nuclei were 
stained with Hoechst 33258 dye 
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Figure 23 Confocal co-localization analysis of Polymerase η and DDB2PCNA- proteins, 
representative image. Pixel intensity representation of Polymerase η (green 
fluorescence) and DDB2PCNA- (red fluorescence) recruited to DNA lesions upon UV 
irradiation. N=3 independent experiments 



 

 

 

 

 

 

 

 

 

 
4. Results  

 
 74  

 

4.6.2 Study DDB2 and Polymerase η interaction by immunoprecipitation 
assay 

To verify the possible interaction between Polymerase η and DDB2 
proteins, immunoprecipitation experiments were performed. 
 
For this purpose, HeLa cells were transiently co-transfected with Pol η-GFP 
and pcDNA3.1-DDB2Wt or pcDNA3.1-DDB2PCNA- constructs and exposed to UV 
irradiation (30 J/m2). As negative and positive controls, two samples were 
only transfected with GFP or Pol η-GFP constructs. Then, GFP protein was 
immunoprecipitated and, from each sample, a Chromatin Bound (CB) fraction 
was obtained and analysed.  
 
Figure 24 shows representative images of the immunoprecipitation assay. 
DDB2 protein was only immunoprecipitated in co-transfected samples (both 
input and IP fractions), suggesting that endogenous DDB2 protein in HeLa 
cells was not detected. 
As expected, Polymerase η was found in co-transfected samples and in 
positive control. In particular, it seems that the interaction between the 
Polymerase involved in TLS and mutated DDB2 protein was more evident 
compared to DDB2 wild-type.  
In the negative control (GFP sample) no immunocomplexes between GFP and 
Pol η or DDB2 proteins were detected.   
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Figure 24 DDB2 interaction with Polymerase η, representative images of Chromatin 
Bound (CB) fractions. A GFP antibody was used to immunoprecipitate samples (IP). 
IP and Input fractions were analysed by Western blot. Molecular weights: 
Polymerase η 78 kDa, DDB2 48 kDa, Actin 42 kDa, IgG light chain 25 kDa. N=3 
independent experiments 

These observations were confirmed by a densitometric analysis of 
Polymerase η and DDB2 bands performed by ImageJ software (Figure 25).  
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The interaction between DDB2Wt and Polymerase η was quite comparable to 
positive control sample (Pol η-GFP): the presence of exogenous DDB2 wild-
type protein did not notably influence the possible cooperation with the 
Polymerase involved in TLS. 
On the contrary, DDB2 mutated protein was more able to interact with 
Polymerase η. The interaction between the above proteins was 2.5 fold 
higher than positive control and the statistical analysis confirmed that this 
protein interaction is significant, suggesting a possible involvement of 
mutated DDB2 protein in TLS process.  

 

 

Figure 25 Band densitometric analysis of Polymerase η compared to DDB2 protein 
in HeLa GFP, Pol η-GFP (light blue bar), DDB2Wt (green bar) and DDB2PCNA- (red bar) 
samples. N=3 independent experiments; data are mean ± S.D. DDB2PCNA- vs. DDB2Wt 
or Pol η-GFP samples, * p < 0 .05 
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4.6.3 Study of direct interaction between DDB2 and Polymerase η through 
Proximity Ligation Assay approach 

Finally, it was investigated the possible interaction with the PLA, an 
innovative and powerful technique. This approach allows to determine, with 
an immunofluorescence signal, a direct interaction between two target 
proteins that are in close proximity (no more than 40 nm). 
For this purpose, HeLa cells were transiently co-transfected with Pol η-GFP 
and DDB2 wild-type or mutated constructs and UV-totally irradiated. Cells 
transfected only with Pol η-GFP was employed as negative control. 30 min 
later, cells were lysed and immunostained according to the PLA manufacturer 
protocol and visualized by confocal microscopy.  
 
Representative images of PLA technique are reported in Figure 26: 
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As expected, in cells only transfected with Polymerase η a positive result was 
not obtained. The few signals detected in the samples are only background 
(as explained by the manufacturer) (Figure 26). 
In samples co-transfected with DDB2 protein, both wild-type and, even more, 
the mutated one, the red spots were detected, confirming a positive direct 

Figure 26 Confocal analysis of PLA assay performed on locally irradiated HeLa cells 
only transfected with Pol η-GFP or co-transfected with Pol η-GFP and DDB2Wt or 
DDB2PCNA- constructs; cells were lysed 30 min after UV damage. Nuclei were stained 
with Hoechst 33258 dye. N=3 independent experiments 
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interaction between the two target proteins. As expected, these spots were 
mainly localized in the nuclei of HeLa cells, confirming the proper recruitment 
of Polymerase η and DDB2 proteins to damaged DNA.  
In the wild-type sample, the amplification of the signal, which is related to a 
positive result, was detected in few cells compared to the mutated sample. 
Moreover, when the mutated DDB2 protein was present, several red spots 
were found in each cell that was analysed, suggesting a strong interaction 
between these proteins (Figure 26). 
 
The collected data of PLA were also analysed with GraphPad Prism software 
(Figure 27).  
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In Figure 27 A the number of analysed cells was correlated with the number 
of red spots that were counted. In control and DDB2Wt samples it was found 
a similarity. Only few positive cells with 2 or 3 red spots for cell were 
observed; whereas in the majority of cells not positive results were found. 
Conversely, in the mutated sample, several cells confirmed the direct 
interaction between Polymerase η and DDB2PCNA- protein.  
Moreover, in this sample it was found a wide heterogeneity in the number of 
positive events: although the majority of cells contained an average number 

Figure 27 GraphPad Prism analysis of PLA technique. (A) Correlation between 
number of red spots and number of positive cells in irradiated HeLa cells only 
transfected with Pol η-GFP (CTR), or co-transfected with Pol η-GFP and pcDNA3.1-
DDB2Wt (DDB2Wt) or pcDNA3.1-DDB2PCNA- (DDB2PCNA-) samples. (B) Distribution of 
positive events in HeLa CTR, DDB2Wt and DDB2PCNA- samples transfected only with 
Pol η-GFP (CTR), or co-transfected with Pol η-GFP and DDB2Wt and DDB2PCNA-. The 
straight line depicts the average value of each sample 
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of 10 spots, in several nuclei until 40 red spots were counted, as 
demonstrated in Figure 27 B.  
 
All together these results have demonstrated that the mutated DDB2 protein 
directly interacted with Polymerase η, suggesting that the mutated DDB2 
protein may be involved in the TLS process. 

 

 

III. Study of cell migration after UV-damage 

 

 

4.7 Wound healing assay 

To investigate whether the exogenous expression of DDB2 protein 
(DDB2Wt or DDB2PCNA-) could confers to irradiated HEK293 cells both 
proliferation and migration advantages, a wound healing experiment was 
carried out.  
 
Briefly, HEK293 CTR, DDB2Wt and DDB2PCNA- stable clones were irradiated and 
seeded in each septum of the culture-insert. The culture-insert was removed 
when cells have reached a confluent layer, leaving a cell-free gap. The growth 
and motility of cells were checked and photographed starting from day 0 
(corresponding to removal of culture-inserts) until day 9.  
 
Some representative images of the time course experiments are displayed in 
Figure 28 A (Perucca P et al. 2018). 
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The first column shows the behaviour of irradiated control cells, while in the 
second and in the third column, cells stably expressing DDB2Wt or DDB2 
mutated protein were shown, respectively. 
Until day 3, the width of injury was similar in all the three cell lines, suggesting 
that cells were initially affected by UV damage. 
7 days after UV-C irradiation, the distance between two sets was significantly 
reduced in both stably transfected clones, in particular in the mutated one; 
whereas in control cells the migration rate was only 10% (Figure 28 B) 
(Perucca P et al. 2018).  
At 9th day after the removal of culture-inserts, DDB2PCNA- stable clone closed 
entirely the gap; moreover, these cells exhibited not only a higher cell motility 
and growth but they were able to form an unexpected compact multilayer of 
growing cells, evident in both cellular walls in Figure 28 A. 
Indeed, in DDB2Wt stable clone the gap between the two septa was still visible 
and the size of injury line was almost 40% (Figure 28 B), thus the wild-type 
clone confirmed a lower rate of cell proliferation and motility compared to 
the mutated clone.  
As expected, in HEK293 control line, it was observed a reduced cell motility 
as reported in Figure 28 B; indeed, the width of injury line, after 9 days from 

Figure 28 Wound healing assay in HEK293 CTR (C), DDB2Wt and DDB2PCNA- stably 
transfected clones after UV-induced DNA damage. (A) Representative images of cell 
proliferation and motility (×10 magnification objective) after 0, 3, 7 and 9 days from 
the removal of culture-insert. (B) Migration rate quantification. N>3 independent 
experiments; data are mean ± S.D.  
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UV irradiation, was still 80%. 

 

 

4.8 Involvement of DDB2 protein in epithelial to mesenchymal transition 

By clonogenic experiments and wound healing assay it was 
demonstrated that the exogenous expression of DDB2 protein, both wild-
type and, even more, the mutated one, confers proliferation and motility 
advantages in irradiated HEK293 cells, suggesting a possible implication of 
DDB2 in cancer biology. 
 
Starting from this evidence, it was investigated whether DDB2 protein could 
be implicated in EMT process, an important step of cancer progression; to 
this end, E-cadherin and Vimentin protein expression levels were analysed by 
Western blot. E-cadherin and Vimentin proteins are the main epithelial and 
mesenchymal markers, respectively. Furthermore, it was also evaluated the 
presence and activity of MMPs-2 and 9 by gelatin zymography assay. 

 

4.8.1 Evaluation of E-cadherin and Vimentin expression after UV damage 

Briefly, HEK293 CTR cell line and cells stably expressing DDB2Wt or 
DDB2PCNA- protein were irradiated and harvested after several times. For each 
cell line, not irradiated cells were employed as negative control. After protein 
electrophoresis, Western blot analysis using specific E-cadherin and Vimentin 
antibodies was performed. 

 
Figure 29 shows the expression levels of E-cadherin protein starting from 48 
h upon UV damage. The protein expression levels after 4, 8 and 24 h after 
UV-C exposure were analysed, but not significant results were obtained (data 
not shown in the underlying graph). 
The highest E-cadherin expression levels were found in control cell line; 
besides, the production of E-cadherin protein in irradiated control cells 
remained always higher compared to its negative control. In particular, 96 h 
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after UV-damage, the protein production increased almost 3-fold compared 
to its basal level with a very significant statistical value. 
Conversely, cells stably expressing DDB2PCNA- protein had an instable trend 
and the lowest protein levels compared to DDB2Wt cells and, even more, to 
control HEK293 cells. In particular, 96 h after UV-induced DNA damage, E-
cadherin levels in the mutated clone were the lowest that we have ever 
found, representing a very or extremely significant values compared to its 
negative control.  
Furthermore, it was observed that also DDB2Wt stable clone expressed a 
lower E-cadherin protein level than its basal level and, even more, compared 
to irradiated control cells. 
The alteration of E-cadherin expression levels in cells expressing DDB2Wt or, 
even more, DDB2PCNA- protein, suggested that in both clones the cell-cell 
adhesion was decreased upon UV-damage.  
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The results about Vimentin expression levels are illustrated in Figure 30. In 
the underlying graph, only values obtained starting from 48 h after UV 
damage were showed.  
The highest values of the protein were found in DDB2PCNA- clone, although the 
levels were similar to its basal level, suggesting that the trend remained 
almost stable during all the time course in this clone. In particular, starting 
from 48 h until 7 d after UV-induced DNA damage, the protein values were 
statistically significant compared to not irradiated DDB2PCNA- cells. 
On the contrary, in the other two cell lines, it was observed a reduction in 
Vimentin expression; in particular, 7 d after UV irradiation, decrease on 
protein level was evident. 
These results suggest that in DDB2 mutated clone cell-cell adhesion is 
affected.  
 

 

Figure 29 Evaluation of E-cadherin expression levels in HEK293 CTR (blue bar), 
DDB2Wt (green bar) and DDB2PCNA- (red bar) stably transfected clones after UV-
induced DNA damage by Western blot analysis. All the three cell lines were seeded 
(1x106) in 100 mm cell culture dishes, irradiated (10 J/m2 UV-C) and harvested at 
different times (No UV, 4 h, 24 h, 48 h, 72 h, 96 h and 7 d). E-cadherin expression 
was normalized with beta actin. N>3 independent experiments; data are mean ± 
S.D., UV irradiated cells vs. not irradiated cells * p < 0.05, ** p < 0.01, *** p < 0.0001 
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Taking together all the data collected by the Western blot analysis, 
demonstrate that the modification of E-cadherin and Vimentin expression 
level leads to speculate that DDB2Wt and, even more, the mutated stable 
clone might be more prone to activate the EMT process. 

 

4.8.2 Detection of metalloproteinases 2 and 9 by gelatin zymography 

The activation of MMPs is a crucial event in EMT and tumour 
progression since these proteases are responsible for the degradation of 
extracellular matrix (Chambers AF and Matrisian LM 1997; Duffy MJ et al. 
2008). This is a key step in invasion and metastatic processes. In particular, 
MMPs-2 and 9, also known as gelatinases, are involved in cancer progression 
(Gialeli C et al. 2011); for these reasons, it was investigated their activity in 
irradiated HEK293 stable clones using a gelatin zymography assay. 

Figure 30 Evaluation of Vimentin expression levels in HEK293 CTR (blue bar), DDB2Wt 

(green bar) and DDB2PCNA- (red bar) stable transfected clones after UV-induced DNA 
damage by Western blot analysis. All the three cell lines were plated (1x106) in 100 
mm cell culture dishes, then were irradiated (10 J/m2 UV-C) and harvested at 
different times (No UV, 4 h, 24 h, 48 h, 72 h, 96 h and 7 d). Vimentin expression was 
normalized with beta actin. N>3 independent experiments; data are mean ± S.D., UV 
irradiated cells vs. not irradiated cells * p < 0.05, ** p < 0.01, *** p < 0.0001 
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For this purpose, the culture media of irradiated HEK293 CTR, DDB2Wt and 

DDB2PCNA- stable clones were collected at different time recovery after UV-
induced DNA damage. For each cell line, cells not irradiated were employed 
as negative control. After electrophoresis, the gel was incubated with several 
buffers in order to visualized and analysed the digested bands, as reported in 
Materials and Methods section. 
Figure 31 shows some representative images of the results obtained by time 
course experiments: the white bands (corresponding to digested gelatin) at 
62 kDa and 84 kDa confirmed the presence and the activation of MMPs-2 and 
9, respectively. 
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The results of MMPs-2 and 9 digestion and their statistical analysis are 
reported in Figure 32. 

Figure 31 Evaluation of MMPs-2 and 9 activity in HEK293 CTR, DDB2Wt and DDB2PCNA- 
stable clones by gelatin zymography technique after UV-C exposure. Cells culture 
media were harvested at different times (No UV, 4 h, 8 h, 24 h, 48 h, 72 h, 96 h and 
7 d). Supernatants were mixed with sample buffer 2x (ratio 1:1). After protein 
electrophoresis, gel was incubated with Renaturing, Developing, Staining and 
Destaining buffers to visualized gelatin digestion (white stripes) due to MMPs-2 (62 
kDa) and 9 (84 kDa) activation. 
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Figure 32 Statistical analysis of MMPs-9 (A) and 2 (B) activity in HEK293 CTR (blue 
bar), DDB2Wt (green bar) and DDB2PCNA- (red bar) stable clones obtained by gelatin 
zymography experiments. N=3 independent experiments; data are mean ± S.D., UV 
irradiated cells vs. not irradiated cells * p < 0.05, ** p < 0.01, *** p < 0.0001 
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Until 48 h after UV-induced DNA damage, the MMPs activation was quite 
similar in all the three cell lines. In DDB2PCNA- cells, the activity of MMP-9 was 
particularly increased starting from 72 h after UV-damage, and this trend was 
maintained until 7 d. At this time, MMP-9 activity was almost 2-fold higher 
compared to its negative control (Figure 32 A). Statistical analysis confirmed 
that the increase is time dependent and was also significant. 
Instead, both MMPs in the wild-type clone did not show an important 
activation: the values obtained remained almost similar to its basal level. Only 
in the MMP-9 it was found a little increase in its digestion activity 96 h and 7 
d after UV-induced DNA damage, but this was not significant. 
In irradiated control cells, an increase in MMP-2 activity was found; however, 
in all recovery times not significant values were found (Figure 32 B). 

 

 

4.9 Evaluation of migration capability in irradiated HEK293 

Wound healing experiments have demonstrated that irradiated 
HEK293 DDB2Wt and, even more the mutated stable clone, acquired both 
proliferation and migration advantages.  
To dissect whether these cells could be able to migrate, upon UV damage, a 
Boyden chamber assay was performed.  
For this reason, a 48-Well Micro Chemotaxis chamber was assembled with a 
polycarbonate membrane pretreated with collagen type I. HEK293 (CTR, 
DDB2Wt and DDB2PCNA-) were irradiated (10 J/m2), counted and seeded in the 
top wells of the chamber. Not irradiated cells were also used as control. 
Different concentrations of FBS were employed as chemoattractant factor.  
 
Figure 33 showed preliminary results obtained from Boyden chamber assay: 
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Figure 33 Boyden chamber assay in irradiated or not irradiated HEK293 CTR, DDB2Wt 
and DDB2PCNA- stably transfected clones with some FBS concentrations (0, 10 and 
20%) as chemoattractant factors. 105 cells were seeded in each top wells of the 
chamber and, after 24 h of incubation, the polycarbonate membrane was fixed and 
stained. Representative images of cell migration assay (x40 magnification objective). 
N=2 independent experiments 

All the three cell lines not irradiated cells were able to migrate, as 
demonstrated in each upper panels of Figure 33; these data confirm the 
ability of HEK293 cells to migrate under chemoattractant stimulus. In CTR and 
DDB2Wt cells, the migration pattern was correlated with the percentage of 
FBS: more migrated cells were observed when the FBS was more 
concentrated. Instead, in the mutated clone the better concentration of FBS 
for cells was 10%. 
After UV irradiation, many cells in the three samples showed evident signs of 
suffering or death, such as apoptotic bodies or cytoplasmic membrane 
fragmentation. However, cells expressing mutated protein showed the best 
migration ability. Indeed, these cells were more able to migrate, as 
demonstrated by an increased number of cells migrated. Interestingly, these 
cells showed a different behaviour compared to control cell line or DDB2Wt 

clone; in fact, their migration pattern was mainly characterized by a cluster 
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of cells instead of single cell, as demonstrated in the lower panel of DDB2PCNA- 
samples in Figure 33. Furthermore, it seems that the number of migrated 
cells was directly proportional to the concentration of chemoattractant 
factor. 
Cell expressing DDB2Wt protein showed a migration capability although lower 
than mutated one; moreover, only singular cells were found in the 
polycarbonate membrane compared to mutated clone. As it was observed in 
not irradiated cells, also irradiated cells showed a correlation between the 
number of migrated cells and the concentration of FBS.  
Conversely, irradiated control cells were not able to migrate; furthermore, 
the few migrated cells were almost all dead.  

 

 

IV. A novel possible role of DDB2 

 

 

4.10 A novel putative role of DDB2 

To study the possile involvement of DDB2 protein in TC-NER, the other 
subpathway of NER process, the host cell reactivation (HCR) assay and co-
localization analysis were performed. 

 

 

4.10.1 Evaluation of DNA Damage Response to UV lesions 

HCR assay was employed to evaluate the DNA Damage Response (DDR) 
to UV irradiation in HEK293 stable clones (DDB2Wt and DDB2PCNA-). 
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Cells were co-transfected with pmRFP-N2 plasmid and not irradiated pEGFP-
N1 or UV-pEGFP-N1 constructs; then, 16 or 48 h later, samples were 
harvested for “in vivo” cytofluorimetric analysis. 
 
In particular, it was evaluated and compared the capability of HEK293 cells to 
express the GFP starting by UV-GFP plasmid transfection. The production of 
RFP protein was used as a positive control, to ensure that the transfection 
protocol was properly working.  
 
In Figure 34 representative flow cytometry graphs of GFP, derived from 
irradiated pEGFP-N1 construct, and RFP fluorescence are shown (Bassi E et 
al. 2019).  
In the upper panel (Figure 34 A), the cytofluorimetric analysis was carried out 
16 h after co-transfection: no significant differences were found in GFP and 
RPF production comparing both HEK293 DDB2Wt and DDB2PCNA- stable clones, 
suggesting that the inability to interact with PCNA, in DDB2 mutated protein, 
does not influence the protein expression at early stage of the repair process. 

In DDB2Wt stable clone, 48 h after transfection, the ability to repair UV-DNA 
lesions was reactivated; Figure 34 B demonstrates that the encoding of the 
reporter gene was switched on in these cells. On the contrary, GFP expression 
in the mutated clone was remarkable reduced, indicating that its DNA 
damage response was impaired (Figure 34 B).  
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Figure 35 shows the ratio between GFP expression from the irradiated and 
not irradiated pEGFP-N1 constructs after normalization with RFP and 
statistical analysis: in DDB2PCNA- clone the expression of the fusion protein was 
significantly reduced (36.1%) compared to the wild-type stable clone (46.1%), 
48 h after co-transfection (Bassi E et al. 2019). 

Figure 34 Cytofluorimetric “in vivo” monoparametric analysis, representative 
images: mean fluorescence intensity (MFI) of GFP (green) derived from UV-pEGFP-
N1 construct and RFP (red), produced in HEK293 DDB2Wt and DDB2PCNA- stable 
clones, respectively. The analysis was performed after 16 (A) or 48 h (B) from co-
transfection. N=3 independent experiments  
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Figure 35 Ratio between UV-GFP (derived from repaired gene reporter) and GFP 
(encoded from not irradiated plasmid) produced in DDB2Wt (green bar) or DDB2PCNA- 
(burgundy bar) stable clones, after normalization with RFP production, expressed in 
percentage. Cells were harvested 16 or 48 h after co-transfection for the “in vivo” 
FACS analysis. N=3 independent experiments; HEK293 DDB2Wt vs. HEK293 DDB2PCNA- 
16 and 48 h, respectively. Data are mean ± S.D., * p < 0.05 

 

4.10.2 Study of co-localization between DDB2 and Polymerase II proteins 

RNA Polymerase II stalling triggers the activation of repair machinery in 
TC-NER followed UV-DNA lesions. This protein is a damage sensor in 
transcribed DNA region.  
 
Starting by this evidence, we wondered whether DDB2 could play a possible 
role in TC-NER, studying its potential cooperation with Polymerase II by 
immunofluorescence technique. 
 
HeLa cells were transiently transfected with DDB2Wt or DDB2PCNA- constructs 
and locally UV-irradiated. After 30 or 60 min, cells were fixed and 
immunostained for immunofluorescence and confocal microscopies 
observation.  
 
DDB2 wild-type protein was perfectly recruited ad damaged sites and 
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overlapped with RNA Polymerase II already 30 min after DNA damage 
response activation, as shown in the upper panel of Figure 36 (Bassi E et al. 
2019). The kinetic recruitment of both damage sensors, in wild-type stable 
clone, was properly well-timed: the fluorescence intensity of both proteins 
decreased 60 min after locally irradiation.  

Whereas, DDB2 mutated clone showed an impairment localization of both 
proteins to DNA damaged sites 30 and 60 min recovery times (Figure 36, 
lower panel). Cells were locally irradiated, as demonstrated by the foci 
formation, although Polymerase II was widely diffused in HeLa nuclei (Figure 
36, merge).  
 
To study in depth and confirm the co-localization of the above proteins, a 
confocal analysis was performed (Figure 37) (Bassi E et al. 2019). 
In Figure 37 A some representative images of both stable clones are shown.  

Figure 36 Co-localization between DDB2 (green fluorescence) and RNA Polymerase 
II (red fluorescence) analysed by immunofluorescence microscopy. Scale bar 20 µm 
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In DDB2Wt clone the best co-localization was mainly found 30 min after UV-
DNA damage with 52% of positive cells; instead, the mutated clone shown a 
delayed recruitment of both proteins compared to wild-type clone, because 
the better results were obtained only 60 min after DNA damage.  

Figure 37 Co-localization analysis of DDB2 and Polymerase II by confocal microscopy, 
representative images. (A) Recruitment to DNA lesions of Polymerase II (red 
fluorescence) and DDB2Wt or DDB2PCNA- (green fluorescence) 30 or 60 min upon UV 
irradiation, respectively. (B) Pixel intensity representation by confocal analysis. N=3 
independent experiments 
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Moreover, analysing the pixel intensity of green (DDB2) and red (Polymerase 
II) fluorescence, it was not observed a perfect protein overlapping in the 
mutated clone even 1 h upon DNA damage (Figure 37 B). 
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5. Discussion 

UV irradiation is one of the most damaging agents that activates a type 
of DNA damage response (DDR), the Nucleotide Excision Repair (NER). In 
particular, DDB2 protein is responsible to recognize and bind UV-
photolesions - cyclobutane pyrimidine dimers (CPDs) or 6-4 photoproducts 
(6-4 PPs) - leading to the activation of Global Genome-NER (GG-NER) process, 
a subpathway of NER (Wittschieben BØ et al. 2005; Feltes BC and Bonatto D 
2015; Sugasawa K 2016; Paul D et al. 2019).  
DDB2 protein is characterized by the presence of a PCNA protein interacting-
box (PIP-box) in its sequence, which allows the direct interaction with PCNA 
(Cazzalini O et al. 2014). It has been demonstrated that this functional 
interaction is essential for DDB2 proteasome-mediated degradation, after UV 
damage, allowing the recruitment of the following NER factors (Cazzalini O et 
al. 2014).  
In our laboratory, it was previously demonstrated that a mutated DDB2 
(DDB2PCNA-) protein, unable to bind PCNA, showed a delayed kinetic 
recruitment to UV DNA lesions compared to a functional DDB2 (DDB2Wt) 
protein (Perucca P et al. 2018); these data suggest that, in cells expressing 
DDB2PCNA-, the NER process is ineffective. 
 
In the first part of my PhD project, I attempted to investigate the role and 
consequences of DDB2-PCNA association in several steps of GG-NER 
pathway, after UV-C damage. Collected data demonstrated that the inability 
of DDB2 to interact with PCNA affected not only the early phase of NER, but 
also determining delay in the repair process evident until the final step. The 
delayed recruitment of DDB2PCNA- protein to DNA damaged sites at the early 
phase of NER (Perucca P et al. 2018), was confirmed and explained by the 
inefficient DNA binding affinity of mutated DDB2 protein. In fact, by two 
different electrophoretic mobility shift (EMSA) assays, both DDB2 mutated 
recombinant protein than HEK293 DDB2PCNA- cell extract, have highlighted a 
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lower capability to bind UV lesions compared to wild-type samples. In 
particular, the inefficient binding affinity observed in mutated cell extract 
compared to HEK293 DDB2Wt after 30 min from UV damage, was still 
significantly maintained 1 h later.  
As reported in literature (Sugasawa K et al. 1998; Araki M et al. 2001; 
Sugasawa K et al. 2001; Sugasawa K et al. 2002), XPC protein is essential 
during the recognition of the lesion process in GG-NER and its recruitment is 
facilitate by a proper and well-timed DDB2 degradation (Sugasawa K et al. 
2005; Wang QE et al. 2005; El-Mahdy MA et al. 2006); accordingly to this 
evidence, co-localization studies between DDB2 and XPC proteins to UV 
photolesions, have demonstrated that the presence of a DDB2 mutated 
protein caused a delay in the initiation step of NER mechanism compared to 
cells expressing DDB2Wt protein (Perucca P et al. 2018).  
Remarkably, to understand whether DDB2 mutated protein could also altered 
a late NER phase, co-localization analysis between DDB2 and XPG proteins 
and immunoprecipitation experiments were performed (Bassi E et al. 2019). 
My results revealed that both DDB2 proteins were able to interact with XPG; 
in particular, in cells expressing DDB2Wt protein a correct and well-timed co-
localization between two proteins was found 10 min after UV-C exposure. On 
the contrary, DDB2PCNA- protein and the endonuclease were not perfectly 
overlapping even 30 min after UV irradiation. These results suggest that the 
loss of DDB2-PCNA interaction affects also a late phase in NER. Furthermore, 
it has been demonstrated by several papers (Matsuda N et al. 2005; 
Sugasawa K et al. 2005; El-Mahdy MA et al. 2006; Wang QE et al. 2007; Han 
C et al. 2015), that a proper recruitment of late NER factors depends by the 
degradation of DDB2 protein. According to this evidence, the DDB2PCNA- 
protein accumulation observed in cells (Cazzalini O et al. 2014), could justify 
the delayed recruitment of XPG. Moreover, these data are in agreement with 
our recent paper (Perucca P et al. 2018), in which it was demonstrated that 
DDB2PCNA- positive cells were able to remove fewer CPDs molecules 
compared to cells expressing DDB2Wt protein. 
Taking together, my findings have demonstrated that the loss of DDB2-PCNA 
interaction affects the mainly steps of GG-NER: starting by the initial 
recognition step, passing through the incision of the DNA damaged fragment 
and, finally, arriving at the removal of UV photolesions. 
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Although DDB2 contribution is still debated, it is well known that the protein 
is also implicated in cancer biology; in particular, several papers have 
correlated DDB2 expression levels to cancer initiation and progression (Yoon 
T et al. 2005; Ennen M et al. 2013; Roy N et al. 2013). 
Starting from this evidence, in the second and third section of my PhD project, 
we speculated whether DDB2-PCNA association can influence cell behaviour 
after UV-damage induction. 
By a clonogenic assay, it was demonstrated that HEK293 cells stably 
expressing DDB2PCNA- protein, were more able to form colonies with larger 
dimension, compared to DDB2Wt clone or control cell line, highlighting an 
unexpected UV resistance (Perucca P et al. 2018). Moreover, mutated cells 
were more prone to proliferate, as evidenced by the high and significant 
percentage of positive pospho-histone 3 cells, a marker of mitosis, that was 
found. The data is in agreement with a paper published by our research group 
(Perucca P et al. 2015), in which it was demonstrated that the exogenous 
expression of a DDB2 mutated protein induced an increase of positive cells in 
the S-phase with a reduction of cell cycle length; in addition, we also recently 
reported that the uncontrolled cell growth of mutated clone is related to a 
failure in the activation of a correct and well-timed cell cycle checkpoint 
signaling (Perucca P et al. 2018). 
Intriguingly, the analysis of cell morphological features has underlined a 
significant presence of atypical mitoses in the mutated clone and, as reported 
in literature, this characteristic is a typical hallmark frequently observed in 
cancer cells (Batistatou A 2004). 
The morphological analysis of cells as also highlighted an increase cell viability 
of DDB2Wt, and, even more, DDB2PCNA- stable clones after UV damage, 
characterized by a lower number of dead cells compared to control cell line.  
Finally, atypical mitoses were more evident and numerous in the presence of 
DDB2 mutated protein, highlighting an atypical feature.  
In conclusion, these findings have demonstrated that the mutated clone 
could be more prone to proliferate developing numerous colonies with a 
tumour-like phenotype.  
 
Cells expressing DDB2 mutated protein are more prone to proliferate but less 
able to remove UV photolesions. Starting from this evidence, we speculated 
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whether proliferative advantage of these cells could be related not only to an 
increase UV resistance, but also to a possible activation of a DNA damage 
tolerance process, the Translesion DNA Synthesis (TLS).  
For this purpose, I investigated the interaction between DDB2 and 
Polymerase η, which is involved in TLS process, applying different 
approaches.  
It was demonstrated, by confocal analysis, that DDB2PCNA- and Polymerase η 
were in proximity to each other, in fact they perfectly overlapped; these data 
were in agreement with immunoprecipitation experiments in which an 
interaction between the above proteins was significantly evident compared 
to wild-type stable clone and positive control samples. Remarkably, Proximity 
Ligation Assay (PLA) confirmed a strong and direct interaction between 
Polymerase η and DDB2 mutated protein. In addition, this association was 
found in numerous DDB2PCNA- positive cells containing until 40 of positive 
events per cell.  
Interestingly, cells expressing exogenous DDB2 protein, both wild-type and, 
even more, the mutated form, showed a marked cell proliferation and 
motility abilities in wound healing assay. In agreement with previously 
obtained data, in the mutated clone were also evident a dense multilayer of 
growing cells, thus confirming its increase resistance to UV irradiation 
(Perucca P et al. 2018). Moreover, in this clone the expression levels of E-
cadherin and Vimentin proteins, which are considered the main epithelial or 
mesenchymal markers respectively, were modified, suggesting a possible 
influence of DDB2-PCNA interaction in the activation of epithelial to 
mesenchymal transition (EMT) process. Remarkable, it has been reported 
that epithelial tumours characterized by an aggressive phenotype are related 
to a loss of adhesion molecules expression (Strumane K et al. 2004), this 
evidence could explain the uncontrolled growth and motility of our DDB2 
mutated stable clone. These results were strongly correlated to the activation 
of metalloproteinases (MMPs) 2 and, even more MMP-9 that in the mutated 
clone was particularly evident. Both MMPs are essential in EMT process 
(Chambers AF and Matrisian LM 1997; Duffy MJ et al. 2008), specifically 
during the invasion step of cancer cells (Gialeli C et al. 2011), since these 
proteases are responsible to digest extracellular matrix (ECM).  



 

 

 

 

 

 

 

 

 

 
5. Discussion  

 
 108  

 

Furthermore, the migration ability of DDB2PCNA- positive cells was confirmed 
by Boyden chamber assay. In fact, only the irradiated cells expressing DDB2 
mutated protein were able to migrate; unexpectedly, the migration pattern 
of these cells was characterized by a cluster of cells instead of single cell, 
suggesting a possible correlation to an aggressive cell behaviour (Hegerfeldt 
Y et al., 2002; Langbein L et al. 2003; Friedl P 2004) and to an increased 
digestion activity of MMPs (Sabeh F et al. 2004; Wolf K et al. 2007; Wolf K and 
Friedl P 2008).  
Finally, our preliminary results (data not shown) have demonstrated that cells 
expressing DDB2PCNA- protein are characterized not only by an aggressive 
tumour-like phenotype, but they are also more prone to interact with some 
ECM components after UV damage induction.  
 
Then, in the last section of my thesis, I wondered whether the inability of 
DDB2 protein to directly interact with PCNA could also affects the cellular 
repair process of actively transcribed genes.  
For this purpose, a host cell reactivation (HCR) assay was performed. This 
interesting technique is widely used in molecular biology to test the 
capabilities of intact cells - the host - to repair a damaged reporter gene. The 
method can be applied for several conditions; for instance, it was performed 
to investigate the homologous recombination ability of different human 
cancer cell lines (Slebos RJ and Taylor JA 2001); another study has 
demonstrated, by HCR assay, that fibroblasts derived from Cockayne 
syndrome patients differently respond to several damaging agents (Spivak G 
and Hanawalt PC 2006).  
Specifically, in our experiments, we used, as reporter gene, the green 
fluorescent protein (GFP), either UV-damaged or undamaged, the red 
fluorescent protein (RFP) as a positive control of transfection and, the repair 
ability of both HEK293 stable clones (DDB2Wt and DDB2PCNA-) was “in vivo” 
measured by cytofluorimeter, following the experimental design of Burger 
and colleagues (Burger K et al. 2010). Our results have demonstrated that 
wild-type stable clone was able to repair UV damaged GFP, suggesting that in 
these cells the repair machinery was properly working. Conversely, 48 h after 
co-transfection, significant reduction in UV-GFP expression was found in the 
mutated clone, suggesting that the loss of DDB2-PCNA interaction modifies 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Spivak%20G%5BAuthor%5D&cauthor=true&cauthor_uid=16129663
https://www.ncbi.nlm.nih.gov/pubmed/?term=Hanawalt%20PC%5BAuthor%5D&cauthor=true&cauthor_uid=16129663
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the DDR. It seems that the presence of a mutated DDB2 protein delays the 
repair ability in an “in vivo” cellular system, as shown by the defective 
expression of reporter gene. These findings are consistent with our previous 
results obtained by “in vitro” approaches (Perucca P et al. 2018). In our 
experimental model it was possible to focus on the influence of a mutated 
NER factor (DDB2PCNA-) in the intact repair machinery of cells, providing 
evidence that the HCR assay could be a useful tool to dissect and study several 
phases of NER process or other repair pathways.  
Furthermore, we also verify the recruitment and the possible co-localization 
between DDB2 and RNA Polymerase II, which stalled at UV-damaged 
transcribed DNA fragment, triggering the repair machinery activation.  
As expected, a well-timed and perfect co-localization of above proteins was 
found in wild-type stable clone, suggesting a possible cooperation between 
the two damage protein sensors. Moreover, the fluorescence signals of both 
proteins were decreased 60 min after UV irradiation, to allow a proper and 
well-timed recruitment of other proteins involved in the next NER phases. 
Instead, the co-presence of both proteins was not observed in positive 
DDB2PCNA- cells even 1 h after UV irradiation; in addition, as demonstrated by 
confocal analysis, the mutated protein was not perfectly overlapped with 
Polymerase II, leaving to suppose that in the mutated clone the repair process 
is later activated.  
All these findings have demonstrated that a functional DDB2 protein 
cooperates with Polymerase II, implying a possible cooperation between the 
two subpathways of NER - GG-NER and TC-NER - in the early phase; besides 
a possible cooperation between different DDR pathways was reported by 
several studies (Simonelli V et al. 2016; Limpose K et al. 2017). 
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6. Conclusions and perspectives 

In this first part of my PhD thesis, it was demonstrated that the loss of 
DDB2-PCNA interaction, negatively influences not only the early steps of NER 
pathway, but also the late phases of the repair process. 
 
In the second and third section, I focused the attention mainly on the 
phenotype and behaviour of irradiated HEK293 cells. 
In particular, I demonstrated, by wound healing experiments and Boyden 
chamber assay, that the loss of DDB2-PCNA interaction confers to irradiated 
cells, proliferation and motility advantages with an increased resistance to UV 
irradiation. Moreover, in DDB2 mutated stable clone it was found a higher 
number of cells in mitosis with atypical features.  
Furthermore, it seems that DDB2PCNA- is involved in the activation of EMT 
program, since positive DDB2PCNA- cells expressed lower levels of E-cadherin 
related to an increased activity of MMPs, the MMP-9 especially.  
In addition, our recent experiments have demonstrated that the mutated 
DDB2 protein may be involved in the TLS process, since an interaction 
between Polymerase η and DDB2 mutated protein was found. 
 
Moreover, the loss of DDB2-PCNA association appears to be implicated also 
in the repair process of actively transcribed gene. Indeed, when cells stably 
express the wild-type DDB2 protein, a correct repair process of damaged DNA 
and a well-timed co-localization with Polymerase II were found; on the 
contrary, in the presence of the mutated DDB2 protein the repair process of 
damaged reporter gene was affected, as demonstrated by HCR assay. In 
addition, the recruitment of mutated DDB2 protein to damaged sites was not 
perfectly co-localized with Polymerase II.  
 
Altogether, my data suggest that the DDB2-PCNA interaction is crucial to 
perform a correct DNA damage response avoiding the genome instability, 
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involved in tumour onset and progression.  
 
In the next future, to understand the marked cellular proliferation and 
motility in the presence of DDB2PCNA- protein, I will try to investigate what 
molecular signalling pathways are activated after UV damage induction.  
Moreover, I would like to study in depth the possible interaction between 
DDB2 protein, both wild-type and mutated form, with some extracellular 
matrix component employing several approaches.  
Finally, after demonstrating that DDB2 mutated protein directly interacts 
with Polymerase η, it will be interesting to evaluate the possible activation of 
this Polymerase.  
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