
 



Abstract (Italiano) 

L'attività di ricerca descritta in questa tesi è stata svolta da ottobre 2016 a 

settembre 2019, all'interno del Laboratorio di Informatica biomedica Mario 

Stefanelli dell'Università di Pavia. 

Il lavoro è stato motivato dalla recente diffusione di sensori indossabili e 

ambientali per il monitoraggio dello stile di vita e della salute dell’individuo. 

Al giorno d’oggi, tali sensori sono comunemente utilizzati  sia da soggetti 

sani sia da popolazioni di pazienti cronici. In questa tesi, utilizzeremo il 

termine patient-generated health data (PGHD) per riferirci ai dati raccolti  

da tali sensori. I dati PGHD possono contribuire a fornire una visione più 

approfondita delle condizioni di salute del soggetto e possono facilitare la 

personalizzazione del percorso di cura per i pazienti cronici. Tuttavia, 

interpretare serie temporali di PGHD senza strumenti di supporto può creare 

difficoltà. Pertanto, sono necessari sistemi di supporto decisionale che 

permettano all’utente di eseguire analisi avanzate di tali dati; eppure tali 

sistemi sono rari. Ciò può essere dovuto alle difficoltà che insorgono 

nell'analisi di serie temporali di PGHD, e alla mancanza di linee guida per 

superarle. 

In questa tesi presentiamo tre contributi principali. Il primo contributo è 

un framework concettuale per l'analisi di serie temporali di misurazioni 

raccolte da sensori indossabili e/o ambientali, volto a fornire supporto 

decisionale per la gestione di pazienti cronici. In particolare, combiniamo 

due approcci, l'astrazione temporale e le regole, per sintetizzare le serie 

temporali di PGHD e fornire supporto decisionale in funzione dei risultati 

ottenuti. Inoltre, in questo lavoro descriviamo come abbiamo applicato il 

framework proposto nella progettazione e sviluppo di due sistemi di supporto 

decisionale. Di questi due sistemi, uno è volto alla prevenzione delle cadute 

negli anziani e uno supporta la gestione di pazienti affetti da diabete di tipo 

1. Entrambe le applicazioni sono state distribuite e testate in studi pilota che 

hanno coinvolto pazienti reali. I due sistemi descritti rappresentano gli altri 

due contributi principali di questo lavoro, poiché presentano funzionalità che 

li rendono innovativi rispetto agli strumenti noti in letteratura. 

Riteniamo che la lettura di questa tesi possa supportare il ricercatore 

interessato a sviluppare la propria applicazione per l'analisi di serie temporali 

di PGHD, permettendogli di riutilizzare, almeno in parte, un design che 

abbiamo già testato nelle nostre due applicazioni. 

 

 

 

 



Abstract (English) 

The research activity described in this thesis was carried out from October 

2016 to September 2019, within the Laboratory for Biomedical Informatics 

Mario Stefanelli of the University of Pavia, Italy.  

This work was motivated by the emerging use of wearable and 

environmental sensors for monitoring the individual’s health status and 

lifestyle, in his/her living environment. Nowadays, monitoring sensors are 

widely used, both by healthy subjects and chronic patient populations. We 

will refer to the data collected by such sensors as patient-generated health 

data (PGHD). PGHD may allow gaining deeper insight on the subject’s 

health condition and may facilitate targeting care to the individual. However, 

interpreting time series of PGHD may be challenging and/or time 

consuming. Thus, decision support systems able to perform advanced 

analyzes to extract new knowledge from such data are needed; yet they are 

rare. This may be due to the challenges that rise in the analysis of 

longitudinal PGHD, and to the lack of guidelines to overcome them. 

In this thesis we present three main contributions. The first contribution is a 

conceptual framework for analyzing time series of PGHD with the ultimate goal 

of supporting chronic patients care. In particular, we combine two approaches, 

namely temporal abstraction and rules, to summarize the collected time series 

of PGHD and exploit the result of the analysis for providing decision support. 

In addition, we describe how we applied the proposed framework to design and 

develop two clinical decision support systems. Of these two systems, one aims 

at preventing falls in the elderly and one supports the management of Type 1 

Diabetes. Both applications were deployed and tested in real-world pilot studies. 

These two systems represent two other main contributions of this work, since 

they have functionalities that make them innovative compared to the known 

tools with similar purposes. 

We believe that reading this thesis may help researchers develop their own 

application for analyzing PGHD, leveraging on the design we have proposed 

and tested in our applications.  
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1. Motivation and introduction 

This work was motivated by the emerging use of sensors for continuous 

monitoring of health-related parameters, and by the potential offered by the 

huge amount of data that can be collected. 

Commercial wearable sensors are increasingly popular, thanks to their 

ease of use and their increasingly affordable prices. In some cases, specific 

wearables are provided for free to specific patients’ categories by the 

national healthcare service. In Italy, for example, patients affected by Type 

1 Diabetes may be eligible to receive a known commercial blood glucose 

monitoring device through the national health care system [1]. Moreover, 

non-clinical wearable devices for continuous monitoring are becoming 

increasingly popular. For example, recently the use of activity trackers has 

intensified, both by healthy subjects and chronic patient populations [2–5]. 

Generally, such devices can be used for the long-term monitoring of the 

subject’s physical activity, heart rate profile, and sleep. In addition to 

wearable sensors, nowadays it is possible to easily purchase environmental 

sensors, aimed at monitoring the quality of the environment in which the 

subject lives, and his/her activities inside the house. 

When such kinds of data are used for clinical decision making, they can 

be referred to as patient-generated health data (PGHD). The term patient-

generated indicates that these data are the result of remote monitoring, which 

takes place in the environment in which the patient carries out his/her usual 

activities of daily living. The term health data indicates that they may 

contribute to gaining deeper insight on the subject’s health condition, and 

they may facilitate targeting care to the individual. 

 Given the widespread availability of continuous monitoring devices, both 

wearable and environmental, collecting large amounts of PGHD has become 

practical. However, interpreting the collected time series of measurements 

in clinical decision making may be challenging and/or time consuming. 

Thus, systems able to extract knowledge from PGHD data to provide clinical 

decision support are needed. Nevertheless, such systems are still rare. On 

one hand, this may be due to the fact that the analysis of large amounts of 

patient-generated continuous monitoring data is a very recent topic, as these 

data were not widely available until a few years ago. Most likely, a 

significant number of systems for the analysis of PGHD is currently under 

development and will be published shortly. On the other hand, the shortage 

of such systems may be due to the lack of guidelines for their design and 

development. In fact, several challenges rise in integrating PGHD from 

multiple sources and in performing temporal data analysis on the collected 

heterogenous data to support clinical decision making. 
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In this thesis we will discuss three main contributions which address the 

limited availability of decision support systems able to analyze continuous 

monitoring data collected by PGHD devices. First, we will present a 

conceptual framework that summarizes the steps needed to analyze time 

series of PGHD with the ultimate goal of providing clinical decision support 

for chronic patients care. The proposed framework stems from our need to 

apply temporal PGHD data analysis in two specific clinical domains, namely 

the management of patients affected by type 1 diabetes and the prevention 

of falls in the elderly. Although these two clinical domains are very different, 

they share most of the challenges that rise in exploiting PGHD for decision 

support, since they are independent of the considered clinical domain. Thus, 

we summarized the experience gained in formulating an approach to design 

and develop the two different decision support systems. We believe that the 

proposed framework may be valuable for other researchers who need to 

summarize time series of PGHD in order to provide clinical decision support.  

We will also present the two systems in which we have applied the described 

framework, since they represent two innovative contributions to the field of 

decision support systems for chronic care based on the interpretat ion of 

remote monitoring data. 

The dissertation is organized as follows. 
Chapter 2 introduces the readers to the background of this work. Since 

the focus of this work is designing and developing decision support systems 

(CDSSs), Section 2.1 explores the existing different definitions of CDSS, 

including the one we adopted. It also investigates what characteristics 

influence the users' willingness to use such systems and discusses their 

adoption in daily clinical practice. 

Section 2.2 describes the clinical context for which the framework was 

built, namely the management of chronic diseases, whose prevalence has 

recently been increasing. First, the costs and challenges related to assisting 

chronic patients are outlined, to emphasize the need for decision support in 

this domain. Second, a short review on sensors that are often used to remotely 

monitor chronic patients is presented. The data collected using these sensors 

are referred to as patient-generated health data. 

Section 2.3 depicts the state of the art on which we designed our 

framework, by providing a short review on the literature related to CDSSs 

aimed at supporting the chronic subject and his/her caregivers in managing the 

disease. The overview pays particular attention to the clinical domains to which 

the two CDSSs described in this thesis are targeted. 

Section 2.4 introduces temporal data analysis. After discussing the 

difficulties posed by the analysis of PGHD, we focus on knowledge-based 

temporal abstraction (KBTA), a known technique for analyzing time series of 

data. Often clinicians need to search for the occurrence of specific trends, or 

more complex behaviors, in time series of health indicators. Behaviors of 

interest in the patient’s data are commonly referred to as patterns. KBTA allows 

searching for user-defined patterns in temporal data. After introducing KBTA, 

we describe Java Time Series Abstractor (JTSA), a software tool that was 

recently developed within our laboratory to perform KBTA, and we provide an 



 

example of its application for analyzing time series of blood glucose 

measurements. 

Chapter 3 describes the proposed framework for providing clinical 

decision support based on the analysis of longitudinal PGHD data through 

KBTA. First, we describe at a high level the components of the framework and 

their desired characteristics, independently of the implementation technologies. 

Finally, we outline the proposed architecture for CDSSs that perform KBTA 

exploiting JTSA. 

Chapter 4 describes one use case in which the framework proposed in 

this thesis was applied. NONCADO is a CDSS that monitors the elderly 

living alone at home and alerts the subject’s remote family of possible 

changes in his/her daily habits, that may correspond to a decline in his/her 

health status and, consequently, to an increase in his/her risk of falling. The 

CDSS analyzes data collected by a network of sensors, including both a Fitbit 

activity tracker recording data on the patient’s sleep and physical activity, 

and environmental sensors, monitoring the quality of the environment the 

subject lives in, and his/her activities within the house. Possible changes in 

the individual’s habits are detected by exploiting JTSA to apply KBTA on 

the collected data. 

After illustrating the purpose and use-cases of the NONCADO system, in 

Section 4.1 we describe how the system architecture extends the framework 

described in Chapter 3. We then describe the patterns that the CDSS searches 

for in the collected data, and how they are used to assist the monitored 

subject and his/her remote family. 

Section 4.2 describes how we evaluated the NONCADO system in a two-

stage approach. First, we describe the preliminary test phase that was carried 

out on healthy volunteers to tune the parameters needed for applying KBTA. 

Finally. we report the results obtained in a 2-weeks pilot study involving 16 

patients with history of falls treated at the Casa di Cura Privata del Policlinico 

Hospital, in Milan, Italy. 

Chapter 5 describes another use case in which the framework was 

applied. AID-GM is a web application for supporting diabetic subjects and 

their diabetologists. The application collects both blood glucose 

measurements from a device for flash glucose monitoring and data on the 

subject’s sleep and physical activity from a Fitbit activity tracker. AID-GM 

facilitates data sharing between the patient and his/her diabetologist and 

provides tools to perform temporal data analysis through KBTA, exploiting 

the Fitbit data to contextualize the patient’s blood glucose profile. After 

illustrating the use-cases of the AID-GM system, Section 5.1 describes the 

architecture, based on the proposed framework. We then describe the 

patterns that the CDSS allows searching for in the collected data, and how 

the graphical interface presents them to the users to provide decision support. 

Section 5.2 describes the system evaluation. First, we describe the 

preliminary test phase carried out on data willingly provided by a small 

group of volunteers, which we exploited to tune the parameters needed for 

KBTA. Finally. we report the outcome of a 6-months pilot study involving 
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30 diabetic patients receiving care at the Policlinico San Matteo Hospital, in 

Pavia, Italy. 

Finally, Chapter 6 summarizes and discusses the main contributions of 

the thesis. 

 

 

 



 

2. Background 

2.1.  Clinical decision support systems 

Definition and aims 
 

The definition of a computerized clinical decision support system (CDSS) 

has been widely discussed in the literature, and several alternatives are 

available. After performing a review of the literature, we identified three 

main dimensions in the definition of a CDSS, i.e., the aim, the user, and the 

beneficiary of the system. 

The system aim seems to be the most discussed aspect. Some definitions 

are generic and focus on establishing the main goal of CDSSs in a broad 

sense. For example, in 2013 Castillo et al. define a CDSS as a system 

designed to make patient care more efficient, without specifying any details 

on how that purpose should be achieved [6]. In a review article published in 

2015, Khong et al. provided a more detailed definition, describing a CDSS 

as <<heuristic-based information technology used to support evidence-based 

clinical practice at the point of care as the patient or population is being 

served.>> [7]. Such definition is more specific, since it suggests that, to make 

care more efficient, a CDSS should support healthcare personnel in clinical 

decision making, based on the available medical evidence. It also emphasizes 

that the timing of action is fundamental, since the CDSS must be able to 

provide support exactly when the patient (or group of patients) is taken care 

of. There seems to be consensus on this definition since the late 1990s and 

early 2000s, when several authors introduce CDSSs as software tools that 

exploit a domain-specific knowledge-base to timely assist clinicians, or other 

healthcare personnel, in making clinical decisions [8–10]. 

In a narrower sense, the scientific community has identified two aims that 

are characteristic for CDSSs [11]; each CDSS can pursue one or both. The 

first aim is to help the user gather in one place all the information that is 

relevant for the clinical task at hand, which can be either making a clinical 

decision, or monitoring a health condition over time [6]. In general, multiple 

variables need to be taken into consideration in clinical decision making; in 

addition, some variables are not informative as they are, but must be 

processed and/or summarized to be informative in the decision task. In this 

context, a system capable of providing a summarized and integrated view of 

all the variables of interest for the decision task is often necessary, or at least 

useful. The method of integrating and visualizing the different variables 

depends on the decision problem at hand. Since the systems that pursue this 
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aim are specific to the decision problem and are meant to guide the user to 

focus on the most relevant aspects for its solution, their graphical interfaces 

are often called insight-driven dashboards [6]. 

The second identified aim is to provide recommendations and/or 

reminders [11]. Compared to the systems that only visualize data, the 

systems pursuing this aim are defined as active CDSSs [6]. Depending on 

the application domain, the provided recommendations may support a wide 

range of tasks, that might be more or less complex [7]. For example, some 

systems support the clinician in making a diagnosis for a specific patient, by 

providing suggestions computed by matching the patient’s data to 

recommendations formalized in validated clinical guidelines. Other systems 

allow early detection of drug-related adverse events, by monitoring a specific 

set of vital signs and comparing the measured values with known critical 

thresholds [9]. Other patient-oriented systems generate a reminder when the 

subject does not remember to take his/her therapy. Others have the purpose 

to run predictive models built on data, such as risk scores, and to compute 

the patient’s risk of developing complications of interest for the considered 

domain [11]. 

Besides defining what aims are characteristic for CDSSs, several 

definitions mention the intended users. As it can been noticed in the 

previously reported definitions, generally the initial descriptions of CDSS 

explicitly mention healthcare personnel as the target users of the system. 

However, more recently the definition of CDSS has been extended in terms 

of target user; nowadays the term CDSS can also be used to refer to systems 

that are mainly, or exclusively, intended for patients [10, 12]. 

While the target user is a component that has changed over time, all the 

definitions available in the literature agree on who the final beneficiary of 

the CDSS should be, i.e., the patient. To emphasize the relevance of the 

beneficiary in depicting the concept of CDSS, we refer to the volume 

<<Clinical Decision Support - The Road to Broad Adoption>>, which in 

2014 described a CDSS as <<information and communication technologies 

to bring relevant knowledge to bear on the health care and well-being of a 

patient>> [11]. 

To be compliant with the new trends of decision support, in the following 

of this thesis we will adopt such definition when presenting our work. 

 

Adoption of clinical decision support systems in clinical practice: 

opportunities and challenges 
 

The willingness of health care personnel and patients to use CDSSs has 

also been evolving over time [10]; the acceptance towards CDSSs has been 

increasing, although their use still involves criticalities [13]. 

One of the main criticalities is the users’ computer literacy, that is often 

limited. According to the literature [6], the complexity of the system's 

graphical interface is one of the main reasons of non-adoption of CDSSs that 

are most reported by the users. It is common that users who are not 



 

comfortable with using technology do not accept the system. According to a 

report produced in the US in 2017 by the Agency for Healthcare Research & 

Quality, the health care personnel struggle to use computerized systems in 

general [14]. Among the different roles in health care, the nurse seems to be 

the one who has the worst relationship with technology, leading to a low 

level of adoption of CDSSs within such category. Providing statistics on the 

computer literacy of health care personnel is not straightforward, since the 

attitude towards technology highly depends on the considered country, 

besides varying significantly over time. For example, in a recent cross-

sectional study on 554 health care professionals working in Ethiopian 

hospitals, only 18.7% showed high computer literacy [15]. In developed 

countries, digital skills seem more widespread among the health care 

personnel. For example, in a study conducted in Australia on 246 

respondents, 80% of them reported using a computer on a weekly basis [16]. 

In a study performed in Austria in 2009, 1160 medical students filled-in a 

questionnaire about their use of computers. According to the results, 94% 

used a computer for their studies and used regularly at least a set of 

functionalities, including text editors and e-mail accounts. 

Even users with high computer literacy are often refractory to the use of 

CDSSs. As regards systems that produce warnings and reminders, a 

commonly highlighted criticality is an excessive frequency of notifications 

received by the user from the system [6, 13, 17]. In particular, a high number 

of false positive warnings, or a high number of notifications sent with 

incorrect timing can undermine the user's trust in the system. In the literature, 

this phenomenon is known as alert fatigue [18]. 

Other systems that are not used willingly are those that require the user to 

invest a significant amount of time in entering input data [6, 19–21].  

In addition, CDSSs that support the diagnostic process have limited 

adoption rates [6, 14, 22]. According to the review [6] published by Castillo 

et al., the main reason is that the majority of these systems have two 

weaknesses. First, they often implement a clinical knowledge base that is not 

wide, or detailed, enough to support the physician in the differential 

diagnosis process. Second, they often do not manage the temporal 

component of the course of the disease, e.g., to produce suggestions, they 

rarely consider in detail the temporal evolution of the patient's symptoms, 

that represents one of the key factors in the diagnosis process [23]. 

However, even systems that implement a suitable knowledge base when 

deployed can become critical to use over time, due to poor maintenance. 

Usually, during the development of the system, acquiring and implementing 

the knowledge necessary to provide support is time consuming. Keeping it 

up to date might be just as demanding, thus it is considered one of the major 

challenges in the development and distribution of CDSSs [22]. 

Consequently, another frequent reason for not adopting CDSSs is the user’s 

awareness or perception that the system is not up to date [14]. 

Another key factor affecting the adoption of the system is the adherence 

of the CDSS to the user's expectations [6, 13]. It is known that the acceptance 

rate of the system is higher when the CDSS provides the user with those 
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functionalities that she/he considers necessary. Even providing more 

functionalities than necessary can be counterproductive to the adoption of 

the system. Without the necessary precautions, a gap may arise between the 

user's expectations and the ambitions of the CDSS developer. In fact, the 

developer is often a researcher, who aims to create a system with innovative 

features, which can represent a step forward compared to the state of the art 

of decision support systems. However, the user often needs simpler features 

and may not appreciate the proposed innovative features, if she/he does not 

understand and share their usefulness. As a result, those systems for which 

users have been actively involved in the development process generally have 

higher adoption rates [13]. Through an intense collaboration with the 

intended users, it is possible to develop an innovative system that is 

innovative, but also perceived as useful by the consumer. This is the concept 

of participatory design [24], in which representatives of the end users are 

active members of the group of the system designers and are involved in the 

entire development process. The literature provides several examples of 

adoption of the participatory design approach for developing CDSSs [25–

29]. In some cases, the authors have shown that user satisfaction with the 

CDSS developed using the participatory design approach is higher than the 

user satisfaction with alternative systems developed with a traditional 

approach [30]. 

When CDSSs are willingly adopted, they can have a significant impact on 

the health care personnel' performances and/or on the patient's outcome [20, 

31–33]. The application in which CDSSs seem to be the most successful is 

the prescription of drugs [34–36]. In particular, the available scientific 

evidence points out that in this context the use of CDSSs reduces the number 

of prescription errors, making cases of adverse events (e.g., drug-drug 

interactions, allergic reactions, and inappropriate prescriptions in pregnant 

women) less frequent. On the contrary, the most critical CDSSs are those 

dedicated to supporting the diagnostic process [20, 31–33]. The evidence 

concerning the effectiveness of these systems is still quite limited, and it is 

known that clinicians often do not trust computerized systems when 

performing the diagnostic task, which is considered one of the most complex 

in the clinical domain [37]. 

Given the potential benefit of the CDSSs that are willingly adopted, 

several authors have reviewed the literature to produce a list of general 

requirements that the systems must satisfy to be accepted by users, as well 

as effective [6, 38–40]. Most of the identified requirements address the issues 

discussed above. For example, those reviews highlight the need to deliver 

timely suggestions, to provide explanations on how the proposed suggestions 

have been computed, to avoid alert fatigue, to make the user perceive that 

she/he is saving time and/or making better decisions, and to avoid requiring 

the subject to enter too much input data manually. These requirements have 

been taken into account in the formalization of the proposed framework, 

aimed to provide decision support through temporal analytics on patient 

generated (health) data. As the framework is mainly dedicated to supporting 



 

chronic patients, the next section will introduce the clinical context of this 

work, i.e., chronic illness and its impact on the health care system. 

2.2. Chronic diseases and patient-
generated (health) data 

2.2.1. Chronic diseases: costs and challenges 

 
As seen for CDSSs, there is also no consensus in the literature on the 

definition of chronic disease [41]. The concept itself is fairly shared; 

according to all the definitions available in the literature, a chronic disease 

is a long-term health-related issue that requires continuous treatment or 

monitoring, possibly leading to limitations in the patient’s activities of daily 

living. However, there is no consensus on the minimum duration that a 

disease should have to be considered chronic. According to the National 

Center for Health Statistics [42], an agency of the U.S. Federal Statistical 

System, such duration consists of three months [41]. According to the World 

Health Organization (WHO) and to the Centers for Disease Control and 

Prevention (CDC), such duration is higher, i.e., one year [43]. In addition, 

the WHO does not consider the diseases that are transmissible from patient 

to patient as chronic diseases. In this work, we will consider the definition 

provided by the WHO. Well known examples of chronic diseases are specific 

cardiovascular diseases (e.g., dilated cardiomyopathy), specific neurological 

diseases (e.g., dementia), cancer, diabetes, and a subset of respiratory 

diseases, including asthma [44]. 

Worldwide, the prevalence of chronic diseases is considerably high. In 

2014, an overview on chronic illness in America was depicted in a report 

produced by the Agency for Healthcare Research and Quality (AHRQ), a 

government agency working within the United States Department of Health 

and Human Services [45, 46]. According to such report, in 2014, 60% of the 

American population had at least one chronic disease. The co-presence of 

multiple chronic diseases in the same subject was also frequent: the AHRQ 

reported that 40% of the population had at least two chronic diseases and 

12% at least five. Even higher percentages have been recorded by health 

insurance agencies that have low-income consumers, such as Medicaid [47]. 

In general, as regards the affected population, in 2014 in America the 

prevalence of co-morbidity was more frequent in the elderly; the most 

common chronic disease was hypertension, followed by depression and 

diabetes. 

According to the WHO, the chronic illness situation in Italy is not 

different from the overview that has been described so far [48, 49]. In Italy 

the high prevalence of chronic diseases is also due to population aging, since 

it is known that our nation shows the oldest population in Europe, having 

22% of the inhabitants aged over 65 [49]. In 2014 the most frequent causes 
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of death were chronic diseases, namely cardiovascular diseases, cancer, 

neurological diseases, and chronic respiratory diseases. Furthermore, for the 

same year the WHO reported also high prevalence of other chronic diseases, 

which did not lead the patients to death, but reduced their quality of life. In 

particular, 5% of the population had asthma, 6.5% diabetes, and more than 

20% hypertension. 

According to the estimates provided by the WHO, by 2020 the worldwide 

annual percentage of deaths due to chronic diseases will rise to 73%, and 

60% of the reported diseases will be chronic. In addition to health issues due 

to old age, the most frequent health conditions will be cardiovascular 

diseases (e.g., stroke), cancer, obstructive pulmonary disease, and type 2 

diabetes [44]. 

Given their prevalence, chronic diseases are often referred to as <<the 

epidemic of our time>> [50–52]. Obviously, this has a significant impact on 

the health-related costs sustained by national health care systems and by the 

individual. Due to the continuous need for care, a subject having chronic 

issues costs considerably more than a patient suffering from an acute 

problem in terms of medical expenses [53]. The WHO has identified three 

components in the cost of chronic illness. The direct costs are those related 

to the concrete cost of treatment and represent the easiest component to 

estimate. A second component is represented by the indirect costs, i.e., 

secondary costs, which may result from multiple circumstances, such as the 

patient's or his/her relatives’ unproductiveness during the care process (e.g., 

unemployment or sick leave), the need to hire specialized health personnel 

for home assistance, and the patient’s expenses to reach the health centers 

where she/he is treated. Given their heterogeneity, indirect costs are often 

difficult to estimate. However, the third component is the most challenging 

to measure. It is referred to as intangible costs and includes the secondary 

costs that are due to the psychological consequences of chronic illness and 

to reduced quality of life [53, 54].  

To give an idea of the extent of the burden in America, we refer to a report 

by the CDC, based on data referring to 2016 [55]. According to such report, 

in terms of tangible costs, the annual health care expenditure consists of 3.3 

trillion $, and 90% of this amount is due to the management of chronic 

diseases. To compare this data to the Italian situation, we consulted a report 

produced in 2018 by The National Observatory on Health in the Italian 

Regions (Osservatorio Nazionale sulla Salute nelle Regioni Italiane) [56]. 

According to the reported results, the impact of chronic illness on the total 

annual expenditure for health care appears to be slightly lower in Italy, 

although remaining considerably high, being equal to 80%. 

In this context, technology can help to remotely monitor chronic patients 

throughout the course of the disease, and provide decision support 

accordingly, facilitating the containment of the costs of chronic illness [57–

59]. The use of technology can be useful to health managers and policy 

makers, who need to thoroughly analyze the patient population for which 

they have to make clinical decisions, such as whether or not to activate a 

specific health care intervention or preventive program. In that context, 



 

CDSSs are aimed to process data from a large number of patients, by 

applying data mining or data analysis techniques, and to produce intuitive 

summaries (e.g., graphs), that can be easily navigated by the user, in a 

process that can be defined as visual data exploration [60]. Often, such 

systems do not provide suggestions, but allow users to apply their analytic 

and decision-making skills leveraging on the data overview provided by the 

system. As stated by Raghupathi et al. [60], such systems <<turn information 

overload into opportunities>>. 

Systems dedicated to health managers are beyond the scope of this thesis, 

which will focus on systems aimed to support the chronic patient, his/her 

family, and his/her clinicians in managing the disease. However, the concept 

of converting information overload into opportunity is one of the bases of 

this work. Generally, few clinical parameters need to be monitored for 

chronic patients (e.g., blood glucose for diabetic subjects), but to gain 

insights on their trends the desired sampling frequency is high, and the 

duration of the monitoring period is long, potentially equal to the subject’s 

expected life. While with the technologies of the past such daily monitoring 

was not easily practicable, nowadays it is possible to collect a set of health 

indicators around-the-clock, in a non-invasive manner (see Section 2.2.2) . 

A large availability of data consequently involves the need for tools capable 

of analyzing them. Thus, systems capable of processing time series of 

clinical parameters of interest can be useful to gain deeper insight into the 

patient’s profile, to monitor the outcome of the care process, to provide 

personalized suggestions based on the subject’s profile, and to identify early 

deterioration in the patient's health condition. This can facilitate both the 

patient and the doctor in managing the disease and it might help contain the 

costs of chronic illness [57]. As regards the users’ perception, it is also 

known that chronic patients and their families appreciate computerized 

systems that help them day by day in the management of their pathology and 

of its consequences on their daily lives [61]. 

Computerized systems for supporting chronic care often need to collect a 

set of variables of interest to gain deeper insight on the chronic patient’s 

health condition and how it evolves over time, between medical visits. In the 

next section we will present an overview of the monitoring data which may 

be used to that aim. The overview will dedicate particular attention to devices 

used for diabetic and elderly subjects, which are the patient populations to 

which the two applications described in this thesis will be addressed. 

 

2.2.2. Patient generated (health) data: an opportunity for 
monitoring chronic patients 

 
Recently, the use of the term patient-generated health data (PGDH) has 

spread to indicate data useful for understanding the state of health of a 

subject, and collected outside health care centers [62]. PGHD may include 

heterogeneous variables, being either clinical parameters that can be 

measured without medical examinations and other data useful for 
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contextualizing clinical data, such as details on the subject’s lifestyle (e.g., 

amount of physical activity performed during the day). PGHD include data 

that are self-reported by the patient via questionnaires, which can cover a 

wide range of health-related topics, depending on the purpose for which they 

are collected. For example, self-reported data might include weight, meal 

habits, perceived quality of life, symptoms, possible difficulties in carrying 

out daily activities, considerations regarding the impact of the illness on the 

emotional sphere, or off-the-shelf medications. However, nowadays self-

reported information represents a very limited percentage of the PGHD 

volume. In fact, advances in technology have made it possible to collect 

several health indicators automatically and on a regular basis by using 

sensors, which can be wearable or not. 

Recently, the use of wearable sensors has intensified thanks to 

technological innovation, which has made sensing components increasingly 

miniaturized, designed to be placed on wearable accessories, such as 

bracelets, belts or clothes [63, 64]. Nowadays, several health indicators can 

be continuously monitored using wearable sensors, including for example 

blood pressure, blood glucose, heart rate, electrocardiogram, body 

temperature, electrodermal activity blood oxygen saturation, respiratory 

activity, physical activity, consumption of energy, and sleep quality and 

quantity [65, 66]. Usually, the sensor is wireless: it performs the 

measurement and communicates the value to another device, using a low 

energy consumption communication protocol, such as Bluetooth. The other 

device might be a smartphone, a computer, or a system designed specifically 

for that sensor. The device often displays the collected values to the user, 

and sometimes analyze them, and/or stores them in a dedicated cloud 

repository. The technologies used by wearable sensors to perform the 

measurements, which vary significantly from one health indicator to the 

other, are beyond the scope of this thesis, which will focus more on how to 

retrieve the time series of the collected values and how to analyze them. 

Some sensors are targeted on a specific category of patients. For example, 

sensors for measuring the subject’s blood glucose (BG) values are used for 

diabetic patients. Usually, several types of these sensors are available for 

measuring the same health indicator, but in clinical practice some types are 

more used than others due to different reasons, including ease of use, 

durability or accuracy [65]. For example, several devices can be used to 

measure BG values, including non-invasive bracelets, subcutaneous sensors, 

and even contact lenses [67]. However, in daily practice subcutaneous 

sensors are the most widely used to remotely monitor the patient’s BG profile 

around the clock. 

Other sensors have wider domains of application. This is the case of 

activity trackers, i.e., wearable sensors originally developed for the general 

population to monitor the subject's physical activity, which are now often 

used for monitoring the patient’s lifestyle in several chronic conditions [66]. 

The same consideration holds for sensors measuring blood pressure and heart 

rate. Long battery life, comfort, and ease of download of the measured values 

are factors that allow long-term use of these sensors for monitoring chronic 



 

patients between check-ups. More and more frequently, commercial sensors 

measuring such health indicators are used by the healthy population for 

prevention purposes. In a review published in 2019, two clinicians, Bhavnani 

and Sitapati, described a new paradigm of health care, which they defined 

Virtual Care 2.0, in which monitoring by wearable sensors plays a central 

role in preventing health of the individual [68]. In particular, they presented 

a set of imaginary examples of how these sensors may be used by the healthy 

individual for early detection of changes in his/her health indicators, possibly 

contributing to early diagnosis of diseases. For example, in one use case a 

healthy woman wears an activity tracker for a long time, constantly 

monitoring her heart rate (HR). When the monitoring device returns a HR 

profile that is clearly different from the one that she is used to observing, she 

worries and requests an appointment from a cardiologist. Further clinical 

investigations make it possible to diagnose a heart disease, for which she is 

treated promptly. While the previously described scenario was hypothetical, 

the new Virtual Care 2.0 paradigm is also observable in real-world clinical 

cases reported in the literature, as the one published by Weichert in 2019 

[69]. In this case report, a woman with history of transient ischemic attacks 

presented to the emergency room, although she was asymptomatic, because 

her activity tracker kept reporting high HR values while she was resting and 

not engaged in any physical activity. Following a battery of clinical tests, 

she was diagnosed with atrial fibrillation. Case reports like the described 

ones have raised interest in wearable devices and have made the analysis of 

their data a current research topic. 

Wearable sensors are not the only technology available for remote patient 

monitoring. For managing chronic conditions, such as respiratory diseases, 

it is also important to monitor parameters related to the quality of the 

patient’s living environment, such air pollution. It is known, for example, 

that a short-term increase in air pollution may cause acute health events in 

specific patient populations, including the elderly, children, and subjects 

affected by chronic diseases such as congestive heart failure, diabetes, and 

cardiovascular diseases [70]. Thus, interest in monitoring air quality has 

recently grown, especially in urban areas. Wireless sensors networks have 

been produced for measuring the most critical air quality parameters, 

including carbon monoxide, nitrogen dioxide, ground level ozone, sulfur 

dioxide, particulate matter,  and lead [71]. The research and innovation 

Horizon 2020 program, by the European Commission, has funded several 

projects that include air monitoring through environmental sensors. Among 

these, one is the PULSE (Participatory Urban Living for Sustainable 

Environments) project [72]. The PULSE project collects air quality data to 

study the correlation between the subject’s living environment and the onset 

of specific chronic diseases, i.e., asthma and type 2 diabetes. 

It is not only the external environment that can affect the well-being of 

chronic patients, but also the quality of the living indoor environment, i.e., 

mainly the subject’s home. For example, it is known that maintaining 

adequate ranges of temperature and humidity in the elderly’s home is a 

fundamental factor for their well-being, since an inadequate environment can 
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weaken the subject [73–75]. Digital sensors can measure environmental 

temperature almost continuously, providing up to one measurement per 

second. Another parameter to monitor for the well-being of the elderly is the 

luminosity of the environment in which they live, since it is known that poor 

lighting condition may increase the individual’s risk of falling  [76–79]. 

Measurements of indoor luminosity can be collected by sensors based on 

photoresistors, which can provide values even more frequently than digital 

temperature sensors. 

In addition, there are environmental sensors that do not measure 

parameters related to the quality of the subject’s living environment, but 

which are useful for monitoring the activities carried out by the individual 

inside his/her home. This is the case for example of motion detectors. Among 

these, the ones based on passive infrared (PIR) sensors are widely used. They 

detect movement by detecting infrared radiation emitted by or reflected from 

the objects in their field of view. Thus, they can return a binary value, 

assessing the presence or absence of movement at that instant. The frequency 

of measurements can be high, up to one value every second or couple of 

seconds. Generally, they are cheap, so it is possible to install several PIR 

sensors in each room, to map the movements of the subject inside the house. 

However, PIR sensors cannot distinguish who moves when there is more than 

one subject moving within their visual field, so it is not trivial to map 

movements within the house in case of presence of several people. In the 

hospital setting, this difficulty can be overcome by tracing the movements of 

patients with other technologies, which require the subject to wear a portable 

device (known as tag) that uniquely identifies him/her and detects his/her 

position within the building [80]. However, this solution is viable for use 

cases of limited duration, since it is not realistic to expect a chronic subject 

to wear the tag in the long term, unless it is integrated into a device that 

he/she would wear anyway, such as a smart watch.  Alternatively, camera-

based sensors represent another common modality for monitoring activities 

without using wearable sensors. However, the processing of data collected 

by the camera is not trivial and requires advanced image analysis techniques. 

Furthermore, installing a large number of cameras in the patient's home can 

be expensive, as well as intrusive to the subject's privacy [65]. 

In the following paragraphs we will provide more details on the two 

categories of wearable tools for collecting PGHD that have been used in this 

work, namely activity trackers and devices for blood glucose monitoring. 

 

Activity trackers 

 

Nowadays, activity trackers are among the most widely used wearable 

devices for general purpose monitoring, since they are cheap, and they can 

be comfortably worn by the individual around the clock. Several brands of 

activity trackers are available, including Fitbit [81], Polar [82], and Garmin 

[83]. Regardless of the brand, activity trackers usually record a standard set 

of parameters related to the user’s sleep and physical activity. 



 

Usually, sleep detection is carried out using proprietary algorithms that 

combine movement and heart rate (HR) measurements. For each detected 

sleep occurrence, the information provided by the trackers usually include 

start time, end time, number of night-time arousals, and sleep efficiency, i.e., 

the ratio of the time spent sleeping to the time spent in bed. Generally, they 

also provide sleep staging, i.e., they distinguish deep sleep from light sleep. 

Their reliability in detecting and analyzing sleep has been tested in previous 

studies [84–86]. The reported results confirm the trackers’ ability to detect 

overall sleep duration and some macroscopic phenomena like night stepping, 

while the accuracy in detecting the different sleep phases is lower. As a 

general conclusion, sleep data from activity tackers cannot be used to for 

diagnosing sleep disorders, or for performing fine sleep analysis. However, 

allowing the continuous monitoring over a high number of nights, they may 

be useful to detect changes in the subject’s sleep habits[87]. While 

monitoring sleep is important for any individual, detecting changes in sleep 

habits is particularly important for chronic patients. For example, sleep 

anomalies may be suggestive of the onset or worsening of dementia[88]. 

Recent studies claim that sleep quantity and quality affect glycemic control 

in patients affected by type 2 diabetes [89]. It is also known that sleep 

disorders might also increase the risk of falling in the elderly [90–92]. 

As regards physical activity, for each detected workout (i.e., activity 

lasting more than a threshold duration, that may be brand-specific), activity 

trackers record start time, end time, and intensity. They also provide a 

summary of the overall daily activity, including the total number of steps and 

an estimate of the calories burned by the subject. However, this estimate 

varies significantly depending on the brand of the device. In addition, most 

activity trackers also monitor the subject’s heart rate (HR) on a regular basis, 

most commonly minute by minute. 

Usually, the data collected by the tracker can be visualized using a mobile 

application. Upon synchronization, the data is transferred from that 

application to a proprietary cloud. Once in the cloud, it can be retrieved by 

any third application that has been explicitly authorized by the user.  

 

Blood Glucose Monitoring Systems 

 

To optimize therapy for the individual, diabetologists need to monitor 

his/her BG values over time. Recently, new devices for continuous glucose 

monitoring (CGM) have been proposed, to reduce the need to perform blood 

glucose tests using the traditional glucometer, or smart glucometers, while 

providing deeper insight on the patient’s BG trends, by monitoring the BG 

value around-the-clock [93]. Reasonably, deeper understanding of the 

patient’s glycemic profile results in a better ability to maintain the BG value 

in a target range, thus reducing the number, or duration, of the episodes of 

hypoglycemia and hyperglycemia experienced by the patient [93, 94]. 

Several wearable devices for CGM are available on the market, including the 

Medtronic Minimed, and the Dexcom G4 Platinum CGM [95–97]. Usually, 

such devices exploit a subcutaneous sensor, which detects BG concentration 
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in the interstitial subcutaneous fluid. The collected measurements are then 

displayed on a reader or on a smartphone application. While CGM devices 

return the BG value continuously, other devices apply flash glucose 

monitoring (FGM), which means they require a scanner to periodically 

collect the BG values from the sensor. Among the FGM devices, the Abbott’s 

Freestyle Libre System (Figure 1) is one of the most known [98].  

 
Figure 1:  The Freestyle Libre system for flash glucose monitoring 

 

As many FGM devices, the Freestyle Libre system integrates two 

components. The main component is the wearable sensor (on the right in 

Figure 1), which automatically performs one BG measurement per minute. 

The system also includes a reader (on the left in Figure 1), which the patient 

must use every 8 hours to scan the sensor and export the collected BG 

measurements. After the scan, the Freestyle Libre system provides the 

patient with the recently measured values and with a summary of their most 

recent trend, in the form of an arrow [99]. The slope of the arrow indicates 

whether the patient’s BG level is rising or falling, and the extent of the 

variation. This information should help the subject in selecting the dose of 

insulin to be injected, if needed. By connecting the reader to a dedicated 

software provided by Abbott, the BG data can be uploaded to the Abbott 

system for further analysis. The proprietary software allows visualizing 

reports such as the daily glycemic profiles and the average glucose profile 

(AGP) over a pre-defined time interval (e.g., latest 2 weeks). Usually, these 

summaries are then discussed with the diabetologist during the patient’s 

check-up. 

It is proven that FGM and CGM systems improve the quality of life of 

diabetic patients, increasing the permanence of the subject’s BG value in the 

target range [99]. Recently, the Freestyle Libre system has also been 

approved for use in pediatric patients, and it is currently being adopted by an 

increasing number of subjects [100]. 

 



 

2.3. Decision support systems for 
chronic patients 

 
This section will provide a review of the literature related to the CDSSs 

aimed at supporting the chronic subject and his/her caregivers in managing 

the disease. The review will depict the state of the art on which we built the 

proposed framework for providing decision support through advanced 

analyses on temporal patient-generated health data (PGHD). As the previous 

section, after a general overview, the chapter will focus on systems for 

diabetic and elderly subjects. We identified four major application areas in 

the management of chronic illness that can benefit from the use of CDSSs, 

although they are not mutually exclusive. 

The first major application area is facilitating the coordination between 

the different and heterogeneous actors involved in the management of the 

disease. As highlighted in a review published in 2017 by Koiij et al.  [101], 

significant effort has been directed towards such aim. In particular, we can 

identify two main sub-groups of systems, covering two different use cases. 

On one hand, there are the systems that allow the exchange of information 

among doctors, potentially having different specialties, who need to interact 

to fully understand the patient's clinical situation. For example, to facilitate 

shared care in the diabetes context, in 2008 Smith et al. presented a system 

that allows the endocrinologist to exchange messages with the diabetologist, 

so that she/he can have deeper insight on the patient’s health condition when 

discussing the treatment plan with the subject [102]. 

On the other hand, there are the CDSSs that facilitate communication 

between health care personnel and the patient, or communication between 

health care personnel and the patient’s caregivers. Such systems often also 

include video conferencing features [103, 104]. Among these, some systems 

allow clinicians to deliver remote consultations for patients who live in areas 

from which it is not easy to reach the health care center. Other systems are 

designed for health care personnel to provide timely support, both practical 

and psychological, and educational material to the patient's families. For 

example, some systems allow caregivers of deaf patients to remotely consult 

with experts on sign language [104]. 

The second macro area is represented by decision support tools for 

diagnosis and characterization of the disease, and for treatment selection. As 

an example of tool to support the diagnosis of chronic respiratory diseases, 

Harber et al. proposed a system to guide the clinician in early recognition of 

the specific type of asthma that the patient is suffering from, to establish 

whether it may be related to the subject’s work environment [105]. In 

particular, their system asks the clinician to fill in a questionnaire on the 

patient’s symptoms, and then computes a set of suggestions according to the 
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provided answers, by applying a set of rules extrapolated from a well-known 

clinical guideline. 

While few systems focus on diagnosis, more systems focus on treatment 

selection and/or optimization. Many of the systems that support the selection 

of therapy for chronic patients also provide functionalities for monitoring 

and reviewing the treatment plan over time. For example, Ebrahiminia et al. 

designed a rule-based CDSS to ease the management of hypertension [106]. 

In particular, the system stores the measurements of the patient’s blood 

pressure, entered by the clinician. If the values provided over time do not 

show the specific effect that the treatment should have obtained (e.g., 

decrease or increase in blood pressure), the system may suggest changing the 

dose of the prescribed medication, or prescribing a different drug. 

Ebrahiminia et al. designed the system to be flexible, so that it could be 

extended to other chronic conditions (e.g., type 2 diabetes) simply by adding 

new rules in the knowledge base of the tool. Often these systems do not only 

take into account the effect of the therapy on the measured outcome (e.g., 

blood pressure values, in the previous example), but also of possible changes 

in the patient's characteristics. For example, Gorman et al. proposed a CDSS 

for selecting the treatment for diabetic patients, that also advises the 

diabetologist to reconsider the treatment plan when a female patient reaches 

the menopause age, which requires special precautions. 

Other tools may be used to facilitate patient involvement in the decision-

making process, while easing the communication between the subject and 

the clinician. Decision aids are known to be especially useful for the patient 

population that is most affected by chronic diseases, namely the elderly, who 

may need support to understand the possible consequences and/or risks 

involved in the different therapeutic options [107]. 

The third major application area includes CDSSs for supporting the 

patient in the daily management of the disease, at home. For example, in 

1994 a research group from the Massachusetts Institute of Technology 

(USA) described a set of projects meant to support chronic patients at home, 

within a wider project called Guardian Angel: Patient-Centered Health 

Information Systems [108]. In general, the Guardian Angel project aimed to 

helping the patient keep track of his/her medical records and/or 

measurements performed at home (e.g., blood glucose measurements), 

possibly receiving patient-specific suggestions based on their content. For 

example, one use-case of the Guardian Angel project is to support diabetic 

patients in adjusting the dose of insulin to be injected, according to their 

blood glucose (BG) measurements, collected using glucometers. More 

recently, systems for supporting the diabetic patient in adjusting the dose of 

insulin consider the patient’s blood glucose (BG) profile, collected using 

continuous monitoring devices [99]. As anticipated in Section 2.2.2, FGM 

and CGM devices often provide the patient with an indication of the most 

recent trend in his/her BG profile, in the form of an arrow. According to this 

information, the patient should be able to autonomously compute the amount 

of insulin to inject, in case of increase of BG value, or the amount of 

carbohydrate to intake, in case of decrease. Recently, some CDSSs have been 



 

proposed to guide the patient in this decision task [99]. However, their 

accuracy is to be tested, since these systems often do not consider factors 

which may impact on the glycemic metabolism, such as the patient’s physical 

activity, which can affect his/her BG value up to several hours after the end 

of the workout [97]. 

The fourth major application area includes CDSSs for remote monitoring 

of chronic patients and has developed quickly since the 2000s. The 

monitoring can be aimed at observing the patient's health status over the 

period of time between check-ups, to keep the clinician up to date on what 

happens to the subject outside the health care center. For example, in 2010 

Ciccone et al. [109] proposed a system that ask patients affected by 

cardiovascular diseases to share clinical parameters (e.g., measured weight 

and blood pressure) with their clinicians on a regular basis, while waiting for 

a medical appointment. Similar systems are available for several chronic 

conditions, and tend to replace the paper-based diary, which used to 

represent the standard monitoring tool before the use of technology became 

widespread in the management of chronic diseases. Of course, the set of 

monitoring variables depends on the disease. For example, CDSSs for 

supporting patients affected by asthma usually ask the patient to enter 

symptoms and details on inhalations [110]. Some of them are also integrated 

with smart inhalers, which record details on inhalations automatically. Some 

applications provide additional functionalities, including reminders for 

medication and access to educational material. CDSSs that include smart 

diaries are also available for diabetic patients [103, 111]. Usually, such 

systems assist the diabetic subject in recording the daily BG readings 

collected using glucometers. Some systems require diabetologists or nurses 

to regularly check the values entered by the patients. Other tools are only 

meant to share the measurements and to store them, so they can be analyzed 

by the diabetologist during the following medical appointments.  

Recently, much focus has been directed towards improving CDSSs for 

monitoring diabetic patients. The advances in this field are triggered both by 

the spread adoption of CGM and FGM devices, and by the need to 

complement the information provided by the patient’s BG profile with 

information on the subject’s lifestyle. It is well known that the BG profile 

over the day is influenced by multiple factors related to the patient’s daily 

routine, which alter the BG metabolism and/or the body response to insulin 

[97]. Besides the consumption of meals and the therapy intake, such factors 

include, for example, physical activity and sleep, in terms of both quality and 

quantity. In fact, low sleep quality may cause hyperglycemic effects, up to 

several hours after the awakening. Physical activity may lead either to 

hypoglycemic episodes or to hyperglycemic episodes, up to 48 hours 

afterwards. Since their effects on the BG value do not run out immediately, 

it is fundamental to keep track of the patient’s sleep and activity over time. 

Collecting data from diabetic patients wearing both a BG monitoring device 

and an activity tracker may help to better understand the relationship 

between BG values and HR, which is a debated research topic in the 

literature [112–114]. The need to complement the glycemic profile with 
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information on the subject’s lifestyle has been recently discussed by 

Rodríguez-Rodríguez et al. [97]. In their work, the authors monitored a 

diabetic patient (male, 25 years old) for 2 weeks, using both the Abbott 

Freestyle Libre system and a Fitbit activity tracker, which collected 

information on the subject’s sleep and physical activity.  The subject was 

also asked to report meals and insulin intake. The graph integrating all the 

collected data helped interpreting BG values in relation to the patient’s 

lifestyle factors, that are known to influence the subject’s status. Since the 

interest in integrating the BG profile with lifestyle information has been 

increasing and the use of wearable sensors has intensified, smart applications 

to facilitate data integration are needed. Several commercial platforms focus 

on supporting patients affected by Type 2 Diabetes [115–118] by tracking 

both BG measurements collected using glucometers and activity data 

collected by trackers. Such applications usually provide dashboards for the 

integrated visualization of the collected information, and sometimes allow 

the patient to share the data with the physician. Recent applications intended 

for Type 1 Diabetes collect and visualize CGM or FGM monitoring data 

[119]. Such applications usually provide daily reports, including the number 

and the duration of hypoglycemic and hyperglycemic episodes, possibly 

filtered by time of occurrence (e.g., nighttime or daytime). They also provide 

the same summaries as the CGM or FGM proprietary software, including the 

Average Glucose Profiles (AGPs). However, fewer applications integrate 

BG monitoring (either CGM or FGM) with activity and sleep tracking. One 

of the first solutions proposed in this area is Nightscout [120], an open source 

project developed by volunteers in 2014 to help the patient, or his/her family, 

set up a custom system for collecting and visualizing both BG monitoring 

data and activity tracking. However, this solution was not suitable to all 

patients, since it required the ability to build and maintain such a system, 

which includes a web site and a database. Other solutions [121, 122] are 

commercial integrated systems, which include a sensor for CGM and 

proprietary software to process the collected data. Such systems gather 

information on physical activity using proprietary insulin pumps [122], or 

commercial activity trackers [121]. To our knowledge, such systems provide 

an integrated visualization of data, but do not provide any tool to perform 

advanced analyses that combine data from both the sources. The same 

consideration holds for recent applications, such as the Diabetes:M mobile 

application [123], which is not developed by the same companies that 

produce the sensors, and aims at being compatible with multiple brands of 

sensors, insulin pumps, and wearable devices for activity tracking.  Despite 

the growing interest in tools for the remote/continuous monitoring of 

diabetic patients, the literature lacks CDSSs capable of performing advanced 

analysis on time series of PGHD. 

Another recent trend for the remote monitoring and support of chronic 

patients is the design of systems to make the subject's home "smart"  [124]. 

Usually, these are independent systems, designed for the patient and his/her 

family, and are not integrated with hospital information systems. The 

beneficiaries are often the elderly [104, 125]. The majority of smart houses 



 

have been designed to support the management of the elderly suffering from 

neurological diseases (e.g., dementia) and living at home, or to support the 

elderly showing high risk of falling [104, 126]. For example, in [127] 

Khattak et al.  presented a system for monitoring the activities of daily living 

of the individual affected by dementia. The proposed CDSSs gathers data 

from several sensors, including cameras, activity trackers, and localization 

systems. The CDSS then applies a set of rules to the collected data to identify 

which activity the patient is performing within a set of activities of interest , 

which includes for example sitting, running, and exercising. On demand, the 

CDSS can report the patient’s current status (in terms of ongoing activity) to 

its users, i.e., the patient’s family or a nurse. In [128], Juarez et al. presented 

a tool that collects data from motion sensors placed within the house and 

visualizes them in a specific graphical form that should help the user identify 

unusual movement patterns that may correspond to unwanted events (e.g., 

occurred fall, burglary). However, most of the research effort related to smart 

houses is focused on the detection or management of falls [129, 130]. In that 

field, most of the existing projects are aimed at providing support when a fall 

occurs. Usually such systems are designed to detect the fall event, reach for 

the family member who is the closest to the patient’s position, and possibly 

arrange an healthcare intervention [131]. Few systems focus on fall 

prevention. The majority of them assist the subject in performing specific 

exercises to maintain his/her walking ability [132]. It is in fact known that 

elderly subjects prefer to carry out any prescribed physical activity at home, 

instead of going to dedicated health centers [133]. Other systems [134] ask 

the subject to perform a specific action when receiving a specific audio/video 

signal. By analyzing the subject’s reaction time, they detect changes in 

his/her physical/mental state, which could correspond to an increase in 

his/her risk of falling. However, this means asking the subject to periodically 

perform exercises that he/she would not do spontaneously, thus imposing a 

variation on his/her daily habits. This could be a limitation, since it is known 

that patient compliance is higher for systems that do not alter the subject's 

daily routine [21]. To identify potential changes in the patient's health 

condition it would be more appropriate to detect changes in his/her daily 

routine, by monitoring the activities that he/she performs spontaneously. 

Nevertheless, to our knowledge in the literature there are no systems that aim 

at that goal, despite the current availability of several kinds of PGHD. 

To conclude this overview, many of the systems for supporting chronic 

patients collect PGHD over time, more or less frequently. Recently, CDSSs 

tend to collect PGHD more and more automatically, although many systems 

still ask the patient to manually enter data. However, CDSSs that perform 

advanced analysis on the time series of the collected PGHD are still not 

widespread. 
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2.4. Temporal analysis of patient 
generated (health) data 

This section is divided in four sub-sections. In the first one, the challenges 

posed by the analysis of PGHD are discussed. The second sub-section 

describes a technique for analyzing time series of data, namely knowledge-

based temporal abstraction. The third sub-section describes a software tool 

for performing temporal abstraction, which will be used in the framework 

object of this thesis. The fourth sub-section describes an example of 

application of the JTSA tool. 

2.4.1. Challenges in analyzing temporal patient generated 
(health) data 

 Analyzing time series of PGHD raises several challenges, some of which 

are specific to the nature of this kind of data. In the following we will discuss 

the challenges related to the following six aspects: 

• Data quality 

• Patient involvement 

• Data loss 

• Evaluation of the temporal component of the collected measurements 

• Integration of data from multiple heterogeneous sources 

• Signal characteristics (e.g., sampling frequency) 

 

First, as in any data analysis, attention must be paid to the quality of the 

collected data before proceeding with any processing. In the clinical setting, 

there are guidelines to follow to assess and ensure the quality of the 

measurements collected within the hospital. On the contrary, PGHD is a 

relatively recent and very heterogeneous type of data, so there are still open 

issues on how to guarantee their reliability [135]. Compared to 

measurements gathered in the hospital, the collection of PGHD can lead to 

more critical issues, since the patient has a central role in the procedure.  On 

the one hand, using sensors that collect measurements automatically 

facilitates the procedure, potentially limiting the occurrence of human errors. 

On the other hand, some PGHD sensors must be positioned appropriately to 

collect reliable measurements, and it must be assumed that the subject is able 

to do so. For example, activity trackers must be worn on the wrist in a 

specific position and must not fit loosely, otherwise the device is not able to 

measure the subject’s HR correctly. This obviously has an impact also on the 

variables that the device computes as a function of HR, i.e., detection of 

physical activity and sleep. In some cases, the device does not record any 

data if it is not worn correctly, thus leading to data loss. Often, though, data 



 

is recorded anyway, leading to unreliable measurements, which will be 

difficult to identify. 

Furthermore, wearable sensors often need the subject to actively 

participate in collecting data, although the necessary contribution is limited. 

Usually, the subject is asked to recharge the device regularly (e.g., on 

average once a week for activity trackers) and check that the measurements 

collected by the device is transferred to an external repository, since 

wearable sensors have a limited memory to store data. In the case of activity 

trackers, data must be synchronized to the cloud. It is often possible to 

personalize the system settings to synchronize the tracker automatically and 

continuously. However, also in that case, the patient must make sure to 

activate the Bluetooth module on his/her mobile phone, to receive data from 

the tracker, and an internet connection to transfer the data to the cloud. If the 

synchronization does not occur timely, the collected measurements might be 

lost. For example, for the Fitbit tracker, if the measurements are not 

synchronized to the Fitbit cloud within a week, a lot of data is canceled, 

including the time series of HR measurements and sleep staging. The same 

consideration holds for FGM devices. For example, the sensor in the 

Freestyle Libre System can store approximately 32 measurements, that 

correspond to eight hours of monitoring. If the patient does not scan the 

glucose sensor with the reader for more than eight hours, the oldest 

measurements are deleted from the sensor to allocate memory for storing the 

most recent values.  

Data loss may occur even when the patient is very compliant, or when the 

sensor does not require an active participation of the subject in collecting the 

data, as in the case of environmental sensors, which generally transmit the 

measurements without any manual intervention. However, connectivity 

issues might prevent the sensors from sending data. If the sensor has no back-

up systems for storing values in case of temporary lack of connectivity, the 

data can be lost. 

As for the reliability of the collected values, the accuracy of the 

measurements depends on the specific device [136, 137]. When designing a 

CDSS, clinical experts should be involved in the selection of the devices for 

PGHD collection, to make sure they have an accuracy deemed sufficient for 

the purpose of the system. For example, as we anticipated in Section 2.2.2, 

the Fitbit trackers show acceptable accuracy in the detection of sleep, but 

they are not accurate in identifying the different stages within the sleep 

occurrence [86]. In our use cases, the clinical experts believed that the 

detailed information on sleep stages was not necessary, and we used the 

Fitbit trackers mainly to monitor the patient's sleep quantity. For each 

variable of interest, a device with suitable accuracy must be selected. 

In addition to providing accurate measurements, it is fundamental that the 

sensors are able to unequivocally associate each value with the instant in 

which that value occurred. In the following, we will use the term temporal 

tag to refer to the time reference associated with a measurement. Knowing 

the temporal tag of all the collected measurements is fundamental to study 

how the variable of interest evolves over time. In case of multiple variables 
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of interest, knowing the temporal tag of all the measurements of all the 

variables, allows carrying out an integrated analysis. In the clinical context, 

it is often useful to exploit the information given by a variable to 

contextualize the information given by others. For example, the 

diabetologists we have worked with are particularly interested in identifying 

those patients who experience hypoglycemia during sleep, as it is a life-

threatening condition. This is possible by combining information from two 

sensors, namely an activity tracker and a FGM or CGM device. To combine 

the two sources of information correctly, it is necessary for the two devices 

to be synchronized (i.e. that measures with the same temporal tag actually 

correspond to measurements taken at the same time stamp), so that we can 

correctly identify the time intervals in which the patient sleeps and the time 

intervals in which the patient experiences hypoglycemia, and that we can 

compare them. In case of more than two devices, all the involved sensors 

must be synchronized. 

Although it might seem a trivial assumption, ensuring the reliability of all 

the temporal tags is challenging for several reasons. First, wearable systems 

for collecting PGHD often use their own internal clock and require a 

contribution from the subject to maintain the correct time synchronization. 

Usually, if the device is not connected to a computer or smartphone for 

weeks, its clock might stop working correctly. The same issue might occur 

if the device is not recharged for weeks. In our tests, this occurred both for 

the Fitbit activity trackers and for the Freestyle Libre System. When the 

device’s clock falls behind, the collected measurements are associated with 

an incorrect temporal tag, which undermines temporal analytics. Therefore, 

it is important to make the user aware of this issue, and instruct him to always 

pay attention to the time reported by the PGHD devices.  

Other reasons may cause the time lag of the device’s clock. Among all, 

one of the most frequent is daylight saving time (DST), i.e., shifting the clock 

one hour ahead during the brightest months of the year to take advantage of 

sunlight and save electricity, and adjusting the clocks back in the autumn. In 

the following, we will define forward DST change the operation of 

advancing the clock for DST, and backward DST change the opposite one. 

DST changes often cause issues in the synchronization of all electronic 

devices, including PGHD sensors. Some devices, like the activity trackers, 

manage DST changes automatically, using an internet connection, if they are 

synchronized regularly. Other systems require the subject to handle DST 

changes manually, and this might rise a challenge for temporal analytics. For 

example, the Abbott Freestyle Libre system does not apply DST. The system 

has an internal clock, which must initially be set by the patient, and can be 

re-set any time. After being set, the clock counts the time starting from the 

time provided by the subject, without any additional control. In the best case 

scenario, in which the patient sets the new time exactly in the moment in 

which DST is planned (i.e., at 2 or 3 in the morning, in Italy), this would lead 

to errors only in case of backward DST change. In that case, adjusting the 

clock back by one hour at 3 AM causes the time interval between 2 AM and 

3 AM to exist twice. This leads to duplicate measurements, i.e., two 



 

measurements having the same temporal tag, but different values. Duplicates 

are also generated when the patient travels to a country with a different time 

zone from the country where he/she lives and adjusts the time of the reader 

back and forth. Duplicate measurements must be filtered out before applying 

any temporal analytics, and a strategy for filtering should be set up. 

However, the assumption that the patient will set the new time exactly when 

the DST is planned is not realistic. The time change on the device is 

performed either before or after the actual DST takes place, usually 

depending on when the patient remembers to do it. Therefore, we have to 

foresee a time interval of unknown duration that may last even months, in 

which the device’s clock is shifted by one hour (forward or backward) with 

respect to the actual time possibly reported by other devices. A shift of one 

hour in the temporal tags may be critical when contextualizing the BG 

profile. For example, it might cause a high BG value to be interpreted as a 

post-prandial response, when the patient had not yet eaten. Given the 

consequent lack of synchronization with the Fitbit, this may cause an altered 

BG value during a workout to be interpreted as an altered BG value at rest. 

Therefore, it is important to detect those shifts and correct them. The time 

changes performed manually are logged by the Freestyle Libre system. With 

appropriate precautions, it is possible to correct the temporal data tags 

provided by the device, considering both the expected date of DST change, 

and any DST changes performed manually by the patient. As a further 

problem, the device does not run any check on the date set by the patient. 

For example, if the patient sets a future date by mistake, the system does not 

detect it and all the measurements reported by the device will have a temporal 

tag that represents a future date. During our tests we detected a frequent 

mistake in the manual DST change when performed by the patients around 

midnight. For example, in a DST backward change, one patient adjusted the 

device’s clock back, from 00:30 to 23:30, but forgot to update the date. As a 

result, the device’s clock was erroneously shifted forward by 23 hours, 

instead of 1 hour backward. All these types of human errors must be 

identified and corrected by analyzing the Freestyle Libre logs, before 

analyzing the data. We used the Freestyle libre system as an example, but 

similar problems can arise with different PGHD sensors. For each specific 

type of PGHD sensor it is therefore necessary to understand which types of 

errors may affect the assignment of temporal tags to the collected 

measurement and define strategies to correct them before integrating all the 

sources and analyzing the data. 

Even assuming that the temporal tags are correct, additional difficulties 

may arise, including challenges which derive from analyzing data from 

different sources. One of the most important is the sampling frequency of the 

time series of measurements, which highly depends on the measured 

variable. Some parameters are collected more frequently than others. For 

example, Fitbit activity trackers provide one measurement of HR per minute, 

while the Freestyle Libre system produces on BG measurement every 15 

minutes. The discrepancy in sampling frequencies must be taken into account 

when variables from multiple sources are analyzed simultaneously. 
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Furthermore, even considering only one variable at a time, the sampling 

frequency may not always be constant. For example, when processing data 

from wearable devices, we have to expect to detect time intervals in which 

data is missing because the device was not worn by the patient (e.g., recharge 

time for activity trackers). In addition, the duration of the time interval 

between two consecutive measurements may slightly vary. For example, 

from the data collected with the Freestyle Libre, we observed that the time 

between two consecutive measurements is in general 15 minutes, but it can 

be also 14 minutes. Since the output measurement of the device is an average 

over BG measurements taken every minute, the observed behavior is 

probably due to the algorithm used by the producer to process the data. When 

analyzing the data, it is therefore important to select a technique that can 

tolerate this characteristic.  

2.4.2. Time series analysis techniques 

Depending on the characteristics of the collected data and on the purpose 

of the analysis, several techniques for analyzing time series (TS) of 

measurements are available. Such techniques can belong to traditional signal 

processing, or can operate on qualitative representations of the collected 

data.  

Among signal processing techniques, artificial neural networks (ANNs) 

are currently one of the most popular [138]. Their main application is to the 

prediction of the behavior of a TS in a future instant, taking into account the 

history of the values assumed by the same TS in the past. In the clinical 

domain, several research efforts have been recently devoted to predicting the 

behavior of BG, in terms of value and intensity of variation, at a 30-minute 

horizon [139, 140]. ANNs are networks formed by several layers, each of 

which contains nodes, called processing elements, connected to each other 

through acyclic links. Each link is associated with a weight, which is part of 

the set of parameters to be estimated during the model construction phase. 

The output of the model is then computed by applying a mathematical 

formula, which depends on the input (i.e., the observed TS) and on the 

specific structure of the network, including the disposition of the nodes and 

the values of their weights [138]. An advantage of ANNs is that they are 

data-driven, i.e., they do not require any prior knowledge of the 

characteristics of the TS. One of the main drawbacks of such technique is 

that it requires a significant amount of data to train the model, being unaware 

of the context of the analysis, i.e., the specific clinical domain in which the 

TS was collected [141, 142]. Moreover, it is not trivial to associate a clinical 

interpretation to the result provided by the analysis.  

Signal processing techniques have specific requirements and cannot be 

applied to any type of data. For example, in general they cannot be applied 

to data showing an irregular sampling frequency. Since the irregular 

sampling frequency is one of the main characteristics of PGHD, in our 

framework we did not include signal processing techniques. For analyzing 



 

PGHD, we focused on knowledge-based Temporal Abstraction (KBTA). 

KBTA can be defined as an intelligent and context-sensitive interpretation 

of temporal data and its visualization in a synthetic representation [143–147]. 

KBTA allows processing TS of measurements, often referred to as raw data, 

to obtain high-level views of such data. In particular, by analyzing the 

temporal profile of the considered variable, KBTA allows converting the TS 

of measurements into a qualitative and interval-based representation, in 

which each time interval (TI) has a label that summarizes the qualitative 

behavior of the variable in that interval. The set of admissible labels depends 

on the domain and purpose of the analysis. Figure 2Error! Reference source 

not found. shows an example of temporal abstraction applied to the diabetes 

domain. In this case, the raw data (on the top) consist of the TS of the 

patient’s BG measurements collected by an FGM device over a selected time 

interval, T. The bottom part of the figure shows the result of applying KBTA 

for extracting increase, decrease and stationarity intervals in the TS. In the 

final interval-based representation (on the bottom, T is split in 9 sub-intervals 

according to the observed BG trend. The admissible labels for each TI are 

Increasing, Stationary, and Decreasing. 

 

Figure 2:  Example of knowledge-based temporal abstraction applied to extract 

trends in BG data. 

 

In the following, we will refer to the behavior we want to detect in the 

temporal data as pattern. It is essential to define together with clinical 

experts the patterns to be extracted from the TS of interest. Some patterns 

are simple, such as the increasing and decreasing trends considered in the 

previous example. Other patterns represent more complex phenomena.  For 
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example, to optimize the patient’s therapy, diabetologists need to check the 

subject’s BG profile for the occurrence of the dawn effect, that corresponds 

to normal BG values during sleep, followed by hyperglycemia before 

breakfast. Complex patterns may also be multivariate. For example, 

diabetologists are interested in identifying when an increase in the subject’s 

HR profile precedes an episode of hypoglycemia.  

To explicitly model the knowledge necessary to define the patterns 

unambiguously, the experts' contribution is essential. For example, if we 

need to identify all the time intervals in which the patient’s BG value 

increases, several questions need to be answered: what is the minimum rate 

of increase in the BG value that is considered significant from the clinical 

point of view? If the trend lasts for a very limited time, is it informative to 

report it as a pattern? If multiple time intervals show the desired trend, should 

we aggregate them as a single occurrence of the pattern, or as distinct 

occurrences? Answering these questions allows including the domain 

knowledge necessary to properly exploit the KBTA framework. A richer set 

of questions arises in the case of complex patterns, since they are composed 

of a combination of behaviors, linked by very specific temporal 

relationships. For example, for the previously described heterogeneous 

pattern, how long can it take between the increase in HR and the occurrence 

of hypoglycemia to consider them as related episodes? Is the increase in HR 

supposed to end before the occurrence of hypoglycemia? Which time interval 

is considered critical, only the TI characterized by hypoglycemia or also the 

TI showing the HR increase? KBTA techniques must be personalized, taking 

into consideration these aspects. In the following section we will present a 

software tool that allows performing user-defined temporal data analyses 

based on KBTA. 

2.4.3. Java Time Series Abstractor:  a tool for temporal 
abstraction 

In the proposed framework, to perform KBTA on PGHD we use Java 

Time Series Abstractor (JTSA), a framework that has recently been 

developed by a team of researchers from our department at the University of 

Pavia [148]. In general, KBTA is performed by applying a sequence of 

algorithms that abstract the input data. JTSA formalizes several algorithms 

for KBTA, that can be personalized by tuning their parameters. JTSA is 

convenient since it is modular, i.e., multiple algorithms can be combined in 

workflows to detect any user-defined pattern. Thus, it allows a context-

specific summarization of the collected PGHD data. JTSA methods are 

available within a JAR, which can be easily integrated into any third-party 

application. 

JTSA operates on two basic temporal primitives, namely the event and the 

episode. An event is a tuple composed of one-time stamp and the value 

assumed by the variable of interest at that time. An episode is composed of 

one-time interval, defined by a start date and an end date, and the value 



 

assumed by the variable in that interval, which is usually a qualitative label. 

Given their qualitative nature, TS of episodes have a higher level of 

abstraction than TS of events. In the following, we will refer to TS of 

episodes as A-TS. 

The ontology that describes the set of algorithms provided by JTSA is 

shown in Figure 3.  

 

 
Figure 3: Ontology of the algorithms provided by JTSA. Source: [148] 

 

Pre-processing algorithms allow performing operations such as 

normalization, filtering and polynomial interpolation of data. The algorithms 

for KBTA can be classified into three different groups, namely Basic, 

Aggregation and Complex, which differ both in the type of input data and in 

the type of output. Basic algorithms receive a TS of events as input and return 

an A-TS as output. The Basic algorithms are further divided into two groups: 

Qualitative methods discretize the input variable using a set of thresholds 

provided by the user; Trend methods detect increase, decrease or stationarity 

in the profile of the input variable. Aggregation methods receive an A-TS as 

input, and aggregate subsequent episodes having the same label into a single 

episode, based on parameters defined by the user. Thus, the result of the 

aggregation is an A-TS. Two parameters need to be specified to apply an 

aggregation algorithm: the minLen, i.e., the minimum length that an 

aggregated episode must have to be included in the output series, and the 

gap, i.e., maximum distance between two consecutive episodes to be 

aggregated in a single episode. Complex algorithms detect complex 

abstractions, created combining Basic abstractions or complex abstractions 

on the basis of a set of temporal operators, namely Allen's relational 

operators [149], which define the different temporal relations that can occur 

between two time intervals. Table 1 lists Allen’s operators, each one 

complemented with a textual description and a graphic representation. 
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Table 1:  Allen's temporal operators 

OPERATOR DESCRIPTION REPRESENTATION 

BEFORE 

 

X ends before 

the start of Y 

 

MEETS 
X ends when 

Y starts 

 

OVERLAPS 

 

X begins before Y 

AND Y begins 

before the end of X 

AND X ends before 

the end of Y 

 

STARTS 

 

X starts at the same 

time as Y AND X 

ends before the end 

of Y 

 

DURING 

Y starts before X 

AND X ends before 

the end of Y 

 



 

 

Complex algorithms accept two A-TS, S1 and S2, as input and try to apply 

the selected temporal relation to all possible <episode of S1, episode of  S2> 

pairs. When a pair verifies that temporal relation, an output episode is 

created, and inserted in the A-TS returned by the algorithm. The time interval 

of the new episode is built based on the time intervals of the two episodes in 

the considered pair, through operators known as combiners. Table 2 lists the 

combiners available in JTSA, each one complemented with a textual 

description and a graphic representation. 

 
Table 2:  Combiners provided by JTSA 

FINISHES 

 

Y starts X AND X 

ends at the same 

time as Y 

 

EQUALS 

 

X starts at the same 

time as Y AND X 

ends at the same 

time as Y 

 

COMBINER DESCRIPTION REPRESENTATION 

UNION 

The resulting 

time interval 

includes both X 

and Y, in 

addition to the 

possible time 

interval between 

them. 
 

INTERSECTION 

 

Time interval 

that X and Y 

share. 
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To detect a user-defined pattern, the described JTSA algorithms can be 

combined in a workflow, a document that formalizes the steps to be followed 

for abstracting one or more time series into the desired pattern. A workflow 

is composed of several sections, known as blocks, which may be in turn 

composed of sub-sections, known as steps. Each block can use one or more 

JTSA algorithms. Based on the type of input and on the content, a block may 

be either a Pipeline Block or a Complex Block. Pipelines blocks consist of a 

sequence of steps that use a Basic algorithm or an Aggregation algorithm 

and require only one time series, either TS of events or A-TS, as input. 

Complex Blocks, on the other hand, work on two A-TS as input and use a 

Complex algorithm to combine them through one Allen’s operator and one 

combiner. Workflows are XML documents based on a JTSA-specific XML 

schema, which are interpreted and executed by the JTSA engine.  

To clarify how the JTSA framework works, in the following sub-section 

we will describe an example of workflow related to the diabetes domain. 

GAP 

BETWEEN 

STARTS 

 

Time interval 

between the 

beginning of X 

and the 

beginning of Y. 

 

GAP 

BETWEEN 

ENDS 

Time interval 

between the end 

of X and the end 

of Y. 

 

LONGEST 

The longest time 

interval among X 

and Y. In the 

provided 

example, the 

combiner returns 

Y.  

 

SHORTEST 

The shortest time 

interval among X 

and Y. In the 

provided 

example, the 

combiner returns 

X.  

 



 

2.4.4. Example of JTSA workflow 

The workflow described in this section processes the patient’s BG data 

and detects the occurrence of the previously mentioned dawn effect, i.e. , 

normal BG value during sleep, followed by hyperglycemia on awakening. 

The XML file formalizing the workflow is shown in Figure 4. A schema 

summarizing the workflow is shown in Figure 5. The workflow consists of 

two Pipeline blocks and one Complex block. Each block has a unique 

identifier, specified by the id attribute. The Pipeline block with the identifier 

Normal_Night extracts the time intervals in which the subject’s nocturnal 

BG value is in the normal range [ThHYPO; ThHYPER], where ThHYPO and 

ThHYPER are two patient-specific thresholds, set by the diabetologist. In this 

example, we will consider [70 ; 180] as the normal glycemic range. The 

Pipeline block with the identifier Hyper_Morning extracts the time intervals 

in which the subject’s BG value is higher than the ThHYPER threshold. The 

Complex block combines the sub-results provided the two Pipeline blocks, 

to detect the time intervals in which the Dawn Effect occurs. The following 

paragraphs provide a detailed description of the three blocks, complemented 

with the list of the used algorithms, and the parameters set to customize them. 
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Figure 4:  JTSA workflow to detect the Dawn Effect 

 

 
Figure 5: Schema summarizing the JTSA workflow to detect the Dawn Effect 

<workflow> 

 <block> 

   <pipeline id="Normal_Night" type="pipeline"  

   dataType="file_BASIC_TS_CSV_READER" dataIn="BG_SLEEP.csv"> 

  <step order="1" title="Normal_Night"  

   parameters="properties/qualitativeG.properties"  

   type="BASIC" subtype="BASIC_QUALITATIVE"> 

  </step> 

  <step order="2" title="Aggregation_Normal" 

   parameters="properties/HighLevelAgg_N.properties 

     type="AGGREGATION" subtype="AGGREGATION_HIGHLEVEL"> 

  </step> 

  </pipeline> 

 </block> 

 <block> 

   <pipeline id="Hyper_Morning" type="pipeline" 

   dataType="file_BASIC_TS_CSV_READER" dataIn="BG.csv"> 

  <step order="1" title="Hyper_Morning" 

   parameters="properties/qualitativeG.properties"  

   type="BASIC" subtype="BASIC_QUALITATIVE"> 

  </step> 

  <step order="2" title="Aggregation_Hyper" 

   parameters="properties/HighLevelAgg_H.properties 

   type="AGGREGATION" subtype="AGGREGATION_HIGHLEVEL">    

  </step> 

    </pipeline> 

 </block> 

 <block> 

   <complex id="DawnEffect" type="complex"  

    dataType1="block" dataIn1="Normal_Night"  

     dataType2="block" dataIn2="Hyper_Morning" 

     rel_operator="BEFORE" combiner="Union"  

      parameters="properties/BEFORE.properties" 

     label="DawnEffect"> 

   </complex> 

 </block> 

</workflow> 



 

The Normal_Night block is characterized by three attributes, excluding 

the attribute that specifies the unique identifier. The type attribute specifies 

the nature of the block, which in this case is pipeline. Two attributes, dataIn 

and dataType are used to specify the data that the block must receive as input. 

A Basic block can read the input data from a text file, or it can receive them 

from the application that integrates JTSA. Since in this example the attribute 

dataType has value file_BASIC_TS_CSV_READER, the block will read its 

input data from the file specified by the dataIn attribute. In case the file, 

BG_SLEEP.csv contains all the BG values related to the subject’s sleep. The 

block is composed of two steps whose order of execution is established by 

the value of the order attribute. Each step has a title attribute, which provides 

a qualitative description of the expected result of the operation and does not 

represent an identifier. The first step uses a Basic Qualitative algorithm, as 

specified by the type and subtype attributes. As anticipated, this algorithm 

discretizes the input values using a set of thresholds, which are set in a 

configuration file, whose path is specified in the value of the parameters 

attribute. The configuration file has two lines, the first line specifies the set 

of thresholds, the second line specifies the set of labels to be assigned to the 

values according to the defined thresholds.  

 

th=70, 180 

label=hypoglycemia,normal,hyperglycemia 

 

Consequently, every BG value lower than 70 will be labeled as 

hypoglycemia; every value greater than 180 will be labeled as 

hyperglycemia; each value in the range between 70 and 180 will be labeled 

as normal. 

The second step aggregates the episodes that have the same label, 

according to the parameters specified in the configuration file, 

properties/HighLevelAgg_N.properties. In this case the file includes five 

parameters, as shown in the following lines. 

 

levels=normal 

label=Normal 

gap=60 

minLen=60 

granularity=MINUTES 

 

The levels parameter determines which categories to consider in the 

construction of the A-TS to be returned. Among the episodes produced by 

the first step, only episodes with the normal label are considered by the 

second step. The gap is the maximum distance between two episodes with 

the normal label to be aggregated. In particular, the algorithm considers all 

the pairs <E1 , E2> , where each Ei is an episode of the A-TS produced in the 

previous step, and E1 starts before E2. If the temporal distance between the 

end of E1 and the beginning of E2 is more than 60 minutes, the two episodes 

are combined into a single episode, starting when E1 starts and ending when 
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E2 ends. The minLen parameter sets the minimum duration of an episode to 

be considered relevant. In this case, only episodes longer than 60 minutes 

will be included in the A-TS returned by the step. The episodes in the output 

A-TS have the label specified by the label parameter, i.e. Normal, in this 

example. The granularity parameter specifies the unit of time in which the 

gap and minLen variables are expressed. In this case they are expressed in 

minutes. 

The Hyper_Morning block works similarly to the Normal_Night block, 

but receives in input a different time series, BG, that is not limited to the BG 

values measured during sleep. The block consists of two steps. Despite 

having a different title, step 1 produces the same result as step 1 of the 

Normal_Night block, i.e., a series of episodes, each one having one among 

the three possible labels, hypoglycemia, normal, and hyperglycemia. Step 2 

aggregates episodes having the hyperglycemia label. While step 1 uses the 

same configuration file described for step 1 of the Normal_Night block, step 

2 uses a separate configuration file, shown below. 

 

levels=hyperglycemia 

label=Hyperglycemia 

gap=20 

minLen=60 

granularity=MINUTES 

 
Thus, step 2 aggregates episodes having the hyperglycemia label if the 

gap between them does not exceed 20 minutes. After the aggregation, 

episodes with duration longer than 60 minutes are given the Hyperglycemia 

label and are included in the A-TS returned by the block.  

The complex block receives as input the two A-TS produced by the 

pipeline blocks, as specified by the dataType and dataIn parameters. 

Specifically, dataIn1 specifies that the result produced by the block with 

identifier Normal_Night is used as the first input; according to dataIn2 the 

second input is the A-TS produced by the Hyper_Morning block. The order 

assigned to the two inputs is important and must be set carefully, because it 

determines how the selected Allen’s operator will be applied to the two 

series. The selected Allen’s operator is specified by the rel_operator 

parameter. In this case, the block applies the BEFORE operator, which was 

described in Table 1. The BEFORE operator is personalized according to a 

set of properties set in the configuration file, properties/BEFORE.properties 

having the following content.  

 

ls=540 

rs=240 

gap=60 

granularity=MINUTES 

 

If we define A-TS1 and A-TS2 the two input A-TSs, and <x , y> the pair 

consisting of one episode of A_TS1 (x) and one episode of A-TS2 (y), the 



 

parameters in the configuration file are used to constrain the desired temporal 

relationship between x and y. Their meaning is summarized in Figure 6.  

 

 
Figure 6: Parameters for personalizing Allen's temporal operators 

 

In particular, ls is the acronym for left shift and identifies the maximum 

distance between the beginning of x and the beginning of y. The right shift 

(rs) defines the maximum distance between the end of x and the end of y. As 

in the previous cases, the gap represents the maximum distance between the 

end of x and the beginning of y. The block applies the BEFORE operator to 

all the possible <x , y> pairs. For each pair that verifies the BEFORE relation, 

the two episodes, x and y, are combined using the Union combiner (Table 1) 

as specified by the combiner parameter. All the resulting episodes are 

assigned the DawnEffect label and included in the A-TS returned by the 

workflow. As previously discussed, the granularity parameter specifies the 

unit of time in which the temporal variables are expressed. 

Figure 7 shows a detail of the output of the described JTSA workflow for 

the selected patient.  

 
Figure 7: Example of occurrence of the Dawn effect 

In particular, Figure 7 is divided in three vertical sections, each one 

representing the output of one block of the described workflow. Time 

intervals in which the subject’s BG value is normal during the night are 
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shown in red. Time intervals that correspond to hyperglycemic episodes are 

shown in blue. The identified occurrence of the dawn effect is shown in 

green. 

 

 

 

  



 

3. The proposed framework 

As anticipated in Section 2.4, when clinicians examine time series of 

measurements, they usually search for specific behaviors, or patterns, in the 

collected data. Depending on the clinical problem, the valuable information 

may be the presence of a specific behavior in the data, its absence, or its 

modification over time in terms of a specific set of characteristics (e.g., 

duration, frequency, or intensity). Such information often supports the 

clinician in evaluating the patient’s health status and personalizing the care 

process. 

In this chapter, we propose a framework for building CDSSs that perform 

pattern detection on temporal series of PGHD and provide decision support 

accordingly. The proposed framework collects considerations that do not 

depend on specific decision problems; thus, it may be applied to any clinical 

context in which extracting information from longitudinal PGHD is needed. 

We identified three main key steps that the CDSS must be able to support: 

 

1. The download and integration of PGHD 

2. The pattern detection 

3. The provision of pattern-based decision support 

We then identified a minimum set of components that need to be integrated 

into a CDSS to allow performing the above-mentioned key steps. The 

proposed set includes five main components, namely: 

 

• the data integration module 

• the PGHD repository 

• the knowledge base 

• the inference engine 

• the graphical user interface. 

The relationships between the different components are shown in Figure 8, 

in which the dashed box delimits the CDSS.  
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Figure 8: Components needed in a CDSS that analyzes time series of PGHD 

In particular, we use the term data integration module to indicate an 

interface between the system and external PGHD sources. Its functionality 

is to periodically download PGHD data, and to prepare it for further analyses. 

For example, the data integration module should convert the downloaded 

time series into a format that is suitable for the system. It should also 

combine the information obtained from multiple sources, when the 

integration can provide insights that are meaningful for the decision problem.  

A dedicated PGHD repository should store the PGHD prepared by the 

data integration module, and possibly persist the results of the analyses . 

The knowledge base (KB) should define all the concepts related to the 

domain in which the CDSS operates, the relationships between them, the 

patterns of interest for the specific decision problem, and how they need to 

be used in order to provide decision support.  

An inference engine should act upon such formalization of knowledge to 

actually deliver decision support to the users. 

A graphical interface should be integrated, to allow the system to 

communicate with the user. Most system communications are outgoing, to 

present the results of the analysis and possible warnings, but often graphical 

interfaces allow users to provide data that are necessary for the analysis. 

Figure 9 details the general architecture that was presented in Figure 8, 

listing the technical sub-components required for a CDSS that exploits JTSA 



 

for analyzing time series of PGHD. The role of each component and sub-

components will be discussed in the following of this chapter.   

 

 

 

 

For each main component, a sub-section will describe the reasons why it 

is necessary in a CDSS for analyzing time series of PGHD and its desired 

characteristics, regardless of the implementation technologies. In this work, 

we focused on knowledge-based temporal abstraction (KBTA) for 

performing pattern detection. Thus, the desired characteristics of the 

proposed components were defined assuming that KBTA would be 

performed. 

 

 

 

 

Figure 9:  System architecture 
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3.1. The data integration module 

We have identified two main needs that this component should address 

• the need to download data from multiple sources 

• the need to give a meaning to the downloaded data  

 

To address these needs, we suggest to include six types of components in the 

data integration module (Figure 10). 

 

 
Figure 10: Components of the data integration module 

 

The two needs and the components that are necessary to fulfill them will be 

discussed in the following subsections. 

3.1.1. The need to download data from multiple sources 

The data integration module should contain several modules for 

downloading PGHD data, possibly one for each type of PGHD source, as 

each source might have specific data download modes. These components 

will be referred to as downloaders. Most commonly, downloaders request 

the data sending HTTP requests to the dedicated server provided by the 

PGHD source, which queries the cloud repository and supplies the retrieved 

information. In most cases, the collected measurements are not available 

immediately, but only after the PGHD has been synchronized with the cloud 

repository. Thus, the downloader must activate only when data become 

available, and when the latter have not yet been downloaded. Our strategy 

for synchronizing the download will be discussed in a following sub-section.  

Since usually the PGHD source provides the requested data in the JSON 

format, the data integration module should also include json parsers, i.e., 

components that parse the JSON file to extract the data.  

Furthermore, PGHD are sensitive data, since they may reveal relevant 

information about the health of the individual who generated them. 

Therefore, they must be protected from any access, use or distribution that is 

not authorized by the subject himself/herself [150–152]. As discussed in 

Section 2.2.2, commercial PGHD sensors often store the collected data in a 

proprietary cloud repository, whose content can be accessed through 

dedicated servers provided by the PGHD source. By default, such servers 

provide the collected data only to the person who generated it, to preserve 



 

his/her privacy. However, the monitored subject can grant third-party 

applications the permission to download his/her data. Thus, the data 

integration module needs to contain components for collecting the subject's 

consent to download his/her own data. In this thesis, these components will 

be referred to as consent collectors. The method for obtaining consent may 

vary depending on the PGHD source. Consent may be valid for a limited 

time and may be withdrawn from the monitored subject at any time. 

Therefore, the consent collectors must be able to monitor the consent status 

over time, and ask the subject to renew it, in case it has expired. 

 

Solution adopted in the framework to perform the download 

 

In our applications we developed a component, to which we will refer to 

as HTTP handler, dedicated to sending and processing HTTP requests. Our 

HTTP handler exploits httpclient, a library developed by Apache that 

provides methods for formalizing and sending HTTP requests, and for 

inspecting the answer [160]. 

The answer often contains the requested data in the JSON format. In 

particular, each JSON document is composed of a set of elements, organized 

in a hierarchical structure. For each type of PGHD, the hierarchical structure 

is known, since it is usually provided by the source documentation. Based 

on the hierarchical structure, the parsers exploit the methods provided by 

json-simple [153], a library  developed by Apache to retrieve the content of 

each element (i.e., the PGHD) in the JSON document. 

 

 

Solution adopted in the framework to synchronize the download 

 

As anticipated, the downloader must activate only when the data is 

available and not yet downloaded, i.e., stored in our dedicated PGHD 

repository. Checking this condition is not trivial and must be done separately 

for each type of data. It also requires monitoring a specific set of events (e.g., 

start of the monitoring session, synchronization of the PGHD device with the 

cloud) and the temporal relations between them. 

The events of interest and their temporal relations will be described in the 

following. To facilitate reading the following description, Figure 11 shows 

three timelines, namely (from top to bottom):  

• the sequence of the events related to the PGHD monitoring device 

• the sequence of the events related to the cloud in which the PGHD 

device stores the data 

• the sequence of the events related to the CDSS repository. 
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Figure 11: Time variables of interest for downloading PGHD 

 

The first variable to monitor is the time interval that includes the temporal 

tags of the data that are currently on the PGHD device, which we will refer 

to as [TSTART; TSTOP]. Since PGHD devices often have limited memory, this 

range contains the most recent data and not the complete monitoring history. 

TS(CLOUD) represents the date and time in which the PGHD device was 

synchronized with the corresponding PGHD cloud. It is fundamental to 

monitor TS(CLOUD), to check that synchronization occurs regularly. The CDSS 

should generate an alarm if the discrepancy between TS(CLOUD) and the 

current date is greater than a selected threshold duration. The measurements 

that were collected before TS(CLOUD) can be downloaded from the cloud. For 

each type of data, TF(CLOUD) represents the date and time of the oldest value 

stored in the cloud, which ideally is also the first measurement (of that type) 

collected by the PGHD device. When the PGHD device has been running for 

some time, TF(CLOUD) < TSTART. TL(CLOUD) represents the date and time of the 

latest value stored in the cloud. This value coincides with the last data 

measured by the PGHD device only at the time of synchronization. When 

the PGHD device contains data that are waiting to be synchronized, TL(CLOUD) 

< TSTOP. It is also necessary to memorize the date and time of every attempt 

to download data made by the downloaders. In particular, TD(REP) represents 

the date and time of the last download attempt. If TD(REP) < TL(CLOUD) the 

downloader must activate. For an early detection of possible issues in the 

downloading process, it is necessary to monitor that || TD - TCURRENT|| < TH, 

where TCURRENT represents the current datetime, TH represents a selected 

threshold duration. In three cases || TD - TCURRENT|| < TH is not verified. 

These three cases will be briefly discussed in the following. 

 
CASE 1 

 

Most probably, the PGHD device may have not been synchronized with the 

cloud for too long and also TS(CLOUD) and TL(CLOUD) might not be updated. 

 
 



 

CASE 2 

As a second possible explanation, the device may be synchronized but 

may have not collected any measurements (Figure 12). In the case of an 

environmental sensor, intended to emit data almost continuously, this 

indicates that the sensor is malfunctioning. In case of wearable sensors, the 

absence of measurements does not necessary indicate malfunctioning. For 

example, the device may be charging, thus not worn by the patient. 

 

 
Figure 12: Time variables of interest for downloading PGHD 

CASE 3 

 

In the third case, the downloader failed activating. It is necessary to check 

that all the data downloaded from the cloud is transferred to the repository. 

Thus, for each type of data, TF(REP) represents the date and time of the oldest 

value downloaded into the CDSS repository, while TL(REP) specifies the date 

and time of the latest value in the repository. Ideally, TF(REP) is equal to 

TF(CLOUD), while and TL(REP) is equal to TL(CLOUD). Otherwise, the downloader 

must activate. However, the method discussed so far involves sending 

requests for data too frequently if the PGHD device has been set up to 

synchronize with the cloud continuously. An improper use of data requests 

may overload the system, slowing it down. In addition, the PGHD server 

often provides TS(CLOUD), not TL(CLOUD), making it difficult to determine when 

to activate the downloader. Thus, more often each downloader has its own 

predefined activation frequency, which depends on the frequency with which 

the data are produced and on the use case for which the system is designed. 

The checks on the dates previously described are still necessary to assess 

what are the time intervals to consider in data requests, but they are carried 

at a fixed frequency.   
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Solution adopted in the framework to manage patient consent 

 

As anticipated, the communication with the PGHD servers is usually 

based on the HTTP (Hypertext Transfer Protocol) protocol. In general, an 

additional protocol needs to be applied to ensure that the PGHD servers 

provide the patient’s PGHD only to applications that have  been authorized 

by the subject himself/herself. One of the most known protocols for 

managing the patient’s consent is the OAuth 2.0 Authorization Framework 

[154], published by the Internet Engineering Task Force (IETF), a 

community that develops Internet standards [155]. According to the OAuth 

2.0 authorization framework, the patient is the resource owner, since he/she 

owns the collected PGHD. The OAuth 2.0 protocol allows the resource 

owner to grant third-party application the permission to access the data 

server on his/her own behalf. Some producers of sensors for collecting 

PGHD adhere to the OAuth 2.0 authorization framework and provide 

protocols for managing the resource owner’s consent. This facilitates the 

development of applications for downloading analyzing the collected PGHD. 

For example, the well-known companies that produce activity trackers also 

provide documentation on how to apply the authorization protocol to 

download the collected PGHD. In our applications, consent collectors are 

implemented in Java, as all the components in the data integration module, 

and comply to the Oath protocol provided by the PGHD sources to explicitly 

obtain the patient’s consent to data download.  

In the following, to provide an example of application of the OAuth 2.0 

protocol, we list three links to the documentation related to authorization 

provided by popular brands of activity trackers. 

 

Fitbit 

https://dev.fitbit.com/build/reference/web-api/oauth2/ 

 

Polar 

https://www.polar.com/accesslink-api/#authentication 

 

Garmin 

https://developer.garmin.com/connect-iq/programmers-

guide/communication/ 

 

 

 

 

 

 

 

 

 

https://dev.fitbit.com/build/reference/web-api/oauth2/
https://www.polar.com/accesslink-api/#authentication
https://developer.garmin.com/connect-iq/programmers-guide/communication/
https://developer.garmin.com/connect-iq/programmers-guide/communication/


 

3.1.2. The need to give meaning to the downloaded data 

The content returned by each PGHD source is not informative until it has 

been given a meaning that is understandable for the CDSS. In particular, for 

each content retrieved from the JSON document returned by the source, three 

aspects must be clarified unequivocally: 

 

• the type of measurement 

• the value 

• the exact time the measurement refers to 

 

The first two items are highly related. Most commonly, the same variable 

is formalized differently from the different PGHD sources. Even more 

commonly, the formalization of the same variable in the CDSS differs from 

the formalization used by the PGHD sources. For example, the same variable 

can be expressed in different units of measurement. Generally, the format 

used by the PGHD source is provided in the source documentation. In our 

framework, we develop specific components (data converters) that process 

the PGHD in the JSON document, and translate it, so that it complies to the 

format known to the CDSS. 

As regards the third item, temporal information normalization is a key-

step in the data integration process [156]. It consists in standardizing the 

temporal component of the data, i.e., the temporal tag of each measurement 

(see Section 2.4.1), to allow integrated data analysis. In fact, PGHD sources 

might express temporal tags using different notations, that can also differ 

from the notation used by the CDSS. Also in this case, the temporal notation 

used by the PGHD source is known from the source documentation. Thus, 

data converters can uniform all the temporal tags to the specific notation used 

by the CDSS. 

Once the downloaded measurements have a clear meaning and a clear 

temporal reference, additional meaning can be assigned by combining the 

information collected from multiple kinds of PGHD sources. Often, a 

specific variable (dependent variable) may be contextualized, or influenced 

by, another variable (independent variable). These two variables may be 

measured by the same device, or by different kinds of PGHD monitoring 

devices. For example, to support diabetologists in analyzing the patient’s 

blood glucose profile, it is useful to determine if a given BG value 

(dependent variable) was recorded during the subject’s sleep (independent 

variable), or during a workout (independent variable), since the subject’s 

metabolic response depends on sleep and physical activity. Since 

contextualizing some kinds of PGHD may facilitate understanding the 

subject’s health condition, in our framework we suggest a strategy to enrich 

the definition of a selected dependent variables according to the value of its 

independent variables. The following subsection describes that strategy and 

provides an example of its application in our tool for supporting diabetes 

care.  
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Solution adopted in the framework to contextualize dependent variables 

 

The simplest strategy to enrich the definition of a variable is to add a 

further dimension. Thus, we decided to enrich the dependent variables of 

interest by assigning them a context label, whose value summarizes the 

behavior of the independent variables at the same time. In general, assigning 

a context label means relating a variable of interest, collected from one 

PGHD source, with another variable having a different nature, that might 

help to contextualize the variable of interest. For example, as anticipated, for 

each BG value we want to associate a context label, whose value indicates 

whether that value was collected during the subject’s sleep, during a 

workout, or during regular daily activities. In our framework, in the data 

integration module we include dedicated components, data taggers, that 

associate the context labels to the collected data. 

As anticipated, the independent variable may be collected from the same 

PGHD source, or from a different data source. This entails the need to define 

rules on how to handle those kinds of data that need to be contextualized 

based on other PGHD. The data taggers must take into consideration that the 

two kinds of data are not always downloaded at the same time, although they 

need to be interconnected. Rules should define how to proceed when the data 

to be contextualized (dependent variable) is available but the contextualizing 

data (independent variable) is missing, thus leading to a missing context 

label. This may occur often when the two kinds of data are provided by 

different PGHD sources. In that case, the context label may be missing 

temporarily, waiting for the independent variable to be downloaded, but it 

may also be permanently missing, if the contextualizing data was not 

collected at all. Distinguishing these two situations is fundamental to assess 

whether it is necessary to repeat the tagging attempt. The distinction can be 

made by checking the above described dates (i.e., TF(CLOUD), TL(CLOUD), 

TS(CLOUD), TF(REP), TL(REP), and TD(REP)) for each type of data involved. 

 

3.2. PGHD repository 

After the data have been assigned a meaning, they can be transferred to 

the dedicated PGHD repository. 

Maintaining a repository within the CDSS might seem superfluous, since 

most of the data to be analyzed can be provided by PGHD servers on demand. 

We have analyzed advantages and disadvantages of integrating a PGHD 

repository into a CDSS, and we have concluded that it represents a 

fundamental component in the proposed framework. The PROs and CONs 

of having a centralized repository are summarized in Table 3 and will be 

discussed in the following paragraphs. 

 



 

Table 3: Advantages and disadvantages of integrating a PGHD repository into a CDSS 

PROs - It is possible to save the complete history of the collected 

PGHD measurements. 

- For data analysis, it is faster to extract the data from the 

repository rather than from the sources. 

- It is possible to store content that is not served by PGHD 

sources (e.g., patient-reported information, inputs by 

clinicians, results of data analysis). 

- It is possible to assign context labels to the collected data. 

CONs - It is necessary to allocate memory for data storage. 

- It is necessary to design and maintain the repository. 

- It is necessary to design, develop and maintain components 

to interact with the repository. 

- It is necessary to backup the content regularly, to avoid 

possible data loss. 

 

Integrating a repository requires some effort, both in terms of resources 

(e.g., allocation of memory) and in terms of time, since designing and 

maintaining the repository and the CDSS components that must interact with 

it may be time-consuming. However, we believe that the advantages of 

having a PGHD repository, or the disadvantages of not having it, justify the 

effort invested in its integration. In fact, first of all, not all PGHD systems 

maintain the complete history of the collected measurements. For example, 

the Abbott’s Freestyle Libre system can only store data covering a period of 

three months. Saving data in a dedicated repository allows to keep track of 

the subject’s BG profile over time. Otherwise, such data would be lost after 

three months. 

Furthermore, requesting data from the different sources at the time of the 

analysis requires more time than extracting it from a dedicated repository. In 

case of analysis over an extended timeframe, the same operation performed 

on the fly would cause a significant delay in producing the results for the 

user. 

In addition, saving the data in the dedicated repository as they are 

produced also allows to associate to each measurement the context labels 

(see Section 3.1) which enrich the value, contextualizing it. Assigning 

context labels at run time would not be feasible, since it is burdensome from 

a computational point of view. 

Finally, in any case, maintaining a dedicated repository is essential for 

storing user-specific parameters, including login credentials, patient-

reported information, personalized settings or information entered by the 

clinician manually. For example, if the system supports the management of 

diabetic patients, for each subject it is necessary to memorize his/her 

hyperglycemia and hypoglycemia thresholds, to perform a personalized 

analysis of his/her glycemic profile. This information could not be obtained 

from any external source. Thus, we concluded that a dedicated repository is 

needed. 



 

54 
 

Integrating a dedicated repository that collects data from heterogeneous 

sources makes our CDSSs similar to systems for multidimensional online 

analytical processing, known as MOLAP [157]. Systems for MOLAP are 

usually based on data warehouses, into which the data are regularly imported 

from other sources (e.g., hospital information systems) using ETL 

(Extraction, Transformation and Load) techniques. MOLAP systems allow 

their users to perform analytical queries on the collected data. However, 

usually MOLAP systems perform analyzes that are less complex than KBTA, 

which is one of the foundations of our framework.  

After identifying the PGHD repository as a fundamental component of the 

framework, we evaluated what type of repository to include. The selection 

of the type depends on the purpose of the CDSS, on the expected volume of 

data manipulated by the system, and on the characteristics of its users. We 

evaluated two commonly used options, namely relational databases (RDBs) 

and NoSQL databases. Their characteristics are summarized in Table 4 and 

will be discussed in the following paragraphs. 

 
Table 4: Characteristics of RDBs and NoSQL databases 

 RDBs NoSQL databases 

PROs - Complex queries can be 

performed, using SQL  

- Vertically scalable 

- Suitable for transaction-

based application. 

- Suitable when data 

structure is unknown. 

- Suitable for hierarchical 

data storage 

- Horizontally scalable 

CONs - Not suitable when data 

structure is unknown. 

- Not suitable for hierarchical 

data storage. 

- SQL is not applicable 

- Less support than RDBs 

- Updates may not be 

effective immediately. 

 

Relational databases (RDB) are a widely used type of repository when 

dealing with structured data. In RDBs data is usually stored in tabular form. 

Each entity of the domain is stored in a different table, in which each row 

represents an instance of that entity, and each column represent an attribute. 

RDBs can be queried using the Structured Query Language (SQL), which is 

very versatile and allows to perform complex queries. RDBs are vertically 

scalable: in the event of increased data traffic, the single server can be 

enhanced, by upgrading its features, such as RAM (Random-Access 

Memory) or CPU (central processing unit). Several software solutions are 

available for managing RDBs, including MySQL [158] and PostgreSQL 

[159]. 

Non-relational databases, also known as NoSQL databases, represent an 

alternative to RDBs. NoSQL databases are used to store large volumes of 

unstructured or non-uniform data. In general, NoSQL databases do not store 

data in tabular form, but the storage may be document-oriented, column-

oriented, graph-based or data may be organized as key-value pairs. Thus, 

storage is not constrained by the data structure, which may not even be 



 

known when designing the database. When the structure of the data to be 

saved is not known, NoSQL databases are to be preferred to RDBs. In 

addition, NoSQL databases are sometimes preferred if the volumes of data 

to be manipulated are very large, since they are more scalable than RDBs. In 

fact, NoSQL databases are horizontally scalable, which means that data 

traffic may be partitioned on multiple servers. However, an update on one of 

these servers may be acknowledged by the other servers with a delay. Thus, 

NoSQL are not recommended in case it is important to analyze new data 

promptly. As for RDBs, several commercial solutions are available for 

managing NoSQL databases, including RavenDB [160], Cassandra [161], 

MongoDB [162], and CouchDB [163].  

 

Solution adopted in the framework 

 

The considerations that constitute our framework are valid for both RDBs 

and NoSQL databases. In our applications, we preferred the RDBs for three 

reasons. First, more support and more documentation are available for setting 

up and deploying RDBs, while for NoSQL technologies often only 

community support is available. Second, NoSQL are not optimized for 

complex queries, while RDBs are, since they can be queried using SQL. 

Finally, we do not expect our applications to have data traffic that cannot be 

managed by RDBs. For example, one of the two applications described in 

the thesis is now deployed in two hospitals. However, to preserve the 

patients’ privacy, each hospital has a separate installation, with a dedicated 

relational database. Therefore, the number of users of the single installation 

is limited and the data volume is not such as to give up query power in 

exchange for scalability. In the future, we might consider using NoSQL 

databases for long-term storage of data that is not often used in analyses, 

such as the less recent history of PGHD. 

Thus, in our applications we included a relational database and we 

managed it using MySQL, the database management system provided by the 

Oracle Corporation [164]. MySQL provides connectors that allow 

applications to perform operations on the database using programming 

language, including Java, which is the one our CDSSs are based on. 

In our CDSSs we develop dedicated components (data loaders) to upload  

data into our repository. Since the data loaders need to communicate with 

the RDB, we also create mediation components (DB handlers), to facilitate 

such communications. In particular, the DB handlers act as wrappers around 

the methods provided by MySQL connectors, to convert the java objects 

manipulated by the application into tuples that can be saved in the database 

tables, or vice versa. 

In general, for each java object that needs to be saved, one row needs to 

be generated in a specific table in the database. Each attribute of the object 

must be saved in a specific column of that table. The data type of the java 

attribute and the data type of the database column must be compatible. To 

formalize and implement the mapping between any java object  and its 

representation in the database we use Hibernate, a java framework 
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distributed by the RedHat company [165]. Hibernate allows separating the 

object-based representation of concepts used in the java application from the 

representation of the same concepts as database tuples. For each object O to 

be saved in the database, a mapping file must be formalized using the 

Hibernate-specific XML language. The mapping file specifies which java 

class corresponds to which table in the database and, for each attribute in O, 

which column of the table should contain it. Once all the necessary mapping 

files have been defined, Hibernate provides methods for converting the java 

objects into database tuples and vice versa. DB handlers provide methods 

that wrap the Hibernate methods that can be called by the data loaders for 

opening the connection to the database and for storing, updating, or fetching 

data. 

 

3.3. CDSS: knowledge base and engine 

In general, the knowledge base (KB) of the CDSS should formalize in 

detail what the system needs to know in order to provide decision support. 

Of course, this highly depends on the purpose of the system. In this 

framework, we provide considerations which are refined for systems that 

analyze continuous PGHD. In particular, we consider CDSSs that summarize 

continuous PGHD using KBTA and provide decision support accordingly. 

Thus, the KB should formalize all the concepts needed to complete three 

steps 

• The download and integration of PGHD from multiple sources 

• The analysis of the collected data using KBTA 

• The exploitation of the results of the analysis to provide decision 

support 

In general, it is good practice to formalize the KB so that it can be easily 

maintained and expanded over time. The choice of the type of formalization 

depends on the CDSS. 

For example, ontologies represent one of the most known formalisms for 

constructing a KB [166]. An ontology is a formal and explicit description of 

the concepts of a specific domain, and of the relationships and the 

relationships between them. Ontologies for CDSSs can be formalized using 

different software applications, including Protégé [167], which is free and 

open source.  

Rules represent another widely used formalisms to define a KB. In 

particular, rules represent one of the most straightforward formalisms, since 

they allow specifying the expected behavior of the system under specific 

conditions. The complexity of the rules needed to process the PGHD for 

decision support depends on the specific application domain. When the rules 

are simple, it may be convenient to formalize them in the CDSS using a 

language of choice. In this case, it is necessary to develop a dedicated rules 

engine to run them. In case of complex rules, it may be appropriate to rely 



 

on third-party rules management systems (RMS). RMSs may require the 

developers to use a proprietary language for formalizing the rules. In general, 

the rules engine is provided by the RMS. Integrating an RMS may be useful 

for several reasons. First, it allows to clearly separate the formalization of 

the rules from the rest of the application. Thanks to this separation, both the 

maintenance of the existing rule set and the addition of new rules to the set 

is easier. Furthermore, RMSs are optimized for the execution of rules. 

Generally, they allow running multiple rules in parallel on the same data or 

running the same rule in parallel on more data, reducing the computational 

time of the CDSS. 

Considerations related to the KB needed for the three steps identified in 

this section will be provided in the following subsections. 

 

 

3.3.1.  Download and integration of PGHD from multiple sources 
 

First, the KB needs to formalize how to collect PGHD from the different 

sources and how to prepare them for further analysis, with particular focus 

on how to manage interconnected data provided by different devices [168].  

For each variable of interest, the KB must define its main characteristics, 

including the unit of measurement used by the CDSS, the range of admissible 

values, and the meaning of the different values (e.g., normal ranges and 

ranges that correspond to impaired health conditions). The KB may also 

formalize possible relations between the collected variables. For example, as 

anticipated in Section 3.2.1, for each dependent variable, the KB should 

specify the list of independent variables. In our applications, the KB also 

specifies how to assign context labels on the dependent variables, based on 

the value of its independent variables. 

In addition, the same variable may be downloaded from multiple sources. 

Thus, for each possible source, the KB needs to declare the download mode 

(e.g., source, communication protocol, recommended frequency for 

downloading data) and the main characteristics of the provided signal (e.g., 

type of data returned, unit of measurements used by the source, sampling 

frequency). The KB should also formalize how to collect the patient’s 

consent, if needed (see Section 3.1.1). For each source, it is also necessary 

to build a mapping between the language it uses to describe the data and the 

language used by the CDSS. This ensures that the same signal taken from 

different PGHD sources is treated equally by the CDSS. Compatibility 

between different signals is also guaranteed once their relationships are 

correctly defined in the KB. 

 

Solution adopted in the framework 

 

In our applications, we favored simplicity when we formalized the KB for 

data download and integration. 

We did not formalize a proper ontology to describe the concepts of interest 

for our domains, since formalizing it would have required integrating our 
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CDSS with software for the formalization of ontologies. However, our CDSS 

are developed in Java, which is a language for object-oriented programming 

and allows defining hierarchies of concepts through the inheritance 

mechanism [169]. In particular, each Java class can represent one concept, 

describing it with a set of parameters. It is then possible to create subclasses 

that extend the considered Java class to describe the same concept in more 

detail. Subclasses inherit the set of parameters defined in the parent class,  

which is complemented by a more detailed set, specifically formalized for 

the subclass. For example, in our applications we include a Java class to 

represent a generic PGHD measurement, which is characterized by a set of 

parameters that are common to the measurements of all the variables of 

interest for the domain (e.g., time of occurrence, identifier of the patient who 

owns the measurement). The generic PGHD measurement is then extended 

by different subclasses, one for each type of PGHD measurement, which 

contain the parameters that are specific for that variable. While the 

inheritance mechanism allows representing hierarchies of concepts naturally, 

expressing relationships between concepts is not straightforward. In our 

case, we formalized relationships mostly by defining attributes in our Java 

classes. For example, to describe the relationship “A time series is made of  

measurements”, we would assign to the Java class that represents the time 

series a specific attribute ("measurements"), which formalizes the list of 

PGHD measurements in the time series. 

We used simple rules to define how to download the data from the PGHD 

sources and convert them into the formats used by the CDSS. Since the rules 

were not complex, we coded them in plain Java language. We use rules also 

to assign context labels to our dependent variables (Section 3.2.1). For 

example, in our application for analyzing the diabetic patient’s glucose 

profile, one of the most important tasks of the Data Integration Module is 

tagging each blood glucose measurement, to contextualize them within the 

day of the subject [170]. To do this, we consider the information about 

workout and sleep collected by an activity tracker. In this case, the context 

label can assume the following values: sleep, workout, routine, and NA. The 

sleep and workout values are assigned when the BG measurement occurs 

during a tracked sleep session or during a tracked workout, respectively. The 

routine value is assigned when the event occurs in an instant in which the 

patient is not sleeping and is not training. The NA value is assigned to each 

BG event occurring when the patient is not wearing the Fitbit tracker. In 

particular, we assume that the subject was not wearing the tracker at time t i 

if no HR measurements are available in the interval [t i − 5 min; ti + 5 min]. 

The data integration module acts upon the information formalized in the 

KB coded in Java to download and prepare the data for further analysis. 

 

 

3.3.2.  Analysis of the collected PGHD using KBTA 
 

The aim of this framework is to facilitate developing CDSSs able to 

identify scenarios of interest in the collected data. The term scenario may 



 

indicate several concepts, depending on the purpose of the CDSS. Scenarios 

may be simple, when the information of interest for clinical decision making 

is the presence (or absence) of a specific pattern in the collected data. For 

example, for diabetic patients, diabetologists are interested in checking 

whether a specific alteration of the blood glucose profile (e.g., the dawn 

effect, described in detail in Section 2.4.4) occurs or not for the considered 

patient. Scenarios may also be complex. For example, in the application for 

monitoring the elderly living alone at home, we need to detect when a 

specific sequence of daily activities occurs.  

To detect scenarios, both complex and simple, the KB must specify all the 

monitoring variables on which the KBTA must be applied and must describe 

in detail how to abstract those data to perform pattern detection. Commonly, 

consultation with clinical expert is needed, to identify the patterns of interest 

for the considered clinical domain, and to formalize them to apply KBTA.  

In this framework, we suggest JTSA (See Sections 2.4.3) as a tool to 

perform KBTA on the collected data. We chose JTSA since it is flexible; as 

anticipated in Section 2.4.3 this tool provides several algorithms for temporal 

abstraction, that can be combined in workflows to detect any user-defined 

patterns. We discussed in detail an example of workflow in Section 2.4.4. 

For each pattern of interest for the considered clinical domain, one or more 

JTSA workflows must be formalized to allow its detection. For each JTSA 

algorithm used in the workflow, one configuration file must be provided to 

define the values of the parameters used by the algorithm. Such values should 

be determined with a clinical expert, to ensure that the formalized pattern 

have clinical relevance. The KB of the CDSS must include all the XML file 

that describe the workflows formalized for the CDSS, complemented with 

their configuration files.  

Each workflow expects to receive specific time series as input. We use 

rules to feed each workflow with the correct input time series. We also use 

rules to specify the sequence of operations to be performed on the PGHD 

fetched from the database before feeding them to the workflow. 

Furthermore, as anticipated, sometimes detecting a pattern requires 

running more JTSA workflows and combining their results. In that case, it is 

also necessary to formalize rules that determine the sequence of execution of 

the different JTSA workflows and the method of integration of the results. 

Examples of patterns that require running multiple workflows will be 

described in Chapter 4. When the formalized rules are not complex, they may 

be encoded in Java, without integrating the CDSS with a rules management 

system. In case of complex rules, our framework integrates Drools as rules 

management system [171], a tool distributed by the RedHat company [172]. 

Thus, in our framework the inference engine is composed by the rules engine 

provided by Drools. By running our rules, it prepares the PGHD data for the 

analysis, activates the integrated JTSA engine for running the JTSA 

workflows, and processes the results before presenting them to the users. 

 Details on how we integrated our applications with Drools and JTSA will 

be discussed in the following subsections. 
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Solution adopted in the framework to formalize and run complex rules 

 

In our applications we adopted Drools for formalizing and running 

complex rules since it is open source and can be easily integrated into third 

party applications.  

To integrate Drools into a third-party java application, it is necessary to 

use three libraries: one library to define the rules (kie-api-7.5.0.Final.jar), 

one library to pre-compile them (drools-compiler-7.5.0.Final.jar), and one 

library to run them (drools-core-7.5.0.Final.jar). The rules must be defined 

within one or more files with the .drl extension. Within the .drl file, each rule 

is uniquely identified by a string identifier, and consists of two parts, a 

premise that contains the condition to be tested, and a body listing the 

operations to be performed on the data when the condition is verified. The 

premise is formulated in a Drools-specific language which is very similar to 

Java, while the body is written in Java. All the .drl files containing the rules 

must be stored in a Java package within the application. The name of the 

Java package containing the rules must be specified in the Drools 

configuration file, which must be written in a specific XML language. When 

the Drools work session is started, by invoking a method (i.e., fireRules) 

provided by the drools-core-7.5.0.Final.jar library, Drools execute all the 

rules in the selected package. 

 

Solution adopted in the framework to run JTSA workflows 

 

Like Drools, JTSA is integrated into the CDSS as an external library. The 

schema in Figure 13 summarizes the sequence of steps needed to run each 

JTSA workflow. 

 

The first step exploits the methods of the QueryBuilder, a java class where 

we code the methods for constructing the data queries according to the type 

of input data requested by the selected JTSA workflow and to the time 

interval of interest for the analysis. The QueryBuilder can activate the DB 

handlers to execute the queries and fetch the PGHD time series of interest, 

which are represented as java objects. In each application we program a 

component, which we call JTSA Wrapper, to encode the PGHD time series 

in the input format requested by JTSA. For each workflow, JTSA requires a 

Figure 13: Steps to run a JTSA workflow in the proposed framework 



 

set of three input objects: an integer to identify the patient the analyzed data 

belongs to, a string that specifies the path of the workflow to be run, and a 

list containing all the necessary time series of measurements. Each time 

series is a list of TimeseriesDot objects, which represents the single 

measurement within the time series. Each TimeseriesDot consists of three 

attributes, namely a String which identifies the type of value within an 

admissible set (e.g., Double or Integer), the value itself, and the time and 

date of the measurement. The datetime of the measurement must be 

expressed in the Java Long format as the number of milliseconds between 

the Unix reference date (i.e., 1st January 1970, 00:00:00) and that datetime. 

In the following we will refer to this date format as Unix format. After 

packaging the 3-item JTSA input, the JTSA Wrapper calls the JTSA library 

methods for running the workflow and collects the output, i.e., the time 

intervals in which the selected pattern is satisfied by the analyzed PGHD. In 

particular, each time interval in the output is represented in a JTSA-specific 

type, the AbstractionDot. Each AbstractionDot is defined by three attributes, 

namely the label, a string which identifies the pattern selected for the 

analysis, and start and end, the dates that delimit that time interval, expressed 

in the Unix format. In each application, rules are then applied on the 

AbstractionDots found, to provide decision support. 

 

3.3.3.  Exploitation of the results to provide decision support 
 

As anticipated, the information of interest for the considered decision 

problem may be the presence (or absence) of a specific pattern, or sequence 

of patterns, in the collected data. In these cases, rules may be formalized for 

generating warnings based on the patterns found (or not found). In other 

cases, it may be meaningful to monitor the occurrence of a specific pattern, 

or sequence of patterns, over time to detect any changes of interest for the 

specific decision problem. Examples of relevant changes maybe the 

modification of the duration of the pattern occurrence, or the variation of its 

frequency over time. Also in this case, rules can be formalized to process the 

results of pattern detection, identify the change in the occurrence of the 

relevant patterns, and produce warnings to inform the users about it. 

However, the purpose of the CDSS may not be to automatically produce 

recommendations based on pattern detection, but simply to allow the user to 

search for relevant patterns in the collected data. In this case, rules can be 

formalized to specify how to optimize the presentation of the results to the 

final user.  

Examples of exploitation of the results of the pattern analysis to provide 

decision support will be presented in Chapter 4 and 5. 
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3.4. User interface 

The user interface is the component of the CDSS that allows 

communication with the user. 

The technologies used for its implementation highly depend on the nature 

of the CDSS and on the target user. Most commonly, users prefer either 

smartphone applications or web applications, so that the they can access the 

CDSS wherever they are. Sometimes CDSS developers prefer to provide a 

web application because it is easier to maintain, being installed centrally on 

a server, instead of the user's own smartphone. Furthermore, a web 

application can be accessed from any device having a web browser, 

regardless of the nature of the device. Thus, it may be compatible with any 

devices owned by the user. However, if the CDSS is developed with the 

purpose of providing reminders to its users, it is preferable to include a 

smartphone application in the system, since web applications can present 

reminders to the user only when he/she is online.  

Independently of the selected technologies, user interfaces must be 

designed to overcome the critical issues discussed in Section 2.3. The main 

task of the interface must be to make the use of the system easy, and not 

intuitive. It is necessary to respect some precautions in the development of 

the user interface, in order to guarantee two fundamental qualities of the 

CDSS: usability and accessibility. The International Organization for 

Standards (ISO) defines usability as <<the extent to which a system, product 

or service can be used by specified users to achieve specified goals with 

effectiveness, efficiency and satisfaction in a specified context of use>> 

[173]. As regards accessibility, a system is said to be accessible when it can 

be easily used by individuals with disabilities. In the following sub-section 

we will describe the principles we followed in our applications to reach and 

assess usability. We did not focus on accessibility in the pilot versions of our 

applications, since the patient populations in our pilot studies did not have 

disabilities. However, in the following of this chapter a sub-section collects 

the precautions to be adopted to make a system accessible, besides usable. 

We will adopt such precautions in future releases of our applications. 

 

Solution adopted in the framework to reach and assess usability 

 

As anticipated in Section 2.3, the graphical interface is one of the factors 

that most affect the usability of the system. In fact, even systems with 

functionalities that are perceived as useful by the users are not appreciated if 

their interface is not user-friendly. Several factors influence the users’ 

perception of the interface. The most relevant are the following: 

• Ease of navigation 

• Waiting time 

• Detection of input error 

• Supported languages 

• Management of user accounts 



 

• Reminders 

Navigating the application should be intuitive for the user and the 

interface must contain only elements that are essential for the functioning of 

the system. The system must contain interactive elements, meant for 

dialoguing with the user, such as links, buttons, selection menus, or input 

text areas. Each interactive element must have an explicit meaning. For 

example, the label shown on buttons must clearly indicate the action that will 

be triggered by pressing that button. All the textual contents provided by the 

interface must be well organized and concise, and the user must be allowed 

to request further details, if interested in additional information. It is 

necessary to carefully evaluate which content should be presented in the 

interface by default, and which should be provided to the user on demand.  

Multimedia elements should be used only when needed and their size should 

be limited, to limit the memory occupation, in case of smart applications, or 

to limit the use of the internet connection, in the case of web applications. 

Web applications should adapt automatically to the browser window to be 

independent of the screen size of the device and should avoid requiring the 

installation of plugins. 

Each interactive element must return feedback quickly, to notify the 

interaction occurred [174]. It is known that the user perceives a reply as 

instantaneous if he/she receives it in less than 0.1 seconds. The maximum 

waiting time that is considered user-friendly is 10 seconds. In addition, when 

it is necessary for the user to wait, the interface must explicitly show that the 

system is producing a response. 

For each element that asks information from the user, the interface must 

check that the user input is valid. This will limit input errors and consequent 

unexpected system behaviors, which would discourage the user from using 

the CDSS. 

If the application is meant for an international audience, the content 

should be available in multiple languages. In addition, the application 

content should also avoid concepts or images that may be misunderstood or 

perceived disrespectful in other cultures. The dates should be expressed 

using an unambiguous notation, that mentions the time zone explicitly. The 

time zone should be tuned according to the user’s country, specified by the  

browser o by the smartphone’s settings. 

Each user must be able to create and manage his/her own account and 

must be reminded to change the password frequently. The system must also 

provide a functionality for recovering the password in case the user does not 

remember it. 

The CDSS should provide settings for personalizing the frequency of 

reminders received by the users. To prevent user fatigue, the number of 

reminders sent must be limited. 

After applying the described precautions when designing the CDSS, an 

evaluation of the usability perceived by the user must be carried out. Usually, 

such evaluation takes place during the pilot studies of the application, asking 

users to fill in questionnaires. The System Usability Scale (SUS) is one of 

the most used indicators to evaluate the usability of software applications 
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[175]. It is a 10-item questionnaire that focuses on evaluating the system’s 

user interface, by asking users questions related to the perceived ease of use 

of the system and assessing their willingness to continue using it after the 

test phase. The rules for computing the numeric SUS score based on the 

subjects’ answers and the rules for evaluating the results are available online 

[175]. Obviously, if the functionalities of the CDSS are not perceived as 

useful by the users, the SUS score will be low regardless the characteristics 

of the user interface. It is good practice to ask the users to fill in the SUS 

questionnaire at least twice, once after a short time of the use of the 

application and once after a few months of use (e.g., 6 months). Repeating 

the assessment helps to understand if the availability of users to use the 

CDSS varies over time. In case it varies, it is possible to analyze the answers 

to the SUS questions, to understand which feature of the system needs to be 

improved. 

 

Solutions to reach accessibility 

 

In Italy, the accessibility of computerized tools is regulated by the Stanca 

Act, issued in 2004 [176], which protects everyone’s right to take advantage 

of information technology. Similar laws regulate the same subject in other 

countries. In general, using multimodal communication methods facilitates 

the accessibility of the interface by people having impairment. The Stanca 

Act particularly focuses on precautions that can facilitate three categories of 

individuals: 

• Individuals with visual impairment  

• Individuals with hearing impairment 

• The elderly 

In particular, according to the Stanca Act, to guarantee accessibility by 

subjects having visual impairment, each element of the user interface should 

be assigned a textual description that can be read by a screen reader. For 

example, each image should be complemented with a description that 

comments on the content. It is not required that such description is the same 

description presented in the interface. In addition to blind people, the system 

must not discriminate against color-blinded individuals, therefore it is 

necessary to make sure that the information is not provided only through 

color. 

For deaf individuals, a textual alternative must be provided for each audio 

content included within the interface.  

Finally, accessibility also means ensuring that the application is suitable 

for the elderly, if such age group is included in the target audience of the 

system. In this case, the text fields of the interface must have fonts of 

adequate size and the contents of the application must be easy to understand 

for subjects who may have a physiological mental decline. 

 
 
 



 

4. Case study on falls prevention 

Falls in the elderly are a known social problem, being a major cause of 

loss of independence, hospitalization or increase of hospital stay, decreased 

quality of life, and increased social costs [177]. They are also associated with 

psychological and functional sequelae, independently from the injury 

severity. Since falls often have consequences, such as fractures, they also 

involve high costs for the healthcare system. Since the number of the elderly 

at risk has been increasing, also the costs sustained to manage fall events are 

expected to increase. 

Falls are associated with a vast and heterogeneous set of risk factors, 

which may be related both to the characteristics of the environment in which 

the elderly live, and to the clinical, socio-demographic and behavioral 

characteristics of the individual [76–79, 178–182]. Some factors are related 

to the subject’s health status and include chronic diseases (e.g., neurological 

disorders, diabetes, and cardiac arrhythmias), simultaneous intake of 

multiple drugs or specific drug therapies (e.g., antiepileptics), sensory 

limitations (e.g., visual and/or hearing impairment), and alterations of the 

subject’s balance. Among behavioral factors, incorrect eating habits may 

cause nutritional deficiencies such as vitamin deficiency or dehydration, 

which are known to increase the individual’s risk of falling. Behavioral 

factors also include lack or excess of physical activity, fear of falling, and 

irrational behavior, such as moving within the house at night without turning 

on the lights or walking without using a cane although it is prescribed. As 

regards the living environment, the most dangerous risk factors are 

inadequate lighting, slippery floors, physical obstacles to the movement of 

the elderly (e.g., portable oxygen dispenser, presence of pets within the 

apartment), and inadequate room temperature and humidity conditions, 

which can weaken the elderly. Among the socio-demographic factors, an 

inadequate economic condition is one of the most critical, since it may lead 

to malnutrition or impossibility of adapting the home to the subject’s needs. 

Within NONCADO (Italian expression meaning I do not fall), a project 

funded by the Lombardy Region in Italy, we aim at preventing falls in elderly 

people living alone at home [183]. Living alone implies a difficult or delayed 

detection of a possible decline that in turn may increase the subject’s  risk of 

falling. Reasonably, a decline influences the patient’s habits, concerning for 

example daily activity, sleep quality and/or quantity, time spent outside the 

house, and consumption of hot meals[177]. These considerations motivated 

the development of a monitoring system able to detect such changes, and to 

inform the subject’s family of a possible decline. Early detection of changes 

in the patient’s daily habits is the innovative feature of the NONCADO 

system, compared to the devices known in the literature [129, 130], which 

were described in the overview on CDSS in Section 2.3. 
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The project was carried out in collaboration with two information 

technology companies, namely Spindox [184], a company based in Milan in 

Italy, and Biomeris [185], an academic spin-off born from the University of 

Pavia, Italy. Furthermore, for the NONCADO project a collaboration has 

been activated with the Department of Neurorehabilitation Sciences of Casa 

di Cura Privata del Policlinico (CCPP) Hospital in Milan in Italy [186]. A 

team of clinicians working for CCPP provides feedback on the system’s use 

cases as experts in the clinical field. In addition, CCPP provides a pilot site, 

where tests can be carried out to assess the usability and accuracy of the 

system on a real-world population of elderly patients. 

In this chapter we present the prototype of the NONCADO system. First, 

we describe the use cases of the system and how it detects daily activities by 

integrating data from a network of monitoring sensors. Furthermore, we 

present the results of its application in a preliminary evaluation study on a 

small group of neurological patients. 

 

 

 

4.1. The NONCADO system 

Section 4.1.1 will describe the use cases of the NONCADO system and 

its architecture, which complies to the framework presented in Chapter 3. In 

section 4.1.2 we will focus on how the CDSS detects the subject’s daily 

activities by applying JTSA on the monitoring data. 

4.1.1. The architecture  

The architecture of the NONCADO system is shown in Figure 14. In the 

following paragraphs we will describe the five main components of the 

system, namely: 

• the PGHD sources, i.e., the network of sensors which collects the 

monitoring variables; 

• the PGHD repository, where the raw data collected by the sensors are 

stored; 

• the CDSS, which analyzes the collected data; 

• the event repository, which stores the results of the analysis; 

• user interface, which reports the results to the users. 



 

In the NONCADO system, we designed and developed the CDSS component 

and its communication with the other components. Spindox developed the 

PGHD repository and the user interface; Biomeris provided the event 

repository. This thesis will focus on the CDSS, while providing an overview 

of the entire system. 

 
Figure 14: The NONCADO system's architecture 

 

 

 

PGHD sources and PGHD repository 

 

The network of sensors includes both wearables and environmental sensors. 

In particular, a set of environmental sensors collect measurements of motion 

using PIR technology, temperature, humidity, and luminosity within each 

room of the house. From these sensors we collect one measurement every 4 

seconds. In addition, pressure mats can be placed under the mattress to detect 

the subject’s presence in bed. For the prototype developed in the project, the 

bed was conceptually divided into three sections, i.e., feet, back, and head. 

Under each section we placed a pressure mat. As the for the other sensors, 
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from each pressure mat we collect one pressure measurement every 4 

seconds. Furthermore, two photo-cells positioned in sequence, close to the 

door, are used to detect when the subject passes through the door, and in 

which direction, i.e., enter or exit. The network of environmental sensors 

also include a sensorized carpet (6 meters long), which monitors the subject’s 

walking speed and step length [187]. Since the carpet is expensive, it is not 

realistic to install it at each patient's home. Thus, the idea is to install it at a 

healthcare facility and ask the patient to use it regularly, for example weekly 

or monthly, to monitor improvements or deteriorations in his/her gait over 

time. In addition to environmental sensors, a Fitbit activity tracker (model: 

Fitbit Alta HR) monitors the subject’s sleep and physical activity. 

All the environmental sensors are connected to Raspberry PI boards, 

which gather the collected measurements, and transmit them to a PGHD 

repository managed by Spindox, which stores all the raw measurements. As 

anticipated in Section 2.2.2, the Fitbit data are stored into the Fitbit Cloud 

and served by dedicated Fitbit servers. Thus, Spindox developed an 

extension of the PGHD repository, which automatically collects data from 

the Fitbit cloud and saves it along with the other data. 

The PGHD repository provides the data to the CDSS through the HTTP 

protocol. 

 

CDSS and event repository 

 

A CDSS analyzes the collected data. The system’s lifecycle is shown in 

Figure 15.  

 

 
Figure 15: The NONCADO system’s lifecycle 

Following the installation of the CDSS, the user is asked to fill in a series 

of questionnaires for the collection of information useful for framing the 

monitored subject (STEP 1). The required data includes all the information 

that the CDSS needs to calculate the subject’s risk score according to nine 

risk models that are applicable to non-hospitalized subjects aged over 65 

years, identified in a review of the literature on falls [188–196]. Some 

information is mandatory since it is easily available. Mandatory data 



 

includes personal data (e.g., age and gender) and qualitative assessments of 

the subject’s independence. Other information is optional since it may be 

unavailable or more challenging to retrieve. Optional information includes 

the results of specific clinical tests such as the postural oscillation test or 

sight examination. On the basis of the collected information, the CDSS 

calculates the subject's risk score, by integrating the estimates of the different 

models, which will be described in Appendix A (STEP 2). In the next phase 

(STEP 3), the network of sensors begins to collect the monitoring variables. 

By processing the data collected in this first monitoring phase, the CDSS 

defines a profile of the subject. For example, the CDSS learns its habits in 

terms of amount of daily activity, number of night-time awakenings, 

frequency of exits from the house. After the initialization phase, the system 

starts working in its steady state (STEP 4). The sensors regularly send the 

collected time series of measurements and the CDSS processes them to 

detect two kinds of possible causes of concern: deviations from the patient’s 

habits, that could indicate changes in the his/her health status, and behaviors 

to correct, since they are known to increase the subject’s risk of falling. 

Deviations from the subject’s profile include for example increase in night -

time awakenings or decrease in cooking activity. The set of risky behaviors 

we aim to detect includes for example moving within the house with poor 

light conditions. When the system detects that the patient is moving within 

the house in the dark, it immediately switches a light on, and then generates 

a warning to invite the subject to avoid such behavior in the future. The 

complete list of causes of concern is provided in Table 5. 

 
Table 5: Causes of concern that may indicate a decline in the patient’s health status 

DEVIATIONS 

FROM THE 

SUBJECT’S 

PROFILE  

Increase in night-time awakenings 

Increase/decrease in resting time 

Increase/decrease in time spent in specific rooms 

(e.g., kitchen, bathroom) 

Decrease in time spent outside the house 

Decrease of cooking activity 

Decrease in bath/shower activities 

Decrease in physical activity 

Decrease in walking speed 

Decrease in sleep quality (e.g. decrease in sleep 

efficiency) 

BEHAVIORS TO 

CORRECT 

Moving within the house in poor light conditions 

Getting up from the bed in poor light conditions 

Exiting the house during the night 

Taking a bath/shower during the night 

Exiting the house while cooking (and using the 

stove) 
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Absence of cooking activity, i.e., not having hot 

meals 

Spending time in a room with inadequate humidity 

and/or temperature conditions 

 

The CDSS also produces a warning when the subject is not detected 

within the home for a long time, despite not having detected any exit from 

the house. This may indicate a system malfunction, but it may also indicate 

that the subject is inactive for a long time, but not resting on a bed or chair 

equipped with a pressure mat, and it may indicate the occurrence of a fall 

event. 

Detecting causes of concern requires searching for domain-specific 

patterns. To detect such patterns, the CDSS runs a set of JTSA workflows 

we formalized specifically for the project. The parameters of each JTSA 

algorithm in these workflows were tuned after functional tests aimed at 

observing the response of the involved sensors to stimuli designed to 

simulate the patient’s activities of daily living. Besides the JTSA workflows 

and the rules to run them, the KB contains the description of the house of 

each patient, to assess what types of sensors are present within each room 

and, consequently, what patterns can be detected. The description of the 

house is filled in by the users when the sensors are installed in the apartment 

and is stored in the JSON format. For each room, the description provides an 

identifier of the room, a textual description provided by the users, which will 

be used to refer to that room in the reports, and the list of the sensors installed 

in the room. To distinguish different sensors of the same type, each sensor is 

characterized by an attribute that identifies the Raspberry pin to which the 

sensor is connected. Sensors of the same type may monitor different 

variables. For example, in the same room one temperature sensor may 

monitor the temperature perceived within the room, while one temperature 

sensor may monitor the temperature of the area close to the stove to detect 

when the subject uses it. Even if both time series collect temperature 

measurements, they have an intrinsically different meaning. Thus, each 

sensor is assigned an attribute, the context_id, that identifies the meaning of 

the measurement. In the example, the first sensor has the context_id equal to 

Generic while the second sensor has the context_id equal to Stove. In 

Appendix B we provide the JSON document that describes our pilot site as 

an example of house description. 

We define event the occurrence of a specific pattern. For further analysis, 

the CDSS stores the detected events variables into a dedicated i2b2 [159] 

data warehouse managed by Biomeris. According to the detected events, at 

the end of each day the CDSS produces a report, meant both for the 

monitored elderly subject and his/her family. This report warns against the 

potentially risky behaviors that have been detected during the day (Table 3, 

second section) and provides a summary of the monitored variables. The 

CDSS produces an additional report at the end of each week, to compare the 

considered week to the previous ones in terms of detected events. Daily and 



 

weekly reports are stored in the i2b2 data warehouse, along with the detected 

events. 

 

User interface  

 

Daily and weekly reports are delivered to the users through a mobile 

application developed by Spindox, which retrieves them from the i2b2 

repository. The reports should allow the subject’s family to remotely monitor 

the user, and to detect significant changes in his/her habits, to early identify 

a possible decline. 

In the daily report the user can visualize the following parameters: 

• Total time spent within the home 

• Total time spent outside the home 

• Number of night-time awakenings with getting up 

• Total time spent in bed (during the day) 

• Total time spent in bed (during the night) 

The weekly report contains the following information: 

• Number of days the patient did not leave the house 

• Report of the exercise on the carpet (i.e., number of repetitions and 

walking speed for each repetition) 

• If detected, failure to carry out the exercise on the carpet  

• Comparison to the previous week, in terms of the following parameters 

- time spent in each room, with particular focus on the rooms of 

interest (e.g., kitchen, bathroom) 

- time in bed during the day 

- time in bed during the night 

- number of exits from the house 

- time spent outside 

4.1.2. Domain-specific pattern detection 

To detect the causes of concern in Table 5, we have identified 10 use cases 

(Table 6). Eight use cases (use cases 1-8) represent typical activities that 

compose the day of an elderly person who is independent enough to live 

alone, with particular attention to the activities that may influence his/her 

risk of falling. Two use cases (use cases 9 and 10) represents two 

environmental conditions we need to detect. The NONCADO CDSS is 

implemented to detect when these use cases occur, by processing the 

monitoring data of the network of environmental sensors. For each use case, 

Table 6 provides a brief description. 

 
Table 6: The use cases of the NONCADO system 

USE CASE DESCRIPTION 

1. AWAKENING The subject gets up from the bed and possibly 

exits the bedroom 
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(e.g., he/she goes to the bathroom or he/she 

goes to the kitchen to have breakfast). 

2. 

NIGHT-TIME 

AWAKENING 

The subject is in bed, gets up and then goes 

back to bed. 

3. 

EXIT 
The subject leaves the house. 

4.  

HOT MEAL 
The subject cooks at the stove. 

5. 

ACTIVITY 
The subject moves within the room. 

6. 

RESTING 

The subject is in bed, or on a sofa or armchair 

that is equipped with a pressure mat. 

7. 

BATH/SHOWER 

The subject is in the bathroom to take a shower 

or a bath. 

8. 

WASHING THE 

DISHES 

The subject is at the sink and washes the 

dishes. 

9. 

POOR LIGHT 

CONDITIONS 

The room is in poor light conditions. 

10. 

ENVIRONMENTAL 

DISCOMFORT 

One or more of the following events occur: 

- The room temperature is not in the optimal 

range [18°C-26°C]. 

- The room humidity is not in the optimal range 

[40%-65%]. 

- A rapid increase/decrease of the room 

temperature occurs (corresponding to a 

variation of 2°C in 10 minutes) 

 

Both the causes of concerns and the variables in the reports are computed 

according to the use cases detected in the monitoring data. Some of them are 

identified/estimated by detecting a specific use case in the data. For example, 

in the report the total time in bed during the day is estimated by detecting the 

use case 8 and selecting its occurrences during the day. Among the causes 

of concern, exiting the house during the night is detected when the CDSS 

detects use case 3 is activated during the night hours (e.g., from 10 PM to 6 

AM in the morning, in the default settings). Other variables are estimated by 

detecting a specific combination of use cases. For example, among the causes 

of concern Moving within the house in poor light conditions is detected when 

use case 5 activates when use case 9 is active. Finally, other causes of 

concerns are identified by the absence of activation of a use case. For 

example, Absence of cooking activities is detected when the use case 4 is not 

detected in the monitoring data for at least two days when the patient is at 

home.  



 

The detection of the use cases (Table 6) is based on the identification of 

9 domain-specific patterns in the time series of PGHD collected by the 

sensors: 

• Pattern 1: Movement within the room 

• Pattern 2: Movement within the room (in poor light conditions) 

• Pattern 3: Presence in bed 

• Pattern 4: Permanence in the rooms 

• Pattern 5: Cooking 

• Pattern 6: Bath/Shower 

• Pattern 7: Washing the dishes 

• Pattern 8: Environmental discomfort (Temperature) 

• Pattern 9: Environmental discomfort (Humidity) 

 

In the following of this section, we will describe each pattern, listing the type 

of sensors needed for its detection, the JTSA workflows formalized for 

processing the data and the steps needed to run them. In Section 4.1.3 we 

will describe the correspondence between the causes of concern and the 

patterns we need to detect for identifying them. 

 

Pattern 1: Movement within the room 
 

This pattern identifies the time intervals in which the subject moves within 

the room. The steps to detect the pattern, implemented using Drools are 

summarized in Figure 16. 

 

First, the CDSS retrieves from the PGHD repository the time series of 

measurements collected by the PIR sensors located in the room. As 

anticipated, each point in this time series is composed of a tuple, <DATE, 

VALUE> where DATE represents the time instant (date and time) of the 

measurement, and VALUE is 0 when the sensor does not detect movement, 

Figure 16: Sequence of operations to detect movement within the room 
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1 otherwise. If multiple PIR sensors are present in the room, we apply a 

logical operator on the retrieved time series to obtain a single time series of 

pairs <DATE, VALUE> where VALUE is 1 if at least one PIR has detected 

movement in that instant temporal, 0 otherwise. Since several PIRs may not 

be synchronized to the second, when applying the OR operator, we consider 

two measurements, M_PIR1 and M_PIR2 (M_PIR1 precedes M_PIR2), as 

simultaneous if they are no more than 4 seconds apart. Finally, we run the 

JTSA workflow summarized in Figure 17. We will refer to this workflow as 

movement_within_a_room. 

 

 
Figure 17: JTSA workflow to detect movement within a room 

The workflow is composed of a pipeline block which includes three steps. 

The configuration parameters of the algorithms in each step are listed in 

Table 7. In STEP 1 the Basic Qualitative algorithm applies a qualitative 

abstraction to the values in the provided time series. In particular, the 

absence (of movement) label is assigned to all the values below 0.5, while 

the movement label is assigned to the values above 0.5. STEP 2 performs an 

aggregation of the episodes with the same label that are no more than 20 

seconds apart. Since the minLen is low, none of the obtained episodes is 

filtered out. In STEP 3 an Aggregation HighLevel algorithm performs a 

further aggregation of the episodes found in the previous step, extracting 

only those with the movement label, longer than 8 seconds. 

 
Table 7: Parameters of the JTSA workflow for detecting movement within a room 

ALGORITHM PARAMETERS 

Qualitative 
th=0.5  

label=absence,movement 

Aggregation Level 

gap=20 

minLen=3 

granularity=SECONDS 

Aggregation HighLevel 

gap=60 

minLen=8 

granularity=SECONDS 

label=MovementInRoom 

levels=movement 

 

 

 

 

 



 

Pattern 2: Movement within the room (in poor light conditions) 
 

This pattern is a variant of Pattern 1 and identifies the time intervals in which 

the subject moves within the room in poor light conditions. The sequence of 

operations to detect the pattern are summarized Figure 18. 

 

 

 
First, two operations are carried out in parallel. On one hand, the CDSS 

retrieves the time series measurements collected by the luminosity sensors 

located in the room. In this case, each point in the series is a tuple <DATE, 

VALUE> where VALUE is an integer ranging from 0 to 1500, proportional 

to the intensity of the sensed luminosity. The CDSS binarizes this series, 

converting each value lower than 200 to 1, that represents luminosity, and 

each value higher than 200 to 0, representing darkness. The threshold was 

set to 20 after analyzing the profile of measurements provided by the sensor 

in different light conditions, artificially simulated. If multiple sensors are 

present in the room, we apply the OR logical operator to obtain a single time 

series of pairs <DATE, VALUE> where VALUE is 1 if at least one sensor 

has detected darkness in that instant temporal, 0 otherwise. 

On the other hand, we identify the time intervals in which the subject 

moves within the room, by detecting Pattern 1: Movement within the room, 

as previously described. By detecting Pattern 1, we obtain a time series of 

episodes.  To combine them with the time series that conveys the information 

Figure 18: Sequence of operations to detect movement within the room in poor light conditions 
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on the light conditions, we convert the time series of episodes in a time series 

of events, as shown in Figure 19. 

 

In particular, we create a time series of pairs <DATE, VALUE> where 

VALUE is 1 if DATE belongs a time interval that verifies Pattern 1: 

Movement within the room, 0 otherwise. The DATE elements are generated 

with a granularity of 4 seconds, starting from the start date of the first time 

interval in the time series of episodes. For each interval, we also generate the 

DATEs corresponding to the start date and end date of the interval, if they 

are not generated automatically, i.e., when they do not belong to the sampling 

grid. This ensures that the exact start and end time of the occurrence is not 

lost in the conversion. In the following, we will refer to this conversion as 

conversion from time intervals to events (TIs->EVs). 

To detect when the subject moves in poor light conditions, we then apply 

the AND operators to the obtained two binary time series. We obtain a time 

series of pairs <DATE, VALUE> where VALUE is 1 if movement in the 

darkness has occurred in that instant temporal, 0 otherwise. 

Finally, we apply a JTSA workflow to aggregate the time intervals in 

which the selected pattern occurs for more than 5 seconds. In terms of the 

structure, the workflow is equal to the workflow shown in Figure 17. 

However, the set of parameters is slightly different (Table 8).  

 
Table 8: Parameters of the JTSA algorithms for detecting movement within the room in poor light 
conditions 

ALGORITHM PARAMETERS 

Qualitative 
th=0.5 

label=ok, warning 

Aggregation Level 

gap=20 

minLen=3 

granularity=SECONDS 

Aggregation HighLevel 

gap=20 

minLen=5 

granularity=SECONDS 

label=MotionWhenDark 

levels=warning 

 

Figure 19: Conversion from time intervals to events 



 

Pattern 3: Presence in bed 
 

This pattern identifies the time intervals in which the subject is on the bed. 

As anticipated, the bed is conceptually divided into three sections, i.e., feet, 

back, and head. For each section, a pressure mat detects the pressure exerted 

by the patient's body on the section and provides a time series of 

measurements whose value ranges from 0 to 1024, proportionally to the 

exerted pressure. The operations to detect the pattern are summarized in 

Figure 20. 

First, for each section the collected pressure measurements are retrieved 

from the PGHD repository. For each section, the collected time series is fed 

to the JTSA workflow in Figure 21, which identifies presence on the section 

by detecting when a rapid increase in pressure is followed by stationarity in 

the same variable. The workflow consists of three blocks, two pipelines and 

one complex block.  

 

Block 1 detects the time intervals in which an increase in pressure occur and 

is composed of 2 steps. The parameters of the algorithms in each step are 

shown in Table 9. STEP 1 uses the Basic Trend algorithm to detect the time 

Figure 20: Sequence of operations to detect presence in bed and its variations 

Figure 21: JTSA workflow for detecting presence in bed 
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intervals in which the pressure increases by at least 50 units in 4 seconds. 

This step returns a time series of episodes, one for each detected time interval 

longer than 4 seconds. STEP 2 uses the Aggregation Level algorithm and 

aggregates the episodes having the same label that are no more than 15 

seconds apart. 

Block 2 is composed of a single step, that uses the Basic Trend algorithm to 

detect the time intervals in which the pressure value is stationary. 

Block 3 is a complex block that combines the results obtained from Block 1 

and Block 2. In particular, it detects the complex pattern presence in bed, 

composed of an episode of increase in pressure followed by an episode of 

stationarity. 

 
Table 9: Parameters of the JTSA workflow for detecting presence in bed 

 

Once the JTSA workflow has been run for each section, the conversion 

from time intervals to events is applied to the returned time series of 

episodes. We obtain three time series of events, TS1, TS2, and TS3. 

Finally, logical operators are applied to TS1, TS2, and TS3 to distinguish 

the time intervals in which the subject is sitting on the bed from the time 

intervals in which he/she is lying on the bed. In particular, we define 

presence on the bed as presence on at least one section.  Thus, it is detected 

as TS1 OR TS2 OR TS3. After analyzing the response of the pressure mats 

to experiments simulating presence in bed, we assume that lying on the bed 

activates all the sections. Thus, the pattern lying on the bed is detected as 

TS1 AND TS2 AND TS3. The time intervals that verify TS1 OR TS2 OR 

BLOCK  STEP ALGORITHM PARAMETERS 

Block 1 

Step 1 Basic Trend 

minLen=4 

label=Increasing 

minSlope=20 

maxSlope=200 

gap=240 

granularity=SECONDS 

Step 2 Aggregation Level 

gap=15 

minLen=1 

granularity=SECONDS 

Block 2 Step1 Basic Trend 

minLen=1 

label=Stationary 

minSlope=-5 

maxSlope=20 

gap=240 

granularity=SECONDS 

Block 3 - 

Operator: 

BEFORE 

Combiner: 

UNION 

ls=30 

rs=43200 

gap=20 

granularity=SECONDS 



 

TS3 and do not verify TS1 AND TS2 AND TS3 represent the time intervals 

in which the subject is sitting on the bed. 

  

Pattern 4: Permanence in the rooms 
 

This pattern is based on two assumptions. The first assumption is that the 

subject is present within a room if movement is detected within that room or 

if presence in bed is detected within that room. The second assumption is 

that the subject cannot be in two rooms at the same time. Thus, we combine 

the results obtained by running Pattern 1: Movement within the room for all 

the rooms in the house and Patter 3: presence in bed for the bedroom, to 

identify, for each room, the time intervals in which the subject stays in that 

room. This pattern also allows to detect when the subject is absent from the 

house.  

The sequence of operations to detect the permanence in the rooms pattern 

are shown in Figure 22. 

 

First, for each room we detect the time intervals that verify Pattern 1, as 

previously described. We then apply the conversion from time intervals to 

events to the returned time series of episodes to obtain a time series of events, 

which we will refer to as T_mov. 

In parallel, for each room having a bed or chair equipped with pressure 

mats, we detect presence in bed. Again, we apply the conversion from time 

Figure 22: Sequence of operations to detect permanence in the rooms 
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intervals to events to obtain a time series of events, which we will refer to as 

T_bed. 

For each room, we apply the OR operator to T_mov and T_bed. 

Potentially, the obtained time series, T_pres, identifies presence within the 

room, if presence is not detected in other rooms. 

In the following step we create a signal that conveys the information on 

T_pres for all the rooms. In particular, we create a signal by concatenating, 

time instant by time instant, the binary value obtained from each room. For 

example, for a house having three rooms (R1, R2 and R3), if at a specific 

time instant (T1) presence is detected in R1, absence in R2 and absence in 

R3, the value of this signal will be 001. The binary value (e.g., 001), is then 

converted into a decimal signal (e.g., 001 translates to 2), which is processed 

through a JTSA workflow. Of course, the list of the rooms of the house is 

stored in a configuration file, that is filled in when the NONCADO system 

is set up. 

The JTSA workflow aggregates consequent time intervals of presence in 

a room, when they are separated by short time intervals that verify absence, 

in which no presence is detected elsewhere (Figure 23).  

 

 

To this aim, the JTSA workflow shown in Figure 24 detects the following 

complex pattern:  

(presence in R1, followed by absence) followed by presence in R1 

where absence indicates absence from all the rooms. 

The workflow is composed of 4 blocks, 2 pipelines and two complex blocks. 

It must be run separately for each room, since the parameters are room-

dependent. For each room the workflow identifies three kinds of time 

intervals: 

• The time intervals in which the subject is in the selected room 

• The time intervals in which the subject is in another room, that is not 

specified 

• The time intervals in which the subject is outside the house. 

 

Figure 23: Representation of the aim of the JTSA workflow for detecting presence in the rooms 



 

 
Figure 24: JTSA workflow for detecting permanence in the rooms 

 

Block 1 is the pipeline block that identifies presence in the selected room 

and is composed of 3 steps. STEP 1 uses the Basic Qualitative algorithm and 

applies a qualitative abstraction to the decimal signal. The absence label 

indicates absence from all the rooms of the house, while presence denotes 

presence within the selected room. The overlap label indicates detection of 

simultaneous presence in several rooms of the house, including the selected 

one. This should not happen, unless the subject is moving from one room to 

another and the rooms are contiguous. The other label identifies presence in 

one (or more rooms) other than the one examined. The set of thresholds used 

for assigning the labels depends on the room. For example, if we consider 

two rooms, R1 and R2, and we select R1, the decimal signal will have the 

following values: 

• 0 - absence, since the corresponding binary signal is 00; 

• 1 - presence in room R1, since the corresponding binary signal is 01; 

• 2 - presence in room R2, since the corresponding binary signal is 10; 

• 3 - presence in both rooms, thus overlap, since the corresponding binary 

signal is 11. 

The parameters set for the JTSA workflow when it runs for R1 (in a house 

having maximum 10 rooms equipped with sensors) are shown in Table 10. 

 
Table 10: Parameters of the JTSA algorithm for detecting permanence in the rooms 

BLOCK STEP ALGORITHM PARAMETERS 

Block 1 

Step 1 Qualitative 

th=0.1,1.1,2.1,3.1,4.1,5.1,6.1 

label=absence,presence,other,overlap, 

other,overlap,other,overlap 

Step 2 
Aggregation 

Level 

gap=20 

minLen=2 

granularity=SECONDS 
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Pattern 5: Cooking 
 

This pattern allows to identify when subject uses the stove for preparing a 

hot meal and is detected through the JTSA workflow in Figure 25. 

 
Figure 25: Schema of the JTSA workflow for detecting cooking activity 

The JTSA workflow is fed with the time series of measurements collected 

by the temperature sensor positioned at 60 cm from the stove. Since cooking 

causes a peak in the values measured by this sensor, the cooking activity is 

detected as a complex pattern, composed of an increase in temperature, 

followed by a decrease in temperature. The workflow is composed of three 

blocks.  

Step 3 
Aggregation 

HighLevel 

gap=60 

minLen=1 

granularity=SECONDS 

label=PresenceInRoom1 

levels=presence 

Block 2 

Step 1 Qualitative 

th=0.1,1.1,2.1,3.1,4.1,5.1,6.1 

label=absence,presence,other,overlap, 

other,overlap,other,overlap 

Step 2 
Aggregation 

Level 

gap=20 

minLen=2 

granularity=SECONDS 

Step 3 
Aggregation 

HighLevel 

gap=60 

minLen=1 

granularity=SECONDS 

label=Absence 

levels=absence 

Block 3 - 

Operator: 

BEFORE 

Combiner: 

UNION 

ls=86400 

rs=86400 

gap=20 

granularity=SECONDS 

Block 4 - 

Operator: 

BEFORE 

Combiner: 

UNION 

ls=86400 

rs=86400 

gap=10 

granularity=SECONDS 



 

The first block is the pipeline that detects the time intervals in which the 

temperature increases. The second block is the pipeline that detects the time 

intervals in which the temperature decreases. The third block is a complex 

block that detects the complex pattern, i.e., an increase followed by a 

decrease. The parameters of the algorithms used in each block are listed in 

Table 11. 

 
Table 11: Parameters of the JTSA algorithm for detecting the cooking activity 

BLOCK STEP ALGORITHM PARAMETERS 

Block 1 Step 1 Basic Trend minLen=10 

label=IncreasingTemp 

minSlope=0.032 

maxSlope=1000 

gap=300 

granularity=SECONDS 

Step 2 Aggregation 

Level 

gap=300 

minLen=1 

granularity=SECONDS 

Block 2 Step 1 Basic Trend minLen=12 

label=DecreasingTemp 

minSlope=-100 

maxSlope=-0.03 

gap=180 

granularity=SECONDS 

Block 3 - Operator: 

BEFORE 

Combiner: 

GAP 

BETWEEN 

STARTS 

ls=3600 

rs=3600 

gap=600 

granularity=SECONDS 

 

Pattern 6: Bath/Shower 
 

The bath or shower activity is associated with an increase in the relative 

humidity in the bathroom, that can be detected by a humidity sensor placed 

close to the shower box. The time series of measurements collected by the 

sensors are fed to a JTSA workflow composed of a single pipeline. The 

pipeline is composed of a single step, which applies the Basic Trend 

algorithms, with the following parameters, set according to the sensor’s 

response to stimuli designed to simulate the shower activity. 

minLen=10 

label=IncreasingHum 

minSlope=0.1 

maxSlope=3 

gap=40 

granularity=SECONDS 
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In this case, the sensor's response to the activity is not immediate. Thus, we 

cannot identify exactly the instants in which the activity begins or ends. 

However, we can assess whether or not it occurred within the day.  

 

Pattern 7: Washing the dishes 
 

Initially, we supposed that washing the dishes would cause an increase in 

the humidity level in the area next to the sink. We formalized a workflow to 

detect such increase in the time series of measurements collected by a 

humidity sensor located next to the sink. However, a set of testes proved that 

such increase is not very significant, and that the response of the sensor is 

too slow to detect it. Thus, to detect this activity we use a PIR sensor located 

next to the sink, having a visual field limited to the sink itself. 

The time series of measurements are fed to a JTSA workflow in composed 

by a single pipeline, made of three steps. This JTSA workflow works exactly 

as the JTSA workflow for detecting movement within a room (Pattern 1 in 

this chapter), with slightly different thresholds used when aggregating the 

time intervals in which movement occurs. The parameters of the algorithm 

in each step are listed in Table 12. 

 
Table 12: Parameters of the JTSA algorithm for detecting the Washing the dishes activity 

STEP ALGORITHM PARAMETERS 

Step 1 Qualitative th=0.5 

label=absence,movement 

Step 2 Aggregation 

Level 

gap=60 

minLen=1 

granularity=SECONDS 

Step 3 Aggregation 

HighLevel 

gap=60 

minLen=5 

granularity=SECONDS 

label=WashingDishes 

levels=movement 

 

Pattern 8: Environmental discomfort (Temperature) 
 

According to the literature, the optimal range of environmental 

temperature for a subject aged over 65 years is between 18°C and 26°C. We 

use a JTSA workflow to detect the time intervals in which the temperature is 

not in this range. If the room is equipped with multiple temperature sensors, 

excluding the sensor that monitors the area next to the stove, the workflow 

must be run for each sensor and the results must be combined by applying 

the OR operator. 

Again, the workflow has the same structure as the workflow for detecting 

movement within the room, with a different set of parameters (Table 13). In 

particular, it consists of three steps. STEP 1 applies the Basic Qualitative 

algorithm to perform a qualitative abstraction to the time series of 



 

temperature events. Specifically, all values lower than 18°C are assigned the 

LOW label, those above 26°C are labelled as HIGH, and the remaining values 

are labelled as OK. STEP 2 uses the Aggregation Level algorithm and 

aggregates the episodes having the same label. STEP 3 uses the Aggregation 

HighLevel algorithm and performs a further aggregation, selecting those 

having the LOW or HIGH label, to detect the time intervals in which the 

temperature is not ideal for at least 5 minutes. 

 
Table 13: Parameters of the JTSA workflow for detecting inadequate environmental temperature 

STEP ALGORITHM PARAMETERS 

Step 1 Qualitative 
th=18,26 

label=LOW,OK,HIGH 

Step 2 
Aggregation 

Level 

gap=15 

minLen=2 

granularity=SECONDS 

Step 3 
Aggregation 

HighLevel 

gap=15 

minLen=300 

granularity=SECONDS 

label=UncomfortableTemperature 

levels=LOW,HIGH 

 

Pattern 9: Environmental discomfort (Humidity) 
 

According to the literature, the optimal range of environmental humidity 

for a subject aged over 65 years is between 40% and 65%. We use a JTSA 

workflow to detect the time intervals in which humidity is not in this range. 

It works as the JTSA workflow for detecting temperature discomfort, with a 

slightly different set of thresholds in STEP 1 (Table 14). 

 

 

 
Table 14: Parameters of the JTSA workflow for detecting inadequate environmental humidity 

STEP ALGORITHM PARAMETERS 

Step 1 Qualitative th=40,65 

label=LOW,OK,HIGH 

Step 2 Aggregation 

Level 

gap=15 

minLen=2 

granularity=SECONDS 

Step 3 Aggregation 

HighLevel 

gap=15 

minLen=300 

granularity=SECONDS 

label=UncomfortableHumidity 

levels=LOW,HIGH 



 

86 
 

4.1.3. Decision support 

The detection of the patterns described in the previous section provides 

an overview of the activities performed by the subject over time. Based on 

the results of the analysis, for each day we can assess which use cases (Table 

6) were verified, and we can produce the contents of the daily and weekly 

report for the subject’s family. 

The first section of the daily report contains the warnings related to any 

risky behavior detected during the day (Table 3). For each considered 

behavior, Table 15 describes how it is detected. The condition column 

describes the condition that triggers the generation of the warning. The 

patterns column lists the patterns that are search for to check if the condition 

is verified. 

 
Table 15: Patterns used to detect the behaviors to correct 

BEHAVIOR TO 

DETECT 
CONDITION PATTERNS 

Moving within the 

house in poor light 

conditions 

USE CASE 5 

(ACTIVITY) activates 

when USE CASE 9 

(POOR LIGHT 

CONDITIONS) is 

active. 

Pattern 2: 

Movement within 

the room (in poor 

light conditions) 

Getting up from the bed 

in poor light conditions 

USE CASE 1 

(AWAKENING) and 

USE CASE 5 

(ACTIVITY) activate 

when USE CASE 9 

(POOR LIGHT 

CONDITIONS) is 

active. 

Pattern 2: 

Movement within 

the room (in poor 

light conditions) 

 

Pattern 3: 

Presence in bed 

Exiting the house 

during the night 

The photocell 

positioned close to the 

external door reports 

an exit during the night 

hours and absence 

from the house is 

detected  

for more than a set 

duration. 

Pattern 4: 

Permanence in the 

rooms 

Taking a bath/shower 

during the night 

USE 7 

(BATH/SHOWER) 

activates during the 

night hours. 

Pattern 6: 

Bath/Shower 



 

Exiting the house while 

cooking (and using the 

stove) 

The photocell in the 

kitchen reports an exit 

when USE CASE 4 

(HOT MEAL) is 

activated.  

Pattern 5: 

Cooking 

Absence of cooking 

activity, i.e., not having 

hot meals 

USE CASE 4 (HOT 

MEAL) does not 

activate for more than 

a set duration. 

Pattern 5: 

Cooking 

 

Spending time in a 

room with inadequate 

humidity and/or 

temperature conditions 

In a selected room, 

USE CASE 10 

(ENVIRONMENTAL 

DISCOMFORT) 

activates when 

presence in that room 

is detected. 

Pattern 4: 

Permanence in the 

rooms 

 

Pattern 8: 

Environmental 

discomfort 

(Temperature) 

 

Pattern 9: 

Environmental 

discomfort 

(Humidity) 

 

In a second section, the daily report provides a summary of the activities 

performed by the subject during the day. In particular, the total time spent 

by the subject within the home is estimated as the total duration of the time 

intervals that verify Pattern 4: Permanence in the rooms. By running the 

same pattern and extracting the time intervals labeled as absence, we assess 

the total time by the subject outside the home. 

By analyzing the occurrences of Pattern 3: Presence in bed we can assess 

the number of times the subject gets up during the night, and the total time 

spent in bed, during the day and the night. By default, we define night as the 

time between 22:00 and 6:00, but the definition is customizable. 

We also run Pattern 5 (Cooking), Pattern 6 (Bath/Shower), and Pattern 7 

(Washing the dishes) and report if the corresponding activities occurred 

during the considered day. 

As anticipated, the weekly report lists any changes identified with respect 

to the previous weeks, i.e., the deviations from the patient’s profile (Table 

5) For each possible deviation, Table 16 describes how it is detected.  

As in the previous table, the condition column describes the condition that 

triggers the generation of the warning. The patterns column lists the patterns 

that are search for to check if the condition is verified. The terms increase 

(or decrease) means an increase (or decrease) of at least X percent. with X 

being a customizable threshold. At the beginning of each condition 

<<Compared to previous weeks>> is implied. 
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Table 16: Patterns used to detect deviations from the subject's profile 

DEVIATION TO 

DETECT 
CONDITION PATTERNS 

Increase in night-

time awakenings 

The number of times USE 

CASE 2 (NIGHT_TIME 

AWAKENING) activation 

increases. 

Pattern 3: Presence in 

bed 

Increase/decrease 

in resting time 

The duration of the 

occurrence of USE CASE 6 

(RESTING) 

increases/decreases. 

Pattern 3: Presence in 

bed 

Increase/decrease 

in time spent in 

specific rooms 
(e.g., kitchen, 

bathroom) 

For a selected room the 

duration of the occurrence 

of Pattern 4: Permanence 

in the rooms 

increases/decreases. 

Pattern 4: 

Permanence in the 

rooms 

Decrease in time 

spent outside the 

house 

The duration of the time 

intervals in which absence 

is decreased. 

Pattern 4: 

Permanence in the 

rooms 

Decrease of 

cooking activity 

The number of times USE 

CASE 4 (HOT MEAL) 

activation decreases. 

Pattern 5: Cooking 

 

Decrease in 

bath/shower 

activities 

The number of times USE 

CASE 7 

(BATH/SHOWER) 

activation decreases. 

Pattern 6: 

Bath/Shower 

Decrease in 

physical activity 

Either the duration of USE 

CASE 5 (ACTIVITY) 

decreases, or  

the number of minutes of 

activity recorded by the 

Fitbit tracker decreases. 

Pattern 1: Movement 

within the room 

Decrease in 

walking speed 

The walking speed 

provided by the sensorized 

carpet decreases. 

- 

Decrease in sleep 

quality (e.g. 

decrease in sleep 

efficiency) 

Either the duration of sleep 

and/or the sleep efficiency 

provided by the Fitbit 

activity tracker decreases. 

- 

 

 

 

 

 



 

4.2. Pilot study 

The system underwent two test phases. The first test phase aimed at 

tuning the parameters of the JTSA workflows and assessing the functionality 

of the system. The tests were carried out on healthy volunteers in an 

environment set up within our department. Following the preliminary study 

on healthy volunteers, in September 2018 a prototype of the system was 

tested in a 2-weeks pilot study involving 16 patients with history of falls 

treated at the CCPP Hospital. The study was approved by the Ethical 

Committee of Fondazione IRCCS Cà Granda Area 2, Milan, Italy (nr 

570_2018bis) and was held in a dedicated environment within the hospital. 

The following two sections describe these two test phases. 

4.2.1. Preliminary tests on volunteers 

The network of sensors was installed in two rooms of our department, 

arranged to simulate a home. One room was equipped with a bed and one 

room was equipped with a kitchen stove to simulate a bedroom and a kitchen, 

respectively. The volunteers were enrolled among the students and 

researchers of the department. 

This test phase was divided into two sub-phases. In the first phase, the 

volunteers were asked to perform specific atomic activities, designed to 

trigger the patterns described in Section 4.1.2. More than to test the system's 

performance, these tests were aimed at tuning the parameters for the JTSA 

workflows described in Section 4.1.2. Table 17 lists the functional tests 

performed. The first column specifies the activity performed and, in 

brackets, the patterns it should trigger. The second and third columns contain 

the start and end date of the activity. The start and end dates of the 

occurrences of the patterns detected by the CDSS were compared with these 

two dates, noted by an external observer. 

 
Table 17: Preliminary functional tests on healthy volunteers 

ACTIVITY  

(PATTERNS) 
START STOP 

Movement within the 

room in appropriate 

light conditions 

(Movement within the 

room, Permanence in 

the rooms) 

17/10/2017 11:46:50 17/10/2017 11:49:00 

17/10/2017 12:16:34 17/10/2017 12:18:34 

Sitting on the bed 

(Presence in bed, 

Permanence in the 

rooms) 

17/10/2017 11:49:00 17/10/2017 11:54:00 

17/10/2017 12:18:34 17/10/2017 12:23:34 

23/10/2017 10:20:00 23/10/2017 10:40:00 
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25/10/2017 15:50:00 25/10/2017 16:00:00 

25/10/2017 16:00:00 25/10/2017 16:10:00 

07/02/2018 09:43:03 07/02/2018 10:01:00 

07/02/2018 11:40:00 07/02/2018 11:50:00 

16/02/2018 09:58:00 16/02/2018 10:13:00 

16/02/2018 12:05:00 16/02/2018 12:10:00 

20/02/2018 11:40:36 20/02/2018 11:50:36 

20/02/2018 12:05:00 20/02/2018 12:15:00 

Switch from one room 

to another 

(Permanence in the 

rooms) 

17/10/2017 11:54:00 17/10/2017 11:58:00 

17/10/2017 12:24:00 17/10/2017 12:26:18 

Movement within the 

room in poor light 

conditions 

(Movement within the 

room in poor light 

conditions, 

Permanence in the 

rooms) 

19/10/2017 18:01:29 24/10/2017 16:00:23 

20/02/2018 16:57:03 20/02/2018 17:09:04 

Sitting on the bed, 

getting up, and sitting 

on the bed again 

(Presence in bed) 

17/10/2017 11:58:53 17/10/2017 12:00:20 

23/10/2017 10:42:00 23/10/2017 11:03:00 

Moving within the 

room, exiting, and 

entering again 

(Permanence in the 

rooms) 

17/10/2017 12:08:40 17/10/2017 12:14:18 

17/10/2017 12:38:30 17/10/2017 12:42:50 

31/10/2017 10:47:00 31/10/2017 11:00:00 

31/10/2017 11:05:00 31/10/2017 11:18:00 

Sitting on the bed, then 

lying on the bed 

(Presence in bed) 

23/10/2017 11:07:00 23/10/2017 11:19:00 

25/10/2017 15:09:00 25/10/2017 15:39:55 

07/02/2018 10:20:00 07/02/2018 10:40:00 

16/02/2018 10:35:00 16/02/2018 10:55:00 

20/02/2018 17:15:00 20/02/2018 17:35:00 

Movement across 

multiple rooms 

(Permanence in the 

rooms) 

31/10/2017 11:54:00 31/10/2017 12:00:00 

31/10/2017 12:06:00 31/10/2017 12:12:00 

31/10/2017 12:25:00 31/10/2017 12:30:00 

31/10/2017 12:33:00 31/10/2017 12:35:00 

Boiling a pot of water 

(Cooking) 

09/11/2017 09:49:01 - 

09/11/2017 10:46:51  - 

09/11/2017 10:55:55  - 

09/11/2017 11:05:45  - 



 

09/11/2017 11:17:36  - 

Washing a dish 

(Washing the dishes)  

11/12/2017 09:49:39  - 

11/12/2017 10:00:23  - 

11/12/2017 10:11:16  - 

11/12/2017 10:48:44  - 

11/12/2017 11:01:58  - 

Washing a dish in poor 

light conditions 

(Washing the dishes, 

Movement within the 

room in poor light 

conditions)  

11/12/2017 11:55:27  - 

11/12/2017 12:00:09  - 

11/12/2017 12:08:00  - 

11/12/2017 12:11:22  - 

Getting up from the 

bed in poor light 

conditions 

(Movement within the 

room in poor light 

conditions, Presence in 

bed)  

16/02/2018 11:15:00 16/02/2018 11:25:00 

20/02/2018 11:10:00 20/02/2018 11:20:00 

 

The second test phase on the volunteers aimed at assessing the 

performance of the NONCADO system in daily use. During the test, we 

asked the volunteers to simulate a sequence of activities of daily living, 

organized in sessions lasting about 2 hours. The subject was asked to 

manually note the details (i.e., start time and end time, mainly) of each 

activity performed. Finally, we compared the events detected by the CDSS 

with the subject’s record. 

For each session, Table 18 provides a textual description of the performed 

activities, their start time and end time as reported by the volunteer. The 

CDSS column reports whether the detection by the CDSS was successful 

(OK) or not (NO). 

 
Table 18: Real life simulation test performed by healthy volunteers 

SESSION ACTIVITY START  END CDSS 

27/03/2018 

PRESENCE IN BED (LYING DOWN) 10:56:00 11:03:00 OK 

PRESENCE IN BED (LYING DOWN) 

AND EXIT FROM THE ROOM 

11:03:00 11:05:00 OK 

PRESENCE IN BED (LYING DOWN) 11:05:00 11:12:00 OK 

PRESENCE IN BED (LYING DOWN) 

AND EXIT FROM THE ROOM 

11:12:00 11:14:00 OK 

PRESENCE IN BED (LYING DOWN) 11:14:00 11:16:00 OK 

PRESENCE IN THE KITCHEN 11:16:00 11:56:00 OK 

ABSENCE 11:56:00 12:06:00 NO 

PRESENCE IN THE KITCHEN 12:06:00 12:55:00 OK 

14/06/2018 

PRESENCE IN BED (LYING DOWN) 

AND EXIT FROM THE ROOM 

10:58:40 11:09:00 OK 

PRESENCE IN BED (LYING DOWN) 

AND EXIT FROM THE ROOM 

11:14:40 11:25:00 OK 

PRESENCE IN THE KITCHEN 11:30:00 12:00:00 OK 
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ABSENCE 12:00:00 12:15:00 OK 

PRESENCE IN THE KITCHEN 12:15:00 12:30:00 OK 

COOKING 12:18:00 12:23:00 OK 

PRESENCE IN BED (SITTING) 12:30:40 12:35:40 NO 

PRESENCE IN BED (LYING DOWN) 12:35:40 12:40:40 OK 

EXITING THE KITCHEN WHILE 

COOKING 

12:43:00 12:51:00 OK 

PRESENCE IN THE KITCHEN 12:51:00 13:01:00 OK 

14/06/2018 

PRESENCE IN BED (LYING DOWN) 

AND EXIT FROM THE ROOM 

15:35:40 15:46:00 OK 

PRESENCE IN BED (LYING DOWN) 

AND EXIT FROM THE ROOM 

15:51:40 16:02:30 OK 

PRESENCE IN THE KITCHEN 16:07:30 16:37:30 OK 

ABSENCE 16:37:30 16:53:30 OK 

PRESENCE IN THE KITCHEN 16:53:30 17:08:30 OK 

COOKING 16:55:00 17:00:00 OK 

PRESENCE IN BED (SITTING) 17:09:30 17:14:30 NO 

PRESENCE IN BED (LYING DOWN) 17:14:30 17:19:30 OK 

PRESENCE IN THE KITCHEN 17:20:00 17:30:00 OK 

MOVEMENT IN POOR LIGHT 

CONDITIONS 

17:30:00 17:40:00 OK 

15/06/2018 

PRESENCE IN BED (LYING DOWN) 

AND EXIT FROM THE ROOM 

10:15:10 10:20:50 OK 

PRESENCE IN BED (LYING DOWN) 

AND EXIT FROM THE ROOM 

10:24:40 10:32:10 OK 

PRESENCE IN BED (LYING DOWN) 

AND EXIT FROM THE ROOM 

10:36:00 10:41:50 OK 

PRESENCE IN BED (LYING DOWN) 

AND EXIT FROM THE ROOM 

10:45:20 10:49:20 OK 

PRESENCE IN THE KITCHEN 10:50:00 11:35:00 OK 

PRESENCE IN BED (LYING DOWN) 11:36:00 11:56:00 OK 

PRESENCE IN THE KITCHEN 11:56:00 12:06:00 OK 

15/06/2018 

PRESENCE IN BED (LYING DOWN) 

AND EXIT FROM THE ROOM 

15:28:00 15:33:30 OK 

PRESENCE IN BED (LYING DOWN) 

AND EXIT FROM THE ROOM 

15:37:00 15:44:30 OK 

PRESENCE IN BED (LYING DOWN) 

AND EXIT FROM THE ROOM 

15:48:00 15:53:50 OK 

PRESENCE IN BED (LYING DOWN) 

AND EXIT FROM THE ROOM 

15:57:30 16:01:30 OK 

PRESENCE IN THE KITCHEN 16:02:00 16:47:00 OK 

PRESENCE IN BED (LYING DOWN) 16:48:00 17:08:00 OK 

PRESENCE IN THE KITCHEN 17:09:00 17:19:00 OK 

18/06/2018 

PRESENCE IN BED (LYING DOWN) 

AND EXIT FROM THE ROOM 

10:21:40 10:29:00 OK 

PRESENCE IN BED (LYING DOWN) 

AND EXIT FROM THE ROOM 

10:32:00 10:37:40 OK 

PRESENCE IN BED (LYING DOWN) 

AND EXIT FROM THE ROOM 

10:41:20 10:47:00 OK 

PRESENCE IN BED (LYING DOWN) 

AND EXIT FROM THE ROOM 

10:51:00 10:55:00 OK 

PRESENCE IN THE KITCHEN 10:55:50 11:40:50 OK 

PRESENCE IN BED (LYING DOWN) 11:42:00 12:02:00 OK 

PRESENCE IN THE KITCHEN 12:04:20 12:14:20 OK 

25/06/2018 
PRESENCE IN BED (LYING DOWN) 

AND EXIT FROM THE ROOM 

14:53:45 15:05:30 OK 



 

PRESENCE IN BED (LYING DOWN) 

AND EXIT FROM THE ROOM 

15:11:45 15:23:00 OK 

PRESENCE IN THE KITCHEN 15:28:00 16:00:20 OK 

ABSENCE 16:00:20 16:15:20 OK 

PRESENCE IN THE KITCHEN 16:15:40 16:32:20 OK 

PRESENCE IN BED (SITTING) 16:33:10 16:38:40 OK 

PRESENCE IN BED (LYING DOWN) 16:38:40 16:44:15 OK 

PRESENCE IN THE KITCHEN 16:45:15 16:55:15 OK 

MOVEMENT IN POOR LIGHT 

CONDITIONS 

16:55:20 17:05:30 OK 

26/06/2018 

PRESENCE IN BED (LYING DOWN) 

AND EXIT FROM THE ROOM 

10:13:25 10:24:30 OK 

PRESENCE IN BED (LYING DOWN) 

AND EXIT FROM THE ROOM 

10:30:55 10:41:55 OK 

PRESENCE IN THE KITCHEN 10:46:55 11:17:00 OK 

ABSENCE 11:17:00 11:32:00 OK 

PRESENCE IN THE KITCHEN 11:32:00 11:48:45 OK 

PRESENCE IN BED (SITTING) 11:49:20 11:54:30 OK 

PRESENCE IN BED (LYING DOWN) 11:54:30 11:59:55 OK 

PRESENCE IN THE KITCHEN 12:00:55 12:29:55 OK 

26/06/2018 

PRESENCE IN BED (LYING DOWN) 

AND EXIT FROM THE ROOM 

14:57:30 15:08:30 OK 

PRESENCE IN BED (LYING DOWN) 

AND EXIT FROM THE ROOM 

15:14:25 15:25:15 OK 

PRESENCE IN THE KITCHEN 15:30:15 16:00:30 OK 

ABSENCE 16:00:30 16:15:05 OK 

PRESENCE IN THE KITCHEN 16:15:05 16:31:10 OK 

PRESENCE IN BED (SITTING) 16:31:50 16:36:50 OK 

PRESENCE IN BED (LYING DOWN) 16:36:50 16:43:10 OK 

PRESENCE IN THE KITCHEN 16:44:00 16:53:25 OK 

MOVEMENT IN POOR LIGHT 

CONDITIONS 

16:53:25 17:03:40 OK 

27/06/2018 

PRESENCE IN BED (LYING DOWN) 

AND EXIT FROM THE ROOM 

10:25:30 10:31:20 NO 

PRESENCE IN BED (LYING DOWN) 

AND EXIT FROM THE ROOM 

10:35:05 10:43:00 NO 

PRESENCE IN BED (LYING DOWN) 

AND EXIT FROM THE ROOM 

10:47:00 10:52:40 OK 

PRESENCE IN BED (LYING DOWN) 

AND EXIT FROM THE ROOM 

10:56:25 10:59:35 OK 

PRESENCE IN THE KITCHEN 11:00:20 11:45:50 OK 

PRESENCE IN BED (LYING DOWN) 11:46:35 12:06:55 OK 

PRESENCE IN THE KITCHEN 12:07:40 12:19:25 OK 

27/06/2018 

PRESENCE IN BED (LYING DOWN) 

AND EXIT FROM THE ROOM 

14:28:15 14:34:00 OK 

PRESENCE IN BED (LYING DOWN) 

AND EXIT FROM THE ROOM 

14:37:35 14:45:20 OK 

PRESENCE IN BED (LYING DOWN) 

AND EXIT FROM THE ROOM 

14:49:10 14:54:55 OK 

PRESENCE IN BED (LYING DOWN) 

AND EXIT FROM THE ROOM 

14:59:00 15:03:05 OK 

PRESENCE IN THE KITCHEN 15:03:55 15:51:10 OK 

PRESENCE IN BED (LYING DOWN) 15:51:55 16:11:35 OK 

PRESENCE IN THE KITCHEN 16:12:15 16:22:00 OK 

28/06/2018 
PRESENCE IN BED (LYING DOWN) 

AND EXIT FROM THE ROOM 

14:39:30 14:47:10 OK 
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PRESENCE IN BED (LYING DOWN) 

AND EXIT FROM THE ROOM 

14:54:10 15:01:40 OK 

PRESENCE IN BED (LYING DOWN) 

AND EXIT FROM THE ROOM 

15:05:45 15:11:30 OK 

PRESENCE IN BED (LYING DOWN) 

AND EXIT FROM THE ROOM 

15:15:05 15:19:05 OK 

PRESENCE IN THE KITCHEN 15:19:40 16:05:00 OK 

PRESENCE IN BED (LYING DOWN) 16:05:45 16:25:30 OK 

PRESENCE IN THE KITCHEN 16:26:10 16:26:30 OK 

24/07/2018 

PRESENCE IN BED (LYING DOWN) 

AND EXIT FROM THE ROOM 

10:55:00 11:05:00 OK 

PRESENCE IN BED (LYING DOWN) 

AND EXIT FROM THE ROOM 

11:11:00 11:22:00 OK 

PRESENCE IN THE KITCHEN 11:28:00 11:58:00 OK 

ABSENCE 11:58:00 12:13:00 OK 

PRESENCE IN THE KITCHEN 12:13:00 12:28:00 OK 

PRESENCE IN BED (SITTING) 12:29:00 12:34:00 OK 

PRESENCE IN BED (LYING DOWN) 12:34:00 12:39:00 OK 

PRESENCE IN THE KITCHEN 12:40:00 12:50:00 OK 

MOVEMENT IN POOR LIGHT 

CONDITIONS 

12:50:00 13:00:00 OK 

24/07/2018 

PRESENCE IN BED (LYING DOWN) 

AND EXIT FROM THE ROOM 

14:32:00 14:43:00 OK 

PRESENCE IN BED (LYING DOWN) 

AND EXIT FROM THE ROOM 

14:49:00 15:00:00 OK 

PRESENCE IN THE KITCHEN 15:05:00 15:35:00 OK 

ABSENCE 15:35:00 15:50:00 OK 

PRESENCE IN THE KITCHEN 15:51:00 16:06:00 OK 

PRESENCE IN BED (SITTING) 16:07:00 16:12:00 OK 

PRESENCE IN BED (LYING DOWN) 16:12:00 16:17:00 OK 

PRESENCE IN THE KITCHEN 16:18:00 16:38:00 OK 

 

According to Table 18, the obtained results were positive; only 5 actions (in 

grey in the table) were not correctly verified by the system. In general, the 

errors are due to incorrect calibrations of the sensors (in particular, the 

pressure mats) or to a sub-optimal tuning of the parameters in the JTSA 

workflows. For example, one error occurred in detecting a short time interval 

of absence that occurred during a long time interval of presence within the 

room. Such error was due to a non-optimal calibration of the aggregation 

algorithms used by the JTSA workflow for identifying presence in the rooms 

(Section 4.1.2). Following the described test sessions, the parameters were 

recalibrated, and all the errors were corrected. 

4.2.2. Pilot study on the real-world patient population 

For the pilot study we enrolled 16 patients aged over 65 years (6 females 

and 10 males; age: 72.69 ± 8.53 years) being prescribed occupational therapy 

at the CCPP hospital as rehabilitation after a fall event. All the subjects were 

affected by a neurological disease (i.e., hemiparesis, medullary paraparesis, 

medullary or cerebellar tetra paresis, cerebral hemorrhage, polyneuropathy, 

or Parkinson's disease), in sub-acute or chronic stage. As required by the 

inclusion criteria, all the subjects were able to walk. The pilot study was 



 

carried out during rehabilitation sessions held in the Living Lab, i.e., an 

environment specifically devoted to practice activities of daily living with a 

therapist. The next three section describes, respectively, the layout of the 

Living Lab, the protocol of the pilot study, and the obtained results.  

 

The Living Lab 
 

Figure 26 shows the layout of the Living Lab and the layout of the sensors 

installed within this environment.  

 

 

The Living Lab consists of two rooms, one bedroom and one kitchen, 

separated by a corridor. 

The bedroom contains a single bed, that we equipped with the three 

pressure mats, as described in Section 4.1.2. To detect movement within the 

bedroom, we placed two PIRs sensors: one on the door and one in front of 

the bed. The bedroom was also equipped with a temperature sensor and a 

humidity sensor. The sensors for measuring luminosity were not installed, 

since the patients were not allowed to perform any activity in poor light 

conditions, for safety reasons. All the sensors were connected to a Raspberry 

card, placed under the bed. 

In the room simulating the kitchen two Raspberries were installed. One was 

located near the door and was configured with a motion sensor, a temperature 

sensor, a humidity sensor, and a photocell. The other one was positioned near 

the stove and was configured with two motion sensors (one of which was 

dedicated to identifying the Washing the dishes pattern) and two temperature 

sensors, one of which was dedicated to identifying the Cooking pattern.  

 

Figure 26: Layout of the Living Lab 



 

96 
 

The protocol 
 

The tests were carried out during conventional sessions of occupational 

therapy under the supervision of a therapist. The expected duration of each 

session was 30 minutes. During the session, the subjects were asked to 

perform 5 macro-activities, to which we will refer to as test use cases, 

outlined in collaboration with the clinicians of the CCPP hospital to be 

compatible with the rehabilitation process. The set of test use cases included 

resting in bed, resting in bed with getting up, cooking, leaving the kitchen 

while cooking, and washing the dishes. To standardize the test for all the 

patients, we prepared a form (Table 19) that detailed the sub-activities that 

compose the 5 test use cases. For each test use case, the form lists the sub-

activities that compose it. During each session, an observer was present in 

the room together with the patient and the therapist and was asked to fill in 

the form with the start time and end times of each activity performed by the 

subject. 
Table 19: Form listing the activities performed by the patients in the pilot study 

TEST USE CASE ACTIVITIES START TIME END TIME 

1. Resting in bed The patient lies on the 

bed. 

  

The patient gets up.   

The patient lies back 

on the bed. 

  

The patient gets up.   

2. Resting in bed 

with getting up 

(i.e., exiting the 

bedroom) 

The patient lies on the 

bed. 

  

The patient gets up.   

The patient leaves the 

bedroom. 

  

The patient enters the 

bedroom again. 

  

The patient lies back 

on the bed. 

  

The patient gets up.   

3. Cooking The patient turns on 

the stove. 

  

The patient turns off 

the stove. 

  

4. Exiting the 

kitchen while 

cooking 

The patient turns on 

the stove. 

  

The patient leaves the 

kitchen. 

  

5. Washing the 

dishes 

The patient opens the 

tap. 

  



 

The patient closes the 

tap. 

  

 

Every patient participated in two test sessions, to which we will refer to as 

T1 and T2. The list of the sessions performed in the pilot study is presented 

in Table 20. For each session, the table provides the date, the subject 

identifier, the identifier of the test session (either T1 or T2), the start time 

and end time of the session as recorded by the observer. 

 
Table 20: List of the sessions in the pilot study 

DATE SUBJECT TEST 
START 

TIME 
END TIME 

04/09/2018 

S1 T1  09:13  09:51 

S2 T1  09:57  10:27 

S3 T1  10:35  11:10 

05/09/2018 

S4 T1  09:06  09:38 

S5 T1  09:38  10:09 

S6 T1  10:10  10:47 

S7 T1  10:48  11:01 

S8 T1  11:05  11:30 

06/09/2018 

S1 T2  09:09  09:49 

S2 T2  09:49  10:20 

S3 T2  10:37  11:08 

07/09/2018 

S4 T2  10:13  10:41 

S5 T2  09:40  10:12 

S6 T2  11:15  11:45 

S7 T2  09:06  09:37 

S8 T2  10:44  11:12 

S10 T1  09:26  10:05 

S11 T1  10:15  10:42 

S12 T1  10:54  11:29 

S13 T1  11:36  12:03 

12/09/2018 

S14 T1  09:13  09:47 

S15 T1  09:52  10:24 

S16 T1  10:29  10:57 

S17 T1  11:05  11:35 

13/09/2018 

S10 T2  10:25  10:58 

S11 T2  11:14  11:45 

S12 T2  09:49  10:25 

S13 T2  09:01  09:35 

14/09/2018 

S14 T2  09:08  09:37 

S15 T2  10:48  11:18 

S16 T2  09:38  10:05 

S17 T2  10:16  10:45 
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 In each session the subject completed each test use case once. However, 

one patient interrupted one session early due to a concomitant visit, thus 

completing only 3 test use cases out of 5.  

 

Results and discussion 
 

To evaluate the performance of the system, the forms were used as a gold 

standard. In particular, the results of the CDSS elaboration in terms of 

intervals of validity of each activity were compared to the details reported 

by the observer in the form. Each test use case was considered to be correctly 

detected if all its actions were correctly detected by the system. Tables in in 

Appendix C (Table 33 -Table 37) report in detail the performance of the 

CDSS in identifying the 5 test use cases. 

In summary, the test use case 1 (Resting in bed) was performed 32 times 

and was correctly detected by the CDSS in 31 cases, thus reaching an 

accuracy equal to 97%. In one case, the first repetition of the sub-activity 

lying in bed was not correctly detected. In particular, the increase in pressure 

that determines the beginning of the subject’s presence in bed was not 

detected. In fact, the increase in pressure lasted less than 10 seconds, thus 

being too short to be considered significant by the DSS. Afterwards, the 

value measured by the pressure mats decreased unexpectedly, although 

remaining high. For further insight, we provide the pressure values registered 

in the time interval in which the detection error occurred: 

12/09/2018 11:07:21 306 

12/09/2018 11:07:25 353 

12/09/2018 11:07:29 740 

12/09/2018 11:07:34 673 

12/09/2018 11:07:38 673 

As the reported measurements underline, the pressure profile showed a peak, 

in which the signal reached the value 740, before decreasing to 673. The 

observed spike was probably due to the intervention of the therapist, who 

had to help the patient position himself comfortably in the bed. The spike 

prevented the system from detecting the increase in the signal. To correctly 

manage similar cases, we have to implement filters for eliminating possible 

peaks from the signal before feeding it to the JTSA workflows. 

The test use case 2 (Resting in bed with getting up) was performed 31 times 

and was correctly detected in 30 cases, reaching an accuracy equal to 97%. 

In one case, the second presence in bed was not correctly detected due to the 

lack of pressure measurements relating to the time interval in which the 

action was performed. The lack of measurements was probably due to 

connection problems, which prevented the pressure mats from sending the 

measurements. 

The test use case 3 (Cooking) was performed 31 times and was correctly 

detected in 30 cases, reaching an accuracy equal to 97%. The error was due 

to malfunctioning of the temperature sensor placed next to the stove, which 

provided implausible values (i.e., -100 ° C), which were automatically 



 

discarded by the CDSS. Due to the lack of reliable temperature 

measurements in the time interval in which the subject was using the stove, 

the cooking activity was not detected. 

Identifying exiting the kitchen while cooking was the most challenging task 

for the CDSS. In fact, the test use case 4 (Exiting the kitchen while cooking) 

was performed 32 times and was correctly detected in 25 cases, with 

accuracy equal to 78%. In 7 cases, the CDSS was not able to correctly detect 

at least one of the two activities that compose the test use case, i.e., the 

cooking activity and the exit from the room. In particular, in 3 cases a 

malfunction of the temperature sensor occurred, as described for the previous 

test use case. In 2 cases out of 3, this resulted in the lack of detection of the 

cooking activity itself. In the third case the cooking activity was detected, 

but with a delay. Thus, according to the system the subject left the kitchen 

before the beginning of the cooking activity. In the same repetition of the 

test use case, even the subject’s exit from the kitchen was detected with a 

delay. This error was probably due to the exit of the therapist, which occurred 

shortly after the patient left. The CDSS erroneously aggregated the two 

consecutive exits (of the patient and of the therapist) into a single exit event , 

occurring when the second exit occurred. In 2 cases, which occurred at the 

end of the test day, the photocell log was written with a delay, which caused 

the most recent data to be lost when the system was shut down. In two cases, 

the patient's exit was not detected at all. In particular, the photocell detected 

movement, but it was unable to determine its direction, i.e., whether the 

patient was entering or exiting the kitchen. These errors were probably due 

to the presence of the therapist who had to assist the patient on the way out 

of the living lab for safety reasons. This highlighted one limitation of the 

NONCADO system, which is designed to monitor a subject living alone. 

The other test use case that showed low accuracy was Washing the dishes. 

In particular, this test use case was performed 32 times and was correctly 

detected in 26 cases, leading to accuracy equal to 81%. However, 5 out of 

the 6 errors happened during the same test day and were due to a cable 

throttling, which prevented the communication between the motion sensor 

used for detecting the use case and the Raspberry PI board. The sixth error 

was due to a temporary connection problem, causing the sensor to fail 

sending the collected data, as well. 

In general, as shown in Table 21, the system achieved good results, 

reaching an overall accuracy of 90% in detecting the activity performed by 

the patient during the occupational therapy.  
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Table 21: Accuracy of the NONCADO system in detecting the test use cases 

TEST USE CASE ITERATIONS 

ITERATIONS 

DETECTED 

 BY THE CDSS 

ACCURACY 

 
1. Resting in bed 32 31 97%  
2. Resting in bed 

with getting up 31 30 97%  
3. Cooking 31 30 97%  
4. Exiting the kitchen 

while cooking 32 25 78%  
5. Washing the 

dishes 32 26 81%  
OVERALL 158 142 90%  
 

This result was affected by the incorrect positioning (i.e., throttled cable) 

of one PIR sensor, and the consequent lack of monitoring data during a whole 

day of testing, which led to the impossibility of verifying the test use case 5 

(Washing the dishes) for the all the study sessions held that day. The other 

activity that was critical to identify was leaving the kitchen while cooking, 

which influenced the accuracy for the test use case 4. This test use case was 

always carried out as the last activity of the session and often the patient was 

supposed to reach another hospital department immediately after this 

activity. For this reason, as previously mentioned, in certain cases the 

therapist had to walk the patient out of the room. However, our system has 

been implemented and tested for detecting the entry/exit of one person at a 

time, since the target user of the system is an autonomous subject who lives 

alone. 

The tests in the Living Lab also achieved another goal, i.e., to demonstrate 

that the environmental sensors of the system were transparent to the patients 

and did not interfere with his/her activities. This suggests that the system can 

be installed in the homes of the subjects to be monitored without making 

them uncomfortable in performing their daily routines. 

 

 

 
  



 

5. Case study on Type 1 Diabetes 

Diabetes is an autoimmune pathology that may either prevent the patient’s 

pancreas from producing insulin and/or prevent the body cells from 

responding to insulin properly. In both cases, it leads to an alteration in the 

patient’s blood glucose (BG) level, which needs to be controlled through a 

combination of diet, physical activity, and medication. Medication may 

include either oral hypoglycemic drugs or insulin injections, depending on 

the type of diabetes. In particular, diabetes may occur in three types. In 

patients affected by Type 1 diabetes, the β cells in the pancreas that are 

responsible for the production of insulin are compromised. Thus, the 

pancreas is irreversibly prevented from producing insulin, and the subject 

needs to undergo insulin injections daily. In subjects affected by Type 2 

diabetes, the pancreas can produce insulin, but the body cells are prevented 

from using it, partially or completely. A third type of diabetes may occur in 

women during pregnancy and is often a temporary condition. In this work, 

we will focus on supporting the management of Type 1 diabetes. 

Achieving good glycemic control in patients affected by Type 1 diabetes 

often represents a challenge, due to the presence of several variables that 

might influence glycemic values, to the possible non-compliance of adult 

and pediatric patients, and to the daily self-control of the disease [197–199]. 

To obtain an adequate glycemic control, the patient is required to take several 

BG measurements during the day, and to undergo periodic encounters with 

the physician [200]. A close interaction between the patient and the physician 

takes place also beyond the scheduled periodic visits, and it often requires 

frequent telephone or email contacts to manage any therapeutic adjustment. 

As anticipated in Section 2.3, a significant effort has recently focused on 

developing applications for supporting diabetic patients in managing their 

disease. Two main reasons have driven the focus of information technology 

on diabetes. First, the high prevalence of this disease highlights the need for 

IT solutions that may facilitate the management of a wide patient population. 

According to the report presented by the World Health Organization (WHO), 

in 2016 diabetes affected 8.5% of the global population [201].  In Europe, in 

the same year the diabetic populations consisted of 52 million of subjects, 

with the prevalence reaching 10% of the population in the most affected 

countries. Furthermore, the expected prevalence for the next years is even 

higher, due to the population aging and to the diffusion of specific risk 

factors, including sedentary lifestyle and obesity. In addition to the emerging 

need for IT solutions, the focus on diabetes has intensified thanks to the 

diffusion of new IT technologies, that are now available on the market at 

affordable costs. For example, as anticipated in Section 2.2.2, recent years 

have seen the introduction of novel wearable devices for continuous BG 

monitoring. However, despite their widespread adoption, such devices still 

have some limitations, such as the possibility to store only the most recent 
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history of the subject’s BG measurements, the generation of static reports 

that include only partially useful information, the lack of instruments to 

analyze more than one patient at the same time, and, most important, the 

impossibility of sharing the raw data with the physician, who can access only 

the predefined reports.  

The diffusion of wearable monitoring devices has also led focus to 

integrating the patient’s BG profile with lifestyle information. As anticipated 

in Section 2.2.2, recently the use of wearable sensors for monitoring sleep 

and physical activity has intensified, both in healthy subjects and in patient 

populations, providing a significant amount of data to be analyzed. Thus, 

smart applications to facilitate data integration and analysis are needed. In 

this chapter, we present the Advanced Intelligent Distant-Glucose 

Monitoring (AID-GM) system [202, 203], a tool designed to improve disease 

management in diabetic patients allowing data sharing and an advanced 

analysis of glycemic trends.  

5.1.  AID-GM: an advanced system 
supporting continuous monitoring 
of T1DM patients 

AID-GM [170, 202] is a web-application developed at the Biomedical 

Informatics Lab of the University of Pavia, Italy, in collaboration with the 

Pediatric Endocrinology and Diabetes Outpatient Service of the Policlinico 

San Matteo Foundation hospital in Pavia, Italy. It provides an advanced 

platform for the analysis and summarization of continuous BG monitoring 

data, complemented with the information on the subject’s sleep and physical 

activity collected by an activity tracker. AID-GM offers a wide range of 

visualization and analysis tools, available for different users, i.e., the patient 

and his/her diabetologists. In the following paragraph we will  introduce the 

technical details of the platform. 

5.1.1. The architecture  

AID-GM is mainly developed in Java, integrated with JavaServer Faces 

(JSF), JavaScript (JS), Hibernate, and MySQL technologies. The system 

architecture is compliant with the framework described in this thesis and is 

shown in Figure 27. 



 

Data integration and PGHD repository 

 

AID-GM combines data from three PGHD sources, namely a BG monitoring 

device, an activity tracker, and the patient’s self-reported information. AID-

GM is designed to be independent of the specific BG monitoring device. For 

our use-case we focus on the Abbott Freestyle Libre FGM system, described 

in Section2.2.2 [98]. This choice is mostly due to the fact that this system 

has been approved for use in pediatric patients, who represent the target of 

our study. To collect information on the subject’s HR value, on the amount 

of daily activity, and on sleep quality and quantity, AID-GM uses a Fitbit 

activity tracker. Finally, information on the subject’s habits, including the 

meal schedule on each day of the week, is asked to the patient directly 

through the AID-GM system interface. Data acquisition requires the 

patient’s collaboration, with a level of commitment that depends on the type 

of data. 

Figure 27: AID-GM architecture 



 

104 
 

Information on the patient’s habits is collected at registration, when the 

patient is asked to fill-in a form to provide, for each day of the week, his/her 

usual time schedule concerning primary meals, snacks, and sleep. This 

information can be modified in case the patient thinks it is necessary. 

As anticipated in Section 2.2.2, the BG data collected by the Freestyle 

Libre system are not stored in a proprietary cloud from which it can be 

downloaded automatically. Thus, BG data should be periodically uploaded 

into AID-GM by the patient, using a dedicated form that takes as input the 

text file produced by the Abbott software. In the application, we 

implemented a File Reader to parse such textual file and extract the contained 

information. Each row in this file describes one event, that can be either a 

BG measurement automatically provided by the sensor, or information 

reported by the patient through the reader. In particular, the reader allows the 

patient to report a specific set of diabetes-related events, which include the 

insulin intake, possible health-related issues (e.g., occurrence of flu), or 

meals. Each event is defined by its time of occurrence and by other attributes 

that depend on the event type. For BG events, the measured BG value is 

specified, while insulin events are characterized by the bolus dosage, as 

inserted by the patient. Health-related events include a textual description of 

the reported issue.  

When the patient registers to AID-GM he/she may also connect his/her 

AID-GM account with his/her Fitbit account, by explicitly authorizing our 

application to download his/her records from the Fitbit cloud. Once the 

patient has given consent to access his/her records, the data coming from 

Fitbit are automatically retrieved from the cloud every night. In particular, 

for each day we download a daily summary of the measured activity, 

reporting the total amount of time in which the patient has been moving. For 

each workout we store start time, intensity, and duration. For each sleep 

record, we memorize the time at which the subject falls asleep, the time 

he/she wakes-up, the amount of time in which the subject was awaken in bed, 

and the amount of time in which the subject’s sleep was restless. The 

subject’s HR profile, that includes one HR measurement per minute, is also 

downloaded and stored in a dedicated DB.  

In AID-GM, the data taggers have a relevant role for contextualizing the 

BG measurements based on the data filled-in by the patient and on the data 

collected by the Fitbit tracker. Taking into account the patient’s habits 

collected at the patient’s registration, data taggers tag each event considering 

the time of day when that event takes place. For example, an event is 

assigned the awakening tag if it occurs between the subject’s usual 

awakening time and his/her usual breakfast time. Other possible tag values 

are after breakfast, before lunch, after lunch, before dinner, after dinner, 

night. The night tag is assigned when the time of occurrence is between the 

subject’s usual bed-time and his/her usual awakening time. The events and 

their tags are stored by the data loaders in a dedicated MySQL database. 

Given the information collected by the Fitbit, the data taggers calculate 

an additional tag for each BG event, to contextualize it within the actual 

patient's activities, as registered by the activity tracker. We will refer to this 



 

tag as the Fitbit tag, to distinguish it from the tag calculated considering the 

habits declared by the patient, which we will refer to as Schedule tag. The 

possible values for the Fitbit tag are sleep, workout, routine, and not used. 

The sleep and workout values are assigned when the BG event occurs during 

a tracked sleep session or during a tracked workout, respectively. The routine 

value is assigned when the event occurs in an instant in which the patient is 

not sleeping and is not training. The not used value is assigned to each event 

occurring when the patient is not wearing the Fitbit tracker. In particular, we 

assume that the subject was not wearing the tracker at a specific time (ti) if 

no HR measurements are available in the interval [t i - 5 minutes ; ti + 5 

minutes]. These tags are used for focusing the analysis on a specific time 

frame. For example, if the user is interested in detecting BG alterations 

occurred during the patient’s sleep, only data having the sleep tag will be 

retrieved from the database by the DB handlers. 

 

Knowledge base and inference engine 

 

AID-GM allows the users to detect in the data a set of qualitative patterns 

that clinicians would manually search for, since they represent behaviors of 

interest to evaluate the patient’s health status. The set of patterns was 

discussed and developed in collaboration with our clinical partners and will 

be described in Section 5.1.2. For example, the set includes hyperglycemia, 

hypoglycemia, and the dawn effect described in Section 2.4.4. For each 

pattern, in the KB we have formalized one JTSA workflow, whose 

parameters were tuned in collaboration with the clinicians. The description 

of the formalized KTSA workflows is provided in Appendix D. 

The sequence of steps for running the domain-specific JTSA workflows 

is not as complex as in the NONCADO system (Chapter 4). Thus, in the KB 

we formalized simple rules for activating the workflows, and we did not need 

to integrate Drools to run them. 

 

User interface 

 

AID-GM provides tools for visualizing and analyzing the collected data, 
and for facilitating the communication between the patient and the 
diabetologists. In particular, Table 22 lists all the available functionalities, 
grouped by type of action, specifying to which user/s they are addressed. 

The system is designed to analyze both individual patients and patients’ 

groups, although the functionalities for analyzing data from multiple patients 

are available only to the clinician. This might help the clinician to monitor 

the patient population, by facilitating the analysis of the huge amount of 

longitudinal data made available by the wearable monitoring devices, which 

would not allow an easy manual identification of critical situations.  
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Table 22: AID-GM functionalities and corresponding users, namely patient (P) or/and clinician (C) 

ACTION FUNCTIONALITY 
USER 

P C 

Set up of the 

AID-GM 

account and 

access 

Access through secure authentication • • 

Request to be registered in a clinical center •  

View and approval of registration request  • 

Set-up and update of daily habits (i.e., time of 

meals, wake-up and bedtime for each day of the 

week) 

•  

Set-up and update of patient-specific thresholds to 

identify glycemic alterations (i.e., hypoglycemia 

and hyperglycemia) and HR alteration (i.e., 

tachycardia and bradycardia). 

 • 

Data upload Upload of BG monitoring data • • 

Consent to download the Fitbit data  •  

Data analysis 

and 

visualization 

Visualization of BG overall time series, daily 

trends, and AGP of one patient 
• • 

Visualization of a summary of the most recent 

hyperglycemic and hypoglycemic episodes  
• • 

Visualization of combined BG and HR daily 

profiles, complemented with information on 

sleep, workout, meal, and insulin intake 

• • 

Visualization of a summary of the physical 

activity in a selected period  
• • 

Visualization of a timeline that shows if the 

patient is regular in terms of sleep and activity 
• • 

Detection and visualization of patterns (Section 

5.1.2) for one patient 
• • 

Detection and visualization of patterns (Section 1) 

for a group of patients 

 
• 

Drill-down to the BG and HR profiles related to 

the time intervals in which a selected pattern 

occurred 

• • 

Visualization of statistics related to pattern 

detection for a group of patients 

 
• 

Visualization of the patients’ list, and list of the 

recently uploaded data 

 
• 

Visualization of patient’s information 

(demographics, contact information, onset date, 

weight, thresholds for BG and HR) 

 

• 

Communication 

between the 

patient and the 

physician 

Request for a consultation •  

Visualization of consultation requests  • 

 
Given the amount of interaction between AID-GM and its users, a lot of 

focus was also given to the graphic interface of the application. In particular, 

AID-GM is integrated with a set of technologies meant to improve the user 

experience in using web applications. For example, AID-GM is integrated 

with Primefaces [204], an open-source library for JSF-based applications 



 

that provides a set of customizable components for web-applications, 

including for example HTML editors, tables, calendars, and search bars with 

auto-completion mechanisms. As regards the data visualization, a JS library 

called AmCharts [205] was used to render the graphs that show the patterns 

detected in the patients’ data. In particular, AmCharts allows to quickly 

implement a rich set of interactive graphs, including line charts, pie charts, 

and bar charts. 

A prototype of the AID-GM application was already available when I 

started working on the AID-GM project. In particular, the functionalities for 

searching for patterns in the patients’ BG data were already implemented. 

During my PhD, I contributed to the integration of the BG data with the 

information on lifestyle collected by the activity tracker and to the deploy of 

the web-application, first to test sites and then to the Policlinico San Matteo 

hospital. 

5.1.2. Domain-specific pattern detection 

In agreement with the diabetologists we have defined a set of 10 

knowledge-based patterns that are relevant for evaluating the diabetes 

outcome. In particular, these represent well-known clinical phenomena, 

which could identify potentially risky situations. Thanks to the Fitbit tag it 

is possible to contextualize the search for patterns within the patient's day 

(e.g. during sleep or workout). 

Out of the 10 formalized patterns, 6 are basic and consist of a specific 

trend in a single variable, that may be either the subject’s BG profile or 

his/her HR profile. Table 23 lists the basic patterns currently available in the 

AID-GM system. For each pattern, the table reports the input data and a 

graphical representation of the behavior of interest. For all the patterns that 

require the comparison of the measured value with a threshold (e.g., 

Hyperglycemia), the used threshold is patient-specific. The threshold values 

for each patient are personalized by the clinician through the system.  

 
Table 23: Basic patterns implemented in AID-GM 

PATTERN 
INPUT DATA GRAPHICAL 

REPRESENTATION BG HR 

Hypoglycemia •  
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Hyperglycemia •  

 

Increasing  

BG value 
•  

 

Decreasing 

BG value 
•  

 

Bradycardia  • 

 

Tachycardia  • 

 

 

We have also implemented Complex patterns, which consist of a 

combination of patterns, potentially extracted from different PGHD time 

series. Among these complex patterns, we have included the dawn effect 

(Section 2.4.4), and the rebound effect, which consists in a hypoglycemic 

episode followed by a rapid increase in the subject’s BG leading to 



 

hyperglycemia. We also defined multivariate patterns that combine HR and 

BG trends. Table 24 lists the complex and/or multivariate patterns currently 

available in the AID-GM system. 

 

Table 24: Complex and/or multivariate implemented in AID-GM 

PATTERN 
INPUT DATA GRAPHICAL 

REPRESENTATION BG HR SLEEP 

Rebound 

Effect 

(hypoglycemia 

followed by 

hyperglycemia) 

•   

 

Dawn Effect 

(normal BG 

value at night 

followed by 

hyperglycemia 

at wake up) 

•  • 

 

Tachycardia 

PRECEDES 

hypoglycemia 

(DURING 

sleep) 

• • (•) 

 

Hypoglycemia 

PRECEDES 

bradycardia 

DURING sleep 

• • • 

 

 

In Appendix D we provide a description of the 10 JTSA workflows 

implemented in AID-GM, complemented with the selected parameter values. 



 

5.1.3. Decision support 

The AID-GM graphical interface guides the users through the process of 
selecting the patients for the analysis, selecting the patterns of interest, the 
time frame of interest, and visualizing the obtained results, i.e., the time 
intervals in which the selected patterns occurred. 

For the individual patient, the possibility of detecting patterns supports 
the diabetologists in understanding the subject’s BG temporal profile and 
in targeting the therapy accordingly. In fact, the visualization of the 
temporal patterns described in Section 5.1.2 (Figure 28) gives a synthetic 
overview of the patient’s metabolic control over a selected time frame.  

 

In Figure 28 each colored bar represents one occurrence of a specific 

pattern, specified by the labels on the left of the graph. By clicking on a 

selected bar, the start time and end time of that occurrence of the pattern are 

provided. For each pattern occurrence, the corresponding colored bar also 

links to the chart for the integrated visualization of the subject’s BG and HR 

profiles related to the time interval of that pattern occurrence. 

The temporal analysis can be focused on specific time frames, such as 

selected days of the week, or moments of the day. For example, the user can 

search for night-time hypoglycemia episodes that occurred during weekends.  

In addition to the functionalities for pattern detection, the AID-GM system 

provides the users with several reports that integrate both the subject’s BG 

profile and the data collected by the activity tracker, summarizing both the 

BG levels and the patient’s lifestyle. These data views are meant to support 

patients and physicians in taking decisions about timely changes of lifestyle, 

diet, or therapy and, more in general, for a more informed disease 

management. In particular, the system provides four main kinds of 

visualizations. First, AID-GM provides combined the subject’s BG and HR 

Figure 28: Visualization of the temporal patterns in AID-GM 



 

daily profiles, supplemented with additional events like sleep start, sleep 

end, workout (with duration), insulin dosage, and meals (Figure 29). The 

upper section of Figure 29 shows an example of such visualization, while the 

lower section shows a detail of the graph, to highlight the icons that convey 

the information on the subject’s lifestyle. The legend of the available icons 

is shown in Figure 30. 

Figure 29: BG and HR daily profiles, supplemented with information on the subject's lifestyle 

 

 

A second visualization provides a summary of the patient’s lifestyle, by 

giving an overview of the activities of the patient over a selected period. The 

time frame of the summary can cover one day, one week, one month, or a 

user-defined period. For each day in the selected time frame, this 

visualization provides the patient’s timeline (Figure 31), where the different 

activities registered by the tracker are represented by colored bars.  

Figure 31: Visualization that provides a summary of the patient’s lifestyle 

Figure 30: Legend of the icons used in the visualization of the BG and HR daily profiles 
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Each type of activity has a different color (i.e., light blue for sleep, yellow 

for workouts, and green for routine), while the grey color indicates the time 

intervals in which the patient was not wearing the Fitbit tracker. The 

visualization of the timelines of different days can easily point out if the 

patient’s lifestyle was regular in terms of sleep and physical activity. This 

visualization is described in this thesis to provide a complete description of 

the AID-GM system, but it was not object of my work. 

A third visualization shows the AGP related to a selected period. The AGP 

is an internationally recognized visual representation that combines BG data 

from multiple days and collates them into a single 24-hour period, to provide 

an <<average>> BG profile over the selected time frame. As for the 

timelines that summarize the patient’s activity, I have not contributed to 

developing the functionality for visualizing the AGP, but it is mentioned in 

this chapter for the sake of completeness. 

In addition to the features dedicated to the individual patient, AID-GM 

allows the clinicians to analyze groups of patients. In particular, it is possible 

to perform the pattern detection on a selected group of patients (Figure 32).  

In this case, the user can select one pattern at a time. The occurrences of 

the selected pattern are represented in a different color for each patient. 

Again, each bar links to the chart for the integrated visualization of the 

subject’s BG and HR profiles related to the time interval of that pattern 

occurrence.  

While on the individual level analyzing the collected PGHD supports the 

diabetologists in targeting care to the specific subject, analyzing groups of 

patients allows the detection of frequent patterns, and the identification of 

sub-groups in the patient population. The functionality for detecting patterns 

in data coming from multiple patients may also allow the clinician to quickly 

identify the individuals who need closer attention. 

 

 

 

 

Figure 32: Example of visualization of patterns when analyzing a group of patients 



 

5.2. Pilot study and results 

The AID-GM system was tested in two phases. In a preliminary test phase, 

the application was deployed locally on a machine running Windows that 

belonged to our clinical partners of the Policlinico San Matteo Hospital and 

the application was accessed only by the clinicians. In this test phase, the 

clinicians used AID-GM to detect patterns in BG data collected from a group 

of volunteers for a technical/functional assessment of the application, and an 

evaluation of the temporal data analysis features.  

In a second test phase, we deployed the application on a server run by the 

Policlinico San Matteo Hospital, and we evaluated the usability of our 

application in a real-world pilot study involving 30 diabetic patients and 3 

members of the health care personnel, namely a diabetologist, a resident, and 

a nurse. 

The following two sub-sections describe the two test phases performed. 

5.2.1. Preliminary tests on volunteers 

The design and development of AID-GM followed an iterative process 

based on a close interaction with the clinicians through periodic meetings. 

During the first iterations, we tested the system as developers, on data 

collected by 4 healthy volunteers, who wore a Freestyle Libre sensor for 2 

weeks in 2016. After the development tests, we deployed the application on 

the clinicians’ laptop, and the testing was performed directly by the 

pediatricians, who evaluated the functionalities of the system during specific 

sessions carried out outside the routine clinical practice. This study allowed 

identifying a number of technical issues, missing functionalities, and 

possible improvements in the existing features of the system. In particular, 

the pediatricians asked us to implement a set of functionalities that were not 

available in the first version of AID-GM, namely: 

• Allow the diabetologist to specify the diabetes onset date in the patient’s 

profile.  

• Integrate the patient’s profile with his/her weight, whose value must be 

updated by the patient every 3 months. 

• Allow the diabetologist to enter/modify/ and visualize the insulin 

therapy prescribed to the patient. 

• Allow to drill down from the pattern visualization (Figure 28) to the 

corresponding BG profile. 

• Allow the patient to request for a consultation, with the possibility of 

indicating which BG data triggered the need for consultation. 

By testing the system, we also realized that the Freestyle Libre system does 

not adhere to the daylight saving time practice, as anticipated in Section 

2.4.1. Thus, we implemented a functionality to correct the dates of the BG 

measurements accordingly. 
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The diabetologists also asked us to improve two existing features, namely 

the patients search settings in the dashboard that show the patients’ profiles 

and in the menus for selecting the patient or groups of patients for pattern 

detection. They also asked us to improve the options for filtering the obtained 

results according to selected timeframes.  

The AID-GM prototype developed during this phase was then evaluated 

by two diabetologists on the data voluntarily provided for the study by 24 

pediatric patients, 12 boys and 12 girls. These patients were aged 3 to 22 

years, showed an average disease duration of 4.2 years (range: [4 days – 15.2 

years]), and provided data for an average of 172.2 days. The evaluation 

aimed at detecting the most clinically relevant BG patterns and tuning the 

parameters needed for their extraction in the JTSA workflows described in 

Section 5.1.2. The physicians used the group analysis functionality to 

examine the patients’ sample. Patterns were searched on the complete 

monitoring period for all the patients. The night-time hypoglycemia pattern 

was found in 20 subjects. The average number of hypoglycemic events per 

patient was 29. Although most subjects had a limited number of events (11 

patients with less than 20 patterns), it was possible to detect recurrent 

episodes in 9 patients. Among these, 2 subjects showed this pattern very 

frequently, with 99 and 162 events in a period of 5 and 7 months, 

respectively. Rebound patterns were detected in 8 subjects, with an average 

number of 2 events per patient. The dawn effect is a clinically relevant 

pattern not easy to be spotted using only paper-based glycemic diaries and, 

even more important, it must be differentiated from hyperglycemia at 

wakeup that may appear in response to night-time hypoglycemia. The dawn 

effect was detected in 6 out of 24 patients, with an average number of 1.84 

patterns per patient. 

5.2.2. Pilot study on the real-world patient population 

The usability of the system has been evaluated in a pilot study carried out 

in collaboration with our clinical partners of the Policlinico San Matteo 

hospital in Pavia, Italy. The study was approved by the Institutional Review 

Board (IRB) of the hospital and involved 30 pediatric patients. 

  

The protocol 
 

We enrolled 30 subjects receiving care at the Policlinico San Matteo 

hospital and already using the Freestyle Libre device for monitoring their 

BG. Through AID-GM, the subjects themselves or their parents, in case of 

patients aged under 18 years, provided their consent to download their Fitbit 

data and use them in the application. The patients were asked to use the 

system to periodically upload their BG data and, if they wanted to, for 

visualizing information related to their BG profile and Fitbit data. After 2 

and 6 months from enrollment, patients were asked to fill-in the System 

Usability Scale [175] questionnaire. For patients aged under 18 years, the 



 

SUS questionnaires were filled in by the parents, whereas patients older than 

18 years old filled in the questionnaires themselves. In terms of care path, 

the patients were treated following the usual clinical practice.  

Besides the patients, also three pediatricians were asked to fill-in the SUS 

questionnaire at the end of the study.  

 
Results and discussion 
 
Out of the 30 patients originally enrolled in the study, 3 were discarded as 

they never login nor uploaded data to the system, leaving us with a sample 

of 27 subjects, including 14 females and 13 males. The mean age was 12 

years (IQR= [8.5; 13.5]). The median duration of the BG monitoring was 97 

days (IQR= [65; 167]). Not all the patients used the activity tracker. In 

particular, 9 out of 27 patients never used the Fitbit tracker. Considering the 

patients who wore it, the median duration of the Fitbit monitoring was 47 

days (IQR= [38; 56]).  

To further characterize the patients’ population, we used AID-GM to 
perform an analysis of the BG profiles through pattern detection. Table 25 
gives a snapshot of the number of BG patterns detected in the dataset. The 
patterns are computed on all the patients taking part in the study. Since 
some of the patients didn’t use the Fitbit tracker, the table doesn’t show 
patterns like the dawn effect and the rebound effect, which require the 
information on sleep to be accurately detected. The table shows that there 
are some patterns that happen more frequently than others in our 

population, and that different patterns have different durations. For example, 

Increasing and Decreasing BG trends are the most frequent out of the 

considered patterns, but the episodes that last longer are the hyperglycemic 

ones. 

 
Table 25: Number and duration of BG patterns detected in the dataset 

PATTERN 
NUMBER. OF 

EPISODES 

AVERAGE EPISODE 

DURATION (MINUTES) 

BG Decreasing 10570 75 (IQR = [45 ; 105]) 

BG Increasing 10892 60 (IQR =[45 ; 91]) 

Hyperglycemia 9673 165 ( IQR = [60;404])  

Hypoglycemia 2555 30 (IQR = [15;75])  

 
For the 17 patients who have been wearing both the FGM and the Fitbit 

devices we also extracted additional patterns, involving BG, HR, and tracked 

sleep. The dawn effect and the rebound effect (see Section 5.1.2) occurred 

rarely in our population. We detected 10 episodes of dawn effect in 7 patients 

and only one episode for the rebound effect.  

To evaluate system use, we analyzed the log files of AID-GM. These files 

include information about the type of action performed by the user, together 
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with the date and time of execution. The available types of actions are login, 

logout, visualize, modify, and find pattern. 

The most frequent action performed by both users was the visualization 

action. This action refers to the several types of visualization available in 

AID-GM (see Section 5.1.3), which include the visualization of BG profiles 

and summaries, the visualization of Fitbit data and summaries, and the 

visualization of patients’ demographic and clinical information. In 

particular, patients were mostly interested into checking their daily BG 

trends. As regards the pediatricians’ actions, we registered several 

visualizations of the patients’ information, and visualizations of daily BG 

and HR trends. They also examined Fitbit summary information, which were 

instead less popular among patients, who probably checked these data 

directly through the Fitbit mobile app. 

The modify action is registered when the user updates the data stored in 

the patient’s account. In this pilot study it has mainly regarded the 

personalization of the patient’s thresholds for detecting hypoglycemia and 

hyperglycemia, that can be performed by the physicians. In particular, we 

registered 19 accesses for setting the threshold for hyperglycemia, and 22 for 

hypoglycemia. As regards the patients’ actions, the registered modify actions 

were related to the personalization of the daily routine habits. In this case, 

we registered about one access for each patient. 

The action related to the analysis of temporal patterns registered 73 

accesses for patients and 45 for physicians, who focused 30 times on the 

functionality for the single patient and 15 times on the extracting patterns on 

a group of patients. The patterns that were most frequently searched for were 

hypoglycemia, with a total of 75 views (23 by physicians and 52 by patients), 

and hyperglycemia, with a total of 54 views (19 by physicians and 35 by 

patients). Interestingly, both patients and physicians used several times the 

functionality that allows searching for multiple patterns to extract all the 

available patterns at once. 

Besides the overall number of actions, we also considered the weekly 

trend, computed by total number of actions for each week of enrollment. This 

analysis showed that the number of actions in the first week was higher than 

the number of actions in the following weeks, both for patients and for 

physicians. In particular, the average number of actions performed by the 

patients in the first week of usage was 22, whereas in the following weeks 

we recorded an average of 1.23, with a standard deviation of 0.7. For 

physicians, the average number of actions in the first week was 89, with a 

decrease to 10 in the following weeks, with a standard deviation of 9.8. Out 

of the 24 weeks of monitoring, 10 patients accessed the system for 10 weeks 

or more (even not consecutive), 6 patients accessed the system between 5 

and 9 weeks, whereas 11 patients accessed the system for less than 5 weeks. 

According to the logs, the pediatricians used the system more during 

weekdays and in the morning, whereas patients have a more uniform 

distribution of usage throughout the week and during the day, with an almost 

equal number of actions in the morning, afternoon, and in the evening. The 

duration of sessions was computed as the time interval between a login and 



 

a logout when the latter was available, and as the time interval between a 

login and the last action before the next login when logout was not available. 

This second case occurs when the user doesn’t perform any action for 30 

consecutive minutes, leading to an automatic logout. The average session 

duration for patients was 7.3 minutes, whereas for physicians it was 9.1 

minutes. Since the first access to the system is performed by the patient 

together with the physician, who trains the new user by illustrating the 

functionalities of the system, we finally evaluate the duration of the first 

session for each patient to have an estimate of the training time. During our 

pilot, the average duration of the training session was 24.3 minutes, with a 

standard deviation of 13.6 minutes. 

During the pilot study we collected some user-reported issues. The most 

frequent were two. First, the inability to upload the BG measurements when 

the patient sets the time in the Freestyle reader incorrectly, causing the 

collected BG measurements to have unreliable temporal tags. In particular, 

in AID-GM unreliable temporal tags are identified by analyzing the history 

of the time changes set by the patient in the reader. The history is collected 

from the file produce by the Abbott software and stored in the DB for future 

reference. For each recorded time change, the file lists the pre-change time 

and the post-change time. If they are more than one hour apart (with a certain 

tolerance), i.e., if the change does not correspond to a daylight saving time 

change (see Section 2.4.1), then AID-GM stops the automatic loading of the 

file and automatically sends us an e-mail indicating the problematic file. In 

that case, we correct the temporal tags of the BG measurements before 

uploading them to the AID-GM system. During the pilot study this issue 

occurred 8 times. Second, the inability to log-in to the personal account for 

entering the wrong password more than 5 times in row, since in that case we 

block the user’s account, considering it an attempt to unauthorized access . 
In addition to analyzing the user-reported issues, the system usability was 

assessed using the SUS questionnaire, which was delivered both to 

physicians and patients. For the patients, the average SUS score at 2 months 

was 82.6, whereas at 6 months we registered a slight decrease in the average 

score, which was 76.4. Both scores are considered above average, being 

above 68, i.e., the threshold conventionally used to evaluate the goodness of 

the SUS result. Although the score remained above average, we investigated 

the obtained results to better explain the reasons for its decrease. First of all, 

from the analysis of the system logs, we observed that 8 patients never used 

the system after two months, despite having completed the SUS 

questionnaire at the end of the study. Considering only the patients who 

performed at least one access after two months of usage, the average SUS 

score at 6 months is 81.3. For 11 patients belonging to this group, the SUS 

score increased or remained stable, whereas for 8 patients we registered a 

decrease in the score. Analyzing the single questions, the one that we found 

most critical was the following: <<I found the various functions in this 

system were well integrated>>. To this question, 7 patients gave a lower 

score after 6 months than at 2 months. Perhaps this question was not entirely 

understood by the patients, because of its technical formulation. Three 



 

118 
 

physicians completed the questionnaire for our study. In this case, we had 

the maximum SUS scores (i.e. 100) for all three. As underlined by the results 

of the SUS questionnaires, in which both clinicians and patients provided 

positive assessments, the AID-GM system was considered user-friendly 

during the real-world pilot study.  

The result conveyed by the SUS scores is particularly positive, 

considering that AID-GM has introduced a significant change in the care 

workflow, for both roles. Previously, the patients used to download the BG 

summaries from the Freestyle system less frequently, usually before the 

check-up visit, to discuss their BG profile with the diabetologist. The 

diabetologist could visualize the graphs produced by the Freestyle Libre 

System, or read the raw data, i.e. the time series of the collected BG 

measures, without having tools to analyze them. During the pilot study, the 

possibility to remotely share raw BG data with the clinician prompted the 

patients to download their BG data more frequently and to upload it  into the 

AID-GM system on a regular basis. For example, one patient systematically 

uploaded data to AID-GM once a week. Thus, the high value of the patients' 

SUS points out that they believe it is worth investing time in uploading data 

to the system to facilitate remote monitoring of their health condition, and 

possibly receive better care. The advantage deriving from the use of the AID-

GM system is even more evident when considering the health care personnel, 

who can gain deeper insights on how the patient’s condition evolves between 

check-ups, contextualizing the observed glycemic profile with the 

information on the patient's lifestyle as collected by the Fitbit activity 

tracker.  

 
 



 

6. Discussion and conclusion 

In this thesis we presented three main contributions. First, we proposed a 

conceptual framework for analyzing time series of PGHD collected from 

wearable and/or environmental sensors. In addition, we presented how we 

applied our framework to design and develop two decision support systems 

for assisting chronic patients. 

This work was motivated by the emerging use of devices for collecting 

PGHD around the clock. As discussed in Section 2.2.2, nowadays wearable 

and environmental sensors are now commonly used for monitoring the 

individual’s health status and lifestyle continuously. This is mostly due to 

the advancement of technologies, which made such devices both easy to use 

and affordable to purchase. As discussed in Section 2.3, although collecting 

time series of PGHD has become easier, systems that perform advanced 

analyzes of such data to provide clinical decision support are still rare.  This 

might be due to the lack of comprehensive guidelines for designing and 

developing such systems. Although on one hand PGHD may be crucial to 

understand what happens to the chronic patient between medical 

appointments, on the other it is known that considering this additional 

information can lead to a longer duration of the patient’s check-up, 

especially when it is not clear for the health care personnel how to interpret 

these data [206]. This consideration applies to all types of PGHD, and 

especially to measurements that are collected automatically at a high 

frequency, such as the BG measurements from CGM or FGM devices. In 

addition, as discussed in Chapter 2, PGHD might show data quality issues, 

which must be evaluated and managed carefully before analyzing the data. 

Since interpreting time series of measurements can be challenging and/or 

time consuming, providing systems able to summarize and guide the 

interpretation of time series of PGHD is crucial to fully exploit the potential 

of such data. 

In the conceptual framework described in this thesis we identified and 

summarized the key steps needed to build applications for analyzing time 

series of PGHD. In our framework we collected considerations that do not 

depend on the clinical domain for which the system is developed. The 

described architecture design and a set of actual software components may 

be used for any application domain. 

With the suggested architecture design, some software components may 

require a significant effort to be implemented. Some existing technological 

solutions could help to standardize the technologies used by the CDSSs for 

analyzing PGHD and to facilitate their implementation. For example, 

recently some platforms for collecting time series of measurements from a 

set of monitoring devices have been proposed. One of the most known is 
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Remote Assessment of Disease And Relapses (RADAR), an open source 

platform developed within a project funded by the Innovative Medicines 

Initiative [207]. The set of sensors supported by RADAR includes the Fitbit 

tracker, and other wearables which collect the subject’s blood volume pulse, 

electro dermal activity, ECG, raw acceleration, heart rate variability, 

respiration rate, and oxygen saturation [208]. Integrating the RADAR 

platform in a CDSS might facilitate the development of the components 

meant for data collection. However, RADAR does not collect those 

parameters that are usually monitored in sick individuals only, such as BG 

monitoring data. Thus, other solutions should be explored to integrate this 

data. Recently, to enable real-time BG data collection from FCGM devices, 

wearable devices for continuously reading FGM measurements have been 

proposed [209, 210]. Such devices must be positioned on the patient’s arm, 

next to the glucose sensor, and can scan it automatically, without requiring 

the patient to use the BG reader (Section 2.2.2). Among these, BluCon [209], 

produced by Ambrosia Systems, an American medical technology company, 

is a small wearable that can connect to the Freestyle Libre sensor using Near 

Field Communication (NFC) and exploits Bluetooth Low Energy for 

transmitting the BG measurements to a dedicated mobile application, that 

visualizes them. Given the growing interest in analyzing time series of 

PGHD, in the near future the same companies that produce FGM sensors will 

likely integrate devices similar to BluCon into their monitoring systems. 

However, as long as FGM systems rely on commercial protocols without 

providing interfaces for downloading data automatically, general purpose 

platforms such as RADAR will be prevented from offering ready-to-use 

functionalities for downloading time series of BG measurements. The same 

consideration holds for non-commercial sensors, such as the environmental 

sensors used in the NONCADO system. Thus, besides platforms similar to 

RADAR, the CDSS should include interfaces for receiving time series of 

measurements from non-commercial sensors or any commercial sensor that 

is not supported by existent platforms for collecting PGHD. In addition, the 

graphical interfaces of JTSA and Drools may facilitate the formalization of 

the knowledge base of a new CDSS, allowing the user to define domain-

specific workflows (in JTSA) or rules (in Drools) through guided procedures, 

without needing to learn the specific languages used by these tools to 

represent the manipulated data. 

We applied our framework in the design and development of two decision 

support systems, namely AID-GM and NONCADO. These two CDSS 

represent two main contributions of this work, since they have specific 

characteristics that make them innovative compared to the systems having 

similar functionalities. In particular, to our knowledge, AID-GM is the first 

application that exploits the Fitbit data on the subject’s sleep and physical 

activity to contextualize his/her BG profile and perform advanced temporal 

analyses. In fact, most systems for analyzing FGM or CGM data do not 

integrate information collected from other sensors, but only provide statistics 

on the subject's glycemic profile, such as the percentage of time in which the 

patient’s BG value remained within the target glycemic range. Another 



 

innovative feature is the possibility to analyze both the individual patient and 

patient groups. On the individual level AID-GM supports the diabetologists 

in better understanding the subject’s BG profile and in targeting care 

accordingly. The functionalities for analyzing groups of patients allow the 

clinicians to detect which clinical patterns occur frequently in the considered 

patient population, and to possibly stratify the population in sub-groups, 

identifying the individuals who need closer attention. 

As regards the NONCADO system, the most innovative feature is the 

exploitation of temporal abstraction for early detection of changes in the 

daily habits of the elderly living alone at home. In fact, significant changes 

in the subject’s daily habits may correspond to a decline in his/her health 

condition and, consequently, to an increase in his/her risk of falling and/or a 

decrease of his/her ability to live without assistance. Giving the elderly the 

possibility to live independently for as long as it is safe is fundamental, since 

it is known that they prefer to age within their own home [211]. When this 

is not possible, it seems that the elderly prefers to live in homelike care 

facilities, i.e., small centers that recreate a private household, rather than in 

traditional nursing homes, which are organized similarly to a hospital [212]. 

In addition to the aversion to moving, the individuals who are used to living 

alone prefer not to live with other people, either family members or non-

relatives, even as they age [213]. Thus, systems like NONCADO may 

support the subject’s family that lives remotely, helping to monitor the 

elderly and detect potential changes that may indicate that his/her condition 

is declining and that he/she may no longer be able to live alone. The 

NONCADO system differs from the known CDSSs for preventing or 

managing falls. In fact, most of the systems focus on supporting the subject 

and his/her family after the occurrence of the fall event, possibly forwarding 

requests for assistance to medical personnel. Other systems detect potential 

changes in the subject's health condition by evaluating his/her performance 

in programmed exercises that he/she would not do spontaneously. Thus, the 

elderly may perceive the proposed programmed exercises as a constraint in 

his/her daily routine. As a consequence, he/she may not be compliant and 

may not complete the exercises on a daily basis. We believe that the elderly 

may more easily accept to be monitored by CDSSs that detect changes in 

his/her habits, without requiring him/her to perform tasks that are not already 

included in his/her daily routine. 

As the previous descriptions suggest, AID-GM and NONCADO were 

designed and developed for very different clinical domains. Nevertheless, 

the two CDSSs share the same approach to perform data analysis and 

knowledge extraction. In particular, the fact that JTSA could be used in both 

use-cases to perform KBTA emphasizes how this tool is flexible and re-

usable in a heterogenous set of contexts. We believe that other researchers 

may be interested in exploiting JTSA in their CDSSs for analyzing time 

series of PGHD. Therefore, in this work we aimed to provide an overall 

picture on how this can be done, by providing a useful introductory reading 

for any researchers interested in exploiting JTSA to provide decision support 

in a different clinical domain. To provide a general guideline, we focused on 
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the methodological aspects of the proposed framework and of the two 

CDSSs, rather than on the implementation details, which must be evaluated 

separately for the specific application. Thus, when describing our two 

CDSSs we focused on clarifying the behaviors of interest which were 

searched for in the collected PGHD, the clinical motivations underlying their 

relevance, and how their detection contributed in providing decision support.  

In conclusion, we believe that reading this thesis may help researchers to 

assess which challenges they will encounter in developing their own 

application for analyzing PGHD, and which components need to be 

developed to overcome them. The proposed framework is not binding: it is 

not mandatory to use JTSA to perform KBTA; to exploit JTSA in a CDSS, 

it is not mandatory to adhere to all the solutions herein presented. However, 

following our suggestions when designing a new application may be useful. 

In particular, it may allow saving time by re-using both design choices that 

were already tested in applications deployed in real-world clinical 

environments, and a set of actual software components, that are independent 

of the purpose of the CDSS. We believe that this possibility may enhance the 

development of CDSS for analyzing PGHD, allowing researchers to focus 

on building the unique features of their CDSSs, leveraging on the design we 

experimented in the AID-GM and NONCADO projects. 
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AGP Average Glucose Profile 

AID-GM Advanced Intelligent Distant – Glucose Monitoring 

AUC Area Under The receiver operating characteristic Curve 

BG Blood Glucose 

CCPP Casa di Cura Privata del Policlinico (Hospital in Milan, in Italy)  

CDC Centers for Disease Control and Prevention  

CDSS Clinical Decision Support System 

CGM Continuous Glucose Monitoring 

DST Daylight Saving Time 

FGM Flash Glucose Monitoring 
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HR Heart Rate 
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KB Knowledge Based 
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MCC Matthews correlation coefficient 

NA Not Available 

NPV Negative Predictive Value 
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PIR Passive InfraRed 
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SP Specificity 



 

140 
 

SQL Structured Query Language 
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TA Temporal Abstraction 

TI Time Interval 
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WHO World Health Organization 
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Appendix A   

Computing the subject’s risk of falling in the NONCADO 
system 

This appendix describes how we computed the subject’s risk of falling in 

the NONCADO system. First, we performed a literature search for models 

able to estimate the risk of falling of the target users of the NONCADO 

system, i.e., the non-hospitalized elderly living alone at home. The first sub-

section of this appendix describes the models identified in this literature 

review and how they were used for computing the risk score. 

We then tested the concordance of the different models in assessing the 

fall risk of a small set of patients aged over 60 years receiving care at the 

CCPP hospital, and of a simulated patient population. The results of this 

analysis are described in the second subsection of this appendix. 

Recently, our clinical partners provided us with the observed outcome 

(i.e., fallen/not fallen) collected during a 9 months follow-up study 

performed on the same patient population considered in the model 

concordance analysis. Thus, we evaluated the performance of the models on 

this population by comparing their predictions with the observed outcome. 

The results of this analysis will be described in the third sub-section of this 

appendix. 

 

The models  

 

Nine models for predicting the risk of falling in the elderly living alone 

were found in the literature. The characteristics of the identified models are 

summarized in Table 26. The first column (model) provides the reference to 

the publication illustrating the model, and specifies the type of model, which 

can have one among three possible values, namely rules (R), checklist (C), 

or logistic regression (L). A rule-based model assigns a risk level according 

to a specific set of rules that can be derived from a classification tree. In a 

checklist model the subject’s risk score is computed as a weighted sum of a 

specific set of risk factors. Based on the final score and a set of thresholds, 

the subject is then assigned a fall risk level. The logistic regression type can 

be considered as a subclass of checklist models, where the risk level is 

computed according to the results of a multivariate logistic regression. The 

weights for the variables included in the model are provided by the estimated 

regression coefficients. For each model, the table provides the following 

information: the characteristics of the population to which the model is 

applicable (column eligibility), the list of the variables included in the model 

(column variables), complemented with the variable weights when 

applicable, and the way in which the model assigns the subject a risk 

score/label (column scoring type).  
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After considering eligibility criteria, Model 3 was left out from further 

analyses, since it excludes patients with fall history, who are the main target 

of the NONCADO system. 

 
Table 26: Models for predicting the risk of falling in the elderly living at home. 

MODEL ELIGIBILITY VARIABLES SCORING TYPE 

1.  

Type: C 

Ref: 

[195] 

Adult people 

with 

neurological 

problems. 

Cardiovascular disease (2), 

falls in the last year (3), 

qualitative evaluation of the 

walking capability (2-6), 

overestimation of walking 

ability (7) 

Range: 0-18 

Levels:  

High (score > x*);   

Low (score <x*) 

2. 

Type: C 

Ref: 

[191] 

 

Age >= 60 

years, 

expected life 

>=6 months 

Cognitive problems (1), 

impulsivity /confusion (1), 

qualitative evaluation of the 

walking capability (1-2), falls 

in the last year (1), anxiolytic 

therapy (1) or antidepressant 

therapy (1) 

Range:  0-7 

Levels: 

0% (score=1); 

10% (score=2); 

23% (score=3); 

45%(score=4); 

62%(score =5); 

82%(score 6); 

100%(score =7) 

3. 

Type: R 

Ref: 

[196] 

Age >= 65 

years, no fall 

history, able to 

walk alone for at 

least 30 seconds.  

Diet, age, BMI, fat mass 

index, visual or hearing 

problems, balance alterations, 

foot diseases 

Rule-based levels:  

At risk; 

Not at risk  

 

4. 

Type: C 

Ref: 

[194] 

Age > 70 years, 

no neurological 

diseases 

Depression (male:4, 

female:2), falls in last year 

(male:6, female:4), reduced 

grip strength (male:6, 

female:4), postural sway 

abnormalities (male:7, 

female:5) 

Range: 0-23 

Levels: 

High (score > 13); 

Moderate  

(8<= score <= 13); 

Low (score < 8) 

5. 

Type: R 

Ref: 

[188] 

Female aged 

over 65 years, 

need for gait 

assistance 

Falls in last year, qualitative 

evaluation of the walking 

capability, need for 

assistance in daily activities, 

BMI, reduced knee muscle 

strength, low gait speed 

Rule-based calculation 

of fall probability 

6. 

Type: L 

Ref: 

[190] 

Age>65 years, 

having history 

of falls  

Age, qualitative evaluation of 

the walking capability, fear 

of falling, orthostatic 

hypotension 

Fall probability 

according to the 

regression model 

7.  

Type: C 

Ref: 

[192] 

 

Age>65 years Falls in last year (5), urinary 

incontinence (3), visual 

impairment (4), need for 

assistance in daily living (3) 

Range: 0-15 

Levels: 

High (score > x*); Low 

(score <x*) 



 

*in the referenced paper, the authors show results for different threshold 
values 

 

As a first attempt to integrate the different models, we considered those 

that provide a binary prediction, either High/Low or At risk/Not at risk. We 

considered High comparable to At risk, and Low comparable to Not at risk. 

Thus, we assigned the label (either High/At risk or Low/Not at risk) that was 

most often predicted. 

 

Analysis on model concordance 

 

Our medical partner provided us with a retrospective dataset of 123 

patients having history of falls. Unfortunately, this real dataset did not 

contain all the variables necessary for running all the models described in 

Table 26. Nevertheless, 112 patients presented all the data necessary to apply 

models 2, 7 and 9, thus the real-world dataset could be used to compare these 

three models. To be able to test all the models, we used a simulation 

approach. We generated a population of 100000 subjects, aged between 65 

and 85 years, by sampling variable values according to their probability 

distribution. Those distributions were derived from the literature, namely 

from the papers presenting the 9 models, from reviews[214], and from our 

real-world dataset. Moreover, the generation of simulated patients 

considered obvious constraints, to avoid, for example, generating a case 

where the measured walking capability is normal and the subjective 

overestimation of walking ability is TRUE, or a case where Antidepressant 

drug is TRUE, and Depression is FALSE. 

In addition to a set of descriptive statistics, to assess the concordance of 

the models in rating the patient’s risk we used the Cohen Kappa (k) , a metric 

for testing the concordance of all the possible pairs of models[215]. We also 

computed the Fleiss (F) coefficient, which is the extension of the Cohen k to 

the case of multiple raters or, in our case, multiple applicable models [216]. 

Well-accepted thresholds for k are shown in Table 27 which also provides 

the corresponding interpretation in terms of model agreement. Thresholds 

for the Fleiss coefficient are shown in Table 28. 

8. 

Type: C 

Ref: 

[193] 

Age>65 years Falls in last year (4; 6 if 

afraid to fall), dizziness (4), 

need for assistance in daily 

living (3), low grip strength 

(3), weight (2), fear of falling 

(2; 4 if previous falls), pets 

(2), education (1), alcohol (1) 

Range: 0-31 

Levels:  

High (score > x*);      

Low (score <x*) 

 

9. 

Type: C 

Ref: 

[189] 

Age > 65 years Impulsivity/confusion (4), 

depression (2), urinary 

incontinence (1), dizziness 

(1), male (1), antiepileptic 

therapy (2), benzodiazepine 

therapy (1), difficulty in 

getting up from chair (1-4) 

Range: 0-16 

Levels: 

High (score >= 5); 

Low (score < 5) 
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Table 27: Interpretation of the k coefficient 

RANGE AGREEMENT 

k <= 0 No agreement 

[0 ; 0.2] Poor agreement 

[0.21 ; 0.4] Fair agreement 

[0.41 ; 0.6] Moderate agreement 

[0.61 ; 0.8] Substantial agreement 

[0.81 ; 1] Almost perfect agreement 

 
Table 28: Interpretation of the Fleiss coefficient 

RANGE AGREEMENT 

F <= 0.4 Poor agreement 

[0.4 ; 0.75] Intermediate/Good agreement 

F > 0.75  Excellent agreement 

 

As a first analysis on the simulated dataset, for each model we computed 

the percentage of eligible patients and the percentage of patients considered 

at high risk by the model (Table 29).  

 
Table 29: Fall risk classification per model 

MODEL 1* 2 4* 5* 6 7 8 9 

% ELIGIBLE 

CASES 

16.4 100 64.3 40.0 100 100 100 100 

% PATIENTS 

AT HIGH 

RISK 

67.1    24.4     1.7    13.7   20.3   28.6    79.4    45.9 

*Models 1, 4 and 5 have specific eligibility criteria 
 

The table shows that, even excluding models with very specific eligibility 

criteria, the model behaviour was quite different. On average, 6 out of the 8 

models were applicable to each patient. As anticipated, each model predicts 

(i.e., votes for) a risk category. Thus, for each patient we considered the 

following variables: 

np= number of models that can be applied to the patient,  

n1= number of models voting for high risk, 

n0= number of models voting for low risk, 

with np=n1+n0. 

Given n1 and n0, the patient can be assigned a label, specifically high risk 

(when n1>n0), low risk (when n1<n0), none (when n1=n0). To assess the label 

reliability, we calculated the absolute quantity |n1 - n0|, i.e. a measure of the 

advantage of that label with respect to the other one. Such indicator will be 

always 0 for patients being assigned the none label. The average advantage 

was 2.65 (±1.7). Then we excluded the cases having the none label (i.e., 11% 

of the sample), and we computed, for patients classified at high or low risk, 



 

the supporter models ratio, ranging 0-1, i.e. the number of models assigning 

that label divided by the number of models applicable to the patient. The 

average supporter models ratio was 0.74 (±0.13). Thus, when an informative 

label is assigned, we can say that its support is on average satisfactory.  

Moreover, to formally assess the concordance of the models in rating the 

patient’s risk, we computed the Cohen k for all the possible pairs of models, 

listed in Table 30. In the table, darker grey intensity indicates lower k level. 

According to the obtained k values, the best achieved concordance is fair. In 

particular, the k values obtained on the simulated dataset ranged from -

0.0045 to 0.3, with a mean value of 0.085. Models 5 and 7 were the most 

concordant with a k value of 0.3.  

 
Table 30: Cohen k for each pair of models when applied to the simulated dataset 

MODELS 1 2 4 5 6 7 8 9 

1 - 0.24 0 0.07 0.11 0.033 -0.004 0.001 

2 - - 0.26 0.20 0.07 0.24 0.05 0.24 

4 - - - 0.24 0.005 0.03 0.008 0.008 

5 - - - - 0.003 0.30 0.05 0.003 

6 - - - - - 0.0006 -0.0004 -0.001 

7 - - - - - - 0.11 0.03 

8 - - - - - - - 0.06 

9 - - - - - - - - 

 

We found 5 models that were applicable to all the simulated patients. 

Considering the predictions of these models, we computed the Fleiss 

coefficient, which was negative, indicating lack of concordance, as expected 

from the obtained paired k values. 

We then performed the model concordance analysis on the real-world 

dataset. As mentioned, only 3 models (i.e., Model 2, 7, and 9) could be 

compared using this dataset. The results in terms k coefficient are shown in 

Table 31. 

 

 
Table 31: Cohen k for each pair of models when applied on the real-world dataset 

MODELS 2 7 9 

2 - 0.31 0.43 

7 - - 0.18 

9 - - - 

 

We also computed the Fleiss coefficient, which was negative, confirming the 

poor/fair agreement among the models.  

The experiments described in the section highlight the difficulty in 

stratifying the non-hospitalized elderly according to their risk of falling. 

Further work is needed to analyse potential factors influencing the model 

agreement level. 



 

146 
 

Analysis on model accuracy 

 

As anticipated, for each model that was applicable to the real-world 

dataset (i.e., Model 2, 7, and 9) we compared its predictions with the patients’ 

follow-up outcome (either fallen or not fallen), collected in a 9-months 

follow-up study performed by our clinical partners. In particular, we 

computed a set of performance indicators, including accuracy, Matthews 

correlation coefficient (MCC), sensitivity (SE), specificity (SP), positive 

predictive value (PPV), negative predictive value (NPV), and area under the 

receiver operating characteristic curve (AUC). For each model, we compared 

the obtained indicator values with those reported by the authors of the model, 

when available. For each model, we adapted the timeframe of the analysis to 

the duration of the follow-up studies described performed by the authors of 

the model. In particular, we considered the entire follow-up period for 

models 1 and 2, and only the first follow-up month for model 3. Table 32 

shows the obtained performance indicators, and the performance of the 

majority classifier (MC) on the same dataset. The performance indicators 

reported by the authors of the model are shown in brackets when available, 

while NA is used when they were not available. 
 

Table 32: Predictive performances observed by applying the three models and a majority classifier 
to the CCPP dataset. NA = not available. 

INDICATO

R 

MODEL 1 MODEL 2 MODEL 3 MC 

Accuracy 

MCC 

0.62 (NA) 

0.21 (NA) 

 

0.67 (NA) 

0.31 (NA) 

0.51 (NA) 

0.05 (NA) 

 

0.63  

NA  
AUC 0.69 (0.79) 0.69 (0.65) 0.59 (0.71) 0.5  

SE  

SP 

0.59 (NA) 

0.63 (NA) 

0.62 (NA) 

0.7 (NA) 

0.56 (0.86) 

0.51 (0.43) 

0  

1  
PPV 

NPV 

0.48 (NA) 

0.73 (NA) 

0.56 (NA) 

0.75 (NA) 

0.17 (0.11) 

0.86 (0.97) 

NA  

0.63 

 

The receiver operating characteristic curves of the three models are shown 

in Figure 33. 

 

 
Figure 33: Receiver operating characteristic curves obtained by applying the three models to the 
real-world dataset. 

As shown in Table 32, although models 2 and 7 performed better than the 

majority classifier, the overall performance is poor. This may be due to 

ignoring informative clinical variables (e.g., walking speed, specific clinical 

tests) that are not included in these three models, that are targeted (or 



 

applicable) to non-hospitalized patients. On the basis of these results, the 

need for developing more accurate models became apparent. Further work is 

needed to integrate the model predictions with variables that can be collected 

from the patient’s medical record and with monitoring data, to build a 

comprehensive risk score for the individual subject 

 

 



 

Appendix B  

Representation of the living lab in NONCADO 

This appendix contains the JSON document that describes the planimetry 

of the pilot site in terms of the sensors located in each room.  



 

The environment is composed of two rooms. The first room is a Kitchen, 

equipped with two raspberries. One raspberry (R1) is connected with one 

motion (M) sensor and one sensor (type: T-H) that collects both temperature 

and humidity measurements. The other raspberry (R3) is connected with 

three sensors: 

• One motion sensor with context-id equal to Generic, that monitors 

movement within the room. 

• One motion sensor with context-id equal to Sink, that monitors movement 

in the area close to the sink. 

• One sensor that monitors temperature and humidity in the area close to 

the stove.  

The second room is the bedroom. It is equipped with one raspberry (R2), 

having four connections: 

• Two motion sensors (connected at the first and third pin) with context-id 

equal to Generic, that monitor movement within the room. 

• One sensor with context-id equal to Generic that monitors temperature 

and humidity within the room. 

• The pressure mats located under the bed mattress (sensor-type-id = P, 

context-id=Bed). 
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Appendix C 

Details on the results of the NONCADO pilot study 

This appendix contains the tables that report in detail the activities 

performed by the patients enrolled in the NONCADO system pilot study. 

 

Test use case 1 (Resting in bed) 

 

For each repetition, Table 33 reports the date, the identifier of the patient, 

and the start time and end time of each activity that composes the test use 

case (ACTIVITY WITHIN THE TEST USE CASE column). The ACTIVITY 

DETECTED column reports whether the CDSS detected that activity 

successfully (OK) or not (NO). The TEST USE CASE DETECTED column 

reports whether the CDSS detected the test use case successfully or not. If at 

least one of the sub-activities is not properly detected, the test use case is not 

considered to be properly detected. Errors are highlighted in grey. 

 
Table 33: Results of the pilot study on the NONCADO system, test use case 1 (Resting in bed) 

DATE SUBJECT ACTIVITY WITHIN THE 

TEST USE CASE 

ACTIVITY 

DETECTED 

TEST USE 

CASE 

DETECTED 

04/09/2018 

S1 

LYING IN BED (9:14:01- 

9:17:52) 

OK 

OK 
LYING IN BED (9:18:58- 

9:21:59) 

OK 

S2 

LYING IN BED (9:58:29- 

10:01:35) 

OK 

OK 
LYING IN BED (10:03:32- 

10:06:38) 

OK 

S3 

LYING IN BED (10:39:52- 

10:42:14) 

OK 

OK 
LYING IN BED (10:43:06- 

10:45:50) 

OK 

05/09/2018 

S4 

LYING IN BED (9:07:47- 

9:10:38) 

OK 

OK 
LYING IN BED (9:11:42- 

9:14:44) 

OK 

S5 

LYING IN BED (9:40:34- 

9:44:07) 

OK 

OK 
LYING IN BED (9:45:21- 

9:48:22) 

OK 

S6 

LYING IN BED (10:11:27- 

10:14:27) 

OK 

OK 
LYING IN BED (10:15:41- 

10:18:49) 

OK 

S7 

LYING IN BED (10:48:08- 

10:51:06) 

OK 

OK 
LYING IN BED (10:52:26- 

10:55:18) 

OK 



 

S8 

LYING IN BED (11:06:43- 

11:09:22) 

OK 

OK 
LYING IN BED (11:10:44- 

11:13:44) 

OK 

06/09/2018 

S1 

LYING IN BED (9:10:18- 

9:13:34) 

OK 

OK 
LYING IN BED (9:14:34- 

9:17:52) 

OK 

S2 

LYING IN BED (9:50:00- 

9:53:57) 

OK 

OK 
LYING IN BED (9:55:10- 

9:59:28) 

OK 

S3 

LYING IN BED (10:37:50- 

10:40:50) 

OK 

OK 
LYING IN BED (10:42:00- 

10:45:00) 

OK 

07/09/2018 

S4 

LYING IN BED (10:13:46- 

10:16:50) 

OK 

OK 
LYING IN BED (10:17:58- 

10:21:05) 

OK 

S5 

LYING IN BED (9:41:19- 

9:44:58) 

OK 

OK 
LYING IN BED (9:46:07- 

9:49:45) 

OK 

S6 

LYING IN BED (11:15:18- 

11:18:31) 

OK 

OK 
LYING IN BED (11:19:38- 

11:23:18) 

OK 

S7 

LYING IN BED (9:09:57- 

9:11:11) 

OK 

OK 
LYING IN BED (9:12:14- 

9:15:28) 

OK 

S8 

LYING IN BED (10:44:18- 

10:47:33) 

OK 

OK 
LYING IN BED (10:48:42- 

10:51:51) 

OK 

10/09/2018 

S10 

LYING IN BED (9:26:29- 

9:29:50) 

OK 

OK 
LYING IN BED (9:31:02- 

9:34:18) 

OK 

S11 

LYING IN BED (10:15:23- 

10:18:53) 

OK 

OK 
LYING IN BED (10:20:18- 

10:23:46) 

OK 

S12 

LYING IN BED (10:55:21- 

10:59:34) 

OK 

OK 
LYING IN BED (11:01:07- 

11:05:00) 

OK 

S13 

LYING IN BED (11:37:29- 

11:40:49) 

OK 

OK 
LYING IN BED (11:42:03- 

11:45:22) 

OK 

12/09/2018 

S14 

LYING IN BED (9:15:46- 

9:19:08) 

OK 

OK 
LYING IN BED (9:20:10- 

9:23:23) 

OK 

S15 
LYING IN BED (9:52:47- 

9:56:27) 

OK 
OK 
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LYING IN BED (9:57:31- 

10:00:53) 

OK 

S16 

LYING IN BED (10:29:28- 

10:32:50) 

OK 

OK 
LYING IN BED (10:34:03- 

10:37:21) 

OK 

S17 

LYING IN BED (11:07:21- 

11:10:49) 

NO 

NO 
LYING IN BED (11:11:51- 

11:15:22) 

OK 

13/09/2018 

S10 

LYING IN BED (10:26:08- 

10:29:27) 

OK 

OK 
LYING IN BED (10:30:42- 

10:34:14) 

OK 

S11 

LYING IN BED (11:14:22- 

11:17:41) 

OK 

OK 
LYING IN BED (11:18:56- 

11:22:16) 

OK 

S12 

LYING IN BED (9:50:10- 

9:53:58) 

OK 

OK 
LYING IN BED (9:55:10- 

9:58:57) 

OK 

S13 

LYING IN BED (9:02:41- 

9:05:59) 

OK 

OK 
LYING IN BED (9:07:02- 

9:10:19) 

OK 

14/09/2018 

S14 

LYING IN BED (9:08:30- 

9:11:30) 

OK 

OK 
LYING IN BED (9:12:30- 

9:15:30) 

OK 

S15 

LYING IN BED (10:48:55- 

10:52:14) 

OK 

OK 
LYING IN BED (10:53:14- 

10:56:38) 

OK 

S16 

LYING IN BED (9:38:35- 

9:41:58) 

OK 

OK 
LYING IN BED (9:42:58- 

9:46:10) 

OK 

S17 

LYING IN BED (10:17:10- 

10:20:22) 

OK 

OK 
LYING IN BED (10:21:22- 

10:24:33) 

OK 

 

Test use case 2 (Resting in bed with getting up) 

 

For each repetition, Table 34 reports the date, the identifier of the patient, 

and the start time and end time of each activity that composes the test use 

case (ACTIVITY WITHIN THE TEST USE CASE column). The ACTIVITY 

DETECTED column reports whether the CDSS detected that activity 

successfully (OK) or not (NO). The TEST USE CASE DETECTED column 

reports whether the CDSS detected the test use case successfully or not. If at 

least one of the sub-activities is not properly detected, the test use case is not 

considered to be properly detected. Errors are highlighted in grey. 

 



 

Table 34: Results of the pilot study on the NONCADO system, test use case 2 (Resting in bed with 
getting up) 

DATE SUBJECT ACTIVITY WITHIN THE  

TEST USE CASE 

ACTIVITY 

DETECTED 

TEST USE 

CASE 

DETECTED 

04/09/2018 

S1 

LYING IN BED (9:23:04-

9:25:56) 

OK 

OK ABSENCE (9:26:24-9:26.55) OK 

SITTING ON THE BED 

(9:27:12- 9:29:10) 

OK 

S2 

LYING IN BED (10:07:58-

10:11:39) 

OK 

OK 
ABSENCE (10:11:49-

10:13:38) 

OK 

SITTING ON THE BED 

(10:13:57- 10:15:36) 

OK 

S3 

LYING IN BED (10:47:09-

10:50:16) 

OK 

NO 
ABSENCE (10:50:27-

10:51:10) 

OK 

SITTING ON THE BED 

(10:51:16- 10:53:07) 

NO 

05/09/2018 

S4 

LYING IN BED (9:15:48- 

9:18:06) 

OK 

OK ABSENCE (9:18:16-9:19:19) OK 

SITTING ON THE BED 

(9:19:29- 9:21:30) 

OK 

S5 

LYING IN BED (9:49:27- 

9:51:58) 

OK 

OK ABSENCE (9:52:18-9:53:28) OK 

SITTING ON THE BED 

(9:53:38- 9:55:45) 

OK 

S6 

LYING IN BED (10:20:18-

10:22:35) 

OK 

OK 
ABSENCE (10:22:55-

10:24:03) 

OK 

SITTING ON THE BED 

(10:24:13- 10:26:15) 

OK 

S8 

LYING IN BED (11:23:06-

11:25:13) 

OK 

OK 
ABSENCE (11:25:23-

11:26:25) 

OK 

SITTING ON THE BED 

(11:26:34- 11:28:40) 

OK 

06/09/2018 

S1 

LYING IN BED (9:31:34- 

9:34:05) 

OK 

OK ABSENCE (9:34:30-9:35:40) OK 

SITTING ON THE BED 

(9:36:11- 9:38:36) 

OK 

S2 

LYING IN BED (10:06:40-

10:09:55) 

OK 

OK 
ABSENCE (10:10:30-

10:11:40) 

OK 

SITTING ON THE BED 

(10:11:54- 10:13:54) 

OK 

S3 

LYING IN BED (10:51:26-

10:53:26) 

OK 

OK 
ABSENCE (10:53:35-

10:54:35) 

OK 

SITTING ON THE BED 

(10:54:50- 10:56:50) 

OK 

07/09/2018 S4 
LYING IN BED (10:27:57-

10:30:02) 

OK 
OK 
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ABSENCE (10:30:16-

10:31:18) 

OK 

SITTING ON THE BED 

(10:31:27- 10:33:28) 

OK 

S5 

LYING IN BED (9:59:44- 

10:02:14) 

OK 

OK 
ABSENCE (10:02:36-

10:03:40) 

OK 

SITTING ON THE BED 

(10:03:57- 10:05:42) 

OK 

S6 

LYING IN BED (11:32:40-

11:36:21) 

OK 

OK 
ABSENCE (11:36:34-

11:37:44) 

OK 

SITTING ON THE BED 

(11:37:55- 11:40:21) 

OK 

S7 

LYING IN BED (9:25:40- 

9:27:54) 

OK 

OK ABSENCE (9:28:07-9:29:17) OK 

SITTING ON THE BED 

(9:29:35- 9:31:37) 

OK 

S8 

LYING IN BED (10:59:41-

11:02:07) 

OK 

OK 
ABSENCE (11:02:21-

11:03:26) 

OK 

SITTING ON THE BED 

(11:03:39- 11:05:39) 

OK 

10/09/2018 

S10 

LYING IN BED (9:45:31- 

9:47:57) 

OK 

OK ABSENCE (9:48:08-9:49:15) OK 

SITTING ON THE BED 

(9:49:29- 9:51:34) 

OK 

S11 

LYING IN BED (10:31:17-

10:33:32) 

OK 

OK 
ABSENCE (10:33:40-

10:35:03) 

OK 

SITTING ON THE BED 

(10:35:09- 10:37:15) 

OK 

S12 

LYING IN BED (11:15:16-

11:18:36) 

OK 

OK 
ABSENCE (11:19:06-

11:20:11) 

OK 

SITTING ON THE BED 

(11:20:38- 11:22:46) 

OK 

S13 

LYING IN BED (11:53:03-

11:55:26) 

OK 

OK 
ABSENCE (11:55:40-

11:56:47) 

OK 

SITTING ON THE BED 

(11:57:00- 11:59:03) 

OK 

12/09/2018 

S14 

LYING IN BED (9:34:57- 

9:37:11) 

OK 

OK ABSENCE (9:37:16-9:38:19) OK 

SITTING ON THE BED 

(9:38:26- 9:40:29) 

OK 

S15 

LYING IN BED (10:11:18-

10:13:29) 

OK 

OK 
ABSENCE (10:13:38-

10:14:41) 

OK 

SITTING ON THE BED 

(10:14:47- 10:16:50) 

OK 

S16 
LYING IN BED (10:45:45-

10:48:13) 

OK 
OK 



 

ABSENCE (10:48:24-

10:49:31) 

OK 

SITTING ON THE BED 

(10:49:46- 10:51:50) 

OK 

S17 

LYING IN BED (11:24:44-

11:24:56) 

OK 

OK 
ABSENCE (11:27:05-

11:28:09) 

OK 

SITTING ON THE BED 

(11:28:18- 11:30:20) 

OK 

13/09/2018 

S10 

LYING IN BED (10:43:22-

10:45:42) 

OK 

OK 
ABSENCE (10:45:53-

10:47:06) 

OK 

SITTING ON THE BED 

(10:47:12- 10:49:22) 

OK 

S11 

LYING IN BED (11:30:38-

11:32:54) 

OK 

OK 
ABSENCE (11:33:02-

11:34:12) 

OK 

SITTING ON THE BED 

(11:34:21- 11:35:25) 

OK 

S12 

LYING IN BED (10:08:18-

10:11:19) 

OK 

OK 
ABSENCE (10:11:33-

10:12:42) 

OK 

SITTING ON THE BED 

(10:12:49- 10:14:54) 

OK 

S13 

LYING IN BED (9:18:55- 

9:21:14) 

OK 

OK ABSENCE (9:21:22-9:22:26) OK 

SITTING ON THE BED 

(9:22:34- 9:24:38) 

OK 

14/09/2018 

S14 

LYING IN BED (9:25:15- 

9:27:15) 

OK 

OK ABSENCE (9:27:26-9:28:26) OK 

SITTING ON THE BED 

(9:28:39- 9:30:39) 

OK 

S15 

LYING IN BED (11:05:50-

11:08:12) 

OK 

OK 
ABSENCE (11:08:24-

11:09:24) 

OK 

SITTING ON THE BED 

(11:09:35- 11:11:35) 

OK 

S16 

LYING IN BED (9:52:06- 

9:54:19) 

OK 

OK ABSENCE (9:54:30-9:55:30) OK 

SITTING ON THE BED 

(9:55:39- 9:57:39) 

OK 

S17 

LYING IN BED (10:32:46-

10:35:05) 

OK 

OK 
ABSENCE (10:35:20-

10:36:40) 

OK 

SITTING ON THE BED 

(10:36:48- 10:38:55) 

OK 

 

Test use case 3 (Cooking) 

 

For each repetition, Table 35 reports the date, the identifier of the patient, 

and the start time and end time of the cooking activity. The CDSS column 
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reports whether the CDSS detected that activity successfully (OK) or not 

(NO). Errors are highlighted in grey. 

 
Table 35: Results of the pilot study on the NONCADO system, test use case 3 (Cooking) 

DATE SUBJECT TIME 

INTERVAL 

CDSS 

04/09/2018 

S1 9:34:03- 9:41:05 OK 

S2 10:17:02- 10:21:06 OK 

S3 10:54:50- 10:59:35 OK 

05/09/2018 

S4 9:22:42- 9:28:09 OK 

S5 9:56:52- 10:00:46 OK 

S6 10:27:07- 10:35:06 OK 

S8 11:14:55- 11:20:26 OK 

06/09/2018 

S1 9:22:02- 9:29:30 OK 

S2 10:00:40- 10:05:20 OK 

S3 10:46:02- 10:51:05 OK 

07/09/2018 

S4 10:22:26- 10:25:27 OK 

S5 9:50:51- 9:55:08 OK 

S6 11:25:24- 11:30:28 OK 

S7 9:16:32- 9:22:14 OK 

S8 10:52:58- 10:57:50 OK 

10/09/2018 

S10 9:35:30- 9:39:45 OK 

S11 10:24:35- 10:28:18 OK 

S12 11:06:29- 11:11:28 OK 

S13 11:46:16- 11:50:12 OK 

12/09/2018 

S14 9:25:08- 9:31:06 OK 

S15 10:02:18- 10:07:27 OK 

S16 10:38:47- 10:42:23 NO 

S17 11:17:00- 11:21:35 OK 

13/09/2018 

S10 10:35:31- 10:40:15 OK 

S11 11:22:56- 11:28:26 OK 

S12 10:00:48- 10:05:27 OK 

S13 9:11:25- 9:15:38 OK 

14/09/2018 

S14 9:16:30- 9:22:39 OK 

S15 10:57:57- 11:03:08 OK 

S16 9:47:29- 9:50:01 OK 

S17 10:25:42- 10:29:42 OK 

 

Test use case 4 (Exiting the kitchen while cooking) 

 

For each repetition, Table 36 reports the date and the identifier of the patient. 

The third column reports the time the patient turned on the stove and, in 

brackets, the time he/she left the kitchen. The COOKING ACTIVITY 

DETECTED column reports whether the CDSS detected the cooking activity 

successfully (OK) or not (NO). The EXIT DETECTED column reports 

whether the photocell detected the exit successfully or not. The CDSS 

column reports whether the CDSS detected the test use case successfully or 

not. If at least one of the two sub-activities is not properly detected, the test 



 

use case is not considered to be properly detected. Errors are highlighted in 

grey. 

 
Table 36: Results of the pilot study on the NONCADO system, test use case 4 (Exiting the kitchen 
while cooking) 

DATE SUBJECT STOVE 

ACTIVATED  

(EXIT) 

COOKING 

ACTIVITY 

DETECTED 

EXIT 

DETECTED 

CDSS 

04/09/2018 

S1 
9.47:25 

(09:50:02) 

OK NO NO 

S2 
10:24:01 

(10:26:46) 

OK OK OK 

S3 
11:05:49 

(11:09:06) 

OK OK OK 

05/09/2018 

S4 
9:34:30 

(9:37:51) 

OK OK OK 

S5 
10:05:51 

(10:08:52) 

OK OK OK 

S6 
10:42:29 

(10:46:15) 

NO OK NO 

S7 
10:57:48 

(11:01:01) 

NO NO NO 

S8 
11:30:02 

(11:35:01) 

OK OK OK 

06/09/2018 

S1 
9:42:07 

(9:47:49) 

OK OK OK 

S2 
10:18:30 

(10:20:01) 

OK OK OK 

S3 
11:01:00 

(11:08:04) 

OK NO NO 

07/09/2018 

S4 
10:34:29 

(10:41:54) 

OK OK OK 

S5 
10:07:19 

(10:11:41) 

OK OK OK 

S6 
11:41:27 

(11:46:05) 

OK OK OK 

S7 
9:32:51 

(9:37:47) 

OK OK OK 

S8 
11:06:51 

(11:11:51) 

OK OK OK 

10/09/2018 

S10 
10:00:22 

(10:04:52) 

OK OK OK 

S11 
10:37:30 

(10:41:39) 

OK OK OK 

S12 
11:24:25 

(11:29:24) 

OK OK OK 

S13 
12:00:13 

(12:03:30) 

NO OK NO 

12/09/2018 

S14 
9:42:11 

(9:46:49) 

OK OK OK 

S15 
10:20:10 

(10:24:10) 

OK OK OK 

S16 
10:53:57 

(10:57:39) 

NO OK NO 

S17 
11:31:22 

(11:35:03) 

OK OK OK 
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13/09/2018 

S10 
10:50:20 

(10:54:15) 

OK OK OK 

S11 
11:37:22 

(11:40:43) 

OK NO NO 

 

S12 
10:15:55 

(10:21:30) 

OK OK OK 

S13 
9:25:35 

(9:29:50) 

OK OK OK 

14/09/2018 

S14 
9:31:30 

(9:35:20) 

OK OK OK 

S15 
11:12:22 

(11:17:00) 

OK OK OK 

S16 
9:58:29 

10:02:56 

OK OK OK 

S17 
10:39:48 

(10:43:20) 

OK OK OK 

 

 

Test use case 5 (Washing the dishes) 

 

For each repetition, Table 37 reports the date, the identifier of the patient, 

and the time interval in which the considered activity occurred. The CDSS 

column reports whether the CDSS detected the test use case successfully 

(OK) or not (NO). Errors are highlighted in grey. 

 
Table 37: Results of the pilot study on the NONCADO system, test use case 5 (Washing the dishes) 

DATE SUBJECT 
TIME 

INTERVAL 
CDSS 

04/09/2018 

S1 9:44:01- 9:46:02 OK 

S2 10:21:45 -10:22:55 OK 

S3 11:00:20 – 11:01:36 OK 

05/09/2018 

S4 9:29:00 – 9:30:03 OK 

S5 10:01:24 – 10:03:06 OK 

S6 10:35:40 – 10:36:44 OK 

S7 10:56:06 – 10:57:17 OK 

S8 11:20:47 – 11:22:08 OK 

06/09/2018 

S1 9:39:50 – 9:41:15 OK 

S2 10:15:17 – 10:17:15 OK 

S3 10:58:40 – 11:00:00 OK 

07/09/2018 

S4 10:25:50 – 10:26:41 NO 

S5 9:55:32 – 9:57:08 NO 

S6 10:30:40 – 11:31:48 NO 

S7 9:22:59 – 9:24:25 NO 

S8 10:58:06 – 10:59:04 NO 

10/09/2018 

S10 9:40:38 – 9:44:28 OK 

S11 10:29:02 – 10:30:27 OK 

S12 11:12:03 – 11:13:12 OK 

S13 11:50:36 – 11:51:57 OK 

12/09/2018 

S14 9:31:53 – 9:33:16 OK 

S15 10:08:10 – 10:10:11 OK 

S16 10:43:08 – 10:44:42 NO 

S17 11:22:01 – 11:23:30 OK 



 

13/09/2018 

S10 10:40:43 – 10:42:44 OK 

S11 11:28:43 – 11:30:05 OK 

S12 10:05:52 – 10:07:30 OK 

S13 9:16:26 – 9:17:45 OK 

14/09/2018 

S14 9:23:20 – 9:24:40 OK 

S15 11:03:30 -11:04:40 OK 

S16 9:50:15 – 9:51:15 OK 

S17 10:30:30 – 10:31:50 OK 

 



 

Appendix D 

JTSA workflows implemented in AID-GM 

This appendix summarizes the 10 JTSA workflows implemented in AID-

GM. For further details on the meaning of the parameters refer to Section 

2.4. 

 

Hypoglycemia and Hyperglycemia 

 

The workflow for detecting hypoglycemia is composed of a single 

pipeline, consisting of two steps (Figure 34). The corresponding parameter 

values are listed in Table 38. As already stated, the threshold for defining 

hypoglycemic and hyperglycemic episodes (THHYPO and THHYPER in the 

table) are patient-specific and defined by the diabetologists.  

 

 
Table 38: Parameters of the JTSA workflow for detecting hypoglycemia 

STEP ALGORITHM PARAMETERS 

Step 1 Qualitative 
th= THHYPO, THHYPER 

label=hypo, normal, hyper 

Step 2 
Aggregation 

HighLevel 

gap=60 

minLen=13 

granularity=MINUTES 

label=hypo 

levels=hypo 

 

The workflow for detecting hyperglycemia has the same structure shown 

in Figure 34. The algorithm parameters have the same values listed for the 

hypoglycemic episodes, excluding two the label and levels parameters in the 

second step of the workflow (Table 39). 

 

 

 

 

Figure 34: JTSA workflow for detecting Hypoglycemia 



 

Table 39: Parameters of the JTSA workflow for detecting hyperglycemia 

STEP ALGORITHM PARAMETERS 

Step 1 Qualitative 
th= THHYPO, THHYPER 

label=hypo, normal, hyper 

Step 2 
Aggregation 

HighLevel 

granularity=MINUTES 

gap=60 

minLen=13 

label=hyper 

levels=hyper 

 

 

Increasing BG value/ Decreasing BG value 

 

Increasing and decreasing episodes are defined as a variation of the BG 

level of at least 15 mg/dl every 15 minutes, lasting for at least 35 minutes. 

The workflow for detecting an increase or a decrease in the patient’s BG 

value is composed of a single pipeline, consisting of a single step that uses a 

BASIC TREND algorithm. The parameter values set for detecting an 

increase are the following: 

 

granularity=MINUTES 

minLen= 35 

label= Increasing 

minSlope= 1 

maxSlope= 200 

    gap=30 

 

The parameter values set for detecting a decrease are the following: 

 

granularity=MINUTES 

minLen= 35 

label= Increasing 

minSlope= -200 

maxSlope= 1 

    gap=30 

 

 

Bradycardia and Tachycardia 

 

The workflow for detecting bradycardia or tachycardia ha the same 

structure of the workflow for detecting hypoglycemia and hyperglycemia 

(Figure 34). The corresponding parameter values are listed in Table 40 for 

bradycardia and in Table 41 for tachycardia. Also in this case, the threshold 

for defining bradycardic and tachycardic episodes (THBRADY and THTACHY in 

the tables) are patient-specific and defined by the diabetologists.  
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Table 40: Parameters of the JTSA workflow for detecting bradycardia 

STEP ALGORITHM PARAMETERS 

Step 1 Qualitative 
th= THBRADY, THTACHY 

label=brady, normal, tachy 

Step 2 
Aggregation 

HighLevel 

gap=10 

minLen=5 

granularity=MINUTES 

label=brady 

levels=brady 

 

 
Table 41: Parameters of the JTSA workflow for detecting tachycardia 

STEP ALGORITHM PARAMETERS 

Step 1 Qualitative 
th= THBRADY, THTACHY 

label=brady, normal, tachy 

Step 2 
Aggregation 

HighLevel 

gap=10 

minLen=5 

granularity=MINUTES 

label=hypo 

levels=hypo 

 

Dawn effect 

 

The dawn effect is defined as an episode of hyperglycemia at wakeup, 

which follows a night where BG values have remained in the normal range. 

The hyperglycemia episode is constrained to start maximum 45 minutes after 

the end of the normal BG period. The workflow for detecting the dawn effect 

was discussed in detail in Section 2.4.4.  

 

Rebound effect 

 

The rebound effect is defined as an episode of hyperglycemia that occurs 

after an episode of hypoglycemia. The episode of hyperglycemia should not 

start more than 45 minutes after the end of the hypoglycemic episode.  The 

JTSA workflow for its detection is fed with the time series of BG 

measurements and is composed of three blocks, including two pipelines and 

one complex block (Figure 35). The first block is the pipeline that detects 

the time intervals in which hypoglycemia occurs. The second block is the 

pipeline that detects the time intervals in which hyperglycemia occurs. The 

third block is a complex block that detects the complex pattern, i.e., an 

episode of hypoglycemia followed by an episode of hyperglycemia. The 

parameters of the algorithms used in each block are listed in Table 42. 

 



 

 
Figure 35: JTSA workflow for detecting the rebound effect 

 

 
Table 42: Parameters of the JTSA algorithm for detecting the rebound effect 

BLOCK STEP ALGORITHM PARAMETERS 

Block 1 Step 1 Qualitative th= THHYPO, THHYPER 

label=hypo, normal, hyper 

Step 2 Aggregation 

High Level 

granularity=MINUTES 

gap= 60 

minLen= 13 

label= hypo 

levels= hypo 

Block 2 Step 1 Qualitative th= THHYPO, THHYPER 

label=hypo, normal, hyper 

 Step 2 Aggregation 

High Level 

granularity=MINUTES 

gap= 60 

minLen= 13 

label= hyper 

levels= hyper 

Block 3 - Operator: 

BEFORE 

Combiner: 

UNION 

granularity=MINUTES 

ls= 540 

rs= 240 

gap= 45 

 

 

Tachycardia precedes hypoglycemia 

 

This pattern consists of an episode of tachycardia immediately followed 

by an episode of hypoglycemia. The workflow is composed of three blocks, 

including two pipelines and one complex block (Figure 36). The first block 

is the pipeline that detects the time intervals in which tachycardia occurs. 

The second block is the pipeline that detects the time intervals in which 

hypoglycemia occurs. The third block is a complex block that detects the 

complex pattern, i.e., an episode of tachycardia followed by an episode of 

hypoglycemia. Since we are interested in hypoglycemic episodes which 

immediately follow tachycardic episodes, we use the PRECEDES temporal 
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operator, instead of BEFORE. The parameters of the algorithms used in each 

block are listed in Table 43. 

 
Figure 36: Representation of the JTSA workflow for detecting tachycardic episodes immediately 

followed by hypoglycemic episodes 

 
 
 Table 43: Parameters of the JTSA algorithm for detecting tachycardic episodes immediately 
followed by hypoglycemic episodes 

BLOCK STEP ALGORITHM PARAMETERS 

Block 1 Step 1 Qualitative th= THBRADY, THTACHY 

label=brady, normal, tachy 

Step 2 Aggregation 

High Level 

gap=10 

minLen=5 

granularity=MINUTES 

label=tachy 

levels=tachy 

Block 2 Step 1 Qualitative th= THHYPO, THHYPER 

label=hypo, normal, hyper 

Step 2 Aggregation 

High Level 

granularity=MINUTES 

gap= 60 

minLen= 13 

label= hypo 

levels= hypo 

Block 3 - Operator:  

PRECEDES 

Combiner: 

UNION 

ls= 40 

rs= 90 

gap= 0 

 

Hypoglycemia precedes bradycardia 

 

This pattern consists of an episode of hypoglycemia immediately 

followed by an episode of bradycardia. The workflow is composed of three 

blocks, including two pipelines and one complex block (Figure 37). The first 

block is the pipeline that detects the time intervals in which hypoglycemia 

occurs. The second block is the pipeline that detects the time intervals in 

which bradycardia occurs. The third block is a complex block that detects 



 

the complex pattern, i.e., an episode of hypoglycemia followed by an episode 

of bradycardia. The parameters of the algorithms used in each block are 

listed in  Table 44. 

 

Figure 37: Representation of the JTSA workflow for detecting hypoglycemic episodes immediately 
followed by bradycardic episodes 

 
 
 Table 44: Parameters of the JTSA algorithm for detecting hypoglycemic episodes immediately 
followed by bradycardic episodes 

BLOCK STEP ALGORITHM PARAMETERS 

Block 1 Step 1 Qualitative th= THHYPO, THHYPER 

label=hypo, normal, hyper 

Step 2 Aggregation 

High Level 

granularity=MINUTES 

gap= 60 

minLen= 13 

label= hypo 

levels= hypo 

Block 2 Step 1 Qualitative th= THBRADY, THTACHY 

label=brady, normal, tachy 

Step 2 Aggregation 

High Level 

gap=10 

minLen=5 

granularity=MINUTES 

label=brady 

levels=brady 

Block 3 - Operator:  

PRECEDES 

Combiner: 

UNION 

ls= 40 

rs= 90 

gap= 0 
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