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ABSTRACT 
 

Muscle plasticity is a key element in human health and disease. Exercise is an important element 

that leads to many positive adaptations, which improve survival and quality of life. Conversely, 

muscle atrophy is a condition found in many chronic diseases. Atrophy is the outcome of an 

imbalance between the processes that lead to protein synthesis (MPS) and the processes that lead to 

muscle protein breakdown (MPB) resulting in net muscle mass loss. 

 

Chronic administration of glucocorticoids causes steroid myopathy, characterised by muscle 

weakness, fatigue and atrophy. The primary pathogenetic phenomenon causing such condition is 

still unknown. The present study aims to identify the molecular phenomena involved in triggering 

the myopathic process. 

 

To achieve such goal, the adapations of intracellular signalling pathways, which have been 

previously shown to be potentially involved in steroid myopathy, were studied. A single dose of 

dexamethasone (DEX) was administered intravenously to healthy subjects. Muscle biopsies were 

taken from vastus lateralis muscle 1h, 4h and 8h after DEX injection.  Western blot and real time 

PCR were used to assess the adaptations of markers related to the ubiquitine-protesome degradation 

pathway (UPS), protein synthesis, autophagy, muscle metabolism, redox status and mitochondrial 

remodelling. 

 

Results suggest that DEX induced increased gene expression of Atrogin1, mitochondrial 

dysfunction and impairment of oxidative metabolism. The latter phenomenon would cause redox 

imbalance. Redox imbalance could further stimulate muscle MPB. This vicious loop results in an 

increased activation of the autophagy pathway.  The activation of the autophagy process together 

with the activation of the pathway of protein degradation would finally lead to muscle atrophy. 

 

The ability by two-week intake of a mixture of branched chain aminoacids to counteract the effects 

of DEX on intracellular pathways have been also tested. Preliminary data are reported. 
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SKELETAL MUSCLE 
 
The skeletal muscle contributes to the performance of many activities thanks to the characteristics 

of plasticity and dynamism that distinguish it. It is composed by 75% of water, 20% of proteins and 

the remaining 5% by carbohydrates, minerals, inorganic salts and fat. Muscle mass is related to the 

balance between synthesis and protein degradation, influenced in turn by hormonal factors, 

nutritional status, physical activity and pathological condition. Skeletal muscle accounts for 40% of 

the total body weight and contains about 50-75% of the total body proteins, which perform precise 

structural, regulatory and contractile functions contributing to the ability to move and exercise, as 

well as maintaining muscle health. 

 

1. Myogenesis 

Skeletal muscle originates from the paraxial layer of the mesoderm, which leads to the formation of 

the somites. The somites initially have a spherical shape and are composed of a wall of epithelial 

cells and a nucleus of mesenchymal cells. Subsequently, the somites are subdivided into sclerotome, 

from which the rib and vertebral cartilage originates, and dermomiotome. This in turn is formed by 

the dermatome, which generates dermis and brown fat, and the myotome from which the skeletal 

muscles of limbs and trunk originate [1].  

In the dermomiotome there are the pluripotent Progenitor Cells of Muscle (MPC), whose 

delamination is the primary event of the formation of the myotome. The maturation of the myotome 

is a multiphase process that primarily involves the formation of the primary myotome, which 

expands in the subsequent development phase. 

Delamination, that is the subdivision of a cellular lamina into two or more laminae, occurs initially 

starting from the dorso-medial region of the epiaxial dermomiotome and then from the ventrolateral 

portion of the hypoaxial demomiotome. In fact, the myotome is formed through several waves of 

migration in which MPC are located under the dermomiotome [2], express MyoD and Myf5 and 

differentiate in myoblasts. 

Later these cells express Myogenin and differentiate into multinucleated myotubes. Only in the later 

stages of embryonic development, the cells present in the central portion of the dermomiotome 

migrate and become part of the myotome constitution. Some of these cells express MyoD and 

Myf5, they differentiate and they merge into multinucleated myotubes that evolve at times into 

myofibres. The remaining cellular subpopulation, on the other hand, proliferates and constitutes a 

reserve of cells for growth during development or for muscle regeneration in adults [3] (Fig.1). 
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Figure 1: A schematic representation of embryonic and postnatal skeletal myogenesis.DM: dermomyotome. N: 

notocorda. NT: neural tube. SCL: sclerotomo. DML: dorsomedial lip. VLL: ventrolateral lip. SC: satellite cells. 

 

The extracellular signalling molecules that regulate the differentiation of the dermomiotome are 

multiple and among them are Wnts and Shh. In particular, Wnt1 and Wnt3a together with Shh 

determine the myogenic development of the epiaxial region, Wnt7 of the hypo axial region [4]. 

Other factors of myogenic determination are Myf5 and Mrf4, and together with MyoD, induce the 

expression of Myogenin [5]. Finally, Pax3 and Pax7, markers of MPCs, are fundamental 

transcription factors for myogenesis [6]. Pax3 is expressed in somites, is implicated in the early 

stages of myogenesis, induces the expression of Myf, while Pax7 is essential in post-natal 

myogenesis, and is expressed by satellite cells [7]. 
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2. Structure 

From a structural point of view, the skeletal muscle is composed of muscle fibres, a set of 

multinucleated cells formed by the fusion of mononuclear myoblasts [8]. Adult skeletal-muscle 

fibres have a cylindrical structure, a diameter between 10 and 100 μm and can even reach a few 

centimetres in length. The absence of proliferating myoblasts during adult life makes that in case of 

damage of the individual muscle fibres the only restoration function is covered by the so-called 

satellite cells [9], that will undergo differentiation into new muscle cells [10]. However, this 

mechanism (hyperplasia) doesn’t often occur and a great deal of compensation occurs through 

hypertrophy of the surviving muscle cells that will replace the loss of function. Muscles are usually 

linked to bones by bundles of collagen fibres known as tendons, which are located at the end of 

each muscle (Fig. 1) [11]. 

Single muscle fibres are surrounded by a cell membrane named sarcolemma and coated by the 

endomysium, a thin layer of connective tissue. The sarcolemma has a key function in the health 

status of individuals. Many proteins connect the sarcolemma to internal myofilament structures 

such as the actin present in the thin filament. The dysfunction and partial or complete absence of 

these bridging proteins, can in turn result in muscular dysfunction, atrophy and weakness. A 

relevant example of these proteins is the protein Dystrophin which is at the basis of pathologies 

such as Duchenne and Becker muscular dystrophies [12]. 

Single muscle fibres are organized into fascicles surrounded by the perimysius and another more 

robust connective membrane, the epimysium, delimits the whole muscle. Each fibre is composed of 

thousands of myofibrils and contains a large number of myofilaments, which are assembled going 

to form the sarcomere that represents the functional unit of skeletal muscle [13] (Fig. 2).  

 

 

Figure 2: Structure of skeletal muscle. 
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Each sarcomere is a highly organized unit given by the repetition of thin actin filaments and thick 

myosin filaments, that give the characteristic streaked appearance of skeletal muscle [14]. The 

striation observed under the microscope is due to the different refractive indices of the various parts 

of the fibre, ie the light and dark bands [15]. The dark bands are called anisotropic bands (A-bands) 

and cover the entire length of the thick filaments, including the overlapping zones with the thin 

filaments, and are divided in half by the H band which presents the dark line M in the middle. The 

light bands are called isotropic bands (I-bands), are composed only of thin filaments, and are 

divided into two parts by Z discs that delimit the sarcomere. The Z dics connect adjacent 

sarcomeres and performs many other important functions. It is the main anchor point of the thin 

filaments that interact with α-actinine, and of two large proteins, namely Nebulin and Titin. In 

particular, the latter is involved in the regulation of the length of the sarcomere, in the assembly and 

alignment of the filaments. Moreover, the Z discs are involved in the signalling pathways used to 

maintain homeostasis [16] and muscle contraction [17].   

The thin filaments are bound to the Z disc, cross the I-band, extend towards the center of the 

sarcomere and at the level of the A-band overlap the thick filaments. They are composed of two 

helices of F-actin, one right-handed and the other left-handed, which wrap around each other and 

are associated with two other proteins with a regulatory function, namely Troponin and 

Tropomyosin. Furthermore, at both ends these filaments bind tropomodulin and CapZ. F-actin, 

filamentous actin derives from the polymerization of monomers of G-actin, globular, which 

contains the binding sites for myosin. Tropomyosin is a filamentous protein consisting of two 

super-volatile α-helix domains that primarily regulate myosin binding sites interacting with 

troponin. Moreover, by binding with actin, it stabilizes the fine filaments, increasing their rigidity 

and decreasing their fragmentation. Tropomyosin has a fundamental regulatory function for muscle 

contraction because of its position on the thin filament it physically hides the actin binding sites for 

myosin. Troponin is a complex protein consisting of three proteins known as troponin C, troponin I 

and troponin T. The TnC binds Ca2 + with its N-terminal portion and this alters its interaction with 

TnI, which has an inhibitory effect on Actomyosin ATPase. In the inactivated state, TnI binds to 

TnC and TnT, and its C-terminal portion is firmly bound to actin. In the activation state, the TnC 

binds to Ca2 + with consequent reduction of the affinity of the TnI for the actin. The role of TnT is 

still uncertain, on one hand it seems to bind the TnC - TnI dimers to tropomyosin [18], however, on 

the other hand it seems to be involved in the regulation of the sensitivity of actomyosin ATPase to 

Ca2 + [19]. At the center of the sarcomere is located the A-band which contains the thick filaments, 

formed by myosin and the proteins associated with it, which are interdigitated with the thin 

filaments. The globular myosin heads cyclically bind to the actin present in the thin filaments 
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forming transversal bridges, which are then located in the A band, while in the H zone only the 

myosin tails are found. The M line is made up of proteins that bind together the thick filaments. 

Finally, a very important role is played by nebulin, a giant non-elastic protein that not only acts as a 

mold for fine filaments, but also determines their length [20] (Fig.3). 

 

 

 

Figure 3: Structure of a sarcomere. 

 

The thick filaments consist mainly of myosin II [21], the motor protein of the sarcomere that 

converts the energy obtained from the hydrolysis of ATP into mechanical work. It consists of two 

heavy chains (MHC) and four light chains (MLC), two of which are called light regulating chains 

(RLC) and the other two essential light chains (ELC); two light chains are associated with each 

heavy chain. From a functional point of view, within myosin, a globular head and an α-helix tail can 

be distinguished. The N-terminal portion of the heavy chain and the two light chains make up the 

globular head with catalytic activity that is involved in the formation of cross-bridges or transverse 

bridges, also known as S-1 fragment [22]. Instead, the C-terminal portion of the two heavy chains 

constitutes the tail, of which one region contains supervolved domains involved in the 

polymerization of myosin, while the other, known as the S-2 fragment, connects the myosin heads 

with the central region of the thick filament. In the myosin head there is both the actin binding site 

and an ATPasic enzymatic site where the hydrolysis of the ATP energy molecule is linked. In 

addition to the myosin, inside the filament there is often also the titin, a large protein anchored to 



STEROID MYOPATHY 

 

8 

both myosin and Z disc. The titin included in A-band is not extensible and plays a structural role 

serving as a mold during the assembly of thick filaments. The titin present in the I-band has a 

PEVK domain, so called because the aminoacids that compose it are proline, glutamic acid, valine 

and lysine [23] and the N2A segment consisting of four immunoglobulin domains [24]. This portion 

of titin is attributable to the passive elasticity of the sarcomere, or its ability to maintain the 

superimposition of the thick and thin filaments when the non-activated myofibrils are elongated or 

shortened to their resting length [25]. 

Besides these numerous and important proteins in the skeletal muscle sarcoplasm there are several 

organelles involved in the muscular contraction mechanism. The transversal T tubules are 

invocations of the sarcolemma which conduct the nervous action potential within the cell ensuring 

excitation of the entire fibre [26]. The T tubule forms the so-called triad with two cisterns (one on 

each side) of the sarcoplasmic reticulum and which contain Ca2 + ions. The sarcoplasmic reticulum 

is in fact the organelle responsible for the accumulation, release and re-uptake of calcium. The 

action potential that reaches the muscle cell through the alpha motoneurons spreads through the T 

tubules at the triad level. Here, it stimulates the release of calcium ions by the sarcoplasmic 

reticulum tanks. 

The calcium ions bind to the troponin portion C resulting in a modification of the relationship 

between the 3 troponin subunits and the tropomyosin molecule displacement unmasking the actin 

binding sites for myosin and thus making the interaction between the two proteins possible. That is, 

the process of muscle contraction. 

Muscle contraction ends when the calcium ions are reequipped inside the sarcoplasmic reticulum 

tanks. The implementation of these mechanisms is made possible by two proteins present in the 

reticulum, the calcium-containing calsequestrin inside the sarcoplasmic reticulum and the SERCA 

ATPasica pump that allows calcium re-uptake [27]. The cycles of contraction and relaxation are 

related to phases of release and reuptake of Ca2 + from the sarcoplasmic reticulum and both these 

events require energy in the form of ATP [28]. ATP is generated by mitochondria which, unlike 

what was thought in the future, are not separate organelles, but are organized in an ordered array 

capable of producing the energy required in the presence of oxygen [29]. These organelles are 

subject to structural and functional changes related to age and physical exercise. For example, with 

aging, the sarcoplasmic reticulum is fragmented while the number and size of mitochondria increase 

with aerobic training programs [30]. 
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3. Function 

Skeletal muscle supports many functions of the organism, both metabolic and mechanical. As far as 

metabolic functions are concerned, it represents a reserve of carbohydrates and amino acids, 

contributes to the basal energy metabolism, and consumes the largest share of energy substrates and 

oxygen during physical activity. From a mechanical point of view, skeletal muscle, through the 

conversion of chemical energy into mechanical energy, generates the strength and power necessary 

for the performance of social, physical and occupational activities [31]. The ability of skeletal 

muscle to perform these numerous functions is due to the presence of fibres with different 

contractile and metabolic properties. They have been classified on the basis of multiple criteria: the 

color of the fibres, red or white, in relation to the myoglobin content, the degree of fatigue, speed of 

shortening, the speed of release of calcium by the sarcoplasmic reticulum, the prevalence of a 

glycolytic or oxidative metabolism [32], and finally the expression of certain protein isoforms [33]. 

All the fibres innervated by a motoneuron form a motor unit and have the same histological, 

biochemical and contractile characteristics. The predominant classification of the fibres takes into 

account the presence of isoforms of myosin heavy chains (MHCs) and provides the distinction in 

fibres of type 1, 2A, 2X and 2B, the latter present however only in small mammals [34].  

 

3.1.  Skeletal muscle fibre types  

Since the beginning of the studies about the skeletal muscle fibre dynamic properties and types 

from the pioneering work by Close [35], different classifications have been used. These 

classifications are based upon physical contractile properties or metabolic and biochemical 

properties. Fibres have been therefore classified based on the speed of shortening (fast versus slow); 

colour of the muscle fibres which correlates with the myoglobin content (white versus red), degree 

of fatigue ability during sustained activation (fatigable versus fatigue-resistant); contractile 

properties of the motor units in response to electrical stimulation; predominance of specific 

metabolic pathways or enzymes (oxidative versus glycolytic); calcium handling by the sarcoplasmic 

reticulum (slow versus fast), protein isoform expression and enzyme-histochemical stain reaction 

based on ATPase staining techniques or on oxidative enzymes [36] [37]. Understanding the 

physiological diversities of the different muscle fibres has been recognized as nonetheless 

fundamental towards the understanding of the pathological changes induced through different 

disease mechanisms. To this regard and for a better understanding of the history and the current 

standpoint a comprehensive review has been published by Schiaffino and Reggiani (2011) [38]. For 

the purpose of our analysis, we will limit to report only the findings relevant to this thesis. One of 

the first evidences of the heterogeneity of the muscle fibres, through the development of enzyme 
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histochemical procedures for myosin ATPase led to the discovery of type 2A and type 2B fibre 

populations, which are abundant in fast-twitch muscles [39] [40]. Further analysis has been able to 

better determine the biochemical differences of the known muscle fibres and better characterize 

them. This has been performed analysing muscles composed predominantly by one or another fibre 

type and it has been found that both 2A and 2B fibres have high levels of glycolytic enzymes, in 

spite of the different oxidative enzyme complement. This led also to the classification of slow 

oxidative (type 1), fast-twitch oxidative glycolytic (type 2A) and fast-twitch glycolytic (type 2B) 

fibres [41]. The next step was the discovery of the so-called type 2X muscle fibres. This occurred 

thanks to the development of monoclonal antibodies against a third type of Myosin heavy chain 

(MyHC) [42] [43] [44].  A further step has been made through independent studies with improved 

electrophoretic procedures that lead to the discovery of a distinct type 2D MyHC band [45]. These 

two “new” heavy chain isoforms have been confirmed later on thanks to Western Blotting 

techniques [46]. Motor units composed of type 2X fibres have twitch properties (contraction and 

halfrelaxation time) similar to those of 2A and 2B units, and their resistance to fatigue is 

intermediate between that of 2A and 2B units [47]. Most studies regarding shortening velocity have 

been conducted in murine models. In rats, 2X fibres have an intermediate velocity, placing itself 

between the 2A and 2B fibres [48] [49]. A spectrum of shortening velocity has been therefore 

compiled thanks to biochemical and physiological studies of single fibres 1 ↔ 1/2A ↔ 2A ↔ 

2A/2X ↔ 2X ↔ 2X/2B ↔ 2B. In human muscles, MyHC-2B is not detectable, although the 

corresponding MYH4 gene is present in the genome, and fibres typed as 2B based on ATPase 

staining are in fact 2X fibres based on MyHC composition [50]. It is worth noting that fibre 

distribution changes significantly according to the body district and individual muscles and 

compartments. In leg muscles, the most studied muscles of the body, slow type 1 fibres are the most 

abundant in the posterior compartment (Soleus muscle) and type 2 fibres are more abundant in the 

forelimbs (or upper limbs in humans) [51]. A comprehensive background of the differences 

between different mammal’s muscles is shown in Fig.4. 
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Figure 4. Mammalian myosin heavy chain (MHCs) isoforms separated by polyacrylamide gel electrophoresis (SDS-

PAGE). MHC isoforms content in soleus (a), tibialis anterior (b), and single muscle fibres (c) of rat mouse rabbit and 

human. (c): lane 1, rat pure fast 2B fibre, lane 3 rabbit pure slow fibre, lane 4 mouse pure fast 2X fibre, lane 5 mouse 

pure type 2A fibre. Lane 2 shows a mixed rat muscle sample. The histograms on the right report the relative percentage 

(mean ± S.E.M.) of MHC isoforms of soleus and tibialis anterior muscle of four mammalian species. The figure 

indicates that: MHC isoforms can be separated by SDS-PAGE; skeletal muscles have variable MHC isoforms 

distribution. Reproduced from [52].  

 

3.2.  Mechanism of muscle contraction 

One of the peculiarities of skeletal muscle is its ability to generate force and movement through 

excitation-contraction coupling. The initial event that leads to the excitation of a muscle fibre is the 

transmission of the action potential through the neuromuscular junction, ie the synapse between the 

motoneuron and the motor unit. The NMJ includes pre and postsynaptic elements, the vesicles at 

the presynaptic terminal of the motoneuron accumulate in the active zone and contain acetylcholine, 

which activates the cholinergic receptors located on the postsynaptic muscle membrane [53]. At this 

point, the action potential is propagated from the sarcolemma to the T tubules, whose membrane 

contains dependent Na + voltage channels, up to the triad where each tubule T is in contact with the 

two terminal cisterns of the sarcoplasmic reticulum representing a deposit of calcium. 

The depolarization activates the dihydropyridine receptors, DHPR, present on the T tubules, which 

interact with the ryanidine receptors, RyR, located on the sarcoplasmic reticulum tanks. Activated 

DHPRs undergo a conformational change that allows the opening of the RyR and the subsequent 

release of Ca2 + from the sarcoplasmic reticulum to sarcoplasm [54]. In resting conditions, the 
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concentration of calcium ions in the sarcoplasm is low and tropomyosin sterically blocks the 

myosin-binding site. When the concentration of Ca2 + increases the ion binds to the TnC, causing 

the displacement of both the TM, connected to the TnC through the TnT, and the TnI. Both of these 

events cause the actin-binding site to be exposed and sets the stage for the formation of acto-myosin 

bridges (Fig.5). 

 

 

Figure 5: The Contraction cycle. 

 

These cross-bridges are formed when the myosin head binds to actin causing the thin filament to 

move toward the midline of the sarcomere and generating force [55]. This mechanism is explained 

in detail by Huxley's Theory of Flowing Filaments proposed in 1954, so called because in this 

model the filaments of actin and myosin slip one on the other [56]. The molecular events of a 

contractile cycle are exemplary in six stages. Initially in the state of rigor myosin is linked to actin 

until an ATP molecule binds to its binding site on the myosin head causing the transverse bridge to 

break. ATPase in the myosin head catalyses the hydrolysis of ATP to ADP and Pi. At this point, if 

the binding sites for actin are exposed, myosin can bind to actin. Myosin binds a new actin 

molecule through a weak link and subsequently release Pi from the ATP site by activating the 

working stroke, which strengthens the binding with the actin and slides the thin filaments onto the 

thick ones. As a final step, ADP is released and myosin is closely linked to actin in the state of 

rigor, waiting for a new ATP molecule to be able to break the acto-myosin bond and restart the 

cycle [57]. 
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The force generated by each transverse bridge is transmitted to the entire fibre and when it reaches 

the tendons, it generates movement. 

 

3.3.  Skeletal muscle energy production and metabolism 

The skeletal muscle is a tissue with a complex mechanism of energy production and usage.  

Muscle-promoted actions require ATP as a source of energy, but the intracellular reserve of ATP is 

rather limited and in the case of muscle activation, it is bound to run out in seconds [58]. To 

compensate for the lack of ATP the cell is able to activate different pathways that depending on the 

intensity and duration of the activity can be anaerobic or aerobic. Anaerobic metabolism is activated 

during short duration and high intensity activities, and the two main pathways leading to the fast 

production of ATP are the degradation of the creatine phosphate and the glycolysis.  

There are three main pathways that lead to ATP hydrolysis (Fig.6): Creatine kinase (CK) activity, 

glycolysis and oxidative phosphorylation. These mechanisms are represented proportionally 

different between different muscles thanks to the different composition of fast and slow-twitch 

muscle fibres.  

 

3.3.1. Creatine Kinase Pathway 

The creatine kinase pathway uses as a substrate metabolic creatine phosphate (PCr), a high-energy 

molecule presents mainly in fast fibres. Phosphorylation of ADP by creatine phosphate provides a 

large amount of ATP at the onset of contractile activity. When the chemical bond between creatine 

and phosphate is broken, the amount of energy released is the same as when the terminal phosphate 

is cleaved from ATP. The phosphate and the energy that are in this way released thanks to the 

enzymatic reaction of the creatine kinase can be transferred to previously formed ADP to form new 

ATP.  The amount of ATP formation is however limited by the initial concentration of creatine 

phosphate present in the cell. This finding has led to further research. In literature, there are both the 

evidences that creatine monohydrate is one of the most useful supplements for performance 

enhancing, especially in short-lived, bursting muscle activity [59] and the evidences suggesting no 

effect of creatine monohydrate administration on skeletal muscle activity [60]. In human muscles at 

rest, PCr content is slightly higher in fast than slow fibres [61] [62]; moreover, the total activity of 

CK is equal in fast and slow fibres [63] or slightly higher in fast fibres [64] but the greater PCr 

content and the higher activity of CKMM (muscle muscle) suggest that ATP regeneration from PCr 

is likely more effective in fast than in slow fibres. 
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3.3.2. Glycolitic Pathway 

Similarly, to what happens in the case of phosphocreatine, also in the case of anaerobic glycolysis, 

the fibres, which are mainly involved, are the fast fibres [65]. The confirmation of these early 

studies came with the PCR and microarray studies in both human and mouse models [66] [67]. 

From 1 mol of glucose, 2-3 mol ATP are produced. This anaerobic pathway leads to production of 

pyruvate, which is converted to lactate by the enzyme lactate dehydrogenase and decarboxylated to 

acetyl-CoA, which later enters the tricarboxylic acid cycle.   

 

3.3.3. Oxidative Pathway 

The greatest energy production takes place in the mitochondria. The two main precursors for ATP 

resynthesize are pyruvate by pyruvate dehydrogenase enzyme and fatty acids by β-oxidation. Both 

these pathways lead to production of acetyl-CoA. Contrary to the previous two pathways nominated 

in this chapter, the oxidative pathway is mainly represented in the slow/oxidative fibres. The first 

reason for this difference is the substrate availability, namely acetyl-CoA, which is produced in 

larger quantities in slow fibres [68]. The second reason is the density of mitochondria, which in 

humans, is highest in slowest fibres and lowest in fastest fibres [69]. Moreover, the ultrastructure of 

mitochondria is also different in these fibres, presenting more densely packed cristae in the slower 

fibre types [70]. The last factor marking the difference is the concentration of enzymes and their 

activity. Citric acid cycle enzymes and the electron transport chain have double capacity in slow 

twitch muscle fibres compared to fast twitch ones [70]. In slow muscle fibres a particular condition 

of balance is created between consumption and regeneration. This balance is never achieved in fast 

twitch. 

 

Figure 6: Sources of ATP for Muscle Contraction. 
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MUSCLE PLASTICITY 
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An important characteristic of skeletal muscle is plasticity, which is the ability to modulate its 

morpho-functional properties in accordance with the environmental stimuli to which it is subjected 

[71]. The stimuli able to determine these changes are many, for example disuse, hypoxia, changes 

in the diet and above all physical exercise [72]. 

 

1. Adaptations to exercise 

The most studied mechanism capable of stimulating muscle plasticity is physical exercise. The 

changes, induced by physical activity may be different and vary according to the type of exercise: 

resistance training or strength training. Resistance training consists of muscle activation at an 

intensity that increases the ability to sustain a prolonged effort without muscle straining and is 

typical of running, walking, swimming and cycling. The first changes that occur are the increase in 

angiogenesis, which allows to increase the oxygen supply and the expansion of the mitochondrial 

compartment, an increase in the enzymes of the Krebs cycle and the reserves of fatty acids and 

glycogen, to support therefore of an oxidative type of metabolism both in the slow type fibres 

(fibres 1) and in those of the fast type (fibres 2) [73]. Strength training, on the other hand, is aimed 

at increasing the ability of the muscle to develop strength. This result is obtained through the 

induction of a hypertrophy mechanism related to an increase in protein synthesis. Protein synthesis 

appears to be associated with the activation and fusion of satellite cells leading to the formation of 

new myonuclei [74]. Two signalling pathways that regulate muscle mass and hypertrophy have 

been identified [75]. The first pathway is the insulin-like growth factor IGF-1, which binds to its 

tyrosine-kinase receptor IGF1R found on the sarcolemma, which leads to the activation of the 

Insuline Receptor Substrate, IRS1. IRS1 activates the phosphoinositide-3-kinase that activates the 

Akt protein, which is responsible for the activation of mTOR, which regulates factors involved in 

the control of protein synthesis [76]. The second crucial pathway is that of Myostatin which acts as 

a negative regulator of muscle growth [77]. At the skeletal muscle level, Myostatin negatively 

regulates the Akt pathway and interferes with myoblast differentiation [78]. Furthermore, mutations 

in the Myostatin gene or blockade of this signalling pathway lead to muscular hypertrophy. To 

stimulate muscle hypertrophy, it is important to implement exercise with an adequate diet, and a 

recent meta-analysis has shown that a protein diet can lead to an increase in muscle mass [79]. 

Another important consideration concerns the integration with branched chain amino acids, such as 

leucine, isoleucine and valine, which are able to activate the mTOR signalling pathway and protein 

synthesis [80]. Despite the innumerable researches carried out, not all the factors involved in the 

regulation of muscle mass have been discovered, nor the most effective strategies to counteract the 

effects related to the loss of muscle mass, have been identified. These are critical issues because the 
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reduction of muscle mass is a negative prognostic factor in terms of survival as it is inevitably 

associated with a reduced functionality that limits daily activities [81]. It is also crucial to 

understand if the same signalling pathways are involved in different pathologies and if the same 

strategies can be applied to avoid mass loss and improve the quality of life. Despite the fact that 

there is still a lot to discover, routes have been identified of signalling involved in both atrophy and 

muscular hypertrophy. The aforementioned IGF1 regulates muscle growth by increasing protein 

synthesis and by binding to its receptor, IGFR, and the active IRS1 Akt. Akt activates the mTOR 1 

complex (mTORC1) that controls protein synthesis by phosphorylation of the S6 kinase (S6K) and 

the binding protein of eIF4E (4E-BP). The mTOR complex 2 (mTORC2), on the other hand, 

contributes to the activation of Akt. Akt inhibits glycogeno syntasinase 3b (GSK3b) and removes 

inhibition on eIF2B, promoting protein synthesis. In addition, Akt inhibits Forkhead box O (FoXO) 

and decreases the expression of MAFbx and MuRF1 whose targets are eIF3-f and myosin chains, 

respectively. Recently it has been discovered Fbxo40 able to ubiquitinate IRS1 following 

stimulation of IGF1. Myostatin instead acts negatively on muscle mass, through the activation of 

Smad2 and Smad3, which inhibit Akt [76] (Fig. 7). 

 

 

 

 

 



STEROID MYOPATHY 

 

18 

 

Figure 7: Signalling pathways involved in atrophy and hypertrophy [75]. Signalling activated by insulin-like growth 

factor1 (IGF1) positively regulates muscle mass, primarily via induction of protein synthesis, downstream of Akt and 

mTOR. The myostatin/GDF11/activing pathway negatively regulates muscle size, as a result of the phosphorylation of 

SMAD2/3 – primarily by inhibiting Akt. IGF1 acts via the IGF receptor (IGFR), and the insulin receptor substrate 1 

(IRS1), – activating Akt. Akt activates mTOR complex 1 (mTORC1). mTORC1 is a multiprotein complex that requires 

the protein raptor for its function and is acutely inhibited by FKBP/rapamycin. mTORC1 controls protein synthesis by 

phosphorylating S6 kinase 1 (S6K) and eIF4E-binding protein (4E-BP). The multiprotein complex mTORC2 includes 

the protein rictor and contributes to the activation of Akt. Downstream targets of Akt include glycogen synthase kinase 

3b (GSK3b) and Forkhead box O (FOXO) transcription factors. Inhibition of GSK3b by Akt relieves inhibition onto the 

initiation factor eIF2B, and thereby increases protein synthesis. Activation of Akt also inhibits FOXO and decreases 

expression of the E3 ubiquitin ligases Muscle Atrophy Fbox (MAFbx) and Muscle Ring Finger1 (MuRF1). Substrates of 

MAFbx and MuRF1 are the initiation factor eIF3-f and myosin chains, respectively. Another more recently discovered 

E3 ligase is Fbxo40, which can ubiquitinate IRS1 upon IGF1 stimulation, short-circuiting this pathway unless the 

muscle is capable of synthesizing new IGF1, via maintenance of TORC1/protein synthesis signalling. To induce 

hypertrophy, in addition to the classical IGF-1/Akt pathway, more recently the Galpha-i2 pathway has been shown to 

induce hypertrophy via PKC, bypassing Akt. In addition to the PKC pathway downstream of Galpha-i2, there is a PKC-

independent pathway which involves inhibition of HDAC4.The myostatin/TGFb pathway acts via several receptors and 

results in the activation of Smad 2,3. Activation of Smad proteins inhibits the function of Akt and the expression of 

MAFbx and MuRF1 by FOXO transcription factors. The function of Smad 2,3 is also inhibited by mTORC1.  
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1.1. Protein Synthesis signalling pathway 

Several stimuli, such as insulin, nutrients and various growth and survival factors trigger a signalling 

cascade dependent on sequential activation of PI3K, Akt/PKB and mTOR/FRAP kinases (Fig. 8) and 

culminate in skeletal muscle fibre enlargement [82] [83]. 

Akt is activated by phosphorylation within the C-terminus at Ser473 and within the activation loop at 

Thr308 by phospholipid-dependent kinases. Direct phosphorylation of mTOR/FRAP at Ser2448 by 

Akt is a key regulatory event controlling its kinase activity, leading to inactivation of eukaryotic 

initiation factor 4E binding protein 1 (4E-BP1), an inhibitor of translation initiation, and to activation 

of p70 S6 kinases which in turn phosphorylates the 40S ribosomal subunit protein S6 and stimulates 

the translation of 5' oligopyrimidine tract containing mRNAs.  

The inhibition of mTOR signalling results in a reduction in the initiation phase of mRNA translation 

with downregulation of protein synthesis. mTOR consists of two complexes: mTORC1 and 

mTORC2. mTORC1 and mTORC2 trigger distinct pathways that lead, respectively, to increased 

protein synthesis and to inhibited protein degradation. 

 

 

Figure 8: PI3K/Akt pathways. A schematic representation of mammalian target of rapamycin (mTOR) signaling 

pathway for the regulation of skeletal muscle protein synthesis in response to growth factors, nutrition and stress. 

 

 

 



STEROID MYOPATHY 

 

20 

2. Atrophy 

Muscle atrophy, conversely to muscle hypertrophy, is a decrease in muscle fibre size. The reason 

for this is an imbalance between the processes that lead to protein synthesis and the processes that 

lead to muscle breakdown [84]. Muscles are large reservoirs of amino acids that can be used for the 

body’s metabolism and the maintenance of body functions during catabolic periods such as sepsis, 

burns, heart failure, cancer, disuse, aging, glucocorticoid use etc. [85]. Therefore, it has been well 

recognised that maintenance of skeletal muscle mass, through different strategies but mainly 

strength training, plays an important role in health promotion and disease prevention [86]. Many 

pathological conditions characterised by muscle atrophy (sepsis, cachexia, starvation, metabolic 

acidosis, severe insulinopenia, etc.) are associated with an increase in glucocorticoids levels [87], 

suggesting that these hormones could trigger the muscle atrophy observed in these situations. In 

contrast, glucocorticoids do not appear to be required for disuse atrophy [88], but may clearly 

exacerbate the deleterious effects of disuse on skeletal muscle mass [89]. 

For all the previously mentioned evidence, further research is needed in order to understand the 

cellular and molecular pathways involved with atrophy, and much indeed has been done [90] [91].  

  

2.1.  Atrophy-inducing pathways 

The main mechanisms leading to cellular protein degradation are: the ubiquitin proteasome system 

[90], autophagy [85] and oxidative stress [92]. 

 

2.2.  Ubiquitin-Proteasome Degradation Pathway 

The Ubiquitin Proteasome system is the main mechanism responsible for protein degradation and 

seems reasonably correlated with the onset of muscle atrophy. Initially ubiquitin (Ub) forms a 

covalent bond with the target protein to be degraded and in this way, it is recognized by the 

proteasome 26S, a multicatalytic complex that degrades ubiquitinated proteins into small peptides 

[93]. A fundamental role is played by the enzymes E1, which activates the Ub, E2, the protein 

carrying the Ub, and above all E3, the protein ligase. While E1 and E2 prepare the Ub for 

conjugation, E3 recognizes the protein to be degraded and catalyses the transfer of the activated Ub 

from E2 to the target protein [94] (Fig.9). 
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Figure 9: The Ubiquitin Proteasome System. Ubiquitin is activated by the ubiquitin-activating enzyme (E1) and then 

transferred to an ubiquitin-conjugating enzyme (E2). E2 transfers the activated ubiquitin moieties to the protein 

substrate that is bound specifically to a particular ubiquitin ligase (E3). The transfer of ubiquitin takes place either 

directly (in the case of RING finger ligases) or via an additional thiolester intermediate on the ligase (in the case of 

HECT domain ligases). Repeated conjugation of ubiquitin moieties to each other generates a polyubiquitin chain that 

serves as the binding and degradation signal for the 26S proteasome. The protein substrate is degraded, generating 

short peptides and free ubiquitin that can be further reused. Ub, ubiquitin. From Nader Rahimi – Molecular Cancer 

Therapeutics [95]. 

 

 

The human genome encodes more than 650 ubiquitin ligases that are involved in the regulation of 

numerous cellular processes, such as cell cycle, metabolism, oncogenesis and muscle mass [96]. 

Only some of these ligases are muscle specific and are upregulated in muscle loss [97]. Their 

identification dates back to 2001 when two independent research groups, led by Alfred L. Goldberg 

and David J. Glass, through the comparison of gene expression profiles in different experimental 

models of muscle atrophy (diabetes, cancer, denervation ...), identified a group of genes that were 

dysregulated in each of the models used. The genes that were mainly overexpressed are those that 

code for two specific muscle ubiquitin ligases, ie MAFbx or Atrogin1 and MuRF1 [98] [99]. 

Atrogin1 is responsible for the degradation of MyoD, a key transcription factor for myogenesis 

[100], and of eIF3f, activator of protein synthesis [101]. MuRF1 controls the half-life of important 

muscle structural proteins, such as myosin light and heavy chains, and troponin I [102] [103] [104].  
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2.3.  Transcriptional regulators of MAFbx and MuRF1   

Transcriptional regulation of MAFbx and MuRF1 in mice occurs via a large family of conserved 

DNA binding transcription factors that regulate many processes among which: metabolism, cellular 

proliferation, differentiation, apoptosis, and longevity and stress tolerance [105]. These regulators 

are part of the Forkhead box containing protein, O-subclass (FoXO) family of proteins. [106]. The 

transcription activity of these proteins is largely controlled by shuttling between the cytoplasm and 

the nucleus where FoXOs can bind specific DNA sequences. [107] Upregulation and therefore 

increased expression at the nuclear level of FoXO1 member of this family is associated with 

skeletal muscle mass loss [108]. Moreover another member of this family, namely FoXO3, seems to 

be sufficient for a significant reduction in muscle mass [109] [106] and overexpressed FoXO3 is 

linked to upregulation of MAFbx and MuRF1 promotor activities and mRNA expression. It is 

interesting to note that the negative regulation of the positive regulation for atrophic processes 

seems to be performed by a positive regulator of protein synthesis because FoXO transcription 

factors seem to be rendered inactive following phosphorylation thanks to Akt (an important initiator 

of protein synthesis) which results in the removal of the transcription factors from the nucleus 

where they are sequestered in the cytoplasm [110].  

MuRF1 and MAFbx transcriptional regulation is dependent also on H2O2 and local inflammation 

mediators, in particular TNF-alpha, but also linked to the NF-kB pathway of inflammation itself 

[111] [112]. Therefore, numerous pathways can influence the activity of the two main atrogins. 

Consequently, they also act on different pathways with MAFbx being involved more with blocking 

protein synthesis and MuRF1 with enhancing protein degradation (Fig 10) [113]. Among the most 

notable effects, we can cite the binding and degradation of myosin heavy chain (MHC) following 

treatment with Dexamethasone, degradation of myosin-binding protein C and myosin light chain-1 

and 2 during denervation and fasting conditions [114]. 
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Figure 10: Catabolic signalling pathways involved in MAFbx/Atrogin1 and MuRF1 regulation and proposed 

physiological outcomes in skeletal muscle (rodent, R; human, H). A range of diseases, conditions and injuries function 

as catabolic signals to regulate MAFbx/Atrogin1 and/or MuRF1 gene expression potentially via several FoxO, 

myogenin, NF-κB and Oct1/androgen receptor (AR) transcription factors. Numerous inhibitors have had varied success 

in their ability to block MAFbx/Atrogin1 and/or MuRF1 expression and skeletal muscle atrophy. Protein substrates of 

MAFbx/Atrogin1 include eIF3-f, MyoD and myogenin. MuRF1 may target MHC related proteins to affect overall 

protein degradation and atrophy while it is not certain as yet whether other interactors of MuRF1 are degraded to 

affect glucose metabolism. Together, MAFbx/Atrogin1 and MuRF1 are increasingly being implicated in muscle 

remodelling [image from (Foletta et al. 2011)] [113]. 

 

2.4.  Role of autophagy in skeletal muscle atrophy 

Autophagy plays a fundamental role in the replacement of cellular components both in 

physiological conditions and in response to various damaging stimuli [115]. Three different 

autophagy processes, known as macroautophagy, microautophagy and chaperone-mediated 

autophagy (CMA), have been described, and most autophagy processes in the muscle are 

macroautophagic processes [116]. The two final steps of the autophagy process, the destruction and 

recycling of degradation products, take place in lysosomes whatever the type of autophagy is in 

progress. What differentiates them is both the type of degraded product and the way in which it is 
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transported in the lysosomes [117]. Macro-opa-phage degraded soluble receptor and adaptive 

proteins, sequestered within autophagosomes, ie vesicles with a double membrane, are degraded, 

that blend directly with lysosomes [118]. With microautophagism, the cytosolic material is 

incorporated through the invaginations that form directly on the lysosome membrane [119]. CMA 

does not involve the formation of vesicles, but the material to be degraded, linked to a molecular 

chaperone, crosses the lysosomal membrane by means of a translocation complex [120]. Because of 

this particular mechanism, only the proteins can be transported through the CMA, while through the 

process of macroautophagia and microautophagia it is possible to ferry proteins, lipids, glycogen, 

organelles and pathogens [121]. More than 31 genes associated with autophagy (ATG) have been 

identified that encode the Atg proteins involved in the different phases of the autophagy process. 

The formation of the autophagosome (Fig. 11), the vesicle consisting of a double membrane and 

responsible for transporting the material towards the lysosome, is regulated by a protein complex 

containing the phosphatidylinositol-3-kinase (PI3K) of type III and Atg6 also known as Beclin-1 

[122]. The Atg8 protein, known as LC3, plays a crucial role as regards the interaction between the 

autophagic and the ubiquitin system and the removal of protein aggregates is due to LC3, which on 

one hand interacts with p62 and NBR1 receptors and other alloy of specific ubiquitin proteins [123]. 

It has been shown that the selectivity of degradation processes depends on the number of ubiquitin 

molecules linked to the target protein; in particular, the polyubiquitination is associated to the UPS 

pathway, while the monoubiquitination is associated to the autophagy one. In addition, the p62 

receptor plays a primary role by binding to the ubiquitinated protein complexes and facilitates 

degradation by autophagy [124]. The involvement of autophagy in the atrophic process was 

discovered in the 1970s when some experimental evidence suggested that lysosomal degradation 

contributed to protein degradation in denervated muscle [125]. The autophagic process (Fig. 11) is 

activated in different catabolic conditions, such as fasting, denervation, aging, disuse and critical 

pathologies, and thus leads to muscular atrophy. For example, during fasting periods, autophagy 

occurs in particular against fast fibres with a glycolytic metabolism [126]. It would be a mistake, 

however, to consider autophagy as an exclusively damaging process for skeletal muscle. In fact, 

besides regulating cellular homeostasis, it has been shown that the deletion of some ATG genes 

contributes to fibre degeneration and loss of muscle mass characterized by the accumulation of 

abnormal inclusions and mitochondria [127]. 
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Figure 11: Schematic model of autophagy. The class III PtdIns3K complex mediates nucleation of the phagophore 

membrane, enwrapping cytosolic proteins, protein aggregates, and organelles (such as mitochondria). Bcl-2 blocks this 

step by binding and inhibiting Beclin 1, a component in the PtdIns3K complex. Atg12–Atg5- Atg16 and Atg8–PE 

conjugates (LC3-II in mammalians cells) are recruited to the phagophore, together with the transmembrane protein 

Atg9, facilitating the phagophore expansion step. Upon vesicle completion, most of the Atg proteins are dissociated 

from the autophagosome, allowing autophagosome-lysosome fusion and cargo degradation by lysosomal proteases 

[image from (He & Klionsky, 2009)] [128]. 

 

2.5.  Role of mitochondria in muscle mass maintenance 

Alterations in the number and morphology of the mitochondria can have deleterious consequences 

in the maintenance of muscle mass, also because these organelles communicate with the myonuclei 

to help the adaptation of the muscle to the physiological and pathological conditions [129]. 

Mitochondrial DNA (mtDNA) encodes only 1% of the proteins of these organelles, while the 

remaining 99% derives from nuclear DNA, so most of the proteins must be transported within the 

mitochondria [130]. This step is regulated by mitoproteases, or specific proteases that rapidly 

degrade incorrectly bent or oxidized proteins, playing a preventive role against mitochondrial 

damage [131]. The mitochondria are endowed with remarkable plasticity; in fact, they are able to 

modify shape, size and distribution alternating melting events, in which these organelles are 

elongated and interconnected, and fission, which foresees the rupture of the mitochondrial network 

[132]. Fusion facilitates the distribution of metabolites, proteins and mtDNA, allows optimal energy 

management and greater resistance to oxidative stress. Moreover, the fusion between healthy and 
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damaged mitochondria allows maintaining the global functionality of these organelles and avoids 

the accumulation of non-functioning material [133]. This process begins with the link between the 

mitochondria, continues with the fusion of the outer membranes, and ends with the fusion of the 

internal membranes. Mitofusin 1 (MFN1) and Mitofusin 2 (MFN2) are localised in the outer 

membrane and promote both the binding of adjacent mitochondria and fusion of external 

membranes [134]. When MFN2 is phosphorylated by PTEN-induced kinase (PINK1), a protein that 

activates mitochondria autophagy (mitophagia), is bound by the ubiquitin ligase Parkin and this 

causes a blockage of the mitochondrial fusion process [135]. Another protein involved in fusion is 

the optical atrophy 1 protein (OPA1) that regulates the fusion of internal membranes by controlling 

ridge remodelling and assembly of electron transport chains in supercomplexes that increase 

mitochondrial respiration [136].  

Fission, on the other hand, is a process that allows separating the damaged components of the 

mitochondrial network, making it possible to remove them through mitophagy [137]. However, 

excessive fission leads to the formation of isolated mitochondria that are less efficient in the 

production of ATP and are dysfunctional because they consume ATP produced only to maintain 

their membrane potential [138]. This mechanism is driven by Fis-1 and related protein dinamine 1 

(DRP1), that interacts with external membrane components that function as receptors, since DRP1 

does not have hydrophobic binding domains [139]. It is interesting to note that, like the fusion 

promoting proteins, DRP1 is also a substrate for the Parkin protein, which promotes its degradation 

through the UPS [140] (Fig.12).  

 

 

Figure 12: Schematic representation of the mitochondrial fusion and fission with the respective proteins acting in the 

two processes. 



STEROID MYOPATHY 

 

27 

 

When the mitochondria suffer irreversible damage they undergo fission and are subsequently 

degraded by a specific autophagic pathway called mitophagia, which eliminates the damaged 

organelles, is also essential for the maintenance of mitochondrial turnover [141]. The mitofagia is 

controlled by the Bnip3L / Nix, Bnip3, Parkin and PINK1 proteins, and loss-of-function mutations 

of the latter proteins have been found in some inherited recessive forms of Parkinson's disease as 

evidence of how important this mechanism is. In physiological conditions PINK1 enters the inner 

mitochondrial membrane via a dependent voltage mechanism, is cleaved by the PARL, a protein 

located on the mitochondrial membrane, which plays a crucial role in the control of the integrity 

and mitochondrial function [142]. The resulting peptides are degraded through the ubiquitin-

proteasome system [143] and then in the functioning mitochondria the PINK1 levels are very low. 

If, however, the mitochondrial membrane potential is lost, PINK1 accumulates in the outer 

membrane and phosphorylates both the ubiquitinate proteins of the mitochondrial outer membrane 

(OMM) and Parkin [144]. Parkin in turn promotes the addition of new ubiquitin chains to the OMM 

proteins that will be phosphorylated by PINK1. At this point, the phosphorylated ubiquitins are 

linked by the optineurin, NDP52 and p62 adaptive proteins that in turn label the OMM proteins 

with LC3 to activate the mitophagic process [145]. Bnip3 and Bnip3L contain highly conserved 

domains that bind LC3 and GABARAP, a protein involved in the maturation of autophagosome, 

therefore they act as receptors for autophagy that bring mitochondria closer to the autophagosome. 

The plasticity that distinguishes the muscle fibres depends largely on the dynamics of the 

mitochondria [146] and in particular, the breakdown of the balance between fusion and fission is 

related to the altered mitochondrial degradation typical of the atrophic muscle [147]. Fission is 

referred to as one of the processes that causes atrophy in aging or other systemic diseases, while 

fusion represents a defence mechanism against DNA mutations [148]. Experimental evidence 

shows that the genes of autophagy and mitochondrial fragmentation may depend on the activation 

of AMPK (AMP-activated kinase) [149]. AMPK is activated when the AMP / ATP ratio increases 

and causes an increase in protein degradation helping the expression of the Atrogin1 and MuRF1 

genes [150]. Critical for mitochondrial alteration is the binomial AMPK / FoxO3, where FoxO3 

binds Atrogin1 and MuRF1. The coactivator 1 of the peroxisome gamma proliferator (PGC-1α), a 

protein that binds to transcription factors and alters chromatin to promote gene expression, balances 

the action of FoxO3. PGC-1α promotes the expression of genes involved in mitochondrial 

biogenesis and oxidative metabolism such as gluconeogenesis and β-oxidation of fatty acids [151]. 

This cofactor has been shown to play a role in maintaining muscle mass as the values of PGC-1α 

decrease in conditions associated with muscular atrophy [152] [153]. Although PGC-1α is a 
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transcription activator, it is actually able to block protein degradation by inhibiting FoxO3 and 

decreasing the expression of Atrogin1 and MuRF1 [154]. PGC-1α has been described as a master 

regulator of oxidative metabolism that controls metabolic and mitochondrial gene expression [155] 

with consequent improvement in the oxidative capacity, which also implies a greater ROS 

production. In addition, PGC-1α regulates the expression of several antioxidant enzymes such as 

superoxide dismutase 1 and 2 (SOD1 and SOD2) and glutathione peroxidase [156] [157]. 

 

2.6.  Role of oxidative stress: reactive oxygen species’ influence on muscle mass 

The term oxidative stress refers to the damaging effect induced by reactive oxygen species (ROS). 

Oxidative stress is a type of free radicals, ie chemical species characterized by the presence of one 

or more electrons unpaired in the orbitals and therefore they are highly reactive [158]. The most 

common ROS are hydrogen peroxide (H2O2), superoxide anion (O2-), hydroxyl radical (• OH), and 

are physiological products of oxidative metabolism that occurs in the mitochondria, during which 

some electrons escape from the chain of transport [159]. Mitochondria are a production site for lipid 

precursors, nucleic acids and amino acids, and ROS can oxidize them causing mitochondrial 

dysfunction [160]. Moreover, mitochondria have positive effects, for example, they are responsible 

for the defense against infectious agents and for the regulation of cellular signalling pathways [161]. 

Some experimental evidence has shown that the production of ROS influences the expression of 

PGC1α in some models of atrophy. In fact, PGC-1α is decreased in disuse atrophy, denervation, 

aging and diabetes, however it remains unclear whether there is a correlation between 

glucocorticoid-induced atrophy and PGC-1α-mediated oxidative stress [162] [163].  

 

2.7.  Antioxidant enzyme 

Antioxidant enzymes are key elements that help maintain the redox homeostasis, thus preventing 

excessive harmful effects at cellular level. There are three main antioxidant enzymes: superoxide 

dismutase, catalase and glutathione peroxidase. There are some minor enzymes involved with 

maintenance of redox balance; however they are beyond our analytical interest, and therefore will 

not be discussed further here. Superoxide dismutase (SOD) transforms superoxide to hydrogen 

peroxide and oxygen. There are three isoforms of this enzyme with different locations. Of particular 

interest for antioxidant enzyme, seems to be SOD1, which is mainly found in the cytosol, which is 

the site of skeletal muscle where antioxidation capacity mostly occurs [164]. Catalase is an enzyme 

that breaks down hydrogen peroxide to water and oxygen and this enzyme is found mainly in 

muscle fibres with high oxidative capacity [165]. The other main enzyme, glutathione peroxidase is 
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actually made up by a family of enzymes with peroxidase activity, whose substrate is mainly 

hydrogen peroxide. 

 

2.8.  Role of NRF2 in oxidative stress 

The nuclear factor erythroid 2 – related factor (NRF2) is a transcription factor related to the 

transcriptional activation of antioxidant genes. When NRF2 is activated (Fig 13), it mediates and 

induces the expression of an array of enzymes and signalling proteins to regulate drug metabolism, 

antioxidant defence, and oxidant signalling, thereby influencing oxidant physiology and pathology. 

By regulating oxidant levels and oxidant signalling, NRF2 participates in the control of several 

programmed functions, such as autophagy, inflammasome signalling, UPR (unfolded protein 

response), apoptosis, mitochondrial biogenesis, and stem cell regulation [166].  

 

 

Figure 13: A diagrammatic representation of Nrf2 activation by oxidative stress. The acrivation of Nrf2 can lead to 

proteasomal degradation. However, reactive oxygen species cause a change the dissociation of Nrf2. The free form of 

Nrf2 translocates to the nucleus where it interacts with the antioxidant response element (ARE) to increase the 

expression of many antioxidant and detoxifying enzymes. Ub: ubiquitin; Keap1: Kelch-like ECH-associated protein 1; 

Cul3: Cullin3. 
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1. Structure of adrenal steroids 

One of the major roles of the adrenal gland is the synthesis and secretion of steroids. All steroids are 

synthesized from the precursor cholesterol, and share a common basic structure; three cyclohexane 

rings fused to a cyclopentane ring (Fig. 14). The chemical properties of these molecules are 

dependent upon the number of carbons atoms and side groups bonded to the basic four rings 

structure. There are 5 main groups of steroid produced by the adrenal gland, identified by the 

number of carbon atoms they contain. For example, androgens and progestogens both have 19 

carbons; estrogens have 18 carbons; mineralocorticoids and glucocorticoids (GCs) have 21 carbons 

[167]. 

 

Figure 14: Standard structure and nomenclature of adrenal steroids. The numbers designate the carbon atoms and 

letters designate the rings. 

 

2. Steroidogenesis 

All adrenal steroids are synthetized from the precursor cholesterol in the cortex. The predominant 

source of cholesterol is through the uptake of low-density lipoproteins (LDL) from the circulation. 

Adrenal tissue expresses specific cell surface receptors that bind and internalise circulating LDL, by 

receptor-mediated endocytosis. Once in the cytosol, the LDL is hydrolysed, liberating free 

cholesterol. Cholesterol can also be synthesized de novo within the cortex by the enzyme acetyl 

coenzyme A (acetyl-CoA) [167]. 

The three zones of the cortex have distinct enzymic profiles, allowing them to specialise to the 

synthesis of specific steroids. The first step of steroidogenesis takes place in all zones, and involves 

the transport of cholesterol, from the cytosol, to the inner mitochondrial membrane, where it is 

subsequently converted to pregnenolone by cytochrome P450scc. The zona glomerulosa is 

specialized for synthesising mineralocorticoids, due to the high expression of aldosterone synthase 
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(P450c18) in this zone. This enzyme is not expressed in either the zona fasciculata or the zona 

reticularis; consequently, these zones are unable to synthesize aldosterone [167]. By contrast, the 

zona fasciculata and zona reticularis express P450c17, which is absent from the zona glomerulosa. 

This enzyme has both 17α-hydrolylase and 17-20-lyase activity, the latter being dependent upon the 

availability of the flavoprotein cytochrome b5. In the zona fasciculata, the 17α-hydrolylase activity 

of P450c17 predominates, generating 17-OH-pregnenolone, a prerequisite for GC synthesis in this 

zone. In the zona reticularis, the comparatively high expression of cytochrome b5 allows P450c17 to 

carry out 17, 20-lyase activity, which is necessary for the generation of the adrenal androgen 

precursors, dehydroepiandrosterone (DHEA) and androstenedione in this zone (Fig. 15) [167]. 

 

 

Figure 15: The 3 zones of the adrenal cortex have distinct enzymic profiles allowing for the synthesis of specific steroids 

in each zone. 
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3. Glucocorticoids synthesis 

GCs are synthetized in the fasciculata area of the adrenal cortex. The first step of cortisol synthesis is 

the conversion of cholesterol to pregnenolone within the mitochondria, and involves hydroxylation 

and side chain cleavage at C20 by P450scc. Pregnenolone is released from the mitochondria, and 

subsequently converted to 17-OH-progesterone by one of two possible pathways. In the predominant 

pathway, pregnenolone is firstly converted to progesterone in the cytosol by 3β-HSD, by a reaction 

involving isomerisation of the double bond at C5 and dehydrogenation of the 3-OH group. P450c17 

then converts progesterone to 17-OH-progesterone by hydroxylation of C17 using its 17α-

hydroxylase activity, and cleavage of the 2 carbon side chain at C17 using its 17-20-lyase activity. 

The alternative pathway for 17-OH-progesterone synthesis utilises the same enzymes, however, 

P450c17 first converts pregnenolone to 17-OH- pregnenolone, which in turn is converted to 17-OH-

progesterone by the actions of 3β-HSD. The next step in cortisol biosynthesis is the conversion of 

17-OH-progesterone to 11-deoxycortisol by 21-hydroxylase (P450c21), in a reaction that involves 

hydroxylation of C21. The last step takes place in the mitochondria, and involves the conversion of 

11-deoxycortisol to cortisol by the enzyme 11β-hydroxylase (P450c11) [167]. 

 

4. The hypothalamic-pituitary-adrenal axis 

GC secretion is controlled by the hypothalamic-pituitary-adrenal (HPA) axis (Fig. 16). Neural 

stimuli from the brain drive the hypothalamus to secrete corticotrophin-releasing hormone (CRH) 

into the hypophyseal portal vein, where it travels to the anterior pituitary and binds to the type I CRH 

receptors. This in turn stimulates the release of adrenocorticorticotrophic hormone (ACTH) from the 

anterior pituitary into the circulation, where it acts on the adrenal gland increasing cortisol secretion. 

A negative feedback system is in place whereby cortisol can inhibit the release and synthesis of CRH 

and ACTH. 

ACTH secretion varies on a pulsatile basis, with peaks at approximately 30 minutes intervals. 

Furthermore, ACTH levels vary throughout a 24 hours cycle, in a pattern known as the circadian 

rhythm. Consequently, cortisol secretion is also pulsatile, and follows the circadian rhythm with 

levels peaking. 
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Figure 16: The hypothalamic-pituitary-adrenal (HPA) axis. A negative feed back mechanism is in place whereby 

cortisol inhibits its own release. 

 

5. Glucocorticoids action 

In the cytosol, the predominant actions of glucocorticoids are through the glucocorticoid receptor 

(GR), which regulates the transcription of specific genes. The GR is a member of steroid hormone 

receptor family, which are ligand-activated nuclear receptors. All members of this family share a 

common structure, consisting of a C-terminal ligand binding domain, a DNA binding domain and an 

N-terminal transactivation domain [168]. The GR shuttles between the cytoplasm and nucleus upon 

ligand binding. In its unbound form, the GR is localized to the cytosol where it forms a 

heterocomplex with 2 molecules of heat shock protein-90 (hsp90), stoichiometric amounts of heat 

shock protein-70 (hsp70), p23 and immunophilin [169] [170]. The association between GR and 

hsp90 opens the hydrophobic steroid-binding cleft within the GR, allowing access by the steroid 

ligand [171]. Upon steroid binding, the hsp-immunophilin complex dissociates and the liganded GR 

rapidly translocates into the nucleus where it interacts with positive / negative GC responsive 

elements (GREs) within the DNA of gene targets - activating / repressing gene transcription (Fig. 

17) [172] [173]. 
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Figure 17: The mechanism of GC action. Upon steroid binding, the GR dissociates from its protein complex, 

translocates into the nucleus and modulates gene transcription. 

 

Structurally, the GR can be organized into 3 functional domains: an N-terminal domain, a DNA-

binding domain and a ligand-binding domain (Fig. 18) [174]. The DNA-binding domain is 

composed of two highly conserved zinc fingers, located centrally within the amino acid sequence. 

The first zinc finger is primarily responsible for site specific GR-DNA binding, since amino acid 

residues located in this region make specific interactions with bases located within the GRE [175] 

[176]. The second zinc finger functions to stabilize GR-DNA interactions, and plays a role in 

homodimerisation at the GRE [175] [176]. Much of the GRs transcriptional activity is dependant 

upon the AF1 activation region, located within the N-terminal domain. AF1 has been shown to 

associate with a number of transcriptional co-activators and co-repressors including TFIIB, CBP and 

SRC1 [177] [174]. In addition to its role in binding steroid-ligands and chaperones, the ligand-

binding domain also has an activation subdomain (AF2) which, like AF1, binds co-activators and co-

repressors including SRC1 [168] [178]. 

 

Figure 18: The GC receptor domain structure. (DBD= DNA binding domain, LBD= ligand binding domain). 

 

In addition to regulating the transcription of genes, which have GREs, the GR can also regulate 

transcription of genes that do not possess these elements: by interact with, and regulating the activity 
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of transcription factors bound to their own response element [179]. The primary changes in gene 

transcription meditated by the GR can be either positive or negative, and can take place in as little as 

15 minutes following GCs exposure [180]. In addition, the GR can elicit secondary events whereby 

the expression of GC responsive genes can modulate the expression or activity of other proteins. 

The GR gene is subject to alternative splicing at the first and last exons. The most abundant spliced 

variants are GRα and GRβ. GRα has a high affinity for GCs, and is expressed ubiquitously, whereas 

GRβ has a very low affinity for GCs, limited tissue distribution, and may act as a dominant negative 

regulator of GRα activation [168]. Some GC effects have been reported to occur within minutes, and 

are insensitive to transcriptional inhibition [181] [182] [183] [184]. There is evidence that these non-

genomic GC effects are, at least partly, mediated by a membrane bound GR [185] [186]. Reported 

non-genomic effects include activation of the insulin signaling components PI3K and PKB/akt [187]. 

The precise signaling events leading to these effects has not been fully elucidated, but are thought 

involve caveolin-1 [188]. Recently rapid non-genomic effects of CG were showed also in 

mammalian skeletal muscle [189]. 

 

6. Steroid Myopathy 

Steroid myopathy is a condition of skeletal muscle associated with an excess of glucocorticoids 

(GC). In many pathological conditions characterized by muscular atrophy, there is an increase in the 

serum concentration of these hormones, suggesting a potential role in the onset of the atrophic 

process [190]. Agonists of these hormones have been introduced over the years, synthetic 

glucocorticoids, which are used in the treatment of numerous inflammatory, autoimmune and 

allergic diseases. However they are associated with the important side effects that arise mainly in 

long-term treatments that lead to development of the iatrogenic form of Cushing Syndrome, whose 

signs and symptoms are: buffalo hump, round face, obesity, stretch marks, high blood pressure, thin 

fragile skin etc. These side effects include the increase in the concentration of sugars in the blood 

with the possibility of developing diabetes, increased levels of triglycerides and fatty acids, 

decreased calcium absorption that can cause osteoporosis, increased risk of ulcers and gastritis, and 

the establishment of a clinical picture similar to Cushing's Syndrome with abdominal obesity and 

hypertension. The potential effect that is at the heart of this study is however, the myopathic 

condition the use of these hormones can cause. People with steroid myopathy have muscular 

weakness located mainly in the lower limbs with difficulty performing simple daily activities such 

as climbing stairs. The main characteristic of this condition is an atrophy that explains the weakness 

of the muscles. Approximately 50-80% of patients with non-iatrogenic Cushing Syndrome have 

some degree of muscle weakness that affects men more, but the incidence of muscle weakness 
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caused by glucocorticoid administration is not known [191]. Furthermore, the relationship between 

the time of administration and the appearance of the effects has not been outlined, since both acute 

cases after a single administration are recorded, and chronic forms due to a treatment of several 

weeks are recorded. 

Dexamethasone (DEX) is the synthetic steroid whose administration seems to be more related to the 

onset of steroid myopathy [192] (Fig.19). Numerous mechanisms have been described in the 

literature through which corticosteroids would be able to induce atrophy [193], however the primary 

cause of steroid myopathy is not yet known. So far, the skeletal muscle investigations have been 

focused on the established phase of steroid myopathy, a phase that occurs after repeated 

administration of glucocorticoids. In this condition is difficult to identify the phenomenon 

responsible for triggering the myopathic process, ie the one with a primary pathogenic role, and 

differentiating it from those phenomena that could be a consequence of an already stabilized 

atrophic and myopathic process. To understand the pathogenesis of this disease it is necessary to 

analyze the pathways involved with the action of steroids. 

 

 

Figure 19: Chemical structure of Dexamethasone. 
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7. How do steroids exert their atrophic action? 

Although many mechanisms for steroid-induced muscle atrophy have been described, it is not clear 

which of them plays the major role and which is the underlying kinetics. We will now list and 

briefly analyse the main pathways through which steroids exert their actions.  

 

7.1.  Anti-anabolic activity 

Glucocorticoids are able to inhibit the transport of amino acids into muscle cells, limiting protein 

synthesis [194]. The inhibition of protein synthesis by GC mainly results from the inhibition of 

mTORC1, the kinase responsible for the phosphorylation of 4E-BP1 and S6K1 [195]. Repression of 

mTORC1 signaling results in a reduction in the initiation phase of mRNA translation with down-

regulation of protein synthesis. Recent studies indicate that the repression of mTORC1 signaling in 

response to GC is the result of enhanced transcription of REDD1 and Klf15, two repressors of 

mTORC1 signaling [196]. These two genes are direct targets of the GR in the skeletal muscle. By 

inhibiting Rheb, a positive effector of mTORC1, REDD1 represses mTORC1 function, leading to 

decreased phosphorylation of both 4E-BP1 and S6K1. The action of the transcription factor Klf15 is 

more complex. By stimulating the expression of BCAT (branched-chain aminoacid BCAA 

aminotransferase), an enzyme which degrades BCAA, Klf15 accelerates the intracellular catabolism 

of BCAA, which are believed to activate mTOR and therefore inhibits mTOR activity [197]. 

Furthermore, Klf15 cooperates with FoXO1 to upregulate the promoter activity of E3 ubiquitin 

ligases Atrogin1 and MuRF-1. Therefore, overexpression of Klf15 causes myotube atrophy in an 

Akt-independent way. Recent evidence suggests that mTOR signaling could be also inhibited 

directly by FoXO [198]. 

In addition, they negatively regulate insulin and IGF-1 stimulation of 4E-BP1 phosphorylation and 

ribosomal kinase S6 (S6K1), which in turn regulate mRNA translation [199]. Finally, 

dexamethasone positively regulates Myostatin, which has an inhibitory action on muscle growth 

and differentiation [200].  

 

7.1.1.  IGF-1 

GC can also cause muscle atrophy by altering the production of growth factors, which control locally 

the muscle mass development. GC inhibit the production by the muscle of IGF-1 [201] a growth 

factor which stimulates the development of muscle mass by increasing protein synthesis and 

myogenesis while decreasing proteolysis and apoptosis. The action of IGF-1 towards muscle growth 

is probably mediated through the IGF-1 receptor (IGF-1R) as mice lacking IGF-1R in skeletal 

muscle exhibit impaired muscle development characterized by reduction in fibre number and area 
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[202]. For these reasons, decreased muscle IGF-1 has been thought to play a key role in GC-induced 

muscle atrophy. This hypothesis has been recently confirmed both in vitro and in vivo. First, by 

activating the PI3K/Akt/mTOR pathway and blocking nuclear translocation of the transcription 

factor FoXO, IGF-1 down-regulates the different proteolytic systems (lysosomal, proteasomal and 

calpain-dependent) and the expression of Atrogenes such as Atrogin1, MuRF1, Cathepsin-L induced 

by GC in myotubes [203]. Second, IGF-1 suppress the muscle cell atrophy caused by GC in vitro 

[204]. Third, systemic administration [205] or local overexpression of IGF-1 into skeletal muscle 

prevents GC-induced muscle atrophy [206]. Taken together, these results indicate that IGF-1 has a 

dominant effect, overriding GC to turn off catabolism. In addition, they support the key role of 

decreased muscle IGF-1 in the atrophy caused by GC. Therefore, restoration of IGF-1 may provide a 

strategy to reverse the catabolic effects of GC excess. 

 

7.1.2.  Myostatin 

Myostatin, formerly known as growth and differentiation factor 8, a member of the transforming 

growth factor-β superfamily, is an important negative regulator of skeletal muscle mass. Disrupted 

Myostatin gene expression, either by gene targeting in mice or because of naturally occurring 

mutations in cattle, is associated with increased skeletal muscle mass resulting from muscle fibre 

hyperplasia as well as hypertrophy [207]. To investigate the regulation of Myostatin gene expression, 

Ma and collegues [208] cloned and characterized the 5′-upstream regulatory region of the human 

Myostatin gene and found that the promoter contains a number of response elements important for 

muscle growth, including seven putative glucocorticoid response elements (GREs). They also 

demonstrated that dexamethasone dose-dependently increases endogenous myostatin transcription in 

C2C12 myocytes through a glucocorticoid receptor-mediated mechanism. These findings led us to 

postulate that the increase in Myostatin gene expression by glucocorticoids might contribute to the 

pathogenesis of glucocorticoid-induced skeletal muscle atrophy.  

GC stimulate the production by the muscle of Myostatin (Mstn) [208], a growth factor which inhibits 

the muscle mass development by down-regulating the proliferation and differentiation of satellite 

cells [209] as the protein synthesis [210]. The stimulation of Mstn expression is thought to result 

from increased Mstn gene transcription, but also from posttranscriptional mechanisms. Indeed, 

although the mouse Mstn gene promoter contains a GRE motif, the stimulation of Mstn gene 

transcription in response to GC is modest [208]. Furthermore, recent evidence indicates that the 

down regulation of miR-27a by GC may contribute to stabilize the Mstn mRNA [211] [212]. The 

action of Mstn towards skeletal muscle is illustrated in vitro and in vivo [213] where Mstn causes 

muscle atrophy, albeit modest, by reversing the IGF-I/PI3K/Akt hypertrophy pathway. Through 
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inhibition of Akt phosphorylation, Mstn increases the levels of active FoXO, allowing increased 

expression of Atrogenes [214]. Furthermore, transgenic mice, which express Mstn selectively in 

skeletal muscle, have also muscle atrophy [215]. But the most convincing demonstration of the role 

of Mstn on muscle mass is the fact that targeted disruption of Mstn gene expression in mice leads to 

dramatic increase in skeletal muscle mass due to fibre hyperplasia and/or hypertrophy [216]. 

Similarly, Mstn knock-out myotubes are larger than control ones together with an increased 

activation of the Akt/mTOR signaling pathway and protein synthesis [217]. For these reasons, 

increased muscle Mstn has been thought to play a key role in GC-induced muscle atrophy [208], 

[218]. This hypothesis has been recently confirmed in vivo [219] using a model of Mstn knock-out 

(KO) mice. In contrast to wild type mice, Mstn KO mice did not develop a reduction of muscle mass 

nor fibre cross-sectional area after GC treatment. This observation indicates that Mstn is mandatory 

for the atrophic effects of GC on muscle. The mechanism by which Mstn deletion prevents muscle 

atrophy caused by GC is not known. However, the observation that prevention of muscle atrophy by 

Mstn deletion is associated with the blockade of the upregulation of Atrogenes expression and 

proteosomal activity caused by GC suggests this protection of muscle mass results at least in part 

from the inhibition of the muscle proteolysis [219]. Taken together, these results suggest that 

increased Mstn contributes to the atrophic effects of GC on skeletal muscle. Therefore, besides 

stimulating IGF-1, inhibition of Mstn may provide another strategy to reverse the catabolic effects of 

GC excess. The upregulation of Myostatin gene expression in DEX-treated mice could be mediated 

by the glucocorticoid receptor to glucocorticoid responsive elements in Myostatin promoter [220]. 

The role of Mstn in other models of muscle atrophy is still disputed. 

 

7.2.  Catabolic activity 

Glucocorticoids stimulate proteolysis by activating the autophagy system and the ubiquitin-

proteasome system and degradation occurs in both myofibrillar and extracellular matrix [221]. In 

particular, they promote the expression of Atrogin1 and MuRF1, ubiquitin ligases specific muscle, 

or directly increase the ubiquitination rate. Furthermore, MuRF1 is activated by the glucocorticoid 

receptor and FoXO1, while FoXO3 is involved in crosstalking with GCs and Atrogin1 [222] [223]. 

Transcription factors FoXO play a major role in the muscle cell catabolism caused by GC. The role 

of these transcription factors in the GC-induced muscle cell atrophy has been established by 

different observations. First, exposure of myotubes or skeletal muscle to GC increases the FoXO 

gene expression, particularly −1 and −3a [224]. Second, in vitro as well in vivo, FoXO 

overexpression causes muscle cell atrophy, together with activation of several Atrogenes such as 

Atrogin1, MuRF1 and Cathepsin-L [106]. Finally, overexpression of a dominant negative form of 
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FoXO3a prevents muscle cell atrophy together with Atrogin1 induction caused by GC in vitro 

[106]. Among the genes most strongly induced in microarray analyses of muscle atrophy due to a 

variety of wasting diseases are several genes (Atrogin1, MuRF1, Cathepsin-L, PDK4, p21, Gadd45, 

4E-BP1) controlled by the FoXO transcription factors [222]. Taken together, these data indicate that 

increased expression of FoXO by GC activates a gene transcriptional program responsible for 

triggering muscle atrophy. The establishment of an active transcriptional program necessary for the 

induction of muscle atrophy has thus challenged the view that atrophy is a passive adaptation of the 

muscle to a lack of anabolic stimuli. All these observations support the role of FoXO in muscle 

atrophy induced by GC but there is not yet direct in vivo evidence for the requirement of FoXO in 

this muscle atrophy model. 

A very recent paper [225] suggests a primary involvement of MuRF1 activation in steroid 

myopathy. 

The role of autophagy system in the atrophic effect of glucocorticoids, is also suggested by the 

increase in Cathepsin-L muscle expression [226] and by the increased conversion of microtubule-

associated protein 1 light chain 3 (LC3)-I to LC3-II, an indicator of, in glucocorticoid-treated 

animals. In this step the cytosolic form LC3-I is conjugated to the phosphatidylethanolamine to 

form LC3-II. LC3-II binds to the autophagosome membrane, which in turn merges with the 

lysosomes forming the autolisosomes in which the components destined for degradation are 

destroyed by lysosomal hydrolases. At the same time, LC3-II is degraded, for this reason the LC3-II 

turnover is considered a marker of autophagy [227]. 

Finally, some in vivo data also suggest that caspase-3 can be implicated in the myofibrillar proteins 

breakdown induced by glucocorticoids. Indeed, in glucocorticoid-dependent muscle wasting 

models, such as diabetes mellitus and chronic renal failure, caspase-3 activity in muscle is increased 

and inhibition of caspase-3 by Ac-DEVD-CHO, a peptide inhibitor, suppresses the accelerated 

muscle proteolysis [218]. However, the role of glucocorticoids in the induction of caspase-3 activity 

in these models has not yet been explored.  

 

7.2.1. Glucocorticoid-induced mitochondrial dysfunction 

GCs undoubtedly act on mitochondria and oxidative metabolism, but neither the mechanism 

involved nor the degree of mitochondrial dysfunction has yet been elucidated. These steroids 

increase the permeability of the mitochondrial membrane and modulate the expression of 

mitochondrial genes [228]. Furthermore, it has been shown that GCs can have a double effect on 

these organelles; it seems that short-term exposure causes an increase in mitochondrial function, 

whereas chronic exposure leads to a decrease in functionality [229]. It was demonstrated that 
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mitochondrial gene expression could be regulated by GCs via a direct action on mitochondrial DNA 

and oxidative phosphorilation gene or by an indirect effect through interaction with nuclear genes 

[230]. 

Weber et al. [231] treated rats for 3 days with dexamethasone and observed an increased 

mitochondrial biogenesis suggesting a possible involvement of a mithocondrial glucocorticoids 

receptor. On the contrary, other groups as Orzechowski [232] suggest that chronic corticosteroid 

administration reduces mitochondrial oxidative capacity in skeletal muscle. Dumas et al. [233] 

suggest that the dexamethasone induced hypercatabolic state has no effect on mithocondrial energy 

metabolism at least in fast muscle. 

In particular as regards as the action of GCs on PGC-1α Qin at al. [220], [234] found that 7 days of 

DEX treatment leads, in gastrocnemius muscle of rat, to a reduction of PGC-1α protein levels at 

cellular and nuclear level.  The same result was obtained in mice [235]. On the other hand, Menconi 

and collegues [236] showed that PGC-1α mRNA levels were not affected by DEX treatment in mice. 

Orzechowski et al. [232] observed that rats with a glucocorticoid-induced catabolic state show 

synthoms of oxidative stress in soleus. Moreover, Oshima and colleagues [237] aimed to clarify this 

point by using cultured human cell lines and found that corticosteroid may have induced 

overproduction of reactive oxygen species (ROS), resulting in mitochondrial dysfunction and 

cellular apoptosis in differentiated myogenic cells. 

 

8. Other effects of GCs on skeletal muscle fibres 

There are other effects caused by the administration of GCs, even if they appear to have a lower 

role. For example, the excitability of sarcolemma is reduced due to the decrease in the concentration 

of proteins that regulate the transmembrane electrolyte balance [238]. Furthermore, GCs hinder the 

differentiation and recruitment of satellite cells, the stem cells of muscle, through regulation 

positive Myostatin, which results in the impossibility of responding to muscle injuries [239]. 

Moreover, another effect can be seen in the form of myosin loss and rhabdomyolysis, although the 

exact processes that lead to this are not entirely clear [240] [241]. Glucocorticoids have been shown 

to cause atrophy of fast-twitch or type 2 muscle fibers (particularly 2X and 2B) with less or no 

impact observed in type 1 fibers [242]. Therefore, fast-twitch glycolytic muscles (i.e., tibialis 

anterior) are more susceptible than oxidative muscles (i.e., soleus) to glucocorticoid-induced muscle 

atrophy. The mechanism of such fiber specificity could be related to the higher GC receptor 

expression in tibialis anterior than soleus muscles [243].  
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9. Glucocorticoids and Muscular Dystrophy 

Duchenne muscular dystrophy (DMD) is the most prevalent muscular dystrophy occurring in 1 out 

of 3500 live male births, and caused by mutations in the dystrophin gene [244]. DMD is a severe 

progressive neuromuscular disease that presents with gait disturbances between the ages of 3 and 5 

years and loss of ambulation by 12. There are no cures for DMD, but the use of glucocorticoid 

therapy (prednisone, prednisolone and deflazacort) has been shown to improve muscle strength 

during the first 6 months of usage followed by stabilization of the course of the disease for up to 2 

years, after which there is a decline in function. There are many potential adverse effects of 

glucocorticoid therapy including osteoporosis, excessive weight gain, and behavioral abnormalities 

[245]. While there appear to be short-term benefits of glucocorticoid therapy in DMD patients, the 

long-term functional benefits are unclear [244]. A study performed on mdx mice showed that daily 

administration of prednisolone resulted in early (initial 50 days) improvements in muscle strength 

and motor coordination, but these benefits were lost after 100 days of continuous treatment [246]. 

Further, there was a deterioration of cardiac function and increased fibrosis of the heart with 

prolonged glucocorticoid treatment [247]. The mechanism by which glucocorticoids improve muscle 

strength in DMD patients is unknown, and thought to occur through a suppression of inflammation. 

DMD patients often show pseudohypertrophy of muscles, especially in the calf, which is thought to 

be due to inflammation. However, other immunosuppressive drugs, that reduce inflammatory 

infiltrates in the muscles of DMD patients do not improve strength, as seen with prednisone. In mdx 

mice, treatment with prednisolone increases specific force in muscle, while having no affect on 

muscle fibre size [248] [249]. The increase in specific force output is similar to what is seen in 

normal mice and rats given glucocorticoids. The mechanism by which glucocorticoids improve force 

output in DMD and mdx is still unclear and may be distinct from the anti-inflammatory actions of 

the glucocorticoids. 

 

10. Diagnosis and possible treatment 

The diagnosis of steroid myopathy is not simple. Firstly, because there are both endogenous and 

exogenous forms and the latter may be due to treatment with compounds with different 

characteristics and potentials. Furthermore, the affected population is heterogeneous in terms of 

age, previous diseases and pharmacological treatments in progress. 

However, some fixed parameters can be used for diagnosis. Direct methods for measuring muscle 

mass are the kinetics of amino acids and possibly muscle biopsy, even if, from an ethical point of 

view, the latter is difficult to apply [250]. A definitely less invasive method is the use of some 

specific biomarkers, such as the evaluation of serum creatine kinase (CK) levels and urinary 
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creatinine excretion [251]. CK, along with the detection of a decrease in fibre conduction velocity, 

is an early marker of steroid myopathy [252].  

The treatment of steroid myopathy is different depending on the etiology of the disease. The main 

cause of Cushing's syndrome is the excessive production of cortisol by the adrenal glands due to 

neoplasia, so the approach in this case will be of the surgical, chemo and radiotherapy type. If 

hypercortisolism is exogenous, the dosage and type of steroid used can be changed, as well as the 

administration of creatinine to preserve muscle mass [253].  

One substance that has been proposed for the treatment of steroid myopathy is ghrelin deacilata 

(UAG), a product of ghrelin catabolism. Ghrelin is a circulating peptide hormone produced mainly 

by the stomach, which acts on the hypothalamus-pituitary axis induces the secretion of growth 

hormone (GH) by stimulating food intake and adiposity by binding to its GHSR-1 receptor. The 

UAG, which is more abundant in plasma than AG, does not bind to GHSR-1a, and has no GH-

release activity [254]; for this reason, for many years, it has been considered the inactive product of 

ghrelin catabolism. Recently it has been shown that UAG exercises a protective activity against 

muscular atrophy [255]. It has also been shown that both ghrelin and UAG are able to counteract 

the effects of dexamethasone on both cultured myoblasts [256] and on muscle in vivo [225]. 

Since the benefits of this molecule appear to be limited by its short half-life, it is necessary to 

investigate other potential drugs able to act effectively on the mechanisms underlying the 

myopathic condition established by treatment with dexamethasone. 

 

11. GCs and BCAA 

In order to define an effective therapeutic approach for steroid myopathy, a valid alternative could 

be represented by branched chain amino acids (BCAA: leucine, isoleucine and valine) (Fig. 20), 

essential for protein synthesis in humans. Many athletes use BCAA supplements to improve their 

physical performance and increase muscle mass. In addition, amino acids, particularly BCAAs, can 

be used clinically to alleviate the induced muscular atrophy of low-calories diets [257], and prevent 

sarcopenia [258]. It has also been reported that the activity of mitochondrial enzymes and the 

abundance of mRNA gene transcripts encoding mitochondrial proteins are stimulated by a mixture 

of insulin and essential amino acids in young healthy subjects [259]. The above study cites a unique 

role for amino acids in regulating both the mitochondrial function of muscle and protein synthesis. 

BCAAs improve the cellular signaling pathways regulating protein synthesis of skeletal muscle, 

which in turn can also facilitate an improvement in the production of mitochondrial ATP. It has 

been demonstrated that the integration of a mixture of amino acids high in BCAA (~ 60%) 

promotes mitochondrial biogenesis in the heart and musculoskeletal of middle-aged mice, through 
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increases in the gene expression of mitochondrial transcriptional regulators including peroxisome 

activated by the proliferator receptor-Î³ coactivator-1α (PGC1α) [260]. It was also observed that 

chronic BCAA supplementation could increase the activity of mitochondrial function markers 

(citrate synthase and cytochrome c oxidase) in the skeletal muscle of sedentary mice [261]. 

In this study object, the effectiveness of BCAA in counteracting the effects induced by 

dexamethasone will be evaluated. 

 

 

Figure 20: Chemical structure of Essential Branched Chain Amino Acids. 
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The general aim of the study is to identify the pathogenetic mechanisms triggering steroid-induced 

atrophy. In particular, the objective is to identify the intracellular pathways that are activated 

following a single administration of Dexamethasone (DEX) in healthy volunteers. Subsequently, 

the ability to counteract the activation of these pathways by a food supplement based on branched 

chain essential amino acids will be evaluated. The project encompasses a series of studies that have 

used both human and animal models. Two studies in particular have assumed an important position 

in the determination of the experimental protocol of the present study, and therefore will be briefly 

illustrated below. 

 

The first of these was conducted in 2015 by Professor Minetto and co-workers [262], at the 

Department of Human Physiology of the University of Pavia. This work was the first in vivo study 

to describe the effects of one week's administration of dexamethasone in humans by investigating 

the mechanics of individual muscle cells and intracellular molecular aspects. The results of this 

study show that after a week of DEX administration, muscle fibers underwent atrophy, decreased 

their specific force, and decreased their myosin concentration. Although muscle atrophy is a well-

known side effect of a longterm glucocorticoid excess, this study is the first showing that the short-

term administration of glucocorticoids, in doses well within the range used clinically, reduced 

muscle fibre CSA and myosin concentration. 

A reduction in circulating muscle proteins points toward the anti-anabolic effect of glucocorticoids 

as the most plausible explanation for the decrease in CSA and myosin loss. Myosin loss and a 

decrease in acto-myosin interaction could also explain the observed reduction in specific force of 

muscle fibers. 

The obtained results suggest that the glucocorticoid-induced quantitative and qualitative adaptations 

of muscle fibers develops after only a few days of glucocorticoids adminiostration. 

This suggested the possibility of identifying the first pathogenic mechanisms focusing on the early 

stages of the myopathic process.  

 

The second study was conducted in 2018 by Professor Canepari and co-workers [225], at the 

Department of Human Physiology of the University of Pavia. This study on mice model allowed to 

perform a time course to assess the adaptations of the intracellular molecular pathways involved 

with steroid myopathy.  In the study, the activation of the catabolic and anti-anabolic pathways and 

the effect of the co-administration of DEX and unacylated ghrelin (UAG) on muscle atrophy and 

gene expression was assessed. 
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To this end, the animals were sacrificed after 1, 3 or 10 hours from a single intraperitoneal injection 

of dexamethasone (DEX) or DEX+UAG, and the main pathways that control protein degradation, 

protein synthesis, oxidative metabolism and redox system homeostasis were studied. 

The results of this study show that several responses of intracellular signalling pathways occur very 

early (1h) and simultaneously following single DEX administration and fade away in few hours 

(10h). The study also demonstrates that UAG is able to selectively inhibit the early-enhanced 

expression of Murf-1 and counteract muscle atrophy suggesting that the primary phenomenon 

causing steroid myopathy is an early and transient reprogramming of the activity of ubiquitin 

proteasome system (UPS). 

The results also suggest that steroid atrophy could be the result of a cumulative effect of transient 

gene expression activation by daily injections. 

 

On the basis of the informations obtained from the aformentioned works this project was focused on  

the study of the intracellular signaling response in skeletal muscle of healthy human subjects 

following a single glucocorticoids administration order to identify  the biomarkers that could be 

modulated in the clinical practice to counteract steroid induced muscle wasting. 

 

In order to evaluate both the genomic and the proteomic effect of the GCs administration the 

analysis on muscle samples taken at 4h post DEX or placebo administration were inially performed. 

The analysis of gene expression in samples taken at 1h post administration allowed to complete the 

picture about the GCs action. Finally, the analysis of the samples taken at 8h post administration 

allowed to study the duration of the GCs action. 
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1. Subjects  

This study is in compliance with international ethical standards and has been approved by the 

Ethical Commission of the University of Pavia. Each subject participating in this has been provided 

with an informed consent. The study was conducted on 42 volunteers (29 male and 13 female), with 

ages comprised between 20 and 30 years, free from neuromuscular diseases and not involved in 

high performance athletic activities. Enrolled subjects were forbidden to do gym or training sessions 

the day before the biopsy. The day of biopsy, each volunteer was asked to have a light breakfast 

consisting only of a cup of hot tea and three biscuits. 

For each subject, one baseline pre-dexamethasone administration muscle biopsy (PRE) has been 

obtained and used as reference. Seven days after PRE, subjects have been administered randomly 

(in double blind) with a single 8mg dose i.v. of DEX or placebo and muscle biopsy has been 

obtained in a group of subjects (n=37) at 4h post- administration (POST 4h), in another group at 1h 

post administration (n=16) (POST 1h) and in the last group at 8h post- administration (n=20) 

(POST 8h), in separate sessions, at least 1 month apart. The Dexamethasone or placebo 

administration has been performed in facilities provided by Fondazione Salvatore Maugeri IRCCS 

under medical surveillance.  

Eight volunteers have been also administrated with Big One supplement (Professional Dietetics) 

based on essential branched amino acids (L- Leucina, L- Lisina, L- Isoleucina, L- Valina, L- 

Treonina, L- Cistina, L- Istidina, L- Fenilalalina, L- Metionina, L- Tirosina e L- Triptofano) (5.5 g 

twice a day), which lasted for 14 days. On the morning of the 15th day each subject, after the usual 

intravenous administration of DEX, was given another dose of supplement and after 4 hours the 

subject was subjected to a biopsy (n=8) (POST_AA). 

In table A all biopsies performed for each volunteer are summarized.  
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Table A: Summary of all biopsies performed for each volunteer.  

 

 

 

 

 

 



STEROID MYOPATHY 

 

52 

2. Muscle Biopsy  

The bioptic procedure utilizes the Bergstrom method (4 mm external diameter needle biopsy), that 

represents the routine method for the diagnosis of muscular pathologies, providing adequate sample 

size for histologic, ultrastructural, DNA and proteomic analysis [263]. In order to obtain the muscle 

samples, the following steps have been performed:  

- Identification and evaluation of the muscle has been performed with ultrasound  

- Skin disinfection has been performed with iodopovidone or benzalkonium chloride 

- Cutaneous and subcutaneous local anesthesia with 2ml lidocaine has performed in an oval 

area surrounding the site of incision 

- 5 mm long axis skin incision  

- Insertion of the Bergstrom needle (4 mm external diameter) until muscle tissue is met 

- Obtainment of a small muscle tissue quantity (around 50 mg)  

- Wound disinfection and closure with 3M Steri-Strip wound closure strips  

Muscle samples (Fig. 21) have been obtained from the Vastus Lateralis muscle, halfway along the 

line from ASIS to superolateral border of the patella of the dominant lower limb, frozen at -80°C 

and stored for further analysis.  

 

 

Figure 21: Freshly obtained muscle sample from Vastus Lateralis muscle biopsy. 

 

A single dexamethasone administration does not determine any damage at the muscular level. The 

unpleasant feeling following the biopsy will be a pain similar to an intramuscular injection. The 

pain in the biopsy area can persist for around 23 days, but normal daily activities such as walking 

will not be hindered. Intense physical activity is not advisable for 7 days following the biopsy. 
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3. Protein analysis 

3.1.  Sample Preparation: muscle lysis and protein extraction 

Frozen muscles in liquid nitrogen are reduced into powder using a ceramic pestle. The powder thus 

obtained was homogenized with a lysis buffer containing 20mM TRIS-HCl, 1% triton x100, 

10%Glycerol, 150mM NaCl, 5 mM EDTA, 100mM NaF and 2mM NaPPi supplemented with 1X 

inhibitors protease phosphatase (Protease Inhibitor Cocktail, Sigma-Aldrich, St. Louis MO) and 

1mM PMSF. The lysis of tissue was performed on ice for 40 minutes and successively centrifuged 

at 13500 rpm for 20 min in a refrigerated centrifuge at 4°C. The supernatant obtained, has been 

transferred to a clean eppendorf tube and stored at -80°C until ready to use.  

 

3.2.  Protein concetration 

The protein concentration of the lysates was determined using the RC DC™ (reducing agent and 

detergent compatible) protein assay (Bio-Rad). 

RC-DC TM is a colorimetric assay for protein determination in the presence of reducing agents and 

detergents. The RC DC protein assay is based on the Lowry protocol [264], one of the most used 

methods to evaluate protein amount; proteins in the samples are treated with copper and other 

solution to have a final blue colored product which absorbance it is read at 750 nm and it is directly 

proportional to protein concentration according to the law of Lambert-Beer. The absorbance value 

of each sample is read in a spectrophotometer and the concentration protein is calculated by 

interpolating the values on a calibration curve whose points are scalar concentrations of a solution 

of known concentration (1.45 mg/ml) of Bovine serum albumin (BSA). 

 

4. Western Blot (WB) 

Western Blot (WB), or immunoblot, is a widely used technique in molecular biology, invented in 

1979 by Towbin [265], which has the main objective of detecting specific proteins in a tissue 

sample. The total and/or the phosphorylated forms of our proteins of interest (table A) have been 

detected using a protocol already described in the literature. The Western Blot technique was and is 

a simple and rapid allows identifying a particular protein in a mixture of proteins, using the 

recognition by specific antibodies. The mixture of proteins (protein lysate) is first separated 

according to their molecular weight by electrophoresis on a polyacrylamide gel and subsequently 

transferred on a nitrocellulose or Polyvinylidene Fluoride (PVDF) membrane. After it is possible to 
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proceed to the recognition of target protein through the use of a specific antibody; the binding 

protein-antibody can be displayed using different techniques, including colored products or 

chemiluminescence autoradiography. 

 

4.1.  Sample preparation for WB 

Once the protein concentration has been determined, samples are prepared through dilution with 

PBS and Loading solutions. Loading solution consists in Laemmli BUFFER 4X, (8% SDS, 20% 2-

mercaptoehtanol, 40% glycerol, 0.25 M Tris HCl, pH 6.8), previously prepared [266], and 

bromophenol blue traces. The sodium dodecylsulfate (SDS, anionic detergent) present in the buffer 

has a dual function (i) being a detergent, favors the denaturation of proteins in combination with 

other reducing agents (beta-mercaptoethanol (ii) intercalates every two amino acids, giving the 

denatured protein a negative electric charge; proteins can be well resolved in accordance with their 

mass in an electrophoretic run. Glycerol is added to the loading buffer to increase the density of the 

sample to be loaded and hence maintain the sample at the bottom of the well, restricting overflow 

and uneven gel loading. To enable visualization of the migration of proteins it is common to include 

in the loading buffer a small anionic dye molecule (e.g., bromophenol blue). Since the dye is 

anionic and small, it will migrate the fastest of any component in the mixture to be separated and 

provide a migration front to monitor the separation progress. Leamlly buffer 4X was add to volume 

of sample that contain the total amount of proteins to load on gels at the final concentration of 1X. 

The total amount of protein that was load onto gels depend on the expression level of target protein 

that we studied.  

In order to allow complete denaturation of proteins, the samples have been heated in water at 95°C 

for 5min and successively kept 5 minutes at environmental temperature. For specific protein 

determination, the previously obtained mixture of denatured proteins must be separated into single 

constiuents. In order to do so, the gel electrophoresis method has been utilized, with the help of 

minigel precast (BioRad). 
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4.2.  SDS-PAGE 

For all the experiment performed in this study a gradient precast gels purchase from BIORAD (any 

kD) were used. In these gels the percentage of two polymers varies uniformly from 12% (the upper 

part of the gel) to 20% (at the bottom of the same); and they are designed to provide a complete and 

well-resolved molecular weight protein separation pattern (300kD-5kD).  

Protein samples were loaded into wells on the gel cassette, leaving one lane reserved for the marker 

(mixture of proteins with known molecular weight: Preistained Protein Ladder Marker by 

BIORAD) and subjected to electrophoresis (Fig. 22). Electrophoretic run was carried out at constant 

current (100V and max 400 mA), and proteins migrate through the electrophoretic gel for around 90 

minutes,separating themselves into band within each lane, in a running buffer at pH 8.8 (Tris 

25mM, Glycine 192mM, 1% SDS). At the end of the gel run, the electrophoretic apparatus was 

disassembled and the gel recovered for the next step. 

 

Figure 22: SDS-PAGE of protein samples and color burst protein marker. 

 

4.3.  Electroblotting 

In order to make the proteins accessible to antibody detection, they are moved from within the gel 

onto a membrane made of nitrocellulose or polyvinylidene difluoride (PVDF). The primary method 

for transferring the proteins is called electroblotting and uses an electric current to pull proteins 

from the gel into the PVDF or nitrocellulose membrane. The proteins move from within the gel 

onto the membrane maintaining their organization by applying an electric field in which the 

proteins still negatively charged migrate from the negative (gel) to the positive pole (membrane). 

Because of "blotting" process, the proteins are exposed on a thin surface layer for detection (see 
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below). Protein binding is based upon hydrophobic interactions, as well as charged interactions 

between the membrane and protein.  

In this study the proteins resolved by electrophoresis, are transferred (blotting) to a PVDF  

membrane (for poly-ubiquitinated proteins). The transfer was carried out at constant voltage at 

100V and max 400 mA for 120 minutes at 4°C or 35mA overnight (O/N) in a transfer buffer 

containing 25mM Tris, Glycine 192mm, and 20% methanol.  

The effective proteins transfer to PVDF was verified by staining with Ponceau Red (Sigma) in 

acetic acid (0.2% Ponceau Red in 3% acetic acid) for 5 minutes under stirring at room temperature; 

for polyubiquitinated proteins ponceau stained membrane were scanned and images were used for 

next analysis. 

 

4.4.  Target protein detection 

To minimize the background, nonspecific binding sites present on the PVDF membrane are 

saturated with a blocking solution consisting of 5% fat-free milk in TBST 1X (Tris 0.02M, NaCl 

0.05M and 0.1% Tween-20) or 2% BSA depending on the protein studied (Table B) for two hours 

at room temperature with constant shaking. After the blocking phase, the PVDF membrane has been 

washed with TBST for three times 10’ each and has been probed with a primary antibody (mouse or 

rabbit-derived), diluted in a solution of TBST 1X containing 5% BSA or 5% MILK (Table A), for 

the protein of interest and incubated overnight at 4°C on an orbital shaker. After washing and 

rinsing the membrane to remove any unbound primary antibody, a secondary antibody that binds to 

the primary antibody has been added and left to react for 1h at ambient temperature. Subsequently, 

the membrane was washed three times in TBST 1X and then incubated for 60 minutes at room 

temperature in constant agitation, with a secondary antibody diluited suitably goat anti-mouse or 

anti rabbit conjugated with the enzyme HRP (Horseradish Peroxidase). 

After removing the excess of antibody with two washes of 10 minutes each, in TBST 1X and the 

last one in TBS 1X (Tris 0.02M and NaCl 0.05M), the protein of interest has been in this way 

evaluated by enhanced chemiluminescence and the protein content were investigated by the 

brightness-area product (BAP). Proteins detection was made using ECL advance detection system 

(Amersham) which highlights the HPRT substrate with a chemiluminescent reaction. The 

membranes were impressed on photographic films (Kodak) in a dark room, and the exposure time is 

adjusted in relation to the intensity of the emitted signal. 

The PVDF membrane have been successively stripped of all antibodies and unspecific bindings and 

stored for further analysis of proteins in the same MW range.   
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Ab I 

 

MW 

(kDa) 

 

Ab II 

 

Function 

 

pAKT* 

 

1:2000 – BSA 5%  

O/N 

 

60 

 

*Anti-Rabbit 1:10000  

MILK 5% 

 

Protein Synthesis 

 

AKT* 

 

1:2000 – BSA 5%  

O/N 

 

60 

 

*Anti-Rabbit 1:10000  

MILK 5% 

 

Protein Synthesis 

 

pS6Rp* 

 

1:2000 – BSA 5%  

O/N 

 

32 

 

*Anti-Rabbit 1:10000  

MILK 5% 

 

Protein Synthesis 

 

S6Rp* 

 

1:2000 – BSA 5%  

O/N 

 

32 

 

*Anti-Rabbit 1:10000  

MILK 5% 

 

Protein Synthesis 

 

p4E-BP1* 

 

1:2000 – BSA 5%  

O/N 

 

15 - 20 

 

*Anti-Rabbit 1:10000  

MILK 5% 

 

Protein Synthesis 

 

4E-BP1* 

 

1:2000 – BSA 5%  

O/N 

 

15 - 20 

 

*Anti-Rabbit 1:10000  

MILK 5% 

 

Protein Synthesis 

 

CS** 

 

1:2000 – MILK 5%  

O/N 

 

52 

 

*Anti-Rabbit 1:10000  

MILK 5% 

 

Oxidative Metabolism 

 

PGC-1α** 

 

1:1000 – MILK 5%  

O/N 

 

92 

 

*Anti-Rabbit 1:10000  

MILK 5% 

 

Oxidative Metabolism 

 

pAMPK* 

 

1:2000 – BSA 5%  

O/N 

 

62 

 

*Anti-Rabbit 1:10000  

MILK 5% 

 

Oxidative Metabolism 

 

AMPK* 

 

1:2000 – BSA 5%  

O/N 

 

62 

 

*Anti-Rabbit 1:10000  

MILK 5% 

 

Oxidative Metabolism 

 

pACC* 

 

1:2000 – BSA 5%  

O/N 

 

280 

 

*Anti-Rabbit 1:10000  

MILK 5% 

 

Oxidative Metabolism 

 

ACC* 

 

1:2000 – BSA 5%  

O/N 

 

280 

 

*Anti-Rabbit 1:10000  

MILK 5% 

 

Oxidative Metabolism 

 

Phospho – p38 

MAPK** 

 

1:500 – BSA 5%  

O/N 

 

41 

 

*Anti-Rabbit 1:10000  

MILK 5% 

 

Oxidative Metabolism 
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p38 MAPK** 

 

1:500 – BSA 5%  

O/N 

 

41 

 

*Anti-Rabbit 1:10000  

MILK 5% 

 

Oxidative Metabolism 

 

SOD1** 

 

1:1000 – MILK 5%  

O/N 

 

17 

 

*Anti-Rabbit 1:10000  

MILK 5% 

 

Oxidative Stress 

 

Catalase ** 

 

1:2000 – MILK 5%  

O/N 

 

60 

 

*Anti-Rabbit 1:10000  

MILK 5% 

 

Oxidative Stress 

 

OPA1** 

 

1:2000 – MILK 5%  

O/N 

 

112 

 

***Anti-Mouse 1:15000  

MILK 5% 

 

Mitochondrial Fusion 

 

MFN1** 

 

1:1000 – MILK 5%  

O/N 

 

84 

 

***Anti-Mouse 1:15000  

MILK 5% 

 

Mitochondrial Fusion 

 

MFN2** 

 

1:2000 – MILK 5%  

O/N 

 

82 

 

*Anti-Rabbit 1:10000  

MILK 5% 

 

Mitochondrial Fusion 

 

Fis1** 

 

1:2000 – MILK 5%  

O/N 

 

17 

 

*Anti-Rabbit 1:10000  

MILK 5% 

 

Mitochondrial Fission 

 

DRP1* 

 

1:1000 – BSA 5%  

O/N 

 

78 

 

*Anti-Rabbit 1:10000  

MILK 5% 

 

Mitochondrial Fission 

 

LC3B* 

 

1:1000 – MILK 5%  

O/N 

 

16 - 18 

 

*Anti-Rabbit 1:10000  

MILK 5% 

 

Autophagy 

 

p62* 

 

1:2000 – MILK 5%  

O/N 

 

62 

 

*Anti-Rabbit 1:10000  

MILK 5% 

 

Autophagy 

 

Polyubiquitinated 

proteins**** 

 

1:2500 – BSA 2%  

O/N 

 

------ 

 

***Anti-Mouse 1:15000  

MILK 5% 

 

Autophagy 

 

Table B: Antibodies list used.  

*Antibody’s company: Cell Signalling 

**Antibody’s company: Abcam 

***Antibody’s company: Dako 

****Antibody’s company: Enzo Life 

 

 

 



STEROID MYOPATHY 

 

59 

4.5.  Data analysis  

The bands present on the photographic film were quantified. 

The data were expressed as an integrated density (units of optical density per volume of the band). 

The target protein levels were then normalized with respect to the amount of the housekeeping 

protein, the actin by Ponceau staining. The data are expressed as the ratio between the target protein 

and the housekeeping.  

 

5. Gene expression analysis 

5.1.  RNA extraction from muscle tissue 

The muscle tissues still frozen, were pulverized using a sterile pestle and mortar previously treated 

with RNase Zap to remove RNAse presence. Approximately 20 mg of powder of each sample was 

used to RNA extraction with SV Total RNA Isolation System (Promega, Italia). 

The successful isolation of intact RNA requires four essential steps:  

- effective disruption of cells or tissue, 

- denaturation of nucleoprotein complexes, 

- inactivation of endogenous ribonuclease (RNase) activity, 

- removal of contaminating DNA and proteins.  

The most important step is the immediate inactivation of endogenous RNases that are released from 

membrane-bound organelles upon cell disruption. The SV Total RNA Isolation System combines 

the disruptive and protective properties of guanidine thiocyanate (GTC) and β-mercaptoethanol to 

inactivate the ribonucleases present in cell extracts (2). GTC, in association with SDS, acts to 

disrupt nucleoprotein complexes, allowing the RNA to be released into solution and isolated free of 

protein. 

Dilution of cell extracts in the presence of high concentrations of GTC causes selective precipitation 

of cellular proteins to occur, while the RNA remains in solution. After centrifugation to clear the 

lysate of precipitated proteins and cellular debris, the RNA is selectively precipitated with ethanol 

and bound to the silica surface of the glass fibres found in the Spin Basket. By effectively clearing 

the lysate of precipitated proteins and cellular debris, these cleared lysates may be bound to the Spin 

Baskets by a centrifugation filtration method. The binding reaction occurs rapidly due to the 

disruption of water molecules by the chaotropic salts, thus favoring adsorption of nucleic acids to 

the silica. 

RNase-Free DNase I is applied directly to the silica membrane to digest contaminating genomic 

DNA. The bound total RNA is further purified from contaminating salts, proteins and cellular 

impurities by simple washing steps. Finally, the total RNA is eluted from the membrane by the 
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addition of Nuclease-Free Water. This procedure yields an essentially pure fraction of total RNA 

after only a single round of purification without organic extractions or precipitations.  

 

5.2.  RNA quantification 

Nucleic acids absorb ultraviolet light in a specific pattern. In a spectrophotometer, a sample is 

exposed to ultraviolet light at 260 nm, and a photo-detector measures the light that passes through 

the sample. The more light absorbed by the sample, the higher the nucleic acid concentration in the 

sample. Using the Beer Lambert Law the amount of light absorbed was related to the concentration 

of RNA in samples. It has ben evaluated also RNA from proteins contaminants by checking the 

ratio of the absorbance at 260 and 280nm (A 260/280) that for pure RNA A260/280 is ~2. 

 

5.3.  cDNA synthesis 

In order to measure messenger RNA (mRNA), it is necessary using a Reverse transcriptase enzyme 

to convert mRNA into complementary DNA (cDNA) which will be then amplified by Real-Time 

PCR . 

In this study 300 ng of RNA for each sample were reverse transcribed using the Superscript III 

enzyme (Invitrogen) with this protocol: at 300 ng of RNA of each sample, were addicted 1µl of 

random primers, 1µl Deoxyribonucleotides (10mM each dATP, dGTP, dCTP and dTTP at neutral 

pH), and RNAse free water to reach the final volume of 13.5 µl. The mix obtained was heat at 65°C 

for 5 minutes and incubate on ice for at least 1 minute. 

Then 4 μl of 5X First-Strand Buffer, 1 μl of 0.1 M DTT, 1 μl of RNaseOUT™ Recombinant RNase 

Inhibitor (40 units/μl) and 0.5 μl of SuperScript™ III RT (200 units/μl) were addicted. The mix was 

incubated at 25°C for 5 minutes, at 50°C for 60 minutes. Increase the reaction temperature to 70°C 

for 15 min to inactivate reaction. 

 

5.4.  Primer design 

Primers were designed using Primer 3 software (Table C). Each primer sequence was test to not 

have tendency to form secondary structure using Oligonucleotides proprieties calculator (on-line 

free) that provides a user web interface for calculating the physical properties of oligonucelotides.  

Primers were purchase from SIGMA ALDRICH company, resuspended in sterile water at the final 

concentration of 100µM and stored at -20°C. 
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Table C: primers used for gene expression experiments.  

*MuRF2 Taqman gene expression assay (Applied Biosystems). 

 

 

 

 

 

 

 

 Forward Primer Reverse Primer 

MuRF1  

CTTCCCTTCTGTGGACTCTTCCT 

 

 

CCTGAGAGCCATTGACTTTGG 

MuRF2*  

---------- 

 

---------- 

MuRF3  

CAACCTGGAGAAGCAGCTCA 

 

TGCCATAGAGGATTCGAGGC 

Atrogin1  

GCAGCTGAACAACATTCAGATCAC 

 

CAGCCTCTGCATGATGTTCAGT 

FoXO1  

AAGAGCGTGCCCTACTTCAA 

 

CTGTTGTTGTCCATGGATGC 

FoXO3a  

TGTTGGTTTGAACGTGGGGA 

 

GTTTGAGGGTCTGCTTTGCC 

Myostatin  

TGGCTCAAACAACCTGAATCC 

 

TTCAGTTATCACTTACCAGCCCA 

Klf15  

GGGAGAGAGGTGAAAAGCGT 

 

TTGTCTGGGAAACCGGAGGA 

CS  

TCTGGCCTGCTCCTTAGGTA 

 

TGACACACCTACTTTGCAGGAA 

PGC-1α  

CAGGATTTCATCTGAGTGTGGA 

 

GCGAGAGAGAAAGGAAAAGAACAA 

NRF2  

CACAGAAGACCCCAACCAGT 

 

CTGTGCTTTCAGGGTGGTTT 

OPA1  

AGCCTCGCAATTTTTGG 

 

AGCCGATCCTAGTATGAGATAGC 

MFN1  

ATGACCTGGTGTTAGTAGACAGT 

 

AGACATCAGCATCTAGGCAAAAC 

MFN2  

CACATGGAGCGTTGTACCAG 

 

TTGAGCACCTCCTTAGCAGAC 

Fis1  

GTCCAAGAGCACGCAGTTTG 

 

ATGCCTTTACGGATGTCATCATT 

DRP1  

AAGAACCAACCACAGGCAAC 

 

GTTCACGGCATGACCTTTTT 

p62  

GCTTCCAGGCGCACTACC 

 

CATCCTCACGTAGGACATGG 

Beclin1  

TGGAAGGGTCTAAGACGT 

 

 

GGCTGTGGTAAGTAATGGA 

β 2-microglobulin  

GCTGTGCTCGCGCTACTCTCTCT 

 

TCTGCTGGATGACGTGAGTAAACCT 
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5.5.  Primer efficiency validation 

In principle, amplicons double at each cycle. The actual production, however, depends of the 

efficacy of each amplification cycle.  

The traditional method for determining amplification efficiency requires a calibration curve, where 

a sample is serially dilute at known concentration.  

For each primer basis a calibration curves with serial diluition (10-1) was performed; Ct values 

obtained were blotted versus the initial amounts of input material on a semi-log10 plot, and the data 

were fit to a straight line. It is possible to determine the efficiency for each reaction, by calculating 

the slopes of the standard curves generated by using the equations: 

Exponential Amplification: 

 

or, Reaction Efficiency: 

 

Optimal values for slope and efficiency are -3.33 and 1, respectively. These calculations are usually 

automatically determined by the software and provided with the results. In this project only primers 

that have an efficiency higher that 0.9 were accepted.  

Specificity of each reaction as well as primers dimers possibly formation should be ascertained after 

completion of the amplification protocol, by performing the Melting procedure (58-99°C; 1°C/5 

sec). When most of the fluorescent signal originates from the product of interest during the 

amplification procedure, a single melting peak is obtained. In contrast, should there be amplification 

of secondary products, of primer dimers or of non-specific amplicons, several melting peaks are 

generated at temperatures lower than the melting point expected for the product of interest, 

precluding any quantitative assessment. In this study all primers pairs that showed a good 

efficiency, but an atypical melting curve were not used for real time experiment. 
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6. Real Time PCR 

Real Time PCR allows reaction to be characterized by the point in time during cycling when 

amplification of a PCR products achieves a fixed level of fluorescence, rather than the amount of 

PCR product accumulated after a fixed number of cycle (PCR end-point). 

An amplification plot graphically displays the fluorescence detected over the number of cycles that 

were performed. 

As shown in Fig. 23, the initial cycle of PCR, there is no significant change in fluorescence signal. 

This predefined range of PCR cycles is called baseline. 

The software generate a baseline subtracted amplification plot by calculating a mathematical trend 

using Rn values (the fluorescence emission intensity of the reporter dye) corresponding to the 

baseline cycles. Then an algorithm searches for the point on the amplification plot at which the 

delta Rn (Rn-baseline) crosses the treashold. The fractional cycle at which this occurs is defined as 

the Ct. 

 

Figure 23: Model of a single sample amplification plot. In the baseline no significant change in fluorescence signal 

(Rn) occurs, in the exponential phase fluoresce signal increase in proportional to amplification products increase 

formation. The threshold line is the level of fluorescence signal automatically determine by the sequence detection 

system software and it is set to be above the baseline and sufficiently low to be within the exponential growth region of 

the amplification curve. The Ct cycle is the number of amplification Cycle when the fluorescence signal cross the 

threashold.  
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In this project Real-time PCR experiments were performed using AB 7500 instrument (Applied 

Byosistems); and PCR reactions were performed using SYBR Green chemistry (Power Syber 

Green, Applied Byosistems). Real time PCR reaction was composed by: 

- 3µl cDNA 

- 12µl sterile water 

- 15µl Power Syber Green 

- 0,6µl Primers (mix of Forword and Reverse)  

Each sample was run in duplicate. PCR thermal cycler parameters were set to standard mode of 10 

minute incubation at 95°C before repeat cycling at 95°C for 15 seconds, followed by a 1 minute 

incubation at 60°C for 40 cycles; were fluorescence signal was detected. 

To compensate for variations in input RNA amounts and efficiency of reverse transcription, 18s 

ribosomal rRNA was quantified and all results were normalized to these values.  

 

6.1.   RT-PCR analysis 

The ΔCT was calculated by subtracting the CT of baseline biopsy (PRE) to CT of post DEX or 

placebo administration (POST) for both target gens and housekeeping gene; after this the value 

obtained from target genes were normalized on the value obtained from housekeeping gene. 

 

7. Statistical analysis 

Quantitive variables were expressed as means ± SD. Differences across groups were assessd by 

applying a Paired t-test. The threshold for statistical significance (alfa) was set at 5% (p<0,05). 
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1. Gene expression at 4h post-administration 

1.1. Anti-anabolic pathway 

     4h Post – DEX administration                                      4h Post – Placebo administration 
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Figure 24: Analysis of the anti-anabolic marker Myostatin at 4h Post – DEX (on the left) and Placebo (on the right) 

administration. 

 

Myostatin is utilized as a putative marker for the inhibition of muscle synthesis. 

It has been suggested that DEX-induced muscle atrophy might be associated with the up-regulation 

of mRNA and protein expression of Myostatin both in rats [267] and in mice [268], However, no 

significant changes have been observed concerning mRNA levels in either DEX or Placebo (Fig. 

24). Results are in accordance with those obtained in mice by Canepari and co-workers [225] and 

suggest that Myostatin does not plays a major role in the triggering steroid myopathy.  
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1.2.  Catabolic pathways 

     4h Post – DEX administration                                 4h Post – Placebo administration 
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Figure 25: Analysis of markers involved in protein degradation (FoXO1 – FoXO3a) at 4h Post – DEX (on the left) and 

Placebo (on the right) administration.     p ≤ 0,05 vs PRE. 
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     4h Post – DEX administration                                   4h Post – Placebo administration 
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Figure 26: Analysis of markers involved in protein degradation (MuRF1 – MuRF2 – MuRF3 – Atrogin1) at 4h Post – 

DEX (on the left) and Placebo (on the right) administration.     p ≤ 0,05 vs PRE. 

 

The major intracellular signalling pathways controlling protein degradation through the ubiquitin 

proteasome system (FoXO1, FoXO3a, MuRF1, MuRF2, MuRF3 and Atrogin1) were analysed.  

A significant decrease in the mRNA expression of FOXO factors and MuRF1 atrogene is shown 

after DEX and placebo administration (Fig. 25 and 26). Moreover, no increase in polyubiquitinated 

proteins was found (Fig. 34). It should indicate the absence of UPS system activation. On the other 

hand, a significant increase in Atrogin1 expression due to DEX administration was evident. As 

FoXO3a is generally believed to control both Atrogin1 and MuRF-1 and FoXO3a is downregulated, 

a down-regulation of both atrogens would be expected [106], but different regulation mechanisms 

could also be [269] [270].  

However, while FoXO regulate Atrogin1 and MuRF1 in rodents, observations in several clinical 

models of human muscle atrophy including ALS [271], COPD [272], ageing [273] and spinal cord 

injury [203] suggest that Atrogin1 regulation by FoXO3a is not a major mechanism.  

Others have also demonstrated a similar discordance in the regulation of FoXO of Atrogin1 and 

MuRF1 in human skeletal muscle following running [274] [275] and after short-term limb 

immobilisation [276]. Differential regulation by FoXOs in animals versus humans may help 

explaining other inconsistencies found between model systems. For example, fasting increases 

MAFbx in mice [99] whereas this condition has no apparent effect in humans [277].  
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Moreover, there are some evidences that Atrogin1 than by MuRF1 influences human skeletal 

muscle atrophy more [278] [271].  

Collectively, the analysis of catabolic pathways suggests that DEX administration cause the 

activation of the ubiquitin-proteasome system and in turn muscle rotein breakdown.  

 

1.3.  Transcription Factor Krüppel 

      4h Post – DEX administration                                4h Post – Placebo administration 
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Figure 27: Analysis of Transcription Factor Krüppel (Klf15) at 4h Post – DEX (on the left) and Placebo (on the right) 

administration.    p ≤ 0,05 vs PRE. 

 

Recently, it has been shown that steroids rely on Krüppellike factor 15 (Klf15), a Krüppel like 

transcription factor, mediating ergogenic muscle performance effects [279]. As shown in Fig.27 a 

significant decrease in Klf15 expression was found. Klf15 is a direct target of the GCs [280] [281]. 

It was found that different steroid dosing are able to induce divergent Klf15 gene expression and 

genetic program. There is a dose-dependent difference in occupancy of the Klf15 promoter by GCs, 

eliciting differential effects. In skeletal muscle, molecular pathways of atrophy were triggered by 

daily dosing of DEX and this was accompanied by decreased expression of Klf15, elevated 

expression of Atrogin1 and reduced performance of voluntary hind limb and respiratory skeletal 

muscles. In contrast, intermittent dosing of DEX induced an increase in Klf15 expression and did 

not trigger atrophy but, on the contrary, improved muscle performance [282]. The GC induced 

decrease in Klfl5 expression 4h after a single injection indicate that GS elicetd their action by 4h 

and suggest that the catabolic adaptations observed could depend on GC through Klfl5. 
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1.4.  Oxidative metabolism 

     4h Post – DEX administration                                  4h Post – Placebo administration 
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Figure 28: Analysis of markers involved in the oxidative metabolism (PGC-1α – CS) at 4h Post – DEX (on the left) 

and Placebo (on the right) administration.     p ≤ 0,05 vs PRE. 

  

PGC-1α and CS, markers involved in oxidative metabolism, were studied. Gene expression of 

PGC-1α appears to be significantly decreased 4 hours after the administration of DEX (Fig. 28). 

These data suggest a metabolic alteration linked to the administration of DEX. DEX could reduce 

PGC-1α expression in muscle cells by several mechanisms [283]. DEX can act directly on PGC-1α 

gene expression by binding to the GRE present on its promoter [284]. DEX can also change the 

activity of other trascriptional factors that partecipate in PGC-1α trascription (e.g. MEF2, NFAT). 

Morover DEX could also increase the level of an unidentified microRNA(s) that targets PGC-1α in 

skeletal muscle. Finally, DEX could induce a decreases in activity of p38 MAPK [234] (Fig. 37). 

The action of p38 MAPK on PGC-1α induced by DEX may represent a novel mechanism by which 

this agent induce muscle atrophy [234]. 

Interestingly, a decrease in PGC-1α gene expression and a consequent oxidative metabolism 

pathway dysfunction may result in reduced ATP production leading to an increase in the AMP / 

ATP ratio. Such imbalance could lead to the activation of AMPK, the kinase activated by the AMP 

and the Acetyl-CoA carboxylase, as it will be shown later in the section of protein expression later 

(Fig. 36). 
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1.5.  Oxidative stress 

     4h Post – DEX administration                                 4h Post – Placebo administration 
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Figure 29: Analysis of oxidative stress marker NRF2 at 4h Post – DEX (on the left) and Placebo (on the right) 

administration. 

 

Fig. 29 shows that the expression levels of the transcription factor NRF2 do not change 4 hours after 

DEX administration. NRF2 is redox sensor, which is upregulated by increased ROS in the cell and 

in turn activate the transcription of redox buffers (e.g. catalase, SOD). Given that, no change in 

expression occurs and that previous works from our laboratory, suggest that NRF2 is likely sentive 

to very small variaitons of redox balance, it can be suggested that 4h after DEX administration no 

redox imbalance was present. The result is interesting as oxidative stress is considered among the 

potential triggers of steroid myopathy.  
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1.6. Mitochondrial dynamics: Fusion 

     4h Post – DEX administration                                   4h Post – Placebo administration 
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Figure 30: Analysis of mitochondrial fusion markers (OPA1 – MFN1 – MFN2) at 4h Post – DEX (on the left) and 

Placebo (on the right) administration.  

 

Mitochondrial dynamics has been shown to be one of the most relevant factors affecting muscle 

integrity, i.e. a metabolic program could modulate the balance between muscle protein synthesis 

(MPS) and degradation (MPB). Mitochondrial dynamics is controlled by an interplay between 

fusion and fission. When fission prevailes over fusion, mitochondrial dysfuntion can occur 

triggering muscle wasting. The gene expression of mitochondrial remodeling factors, OPA1, MFN1 

and MFN2, involved in the process of fusion of the internal mitochondrial membrane was analyzed. 

They were not significantly changed 4 hours post administration of DEX (Fig. 30). 

Mitochondrial fusion process seems not to be alterated by DEX. 
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1.7.  Mitochondrial dynamics: Fission 

      4h Post – DEX administration                                 4h Post – Placebo administration 
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Figure 31: Analysis of mitochondrial fission markers (Fis1 – DRP1) at 4h Post – DEX (on the left) and Placebo (on the 

right) administration. 

 

The gene expression of mitochondrial remodeling factors, Fis1 and DRP1, involved in the process 

of mitochondrial fission was analyzed. Both the factors were not significantly changed after 4 hours 

post administration of DEX (Fig. 31). 

Mitochondrial fission process appears not to be alterated. 
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1.8.  Autophagy 

      4h Post – DEX administration                                 4h Post – Placebo administration 
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Figure 32: Analysis of autophagy markers (Beclin1 – p62) at 4h Post – DEX (on the left) and Placebo (on the right) 

administration.     p ≤ 0,05 vs PRE. 

 

The gene expression of Beclin1 and p62, two proteins which are widley used as markers of the 

activity of autophagy, were analyzed. Both the factors were not significantly changed after 4 hours 

post administration of DEX (Fig. 32). 

The autophagy process, which together with the ubiquitine proteasome system controls MPB, is not 

activated by DEX. 

 

 

 

 

 

 

 

 

 

 

Beclin1 Beclin1 

p62 p62 

PRE 

POST 4h 

m
R

N
A

 l
ev

el
 

PRE 

POST 4h 

m
R

N
A

 l
ev

el
 

PRE 

POST 4h 

m
R

N
A

 l
ev

el
 

PRE 

POST 4h 

m
R

N
A

 l
ev

el
 



STEROID MYOPATHY 

 

75 

2. Protein expression at 4h post-administration 

2.1.  Protein synthesis pathways 

4h Post – DEX administration                                    
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Figure 33: Analysis of protein synthesis markers (pAKT/AKT – pS6Rp/S6Rp – p4EBP1/4EBP1) at 4h Post – DEX 

administration and the respective western blot images (from A to F). Actin image by Ponceau staining (G). 

 

The response of the IGF-1/AKT/mTOR pathway controlling protein synthesis was 

investigated by measuring the ratio between phosphorylated and total form of AKT, 4E-BP1 

and S6Rp. Fig. 33 shows that the synthesis pathway is not significantly affected at 4h post 

DEX administration. These results suggest a limited or nearly absent influence of 

dexamethasone on this pathway. The decrease in protein synthesis seems not play a major role 

in the initial development of steroid atrophy. Data are in accordance with data on mice by 

Canepari and co-workers [225]. 
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2.2.  Catabolic pathway 

4h Post – DEX administration 
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Figure 34: Analysis of Polyubiquitinated proteins at 4h Post – DEX administration and the respective western blot 

image (A). Actin image by Ponceau staining (B). 

 

Levels of poly-ubiquitinated proteins, which are targeted by the UPS system, did not 

significantly increase at 4h from DEX administration (Fig. 34).  

Data with placebo are not shown as identical to DEX. 
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2.3.  Oxidative metabolism  

     4h Post – DEX administration 
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     4h Post – DEX administration                                   4h Post – Placebo administration 
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Figure 35: Analysis of oxidative metabolism markers (PGC-1α – CS) at 4h Post – DEX (on the left) and Placebo (on 

the right: only for PGC-1α) administration and the respective western blot images (DEX: A and B; Placebo: C). Actin 

images by Ponceau staining (D, E and F). 

 

The results in Fig. 35 show that protein contents of both PGC-1α and CS do not change at 4 hours 

after the administration of DEX. 
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2.4.  Energy imbalance   

      4h Post – DEX administration                                   4h Post – Placebo administration 
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Figure 36: Analysis of the cellular kinase AMPK and ACC, a kinase downstrem of AMPK, markers of energy 

imbalance at 4h Post – DEX (on the left) and Placebo (on the right) administration and the respective western blot 

images (DEX: A, B, C and D; Placebo: E, F, G and H). Actin images by Ponceau staining (I, L, M and N).    p ≤ 0,05 vs 

PRE.  

The energy imbalance of the muscular cells was assessed by measuring the ratio between 

phosphorylated and total form of AMPK (kinase activated by the AMP and the Acetyl-CoA 

carboxylase) and ACC, a kinase downstrem of AMPK. The AMPK system is activated when cells 

need energy and triggers several downstream phenomena among which protein degradation to 
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provide aminoacids for energy production and for the synthesis of essential proteins. A significant 

increase in both pAMK and pACC was found (Fig. 36) suggesting an activaton of the AMPK 

system. The decrease in PGC-1α mRNA expression (Fig. 28) could cause a reduced ATP 

production due to impairment of the oxidative metabolic pathway, generating energy imbalance and 

leading to the activation of AMPK and ACC in order to revert the imbalance. 

 

2.5.  p38 MAPK 
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Figure 37: Analysis of Mammalian p38 mitogen-activated protein kinase (p38 MAPK) at 4h Post – DEX (on the left) 

and Placebo (on the right) administration and the respective western blot images (DEX: A and B; Placebo: C and D). 

Actin images by Ponceau staining (E and F).    p ≤ 0,05 vs PRE. 

 

A significant decrease in p38 MAPK phosphorylation was found (Fig. 37). It has been shown that 

p38 MAPK could phosphorylates and activate PGC-1α [285] [286] [234]. Activity of p38 MAPK 

has been linked to increased transactivating activity of PGC-1α and to its nuclear migration [287]. 

A plausible explanation for the decreased gene expression of PGC-1α caused by DEX could be the 

associated reduction in p38 MAPK activity [234]. A reduction in p38 MAPK phosphorylation 

caused by DEX in rat skeletal muscle was also consistent with prior reports from cell culture 

systems [288].  
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2.6.  Oxidative stress 

     4h Post – DEX administration                                4h Post – Placebo administration 
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Figure 38: Analysis of oxidative stress markers (SOD1 – Catalase) at 4h Post – DEX (on the left) and Placebo (on the 

right) administration and the respective western blot images (DEX: A and B; Placebo: C and D). Actin images by 

Ponceau staining (E, F and G).    p ≤ 0,05 vs PRE. 

Antioxidant enzymes are essential for the maintenance of redox homeostasis and prevent any 

harmful effects caused by the accumulation of free radicals that can be formed following 

mitochondrial dysfunction. 

Fig. 38 shows that there was a significant increase of SOD1 protein level at 4 hours after DEX 

administration, while there were no changes in the protein level of catalase. The increase in SOD1 

protein expression suggest the presence of a mild redox imbalance at 4h after the administration of 

DEX. As expression of NRF2 was not upregulated at the same time, up-regulation of SOD likely 

compensate for an earlier, small and transient increase in ROS.  
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2.7.  Mitochondrial dynamics: Fusion 

4h Post – DEX administration 
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Figure 39: Analysis of mitochondrial fusion markers (MFN1 – MFN2 – OPA1) at 4h Post – DEX (on the left) and 

Placebo (on the right) administration and the respective western blot images (DEX: A, B and C; Placebo: D). Actin 

images by Ponceau staining (E, F, G and H).    p ≤ 0,05 vs PRE. 

Protein levels of mitochondrial remodeling factors, MFN1, MFN2 and OPA1, involved in the 

process of fusion of the internal mitochondrial membrane were analyzed. The results showed that 

only OPA1 decreased significantly 4 hours after the administration of DEX indicating an imparment 

of the mitochondrial fusion process (Fig. 39). 
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2.8.  Mitochondrial dynamics: Fission 

4h Post – DEX administration 
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Figure 40: Analysis of mitochondrial fission markers (Fis1 – DRP1) at 4h Post – DEX administration and the 

respective western blot images (A and B). Actin image by Ponceau staining (C). 

 

With regard to mitochondrial fission, the Fis1 and DRP1 markers were analyzed and no significant 

changes were found (Fig. 40). The mitochondrial fission process appears not to be alterated. Data 

with placebo were not shown as identical to DEX. 
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2.9.  Autophagy 

4h Post – DEX administration 
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Figure 41: Analysis of autophagy markers (p62 – LC3BII/LC3BI) at 4h Post – DEX (on the left) and Placebo (on the 

right) administration and the respective western blot images (DEX: A and B; Placebo: C). Actin images by Ponceau 

staining (D, E and F).    p ≤ 0,05 vs PRE. 

 

With regard to autophagy, the protein expression of p62 and the relationship between the active 

form and the inactive form of LC3B (LC3BII / LC3BI) was analyzed. While the protein expression 

of p62, a protein involved in the process of elimination of protein aggregates, does not undergo 

changes, the ratio LC3BII / LC3BI is significantly increased at 4 hours after DEX administration 

(Fig. 41) indicating the activation of autophagy process. The activation of the autophagic process 

can be useful to the cell both to eliminate damaged and therefore non-functioning intracellular 

proteins and organelles and to stimulate the production of ATP [149] [289]. Since results 

demonstrate a decrease in production of ATP (activation of AMPK and ACC in Fig. 36) and a 

decrease in mitochondrial fusion process, (decreased protein expression of OPA1 in Fig. 39) is 

reasonable to hypothesize the activation of the autophagic process as a preventive/compensatory 

mechanism that the cell enacts to try to counteract the effect of glucocorticoids. The activation of 
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autophagy could be understood as an attempt by the cell to obtain energy in conditions of ATP 

deficiency, coherently with what reported in the literature [290]. Since p62 is involved in the 

communication between ubiquitinated proteins and autophagy, but its expression does not change 

this seems to confirm the previous results obtained from the analysis of ubiquitinated proteins (Fig. 

34). 

 

3. Gene expression at 1h post-administration 
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Figure 42: Analysis of the anti-anabolic marker Myostatin at 1h Post – DEX administration. 

 

No significant changes have been observed concerning mRNA levels of Myostatin 1h post DEX 

administration (Fig. 42). The result confirms the hypothesis that Myostatin does not play a primary 

role in trigger steroid myopathy.   
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3.2.  Catabolic pathways 

1h Post – DEX administration 
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Figure 43: Analysis of markers involved in protein degradation (FoXO1 – FoXO3a) at 1h Post – DEX administration. 
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Figure 44: Analysis of markers involved in protein degradation (MuRF1 – MuRF2 – MuRF3 – Atrogin1) at 1h Post – 

DEX administration. 

 

As shown in Fig. 43 and 44, the catabolic pathway UPS did not appear to be activated at 1h after 

DEX administration. 
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3.3.  Transcription Factor Krüppel 

      1h Post – DEX administration  
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Figure 45: Analysis of Transcription Factor Krüppel (Klf15) at 1h Post – DEX administration.     p ≤ 0,05 vs PRE. 

 

As shown in Fig. 45 a significant decrease in Klf15 expression was found at 1h after DEX 

administration. The result confirm the hypotesis that DEX suppresses Klf15 [282]. 
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Figure 46: Analysis of markers involved in the oxidative metabolism (PGC-1α – CS) at 1h Post – DEX administration. 

    p ≤ 0,05 vs PRE. 

 

Gene expression of PGC-1α and CS appear to be significantly decreased 1 hours after the 

administration of DEX (Fig. 46). Data suggest that a metabolic alteration could be the primary 

mechanism triggering steroid atrophy.  
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3.5.  Oxidative stress 

     1h Post – DEX administration 
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Figure 47: Analysis of oxidative stress marker NRF2 at 1h Post – DEX administration. 

 

As shown in Fig. 47 the transcription factor NRF2 significantly changes 1 hour after DEX 

administration. The results suggest that the decreased expression of PGC-1α and the consequent 

metabolic imparment generate a condition of redox imbalance. This condition is also confirmed by 

the increase in protein level of SOD1 at 4h after DEX administration (Fig. 36). 
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3.6.  Mitochondrial dynamics: Fusion 

1h Post – DEX administration 
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Figure 48: Analysis of mitochondrial fusion markers (OPA1 – MFN1 – MFN2) at 1h Post – DEX administration. 

.   p ≤ 0,05 vs PRE. 

 

As shown in Fig. 48 the mRNA expression of OPA1 was significantly decreased 1 hour post DEX 

administration. A reduction in fusion mitochondrial process could be induced by the decreased 

expression of PGC-1α (Fig. 46). Both results suggest mitocondrial dysfunction that in turn could 

lead to higher production of ROS and to redox imbalance (Fig. 47). 
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3.7.  Mitochondrial dynamics: Fission 

1h Post – DEX administration 
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Figure 49: Analysis of mitochondrial fission markers (Fis1 – DRP1) at 4h Post – DEX (on the left) and Placebo (on the 

right) administration. 

 

As shown in Fig. 49 no alteration of fission process accurred at 1h after DEX administration. 
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Figure 50: Analysis of autophagy markers (Beclin1 – p62) at 1h Post – DEX administration.     p ≤ 0,05 vs PRE. 

 

As shown in Fig. 50 the gene expression of Beclin1 was significantlyincreased 1h post DEX 

administration. The activation of the autophagic process was also confirmed by the significant 

increase of the ratio LC3BII/ LC3BI at 4 hours after DEX administration (Fig.41). 

The results obtained show that the autophagy process is activated togheter with the decreased 

expression of PGC-1α, mitocondrial dysfunction and the condition of redox imbalance.  

Collectively the latter results suggest that a primary action of DEX could be on PGC-1α gene 

expression, which could cause a consequent impairment of mitochondrial dynamic, which in turn 

would lead to redox imbalance due to increased ROS production. The activation of the autophagy 

process could be usefull to eliminate both the not functional mitochondria and oxidated proteins. 
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4. Gene expression at 8h post-administration 

A.  Catabolic pathway 

8h Post – DEX administration                                   8h Post – Placebo administration 
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B.  Transcription Factor Krüppel 

8h Post – DEX administration                                   8h Post – Placebo administration 
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C.  Oxidative metabolism 

8h Post – DEX administration                                   8h Post – Placebo administration 
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Figure 51: (A) Analysis of marker involved in catabolic pathway (Atrogin1); (B) analysis of Transcription Factor 

Krüppel (Klf15); (C) analysis of marker involved in oxidative metabolism (PGC-1α). All markers have been analyzed at 

8h Post – DEX (on the left) and Placebo (on the right) administration.    p ≤ 0,05 vs PRE. 
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In order to evaluate the duration of DEX effect on intracellular pathways the analysis of the gene 

expression of Atrogin1 (Fig. 51.A) and Klf5 (Fig. 51.B) and PGC-1α (Fig. 51.C) at 8h after DEX 

administration was performed. Gene expression of PGC-1α resulted significantly decreased after 

both DEX and placebo administration indicating that the observed effect could not be related to the 

DEX action. On the contrary, the significant increase in Atrogin1 and decrease in Klf5 in DEX and 

not in placebo suggest that DEX action on this factors is still present.  

The analysis of gene expression of the factors involved in mitochondrial dynamics, oxidative stess 

and autophagy at 8h after DEX administration will be performed. 

 

5. Gene expression at 4h post DEX-administration, after 15 days of 
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Figure 52: (A) Analysis of marker involved in catabolic pathway (Atrogin1); (B) analysis of marker involved in 

oxidative metabolism (PGC-1α). Both markers have been analyzed at 4h Post – DEX administration after 15 days of 

AA.     p ≤ 0,05 vs PRE;  p ≤ 0,05 vs POST 4h. 

 

Amino acids, particularly BCAAs, are used to alleviate the induced muscular atrophy of low-

calories diets [257], and prevent sarcopenia [258]. It has also been reported that the activity of 

mitochondrial enzymes and the abundance of mRNA gene transcripts encoding mitochondrial 

proteins are stimulated by a mixture of essential amino acids in young healthy subjects [259]. It has 

been demonstrated that the integration of a mixture of amino acids high in BCAA (~ 60%) 

promotes mitochondrial biogenesis in the heart and musculoskeletal of middle-aged mice, through 

increases in the gene expression of mitochondrial transcriptional regulators including peroxisome 

activated by the proliferator receptor-Î³ coactivator-1α (PGC-1α) [260]. It was also observed that 
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chronic BCAA supplementation could increase the activity of mitochondrial function markers 

(citrate synthase and cytochrome c oxidase) in the skeletal muscle of sedentary mice [261]. 

The effectiveness of BCAA in counteracting the effects induced by DEX on Atrogin1 and PGC-1α 

(Fig. 52) was assessed. 

Results demostrared that 15 days of BCAA supplementation after DEX administration was able to 

significantly reduce DEX- induced increase in Atrogin1 and decrease in PGC-1α expression.  
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CHAPTER 7 

CONCLUSIONS 
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Regarding gene expression (Table D), the experimental evidences of this study show that: 

 

 

 

Marker 

1h post  

DEX-

administration 

4h post  

DEX-

administration 

8h post  

DEX-

administration 

PGC-1α 

 

↓ Decrease ↓ Decrease ↓ Decrease 

CS 

 

↓ Decrease ≈* ** 

NRF2 

 

↑ Increase ≈* ** 

OPA1 

 

↓ Decrease ≈* ** 

Beclin1 

 

↑ Increase ≈* ** 

Klf15 

 

↓ Decrease ↓ Decrease ↓ Decrease 

Atrogin1 ≈* 

 

↑ Increase 

 

↑ Increase 

 

Table D: Gene expression’s results obtained at 1h, 4h and 8h post DEX-administration.  

*No changes. 

**Markers not yet tested. 
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Regarding protein expression (Table E), the experimental evidences of this study show that: 

 

 

 

Marker 

4h post  

DEX-

administration 

p38 MAPK 

phosphorylation 

 

 

↓ Decrease 

AMPK 

phosphorilation 

 

 

↑ Increase 

 

ACC  

phosphorilation 

 

 

↑ Increase 

 

OPA1 

 

↓ Decrease 

LC3BII / LC3BI 

 

↑ Increase 

 
 

Table E: Protein expression’s results obtained at 4h post DEX-administration.  

 

Chronic glucocorticoids administration has a dramatic impact on muscle structure and function. In 

mice, a variety of responses in the intracellular pathways controlling muscle mass, mitochondrial 

dynamics and metabolism, and redox balance have been shown to occur [193]. It is still debated 

which of them plays a primary role triggering muscle atrophy and which is a consequence of muscle 

deterioration. A previous work from my laboratory has studied the time course of GCs action on 

intracellaulr pathways and suggested that activation of the ubiquitine proteasome system is the 

earliest and primary phenomenon underlying muscle wasting [225]. 

In humans, limited information is available on the earliest responses to DEX administration. 

Therefore, it is even less understood which event plays a primary role. 

To address this issue, the work of my thesis focused on the phenomena occurring at very early time 

(1. 4, 8 hours) following DEX administration. A large number of markers of the major pathways 

controlling muscle protein breakdown (MPB), i.e. the ubiquitine proteasome system and authophay, 

muscle protein syntesis (IGF1/AKT/mTor pathways; miostatin), mitochondrial dynanics (PGC-1α 

and proteins involved in controlling mitochondrial fusion and fission), redox balance (NRF2 and 

ROS buffering system), the response to the cell to energy imbalance (AMPK system), were studied. 
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Moreover, Klf15 transcription factor and p38MAPK, which are directly controlled by GCs at a 

transcriptional level, were also studied. 

The major findings are summarised in tables D and E. They indicate that the mechanism of GCs 

action is surely complex and not definetly settle. In fact, the results would be consistent with an 

upregulation of FoXO, which in turn would help to put all the findings in a comprehensive picture. 

The surprisingly observation that FoXO is not upregulated suggests more complex, but interesting 

and novel triggering mechanisms of steroid myopathy which are described below.  

 

Muscle atrophy in humans would depend on (i) activation of Atrogin1 (expression higher after 1 

and 4 hours) and therefore on enhanced ubiquitine proteasome system activation, and (ii) enhanced 

autophagy (higher Beclin1 expression after 1h and higher LC3BII/BI protein content after 4h). 

GCs could enhance Atrogin1 expression through a decrease in the expression of Klf15. The latter is 

a transcription factor known to be directly controlled by GCs at a transcriptional level and in turn to 

elicit some of the actions of GCs among which a control on Atrogin1 expression [193] [282]. 

As regards, GCs activation of autophagy catabolic system, it would depend on the following 

sequence of events: GCs could directly act on PGC-1α expression decreasing it [284]; the latter 

could cause a decrease in OPA1 (lower expression after 1h and lower protein content after 4h) 

which could cause decreased mitochondrial fusion and mitochondrial dysfuntion; Mitochondrial 

disfunction could  cause a transient increase in ROS production [291] and a transient redox 

imbalance (increased NRF2 expresion after 1h and increased SOD1 protein content after 4 h); ROS 

would enhance autophagy [292] [293]. Mitocondrial disfunciton is suggested not only by OPA1 

down-regualtion, but also by activation of the AMPK catabolic system. AMPK senses energy 

balance in the cell and is phosphorylated when the ratio AMP/ATP increases. Mitocndrial 

dysfunction can impair oxidative metabolism and limit ATP synthesis. AMPK can also directly 

promote autophagy under oxidative stress [294].  Though autophagy can avoid the energy crisis by 

hypoxia or oxidative stress by fully breaking down the damaged organelles and proteins, cells also 

take advantages of decomposed organelles components and de novo form new proteins or 

membrane structure to maintain metabolic fitness. 

In addition, GCs could decrease PGC-1α also through a decrease in p38 MAPK (lower protein 

content after 4h). In fact, p38 MAPK is known to be directly controlled at a transcriptional level by 

GCs [229] [293] and to affect PGC-1α expression. 

 

It would be noted that DEX could reduce PGC-1α expression in muscle cells by several 

mechanisms [283]. DEX is able to act directly on PGC-1α gene expression by binding to the GRE 
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present on its promoter [284]. DEX can also change the activity of other trascriptional factors that 

partecipate in PGC-1α trascription (e.g. MEF2, NFAT). Moreover, DEX could also increase the 

level of an unidentified microRNA(s) that targets PGC-1α in skeletal muscle. Finally, DEX could 

induce a decrease in activity of p38 MAPK that, in turn, can play a role in detrmining PGC-1α 

activity [229]. 

Moreover, the activation of autophagy process, suggested by the increase in Beclin1 gene 

expression at 1h after DEX administrationa and by the increased ratio LC3II/LC3I at 4h after DEX 

administraion, could be usefull not only to eliminate damaged cell components (mitochondria and 

oxidated proteins), but also to extract energy from them.  

Collectively, the present results of gene expression, suggest that DEX acts through different routes 

in humans compared to mice [225] (Table F), mainly altering oxidative metabolism and stimulatin 

authophagy through ROS and enhancing ubiquitine proteasome activity through Klf15 and Atrogin1 

(Fig. 53). 

 

 

Marker 

1h post  

DEX-

administration 

FoXO3a 

 

↑ Increase  

Atrogin1 

 

↑ Increase 

MuRF1 

 

↑ Increase 

Myostatin 

 

↑ Increase 

 

Table F: Gene expression’s results obtained in mice at 1h post DEX-administration [225].  

 

The atrophic program remains active at least 8h after DEX admistration (decrease in in Klf15 and 

increase in Atrogin1 gene expression) whereas the metabolic imparment seems to be solved or no 

longer related to DEX administration (decrease in PGC-1α gene expression in both DEX and 

placebo).  

An important, although still preliminary, result of this study is the observation that a mixture of 

essential branched-chain amino acids seem able to act directly both on oxidative metabolism and on 

the catabolic process, counteracting the effects of dexamethasone on muscle   

These supplements have no side effects, making them a valid aid in subjects treated for 

inflammatory, autoimmune and allergic disease. 
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This is the first project drawn up with the aim of analyzing the consequences of a single DEX 

administration on human skeletal muscle. The results shown in this thesis are not conclusive. 

Further analysis are ongoing, in particular at 8h after DEX and placebo administration in order to 

investigate more precisely the relationship between metabolic dysfunction and atrophy.  

 

 

 

 

Figure 53: Flowchart of the possible mechanism leading to skeletal muscle atrophy after Dexamethasone 

administration. 
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