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Abstract (English)

Mechanistic models combine accepted laws to describe different parts
of the system under analysis; their variables and parameters are typically
related to specific elements of the system. Physiologically based pharmacoki-
netics (PBPK) models are a class of mechanistic models used in pharmacol-
ogy. From a mathematical point of view, PBPK models are compartmental
models in which each compartment corresponds to a specific organ or tis-
sue. All the compartments are linked by flow rates representing the blood
circulation. PBPK models nowadays are routinely applied by pharmaceu-
tical companies from early discovery to late drug development. Moreover,
they are used during regulatory review and for informing the drug labels.

However, the lack of appropriate parameter values hampers the PBPK
models expansion. Along this line, there is a substantial problem that
PBPK models share with almost all the mechanistic models: the uncertainty
in the parameter values. Many PBPK parameters are derived from in vitro
experiments, so, they are uncertain due to the measurement errors and to
the difference between the in vitro and in vivo contexts. Other parameters
can be predicted by using models, thus, they are uncertain due to the
prediction errors. Other parameters instead can be calibrated on given sets
of data, therefore, they are subject to the estimation errors. Moreover, when
the PBPK models are used in a population context, their parameters are
variable as well as uncertain. If the parameters are uncertain or variable,
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then, the model outputs (e.g., plasma AUC, Cmax) would be uncertain
or variable too. As highlighted by regulatory agencies, there is the need of
understanding the confidence on the PBPK modelling results. This could be
done with uncertainty and sensitivity analysis. Uncertainty analysis refers
to the quantification of the model output variation. Instead, sensitivity
analysis refers to the act of apportioning the output variation to the sources
of uncertainty or variability in the model inputs. To cope with this issue,
in this work we used global sensitivity analysis (GSA) techniques. GSA,
with respect to other types of sensitivity analyses, is model independent,
detects interaction effects and assess each parameter impact while all the
other parameters are allowed to vary as well.

In this thesis, some of the possible applications of uncertainty anal-
ysis and GSA for mechanistic models used in the field of pharmacology
and, in particular, for PBPK models, are shown. With the example of a
PBPK model for the anticancer pro-drug gemcitabine, we showed how GSA
can be used to understand what parameters mainly drive the variability of
some metrics of interest in a population. Moreover, GSA was applied to
absorption models for orally administered compounds. In this case, GSA
was used to gain insight into the structure of the model and to guide the
choice of parameters that can safely be assumed, estimated or require data
generation to allow informed model prediction. We applied uncertainty
analysis and GSA also during the development of a model describing the
pharmacokinetics (PK) of inhaled compounds. Here we identified two ways
of performing GSA, that we called inter-compounds and intra-compound.
Inter-compounds GSA was found to be particularly useful during the phase
of model building, in fact it helps in understanding if the model behaves as
expected and, if not, it gives useful information in identifying the reasons.
Instead, intra-compound GSA is applied when the PBPK model is used for
a particular drug. Here, it helps in selecting what parameters should be
known with lower degree of uncertainty in order to give more precise pre-
dictions. Finally, with the case study of mechanistic models including the
correlation between the expression of different enzymes and transporters,
we showed how uncertainty analysis and GSA can be used to inform exper-
imental design.
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As highlighted by regulatory agencies and practitioners from multiple
disciplines, sensitivity analysis is crucial for the quality assessment of model
based inference. In this context, the aim of this thesis is to show the utility
of uncertainty analysis and GSA in PBPK modelling and simulation, with
the view of seeing these techniques routinely applied in model development
and use.
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Abstract (Italian)

I modelli meccanicistici sono composti da leggi che descrivono diverse
parti del sistema in analisi. Tutte le loro variabili e i loro parametri han-
no una diretta corrispondenza con elementi specifici del sistema. I modelli
di farmacocinetica basati sulla fisiologia (PBPK, dall’inglese physiologically
based pharmacokinetics) sono una tipologia di modelli meccanicistici usati
in farmacologia. Da un punto di vista matematico, essi sono modelli com-
partimentali, in cui ogni compartimento rappresenta uno specifico organo
o tessuto. I compartimenti di questi modelli sono connessi da flussi rap-
presentanti la circolazione sanguigna. I modelli PBPK sono comunemente
utilizzati durante tutto il processo di ricerca e sviluppo dei farmaci, inoltre,
essi sono utilizzati anche da agenzie regolatorie.

Nonostante ciò, la diffusione dei modelli PBPK è fortemente limita-
ta dalla mancanza di valori appropriati per i parametri. In questo senso,
c’è una caratteristica sostanziale che i modelli PBPK condividono con la
quasi totalità dei modelli meccanicistici: l’incertezza nei valori dei para-
metri. Molti parametri di questi modelli sono derivati da esperimenti in
vitro, quindi, sono incerti a causa dell’errore sperimentale e della diversità
tra il contesto in vitro con quello in vivo. Alcuni parametri possono essere
predetti mediante altri modelli e quindi sono affetti dall’errore di predizio-
ne. Altri parametri vengono invece calibrati e quindi, sono soggetti agli
errori di stima. Inoltre, se i modelli PBPK sono utilizzati in un contesto
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di popolazione, i parametri risultano essere variabili oltre che incerti. Se i
parametri in ingresso al modello sono incerti o variabili, allora, le uscite del
modello (che possono essere metriche di interesse come AUC e Cmax pla-
smatiche) risultano essere incerte o variabili a loro volta. Come sottolineato
dalle agenzie regolatorie, c’è il bisogno di stabilire la confidenza che si può
attribuire ai risultati dei modelli PBPK. Questo può essere fatto mediante
analisi di incertezza e sensitività. L’obbiettivo delle analisi di incertezza è
quantificare la variazione nelle uscite del modello, mentre quello delle ana-
lisi di sensitività è di attribuire la variazione dell’uscita alle varie fonti di
incertezza o variabilità negli ingressi. In questo lavoro, abbiamo utilizzato
tecniche di analisi di sensitività globale (GSA, dall’inglese global sensitivity
analysis). Le tecniche globali, a differenza di altri metodi per l’analisi di
sensitività, sono modello-indipendenti, permettono la quantificazione degli
effetti di interazione e determinano l’impatto di un ingresso sull’uscita del
modello considerando tutti gli altri ingressi variabili a loro volta.

In questa tesi vengono mostrati alcuni dei possibili utilizzi dell’analisi
dell’incertezza e della GSA per i modelli meccanicistici usati nel campo del-
la farmacologia e, in particolare, per i modelli PBPK. Con l’esempio di un
modello PBPK costruito per descrivere la farmacocinetica del profarmaco
gemcitabina, abbiamo mostrato l’utilizzo della GSA per l’individuazione
dei parametri che maggiormente causano la variabilità di certe metriche
di interesse in una data popolazione. Inoltre, la GSA è stata applicata a
modelli di assorbimento per farmaci somministrati oralmente. In questo
caso, essa è stata utilizzata per aumentare la conoscenza della struttura del
modello e per guidare la scelta dei parametri che possono essere fissati ad
un certo valore oppure di quelli che necessitano di essere conosciuti con mi-
nore incertezza, con l’obbiettivo di aumentare la precisione nelle predizioni
del modello. Abbiamo applicato l’analisi dell’incertezza e la GSA anche
durante lo sviluppo di un modello PBPK per composti somministrati per
via inalatoria. In questo contesto sono stati proposti due diversi approcci
alla GSA, che abbiamo nominato inter-composti e intra-composto. La pri-
ma tipologia di analisi risulta essere particolarmente utile durante la fase di
costruzione del modello, mentre la seconda quando il modello (o piattafor-
ma) PBPK viene utilizzato per un particolare composto. Infine, abbiamo
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mostrato come l’analisi dell’incertezza e la GSA possono essere utilizzate
per informare il design sperimentale. Questo è stato fatto con l’esempio
dello studio di modelli meccanicistici che includono correlazioni tra diversi
enzimi e trasportatori

Come sottolineato da agenzie regolatorie e da professionisti di diversi
settori, l’analisi di sensitività è uno strumento cruciale per valutare la qua-
lità delle decisioni basate sull’utilizzo di modelli. L’obbiettivo di questa
tesi è mostrare l’utilità dell’analisi dell’incertezza e della GSA per i modelli
PBPK, con la prospettiva di vedere queste tecniche comunemente utilizzate
durante lo sviluppo e l’uso di questi modelli.
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Chapter 1
Introduction

1.1 Drug development

Drug development is a lengthy, complex, costly and risky process. From
the discovery of a new molecular entity (NME) to the drug commercializa-
tion, it takes approximately 13.5 years [1] and the capitalized research and
development (R&D) cost is more than $2.5 billions [2]. Drug development
can be divided in several phases, including drug discovery, preclinical phase
(also known as phase zero) and clinical phase, that is further divided into
phase 1, phase 2, phase 3 and phase 4 [3, 4].

In drug discovery, after the understanding of the nature of the disease,
new compounds are designed with the aim to reverse or stop the disease ef-
fect. During this phase there are thousands of potential compounds. How-
ever, after early testing, only few among them will proceed [4]. In the
preclinical phase the number of candidate compounds is further reduced
and the lead compounds that most likely have desirable pharmacokinet-
ics (PK), pharmacodynamics (PD) and clinical properties in humans are
identified1. This is done, for example, by using in vitro experiments and

1Pharmacokinetics can be defined as the kinetics of the processes of drug absorption,
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by understanding an appropriate clinical formulation. Moreover, animal
models and biomarkers are used to provide early information on efficacy
and toxicity. All the information gathered during this phase can be inte-
grated and used for decision-making and the design of the early clinical
investigations. This information can be useful for understanding the drug
mechanism of action, for the design of new animal experiments and for
translating the exposure-response relationships from animals to humans2

[3].

Clinical phase 1 studies are conducted in a small number of healthy
volunteers (from 20 to 200) [4]. The aims of this phase are to inform on
tolerability and safety, to find the maximal tolerated drug dose and concen-
tration, to understand metabolism and elimination routes and to provide
initial information on population variability [3]. Phase 1 usually lasts sev-
eral months and the probability of a compound to move to the next phase
is approximately 70% [4]. The phase 2 studies are conducted on several
hundreds of people with the disease/condition under analysis [4]. The aims
of these studies are to confirm the drug efficacy, the acute tolerability, the
maximal dose and plasma concentration and the absence of acute safety is-
sues. Moreover, an exploration of dosages regimen is performed. Finally, in
order to optimize the dose regimen for patients subgroups, patient and ex-
ternal factors influencing the exposure-response relationship are identified
[3]. The length of phase 2 studies goes from several months up to two years
and the probability for a compound to move further is roughly 33% [4].
Phase 3 is a confirmatory phase and, with respect to the previous clinical
phases, involves a larger number of patients (from 300 to 3000) [4]. Here
the aims are to document the clinical safety and efficacy, to characterize
the adverse reactions and to understand the sources of variability in the
exposure-response. Moreover, dosing regimens can be identified for special
populations (e.g., paediatric and elderly patients) [3]. The length of these

distribution and elimination or, more generally, as ‘what the body does to the drug’;
pharmacodynamics instead includes all the pharmacological actions, beneficial or adverse,
of the drug on the body and can be defined as ‘what the drug does to the body’ [5, 6].

2Exposure generally refers to the dose or metrics related with drug concentration,
such as AUC or Cmax. Response refers to the drug effects, beneficial or adverse [6].
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studies varies approximately from one to four years and the probability to
move to the next phase is 25-30% [4]. Phase 4 is after the drug approval
and commercialization. Here, the drug safety and efficacy are monitored in
a population of several thousands of patients [4].

In each phase there is a risk of interrupting the drug development pro-
cess (attrition). The majority of failures are reported to be due to efficacy
or safety issues in both phase 2 and 3 [7, 8, 9]. In fact, the likelihood of be-
ing approved for a drug entering the clinical phase is approximately 11.8%
[2].

1.2 Mechanistic models in drug development: the
need for sensitivity analysis

The use of modelling and simulation (M&S) during drug discovery and
development was reported to significantly impact the delivery of new ther-
apies to patients by increasing the decision-making confidence, reducing
cycle times and eliminating costs [10, 11, 12, 13, 14, 15]. In fact, many
pharmaceutical companies and regulatory agencies are increasing the use
of M&S for solving critical problems [13, 14]. In 2016, the term model
informed drug discovery and development (MID3) was defined by the Eu-
ropean Federation of Pharmaceutical Industries and Associations (EFPIA)
as a “quantitative framework for prediction and extrapolation, centered on
knowledge and inference generated from integrated models of compound,
mechanism and disease level data and aimed at improving the quality and
efficiency and cost effectiveness of decision making” [11]. A recent sur-
vey reported that the focus of most pharmaceutical companies in MID3
strategic plans is on PK [12]. Moreover, MID3 was officially recognized to
enable an effective and efficient drug development and it was included in
the Prescription Drug User Fee act (PDUFA) VI of the US Food and Drug
Administration (FDA) [16, 17].

M&S is a term that includes a variety of different quantitative ap-
proaches. EFPIA highlighted a possible subdivision of M&S in drug de-
velopment into two classes: pharmacometrics and (quantitative) systems
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pharmacology (QSP). A definition of pharmacometrics can be “the sci-
ence of developing and applying mathematical and statistical methods to (a)
characterize, understand, and predict a drug’s pharmacokinetic and phar-
macodynamic behavior; (b) quantify uncertainty of information about that
behavior; and (c) rationalize data-driven decision making in the drug devel-
opment process and pharmacotherapy” [6]. The history of pharmacometrics
is long, its first definition was given in 1982, however, some authors claim
that its story begins with PK in 1847 [6, 18]. The term QSP was defined
in 2011 by the National Institute of Health (NIH) QSP working group as
“an approach to translational medicine that combines computational and
experimental methods to elucidate, validate and apply new pharmacological
concepts to the development and use of small molecule and biologic drugs
determining mechanisms of action of new and existing drugs in preclinical
and animal models and patients” [19]. Other definitions of pharmacometrics
and QSP can be found [11, 18, 20].

One might argue that the definitions above are quite general and that
there could exist models classified in both the classes. One case could be
for example a model describing the human PK by ‘translating’ in vitro and
in vivo information from the preclinical phase.

A crisp classification that looks more at the technical characteristics of
the model, rather than at the application, is the one between data driven,
or top-down, and mechanistic, or law driven, models (even if in this case
the distinction can be blurry sometimes too) [21]. Data driven models have
typically a standard structure and they are built to be parsimonious, so,
their complexity is ‘just enough’ to describe the data [22]. The parame-
ters of these models are generally identified from a given set of data (e.g.,
with least squares techniques). Pharmacometrics is typically a top-down
(or data driven) discipline where PK and PD are described by using simple
compartmental models and the parameters variability in a given popula-
tion is described by using statistical models [22, 23]. The usefulness of these
empirical approaches was proven in a variety of cases, for example, in sup-
porting the approval for dosing regimens that were not tested, in supporting
the dose response in paediatric patients and in dose recommendation for
renally impaired patients [11, 17]. However “no data-driven system model,
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conceptual or mathematical, will have the level of detail needed to anticipate
all the potential consequences of altering the system via pharmacological in-
tervention” 3 [22]. In fact, their behaviour tend to adhere to the one of the
data used for the parameters identification [21].

Mechanistic models combine accepted laws to describe different parts
of the system under analysis and all their variables and parameters are
typically related to specific elements of the system. For example, the Noyes
Whitney model [25] can be used to describe the drug dissolution in the
intestinal lumen, while the Michaelis Menten [26] equation can be used to
model the phosphorylation of a drug catalysed by a given kinase in a certain
cell. Mechanistic models give higher importance to plausible representation
of the system rather than model parsimony. For this reason, they are
typically over-parametrized and they contain many more laws than the
ones that could be supported by the data. However, this characteristic
leads to a greater capacity of mechanistic models to describe the system
behaviour in situations not already tested or observed [21] (e.g., PK in
special population or in case of interactions between compounds).

When searching for mechanistic models in drug discovery and develop-
ment, one often find three terms: systems biology, QSP and physiologically
based pharmacokinetic (PBPK) models. Systems biology typically refers
to an approach aimed at understanding the biological processes as a whole
integrated system rather than isolated parts [27]. QSP can be included in
the former definition as well [22]. However, the difference between systems
biology and QSP is generally intended as follows: systems biology describe
events at the very foundamental biological scale (e.g., metabolic pathways)
while QSP aims to provide links between this low order scale and higher
order behaviours, such as phenotypes or clinical outcomes. Moreover, QSP
aims to fit to all the drug discovery and development stages [22].

PBPK models are (for some authors arguably [28]) a branch of QSP

3One might argue that the validity of this sentence is not only restricted to data driven
models. In fact, all the models do not have the level of detail needed to anticipate all the
potential consequences of altering the system. This because is not theoretically possible
for a model to accurately represent all the processes happening in a real (open) system
[24].
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lungs

liver

A

B

arterial
blood

venous
blood

Figure 1.1: General structure of a PBPK model. Each organ correspond to a specific compart-
ment and the red and blue arrows represent arterial and venous blood flows, respectively. The
organs and tissues represented in boxes A and B are ‘in parallel’ with respect to the blood flow,
this means that they have separate blood inflows and outflows. Box A: adipose tissue, bone,
brain, gonads, heart, kidney, muscle and skin. Box B : gut, pancreas, spleen and stomach.
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[29, 30]. From the mathematical point of view, PBPK models are compart-
mental models in which each compartment corresponds to a specific organ
or tissue. All these compartments are linked by flow rates representing
the blood circulation [31, 32]. The generic structure of a PBPK model is
shown in figure 1.1. Given the mechanistic nature of PBPK models, all
their parameters correspond to specific system properties. Usually, these
parameters are classified as system-specific and drug-specific [29, 31]. Ex-
amples of systems-specific parameters are the organ volumes, blood flows
and the ones relative to tissue composition (e.g., in terms of water and
phospholipids content). Examples of drug-specific parameters can be the
tissue to plasma partition coefficients, the intrinsic clearance, the gut-wall
permeability or the intrinsic solubility [31].

Although PBPK models are classified as QSP, they have a longer his-
tory. Some authors suggest that the origin of PBPK modelling was in
1937 with the work of Teorell [31, 33]. He recognize that events occurring
in one part of the body are influenced by, and in turn influence, events
that occur in other parts. So, the body behaves as an integrated system
[31, 33]. From 1960s to the early 1970s PBPK models progresses signif-
icantly, although the specific term ‘PBPK’ was not yet used [31]. As it
can be seen from figure 1.2, from 1974 to nowadays there was a continu-
ous increase of publications regarding/mentioning PBPK models. Approx-
imately until the beginning of 2000, the use of these models was mostly
restricted to environmental pollutants and toxicants, where strong con-
straints for data generation in humans exist [34]. Until then, the interest
of pharmaceutical companies and regulatory agencies on PBPK modelling
was low and most of the applications for pharmaceuticals was performed
in academia [31]. However, from the early 2000s the situation changed
and an exponential growth of their use in drug research and development
occurred [34, 35]. Now, PBPK modelling is routinely applied from early
discovery to late drug development [36, 37]. This situation was helped by
several factors [29, 31, 34, 35, 38], including: 1) the presence of adequate
in vitro systems informing the in vivo processes of absorption, distribution,
metabolism and excretion (ADME); the availability of models predicting
plasma-tissue partition coefficients, thus allowing an estimation of drug
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Figure 1.2: Trend in PBPK publication from 1974 to nowadays. The following research was
performed on Scopus on 5 September 2019: ALL ( "PBPK" OR "physiologically based phar-

macokinetics").

tissue distribution without the need of performing expensive experiments
[39, 40, 41, 42]; 3) the development of easy to use commercial tools for
PBPK modelling, such as Simcyp (https://www.certara.com/software/
physiologically-based-pharmacokinetic-modeling-and-simulation/

simcyp-simulator), Gastroplus (https://www.simulations-plus.com/
software/gastroplus/) and PK-Sim (http://www.systems-biology.com/
products/pk-sim/).

PBPK models are used during the process of drug discovery and devel-
opment in a variety of different cases, for example to perform in vitro to in
vivo extrapolation (IVIVE) and to predict drug PK in preclinical species
only by using in vitro data. They are used to predict the human PK before
performing first in human studies, to predict the effect of drug-drug inter-
actions (DDI), the food effect for orally administered compounds and the
effect of age (especially for children younger than two years old). Moreover,
they can be used in a Monte Carlo framework to explore the PK variability
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in a population much numerous than the one that can be observed and
thus, they can predict the characteristics leading to an extreme PK. Com-
prehensive reviews of PBPK applications in pharmaceutical companies can
be found in [11, 31, 36, 37, 38, 43]. During early drug discovery, PBPK
are typically used in a pure bottom-up fashion. In this case, the parame-
ters are estimated by using in silico (e.g., quantitative structure activity
relationship, QSAR [44]) and in vitro models and PBPK models are used
to predict the PK in humans or preclinical species [37]. PBPK models are
used also with a middle-out approach, where some of the model parameters
are calibrated on certain data (e.g., clinical), with the aim of predicting the
system behaviour in unobserved situations [30]. Here ‘reduced’ version of
the models, with ‘lumped’ compartments can be used [31, 45, 46].

PBPK modelling has shown its utility during regulatory review [47, 48]
and for informing the drug labels [37, 35]. In these contexts, PBPK models
are used in decision making and to address questions such as how extrinsic
factors (e.g., DDI) or intrinsic factors (e.g., age, genetics) could influence the
drug exposure-response [47]. From 2008 to 2017 the FDA’s Office of Clinical
Pharmacology received 94 new drug applications (NDAs) including the use
of PBPK models. Here, the aim of PBPK analyses was mainly to address
DDI, followed by the application for paediatric population [49], as shown
in figure 1.3. Of recent significance, EMA and FDA published guidelines
for PBPK modelling and simulations reporting [50, 51]. Concerning QSP
models (excluding PBPK), they are generally present as support of large
evidentiary packages [28].

Referring to PBPK models, Poggesi and co-workers in 2014 posed the
following question: “is it all a success story?”. In these few years the answer
is probably not changed: “no, it is not”.

A study inspired by the Pharmaceutical Research and Manufacturer of
America (PhRMA) initiative reported that the accuracy of PBPK models
to predict the intra-venous (IV) PK was relatively good, while lower perfor-
mances were observed for oral administration [52]. Similar results were ob-
tained in the Oral Biopharmaceutics Tools (OrBiTo) project, where a large
scale evaluation of PBPK models for oral drug absorption showed high vari-
ability in the predictive performances [53, 54, 55]. Moreover, many systems-
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Figure 1.3: Aims of PBPK analyses in the 94 NDAs submitted to the FDA’s Office of Clinical
Pharmacology from 2008 to 2017 [49].

related parameters are still lacking, such as enzymes and transporters abun-
dances in specific tissues, their population variability, inter-correlation and
their relation with demographics [29, 32, 56]. Jamei reported that the lack
of appropriate systems parameters is probably the biggest challenge in the
PBPK models expansion [35].

Along this line, there is a substantial problem that PBPK models share
with almost all the mechanistic models (or, in general, almost all the math-
ematical models): the uncertainty in the parameter values [21].

Many drug-dependent parameters are derived from in vitro experiments,
so, they have uncertainties associated with the measurement errors and to
the difference between the in vitro and in vivo contexts. Other parameters
can be predicted by using models, thus, they are uncertain due to the pre-
diction errors [57]. Other parameters again can be identified from a given
set of data, therefore, they are subject to the estimation errors. For exam-
ple, the human jejunal permeability is a parameter used in PBPK models
to estimate the intestinal drug absorption. This value can be obtained
through a linear regression by using as independent variable the apparent
permeability coefficient (Papp), that in turn is derived by in vitro experi-
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ments involving the Caco-2 cell line and the PAMPA assay [43, 58]. These
measurements can have a significant degree of uncertainty and a substantial
inter-laboratories variability was observed for the Papp values derived from
Caco-2 experiments [43, 59]. Therefore, the human jejunal permeability is
an uncertain parameter and its uncertainty is driven by both measurement
and prediction errors. A similar reasoning could be done for many other
parameters. Moreover, when the PBPK models are used in a population
context, their parameters are variable as well as uncertain.

If the model parameters are uncertain or variable, then, the model out-
puts (e.g., the plasma concentration time curve) would be uncertain or vari-
able too. As highlighted in the recent EMA guideline, there is the need of
understanding the confidence on the PBPK modelling results [50]. For this
reason, the effect of uncertain and variable parameters should be assessed
by understanding how much is the extent of the model outputs variation
and how much this variation is apportioned to the various sources of uncer-
tainty and variability in the model input parameters [21, 50]. This could
be done with uncertainty and sensitivity analyses.

1.3 Introduction to global sensitivity analysis (GSA)

Sensitivity analysis can be defined as “the study of how uncertainty in
the output of a model (numerical or otherwise) can be apportioned to dif-
ferent sources of uncertainty in the model input” [60]. Uncertainty analysis
refers instead to the quantification of the model output uncertainty, with-
out specifying the relation with the input variation and ideally, it precedes
sensitivity analysis [21]. For the purposes of these analyses, the ‘model
outputs’ are scalar quantities of interest obtained after the model evalua-
tion, while the ‘model inputs’ are everything that could produce a variation
in the model outputs [21, 61]. Examples of model outputs in the field of
pharmacology are plasma AUC and Cmax of a certain compound, the drug
concentration in the target tissue, the probability of survival after a given
treatment, the nadir value of neutrophil concentration and so on. Exam-
ples of model inputs are the model parameters, such as the clearance, the
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Figure 1.4: Univariate (OAT) versus multivariate sampling design. With the hypothesis of all the
factors uniformly distributed between 0 and 1 (in this example, two factors, X1 and X2), it is easy
to observe that all the points of an OAT design lay on the surface of a k-dimensional hypersphere
of radius equal to 1/2 (a circle in two dimension), while all the points of a multivariate design
better explore the whole space. This image was inspired by [63].

hepatic enzymes and transporters abundance, the jejunal permeability or
the radius of the particle size of the formulation. Model inputs can be also
the initial conditions, such as the dose, for example for inhaled compounds.
Finally, the parameters relative to the numerical solution of the models can
be considered as inputs as well [21, 62].

In the standard sensitivity analysis setup, the model is seen as an input-
output map, as in equation 1.1.

Y = f(X1, X2, ..., Xk) (1.1)

Y is the model output, Xi, i = 1, ..., k, are the k model inputs (that are
also called factors) and f is the model. In general, it is possible to group
sensitivity analysis methods into two classes: local or global. Local sensi-
tivity analysis is performed when output uncertainty is obtained thorough
small variation around a nominal value. Instead, global sensitivity analysis
(GSA) deals with the presence of uncertain input factors. In this case, a
probability distribution is assigned to each model input and a multivariate
variation of the parameters is performed. Here, Y is obtained by model
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evaluation after sampling from the joint probability distribution of the in-
puts. [21, 61]. For simplicity sake, from now on we would consider the
input factors uniformly distributed in an unit k-dimensional hypercube (as
it is explained in chapter 2, this is not a limitation).

A first mathematical definition of sensitivity is the derivative of Y with
respect to Xi, computed at a given point x∗ of the input space, as in
equation 1.3.

SpXi =
∂Y

∂Xi

∣∣∣∣
X=x∗

(1.2)

One characteristic of this method is that it is informative only at the point
x∗ in which the derivative is computed. For this reason, this method can
be seen as a local method. This could be a limitation if the model inputs
are uncertain and thus could vary within a predefined range [21].

Most of the published sensitivity analyses use te so called one at a time
(OAT) approaches [64]. With these methods, the sensitivity ranking is ob-
tained by increasing (or decreasing) each input factor of a given percentage
and then, by quantifying the model output change. One possible index can
be the following, known as sensitivity index [65].

SIXi =
Ymax,Xi − Ymin,Xi

Ymax,Xi
(1.3)

Ymax,Xi and Ymin,Xi are the maximum and minimum output values ob-
tained by varying Xi over its range, respectively. Although the OAT are
the most commonly used methods to perform a sensitivity analysis, they
have two strong limitations [66]: 1) inefficient exploration of the parame-
ter space; 2) impossibility to detect interactions among factors. These two
limitations are strictly related to each other and they are both caused by
the univariate variation of the input factors.
Concerning the first limitation, from figure 1.4 it is clear that an OAT
design does not efficiently explore the parameter space, conversely to a
multivariate variation. In 2010 Saltelli and Annoni introduced a geometric
proof of the OAT inefficiency [66]. All the points of an OAT design are by
construction included in a k-dimensional hypersphere (although they can
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Figure 1.5: Geometric proof of OAT inefficiency in the exploration of the factor space. All the
points of an OAT design are internal to a k-dimensional hypersphere (in particular they lay
on the surface), while all the points of a multivariate design are internal to a k-dimensional
hypercube, of volume equal to 1. The volume of a k-dimensional hypersphere is equal to V (k) =

πk/2

Γ(0.5·k+1)
(0.5)k, with Γ the ‘gamma’ function (gamma command in MATLAB) and k the number

of dimensions. It is possible to observe that the volume of the hypersphere rapidly drops to zero
as k increases.

be included in a much smaller volume as well). As it can be seen from fig-
ure 1.5, as the number of dimensions increases, the ratio of the hypersphere
volume with the whole input factors space volume (i.e., the volume of an
unit k-dimensional hypercube, that is equal to 1), drops rapidly to zero.
Thus, in a high dimensional space, OAT is non-exploratory and so, it is
equivalent to a local method.
Concerning the second limitation, interaction effects happen when the im-
pact of some parameter on a given model output depends on the value of
other parameters, as exemplified in figure 1.6. In sensitivity analysis it is
crucial to detect the interaction effects, because they could be the most im-
portant in determining the model output variation [67]. By performing an
univariate variation, for OAT methods is impossible to detect these effects
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𝐶𝑠

𝑃𝑒𝑓𝑓 𝑃𝑒𝑓𝑓

𝑓𝑎 ≅ 1 𝑓𝑎 ≅ 0 𝑓𝑎 ≅ 0 𝑓𝑎 ≅ 0

high

high high

low

low low

Figure 1.6: Example of interactions among factors. Let us consider a simple model describing
the fraction absorbed (fa) of a given compound after oral administration. This model has two
parameters, drug solubility (CS) and permeability across the gut wall layer (Peff ). If CS is
supposed to be high, then the variation of Peff (high or low), will control the extent of fa. For
high permeabilities we would have almost a complete absorption, while no absorption occurs for
low permeabilities. If CS is instead supposed to be (very) low, then no matter how is the value
of Peff , fa would always be low. Thus, the impact of Peff variation on fa depends on CS
values. Interaction effects happen when the impact of the variation of some parameters (Peff )
on a given model output (fa) depends on the value of other parameters (CS).

[66].
Moreover, OAT methods are inadequate for the uncertainty analysis as
well. In fact, for all the reasons explained above, they are not able to
appropriately identify the output distributions [66].

There is the need of methods for sensitivity analysis that consider the
input factors in their whole range of uncertainty or variability and that
perform a multivariate variation. These are the characteristics of GSA
[21]. A variety of methods exists to perform GSA and some of them are
reported in chapter 2. Probably, the most simple and qualitative method
is to look at the scatter plots of the model output versus each input factor
[21]. Although its simplicity, this method is really informative. In fact, it is
possible to appreciate the type of dependency of Y on Xi and the presence
or absence of interaction effects.

Concerning quantitative methods, the properties of good GSA indices
are listed below [68].
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1. Introduction

• Cope with the influence of scale and shape. The effect of the input
factors on the model output should depend on their range of variation
and on the shape of their probability density function (pdf).

• Include multidimensional averaging. This property refers to the fact
that the effect of each factor should be evaluated when all the other
inputs are allowed to vary as well. By doing this, it is possible to
detect the interaction effects.

• Be model independent. The GSA method should be suitable for all
the models, regardless of their linearity or additivity.

• Be able to treat grouped factors as if they were single factor. This
property refers to the simplification of the sensitivity analysis results,
especially in presence of a large number of factors.

In the works reported in this thesis, we generally used the variance based
method [21, 69]. In variance based GSA two sensitivity indices, which
are called main effect (Si) and total effect (ST i), are derived from the
decomposition of the variance of Y (V (Y )). Si is the portion of V (Y )
explained by the factor Xi taken singularly, while ST i is equal to Si plus
all the interaction effects involving Xi.

Dependently on the aims of GSA, it is possible to identify several set-
tings for the analysis [21].

• Factor prioritization. Here the aim is to detect and rank the factors
that if fixed cause the greatest reduction in the output variance. This
setting could be useful to understand what parameters need to be
better known to reduce the uncertainty in the model predictions.

• Factor fixing. Here the aim is to identify the factors that if left free
to vary do not impact the model output variation. This setting could
be useful to simplify the models.

• Variance cutting. This setting is used when one wants to reduce
the model output variance below a certain threshold. This could
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Figure 1.7: Trend in GSA publication for PBPK models from 1980 to nowadays. The
following researches were performed on Scopus on 3 September 2019: ALL ( ( "PBPK" OR

"physiologically based pharmacokinetics" ) AND "global sensitivity analysis" ); ALL

( ( "PBPK" OR "physiologically based pharmacokinetics" ) AND "sensitivity analysis"

AND NOT "global sensitivity analysis" ). In the figure label, ‘SA’ stands for sensitivity
analysis.

be useful to select the characteristics of a population in order to be
homogeneous in terms, for example, of drug exposure.

• Factor mapping. This setting is used to identify what factors cause
the model output to be or not to be in a certain group, for example,
over or below a threshold. This could be useful to understand what
parameters or covariates lead the plasma concentration to be above
the toxicity level. For this setting, Monte Carlo filtering methods can
be used [70].

Many authors advocated the use of sensitivity analysis for PBPK mod-
els [31, 37, 43, 48, 50, 51] and some authors advocated and used global
approaches [46, 71, 72, 73, 74, 75, 76, 77]. However, as it can be seen in
figure 1.7, the number of PBPK publications mentioning ‘global sensitiv-
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1. Introduction

ity analysis’ is still much lower than the ones mentioning just ‘sensitivity
analysis’ without the word ‘global’. Moreover, by comparing figure 1.1 and
figure 1.7 it is possible to observe that only few publication regarding PBPK
models include the words ‘sensitivity analysis’.

1.4 Thesis outline

During these three years of PhD studentship I applied uncertainty and
sensitivity analyses in a variety of different situations, mainly involving
PBPK modelling and simulation. Through these examples, the aim of the
thesis is to show the utility of uncertainty analysis and GSA for mechanistic
models in the field of pharmacology.

In chapter 2, I reported a brief review of the main techniques used for
GSA. Then, I applied them on two simple benchmark models.

In chapter 3, I described my first application of GSA on PBPK models,
that was done in the context of a collaboration with the Pharmacometrics
and Systems Pharmacology group of the Universidad de Navarra. The
objective of that work was to build a mechanistic model describing the PK
of the anticancer pro-drug gemcitabine and to predict the in vivo formation
of its active metabolite in patients tumour tissue. Here GSA was used to
understand what are the physiological and genetic characteristics that lead
to different active metabolite exposures in the target tissue and thus, that
drive the treatment outcome.

In chapter 4, I described one of the activities that I performed during my
abroad period at the University of Manchester. Here the context is the one
of the outcomes of the OrBiTo project. One of the various objectives of Or-
BiTo was to perform a large scale evaluation of PBPK models for oral drug
absorption, to identify strengths and weaknesses of these models. However,
the results of the analysis showed high variability in the performances. Here
we used GSA to improve the understanding of PBPK absorption models by
identifying what are the parameters that mainly drive the ‘between-drugs’
variability of the model predictions. Later, we called this type of analysis
‘inter-compounds GSA’. With the GSA results, it is possible to guide the
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1.4. Thesis outline

choice of the parameters that can safely be assumed or that require data
generation in order to allow informed model predictions.

In chapter 5, I reported the application of GSA during the development
of a PBPK model for inhaled compounds in rats. This was done in the
context of a collaboration with the company Chiesi Farmaceutici. Here
we identified two way of performing GSA, that we called inter-compounds
and intra-compound. Inter-compounds GSA considers the between-drug
parameters variability and it was found to be particularly useful during the
model building phase. Intra-compound GSA mostly considers the uncer-
tainty associated with the parameters relative to a particular drug, thus, it
was found to be useful when the PBPK model is used to describe the PK
for a given compound.

In chapter 6, I described another activity that I performed at the Uni-
versity of Manchester. Here we used uncertainty analyses to characterize
the effect of plausible correlations between enzymes and transporters in-
volved in drug metabolism and disposition on the outputs of mechanistic
models. Moreover, we quantified the potential impact of these correlations
on GSA. Here uncertainty and sensitivity analyses helped in highlighting
what correlations are of potential interest and therefore, these analyses can
be useful for informing experimental design.

Finally, the overall conclusions are reported in chapter 7.
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Chapter 2
Methods for Global
Sensitivity Analysis

In this chapter we are firstly going to explain some of the techniques used
for GSA, in particular the methods based on linear models, the variance
based method and one example of moment-independent methods. For a
more complete review see for example [21, 61, 65, 78, 79]. Then, we report
the application of these techniques on two benchmark models: one simple
linear model and a widely used model in the pharmacometrics filed, that
is the one describing the course of neutropenia in patients treated with
paclitaxel [80, 81, 82].

2.1 GSA methods - theory

All the GSA techniques here investigated share, to a certain extent, a
similar framework. The model is generally considered as a black box:

Y = f(X) = f(X1, X2, ..., Xk), (2.1)

where Y is a scalar model output, Xi, i = 1, ..., k, are the k scalar input
parameters (that, in GSA literature, are called factors), X is a vector con-
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2. GSA methods

Table 2.1: Notation

Name Description

X vector of model input factors
Xi the i-th element of X
X∼i all the elements of X except Xi
xi a vector of n samples extracted from the pdf of Xi
xji the j-th element of xi
Y model output
y vector of outputs obtained after model evaluation
yj the j-th element of y
E(z) expected value of the random variable z
Eξ(z) expected value of z over ξ
V (z) variance of z
Vξ(z) variance of z over ξ
Ωz support of z

taining all the Xi and f is the input-output relationship, that would be our
model [21]. The notation used in this chapter is shown in table 2.1.

GSA methods deal with the presence of uncertainty in the model input
factors, so, both Xi, i = 1, ..., k, and Y are considered random variables.
All the Xi are generally considered independent (although, in certain cases,
this hypothesis can be relaxed) and uniformly distributed between 0 and 1.
So, the support of X would be

ΩX = {X | 0 ≤ Xi ≤ 1; i = 1, ..., k}. (2.2)

To perform GSA, first samples must be extracted from the distributions
of the parameters. The extractions can be designed by using pseudo-
random strategies (e.g., rand function in MATLAB), latin hypercube sam-
pling method or quasi-random strategies [21, 83]. The latter two methods
would explore the parameters space better with respect to the former. All
these methods extract samples from the unit hypercube, so, the inverse
cumulative distribution function can be used to convert each sample from
the uniform distribution to the desired probability density function (pdf).
Then, for each of the parameters sets, the model is evaluated and the out-
puts of interest are computed. Finally, sensitivity indices are calculated for
each of the considered model output.
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2.1. GSA methods - theory

2.1.1 Methods based on linear models

Some global sensitivity measures can be derived from the fitting of lin-
ear models, considering the factors (X) as the independent variables and
the model output (Y ) as the dependent variable. Sensitivity indices are
calculated on a dataset of n samples of the model input parameters, xi,
i = 1, ..., k, and the relative model output y. For a review of these methods
see, for example, [65, 78].
The main indices are:

• Pearson correlation coefficient :

ρ(xi,y) =

∑n
j=1(xji − E(xi))(y

j − E(y))

σxi σy
(2.3)

σxi and σy are the standard deviation of xi and y. This index ranges
from -1 to 1 and it is equal to 0 when no linear correlation exists
between xi and y.

• Partial correlation coefficient (PCC):

PCCi = ρ(xi − x̂i,y − ŷ∼i) (2.4)

ρ(a, b) is the Pearson correlation coefficient of a and b. x̂i is the value
of Xi predicted by using a linear model with all the other factors
(x∼i) as independent variables. Similarly, ŷ∼i is the model output
predicted by using a linear model with x∼i as independent variables.
PCC eliminates linear correlations that may exist between xi and
x∼i and between y and x∼i. So, this index can be useful in case of
correlation between the factors. In case of no correlation, the PCC
sensitivity ranking would not differ from the Pearson correlation co-
efficient ranking [65].

• Standardized regression coefficient (SRC):

SRCi = βi

√
V (Xi)

V (Y )
(2.5)
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2. GSA methods

βi is the linear regression coefficient of Xi. SRC2
i is the portion of

the variance of Y , V (Y ), explained by the variation of Xi, if the
model is linear [21, 78]. SRC can be viewed as a kind of variance
decomposition method.

The strength of the linear assumption can be tested with standard sta-
tistical techniques such as the R2. If the relationship between the factors
and the output is not linear, but it is monotonic, these indices can still be
used with the ranked transformed data, obtaining: Spearman correlation co-
efficient, partial rank correlation coefficient (PRCC) and standardized rank
regression coefficient (SRRC).

If the objective of the GSA is the factor fixing, then, linear regression
techniques with regularization, such as the lasso (least absolute shrinkage
and selection operator) [84] can be used. The lasso minimize the sum of
residual squares with a L1 penality. This can be written as in equation 2.6,
or, in the Lagrangian form, as in equation 2.7 [85],

β̂lasso = arg min
β

n∑
j=1

(
yj − β0 −

k∑
i=1

xji βi

)2

subject to
k∑
i=1

|βi| ≤ t

(2.6)

β̂lasso = arg min
β

{
1

2

n∑
j=1

(
yj − β0 −

k∑
i=1

xji βi

)2

+ λ
k∑
i=1

|βi|
}

(2.7)

where t and λ are the regularization parameters. One characteristics of
the L1 penality it is that, with t sufficiently small (or λ sufficiently big), it
causes some of the βs to be exactly equal to 0. Thus, lasso makes a kind
of continuous feature selection [85]. The best λ (or t), can be chosen such
as it minimize the cross validation error. Another commonly used rule is
the one called ‘one-standard error’, that choose λ such as its error is one-
standard deviation higher than the best model (in the direction of higher
regularization) [85].
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2.1. GSA methods - theory

All these methods based on linear models are easy to use (they are all
implemented in MATLAB and in libraries of R and Python) and the sensi-
tivity indices are easy to interpret. However, the linearity (or monotonicity)
assumption sometimes can be too strong. Moreover, to estimate the inter-
action effects all the possible combination of parameters (e.g., X1 · X2 or∏k
i=1Xi) should be included as regressors in the linear model. This can be

challenging, especially with a high number of factors and with non-linear
or non-monotonic dependencies between Y and X.

2.1.2 Variance based method

Theory

Variance based sensitivity indices can be derived from the functional
decomposition, known as high dimensional model representation (HDMR),
presented by Sobol in 1993 [69]. Let Y = f(X) be a function defined in
a k dimensional unit hypercube ΩX (equation 2.2), the HDMR of f(X) is
defined as follows:

f(X) = f0 +

k∑
i=1

fi(Xi)+
∑
i

∑
j>i

fij(Xi, Xj)+ ...+f1,...,k(X1, ..., Xk), (2.8)

where fi(Xi) are first order functions, fij(Xi, Xj) are second order functions
and so on. If f0 is constant and for each of the summands fi1,...,is , 1 ≤ s ≤ k,
is valid ∫

ΩXj

fi1,...,isdXj = 0, 1 ≤ j ≤ s, (2.9)

that is, the integral of each summand taken over one of ‘its’ variables is
equal to zero, then, the HDMR has the following properties [69]:

• all the HDMR summands are orthogonal,∫
ΩX

fi1,...,isfj1,...,jtdX = 0, (i1, ..., is) 6≡ (j1, ..., jt); (2.10)
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• the HDMR decomposition is unique for any function f(X) integrable
in ΩX.

From equation 2.8, considering the summands orthogonality (equation
2.10) and considering that all the Xi are uniformly distributed random
variables (thus, their pdf p(Xi) is equal to one in ΩXi), it is possible to
uniquely express all the summands fi1,...,is with different integrals of f .
f0 is obtained as in equation 2.11 by integrating f(X) over X and it results
equal to the expected value of Y , E(Y ) [69].

f0 =

∫
ΩX

f(X)dX = E(Y ) (2.11)

It is possible to obtain the definition of the first order term fi by integrating
f over X∼i, as in equation 2.12.

∫
ΩX∼i

f(X)dX∼i = f0 + fi

fi =

∫
ΩX∼i

f(X)dX∼i − f0 = EX∼i
(Y |Xi)− f0 (2.12)

Similarly, it is possible to define the second order terms (equation 2.13) and
so on.

∫
ΩX∼ij

f(X)dX∼ij = f0 + fi + fj + fij

fij =

∫
ΩX∼ij

f(X)dX∼ij − f0 − fi − fj = EX∼ij
(Y |Xi, Xj)− f0 − fi − fj

(2.13)

If f(X) ∈ L2, we subtract f0 from both the sides of equation 2.8, we
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square them and we integrate over X, we can obtain the following relation.∫
ΩX

(
f(X)− f0

)2
dX =

∫
ΩX

( k∑
i=1

fi(Xi) +
∑
i

∑
j>i

fij(Xi, Xj) + ...+ f1,...,k(X1, ..., Xk)

)2

dX

(2.14)

The left term of equation 2.14 is equal to the variance of Y , V (Y ). Thanks
to the summands orthogonality, we can obtain the relation in equation 2.15
[69].

V (Y ) =
k∑
i=1

Vi +
∑
i

∑
j>i

Vij + ...+ V1,...,k (2.15)

The functional decomposition of the variance presented in equation 2.15
is also known as functional ANOVA [67, 86]. Vi = VXi(EX∼i

(Y |Xi)) is the
first order term and it is the portion of V (Y ) explained by the variation
of each Xi taken singularly [87]. Vij = VXi,Xj (EX∼ij

(Y |Xi, Xj))− Vi − Vj
is the second order term and it is the portion of V (Y ) explained by the
interactions between Xi and Xj . Similarly, it is possible to define all the
higher order interaction terms.
Variance based or Sobol’s sensitivity indices can be defined from 2.15 as in
equation 2.16 [69].

Si1,...,is =
Vi1,...,is
V (Y )

(2.16)

There are 2k−1 indices and they are always between 0 and 1. It is possible
to define the indices also for group of factors. From equations 2.16 and 2.15
it is possible to find that the sum of all the indices is always equal to 1
(2.17).

1 =
k∑
i=1

Si +
∑
i

∑
j>i

Sij + ...+ S1,...,k (2.17)

The most important among all the Sobol’s indices is the one related to
the first order terms, known as main effect or first order sensitivity index,
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in equation 2.18 [87].

Si =
Vi

V (Y )
=
VXi(EX∼i

(Y |Xi))

V (Y )
(2.18)

The main effect is generally interpreted as the expected reduction in V (Y )
if Xi could be fixed [88]. Si has a long history, in fact it was originally
defined by Pearson in 1905 and it was known as correlation ratio [89].
To perform a ‘complete’ GSA, one should compute all the terms for all the
orders, but this could be computationally demanding and it would increase
the difficulty in the analysis interpretation (this because there would be too
many indices to look at) [21, 78]. One could, for example, limit the analysis
to the main effect. However, by doing this all the interactions between the
parameters would be ignored. This fact could lead to an underestimation of
the factors importance in explaining V (Y ). In fact, the higher order terms
can be the most important ones and so, their importance must be assessed
1 [67].

To overcome this limitation, Homma & Saltelli in 1996 [90] and Wag-
ner in 1995 [91] introduced the so-called total effect. The total effect is a
sensitivity index that considers the impact of each parameter taken alone,
plus all the interactions of all the orders in which that parameter is involved.
To account for the interactions, let us consider the value VX∼i(EXi(Y |X∼i)).
This term includes the effect of any order, for any factor but Xi [21]. In fact,
the dependency on Xi is removed by the expected value EXi and the vari-
ance is computed over all the X but Xi. So, the larger VX∼i(EXi(Y |X∼i))
becomes, the smaller the overall effect of Xi (first order plus all the inter-
actions) is. Considering the relation in equation 2.19, the total effect for a
given factor Xi can be defined as in equation 2.20 [21, 87].

1Only in the case of a linear model, such as Y =
∑k
i=1 Xi, we know in advance that

the interaction terms are all equal to 0. Let us consider instead the model Y = X1 ·X2,
with X1 distributed normally with mean equal to 1 and variance equal to 1 and X2

distributed normally with mean equal to 0 and variance equal to 1. The main effect of
X1 is equal to 0, because X2 has mean 0. Thus, by limiting the analysis on the main
effect, one may conclude that X1 has no impact on V (Y ). Intuitively, this conclusion is
wrong. In fact, X1 impact can be observed if X2 is allowed to vary from its mean value.
Thus, X1 impact on V (Y ) is due to the interaction effect with X2.
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V (Y ) = VX∼i(EXi(Y |X∼i)) + EX∼i(VXi(Y |X∼i)) (2.19)

ST i = 1− VX∼i(EXi(Y |X∼i))
V (Y )

=
EX∼i(VXi(Y |X∼i))

V (Y )
(2.20)

As previously written, ST i contains any term of any order in 2.15 that
include the factor Xi, therefore ST i ≥ Si.

Variance based GSA substantially consists in the computation of the
main and the total effect for all the model parameters that are considered
variable. The larger ST i is, the more important Xi is in explaining V (Y );
ST i = 0 is a necessary and sufficient condition for the factor Xi to be consid-
ered non-influential. The difference between ST i and Si gives information
about the extent of the interactions involving Xi. The results of a variance
based GSA can be presented, for example, by using a barplot, as shown in
figure 2.1.

The characteristic of variance based GSA is that the importance of each
factor is related with the portion of output variance that it explains with
its variation. Thus, with this method, the variance is used to represent
the uncertainty of Y . This could be a problem, because the variance is a
sufficient measure of the variability only under certain assumptions (e.g.,
normality) [61]. Moreover, it is difficult to robustly estimate the variance
of fat-tailed or skewed distributions. This fact could lead to instability in
the estimation of variance based indices from samples to samples. One way
to overcome this problem could be to use a transformation of Y as output
variable, such as log Y . However, results in log-scale (or, generally, in other
scales) do not easily translate back to a linear scale [92].

Implementation

It is possible to estimate the variance based sensitivity indices by using
Monte Carlo based methods [21, 69, 87] or by using the Fourier Amplitude
Sensitivity Test (FAST) [93, 94]. It was shown that for a number of input
factors higher that 10, FAST is biased, unstable and costly [78, 95]. So,
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a) model without interactions
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Figure 2.1: Example of GSA on models with and without interactions, with 4 factors all normally
distributed with mean 0 and variance 1. (a) Y = X1 +

√
2X2 +

√
3X3 +

√
4X4, it is possible to

observe that Si w STi and that the factors explain around 10%, 20%, 30% and 40% of V (Y ). (b)
Y = X1 +X2 +X2X3 +X2X3X4, it is possible to observe that there are interaction effects, in
particular, X3 and X4 impacts are only related to terms with order higher than 1. All the indices
were calculated by using the method presented in this section, with 10000 samples. Error bars
represent the 95% confidence interval of the sensitivity indices numerical estimation. Negative
values for indices whose value is close to zero are due to numerical errors [21].

we used the Monte Carlo approach presented in the book Global Sensitivity
Analysis: The Primer [21], that refers to Saltelli’s work in 2002 [87], that in
turn is an optimization of the method proposed by Sobol [69] and Homma
& Saltelli [90].

The Monte Carlo method that we used consists in four steps:

1. Generate two (n, k) matrices A and B, that contain n samples drawn
from the k factors pdf.

A = [xA,1,xA,2, ...,xA,k]

B = [xB,1,xB,2, ...,xB,k]
(2.21)

with xA,i and xB,i vectors containing n samples of Xi in A and B,
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2.1. GSA methods - theory

respectively.

2. Create k matrices Ci that are equal to B except the i-th column that
would be equal to xA,i.

Ci = [xB,1,xB,2, ...,xA,i, ...,xB,k] (2.22)

3. Compute the model output for all the n rows of A, B and Ci, in
order to obtain k + 2 model output vectors, yA, yB and yCi .

4. Compute the main (Si) and the total effect (ST i) as follows.

Si =
1
n

∑
j y

j
Ay

j
Ci
− 1

n2

∑
j y

j
A

∑
j y

j
B

1
n

∑
j(y

j
A)2 − f̂0

2

ST i =
1
n

∑
j y

j
By

j
Ci
− f̂0

2

1
n

∑
j(y

j
A)2 − f̂0

2

f̂0
2

=
( 1

2n

∑
j

yjAB

)2

(2.23)

yAB is a vector obtained concatenating yA and yB. This is done to
allow a more robust estimation of f̂0.

With this approach, the model would be evaluated n(k+2) times. To calcu-
late the confidence intervals of the sensitivity indices estimates, a bootstrap
approach can be used [67, 83].

2.1.3 Moment independent methods

GSA methods that consider the whole output distribution, rather than
a singular moment (such as the variance based method), are called mo-
ment independent. Here we describe only one particular index, known as δ
sensitivity measure, proposed by Borgonovo in 2006 [96]

Let pY be the probability density function of the model output Y . If we
fix one factor to a particular value, Xi = x∗i , we can obtain the conditional
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Figure 2.2: Unconditional and conditional densities. Blue area represent the measure of the
distances between the two pdf.

density of Y , pY |Xi=x∗i . To measure the impact of fixing Xi to x∗i on pY ,
one can introduce a distance measure between pY and pY |Xi=x∗i (blue area
in figure 2.2), such as:

ai(x
∗
i ) =

∫
ΩY

|pY − pY |Xi=x∗i |dY. (2.24)

However, Xi is a random variable and can assume other values in its sup-
port. Thus, a sensitivity measure can be derived by computing the expected
value of ai over all the possible Xi values. By doing this, we can obtain the
δ sensitivity index for Xi, shown in equation 2.25.

δi =
1

2
EXi

[∫
ΩY

|pY − pY |Xi=x∗i |dY
]

(2.25)

δ index has several interesting properties (see [61, 96]), such as:

• 0 ≤ δi ≤ 1;

• δi = 0 if and only if the Y is independent from Xi;
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• the sensitivity measure of a group containing all the factors is equal
to 1, δ1,...,k = 1;

• δi is monotonic invariant.

The last property refers to the fact that δi for Y is equal to δi for any
monotonic transformation of Y (e.g., log Y ).

Concerning the computation of the indices, it seems to be not trivial. In
fact, to calculate the sensitivity indices, the samples of each Xi have to be
grouped in M classes and then the pY and p

Y |Xi=xji
, j = 1, ...,M , are fitted

using the kernel smoothing method [97]. So, one should carefully asses how
the choice of the design parameters (such as the number of classes M and
the kernel functions) impacts the values of δi.

Another popular sensitivity measure belonging to the class of moment
independent methods, is the one called PAWN [98]. The idea here is to use
the cumulative density function rather than the pdf and then to characterize
the distance between pY and pY |Xi=x∗i by using the Kolmogorov-Smirnov
statistic. This method is implemented in the SAFE toolbox (https://www.
safetoolbox.info/). However, a recent work showed that the sensitivity
indices obtained by using PAWN may be sensitive to the design parameters
(arXiv:1904.04488 [stat.AP]).
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2.2 Application to a model describing neutrope-
nia time course

2.2.1 Model description

This benchmark model was taken from [80, 81], that in turn is derived
from the widely known Friberg model [82]. The model describes the time
course of neutropenia in response to a treatment with paclitaxel, a cytotoxic
drug. The model is composed by two parts, one describing the paclitaxel
PK and the other one the neutrophils level in response to the treatment
(PD).

The PK model has three compartments and it is reported in equation
system 2.26.

dm1

dt
= −

(
VM,el

KM,el +m1/V1
+

VM,tr

KM,tr +m1/V1
+Q

)
m1

V1
+ k21m2 +Q

m3

V3

dm2

dt
=

VM,tr

KM,tr +m1/V1

m1

V1
− k21m2

dm3

dt
= Q

(
m1

V1
− m3

V3

)
(2.26)

m1, m2 and m3 are the drug masses (in µmol) in the three compartments,
V1 and V3 are compartment 1 and 3 volumes. VM,el, KM,el and VM,tr,
KM,tr are the Michaelis-Menten parameters relative to drug elimination
from compartment 1 and drug transfer from the first to the second com-
partment, respectively. k21 is the rate transfer from compartment 2 to
compartment 1 and Q is the flow between compartment 1 and 3.
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The PD model is reported in equation system 2.27.

dP

dt
= kprol P FB (1− Edrug)− ktr P

dT1

dt
= ktr (P − T1)

dT2

dt
= ktr (T1 − T2)

dT3

dt
= ktr (T2 − T3)

dC

dt
= ktr T3 − kel C

FB =

(
C0

C

)γ
Edrug = SL

m1

V1

(2.27)

P , T1, T2, T3 and C are the proliferative cells, transit compartment 1,
2, 3 and circulating cells concentration (in 109cells/L). kprol is the time
constant of cellular proliferation, ktr is the transit time between the com-
partments and kel is the time constant associated with the elimination of
the circulating cells. ktr was set equal to 4/MMT , where MMT is the
mean maturation time. Moreover, ktr = kprol = kel [80, 81]. FB is the
feedback term and depends on C, C0 (baseline concentration of circulating
cells) and γ. Edrug is the drug effect on cells proliferation and it is a lin-
ear function of drug concentration in compartment 1, with SL the ‘slope’
parameter.

Both inter-individual and inter-occasion variabilities (iiv and iov, re-
spectively) are present for some of the model parameters. An exponential
model was used to describe the iiv, as in equation 2.28.

θi = θpop e
ηθ (2.28)

θi is the subject parameter, θpop is the population mean and ηθ ∼ N (0, ω2
θ,η)

is the inter individual variability parameter, with ω2
θ,η the variance. The
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Table 2.2: Paclitaxel model parameters

Parametersa mean iiv (CV [%]b) iov (CV [%]b) units

PK

V1 10.8 37.3 L
V3 275 46.2 L
KM,el 0.576 µM
VM,el 35.8 17.8 15.2 µmol/h
KM,tr 1.43 69.8 µM
VM,tr 177 28.7 µmol/h
k21 1.11 9.31 h−1

Q 15.6 45.8 L/h
PD

MMT 141 27 h
SL 2.6 44.9 L/µmol
γ 0.2
C0 6.48 31.6 109cells/L

residual variabilities

RESbPK 18.2 %
RESbPD 31.6 %
a All the parameters were taken from [81].
b CV in natural scale is considered approximately equal to the
standard deviation in logarithmic scale [99].

iov is also modelled by using 2.28. In case a parameter has both iiv and
iov, equation 2.29 was used.

θi = θpop e
ηθ+κθ (2.29)

κθ ∼ N (0, ω2
θ,κ) is the inter occasion variability parameter, with ω2

θ,κ the
variance. In this model, the occasion is the chemotherapy cycle.
All the parameters values are reported in table 2.2.

2.2.2 GSA results

The model was evaluated on 10000 samples extracted from the input
parameters pdf by using a Latin hypercube sampling strategy. In figure 2.3
the paclitaxel plasma concentration (m1/V1) and the circulating neutrophils
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Figure 2.3: Output of paclitaxel PKPD model. Residual variability on the observations was not
included in the simulated time curves.

level (C) are reported, respectively. For GSA, nadir value of neutrophil con-
centration (Cnadir) and its time of occurrence (tnadir) were used as output
references. All the model input parameters samples and the relative out-
puts were used to perform the GSA with the methods presented in section
2.1, except for the variance based method. For the latter, the algorithm
presented in 2.1.2 was used, with a number of samples for the construction
of A and B matrices equal to 10000.

Before doing a GSA, it is appropriate to look at the model output
distributions (figure 2.4) and at the scatter plot of the model output versus
the model input parameters (figures 2.5 and 2.6). From figure 2.5 it is
possible to observe that Q, MMT , SL, C0 and RESPD are the parameters
with the highest correlation with Cnadir. Moreover, it could be seen that
interaction effects occur for SL, C0 and RESPD. This happens because
the variation of these parameters causes a modification in the confidence
interval width of Cnadir. From figure 2.6 it is clear that the most important
parameter in explaining tnadir variation is MMT .

All the GSA results obtained by using the Pearson correlation coeffi-
cient, PCC, SRC, lasso, the variance based method and the δ sensitivity
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Figure 2.4: Histograms of model outputs. Residual variability in the observation was included
in the histograms.

indices are reported in table 2.3 for Cnadir and in table 2.4 for tnadir. Results
of variance based GSA are also shown in figure 2.7.

Concerning Cnadir, it is possible to observe that all the methods give,
more or less, the same factor ranking (at least for the first five sensitive
parameters). This probably happens because the input-output relationship
is almost linear. In fact, R2 of the linear regression is equal to 0.8. Moreover,
from figure 2.7 it can be seen that the interaction effects are not strong
enough to change the factor ranking done considering only the first order
terms. However, one difference between the variance based, the δ sensitivity
indices and the other methods is in the factor fixing setting. For all the
methods based on linear models, the sensitivity indices relative to VM,el

variabilities have approximately the same order of magnitude of SL. For
Sobol and δ methods, instead, the VM,el sensitivity indices are one order of
magnitude lower than the one of SL.

Concerning tnadir, as for Cnadir, all the methods give approximately the
same factor ranking too, at least for the two most important parameters.
In this case, R2 of the linear regression is close to 0.9.
Similarly to the results for Cnadir, one difference between Sobol and δ in-
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Table 2.3: Cnadir GSA results

Parameters Pearson PCC SRC lasso ST δ

sensitivity indices

V1 0.04 0.08 0.03 0.01 -0.01 0.02
V3 0.05 0.14 0.06 0.04 -0.01 0.02
VM,el iiv 0.17 0.37 0.17 0.15 0.04 0.05
VM,el iov 0.15 0.33 0.15 0.13 0.01 0.05
KM,tr -0.08 -0.18 -0.08 -0.05 -0.01 0.03
VM,tr 0.09 0.2 0.09 0.06 0 0.03
k21 -0.04 -0.06 -0.03 0.004 -0.01 0.02
Q 0.21 0.42 0.21 0.18 0.05 0.07
MMT 0.31 0.58 0.31 0.29 0.1 0.11
SL -0.52 -0.77 -0.53 -0.5 0.36 0.24
C0 0.4 0.67 0.4 0.37 0.26 0.16
RESPK 0.01 -0.01 0 0 -0.01 0.01
RESPD 0.4 0.67 0.4 0.37 0.25 0.15

factor ranking

1st SL SL SL SL SL SL
2nd C0 RESPD RESPD RESPD C0 C0

3rd RESPD C0 C0 C0 RESPD RESPD
4th MMT MMT MMT MMT MMT MMT
5th Q Q Q Q Q Q
6th VM,el iiv VM,el iiv VM,el iiv VM,el iiv VM,el iiv VM,el iov
7th VM,el iov VM,el iov VM,el iov VM,el iov RESPK VM,el iiv
8th VM,tr VM,tr VM,tr VM,tr k21 VM,tr
9th KM,tr KM,tr KM,tr KM,tr VM,el iov KM,tr
10th V3 V3 V3 V3 V1 V3

11th V1 V1 V1 V1 V3 V1

12th k21 k21 k21 k21 KM,tr k21

13th RESPK RESPK RESPK RESPK VM,tr RESPK

dices, with respect to all the other methods, is still in the factor fixing
setting. In fact, for the methods based on linear models, other parameters
(such as SL, Q, VM,el) have the sensitivity indices with the same order of
magnitude of MMT . Instead, Sobol and δ methods tend to discriminate
better the importance of MMT .
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Table 2.4: tnadir GSA results

Parameters Pearson PCC SRC lasso ST δ

sensitivity indices

V1 -0.02 -0.05 -0.02 0 0.01 0
V3 0.01 -0.01 0 0 0.01 0
VM,el iiv -0.09 -0.23 -0.08 -0.05 0.02 0.02
VM,el iov -0.07 -0.21 -0.07 -0.04 0.02 0.01
KM,tr 0 0.07 0.02 0 0.01 0
VM,tr -0.03 -0.09 -0.03 0.002 0.01 0
k21 0.02 0.04 0.01 0 0.01 0
Q -0.08 -0.23 -0.08 -0.05 0.02 0.01
MMT 0.92 0.94 0.92 0.89 0.93 0.65
SL 0.2 0.54 0.2 0.18 0.06 0.06
C0 0 0 0 0 0 0
RESPK 0 0.02 0.01 0 0 0.01
RESPD -0.01 0.01 0 0 0 0.01

factor ranking

1st MMT MMT MMT MMT MMT MMT
2nd SL SL SL SL SL SL
3rd VM,el iiv VM,el iiv VM,el iiv VM,el iiv Q VM,el iiv
4th Q Q Q Q VM,el iiv Q
5th VM,el iov VM,el iov VM,el iov VM,el iov VM,el iov RESPK
6th VM,tr VM,tr VM,tr VM,tr VM,tr VM,el iov
7th k21 KM,tr KM,tr V1 V3 RESPD
8th V1 V1 V1 V3 KM,tr KM,tr
9th V3 k21 k21 KM,tr V1 VM,tr
10th RESPD RESPK RESPK k21 k21 V1

11th RESPK RESPD RESPD C0 RESPK C0

12th KM,tr V3 V3 RESPK RESPD V3

13th C0 C0 C0 RESPD C0 k21
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Figure 2.5: Scatter plot nadir concentration (109cells/L) versus input parameters (normalized
between 0 and 1). The blue line is the median, the red and blue shaded area are the 50% and
95% confidence interval of the data.
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Figure 2.6: Scatter plot time to nadir (days) versus input parameters (normalized between 0 and
1). The blue line is the median, the red and blue shaded area are the 50% and 95% confidence
interval of the data.
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Figure 2.7: Variance based indices of Cnadir and tnadir.
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2.3 Application to a linear model

In the neutropenia model presented in section 2.2, the parameter rank-
ing is approximately the same for all the GSA methods. This happened
because the interaction effects were not strong enough to change the rank-
ing done with the first order terms, as it can be seen from the results in
figure 2.7. To make the point of the advantage in using the variance based
GSA, we applied all the presented methods to a simple linear model,

Y = X1 +X2 +X2X3 +X2X3X4, (2.30)

where Y is the model output and Xi ∼ N (0, 1), i = 1, ..., 4, are the model
input factors. Similarly to what was done for the neutropenia model, 10000
samples were extracted with a Latin hypercube sampling strategy from the
input factor distribution and for each sample, the output was computed.
All the samples were used to perform the GSA with all the methods except
the variance based one. For the latter, the algorithm in section 2.1.2 was
used, with a number of samples for the construction of A and B matrices
equal to 10000.

In figures 2.8 and 2.9 the histogram of the model output Y and the
scatterplots of Y against the input factors are reported, respectively. From
the scatterplots it is possible to observe that X3 and X4 change the distri-
bution width of Y , but not its central tendency. This is a clear signal that
the impact of X3 and X4 on V (Y ) is mainly due to interaction effects.

In table 2.5 the GSA results are reported. It is possible to observe that
all the linear methods identify X1 and X2 as the most important factors,
while X3 and X4 as non-influential factors. For the variance based method
all the factors have an impact on the model output variability and the
most important parameter is X2. In figure 2.1 (b) it can be seen that
the importance of X2, X3 and X4 in explaining V (Y ) is mainly related
with interaction terms. Concerning the δ method, it recognize X3 as an
important factor, however, with respect to the variance based method, it
underestimates the importance of X4.
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Figure 2.8: Histogram of the linear model output.

Table 2.5: GSA results for the linear model

Parameters Pearson PCC SRC lasso ST δ

sensitivity indices

X1 0.49 0.57 0.5 0.39 0.25 0.28
X2 0.5 0.58 0.51 0.4 0.74 0.25
X3 0 0.01 0 0 0.52 0.1
X4 0.01 0 0 0 0.26 0.04

factor ranking

1st X2 X2 X2 X2 X2 X1

2nd X1 X1 X1 X1 X3 X2

3rd X4 X3 X3 X3 X4 X3

4th X3 X4 X4 X4 X1 X4
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Figure 2.9: Scatter plot of the linear model output against the input parameters (normalized
between 0 and 1). The blue line is the median, the red and blue shaded area are the 50% and
95% confidence interval of the data.
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2.4 Discussion

In this chapter we presented some of the methods to perform GSA.
The methods based on linear models are commonly implemented in data
analysis software, are easy to use and the sensitivity indices are generally
easy to interpret. However, their use is challenging in presence of non-linear
or non-monotonic dependencies between the model output and the input
factors. Moreover, by using them it is difficult to appropriately estimate the
interaction effects. The variance based method is easy to implement and
the sensitivity indices are easy to interpret. Moreover, this method allows
to appreciate how much is the impact of each factor, taken singularly, on the
model output variation and how much is the extent of its interaction effects.
However, the variance based method takes V (Y ) as a proxy of model output
variation, with all the limitation reported in section 2.1.2. Finally, the δ
method overcomes some of the limitation of the variance based GSA and it
can be used also for skewed distribution of Y . However, with this method
it is impossible to detect interaction effects and the design parameters have
to be chosen appropriately.

The focus of the next chapters is to apply GSA to different models, con-
sidering several levels of uncertainty and variability for each one of them.
The method that we choose to use for performing GSA is the variance based
method, that is considered to be the gold standard by the sensitivity analy-
sis community. We believe that conducting all the sensitivity analyses with
only one method would be advantageous. This because it would simplify
the results interpretation and presentation, it would uniform the works and
put the focus on the applications rather than on the comparison between
different methods.
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Chapter 3
Mechanistic model for the
anticancer pro-drug
Gemcitabine: use of GSA to
understand the parameters
impact on population
variability 1

3.1 Introduction

Gemcitabine (2’,2’-difluorodeoxycytidine, dFdC) is a nucleoside antimetabo-
lite pro-drug effective against several solid tumours [100, 101, 102, 103].
Treatment with dFdC represents the first line therapy of pancreatic cancer,

1This work was published in“M. Garćıa-Cremades, N. Melillo, I.F. Tróconiz, P. Magni.
Mechanistic multi-scale pharmacokinetic model for the anticancer drug gemcitabine in
pancreatic cancer. Clinical and Translational Science, 2020”.
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that constitutes one of the most aggressive and lethal oncology diseases,
with an overall 5-year survival rate of less than 5% [104]. In this case,
dFdC is either given in combination with nab-paclitaxel for patients with
ECOG (eastern cooperative oncology group) performance status 0-1, or as
a single agent for advanced patients (ECOG>1), and for those patients who
cannot receive combination treatments [105].

As a pro-drug, dFdC has to be intracellularly metabolized to its active
metabolite, dFdC triphosphate (dFdCTP), to exert its cytotoxic action
[106]. Firstly, dFdC is taken into the cell by active transporters (hENTs,
hCNTs) [107] and then it is phosphorylated by deoxycytidine kinase (dCK)
to its monophosphate form, dFdCMP. dFdCMP is subsequently metabo-
lized by nucleoside kinases to dFdC diphosphate (dFdCDP) and then to
dFdCTP that binds to the DNA promoting apoptosis [108]. dFdC also suf-
fers inactivation by cytidine deaminase (CDA), leading to inactive metabo-
lite 2’,2’-difluorodeoxyuridine (dFdU), which is excreted in urine [109].

One of the biggest complications associated to treatment with dFdC is
the variability in responses, ranging from lack of efficacy to severe toxicity
[110]. These different rates of responses to dFdC could be in part explained
by individual genetic factors affecting its metabolic pathway, leading to dif-
ferent dFdCTP intracellular tumour concentrations [111]. As an example,
a high activity of CDA enzyme is related with a higher depletion of dFdC
and so, lower dFdCTP concentrations [112]. It is also stated that treatment
efficacy may be explained by a non-functional transport of the pro-drug into
the cell [107]. Moreover, cells with low dCK levels are associated with re-
sistance to dFdC [113, 114]. In addition, some clinical studies in patients
with pancreatic cancer treated with dFdC, associated different expressions
of the transporters or the target enzymes activity with a high or low survival
probabilities [113, 115, 116].

dFdC effects on pancreatic cancer have been described previously by
using PKPD, mechanistical and semi-mechanistical models in in vitro [117,
118, 119, 120], preclinical in vivo [121, 122] and clinical stages [123, 124].
However, to the best of our knowledge, the models developed in clinical
stages do not consider the inter-subject variability in dFdC metabolism
(e.g., individual concentrations of enzymes involved in dFdC metabolism).
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Information on the systemic and cellular pharmacokinetics of dFdC
could be used to develop a quantitative model that describes mechanis-
tically processes such as drug distribution, metabolism and active metabo-
lite formation. A model like this could help in improving the knowledge
of the system, for example by understanding what subject characteristics
determine mostly the predicted active metabolite exposure in the site of
action.

Systems pharmacology is an approach that aims to develop multi-scale
mechanistic models that“span the divide between cell-level biochemical mod-
els and organism-level PK/PD models” [19]. These models integrate the
knowledge from various sources (e.g., in vitro experiments, physiological
data) [15]. PBPK modelling approach provides a framework for integrat-
ing drug specific parameters and in vitro measurements with physiological
system-specific parameters [32, 125]. This type of models can integrate
inter-individual variabilities in the concentrations of enzymes involved in
drug metabolism and allows the simulation of drug concentration in spe-
cific tissues (e.g., pancreatic tumour) [126].

In this context, we built a mechanistic systems pharmacology model
to describe dFdC pharmacokinetics and dFdCTP tumour concentrations,
in a population of pancreatic cancer patients. The developed model was
built using data from the literature, including genetic and physiological
inter-subject variabilities. In summary, our aims were to: 1) propose a
translational multi-scale system pharmacokinetic modelling approach for
gemcitabine able to describe different concentrations of dFdC metabolites;
2) to show the capabilities and the limitations of this kind of modelling
strategy starting from a case study; 3) to understand what information is
needed and what can be found or not in the literature; 4) to understand
what are the parameters that mostly drive the dFdC and dFdCTP exposure
variability in a population of patients. The latter point was performed with
uncertainty analysis and GSA.
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3. Mechanistic model for Gemcitabine

3.2 Development of the mechanistic model and
GSA

The work was performed in three different steps. First, we developed
a model (the so-called metabolic network) to describe dFdC metabolism
in vitro in two pancreatic cancer cell lines (PK9 and RPK9) [114]. Then,
we developed a PBPK model to describe the dFdC pharmacokinetics in a
population of pancreatic cancer patients. The in vitro derived metabolic
network was coupled with the PBPK model in a compartment represent-
ing the pancreatic tumour after an appropriate rescaling of the network
parameters. This was done to describe the dFdC metabolism and pre-
dict dFdCTP concentrations in the site of action. Finally, we performed
GSA on the developed model to identify what are the characteristics that
mostly drive the dFdC and dFdCTP exposure variability in a population of
patients. The analyses were performed in MATLAB R2019a [127]. Param-
eters were estimated by using the covariance matrix adaptation evolution
strategy (CMA-ES) [128].

3.2.1 Metabolic network

An extensive literature review was performed looking for knowledge and
in vitro data to build a mathematical model of the dFdC metabolic path-
way. The structure of this pathway, which has been defined over the years
[106, 109, 108], is schematized in figure 3.1 (c). For this, the mathematical
model was built by assuming that enzymatic reactions were described by
first order rate constants, except for those catalysed by CDA, dCK and
hENT1 enzymes, which were described by a Michaelis Menten model. The
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3.2. Development of the mechanistic model and GSA

metabolic network equations are reported in equation system 3.1.

d dFdCext
dt

= −
Vmax,hENT1 dFdCext
KM,hENT1 + dFdCext

−
Vmax,CDA,ext dFdCext
KM,CDA,ext + dFdCext

d dFdCint
dt

=
Vmax,hENT1 dFdCext
KM,hENT1 + dFdCext

−
Vmax,CDA,int dFdCint
KM,CDA,int + dFdCint

−
Vmax,dCK dFdCint
KM,dCK + dFdCint

+KMPC dFdCMP int

d dFdCMPint
dt

=
Vmax,dCK dFdCint
KM,dCK + dFdCint

− (KMPC +KNMPK) dFdCMPint

− KCMPD dFdCMPint
1 + INH dFdCTPint

+KDPMP dFdCDPint

d dFdCDPint
dt

= KNMPK dFdCMPint − (KNDPK +KDPMP ) dFdCDPint

+KTPDP dFdCTPint

d dFdCTPint
dt

= KNDPK dFdCDPint − (KTPDP +KDNA) dFdCTPint

(3.1)
dFdCext, dFdCint, dFdCMPint and dFdCDPint are the dFdC extracellu-
lar, dFdC, dFdCMP, dFdCDP and dFdCTP intracellular amounts. Vmax,x
and KM,x are the parameters of the Michaelis Menten equation relative to
the protein x. Kx is the time constant relative to the reaction x and INH
is the inhibition constant of dFdCTPint with respect to KCMPD.

Experimental data used to identify network parameters were taken from
[114]. In vitro concentrations of dFdC metabolites (extracellular dFdC
and dFdU, intracellular dFdC, dFdCMP, dFdCDP, dFdCTP, dFdU and
dFdUMP) for two pancreatic cancer cell lines (i.e., PK9 and its resistant
version to dFdC, RPK9) were available [114, 129]. Parameters were jointly
estimated on both cell lines data by including the ratio of the three tar-
get enzymes (CDA, dCK and hENT1) concentrations between the two cell
lines as covariates of the model . COVCDA, COVdCK and COVhENT1, the
covariates, were set equal to 1 for PK9 and equal to 1.64, 0 and 1.35 for
RPK9, respectively [114]. However, with the available data, it was only
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3. Mechanistic model for Gemcitabine

possible to identify the parameters of a reduced metabolic network involv-
ing dFdC, dFdCMP, dFdCDP, dFdCTP but not dFdU and dFdUMP. In
addition, to fit data, an extracellular dFdC deamination due to the activity
of an extracellularly secreted CDA was added. The hypothesis is supported
by some observations reported in the literature for other cancer cell lines
[130].

To allow writing the mass balance equations, the metabolite profiles
were transformed from concentrations (pmol/mg prot), as reported in the
original publication [114], to amount (pmol). Information regarding the in
vitro experiments needed to establish the correction factor was obtained
from the original publication and from personal communication by the first
author: cells used in the in vitro experiment were seeded onto non-coated
tissue culture dishes at the concentration of 1.5 · 104 cells/cm2 [114] using
a 6-well plate (personal communication). So, the well area was set equal
to a standard value for a 6-well plate2 (9.6 cm2). The cell number per
protein amount of PK9 and RPK9 was fixed equal to 106 cells per mg
of proteins (personal communication). Original in vitro data were then
transformed from concentration to mass units by multiplying their values
for a correction factor. This correction factor was calculated dividing the
total amount of cells (well area times cell density) for the cell number per
mg of proteins. The medium volume was calculated dividing the initial
amount of extracellular dFdC (1.63 nmol/well) for the solution molarity
(1 µM). Intracellular volume was calculated multiplying the number of cells
in the well (culture area times cell density) for the volume of a pancreatic
ductal cell (200 fL [131]).

3.2.2 PBPK model

A PBPK model was developed to describe dFdC distribution and metabolism
in the body. Drug specific parameters used in the model are listed in table
3.1. The model consists on fourteen organs and tissues and it is represented
in figure 3.1 (a). Each organ and tissue in the PBPK (excluding arterial and

2Standard area for a 6-well plate was found in https://www.thermofisher.com/it/

en/home.html.
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3.2. Development of the mechanistic model and GSA
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Figure 3.1: Schematic structure of the whole body PBPK model coupled with the metabolic
network representing dFdC metabolism in the pancreatic tumour tissue. (a) PBPK model struc-
ture. Red arrows represent arterial blood flows, while blue arrows represent venous blood flows.
The organs and tissues represented in boxes A and B are ‘in parallel’ with respect to the blood
flow, this means that they have separate blood inflows and outflows. Box A: adipose tissue,
bone, brain, gonads, heart, kidney, muscle and skin. Box B : gut, spleen and stomach. (b)
Model structure of the pancreas. Pancreatic tumour and intracellular space share the same ex-
tracellular environment. (c) Schematic representation of dFdC metabolism network, including
metabolites (dFdC, dFdCMP, dFdCDP, dFdCTP, dFdU and dFdUMP), transporters (hENT1)
and target enzymes responsible of driving the metabolism reactions (dCK, NMPK, NDPK, CDA
and dCMPD). Reactions catalysed by unknown enzymes were named as MPC, DPMP and
TPDP .
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3. Mechanistic model for Gemcitabine

venous blood) was described by using a permeability limited model [132].
This choice was supported by the hydrophilic nature of dFdC hampering
distributions into the cells [107, 133].

dFdC is transported inside the cell by concentrative nucleoside trans-
porters (mainly hCNT1) and equilibrative nucleoside transporters (mainly
hENT1) proteins [107, 134]. The activity of both hCNT1 and hENT1 was
modelled as a first order reaction, namely RhCNT1 and RhENT1 (equations
3.2 and 3.3). hCNT1 mediates a unidirectional flux from the extracellular
to the intracellular space, while hENT1 was considered as a bidirectional
transporter. Once inside each organ intracellular space, the drug was sup-
posed to be metabolized by CDA. This process was modelled with first
order reaction too (RCDA), as in equation 3.4.

RhCNT1,t = Vext,t ehCNT1,t khCNT1
Vint,t
Vext,t

Cuext,t (3.2)

RhENT1,t = ehENT1,t

(
Vext,t khENT1,in

Vint,t
Vext,t

Cuext,t

− Vint,t khENT1,outCuint,t

)
(3.3)

RCDA,t = Vint,t eCDA,tCLCDACuint,t (3.4)

ex,t is the relative expression of enzyme or transporter x in the tissue t. They
were taken from the Open Systems Pharmacology Suite version 7.13 (PK-
sim) and are numbers always between 0 and 1; their values are reported
in table A.2. kx is the time constant relative to the protein x activity,
assumed to be equal in all the organs. Cuext,t and Cuint,t are the unbound
extracellular and intracellular dFdC concentrations, respectively. Vext,t and
Vint,t are the extracellular and intracellular volumes of the tissue t. They
are calculated by multiplying the tissue volume Vt for the extracellular and
intracellular water fractions (few and fiw, respectively): Vext,t = few ·Vt and
Vint,t = fiw ·Vt. Unbound fraction of dFdC was considered equal to 1 [135].

3https://github.com/open-systems-pharmacology
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3.2. Development of the mechanistic model and GSA

To account for the different transporters and enzymes expressions on each
organ, kx was multiplied for ex,t, as done in [126]. The main hypothesis
here is that the intracellular enzymes and transporters concentrations are
proportional between the different organs. In equations 3.2 and 3.3 the
linear time constants relative to the transport from the extracellular to the
intracellular compartment are multiplied for Vint,t/Vext,t. The time constant
kx could be written as Vmax/KM , where Vmax and KM are the parameters
of the Michaelis Menten equation. So, the following relationship is valid.

kx,ext =
Vmax,ext
KM

=
kcat [x]ext
KM

=
kcat [x]int
KM

Vint,t
Vext,t

= kx
Vint,t
Vext,t

(3.5)

[x]int and [x]ext are the intracellular and extracellular transporter concen-
tration and kcat is the turnover number. Equation 3.5 is valid for both
hCNT1 and hENT1.

Each organ modelled in the PBPK was described by using two com-
partments, representing intracellular and extracellular spaces. The generic
dFdC tissue extracellular and intracellular unbound concentration dynam-
ics are represented in equation system 3.6.

Vext,t
dCuext,t

dt
= Qt

(
Cart −

Cuext,t
Pt:p/B : P

)
−RhCNT1,t −RhENT1,t

Vint,t
dCuint,t
dt

= RhCNT1,t +RhENT1,t −RCDA,t
(3.6)

Qt is the tissue blood flow, Cart corresponds to the arterial dFdC concen-
tration, Pt:p is the tissue to plasma partition coefficient, calculated as in
[132] and B : P is the blood to plasma partition coefficient. These equa-
tions are valid for all the tissues except arterial and venous blood, lungs and
pancreas. After appropriate parameters rescaling, the metabolic network
describing dFdC metabolism was included into a compartment represent-
ing the pancreatic tumour, as explained in section 3.2.3. All the model
equations and parameter values are reported in appendix A.

The four time constants associated with enzymes and transporters ac-
tivities in the PBPK model (khCNT1, khENT1,in, khENT1,out and kCDA, in
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3. Mechanistic model for Gemcitabine

equations 3.2, 3.3 and 3.4) were identified for a male mean subject (height
175 cm, weight 73 kg and age 30 years) using the data simulated with a
pharmacokinetic model taken from the literature (Zhang model, reported
in section A.2), for 30 minutes infusion of 3.34 mmol/m2 of dFdC [136].

Finally, by adding variability to the physiological parameters, a popu-
lation model was obtained. The variabilities in organ volumes and blood
flows were modelled following Willmann et al. [137]. Briefly, in this model:
1) the sex and age of the subjects are extracted; 2) for each subject the
height is extracted from a distribution given the particular sex and age; 3)
mean organs weight and blood flows are generated given the mean subject
characteristics and 4) a residual variability is added. khCNT1, khENT1,in,
khENT1,out and kCDA were considered variable too in order to account for
the different protein expression in a population. They were supposed log-
normally distributed with mean equal to the estimated values and coeffi-
cient of variation (CV) equal to that of the enzyme concentration in the
population [138]. To our knowledge, no information regarding CDA vari-
ability in tissues is present in the literature; thus, we decided to fix the
CDA CV equal to the one of the pancreatic cancer, obtained from [139].
Distribution parameters are reported in table 3.1.

3.2.3 Inclusion of the metabolic network in the PBPK model

A compartment representing the pancreatic tumour cells was included
into the PBPK, as shown in figure 3.1 (b). The main hypothesis is that the
tumour and the pancreatic intracellular space share the same extracellular
environment and they compete for drug uptake. The network was included
into the PBPK as follows: in vitro intracellular compartment corresponds
to the PBPK tumour compartment while the in vitro medium corresponds
to the pancreatic extracellular space.

The parameters were appropriately rescaled considering the different
volumes and enzymatic concentrations between the in vitro and in vivo
situations. In the publication where we took the in vitro data, the con-
centrations of some of the enzymes and transporters involved into dFdC
metabolism, like CDA, dCK and hENT1, were reported [114]. In another
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3.2. Development of the mechanistic model and GSA

publication, the concentration of these enzymes in pancreatic tumour sam-
ples from ten different subjects was measured [139]. That information was
used for the in vitro to in vivo rescaling.

In the in vitro metabolic network, the metabolites were considered in
units of mass (pmol). So, the units of the estimated Vmax is pmol/h,
whereas that of KM is pmol and of the time constants is 1/h.

Vmax, dCK can be expressed as:

Vmax,dCK = kcat,dCK [dCK]int,vitro Vint,vitro (3.7)

where kcat,dCK is the turnover number, [dCK]int,vitro is the enzymatic intra-
cellular concentration and Vint,vitro is the in vitro culture volume. In order

to rescale Vmax,dCK (in vitro) to Ṽmax,dCK (in vivo), one has to consider
that the in vitro and in vivo situations have different volumes and enzy-
matic concentrations. Thus, Ṽmax,dCK could be obtained from Vmax,dCK as
follows.

Ṽmax,dCK = kcat,dCK [dCK]int,vivo Vint,vivo

= Vmax,dCK
[dCK]int,vivo
[dCK]int,vitro

Vint,vivo
Vint,vitro

(3.8)

However, enzymes concentrations were available as pmol/mg prot [114,
139], and not in pmol/mL, as required in the previous equations. Thus,
we made the hypothesis that the in vivo/in vitro enzymatic concentration
ratio expressed in pmol/mg prot is equal to the one expressed in pmol/mL.

KM,dCK is expressed in the metabolic network in units of mass, thus, it
is valid the following relationship.

KM,dCK = KM,dCK,conc Vint,vitro (3.9)

KM,dCK,conc is theKM expressed in concentration, as generally it is. K̃M,dCK

could be obtained from KM,dCK as follows.

K̃M,dCK = KM,dCK
Vint,vivo
Vint,vitro

(3.10)

The same rationale can be followed for the reaction catalysed by in-
tracellular CDA. Vmax,hENT1 was rescaled like Vmax,dCK . This was done
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3. Mechanistic model for Gemcitabine

because, even if the substrate is present in the extracellular compartment,
the transporter abundance depends on the intracellular volume. In fact, is
valid the following equation:

Vmax,hENT1 = kcat,hENT1 [hENT1]ext,vitro Vext,vitro

= kcat,hENT1 [hENT1]int,vitro Vint,vitro
(3.11)

where [hENT1]ext,vitro Vext,vitro = [hENT1]int,vitro Vint,vitro is the total
amount of transporter in the system. Considering that the substrate of
hENT1 is in the extracellular environment, KM,hENT1 was rescaled as fol-
lows.

K̃M,hENT1 = KM,hENT1
Vext,vivo
Vext,vitro

(3.12)

The extracellular CDA concentration was supposed equal in both in vitro
and in vivo situation, thus, the Vmax,CDA was rescaled only by using the

ratio of the extracellular volumes: Ṽmax,CDA = Vmax,CDA Vext,vivo/Vext,vitro.
KM,CDA,ext was rescaled as KM,hENT1.

Finally, the concentration of the enzymes catalysing all the other re-
actions were supposed to be equal between the in vitro and the in vivo
situations. Thus, all the linear constants were not rescaled between the two
systems. This was done because, with the hypothesis of equal concentration
of the enzymes catalysing the reaction in the two situations, the following
relationship is valid.

Kr =
Vmax
KM

=
Ṽmax

K̃M

= K̃r (3.13)

Concerning INH, we made the hypothesis that the inhibition depends on
the metabolite concentration. Thus, from the in vitro to the in vivo situa-
tion the parameter was corrected for a factor equal to Vint,vivo/V int,vitro.

All the in vivo enzymatic concentrations were supposed log-normally
distributed with the mean and CV derived from the pancreatic tumour
samples [139]. The tumour volume was supposed uniformly distributed
between 32.3 mL and 224.3 mL [140].
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3.2. Development of the mechanistic model and GSA

3.2.4 GSA for the mechanistic Gemcitabine model

A variance-based GSA was performed on the gemcitabine PBPK model
coupled with the metabolic network. AUC of plasma dFdC and tumour
dFdCTP concentrations were considered as outputs of interest. AUC was
calculated from time 0 (dose administration) to 7 days. The parameters
that were considered variables in the population are: the sex, age and
height, the residual variability of the organs volumes and blood flows, the
dFdC blood to plasma ratio, all the estimated time constants associated
with drug transport and elimination in the PBPK, the tumour volume and
the tumour concentrations of the enzymes involved in dFdC metabolism.
Given that khENT1,in and khENT1,out are related to the activity of the same
enzyme, in the GSA they were jointly considered (grouped): they shared
the same variability and so they were considered as a unique parameter
(khENT1). For readability purposes, all the organ volumes and blood flows
residual variabilities were grouped too [21]. The distributions of all the
parameters are reported in table 3.1.

The number of samples, n, extracted in the GSA was set to 5000. The
uncertainty of the sensitivity indices were calculated using 10000 bootstrap
samples [67].
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Table 3.1: Drug related parameters and parameters distributions for GSA

Parameters distribution parameters distribution type units

pKa [135] 3.6 fixed
B : P [141] 1.94 fixed
fu,p [135] 1 fixed
molecular weight [135] 299.66 fixed g/mol
logPow [135] -1.4 fixed
sexc,d 0, 1 uniforma

aged 20, 65 uniforma years
E : P e 1, 5 uniforma

tumour volume 32.3, 224.3 uniforma mL
khCNT1 920.17 (33%) log-normalb 1/min
khENT1,in 20.17 (24.3%) log-normalb 1/min
khENT1,out 25.66 (24.3%) log-normalb 1/min
kCDA 0.33 (109.6%) log-normalb 1/min
[dCK]int,vivo 0.45 (20%) log-normalb pmol/mg prot
[hENT1]int,vivo 3.08 (53.4%) log-normalb pmol/mg prot
[CDA]int,vivo 0.67 (109.6%) log-normalb pmol/mg prot
a For distribution parameters, minimum, maximum of the parameter.
b For distribution parameters, mean (CV) of the log-normal variable.
c If the extracted value is <0.5 the subject is female (0), otherwise male (1).
d Height, organ volumes and blood flows were generated by using the Willmann
model [137] and are function of sex and age.
e B : P calculated from E : P values [141], as E : P = 1/H · (B : P − 1 +H) [39].
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Table 3.2: Metabolic network parameters

Parameters value units

Vmax,dCK (xCOVdCK) 1.45·105 pmol/h
Ka
M,dCK 4.6 µM

Vmax,CDA,int (xCOVCDA) 1.1·105 pmol/h
Ka
M,CDA,int 0.43·105 pmol

Vmax,CDA,ext (xCOVCDA) 0.84·105 pmol/h
Ka
M,CDA,ext 4.2·105 pmol

Vmax,hENT1 (xCOVhENT1) 5.46 pmol/h
Ka
M,hENT1 4.7 pmol

KNMPK 0.11·105 1/h
KDCMPD 0.027·105 1/h
KDPMP 0.14·105 1/h
KDNA 1·10−7 1/h
KINH 0.8·105 1/pmol
a Value taken from [142]. To include it into the model it
was multiplied for the intracellular volume.
b Given that its value is significantly less than the other rate
constants, it was set to 0 without an impact on the simulations.
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3.3 Results

3.3.1 In vitro metabolic network

The parameters of the metabolic network were identified on the in vitro
data from [114]. The estimated parameter values are listed in table 3.2,
where it is also indicated for which parameter the covariates were included.
In order to reduce the number of parameters to identify, KNMPK , KNDPK

were considered equal and KDPMP , KTPDP , KMPC were considered equal
too. In figure 3.2, the results of the fitting process for each metabolite
profile and each pancreatic cell line are shown. In the PK9 cell line, R2

values for extracellular dFdC, intracellular dFdC, dFdCMP, dFdCDP and
dFdCTP are equal to 0.98, 0.1, 0.99, 0.61 and 0.87, respectively. The
metabolic network was believed sufficiently capable of describing the time
course of extracellular and intracellular concentrations of dFdC and its
phosphorylated metabolites (dFdCMP, dFdCDP and dFdCTP), for the
two different cell lines.

3.3.2 PBPK model coupled with the in vivo metabolic net-
work

We fitted the PBPK model coupled with the reduced metabolic net-
work against a typical plasma profile of dFdC, given a single dose of 3.34
mmol/m2 infused in 30 minutes (standard administration in the clinical
setting), simulated with the Zhang model [136]. The identified parameters
are reported in table 3.1 (mean values of the time constants) and the fitting
results are shown in figure 3.3, panels a and b. It is possible to observe that
the PBPK model well reproduces the typical subject profiles provided by
the Zhang model. From the logarithmic scale it can be appreciated that
the elimination rate is well captured. The value of R2 is equal to 0.94.

Once the model parameters were identified on the typical profile, the
PK profiles of a population of 500 individuals were simulated. In figure
3.3, panels c, d, e and f the plasmatic dFdC concentration profiles and the
dFdC and its metabolites pancreatic tumour profiles are shown.
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Figure 3.2: Fitting results of the in vitro metabolic network for PK9 and RPK9 pancreatic cancer
cell lines. Blu lines are the model predictions and red stars the data from [114]. In panel a, the
results for dFdC medium amount are reported and in panels b, c, d and e the results for dFdC,
dFdCMP, dFdCDP and dFdCTP intracellular amounts are reported for the PK9 cell line. In
panel f, the results for dFdC medium amount are reported and in panels g, h, i and j the results
for dFdC, dFdCMP, dFdCDP and dFdCTP intracellular amounts are reported for the RPK9
cell line.

In figure 3.3, it is possible to observe that while the dFdC plasma con-
centration drops to zero for at least the 95% of the subjects in almost
24 hours, the metabolite concentrations in tumour decreases much slowly.
These results are qualitatively in agreement with the simulations obtained
by the Zhang model, that predicts a drop to zero in 70 hours for the typical
value of the dFdCTP concentration in the white blood cells (WBC), used
as a surrogate of the intracellular dFdCTP concentration.

In table 3.3 the metrics obtained with the PBPK model for plasmatic
dFdC and tumour dFdCTP concentrations, together with those obtained
with the Zhang model for plasmatic dFdC and WBC dFdCTP concen-
trations, are reported. Concerning the dFdC plasmatic AUC, the results
of both the models show good agreement. However, the dFdCTP tu-
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mour AUC predicted with the PBPK results slightly lower with respect to
dFdCTP WBC intracellular concentration AUC predicted with the Zhang
model. It is possible to observe that the PBPK model overestimated the
population variability of all the metrics (especially the dFdC and dFdCTP
AUC).

As a further simulation exercise, 3.34 mmol/m2 of dFdC were infused
weekly for 20 weeks; results are shown in section A.3. In figure A.1, it
is possible to see that there is no accumulation of dFdC and dFdCTP, in
agreement with the observations presented in [143].

3.3.3 GSA results

We performed a variance-based GSA on the PBPK model coupled with
the metabolic network, with the aim of understanding what are the most
important parameters in explaining plasma dFdC and tumour dFdCTP
concentrations AUC variability in the population. Results are shown in
figure 3.4.

The parameter that mainly explains the dFdC plasmatic concentration
AUC is the time constant relative to the dFdC elimination in tissues, kCDA.
A critical aspect related with this parameter is that we have considered its
CV equal to the one found in pancreatic tumour tissue samples. This was
done because, to our knowledge, a value relative to the other tissues was
not present in the literature. Given that the variation of kCDA explains
almost the totality of the dFdC AUC variance, a better characterization of
its variability in the population is needed for a more reliable prediction of
the AUC variability.

dFdCTP tumour concentration AUC variability is mainly due to dCK
and CDA tumour concentrations. Between dCK and CDA tumour concen-
trations, the most important one in determining the dFdCTP AUC is the
former. This is in agreement with the fact that the resistance against dFdC
in some cell lines is obtained by reducing the dCK levels [114].

It is interesting to notice that hENT1 tumour expression is not im-
portant in determining dFdCTP AUC. This could be due to the fact that
hENT1 concentration was quite homogeneous in the population that we
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used to estimate its variability [139]. Thus, it is possible that with these
data, the hENT1 population variability was underestimated.
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Figure 3.3: Fitting and population simulation results of the PBPK model. In panel a and b
the results of the fitting process are shown, in natural and semi-logarithmic scale, respectively.
Continuous blue line represent the dFdC plasma concentration simulated by using the PBPK
model, while dashed red line represent the dFdC plasma concentration simulated with the Zhang
model [136]. Panels c, d, e and f and g show the results of the simulation of dFdC and its
metabolites pharmacokinetics, obtained by using the PBPK model coupled with the metabolic
network. In panel c the dFdC plasma concentrations are reported. In panels d, e, f and g the
tumour dFdC, dFdCMP, dFdCDP and dFdCTP concentrations are reported, respectively. In
this case, blue line represents the median of the compound concentrations in the population,
while red shaded area represents the 95% confidence interval.
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Figure 3.4: GSA results performed for: a) plasma dFdC AUC; b) tumour dFdCTP AUC. The
parameters that are considered variables are: sex, age, residual variability on height, organ
volumes and blood flows (height, volumes and fluxes), blood to plasma ratio (BP), tumour
volume (tumour vol), all the estimated linear constants relative to the transport and elimination
of dFdC in the PBPK model (kCNT pbpk, khENT1 pbpk and kCDA pbpk) and the enzymes
tumour concentrations (CDA tum, dCK tum and hENT1 tum). Error bars represent the 95%
confidence interval of the sensitivity indices calculated with 10000 bootstrap samples.
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3.4 Discussion

We developed a multi-scale systems pharmacology model describing the
dFdC metabolic pathway and predicting the levels of dFdCTP in the active
site for a population of pancreatic cancer patients. This model was built
by integrating different resources obtained from the literature: we used in
vitro information regarding dFdC metabolism in pancreatic cancer cell lines
[114], a compartmental model describing plasma dFdC concentrations in
pancreatic cancer patients [136] and physiological and genetical information
of a given population [137, 139]. Finally, we performed a GSA in order to
understand what parameters explain the predicted population variation of
plasma dFdC and tumour dFdCTP AUC.

Regarding the dFdC in vitro metabolism, data used for developing the
network were obtained from in vitro experiments performed after a single
dose exposure of gemcitabine, collecting a single profile per metabolite for
each cell line. With the data available, the results of the fitting process are
biased, as it can be appreciated by looking at figure 3.2. Despite of it, the
metabolic network was believed sufficiently capable of describing the pro-
files of dFdC and its phosphorylated metabolites. The development of this
model presented several difficulties. First, important information regarding
the experimental setup were not present in the original publication of the
in vitro data, like the mg of protein per number of cells and the area of
the well in which the cells were cultured. Moreover, it was not possible to
describe the profiles of dFdU and its metabolites. Given that the metabolic
network structure depends, to a certain extent, on the data available, a kind
of structural uncertainty of the model is present. This uncertainty could
potentially impact the in vivo predictions of dFdCTP concentration once
the network is included in the PBPK model.

To model dFdC distribution and metabolism in the body, a perme-
ability limited PBPK model was developed accounting for the activity of
plasmatic membrane transporters [107, 133]. One of the main advantages
of the developed PBPK model is that the metabolic network was easily
coupled with the model, leading to the possibility of describing the ac-
tive metabolite concentration in the site of action. In order to do this, a
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3. Mechanistic model for Gemcitabine

compartment representing the pancreatic tumour was introduced into the
model and was supposed to share the same extracellular environment with
the pancreas sane tissue (figure 3.1 c). By doing this, there was a direct
correspondence between in vitro and in vivo intracellular and extracellular
environments. In this context, information regarding the target enzymes
concentration both in in vitro cancer cell lines and in vivo tumour samples,
was found to be particularly useful for the parameters rescaling and thus,
the inclusion of the metabolic network in the PBPK model.

With the model presented here, there was no need of estimating the
blood flow directed to the tumour. This approach presents, however, some
drawbacks. In fact, by using this model it would be difficult to describe pro-
cesses such as the angiogenesis and the effect of a potential antiangiogenic
compound. Moreover, the thick stroma surrounding the tumour cells that
characterize the pancreatic cancer was not modelled [145] and this could
potentially impact the predicted drug disposition in the tumour tissue.

Another advantage of the developed systems pharmacology model is
that it includes the interpatient variability of parameters such as organ
volumes, blood flows and abundances of enzymes and transporters. Then,
by performing GSA, it is possible to understand what are the parameters
that with their variation in the population mostly explain the inter-patient
variability of some metrics of interest, such as AUC of plasma dFdC and
tumour dFdCTP. The GSA results highlight that the tumour dFdCTP
AUC variability is mainly explained by the variation of CDA and dCK
tumour concentration. These results are in accordance with the fact that
the dFdC clinical response is probably related to the patients genotype and
to different expressions of the transporters or target enzymes [111].

The results of this modelling study suggest that individual genetic fac-
tors affecting gemcitabine metabolism would lead to different amounts of its
metabolites and, consequently, different treatment responses, as dFdCTP
exposure has been previously related to tumour response, and the later,
to survival [124]. Apart from the genetic variability associated with gemc-
itabine’s metabolism pathway highlighted in this work, different individual
mutations affecting its mechanism of action regarding cell cycle progres-
sion, apoptosis and survival signalling pathways in pancreatic cancer cells
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can also have an impact on treatment response. A recent multiscale network
characterizes the effect of proteomics on gemcitabine mechanism of action
and its signalling pathways, in combination with birinapant [120]. Future
integration of their results with those present in this study could provide
insights to better understand gemcitabine variability and drug effects.

In conclusion, further research should be done for characterizing in vitro
different pancreatic cancer cell coming from patients receiving dFdC, mea-
suring the target enzyme level expression and the degree of their polymor-
phisms. This would be key to assess and refine the current model.
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Chapter 4
GSA to gain insight into the
structure of physiological
intestinal absorption models
for BCS I-IV drugs 1

4.1 Introduction

The oral route is the preferred method of drug administration, mainly
because of its convenience and minimal invasiveness. However, the bioavail-
ability of drugs (i.e., the fraction that reaches the systemic circulation un-
changed) is limited by several processes such as dissolution and absorption
in the gut lumen, metabolism in the gut wall and liver [54].
In order to facilitate the development of oral formulations the Biophar-

1This work was published in “N. Melillo, L. Aarons, P. Magni, A.S. Darwich. Vari-
ance based global sensitivity analysis of physiologically based pharmacokinetic absorp-
tion models for BCS I-IV drugs. Journal of Pharmacokinetics and Pharmacodynamics,
46(1):27-42, February 2019” [146].
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maceutics Classification System (BCS) was created [147]. The BCS uses
physicochemical and physiological parameters to classify drugs into four
different classes based on their permeability and solubility characteristics:
class I (highly permeable, highly soluble); class II (highly permeable, lowly
soluble); class III (lowly permeable, highly soluble); and class IV (lowly per-
meable, lowly soluble). The BCS is widely used by the European Medicines
Agency (EMA) and United States Food and Drug Administration (FDA)
for developing guidance on formulation development and by the pharma-
ceutical industry during drug discovery & development [148]. Although
considered an oversimplification of complex drug and formulation charac-
teristics, the BCS is useful for informing experimental and clinical design,
especially for class I compounds [54, 149].

Considerable efforts have been carried out to combine in silico mathe-
matical modelling with the design and evaluation of experimental studies
to reduce the number of in vivo bioequivalence studies needed, therefore
reducing time and cost of biopharmaceutical development [150]. Among
various types of in silico modelling techniques, PBPK models have been
used to investigate complex biopharmaceutical problems [54].

Several PBPK absorption models have been developed over the last
decades and integrated into bespoke PBPK software (such as: GastroPlus,
PK-Sim and Simcyp Simulator) or more general modelling platforms, such
as MATLAB [151, 152, 153, 154, 155, 156]. In general, these represent
drug transit through the small intestine, release from formulation, disso-
lution/precipitation and absorption in the gastrointestinal tract, gut wall
metabolism and active efflux/uptake transport. PBPK absorption models
are used from lead optimization through phase 2 studies. For example,
during lead optimization physiological models can be used to predict ab-
sorption from in vitro data. Moreover, these models are used to predict
drug absorption in humans in combination with animal data obtained dur-
ing pre-clinical development. Such predictions are possible because of the
incorporation of physiological and biochemical differences between species.
During clinical development, physiological models can be used to mecha-
nistically interpret clinical data, to explore hypotheses and to guide for-
mulation development [43]. The use of PBPK models has the potential
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to reduce the number of animal studies and replace or supplement clinical
trials [35, 36].

The OrBiTo (Oral Biopharmaceutics Tools) project (Innovative Medicines
Initiative, IMI), started in 2012 and aimed to address the gaps in gastroin-
testinal drug absorption knowledge and support a rational use of predictive
tools for oral drug delivery. This was done by refining existing tools and
defining new methodologies for oral drug delivery [157]. One of the vari-
ous objectives of OrBiTo was to perform a large scale evaluation of PBPK
models for oral drug absorption, to identify strengths and weaknesses of
these models. The results of the analysis showed high variability in the
performance [53, 55].

We believe that a better comprehension of the relationship between the
model input parameters (e.g., drug/formulation-specific and physiological
parameters) and outputs (e.g., drug exposure and secondary pharmacoki-
netic parameters) would be useful for the development and refinement of
PBPK models. Performing a sensitivity analysis is useful for understand-
ing how the uncertainty in input parameters translates to uncertainty in
the outputs and, by this, identifying the most important parameters for a
given output [21]. PBPK models have a complex structure and, usually, a
significant variability in input parameters, for example, the variability that
occurs in a given population, for parameters such as the gastric emptying
time, the intestinal transit time and the enzymatic liver expression. Often
there is a significant uncertainty in the estimation of some of these inputs,
where the parameters are typically fixed to mean values or fitted to ex-
perimental data. Depending on the knowledge and information available,
these parameters could vary within a certain defined range of values [74].
Thus, for these types of models, it is appropriate to perform GSA. Further-
more, there is currently a strong regulatory interest from EMA and FDA in
the use of sensitivity analysis to evaluate PBPK models in pharmaceutical
research & drug development and in regulatory submissions [50, 149].

In this context, the aim of our work was to give a demonstration of the
GSA methodology, by applying it on compartmental PBPK models that
describe drug absorption, dissolution and transit in the gastrointestinal
tract. This was done in order to identify what are the most important
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physiological and drug related parameters in determining the variability of
the fraction absorbed (fa) and bioavailability (Foral) within each BCS class,
for acidic, basic and neutral drugs, after an oral administration. Between
various methods for GSA we choose the variance based method because it
is model independent, considers each parameter in its full range of variation
and allows estimation of the interaction effects between input parameters
[21]. The analysis was firstly done for neutral compounds on a mixing tank
derived model [158] and then on a compartmental absorption and transit
(CAT) derived model [159] for acidic, basic and neutral compounds. The
GSA was performed separately for each BCS class because we expected
that the order of importance of the parameters (e.g., relative to dissolution
and absorption) could vary among classes.

4.2 PBPK intestinal absorption models and char-
acterization of parameters uncertainty

4.2.1 PBPK absorption models

Two different compartmental PBPK absorption models with different
levels of detail were implemented in MATLAB, both aiming to describe the
oral absorption process. One model was based on the mixing-tank model
[158], describing drug dissolution and absorption in the gastrointestinal
tract, where the small intestine was represented by one well-stirred luminal
segment. The other model was based on the CAT model [159] and described
drug transit, dissolution and absorption in the gastrointestinal tract. All
the models parameters are presented in tables 4.1, 4.3 and 4.2.

Compartmental Absorption and Transit based model

In the CAT based model, represented in figure 4.1, the gastrointestinal
tract is subdivided into eight different sections: the stomach, six small
intestine segments (one for the duodenum, two for the jejunum, three for the
ileum) and one for the large intestine. In the gut lumen, drug can be present
in two states: solid and dissolved. It is supposed that absorption occurs only
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of dissolved drug in the small intestine. Drug is absorbed from the small
intestine into the enterocytes where it can be metabolised or transported to
the liver via the blood flow. Once in the liver the drug can be metabolised
or reach the systemic circulation via the hepatic vein. Equation system 4.1
represents the dissolution and the transit out of the stomach. Equation
system 4.2 describes the processes of transit, dissolution, absorption and
metabolism that occur in the small intestine, in the enterocytes and in the
liver. The large intestine is modelled as a sink, receiving input from the
third section of the ileum. Equation system 4.3 represents the dynamics of
the system output.

dAst,s
dt

= −kt,0Ast,s −KstAst,s

dAst,d
dt

= KstAst,s − kt,0Ast,d

Kst =
3D

ρhr

(
Cs,st −

Ast,d
Vst

)
Cs,st = Cs

αst
αref

(4.1)

dAi,s
dt

= kt,i−1Ai−1,s − kt,iAi,s −KiAi,s

dAi,d
dt

= kt,i−1Ai−1,d − kt,iAi,d − ka,iAi,d +KiAi,s

dAi,ent
dt

= ka,iAi,d − CLent,i
Ai,ent
Vent,i

−Qent,i
Ai,ent
Vent,i

dAliv
dt

= −CLliv
Aliv
Vliv
−QHV

Aliv
Vliv

+

6∑
i=1

Qent,i
Ai,ent
Vent,i

Ki =
3D

ρhr

(
Cs,i −

Ai,d
Vi

)
Cs,i = Cs

αi
αref

i = 1, ..., 6

(4.2)
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dAa
dt

=
6∑
i=1

ka,iAi,d

dAoral
dt

= QHV
Aliv
Vliv

(4.3)

Ast,s, Ast,d, Ai,s, Ai,d and Ai,ent are the amount of solid and dissolved drug
in stomach, in the i-th compartment of the small intestine and the amount
of drug in the i-th enterocytic compartment (i = 1 . . . 6), respectively. Aliv,
Aa and Aoral are the amount of drug in liver, the total amount of absorbed
drug and the total amount of drug that reaches the systemic circulation.
Vst, Vi, Vent,i and Vliv represent the volume of the stomach, of the i-th
compartment of the small intestine, of the i-th compartment of the entero-
cytes and of the liver. kt,0 is the time constant for the drug output from
the stomach and is calculated as the inverse of the gastric emptying time
(GET ). kt,i with i = 1, ..., 6 is the time constant for the i-th small intestine
compartment and is calculated as kt,i = (SITT · li/ltot)−1 where SITT is
the small intestinal transit time, li is the small intestine segment length
and ltot is the total length of the small intestine. ka,i is the absorption
constant of the i-th compartment of the small intestine and is calculated
from the effective jejunal permeability (Peff ) as ka,i = 2Peff/Ri [157],
where Ri is the radius of the intestinal compartment. QHV and Qent,i are
the hepatic vein and i-th enterocyte compartment blood flow, respectively.
Linear metabolic clearance occurs in each enterocyte compartment and in
the liver and is implemented as a function of regional cytochrome P450 3A4
(CYP3A4) abundance. The expression for the clearance in each enterocytes
compartment (CLent,i) and in the liver (CLliv) are represented in equation
4.4 and 4.5.

CLent,i = CLint ·A3A4,enti (4.4)

CLliv = CLint · C3A4,LM ·MPPGL ·Wliv (4.5)

CLint is the intrinsic clearance and A3A4,enti is the amount of CYP3A4 in
the i-th enterocytes compartment, obtained by multiplying the CYP3A4
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total amount in enterocytes for the proportion of CYP3A in each com-
partment. C3A4,LM is the concentration of CYP3A4 per mg of microsomal
proteins, MPPGL is the amount of microsomal protein per gram of liver
and Wliv is the liver weight in grams [160].

Kst and Ki are the drug dissolution rates in the stomach and in the i-th
section of the small intestine, described by the Noyes-Whitney model. D
is the drug diffusion coefficient and is calculated from the Stokes-Einstein
equation:

D =
kbT

6π ηw Rh
, (4.6)

where kb is the Boltzmann constant, T is the absolute temperature of the
body in Kelvin, ηw is the dynamic viscosity of water at 37◦C and Rh is the
hydrodynamic radius of the diffusing drug. Rh is calculated as in equation
4.7, assuming the drug molecule is spherical in shape [161].

Rh = 3

√
3 mw

4πNA ρ
(4.7)

ρ is the density of the drug particle, mw the molecular weight and NA is
Avogadro’s number. In the Noyes-Whitney model r is the particle radius of
the formulation and h the effective thickness of the hydrodynamic diffusion
layer. h is calculated from r by the Hintz and Johnson model as in [162,
163]: h = r if r < 30µm, otherwise h = 30µm. Cs is the drug solubility,
and α is defined using the Henderson Hasselbalch equation using the pKa
of the drugs and a pH equal to 6 for αref and equal to the pH of the i-th
section of the gastrointestinal tract for αi. α for acids and bases are shown
in equations 4.8 and 4.9.

αacid = 1 + 10pH−pKa (4.8)

αbase = 1 + 10pKa−pH (4.9)

For basic compounds, precipitation was considered. Briefly, if the con-
centration of the dissolved drug in a given gastrointestinal compartment is
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larger than RssCs,i, where Rss is the supersaturation ratio, linear precip-
itation of the drug occurs, at a time constant equal to kp, as detailed in
equations system 4.10.

dAi,d
dt

= kt,i−1Ai−1,d − kt,iAi,d − ka,iAi,d − kpAi,d +KiAi,s

dAi,s
dt

= kt,i−1Ai−1,s − kt,iAi,s + kpAi,d −KiAi,s

(4.10)

The model outputs fa and Foral are defined, respectively, as the value of
Aa and the value of Aoral, in equation 4.3, at steady state, both normalised
with respect to the dose.

𝑆𝑡𝑠 𝐷𝑠 𝐿𝐼𝑠𝐼3,𝑠𝐼2,𝑠𝐼1,𝑠𝐽1,𝑠 𝐽2,𝑠

𝑆𝑡𝑑 𝐷𝑑 𝐿𝐼𝑑𝐼3,𝑑𝐼2,𝑑𝐼1,𝑑𝐽1,𝑑 𝐽2,𝑑

𝐷𝑒𝑛𝑡 𝐼3,𝑒𝑛𝑡𝐼2,𝑒𝑛𝑡𝐼1,𝑒𝑛𝑡𝐽1,𝑒𝑛𝑡 𝐽2,𝑒𝑛𝑡

Σ 𝐿𝑖𝑣𝑒𝑟

𝑄𝐻𝑉

𝐶𝐿𝑙𝑖𝑣

𝑀0

Figure 4.1: CAT derived model. St stands for stomach, D for duodenum, J for jejunum, I for
ileum and LI for large intestine. Subscripts s, d and ent stand for solid, dissolved and enterocytes.
Continuous and dashed arrows represent mass transfer and clearance processes, respectively.
Drug is administered solid in the stomach compartment, then is subject to dissolution, transit,
absorption in the small intestine and metabolism in gut wall and liver.
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Mixing-tank based model

This model, represented in figure 4.2, is substantially similar to the
CAT based model, where the gastrointestinal system is subdivided into
three sections: the stomach, the small intestine and large intestine. For
this reason, the only differences in the equations are in 4.2, where i = 1.
So, kt,1 is equal to the inverse of SITT and V1 and Vent,1 represent the total
volume of the small intestine lumen and the total volume of the enterocytes.

𝑆𝐼𝑠

𝑆𝐼𝑑

𝑆𝐼𝑒𝑛𝑡

𝑆𝑡𝑠

𝑆𝑡𝑑

𝐿𝑖𝑣𝑒𝑟
𝑄𝐻𝑉

𝐶𝐿𝑒𝑛𝑡 𝐶𝐿𝑙𝑖𝑣

𝐿𝐼𝑠

𝐿𝐼𝑑

𝑀0

Figure 4.2: Mixing tank model derived model. St stands for stomach, SI for small intestine
and LI for large intestine. Subscripts s, d and ent stand for solid, dissolved and enterocytes.
Continuous and dashed arrows represent mass transfer and clearance processes, respectively.

4.2.2 Definition of the BCS classes and GSA

To perform the GSA, a probability distribution has to be defined for
each input parameter of the model (see table 4.1). In order to simplify the
analysis, a number of physiological parameters were fixed to their mean
values for a fasted state, including: all volumes, luminal pH values, blood
flows and each small intestine segment radii and length (see tables 4.3 and
4.2). The GSA algorithm extracts samples from the parameter spaces and,
for each of them, evaluates the model and computes the outputs that, in
our case, are fa and Foral. Then, a drug is defined as a sample extracted
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Table 4.1: Parameter distributions used for GSA

Parameters distribution parameters distribution type units reference

A3A4,ent: to-
tal enterocytes
amount of
CYP3A4

66.2 (60%) Lognormala nmol [160]

C3A4,LM :
CYP3A4 con-
centration in
liver microsomes

137 (41%) Lognormala pmol/mg prot [160]

MPPGL: mi-
crosomal protein
per gram of liver

39.79 (26.9%) Lognormala mg prot/g [160]

GET : gastric
emptying time

0.25 (38%) Lognormala h [155]

ln(CLint): in-
trinsic clearance

2.0809, 2.4086 Normalb mL/(h · pmol) [164]

SITT : small
intestine transit
time

4.04, 2.92 Weibullc h [155]

ρ: density of the
formulation

1-1.8 Uniformd g/cm3 [163]

pKa: acid disso-
ciation constant

Acid: 2.5 - 13.5
Base: 0.5 - 12.5

Uniformd [165]

r: formulation
radius of the par-
ticle

0.5 - 500 Uniforme µm [163]

kp: precipitation
time constant

0.4 - 40 Uniforme,f h−1 [160]

Rss: supersatu-
ration ratio

1 - 100 Uniforme,f [160]

D0: dose num-
ber

BCS I & III: 0.01 - 1
BCS II & IV: 1 - 100

Uniforme,g [148]

Peff : effective
permeability

BCS I & II: 1.5 - 8.70
BCS III & IV: 0.03 - 1.5

Uniform 10−4 cm/s [157]

a For distribution parameters, mean (coefficient of variation) of the lognormal random variable.
b For distribution parameters, mean, standard deviation of the natural logarithm of CLint,
estimated using the MATLAB distribution fitter toolbox.
c For distribution parameters, A, B with A scale parameter and B shape parameter of the Weibull
distribution (WeibullDistribution object of MATLAB). The distribution was truncated
between 1.8 and 8 h [166] by using the MATLAB function truncate.
d Uniform distribution between minimum, maximum.
e For distribution parameters, minimum, maximum of the parameter. A uniform distribution of the natural
logarithm of the parameter between ln(minimum) and ln(maximum) was used.
f minimum and maximum are, respectively, 1/10 and 10 times the mean value in Simcyp.
g For doses of 100 mg and 1000 mg of BCS class I and III, D0 limits were set to [0.1 1]
in order to avoid too high solubilities and so a too stiff system.
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Table 4.2: Physiological gastrointestinal parameters

Comp
name

lumen vol-
ume [mL]a

length
[cm]b,d

diameter
[cm] d

pH a volume
entero-
cytes
[L] c,d

fraction
CO to
entero-
cytes
c,d

CYP3A
propor-
tion
c

Stomacha 48.92
(+250)e

1.3

Duodenum 44.57 21 4.75 6.0 0.0262 0.0038 0.1376
Jejunum 1 166.6 105/2 3.25 6.20 0.119/2 0.0178/2 0.5448/2
Jejunum 2 131.0 105/2 3.25 6.40 0.119/2 0.0178/2 0.5448/2
Ileum 1 102.0 156/3 2.9 6.60 0.079/3 0.0264/3 0.3176/3
Ileum 2 75.35 156/3 2.9 6.90 0.079/3 0.0264/3 0.3176/3
Ileum 3 53.57 156/3 2.9 7.40 0.079/3 0.0264/3 0.3176/3
a [167].
b [168].
c [169].
d Measure relative to the total segment divided by the number of sections in which the segment
is subdivided (for jejunum 2 and for ileum 3).
e Stomach volume (+ volume of water administered with the drug).
f [160].

from the joint space of the parameters (such as Peff , mw...). The solubility
relative to dose (dose number) and permeability were the only parameters
that were assumed to differ between the BCS classes in this analysis (figure
4.3).

BCS classes I and II are characterised by high absorption, while classes
III and IV by low absorption. The parameter that controls the absorption
in equations system 4.2 is the absorption rate constant (ka), defined as a
function of the effective permeability (Peff ). The cut-off value for Peff that
distinguish between high and low absorption was set to 1.5·10−4 cm/s [157]
and the ranges of its variation were taken from the same publication.

The parameter that was used to distinguish between high and low sol-
ubility (between classes I and II and between III and IV) was the dose
number [147, 148],

D0 =
M0/Vin
Cs

, (4.11)

where Vin is the volume of water taken with the drug (250 ml [147]) and
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Table 4.3: Constant parameters of the physiological intestinal absorption models

Parameters value units reference

BW : body
weight

70 kg [170]

CO: cardiac out-
put

350.37 L/h [169]

Wliv : liver
weight (percent-
age of BW)

5.53 (0.079) kg [170]

QHV : hepatic
vein blood flow
(percentage of
CO)

89.34 (0.255) h−1 [170]

ρliv : liver
densitya

1.080 kg/l [171]

T : absolute
body tempera-
ture

310.15 (37) K (oC)

kb: Boltzmann
constant

1.3806504 10−23 J/K

NA: Avogadro’s
number

6.02214179 1023 mol−1

a Used to calculate Vliv from Wliv : Vliv = Wliv/ρliv .
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𝑃𝑒𝑓𝑓
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P
erm
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Figure 4.3: Model parameter space following to the definition of the BCS classes. A drug is
defined as highly soluble if D0 is between 0.01 and 1 and lowly soluble if it is between 1 and
100. A drug is defined highly permeable if Peff is between 1.5 · 10−4 cm/s and 8.7 · 10−4 cm/s,
meanwhile is lowly permeable if it is between 0.03 · 10−4 cm/s and 1.5 · 10−4 cm/s. Roman
numbers represent the BCS classes.

M0 the drug dose. If D0 ≤ 1 a compound is highly soluble, while if D0 > 1
it is solubility limited. The ranges for this parameter were arbitrarily set
from 10−2 to 1 for classes I, III and from 1 to 102 for classes II and IV.
However, the solubility (Cs), and not D0, is present in systems of equations
4.1 and 4.2. So, once the dose, M0, is fixed the algorithm computing the
sensitivity indices extract a value for D0 and calculates Cs (supposed for a
pH equal to 6). By doing this, extracting D0 was equivalent to extracting
Cs once dose was fixed. Then Cs results to be depended on the dose. For
this reason, different dose levels were tested (0.1 mg, 1 mg, 10 mg, 100 mg
and 1000 mg).

To perform GSA the number of samples, n, has to be chosen. Some au-
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thors suggest to set n to 500 or 1000 [21], however, this may be insufficient.
We decided to fix n = 5000 in order to have reasonable precise estimates,
taking into account also the required computational time. The analysis was
first carried out for the simple model, derived from the mixing tank model,
for neutral drugs, then GSA was performed on the CAT derived model for
acidic, basic and neutral compounds. For basic compounds the GSA was
also performed in the presence of precipitation. Uncertainty of GSA results
was estimated using 1000 bootstrap samples [67]. Coefficient of variation
(CV) for the most sensitive parameter, given a certain BCS class and a
certain dose, are shown in section B.2.

Differential equations were solved for a time span of 0 (dose adminis-
tration) to 100 h, to assure of reaching the steady state, using the ode23s

MATLAB solver. The analysis was performed using MATLAB R2017b on
a 64-bit computer configured with Intel® Core™ i7-7700 3.60 GHz x 8 pro-
cessor, running Ubuntu 16.04 LTS2. The computational time required to
perform the sensitivity analysis for all the BCS classes and all the dosages
of, for example, a neutral compound, was approximatively 18 hours.

2 The codes used to perform the analysis are available at the following link: http:

//aimed11.unipv.it/JPKPDMelillo18/.
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4.3. Results

4.3 Results

A variance based GSA was performed on the two PBPK absorption
models described above with the aim of identifying the relative importance
of each parameter (both physiological and drug related), considered over
its range of variation, in determining the variability of the predicted fa and
Foral. The analysis was performed for acidic, basic and neutral drugs from
each BCS class. Figures 4.4 and 4.5 summarise the results of the analysis
for fa and Foral, respectively. The complete set of figures related to GSA
results are presented in section B.1.
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Figure 4.4: Summary of the CAT derived model results for fa. This tree shows the parameters
that mostly impact on the variance of fa for each BCS class, for neutral, acidic and basic
compounds with and without the precipitation. The reported parameters have the total effect
higher than 0.25. The parameters are written from up to down in descending order of their
maximum total effect value through all the dose levels.

89



4. GSA for BCS I-IV drugs
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Figure 4.5: Summary of the CAT derived model results for Foral. This tree shows the parameters
that mostly impact on the variance of Foral for each BCS class, for neutral, acidic and basic
compounds with and without the precipitation. The reported parameters have the total effect
higher than 0.25. The parameters are written from up to down in descending order of their
maximum total effect value through all the dose levels.

4.3.1 fa, CAT based model

Main and total effect indices for fa values were calculated for neutral,
acidic and basic drugs in each BCS class. Figures 4.6 and 4.7 represent
the main and total effect for neutral compounds, figures B.9 and B.10 the
main and total effect for acidic compounds and figures B.15 and B.16 rep-
resent the main and total effect for basic compounds. Each figure shows
four heatmaps, one for each BCS class. Each heatmap shows the input pa-
rameters on the vertical axis and the different dose levels on the horizontal
axis.

Considering the neutral case, in figures 4.6 and 4.7, for drugs of class
I given at low doses, the most important parameter is the particle radius
of the formulation, r. This means that the variance of fa, among drug
belonging form this class, is mainly explained by the variation of r. For
drugs administered at higher doses the importance of r is reduced and
an increased importance of interactions can be seen, observable through
the difference between the total and the main effect. For r the difference
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between the total and the main effect increases from 0.0640 at a dose of
0.1 mg, to 0.3278 for a dose of 100 mg. For doses of 10 mg and 100 mg
the importance of D0 increases and D0 becomes the second most important
parameter, this is mainly due to interaction effects. Thus, limiting the anal-
ysis to the main effect or using sensitivity analysis approaches that cannot
detect the interactions (e.g., OAT methods), could lead to an underesti-
mation of parameters influence on the output variance. At a dose of 1000
mg there is an increase in the importance of the small intestinal transit
time and the most important parameter becomes the effective permeabil-
ity, Peff . Within a given class, drugs administered at higher dose levels
typically have higher solubility. This can be seen in equation 4.11, where if
D0 is fixed, higher values of M0 imply higher values of Cs. Drugs of class
I administered at 1000 mg will most likely have high solubility values and
therefore the dissolution process will generally become fast with respect to
the absorption process, independent of the value of r, even if the drug is
highly absorbed. Therefore, Peff becomes the rate-limiting parameter, and
therefore the most important parameter in determining V (Y ). The main
and total effect indices are normalised with respect to the total variance
of the output V (Y ). So, for doses of 1000 mg, Peff will become the most
important parameter, but the variability of fa, as can be seen in figure 4.8,
is lower with respect to the lower dose levels. As explained before, higher
dose levels imply higher values of Cs and a reduction in the influence of r
variation on fa variability. This causes a faster dissolution, resulting in an
increase in fa and a reduction in fa variability for higher dose levels.

Moving from BCS class I to class II, there is an increase in the values
of D0 and therefore a reduction in the solubility for a given dose. Then, for
class II compounds the most important parameters result to be r and D0,
both related to the dissolution process. This is a consequence of dissolution
rate being the limiting step of BCS class II drugs, in accordance with the
definition of the class. When considering higher dose levels, and by as a
consequence higher solubilities, D0 becomes more sensitive than r. It can
be seen that the interaction effect of D0 decreases as the dose increases, in
fact the difference between total and main effect is reduced from a value of
0.1997 for a dose of 0.1 mg to 0.0680 for a dose of 1000 mg.
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In BCS class III, we start to consider compounds with low absorp-
tion properties. For drugs administered at low doses a similar situation as
class I can be seen (with slightly more importance on Peff ). This is most
likely because Cs is not high enough and therefore r is the more influential
parameter with regards to the dissolution process, making it the limiting
step. When examining compounds administered at higher doses, a progres-
sive reduction of importance of r and D0 is observable and an increase of
importance of ka can be seen. This effect is due by an increase in Cs and
so the limiting step is no longer dissolution but absorption.
A more complex situation can be seen for BCS class IV compounds, where
parameters related to both dissolution and absorption remain important
across the simulated dose levels. This happens because in class IV both
solubility and permeability are low, and therefore both could act as the
limiting step.

Considering the case of acidic drugs, in figures B.9 and B.10, the results
are similar to the case of a neutral drugs as in the stomach αst is low
compared to αref in equation system 4.1 due to the low pH in the gastric
lumen (pHstomach = 1.3), and so the drug dissolves to a lesser extent. The
pH of the small intestine is around 6, which is the value used to calculate
αref , and so, in equations system 4.2, αi ' αref and therefore the solubility
is similar to the neutral case. The fact that the drug dissolves less in the
stomach does not change the importance of the variables with respect to
the case of a neutral drug.

For basic compounds, in figures B.15 and B.16, results differ compared
to the previous cases. For class I compounds, up till doses of 10 mg, the
dissolution appears to be the limiting step, where pKa is the most influ-
ential parameter. This is probably because αst in the stomach could reach
higher levels depending on the pKa of the compound compared to αref
and therefore the solubility in this compartment is enhanced. For com-
pounds administered at higher doses the conclusions are similar to that of
the neutral case. With respect to the neutral case, a stronger interaction
effect can be seen, especially for r, D0 and pKa for doses of 10 mg and
100 mg. For BCS class II compounds all parameters related to dissolution,
including pKa, are of importance at all the simulated dose levels, similarly
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to the neutral case. Also r is associated with a strong interaction effect.
Concerning class III, the Peff is the most important parameter at all the
dosage levels. This is probably due to the enhancing of dissolution in the
stomach, meaning that the drug is already dissolved when reaching the in-
testine and therefore the absorption process becomes the rate limiting step.
As for neutral and acidic drugs, BCS class IV presents a more complicated
situation, in fact, both parameters related to dissolution and absorption
remain important throughout the simulations. Interaction effects can be
observed, especially for r and pKa from doses of 1 mg up to 100 mg.

For neutral and acidic compounds, the interaction effects seem to occur
to a lesser extent for class I compounds administered at low dosages and
for classes III at high dosages. For basic compounds, interactions occur
to a lesser extent only for class III drugs administered at high dosages.
This happens probably because these cases represent extreme situations, in
which the variation of only one parameter seems to determine the variability
of the fa. In all the other cases, the variance of fa can be affected by the
variation of multiple parameters, so, the effect of one factor may depend on
the values of other factors and interaction effects may arise.
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Figure 4.6: fa main effect of the CAT based model for neutral compounds. Panels A, B, C and
D are relative to BCS class I, II, III and IV compounds. Each panel contains a heatmap that has
the input parameters on the vertical axis and the different dose levels on the horizontal axis. Each
heatmap cell contains the value of the main effect relative to a particular parameter and dose
level. Colour legends are shown to the right of each heatmap. CYP3A4 liv, CYP3A4 ent and
CYP3A4 CL stand to the microsomal concentration of CYP3A4 in the liver, the total amount
of CYP3A4 in the enterocytes and the intrinsic clearance.
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Figure 4.7: fa total effect of the CAT based model for neutral compounds. Panels A, B, C and
D are relative to BCS class I, II, III and IV compounds. Each panel contains a heatmap that
has the input parameters on the vertical axis and the different dose levels on the horizontal axis.
Each heatmap cell contains the value of the total effect relative to a particular parameter and
dose level.

95



4. GSA for BCS I-IV drugs

0.1mg
1mg

10mg

100mg

1000mg

class I

class II

class III

class IV

fraction absorbed, neutral drugs, CV

50

100

150

200

Figure 4.8: fa CV in percentage, predicted using the CAT based model for neutral compounds.
The heatmap vertical axis represents the BCS classes and the horizontal axis represents the dose
levels. Each cell contains the value of fraction absorbed CV for a specific BCS class and dose
level. Each CV was calculated from the samples used to calculate the main and total effect of
the variance based GSA.
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4.3.2 Foral, CAT based model

Main and total effect indices for Foral values were calculated for neutral,
acidic and basic drugs in each BCS class. Figures 4.9 and 4.10 represent
the main and total effect for neutral compounds, figures B.11 and B.12
the main and total effect for acidic compounds and figures B.17 and B.18
represent the main and total effect for basic compounds.

Considering the neutral case (figures 4.9 and 4.10) for class I compounds
given at a low dose, the most important parameter is r, while for doses up
to 10 mg the intrinsic clearance CLint becomes the most influential pa-
rameter. This is most likely because, as explained for fa, for low dosages
r is more important for determining dissolution as Cs is not high enough
to become as influential, by making it the limiting step. Moving towards
higher doses an increasing importance of Cs can be seen. Given the high
permeability, the rate limiting step becomes the clearance. Amongst all
the parameters involved in the clearance process (e.g., liver enzymatic con-
centration, MPPGL) the consistently most important parameter is CLint,
this is probably because the parameter was defined with a larger range of
variation and because it appears at two sites in the model (gut wall and
liver).

For compounds belonging to BCS class II the most important param-
eters are related to both dissolution and metabolism. At lower dose levels
there is a higher importance of formulation related parameters, r, mean-
while moving towards higher dose levels, CLint and D0 become the most
important parameters. As seen for fa, this is in accordance with the def-
inition of the class properties. Notable interaction effects can be seen for
CLint, r and D0, especially for doses of 0.1 mg and 1 mg.

Moving to class III, for low dosages, r is the most important parameter
in determining variation in Foral followed by CLint. At higher dose levels
clearance and absorption become the rate limiting steps. The reasoning
around the differing importance of r and Peff throughout the dose levels
follows the same argument as for class III and fa. CLint is more influential
at higher doses as compared to Peff , which is probably due to its higher
range of variation.
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For BCS class IV compounds, dissolution, absorption and clearance
parameters remain important across the simulated dose levels, with a re-
duction of importance of r and an increase of importance of CLint, Peff
and D0 when moving towards higher doses. Notable interaction effects can
be consistently observed across dose levels for parameters r, CLint, Peff
and D0.

Considering the case of an acidic compound, as for fa, the results are
similar to the case of the neutral one. As explained for fa the fact that
an acidic compound dissolves to a lesser extent in the stomach, does not
change the importance of the variables found in the case of a neutral drug.

The situation for basic compounds (figures B.17 and B.18) is slightly
different. For class I compounds the most important parameter for all the
doses is CLint. This is because for a base, as explained for fa, the solubility
could be highly enhanced in the stomach and so the drug could dissolve
completely prior to reaching the small intestine. Given that the absorption
is high, metabolic clearance becomes the rate limiting step. For class II
compounds, as in the neutral case, dissolution and clearance are important
determinants of variation in the output. Interaction can be mainly seen
for the dissolution related parameters. For class III the most important
parameters are CLint and Peff across all doses, with pKa being relevant at
a dose of 0.1 mg, but mainly due to interaction effects. Like in the previous
cases, BCS class IV compounds present a more complicated situation, where
dissolution, absorption and clearance parameters remain important at all
the studied dose levels. Interaction effects can be observed especially for
the dissolution related parameters.

For all the compounds, the interaction effects seem to occur to a lesser
extent especially for class I drugs administered at dosages higher than 10
mg. Similarly to what was explained for fa, these are situation in which
the output variance can be addressed almost uniquely to the variation of
one parameter and consequently, limited interaction effects arise.

It is possible to observe that there is an apparent discrepancy between fa
and Foral results for BCS class I compounds administered at high dosages.
In fact, for fa the only sensitive parameters are Peff and SITT , while for
Foral it is CLint. In this case, both solubility and permeability are high,
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thus, practically all the drug gets absorbed. From figures B.1 and B.2, it
can be observed that the variability of class I compounds administered at
1000 mg is much higher for Foral than for fa. So, the clearance processes
explain almost all the Foral variability.
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Figure 4.9: Foral main effect of the CAT based model for neutral compounds. Panels A, B, C
and D are relative to BCS class I, II, III and IV compounds. Each panel contains a heatmap
that has the input parameters on the vertical axis and the different dose levels on the horizontal
axis. Each heatmap cell contains the value of the main effect relative to a particular parameter
and dose level.
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Figure 4.10: Foral total effect of the CAT based model for neutral compounds. Panels A, B, C
and D are relative to BCS class I, II, III and IV compounds. Each panel contains a heatmap
that has the input parameters on the vertical axis and the different dose levels on the horizontal
axis. Each heatmap cell contains the value of the total effect relative to a particular parameter
and dose level.
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4.3.3 fa and Foral, CAT based model, basic compound with
precipitation

GSA was carried out for basic compounds using the CAT based model
with the additional consideration of precipitation. Main and total effect for
fa, in figures B.21 and B.22, and for Foral, in figures B.23 and B.24, were
calculated.

Concerning both fa and Foral, for compounds belonging to BCS classes I
and III, the results in presence of precipitation resemble the case of absence
of precipitation. It can be seen that the variability of the supersaturation
ratio Rss and of the precipitation time constant kp are not important in
determining the variance of the output. In the stomach, the maximal con-
centration that a drug could achieve is equal to M0/Vst, with M0 the drug
dose and Vst equal to 298.92 mL (see table 4.2). For BCS classes I and III,
the drug solubility, calculated by using equation 4.11, results higher or equal
to M0/Vin, with Vin equal to 250 mL (this happens because in this case D0

was considered between 10−2 and 1). Moreover, in the stomach αst > αref ,
so, the solubility is enhanced with respect to the neutral case. It follows
that the maximal concentration that the drug could reach in the stomach
is lower with respect to the solubility in that compartment. Consequently,
the precipitation does not occur in the stomach. It can be observed that
even if the precipitation occurs in the small intestine this does not make
Rss and kp important in determining output variability.

Concerning BCS classes II and IV, for both fa and Foral, in case of
presence of precipitation, D0 is slightly more important in determining
output variance with respect to the case of absence of precipitation. With
respect to BCS classes I and III, in this case the maximal concentration
that a drug could reach in the stomach can be lower than the solubility
in that compartment. This happens because D0 was considered between 1
and 102. Therefore, precipitation could occur in the stomach. Probably, in
this case D0 acquires importance because its value it is used to determine
the threshold at which the precipitation starts to occur. Moreover, when
a drug once dissolved could precipitate, an additional dissolution step is
required to allow absorption and D0 is a parameter involved in the process
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of dissolution.

4.3.4 fa and Foral, MT based model

Main and total effect for fa, in figures B.27 and B.28, and for Foral,
in figures B.29 and B.30, were calculated for neutral compounds for each
BCS class, using the mixing tank derived model. For both fa and Foral the
results are consistent with the CAT derived model for neutral compounds.
This fact does not mean that the outputs of the CAT derived model are
similar to that of the mixing-tank derived model, instead in both the models
the variability in the output is explained to a similar extent by the same
parameters.

4.4 Discussion

We performed a variance based GSA on PBPK models describing drug
dissolution, transit and absorption in the gastrointestinal tract, with the
aim of finding the most important parameters that determine the variability
of the predicted fa and Foral for acidic, basic and neutral drugs within each
BCS class. In figures 4.4 and 4.5 the results of the analysis are summarised.

Performing a GSA could help in identifying limiting steps and bottle-
necks, in different situations, and in understanding the behaviour of the
model as a function of the variation of different parameters. This kind of
information is difficult to obtain during performance evaluation exercises,
such as OrBiTo [53, 54, 55], where the model predictions are affected by the
quality of the data informing the values of compound specific parameters.
In fact, in the OrBiTo compound database a high level of missingness for
parameters such as particle size of solid formulation and solubility vs pH
profiles was observed [54]. In this case, for example, following the analysis
here reported, it is possible to conclude that a performance evaluation of
PBPK absorption models where the radius of the formulation-specific par-
ticle size is fixed at an assumed or mean value could result in an incomplete
interpretation, especially for compounds administered at low dose levels
where the particle radius explains the majority of the output variation.
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4. GSA for BCS I-IV drugs

However, it must be considered that the validity of the GSA results
is limited to the specific model and to the specific ranges of parameters
investigated. This means that the level of importance of each parameter is
relative to the model and to all parameter distributions, and thus it would
be incorrect to attribute the results presented here to different absorption
models or parameter distributions. Nevertheless, we could consider the
theoretical case of a model that describes the absorption of a class III drug,
administered at a dose of 100 mg, that exhibits uncertainty, or variability,
in the Peff within a range that is wide with respect to the Peff range tested
in this analysis3. Considering the results of the GSA presented in this study
we could conclude that the variability of the Peff for that particular drug
should be further investigated, otherwise, by fixing the value of Peff to the
mean, it is possible that we ignore an important source of variability in
estimating fa and Foral. Anyway, if one wants to assess the impact of the
variability of each parameter on the model outputs for a specific drug (and
not to a class of compounds, as done in this study), one should perform a
GSA adapting the parameters distributions to that particular case [72, 173].

One limitation of this analysis is that the classification between highly
and lowly soluble drugs was defined using only D0, as in [148], and does
not take into account the effect of the formulation properties. Thus, it
is possible that this will result in an overestimation of the importance of
formulation related parameters (e.g., r) for BCS classes I and III. Another
limitation is in the derivation of Foral, we hypothesised that the metabolism
in the gut wall and in the liver was due to CYP3A4 abundance and so,
the results are limited to that particular case. Finally, we chose to use
the variance based GSA method as per [87], but is also possible to use,
for example, moment independent methods, or regression based methods
[61, 75, 98].

3Atenolol is a BCS class III drug with a mean in vivo Peff of 0.15 · 10−4 cm/s and a
standard deviation of 0.2 · 10−4 cm/s [157, 172]. Supposing that Peff is distributed log-
normally, the 95th percentile is equal to 0.47 and the 5th percentile is below the inferior
limit in table 4.1. So, for Atenolol the range of variability of Peff , from the lower limit
in table 4.1 to its 95th percentile, represents around 30% of the whole range of variation
considered for class III drugs.
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In mathematical modelling sensitivity analysis should be performed to
gain insight into the structure of the model and understand its behaviour in
the parameter space of uncertainty and/or variability [21, 61]. In general,
PBPK models include many parameters that are uncertain or variable at a
population or individual level and whose impact on the outputs of interest
is not trivial to predict. For example, when these models are used, there
is a tendency to fix some uncertain parameters (e.g., radius of the particle,
solubility) to an assumed value, mean value or to use in silico methods, such
as quantitative structure-activity relationship (QSAR) models, to predict
parameter values, without sufficiently exploring the impact on model de-
velopment and predictions. Performing GSA could help in identifying the
few key parameters amongst many [21] that are mainly responsible for the
variation in output.

Typically, if a model is well constructed, understood and characterized,
the results of a sensitivity analysis should reflect the qualitative expecta-
tions of the model behaviour and thus, may appear to be obvious. How-
ever, especially if a model is involved in regulatory decisions, a sensitivity
analysis should be performed to objectively confirm these expectations, as
highlighted by regulatory agencies [50, 174]. In fact, sensitivity analysis can
quantitatively assess the impact of each parameter variation on the variabil-
ity of some output metrics. Understanding how much the input parameters
influence the model outputs (so, the magnitude of the sensitivity indices)
is crucial information that helps to understand if a given parameter can be
assumed, fixed or require further investigation in order to allow informed
model prediction. That information would be difficult to obtain without
performing a sensitivity analysis.

In conclusion, this work aimed to identify the importance of different
parameters for different types of drugs, to improve our understanding of
PBPK absorption models and guide the choice of parameters that can safely
be assumed, estimated or require data generation to allow informed model
prediction. Pharmaceutical regulators have identified the importance of
sensitivity analysis in PBPK model qualification [50, 174]. Here we give a
demonstration of the GSA methodology and highlight its utility by using a
generalised example, spanning across a number of hypothetical compounds
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and showing its importance in identifying the key parameters that may be
targeted for further investigation during pharmaceutical research and drug
development.
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Chapter 5
Inter & intra compound
GSA for the development
and use of a physiological
pulmonary absorption model
1

5.1 Introduction

Due to the opportunity of directly targeting the biophase of interest,
the inhalation route has been considered a convenient way of drug admin-
istration for local treatment of lung-specific diseases, such as asthma and
chronic obstructive pulmonary disease (COPD). This route allows the ad-
ministration of drugs at lower dosages, minimizing potential side effects

1“N. Melillo, S. Grandoni, N. Cesari, G. Brogin, P. Puccini, P. Magni. Global sensi-
tivity analysis of a physiological model for pulmonary absorption of inhaled compounds.
Manuscript in preparation”.
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driven by high systemic exposures. Topically active compounds for lung
diseases have normally an adequate, and generally sustained, lung residence
time [175, 176, 177]. However, efforts have to be placed in the optimiza-
tion of drug lung disposition looking for an optimal lung retention, since
an increased residence time in the airways could potentially translate into
the risk of drug removal from the lung due to mucociliary clearance or into
the risk of unsafe drug accumulation in pulmonary tissues. For this reason,
it is necessary to maintain an appropriate balance between lung retention
and absorption by the modulation of the interplay of some key properties,
such as solubility, permeability and lung tissue binding [175, 177].

Nowadays, administration by inhalation to rodents is still an important
step in preclinical development of new drugs designed for the inhalation
route [175]. A mathematical model able to predict compounds pharmacoki-
netics properties after inhalation in preclinical species could be extremely
beneficial during early drug discovery for aims such as the compounds pri-
oritization before animal experiments and for preclinical to clinical trans-
lation. For these reasons, in a previous work we developed a PBPK model
for inhaled drugs [178]. The model was used to predict the compounds lung
disposition in preclinical species (e.g., rodents) starting from physiological
and in vitro parameters, such as mucociliary clearance rate, drug solubility
and permeability.

In this context, the aim of our work was to adequately characterize the
developed physiological absorption model, by understanding how much the
uncertainties and variabilities in the input parameters drive the predictions
uncertainties and variabilities. This was done by performing a variance
based GSA [21, 69].

We performed two types of GSA with two different aims: inter-compounds
and intra-compound GSA. The inter-compounds GSA resembles the analy-
sis done in [146] for intestinal absorption models. Each of the drug-related
model parameters was considered variable in a range given by the minimum
and the maximum value in the considered set of compounds. Thus, inter-
compound GSA mainly focus on the ‘between-drugs’ parameters variability
and would be useful to understand the main model behaviour in the space
of all the considered compounds. The aim of this analysis is to understand
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what are the key parameters that mostly explain the differences between
drugs. On the other hand, the intra-compound GSA, focalized on the pa-
rameter uncertainties related to a specific compound, has the purpose to
find the most important parameters that, with their uncertainty, mostly
causes the output uncertainty. In this work, intra-compound GSA was per-
formed on three representative compounds (namely A, B and C). For each
compound, the drug-related parameters were considered variable in a range
representative of the parameters uncertainty.

5.2 Physiological pulmonary absorption model and
inter & intra compound GSA

5.2.1 Pulmonary absorption model

The considered physiologically based model was originally presented
in [178] and was inspired by the work of Boger et al. [179]. The model is
composed of three parts describing the pulmonary absorption, the intestinal
absorption and the systemic disposition. The pulmonary absorption model
was built to take into account the principal PK processes occurring when a
drug is inhaled: deposition, mucociliary clearance, dissolution, absorption
in lung tissue and absorption in blood circulation [180]. In the model,
the lung was divided in two parts, the central region and the peripheral
region. The central region roughly corresponds to the tracheobronchial
region, while the peripheral region to the alveolar region. Both regions were
further divided in four compartments: the undissolved drug, the dissolved
drug, the extravascular and vascular lung tissue. The central region was
considered perfused by the systemic circulation, while the peripheral region
by the pulmonary circulation. The model structure is shown in figure 5.1.

In this work, drugs are intra-tracheally administered to rats. Only a
fraction of the drug amount administered to the animal actually reaches
the lungs (Finh) whereas the rest is deposited in the oropharyngeal region
and gets swallowed (Fswa). Of the fraction delivered to the lungs, a part
is deposed in the central region (FC) and a part reaches the peripheral
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Figure 5.1: Physiologically based model structure for inhaled compounds. The model is composed
of three parts: pulmonary absorption model, intestinal absorption model and systemic PBPK.
und, diss, ev and vasc stand for undissolved, dissolved, extravascular and vascular. ROB stands
for rest of the body.

region (FP ). FC and FP values were calculated from formulation prop-
erties, as explained in appendix C. Once deposited, in both central and
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peripheral regions the drug dissolves in the physiological fluids and then is
supposed to be passively absorbed in the tissues. Here, the drug can diffuse
to the vascular compartment or back to the dissolved drug compartment.
A monodirectional transport from the tissue to the dissolved drug compart-
ment was included to account for the possible action of efflux transporters,
such as the P-glyco proteins. The mucociliary clearance mechanism has
been considered acting only on the undissolved drug compartment of the
central region, since this mechanism should be negligible in the alveoli [180].

The model equations are shown in 5.1.

dau,C
dt

= −(kd,C + kMC) au,C

dad,C
dt

= kd,C au,C − Pp SC
ad,C fu,elf
Velf,C

− (Pp + Pa) SC
aev,C fu,l
Vev,C

daev,C
dt

= Pp SC
ad,C fu,elf
Velf,C

+ Pp SC
av,C fu,b
Vv,C

− (2Pp + Pa) SC
aev,C fu,l
Vev,C

dav,C
dt

= QC

(
cven −

av,C
Vv,C

)
+ Pp SC

aev,C fu,l
Vev,C

− Pp SC
av,C fu,b
Vv,C

dau,P
dt

= −kd,P au,P
dad,P
dt

= kd,P au,P − αPp SP
ad,P fu,elf
Velf,P

− (αPp + Pa) SP
aev,P fu,l
Vev,P

daev,P
dt

= αPp SP
ad,P fu,elf
Velf,P

+ αPp SP
av,P fu,b
Vv,P

− (2αPp + Pa) SP
aev,P fu,l
Vev,P

dav,P
dt

= QP

(
cart −

av,P
Vv,P

)
+ αPp SP

aev,P fu,l
Vev,P

− αPp SP
av,P fu,b
Vv,P

(5.1)
Subscripts C and P stand for central and peripheral lung regions, respec-
tively; au, ad, aev and av are the drug amounts in undissolved, dissolved,
extravascular and vascular compartments, respectively; cven and cart are
the drug concentrations in venous and arterial compartments; fu,elf , fu,l
and fu,b are the drug fraction unbound in the epithelial lining fluids, lung
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tissues and blood; Velf , Vev and Vv are the volumes of the epithelial lining
fluids and the extravascular and vascular compartments, respectively; QP
and QC are the blood flows directed to the peripheral and central lung re-
gions; Pp and Pa are the passive and active permeabilities, calculated from
experiments with Calu3 cells as explained in appendix C, which have char-
acteristics similar to the tracheobronchial region; SP and SC are the surfaces
of peripheral and central regions; kMC is the time constant relative to mu-
cociliary elimination, supposed to happen only in peripheral region, while
kd it is the dissolution time constant, modelled with the Noyes-Whitney
model, as explained in section 4.2.1.

In equation system 5.1, α is a scalar constant used to model the higher
passive permeability in peripheral region, with respect to the central one,
due to the minor thickness of alveoli epithelium. α was calculated as in
equation 5.2.

α =
BT

ALT
(5.2)

BT and ALT are the thickness of the bronchial and alveolar wall, respec-
tively. To describe the systemic drug disposition and the intestinal absorp-
tion, the pulmonary absorption model was coupled with the whole body
PBPK model presented in [181], as shown in figure 5.1. The physiological
lung related parameters are reported in table 5.1. The ranges of variability
of physiological parameters are reported in table 5.2. All the remaining
physiological parameter values (e.g., organ volumes and blood flows) of
the whole body PBPK model for a mean rat of 250 g are reported in the
supplementary material of [181].

5.2.2 Inter-compounds & intra-compound GSA

Inter-compounds and intra-compound are two ways of performing a
GSA that differ in the aims and then in the considered parameter variabil-
ity, as mentioned in the introduction. Figure 5.2 didactically shows the
difference.

We performed the inter-compounds GSA on the physiological pulmonary
absorption model decoupled from the distribution PBPK and the intestinal
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drug A

Figure 5.2: Difference in the parameters space used for inter-compounds and intra-compound
GSA. Inter-compounds GSA (green area) considers the ‘between-drugs’ variability, while intra-
compound GSA (red area) considers the uncertainty associated to the parameters relatively to a
specific compound. As shown, variability in general is wider than uncertainty.

absorption models. This was done to characterize the absorption process
and simplifying the model and the results understanding. To decouple the
model, blood inflow and outflow values of both peripheral and central lung
vascular compartments were set equal to zero. Moreover, the fluxes due to
passive permeability from the vascular to the extravascular compartments
were set equal to zero too, in both the lung regions. Thus, lung vascular
compartments behave like wells (integrators). The outputs considered in
this analysis are: the fraction absorbed (fa), the AUC and MRT of the drug
concentration in the whole lung. Whole lung concentration was obtained
by the sum of the solid and dissolved amounts in the epithelial lining fluids
with the ones in the central and peripheral extravascular compartments, all
divided for the total volume. fa was obtained as fa = 1− fCL, where fCL
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is the fraction of the drug eliminated by the mucociliary clearance at the
steady state.

In the inter-compounds GSA, we considered each of the drug-related
parameters varying in a range given by the minimum and the maximum
values of the set of the nine considered Chiesi ’s compounds (table 5.2).
Their distributions were considered uniform in these ranges. The inter-
compounds GSA was performed separately for highly and poorly soluble
compounds. The criterion used for the compounds classification in the two
groups was inspired to the one adopted for oral administered compounds
[147, 148, 182]. A dose number for inhaled compounds was defined as in
equation 5.3.

D0,inh =
dose/Velf
CS,pHelf

(5.3)

The drug dose was considered fixed to 10 µg. Velf = Velf,P + Velf,C is
the lung epithelial lining fluid volume and CS,pHelf is the drug solubility
measured in simulated lung fluid at pH 6.9 [183, 184]. A compound was
classified as highly soluble if D0,inh ≤ 1 or poorly soluble if D0,inh > 1. As
done in chapter 2, during GSA we first extracted the values of D0,inh and
then we computed the CS,pHelf using equation 5.3.

The intra-compound GSA was performed on the whole body PBPK
model for three representative compounds, characterized by different prop-
erties. The outputs that were considered are the drug whole lung and
plasma concentration AUC and MRT. Here, whole lung concentration was
calculated as the sum of the drug amount in all the pulmonary absorption
model compartments, divided by the lung total volume. All the drug-
specific model parameters were considered uniformly distributed between
the ranges reported in tables 5.4, 5.5 and 5.6, except for the dose, that was
considered normally distributed with a CV equal to 15% [185]. When no
experimental data supporting the variability range definition were available,
arbitrary ranges reflecting the perceived parameter uncertainties were used.
To account for the population variability of rat weight, all the volumes and
blood flows were multiplied for (wsubj/wmean) and (wsubj/wmean)0.75, re-
spectively. wsubj is the extracted value of rat weight and wmean is the mean
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5.2. Physiological pulmonary absorption model and inter & intra compound GSA

rat weight equal to 250 g, as used in [181].
All the analyses were performed using MATLAB R2019a [127] on a

64-bit computer configured with Intel® Core™ i7-7700 3.60 GHz x 8 pro-
cessor, running Ubuntu 16.04 LTS. The systems of differential equations
were solved by using the ode15s MATLAB solver, for a time span ranging
from 0 to 400 h. A program to perform variance based GSA was developed.
To perform the GSA in both inter and intra compound cases, we used a
number of samples (n) equal to 20000. Uncertainty on the calculation of
the sensitivity indices was estimated by using 10000 bootstrap samples [67].

Table 5.1: Lung physiological parameters

Parameters central lung peripheral lung units reference

surface area 276.4 3.27 dm2/kg [179]
lining fluid volumes 163.6 193.5 µL/kg [179]
tissue volumesa 1.01 0.2438 mL [171, 179]
blood flowsb 89.61 1.88 mL/min [171, 179]
proportion of ev tissuec 0.55 0.55 [181, 186]
a The tissue volumes were obtained multiplying the total lung volume, from [171],
for the proportions reported in [179].
b The blood flows were obtained multiplying the CO, from [171], for the proportions
reported in [179].
c The proportions of vascular and extravascular tissue in the central and peripheral
lung regions were obtained from [186], as shown in [181]. Both the values
were assumed to be the same.
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5. GSA for a pulmonary absorption model

Table 5.2: Physiological and drug related parameters used for both inter and intra compound
GSA

Parameters baseline min value max value units reference

Finh: inhaled
fraction

0.9 0.9 1 internal data

kMC : mucocil-
iary clearance

0.5545 0.4621 0.6931 1/h [187]

w: rat weight 0.25 0.26 0.35 kg internal data
α: correction
factora

15.6 9.2 103.57

GFR: glomeru-
lar fraction rate

1.62 1.134 (-30%) 2.106 (+30%) mL/min [188]

ρ: drug true den-
sity

1 0.5 1.5 mg/mL [189]

a permeability correction factors were calculated from bronchial and alveolar cell layer
thickness taken from [190, 191, 192, 193, 194, 195, 196].

Table 5.3: Drug related parameters used for inter-compounds GSA

Parametersa min value max value units

mw: molecular weight 334.4 769.2 g/mol
MMAD: mean aerody-
namic diameter

1.106 6.136 µm

GSD: geometric standard
deviation of the diameters

0.84 3.432 µm

Db0: dose number 0.045 (1) 1 (160.9)
fu,l: fraction unbound
lung tissue

0.001 0.264

fu,elf : fraction unbound
fluid

0.1 1

Pp CALU3: fitted passive
permeability

12.85 174.7 nm/s

Pa CALU3: fitted active
permeability

4 · 10−6 60600 nm/s

a all the parameters were internally available.
b for min and max values: high solubility (poor solubility).
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5.2. Physiological pulmonary absorption model and inter & intra compound GSA

Table 5.4: Drug A parameters for intra-compound GSA

Parametersa baseline min value max value units

doseb 10 µg
logP c 3.87 3.72 (-30%) 3.98 (+30%)
pKa 8.7 8.6 8.8
Pp CALU3: fitted
passive permeabil-
ity

55.86 16.76 (-70%) 94.96 (+70%) nm/s

Pa CALU3: fitted
active permeability

4 · 10−6 1.2 · 10−6 (-70%) 6.8 · 10−6 (+70%) nm/s

Caco2AB : gut wall
permeability

4.7 1.41 (-70%) 7.99 (+70%) nm/s

BP : blood to
plasma partition
coefficient

0.8 0.72 (-10%) 0.88 (+10%)

Er: extraction ra-
tio

0.8 0.56 (-30%) 1

Cs: drug solubility 696 487.2 (-30%) 904.8 (+30%) ng/mL
MMADd: mean
aerodynamic diam-
eter

2.59 2.2 (-30%) 4.9 (+30%) µm

GSDd: geometric
standard deviation

2.1 1.12 (-30%) 2.51 (+30%) µm

fu,elf : fraction un-
bound fluid

0.16 0.112 (-30%) 0.208 (+30%)

fu,l: fraction un-
bound lung tissue

0.0015 0.001 (-30%) 0.002 (+30%)

fu,p: fraction un-
bound plasma

0.032 0.0224 (-30%) 0.0416 (+30%)

a minimum or maximum range limit (difference with respect to the baseline value,
in percentage).
b the dose was considered normally distributed with a CV equal to 15% [185].
c the ranges were calculated as ±30% of the natural value.
d ranges were set equal to -30% the minimum and +30% the maximum of multiple
measurements.
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5. GSA for a pulmonary absorption model

Table 5.5: Drug B parameters for intra-compound GSA

Parametersa baseline min value max value units

doseb 15 µg
logP c 1.99 1.84 (-30%) 2.1 (+30%)
pKa 9.81 9.71 9.91
Pp CALU3: fitted
passive permeabil-
ity

16.06 4.81 (-70%) 27.3 (+70%) nm/s

Pa CALU3: fitted
active permeability

68.82 20.65 (-70%) 117 (+70%) nm/s

Caco2AB : gut wall
permeability

49.2 14.76 (-70%) 83.64 (+70%) nm/s

BP : blood to
plasma partition
coefficient

1.6 1.44 (-10%) 1.76 (+10%)

Er: extraction ra-
tio

0.95 0.67 (-30%) 1

Cs: drug solubility 360000 252000 (-30%) 468000 (+30%) ng/mL
MMADd: mean
aerodynamic diam-
eter

3.2 2.18 (-30%) 4.34 (+30%) µm

GSDd: geometric
standard deviation

1.67 1.08 (-30%) 2.3 (+30%) µm

fu,elf : fraction un-
bound fluid

1 0.7 (-30%) 1

fu,l: fraction un-
bound lung tissue

0.26 0.18 (-30%) 0.34 (+30%)

fu,p: fraction un-
bound plasma

0.82 0.58 (-30%) 1

a minimum or maximum range limit (difference with respect to the baseline value,
in percentage).
b the dose was considered normally distributed with a CV equal to 15% [185].
c the ranges were calculated as ±30% of the natural value.
d ranges were set equal to -30% the minimum and +30% the maximum of multiple
measurements.
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5.2. Physiological pulmonary absorption model and inter & intra compound GSA

Table 5.6: Drug C parameters for intra-compound GSA

Parametersa baseline min value max value units

doseb 23 µg
logP c 5.4 5.25 (-30%) 5.51 (+30%)
pKa 8.5 8.4 8.6
Pp CALU3: fitted
passive permeabil-
ity

20.54 6.16 (-70%) 34.92 (+70%) nm/s

Pa CALU3: fitted
active permeability

598.74 179.62 (-70%) 1017.9 (+70%) nm/s

Caco2AB : gut wall
permeability

0.3 0.09 (-70%) 0.51 (+70%) nm/s

BP : blood to
plasma partition
coefficient

1 0.9 (-10%) 1.1 (+10%)

Er: extraction ra-
tio

0.95 0.67 (-30%) 1

Cs: drug solubility 14300 10010 (-30%) 18590 (+30%) ng/mL
MMADd: mean
aerodynamic diam-
eter

1.71 1.11 (-30%) 2.54 (+30%) µm

GSDd: geometric
standard deviation

2.33 1.51 (-30%) 3.39 (+30%) µm

fu,elf : fraction un-
bound fluid

0.1 0.07 (-30%) 0.13 (+30%)

fu,l: fraction un-
bound lung tissue

0.001 0.0007 (-30%) 0.0013 (+30%)

fu,p: fraction un-
bound plasma

0.0015 0.001 (-30%) 0.002 (+30%)

a minimum or maximum range limit (difference with respect to the baseline value,
in percentage).
b the dose was considered normally distributed with a CV equal to 15% [185].
c the ranges were calculated as ±30% of the natural value.
d ranges were set equal to -30% the minimum and +30% the maximum of multiple
measurements.
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5. GSA for a pulmonary absorption model

5.3 Results

5.3.1 Inter-compounds GSA results

Here the results of the inter-compounds GSA on the pulmonary ab-
sorption model decoupled from the whole-body PBPK, for both highly and
poorly soluble compounds are reported. In figure 5.3, the distributions of
the selected model outputs are showed. In figure 5.4 the sensitivity indices
for fa and for the logarithms of AUC and MRT of the drug concentration
in the lungs are reported. We choose the log scale for AUC and MRT to
avoid possible imprecisions in the variance based sensitivity indices estima-
tion due to the skewness of AUC and MRT distributions in natural scale
[92].

Figure 5.3: Inter-compounds variability for highly and poorly soluble compounds of: a) fraction
absorbed; b) logarithm of whole lung AUC; c) logarithm of whole lung MRT.

For highly soluble compounds, the parameters that mostly explain the
fa variability are D0,inh and MMAD. Concerning D0,inh, it is probably
important because it controls the solubility, and so the dissolution rate.
The higher the dissolution rate is, the faster the drug is removed from the
solid compartment in the central region. That is in fact the region in which
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Figure 5.4: Inter-compounds GSA results for the output of interests: a) fraction absorbed for
highly soluble compounds; b) logarithm of whole lung AUC for highly soluble compounds; c)
logarithm of whole lung MRT for highly soluble compounds; d) fraction absorbed for poorly
soluble compounds; e) logarithm of whole lung AUC for poorly soluble compounds; f) logarithm
of whole lung MRT for poorly soluble compounds.

the drug could be eliminated via mucociliary clearance. However, the fa
variability is quite low, as shown in figure 5.3. So, D0,inh and MMAD are
the most important parameters, but actually the variation of the model
output is quite limited.
For poorly soluble compounds, both MMAD and D0,inh, even if with a mi-
nor contribution of GSD and Pa, still impact the fa variability. Concerning
D0,inh, the reasons of its importance are probably the same of highly solu-
ble compounds. MMAD could be important in determining fa variability
mainly for two reasons. First, the MMAD value could impact the dis-
solution rate when the solubility is low. Second, it determines FC and,
mainly for poorly soluble compounds, fa could be sensitive to the reparti-
tion between central and peripheral regions. In fact, in peripheral region
the mucociliary clearance does not occur. The main difference with respect
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5. GSA for a pulmonary absorption model

to the high solubility case is that fa variability is quite high. Thus, MMAD
and D0,inh are responsible for a great variation of the model output.

Concerning lung AUC, the parameters that mostly explain its variability
for highly soluble compounds are fu,l, Pp and Pa. This probably happens
because fu,l and the permeabilities are parameters that determine the drug
retention into the lungs and thus they control the AUC. For poorly soluble
compounds, in addition to parameters that control the drug retention into
the lungs, D0,inh and MMAD are also important. This happens because,
as explained before, they could impact the fa and, thus, the lung AUC.
Concerning lung MRT, the parameters that mostly explain the variability
for highly soluble compounds are still fu,l and both passive and active
permeabilities. The reasons of their importance are probably similar to
the one for the AUC: these are the parameters responsible to the drug
retention into the lungs. For poorly soluble compounds, the most important
parameters are similar to the ones for highly soluble compounds, with the
addition of D0,inh and MMAD.

5.3.2 Intra-compound GSA results

Here the results of the intra-compound GSA for three representative
compounds belonging to the Chiesi portfolio, namely A, B and C, are
reported. With respect to all the other Chiesi compounds, compound A
is characterized by a lower solubility, a higher permeability and a low fu,l.
Compound B has a higher solubility, a lower permeability and a higher
fu,l. Finally, compound C has a mean solubility and permeability and a
low fu,l. The parameters values and associated uncertainty or variability
are reported in tables 5.4, 5.5 and 5.6.

Compound A

The distribution of drug plasma and whole lung AUC and MRT are
reported in figure 5.5, while the sensitivity analysis results are reported in
figure 5.6. Whole lung AUC variance is mainly explained by the passive
permeability variation, together with a minor contribution of the dose, fu,t,

122



5.3. Results

Figure 5.5: Intra-compound uncertainty for compound A: a) whole lung AUC; b) whole lung
MRT; c) plasma AUC; d) plasma MRT.

rat weight and kMC variabilities. Even if the drug has a low solubility,
it seems that the highest impact on the AUC is attributed to the passive
permeability. This probably happens because compound A has very low
fraction unbound in tissue, thus, even if the permeability parameter of the
free compound is high, the overall drug permeability results to be the lim-
iting step. In addition to that, it should be noted that the uncertainty
associated to the passive permeability is higher with respect to those as-
sociated to other parameters. The passive permeability is still the most
important parameter when whole lung MRT is considered. The reasons
seem to be similar to those discussed for the AUC. Plasma AUC variabil-
ity is mainly explained by the extraction ratio and, to a minor extent, by
the dose, MMAD and GSD variabilities. These results highlight that the
elimination process plays a major role in determining the plasma AUC vari-
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5. GSA for a pulmonary absorption model
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c) plasma AUC drug A
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Figure 5.6: Intra-compound GSA results for compound A: a) whole lung AUC; b) whole lung
MRT; c) plasma AUC; d) plasma MRT.

ability. Concerning the plasma MRT, the most important parameter is the
passive permeability. This probably happens because the drug is slowly
absorbed from the lungs into the systemic circulation.

Compound B

The distribution of drug plasma and whole lung AUC and MRT are re-
ported in figure 5.7, while the results of the sensitivity analysis are reported
in figure 5.8. The parameter that mostly explains compound B whole lung
AUC and MRT variation is the passive permeability. This probably hap-
pens because compound B has a lower permeability and higher solubility
with respect to the other compounds of interest, thus, the absorption rate
is probably permeability limited. Moreover, as explained for compound A,
with respect to all the other parameters, the permeabilities have associated
a greater uncertainty, thus, it is more likely that they have a relevant im-
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5.3. Results

Figure 5.7: Intra-compound uncertainty for compound B: a) whole lung AUC; b) whole lung
MRT; c) plasma AUC; d) plasma MRT.

pact in explaining the AUC variation. Concerning the plasma AUC, the
most important parameters are the dose and the extraction ratio, followed
by rat weight and BP . As for compound A, the elimination process is
more important than the distribution or absorption processes in determin-
ing the AUC variation. The most important parameter in explaining the
MRT variance is the passive permeability. As for compound A, this prob-
ably happens because the drug is slowly absorbed from the lungs into the
systemic circulation.

Compound C

The distribution of plasma and whole lung AUC and MRT are reported
in figure 5.9, while the results of the sensitivity analysis are reported in
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c) plasma AUC drug B

d
o
s
e

w
e
ig

h
t

k
_
M

C

lo
g
P

_
o
w

p
K

a

P
_
p

P
_
a

C
a
c
o
2
A

B B
P E
r S

M
M

A
D

G
S

D

F
_
in

h

fu
_
e
lf

fu
_
t

fu
_
p

G
F

R

rh
o

a
lp

h
a

0

0.5

1
d) plasma MRT drug B
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Figure 5.8: Intra-compound GSA results for compound B: a) whole lung AUC; b) whole lung
MRT; c) plasma AUC; d) plasma MRT.

figure 5.10. For both whole lung AUC and MRT, the parameter that with
its variation mainly explains their variability is the passive clearance. The
reasons are probably similar to those reported for compounds A and B.
Moreover, compound C has a higher solubility, but lower permeability than
compound A. This, together with a low fraction unbound, could explain the
slightly higher importance of the passive permeability with respect to com-
pound A. Concerning the plasma AUC, the parameters that mainly explain
its variation are the dose and the extraction ratio, followed by the passive
permeability, rat weight and B : P . These results highlight that probably,
for this drug, the elimination process has a greater role in determining the
AUC variability with respect to the distribution or absorption. Concerning
the plasma MRT, the situation resembles the one of compound A.
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5.3. Results

Figure 5.9: Intra-compound uncertainty for compound C: a) whole lung AUC; b) whole lung
MRT; c) plasma AUC; d) plasma MRT.
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c) plasma AUC drug C
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d) plasma MRT drug C
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Figure 5.10: Intra-compound GSA results for compound C: a) whole lung AUC; b) whole lung
MRT; c) plasma AUC; d) plasma MRT.
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5.4 Discussion

In this manuscript, we showed how GSA techniques were used to assess
model behaviours and support the development of a mechanistic model de-
scribing pulmonary absorption for orally inhaled compounds. We identified
two ways of performing a GSA, that differ in the aims and thus, in the
considered parameters variability: inter-compounds and intra-compound.
Both the approaches helped in understanding different model aspects.

The inter-compounds GSA was performed for the absorption model de-
coupled from the distribution PBPK. In particular, this analysis can be per-
formed in more ‘homogeneous’ sub-spaces of the whole parameter space, as
we have done distinguishing highly soluble from poorly soluble compounds.
Looking at the model output distributions gives the possibility of assessing
the extent of the inter-compounds variability of the metrics of interest and
then its relevance. Then, GSA helps in understanding what are the parame-
ters that mostly determine the observed variation of the output predictions
between different compounds. For example, from figure 5.3 it is possible to
appreciate the difference in the model behaviour and in the impact of the
model parameter variability between highly and poorly soluble compounds.
We found that inter-compounds GSA is particularly useful during the pro-
cess of model development. In fact, this analysis can help in understanding
if the model behaves as expected and, in case of discrepancies between the
expected and the actual model behaviours, GSA gives useful information
that helps in identifying the reasons. Theoretically, if the model structure
and the physiological and inter-compounds parameter variabilities are cor-
rectly identified and fixed, this analysis can be performed just once (e.g.,
when the model is firstly presented or at the platform release).

The intra-compound GSA was instead performed for three representa-
tive compounds on the whole body PBPK model. The parameters variation
was defined to represent the uncertainties associated to their values for a
specific compound. With this analysis it is possible to know how much the
model output variation is apportioned to the uncertainty of the parameters.
When doing this analysis, it is useful to look at the output distribution, to
determine if it is narrow enough to be considered acceptable. If not, GSA
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5. GSA for a pulmonary absorption model

helps in selecting what parameters should be known with less degree of
uncertainty in order to give a more accurate prediction. For example, we
believe that the uncertainty associated to compound A lung MRT is too
high. So, if one is interested in using this model for lung MRT predictions
(e.g., for different dosages or species), from the GSA results we know that a
better characterisation of the passive permeability is needed in order to re-
duce uncertainty of the considered metric. This situation probably does not
happen for compound A lung AUC, given that the uncertainty associated
with this metrics can be considered low. Differently from inter-compounds
GSA, intra-compound GSA should be performed each time the model (or
the PBPK platform) is used for a specific drug.

In our experience, GSA showed some criticisms. For example, due to the
lack of available data, in certain situations determining the uncertainty or
variability ranges was not an easy task, in particular for the intra-compound
GSA. In these cases, expert opinion has to be used to fill the gap.

In conclusion, we suggest the use of GSA during the model development
and evaluation, especially for the development of (complex) mechanistic
models. GSA increases the knowledge of the model, it helps in finding
errors, sensitive assumptions and it identifies the parameters that must be
known with higher confidence if one is interested in reducing the model
prediction uncertainties.
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Chapter 6
Accounting for
inter-correlation between
enzyme abundance:
assessing implications on
model predictions with
uncertainty and sensitivity
analysis 1

1This work was published in “N. Melillo, A.S. Darwich, P. Magni, A. Rostami-
Hodjegan. Accounting for inter-correlation between enzyme abundance: a simulation
study to assess implications on global sensitivity analysis within physiologically-based
pharmacokinetics. Journal of Pharmacokinetics and Pharmacodynamics, 46(2):137-154,
April 2019” [56].
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6.1 Introduction

In the recent EMA draft guidance on the qualification and reporting of
PBPK models, the need to assess the biological plausibility and validity of
model parameter values was highlighted. Further, EMA encouraged PBPK
platforms to evolve with new published data [50]. In order to simulate the
variability in pharmacokinetics of a given drug in a given population, a set
of individuals are generated by sampling model parameter values within a
predefined space (e.g., liver volume and blood flow) [197, 137]. In PBPK
simulations for large populations of virtual patients, if during the process of
assigning system parameters, the correlations between various anatomical,
physiological and biological attributes are ignored, it is possible to generate
implausible combinations of parameters. This could lead to an erroneous
estimation of the interindividual variability of the main pharmacokinetic
parameters, such as clearance [30, 198].

Accordingly, most PBPK models implement, for example, the known
correlation between organ volumes and blood flows [137, 199]. However,
there are other physiological and biological components of the system with
known degrees of correlation which are not considered in the development
of virtual populations. These include enzyme expressions in various or-
gans and tissues. Recently, novel techniques in quantitative proteomics
has made possible the reliable quantification of multiple enzyme and trans-
porter expressions in the same experiment and sample. This allows robust
measures of correlations between proteins [200, 201]. For example, it has
been shown that various CYPs enzymes and UDP-glucuronosyltransferases
(UGT) are correlated [202]. Recent work has demonstrated that including
the correlation between hepatic CYP3A4 and CYP2C8 in PBPK modelling
of repaglinide, leads to improved performance in predicting inter-individual
variability in drug clearance and the magnitude of metabolic drug-drug
interactions (DDIs), as compared to the same PBPK predictions without
correlation [201]. While the correlation between hepatic CYPs and UGTs
has been robustly assessed, that between CYP3A4 in liver and gut wall
remains controversial: some work suggests its absence [203], while other
work suggests its presence [204]. Moreover, to our knowledge, evidence
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6.1. Introduction

in the literature regarding any correlation between enzyme and transporter
expressions and their relevance are still insufficient [201], however, this type
of correlation might be possible (internal unpublished data).

In this context, the uncertainty analysis of mathematical models may
be informative in highlighting possible correlations that may impact the
PK of drugs and, by extension, may inform experimental design. The aim
of our work was to perform an uncertainty analysis in order to theoreti-
cally assess the impact of the correlation between the expressions of two
enzymes, under different conditions, on the PK of drugs that are substrates
of both enzymes. For this purpose, we considered three simple compart-
mental semi-physiological models representing the cases of: 1) intravenously
(IV) administered drugs metabolised by two enzymes expressed in the liver;
2) orally administered drugs metabolised by CYP3A4 expressed in the gut
wall and liver; 3) IV administered drugs that are substrates of CYP3A4
and of the transporter organic-anion-transporting polypeptide (OATP) 1B1,
both expressed in the liver. For each of these models we tested the impact
of correlation between the expression of the two enzymes with respect to
the case of absence of correlation. We choose to use simple compartmental
models in order to highlight the correlation effect (if present), while limiting
the effect of confounding variables and thus, simplifying the interpretation
of the results.

Finally, the EMA report highlighted the importance of performing a sen-
sitivity analysis ‘for all the parameters that are likely to markedly influence
the outcome of simulated pharmacokinetics and/or the model application’
[205]. Hence, we assessed how the correlation between enzymatic abun-
dances impacts the results and interpretation of sensitivity analysis [30].
For this purpose, we performed GSA [60] on a semi-physiological model
describing repaglinide PK after IV infusion. Repaglinide is a substrate of
CYP3A4 and CYP2C8, where the abundances of these two enzymes have
been shown to be correlated in the liver [202]. Different degrees of corre-
lation between the two enzymes were tested in terms of their impact on
the GSA results. As suggested in Saltelli et al., [21], we choose to express
the correlation between the two enzymes by using an explicit relationship
(e.g., linear regression) with the addition of an independent noise term and
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then performed a GSA on the uncorrelated parameters. The technique
that we choose to use to perform the GSA was the variance based method
[21, 87, 69].
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6.2. Simulation study: uncertainty and sensitivity analysis

6.2 Simulation study: uncertainty and sensitivity
analysis

A simulation study was performed to assess the effect of the correlation
between enzymatic expressions, in different situations, on the PK of drugs
with different intrinsic clearances. Then, the impact of correlation between
hepatic CYP3A4 and CYP2C8 expressions on the results of a variance based
GSA of a semi-physiological model describing repaglinide PK after IV in-
fusion was assessed. The model parameter values that are considered fixed
are reported in table 6.1, the distributions of the enzyme concentrations are
reported in table 6.2 and the parameters related to repaglinide metabolism
and distribution are given in 6.3. The analysis was performed using MAT-
LAB R2017b on a 64-bit computer configured with Intel® Core™ i7-7700
3.60 GHz x 8 processor, running Ubuntu 16.04 LTS.

6.2.1 Model for two CYPs in the liver

A semi-physiological two-compartmental model was developed to sim-
ulate IV administration at an arbitrary dose of 1 mg of drug. The model,
represented in figure 6.1 (a), is composed of one central compartment and
one compartment representing the liver. Drug metabolism occurs in the
liver and depends on the activity of two different enzymes, namely enzyme
1 (E1) and enzyme 2 (E2), with equal intrinsic clearances. Model equations
are shown in equation system 6.1.

dxc
dt

=
Qliv,art
Vliv

xliv −
Qliv,art
Vc

xc

dxliv
dt

=
Qliv,art
Vc

xc −
Qliv,art
Vliv

xliv −
CL1 + CL2I

Vliv
xliv

(6.1)

xc and xliv are the drug amounts in the central and liver compartment,
respectively. Vc and Vliv are the central and liver compartment volumes
and Qliv,art is the arterial liver blood flow. The value of Vc was taken equal
to the median of drug distribution volumes in [206] minus Vliv. CL1 and
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Table 6.1: Model parameters values

Parameters value units reference

BW : body weight 70 kg [170]
CO: cardiac output 350.37 L/h [169]
Wliv : liver weight
(fraction of BW)

1.81 (0.026) kg [170]

Vc: central compart-
ment volume (for mod-
els in Figures 1a and
1c)a

115.91 L [206]

Vent: volume of the en-
terocytes

0.2242 L [169]

Qliv,art: liver blood
flow (percentage of
CO)

68.32 (0.195) L/h [170]

Qliv,ven: hepatic vein
blood flow (percentage
of CO)

89.34 (0.255) L/h [170]

Qent: blood flow out of
the enterocytes

16.82 L/h [169]

kt: time constant rel-
ative to the transit in
the intestine

0.3 h−1 Calculatedd

Peff : effective perme-
ability across the gut
wallb

8.70 10−4cm/s [157]

ρliv : liver densityc 1.080 kg/L [171]
few,liv : fraction of
extracellular water in
liver

0.161 [40]

fiw,liv : fraction of
intracellular water in
liver

0.573 [40]

MPPGL: mg of mi-
crosomal proteins per g
of liver

39.79 mg prot/g liver [160]

HPGL: hepatocellu-
larity per g of liver

117.52 106 hepatocytes/g liver [160]

a Calculated as the median of the values in [206] times BW (70 kg) minus
the liver volume.
b Taken equal to the maximum value in [157].
c Used to calculate Vliv from Wliv : Vliv = Wliv/ρliv .
d Calculated dividing the minimum of the mean flow rate in the jejunum
(0.5 mL/min) by the minimum volume (100 mL) reported in [158].
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Table 6.2: Parameters of the enzymatic distributions

Parameters distribution parameters distribution type units reference

[CY P3A4]mic:
CYP3A4 micro-
somal concentra-
tion

137 (41%) Lognormala pmol/mg prot [160]

CY P3A4ent:
total amount
of CYP3A4 in
small intestine

66.2 (60%) Lognormala nmol [160]

[CY P2C8]mic:
CYP2C8 micro-
somal concentra-
tion

24 (81%) Lognormala pmol/mg prot [160]

[OATP1B1]cells:
OATP1B1 con-
centration per
106 cells

4.28 (74%) Lognormala pmol/106 hepatocytes [160]

a For distribution parameters, mean (coefficient of variation) of the lognormal random variable.

Table 6.3: Repaglinide drug-specific parameters

Parameters value units reference

mw: molecular weight 452.6 g/mol [201]
Vmax, 3A4

a 958.2 pmol/min/mg prot [207]
KM,3A4 13.2 µM [207]
Vmax,2C8

a 300.8 pmol/min/mg prot [207]
KM,2C8 2.3 µM [207]
CLint,OATP : intrinsic
clearance of OATP

246 µL/min/106 hepatocytes [201]

CLPS : passive clear-
ance

0.089 mL/min/106 hepatocytes [201]

Vss: volume of distri-
bution at the steady
state

0.24 L/kg [201]

fut: fraction unbound
in liver tissue

0.072 [208, 209]

a HLM parameters in [201].
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c d

a b

Figure 6.1: Different models used in this study: a) intravenously administered drugs metabolised
by two enzymes expressed in the liver; b) orally administered drugs metabolised by CYP3A4
expressed in the liver and gut wall; c) intravenously administered drugs metabolised by CYP3A4
and OATP1B1, both expressed in the liver; d) intravenous administration of repaglinide, a drug
substrate of CYP3A4, CYP2C8 and OATP1B1.

CL2 are the clearances of enzyme 1 and enzyme 2, respectively, and I is an
inhibition constant. The clearance expression is given in equation 6.2.

CL = CLint · [E]mic ·MPPGL ·Mliv (6.2)

CLint is the intrinsic clearance, [E]mic is the enzymatic concentration per
mg of microsomal proteins, MPPGL is the mg of microsomal protein per
g of liver and Mliv the liver mass in g [199].

As an exercise, the distributions of microsomal concentrations of both
E1 and E2 were taken to equal the one of CYP3A4. We choose to set
the intrinsic clearance and the distributions of E1 and E2 to equal values.
This was done to give equal importance to the two enzymes on the drug
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6.2. Simulation study: uncertainty and sensitivity analysis

metabolism (for an average individual) and thus highlight the impact of
correlation effect where present. All the model parameters were considered
fixed to their mean value, shown in table 6.1, except CLint, I and the
concentrations of the two enzymes. As for CYP3A4, both concentrations
of enzyme 1 and 2 were assumed to be log-normally distributed [160] as
shown in 6.3. [

ln([E]1)
ln([E]2)

]
∼ N

([
lµ1

lµ1

]
,

[
σ2

1 ρ σ1 σ2

ρ σ1 σ2 σ2
2

])
(6.3)

where lµi and σi are the mean and standard deviation of the natural loga-
rithm of the concentration of enzyme i. Both presence and absence of cor-
relation between the two enzymes were considered. In particular, when the
correlation is present it was assumed that ρ = 0.7, close to the physiological
correlation between the logarithms of CYP3A4 and CYP2C8 microsomal
concentrations2. CLint was considered variable within the ranges of 0.005 to
2949 µL/min/mg microsomal protein as reported in [164]. Given that in
[164] the values of CLint are expressed in µL/min/mg microsomal protein,
in order to express the clearance in µL/min/pmol CY P , the original values
were divided by the mean concentration of CYP3A4 per mg of microsomal
protein. Values of I were considered between 0 and 2, which corresponds
to complete inhibition and two-fold induction of the E2, respectively.

A total of 5000 samples were extracted from the enzyme concentration
distribution in both cases of presence and absence of correlation. The con-
sidered timespan ranged from 0 (time of dose administration) to 100 h. For
the given values of CLint and I, the AUC from 0 to 100 h of the central
compartment following an IV bolus of 1 mg was calculated for all the paired
enzyme concentration samples. Thus, for each CLint and I combination,
two AUC distributions were obtained: one in presence and the other one in
absence of correlation between the enzyme concentrations. The index RP

2Data on CYP3A4 and CYP2C8 paired microsomal concentration on 23 Caucasian
subjects were internally available [202]. The Pearson linear coefficient was calculated
by using the MATLAB function corr, on the logarithms of the CYPs concentrations,
resulting in ρ = 0.7436.
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was defined as in equation 6.4, with AUCP,corr and AUCP,not corr given
percentiles relative to the correlated and not correlated distribution of the
AUC, respectively.

RP =
AUCP,corr −AUCP, not corr

AUCP,not corr
(6.4)

RP represents the increase in the P th AUC percentile, AUCP , due to the
presence of correlation, relative to absence of any correlation. An RP > 0
for the upper limit of the 95% confidence interval, means that this limit
is increased to (RP · 100)% due to the presence of correlation. Instead, an
RP < 0 for the lower limit of the 95% confidence interval, means that this
limit is reduced to (RP · 100)%. The reasoning could be easily extended
for RP < 0 for the upper limit and RP > 0 for the lower limit. RP was
calculated for the 5th, 50th and 95th percentiles. Given that RP depends
on CLint and I, its value was calculated for a grid of values of these two
parameters. This grid was obtained by the combination of 20 values for
both CLint and I, equally spaced between the ranges given before. Given
that CLint spans in several orders of magnitude, a logarithmic spacing with
lower and upper bounds set as the logarithms of minimum and maximum
value in [164], respectively, was used for values of CLint. To establish the
values of I, a linear spacing with a lower bound equal to 0 and an upper
bound equal to 2 was used. Finally, for each value of CLint, the ratio (Rinh)
between central compartment AUC when I = 0 (complete inhibition of E2)
and when I = 1 (absence of inhibition), was calculated for both the presence
and absence of correlation.

6.2.2 Model for CYP3A4 in gut wall and in liver

A semi-physiological model was set up to describe the absorption and
first pass effect for a generic drug. The model, shown in figure 6.1 (b), is
composed of four compartments, representing intestinal lumen, the entero-
cytes, the liver and the cumulative amount of drug reaching the systemic
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circulation. Model equations are shown in equation system 6.5.

dxlum
dt

= − (ka + kt)xlum

dxent
dt

= kaxlum −
(
CLentI

Vent
+
Qent
Vent

)
xent

dxliv
dt

=
Qent
Vent

xent −
(
CLlivI

Vliv
+
Qliv,ven
Vliv

)
xliv

dxsys
dt

=
Qliv,ven
Vliv

xliv

(6.5)

xlum, xent, xliv and xsys represent drug amount in gastrointestinal lumen,
enterocytes, liver and cumulative amount that reaches the systemic circula-
tion, respectively. ka = 2Peff/ri is the absorption constant, with ri = 1.75
cm the mean intestine lumen radius and Peff the effective permeability
[157]. Peff was taken to equal to the maximum value in [157] (8.70 · 10−4

cm/s) to allow maximal drug absorption. kt is the time constant relative
to small intestine transit. Vent and Vliv are the enterocyte and liver vol-
umes and Qent and Qliv,ven are the enterocyte and venous liver blood flows,
respectively. CLent and CLliv are the clearances due to CYP3A4 activity
in the gut wall (equation 6.6) and the liver (equation 6.2) and I is the
inhibition constant.

CLent = CLint,3A4 · CY P3A4ent (6.6)

CLint,3A4 is the intrinsic clearance and CY P3A4ent is the CYP3A4 amount
in enterocytes.

Foral is equal to limt→+∞(xsys/M0). Its analytical expression was de-
rived and is shown in equation 6.7, where M0 is the drug dose. Derivation
is shown in appendix D.

Foral =
ka · (Qent/Vent) · (Qliv,ven/Vliv)

(ka + kt)
(
Qent
Vent

+ CLent
Vent

· I
) (

Qliv,ven
Vliv

+ CLliv
Vliv
· I
) (6.7)

All the parameters were considered fixed, except CLint,3A4, I, CY P3A4ent
and the microsomal CYP3A4 concentration [CY P3A4]mic. CLint,3A4 and I
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were considered as in the section 6.2.1. Both CY P3A4ent and [CY P3A4]mic
were considered log-normally distributed [210, 160]. As an exercise, both
presence and absence of correlation between CYP3A4 amount in the ente-
rocytes and CYP3A4 concentration in liver microsomes, were considered.
In the former case, the correlation coefficient ρ was set equal to 0.7.

As in the previous section, 5000 samples were extracted from the joint
distribution of CYP3A4 in gut wall and liver in the case of presence and
absence of correlation. Then, the index RP was calculated for Foral, for
each combination of CLint and I. RP was calculated for the 5th, 50th

and 95th percentiles. Finally, for each value of CLint the ratio (Rinh) was
calculated between bioavailability when I = 0 (complete inhibition of both
CYP3A4 in gut wall and liver) and when I = 1 (absence of inhibition).
The analytical expression of Rinh is reported in equation 6.8.

Rinh =

(
Qent
Vent

+ CLent
Vent

)(
Qliv,ven
Vliv

+ CLliv
Vliv

)
Qent
Vent
· Qliv,venVliv

(6.8)

6.2.3 Model for CYP3A4 and OATP1B1 in liver

A semi-physiological model was developed to describe IV administration
of 1 mg of a generic substrate of CYP3A4 and OATP1B1. The model,
represented in figure 6.1 (c), is composed of one central compartment and
two compartments representing the extracellular and intracellular space of
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the liver. Model equations are shown in equation system 6.9.

dxc
dt

=
Qliv,art
Vliv,ext

xliv,ext −
Qliv,art
Vc

xc

dxliv,ext
dt

=
Qliv,art
Vc

xc −
(
Qliv,art
Vliv,ext

+
CLOATP
Vliv,ext

+
CLPS
Vliv,ext

)
xliv,ext

+
CLPS
Vliv,int

xliv,int

dxliv,int
dt

=

(
CLOATP
Vliv,ext

+
CLPS
Vliv,ext

)
xliv,ext

−
(
CLCY P
Vliv,int

+
CLPS
Vliv,int

)
xliv,int

(6.9)

xc, xliv,ext and xliv,int are drug amount in central, extracellular and intra-
cellular liver compartments, respectively. Vc, Vliv,ext and Vliv,int are central,
extracellular and intracellular liver volumes, respectively. Qliv,art is the liver
arterial blood flow. CLCY P represents the CYP3A4 mediated clearance, as
shown in the previous sections. CLOATP is the active transport clearance
from the extracellular to the intracellular liver compartment and CLPS is
the passive clearance across the hepatocytes’ plasma membrane. CLOATP
is defined in equation 6.10.

CLOATP = CLint,OATP · [OATP1B1]cells ·HPGL ·Mliv (6.10)

CLint,OATP is the intrinsic clearance, [OATP1B1]cells is the OATP1B1
concentration per 106 hepatocytes, HPGL the hepatocellularity per gram
of liver and Mliv the liver mass in g.

All the model parameters were fixed, except CLint,3A4, CLint,OATP ,
[OATP1B1]cells and [CY P3A4]mic. Both [OATP1B1]cells and [CY P3A4]mic
were considered log-normally distributed and, as an exercise, both the pres-
ence and absence of correlation between their expression were considered.
In the former case the correlation coefficient ρ was set equal to 0.7.
The ranges of CLOATP were taken from the uptake parameters in human
hepatocytes [211]. With the hypothesis that active transport was mainly
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due to OATP1B1 activity, clearance values in [211] were converted from
µL/min/106 hepatocytes to µL/min/pmol OATP1B1, by dividing them
by the mean OATP1B1 concentration per 106 hepatocytes. CLPS was
defined as 21.65% of the total transport clearance at a mean OATP1B1
concentration3.

Similarly to what was done in the previous sections, 5000 samples from
[OATP1B1]cells and [CY P3A4]mic distributions were extracted both in
presence and absence of correlation. Then, the index RP was calculated for
the AUC in the central compartment, for each combination of CLint,OATP
and CLint,3A4. RP was calculated for the 5th, 50th and 95th percentiles.
The time span that was considered ranged from 0 (dose administration) to
100 h.

6.2.4 GSA in case of parameters correlation: the repaglinide
example

A semi-physiological model, represented in figure 6.1 (d), was developed
to describe repaglinide PK after an IV infusion of 2 mg over 15 minutes.
The model is composed of one central compartment and two compartments
representing the extracellular and intracellular space of the liver. Active
transport due to OATP1B1 and metabolism due to CYP3A4 and CYP2C8

3In [211] the percentages of active clearance with respect to the total transport clear-
ance are reported. The fixed percentage of passive clearance was calculated as 1 minus
the median of the active clearance percentages reported in the article. Total clearance
was obtained dividing the active clearance for the fraction of active clearance.
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are included. Model equations are shown in equation system 6.11.

dxc
dt

=
Qliv,art
Vliv,ext

xliv,ext −
Qliv,art
Vc

xc

dxliv,ext
dt

=
Qliv,art
Vc

xc −
(
Qliv,art
Vliv,ext

+
CLOATP · fut

Vliv,ext
+
CLPS · fut
Vliv,ext

)
xliv,ext

+
CLPS · fut
Vliv,int

xliv,int

dxliv,int
dt

=

(
CLOATP · fut

Vliv,ext
+
CLPS · fut
Vliv,ext

)
xliv,ext

−
(
met3A4 +met2C8 +

CLPS · fut
Vliv,int

)
xliv,int

met3A4 =
Vmax,3A4CY P3A4liv

KM,3A4 + xliv,int · fut/Vliv,int
· fut
Vliv,int

met2C8 =
Vmax,2C8CY P2C8liv

KM,2C8 + xliv,int · fut/Vliv,int
· fut
Vliv,int

(6.11)
xc, xliv,ext and xliv,int are the drug amounts in central compartment, extra-
cellular and intracellular liver compartments, respectively. Vc, Vliv,ext and
Vliv,int are the central compartment, extracellular and intracellular liver vol-
umes, respectively. Qliv,art is the liver arterial blood flow and fut is the frac-
tion unbound drug in the liver tissue [208, 209]. CLOATP is the transporter
clearance, defined as in equation 6.10, and CLPS is the passive clearance.
Vmax,3A4, KM,3A4, Vmax,2C8 and KM,2C8 are the Michaelis-Menten parame-
ters of CYP3A4 and CYP2C8 catalysed reactions, respectively [207]. Vmax
values in [207] were converted from pmol/min/mg microsomal protein to
pmol/min/pmol CY P by dividing them for the mean microsomal CYP
concentration. CY P3A4liv and CY P2C8liv are the amounts of CYP3A4
and CYP2C8 in the liver. Enzyme amounts are calculated as the enzymatic
concentration per mg of protein, times MPPGL, times liver mass in grams
[199]. All the parameters were considered fixed, except OATP1B1, CYP3A4
and CYP2C8 abundances which were considered log-normally distributed.

A variance based GSA was performed on the predicted central com-
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partment AUC, considering different levels of correlation between CYP3A4
and CYP2C8 microsomal concentrations. The joint distribution of the two
CYPs’ microsomal concentration is shown in equation 6.3. We considered
different linear correlation coefficients (ρ) between the natural logarithm of
the two cytochromes’ concentrations: 0 (absence of correlation), 0.1, 0.3,
0.5, 0.7, 0.9 and a physiological ρ equal to 0.7436 [202]. OATP1B1 abun-
dance was considered to be independent from CYP3A4 and CYP2C8 since
there information on correlations between transporters and enzymes are
currently sparse and starting to emerge [212].

To express the correlation between CYP3A4 and CYP2C8 a linear re-
gression with the addition of a noise term was used, as suggested by [21].
For each of the correlation coefficient, 1000 samples were extracted from
the joint probability distribution of the natural logarithms of CYP3A4 and
CYP2C8 concentrations. On these samples, parameters of a linear regres-
sion (β0 and β1) were identified considering CYP2C8 concentrations as a
function of CYP3A4 concentration, a constant standard deviation for the
residual error. CYP2C8 concentrations were then expressed as the values
predicted by using the regression with the addition of a noise term ε, as
reported in equation 6.12.

log([CY P2C8]mic) = β0 + β1 log ([CY P3A4]mic) + ε (6.12)

ε was considered normally distributed with a mean equal to 0 and variance
equal to the one estimated from the residuals of the linear regression.

Then, for each correlation level, a variance based GSA was performed.
n samples extracted from the k-dimensional unit hypercube, with k = 3
(number of parameters), were manipulated to obtain the OATP1B1 and
CYP3A4 concentration distributions and the distribution of ε. n was set
equal to 7000. The analysis was repeated five times to assess the variability
of the sensitivity indices estimation. In conclusion, for each correlation level
we calculated the main and the total effect for all the variable model pa-
rameters (i.e., CYP3A4, CYP2C8 and OATP1B1 concentrations). Finally,
the same analysis was performed again, considering CYP3A4 expressed as a
function of CYP2C8, with the purpose to assess the impact of the arbitrary
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decision of what variable is the independent one in the linear regression
model.
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6.3 Results

6.3.1 Results for two CYPs in the liver

For the model represented in figure 6.1 (a) and described in equation
system 6.1, the distribution of central compartment AUC was simulated for
each combination of CLint and I, both in case of presence and absence of
correlation between the liver expression of the two enzymes metabolising
the drug. Then, for each of these AUC distribution pairs, the index RP , in
equation 6.4, was calculated for the 5th, 50th and 95th percentiles. Results
are shown in figure 6.2.
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Figure 6.2: RP indices for the model in figure 6.1 (a), computed for different inhibition levels
and CLint values: a) RP indices for the 5th percentile; b) RP indices for the median; c) RP
indices for the 95th percentile; d) RP indices for 5th percentile, median and 95th percentile in
absence of inhibition. For central CLint values the AUC distribution is wider (RP,5th < 0 and

RP,95th > 0) in case of correlation with respect to the absence of that.
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Figure 6.3: Ratio between Rinh,corr and Rinh,not corr. It is possible to observe that in case of

correlation the distribution of Rinh,corr is narrower with respect to the one of Rinh,not corr (95th

percentile < 0 and 5th percentile > 0). Moreover, it can be seen that the median of the ratios in
case of correlation is equal to the one in case of absence of that.

Due to the presence of correlation between E1 and E2, the 5th percentile
of the central compartment AUC is reduced by more than 5% and the 95th

percentile increases by more than 15%, while the median remains almost
stable. In the presence of correlation, when E1 is highly expressed, E2

is likely to be highly expressed as well. Instead, in case of absence of
correlation, if E1 is highly expressed then E2 is equally likely to have any
expression level according to its distribution. Therefore, in presence of
correlation, the metabolism is likely to be higher, and thus the AUC is lower.
For the same reason, in case of low expression of one of the two enzymes, the
metabolism is likely to be lower, and so the AUC is higher if the enzymes
are correlated, as compared to the case of uncorrelated expressions. For
central values of CLint a higher correlation effect can be observed while a
lower effect can be observed for extreme CLint values. For higher CLint
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6. Accounting for inter-correlation between enzyme abundance

values, this is probably a consequence of the metabolism becoming flow-
limited and therefore less dependent on enzymatic abundances. For lower
CLint values the clearance is so low that even inhibiting one enzyme does
not change the overall absolute metabolic clearance.

For each value of CLint, the ratio (Rinh) between the central compart-
ment AUC when I = 0 and when I = 1 was calculated in case of pres-
ence (Rinh,corr) and absence (Rinh,not corr) of correlation. Then, the ratio
Rinh,corr/Rinh,not corr was computed and the results are shown in figure 6.3.
When the correlation between enzymatic expression is present, the distri-
bution of Rinh is narrower in comparison to the absence of correlation. This
effect is more apparent for central CLint values and it is weaker for extreme
CLint values. In presence of correlation, when E1 has high expression, E2

is likely to have high expression and so when E2 is completely inhibited, the
capacity for drug metabolism via E1 is still high. In this case, the change in
AUC values would be limited compared to the case of absence of correlation,
in which most of the metabolism could be due to the activity of one enzyme
alone. Instead, if E1 has low expression, E2 is likely to have low expression,
thus the metabolism would still be low in case of complete inhibition of E2,
therefore the AUC values would still be high. In the case of absence of cor-
relation, the complete inhibition of one enzyme could dramatically change
the AUC values. For these reasons, the distribution of Rinh is narrower
in the presence of correlation. The correlation effect is higher for central
CLint values and lower for extreme CLint values, probably for the same
reasons as it is for RP : for higher CLint values the metabolism becomes
flow-limited and so less dependent on enzymatic expression, while for lower
CLint values the clearance is so low that even inhibiting one enzyme does
not change the overall absolute metabolic clearance.

6.3.2 Results for CYP3A4 in gut wall and in liver

For the model represented in figure 6.1 (b) and described by equation
system 6.5, the Foral distribution was calculated for each combination of
CLint and I, both in the case of presence and absence of correlation between
CYP3A4 expression in the gut wall and liver. Then, for each of these AUC
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distribution pairs, the index RP was calculated for the 5th, 50th and 90th

percentiles. Results are shown in figure 6.4.
In presence of the correlation, the 5th Foral percentile decreases of more

than 20% and the 95th percentile increases of more than 35%, while the me-
dian remains stable. This effect mainly occurs for high CLint values. In the
case of correlation, for high liver CYP3A4 expression, it is likely to be high
also the gut wall CYP3A4 expression. Instead, in absence of correlation,
for high values of liver CYP3A4 expression, the gut wall expression could
equally likely be any value, according to its distribution. In such cases,
when the correlation is present, the metabolism is likely to be higher, thus
the Foral lower. For the same reasons, in case of low CYP3A4 expression
in one of the two sites, the metabolism is likely to be lower, and so the
Foral to be higher, if the enzymes are correlated, with respect to the case
of absence of correlation. The correlation effect could mainly be observed
for high CLint values, as compared to mean or low CLint values, in which
little or no effect is observed. Therefore, the effect of the correlation could
only be seen for low values of oral bioavailability. In figure 6.5, for central
or lower CLint values, the fraction of the drug metabolised in the liver is
much higher with respect to the one metabolised in the gut wall. The two
fractions start to be comparable only for high CLint levels, and so this is
probably why the effect of the correlation is stronger in these cases.

For each value of CLint, the ratio (Rinh) of Foral in case of complete
inhibition of CYP3A4 in both gut wall and liver (I = 0) and in case of
absence of inhibition (I = 1) was calculated. Results are reported in figure
6.6. It can be seen that the distribution of the ratio is slightly wider in the
case of presence of correlation as compared to no correlation. It is possible
to explain this behaviour by looking at the Rinh analytical expression in
equation 6.8. In fact, if the expressions of CYP3A4 in gut wall and liver
are correlated, it is more likely that low values of clearance in the gut
wall correspond to low values of clearance in the liver, leading to higher
Foral in comparison to the case of absence of correlation. Similarly, in the
presence of correlation, high values of clearance in the gut wall are likely to
correspond to high values of clearance in the liver, leading to a lower Foral.

In case of complete inhibition of CYP3A4 metabolism in only one of the
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6. Accounting for inter-correlation between enzyme abundance

two sites, for example the gut wall (as is the case for grapefruit juice inter-
action studies [213]), the ratio of Foral in the inhibited state over Foral in

absence of inhibition, is equal to
(
Qent
Vent

+ CLent
V ent I

)
/
(
Qent
Vent

+ CLent
V ent

)
. Thus,

in these cases the ratio does not depend on the correlation between CYP3A4
in the gut wall and liver.

6.3.3 Results for CYP3A4 and OATP1B1 in liver

For the model represented in figure 6.1 (c) and described in equation
system 6.9, the distribution of central compartment AUC was simulated
for each combination of CLint,CY P and CLint,OATP , in both the cases of
presence and absence of correlation between the liver expression of the two
enzymes metabolising the drug. Then, for each of these AUC distribution
pairs, the index RP was calculated for 5th, 50th and 95th percentiles. Results
are shown in figure 6.7.

Due to the presence of correlation between OATP1B1 and CYP3A4,
the central compartment AUC 5th percentile is reduced by more than 20%,
the 95th percentile increases by more than 25% and the median remains
stable. In case of correlation, high OATP1B1 concentrations are likely to
correspond to high CYP3A4 concentrations. Therefore, the drug is quickly
transported into the intracellular liver compartment and is then rapidly
metabolised. This leads to lower central compartment AUC values com-
pared to the absence of correlation, where high OATP1B1 concentrations
could equally likely correspond to high or low CYP3A4 concentrations.
Similarly, in the case of correlation low OATP1B1 concentrations are likely
to correspond to low CYP3A4 concentrations and therefore leads to higher
central compartment AUC values.

6.3.4 GSA results for the repaglinide model

Variance based global sensitivity analysis was performed on central com-
partment AUC, as predicted using the reduced repaglinide PBPK model
represented in figure 6.1 (d) and described by equation system 6.11. The
main and total effects were calculated for CYP3A4, CYP2C8 and OATP1B1
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concentrations. The correlation between the two cytochromes microsomal
concentrations was modelled through a linear regression with CYP3A4 and
CYP2C8 being the independent and dependent variable, respectively. Re-
sults are shown in figures 6.8 and 6.9.

In case of absence of correlation (ρ = 0), the parameter that mostly
explains the central compartment AUC variance is the OATP1B1 concen-
tration, followed by CYP2C8 and CYP3A4 concentrations, with total ef-
fects equal to 0.5456, 0.434 and 0.1617, respectively. Despite the lower
mean microsomal concentration and lower Vmax in the case of repaglin-
ide metabolism, variability in the abundance of CYP2C8 is more impor-
tant than variability in CYP3A4 when it comes to explaining the variance
in AUC. This could be explained by the higher variability of microsomal
CYP2C8 and by the lower value of KM for repaglinide, as compared to that
of CYP3A4.
Moving towards higher correlation coefficients, the importance of OATP1B1
and CYP2C8 concentrations is reduced and the importance of CYP3A4
concentrations is increased. In the case of physiological correlation (ρ =
0.7436), the total effects of OATP1B1, CYP2C8 and CYP3A4 concentra-
tions are equal to 0.4499, 0.122 and 0.5174, respectively. The increased
importance of CYP3A4 and reduced importance of CYP2C8 as correlation
increases are probably mainly a consequence of CYP2C8 being dependent
on CYP3A4. This because CYP2C8 concentrations are derived through a
linear regression where CYP3A4 is the independent variable. Moreover, the
variability of ε, the residual variability or error, decreases as ρ increases. In
fact, the variance of ε is reduced from 1.8629 when ρ = 0, to 0.8329 when
ρ = 0.7436. Instead, in equation system 6.11, the parameters related with
OATP1B1 concentration distribution do not change through different cor-
relation levels between the two CYPs. So, the reduction of OATP1B1 main
and total effect when ρ increases, is explained by the increase of the level
of correlation between CYP3A4 and CYP2C8. Thus, the more CYP3A4
and CYP2C8 are correlated, the less OATP1B1 is important on central
compartment AUC variance.

The results of the analysis performed considering CYP3A4 as a function
of CYP2C8 are shown in figure 6.10. In summary, the observations are: 1)
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6. Accounting for inter-correlation between enzyme abundance

when ρ is equal to 0 the main and total effect of all the three parameters
are the same to the ones shown in figure 6.8; 2) main and total effect of
OATP1B1 do not change across the different correlation levels with respect
to the ones shown in figure 6.8. The differences seen in the results of
the analysis shown in figure 6.8 are that in this case CYP2C8 main and
total effect increase and CYP3A4 main and total effect are reduced, as ρ
increases. This because, similarly to the results explained above, CYP3A4
concentrations depend on CYP2C8 concentrations.
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Figure 6.4: RP indices for the model in figure 6.1 (b), computed for different inhibition levels
and CLint values: a) RP indices for the 5th percentile; b) RP indices for the median; c) RP
indices for the 95th percentile; d) RP indices for 5th percentile, median and 95th percentile in
absence of inhibition. For higher CLint values the AUC distribution is wider (RP,5th < 0 and

RP,95th > 0) in case of correlation with respect to the absence of that.
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Figure 6.5: 5th percentile, median and 95th percentile of the fraction metabolized by the liver
(panel a) and the gut wall (panel b) distributions for different values of CLint, in case of absence
of inhibition, predicted by using the model in figure 6.1 (b). It is possible to observe that the
percentiles of the fraction metabolized by the gut wall distributions are equal in case of presence
and absence of correlation. This result is trivial because the fraction metabolized by the gut wall
depends only on the CYP3A4 expression in that site. Moreover, it is possible to observe that
the two yellow median lines overlap in both panel a and b.
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Figure 6.6: Ratio between the bioavailability in presence and absence of inhibition of both
CYP3A4 gut wall and liver clearance (I = 0 and I = 1, respectively), predicted by using
the model in 6.1 (b) and calculated for different values of CLint. Continuous and dashed lines
represent the various percentiles (5th, 50th and 95th) in absence and presence of correlation
between CYP3A4 in gut wall and in liver.
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Figure 6.7: RP indices for the model in figure 6.1 (c), computed for different levels of CYP3A4
and OATP1B1 intrinsic clearances: a) Rp indices for the 5th percentile; b) RP indices for the
median; c) RP indices for the 95th percentile; d) RP indices in function of CYP3A4 intrinsic
clearance for the 10th entry (out of 20) of OATP1B1 intrinsic clearance vector. For central CLint
values the AUC distribution is wider (RP,5th < 0 and RP,95th > 0) in case of correlation with
respect to the absence of that.
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Figure 6.8: Main and total effect of CYP3A4, CYP2C8 and OATP1B1 concentrations, for dif-
ferent correlation levels between CYP3A4 and CYP2C8, for the model in figure 6.1 (d). Indices
corresponding to the physiological ρ are highlighted in red. To deal with the correlation between
the two enzymatic concentrations, here CYP2C8 was expressed as a function of CYP3A4 by
using a linear regression plus the addition of a noise. Error bars represent the standard deviation
of the estimated sensitivity indices.
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Figure 6.9: Main and total effect of CYP3A4, CYP2C8 and OATP1B1 concentrations, in case
of absence and presence of a physiological correlation between the expression of CYP3A4 and
CYP2C8, for the model in figure 6.1 (d). To deal with the correlation between the two enzymatic
concentrations, here CYP2C8 was expressed as a function of CYP3A4 by using a linear regres-
sion plus the addition of a noise. Error bars represent the standard deviation of the estimated
sensitivity indices.
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Figure 6.10: Main and total effect of CYP3A4, CYP2C8 and OATP1B1 concentrations, for
different correlation levels between CYP3A4 and CYP2C8, for the model in figure 6.1 (d). Indices
corresponding to the physiological ρ are highlighted in red. To deal with the correlation between
the two enzymatic concentrations, here CYP3A4 was expressed as a function of CYP2C8 by
using a linear regression plus the addition of a noise. Error bars represent the standard deviation
of the estimated sensitivity indices.
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6.4 Discussion

The aims of this work were, first of all, to perform an uncertainty anal-
ysis to assess the effect of the correlation between enzymatic expressions
at different sites in the body on the PK of different types of drugs and
second, to understand how the correlation between enzymatic abundances
impacts the results of global sensitivity analysis. In this context, three
semi-physiological models were considered to describe the PK of generic
drugs metabolised by two enzymes with correlated expressions, in order to
analyse the following cases: 1) impact of the correlation between the ex-
pression of two enzymes present in the liver on the plasma AUC of drugs
that are metabolized by both these enzymes; 2) impact of the correlation
between gut wall and liver CYP3A4 expression levels on the bioavailability
of CYP3A4 metabolised drugs; 3) impact of the correlation of OATP1B1
and CYP3A4 expressed in the liver on the plasma AUC of drugs that are
substrates of both proteins.

Concerning the first case, the correlation acts to enlarge the plasma
AUC distribution (RP < −0.05 for the 5th percentile, RP > 0.1 for the 95th

percentile) and results in a more narrow distribution of the ratio between
plasma AUC in presence and in absence of inhibition, especially for mean
values of CLint (figures 6.2 and 6.3). These results are in accordance with
the observations reported in [201], in fact in that study it was shown that a
PBPK model ignoring correlation between two drug-metabolising enzymes
may overestimate the effect of the DDI when one of the two enzymes is in-
hibited. Concerning the second case, the effect on the bioavailability seems
to be relevant (RP < −0.2 for the 5th percentile, RP > 0.2 for the 95th

percentile) only for high levels of intrinsic clearance. However, it must be
considered that in this analysis we did not included the dissolution process
and we considered high absorption. So, the results are limited to the above
situation. Finally, concerning the third case, the correlation shows its ef-
fect on plasma AUC especially for mean levels of CLint (RP < −0.2 for the
5th percentile, RP > 0.2 for the 95th percentile). The correlation between
OATP1B1 and CYP3A4 expressions may be considered a theoretical exer-
cise alone given the fact that, to our knowledge, there are no data available
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to support (or reject) this hypothesis.
Further, we have to consider the fact that in this analysis we used sim-

ple semi-physiological models, with a limited number of compartments and
limited sources of variability (practically exclusively limited to the param-
eters that are considered correlated), and not complex whole body PBPK
models (such as: Simcyp Simulator, GastroPlus and more). This was done
to highlight the effect of the correlation, if present, and to allow an easier
interpretation of the results. The problem of using a whole body PBPK is
that there are too many variables to control, consequently, the parameters
space would become too large to analyse and so, one is forced to reduce
it considering, for example, a specific case drug (e.g., repaglinide [201]).
With simple compartmental models the parameters space is reduced, and
it becomes possible to investigate more generally in what parameter space
interaction effects occur and their extent in function of set of parameters
(e.g., the intrinsic clearance). This would not directly correspond to a spe-
cific drug or class of drugs. However, our study could be a useful guide to
indicate in what situations the correlation may have a potential effect.

The results of this analysis show the necessity of considering the correla-
tion between enzymatic expressions in physiological model when confidence
in biological evidence for such correlations is high. Otherwise, there is a
risk of underestimating the population variability or overestimate the effect
of DDI (though this is shown for direct correlations of enzymes and the
reverse could be true if the enzyme abundances were inversely related). To
remain true to the knowledge of the system, PBPK platforms should not
ignore known correlations of any of the model parameters. However, one
has to consider that in a whole body PBPK model (unlike the minimal
model used in our investigation), it is likely that some of our findings might
be mitigated due lack of dominance of parameters that we intentionally
selected in this study. Our study considered some conditions (e.g., equal
intrinsic clearance between two correlated enzymes) which were in favour
of propagating the inter-correlation effect to make the point and these may
not be the case at the presence of multiple parameters variabilities and cor-
relations.
This analysis could be also useful for informing experimental design, for
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instance to assess the impact of hypothetical correlations prior to the gen-
eration of the data. For example, in order to asses if a correlation exists
between CYP3A4 in gut wall and in liver, an appropriate number of paired
samples in the same subjects should be collected. This could be challenging
in terms of sample collection and expensive. Knowing that this correlation,
even if present, has little or no impact except for high intrinsic clearance
drugs, could be useful information when choosing what experiments to pri-
oritise and their design.

Given the recent interest of the EMA in sensitivity analysis [50], we
wanted to investigate the impact of the correlation between enzymatic
abundances when performing GSA. A variance based GSA was performed
on a reduced PBPK model for repaglinide, a substrate drug for CYP3A4
and CYP2C8, these two enzymes have been shown to be correlated in the
liver [202]. One initial problem was to find an appropriate methodology to
conduct a GSA in the case of correlated parameters. Näıvely, an easy way
could be to extract correlated samples from the space of parameters (e.g.,
enzymatic expression), compute the model outputs (e.g., plasma AUC) for
each one of these parameters sets and then perform a GSA using the linear
correlation coefficient between the outputs and the input parameters. In
case of correlated parameters, the results of this analysis could be mislead-
ing. For example, let us consider the theoretical case of a model describing
the PK of a drug metabolised by CYP3A4 in liver. In a population simu-
lation, plasma AUC would probably be correlated with CYP3A4 liver ex-
pression. Considering that the expressions of liver CYP3A4 and CYP2C8
are correlated, the drug plasma AUC would be correlated with CYP2C8
expression. This because the presence of a correlation between the two pro-
teins and not because CYP2C8 plays a role in the metabolism of the drug.
So, in these situations, performing a GSA using the correlation coefficient
could give misleading results.

In the literature, different methodologies exist to perform GSA in case of
correlated parameters, see for example [214, 215, 216, 217], but as reported
in a recent review: ‘this issue remains misunderstood’ [78]. Therefore, we
choose to express the correlation between two parameters using an explicit
relationship (in our case linear regression) with a residual error term and
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6.4. Discussion

then perform a variance based GSA on uncorrelated parameters [21].
Implementing the correlation between parameters can influence the re-

sults of the GSA. In fact, in figures 6.8 and 6.9 it can be seen how the
OATP1B1 main and total effect change, even if not dramatically, through-
out different correlation levels between CYP3A4 and CYP2C8. Never-
theless, with the chosen method for performing the GSA, one should be
careful when interpreting the sensitivity indices. In figure 6.8 it is pos-
sible to observe that the importance of CYP3A4 and CYP2C8 increases
and decreases, respectively, as the correlation between the two enzymatic
expression increases. This effect is probably mainly due to CYP2C8 being
dependent on CYP3A4, because the latter was arbitrarily chosen to be the
independent variable in the linear regression and not because the CYP3A4
catalysed reaction acquires more importance. In this analysis we consid-
ered the abundances of CYP3A4 and CYP2C8 independent from the one of
OATP1B1. If these abundances were correlated, the results would probably
be different. It is important to note that the approach used in this paper to
treat correlation in GSA is difficult to use when more than two parameters
are correlated with each other.

To our knowledge, this is the first systematic analysis that investigates
the impact of correlation between enzymatic abundances on drug clear-
ance and metabolic DDIs with GSA in mind. Implementing the correlation
between the enzymatic expression in population physiological models has
the potential to impact the results of both predictions and GSA. Ignoring
these correlations could lead to the generation of implausible parameter
combinations and to incorrect estimation of parameters related to the PK
(e.g., clearance). Thus, it is appropriate to assess experimentally if these
correlations exist, their extent and how they differ with genetics, disease
or physiological conditions. The approach presented in this study can be
applied to highlight what correlations are of potential interest and therefore
could be useful for informing experimental design. Our work informs the
debate that is needed to take place in considering recent data generated
by the proteomic analysis and regulatory interest in the use of sensitiv-
ity analysis in PBPK. We fully encourage continuation of investigation on
inter-correlation not only for protein expressions relevant to drug disposi-
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6. Accounting for inter-correlation between enzyme abundance

tion, but also for the various attributes of the gastro-intestinal tract where
many potential/likely correlations related to physiology and biology are not
fully considered in PBPK models yet. Inter-correlations may not be relevant
when considering the model for an average individual, however, they are
pertinent to all aspects of population-based projections from mechanistic
models within pharmacometrics and systems pharmacology modelling.
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Chapter 7
Overall conclusions

The parameters of mechanistic models are inherently uncertain. Many
drug-related parameters are measured, thus they are affected by measure-
ment errors. Other parameters can be calibrated, so they are subject to
estimation errors. Others can be predicted with other models and thus, they
are affected by prediction errors. Moreover, if we consider a population, the
parameters are variable as well as uncertain. The immediate consequence of
the parameters being uncertain or variable is that the model outputs would
be uncertain or variable too. The quantification of the model output varia-
tion is referred as uncertainty analysis. Instead, the act of apportioning the
output variation to the sources of uncertainty or variability in the model
inputs is referred as sensitivity analysis. Dependently on the choice of the
input parameters variation, uncertainty and sensitivity analysis answer at
different questions and thus, have different aims.

In this thesis, I showed some of the possible uses of uncertainty analysis
and GSA for mechanistic models used in the field of pharmacology and, in
particular, for PBPK models.

GSA can be used to understand what parameters mainly drive the vari-
ability of certain metrics of interest in a given population. This was the
case of the mechanistic model describing gemcitabine PK, in chapter 3.
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7. Overall conclusions

In that case, GSA showed that individual genetic factors affecting gemc-
itabine metabolism are mainly responsible for different accumulation of the
active metabolites in the target tissue and so, for the different treatment
responses. By doing this analysis, it was possible to highlight that a bet-
ter characterization of the population distribution of the target enzymes is
needed to improve the predicted variability.

GSA can be performed considering the ‘between-drugs’ parameters vari-
ability. In this case, we called this analysis ‘inter-compounds GSA’. This
type of GSA helps in understanding the behaviour of the model as a function
of parameters variation and in identifying limiting steps and bottlenecks.
Inter-compound GSA was found to be particularly useful during the process
of model development, as shown for the PBPK absorption model for inhaled
compounds in chapter 5. In fact, this analysis helped in understanding if
the model behaved as expected and, in case of discrepancies between the
actual and the expected model behaviours, it gave useful information for
identifying the reasons. Moreover, inter-compounds GSA gives an a priori
information on what drug-specific parameters should be know with a lower
degree of uncertainty in order to allow more confident model predictions.
This analysis was found to be useful also for well constructed, understood
and characterized models, such the ones describing intestinal absorption.
As shown in chapter 4, we identified the radius of the particle size of the
formulation as one of the most sensitive parameters, especially for com-
pounds administered at low dose levels. However, this parameter has also a
high level of missingness in the OrBiTo database of compounds. Thus, we
concluded that a performance evaluation fixing the value of one of the most
sensitive parameters to an assumed or mean value, in certain situations,
could result in an incomplete interpretation.

GSA can be performed also considering the parameters uncertainty re-
lated to a specific compound. This analysis was called ‘intra-compound
GSA’. As shown in chapter 5, with this analysis is possible to understand
how much the model output variation is apportioned to the model input
uncertainty. If the model output uncertainty is considered too wide, and
thus the model predictions unreliable, GSA helps in selecting what param-
eters should be know with lower degree of uncertainty in order to give more
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precise predictions.
Uncertainty and sensitivity analysis helped also in informing experimen-

tal design. In fact, as explained in chapter 6, these analyses allowed to asses
the impact of plausible correlations on some metrics of interest prior the
data generation. For example, we identified that the correlation between
CYP3A4 in the gut-wall and in the liver has little or no impact except
for high intrinsic clearance drugs. Given that the process of experimen-
tally assess the extent of this correlation can be expensive and challenging,
knowing the results of this analysis could be useful when choosing what
experiments to prioritize.

In our experience, uncertainty analysis and GSA showed their utility
both in model development and use. In particular, they helped in under-
standing the model behaviour, identifying sensitive assumptions, uncover-
ing technical errors and establishing priorities for research.

However, GSA showed some criticism. We observed that in certain
situations identifying all the uncertain factors and determining their dis-
tribution was not an easy task. This is a well known concern, in fact it
was already highlighted in [218, 219]. The choice of a given factor distri-
bution introduces a subjective decision in the analysis [219]. This has the
potential to impact the shape of the output distribution and the sensitiv-
ity indices. One alternative could be just to fix an uncertain factor to a
given value, as often is done in PBPK models. However, even the choice of
that particular value is subjective. For example, it could be the result of a
given experiment rather than another one, or the mean (or median) of the
results of multiple experiments. Despite the fact of being subjective too,
fixing an uncertain factor before knowing if it has an impact on the model
outputs, as extensively discussed in this thesis, is not a good practice. In
fact, obtaining precise output through the arbitrary restriction of the input
space of uncertainty and variability is a way of ‘GIGOing’ (from garbage
in, garbage out, GIGO) [60, 218].

As highlighted by regulatory agencies and practitioners from multiple
disciplines, sensitivity analysis is crucial for the quality assessment of model
based inference [50, 51, 218]. However, guidances regarding PBPK models
should further stress the use of appropriate sensitivity methods. To avoid a

169



7. Overall conclusions

perfunctory sensitivity analysis [66], they should dissuade the use of those
methods that badly explore the parameter space and that do not allow the
detection of interaction effects.

In conclusion, the aim of this thesis has been to show the utility of
uncertainty analysis and GSA in PBPK modelling and simulation, with
the view of seeing these techniques routinely applied in model development
and use.
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Appendix A
Model equations, parameters
and simulation results for
the mechanistic model
presented in chapter 3

A.1 PBPK model equations

Given the hydrophilic nature of dFdC it was decided to model each
organ with a permeability limited model. RhCNT1,t, RhENT1,t and RCDA,t
are hCNT1, hENT1 transport reaction and CDA metabolism in the tissue
t, respectively [125].

RhCNT1,t = Vext,t ehCNT1,t khCNT1
Vint,t
Vext,t

Cuext,t
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A. Gemcitabine model equations, parameters and simulation results

RhENT1,t = ehENT1,t

(
Vext,t khENT1,in

Vint,t
Vext,t

Cuext,t

− Vint,t khENT1,outCuint,t

)

RCDA,t = Vint,t eCDA,tCLCDACuint,t

ex,t is the enzyme or transporter relative expression in the tissue t, kx is the
linear rate constant, assumed to be equal in all the organs and Cuext,t and
Cuint,t are the unbound extracellular and intracellular dFdC concentra-
tions, respectively. Here are reported the differential equations relative to
adipose tissue, bone, brain, stomach, small intestine, large intestine, heart,
kidneys, muscle, skin and spleen.

Vext,t
dCuext,t

dt
= Qt

(
Cart −

Cuext,t
Pt:p/B : P

)
−RhCNT1,t −RhENT1,t

Vint,t
dCuint,t
dt

= RhCNT1,t +RhENT1,t −RCDA,t

Liver differential equations (subscripts s int and l int represent small
and large intestine, respectively).

Vext,liver
dCuext,liver

dt
= Qliver

(
Cart −

Cuext,liver
Pliver:p/B : P

)
+Qstomach

Cuext,stomach
Pstomach:p/B : P

+Qs int
Cuext,s int

Ps int:p/B : P

+Ql int
Cuext,l int

Pl int:p/B : P
+Qpanc

Cuext,panc
Ppanc:p/B : P

+Qspleen
Cuext,spleen

Pspleen:p/B : P
−RhCNT1,liver −RhENT1,liver

Vint,liver
dCuint,liver

dt
= RhCNT1,liver +RhENT1,liver −RCDA,liver
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A.1. PBPK model equations

Lung differential equations.

Vext,lungs
dCuext,lungs

dt
= QTOT

(
Cven −

Cuext,lungs
Plungs:p/B : P

)
−RhCNT1,lungs −RhENT1,lungs

Vint,lungs
dCuint,lungs

dt
= RhCNT1,lungs +RhENT1,lungs −RCDA,lungs

Venous blood differential equation (T contains all the organs and tis-
sues except stomach, small intestine, large intestine, pancreas, spleen and
arterial and venous blood).

Vven
dCven
dt

=
∑
t∈T

Qt

(
Cuext,t

Pt:p/B : P

)
−QTOT Cven

Arterial blood differential equations.

Vart
dCart
dt

= QTOT

(
Cuext,lungs

Plungs:p/B : P
− Cart

)

Pancreas differential equations:

Vext,panc
dCuext,panc

dt
= Qpanc

(
Cart −

Cuext,panc
Ppanc:p/B : P

)
−RhCNT1,panc

−RhENT1,panc −
Ṽmax,hENT1Cuext,panc Vext,panc

K̃M,hENT1 + Cuext,panc Vext,panc

−
Ṽmax,CDA,extCuext,panc Vext,panc

K̃M,CDA,ext + Cuext,panc Vext,panc

Vint,panc
dCuint,panc

dt
= RhCNT1,panc +RhENT1,panc −RCDA,panc
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A. Gemcitabine model equations, parameters and simulation results

Intracellular tumour equations.

d dFdCint
dt

=
Ṽmax,hENT1Cuext,panc Vext,panc

K̃M,hENT1 + Cuext,panc V ext,panc

−
Ṽmax,CDA,int dFdCint

K̃M,CDA,int + dFdCint

−
Ṽmax,dCK dFdCint

K̃M,dCK + dFdCint
+ K̃mpc dFdCMP int

d dFdCMPint
dt

=
Ṽmax,dCK dFdCint

K̃M,dCK + dFdCint
−
(
K̃MPC + K̃NMPK

)
dFdCMPint

− K̃CMPD dFdCMPint

1 + ĨNH dFdCTPint
+ K̃DPMP dFdCDPint

d dFdCDPint
dt

= K̃NMPK dFdCMPint −
(
K̃NDPK + K̃DPMP

)
dFdCDPint

+ K̃TPDP dFdCTPint

d dFdCTPint
dt

= K̃NDPK dFdCDPint −
(
K̃TPDP + K̃DNA

)
dFdCTPint

All the parameters of the in vivo metabolic network are derived from the
in vitro ones as explained in section 3.2.3.
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A.2. dFdC pharmacokinetic model

A.2 dFdC pharmacokinetic model

The Zhang model [136] used to simulate dFdC pharmacokinetics for a
typical male is here reported. This model was used for generating data used
to identify the PBPK model parameters.

d dFdCc
dt

= − (k12 + k10) dFdCc + k21 dFdCp

d dFdCp
dt

= k12 dFdCc − k21 dFdCp

d dFdCTPWBC

dt
=

Vmax[dFdCc]

KM + [dFdCc]
− k30 dFdCTPWBC

dFdCc, dFdCp and dFdCTPWBC are the dFdC amount in central com-
partment, peripheral compartment and dFdCTP white blood cells (WBC)
amount in mmol/m2. [dFdCc] represents the drug concentration in cen-
tral compartment. All the parameters values used for the simulations are
reported in table A.1.

Table A.1: Zhang model parameters

Parameters value units

CL 92.2 L/h/m2

Q 125 L/h/m2

V1 17.5 L/m2

V2 47.4 L/m2

Vmax 2 mmol/h/m2

KM 7.5 · 10−3 mmol/L
K30 0.058 1/h
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A. Gemcitabine model equations, parameters and simulation results

A.3 Multiple dosages

Here, 3.34 mmol/m2 of dFdC were infused weekly for 20 weeks; results
are shown in figure A.1.

Figure A.1: dFdC and its metabolites PK after multiple administrations.
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A.4. System-specific parameters for PBPK building

A.4 System-specific parameters for PBPK build-
ing

In table A.2 the relative expressions of hCNT1, hENT1 and CDA for all
the organs considered in the PBPK model are reported. These values were
taken from the Open Systems Pharmacology Suite, version 7.1. In table
A.3 the parameters relative to the organ compositions are reported, while
in table A.4 the organs weight, blood flow and blood content are reported.

Table A.2: Relative expression of hCNT1, hENT1 and CDA, in %

Organs hCNT1a hENT1a CDAb

Adipose 0 2.53c 0
Bone 0.02 11.59 100
Brain 0.11 3.44 1.45
Heart 0.75 49.56 2.50
Muscle 0.62 100 1.02
Skin 0 2.53c 6.4
Spleen 0.02 2.53 16.47
Kidney 100 4.69 4.52
Gonads 0.45 9.54 1.29
Lung 0.03 5.9 1.1
Stomach 0.52 12.36 0.9
Small intestine 14.01 6.65 3.66
Large intestine 0.03 8.44 16.27
Liver 44.73 13.52 6.4
Pancreas 0.02 5.88 1.3
a RT-PCR values.
b Array values.
c In the Open Systems Pharmacology suite this value was
not provided, so it was fixed to its lowest value.
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A.4. System-specific parameters for PBPK building

Table A.4: Organs weight, blood flows and blood content

Organs weight fractionb blood flow fractiona blood fractionc

male female male female male female

Adipose 0.2040 0.3220 0.0530 0.0900 0.05 0.0850
Bone 0.1620 0.1520 0.0530 0.0500 0.07 0.07
Brain 0.0210 0.0230 0.1280 0.130 0.012 0.012
Heart 0.0057 0.0055 0.0430 0.05 0.01 0.01
Muscle 0.4430 0.3380 0.1810 0.12 0.14 0.105
Skin 0.0520 0.0450 0.0530 0.05 0.03 0.03
Spleen 0.0033 0.0037 0.0320 0.03 0.014 0.0104
Kidney 0.0060 0.0067 0.2170 0.2 0.02 0.02
Gonads 0.0006 0.0002 0.0005 0.0002 0.0004 0.0002
Lung 0.0180 0.0170 1 1 0.1050 0.1050
Stomach 0.0023 0.0027 0.0110 0.01 0.01 0.01
Small intestine 0.0100 0.0120 0.1060 0.12 0.038 0.038
Large intestine 0.0056 0.0069 0.0430 0.05 0.022 0.022
Liver 0.0320 0.0320 0.0690 0.07 0.1 0.1
Pancreas 0.0026 0.0028 0.0110 0.01 0.006 0.006
Blood 0.0767d 0.0683d - - (0,06,0.18)e (0.06,0.18)e

a Organ weight fraction (including blood content) on total body weight [137].
b Fraction of cardiac output directed to each organ [137].
c Fraction of blood weight (relative to total blood weight) [170].
d Blood fraction on total body weight [170].
e (arterial fraction, venous fraction) [170].
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Appendix B
GSA results for the
physiological intestinal
absorption models presented
in chapter 4

B.1 GSA sensitivity indices

Below are presented the results of the analysis on the CAT based model
for neutral, acidic and basic compounds, for basic compounds in presence
of precipitation and on the mixing tank (MT) based model for neutral
compounds, in that order. The reported sensitivity indices are the mean
of those calculated on bootstrap samples. Each figure is composed of four
panels containing one heatmap each: A, B, C and D. These heatmaps
represent the results for the Biopharmaceutical Classification System (BCS)
class I, II, III and IV, respectively. Each panel contains a heatmap that
has the input parameters on the vertical axis and the different dose levels
on the horizontal axis. Each heatmap cell contains the value of the main
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B. GSA results for BCS I-IV drugs

and total effects relative to a parameter and dose level.
The parameters are:

• GET : gastric emptying time.

• SITT : small intestine transit time.

• CYP3A4 liv : concentration of CYP3A4 enzyme per mg of liver mi-
crosomal protein.

• CYP3A4 ent : amount of CYP3A4 in gut wall.

• CYP3A4 CL: drug intrinsic clearance.

• MPPGL: microsomal protein per g of liver.

• rho: density of the formulation.

• r : formulation radius of the particle.

• mw : drug molecular weight.

• Peff : drug effective permeability through the gut wall.

• D0 : dose number.

• pKa: acid dissociation constant.

• Rss: supersaturation ratio.

• kp: precipitation time constant.
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B.1. GSA sensitivity indices

B.1.1 CAT based model - neutral compounds
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Figure B.1: fa CV for CAT based model - neutral compounds
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Figure B.2: Foral CV for CAT based model - neutral compounds
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B. GSA results for BCS I-IV drugs
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Figure B.3: fa main effect for CAT based model - neutral compounds
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Figure B.4: fa total effect for CAT based model - neutral compounds
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B.1. GSA sensitivity indices
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Figure B.5: Foral main effect for CAT based model - neutral compounds
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Figure B.6: Foral total effect for CAT based model - neutral compounds
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B. GSA results for BCS I-IV drugs

B.1.2 CAT based model - acidic compounds
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Figure B.7: fa CV for CAT based model - acidic compounds
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Figure B.8: Foral CV for CAT based model - acidic compounds
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B.1. GSA sensitivity indices
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Figure B.9: fa main effect for CAT based model - acidic compounds
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Figure B.10: fa total effect for CAT based model - acidic compounds
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B. GSA results for BCS I-IV drugs
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Figure B.11: Foral main effect for CAT based model - acidic compounds
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Figure B.12: Foral total effect for CAT based model - acidic compounds
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B.1. GSA sensitivity indices

B.1.3 CAT based model - basic compounds
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Figure B.13: fa CV for CAT based model - basic compounds
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Figure B.14: Foral CV for CAT based model - basic compounds
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B. GSA results for BCS I-IV drugs
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Figure B.15: fa main effect for CAT based model - basic compounds
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Figure B.16: fa total effect for CAT based model - basic compounds
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B.1. GSA sensitivity indices
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Figure B.17: Foral main effect for CAT based model - basic compounds
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Figure B.18: Foral total effect for CAT based model - basic compounds
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B. GSA results for BCS I-IV drugs

B.1.4 CAT based model - basic compounds with precipita-
tion
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Figure B.19: fa CV for CAT based model - basic compounds with precipitation
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Figure B.20: Foral CV for CAT based model - basic compounds with precipitation

192



B.1. GSA sensitivity indices
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Figure B.21: fa main effect for CAT based model - basic compounds with precipitation
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Figure B.22: fa total effect for CAT based model - basic compounds with precipitation
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B. GSA results for BCS I-IV drugs
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Figure B.23: Foral main effect for CAT based model - basic compounds with precipitation
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Figure B.24: Foral total effect for CAT based model - basic compounds with precipitation
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B.1. GSA sensitivity indices

B.1.5 MT based model - neutral compounds
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Figure B.25: fa CV for MT based model - neutral compounds
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Figure B.26: Foral CV for MT based model - neutral compounds
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B. GSA results for BCS I-IV drugs
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Figure B.27: fa main effect for MT based model - neutral compounds
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Figure B.28: fa total effect for MT based model - neutral compounds
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B.1. GSA sensitivity indices
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Figure B.29: Foral main effect for MT based model - neutral compounds
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Figure B.30: Foral total effect for MT based model - neutral compounds
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B.2 GSA indices uncertainty

CV, expressed in percentage, of the most sensitive parameter (the one
with higher total effect) for a given dose and a given BCS class, obtained
using 1000 bootstrap samples.
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B.2. GSA indices uncertainty

Table B.1: CAT based model, neutral compounds, fa, main effect, CV (%)

0.1 mg 1 mg 10 mg 100 mg 1000 mg

BCS I 0.88 1.33 4.29 6.82 4.07
BCS II 3.72 2.12 1.75 2.97 1.52
BCS III 1.81 2.65 2.1 1.69 1.5
BCS IV 5.97 4.28 4.5 2.98 2.28

Table B.2: CAT based model, neutral compounds, fa, total effect, CV (%)

0.1 mg 1 mg 10 mg 100 mg 1000 mg

BCS I 1.55 1.75 2.36 3.31 2.08
BCS II 2.30 1.96 1.96 2.33 1.75
BCS III 1.93 2.25 2.59 1.78 1.61
BCS IV 2.96 3.10 3.24 2.55 2.18

Table B.3: CAT based model, neutral compounds, Foral, main effect, CV (%)

0.1 mg 1 mg 10 mg 100 mg 1000 mg

BCS I 2.56 3.38 1.62 1.04 0.99
BCS II 5.45 3.55 3.45 4.34 2.49
BCS III 3.7 5.72 3.01 2.29 2.19
BCS IV 9.40 6.55 7.17 5.3 4.39

Table B.4: CAT based model, neutral compounds, Foral, total effect, CV (%)

0.1 mg 1 mg 10 mg 100 mg 1000 mg

BCS I 2.17 2.53 1.76 1.53 1.43
BCS II 2.85 2.55 2.7 3.08 2.28
BCS III 2.69 3.37 2.60 2.30 2.26
BCS IV 3.68 4.02 4.70 3.68 3.1
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B. GSA results for BCS I-IV drugs

Table B.5: CAT based model, acidic compounds, fa, main effect, CV (%)

0.1 mg 1 mg 10 mg 100 mg 1000 mg

BCS I 0.99 1.68 4.8 18.91 4.48
BCS II 3.01 1.75 1.67 3 2.7
BCS III 2.03 2.87 2.43 1.55 1.45
BCS IV 5.00 3.83 4.15 3.77 3.06

Table B.6: CAT based model, acidic compounds, fa, total effect, CV (%)

0.1 mg 1 mg 10 mg 100 mg 1000 mg

BCS I 1.62 1.93 2.8 7.68 3.04
BCS II 2.09 1.71 1.83 2.46 2.29
BCS III 2.09 2.55 2.32 1.64 1.64
BCS IV 3.01 2.65 3.17 3.01 2.69

Table B.7: CAT based model, acidic compounds, Foral, main effect, CV (%)

0.1 mg 1 mg 10 mg 100 mg 1000 mg

BCS I 2.94 3.01 1.51 1.02 1
BCS II 4.9 3.34 3.45 3.69 2.05
BCS III 3.51 4.96 2.88 2.23 2.21
BCS IV 7.07 6.09 6.50 7.54 5.75

Table B.8: CAT based model, acidic compounds, Foral, total effect, CV (%)

0.1 mg 1 mg 10 mg 100 mg 1000 mg

BCS I 2.21 2.36 1.84 1.48 1.47
BCS II 2.55 2.37 2.67 2.62 2.05
BCS III 2.82 3.31 2.58 2.22 2.25
BCS IV 3.67 3.52 4.49 4.53 3.82
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B.2. GSA indices uncertainty

Table B.9: CAT based model, basic compounds, fa, main effect, CV (%)

0.1 mg 1 mg 10 mg 100 mg 1000 mg

BCS I 4.43 8.10 24.81 6.94 4.08
BCS II 3.42 3.42 5.03 4.78 2.36
BCS III 3.55 2.42 1.69 1.47 1.45
BCS IV 4.68 5.00 8.16 9.57 3.19

Table B.10: CAT based model, basic compounds, fa, total effect, CV (%)

0.1 mg 1 mg 10 mg 100 mg 1000 mg

BCS I 2.08 2.71 4.67 12.34 2.02
BCS II 2.29 1.99 2.27 2.79 2.07
BCS III 2.99 2.40 1.87 1.56 1.57
BCS IV 2.97 2.66 3.09 3.39 2.68

Table B.11: CAT based model, basic compounds, Foral, main effect, CV (%)

0.1 mg 1 mg 10 mg 100 mg 1000 mg

BCS I 2.31 1.49 1.13 0.96 0.99
BCS II 5.6 3.70 2.72 2.43 2.31
BCS III 3.46 2.75 2.26 2.23 2.15
BCS IV 8.5 8.93 5.47 5.56 6.09

Table B.12: CAT based model, basic compounds, Foral, total effect, CV (%)

0.1 mg 1 mg 10 mg 100 mg 1000 mg

BCS I 2.07 1.73 1.47 1.42 1.46
BCS II 3.19 2.44 2.33 2.17 2.25
BCS III 2.72 2.54 2.29 2.17 2.22
BCS IV 4.46 4.09 3.44 3.7 4.02
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B. GSA results for BCS I-IV drugs

Table B.13: CAT based model, basic compounds with precipitation, fa, main effect, CV (%)

0.1 mg 1 mg 10 mg 100 mg 1000 mg

BCS I 4.88 7.78 25.02 7.47 4.39
BCS II 5.37 6.47 3.89 2.56 1.68
BCS III 3.67 2.42 1.76 1.48 1.44
BCS IV 7.68 5.94 6 3.96 2.75

Table B.14: CAT based model, basic compounds with precipitation, fa, total effect, CV (%)

0.1 mg 1 mg 10 mg 100 mg 1000 mg

BCS I 2.32 3.26 5.24 11.90 2.27
BCS II 3.01 2.94 2.84 2.18 1.92
BCS III 2.75 2.42 1.85 1.68 1.58
BCS IV 4.2 3.6 3.44 3.01 2.43

Table B.15: CAT based model, basic compounds with precipitation, Foral, main effect, CV (%)

0.1 mg 1 mg 10 mg 100 mg 1000 mg

BCS I 2.28 1.57 1.15 1.03 1.02
BCS II 7.24 4.8 3.32 2.85 2.68
BCS III 3.71 3.04 2.21 2.08 2.21
BCS IV 11.25 8.68 7.09 7.19 5.08

Table B.16: CAT based model, basic compounds with precipitation, Foral, total effect, CV (%)

0.1 mg 1 mg 10 mg 100 mg 1000 mg

BCS I 2.18 1.78 1.57 1.47 1.48
BCS II 3.68 2.96 2.54 2.30 2.49
BCS III 2.73 2.47 2.19 2.28 2.21
BCS IV 5.48 4.72 4.03 4.66 3.56
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B.2. GSA indices uncertainty

Table B.17: MT based model, neutral compounds, fa, main effect, CV (%)

0.1 mg 1 mg 10 mg 100 mg 1000 mg

BCS I 0.95 1.24 3.17 10.34 2.41
BCS II 3.17 1.71 1.41 2.17 1.84
BCS III 1.72 2.55 2.7 1.61 1.46
BCS IV 4.37 3.08 3.05 3.81 2.52

Table B.18: MT based model, neutral compounds, fa, total effect, CV (%)

0.1 mg 1 mg 10 mg 100 mg 1000 mg

BCS I 1.56 1.72 2.33 5.39 2.21
BCS II 2.29 1.95 1.94 2.23 1.94
BCS III 2.03 2.36 2.58 1.77 1.69
BCS IV 3.16 2.77 3.06 3.04 2.38

Table B.19: MT based model, neutral compounds, Foral, main effect, CV (%)

0.1 mg 1 mg 10 mg 100 mg 1000 mg

BCS I 2.61 3.59 1.68 1.07 0.99
BCS II 4.92 3.40 3.19 4.35 2.1
BCS III 3.48 5.46 2.86 2.24 1.99
BCS IV 6.41 5.01 5.39 6.69 4.48

Table B.20: MT based model, neutral compounds, Foral, total effect, CV (%)

0.1 mg 1 mg 10 mg 100 mg 1000 mg

BCS I 2.23 2.68 1.90 1.55 1.5
BCS II 2.93 2.58 2.69 2.97 2.19
BCS III 2.89 3.60 2.56 2.23 2.21
BCS IV 3.99 3.66 4.39 4.57 3.92
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Appendix C
Derivation of central and
peripheral fraction and lung
permeability for the PBPK
model presented in chapter 5

C.1 Derivation of central and peripheral fraction

The central fraction (FC) of the total inhaled dose was calculated from
the values of MMAD and GSD. The software MPPD2.11 [221, 222] was
used for this purpose, with the hypotheses of drug true density (ρ) equal
to one. In particular, FC was derived as in equation C.1.

FC =
FTB

FTB + FPUL
(C.1)

FTB and FPUL are the tracheobronchial fraction and pulmonary fraction
predicted by using MPPD. This was done because the precise inhale tech-
nology [223] was used for compound administration in rats, and so, com-

205



C. Derivation of central and peripheral fraction and lung permeability

plete inhalation was supposed. During sensitivity analysis the model is
repetitively evaluated for different parameter sets. Calling MPPD at each
model evaluation for computing FC would not be an optimal solution from
a computational point of view. To reduce the computational cost, we pre-
calculated the values of FC with MPPD for a 15x15 grid of MMAD and
GSD values, thus, generating a surface, reported in figure C.1. FC was
then calculated for given values of MMAD and GSD through linear inter-
polation of this surface.
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Figure C.1: FC values calculated from MMAD and GSD by using MPPD.
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C.2. In vitro permeability model

C.2 In vitro permeability model

Due to the capability of reaching high trans epithelial electric resistance
values and for their transporter expression similar to those of the respiratory
tissues, the Calu3 cell lines are commonly used to assess the permeability
of inhaled drugs [224]. This type of cell is robust and easy to culture, so, it
can be used for routine screening purposes. Furthermore, good correlation
between the permeability values and the in vivo drug absorption in drug
lung was shown [225, 226]. During the experiment, the cells are exposed
to a liquid medium in both the apical and the basolateral surface. A 10
µM compound solution is added in the liquid on a certain side (e.g., apical)
and the concentration is monitored in the opposite side (e.g., basolateral)
two hours later. The monitored concentration allows to obtain the ap-
parent permeability Papp (for the apical-basolateral and basolateral-apical
directions) that is typically calculated with the following equation:

Papp =
∆Q/∆t

C0A
, (C.2)

where ∆Q/∆t is the change in the amount of drug during the considered
interval in the receiving fluid, C0 is the initial concentration in the medium
in which the compound is administered, A is the cell layer surface area.
The obtained value is the net result of passive and active transports.

To allow a discrimination of the passive and active transport, in [178] a
mechanistic model of the in vitro Calu3 permeability system was built. The
model is composed by three compartments: the apical media, the cells and
the basolateral media. It is assumed that the main fluxes in the system are
due to the passive transcellular bidirectional transport between the cells and
the fluids and to the monodirectional efflux from the tissue to the epithelial
lining fluid. The model is reported in equation system C.3.
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C. Derivation of central and peripheral fraction and lung permeability

dcAF
dt

=
1

VAF
(−PpAcAF + PpAcc fu,lung + PaAcc fu,lung)

dcc
dt

=
1

VC
(−2PpAcc fu,lung − PaAcc fu,lung + PpAcAF + PpAcBF )

dcBF
dt

=
1

VBF
(−PpAcBF + PpAcc fu,lung)

(C.3)
cAF , cBF and cc are the drug concentrations in the apical and basolateral
fluid and in the cell layer, respectively; VAF , VBF and VC are the apical
and basolateral fluid and cells volumes, respectively; A is the area of the
cell culture, Pp and Pa are the passive and active permeabilities. VAF and
VBF are equal to 100 and 600 µL, respectively and VC was calculated by
multiplying A, equal to 0.33 cm2, for the cell layer width, equal to 17.5 µm
(internal data). The values of Pp and Pa are estimated by simultaneously
fitting the basolateral media concentration data obtained with the apical-
basolateral experiment and the apical medium concentration data after
obtained with the basolateral-apical permeability experiment.
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Appendix D
Derivation of Foral for the
semi-mechanistic oral
absorption model presented
in chapter 6

The differential equations of the semi-mechanistic model describing the
absorption of orally administered compounds metabolized by CYP3A4 in
gut wall and liver, are reported in equation system 6.5. The model is
represented in figure 6.1 (b). The model describes the bioavailability of
a generic drug following oral administration. Our purpose was to derive
analytically the expression of the Foral following a bolus in the compartment
representing the small intestine.

The solution of xlum is the one of a single compartment with two elim-
ination rates, so:

xlum = M0e
−(kt+ka)t,

with M0 the dose. It is possible to substitute the expression of xlum in the
equation representing the dynamics of xent in the equation system 6.5. By
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D. Foral derivation

multiplying exp((Qent +CLent)/Vent · t) in both the sides of that equation,
is possible to derive the expressions below and thus the analytical solution
of xent.

d

dt

(
xente

(
Qent
Vent

+
CLent
Vent

)
t
)

= M0 ka e

(
−(kt+ka)t+

(
Qent
Vent

+
CLent
Vent

)
t
)

xent e

(
Qent
Vent

+
CLent
Vent

)
t

= M0 ka

∫ t

0
e

(
−(kt+ka)t+

(
Qent
Vent

+
CLent
Vent

)
t
)
dt

xent =
M0ka(

Qent
Vent

+ CLent
Vent

)
− (kt + ka)

[
e−(kt+ka)t − e−

(
Qent
Vent

+
CLent
Vent

)
t
]

For readability purpose, let us define the following variables.

klum = (kt + ka)

kent =

(
Qent
Vent

+
CLent
Vent

)
kliv =

(
Qliv,ven
Vliv

+
CLliv
Vliv

)
ψ1 =

M0ka
kent − klum

Now, by substituting the xent expression in xliv differential equation
and multiplying both equation sides for exp(kliv · t), is possible to derive
the analytical solution of xliv.

d

dt

(
xlive

(klivt)
)

=
Qent
Vent

ψ1

(
e(−klumt+klivt) − e(−kentt+klivt)

)
xlive

klivt =
Qent
Vent

ψ1

∫ t

0

(
e(−klumt+klivt) − e(−kentt+klivt)

)
dt
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xliv =
Qent
Vent

ψ1

[
1

kliv − klum

(
e−klumt − e−klivt

)
− 1

kliv − kent

(
e−kentt − e−klivt

)]
Now, by substituting xliv in the last differential equation of system 6.5,

is possible to derive directly the analytical solution of xsys.

xsys =
Qliv,ven
Vliv

Qent
Vent

ψ1

∫ t

0

[
1

kliv − klum

(
e−klumt − e−klivt

)
− 1

kliv − kent

(
e−kentt − e−klivt

)]
dt

xsys =
Qliv,ven
Vliv

Qent
Vent

ψ1

·
[

1

kliv − klum

(
1

klum

(
1− e−klumt

)
− 1

kliv

(
1− e−klivt

))
− 1

kliv − kent

(
1

kent

(
1− e−kentt

)
− 1

kliv

(
1− e−klivt

))]
Finally, it is possible to derive Foral.

Foral = lim
t→+∞

xsys
M0

=
ka(Qent/Vent)(Qliv,ven/Vliv)

kent − klum

·
[

1

kliv − klum

(
1

klum
− 1

kliv

)
− 1

kliv − kent

(
1

kent
− 1

kliv

) ]
Foral =

ka(Qent/Vent)(Qliv,ven/Vliv)

kent − klum
· kent − klum
klumkentkliv

Foral =
ka · (Qent/Vent) · (Qliv,ven/Vliv)

(ka + kt)
(
Qent
Vent

+ CLent
Vent

)(
Qliv,ven
Vliv

+ CLliv
Vliv

)
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Troconiz. Predicting tumour growth and its impact on survival in
gemcitabine-treated patients with advanced pancreatic cancer. Euro-
pean Journal of Pharmaceutical Sciences, 115:296–303, March 2018.

[125] L. Kuepfer, C. Niederalt, T. Wendl, J.-F. Schlender, S. Willmann,
J. Lippert, M. Block, T. Eissing, and D. Teutonico. Applied Con-
cepts in PBPK Modeling: How to Build a PBPK/PD Model. CPT:
Pharmacometrics & Systems Pharmacology, 5(10):516–531, 2016.

[126] Michaela Meyer, Sebastian Schneckener, Bernd Ludewig, Lars
Kuepfer, and Joerg Lippert. Using expression data for quantification
of active processes in physiologically-based pharmacokinetic model-
ing. Drug Metabolism and Disposition, page dmd.111.043174, January
2012.

[127] MATLAB R2019a, 2019.

[128] Christian Igel, Nikolaus Hansen, and Stefan Roth. Covariance Matrix
Adaptation for Multi-objective Optimization. Evolutionary Compu-
tation, 15(1):1–28, March 2007.

231



BIBLIOGRAPHY

[129] Masao Kobari, Hirotake Hisano, Seiki Matsuno, Toshio Sato, Mikio
Kan, and Takehiko Tachibana. Establishment of Six Human Pancre-
atic Cancer Cell Lines and Their Sensitivities to Anti-Tumor Drugs.
The Tohoku Journal of Experimental Medicine, 150(3):231–248, 1986.

[130] Takahiro Yoshida, Yoshio Endo, Tohru Obata, Yuri Kosugi, Kazuki
Sakamoto, and Takuma Sasaki. Influence of Cytidine Deaminase on
Antitumor Activity of 2’-Deoxycytidine Analogues in Vitro and in
Vivo. Drug Metabolism and Disposition, page dmd.110.034397, June
2010.

[131] Anna Pisania, Gordon C. Weir, John J. O’Neil, Abdulkadir Omer,
Vaja Tchipashvili, Ji Lei, Clark K. Colton, and Susan Bonner-Weir.
Quantitative analysis of cell composition and purity of human pan-
creatic islet preparations. Laboratory Investigation, 90(11):1661–1675,
November 2010.

[132] M. Jamei, F. Bajot, S. Neuhoff, Z. Barter, J. Yang, A. Rostami-
Hodjegan, and K. Rowland-Yeo. A Mechanistic Framework for In
Vitro-In Vivo Extrapolation of Liver Membrane Transporters: Pre-
diction of Drug-Drug Interaction Between Rosuvastatin and Cy-
closporine. Clinical Pharmacokinetics, 53(1):73–87, January 2014.

[133] Stephan A. Veltkamp, Jos H. Beijnen, and Jan H. M. Schellens. Pro-
longed Versus Standard Gemcitabine Infusion: Translation of Molec-
ular Pharmacology to New Treatment Strategy. The Oncologist,
13(3):261–276, January 2008.

[134] E. Mini, S. Nobili, B. Caciagli, I. Landini, and T. Mazzei. Cellular
pharmacology of gemcitabine. Annals of Oncology, 17(suppl 5):v7–
v12, May 2006.

[135] Patrick Poulin, Yung-Hsiang Chen, Xiao Ding, Stephen E. Gould,
Cornelis Eca Hop, Kirsten Messick, Jason Oeh, and Bianca M.
Liederer. Prediction of Drug Distribution in Subcutaneous Xenografts

232



BIBLIOGRAPHY

of Human Tumor Cell Lines and Healthy Tissues in Mouse: Applica-
tion of the Tissue Composition-Based Model to Antineoplastic Drugs.
Journal of Pharmaceutical Sciences, 104(4):1508–1521, April 2015.

[136] Liping Zhang, Vikram Sinha, S. Thomas Forgue, Sophie Callies, Lan
Ni, Richard Peck, and Sandra R. B. Allerheiligen. Model-Based Drug
Development: The Road to Quantitative Pharmacology. Journal of
Pharmacokinetics and Pharmacodynamics, 33(3):369–393, June 2006.
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